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STATISTICAL INFERENCE
UNIT-I

1. INTRODUCTION

Statistical inference being similar to, a process of inductive inference as envisaged in
classical logic which is the problem is to know the general nature to the phenomenon under
study on the basis of the particular set of observations. The only difference is that in a
statistical investigation induction is achieved within a probabilistic frame work. Probabilistic
considerations enter into the picture in three ways. First, the model used to present the field of
study is probabilistic; second, certain probabilistic principles provide the guidelines in making
the inference. Third, as we shall see in the sequel, the reliability of the conclusions also
judged in probabilistic terms. The problem of statistical inference generally takes one of two

forms viz. estimation and hypothesis testing.

POPULATION: The set of all possible observation under study is called population. It is
denoted by ‘N’.

PARAMETER: Any population constraints are called parameter. For example, A random

variable X~N (,u,az), here 1 and o are called the parameters of Normal Distribution.

PARAMETRIC SPACE: The set of all possible values of the parameter is called parametric
space. (i.e) X~f(x:0)V 0s®. It is denoted as <O’ For example:

X ~N(u,6?) VO =1{0={u,6%}; —0< <, o>0}
SAMPLE: It is the subset of the population. It is denoted by ‘n’.

Definition 1: ESTIMATOR

Any function of random samples x;,X,,...,X, that are being observed say

n

T (X, X,,...,X, ) is called an estimator. Clearly a estimator is also a random variable.

If it is used to estimate an unknown parameter, say @, of the distribution which is also

called an estimator.



Definition 2: ESTIMATE
A particular value of the estimator is called estimate of parameter, say 6 Eg:

X, Xy,..,X, 1S @ random sample then the mean of the random sample is X say T(x)= Xis

n

called estimator.

1.1 SAMPLING DISTRIBUTION

If a number of samples, each of size n (viz., each sample containing n elements) are
drawn from the sample population and if for each sample the values of some statistic say,
mean is calculated, a set of values of the statistic will be obtained. These values o the statistic
will usually vary from one sample to another, as the values of the population members
included in different samples, through drawn from the same population may be different and
hence may be treated as values of R.V.

The probability distribution of the statistic (a R.V.) that would be obtained, if the
number of samples, each of the size n, were infinitely large, is called the sampling distribution
of the statistic. If the random sampling technique is adopted, the nature of the sampling
distribution of a statistic can be obtained theoretically, using the theory of probability
provided the nature of the population distribution is known.

Like any other distribution, a sampling distribution will have its mean, standard
deviation and moments of higher order. The standard deviation of the sampling distribution of
a statistic isof particular importance in tests of significance for large samples and testing of
hypothesis and is known as standard error (S.E). In the case of large samples (viz. n>30), the
sampling distribution of many statistics tend to become normal distributions.

If t is a statistic in large samples, then t follows a normal distribution with mean E(t),
which is the corresponding population parameter and S.D. equal to S.E.(t). Hence
7 t—E(t)

S.E.(t)
S.D. 1 and is called the test statistic.

is a standard normal variate.Z follows a normal distribution with mean 0 and

1.2 STANDARD ERRORS

The standard errors of some frequently occurring statistics for large samples of size n

are given below, where o is the population variance, P, the population proportion and Q=1-P



and ng, n, represent the sizes of two independent random samples drawn from the given

population(s).

S.No. Statistic Standard Error
1 Sample Mean ()?) o
Jn
2 Sample Proportion(p) [PQ/n
3 Sample S.D. (s) [52 /2n
4 sample Variance (s?) o?y2/n
5 Sample Median 1.253310/+/n
6 Sample coefficient of Variation (v) L 20 b
- 1+ — ~—
Jan V710 2n
7 Sample Correlation Coefficient (r) (1_ pZ)
Jn
where p is the population correlation
coefficient.
8 Differences of two sample means o2 ol
o /_1 + 22
(Xl - Xz) n n
9 Difference of two sample S.D’s (s1-S,) o2 ol
“1 22
2n, 2n,
10 Difference of two sample proportions Q,
+
rll n2

(P1-p2)

f R P,Q,

Definition 3: ONE PARAMETER EXPONENTIAL FAMILY OF DISTRIBUTION

A random variable X, X,,...,X, said to be distributed according to a member in one

parameter exponential family of distributions if its probability density function is expressed as

f(x0) =X EOR(x)vx e X, 0 @




where A(@)and B(6)are real valued function of 8, T(x) is a real valued statistic with support

x and h(x) is independent of 6.
Definition 4: MULTI PARAMETERS EXPONENTIAL FAMILY OF DISTRIBUTION

A random variables, X, X,,...,X, which is equal to Xi, Xp,..., Xn IS said to be

distributed according to a member of multi parameters exponential family of distributions if

its probability density function is expressed as

> A6 (x
f(x, |9)=e§ h(x)Vx €N,0,,0,..0, €O

where ZH:A(H)and B(®)are real valued function of @, Zn:Ti (x) is a real valued statistic with

i=1

support x and h(x) is independent of 6.

Example 1: Let X, X,,...,X, ~ Poisson(8). To check whether, this distribution is a member

in one parameter exponential family of distribution.

Solution:

e—eex
P(X =x0)= g X=0L2...0>0

0, otherwise

( —X|H) -0 xloge ):|(-|

P(X =x6)= e“"g"-ﬁ.%

Here, A(0)=log 8;B(8)=6;T(x)=x;h(x)= -
Therefore, Poisson distribution is a member in one parameter exponential family of
distribution.



Example 2: To check whether, the normal distribution is a member in exponential family of

distribution.

Solution:
The Probability density function of normal distribution is

1

,,{X;ﬂf
e 7/ ;—w<X,u<o,0>0

f(x‘y,oz): m

0, otherwise
i) A e
27
_L —%+(%]x—[%+logo—]
- 27
1 e 1

+log o5 T (%, )=x*T(x )= x;h(x)= NorS

Therefore, Normal distribution is a member in multi parameter exponential family of

Here, A(H):Z%‘z; B(6)=

2
o

distribution.

1.3 IDEAL/PROPERTIES/ CHARACTERISTICS OF AN ESTIMATOR:

Estimation theory is concerned with the properties of estimators (i.e) with defining
properties that can be used to compare different estimator for the same quantity based on the
same data. Such properties can be used to determine the best rules to use under given
circumstance.

The properties of estimators are mainly classified into two, small sample and large

sample properties.



Estimators
Small Large

(i) Unbiasedness (iv) Consistency
(ii) Efficiency
(iii) Sufficiency

Definition 5: UNBIASEDNESS

The statistic T, =T(x,X,,...,x,) will be called an unbiased estimator of (@) if

' n

E,(T(x))=7(0) v 6¢&©.(ig) It has zero bias V& . (E,(T(x))-6 =0)

Definition 6: BIAS
Let T, =T(X,, X,,...,X, )is a biased estimator then E, (T (x))— @ =b(6) . Here b(#)is amount

of bias.

Remarks:
e E,(T(x))> 6 then bias is positive

e E,(T(x))< @then bias is negative

Mean Square Error: Let T, =T(X,,X,,....x,) be an estimator of y(#). The mean square
error of the estimator »(6) is defined as E,[T — 7(0)f
(i) E,[T - #(0)F =E,[T-»(0)+E,(T)-E,(MF
= E,{E,(T)-7@0)]+[T -E,(T)If
=E{(E,(1)-10) +(T ~E,(T) +2(E,(T)-1O))(T -E,(T))}
E{E(M)-H0)f +ET -E,(T)f
b?y(6)+Var(T)
= et | * v stitr |

6

m
)
_|
|
<
—_
D
—
N
Il



:{accuracy of }+{precision of }
the estimator the estimator

An estimator is preferred over others if it is a MSE is small as compared to that of
others which is achieved by the small variance and small biased both together. Controlling
over biased does not necessarily result in low mean square error. Sometimes bearing small
amount of biased combined with decrease in variance finally that result into a high decreasing
mean square error.

Small mean square error of the estimator results in high probability that the estimator too

close to true value of parameter 6 by chebyshev’s inequality.

The Positive square root of mean square error is called standard error. Mean squared
error (MSE) combines the notions of bias and standard error. It is defined as

MSE=(Standard Error)®+(Bias)?

Example 3: Let X, X,,...,X,, be a random sample from a normal population N(,u,l). Show

1 . . .
that t == x,” is an unbiased estimator of z* +1.
i=1

Solution:
Let, X, X,,...,X, ~N(2,1), E(x)=zand V(x)=1

1

I
]
=

+
t’\)

I
I
2
—
+
=
—

=1+ pu

1¢ 2. . :
Hence t :—in2 is an unbiased estimator of * +1.
i=1



Example 4: If T is an unbiased estimator for & show that T ?is an unbiased estimator for 6.

Solution:

Since T is an unbiased estimator for 6 (i.e) E(T)=0
wkt, V(T)=E[?)-[ET)
V(T)=E(T?)-67
E(T?)=V(T)+6?
E(T2)x 07 --V(T)>0 [T 2isabiased estimator of 67

Tx(Xx -1)

Example 5: Show that is an unbiased estimate of #° for the sample

n(n—-1)
X, Xy,..,X, drawn an X which takes the value 1 or O with respective probabilities
0 and (1-6).
Solution:

X ~ Bernoulli(@)
T =Y x, ~ Binomial (9); E(T)=n6,V(T)=no(1-0)

e R R
- -y r)-e)
= g )
= —gho-0)+ o) ~nd]
T
= g



Definition 7: EFFICIENCY

If T, is a most efficient estimator with variance V, and T, is any other estimator with
. - . . V. .
variance V, then the efficiency of T,is defined as E :\71 obviously E cannot exceed 1.
2
Similarly if T,T,,T,,....,T, are all estimators of »(@) and variance of T is minimum then the

Var T
Var T

efficiency E, of Ti(i=1,2,...,n) is defined as E, = for all i=1,2,...,n obviously

E <1(i=12,..n).

Example 6: A random sample (X,,X,,X,,X,X,) of size 5 is drawn from a normal

population with unknown mean g . Consider the following estimators of estimate  :

(a)tl:X1+X2+X3+X4+X5
5
X, +X
(0) t, == =2+ X,
2X, + X, +AX
(0) ty ==

where A is such that t, is an unbiased estimator of . Find 4. Are t, and t,unbiased? State

giving reasons the estimator which is best among t,,t, and t;.

Solution:

2X, + X, +AX,
3

@ E{ }z 4 since t, is an unbiased estimator
1
:>§E[2Xl+ X, + X, ]= u

= Z[E@X) + E(X,) + E(X,)] =

1
= 3 [ou+ o+ 2pl=

=3u+Au=3u
=>1=0



(b) E(t):E[X1+X2+X3+X4+X5}
1

5

:%wang+x,mg+xg

LlE(X,)+ EX,)+E(X, )+ E(X )+ E(X,)]

1
Sl p g e ]

Y7
Et,) = %¥§;ﬁ+x4

= JE(GHX)HE(X)

- %[E(X1)+ E(X,)]+E(X,)

1
= E[#Jrﬂ]Jrﬂ

= 2u
.t is an unbiased estimator of x

t, is a biased estimator of u

(C) \% (tl) = E(t12 )_ [E(tl )]2

X1+X2+X3+X4+X5}
5)

V(tl>=V{

o’ +o’+o’+o’+o°
25

11
g
<
X
+
X
T
<
w><

10



= since V(t, )is the least among V(t, ),V (t,)

.1, is the most efficient estimator of 4.

Example 7: Let X,, X,, X, is a random sample of size 3 from a population with mean value

wand variance o®. T,,T,,T, are the estimators used to estimate mean value z, where
T, = X, + X, = X, T, =2X, +3X,-4X, T3=%(/1x1+x2+x3)

(i) Are T, and T, unbiased?
(if) Find the value of A such that T, is ubiased estimator for u

(iii) Which is the most efficient estimator?

(i) E(T,) =E(X,+X,-X,)
= E(X,)+E(X,)-E(X,)
= ptu-—p
= u
E(T,) = E(2X,+3X,-4X,)
= 2E(X,)+3E(X,)-4E(X,)

2u+3u—4u
= u
.. T, is an unbiased estimator of x

T, is an unbiased estimator of u

(i) E(T,) =u sinceT,is an unbiased estimator for x

11



E[%(}LXI+ X, + Xs)):,u

(B + E(X) + (X)) = 4

Ap+pu+u=3u
A=1

(i) V()= V[X +X,-X,]
= o’+o’+0?’
= 30°
V(t,) = V[2X, +3X 74X, ]

= 4V(X,)+9V(X,)+16V(X,)

40?% +90° +160°
= 29052

= v(%(xxl + X, + xa)j

<
—
[
~
|

év[xl+x2+x3]

= %[02+02+02]

since V (t, ) is the least of all T,,T,,T,

t, is the most efficient estimator of .
1.4 SUFFICIENCY

Let, the random sample X, X,,...,X, have the joint distribution function F,which is known
expect for k parameters 6,,6,,....6,. We shall write 8=(6,,6,,....6,), a vector with k

components, and shall suppose that the parameter space is ® . Consider k functionally

unrelated statistics T,,T,,...,T,, the whole set of which may be denoted that by T.

12



Definition 8:

Let X, X,,...X, be a random sample from the cumulative density function

F,()=(F,():0€®) where ¢ is unknown and it is a known family of distribution. A statistic
for @ if its conditional distribution of X, X,,...,X for any given set of values of T,,T,,..., T, is

independent of 4.
Theorem 1: NEYMAN-FISHER FACTORIZATION

Statement:
Let X be a discrete random variable with p.m.f f(x,&) ,0 0. Then T(x) is

sufficient iff f (x,0) = g(T(x),0)h(x) VO & O
Proof:
Let  f(x,0)=9g(T(x)O)h(x) VOsO; xeR

Let, P,(X =x/T(x)=t)= {P,[X =x, T(x)=T(x)]

Consider ,
P[X =x', TO)=T(x)] _ P,(X =x)
PTG =T ()] aT00) 3 i)

13



h(x)

X:T(x)=t

P,(X =x/T(x)=t) = % is independent of @ if T(x*)=t.

So the conditional distribution of X given T is independent of the parameter. So T is sufficient

statistic for 4.

Conversely, Let T is sufficient for 6.

=P,(X=x/T(x)=t) =C(x’,1) -~ independent of &
PIX =x, T)=T()] _ T ()=
PTG =T 0] C(x,1) ST (x)=t

=P,(X =x) =C(x, ) P[T(x)=T(x)]
= C(x,1) 9(T(x).0)
S P(X =x) =g(T(x),0) h(x)

Hence proved.

Example 8:

1. Suppose X,, X,,...,X,, are Independent Identically Distributed (11D) random variables with

common probability density function (p.d.f)

XM _ 1-x 3 —
f(x):{g A=y 1 x=01 here 0< o<1

0 otherwise
Solution:
The p.d.f of Bernoulli distribution is
P(X =x)=6"(1-8)""
The joint probability density function of x4, X2,...,X, IS

L(O)=TTP(X, =x) = 6" (1-0) 2"

14



w0-(,2) a0y

L(0)=o(3 %, 00)
Here, g(t)=(ijT @077 = Sxh()=(1-0)

1-6

Therefore, in is a sufficient statistic for 6.

Example 9: Let X ~ Poisson (& ). Find the sufficient statistic for 6.
Solution:

The p.d.f of Poisson distribution is

-0 nx
P(X = x)= %, X=012....0>0
0, otherwise
n —no in
L@)=TP(X, =x)=5_¢
i=1 Hxi!
i=1
L(9)=e 0> _nl
|JEY
i=1
Here, g(t)=e™0>" ;T =Zn:xi;h(,)= nl
= [Tx!

i=1

n
Therefore, z X; is a sufficient statistic for 6.
i=1

15



Example 10: Let X ~ Exponential (8 ). Find the sufficient statistic for 6.

Solution:
The p.d.f of exponential distribution is

f(x|¢9):%e_;
1 72 >(i

L(6]x)= e

i=1 n

Here, g(t):%e 5T =>x:h()=1

i=1

n
Therefore, Z X; is a sufficient statistic for 6.
i=1

Example 11: Let X ~ Normal (0,02). Find the sufficient statistic for o*.

1 A
O TOSKp<06>0
0, otherwise
f (x‘ 1,02 ): 1 e_%(%yjz_mg"
27
1 Eemtme 1 e
27 Jox
L g
- 2
1 " —Z‘Xzz—loga
'—(02|X)=(—j e 2 =g(Xx)n()
2

16



2

Here, g(t) T = th (\/;_ﬁj

n
Therefore, sz is a sufficient statistic for o2.
i=1

Example 12: Let X ~ Normal (x,1). Find the sufficient statistic for 4 .

Solution:
ie_E(X_ 2 —0 < X, 14 <0
f (X|/,l,1): \N2r ,
0, otherwise

1 —%(xz—Zx,u—yz)
(5]

27
2
_ 1 ey
27

Here, g(t)=e"2" He i) T, =Zn:xi T, :Zn:xf;h(.):(%]
T

Therefore, > x , > x? is a sufficient statistic for 4 .

i=1 i=1

Example 13: Consider X~f(x:6), X=1,2,3; 8 =46,,6,,0;with the probability function

X |6 0, 05

1 /01 0.2 0.3
2 |07 0.4 0.1
3 102 0.4 0.6

17



0 if xisodd

Show that the statistic T = o is sufficient for 6.
1 if xiseven

Solution:

The distribution of T is given by

T 91 02 93

0 |03 |06 |09
1 107 |04 |01

The conditional probability function of x|t is given by

P(X =xT=t) P(XNT)
PT=t)  P(T)

P(X[T)=

x o, o o

1 (173 1/3 1/3
2 |0 0 0
3 |2/3 2/3 2/3

The conditional probability function of x|t when t=1 is given by

X |6 o, 0,
1 |0 0 0
2 |1 1 1
3 10 0 0

Since the distribution function of x|t, f(x|t) does not depend on the parameter 8. T is sufficient

for 6.

18



Definition 8: MINIMUM VARIANCE UNBIASED ESTIMATOR

Let U, be the class of all unbiased estimator of the parametric function 7(0). 1fa
statistic T =T(x,,..x, ) based on sample size n is such that,
(i) T is unbiased for (0) VO£ 0O (i.e) E(T)=4(0) VOO
(ii) It has the smallest variance among the class of all unbiased estimators of ;/(6?) then T is
called minimum variance unbiased estimator of (6). (i.€) Var(T)<var(T*);

T,T°¢U,, and 6 & ©.where T"isany other unbiased estimator of »(6).

Theorem 2:

The minimum variance unbiased estimator is unique in the sense that if T, and T, are

minimum variance unbiased estimators for 7(6) then T, =T, almost surely.

Proof:
Toprove T, =T,
Given T, and T, are unbiased estimator for ()
(i.e) E(T,)=E(T,)=7(0) VOes®
Var (T,) =Var (T,) VOes®

Consider a new estimator T = %(Tl +T,) which is also unbiased
Since E(T) =%[E(Tl)+ E(T,)]

= Sy o)
= 1)

Var(T) =VarB (T, +T, )}
1
= ZVar(T1 +T,)

- %[\/ar(Tl)+Var(T2)+2C0V(T1,Tz)]

—B/ar +Var(T,)+ 2p Var(T, Var(T )]

19



. %B/ar(Tl)+Var(Tl)+ 2pVar(T, Var(T,)|
= %[2Var(T1)+ 2 p/Var? (Tl)]

= %[ZVar(T1)+ 2 pvar(T, )]

= %[Var(Tl)+ pVar(T,)|

= %Var(Tl e+ o]

where p is Karl Pearson’s coefficient of correlation between T, and T,

Since T, is MVUE, Var(T)>Var(T,)

= %Var(T1 J1+ p]=Var(T,)

:%[1+p]21

=p>1
since |p|<lwe must have p=1
(i.e) T, and T, must have relation of the form:
T,=a+pT, —1
where « and g are constants independent of x;,X,,...,X, but may depend on 6.
(i.e) we have a=a(@) and S =4(0)
Taking expectation on both sides in equation 1
=E(T,)=E(a)+E(pT,)
=0=a+ 0 — 2
Var(T,)=Var(a + AT,)
Var(T,)=4*Var(T,)
—=p7 =1 = pf=11
But since p(T,,T,)==+1 the coefficient of regression of T, on T, must be positive, therefore
p=1
Sub g =1inequation 2

20



=a=0
Sub ¢ and g inequation 1
=T =T,

Hence proved.

