DJS3B - DESIGN OF EXPERIMENTS

Unit - |
Fundamental principles of experiments — randomization, replication and local control. Size of
experimental units. Analysis of variance- one-way and two-way classifications.

Unit- I

Analysis of Variance and Basic Designs: Concept of Cochran’s Theorem. Completely randomized
design(CRD)- Randomized block design(RBD) - Latin square design(LSD) and their analysis -
Missing plot techniques in RBD and LSD.

Unit - lll
Post ANOVA Tests: Multiple range test; Newman-Keul’s test-Duncan’s multiple range test-
Tukey’s test. Analysis of Covariance technique for RBD with one concomitant variable.

Unit - IV
Factorial experiments: 2% 2% and 2" factorial experiments. Definitions and their analyses.

Unit - V
Principles of confounding —partial and complete confounding in 2°- balanced incomplete block
design(BIBD)— parametric relationship of BIBD.

REFERENCE BOOKS:

1. Das, M.N. and Giri,N.C. (1988) Design and Analysis of Experiments(znOI Edition).
New Age International, New Delhi.

2. Douglas,C. Montgomery(2012) Design and Analysis of Experiemnts. John Wiley &
sons, New York.

3. Goon A. M., Gupta, S.C. and Dasgupta, (2002)B. Fundamentals of Statistics, Vol.ll,
World Press, Kolkata.

4. Gupta, S. C. and V. K. Kapoor (1999) Fundamentals of Applied Statistics (Third
Edition), Sultan Chand & Sons, New Delhi.

5. Dean, A and Voss (2006) Design and Analysis of Experiments. Springer India Private
Limited, New Delhi.



Unit -1
DESIGN OF EXPERIMENTS
1.1 Introduction

In 1935 sir Ronald A. Fisher laid the foundation for the subject which
has come to be known by the title of his book ‘ The Design of Experiments’.
Since then the theory of experimental design has been considerably developed
and extended. Applications of this theory are found today laboratories and
research in natural sciences, engineering, and nearly all branches of social
science.

Definition

Design of experiments may be defined as the logical construction of the
experiments in which the degree of uncertainty with which the inference is
drawn may be well defined.

The subject matter of the design of experiments may includes;

1) Planning of the experiment.

2) Obtaining relevant information from it regarding statistical
hypothesis under study, and

3) Making a statistical analysis of the data.

Allen L. Edwards the experimental design is called a randomized group design.

The experimenter may easily recognize three important phases of
every project;
1) Experimental or planning phase.

i) Statement of problem.

ii) Choice of response or dependent variable.
iii) Selection of factors to be varied.

iv) Choice of levels of these factors.

» Qualitative or quantitative.
» Fixed or random.
» How factor levels are to be combined.
2) Design phase,

i) Number of observations to be taken.

ii) Order of experimentation.

iii) Method of randomization to be used.

iv) Mathematical model to describe the experiment.
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V) Hypothesis to be tested.
3) Analysis phase,
i) Data collection and processing.
i) Computation of test statistics.
iii)  Interpretation of results for the experiment.

1.2 Definitions:

Experiment
An experiment is a device or a means of getting an answer to the
problem under consideration.
Experiment can be classified into two categories;
i) Absolute
1) Comparative
i) Absolute experiment
Absolute experiments consist in determining the absolute value of
some characteristics like,
a) Obtaining average intelligence quotient (I.Q) of a group of people.
b) Finding the correlation co-efficient between two variables in a bivariate
distribution etc.
ii) Comparative experiment
Comparative experiments are designed to
Compare the effect of two or more objects on some population
characteristics.
.......Example;
. Comparison of different fertilizers.
. Different kinds of verities of a crop.
. Different cultivation processes etc.,
2. Treatments
Various objects of comparison in a comparative experiment are
termed as treatments.
Example

In field experimentation different fertilizers or different varies of crop
or different methods cultivation are the treatments.
3. Experimental unit
The smallest division of the experimental material to which we
apply the treatments and on which we make observations on the variable
under study.



i) In field experiments the plot of land is the experimental unit. In other
experiments, unit may be a patient in a hospital, a lump of dough or a batch of
seeds.
4. Blocks

In agricultural experiments, most of the times we divide the whole
experimental unit (field) into relatively homogeneous sub groups or strata.
These strata which are more uniform amongst themselves than the field as a
whole are known as blocks.
5. Yield

The measurement of the variable under study on different
experimental units are termed as yields.
6. Experimental error

Let us suppose that a large homogeneous field is divided into
different plots (of equal shape and size) and different treatments are applied to
these plots. If the yields from some of the treatments are more than those of
others, the experimenter is faced with the problem of deciding if the observed
differences are really due to treatment effects or they are due to chance
(uncontrolled) factors. In field experimentation, it is a common experience that
the fertility gradient of the soil does not follow any systematic pattern but
behaves in an erratic fashion. Experience tells us that even if the same is used
in all the plots, the yields would still vary due to the differences in soil fertility.
Such variation from plot to plot, which is due to random factors beyond human
control, is spoken of as experimental error.
7. Replication

Replication means the execution of an treatments more than once.
In other words, the repetition of treatments under investigation is known as
replication.
8. Precision

The reciprocal of the variance of the mean is termed as the precision.

Thus for an experiment replicated r times is given by.

r/c?

var(X) -
Where 02 is the error variance per unit.
9. Efficiency of a Design

Consider the designs D: and D2 with error variances per unit o;
and o} and replications r1 and r» respectively. Then the variance of the
difference between two treatment means is given by
262 /r, and 2062 /r, for D1 and D, respectively. Then the ratio



1)
2)
3)

207 T, R . :
=—2x—-= L+ is termed as efficiency of design D1 w.r.t Da.
r, 2o, o, O,

10. Uniformity Trials

The fertility of the soil does not increase or decrease uniformity in
any direction but is distributed over the entire field in an erratic manner.
Uniformity trails enable us to have an idea about the fertility variation of the
field. By uniformity trail, we mean a trail in which the field (experimental
material) is divided into small units (plots) and the same treatment is applied
on each of the units and their yields are recorded.

1.3 Basic Principles of Experimental Designs
The purpose of designing an experiment is to increase the precision

of the experiment. In order to increase the precision, we try to reduce the
experimental error. For reducing the experimental error, we adopt certain
techniques. These techniques form the form the basic principles of
experimental designs. The basic principles of the experimental designs are
replication, randomization and local control.
The principles of experimental design;-
Replication
Randomization
Local control
1) Replication

Replication means the repetition of the treatments under investigation.
An experimenter resorts to replication in order to average out the influence of
the chance factors on different experimental units. Thus, the repetition of
treatment results is more reliable estimate than is possible with a single
observation
Advantages of replication

.Replication serves to reduce experimental error and thus enables us to obtain

more precise estimates of the treatment effects.
From statistical theory we know that the standard Error (S.E) of the mean of a

sample size n is o/+/n, where o is the standard deviation of the population.
Thus if a treatment is replicated r times, then the S.E of its mean effect is
o/+/n, where o2 is the variance of the individual plot is estimated from error

variance. Thus “ the precision of the experiment is inversely proportional to the
square of the Replication has an important but limited role in increasing the
efficiency of the design.
2) Randomization



We have seen that replication will provide an estimate of experimental
error. For valid conclusions about our experimental results, we should have
not merely an estimate of experimental error but it should be an unbiased
estimate. Also, if our conclusions are to be valid, the treatment means and also
differences among treatment means should be estimated without any bias. For
the purpose we use the technique of randomization.

When all the treatments have equal chances of being allocated to
different experimental units it is known as randomization.

The following are the main objectives of randomization.

i) The validity of the statistical test of the Significance.

i.e.) t-test for testing the significance of the difference of two means. F-
test for testing the homogeneity of variance.

ii) The purpose of randomness is to assure that the source of variation,
not controlled in the experiment operate randomly. Randomization eliminates
bias in any form.

3) Local control

We know that the estimate of experimental error is based on the
variations from experimental unit to experimental unit. In other words, the
error in an experiment is a measure of “ within block” variation. This suggests
that if we group the homogeneous experimental units into blocks, the
experimental error will be reduced considerably. If the experimental material,
say field for agriculture experimentation is heterogeneous and different
treatment are allocated to various units at random over the entire field the soil
heterogeneous will also enter the uncontrolled factors and thus increase the
experimented error. It is desirable to reduce the experimental error as for as
practicable without unduly increasing the number of replications, so that even
smaller difference between treatments can be detected as significant.

The process of reducing the experimental error by dividing relatively
heterogeneous experimental area (field) into homogeneous blocks is known as
local control.

Remarks:

1. Local control, by reducing the experimental error, increases the efficiency
of the design.

2. Various forms of arranging the wunits(plots) into homogeneous

groups(blocks) have so far been evolved and are known as experimental
designs, e.g., Randomised Block Design, Latin Square Design etc.,
1.4 Analysis of Variance

The term ‘Analysis of Variance’ was introduced by Prof. R.A. Fisher in
1920’s to deal with problem in the analysis of agronomical data. Variation is
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inherent in nature. The total variation in any set of numerical data is due to
number of causes which may be classified as: (i) Assignable causes, and (ii)
Chance causes.

The variation due to assignable causes can be detected and measured
whereas the variation due to chance causes is beyond the control of human
hand cannot be traced separately.

Definition. According to Prof. R.A. Fisher, Analysis of variance (ANOVA) is
the “Separation of variance ascribable to one group of causes from the
variance ascribable to other group.”

Assumptions for ANOVA Test.
ANOVA test is based on the test statistics F (or Variance Ratio).
For the validity of the F-test in ANOVA, the following assumptions are
made:

(i) The observations are independent,

(ii) Parent population from which observations are taken is normal, and
(iii) Various treatment and environmental effects are additive in nature.
In the following sequence we will discuss the analysis of variation for:

(a) One-way classification, and (b) Two-way classification.

1.5 ONE-WAY CLASSIFICATION

Let us suppose that N observations yj, (i=1, 2... k; j= 1, 2, ..... ,nj) of a
random variable Y are grouped, on some basis, into k classes of sizes ni, no,

k
...., ng respectively, (N = Zni ) as exhibited in table
i=1



Table 1.1: ONE-WAY CLASSFIED DATA

Class | Sample Observations Total Mean

1 Y11Y1iz - Yimy Ti. Y1
2 Y21Y22 - Yomy To. Ya.
I YitYiz - Yin T Y.
k YeiYez - Ying T Vi

The total variation in the observation yij can be split into the following
two components:

(i) The variation between the classes or the variation due to different
bases of classification, commonly known as treatments.

(i) The variation within the classes, i.e, the inherent variation of the
random variable within the observations of a class.

The firs type of variation is due to assignable causes which are beyond
the control of human hand.

The main objective of analysis of variance technique is to examine if
there is significant difference between the classes means in view of the
inherent variability within the separate classes.

In particular, let us consider the effect of k different rations on the yield
in milk of N cows (of the same breed and stock) divided into k classes of sizes

K
ni, Nz, ..., Nk respectively, N =>'n;. Here the sources of variation
=

are:(i) Effect of the ration (treatment) : t;; i= 1, 2, .... k.
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(ii) Error (¢) produced by numerous causes of such magnitude
that they are not detected and identified with the knowledge that we
have and they together produce a variation of random nature
obeying Gaussian (Normal) law of errors.

1.5.1 Analysis of one way Classified Data

Let y; denote the jth observations in the ith level of a factor A and let yi be
corresponding random variable. Let the mathematical model for one way
classified data

Vi =u+t e 1=12,...k j=12,...,n

Where u is the general mean effect

Ti is the effect ith level of factor A
iid )
e; ~ N(0,07)
E(yi)= u+ti
uand ti | i=1,2,...,k can be estimated by least square method that is
minimizing error sum of squares

E(e'e)’ = Z(yi,- - E(yij ))2

ij

= Z(yij —(u +ti))2




iZYij =iz_ﬂ+izti

z y; =G =Grand Total
i

G= Zniy+2niti

Zni =n

G= ny+Zniti (1)

o(e'e)
B

ZZ(yij — 1= )(_1) =0

]

0

2l —ut)=0
=Yy - Zu- 3t =0
Zj:yi,- zzjlxﬁzj:ti
Zj)yu— =T,

T.=nu+nt. ...(2)
Equation (1) and (2) are not independent

We assume that

From equation (1)
G=nu

,_G
H n
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From equation (2)

T =nu+nt

T. =n, 9+ n.t,
n

T.—nE

>

Error Sum of Squares

Blee)’ =2y ~A-6)"

=Zj:(yi,- —u=t)(yy —p—t)

=>"y; (y; — #—1;) +other terms are vanished
i

Z;[yu? — iy _fiyu]

:Zyu?_,[‘G_ZtiZYij

RadEr e

Error Sum of Square (E.S.S) = Total Sum of Square (T.S.S)-Treatment
Sum of Square (Tr.S.S)
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Table 1.2: Anova Table for One —-way Classified Data

Source of | d.f Sum of | Mean sum of | F-ratio
variation squares squares
Treatment(Ration) | k-1 St2 R S? s/
S = F= 5 = Fk—l,n—k
(k-1) 2
Error n-k Sk? ) S f
S. =
" (n-k)
Total n-1 St2
Under the null hypothesis, H, =t, =t, =---=t, against the alternative that all t’s
2
. . S
are not equal, the test statistic F=—-=F_,
Sg '

i.e., F follows F (central) distribution with (k-1, n-k) d.f

If F > F1, nk (a) then Ho is rejected at a % level of significance and we
conclude that treatments differ significantly. Otherwise Ho accepted.

Problem 1.1.

The average number of days survived by mice inoculated with 5
strains of typhoid organisms along with their standard deviation and number

of mice involved in each experiment is given below. On the basis of these
data, what would be your conclusions regarding the strains of typhoid
organisms?

Strains of typhoid A B C D E
No. of mice, nj; 10 6 8 11 S
Average, y; 10.9 13.5 11.5 11.2 15.4

Standard deviation, s; 12.72 5.96 3.24 5.65 3.64
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Solution.

