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STATISTICAL INFERENCE 

UNIT-I 

 

1. INTRODUCTION 

 

Statistical inference being similar to, a process of inductive inference as envisaged in 

classical logic which is the problem is to know the general nature to the phenomenon under 

study on the basis of the particular set of observations. The only difference is that in a 

statistical investigation induction is achieved within a probabilistic frame work. Probabilistic 

considerations enter into the picture in three ways. First, the model used to present the field of 

study is probabilistic; second, certain probabilistic principles provide the guidelines in making 

the inference. Third, as we shall see in the sequel, the reliability of the conclusions also 

judged in probabilistic terms. The problem of statistical inference generally takes one of two 

forms viz. estimation and hypothesis testing.  

 

POPULATION: The set of all possible observation under study is called population. It is 

denoted by ‘N’. 

 

PARAMETER: Any population constraints are called parameter. For example, A random 

variable X~N  2, , here 2 and  are called the parameters of Normal Distribution. 

 

PARAMETRIC SPACE: The set of all possible values of the parameter is called parametric 

space. (i.e) X~f  :x   . It is denoted as ‘ ’. For example: 

    0,;,,~ 22  NX  

 

SAMPLE: It is the subset of the population. It is denoted by ‘n’. 

 

Definition 1: ESTIMATOR 

            Any function of random samples nxxx ,...,, 21  that are being observed say 

 nn xxxT ,...,, 21  is called an estimator. Clearly a estimator is also a random variable.  

If it is used to estimate an unknown parameter, say  , of the distribution which is also 

called an estimator. 
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Definition 2: ESTIMATE 

A particular value of the estimator is called estimate of parameter, say   Eg: 

nxxx ,...,, 21  is a random sample then the mean of the random sample is x say T(x)= x is 

called estimator. 

 

1.1 SAMPLING DISTRIBUTION 

If a number of samples, each of size n (viz., each sample containing n elements) are 

drawn from the sample population and if for each sample the values of some statistic say, 

mean is calculated, a set of values of the statistic will be obtained. These values o the statistic 

will usually vary from one sample to another, as the values of the population members 

included in different samples, through drawn from the same population may be different and 

hence may be treated as values of R.V. 

The probability distribution of the statistic (a R.V.) that would be obtained, if the 

number of samples, each of the size n, were infinitely large, is called the sampling distribution 

of the statistic. If the random sampling technique is adopted, the nature of the sampling 

distribution of a statistic can be obtained theoretically, using the theory of probability 

provided the nature of the population distribution is known. 

Like any other distribution, a sampling distribution will have its mean, standard 

deviation and moments of higher order. The standard deviation of the sampling distribution of 

a statistic isof particular importance in tests of significance for large samples and testing of 

hypothesis and is known as standard error (S.E). In the case of large samples (viz. n>30), the 

sampling distribution of many statistics tend to become normal distributions.  

If t is a statistic in large samples, then t follows a normal distribution with mean E(t), 

which is the corresponding population parameter and S.D. equal to S.E.(t). Hence 

).(.

)(

tES

tEt
Z


  is a standard normal variate.Z follows a normal distribution with mean 0 and 

S.D. 1 and is called the test statistic.  

 

1.2 STANDARD ERRORS 

The standard errors of some frequently occurring statistics for large samples of size n 

are given below, where 2 is the population variance, P, the population proportion and Q=1-P 
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and n1, n2 represent the sizes of two independent random samples drawn from the given 

population(s).  

 

S.No. Statistic Standard Error 

1 Sample Mean  X  

n


 

2 Sample Proportion(p) nPQ/  

3 Sample S.D. (s) n2/2  

4 Sample Variance  2s  n/22  

5 Sample Median 1.25331 n/  

6 Sample coefficient of Variation    

nn 210

2
1

2
4

3 
  

7 Sample Correlation Coefficient (r)  
n

21 
 

where  is the population correlation 

coefficient. 

8 Differences of two sample means 

 21 XX   2

2

2

1

2

1

nn


  

9 Difference of two sample S.D’s (s1-s2) 

2

2

2

1

2

1

22 nn


  

10 Difference of two sample proportions 

(p1-p2) 2

22

1

11

n

QP

n

QP
  

 

 

Definition 3: ONE PARAMETER EXPONENTIAL FAMILY OF DISTRIBUTION 

A random variable nXXX ,...,, 21 said to be distributed according to a member in one 

parameter exponential family of distributions if its probability density function is expressed as 

 

              ,xxhexf BxTA  
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where  A and  B are real valued function of  , T(x) is a real valued statistic with support 

x and h(x) is independent of  .  

 

Definition 4: MULTI PARAMETERS EXPONENTIAL FAMILY OF DISTRIBUTION 

 

A random variables, nXXX ,...,, 21  which is equal to x1, x2,..., xn is said to be 

distributed according to a member of multi parameters exponential family of distributions if 

its probability density function is expressed as  

 

 
     

  







n

BxTA

i xxhexf
i

n

i

i




...,, 21
1  

 

where  


n

i

iA
1

 and  B are real valued function of  ,  


n

i

i xT
1

 is a real valued statistic with 

support x and h(x) is independent of  .  

 

Example 1: Let nXXX ,...,, 21 ~ Poisson   . To check whether, this distribution is a member 

in one parameter exponential family of distribution. 

 

Solution: 

 













otherwise

x
x

e

xXP

x

,0

0,...,2,1,0,
!








 

 
!

1
.log

x
eexXP x    

 
!

1
.log

x
exXP x    

Here,        
!

1
;;;log

x
xhxxTBA    

Therefore, Poisson distribution is a member in one parameter exponential family of 

distribution. 
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Example 2: To check whether, the normal distribution is a member in exponential family of 

distribution. 

 

Solution:  

The Probability density function of normal distribution is   

 


















 


otherwise

xe
xf

x

,0

0,,;
2

1

,

2

2

1

2 






 

 

 









log
2

1

2

2

2

1
,








 




x

exf  

                   














log
22 2

2

22

2

2

1 



xx

e  

                   







































log
22 2

2

22

2

2

1 x
x

e  

Here,          











2

1
;;;log

2
;

2

1
1

2

12

2

2



 xhxxTxxTBA  

Therefore, Normal distribution is a member in multi parameter exponential family of 

distribution. 

 

1.3 IDEAL/PROPERTIES/ CHARACTERISTICS OF AN ESTIMATOR: 

                 Estimation theory is concerned with the properties of estimators (i.e) with defining 

properties that can be used to compare different estimator for the same quantity based on the 

same data. Such properties can be used to determine the best rules to use under given 

circumstance. 

               The properties of estimators are mainly classified into two, small sample and large 

sample properties. 
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Estimators 

 

Small                                      Large 

 

(i) Unbiasedness      (iv) Consistency 

(ii) Efficiency 

(iii) Sufficiency 

 

 

Definition 5: UNBIASEDNESS 

       The statistic  nn xxxTT ,...,, 21  will be called an unbiased estimator of    if 

       xTE . (i.e) It has zero bias  . (   0)(  xTE ) 

  

Definition 6: BIAS 

    Let  nn xxxTT ,...,, 21 is a biased estimator then   )()(  bxTE  . Here  b is amount 

of bias.  

 

Remarks: 

    )(xTE  then bias is positive 

    )(xTE then bias is negative 

 

Mean Square Error:  Let  nn xxxTT ,...,, 21  be an estimator of   . The mean square 

error of the estimator    is defined as   2 TE  

(i.e)   2 TE =   2)()( TETETE     

                                =         2
TETTEE     

                                 =                 TETTETETTEE    2
22

 

                                 =        22
TETETEE     

            2 TE    TVarb  2   

                                 = 

















estimatorthe

ofiability

estimatorthe

isbias var
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                                 =

















estimatorthe

ofprecision

estimatorthe

ofaccuracy
 

An estimator is preferred over others if it is a MSE is small as compared to that of 

others which is achieved by the small variance and small biased both together. Controlling 

over biased does not necessarily result in low mean square error. Sometimes bearing small 

amount of biased combined with decrease in variance finally that result into a high decreasing 

mean square error. 

    Small mean square error of the estimator results in high probability that the estimator too 

close to true value of parameter  by chebyshev’s inequality.  

The Positive square root of mean square error is called standard error. Mean squared 

error (MSE) combines the notions of bias and standard error. It is defined as 

MSE=(Standard Error)
2
+(Bias)

2
 

 

Example 3: Let nXXX ,...,, 21  be a random sample from a normal population N  1, . Show 

that 



n

i

ix
n

t
1

21
is an unbiased estimator of 12  . 

 

Solution: 

Let, nXXX ,...,, 21 ~N  1, ,     1 ii xVandxE   

w.k.t;         22

iii xExExV   

                 1 =   22
ixE  

                  22
1 ixE  












n

i

ix
n

E
1

21
=  



n

i

ixE
n 1

21
 

                          =  



n

in 1

21
1

  

                          =  21.
1

n
n

 

                         = 21   

Hence 



n

i

ix
n

t
1

21
is an unbiased estimator of  12  . 
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Example 4: If T is an unbiased estimator for   show that 2T is an unbiased estimator for 2 . 

 

Solution: 

Since T is an unbiased estimator for   (i.e)   TE  

w.k.t.,         22 TETETV   

                22  TETV  

                   22  TVTE   

                     2222 0  ofestimatorbiasedaisTTVTE    

 

Example 5: Show that 
 
 1

1





nn

xx ii  is an unbiased estimate of 2  for the sample 

nxxx ,...,, 21  drawn an X which takes the value 1 or 0 with respective probabilities 

 .1  and  

 

Solution: 

                         BernoulliX ~  

                 1,;~ nTVnTEBinomialxT i  

 
  













1

1

nn

xx
E ii   = 

 
   

 TTE
nnnn

TT
E 














 2

1

1

1

1
 

                                = 
 

    TETE
nn




2

1

1
 

                                = 
 

       TETETV
nn




2

1

1
 

                               = 
 

     nnn
nn




2
1

1

1
 

                              = 
 

  nnnn
nn




222

1

1
 

                             = 
 

 1
1

1 2 


nn
nn

  

 
  













1

1

nn

xx
E ii      = 2  
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Definition 7:  EFFICIENCY 

 

           If 1T  is a most efficient estimator with variance 21 TandV is any other estimator with 

variance 2V  then the efficiency of 2T is defined as 
2

1

V

V
E   obviously E cannot exceed 1. 

Similarly if T, nTTT ,...,, 21  are all estimators of    and variance of T is minimum then the 

efficiency  niTofE ii ,...,2,1  is defined as 
i

i
TVar

TVar
E  for all i=1,2,…,n obviously 

 niEi ,...,2,11  . 

 

Example 6: A random sample  54321 ,,,, XXXXX  of size 5 is drawn from a normal 

population with unknown mean  . Consider the following estimators of estimate  : 

(a) 
5

54321
1

XXXXX
t


  

 (b) 3
21

2
2

X
XX

t 


  

(c) 
3

2 321
3

XXX
t


  

where   is such that 3t is an unbiased estimator of  . Find  . Are 21 tandt unbiased? State 

giving reasons the estimator which is best among 321 , tandtt . 

 

Solution: 

(a) 









 

3

2 321 XXX
E     since 3t  is an unbiased estimator 

    3212
3

1
XXXE  

    )()()2(
3

1
321 XEXEXE  

     2
3

1
 

  33   

 0   
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(b) 






 


5
)( 54321

1

XXXXX
EtE  

              =   54321
5

1
XXXXXE   

          =           54321
5

1
XEXEXEXEXE   

          =       
5

1
 

          =       

 2tE     =   










3

21

2
X

XX
E       

                 =       321
2

1
XEXXE   

                 =           321
2

1
XEXEXE   

                 =         
2

1
 

                 =      2   

ofestimatorunbiasedanist1  

    ofestimatorbiasedaist2  

 

(c)       21

2

11 tEtEtV   








 


5
)( 54321

1

XXXXX
VtV  

         =  
25

22222  
 

         =  
5

2
 

 2tV =  










3

21

2
X

XX
V  

            =     321
4

1
XVXXV   

2
22

4






  



11 

 

            = 
2

3 2
 

  






 


3

2 21
3

XX
VtV  

           =  
9

4 22  
 

           =  
9

5 2
               since      321 , tVtVamongleasttheistV  

   ofestimatorefficientmosttheist1 . 

 

Example 7: Let 321 ,, XXX  is a random sample of size 3 from a population with mean value 

 and variance 2 . 321 ,, TTT are the estimators used to estimate mean value  , where  

 321323123211
3

1
432 XXXTXXXTXXXT    

(i) Are 21 TandT unbiased? 

(ii) Find the value of  forestimatorubiasedisTthatsuch 3  

(iii) Which is the most efficient estimator? 

 

(i)    3211 XXXETE   

                  =       321 XEXEXE   

                  =     

                  =    

   2312 432 XXXETE   

                   =       231 432 XEXEXE   

                  =     432   

                  =     

1T  is an unbiased estimator of   

  2T is an unbiased estimator of    

 

(ii)    forestimatorunbiasedanisTceTE 33 sin  
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        







 321

3

1
XXXE  

           )()()(
3

1
321 XEXEXE  

       3  

             1  

 

(iii)    3211 XXXVtV   

                  =   222    

                  =    23  

           2312 432 XXXVtV   

                   =       231 1694 XVXVXV   

                  =    222 1694       

                  =    229  

     3tV     =    







 321

3

1
XXXV   

                 =    321
9

1
XXXV   

                    =    222

9

1
   

                   =   
3

2
 

since  3tV  is the least of all 321 ,, TTT  

3t is the most efficient estimator of  . 

 

1.4 SUFFICIENCY 

 

Let, the random sample nXXX ,...,, 21 have the joint distribution function F which is known 

expect for k parameters k ,...,, 21 . We shall write  k ,...,, 21 , a vector with k 

components, and shall suppose that the parameter space is  . Consider k functionally 

unrelated statistics kTTT ,...,, 21 , the whole set of which may be denoted that by T.  



13 

 

Definition 8:  

 

Let nXXX ,...,, 21  be a random sample from the cumulative density function 

      :.. FF  where   is unknown and it is a known family of distribution. A statistic 

for   if its conditional distribution of nXXX ,...,, 21 for any given set of values of kTTT ,...,, 21 is 

independent of  . 

 

Theorem 1: NEYMAN-FISHER FACTORIZATION  

 

Statement: 

              Let X be a discrete random variable with p.m.f     ,,xf . Then T(x) is 

sufficient iff          xhxTgxf ,,  

Proof: 

          Let                xxhxTgxf ;,,   

                                          =       
txTx

xhxTg
)(:

,  

                                           =       
txTx

xhxTg
)(:

,  

Let ,    
 

    
    

 















txTif

xTxTP

xTxTxXP

txTif

txTxXP
'

'

','

'0

/'
  

 

Consider , 

        
    

    '

','

xTxTP

xTxTxXP



     =    
 

    




txTx

xhxTg

xXP

)(:

,

'


  

                                                             =   
    

    
txTx

xhxTg

xhxTg

)(:

,

',,




 

                                                            =   
 

 
txTx

xh

xh

)(:

'
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  txTxXP  /' = 
 

 
txTx

xh

xh

)(:

'
  is independent of  if T(x’)=t. 

So the conditional distribution of X given T is independent of the parameter. So T is sufficient 

statistic for  . 

 

Conversely, Let T is sufficient for  . 

 

  txTxXP  /'   = C ( x’, t)                      oftindependen  

 
    

    '

','

xTxTP

xTxTxXP




     =  C ( x’, t)             txT '    

      '  t), x'( C' xTxTPxXP    

                             =   t), x'( C    ,xTg  

      xhxTgxXP  ,'   

Hence proved. 

 

Example 8: 

 

1. Suppose nXXX ,...,, 21  are Independent Identically Distributed (IID) random variables with 

common probability density function (p.d.f)  

 

 


 




otherwise

xif
xf

xx

0

1,0)1( 1
  where 10    

 

Solution: 

The p.d.f of Bernoulli distribution is 

  xxxXP  1)1(   

 

The joint probability density function of x1, x2,...,xn is  

    




 ii xnx
n

i

i xXPL  1)(
1
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   n
xi

L 



 













 1

1
 

     ., hxgL i   

Here,        n
n

i

i

n

T

hxTtg 














 



1.;;1
1 1

 

Therefore,  ix is a sufficient statistic for  . 

 

 

Example 9: Let X ~ Poisson ( ). Find the sufficient statistic for  . 

 

Solution: 

 

The p.d.f of Poisson distribution is  

 













otherwise

x
x

e

xXP

x

,0

0...,2,1,0,
!




 

 

   




 


n

i
n

i

i

xn

i

x

e
xXPL

i

1

1

!






 

 


























n

i

i

xn

x

eL i

1

!

1
 

 

 

Here,    






























n

i

i

n

i

i

xn

x

hxTetg i

1

1 !

1
.;;  

Therefore, 


n

i

ix
1

is a sufficient statistic for  . 
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Example 10: Let X ~ Exponential ( ). Find the sufficient statistic for  . 

 

Solution:  

 

The p.d.f of exponential distribution is  

 

 

 

   .

1

1

1

hxgxL

exL

exf

n

i

i

x

n

x

i



































 

Here,     1.;;
1

1

1





 


 

hxTetg
n

i

i

x

n

n

i

i




 

 

Therefore, 


n

i

ix
1

is a sufficient statistic for  . 

 

Example 11: Let X ~ Normal  2,0  . Find the sufficient statistic for 2 . 

 

 


















 


otherwise

xe
xf

x

,0

0,,;
2

1

,

2

2

1

2 






 

 









log
2

1

2

2

2

1
,








 




x

exf  

                   






























log
2

log
22

log
22

2

2

2

2

22

2

2

2

22

2

2

1

2

1

2

1































x

x
xxx

e

ee

 

     .
2

1 2
log

22 2

2

hxgexL
i

xn















 



  
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Here,    
n

n

i

x

hxTetg
i

n

i

i













 


 




2

1
.;;

1

22 2

1

2

 

Therefore, 


n

i
i

x
1

2 is a sufficient statistic for 2 . 

