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1.1 Sets:

A set is a collection of objects (or) elements. Typically, the type of all the elements in
a set is the same. For example - All the elements in a set could be integers. However, it is
possible to have different types of elements in a set. (An analogy for this is that usually a
book bag contains just books. But sometimes it may contain other elements such as pencils
and folders as well). We have two usual methods of denoting the elements in a set:
1) Explicitly list all the elements inside a set of curly braces {}, as follows: {1,2,4,5,6,7}
2) Given a description of the elements in a set inside of a set of curly braces as follows:
{2x | xeN}.

To understand the second method, we must define the various symbols that are used

in this notation. Here is a list of the symbols we will be using:

| - translates to “such that”

e- “is an element of”

- “is a proper subset of”

c- “is a subset of”

Now we must define what a subset is. A subset is also a set. So, if we have sets A and
B, AcB if for all xeA, xeB. In layman’s terms, a set A is a subset of a set B, if all the
elements in the set A also lie in the set B.

Note: A = B iff A= B A A=B.

We still must define what {2x | xeN} really means. Here it is in English: “The set of
all numbers of the form 2x such that x is an element of the natural numbers.” (Note: The set
N denotes the natural numbers, or the non-negative integers as per the book). So, the set
above could also be listed as {0, 2, 4, 6, ...}. Now that we have gotten that out of the way,
let’s talk about the empty set (). The empty set is a set with no elements in it. In our
standard notation, we could denote it as {}. It is also very common to use &, to denote the
empty set. It’s important to denote that the following are not equal: & , {0}, and 0. The first
two are sets, while the third is an element. However, the empty set has no elements while {0}
contains one element, zero. Typically, sets will be denoted by uppercase letters. There are

some other sets we should be familiar with since they come up so often. Here they are:
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Z={0,1,-1,2,-2, ..} (the set of integers)

N =40, 1, 2, 3, ...} (the set of non-negative integers)

Z" ={1, 2, 3, ...} (the set of positive integers)

Q ={a/b|a beZ A bz0}

R = the set of real numbers...

Also, one last definition... |A| for a set A is known as the “cardinality” of A, which equals the

number of elements in A.

1.2 SET OPERATORS:

Now we are ready to discuss set operators. We can use several operators on existing
sets to define new ones. The first two operators are binary operators, union and intersection.

In each of these examples, let A and B be sets.

Union (U): Au B = {x| xeA v xeB}

Intersection (N): AN B ={x | xeA A xeB}
Complement (=):=A = {x | xgA}

Relative complement (-): B— A ={x | xeB A xgA}

In General, the union of two sets contains all elements in either set and the
intersection of two sets contains all elements in both sets. To define the complement, we must
define what a universe is. For each set, there is a possible set of elements. This possible set of
elements is known as the universe. Typically, you will be told what the universe is for each
problem.

The complement of a set contains all the elements in the universe that are NOT in the
set itself. You can think of relative complement as the subtraction between two sets. B — A
refers to a set that subtracts out all the elements from A out of B. Now if an element of A
wasn't in B to begin with, there’s no need to take it out of B at all... Also, an identity that we
can use is that B— A =B n—A.

1.3 Equality of Sets:

There are three different ways that we can show two sets to be equal. The first two are
going to be analogous to the methods used in logic.
1) Use the laws of set theory.
2) Use the table method.
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Use the laws of set theory

1.—A=A

Law of Double Complement

De Morgan’s Laws

De Morgan’s Laws

3. AUB=BUA

Commutative Laws

ANnB=BnNA

Commutative Laws

4 AuBuC)=(AuB)uC

Associative Laws

ANn(BNnC)=(AnB)NnC

Associative Laws

55J.AuBNnC)=(AuB)Nn(AuUC)

Distributive Laws

ANnBuUC)=(AnB)U(ANC)

Distributive Laws

(o2}

AAUVUA=A AnA=A

Idempotent Laws

\‘

AU =A ANnU=A

Identity Laws

oo

AU-A=U AN-A=0

Inverse Laws

9. AuU=UAND =9

Domination Laws

10.AUANB)=A

Absorption Laws

11. An(AUB)=A

Absorption Laws

1.4 Countability
1.4.1 Countable and Uncountable sets:

Two sets A and B are said to be equivalent if there exists a function f: A—B, which is

one —to - one and onto. If A is equivalent to B, we write A~ B

Examples: -
1. {a, b}~{1,2}
2. {a,b,c}~{xy,z}
3.{1,2,3....... Y~ (2.46......
1.4.2 Definition:

A set S is said to be countable (or denumerable) if either S is finite or S is equivalent
to N, the set of all positive integers. An infinite set which is not countable, is said to be

uncountable (or non-denumerable)
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Examples: -
1.The set {A, B, C} of the vertices of a triangle is countable, it is a finite set, and hence

countable.
2. The empty set @ is countable; it is a finite set and hence countable.
3. The set n of all positive integers is countable, the identity function I: N—N is one -to -one

onto, and hence N is countable.

-1
4. The set Z of all integers is countable. Define f: N—=Z, by the rule f(n):ﬂT, n=1,3,5....

and f(n):;—ﬂ, n=2, 4.... Then f: N—Z, is one- to -one onto. Therefore Z~N, and hence Z is

countable.

5. Show that the set R of all real numbers is uncountable.

We know, the set [0,1] is uncountable, and since [0,1] C R therefore the set R is also

countable
1.4.3 Theorem:

If a set A is countable, and B C A, then B is also countable.
Proof: Since A is countable, there exists a function f: N—A, which is one —to- one onto. Let

f(n=a,, n€ An=1234, 5....... the elements of a can be arranged as

Now, we define a function g: N—B, by the rule: Let 1 be the first positive integer, such

thata , €B5.Set g (1) =a, ,a, €B. Letny>n; be the next positive integer, such
thata, € B.
Set g (2) =a,,,. Continuing in this way, we get g(k) =@, .a,, € B.ny>n,_, forallk €N,

then clearly g: N— B is one- to- one and onto. Therefore B ~N, and hence, B is countable

1.4.4 Example:
The set of all rational numbers in [0, 1] is countable.

Solution: We know that, the set @~ of all positive rational numbers is countable
Now, {all rational numbers in [0, 1]} =@~ N[0,1] CQ".
Therefore, the set of all rational numbers in [0,1] is countable.

1.4.5 Theorem:

The set of irrational number is uncountable.
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Proof: Let A denote the set of irrational numbers. Let, if possible, A is countable. We know
that the set Q of rational number is countable.

Since A and Q are uncountable AU @, i.e, R must be countable. But R is not countable.
Thus, the assumption that A is countable leads to contradiction. Hence A, i.e., the set of
irrational numbers is uncountable.

1.4.6 Open and Closed sets of real numbers:

A set is said to be open if it is a neighbourhood of each of its points. Thus, if A be an

open set and x is any member of A, then by the definition of an open set an open interval ] a,
b[ such that x€]a, b[ CA. Equivalently, A is open if for each x€A, there exists €>0 such that
Ix- €, x+ €[ CA.

Note: To show that A is not open we should prove that there exists at least one point of A of
which is not a neighbourhood i.e. there exists some x& A such that for each £>0, however

small] x- €, x+ € [ is not a sub-set of A.
1.4.7 Definition:

A set G CR is said to be an open set, if it is a neighbourhood of each of its points.

1.4.8 Theorem:
A set G CR is open if and only if, for each pEG, there exists a & >0 such that }(»)CG.

Proof:

i) The condition is necessary. Let G C R be an open set and let p be any point of G. By
definition G is a neighbourhood of p, = 3 b>0, such that 3 (p)C G.
if) The condition is also sufficient. Let G C R and suppose for each p€ G3 b>0, such

thaty () (G. Then, for each p€ G is a neighbourhood of each of its points. =+ G is open.

1.5 Sequences:

A sequence is a set function of domain is the set N of natural numbers whereas the
range may be to set S. In others words a sequence in a set S in a rule which assigns to each
natural numbers a unique element of S.

The elements of the set can be either numbers or letters or a combination of both.
The elements of the set all follow the same rule (logical progression). The number of

elements in the set can be either finite or infinite. A sequence is usually represented by using
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brackets of the form {} and placing either the rule or a number of elements inside the
brackets. Some simple examples of sequences are listed below.

The alphabet: {a, b, c, ..., z}, The set of natural numbers less than or equal to 50: {1,
2, 3,4, ..., 50}, The set of all natural numbers: {1, 2, 3, ..., n, ...}, The set {a,} where a, = a1
+1,a; =1

1.5.1 Real sequence:

A real sequence is a function where domain is the set N of all natural numbers and
range a subset of the set R of real numbers symbolically f: N—R or x: N—*R is a real
sequence.

The sequence is denoted by {X,} or > x < where X;,X,,............ X,, are called
1,2...... n terms of the sequence and it occurs different position and are treated as distinct
terms.

1.5.2 Range of Sequence:

The set of all distinct term of a sequence is called its range. In a sequence since feN is
an infinite set N. The range of a sequence may be a finite set. For example: If x,,=(—1)",
then X, ={-1, +1,-1,+1............ } the range = {-1, +1}

1.5.3 Constant sequence:

A Sequence {x,,} defined by X, =C eER ¥ 1 € N is called a constant sequence. Thus

{x, }={ccec......... c} 1s asequence with range {c}.

1.5.4 Algebra of sequences:

Given any two sequences {a,} with limit value A, {b,} with limit value B, and any two
scalars Kk, p, the following are always true:
@ {ka,+phb, }isaconvergentsequence with limit value kA + p B.

(b) {a, *b, }isaconvergent sequence with limit value AB.

(© {? } is a convergent sequence with limit value A/B provided that B = 0.
L
(d) if f(x) is a continuous function with lim f (x) =L, and if a, = f (n) for all values of

n then {a,} converges and has the limit value L.

(e) ifan<cy<bp, then {c,} converges with limit value C where A<C<B.
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Note 1:

If each element of a sequence {a,} is no less than all its predecessors (a;<a,<az<as< ...) then
the sequence is called an increasing sequence. If each element of a sequence {a,} is no
greater than all its predecessors (a; >a,>asz>as> ...) then the sequence is called a decreasing
sequence.

Note 2:

A monotonic sequence is one in which the elements are either increasing or decreasing. If
there exists a number M such that | a,|< M for all values of n then the sequence is said to be
bounded.

1.5.5 Convergent Sequence:

If lim a,, = [ then the sequence @, converge to I.

n—oo
Equivalently a sequence @,, is said to converge to a real number I (i.e) if given

£ > 0, however small, 3 a positive integer m such that |a@, — | << &¥ n = m the real
number | is called the limit of the sequence {@,, }.

1.5.6 Divergent Sequence:

1. A sequence @,is said to be divergent to 2@ for any positive real number k between large
when 3 a positive integer m such that

a,>kVnz=m((i.e) lima, #1,lima, = »/a, > xoasn —
n— oo n—oo

2.A sequence @,is said to divergent to —<2 for any positive real number k however large
then 3 a positive integer m such that

a, < —kVnz=m,lima, =—/a, »—oasn—

n—sco
3. A sequence @is said to be a divergent sequence if it diverges to @ or —2 (i.e) @, = @0
ora, =—w@asn — w

Example: the sequence is {n} and {n®} diverge to +o similarly the sequence —n and —
n?diverge to -20.

1.5.7 Standard Sequences:

Some of the most important sequences are

@{r"} = {r' r2,r% ...} This sequence converges whenever -1 <r< 1.

(2) {n“} = {12 25,3, } . This sequence converges whenever r < 0.
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1.6 Bounded and unbounded sequence

1.6.1 Bounded Sequence:

A Sequence is said to be bounded if it is bounded above as well as below. Thus, the
sequence a, is bounded if thereexist two real numbers k and K 3

k< a, = KVneN where {k < K} (i.e) if the range of the sequence is bounded. A

Sequence is said to be unbounded if it is not bounded.

1.6.2 Bounded Above Sequence:

A Sequence {a,} is said to be bounded above if there 3 a real number k such that

a, = kV n € N (i.e) if the range of the sequence is bounded above.

1.6.3 Bounded Below Sequence:

A Sequence {a,,} is said to be bounded above if there = a real number k such that

a, = k¥ n € N (i.e) if the range of the sequence is bounded below.

1.6.4 Least Upper Bound of a Sequence:

If a Sequence {a,} is said to be bounded above if there = a real number such that
a, =k,Vne Nk, is called upper bound of the sequence. If k; <k,
thena, = k,Vne Nk, is the bound of the sequence implies, if any number

>k 15 also upper bound of the sequence. Therefore, if a sequence is bounded above it
has infinitely many upper bounds of all upper bounds of the sequence, if k is the least then k

is called a least upper bound (LUB) of the sequence. It has the following properties. It is an
upper bound of the sequence a,, = k¥ n € N given € >0, k- &, k.Since k is the (LUB), k-
£ 1s not even an upper bound. Implies there exists at least one positive integer m such that

am Not less than are equal to k- £, Implies an, = k- £.

1.6.5 Greatest Lower Bound of a Sequence:

If a sequence {@,,} is bounded below then 3 a real number such that
ki =a,vne€N,k, is called lower bounded of the sequence. If k5 << k4, then
k,=a,VneN, implies k, is also a lower bound of the sequence, if a sequence is

bounded below. If a sequence {@,} is bounded below then infinitely many lower bound of
all the lower bounds of the sequence. If k is the greatest, then k is called greatest lower bound
(GLB) of the sequence.

It has the following properties:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
9



PN =

1. It is the lower bound of the sequence implies k > a,Vn € N,

2. Given € == 0,k + £ > Ik since is the greatest lower bound (GLB) k + £ is not even a
lower bound implies at least one positive integer such that k+k not less than or equal to
a, impliesk +k >a,YyneN@o)k+k=>a,VneN.

1.6.6 Limit of a Sequence:

Let {a,} be a sequence and I€ R. The real number | is said to be the limit of a
sequence {a,} if to eache = 0,3meEN, (m depending on &) such that
|a,, — 1| < e¥ n = m ~The limit of {a,,} then
{a,}—» lasn — oo (or) T}LII; a, = 1.

1.6.7 Monotone Sequence:

1. A sequence {a,, } is said to be monotonically increasing, if

{a 41} ={a,}VneN

(ie)dy =a; =dz = dy....... =a,

2. A sequence {a,, } is said to be monotonically decreasing,

if{a,.1}<={a,}vneN

(ie)ay =a; =dz = Ay....... = a,

3. A sequence {a,} is said to be monotonic. If it is either monotonically increasing or
decreasing.

4. A sequence {a,, } is said to be strictly monotonic increasing.

{a, 1} = {a,}VneN

5 A sequence {a,, } is said to be strictly monotonic decreasing.

{a,.1}<{a,}VneN

6. A sequence {a,} is said to be strictly monotonic. If it is either strictly monotonically

increasing or strictly monotonically increasing.
1.6.8 Theorem:
Every convergence sequence has a unique limit or a sequence cannot converge to more than

one limit.
Proof: Assuming the continuity lim S,, =I and lim 5, =m where 1% m

Then |l —m| = 0. Let € = |l — m], since
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limS,, =13M, € N suchthat |S, —m| < 5 Vn= My o, 1)
Similarly, since lim S,,= m AM, € N suchthat |S,, —m| < g,"v’n =M, ... 2)
Let M = max (M, M,), then (1) & (2) holds the ¥n = M we have

L—m|=]l=5, +5, —ml<|l =S| + 1S, —m| = ~+ =

[from (1) & (2)] =€ = |l —m|

(i.e) I=m.

1.7 Cauchy general Principle of Convergence of a Sequence:
1.7.1 Theorem:

The necessary and sufficient condition for the convergence of the sequence @, is that
to every positive numbere, however small their correspondence a positive integer m such
that|@,_, — @, |< €¥n = M and for all integer values of p>0.

Proof:

1. Necessary Condition

Let the sequence be convergent that is, it has a finite limit say A when given & however

o 1 .
small 3 a positive integer m such that |a,, — A|<5 €¥n = M, it follows that

aﬂ+y—z‘-‘1| = |an+p—A+A—aﬂ| < |an+p—}l|—|— |A—a,| =<+

el Iy
3| ™

=eVn=M.
2. Sufficient Condition

Let |a,_,1ﬂ:I — a,ﬂ|< e¥n = M is p>0 taking n=m we get
|ﬂm+p — aﬂ|< €¥n = M is p>0. Since @,is finite it follows the @, ,, different from a,,

which <€ however large p may be (i.e) lim a,, ., is finite,lim a,, is finite moreover
=20

—oo

since |c1,m+p — anl << € it follows that lim a,, ,,, cannot be different from lim a,, (i.e)
n—+o0

—o0
the sequence has a unique limit. Hence it is convergent thus the conditional is sufficient.

Example: 1:
11 1
Apply the Cauchy principle of convergence to show that the series 1+E + 3 + - ...;is not

convergent
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Re= =S¥

1 1 1 1 1 1 1
ion: S,=1+= + =4 e .= =l — i
Solution: 5,=1 >3 - Snep=1 >3 - suppose that series

n

converges 3 a positive integer m such that for every n= m and for every p>0, we have

|Sﬂ+p -5, |<E where € is an arbitrary small quantity (i.e)

1 1 1 1 1 1 1 . .
|Sﬂ+ —Sﬂ|<E:|1 +-+-+- =+ .. — —1+=-+-+--...—| asimplies
©
2 3 n n+p 2 3 n
1 1 1 . .
—+—+ - ....—|<E in particular when n=m and p =m we see that
n+1 n+2 n+p
1 1 1 m 1 . . ..
+ + -l >—=— Now € is at our choice and taken the values containing
m+1 m+1 m+m 2m 2

1 - - .
<E. Thus, it is contradiction. Hence the series is not convergent.

Example: 2
) L 1,1 1 (—1)m 2
Verify the series is convergent are not S’n:l'E + 3 2 "
_ 1 E_E {_1:]11—1 B 1 E 1 {_1:]1’1—1 I: 1:]11+p—1
Given S, 1o+ = e Snip 1D+ o= e o
Therefore,
[Suep = S2l-
|1_3+3_1 e S S LD P G it
Sty - R - -
—1yhti-1 _aaMHZ—1 . aantI—1 g nAp—1
:|{ ) —I—{lj 1) + - ),
n+1 n+2 n+3 n+p
1 1 1 -1t
= - + —|-{ ) now
n+1 n+2 n+3 n+p
1 1 1 -1t 1 1 .
— + —I—{ y . — + --+(the last term will
n+l n+2  n+3 n+p (n+1)(n+2) (m+3Mn+4)
positive whether p is odd or even) (i.e) >0.
1 1 1 : .
Hence 5n+p — Sﬂlz — — ...(the last term will be positive

(n+1}) (m+2)n+3) (m+3)n+4)’
1

whether p is even or odd) < <Z £ provided n > (5 -1)

(n+1)
Let m be any integer >[§ -1), then we have |Sﬂ+p—5ﬂ|<£'ﬁn =mand p>0

1.7.2 Theorem:

Every Cauchy Sequence is bounded.

Proof: Let {5,, } be Cauchy sequence for given £=I 3 such that

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
12



315, —-5,l<g¥n=m

Implies Sp_1 < S, < 5,170 = M. Letk=Min {5,.5,.5; ... ... S 1h
K=Max {5,.5,.5; ... ... Sp_13Thenk =S, = KVnZz= N. Hence S, is bounded.
1.8 Series:

A series is a sum of elements. The sum can be finite or it can be infinite. The elements
of the series can be either numbers or letters or a combination of both. A series can be
represented
(a) By listing several elements along with the appropriate sign (+ or -) between the elements
(or)

(b) By using what is called sigma notation with only the general term and the range of
summation indicated.

Examples: 1.8.1
1)1 +2+3.......... +n

(2) Zil (—1)""*n - Both examples represent the same series.

As with sequences the main areas of interest with series are:

(a) The determination of the general term of the series if the general term is not given, and
(b) Finding out whether the sum of the given series exists.

1.8.2 Series Tests:

The Series tests are as follows:

General (n™) Term Test (also known as the Divergence Test):

If lim a, = 0 ,thentheseries Y " a, diverges.

n—o0

Note: This test is a test for divergence only, and says nothing about convergence.

1.8.3 Geometric Series Test:

A geometric series has the form > ar" , where “a” is some fixed scalar (real
n=0

number). A series of this type will converge if | r| < 1, and the sum is %. A proof of this

result follows. Consider the k ®* partial sum and “r” times the k *"partial sum of the series

S, = a+ar‘+ar’+ar’+---+ar”

rs, ar'+ar®+ar®+-.-+ar +ar?!