Here we set up the Null Hypothesis, Ho: Different
strains of typhoid organisms are homogeneous,

i.e.,
HO::UA=:UB=:UC=.UD=
ugHy: At least two of the means are dif ferent

Let Ti. Be total for the ith strain of typhoid and G = ZTi be
the grand total. |
Theny, = :—Ll = T, =ny;
, 1 il _
Also = s :n—lé yﬁ —yZ = ; yi = ni(si2 + yf)

Which gives the S.S of observations for the ith strain

typhoid.
CALCULATIONS FOR VARIOUS SUM OF SQUARES

G*  (482.2)
N 40

RS.S= 3 y2 = nls?+y?)==8237.73
i

C.F = = 5,812.92

i
T.5.S=R.S.S—C.F.=8,237.73 —5,812.92 = 2,424.81

S.S due to strains of typhoid

T2
=Y - -CF.
i N
_ (109)* | (81)2 | (92)* | (123.2)* | (77)*
= + c + 5 + m + 5812.92

=1,188.1 + 1,093.5 + 1,058 + 1,379.84 + 1,185.8 — 5,812.49
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Error $.5.=T.S5.5.—S.S.due to atrain = 2,424.81 — 92.32 = 2,332.49

Table 1.3 ANOVA TABLE

Sources of |df |[Sum of |Mean S.S V.R.(F)
Variatoin squares
Between 4 92.32 9232 23.08 66.63
strains of 4 23.08
typhoid = 2.89
Error 35 [2,332.49 2,332.49
35

= 66.63

Total 39 |2,424.81

Tabulated Fo.0os and 35 d.f = 5.735. Since calculated value of F
is less than the tabulated value, it is not significant at 5% level of significance
and the null hypothesis Ho, may be accepted.

1.6 TWO-WAY CLASSIFICATION (ONE OBSERVATION PER CELL)

Suppose n observations are classified into k categories (or classes), say
A1, Ao, ....,Ax according to some criterion, A: and into h categories, say,

B1, Bo, ...Bn according to some criterion B, having kh combinations

(A,B;) i=1, 2, ...., k ; j= 1, 2, ..., h; often called cells. This scheme of
classification according to two factors or criteria is called two-way
classification and its analysis is called two-way analysis of variance. The
number of observations in each cell may be equal or different, but we shall
consider the case of one observation per cell so that n=hk, i.e., the total
number of cells is n=nk.

In the two-way classification, the values of the response variable are
affected by two factors.
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For example, the yield of milk may be affected by differences in
treatments, (i.e, rations as well as the differences in variety, i.e., breed and
stock of the cows. Let us suppose that the n cows are divided into h different
groups or classes according to their breed and rations given at random to
cows in each group) on the yield of milk.

Let y;;= [Yield of milk from the cow of jth breed or stock, fed on the ration i; i=
1,2,..,kj=1,2,...,h

Note that the suffix i refers to the treatments (rations) and the suffix j
refers to the breed and stock of the cow. The yield can be expressed as
variable values in the following k x h two-way. One factor of variation, say,
varieties (breed and stock of cows) is represented along the columns and the
other factor of variation, say, treatments (rations) is represented along the
rows of the table.

Table 1.4: TWO-WAY CLASSIFIED DATA

Treatments Varieties of Cows Row Row
(Rations) Totals Means
1 2 ]
h = (|=
2Yi) | (X yy)/h
J j
1 Y11Y12 Vi Ty, Y1
Yin _
2 T, Y2
Y21¥Ya22 Y2j--- Y2n
i ------
Yi1Viz -+ Yij --- Yin
K ...... Tk }_/k
Yk1Yx2 Ykj --- Ykn
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Column Tl.T.Z . T] vee T_h =
Totals L2Yj

Column
means

=(Zyij )/k

1.6.1. Analysis Two Way Classified Data
The appropriate model of this data is
Vi =Hta + B +e; i=12,....p; j=12,....q

Where yj is the yield of the (i,j)t" element which is in the it row and jt»
column with p levels and q levels, where u is the general mean effect

a= a; (ith row effect)

B= Bj (jth column effect)
i.id )
& ~ N(0.o,)

u, ai and Bj are estimated by the method of least squares

E:Zeij :Z(yij —H—o _ﬂj)

E_o E o E
ou | oa op,

Differentiate w.r.to u

ZZ(YU —u—o = p )(_1) =0
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Z(yij —H—q _ﬂj) =0

Zj:yij _izj:ﬂ_zj:izai _izj:ﬂj =0
where >y, =G
i
G=pau+a) e +pY. B -(2)
i j

Differentiate w.r .to a; in equation (1)

= 2211(yij —p—a, - B (-1 =0
=2Xw—u—%—ﬂﬂ=0
where Zyij =T,

To=0u+de; +3 B --(3)

Differentiate w.r .to ; in equation (1 )

ZZZ(yij —H—G _/Bj)(_l)zo

:iZ(y“' —H—a; _ﬁj):O
where Zy‘i =T,

T, = p,u+Zai +pp; ... (4)
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We assume that » ¢, =0, > 3, =0
i j

From equation (2)

G=pqu

G .
- = ﬂ
pq

From equation (3)
Ti= qu+qai

Ti-qu = qai

qa Pq

From equation (4)

T; = pu++pp,
s _Ti_G
" p pg

Then the error sum of squares,

E :Z(yij —H—G _ﬂj)z
ij

E :Z(yij —H—G _ﬂj)(yij —H— G _,Bj)
ij

E= Zyu (Y4 — #—a; = B;) + other terms are vanished
i

= Zy“? _/}Z Yij _Zdi Yij ZyUIBJ
ij ij ij ij

i pq i i i P Pq
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Where Zy” =G,Zyij =T, ’Zyij =T,
[l ] !

G2 ZTiz GZ ZTJZ GZ
J_ q pq P pq
= Total Sum of Square (T.S.S) = Row Sum of Square (R.S.S)-Column Sum of

Square (C.S.S)

Table 1.5: ANOVA TABLE FOR TWO-WAY DATA WITH ONE
OBSERVATION PER CELL RANDOM EFFECT MODEL

Sources of S.S d.f M.S.S Variance
variation ratio
- S.S.A.
Factor A S.S.A. p-1 M.S A=
p—1
Factor B S.S.B. q-1 P = M.S. A.
S.S.B. 4~
M.S.B.= M.S.E
q—1
ro— M.S.B.
Error S.S.E. (p-1) (g-1) M.S.B. 5T M.S.E
B S.S.B.
@P-D@-1)
Total T.S.S. pg-1

Under the null hypothesis Hot = ti=t2=...=t, against the alternative that all t’s
are not equal the test statistic is :

M.S.A
FEMSE~WHMMHH

i.e., Fr follows F(central) distribution with [(p-1), (p-1)(q-1)] d.f. Thus if Fa is
greater than tabulated F for [(p-1), (p-1)(g-1)] d.f, at certain level of significance,
usually 5 % then we reject the null hypothesisHot and conclude that the
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treatments differ significantly. If F; is less than tabulated value then Fa is not
significant and we conclude that the data do not provide any evidence against
the null hypothesis which may be accepted.

Similarly under the null hypothesis Hopb=b1=b2=...=bq, against the alternative
that b’ s are not equal, the test statistics is:

_MSB _
M.S.E

Fs Fr

q-1).(p-1)(a-1)]

And we discuss its significance as explained above.

Problem 1.2.

Three different methods of analysis M1, M2, M3 are used to
determine of a certain constituent in the sample. Each method is used by five
analysis in the results, and the results are given in the results are given in
table

Method
Analyst M1 M2 M3
1 7.5 7.0 7.1
2 7.4 7.2 6.7
3 7.3 7.0 6.9
4 7.6 7.2 6.8
5 7.4 7.1 6.9

Do these results indicate a significant variation either between
the methods or between the analysts?

Solution:
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Here two factors of variation are, say,
A : Analysts, represented along the rows of the Table.
B : Methods, represented along the columns of the table.
Null hypothesis :

Hoa : u1.= us. = u4. = us. , i.e., there is no significant
difference between the analysts.

Hop : u.1 = up2 = u.3, i.e., there is no significant difference
between the methods.

Alternative Hypothesis :
Hia : At least two of ui., po, ..., us. are different.
Hig : At least two of u,1, Uu.2,..., us are different.
y; = response of the i analysts and the j*» methods (i = 1,2,...,5;j = 1,2,3)
In the usual notations, we have
K=5, h=3 and N=hxk = 3x5 =15

Table 1.6: CALCULATIONS FOR VARIOUS S.S

Analyst Method T, =Yy T?
M, Mo Ms J
21.6 466.56
1 7.5 7.0 7.1 21.3 453.69
2 6.7 7.4 7.2 21.2 449 .44
3 6.9 7.3 7.0 21.6 466.56
4 6.8 7.6 7.2 21.4 457.96
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5 6.9 7.4 7.1
Column | 37.2 35.5 344 |G=107.1 ZTiZ =
total, T; i
2,294.21
T_]-2 1,383.84 1,260.25 1,183.36 ZTJ? =
j
3,827.45

Raw S.S. (R.S.8.) = Y. > yi= (7.5 + (7.0)* + - + (7.1)* + (6.9)?
i

= 155.66 + 151.49 + 149.90 + 155.84 + 152.78 (Raw — wise S.S.)

=765.67

. G? 107.1)%2  11,470.41
Correction Factor = = ( = " — -

Total S.S. = R.S.S. - C.F. =765.67 - 764.694 = 0.976

S.S.A. = S.S. due to factor A (Analysis) = % ZTi-Z -CF
i

= 2202 764.694 = 764.737 — 764.694 = 0.043

S.S.B. = S.S. due to factor B (methods) = i > Ti-CF
i

=387% _ 764.694 = 765.49 — 764.694 = 0.796

22




S.S. due to Error (S.S.E.) =T.S.S. - S.S.A. - S.S.B. =0.976 - 0.043 -
0.796 = 0.137

Table 1.7: ANOVA TABLE

Sources of |d.f S.S. Mean SS | Variance Ratio
variation (MSS)
(1) (2) (3) (4)=(3)/(2) (F)
Factor A |k-1=5-1=4 0.043 |0.0108 _0.0108
(Analysts) A70.0171
Factor B
h-1=3-1=2 0.796 0.3980
(Methods) 03980 -
Error 4x2=8 A700171 0 7T
OR 0.137 0.0171
14 - (4+2) = 8
Total N-1=15-1=14 0.976

Tabulated Fo.05 (2,8) = 19.40.

Since the calculated value Fa< 1, it is not significant and we fail to reject
Hoa. Hence, there is no significant difference between the analysis.

Since the calculated value of Fg = 23.27 is greater than the tabulated

value, it is significant.

Hence the hypothesis Hop of the homogeneity of the

methods is rejected at 5% level of significance thus, we conclude that the
methods differ significantly at 5% level of significance.
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Unit -II
2.1 Analysis of Variance

The analysis of variance is a powerful statistical tool tests of
significance. The test of significance based on t-distribution is an adequate
procedure only for testing the significance of the difference between two. In a
situation when we have three or more samples to consider at a time an
alternative procedure is needed for testing the hypothesis that all the samples
are drawn from the same population, i.e., they have the same mean. For
example, five fertilizers are applied to four plots each of wheat and yield of
wheat on each of the plot is given. We may be interested in finding out
whether the effect of these fertilizers on the yield is significantly different or in
other words, whether the samples have come from the same normal
population. The answer to this problem is provided by the technique of
analysis of variance. The basic purpose of the analysis of variance is test the
homogeneity of several means.

2.2 Cochran’s Theorem

Let X1, Xo, ....,Xn, denote a random sample from normal population
N (0,0%). Let the sum of the squares of these values be written in the form:

DXE = QA Qo+
i=1

Where Qj is a quadratic from in Xi, Xo, ....,Xn, with rank (degrees of
freedom) 1j: j= 1, 2, ...., k. Then the random variables Q1, Q2, ...., Qk are
mutually independent and Q;/c? is y*-variate with rj degrees of freedom if and

only if

2.3 Completely Randomised Design(CRD)

In this design the experimental units are allotted at random to the
treatments, so that every unit gets the same chance of receiving every
treatment.

For example
24



Let there be five treatments each to be replicated four times. There are,
therefore, 20 plots. Let these plots be numbered from 1 to 20 conveniently.

When a coin is tossed, there are two events, that is, either the head comes up,
or the tail. We denote the “head” by H and the “tail” by T.

Layout of CRD

1 2 3 4
A C A D

5 6 7 8

B D B D
9 10 11 12
C B C A
13 14 15 16
B D A C

Advantages of CRD

It is easy to layout the design.

It results in the maximum use of the experimental units since all the
experimental materials can be used.

It allows complete flexibility as any number of treatments and
replicates may be used. The number of replicates , if desired, can be
varied from treatment to treatment.

The statistical analysis is easy even if the number of replicates are not
the same for all treatments

It provides the maximum number of degrees of freedom for the
estimation of the error variance, which increases the sensitivity or the
precision of the experiment for small experiments.

Disadvantages of CRD

i)

In certain circumstances, the design suffers from the disadvantage of
being inherently less informative than other more sophisticated
layouts. This usually happens if the experimental material is not
homogeneous.

Since randomisation is not restricted in any direction to ensure that
the units receiving one treatment are similar to those of receiving
other treatment, the whole variations among the experimental units is
included in the residual variance.
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iii)j ~ This makes the design less efficient and results in less sensitivity in
detecting significant effects.

Applications

Completely randomized design is most useful in laboratory technique and
methodological studies, e.g., in physics, chemistry, in chemical and
biological experiments , in some green house studies, etc.,

2.3.1 Statistical Analysis of CRD

The model is

Yy = 4+1 + € i=12..k j=12.n,

Where yij is the yield

u is the general mean effect

ti is the treatment effect

eij is the error term mean zero and variance o2

E(yy) = utti, i= 1, 2 ...,k can be estimated by method of least square that
is minimizing error sum of square

E(e’e)2 = Z(yij - E(yij)z)

=Z(yij —(u+t, ))2

o(e'e)
ou

ZZ(YU — 1= )(_1) =0

0

_ZiZ(yij _ﬂ_ti)zo

Z(yij _ﬂ_ti)=%=0

ij

Where > y; =G , G= Grand total
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G :Zni,u+Zniti e (1)

o(e'e)
ot

0

i

f —

0
Z(yij —,u—ti)Z—ZZO
Zyij _Z/J_Zti =0
j j j
Where > y; =T,
i

T, =nu+nt =0 ...(2)
From equation (1)

Zi:niti =0, D> n=n

G=na+0

G .