Theorem 3:
Let T, T, be unbiased estimators of y(@)with efficiencies p,and p, respectively

and p = p, be the correlation coefficient between them then

Jop, —=pN1-p,) < p<pp, + - p N1-p,)

Let T be minimum variance unbiased estimator of  ¥(@). Then

v,(1) v %l
1 V9 (Tl) VH (Tl ) pl
S A

Let us consider another estimator T, = AT, + 4T, which is also unbiased estimator of y(#).
(i.e) E(T,)=EUT, +uT,)
= 2E(T,)+ uE(T,)
= (A+u)(0)
=>A+u=1
V,(T,) =V (AT, + uT,)

ANV (T)+ u™V(T,)+22uCov(T,,T,)

V(T + 1V (T, )+ 2 pru Nar(T, Var(T,)
V(T)V(T)

2
= /12V(T)+,L12V(T)+2pﬂ,,u —_
P P P P

= /"LZV(T)Jr,uZV(T)Jerﬂ,u V(T)

1
£ P2 \ P1P;

21



_ V(T)[ﬂ_z+ﬂ_+ﬂ}

But V,(T,)>V,(T), since V, (T )has minimum variance

2

:>VAT)F+”—+ 2 pA } >V, (T)

Pr P2 PP
2 2
/1—+/'l—+ 2PAH >1 :(l+,u)2
P P2 PP,
2 2
A HL 200 g + 1”220
Pr P2 PP,

2 2
(}“——AZJ{“——;,Z}[ 20 —2,1#} >0
P1 P> VPP
(i—l}’h(i—l]y%z P _1|lur >0
%) P2 \ PLP2
2 2
(i— jiz+(i— J”—2+2 L1 ”—’} >0
P H P2 H N PP H

which is quadratic equation in (ij
U

Note that p, <1:>i>1 (or) (——1}0 Vi=12,.

We know that ,
AX?2+BX+C>0, A>0, C>0 iff discriminant isB>—4AC<0

{42
= (oo, | ~-p)i-p,)<0

= p° =2ppp, +po, =1+ p,+p =, <0

= o’ =2p\pp, +(p+p,-1)<0

_ 2\//31,02 i\/4:01/)2 - 4(:01 TP, _1)
2

22



- 2[\//01,02 + \/plIOZ _(pl TP _1)]
2

= \/,01,02 i\/(pl _1)(:02 _1)
oo, =l =10, -1) < p < \pp, +/(p,—D(p, -1)

= oo, —Jl-p)1-p,) < p < pp, +{1-p)L-p,)

Theorem 4:

If T,is a minimum variance unbiased estimator for »(9) V6 &£® and T, is any other

unbiased estimator of #(¢) with efficiency p = p, then the correlation coefficient between

T, and T, is given by pz\/; (i.e) py,=+p, VOO
Proof:

Using the previous Theorem:3 statement the correlation coefficient p lies between

Voo, —A=p)0-p,) < p<\pp, +|0-p,)A-p,)

Here T, is a minimum variance unbiased estimator of #(4) then the efficiency p, =1and T, is

any other unbiased estimator of y(¢) with efficiency p

p=1 and p,=p subinl
p<p<ip
Lp=ip

Theorem 5:

If T, is a minimum variance unbiased estimator for »(6) V @&© and T, is any
other unbiased estimator of y(4) with efficiency p <1, then no unbiased linear combination

of T, and T,can be an MVUE of (6)

Proof:

Consider a linear combination:

T=I1T,+LT,
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will be an unbiased estimator of y(g) if
E(T)=EQT, +1,T,)=LET)+LE,)=1(0) VOO0
=1, +l,=1 since E(T,)=E(T,)=(6)

Var,(T,)
Var,(T, )

And p:p(TliTZ):\/;
Var,T =Var,|I,T, +1,T,]

var(T,)

The efficiency, p= = Var,(T,)=

+21,1, Cov(T,,T,)

=

= 12Var,(T,)+1,” Var,(T,

)
,)+ 21, pyVar(T, )Var(T,)
)

Var(T,)
Yol

=

1, Var, (T, )+1,% Var,

2 Var, (T,
Y2,

1, Var, (T, )+1, +2L1, p \/Var(Tl)

I 2
Var, (Tl){llz +2?+ 21,1, %}
2
= Varg(Tl){I12+|2—+2lllz} p=4lp
o
Var, (T |I,> +1,% + 2L, | < Var, (T 0<p<1, £
o\"1/['1 2 1°2 0 ,0

Var, (T) > Var, (T, XI, +1,)
Var,(T) > Var,(T,)

.. T cannot be MVU estimator.
Information Function (Or) Regularity Conditions

Q) © is a non degenerate open interval on the head lineR .

(i) The support of the random variable is independent of the parameter 6.

exists for all i=1,2,3

.0, T(x/0)
(i) ~ e

I&J/Q)dx holds for i=1,2,...n

(iv) 0 j f(x/6)dx =

24



(v)  For some function T(x)

— [T (x/0)ax = _[T de holds for i=1,2,...n
00,7 o0,

(vi) E{@Iog f(’()(;l’xz""’x” )} exists and is positive.
4

It is also called Fisher information measure.

Theorem 6: CRAMER-RAO INEQUALITY

Under the regularity condition if T is an unbiased estimator for »(6)which is assumed to
be a differentiable function of @ satisfies the inequality

20 o

{alogf X; ) X yoeer X, )T

Var

Var, (T ) > (o)

1(6)

where 1(6)is information measure.
Proof:

Let X be a random variable from the pdf f(x/@) and let L be the likelihood function of

the random sample (x,,X,,...,x, ) from this population. Thus
=L(0/x)=]]f(x/6)
i=1

since L is the joint pdf of (x,,X,,...,x, ) then

[L(o7x)dx =1 (1)

X

where x represents the domain of (xl, xz,...,xn)and the integral is an n-fold integral.

Differentiating w.r.t. 8 and using regularity conditions, we get

ide=0
) 06
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:!(% log Lj Ldx =0 --(2)

:J(EJ% Ldx =0
\L/Joo

:>E(i |ong=o VOecO
06

Let us consider T(x) = T(x,X,,....x,) be an unbiased estimator of »(@) such that,
E(T)= 7(0).
= [T()Ldx = y(0) —(3)

. !T(X)(a"’g Ldex = (0) —(4)

Multiplying 7(6) in Equation 2, we get
[#0) (i log Lj Ldx =0 (5
A Y.

Subtracting Equation 4 and 5, we get

= [[r()- (0] (5 o0 Lj Ldx = 7(0) ()
= E{T (x). (algg LH =7'(0) —(7)

00v[T(X).(algg Lﬂ _ E[T(X)_(algg Lﬂ_ E(T(x))E(ﬁlgg Lj

= 7'(0)
We know that,
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{Cov(x,y)}* <Var(X )var(Y)

=[y' (@) <var(T ).Var(i log Lj

s Var,(T) > 1a0); or
Var,(T) E{alogf(xl,xz,....,xn)}2 )

00

Var,(T) > lr@r I ©r

Hence Proved.

Remarks:

¢ An unbiased estimator T of »(@) for which Cramer-Rao lower bound is attained then

it is called minimum variance bound estimator.

2
e The fisher information measure 1(6)= E(i log Lj __g| 2
00 00

Conditions for the equality sign in Cramer-Rao Inequality

In Cramer-Rao inequality
' 2
Var,(T) > [(0)]

- 2
E[a log L)

00

Rewriting Equation 1, we get

27
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Var, (T)E(% log sz >[()f

= T/ € Zhs sz > O e

The sign of equality will hold in CRR inequality if and only if the sign of equality holds in
Equation 2. The sign of equality will hold in Equation 2 by Cauchy-Schwartz inequality

Cov(X,Y)=E(X?) E(Y?) iff the variables (T —y(6))and %Iog L are proportional to each

other.

where 1 is constant independent of (x,,X,,...,x. ) but depend on 6

iIog L=T_7(0)

o0 0)

=T —y(0)[A(0)] = %Iog L —(3)

1

where A= A(H):Te)

Hence the necessary and sufficient condition for an unbiased estimator T to attain the lower
bound of the variance is given by Equation 3

Further the C-R minimum variance bound is given by

var(r) =— 0L ~(4)
E(ae log Lj

But,

Substituting in Equation 4,
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Var (T) = @

{A@)f var(T)

_Var(T)- ‘%‘ _1y(0) A0

Hence , if the likelihood function L is expressible in the form Equation 3 then

1. Tis unbiased estimator of y(6)

2. Minimum variance bound estimator (T) for (6) exists and

3. Var(T)= ‘@‘ =y'(0) 2(0)

A9)

Example 14: Obtain the MVB estimator for x in normal population N(,u,az) where o2 is

known.

Solution:

If X;,X,,....X, 1S @ random sample of size n from the normal population, then

i=1

log L =—nlog (a\/ﬂ)— 2C1,2 Zn:(xi —u)

i=1

0 1 [
—logL=0- 2 —u)-1
ou 09 2 ;(Xn /J)( )

20

n

g

i=1

which is of the form

ZlogL= T-(6)[A@)

then T is a MVB estimator for »(@) and A(@)is a constant.
29



.. X is a MVB estimator for x and

1
n/c?

o2
n

Example 15: A random sample x,X,,...,X, Is taken from the normal population with mean 0

n
and variance o®.  Examine if inzln is a MVB estimator for .
i=1

Solution:

If X,,X,,...,X, is & random sample of size n from the normal population, then

L:Hf(xi,az)z(ﬁj exp{—zl:xizmaz}; —m< X<, o>0
1 2n/2 n
2 2
= exps — X /20
i) oo e

1 n/2 1 n/2 n
= = | [=| exp{-Yx’/20
) ) ool g

—n/2logo? —n/2log2r - Y %" 120”

i=1

LogL =

0 nooL( -1
Py logL=—-n/2c? —0—1/22Xi (?j

i=1

_ inzln - o’

oot Whichis of the form T - 7(0)[A@©)]
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Example 16: Find if MVB estimator exists for ¢ in Cauchy’s population

1 1
aF(X,0)=;m , —oO< X<

Solution:

Let x;,X,,...,X, be a random sample from Cauchy’s population.

f(x;6’)=% m
= fireo{2) i)

logL= —nlog 7 — Zn:Iog (1+(Xi —9)2)
i=1

d n (x,—0)
—logL=0+2 ) lo '
06" " 21: gil+(xi—0)2i

Since £ — 1 cannot be expressed in the form  T-y(0)[A(9)]

T 1+(X—t9)2

MVB estimator

does not exist for & in Cauchy’s population and so Cramer-Rao lower bound is attainable by

the variance of any

unbiased estimator 6.

Example 17: Show that X _2% in random sampling from
n

1 .
F(x.0) = Eexp(—xle) ; 0<x<w,0>0

0 : otherwise
2

. . . O
is a MVB estimator and has variance — .
n

Solution:
31



Let X;,X,,...,X,be a random sample from the population
1
f(x0)==e>"
(60)-=

n

L= ljf(x;ﬁ)z [%j exp[Z— X /9}

i=1

logL = —nlogé—> x/6

i=1

—n@+ZX,
02
n[zx /n - 6]
I
_ X-6 .
=z Which s of the form T-7(0)[A0)]

Hence X is the MVB estimator for 8 and

Var(é) = ‘M‘

Example 18: Let Xx,,X,,....X, be a random sample from a Bernoulli Distribution with

parameter p. Then 6=p and ®={9 0<6&<1 | Find the MVB estimator and its variance.

Solution:
Let X;,X,,...,X, be a random sample from BD.
f,(x)=6*(1-8)"
L=TT1,x)= 0% -0 >
i=1

log L = =x, log 8+n—32x, log(1-6)
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iIog L=y {(H_ZX‘ )}
00 0

_ XX (n—2x)

6 1-0
(1-6)=x, —6(n—=x;)
0(1-0)

_ XX —né

~ 0(1-0)

n[=x /n - 6]
0(1-0)

. X-6

~ 6(1-6)/n

which is of the form T —y(8)[A(6)]

Hence X is the MVB estimator for 8 and
7'(0)

A@6)

Var(é) =

_ 1
_‘uea—eyn

_ 01-0)

n

Example 19: Let X;,X,,...,X,be a random sample from the Poisson distribution with

parameter 6. Find the MVB estimator and its variance.

Solution:

Let x;,X,,...,X, be a random sample from the Poisson population

e—H ex
fo (X) = v

n -ng NIX;
L= Hf(xi;e):e 0

n

= Hx!
=

log L =—-n6+2x log #— > log x;!
i=1
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n[Zx, /n - 6]
0

X -6

@/n

which is of the form T —»(8)[A(6)]

Hence )T:& is MVB estimator for ¢ and

var(p)- \@\

[EEN

‘1/9/n
0

n

Example 20: Let X,,X,,...,X, be a random sample from uniform distribution U(0,6). Find the

MV B estimator and variance.

Solution:
The support of uniform distribution [U(0,0)] , ®={x:0<x<#} depends on the

parameter €. This violates the regularity conditions and the C-R lower bound theorem does

not produce the result.
Completeness:

We discussed one property, viz., sufficiency, that a statistic T may have in relation to a family
of distributions. We shall now consider another property, to be called completeness.

Consider the statistic T based on the random variable X, X,,...,X, with joint distribution
depending on 6 € ® . The distribution of T itself will, in general, depend on & . Hence, related

to T, wehave again a family of distributions, say, {g(t,8), 6 ¢ ©}
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Definition 10:
The statistic T=t(x) or more precisely the family of distributions {g(t,8), 8 ¢ ©} is
said to be complete for & if

E[h()] =0 V& = P,[h(t)=0]=1
(ie) [ht)g(t.0)dt=0 v OO (or)

> h(t)gt,e)=0 VOO

=h(t)=0 Vv 6&O® almost surely(a.s)

Definition 11:
The statistic T, or the family of distributions {g(t,#), & & ®} is said to be boundedly
complete for @if, for any (measurable) function W(T) is such that
y(T) <M, forsomeM,
E,[w(T)]=0foralloco®

= (t)=0 forall & € ® almost everywhere

Note: If T is complete, then it is necessarily boundedly complete.

Theorem 7: RAO-BLACKWELLIZATION

Statement:
Let X and Y are two random variables such that E(X)=6, 6 & ®. If a function ¢(.) is
defined as ¢(y)=E(X |Y =y). Then
() Elgy)=6 and
(i)  Var,[4(y)] < Var,(x)

Proof:

We will give only the proof for the case where the distribution of (X, y) is absolutely

continuous.

Let f,,(x,y) denote the joint density function of X and Y.
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f, (x) is the density function of X and
f, (y) is the density function of Y.

To show that E[¢(y)] = @

o0

Consider, ¢(y)=E(X|Y =y)= _[x fy v (X, y)dx

Now ,

Next to show that
Var, [4(y)] < Var, (x)

Consider, Var,(x) = E(x—6)°

= E(x—g(y)+g(y)-0)

= E(x—g(y) + E(g(y)-0) +2E[(x—g(y))(g(y)-6)] (1)

Consider,

E[(x—gP(y)-0)] = | [(x=Ay)By)-0) 1y (X1 y) gy (y)cy

- T (¢(y)—6’){ T(x—¢(y)) Fa (1 y)dX} gy (y)dy

—00

o0

. T (¢(y)—9){ _Tx Fr (X1 y)dx— [4(y) fy (x] y)dX} g, (y)dy

—00
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0

= | (¢(y)—9){ E,(X |Y)—¢(y)_]o P (x| y)dX} gy (y)dy

—00

= [6(y)-OLE, (X 1Y)-4(y) ] g, (v)ay

- T (@(y)-0)[4(y)-4(y) ] 9, (y)ay

= 0 —(2)

Substitute the Eqgn. (2) in Eqgn. (1), we get
Var,(x) = E(x=g(y)) +V,(¢(y))+0

= Var,(¢(y) )=Var,(x)-E(x—g(y)f
Var, (4(y))< Var, ()

Hence proved.

Theorem 8: LEHMANN-SCHEFFE
Statement:

If T(X) is a complete sufficient statistic and W(X) is an unbiased estimator of z(6),
then ¢(T)=EW /T) is an UMVUE of »(@). Furthermore ¢(T )is the unique UMVUE in the
sense that if T* is any other UMVUE, then P(4(T)=T*)=1 V 0¢0O.

Proof:

Let W be any unbiased estimator of 7(6)
Then by Rao - blackwell theorem, #(T)=E(W /T) is such that Var,(4(T))<Var,(W) Vv &
Let W* be any other unbiased estimator and
¢*(T) = EW*/T] then

Ey[#(T)-¢*(T)]=0 vo
And by the definition of completeness of T, it follows that,

P [p(T)=p*(T)] =1 v 0
Hence , ¢(T )is the unique UMVUE.
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Definition 12: CONSISTENCY

An estimator T, =T(x,,X,,...,X,) based on a random sample of size n is said to be
consistent estimator of »(@) V@e® if T, converges to y(@)in probability (i.e)
T,——>7(0) as n—oo. In other words T,is a consistent estimator of »(6) if for every
£ >0, n>0there exist a positive integer n which is > m such that

P[T,-7(6) <] 51 asn—sx VOO
=P[T,-70)<e]>1-n  V(n=m)

where m is some very large value of n.
Remarks:

If X.,X,,....X, is a random sample from population with finite mean E(x, )= <o,

then by Khinchin’s weak law of large number we have

X, =%2Xi—P—>E(Xi)=,u as N — oo

Hence sample mean ()T n) is always a consistent estimator of population mean (z).
Theorem 9: INVARIANCE PROPERTY OF CONSISTENT ESTIMATOR
Statement:

If T, is a consistent estimator of y(8) and w(»(@))is continuous function of »(@) then (T, )

is a consistent estimator of (y(8)).
Proof:

Since T, is a consistent estimator of »(6)

(ie) T,—L>7(0) asn—oow
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Also for every £ >0, 7> 0 there exist a positive integer n>m such that

P[T,-7(0) <¢]>1-7  v(n=m) (1)

Since y/(.)is a continuous for every & >0 however small, there exist a positive number &, such
that

lw(T,)-yw((0))| < & whenever |T,—#(0)] <& (i) |T,-x(0)| <&

= [)-w(r0)| < & ~(2)

For two events A and B if A= B then

AcB = P(A)<P(B) (or)

P(B)> P(B) —(3)

From Equation 2 and 3, we get

Pllw(T,)-w((0)|< 2] =P[|T, -1(6) <]
Pllw(T,)- '//( ©)|<&] 21-7 v(=m)
= y(T,)—>

- w(T,) is a consistent estimator of y(y(8))

n

w(y(0)) as n— o

Theorem 10: SUFFICIENT CONDITION FOR CONSISTENCY

Statement:

Let {T,} be a sequence of estimator such that for all 6 ¢ ©
1. E,(T,)>¥(0) as n—>w
2. Var,(T,)>0 as n—> o

Then T, is a consistent estimator of ¥(@).
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Proof:

To prove that, T, is a consistent estimator of (6)
(i.e) T, ——>y(0)as n—>oo
(i.e) PHTn —7/(6’) < g] >1-n v (n=m)

where & and 7 are arbitrarily small positive numbers and m is some large value of n.

Applying Chebyshev’s inequality to the statistic T, we get,
Var(T,)

52

P[|T,-E,(T,)] <6]>1

We have ,
|Tn - 7(9] = [|Tn _Ee(Tn)+E9(Tn)_7(9)|]

<|T,—E,(T,)| + | E,(T,)-(0)|

Now,

IT,-E,(T) <6 = |T,-10)|<5+|E(T,)-»6)

Since for two events A and B if A=B then

AcB = P(A)<P(B) or P(B)>P(A)

P{|T, —1(0)| <5 +|E,(T,)-7(0)|} > P{T, —E6(T,) < 5}

= P{|T, - 7(0)|< 6 +|E,(T,)-7(0)|} 1—\/‘5‘;9—;“) (1)

Given, E,(T.) > 7(0) VOO asn—w

Hence for every ¢, >0 there exists a particular positive integer n> n0(51)such that

[E(T)-70) <8 n=ny(s) —(2)
Also given Var,(T,) >0 as n— o
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Var, (T, )

< Y n=n'
5, n n no(77)

where 7 is arbitrarily small positive number.
Substituting from eqn 2 and 3 in eqn 1 we get,

P(|T, -1(6)| <5+5] =1-n , n=m(5,,7)
P[|T,-70)<¢] 21-7 , n>m
where m=max(n, , n',) and e=56+0, >0

=T, —F>y(0) a now

=~ T, is a consistent estimator of (@)
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UNIT-II

In the previous chapter, we have discussed different optimum properties of good point
estimators, viz. Unbiasedness, minimum variance, sufficiency, efficiency and consistency. In
this chapter, we shall discuss different methods of point estimation which are expected to
yield estimators enjoying some of these important properties. Also we shall discuss the
confidence interval for proportions, mean(s), variance(s) based on chi-square, Student’s t, F

and normal distributions.