 

Example 12: Let X ~ Normal  1, . Find the sufficient statistic for  . 

 

Solution: 

 
 

 

 
 

 
n

ii

n

i

xx

n

x
x

xx

x

xxg

eexL

e

e

otherwise

xe
xf

i
i




































 

































2

1
,

2

1

2

1

2

1

,0

,;
2

1

1,

2

1

2

1

22

2
2

1

2

1

22

22

22

2

 

Here,  
 

 
n

n

i

n

i

n

i

xx
hxTxTeetg

ii

i
i 








 









2

1
.;;;

1

2

2

1

1

1

2

1 22

 

Therefore, 


n

i
i

x
1

,


n

i
i

x
1

2 is a sufficient statistic for  . 

 

 

Example 13: Consider X~f(x: ), X=1,2,3; 321 ,,   with the probability function 

x 
1  2  3  

1 0.1 0.2 0.3 

2 0.7 0.4 0.1 

3 0.2 0.4 0.6 
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Show that the statistic 





evenisxif

oddisxif
T

1

0
is sufficient for  . 

Solution: 

 

The distribution of T is given by 

T 
1  2  3  

0 0.3 0.6 0.9 

1 0.7 0.4 0.1 

 

The conditional probability function of x|t is given by 

 

     
 TP

TXP

tTP

tTxXP
TXP









)(

,
 

 

 

x 
1  2  3  

1 1/3 1/3 1/3 

2 0 0 0 

3 2/3 2/3 2/3 

 

The conditional probability function of x|t when t=1 is given by 

 

x 
1  2  3  

1 0 0 0 

2 1 1 1 

3 0 0 0 

 

Since the distribution function of x|t, f(x|t) does not depend on the parameter  . T is sufficient 

for  . 
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Definition 8: MINIMUM VARIANCE UNBIASED ESTIMATOR 

            Let  U be the class of all unbiased estimator of the parametric function    . If a 

statistic  nxxTT ,...1  based on sample size n is such that, 

(i) T is unbiased for       (i.e)      TE  

(ii) It has the smallest variance among the class of all unbiased estimators of     then T is 

called minimum variance unbiased estimator of   . (i.e)     ; TVarTVar  

     andUTT, . where  T is any other unbiased estimator of    . 

 

Theorem 2: 

          The minimum variance unbiased estimator is unique in the sense that if 21 TandT are 

minimum variance unbiased estimators for    then .21 surelyalmostTT   

 

Proof: 

       To prove 21 TT   

  Given 21 TandT are unbiased estimator for    

(i.e)       21 TETE             

           21 TVarTVar                  

Consider a new estimator  21
2

1
TTT   which is also unbiased 

Since       21
2

1
TETETE   

                           =     ()
2

1
  

                          =       

               







 21

2

1
TTVarTVar  

                           =   21
4

1
TTVar   

                          =         2121 ,2
4

1
TTCovTVarTVar   

                           =            2121 2
4

1
TVarTVarTVarTVar   
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                           =             1111 2
4

1
TVarTVarTVarTVar   

                           =          1

2

1 22
4

1
TVarTVar   

                            =          11 22
4

1
TVarTVar    

                           =             11
2

1
TVarTVar   

                            =         1
2

1
1TVar  

where  is Karl Pearson’s coefficient of correlation between 21 TandT   

Since 1T  is MVUE,     1TVarTVar   

             11 1
2

1
TVarTVar    

        11
2

1
   

      1  

since 1 we must have 1  

(i.e) 21 TandT must have relation of the form: 

                121  TT   

where  and are constants independent of nxxx ,...,, 21  but may depend on  . 

(i.e) we have      and  

Taking expectation on both sides in equation 1 

            21 TEETE    

                        2  

          21 TVarTVar    

          1

2

1 TVarTVar   

        112    

But since   1, 21 TT  the coefficient of regression of 21 TonT must be positive, therefore 

1  

Sub 1 in equation 2 
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    0  

Sub  and   in equation 1 

    21 TT   

Hence proved. 

 

Theorem 3: 

              Let  21,TT   be unbiased estimators of   with efficiencies 21  and  respectively 

and   be the correlation coefficient between them then 

     21212121 1111    

Proof: 

 

      Let T be minimum variance unbiased estimator of   . Then 

        21 TETE and  

                         
 
 1

1
TV

TV



                   
 

1

1





TV
TV                      

                         
 
 2

2
TV

TV



                  
 

2

2





TV
TV   

Let us consider another estimator 213 TTT    which is also unbiased estimator  of   . 

        (i.e)    )()( 213 TTETE    

                              =    21 TETE    

                              =         

                          1   

                    )()( 213 TTVTV    

                                 =       212

2

1

2 ,2 TTCovTVTV    

                                 =         212

2

1

2 2 TVarTVarTVTV    

                                 =  
       

212

2

1

2 2









TVTVTVTV

  

                                =   
   

 
212

2

1

2 1
2








 TV

TVTV
  
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                               =     













212

2

1

2 2












TV  

But    TVTV  3 , since  TV has minimum variance  

           TVTV 


























212

2

1

2 2
 

         2

212

2

1

2

1
2













  

             











2

2 22

212

2

1

2

  

             02
2

21

2

2

2
2

1

2

































 














 

               0121
1

1
1

21

2

2

2

1

































 










 

              0121
1

1
1

2

21

2

2

2

2

2

1




















































 

   which is quadratic equation in 











  

  Note that ,...2,101
1

)(1
1

1 









 ior

ii

i


  

We know that , 

              0,0,02  CACBXAX   iff  discriminant  is 042  ACB  

       01
1

1
1

414
21

2

21






































 

           011 21

2

21    

012 21122121

2    

  012 2121

2    

 

2

1442 212121 



  
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    =  
  

2

12 212121  
 

   =     11 2121    

       1111 21212121    

     21212121 1111    

 

Theorem 4: 

        If 1T is a minimum variance unbiased estimator  for      and 2T  is any other 

unbiased estimator of    with efficiency   then the correlation coefficient between 

21 TandT is given by    (i.e)      

 

Proof: 

 

Using the previous Theorem:3 statement the correlation coefficient  lies between 

     21212121 1111    

Here 1T is a minimum variance unbiased estimator of   then the efficiency 11  and 2T is 

any other unbiased estimator of    with efficiency   

                 21 1 and    sub in 1 

               .1  

                        

 

Theorem 5: 

             If 1T  is a minimum variance unbiased estimator  for      and 2T  is any 

other unbiased estimator of    with efficiency 1 , then no unbiased linear combination 

of  21 TandT can be an MVUE of    

 

Proof: 

        Consider a linear combination: 

 2211 TlTlT   
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  will be an unbiased estimator of   if 

           22112211 TElTElTlTlETE  

      2121 sin1 TETEcell  

The efficiency,  
 
 

 
 


 



 1
2

2

1 TVar
TVar

TVar

TVar
  

                     And      21,TT  

                     2211 TlTlVarTVar    

                               =       21212

2

21

2

1 ,2 TTCovllTVarlTVarl    

                              =          21212

2

21

2

1 2 TVarTVarllTVarlTVarl    

                              =    
 

 
 







1

121
12

21

2

1 2
TVar

TVarll
TVar

lTVarl   

                              =     


















 21

2

22

11 2 ll
l

lTVar  

                             =      


 







 21

2

22

11 2 ll
l

lTVar  

                     1
1

,10;2 21

2

2

2

11 


 TVarllllTVar  

                   2211 llTVarTVar    

                        1TVarTVar    

          T cannot be MVU estimator. 

 

Information Function (Or) Regularity Conditions 

 

(i)  is a non degenerate open interval on the head line . 

(ii) The support of the random variable is independent of the parameter  . 

(iii) 
 

i

i xf







 /
  exists for all i=1,2,3 

(iv)  
 

  








x x i

i

i

i

dx
xf

dxxf







/
/  holds for i=1,2,…n 
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(v) For some function  xT  

     
 

  








x x i

i

i

i

dx
xf

xTdxxfxT







/
/  holds for i=1,2,…n 

(vi) 
 



















nxxxf
E

,...,,log 21  exists and is positive. 

It is also called Fisher information measure. 

 

Theorem 6: CRAMER-RAO  INEQUALITY 

         Under the regularity condition if T is an unbiased estimator for   which is assumed to 

be a differentiable function of  satisfies the inequality 

                         
  

  2

21

2

,...,,log

'
























nxxxf
E

TVar             (or) 

                       
  
 



I

TVar

2
'

  

where  I is information measure. 

 

Proof: 

 

     Let X be a random variable from the pdf   /xf  and let L be the likelihood function of 

the random sample  nxxx ,...,, 21  from this population. Thus  

                          



n

i

ixfxLL
1

//   

since L is the joint pdf of  nxxx ,...,, 21  then 

                         
x

dxxL 1/        ---(1) 

where x represents the domain of  nxxx ,...,, 21 and the integral is an n-fold integral. 

Differentiating w.r.t.   and using regularity conditions, we get 

                              0



 dxL
x

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                              













x

LdxL 0log


      ---(2) 

                             













x

Ldx
L

L
0

1


 

                            











 


0log LE  

 Let us consider T(x) = T  nxxx ,...,, 21  be an unbiased estimator of    such that,  

E(T)=   . 

                                          LdxxT
x

     ---(3) 

Differentiating w.r.t.  we get 

                                                


'



 dx

L
xT

x

 

                                            


'
log













  Ldx

L
xT

x

    ---(4) 

Multiplying    in Equation 2, we get 

 

                      












x

LdxL 0log


       ---(5) 

 

Subtracting Equation 4 and 5, we get 

 

                            


 '
log













  Ldx

L
xT

x

    ---(6) 

                          


'
log

. 





















L
xTE      ---(7) 

 

                     
























































L
ExTE

L
xTE

L
xTCov

loglog
.

log
.  

                                                   =    '  

We know that, 
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                      YVarXVaryxCov 
2

,  

                 











 LVarTVar log.'

2


  

                  







































22

2
loglog' LELETVar


  

                  


























2

2
log' LETVar


   

             
  

 TVar

LE

















2

2

log

'




 

            
  

  2

21

2

,....,,log

'























nxxxf
E

TVar                  (or) 

          
  
 



I

TVar

2
'

  

Hence Proved. 

 

Remarks: 

 

 An unbiased estimator T of    for which Cramer-Rao lower bound is attained then 

it is called minimum variance bound estimator. 

 The fisher information measure   
























 LELEI loglog

2

22


  

 

Conditions for the equality sign in Cramer-Rao Inequality 

 

In Cramer-Rao inequality 

                               
  

2

2

log

'















LE

TVar




     ---(1) 

Rewriting Equation 1, we get 
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                      2
2

'log 


 











LETVar  

                     2
2

2
'log 


 












 LETE      ---(2) 

 

The sign of equality will hold in CRR inequality if and only if the sign of equality holds in 

Equation 2. The sign of equality will hold in Equation 2 by Cauchy-Schwartz inequality 

     22, YEXEYXCov   iff the variables   T and Llog



 are proportional to each 

other. 

                      
 

 











 )(

log

say

L

T
 

where  is constant independent of  nxxx ,...,, 21  but depend on   

                         
 

 









 T
Llog  

                              LAT log






      ---(3) 

where  
 


1

 AA  

Hence the necessary and sufficient condition for an unbiased estimator T to attain the lower 

bound of the variance is given by Equation 3 

     Further the C-R minimum variance bound is given by  

                               
  

2

2

log

'















LE

TVar




    ---(4) 

But ,  

                    2
2

.log 














TAELE             

                                          =         22
.  TEA  

                                         =         TVarA .
2

  

Substituting in Equation 4, 
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                 
  

    TVarA
TVar

2

2
'




  

                   
 
 

   



.'

'


A
TVar  

Hence , if the likelihood function L is expressible in the form Equation 3 then 

 

1. T is unbiased estimator of    

2. Minimum variance bound estimator (T) for     exists and 

3.  
 
 

   



.'

'


A
TVar  

 

Example 14: Obtain the MVB estimator for  in normal population  2,N  where 2  is 

known. 

 

Solution: 

If nxxx ,...,, 21 is a random sample of size n from the normal population, then  

                   
 







 









 



n

i

i
n

i

n

i

x
xfL

1
2

2

1 2
exp

2

1
,






   

                     



n

i

ixnL
1

2

22

1
2loglog 


  

                       





 n

i

ixL
1

2
12.

2

1
0log 


 

                         =   











n

i

i nx
1

2

1



 

                        =    











nnnxi
n

n

i

//
/

1

1
2




  

                       =    


x
n

2
 

which is of the form 

                        


ATL 



log  

then T is a MVB estimator for     Aand is a constant. 
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  x is a MVB estimator for  and 

                      
 
 



A

Var
'

ˆ    

                                        =  
2/

1

n
 

                                        =   
n

2
 

 

Example 15: A random sample nxxx ,...,, 21  is taken from the normal population with mean 0 

and variance 2 .     Examine if 


n

i

i nx
1

2
/ is a MVB estimator for 2 . 

Solution: 

 

If nxxx ,...,, 21 is a random sample of size n from the normal population, then  

                0,;2/exp
2

1
,

1

22

1

2 
















 






 xxxfL
n

i

i

n

i

n

i  

                                           =  



















n

i

i

n

x
1

22

2/2

2/exp
2

1



 

                                           =   



























n

i

i

nn

x
1

22

2/2/

2
2/exp

2

11



 

              Log  L      =   



n

i

ixnn
1

222 2/2log2/log2/   

         



Llog

2










 


n

i

ixn
1

4

22 1
2/102/


  

                           =  
n

nxi

/2

/
4

22




 which is of the form      AT   

Hence 
n

xi


2

2̂  is a MVB estimator and 

             
 



A

Var
'

ˆ 2   

                         =  
42/

1

n
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                         =  
n

42
 

 

Example 16: Find if MVB estimator exists for   in Cauchy’s population 

                
 




 x
x

xF ;
1

11
;

2


  

 

Solution: 

 

Let nxxx ,...,, 21 be a random sample from Cauchy’s population. 

                       
 21

11
;







x
xf  

                   L  =   
 


 



















n

i

nn

i

i
x

xf
1

2
1 1

11
,


   

                      



n

i

ixnL
1

2
1logloglog   

                       
 
  

 






 n

i i

i

x

x
L

1
2

1
log20log






 

 Since 
 21

11

  x
cannot be expressed in the form      AT  MVB estimator 

does not exist for  in Cauchy’s population and so Cramer-Rao lower bound is attainable by 

the variance of any 

unbiased estimator  . 

 

Example 17: Show that 
n

x
X i
 in random sampling from 

                      
 












otherwise

xx
xf

;0

0,0;/exp
1

;


  

is a MVB estimator and has variance 
n

2
. 

 

Solution:  
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                 Let nxxx ,...,, 21 be a random sample from the population 

                                   


 /1

; xexf   

                        L=    
















 



n

i

i

nn

i

xxf
11

/exp
1

; 


  

                  log L  =  



n

i

ixn
1

/log   

                  
2

log


ixn
L










 

                                    =  
2

 ixn 
 

                                    =   
 

2

/



 nxn i    

                                    =   
n

X

/2


 which is of the form      AT   

Hence X is the MVB estimator for   and 

                                      
 



A

Var
'ˆ   

                                                =  
n//1

1
2

 

                                               =  
n

2
 

 

Example 18: Let nxxx ,...,, 21  be a random sample from a Bernoulli Distribution with 

parameter p. Then p  and  10    Find the MVB estimator and its variance. 

 

Solution: 

                     Let nxxx ,...,, 21 be a random sample from BD. 

                                xxxf



1

1           

                     





n

i

xnx

i
iixfL

1

1          

                    1logloglog ii xnxL  
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 
  





















 1
log ii xnx

L  

                              =  
 

 






1

ii xnx
 

                               =  
   

 







1

1 ii xnx
 

                               =  
 







1

nxi  

                               =  
 

 







1

/ nxn i  

                               =   
  n

X

/1 






 which is of the form       AT   

Hence X is the MVB estimator for   and 

                                        
 



A

Var
'ˆ   

                                                   =  
  n/1/1

1

 
 

                                                    =  
 

n

 1
 

 

Example 19: Let nxxx ,...,, 21 be a random sample from the Poisson  distribution with 

parameter  . Find the MVB estimator and its variance. 

 

Solution:  

                    Let nxxx ,...,, 21 be a random sample from the Poisson population 

                    
!x

e
xf

x





  

             L=    











n

i

xnn

i

i

x

e
xf

i

1

1 !

;





 

                 



n

i

ii xxnL
1

!logloglog   
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

ix
nL







log  

                                     =  


 ixn 
 

                                     =  
 



 nxn i /
 

                                     =  
n

X

/


 which is of the form      AT   

Hence 
n

x
X i
  is MVB estimator for   and  

                                 
 



A

Var
'ˆ   

                                           =  
n//1

1


 

                                           =  
n


 

Example 20: Let nxxx ,...,, 21 be a random sample from uniform distribution  ,0U . Find the 

MVB estimator and variance. 

 

Solution: 

 The support of uniform distribution       xxU 0:,,0  depends on the 

parameter  . This violates the regularity conditions and the C-R lower bound theorem does 

not produce the result. 

 

Completeness: 

 

We discussed one property, viz., sufficiency, that a statistic T may have in relation to a family 

of distributions. We shall now consider another property, to be called completeness.  