_:ﬂ
n

From equation (2)

TI _nil[l=nlti
T nG .
_'_'_:ti
n; n;n

T G .
_'__:ti

n, n

ZZ(YU —H-t )(_1) =0 _ZZ(yij _:“_ti)
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Error Sum of Squares

E(e’e)2 = Z(yij —H-T )2

ij

> (yy -t fyy —u-t)

ij

DY (yij —u—t )+ other terms are vanished

Z[yu —[y; -, yij]
i

= Zy“? _,[‘Zy“' _fi Zy“‘
ij ij ij

= Z yij? _,[‘Z Yii _Zfi Z Yij
ij ] 1 J

T, TG
_ 2
SR
ij
GZ Ti2 GZ
(Z yu ( i n_. 'y
Where Yy, =T,
j
Error Sum of Square (E.S.S) = Total Sum of Square (T.S.S) — Treatment
Sum of Square (Tr. S.S)
2
Where — is the correction factor
n
Table 2.1 : Anova Table for CRD
Source of d.f Sum of Mean Sum of | F-ratio
variation Square(SS) Square(MSS)
Treatments k-1 Tr.S. S— MSST= Tr.S.S _ MSST
Z 2 k-1 MSSE
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Error n-k By Er.S.S

) MSSE=
subtraction n-k
E.S.S=T.S.S-
Tr.S.S
Total n-1 , G?
z Yi——
i n
Under the null hypothesis, H, =t =t, =---=t, against the alternative that
all t’s are not equal, the test statistic F = MSST _ Fcni)
MSST ‘

i.e., F follows F (central) distribution with (k-1, n-k) d.f

If F > Fi-1,nx (a) then Ho is rejected at a % level of significance and we
conclude that treatments differ significantly. Otherwise Ho accepted.

Problem 2.1 :

A set of data involving four “tropical feed stuffs A, B, C, D” tried on 20 chicks
is given below. All the twenty chicks are treated alike in all respects except the
feeding treatments and each feeding treatment is given to 5 chicks. Analyse
the data.

Feed Gain in Weight Total T;

A 55 49 42 21 52 219

B 61 112 30 89 63 355

C 42 97 81 95 92 407

D 169 137169 85 154 714
Grand Total G =1,695

Figures in antique in the Table are not given in the original data. They are a
part of the calculations for analysis.

Weight gain of baby chicks fed on different feeding materials composed of
tropical feed stuffs is given in Table.
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Solution:

Null hypothesis, Ho: ta =ts =tc = tp
i.e., the treatment effects are same.
D) are alike as regards their effect on increase in weight.

Alternative hypothesis, H;: At least two of ti’s are different.

Raw S.S. (R.S.S.) = 3 > y? = 552 + 492 +
i

In other words, all the treatments (A, B, C,

+85%+ 1542 =1, 81,445

Correction factor (C.F.) = G?/N = (1,695)%/20 = 1, 43,651.25

Total S.S. (T.S.S.) =R.S.S.-C.F. =1,81.445-1, 43,651.25 = 37, 793.75

Treatment S.S. = Ty? + T,? +T3%2 + T,2/5 - C.F.
=47,961 + 1, 26,025 + 1, 65, 649 + 5, 09,769/5 - 1, 43,641.25

Error S.S. = Total S.S. — Treatment S.S. = 37,793.75 - 26,234.95 = 11,558.80

Table 3.2 : Anova Table for CRD

Source of M.S.S. Variance ratio, ‘F’
variation S.S. d.f. S.S./d.f.
Treatments | 26,234.95 3 8744.98 FT = 8744.98/722.42 = 12.105
Error 11,558.80 16 722.42
Total 37,793.75 19

Test statistic: FT -~

F(3,16), Tabulated F,.os (3, 16) = 3.06. Hence FT is highly

significant and we rejected H, at 5% level of significance and conclude that the

treatments A, B, C and D differ significantly.

2.4 Randomised Block Design(RBD)

blocks. The design is a randomised block design.

If all the treatments are applied at random relatively
homogeneous units within each strata or block and replicated over all the

Advantages of RBD

(i) Accuracy:

This design has been shown to be more efficient or accurate
than C.R.D for most types of experimental work. The elimination of between
S.S. from residual S.S. usually results in a decrease of error mean S.S.

(ii) Flexibility:
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In R.B.D no restriction are placed on the number of treatments
or the number of replicates. In general, at least two replicates are required to
carry out the test of significance (factorial design is an exception). In addition,
control (check) or some other treatments may be included more than once
without complications in the analysis.

(iii) Ease of Analysis:

Statistical analysis is simple and rapid. More-over the error of
any treatment can be isolated and any number of treatments may be omitted
from the analysis without complicating it.

Disadvantages of RBD

i) RBD may give misleading results if blocks are not
homogeneous.
ii) RBD is not suitable for large number of treatments in that

case the block size will increase and it may not be possible
to keep large blocks homogeneous.

iii) If the data on more than two plots is missing, the
statistical analysis becomes quite tedious and
complicated.

Layout of RBD: -

Let us consider five Treatments A, B, C, D, E each
replicated 4 times we divided the whole experimental area into 4 relatively
homogeneous block and each in to 5 units the treatments allocated at random
to the blocks particular layout may be follows.

Blocki A B C D E
Blockll B C
Blocklll C D

D E

D E A
E A B
BlockIV A B C

Lay out:



means total

Yiu Yoo oo Yir . T

Yor Yoo o Yor Yo T,

Yio Yiz o VYijVir i T

Yo Y2 o Yir Yo T

means Yy, Y, ... Y, {
total T, T, ... T, - G

Let us assume that yjj is the response of the yield of experiment unit from
ith treatment jt block.

2.4.1 Statistical Analysis of RBD
The model is

Yy =u+t+b +e (=12t j=12..r)

Where yijj is the response or the yield of the experimental unit receiving the ith
treatment in the jt block;

u is the general mean effect
ti is the effect due to the ith treatment

bj is the effect due to jt block or replicate

iid

2
e; ~ N(0,0;)
t r
Where u , ti and bj are constants so that Zti =0 and ij =0
i=1 =1
If we write » >y, = G =Grand Total
i

> y; =T, = Total for ith treatment
j

Z y; = B;= Total for jth block
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u, ti and bjare estimated by the method of least squares
E= Zzej - ZZ(yij —pu-t —bj)2 ... (1)
l ] i j

Differentiate with respect to p

0E

—=0
ou

ZZZ(YU' —u—t-b;)(-1) =0
_ZZZ(yij —pu—t—-b;)=0

ZZj‘,(yij —u—t, —bj)z_%:o
RID I
sz:yu —try—rzi:ti —tzj:bj -0
Where Y'Yy, =G

i
G-tru—ry t, -ty b, =0 ... (2)

i i
Differentiate with respect to t;

%E _g
at,

ZZ(yij —u—t-b)(=1)=0
_ZZ(yij —pu—t—=b;)=0

0
Z(yij —H-T —bj):_—Z:O
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Zyii _Zﬂ—zti —ij)=0

Where Z y; =T,
i

T =ru+r -3 b ..(3)
i

Differentiate with respect to b;j

OE

2==0
b,

20t =0
—2> (¥ — 1t =b;) =0

0
Z(yij —u-t —bj) :__2:0

izyij _Z,U—Zi:ti —ij)zo

Where Zyij =B,

By =tu~+ t +tb,
| ..(4)

t

Dt,=0 and Db, =0
=

i
i=1

From equation (2)
G=tru
G

t_r—,U

From Equation (3)



T.—ria=nt,
T, .
TG
rotr

B, —ta=th,
B 6.4
t tr

Error Sum of Square

E=2 20y —u-ti-b))
i

E =ZZ(yij —H-Y _bj)(yij —u—t —bj)
i

E= zz Y; (y; — =1, —b;) + other terms are vanished
i

E=ZZ yi?_ _[’ZZYU _ZZ yijfi _ZZ yij6j

2 G T, G B, G
R B LR

r I

Where > >y, =G; 20y =Tis DY, = B,
i j i

2 B?
- DL - M G
L2 Ty r tr t tr

Error Sum of Square (E.S.S) = Total Sum of Square (T.S.S)-Treatment Sum of
Square (Tr. S.S)- Block Sum of Square (B.S.S)

2

Where, correction factor= o
r
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Total Sum of Square = ) > yi ——
]

ZTiZ GZ

Treatment Sum of Square = ST2? =

r tr
2

Block Sum of Square = SB2=-! i

r
Table 2.2 ANOVA Table for RBD
Source of Degrees of Sum of Mean sum of | Variance ratio
variation freedom squares square
Treatment (t-1) ST ST?=ST=?/t-1 FT=ST?/SE?
Blocks or (r-1) SB2 SB?=SB?/r-1 FB2=SB?/SE?
replicates
Error (t-1) (r-1) SE? SE?=SE?/(t-

1)(r-1)

Total rt-1

Under the null hypothesis Hot = ti1=to=...=t; against the alternative that all t’s
are not equal the test statistic is :

St
Fr =57 ™ Flenear
E

i.e., Fr follows F(central) distribution with [(t-1), (t-1)(r-1)] d.f. Thus if Fr is
greater than tabulated F for [(t-1), (t-1)(r-1)] d.f, at certain level of significance,
usually 5 % then we reject the null hypothesisHot and conclude that the
treatments differ significantly. If F; is less than tabulated value then Fr is not
significant and we conclude that the data do not provide any evidence against
the null hypothesis which may be accepted.

Similarly under the null hypothesis Hopb=b1=b2=...=b:, against the alternative
that b’ s are not equal, the test statistics is:
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s

Fr =57 ™ Flenear
E

And we discuss its significance as explained above.
Problem 3.3

Consider the results given in the following table for an experiment
involving six treatments in four randomized blocks. The treatments are
indicated by numbers within parentheses.

Table 2.3

Blocks | Yield for a randomized block experiment
treatment and yield

1 24.7 (1) 27.73) 20.6(2) 16.2(4) 16.2(5) 24.9(6)

2 22.7(3) 28.8(2) 27.3(1) 15.0(4) 22.5(6) 17.0(5)

3 26.3(6) 19.6(4) 38.5(1) 36.8(3) 39.5(2) 15.4(5)

4 17.7(5) 31.0(2) 28.5(1) 14.1(4) 34.9(3) 22.6(6)

Test whether the treatments differ significantly.
Solution:
Null hypothesis:

Hot: =1, =1=14 and Hob : by = b, = bs = by,i.e.,the treatments as well as
block are homogeneous.

Alternative hypothesis:
Hit: At least two t’s are different. ; H;b: At least two bi’s are different.

For finding the various S.S., we rearrange the above table as follows:
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Table 2.4

Block
Blocks (1) @) (3) (4) (5) (6) Total B2
(By)

1 24.7 20.6 27.7 16.2 16.2 24.9 130.0 16,900.00

2 27.3 28.8 22.9 15.0 17.0 22.5 133.3 17,768.89

3 38.5 39.5 36.8 19.6 15.4 26.3 176.1 31,011.21

4 28.5 31.0 34.9 14.1 17.7 22.6 148.8 22,141.44
Treatment 199.0 119.9 122.1 64.9 66.3 96.3 388.5=G
totals (Ty)

T?
14,161.00 14,376.01 | 14,908.41 4,212.01 4,395.69 | 9,273.69
Average
29.75 30.0 30.5 16.2 16.6 24.1

Correction Factor = (3, 46,332.25/24) = 14,430.51

Raw S.S = "> "y? =15,780.76
i

Total S.S = R.S.S. - C.F. =15,780.76 — 14,430.51 = 1,350.25

S.S. due to treatments (S.S.T) =

901.19

% Y T? - C.F

S.S due to blocks (S.S.B) = 1/6 > B2 - C.F

219.43

= (61,326.81/4)- 14,430.51

87,899.63/6 — 14430.51

Error S.S=T.S.S. - S.S.T. - S.S.B. = 1,350.25 -901.19 - 219.43 = 229.63.

Table 2.5: Anova Table

Source of S.S. M.S.S. Variance ratio (F)
variation d.f.
Treatment S 901.19 s?’T = 180.24 Ft=180.24/15.31 =11.8
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Block 3 219.43 s’B =73.14 Fb=73.14/15.31 = 4.7

Error 15 229.63 s?E = 15.31

Total 23 1.350.25

Tabulated Fj, 15, (0.05) = 5.42 and Fs, s (0.05) = 4.5 .Since under Hot Ft ~ F (5,
15) and under Hob, Fb ~ F (3, 15), we see that Ft is significant while Fb is not
significant at 5% level of significance. Hence, Ft is rejected at 5% level of
significance and we conclude that treatment effects are not alike. On the other
hand, Hb may be retained at 5% level of significance and we may conclude that
the blocks are homogeneous.