2.1 METHODS OF ESTIMATION:

There are several methods in estimation theory such as

Method of maximum likelihood estimation
Method of moments

Method of least square

Method of minimum variance

Method of minimum chi-square

o gk~ wnE

Method of inverse probability

METHOD OF MAXIMUM LIKELIHOOD ESTIMATION:

Let X,,X,,....x,be a random sample of size n from population with density function f(x;8)
then the likelihood function of the sample values x,, X, ,...,X, denoted by L = L(@) is their joint

density function given by

L=f(x;0)f(x,;0)..f(x,;0)

L:ﬁ (x,:0) (1)

L gives the relative likelihood that the random variables assume a particular set of values

X, X,,...,X, L becomes a function of a variable . The principle of maximum likelihood

n

consist in finding an estimator for the unknown parameter 6 = (4, ,6, ,...,6, ) which maximize



the likelihood function L(H) for variations in parameters (i.e) we want to find

é:(é'l,éz,...,ék)sothat

L@)> L) veoco

(i.e) L() supL VOecO

Thus if there exist a function é:é(xl,xz,...,xn) of the sample values which maximise L for

variations in @. Then @is to be taken as an estimator of . Therefore @ is called maximum
likelihood estimator. Thus @ is the solution if any of

2
ﬁ=0 and ag';

<0 ---(3)

Since L>0 and logL is a non decreasing function of L. L and logL attain their extreme

value (maxima or minima) at the same value of 4. Therefore the Equation 2, can be rewritten

as

2
16L_0 :>alogL:0 and 0°log L

2= <0
L o@ 06 06?

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATOR:

1. Maximum likelihood estimators are consistent.

2. Any consistent solution of the likelihood equation provides a maximum of the
likelihood with probability tends to unity as the sample size tends to unity.

3. Asymptotic normality of MLE: A consistent solution of the likelihood equation is

asymptotically normally distributed about the true value of 6, (i.e) 6 is asymptotically

N(Qo,i] as n— o where Var(é): 1 = 1
16,)

1(0) _E[aaz - Lj

4. If MLE exist if it is the most efficient in the class of such estimators.

5. If a sufficient estimator exist it is a function of MLE.



6. If for a given population with pdf f(x:8) and MVBE T exist for @ then the likelihood

equation will have a solution equal to the estimator T.
7. Invariance property of MLE: If T is a MLE of @and y(0)is a one-to-one function of

0 then /(T )is a MLE of y(0).

Example 1: In a random sample from normal population N(,u,az) to find the maximum

likelihood estimator for the first case (i) «when o%is known (ii) o® when u is known.

Solution:

The density function of normal distribution is

f(X:,u,O'Z): 1 g 2o’ (nf ;—0< X, g<w,0>0

Likelihood function is

n

L=T ] f(x :0?)

i=1

1 n —l/ZO'ZZn:(Xi—y)Z
- e i=1

2z

1 n/2 —l/ZO'ZZn:(Xi—y)Z
e i=1

Case(i): when o?is known to estimate u

olog L -2 &
az = 20_2 Z_l‘,(xi _:u)(_l)



62I0g2;L —_21 <0

ou o
olog L 1

=0 = =) (X,—u)=0
» Gzé(. 1)

. Maximum likelihood estimator for z when o?is known is a sample mean X .

Case(ii) : when u is known to estimate o>

Olog L -n 1 <
: = + 42(' i

oc? 206 2o =

O logl _ —_n(—_ﬂ _Lsi(xi )y

oot 2 \o

Olog L -n 1
g =0 = —+FZ(Xi—ﬂ)2:O

—not+ 3 (x - uf
= =L =0
20



n

Z(Xi - ,U)z

. Maximum likelihood function for o*when z is known is =

Example 2: In a random sample from Poisson distribution with parameter A. To find

maximum likelihood estimator for A .

Solution:
The Probability density function is

-4 9x
P(X =x) =& A =01 450
X!

The likelihood function is

e_nﬂ ﬂ/i:l

ﬁxi!
i=1

X

L

logL =—-nA +log A =4 —log [ [x!
i=1

=-ni +Zn:xi log A - anlog X;!
i=1 i=1

D%
olog L =

oA
X.
d%log L ,Z:l: !
Py
D%
gl _y o neE o
oA A
D%
Q=
n

. - ] . 2X
Maximum likelihood estimator for A4 is T‘ =X



Example 3: In a random sample from exponential distribution with parameter &, find

maximum likelihood estimator for 6.
Solution:

The Probability density function is,

f(x;0) :%e‘“g ; 0<x<ow, >0

The likelihood function is

. :[lj efglxile
0

n

logL = —nlog @ — =

n

alogL -n, 1
X;
060 0 92,2 '

d*logL  n 1
-2y <0
892 92 4;

n

olog L -n, 1
00 6 ez,zx'_o

Maximum likelihood estimator for & is the sample mean X

2.2 METHOD OF MOMENTS:

This method was discovered by Karl Pearson. Let f(x:6,,6,.,...,6, )be the density
function of the parent population with k parameters 6,,6,,....6, . If ', denotes the rth moment

about origin then



o' =Jxr f(x:0,6,,...0)dx Vvr=12..k -1

In general ', 4",....,0¢," Will be a function of the parameters 6,6,,....6,. Let

X.

Vi=12,..,n be a random sample of size n from the given population . The method of
moments consist in solving the k equations 1 for 4,,6,,...,6, interms of ', u,',...,14," and
replacing these moments /', for all r = 1,2,..,k by the sample moments.
For example, 6, =6,(i' i1, ,....01.")

=6,(m'm,,..m')  Vi=12..k

where m." is the ith moment about the origin in the sample. Then by the method of moments

A~

6,,0,,...,6, are the required estimators of 6,,0,,...,6, respectively.

Example 4: Let X has the following distribution function

X=X 0 112

PX=x)| 1-9-6?%| 0 | 9*

Obtain the moment estimate of &, if in a sample of 25 observations there were 10 one’s an 4

two’s.

Solutions:

From the given information,

X=x| P,(X =x) | Frequency(f)

0 |1-0-0* |11

1 0 10
2 6? 4
Total 25

Hy= E(X) = 0(1-0-6%) +1(0) +2(6*)



= 60+26°

,_ xfx 18
m,= — =—
N 25

18

=m. = 0+20%= —
Hi 1 o5

= 2560 +500°-18=0
=500°+2560-18=0
= (1060 +9)(560-2)=0
= 6=-0.9 and 6=0.41

Therefore, the moment estimate of §=0.41.

Example 5: A random variable X takes the values 0,1,2 with respective probabilities

i+1 1—2 ,i+g 1—£ ,i+1_—a 1—2 where N is a known number and
AN 2 N/ 2N 2 N/ 4N 2 N

ao and @are unknown parameters. If 75 independent observations on X give the values 0,1,2

with frequencies 27,38,10 respectively. To estimate, « and & by using method of moments.

Solution:

From the given information,

X=x P,(X =x) Frequency(f)
0 6 1 J2 27
—_ | 1-—
AN 2 N
1 0 «a 6 38
-+ — 1__
2N 2 N
2 i -« 1 ﬁ 10
AN 2 N
Total 75




u =EX) = O(i+E(l—£j}+l(i+g[l—ﬁn+2(
4N 2 N 2N 2 N

R e
=[S

6 ( 9}(a+2—2aj
— 1__
N N 2

i+g[1_£j +4 i+_1_a(l_£j
2N 2 N 4N 2 N
_ 0 a[ 49) N—Gj
= —+—|1-— |+

2N 2 N N
9+29+3(1—ﬁj+2(1—a)(1—£j
2N 2 N N

ﬁ+(1—£j{g+2—205}
2N NJL2

ﬁ+4(1—a)[
4N 2

0 1-«
_+—
4N 2

g

0

N

)



30 ( 9){a+4—4a}
= bR [ | [ ———
2N N 2

360 0\ 4-3x
= | 1-—
2N ( N}[ 2 }

. ﬁ{l_ﬁj{g_?’_ﬂ
2N NS 2

30 5 3aa 20 3ba

_+ _
2N 2 N 2N

m',= X =7i5[0(27)+1(38)+2(1o)]

_ 58
75
1 78
= —10%(27)+1%(38)+4(10 = —
m,= [er) (@) o] = L
'=m'. = ]__z[ _i) —@
#i= T 2""N) T 75
z(l_ﬁj ;.58
27 N 75
Z(l_ﬁj 1 (1)
27 N) 75



i+3(£j — 2_7_8
2N 75 75

e 17 150-78

_ 44— =

2(75) 25 75
9+17(6) 72
150 75
0+102 _ 72
150 75

0+102 =144

0 =42

Substituting & =42 in Equation 1,we get

af,_42) _17
2 75 75

a(75-42) 17
2\ 75 75

33a =34

. 34
a=—

33

Example 6: To find the moment estimator of Bernoulli population with parameter p.

Solution:

The density function of Bernoulli distribution is



p(x =x)= /P4 i x=0(N1,0<p<l, p+q=1
0 - otherwise

Raw moment of Bernoulli distribution

Same moment , m = =— =X

A

The moment estimator is x4',= m|, = p=X

Example 7: To find the moment estimator of Poisson population with parameter 4 .

Solution:
et
o x=12, A>0

P(X=x)=p(X)=1 x

0 : otherwise
Since, ', = 4

D%

m',= I:ln =X

Example 8: To find the moment estimator of Exponential distribution with parameter 6.

Solution:

fx)= 0e* ;0>0, x=01,...



Example 9: To find the moment estimator of Normal distribution with parameter x and o2

Solution:

(0L 77

; —o<X,u<w,o0>0

o217
Since, u',= u
n
D%
m'.= =1 _ X
! n

ﬂzlzﬂ2+02

2

[ 1 2 2_2X|
U= m2 U +o0 =——

n

2

2 XX, 2

o = N -U

2 XXt

= 2= |_X2

n

2.3 METHOD OF LEAST SQUARES

For fitting a curve of the form

y=f(x; bo,by,...) ---(1)

where Dbg,b;,... are unknown parameters, to the observed sample observations (xi,y1),

(X2,¥2),..., (Xn,Yn)by the principle of least squares, we have to minimise



Z{yi - f(xi;bo'bvbz'---)}z --(2)

With respect to the parameters bg,b;,... .

This is the same as to minimise the sum of squares of the distances of the observed points
from the curve measured in the direction of the y-axis.

In case Equation 1 is the regression equation of Y on X, X1,X2,...,.Xn may be taken as observed
values of the independent wvariable X, and Y is dependent variable and

e =Y - f(xi;bo,bl,bz,...) are the residuals or errors. If we assume that the errors are independently

normally distributed with zero means and constant variance 092, then the joint probability density of

the errors, or the likelihood function, is given by

L= Const.exp{— 2(172 >y f(xi;bo,bl,bz,._,)}z}

e i

Hence maximising L amounts to minimizing

Z{yi - f(xi;bo’bpbz!---)}z

In case e;’s are independently normally distributed with zero means and variances Gezi,

maximizing L will amount to minimizing

>l by

Which is the sum of squares of residuals each weighted by the inverse of its variance. This
may be called the weighted least-squares method. In general, we may consider the regression
of Y on X1,X5,...,Xp and the method of least squares appropriate for this case may be similarly
deduced.

The least-squares estimators do not have any optimum properties even asymptotically.
However, in linear estimation this method provides good estimators in small samples.When
we are estimating f(x;;b,,b,,b,,...) as a linear function of the parameters b,,b,,b,,..., the x;’s
being known given values, the least squares estimators obtained as linear functions of the Y’s
will be minimum-variance unbiased estimators.

Example 10: 1. consider f(x) =D, +bx+b,x* +...+b x*,where n > k +1.

Here we have to minimise

Z(yi —by —byx —b,x} —..— bkxik)2 :



with respect to b,,b;,b,,...b, . Differentiating this with respect to by,b,b,,....b, , we have k+1
equations, called the normal equations, given by

D xle =0 (j=012,..k)or

inj Y, = bOinj +bleij+l +...+kaxij*" (j=012,...k)

Hence b,,b,,b,,...,b, would be obtained as linear functions of the y’s.

Example 11: Consider the multiple linear regression Y =b, +b, X, +b, X, +...+b, X

Here we have to minimize Z[yi — by —byx; —b,x;; —...—bpxpi]2 with respect to by,b,b,,...b,.

The Normal equations are

Zei:O

and > x;e =0 (for j=012,...,p)

or

Zyi =nb0+b12x1i +b22x2i +...+prxpi
and DXy, =0y D X+ BT xG X +0, DX Xy b DX X (1 =01,2,...,K)

and hence by,b;,b,,....o, may be obtained as linear functions of yi’s and of the given known

values x’s.

Definition 1: CONFIDENCE INTERVAL AND LIMITS

Let X,,X,,....X, be a random sample from the density f(.,8). Let T,=t,(x,X,,....x,) and

n
T,=t,(X,X,,....x,) be a two statistic satisfying the condition of T, <T,for which
P, [T1 <r(0)<T2]Ey where y does not depend on &, then the random interval part 7(0), y is
called confidence coefficient and T, and T, are called lower and upper confidence limits respectively
for 7(6). A value t,,t, of the random interval T, and T, is also called a 100 y % confidence interval

for 7(8).

Definition 2: ONE SIDED CONFIDENCE INTERVAL

Let X;,X,,...,X, be a random sample from the density f(. , 6?). Let T, =t (xl, Xyye0,X )be a statistic

n

for which P,[T, <z(@)]=ythen T,is called a one sided lower confidence for 7(6). Similarly,



T,=t,(X,X,,....x, )be a statistic for which P,[z(8)<T,]=ythen T, is called a one sided upper

confidence for 7(8).

CONSTRUCTION OF CONFIDENCE INTERVAL FOR POPULATION MEAN (when the
variance is known)

Let X;,X,,...,X, be a random sample from the normal population with mean x and variance

o%. We take a large sample from a normal population with mean  and SD o . Then

- X-Hu
Z_G/\/ﬁ N(O’)

To claim, 100(1—a % confidence interval for the level of significance at 5% from the normal

probability table
P[-1.96 < Z <1.96] = 0.95

X—pu
= P|-1.96< <1.96 | =0.95
oln }

= P| Xx-1.96

(o2

in

< 1<1.96-Z +>‘<} =0.95

N

x+1.96-Zare 95% confidence limit for the unknown parameter xand the interval

Jn

(X—l.%i >?+1.96£j is called the 95% confidence interval for . Also to construct

Jn Jn
100(1— a)% confidence interval for the level of significance at 1% from the normal probability table

P[-2.58 <Z <2.58] = 0.99

- P{—Z.SSS X—H sz.ss} ~0.99
ol

5

- P{)‘(—Z.58i <u< x+258-Z } =0.99

Jn Jn

- o . - )
X+2.58—are 99% confidence Ilimit for the unknown parameter wand the interval
n

Jn’ Jn

Ingeneral, P(-z, <z<2,)=1-a

()‘( 2582 x4+ 2.58£j is called the 95% confidence interval for u .



: , o o o .
Hence the confidence interval for uis (x -2,—F7— , X+1, —) where zis the standard normal
n n

value for given level of « .

CONFIDENCE INTERVAL FOR POPULATION MEAN (when variance is unknown)

Let X;,X,,...,X, be a random sample from the normal population with mean x and variance o*. We

. i 1 . X —
know that population variance s?=——3(x,—X)*. A statistic t=— ‘-~

t
n-1 s//n (")

100(1— & J% confidence limit for 4 is given by

Hence

P(t|<t,)=1-a
'y

|s/</n } e

:P_i—ta(%j <u SXH“[%H —1-a

where t,, is a tabulated value of student t for (n-1) degrees of freedom at significance level « . Hence

=P

required confidence interval for population mean u is {)‘(—ta(ij : )‘(+ta(in.

Jn Jn

CONSTRUCTION OF CONFIDENCE INTERVAL FOR POPULATION VARIANCE (when
mean is known)

Let X;,X,,...,X, be a random sample from the normal population with mean s and variance
o’ The statistic

3(x, —u) ns?
(0_2 ) =O'2 ~Zz(n)

where s° = %Z(xi —u)

Let y°, atthe value of y?such that



0

Plv*>22.] = [P(r*)dz?
Zza

where P(;(z) is the probability density function of y*distribution with n degrees of freedom and

significance level « . Thus the required confidence interval is given by

P[ZZH/Z SZZ < Zzalz]zl_a

ns’
2 2
=P X S?S X =l-a

2 2

ns ns
Now, —<y°%, =——<o’
o Z al2
2 2
ns ns
2 2

X 1an 2 vy = 2 20

o Z 1-al?2

2 >

ns’ ns’
Then, P <ol<— =l-«
Z al2 Z 1-al2

where ., and y° ., are obtained from y’table with n degrees of freedom and significant level

.

CONSTRUCTION OF CONFIDENCE INTERVAL FOR POPULATION VARIANCE (When
Mean is Unknown)
Let X;,X,,...,X, be a random sample from the normal population with mean x and variance

2
O .

o 2X =X
Here the statistic = ~X

where s° :%Z(x. —x)

Let y°, as the value of y?such that
Plv> 2. ]= TP(;cz)dzz

7,

where P(;(Z) is the probability density function with (n-1) degrees of freedom and significance level
a .Thus the required confidence interval is given by

P[Zzl—alz SZZ < Zza/z]:l_a

2

n
= P|:Zz1a/2 S% < /’{/2(1/2:| =l-a



2
:P{ 21 <o 1 }:1—05
l 1-al2 ns /1/ al?

where y%., and y° ., are obtained from y°table with (n-1) degrees of freedom and significant

level o .

CONSTRUCTION OF CONFIDENCE INTERVAL FOR DIFFERENCE OF MEANS OF
TWO INDEPENDENT NORMAL POPULATION WHEN VARIANCE IS KNOWN

Let X;,X,,....X, ~N(yx ,azx)and yl,y2,...,yn~N(uy,o-2y).The statistic

Z:)_(1_)_(2_(,u1_,u2)
2 2
o', o)
n n,

The required confidence interval for given level of significance

Pl-2,,<2<z,,,] =1-«a

2 —
=P|l-z,,< - - Z,,| =l-«a

2 2 2 2
(o2 o, — — o, o, _
= P[_Za/z —t— = Xl_xz_(,ul_;uz)S Zarz +_} =l-a

n n, n, n,
2 2 2 2
o o o o c o o o
= Pl (X =%) =7, +—= < (ul—yz) < (X —-X,)+2,, Ly~ 2| =l-¢«
n n, n, n,

Hence the difference of population mean confidence interval for the given level of significance « is

2

2
o,

g ] and the confidence limit

2 2

. oo o o o
given by | (X, —X,)—2,,,.[—+ v (K =X) 2,
n, n, n,

2

is



CONSTRUCTION OF CONFIDENCE INTERVAL FOR DIFFERENCE OF MEANS OF
TWO INDEPENDENT NORMAL POPULATION WHEN VARIANCE IS UNKNOWN

X XoroXo ~N(2t ,5%) YL Y, ,...,yn~N(yy ,szy)

_— X —X, —(1 —
The statistic z=":—-2 (ﬂl ﬂz)

The required confidence interval for given level of significance

P[_ Z0:/2 <z SZot/Z] =l-a

Hence the difference of population mean confidence interval for the given level of significance « is

given by (()‘(l —X,)—2,, J and the confidence limit is

CONSTRUCTION OF CONFIDENCE INTERVAL FOR DIFFERENCE OF MEANS OF
TWO SAMPLES OF NORMAL POPULATION WITH COMMON VARIANCE (COMMON
VARIANCE IS UNKNOWN)

Let X, X,,...,X,, be a random sample from the normal population with mean g4 and variance
o’ . Let Y1, Yy, Y, bearandom sample from the normal population with mean x,and variance

o?,. Assume that the two samples are independent to each other. Let y —Xis normally distributed



2 2 _ g\
with mean s, — 1, and variance 2,2 (ie) (y-X)~N (/JZ — 1 2+G—j. M is chi-
m n m n
square distributed with (m-1) degrees of freedom

3(x, —x)*

- ~ 7%y and
2(y; - y)
(v, zy) -
(o2
>(x —x) 2y, -y)
(.62 ., (y.az e

The statistic
Q= (y_)_()_(ﬂz _/11) ~F

(1 1) (m+n-2)
—+=15s,
m n) P

Thus the confidence interval for difference of means for two samples of normal population with the

given level of significance «

= l{(y—x)—ta,2 (£+1)spz <y — )< (y=%)+t,,, (l+1j.s } =l-«a

m n m n) P

Hence 100 (1— o % confidence interval is

- o 1 1 oo 1 1 . -
((y—x)—ta,2 (EJrEj'SPZ (Y=%)+t,, /(EJFE}SPZJ and the confidence limits are

Suppose the samples are dependent on each other with common variance. Let
D =y,—%x Vi=12,...,nthen D,D,,...,D, are independently identically distributed random

variables with  common normal distribution having mean g =, — g and  variance

2 2
o’y =0, +0,” -2p0c,0,



100 1 a)%confldencelnterval for uy =, — 14 1S

= \2
D D +1,/, M where t,,, is the a/2th quartile point of the
“n(n-1) n(n—1)

t-distribution with (n-1) degrees of freedom.



