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PROBABILITY THEORY 

UNIT – I 

 

1.1 Random Experiment  

 An experiment is an operation whose output cannot be predicted with certainty. If in 

each trail of an experiment conducted under identical conditions, the outcome is not unique, 

but may be any one of the possible outcomes, then such an experiment is called Random 

Experiment. 

 

1.2 Sample Space  

A sample space can be defined as the set of all possible outcomes of an experiment and is 

denoted by S.The set S = {E1, E2, E3,..., En}  is called a sample space of an experiment 

satisfying the following two conditions  

(i) Each element of the set S denotes one of the possible outcomes 

(ii) The outcome is one and only one element of the set S whenever the experiment is 

performed. For example, in a tossing a coin  Sample space consists of head and tail 

S={H,T} and the two coins are tossed then the sample space  S ={HH,HT,TH,TT}. 

 

1.3 Trail and Events  

Any particular performance of a random experiment is called trail and the outcome or 

combinations of outcomes are termed as event.  

 

1.4 Exhaustive Events  

The total number of possible outcome of a random experiment is known as the 

exhaustive events. For example, in a tossing a coin head and tail are the two exhaustive cases. 

In drawing two cards from a pack of cards, the exhaustive number of cases is 2
52C , since 2 

cards can be drawn out of 52 cards in    2
52C  ways. 

  

1.5 Favourable Events  

The number of cases favourable to an event in a trail is the number of outcomes which 

entail the happening of the event. For example, in throwing of two dice, the number of cases 

favourable to getting the sum 5 is (2,3),(3,2),(1,4) and (4,1) 
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1.6 Mutually Exclusive Events  

Events are said to be mutually exclusive or incompatible if the happening of any one 

of them precludes the happening of all the others, i.e., if no two or more of them can happen 

simultaneously in the same trail. For example, in tossing a coin, both head and tail cannot 

occur in a single trail. 

 

1.7 Equally Likely Events 

Outcomes of a trail are said to be equally likely if taking into consideration all the 

relevant evidences, there is no reason to expect one in preference to the others. For example, 

in tossing a coin, getting a head and tail are equally likely events. 

 

1.8 Independent Events  

Several events are said to be independent if the happening of an event is not affected 

by the supplementary knowledge concerning the occurrence of any number of the remaining 

events. For example, in tossing a unbiased coin, the event of getting a head in the first toss is 

independent of getting a head in the second, third and subsequent throws. 

 

1.9 Algebraic Operations of Events  

 For events A, B, C, then  

(i) (AB) = {S: A or B}    

(ii) (AB) = {S: A and B} 

(iii) A
c
 or A  (A complement ) = {S: A } 

(iv) A-B= {S: A but B} 

(v) A   for every A, B 

(vi) BA  

(vii) A=B if and only if A and B have same elements, i.e., A  B and B  A 

(viii) AB can be denoted by A+B if A and B are disjoint. 

(ix)  A and B are disjoint (mutually exclusive)  

Notes : Algebra of  Sets 

Commutative law ABBA  , ABBA   

Associative law CBACBA  )()( , CBACBA  )()(  

Distributive Laws )()()( CABACBA   
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                             )()()( CABACBA   

 Complementary  law  A A  = S, A A  = , AS=S, AS= A, A = A, A =  

 Difference law            A-B = A B .  A-B = A-(AB) =(AB)-B 

A-(B-C) = (A-B)(A-c)  ,  (AB)-C = (A-C)(B-C) 

DeMorgan‟s Law 
ccc BABA  )( , 

ccc BABA  )(  

      

1.10 MATHEMATICAL (OR CLASSICAL OR PRIORI) PROBABILITY   

 If a random experiment or a trail results in „n‟ exhaustive, mutually exclusive and 

equally likely outcomes out of which „m‟   are favourable to the occurrence of an event E, 

then the probability „P‟ of occurrence of E , usually denoted by P(E), is given by  

                             n

m

 cases exhaustive ofnumber  Total

Cases favourable of Number
EP )(

 

 

1.11 STATISTICAL (OR EMPIRICAL) PROBABILITY 

If an experiment is performed repeatedly under essentially homogeneous and identical 

conditions, then the limiting value of the ratio of the number of times the event occurs to the 

numbers of the trails, as the number of trails becomes infinitely large, is called the probability 

of happening of the event, it begin assumed that the limit is finite and unique. Symbolically, 

if in N trails an event E happens M times, then the probability of the happening of E, denoted 

by P(E) is given by        

                                                       N

M
lim)E(P

N 


 

1.12 AXIOMS OF PROBABILITY  

The axioms approach was given by A.N Kolmogrov. With each event Ei in a finite sample 

space S, associate a real number, say P(Ei) called the probability of an event Ei satisfying the 

conditions: 

(i) Nonnegative:  0≤ P(Ei) ≤ 1.  

This implies that the probability of an event is always non-negative and can never 

exceed. If P (A) = 1, the event A is certainly going to happen and if P (A) = 0, the 

event is certainly not going to happen (impossible event). 

(ii) Certainty  : The probability of the sample space is 1.P(S) =1,   

(iii)  Union       : If {An} is any finite or infinite sequence of disjoint events in B, then           
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















 n

i

i

n

i

)A(PP iA
11


                       (axioms of additivity)  

 

1.13 Theorems on Probability 

Theorem 1.1 Probability of the impossible event is zero, i.e., P() =0 

Proof:  

Impossible event contains no sample point and hence the certain event S and the   

      impossible event    are mutually exclusive. 

   S =S   P(S) =P(S)  

 P(S) =P(S)+P() using Axiom (iii) of probability 

      P(S) = P(S)+P()  

P() =P(S)-P(S) = 0 

P() = 0 

Theorem 1.2 Probability of the complementary event A of A is given by P(A)- 1  )A(P   

Proof :  

 A and A  are mutually disjoint events, so that A A  = S  

 P( A A  )=P( S )  from axioms (ii) and (iii) 

    P (A) +P ( A ) =P(S) 

 P (A) +P ( A ) = 1  

P ( A ) = 1- P (A) 

P(A)- 1  )A(P   

Theorem 1.3 If B  A, then  

                        (i) P(A B ) = P(A) –P(B)  (ii) P(B) ≤ P(A)  

Proof   

(i) When B  A, B and A B  are mutually exclusive 

        Events so that  A = B (A B ) 

  P (A) = P[B (A B )] 

       = P(B)+P (A B ) by axioms(iii) 

 P(A) - P(B)= P(A B )   

S   A 

 

AB  

  B 
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             P(A B )= P(A) - P(B)  

(ii) P(A B ) ≥P(A) - P(B) ≥P(A) ≥ P(B) 

 

Hence B  A  P(B) ≤ P(A) 

Theorem 1.4 If A and B are independent events, Prove that  

(i) A  and B are independent   

(ii)  A and B  are independent  and  

(iii)  A and B  are independent 

 

Proof :  If A and B are independent events,  

                             then P(AB) = P(A) .P(B) 

(i) From the diagram  

B = (AB)( A B) 

      Also  (AB) and ( A B) are mutually exclusive 

P(B) = P[ (AB)( A B)]  

          = P (AB) + P ( A B) 

P(B) - P (AB) = P ( A B) 

P ( A B) = P(B) - P (AB) = P(B) -P (A) P(B)  

                                               = P(B) [1–P (A) ] = P(B) P ( A ) 

 P ( A B) = P(B) P ( A )    A  and B are independent   

(ii) From the diagram  

A = (A B )( AB) 

Also  (A B ) and ( AB) are mutually exclusive 

P(A) =P[ (A B )( AB)]    = P (A B )+P( AB) 

P(A)- P( AB) = P (A B ) 

 P (A B ) = P(A)- P( AB) = P(A)- P( A)P(B)    = P(A)[1-P(B)] 

                                P (A B )    = P(A)P( B ) 

A and B  are independent 
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(iii)  A and B  are independent 

 DeMorgan‟s Law, A  B  = BA  

P( A  B ) = P( BA ) = 1-P(AB) = 1- [P(A)+P(B)-P(AB)] 

           = 1-[P(A)+P(B)-P(A)P(B)] 

                                                            =1-P(A)-P(B)+P(A)P(B)  

                                                            =1-P(A)-P(B)[1-P(A)] 

                                                             =[1-P(A)][1-P(B)] =P( A ) P( B ) 

P( A  B ) = P( A ) P( B )  

 A and B  are independent 

 

1.14 Addition Theorem of Probability  

If A and B are any two events and are not disjoint, then  P(AB) =P(A)+P(B)-P(AB)  

 Proof:  

   From the Venn diagram  

    Let  A = [(A B )(A 

     P(A) = P [(A B )(A using axiom (iii) 

 P(A) =P(A B )+P(A 

 

Let  B = [( A (A 

        P(B) = P[( A (Ausing axiom (iii) 

 P(B) = P( A )+P(A 

From (1)+(2) , we get  

 P(A)+P(B) = P(A B )+P(A P( A )+P(A 

P(A P(A 

 

 P(A)+P(B)P(AP(A 

P(AB) =P(A)+P(B)-P(AB) 

 

Similarly for the three events  

           P(ABC) = P(A)+P(B)+PC)-P(AP(AC)- P(BC)+P(ABC)  
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1.15 Multiplication Theorem of Probability for Independent Events  

   

If A and B are the two events with positive probabilities {P(A)0,P(B)0} then A and 

B are independent if and only if P(AB) = P(A) .P(B) 

Proof  

If an event happen in n1ways of which a1 are successful and the event B can happen in 

n2 ways of which a2 are successful, and to combine each successful event in the first with 

each successful event in the second case. Thus the total number of possible cases in a1x a2. 

Similarly, the total number of possible cases is n1x n2. By the definition the 

 probability occurrence of both events, 1 2 1 2

1 2 1 2

a x a a a
x

n x n n n
  

But 1

1

a
P(A)

n
  and 2

2

a
P(B)

n
  

P(AB) = P(A) .P(B) 

 

 

1.15 CONDITIONAL PROBABILITY  

 

The multiplication theorem is not applicable in the case of dependent events. If A and 

B are the two events are said to be dependent, when B can occur only when A is known to 

have occurred. The probability attached to such an event is called conditional probability and 

its denoted by )A/B(P  

                                              )A(P

)BA(P
)A/B(P




 

The general terms of multiplication in its modified form in terms of conditional 

probability becomes  

P(AB) = P(B) P(A/B)  

                        P(AB) = P(A) P(B/A) 
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1.16 BAYES THEOREM  

Statement  

 If E1,E2,E3,...,En are mutually disjoint events with P(Ei)0,(i =1,2,3,...,n), then  for any 

arbitrary  event A which is a subset of 
i

n

i
E

1


 such that P(A)>0, we have  

                                    

)A(P

)E|A(P)E(P

)E|A(P)E(P

)E|A(P)E(P
)A|E(P ii

n

i

ii

ii
i 


1  

Proof :  

Let  E1,E2,E3,...,En  are   and mutually disjoint events and A be any another event on 

the sample space, then  (AEi) = Ei (i =1,2,3,...n) are mutually disjoint events  

 

                     A = (AE1 ) (AE2 ) E3)(AEn) 

 

              P(A) =P[(AE1 ) (AE2 ) E3)(AEn)] by using axioms of (iii) 

 

               P(A) =P(AE1 )P (AE2 )+PE3)+...+(AEn)  

                             P(A) 




n

1i

i )EA(P      

                                                    Multiplication theorem of probability                    

P( A B ) P( A| B )P( B )        

                  

)E|A(P )E(P)A(P i

n

i

i




1      

                   )A(P

)EA(P
)A|E(P i

i




 
 







n

i

ii

iiii
i

)E|A(P)E(P

)E|A(P)E(P

)A(P

)E|A(P)E(P
)A|E(P

1  

1

i i i i

n

i

i i

i

P( E )P( A| E ) P( E )P( A| E )
 P( E | A)

P( A)P( E )P( A| E )


  

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Problems  

Example 1.1 Two unbiased dice are thrown. Find the probability that (i) both the dice show 

the same number,(ii) the first die shows 6 ,and (iii) the total of the numbers on the die is 

greater than 8  

 

Solution : In a random throw of two dice, since each of six faces of one can associated with 

the each of six faces of the other die, the total number of cases is 6x6 = 36 as follows  

 

S = 

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

 

Exhaustive number of cases n(s) = 36 

(i) The favourable cases that the both dice, shown the same number are  

(1,1),(2,2),(3,3),(4,4),(5,5), and(6,6)  i.e., n(E) = 6 

                   6

1

36

6
number same the shown dice twoP )(

 

 

(ii) The favourable cases that the first die shows 6 are  

(6,1),(6,2),(6,3),(6,4),(6,5), and (6,6) i.e., n(E) = 6 

                                      6

1

36

6
6 shows die firstP )(

 

 

(iii)   The cases favourable to getting a total of more than 8 are  

(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6) i.e., n(E)  = 10 

                  18

5

36

10
 8 than more of  totala gettingP )(
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Example 1.2 Four cards are drawn at random from a pack of 52 cards, find the probability  

(i) they are a king, a queen, a jack and an ace. 

(ii) two are kings and two are queens. 

(iii) Two are black and two are red 

(iv) There are a two cards of hearts and two cards of diamonds 

Solution: Four cards can be drawn from a well-shuffled pack of 52 cards in
4

52C , which 

gives the exhaustive number of cases n(S) = 4
52C  

 

(i) 1 king can drawn out of 4 kings in 14C ways similarly 1 queen,1 jack and an ace can 

each  be drawn in 14C ways 

Favourable numbers of cases  n(E)   = 1111 C4xC4xC4xC4  

Required probability = 
4C52

C4xC4xC4xC4 1111
 

 

(ii) 2 king can drawn out of 4 kings in 2C4 ways similarly 2 queen be drawn in 2C4 ways 

Required probability = 
4C52

C4xC4 22
 

(iii)  Since there are 26 black cards and 26 red cards in a pack of cards,  

 

Required probability = 
4C52

C13xC13 22

 

 

Example 1.3 What is the chance that a leap year selected at random will contain 53 Sundays? 

 

Solution:  In leap year (which consists of 366 days), there are 52 complete weeks and 2 days 

over. The possible combinations for these two days are ,   

(i) Sunday and Monday    (ii) Monday and Tuesday (iii) Tuesday and Wednesday  

(iv)  Wednesday and Friday (v) Friday and Saturday (vi) Saturday and Sunday  

Required probability = 
7

2
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Example 1.4 A bag contains 8 white and 4 red balls. 5 balls are drawn at random. What is the 

probability that 2 of them are red and 3 of them white? 