2.4.2 Estimation of one Missing Value in RBD

Let the observation yij = x (say) in the jth block and receiving the ith treatment be

missing, as given in table 3.7 Table 3.7
Treatments
1 2 I t

1 Y11 Yo1 Yii Y1 y.1

2 Yio Yoo Yio Yo y.2

J Y1 Yjo X Yit y_,-' +X
Blocks

R Yir Yor Vir Vtr

Total Y. Yo. yi__' +X | Y. y. .’ + X
where

!

y, is total of known observations getting ith treatment

!

y; is total of known observations in jt block and
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y. | is total of all known observations

2 ' 2
Correction factor = G M
tr tr
2 ’ 2
Total sum of square = > > y; _% = x? + cons tan t terms independent of x G+ ;;X)
i
2 2
ZYi-, Z(yi__ +Xj
Sum of square due to treatment (S.5.Tr) = —-CF=————-C.F
r r

Sum of square due to

2 ’ 2
Zy,,— (y_j +xj
Block (S.8.B) = J——-CF="———-CF

Sum of square due to error = T.S.S -S.S.Tr-S.S.B =

>y Y

Q. 2.vi —CF)- ‘T—C.F —( 't -C.F)

x* + cons tant terms independentof x —
tr r tr

eoxp |7 ) Gaxp N

- t tr

, 2
(G'+x)° _(yi' +Xj +(G’+x)2 _(y.j'+x)2 . (G'+x)
tr r tr t tr

= x? + cons tan t terms independent of x —

, 2
(yi. + X) = 2 1] 2

= x? + cons tan t terms independent of x — - (v.J t+ X) + (G t+ X)
r r

Differentiate with respect to x
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d(S.S.E)
OX

=0

:2)(_2(yi.’+x)_2(y.j’+x)+2(G'+x):9:O
r t tr 2

Vo) () @
x—( 7 +(G+X):O
r t tr
trx—t(yi_'+x)—r(y.j,+x)+(G'+x)

tr

=0

trx —t(yi. +x)—r(y.j +x)+(G'+x)=0xtx =0
trx—tyi_' +tx—ryle +rx+(G'+x)=0
X(tr—t—r+1)—ty, —ry, +G'=0
X(tr—t—r+1) =tyi.’ + ryle -G’
X(t-D(r-D)=ty, +1y, -G’

B Wi.' + ry.j’ -G’
(r-1(t-1)

Problem 3.3

Suppose that the value for treatment 2 is missing in replication III. The data
will then be as presented in the table below.

Table 2.6 RBD data with one missing value.

Replication
Treatment Total
I I I v
1 22.9 25.9 39.1 33.9 121.8
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2 29.5 30.4 X 29.6 89.5
3 28.8 24.4 32.1 28.6 113.9
4 47.0 40.9 42.8 32.1 162.8
5 28.9 20.4 21.1 31.8 102.2
Total 157.1 142.0 135.1 156.0 590.2

X =rR +tT’- G’/ (r-1) (t-1)
= 4(135.1) + 5(89.5) — 590.2/(3)(4)
=397.7/12
= 33.1
The upward bias,
B = [R’ - (t-1) X]?/t(t-1)
= [135.1 - 4(33.1)]?/(5)(4)
=7.29/20
= 0.3645

After substituting the estimated missing value, we get

Treatment 2 total =89.5+33.1 =122.6,
Replication 3 total =135.1+ 33.1 = 168.2, and
The grand total =590.2 + 33.1 =623.3

Treatment SS = % [(121.8)% + (122.6)% + (113.9)2 + (162.8)> + 102.2)?] -
(623.3)2/20

19946.9725 — 19425.1445

521.8280

Corrected treatment SS = 521.8280 — 0.3645
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= 521.4635
With these values the analysis of variance table is completed.

Table 2.7 Analysis of variance for the data in Table

Source of variation
df SS MS F
Replication 3 69.1855 23.0618 1
Treatment 4 521.4635 130.3659 4.117
Error 11 347.9475 31.6316
Total 18 938.9610

2.4.3 Estimation of two missing values

Suppose in RBD with k treatments and R-Replications, two
observations are missing. Let x and y be two missing observations and they belong
two different Block and affected different treatment. We assume that x belongs to
the jth to the ith treatments and y belong to ith block and mt" treatment. Estimate
the missing observations x and y.

Layout of two missing observations in RBD.

2...eee | PPN 4+ PN K
1......
1 Yn Y2 B,
2 ¥V Y22 B,
J X B’+x
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y B’ity

B,
T, T, T +X..... T'm+Y Tk G’ +x+y
2 2 2
Correction factor = S m
tr tr
Total sum of square =
2 ’ 2
dYDyi —?— = x* + y* +cons tantterms independent of xand y—(G++y)
i r
, 2
ZYi-' Z(yi.. +X+y)
Sum of square due to treatment (S.S.Tr) = —— -C.F =- -C.F
r r

Sum of square due to

2 r 2
)
Block (8.8B) = ——-CF="———"-CF

r

S.S.E=T.S.S - S.S.Tr-S.S.B

[x2 +y? + cons tan t terms indepent of xand y—C.F]

' 2 ' 2 ' , 2
= _ B. +Xx _
- [T' +XJ +(Tm +y} _C.F ||| 2 +[B' +y] ~CF
r r t t
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i 2 ’ 2
(Bj +xj (Bi +y)
CF- " - " +C.F

’ 2 ’ 2 ’ 2 ' 2
(Ti +x) (Tm +y) (Bj +x) [Bi +y) (G’+x+ )2
N y

:x2+y2— _ _

x* + y? + cons tant terms indepent of xand y —.C.F —

(Ti’ + x)z (Tm, + y)zW

r

r

r r t

t

tr

Differentiate with respect to x in equation (1)

0.SS.E
OX

=0

_2(Ti'+x)_2(Bi +X)+2(G'+x+y) _0
r t tr

2X

' (B.'+x) ,
X_(Ti+x)_ j +(G+x+y):9:0
r t tr 2

xtr—t(Ti' + x)— r(Bj, +xj+(G’+x+ y)
tr

=0
xtr—t(Ti’ +x)—r(Bj’ +X)+(G'+x+y)=0xtr=0

Xtr—tT, —tx—rB; —x+G'+x+y=0

x(tr—t—r+1):tTi’ +rBj’ -G'-y
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T 4B, -Gy
O t-1(r-1

Differentiate with respect to y in equation (1)

o, e 4B +y)+2(6'+x+y)=o

2
y r t tr

@y (B +yj+(cs'+x+y>:920
r t tr 2

y

ytr —t(Tm’ + yj—r[Bi' + yj+(G’+ X+Y)
tr

=0

ytr—t(Tm, +yj—r(Bi’ +Y)+(G'+x+y)=0xtr=0

ytr—tTm'—ty—rBi'—ry+G’+x+y=0
y(tr—t—r+1)=tTm’ +rBi, -G'—x

AT, 1B, ~G'—x
O (t-D(r-)

Problem 3.4
Suppose that one more value is missing in row 5 and column 3.

Table 2.8 Grain yield of paddy, kg/plot

E C D B A Total
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26 42 39 37 24 168

A D E C B

24 33 21 (X) 38 116

D B A E C

47 45 31 29 31 183

B A C D E

38 24 36 41 34 173

C E B A D

41 24 (X) 26 30 121
Total 68 127 133 157 761

The treatment totals are
A:129,B:158,C:150,D:190,E: 134

The means for second row and fourth column in which C is missing are
116/4 = 29.0 and 133/4 = 33.25, respectively. Hence the first estimate for C is

C, = 29.00 + 33.25/2 = 31.12

G’ =761+31.12 = 792.12

B, = t(R'+ C’ + T) - 2G’/(t-1) (t-2)
= 5(121 + 127 + 158) - 2(792.12)/(5-1)(5-2)
= 2030/12 - 1584.24/12
= 169.17 - 132.02

=37.15

For the second cycle we have

G’=761+ 37.15=798.15
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G, = 5(116 + 133 + 150) — 2(798.15)/12

1995/12 - 1596.3/12

166.25 — 133.03
= 33.22

G’ =761 + 33.22
= 794.22

B2 = 169.17 — 2(794.3)/12
= 36.8

It can be seen that the estimated values for B are same and that for C are
very close. Hence we stop the iteration process at third cycle. The final
estimates for B and C for the missing plots are 36.8 and 33.3 respectively.

The column total, row total, etc., with respect to the missing plots are
modified by adding the estimated values. Thus we have,

158 + 36.8 = 194.8

Treatment B total

150 + 33.3 = 183.3

Treatment C total
Second row total =116 + 33.3 =149.3

Fifth row total 121 + 36.8 = 157.8

Third column total 127 + 36.8 = 163.8
Fourth column total =133 + 33.3 = 166.3
Grand total =761+ 36.8 + 33.3 =831.1
The data is then analysed in the usual manner.

CF = (831.1)?/25

= 27629.0884

Total SS = 28902.130 — CF =1273.0416
Row SS = 27766.666 — CF = 137.5776
Column SS = 27667.026 - CF = 37.9376
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Treatment SS = 28448.586 — CF = 819.4976
Error SS = 278.0288

Now ignoring the treatment classification the missing values are estimated
as in the case of RBD. The estimate of the second row, fourth column missing
value is 28.5; and that of fifth row, third column is 28.2. After substituting the
estimated values and analyzing the data as RBD, we get the error sum of
squares as 1031.5856. Then we have,

Corrected treatments SS = Error SS (RBD) — Error (LSD)
= 1031.5856 — 278.0288
= 753.5568

The final results are presented in the following table.

Table 2.9: Analysis of variance for the data

Source of
variation
df SS MS F

Row 4 137.5776 34.3944 1.237
Column 4 37.9376 9.4844 <1
Treatment 4 753.5568 188.3892 6.776
Error 10 278.0288 27.8029
Total 22 1273.0416

2.5 Latin square design (LSD)

LSD is defined for eliminating the variation of two factors called row and
column in this design. The number of treatments is equal to the number of
replications.

Layout of design

In this design the number of treatments is equal to the number of
replications. Thus in case of m treatments there have to be mxm = m?
experimental units. The whole of the experimental area is divided into m?

49



experimental units (plots) arranged in a square so that each row as well each
column contain m units.

The m treatments are allocated at random to these rows and columns in
such a way that every treatment occurs only once in each row and in each
column. Such a layout is LSD.

2x2 layouts

3x3 layouts

A | B C

B C A

C A B

4x4 layouts

C| D

A

o O W »
» U O W

D
A | B
B

C

5X5 layouts

A|B|C|D
E
B|C|D)|E
A
C|D|E | A
B
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Example:

An animal feeding experiment where the column groups may corresponding
with initial weight and the row group with age.

Standard Latin square:

A Latin in which the treatments say A, B, C etc occur in the first row
and first column in alphabetical order is called standard Latin square.

Example:

Advantages of LSD

1. With two way grouping LSD controls more of the variation than
CRD or RBD.

2. The two way elimination of variation as a result of cross grouping
often results in small error mean sum of squares.

3. LSD is an incomplete 3-way layout. Its advantage over the complete
3-way layout is that instead of m® experimental units only m? units
are needed. Thus, a 4x4 LSD results in saving of m® = 43 - 42 = 64-
16 = 48 observations over a complete 3-way layout.

4. The statistical analysis is simple though slightly complicated than
for RBD. Even 1 or 2 missing observations the analysis remains
relatively simple.

5. More than one factor can be investigated simultaneously.

Disadvantages of LSD

1. LSD is suitable for the number of treatments between 5 and 10 and

for more than 10 to 12 treatments the design is seldom used. Since

51



in that case, the square becomes too large and does not remain
homogeneous.

2. In case of missing plots the statistical analysis becomes quite
complex.

3. If one or two blocks in a field are affected by some disease or pest.
We can’t omit because the number of rows columns and treatments
have to be equal.

2.5.1 Statistical Analysis of LSD

Let yii (i, j, k=1,2,...,m)denote the response from the unit in the it row, jth
column and receiving the kth treatment.

The model is

Vi =M+ +C) +t +€ 5 i,j,k=12,...,m

Where u is the constant mean effect; ri, cj and tk due to the ith row, jth column
and kth treatment respectively and ejj is error effect due to random component
assumed to be normally distributed with mean zero and variance

0'62 i.e.,eijk ~ N(O, 0'62)
If we write

G= Total of all the m?2 observations

Ri = Total of the m observations in the ith row

C; = Total of the m observations in the jth column

Tk = Total of the m observations from kth treatment

Estimation by the method of least squares

E(eijk )2 :Z(yijk — 4T =G _tk)2 e (1)

ijk

OE _, OE_ OE OE
ou or
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Differentiate with respect to u in equation (1)

oE

522%(3/% —H—1 —=C _tk)(_l) =0
DV M= E=2.C =Dt =0
ijk ijk ijk ijk ijk

Where >y, =G , Lj,k=m?2, Lj=m, Lk=m

ijk
G-m?u—-m>r,—mdc,-m>t =0 ..(2)
i i k
Differentiate with respect to ri in equation (1)

oE
E :ZZ(yijk —H—1 —Cy -1 )(_1) =0

K
DV M= =D C =Dt =0
JIS jk jk ik ik

Where >y, =R, , Ljk=m2, Lj=m, Lk=m
ik

R —mu—mr,—m> ¢, —m>t, =0... (3)
] k

Differentiate with respect to cjin equation (1)

oE
P ZZ(yijk —H—T =G _tk)(_l) =0
C; ik

D Vi m M= =D C =Dt =0
ik ik ik ik ik

Where Zyuk =C; , Lj,;k=m?, Ij=m, Lk=m
ik

C,—-mu-myr—mc,-m>t, =0 ... (4)
i k
Differentiate with respect to tk in equation (1)
oE
T ZZ(yijk —H—T =G _tk)(_l) =0
k ij
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Zyijk _Z:U_Zri _ch _Ztk =0
ij ij j ] ]

Where >y, =T, , Ljk=m2, Lj=m, Lk=m
ij

T —mu—mY r—mY c,—mt, =0... (5)
i j

The equations (2), (3),(4) and (5) are not independent

We assume that, >'r, =0, > ¢, =0and >t, =0
i ] %

From equation (2)
G-m°u
G=m’u

G .
m A
From equation (3)

R,—mu—mr, =0

R, —mga =mr,
R mG _
m mm?
R G .
m m?

