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PROBABILITY THEORY
UNIT -1

1.1 Random Experiment

An experiment is an operation whose output cannot be predicted with certainty. If in
each trail of an experiment conducted under identical conditions, the outcome is not unique,
but may be any one of the possible outcomes, then such an experiment is called Random

Experiment.

1.2 Sample Space
A sample space can be defined as the set of all possible outcomes of an experiment and is
denoted by S.The set S = {E;, E, Es,..., En} is called a sample space of an experiment
satisfying the following two conditions
Q) Each element of the set S denotes one of the possible outcomes
(if) The outcome is one and only one element of the set S whenever the experiment is
performed. For example, in a tossing a coin Sample space consists of head and tail
S={H, T} and the two coins are tossed then the sample space S ={HH,HT,TH,TT}.

1.3 Trail and Events
Any particular performance of a random experiment is called trail and the outcome or

combinations of outcomes are termed as event.

1.4 Exhaustive Events
The total number of possible outcome of a random experiment is known as the

exhaustive events. For example, in a tossing a coin head and tail are the two exhaustive cases.
: . . 2c, .
In drawing two cards from a pack of cards, the exhaustive number of cases is 2 since 2

52
cards can be drawn out of 52 cards in C2 ways.

1.5 Favourable Events
The number of cases favourable to an event in a trail is the number of outcomes which
entail the happening of the event. For example, in throwing of two dice, the number of cases
favourable to getting the sum 5is (2,3),(3,2),(1,4) and (4,1)
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1.6 Mutually Exclusive Events

Events are said to be mutually exclusive or incompatible if the happening of any one
of them precludes the happening of all the others, i.e., if no two or more of them can happen
simultaneously in the same trail. For example, in tossing a coin, both head and tail cannot

occur in a single trail.

1.7 Equally Likely Events
Outcomes of a trail are said to be equally likely if taking into consideration all the
relevant evidences, there is no reason to expect one in preference to the others. For example,

in tossing a coin, getting a head and tail are equally likely events.

1.8 Independent Events

Several events are said to be independent if the happening of an event is not affected
by the supplementary knowledge concerning the occurrence of any number of the remaining
events. For example, in tossing a unbiased coin, the event of getting a head in the first toss is
independent of getting a head in the second, third and subsequent throws.

1.9 Algebraic Operations of Events
For events A, B, C, then
Q) (AUB) = {weS: meAor weB}
(i) (AnB) = {weS: meAand weB}
(i) A°or A (Acomplement) = {oeS: 0gA}
(iv) A-B={weS: ocAbut o¢B}
(V) Ac B = forevery meA, oeB
(vij BoA=ACcCB
(vii)  A=Bifandonly if Aand B have same elements, i.e, AcBand Bc A
(viii) AUB can be denoted by A+B if A and B are disjoint.
(ix)  Aand B are disjoint (mutually exclusive) =ANB =¢

Notes : Algebra of Sets
Commutative law AUB=BUA ANnB=BNA

Associative law AY(BWC)=(AUB)LUC AN(BNC)=(ANB)NC

ANn(BuC)=(AnB)U(ANC)
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Au(BNC)=(AuB)"N(AUC)
Complementary law AUA =S, AnA = ¢, AUS=S, AnS=A, AUd = A, And = d
Difference law A-B=AnB. A-B=A-(AnB) =(AUB)-B
A-(B-C) = (A-B)U(A-c) , (AUB)-C = (A-C)u(B-C)

DeMorgan’s Law (AUB) =A°N B", (ANB)  =A°UB®
1.10 MATHEMATICAL (OR CLASSICAL OR PRIORI) PROBABILITY

If a random experiment or a trail results in ‘n’ exhaustive, mutually exclusive and
equally likely outcomes out of which ‘m’ are favourable to the occurrence of an event E,

then the probability ‘P’ of occurrence of E , usually denoted by P(E), is given by

Number of favourable Cases m

P(E)

" Total number of exhaustive cases n

1.11 STATISTICAL (OR EMPIRICAL) PROBABILITY

If an experiment is performed repeatedly under essentially homogeneous and identical
conditions, then the limiting value of the ratio of the number of times the event occurs to the
numbers of the trails, as the number of trails becomes infinitely large, is called the probability
of happening of the event, it begin assumed that the limit is finite and unique. Symbolically,
if in N trails an event E happens M times, then the probability of the happening of E, denoted
by P(E) is given by

P(E)= Ilim M

N —o0
1.12 AXIOMS OF PROBABILITY
The axioms approach was given by A.N Kolmogrov. With each event E; in a finite sample
space S, associate a real number, say P(E;) called the probability of an event E; satisfying the
conditions:
Q) Nonnegative: 0<P(E;) <.
This implies that the probability of an event is always non-negative and can never
exceed. If P (A) =1, the event A is certainly going to happen and if P (A) = 0, the
event is certainly not going to happen (impossible event).
(i) Certainty : The probability of the sample space is 1.P(S) =1,

@iii)  Union  :If {A.} is any finite or infinite sequence of disjoint events in B, then
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U g

(axioms of additivity)

1.13 Theorems on Probability
Theorem 1.1 Probability of the impossible event is zero, i.e., P(¢) =0
Proof:
Impossible event contains no sample point and hence the certain event S and the
impossible event ¢ are mutually exclusive.
- Sud =S = P(Su¢) =P(S)
= P(Sud) =P(S)+P(¢) using Axiom (iii) of probability
P(S) = P(S)+P(¢)
=P(¢) =P(S)-P(S) = 0
=P(¢) =0
Theorem 1.2 Probability of the complementary event A of A is given by P(A)=1-P(A)
Proof :
Aand A are mutually disjoint events, so that Au A=s
= P(AU A )=P('S) from axioms (ii) and (iii)
P(A)+P (A) =P(S)
:>P(A)+P(K)=1
—=P(A)=1-P(A)
P(A)=1-P(A)
Theorem 1.3 If B c A, then
(i) P(A~ B ) = P(A) —P(B) (i) P(B) < P(A)

Proof

(i) When B c A, B and A~ B are mutually exclusive
Events so that A=Bu (AN B)

= P(A)=P[BU (AnB)]

= P(B)+P (A~ B') by axioms(iii)

= P(A) - P(B)=P(AnB)



- P(AnB)=P(A) - P(B)
i) P(ANB)>0=P(A)-P(B) >0= P(A)>P(B)

Hence Bc A= P(B) <P(A)

Theorem 1.4 If Aand B are independent events, Prove that

Q) A and B are independent

(i) Aand B are independent and A 5 S
(iii) Aand B are independent ’
Proof : If Aand B are independent events,
then P(AnB) = P(A) .P(B) AnB

Q) From the diagram

B = (A~B)u( A NB)

Also (AnB) and ( A MB) are mutually exclusive
P(B) = P[ (A"B)U( ANB)]

=P (AnB) + P (ANB)
P(B) - P (AnB) =P (ANB)
P (A~B)=P(B) - P (AnB) = P(B) -P (A) P(B)
=P(B)[1-P (A)]1=P(B) P (A)
-~ P(AnB)=PB)P(A) A and B are independent
(i) From the diagram
A= (A~B)U(AUB)
Also (AN E_3) and ( AuB) are mutually exclusive
P(A) =P[ (AnB)U(ANB)] =P (AnB)+P(ANB)
P(A)- P(AnB) =P (AnB)
P(ANB)=P(A)- P(ANB) =P(A)- P(A)P(B) = P(A)[1-P(B)]
P(ANB) =P(A)P(B)

~Aand B are independent



(i) Aand B are independent

DeMorgan’s Law, A~nB =AUB

P(An~ B)=P(AUB)=1-P(AUB) = 1- [P(A)+P(B)-P(AB)]
= 1-[P(A)+P(B)-P(A)P(B)]
=1-P(A)-P(B)+P(A)P(B)
=1-P(A)-P(B)[1-P(A)]
=[1-P(A)][1-P(B)] =P(A) P(B)
P(An B)=P(A)P(B)

~. Aand B are independent

1.14 Addition Theorem of Probability
If Aand B are any two events and are not disjoint, then P(AUB) =P(A)+P(B)-P(AnB)

Proof:

From the Venn diagram A B 3
Let A= [(AnB)U(ANB)]
P(A) =P [(An §)u(AmB)] using axiom (iii) ’
= P(A) =P(ANB )}+P(AB)  ..(1)
ANB

Let B =[(A~B)U(ANB)]

P(B) = P[( A "B)U(AB)] using axiom (iii)
— P(B) =P(ANB)+P(A~B) ... )
From (1)+(2) , we get
= P(A)+P(B) = P(An B )+P(A~B)+ P(A AB)+P(ANB)
=P(AUB)+ P(ANB)

— P(A)+P(B) - P(ARB) = P(AUB)
- P(AUB) =P(A)+P(B)-P(ANB)

Similarly for the three events
P(AUBUC) = P(A)+P(B)+PC)-P(ANB)-P(ANC)- P(BNC)+P(A"BNC)
6



1.15 Multiplication Theorem of Probability for Independent Events

If A and B are the two events with positive probabilities {P(A)=0,P(B)=0} then A and
B are independent if and only if P(AnB) = P(A) .P(B)
Proof

If an event happen in nyways of which a; are successful and the event B can happen in
np, ways of which a, are successful, and to combine each successful event in the first with
each successful event in the second case. Thus the total number of possible cases in a;x a.

Similarly, the total number of possible cases is nix n,. By the definition the

- axa a _a
probability occurrence of both events, ———= =—X—*=

nxn, n n

2

But P(A) =% and P(B) = ?]—

1 2

P(AB) = P(A) .P(B)

1.15 CONDITIONAL PROBABILITY

The multiplication theorem is not applicable in the case of dependent events. If A and
B are the two events are said to be dependent, when B can occur only when A is known to
have occurred. The probability attached to such an event is called conditional probability and
its denoted by P(B/ A)

P(B/A):—P(PA(”;)B)
The general terms of multiplication in its modified form in terms of conditional
probability becomes
P(AnB) = P(B) P(A/B)

P(ANB) = P(A) P(B/A)



1.16 BAYES THEOREM
Statement
If E1,EzEs,....Eq are mutually disjoint events with P(E;j)=0,(i =1,2,3,...,n), then for any

n
U E;
arbitrary event Awhich is a subset of =1 I such that P(A)>0, we have
P(Ei )P(AIE) _ P(Ei)P(AIE;)
n P(A)
> P(Ej)P(A|E;)

i=1

P(Ej|A)=

Proof :
Let E;EzEs,....E, are and mutually disjoint events and A be any another event on

the sample space, then (ANE;) = E; (i =1,2,3,...n) are mutually disjoint events
A= (AnE1)u (ANE2) U(ANE3)U...U(ANE)
= P(A) =P[(ANE1)u (ANEz ) U(ANE3)u...u(ANE,)] by using axioms of (iii)
= P(A) =P(ANE; )+P (ANE; )+P(ANE3)+...+(ANE,)
n
P(A) =) P(ANE))

i=1
Multiplication theorem of probability

P(AnB)=P(A|B)P(B)

n
P(A)=) P(E;j)P(A|E;)

i=1
p(E | A)= LACET) A )
P(Ei|A):P(EiF))|:(A";\|Ei)= nP(Ei)P(AlEi)
D P(Ei)P(A|E;)
i=1
L P(E[A)= (EDP(AIE) _P(E)P(AIE)

S P(E)P(AIE)  P(A)



Problems

Example 1.1 Two unbiased dice are thrown. Find the probability that (i) both the dice show
the same number,(ii) the first die shows 6 ,and (iii) the total of the numbers on the die is
greater than 8

Solution : In a random throw of two dice, since each of six faces of one can associated with

the each of six faces of the other die, the total number of cases is 6x6 = 36 as follows

@1) 12) 13 @4 @15 (16
1) (22) (23) (24 (25 (26)
B1) (32 (33) (34 (35 (36)
41 (42 (43) (44) (45 (46)
Gl (52) (53) (54 (5 (56)
61) (62) (63) (64) (65 (66)

Exhaustive number of cases n(s) = 36

Q) The favourable cases that the both dice, shown the same number are
(1,2),(2,2),(3,3),(4,4),(5,5), and(6,6) i.e., n(E) =6

6

P(twodice shown thesame number ) = 6

o

(i) The favourable cases that the first die shows 6 are
(6,1),(6,2),(6,3),(6,4),(6,5), and (6,6) i.e., n(E) =6

P(first die shows6) = E - 1
6 6

(iii) The cases favourable to getting a total of more than 8 are
(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6) i.e., n(E) =10

P( getting a total of more than8 )= 10_5

36 18



Example 1.2 Four cards are drawn at random from a pack of 52 cards, find the probability
Q) they are a king, a queen, a jack and an ace.
(i) two are kings and two are queens.
(i) Two are black and two are red
(iv)  There are a two cards of hearts and two cards of diamonds

Solution: Four cards can be drawn from a well-shuffled pack of 52 cards in 52C4, which

gives the exhaustive number of cases n(S) = 52¢ 4

(i) 1 king can drawn out of 4 kings in 4Cyways similarly 1 queen,1 jack and an ace can
each be drawn in 4Ciways

Favourable numbers of cases n(E) = 4C1x4C1x4C1x4Cy

4C1x4Cx4C1x4Cy
Required probability = 52C4

(i) 2 king can drawn out of 4 kings in 4C:2ways similarly 2 queen be drawn in 4C; ways

4C,x4Cy
Required probability = 55¢ ,

(iii) Since there are 26 black cards and 26 red cards in a pack of cards,

13C2X13C2
Required probability = 52C,

Example 1.3 What is the chance that a leap year selected at random will contain 53 Sundays?