UNIT-111

In the previous chapter, we have discussed methods of point estimation which are
expected to yield estimators enjoying some of these important properties. Also we have
discussed the confidence interval for proportions, mean(s), variance(s) based on chi-square,
Student’s t, F and Normal Distributions. In this chapter, we shall discuss the statistical
hypothesis. A statistical hypothesis is some statement or assertion about a population or
equivalently about the probability distribution characterising a population which we want to
verify on the basis of information available from a sample.

Simple and Composite Hypothesis:

When a hypothesis specifies all the parameters of a probability distribution, it is
known as simple hypothesis. The hypothesis specifies all the parameters, i.e p and ¢ of a
normal distribution.

Example: The random variable x is distributed normally with mean p=0 & SD=1 is a
simple hypothesis. The hypothesis specifies all the parameters (u & o) of a normal
distributions.

If the hypothesis specific only some of the parameters of the probability distribution, it
is known as composite hypothesis. In the above example if only the p is specified or only the

o is specified it is a composite hypothesis.

Test of Statistical Hypothesis:
A test of statistical hypothesis is a two action decision problem after the experimental
sample value has been obtained. The two action being acceptance rejection of the hypothesis

under consideration.

Null Hypothesis: In hypothesis, testing a decision maker should not be motivated by
prospects of profit or loss resulting from the acceptance or rejection of the hypothesis, ie.,
neutral or general statement about the population parameter is known as null hypothesis.

Alternative Hypothesis: it is desirable to reject the hypothesis based on statistical test in
other words, the general statement which is opposite to be null hypothesis stated is known as
alternative hypothesis.



Critical Region: let x;,X,,...,X, be the sample observation denoted by 0. We specify some

region of the n dimensional space and see whether this point lies within this region or outside

this region. We divide the whole sample space into two disjoint regions w and W(s —w).

The null hypothesis H, is rejected if the observed sample point falls in W and if it
falls in we accept H, i.e the region of rejection of H, when H, is true is that region of the
outcome set where H, is rejected. If the sample point falls in that region then it is called

critical region.

Type | Error: rejecting the null hypothesis H, when is true is called type | error.
Type Il Error: the error of accepting H,when it false is called type Il error.

Level of Significance: probability of type I error is known as level of significance of test. It is
also called as size of the critical region.

a = pltype | error |
a=p[xew/H,]

a:jLde

where L, is the likelihood function of the sample observation under H,.

Power of the Test: probability of type Il error is denoted by £ . 1— 4 is called power
function of the hypothesis against the alternative H, . The value of the power function at a
parameter point is called power of the test at that point (i.e).

S = pltype Il error |

B=p[xew/H,]

ﬂ:ledx

We have,

Ilex + ledx =1

JLdc+ p=1



Ilex =1-p5

w

STEPS INVOLVED IN TESTING OF HYPOTHESIS:

e Explicit knowledge of the nature of population distribution and the parameter of
interest (i.e) the parameter about which the hypothesis are setup

e Setting up the null hypothesis H, and the alternative hypothesis H, in terms of the

range of parameter values each ones embodies.
e The choice of a suitable statistic called the test statistic which will be reflecting upon

the probability of H, and H,.
e Partitioning the set of possible values of the test statistic into two disjoint sets w and
w and framing the following test.
o Reject H, if the value of test statistic falls in w (critical region)
o Accept H, iffallsin W (acceptance region)

e After framing the above obtain experimental sample observation, compute the

appropriate test statistic and take actions accordingly.

Example 1: A single observation is taken from Poisson population to test H, : 1 =2 against
H, : 1 = 3based on the critical region w = {x: x >4} .find &, 8 and power of the test.

Solution:
The probability distribution of population is given by,

p(x) = :x=01....A>0

Giventhat H,:1=2
H, :4=3
Critical region:  w = {x: x> 4}
Acceptance region: W = {x: x < 4}
a = pltype | error ]
a=p[xew/H,]



x=4 X
_ie—ZZX ie—sz
x=0 X! x=3 X'
3 -2 X
e 2
=1-
= Xl

_2{20 2t 22 23}
=l-e| —+—+—+—
o un 22 3

=1—e2{1+2+2+§}

=1- 0.1353(§j
3

a =0.1431
B = pltype I error |
p= p[xev_v/ Hl]

3 e733>(
_x:O x!
3 3 3 3
=e‘{—+—+—+—}
o 1 21 3
:0.0498[1+3+g+£}
2 6
=0.0498*13
L =0.6474

Power of the test=1- £
=1-0.6474=0.3256

Example 2: A single observation is taken from binomial population to test H,:p=1/2

against H, : p=3/4 based on the critical region w = {x DX > 4} where x denotes the number

of heads when the coin is tossed 6 times.

Solution:



The probability mass function of binomial distribution is given by
p(x)= [n]pxq” x=01..n ;p+q=1
X
Giventhat H, : p=1/2
H,:p=3/4
Critical region: W = {x: x < 4}
Acceptance region: W = {x: x > 4}

a = pltype I error |= p[xew/H, ]

= 6C5(% 5[31 + 606(36(30 =0.0938 + 0.0156
L= :[typell error | = p[xew/H, |
AHHIG
3w =

1 3.1 pw9 1 0k271 811

=% 4 6*S_—415* 42

4096 41024 16 256 64 64 256 16
=0.00024+ 0.00439 + 0.03296 + 0.13184 + 0.29663 =0.4661
Power of the test = 1- £=1-0.4661=0.5339

Example 3: A single observation is taken from exponential family to test H, : 6 =2 against

H, : 0 =1 and agreed to reject H, when x >1 . Find «, 8 and power of the test.

Solution:

The probability density function of exponential distribution is given by,



f(x)=™* ;60>0, 0<x<w
Giventhat H,:0=2
H,:0=1
Critical region: ~ w={x:x>1}
Acceptance region: W = {x: x <1}

a = pltype I error |= p[xew/H, ]

:Taee‘dx
1

AL 4

—0 -2

a=-e"+e
=0.1353
B = pltype Il error | = p[xswW/H, ]

=Téb‘9‘dx
1

pf=—e"+e”°
B =0.6321
Power of the test=1— S
=1-0.6321=0.3679

Example 4: A single observation is taken from the probability distribution f(x,H):%
0<x<6;0>0totest H,:0 =1 against H, : 8 =2 and agreed to reject H, when x>0.5 .

Find «, # and power of the test.

Solution:

The probability density function of uniform distribution is given by



Giventhat H, :0=1 , H,:60=2
Critical region: ~ w = {x: x > 0.5}
Acceptance region: W = {x: x < 0.5}
a = pltype I error |= p[xew/H, ]
a=p[x>05/60=1]
1
05 9
a=[x}, =1-05=05
B = pltype Il error | = p[xew/H, ]
-1
059

1 0.5
p=1ihe =% =025

Power of the test=1— S

=1-0.25=0.75
Example 5: f(x)=(1+6)x’ ;0<x<1. A single observation is taken from the given
distribution. Find «, # and power of the test if the test is H, : & =1 against H, : 6 = 2 based

on the critical region when x <0.5.

Solution:
Giventhat H,:60=1; H, :60=2
Critical region: w = {x: x < 0.5}
a = pltype I error |= p[xew/H, ]

_ 0.5 9
_L (L+6)x’ dx

_ 0.5 1
—J; (L+2)x"dx

2 0.5
a= Z{X—}

2 0
a=0+(05)

a =0.25
B = pltype Nl error | = p[xeW/H, |



=I: (L+2)x*dx  Acceptance region: W = {x: x > 0.5}

5

=1-0.125
B=0.875
Power of the test=1— S
=1-0.875=0.125

Example 6: A single observation is taken from the f(x,0) =™ :0>0;0<x<o0 to test

H, :60 =2 against H, : @ =1. Find the best critical region of single 0.05.

Solution:
Given that f(x,0)= 6"
H,:0=2
H, :60=1
a =0.05
a = pltype | error |
Let critical region = {x:x>x,} where x, is a constant which is to be estimated let the
probability density function under H, is given by
f(x,6,)=2e" ;x>0
Similarly the probability density function under H, is given by
f(x,6,)=e™;x>0
a = pltype l error |= p[x: x> x, /H, ]

0.05=[" (x,6,)

= ["2e2*dx

Xo

= 2|:i e—2x:|
2 X

0

—2X%g

=—e” +e

—2X%g

=€



Taking log on both sides,
“log 0.05=-2 x,
-2.9957=-2x,
X, =1.4979
The required critical region of sixe 0.05 is w = {x : x >1.4979} =w = {x : x > 1.5}
Acceptance region: W = {x: x <1.5}
B = pltype Nl error | = p[xeW/H, ]
1.5
=| edx
0
15
=[-e>}
—_e15 4 g0
=-0.2331+1
5 =0.7769
Power of the test=1-

=1-0.7769=0.2231
Case IlI:

Critical region: w = {x: x <X, |

a = pltype I error |= p[x: x < x, /H, ]

jox" 2e 2*dx=0.05

Z{ie“} ~0.05
2 0

e’ —e™? =0.05
—e % =-0.95
e =0.95
Taking log on both sides,
log 0.95=-2 x,
-0.0513=-2 x,

X, = 0.0257

The required critical region of sixe 0.05 is w = {x : x <0.0257} =w = {x : x < 0.026}



Acceptance region: W = {x: x > 0.026}

B = pltype ll error | = p[x: xsW/H,]

=J?e‘xdx

.026

= [_ e ]:026
—_ g 400
£ =0+0.9743
£ =0.9743
Power of the test = 1— 3

=1-0.9743=0.0257
In the given example we have possible critical region of size 0.05

Size Critical region Power of test
005 w={x:x>15}  0.2231
0.05 w={x:x<0.026] 0.0257

We select the first critical region because it has maximum power of the test.
Randomized Tests

It will be recalled that for hypothesis testing problems involving discrete distributions,
it is usually not possible to choose a critical region consisting of realizable values of the
statistic of size exactly a , where « is some prescribed value.

In the hypothesis testing procedures considered so far, the sample space of
observations X is partitioned into 2 regions, C and C (its complement). We can express this

in terms of a function y as follows. Let
w(x)=P(reject H, when X = x)
For a non-randomized test with rejection region C, y for a region C is just its indicator

function. That is,
(X) e if xeC
Wlo it xec
We will extend this, to allow for some different action (other that ““reject" and ““accept") if the

outcome X is on the boundary of the critical region. The other action effectively is performing



an auxiliary experiment such as tossing a coin with P(heads) =p; if heads results, reject Hp ;
if tails results, Hy is accepted. The value of p is chosen to make the P(rejecting Ho) the desired
value. More formally, for a test with critical region C and a value of X= X, on the boundary,

we may define

1 if xeC

‘//(X): p if x=X,
0 if x#x, and x¢C

where p (0<p<1) is appropriately chosen.
Best Critical Region and Most Powerful Test:

A critical region w of size « for testing H,against H, is said to be best critical
region (BCR) if w " is any other critical of same size « for which power of w>  power of
w’ (i.e).

1-p[xeW/H, ]2 1- p|xeW" /H,] or
plxeW/H,]|> p[ng_v* / Hl]

A statistical test based on best critical region is called most powerful test.
Neymann Pearson’s Fundamental Lemma:

Let X,,X,,...,X, be a random sample from f(x,8)where @ is the unknown parameter.
Let L, and L, be the likelihood functions under H,:6 =46, against

H, : 8 =6, respectively if there exist a critical region w of size « at a constant k such that

L—O <k for pointsinw . Then w is the best critical region of size for testing H, against
1

H,.

Proof:
Let w™ be any other critical region of size « .

a = pltype | error |= size of w

:ILde



a = size of w*

= jLde

o= ILde: ILde

a=[Ldx=[Ldx=0 -emeeeeemees 1)
Power of w =1— 4

=1-[L,dx

:Ilex

Powerof w =1- /4

=1- [Lydx
= ledx

Power of w - Power of w :J L.dx - ledx

L
From the lemma a swand —% <k

I‘1
L, <k L,
JLodx <k [L,dx
fLodx > 1 J LK oo 3)
a k a
Conversely,

cew and L—O >k

I‘l
LL>k L

1

L <o b



~ [ L 2% [ — ()

From (2)

Power of w - Power of w* = Jlex - ledx

w

:I L,dx —I L dx

c

Z% !Lodx + (—%)JLodx [using (3) & (4) ]

c

2% M Lodx — ILde}

>0
Power of w - Power of w* >0

Power of w > Power of w*

W is a best critical region.

Definition 1: A critical region w of size « for testing H,:0 =6, againstH,:0 =6, is
said to be uniformly most powerful critical region if for every value of & =6, the power of
the critical region w must be greater than or equal to the critical region w must be greater

than or equal to power of any other critical regionw”of same size « any test based on

uniformly most powerful critical region is called uniformly most powerful test.

Example 7: Given a random sample x;,X,,...,X, from the distribution with the pdf

f(x,0)=0@ " ;x>0;60>0show that there exist no UMPT for testingH, : 6 = 6, against

H :0%06, .
Solution:

Let x;,X,,...,X, be a random sample from exponential distribution then the likelihood
function is given by

f(x,0)=0@"



Taking log on both sides,

Casel: 6, > 6,

Casell: 6, <6,

0 —Hozn:xi
L _6, e = <k
L]_ n —Glixl B
1€ 7
(%) g 2lo0) <
1

n Iog(%J -3 X; (90 - Hl)s log k

1 i=1

nflog 6, - log 6,]- > x,(§, - §,) < log k

- iszlxi (@,-6.)<1og k- nllog 6, — log 6,]
=6,-6,>0
log 6, —log 6, is a positive quantity

log k —n[log 8, —log 6, ]
00_ 01

n
X 2
i=1

log 6, —log &, is a positive quantity

Sy < log k + nllog 6, —log 6, |

Case I: 6, > 6, then the BCR is given by

= 90_91

DX < o (say)
g A

in 2 “ = 4, (say)




The constant 4, and A, are determined such that
p[in Sﬂl/Ho]za
p[in zﬂleo]za

Note that if x ~ E(@) then 20> X, ~ 17,

p(26> %, )= p[26> %, <204, I1H, | =

p(26> %, )= p[26> %, =202, IH,|=
Using this result,

o203 x < )= bl < )=

Xan = M
Hence the BCR for testing H, : 6 =6, against H,:0=6, (>86,) is given by

W, = {xi 120 X < ;(f_a’Zn}

W, = {xi X Sle—a,anze}
Since W, IS independent of W,, 6, IS UMPCR for
testingH, : @ = 6, againstH, : 0 =6, (>6,) similarly

p[26> %, > 202, |

a= p[;(zzh > ,ul] where —
Hence, BCR for testing H, : 0 =6, against H, :0 =6, (<6,) is given by

W, = {xi 120 % > Zf_mm}

W, = {xi DX z;gf_a’m,zg}
Since W, is independent of w,, 6, is UMPCR for
testingH, : @ = 6, againstH, : 0 =6, (<#6,) similarly. Since the two CR w, and w, are
different there exists no CR of size o which is UMP for H, : 0 =6, against H,: 60+ 6, .

Power of the test:
1- = p[xew, /H, ]

i 1
=p in Sz_e’ﬂflz—a,zn/Hl:|

i 0
=p 2‘%Z:Xi Se_lillza,Zn/Hl}
L 0



0
= p{zzzn < 0—:,112@,2,}

The power of test H for testing H, : 0 = 6, againstH, :0=6, (<86, )is given by.

1- 8 = plxew, I H, ]

i 1
=p in Zz_e’ﬂflz—a,zn/HJ

I 0
=p 2012‘,)9 20_1’;(12a,2n/H1:|

Example 8: show that for a normal distribution with mean 0 and variance — the BCR for

testing H, : o = o, versus H, o =0, is the form > x* <a, for o, >0, and > x* <b,
2
Oy
2

for o, < o, .Show that power of the test of the BCR where o, > o, is F(— e ]
0,

Solution:

Let X;,X,,...,X, be a random sample of size n from normal population with mean 0 and
variance o .

The likelihood function for N(0,& ) is

L, :ﬁ f(xﬂo’o_g):(o_ 21 ﬂ} e_;'zl:[);:]

i=1

The likelihood function for N(0,67 ) is

n 0 (x - 2
L=T] f(xi,O,o-f):(O_zf/g] e‘zg{oﬂ
1

i=1
The best critical region is given by
L <k

L,



Taking log on both sides

Case I: o,.<0,

Critical region is

Where,

Case Il: 00>01

n |og[@} _
Oy

1o 1 1
nllog &, ~ log ao]—ggx?[ —2} <logk

la o 1 1

- | ———|<logk
22X||:O'§ O_12j| g
0-5_01

2

—éxiz[af - )< ogk-nliog &, - b 5, 7

2 2 2, 2
.ZXi .O-O_O-l]g[Ing_nIOQGi"'IOQGo]ZO-l Oy

X 2, 2
N ]<[Iogk—nlogo-l+loggo]20-1 or
;XiGO_Gl—
i=1 O-0+O-1
N2
ZXiGo_GJSC ___________ (1)

Zn:)(iz[ao_GJSC

i=1

YKz =Yy >c
i=1 00_61 i=1
c
C, =
O, O:



v ‘< ¢ :>in$¢1
i=1 GO_G]. i=1
Where, C, = L
Oy O
Case il ,> o
w, = {x, Y x<a } a, is determined so that

[ n
prfSaa/Ho}:a
i-1
S
xi aa
p —2_—2/H0:|:C¥
i=L Og Oy
2 a | _ - 2 2 _ 2
pr <—%|=a X; ~ N(0, o, Jthen X, ~ .
L 0
a
0__0; = Zozz,Zn or a, = Z;,Zn'o-oz
0

Hence BCR for testing H, : 6 = o, against H, :o =0, (<o,) isgiven by

w :{Xi :in Sls,Zn'o-g}

The power of the test is,
1-p= plX&W /H1J

=p| D x’ Saa/Hl}
=

Tx _a
= <2 |H
p 2 O_g 1j|

Oy

zxiz 2
= p 2 S;(oz,n/Hl

Oy




2 2
X
Since under H, ~ 2—2' < X - Hence the power of the test is given by F(G i ] where
0, 1

F() is the distribution function of 7, .

Example 9: Examine whether test critical region exist for testing H,:6 =6, against

H, : 0> 6, for parameter — of the distribution.

f(x,0)= (x1:5)2 1<x<ow

Solution:

Let x,,X,,....X, be a random sample from exponential distribution then the likelihood

function is given by

= (Xi +6, )2
i-1
n 2
L = H f(xu 91): n(1+01)
= (Xi +6, )2
i=1
1+6,)
” (Xi +6, )2
—0 _ i=l < k
L, (1+6,)
” (Xi + 91)2

Taking log on both sides,

n[log(1+6,)-log(L+6,)]+ Slog(x, +6,)° — ¥ log(x, +6,)? < logk
i=1 i=1

ZZIog( % +6, ] <logk—nlog(l+@,)+nlog(l+6,)
X; + 06,



Thus the test criterion is,

Y Iog[ X +0, J
i=1

X, +6,
This cannot be put up in the form of function of sample observations not depending upon the
hypothesis. Hence, no BCR exits in this case.

Unbiased test:
A statistical test of simple null hypothesis against single alternative hypothesis is
called unbiased if the power of the test is greater than or equal to single of the test.

Lemma for Unbiased Test:

The most powerful test for testing simple H, against simple H, is always unbiased.
Let w be the best critical region of size for H,: 80 =6, against H,:0=6, from the
population. Let x,,X,,...,x, be a random sample from f(x,0) .let L, and L, be the likelihood

function H, and H, respectively.

L L
From Neymann Pearson Lemma (N-P Lemma) for the points inside w L—° <k and for the
1

. . L . o
point outside w L—° > k where k is a constant for the points inside w
1

L <k L,

JLodx <k [Ldx

a<k -8 e 1

For the points outside w or the points inside W
LL>k L

JLodx >k [L,dx

(e 'O 2
(1)* (2) gives

k @-8) l-a) >k Ba

L-p-a+af)>ap

l-a-pB+af-af>0



Q-p 2
(ie) power of the test > sign of the test.

Therefore the based on w is most powerful and unbiased.

Example 10: Obtain the most powerful test for testingH, : 4 = yyagainstH, : 4 = u by
taking a sample of size n from the normal population with known standard deviation o,.The

pdf of normal distribution is given by.