The difference between rSyand Sy is(r—1)s, = a(r** -1).
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a(rk+l _ 1)

(r-1)

Since the only place that “k” appears on the right in this last equation is in the

If r= 1, we can divide by (r - 1), to obtain S, =

numerator, the limit of the sequence of partial sums {S} will exist if the limit as Sk —oo

exists as a finite number. This is possible if |r|< 1, and if this is true then the limit value of

the sequence of partial sums, and hence the sum of the series, is S = li.
-r

Sample Problem:1

© 1
Evaluate _
Zn:l n2 +n

The general term @,, can be rewritten asa, = t 1. L. We now consider the

n®+n n n+1

partial sums S;, S, S3, ... Sp, ... until a pattern emerges and then the limit value S will be

determined.
s - 1t ot
2 2
s, = [1)(t Y] - gt
2 2 3 3
5, - 1_1+1_1J _ gt
3
5, - 1_1+1_1J _ gt
4 5 5

s, - (1)), L
n n n+1 n+1

Since we have now determined the general pattern, the limit value S of the sequence
of partial sums, and hence the sum of the series is seen to have a value of ““1”.
1.8.4 Integral Test:

Given a series of the form Z;O:k a, , set an = f(n) where f(x) is a continuous function

with positive values that are decreasing for x>k. If the improper integral ILim '[L_k f(x) dx

exists as a finite real number, then the given series converges.  If the improper integral
above does not have a finite value, then the series above diverges. If the improper integral
exists, then the following inequality is always true

0008 = T = ol 000
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By adding the terms from n = k to n = p to each expression in the inequalities above it is
possible to put both upper and lower bounds on the sum of the series. Also, it is possible to
estimate the error generated in estimating the sum of the series by using only the first “p”

terms. If the error is represented byR then it follows

m

p

that [~ fode < R, < [~ f0dx.
X=p+ X=p

1.8.5 Convergent and divergent series:

An infinite series 21oe ; U,, this said to be convergent if associate sequence of n is the
partial sum is convergent and it is denoted by 2ime; U, = S,, where is S,, sum of the series.
An infinite series 2o, U, is said to be divergent to + (or)— according as S,, diverges
to +o0 (or)—oo respectively. An infinite series 2ine1 U,, is said to be oscillates finitely (or)

infinitely according as a S,, oscillates finitely (or) infinitely.

Problem1:
Discuss the convergence of series 1+2+3+4+....... nt....... co
Solution: Let {5, } be the partial sum of n terms of the given series S,, =1+2+3+4+........ +n

Sn :n{n; lj, lim Sﬂ: lim n{n+1)

FL— O —CO

lim S, =2 therefore S,, is divergent

FL—CO
Problem2:
Discuss the nature of series 2-24+2-24+2..........

Solution: Let S, be the partial sum of n terms of the given series. 51=2,5,=2-2=0

0, if niseven
2, If nis odd

oscillatory finite. Hence the given series neither convergent nor divergent.

S55=2-2+2=2, §, = { {5,,} does not tend to unique limit. Therefore S, is

1.9 Comparison Tests:

There are four comparison tests that are used to test series. There are two convergence
tests, and two divergence tests. To use these tests, it is necessary to know a number of

convergent series and a number of divergent series.  For the tests that follow, we shall

assume that »'” c, is some known convergent series, that » " d, is some known

divergent series, and that Z:Zlan IS the series to be tested. Also, it is to be assumed that for
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ne {1, 2, 3... (k-1)} the values are finite, and that each of the series contains only positive
terms.

1.9.1 Standard Comparison Tests:

Convergence Test: If Z:zlcn is a convergent series and  a,<c, for all n>k, then
::lan IS a convergent series.

Divergence Test: If Z;dn is a divergent series and a,>d, for all n>k, then z::lan

is a divergent series.

1.9.2 Limit Comparison Tests:

© . . . a
Convergence Test: If znzlcn is a convergent seriesand lim — = L where 0

n—oo C
n

<L<oo, then Z::lan IS a convergent series.

Divergence Test: If Z::ldn is a divergent series and lim 2 _ | Where 0 <L<oo,

n—oo

then Z:Zlan is a divergent series. The choice for the reference series Z:;lcn or Z:;dn is

. . o . . . > 1
often the geometric series anoar” or the hyper harmonic series (or p-series) Z— . The

aan®

. w1 . . . .
p-series Zn—p converges absolutely when p>1 and diverges otherwise. A special case is the
n=1

] . =1 1 1 1 1 ] ]
harmonic series » — = =+ =+ =+=+---, which diverges (p = 1).
;n 1 2 3 4 ges(p=1)

o0

[The alternating p-series Z% converges absolutely when p>1,
n=1 n

Converges conditionally when 0<p<1 and diverges otherwise]

1.9.3 Alternating Series Test:

Givenaseries Y~ a =aj+a;+az+..+agy+ Y a wherea;,a;, as, ...,

1) can be any finite real numbers, and &t 0 forall nxk Jiflima, =0, then the series

n—oo
an

converges. Iflim a, =0, then the series diverges.

n—o0
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1.9.4 Ratio Test:

Given a series 2:21 a, with no restriction on the values of the a,’s except that they are

an+1

an

finite, and that lim

n—oo

= L, the series converges absolutely whenever 0< L< 1, diverges

whenever 1 < L < o0, and the test fails if L = 1.
1.9.5 Root Test:

Given a series Z:Zlan with no restriction on the values of the aﬂ’s except that they

1
are finite, and that Ilim (|an|)ﬁ = L, the series converges whenever 0<L< 1, diverges
n—o0

whenever 1 <L<co, and the test fails if L = 1.

1.9.6 Comparison test:

The theorems we state and prove below, enable us to analyse the behaviour or
convergence or divergence of a given term series, by comparison with some suitable positive
term series, whose behaviour is already known to us. For this reason, the tests that the

theorems provide, are called comparison tests.

First Comparison test: Let), 1, and 2, 17, be two positive term series, such that
2.V, is convergent, and U,, = A v, for all n= m. A being a positive constant then
2. U, Lsconvergent.

Proof: for each positive integer n, let

Up=ty FUg e c Uy (1)

Vi=vy v, .U, (2)

So, that, << U,>and,< V> are sequence of partial sums of the two positive term series
2 U, and XU, respectively. As each,<< U,> and,<< V,,> are both monotone increasing
sequence

Now, we know A>0, such that i,, =AU,

for all N= M e e cee e v e en(3) PULEING N =m+], m+1....... (n-1), n and adding the
numbers on respective side.

Uppeqg T Upmes e TU, = AVppq T Vppes vee. . T, (0N)
U, —-U,<=AWV,—V,) olU,=AV +U,—AV._nEN. . (4
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Since 2, 7, is convergent, the sequence,<< V> of partition sums is bounded above, so that
forsome V>0, V, <V VnEN .o e e v e e e (B)
From4and5 U, <AV+U,, —AV,VnEN....c.cce. ee.... (6)

or, << U, > is bounded above. Hence 2 U,, IS convergent.

1.9.7 Theorem:

Let 2, U, and 2, 1, be two positive term series, such that
i) 2. Vy,is divergent, and
i) u,, =Bv,, for all n=m. B being a positive constant then

2. U, is divergent.
Proof: for each positive integer n, let

Uﬂ:ul +H2 ""'+u‘ﬂ ............................ (1)
Vi=vy+v, oo 0, (2)
So that,<< U,,>and, < V> are sequence of partial sums of the two positive term series 2, U,

and 2, ,, respectively. As such,<< U,,>and,< V},> are both monotone increasing sequence

Now, we know A >0, such that U,, = BU, VWV NZ= M . ccv s cee e e e e e e e 2(3)
putting n =m+1, m+1....... (n-1),n and adding the numbers on respective sides
Umeq T Uppz oo FU, = B (V1 + Vg coen . 1)
orl,—-U,=zBV,—-V,) orU,=BV,+(U,, —BV,,) VnEN .......... 4)

Since 2,1, is divergent, the sequence,<< V,,> is not bounded above, -+ for each G>0,
however large there exists n€ N, suchthat V, > G .......(5). From4and 5 large 3
nE N,suchthat U, = B G +V,, — ABV,..Since G>0 is arbitrary, << U,> is not

bounded above. Hence }; u,, LS divergent.
1.9.8 Theorem:

Let 2, U,, and 2, 7, be two positive term series, such that for some positive constant

Aand B, B= "% < A forall n = m then the two series converge or diverge together.

Un

Proof: We have 0 < B= 2= AV n=m

Vn
Since v, = 0¥ n

S0<BY, = u, = Av,Vin=m (1)
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Case 1: Let 2, 1, be convergent

Also from (1) u,, = Av,Vn=m

-+ By first comparison test for convergence

23Uy, Be alSO CONVETrZent «.o.ovvvveeeeeeeeeeeeeeeeee, (2)
Case 2: Let 2, 1, be divergent

Also from (1) u, = By, ,Vn=m

-+ By first comparison test for divergence

23Uy, Bealso divergent ............eeeeeiiiiiee e, 3)

Thus 251, is convergent if 2, 77, is convergent and 2, U, is divergent
if 20 Uy S dIVEIENCe ooevvvveeeeeiieee e 4)

Now the inequalities (1) can also be put in the form

0<i£ :—:ﬂ'é'ﬁnl‘_}m ........................................... (35)

‘« The role of 2, Uyand 2, 1, in (4)2 1, is convergent if 2, U, is convergent and 2,1, is
divergent
if 20 Uy 1S dIVEIENt ..o (6)

From (4) and (6) the two series 2 u,, and Y, 1, converge or diverge together.
1.9.9 Theorem:

Let 2, U, and 2, 1, be two positive term series if lim “I =] 0 then the two series

Fl— oo un

converge or diverge together

Proof: since u,, = 0 and v,,>0 foralln€ N, t—”> 0¥ neEN,

T

S M RS0 (1)
n—=oo Un
But, it is known, then | # 0, therefore I>0 ............... (2)

Now, let £ = 0 be chosen, such that I- £>0. Then there exits m& N, such that

I _ ll < e¥Vn=m
Pn

(or)

l- e< B 4V NZ M oo (3)

Pn

Putting B=1- & A=I+ &, we have positive constants A and B, such that
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B<Be AW NZ MM oo (4)

Un
Since 1,,>0 for all n,,, B <, U,< A 1, forall n= 1. Hence the series 2, U,, and X, v,
converge or diverge together

1.9.10 Second Comparison test:

Theorem: Let 2.1, and 2, 1, be two positive term series, such that

1) 25 Uyis convergent, and

e Un 4 n+ .. .
i ]% < % for all sufficiently large values of n. then 2, is convergent.
n 1

Proof: Let m € N, such that =+ < "2 v/ =

Uy Pn
Putting n=m+1, m+2, m+3,........... (n-1), we get
Um+ Vin+41 Um+ T+ Ers 12 . .
T T R R —— =< —= multiplying the numbers on the
Um Pm  Um+1 Vm+1 Up—q Vr—1

respective sides

1 17 1L
— ==V n=mn U, = ()1,¥Vn=m
Um Yim Vm

Since 2,1, is convergent and (z—m) is a positive constant. -= By first comparison test,
m

2. U, IS also convergent.
1.9.11 Theorem:

Let 2, U,, and 2. 1, be two positive term series, such that
1) 25 Uyis divergent, and

ii ju—z“ = —v:“, for all sufficiently large values of n. then 2, u,, iS divergent.
T 1

Proof: Let m € N, such that —== = 224y = 4p

Up Vn
Putting n=m+1, m+2, m+3,........... (n-1), we get
Um+ P41 Um+ T+ 1L e . .
L e T R = R —— = — multiplying the numbers on the
Um Y Um+s Vmn+1 Up—1 Vrii—1

respective sides—= = 2V n= m (or) U, = (-2) v,V n=m.
L Vi Vi
Since %1, is divergent and (u—) is a positive constant. By first comparison test,
m

2. U, IS also divergent.
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Example: 1

1
Examine for convergence the series —? +— + e

4.9 3.11

Solution: The nth term 1L, 0f the series is

u, = m>0 ¥ nE N. Therefore, the given series 2, U,, iS of positive terms
1 1 1 -1 5311
e = (35 (R
Now Un [‘ﬂz] [(1+§:|(2 +%)l [2112] [( In
5 1
[Mz] (1 — = —|— — ) (1 . ) for large value of n, — is small and u,, behaves
like —
n

. 1 .
Let 2, 17, be the series, where 1,,= = Then we know 2, ,, is convergent.

e

\ lim =2 —(1 0) (1-0) ——(i 0 . -~ by first comparison test, the two series converge or

Fl— 00 'l,J

diverge together. Since 2, 17,, is convergent. -+ The given series 2, U,, IS also convergent.

1 4z 3, a
Example: 2 Show that the series — + % + % + i + ---..is divergent
Solution: Here, the nth term u,,0f the series is U, = {2::3]>0’ ¥ nE N. Therefore

2 U, IS of positive term series

on = 5[+ 2 030

for large value of n, i, behaves as —. Let 17,;= and consider the series 2. 1, which is of
*-.l']‘l *-.l']‘l

1 1
type 2, = with p:5<1 and hence divergent

lim = ( _2 i_...):l¢{]

n—oo Vn 1]1:1_1.1.;19”{_ (2vn) In * 4n? 2( )

Therefore, by first comparison test, the two series, i, and 2, U, is converge or diverge

together.

Since 2, 17,, is divergent, Therefore the given series 2, U, iS also divergent.
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1.9.12 D’ ALEMBERT’S RATIO TEST:
This test 1s due to the French mathematician Jean Le Rand D’ALEMBERT’S

Un

Theorem: Let ), U, be a positive term series and suppose lim =I then

n—oo Up4q
1. If I >1, the series is convergent, and
2. If 1 <1, the series is divergent,
3. If 1 =1, the test fails.

Proof: We know 1,,> 0 VneE N
150 VnEN

Un+q
" un
lim =1 thenl=0

n—ooUpg4g

Case 1: Suppose |>1. We choose € == 0 be suchthat |- &£ >>1.
Up

Now lim =1 therefore given £ => 0,3 m& N, such that

n—oo Un4q

Cil)

Upn

<e¥n=m

(or) - £< <|+e¥ nz=m

Up4a
. 1
Setting - € =r we have r> 1 or ;<1

Now, we have

Up

>rV¥n=m
Un+1
(or) o li<1 Y n=m.
Un4q rr
putting n =m+1, m+1....... (n-1), we get Umts o LlUm+z 1
1 Flm4q r
1
U, o=
Uy 4 T

n—m

Multiplying the numbers on the respective sides—2 < (1) (or)
L T

n

-m n 1
U, < U, G) U, G) .Now the geometric series 2, G_) with common ratio (;)<1 IS

convergent
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Therefore, by first comparison Test
2. U, is convergent, if I>1

Case 2: Let | <1, we can choose £ = 0 such that I+ £<

Un Un

=l “given € == 03 m& N, such that,|( — E)|<E‘if n=m

Un+1

Now lim

n—oo Upi4g

Un

(o) I- e< <|+eV n=m

Un+4q

Setting I+ £ =p we have p< 1 or i>1
fe]

Now, we have < p foralln=m (or) “n_~ Zfor all n= m. 1a
Un+1 Un+a e e

putting n =m+1, m+1....... (n-1), and multiplying the sides of resulting inequalities, we
get
o y—m 1 1
— == (—) n>m (07)U, = U,pQ (—n)
Um P P

i 1 et
Since (—) 1, (—n) — 00 asn— 0

P p

Thus lim u,, #0

I—* oo

Hence, 2, U, is divergent, if <1

. _ 1 1
Case 3: Let I=1. Consider the two series 2. —and ¥ ~

1 u n+1
If U, = then ——=——— 1 asn— o
n Un+s R

f, :ﬂiz then [RTH]E — lasn— oo

Un

: s : 1
Thus — 1 in each case, but Z; is divergent while Zﬂ—zconvergent. Therefore, when

Un+4q

I=1. The test fails

. . 10™
Example: 1. Examine the convergent the series2, Uy, , where U,, = T
) 10™
Solution: The nth term w,, = ——>0 foralln EN

lon 10n+1
Therefore: 2, i,,, is a positive term series. Now U,, = —, Uy, 41 =
n

Therefore[ -0 ]-mn nrl -[1 + i] (i)

ups,l nmo10mTT nl \10

n+1l
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lim |2 |-tim [1+2] (5)=e0 (35) = (55)«

Therefore, By D’alembert’s Ratio Test, the given series 2, U, is divergent

Example: 2 Examine the convergence the series

p
Solution: The nth term u,, = T;— >0 forallnE N

- -y - p 1 p
Therefore, U,,, is a positive term series. Now ,, = n—,,uml = Ti ljj.
. n 4

Tal )P (14)P

Therefore[ tn ]_ﬁ (n+1)! il

Un+1
Asn — o0, (L+ )P =>land(n+ 1) = oo
n

Upn

lim ]:+00>1

n—sco L4

. . . n?

“+The given series 2, — is convergent
Example: 3 Examine the convergence the series

3 X
1+; + ... ... x>0

1
Solution: The nth term ,, = Z— = 0 forall n€ N since x>0

. N . _‘J(.'n {x:].‘rt+1
* 22Uy, is a positive term series. Now u,, = e =0

. [un _x"(n+1) n+l

U1 " nl (x)T+1 x
Since n+1—=o0,asn— o

Ln

lim

]:+00>1 forall x>0
n—co Llipgq

‘+ By D’alembert’s Ratio Test, the given series 2, U, is convergent for all x > 0

1.9.13 Cauchy’s root test

We shall now introduce several intrinsic tests of convergence. Each of them

dependents on the items of the given itself. We begin with Cauchy’s root test

Theorem:

Let >, U,, be a positive term series and suppose lim "/, =I then

—=oo
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o= =S
1. If I<1, the series is convergent, and
2. If I>1, the series is divergent,

3. If I=1, the test fails.

Proof:

Case 1: Suppose I<1. Let £ = 0 be such that I< I+ £ <C1. Setting I+ £ = 7, we have r <1

1

Now lim un =l £ > 0,3 m& N, such that

—oo

1

1
ur —ll<e¥n=m(or) |- e<un<l+ £¥n= m,inparticular

1
u,_r’;ﬂ:r=|+ sVn=m

(oNU,<r""¥ n=m
Since r<1, the geometric series Let 2, ™ converges
‘. By comparison test 2, U,, is convergent

Case 2: Suppose | >1. Let € == 0 be such that | - £ =1. Setting I- € = p, we have p>1.

1

1 =

Now lim un =I, - given € > 0,3 m€ N, suchthat, |u;, —ll<e ¥V n=m
TL—C0

ES

(o1) |- e<un< I+ e¥n=m
1

inparticularu’ > p =1- ¥ n=m (or ) U,<p"Vn=m

Since p> 1, the geometric series Let 2, o™ diverges

By comparison test 2. L, is divergent
Case 3: Suppose 1=1.We shall now that the test limits, which means the test fails to give a

clear conclusion. We consider two examples

A) Ei ,hereuﬂ:i and (u,)n =

ETM
.'-'Sll-lH

lim (u,,)r = lim =

—oD un

B) Zﬂiz ,hereuﬂzf and (u,)n =—

(n?)n
1
. = . 1 1 1
lim (u,)n =lim=— =——5 =—=1
n—o n—=e oun limnn 1
00
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pe==Sy

. 2 _ 1. _ 1
Thus, we each value lim (u,,)n =1 ,but, we know otherwise, Z; is divergent write Zﬂ—z
n—oo

IS convergent.Hence, the test fails when 1=1

Example 1: Examine for convergent the series
1 1

1+2—2 +3—3 PERMRTERIRRRTER

Solution:
Here, the 1P term U, of the series is
1
Hﬂ = ﬂ—n>0 1"i"'rl ne N
D U, IS a positive term series?
1 1.X 1 . 1
(u)n=(5)n =—and lim (u,)n =0< 1
n n f—s oo
Therefore, Cauchy’s root test, the series 2, U, is convergent

Example 2: Examine for convergent the series whose nth term is

n—l—lml n+1 -
((T] —(T) )

n+1 n+1

Solution: The nth term u,, of the series is U, = [(T]T” 1— (T) H
-1

(D™ (1 -1)

mn

= (1+3) " ra+t y -1

1 1,71 1
lim (u,)= = lim (1 +—) lim[(1+— )*—1)]*
1
=1—
g—1

=—=<<]
g—1

++ By Cauchy’s root test, the series 2. U, is convergent

Example 3 Examine for convergent, the series

1 x x* x"t
E+£ +£+ ............ gyt x>0
xn—:l.
Solution: Here, the nth term u,, of the series is uﬂ={3nnzj>0 forall nE N,
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1
1=

x 1t
Up=—3,
! nnJ
1 12
. . x n
lim u; = lim [ 2]
n—=oo n—oo| (2 ﬂﬁ]jl
31" 3 By Cauchy’s root test, the series is convergent if x<3 and diverges x>3.Now, when
xn—l
X =3, U=
 UnT(angz)
11
T 3n?