Consider the statistic T based on the random variable nXXX ,...,, 21 with joint distribution 

depending on  . The distribution of T itself will, in general, depend on  . Hence, related 

to T, wehave again a family of distributions, say,    ,,tg  
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 Definition 10: 

            The statistic T=t(x) or more precisely the family of distributions    ,,tg  is 

said to be complete for  if 

           E[ h(t)] =0    10)(  thP  

(i.e)        0, dttgth    (or) 

             
t

tgth  0,  

   0th   almost surely(a.s) 

 

Definition 11: 

The statistic T, or the family of distributions    ,,tg  is said to be boundedly 

complete for  if, for any (measurable) function  T  is such that 

  ,, MsomeforMT   

     allforTE 0  

  everywherealmostallfort   0  

 

Note: If T is complete, then it is necessarily boundedly complete. 

 

Theorem 7: RAO-BLACKWELLIZATION 

Statement: 

         Let X and Y are two random variables such that     ,XE . If a function  .  is 

defined as    yYXEy  | . Then 

(i)     yE   and 

(ii)     xVaryVar     

 

Proof: 

 

    We will give only the proof for the case where the distribution of (x, y) is absolutely 

continuous. 

Let  yxf XY ,  denote the joint density function of X and Y. 
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        xf X  is the density function of  X and 

       yfY  is the density function of  Y. 

To show that     yE  

Consider,     yYXEy  | =  




dxyxfx YX ,/
 

Now ,   

  yE  =    




dyygy Y  

              =       
















dyygdxyxfx YYX ,/  

             =   
 
 

  








dxdyyg
yg

yxf
x Y

Y

,
 

where   yxf YX ,/ = 
 
 yg

yxf

Y

,
 

  yE  =   dxdyyxfx 
















,  

  yE  =     




 xEdxxfx X
 

Next to show that 

              xVaryVar     

Consider,    2  xExVar  

                               =     2  yyxE  

                              =                 yyxEyEyxE 2
22

           ---(1) 

Consider, 

        yyxE  =            








 dydxygyxfyyx YYX ..||  

                                          =             
















 dyygdxyxfyxy YYX ||  

                                              =              




















 dyygdxyxfydxyxfxy YYXYX || ||   
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                                              =             
















 dyygdxyxfyYXEy YYX || |   

                                          =           




 dyygyYXEy Y  |  

                                              =           




 dyygyyy Y  

                                              =  0       ---(2) 

 

Substitute the Eqn. (2) in Eqn. (1), we get 

            xVar       0
2

 yVyxE    

               2yxExVaryVar                          

    xVaryVar     

Hence proved. 

 

Theorem 8: LEHMANN-SCHEFFE 

Statement: 

            If  T(X) is a complete sufficient statistic and W(X) is an unbiased estimator of    , 

then    TWET /  is an UMVUE of   . Furthermore   T is the unique UMVUE in the 

sense that if T* is any other UMVUE, then      1*TTP . 

 

Proof: 

 

Let W be any unbiased estimator of    

Then by Rao - blackwell theorem,    TWET /   is such that         WVarTVar  

Let W* be any other unbiased estimator and  

                  TWET /**    then 

                    0* TTE  

And by the definition of completeness of T, it follows that, 

                    1* TTP  

Hence ,  T is the unique UMVUE. 
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Definition 12: CONSISTENCY 

 

                An estimator  nn xxxTT ,...,, 21  based on a random sample of size n is said to be 

consistent estimator of       if nT  converges to   in probability (i.e) 

 P

nT  as n . In other words nT is a consistent estimator of    if for every 

0,0   there exist a positive integer n which is m  such that 

                      nasTP n 1  

                        mnTP n   1  

where m is some very large value of n. 

 

Remarks: 

 

           If nxxx ,...,, 21  is a random sample from population with finite mean    ixE , 

then by Khinchin’s weak law of large number we have 

                          nasXEx
n

X i

P

in 
1

 

Hence sample mean  nX  is always a consistent estimator of population mean   . 

 

Theorem 9: INVARIANCE  PROPERTY OF CONSISTENT ESTIMATOR 

 

Statement: 

 

If nT is a consistent estimator of    and    is continuous function of    then  nT  

is a consistent estimator of     . 

 

Proof:  

 

       Since nT is a consistent estimator of    

             (i.e)  P

nT     as n  
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Also for every 0,0    there exist a positive integer mn   such that 

                 mnTP n   1      ---(1) 

 

Since  . is a continuous for every 0 however small, there exist a positive number 1 such 

that 

                           1 nT   whenever     nT    (i.e)    nT  

                                1  nT      ---(2) 

             For two events A and B if AB then 

 

                       BPAPBA                         (or) 

                       BPBP          ---(3) 

 

        From Equation 2 and 3, we get 

 

                     nn TPTP 1
 

                  mnTP n   11
 

                 nasT P

n   

                nT  is a consistent estimator of     

 

 

Theorem 10: SUFFICIENT CONDITION FOR CONSISTENCY 

 

Statement: 

 

Let  nT  be a sequence of estimator such that for all   

1.      nasTE n   

2.    nasTVar n 0  

Then nT is a consistent estimator of   . 
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Proof: 

           To prove that , nT is a consistent estimator of    

(i.e)  P

nT  as n  

(i.e)     mnTP n   1  

where  and are arbitrarily small positive numbers and m is some large value of n. 

 

Applying Chebyshev’s inequality to the statistic nT we get, 

                
2

1



n

nn

TVar
TETP   

 

We have , 

                  nnnn TETETT  

                                       nnn TETET  

 

Now, 

                nnnn TETTET  

 

Since for two events A and B if BA  then 

                   APBPorBPAPBA   

 

                     nnnn TETPTETP  

                   
2

1


 


n
nn

TVar
TETP     ---(1) 

 

Given ,      nasTE n   

 Hence for every 01  there exists a particular positive integer  10 nn  such that 

                                     101  nnTE n      ---(2) 

 

Also given    nasTVar n 0  
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 
 




0

2

'nn
TVar n          ---(3) 

where  is arbitrarily small positive number. 

 

Substituting  from eqn 2 and 3 in eqn 1 we get, 

 

     ,,1 11 mnTP n   

   mnTP n  ,1   

where m=max )',( 00 nn  and 01    

   nasT P

n   

 

 ofestimatorconsistentaisTn  

 



UNIT-II 

 

In the previous chapter, we have discussed different optimum properties of good point 

estimators, viz. Unbiasedness, minimum variance, sufficiency, efficiency and consistency. In 

this chapter, we shall discuss different methods of point estimation which are expected to 

yield estimators enjoying some of these important properties. Also we shall discuss the 

confidence interval for proportions, mean(s), variance(s) based on chi-square, Student’s t, F 

and normal distributions. 

 

2.1 METHODS OF ESTIMATION: 

 

There are several methods in estimation theory such as 

 

1. Method of maximum likelihood estimation 

2. Method of moments 

3. Method of least square 

4. Method of minimum variance 

5. Method of minimum chi-square 

6. Method of inverse probability 

 

METHOD OF MAXIMUM LIKELIHOOD ESTIMATION: 

Let nxxx ,...,, 21 be a random sample of size n from population with density function  ;xf  

then the likelihood function of the sample values nxxx ,...,, 21 denoted by  LL   is their joint 

density function given by 

 

      ;...;; 21 nxfxfxfL   

 

 



n

i

ixfL
1

;          ---(1) 

 

L gives the relative likelihood that the random variables assume a particular set of values 

nxxx ,...,, 21   L becomes a function of a variable  . The principle of maximum likelihood 

consist in finding an estimator for the unknown parameter  k ...,,, 21  which maximize 



the likelihood function  L  for variations in parameters (i.e) we want to find 

 k ˆ...,,ˆ,ˆˆ
21  so that  

 

       LL ˆ  

 (i.e)        LL supˆ  

 

Thus if there exist a function  nxxx ,...,,ˆˆ
21   of the sample values which maximise L for 

variations in  . Then ̂ is to be taken as an estimator of  . Therefore ̂  is called maximum 

likelihood estimator. Thus ̂  is the solution if any of  

00
2

2













L
and

L
        ---(3) 

  

Since L>0 and logL is a non decreasing function of L.  L and logL attain their extreme 

value (maxima or minima) at the same value of  ̂ . Therefore the Equation 2, can be rewritten 

as 

                                 0
log

0
log

0
1

2

2


















L
and

LL

L
    

 

 

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATOR: 

 

1. Maximum likelihood estimators are consistent. 

2. Any consistent solution of the likelihood equation provides a maximum of the 

likelihood with probability tends to unity as the sample size tends to unity. 

3. Asymptotic normality of MLE: A consistent solution of the likelihood equation is 

asymptotically normally distributed about the true value of 0 (i.e) ̂  is asymptotically 

 











nas

I
N

0

0

1
,


  where    

 
















LE
I

Var

log

11ˆ

2

2




  

4. If MLE exist if it is the most efficient in the class of such estimators. 

5. If a sufficient estimator exist it is a function of MLE. 

 



6. If for a given population with pdf  :xf  and MVBE T exist for  then the likelihood 

equation will have a solution equal to the estimator T. 

7. Invariance property of MLE: If T is a MLE of  and   is a one-to-one function of 

 then  T is a MLE of   . 

 

Example 1: In a random sample from normal population  2,N  to find the maximum 

likelihood estimator for the first case (i)  when 2 is known   (ii) 2  when  is known. 

 

Solution: 

 

The density function of normal distribution is  

 

    0;,;
2

1
,:

222/12   


  xexf x

 

 

Likelihood function is  

 

          L=  


n

i

ixf
1

2,:   

             = 

 












n

i

ix
n

e 1

222/1

2

1 

  

            =  

 













n

i

ix
n

e 1

222/1
2/

2 2

1 

  

log L  =     



n

i

ix
nn

1

2

2

2

2

1
2log

2
log

2



  

 

Case(i):  when 2 is known to estimate   

 

 
  









 n

i

ix
L

1
2

1
2

2log






    

                 

 

                 

 

  0
1

0
log

1
2








n

i

ix
L




 

                                       nx
n

i

i 
1

 

                                        x
n

x
n

i

i



1̂  

Maximum likelihood estimator for  when 2 is known is a sample mean x . 

 

Case(ii) : when  is known to estimate 2  

 

 

 

 

 

 

 

                                                                                                              

 

                                              

 

 

 
0

2 4

1

22












n

i

ixn

 

                                                 

 



n

i

i nx
1

22
  

 






n

i

ix
1

2

1




0
1log
22

2











L

 








 n

i

ix
nL

1

2

422 2

1

2

log




 









 




 n

i

ix
nL

1

2

644

2

2

21

2

log




  0
1

2 1

2

64
 



n

i

ix
n




  0
2

1

2
0

log

1

2

422











n

i

ix
nL






 

n

x
n

i

i




 1

2

2ˆ



  

 Maximum likelihood function for 2 when   is known is 

 

n

x
n

i

i



1

2


 

 

Example 2: In a random sample from Poisson distribution with parameter  . To find 

maximum likelihood estimator for  . 

 

Solution: 

The Probability density function is  

                         0,...;1,0;
!







x
x

e
xXP

x

 

The likelihood function is  

                 

!
1

1





 


n

i

i

x
n

x

e
L

n

i
i



 

              




 

n

i

i

x

xnL

n

i
i

1

!logloglog 1  

                 



n

i

i

n

i

i xxn
11

!loglog   

              









n

i

ix

n
L 1log

 

               0
log

2

1

2

2










n

i

ix
L

  

               00
log 1 








n

i

ix

n
L

 

                                    
n

x
n

i

i
 1̂  

Maximum likelihood estimator for x
n

x
is i 


  



Example 3: In a random sample from exponential distribution with parameter  , find 

maximum likelihood estimator for  . 

 

Solution: 

 

The Probability density function is, 

                    0,0;
1

; /   


  xexf x
 

 

The likelihood function is  

               




/
1

1 











n

i
ix

n

eL  







n

i

ix

nL 1loglog  










 n

i

ix
nL

1
2

1log


 

0
1log

1
422

2








n

i

ix
nL


 

0
1log

1
2











n

i

ix
nL


 

                     0
2






 ixn
 

                      x
n

xi 


̂  

Maximum likelihood estimator for   is the sample mean x  

 

 

2.2 METHOD OF MOMENTS: 

 

               This method was discovered by Karl Pearson. Let  kxf  ,...,,: 21 be the density 

function of the parent population with k parameters k ,...,, 21 . If r' denotes the rth moment 

about origin then 



           1,...,2,1,...,,:' 21 krdxxfx k

r

r   

In general ',...,',' 21 k will be a function of the parameters k ,...,, 21 . Let 

nixi ,...,2,1  be a random sample of size n from the given population . The method of 

moments consist in solving the k equations 1 for k ,...,, 21  in terms of ',...,',' 21 k  and 

replacing these moments r' for all r = 1,2,..,k by the sample moments. 

            For example,    'ˆ,...,'ˆ,'ˆˆ
21 kii    

                                       kimmm ki ,...,2,1',...,',' 21    

where 'im  is the ith moment about the origin in the sample. Then by the method of moments 

k ˆ,...,ˆ,ˆ
21

 are the required estimators of k ,...,, 21 respectively. 

 

Example 4: Let X  has the following distribution function 

 

X=x 0 1 2 

P(X=x) 1- 2     2  

 

Obtain the moment estimate of  , if in a sample of 25 observations there were 10 one’s an 4 

two’s. 

       

Solutions: 

 

From the given information,      

              

X=x  xXP   Frequency(f) 

0 1- 2   11 

1   10 

2 2  4 

Total 25 

 

1' =  E(X) =  0(1- 2  ) + 1( ) + 2( 2 ) 



                   =   + 2 2  

1'm =  
25

18




N

fx
 

1' = 1'm      + 2 2 = 
25

18
 

             25 +50 2 -18=0 

 

            50 2 +25 -18=0 

 

             (10 +9)(5 -2)=0 

 

             =-0.9 and  =0.41 

 

Therefore, the moment estimate of  =0.41. 

 

 

Example 5: A random variable X takes the values 0,1,2 with respective probabilities 
































NNNNNN


1

2

1

4
,1

22
,1

2

1

4

6
where N is a known number and 

 and are unknown parameters. If 75 independent observations on X give the values 0,1,2 

with frequencies 27,38,10 respectively. To estimate,   and  by using method of moments. 

 

Solution: 

From the given information, 

X=x  xXP   Frequency(f) 

0 










NN


1

2

1

4

6
 

27 

1 










NN


1

22
 

38 

2 













NN


1

2

1

4
 

10 

Total 75 

 



1' = E(X) = 






















































NNNNNN


1

2

1

4
21

22
11

2

1

4

6
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                   =  
 























NNNN


1

2

12

4

2
1

22
 

 

                  =    
















 
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1

2
1

2

2

NN
 

 

                 =   
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
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 










2

22
1
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NN
 

 

                =    



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

 










2

2
1
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NN
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Substituting 42  in Equation 1,we get 
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Example 6: To find the moment estimator of Bernoulli population with parameter p. 

 

Solution:  

              The density function of Bernoulli distribution is  
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Raw moment of Bernoulli distribution 

 

                                   1' = p 
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x
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The moment estimator is 1' =  1'm   xp  ˆ  

 

Example 7: To find the moment estimator of Poisson population with parameter  . 

 

Solution: 
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                             Since, 1' =   
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x
n

i

i



1  

                           1' =  1'm    ̂ x  

 

Example 8: To find the moment estimator of Exponential  distribution with parameter  . 

 

Solution: 

                              f(x) =  ,...1,0,0;  xe x    
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Example 9: To find the moment estimator of Normal  distribution with parameter .2 and  

 

Solution: 
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2.3 METHOD OF LEAST SQUARES 

For fitting a curve of the form 

y=f(x; b0,b1,...) ---(1) 

where b0,b1,... are unknown parameters, to the observed sample observations (x1,y1), 

(x2,y2),..., (xn,yn)by the principle of least squares, we have to minimise 



   
i

ii bbbxfy
2

210 ,...,,; ---(2) 

With respect to the parameters b0,b1,... . 

This is the same as to minimise the sum of squares of the distances of the observed points 

from the curve measured in the direction of the y-axis. 

In case Equation 1 is the regression equation of Y on X, x1,x2,...,xn may be taken as observed 

values of the independent variable X, and Y is dependent variable and 

 ,...,,; 210 bbbxfye iii   are the residuals or errors. If we assume that the errors are independently 

normally distributed with zero means and constant variance 
2

e , then the joint probability density of 

the errors, or the likelihood function, is given by 

   
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
 
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1
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Hence maximising L amounts to minimizing 

   
i

ii bbbxfy
2

210 ,...,,;  

In case ei’s are independently normally distributed with zero means and variances 2

ie , 

maximizing L will amount to minimizing  

   
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ii

e
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2

2102
,...,,;

1


 

Which is the sum of squares of residuals each weighted by the inverse of its variance. This 

may be called the weighted least-squares method. In general, we may consider the regression 

of Y on X1,X2,...,Xp and the method of least squares appropriate for this case may be similarly 

deduced.  

The least-squares estimators do not have any optimum properties even asymptotically. 

However, in linear estimation this method provides good estimators in small samples.When 

we are estimating  ,...,,; 210 bbbxf i  as a linear function of the parameters ,...,, 210 bbb , the xi’s 

being known given values, the least squares estimators obtained as linear functions of the Y’s 

will be minimum-variance unbiased estimators. 

Example 10: 1. consider .1,...)( 2

210  knwherexbxbxbbxf k

k  

Here we have to minimise 
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k

ikiii xbxbxbby
22

210 ... , 



with respect to kbbbb ,...,,, 210 . Differentiating this with respect to kbbbb ,...,,, 210 , we have k+1 

equations, called the normal equations, given by  

),...,2,1,0(0 kjex i
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Hence kbbbb ,...,,, 210  would be obtained as linear functions of the y’s. 

 

Example 11: Consider the multiple linear regression pp XbXbXbbY  ...22110  

Here we have to minimize   
2

22110 ... pipiii xbxbxbby with respect to pbbbb ,...,,, 210 . 