1 Y xp
f(x,u,0)= 2[ 0] —0<X,u<0,0>0
(X, t,0) el U

Solution

Let X,,X,,....X, be an random sample from normal population with the pdf let L, and

L, be the likelihood function H, and H, respectively.

. N L
From NP lemma the best critical region is given by w {x;, X,...,X, }L—0 < k and the value of k
1

can be found using.

fiologd
e A oo
=l o2 <k
fot gl
2
i=1 (70'\/272'6 7
" Al
L eié g[ (X} ]
o,V 2r
1

T 7\
q
N
~—

ch

N | =

i

q %

|
° IR



1 g -
g3 1 o
i=1 ()'0
<k
1 5 -
gy N A
i=1 O-O
AR YAl
eZJz ;[ Oy J ; O Sk

Taking log on both sides,

e o A

20-0

2

i”l (Xi - ,Ul)z ‘2(Xi - ,Llo) < 20,2 logk
> b)Yl pa) <

n(,uf—,ui)—Z(ﬂl —uo)Zn‘,Xi <C
— (1 _ﬂo)gxi <C (gj(,uf _lle)
(14 _ﬂo)ixi <C

W {X,, X, X, 5 (2 —,uO)Zxi <c, is the best critical region and can be obtained
i=1
using
p(X,, X5, X, )/ Hy =
Casel: p, <y

U, — 44 1S @ negative quantity. Dividing best critical region of equation (1) z, — 44 we get

n Cl
DX > =c,
i-1 Ho — Hy




X > 3where ¢, = C

n

Case ll: py > 14y

U, — 44 1S @ negative quantity. Dividing best critical region of equation (1) z, — 44 we get

Example 11: Obtain the most powerful test size & for testingH, : o0 = o,versus H, 1o =0,
in N(O,ao2 ) Let x;,X,,...,X, be a random sample of size n from normal population with

mean 0 and variance o2 .

Solution:

The likelihood function for N(0,& ) is

n 0 ((x - 2
H f(Xi,O,G§)=£0_02;\/Z} ezg[ﬁfj

i=1
1 )2 1y X
:( 2 ]92205
o, 21

The likelihood function for N(0,67 ) is

i=1

n 0 (x— 2
H f(xi,O,af):(Glzil/ﬁJ 92;{ cnO]

The best critical region is given by

-0 <k
L
1 2 7;"X.2
2 ]92202
o, 27




NS

le —Eéxf{ ; %} <k

2 e 2 :5_0'1

Oy
14 201001
Gi | gix ] <
Oy
Taking log on both sides
nlog O —lﬁnjxf[iz—iz}slogk
or 2ia"M oy O
1o o 1 1

n|lo —lo —-=¥¥X|—-—1[<logk

D2 2 2 24, 2
_EXi[O-l_O-o]SIogk—n[IOQO-l_IOgGo]zo-l Oy
2 X .Gs—aﬂﬁ llog k-nlog &5, +log . - * o,

n ]< [Iog k —nlog O-l+log 00]20'12*65
EXi OO0~ O1=
=1 Ot 0

.Zn:Xi O-O_O-l]gc

Case I: O < o))
.. . . n. 2

Critical region Is > Xi [Go — O—JS C
i=1
SxE—— =YX >
=1 O0 O: =1

Case IlI: Oy > O
Sx < —— =YX <
=1 O, O: =1

Example 12: Obtain the most powerful test size « for testingH, : 1 = 4, against H, : 1 =4,

from poison population for the parameter 4 .

Solution:

The probability mass function of poison population distribution is given by



e’ 1

X!

p[x; 2] =

Let x,,X,,...,X, be a random sample from poison distribution then the likelihood function is

given by

L —e_%ﬂo;x'
o~ nan
Hxi!

-n4 iZ:,Xi
s
H X!
i=1

e I
ll[xi!
i=1 . <
e A4
ﬁxi!
i=1

k

Taking log on both sides

i=1

—n(4, - 4, )log e+zn:xi Iog(%} <logk

—n(4, —21)+Zn:xi (log 4, —log 4,)<c

n

> x(log 4, —log 4,) < c+n(4, - 4,)

i=1

Casel: 4, > 4,



log 4, —log 4, is a positive quantity
The inequality remains same the best critical region is given by

Zn:X' _c+n(d —4)
= ' log 4, —log 4,

Casell: 4, <A,
Since log 4, —log 4, is a negative quantity.
The inequality best critical region is given by

Zn:X' _ c+n(d—4)
i=1 L IOg /10 _Iogﬂ’l

Example 13: obtain the best critical region of size o for testing H,:6 =6, against

H, :6 =46, in the exponential population. The probability density function of exponential

distribution is given by.

Solution:

Let Xx,,X,,....Xx, be a random sample from exponential distribution then the likelihood

function is given by

n

H f (Xi 0 ) = ﬁeoe_%)(i
i=1

i=1

0 —Hozn:xi
L _te =
Ll —91i Xi
0'e =
(&] _Zn: Xi (90_91) <k
o, ) €7 -
1

Taking log on both sides,

n Iog(%J - i}ijlxi (90 - Hl)s log k

1

nflog 6, - log 6,]- > x,(§, - §,) < log k

i=1

- :lxi (@,-6.)<1og k- nllog 6, — log 6,]



Case l: 6, > 6,
=6,-6,>0
log 6, —log &, is a positive quantity

$x > log k—nl[log 8, —log 6, |
=1 00_ 01

Casell: 6, <6,

log 6, —log 6, is a positive quantity

. log k + nllog 6, —log 6, |

X
=1 90 - 91

Example 14: Obtain the most powerful test for testing H, : 6 = 6, against H, : @ = 6, for the

pdf f(x)=0x"" 0<x<1 ,6>1
Solution:

Let x,,X,,...,X, be a random sample.

Hoﬁ xo
i=1 < k

o1 x*
i=1

0 ) 176169

_9 Wo 1 _k

(elj [

e

i=1

Taking log on both sides,

n[log &, —log 8, ]+ log f[ Xi(e 0 < log k
i=1



ilog . < logk- n[log 6, — log 6, |

i=1 - (go - 01)
Casel: 6, > 6,
=6,-6,>0
log 6, —log 6, is a positive quantity
$x < log k—nl[log 8, —log 6, |
=1 00 o 01
Case ll: 6, > 6,

log 6, —log &, is a positive quantity

$x > log k—nl[log 8, —log 6, |
=1 00_ 01

LIKELIHOOD RATIO TEST:

Likelihood ratio test is useful for testing simple or composite hypothesis. If f(x,e) is the
density function of a population and L(H) is a likelihood function of sample observations x;,
Xo, X3,..., Xp then the likelihood ratio A is defined as

_ Maximum of Likelihood function L(6)H,
- Maximum of L(6)

A

If the parameter & is replaced by its maximum likelihood estimator @, then we get L(é’). ie.,
H, : 0 = 6,, then we get L(é’). (ie) Max L(0)= L(é)

A= —L(GP)
L(0)

Any test for testing Ho against H; is called likelihood ratio test. If it is based on likelihood

A
ratio A and the critical region 0 < A < A, such that _[g(l|H0)d/l =a
0



Properties of Likelihood Ratio Test

1. Likelihood ratio test leads to uniformly most powerful test if it exists.

2. When the sample size n is large —2log, A ~ y*distribution with respective degrees of

freedom
3. Under certain conditions likelihood ratio tests are consistent.

4. If the distribution f(x,6) has a monotone likelihood ratio in D(x) then there exists UMP

test for testing H, : 0 < g,0r H, : @ > 6,against H, :0 <6,

Example 15: Obtain UMPT(LRT) for testing H, : x = u,against H, : u# u,for a normal

population with parameter x and 2.

Solution:
Let X1,Xo,...,X, be a random sample from N(z, o) where X, ueR, o >0

The joint pdf of X1,X,,...,x, 1S

ll[f(xi:,u,crz):ﬁ jz_ez(xgy) X, iteR,0>0
i=1 i=1 | ON<&TT

2\ _ 1 " _%Z(Xi;ﬂjz
oo )‘(amJ ‘

N i %i—ko ¥
RN
Llg,,0%)= e ? 7
(,uo ) (O‘\/Zﬂ']
MLE of xzand o?are g=Xand 6% = %Z(xi —x)* =5s°
The maximum of likelihood function is given by

1

L(}&,&Z):(S\/J-Z_EJ e752[%) :(2752)_“/2@_”/2""(1)

Maximum Likelihood estimator of for o*when H, : i = w, is true given by

1 1 - = -
Ry Y (RN Sy I TE PR SRR LS,

Therefore, 6% =s?

Maximum likelihood function under H, is



L(6?

1 - _ 2\ "2 iz
HO)_(SO\/E] e (27zso) e (2)

The UMP critical region of size e is given by 0< A< 4,
Maximum Likelihood functionH, -

Maximum Likelihood function ~ °
Using (1) and (2),

(2752)_n/2 g2

0

( 2)—"/2 -n/2 <A
275 e

—

n/2

-n/2 -n/2
s s+ (X—u, )
2(5—2J <A 3(_4-()(2 lUO) J <A = L <4

where A, is fixed such that size of CR is

t= ()_(_ﬂo) -
s/n-1 ™
n/2
A= 12 <
1+ t
n-1

Therefore, t-distribution can be used to find the value for given « and degrees of freedom (n-
1).

Therefore, UMPT of size « for testing mean of the normal distribution when & is unknown
is based on t-distribution.

The UMP CR of Size « is given by

n/2




t?>(n —1{@—1}

Test for the Mean of a Normal Distribution

Let X3,Xs,...,X, form a random sample from a normal distribution whose mean x and
variance o are both unknown. Consider the problem of testing the composite null hypothesis
Ho: = pagainst Hy @ p= 4.

The joint probability density function of Xi,Xs,..., X, under Ho, where o?is regarded as the

parameter, is
Z(Xi -~ )

202

1
F(X | 1y, 02) =
R

This shows that the statistic, V = (X, — ) is sufficient for o and also complete

sufficient statistic.

Consider now a particular simple hypothesis,
H,: 4= ty,0° = o and
H,:u=w,0° =0}
The most powerful similar region of size « for testing Hp against Hj is
W, = x| £(x] ,07)> k(v)F (X 219,02}
where k(V) is such that the conditional size of W, given V=v, is « .

Now, if we take logarithms on both sides, we see that
f(x| 4,62)> k(V)F (x| 5,02 iff
(:u'l —Hy )()_( - ,Uo) > kl(v)’ ---(1)

say, where ky(Vv) is related to k(v).

Case 1: 1 > u,

Hence the condition (1) is equivalent to
(X — 11,) > k,(v) or to

(X = o)1V > Ky V),

As such, we may write



W, = {xl In(X = 1)/ v > k3(v)}

Where, again ks(v) is to be so determined that P, (W, |v)=c

However,/n(X — 1,)/~V and V are independently distributed, so that the conOditional
distribution /n(X — 14, )/~V, given V=v, is the same as the marginal distribution of

\/ﬁ(f( —ﬂo)/ﬁ . Such, ks(v) will be independent of v. Writing k3 for this constant, we see that
it is to be so determinant that
P, V(X - )W >k |=a
We also note that,
In(x— ) _ In(K = 1) 1
Y ez gy

where t=+/n ()? ~Ho )/ Sis Student’s t statistic n-1degrees of freedom.

since vn(X — s, )INV > k,iff t > k,(say)

We may also write, W, = {x |Vn(X = 1)/ v > kS}: X|t>k,}

where Ky is such that, P, [t >k,]=«

This shows that k4 is the upper « —point of the t distribution with n-1 degrees of freedom.

Denoting this by t then

a,n-11

W, = X |Vn(X =)/ s >t}

Since this is independent of &, it is the most powerful similar region of size « for testing Ho
against H;.

Case 2: 1y < y,

In this case, condition (1) reduces to

(X = 15) < ky(v)

Proceeding as before, we shall find the most powerful similar region of size « for testing Ho

against Hy is

W, = {x |Nn(X = 14,)1 s <—ta,n4}



Note: Since Wy is independent of y, i.e., is the same for all z, > u,, itis, in fact, the UMP
similar region of Size « for testing H, : 1 = 1, against the more general composite alternative
H,: 1> p,. Similarly, W, is the uniformly most powerful similar region of size « for testing

H, : = u,against the alternative H, : u < .

Test for Variance of a Normal Distribution

Let X3,Xs,...,X, form a random sample from a normal distribution whose mean x and
variance o are both unknown. Consider the problem of testing the composite null hypothesis
H, : o = o, against

H:o=0.

The joint probability density function of X1,X»,...,X, under Hy, where uis regarded as the

parameter, is

f(X|u02)= e

This shows that the statistic, X=in/n is sufficient for 4 and also complete sufficient

statistic under Ho.

Consider now a particular simple hypothesis,
H,: i = py,0° = o and
Hl:,uz,ul,a2 =012
The most powerful similar region of size « for testing Hp against Hj is
W, = {X| (x| 24,62)> k(%) (X 220,62}
where k(X)is such that the conditional size of W, given X =X, is « .
Now, the condition, f(x| z,07)>k(X)f (x| 1, 07)
Reduces, if we take logarithms on both sides, to

(62 =52 )3 (x, = X > k(%) (say) (1)

Case l: 6} >0}

Here condition (1) is equivalent to > (x, — X)* > k,(X) (say)



—\2
or Zw > ky(X)(say)
i Oy
we may, therefore, write
< \2
o= 1 )
i Oy

Where, k,(X) is to be so determined that

P, W,[%)=«

T\
Since ZM and X are independently distributed, the conditional distribution of
i Oy

=\2
Z(X‘G;ZX) given X =Xis the same as its marginal distribution, implying that k,(X) is
i 0

independent of X .

Writing K, for this constant, we note that it is to be so chosen that

P, [ZM> ng =a

i Oy

T 2
Since ZM has, under Hy, the y* distribution with n-1 degrees of freedom, ks must
i Oy

be upper o —point of the y* distribution with n-1 degrees of freedom. Denoting this by
Zj,n—l’ then
X, - XJ
W, = {X | ('—2) > ﬂ(j,n_l}
Oy
Since this is independent of u,and g, it is the most powerful similar region of size « for

testing Hy against Hj.

Case Il: o} <o}

In this case, condition (1) reduces to

XX )



Proceeding as before, we shall find the most powerful similar region of size « for testing Ho

against Hy is
, X, - XY
Woz{xl( I 2 ) <lea,n1}
(o

Where z7 .. isthe lower o — point of the »*distribution with n-1 degrees of freedom.
Note: Since Wy is the same for all o7 > o/, it s, in fact, the uniformly most powerful similar
region of size « for testing Ho against the one-sided alternative H, : o° > o7 . Similarly, W, is

the uniformly most powerful similar region of size « for testing Ho against the one-sided

alternative H, :0” <o?.



UNIT-1V
In the previous chapter, we have discussed the statistical hypothesis. In this chapter,

we shall discuss the large sample tests, exact sample tests and chi-square tests.

LARGE SAMPLE TEST:

Any statistical test based on the assumption that the sample size n is large (n— o) is
called asymptotic test. We know that as n—ooany statistic irrespective of the parent
population from which sample is drawn follows Normal Distribution (Central limit theorem).

Hence any statistic follows Normal Distribution as n— cothe test based on such a
statistic is called asymptotic test. Any statistical test based on exact distribution of a statistical
under consideration is called exact test. Here, there is no assumption on the sample size most
of the statistical test uses t-distribution, x> distribution and F-distribution which are exact
distribution of statistic. Hence test based on t, F, x* distributions are called exact test.
Sometimes the statistic may also follow Normal Distribution and in such cases, it is also an

exact test.

Steps involved in statistical test of significance:
A statistical test of significance is a statistical test of hypothesis using the following

procedure.

1. Formulation of hypothesis:

The hypothesis to be test is taken as null hypothesisH,. Normally when one

parameter is involved the hypothesis is “there is no significant difference between the
hypothetical value of the parameter and corresponding statistical value from the sample”.
When two parameters are involved, the null hypothesis is “there is no significant difference
between statistic obtained from two sample”. The alternative hypothesis is normally two sided

and just opposite of null hypothesis.

2. Chossing the level of significance:
a = level of significance

=P [Type I error]



= size of critical region

a value is fixed at low level usually it is fixed as 5% or 1%.

3. Selecting statistic & finding its distribution:

Let t be a statistic such that E(t)= ¢ where ¢ is the parameter of the distribution. We
must find standard error of t which is the standard deviation of the sampling distribution of
the statistic.

t—E()
SE(t)

test statistic =

Find the distribution of test statistic which may be normal, t, x?or F distribution.

4. Finding the critical value:

Using the sampling distribution of test statistic critical value or table value can be
obtained from the corresponding statistical tables. These values are used to describe the
critical region. For eg. If the sampling distribution is normal, normal table can be use to find

critical value using o . And if ¢ =0.05, H, is two sided, then the critical value is 1.96. If «
=0.05, H, is one sided , then the critical value is 1.965. If ¢ =0.01 and H, is two sided, the

critical value is 2.58 and if H, is one sided, the critical value is 2.33.

5. Critical region & inference:
Critical region is { |test statistic| > critical values }
A.R = { |test statistic| < critical values}.

If the value of test statistic > critical value H, is rejected. If the value of test statistic
< critical value then there is no reason to reject H, at level « . Accordingly, inferences can

be drawn.

TEST FOR SINGLE MEAN:
Give the test procedure for testing the significance of mean of the population when the
sample is large.

Null hypothesis: There is no significant difference between sample mean and population (i.e)

Ho i = .



Alternate hypothesis: There is significant difference between sample mean and population
mean (i.e) H, :u# p, (or) Hyt < py (Or)H, - 0> pg
Level of Significance: Let == be the level of significance, == 0.05 or 0.01 or any given

specific values in the problem.

Test statistic & its sampling distribution:

X — i
z =" \where & is known
(o)
/ vn
X — ]
z=2"*  \vhere & is unknown

Where n is sample size
X IS sample mean
o is population SD
s is sample SD
Finding critical value:

From the normal table, we find critical value based on « & H, is one-sided then

critical value is Z , if the H, is two-sided then critical value is Z‘V'
2

Inference:

If |Z.,|>Z, (or ZO/) then the null hypothesis is rejected.
2

If|Z,|<Z,(or ZO/) then there is no reason to reject it.
2

Problem 1: A sample of 900 members has a mean 3.4 cm and SD 2.61 cm is a sample from a
large population of mean 3.25 cm & SD 2.61 cm.
Solution:

n=900 x =3.4cm u,=3.25 c0=2.61

Null hypothesis:
The sample has drawn from the population with mean 3.25cm & SD=2.61 cm
Alternate hypothesis:

The sample is not drawn from the population with mean 3.25cm & SD=2.61 cm



34-325 015 _(0.15)30

~26 T (26),/ 261
y V900 30
Z=1.7241

Critical value:

YA

Let @=0.05, %/ =0.025 Zqy; =1.96

Inference:
Since Z_,=1.7241< Z_,=1.96
= There is no reason to reject null hypothesis.
We conclude that sample has been drawn from population with mean 3.25 & SD=

2.61 cm.

Problem 2: An insurance agent has claimed that the average age of policy holders who insure
through him is less than the average for all agent which is 30.5 years. A random sample of
100 policy holders who had insured through him gave the following distribution.

Age 15-20| 20-25| 25-30| 35-40| 30-35
No.of.persons | 12 22 20 16 30

Calculate the AM and SD of this distribution &use these values to test thi claim at 5% level of
significance.

Solution:

Cl X; fol xf | x>f

15-20| 17.5| 12| 210 | 3675

20-25| 22.5| 22| 495 | 11137.5
25-30| 27.5| 20| 550 | 15125
30-35| 32.5| 30| 975 | 31687.5
35-40| 37.5| 16 | 600 | 22500

Txfi 2830 o,
>f 100




2 1 2 )2
=—2xf —(X
0" =X =)

= 841.25-800.89
=40.36
o =5=6.353
Null hypothesis:
The average age of policy holders who insured through him is same as the average age
for all agents which is 30.5 years.
Alternate hypothesis:
The average age of policy holders who are insured through him is less than the
average age for all agents which is 30.5 years

Test statistic:

~ 28.3-30.5,
~ 6.353
V100

=22
©0.6353

=-3.4629
Za=1.65 = Ztab

12, =[3.4629 > 165 =2,

cal

Therefore we reject the null hypothesis and accept that him claim is right.

Since |Z,,|=3.4629 > 7, =1.65

cal| =
H, is rejected. Thus we conclude that the insurance agents claim is true. (i.e) Average age of
policy holders who insured through him is less than the average age for all agents which is

30.5 years.