 

Solutions : The total number of balls in the bag = 8 + 4 = 12 

The number of balls drawn = 5 

 5 balls can be drawn from 12 balls in 12C5 ways i.e., n(S) = 12C5 

                  2 red balls can be drawn from 4 red balls in 4C2 ways 

       3 white balls can be drawn from 8 white balls in 8C3 ways  

 The number of favourable cases = n(E)= 4C2x8C3 

Required Probability = 
5

32

C12

C8xC4

 

 

 Example 1.5 An urn contains 6 white, 4 red and 9 black balls. If 3 balls are drawn at 

random, find the probability that: (i) two of the balls drawn are white, (ii) one is of each 

colour, (iii) none is red, (iv) at least one is white. 

Solution  

 

Total number of balls in the urn is 6+4+9 = 19. Since 3 balls can be drawn out of 19 

in 19C3 ways , the exhaustive number of cases are 19C3 

 

(i) two of the balls drawn are white 

The required probability = 

3

136

C19
1Cx2C  

  

(ii) one is of each colour 

 The required probability = 

3

346

C19
1

Cx
1

C x
1

C
  

                   (iii)      None is red, 

The required probability = 

3

15

C19
3

C
 

(iii) at least one is white 

The required probability = 

3

13

C19
3

C
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Example:1.6  In a given race the odds in favour of three horses A,B,C are 1:2, 1:3, 1:4 

respectively. Assuming that a dead heat is impossible,  find the probability that one of them 

will win the race. 

 

Solution: If P(A), P(B), P(C) are the probabilities of winning of the horses A, B, C 

respectively, then  

 
5

1
     

4

1
        

3

1











41

1
)C(P

31

1
)B(P

21

1
)A(P  

These events are mutually exclusive, the chance that one of them wins  

 
60

47

5

1

4

1

3

1
                   

P(C)+P(B)+P(A)= P(AUBUC)


 

The required probability = 
60

47

  

 

Example 1.7 An integer is chosen at random from the first two hundred digits. What is the 

probability, that the integer chosen is divisible by 6 or 8. 

Solution: P(divisible by 6 or 8) =P(divisible by 6  8) 

A= integer chosen is divisible by 6  

 B = integer chosen is divisible by 8 

                      200

8
 B)P(A   

200

25
  P(B)     )A(P 

200

33

 

              P(AB)= P(A)+P(B)-P(AB) = 4

1

200

858

200

8

200

25

200

33



  

Required probability = 4

1

 

 

Example :1.8 A is known to hit the target in 2 out of 5 shots whereas B is known to hit the 

target in  3  out of 4 shots. Find the probability of the target being hit when they both try? 

Solution: 

 Let A be the event that „A‟ hits the target and B the event that „B‟ hits the target. 

                    P(A) = 
5

2
      P(B) = 

4

3
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 P(AB)   = P(A)+P(B)- P(AB) 

      = P(A)+P(B)-P(A).P(B)  [since A and B are independent] 

  P(AB)   =
5

2
+

4

3
   -

5

2

4

3
 = 

20

17

20

6158



 

 

Example 1.9 If the letters of the word “REGULATIONS” be arranged at random, what is 

this chance that there will be exactly 4 letters between R and E. 

   

Solution: 

The word “REGULATIONS” consists of 11 letters. The two letters R and E CAN 

OCCUPY 11P2 that is 11 

       The number of ways in which there will be exactly 4 letters between R and E are          

enumerated below  

 

(i) R is in the 1
st
  place  and E is in the 6

th
 place  

(ii) R is in the 2
nd

 place  and E is in the 7
th

 place 

(iii) R is in the 3
rd

  place  and E is in the 8
th

 place 

(iv) R is in the 4
th

  place  and E is in the 9
th

 place 

(v) R is in the 5
th

  place  and E is in the 10
th

 place 

(vi) R is in the 6
th

  place  and E is in the 11
th

 place 

Since R and E interchange their position,  

 The required number of favourable cases is 2x 6 = 12. 

 The required probability is = 12/110 = 6/25 

 
Example 1.10   A letter is taken out at random from “ASSISTANT” and another is taken out 

from “STATISTICS”. What is the chance that they are same letters? 

 

Solutions  

        ASSISTANT              AA  I  N SSS  TT 

        STATISTICS               A II C SSS TTT     Here N and C are not common  

 

Probability of choosing A = 
45

1

1C

1C
x

1C

1C

10

1

9

2

  

Probability of choosing I = 
45

1

10

2
x

9

1
  

Probability of choosing S = 
10

1

10

3
x

9

3
  

Probability of choosing I = 
15

1

10

3
x

9

2
  



14 

 

Total Probability =  
90

19

15

1

10

1

45

1

45

1
  

 

 

Example 1.11 From a city population, the problem of selection (i) a male or a smoker is 7/10 

(ii) a male smoker is 2/5 (iii) a male, if a smoker is already selected is 2/3 find the probability 

of selecting (a) non-smokers (b) a male and c) smoker, if a male is first selected. 

 

Solution: 

 A : a male is selected   B :  a smoker is selected 

 

Given P(AB) = 
10

7
  ; P(AB) = 

5

2
 ;  P(A | B) =

3

2
  

(a) The probability of selecting a non-smoker is   

5

2

5

3
1

3
2

5
2

1
)B|A(P

)BA(P
1)B(P1)B(P 


   

            P(B) = 2/5  

 

(b) The probability of selecting a male ( by addition theorem) 

      

     P(A) = 
2

1

5

3

5

2

10

7
)B(P)BA(P)BA(P    

(c) The probability of selecting a smoker if a male is first selected is  

 

P(B|A) = 
5

4

2
1

5
2

)A(P

)BA(P



 

 

Example 1.12 If A and B are events such that P (AB)= 4

3
, 

1

4
P( A B )   and  P( A ) = 

3

2
 

Find P ( A /B). 

Solution:              P( A /B) = 
 

)(BP

BAP 
    = )B(P

)BA(P)B(P 
 

                           P(A)  =1 - P( A ) = 1-
3

2
= 

3

1
       ;      P(AB) = 3/4 

            ie., P(AB) = P(A)+P(B)- P(AB)    
4

3
 = 

3

1
+P(B) -  

4

1
                               

        P(B)= 
4

3
+ 

4

1
-

3

1

 
=

 3

2

12

8

12

439



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                          Hence P( A /B) = 

3

2
4

1

3

2


= 0.625 

 

Example: 1.13 Two friends A and B apply for two vacancies at the same post. The 

probabilities of their selection are ¼ and 1/5 respectively. What is the chance that i) One of 

them will be selected, (ii) both will be selected, (iii) none will be selected, (iv) atleast one will 

be selected and (v) at most one will be selected.  

 

Solution:  

Let A – Event A is selected,   B – Event B is selected  

P(A) = 
4

1
     P(B) = 

5

1
 

P( A ) = 1-P(A) = 1-
4

1
=

4

3
      ; P( B ) = 1-P(B) = 1-

5

1
=

5

4
       

 

(i) One of them will be selected 

i.e.,P[(A is selected but B is not selected)OR(B is selected but A is not selected) 

20

7

20

3

20

4

4

3
x

5

1

5

4
x

4

1
)B(P )A(P)B(P )A(P)]BA()BA[(P 

 

P(One of them will be selected )= 20

7

 

 

(ii) both will be selected P(AB) = P(A)P(B)= 
4

1

5

1
= 

20

1
 

 

(iii)   none will be selected P( A B )
 
= P( A )P( B )= 4

3

5

4

= 5

3

20

12
  

 

(iv) atleast one will be selected 

P(One of them will be selected or both will be selected) = 
20

7
+

20

1
=

5

2

20

8


 
 

(v) atmost one will be selected 

P(none will be selected or One of them will be selected ) = 
20

19

20

712

20

7

5

3



  



16 

 

Example 1.14 A card is drawn from a well-shuffled deck of 52 cards. What is the probability 

that it is either a spade or a king? 

 

Solution  

If A and B denote the events of drawing a 'spade card' and a 'king' respectively, then 

the event A consists of 13 sample points, whereas the event B consists of 4 sample points. 

Therefore, 

 

52

4
P(B)    )A(P 

52

13

 
 

The compound event A  B consists of only one sample point, viz.; king of spade. So, 

    )BA(P
52

1


 

P(AB) = P(A)+P(B)- P(AB)  = 
52

16

52

1

52

4

52

13


 
 

 

Example: 1.15  A bag contains 5 white and 3 black balls. Two balls are drawn at random one 

after the other without replacement. Find the probability that both balls drawn are black. 

Solution : The probability of drawing a black ball in the first draw. 

P(A)  = 
8

3

35

3



 

The probability of drawing the second black ball given that the first ball drawn is black  

P(B/A)  = 
7

2

25

2



 

 The probability that both balls drawn are black is 
28

3

7

2
x

8

3
 P(B/A) APBAP  )()(  

 

Example: 1.16 A box contains 4 bad and 6 good tubes. Two are drawn out from the box at a 

time. One of them is tested and found to be good. What is the probability that the other one is 

also good?  

Solutions:  Let A be the event that the first tube is good and B be the event that second is also 

good 

P(first tube is good) = P(A) = 1

1

6 3

10 5

C

C
  
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P(Both the tubes are good ) = P (AB) = 5

3

C10

C6

2

2 
 

 
9

5

53

31





/

/

)A(P

)BA(P
)A/B(P   

 

 

Example 1.17  The contents of urns I,II and III are as follows 

(i) 1 white, 2 black and 3 red balls 

(ii) 2 white , 1 black and 1 red balls and  

(iii) 4 white, 5 black and 3 red balls  

One urn is chosen at random and two balls drawn from it. They happen to be white and red. 

What is the probability that they come from urns I, II and III? 

 

Solutions: Let E1, E2, and E3 denote the events that the urn I,II, and III is chosen 

respectively, and let A be the event that the two balls are taken from the selected urn are white 

and red. Using Baye‟s theorem  

 P(E1) =P(E2) =P(E3) = 
3

1
  

          
5

1

C6

3x1
EAP

2
1 )|(

       
3

1

C4

1x2
EAP

2
2 )|(

       
11

2

C12

3x4
EAP

2
3 )|(

 

118

33

11

1
x

3

1

3

1
x

3

1

5

1
x

3

1
5

1
x

3

1

)E|A(P)E(P

)E|A(P)E(P
)A|E(P

3

1i

ii

11
1 






  

118

55

11

1
x

3

1

3

1
x

3

1

5

1
x

3

1
3

1
x

3

1

EAPEP

EAPEP
AEP

3

1i

ii

22
2 








)|()(

)|()(
)|(

 

118

30

11

1
x

3

1

3

1
x

3

1

5

1
x

3

1
11

1
x

3

1

EAPEP

EAPEP
AEP

3

1i

ii

33
3 








)|()(

)|()(
)|(
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Example 1.18:  A factory produces a certain type of outputs by three type of machines. The 

respectively daily production figures are Machine I: 3,000 units; Machine II: 2,500 units; 

Machine III: 4,500 units. Past experience shows that 1 percent of the output produced by the 

machine I is defective. The corresponding fraction of defectives for the other two machines 

are1.2 percent and 2 percent respectively. An item is drawn at random from the days 

production run and found is to be defective. What is the probability that it comes from the 

output of (i) Machine I, (ii) Machine II and (iii) Machine III. 

 

Solution : Let E1,E2,and E3 are the events that the output produced by machines I,II and III 

respectively and A be the event that the output is defective 

           Using Baye‟s theorem  

P(E1) =  
000,10

3000
 ;   P(E2) = 

000,10

2500
     ;   P(E3) = 

000,10

4500
 

           P(A/E1) =1% =0.01  ;   P(A/E2)=1.2% =0.012     ;   P(A/E3) = 2% = 0.02 

 

The probability that an item selected at random from day‟s production is defective is given by 






3

1i

ii )E/A(P)E(P)A(P
 

0.015         

 015.002.0x45.0012.0x25.001.0x03.0)A(P
 

 

(i) 
5

1

015.0

003.0

)A(P

)E/A(P)E(P
)A/E(P 11

1   

(ii) 
5

1

015.0

003.0

)A(P

)E/A(P)E(P
)A/E(P 22

2   

(iii) 
5

3

015.0

009.0

)A(P

)E/A(P)E(P
)A/E(P 33

3   

 

 

 

 

 

 

 



19 

 

Aliter : The posterior probabilities can be obtained elegantly in a tabular form as  given below   

Event 

Ei 

Prior Probabilities 

P(Ei) 

 

Conditional 

Probabilities 

P(A/Ei) 

Joint 

probabilities 

P(Ei) P(A/Ei) 

 

Posterior Probabilities 

)A|E(P i  

E1 
000,10

3000
=0.30 0.01 0.003 

5

1

015.0

003.0


 

E2 
000,10

2500
=0.25 0.012 0.003 

5

1

015.0

003.0


 

E3 
000,10

4500
=0.45 0.020 0.009 

5

3

015.0

009.0


 

Total 1.00  P(A) = 0.015 1 

 

 

Example 1.19 There are three coins, identical in appearance, one of which is ideal and the 

other two biased with probabilities 1/3 and 2/3 respectively for a head. One coin is taken at 

random and tossed twice. If a head appears both the times, what is the probability that the 

ideal coin was chosen. 

Solution   

 Let B is the event of obtaining 2 heads in two tosses of the selected coin and A1, A2, A3 

respectively the events of choosing the first (ideal), second and third coins , we have  

Probability of getting a head in a toss =  
2

1
 

P(A1)= P(A2)=P(A3) = 
3

1
  and P(B/A1) = 

4

1

2

1
2









 

Also, probabilities of turning head up with second and third coins respectively being 

1/3 and 2/3 , we have  

9

1

3

1
)A/B(P

2

2 







    and 

9

4

3

2
)A/B(P

2

3 







    

 

Using Baye‟s theorem  
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108

29
12

1

9

4
x

9

1
x

4

1
x

4

1
x

)3A)A(P)A)A(P)A)A(P

)A)A(P

B
A

P
32211

111


















3

1

3

1

3

1
3

1

             

P(B/ P(B/ P(B/ 

P(B/ 
 

 

29

9

B
A

P 1 






  
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Unit – II 

2. RANDOM VARIABLE  

Let S be a sample space associated with a given random experiment. A real valued 

function defined on S and taking values in R(-∞,∞) is called one dimensional random 

variable.  

A random variable X is a  rule which associates uniquely a real number with every 

elementary event EiS, i =1,2,3,...n i.e, a random variable is a real valued function which 

maps the sample space on to the real line. Discrete Random Variables and Continuous 

Random Variables are the two types of a random variable.  