Solution: In leap year (which consists of 366 days), there are 52 complete weeks and 2 days
over. The possible combinations for these two days are ,

0] Sunday and Monday (ii) Monday and Tuesday (iii) Tuesday and Wednesday

(iv) Wednesday and Friday (v) Friday and Saturday (vi) Saturday and Sunday

Required probability = %
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Example 1.4 A bag contains 8 white and 4 red balls. 5 balls are drawn at random. What is the

probability that 2 of them are red and 3 of them white?

Solutions : The total number of balls in the bag =8 + 4 =12
The number of balls drawn =5
5 balls can be drawn from 12 balls in 12Cs ways i.e., n(S) = 12Cs
2 red balls can be drawn from 4 red balls in 4C, ways
3 white balls can be drawn from 8 white balls in 8C3 ways
.. The number of favourable cases = n(E)= 4C,x8C3

4C2X8C3
Required Probability = 12C;

Example 1.5 An urn contains 6 white, 4 red and 9 black balls. If 3 balls are drawn at
random, find the probability that: (i) two of the balls drawn are white, (ii) one is of each
colour, (iii) none is red, (iv) at least one is white.

Solution

Total number of balls in the urn is 6+4+9 = 19. Since 3 balls can be drawn out of 19
in 19C3 ways , the exhaustive number of cases are 19C3

(i) two of the balls drawn are white

, . 6C2x 13C1
The required probability = —qg
C
(i) one is of each colour
. . 6Clx 4C1x3C1
The required probability =
19 C,
(ili))  None isred,
15
The required probability = 19—3
C
3
(iii)  at least one is white
13¢
The required probability = 19—3
C
3
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Example:1.6 In a given race the odds in favour of three horses A,B,C are 1:2, 1:3, 1:4
respectively. Assuming that a dead heat is impossible, find the probability that one of them

will win the race.

Solution: If P(A), P(B), P(C) are the probabilities of winning of the horses A, B, C
respectively, then

_ 1l ool 1o opgo Ll
1+2 3 1+3 4 1+4 5
These events are mutually exclusive, the chance that one of them wins
P(AUBUC)= P(A) + P(B) + P(C)
1 47

P(A)

1
_+_
4 5 60

The required probability = %

1
=+
3

Example 1.7 An integer is chosen at random from the first two hundred digits. What is the
probability, that the integer chosen is divisible by 6 or 8.
Solution: P(divisible by 6 or 8) =P(divisible by 6 U 8)
A= integer chosen is divisible by 6
B = integer chosen is divisible by 8

33 25 8

33 25 8 58-8 1
P(AUB)=P(A)+P(B)-P(A"B) = 500 " 200 "200 200 4

1
Required probability = n

Example :1.8 A is known to hit the target in 2 out of 5 shots whereas B is known to hit the
target in 3 out of 4 shots. Find the probability of the target being hit when they both try?
Solution:

Let A be the event that ‘A’ hits the target and B the event that ‘B’ hits the target.

wm:% wm:%
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P(AuB) =P(A)+P(B)- P(ANB)
= P(A)+P(B)-P(A).P(B) [since A and B are independent]

2 3 23 8+415-6_17
PAUB) =5+, -52=" 20 20

Example 1.9 If the letters of the word “REGULATIONS” be arranged at random, what is

this chance that there will be exactly 4 letters between R and E.

Solution:
The word “REGULATIONS” consists of 11 letters. The two letters R and E CAN
OCCUPY 11P, that is 11

The number of ways in which there will be exactly 4 letters between R and E are
enumerated below

(i)  Risinthe 1% place and E is in the 6™ place
(i)  Risinthe 2" place and E is in the 7" place
(iii) Risinthe 3" place and E is in the 8" place
(iv) Risinthe 4™ place and E is in the 9" place
(v)  Risinthe 5" place and E is in the 10" place
(vi) Risinthe 6™ place and E is in the 11" place
Since R and E interchange their position,
The required number of favourable cases is 2x 6 = 12.
The required probability is = 12/110 = 6/25

Example 1.10 A letter is taken out at random from “ASSISTANT” and another is taken out
from “STATISTICS”. What is the chance that they are same letters?

Solutions
ASSISTANT > AA I NSSS TT
STATISTICS-> AIICSSSTTT Here Nand C are not common
2 1
Probability of choosing A = g—Cl X 10& _ 1
Probability of choosing | = 1 X 2_1
9 10 45
Probability of choosing S = §xi _1
9 10 10
Probability of choosing I = 2 x ~ = -
9 10 15

13



Total Probability = i+i+i+1 19

45 45 10 15 90

Example 1.11 From a city population, the problem of selection (i) a male or a smoker is 7/10
(i1) a male smoker is 2/5 (iii) a male, if a smoker is already selected is 2/3 find the probability
of selecting (a) non-smokers (b) a male and c¢) smoker, if a male is first selected.

Solution:
A :amaleisselected B : asmoker is selected

: 7 2 2
Given P(AUB) = — ;P(AnB)= = ; P(A|B)==
(AUB) = 15 i P(ANB) = 5 PA|B) =2

(a) The probability of selecting a non-smoker is

2
P(E):1—P(B)=1—m=1—£=1—§=Z
P(A|B) % 5 5

P(B) = 2/5
(b) The probability of selecting a male ( by addition theorem)

P(A)= P(AUB)+P(ANB)- P(B)_% é_g ;

(c) The probability of selecting a smoker if a male is first selected is

2
pEA) = PANBE) _ A 4

P(A) y 5

3 - 2
Example 1.12 If A and B are events such that P (AUB)= 7y, P(AN B)=% and P(A)= 3
Find P (A/B).
_ _ P(ANB)  P(B)-P(ANB)
Solution: P(A/B) = W = P(B)
2_1
P(A) =1-P(A)=1- 373 ; P(AUB) = 3/4

ie., P(AUB) = P(A)+P(B)- P(ANB) = % %+P(B)- n
= P(B)= §+ l l 9+3- 4=£=3
4 4 3 12 12 3
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Hence P(K/B): 2 =0.625
3

Example: 1.13 Two friends A and B apply for two vacancies at the same post. The
probabilities of their selection are ¥ and 1/5 respectively. What is the chance that i) One of
them will be selected, (ii) both will be selected, (iii) none will be selected, (iv) atleast one will

be selected and (v) at most one will be selected.

Solution:

Let A— Event Ais selected, B — Event B is selected

1 1
PA)=3 PB®)=
P(A)=1-P(A) = 1-%:% ;P(B)=1-P(B) = 1-%:2

Q) One of them will be selected
i.e.,,P[(Ais selected but B is not selected)OR(B is selected but A is not selected)

1.4 13 4 3 7

PLANB) U(ANB)]=P(A) P(B) + P(A)P(B) = , Xg + X, = +on =0

7
P(One of them will be selected )= 20

11 1
(i) both will be selected = P(AnB) = P(A)P(B)= ; == o5
~ 5 - — 34 12 3
(i) none will be selected = P(A N B) = P(A)P( B):Z c_ 20" &
(iv)  atleast one will be selected
i i r, 1. 8.2
P(One of them will be selected or both will be selected) = 20t20°20 " 5

(V) atmost one will be selected

3 7 12+7 19
P(none will be selected or One of them will be selected ) = 3 +2_0 o0 20
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Example 1.14 A card is drawn from a well-shuffled deck of 52 cards. What is the probability
that it is either a spade or a king?

Solution

If Aand B denote the events of drawing a 'spade card' and a 'king' respectively, then
the event A consists of 13 sample points, whereas the event B consists of 4 sample points.
Therefore,

P(A)=5 PE)==

The compound event ( A~ B') consists of only one sample point, viz.; king of spade. So,
1
P(AnB)=—
( ) =

13 4 1 16
P(AUB) =P(A)*P(B)- P(ANB) = o+ oo~ 5 =,

Example: 1.15 A bag contains 5 white and 3 black balls. Two balls are drawn at random one
after the other without replacement. Find the probability that both balls drawn are black.
Solution : The probability of drawing a black ball in the first draw.
oay = 33
(A) = 5+3 8
The probability of drawing the second black ball given that the first ball drawn is black
PBIA) = s =2
(BIA) = 5577
- . 3.2 3
. The probability that both balls drawn are black is P(AnB)=P(A)P(B/A)= 57"

Example: 1.16 A box contains 4 bad and 6 good tubes. Two are drawn out from the box at a
time. One of them is tested and found to be good. What is the probability that the other one is
also good?
Solutions: Let A be the event that the first tube is good and B be the event that second is also
good

6C,

) ) 3
P(first tube is good) = P(A) = ==
( good) = P(A) 10, 5
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6C, 3
P(Both the tubes are good ) =P (AnB) = 10c, 5

P(AnB) 1/3 _5
P(A) 3/5 9

. P(B/A)=

Example 1.17 The contents of urns I,11 and 111 are as follows
(i) 1 white, 2 black and 3 red balls
(i1) 2 white , 1 black and 1 red balls and
(iii) 4 white, 5 black and 3 red balls
One urn is chosen at random and two balls drawn from it. They happen to be white and red.

What is the probability that they come from urns I, 1l and I11?

Solutions: Let E;, E2, and E; denote the events that the urn I,II, and Il is chosen

respectively, and let A be the event that the two balls are taken from the selected urn are white

and red. Using Baye’s theorem

1
P(Ex) =P(E) =P(E) = 5
x3 1 ox1 1 4x3 2
PAIE) =0 =L p(AlEy) =2l p(alEy)= a0 -2
6C, 5 aC, 3 12C, 11
1.1
P(EL | A) = P(El)P(A|E1) _ 3°5 _ 3
VIV S IV i
ZP(Ei)P(A|Ei) 35 373 311
i=1
11
P(Ez)P(AlEz) 373 _ 55
M2 1A 11,1111 1
ZP(Ei)P(NEi) 3’5373 3°11
i=1
11
F’('53)F’('°~|E3) 3711 ~ 30
P(EslA)= 11 11 1 1 118

ZP(Ei)P(A|Ei) Xt 3%3 3%
i=1
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Example 1.18: A factory produces a certain type of outputs by three type of machines. The
respectively daily production figures are Machine I: 3,000 units; Machine I1: 2,500 units;
Machine I11: 4,500 units. Past experience shows that 1 percent of the output produced by the
machine | is defective. The corresponding fraction of defectives for the other two machines
arel.2 percent and 2 percent respectively. An item is drawn at random from the days
production run and found is to be defective. What is the probability that it comes from the
output of (i) Machine I, (ii) Machine Il and (iii) Machine I1I.

Solution : Let E;,Ez,and E3 are the events that the output produced by machines 1,11 and 11
respectively and A be the event that the output is defective

Using Baye’s theorem
4500

P(E2) = 0000 * PE)= 10000 + PE)= 10000

P(A/E) =1% =0.01 ; P(A/E;)=12%=0.012 ; P(A/Ej;)=2%=0.02

The probability that an item selected at random from day’s production is defective is given by

3
P(A) = D P(Ei)P(A/E;)
i=1

P(A) =0.03x0.01+0.25x0.012 + 0.45x0.02 = 0.015
=0.015

P(E{)P(A/E;) 0.003 1

M PE/A-= P(A) 0015 5
(i) P(E3/A)= P(E3)PF2(AA)/ Es) _ 818?2 =g

18



Aliter : The posterior probabilities can be obtained elegantly in a tabular form as given below

) . . Joint
Event Prior Pli?g‘;b'“t'es gorl;d:)t_lﬁ:al probabilities Posterior Probabilities
_ i robabilities _ _ _
3000 0.003 1
E: 10,000 =0.30 0.01 0.003 —0.015 = E
2500 0.003 1
4500 0.009 3
Total 1.00 P(A) =0.015 1

Example 1.19 There are three coins, identical in appearance, one of which is ideal and the
other two biased with probabilities 1/3 and 2/3 respectively for a head. One coin is taken at
random and tossed twice. If a head appears both the times, what is the probability that the
ideal coin was chosen.

Solution

Let B is the event of obtaining 2 heads in two tosses of the selected coin and A;, Ay, Az

respectively the events of choosing the first (ideal), second and third coins , we have

Probability of getting a head in a toss =

N |-

1 1)2
P(A)=P(A)=P(A) = 5 and P(BIA,) = @ 1

Also, probabilities of turning head up with second and third coins respectively being
1/3 and 2/3 , we have

2 2
P(B/Ag):(%) :% and P(B/Ag)z(é] _4

Using Baye’s theorem

19




o (AV) _ P(A;) P(BIA,)
B)” P(Ay) P(BIAL) + P(A,) P(BIA,) + P(A3) P(BIA3)

1 1 1
ixi _

_ 374 _ 12
1 1 1 1 1 4 29
XS+ XS+ X ——
374 379 379 108
A 9
P 1 ):_
( B) 29
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2. RANDOM VARIABLE

Let S be a sample space associated with a given random experiment. A real valued
function defined on S and taking values in R(-c0,0) is called one dimensional random
variable.

