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Unit -I 

DESIGN 0F EXPERIMENTS 

1.1 Introduction 

            In 1935 sir Ronald A. Fisher laid the foundation for the subject which 

has come to be known by the title of his book „ The Design of Experiments‟. 

Since then the theory of experimental design has been considerably developed 

and extended. Applications of this theory are found today laboratories and 

research in natural sciences, engineering, and nearly all branches of social 

science. 

Definition 

        Design of experiments may be defined as the logical construction of the 

experiments in which the degree of uncertainty with which the inference is 

drawn may be well defined. 

The subject matter of the design of experiments may includes; 

1) Planning of the experiment. 

2) Obtaining relevant information from it regarding statistical 

hypothesis under study, and 

3) Making a statistical analysis of the data. 

 Allen L. Edwards the experimental design is called a randomized group design. 

The experimenter may easily recognize three important phases of 

every project; 

1) Experimental or planning phase. 

i) Statement of problem. 

ii) Choice of response or dependent variable. 

iii) Selection of factors to be varied. 

iv) Choice of levels of these factors. 

 Qualitative or quantitative. 

 Fixed or random. 

 How factor levels are to be combined. 

2) Design phase, 

i) Number of observations to be taken. 

ii) Order of experimentation. 

iii) Method of randomization to be used. 

iv) Mathematical model to describe the experiment. 
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v) Hypothesis to be tested. 

3)  Analysis phase, 

i) Data collection and processing. 

ii) Computation of test statistics. 

iii) Interpretation of results for the experiment. 

1.2 Definitions: 

1. Experiment 

                An experiment is a device or a means of getting an answer to the 

problem under consideration. 

               Experiment can be classified into two categories; 

i) Absolute 

ii) Comparative 

i) Absolute experiment 

                  Absolute experiments consist in determining the absolute value of 

some characteristics like, 

a) Obtaining average intelligence quotient (I.Q) of a group of people. 

b)  Finding the correlation co-efficient between two variables in a bivariate 

distribution etc. 

 

ii) Comparative experiment 

Comparative experiments are designed to  

Compare the effect of two or more objects on some population 

characteristics. 

      Example; 

 Comparison of different fertilizers. 

 Different kinds of verities of a crop. 

 Different cultivation processes etc., 

2. Treatments 

                 Various objects of comparison in a comparative experiment are 

termed as treatments. 

Example 

                 In field experimentation different fertilizers or different varies of crop 

or different methods   cultivation are the treatments. 

3. Experimental unit 

                  The smallest division of the experimental material to which we 

apply the treatments and on which we make observations on the variable 

under study. 

Example 
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i) In field experiments the plot of land is the experimental unit. In other 

experiments, unit may be a patient in a hospital, a lump of dough or a batch of 

seeds. 

4. Blocks 

                   In agricultural experiments, most of the times we divide the whole 

experimental unit (field) into relatively homogeneous sub groups or strata.  

These strata which are more uniform amongst themselves than the field as a 

whole are known as blocks. 

5. Yield 

                  The measurement of the variable under study on different 

experimental units are termed as yields. 

6. Experimental error 

Let us suppose that a large homogeneous field is divided into 

different plots (of equal shape and size) and different treatments are applied to 

these plots. If the yields from some of the treatments are more than those of 

others, the experimenter is faced with the problem of deciding if the observed 

differences are really due to treatment effects or they are due to chance 

(uncontrolled) factors. In field experimentation, it is a common experience that 

the fertility gradient of the soil does not follow any systematic pattern but 

behaves in an erratic fashion. Experience tells us that even if the same is used 

in all the plots, the yields would still vary due to the differences in soil fertility. 

Such variation from plot to plot, which is due to random factors beyond human 

control, is spoken of as experimental error.  

7. Replication 

                  Replication means the execution of an treatments more than once. 

In other words, the repetition of treatments under investigation is known  as 

replication. 

8. Precision 

                The reciprocal of the variance of the mean is termed as the precision.  

Thus for an experiment replicated r times is given by. 

2

)var(

1
r

x
  

Where σ2 is the error variance per unit. 

9. Efficiency of a Design 

Consider the designs D1 and D2 with error variances per unit 2

1  

and 2

2  and replications r1 and r2 respectively. Then the variance of the 

difference between two treatment means is given by  

2

2

21

2

1 22 randr   for D1 and D2 respectively. Then the ratio 
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E   is termed as efficiency of design D1 w.r.t D2. 

10. Uniformity Trials  

The fertility of the soil does not increase or decrease uniformity in 

any direction but is distributed over the entire field in an erratic manner. 

Uniformity trails enable us to have an idea about the fertility variation of the 

field. By uniformity trail, we mean a trail in which the field (experimental 

material) is divided into small units (plots) and the same treatment is applied 

on each of the units and their yields are recorded. 

 

1.3 Basic Principles of Experimental Designs 

The purpose of designing an experiment is to increase the precision 

of the experiment. In order to increase the precision, we try to reduce the 

experimental error. For reducing the experimental error, we adopt certain 

techniques. These techniques form the form the basic principles of 

experimental designs. The basic principles of the experimental designs are 

replication, randomization and local control. 

The principles of experimental design;- 

1) Replication 

2) Randomization 

3) Local control 

1) Replication 

           Replication means the repetition of the treatments under investigation.  

An experimenter resorts to replication in order to average out the influence of 

the chance factors on different experimental units.  Thus, the repetition of 

treatment results is more reliable estimate than is possible with a single 

observation 

Advantages of replication 

1. Replication serves to reduce experimental error and thus enables us to obtain 

more precise estimates of the treatment effects. 

2.  From statistical theory we know that the standard Error (S.E) of the mean of a 

sample size n is n , where σ is the standard deviation of the population.  

Thus if a treatment is replicated r times, then the S.E of its mean effect is 

n , where σ² is the variance of the individual plot is estimated from error 

variance. Thus “ the precision of the experiment is inversely proportional to the 

square of the Replication has an important but limited role in increasing the 

efficiency of the design. 

2) Randomization 
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             We have seen that replication will provide an estimate of experimental 

error. For valid conclusions about our experimental results, we should have 

not merely an estimate of experimental error but it should be an unbiased 

estimate. Also, if our conclusions are to be valid, the treatment means and also 

differences among treatment means should be estimated without any bias. For 

the purpose we use the technique of  randomization.  

 When all the treatments have equal chances of being allocated to 

different experimental units it is known as randomization. 

             The following are the main objectives of randomization.   

i) The validity of the statistical test of the Significance.  

            i.e.) t-test for testing the significance of the difference of two means.  F-

test for testing the homogeneity of variance. 

            ii) The purpose of randomness is to assure that the source of variation, 

not controlled in the experiment operate randomly.  Randomization eliminates 

bias in any form. 

3) Local control 

            We know that the estimate of experimental error is based on the 

variations from experimental unit to experimental unit. In other words, the 

error in an experiment is a measure of “ within block” variation. This suggests 

that if we group the homogeneous experimental units into blocks, the 

experimental error will be reduced considerably.   If the experimental material, 

say field for agriculture  experimentation is heterogeneous and different 

treatment are allocated to various units at random over the entire field the soil 

heterogeneous will also enter the uncontrolled factors and thus increase the 

experimented error.  It is desirable to reduce the experimental error as for as 

practicable without unduly increasing the number of replications, so that even 

smaller difference between treatments can be detected as significant. 

               The process of reducing the experimental error by dividing relatively 

heterogeneous experimental area (field) into homogeneous blocks is known as 

local control. 

Remarks: 

1. Local control, by reducing the experimental error, increases the efficiency 

of the design. 

2. Various forms of arranging the units(plots) into homogeneous 

groups(blocks) have so far been evolved and are known as experimental 

designs, e.g., Randomised Block Design, Latin Square Design etc., 

1.4 Analysis of Variance 

 The term „Analysis of Variance‟ was introduced by Prof. R.A. Fisher in 

1920‟s to deal with problem in the analysis of agronomical data.  Variation is 
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inherent in nature.  The total variation in any set of numerical data is due to 

number of causes which may be classified as: (i) Assignable causes, and (ii) 

Chance causes.  

 The variation due to assignable causes can be detected and measured 

whereas the variation due to chance causes is beyond the control of human 

hand cannot be traced separately. 

Definition. According to Prof. R.A. Fisher, Analysis of variance (ANOVA) is 

the “Separation of variance ascribable to one group of causes from the 

variance ascribable to other group.” 

Assumptions for ANOVA Test. 

 ANOVA test is based on the test statistics F (or Variance Ratio). 

 For the validity of the F-test in ANOVA, the following assumptions are 

made: 

(i) The observations are independent, 

(ii) Parent population from which observations are taken is normal, and 

(iii) Various treatment and environmental effects are additive in nature. 

In the following sequence we will discuss the analysis of variation for: 

(a) One-way classification, and (b) Two-way classification. 

  

1.5 ONE-WAY CLASSIFICATION 

 Let us suppose that N observations yij, (i=1, 2... k; j= 1, 2, .....,ni) of a 

random variable Y are grouped, on some basis, into k classes of sizes n1, n2, 

...., nk respectively, ( 



k

i

inN
1

) as exhibited in table 
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  Table 1.1: ONE-WAY CLASSFIED DATA 

Class Sample Observations Total Mean 

1 

2 

.

.

.
 

i 

.

.

.
 

k 

 

𝑦11𝑦12     …     𝑦1𝑛1
 

𝑦21𝑦22     …     𝑦2𝑛1
 

.

.

.

.

.

.

.

.

.

.

.

.
 

𝑦𝑖1𝑦𝑖2     …     𝑦𝑖𝑛 𝑖  

.

.

.

.

.

.

.

.

.

.

.

.
 

𝑦𝑘1𝑦𝑘2     …     𝑦𝑘𝑛𝑘
 

     T1. 

     T2. 

.

.

.
 

      Ti. 

.

.

.
 

      Tk. 

𝑦1.     

𝑦2.     

.

.

.
 

𝑦𝑖.  

.

.

.
 

𝑦𝑘.     

 

 The total variation in the observation yij can be split into the following 

two components: 

 (i) The variation between the classes or the variation due to different 

bases of classification, commonly known as treatments. 

 (ii) The variation within the classes, i.e, the inherent variation of the 

random variable within the observations of a class. 

 The firs type of variation is due to assignable causes which are beyond 

the control of human hand. 

 The main objective of analysis of variance technique is to examine if 

there is significant difference between the classes means in view of the 

inherent variability within the separate classes. 

 In particular, let us consider the effect of k different rations on the yield 

in milk of N cows (of the same breed and stock) divided into k classes of sizes  

n1, n2, ...., nk respectively, 



k

i

inN
1

.  Here the sources of variation 

are:(i) Effect of the ration (treatment) : ti; i= 1, 2, ....,k. 
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 (ii) Error (ε) produced by numerous causes of such magnitude 

that they are not detected and identified with the knowledge that we 

have and they together produce a variation of random nature 

obeying Gaussian (Normal) law of errors. 

1.5.1 Analysis of one way  Classified Data 

Let yij denote the jth observations in the ith level  of a factor A and let yij be 

corresponding random variable. Let the mathematical model for one way 

classified data  

iijiij njkiety ,,2,1;,,2,1;     

Where µ is the general mean effect 

Ti   is the effect ith level of factor A 

),0(~ 2
..

e

dii

ij Ne   

E(yij)= µ+ti 

µ and ti   ,  i=1,2,…,k can be estimated by least square method that is 

minimizing error sum of squares 

    22

 
ij

ijij yEyeeE  

                 =  2)( 
ij

iij ty   

=  2 
ij

iij ty   

 
0







eeE
 

  0)1(2 
ij

iij ty   

  0
ij

iij ty   

0 
ij

i

ijij

ij ty   



10 
 

 
ij

i

ijij

ij ty   

Gy
ij

ij  =Grand Total 

 
i

ii

i

i tnnG   

nn
i

i   


i

iitnnG  …(1) 

0
)(






it

ee
 

  0)1(2 
j

iij ty   

  0
j

iij ty   

0 
j

i

jj

ij ty   

 
j

i

jj

ij ty   

i

j

ij Ty   

iiii tnnT      …(2) 

Equation (1) and (2) are not independent 

 We assume that 

0
i

iitn  

From equation  (1) 

G=nµ 

n

G
̂  
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From equation (2) 

iiii tnnT    

iiii tn
n

G
nT   

iiii tn
n

G
nT   

n

G

n

T
t

i

i
i ˆ  

Error Sum of Squares 

  22
)ˆˆ( i

ij

ij tyeeE     

))(( iiji

ij

ij tyty    

vanishedaretermsothertyy iij

ij

ij  )(   

  
ij

ijiijij ytyy ˆˆ2   

 
j

ij

i

i

ij

ij ytGy ̂2  














 

n

G

n

T

n

G
y

i i

i

ij

ij

222
2  

= 


























 

i i

i

ij

ij
n

G

n

T

n

G
y

222
2  

Error Sum of Square (E.S.S) = Total Sum of Square (T.S.S)-Treatment 

Sum of Square (Tr.S.S)  
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Table 1.2: Anova Table for One –way Classified Data 

Source of 

variation 

d.f Sum of 

squares 

Mean sum of 

squares 

F-ratio 

Treatment(Ration) k-1 St
2 

)1(

2
2




k

S
s t

t  knk

E

t F
s

s
F  ,12

2

 

Error n-k SE
2 

)(

2
2

kn

S
s t

E


  

Total n-1 ST
2   

 

Under the null hypothesis, ktttH  210 against the alternative that all t‟s 

are not equal, the test statistic knk

E

t F
s

s
F  ,12

2

  

i.e., F follows F (central) distribution with (k-1, n-k) d.f 

If F > F(k-1, n-k) (α) then H0 is rejected at α % level of significance and we 

conclude that treatments differ significantly. Otherwise H0 accepted. 

Problem 1.1. 

 The average number of days survived by mice inoculated with 5 

strains of typhoid organisms along with their standard deviation and number  

of mice involved in each experiment is given below.  On the basis of these 

data, what would be your conclusions regarding the strains of typhoid 

organisms? 