 

2.1 DISCRETE RANDOM VARIABLE  

 

A variable which can assume only a countable number of real values and for which 

the value which the variable takes depends on chance is called discrete random variable. In 

other words, a real valued function defined on a discrete sample space is called a discrete 

random variable. For instance, numbers of members of family, number of students in a class, 

number of passenger in a bus, tossing a coin and rolling a dice are the example of discrete 

random variable.  

  

2.1.1 Probability Mass Function  

If X is one dimensional discrete random variable taking at most a countable in finite 

number of values x1, x2, x3,... then it is probabilistic behaviour at each real point described by 

a function called the probability mass function. 

 

Definition:  

If X is a discrete random variable with distinct  x1, x2, x3,...xn,..., then the function P(x) 

defined as 









,...,,i;xx if          0       

x  x if    )xP(X
  )x(P

i

ii
X

321
      is called the probability mass 

function of random variable  X 

 

Remarks: The numbers p(xi) ; i =1,2,3,... must satisfy the following conditions: 

(i) P(xi) ≥ 0  and (ii) 
1

1i

i

P( x )




  
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2.2 CONTINUOUS RANDOM VARIABLE   

A random variable which can assume any value from a specified interval of the form 

[a,b] is known as continuous random variable. 

  

2.2.1 PROBABILITY DENSITY FUNCTION  

If X is a continuous random variable, it will have infinite number of values in any interval 

however small. The probability that this variable lies in the infinitesimal interval (x,x+dx) is 

expressed as f(x) dx, where the function f(x) is called probability density function (p.d.f), 

satisfying the following conditions 

(i) f(x) ≥ 0  x   (ii) 




 1 dx )x(f   

2.3 DISTRIBUTION FUNCTION  

Let X be a random variable, the function F defined for all real x  by x)P(X )x(F   

is
 
called the distribution function(d.f) or cumulative distribution function of the random 

variable X. 

 If random variable X is discrete then distribution function is x)P(X )x(F   

 

If X is continuous random variable then distribution function is  

                                                                  

x

F( x ) P( X x ) f ( x ) dx 



     

2.3.1 Properties of Distribution Function  

 

1. If F is the distribution function of random variable X and if a<b then  

                         P(a < X ≤ b) =F(b)-F(a)  

2. If F is the distribution function of random variable X then 

 (i) 0 ≤ F(X) ≤ 1(ii)F(x) ≤ F(Y) if x < y 

3. If F is the distribution function of random variable X then 

0


)x(Flim  )(F
x  and 

1


)x(Flim  )(F
x  

4.  )(xF
dx

d
 = f(x) 
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Example 2.1 If the random variable X takes the value 1, 2, 3 and 4 such that  

2P(X=1)=3P(X=2) = P (X=3)=5P(X=4).Find the probability distribution? 

     Solution:   

        2P(X=1)= k  P(X=1) = k/2 

        3P(X=2) = k  P(X=2) = k/3  

          P(X=3) = k   

      5P(X=4)= k P(X=4) = k/5 

                                  






4

1

1

x

i )x(P

  

                         61

30

1
532





k                 

k
k

kk

  

        The probability distribution is 

 

 

 

 

Example 2.2 A random variable X has the following probability function  

x 0 1 2 3 4 5 6 7 

P(x) 0 k 2k 2k 3k k
2 

2 k
2
 7k

2
+k 

 

(i) Find k, (ii) Evaluate P(X<6),P(X≥6) and P(o<X<5) (iii) Determine the distribution 

function of X and (iv) P(X≤a)>1/2 find the minimum value of a, 

     Solution:  






7

0

1

x

i )x(P

 

k+2k+2k+2k+3k+k
2
+2k

2
+7k

2
+k=1 

       10k
2
+9k-1=0      (10k-1)(k+1) = 0     k = 10

1
 or k = -1(negative)  

Hence  k = 
10

1

 

 

x 1 2 3 4 

P(X=x) 15/61 10/61 30/61 6/61 
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(ii) P(X<6)  = P(X=0)+ P(X=1)+ P(X=2)+ P(X=3)+ P(X=4)+ P(X=5) 

 

             100

81

100

1

10

3

10

2

10

2

10

1
 )X(P

 k2+3k+2k+2k+2k+k                





6
 

P(X ≥ 6)=1- P(X<6)  = 100

19

100

81
1   

P(X ≥ 6)=
19

100
 

P(0<X<5) =  P(X=1)+ P(X=2)+ P(X=3)+ P(X=4)    

8
                k+2k+2k+2k+3k 8k  

10
    

P(0<X<5) = 
8

10
 

(iii) Distribution function of X 

x)P(X )x(F   

x x)P(X )x(F   

0 0 

1 
10

1
k

 

2 
10

3
32  kkk

 

3 
10

5
522  kkkk

 

4 
10

8
8322  kkkkk

 

5 
100

81

100

1

10

8
8322 22  kkkkkkk

 

6 
100

83

100

3

10

8
382322 222  kkkkkkkk

 

7 1
100

10

10

9
10972322 2222  kkkkkkkkkk

 

 

(iv) P(X≤a)>1/2 find the minimum value of a 

From the distribution function P(X≤4) = 
10

8

 
=

 5

4
>

 2

1

 
                                               

a = 4 
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Example 2.3 A discrete random variable X has the following probability distribution 

x   : 0  1  2  3  4   5   6   7   8 

p(x): a 3a 5a 7a 9a 11a 13a 15a 17a 

 

(i) Find the value of ‘a’ 

(ii) P(0 < X < 3) 

(iii) P( X  3) 

(iv) Find the distribution function of X 

Solution:  We have 
1

1

n

i

P( X x )



   

             a+3a+ 5a+7a+9a+11a+13a+ 15a+17a =1 

  81a = 1 a = 81

1

 

  The actual probability distribution is 

x 0 1 2 3 4 5 6 7 8 

P(X=x) 

81

1

 81

3

 81

5

 81

7

 81

9

 81

11

 81

13

 81

15

 81

17

 

 

P(0 < X < 3) = P(X = 1) + P(X = 2)   = 
81

3
+

81

5

 
=

 81

8
 

P(0 < X < 3)  = 
81

8
 

P( X  3) = 1 – P(X<3)   = 1 – 




81

1

+ 81

3

+ 



81

5
  = 

81

72
 

The distribution function of X is 

  

 

  

 

 

 

 

 

 

 

x 0 1 2 3 4 5 6 7 8 

F(x) 0 
81

1  
81

4  
81

9  
81

16  
81

25  
81

36  
81

49  1 
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Example 2.4 For the following density function, f(x) = 
x

ae


,  x ,  

  find the value of ‘a’ 

Solution:   

  Given f(x) is a pdf.  

  





 1)( dxxf

 

  2

1
12

1
11

2

1
1

2

12

1

0

0

0






























































aa

ee
a

e
a

dxea

dxea

x

x

x

 

 

Example 2.5 The diameter of an electric cable, say X, is assumed to be a continuous random 

variable with p.d.f : f(x) = 6x(1-x) , 0≤x≤1.  

(i)Determine a number b such that P(X<b)=P(X>b). 

(ii) Compute )X/X(P
3

2

3

1

2

1
  

Solution (i) 

                                     

0

0

2 2

0

6 1 6 1

6

b 1

b

b 1

b

b 1

b

P( X b ) P( X b )

f ( x )dx  f(x) dx

x( x )dx  x( x )dx

( x x )dx  6 ( x x )dx

  

 

   

   

 

 

 
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1
2 3 2 3

0

2 3 2 3 2 3 2 3

2 3 2 3

3 2

2

2

2 3 2 3

0 0 1 1

2 3 2 3 2 3 2 3

3 2 1 3 2

4 6 1 0

2 1 2 2 1 0

2 1 0

2 4
2 2 1 0

b

b

x x x x

b b b b

b b ( b b )

b b

( b )( b b )

1
b    b or

2

b b b

   
      

   
   

          
                 
                    

    

   

    

    


    

8 1 3

4 2

 


 

Hence  2

1
b 

 , is the only real value lying between 0 and 1 

 

1
2

1
3

2
3

1
3

1 1 2

1 1 2 2 3 3

1 22 3 3

3 3

6 11

3 2

1 2

3 3 6 1

P X X

( ii ) P( X / X )

P X

x( x )dx1
P X

                                                  

P X
x( x )dx

13
54                               

13

 
    

    
 

  
 


 

  
  
 

  
  







11

26

1 1 2 11

2 3 3 26

27

                               P( X / X ) = 



  

 

 

Example 2.6 Let X be a continuous random variable with p.d.f given by  

            




















otherwise         ,0     

3x2     ,3kkx-

2x1 ,          k    

1x0          ,kx    

 )x(f

  

(i) find the value of k (ii)Determine the c.d.f 
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Solution:  

                     

1233312
2

0

2

1

13
2

13

22

3

2

2
1

1

0

2

3

2

2

1

1

0






































































































k
2

2
 kk

2

3
 k)(kk

kx
2

x
 k)x(k

x
k

 dx )kkx( dx k dx kx

 1  dx)x(f                                  

22

2

 

                                 

 

2

1
k     12k     

k

kkk

k
k

k

2

8-189-
  )k(k

k

2

189-
  )k(k

k

 )k(
2

9
-  )k(k

k

k
2

4
 kk

2

9
 kkk

























 













































































1
2

4

1
2

2

1
22

1
2

14
2

1629
2

169
2

1

 

(ii) The  c.d.f 

For any x, such that -<x<0;   






x

0    dx)x(f)x(F

 

For any x, where 0≤x<1;   

  

































0 2

0 0
42

0

2

1
0

x
 

2

x

2

1

2

x
  dx xk  dx kx  dx )x(F

x x 2
x

0

2
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 For any x, where 1≤x<2;   

   

4

12

4

221

4

121

2

1

1
2

1

2

1

2

1
1

2

0

2

1

2

1

2

1

2

1

0

1

0

2

1

1

0 1

0

1

0































































 

   


x
)x(F

x)x(x

4

1
        

)x(x
2

1
 

2

1

2

1
x

2

x
  dxdx x        

 dx k dx xk dx k dx kx  dx )x(F

2
x

1

0

2x

x

1

x

1

 

 

For any x, where 2≤x<3;   

 

 

   

4

56

4

8621

2

4

2

3

42

1
43

22

1

623
2

1
2

1

23
2

2
3

2
12

2

0

2

1

3
22

3
2

1

2

1

2

1

0

222

2

2222

2

2
2
1

1

0

2

2

2

1

1

0

0 1

0









































































































































































 

   


xx-
  F(x)    

xx
x

x

4

1
x

x

2

1

4

1
      

x
x

2

1

2

1

2

1
      

)(x
x

2

1

2

1

2

1
       

x
x

2

1
x

2

1x

2

1
        

 dx xdxdx x        

 dx 3x-kdx k dx xk dx 3kkx-dx k dx kx  dx )x(F

2

x

1

0

x

x

2

2

1

x

2

2

1

 

For any x, x≥3;   
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2
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  F(x)    

4

1

2

1

4

1
      

2

1

2

1

2

1
      

)()(
2

1

2

1

2

1
       

x
x

2

1
x

2

1x

2

1
        

 dx xdxdx x        

 dx 3x-kdx k dx xkdx 0 dx 3kkx-dx k dx kx  dx )x(F
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
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




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















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 
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Hence the distribution function F(x) is given by  

 

































x3 for                  

3x2 for   
xx-

2x for         
x

   

1x0 for            
x

     

0x- for                   

)x(F

2

1

4

56

1
4

12

4

0

2

 

 

Example 2.7 The cumulative distribution of continuous random variable X is given by  

                         

2 1
2

1
2

0 x 0

x 0 x

F x 3
1 3 x x 3

25

0 x 0

,

,

( )
( ),

,




 
 

   




       

Find (i) Probability density function of X (ii)  P X 1 and (iii) 1
3P X 4( )   

Solution: 

   We know that )()( xF
dx

d
xf   
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 The points x = 0,  ½ , 3 are points of continuity 

  























3,0

3),3(
25

6

0,2

0,0

)(
2

1

2
1

x

xx

xx

x

xf

 

              )11(1  XPXP   = F(1) – F(-1)   = 
25

3
 

    1
3P X 4( )   = F(4) – F( 3

1 ) = 1 –  
9

8

9

1
  

2.4 Discrete distributions 

i) Binomial   ii) Poisson     iii)  Normal  

2.4.1 BINOMIAL DISTRIBUTION: 

Binomial distribution is also known as Bernoulli distribution after the Swiss mathematician 

James Bernoulli (1654-1705) who discovered it in 1700 and was first published in 1712, 

eight years of his death. The distribution can be used in the following conditions 

(i) The outcome of any trial can only take on two possible values, say success and 

Failure. 

(ii) There is a constant probability p of success on each trial; 

(iii) The experiment is repeated n times (i.e. n trials are conducted); 

(iv) The trials are statistically independent (i.e. the outcome of past trials does not  

Affect subsequent trials); 

 

           Suppose an experiment is repeated ‘n’ times and each trail is independent. Let us 

assume that each trail results in two possible mutually exclusive and exhaustive outcomes i.e. 

success and failure. Let X is random variable represents total no. of successes in ‘n’ trails. Let 

the probability of success in each trail is p and the probability of failure is q=1-p and p 

remains constant from trail to trail. Now, we have to find out the probability of x successes in 

n trails. 

       Let us suppose that a particular order of outcomes of x successes in n repetitions be as 

follows 

               SSSSSFFFSSFS………FS(x number of successes and n-x failures) 

Since, the trails are all independent the probability for the joint occurrence of the event is  

               pppppqqqppqp……..qp    

             = (pppppp…..x times)(qqqqqq…… (n-x) times) 

             = p
x
q

n-x
 

Further in a series of n trails x successes and n-x failures can occur in 
x

nc ways. So, the 

required probability of x successes in n trails is 

                           P(X=x) = x

nc xnxqp 

, nx ,........,2,1,0  

   This is called probability distribution of Binomial random variable X or simply Binomial 

distribution. Symbolically this can be written as B(X; n, p) 
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Definition : A random variable X is said to be follow a binomial distribution if its probability 

function is given by  

                              P(X=x) = x

nc xnxqp 

, nx ,........,2,1,0  

                                                                    and p + q =1 

Where n, p is called parameters of the binomial distribution. Mean and variance of the 

Binomial distribution is  np and npq 

 

Example 2.8 Find the binomial distribution for which the mean is 4 and variance is 3 

Solution 

         Mean =np        Variance =npq 

         Given   Mean= np=4 

           Variance =npq =3 

                                           
4

3


  np

npq
  

                                                          
4

3
q  

                                   

16

4
4

1

4

4

1

4

3
11









n

  n

np

qp

 

         The required binomial distribution is  

xnx

xC)xX(P





















4

3

4

1
16   

 

Example 2.9 Find p for a binomial random variable X if n = 6 and if 9P[X=4] = P[X=2]
 

      
Solution: 

                 Let X~ B(6,p) 

                62,1,0,6   nqpcxXP xnx

x  
 
 
  

      Given that 
      

9P[X=4] = P[X=2] 

 
                  9  24

46 qpc = 42

26 qpc                                      

 9p
2
 = q

2
 

     9p2
 = (1-p)

2 

 
                            ie., 8p

2
+2p-1 = 0        

                                    ie, p =
2

1

4

1
or  
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                            But     p = - 
2

1
    is impossible                           

                              Hence p = 
4

1
 

 

 

 

 Example 2.10 In a binomial distribution consisting of 5 independent trails, probabilities of 1 

and 2   

      Successes are 0.4096 and 0.2048. Find the parameter of ‘P’ of the distribution 

 

Soln : Let X ~ B(n,p) the probability mass function is  

 

 P(X=x) = )xn(qxPxCn 





  ; p+q =1 ; x =0,1,2,3,……. 