1 _ 1.
Let 17, :ﬂ—zthen 2. 1, is of the type 2, ﬂ—zwnh p =2 and therefore convergent

*+, by comparison test,; 1L, is convergent
Hence, the given series is

i) Convergent, if x = 3

ii) Divergentifx = 3

1.9.14 Conditional and Absolute Convergence:

A convergent series that contains an infinite number of both negative and positive

terms must be tested for absolute convergence. A series of the form Z::lan is absolutely

convergent if z;|an| the series of absolute values is convergent. IfZ:;lan IS convergent,

00

but > " |a,| the series of absolute values is divergent, then the series >~ a, is

conditionally convergent.

Note:

In some cases, it is easier to show that Z;O:l|an| is convergent. It then follows immediately

that the original series Z:Zlan is absolutely convergent. This series converges absolutely

when,
0 < |x+3| < 1
. |n+5
lim
n—=|n 44
ie. 0 < |x+3| < 1
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b=

===

The radius of convergence is R = 1. When (x + 3) = 1, the given series becomes >~ —
"n+

which is a divergent series. When (x + 3) = -1, the given series becomes Z ( 1)4 which is
n+

a [conditionally] convergent alternating series. Hence, the series will converge whenever -1
<x+3 < 1. This can also be expressed by saying that the interval of convergence | for this
series is 1= {x | -4 <x< -2}, or I= [-4, -2).

1.9.15 Conditional and absolute convergence:

Suppose 2, U, is a series of numbers of positive and negative signs (that is, arbitrary
signs). By taking Absolute value|i,,| of each term of the given series, we obtain a new
series;|u,, |. Of course,2:|u,, | is a series of positive terms
Definition: 1 A series 2, U,, is said to be absolute convergence if 2;|1L,, | is convergent
Definition: 2 A series 2, U,, is said to be conditionally convergence if 2|, | is convergent

but 3|, | is divergent

Examples:

. 11 .
1. The series 2, U, where u,=(—1)" (ﬂ—z) is absolute convergence, here
(=131 X
u,=(-1)" ()
|un|:(nl) Now Z( ) is of typeZ( ) with p=2 >1, which is convergent. -+ 2|1, | is

convergent. Hence 2. 1,, is absolute convergence.

2. The series), i, where u,=(—1)""1 G) is conditionally convergence, here
-1 ()
‘LLH_ n
|, |= ( ) Now 2, ( ) is of type2, ( )Wlth p=1, which is divergent. But, it can be shown
by Leibnitz theorem that - %], | is convergent X(—1)™"* G) is convergent. Hence the

_1(1Y. "
series 1(—1)" 1 (;) is conditionally convergence

1.9.16 Theorem: An absolute convergent series is also convergent.

Proof: Let 2, u,, be a series, which is absolute convergent. Then by definition

2lu,, |is convergent......... (1)
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o= =S
++ By Cauchy’s general principle of convergence, given £>0, there exists mE&N, such that

[t | + Pa ] + gl + ot [t | <2
foralln=m,p=1......... (2)

Now, let us examine for convergence the series2, U,,, let £ >0, then by (2)

|un+1+un+2 + - -------un+;u| = |u~n+1| + |u~n+2|+ |u~n+3|+ T s e + |u~n+p|<

£ provided nz=m, p=1 Hence, given &03 mEN, such that

|1'[“}1+1+1'[‘}1+2 + "t aaa ....li.n_'_.p |< £
foralln=m,p =1

“» By Cauchy’s general principle of convergence 2;u,, is convergent

2 2 1
Example: 1 Show that the series x + Z—.+%+ ....... +z—, Converges absolutely for all values

of x.

xﬂ:

: . . || ™
Solution: The nth term 14,, of the series is i, = XER. taking absolute values |1, :i—,

n+1i | |
ey _L Now( e )

{(n+1)! |1y 44

™ (n+1)! (n+1)

T on! x|k

Since (n+ 1) —» woasn— oo
5 Tim (M) — lim &2

n —co |'“n+1| n —co |.'?C|

=+00>], for all XER and hence by D’Alenbents’ Ratio test

2. U, is convergent. -« The given series2, i, is absolutely convergent

: -1 -
Example: 2 Show that the series2, ¢ N-JE is conditionally convergent.

Solution: the 1*" term t,, of the series is
_ (—Un)
= ()
1
where U,, = EVH EN

»+ The series is of alternating type. Now,
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uml—un:l_—irw'ﬁnEN

Vyr+l Vn

S U, < W, Y1 € N. And hence <u,, == is monotone decreasing.

1
Alsolim u,, = lim L= (lim 3]5 =0. + Leibnitz theorem, the given series

n—o0 n—oo VR n—oo N
2(—1)"u, is convergent ................ (1)
1 1 1. 1 . .
Now, |u,|l=—= == = ¥|u,|=% — is of the type 2. — With p=_<1, 2|, | is divergent
MY n2
........ )
(-1, ..
From (1) and (2) 25 s conditionally convergent.
.'?(-'2 .'?(-"II .'Jc-'n
Example: 3 Show that the series X — ?+T+ ....... +ﬂ+ ) Converges if and only if
Aex=1
: th . 2p—1 -1
Solution: Here the ™" term U, of the series is U,, =X Kand
|x|zn—1
|, | = _.—7 Letus examine the convergence of 2|, | we have
|x|2ﬂ:—1
| = 2n-1"’
|x|2ﬂ:+1
[t 1 | a1

|un| _|x|zn—1 |x|21‘t+1

1L _‘]‘1— n+
lups,l 2n—1 2n+1

_Zn+l 1

Tan-1lx|2

|'1-ln |

=lim

—oo |'un-|-1 |

1
Zn+1 1 e |

=lim — = lim %' —
=0 2n—1 |.'1'(-'|2 L= 00 l_z_ji-l‘t |.'?(-'|2

1

T xl2

1

‘+ by D’alembert’s test, the series 2, U,, is convergent if 1 o) |x| < 1 and the series

1
isy, U, is divergent if —<1 (or) |x| > 1, The series absolutely convergent if

|z

|x| << 1, and hence, the series is convergent for all x, -1<x<1 when x = 1, the series becomes
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1 1 . — 1 .
1‘E+T- .......... This is an alternating series. The " term is (—1)"2 — (or) is
5 _
_13yn—1 —
(—1)" *u,,, where u, 0
1 1 . . .
Now Upyq ’ut‘n_gw1 -~ 1<0 S<U, is monotone decreasing
. . 1 o . — 1 .
Also lim u, = lim =0, by Leibnitz test, the series X (—1)""! is
FL— o0 n—oco 2n—1 2rn—1
. . 1 1 1 .
convergent. Again, when x=-1 the series becomes 1-E—|—j- ......... +2 N + This
= n—

series is known to be divergent. Hence the given series is convergent if and only if -1<x<1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
31



UNIT - 11
2.0 Differentiation:

Definition :
Let f be a function defined on an interval I: and c€ I. Then
lim f(c+h) - £(c)

Jm c+h € I and h=0. If it exists, is called the derivative of f at ¢, and denoted

by £’(c) or D f (c). Also, f'is said to be derivative at c, if f has a derivative at ¢

Notations for the Derivative and rules:

The derivative of y = f(x) may be written in any of the following ways:

f0. v, L Sl or Dy[feo]

I. Basic Differentiation Rules

A. Suppose ¢ and n are constants, and f and g are differentiable functions.

(1) f(x)=cg(x)

£/(%) = lim lei 9O =e9() _; i 9OIZ00) _ gy
b—x - X b—x b—x b—x b—x
(2) f(x)=9(x)=k(x)
_ fo)—f(x) . [9(b)=k(0)]-[g(x)*+k(X)]
= Ik!m b—x _ILX b—x
- lim g(t)) g(x)+| k(bt)) k(x) — g'(x) £K/(%)
b—x - b—x -
(3) f(x)=g(X)k(x)
, f(b)—f(x) . __g(b)k(b)—g(x)k(x)
= Ith b—x _Ibe b-x
= | g(b)k(b) — g(b)k(x) + g(b)k(x) — g(xX)k(x)
blm b—x
k(b) —k . . b) —
= 1ims® | 1im Q=3 |+ limkeo | lim G =3 |

= g()K'(X)+k(x)g’'(x) (Product Rule)

4) f()= g((xi = FOJk(X) = g(x) = g'(x) = T (K'(X) +k(x) F'(x) =
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g'(x){g(x)

}k’(X)
F/(x) = 9'(x)— FOQK'(X) _ k(x) _ k(9g'() - g(k'(x)

k() k(x) ko
This derivative rule is called the Quotient Rule.
(6 f(x)=c
, . f)-f(x . Cc—cC )
1‘(X)=I|mM=I| = lim ——=1lim 0=0
b—x b—x b—>xb_x b—>xP—X pox
6) f(x)=x
, . f)-f(x . b—-x
f'(x) = lim o) =109 _ im — =1lim 1=1
bsx D—X b>xP—X  plox
(7 fo)=x"
, . f(x+h)-f(x) ,. (x+h)"-x"
f'00) =1lim =lim————
h—0 h ho0 h
[x” +nx”‘1h+n(nz_l)x”‘2h2 +...}—xn nx"*h + hz(n(nz—l) x"? +j
_t!ITo h ) IrLrp h

= lim {nx”_1 + h(@x”_2 + ﬂ =nx""1 (Power Rule)
h—0

Example 1: Suppose fand g are differentiable functions such that f (1) =3,

g =7, f'Q=-2,and g')) = 4. Find (i) (f +9)'®, (i) (9-F)'QD),

(iii) (fg)'@), (iv) (%j (1), and (8 .
(i) (F+Q) =0 +gM=-2+4=2
(i) (0-)YO=9'Q-Ff'D=4-(-2)=6

@) (f'Q=fOIO+9g@®f'WD=3(4)+7(-2)=12+(-14)=-2

!

o (9) . fOIO-9@f'Q) 34)-7(-2) 12+14 26
(iv) (T @)= TP T2 T 9 9

!

f g f'@)-f)g'@ 7(-2)-3(4) -14-12 -26
v |~ |®= 8 AP -
g [9@)] 7 49 49
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Example 2: If f(x)= x4 —3x3 +5x° —7x+11, find f'(x).

f/(x) = 4x3 —3(3x%) +5(2x) = 7(1) + 0 = 4x> —9x? +10x —7

, then find f'(x).

Example 3: If f(x)=4/x - !
x°

3
ﬁ*i

2
f(x) =4/ —i+§—l5=4x% —3x % +5X 17X =
3[X2 X x

f’(x):4(%x_j (/x j 1x‘2) 7(—5x‘6)

_ _5
s 2 iox 3 B 2ags 6o 2, 2 5,35
Ix 35 %% X6

2 —
Example 4: If f(x) :X;—ZX43, then find f'(1).
(Bx—4)(2x+2) - (x* +2x—-3)(3) _ 6x* —2x—8-3x* —6Xx+9
(3x—4)? (3x —4)?

f/(x) =
C3x2-8x+1  .,.. 3M%-8M)+1 -4
=22 T = TR Ty

o O Bom-4F 1 o

fr) = BO 4120 +2]- 1? +2(0)-31@) _ (D@ -(0E) _-4__,

3@ -4 (-1)° 1

B. Trigonometric functions
(1) f(x)=sinx

f(x+h)—f(x) sin(x+h) —sin x

') = =h
lim=—" lim=",
sin xcosh+ cosxsinh—sinx ;. sin x(cosh—1) +cosxsinh
= lim =1
h—0 h h—0 h
= (sin X){Iim COSh_l} + (cosx){nmﬂ} = (sin x)(0) + (cosx)(L) = cosx
h—0 h—0 h

(2) f(x)=cosx

, . f(x+h)—f(x . cos(x+h)—cosx
00 =lim r)1 B [jm h)
h—0 h—0
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cosxcosh-sin xsinh—cosx cosx(cosh—1) —sin xsinh

=lim lim

h—0 h h—0 h

= (cosx)b im COS:_l} —(sin x){| i m%} — (cosx)(0) — (sin X)(1)

h—0 h—0

—sin x
3) f(x):tanx:Sin—X
COSX
. . 2 . 2
£/(x) = (cosx)(cosx) — (sin x)(—sin x) _ Cos” x+sin”x _ 1 _sec? x
(cosx)2 cos® x cos?® x
4) f(x):secx:L
COSX
£/(x) = (cosx)(0) —1(—sin x) _ sin X _ 1 .sinx _ secxtan X
(cosx)? cos?2 x COSX COSX
(5) f(x):cscx=_L
sin x
F/(x) = (sin x)(0) —1(cosx) _ —cosx _ _—1 _cgsx o CSeXCOtX
(sin x)2 sin2x sinx sinx
(6) f(x):cotx:cf)i
sin x
. . 2 .2
£/(x) = (sin x)(sin x)—(czosx)(cosx) _ —cCos x2—5|n X _ —21 s x
(sin x) sin“ x sin“ x
C. Composition and the generalized derivative rules
(1) £(x)=(gk)(x)=g(k(x)
, . f(b)-f(x ) k(b)) —g(k(x . k(b)) — g(k(x
£/ = fim (b) ()=|Im g(k(b)) —g(k( ))=I|m g(k(b))—g(k(x)) .
bo>x D—X b—x b—x b—>x b—x
k() —k(x) _ . g(kb)-gk) .  kbd)-—k(x) _

KO-k M ko)—k() AT box

: g(k(0))—gk(x)) .~ k(b)—k(x) _
k(b!“l]k(x) k(b) —k(x) t!lr—?x b— x

9'(k(x))-k'(x)

This derivative rule for the composition of functions is called the Chain Rule.

(2) Suppose that f (x) = g(k(x)) where g(x) =x". Then f(x)=[k(x)]".
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g(x) =x" = g'(x) =" = g'(k(x) = k()" .

Thus, f'(x)= g'(k(x))-k'(x) = k()" -k'(x).
This derivative rule for the power of a function is called the Generalized Power Rule.

2.1 Limits and Continuityod a function of a single variable

Limit — used to describe the way a function varies.

a) Some vary continuously — small changes in x produce small changes in f(x)

b) others vary erratically or jump

c¢) is fundamental to finding the tangent to a curve or the velocity of an object
Average Speed during an interval of time = distance covered/the time elapsed (measured in
units such as: km/h, ft/sec, etc.)

=(Tame )
A time

1.free fall = (discovered by Galileo) a solid object dropped from rest (not moving) to

fall freely near the surface of the earth will fall a distance proportional to the square of

the time it has been falling y = 16t vy is the distance fallen after t seconds, 16 is

constant of proportionality
Example: A rock breaks loose from a cliff, what is the average speed

a) during first 4 seconds of fall

b) during the 1 second interval between 2 sec. and 3 sec.

Ay 16 (47— 16 (0)? 256
Q) L= ®) ©F 255 _ afiisec
Ay 4-0 4

By :16{3j2—16{2j2
Ay 3-2

= 80 ft/sec

2.1.1 Average Rates of Change and Secant Lines:

Find by dividing the change in y by the length of the interval:

Average rate of change of y = f(x) with respect to x over interval [x1, X2]
ﬁ _f{xz:]_f{xi:]
Ay - Xg—Xy

- f{xl'l'h;_f{xl:] h= 0

Note: Geometrically the rate of change of over the above interval is the slope of the line

through two point of the function (curve) = Secant
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2.1.2 LIMITS: Let f(x) be defined on an open interval about c, except possibly at c itself. if

f(x) gets very close to L, for all x sufficiently close to ¢ we say that f(x), approaches the limit

L written as:

lim f(x) =L the limit of f(x) approaches ¢ = L
X—=C

Example:1 Suppose you want to describe the behaviour of: when x is very close to 4.  f(X)

Ax* —.8x® +1.6x* +2x-8

x—4
a) First, the function is not defined when x = 4

b) To see what happens to the values of f(x) when x is very close to 4, observe the graph of
the function in the viewing window 3.5<x<4.5 and 0<y<3 -- use the trace feature to move
along the graph and examine. The values of f(x) as x get closer to 4

c) Also, notice the “hole” at 4

d) The exploration and table show that as x gets closer to 4 from either side (+/-) the

corresponding values of f(x) get closer and closer to 2.

Therefore, the limit as x approaches 4 =2, lim f(x) =2
x—d
Identity Function of Limits: for every real number c,
lim f(c) =c
X—=C

Ex: lim x =2
x—=2

2.1.3 Limit of a Constant: if d is a constant then

lim d=d,lim 3 =3

X—=c x—=2

& lim 4 =4. Nonexistence of Limits (limit of f(x) as x approaches ¢ may fail to exist it.)

x—=15

1.f(x) becomes infinitely large or infinitely small as x approaches ¢ from either side

.1
ex:lim —
x*ﬂxz

2.f(x) approaches L as x approaches c¢ from the right and f(x) approaches M with M#£L, as X
approaches ¢ from the left. E—IE %
A. Function is not defined when x=0. & according to def. of absolute value, [x| = x when x>0
and |x| = -x when x<0 so 2 possibilities: if x>0 then f(x) =1 If x<0 then f(x) = -1

B. if x approaches 0 from the right, then corresponding values always are 1

C. if x approaches 0 from the left (-values) then corresponding values are always -1
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D. So don’t approach the same real # as required by def. of limit —Therefore, the limit
doesn’t exist

3. f(x) oscillates infinitely many times between numbers as x approaches ¢ from either Side.

, the values oscillate between -1 and 1 infinitely many times, not

x—=0 X
approaching one particular real number — so limit doesn’t exist.

2.1.4 Calculating using the Limit Laws:

If L, M, ¢ and k are real numbers and:
limf(x) =L and limg(x)=
X—=C X—=C

1. Sum Rule: li_m[f +g)(x) = li_I.I"l (f(x)+ g(x))=L+M
2. Difference Rule: li_IpU" —g)(x) = li_Ip (f(x)—g(x))=L-Mm

3. Product Rule: Iim(fg)(x) = Ilm [f(x]g(x]] =LM

X—=C

fix) L
4, Rule: lim (= =1 —
Quotient Rule: lm( )(x) lmig{xj] >

5. Constant Multiple Rule: lim (k-f(x)) = k-L = IimKf(x) = K lim(f(x)) = KL ,the

limit of constant times a function is the constant times the limit

6. Power Rule: if r and s are integers with no common factors and s#0 then:
limvV(x)) =L
lim VF(x))
7. If f(x) is a polynomial function and c is any real number, then
1im f(x)) =f(c)
Example: 1 lim (x*+ 3x—6) = lim x2+ lim 3x — lim 6 (difference rule)
x—=—2 x—=—2 x—=—2 x—=—2
=lim x - limx + lim 3 - lim x — lim 6 (product rule)
=limx - limx+3limx—-6 (limit of a constant rule)
= (-2) (-2) + 3(-2) — 6 (limit of x/ldentity rule)
=-8

Example: 2 lim ﬂ (Done in 1 step)
x—2 - 6x+1

3_ 2
24 3(2)°+10 _ 6 _ 857
22 _6(2) +1 -7
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. ¥ — 2x-3
Example: 3 lim
xr—3 x—3

Denominator. Is 0 at x=3, so try to simplify
%' —2x-13
B x—3

Cancel out new fraction = x +1

Example: 4 lim

lim VxZ-2-3 V/xT+8+3
Tx—o—1 x+1(WxZ+8+3)

(x+8)-9
Tx+1 (VxZ+8+3)

(x+1)(x—1)
Tx+1 (VxZ+8+3)

(x-1)

T WxZ+a+3)

=-1/3

Sample Probleml: Find the limit of {———=;. Consider f (x) = —— .We know from
X

sin(ij sin(x)
1
n

L "Hospital’s Rule that as x approaches zero, the function approaches the limit value of one.
Hence, by item (d) above the sequence converges and has the limit value of one.