Strains of typhoid A         B            C              D             E 

No. of mice, ni 

Average, yi 

Standard deviation, si 

10      6               8             11            5 

10.9  13.5       11.5        11.2         15.4 

12.72  5.96      3.24        5.65        3.64 
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Solution. 

  Here we set up the Null Hypothesis, Ho: Different 

strains of typhoid organisms are homogeneous, 

 i.e.,

 Ho:µ𝐴 = µ𝐵 = µ𝐶 = µ𝐷 =

µ𝐸𝐻1: 𝐴𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛𝑠 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 

 Let Ti. Be total for the ith strain of typhoid and 
i

iTG  be 

the grand total. 

 Then 𝑦
𝑖.

=
𝑇𝑖.

𝑛𝑖
⇒ 𝑇𝑖. = 𝑛𝑖𝑦 𝑖. 

 Also  ⇒ 



in

j

iij

i

i yy
n

s
1

222 1
⇒   




in

j

iiiij ysny
1

222  

 Which gives the S.S of observations for the ith strain 

typhoid. 

 

 CALCULATIONS FOR VARIOUS SUM OF SQUARES 

 

𝐶. 𝐹 =
𝐺2

𝑁
=

(482.2)2

40
= 5,812.92 

𝑅. 𝑆. 𝑆 =   
i

iii

i j

ij ysny 73.8237222  

𝑇. 𝑆. 𝑆 = 𝑅. 𝑆. 𝑆 − 𝐶. 𝐹. = 8,237.73 − 5,812.92 = 2,424.81 

 S.S due to strains of typhoid   

 
i i

i FC
n

T
..

2  

             = 
(109)2

10
+

(81)2

6
+

(92)2

8
+

(123.2)2

11
+

(77)2

5
− 5812.92 

= 1,188.1 + 1,093.5 + 1,058 + 1,379.84 + 1,185.8 − 5,812.49 
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𝐸𝑟𝑟𝑜𝑟 𝑆. 𝑆. = 𝑇. 𝑆. 𝑆. −𝑆. 𝑆. 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑡𝑟𝑎𝑖𝑛 = 2,424.81 − 92.32 = 2,332.49 

     Table 1.3 ANOVA TABLE 

Sources of 

Variatoin 

d.f Sum of 

squares 

Mean S.S V.R.(F) 

Between 

strains of 

typhoid 

4 92.32 92.32

4
= 23.08 

66.63

23.08
= 2.89 

Error 35 2,332.49 2,332.49

35
= 66.63 

 

Total 39 2,424.81   

 Tabulated F0.05 and 35 d.f = 5.735.  Since calculated value of F 

is less than the tabulated value, it is not significant at 5% level of significance 

and the null hypothesis Ho may be accepted. 

1.6 TWO-WAY CLASSIFICATION (ONE OBSERVATION PER CELL) 

 Suppose n observations are classified into k categories (or classes), say 

A1, A2, ....,Ak according to some criterion, A: and into h categories, say,  

B1, B2, ...Bh according to some criterion B, having kh combinations  

(Ai,Bj) i=1, 2, ...., k ; j= 1, 2, ..., h; often called cells.  This scheme of 

classification according to two factors or criteria is called two-way 

classification and its analysis is called two-way analysis of variance.  The 

number of observations in each cell may be equal or different, but we shall 

consider the case of one observation per cell so that n=hk, i.e., the total 

number of cells is n=nk. 

 In the two-way classification, the values of the response variable are 

affected by two factors. 
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 For example, the yield of milk may be affected by differences in 

treatments, (i.e, rations as well as the differences in variety, i.e., breed and 

stock of the cows.  Let us suppose that the n cows are divided into h different 

groups or classes according to their breed and rations given at random to 

cows in each group) on the yield of milk. 

Let yij= [Yield of milk from the cow of jth  breed or stock, fed on the ration i]; i= 

1, 2, ..., k; j= 1, 2, ..., h 

 Note that the suffix i refers to the treatments (rations) and the suffix j 

refers to the breed and stock of the cow.  The yield can be expressed as 

variable values in the following k × h two-way.  One factor of variation, say, 

varieties (breed and stock of cows) is represented along the columns and the 

other factor of variation, say, treatments (rations) is represented along the 

rows of the table. 

  Table 1.4: TWO-WAY CLASSIFIED DATA 

Treatments 

(Rations) 

Varieties of Cows 

1         2          ...          j          

...          h 

Row 

Totals 

= (


j

ijy ) 

Row 

Means 

=

(
j

ujy ) h  

     1 

     2 

.

. 

     i 

.

. 

K 

y11y12         ...        y1j       ...         

y1h 

y21y22         ...         y2j...         y2h  

   .
   .

.

.
.
.
.
.
.
.
.
 . 

yi1yi2         ... yij   ... yih  

.

.
.
.
.
.
.
.
.
.
.
. 

yk1yk2        ...         ykj  ... ykh  

 

𝑇1. 

𝑇2. 

.

. 

 

.

. 

𝑇𝑘. 

𝑦 1. 

𝑦 2. 

.

. 

 

.

. 

𝑦 𝑘. 
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Column 

Totals 

T1.T.2           ...         T.j       ... T.h 

 

G=

  yij  

 

Column 

means 

=(
i

ijy ) 𝑘  

 

y .1y .2        ... y .j      ... y .h 

 

 

1.6.1. Analysis Two Way Classified Data 

The appropriate model of this data is  

qjpiey ijjiij ...,,2,1;,...,2,1;    

Where yij is the yield of the (i,j)th element which is in the ith row and jth 

column with p levels and q levels, where µ is the general mean effect 

α=  αi  (ith row effect) 

β= βj (jth column effect) 

),0(~ 2
..

e

dii

ij Ne   

µ, αi and βj are estimated by the method of least squares 

   
ij ij

jiijij yeE   

 22  
ij ij

jiijij yeE  …(1) 

0;0;0 














ji

EEE


 

Differentiate w.r.to µ  

  0)1(2 
ij

jiijy   
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  0
ij

jiijy   

0 
ij

j

j i

i

ijij

ijy   

where Gy
ij

ij   

 
j

j

i

i pqpqG  …(2) 

Differentiate w.r .to αi  in equation (1 ) 

  0)1(2  
j

jiijy   

  0
j

jiijy   

= 0 
j

j

j

i

jj

ijy   

where i

j

ij Ty   


j

jii qqT   …(3) 

 

Differentiate w.r .to βj  in equation (1 ) 

  0)1(2  
i

jiijy   

  0
i

jiijy   

= 0 
i

j

i

i

ii

ijy   

where j

i

ij Ty   

j

i

ij ppT     … (4) 
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We assume that 0
i

i , 0
j

j  

From equation (2) 

G=pqµ 

̂
pq

G
 

From equation (3) 

Ti = qµ+qαi 

Ti -qµ = qαi 

i

i

q

qT



ˆ


 

pq

G

q

Ti

i ̂  

From equation (4) 

jj ppT    

pq

G

p

T j

j ̂  

Then the error sum of squares,  

2)( ji

ij

ijyE    

))(( jiijji

ij

ij yyE    

vanishedaretermsotheryyE jiij

ij

ij  )(   

j

ij

ijij

ij

i

ij

ij

ij

ij yyyy  ˆˆˆ2    




















 

pq

G

p

T
y

pq

G

q

T
yy

pq

G
y

j

ij

ij
i

ij

ij

ij

ij

ij

ij

2  
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Where 
j

i

iji

j

ij

ij

ij TyTyGy   ,,  




















































pq

G

p

T

pq

G

q

T

pq

G
y

j

j

i

i

ij

ij

2

2

2

2

2
2  

= Total Sum of Square (T.S.S) = Row Sum of Square (R.S.S)-Column Sum of 

Square (C.S.S) 

Table 1.5: ANOVA TABLE FOR TWO-WAY DATA WITH ONE 

OBSERVATION PER CELL RANDOM EFFECT MODEL  

Sources of 

variation 

    S.S       d.f           M.S.S Variance 

ratio 

Factor A 

 

Factor B 

 

Error 

 

S.S.A. 

 

S.S.B. 

 

S.S.E. 

     p-1 

 

      q-1 

 

(p-1) (q-1) 

𝑀. 𝑆. 𝐴. =
𝑆. 𝑆. 𝐴.

𝑝 − 1
 

 

𝑀. 𝑆. 𝐵. =
𝑆. 𝑆. 𝐵.

𝑞 − 1
 

𝑀. 𝑆. 𝐵.

=
𝑆. 𝑆. 𝐵.

 𝑝 − 1 (𝑞 − 1)
 

 

 

 

𝐹𝐴  =
𝑀. 𝑆. 𝐴.

𝑀. 𝑆. 𝐸
 

𝐹𝐵  =
𝑀. 𝑆. 𝐵.

𝑀. 𝑆. 𝐸
 

Total T.S.S.       pq-1   

Under the null hypothesis H0t = t1=t2=…=tp against the alternative that all t‟s 

are not equal the test statistic is : 

     11,1~
..

..
 qppA F

ESM

ASM
F  

i.e., FT follows F(central) distribution with [(p-1), (p-1)(q-1)] d.f. Thus if FA is 

greater than tabulated F for [(p-1), (p-1)(q-1)] d.f, at certain level of significance, 

usually 5 % then we reject the null hypothesisH0t  and conclude that the 
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treatments differ significantly. If Ft is less than tabulated value then FA  is not 

significant and we conclude that the data do not provide any evidence against 

the null hypothesis which may be accepted. 

Similarly under the null hypothesis Hob=b1=b2=…=bq, against the alternative 

that b‟ s are not equal, the test statistics is: 

     11,1~
..

..
 qpqB F

ESM

BSM
F  

And we discuss its significance as explained above. 

 

Problem 1.2. 

 Three different methods of analysis M1, M2, M3 are used to 

determine of a certain constituent in the sample.  Each method is used by five 

analysis in the results, and the results are given in the results are given in 

table 

 Method 

Analyst M1 M2 M3 

1 7.5 7.0 7.1 

2 7.4 7.2 6.7 

3 7.3 7.0 6.9 

4 7.6 7.2 6.8 

5 7.4 7.1 6.9 

 Do these results indicate a significant variation either between 

the methods or between the analysts? 

Solution: 
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  Here two factors of variation are, say, 

 A : Analysts, represented along the rows of the Table. 

 B : Methods, represented along the columns of the table. 

Null hypothesis : 

  H0A  : µ1.= µ3. = µ4. = µ5. , i.e., there is no significant 

difference between the analysts. 

  HoB : µ.1 = µ,2 = µ.3, i.e., there is no significant difference 

between the methods. 

Alternative Hypothesis : 

  H1A : At least two of µ1., µ2., ..., µ5. are different. 

  H1B : At least two of µ,1, µ.2,…, µ5 are different. 

yi = response of the ith  analysts and the jth  methods (i = 1,2, … ,5 ; j = 1,2,3) 

 In the usual notations, we have 

  K=5, h=3 and N=h×k = 3×5 = 15 

    Table 1.6: CALCULATIONS FOR VARIOUS S.S 

Analyst                          Method 

 M1                M2                     M3 

𝑇𝑖. =
j

ijy  Ti.
2 

 

     1 

     2 

     3 

     4 

 

 7.5               7.0                    7.1 

6.7                7.4                   7.2                     

6.9                7.3                   7.0                     

6.8               7.6                   7.2                     

21.6 

21.3 

21.2 

21.6 

21.4 

466.56 

453.69 

449.44 

466.56 

457.96 
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 Raw S.S. (R.S.S.) = 
i j

ijy 2 = (7.5)2 + (7.0)2 + ⋯ + (7.1)2 + (6.9)2 

= 155.66 + 151.49 + 149.90 + 155.84 + 152.78 (𝑅𝑎𝑤 − 𝑤𝑖𝑠𝑒 𝑆. 𝑆.) 

         = 765.67 

 Correction Factor = 
𝐺2

𝑁
=

(107.1)2

15
=

11,470.41

15
 

        Total S.S. = R.S.S. –  𝐶. 𝐹. = 765.67 –  764.694 = 0.976 

 S.S.A. = S.S. due to factor A (Analysis) = 
1

h  
i

i CFT 2
.  

         = 
2,294.21

3
− 764.694 = 764.737 − 764.694 = 0.043 

 S.S.B. = S.S. due to factor B (methods) = 
1

k  
i

j CFT 2
.  

     =
3,827.45

5
− 764.694 = 765.49 − 764.694 = 0.796 

     5 6.9               7.4                   7.1                  

Column 

total, T.j 

 37.2            35.5                  34.4 G = 107.1 
i

iT 2 = 

2,294.21 

T.j
2 1,383.84  1,260.25         1,183.36 

j

jT 2
. = 

3,827.45 
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S.S. due to Error (S.S.E.) = T.S.S. – S.S.A. – S.S.B. = 0.976 – 0.043 – 

0.796 = 0.137 

         Table 1.7:  ANOVA TABLE 

Sources of 

variation 

d.f S.S. Mean SS 

(MSS) 

Variance Ratio 

(1) (2) (3) (4)=(3)/(2) (F) 

Factor A 

(Analysts) 

Factor B 

(Methods) 

Error 

 

k - 1 = 5 – 1 = 4 

 

h – 1 = 3 – 1 = 2 

4×2=8 

OR 

14 - (4+2) = 8 

0.043 

 

0.796 

 

0.137 

0.0108 

 

0.3980 

 

0.0171 

FA =
0.0108

0.0171
< 1 

 

FA =
0.3980

0.0171
= 23.27∗ 

Total N – 1 =15 – 1 =14 0.976   

 Tabulated F0.05 (2,8) = 19.40. 

 Since the calculated value FA< 1, it is not significant and we fail to reject 

HOA.  Hence, there is no significant difference between the analysis. 