 P(X = 1) = 4096.04pq
1

5









 ---------------(1) 

P(X = 2) = 2048.03q2p
2

5









 ---------------(2) 

From (1) and (2)  we get  

 

5

1

25

5

525

255

5205

2055

10215

2
10

15

2048010

409605

20480
2

5

40960
1

5

32

4










































p

p

p

pp

pp

px)p(

p

)p(

.p

.q

.qp

.pq

 

 

Example 2.11 Ten coins thrown simultaneously. Find the probability of getting at least 7 

heads              

      Solution: Given n = 10, probability of getting a head = p = ½ , q = 1-p = ½ 

            Probability mass function of binomial distribution is 

                      P(X =x ) = nCxp
x
q

n-x
, x = 0, 1,2,…….10 

                ie.,  P(X =x ) = 10Cx(1/2)
x
(1/2)

10-x
 = 10Cx(1/2)

10
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          P( X  7) = P(X =7)+ P(X =8)+ P(X =9)+ P(X =10) 

                     = 10C7(1/2)
10 

+10C8(1/2)
10 

+ 10C9(1/2)
10 

 + 10C10(1/2)
10

  

 P( X  7) = 0.172 

 

 

2.4.2 POISSON DISTRIBUTION: 

Poisson distribution is a discrete probability distribution, which is the limiting case of 

the binomial distribution under certain conditions.  

1. When n is very indefinitely very large 

2. Probability of success is very small. 

3. np = is finite 

Definition : A discrete random variable X is said to be follow a Poisson distribution if the 

probability mass function is given by 

   




..........3,2,1,0,
!

);()( x
x

e
xPxXp

x




 

                                          Where e = 2.7183 and  > 0 

Here  is called the parameter of the Poisson distribution. 

          

Example 2.12 The probability of an item to be defective is 0.01. Find the probability that a 

sample   

of 100 items randomly selected will contain not more than one defective item. 

 

        Solution: Given p = 0.01,  n= 100, mean  = np = 0.01 100 = 1,  

          Probability mass function of Poisson distribution is P(X =x ) = !x

e x
, 
x=0,1,2…. 

                P (X  1 ) = P(X =0) +P(X =1) = e
-1

+
!1

1.1e
  = 2e

-1
 

   

Example 2.13 It is known from the past experience that in a certain plant there are on the 

average                                                         

  4 industrial accidents .Find the probability that in a given year  there will be less  than 4 

accidents. 

        Solution:  

                  Let X denote the number of accidents in a year. 

                    Given 4    

            P(X=x) = 
!x

e x
, x = 0,1,2,3,……..                     
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        P(less than 4 accidents) = P(X < 4) = P(X =0 )+ P(X =1) + P(X = 2)+ P(X = 3) 

                                               

4335.0
!3

4

!2

4

!1

4

!0

4

!3

4

!2

4

!1

4

!0

4

3210
4

43424140

























e

eeee

 = 0.4335 

 

2.4.3 Normal Distribution: 

 A continuous random variable X is said to follow a Normal distribution with parameter 

mean   and variance σ
2 

if its probability density is given by  

22

2

2

1






)x(

e)x(f




  

 

Characteristics of a normal probability distribution 

1. The normal curve is bell-shaped and has a single peak at the exact center of the 

distribution. 

2. The arithmetic mean, median, and mode of the distribution are equal and located at 

the peak. 

3. Half the area under the curve is above and half is below this center point (peak). 

4. The normal probability distribution is symmetrical about its mean. 

5. It is asymptotic - the curve gets closer and closer to the x-axis but never actually 

touches it. 

 

The standard normal probability distribution is a normal distribution with a mean of 0 and a  

standard deviation of 1 is called the standard normal distribution.   

          

z
(X )


 


 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Z =        -3       -2        -1          0        1         2        3 
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Example 2.14  X is a normal variate with mean 30 and S.D 5. Find the probabilities that   

          (i) 26  X  40 (ii) X  4 5 (iii) |X - 30| > 5 

 

 Solution  Here mean  = 30  and  = 5 

     (i)When X = 26 and 8.0
5

3026x
Z 







  

 

     When X = 40 and 2
5

3040x
Z 







  

 

P (26  X  40) = P ( - 0.8  X   2)  

                         = P( - 0.8  X   0) +P(  0  X   2) 

                         = P( 0  X   0.8) +P(  0  X   2) (symmetry) 

     = 0.2881 +0. 4772 = 0.7653 

 

P (26  X  40) = 0.7653 

 

(ii) When X =45  3
5

3045x
Z 







  

     P(X. 45) = P(Z  3) = 0.5 - P(  0  X   3) = 0.5 – 0.4986 = 0.0014 

 

(iii) P(|X - 30|  5) = P(25  X  35) = P(-1  Z  1) = 2 P(0  Z  1) = 2 x 0.3413 =0.6826 

        

P(|X - 30| > 5) = 1- P(|X - 30|  5) = 1 – 0.6826 = 0.3174 

 

Example 2.15 The weight of adult cocker spaniel are normally distributed with a mean                  

µ = 25 lb and a standard deviations σ = 3 lb. find the probability  that a) cocker’s weight is 

less than 23 lb  b) weight is between 20 lb and 27 lb c) weight is more than 29 lb 

 

Solution  

a) Find the probability that the cocker’s weight is less than 23 lb. 

P( x < 23) = 






 


2

2523
zP = P(z < -.67) = .2514 

 

b) Find the probability that the weight is between 20 lb and 27 lb. 

P( 20 < x < 27) = 






 




3

2527

3

2520
zP  =  

P( -1.67 < z <.67) = .7486 - .0475 = .7011 

 

 

c) Find the probability that the weight is more than 29 lb. 

P( x > 29) = 






 


3

2529
zP = P( z > 1.33)  

= 1 - .9082 = .0918 
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Example 2.16 In a distribution exactly normal, 10.03% of the items are under 25 kilogram 

weight and 8.97% of the items are under 70 kilogram weight. What are the mean and 

variance of the distribution? 

Solution  

Let x denote the weight (in kilograms) of the item.  

If  X~N(, 
2
) then  given are  

P(X< 25) = 0.1003 and P(X<70) = 0.8997 

 

The points x =25 and x = 70 are located as shown below 

 

When X = 25 ,       1Z
25

Z 



 (say)    -----------------(1) 

 

      When X = 70      2Z
70

Z 



 (say) ----------------------(2) 

 
 

 

 

From the diagram 

P(Z < -Z1) = 0.1003 

P(Z < Z2) = 0.8997 and now P(0<Z<Z2) = 0.3997  Z2 = 1.28 (from normal table) 

P(Z < -Z1) = 0.1003  P(Z>Z1) = 0.1003 

P(0<Z<Z1) = 0.5 – 0.1003 = 0.3997   Z1 = 1.28 (from normal table) 

Substuting the values of Z1 and Z2 in (1) and (2) 

 








28.125              

28.1
25

  ---------------(3) 

   X = 25                      X =                   X = 70 

   Z = -Z1                      Z = 0                   Z = Z1 
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






28.170           

28.1
70

-------------------(4) 

 

Solving the equation 3 and 4 we get   = 47 .5 and  = 17.578 
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Unit – III 

 

3. TWO DIMENSIONAL RANDOM VARIABLES  

 Let S be the sample space of a random experiment and let X and Y be two random 

variables defined on S. Thus X=X(s) and Y=Y(s) are two functions which assign real 

numbers x and y to each outcome sS. Then the pair (X,Y) is called two dimensional random 

variable. 

  

3.1 JOINT PROBABILITY MASS FUNCTIONS 

Let X and Y be the two dimensional discrete random variable. Let us suppose that X 

can assume ‘n’ values x1, x2,….xn and y can assume ‘m’ values y1, y2,…,ym. Let us consider the 

probability of ordered pair (xi, yj) where  i = 1, 2, 3,….,n and  j = 1, 2, 3,….,m  defined by                 

    Pij = P(X = xi,Y = yj)  = P(xi, yj) 

The function P(x,y) defined  for any ordered pair (x,y) is called joint probability function of x 

and y which satisfied the following condition 

(i) Pij  0   i, j  (ii ) 
1 1

1

n m

ij

i j

P

 

   and its represented in a tabular form as follows: 

Y 

X 
y1 y2 y3  ym P(X=x) Total 

x1 

x2 

. 

. 

. 

. 

Xn 

P11 

P12 

. 

. 

. 

. 

Pn1 

P12 

P22 

. 

. 

. 

. 

Pn2 

P13 

P23 

. 

. 

. 

. 

Pn3 

… 

… 

 

 

 

 

… 

P1m 

P2m 

. 

. 

. 

. 

Pnm 

P1 

P2 

. 

. 

. 

. 

Pn. 

Total 

P(Y = y) 
P.1 P.2 P.3  P.m P.1 = .P 
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3.2 Marginal Probability Function  

 Let (X, Y) be a two dimensional discrete random variable then which takes up 

countable number of values (xi, yj). Then the probability distribution of X and is determined 

as follows. 

 

1 2

1 2

i.

1

( ) ( ) ( ) ( )

                 =P + P P   

                  =P

i i i i m

i i im

m

ij

j

P X x P X x Y y P X x Y y P X x Y y

P


             

 


 

is known as the marginal probability mass function of X. 

Similarly , the marginal probability mass function of random variable Y  

j

1

( )  =P.
n

ij

i

P Y y P


   

 

3.3 Joint Probability Density Function  

  

If X and Y are continuous random variable then their joint probability density 

function f(x,y) if  dx dx dy dy
P f x y dx dyx X x y Y y

2 2 2 2
( , )  ,         and provided 

f(x,y) satisfies the following conditions  

i )   f(x,y)  0

ii)  f ( x, y ) dx dy =1

 

 



 
 

 

 

3.4 Marginal density function   

When (X, Y) is a two dimensional continuous random variable then the marginal density 

function of a random variable X and Y is defined as                    

( ) ( , ) Xf x f x y dy





      ,   ( ) ( , ) Yf y f x y dx





   
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3.5 Marginal Distribution Functions 

 The Marginal distribution function X and Y respectively with respect to joint 

distribution function Fxy (x, y) is  

Fx(X) = P(X  x) = P(X  x. Y < ∞) 

 
lim ( , ) ( , )xy XY
y

F x y F X


  
   

 FY(y) = P(Y  y)  = P(Y  y. X < ∞) 

 
lim ( , )xy
y

F x y



  

= Fxy (∞, y) 

 

Fx(X) is termed as marginal distribution function of X corresponding to the joint 

distribution function [Fxy (x, y)] Similarly; Fy(Y) is termed as marginal distribution function 

of Y corresponding to the joint distribution function [Fxy (x, y)]. 

 

If (X,Y) is a continuous random variable then the cumulative distribution function is 

defined as  

 

( , ) ( , ) .

y x

F X x Y y f x y dx dy
 

    
. 

 

3.6 CONDITIONAL PROBABILITY DISTRIBUTION  

Let (X, Y) be a discrete two dimensional random variable then the conditional 

probability mass function in of X given Y = y and conditional probability function of Y given 

that X=xj 

 
( , )

/
( )

i j

j

P X x Y y
P X Y

P Y y

 



 

 
(X ,Y )

/
(X )

i j

j i

i

P x y
P Y y X x

P x

 
  


 

 If f(X/Y) is a two dimensional continuous random variable then,  

( , )
( / )

( )Y

f x y
P X x Y y

f y
    

XY

X

f ( x, y )
P(Y y/ X x)

f ( x )
    
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Example3.1, From the following Bivariate probability distribution of X and Y.                                       

Find (i) P(X  1, Y = 2),  (ii)  P(X  1), (iii) P(Y = 3),   (iv) P(Y  3), (v) P(X  3),  

Solution  

Y 

X 
1 2 3 4 5 6 

0 0 0 1/32 2/32 2/32 3/32 

1 1/16 1/16 1/8 1/8 1/8 1/8 

2 1/32 1/32 1/64 1/64 0 2/64 

 

Solution  

Y 

X 
1 2 3 4 5 6 Total 

0 0 0 1/32 2/32 2/32 3/32 8/32 

1 1/16 1/16 1/8 1/8 1/8 1/8 10/16 

2 1/32 1/32 1/64 1/64 0 2/64 8/64 

Total 3/32 3/32 11/64 13/64 12/64 16/64 1 

 

 (i) P(X  1, Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 2) = 0 + 1/16 =1/16 

 (ii) P(X  1) = P(X = 0) + P(X = 1) = 8/32 + 10/16 = 28/32 = 7/8 

      (iii) P(Y = 3)  = 11/64 

      (iv)  P(Y  3)  = P(Y = 1) + P(Y = 2) + P(Y = 3)  = 3/32 + 3/16 + 11/64   =    23/64 

              (v) P(X  3, Y  4) = P(X = 0, Y = 1) + P(X = 1, Y = 1) + P(X = 2, Y = 1) 

                           + P(X = 0, Y = 2) + P(X = 1, Y = 2) + P(X = 2, Y = 2) 

                           + P(X = 0, Y = 3) + P(X = 1, Y = 3) + P(X = 2, Y = 3) 

                           + P(X = 0, Y = 4) + P(X = 1, Y = 4) + P(X = 2, Y = 4) 

   

1 1 1 1
0 0

16 32 16 32

   
        
   

1 1 1 2 1 1

32 8 64 32 8 64

   
        
     

3 3 11 13

32 32 64 64
   

12 11 13 36

64 64

 
 

 

36
3 4

34
P   , Y   ) (X   

 