TEST OF SIGNIFICANCE OF STANDARD DEVIATION OR VARIANCE:
Null hypothesis:
Hy,:o=0,(0r) o’ =0c¢
There is no significant difference between sample variance and population variance.

Alternate hypothesis:



H,:0c#0,(or) o 0} or
H,:0>0,(or) c® >0 or
. 2 2
H,:oc<o,(0r) o <oy
Level of significance:

a = P[Type I error]= 0.05/001
Test statistic:

Z:s—E(s)
S.E(S)
S—o
Under H,, Z=— - ~N(01
’ o, /~2n 0

Where n is the sample size

S =, /%Z(xi —X)? sample SD

o, =population SD
Critical values:
H:io#0,
From normal distribution table, we can find

Z . such that
%

mzw>z%]=g§

H,:0>0,

From normal distribution table, we can find Z, Such that
PlZ.,>Z,]=«

H,:o0<o0o,

From normal distribution table, we can find - Z , Such that
PlZ.,<Z,]=«a

Inference:

When H,:o0, #0, reject H, if |an||>20% otherwise there is no reason to
2

rejectH,.



When H,:0,<o,(0NH,:0,>0, reject H, if [Z,]<Z,(or)|Z,.|>Z,

otherwise there is no reason to rejectH, .

Problem 3: A large organisation produces electrical light bulbs in each of its two factories. It
is suspected that the efficiency of the factories are not same. So a test carried out by

ascertaining variability of life of bulbs produced in each factory. The results are as follows:

No.of bulbs in the sample | Factory A | Factory B

100 200
Average life 1100 hrs | 900 hrs
SD 240 hrs | 220 hrs

From the above information determine whether the difference between variability of

life from bulbs from each sample is significant. Test at 5% level of significance.

Solution:
Null hypothesis:
There is no significant difference between the variability of life of bulbs from factory
A and factory B.
Alternative hypothesis:
There is no significant difference between the variability of life of bulbs in factory A
and factory B.
Level of significance:
a =P [Type I error]=0.01

Test statistic:

7 = S5 =S,
soy | so;
2n,  2n,
(240 — (220)
- \/ (240)° | (220)°
200 400
20 20

_ - —0.9889
J288+121 20.2237

Z.., =0.9889



Z, = 0.01:>ZO/ =2.58
2
Z,=09889<7, =258
Inference: There is no reason reject H,. There is no significant difference between variability

of life of bulbs of factory A and factory B.

TEST FOR SIGNIFICANCE OF SAMPLE PROPORTION:

Let X1 X2.......,.Xn be a sample observation of size n with the proportion p, g=1-p. We
have to test there is any significant difference between the sample proportion (p) and
population proportion (p) where n is assumed to be large.

Null hypothesis:

There is no significant difference between the sample proportion and population
proportion Ho: p=po
Alternative hypothesis:

There is no significancant difference between the sample proportion and population
proportion.

Hy:p = b,
H ip<p
Hy:p>p,
Level of significance:
o =p [Type of I error]=0.01/0.05 or any other specified values.

Test statistic:
Hyz =P E®) LNy

syv(p)
Under _p-p,

B / po(l_ po)
n

When H, : p# p, from normal table we can find Z% using p[Z > Z%] = %

Critical value:



When H;:p<p,orp>p, from normal table we can find ZO% using
2

plZ<Z, ]=a(or)plZ=2Z,]=«

Inference:

If |Z,.| >‘Z%‘(or|za|) we reject H, otherwise there is no reason to reject H,

Problem 4: In a sample of 1000 people in Maharashtra 540 are rice eaters and rest eaters. Can
we assume that the rice and wheat equally popular in this state at 1% level of significance.
Solution:
Null hypothesis:

Both rice and wheat are equally popular in the state. H, : p=p, =0.5

Alternate hypothesis:
Both rice and wheat are not equally popular in the state H, : p, # 0.5 p =540

Level of significance:

Test statistic:

p= 40 =0.540
1000
n=1000
P, =0.5
__P=P
Po * (1= Po)
n

 054-05 _ 0.04

[05(0.5) 0.0158
1000
= 2516
Z,, =001Z,, =258

Zy=253<2,, =258

There is no reason to reject H, .

Both rice and wheat are equally popular in Maharashtra.

Problem 5: 20 peoples where attacked by a diseases and only 18 survived. Will you reject the
hypothesis that the survival rate if attacked by this diseases is 85% in favour of the hypothesis
that it is more at 5% level of significance.

Solution:



Null hypothesis:

The survival rate is 85%
Alternative hypothesis:
The survival is more than 85%
Level of significance: « = 0.05

Test statistic:

p= > =0.9
n=20
p, =0.85
,___P-D
Po ™ (- Py)
n
. 09-085 005
- [0.85(1-0.85) 0.0798
20
= 0.6266

Zy, =0.052, =1.96

Z., =06266<196=2,
Y

There is no reason to reject H,

The survival rate is 85%.

TEST FOR DIFFERENCE BETWEEN TWO MEANS:
Null hypothesis:

H, = 1, = 1, where g and p,are two population means. In other words,= may be
stated as there is no significant difference between two sample means or the two samples have
come from the same population.

Alternate hypothesis:
Hyt il # 1 (Two sided)

Hy oty <y _
H, :u, > u,| (Onesided)
Level of siginificance:

o is taken to be 0.05 or 0.01 pr it can take a specified lower value.

Test statistic



E(X, —X%,) =E(X)—-E(X;) =p-u=0

S.E(X, —X,) = JV(X, —%,) 1

Y V()_(l) + V()_(z)

When population variances are unknown then they are replaced by their estimators

namely x; s’ and s? respectively. Therefore the test statistics becomes

Z: )_(1_)_(2
2 2
i, S
n n,

Here, X, and n, refers sample mean and sample size based on the first sample

X, and n, refers sample mean and sample size based on the second sample

Critical value:

Depending on alternate hypothesis H,, the critical values are found using normal

table.
o H, Tab.value
0.05| 2 sided | 1.96
0.01| 2 sided | 2.58
0.05| 1 sided| 1.65
0.01| 1 sided| 2.33
Inference:

If Zeal> 2, (or [Zea| > Z,,)

Then the null hypothesis is rejected.



If 2| <2, (or [Z.al < Z,)

Then there is no reason to reject the null hypothesis.

Problem 6: The average hourly wage of a sample of 150 workers in a plant A was 2.56
rupees. With a standard deviation of Rs.1.08. The average hourly wage of a sample of 200
workers in plant B was Rs.2.87 with the SD of Rs.1.28. Can an applicant safely assume that
the hourly wage paid by plant B or higher than those paid by plant A.
Null hypothesis:

The average hourly wage paid by plant A and plant B are same (i.e) y, = i,
Alternate hypothesis:

The average hourly wage paid by plant B is higher than those paid by plant A.

e w4y <, (OF) 1, > iy

Test statistic:

7 = X — )_(2
of ot
n, n,
,__ 256-287 031 _-031
\/(1.08)2 | 128y’ J0.0078+0.0082 0.1265
150 200
Z =-2.4514

a =0.05 Z., =1.65

12| =2.4514 > 7, =1.65

cal|
The null hypothesis is rejected.
The average hourly wage paid plant B is higher than those paid by A.

TEST FOR SIGNIFICANCE OF DIFFERENCE BETWEEN SAMPLE
PROPORTIONS:

Given that two samples if sizes n; and n, with the proportion p; and p, respectively.
We have to test whether there is any significant difference between p; and p..

Null hypothesis:
There is no significant difference between the two sample proportions.

Alternative hypothesis:



There is significant difference between the two sample proportions.
Hy:p#p,
H ip<p
H p>p,
Level of significance:
a 1s fixed at the level 0.05/0.01

Test statistic and its distribution:
7 — (pl B pz)_ E[pl B pz]

SE(pl_ pz)
UnderH, z=-—""P2
Y SE[pl - pz]

_ p1 B pz

PQ: , PQ,
n1 n2
If population proportion is unknown then it is estimated using

b= np,+n,p,
n, +n,
That test statistic becomes

P, — P,

\/ P~ m{#”

Critical values:
_ . : u
When H, : p, # p, from normal table we can find Z% using p[|Z > Z%] = A

Z =

When H,:p,<p, p,(p,>p,) from normal table we can find Z_such that

pllZlkZ,]=a(or)pllZ]>Z,]=c
Inference:

If Hy |Zea|>Z 2 then the null hypothesis is rejected. Otherwise there is no reason to
2

reject H,

If |Z..]> (or|Z,|)

Z
g




Problem 7: In a large city A 20% of a random sample of 900 school children have defective
eye sight. In other large city B, 15% of a random sample of 1600 children have the same
defect. Is this difference between the two proportions significant?
Solution:
Null hypothesis:
There is no significant difference between the two proportions.
Alternative hypothesis:
There is significant difference between the two proportions
Level of significance: « = 0.05
n, =900 n, =1600
p, =0.20 p, =0.15

f) — nl pl + n2 pZ
n,+n,
~900(0.2) +1600(0.15)
900 +1600
420
2500
=0.1680
Z — pl - pZ
o1 1
\/ pL- p){+}
nl n2
~ 0.20-0.15
0.1680(0.820) 1,1
900 1600
_ 005
+/0.0002
Z.. =3.2200

Z,, =005  Z, =1965

Zoy =322>1.965=2,

.. There is significant difference between the two proportions.

Problem 8: Before an increase in exercise duty on tea 800 persons out of a sample of 1000
persons were found to be tea drinkers. After an excess increase in duty 800 people. Using the
above statement check whether there is a significant decrease in the consumption of tea after

the increase in excise duty?



Solution:

Null hypothesis:

There is no significant decrease after the increase in excise duty in consumption of tea
Alternative hypothesis:

There is significant decrease in consumption of tea after the increase in excise duty
Level of significance: ¢ = 0.05

Test statistic:
n, =1000 n, =1200
p,=0.8 p, =0.667
nl pl + n2 p2

n,+n,
_100(800) +1200(800)

1000 +1200
~ 1760000

p=

1000(0.8) +1200(0.6667)

P= 1000 +1200
—0.7273

Z: pl_pZ

o011
\/p(l— p){+}
nl rl2
08—0.6667
\/0.7273(0.2727)[1+1}

1000 ' 1200
01333 01333
~/0.0004 0.0191

Z.. =6.9905

Z,. =0.05 Zo/ =1.65
2
Z., =6.9905>1965=7,
Inference: We reject the null hypothesis

There is significant difference in consumption tea after the increase in excise duty.



EXACT TEST/ SMALL SAMPLE TEST
TEST FOR SINGLE MEAN:

Assumption:

The population is normal with mean # and variance o> .A random sample of size n is

drawn from the population.

Population mean u =, is to be tested the other parameter o® may be known or

unknown.

Null hypothesis:

There is no significant difference between sample mean and population mean.

Alternative hypothesis:

There is significant difference between the sample mean and population mean

Hytu# 1
Hytu> g
Hyt <y

Level of significance:

o =0.05/0.01 or any other specified value

Test statistic:

When o is unknown

X_ﬂozF

t=——"7—

-1
s/ivn
n- sample size

X - sample mean

s- unbiased estimation of o = \/%Z(Xi - X)?
n-14%

When o is known

Z, Xty N(0,1)

- oln

Critical value:

i.) When o is known

H, : u = u,, using normal tables we can find Z(% such that pUZ| > Za,z]: %
2

Hotpu>p, (or) H :pu<py,, using
that pUZ| > Za]za (or) [p{]Z| < Za}]:a

Z,such



ii.) When is unknown

H, : u # 1y using t tables we can find t% such that pﬂt| > ta,z]: %
Ho:u>up, (or) Hipp<py,, using t tables we can find
that pﬂt| >t (n —1)]= a (or) pﬂt| <t (n —1)]= a

Inference:

When is o known, i.) If reject |Z|>Z_,, reject H,

ii.) If reject |Z|>Z,,,(or|Z|<Z,) reject H,

When is o unknown i.) For testing H, : z2 # u, rejectif [t| >t ,,(n—1)

t (n—1)such

ii.) For testing H, : 1 < s, (OF 12> 11,) reject Hy if t| >t,,,(n—1)

Problem 9: A random sample of 10 boys have the following

IQ wvalues are

70,120,110,101,88,83,95,98,107,100. Do these data support the assumption of the population

mean 1Q of 100.
Solution:
Null hypothesis:
The population mean 1Q is 100
Alternative hypothesis:
The population mean of boys I1Q is not 100
H, :u =100
Level of significance: « =0.05

Test statistic:

ta:/2

2.306

2.262

2.228

t — X _IUO zt
s/ivn ™Y
1 n s (n'l)
s=|—S(X -X
J L% :
_ /1833.6 9
9 10
=4/203.7333 11
=14.2735

2.201




97.2-100

~14.2735
¥ i
t =0.6203

t,, = 2.262
tou| = 0.6203 < 2.262=t,,,

t

cal |

The population mean of boys 1Q is not 100

Problem 10: 10 specimens of copper wire brought from a large lot have the following
breaking strength in Kg 578,572,572,568,571,570,570,572,596. Test whether the mean
breaking strength of the values may be taken as 578.
Solution:
Null hypothesis:
The mean breaking strength of the value is 578.
Alternative hypothesis:
The mean breaking strength of the value is not 578
Level of significance: « =0.05

Test statistic:

X — ty

t=2 20

ztn_

s/+/n (")
1 o
S= |— X. —X
JH;( -%)

12121
9

=11.6051
. _ 57L7-578

11.6051/410
—_01717

t,,, =2.262
to] =0.1717 <2.262 =, ,

cal| =
There is no reason to reject the null hypothesis.

The mean breaking strength of the value is 578



TEST FOR SIGNIFICANCE OF DIFFERENCE BETWEEN TWO MEANS
(INDEPENDENT SAMPLEYS)
Assumptions:

The two population is normal with meanz and variance o?. (i.€) X1 Xz......Xn1 ~
N(z , o1°) and y1,Ya......Yn2 ~ N(u, , o2*). The population mean g, & u, are unknown. The

population varianceso:’ & o»’are equal but unknown (i.e) oi°=c2"=0c? (unknown).
Samples are drawn from the population are independent and random.
Null hypothesis:

There is no significant difference between the two population means (i.e) H, : 14 = 14,

Alternative hypothesis:
There is significant difference between the two population means
Hy iy # 1,
Hyw > u,
Ho i <u,
Level of significance: « =0.05/0.001
Test statistic:
(X =X)—E[X, - X,
SE[X, - X,]
X =Xy =~ )

A{l 1}
Gl 4+
nl n2

Since under H, @z, = 1, and o? is unknown, o is replaced by its estimation

n; - first sample size

n, - second sample size
X, - first sample mean

X, - second sample mean

2 2
C}Z — nlsl + n252
n+n,—-2

s - first sample variance

s> - second sample variance



- X,

n1+n2—2)
nSl +n 32 n +n,
n,+n,

Critical value:

St=

For two sided test, we can find t_,,(n, +n, —2) from t tables for (n, +n, —2) degree
of freedom. For one sided test, we can find t,(n, +n, —2) from t tables for (n, +n, —2)

degree of freedom
Inference:

For two sided test, reject H,if |t |>ta,2(nl +n, —2) otherwise there is no reason to

cal

reject H,

For one sided test, reject H,if |t |>t0[(n1 +n, —2) otherwise there is no reason to

cal

reject H,

Problem 11: The heights of six randomly chosen sailors are (in inches) 63,65,68,69,71,72,73.
Discuss the light that these data throw on the suggestion that the sailors are on the average
taller than soldiers.

Solution:

Null hypothesis:

There is no significant difference between the height of the sailors and soldiers H, : 14 = 1,
Alternative hypothesis:
There is significant difference between the height of the sailors and soldiers H, : 14 > 1,

Level of significance: a =0.05

Test statistics:

n=>6 n, =10
X, =68 X, =67.8
=3(60)=10
6

s,” = %(153.6) =15.36



)?1_%2

ns +n,s>(n +n,
n+n,-2\ nn,

t =

~ 68— 67.8
69(10) +10(15.36) (6 +1oj
6+10-2 60

=0.0992
d.f-n+n,-2=14
ty) =0.0992<1.761=t,(14)

.. There is no reason to reject H,

.. The sailors are on the average taller the soldiers

TEST FOR DIFFERENCE BETWEEN MEANS PAIRED VALUES (DEPENDENT
SAMPLE TEST/ PAIRED T-TEST)

Assumption:

The population is normal with mean z and variance o

A random sample of observations (x,, Y, ),(X,, Y, ).....(X,, Y, ) is drawn from the population

u, and o,° are unknown

My = M, 1S to be tested
Null hypothesis:
There is no significant difference between the means
Alternative hypothesis:

There is significant difference between the means
Hytuy # 1

Hy 2 ug > 1y

Hy tay <y

Level of significance: « =0.05/0.01/0.001

Test statistic:



tzd_Eﬁ) Wherea:EZdi
SE(d n4s
under H,,E(d) = g,
~. &
SE(d) = —2
(d) I

6, = /%de—az

d
o ——
G,/yn—1 "

t

Critical value:

For 2 sided test, we find t,, = (n—1)from t-table for n-1 degree of freedom
For 1 sided test, we find t, = (n—1)from t-table for n-1 degree of freedom

Inference:

I [t.| >1,,, =(n—1) then reject H,for 2 sided test.

Reject H,, if [t.,|>t, =(n—1) for Lsided test

cal

Problem 12: Eleven school boys were given a test in statistics, they were given one month
tuition and then second test was conducted. The marks obtained by them in the first and
second tests are given below. Do the marks give the evidences that the students are benefitted

by extra coaching.

Marks in 1% test| Marks in 2" test| Marks in 1% test| Marks in 2™ test
23 24 17 20

20 19 23 23

19 22 16 20

21 18 19 18

28 20

20 22

18 20

Solution:

Null hypothesis:

The students are not benefited by the extra coaching.



Alternative hypothesis:

The students are benefited by the extra coaching.

Level of significance: a =0.05

Test statistic:

t-— 9
6,/vn-1

X | Y| di=x-y | d}
23124 -1 1
200191 1
19|22 -3 9
21118 3 9
281208 64
201 22| -2 4
18|20 | -2 4
17|20 -3 9
231230 0
16|20 | -4 16
191181 1

6, = /%zds_az

= \/3(118)—0.0331
11

=3.2702
—-0.1818

3.2708/+/10

_ 01818 _ 4 175

1.0341
Degree of freedom, n-1=11-1=10
t0 =181
“Jtea|=0.1758 <1.81=t

cal| -

There is no reason to reject H, .

The students are not benefitted by the extra coaching.




Problem 13: The scenes of 10 candidates prior and after training are given below.
Prior training | 84| 48| 36| 37| 54| 69| 83| 95| 90| 1
After training| 90| 58| 56| 49| 62| 81| 84| 86| 84| 7

Is the training is effective?

Solution:
Null hypothesis:

The training is not effective
Alternative hypothesis:

The training is effective
Level of significance: a =0.05

Test statistic:

X | Yi| di=x -y | d}
84|90 -6 36
48|58 | -10 100
36| 56 | -20 400
37149 -12 144
54|62 | -8 64
69|81 -12 144
8 |84]-1 1

96| 86 | 10 100
9084 |6 36
65|75/ -10 100

6= |E Y8z -4

= \/i(llzs)—sg.ag
10

=8.5329
-6.3

~ 8.5329/4/9
t . =2.2150

cal —
Degrees of freedom =n-1=9
t, =1.83
t, =2.2150 >t =1.83



We reject the null hypothesis and we conclude that the training is effective.
One-Way ANOVA

A One-Way Analysis of Variance is a way to test the equality of three or more means at one
time by using variances.
Assumptions

e The populations from which the samples were obtained must be normally or
approximately normally distributed.

e The samples must be independent.

e The variances of the populations must be equal.

Hypotheses

e The null hypothesis will be that all population means are equal, the alternative
hypothesis is that at least one mean is different.

e In the following, lower case letters apply to the individual samples and capital letters
apply to the entire set collectively. That is, n is one of many sample sizes, but N is the
total sample size.

Grand Mean

The grand mean of a set of samples is the total of all the data values divided by the
total sample size. This requires that you have all of the sample data available to you, which is
usually the case, but not always. It turns out that all that is necessary to find perform a one-
way analysis of variance are the number of samples, the sample means, the sample variances,
and the sample sizes.
)?GM = 2

N

Another way to find the grand mean is to find the weighted average of the sample means. The
weight applied is the sample size.
_ > nx
Xem = Zn

Total Variation

The total variation (not variance) is comprised the sum of the squares of the

differences of each mean with the grand mean.

SST) =" (x—Xey )



There is the between group variation and the within group variation. The whole idea
behind the analysis of variance is to compare the ratio of between group variance to within
group variance. If the variance caused by the interaction between the samples is much larger
when compared to the variance that appears within each group, then it is because the means
aren't the same.