 Since the calculated value of FB = 23.27 is greater than the tabulated 

value, it is significant.  Hence the hypothesis HOB of the homogeneity of the 

methods is rejected at 5% level of significance thus, we conclude that the 

methods differ significantly at 5% level of significance. 
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Unit –II 

2.1 Analysis of Variance 

 The analysis of variance is a powerful statistical tool tests of 

significance.  The test of significance based on t-distribution is an adequate 

procedure only for testing the significance of the difference between two.  In a 

situation when we have three or more samples to consider at a time an 

alternative procedure is needed for testing the hypothesis that all the samples 

are drawn from the same population, i.e., they have the same mean.  For 

example, five fertilizers are applied to four plots each of wheat and yield of 

wheat on each of the plot is given.  We may be interested in finding out 

whether the effect of these fertilizers on the yield is significantly different or in 

other words, whether the samples have come from the same normal 

population.  The answer to this problem is provided by the technique of 

analysis of variance.  The basic purpose of the analysis of variance is test the 

homogeneity of several means. 

 

2.2 Cochran’s Theorem 

 Let X1, X2, ....,Xn, denote a random sample from normal population 

𝑁 (0, 𝜎2).  Let the sum of the squares of these values be written in the form:  

   




n

i

iX
1

2 = Q1 + Q2 + ⋯ . +Qk

 

 Where Qj is a quadratic from in X1, X2, ....,Xn, with rank (degrees of 

freedom) rj: j= 1, 2, ...., k.  Then the random variables Q1, Q2, ...., Qk are 

mutually independent and 𝑄𝑗 𝜎2  is 𝜒2-variate with rj degrees of freedom if and 

only if 





1j

j nr . 

2.3 Completely Randomised Design(CRD) 

 In this design the experimental units are allotted at random to the 

treatments, so that every unit gets the same chance of receiving every 

treatment. 

For example  
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Let there be five treatments each to be replicated four times. There are, 

therefore, 20 plots. Let these plots be numbered from 1 to 20 conveniently. 

When a coin is tossed, there are two events, that is, either the head comes up, 

or the tail. We denote the “head” by H and the “tail” by T. 

               Layout of CRD 

 

                                 1         2       3      4 

                                 A        C      A      D                                

                              5        6       7       8 

                              B        D      B       D 

                              9       10     11     12 

                              C        B       C       A 

                             13      14     15     16 

                              B        D       A       C 

 

Advantages of CRD 

i) It is easy to layout the design. 

ii) It results in the maximum use of the experimental units since all the 

experimental materials can be used. 

iii) It allows complete flexibility as any number of treatments and 

replicates may be used. The number of replicates , if desired, can be 

varied from treatment to treatment. 

iv) The statistical analysis is easy even if the number of replicates are not 

the same for all treatments 

v) It provides the maximum number of degrees of freedom for the 

estimation of the error variance, which increases the sensitivity or the 

precision of the experiment for small experiments. 

Disadvantages of CRD 

i) In certain circumstances, the design suffers from the disadvantage of 

being inherently less informative than other more sophisticated 

layouts. This usually happens if the experimental material is not 

homogeneous. 

ii) Since randomisation is not restricted in any direction to ensure that 

the units receiving one treatment are similar to those of receiving 

other treatment, the whole variations among the experimental units is 

included in the residual variance. 
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iii) This makes the design less efficient and results in less sensitivity in 

detecting significant effects. 

Applications 

Completely randomized design is most useful in laboratory technique and 

methodological studies, e.g., in physics, chemistry, in chemical and 

biological experiments , in some green house studies, etc., 

2.3.1 Statistical Analysis of CRD 

The model is 

iijiij njkiety ...,2,1;...,,2,1    

Where yij  is the yield 

µ is the general mean effect 

ti is the treatment effect 

eij is the error term mean zero and variance σ2 

E(yij) = µ+ti , i= 1, 2 …,k can be estimated by method of least square that 

is minimizing error sum of square  

  
ij

ijij yEyeeE 22 )()(  

  
ij

iij ty
2

)(  

0
)(








ee
 

  0)1(2 
ij

iij ty   

  02  
ij

iij ty   

  0
2

0





ij

iij ty   

Where Gy
i

ij   , G= Grand total 
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i

i

i

i

i tnnG     … (1) 

 

 

0
)(






it

ee
 

 

  0)1(2 
j

iij ty    02  
j

iij ty   

  0
2

0





j

iij ty   

0 
j

i

jj

ij ty   

Where  i

j

ij Ty   

0 iiii tnnT   …(2) 

From equation (1) 

nntn
i

ii

i

i   ,0  

0ˆ  nG  

̂
n

G
 

From equation (2) 

iiii tnnT  ̂  

i

i

i

i

i t
nn

Gn

n

T
ˆ  

i

i

i t
n

G

n

T
ˆ  
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Error Sum of Squares 

   22

 
ij

iij tyeeE   

  
iij

ij

iij tyty    

  vanishedaretermsothertyy iij

ij

ij    

  
ij

ijiijij ytyy ˆˆ2   

 
ij

iji

ij

ij

ij

ij ytyy ˆˆ2   

 
j

ij

i

i

ij

ij

ij

ij ytyy ˆˆ2   

=  











i

i

i

i

ij

ij
n

GT

n

T
G

n

G
y 2  

= 












 

i i

i

ij

ij
n

G

n

T

n

G
y

222
2(  

Where i

j

ij Ty   

Error Sum of Square (E.S.S) = Total Sum of Square (T.S.S) – Treatment 

Sum of Square (Tr. S.S) 

Where 
n

G 2

 is the correction factor 

Table 2.1 : Anova Table for CRD 

Source  of 

variation 

d.f Sum of 

Square(SS) 

Mean Sum of 

Square(MSS) 

F-ratio 

Treatments k-1 Tr.S.S=

n

G

n

T

i i

i
22

  

MSST=
1

..

k

SSTr
 

MSSE

MSST
F   
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Error n-k By 

subtraction 

E.S.S=T.S.S-

Tr.S.S 

MSSE=
kn

SSEr



..
 

 

Total n-1 

n

G
y

ij

ij

2
2   

  

 

Under the null hypothesis, ktttH  210 against the alternative that 

all t‟s are not equal, the test statistic  knkF
MSST

MSST
F  ,1~   

 

i.e., F follows F (central) distribution with (k-1, n-k) d.f 

If F > F(k-1, n-k) (α) then H0 is rejected at α % level of significance and we 

conclude that treatments differ significantly. Otherwise H0 accepted. 

Problem 2.1 : 

  A set of data involving four “tropical feed stuffs A, B, C, D” tried on 20 chicks 

is given below.  All the twenty chicks are treated alike in all respects except the 

feeding treatments and each feeding treatment is given to 5 chicks.  Analyse 

the data. 

 

 Feed     Gain in Weight  Total Tᵢ 

    A 

    B 

    C 

    D  

 55   49   42   21  52 

 61  112  30   89  63 

 42   97   81   95  92 

169  137169  85 154  

      219 

      355 

      407 

      714 

                 Grand Total   G = 1,695 

 

Figures in antique in the Table are not given in the original data.  They are a 

part of the calculations for analysis. 

     Weight gain of baby chicks fed on different feeding materials composed of 

tropical feed stuffs is given in Table.  
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Solution: 

Null hypothesis, Hₒ: tA = tB = tC = tD 

i.e., the treatment effects are same.  In other words, all the treatments (A, B, C, 

D) are alike as regards their effect on increase in weight. 

Alternative hypothesis,  H₁:  At least two of tᵢ‟s are different. 

Raw S.S. (R.S.S.) = 
i j

ijy 2  = 55² + 49² +……..+ 85² + 154² = 1, 81,445 

Correction factor (C.F.) = G²/N = (1,695)²/20 = 1, 43,651.25 

Total S.S. (T.S.S.) = R.S.S. – C.F. = 1, 81.445 – 1, 43,651.25 = 37, 793.75 

Treatment S.S. = T₁² + T₂² +T₃² + T₄²/5 – C.F. 

          = 47, 961 + 1, 26,025 + 1, 65, 649 + 5, 09,769/5 – 1, 43,641.25 

Error S.S. = Total S.S. – Treatment S.S. = 37,793.75 – 26,234.95 = 11,558.80 

 

Table 3.2 : Anova Table for CRD 

  Source of 

variation  

 

      S.S. 

 

       d.f. 

M.S.S. = 

S.S./d.f. 

  Variance ratio, „F‟ 

 

  Treatments 

         Error 

 

26,234.95 

11,558.80 

 

        3 

       16  

 

  8744.98 

    722.42 

 

FT = 8744.98/722.42 = 12.105 

  Total 37,793.75        19   

 

Test statistic:  FT   ̴   F(3,16), Tabulated Fₒ.ₒ₅ (3, 16) = 3.06. Hence FT is highly 

significant and we rejected Hₒ at 5% level of significance and conclude that the 

treatments A, B, C and D differ significantly. 

2.4 Randomised Block Design(RBD) 

    If all the treatments are applied at random relatively 

homogeneous units within each strata or block and replicated over all the 

blocks.   The design is a randomised block design. 

Advantages of RBD 

 (i) Accuracy:  

   This design has been shown to be more efficient or accurate 

than C.R.D for most types of experimental work.  The elimination of between 

S.S. from residual S.S. usually results in a decrease of error mean S.S. 

 (ii) Flexibility: 
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   In R.B.D no restriction are placed on the number of treatments 

or the number of replicates.  In general, at least two replicates are required to 

carry out the test of significance (factorial design is an exception).  In addition, 

control (check) or some other treatments may be included more than once 

without complications in the analysis. 

  

(iii) Ease of Analysis:  

   Statistical analysis is simple and rapid. More-over the error of 

any treatment can be isolated and any number of treatments may be omitted 

from the analysis without complicating it. 

Disadvantages of RBD 

i) RBD may give misleading results if blocks are not 

homogeneous. 

ii) RBD is not suitable for large number of treatments in that 

case the block size will increase and it may not be possible 

to keep large blocks homogeneous. 

iii) If the data on more than two plots is missing, the 

statistical analysis becomes quite tedious and 

complicated. 

Layout of RBD: - 

    Let us consider five Treatments A, B, C, D, E each 

replicated 4 times we divided the whole experimental area into 4 relatively 

homogeneous block and each in to 5 units the treatments allocated at random 

to the blocks particular layout may be follows. 

CBAEDBlockIV

BAEDCBlockIII

AEDCBBlockII

EDCBABlockI

 

Lay out: 
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 Let us assume that yij is the response of the yield of experiment unit from 

ith treatment jth block. 

2.4.1 Statistical Analysis of RBD 

The model is 

 rjtiebty ijjiij ,,2,1;,,2,1;     

Where yij is the response or the yield of the experimental unit receiving the ith 

treatment in the jth block;  

µ is the general mean effect 

ti is the effect due to the ith treatment 

bj is the effect due to jth block or replicate 

),0(~ 2
..

e

dii

ij Ne   

Where µ , ti and bj are constants so that 00
11

 


r

j

j

t

i

i bandt  

If we write TotalGrandGy
i j

ij   

i

j

ij Ty  = Total for ith treatment 

j

i

ij By  = Total for jth block 
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µ , ti and bjare estimated by the method of least squares 

 22  
i j

jiij

i j

ij btyeE    … (1) 

Differentiate with respect to µ  

0






E
 

0)1)((2  ji

i j

ij bty   

0)(2   ji

i j

ij bty   

0
2

0
)( 


 ji

i j

ij bty   

0)  
i j

j

ii j

i

i ji j

ij bty   

 

0 
j

j

i

i

i j

ij bttrtry   

Where Gy
i j

ij   

0 
j

j

i

i bttrtrG   … (2) 

Differentiate with respect to ti 
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
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0)1)((2  ji
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ij bty   
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)( 
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Where 
i

j

ij Ty   
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jii brtrT   …(3) 

Differentiate with respect to bj 
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Where j

i

ij By   

                                                                                           

….(4) 
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From equation (2) 




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
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From Equation (3) 

j

i

ij tbttB  
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ii rtrT  ̂  

ii rtrT  ̂  
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From equation (4) 
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Error Sum of Square  
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Error Sum of Square (E.S.S) = Total Sum of Square (T.S.S)-Treatment Sum of 

Square (Tr. S.S)- Block Sum of Square (B.S.S) 

Where,  correction factor= 
tr

G 2
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Total Sum of Square = 
tr

G
y

i j

ij

2
2   

Treatment Sum of Square = ST2 = 
tr

G

r

T
i

i 2
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


 

Block Sum of Square = SB2=
tr

G

t

B
j

j 2

2




 

Table 2.2 ANOVA Table for RBD 

Source of 

variation 

Degrees of 

freedom  

Sum of 

squares 

Mean sum of 

square 

Variance ratio 

Treatment          (t-1)            ST² ST²=ST²/t-1 FT=ST²/SE² 

Blocks or 

replicates 

         (r-1)            SB² SB²=SB²/r-1 FB²=SB²/SE² 

Error     (t-1) (r-1)            SE² SE²=SE²/(t-

1)(r-1) 

 

Total         rt-1    

 

Under the null hypothesis H0t = t1=t2=…=ti against the alternative that all t‟s 

are not equal the test statistic is : 

     11,12

2

~  rtt

E

T
T F

S

S
F  

i.e., FT follows F(central) distribution with [(t-1), (t-1)(r-1)] d.f. Thus if FT is 

greater than tabulated F for [(t-1), (t-1)(r-1)] d.f, at certain level of significance, 

usually 5 % then we reject the null hypothesisH0t  and conclude that the 

treatments differ significantly. If Ft is less than tabulated value then FT  is not 

significant and we conclude that the data do not provide any evidence against 

the null hypothesis which may be accepted. 

Similarly under the null hypothesis Hob=b1=b2=…=br, against the alternative 

that b‟ s are not equal, the test statistics is: 
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     11,12

2

~  rtt

E

T
T F

S

S
F  

And we discuss its significance as explained above. 

Problem 3.3 

Consider the results given in the following table for an experiment 

involving six treatments in four randomized blocks. The treatments are 

indicated by numbers within parentheses. 