From equation (4)

C,—-mu—-mc; =0

C;, —mu=mc;
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From equation (5)

T, —mug—mt, =0

T, —mi=mt,
. mG
—* _ 2:tk
m mm

. G .
m e

Error Sum of Square

E(eijk )2 :Z(yijk —H—I =G _tk)2

ijk

=Z(yijk —Hu—1—C _tk)(yijk —Hu—1—C -1,)

ik

=Y (Vg —#—1 —¢; =t )(y; ) +other terms are vanished

ik
:Zysk _/[lzyijk _Zyijkfi _Zyijkéj _Zyijkfk

i ik ik i i
_v,2 G _ R G Ci_ G|\ (T_k_ﬁ
_ijzkyijk 2 ijzkyijk ijzkyUk(m mzj ijzkyijk m sz ijzkyijk mom

o [ZR ) [Z6 &) (T 4

:(Zyu?k - 2 2

m m? m m m m m m

2
Total Sum of Square =Z yi]?k —%

iik

SR

Row Sum of Square =S} = 5

m m
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Column Sum of Square=S; =- —G—z

m m

ST
Treatment Sum of Square=S’ = km — 7
Table 2.10: ANOVA Table for LSD
Source of Degrees of Sum of Mean sum of Variance
variation freedom squares square ratio
Rows m1 s 2 =S2/(m-1) Fo =3/
Columns ml | s 2 =52 /(m-1) Fo =5t/
Treatments m-1 S2 s? =82 /(m -1 F, =s2 /sé
Error (m-1)(m-2) S? sZ = Sé/(m—l) (m-2)
Total m2-1
Let us set up null hypothesis
For row effects Hor=r1=12 =...= r,=0
For column effects Hoc=c1=co=...=cm=0
For treatment effects Ho=t1=to=...=tn=0

Alternative Hypotheses

For row effects, Hir: At least two ri’s are different

For column effects, Hic: At least two ci’s are different

For treatment effects, Hit: At least two ti’s are different
d.f under the null hypotheses H:, H, and Ht, respectively.

Let Fq = Fq {{m-1), (m-1)(m-2)} be tabulated value of F for [(m-1),(m-1)(m-2)] d.f.
at the level of significance a . Thus if Fr> Fa we reject Hor and if Fr < Fq we fail
to reject Hor.
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Similarly, we can test for Hoc and Hox.
Problem 3

An experiment was carried out to determine the effect of claying the ground
on the field of barley grains; amount of clay used were as follows:

A: No clay

B: Clay at 100 per acre
C: Clay at 200 per acre
D: Clay at 300 per acre.

The yields were in plots of 8 meters by 8 meters and are given in table.

I I I1 v Row totals
(Ri)
I D B C A 83.1
29.1 18.9 29.4 5.7
I C A D B 66.9
16.4 10.2 21.2 19.1
1 A D B C 105.2
5.4 38.8 24.0 37.0
v B C A D 105.0
24.9 41.7 9.5 28.9
Column 75.8 109.6 84.1 90.7 306.2
Totals (C;)

Perform the ANOVA and calculate the critical difference for the treatment

mean yields.




Solution:
The four treatment totals are:
A: 30.8, B:86.9, C:124.5, D:118.0
Grand total G = 360,2, N = 16.
C.F. = (360.2)2/16 = 8109.0025
Raw S.S. = (29.1)2 + (18.9)2 +........ +(9.5)% + (28.9)2 = 10,052.08
Total S.S. = 10,052.08 - 8,109.0025 = 1,943.0775
S.S.R. = % [(83.1)% + (66.9)% + (105.0)2 + (105.0)?] — 8,109.0025
33,473.26/4 — 8,109.0025 = 259.3125
S.S.C. =% [(75.8)% + (109.6)2 + (84.1)% + (90.7)?] — 8,109.0025
33057.10/4 — 8109.0025 = 155.2725
S.S.T. = % [(30.8)? + (86.9)% + (124.5)? + (118.0)%] — 8,109.0025
= 37924.50/4 — 8109.0025 = 1372.1225
Error S.S. =T.S.S. - S.S.R. - S.S.C. - S.S.T. = 156.3700
ANOVA TABLE FOR L.S.D.

Source of
variation S.S. Variance Ratio
(1) d.f. (3) M.S.S.
4) =)~
(2) (2)
Rows 259.5375 86.4375 FR = 86.4375/26.0616 =
Columns 3 155.2725 51.7575 3.32<4.76
1,372.1225 | 457.3742 Fc = 51.7576/26.0616 = 1.98
Treatments | 3 156.3700 26.0616 <4.76
Error FT = 457.3742/26.0616 =
3 17.55 > 4.76
6
Total 1,943.0775
15

Tabulated F3, ¢ (0.05) = 4.76

Hence we conclude that the wvariation due to rows and columns is not
significant but the treatments, i.e., different levels of clay, have significant
effect on the yield.
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2.5.2 One Missing observation in LSD

Let us suppose that in mxm Latin Square, the observation occurring in the ith
row , jth column and receiving the kth treatment is missing. Let us assume that
its value is x, i.e., yijkx=x

Ry’ = Total of the known observations in the ith row.
Ci’ = Total of the known observations in the jth column.
Tk’ = Total of the known observations receiving kth treatment.

G = grand total.

R-' + X 2

: G’ +x)* [ i ) G’

= x* + cons tan t terms independent of x—( +2X) - _( +2X)
m m

= x? + cons tan t terms independent of x — — -
m m m

(RIex) (o) ot f(ex)

Differentiate w. r.to x

e ARX) 20 0x) ATix) dEx)
m m m m

(R e @men doen) o
B m m m m: 2

m?x m(Ri +XJ_ m(C} +X)_ m(Tk'+X)+ Z(G'+X)=0

m? m? m? m? m?

m2x—m| (R +X) —m(C} +X)-m(T, +X)+2(G'+x) =0
mzx—mRi'+mx—ij' —mx—-mT, +2G"+2x=0
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m?X—mx—mx—mx+2x =mR; +mCj +mT; —2G’
x(m? —m-m-m+2)=mR; +mC} +mT, -2G’

x((m-DY(m-2) = mRi, +mC| +mT, -2G’

m(R/ +Cj +T, -2G’
 (m-D)(m-2)

Unit -II1

3.1 Post Hoc Tests in ANOVA

Although ANOVA can be used to determine if three or more means are
different, it provides no information concerning where the difference lies. For
example, if Ho: mean; =means = means is rejected, then there are three
alternate hypotheses that can be tested: mean:#means>#means, meani#means =
means, or mean; = meanc#means. Methods have been constructed to test these
possibilities, and they are termed multiple comparison post-tests. There are
several tests are as followed. There are,
3.2 Multiple range test [MRT]

In the case of significance F, the null hypothesis rejected then the
problem is known which of the treatment means are significantly different.
Many test procedures are available for this purpose. The most commonly used
test is,

I) Lest significance difference [is known as critical difference]
II) Duncan’s multiple range test [DMRT].
3.2.1 Critical difference (C.D)
The critical difference is a form of t-test is formula is given by
C.D = t.S.E(d)
Where SE = Standard Error

SE() EMS{Li]
I’i I’j

EMS = Error Mean Square

2EMS
r

In the case of same replication the standard is S.E =
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In this formula t is the critical (table) value of t for a specified level of
significance and error degrees of freedom 1 and r, for the number of
replications for the it and jth treatment respectively, the formula for t-test is

Y, =Y,
S l+i

L r j

The two treatment means are declared significantly different at specified
level of significance.

If the difference exceeds the calculated CD value, otherwise they are not
significant CD value.

3.2.2 Duncan’s multiple range test (DMRT)

In a set of t-treatments if the comparison of all possible pairs of treatment
mean is required. We can use Duncan’s multiple range test. The DMRT can be
used irrespective of whether F is significant or not.

Procedure:

Step: 1

Arrange the treatments in descending order that is to range.
Step: 2

Calculate the S.E of mean as

se()= 22 - [E45

Step: 3

From statistical table write the significant student zed range as (rp), p =
1,2,......... t treatment and error degrees of freedom.

Step: 4

Calculate the shortest significance range as R, where R, = rp.S.E(Y_ )

Step: 5

From the largest mean subtract the Rp for largest P. Declare as significantly
different from the largest mean. For the remaining treatment whose values
are larger than the difference (largest mean-largest Rp). Compare the
difference with appropriate Rp value.

Step: 6

Continue this process till all the treatment above.

Step: 7
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1.

Present the results by using either the line notation (or) the alphabet notation
to indicate which treatment pair which are significantly different from each
other.

3.2.3 Tukey’s range test:

Tukey’s range test is also known as Tukey’s test, Tukey’s HSD (Honest
significance difference) test. It can be used on raw data or in cons unction with
an ANOVA (post-hoc analysis) to find means that are significantly different
from each other. Tukey’s test compares the means of every treatment to the
means of every other treatment.

The test statistic:

Tukey’s test is based on a formula very similar to that of the t-test. In fact,
Tukey’s test is essentially a t-test, except that is corrects for experiment wise
error rate.

Formula to,
Y,—Ys
S.E

Where Ya is a larger of the two means being compared. Yg is the smaller of
the two means being compared. S.E is the standard error.

This gs value can then be compared to a q value from the studentized range
distribution. If the gs value is larger than the q critical value obtained from the
distribution. The two means are said to significantly different.

The studentized range distribution:
q= Vimx = Yonin)
5/y/2/n
3.2.4 Student - Newman Keuls (SNK) test

The Newman-Keuls (or) student Newman Keuls (SNK) method is a stepwise
multiple comparison. Procedure used to identify sample means that are
significantly different from each other. It was named after student (1927) D.
Newman and M. Keuls,

Procedure:
The Newman Keuls method employs stepwise approach when comparing

g =

sample means.

. Prior to any mean comparison, all sample means are rank ordered in

ascending or descending order there by producing an ordered range (p) of
sample means.

A comparison is then made between the largest and smallest sample means
within the largest range.

Assuming that the largest range is four means (p=4) a significant difference
between the largest and smallest means as revealed by the Newman-Keuls
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5.

o

method would result in a reflection of the null hypothesis for that specific
range of means.

The next largest comparison of two sample means would then be made within
a smaller range of three means (p=3).

Continue this process until a final comparison is made.

It there is no significant difference between the two sample means. Then all
the null hypothesis within that range would be retained and no further
comparisons within smaller ranges are necessary.

3.3 Analysis of Covariance for two way classification (Random Block
Design) with one concomitant variable

Suppose we want to compare v treatments, each treatment replicated r
times so that total number of experimental units is n = vr. Suppose that the
experiment is conducted with Randomized Block Design(RBD) layout.

Assuming a linear relationship between the response variable (y) and
concomitant variable(x) the appropriate statistical model for ANOCOVA for
RBD(with one concomitant variable) is:

Yi =y+ai+6?j+,8(xij —)‘(__)+eij ...(3.1)

Where u is the general mean effect

a; is the (fixed) additional effect due to the it treatment ,(i=1,2,...,v)
0; is the (fixed) additional effect due to the jt block ,(j=1,2,...,1)

B is the coefficient of regression of y on x

xij is the value of the concomitant variable corresponding to the response
variable yj and ejj is the random error effect so that

vV r

Zai =0, z j =0 &; i'LdN(O,O':)

i=1 i=1

Estimation of parameters in (1) we shall estimate the parameters p, ai
((=1,2,...,v), 6 (=1,2,...,r) and B, using the principle of least squares by
minimizing the error sum of squares in (1)
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2

SE= 336 =jji[yu—ﬂ—ai -6, - Blx, %)

i=1 j=1

...(3.2)

Normal equations for estimating the parameters are

O(SSE) _
ou

DR RNEOMITEIWIED WL

0=-2 3y, ~n-a,~0,~ Blx, ~x)]

z;yq —rv,u—riZoci —vzj‘ﬁj —Z;ﬂ(xu _x__):o

...(3.3)

O(SSE)
oa;

:OZ_ZZ(VU —pu—oa; =0, - B(x; —X..)

Zyij —Z,U—Zai _Zej _ZIB(XU -X.)=0

Vi 2 H—ra =2 0, - Blx; —X.)=0 ...(3.4)

i

8(SSE)
06

:OZ_ZZ(YU —p—a; —0; - p(x; —X..)

i

DYy — =D =0, =Y B —%.)=0
DYy~ =D&~V = Bx; ~X.)=0

O(SSE) _ _,
op
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ZZ[{yij —H—q _gj _ﬂ(xij _)_(.,)}(Xij -X)]...(3.6)

...(3.5)



From equation (3. 2)

2.2V
fl - _ y
v
=22 —X.)=0

From equation (3. 3)
Zyij —r(,[l-i-c%i)—,éZ(Xij -X)=0
ty, —1(y. +6;) - Br(% —x)=0

Gy -7 +a)- 5 0
r

Vi — (V. +a)-p.(X -X)===0

di =Y. -VY) _B()_(i. - )_(--)

From equation (3.4)

Zyﬁ —Vu-vO, —Vp(x; -X ) =0
W, —V(u+6,)-VA(x; —X ) =0
o A - 0

y.j _(ﬂ+gj)_ﬂ(x,j _X"):V:O
Y, —u—06,)=B(x; =X )=0

0, =y, -y )-Blx; -x)

Substituting these estimated values in equation (3. 5)
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0=y — VAV — V.~ A% =% )}V, = V. = B, =% )}= Blx; =0} — X )]

0= ZZ[{(yU -Yi- y.j+ 7) —,8(Xij -X - )_(.j + )_(..)}(Xij — )—(”)

2y Vi =Y +Y) =B~ % ~X; + %)}

X{(Xij —X, —X; + X )+ (X, _)_(..)+()_(.j -X)}=0
ZZ(YU - yi.'_ y.j + y,,)(xij _)_(i. _)_(.j _)_(")_'BZZ(X” _)_(i. _)_(.j 'H_(__)Z =0

(the product terms will be zero since algebraic sum of deviations from mean is
Zero)

R Zz(yij -V _y,j + y._)(xij =X —)_(.j +X)
G ) T Y,

Let us write:

E,=2 0 (% —% —X;+X)° | Ey=> 3> (y; -V —y;+y)° and
i i

Ey= ZZ(X“ - X —X; +)_(._)(yij -Vi-Y;+ y.)
i

XX

Substituting the values of f, di,éj and # in (3.2), the unrestricted error sum of

squares for model (3.1) becomes:

SSE = Minimum value of error S.S

SE =3¢} =3y, —a—d, -6, - flx, —x ]

i=L j=1
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= ZZ[(VU V.-V, +V)- ﬂ(xIJ —X;+X)]* (on simplification)

:ZZ[(YU -Yi-y;+ y)z +ﬁAZZZ (Xij — X —X; 'H_(..)Z _zléZZ(Xij =X =X +)_(.,)(yij -Yi-Y;+ y.)