Between Group Variation

The variation due to the interaction between the samples is denoted SS(B) for Sum of

Squares Between groups. If the sample means are close to each other (and therefore the Grand

Mean) this will be small.

SS(B) = n(X— Xgy

There are k samples involved with one data value for each sample (the sample mean), so there
are k-1 degrees of freedom.

The variance due to the interaction between the samples is denoted MS(B) for Mean Square
Between groups. This is the between group variation divided by its degrees of freedom. It is
also denoted by s’.

Within Group Variation

The variation due to differences within individual samples, denoted SS(W) for Sum of
Squares Within groups. Each sample is considered independently, no interaction between
samples is involved. The degrees of freedom is equal to the sum of the individual degrees of
freedom for each sample. Since each sample has degrees of freedom equal to one less than
their sample sizes, and there are k samples, the total degrees of freedom is k less than the total
sample size: df = N - k.

SS(W) = > df .s?

The variance due to the differences within individual samples is denoted MS(W) for Mean
Square Within groups. This is the within group variation divided by its degrees of freedom. It

is also denoted by s’ . It is the weighted average of the variances (weighted with the degrees

of freedom).
F test statistic

ANOVA Test Statistic Recall that a F variable is the ratio of two independent chi-square

variables divided by their respective degrees of freedom. Also recall that the F test statistic is



the ratio of two sample variances, well, it turns out that's exactly what we have here. The F
test statistic is found by dividing the between group variance by the within group variance.
The degrees of freedom for the numerator are the degrees of freedom for the between group
(k-1) and the degrees of freedom for the denominator are the degrees of freedom for the

within group (N-K).

Summary Table
SS df | MS F
Between | SS(B) k-1 | SS(B)/k-1 | MS(B)/MS(W)
Within | SS(W) N-k | SS(W)/N-k
Total | SS(T)=SS(B)+SS(W) | N-1

Notice that each Mean Square is just the Sum of Squares divided by its degrees of freedom,
and the F value is the ratio of the mean squares. Do not put the largest variance in the
numerator, always divide the between variance by the within variance. If the between
variance is smaller than the within variance, then the means are really close to each other and
you will fail to reject the claim that they are all equal. The degrees of freedom of the F-test are

in the same order they appear in the table

Decision Rule

The decision will be to reject the null hypothesis if the test statistic from the table is greater
than the F critical value with k-1 numerator and N-k denominator degrees of freedom.

If the decision is to reject the null, then at least one of the means is different. However, the
ANOVA does not tell you where the difference lies. For this, you need another test, either the

Scheffe' or Tukey test.



Problem 14: Four models of lacrosse helmets were compared. Measurements of Gadd
severity index were made on each of 10 hits per helmet. Test whether helmet means are

significantly different at « =0.05 significance level.

Brand Mean SD Sample Size
Sports Helmets Cascade 1166.1  152.40 10

Sports Helmets Cascade Air Fit 11176  216.23 10

Sports Helmets Ultralite 857.0 151.54 10
Bacharach Ultralite 1222.8  123.08 10

Solution:

Hypothesis: There is no significance difference between lacrosse helmets
Alternative Hypothesis: There is significance difference between lacrosse helmets
Level of Significance: a =0.05

Test Statistic:

Source | SS df | MS F

Between| 784747.5 | 3 | 261582.5| 9.68
Within | 972848.1 | 36| 27023.56
Total 1757595.6 | 39

Rejection Region: Fobs > F 5337 = 2.88 (appox)
We reject the null hypothesis. Therefore, There is significance difference between lacrosse

helmets.

Problem 15: The fog index measures the reading difficulty based on the average number of
words pe sentence and percent of words with 3 or more syllables. High values of the fog
index are associated with difficult reading levels. Independent random samples of six ads
were taken from 3 magazines. Test for “magazine effects” based on the F-test for 5% level of

significance.

Scientific American: 11.16, 9.23, 15.75, 8.20, 9.92, 11.55
Fortune : 12.63, 9.42, 9.87, 11.46, 10.77, 9.93
New Yorker: 8.15, 6.37, 8.28, 6.37, 5.66, 9.27

Solution:



Hypothesis: There is no significance difference between 3 magazines
Alternative Hypothesis: There is significance difference between 3 magazines
Level of Significance: « =0.05

Test Statistic:

Source | SS df | MS | F
Between| 48.53 |2 |24.27|6.97
Within | 52.21 | 15| 3.48
Total 100.74| 17
Rejection Region: F 52 15=3.68<Fq,s=6.97

We reject the null hypothesis. Therefore, there is significance difference between 3

magazines.

Bartlett’s Test for Homogeneity of Variance:

Bartlett's test (Snedecor and Cochran, 1983) is used to test if k samples have equal
variances. Equal variances across samples is called homogeneity of variances. Some statistical
tests, for example the analysis of variance, assume that variances are equal across groups or
samples. The Bartlett test can be used to verify that assumption.

Bartlett's test is sensitive to departures from normality. That is, if your samples come
from non-normal distributions, then Bartlett's test may simply be testing for non-normality.
The Levene test is an alternative to the Bartlett test that is less sensitive to departures from
normality.

Procedure:

Null Hypothesis: There is no difference between k sample variances

ie., Hy:of =05 =...= 0}

Alternative Hypothesis: There is difference between any two sample variances
ie, H 07 207}

Level of significance: « =0.05/0.01/0.001

Test statistic

k

(N-k)Ins2=>"(N;-1)Iins’
T= i=1

NOee _1)))(@1/(Ni _1)j_1/(N . k)J




In the above, si is the variance of the ith group, N is the total sample size, N;j is the sample
size of the i th group, k is the number of groups, and sp2 is the pooled variance. The pooled

variance is a weighted average of the group variances and is defined as:
s2 =Y (N, -1)s? /(N —k)

Critical Region: The variances are judged to be unequal if, T >y, ., where y7 , ,is

the critical value of the chi-square distribution with k- 1 degrees of freedom and a

significance level of a.

TEST FOR SIGNIFICANCE OF CORRELATION COEFFICIENT:
Assumption:
e the population is bivariate normal population.
e The population correlation coefficient is assumed to be zero.
e A random sample of size n drawn from the population and the sample correlation
coefficient is taken as r.
Null hypothesis: there is no significant difference in the correlation coefficient i.e correlation

coefficient in the population is assumed to be zero. ie.,, H,: p=0
Alternative hypothesis: H,: p#0,H, : p>0,H,: p<0
Level of significance: « =0.05 or0.01

Test statistic:

Critical value: from t table, we can find t,

)for the given o and n-2 degrees of freedom.
2

(n-2

Inference: for the two sided test reject H,ift, >t otherwise there is no reason to

n-2

N_\ )

rejectH, .

Problem 15: A random sample of 27 pairs observation from a bivariate normal population
give a correlation coefficient of 0.42 can you conclude that the variables in the population are
uncorrelated.

Solution:



Null hypothesis: the variables in the population are uncorrelated H,: p =0
Alternative hypothesis: the variables in the population are correlated H, : p#0
Level of significance: « =0.05

Test statistic:

r
1-r°
n-2

0.36

=

1-0.367

17-2

t= ~ o)

036
0.2409
t =1.4944

Degrees of freedom = 17-2= 15
t (15)=1.75
t, =1.4944 <t =175

We reject the null hypothesis and we conclude that the variables are uncorrelated.

TEST FOR SIGNIFICANCE OF REGRESSION COEFFICIENT:
Assumption:

1. The population is bivariate normal with regression coefficient of Y on X is g

2. [ is unknown.

3. A random sample of size n is drawn from bivariate normal population and its

regression coefficient of Y on X is b.

Null hypothesis: there is no significant difference between sample regression coefficient and
population regression coefficient.
Alternative hypothesis: there is significant difference between sample regression coefficient
and population regression coefficient. H, : S = B,,H,: 8> B,.H, : B < S,

Level of significance: « =0.05 Test statistics:



(_b-E()
~ S.E(b)

t =

b - A,
Sy, -9, F

i=1

(n- Z)Zn:(xi =X )2

Where x,y are the sample observation n- sample size

~ oo

13
X=— X,
N
1
y:_ZYi
L)
1L .
*ZXiYi Xy
b_ni:1
Iyt - (x)°
L)
§y=a+bx
a=y-bx

Critical value: from t table, we can find ta( )from t table for n-2 degrees of freedom.
—(n-2
2

For one sided test, we can find t . , from ttable for n-2 degrees of freedom.

Inference: for the two sided test reject H,if t_ >t 2) otherwise there is no reason to
—,(n-2

N R

rejectH, .

For the one sided test reject H, if t., >t  , otherwise there is no reason to rejectH, .

cal
Problem 16: Test the significance of regression coefficient by X if the following are the
values of sample drawn from bivariate normal population.

X112 |3 |4 |5]|6
Y| 10| 12| 14| 16| 14| 15

Solution:

Null hypothesis: the regression equation is linear. H,: =0

Alternative hypothesis: the regression equation is linear. H,: g0



Level of significance: « =0.05

Test statistic: assume =0

Xi| Yi| Xi¥i| %=X Xi2 yi (v, =) | (x=%)°
110110 |-25 |1 |[11.143 |1.3064 6.25
2 (12124 |-15 |4 |121.0858|0.0074 2.25
3 |14(42 |-05 |9 |13.0286 |0.9436 0.25
4 11664 |05 16 | 13.9714 | 4.1152 0.25
5114|70 |15 25 | 14.9142 | 0.8358 2.25
6 [15/90 |25 36 | 15.857 | 0.7344 6.25
X=35
y=135
13 o
*in Yi —XY
b= N5
by - (x)°
Nz
 50-47.25
15.1667 —12.25
b =0.9428
a=y-bx
a=13.5—-(0.9428)(3.5)
a=10.2002
L bop,
2i-9)
i1
(n- 2)2 (Xi X )2
i1
{ 0.9428-0
7.9428
4(17.5)
t., =2.7985
t (4)=2.776

2

t, =2.7985>t,(4)=2.776

2




We reject null hypothesis. Therefore, the regression equation is linear.

TEST FOR SIGNIFICANCE OF PARTIAL CORRELATION COEFFICIENT:
Assumption:
1. The population is multivariate normal with partial correlation coefficient p of order
k.
2. A random sample is drawn from a population with the sample partial coefficient
coefficient r of order k.

Null hypothesis: the population partial coefficient p of order k is not significant H,: p =0
Alternative hypothesis: H,: p#0,H,: p>0,H, : p<0
Level of significance: « =0.05 or0.01

Test statistic:

n-k-2
Where, n- sample size, k-order of partial correlation coefficient, r-partial correlation
coefficient of the samples.

Critical value: from t table, we can find ta( ) )from t table for n-k-2 degrees of freedom.
Z,(n—k-2
2

For one sided test, we can find t ., , from ttable for n-k-2 degrees of freedom.

Inference: for the two sided test reject H,ift., >t, - otherwise there is no reason to
—,(n—k-2
2

rejectH, .

For the one sided test reject H,if t., >t ., ,) otherwise there is no reason to rejectH, .

cal
Problem 17: A sample of size 10 observation from trivariate normal population gave the
partial correlation coefficient between first and second variable as 0.3247 is this significant at
5% level.

Solution:

Null hypothesis: the partial correlation coefficient of order 1 is not significant H,: p,,; =0



Alternative hypothesis: the partial correlation coefficient of order 1 is significant
Hy o #0
Level of significance: « =0.05

Test statistic:
r

‘- 1-r? " o2
n-k-2
__ 03247 03247 oo
\/1—(0.3247)2 J0.1278
10-1-2
t,  =2365
E,(n—k—z)

t, =09083<t, =2.365

540)
We accept null hypothesis and we conclude that the partial correlation coefficient of order 1is
not significant.

Show that the test statistic for testing mean of a normal population with unknown o ~t,

Test statistic:
_r-E()
SE(r)

X—u

o/vn

t=

X —u
underH, :t= 0
Ry

_ Xty
Z_a/Jﬁ N(02)

1
where o= [— ) (x. — X)?
o= | T

(% —X)?
pr ; I _ ns® ~ 2
o? o? i
Z
t= -
X




t= X-ttololn (X ﬂO)\FW/ (n-1)/ns? = s/\/_l ~t(n-1)

ns?
n-1

l n
~2 L X —X)2
G n—lizzll(' )

EXACT TEST BASED ON F- DISTRIBUTION:
Test for ratio of two variance or test for equality of two variances:

Assumption:

1. Two independent normal population N(yl,af) and N(,uz,azz) are considered.

2. Two samples are drawn from the given population let n, be the size of the first sample

and n, be the size of the second sample with the sampling variance s and s?.

3. Variances of the population are unknown and assumed to be equal.

Null hypothesis: the population variances are equal H, :o. = o’
Alternative hypothesis: the population variance
H,:0?#07,H,:67>.0,H,:67 <0’

Level of significance: « =0.05 or0.01

Test statistic:

n
Let S/ =—1lsl2 S? = S5
n

F

cal

Critical region:

not equal.

S? . . .
= 8—12 where S7 and S? are unbiased estimators of o7 and o respectively.
2



1. For two sided test, we find F, and F, from F table for F ((n, —1),(n, —1)) degrees of
freedom.

2. When alternative is H,:of >.c2 we can find from F table F_((n, -1),(n, -1)) for
(n, —1),(n, —1) degrees of freedom.

3. When alternative is H, :o? <.oZ we can find from F table F_((n, ~1),(n, 1)) for
(n, —1),(n, —1) degrees of freedom.

Inference:

1. For two sided test, if F., >F_(n,—1),(n, —1) then we reject H, otherwise there is no

cal a
2

reason to reject H,

2. For one sided test,H,:0f>.0c? F_,>F,(n,—1)(n,-1)  then we reject H,
otherwise there is no reason to reject H,

3. For one sided test,H, :0? <.c? ifF, >F_(n,—1)(n,-1) then we reject H,
otherwise there is no reason to reject H,

Problem 18: the following are the values ( in 1000’s) of an inch obtained by 2 engineers with
10 successive measurement in the same micrometer. Is one engineer significantly more
consistent than the other?

Engineer A| 503 | 505| 497 | 505| 495| 502 | 499| 493 | 510 | 501
Engineer B | 502| 497 | 492| 498| 499 | 495| 497 | 496 | 498

Solution:
Null hypothesis: there is no significant difference between consistency of engineers

H, :0'12 = 0'22
Alternative hypothesis: one engineer is more consistent than the other H, : o} > 7.

Level of significance: o =0.05

Test statistic:

XX, | (g =%)7 | (X —X,)°
503|502 4 23.9013
505|497 16 0.0123
497|492 16 26.1233




505] 498 16 0.7901
495( 499 36 3.5679
502| 495] 1 4.4567
499 497| 4 0.0123
493] 496 64 1.2345
510| 498] 81 0.7901
501 0
>—<1=%=501

X, = —4274 =479.1

s2 = %(238) = 26.4444

s? = %(60.8885) =7.6111
sZ>s)
. 26.4444 _ 4 4o 0c
7.6111
F(9.8)=3.4

F. =3.4575> F(9,8)=3.4

We reject the null hypothesis and therefore one engineer is more consistent than the other.

TEST FOR SIGNIFICANCE OF MULTIPLE CORRELATION COEFFICIENT:

Assumption:

1. The population is multivariate normal

2. A random sample of size n is drawn from the population and desired multiple

correlation coefficient is obtained 1, ,5, .4
3. We want to test whether there exist multiple correlation in the population R, ., .

Null hypothesis: the multiple correlation in the population is zero R, ,;, ., =0

Alternative hypothesis: R, ,,, ,.,>0

Level of significance: « =0.05 or0.01

Test statistic:




r’* n-k-1
:1_r2- K ~ Fina)

Where, n- sample size, k-order of multiple correlation coefficient

Critical value: we find F, (k,n—k —1) from F take for (k,n—k —1) degrees of freedom.
Inference: if F_, >F,(k,n—k—1)then we reject null hypothesis, otherwise there is no reason

to reject null hypothesis.

Problem 19: from a 5 variate normal population a random sample of size 20 is taken and

multiple correlation coefficient r,,,,, is found to be 0.27 test at 5% level the existence of

multiple correlation coefficient in the population.

Solution:

Null hypothesis: there does not exist population multiple correlation coefficient
Ho il =0

Alternative hypothesis: there exist population multiple correlation coefficient H, : 1, ,, ., =0
Level of significance: & =0.05

Test statistic:

F =

1-r?" k
(0.27f 20-4-1
1-(0.27)7 4

£ _ 1.0935

 3.7084
F =0.2949

n-k-1=15 t (4,15)=3.06

t, =0.2949 <t_(4,15)=3.06

We accept null hypothesis. There does not exist population multiple

correlation coefficient.



EXACT TEST BASED ON CHI-SQUARE:
TEST FOR SIGNIFICANCE OF VARIANCE:
Assumption:
1. The population is normal population mean x and variance o
2. u and o are unknown
3. A random sample of size n is drawn from normal population with mean x and
variance o
Null hypothesis: there is no significant difference between sample variance and population
variance. H, : o, =0,
Alternative hypothesis: there is significant difference between sample variance and population
variance H, : o0, #o0,,H,:0, >.0,,H,:0, <0,
Level of significance: « =0.05 or0.01

Test statistic:

X = 2
Oy
ns®
=2 T X
Oy
n—sample size

s? —sample variance
o¢ — poplation varianceunder H,,
Critical value:

1. For two sided test, we find y2 values such that x> = y2 for (n-1) degrees of freedom
2

and y° = Zf,z for (n-1) degrees of freedom.
2

2. For one sided test, we find y° values such that y*for (n-1) degrees of freedom and o
for level of significance.

3. For one sided test, we find H, :o® <o, values such that y;_, for (n-1) degrees of

freedom and 2 for (n-1) degrees of freedom.



4. Inference: if y2, >;(j/(n—1) or y2, > y2(n-1) we reject null hypothesis there is no
2

reason to reject null hypothesis.

Problem 20: A random sample size of size 10 is taken from normal population and the
observation are 2.3 2.4 2.5, 2.7, 2.5, 2.6, 2.6, 2.7, 2.5, 2.4. test the hypothesis that the
population variance is 0.16 against the alternative the population variance is greater than 0.16.

Solution:

Null hypothesis: the population variance is 0.16.
Alternative hypothesis: the population variance is greater than 0.16

Level of significance: « =0.05

Test statistic:

X (Xi _)_(1)2

2.3| 0.0484
2.410.0144
2.5| 0.0004
2.7| 0.0324
2.5| 0.0004
2.6| 0.0064
2.6| 0.0064
2.7]10.0324
2.5| 0.0004
24| 0.0144

1
82:—2 X —X 2
n—l (I 1)
_ 0.156

10
=0.0156
, ns?

“ o
~10(0.0156)
016
=0.975



n-1=10-1=9  42(9)=16.92 42, =0.975< 42(9)=16.92

we accept the null hypothesis and therefore the population variance is 0.16.

TEST FOR SIGNIFICANCE INDEPENDENCE OF ATTRIBUTES ASSOCIATION OF

ATTRIBUTES:

Contingency table:

It is a two way table for attributes different levels of two attributes are considered and

the table gives frequencies corresponding to ith level of one attributes and jth level of an other

attribute i=1,2,...m and j=1,2,..n. this type of table is called contingency table of m*n. for

example wwe have the following 2X5 contingency table.

Sex Iliterate | School College edu. Non | Professional Others
education professional education

Male |20 15 25 10 5

Female | 15 25 20 8 7

Null hypothesis: there is no association between the two attributes (or) the two attributes A

and B arer as independent.
Alternative hypothesis: there is association between the two attributes A and B

Level of significance: « =0.050r 0.01or any other specified value

Test statistic:

2 m & (Oij = )2 2
anl - ;;[ Eij - Z(m_l)(n_l)
Where O; is the observed frequency for (i,j)th cell in the contingency table.

Where E; is the expected frequency for (i,j)th cell in the contingency table and is given by,

RC.
C; :#: ij
Where R; is the total of ith row
C, is the total of jth column
N is the grand total.

Critical value: we can find Z(zm—l)(n—l) from Zz for (m-1)(n-1) degrees of the freedom at

level of significance.



2 2 . . . . .
Inference : X’ Za,(m—l)(n—l) we reject null hypothesis otherwise there is no reason to reject

null hypothesis.

Problem 21: The following table is collected on two characters.

Cine goers | Non-cine goers
Iliterate | 45 68
Literate | 83 57

Based on this can you conclude that there is no relation between the habit of cinema going

and literacy.

Solution:

Null hypothesis: there is no relation between the habit of cinema going and literacy.

Alternative hypothesis: there is relation between the habit of cinema going and literacy.