Table 2.3 

Blocks Yield for a randomized block experiment                                          

treatment and yield 

    1   24.7 (1)     27.7(3)     20.6(2)     16.2(4)     16.2(5)     24.9(6)              

    2 22.7(3)    28.8(2)   27.3(1)   15.0(4)   22.5(6)   17.0(5)  

    3  26.3(6)    19.6(4)   38.5(1)    36.8(3)  39.5(2)    15.4(5) 

    4 17.7(5)    31.0(2)   28.5(1)    14.1(4)  34.9(3)    22.6(6)  

Test whether the treatments differ significantly.   

Solution: 

Null hypothesis: 

     Hₒt :  τ₁ = τ₂ = τ₃= τ₄  and Hₒb :  b₁ = b₂ = b₃ = b₄,i.e.,the treatments as well as 

block are homogeneous. 

Alternative hypothesis: 

     H₁t: At least two τᵢ‟s are different.  ;  H₁b:  At least two bᵢ‟s are different.   

     For finding the various S.S., we rearrange the above table as follows:  
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Table 2.4 

 

Blocks 

 

 

 (1) 

 

(2) 

 

(3) 

 

 (4) 

 

(5) 

 

(6) 

 

 

Block  

Total 

  (Bᴊ) 

 

Bᴊ² 

    1 

    2 

    3 

    4 

24.7 

27.3 

38.5 

28.5 

20.6 

28.8 

39.5 

31.0 

27.7 

22.9 

36.8 

34.9 

16.2 

15.0 

19.6 

14.1 

16.2 

17.0 

15.4 

17.7 

24.9 

22.5 

26.3 

22.6 

130.0 

133.3 

176.1 

148.8 

16,900.00 

17,768.89 

31,011.21 

22,141.44 

Treatment 

totals (Tᵢ) 

       Tᵢ² 

 Average 

      199.0 

 

14,161.00 

      29.75 

 

    119.9 

 

14,376.01 

    30.0 

    122.1 

 

14,908.41 

    30.5 

    64.9 

 

4,212.01 

    16.2 

  66.3 

 

4,395.69 

    16.6 

96.3 

 

9,273.69 

    24.1 

388.5=G  

 

Correction Factor = (3, 46,332.25/24) = 14,430.51 

   Raw S.S =
i j

ijy 2  = 15,780.76 

Total S.S = R.S.S. – C.F. = 15,780.76 – 14,430.51 = 1,350.25 

S.S. due to treatments (S.S.T) = ¼ ∑ Tᵢ² - C.F = (61,326.81/4)- 14,430.51 =  

901.19 

S.S due to blocks (S.S.B) = 1/6 ∑ Bᴊ² - C.F = 87,899.63/6 – 14430.51 =  

219.43 

Error S.S = T.S.S. – S.S.T. – S.S.B. = 1,350.25 – 901.19 – 219.43 = 229.63. 

Table 2.5: Anova Table 

Source of 

variation  

         

d.f. 

       S.S.        M.S.S.   Variance ratio (F) 

  Treatment   5    901.19  s²T = 180.24   Ft = 180.24/15.31 = 11.8 
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  Block 

  Error  

  3  

 15           

   219.43 

   229.63 

 s²B = 73.14 

 s²E = 15.31 

  Fb = 73.14/15.31 = 4.7 

  Total  23  1.350.25   

 

Tabulated F₃, ₁₅, (0.05) = 5.42 and F₅, ₁₅ (0.05) = 4.5 .Since under Hₒt Ft   ̴ F (5, 

15) and under Hₒb, Fb    ̴  F (3, 15), we see that Ft is significant while Fb is not 

significant at 5% level of significance.  Hence, Ft is rejected at 5% level of 

significance and we conclude that treatment effects are not alike.  On the other 

hand, Hb may be retained at 5% level of significance and we may conclude that 

the blocks are homogeneous. 

2.4.2 Estimation of one Missing Value in RBD 

Let the observation yij = x (say) in the jth block and receiving the ith treatment be 

missing, as given in table 3.7                       Table 3.7 

     Treatments  

  1 2 … I … t  

 

 

 

 

Blocks 

1 Y11 Y21 … Yi1 … Yt1 y.1 

2 Y12 Y22 … Yi2 … Yt2 y.2 

      …   …     

J Yj1 Yj2 … X … yjt xy j 


.  

      …   …     

R Y1r Y2r … yir … ytr  

Total Y1. Y2. … xyi ..  … Yt. xy ..  

where 


.iy  is total of known observations getting ith treatment 


jy.  is total of known observations in jth block and  
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..y  is total of all known observations  

Correction factor = 
 
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Differentiate with respect to x 
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Problem 3.3 

Suppose that the value for treatment 2 is missing in replication III.  The data 

will then be as presented in the table below. 

Table 2.6  RBD data with one missing value. 

                                   Replication               

 Treatment                                                              Total     

                   I               II              III              IV 

       1      22.9         25.9         39.1         33.9        121.8    
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       2      29.5         30.4            X           29.6          89.5    

       3      28.8         24.4         32.1         28.6        113.9 

       4      47.0         40.9         42.8         32.1        162.8  

       5      28.9         20.4         21.1         31.8        102.2       

 Total     157.1       142.0      135.1        156.0       590.2   

 

 

      X = rR‟ + tT‟ – G‟/ (r-1) (t-1) 

              = 4(135.1) + 5(89.5) – 590.2/(3)(4) 

              = 397.7/12 

              = 33.1 

The upward bias, 

           B = [R‟ – (t-1) X]²/t(t-1)  

               = [135.1 – 4(33.1)]²/(5)(4) 

               = 7.29/20 

               = 0.3645 

After substituting the estimated missing value, we get 

Treatment 2 total     = 89.5 + 33.1     = 122.6, 

Replication 3 total    = 135.1 + 33.1   = 168.2, and 

The grand total         = 590.2 + 33.1   = 623.3 

Treatment SS = ¼ [(121.8)² + (122.6)² + (113.9)² + (162.8)² + 102.2)²] – 

(623.3)²/20 

                         = 19946.9725 – 19425.1445 

                         = 521.8280 

Corrected treatment SS = 521.8280 – 0.3645 
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                                            = 521.4635 

With these values the analysis of variance table is completed. 

Table 2.7  Analysis of variance for the data in Table 

Source of variation  

    df 

 

       SS  

 

      MS 

 

        F 

 Replication      3   69.1855      23.0618           1       

 Treatment      4  521.4635   130.3659   4.117 

 Error     11   347.9475    31.6316  

 Total     18  938.9610   

 

 

2.4.3 Estimation of two missing values 

   Suppose in RBD with k treatments and R-Replications, two 

observations are missing.  Let x and y be two missing observations and they belong 

two different Block and affected different treatment.  We assume that x belongs to 

the jth to the ith treatments and y belong to ith block and mth treatment.  Estimate 

the missing observations x and y. 

  Layout of two missing observations in RBD. 

 

  

1…… 

2…….  l…………m……………. K  

  1           y₁₁           y₁₂                                                                         B₁ 

  2           y₂₁           y₂₂                                                                        B₂ 

  .                                                                                                         . 

  .                                                                                                          . 

  J                                     x                                                              B’ᴊ+x 



44 
 

  .                                                                                                          . 

  .                                                                                                         . 

  I                                                     y                                            B’ᵢ+y 

  .                                                                                                          . 

  .                                                                                                            . 

  r                                                                                                         Bᵣ 

            T₁          T₂          Tᵢ’+X…..  T’m+Y             Tk                        G’+x+y  
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Differentiate with respect to x in equation (1) 
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Differentiate with respect to y in equation (1) 
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Problem 3.4 

Suppose that one more value is missing in row 5 and column 3.   

                Table 2.8 Grain yield of paddy, kg/plot 

    E     C     D     B     A  Total 
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   26        42    39    37    24    168 

    A 

   24 

    D 

   33 

    E 

   21 

    C 

   (X) 

    B 

   38  

 

   116 

    D 

   47 

    B 

   45 

    A 

   31 

    E 

   29 

    C 

   31 

 

    183 

    B 

   38 

    A 

   24 

    C 

   36 

    D 

   41 

    E 

   34 

 

    173 

    C 

   41 

    E 

   24  

    B 

   (X) 

    A 

   26 

    D 

   30 

 

     121 

 Total      68   127   133   157      761 

 

The treatment totals are 

   A : 129, B : 158, C : 150, D : 190,E : 134 

   The means for second row and fourth column in which C is missing are 

116/4 = 29.0 and 133/4 = 33.25, respectively.  Hence the first estimate for C is 

   C₁ = 29.00 + 33.25/2 = 31.12 

   G‟ = 761 + 31.12 = 792.12 

   B₁ = t(R‟ + C‟ + T‟) – 2G‟/(t-1) (t-2) 

        = 5(121 + 127 + 158) – 2(792.12)/(5-1)(5-2) 

        = 2030/12 – 1584.24/12 

        = 169.17 – 132.02 

        = 37.15 

 

For the second cycle we have 

   G‟ = 761 + 37.15 = 798.15 
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   G₂ = 5(116 + 133 + 150) – 2(798.15)/12 

        = 1995/12 – 1596.3/12 

        = 166.25 – 133.03 

        = 33.22 

   G‟ = 761 + 33.22  

        = 794.22 

   B² = 169.17 – 2(794.3)/12 

        = 36.8 

     It can be seen that the estimated values for B are same and that for C are 

very close.  Hence we stop the iteration process at third cycle.  The final 

estimates for B and C for the missing plots are 36.8 and 33.3 respectively. 

     The column total, row total, etc., with respect to the missing plots are 

modified by adding the estimated values.  Thus we have, 

Treatment B total        = 158 + 36.8 = 194.8 

Treatment C total        = 150 + 33.3 = 183.3 

Second row total         = 116 + 33.3 = 149.3 

Fifth row total              = 121 + 36.8 = 157.8 

Third column total       = 127 + 36.8 = 163.8 

Fourth column total    = 133 + 33.3 = 166.3 

Grand total                    = 761 + 36.8 + 33.3 = 831.1 

The data is then analysed in the usual manner. 

     CF = (831.1)²/25  

          = 27629.0884 

Total SS = 28902.130 – CF =1273.0416 

Row SS = 27766.666 – CF = 137.5776 

Column SS = 27667.026 – CF = 37.9376 
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Treatment SS = 28448.586 – CF = 819.4976 

Error SS = 278.0288 

     Now ignoring the treatment classification the missing values are estimated 

as in the case of RBD.  The estimate of the second row, fourth column missing 

value is 28.5; and that of fifth row, third column is 28.2.  After substituting the 

estimated values and analyzing the data as RBD, we get the error sum of 

squares as 1031.5856.  Then we have, 

Corrected treatments SS = Error SS (RBD) – Error (LSD) 

                                              = 1031.5856 – 278.0288 

                                              = 753.5568 

The final results are presented in the following table. 

        Table 2.9:   Analysis of variance for the data 

 Source of 

variation 

 

    df 

 

      SS 

 

     MS 

 

    F 

  Row      4 137.5776 34.3944  1.237 

  Column      4   37.9376   9.4844 <1 

  Treatment      4 753.5568 188.3892   6.776 

  Error     10 278.0288   27.8029  

  Total     22 1273.0416   

 

2.5 Latin square design (LSD) 

LSD is defined for eliminating the variation of two factors called row and 

column in this design.  The number of treatments is equal to the number of 

replications. 

Layout of design 

     In this design the number of treatments is equal to the number of 

replications.  Thus in case of m treatments there have to be mxm = m² 

experimental units. The whole of the experimental area is divided into m² 
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experimental units (plots) arranged in a square so that each row as well each 

column contain m units. 

           The m treatments are allocated at random to these rows and columns in 

such a way that every treatment occurs only once in each row and in each 

column.  Such a layout is LSD. 

     2x2 layouts 

 A  B 

 B  A 

 

                                                         3x3 layouts 

  A    B  C 

 B  C  A 

 C  A  B 

                                                        4x4 layouts 

 A  B  C  D 

 B  C   D  A 

 C  D  A  B 

 D  A  B  C 

                                                          5X5 layouts 

 

 A  B  C  D  

E 

 B  C  D   E  

A 

 C  D  E  A  

B 
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 D  E  A  B  

C 

 E  A  B  C D 

 

Example: 

    An animal feeding experiment where the column groups may corresponding 

with initial weight and the row group with age. 

Standard Latin square: 

          A  Latin in which the treatments say A, B, C etc occur in the first row 

and first column in alphabetical order is called standard Latin square. 

Example: 

 

A  B 

 B  A 

 

Advantages of LSD 

1.  With two way grouping LSD controls more of the variation than 

CRD or RBD. 

2.  The two way elimination of variation as a result of cross grouping 

often results in small error mean sum of squares. 

3. LSD is an incomplete 3-way layout.  Its advantage over the complete 

3-way layout is that instead of m³ experimental units only m² units 

are needed.  Thus, a 4x4 LSD results in saving of m³ = 4³ - 4² = 64- 

16 = 48 observations over a complete 3-way layout. 

4.  The statistical analysis is simple though slightly complicated than 

for RBD.  Even 1 or 2 missing observations the analysis remains 

relatively simple. 

5.  More than one factor can be investigated simultaneously. 

Disadvantages of LSD  

1.  LSD is suitable for the number of treatments between 5 and 10 and 

for more than 10 to 12 treatments the design is seldom used.  Since 
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in that case, the square becomes too large and does not remain 

homogeneous. 

2.  In case of missing plots the statistical analysis becomes quite 

complex. 

 

3.  If one or two blocks in a field are affected by some disease or pest.  

We can‟t omit because the number of rows columns and treatments 

have to be equal. 

 

2.5.1 Statistical Analysis of LSD 

Let yijk (i, j, k=1,2,…,m)denote the response from the unit in the ith row, jth 

column and receiving the kth treatment. 