A random variable X is a rule which associates uniquely a real number with every
elementary event E;eS, i =1,2,3,...n i.e, a random variable is a real valued function which
maps the sample space on to the real line. Discrete Random Variables and Continuous

Random Variables are the two types of a random variable.
2.1 DISCRETE RANDOM VARIABLE

A variable which can assume only a countable number of real values and for which
the value which the variable takes depends on chance is called discrete random variable. In
other words, a real valued function defined on a discrete sample space is called a discrete
random variable. For instance, numbers of members of family, number of students in a class,
number of passenger in a bus, tossing a coin and rolling a dice are the example of discrete

random variable.

2.1.1 Probability Mass Function
If X is one dimensional discrete random variable taking at most a countable in finite
number of values xi, X2, X3,... then it is probabilistic behaviour at each real point described by

a function called the probability mass function.

Definition:
If X is a discrete random variable with distinct xi, X2, X3,...Xn,..., then the function P(x)
PX =x;) if x=x;

0 if Xx2x:i=123 is called the probability mass
120 — &9y

defined as Px(X)={

function of random variable X

Remarks: The numbers p(x;) ; i =1,2,3,... must satisfy the following conditions:

(i) P(x) >0 and (ii) ip( X )=1
i=1

21



2.2 CONTINUOUS RANDOM VARIABLE
A random variable which can assume any value from a specified interval of the form

[a,b] is known as continuous random variable.

2.2.1 PROBABILITY DENSITY FUNCTION

If X is a continuous random variable, it will have infinite number of values in any interval
however small. The probability that this variable lies in the infinitesimal interval (x,x+dx) is
expressed as f(x) dx, where the function f(x) is called probability density function (p.d.f),

satisfying the following conditions

() fix) =0 vx (i) If(X)dx=1

2.3 DISTRIBUTION FUNCTION

Let X be a random variable, the function F defined for all real x by F(Xx)=P(X <Xx)
is called the distribution function(d.f) or cumulative distribution function of the random
variable X.

If random variable X is discrete then distribution function is F(x)=P(X <X)

If X is continuous random variable then distribution function is

F(x)=P(X <x)= J)E f(x)dx

—00

2.3.1 Properties of Distribution Function

1. If Fis the distribution function of random variable X and if a<b then
P(a < X <b) =F(b)-F(a)
2. If F is the distribution function of random variable X then
(1) 0 <F(X) < 1(i)F(x) <F(Y) ifx <y
3. If Fis the distribution function of random variable X then
F(—)= lim F(x)=0 F(o)= lim F(x)=1

X—>—0 and X—>00

d

4. &(F(X)) = f(x)

22



Example 2.1 If the random variable X takes the value 1, 2, 3 and 4 such that
2P(X=1)=3P(X=2) = P (X=3)=5P(X=4).Find the probability distribution?
Solution:
2P(X=1)=k = P(X=1) = k/2
3P(X=2) =k = P(X=2) = k/3
P(X=3) =k

5P(X=4)= k =P(X=4) = k/5

4
D P(xi)=1
x=1

The probability distribution is

X 1 2 3 4
P(X=x) 15/61 10/61 30/61 6/61

Example 2.2 A random variable X has the following probability function
X 0 1 2 3 4 5 6 7
PX) [0 [k [2k [2k [3k [k |2k® |7k*+k

(i) Find k, (ii) Evaluate P(X<6),P(X>6) and P(0<X<5) (iii) Determine the distribution

function of X and (iv) P(X<a)>1/2 find the minimum value of a,

Solution:
.
D P(x)=1
x=0
k+2K+2K+2k+3k+k?+2k>+7k?+k=1
1
= 10k’+9k-1=0 = (10k-1)(k+1)=0 =k= 10 Or k =-1(negative)
1
Hence k = 10

23



(i)

(iii)

(iv)

P(X<6) =P(X=0)+ P(X=1)+ P(X=2)+ P(X=3)+ P(X=4)+ P(X=5)

=k +2k + 2k + 2k + 3k + k2

1 2 2 3 1 81
— et —

O 10 10 10 100 100

)
P(X >6)=1- P(X<6) = 100 100

P(X<6)=—

PX=9=100

P(0<X<5) = P(X=1)+ P(X=2)+ P(X=3)+ P(X=4)
= k+2k+2k+2k+3k =8k = %

P(0<X<b) = 7

Distribution function of X

F(x)=P(X £Xx)

X F(x)=P(X £x)
0 0
1 k=t
10
2 Ki2k=3k=—
10
5
3 k+2k +2k =5k = —
10
8
4 k+2k+2k +3k =8k =—
10
5 K+2k+2k+3k+k2 =8k +k2=2 4 L+ _ 8L
10 100 100
6 K+2k+2k+3k+k2+2k2 =8k +3k2 = > 4 > _ 8
10 100 100
2 2 2 2_9 10
7 K+2k+2k +3k +k“ +2k“ +7k“ +k =9k +10k =1
10 100
P(X<a)>1/2 find the minimum value of a
8 4 1
From the distribution function P(X<4) = 10°-5 > 5

a=4
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Example 2.3 A discrete random variable X has the following probability distribution
x : 0 1 2 3 4 5 6 7 8
p(x): a 3a 5a Ta 9a 11a 13a 1b5a 17a

0] Find the value of ‘a’

(i) PO<X<3)

(iii) P(X 23)

(iv)  Find the distribution function of X

n
) P(X =x)=1
Solution: We have ; ( X)

a+3a+ 5a+7a+9a+1la+13a+ 15a+17a=1
1
7. 8la=1=a= 81
.. The actual probability distribution is

X 0 1 2 3 4 5 6 7

P(X=x) 1 3 5 7 9 11 13 15

81 81 81 81 81 81 81 81

PO<X<3)=P(X=1)+P(X=2) = ot = o

8
P(0<X<3) :a

135}72

P(X 23)=1-P(X<3) =1- {a+a+g = a1

The distribution function of X is

X 0|1 2 3 4 5 6 7 8

FOO 1O Jar | % | %n | Y80 | D61 | %1 | “%0 |1

25



Example 2.4 For the following density function, f(x) = ae " , O <X<0

find the value of ‘a’
Solution:
Given f(x) is a pdf.

Tf(x)dx:l
a Te_xdx =1

ZaTe_de =1
(0]

2:{e J =1

1
(0]
—o0 -0

2al & _ € -1
1 1

2a=1:>a:1
2

Example 2.5 The diameter of an electric cable, say X, is assumed to be a continuous random
variable with p.d.f : f(x) = 6x(1-x), 0<x<I.
(i)Determine a number b such that P(X<b)=P(X>b).

1,1 2
(ii) Compute P(X < -/ -<X <)

23 3
Solution (i)
P(X <b)=P(X >b)
b 1
:>Jf(x)dx - jf(x)dx
0 b

b 1
= E';6x(l— X)dx = £6x(1— X )dx

b 1
:6J(x—x2)dx = GI(x—xz)dx
0 b

26



b 1
x> X x> xS
=S| —+— | =| —+—
2 3 0 2 3

b

= 3b?% - 2b% =(1-30% + 2b%)
— 4p% —6b% +1=0
—(2b-1)(2b%-2b-1)=0
5 2b-1=0 = b:%or

2+J4+8 1+3
4

2

2b2 —2b-1=0=b=

1

Hence b= 2 is the only real value lying between 0 and 1

j 6x(1— x)dx

4
o
A
]
4

6x(1— x)dx

_ a1

37 2

):E

p(x <i/lox< -

2 3

wIlN

Example 2.6 Let X be a continuous random variable with p.d.f given by

kx 0<x<1
k 1<x<?2
F(x)= )
-kx+3k ,2<x<3
0 ,otherwise

(i) find the value of k (ii)Determine the c.d.f

27
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Solution:

o0

jf(x)dx:l
1 2 3 -
jkxdx +J’k dx +J(—kx+3k)dx =1
0 1 2

2 1 . 2 3
k[7J +K(x) +(—k7+3ka =1
0 2
2 2 2 2
k[l——O—J+k(2—l)+[[—k3—+3k3}—(—k2—+3k2}]—1
2 2 2 2
k(1j+k+([—kg+9kj—(—kﬂ+6kD=1
2 2 2

k 9
§+k+ (k) -E+9)—(k)(—2+6)j

Kik+ () '9+18—4D=1
2 2

g+k+ (k) -9+18-8D=1

1

2

5+k+E=1
2 2
K+ 2k +k
:—:
2

SRy k-1 k=2
2 2

1

(ii) The c.d.f
For any X, such that -co<x<0;

F(x)= [ f(x)dx =0

—00

For any x, where 0<x<1;

0 X X 5 \X ) )
F(x)= Jde+Ikxdx:kadx:%[%J =%[X7_2J:XT
—0 0 0 0
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For any x, where 1<x<2;
0 1 X

1

F(x)= j de+J.kxdx+J.kdx :kJ.xdx+k‘)|S dx

—00 0 1

1 X 2 1
:ljxdx+ljdx _Lx
2 2 2\ 2
0 1 0

x-1 1+2(x-1) 1+

0 1

Lo _1f12 0%
+2(X)1 _2[2 2}

2X—2

1
=+

4 2 4
2x -1

F(x)= 1

For any X, where 2<x<3;

0 1 2 X
F(x)= I 0dx+Ikxdx+Jk dx+j
—o0 0 1 2

4

1
-kx+ 3k dx :kadx+k
0

_%ix dx+%idx+%i—x+3dx

2\! 2 X
_Lx +1(X)2+1 X
172l 2
0 2

2 X
Idx+kj-x+3dx
1 2

112 0%) 1 1 x? 22
=E(??J+E(21)+E{(7+3xJ(7+3(2)B
%[%}F%Q)Jr%{[—g+3x]—(—2+6)]

4 4

- 2 J—
F(X) = X +6X-5

For any x, x>3;

2 4 2 2
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0 1 2 1 X 1 2 3
F(x)= j 0dx+jkxdx+jkdx+j-kx+3kdx+j0dx=ijdx+kj dx+kI-x+3dx
2 3 0 1 2

—00 0 1

:%}xdx+%j‘dx+%F—X+3dX
0 1 2

1( x2 ' 1 1( x2 :
X 2 X

== —| +=(X)f +=| ——+3X
( Jo ( )1 2[ 2 ]

2
2

A5 Sed[ ol 5]

1/1) 1 1 9

=2 2+ =W+ | -=+9|-(-2+6

37303l ve)2e)

_1.1 1[_2+9_4):1 1 1(—_9 5):1 1 l(—9+10]=l+1+1:1
4 2 2\ 2 4 2 2\ 2 4 2 2 2 4 2 4
F(x)=1

Hence the distribution function F(x) is given by

0 for -co<x<0
2
X for0<x<1
4
F(x)= 2X4_1 for1<x<2

- 2 —
X+—6X5 for2<x<3

1 for3<x<w

Example 2.7 The cumulative distribution of continuous random variable X is given by

0, x<0
x2, 0<x<Y
F(x)= 3
1-—(3-X), <X<3
25( ) %
0, x>0

Find (i) Probability density function of X (ii) P(|X| sl) and (iii)P( %4 <X <4)

Solution:

d
We know that f(X) = i F(x)
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The points x =0, Y2, 3 are points of continuity

0, x<0

2X, 0<x<¥
L f)=16

—(B-%), /4<x<3

B %

0, X>3

3

P(X|<1)=P(-1< X <1) =F(1)-F(-1) =5

P(J4<X<4)=F@)-F(%)=1-

O
© | 00

2.4 Discrete distributions
i) Binomial ii) Poisson iii) Normal
2.4.1 BINOMIAL DISTRIBUTION:

Binomial distribution is also known as Bernoulli distribution after the Swiss mathematician
James Bernoulli (1654-1705) who discovered it in 1700 and was first published in 1712,
eight years of his death. The distribution can be used in the following conditions

(i) The outcome of any trial can only take on two possible values, say success and
Failure.

(if) There is a constant probability p of success on each trial;

(iii) The experiment is repeated n times (i.e. n trials are conducted);

(iv) The trials are statistically independent (i.e. the outcome of past trials does not
Affect subsequent trials);

Suppose an experiment is repeated ‘n’ times and each trail is independent. Let us
assume that each trail results in two possible mutually exclusive and exhaustive outcomes i.e.
success and failure. Let X is random variable represents total no. of successes in ‘n’ trails. Let
the probability of success in each trail is p and the probability of failure is g=1-p and p
remains constant from trail to trail. Now, we have to find out the probability of x successes in
n trails.