 

 



43 

 

Example 3.2 A two dimensional random variable X and Y have a joint probability function  

   
2

2
,

7

x
P x y

y
  Where X and Y can assume that value 0, 1 and 2. Find 

(i). The marginal probability function of a x and y  

(ii). The conditional distribution of x/y  and y/x 

Solution  

 The joint probability mass function  P(x, y) =  
2

27

x y
 ;  x = 0, 1, 2 ; y = 0, 1,2  

 

Y 

X 
0 1 2 

Total 

P(X=x) 

0 0 1/27 2/27 3/27 

1 2/27 3/27 4/27 9/27 

2 4/27 5/27 6/27 15/27 

Total 

P(Y = y) 
6/27 9/27 12/27 1 

 

(i) The marginal probability function of a x  

x 0 1 2 

P(X=x) 3/27 9/27 15/27 

 

The marginal probability function of a y 

  

y 0 1 2 

P(Y= y) 6/27 9/27 12/27 

 

(ii)  Conditional probability P(x/y)  

( 0 / 0) 0( 0 / 0) 0
37( 0)

P x y
P y x

P x

 
    

  

 

( 0 / 1) 2 / 27 2
( 0 / 1)

( 1) 9 / 27 9

P x y
P y x

P x

 
    

  
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( 0 / 2) 4 / 27 4
( 0 / 2)

( 2) 15 / 27 15

P x y
P y x

P x

 
    

  

 

( 1/ 0) 1/ 27 1
( 1/ 0)

( 0) 3 / 27 3

P x y
P y x

P x

 
    

  

 

( 1/ 1) 3 / 27 1
( 1/ 1)

( 1) 9 / 27 3

P x y
P y x

P x

 
    

  

 

( 1/ 2) 5 / 27 1
( 1/ 2)

( 2) 15 / 27 3

P x y
P y x

P x

 
    

  

 

( 2 / 0) 2 / 27 2
( 2 / 0)

( 0) 3 / 27 3

P x y
P y x

P x

 
    

  

 

( 2 / 1) 4 / 27 4
( 2 / 1)

( 1) 9 / 27 9

P x y
P y x

P x

 
    

  

 

( 2 / 2) 6 / 27 2
( 2 / 2)

( 2) 15 / 27 5

P x y
P y x

P x

 
    

  

 

Conditional probability P(x/y) 

( 0 / 0) 0 / 6( 0 / 0) 0
27( 0)

P x y
P x y

P y

 
    

  

( 0 / 1) 1/ 27 1
( 0 / 1)

( 1) 9 / 27 9

P x y
P x x

P y

 
    

  

( 0 / 2) 2 / 27 1
( 0 / 2)

( 2) 12 / 27 6

P x y
P x y

P y

 
    

  

( 1/ 0) 2 / 27 1
( 1/ 0)

( 0) 6 / 27 3

P x y
P x y

P y

 
    

  

( 1/ 1) 3 / 27 1
( 1/ 1)

( 1) 9 / 27 3

P x y
P x y

P y

 
    

  
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( 1/ 2) 4 / 27 1
( 1/ 2)

( 2) 12 / 27 3

P x y
P x y

P y

 
    

  

( 2 / 0) 4 / 27 2
( 2 / 0)

( 0) 6 / 27 3

P x y
P x y

P y

 
    

  

( 2 / 1) 5 / 27 5
( 2 / 1)

( 1) 9 / 27 9

P x y
P x x

P y

 
    

  

( 2 / 2) 6 / 27 1
( 2 / 2)

( 2) 12 / 27 2

P x y
P x y

P y

 
    

  

 

Example 3.3 If X and Y are two random variable having a joint density function, 

6
   ;      0 2  

8

( , )                         2 4  

     0           ;   otherwise

x y
x

f x y y

 
 


  


  

 Find (i) P(X < 1  Y < 3), (ii) P(X < 1/Y < 3), (iii) P(X + Y < 3) 

 

Solution 

3 1

2 0

( 1 3) ( , )  P X Y f x y dx dy     
 

                      

3 1

2 0

1
(6 )  

8
x y dx dy

 
   

 
 

 

   

3 1
2

0
2

1
6  

28
xx xy dy   

  
 

     

3 2 2

2

1 (1) (0)
 6(1) (1) 6(0) (0)  

8 2 2
y y dy

    
         

    


 

3

2

11   (6 )  
8 2

y dy  
 

 
3

2

1 11    
8 2

y dy 
 

3
2

2

1 11
 

8 2 2

y y 
  

   
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2 21 11 (3) 11 (2)
 (3) (2)

8 2 2 2 2

    
       

      

21 3 9 22 4 1 3
 (12 9)

8 2 2 2 2 8 8

    
          

     

 

 (ii)  P(X < 1/Y < 3) 

 

( 1 3
( 1/ 3)

( 3)

P X Y
P X Y

P Y

  
  

  

( , ) (y)  = Y f x y dxf





 

   

2

0

1
(6 ) 

8
= x y dx 

 

  

2

0

1
(6 ) 

8
= x y dx 

 

  

3

38( 1/ 3)
5 5

8

P X Y   

 

(iii)  P(X + Y < 3) 

   

1 3

0 2

6
  

8
  =  

x y
dy dx

 
 

 

3-x1 2

0 2

1
6   

8 2
= 

y
y xy dx

 
  

 


  

1 2 2

0

1 (3 ) 2 5
6(3 ) (3 ) - 6(2) (2)  

8 2 2 24
= 

x
x x x x dx

    
          

    

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Example 3.4 The joint probability density function of a two dimensional random variable (X, 

Y) is given by  

2    ;      0 1,  0  
( )

0,           elsewhere

x y x
f x

   
 
  

(i) Find the marginal density function of X and Y 

(ii) Find the conditional density function of Y given X = x and X given Y = x. 

(iii) Check for independence of X and Y 

Solution  

( , )  ( )  X f x y dyf x




 
 

                   
0

0

2 2[ ]  
x

xdy y 
 

                      = 2 (x – 0) = 2x 

 fX(x) = 2x     0 < x < 1 

( , )  ( )  Y f x y dxf y




   

              

1

12 2[ ] 2[1 ] y

y

dx x y   
 

        ( )Yf y  = 2-2y,  0 < y < 1 

The conditional density function of X and Y is, 

    ( , ) 2 1

( ) 2
 XY

X

f x yy
x f x x x

f    

(ii)  If X and Y are independent, the fxy (x,y)  = fX(x)  fY(y) 

R.H.S: 

 fX(x) fY (y)  = 2x . 2(1-y) = 4x (1-y)  = f (x, y) 

 X and Y are not independent. 

 

Example 3.5 The joint probability density function of two dimensional random variable 

0    2 ;    x  (x-y);        
variable (x, y)

0              ;        other

    

wise

x x y xk
f

    
 
   

(i) Find the constant ‘k’ and (ii) the marginal density function of a r.v X and Y. 
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Solution 

( , )     1 f x y dy dx

 

 

 
 

2

0

( )     1 
x

x

kx x y dy dx


  
 

2

2

0

( )     1 
x

x

k x xy dy dx


  
 

2 2
2

0 -

  1
2

 

x

x

xy
k x y dx

 
  

 


 

2 2 2
2 2

0

1
2 2

x x( x )
x ( x ) x. x ( x ) dx k

    
        

    
  

2 3 2
3 3

0

( ) 1
2 2

 
x x

x x dxk
    

        
    

  

3 3 3
3 3

0

( 1
2 2

 
x x

x x dxk
 

    
 
  

3

3

0

2 1 x dxk 
 

2
4

0

2

4
 

x
k
 
 
   

4 42(2) 0
1

4 4
 k
 

  
   

32
1 1

4
 k
 

  
   

1 8k   

1

8
 k 
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ii)  Marginal density function of X  

         

( ) ( , ) X x f x y dyf




 
 

( )  
x

x

kx x y dy



21

( ) 
8

 =
x

x

x xy dy



 

                         

 
2 3 2

2 3 2

3 3 3
3 3

1 1 ( )

8 2 8 2 2

1 2
                                

8 2 2 8

= = 

x

x

xy x x x
x y x x x

x x x
x x



      
         

      

 
     

 

 

 

                                              

3

4
( ) = X

x
f x

 

Marginal density function of Y 

             

( , )( ) = Y f x y dxf y





 

22 2 3 2
21 1

( ) ( )
8 8 3 2

 =  =  = 
y y y

x x y
kx x y dx x xy dx

  

 
    

 
 

 

3 2 3 2

3 3

3 3

3 3

3

1 2 2

8 3 2 3 2

1 8 4

8 3 2 3 2

1 8 4

8 3 2 3 2

1 16 12 2 3

8 6

1 5 12 16

8 6
Y

y ( y ) ( y ) y

y y y

y y y

y y y

y y
f (y)

 = 
      

      
     

    
      

    

 
    

 

   
  

 

  
  

 

 

35 12 16
, 2 0

48
 ( )  Y

y y
yf y

 
  
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( , ) ( )  Y f x y dxf y




 
 

        

2

( ) = 
y

kx x y dx
 

2

21
( )

8
 = 

y

x xy dx
 

2
3 2 3 2 3 21 1 2 2 .

8 3 2 8 3 2 3 2
 = = 

y

x x y y y y y      
        

        

3 31 8 4

8 3 2 3 2
 = 

y y y   
     

      

3 31 8 4

8 3 2 3 2
 = 

y y y 
   

   

3 31 16 12 2 3

8 6
 = 

y y y   
 
   

31 16 12

8 6
 = 

y y  
 
   

3 12 16
,0 2

48
( ) = Y

y y
yf y

 
 

 

 

Example 3.6 The joint distribution of X and Y is given by f(x,y) = 
2 2

4 ( x y )f ( x, y ) xye                    

x  0,   y  0. Test whether x and y are independent are not. Find (i) conditional density of 

f(x/y). 

 

Solution 

Marginal probability density function of X is given by  

          

( ) ( , )Xf x f x y dy





 
 

2 2

0

4 ( x y )xy  e dy



    
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2 2

0

4 x yxy e .e dy



                     
2   Put y t  

                                   2   y dy dt  

                       

2 2

0

4  x yxe y e dy



  
 

2

0

4  
2

x t dt
xe y e

y



  
 

2

0

2  x txe e dt



    

2

0

2
1

t
x e

xe




  
  

   

2
0

2
1 1

x e e
xe

 


    
     

     
 

2

( ) 2    0x

Xf x x e x  
 

Marginal density function of Y,   

( ) ( , )yf y f x y dx





 
 

2 2

0

4 ( x y )xy  e dy



    

                       
2 2

0

4 x yxy e .e dy



                     
2Put   x t  

                                   2x  dx dt  

                       
2 2

0

4 y xye x e dx



    

2

0

4
2

y t dt
ye x e

x



    

2

0

2  y tye e dt



    

2

0

2
1

t
x e

xe




  
  

   

2
0

2
1 1

x e e
xe

 


    
     

     
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2

( ) 2 ,  0y

yf y ye y 
 

If X and Y are independent then. 

 f XY (x, y) = fx(x). fy(y)  

                

2 2

2 ,  2y xye xe 
2 2

4  ,  ( , )x y

XYxy e e f x y  
 

 X and Y are independent. 

(ii) Conditional density function  

 

2 2

2

2

( )( , ) 4  
( / ) 2  

( ) 2  

x y
x

y
y

f x y xy e
f x y x e

f y y e

 



  

 

 

Example 3.7 The joint distribution function of two random variable of  (x, y) is given by, 

( )1 , 0, 0  
( , )

    0                         , otherwise

x y x ye e e x y
F x y

        
 
   

 

Find (i) Marginal density function of r.v. X and Y 

       (ii) Check X and Y are independent  

Solution 

  To find the joint density function, 

2

( , ) ( , )
  

f x y F x y
x y



   

2
( )1

  

x y x ye e e
x y

   
        

2

1 .
  

x y x ye e e e
x y

   
      

 

0 0 1 1y x y( )e e e ( )
x

  
       

 

0 0 ( 1) .
 

y x ye e e
x

  
      

 

( ). (0 ( 1) . ) .
 

y x y x y x y x ye e e e e e e e
x

        
          

( x y )f ( x, y ) e   
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Marginal density function of  X and Y 

 

( ) ( , )Xf x f x y dy





 
 

          
( )

0 0 0 0

  
1

y
x y x y x y x e

e dy e e dy e e dy e

   
        

     
 

    

0

1 1

x e e
e

 

    

     
     

 

 0 ( 1)x xe e    
 

                                               fX(x) = e
-x

, x  0 

 

( ) ( , )Yf y f x y dx





 
 

                                     
( )

0 0 0 0

  
1

x
x y x y y x y e

e dx e e dx e e dx e

   
        

     
 

    

                         
0

1 1

y e e
e

 

    

     
     

 

fY (y) = e
-y

, y  0 

If X and Y are independent, then  

 fXY(xy) = fx(x). fy(y) 

    = e
-x

 . e
-y

 

    = e
-(x+y)  

=   fXY(xy)  

 X and Y are independent. 

 

Example 3.8  The J.P.d.f of two dimensional random variable x and y is given by, 

4 4

9(1 )
( , )     ;     0    ;      0

2(1 ) (1 )

x y
f x y x y

x y

 
      

 
 

Find (i) Marginal density of x and y and conditional distribution x/y and y/x. 