Sample Problem 2: Find the limit of {M} . Here we wish to use item (e) above as the
n
squeeze theorem. It is easy to show that for every value of n, _1 < sin(n) < 1 , and

n n n

that both the first and third sequences converge and that they both have the limit value of

. in(n _
zero. Hence, it follows that {S—()} converges and has the limit value of zero.
n

2.1.5 Sandwich Theorem:

Refers to a function f whose values are sandwiched between the values of 2 other

functions g and h that have the same limit, L, the values of f must also approach L: Suppose
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that g(x)<f(x)<h(x) for all x in some open interval containing c, except possibly at x =c itself.

Suppose also that:

Eﬂg(}{]] = ;}_I}"éh (x) =L then Eﬂf(x) =L

Ex. if V5 — 2x2 < f(x) < V5 - x2 for -1<x<1

find }ri_%f (x) 5-2(0)2<f(x) <V5—(0) 2 itgives V5<f(x)<V5

Theorem: If f(x) < g(x) ¥ x in some open interval containing c, except possibly at x = c,

itself, and the limits of f and g both exist as x approach ¢, then:  lim f(x) = lim g(x)
X—=C X—=C

2.1.6 The Precise Definition of a Limit:

Let f(x) is defined on an open interval about (c), except possibly at (c) itself. We say

that the limit of f(x) as x approaches (c) is the number L and write:lim f(x) = Lfor every

x=c

number € > 0, 3 a corresponding number & > 0 such that ¥ x
O<X—c|<d&[f(X)-L|<e

¢ = indicates how close f(x) should be to the limit (the error tolerance)

0 = indicates how close the ¢ must be to get the L (distance from c)

Example: 1 Prove that the lim (2x + 7) =9

x—1
Stepl:c=1,and L =9 s00<|x - 1|<d and |(2xt7) - 9|<e
Step 2: In order to get some idea which & might have this property work  backwards from
the desired conclusion?
|(2x+7)-9|<e
|2x - 2|<e
|2(x-1) |<e (factor out common)
12] [x-1]<e
2|x-1|<¢ (divide by 2)
= |X-1|<e/2 -- this says that &/2 would be a good choice for &
Step 3: go forward:|x-1|<e/2 (get rid of 2 by multiplying on both sides2|x-1|<e
12][x-1]<e
[2(x-1) |<e
|2x-2|<g (rewrite -2 as 7-9)
|(2x+7)-9|<e

[f(X) - 9|<e +* &/2 has required property and proven
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2.1.7 Finding § algebraically for given epsilons

The process of finding a 6>0 such that for all x:
O<|x—c|<d  ----- [f(xX) - L|<e can be accomplished in 2 ways:
1. Solve the inequality [f(X) - L|<¢ to find an open interval (a, b) containing X, on Which
the inequality holds for all x# ¢
2. Find a value of 6>0 that places the open interval (¢ — 8, ¢ + &) centred at X, inside the
interval (a, b). The inequality [f(x)-L|<e will hold for all x#c in this é-interval

Example: 1 Find a value of >0 such that for all x, 0<[x-C|<d ---- a<x<b

If a=1 b=7 c=2 S0 1<x<7
Step 1: [X-2|<d --- -6<x-2<0 --- -0+2<x<d+2
Step 2:a) -6+2 =1-6=-1---6=1
b) 6+2=7 &=5 closer to an endpoint therefore the value of &

which assures [x-2|<6  1<x<7 is smaller value =1
Example: 2 Find an open interval about ¢ on which the inequality |f(x) - L|<e holds. Then
give a value for >0 such that for all x satisfying 0<|x-c|<d the inequality |f(x)-L|<e holds.

If f(x)=Vx, L=" c=V4 £=0.1
Step 1: [Vx -%|< 0.1 implies - 0.1<Vx - %< 0.1 implies  0.4<Vx<.6 implies 0.16<x<.36
Step 2: 0<|X-Y4|<d = -0<x - ¥4<d = -0+Va<x<6+V4

a) -5+%=.16 -5.=-09 -- 5=.09

b) 6+%=.36 --- 6= .11 Therefore, 6=.09
Example:3 With the given f(x), point ¢ and a positive number ¢, Find L =lim f(x) then

X—=Xg

find a number 6>0 such that for all x.
f(x)=-3x-2 Xo=-1 &=.03, lim (-3x-2)

=(-3)(-1)-2=1
Step 1: |f(x)-L|<e =|(-3x-2)-1]<.03

= -.03<-3x-3<.03

=-1.01<x<-.99
Step 2: [X-Xo|<6 = [X-(-1) | <6 = -0<x+1<d = -6-1<x<0d-1
a) -6-1 =-1.01 distance to nearer endpoint of -1.01 = .01
b) 6-1=-.99 distance to nearer endpoint of -.99 =.01 therefore: 6=.01

2.1.8 One-Sided Limit — a limit if the approach is only from one side:

A. Right-hand limit = if the approach is from the right
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lim f(x) =1L Where x >c¢

X—=C

B. Left-hand limit = if the approach is from the left
lim f(x) =L  Wherex<c
X—E

All properties listed for two sided limits apply for one side limits also.

Two Sided Limit Theorem; a function f(x) has a limit as x approaches c if and only if it has

left-handed and right hand limits there and the one sided limits equal: lim f(x) =L if
X—=C
andonly if: lim f(x) andlim f(x) =1L
X—=C X—C

2.1.9 Precise Definitions of Right Hand and Left Hand Limits:

f(x) has right hand limit at xo(c) and write: lim f(x) = L;if for every number £>0

X=Xy
there exists a corresponding number >0, such that VX,
Xo<X<Xo+6 —* [f(X) — L| <e, f(x) has left hand limit at Xo(c) and write
if for every number >0 there exists a corresponding number 6>0 such that for all x = xo-

d<x<x¢~ [f(X) — L|<e

sind

Theorem — In radian measure its limit as ®>0 = 1 s0... éillgII =1 (@ in radians), finite

Limitsas x—* oo (have outgrown their finite bounds)

Definition: Limit as x approaches oo or -oo:

1. Say f(x) has the limit L as x approaches infinity and write: lim f(x) = L,if, for every

X—oo

number >0, there exists a corresponding number M such that for all x: x>M

2. Say f(x) has the limit L as x approaches minus infinity and write: lim f(x) = L, if for
X——0oD

every number € > 0, there exists a corresponding number N such that for all x: x <N

2.2.10 Properties of Infinite Limits

1.lmk=k Constant function
X— oo
. 1
2. lim - =0 Identity function
x—too X

3. Sum, Difference, Product, Constant Multiple, Quotient, and Power Rule all the same

with infinity limits as with regular limits.
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2.2.11 Limits of Rational Functions:

Divide the numerator and denominator by the highest power of x in the denominator.

What happens depends then on the degree of the polynomial:

. 1
Example: 1 Find xlllgh (gx]

. 1 . 1
j}ggg () i}i‘}.& (="
. 1
lim ()

. 1 . ..
So lllg;gr (;) does not exist because the limits are not the same
r=

2.2 Continuity:

Definition:

A function g is continuous at a, if lim g(x) = g(a). A function is continuous if it is
X—a

continuous at every a, in its domain. Note that when we say that a function is continuous on
some interval it is understood that the domain of the function includes that interval.
For (example) the function f(x) = 1-x2 is continuous on the interval
1 < x <5 but is not continuous on the interval 1 <x < 1.
Continuous — if you can draw a graph of f(x) at or a certain point without lifting your pencil.
Discontinuous — anytime there is a break, gap or hole at a point in the curve

a) point of discontinuity — the point where the gap/jump is
Right-Continuous — continuous from the right — at a point x=c in its domain if

lim, f(x) = (c)

Left-Continuous — continuous from left- at a point ¢ if, lim  f(x) = f(c)
X

2.2.1 Continuity at a point:

1 At an Interior Point — if function y = f(x) is continuous on interior point ¢ of its domain if
lim,_f(x) = f(c)
X—C
2. At an Endpoint — y=f(x) is continuous at a left endpoint a, or at right endpoint b,
if: lim, f(x) = f(a) (or) lim, f(x) = f(b)

x—=at x—=bt

(2—x) V2

Example 1: Without graphing, show that the function is f(x) = = = continuous at x =

3
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Step 1: show f(3) = (2-3h2-3 = ve

3z —g
] . e Vax(zex) ) limy/2x(2—x)
Step 2: show Llil% f(x) —E_Ig — = limit of quotient — —_"—

_Iimﬁ-‘ﬂ (lim (2—x))

— = limit of a product

_*-.-'rIimE 2(lim (2 —x) _{— 1:]~._.'r5

- =limit of a root
Lmx

So lim f(x) = f (3) and is continuous at x = 3
2.2.2 Definition of Continuity/Continuity Test:

A function f(x) is continuous at x = ¢ if and only if it meets the following 3 conditions:
1. f(c) exists — c lies in the domain of f

2. lim f(x) Exists (f has a limit as x approaches c)

X—=C

3.lim f(x) = =f(c) (the limit equals the function value)

X—=C

2.2.3 Continuity of Special Functions:

a) Every polynomial function is continuous at every real number.

b) Every rational function is continuous at every real number in its domain.
c) Every exponential function is continuous at every real number.

d) Every logarithmic function is continuous at every positive real number.
e) F(x) =sin x and g(x) = cos x are continuous at every real number.

f) H(x) =tan x is continuous at every real number in its domain.

2.2.4 Continuity on the Interval:

A function is continuous on the interval if and only if it is continuous at every
point of the interval [a, b]. If the function is continuous on the closed interval [a, b] provided
that f is continuous from the right at x= a and from the left at x=b and continuous at every
value in the open int. (a, b).

2.2.5 Properties of Continuty functions:

If the functions f and g are continuous at x=c, then the following combinations
are continuous at X = C.
1. Sums: f+g
2. Differences: f-g
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3. Products: f-g
4. Constant Multiples: k-f for any number k

5. Quotients: i provided g(c) #0

r
6. Powers: f s provided it is defined on the open interval containing ¢, and r, s is integer.

Example: 1 Show that h(x) = Vx? -3x2 + X + 7 is continuous at X = 2
Steps: first show f (2) = 23-3(2)2+2+7 = 5, Then check g(x) = Vx which is continuous b/c by

power property v/ lim x =5,

K=
So, with ¢=2 and f(c) =5, the composite function gef given by:
(D00 (@ () =g0C-3x7x7) = \x0-3xeex+T

2.2.6 Continuous Extension to a Point:

Often a function (such as a rational function) may have a limit even at a point where it
IS not defined.

if f(c) is not defined, but lim f(x) = L exists, a new function rule can be defined as:

X—C
fx) = f(x) if X is in the domain of f
= L if X =c

In rational functions, f, continuous extensions are usually found by cancelling common
factors.

x4x —6 ) ) ) )
: has a continuous extension to x=2, find the extension

Example: 1 Show that f(x)=

2
X

(x—2){x+3) _ (x+3)
x-2)(x+2)  (x+2)

First factor which is equal to f(x) for x#2, but is continuous at x=2

) ) . . _{2+3]_ E
shows continuous by plugging into new functlon—{ﬂzj— 2

have removed the point of

discontinuity at 2.

2.2.7 Intermediate Value Theorem for Continuous Functions:

A function y = f(x) that is continuous on a closed interval [a,b] takes on every value
between f(a) and f(b). In other words, if yp is any value between f(a) and f(b) theny, = f(c)
for some c in [a,b]

B What this is saying Geometrically is that — any horizontal line y=y, crossing the y-
axis between the numbers f(a) and f(b) will cross the curve y=f(x) at least once over

the interval.
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B For this theorem-the curve must be continuous with no jumps/breaks.
B This theorem tells us that if f is continuous, then any interval on which f changes
signs contains a zero/ root of the function.

2.2.8 Tangents and Derivatives:
We will now study how to find the tangent of an arbitrary curve at point P(Xo, f(Xo))

To do this we must:
1. Calculate the slope of the secant through P and a point Q(Xo+h, f(Xo+h))
2. Then investigate the limit of the slope as h approaches 0
a) if limit exists—we call it the slope of the curve at P and define the tangent at P

to be the line through P having this slope

b) The slope of the curve y=f(x) at the point P(xo, f(Xo)) is the following:
m = lim f(xo +h) - f(%e)
h—0

The tangent line to the curve at P is the line through P with this slope.

(Provided the limit exists)

Y=Yo + M(X-Xo)
2.2.9 Difference Quotient of F:
f{xg+h) - f{xg)

has a limit as h approaches 0 called the derivative of f at Xo

1) if interpreted as the secant slope—the derivative gives the slope of the curve
and tangent at the point where x=Xg
2) if interpreted at the average rate of change— the derivative gives the function’s
rate of change with respect to x at x=Xg
Example: 1 Find an equation for the tangent to the curve at the given point. Then sketch the
curve and tangent together.
y=(x-1)2+1 atpt (1, 1)

(1+h—1)2+1- [(1-1)°+1]

= lim .
x—=0 h
. hZ
=lim—
x—=0
=lim h =0 (b/c constant), so at (1,1) y=1+0(x-1), y=1 is tangent line
Example: 2 Find the slope of the function’s graph at the given point. Then find an equation
for the line tangent to the graph there.

F(x) =x-2x2(1,-1)
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(1+h)—2(1+h)*]-[1-2(1)%

= lim
x—0 h
“lim (1+h—2—-4h-2h*)} + 1 3
x—=0 k
At (1,-1) =y +1=-3(x-1)
2.3 Rolle’s theorem:

If f is a function such that

(i) fis continuing in the closed interval [a, b]

(i) £ (x) exists for every point x in the open interval (a, b) or] a,b[

(iii) f (@) = f (b) there is a pointc wherea < ¢ << b 3 f’ (c)=0

Proof: The function f, being conditions in the closed interval [a, b] is bounded and attains its
least upper bound and greatest lower bound. Let M, m be the least upper bound and greatest

lower bound of, f respectively and it can be such that

f (c) = M, f (d) = m either M=m or M#m

Now M=m implies f (x) =M ¥ x € [a, b], impliesf«(x) =0V x € [a, b]

Thus, the theorem is true in this case, now suppose that M#m, as f (a) = f (b) and M#+m

atleast one of the numbers M and m must be different from f (a) and f (b). Let M be different
from each of f (a) and f (b) we have M= f (c),

M=#f (a), M#f (b), Now f (c) #f (a), implies c*a

f (c) #f (b), implies c#Db, thus a <c < b. The function is derivable at c. We shall show that
f(c) = 0, If f (c)>0, there exists &> 0 such that

f(x) =f(c)=M 0V x €]c,c + &]. But M being the least upper bound, we have
fx)=MV x € [a,b]

Thus, we have a contradiction we cannot have f ‘(c) = 0,

Now suppose that f “(c) <0, so that there exists & >0 such that
f(x)=f(c)=MVx €[c—d,c|.

This again is not possible. Thus, we cannot have f *(c) <0. We conclude that
f<(c)=0.

Problem: 1

Verify Rolle’s Theorem for the following function

f(x) = 223 +x2-4x -2 in [V2,V2]
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Solution:

Since f is a rational integral function of x it is continuous and differentiable for all real values
of x. Hence the first two condition of Rolle’s Theorem are satisfied in any interval in order to
find the interval.

Let f(x) =0

2x3+x2-4x -2=0

12 (2x+1)-2(2x +1) =0

(2x+1) (x* —2) =0

(2x+1)=0 and (x*—2)=0

xz—i x =+/2

f(v/2)=- f(v/2)=f(-1) consider the interval [-v/2,/2] all the conditions of rolle’s theorem is
satisfied to verify the 3"% condition obtain £(x), f *(x)=6x2+2x-4 implies 6x2+2x-4 =0.
Equating it to zero, we get value of x as

6x2+2x-4 =0,

3x%+x-2 =0,

(x+1) (x:3) =0

Where £ (-1) =6(—1)%+2(-1)-4 =0,
f (g):6[§]2+2(§)-4 =0, Since both the points x=-1 and xzé lie in the open interval [-

v@v@] Rolle’s theorem is satisfied.

2.4 Mean Value Theorem: If two functions F and f is

i) Continuous in the interval [a, b]
ii) Derivable in the interval ]a, b[
i) F’(x) V x € ]a, b[ then there exists one point ¢ € ]a, b[

FB)-fla) f(x)
F(b)-Fla) F(x)

Such that

Proof: Let a function ¢ can be defined by ¢ (x) =f(x)+ A F(x) where A is a constant, to be
determined such that
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[f(b) — f(a)]A= —[f(b) — fla)] e v e e (1)
¢ (a) = ¢ (b) requires F (b) — F(a) # 0 if it is zero, then functions F would satisfies all the

_ fb)—flal]
[F{b)—F(al]

derivable in the] a, b[ and ¢ (a) = ¢ (b).Hence by Rolle’s theorem. For all there exist a point ¢
belongs to] a, b [ such that ¢’(c) = 0.
d (x) =f(x) +AF (x)
»’x)=f(x) +AF(X)
Atx=c,
@’ (c)=f(c) +tAF ‘(c)
o=f(c)+AF (c)

conditions of Rolle’s theorem A= A function ¢ is continuous in the [a, b]

7 _
F'(C)

FlB)-fla) f(c)
F(b)-F(a)  F(c)

—A

using (1) F’(c) #0

2.5 Taylor’s Theorem:

If f is a real valued function on [a, a+h] 2 all the derivatives upto (712 — 17¢" are continuous

inaixﬂa—i—handf{gj exists ina=< x < a + h then

ﬂn

(n—1)

fa + h) = f(@) + hf(ajﬁg—ff”(aj ¥ oo (1—8)"f"(a+ 6h),

0<6 < 1.

Proof: p is a given positive integer, then there exists, at least one number,& between 0 and 1

such that
2 Tt
F(a+h) =fa) +h f”(a]+%+f”(a] + o - o (1—8)"f"(a+6h) ... 1)
H n— H
The above equation implies the continuity of each off, f>,f*....... f“‘z in the closed interval

[a, a+h].
Let a function @ be defined by

f(a+h) =fx)+(a+h— xjf’(x]+—{a+zl_szf”

(
(a+h—x)™2

xj—|- {ﬂ_l:]:

(1— )" 1f"=1(x)+A(a + h — x)P

Here A is a constant to be determined such that (a) = @(a+h) thus a is given by
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f(@ +h) =t(@) + hi-@+r @) + ;;_—ﬂ (1—8)1fm"1(a) + ARP ... (2)

The function @ is continuous in the closed interval [a, a+h], derivable in the open interval ] a,

a+h [ and d(a) = d(a + h). Hence by rolle’s theorem, there exists atleast one number, &

@D ()

h—
between 0 and 1 such thatd’'(a+h) =0 but &'(x)= {LH
Ap(a+h—x)?P?1
{h]n 1{1 E]n 1

(n—1)
(R)"P1-g)"" P

pln—1)
Substituting the values of A in the required result (1)

(R (1-g)m P
pln—1)

0=¢'(a+ Bh)= f™(a+6h)-Ap(1—08)"1(h)P?

Implies A= f(a+6h),for(1—6)*0andh= 0

i. Reminder after n terms, the term R,= f*"(a+ 8h), is known as

Taylor’form of Remainder R, after n terms and is due to Schlomileh and Roche.
(R (1) P

pln—1)

ii) Putting p = 1, we obtain R,,= f"™(a+ @h), which form of reminder is

due to Cauchy.

iii) Putting p = n, we obtain R, = (a + 8h), which is due to Lagrange.

Example:1 f (x + h) = f (x) + Af ‘(x]+§f”(x + Bh) find the value of & as x— a if
() = (x— @)2)
Solution: f (x) = ((x — a)z),
£:x) = ((x — a)2),
P = -2 = - a)
( —z(zx a]—éx a)z)
£ (x+6'h]:§ (x — a]?i:] substituting expression

f(x +h)=((x— aj__:j,—kh S((x — a]f:]]{—?? (x — a)?iaj when x—*a we get

2 15 h*

hz =0+ O+— — (Hh]z

L]

s 15h*
2

h

(91‘1]29 =— H € (0,1). Therefore, the Taylor’s theorem is verified
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PN =

UNIT - 11

INTEGRABLE FUNCTIONS:

The process of finding antiderivatives is called antidifferentiation, more commonly
referred to as integration. We have a particular sign and set of symbols we use to indicate
integration:

/.j" (x)dr = Flx) +C.

We refer to the left side of the equation as “the indefinite integral of flz) with respect to x."

The function 1) is called the integrand and the constant ¢ is called the constant of
integration. Finally the symbol du indicates that we are to integrate with respect to .