Let us suppose that a particular order of outcomes of x successes in n repetitions be as
follows

SSSSSFFFSSFS......... FS(x number of successes and n-x failures)
Since, the trails are all independent the probability for the joint occurrence of the event is

pPpPPPPAAqPPYp. - -- - .- qp _
= (pppppp. - ..-x times)(qqqqqqg. - -- . - (n-X) times)
- qun-X
Further in a series of n trails x successes and n-x failures can occur in ”Cxways. So, the
required probability of x successes in n trails is
P(X:X) :nCX panfx, x=0212,........ ,N

This is called probability distribution of Binomial random variable X or simply Binomial
distribution. Symbolically this can be written as B(X; n, p)
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Definition : A random variable X is said to be follow a binomial distribution if its probability
function is given by

P(X:X) = an pan7X’ x=012,........ ,N

andp+q=1

Where n, p is called parameters of the binomial distribution. Mean and variance of the
Binomial distribution is np and npq

Example 2.8 Find the binomial distribution for which the mean is 4 and variance is 3
Solution
Mean =np Variance =npq
Given Mean=np=4

Variance =npq =3

npg _3
np 4
g3
4
3 1
=1l-g=1-="==
p q 12
“np=4
n1:4
4
n=16

4

Example 2.9 Find p for a binomial random variable X if n = 6 and if 9P[X=4] = P[X=2]
Solution:

Let X~ B(6,p)

. P[X =x]=6c,p*q"*,n=012———6
Giventhat 9P[X=4] = P[X=2]

l X 3 n—x
The required binomial distribution is P(sz):16cx( J( j

9 x 6cy p?q®= 6c,pq’

9p° = ¢
P2 = (L-p)?
ie., 8p°+2p-1=0
ie -1 or — 1
P 2
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is impossible

Example 2.10 In a binomial distribution consisting of 5 independent trails, probabilities of 1
and 2
Successes are 0.4096 and 0.2048. Find the parameter of ‘P’ of the distribution

Soln : Let X ~ B(n,p) the probability mass function is
P(X=x) = [” ijpxq(n—X) s prq=1;x=0,1.23,.......
5) 4
P(X=1)= 1 pq’ =0.4096 --------------- 1)

P(X=2)= @pzq3 10V S— )

From (1) and (2) we get

5

pq* =0.4096

1 _ 50=0.4096 _51-p)_,
5 ~10p =0. - -
(2]p2q3=0.2048 10p=0.2048  10p
=5(1-p)=2x10p
5-5p=20p
5=20p+5p
5=25p
==>25p=5

5 1

Example 2.11 Ten coins thrown simultaneously. Find the probability of getting at least 7
heads

Solution: Given n =10, probability of gettingahead=p=%,q=1-p=%
Probability mass function of binomial distribution is
P(X=x)=nCyp"q"*,x=0,12,....... 10

ie., P(X =x) = 10C,(1/2)*(1/2)"* = 10C,(1/2)*°
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P( X >7) = P(X =7)+ P(X =8)+ P(X =9)+ P(X =10)
= 10C;(1/2)* +10Cg(1/2)* + 10Co(1/2)'° + 10C10(1/2)*°

P(X>7)=0.172

2.4.2 POISSON DISTRIBUTION:

Poisson distribution is a discrete probability distribution, which is the limiting case of

the binomial distribution under certain conditions.

1. When n is very indefinitely very large

2. Probability of success is very small.

3. np =Ais finite
Definition : A discrete random variable X is said to be follow a Poisson distribution if the
probability mass function is given by

e A
p(X =x) =P(x;4) = ” ,X=0123.......... o0
Wheree =2.7183and A >0

Here A is called the parameter of the Poisson distribution.

Example 2.12 The probability of an item to be defective is 0.01. Find the probability that a
sample
of 100 items randomly selected will contain not more than one defective item.

Solution: Given p = 0.01, n=100, mean A =np =0.01x 100 = 1,
e '
Probability mass function of Poisson distribution is P(X =x ) = = 1 'x=0,1,2....

-1

P (X<1)=P(X=0)+P(X =1) = e+ eﬂ Lot

Example 2.13 It is known from the past experience that in a certain plant there are on the
average

4 industrial accidents .Find the probability that in a given year there will be less than 4
accidents.

Solution:
Let X denote the number of accidents in a year.

Given A =4




P(less than 4 accidents) = P(X <4) = P(X =0 )+ P(X =1) + P(X = 2)+ P(X = 3)

o 1 2 3 j
=0.4335
0 1 2 3
= e4(4—+4—+4—+4—j =0.4335
o n 2 3

~ (40 e-4 41e—4 42 e-4 .\ 438_4

2.4.3 Normal Distribution:
A continuous random variable X is said to follow a Normal distribution with parameter

mean p and variance o if its probability density is given by

_(ep)?

1 2

o271

e 20

f(x)=

Characteristics of a normal probability distribution

1. The normal curve is bell-shaped and has a single peak at the exact center of the
distribution.

2. The arithmetic mean, median, and mode of the distribution are equal and located at
the peak.

3. Half the area under the curve is above and half is below this center point (peak).

The normal probability distribution is symmetrical about its mean.

5. Itis asymptotic - the curve gets closer and closer to the x-axis but never actually
touches it.

&

The standard normal probability distribution is a normal distribution with a mean of 0 and a
standard deviation of 1 is called the standard normal distribution.

_(X-p)
(o)

z
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Example 2.14 Xis a normal variate with mean 30 and S.D 5. Find the probabilities that
(i) 26 < X <40 (ii) X >4 5 (iii) [X - 30| >5

Solution Here mean un=30 and6 =5

(DWhen X =26 and Z =

When X =40 and Z=

X—p 26-30
o 5

-0.8

X—-u 40-30
c 5

2

P(26<X<40)=P(-0.8<X< 2)

=P(-08<X< 0)+P( 0<X< 2)
=P(0< X< 0.8)+P( 0 <X < 2) (symmetry)
=0.2881 +0. 4772 = 0.7653

P (26 < X < 40) = 0.7653

(i) When X =45 Z=

X—u 45-30
c 5

3

P(X.>45)=P(Z>3)=05-P( 0< X< 3)=0.5—0.4986 = 0.0014

(iii) P(X - 30| <5) =P(25 < X <35) =P(-1< Z< 1) =2 P(0 < Z < 1) = 2 x 0.3413 =0.6826

P(IX - 30| >5) = 1- P(IX - 30| < 5) = 1 — 0.6826 = 0.3174

Example 2.15 The weight of adult cocker spaniel are normally distributed with a mean
p =25 1b and a standard deviations ¢ = 3 Ib. find the probability that a) cocker’s weight is
less than 23 Ib b) weight is between 20 Ib and 27 Ib c¢) weight is more than 29 Ib

Solution

a)

b)

Find the probability that the cocker’s weight is less than 23 1b.
23-25

P(x < 23) = P[z < j: P(z < -.67) = .2514

Find the probability that the weight is between 20 Ib and 27 Ib.

20-25 27—25}
<Z< 3 =

P(-1.67 <z <.67) =.7486 - .0475 = .7011

P(20 <x <27) = P(

Find the probability that the weight is more than 29 Ib.
29-25

P(x>29)=P(z> j=P(z>1.33)
=1-.9082 =.0918
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Example 2.16 In a distribution exactly normal, 10.03% of the items are under 25 kilogram
weight and 8.97% of the items are under 70 kilogram weight. What are the mean and
variance of the distribution?
Solution
Let x denote the weight (in kilograms) of the item.
If X~N(u, o®) then given are
P(X< 25) =0.1003 and P(X<70) = 0.8997

The points x =25 and x = 70 are located as shown below

When X =25, Z= 25-p =—Z1(say) ---m---mmmmemeee- (1)
c
When X=70 Z= O-p_ Z9 (say) ------nnnnmn- -(2)
c
0.3997 0.2997 oano0=
o.aoo0=2
- 7///’/ ’ - . _
7 X =25 X=p X =70
Z=-7, Z=0 =12,

From the diagram

P(Z <-Z;) =0.1003

P(Z < Z,) =0.8997 and now P(0<Z<Z;) = 0.3997 = Z, = 1.28 (from normal table)
P(Z < -Z;) = 0.1003 = P(Z>Z;) = 0.1003

P(0<Z<Z;) =0.5-0.1003 = 0.3997 = Z; = 1.28 (from normal table)

Substuting the values of Z; and Z;in (1) and (2)

25—
c

=-1.28
=25-u=-128c --------------- 3)
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0-1_4 .8
o Trs
= 70-pu=128c

Solving the equation 3 and 4 we get n =47 .5and ¢ =17.578
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3. TWO DIMENSIONAL RANDOM VARIABLES

Let S be the sample space of a random experiment and let X and Y be two random
variables defined on S. Thus X=X(s) and Y=Y(s) are two functions which assign real
numbers x and y to each outcome seS. Then the pair (X,Y) is called two dimensional random

variable.

3.1 JOINT PROBABILITY MASS FUNCTIONS
Let X and Y be the two dimensional discrete random variable. Let us suppose that X
can assume ‘n’ values X1, X, ....xn and y can assume ‘m’ values Y1, Y, ...,ym. Let us consider the
probability of ordered pair (xi, yj) where i=1,2,3,....nand j=1,2,3,....,m defined by
Pij =P(X=x,Y =y;) =P(XiYj)
The function P(x,y) defined for any ordered pair (x,y) is called joint probability function of x

and y which satisfied the following condition

n m
(i) Pj=0 Vi, j (ii) ZZ Rj =1 and its represented in a tabular form as follows:

i=1j=1

Y

Y1 y2 Y3 Ym P(X=x) Total
X1 Pll P12 P13 - le P]_
X2 P12 P22 P23 el sz P2
Xn Pn, Pny Pns Pim Pn.

Total
P P, Ps P.m SP,=3%.P
P(Y=Yy)
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3.2 Marginal Probability Function
Let (X, Y) be a two dimensional discrete random variable then which takes up
countable number of values (X;, y;). Then the probability distribution of X and is determined

as follows.

P(X=x)=P(X=xNY=y)+P(X=xNY=Yy,)+-+P(X=xNY =Y,)
=Pyt P+ 4P,
P.
j=1

2R

]

=P,

is known as the marginal probability mass function of X.
Similarly , the marginal probability mass function of random variable Y

P(Y=y) =R, =P,

3.3 Joint Probability Density Function

If X and Y are continuous random variable then their joint probability density

function f(x,y) if P{x—d?XSXSX+d7X,y—d—23/SYSy+d?y =f(x,y)dx dyand provided

f(x,y) satisfies the following conditions
i) f(xy) >0

i) T OJ? f(x,y)dxdy=1

—00 —00

3.4 Marginal density function
When (X, Y) is a two dimensional continuous random variable then the marginal density

function of a random variable X and Y is defined as

0= fpdy L= f(xy) x
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3.5 Marginal Distribution Functions
The Marginal distribution function X and Y respectively with respect to joint
distribution function Fyy (X, y) is
Fx(X) =P(X <£X) =P(X <x.Y <)
= !ll_lll ny (X7 y) = I:XY (X!OO)

Fv(y) =P(Y <y) =P(Y £y. X< 0)
=limF_(X,Yy)

y—o

= Fyy (0, y)

Fx(X) is termed as marginal distribution function of X corresponding to the joint
distribution function [Fx, (X, y)] Similarly; Fy(Y) is termed as marginal distribution function

of Y corresponding to the joint distribution function [Fxy (X, y)].

If (X,Y) is a continuous random variable then the cumulative distribution function is

defined as

F(X<XxY<y)= f I f(x,y) dx.dy

—0  —0

3.6 CONDITIONAL PROBABILITY DISTRIBUTION

Let (X, Y) be a discrete two dimensional random variable then the conditional
probability mass function in of X given Y =y and conditional probability function of Y given
that X=x;

P(X/Y)= PIX=%.Y =)
P(Y:yj)
PX=x,Y=Y))
P(Y=y;/X=x)= X =)

If f(X/Y) is a two dimensional continuous random variable then,

P(X =x/Y =y)= ff(’z';;)

P(Y = y/ X :x):%
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Example3.1, From the following Bivariate probability distribution of X and Y.
Find (i) P(X < 1,Y =2), (ii) P(X<1), (iii) P(Y =3), (iv) P(Y<3), (v) P(X<3),

Solution
Y
1 2 3 4 5 6
X
0 0 0 1/32 | 2/32 | 2/32 | 3/32
1 1/16 | 1/16 1/8 1/8 1/8 1/8
2 1/32 | 1/32 | 1/64 | 1/64 0 2/64
Solution
Y
1 2 3 4 5 6 Total
X
0 0 0 1/32 | 2/32 | 2/32 | 3/32 | 8/32

1 1/16 | 1/16 1/8 1/8 1/8 1/8 | 10/16
2 1/32 | 1/32 | 1/64 | 1/64 0 2/64 | 8/64
Total | 3/32 | 3/32 | 11/64 | 13/64 | 12/64 | 16/64 1

()P(X<1,Y=2)=P(X=0,Y=2)+P(X=1Y=2)=0+1/16 =1/16

(i) P(X < 1) = P(X = 0) + P(X = 1) = 8/32 + 10/16 = 28/32 = 7/8

(iii) P(Y =3) =11/64

(iv) P(Y<3) =P(Y=1)+P(Y=2)+P(Y =3) =3/32 +3/16 + 11/64 = 23/64

(V) P(X<3,Y<&)=P(X=0,Y=1)+P(X=1Y=1)+P(X=2,Y=1)
+P(X=0,Y=2)+P(X=1,Y=2)+P(X=2,Y=2)
+P(X=0,Y=3)+P(X=1,Y=3)+P(X=2Y=3)
+P(X=0,Y=4)+P(X=1,Y=4)+P(X=2,Y=4)