 

Solution 

 

( ) ( , )fx x f x y dy





 
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4 4

0

9(1 )

2(1 ) (1 )

x y
dy

x y


 


 

 

4 4

0

9 (1 )

2 (1 ) (1 )

x y
dy

x y


 


 

 

4 4

0

9 (1 )

2(1 ) (1 )

x y
dy

x y


 


 

 

4 4 4

0

9 (1 )

2(1 ) (1 ) (1 )

x y
dy

x y y


 

  
   


 

4 3

4

0

9
(1 ) (1 )

2(1 )
x y y dy

x



       
 

3 2

4

0

9 1 1

2 1 3 2

x( y ) ( y )

( x )


   

  
   

 

3 2 3 2

4

9 (1 ) (1 ) (1 0) (1 0)

2(1 ) 3 2 3 2

x x x

x

          
       

        
 

 4

9
0 0

2(1 ) 3 2

x y

x

  
         

 

4

4

9 1

2(1 ) 3 2

9 2 3

2(1 ) 6

x

x

x

x

 
    

 
    

 

    
4

3(2 3)
( ) ,

4(1 )
0X

x
f x

x
x





   

 

( ) ( , )Yf y f x y dx





   

 
4 4

0

9(1 )

2(1 ) (1 )

x y
dx

x y


 


 

 

4 4

0

9 (1 )

2(1 ) (1 )

x y
dx

y x


 


   

4 4 4

0

9 1

2 1 1 1

x y
dx

( y ) ( x ) ( x )


 

  
   

  
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3 4

4

0

9
(1 ) (1 )

2(1 )
x y x dy

y



       
 

3 3

4

0

9 (1 ) (1 )

2(1 ) 2 3

x y x

y


   

  
     

2 3 2 3

4

9 (1 ) (1 ) (1 0) (1 0)

2(1 ) 2 3 2 3

y y

y

          
       

        
 

 4

9 1
0 0

2(1 ) 2 3

y

y

  
         

 

4

4

9 1

2(1 ) 2 3

9 3 2

2(1 ) 6

y

y

y

y

 
    

 
    

 

    
4

3(2 3)
( ) ,

4(1 )
0Y

y
f y

y
y





   

(ii) Conditional probability 

  
y

f ( x, y )
f( x / y )

f ( y )
  

44 4

4 4

4

4

4 4 4

9(1 )

9(1 ) 4(1 )2(1 ) (1 )
 =

3(2 3) 2(1 ) (1 ) 3(2 3)

4(1 )

6(1 ) (1 ) 6(1 )

(1 ) (1 ) (2 3) (1 ) (2 3)

x y

x y yx y

y x y y

y

x y y x y

x y y x y

 

   


   



    
 

    

 

 

X

f ( x, y )
f( y / x )

f ( x )
  

 

44 4

4 4

4

4

4 4

9 1

9 1 4 12 1 1

3 2 3 2 1 1 3 2 3

4 1

6 1 1

1 1 2 3

( x y )

( x y ) ( x )( x ) ( y )
 =

( x ) ( x ) ( y ) ( x )

( x )

( x y ) ( x )
f( y / x )

( x ) ( y ) ( x )

 

   


   



  


  
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3.7 Transformation of One dimensional Random Variable  

 

        Let X be a random variable defined one sample space S and Y = g(X) be a strictly 

monotonic increasing or decreasing function such that Y is also random variable defined on 

S. Let )y(fY  be the probability density function of Y. Then  

 

 )y(F
dy

d
)y(f YY   Where  

)y(gx   where)x(F            

]xX[P            

)]y(gX[P            

]y)X(g[P            

]yY[P)y(F

1-
X

Y











1  

 

Differentiating both sides with respect to y, we have  

 

dy

dx
 )x(f)y(f 

dy

dx
 )x(F

dy

d
)y(f

)x(F
dy

d
)y(F

dy

d

XY

XY

XY







 

 

 

3.8 Transformation of Two dimensional Random Variable 

 

  Let (X,Y) be a continuous random variable with joint probability density function 

f(x,y). Let U and V be the transformations such that U = u(x,y), V=v(x,y). Then the joint 

probability density function of (U,V) is  

J )y,x(f)v,u(g   

Where J is the Jacobian transformation  

u

x

u

x
u

x

u

x

)v,u(

)y,x( 
J




















  
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Unit –IV 

4.1 MATHEMATICAL EXPECTATON 

 The ‘average’ value of a random phenomenon is also termed as its mathematical 

expectation or expected value. Once we have constructed the probability distribution for a 

random variable, to compute a mean or expected value of the random variables, where the 

weights are probabilities associated with the corresponding values. The mathematical 

expression for computing the expected value of a discrete random variable X with the 

probability mass function and computing the expected value of a continuous as random 

variable X with the probability density function are denoted byE(X)  

 






























-

n

1i

ii

 variable random continuous for   dx f(x) x

 variable random discrete for  xXP x

  )X(E   

 

4.1.1 Properties of Expectation  

Property 1. Addition Theorem of Expectation  

If X and Y are random variables then E(X + Y) = E (X) + E(Y), provided all the 

expectation exists.  

Proof 

 Let X and Y be a continuous random variables with joint p.d.f fXY(x, y) and 

marginal probability density functions of fX(x) and fY(y) respectively.  










      dy         f(y) y)Y(E             dx f(x) x)X(E  

            








 dy  dx y)(x,f )yx()YX(E XY     

                  

 ( , ) .  ( , )  XY XYx f x y dx dy y f x y dx dy

   

   

    
 

       

 ( , )  ( , )XY XYx f x y dy dx y f x y dx dy

   

   

   
   

   
      ( )  ( )X Yx f x dx y f y dy

 

 

  
 

 

E (X + Y) = E (X) + E (Y) 
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Property 2:  Multiplication theorem of Expectation 

 If X and Y are independent random variables, then E(XY) = E(X), E(Y). 

  (x, )(XY) XYxy f y dxdyE
 

 

  
 

          

 ( ) ( ) . X Yxy f x f y dx dy

 

 

  
  X, Y are independent 

   ( )    ( )X Yx f x dx y f y dy

 

 

    

E(XY)= E (X) . E (Y) 

 

Property 3  If X is a random variable and ‘a’ is constant. 

(i) E[a (X)]  = a E[(X)]    (ii)  E[(X) + a]  = E[(X)] + a 

 Where  (X) is a function of X, is a r.v and all the expectation are exists. 

Proof (i)  

 ( ) ( ) [  ( )] a x f x dxE a X




  
   

( ) ( ) x f x dxa 




 
 

  
[  ( )]E a X

  
  [ ( )]a E X 

 

          (ii) 

(i) 

[ ( ) ] ( ) [ ( ) ] x a f x dxE X a




   
   

( ) ( )  ( ) x f x dx a f x dx
 

 

  
 

      

( )] ( ) [ X a f x dxE




 

                  

( ) 1f x dx





 
  
 


 

     ( )][ X aE    

 

Property 4. If X is a random variable and a and b are constants then                                                    

E(aX + b) = a E(X) + b provided all the Expectations exists. 

Proof 

( ) ( ) ( ) ( )( ) ax b f x dx axf x dx bf x dxE aX b
  

  

      
 

               

( ) ( ) xf x dx b f x dxa
 

 

  
           

( ) 1f x dx





 
  
 


 

   ( )E aX b  = a E (X) + b 

 



59 

 

 

 

Property 5 If  X  0 then E (X)  0. 

Proof 

 If x is continuous random variable such that X  0 then  

( ) ( ) 0(X) = xf x dx xf xE
 

 

  
   

  [If  X  0 f(X) = 0 for n < 0]  provided the expectation exists. 

Property 6  

 If X and Y are two random variables such that Y  X, then E(Y)  E(X), provided 

all expectations exists. 

Proof: 

 Since Y  X 

 We have r.v  Y – X   0  X – Y  0. 

 Hence E(X-Y)  0 

 E(X) – E(Y)  0 

E(X)  E(Y) 

 E (Y)  E(X). 

 

4.2 Variance   

The variance of a random variable X is defines as  

 2)X(E)E(X  (X) Var 2   

4.2.1 Property 

          Let X is a random variable then V(aX+b) =a
2
V(X) where a and b are constants  

If Y=aX+b  then  

         E[Y] =  E(aX+b) =aE[X]+b 

Y-E[Y] = Y-(aE[X]+b)  

            = (aX+b)-(aE[X]+b)  

             = (aX+b-aE[X]-b) 

             = aX-aE[X]+b-b 

             =aX-aE[X] 

 Y-E(Y) = a(X-E[X]) 

Taking expectation and squaring on both sides  we get  
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E[Y-E(Y)]
2
 =E[a(X-E(X))]

2  

                  = a
2 

[E[X-E[X]]
2
] 

                  = a
2 

[E[X
2
-2XE[X]+(E[X])

2
] 

                  = a
2 

[E[X
2
]-2E[X]E[X]+(E[X])

2
] 

                  = a
2 

[E[X
2
]-2(E[X])

2
+(E[X])

2
] 

                   = a
2 

[E[X
2
]-(E[X])

2
] 

V(aX+b)=a
2
 V(X) 

 

Example: 4.1 Find the expectation and variance of the number on a die when thrown  

Solution  

Let X be a random variable representing the number on a die when thrown. Then X 

can take any one of the values 1,2,3,4,5,6 each with equal probability 1/6 

 

x 1 2 3 4 5 6 

P(X=x) 
6

1
 

6

1
 

6

1
 

6

1
 

6

1
 

6

1
 

 

6

1

1 1 1 1 1 1
1 2 3 4 5 6

6 6 6 6 6 6

1 2 3 4 5 6

6

21

6

i i

i

E( X ) x P( X x )

          

E( X )



       

    






 

 

Example 4.2 If a pair of fair dice is tossed and X denotes the sum of the numbers on them, 

find the expectation of X. 

Solution: Clearly X may be at least 2 and at most 12 

X 2 3 4 5 6 7 8 9 10 11 12 

P(X) 
36

1
 

36

2
 

36

3
 

36

4
 

36

5
 

36

6
 

36

5
 

36

4
 

36

3
 

36

2
 

36

1
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12

2

1 2 3 4 5 6 5
2 3 4 5 6 7 8

36 36 36 36 36 36 36

4 3 2 1
9 10 11 12

36 36 36 36

1
2 6 12 20 30 42 48 36 30 22 12

36

i i

i

E( X ) x P( X x )

                                                                         

          [ ]

   



        

   

          



252
7

36
                                                 E( X )  

 

 

Example 4.3 If X be a random variable with the following probability distribution  

X -3 6 9 

P(x) 
6

1
 

2

1
 

3

1
 

 

Find E(X),E(X
2
) and E(2X+1)

2
 

Solution  

2 2 2 2 2

2

1 1 1 3 18 18 33 11
3 6

6 2 3 6 6 2

11

2

1 1 1 93
3 6 9

6 2 3 2

i i

i i

E( X ) x P( X x ) x

                                                  E( X )

E( X ) x P( X x ) ( )

                                                    E( X )

  
        



      





93

2


 

       

   

2091X2E

2091
2

11
4

1XE4XE4

1EX4EX4E1X4X4E1X2E

2

2

222









)(

.
2

93
4.                   

                  

  )(

 

Example: 4.4 In a continuous distribution the probability density function of X is 












 otherwise      ,          0

2x0   ,)x(x
)x(f

2
4

3

Find the expectation of the distribution. 

Solution. 
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  )X(E                                   

       

 1 
3

4

4

3

3

12-16

4

3

4

3
        

  
3

16

4

3
  

3

8
2

4

3
        

        
3

0
2

3

2
2

4

3x

3

x
2        

  dx xx   dx )x(x         

               

dx )x(x. xdx )x(f x)X(E

33
2

0

3

2

0

2

0

2

0

2

0

1

4
3

16

4

16

4

16

4

0

4

2

44

3

2
4

3
2

4

3

2
4

3

444

322












































































































 

 

4.3 Cauchy-Schwartz Inequality 

If X and Y are random variables taking real values, then [E (XY)]
 2

≤ E(X
2
) E (Y

2
) 

Proof  

 Consider the expression (X+tY)
2
 which is a function of real variable t. Since it is 

always non-negative for all real values of X,Y and t, it follows that 

E(X+tY)
2
 ≥t 

E(X
2
+2XYt+t

2
Y

2
)≥t 

E(X
2
)+2t E(XY)+t

2 
E(Y

2
) ≥t 

i.e., (t) = At
2
+Bt+C ≥t  

Treating as a quadratic in t , its roots will be real i.e., t ≥ 0 

where A= E(Y
2
),  B=2 E(XY) C=

 
E(X

2
) ≥t 

Now (t) ≥implies B
2
-4AC ≤ 0 

4E[(XY)]- 4E(X
2
)
 
E(Y

2
) ≤ 

 [E (XY)]
 2

≤ E(X
2
) E (Y

2
) 
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4.4. Conditional Expectation and Conditional Variance   

   Discrete Case:   The conditional expectation of mean value of a continuous function 

g(X,Y) is given that Y = yj is defined by, 

  
1

( ,Y) / Y ( , ) (X / Y )j i j i j

i

E g X y g x y P x y




      

          
( , ) (X )

(Y )

i j i j

j

g x y P x Y y

P y

  



  

(ie)  (X,Y) / Y jE g y  is nothing but the expectation of function g(xi, yj) of X with 

respect to the conditional distribution of X when y = yj. In particular, the conditional 

expectation of a discrete random variable X is given Y = yj  

 X/ Y     (X  = / Y   )j i i jE y x P x y    

The conditional variance of X given y = yj is given by  

   2X/ Y (X/ Y ) / Yj j jV y E X E y y      

 

Continuous case 

The conditional expectation of g(X, Y) on hypothesis Y = y is given by  

  /(X,Y) / Y ) ( , ) ( / )X YE g y g x y f x y dx





    

( , )
( , )

( )Y

f x y
g x y dx

f y





   

In particular, the conditional mean of x given y = y is defined as  

  
( , )

X/ Y )
( )Y

f x y
E y x dx

f y





    

Similarly, 

  
( , )

Y/ X )
( )X

f x y
E x y dy

f x





    

The conditional variance of X defined as  

 

 

2

2

V(X/ Y y) E X E( X / Y Y ) / Y y

V(Y/ X x ) E Y E(Y/ X x ) / X x

     
 

     
 
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Theorem 4.1 The expected value of X is equal to the expectation of the conditional 

expectation of X given that is symbolically, 

 ( ) ( / )E X E E X Y  

 ( / )   ( / )i i j

i

E E X Y E x P X x Y y
 

   
 


 

( )
  

( )

i j

i

i j

P X x Y y
E x

P y y

    
  

  
  

( )
  (Y )

(Y )

i j

i j

j i j

P X x Y y
x P y

P y

    
  

  
   

( )i i j

i j

x P X x Y y      

( )i i j

j i

x P X x y y    
 

   ( ) =  i i

j

x P X x E X  = E(X) 

 E{E (X/Y)} = E(X) 

Hence proved. 

Theorem 4.2 

The variance of X can be regarded as consisting of two parts the expectation of 

conditional variance and variance of conditional expectation symbolically   

Var(X) = E[V(X/Y)] + V [E(X/Y)]          

 = E[V(X/Y)] + V [E(X/Y)]                        

      
22 22(X / Y) (X/ Y) (X/ Y) (X/ Y)E E E E E E        
         

       
22 22(X / Y) (X/ Y) (X/ Y) (X/ Y)E E E E E E E E                      

   
22(X / Y) (X/ Y)E E E E                                                      

   
22(X / Y) (Y)    E E E    

    
2 2(X / Y ) [ (X)]i i j

i

E x P x y E
 

    
 
                

     
2 2

(X )
[ (X)]

(Y )

i j

i

i j

P x Y y
E x E

P y

    
  

  
    
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2 2

(X )
P(Y ) [ (X)]

(Y )

i j

i j

j i j

P x Y y
x y E

P y

     
    

    
           

    
2 2(X ) [ (X)]i i j

j j

x P x Y y E        

    
2 2(X ) [ (X)]i i

j

x P x E              

    
2 2( ) [ ( )]E X E X                       

     = Var (X)  =             

  Var (X) = E[V(X/Y)] + V [E(X/Y)]          

Hence the theorem 

EXAMPLE : 4.5  Let X and y be a two random variable each taking three values   -1, 0, 1 

having joint probability function of x and y  

X 

Y 
-1 0 1 

-1 0 0.1 0.1 

0 0.2 0.2 0.2 

1 0 0.1 0.14 

  

(i) Show that X and Y having different expectation. 