Using this notation, we would summarize the last example as follows:

/ 3rider =2° + C

Using Derivatives to Derive Basic Rules of Integration

As with differentiation, there are several useful rules that we can derive to aid our
computations as we solve problems. The first of these is a rule for integrating power

functions, flx) = 2" [” # _1] -and is stated as follows:

1
dr = —.'”+] e
f: il ”+1: T

We can easily prove this rule. Let
respect to rand we have:

Flr) = L gt L Oon £

1 _1. We differentiate with

The rule holds for /lx) = «"[n # _1]-What happens in the case where we have a

R R O
power function to integrate with * = —L.say Ja=tde = [ 3dv \we can see that the rule
does not work since it would result in division by (). However, if we pose the problem as

; o o ]
finding Flx) such that ¥ (x) = =, we recall that the derivative of logarithm functions had

. . d =1
this form. In particular, = ' = =, Hence
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1
/—r.f.r =lInr+ C.
T

_ In addition to logarithm functions, we recall that the basic exponentional function,
fla) = e".was special in that its derivative was equal to itself. Hence, we have

/ edr = e* + .

Again, we could easily prove this result by differentiating the right side of the
equation above. The actual proof is left as an exercise to the student.

As with differentiation, we can develop several rules for dealing with a finite number of
integrable functions. They are stated as follows:

If fand ¢ are integrable functions, and €' is a constant, then

[l + gz = [ )iz + [ atayiz,
[1#) ~ gtaldz = [ @iz~ [ staja,
f[u ].:u_nf £)dz.

Example 2:

Compute the following indefinite integral.

f [2.;'3 + i} — l} dur.
T T

Solution:

Using our rules, we have

—
!‘-;l
e
+
H.| e
|
|
M| =
—
||
[ ]

f"“”f L ds f&.
=9(1)+3( 1)—hu+(__‘

_i:d 3 1 - [’_'l
—?—;— ne 4 L.

Sometimes our rules need to be modified slightly due to operations with constants as is the
case in the following example.
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Example 3:

Compute the following indefinite integral:

/ e,

Solution:

Vl\leifirst no}te that our rule for integrating exponential functions does not work here since
Lt = e

dr ‘However, if we remember to divide the original function by the constant then
we get the correct antiderivative and have

32 b (..'h. . -
[ r = ,j .

We can now re-state the rule in a more general form as

ke
[ & 1
e = +

f ‘ 2

Differential Equations

We conclude this lesson with some observations about integration of functions. First, recall
that the integration process allows us to start with function ffrom which we find another

function ¥ ()such that £'() = flx).This latter equation is called a differential equation.
This characterization of the basic situation for which integration applies gives rise to a set of
equations that will be the focus of the Initial VValue Problem.

Example 4:

Solve the general differential equation /') = =7 + /.

Solution:

We solve the equation by integrating the right side of the equation and have

flz) = f flo)dr = / r3dr + / Vrde.

— L
We can integrate both terms using the power rule, first noting that v':* = < .and have

. 2, i 35 s
flo) = [ a%de + | o%de = —a% + 3T? +
5
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3.1 Riemann Integration:

In elementary calculus, the process of integrations treated as the inverse operation of
differentiation and the integral of the function is called an anti-derivative. The definite
integral is given by Germany mathematician Riemann (1820-1866) in this concept dealing

with closed finite intervals [a,b] so that (b-a)& r implies
a< x = b more over all function f will be assume to be a real valued functions defined and
bounded on [a,b].Thus symbolically f(a,b) and |f(x)| < k where k is a positive real

number.

3.1.1 Definition of partition of closed interval:

Let | =[a,b] be a finite closed interval a<xp<xy <X X5 < == ... < X, < D is the
finite ordered set P={Xg ,X{,X5, .e ... , X, } is called a partition of I, the (n+1) points Xg
X, X, e e , X, are called partition points of P. The n closed sub intervals
I = [xg,x: ;I = [x2, %311 = [xg, %1 ], oo Iy = [251, %,.] (i.e)

r=1l-=(x,_1 %,) =[a, bl =1, Where I;...I;........ I, are called the segments of partition

of p.

3.1.2 Norm of a Partition:

The maximum of the length of the sub intervals of a partition p is called the Norm or
Mesh of the partition p and denoted by || P||

3.2 Definition of Reimann Integral:

A bounded function f is said to be Riemann integral function or R- integral on [a,b] if

its lower and upper Riemann integrals are equal.

3.3 Darboux’s Theorem:

Let f be a bounded function on the closed interval [a, b] then given any £>0,3 a

& = 0,suchthat for all partition P with || P||<&

U (P, f) <j: f(x)dx + £ and L(P, f)>f: flx)dx —«

Proof: Be definition of if there exists a partition P; such that € >0,

uPm <f:f[x]dx —|—§ . Let P, has K points other than the end points a and b. we may

assume that K= 1 if possible by allowing refinement of P .
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e =S

Let & =ﬁ. Let P be a partition with ||P||< &;<&. We will show that the conclusion of
M —T

the theorem holds for this partition P. Let P, be the comment refinement of P, and P. Let
P, has r more points than P. We see that these points are points of P; and as Py has k points
other than end points we have 0 < r < K. Now we have 0= U (Pf) -

LPH= (M —m)réd,............... (1)

and also we have U(P,f) < L(P,f)f: fFlx)dx +§ .................... (2)
Combining (1) and (2) we get U(P.f) < [ f(x)dx +E+(M—m)r 5,
< j: fG)dx +=+( M —m) 6Kas (0= r < Kand &; < &)

< [7 f(x)dx +24 =7 FOO)dx+ ¢

Example:1 consider the function f(x) = x in the interval [0.1], we have that fER (0,1) and

f:f(x]dx = i

L : . _ 1 2 3 -1
For any positive integer n we consider the partition B, of [0.1] in 0., RT, 1}.
. ] . . . -1 r r r—1
As the function is monotone increasing in {T’ ;} we have M=—, m =—

1 1
Also, we have 5,_,,:;. Hence U (P, f) :Z;',l:li - :23321;’—2 {1+2...+n}

3.4 Fundamental theorem of integral calculus:

Statement: let f be a continuous function defined on [a, b] and ¢ be a differential function on

[a, b] such that ¢’(x)= f(x) VX €[a, b] then f: fi (x) dx=¢(b) P(a)

Proof: Let F= f: f (x) dx and F’(x) = f(x) VX €[a, b] also given that {(x)= f(x), F’(x)=
$’(x)

F’(x)- ’(x) =0, implies [F’- ¢’]x=0

F’- ¢’=c, c is constant

f(x) = d(x)+c

f (2)= ®(a)+c, f(b)= ®(b)+c but from the definition

Fx)=J f () dx=0

F (b) - F@)= d(b)+c- d(a)+c, p(b) = $(a)=0
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[7F 0 dx=9(0) — d(a)

3.5 First mean Value Theorem:

Statement: Let 'f ' be areimann integral on [a, b] then 3 {4’ lies between

126 = po-a)

Proof: From the definition of Riemann sums

m(b—a) < LpPH< UPH=<p(b—a)

m(b—a) < L(P,f) = w( b — a) taking supremimum on the above inequality we get,
m(b—a) < SupLP H= uwb—a)

m(b—a]ifff(x] dx <= w(b—a)..... (1)

Also, we know that m(b —a) = U(P, f) = (b — a) taking infimum on the above
inequality we get,

mb—a) < infuP.H< p(b—a)

m(b—a) = f:’ fFX)dx = w(b—a)...... (2). As fis Riemann integral we have
L PO = F =L F o ©)

combining (1) @) and @) m(b — @) < [ f < u(b —a)

b
= fa f = u(b— a) where [ is the values lies between the bounds m and [

3.6 Improper Integrals

If the function f becomes unbounded on [a, b] or if the limits of the integration becomes

infinite then the symbol

b

I f (x) dx, is called the improper integral

First kind

If either one or both limits are infinite and the enterable is bounded

Second kind

It the intervals are finite and f becomes unbounded then it is called improper integrals of

second kind
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3.7 Integral with Infinite Intervals

Definition: If the function f id bounded the inferable for x = a then by definition

M
1. If j f (x) dx exists for every number

M

M > a, then ‘[ f(x) dx = lim j f (x) dx provided this limit exists (as a finite number).
M —oo

b
2. If I f (x) dx exists for every numberM <b,

M

b b
Then J f(xX) dX = lim f f (x) dx provided this limit exists (as a finite number).
M —>-o
—0 M

0 b

[Note: The integrals j f(x) dx and J. f(x) dx are said to be convergent if the

a —0o0

M
corresponding limit exists and divergent if the limit does not exist.]fa f(x)

Is said to be converge to the value M if given

.[ f(x) dx:j f(x) dx+j f(x) dx.

—0 —00 a

[Note: Any real number a can be used.]

Problems:
(1
1. EvaluateJ. — dx .
X
1
(1 r ak (1
I —dx=|j I x2dx = lim {_—} = lim [_—1+1}:1:>J‘ — dx Converges to 2.
X M > M >0 X 1 M >0 M X
1 1 1

2. Evaluate I i dx

X

1
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0

= lim {e° —e" }: 1-0=1= I e* dx converges to 1.

Y 0 0 0

4. Evaluate I 12dxj 12dx = I 12dx+j 12dx:2 12dx (by
1+x 1+X 1+x 1+x 1+x
0 0

—0 —o0 —0

symmetry) =2

2 lim j n ! —dx=2 |im {arctanx }y' =2 fim {arctanM —arctan0} =
+X

M > M >
0

2 lim arctanM = 2(5] =r= j ! > dx convergesto 7.
M —o0 2 1+x

—00

5. Evaluatej Inx dx.
1

M

j Inx dx=[im I Inx dx = fim {xIhx=x}} = fm [{(MInM-M} -
1

M >0 M >0 M 5o
1

ln1-1]1 = lim M(InM -D}+1= {nm M}-{“m(ln M —1)}+1=

M —0 M —>w M —0

oo-oo+1=oO:>j In x dx diverges.
1
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6. EvaluateJ- xe ™ dx.
0

M —o© M —o©

0 M
. _ . X —x . -x 1
J.xe‘x dx = lim J-xede=I|m {—Xe —e }3”=I|m { X ——X}QA:
e
0 0

. -M 1 -0 1 5 4al° 1 -M
lim { a _e_M}_{_O_—O}, By L’Hospital’s Rule, [im {eM }Z

M 5o

lim {_—Ml}zo- Thus, lim {_:}A —LM}—{_—OO—%}= (0-0)—-(0-1)=1.
(5] e e

M-w | € M >0 e

0

Thus, j xe™ dx converges to 1.

0

3.7.1 Improper Integral with Discontinuous Inteqral:

Definition
b
1. If fis continuous on [a, b) and is discontinuous at b, then j f(x)dx=

M —b~

M
lim J' f (x) dx if this limit exists (as a finite number).

b
2. If fis continuous on (a, b] and is discontinuous at a, then J‘ f(x) dx=
b
lim J- f (x) dx if this limit exists (as a finite number).

M—a*
M

b
Note: The improper integral j f (x) dx is called convergent if the corresponding limit exists

a

and divergent if the limit does not exist.
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3. If f has a discontinuity at ¢, wherea < ¢ <b, and both J. f(x) dx and

b
I f (x) dx are convergent, then we define

c

j f(x) dx=j. f(x) dx+ j f(x) dx.

Examples:
1 1 1
1. Evaluate I izdx: izdx: lim J. X2 dx = lim {__1}1M = lim {—l+i}=+oo
X X M —0* M—0* | X M 0" M
0 0

1
1 :
= J. 7dx diverges.
0

4

1
2. Evaluate | — dx.
.!.«/x

jidxz lim jx% dx=fim RVxfh = im {4-2/M |= 4—2J6=4:>I %dx

A/ X M —0* M —0* M -0
0

Converges to 4.

1

3. EvaluateJ‘ ! dx.
V1-x?
0
1 M
j 1 ox= lim j 1 ox = lim f{arcsinx} ) =
1— x? M1 1—x? M1
0 0

1

lim {arcsin M —arcsin O} —arcsinl-0=" =

1
M1 2 j J1—x2
0
1

4. EvaluateJ. Inx dx.

0

dx Converges to% .
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1 1

J-Inxdx: lim Ilnxdx= lim {xlnx—x}lM =
M —0" M —0*
0 M

Wn1-2)— g (MM -M)=—1— . (MINM)+0=—1+ 1 MM,

M —0* M —0* M —0*

By L’Hospital’s Rule,

lim %A =5

] ) InM
im MInM = |im 7= =
M —0* M —0* M0t T
M M 2
1

1
lim (=M)=0. Thus, lim I Inx dx=-1= J- In x dx converges to — 1.
0

M —0* M —0*
M

2

5. Evaluatej dx .
xIn x
1
2 2
1 1
dx = [i dx = [ In(In x)! 2
lenx nlnm,“ xIn x l\l/llr—[]l{( )}M
1 M

=lim In(in2)— lim In(In M) = In(In 2) —In(In(1)) = In(In 2) —In(0) = In(In 2) — (—0)

M —1* M —1*
2

:J- L dx diverges.
xIn x

1

4

eﬁd
6. EvaluateI X.
N
0

4 4

Jx Jx

e e

dx = | dx=|j 2eVx 4 — i 2e'4 _ '™

I X J)L‘LI e fm {2 i = im | }
0 M

e dx Converges to 2e* —2
T .

4
=2e? —2¢° :2e2—2:j
0
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M
dx = lim I L lim {arcsinx}y' = |im {arcsinM —arcsin0}=
0

1
1
Nl
0 _‘.1/1_)(2 Mol J 41— X2 M1 M1
0

. . T
arcsinl—arcsin0 = E .

dx converges to % :

1
Thus, J‘;
) A1-x?

e}f dx = lim Le%}:ﬂ = lim @e%” +6}=—1+e.

X M -0 M -0

-
(8)f " dx= fim
X

M
M >
1

Thus, I >~ dx convergesto e -1,
X

1

4 M
1 1 M
9) |———dx=lim |——=— dx=lim F2va—x| = lim {-2V4-M +4}=4.
©) .!'«/4—x hln'rﬂ,‘.\m—x nln'[nﬂ{ b LUN +4
0

4
Thus,j ! converges to 4.
0

Jix

M —0* M —0* M —0*

(10) jfi dx = fim ji dx= fim e}, = im e’ —2¢™ |=2¢? -2
O\/; M\/; Im M im .

N

4 e\/}
Thus, I dx convergesto 2e* —2.
0

© M M
1 . 1 . -1 . -1

(11) j > dX = fim _[—2 = Ilm{—} =I|m{—+1}=1-
x(In x) Mo J x(INx)® Mo (INX),  moe [INM

Thus, | ———5 dx convergesto 1.

x(In x)

m'—-.g

3 M
X X M
12) |2 dx= fim | —2—dx=lim v9-x°|, = lim -V9-MZ2 +3(= 3.
( )jm ' J}EL!W =t Fo= g .
0
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3
Thus,J. X dx converges to 3.
0

V9—x?

(13) j X = lim T S
) 1+ x° Mo 9 1+ X°
.11 3 M . |11 3 1(z\ «
:’!Alm{garctan(x )}0 =L|m{§arctan(M )}— ozg(a)zgl

o0

2
Thus, j X - dx converges to
1+x 6
0

dx = |jm {arcsecx};, = arcsec2 -

2 2
1 1
(14)-[— dx = fim I—
) XA/ x? -1 Mo1 e xa/x? -1 M—1*

T T
i Mi=Z_0="
lim {arcsecM } 3 3

M—1*

dx converges to%.

2
1
Thus, I—
) xa/x? =1

r _ . Cof=x 1™ (=M 1
(15) Ixe dx = lim J.xe dx = ||m{ex —e—x} =I|m{ o —e—M}—{O—l}
0

M > M >0
0

=lim {_—M1—0}+1=1. Thus, J.xe‘X dx converges to 1.
e

M >
0

o0

1
16 dx =
1o ,[1+ X2
1
M
1
lim _[ _dx = |imfarctanx}}’ = |im{arctanM }—arctan1= = -2 - Z
Mo + X M —o M - 2 4 4

1
Thus, J. > dx converges to z
1+x 4
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M
|imj XZ dx = |im iln‘1+x2‘ =lim In‘1+M‘ _0=0w-0=w, Thus,
1+x 2 i

M —o M >

X )
dx diverges.
,[1+ x2 9
0

. | |
(18) len . dx = .IWITW j— dx = ||m{ln‘ln|x|‘}2ﬂ = h|/I|£Q{In‘ln|M”}—In‘ln|e”:oo—O:oo.

0

Thus,J. L dx diverges.
xIn x

e

M

{ arctan x arctan x ) 1
19 dx = | dx = = (arctanx)?
(19) J1+x2 lim j 1+ x? II_r,D{Z( )}
0

M

M > M 0

0

1 1(z) =2
=limi=(arctanM)* } —0==| = | =—.
|Im{2( )} 2(2} 3

M —>w

arctan x 2
Thus, j dx converges to r
1+ x° 8

0

1 ) e 1 . .
(20) Tk dx = I\I/I“I]l jm dx = '\|A||111 {In‘ln|x”}; = In‘ln|e”—“|ﬂ|rl1l+ {In‘ln|M”}=
1

— (—o0) = 0.

[

Thus, ji dx diverges.

1 XInx

1 1 117 -1 -1
21 dX = |i = = —
(21) .“x(ln x)2 I\I/I"Pl x(In x)? nlnlm{ln x} 1 nl/llm{ln M }
1 M

e

—1+00=00. Thus, I
X(In x)
1

> dx diverges.
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3.8 Gamma and Beta functions:

In this section, we discuss the Gamma and beta functions. These functions arise in the
solution of physical problems and are also of great importance in various branches of
mathematical analysis.

3.8.1 Euler’s integrals:

Definition of Beta function:

1
The definite integral fu [x™ 1](1 — x)™ dx, for m >0, n >0 is known as the beta
function and is denoted by B(m, n). Beta function is also called the Eulerian integral of the

fist kind. Thus, B (m n) = [ @-x0"lx for  m>0n>0

Definition of Gamma function:

The definite integral fﬂm[e‘x][xj“‘ Ldx, for, >0 oo () is

known as the gamma function and is denoted by T'¢;y. Gamma function is also called the

Eulerian integral of the second kind.

3.8.2 Properties of Gamma function:

1. Toshow that I'¢1y=1

Proof: By the definition of Gamma function

r{n]:_}'ﬂm[e‘x] ()™ dx, (1)
From (1) Iy = fﬂl[e‘x](ﬂc] 1=1gx, :fum[e_x] dx =1

2. Toshow that T’y +.13= NT (33, N.>0
Proof: By the definition of Gamma function I'{ml]:f:[e‘x](:Jc]““_ldx
=J; e™*](x)"dx

=(x™) e‘x-fum[e‘x] (nx)™ dx, on integrating by parts

. .'X-'n = _ —
Tneny= IM — +0+n [ [e7*](nx)" tdx ......... (1) Now we have
FL—> 00 E“r 4]
. %0 xM . 1
lim — =lim =lim =0
x x2 x i1 L, i E o
n—co & pooo 1+;+?+"'...E |:n+1}+m now -t :l‘t!-'-{:l‘t+1::I
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Also by definition Tcay= .~ [7] ()™ 1dx
Using the above facts (1) reduces t0 Ty +13= Ny

3. If nis non-negative integer, then T, +1y= n!
Proof: we know that for n>0, we have (from property (2))
T'n+1)= NT )= Nl 1417 =N(N-1)T ¢, —1y by property (2) again
=n (n-1) (n-2)... ... T'1y (by repeated use of property 2 and the fact that n is positive
integer)
=n!as I'(1y=1

Extension of definition Gamma function T ¢,y for n>0

When n>0, we known that T'¢; +17= Ty

Sothat Ty =~ @)

Tn

Let -1 < n < 0. Then -1<n implies n + 1 = 0 so that Tin+1) is well defined by
definition and so R.H.S of (1) is well defined. Thus T, is defined for -1 < n <0 by (1).

Similarly, T,y is given by (1) for -2 <n <-1. -3 <n < -2 and so on. Thus (1) defined T,y for

all values of n except n=0 ,-1,-2,-3,.......

3.8.3 Property:

To show that T'¢;y =92, if n is zero or a negative integer.

Proof: putting n = 0in (1), we get Ty = %implies gy = 90 i, (3)
Again, puttingn=-1in (1), we get T'¢_3y = r_—T I>T1y =9@by(2) .ccocvinnn 4)
Next putting n = -2 in (1), and using (3) we get T3y = r_;;} = T_2; = @, and so on.