The model is  

mkjietcry ijkkjiijk ,,2,1,,;    

Where µ is the constant mean effect; ri, cj and tk due to the ith row, jth column 

and kth treatment respectively and eijk is error effect due to random component 

assumed to be normally distributed with mean zero and variance 

),0(~.,. 22

eijke Neei   

If we write 

G= Total of all the m2 observations 

Ri = Total of the m observations in the ith row 

Cj = Total of the m observations in the jth column 

Tk = Total of the m observations from kth treatment  

Estimation by the method of least squares 
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Differentiate with respect to µ in equation (1) 
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Differentiate with respect to ri in equation (1) 
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Differentiate with respect to cj in equation (1) 

  0)1(2 




ik

kjiijk

j

tcry
c

E
  

0 
ik

k

ik

j

ik

i

ikik

ijk tcry   

Where j

ik

ijk Cy   , I,j,k=m2,   I,j=m, I,k=m   

0 
k

kj

i

ij tmmcrmmC   … (4) 

Differentiate with respect to tk in equation (1) 
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Column Sum of Square= 2
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Table 2.10: ANOVA Table for LSD 

Source of 

variation 

Degrees of 

freedom  

Sum of 

squares 

Mean sum of 

square 

Variance 

ratio 

Rows          m-1 2

RS  )1(22  mSs RR  22

ERR ssF   

Columns          m-1 2

CS  )1(22  mSs CC  22

ECC ssF   

Treatments     m-1 2

TS  )1(22  mSs TT  22

ETT ssF   

Error (m-1)(m-2) 2

ES  )2()1(22  mmSs EE   

Total         m2-1    

 

Let us set up null hypothesis 

For row effects                H0r=r1=r2 =…= rm=0 

For column effects         H0c=c1=c2=…=cm=0 

For treatment effects   H0t=t1=t2=…=tm=0 

Alternative Hypotheses 

For row effects, H1r: At least two ri‟s are different 

For column effects, H1c: At least two ci‟s are different 

For treatment effects, H1t: At least two ti‟s are different 

d.f under the null hypotheses Hr, Hb and Ht, respectively. 

Let Fα = Fα {(m-1), (m-1)(m-2)} be tabulated value of F for [(m-1),(m-1)(m-2)] d.f. 

at the level of significance α . Thus if FR> Fα we reject Hor and if FR ≤ Fα we fail 

to reject H0r. 
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Similarly, we can test for H0c and H0t. 

Problem 3 

    An experiment was carried out to determine the effect of claying the ground 

on the field of barley grains; amount of clay used were as follows: 

A: No clay 

B: Clay at 100 per acre 

C: Clay at 200 per acre 

D: Clay at 300 per acre. 

    The yields were in plots of 8 meters by 8 meters and are given in table. 

 

        I         II         III         IV   Row totals 

(Rᵢ) 

        I          D 

      29.1 

        B 

      18.9 

        C 

      29.4  

        A 

      5.7 

      83.1 

       II 

 

        C 

      16.4 

        A 

      10.2 

        D 

      21.2  

        B 

     19.1 

      66.9  

       III 

 

        A 

       5.4 

        D 

      38.8 

        B 

      24.0  

        C 

     37.0 

     105.2 

       IV 

 

        B 

      24.9 

        C 

      41.7 

        A 

       9.5 

        D 

     28.9 

     105.0 

Column 

Totals (Cj) 

     75.8     109.6       84.1      90.7      306.2  

 

 

     Perform the ANOVA and calculate the critical difference for the treatment 

mean yields. 
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Solution: 

         The four treatment totals are: 

       A: 30.8,          B:86.9,          C:124.5,          D:118.0 

Grand total G = 360,2, N = 16. 

     C.F. = (360.2)²/16 = 8109.0025 

Raw S.S. = (29.1)² + (18.9)² +……..+ (9.5)² + (28.9)² = 10,052.08 

Total S.S. = 10,052.08 – 8,109.0025 = 1,943.0775 

S.S.R. = ¼ [(83.1)² + (66.9)² + (105.0)² + (105.0)²] – 8,109.0025 

           = 33,473.26/4 – 8,109.0025 = 259.3125 

S.S.C. = ¼ [(75.8)² + (109.6)² + (84.1)² + (90.7)²] – 8,109.0025 

           = 33057.10/4 – 8109.0025 = 155.2725 

S.S.T. = ¼ [(30.8)² + (86.9)² + (124.5)² + (118.0)²] – 8,109.0025 

           = 37924.50/4 – 8109.0025 = 1372.1225 

Error S.S. = T.S.S. – S.S.R. – S.S.C. – S.S.T. = 156.3700 

                      ANOVA TABLE FOR L.S.D. 

 

Source of 

variation 

       (1) 

 

        

d.f. 

         

(2) 

 

         S.S. 

         (3) 

 

        

M.S.S. 

   (4) = (3) ÷ 

(2) 

 

Variance   Ratio 

   Rows 

 Columns 

 

Treatments 

    Error   

         

3 

         

3 

         

3 

         

6 

259.5375 

155.2725 

1,372.1225 

156.3700 

86.4375 

51.7575 

457.3742 

26.0616 

FR = 86.4375/26.0616 = 

3.32<4.76 

Fc = 51.7576/26.0616 = 1.98 

<4.76 

FT = 457.3742/26.0616 = 

17.55 > 4.76 

    Total         

15 

1,943.0775   

  

Tabulated F₃, ₆ (0.05) = 4.76 

Hence we conclude that the variation due to rows and columns is not 

significant but the treatments, i.e., different levels of clay, have significant 

effect on the yield.  
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2.5.2 One Missing observation in LSD 

Let us suppose that in m×m Latin Square, the observation occurring in the ith 

row , jth column and receiving the kth treatment is missing. Let us assume that 

its value is x, i.e., yijk=x 

Ri‟ = Total of the known observations in the ith row. 

Cj‟ = Total of the known observations in the jth column. 

Tk‟ = Total of the known observations receiving kth treatment. 

G = grand total. 
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Unit -III 

3.1 Post Hoc Tests in ANOVA 
Although ANOVA can be used to determine if three or more means are 

different, it provides no information concerning where the difference lies. For 
example, if Ho: mean1 =mean2 = mean3 is rejected, then there are three 

alternate hypotheses that can be tested: mean1≠mean2≠mean3, mean1≠mean2 = 
mean3, or mean1 = mean2≠mean3. Methods have been constructed to test these 
possibilities, and they are termed multiple comparison post-tests. There are 

several tests are as followed. There are,  
3.2 Multiple range test [MRT] 

           In the case of significance F, the null hypothesis rejected then the 

problem is known which of the treatment means are significantly different. 

Many test procedures are available for this purpose. The most commonly used 

test is, 

I) Lest significance difference [is known as critical difference] 

II) Duncan‟s multiple range test [DMRT]. 

3.2.1 Critical difference (C.D) 

          The critical difference is a form of t-test is formula is given by 

                         C.D = t.S.E(d) 

          Where SE = Standard Error  
















ji rr
EMSdES

11
)(.  

 

                         EMS = Error Mean Square 

      In the case of same replication the standard is 
r

EMS
ES

2
.   
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     In this formula t is the critical (table) value of t for a specified level of 

significance and error degrees of freedom rᵢ and rᴊ for the number of 

replications for the ith and jth treatment respectively, the formula for t-test is 

ji

ji

rr
S

YY
t

11



  

     The two treatment means are declared significantly different at specified 

level of significance. 

     If the difference exceeds the calculated CD value, otherwise they are not 

significant CD value. 

 

 

 

 

3.2.2 Duncan’s multiple range test (DMRT) 

    In a set of t-treatments if the comparison of all possible pairs of treatment 

mean is required.  We can use Duncan‟s multiple range test.  The DMRT can be 

used irrespective of whether F is significant or not. 

Procedure: 

Step: 1 

 Arrange the treatments in descending order that is to range. 

Step: 2 

Calculate the S.E of mean as 

r

EMS

r

SQ
YES 

2

)(.  

Step: 3 

From statistical table write the significant student zed range as (rp), p =  

1,2,………t treatment and error degrees of freedom. 

Step: 4 

Calculate the shortest significance range as Rp where )(.. YESrR pp   

Step: 5 

From the largest mean subtract the Rp for largest P.  Declare as significantly  

different from the largest mean.  For the remaining treatment whose values  

are larger than the difference (largest mean-largest Rp). Compare the  

difference with appropriate Rp value. 

Step: 6 

Continue this process till all the treatment above. 

Step: 7 
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Present the results by using either the line notation (or) the alphabet notation  

to indicate which treatment pair which are significantly different from each  

other. 

3.2.3 Tukey’s range test: 

      Tukey‟s range test is also known as Tukey‟s test, Tukey‟s HSD (Honest 

significance difference) test.  It can be used on raw data or in cons unction with 

an ANOVA (post-hoc analysis) to find means that are significantly different 

from each other.  Tukey‟s test compares the means of every treatment to the 

means of every other treatment. 

The test statistic: 

     Tukey‟s test is based on a formula very similar to that of the t-test.  In fact, 

Tukey‟s test is essentially a t-test, except that is corrects for experiment wise 

error rate. 

Formula to, 

ES

YY
q BA

s
.


  

     Where YA is a larger of the two means being compared.  YB is the smaller of 

the two means being compared.  S.E is the standard error. 

     This qs value can then be compared to a q value from the studentized range 

distribution.  If the qs value is larger than the q critical value obtained from the 

distribution.  The two means are said to significantly different. 

The studentized range distribution: 

nS

yy
q

2

)( minmax   

3.2.4 Student – Newman Keuls (SNK) test 

     The Newman-Keuls (or) student Newman Keuls (SNK) method is a stepwise 

multiple comparison.  Procedure used to identify sample means that are 

significantly different from each other.  It was named after student (1927) D. 

Newman and M. Keuls, 

Procedure: 

1.  The Newman Keuls method employs stepwise approach when comparing 

sample means. 

2. Prior to any mean comparison, all sample means are rank ordered in 

ascending or descending order there by producing an ordered range (p) of 

sample means. 

3. A comparison is then made between the largest and smallest sample means 

within the largest range. 

4. Assuming that the largest range is four means (p=4) a significant difference 

between the largest and smallest means as revealed by the Newman-Keuls 
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method would result in a reflection of the null hypothesis for that specific 

range of means. 

5. The next largest comparison of two sample means would then be made within 

a smaller range of three means (p=3). 

6. Continue this process until a final comparison is made. 

7. It there is no significant difference between the two sample means.  Then all 

the null hypothesis within that range would be retained and no further 

comparisons within smaller ranges are necessary. 

 

 

3.3 Analysis of Covariance for two way classification (Random Block 

Design) with one concomitant variable  

Suppose we want to compare v treatments, each treatment replicated r 

times so that  total number of experimental units is n = vr. Suppose that the 

experiment is conducted with Randomized  Block Design(RBD) layout. 

Assuming a linear relationship between the response variable (y) and  

concomitant variable(x) the appropriate statistical model for ANOCOVA for 

RBD(with one concomitant variable) is: 

  ijijjiij exxy  ..      …(3.1) 

Where µ is the general mean effect 

αi  is the (fixed) additional effect due to the ith  treatment ,(i=1,2,…,v) 

θj  is the  (fixed) additional effect due to the jth  block ,(j=1,2,…,r) 

β is the coefficient of regression of y on x 

xij  is the value of the concomitant variable corresponding to the response 

variable yij and eij is the random error effect so that 

0,0
11

 


r

j

j

v

i

i  ),0(~ 2
..

e

dii

ij Ne   

Estimation of parameters in (1)  we shall estimate the parameters µ, αi 

((i=1,2,…,v), θj (j=1,2,…,r) and β, using the principle of least squares by 

minimizing the error sum of squares in (1)  
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  
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 


v

i

r

j

ijjiij

i j

ij xxyeSSE                                                 

…(3.2)                                                        

Normal equations for estimating the parameters are  

  
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…(3.3) 
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ij   …(3.4) 
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0..)(   xxy
i

ij

i

j

i

i

ii

ij   

0..)(   xxvy
i

ijj

i

i

ii

ij                              …(3.5) 

)])}(([{2
)(

.... xxxxy
SSE

ijijj

i j

iij 



 


…(3.6) 
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From equation (3. 2) 
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From equation (3. 3) 

0)(ˆ)ˆˆ( ..   xxry
j

iji

i

ij   

0)(.ˆ)ˆ( ......  xxryryr iii   

0
0

).(ˆ)ˆ( ...... 
r

xxyy iii   

 ..ˆ)(ˆ
.... xxyy iii    

From equation (3.4) 

 

0)(ˆ
...  xxvvvy jj

i

ij   

0)(ˆ)( ....  xxvvyv jjj   

0
0

)(ˆ)( .... 
v

xxy jjj   

0)(ˆ) ....  xxy jjj   

  )(ˆˆ
...... xxyy jjj    

Substituting these estimated values  in equation (3. 5) 
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(the product terms will be zero since algebraic sum of deviations from mean is 

zero) 
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Let us write: 
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Substituting the values of  ˆˆ,ˆ,ˆ andji  in (3.2), the unrestricted error sum of 

squares for model (3.1) becomes: 

SSE = Minimum value of error S.S 
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Since Exy
2/Exx>0, there is reduction in SSE if we apply ANOCOVA to RBD, the 

reduction  

d.f for SSE = Total d.f.-(d.f. due to treatments) – (d.f. due to blocks) – (d.f. due 

to β ) 

=(rv-1)-(v-1)-(r-1)-1 = (r-1)(v-1)-1 

Under the null hypothesis: 

H0: All treatment effects are equal, H0: α1=α2=…=αv=0, 

The model reduces to  

  ijijjiij exxy  ..̂  

Restricted error sum of squares under H0 is given by 
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The normal equations for estimating µ, θj  and β‟ are given by: 
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From equation (3.8) 
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From equation (3.9) 
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....  xxy jjj   

  )(ˆˆ
...... xxyy jjj    

From equation (3.11), we get 

0)}](ˆ)(ˆ)(){[( ............  xxxxyyyyxx ijjjij

i j

ij 

 

 

 

̂)){[ ...  jij

i j

ij yyxx
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......

jij

i

j

j

ijxy

i j

jijyyj

i j

ijxx

i j

jij

i

jij

j

jij

jijj

i j

ijjij

jijjijjj

i j

ij

yyxxEyyExxE

defineusLet

xx

yyxx

zeroaretermsproductotherthexxyyxx

xxyyxxxx




































 







xx

xy

E

E
̂  

Hence, under H0, the restricted error sum of squares is given by: 

(SSE)* =minimum 

value of error S. S 

 

 

)(2

2













































 xy

xx

xy

xx

xx

xy

yy E
E

E
E

E

E
E  










xx

xy

yy

E

E
E

2

                                                                               … 3.12 

d.f. for(SSE)* =total d.f. –d.f. for Blocks –d.f. for β 

=(vr-1)-(r-1)-1=vr-r-1=r(v-1)-1 

Adjusted sum of squares for treatments (SST = St
2) is given by 

 

 

))((ˆ2)(ˆ)(

)(ˆ)(

)(ˆˆˆ
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2

.
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.