The Normal equations are 
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and hence pbbbb ,...,,, 210  may be obtained as linear functions of yi’s and of the given known 

values x’s.  

 

Definition 1: CONFIDENCE INTERVAL AND LIMITS 

Let nxxx ,...,, 21  be a random sample from the density  ,.f . Let  nxxxtT ,...,, 2111   and 

 nxxxtT ,...,, 2122   be a two statistic satisfying the condition of 21 TT  for which 

     21 TTP  where  does not depend on  , then the random interval part   ,   is 

called confidence coefficient and 21 TandT are called lower and upper confidence limits respectively 

for   . A value 21 ,tt  of the random interval 21 TandT is also called a 100 % confidence interval 

for   . 

 

Definition 2: ONE SIDED CONFIDENCE INTERVAL 

Let nxxx ,...,, 21  be a random sample from the density  ,.f . Let  nxxxtT ,...,, 2111  be a statistic 

for which     1TP then 1T is called a one sided lower confidence for   . Similarly, 



 nxxxtT ,...,, 2122  be a statistic for which      2TP then 2T  is called a one sided upper 

confidence for   . 

 

CONSTRUCTION OF CONFIDENCE INTERVAL FOR POPULATION MEAN (when the 

variance is known) 

Let nxxx ,...,, 21  be a random sample from the normal population with mean  and variance 

2 . We take a large sample from a normal population with mean  and SD  . Then 

             z =  1,0~
/

N
n

x




 

To claim,  %1100  confidence interval for the level of significance at 5% from the normal 

probability table 

          95.096.196.1  ZP  
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96.1 are 95% confidence limit for the unknown parameter  and the interval 
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96.1,96.1 is called the 95% confidence interval for  . Also to construct 

 %1100  confidence interval for the level of significance at 1% from the normal probability table 
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58.2,58.2 is called the 95% confidence interval for  . 

In general,     1zzzP  
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n
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 , where z is the standard normal 

value for given level of  . 

 

CONFIDENCE INTERVAL FOR POPULATION MEAN (when variance is unknown) 

Let nxxx ,...,, 21  be a random sample from the normal population with mean  and variance 
2 . We 

know that population variance  22

1

1
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n
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 . Hence 

 %1100  confidence limit for  is given by  
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where t  is a tabulated value of student t for (n-1) degrees of freedom at significance level  . Hence 

required confidence interval for population mean  is 
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CONSTRUCTION OF CONFIDENCE INTERVAL FOR POPULATION VARIANCE (when 

mean is known) 

          Let nxxx ,...,, 21  be a random sample from the normal population with mean  and variance 

2 . The statistic 
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where  2P  is the probability density function of  
2 distribution with n degrees of freedom and 

significance level  . Thus the required confidence interval is given by  
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 are obtained from 2 table with n degrees of freedom and significant level 

 . 

 

CONSTRUCTION OF CONFIDENCE INTERVAL FOR POPULATION VARIANCE (When 

Mean is Unknown) 

Let nxxx ,...,, 21  be a random sample from the normal population with mean  and variance 

2 . 

Here the statistic 
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where  2P  is the probability density function with (n-1) degrees of freedom and significance level 

 .Thus the required confidence interval is given by  
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CONSTRUCTION OF CONFIDENCE INTERVAL FOR DIFFERENCE OF MEANS OF 

TWO INDEPENDENT NORMAL POPULATION WHEN VARIANCE IS KNOWN 
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Hence the difference of population mean confidence interval for the given level of significance  is 

given by 















2

2

1

2

2/21

2

2

1

2

2/21

2121 )(,)(
nn

zxx
nn

zxx


  and the confidence limit 

is  



2

2

1

2

2/21

21)(
nn

zxx


   

 

CONSTRUCTION OF CONFIDENCE INTERVAL FOR DIFFERENCE OF MEANS OF 

TWO INDEPENDENT NORMAL POPULATION WHEN VARIANCE IS UNKNOWN 
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The required confidence interval for given level of significance  
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Hence the difference of population mean confidence interval for the given level of significance  is 

given by 
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CONSTRUCTION OF CONFIDENCE INTERVAL FOR DIFFERENCE OF MEANS OF 

TWO SAMPLES OF NORMAL POPULATION WITH COMMON VARIANCE (COMMON 

VARIANCE IS UNKNOWN) 

        Let mxxx ,...,, 21  be a random sample from the normal population with mean 1 and variance 

1

2 . Let nyyy ,...,, 21  be a random sample from the normal population with mean 2 and variance 

2

2 . Assume that the two samples are independent to each other. Let xy  is normally distributed 



with mean 12   and variance 
nm

2

2 
 (i.e)   










nm
Nxy

2

2
12 ,~


 . 

 
2

2



xxi 
is chi-

square distributed with (m-1) degrees of freedom 

               
 

2

2



xxi 
~ )1(

2
m

    and 

               
 

2

2



yyi 
~  )1(

2
n

  

  
   

 2

2

2

2

2

2

~








nm

yyxx ii 


 

The statistic 
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Thus the confidence interval for difference of means for two samples of normal population with the 

given level of significance   
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Hence 100  %1  confidence interval is 
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Suppose the samples are dependent on each other with common variance. Let 

niii DDDthennixyD ,...,,,...,2,1 21 are independently identically distributed random 

variables with common normal distribution having mean 12  D and variance 
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100  %1  confidence interval for 12  D  is 
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  where 2/t is the 2/ th quartile point of the 

t-distribution with (n-1) degrees of freedom. 

 



UNIT-III 

In the previous chapter, we have discussed methods of point estimation which are 

expected to yield estimators enjoying some of these important properties. Also we have 

discussed the confidence interval for proportions, mean(s), variance(s) based on chi-square, 

Student’s t, F and Normal Distributions. In this chapter, we shall discuss the statistical 

hypothesis. A statistical hypothesis is some statement or assertion about a population or 

equivalently about the probability distribution characterising a population which we want to 

verify on the basis of information available from a sample. 

 

Simple and Composite Hypothesis: 

When a hypothesis specifies all the parameters of a probability distribution, it is 

known as simple hypothesis. The hypothesis specifies all the parameters, i.e µ and σ of a 

normal distribution. 

Example: The random variable x is distributed normally with mean µ=0 & SD=1 is a 

simple hypothesis.  The hypothesis specifies all the parameters (µ & σ) of a normal 

distributions. 

If the hypothesis specific only some of the parameters of the probability distribution, it 

is known as composite hypothesis. In the above example if only the µ is specified or only the 

σ is specified it is a composite hypothesis. 

 

Test of Statistical Hypothesis: 

 A test of statistical hypothesis is a two action decision problem after the experimental 

sample value has been obtained. The two action being acceptance rejection of the hypothesis 

under consideration. 

 

Null Hypothesis: In hypothesis, testing a decision maker should not be motivated by 

prospects of profit or loss resulting from the acceptance or rejection of the hypothesis, ie., 

neutral or general statement about the population parameter is known as null hypothesis. 

 

Alternative Hypothesis: it is desirable to reject the hypothesis based on statistical test in 

other words, the general statement which is opposite to be null hypothesis stated is known as 

alternative hypothesis. 

 



Critical Region: let nxxx ,...,, 21  be the sample observation denoted by 0. We specify some 

region of the n dimensional space and see whether this point lies within this region or outside 

this region. We divide the whole sample space into two disjoint regions  wswandw  . 

The null hypothesis 0H  is rejected if the observed sample point falls in w  and if it 

falls in   we accept 0H   i.e the region of rejection of 0H  when 0H   is true is that region of the 

outcome set where 0H   is rejected. If the sample point falls in that region then it is called 

critical region. 

Type I Error: rejecting the null hypothesis 0H   when   is true is called type I error. 

 

Type II Error:  the error of accepting 0H when it false is called type II error. 

 

Level of Significance: probability of type I error is known as level of significance of test. It is 

also called as size of the critical region. 

 errorItypep  

 0/ Hwxp    


w

dxL0  

where 0L  is the likelihood function of the sample observation under 0H . 

 

Power of the Test: probability of type II error is denoted by   . 1  is called power 

function of the hypothesis  against the alternative 1H  . The value of the power function at a 

parameter point is called power of the test at that point (i.e). 
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We have, 


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dxL1  + 
w

dxL1  = 1 


w

dxL1  +   = 1 




w

dxL1  = 1  

 

STEPS INVOLVED IN TESTING OF HYPOTHESIS: 

 

 Explicit knowledge of the nature of population distribution and the parameter of 

interest (i.e) the parameter about which the hypothesis are setup  

 Setting up the null hypothesis 0H  and the alternative hypothesis 1H   in terms of the 

range of parameter values each ones embodies. 

 The choice of a suitable statistic called the test statistic which will be reflecting upon 

the probability of 0H  and 1H . 

 Partitioning the set of possible values of the test statistic into two disjoint sets w  and 

w  and framing the following test. 

o Reject 0H  if the value of test statistic falls in w  (critical region) 

o Accept 0H   if falls in w  (acceptance region) 

 After framing the above obtain experimental sample observation, compute the 

appropriate test statistic and take actions accordingly. 

 

Example 1: A single observation is taken from Poisson population to test 2:0 H  against 

3:1 H based on the critical region  4:  xxw  .find ,  and power of the test. 

Solution: 

 The probability distribution of population is given by, 
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Given that  2:0 H  

        3:1 H  

Critical region:         4:  xxw  

Acceptance region:  4:  xxw  
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. 6474.0  

Power of the test= 1  

     =1-0.6474=0.3256 

 

Example 2: A single observation is taken from binomial population to test  2/1:0 pH  

against 4/3:1 pH   based on the critical region  4:  xxw  where x denotes the number 

of heads when the coin is tossed 6 times.  

 

Solution: 

 



The probability mass function of binomial distribution is given by  
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Acceptance region:  4:  xxw  

 errorItypep =  0/ Hwxp   

  
xx

x

qp
x












 6

6

5

6
 

  

xx

x x































66

5 2

1

2

16
 

06

6

15

5
2

1

2

1
6

2

1

2

1
6 

































 CC = 0.0938 + 0.0156 

        1094.0   

  errorIItypep  1/ Hwxp   

 

xx

x x































64

0 4

1

4

36
    

24

4

33

3

42

2

51

1

60

0
4

1

4

3
6

4

1

4

3
6

4

1

4

3
6

4

1

4

3
6

4

1

4

3
6 




















































































 CCCCC  

 =
16

1

256

81
*15

64

1

64

27
*20

256

1

16

9
*15

1024

1

4

3
*6

4096

1
*1   

 =0.00024+ 0.00439 + 0.03296 + 0.13184 + 0.29663 =0.4661 

Power of the test = 1 =1-0.4661=0.5339 

 

Example 3: A single observation is taken from exponential family to test 2:0 H  against 

1:1 H  and agreed to reject 0H  when 1x  . Find ,  and power of the test. 

  

Solution: 

 

The probability density function of exponential distribution is given by, 
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Given that 2:0 H  

 1:1 H  

Critical region:         1:  xxw  

Acceptance region:  1:  xxw  
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Power of the test = 1   

 =1-0.6321=0.3679 

 

Example 4: A single observation is taken from the probability distribution  



1

, xf  

0;0  x  to test 1:0 H  against 2:1 H  and agreed to reject 0H  when 5.0x  . 

Find ,  and power of the test. 

 

Solution: 

 The probability density function of uniform distribution is given by 
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Given that 1:0 H   , 2:1 H  

Critical region:         5.0:  xxw  

Acceptance region:  5.0:  xxw  
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   = 
1

5.0

1


 

     25.0
2

5.0

2

1 1

5.0  x  

Power of the test = 1   

 =1-0.25=0.75 

Example 5:     10;1  xxxf  . A single observation is taken from the given 

distribution. Find ,  and power of the test if the test is 1:0 H  against 2:1 H  based 

on the critical region when 5.0x .  

 

Solution: 

 Given that 1:0 H  ; 2:1 H  

 Critical region:  5.0:  xxw  

   errorItypep =  0/ Hwxp   

       =   
5.0

0
1 dxx  

       =   
5.0

0

111 dxx  

   

5.0

0

2

2
2 










x
  

  2
5.00   

 25.0  

        errorIItypep  1/ Hwxp   



 =   
1

5.0

221 dxx      Acceptance region:  5.0:  xxw  

 

 = 125.01  

 875.0  

Power of the test = 1   

 =1-0.875=0.125 

 

Example 6: A single observation is taken from the   xexf  ,   x0;0;  to test 

2:0 H  against 1:1 H . Find the best critical region of single 0.05. 

 

Solution: 

 Given that   xexf  ,  

   2:0 H  

 1:1 H  

 05.0  

 errorItypep  

Let critical region =  0: xxx  where 0x  is a constant which is to be estimated let the 

probability density function under 0H   is given by 

   0;2, 2

0   xexf x  

Similarly the probability density function under 1H   is given by 

   0;, 1   xexf x  

  errorItypep =  00 /: Hxxxp   

 0.05=  


0
0,

x
xf   

 = 




0

22
x

xdxe  

 =














0

2

2

1
2

x

xe  

 = 02x
ee
   

 = 02x
e


 



Taking log on both sides, 

    `log 0.05=-2 0x  

  -2.9957=-2 0x  

 0x =1.4979 

The required critical region of sixe 0.05 is    5.1:4979.1:  xxwxxw  

     Acceptance region:  5.1:  xxw  

        errorIItypep  1/ Hwxp   

 = 


5.1

0
dxe x  

 =   5.1

0

xe  

 = 05.1 ee    

 =-0.2331+1 

 7769.0  

Power of the test = 1   

 =1-0.7769=0.2231 

Case II: 

            Critical region:  0: xxxw   

             errorItypep =  00 /: Hxxxp     

                  05.02
0

0

2 


x
xdxe  

 05.0
2

1
2

0

0

2 






 

x

xe  

 05.0020 
 x

ee  

 95.002


 x
e  

 95.002


 x
e  

Taking log on both sides, 

 log 0.95=-2 0x  

 -0.0513=-2 0x  

 0x = 0.0257 

The required critical region of sixe 0.05 is    026.0:0257.0:  xxwxxw  



Acceptance region:  026.0:  xxw  

 errorIItypep  1/: Hwxxp   

  = 




026.0
dxe x  

 =   026.0

xe  

 = 026.0  ee  

        9743.00  

 9743.0  

Power of the test = 1   

 =1-0.9743=0.0257 

In the given example we have possible critical region of size 0.05 

  

Size Critical region Power of test 

0.05  5.1:  xxw  0.2231 

0.05  026.0:  xxw  0.0257 

We select the first critical region because it has maximum power of the test. 

 

Randomized Tests 

 

 It will be recalled that for hypothesis testing problems involving discrete distributions, 

it is usually not possible to choose a critical region consisting of realizable values of the 

statistic of size exactly  , where   is some prescribed value. 

 In the hypothesis testing procedures considered so far, the sample space of 

observations X is partitioned into 2 regions, C and C  (its complement). We can express this 

in terms of a function  as follows. Let 

   xXwhenHrejectPx  0  

For a non-randomized test with rejection region C,   for a region C is just its indicator 

function. That is, 

 









Cxif

Cxif
x

0

1
  

We will extend this, to allow for some different action (other that ``reject'' and ``accept'') if the 

outcome x is on the boundary of the critical region. The other action effectively is performing 



an auxiliary experiment such as tossing a coin with P(heads) p; if heads results, reject H0 ; 

if tails results, H0 is accepted. The value of p is chosen to make the P(rejecting H0) the desired 

value. More formally, for a test with critical region C and a value of  X= x0 on the boundary, 

we may define 

 
















Cxandxxif

xxifp

Cxif

x

0

0

0

1

  

where p  ( 0<p<1) is appropriately chosen. 

 

Best Critical Region and Most Powerful Test: 

 

 A critical region w   of size    for testing 0H against 1H  is said to be best critical 

region (BCR) if *w  is any other critical of same size   for which power of w     power of 

*w  (i.e). 

 1-    11 /1/ HwxpHwxp     or 

    11 // HwxpHwxp    

A statistical test based on best critical region is called most powerful test. 

 

Neymann Pearson’s Fundamental Lemma: 

 

 Let nxxx ,...,, 21  be a random sample from  ,xf where   is the unknown parameter. 

Let 0L   and  1L  be the likelihood functions under 00 :  H against 

11 :  H respectively if there exist a critical region w  of size   at a constant k such that 

k
L

L


1

0   for points in w  . Then w   is the best critical region of size for testing 0H  against 

1H . 

 

Proof: 

Let *w  be any other critical region of size . 

    errorItypep = size of w 

               
w

dxL0  



 wofsize  






w

dxL0  

 

 

000  
ca

dxLdxL              ---------------(1) 

Power of w = 1  

 = 
w

dxL11  

 = 
w

dxL1  

Power of w = 1  

 = 




w

dxL11  

 = 
w

dxL1  

Power of w - Power of w  = 
w

dxL1  - 
w

dxL1     --------------(2) 

From the lemma wa  and k
L

L


1

0  

 0L k 1L  


a

dxL0 k 
a

dxL1  


a

dxL0
k

1
 

a

dxL1 -----------------(3) 

Conversely, 

 wc   and k
L

L


1

0  

0L k 1L  

1L
k

1
 0L  


c

dxL1
k

1
 

c

dxL0  






ww

dxLdxL 00




c

dxL1
k

1
 

c

dxL0      ----------------(4) 

From (2)  

Power of w - Power of w  = 
w

dxL1  - 
w

dxL1  

          = 
a

dxL1 
c

dxL1   

 
k

1
 

a

dxL0 + 









k

1

c

dxL0  [using (3) & (4) ] 

         
k

1
 








 

ca

dxLdxL 00  

       0  

Power of w - Power of w  0  

Power of w   Power of w  

w  is a best critical region. 