Thus, we find that T ¢y 1§ o0 if n is zero or negative integer.

3.8.4 Theorem: To show that 1"{3] = ﬁ

Z

Proof: From definition of gamma function r{n]:f:[e‘*] ()" 1dt......... 1)

Replacing n byi in (1), we have

r{?:ff[e‘t] (t) “Zdt
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[Pitting t=1? so that dt=2u du]
ra, =2/, [e7* Jxand r =2 S Te ly oo (3)

[Limits remaining the same, we can write x or y as the variable in the integral of (2)].
Multiplying the corresponding sides of two equations of (3), we get

(P{ij )? :2f0m[€_xz]dx :qum[e_ﬂ”z]dy

T
= 4_[0 fﬂ .s?_{":ZJ’J"'ZJdydx:4_fﬂz fﬂm e~ rdf dr (on changing the variable to polar co-
ordinates (r, &) where x=r cos#, y=r sin, so that x> + y* = r2 and

dx dy = rd@ dr. The area of integration is the positive quadrant of xy-plane)

n(ra)? =227 2e " rdr|d8 =2[=[ [~ e=Pdv|d® , putting % = vso that
{: { :]] fg [fg ] o Lo

2rdr=dv. Hence (F{ijjg 2f [—e7V]d@= 2f de 2[6’]3

Thus [:1"{5]]2 =3 JE—— (4)

Remark, from (3) and (4) ZIDW[E_xZ]dX:VE

3.8.5 Transformation of gamma function:

1
Form 1: To show that P{n]:i fo [e _"’”]dx, n>0
Proof: By definition P{nj:fﬂm[e‘x] ()™ dx,n>0 ........... (1)

1
[Putting t=x™ so that 72(x)™ 1dx= dt] then (1) gives P{n]:i jo [e _x”]dt

'“} f:[e‘k’“] x™ 1dx, n>0, k>0

Form 2: Show that ——
Proof: By definition P{nj:fﬂm[e‘x] ()™ dx,n>0 ........... (1)

[Putting kt=x so that dx= kdt] then (1) gives
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Can=-J, [e7*] k™2t *kdt (or)
Teny=k™ f:[e‘k’“] x™"1dx (or)
P, _ _Fim)

fu [e="*] x™ 1dx =n

. — 1 l lyn-1
Form 3: To Show that P{n]—fﬂ (log )" *dx, n>0
Proof: By definition P{nj:fﬂm[e‘x] ()™ dx,n>0 ........... (1)
[Putting t= % so that -~ *dx= dt] then (1) gives

1

Tn) — fo (Eagj—t}“‘ 1dt as tze‘xi:ex:x = Eagi

1 1,
Cimy=J, (109 )" dx, n>0

: To show that Ty =2 [ €7 [x*"Ldx, n>0
Form 4: To show tha m)=< J, X, n
Proof: By definition P{nj:fﬂm[e‘x] ()™ dx,n>0 ........... (1)

[Puttlng X:'E2 so that dx= tht] then (l) giVeS
[= ] - _ - . )
I‘{nj:fg [E? x &2 ) 1] 2tdt or Feny= 2 fu [e x (E]E*n 1] dx

3.8.6 Solved examples based on Gamma function:
Problem 1:

) [ le™* () dx i) [ [e72*(x)% ]dx

Solution: fum[e_x(x)‘l‘]dx :jﬂme‘x(x]a‘ldx =T'(5y=4! =24 by definition of gamma

function

ooy 1 (L —2% a6 _ _1 . -tst\sl
iii) I—fu [e™=*(x)®]dx put 2x = t s0 that dx=_dt, then we have) I—fﬂ [e (2] 2]dt
1 poop _ _
=— [ le™* ()" ]dt

=2i? T'(7y, by definition of gamma distribution

PN

27 g
Problem 2

|)P{_§] ||)1"{_§] |||)1"{_§]
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Solution: We know that T,y = r':r:i} ........... (1)
1 i
Part (i), Putting n=—72 in (1). P{'T—iaj = {—_%
Vr
=

.. . __ 3. _ 3 _2
Part (ii), Putting n= S in (1) we have . I'{_ 2y {‘33 p F{_ij
== (-2,/ 1)
=—yTMasT 1

2 T using part (ii)

Part (iii), Putting n=—21n (1) we have . P{'Ej = {‘_Z] =23

Example 1: If n is a positive integer, prove that 2"’“‘1"{“‘_“1‘::I =13.5...2n+ T
Using the formulan Ty = Tppqy, 050 o, (1)
P{n+§jzr{n—§+ 1)

1
=T (- 2)

2

:(n-g) P(ﬂ_§+ 1) using (1)

2

:(211—1) (211—3) Tizn—z
2 I\ S (D)
() ()3 22
2 2 J2'272 Q)
{by repeated application of (1) and noting that (2n-1)(2n-3)..... are all odd}

{(zn-1)(2n-3)...5.3.1
Vi as Ta

l+l- P 1 —
(n+2) 2n -

NG

=(n-$) (n—3 T(n-2)
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Z“P{n+§j=(2n —1)(2n—3)...531J7n
Example 2: If n is a positive integer and m >-1, Prove that

[y ™) [ogny? dx =(-2E20)

(m+1)tl

Solution: Let I= fulr[xm][(lﬂngz] dx Put logx =-t so that x=e % and dx=-e~*dt
= fc,l(e_*)m)[(—tj“] (—e™%) dt,[* logU=-2° and log 1=0]

=(—1)" J"I'(E—t(m+ lj[ﬁf]{“"' 1]—1]
=(—1)" {m'r;;}ﬂ , provided m+1 >0i.e m>-1
n!

:[—ljﬂm [T(n+1) = 1!, n being the integer]

Example 3: With certain limitations on the value of a, b, m and n prove that

e —(ax?®+bx?) 2m—1 ,Zm—ld dv = r{m:]r{“]
e X X
f L SR V= 4pngm

PR % *® ,—(ax®+bx*) [,.2m—17,,2m—1 _ fm)Tim)
Solutlon.LetI—_[:I fﬂ e [x 1y dxdy wpngm (D)
(or)

=f e @™ dx [T e~ @) y2mlgy = [ w1, )

Where I =[" e @M 2]dx o 3)

2 . t. 2 dt
Put ax<=t, i.e x= (—]z so that dx:ﬁ. Then (3) becomes
1} dt
1= ( 2+/at

- jﬂ e~ [ () V]de

2a™

zlam} by definition of gamma function, taking m>0, a>0 similarly n’g-— n>0, b>0

Fim) Fin)
4™ gft

"+ From (1) and (2), we have | =I5 * [,=
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UNIT - IV

MATRICES

4.Introduction:

Matrix is a rectangular array of real numbers. We will use the double subscript notation, that

is the element from matrix A in the i*" row and the j”‘ column is denoted by a;; .

The dimensions of a matrix are given by rows xcolumns (order m xn).

A matrix is a square if it is n xn, then we say it has order n. The main diagonal of a

square matrix is all the elements, a,;, with i =j.

]!

Matrices relate to systems of equations - we can write the system of equations without the

variables, addition signs, and equal signs. So, if the system of equations is:

a,.x+a,,y+a,3Z2=>b,
(1211'4— {122}’ + (1233 == bz
A3,X+ A3,V + 332 = by

i1

Then the augmented matrix is|a@sq

a3,

17 Q37 @Ay43

is| @21 @2 (@p3

3y dzp; 33

Ay, Qi3 by

@,, @23 byland the coefficient matrix

Gz, Q33 by

Note that any time a term is missing from the system of equations we must put a zero in its

place in the matrix.

1.

e

A rectangular array of mxn numbers arranged in the form

a, -,
Ay Ay,
a a

m2

e.g. B 3 4} is a 2x3 matrix.

&y
aZl
aml
is called an mxn matrix.
2
.g. 7 | is a 3x1 matrix.
-3

-8 5
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2. If a matrix has m rows and n columns, it is said to be order mxn.

2 0 3 6
eg. |3 4 7 0] isamatrix of order 3x4.
1 9 2 5
1 0 -2
eg.l 2 1 5 |isamatrix of order 3.
-1 3 0
3. [a, @&, - a,]iscalledarow matrix or row vector.
bl
b, | _
4. =~ | is called a column matrix or column vector.
b,
2
e.g.| 7 | isacolumn vector of order 3x1.
-3

e.g. [—2 -3 —4] is a row vector of order 1x3.

5. If all elements are real, the matrix is called a real matrix.
all a'12 a'ln
d, A, v A, . :

6. ; . " | is called a square matrix of order nanda,,, a,,, .
a‘nl a'n2 ot ann

called the principal diagonal.

(e.9) [g _92} IS a square matrix of order 2.

7. Notation:[aij]mxn : (aij)mxn , AL

4.1 Some Special Matrix:

If all the elements are zero, the matrix is called a zero matrix or null matrix, denoted by O__ .

e.g. [8 8} is a 2x2 zero matrix, and denoted by O, . Let A:[aij]nxn be a square

matrix.

Q) If aQ; = O forall i, j, then A is called a zero matrix.
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i) If a; = O for all i<j, then A is called a lower triangular matrix.

@ii) If a; = 0O for all i>j, then A is called an upper triangular matrix.

a, 0 O --- 0 a, a, - a.ln
0 . 0 a22 .
a'.21 a'22 ° 0 O
: 0 )
a a - | ) :
nl n2 nn i 0 O ann_
Ie. Lower triangular matrix Upper triangular matrix
1 00
egll 2 1 0] isalower triangular matrix.
-1 0 4
e.g.2 0 _5} is an upper triangular matrix.

4.2 Diagonal matrix.

Let A= [aij]n ) be a square matrix. If aQ; = O forall i+ j ,then A is called a diagonal
matrix.
1 0 0

e.g. 0 -3 0] isadiagonal matrix.
0O 0 4

If Ais a diagonal matrixand a,, = a,, =--=a,, =1, then Ais called an identity matrix or

a unit matrix, denoted by | .

10
e.g. IZ:[O l]

100
1,=|0 1 0
001

4.3 Arithmetic’s of Matrices:

Two matrices A and B are equal if they are of the same order and their corresponding

elements are equal.

ie. la,] =[b] . < a =b foralli,j.
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e.. [a 2}:[_1 C} & a=-1b=1c=2d=4.

d 1

Let Az[aij]mxn & B = [bii]mxn

Define A+ B as the matrix C = [Cij ]m _ of the same order such that

alli=1, 2..., mand j=1, 2..., n

. (2 3 -1 N 2 -4 3|
9 10 4|72 -1 5|7
2 1
1. 3 0 +E g _41} is not defined.
-1 4
2 3 ) )
2. 4 0}+5 is not defined.

Then —A = [—aij ]mxn

and A-B=A+(-B)

1 2 3
e.g. IfA:{_l 0 2}&

2 4 0
B:[s -1 1]
Find -A and A-B.
-1 -2 -3
A=
-

-1 -2 3
A-B =
{—4 1 J

ij

=a; + bij for
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4.4 Properties of Matrix Addition:

Let A, B, C be matrices of the same order and O be the zero matrix of the same order. Then
@) A+B=B+A
(b) (A+B) + C=A+(B+C)
(© A+ (-A) = (-A) +A=0
(d) A+0=0+A
4.5 Scalar Multiplication:

Let A= [aij ]m _ kis scalar. Then kA is the matrix C = [Ci.] defined by

) Imxn

1 ]

3 2
e.g. IfA:[_5 6]

-6 2
Then -2A=
10 -12

1) -A=(-1)A
(2) A-B=A+(-1)B

4.5.1 Properties of Scalar Multiplication:

c =ka , Vijie kA:[kaij]

mxn

Let A, B be matrices of the same order and h, k be two scalars. Then
@ k(A+B) =kA + kB
(b) (k + h) A=kA + hA
(© (hk)A=h(kA)=k(hA)

4.5.2 Definition: Transpose Matrix A = [aij ]m _. The transpose of A, denoted by A" or A

, Is defined by

all a21 a'ml
AT a'12 a‘22 a‘m2

aln a'2n a'nm nxm
3 2

e.g. A= :

) N
the AT = F 5}
2 6
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e.g. A=

3

4

3 4
then A" = |p 6leg

21
A:[S],then
A" =[5]

4.5.3 Properties of Transpose:

Let A, B be two mxn matrices and k be a scalar, then
@ (A) =A
() (A+B)" =AT+(B)'
©  (kA)" =ATk

4.6 Symmetric matrix:

A square matrix A is called a symmetric matrix if
AT =AAT
i.e. A is symmetric matrix

< A=A < a,=3a; Vij

R T—
e.g. 3 -3 0 | isasymmetric matrix.
-1 0 6
1 3 -1
e.g. 0 -3 0 | isnotasymmetric matrix?
-1 3 6

4.6.1 Skew-Symmetric:

Definition: Square matrix A is called a skew-symmetric matrix if
AT =-A.

i.e.  Alisskew-symmetric matrix

< AT=-A <o a, =-a; Vi]j

ji
0 3 -1

e.g. A=|-3 0 5 |isaskew-symmetric matrix.
1 -5 0
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4.7 Conjugate of a matrix:

The matrix obtained from any given matrix A, on replacing its elements by the corresponding

conjugate numbers is called the conjugate of A and denoted by A

[ 1+i 2-31 -1 ]
Example A=|2+2i —-i 3-2i
-2i 5+8 0

1-i 2+3i -1
and A =|2-2i +i 3+2i
+2i 5-8i 0

4.8 Matrix Multiplication:

Let A=[a,] =& B:[bkj] . Then the product AB is defined as the mxp matrix
mxn nxp

in"nj

:[Cu]mxp wherec, =a,b, +a,b, +--+a,b, kZ:;aikbkj.

i.e. AB = [Z a,h, }
2 1]
2 3 -1 .

eg. LetA=[3 0 and B= Lo 4 .Find AB and BA.

__1 4 32 »e

2 10
eg. LetA=|{3 0| and B :{2 J , Find AB. Is BA well defined?

__1 4_3><2 e

In general, AB=BA. i.e. matrix multiplication is not commutative.
4.8.1 Properties of Matrix Multiplication:

(8 (AB)C=A(BC)

(b) A(B+C)=AB+AC

(© (A+B) C=AC+BC

(d AO=0A=0

() IA=AI=A

)] k(AB) = (kA)B = A(kB)

(@ (AB)' =BTA".

(1) Since AB #BA;
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Hence, A(B+C) = (B+C) A & A(kB) = (kB)A.

2 A*+kA=A(A+kl)=(A+kl)A.

3) AB-AC=0 = A(B-C)=0
#A=0o0or B-C=0

S N LR L
pore-(3 918 96 98 9
969

00
_(0 Oj ButA=0 and B=C, SO

AB—-AC=0 A A=0O or B=C.

4.9 Determinants:

Definition: Let A= [aij] be a square matrix of order n. The determinant of A, det A or

|A| is defined as follows:

@  Ifn=2, detA=|2 %

a =a,a,, —a,ay
2

a11 a12 EllS
(b) Ifn=3, detA=la, a, a,
a, a, a

(or)

31 32 33

det A= a11a22 a33 + 3216132 als + a31a12 a23 _a31a22 a13 - a32 a23a11 - a33a21a12

-1
e.g. Evaluate @) ‘ 4 j

1 2 3
(b) detj2 -1 0
1 -2 -1

3 2 X

e.g. Ifl8 x 1]=0, find the value(s) of x.
3 -2 0
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11

detA=la, a, a,

a31 a32 a33
— a1 a22 a23 _ a1 a21 a'23 + a1 a'21 a22
' a32 a33 ? a31 a33 : a'31 a32
or — _a12 a21 a23 + a22 au a13 _ 8.32 a11 a13
aSl a33 aSl a33 aZl a'23
or  .........
+ - +
Byusing |- + -—
+ - +
Exercise:
3 2 0
Evaluate () 0O -11
0O 2
0 2 O
(b) 8 -2 1
3 2
4.9.1 Properties of Determinants:
al bl Cl a‘l a'2 a3 i T
(1) a, b, c,|=|b b, b i.e. det(A") =det A.
a3 b3 C3 Cl CZ CS
al b1 Cl bl al Cl bl Cl al
) a, bz C, :_bz a, GC,= bz C, q
a, b, c, b, a, ¢, b, c, a
al bl C1 a'2 b2 CZ a'2 b2 CZ
a, b, c|=—-a b c|=la, b, c,
a3 b3 C3 a3 b3 C3 al bl Cl
al 0 Cl al bl C1
@ Ja, 0 c|=0=]a, b, ¢
a, 0 c 0 0 O
8, & ¢ a, b ¢
(4) a, a, C|=0=|a b c
a3 aS CS a'3 b3 C3
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al bl Cl
6 =L _%& penla b cl-0
b1 bz 3 a3 b3 C3
al + Xl bl Cl al bl Cl Xl b1 Cl
6) |a,+x, b, c|=la, b, c|+]x, b ¢
a,+x, b, c| |a, b, c,| X, b, c
pal bl Cl al bl Cl al bl Cl
(7) pa, bz C,| = P&, bz C,| =|pa, pbz pC,
pa3 b3 CS a3 b3 C3 a'3 b3 C3
pa, pb, pc, a b ¢
pa, pbz PC,| = p3 a, bz C,
pa, pb, pc, a, b ¢
pa, pb  pc, a, b ¢
1) pa, pbz PC, | =P| &, bz C,
pa, pb, pc, a, b, ¢
(2)  Ifthe order of A'is n, then det(AA) = A" det(A)
a b c| |[a,+4Ab b c
® |a, b, c|=la,+4b, b, ¢,
a, b, c| |a,+4b, b, c,
Xl yl Z1 aC + + C Xl + ayl +ﬂzl yl 1
X2 y2 ZZ 2 m?) ' XZ + ay2 +ﬂ22 y2 ZZ
X3 y3 3 X3 + ay3 +ﬁ23 y3 Z3
Exercise:
1 2 0
(1) Evaluate (a) 0 4 5,
6 7 8
5 3 7
(b) 3 7 5
7 2 6
1 a b+c
(2) Evaluate 1 b c+a
1 ¢ a+b
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(3) Factorize the determinant

X Yy X+Vy
Yy X+y X
X+y X Yy

(4) Factorize each of the following :

a® b ¢
(a) a b c
1 1 1

2a°  2b°  2c¢’
(b) a’ b’ c’
1-a° 1-b° 1-¢°

4.9.2 Multiplication of Determinants:

a, a
Let | Al = z az ,
b, b
Bl= bi bz

a, a,lb, b

hen | AJB| = ai az bz bz

— a'llbll + a'12 b21 all b12 + a'12 b22
a'Zlbll + a22 b21 a21 b12 + a22 b22

4.9.3 Minors and Cofactors:

Lo all alZ alS . .
Definition: Let A= a, a, a, , then AJ. , the cofactor of a; . is defined by
a31 a32 a33
Al — a22 a23 , 'Al :_a21 a'23 A 'A3 — all a'12 .
' a32 a33 ? a3l a33 ’ a'21 a'22
. a, a
Since. [A=-a,* ) +a, o 6 -a, 2
a32 a33 a31 a33 a31 a32
= +‘3121'6‘21 - azzAzz + a23A23
. det A if i=]
4.9.4 Theorem: @ a A, +a,A, +a,A, = {O if i |
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detA if i=j

(b) A+ 3Ry + 3 A :{0 if i |

€.9. a,; A11 +a, A12 +ag, AlS = det A, a,; A21 +a, Azz +a; A23 =0, etc.

all a12 al3 oo
eg. Let A=|a, a, a,| andc; bethecofactorof a, ,wherel<i,<3.
a, 4a, a

Cll C21 CSl
@) Provethat Alc, ¢, c, |=A]l

Cl3 C23 C33

Cll C21 C31
(b)  Hence, deduce that [c, C,, Cy|=(A)’
C13 C23 C33

4.10 Inverse of Square Matrix By Determinants:

o _ o A, A, A
Definition:  The cofactor matrix of A is defined as cofA = A, A, A,
A, A, A

Def.  The adjoint matrix of A is defined as
adjA = (cofA)"

A Ay Ag
=lA, A, Ay
Az As Ay
e.g. IfA:(i g),findade.
11 -3
eg. (@ LetA=|1 2 0 |, findadjA.
11 1
32 1
(b) LetB=|1 1 -1}, findadjB.
51 -1
32 1
eg. GiventhatA=[1 1 -1/, find A™.
5 1 -1
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e.g. Suppose that the matrix A = (2 (tj)j is non-singular, find A™.
e.g. Given that A:@ g) ,find A™.