E, ) E,
=E,, + = .EXX—ZE E,
2

Ey
=E, - E E, —FEy

XX

2

XX

Since Exy2/Ex>0, there is reduction in SSE if we apply ANOCOVA to RBD, the
reduction

d.f for SSE = Total d.f.-(d.f. due to treatments) — (d.f. due to blocks) — (d.f. due
toB)

=(rv-1)-(v-1)-(r-1)-1 = (r-1)(v-1)-1
Under the null hypothesis:
Ho: All treatment effects are equal, Ho: ai=as=...=ay=0,

The model reduces to
Yy =u+o; + Hj +,3(xij — >_<..)+ €;

Restricted error sum of squares under Ho is given by
2
(SSE)” —ZZe” =SS lyy-r—a, -6, - plx, % )] .. (3.7)
i=1 j=1
The normal equations for estimating u, 6; and 3’ are given by:
G(SSE)
ou

sz:yij _sz:ﬂ_zzj:ai _sz:‘g ZZﬂ( ):

0——222[y., —u—a, =0, - (%, —%)]
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ZZ Yy ~u-T2a —vzjjej —ZZﬁ'(xu ~X )=0

o(SSE)”
oa;

:OZ_ZZ(YU —pu—a; =0, = p'(x; —X..)
i

DYy~ =y =30, =Y B(x %) =0
DYy - u—re =20, - Y Bx ~%.)=0 ..(3.9)

O(SSE)
00,

J

:OZ_ZZ(YU —p—a; —0; - p(x; —X..)

Zy” _Z'U_Zai _Zei _Z'B,(Xij -X.)=0
Zy” —Z,U—Z(xi — Vo, _Zﬂ’(xij -X..)=0

8(SSE)"
op’

= _ZZZ[{yij —H—Q; _ej _ﬂ'(xij - )_(.,)}(Xij -X)]

From equation (3.8)

2.2V
fl - _ V.
v
=22 —X.)=0

From equation (3.9)
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>y —r(a+é) =AY (% -x)=0
ry;, —r(y. +0A!i)—,B'I’()_(i. -x)=0
=0

Vi — (V. +a;)- ﬂA’()_(i. —-X )=
2 = (_i. - y) _,B'()_(i. - )_(--)
From equation (3.10)
Zyu —Vu -V, —v,é(x'j -x)=0

VW —V(u+6,)—VB(x; —X ) =0

=0

<|o

Y _(ﬂ+0j)_B’(X,j —-X)=
Y~ 4=~ f'(x;~X)=0
6,=(y,-y )-Bx; %)

From equation (3.11), we get

L0 =X)Ly — Y.~ (9, = V) + (% =% )= (% =X )}]=0

ZZ[XU =X )Y —VY.) —f
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ZZ[(X” _)_(.j +)_(.j _)_(__){(yij - y.j)_ﬁ,(xij _)_(.j)}]zo

SN (% =X )y = ¥,;) = B'(x; —X;)* =0,theother product terms are zero
]

. ZZ(Xij_)_(.j)(yij_y_j)
/e ZZ(XU _)_(.j)z
Letus define:

Exx, =ZZ(XU —>‘<‘j)2;Eyy’ =ZZ(yu _V.J)Z;Exy, :ZZ(X“ —X)0 —Y)

Hence, under Ho, the restricted error sum of squares is given by:

(SSE)* =minimum
value of error S. S

=ZZ[yij _/&_éj _ﬁ'(xij _)_()]2
ZZ[(YU _y.j)_ﬁl(xij _)_(.j)]2
ZZ(YU _37.1')2 +ﬂAIZZZ(Xn _)_(.j)z _ZIBA'ZZ(XU _)_(.j)(yij —)_/)

-, -2 .. 3.12

d.f. for(SSE)" =total d.f. —d.f. for Blocks —d.f. for B
=(vr-1)-(r-1)-1=vr-r-1=r(v-1)-1
Adjusted sum of squares for treatments (SST = S¢?) is given by
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(SST = St?)=(SSE)" -(SSE)
Where (SSE) and (SSE)" are given in (3.1) and (6.12) respectively.
d.f.(SST) =d.f.(SSE)* - d.f.(SSE)

=[r(v-1)-1]-[(r-1)(v-1)-1]=v-1

S? F -
MST(s?) = SST _ S¢ _ (SSE)* —(SSE)
d.f. d.f. v-1
Hence the test statistic for testing Ho: ai=az= ...=ay, is given by

MST | (SSE)"—SSE| (r-1(v-1)-1
F = = X ~ P r-nv-n-1
MSE (v-1) SSE

If F > Fvi1, r-1v-1)-(a) then Ho is rejected at a level of significance, otherwise we
fail to reject Ho.

ANOCOVA Table for RBD. Let us write:
SSyy = Eyy+Tyy+Byy

Where T, = rZ(yi_ —y )? is the treatment S.S for y for RBD

B,, = VZ()"/.J. —y )? is the block S.S for y for RBD

E, = ZZ(yij — ¥, —¥;+Y.)%is the error S.S for y for RBD
i

Similarly we have,

Sny=Exy+Txy+Bxy

Where T,, => r(% -X)(y, -Y.) and B, => v(X; —X)(¥; -V.)

EXXZZZ(XH =X, =X +X)? E,, =ZZ(Yij —Yi—Y;+ y)* and
i j [ ]
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Ey= ZZ(XU =X, =X XY -V Y+ V)
i

Using the above notations, the above statistical analysis can be elegantly
expressed in the ANOCOVA table 3.1:
Table 3.1: ANOCOVA Table (RBD)
Sources of | d.f. Sum of Squares | Estimate | Adjusted | Adjusted
variation and Products of B SSyy d.f.
SSxx | SSyy | SPxy
Blocks r-1 Bxx Byy Bxy
Treatments | v-1 Txx Tyy Txy
Error (r-1)(v-1)-1 | Exx Eyy Exy ,é _ E, SSE (r-1)(v-
E 1)-1
Treatment+ | r(v-1) Exx Eyww | Exy ) " | SSE” r(v-1)-1
Error p=—%
EXX
SSE- v-1
SSE”
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Unit -IV
4.1. Factorial Experiments

So far we have discussed the experiments in which the effects of a single set of
treatments were estimated and compared. In these experiments most of the
other variable factors were kept constant. In practice, the response of biological
organisms to the factor of interest is expected to differ under different levels of
other factors. For example, the yield of paddy varieties may differ under
different rates of fertilizer application, spacing and irrigation schedules. Hence,
in agricultural research we frequently wish to what happens with a range of
combination of factors. When several factors are investigated simultaneously in
a single experiment, such experiments are known as factorial experiments.

Advantages of Factorial Experiment

1. It increases the scope of the experiment and its inductive value and it
does so mainly by giving information not only on the main factors but on
their interactions.

2. The various levels of one factor constitute replications of other factors
and increase the amount of information obtained on all factors.

3. When there are no interactions, the factorial design gives the maximum
efficiency in the estimate of the effects.

4. When interactions exist, their nature being unknown a factorial design is
necessary to avoid misleading conclusions.

5. In the factorial design the effect of a factor is estimated at several levels
of other factors and the conclusions hold over a wide range of conditions.
Basic Ideas and Notations in the 2» Factorial Experiment
Let us first consider the design of the of the form 27 in which there are n
factors, each at two levels. Levels may be quite qualitative alternatives
like two species of a plant. In some cases one level is simply the control
group, ie., the absence of the factor and the other is its presence.

In order to develop extended notation to present the analysis of the
design in a concise form, let us start, for simplicity with a 22 — factorial
design.

4.2. 22 - Factorial Design

Here we have two factors each at two levels (0,1), say, so that there are
2x2=4 treatment combinations in all. Following the notations due to
Yates, let the capital letters A and B indicates the names of the two
factors under study and let the small letters a and b denote one of the
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two levels of each of the corresponding factors and this will be called the
second level. The first level of A and B is generally expressed by the
absence of the corresponding letter in the treatment combinations. The
four treatment combinations can be enumerated as follows:

aobo or 1 : Factors A and B, both at first level.

aitbpora : A at second level and B at first level

aob:1 orb : A at first level and B at second level

aib; or ab : A and B both at second level

These four treatment combinations can be compared by laying out the
experiment (i) R. B.D ., with r replicates (say), each replicate containing 4
units or (ii) 4 x 4 L. S.D., and ANOVA can be carried out accordingly. In
the above cases there are 3 d.f associated with the treatment effects. In
factorial experiment our main objective is to carry out separate tests for
the main effects A, B and the interaction AB, splitting the treatment S.S
with 3 d.f into three orthogonal components each with 1 d.f and each
associated either with the main effects A and B or interactions AB.

4.2.1Main and interaction effects of 2° factorial design:

Suppose the factorial experiment 22=4 Treatment is conducted ¢’ Blocks
(or)Replicator.

Let [1]: total yield of the r units receiving the treatment 1.
Let [a]: Total yield of the r units receiving the treatment a.
Let [b]: Total yield of the r units receiving the treatment b.

Let [ab]: Total yield of the r units receiving the treatment ab.

[1]

(1): = = the mean yields of the r units receiving the treatment 1.
r

a . . .
g = the mean yields of the r units receiving the treatment a.

(a):

(b): @ = the mean yields of the r units receiving the treatment b.

(ab): @ = the mean yields of the r units receiving the treatment ab.
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The effect of A at the first level b, of B = (a;b,) —(agh,)

= (@-(1) e > 1
The effect of A at the first level b, of B =(a;b,) —(a,b;))

= (ab)-(b)  ------- > 2
The effect of B at the first level a, of A = (ayb;) —(ayby)

=(B-1) - >3

The effect of B at the first level a, of A =(a;b;) —(a;b,)

= (ab)-(a)  ---—-- >4
The main effect due to A is defined by
@+ (1) => A= [(ab}-{b) + (a)-(1)
1
= E[b (a-1) +1(a-1)]
= ~lla-1) + (b+1)]
2
The main effect due to B is defined by
(4)+ (3) => B= %[(b)-(l) + (ab)-(a)]
1
=5 [(b-1) +a (b-1)]
= Zllar1) (b-1)
Interaction effect due to AB is defined by
(2)- (1) => AB= %[(ab)-(b)-{(a)-(l)}]

= 2 b (@-1)-1(a-1)]
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= Zlla-1) (b-1)] - >5
Interaction effect due to BA is defined by

(4)-(3) => BA= %[(ab)-(a)-{(b)-(l)}]
1
= 5 [a(b-1)-1(b-1)]

[(@-1) (b-1)] - > 6

N |~

The equation (5) and (6) are same hence the interaction effect AB as same as
BA.

4.2.3. Statistical Analysis for 2’ Factorial experiment

Factorial Experiment are conducted either CRD, RBD, and LSD
thus they can be Analysis in the usual manner except that is case treatment
sum of sequence split into three orthogonal components each i.d.f. It has
been already be pointed out the main effects A and B and the interaction AB.
The sum of squares due to the Factorial effects A, B, and AB is obtained by
multiplying by the squares of the practice these effects are usually computed
from the treatment total [a], [b] and [ab] etc. The Factorial effects totals are
given by the expression.

[A] = [ab]-[b] + [a]-[1]
[B] = [ab]-[a] + [b]-[1]
[AB] = [ab]-[b]- [a] + [1]

The sum of squares due to any Factorial effect is obtained by multiplying the

1 . .
square of the effect total by the FactorE. Where r is the common replicate

2
number sum of square due to main effect of A= %= si
r

(e

= g2
4r B

Similarly S.S due to main effects of B =
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2
S.S due to interaction effect of AB= [AB]

—_cQ?2
_SAB

Each with 1.D.F

Correction factor (C.F) =

Total sum of square = Y y;° —~C.F =52
ijes
Z Bj 2
Block S.S == C.F =S¢
ZTiZ 2
S.S Treatment = . -C.F =5
S.S Treatment = Total S.S - [S.SB+ S.ST] = S
Table 4.1: ANOVA Table
Source of | Sum of | Degrees of | Mean sum of | F- ratio
variation square freedom square
Block S2 r-1 SR o2 Sg
— - =5R —> = Fr
r-1 Sg
2 2 2
Treatment S, 3 s¢ _s? S—tz F
3 S
iﬁain Factor | 52 1 ﬁ s ,i ﬁ _F,
1 S¢
1]\3/Iain Factor | 52 1 ﬁ: Sé iz F,
1 S¢
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Interaction

effect AB 1 =She 52 Fag
Error 52 3(r-1) S2

@-yey | Y
Total 52 4r-1

(22r-1)

Table value:

F table [(r-1), 3(r-1)] d.f at 5% level = Fg

F table [3, 3(r-1)]
F table [1, 3(r-1)]

Conclusion:

(i) Fr<Fg

d.f at 5% level = F

d.f at 5% level = F*

significance difference between replicates.

(i) F< Ft*

significance difference between Treatment.

(iii) Fy<F, we need not reject and we conclude that there is no

significance
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(iv) Fg<Fz we need not reject and we conclude that there is no
significance difference main effect B.

(v) Fpg<F~ we need not reject and we conclude that there is no

significance difference interaction effect AB.