2

..

2
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yyxxxxyy

xxyy

xxy
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i j
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ijjij




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


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(SST = St
2)=(SSE)* -(SSE) 

Where (SSE) and (SSE)* are given in (3.1) and (6.12) respectively. 

d.f.(SST) =d.f.(SSE)* - d.f.(SSE) 

=[r(v-1)-1]-[(r-1)(v-1)-1]=v-1 

1

)()(

....
)(

2
2








v

SSESSE

fd

S

fd

SST
sMST t

t  

Hence the test statistic for testing  H0: α1=α2= …=αv, is given by 

 

1)1)(1(,1~
1)1)(1(

)1(

)(


 












 vrvF

SSE

vr

v

SSESSE

MSE

MST
F  

If F > Fv-1, (r-1)(v-1)-(α) then H0 is rejected at α level of significance, otherwise we 

fail to reject H0. 

ANOCOVA Table for RBD. Let us write: 

SSyy = Eyy+Tyy+Byy 

Where 2

... )( 
i

iyy yyrT  is the treatment S.S for y for RBD 

2

... )( yyvB
i

jyy    is the block S.S for y for RBD 

2

.... )( yyyyE ji

i j

ijyy  is the error S.S for y for RBD 

Similarly we have, 

SSxx=Exx+Txx+Bxx  

SPxy=Exy+Txy+Bxy 

Where ))(())(( ............ yyxxvBandyyxxrT jj

j

xyi

i

ixy    

2

..

2

.... )(;)( yyyyExxxxE ji

i j

ijyyji

i j

ijxx      and  
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))(( ........ yyyyxxxxE jiijji

i j

ijxy   

 

Using the above notations, the above statistical analysis can be elegantly 

expressed in the ANOCOVA table 3.1: 

Table 3.1: ANOCOVA Table (RBD) 

Sources of 

variation 

d.f. Sum of Squares 

and Products 

Estimate 

of β  

Adjusted 

SSyy 

Adjusted 

d.f. 

SSxx SSyy SPxy 

Blocks r-1 Bxx Byy Bxy    

Treatments v-1 Txx Tyy Txy    

Error (r-1)(v-1)-1 Exx Eyy Exy 

xx

xy

E

E
̂  

SSE (r-1)(v-

1)-1 

Treatment+

Error 

r(v-1) Exx
‟ Eyy

‟ Exy
‟ 







xx

xy

E

E
̂  

SSE* r(v-1)-1 

      SSE- 

SSE* 

v-1 

 

Note that Exx
‟=TXX+Exx; Eyy

‟=Tyy+Eyy and Eyy
‟=T+Exy 
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Unit -IV 

4.1. Factorial Experiments 

So far we have discussed the experiments in which the effects of a single set of 

treatments were estimated and compared. In these experiments most of the 

other variable factors were kept constant. In practice, the response of biological 

organisms to the factor of interest is expected to differ under different levels of 

other factors. For example, the yield of paddy varieties may differ under 

different rates of fertilizer application, spacing and irrigation schedules. Hence, 

in agricultural research we frequently wish to what happens with a range of 

combination of factors. When several factors are investigated simultaneously in 

a single experiment, such experiments are known as factorial experiments. 

Advantages of Factorial Experiment 

1. It increases the scope of the experiment and its inductive value and it 

does so mainly by giving information not only on the main factors but on 

their interactions. 

2. The various levels of one factor constitute replications of other factors 

and increase the amount of information obtained on all factors. 

3. When there are no interactions, the factorial design gives the maximum 

efficiency in the estimate of the effects. 

4. When interactions exist, their nature being unknown a factorial design is 

necessary to avoid misleading conclusions. 

5. In the factorial design the effect of a factor is estimated at several levels 

of other factors and the conclusions hold over a wide range of conditions. 

Basic Ideas and Notations in the 2n Factorial Experiment 

Let us first consider the design of the of the form 2n in which there are n 

factors, each at two levels. Levels may be quite qualitative alternatives 

like two species of a plant. In some cases one level is simply the control 

group, ie., the absence of the factor and the other is its presence.   

In order to develop extended notation to present the analysis of the 

design in a concise form, let us start, for simplicity with a 22 – factorial 

design. 

 

4.2.  22 – Factorial Design  

 

Here we have two factors each at two levels (0,1), say, so that there are 

2×2=4 treatment combinations in all. Following the notations due to 

Yates, let the capital letters A and B indicates the names of the two 

factors under study and let the small letters a and b denote one of the 
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two levels of each of the corresponding factors and this will be called the 

second level. The first level of A and B is generally expressed by the 

absence of the corresponding letter in the treatment combinations. The 

four treatment combinations can be enumerated as follows: 

a0b0 or 1    : Factors A and B, both at first level. 

a1b0 or a     : A at second level and B at first level 

a0b1  or b    : A at first level and B at second level 

a1b1 or ab   : A and B both at second level 

 

These four treatment combinations can be compared by laying out the 

experiment (i) R. B.D ., with r replicates (say), each replicate containing 4 

units or (ii) 4 × 4 L. S.D., and ANOVA can be carried out accordingly. In 

the above cases there are 3 d.f associated with the treatment effects. In 

factorial experiment our main objective is to carry out separate tests for 

the main effects A, B and the interaction AB, splitting the treatment S.S 

with 3 d.f into three orthogonal components each with 1 d.f and each 

associated either with the main effects A and B or interactions AB. 

 

4.2.1Main and interaction effects of 22  factorial design: 

 Suppose the factorial experiment 22 =4 Treatment is conducted „r‟ Blocks 

(or)Replicator. 

Let [1]: total yield of the r units receiving the treatment 1. 

Let [a]: Total yield of the r units receiving the treatment a. 

Let [b]: Total yield of the r units receiving the treatment b. 

Let [ab]: Total yield of the r units receiving the treatment ab. 

(1): 
r

]1[
 the mean yields of the r units receiving the treatment 1. 

(a): 
r

a][
 the mean yields of the r units receiving the treatment a. 

(b): 
r

b][
 the mean yields of the r units receiving the treatment b.  

(ab): 
r

ab][
 the mean yields of the r units receiving the treatment ab. 
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The effect of A at the first level 0b  of B = )()( 0001 baba   

 = (a)-(1)      --------> 1 

The effect of A at the first level 1b  of B = )()( 1011 baba  )  

 = (ab)-(b)    -------> 2 

The effect of B at the first level 0a  of A = )()( 0010 baba   

 = (b)-(1)        ------> 3 

The effect of B at the first level 1a  of A = )()( 0111 baba   

 = (ab)-(a)       ----- > 4 

The main effect due to A is defined by  

(2)+ (1) => A= 
2

1
 [(ab)-(b) + (a)-(1)] 

 = 
2

1
[b (a-1) +1(a-1)] 

 = 
2

1
[(a-1) + (b+1)] 

The main effect due to B is defined by 

(4)+ (3) => B= 
2

1
[(b)-(1) + (ab)-(a)] 

 = 
2

1
[(b-1) +a (b-1)] 

 = 
2

1
[(a+1) (b-1)] 

Interaction effect due to AB is defined by  

      (2)- (1) => AB= 
2

1
[(ab)-(b)-{(a)-(1)}] 

 = 
2

1
[b (a-1)-1(a-1)] 
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 = 
2

1
[(a-1) (b-1)] ---------- > 5 

Interaction effect due to BA is defined by 

    (4)- (3) => BA= 
2

1
[(ab)-(a)-{(b)-(1)}] 

 = 
2

1
 [a (b-1)-1(b-1)] 

 = 
2

1
 [(a-1) (b-1)]        ----------- > 6 

The equation (5) and (6) are same hence the interaction effect AB as same as 

BA. 

4.2.3. Statistical Analysis for 22 Factorial experiment 

 Factorial Experiment are conducted either CRD, RBD, and LSD 

thus they can be Analysis in the usual manner except that is case treatment 

sum of sequence split into three orthogonal   components each i.d.f.  It has 

been already be pointed out the main effects A and B and the interaction AB. 

The sum of squares due to the Factorial effects A, B, and AB is obtained by 

multiplying by the squares of the practice these effects are usually computed 

from the treatment total [a], [b] and [ab] etc.  The Factorial effects totals are 

given by the expression. 

 [A]    = [ab]-[b] + [a]-[1] 

 [B]    = [ab]-[a] + [b]-[1] 

 [AB]      = [ab]-[b]- [a] + [1] 

The sum of squares due to any Factorial effect is obtained by multiplying the 

square of the effect total by the Factor
r4

1
.  Where r is the common replicate 

number sum of square due to main effect of A= 
r

A

4

][ 2

= 2
AS  

Similarly S.S due to main effects of B = 
r

B

4

][ 2

= 2
BS  
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S.S due to interaction effect of AB= 
r

AB

4

][ 2

= 2
ABS  

Each with 1.D.F 

 Correction factor (C.F)  = 
N

G 2

 

 Total sum of square  = 22
. T

sij

ij SFCy 


 

                  Block S.S    = 2

2

.
4

R

j
SFC

B



 

   S.S Treatment  = 2

2

. t

i
SFC

r

T



 

 S.S Treatment   = Total S.S – [S.SB+ S.ST] = 2
ES  

Table 4.1: ANOVA Table 

     

     

Source of 

variation 

Sum of 

square 

Degrees of 

freedom 

Mean sum of 

square 

F- ratio 

 Block 2
RS  r-1 

2
2

1
R

R S
r

S



 R

E

R F
S

S


2

2

 

Treatment 2
tS  3 

2
2

3
t

t S
S

  t

E

t F
S

S


2

2

 

Main Factor 

A 

2
AS  1 

2
2

1
A

A S
S

  A

E

A F
S

S


2

2

 

Main Factor 

B  

2
BS  1 

2
2

1
B

B S
S

  B

E

B F
S

S


2

2
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Interaction 

effect AB  

2
ABS  1 

2
2

1
AB

AB S
S

  AB

E

AB F
S

S


2

2

 

Error 2
ES  3(r-1) 

 ( 22 -1)(r-1) 

2
2

)1(3
E

E S
r

S



 

 

Total 2
TS  4r-1 

  ( 22 r-1) 

  

     

     

     

     

     

     

 

Table value: 

 F table [(r-1), 3(r-1)] d.f at 5% level = *
RF  

 F table [3, 3(r-1)]        d.f at 5% level = *
tF  

 F table [1, 3(r-1)]        d.f at 5% level = *F  

Conclusion: 

 (i) RF < *
RF    we need not reject and we conclude that there is no 

significance difference between replicates. 

 (ii) tF < *
tF   we need not reject and we conclude that there is no 

significance difference between Treatment. 

 (iii) AF < *
AF  we need not reject and we conclude that there is no 

significance  
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 (iv) BF < *
BF   we need not reject and we conclude that there is no 

significance difference main effect B. 

 (v) ABF < *F  we need not reject and we conclude that there is no 

significance difference interaction effect AB. 

Table 4.2: Yates Method for 22  Factorial experiment: 

     

Treatment 

combination 

Total yield 

from all 

replicates (2) 

(3) (4) Effect total 

1 [1] [1]+[a] [1]+[a]+[b]+[ab] Ground total 

A [a]  [b]+[ab] [a]-[1]+[ab]-[b] [A] 

B [b] [a]-[1] [b]+[ab]-[1]-[a] [B] 

Ab [ab] [ab]-[b] [ab]-[b]+[a]-[1] [AB] 

     

     

     

     

 

Problem 1: 

 Find out ,the effect and interaction effect in the following 2 Factorial 

experiment and write dawn the analysis of variance table;- 

Table 4.3 ANOVA Table 

Block Treatment 

        00 

(a) 

10 

(b) 

01 

(ab) 

11 

I 64 25 30 10 

II 25 14 50 33 
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III 76 12 41 17 

IV 75 33 25 10 

 

Solution: 

 Null hypothesis obH : 

   There is no significance difference between blocks. 

 otH : There is no significance difference between Treatments. 

 oAH : There is no significance difference between main effect A. 

 oBH : There is no significance difference between main effect B. 

 oABH : There is no significance difference between effect AB. 

 

Treatment 

Combination 

Total yield 

from all 

blocks 

(3)  

Effects Total 

 

S.S 

      1 

 

      a 

 

      b 

 

ab 

 

240 

 

84 

 

146 

 

70 

324 

 

216 

 

-156 

 

-76 

540 

 

-232 

 

-108 

 

80 

18225
16

)540( 2

  

3364
16

)232( 2




 

729
16

)108( 2




 

400
16

)80( 2

  

 

 C.F =  18225
16

)540( 22


N

G
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      C.F = 18225 

Total sum of square = FCFCy
sij

ij ..)10()25......()25()64(.. 2222 


 

           = 25460- 18225 

           = 7235 

Sum of square due to Block  = FC
B j

.
4

2




 

   = 18225
4

73290
  

  S.SB = 97.5 

Sum of square due to Treatment = 18225
4

90872
.