Level of significance: « =0.05

Test statistic:

E, = (128113 - 57.17 E, = (1251113 - 55.83 E, = (128140 =70.83
253 253 253
E,, = —(125)140 ~69.17
253
2
Oii Eii (Oij - EU) (Oij B Eij
E;
45 | 57.17 | 148.1089 | 2.5907
83 | 70.83 | 148.1089 | 2.0910
68 | 55..83| 148.1089 | 2.653
57 | 69.17 | 148.1089 | 2.1412
72 =9.4759
75, =3.841

Inference: y’,=9.4759 > y’ =3.841 we reject the null hypothesis. There is no relation

between the habit of cinema going and literacy.



Theorem 1: Show that 2X2 contingency table with frequencies a,b,c,and d y* statistic is

N(ab - bc)?
(a+b)c+d)a+c)b+d)

Proof:

The observed frequencies are O, =a O,,

frequencies are.
RC,
— Ei
Where R, is the total of ith row
C; is the total of jth column

N is the grand total.

where N=a+b+c+d.

=b 0,=c O,=d

2w (Oij _Eij)z
Z B IZ:I: j=i [ Eij
£ - (a+b)a+c) e - (a+b)b+d)
N N
2 [ (a+b)a+c) ?
(011 - Ell) __ N :l
(0, ~E.f __a(a+b+c+d)—(a+b)(a+c)}2
11 11 __ N
(011 B Ell)2 _ (ad —bC) i
E, { N }
(011 — En)2 _ (ad — bC)Z-N
E,  NZ2(a+b)a+c)
(011 - E11 )2 _ (ad — bc)z
E, N (a+b)a+c)
Similarly,
(012 B E12 )2 _ (ad — bc)z
E, N (a+b)b+d)
(021 B E21 )2 _ (ad — bC)2
E, N (a+c)c+d)
(022 B Ezz )2 _ (ad — bC)2
E, N (b+d)c+d)

the expected



i=l j=i ij

2 (ad —bc)’ .\ (ad —hbc)? s (ad —bc)? .\ (ad —bc)?
N (a+bfa+c) N (a+b)b+d) N (a+c)c+d) N (b+d)c+d)

2 _ (ad —bc)’ _(b+d)(c+d)+(a+c)(c+d)+(a+b)(b+d)+(a+b)(a+c)}
N (a+b)a+c)b+d)c+d)

2 (ad —bc)*[(a+b+c+d)c+d+a+b)
~ N | (a+bfa+c)b+d)c+d)

2 (ad —bc)* [ N2 }
- N (a+bYa+c)b+d)c+d)

2_ N(ab - bc)?
X ~a+bYc+dYa+cho+d)

Hence proved.

YATES:

if any of the cell frequencies C; <5 Yates has introduced a correction term in the formula for

¢ 2X2 contingency table. It is given by

2 N[ab—bc| - N/2f
X ~(a+bfc+d)a+cho+d)

Problem 22: The theory predicts the proportion of beans in 4 groups A, B, C, and D should
be 9:3:3:1. In an experiment of 1600 beans the frequencies in the four groups are 822, 313,
287, 118. Do these experiment results support the theory.

Solution:

Null hypothesis: There is no significant difference between theoretical frequencies and
expected frequencies.

Alternative hypothesis: There is significant difference between theoretical frequencies and
expected frequencies.

Test statistic:



0,=882 0,=313 0,=287 0O,=114

E, :1600xi:900 E, :1600x3:300 E, :1600><i:300
16 16 16

E, = 1600 x — = 300
16

(0,-E,)" (882-900) (0,-E,) (313-300)

= =0.36 = =0.56
E, 900 E, 300
2 2 2 2
(O, -E,)" _(287-300)" .., (O,-E,) _(118-1001 ..,
E, 300 E, 100

ZZ —0.36+0.563+0.563+3.24

;(; — 4726

2
Z(471) - )((3) « = 1815

2
Inference: since Z; :4'726<Z(23)“ =7.815 we accept the null hypothesis. There is no
2

significant difference between theoretical frequencies and expected frequencies.

Problem 23: Find following table gives the number of aircraft accidents that occurred during
the seven days of week. Find whether the accidents are uniformly distributed overly week.

Days sunday | monday | tuesday | wednesday | thursday | friday | Saturday
No.of.accidents| 16 14 18 12 11 15 14
Solution:

Null hypothesis: The accidents are uniformly distributed overly the week.
Alternative hypothesis: The accidents are not uniformly distributed overly the week.

Level of significance: o =0.05

Test statistic:

E, =100 x % =14.2857

E, =100 x % =14.2857

2 2
(O,-E,) _(16-14.2857)" _ 0.2057
E, 14.2857




(0,-E,)" _(14-14.2857)

= 0.0059
E, 14.2857
2 2
©;,-E) =0.9657 ©u-E) =0.3657
3 4
2 2
@ =0.7557 M =0.3657
5 6
2
@ =0.0057
7
72, =2.3399

2

2 =12592
Za(s)

72 =2.3399 < ;55(6) =12.592

2
We accept the null hypothesis and therefore the accidents are uniformly distributed overly the

week.

TEST FOR HOMOGENEITY OF SEVERAL CORRELATION COEFFICIENT:
Assumption:
1. The population is bivariate normal with correlation coefficient p,, p,, - p,
2. k random samples are drawn and their correlation coefficient are denoted by
r,r,,---r, the samples are large.
Null hypothesis: there is no significant difference between several correlation coefficient
Hoipr=pp==p.=p
Alternative hypothesis: there exist atleast one of the correlation coefficient unequal.
H ip£p, #=p #p
Level of significance: « =0.05

Test statistic:



Zi~N[€, L J
n -3

r; is the ith sample correlation coefficient.
n; is the ith sample size
p is the population correlation coefficient under H,.

Since — is unknown it is estimated by

Zk‘,zi (ni _3)

The test statistic is,

2
2
= Xk
Z[l/ /—n — J (k-1)
Critical value:
2 2
From £ table we can find the value (k-1 for (k-1) degrees of freedom.

Inference:

2 2
Xeal = Za(k1) We reject Ho otherwise there is no reason to reject Ho'



UNIT V
In this chapter will discuss the nonparametric procedures for inference.
NON-PARAMETRIC INFERENCE

Most of the standard methods of statistical inference are based on the familiar assumption
that the random variables have normal distributions. Then the given procedures are optimum.
But for non-normal distributions the standard procedures may be far from optimum. In such
cases non-parametric methods are used. A procedure will be called distribution free if the
statistic used has a distribution which does not depend on the distribution function of the
population from which the sample is drawn. So in such procedures assumptions regarding the

population are not necessary.

Distinguish between parametric and non-parametric:

2

LF.x and

In parametric test we are concerned with testing parameters of the population
normal test are used to find the parametric values.

The features of parametric test are null hypothesis are defined using the values the
values of the parameter for e.g

2
In parametric test we are concerned with testing parameters of the population LF.x

and normal test are used to find the parametric values.
The features of parametric test are null hypothesis are defined using the values the

values of the parameter for e.g #=20:0=5,=0

The form of population is assumed to be known samples drawn from the population
are independent and random.

The sampling distribution of the statistic is wither exactly known or asymptotically

calculated.

2
When the form of population is unknown we cannot apply LF.x

When test are not based on the form of distribution we have distribution free test or

non-parametric test.



When the parameters are not tested we are interested in testing any measure of
location or whether the two population have the same density function, in such cases we use

non-parametric test.

Non-parametric:

Assumption:
e The form of the population is unknown.
e The population possesses density function.
« Lower order moments exists i.e “1'#zare finite.
e Sample observation are independent and random
e The variable under study is continuous.

e The two population are identical or the measures of location of two population are the

Same.

RUN TEST:

A run test is sequence of letter of one kind followed by a sequence of letters of
another kind. The number of letters in a sequence is called length of the run.
For example:  XXX/Y/IXXXXXX/yIXIyyyy

The sequence has 6 runs. The length of third run is 6.

Let *v%2 % and Y1 Y20 ¥n pe two random samples from two given population.
Null hypothesis: Are the two populations having identical density function.

H,: f(0)=g,(¢)

Alternative hypothesis: the two populations do not have identical density function.
Hy: f(e)=g,(e)

Level of significance: %= 0.05/0.01/ any other specified value

Test statistic and its distribution:

Let U denote the number of rums in the combined sample.



E(U)z( L J+1

n+n,

V(U ) _ 2n1n2(2n1n2 -n - nz)
(n,+n,)n, +n, -1)

The above — and — are computed on the basis of large sample.

U-EU)
Z,=—————~N(01
BT
Critical value:
a=0.05,z, =1.96
2
a=0.01,z, =1.96
2
anl > Za HO H 0
Inference: if 2 e reject otherwise there is no reason to reject

Problem 1: The following data relates to two population observations
SI |10[20|15|25|18 (28|23 |10 (12|14
SI 1111311828 |30|32 (24|27 (221112

Test whether the samples have come from sample population.

Solution:
10 10/ 11 11/12 12/13/14/15/18 18/20/22 22/23/24/25/27/28 28/30/32
Null hypothesis: the samples are come from sample population.
Alternative hypothesis: the sample are not come from sample population.
Level of significance: « = 0.05
Test statistic:

Uu=14 n =10 n,=12

E(U):(Z(lo—)(lz)jﬂ

10+12
E(U)=11.9091

_ 2(10)12)(240-10-12)
V)= (10+12)10+12-1)

V(U)=5.1476

, _14-11.9001
° /5.1476



Z, =0.9216
Z,, =1.96
%

Z,=09216>7,, =1.9
%

We reject the null hypothesis. Therefore the sample are not come from sample population.

TEST FOR RANDOMNESS, RUN TEST:

Let X;,X,,---X, be sample from the given population.

e Find the median of the sample.

e Represent the given observation in the same order by A or B. where A stands for
above median and B stands for below median.

e If any observation is equal to median omit the observation and reduce the size of the
sample.

e Find the number of runs and denote it by U.

Expectation of U ie E(U)= nLZZ and VU)= 2(%)

U-EV) _

W)

Null hypothesis: the sample is random

Z, = N(0.)

Alternative hypothesis: the sample is not random.
Test statistic:
_U-EV) _

W)

Critical value: for « =0.05 ,Z, =1.65 «=0.01,Z, =2.33

Z, N(0,1)

Inference: if Z,>Z, reject H, otherwise there is no reason to reject H,

MEDIAN TEST
Procedure:

e Two samples they namely Xi:X2,>Xy and Y1, Y2:"*Ynare given. Combine the

samples and arrange them in ascending order of magnitude and find median.
e Find M (i.e) number of values in the first sample exceeding the median.

e Find M; (i.e) number of values in the second sample exceeding the median.



e Form a contingency table as follows:

Samples | No.of.observation above median | No.of.observation below median | Total
1. m, n,—m, n,

2. m, n, —m, n,

3. m, +m, (n,+n, )—(m, +m,) n,+n,

Null hypothesis: the two have the same median.
Alternative hypothesis: the two samples do not have the same median.

Level of Significance: a =0.05/0.01/ any other SpeCified value

Test statistic:

2 A (Oij - E; )2 2
Kea™ ZZ[ E " Xy

m- number of rows n-number of column

Critical value: we can find z(zm—l)(n—l) from Zz for (m-1)(n-1) degrees of the freedom at

level of significance.

2 2 . . . . .
Inference : X’ Za,(m—l)(n—l) we reject null hypothesis otherwise there is no reason to reject

null hypothesis
Note: median test can be used for testing equality of medians of any number of population.

Suppose there are r samples we get r/2 contingency table. Therefore the degrees of freedom
for the problem will be (r-1)(2-1).

Problem 2: 3 random samples are drawn from 3 population gave the following values if
whether the population have the same median.

SI |1{2|5]7/8]9|3]|2
SIl |2{5/3|8]9|5|2|7]10
SHI[3({4|2|5|7|8|9|7|11|8|12

Solution:



Null hypothesis: the three samples have the same median
Alternative hypothesis: the three samples do not the same median.
Level of significance: « =0.05
Test statistic:

Median= (5+7)/2=6

Samples | No.of.observation | No.of.observation | Total
above median below median

1 3 5 8
2 4 5 9
3 7 4 11
Total 14 14 28

Oy | By (Oij —E

E;

3 |4 0.25

5 |4 0.25

4 |45 0.0556

5 |45 0.0556

7 5.5 0.4091

4 |55 0.4091

72=1.4294

2

We accept null hypothesis, the three samples have same median.

SIGN TEST:
Sign test is preferred under the following situations
e Population density function is unknown
e Sample observations are paired
o Different pairs are observed under different variances and so paired —t test cannot be

applied.



e Measurements are such that di=x;-y; can be expressed as positive or negative sign.
e Variables are continuous and d; s are independent.

Procedure:

Null hypothesis:

Two populations have identical distribution

ie., fx(.)=fy(.),P[(X-Y)>0]=1/2, P[(X-Y)<0]=1/2

Alternative Hypothesis:

Two populations have different distribution

f, ()= f,() P[(X-Y)<0]=1/2

Level of significance:

o =0.05/0.01/ any other specificvalue

Test Statistic

E(U)=np=n(1/2)=n/2

V(U)=npg=n(1/2)(1/2)=n/4

When the sample is large, we can have normal approximation

_U-EU)_2u-n_
WNU)  Vn

Critical Value:

When « =0.05, Z_,,=1.96 and « =0.01, Z,,, =2.58

Z, N(0,1)

Inference:

If |Z,|>Z,,, we reject Ho otherwise there is no reason to reject Ho

Note: di=x;-y; is no sign attached and the pair is omitted from the sample size n and the

reduced sample will have n-1 observation.

Problem 3: A random sample of paired observation is given below (10,11), (11,13), (12,10),
(13,13), (14,15), (11,14), (12,13), (13,12), (10,8), (10,13), (14,15), (15,17), (15,13), (11,10),
(8,9), (9,9), (11,9), (12,14), (13,11), (11, 11). Apply approximately non-parametric test. Test
Whether there is any gain in B=X-Y.

Solution:

Null Hypothesis: There is no gain in B=X-Y

Alternative Hypothesis: There is gain in B=X-Y

Level of Significance: « =0.05

Test Statistic



X 1Y |Sign| X |Y [Sign|X |Y |Sign
10 |11 | - 11|14 | - 9 19 |0
11 113 |- 12 |13 | - 1119 |+
12 110 | + 1312 | + 12 |14 | -
1313 |0 108 |+ 13 (11 | +
14|15 | - 108 |- 11110

Reduced Sample Size=Total Number signed observations-Non Signed Observations=20-
3=17
_U-n_2(7)-17

Z =-0.7276
°dn V17

zZ,,=196

Inference:

If |Z,/|=0.7276 <Z,,, =1.96 . Therefore, there is no reason to reject Ho. There is no gain in

B=X-Y.
MANN-WHITENEY U TEST (RANK SUM TEST)

Mann-Whitney U test (also called the Mann Whitney—Wilcoxon (MWW), Wilcoxon rank-
sum test, or Wilcoxon Mann-Whitney test) is a nonparametric test of the null hypothesis that
it is equally likely that a randomly selected value from one sample will be less than or greater
than a randomly selected value from a second sample.

Unlike the t-test it does not require the assumption of normal distributions. It is nearly as
efficient as the t-test on normal distributions.

A Wilcoxon signed-rank test is a nonparametric test that can be used to determine whether
two dependent samples were selected from populations having the same distribution. A
Wilcoxon rank sum test is a nonparametric test that can be used to determine whether two
independent samples were selected from populations having the same distribution.
PROCEDURE

Null hypothesis

The populations have the same density function i.e., Ho: fx(.)=0y(.)

Alternative Hypothesis

The populations do not have the same density function. H, : f, ()= g, ()



Level of significance:

o =0.05/0.01/any other specificvalue

Test statistic:
Combine the two sample and assign rank
T=sum of the ranks in second sample

n,(n, +1)
2

U=nn,+ -T

where, ni=size of the first sample
np=size of the second sample

Under Asymptotic condition

U-EU)
Z,=————~N(01
N T B
where EU)=""2  v(U)= nln?(nllz ", +1)
Critical Value:

When « =0.05, Z,,,=1.96 and  =0.01, Z,,, =2.58
Inference:

If |Z,|>Z,,, we reject Ho otherwise there is no reason to reject Ho

Problem 4: The following are values obtained from two samples.
x(1(2/3|5 |7 |9 |11 |18
y|4|16(8|10|12 (13|14 |15]|19

Use Mann-whiteney U test to test whether the populations have same density.

Solution:

Null hypothesis: The population has same density function

Alterative Hypothesis: The population does not have same density function
Level of Significance: « =0.05

Test Statistic:

Arrange the ascending order,

1,2,3,45,6,7,8,9,10,11,12,13,14,15, 18,19

T= Sum of second sample values= 4+6+8+10+12+13+14+15+17=99

U=nn,+ @ T =72+(90/2)-99=18



EU)=""2 =36 v(U)= (40, +1) g
2 12
U-EU) 18-36
Z,= = =-1.7321
° WNU) V108
Z,,=19

1Z,|=17321<Z,,, =1.96.

Inference:

Therefore, there is no reason to reject Ho. The population has some density function.

KRUSKAL-WALLIS TEST

The Kruskal-Wallis test is a nonparametric (distribution free) test, and is used when
the assumptions of one-way ANOVA are not met. Both the Kruskal-Wallis test and one-way
ANOVA assess for significant differences on a continuous dependent variable by a
categorical independent variable (with two or more groups). In the ANOVA, we assume that
the dependent variable is normally distributed and there is approximately equal variance on
the scores across groups. However, when using the Kruskal-Wallis Test, we do not have to
make any of these assumptions. Therefore, the Kruskal-Wallis test can be used for both
continuous and ordinal-level dependent variables. However, like most non-parametric tests,
the Kruskal-Wallis Test is not as powerful as the ANOVA.
Assumptions
1. We assume that the samples drawn from the population are random.
2. We also assume that the observations are independent of each other.
3. The measurement scale for the dependent variable should be at least ordinal.
Null hypothesis:
Null hypothesis assumes that the samples (groups) are from identical populations.
Alternative hypothesis:
Alternative hypothesis assumes that at least one of the samples (groups) comes from a
different population than the others.
Level of significance:
a =0.05/0.01/ any other specificvalue

Test Statistic:



CT2
{ —']— (n+1)
(n+1) < n

Where, n = sum of sample sizes for all samples,
¢ = number of samples,
T; = sum of ranks in the j™ sample,
n; = size of the " sample.
Inference : Hea™> 2 (c —1)df , we reject null hypothesis otherwise there is no reason to reject

null hypothesis

Problem 5: A shoe company wants to know if three groups of workers have different
salaries:

Women: 23K, 41K, 54K, 66K, 78K.

Men: 45K, 55K, 60K, 70K, 72K

Minorities: 18K, 30K, 34K, 40K, 44K.

Solution:

Null Hypothesis: There is no significant different between the salary of three groups of
workers

Alternative Hypothesis: There is significant different between the salary of three groups of
workers

Level of Significance: « = 0.05

Sort the data for all groups/samples into ascending order in one combined set.

18K, 23K, 30K, 34K, 40K, 41K, 44K, 45K,54K,55K,60K,66K,70K,72K,78K

Assign ranks to the sorted data points. Give tied values the average rank.

20K- 1, 23K-2, 30K-3, 34K-4, 40K-5, 41K-6, 44K-7, 45K-8, 54K-9, 55K-10, 60K-11, 66K -
12, 70K-13, 72K-14, 90K-15

Add up the different ranks for each group/sample.

Women: 23K, 41K, 54K, 66K, 90K =2 + 6 + 9 + 12 + 15 = 44,

Men: 45K, 55K, 60K, 70K, 72K =8 + 10 + 11 + 13 + 14 = 56.

Minorities: 20K, 30K, 34K, 40K, 44K =1+3+4+5+ 7 = 20.

Test statistic

|12 T
n(n+1) & n,

]—3(n+1)



2 2 2
H=| 12 |44 567 20 ~3(15+1)=6.72
15(15+1)| 5 5 5

ind the critical chi-square value. With c-1 degrees of freedom. For 5 — 4 degrees of freedom
and an alpha level of .05, the critical chi square value is 9.4877.
The chi-square value is not less than the test statistic, so there is not enough evidence to

suggest that the means are unequal.

Hypothesis Tests of the Mean and Median

Nonparametric tests are like a parallel universe to parametric tests.

Parametric tests (means) Nonparametric tests (medians)
1-sample t test 1-sample Sign, 1-sample Wilcoxon
2-sample t test Mann-Whitney test

One-Way ANOVA Kruskal-Wallis, Mood’s median test

Factorial DOE with one factor and one )
) ) Friedman test
blocking variable