(ii) Find the Variance of X and Y 

(iii) Given that Y = 0 what is the conditional probability distribution of X. 

(iv) Find the Var (Y/X = -1) 

Solution  

X 

Y 
-1 0 1 P(Y=y) 

-1 0 0.1 0.1 0.2 

0 0.2 0.2 0.2 0.6 

1 0 0.1 0.14 0.2 

P(X = x) 0.2 0.4 0.4 1 
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(i) Expectation of X and Y are  

1 0 2 0 0 4 1 0 4 0 2

1 0 2 0 0 6 1 0 2 0

i i

j i

E( X ) x p ( )( . ) ( )( . ) ( )( . ) .

E(Y ) y p ( )( . ) ( )( . ) ( )( . )

E( X ) E(Y )

     

     





  

 X and Y are having different expectation. 

 

(ii) Variance of X and Y 

 

 

22

2 2 2 2 2

2

2

1 0 2 0 0 4 1 0 4

0 6

i i

                                    Var( X ) E( X ) E( X )

E( X ) x P( X x ) ( ) ( . ) ( ) ( . ) ( ) ( . )

                           0.2 0 0.4  0.6

                            E( X ) \ .

Var( X ) E( X ) E( X )

 

     

   



 



2 20 6 0 2 0 6 0 04 0 56

0 56

. ( . ) . . .                              

                                   Var( X ) .

    



 

 

 

 

22

2 2 2 2 2

2

2

1 0 2 0 0 6 1 0 2

0 4

j j

                                    Var( Y ) E(Y ) E(Y )

E(Y ) y P(Y y ) ( ) ( . ) ( ) ( . ) ( ) ( . )

                           0.2 0 0.2  0.4

                            E(Y ) \ .

Var(Y ) E(Y ) E(Y )

 

     

   



 



2 20 4 0 0 4 0 0 4

0 4

. ( ) . .                              

                                   Var(Y ) .

    



 

 

(iii)   Conditional probability of X when Y = 0 

 
(X 1 0) 0.2 1

 P(X 1/ Y 0)  
(Y 0) 0.6 3

P Y

P

   
     


 

(X 0 0) 0.2 1
 P(X 0 / Y 0)  

(Y 0) 0.6 3

P Y

P

  
    


 

(X 1 0) 0.2 1
P(X 1/ Y 0)  

(Y 0) 0.6 3

P Y

P

  
    


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(iv)  V (Y|X = -1) 

      
22

 ar / 1 / 1 / 1V Y X E Y X E Y X           

        

   

 

/ 1  / 1

                      ( 1)(0) (0)(0.2) (1)(0)

/ 1  0

y

E Y X y P Y y X

E Y X

     

   

  



 

   

 

     

 

2 2

2 2 2

2

22

/ 1  / 1

              ( 1) (0) (0) (0.2) (1) (0)

/ 1  0

 ar / 1 / 1 / 1

              ar / 1 0 0 0

 

y

E Y X y P Y y X

E Y X

V Y X E Y X E Y X

V Y X

     

   

  

          

    



 

 

Example 4.6  Let  
8 0 1

0

xy, x y
f x, y   

,      elsewhere 

  
 


 . 

 Find (a) E(Y|X= x)  Var (Y|X=x) 

Solution : (a) 

11 1 2

2 2 2 2

2

8 8 8
2

1 1
8 8

2 2 2

4 1

X

x x x

X

y
f ( x ) f ( x, y ) dy = xy dy = x y dy = x  

x x
            x x

          f ( x ) x( x ), o<x<1



 

 
  

  

   
     

      

 

  

 

2

00 0

2 2 2

3

8 8 8
2

0
8 8

2 2 2

4

yy y

Y

 

Y

x
f (y) f ( x, y ) dx = xy dx = y x dx = y  

y y
            y y

          f (y) y , o<y<1



 

 
  

  

   
     

      



  
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3

2

2

2

8

4

2

8

4 1

2

1

X /Y

Y

X /Y

Y/ X

X

Y/ X

f ( x, y ) xy
f (x/ y)

f ( y ) y

x
                  f (x/ y)

y

f ( x, y ) xy
f (y/ x)

f (x) x( x )

y
                  f (y/ x)

( x )

 



 





 

 

(b) Var(Y/X=x) = E(Y
2
/X=x)-{E(Y/X=x}

2 

 

 

1 1

2

11 3
2

2 2

3 3 3 3

2 2

3

2

2

1

2 2

31 1

2 1 2 1

3 3 31 1

2 1

3 1

Y / X

x x

xx

y
| y f ( y / x )dy y dy

( x )

y
                   y  

E Y X x

E Y X

dy
( x ) ( x )

x x
                  

( x ) ( x )

x
| x

x

 


 
  






   

   
     

    

 
  

 

 


 

 

 

 

1 1

2 2

2

11 4
3

2 2

4 4 4 4

2

2

2 2

2

2

1

2 2

41 1

2 1 2 1

4 4 41 1

1

2

Y / X

x x

xx

y
| y  f ( y / x )dy y  dy

( x )

y
                   y  dy

( x ) ( x )

x x
                  

E

( x ) ( x )

Y X x

E Y X x
x

|

 


 
   

   

   
  





  
    




 


 

    
2

2
2 3

2

2

2
2 3

2

1 2 1

2 3 1

1 1
9

2 1

| |

x x
                     

Var(Y/ X x) E Y X x E Y X x

Var(Y/

  
x

x x
)

x
X x



     
          

  
  



 

 


 
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4.5 MOMENT GENERATING FUNCTION 

 The Moment Generating Function (M.G.F) of a random variable X defined as  

( )        for continuous probability distributions

( ) ( )
( )    for discrete probability distributions

tx

tX

X tx

x

e f x dx

M t E e
e p x x




  






  

( ) ( ) ( )tX tx

XM t E e e f x dx    

2 2

( ) ( ) 1 .... ...
2! !

r r
tX

X

t X t X
M t E e E tX

r

 
        

 
 

                          
2

21  ( ) ( ) ( ) ...
2! !

r
rt t

t E X E X E X
r

       

                         
2

1 21  + ...
2! !

r

r

t t
t

r
          

                          

1

0

 
!

r

r

r

t

r







                

Where    

r

r

r
r

x

x   f(x)  dx   for continuous distribution

  E( X )

x p(x) for discrete distribution  




   






 

is the rth moment of X about origin. Thus the coefficient of 
!

rt

r
in MX(t) gives 

r  (about origin). Since MX(t) generates moments, it is known as moment generating 

function. Differentiating moment generating function  w.r. to ‘t’ ‘r’ time and put t = 0 we 

get. 

0

( ) '
r

X rr

t

d
M t

dt




 
 

 
 

 

   222

12

2

0

2

2

2

0

1

)X(E)X(E    Variance                

)X(E)t(M
dt

d
        

2r put

Mean)X(E)t(M
dt

d
          

         1r put

!!

t

X
!

t

X
!































 



70 

 

4.5.1 Properties of Moment generating function: 

Property 1 

 McX (t) = E[e
tcX

], c is a constant. 

By definition  

 L.H.S.   Mcx (t) = E[e
tcx

] 

 R.H.S.   Mx (ct) = E[e
ctx

]       =    L.H.S 

McX (t) = E[e
tcX

] 

Property 2 

 The moment generating function of the sum of a number of random variables is 

equal to the product of their respective moment generating function. 

 
1 2 3 4 1 2 3

( )

( ) ( ) ( ) ( ) ( )
n n

t

X X X X X X X X XM M t M t M t M t       

Proof 

1 2

1 2 3 4

( .... )

( ) ( ) n

n

t x x x

X X X X XM t E e
 

   
     

                       1 2. .... ntxtx txE e e e     

   1 2    .... nt xt x t xE e E e E e            

    
1 2 3
( ) ( ) ( ).... ( )

nX X X XM t M t M t M t  

Property 3  Effect of change of origin and scale on MGF. 

Let us transform X to the new variable U by changing both the origin and scale in 

X as follows  
h

aX
U


  where a and h are constants  

Moment generating function about U about origin is given by 

X a
t

tU h
U

tX-at tX at

h h h

tX at at tX

h h h h

M ( t )  E(e ) E e

                           E e E e

                          E e .e e E e

                         

 
 
 

   
   

   

 

 
  
 
 

   
    
   
   

   
    

   
   

at

h
U X M ( t )    e M ( t / h )                            





 

Where MX(t) is the M.G.F of X about orgin. 
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4.5.2 Limitations of Moment Generating Function   

1. A random variable X may not have moments although its moment generating 

function exists. 

 Consider a discrete random variable X with probability density function is    

otherwise '0' and 1,2,3,...  x for 
)x(x

)x(f 



1

1
 

1 1

1

1

1 1 1 1 1

1 2 3 4 5

1 1 1 1
1

2 3 4 5

x x

x

x
E( X ) x f(x)  

x( x )

                                                             
( x )

                          -1

                         E( X )  

 

 





 


     


 
      
 



 



1

1
1

x

                                 
x







 

Since 
1

1

x



  is divergent series, E(X) does not exists and consequently no 

moment of X exists,how ever , the mgf of X is given by  













11 x

tx

x

tx
X  

1)x(x

1
 e  )x(fe)t(M  

Let z = e
t 

 

  

1 2 3

1
1 2 2 3 3 4

x

X

x

1 2 3

2 2 3 3

z z z z
M ( t )   

x(x 1) . . .

1 1 1 1 1
                                      z 1- z - z -

2 2 3 3 4

z z z z z
                                    z- - -  

2 2 3 3 4





    


     
        

     

    
       
     



2 3 2 3

2 3 2 3

2 3 2 3 4

1 1
2 3 2 3 4

 

z z z z z
                                   z

z z z z z
                                     z

                                    log

   
          
   

    
              

    

 
2 3

1 1
2 3 4

z z z
 (1-z)-

  
       

  
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 

2 3

2 3 4

2 3 4

1 1
2 3 4

1
1

2 3 4

1
2 3 4

1 1

1 1

t

z z z z
  log  (1-z)-

z

z z z
log  (1-z)- z

z

1 z z z
log  (1-z)- z

z

1
log  (1-z)- log( z )

z

1
log  (1-z) log( z )

z

for z  <1  e  <1 t < 0

  
         

  

  
         

  

 
       

 

    

    

 



 

1
1 1 1

1
1 1 1 1 1 1 0t t t

t

log( z )
z

log( e ) e log( e ),t
e



 
   
 

 
         

 
 

So that MX(t) = 1  for t=0 , Hence MX(t) exists for t≤0. 

 

2. A random variable X can have moment generating function along with some or all 

moments, yet the  but m.g.f does not generate the  moments. 

 

Let consider a discrete random variable X with probability functions 

!x

e
)X(P x

1

2


  for x = 0,1,2,…   Then  

   

   

1

0 0

2

1 1 1 2

0

2 1

2 2 2

2 22
1

1 2

r r
r x x x

x x

x
r rr

r

x

rr

e
E( X ) P( X )

x!

           e e e e
x! ! !

E( X ) e

  

 


  





  

 
      
 
  



 

  

Hence all the moments of X exists. The m.g.f of X, if it exists, is given by 

1
2 1 2

0 0

1x x( t  ) t  
X

x x

e
M ( t ) e e e

x! x!

 


 

   
    

  
 

 

By D’ Alembert’s ratio test the series on the RHS is convergent for t≤0 and diverges for              

t > 0. Hence MX(t) cannot be differentiated at t=0 and has no  Maclurin’s expansion and 

consequently it does not generate moments.  
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3. A random variable X can have some or all moments, but m.g.f does not exist except 

perhaps at one point. 

  Let consider X be a random variable with probability function 














otherwise     ,

,,,x;
!x

e

)X(P r

0

210
22

1


 

The distribution being symmetric, moments of odd order about origin vanish 

i.e., 2r+1= 0  E(X
2r+1

) = 0 

Now, E(X
2r

) = 
  )(

x

rx
1-

x

1-
rx r

e
x!

2
 e

2x!

e
 )( 12

0

2

0

2 2
2 









   

Thus all the moments of X exists. The m.g.f of X, if it exists, is given by  









 







































0

1 2

2

1

x

x

0x

t.2-t.2
X

!x

)t(Cosh
e

!ex

x
e

x
e )t(M  

Which is only convergent for t = 0. Hence m.g.f of X does not exists at t=0. 

 

Example 4.7 Let the random variable X assume the value of r with probability law                       

P(X = r) = q
r-1

.p. r = 1, 2, 3. Find the moment generating function and hence find its mean 

and variance. 

Solution 

 MX(t) = E(e
tr
) 

  
1

tr

r

e  p( x r )




   

1

1

 .tr r

r

e q p






  

 1

1

 . .t r r

r

e q q p






  

1

( )t r

r

p
qe

q





 
 

1

( )t r

r

p
qe

q





 
 

2( ) 1 ( ) ( ) ...t t tp
qe qe qe

q
     

 

1 (1 )t tp e qe    
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( )
(1 )

t

X t

Pe
M t

qe


  

Mean 
( )

0

(X) t

X

t

d
E M

dt 

 
  
 
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t
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dt dt qe



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p e qe
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 
  

2 1( 1)(1 ) ( ) (1 )t t t t tp e qe qe e qe          

2
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t t

t t

qe e
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qe qe
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t t t

t

qe e qe
p
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Example 4.8 A random variable X has probability function 1,2,3,  x )x(p
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the moment generating function, mean and variance. 
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Example 4.9  Find the m.g.f of the random variable X having p.d.f is defined as     
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4.6 CUMULANTS 

Cummlants generating function K(t) is defined as X e XK (t ) log M ( t )  

Provided the right hand side can be exoanded as a convergent series in power of t  or If the 

logarithm of the m.g.f of a distribution can be expanded as a convergent series in powers 

of t viz.,  

2 3
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Then the coefficients k1,k2,…. Are called the first, second cumulant of the distribution and 

KX(t) is called the cumulative function. 