 

Definition 1: A critical region w  of size   for testing 00 :  H  against 01 :  H is 

said to be uniformly most powerful critical region if for every value of 0   the power of 

the critical region w  must be greater than or equal to the critical region w  must be greater 

than or equal to power of any other critical region w of same size   any test based on 

uniformly most powerful critical region is called uniformly most powerful test. 

 

Example 7: Given a random sample nxxx ,...,, 21  from the distribution with the pdf 

  e
x

xf





,  0;0;  x show that there exist no UMPT for testing 00 :  H against 

01 :  H .  

 

Solution: 

 

 Let nxxx ,...,, 21  be a random sample from exponential distribution then the likelihood 

function is given by 

   e
x

xf





,  



 k
L

L


1

0  

   







n

i

x
n

i

i
iexf

1

0

1

0
0,

  

 k

e

e

L

L
n

i

i

n

i

i

x
n

x
n
















1

1

1

0

1

0

1

0








 

 
 

ke
n

i

ix

n









 







10

1

1

0  

Taking log on both sides,  

   kxn
n

i
i loglog

10
1

1

0 












 

     kxn
n

i
i logloglog

10
1

10 


  

    1010
1

logloglog  


nkx
n

i
i  

Case I: 10    

 010    

 10 loglog    is a positive quantity 

 
 




10

10

1

logloglog








nk
x

n

i
i

 

Case II: 10    

 10 loglog    is a positive quantity 

 
 




10

10

1

logloglog








nk
x

n

i
i

 

Case I: 01    then the BCR is given by 

   


 )(1

10

1 say
k

xi 


 

Case II: 10    then the BCR is given by 

   


 )(2

10

1 say
k

xi 


 



The constant 1  and 2  are determined such that  

    01 / Hxp i
 

    02 / Hxp i
 

Note that if  Ex ~  then  2

2~2 hix   

           01 /222 Hxpxp ii
 

        02 /222 Hxpxp ii
 

Using this result, 

       1

2

212 hi pxp  

 1

2

2  h  

Hence the BCR for testing 00 :  H  against  011 :  H  is given by  

    2

2,10 2: nii xxw   

    2

2/2,10 :  nii xxw  

Since 0w  is independent of ,0w 0  is UMPCR for               

testing 00 :  H against  011 :  H  similarly 

       222  ixp  

  1

2

2   hp  where – 

Hence, BCR for testing 00 :  H  against  011 :  H  is given by 

    2

2,11 2: nii xxw   

    2

2/2,11 :  nii xxw  

Since 1w  is independent of ,1w 1  is UMPCR for           

testing 00 :  H against  011 :  H  similarly. Since the two CR 0w  and 0w  are 

different there exists no CR of size which is UMP for 00 :  H  against 01 :  H . 

Power of the test: 

     10 /1 Hwxp    

   







   1

2

2,1 /,
2

1
Hxp ni 


 

   







   1

2

2,1

0

1
1 /,2 Hxp ni 




  



 







 

2

2,1

0

12

2 , nnp 



  

The power of test H for testing 00 :  H  against  011 :  H is given by. 

  10 /1 Hwxp    

 







   1

2

2,1 /,
2

1
Hxp ni 


 

 







   1

2

2,1

0

1
1 /,2 Hxp ni 




  

 

Example 8: show that for a normal distribution with mean 0 and variance – the BCR for 

testing 00 :  H versus 11 :  H  is the form   axi

2
 for 10    and   bxi

2
 

for 10   .Show that power of the test of the BCR where 10   is 












2

,2

1

2

0 , nF 



.  

 

Solution: 

Let nxxx ,...,, 21  be a random sample of size n from normal population with mean 0 and 

variance 2 . 

The likelihood function for  2

0,0 N  is  

  
2

0

2

1

2

0

2

0

1

0 1 0
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1
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n

i

ix
n
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 
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 
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The likelihood function for  2

1,0 N  is  

  
2

0

2

1

2

1
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1 1 1
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The best critical region is given by  
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Taking log on both sides 
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Hence BCR for testing 00 :  H  against  011 :  H  is given by 
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Example 9: Examine whether test critical region exist  for testing 00 :  H  against 

01 :  H  for  parameter – of the distribution.  
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Solution: 

 

 Let nxxx ,...,, 21  be a random sample from exponential distribution then the likelihood 

function is given by 
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Taking log on both sides,  
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Thus the test criterion is, 
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This cannot be put up in the form of function of sample observations not depending upon the 

hypothesis. Hence, no BCR exits in this case. 

 

Unbiased test:  

 A statistical test of simple null hypothesis against single alternative hypothesis is 

called unbiased if the power of the test is greater than or equal to single of the test. 

 

Lemma for Unbiased Test: 

 The most powerful test for testing simple 0H   against simple 1H  is always unbiased. 

Let w  be the best critical region of size for 00 :  H  against 11 :  H  from the 

population. Let nxxx ,...,, 21  be a random sample from  ,xf  .let 0L  and 1L  be the likelihood 

function 0H   and 1H respectively. 
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(ie) power of the test   sign of the test. 

Therefore the based on w   is most powerful and unbiased. 

 

Example 10: Obtain the most powerful test for testing 00 :  H against 11 :  H by 

taking a sample of size n from the normal population with known standard deviation 0 .The 

pdf of normal distribution is given by. 
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Solution 

 

Let nxxx ,...,, 21  be an random sample from normal population with the pdf let 0L  and 

1L  be the likelihood function 0H   and 1H respectively. 
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Taking log on both sides, 
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   is the best critical region and can be obtained 

using  
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Case I:   10    

10    is a negative quantity. Dividing best critical region of equation (1) 10    we get 
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Case II: 10    

10    is a negative quantity. Dividing best critical region of equation (1) 10    we get 
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Example 11: Obtain the most powerful test size for testing 00 :  H versus 11 :  H  

in  2

0,0 N . Let nxxx ,...,, 21  be a random sample of size n from normal population with 

mean 0 and variance 2 . 

 

Solution: 

 

The likelihood function for  2
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The likelihood function for  2

1,0 N  is  

  
2

0

2

1

2

1

2

1

1

1 1

2

1
,0, e

n

i

ix
n

i

n

i

xf 













 













 




 


  

The best critical region is given by  
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Taking log on both sides 
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Example 12: Obtain the most powerful test size for testing 00 :  H against 11 :  H  

from poison population for the parameter . 

 

Solution: 

 The probability mass function of poison population distribution is given by 
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Case I: 10    



 10 loglog    is a positive quantity 

The inequality remains same the best critical region is given by 
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Case II: 10    

 Since 10 loglog    is a negative quantity. 

The inequality best critical region is given by 
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Example 13: obtain the best critical region of size   for testing 00 :  H  against 

11 :  H  in the exponential population. The probability density function of exponential 

distribution is given by. 
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Solution: 

 

Let nxxx ,...,, 21  be a random sample from exponential distribution then the likelihood 

function is given by 
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Taking log on both sides,  
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Case I: 10    

 010    

 10 loglog    is a positive quantity 
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Case II: 10    

 10 loglog    is a positive quantity 
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Example 14: Obtain the most powerful test for testing 00 :  H  against 11 :  H  for the 

pdf    xxf
1


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  1,10  x  

 

Solution: 

 

                   Let nxxx ,...,, 21  be a random sample. 
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Taking log on both sides, 
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Case I: 10    

 010    

 10 loglog    is a positive quantity 
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Case II: 10    

 10 loglog    is a positive quantity 
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LIKELIHOOD RATIO TEST: 

Likelihood ratio test is useful for testing simple or composite hypothesis. If  ,xf  is the 

density function of a population and  L  is a likelihood function of sample observations x1, 

x2, x3,…, xn then the likelihood ratio  is defined as 
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HLfunctionLikelihoodofMaximum
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If the parameter   is replaced by its maximum likelihood estimator ̂ , then we get  ̂L . ie., 

00 :  H , then we get  ̂L . (ie) Max     ˆLL   
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Any test for testing H0 against H1 is called likelihood ratio test. If it is based on likelihood 

ratio  and the critical region 00   such that   




0

0 dHg  

 

 

 



Properties of Likelihood Ratio Test 

1. Likelihood ratio test leads to uniformly most powerful test if it exists. 

2. When the sample size n is large 2~log2 e distribution with respective degrees of 

freedom 

3. Under certain conditions likelihood ratio tests are consistent. 

4. If the distribution  ,xf  has a monotone likelihood ratio in D(x) then there exists UMP 

test for testing 00 :  H or 00 :  H against 01 :  H  

 

Example 15: Obtain UMPT(LRT) for testing 00 :  H against 01 :  H for a normal 

population with parameter   and 2 . 

 

Solution: 

Let x1,x2,…,xn be a random sample from N(  , 2 ) where x,  , 0  

The joint pdf of x1,x2,…,xn is  
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The maximum of likelihood function is given by  
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The UMP critical region of size  is given by 00    
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where o is fixed such that size of CR is  
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Therefore, t-distribution can be used to find the value for given  and degrees of freedom (n-

1).  

Therefore, UMPT of size  for testing mean of the normal distribution when 2  is unknown 

is based on t-distribution. 

The UMP CR of Size  is given by  
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Test for the Mean of a Normal Distribution 

Let X1,X2,...,Xn form a random sample from a normal distribution whose mean   and 

variance 2 are both unknown. Consider the problem of testing the composite null hypothesis 

00 :H   against 11 :H   . 

The joint probability density function of X1,X2,...,Xn under H0, where 2 is regarded as the 

parameter, is 
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This shows that the statistic,   
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0 is sufficient for 2  and also complete 

sufficient statistic. 

Consider now a particular simple hypothesis, 
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The most powerful similar region of size  for testing H0 against H1 is  
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where k(v) is such that the conditional size of W0 given V=v, is  . 

Now, if we take logarithms on both sides, we see that 
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    vkx 1001   , ---(1) 

say, where k1(v) is related to k(v). 

 

 

Case 1: 01    

Hence the condition (1) is equivalent to  

   vkx 20    or to 

   ,/ 30 vkvxn   

As such, we may write  
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Where, again k3(v) is to be so determined that    vWP |00
 

However,   Vxn /0 and V are independently distributed, so that the con0ditional 

distribution   Vxn /0 , given V=v, is the same as the marginal distribution of 

  vxn /0 . Such, k3(v) will be independent of v. Writing k3 for this constant, we see that 

it is to be so determinant that 
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where   SXnt /0 is Student’s t statistic n-1degrees of freedom. 

Since   30 / kVXn  iff  saykt 4  

We may also write,     3300 |/| ktxkvxnxW    

where k4 is such that,     40
ktP  

This shows that k4 is the upper point  of the t distribution with n-1 degrees of freedom. 

Denoting this by 1, nt , then 

 

 

Since this is independent of ,2

0 it is the most powerful similar region of size  for testing H0 

against H1. 

Case 2: 01    

In this case, condition (1) reduces to  

   vkx '

20    

Proceeding as before, we shall find the most powerful similar region of size  for testing H0 

against H1 is 
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Note: Since W0 is independent of 1 , i.e., is the same for all 01   , it is, in fact, the UMP 

similar region of Size  for testing 00 :  H against the more general composite alternative 

00 :  H . Similarly, '

0W is the uniformly most powerful similar region of size  for testing 

00 :  H against the alternative 00 :  H .  

 

Test for Variance of a Normal Distribution 

Let X1,X2,...,Xn form a random sample from a normal distribution whose mean   and 

variance 2 are both unknown. Consider the problem of testing the composite null hypothesis 

00 :H   against  

11 :H   . 

The joint probability density function of X1,X2,...,Xn under H0, where  is regarded as the 

parameter, is 
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This shows that the statistic, nXX
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i /  is sufficient for   and also complete sufficient 

statistic under H0. 

Consider now a particular simple hypothesis, 
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The most powerful similar region of size  for testing H0 against H1 is  
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where  xk is such that the conditional size of W0 given xX  , is  . 
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we may, therefore, write  

 
 












  xk
xx

xW
i

i
32

0

2

0 |


 

Where,  xk3  is to be so determined that 

   xWP 00
 

Since 
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and X are independently distributed, the conditional distribution of 

 
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given xX  is the same as its marginal distribution, implying that  xk3  is 

independent of x . 

Writing 3k for this constant, we note that it is to be so chosen that 
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has,  under H0, the 2  distribution with n-1 degrees of freedom, k3 must 

be upper point  of the 2  distribution with n-1 degrees of freedom. Denoting this by 

2

1, n , then 
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Since this is independent of 0 and 1 , it is the most powerful similar region of size  for 

testing H0 against H1. 

 

Case II: 
2
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In this case, condition (1) reduces to  
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Proceeding as before, we shall find the most powerful similar region of size  for testing H0 

against H1 is 

 
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Where 2

1,1  n is the lower intpo of the 2 distribution with n-1 degrees of freedom.  

Note: Since W0 is the same for all 2

0

2

1   , it is, in fact, the uniformly most powerful similar 

region of size  for testing H0 against the one-sided alternative 2

0

2

1 :  H . Similarly, '

0W is 

the uniformly most powerful similar region of size  for testing H0 against the one-sided 

alternative 2

0

2

1 :  H .  



UNIT-IV 

In the previous chapter, we have discussed the statistical hypothesis. In this chapter, 

we shall discuss the large sample tests, exact sample tests and chi-square tests. 

 

LARGE SAMPLE TEST: 

 

Any statistical test based on the assumption that the sample size n is large (n  ) is 

called asymptotic test. We know that as n  any statistic irrespective of the parent 

population from which sample is drawn follows Normal Distribution (Central limit theorem). 

Hence any statistic follows Normal Distribution as n  the test based on such a 

statistic is called asymptotic test. Any statistical test based on exact distribution of a statistical 

under consideration is called exact test. Here, there is no assumption on the sample size most 

of the statistical test uses t-distribution, 2x  distribution and F-distribution which are exact 

distribution of statistic. Hence test based on t, F, 2x  distributions are called exact test. 

Sometimes the statistic may also follow Normal Distribution and in such cases, it is also an 

exact test. 

 

Steps involved in statistical test of significance: 

A statistical test of significance is a statistical test of hypothesis using the following 

procedure. 

 

1. Formulation of hypothesis:  

 

The hypothesis to be test is taken as null hypothesis 0H . Normally when one 

parameter is involved the hypothesis is “there is no significant difference between the 

hypothetical value of the parameter and corresponding statistical value from the sample”. 

When two parameters are involved, the null hypothesis is “there is no significant difference 

between statistic obtained from two sample”. The alternative hypothesis is normally two sided 

and just opposite of null hypothesis. 

 

2. Chossing the level of significance: 

    = level of significance  

        = P [Type I error] 



        = size of critical region 

     value is fixed at low level usually it is fixed as 5% or 1%. 

 

3. Selecting statistic & finding its distribution: 

 Let t be a statistic such that E(t)=   where   is the parameter of the distribution. We 

must find standard error of t which is the standard deviation of the sampling distribution of 

the statistic. 

  test statistic = 
)(

)(

tSE

tEt 
 

 Find the distribution of test statistic which may be normal, t, 2x or F distribution. 

 

4.  Finding the critical value: 

 Using the sampling distribution of test statistic critical value or table value can be 

obtained from the corresponding statistical tables. These values are used to describe the 

critical region. For eg. If the sampling distribution is normal, normal table can be use to find 

critical value using  . And if   = 0.05, 1H  is two sided, then the critical value is 1.96. If    

= 0.05, 1H  is one sided , then the critical value is 1.965. If  =0.01 and 1H  is two sided,  the 

critical value is 2.58 and if 1H  is one sided, the critical value is 2.33. 

 

5. Critical region & inference: 

 Critical region is { |test statistic|   critical values } 

 A.R = { |test statistic| < critical values}. 

 If the value of test statistic   critical value 1H  is rejected. If the value of test statistic 

< critical value then there is no reason to reject  0H  at level  . Accordingly, inferences can 

be drawn. 

 

TEST FOR SINGLE MEAN: 

 Give the test procedure for testing the significance of mean of the population when the 

sample is large. 

Null hypothesis: There is no significant difference between sample mean and population (i.e) 

00 :  H . 



Alternate hypothesis: There is significant difference between sample mean and population 

mean (i.e) 010101 :)(:)(:   HorHorH   

Level of Significance: Let == be the level of significance, == 0.05 or 0.01 or any given 

specific values in the problem. 

Test statistic & its sampling distribution:  

 

n

x
Z



0
   where   is known 

 

n
s

x
Z 0   where   is unknown 

Where  n is sample size 

   x  is sample mean 

     is population SD 

    s  is sample SD 

Finding critical value: 

 From the normal table, we find critical value based on   & 1H  is one-sided then 

critical value is Z , if the 1H  is two-sided then critical value is 
2

Z . 

Inference: 

 If  )(||
2

 ZorZZcal    then the null hypothesis is rejected. 

 If )(||
2

 ZorZZcal   then there is no reason to reject it. 

 

Problem 1: A sample of 900 members has a mean 3.4 cm and SD 2.61 cm is a sample from a 

large population of mean 3.25 cm & SD 2.61 cm. 

Solution: 

 n=900 x =3.4cm 0 = 3.25  = 2.61 

Null hypothesis: 

 The sample has drawn from the population with mean 3.25cm & SD=2.61 cm 

Alternate hypothesis: 

 The sample is not drawn from the population with mean  3.25cm & SD=2.61 cm 



 

n

x
Z cal 

0
  

 
61.2

30)15.0(

30
)61.2(

15.0

900
61.2

25.34.3



Z   

 Z= 1.7241 

Critical value: 

 Let  =0.05 , 96.1025.0
2 025.0  Z  

Inference: 

 Since calZ = 1.7241 <  calZ = 1.96 

 There is no reason to reject null hypothesis. 

 We conclude that sample has been drawn from population with mean 3.25 & SD= 

2.61 cm. 