1 1 1 1 1 1 1 2 1 1
= 0+—=+—= |+ 0+—=+—= | +| =+=+— |+| —=+=+—
16 32 16 32 32 8 64 32 8 64

3 3 11 13 12+11+13 36

T32 32 64 64 64 64

36

P(X <3, Y <4)=
34
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Example 3.2 A two dimensional random variable X and Y have a joint probability function

P(xy)= 2)(2; Y Where X and Y can assume that value 0, 1 and 2. Find
(i).  The marginal probability function of a x and y
(it).  The conditional distribution of x/y and y/x
Solution
.. - . +y
The joint probability mass function P(x,y) = o7 i X= 0,1,2;y=0,1.2
Y Total
0 1 2
X P(X=x)
0 0 1/27 2127 3/27
1 2127 3/27 4127 9/27
2 4127 5/27 6/27 15/27
Total
6/27 9/27 12/27 1
P(Y =y)
(i) The marginal probability function of a x
X 0 1 2
P(X=x) | 3/27 9/27 15/27
The marginal probability function of a'y
y 0 1 2
P(Y=Yy) 6/27 9/27 12/27
(if) Conditional probability P(x/y)
P(x=0/y=0)

P(y=0/x=0)=

P(y=0/x=1)=

P(x=0)

P(x=0/y=1) 2/27 2

P(x=1)

=%47=0

S 9/27 9
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P(y=0/x=2)= " X=0/y=2) _4/27 4
P(x=2) 15/27 15

P(x=1/y=0) 1/27 1

P(y=1/x=0)= - _Z
v ) P(x=0)  3/27 3
P(yzllle):P(x:l/y:1)23/27:1
P(x=1)  9/27 3
P(y=1/x=2)=P(X:1/y:2)=5/27 1
P(x=2)  15/27 3
P(y=2/x:0):P(X=2/y=0):2/2722
P(x=0) 3/27 3
p(yzz/XZl):P(X=2/y=l):4/27:ﬂ
P(x=1) 9/27 9
P(y=2/x=2)=Px=2/y=2)_6/21 _2

P(x=2)  15/27 5

Conditional probability P(x/y)

P(x=0/y=0
P(x=0/y=0)= (P(y:)(l)) ):0/%7:0

P(x=0/y=1) _1/27 _1

P(y=1) 9/27 9
P(x=0/y=2)=Fx=0/y=2)_2/27 1
P(y=2) 12/27 6
P(x=1/y=0)= PX=1/y=0)_2/27 1
P(y=0) 6/27 3
P(x=1/y=1)= PX=1/y=0) _3/27 1

P(y=1)  9/27 3
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P(x—l/y—2)—P(X:1/y:2)— 4127 _1
P(y=2) 12/27 3

P(x=2/y=0) _4/27 2
P(y=0) 6/27 3

P(x=2/x=1)= P(x:2/y:1):5/27:§
P(y=1) 9/27 9

P(x—2/y—2)—P(X:2/y:2)— 6/27 _l
P(y=2) 12/27 2

P(x=2/y=0)=

Example 3.3 If X and Y are two random variable having a joint density function,

6-XxX—-y

O<x<?2

8
f(x,y)= 2<y<4
0 : otherwise

Find (i) P(X <1 A Y < 3), (i) P(X < 1/Y < 3), (jii) P(X + Y < 3)

Solution

3 1
P(X <1NY <3)=j j f(x,y) dx dy
2 0
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| =

L[ @) (1, @
8 (2($ 2] (2(3 2}}

_ {i_g]_(g_ﬂﬂzzm_g)zg
8 2 2 2 2 8 8

| =

(i) P(X<1/Y<3)
P(X <1nY <3

P(X <1/Y <3)= <3

0

f(y) =] flxy)dx

P(X <1/Y <3)=

(iii) PX+Y <3)

I
|-
O ey
1

[e(s_x)—x@_x)— (3‘2X)2]-[6(2)—x(2)—2—22ﬂ =2
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Example 3.4 The joint probability density function of a two dimensional random variable (X,
Y) is given by

f(x):{Z © 0<x<1 0<y<x

0, elsewhere

Q) Find the marginal density function of X and Y

(i) Find the conditional density function of Y given X = x and X given Y = X.

(iii)  Check for independence of X and Y
Solution

L00 = [ foy)dy

X

= [ 2dy=2[y];

0
=2 (x-0)=2x
fx(x)=2x 0<x<1

L) = | foeyox

2dx=2[x]' =2[1-y]

< C—

fo(y) =2-2y, 0<y<1

The conditional density function of X and Y is,
f ( v/ ) _ Sy 2 1
X f.(x)  2x x
(if) If X and Y are independent, the fy, (X,y) = fx(x) fy(y)
R.H.S:

x() fv (y) =2x.2(1-y) =4x (1-y) =f(x,y)
. Xand Y are not independent.

Example 3.5 The joint probability density function of two dimensional random variable

k -V): O 2 .
variable f (x,y) = X (xy); <X < ;X <Yy <X
0 © otherwise

(1) Find the constant ‘k’ and (i1) the marginal density function of ar.v X and Y.
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Solution

~ ~
O ey O ey
I 1 T

|

T T f(x,y)dy dx=1

—00 —00

X

j j kx(x—y) dy dx=1

3 3
(x3—%—x3+%}dx:l

3
kJ. 2x%dx =1
0

k

k

_ZXAT
L 4 0

K| 2" o

=1
4 4}

3—2—1}=1
4

8k =1

k =

|
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i) Marginal density function of X

o0

=] f(xy)dy

—00

X

[ Kx(x—y) dy =§j (' ~xy) dy

X

Marginal density function of Y

o0

f(y) =[x y)dx

—00

‘ 15 ., 1x xy |
= | kx(x=y)dx===| (X"=xy)dx = =| ———
[ kx(x-y) =] C-x) 8{3 ZL

-y -y

_ 122 2%y ((=y) (=y)y
8ll3 2 3 2

1(16—12y+2y3 +3y3j

"8 6

1(5y°-12y+16
f(y)==| 2L =27~
¢ () 8( s j

5y3 12y +16
f.(y) = S )

2<y<0
48 Y
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f(y) = [ fxy)dx

1 1
0| |
I 1
-~ ~ =
w | oo w |,
| |
SN
— =,
|
7\
<
°°| w |-
|
<
NS W™
N—
[E— |
‘I\J
N N
<
N
|
7\
W<,
|
<
N N
<
N—
1

|
|-

|

|

|

|

|

_ £_16—12y—2y3 +3y°
8 6

[16-12y+ Y
6

|-

$_12y+16
f,(y) = y —lecy+lb

,0<y<?2

Example 3.6 The joint distribution of X and Y is given by f(x,y) = f(x,y):4xye‘(xz+y2)
x >0, y=>0. Test whether x and y are independent are not. Find (i) conditional density of
f(x/y).

Solution
Marginal probability density function of X is given by

0= F0uydy

_ .[4xy e )y
0
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- J 4xy e e dy
0

= 4xe™ J' y e dy
0

— 4xe™ j ye' av
0 2y

:2xe’xzf e 'dt
0

-

=2xe”* e_}

0

w54

=f, (x)=2xe*¥x > 0

Marginal density function of Y,

0

Ly)=[ f(xy)dx

—00

= [4xy e dy
0

- J 4xy e e dy
0

- 4ye‘yzjx e X dx
0

0
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2y dy=dt

Put x*=t

2x dx=dt



f,(y)=2ye”", y>0
If X and Y are independent then.
fxv (X, y) = &(x). fy(y)
=2yeV, 2xe™™ =4xy e, eV =1, (xY)
. Xand Y are independent.
(if) Conditional density function

f(x,y) 4xye )
f,(y)  2ye”

f(x/y)= =2xe*

Example 3.7 The joint distribution function of two random variable of (X, y) is given by,

l-e*—eV+e ™ x>0,y>0
F(x,y)= Y
, otherwise
Find (i) Marginal density function of r.v. X and Y
(if) Check X and Y are independent
Solution

To find the joint density function,

2

Y F(x,y)

f(x,y)zaxa

_ & [1-e" e +e "]

ox 0y

82
= l-e"—-e’+e e
sl e

zg[O—O—(—l)eHexey(—l)]
0 Y _a XV
:67[0—0—(—1)e —ee |

0 _ X - X a— X - —(x+
=g[ey—e eV |=0-(-De7e”)=e"e” =e

f(xy)=e
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Marginal density function of X andY

f00= [ FOxydy

— OOe—(><+y)dy — we—x e—ydy _ e—xOo e—ydy —e* ﬂ :
| | |
0 0 0 1 0

~|5H)
—e*[0-(-1]=e”

fx(x)=e*, x>0
f(y)=] f(xy)dx

o0 - o0 ~ - 7@ - - eix ©
:je (X*y)dx=J'e *eVdx=¢e y_[ e*dx=e y[—}
0 0 0 0

e

fr(y)=e¥,y>0
If X and Y are independent, then
fxv(xy) = fx(x). fy(y)
=e”.e”
=e ™ = fry(xy)

. Xand Y are independent.

Example 3.8 The J.P.d.f of two dimensional random variable x and y is given by,

9L+ x+Yy)
201+ %) (1+y)*

f(x,y)= 7 O<Xx<ow ; 0<y<wo

Find (i) Marginal density of x and y and conditional distribution x/y and y/x.

Solution

00 = | 0 y)dy
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J- 9(1+x+Y)
< 2L+ X)L+ y)

I d+x+Y)
- (1+x) (1+y)

9
2(1+x)*

{ X +(1+y)}dy
L+y)' @+y)’

[x(l+ y)+ 1+ y)‘3] dy

!

.
:2a+xf£
!

__ 9 [xasy)® @ey)y?|
2(1+x)* -3 2

__ 9 [[(xe)® @) (x@r0)° x(1+0)?
21+ ) 3 >

9

= (O+O)—(i+lji|
2(1+x)" | 3 2

9 [x 1}
—_— _+_
2(1+x)* 13 2
9 _2x+3}
20+x)*| 6

3(2x+3)

41+ x)*

fx(x): 0<x<w

de=Tuxwm

j 9L+ x+Yy)
5 2(1+ x)* (1+ y)

J-(l+x+y)
2@+y) (1+x)*

_ 9 ]3 1+x N y d
2(1+y) ¢ (L+x)" (1+x)*
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9 3 4
=m£[(1+x) +y(+x)* ]dy
9 _(1+x)‘3+y(1+x)‘3 N
C2(L+y) | -2 -3 |
9] (+)”  yl4o)®) (@+0)?  y(+0)*

2+y) | -2 -3 ) -3
:L;(OJ,O)_[iJrlﬂ
2+ y)* | 2 -3

__9 1&}
200+y) |2 3
9 _3+2y}
S 21+y)'| 6
fY(y):i(éi;;?, 0<y<oo
(i) Conditional probability
f(xy)
f(x/y)=
(x7y) Ty
91+ x+Y)
_21+x)'A+y)" _ 9+x+y)  Al+y)’
- 3(2y+3) 2(1+X)" (L+y)* 32y +3)
4(1+y)*

_B+x+y) Q+y)t

6(1+x+Y)

LX) A+ )2y +3)  (1+X)(2y+3)

f(y/x):M

fy (x)
9(1+x+Yy)
_ 204+ x)'(1+y) _ 9L+x+y)  A(L+x)’
- 3(2x+3) 2(1+x) (1+y)" 3(2x+3)
4(1+x)*
61+ x+Yy) (1+x)*
f(y/X)_(1+x)“(1+y)4(2x+3)
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3.7 Transformation of One dimensional Random Variable

Let X be a random variable defined one sample space S and Y = g(X) be a strictly
monotonic increasing or decreasing function such that Y is also random variable defined on

S. Let f,(y) be the probability density function of Y. Then

fY(Y):diy(FY(Y)) Where
F(y)=PLY <vy]
=P[g(X)<y]

=P[X <g7(y)]
=P[X <x]

=F, (x) where x=g7(y)
Differentiating both sides with respect to y, we have

d d
—F =—Fy (X
dy v(Y) dy x (X)

fY<y>=(f—ny(x)

dx
dy

SRy (y)=fx(x)

dx
dy

3.8 Transformation of Two dimensional Random Variable

Let (X,Y) be a continuous random variable with joint probability density function
f(x,y). Let U and V be the transformations such that U = u(x,y), V=v(x,y). Then the joint
probability density function of (U,V) is

g(u,v)=f(x,y)J|
Where J is the Jacobian transformation
x
JZ@(X,Y):au ou
a(uyv) % X
ou ou
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4.1 MATHEMATICAL EXPECTATON

The ‘average’ value of a random phenomenon is also termed as its mathematical
expectation or expected value. Once we have constructed the probability distribution for a
random variable, to compute a mean or expected value of the random variables, where the
weights are probabilities associated with the corresponding values. The mathematical
expression for computing the expected value of a discrete random variable X with the
probability mass function and computing the expected value of a continuous as random

variable X with the probability density function are denoted byE(X)
n
D % P(X =x;) for discrete randomvariable
i=1
E(X)=

0

Jx f(x) dx for continuous random variable

=00

4.1.1 Properties of Expectation
Property 1. Addition Theorem of Expectation
If X and Y are random variables then E(X + Y) = E (X) + E(Y), provided all the
expectation exists.
Proof
Let X and Y be a continuous random variables with joint p.d.f fxy(x, y) and

marginal probability density functions of fx(x) and fy(y) respectively.