Table 4.2: Yates Method for 2x2 Factorial experiment:

Treatment Total yield | (3) (4) Effect total
combination | from all

replicates (2)
1 [1] [1]+]a] [1]+[a]+[b]+[ab] | Ground total
A [a] [b]+[ab] [a]-[1]+[ab]-[b] | [A]
B [b] [a]-[1] [b]+[ab]-[1]-[a] | [B]
Ab [ab] [ab]-[b] [ab]-[b]+[a]-[1] | [AB]
Problem 1:

Find out ,the effect and interaction effect in the following 2 Factorial
experiment and write dawn the analysis of variance table;-

Table 4.3 ANOVA Table

Block Treatment (a) (b) (ab)
00 10 01 11

I 64 25 30 10

I 25 14 50 33
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II 76 12 41 17
v 75 33 25 10
Solution:
Null hypothesisH :
There is no significance difference between blocks.
H.:: There is no significance difference between Treatments.
H..: There is no significance difference between main effect A.
H,z: There is no significance difference between main effect B.
H.s: There is no significance difference between effect AB.
Treatment Total yield | (3)
from all
Combination Effects Total |S.S
blocks
1 240 324 540 2
(540)7 _ 18225
92912
a 84 216 232 (=232)° _ oopy
(-108)?
b 146 -156 -108 =129
16
2
®0)° _ 400
ab 70 -76 80 16
2 2
C.F= GW _ 407 _ 18925

80




C.F = 18225

Total sum of square = Y y; —C..F = (64)° +(25)* +......25)° + (10)* —C.F

ijes

= 25460- 18225

= 7235
2.8
Sum of square due to Block = T—C.F
= 13290 1505
4
S.SB =97.5
DT 90872

Sum of square due to Treatment = -C.F= T—18225

S.S. T, =4493
Sum of square due to error =T.S.S-(S.S.B + S.S.T,)

= 7235- (97.5+4493)

S.S.E =2633.5

Table 4.3: Yates method for 2°Factorial experiment:

Source of | Sum of | Degree of | Mean sum | F- ratio
variation square | freedom of square

Block 97.5 3 32.5 0.1106 Fq
Treatments 4493 3 1497.67 5.0975 F;
Main effect A | 3364 1 3364 11.4499 F,
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Main effect B | 729 1 729 2.48 Fg

Interaction 400 1 400 1.3614
effect of AB =

AB
Error 2644.5 9 293.8 -
Total 7235 15 - -

F- Table value:

F (3.9) d.f at 5% level = 3.86 > F,

F (1.9) d.f at 5% level = 5.12> F,
Conclusion:

(i) Fx<F, we need not reject Ho and we conclude that there is
significance difference between blocks.
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(ii) F; > F,we need not accept Ho and we conclude that there is no

significance difference between Treatments.

(iii) F, > F3; We need not accept Ho and we conclude that there is no

significance difference between main effect A.

(iv) F3 <Fgz We need not reject Ho and we conclude that there is no

significance difference between main effect B.

(v) Fag <Fgz We need not reject Ho and we conclude that there is no
significance difference between interaction effect AB.

4.3. 23 Factorial Experiment

( main and interaction effect of 23 factorial experiment) suppose that
are factorial experiment 23=8 Treatment combinations is conducted T’ Blocks
(or) replicates.

[1] Total of r units receiving the treatment 1.

[a] Total of r units receiving the treatment a.

[b] Total of r units receiving the treatment b.

[ab] Total of r units receiving the treatment ab.
[c] Total of r units receiving the treatment c.

[ac] Total of r units receiving the treatment ac.
[bec| Total of r units receiving the treatment bc.
[abc] Total of r units receiving the treatment abc.

Simple effect of A:-

Level of B Level of C Effect of A
bo Co aiboco - aoboco = (a)-(1)
b1 Co aibico - aobico = (ab)-(b)
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bo C1 aiboc1 - aoboc1 = (ac)-(c)

b1
C1 aibic1 - aobici = (abc)-

(bc)

Simple effect of A
:%[(abc)—(bc)+(aC)—(C)+(ab)—(b)+(a)—(1)]
:%[bc(a—l)+c(a—1)+b(a—1)+1(a—1)]
:%[(a—l)(bc+c+b+l)]

- Zla-jclo+1)+1lo+1))

-+ la-1)o+1fe+1)]

_ %[(a ~1)b+1)c-+1)

S.E.of A = %[(a ~1)b+1)c+1)]

Simple effect of B:

Level of A Level of C Effect of B
ao Co aob1co - aoboco = (b)-(1)
ai Co aibico - aiboco = (ab)-(a)
ao C1 aobici - aoboc: = (ac)-(a)
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ai

C1 aibici - aiboci = (abc)—
(ac)

Simple effect of B
:%Kma-@d+®®—@%%m%%w+®%ﬂﬂ
_ %[ac(b ~1)+clb-1)+a(b-1)+1b-1)]
:%[(b—l)(ac+c+a+1)]
- 21lb-Dela+1)+ a1

-2 lb-1fa+ e+

-2 lb-1fa+1)e+1)

S.E. of B =%[(b ~1)a+1)c+1)]

Simple effect of C:-

Level of A Level of B Effect of C
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ao bo aoboc1 - apboco = (¢)-(1)

ai bo aibico - aiboco = (ac)-(a)
ao b1 aobici - aobico = (bc)-(b)
ai
b1 aibici - aibico = (abc)-(ab)

Simple effect of C
- %[(abc) - (ab)-+ (be) - (b) + (ac) - (a) + (¢)- (]

_ %[ab(c ~1)+b(c-1)+a(c-1)+1(c-1]

:%[(c-l)(ab+b+a+1)]

_ %[(c ~1)b(a+1)+1(a+1)]

~2le-Da+1o+ 1)

_ %[(c ~1)a+1)b+1)

S.E. of C = %[(a+1)(b+1)(c—1)]

Interaction effect of AB:

AB = %[{(abC)— (be)+ (ab)- (b); - {(ac) - (c)+ (a) - (V)]
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[(@be)— (be)+ (ab) - (b) - (ac)+ () - () + ()]

NG

(In main effect A we are add b: terms and substact bo terms)
= %[bc(a ~1)+b(a-1)-c(a-1)-1a-1)]
:%[(a—l)(bc+b—c—1)]
_ %[(a ~1)fp(c +1)~1(c +1)}]
_ %[(a ~1)b-1)c+1)]

LEof B = %[(a—l)(b—l)(c +1)]

Interaction effect of BC:
1
AC = {(abc)-(be)+ (ab) - (b)} - {(ac) - (c)+ (a) - ()]
(In main effect A we are add c: terms and subtract co terms)

- ~abe) - () + (ac)- () - (ab) + (o) a) + 0]
_ %[bc(a—1)+c(a—l)—b(a—l)—l(a—l)]

_ %[(a—l)(bc+c—b—1)]

_ %[(a ~1)c(b+1)-1(b+1))]

_ %[(a ~1)b+1)c-1)]

L.E. of AC = %[(a ~1)b+1)c-1)]

Interaction effect of BC

BC = 3 [{(abe)- (ac)-+ (bc) - (¢} {{ab) - () + (b) - 0]
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(In main effect B we are add c; terms and subtract co terms)
- +lfabe) (ac)+ (boc)- () (ab)+ ()~ (o) + 0]
_ %[ac(—1)+c(b ~1)-a(b~1)-1(b 1)
_ %[(b—l)(ac+c—a—1)]
- 2lb-Dfe(a+1)-1(a+1)]

_ %[(b ~1)a+1)c-1)]

Interaction effect of AC = %[(a +1)b—-1)c-1)]

Interaction effect of ABC:

Interaction effect of AB at Co of C = %[(alb1 —ayb; Jc, — (ayby —aghy )c, |
Interaction effect of AB at C; Of C = %[(alb1 —ayb; Jc1—(a;b, —agby e, |
Interaction effect of ABC = %[(abc)— (bc)-(ac)+((c)-(ab)+ (b)+(a)- (1))]

= %[bc(a—1)—c(a—l)—b(a—1)+1(a—1)]
_ %[(a—l)(bc—c—b+1)]

- %[(a ~1)c(b-1)-1(a—1)]
:%[(a—l)(b—l)(c—l)]

L.E of ABC = %[(al)(b ~1)c-1)]

4.3.1. Analysis of 23 Factorial Design:

Yij =4+o; + B+« +(aﬂ)ij +(1Ba)jk +(a7)ik +(0‘ﬁ7)ijk + 0t Eiju
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Where, Yijx is the yield from the ith row jthBlock u is the general mean
effect.

ai is the effect due to ith level of Treatment A.
B is the effect due to jth level of Treatment B.

Yk is the effect due to kth level of Treatment C.
(aB)j is the interaction effect due to i and jth level of Treatment AB.
(By)ij is the interaction effect due to j and kthlevel of Treatment BC.
(ay)ik is the interaction effect due to i and ktk level of Treatment AC.
(aPy)iik is the interaction effect due to i,j and kth level of Treatment ABC.
piis the effect of due to the 1th Block.
eijkiis the error effect.

The above parameter are subject to following restrictions

2ai=0, Z(aB)i=0

ZB;=0, Z(Ba)y=0

Z(aPy)ix=0, %(ay)ik=0
Zpi=0

Null Hypothesis:
Hor: - there is no significance difference between replicates.

Hor: - there is no significance difference between Treatment (or)
Factorial not present.

Statistical Analysis for 23 factorial experiment

The sum of square due to any factorial effect is obtain as multiplying
the square of the effect total by the factor 81_r , Where r is common replicate
number.

[A]

Sum of square due to main effect A = 3
r
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[B]

Sum of square due to main effect B =

8r
: : [ABT
Sum of square due to interaction effect AB = e
r
: : [ACT
Sum of square due to interaction effect A = )
r
[cf
Sum of square due to interaction effect C = TS
r
: : [BCT
Sum of square due to interaction effect BC = o
r
: : [ABCT :
Sum of square due to interaction effect ABC = 5 each with 1
r
d.f
Table 4.6: Yates method for 23 factorial experiment: -
Treatment Treatme | (3) (4) (5) Effect
nt total
Combination
Total (6)
1 (1] [1]+[a] [1]+[a]+[b]+[ab] [1]+[a]+[b]+[ab]+[c]+[ac]+[bc+[abc] G
a [a] [b]+[ab] | [c]+[ac]*[bc]+[abc] | [a]-[1]+[ab]-[b]+[ac]+[ac-[c]+[abc]-[bc] | [A]
b [b] [c]+[ac] [a]-[1]+[ab]-[b] [b]+[ab]-[1]-[a]+[bc]+[abc]-[c]-[ac] (B]
ab [ab] [bc]+[abe] | [ac]-[c]+[abc]-[bc] [ab]-[b]-[a]+[1]+[abc]-[bc]-[ac]+[c] [AB]
c [c] [al-[1] [b]+[ab]-[1]-[a] [c]+[ac]+[bc]+[abc]-[1]-[a]-[b]-[ab] [C]
[ac]
ac [ab]-[b] [be]+[abc]-[c]-[ac] [ac]-[c]+[abc]-[bc]-[a]+[1]-[ab]+[b] [AC]
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be [be] [ac]-[c] [ab]-[b]-[a]+[1] [be]+[abe]-[c]-[ac]-[b]-[ab]+[1]+[a] [BC]
abc [abc]-[bc] | [abc]-[bc]-[ac]+[c] [abc]-[bc]-[ac]+[c]-[ab]+[b]+[a]-[1] [ABC]
[abc]
Sum of | Sum of | d.f Mean sum of | F- ratio
variance square square
o S s2
Replication s2 r-1 il Sk ¥ = Fq
S _ 2 S¢
Treatment 5t2 7 E2 Sy ¥ F
. Sk _ <2 Sh _
Main effect A | 52 1 1 Sa g =F,
. S& _ a2 Sg
Main effect B | 52 1 1 Sg g =Fg
2 SiB _ SZ SiB =F
Int. effect AB Sz, 1 1 A8 Sé =Fas
. SE _ <2 S¢
main effect C Sé 1 4" Sé g =F;
2 SiC _ SZ SiC _
Int. Effect AC Sac 1 1 °AC Sé =Fac
Sic _ o2 Sac
Int. Effect BC Séc 1 . Sac 52 Rec
E
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S asc 2 Sch
Int. Effect S2.c 1 1 S aBc g2 = Ragc
ABC :
2 2
Error s2 7r-1) 7(r — 1) =9 -
Total ST2 8r-1 - -

Table value:

F [(r-1), (7(r-1))] at 5% level = F;

F [7, 7(r-1)] at 5% level = Fo
F [1, 7(r-1)] at 5% level =F3
Conclusion:

(i) Fr < F1 we need not reject the null hypothesis Ho and we conclude
that there is no significance difference between replicates.

(ii) Ft< F2 we need not reject the null hypothesis Ho and we conclude
that there is no significance difference between Treatments.

(iii) Fa< F3 we need not reject the null hypothesis Ho and we conclude
that there is no Factorial effect in main effect A.

(iv) Fs< F3 we need not reject the null hypothesis Ho and we conclude
that there is no Factorial effect in main effect B

(v) FaB< F3 we need not reject the null hypothesis Ho and we conclude
that there is no Factorial effect in interaction effect AB.
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(vi) Fc< F3 we need not reject the null hypothesis Ho and we conclude
that there is no Factorial effect in main effect C.

(vii) Fac< Fs we need not reject the null hypothesis Ho and we
conclude that there is no Factorial effect in interaction effect AC.

(viii) Fsc< Fs we need not reject the null hypothesis Ho and we
conclude that there is no Factorial effect in interaction BC.

(ix)FaBc < Fs3 we need not reject the null hypothesis Ho and we
conclude that there is no Factorial effect in interaction effect ABC.

4.4. 2» - Factorial Experiment

The results and the notations of 22 and 23 can be generalized to the case of 2n
experiment. g Here we consider n factors each at 2 levels. Suppose A, B, C,
D,..., K are the factors each at two levels(O, 1). Corresponding small letters a, b,
c, d,...,k denote the corresponding factors at the second level, the first level of
any factor being signified by the absence of the corresponding small letter. The
treatment combinations, in standard order can be written as:

1, a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd, etc.
For 2r-experiment, the various factorial effects are enumerated as follows:

Main effects :n; in number
Two-factor interactions :n. in number

Three —factor Interactions :n., in number

n factor interaction : n; in number

Hence, the total number of factorial effects in 2n —experiment are
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nC1+nCo+...+2Ch=[rCo+nC1+...+2Cy]-1
=(1+1)n-1=2n-1
Main Effects and Interactions

As in the case of 22 and 23- experiment the results for the main effects and
interactions can be generalized to the case 2n experiment. Thus, for n factors A,
B, C, D, ...,K the main effects and interactions are given by the expression.