 

Problem 2: An insurance agent has claimed that the average age of policy holders who insure 

through him is less than the average for all agent which is 30.5 years. A random sample of 

100 policy holders who had insured through him gave the following distribution. 

Age 15-20 20-25 25-30 35-40 30-35 

No.of.persons 12 22 20 16 30 

 

Calculate the AM and SD of this distribution &use these values to test thi claim at 5% level of 

significance. 

Solution: 

CI 
ix  if  ii fx  

ii fx 2  

15-20 17.5 12 210 3675 

20-25 22.5 22 495 11137.5 

25-30 27.5 20 550 15125 

30-35 32.5 30 975 31687.5 

35-40 37.5 16 600 22500 

 

3.28
100

2830







i

ii

f

fx
x  



222 )(
1

xfx
N

ii   

             = 841.25-800.89 

                = 40.36 

   353.6 s  

Null hypothesis: 

 The average age of policy holders who insured through him is same as the average age 

for all agents which is 30.5 years. 

Alternate hypothesis: 

 The average age of policy holders who are insured through him is less than the 

average age for all agents which is 30.5 years 

Test statistic: 

 

n
s

x
Z 0  

 

100
353.6

5.303.28 0
  

 
6353.0

2.2
  

 = -3.4629 

tabZZ  65.1  

tabcal ZZ  65.14629.3  

 Therefore we reject the null hypothesis and accept that him claim is right. 

Since 65.14629.3  ZZcal  

0H  is rejected. Thus we conclude that the insurance agents claim is true. (i.e) Average age of 

policy holders who insured through him is less than the average age for all agents which is 

30.5 years. 

 

TEST OF SIGNIFICANCE OF STANDARD DEVIATION OR VARIANCE: 

Null hypothesis: 

 2

0

2

00 )(:   orH  

 There is no significant difference between sample variance and population variance. 

Alternate hypothesis: 
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Level of significance: 

  = P[Type I error]= 0.05/001 

Test statistic: 
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Where n is the sample size  

 
2)(

1
xx

n
s i   sample SD 

 0 population SD 

Critical values: 

 01 :  H  

 From normal distribution table, we can find 

2
Z  such that 

2
][

2


  ZZP cal  

01 :  H  

From normal distribution table, we can find Z Such that 

  ][ ZZP cal  

01 :  H  

From normal distribution table, we can find - Z Such that 

  ][ ZZP cal  

Inference: 

 When 211 :  H   reject 0H  if 
2

ZZ cal    otherwise there is no reason to 

reject 0H . 



  When 211211 :)(:   HorH   reject 0H  if  ZZorZZ calcal  )(   

otherwise there is no reason to reject 0H . 

 

Problem 3: A large organisation produces electrical light bulbs in each of its two factories. It 

is suspected that the efficiency of the factories are not same. So a test carried out by 

ascertaining variability of life of bulbs produced in each factory. The results are as follows: 

No.of bulbs in the sample Factory A Factory B 

100 200 

Average life 1100 hrs 900 hrs 

SD 240 hrs 220 hrs 

  

 From the above information determine whether the difference between variability of 

life from bulbs from each sample is significant. Test at 5% level of significance. 

 

Solution: 

Null hypothesis: 

 There is no significant difference between the variability of life of bulbs from factory 

A and factory B. 

Alternative hypothesis: 

 There is no significant difference between the variability of life of bulbs in factory A 

and factory B. 

Level of significance: 

 = P [Type I error]= 0.01 

Test statistic:  

9889.0
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2237.20
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58.29889.0

58.201.0
2





tabcal
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ZZ

ZZ   

Inference: There is no reason reject 0H . There is no significant difference between variability 

of life of bulbs of factory A and factory B. 

 

TEST FOR SIGNIFICANCE OF SAMPLE PROPORTION: 

 Let x1,x2,......,xn be a sample observation of size n with the proportion p, q=1-p. We 

have to test there is any significant difference between the sample proportion (p) and 

population proportion (p) where n is assumed to be large. 

Null hypothesis: 

 There is no significant difference between the sample proportion and population 

proportion H0: p=p0 

Alternative hypothesis: 

 There is no significancant difference between the sample proportion and population 

proportion. 
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01

01

:

:

:

ppH

ppH

ppH







 

Level of significance: 

   = p [Type of I error]=0.01/0.05 or any other specified values. 

 

 

Test statistic: 
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Critical value: 

 When 01 : ppH   from normal table we can find 
2

Z   using 
2

][
2


  ZZp  



 When 001 : pporppH    from normal table we can find 
2

Z   using 

   ][)(][ ZZporZZp  

Inference: 

If )(
2

 ZorZZ cal  we reject 0H  otherwise there is no reason to reject 0H
. 

Problem 4: In a sample of 1000 people in Maharashtra 540 are rice eaters and rest eaters. Can 

we assume that the rice and wheat equally popular in this state at 1% level of significance. 

Solution: 

Null hypothesis: 

 Both rice and wheat are equally popular in the state. 5.0: 00  ppH  

Alternate hypothesis: 

 Both rice and wheat are not equally popular in the state 5405.0: 00  ppH  

Level of significance: 

Test statistic: 
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There is no reason to reject 0H . 

Both rice and wheat are equally popular in Maharashtra. 

Problem 5: 20 peoples where attacked by a diseases and only 18 survived. Will you reject the 

hypothesis that the survival rate if attacked by this diseases is 85% in favour of the hypothesis 

that it is more at 5% level of significance. 

Solution: 



Null hypothesis: 

 The survival rate is 85% 

Alternative hypothesis: 

The survival is more than 85% 

Level of significance:
 

05.0  

Test statistic: 
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There is no reason to reject 0H   

The survival rate is 85%. 

 

TEST FOR DIFFERENCE BETWEEN TWO MEANS: 

Null hypothesis: 

 210  H  where 1  and 2 are two population means. In other words,= may be 

stated as there is no significant difference between two sample means or the two samples have 

come from the same population. 

Alternate hypothesis: 

  211 :  H
 (Two sided) 

  

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

211

211

:

:
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H

 (One sided) 

Level of siginificance: 

  is taken to be 0.05 or 0.01 pr it can take a specified lower value. 

Test statistic 
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 When population variances are unknown then they are replaced by their estimators 

namely 2

2

2

1

2

1 sandsx  respectively. Therefore the test statistics becomes 

 

2

2

2

1

2

1

21

n

s

n

s

xx
Z




  

 Here, 11 nandx refers sample mean and sample size based on the first sample 

22 nandx  refers sample mean and sample size based on the second sample 

Critical value: 

 Depending on alternate hypothesis 1H , the critical values are found using normal 

table. 

  
1H  Tab.value 

0.05 2 sided 1.96 

0.01 2 sided 2.58 

0.05 1 sided 1.65 

0.01 1 sided 2.33 

  

Inference: 

If   ZZorZZ calcal 
2

 

Then the null hypothesis is rejected. 



If   ZZorZZ calcal 
2

 

Then there is no reason to reject the null hypothesis. 

 

Problem 6: The average hourly wage of a sample of 150 workers in a plant A was 2.56 

rupees. With a standard deviation of Rs.1.08. The average hourly wage of a sample of 200 

workers in plant B was Rs.2.87 with the SD of Rs.1.28. Can an applicant safely assume that 

the hourly wage paid by plant B or higher than those paid by plant A. 

Null hypothesis: 

The average hourly wage paid by plant A and plant B are same (i.e) 21    

Alternate hypothesis: 

 The average hourly wage paid by plant B is higher than those paid by plant A. 

 i.e 1221 )(   or  

Test statistic: 
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 Z = -2.4514 

65.105.0  tabZ  

65.14514.2  tabcal ZZ  

The null hypothesis is rejected. 

The average hourly wage paid plant B is higher than those paid by A. 

 

TEST FOR SIGNIFICANCE OF DIFFERENCE BETWEEN SAMPLE 

PROPORTIONS: 

 Given that two samples if sizes n1 and n2 with the proportion p1 and p2 respectively. 

We have to test whether there is any significant difference between p1 and p2. 

Null hypothesis: 

 There is no significant difference between the two sample proportions. 

Alternative hypothesis: 



 There is significant difference between the two sample proportions. 
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Level of significance: 

   Is fixed at the level 0.05/0.01 

Test statistic and its distribution: 
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 If population proportion is unknown then it is estimated using 
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 That test statistic becomes 
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Critical values: 

 
When 211 : ppH   from normal table we can find 
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 Inference: 

 
If 0H  

2
ZZ cal   then the null hypothesis is rejected. Otherwise there is no reason to 

reject 0H
. 

If )(
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 ZorZZ cal   

 



Problem 7: In a large city A 20% of a random sample of 900 school children have defective 

eye sight. In other large city B, 15% of a random sample of 1600 children have the same 

defect. Is this difference between the two proportions significant? 

Solution: 

Null hypothesis: 

 There is no significant difference between the two proportions. 

Alternative hypothesis: 

 There is significant difference between the two proportions 

Level of significance: 05.0  
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There is significant difference between the two proportions. 

 

Problem 8: Before an increase in exercise duty on tea 800 persons out of a sample of 1000 

persons were found to be tea drinkers. After an excess increase in duty 800 people. Using the 

above statement check whether there is a significant decrease in the consumption of tea after 

the increase in excise duty? 



Solution: 

Null hypothesis: 

 There is no significant decrease after the increase in excise duty in consumption of tea 

Alternative hypothesis: 

 There is significant decrease in consumption of tea after the increase in excise duty 

Level of significance: 05.0  

Test statistic: 
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Inference: We reject the null hypothesis 

 There is significant difference in consumption tea after the increase in excise duty. 

 

 

 

 



EXACT TEST/ SMALL SAMPLE TEST 

TEST FOR SINGLE MEAN: 

Assumption: 

 The population is normal with mean  and variance 2  .A random sample of size n is 

drawn from the population. 

 Population mean 0   is to be tested the other parameter 2  may be known or 

unknown. 

Null hypothesis: 

 There is no significant difference between sample mean and population mean. 

Alternative hypothesis:  

 There is significant difference between the sample mean and population mean 
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Level of significance: 

 01.0/05.0 or any other specified value 

Test statistic: 

 When   is unknown 

 )1(
0

/



 nF

ns

X
t


 

 n- sample size 

X - sample mean 

s- unbiased estimation of 






n

i

i XX
n 1

2)(
1

1
  

When   is known 

)1,0(
/

0
0 N

n

X
Z 






 

Critical value: 

i.) When   is known 

01 :  H , using  normal tables we can find 
2

Z  such that  
22/
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  ZZp  

0101 :)(:   HorH , using normal tables we can find Z such 
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ii.) When is unknown 

01 :  H using t tables we can find 
2
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
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Inference: 

 When is   known, i.) If  reject 2/ZZ   reject 0H  

      ii.) If  reject )(2/  ZZorZZ   reject 0H  

 When  is   unknown i.) For testing 01 :  H  reject if )1(2/  ntt   

                ii.) For testing )(: 001   orH  reject 0H  if )1(2/  ntt   

 

Problem 9: A random sample of 10 boys have the following IQ values are 

70,120,110,101,88,83,95,98,107,100. Do these data support the assumption of the population 

mean IQ of 100. 

Solution: 

Null hypothesis: 

 The population mean IQ is 100 

Alternative hypothesis: 

 The population mean of boys IQ is not 100 

 100:1 H  

Level of significance: 05.0  

Test statistic: 
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The population mean of boys IQ is not 100 

 

Problem 10: 10 specimens of copper wire brought from a large lot have the following 

breaking strength in Kg 578,572,572,568,571,570,570,572,596. Test whether the mean 

breaking strength of the values may be taken as 578. 

Solution: 

Null hypothesis: 

 The mean breaking strength of the value is 578. 

Alternative hypothesis: 

The mean breaking strength of the value is not 578 

Level of significance: 05.0  

Test statistic: 
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There is no reason to reject the null hypothesis. 

The mean breaking strength of the value is 578 

 

 

 



TEST FOR SIGNIFICANCE OF DIFFERENCE BETWEEN TWO MEANS 

(INDEPENDENT SAMPLES) 

Assumptions: 

 The two population is normal with mean   and variance 2 . (i.e) x1,x2,.......xn1 ~  

N( 1  , 
2

1 ) and y1,y2,.......yn2 ~ N( 2  , 
2

2 ).The population mean  & 21  are unknown. The 

population variances
2

1 & 
2

2 are equal but unknown (i.e) 22
2

2
1    (unknown). 

Samples are drawn from the population are independent and random. 

Null hypothesis: 

 There is no significant difference between the two population means (i.e)

 

211 :  H  

Alternative hypothesis: 

 There is significant difference between the two population means 
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Level of significance: 001.0/05.0  

Test statistic: 
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Since under 210 :  H  and 2  is unknown, 2  is replaced by its estimation 

n1 - first sample size 

n2 - second sample size 

1X - first sample mean 

2X - second sample mean 
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1s - first sample variance 
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2s  - second sample variance 
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Critical value: 

 For two sided test, we can find  2212/  nnt  from t tables for  221  nn  degree 

of freedom. For one sided test, we can find  221  nnt  from t tables for  221  nn  

degree of freedom 

Inference: 

 For two sided test, reject 0H if  2212/  nnttcal   otherwise there is no reason to 

reject 0H  

 For one sided test, reject 0H if  221  nnttcal   otherwise there is no reason to 

reject 0H  

 

Problem 11: The heights of six randomly chosen sailors are (in inches) 63,65,68,69,71,72,73. 

Discuss the light that these data throw on the suggestion that the sailors are on the average 

taller than soldiers. 

Solution: 

Null hypothesis: 

There is no significant difference between the height of the sailors and soldiers 210 :  H  

Alternative hypothesis: 

There is significant difference between the height of the sailors and soldiers 211 :  H  

Level of significance: 05.0  

Test statistics: 
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There is no reason to reject 0H   

The sailors are on the average taller the soldiers 

 

TEST FOR DIFFERENCE BETWEEN MEANS PAIRED VALUES (DEPENDENT 

SAMPLE TEST/ PAIRED T-TEST) 

 

Assumption: 

The population is normal with mean   and variance 2  

A random sample of observations      nn yxyxyx ,......,,, 2211  is drawn from the population 

d  and 
2

d  are unknown 

 0 d is to be tested 

Null hypothesis: 

There is no significant difference between the means 

Alternative hypothesis: 

There is significant difference between the means 
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Level of significance: 001.0/01.0/05.0  

Test statistic: 



 
 

 1

22

00

1

~
1/ˆ

1
ˆ

1

ˆ
)(

)(,

1
























n

d

id

d

n

i

i

t
n

d
t

dd
n

n
dSE

dEHunder

d
n

dwhere
dSE

dEd
t









 

Critical value:  

For 2 sided test, we find  12/  nt from t-table for n-1 degree of freedom 

For 1 sided test, we find  1 nt from t-table for n-1 degree of freedom 

Inference: 

If  12/  nttcal   then reject 0H for 2 sided test.  

Reject 0H  if  1 nttcal  for 1sided test 

 

Problem 12: Eleven school boys were given a test in statistics, they were given one month 

tuition and then second test was conducted. The marks obtained by them in the first and 

second tests are given below. Do the marks give the evidences that the students are benefitted 

by extra coaching. 

Marks in 1
st
 test Marks in 2

nd
 test Marks in 1

st
 test Marks in 2

nd
 test 

23 24 17 20 

20 19 23 23 

19 22 16 20 

21 18 19 18 

28 20  

20 22 

18 20 

 

Solution: 

 

Null hypothesis: 

The students are not benefited by the extra coaching. 



Alternative hypothesis: 

The students are benefited by the extra coaching. 

Level of significance: 05.0  

Test statistic: 
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There is no reason to reject 0H  . 

The students are not benefitted by the extra coaching. 

 



Problem 13: The scenes of 10 candidates prior and after training are given below. 

Prior training 84 48 36 37 54 69 83 95 90 1 

After training 90 58 56 49 62 81 84 86 84 7 

Is the training is effective? 

Solution: 

Null hypothesis: 

The training is not effective  

Alternative hypothesis: 

The training is effective 

Level of significance: 05.0  

Test statistic: 
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id  

84 90 -6 36 

48 58 -10 100 

36 56 -20 400 

37 49 -12 144 

54 62 -8 64 

69 81 -12 144 
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96 86 10 100 

90 84 6 36 

65 75 -10 100 
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We reject the null hypothesis and we conclude that the training is effective. 

 

One-Way ANOVA 

 

A One-Way Analysis of Variance is a way to test the equality of three or more means at one 

time by using variances. 

Assumptions 

 The populations from which the samples were obtained must be normally or 

approximately normally distributed. 

 The samples must be independent. 

 The variances of the populations must be equal. 

Hypotheses 

 The null hypothesis will be that all population means are equal, the alternative 

hypothesis is that at least one mean is different. 

 In the following, lower case letters apply to the individual samples and capital letters 

apply to the entire set collectively. That is, n is one of many sample sizes, but N is the 

total sample size. 

Grand Mean 

The grand mean of a set of samples is the total of all the data values divided by the 

total sample size. This requires that you have all of the sample data available to you, which is 

usually the case, but not always. It turns out that all that is necessary to find perform a one-

way analysis of variance are the number of samples, the sample means, the sample variances, 

and the sample sizes. 

N

x
X GM


  

Another way to find the grand mean is to find the weighted average of the sample means. The 

weight applied is the sample size. 





n

xn
X GM  

Total Variation 

The total variation (not variance) is comprised the sum of the squares of the 

differences of each mean with the grand mean. 

  
2

)( GMXxTSS  



There is the between group variation and the within group variation. The whole idea 

behind the analysis of variance is to compare the ratio of between group variance to within 

group variance. If the variance caused by the interaction between the samples is much larger 

when compared to the variance that appears within each group, then it is because the means 

aren't the same. 