4

2




FC
Ti

 

  S.S. rT  = 4493 

Sum of square due to error = T.S.S – (S.S.B + S.S. rT ) 

   = 7235- (97.5+4493) 

  S.S.E = 2633.5 

Table 4.3:   Yates method for 22 Factorial experiment: 

Source of 

variation 

Sum of 

square 

Degree of 

freedom  

Mean sum 

of square 

F- ratio 

 

Block 

 

97.5 

 

    3 

 

     32.5 

 

  0.1106 RF  

 

Treatments 

 

4493 

 

    3 

 

    1497.67 

 

  5.0975 TF  

 

Main effect A 

 

3364 

 

    1 

 

    3364 

 

11.4499 AF  
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Main effect B 

 

Interaction 

effect of AB  

 

729 

 

400 

 

    1 

 

    1 

 

     729 

 

     400 

 

       2.48 BF  

 

  1.3614 

ABF  

 

Error 

 

2644.5 

 

    9 

 

     293.8 

 

      - 

 

Total 

 

7235 

 

   15 

 

       - 

 

      - 

  

     

     

     

     

     

     

 

 

 

F- Table value: 

 F (3.9) d.f at 5% level = 3.86  *
AF  

 F (1.9) d.f at 5% level = 5.12 *
BF  

Conclusion: 

 (i) RF < *
AF  we need not reject H0 and we conclude that there is no 

significance difference between blocks. 
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 (ii) *
AT FF  we need not accept H0  and we conclude that there is no 

significance difference between Treatments. 

 (iii) *
BA FF   We need not accept H0 and we conclude that there is no 

significance difference between main effect A. 

 (iv) *
BB FF   We need not reject H0 and we conclude that there is no 

significance difference between main effect B. 

 (v) *
BAB FF   We need not reject H0 and we conclude that there is no 

significance difference between interaction effect AB. 

4.3.  23 Factorial Experiment 

 ( main and interaction effect of 23 factorial experiment) suppose that 

are factorial experiment 23=8 Treatment combinations is conducted „r‟ Blocks 

(or) replicates. 

 [1] Total of r units receiving the treatment 1. 

 [a] Total of r units receiving the treatment a. 

 [b] Total of r units receiving the treatment b. 

 [ab] Total of r units receiving the treatment ab. 

 [c] Total of r units receiving the treatment c. 

 [ac] Total of r units receiving the treatment ac. 

 [bc] Total of r units receiving the treatment bc. 

 [abc] Total of r units receiving the treatment abc. 

Simple effect of A:- 

Level of B Level of C          Effect of A 

         b0 

 

  b1 

 

      c0 

 

      c0 

 

a1b0c0  - a0b0c0 = (a)-(1) 

 

a1b1c0  - a0b1c0 = (ab)-(b) 
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Simple effect of A 

               

       

  

      

      

    111
4

1

111
4

1

]1111[
4

1

]11[
4

1

]11111[
4

1

]1[
4

1













cba

cba

bbca

bcbca

aabacabc

ababcacbcabc

 

S.E. of A =     111
4

1
 cba  

Simple effect of B: 

    b0 

 

         b1 

      c1 

 

      c1 

 

a1b0c1  - a0b0c1 = (ac)-(c) 

 

a1b1c1  - a0b1c1 = (abc)-

(bc) 

 

Level of A Level of C          Effect of B 

         a0 

 

  a1 

 

    a0 

 

      c0 

 

      c0 

 

      c1 

a0b1c0  - a0b0c0 = (b)-(1) 

 

a1b1c0  - a1b0c0 = (ab)-(a) 

 

a0b1c1  - a0b0c1 = (ac)-(a) 
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Simple effect of B 

  

               

       

  

      

      

    111
4

1

111
4

1

]1111[
4

1

]11[
4

1

]11111[
4

1

]1[
4

1













cab

cab

aacb

acacb

bbabcbac

baabcbcacabc

 

S.E. of B =     111
4

1
 cab  

Simple effect of C:- 

 

         a1  

      c1 

 

 

a1b1c1  - a1b0c1 = (abc)-

(ac) 

 

Level of A Level of B          Effect of C 
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Simple effect of C 

  

               

       

  

      

      

    111
4

1

111
4

1

]1111[
4

1

]11[
4

1

]11111[
4

1

]1[
4

1













bac

bac

aabc

ababc

ccacbcab

caacbbcababc

 

S.E. of C =     111
4

1
 cba  

Interaction effect of AB: 

 AB =                   1
4

1
 acacbabbcabc  

         a0 

 

  a1 

 

    a0 

 

         a1 

      b0 

 

      b0 

 

      b1 

 

      b1 

 

a0b0c1  - a0b0c0 = (c)-(1) 

 

a1b1c0  - a1b0c0 = (ac)-(a) 

 

a0b1c1  - a0b1c0 = (bc)-(b) 

 

a1b1c1  - a1b1c0 = (abc)-(ab) 
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       =                 1
4

1
 acacbabbcabc  

          (In main effect A we are add b1 terms and substact b0 terms) 

 

        

   

       

    111
4

1

1111
4

1

11
4

1

11111
4

1









cba

ccba

cbbca

aacababc

 

        I.E of B    =     111
4

1
 cba  

Interaction effect of BC: 

 AC =                   1
4

1
 acacbabbcabc   

         (In main effect A we are add c1 terms and subtract c0 terms)   

                

        

   

       

    111
4

1

1111
4

1

11
4

1

11111
4

1

1
4

1











cba

bbca

bcbca

aabacabc

ababcacbcabc

 

I.E. of AC =     111
4

1
 cba  

Interaction effect of BC 

 BC =                   1
4

1
 baabcbcacabc  
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(In main effect B we are add c1 terms and subtract c0 terms) 

 

                

        

   

       

    111
4

1

1111
4

1

11
4

1

11111
4

1

1
4

1











cab

aacb

acacb

bbabcac

baabcbcacabc

 

      Interaction effect of AC =     111
4

1
 cba  

Interaction effect of ABC: 

   Interaction effect of AB at C0 of C =     0000101011
2

1
cbabacbaba   

   Interaction effect of AB at C1 0f C =     100011011 1
2

1
cbabacbaba   

   Interaction effect of ABC                =                   1
4

1
 ababcacbcabc  

    

        

   

       

    111
4

1

1111
4

1

11
4

1

11111
4

1









cba

abca

bcbca

aabacabc

 

                                       I.E of ABC =     111
4

1
 cba  

4.3.1.  Analysis of 23 Factorial Design: 

        ijkllijkikjkijkjiijklY    
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      Where, Yijkl is the yield  from the ith row jthBlock µ is the general mean 

effect. 

αi is the effect due to ith level of Treatment A. 

βj is the effect due to jth level of Treatment B. 

γk is the effect due to kth level of Treatment C. 

    (αβ)ij is the interaction effect due to i and jth level of Treatment AB. 

(βγ)ij is the interaction effect due to j and kthlevel of Treatment BC. 

    (αγ)ik is the interaction effect due to i and kth level of Treatment AC. 

   (αβγ)ijk is the interaction effect due to i,j and kth level of Treatment ABC. 

ρlis the effect of due to the lth Block. 

εijklis the error effect. 

    The above parameter are subject to following restrictions 

 Ʃαi=0,  Ʃ(αβ)ij=0 

 Ʃβj=0,  Ʃ(βα)ij=0 

 Ʃ(αβγ)ijk=0,  Ʃ(aγ)ik=0 

    Ʃρl=0 

Null Hypothesis: 

 HOR: - there is no significance difference between replicates. 

 HOT: - there is no significance difference between Treatment (or) 

Factorial not present. 

Statistical Analysis for 23 factorial experiment 

 The sum of square due to any factorial effect is obtain as multiplying 

the square of the effect total by the factor 
r8

1
,  where r is common replicate 

number. 

 Sum of square due to main effect A = 
 

r

A

8

2
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 Sum of square due to main effect B = 
 

r

B

8

2

 

 Sum of square due to interaction effect AB = 
 

r

AB

8

2

 

 Sum of square due to interaction effect A = 
 

r

AC

8

2

 

 Sum of square due to interaction effect C = 
 

r

C

8

2

 

 Sum of square due to interaction effect BC = 
 

r

BC

8

2

 

 Sum of square due to interaction effect ABC = 
 

r

ABC

8

2

 each with 1 

d.f 

Table 4.6: Yates method for 23 factorial experiment: - 

 

Treatment 

Combination 

Treatme

nt 

Total 

(3) (4) (5) Effect 

total 

(6) 

1 

 

a 

 

b 

 

ab 

 

c 

 

ac 

[1] 

 

[a] 

 

[b] 

 

[ab] 

 

[c] 

 

[ac] 

[1]+[a] 

 

[b]+[ab] 

 

[c]+[ac] 

 

[bc]+[abc] 

 

[a]-[1] 

 

[ab]-[b] 

[1]+[a]+[b]+[ab] 

 

[c]+[ac]+[bc]+[abc] 

 

[a]-[1]+[ab]-[b] 

 

[ac]-[c]+[abc]-[bc] 

 

[b]+[ab]-[1]-[a] 

 

[bc]+[abc]-[c]-[ac] 

[1]+[a]+[b]+[ab]+[c]+[ac]+[bc+[abc] 

 

[a]-[1]+[ab]-[b]+[ac]+[ac-[c]+[abc]-[bc] 

 

[b]+[ab]-[1]-[a]+[bc]+[abc]-[c]-[ac] 

 

[ab]-[b]-[a]+[1]+[abc]-[bc]-[ac]+[c] 

 

[c]+[ac]+[bc]+[abc]-[1]-[a]-[b]-[ab] 

 

[ac]-[c]+[abc]-[bc]-[a]+[1]-[ab]+[b] 

G 

 

[A] 

 

[B] 

 

[AB] 

 

[C] 

 

[AC] 
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bc 

 

abc 

 

 

[bc] 

 

 

[abc] 

 

[ac]-[c] 

 

[abc]-[bc] 

 

[ab]-[b]-[a]+[1] 

 

[abc]-[bc]-[ac]+[c] 

 

[bc]+[abc]-[c]-[ac]-[b]-[ab]+[1]+[a] 

 

[abc]-[bc]-[ac]+[c]-[ab]+[b]+[a]-[1] 

 

 

[BC] 

 

[ABC] 

 

 

Sum of 

variance 

Sum of 

square 

d.f Mean sum of 

square 

F- ratio 

Replication 2
RS  r-1 

2
2

1
R

R S
r

S



 

R

E

R F
S

S


2

2

 

Treatment 2
tS  7 

2
2

7
t

t S
S

  t

E

t F
S

S


2

2

 

Main effect A 2
AS  1 

2
2

1
A

A S
S

  A

E

A F
S

S


2

2

 

Main effect B 2
BS  1 

2
2

1
B

B S
S

  B

E

B F
S

S


2

2

 

Int. effect AB 2
ABS  1 

2
2

1
AB

AB S
S

  AB

E

AB F
S

S


2

2

 

main effect C 2
CS  1 

2
2

1
C

C S
S

  C

E

C F
S

S


2

2

 

Int. Effect AC 2
ACS  1 

2
2

1
AC

AC S
S

  AC

E

AC F
S

S


2

2

 

Int. Effect BC 2
BCS  1 

2
2

1
BC

BC S
r

S



 BC

E

BC R
S

S


2

2
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Int. Effect 

ABC 

2
ABCS  1 

2
2

1
ABC

ABC S
r

S



 ABC

E

ABC R
S

S


2

2

 

Error 2
ES  7r-1) 

 
2

2

17
E

E S
r

S



 - 

Total 2
TS  8r-1 - - 

 

 

Table value: 

 F [(r-1), (7(r-1))] at 5% level  = F1 

 F [7, 7(r-1)] at 5% level       = F2 

 F [1, 7(r-1)] at 5% level  = F3 

 

 

Conclusion: 

 (i) FR < F1 we need not reject the null hypothesis H0 and we conclude 

that there is no significance difference between replicates. 

 (ii) Ft< F2 we need not reject the null hypothesis H0 and we conclude 

that there is no significance difference between Treatments. 

 (iii) FA< F3 we need not reject the null hypothesis H0 and we conclude 

that there is no Factorial effect in main effect A. 

 (iv) FB< F3 we need not reject the null hypothesis H0 and we conclude 

that there is no Factorial effect in main effect B 

 (v) FAB< F3 we need not reject the null hypothesis H0 and we conclude 

that there is no Factorial effect in interaction effect AB. 
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 (vi) FC< F3 we need not reject the null hypothesis H0 and we conclude 

that there is no Factorial effect in main effect C. 

 (vii) FAC< F3 we need not reject the null hypothesis H0 and we 

conclude that there is no Factorial effect in interaction effect AC. 

 (viii) FBC< F3 we need not reject the null hypothesis H0 and we 

conclude that there is no Factorial effect in interaction BC. 

 (ix)FABC < F3 we need not reject the null hypothesis H0 and we 

conclude that there is no Factorial effect in interaction effect ABC. 

 

4.4. 2n – Factorial Experiment 

The results and the notations of 22 and 23 can be generalized to the case of 2n 

experiment. g Here we consider n factors each at 2 levels. Suppose A, B, C, 

D,…, K are the factors each at two levels(0, 1). Corresponding small letters a, b, 

c, d,…,k denote the corresponding factors at the second level, the first level of 

any  factor being signified by the absence of the corresponding small letter. The 

treatment combinations, in standard order can be written as: 

1, a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, acd, bcd, abcd, etc. 

For 2n-experiment, the various factorial effects are enumerated as follows: 

Main effects :
1Cn  in number 

 Two-factor interactions :
2Cn  in number  

 Three –factor Interactions :
3Cn  in number 

. 

. 

. 

n factor interaction : 
nCn  in number 

Hence, the total number of factorial effects in 2n –experiment are 
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nC1+nC2+…+nCn=[nC0+nC1+…+nCn]-1 

=(1+1)n-1=2n-1 

Main Effects and Interactions  

As in the case of 22 and 23- experiment the results for the main effects and 

interactions can be generalized to the case 2n experiment. Thus, for n factors A, 

B, C, D, …,K the main effects and interactions are given by the expression. 

)]1()1)(1)(1)(1[(
2

1
1




kdcba
n

  

4.4.1. Analysis of 2n design 

It will be seen that all the factorial effects (main and interaction) are mutually 

orthogonal contrasts of treatment totals. Hence, having obtained the factorial 

effect totals by Yates technique, the S.S due to each factorial effect is given by  

   
n

i

r
r

n

2.
1.

2

2

1

2

2






 

Where [ ] is the factorial effect total. 