Differentiating r times both sides with respect to t and putting t = 0   and we have  
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4.6.1 Properties of Cumulants  

Property 1 : Additive Property 

 The r
th 

cumulant of the sum of the independent random variables is equal to the 

sum of the r
th 

cumulants of the individual variables. Symbolically 

kr(X1+X2+X3+….+Xn)=kr(X1)+kr(X2)+kr(X3)+….+kr(Xn) 

where Xi, i=1,2,…,n are independent random variables. 

Proof  

Since Xi, i=1,2,…,n are independent, 
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 Differentiating with respect to ‘r’ times and put t= 0 we get 
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Property 2: Effect of change of Origin and scale on Cumulants 

Let 
h
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Where 


rk and kr are the r
th

 cumulants of U and X respectively. Comparing coefficients, 

we get  2,3,.....r; 
h

k
k and  

h
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k

r
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
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1  

Thus except the first cumulant, all the cumulants are independent of change of origin. 

But the cumulants are not invariant of change of scale as the r
th

 cumulant of U is (1/h
r
) 

times the r
th

 cumulant of the distribution of X. 

 

4.7 CHARACTERISTIC FUNCTION 

In some case moment generating function does not exists. The characteristic function 

defined as  

itx

itX

X
itx

x

e   f(x)  dx   for continuous probability distribution

( t )  E(e )

e p(x) for discrete probability distribution  
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4.7.1 Properties of characteristic function 

Property 1 

For all real t, we have 

(i) 0 1( ) dF(x)




   

(ii) |  (t) |  | =  (0) 
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Property 2 

  (t) is continuous everywhere, i.e.,  (t) is continuous function of ‘t’ in (-∞,∞). 

Rather   (t) is uniformly continuous in ‘t’. 

 

Proof  
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 The last integral does not depend on ‘t’. If it tends to zero as h  0 then x (t) is 

uniformly continuous in ‘t’ 
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 Hence by Dominated convergence theorem (D.C.T) taking the limit inside the 

integral sign. 
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 Hence x(t) is uniformly continuous in ‘t’. 

 

Property 3 

  X(-t) and x(t) are conjugate functions. 

 ( ) ( )X Xt t   , where a is the complex conjugate of ‘a’. 

Proof 

 x(t) = E(e
itx

) = E [Cos tx + i Sintx] 

 ( ) (Cos   Sint )X t E tX i X    

  = E{Cos (-t) X + i Sin (-t) X } 

  = E(e
-itx

 ) = x (-t) 
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Property 4 

 If the distribution function of a r.v.x is symmetrical about zero, ie if  

  1 – F(x)  = F(-x) 

 F(-x) = f(x) 

Proof 

By the definition the x(t) is real valued and even function of t  
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= x (-t) 

 x (-t) is an even function of ‘t’ 

 

Property 5 

If X is some r.v with characteristic function x (t) and u 'r = E(X
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



 
 

( )  ( )r r itxi x e f x dx





 
 

0 0

( ) ( )   ( )
r

r r itx

xr

t t

t i x e f x dx
t




 


 

   
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( )  ( )r ri x f x dx





 
 

 = (i)
r
 E(x

r
) = i

r
 r 

Hence  

 
0 0

1
' ( ) ( ) ( )

r r r
r

r Xr r

t t

t i t
i t t

  
 

  
   

  
 

Property 6 

 cx (t) = x (ct) c is constant. 

Property 7 

 If X1 and X2 are independent random variables, then, 

1 2 1 2
( ) ( ) ( )X X X Xt t t      

Property 8  Effect of change of origin and scale on characteristic Function. 

 If  
x a

U
h


 , a and h being constants, then 

 /( )  iat h

u X
tt e
h

   

In particular we take a = E(x) = (say) and h = x = , then the characteristic 

function of the standard variate. 

 
(X)

  is given by
X

X E X
Z



 

 
   

 
/( ) ( / )i t

Z t e t     

Example:   Find the characteristic function of the Poisson distribution  

Solution: 

The probability mass function of a Poisson distribution is  

                             ,.....,,,x;
! x

 e
)xX(P

x

3210




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)ite (
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2it1it0it
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x

x

itx
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e)t(                                       

eeee)t(
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 e  

! 

 e  
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! 

 e  

! 

 e  
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 e  
e 

! x

 e  
e        

! x

 e 
e

! x

 e
 e)xX(P e)t(




















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




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





























































1

1

0

000

21
1
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



  

 

Example 4.10  Find the characteristic function of a pdf 





x- ,e )x(f
x-

2
  

Solution  Let 





























































  

 

































0

0

0

0

0

0

  dx e dx e
2

  dx e e dx e e
2

         

  dx e e dx e e
2

  dx e e
2

         

  dx e
2

 e  dx f(x) e)t(

xitxxitxx-itxxitx

)x(-itx)x(-itxx-itx

x-itxitx
X
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( it )x ( it )x
( it )x ( it )x

( it )( ) ( it )( ) ( it ) ( it )

e e  
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2 2 ( it ) ( it )
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2 ( it ) ( it ) ( it ) (
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 
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

   

   
  



       

      
         

           

      
                    

 

it )

   
        

00

00

0 0

( it )x ( it )x
( it )x ( it )x

( it )( ) ( it )( ) ( it ) ( it )

e e  
e  dx e  dx  

2 2 ( it ) ( it )

e e e  e  

2 ( it ) ( it ) ( it ) (

 
 

   

 

 



   

   
  



       

      
         

           

      
                    

 

it )

   
        
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         
                               

                                 

 

2

2 2X

                                  

                                                  ( t )
t






 
 
 
 

 

 

Example 4.11 Show that the distribution which the characteristic function e
-|t|

 has the 

density function is

 




 x-   
x1

dx
 )x(f

2

1
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4.8 Probability Generating Function  

For a random variable X which takes integral values 0,1,2,3,…only, we define the 

probability generating function P(s) by  







0

2
110

n

Xn
n )s(Espspspp)s(P    

The coefficient of s
n
 in the expansion of P(s) in powers of s gives P(X=n). This 

explains P(s) is called the probability generating function (p.g.f). 

 

4.9 TCHEBYCHEV’S INEQUALTIY 

  

 The role of standard deviation as a parameter to characterize variance precisely 

interpreted by means of the well known Chebychev’s inequality. The theorem discovered 

in 1853 was later an discreased in 1856 by Bienayme. 

 

Definition  

 If X is a random variable with mean  and variance 
2
, then for any positive 

number k, we have 

   2

1
P X k

k
     

  2

1
1P X k

k
      

 

Proof: Case (i) x is continuous . . By the definition. 


2   

= x
2 

= E[X – E(X)]
2
 

      = E[X – ]
2
 

     
2(x ) f ( x )dx.       f ( x )  is p.d.f of x





   

     
2 2 2( ) ( )  ( )  ( ) ( ) ( )

k k

k k

x f x dx x f x dx x f x dx

   

   

  
  

  

         

2 2( ) ( )  ( )  ( )

k

k

x f x dx x f x dx

 

 

 
 

 

    
 

We know that 

 x   - k and  x   + k  |x - |  k 

 substituting (x - ) = k  we get.   
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2 2 2( ) ( )  ( )  ( )

k

k

k f x dx k f x dx

 

 

  
 

 

  
 

2 2( ) ( )   ( ) ( ) ( )   ( )

k k

k k

k f x dx f x dx k f x dx f x dx

   

   

 
  

   

   
      

      
   

 

      2 2 (X ) (X )k P k P k           

   2 2 2 [| | ]k P x k      

  2

2 2

1
| |  P x k

k
  


    

Also since 

     1P X k P X k          

We get 

     2
11 1 {P X k P X k

k
            

Case (ii) 

 In the case of discrete random variable, the proof exactly similarly on replacing 

integration by summation 

 We late k = C > 0 

      
2 2

2 2
 and 1P X c P X c

c c

 
          

   2 2

(X) (X)
(X)  and  (X) 1

Var Var
P X E c P X E c

c c
         

Example 4.12 If x is the number scored in a throw of a fair die, show that the 

Tchebychev’s  inequality gives P{|x-| > 2.5} < 0.47, where  is the mean of X, while the 

actual probability is zero. 

Solution 

 Here X is a random variable which takes the values 1,2,3,4,5,6 with probability 1/6. 

Hence 

 
6

1

(X)  ( )i i

i

E x p x x


   

1 1 1 1 1 1
1 x 2 x 3 x 4 x 5 x 6 x 

6 6 6 6 6 6

           
                
             

 
1

 1 2 3 4 5 6
6

     
21 7

 
6 2

 
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2 2 2 2 2 2 21 1 1 1 1 1
E(X ) 1 x 2 x 3 x 4 x 5 x 6

6 6 6 6 6 6

           
                 
           

 

2 1 91
(X ) (1 4 9 25 36)

6 6
     E  

  91672
12

35

4

49

6

91

2

7

6

91
2

22 .)X(E)X(E)X(Var 















  

For k > 0, Tchebychev’s in equality gives  
2k

X Var
k)X(EXP   

Where Choosing k = 2.5  

  2

2.9167
P X 2.5 0.47

(2.5)
     

 

The actual probability P is given by  

   

 

 

P X 0.25 P X E(X) 0.25

                        P X 3.5 0.25                          

                        P X lies out side the limits 3.5-2.5 and 3.5 2.5 i.e., 1 and 6  

                          0 (

    

  

 

 Since X being number on a die cannot lie outside the limit 1 and 6)

 

Example 4.13  A fair die is tossed 720 times. Use Chebyshev’s inequality to find a lower 

bound for getting 100 to 140 sixes. 

Solution: Let X be the number of sixes obtained when a die is thrown 720 times. 

p = probability of success in a single throw =  

q = 1-  =  and here n = 720   

Thus X follows Binomial distribution with 

Mean =µ = np ie., σ = 120 

Variance σ
2
 = npqie., σ

2
= 100 and σ = 10. 

We have to find lower bound for the probability P( 100 < X < 140) 

Now, by Chebyshev’s inequality  

P(|X- µ| <kσ ) ≥ 1-  

ie., P(µ- kσ< X < µ+ kσ) ≥ 1-  

Comparing P(100 < X < 140) with LHS we get, 
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µ- kσ = 100 ie.  120-10k = 100 

and µ+ kσ = 140 ie.  120+10k = 140 

Subtracting,  -20k = -40  ie., k=2 

P(100 < X <140) ≥  

Hence the lower bound is  
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UNIT –V 

 

5.1 CONVERGENCE IN PROBABILITY 

 Definition 

 A sequence of random variables X1, X2, …., Xn is said to convergence in 

probability to a constant a, if for any  > 0  

  1


aXPlim n
n  

                              or its equivalent.   0aXPlim n
n




 and 
 

                                        we write aX
P

n  as n. 

If there exists a random variable X such that 

aXX
P

n 
 
as

 
n then  we says that the given sequence {Xn} of random variables 

converges in probability to the random variable X. 

 

5.2 Weak Law of Large Numbers (WLLN) 

Statement: 

 Let X1, X2, X3,…..Xn be a sequence of random variables and 1, 2,…..,n be their 

respective expectation and Let        

Bn = Var(X1+X2+….+Xn) < ∞ 

 when  1 2 1 2.... ....
1

      
    

 

n nX X X
P

n n

  
   

for all n > n0 where  and  are arbitrary small positive numbers, provided.  

2
lim 0n

n

B

n


 

 

Proof 

 Using Chebychev’s inequality to the random variable 1 2 .... nX X X

n

  
 we get 

any  > 0 

1 2 1 2

2 2

.... ....
1

       
     

  

n n nX X X X X X B
P E

n n n



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1 2
1 22

.... 1
Since Var ( .... )n

n

X X X
Var X X X

n n

     
     

    

  1 2 1 2

2 2

.... ....
1

      
    

 

n n nX X X B
P

n n n

  



 

So, far, nothing is assumed about the behaviour of Bn for indefinitely increasing 

values of n. Since  is arbitrary, we assume 
2 2

0nB

n 
 as n becomes indefinitely 

large.Thus, having chosen two arbitrary small positive numbers  and, number no can 

found so that in equality 2 2

nB

n



 will hold for n > n0 consequently, we shall have  

1 2 1 2.... ....
1

      
    

 

n nX X X
P

n n

  
   for all n > n0 (, ) 

This conclusion leads to the following  important results, known as W.L.L.N,With 

the probability approaching unity or certainty as near as we please, we may expect that the 

arithmetic mean of values actually assumed by n random variables will differ from the 

arithmetic mean of their expectations by less than any given number, however small, 

provided the number of variables can be taken sufficiently large and provided the 

condition. 

  
2

0 as n  is fulfilled nB

n
 

Remarks  

1. Weak law of large numbers can also be stated as, 
P

n nX 
Provided   

2
0 as n nB

n
 

 
 

2. For the existence of the law, we assume the following conditions 

(i) E (Xi) exists for all i. 

(ii) Bn = Var(X1+X2+….+Xn) exists and  

(iii) 
2

0 as n nB

n
 

 
 Condition (i) is necessary, without it the law itself cannot be stated. But the 

condition (ii) & (iii) are not necessary (iii) however a sufficient condition. 
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5.3 Bernoulli’s Law of Large Numbers 

Statement: Let there be n trails of an event, each trail resulting in a success or 

failure. If X is the number of successes in n trails with constant probability p of success for 

each trail, then E(X) = n p and Var(X) = npq, q = 1-p. The variable X/n represents the 

proportion of success or the relative frequency of success and  

   
2

1
  ( ) then.

X X
E p and Var Var X

n n n

   
    

     

1 as n  
 

     
 

X
P p

n
  

0 as n  
 

      
 

X
P p

n
  

for any assigned  > 0. This implies that (x/n) converges in probability to p as n  ∞. 

5.4 Khinchin’s theorem 

Statement:  If Xi’s are identically and independently distributed random variables, 

the only condition necessary for the law of large number to hold is that E(Xi); i = 

1,2,3,…..,n should exists.  

 

5.5 Central limit theorem 

 If Xi (i = 1, 2, …,n) be independent random variables such that E(Xi) = i and 

V(Xi) = i
2
 then under certain very general conditions, the random variables 

Sn=X1+X2+….+Xn is asymptotically normal with mean  and standard deviation  where, 

 

2 2    and      =
1 1

i i

n n

i i
  
 

  
 

Central Limit theorem for (independent and identically distributed) variables was proved 

by Linderberg and Levy. If X1, X2, …Xn are independent and i.i.d random variables with  

E (Xi) = i  Var (Xi) = i
2          

i = 1,2,3 …..n  then the sum Sn = X1+X2+…+Xn is 

asymptotically normal with mean  = n1 and variance i
2   

= ni
2 
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