Between Group Variation 

The variation due to the interaction between the samples is denoted SS(B) for Sum of 

Squares Between groups. If the sample means are close to each other (and therefore the Grand 

Mean) this will be small.  

  
2

)( GMXxnBSS  

There are k samples involved with one data value for each sample (the sample mean), so there 

are k-1 degrees of freedom. 

The variance due to the interaction between the samples is denoted MS(B) for Mean Square 

Between groups. This is the between group variation divided by its degrees of freedom. It is 

also denoted by 
2

bs . 

Within Group Variation 

The variation due to differences within individual samples, denoted SS(W) for Sum of 

Squares Within groups. Each sample is considered independently, no interaction between 

samples is involved. The degrees of freedom is equal to the sum of the individual degrees of 

freedom for each sample. Since each sample has degrees of freedom equal to one less than 

their sample sizes, and there are k samples, the total degrees of freedom is k less than the total 

sample size: df = N - k. 

 2.)( sdfWSS  

The variance due to the differences within individual samples is denoted MS(W) for Mean 

Square Within groups. This is the within group variation divided by its degrees of freedom. It 

is also denoted by 
2

ws . It is the weighted average of the variances (weighted with the degrees 

of freedom). 

 

F test statistic 

 

ANOVA Test Statistic Recall that a F variable is the ratio of two independent chi-square 

variables divided by their respective degrees of freedom. Also recall that the F test statistic is 



the ratio of two sample variances, well, it turns out that's exactly what we have here. The F 

test statistic is found by dividing the between group variance by the within group variance. 

The degrees of freedom for the numerator are the degrees of freedom for the between group 

(k-1) and the degrees of freedom for the denominator are the degrees of freedom for the 

within group (N-k). 

 

 

Summary Table 

 SS df MS F 

Between SS(B) k-1 SS(B)/k-1 MS(B)/MS(W) 

Within SS(W) N-k SS(W)/N-k  

Total SS(T)=SS(B)+SS(W) N-1   

 

Notice that each Mean Square is just the Sum of Squares divided by its degrees of freedom, 

and the F value is the ratio of the mean squares. Do not put the largest variance in the 

numerator, always divide the between variance by the within variance. If the between 

variance is smaller than the within variance, then the means are really close to each other and 

you will fail to reject the claim that they are all equal. The degrees of freedom of the F-test are 

in the same order they appear in the table 

 

Decision Rule 

The decision will be to reject the null hypothesis if the test statistic from the table is greater 

than the F critical value with k-1 numerator and N-k denominator degrees of freedom. 

If the decision is to reject the null, then at least one of the means is different. However, the 

ANOVA does not tell you where the difference lies. For this, you need another test, either the 

Scheffe' or Tukey test. 
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Problem 14: Four models of lacrosse helmets were compared. Measurements of Gadd 

severity index were made on each of 10 hits per helmet. Test whether helmet means are 

significantly different at  =0.05 significance level.  

Brand Mean SD Sample Size 

Sports Helmets Cascade 1166.1 152.40 10 

Sports Helmets Cascade Air Fit 1117.6 216.23 10 

Sports Helmets Ultralite 857.0 151.54 10 

Bacharach Ultralite 1222.8 123.08 10 

 

Solution: 

Hypothesis: There is no significance difference between lacrosse helmets 

Alternative Hypothesis: There is significance difference between lacrosse helmets 

Level of Significance:  =0.05 

Test Statistic: 

Source SS df MS F 

Between  784747.5 3 261582.5 9.68    

Within 972848.1     36 27023.56  

Total 1757595.6 39   

 

Rejection Region:  Fobs  F.05,3,37 = 2.88 (appox) 

We reject the null hypothesis. Therefore, There is significance difference between lacrosse 

helmets. 

 

Problem 15: The fog index measures the reading difficulty based on the average number of 

words pe sentence and percent of words with 3 or more syllables. High values of the fog 

index are associated with difficult reading levels. Independent random samples of six ads 

were taken from 3 magazines. Test for “magazine effects” based on the F-test for 5% level of 

significance. 

 

Scientific American:  11.16, 9.23, 15.75, 8.20, 9.92, 11.55 

Fortune :  12.63, 9.42, 9.87, 11.46, 10.77, 9.93 

New Yorker:  8.15, 6.37, 8.28, 6.37, 5.66, 9.27 

Solution: 



Hypothesis: There is no significance difference between 3 magazines 

Alternative Hypothesis: There is significance difference between 3 magazines 

Level of Significance:  =0.05 

Test Statistic: 

Source SS df MS F 

Between  48.53       2 24.27 6.97     

Within 52.21        15 3.48  

Total 100.74 17   

Rejection Region:  F.05,2,15=3.68<Fobs=6.97 

We reject the null hypothesis. Therefore, there is significance difference between 3 

magazines. 

 

Bartlett’s Test for Homogeneity of Variance: 

Bartlett's test (Snedecor and Cochran, 1983) is used to test if k samples have equal 

variances. Equal variances across samples is called homogeneity of variances. Some statistical 

tests, for example the analysis of variance, assume that variances are equal across groups or 

samples. The Bartlett test can be used to verify that assumption. 

Bartlett's test is sensitive to departures from normality. That is, if your samples come 

from non-normal distributions, then Bartlett's test may simply be testing for non-normality. 

The Levene test is an alternative to the Bartlett test that is less sensitive to departures from 

normality. 

Procedure: 

Null Hypothesis: There is no difference between k sample variances 

ie., 
22

2

2

10 ....: kH    

Alternative Hypothesis: There is difference between any two sample variances 

ie., 22

1 : jiH    

Level of significance: 001.0/01.0/05.0  

Test statistic 
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In the above, si
2
 is the variance of the ith group, N is the total sample size, Ni is the sample 

size of the i th group, k is the number of groups, and sp
2
 is the pooled variance. The pooled 

variance is a weighted average of the group variances and is defined as: 

     kNsNs iip /1 22  

Critical Region: The variances are judged to be unequal if, 2

1,1  kT   where 2

1,1  k is 

the critical value of the chi-square distribution with k - 1 degrees of freedom and a 

significance level of α. 

 

TEST FOR SIGNIFICANCE OF CORRELATION COEFFICIENT: 

Assumption: 

 the population is bivariate normal population. 

 The population correlation coefficient is assumed to be zero. 

 A random sample of size n drawn from the population and the sample correlation      

      coefficient is taken as r. 

Null hypothesis: there is no significant difference in the correlation coefficient i.e correlation 

coefficient in the population is assumed to be zero. ie., 0:0 H  

Alternative hypothesis: 0:,0:,0: 111   HHH  

Level of significance: 01.005.0 or  

Test statistic: 
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Critical value: from t table, we can find 
 2,

2
n

t for the given   and n-2 degrees of freedom. 

Inference: for the two sided test reject 
 2,

2

0



n

cal ttifH   otherwise there is no reason to 

reject 0H . 

 

Problem 15: A random sample of 27 pairs observation from a bivariate normal population 

give a correlation coefficient of 0.42 can you conclude that the variables in the population are 

uncorrelated. 

Solution: 



Null hypothesis: the variables in the population are uncorrelated 0:0 H  

Alternative hypothesis: the variables in the population are correlated 0:1 H  

Level of significance: 05.0  

Test statistic: 
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  Degrees of freedom = 17-2= 15 

75.14944.1

75.1)15(





tabcal tt

t
 

We reject the null hypothesis and we conclude that the variables are uncorrelated. 

 

TEST FOR SIGNIFICANCE OF REGRESSION COEFFICIENT: 

Assumption: 

1. The population is bivariate normal with regression coefficient of Y on X is   

2.   is unknown. 

3. A random sample of size n is drawn from bivariate normal population and its 

regression coefficient of Y on X is b. 

Null hypothesis: there is no significant difference between sample regression coefficient and 

population regression coefficient. 

Alternative hypothesis:  there is significant difference between sample regression coefficient 

and population regression coefficient. 010101 :,:,:   HHH  

Level of significance: 05.0 Test statistics: 
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Where x,y are the sample observation n- sample size 
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Critical value: from t table, we can find 
 2,

2
n

t from t table for  n-2 degrees of freedom. 

For one sided test, we can find  2, nt


from t table for  n-2 degrees of freedom. 

Inference: for the two sided test reject 
 2,

2

0



n

cal ttifH   otherwise there is no reason to 

reject 0H . 

 For the one sided test reject  2,0  ncal ttifH
  otherwise there is no reason to reject 0H . 

Problem 16: Test the significance of regression coefficient by X if the following are the 

values of sample drawn from bivariate normal population. 

X 1 2 3 4 5 6 

Y 10 12 14 16 14 15 

 

Solution: 

Null hypothesis: the regression equation is linear. 0:0 H

 
Alternative hypothesis: the regression equation is linear. 0:1 H

 



Level of significance: 05.0  

Test statistic: assume 0
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2 12 24 -1.5 4 121.0858 0.0074 2.25 

3 14 42 -0.5 9 13.0286 0.9436 0.25 

4 16 64 0.5 16 13.9714 4.1152 0.25 

5 14 70 1.5 25 14.9142 0.8358 2.25 

6 15 90 2.5 36 15.857 0.7344 6.25 
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We reject null hypothesis. Therefore, the regression equation is linear. 

 

TEST FOR SIGNIFICANCE OF PARTIAL CORRELATION COEFFICIENT: 

Assumption: 

1. The population is multivariate normal with partial correlation coefficient    of order 

k. 

2. A random sample is drawn from a population with the sample partial coefficient 

coefficient r of order k. 

Null hypothesis:  the population partial coefficient   of order k is not significant 0:0 H  

Alternative hypothesis: 0:,0:,0: 111   HHH  

Level of significance: 01.005.0 or  

Test statistic: 
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Where, n- sample size, k-order of partial correlation coefficient, r-partial correlation 

coefficient of the samples. 

Critical value: from t table, we can find 
 2,

2
kn

t from t table for  n-k-2 degrees of freedom. 

For one sided test, we can find  2, knt


from t table for n-k-2 degrees of freedom. 

Inference: for the two sided test reject 
 2,

2

0



kn

cal ttifH   otherwise there is no reason to 

reject 0H . 

For the one sided test reject  2,0  kncal ttifH
  otherwise there is no reason to reject 0H . 

 

Problem 17: A sample of size 10 observation from trivariate normal population gave the 

partial correlation coefficient between first and second variable as 0.3247 is this significant at 

5% level. 

Solution: 

Null hypothesis: the partial correlation coefficient of order 1 is not significant  0: 3.120 H
 



Alternative hypothesis: the partial correlation coefficient of order 1 is significant  

0: 3.121 H
 

Level of significance: 05.0  

Test statistic: 
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We accept null hypothesis and we conclude that the partial correlation coefficient of order 1is 

not significant. 

Show that the test statistic for testing mean of a normal population with unknown  1~ nt  

Test statistic: 
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EXACT TEST BASED ON F- DISTRIBUTION: 

Test for ratio of two variance or test for equality of two variances: 

Assumption: 

1. Two independent normal population  2

11,N  and  2

22 ,N  are considered. 

2. Two samples are drawn from the given population let 1n  be the size of the first sample 

and 2n  be the size of the second sample with the sampling variance 2

1s  and 2

2s . 

3. Variances of the population are unknown and assumed to be equal. 

Null hypothesis: the population variances are equal 
2

2

2

10 :  H  

Alternative hypothesis: the population variance not equal. 

2

2

2

11

2

2

2

11

2

2

2

11 :,.:,:   HHH  

Level of significance: 01.005.0 or  

 

 

Test statistic: 
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1

S

S
Fcal   where 2

1S  and 2

2S are unbiased estimators of 2

1  and 2

2  respectively. 

Critical region:  



1. For two sided test, we find 1F  and 2F  from F table for     1,1 21  nnF  degrees of 

freedom. 

2. When alternative is 2

2

2

11 .:  H  we can find from F table     1,1 21  nnF   for 

   1,1 21  nn  degrees of freedom. 

3. When alternative is 2

2

2

11 .:  H  we can find from F table     1,1 21  nnF   for 

   1,1 21  nn  degrees of freedom. 

Inference:  

1. For two sided test, if    1,1 21

2

 nnFFcal   then we reject 0H  otherwise there is no 

reason to reject 0H  

2. For one sided test, 2

2

2

11 .:  H
 

   1,1 21  nnFFcal     then we reject 0H  

otherwise there is no reason to reject 0H  

3. For one sided test, 2

2

2

11 .:  H   
   1,1 211   nnFFif cal     then we reject 0H  

otherwise there is no reason to reject 0H  

Problem 18: the following are the values ( in 1000’s) of an inch obtained by 2 engineers with 

10 successive measurement in the same micrometer. Is one engineer significantly more 

consistent than the other? 

Engineer A 503 505 497 505 495 502 499 493 510 501 

Engineer B 502 497 492 498 499 495 497 496 498  

 

Solution: 

Null hypothesis: there is no significant difference between consistency of engineers 

2

2

2

10 :  H  

Alternative hypothesis: one engineer is more consistent than the other .: 2

2

2

10  H  

Level of significance: 05.0  

Test statistic: 
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503 502 4 23.9013 

505 497 16 0.0123 

497 492 16 26.1233 



505 498 16 0.7901 

495 499 36 3.5679 

502 495 1 4.4567 
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493 496 64 1.2345 

510 498 81 0.7901 
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We reject the null hypothesis and therefore one engineer is more consistent than the other. 

  

TEST FOR SIGNIFICANCE OF MULTIPLE CORRELATION COEFFICIENT: 

Assumption: 

1. The population is multivariate normal 

2. A random sample of size n is drawn from the population and desired multiple 

correlation coefficient is obtained 1234.1 kr   

3. We want to test whether there exist multiple correlation in the population 1234.1 kR   

Null hypothesis: the multiple correlation in the population is zero 01234.1 kR   

Alternative hypothesis: 01234.1 kR   

Level of significance: 01.005.0 or  

Test statistic: 
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Where, n- sample size, k-order of multiple correlation coefficient 

Critical value: we find  1,  knkF  from F take for  1,  knk  degrees of freedom. 

Inference: if  1,  knkFFcal  then we reject null hypothesis, otherwise there is no reason 

to reject null hypothesis. 

 

Problem 19: from a 5 variate normal population a random sample of size 20 is taken and 

multiple correlation coefficient 2345.1r  is found to be 0.27 test at 5% level the existence of 

multiple correlation coefficient in the population. 

 

Solution: 

Null hypothesis: there does not exist population multiple correlation coefficient 

0: 1234.10 krH   

Alternative hypothesis: there exist population multiple correlation coefficient 0: 1234.11 krH   

Level of significance: 05.0  

Test statistic: 
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n-k-1=15   06.315,4 t  

   06.315,42949.0  ttcal  

 We accept null hypothesis. There does not exist population multiple 

correlation coefficient. 

  

 

 

 

 



EXACT TEST BASED ON CHI-SQUARE: 

TEST FOR SIGNIFICANCE OF VARIANCE: 

Assumption: 

1. The population is normal population mean   and variance 2  

2.   and 2  are unknown 

3. A random sample of size n is drawn from normal population with mean   and 

variance 2  

Null hypothesis: there is no significant difference between sample variance and population 

variance. 210 :  H  

Alternative hypothesis: there is significant difference between sample variance and population 

variance 211211211 :,.:,:   HHH  

Level of significance: 01.005.0 or  

Test statistic: 
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Critical value: 

1. For two sided test, we find 2  values such that 
2

2

2

  for (n-1) degrees of freedom 

and 
2

2
1

2




  for (n-1) degrees of freedom. 

2. For one sided test, we find 2  values such that 2 for (n-1) degrees of freedom and   

for level of significance. 

3. For one sided test, we find 2

0

2

0 :  H  values such that  
2

1   for (n-1) degrees of 

freedom and 2  for (n-1) degrees of freedom. 



4. Inference: if    11 222

2

2  norn calcal    we reject null hypothesis there is no 

reason to reject null hypothesis. 

 

Problem 20: A random sample size of size 10 is taken from normal population and the 

observation are 2.3 2.4 2.5, 2.7, 2.5, 2.6, 2.6, 2.7, 2.5, 2.4. test the hypothesis that the 

population variance is 0.16 against the alternative the population variance is greater than 0.16. 

Solution: 

 

Null hypothesis: the population variance is 0.16. 

Alternative hypothesis: the population variance is greater than 0.16 

Level of significance: 05.0  

Test statistic: 
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n-1=10-1=9   92.1692     92.169975.0 22  cal  

we accept the null hypothesis and therefore the population variance is 0.16. 

 

TEST FOR SIGNIFICANCE INDEPENDENCE OF ATTRIBUTES ASSOCIATION OF 

ATTRIBUTES: 

Contingency table: 

 It is a two way table for attributes different levels of two attributes are considered and 

the table gives frequencies corresponding to ith level of one attributes and jth level of an other 

attribute i=1,2,..,m and j=1,2,..n. this type of table is called contingency table of m*n. for 

example wwe have the following 2X5 contingency table. 

Sex Illiterate  School 

education 

College edu. Non 

professional 

Professional 

education  

Others 

Male 20 15 25 10 5 

Female 15 25 20 8 7 

 

Null hypothesis: there is no association between the two attributes (or) the two attributes A 

and B arer as independent. 

Alternative hypothesis: there is association between the two attributes A and B 

Level of significance: valuespecifiedotheranyoror 01.005.0   

Test statistic: 
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Where ijO  is the observed frequency for (i,j)th cell in the contingency table. 

Where ijE  is the expected frequency for (i,j)th cell in the contingency table and is given by, 
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ij E
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Where iR  is the total of ith row 

 jC  is the total of jth column 

 N is the grand total. 

Critical value: we can find 
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 for (m-1)(n-1) degrees of the freedom at  

level of significance. 
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11,  nm
 we reject null hypothesis otherwise there is no reason to reject 

null hypothesis. 

 

Problem 21: The following table is collected on two characters. 