 

Table 4.8. ANOVA Table 

 

Source  of 

variation 

Sum of square d.f Mean sum of 

square 

 
FC

B
S

n

j

R .
2

2

2 


 
r-1 

2
2

1
R

R s
r

S



 

Treatments 
FC

r

T
S

i

T .

2

2 


 
12 n  

12

2
2




n

T
t

S
s  



95 
 

Main effect A 2
AS =[A]2/r.2n 1 

22

AA Ss   

Main effect B 2

BS =[B]2/r.2n 1 

22

BB Ss   

      
  

Main effect K 2

KS =[K]2/r.2n 1 

22

KK Ss   

Two-factor 

Interactions 

  
 

 AB 2
ABS  = 

[AB]2/r.2n 

1 

22

ABAB Ss   

 AC 2

ACS = [AC]2/r.2n 1 

22

ACAC Ss   

BC 2

BCS = [BC]2/r.2n 1 

22

BCBC Ss   

      
  

Three-factor  

Interactions 

  
 

 ABC 2

ABCS = 

[ABC]2/r.2n 

1 

22

ABCABC Ss   

ACD 2

ACDS = 

[ACD]2/r.2n 

1 

22

ACDACD Ss   

      
  
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n-factor 

interactions 

ABCD…K 

2

KABS  = 

[AB…K]2/r.2n 

1 

2

...

2

... KABKAB Ss   

Error 2

ES = By 

subtraction 

(r-1)(2n-1) 
)12)(1(

2
2




n

E
E

r

S
s  

Total Raw.S.S- C.F r.2n-1  

 

The block effects and the factorial effects ( main and interactions) can be tested 

for significance by comparing their means S.S with error S.S. 

 

UNIT- V 

5.1 Confounding 

 When only the portions of treatment combinations are allotted to block within a 

replication, the comparison between blocks in a replication represents some treatment 

comparison, either a main effect or on interaction. In such cases it is not possible to distinguish 

treatment comparisons from block comparisons. Such a mix up is termed as confounding. 

Advantages and disadvantages of Confounding 

 The only and the greatest advantage of confounding scheme lies in the fact that it reduces 

the experimental error considerably by stratifying the experimental material into homogeneous 

sub sets or sub groups. The removal of the variation among incomplete blocks within replicates 

often results in smaller error mean square as compared with a randomised complete block 

design, thus making the comparisons among some treatments more precise. 

The following are the disadvantages of confounding 

1. The confounded contrasts are replicated fewer times than are the other contrasts and as 

such there is loss of information on them and they can be estimated with a lower degree 

of precisions as the number of replications for them is reduced. 
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2. The algebraic calculations are usually more difficult and the statistical analysis is complex, 

specifically when some of the units are missing. 

3. A number of problems arise if the treatments interact with blocks. 

5.2 Partial and complete confounding 

 The same interactions are confounding in each replication (or) different sets of interaction 

are confounded in different replications.  Both the procedures are practised if the same set of the 

interactions is confounded in all the replications confounding are called complete confounding. 

 If again different sets of interaction are confounded in different replications confounding is 

called partial confounding 

5.3 Complete confounding 2
3
 experiments 

 In a 2
3
 experiment the 8 treatment combination require 8 units of homogeneous material 

each two from a block. 

 For example:Let us consider confounding the highest order interactions ABC we know that 

the interaction effect ABC is given by 

  ABC                 1
4

1
 ababcacbcabc  

                   1
4

1
 acbcabcbaabc  

  ABC confounded with blocks. 

   Block 1:     (1)     (ab)     (ac)    (bc) 

  Replicate 

   Block 2:      (a)     (b)       (c)      (abc) 

Yates method for a 2
3
 experiment:  

 Black size is four in the question 

  Block 1      1       (ab) 

  Block 2      (ac)   (bc) 

  Block 3      (a)      (b) 
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  Block 4      (c)      (abc) 

Table 5.1 

Treatment 

combination 

Treatment 

Total 

      (3) (4) (5) Effects 

total 

1 

a 

b 

ab 

c 

ac 

bc 

abc 

 

[1] 

[a] 

[b] 

[ab] 

[c] 

[ac] 

[bc] 

[abc] 

[1]+[a]=u1 

[b]+[ab]=u2 

[c]+[ac]=u3 

[bc]+[abc]=u4 

[a]-[1]=u5 

[ab]-[b]=u6 

[ac]-[c]=u7 

[abc]-[bc]=u8 

u1+u2=v1 

u3+u4=v2 

u5+u6=v3 

u7+u8=v4 

u2 -u1=v5 

u4 –u3=v6 

u6 –u5=v7 

u8 –u7=v8 

 

v1+v2=w1 

v3+v4=w2 

v5+v6=w3 

v7+v8=w4 

v2-v1=w5 

v4-v3=w6 

v6-v5=w7 

v8-v7=w8 

 

G.T 

[A] 

[B] 

[AB] 

[C] 

[AC] 

[BC] 

Not estimatle 

This confound component contain in the (2r-1) d.f.  The ANOVA  table will be as follows. 

Table 5.2 : ANOVA Table: 

    S.V       S.S     d.f M.S.S F- ratio 

Blocks 2
bS  2r-1 2

bS  
12

2

F
S

S

E

b   

Treatment 2
tS  6 2

tS  
22

2

F
S

S

E

t   
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A 2
AS  1 2

AS  
32

2

F
S

S

E

A   

B 2
BS  1 2

BS  
42

2

F
S

S

E

B   

AB 2
ABS  1 2

ABS  
52

2

F
S

S

E

AB   

C 2
CS  1 2

CS  
62

2

F
S

S

E

C   

AC 2
ACS  1 2

ACS  
72

2

F
S

S

E

AC   

BC 2
BCS  1 2

BCS  
82

2

F
S

S

E

BC   

Error 2
ES  6(r-1) 2

ES            - 

Total 2
TS  8r-1           -           - 

 

 

Null Hypothesis: - 

 H0: confounding is not effective 

 H1: confounding is effective 

Inference: 
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 If the calculated F value is less than the tabulated F
*
 value we accept H0.  Otherwise we 

reject H0. 

5.4 Analysis of 2
3 
partial confounding 

  The analysis of 2
3
 partially confounded design differs from that of the ordinary 2

3
 

factorial experiment replicated 4 times only in the calculation of the partially confounded 

interactions.  Each interaction being estimated only from the three replicates in which the given 

interaction is not confounded. 

  Analysis of 2
3
 partially confounded design with four replications and ‘r’ such 

replications.  Let us suppose that a number of repetitions say ‘r’, of the above pattern or layout 

are performed such the positions of the replication, Blocks within replications and Blocks within 

Blocks are randomised then the structure of the Anova table will be as follows. 

 

 

 

Table 5.3 

             S.V         d.f                                  S.S 

Blocks     8r-1 

4

1
Ʃ(total of Blocks)

2
 - 

r

G

32

2

 

Treatment       7 22222222
tABCACBCABCBA SSSSSSSS   

      A       1 [A]
2
/32 r 

      B       1 [B]
2
/32 r 

      C       1 [C]
2
/32 r 

     AB       1 [AB]
2
/24 r 
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     AC       1 [AC]
2
/24 r 

     BC       1 [BC]
2
/24 r 

    ABC       1 [ABC]
2
/24 r 

   Error     24r-7 (By difference)= 2
ES  

   Total     32r-1 2
TS = Total S.S 

 

Calculation of sum of square due to confounded effects: 

  It has already been explained that sum of square for confounded effects are to be 

obtained from those replications only in which the given effect is not confounded from practical 

point of view these sum of square can be obtain from the table of Yates method for all the 4 

replications by appling sum adjusting factor (A.F) for any confounded effects is computed as 

follows 

 (i) Note the replication in which the given effect is confounded. 

 (ii) Note the sign of (1) in the corresponding algebraic expression of the effect to be 

confounded. 

If the sign is positive then 

   A.F = [Total of the block containing (1) of replicate in which the 

    Effect is confounded] – [Total of the block not containing 

    (1) of the replicate in which the effect is confounded] 

   A.F = T1 – T2 (say) 

  If the sign is negative, 

   A.F = T2 – T1 
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  This adjusting factor will be subtracted from the Factorial effects total of the 

confounded effects obtained from Yates’s method for all replicates. 

    

5.5 Balanced Incomplete Block Designs(BIBD) 

If in a block the number of experimental units or plots is smaller than the number of treatments, 

then the block is said to be incomplete and a design constituted of such blocks is called an incomplete 

block design. 

Balanced incomplete block designs which were developed for experiments in plant breeding and 

agriculture selection comparisons among pairs of treatments is made with equal precision. 

Definitions  

Incomplete Block Design(I.B.D) 

An incomplete block design is one having v treatments and b blocks each of size k such that each 

of the treatments is replicated r times and each pair of treatments occurs once and only once in the 

same blocks v, b, r, and k are known as the parameters of the I.B.D 

Balanced Incomplete Block Design 

An arrangement of v treatments in b blocks of k plots each(k<v) is known as BIBD, if 

i) Each treatment occurs once and only once in r blocks and 

ii) Each pair of treatments occurs together in λ blocks. 

BIBD is used when all treatment comparisons are equally important as it ensures equal 

precisions of the estimates of all pairs of treatment effects. 

Parameters of BIBD 

The integers v,r,b,k and λ are called the parameters of the BIBD., where 

V = number of varies or treatments, b=number of blocks 

K=block size , r= number of replicates for each treatment 

λ= number of blocks in which  any pair of treatments occurs together or number of times any two 

treatments occur together in a block. The following parametric relations serve as a necessary condition 

for the existence of a BIBD. 

i) Vr = bk       ii) λ(v-1) = r(k-1)      iii)   b ≥ v( Fisher’s Inequality) 

Theorem 5.1 

Vr = bk 
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Proof: 

   Since there are v treatments each replicated r times, total number of plots in the design is vr. Further 

since there are b blocks each of size k, there are bk plots in all. 

 

Hence vr=bk 

Incidence Matrix: Associated with any design D is the incidence matrix N = (nij), (i = 1,2,…,v; j = 1,2,…,b), 

where nij denotes the number of times the ith  treatment occurs in the jth block. Thus by the definition of 

a BIBD 





















vbvv

b

b

nnn

nnn

nnn

N









21

22221

11211

                                                                    …(5.1) 

 

Where nij =1, if ith  treatment occurs in the jth block                       …(5.2) 

=0, otherwise 

We also observe, by definition of BIBD 

                                                         … (5.3) 

                                                        … (5.4) 

                                                        …(5.5) 

 

Since nijnlj=1 if and only if ith  and lth  treatments occur together in the jth  block otherwise it is zero and 

they occur together in λ blocks 

If N’ denotes the transpose of N then  

),..,2,1(;

),...,2,1(;

)...,,2,1(;

1

1

2

1

1
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1

vlinn

vjknn

virnn

ij

b

j

ij

v

i

ij

v

i

ij

b

j

ij

b

j

ij






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
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
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r

r

r






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





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                                                    …. (5.6) 

Theorem  5.2λ(v-1)=r(k-1)                                                   …(5.7) 

Proof 

Let us denote by Emn the m×n matrix all of whose elements are unity. From (5.6), we get  

1

1

1

1

1




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





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               =   


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
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


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1
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1


vr   

Also         =[r+λ(v-1)]Ev1                           …(5.8) 

)( 11 vv ENNENN   

 

From (5.4) 
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=
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From (5.3) 
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

                                                                                     …(5. 9) 

=kr Ev1                                                                                                                                                                   … (5.10) 

From  (5.9) and (5.10), we get  

[r+λ(v-1)]Ev1 = kr Ev1 

r+λ(v-1) = kr 

i.e., λ(v-1) = r(k-1) 

Theorem 5.3      b ≥v (Fisher’s Inequality) 

Proof. From (5.6) the determinant of the matrix |NN’|

vv
r

r

r






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





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







 

Adding  2nd , 3rd , …, vth columns to the first column and taking *r+(v-1)] common from the first column, 

we get 
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(subtracting first row from the 2nd, 3rd, …, vth row) 

=[r+(v-1)λ(r-λ)v-1             expanding by first column) 

=rk(r-λ)v-1                        using (5.6) 

Thus 0NN , for if r = λ then from (5.6) we get  

    kvkv  11  

Indicating that the design reduces to randomized block design. Hence, NN  is non singular and 

consequently vNNRank )(                           …(5.11) 

Since v is the order of matrix NN  . 

)()( NRankNNRank   

vNRank  )(            from (5.11)                                                 … (5.12) 

But since N is a v × b matrix, it ranks can be at most b. 

V= rank N ≤ b     b ≥ v as desired.                          …(5.13)   

Theorem 5.4 

(i) r ≥ k 

(ii) b ≥ v+r-k 

proof 

(i) we have vr = bk k
v

b
r   
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since b ≥ v, we get r ≥ k 

(ii) we have v-k ≥ 0 and r-k ≥ 0 

0)(10))(( 







 kr

k

v
krkv  

i.e., 0)()(  krkr
k

v
 

 bkvrkrvbkrv
k

vr
   

Symmetric BIBD 

Definition. A BIBD is said to be symmetric if b = v and r = k. 

 

Theorem 5.5  In a symmetric BIBD, the number of treatments common between any two 

blocks is λ 

Proof. 

We have 
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=(r-λ)Iv+λEvv 

Where Iv is a unit matrix of order v. 

Also for a symmetric BIBD, we have 
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Premultiplying by (N’), we get 




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                                  …(5.14) 

But it can be easily verified that for symmetric BIBD 

N’Evv=NEvv=rEvv=k Evv 

vvvv EE
r

N



 

Substituting in (5.14), we get 
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Post multiplying by N, we have 
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N’N=(r-λ)Iv+λEvv                                                                                         …(5.15) 

From (5.14) and (5.15), we get for a symmetric BIBD 

N’N=N’N 

Thus, the inner product of any two rows of N is equal to the inner product of any two columns of N, i.e., 

λ. 

Hence, in case of a symmetric BIBD, any two blocks have λ treatments in common. 
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