1
2n+1

[@+D)(b 1) (c+1)(d 1) (k +1)]

4.4.1. Analysis of 2» design

It will be seen that all the factorial effects (main and interaction) are mutually
orthogonal contrasts of treatment totals. Hence, having obtained the factorial
effect totals by Yates technique, the S.S due to each factorial effect is given by

Where [ | is the factorial effect total.

Table 4.8. ANOVA Table

Source of | Sum of square | d.f Mean sum of
variation square
Sa _ .
2 _ =8
SZZZBj—C.F rl r—l R
2 _ St
Treatments T2 2" 1 St = T
sfz—z L _CF 2 -1
r
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Sa =S4

Main effect A Si=[A]?/r.2n
| i =5i
Main effect B | S2=[B]2/r.2n»
. Sk =Si
Main effect K | 2 =[K]2/r.2n
Two-factor
Interactions
2 _ @2
AB SiB _ SAB - SAB
[AB]2/r.2n
SZ — SZ
AC S:.=[AC]?2/r.2n " "
s2. =S2
BC Sz. = [BCJ2/r.2n - -

Three-factor

Interactions
SiBC = S/ZABC
ABC SiBC =
[ABC]?/r.2n
siCD = S/ZACD
ACD Sf\CD =
[ACD]?2/r.2n
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s? =82
n-factor Sf\B...K = 1 AB..K AB..K
interactions [AB...K]2/r.20
ABCD...K

2 s’
ferror S¢= By | (r-1)21) | S = Thon g
subtraction
Total Raw.S.S- C.F r.2n-1

The block effects and the factorial effects ( main and interactions) can be tested
for significance by comparing their means S.S with error S.S.

UNIT-V
5.1 Confounding

When only the portions of treatment combinations are allotted to block within a
replication, the comparison between blocks in a replication represents some treatment
comparison, either a main effect or on interaction. In such cases it is not possible to distinguish
treatment comparisons from block comparisons. Such a mix up is termed as confounding.

Advantages and disadvantages of Confounding

The only and the greatest advantage of confounding scheme lies in the fact that it reduces
the experimental error considerably by stratifying the experimental material into homogeneous
sub sets or sub groups. The removal of the variation among incomplete blocks within replicates
often results in smaller error mean square as compared with a randomised complete block
design, thus making the comparisons among some treatments more precise.

The following are the disadvantages of confounding

1. The confounded contrasts are replicated fewer times than are the other contrasts and as
such there is loss of information on them and they can be estimated with a lower degree
of precisions as the number of replications for them is reduced.
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2.The algebraic calculations are usually more difficult and the statistical analysis is complex,
specifically when some of the units are missing.
3.A number of problems arise if the treatments interact with blocks.

5.2 Partial and complete confounding

The same interactions are confounding in each replication (or) different sets of interaction
are confounded in different replications. Both the procedures are practised if the same set of the
interactions is confounded in all the replications confounding are called complete confounding.

If again different sets of interaction are confounded in different replications confounding is
called partial confounding

5.3 Complete confounding 22 experiments

In a 2° experiment the 8 treatment combination require 8 units of homogeneous material
each two from a block.

For example:Let us consider confounding the highest order interactions ABC we know that
the interaction effect ABC is given by

ABC= %[(abc)— (bc)—(ac)+(c)—(ab)+(b)+(a)—(1)]

) %[(abc)+ (a)+(b)+(c)~(ab) - (bc) - (ac) - (1)

ABC confounded with blocks.
Block1: (1) (ab) (ac) (bc)
Replicate
Block2: (@) (b) (c) (abc)
Yates method for a 2° experiment:
Black size is four in the question
Blockl 1 (ab)
Block2 (ac) (bc)

Block3 (@) (b)
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Block4 (c) (abc)
Table 5.1

Treatment Treatment 3) 4) (5) Effects
combination | Total total
1 [1] [1]+[a]=uy Up+Ua=vg V1+HVo=Wy G.T
a [a] [b]+[ab]=u, Us+Us=V; V3t+V4=W, [A]
b [b] [c]+[ac]=u3 Us+Ug=V3 V5+Vg=W3 [B]
ab [ab] [bc]+[abc]=us | uztug=vy V7+Vg=W, [AB]
c [c] [a]-[1]=us Uz -U1=Vs V2-V1=Ws [C]
ac [ac] [ab]-[b]=ue Ug —U3=Vs V4-V3=Wg [AC]
bc [bc] [ac]-[c]=u; Ug —Us=V7 Vg-V5=W7 [BC]
abc [abc] [abc]-[bc]=us Ug —U7=Vg Vg-V7=Wg Not estimatle

This confound component contain in the (2r-1) d.f. The ANOVA table will be as follows.

Table 5.2 : ANOVA Table:

SV S.S d.f M.S.S F- ratio
Blocks S2 2r-1 2 S2
b _F
st
Treatment s2 6 Sz 52
t —F
st ¢
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A s2 1 Sk Sa_r
sz °

B 52 1 s Ss _ ¢
sz ¢

AB ks 1 Sk S,
sz °

C & 1 S¢ izps
Se

AC Shc 1 Shc Ske _p.
Se

BC Séc 1 Séc SéC_FS
Se

Error S2 6(r-1) s2 -

Total s2 8r-1 -

Null Hypothesis: -
Ho: confounding is not effective
Hi: confounding is effective

Inference:
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If the calculated F value is less than the tabulated F~ value we accept Ho. Otherwise we
reject Ho.

5.4 Analysis of 2° partial confounding

The analysis of 2° partially confounded design differs from that of the ordinary 2°
factorial experiment replicated 4 times only in the calculation of the partially confounded
interactions. Each interaction being estimated only from the three replicates in which the given
interaction is not confounded.

Analysis of 2° partially confounded design with four replications and ‘r’ such
replications. Let us suppose that a number of repetitions say ‘r’, of the above pattern or layout
are performed such the positions of the replication, Blocks within replications and Blocks within
Blocks are randomised then the structure of the Anova table will be as follows.

Table 5.3
Y d.f S.S
Blocks 8r-1 1 3 (total of Blocks)? - G*
4 32r

Treatment 7 S2+S3+S2 +Sa5 +S5c +S4c +S55c =S¢

A 1 [AJ?/32 1

B 1 [B]?/32r

C 1 [C)/32r

AB 1 [AB]*/24 r
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AC 1 [AC)Y24 ¢

BC 1 [BC)/24 r

ABC 1 [ABCJ¥/24
Error 24r-7 (By difference)= SZ
Total 32r-1 S¢=Total S.S

Calculation of sum of square due to confounded effects:

It has already been explained that sum of square for confounded effects are to be
obtained from those replications only in which the given effect is not confounded from practical
point of view these sum of square can be obtain from the table of Yates method for all the 4
replications by appling sum adjusting factor (A.F) for any confounded effects is computed as
follows

(i) Note the replication in which the given effect is confounded.

(if) Note the sign of (1) in the corresponding algebraic expression of the effect to be
confounded.

If the sign is positive then
A.F = [Total of the block containing (1) of replicate in which the
Effect is confounded] — [Total of the block not containing
(1) of the replicate in which the effect is confounded]
AF=T;-T,(say)
If the sign is negative,

AF= T2—T1
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This adjusting factor will be subtracted from the Factorial effects total of the
confounded effects obtained from Yates’s method for all replicates.

5.5 Balanced Incomplete Block Designs(BIBD)

If in a block the number of experimental units or plots is smaller than the number of treatments,
then the block is said to be incomplete and a design constituted of such blocks is called an incomplete
block design.

Balanced incomplete block designs which were developed for experiments in plant breeding and
agriculture selection comparisons among pairs of treatments is made with equal precision.

Definitions
Incomplete Block Design(l.B.D)

An incomplete block design is one having v treatments and b blocks each of size k such that each
of the treatments is replicated r times and each pair of treatments occurs once and only once in the
same blocks v, b, r, and k are known as the parameters of the I.B.D

Balanced Incomplete Block Design
An arrangement of v treatments in b blocks of k plots each(k<v) is known as BIBD, if

i) Each treatment occurs once and only once in r blocks and

ii) Each pair of treatments occurs together in A blocks.
BIBD is used when all treatment comparisons are equally important as it ensures equal
precisions of the estimates of all pairs of treatment effects.

Parameters of BIBD

The integers v,r,b,k and A are called the parameters of the BIBD., where
V = number of varies or treatments, b=number of blocks
K=block size , r= number of replicates for each treatment

A= number of blocks in which any pair of treatments occurs together or number of times any two
treatments occur together in a block. The following parametric relations serve as a necessary condition
for the existence of a BIBD.

i) Vr=Dbk ii)A(v-1) =r(k-1) iii) b=>v( Fisher’s Inequality)
Theorem 5.1
Vr = bk
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Proof:

Since there are v treatments each replicated r times, total number of plots in the design is vr. Further
since there are b blocks each of size k, there are bk plots in all.

Hence vr=bk

Incidence Matrix: Associated with any design D is the incidence matrix N = (ny), (i=1,2,...,v; j = 1,2,...,b),
where n;; denotes the number of times the i treatment occurs in the j™ block. Thus by the definition of
a BIBD

nll an nlb
n n ... N

N=| % 2 2b «(5.1)
r]vl r]v2 r]vb

Where n; =1, if i treatment occurs in the j block ..(5.2)

=0, otherwise

We also observe, by definition of BIBD

b b .. (5.3
Znu:Zn“?:r;(izl,z,...,v) >3
j ... (5.4)
Ny = M =k;(j=12,...,v)

>N .(5.5)
=1

DM 10

nn; =A4;(i=1=12,..,v)

Since nyn;=1 if and only if i" and I

they occur together in A blocks

treatments occur together in the j block otherwise it is zero and

If N’ denotes the transpose of N then
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_anj >Ny, >nyn, ]
J J J

ZnZJ’nli 2N Z“zj'”vj
J J

NN' = j
D on,n; > n,ny, >ng
5 ,— ,— |
r A A A
A r A A
=1. . . . ... (5.6)
A A A r,.
Theorem 5.2A(v-1)=r(k-1) ..(5.7)
Proof

Let us denote by E,,, the mxn matrix all of whose elements are unity. From (5.6), we get

r A A A 1
A r A A 1
NN'E, = .
/1 /1 /1 r VXV 1 vx1
=[r+a(v-1)].
1
Also =[r+A(v-1)]E,4 ..(5.8)

NNE, =N(NE,)

From (5.4)
Ny Ny o N, 1
-N Ny, Ny, Ny, 1
Ny, Ny Ny 1
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_Znil_
2.

=N =NN| .
k
Znib
L i i
From (5.3)
Ny Ny, Ny
n n cee n
—l 2 .22 .2b
nvl r-]v2 r-]vb vxb l bx1
2N
: r
2., r
— i =kk . ..(5.9)

znVJ r vx1
L i

=kr Eyy . (5.10)
From (5.9) and (5.10), we get

[r+A(v-1)]Ey; = kr Ey4

r+A(v-1) = kr

i.e., A(v-1) = r(k-1)

Theorem 5.3 b 2v (Fisher’s Inequality)

r A A A

A A A
Proof. From (5.6) the determinant of the matrix |[NN’| =] .

A A A r

VXV

Adding 2" 3" . vth columns to the first column and taking [r+(v-1)] common from the first column,
we get
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i y) y) 2]
r A A
NN'=[r+(v-1)4] 1 y) r A
11 A A r
1 A y) A
(r=2) 0 0
[r+(v-14]0 0 (r=1) - 0
0 0 0 (r-4)

(subtracting first row from the 2™, 3™, ..., vth row)
=[r+(v-1)A(r-A)"! expanding by first column)
=rk(r-A)"* using (5.6)

Thus |NN '| # 0, for if r = A then from (5.6) we get
v-1)=(k-1) = v=k

Indicating that the design reduces to randomized block design. Hence, NN is non singular and
consequently Rank(NN") =v ..(5.11)

Since v is the order of matrix NN .
Rank(NN') = Rank(N)
Rank(N) =v from (5.11) .. (5.12)

But since N is a v x b matrix, it ranks can be at most b.
V=rankN<b b2vasdesired. ..(5.13)

Theorem 5.4

(i) r>k

(ii) b > v+r-k

proof

. b
(i) we havevr=bk = r = —k

v
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sinceb>v, wegetr=k
(ii) we havev-k>0andr-k>0

V-K)(r -k >0 = G-l}(r—k)zo
ie., %(r—k)—(r—k)zo

.'.%—VZr—k =b>v+r-k [-vr =bk]

Symmetric BIBD

Definition. A BIBD is said to be symmetricif b=vand r=k.

Theorem 5.5 In a symmetric BIBD, the number of treatments common between any two

blocks is A
Proof.
We have
r A A A
A r A A
NN’ = : : . .
A A A r
r-A4 0 0 0 A A A
0 r-A14 0 0 A A A
= . +
0 0 0 r-A A A A

=(r-A)I,+AE,,
Where Iv is a unit matrix of order v.

Also for a symmetric BIBD, we have

(NN’)71 :|:Iv _izEvv:|
r

=(N')*N* =—rfi{|v _iEW}
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Premultiplying by (N), we get N ™" = i[N ' —riz N 'EW} .(5.14)

But it can be easily verified that for symmetric BIBD
N’Evv=NEvv=rEvv=k Evv

NI

_Evv = Evv
r
. . . -1 1 12 /1
Substituting in (5.14), weget N7 =——| N'——E,
r—-A4 r
Post multiplying by N, we have
I, -1 Inn —iNEvv :i[N'N —JE,,]
r-A4 r r-4
N’N=(r-A)l,+AE,, (5.15)

From (5.14) and (5.15), we get for a symmetric BIBD
N’N=N’N

Thus, the inner product of any two rows of N is equal to the inner product of any two columns of N, i.e.,
A

Hence, in case of a symmetric BIBD, any two blocks have A treatments in common.
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