E(X)= [x f() E(Y)= [y fy)dy

E(X+Y)= [ [(x+y) fxy (xy)dxdy

—00 —00

= T T X T, (X, y)dx.dy + T T y f (X, y)dx dy

—00  —00

- | xﬁ f (%, y)dy}dx+ [ yﬁ (% y)dx}dy - T x £, (X)dx+ T y £, (y)dy

—00

EX+Y)=E X)+E(Y)
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Property 2: Multiplication theorem of Expectation
If X and Y are independent random variables, then E(XY) = E(X), E(Y).

EXY)= [ [y Ty y)cxay

—00  —00

=[ [t (0f(y) dxdy
o oo X,Y are independent

= [ xf,(dx [y f,(y)dy
E(XY)=E (X) . E(Y)
Property 3  If X is a random variable and ‘a’ is constant.

()  Elay(X)] =aE[y(X)] (i) E[y(X)+a] =E[y(X)] +a

Where y (X) is a function of X, is a r.v and all the expectation are exists.

Proof (i)
Efa p(X)] = [ap(M 9 =a]p()f(x) o
Ela w(X)] =a E[y(X)]
(i
o = [lr0+al f0 6 = [0 £00 dxs [ at(x)
, ! ! :

— E[x//(X)]+aT f(x) dx [ T (%) dx:lj
=E[y(X)]+a

Property 4. If X is a random variable and a and b are constants then
E(aX + b) = a E(X) + b provided all the Expectations exists.

Proof

E(@aX +b) = T (ax+Db) f (x)dx :T axf (x)dx+T bf (x)dx

= aT xf (x)dx+bT f (x)dx ( T f (x)dx :1J

—00

E(@X +b) =aE(X)+b
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Property 5 If X >0 then E (X) > 0.

Proof
If x is continuous random variable such that X > 0 then
E(X) :j xf (x)dx:j xf (X) >0
[If X>0f(X)=0forn<0] provided the expectation exists.
Property 6

If X and Y are two random variables such that Y < X, then E(Y) < E(X), provided
all expectations exists.
Proof:
SinceY <X
Wehaverv Y-X <0=2> X-Y2>0.
Hence E(X-Y) >0
E(X) - E(Y) =0
E(X) > E(Y)
= E (Y) <E(X).

4.2 Variance
The variance of a random variable X is defines as
Var (X) = E(X )~ (E(X ))?
4.2.1 Property
Let X is a random variable then V(aX+b) =a?V(X) where a and b are constants
If Y=aX+b then
E[Y] = E(aX+b) =aE[X]+b
Y-E[Y] = Y-(@E[X]+Db)
= (aX+h)-(aE[X]+b)
= (aX+b-aE[X]-b)
= aX-aE[X]+b-b
=aX-aE[X]
Y-E(Y) = a(X-E[X])
Taking expectation and squaring on both sides we get
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E[Y-E(Y)])* =E[a(X-E(X))]"
= a* [E[X-E[X]]"]
= a? [E[X2-2XE[X]+E[X])*]
= a* [E[X*]-2E[X]E[X]+(E[X])’]
= a* [E[X*]-2(E[X])*+(E[X])’]
= a’ [E[X*]-(E[X])’]
V(aX+b)=a? V(X)

Example: 4.1 Find the expectation and variance of the number on a die when thrown

Solution
Let X be a random variable representing the number on a die when thrown. Then X

can take any one of the values 1,2,3,4,5,6 each with equal probability 1/6

X |1]2]3[4]5]6
1111 1]t

PX=x) | = | == |2 2] =
6|6|6|6|6]6

6
1,1 .1 ,1 1 1
E(X)=) xiP(X=%)=1-42=+3=-+4=-+5-+6—=
(X)=D %P( i)=lot2 43 44450

i=1 )
1+2+3+4+5+6
6
21

Example 4.2 If a pair of fair dice is tossed and X denotes the sum of the numbers on them,

find the expectation of X.
Solution: Clearly X may be at least 2 and at most 12

X 2 3 4 5 6 7 8 9 10 11 12

00| L | 2| 3| 4[5 6|54 32|21
36 36 36 36 36 36 36 36 36 36 36
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12
E(X):inp(x=xi):2i+33+43+5i+63+73+8i
= 36 36 36 36 36 36 36
+9i+103+11£+12i
36 36 36 36

:3—16[2+6+12+20+30+42+48+36+30+22+12]

252
E(X)=—=7
(X) 26
Example 4.3 If X be a random variable with the following probability distribution

X -3 6 9

P(x)

N |-

1
6

W

Find E(X),E(X?) and E(2X+1)?
Solution

1 .1 1 -3+18+18 33 11
E(X):inP(X=xi):—36+65+x§:T:E=E

E(X):l—zl

1 ,1 ,1 93
E(X?)=) x*P(X =x)=(-3)’=+6°=+9°==="
(X2)=> xP( i)=( )6 593

93
E(X?)="
(X7) ==

E(2X +1)2 = E[4X? + 4X +1] = E[ax? |+ E[4x]+ Ef]

- 4E[X? ]+ 4E[X]+1

:4.%+4.E+1: 209
2 2

E(2X +1)? =209

Example: 4.4 In a continuous distribution the probability density function of X is

§x(2—x) O<x<2
f(x)=14 ’ Find the expectation of the distribution.
0 ,otherwise

Solution.
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2 2 3
E(X):jx f(x)dx:jx.zx(z—x)dx
0 0

31 31
:ij2(2—x)dx :Zj2x2—x3 dx
0 0

3,816 _3yis 1]
4

"3 4] 4] 3 4

_3|16_, | 316121 3141

4|3 4l 3 | 43
E(X)=1

4.3 Cauchy-Schwartz Inequality

If X and Y are random variables taking real values, then [E (XY)] *< E(X?) E (Y?)
Proof

Consider the expression (X+tY)? which is a function of real variable t. Since it is
always non-negative for all real values of X,Y and t, it follows that
E(X+tY)? >0 Vit
E(X3+2XYt+2Y2)> 0 vt
E(X))+2t E(XY)+t?E(Y?) > 0 Vt
i.e., p(t) = A+Bt+C > 0 Vt
Treating as a quadratic in t, its roots will be real i.e., t >0
where A= E(Y?), B=2 E(XY) C=E(X?) >0 V't
Now ¢(t) > 0 implies B>-4AC <0
~AE[(XY)]- 4E(X®) E(Y?) <0
= [E (XY)] < E(X?) E (Y?)
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4.4. Conditional Expectation and Conditional Variance
Discrete Case: The conditional expectation of mean value of a continuous function
g(X,Y) is given that Y = y; is defined by,

E{gXVIY =y, = S gy, )PX=x 1Y =y))

< I Y)PX=xnNY =y))
-2 P(Y=y))

(ie) = E{g(X,Y)/Y: yj}is nothing but the expectation of function g(x;, y;) of X with

respect to the conditional distribution of X when y = y;. In particular, the conditional

expectation of a discrete random variable X is given Y = y;
E{XIY=y,}=>x PX=x/Y =y,
The conditional variance of X given y = y; is given by

VIXIY =y | =E{X-EXIY=y,)’ /Y =y}

Continuous case

The conditional expectation of g(X, Y) on hypothesis Y =y is given by
E{gOX)1Y =)} = [ g(xy) fy (x/ y)dx

(y)
f()

In particular, the conditional mean of x given y =y is defined as

—jg(x y)—— 2=

T fxy)
E{XIY=y)=[x—=221g
{ 2 [OX f, (y) "

Similarly,

Y/X x) Tyff(x( );)

The conditional variance of X defined as

VXY =y)=E[(X—E(X /Y =Y)? 1Y =y]

V(Y/ X :x):E[(Y—E(Y/X =x))?/ X =x}
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Theorem 4.1 The expected value of X is equal to the expectation of the conditional

expectation of X given that is symbolically,

E(X)=E{E(X/Y)}

E{E(X/Y)}= {Zx P(X=x1Y = y)}

_ E{in P(X =x Y =yj)}

i P(y=y;)

P(X=xnNY=y,)

:Zj: {Z‘X‘ P(Y|=y,-) | }P(Y:yj)
=inz P(X=xnNY=Yy,)
:ZXiZ P(X=xny=Yy;)

:in P(X =x) =E(X) =E(X)

= E{E (X/Y)} = E(X)
Hence proved.
Theorem 4.2
The variance of X can be regarded as consisting of two parts the expectation of
conditional variance and variance of conditional expectation symbolically
Var(X) = E[V(X/Y)] + V [E(X/Y)]
= E[V(X/Y)] + V [E(X/Y)]

E{E(X¥Y)- [E(X/Y)]} [{E(X/Y) } [E(EC/ V)T

E{EX*/Y)}-[E{ E(X/Y)}]

{

E{EXXA/ )} -E{EI )} +E{EI )} ~[E{EC/ V)} T
{
{

=E{EXYY)}-[EMT
- E{inzP(szi/Y=yj)}—[E(x)]2

PX=xnNY=yY.)

-E 2 1 TP TEX)P
{ZX P =y) }[()]
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PX=xnY=y;)

_ 2 PCY =vy.) |-[E(X)T?
ZHZX P(Y=Y)) } | y’)] -
=2 X 2 PX=xnY =y))-[EX)

= % P(X=x)-[EX)

=E(X*)-[E(X)F
=Var (X) =
= Var (X) = E[V(X/Y)] + V [E(X/Y)]
Hence the theorem
EXAMPLE : 4.5 Let X and y be a two random variable each taking three values -1, 0, 1

having joint probability function of x and y

X

-1 0 1
-1 0 0.1 0.1
0 0.2 0.2 0.2
1 0 0.1 0.14

(i)  Show that X and Y having different expectation.

(i)  Find the Variance of X and Y
(ili))  Given that Y = 0 what is the conditional probability distribution of X.
(iv)  Find the Var (Y/X =-1)

Solution
* -1 0 1 P(Y=y)
-1 0 0.1 0.1 0.2
0 0.2 0.2 0.2 0.6
1 0 0.1 0.14 0.2
P(X =x) 0.2 0.4 0.4 1
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(i) Expectation of X and Y are

E(X ):in p; =(-1)(0.2)+(0)(0.4)+(1)(0.4)=0.2

E(Y)=>"y;p =(-1)(0.2)+(0)(0.6)+(1)(0.2)=0
E(X)=E(Y)

. X and Y are having different expectation.

(i) Variance of X and Y
Var( X )=E(X?)-(E(X))’
E(X?)=> xP(X =%)=(-1)?(0.2)+(0)*(0.4)+(1)*(0.4)
= 02+0+04 = 06
E(X?)=\0.6

Var( X )= E(XZ)—(E(X ))2 =0.6—(0.2)>=0.6-0.04=0.56
Var( X )=0.56

Var(Y):E(YZ)—(E(Y))2

E(Y?)=> yiP(Y =y;)=(-1)*(0.2)+(0)?(0.6)+(1)*(0.2)
= 0.2+0+0.2 = 0.4
E(Y?)=\0.4
Var(Y )=E(Y2)—(E(Y))’ =0.4—(0)?=0.4-0=0.4
Var(Y )=0.4

(iii) Conditional probability of X when'Y =0
PX=-1nY=0) 02 1

P(X =-1/Y =0) = 02_1
P(Y=0) 06 3

P(X=0/Y=0) = FX=00Y=0)_02_1
P(Y=0) 06 3

p(X=1/Y =0) = TX=10Y=0) 02 1

P(Y=0) 06 3
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(iv) V (YX =-1)
Var(Y /X ==1)=E(Y /X ==L -[E(Y/X =-1)]
E(Y/X=-1)=>yP(Y=y/X =-1)

= (-1)(0)+(0)(0-2) + (1(0)
E(Y/X=-1) =0

E(Y/X=-1)=>y*P(Y=y/X =-1)
y

=(-1)°(0)+(0)*(0-2) + (1)*(0)
E(Y/X=-1)" =0

oVar(Y /X =-1)=E(Y/X =-1) -[E(Y /X =-1)]
Var(Y /X =-1)=0-0=0

8xy, O0<x<y<l

Example 4.6 Let f(x,y) = {0 clsewhere

Find (a) E(Y|X=x) Var (Y|X=x)

Solution : (a)

o0

1 1 oL
fx(x)= | f(x,y)dy:I8xydy=8xjydy=8x{y7]
X X

— o0 X

2 2 2 2
=8x v x =8X L —x
2 2 2

fyx(x)= 4x(1—x2 ), 0<x<1

0

y y 2 1Y
fy (y) = _[ f(x,y)dx= ISxy dx = sij dx :8ylx7}
0 0 0

2 42 2
y- 0 y
—gy| - |=8y| -

fy (v) = 4y°, o<y<1
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f(x,y)_8xy

f(y) 4y°

2X
fxy X y)= F

fyy (X y)=

f(x,y)  8xy
fy (X) _4x(1—x2)
2y

(1-x*)

fyx (Y X) =

fyx (Y X)=

(b) Var(Y/X=x) = E(Y4/X=x)-{E(Y/X=x}?