4.10.1 Theorem: A square matrix A is non-singular if |A]| =0.

e.g. Show that A = @ gj is non-singular.

X+1 2 x-1
e.g. Let A=|x-1 2 -1 |,wherex eR.
5 7 =X

@ Find the value(s) of x such that A is non-singular.
(b)  Ifx=3, find A™.

A is singular (non-invertible) if A™ does not exist. Then

A square matrix A is singular if |4| =o.

4.10.2 Properties of Inverse matrix:

Let A, B be two non-singular matrices of the same order and A be a scalar.

O A=A

2 (A=A
(3) (AT)—l _ (A—l)T

4 (A")"=(A")" forany positive integer n.

(5) (AB)*=B*A™
(6) The inverse of a matrix is unique.

7 det(A)= ﬁ

t A
a 00 at 0 0
@ 1fM=/0 b 0|,Then M*=| 0 b* 0
0 0 c 0 0 c*

a 0 o0
0 0 c
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a" 0 O
then M"=| 0 b" 0 | wheren =0.
0 0 c"

4 1 0
eg. Let A=|1 3 1|,

0 31

1 3 -1
B=/0 13 4
0 -33 -10

1 00
and M=|0 1 0.
0 0 2
(@ Find A" andM°.
(b))  Show that ABA™ = M.

(c)  Hence, evaluate B®.

3 8
g L =
e.g et A (1 5)

2 -4
&P = :
i (1 1)
(@ FindP*AP.
(b) Find A", where n is a positive integer
eg. (@)  Show that if A is a 3x3 matrix such that A' =—A, then |A]=0.
1 -2 74
(b) Giventhat B=| 2 1 -67],
-74 67 1
Use (a), or otherwise, to show det(l —B) = 0.

Hence deduce thatdet(l —B*) =0.
x® —38x* +361x—900=0.

4.10.3 Inverse of a Square Matrix:

If a, b, ¢ are real numbers such that ab=c and b is non-zero, then

C : e
a=—=cb*and b is usually called the multiplicative inverse of b.
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If B, C are matrices, then E is undefined.

4.10.4 Definition: A square matrix A of order n is said to be non-singular or invertible if and

only if there exists a square matrix B such that AB = BA = |. The matrix B is called

the multiplicative inverse of A, denoted by A™i.e. AA* =A"A=1.
4.10.5 Definition: If a square matrix A has an inverse, A is said to be non-singular or

invertible. Otherwise, it is called singular or non-invertible.

3 5 2 -5 :
e.g. And are both non-singulars.
: (1 2) (—1 3) ]
i.e. A is non-singular if A™ exists.
4.10.6 Theorem: The inverse of a non-singular matrix is unique.
1) | * =1,s0, | is always non-singular.

2 OA =0 =1, s0 O is always singular.
3) Since AB = | imply BA = 1.
Hence proof of either AB = | or BA = 1 is enough to assert that B is the inverse

of A.

2 1
0. LetA= .
e.g et A (7 4)

(@  Showthatl —6A+ A’ = 0.

(b) Show that A is non-singular and find the inverse of A.

(© Find a matrix X such that AX = ( 11 éj .

Theorem: Let A, B be two non-singular matrices of the same order and A be a scalar.
@ (A=A
(b)  ATY isanon-singularand (A")" = (A")".
(c)  A"isanon-singularand (A")™" = (A™)".
(d)  rAisanon-singularand (1A)™" = %Al.

(&)  ABisanon-singularand (AB)* =B*A™.
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Exercise

2 -5
1.Given A=
s 7)

a)A+B
by C-A
c) 3A
d) 4B + 2C
2 2
50
2.GivenA=|4 0 B=
2 9
6 1
1 3
and C =
2 4

a) Is AB defined? Calculate AB. Can you calculate BA?

b) Is BC defined? Calculate BC. Is CB defined? If so calculate CB.

c) Is it the case that BC = CB?
3. Find product matrices for the following:

2 -1 4Y1 -4
a3 0 -7[2 0
5 3 0)3 5

(—3 2 5]
b)
4 0 -1
5

1 35
4. Given A = andB=| 3| caculate:
2 4 6 L

a) Al b) 1A c) BI d) 1B

< X

Z
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5. Given A and B as defined in question 4 find:
a) A’ b) B’

2 4 3 0
6. Given A = and B = find a)A* b) B
5 -2 -1 5

4.11 Solving a System of linear Equations Using Matrices:

Solving a 2 x 2 system of linear equations by using the inverse matrix method
A system of linear equations can be solved by using our knowledge of inverse matrices.

The steps to follow are:

1.Express the linear system of equations as a matrix equation.

2.Determine the inverse of the coefficient matrix.

3.Multiply both sides of the matrix equation by the inverse matrix.

4. To multiply the matrices on the right side of the equation.

5.The inverse matrix must appear in front of the answer matrix. (the number of columns in
the first matrix must equal the number of rows in the second matrix). The solution will appear

1 0)x C, .
as: = where ¢, and c, are the solutions.
0 1)y c,

Examples: Solve the following system of linear equations by using the inverse matrix

method:
1 2x+9y=-1
" |4x+y=15

2 9\ x -1
Solution: { J( J = (15] This is the matrix equation that represents the system.

4 1)y
9 A=2-36
If ( ] then | |
4 1 |A|=_34
1 -9 -1 9
1 _| =34 -34|p1_|34 34
Sl R S Ll I e
-34 -34 34 34

This is the determinant and the inverse of the coefficient matrix.

-1 9 -1 9
34 34 (2 9 X)_|34 341
4 -2\4 1ly) |4 2|15
34 34 34 34

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
87



-2 3 -9 9 1 135

—t— —+— —+—

34 34 34 34X 34 34

8 -8 36 -2y -4 -30

—t— —+— —t+—

34 34 34 34 34 34
34 0 136

34 34X | 34
0 34|\y) |=34
34 34 34

This is the result of multiplying the matrix equation by the inverse of the coefficient matrix.

5 3Xx—6y =45
" |9x-5y=-8
) 3 -6
Solution:
9

3
.fA:(
9

-5

1_| 39
A= "9

39
-5 6

39 39

-15 54
—_ + —_
39 39
=27 27
—_ + —_
39 39

39 0

0 39

39 39

Y

-5

1 0Yx 4 . ..
= 1 the common point or solution is (4, -1).

0 1\y

-G

~34

|A=-15--54

-6
then
—J |Al=39

5
39
3
39

-5

39 393 —6)X|_|39
-9 319 -5y, | =9

39
30 -30
_+_
39 39 [ X
54 -15 |y
_+_
39 39

- 273

y) | —429
39

39 @[X | 39

-11

-7
:( ] The common point or solution is (-7, -11).

5

39 |45

3 (-8

39

—225 48

—+_
_| 39 39

—405 24

—+_

39 39
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In the next example, the products will be written over the common denominator instead of

being written as two separate fractions.

3 4x+y=-13
" |-6x-5y=37

4, 332

Al=-14
-5 -1
a_|-14 -14
Arle 4
~14 -14
s> 1
1_| 14 14
A T1%e Ca
14 14
5 1 s> 1
14 144 LyX)_|14 14|13
-6 -4l-6 -5\y) |=6 4|37
14 14 14 14
20+-6 5+-5 —65+37
14 14 X\ _ 14
-24+24 -6+20 y 78 +-148
14 14 14
140 —28
14 14 [X)|_| 14
0 Uly) |=70
14 14 14

1 0)x -2 . L
j{ j:( 5] The common point or solution is (-2, -5).

4 X-y=-11
C|x+2y=8

o 2
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21
-1 7T 7
A s
7T 7
2 1 2 1
7 73 -1\ |7 7(-11
-1 311 2)y) |z 38
7 7 7 7
6+1 -—-2+2 —-22+8
7 7 X 7
-3+3 1+6 |y 11+ 24
7 7 7
OV (2 1oy (-2 | o
7 7 _| 7 = The common point or solution is
0 7ly) || 0Dy s
[ T/ (25

Exercises: Solve the following systems of linear equations by using the inverse matrix

method:
1 -5x+3y =21 5 2x+3y =48
S |l-2x+T7y=-21 C|3x+2y =42
2X—6y = - =1
3. X—6y=3 n X+Yy
4x -3y =5 —-4x+2y =38
ANswers:

Solving systems of linear equations using the inverse matrix method

-5x+3y =21 -5 3
1. If A= then
—-2x+7y=-21 -2 7

|N=-35--6

A=-28
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=3 -7 3
Afl: -29 -29 :>A*l_ 29 29

2 -5 -2 5
—29 -29 29 29
-5 3)x) (21
-2 7)\y) -21
-r 3 -r 3
29 295 3YX)_| 20 29 2
-2 5\-2 7)\y) |=2 S |-21
29 29 29 29
3B+-6 -21+21 -147 +-63
29 29 X\ _ 29
10-10 -6+35 |y | -42+-105
29 29 29
29 0 - 210

29 29 [ X)_| 29
0 29\y) | -4
29 29 29

o 1) sor)

2X+3y =48 2 3
2. If A=
3X+2y =42 3 2

then |A=4—+9|A=-5

2 =3 -2 3
-1 -5 -5 1_| b 5
ATl 2 PRA T 2

5 -5 5 5
2 3)x) (48
3 2\y) |42
2 3 2 3
5 5 [2 3(x)_|'5 5 |48
3 =23 2)\y) | 3 -2|4
5 5 5 5
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—4+9 —6+6 -96+126
_ 5
6+—6 9+—4 | 144 + -84
5

50 30

5 5(Xj: 5
0 5y |80

5 5 5

1 0Yx) (6

0 1ly) |12
3 2X—-6y =3

" |4x-3y=5

2 -6
If A=
4 -3

then |Al=—6—-24,

A=18

-3 6

21 _|18 18

ATl 2
18 18

2 -6Yx) (3

4 -3)\y) |5

-3 6 -3 6
18 182 ~6)*x)_| 18 183
-4 24 -3)y) |=4 2|5
18 18 18 18
-6+24 18+-18 -9+30

18 18 X1_| 18
-8+8 24+-6 y -12+10

18 18 18
8 0) (2

18 18| *|_| 18

0 18ly) | =2

18 18 18

1 0)x) (116

0 1)\y) |-.11
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4.12 Elementary Transformations of Matrices:

Elementary transformations of a matrix find a whole application in various
mathematical problems. For example, they by in a basis of the known gauss method (method
of exception of unknown values) for solution of linear equations
Elementary transformations of a matrix are:

1. Rearrangement of two rows (Columns)

2. Multiplication of all row (Column) elements of a matrix

3. Addition of two rows (Columns) of the matrix multiplied by the same number, not equal to
zero.

Two matrices are called equivalent if one of them is maybe received from another after final
number of elementary transformations. Generally equivalent matrixes are not equal, but have
the same rank.

Calculations of determinants by means of Elementary transformations:

By means of Elementary transformations, it is easy to calculate a determinant of a

matrix. For example, it is required to calculate a determinant of the matrix.
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ay3 Q47 Qg3 Ays Ain
ﬂ.gl ﬂ.gg ﬂ.zg H-E‘L ------ az.n
agl agg agg a34, ------ ag.n . .
A= : Where a;; # 0 then it is
anl anﬂ ana anci: arm
possible to bear multiplier @44,
1 ay; ag a a
oy a a 14 in
aes 22 23 Aoy eeeeee as,
-2 [ R a
2. @32 Qa3 34 n .
A=aqy, [P now multiplying from elements
el T e e e
ay, Apz Oy [ An

if the j”‘ column (j = 2) appropriating elements of the column, multiplied on a; ;. We will

receive the determinant

1 0 0
a 0 0
2t agl, al, 1 1
2, 022 ady ai,
gy 1 i 1 1
- "3132 ﬂ.aa agq‘ ...... ﬂ.gﬂ ) )
A=a,, |71 which is equal to
am ; ) e e
g, Apa O3 (1 By} [
A=a, A, ; where
1 1 1
A - @33 @33 eeweee e as,
-17| .1 1 1
Apy Opz  eeeeeeeenn Oy
(1) G311 a7 .
a..’ =a,;,—— (ij=23,4....... n
i Gy, (W )
Then we repeat the same actions for A,,_j, and, if all
i—-1 ) ) .
elements (15 ; ) =0 G=234....... n), then we will receive finally
_ (1) (n—-1)
ﬂ-_ allazz .......... aﬂﬂ
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. . . . k -
If for any intermediate determinant A, _j its left upper element a;i_jm_lzo, it is

necessary to rearrange rows or column in A,,_;, so that a new left upper element will not be
equal to zero. If A0 it always can be made. Thus it is ncecssary to consider that the sign on

a determinant changes on what element @, is the main one(that is when the matrix is

transformed so that a,,=1). Then the sign on an appropriating determinant is equal to

(—1)7+e

Example:1 by mean of Elementary transformations result the matrix
1 2 =3

A=l 4 -1 3 |toatringle type
6 10 5

Solution: Frist we will multiply the first row of the matrix by 4, and the second by (-1) and

add the first row to the second

1 2 —3
A=l0 9 —15 |, now we will multiply the first row of the matrix by 4, and the
6 10 5
1 2 —3
third by (-1) and add the first row to the third A= 0 9  —15 |, finally we will
6 2 =23
multiply the second row of the matrix by 2, and the third by (-1) and add the second row to
1 2 -3
thethirdA"'={ 0 9 —15 | As aresult the upper triangular matrix A" is received.
0 0 177

4.13 Elementray Matrices :

A matrix obtain form a unit matrix, by subjecting it to any of the elementry
transformations is called an elementray matrices.

4.13.1 Symbols for Elementray Matrices:

I 'Eij will also denote the matrix obtain by interchaging the it" and j“‘ columns, for,

as may easily be seen, the matrices obtained by interchaging the it* and j”‘ rows or the it

and j”‘ columns of a unit matrix are the same.
1. (@) E; (c) will denote the matrix obtained by multiplying the i row of the unit

matrix c.

It the first from I in only one position, viz the (i,i)th
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(i.1) (i.J) (i.J)

b. E; (c) will also denote the matrix obtained by multiplying the i *column by c.

. (a) ELr (K) will denote the matrix, obtained by adding to the elements

ofthe i*"row of the unit matrix, the products by k odf the corresponding elements of the

jEh

It differs from I in only one place, viz the (i,j)th

| Ei; k)

(i.i) (i.j) (i.i) (i.j)
1 0 c 0

b) E;j(k) which is the transpose of E;; (k) will denote the matrix obtained by adding to

the elements of the ithCGIumﬂ, the products by k of the corresponding elements of
the fth

4.13.2 Determinants of Elementary Matrices:

It is easy to see that |E;;| = -1, |E; (€)| =c %0
|EU (kjl = | El.’j[kjl =1 So that every elementary matrix is non —singular. This fact also

shows the basis of our insisting that, ¢, must not be zero
4.13.3 Definition Of Row Rank And Column Rank:
The dimension of the row space of A is called the row rank of A and the dimension of

the column space of A is called the column rank of A.

Since the basis of the row space of A is

fto2o04o1101foo1 -1

the dimension of the row space is 3 and the row rank of A is 3. Similarly,
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T 177—=271[371)]
3 2 1

3 : , >
2 3 2

| —1]] 2 4

— — = —J

is the basis of the column space of A. Thus, the dimension of the column space is 3 and the
column rank of A'is 3.

e Important Result:

The row rank and column rank of the M X N matrix A are equal.
4.13.4 Definition of the Rank of a Matrix:

Since the row rank and the column rank of a m > N matrix A are equal, we only refer to the

rank of A and write rank(A) .

e Important Result:

If Aisa M XN matrix, then

rank (A) + nullity(A)

= the dimension of the column space + the dimension of the null space
=n

(1 0 0 0 O]
O 1 0 0 O
A=/0 0 1 O O|gdn=5.
O 0O 0 0O
0 0 0 0 O]
Since
(2] O] [O])
O 1 O
< Ol | O], a ~
O (@] O
(LO ] LO | LO]]

is a basis of column space and thus rank(A) = 3. The solutions of Ax=0 are

X =0,X=0,X=0,X,=5,X=85,, 5,5, R
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o r O OO
O O O O

0]
0] 0]
O|+5s,|0| < spany
1 0]
0] 1

Then, and are the basis of the null space. and nU“itY(A) =2,

O O O
o O O o

0 1

Therefore, rank(A) + nullity(A) = 3+2 =5=n

e Important Result:

Let Abe N XN matrix. A is non-singular if and only if rank(A) =N

rank(A) = n < Ais non-singular det(A) 0
rank(A)<n < Ax=0 has a nontrivial solution.

4.13.5 Reduction to Normal From:
Theorem: Every no zero matrix of rank r, can by a sequence of elementary transformations,

be reduced to the form
(6 o)
0o 0
I being the unit matrix. The from obtained here is the normal form. Let A be a given non-
zero matrix. Since A# 0, it has at least one non-zero element.
Leta;; =k #+0
By interchanging the i ™" row with the first row and the j”‘ column with the first column, we
obtain a matrix B such that b;; =k # 0
Dividing the element of the first row by k, we obtain a matrix C such that @ ,=1.
Subtracting from the elements of the first column by c; ;we obtain a matrix D such that dl-}-
=0
As in the preceding step, subtracting from each of the other column and rows, suitable

multiple of the first column and first row respectively, we obtain a matrix E such that each of
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the column in its first row and column, excepting the one in the (1,1)((1,1)*") place, is

zero. Then E is the form
(6 )
0 A,
If, now, A; #0O, we can deal with it as we did with A,, without affecting the first row and
the first column.
Thus proceeding, we shall obtain a diagonal matrix of the given form.
Since elementary transformations do not alter the rank, the finally obtained diagonal matrix,

whose rank is r, must have, r and only r non-zero elements.
Note:

If a matrix B is obtained from a matrix A is an elementary transformation, we write A ~B.

4.13.6 Equivalence of Matrices:

Definition: Let A € M, ,..(F) and B € M, ,..(F). A is said to be equivalent to B, if
there exists two non-singular matrices, P ,Q whose elements are member of f such that
A=PBQ
The following theree properties of this relation are fundamental
| Reflexivity : Every matrix, A, is equivalent to itself, for we have A = |A| so that P = I, Q=
I
Il Symmetry: If A, is equivalent to B over F, then B is also equivalent to A over F, for
A=PBQ = P=P~1AQ " where P~%,Q ~!are non -singular matrices over F
I11. Transitivity: If A, is equivalent to B over Fand B is equivalent to C over F, then Ais
also equivalent to C over F for A=PBQ B=LCM
= A=PLCMQ = (PL)C(MQ) where PL , MQ , being the products of non-singular
matrices are non -singular matrices over F
Because of the these properties of non singular matrices over F, are relation
“equivalance of matrices over F, is reflectivie, symmetiric and transitive.”
4.13.7 Criterian for Equivalance:
Theorem: 1
The nx n matrices over a field F are equivalance over F, if and only if they have the same

rank.
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Let A, B be equivalance over F. There exists non-singular matrices P,Q, over F such that
A=PBQ
As multiplication with a non-singular matrix does not after the rank , the rank of A and B are
the same.
Let now A,B have the same rank, r . If A and B are both equivalance over F to the matrix
(6 o)
0 0
so that, because of the symmetic and the transitivity of the equivalance relation, the matrices

A, B are equivalent over F.

4.13.8 Canonical matrices for equivalance over a Field, class Partitions:

Because of the these fundamental properties of reflexivity, symmetiric and
transitivity, the relation of equivalance of matrices over F divides the set of all m x n
matrices over F into a system of mutually exclusive classes such that
i) each member of the set belongs to same class.

ii ) two members of the same class are equivalent.
iii) No two members of two different classes are equivalent.
Again by the theorem in (i) above, we see that each class is uniquely characterize by the
rank of any of its members so that the rank is invariant for members of a same class.
As the rank of an m x n matricx can assume any value between 0 and
(m, n) say = k, we see that the number of different classes obtain by the equivalence
relation, in question, is k+1.
o5 9 95 9
N0 0/\0 0/7N0 0
Their ranks respectively are 0,1,2, 3....... k
Each of these (k+1) matrices is a representative of one of the (k+1) classes referred to
above in the sense that
i. Each of the (k+1) classes contains one matrix of the above set, and
ii. Each member of the set belongs to some class. These (k+1) member are said is
to be the canonical matrices for the set of (m x n) matrices over a field F, with
respect to the relation of equivalence of matrices over F. Every (m x n) matrix

over F is equivalence to one and only one canonical matrix.
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5.1 Characteristic roots and vectors:

:2% _01) and let x denote a 2x1 matrix.