 Cine goers Non-cine goers 

Illiterate 45 68 

Literate 83 57 

 

Based on this can you conclude that there is no relation between the habit of cinema going 

and literacy. 

Solution: 

Null hypothesis: there is no relation between the habit of cinema going and literacy. 

Alternative hypothesis: there is relation between the habit of cinema going and literacy. 

Level of significance: 05.0  

Test statistic: 
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45 57.17 148.1089 2.5907 

83 70.83 148.1089 2.0910 

68 55..83 148.1089 2.653 

57 69.17 148.1089 2.1412 

 

4759.92 cal  

841.32 tab  

Inference: 4759.92 cal  > 841.32 tab  we reject the null hypothesis. There is no relation 

between the habit of cinema going and literacy. 

 



Theorem 1:  Show that 2X2 contingency table with frequencies a,b,c,and d 
2  statistic is 

 
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bcabN
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
2

where N=a+b+c+d. 

Proof: 

 The observed frequencies are aO 11  bO 12  cO 21  dO 22   the expected 

frequencies are. 
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Where iR  is the total of ith row 

 jC  is the total of jth column 

 N is the grand total. 
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Hence proved. 

 

YATES:  

if any of the cell frequencies ijC <5 Yates has introduced a correction term in the formula for 

2  2X2 contingency table. It is given by 
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Problem 22: The theory predicts the proportion of beans in 4 groups A, B, C, and D should 

be 9:3:3:1. In an experiment of 1600 beans the frequencies in the four groups are 822, 313, 

287, 118. Do these experiment results support the theory. 

Solution: 

Null hypothesis: There is no significant difference between theoretical frequencies and 

expected frequencies. 

Alternative hypothesis: There is significant difference between theoretical frequencies and 

expected frequencies. 

Test statistic: 
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we accept the null hypothesis. There is no 

significant difference between theoretical frequencies and expected frequencies. 

 

Problem 23: Find following table gives the number of aircraft accidents that occurred during 

the seven days of week. Find whether the accidents are uniformly distributed overly week. 

Days sunday monday tuesday wednesday thursday friday Saturday 

No.of.accidents 16 14 18 12 11 15 14 

 

Solution: 

Null hypothesis: The accidents are uniformly distributed overly the week. 

Alternative hypothesis: The accidents are not uniformly distributed overly the week. 

Level of significance: 05.0  

Test statistic: 
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We accept the null hypothesis and therefore the accidents are uniformly distributed overly the 

week. 

 

TEST FOR HOMOGENEITY OF SEVERAL CORRELATION COEFFICIENT: 

Assumption: 

1. The population is bivariate normal with correlation coefficient k ,, 21  

2. k random samples are drawn and their correlation coefficient are denoted by 

krrr ,, 21  the samples are large. 

Null hypothesis: there is no significant difference between several correlation coefficient  

  kH 210 :  

Alternative hypothesis: there exist atleast one of the correlation coefficient unequal. 

  kH 211 :  

Level of significance: 05.0  

Test statistic: 
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ir  is the ith sample correlation coefficient. 

 in  is the ith sample size 

   is the population correlation coefficient under 0H . 

Since – is unknown it is estimated by 

  

 

 












k

i

i

k

i

ii

n

nZ

Z

1

1

3

3

 

The test statistic is, 
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Critical value: 

 From 
2  table we can find the value  

2

1k   for (k-1) degrees of freedom. 

Inference:  
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 kcal  We reject H0 otherwise there is no reason to reject H0
. 

 

 

 

 

 



UNIT V 

 

In this chapter will discuss the nonparametric procedures for inference. 

 

NON-PARAMETRIC INFERENCE 

 

Most of the standard methods of statistical inference are based on the familiar assumption 

that the random variables have normal distributions. Then the given procedures are optimum. 

But for non-normal distributions the standard procedures may be far from optimum. In such 

cases non-parametric methods are used. A procedure will be called distribution free if the 

statistic used has a distribution which does not depend on the distribution function of the 

population from which the sample is drawn. So in such procedures assumptions regarding the 

population are not necessary.  

 

Distinguish between parametric and non-parametric: 

In parametric test we are concerned with testing parameters of the population 
2,, Ft

and 

normal test are used to find the parametric values. 

 The features of parametric test are null hypothesis are defined using the values the 

values of the parameter for e.g   

 In parametric test we are concerned with testing parameters of the population 
2,, Ft

 

and normal test are used to find the parametric values. 

 The features of parametric test are null hypothesis are defined using the values the 

values of the parameter for e.g 
0,5,20  

 

 The form of population is assumed to be known samples drawn from the population 

are independent and random. 

 The sampling distribution of the statistic is wither exactly known or asymptotically 

calculated. 

 When the form of population is unknown we cannot apply 
2,, Ft

 

 When test are not based on the form of distribution we have distribution free test or 

non-parametric test. 



 When the parameters are not tested we are interested in testing any measure of 

location or whether the two population have the same density function, in such cases we use 

non-parametric test. 

 

Non-parametric: 

Assumption: 

 The form of the population is unknown. 

 The population possesses density function. 

 Lower order moments exists i.e 21 , 
are finite. 

 Sample observation are independent and random 

 The variable under study is continuous. 

 The two population are identical or the measures of location of two population are the 

same. 

 

 

 

RUN TEST: 

 A run test is sequence of letter of one kind followed by a sequence of letters of 

another kind. The number of letters in a sequence is called length of the run. 

For example:  xxx/y/xxxxxx/y/x/yyyy 

The sequence has 6 runs. The length of third run is 6. 

Let nxxx ,, 21  and nyyy ,, 21  be two random samples from two given population. 

 Null hypothesis: Are the two populations having identical density function. 

    yx gfH :0  

Alternative hypothesis: the two populations do not have identical density function. 

    yx gfH :1  

Level of significance: 
valuespecifiedotherany/01.0/05.0

 

Test statistic and its distribution:  

 Let U denote the number of rums in the combined sample. 



  
  1

2

21

21 











nn

nn
UE    

   
 

  1

22

2121

212121






nnnn

nnnnnn
Uv

  

The above – and – are computed on the basis of large sample. 

 

 
 1,0~0 N

Uv

UEU
Z




 

Critical value: 

 
96.1,01.0

96.1,05.0

2

2













z

z

 

Inference: if 2

ZZcal 

we reject 
0H

 otherwise there is no reason to reject 
0H

 

 

Problem 1: The following data relates to two population observations  

SI 10 20 15 25 18 28 23 10 12 14  

SII 11 13 18 28 30 32 24 27 22 11 12 

Test whether the samples have come from sample population. 

Solution: 

10 10/ 11 11/12 12/13/14/15/18 18/20/22 22/23/24/25/27/28 28/30/32 

Null hypothesis: the samples are come from sample population. 

Alternative hypothesis: the sample are not come from sample population. 

Level of significance: 05.0  

Test statistic: 
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We  reject the null hypothesis. Therefore the sample are not come from sample population. 

 

TEST FOR RANDOMNESS, RUN TEST: 

 Let nxxx ,, 21  be sample from the given population. 

 Find the median of the sample.  

 Represent the given observation in the same order by A or B. where A stands for 

above median and B stands for below median.  

 If any observation is equal to median omit the observation and reduce the size of the 

sample.  

 Find the number of runs and denote it by U. 

 
Expectation of U ie     
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Null hypothesis:  the sample is random 

Alternative hypothesis: the sample is not random. 

Test statistic: 

  
 

 
 1,0~0 N

UV

UEU
Z




 

Critical value: for 65.1,05.0   Z , 33.2,01.0   Z
   

Inference: if ZZ 0  reject 0H otherwise there is no reason to reject 0H
 

 

MEDIAN TEST 

Procedure: 

 Two samples they namely nxxx ,, 21  and nyyy ,, 21 are given.  Combine the 

samples and arrange them in ascending order of magnitude and find median. 

 Find 1m  (i.e) number of values in the first sample exceeding the median. 

 Find  2m  (i.e) number of values in the second sample exceeding the median. 



 Form a contingency table as follows: 

 

Samples No.of.observation above median No.of.observation below median Total 

1. 
1m  11 mn   1n  

2. 
2m  22 mn   2n  

3. 
21 mm      2121 mmnn   21 nn   

 

Null hypothesis:  the two have the same median. 

Alternative hypothesis: the two samples do not have the same median. 

Level of significance: valuespecifiedotherany/01.0/05.0  

Test statistic: 
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11,  nm
 we reject null hypothesis otherwise there is no reason to reject 

null hypothesis 

Note: median test can be used for testing equality of medians of any number of population. 

Suppose there are r samples we get r/2 contingency table. Therefore the degrees of freedom 

for the problem will be (r-1)(2-1). 

 

Problem 2: 3 random samples are drawn from 3 population gave the following values if 

whether the population have the same median. 

SI 1 2 5 7 8 9 3 2    

SII 2 5 3 8 9 5 2 7 10   

SIII 3 4 2 5 7 8 9 7 11 8 12 

  

Solution: 



Null hypothesis: the three samples have the same median 

Alternative hypothesis: the three samples do not the same median. 

Level of significance: 05.0  

Test statistic: 

  Median= (5+7)/2=6 

Samples No.of.observation  

above median 

No.of.observation  

below median 

Total 

1 3 5 8 

2 4 5 9 

3 7 4 11 

Total  14 14 28 
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3 4 0.25 

5 4 0.25 

4 4.5 0.0556 

5 4.5  0.0556 

7 5.5 0.4091 

4 5.5 0.4091 
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We accept null hypothesis, the three samples have same median. 

 

SIGN TEST: 

Sign test is preferred under the following situations 

 Population density function is unknown 

 Sample observations are paired  

 Different pairs are observed under different variances and so paired –t test cannot be 

applied. 



 Measurements are such that di=xi-yi can be expressed as positive or negative sign. 

 Variables are continuous and di
’
s are independent.  

Procedure: 

Null hypothesis: 

Two populations have identical distribution 

ie., fx(.)=fy(.),P[(X-Y)>0]=1/2, P[(X-Y)<0]=1/2 

Alternative Hypothesis: 

Two populations have different distribution 

       2/10,..  YXPff yx  

Level of significance: 

valuespecificotherany/01.0/05.0  

Test Statistic 

E(U)=np=n(1/2)=n/2 

V(U)=npq=n(1/2)(1/2)=n/4 

When the sample is large, we can have normal approximation 
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Critical Value: 

When 05.0 ,  96.12/ Z  and 01.0 ,  58.22/ Z  

Inference:  

If 
2/0 ZZ  we reject H0 otherwise there is no reason to reject H0 

Note: di=xi-yi is no sign attached and the pair is omitted from the sample size n and the 

reduced sample will have n-1 observation. 

 

Problem 3: A random sample of paired observation is given below (10,11), (11,13), (12,10), 

(13,13), (14,15), (11,14), (12,13), (13,12), (10,8), (10,13), (14,15), (15,17), (15,13), (11,10), 

(8,9), (9,9), (11,9), (12,14), (13,11), (11, 11). Apply approximately non-parametric test. Test 

Whether there is any gain in B=X-Y. 

Solution: 

Null Hypothesis: There is no gain in B=X-Y 

Alternative Hypothesis: There is gain in B=X-Y 

Level of Significance: 05.0  

Test Statistic 



X Y Sign X Y Sign X Y Sign 

10 11 - 11 14 - 9 9 0 

11 13 - 12 13 - 11 9 + 

12 10 + 13 12 + 12 14 - 

13 13 0 10 8 + 13 11 + 

14 15 - 10 8 - 11 11 0 

 

Reduced Sample Size=Total Number signed observations-Non Signed Observations=20-

3=17 

7276.0
17

17)7(22
0 







n

nU
Z  

96.12/ Z  

Inference: 

If 96.17276.0 2/0  ZZ . Therefore, there is no reason to reject H0. There is no gain in 

B=X-Y. 

 

MANN-WHITENEY U TEST (RANK SUM TEST) 

 

Mann–Whitney U test (also called the Mann Whitney–Wilcoxon (MWW), Wilcoxon rank-

sum test, or Wilcoxon Mann–Whitney test) is a nonparametric test of the null hypothesis that 

it is equally likely that a randomly selected value from one sample will be less than or greater 

than a randomly selected value from a second sample. 

Unlike the t-test it does not require the assumption of normal distributions. It is nearly as 

efficient as the t-test on normal distributions. 

A Wilcoxon signed-rank test is a nonparametric test that can be used to determine whether 

two dependent samples were selected from populations having the same distribution. A 

Wilcoxon rank sum test is a nonparametric test that can be used to determine whether two 

independent samples were selected from populations having the same distribution. 

PROCEDURE 

Null hypothesis 

The populations have the same density function i.e., H0: fx(.)=gy(.) 

Alternative Hypothesis 

The populations do not have the same density function.    ..:1 yx gfH    



Level of significance: 

valuespecificotherany/01.0/05.0  

Test statistic:  

Combine the two sample and assign rank  

T= sum of the ranks in second sample 

 
T

nn
nnU 




2

122
21  

where, n1=size of the first sample 

n2=size of the second sample 

Under Asymptotic condition 

 
 

 1,0~0 N
UV

UEU
Z


  

where  
2

21nn
UE  ,   

 
12

12121 


nnnn
UV  

Critical Value: 

When 05.0 ,  96.12/ Z  and 01.0 ,  58.22/ Z  

Inference:  

If 
2/0 ZZ  we reject H0 otherwise there is no reason to reject H0 

 

Problem 4: The following are values obtained from two samples. 

x 1 2 3 5 7 9 11 18  

y 4 6 8 10 12 13 14 15 19 

Use Mann-whiteney U test to test whether the populations have same density. 

Solution: 

Null hypothesis: The population has same density function 

Alterative Hypothesis: The population does not have same density function 

Level of Significance: 05.0  

Test Statistic: 

Arrange the ascending order,  

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 18,19 

T= Sum of second sample values= 4+6+8+10+12+13+14+15+17=99 

 
T

nn
nnU 




2

122
21 =72+(90/2)-99=18 



 
2

21nn
UE  =36,  

 
12

12121 


nnnn
UV =108 

 
 

7321.1
108

3618
0 







UV

UEU
Z  

96.12/ Z  

96.17321.1 2/0  ZZ .  

Inference: 

Therefore, there is no reason to reject H0. The population has some density function.  

 

KRUSKAL-WALLIS TEST 

The Kruskal-Wallis test is a nonparametric (distribution free) test, and is used when 

the assumptions of one-way ANOVA are not met.  Both the Kruskal-Wallis test and one-way 

ANOVA assess for significant differences on a continuous dependent variable by a 

categorical independent variable (with two or more groups).  In the ANOVA, we assume that 

the dependent variable is normally distributed and there is approximately equal variance on 

the scores across groups.  However, when using the Kruskal-Wallis Test, we do not have to 

make any of these assumptions.  Therefore, the Kruskal-Wallis test can be used for both 

continuous and ordinal-level dependent variables.  However, like most non-parametric tests, 

the Kruskal-Wallis Test is not as powerful as the ANOVA. 

Assumptions 

1. We assume that the samples drawn from the population are random. 

2. We also assume that the observations are independent of each other. 

3. The measurement scale for the dependent variable should be at least ordinal. 

Null hypothesis:  

Null hypothesis assumes that the samples (groups) are from identical populations. 

Alternative hypothesis:  

Alternative hypothesis assumes that at least one of the samples (groups) comes from a 

different population than the others. 

Level of significance: 

valuespecificotherany/01.0/05.0  

Test Statistic: 



 

Where, n = sum of sample sizes for all samples, 

c = number of samples, 

Tj = sum of ranks in the j
th

 sample, 

nj = size of the j
th

 sample. 

Inference : Hcal> dfc )1(2  , we reject null hypothesis otherwise there is no reason to reject 

null hypothesis 

 

Problem 5: A shoe company wants to know if three groups of workers have different 

salaries: 

Women: 23K, 41K, 54K, 66K, 78K. 

Men: 45K, 55K, 60K, 70K, 72K 

Minorities: 18K, 30K, 34K, 40K, 44K. 

Solution: 

Null Hypothesis: There is no significant different between the salary of three groups of 

workers  

Alternative Hypothesis: There is significant different between the salary of three groups of 

workers  

Level of Significance: 05.0  

Sort the data for all groups/samples into ascending order in one combined set. 

18K, 23K, 30K, 34K, 40K, 41K, 44K, 45K,54K,55K,60K,66K,70K,72K,78K 

Assign ranks to the sorted data points. Give tied values the average rank. 

20K- 1, 23K-2, 30K-3, 34K-4, 40K-5, 41K-6, 44K-7, 45K-8, 54K-9, 55K-10, 60K-11, 66K -

12, 70K-13, 72K-14, 90K-15 

Add up the different ranks for each group/sample. 

Women: 23K, 41K, 54K, 66K, 90K = 2 + 6 + 9 + 12 + 15 = 44. 

Men: 45K, 55K, 60K, 70K, 72K = 8 + 10 + 11 + 13 + 14 = 56. 

Minorities: 20K, 30K, 34K, 40K, 44K = 1 + 3 + 4 + 5 + 7 = 20. 

Test statistic 

 



 
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
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ind the critical chi-square value. With c-1 degrees of freedom. For 5 – 4 degrees of freedom 

and an alpha level of .05, the critical chi square value is 9.4877. 

The chi-square value is not less than the test statistic, so there is not enough evidence to 

suggest that the means are unequal. 

 

Hypothesis Tests of the Mean and Median 

Nonparametric tests are like a parallel universe to parametric tests.  

Parametric tests (means) Nonparametric tests (medians) 

1-sample t test 1-sample Sign, 1-sample Wilcoxon 

2-sample t test Mann-Whitney test 

One-Way ANOVA Kruskal-Wallis, Mood’s median test 

Factorial DOE with one factor and one 

blocking variable 
Friedman test 

 

 

 