2y
(1-x?

1 1
E(Y|X:x):J'ny(y/x)dy:_[y dy

)
2 2 W 2 y3 '
(1—x2)-[y dy_(l—xz){?l

2 P X 2 |P-X
(1-x¥)|3 3| (1-x¥)| 3

E(Y|X :X):g[l—)@}

1-x?

E(Y2|X:x):j‘y2 fwx(y/x)dy:j.y2 dy
X X

2y
(1-x%)
2 tao 2 [y
_(1—x2)-[y dy_(l—xz)LL

2 1 x| 2 1yt
T(@=x)| 4 4] (1-x3)| 4

E(Y2|X:x):1+X2

Var(Y/ X =x)=E(Y?| X =x)~(E(Y X =x))

e

2 32
Var(V/ X =x)= 21X _g[ 17X
2 1-x
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4.5 MOMENT GENERATING FUNCTION
The Moment Generating Function (M.G.F) of a random variable X defined as
Ie“ f(x)dx  for continuous probability distributions

t E tX
x()=E@E7)= zetxp(x x) for discrete probability distributions

M, (t) = E(e¥) :je‘Xf(x)dx

2y 2 ry r
.'.Mx(t):E(e‘X):E(lthX L2 +....+txI +j
r!

2 r
=l+tE(X)=%E(X2)+---+t—IE(X')+...
! rt

2 tl’

Clty ) e
- H 2|/'12 r!lur

_[x' f(x) dx for continuous distribution
Where u' = E(X")=
> x"p(x) for discrete distribution

r

is the rth moment of X about origin. Thus the coefficient of t—'in Mx(t) gives
r!

4, (about origin). Since Mx(t) generates moments, it is known as moment generating

function. Differentiating moment generating function w.r. to ‘t’ ‘r’ time and put t = 0 we

|:3trr M X (t):| = lur '

t=0

get.

u'l—[ x(t)} = E( X )=Mean
t=0

2
ué—{d x(t)} _E(X?)
t=0

Variance = i — ( )—E(X )-(E(X))?
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4.5.1 Properties of Moment generating function:

Property 1
Mcx (t) = E[e"], ¢ is a constant.
By definition
L.H.S. Mg (t) = E[e"]
R.H.S. M, (ct) = E[e™] = LHS
~.Mex (t) = E[e"]
Property 2

The moment generating function of the sum of a number of random variables is

equal to the product of their respective moment generating function.
M (X1+X2+X3+X4+---+Xn)(t) =M X, (t)M X, (t)M X3 (t) M X, (t)

Proof

M s,y (1) = E[ €057 ]
= E[etxl e ....eﬂ
efe Jefe ] £fe"]
=M, OM,, OM, .. M, (©

Property 3 Effect of change of origin and scale on MGF.

Let us transform X to the new variable U by changing both the origin and scale in
X —-a
X as follows U = T where a and h are constants

Moment generating function about U about origin is given by

M, (t) = E@E"“ )E{et(xhaj]

xocat)oat (x
:E{eh.eh ]:eh E[eh]

—at

My (t)= eh M (t/h)
Where Mx(t) is the M.G.F of X about orgin.
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4.5.2 Limitations of Moment Generating Function
1. A random variable X may not have moments although its moment generating

function exists.
Consider a discrete random variable X with probability density function is

for x=1,2,3,...and '0' otherwise

f(x)=
(x) X(x+1
o0 o0 X
E(X)=) xf(x) =
; ; X(X+1)
i 1 1111
~ (x+1) 2 3 45
:{1 1+l+1+1+ }-l
2 3 5
EX)= S 11
x=1 X

Since ZZE is divergent series, E(X) does not exists and consequently no

1
moment of X exists,how ever , the mgf of X is given by

My (t)= Zetxfm Z e x(x+1)

x=1

Letz=¢'

o0

7 z
My ()= Z x(x+1) ZEJFTJF

x=1
2
z 7?2 7° 23 78
= z-2 4] - ] - |y
2 2 3 3 4

e z 2 78
= | zZ+—+—+ ||| 1+ =+ —+—+--- |-1
2 3 2 3 4

z 722 78
=—log (1-z 1 — 4 -1
g ( )H+2+3+4+J ]
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z z 22 78
=—log (1-2)-| —|1+=—+—+—+--- |-1

2 3 4
=—log (1-2)-1 S Y
z 2 3 4

=—log (1-z)-%(—|og(1— z))+1
=—log (1-z)+%|og(1— z)+1

for |z <1 :‘et‘ <l=t<0
1

:1+(——1jlog(1—z)
z

zlJ{it_l]mg(l—et )=1+(e ~1)log(1-e€"),t <0
e

So that Mx(t) =1 for t=0, Hence Mx(t) exists for t<0.

2. A random variable X can have moment generating function along with some or all
moments, yet the but m.g.f does not generate the moments.

Let consider a discrete random variable X with probability functions

-1
P(X =2%) :e—| forx=0,1,2,... Then
X!

-1

E(xr)zi(?)rp(x :2*):?(2*)”}(—'
x=0 x=0 )

X 2
=e‘1i(2):!) =e™ 1+i—:+@+m —ete?

x=0

E(X")=g? *
Hence all the moments of X exists. The m.qg.f of X, if it exists, is given by
% NS > (1
x=0 x=0
By D’ Alembert’s ratio test the series on the RHS is convergent for t<0 and diverges for
t > 0. Hence Mx(t) cannot be differentiated at t=0 and has no Maclurin’s expansion and

consequently it does not generate moments.
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3. A random variable X can have some or all moments, but m.g.f does not exist except
perhaps at one point.
Let consider X be a random variable with probability function
-1

P(X =427 )= { oy 1 X = 0120

0 ,otherW|se

The distribution being symmetric, moments of odd order about origin vanish
ie., pors1= 0= E(X**H =0

> 2r
NOW, E(XZI’) — Z(izx 2r e -12 (_i e(2 -1)
x=0
Thus all the moments of X exists. The m.g.f of X, if it exists, is given by

Mx(t):i{[et_zx+e-t.2xjﬁ}_ _12{Cosh(t2 )}
x=0 :

x=0

Which is only convergent for t = 0. Hence m.g.f of X does not exists at t=0.

Example 4.7 Let the random variable X assume the value of r with probability law
P(X=r) =g .p.r=1, 2, 3. Find the moment generating function and hence find its mean
and variance.
Solution

Mx(t) = E(e")

=ietr p(x=r)
r=1

:ietr q 1
r=1

=Zetr qr.q—llp
r=1

=23 @y
q'=

ONCHY
q'=

:g(qe‘)[1+(qe‘)+(qe‘)2+...}

=pe'(l-ge)”
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Pe'

M, (t) =
Ay

d
Mean E(X)=|—M “)}
ean B9 {dt g

t

d d pe
M. t)=— X
dt < dt  (1-ge')

d ., ty-1
= pae (1-ge)
= ple'(-D-qe') *(—qe') +e' (1-ge') ]

I qezt et
gy (1—qet)}

[ ge? +¢' (l—qe‘)}

=P

TS
~ _q62t+et_qetet ~ qut+et_qe2t
S A 5%
_pe
(1-qe')’
d pe’ p p
(X) {dt X()L 1-qe%)? (@-q)* p’
E(X):l
p

oy &
E(X )—{dtz '\/Ix(t)l_0
)55
dt dt{ (1—qe’)

_d | _pe
ot | (1-ge')?

dt ty\-2
=p— e(l-qe
P (1-qe’)

=p|e'(-2)1-qe') > (-ge') +e' (1-qe')? |

p[ 20 €' (1-ge') * +e(1-ge')? |
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b B zqut . et
[ @-ge')’ (L-qe')?

_p [ 2ge% +¢' (l—qet)}

1—qe')’

E(x2){%Mx(t>} P {qu(f_eq&;“e )}
_p _2q+1—q}
L @-a)

_p [ g+1 }:P {q+l}
| (L-q)’ p’

E(XZ) - (q +1)

2

Var (X) = E (X%) - (E(X))?

@+D)) (1) g+1 1 q+1-1
= pz _B =2 2~ 2

Var (X) = %

Example 4.8 A random variable X has probability function p(x):zixx:l,z,&.... Find

the moment generating function, mean and variance.

Solution:

x=1 x=1
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Mean

E(M{%Mx(t)}

t=0

EMX a4 e _ (Z—Et)et—et(—et) _| 2e' —ele'rele’ | | 2¢
= e )
E(X){%MxmloLzzeett)zlo{(zziOO)ZM(;l)}Z

E(X)=2

Variance = E(X*)—(E(X ))2

2 d?
E(X ):|:PMX(t):|t=O
EERNEA R b S b
dt dt 2—e dt(z_et) (Z_et)

2t} (26)—4et (2t )(—e!
E(Xﬁ:[%mx(t)} {( ¢) (2¢) te4( e)( e)}
t=0 (Z—e) .

[(2-¢) (2e0)-ae (2-¢%) (<) ={(2—1>2+4<2—1)<1>}:2+4
P R

E(X?)=6

Variance = E(X2)—(E(X))"=6-(2)2=6-4=2
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Example 4.9 Find the m.g.f of the random variable X having p.d.f is defined as

X for0<x<1
f(x)=<2-x forl<x<2
0 otherwise

Solution:

0 1 2
M, (t)= Ietxf(x)dx :Ie"( xdx+jetx (2-x) dx
-0 0 1

1 2
= Ix e dx+J(2-x) e™dx
0

(S HE el (5]

_ K(l)(ettﬂ ‘(ett_?lj_[(o)(%@}_(e;m

+_((2-2)£%®]—(‘1)(e:_?]]_
|

_& & e ¢ ¢
t t2 t2 t2 ot t?
t\2 2
_j_zg 1_1—2e‘+e2t_(1—e) [(1-¢
2 t? 12 t2 t? t
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4.6 CUMULANTS
Cummlants generating function K(t) is defined as K, (t)=Ilog, M (t)

Provided the right hand side can be exoanded as a convergent series in power of t or If the
logarithm of the m.qg.f of a distribution can be expanded as a convergent series in powers

of tviz.,

I & t"
KX(t):k1t+kZZ+k3§+---+krﬁ+---:logMX(t)

L tr
=log| 1+tyy +E”2 +"'+ﬁ”r + .

Then the coefficients ky,ko,.... Are called the first, second cumulant of the distribution and
Kx(t) is called the cumulative function.

Differentiating r times both sides with respect to t and puttingt =0 and we have

d’ d’
kp =| —log My (t)| =] —Kx(t)
dt {0 dt =0

4.6.1 Properties of Cumulants
Property 1 : Additive Property

The r' cumulant of the sum of the independent random variables is equal to the
sum of the r™ cumulants of the individual variables. Symbolically

Ke(X1+ X+ Xz +. ... +X0) =K (X1)+kr(Xz)+kr(X3)+....+kr(Xn)

where Xj, i=1,2,...,n are independent random variables.
Proof

Since X, i=1,2,...,n are independent,

M, 4%, + X544 X, (1) =My (1) My (t)Mx_(t)---My (t)
Taking logarithm of each side
K+ X+ X5+, (1) = Ky (1) + Ky (1) + Ky (1) +---+ Ky ()

Differentiating with respect to ‘r’ times and put t= 0 we get

df df df df
— Ky X, e XX ()| = ——=Kx ()| +|—Kx (t)] +-+—Kx (1)
dt” 1t R+ Ag++ X, o dt" 1 o dt" 2 o dt" n

SR (KXot Xt L A X)) =K (X)) HKr(X) +Kr(Xs)+. ... +kr(X,)
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Property 2: Effect of change of Origin and scale on Cumulants

X —-a

Let U = then

—at
My(t)= e N My (t/h)
Taking logarithm on both sides

—at

log[ My, (t)] =log| e N My (t/h)

Ky (t) = log My (t) = ‘Tat+ Ky (t/h)

, , 42 , 3 , 47 r
k1t+k2t2—|+k3t3—l ko -:T+k1(t/h) kz(t/zh) +kr(t/r?)

Where kr' and k; are the r™ cumulants of U and X respectively. Comparing coefficients,

we get k; = klr:a and k, ::—:;r =23,....

Thus except the first cumulant, all the cumulants are independent of change of origin.
But the cumulants are not invariant of change of scale as the r' cumulant of U is (1/h")

times the r'" cumulant of the distribution of X.

4.7 CHARACTERISTIC FUNCTION
In some case moment generating function does not exists. The characteristic function
defined as
. I e™ f(x) dx for continuous probability distribution
b ()= E€™)={"
Ze”x p(x) for discrete probability distribution

4.7.1 Properties of characteristic function
Property 1

For all real t, we have
(i)  #0)=[dF(y=1

(i [e®I<[=¢(0)
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Property 2
¢ (t) is continuous everywhere, i.e., ¢ (t) is continuous function of ‘t’ in (-00,00).

Rather ¢ (t) is uniformly continuous in ‘t’.

Proof

For h=0]| g, (t+h) =g, (t) = T [ —e™]dF ()|

< [le™(E™ -1 dF(x) = [[e™ -1]dF(x)
The last integral does not depend on ‘t’. If it tends to zero as h = 0 then ¢y (t) is

uniformly continuous in ‘t’

Now |e™—1|<|e™+|1] <1+1 =2

]o|e"‘x —1|dF(x)§2T|dF(x):2

Hence by Dominated convergence theorem (D.C.T) taking the limit inside the

integral sign.

lim | g (¢+ ), (O] < [ lim|e™ ~1]dF () =0

= Lim¢x (t+h)= ¢x (t), vt

Hence ¢x(t) 1s uniformly continuous in ‘t’.

Property 3
dx(-t) and ¢«(t) are conjugate functions.

b

P (1) = ¢_X(t) , where a is the complex conjugate of ‘a’.

Proof
dx(t) = E(€"™) = E [Cos ty + i Sinty]
é, (t) = E(Cos tX —i SintX)
= E{Cos (-t) X +i Sin (-t) X }
=EE™) = ¢x (-1
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Property 4
If the distribution function of a r.v.x is symmetrical about zero, ie if
1-F(X) =F(-x)
= F(-x) = f(x)
Proof

By the definition the ¢(t) is real valued and even function of t

. (t) = T e™f(x)dx  put x=-y

= [ f(-y)dy

- Te"vf(—y)dy (f(-y) = f(y)

= dx (1)

= ¢« (-t) is an even function of ‘t’

Property 5
If X is some r.v with characteristic function ¢x (t) and u gz, '= E(X') exists.

r

0
atl’

#e'= ()=, (1)

t=0

Proof
#(t) = j ™ f (x)dx
Differentiating (under the integral sign)‘r’ times w.r. to t, we get
_ O\ AitX
90 = jw (ix)" ™ f (x)dx
= j i'x" ™ f (x)dx

= (i)' T X" e™f (x)dx

jt—rrmt) iy

j X" e™f (x)dx

t=0 t=0
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=(i)" T X" f(x)dx

= (i) EX) =i
Hence

= ()

0" o'
paqU) padl)

i)
:ur =7
I
Property 6
dex (1) = dx (ct) C is constant.

t=0 t=0

Property 7

If X1 and X, are independent random variables, then,
Bex, ) =By () + 0, (1)

Property 8 Effect of change of origin and scale on characteristic Function.

X—a )
If U=——_aand h being constants, then

h
a0=e" ¢ (%)

In particular we take a = E(X) = p(say) and h = ox = o, then the characteristic
function of the standard variate.
_X-E(XX) _X-u

é‘X
8, () =7 g(t 1 o)

Example: Find the characteristic function of the Poisson distribution

Z is given by

Solution:

The probability mass function of a Poisson distribution is
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x=0 x=0 x=0 X!
%0 it | it it it
bl b bt bt
x! 0! 1! 2!
x=0
it it
1! 2!
it it it
d)x(t):e_}‘e}“e :e—x+ke :e—X(l—e )
_ e M1-elt)
ox(t)=e
Example 4.10 Find the characteristic function of a pdf f(X)zge-a‘X‘,-oo<X<oo
Solution Let
_ itx _ itx & -ajx
oy ()= Ie f(x) dx = je S x
—00 —o0

—00 0

—00

0 0 0
2 2

0 © 0 w
o i e o . .
:E J' eitx gox dX+Ie'tX e %X g :E J' gitx+ax dX+J.e'tX OX g

:g_J. e(oe+|t)x dx +J'e (a-it)x dx }_[[ e(dﬂt)xJ ( f(a it)x j :|
2|7 (a+it) —(a—it)

_g e(0z+it)(0) e(oz+it)(—oo) —(a it )oo —(a it)0

2|\ (a+it) | (a+it) —it) ) | ~(a-it)

:g_])‘ SN gy +Te(0’it)x W -2 platit)x 0 o(a-it)x
2:oo 5 (a+it) | (a—lt)

«a [ e(oz+it)(0) e(oz+it)(—oo) —(a it Joo —(a it)0

_E_ (a+it) | | (a+it) —it) ) —it)

83

1



i_& e j—(o)H(o)—( e mﬂ{ L 1 }

2_ (a+it) —(a—it) 2| (a+it) (a-—it)
:g_(a—it)+(a+it)}=g a—it+a+it _a 2 _a 2

2 (arit)(a=it) | 2] (a*(it)) | 2|(a®-(i%))| 2]|(o®~(-D)X)

Example 4.11 Show that the distribution which the characteristic function e™ has the

density function is f(x)= 1_dx

T1+X

-0 XL

Solution

_ioo —itx _iw —\t\ —itx
()= j¢x(t)e dt=—- je e gt

—00

o0
1 _M ..
=— |e costx —isintx )dt
- felc )
—0o0

_ 1T P B O
= Ie (costx )dt —i Ie (sintx)dt
—© —00

21
15 15 15
_ -t _ —(t) _ -t
=—|e costx Jdt=— | e costx )dt =— | e (costx )dt
271-[ ( ) ZnJ. ( ) ZRI ( )
0 0 0
2 % 1] et "
:—Je_t (costx)dt == 5 (- cos xt + xsin xt)
27t0 T|1+X 0

1 1
fx)== 5
T1+X
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4.8 Probability Generating Function
For a random variable X which takes integral values 0,1,2,3,...only, we define the

probability generating function P(s) by
P(s)=Po + Pys+ pis” ++= > pys” = E(s)
n=0

The coefficient of s" in the expansion of P(s) in powers of s gives P(X=n). This

explains P(s) is called the probability generating function (p.g.f).
4.9 TCHEBYCHEV’S INEQUALTIY

The role of standard deviation as a parameter to characterize variance precisely
interpreted by means of the well known Chebychev’s inequality. The theorem discovered

in 1853 was later an discreased in 1856 by Bienayme.

Definition
If X is a random variable with mean p and variance o then for any positive
number K, we have
P{|X—,u|2kc7}£k—12

P{|X —y|<ka}gl—i

k2

Proof: Case (i) x is continuous y. v. By the definition.
o =6’ = E[X — EX)J?

= E[X - pJ?

= T(x—y)zf(x)dx. f(x) isp.d.fof x

=ﬂr(x—ﬂ)2f(x)dx+ﬂr (x—u)? £ (X)dx + T (x— 1) f (X)dx
2ﬂ_[g(x—ﬂ)zf(X)dXJr .T (x—p)? f(x)dx

We know that
X<u-koand x>pu+ko < |x-pul>ko
substituting (x - u) = ko we get.
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ol > #]U(ka)z f(X)dx + T (ka)? f (x)dx

utko

> (ko)? ﬂj.kaf(x)dx+ T f(x)dx}z(ko-){ﬂfaf(x)dx+ T f (x)dx

—0 H+ko —0 u+ko

> k262[P(XSy—ka)]+[P(X2,u—k0')]

o’ 2k*c*P[| x— u|> ko]

1
o’k?

P(|X—,u| 2k0')SO'2
Also since
P{IX -1 2ko}+P{|X - u| <ko} =1
We get
P{IX — 4 <ko}=1-P{X - |2k} =1-{ 1 ,
Case (i)
In the case of discrete random variable, the proof exactly similarly on replacing

integration by summation
We late ke =C>0

2 2
P{|X—y|zc}s% and—P{|X—y|<c}21—%
= P{X ~E)|2 0} <2 ang p{x ~ (0| <c} 21~ YA
c c

Example 4.12 If x is the number scored in a throw of a fair die, show that the
Tchebychev’s inequality gives P{|x-u| > 2.5c} < 0.47, where g is the mean of X, while the
actual probability is zero.
Solution

Here X is a random variable which takes the values 1,2,3,4,5,6 with probability 1/6.

Hence

£00 =% px=x)

(SN GHRGHESHAGHRGH

= 1(1+2+3+4+5+6): 27
6 6 2
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E(X?) =(12xlj+(22x1)+(32x1j+(42x1j+(52x1j+(62 +Ej
6 6 6 6 6 6

E(X?) =1(1+4+9+25+36) _a
6 6

CEx2)_(E(x ) <[ (7) 91 49 35 _
Var( X )=E(X?)—(E(X)) _(GJ (2} =% _12_2.9167

Var X
kZ

For k > 0, Tchebychev’s in equality gives PﬂX —E(X)|> k}<

Where Choosing k = 2.5

2.91627 o047
(2.5)

P{IX—p|>25} <
The actual probability P is given by
P{|X—p|20.25} =P{|X - E(X)|20.25}
=P {|X-3.5/>0.25/

= P[X lies out side the limits 3.5-2.5 and 3.5+2.5i.e., 1 and 6]
= 0 (Since X being number on a die cannot lie outside the limit 1 and 6)

Example 4.13 A fair die is tossed 720 times. Use Chebyshev’s inequality to find a lower
bound for getting 100 to 140 sixes.

Solution: Let X be the number of sixes obtained when a die is thrown 720 times.

1

p = probability of success in a single throw = -

qzl-%zgand here n =720

Thus X follows Binomial distribution with

Mean =p =np ie., 6 =120

Variance o° = npqie., 6?=100 and 6 = 10.

We have to find lower bound for the probability P( 100 < X < 140)
Now, by Chebyshev’s inequality

1

P(X- pl <ko )>1-—

ie., P(u- ko< X < p+ ko) > 1- =

-
&

Comparing P(100 < X < 140) with LHS we get,
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H- ko =100 ie. 120-10k =100
and p+ ko = 140 ie. 120+10k = 140
Subtracting, -20k =-40 ie., k=2

P(100 < X <140) >3

Hence the lower bound is % =0.75
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UNIT -V

5.1 CONVERGENCE IN PROBABILITY

Definition

A sequence of random variables Xj;, X, ...., X, is said to convergence in

probability to a constant a, if for any € >0

lim P(X, -8 <e)=1

n—oo

or its equivalent. lim P([Xn —a|> g)z Oand

nN—o0

p
we write X, —>aasn—oo.

If there exists a random variable X such that
P

Xp— X —a as n—o then we says that the given sequence {X,} of random variables

converges in probability to the random variable X.

5.2 Weak Law of Large Numbers (WLLN)

Statement:

Let X1, Xz, Xs,.....Xn be a sequence of random variables and , pa,.....,un be their

respective expectation and Let
B, = Var(Xi+Xo+....+X,) < o0

when P{ Xy + X+t X, _M+ﬂz+----ﬂn|<8}21_n
n no |
for all n > ny where € and n are arbitrary small positive numbers, provided.
IimB—g—>0
n—o N
Proof

X+ X, +..+ X,

Using Chebychev’s inequality to the random variable

any € >0
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{SinceVar( —Var(X, + X, +..+ X )}

X, + X, +... +Xj
B,
2

i

So, far, nothing is assumed about the behaviour of B, for indefinitely increasing

X+ X, +ot X, _ﬂl+ﬂz+----ﬂn|<g}>1
n n &

values of n. Since e is arbitrary,

large.Thus, having chosen two arbitrary small positive numbers € andr, number no can

found so that in equality

|

This conclusion leads to the following important results, known as W.L.L.N,With

z <7Twill hold for n > ny consequently, we shall have

X1+X2r-:....+ Xn _/ul+1u2n+""’un|<g}21—77 foralln> No (8’ Tl)

the probability approaching unity or certainty as near as we please, we may expect that the
arithmetic mean of values actually assumed by n random variables will differ from the
arithmetic mean of their expectations by less than any given number, however small,

provided the number of variables can be taken sufficiently large and provided the

condition.
B, L
pel —>0asn — oo is fulfilled
Remarks
1. Weak law of large numbers can also be stated as,
— L, —
X0 = 0 provided

B
— —>0asn - o
n

2. For the existence of the law, we assume the following conditions
(1)  E (X)) exists for all i.
(i)  Bp=Var(X;+Xy+....+Xp) exists and

Bn
~ —F—0asn 5o
(iii) n
Condition (i) is necessary, without it the law itself cannot be stated. But the
condition (ii) & (iii) are not necessary (iii) however a sufficient condition.
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5.3 Bernoulli’s Law of Large Numbers

Statement: Let there be n trails of an event, each trail resulting in a success or
failure. If X is the number of successes in n trails with constant probability p of success for
each trail, then E(X) = n p and Var(X) = npg, q = 1-p. The variable X/n represents the

proportion of success or the relative frequency of success and

E[éj = p and Var (éj :%Var(X) then.

n n) n

[t
n

:>P{><

<g}—>1asn - ®

—~-p
n

25}—>0asn - ®

for any assigned € > 0. This implies that (x/n) converges in probability to p as n 2> .
5.4 Khinchin’s theorem

Statement: If Xj’s are identically and independently distributed random variables,
the only condition necessary for the law of large number to hold is that E(X;); 1 =
1,2,3,.....,n should exists.

5.5 Central limit theorem
If Xi (i =1, 2, ...,n) be independent random variables such that E(X;) = w; and
V(X)) = o then under certain very general conditions, the random variables
Sn=X1+Xo+. ...+ X, is asymptotically normal with mean p and standard deviation ¢ where,
n n
p=3 pand  o’=3 u’
1=l 1=l
Central Limit theorem for (independent and identically distributed) variables was proved
by Linderberg and Levy. If X3, Xy, ...Xn are independent and i.i.d random variables with
EX)=w Var(X)=o? i=123...n then the sum S, = X;+Xpt...+Xn is

asymptotically normal with mean p = np; and variance ;? = no?
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