Let A:(

(@  Find the two real values A, and 1, of A with 4,>4,
Such that the matrix equation
(*) AX = AX has non-zero solutions.
(b)  Let x and X, be non-zero solutions of (*) corresponding to A, and A,

respectively. Show that if :(Xﬂ) and =(X12) then the matrix X :(Xll )(12)
i ’ . Xa1 & X X1 %

IS non-singular.

() Using (a) and (b), show that AX = X(}g f)
2

and hence A" = X(ﬁé /Ionj X where n is a positive integer.
2

Example 1:

. . : -1 -26 .
Find the Eigenvalues and Eigen vectors of A = ( 1 -3 ) For the eigenvalues one has A -

-1-1 -26
A= ( 1 -3-1)
0 = |4 — Al

‘-1-/1 - 26 ‘
1 -3-2

(-1-2(-3-4)-(1)(-26)
= 2°+4) +3+ 26
= 22 +41 +29

So the eigenvalues are

5 = 4 V(4 - (4)(1)(29)
(2)(1)

_ -4+4100

- 2

= -2+£5i
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So A = -2+5i &
Ao = -2-5i
This example illustrates a general feature of complex eigenvalues of matrices that have real
entries, i.e. they occur in complex conjugate pairs. One reason is that the characteristic
equation |[A — AI'| =0 is a polynomial equation in A with real coefficients and for such
equations the roots occur in complex conjugate pairs. We shall see another reason below.
For the eigenvectors for A; = - 2 + 5i one has
A-21= A—(-2+5i)l

1-51 -26 )
1 -1-5i

( X) satisfies
y

(o) =-av = (1% %5 )5)

((1-5i)x- 26y)
0

So an eigenvector v

X + (-1-5i)y

So (1-5i)x - 26y =
X+ (-1-5))y = 0

If one multiplies the second equation by 1 — 5i one obtains the first. So, any solution to the

second equation is also a solution to the first. So it suffices to solve the second equation

whose solution is x = (1 + 5i)y. So, an eigenvector v for A; = - 2 + 5i has the form

- (;) _ ((1+y5i)y)
_ y(l-{Si)

. 1+5i). . .
So any multiple of the vector v; = ( 1 ) is an eigenvector for A; =- 2 + 5i.

For A, = - 2 - 5i all the previous computation that we did for 4; = - 2 + 5i remain the same

. . . . 1-5iY,
except we replace i by —i. So, it is not hard to see that any multiple of the vector ( 1 ) IS

an eigenvector for 4, = - 2 - 5i.
This example illustrates a general feature of the eigenvectors for complex eigenvalues,
namely the eigenvector for complex conjugate eigenvalues have complex conjugate

components. It was not hard to see why this was true in the above example, and the same
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argument can be used in general. However, there is a slightly different argument that is
useful in other similar situations.

If z = x + yi is a complex number with real and imaginary parts x and y then the complex

conjugate of z is Z = x — .

For example, 3-2i =3 + 2i. The operation of taking complex conjugate has several simple

algebraic properties. Some of these are

1) ZTW = 7+ W

) W = IW

The operation of taking complex conjugates can be extended to vectors and matrices. |If

1 sl
Zy |. . . . . -
V= is a vector with complex components, then its complex conjugate isv=| 22 |. If
Zn
Zn-
ai1dg2---ain
azag --a . L . . -
2192277920 1 is a matrix with complex components then its complex conjugate is A =
dm1dm2°**Amn
ai; arz -+ ain
A1 Ap -+ an
am Amz -+ Amnl
Example 2:

if -(2-3|)h __(2+3i)
V={5+4i) NNV =15_4i )

2-31 T+i — 2+31 T7-i
IfA:(5+4i 6-8i)thenA=(5-4i 6+8i)'
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The algebraic properties (1) and (2) of complex conjugates for numbers extends to complex
conjugates of vectors and matrices, e.g. if « is a complex number, u and v are vectors and A

and B are matrices then

(3) @ = o aA = oA Au = Au AB = AB

The following proposition shows that complex eigenvalues of matrices with real entries occur
in conjugate pairs.

5.2 Proposition :

Suppose A is a matrix with real entries and A is an eigenvalue of A with eigenvector v. Then
Ais also an eigenvalue of A and V is an eigenvector for A.

Proof: One has Av = Av. Taking complex conjugates of both sides gives Av = Av. Using (3)
gives AV = AV. Which proves the proposition?

Problem 1:

Consider the mapping that takes a point v = (;) and rotates it by an angle 8= 74 to the new

. r . . :
point w = (s) We know that w = Rv where R = R4 is the matrix for a rotation by /4. In

cos@ -sind

sin@  cos 9)' In the case

general, the matrix Ry for a rotation by @ is given by Ry = (

. 1 /1 -1 .
6= /4 one has sin (74) = cos (/4) = 1\[2. So, R = Nl ( 1 1 ) The eigenvalues of R

cannot be real since no non-zero vector v is mapped on to the line through itself when it is

rotated by 774. To find the eigenvalues of R we proceed as usual.
1 1

NERERNF
1
N
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0 = det(R-Al) =

1 2
S —-A] =
° (ﬁ )
So, the eigenvalues are

1
2
1 1
and A = _\/—_I
2 2
For the eigenvectors for 4 - L +—1 i one has
T2 A2
1 1.
- = (= +—=
1 (-i -1)
- \/E 1 -i
: X -
So, an eigenvector v = y) satisfies

(o) = @ = (7 5)5)
:\/%(:(xlw
So -ix- 'y =0
Xx-1y =0

If one multiplies the first equation by i one obtains the second. So any solution to the

first equation is also a solution to the second. So it suffices to solve the first equation whose

(3

o . . 1 1. ( )
=-0y. =+ myv=
solution is y = - iy. So an eigenvector v for 4; NG i has the form v y
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x(l) So any multiple of the vector v -(1) is an eigenvector for A -A+Ai
-/ y p 1 - - g 1—\/5 \/E

: . 1Y. . 1 1.
Taking complex conjugates one sees that v, = ( i ) is an eigenvector for A, = ﬁ - ﬁl.

cos@ -sind

sin @ Cose)are/h:c059+ (sin @) i

Problem 2: Show that the eigenvalues of Ry = (

i : . 1 1
and A, = cos @ - (sin 6) i and the corresponding eigenvectors are v; = ( i) and v, = ( i )

: 0 -2 . .
Problem 3: Show that the eigenvalues of A = (1 5 ) are 4, =1+iand 4, =1-1iand the

L 2 2
corresponding eigenvectorsare vi = _y _; Jandva=| _q .
Problem 4:

Find the eigenvalues and eigenvectors of the matrix:

)

A) First, we start by finding the eigenvalues, using the equation derived above:

(I

1 2-4
If you like, just consider this step as, “subtract 4 from each diagonal element of the matrix in

A-A1|=

the question”.
Next, we derive a formula for the determinant, which must equal zero:
‘2 -A 1

p— — — J— = 2— =
. 2—/1_(2 AN2-4)-1x1=1-21+3=0.

We now need to find the roots of this quadratic equation in 4 .

In this case the quadratic factories straightforwardly to:

A2 -24+3=(1-3)1-1)=0.

The solutions to this equation are 4, =1& A, = 3. These are the eigenvalues of the matrix A .
We will now solve for an eigenvector corresponding to each eigenvalue in turn. First, we will

solve forA =4, =1:

X

To find the eigenvector we substitute a general vector x =( J into the defining equation:

Xz
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AX = AX,
2 1Y\ x _1x X .
1 2)x, X,
By multiplying out both sides of this equation, we form a set of simultaneous equations:
2%, + X, (% or
X, +2X, X,

2%, + X, =Xy,
X, +2X, = X,.

X + X, =0,
X, + X, =0,

Where we have taken everything over to the LHS. It should be immediately clear that
we have a problem as it would appear that these equations are not solvable! However, as we
have already mentioned, the eigenvectors are not unique: we would not expect to be able to
solve these equations for one value of x, and one value of X, . In fact, all these equations let
us do is specify a relationship between X, and X, , in this case:

X, +X, =0,0r, X, =—X,

So, our eigenvector is produced by substituting this relationship into the general vector x :

X
x=| " |
(_ XJ
This is a valid answer to the question; however, it is common practice to put 1 in place of x;

1
and give the answer: X = ( 1).

We follow the same procedure again for the second eigenvalue, 1= A4, =3. First, we write

AX = 1X,

out the defining equation: (2 1) x; 3 X,
= X ,
1 2)x, X,

and multiply out to find a set of simultaneous equations:
2%, + X, = 3X,,
X, +2X, = 3X,.

Taking everything over to the LHS we find:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
107



— X, + X, =0,
X, — X, =0.

This time both equations can be made to be the same by multiplying one of them by minus

one. This is used as a check: one equation should always be a simple multiple of the other; if

they are not and can be solved uniquely then you have made a mistake.

Once again, we can find a relationship between x, and X, , in this case x;, =x,, and form our

. X
general eigenvector: x = ( 1].
Xl

1
As before, set x, =1 to give:x = (J Therefore our full solution is:

Problem 5:

You will often be asked to find normalized eigenvectors. A normalized eigenvector is an
eigenvector of length one. They are computed in the same way but at the end we divide by
the length of the vector found. To illustrate, let’s find the normalized eigenvectors and

eigenvalues of the matrix:

S

A) First, we start by finding the eigenvalues using the eigenvalues equation:

5-4 -2
s A
7 —4-4

Computing the determinant, we find:

(5—A)—4—2)+2x7 =0, And multiplying out: A2 —2-6=0.

This quadratic can be factorized into(1—3)A+2)=0, giving roots 4, =—2& A1, = 3.
To find the eigenvector corresponding to A =4, =—2 we must solve:

AX = X,

S

When we compute this matrix multiplication we obtain the two equations:
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SX, —2X, =—2X%,,

TX, —4X, ==2X,.

Moving everything to the LHS we once again find that the two equations are identical:
X, —2X%, =0,

X, —2X%, =0,

And we can form the relationship xzzgx1 and the eigenvector in this case is

Xl
thus:x=|7_ |
J— Xl
2
In previous questions, we have setx, =1, but we were free to choose any number. In this case

things are made simpler by electing to use x, =2 as this gets rid of the fraction,

ivin'x—2
giving: X = -

This is not the bottom line answer to this question as we were asked for normalized
eigenvectors. The easiest way to normalize the eigenvector is to divide by its length, the
length of this vector is:

2
|x| =224+ 7% = B3, Therefore, the normalized eigenvector is: X = %(J

The chevron above the vector’s name denotes it as normalised. It’s a good idea to confirm

that this vector does have length one:

We must now repeat the procedure for the eigenvalue A =4, =3. We find the simultaneous

equations are:

2%, — 2%, =0,

7% — 71X, =0,

and note that they differ by a constant ratio. We find the relation between the components,
X, = X, , and hence the general eigenvector:

X 1
X :( 1], and choose the simplest option X, =1 giving: X = (1]

X
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This vector has length v1+1 = /2, so the normalised eigenvector is: X =

Sl

L2 %=
V5317

Therefore, the solution to the problem is:

Problem 6:
Sometimes you will find complex values of 4 ; this will happen when dealing with a rotation

matrix such as:

0 -
A= :
1 0
Which represents a rotation though90°. In this example, we will compute the eigenvalues

and eigenvectors of this matrix.

A) First start with the eigenvalue formula:

s

Computing the determinant, we find: 2* +1=0,

|A—2l|= =0.

Which has complex roots A = £i. This will lead to complex-valued eigenvectors, although

there is otherwise no change to the normal procedure.

AX = X,
For A, =i we find the defining equation to be: (0 — j(xlj iy [le-
1 0 Ax, X,
Multiplying this out to give a set of simultaneous equations we find:
— X, =X,
X, = IX,.

We can apply our check by observing that these two equations can be made the same by

[
multiplying either one of them by i. This leads to the eigenvector:x=(1j. Repeating this

—i
procedure for A =4, =—1,we find: X = [ L ] Therefore our full solution is:
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5.4 DEFINITION OF EIGENVALUES AND EIGENVECTORS OF A SQUARE
MATRIX

If [A] is a nxn matrix, then [X]# 0 is an eigenvector of [A] if

[AI[X]=A[X]
Where 4 is a scalar and[X]=0. The scalar A is called the eigenvalue of [A]land [X] is
called the eigenvector corresponding to the eigenvalue 4 .

Eigenvalues of a square matrix:

To find the eigenvalues of a nx n matrix[A] , we have
[AIIX]=A[X]
[AI[X]-A[X]=0
[AIIX]-A[1][X]=0
(TAI-[AII'DIX]1=0
Now for the above set of equations to have a nonzero solution,
det([A]-A[I11)=0
This left-hand side can be expanded to give a polynomial in A and solving the above
equation would give us values of the eigenvalues. The above equation is called the
characteristic equation of [A] .
For a [A] nxn matrix, the characteristic polynomial of A is of degree n as follows

det([A]-A[1]) =0 giving
A"+ A e, A"+ ——+c, =0

Hence, this polynomial has n roots.

Problem:7
Find the eigenvalues of the physical problem of the matrix
3 —1.5}

[Al= {—0.75 0.75
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Solution:

3-1 -15
[A]—zm{ }

~0.75 0.75-1
det((A]-A[1]) = (83— 1)(0.75- 1) - (-0.75)(-1.5) =0
2.25-0.754—34+ £ -1.125=0

A —3.754+1.125=0

_ —(-3.75)£+/(-3.75)* — 4(1)(L.125)
- 2(1)

A

| 3.75+3.092
2

=3.421,0.3288

So, the eigenvalues are 3.421 and 0.3288.
Problem :8

Find the eigenvectors of
3 -15
A =
-0.75 0.75
Solution: The eigenvalues have already been found in Example 1 as
A, =3.421 4, =0.3288

X
Let [X]= Ll} be the eigenvector corresponding to

2

2, =3421

Hence

([Al-A[IDIX]=0
[n s3fefs )
-0.75 0.75 0 1][|x,
-0421  -15 Tx] [0
{—0.75 —2.671}&}{0}

~0.4215-1.5x, =0
X, =—0.2808s

If X, =sthen

The eigenvector corresponding to A4, = 3.421 then is
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S
1= [— 0.28085}

1
=5
—0.2808

The eigenvector corresponding to
A, =3421 is

1
—0.2808

Similarly, the eigenvector corresponding to

A, =0.3288 is
1
1.781

Problem 9:
Find the eigenvalues and eigenvectors of
Solution: The characteristic equation is given by
det([A]-A[1])=0
15-4 0 1
det| -05 05-4 -05|=0
-0.5 0 -1
@.5-)[(0.5-2)(=4)-(-0.5)(0)]+ @®[(-0.5)(0) — (-0.5)(0.5-1)]=0
~ A +2#-1.251+0.25=0
To find the roots of the characteristic polynomial equation
~ A +21-1.251+0.25=0
We find that the first root by observationis 4 =1
As substitution of 4 =1gives
(-1)° +2(1)* -1.25(1) +0.25=0
0=0So (A-1)is a factor of
— A +22%-1.251+0.25.

To find the other factors of the characteristic polynomial, we first conduct long division
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22 +1+0.25
) —1)— B +212-1.251+0.25

Ry S

A2 -1.251+0.25
=2

-0.254+0.25
-0.254+0.25

Hence
~ 2B +24*-1.250+0.25= (1 -1(-2* + 1+0.25)
To find zeroes of — 22 + 1 +0.25, we solve the quadratic equation,

—X+2+0.25=0 togive

L~ =0 -(4)(-D(0.25)
2(~1)
_—1+40
=2
=0.50.5

So A=0.5and A =0.5 are the zeroes of

~ 2 +A+05
Giving — 2 +1+0.25=—(1-0.5)(1-0.5)
Hence — A +24% —1.254+0.25=0can be rewritten as

—(1-1)(1-0.5)(1—0.5) =0to give the roots as

4=10505

These are the three roots of the characteristic polynomial equation and hence the eigenvalues
of matrix [A].
Note that there are eigenvalues that are repeated. Since there are only two distinct
eigenvalues, there are only two eigen spaces. But, corresponding to 4 =0.5 there should be
two eigenvectors that form a basis for the eigen space corresponding to 4=0.5.
Given:[(A—A][X]=0then
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15-1 0 1 |x 0
-05 05-4 -05|x,[=|0| ForA=0.5,
-05 0 -1 | Xq 0

1 0 1 |x 0
-05 0 -05(x,|=|0
-05 0 -0.5] x, 0

Solving this system gives: x, =—a,x, =b,x; =a

X, -a
SolXx,|=| Db
Xq a
[—al] [0
=/ 0 |+|b
| a 0
-1 0
=al 0 |+b|1
1 0
-1 0
So the vectors | 0 | and | 1| form a basis for the Eigen space for the eigenvalue 4 = 0.5 and
1 0

are the two eigenvectors correspondingto 4 = 0.5.
Ford =1,
0.5 0 1 ] x 0
-05 -05 -05(x,|=|0
-05 O RS 0
Solving this system gives

X, = a,X, =-0.5a,%x, =-0.5a

The eigenvector correspondingto 4 =1 is

a 1
—-0.5a|=4a-0.5
—0.5a -0.5

Hence the vector
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1
-05
-0.5

is a basis for the eigen space for the eigenvalue of A =1, and is the eigenvector corresponding
to A=1.

5.5 THEOREMS OF EIGENVALUES AND EIGENVECTORS:

Theorem 1:1f [A] is a nxn triangular matrix — upper triangular, lower triangular or
diagonal, the eigenvalues of [A] are the diagonal entries of[A].
Theorem 2: 4 =0 is an eigenvalue of [A] if [A] is a singular (noninvertible) matrix.

Theorem 3:[A] and [A]" have the same eigenvalues.

Theorem 4: Eigenvalues of a symmetric matrix are real.

Theorem 5: Eigenvectors of a symmetric matrix are orthogonal, but only for distinct
eigenvalues.

Example :1

What are the eigenvalues of?

60 0 0
73 0 0
[A] =
9 575 0
26 0 -72

Solution: Since the matrix[A] is a lower triangular matrix, the eigenvalues of [A] are the
diagonal elements of [A]. The eigenvalues are

A=6,4,=34,=751=-72
Example :2

One of the eigenvalues of

56 2
[A]=|3 5 9 |iszero. Is [A] invertible?
2 1 -7

Solution: 4 =0 is an eigenvalue of [A], that implies [A], is singular and is not invertible
Example :3

Given the eigenvalues of
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2 -35 6
[Al=|35 5 2 |are 4, =—1547,4, =12.33, 1, =4.711
8 1 85

What are the eigenvalues of [B] if?

2 35 8
[B]=|-35 5 1
6 2 85

Solution:
Since[B]=[A]", the eigenvalues of [A] and [B] are the same. Hence eigenvalues of [B]
also are
A, =—-1.547,1, =12.33, 2, = 4.711
Example :4

Given the eigenvalues of

2 -35 6
[A]=]35 5 2
8 1 85

Are A, =-1547,4, =12.33, 4, =4.711
Calculate the magnitude of the determinant of the matrix.
Solution:
Since |det[A] =|4,||4,|| 4| =|-1.547|[12.33)|4.711] = 89.88
One of the most common methods used for finding eigenvalues and eigenvectors is the power
method. It is used to find the largest eigenvalue in an absolute sense. Note that if this largest

eigenvalue is repeated, this method will not work. Also, this eigenvalue needs to be distinct.

The method is as follows:
1.Assume a guess [X ] for the eigenvector in [A][X]= A[X]
equation. One of the entries of [X (] needs to be unity.
2.Find
[Y ©1=[AI[X ©]
3.Scale [Y ] so that the chosen unity component remains unity.

[Y(l)] — 2(1)[X (l)]
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4. Repeat steps (2) and (3) with
[X]=[X®] to get [X ?].
5. Repeat the steps 2 and 3 until the value of the eigenvalue converges.
If E.is the pre-specified percentage relative error tolerance to which you would like the
answer to converge to, keep iterating until

A0 _ 0

Z( i+1)

«x100 < E,

Where the left-hand side of the above inequality is the definition of absolute percentage

relative approximate error, denoted generally by E, A pre-specified percentage relative

tolerance of 0.5x10>™ implies atleast m significant digits are current in your answer.
When the system converges, the value of A is the largest (in absolute value) eigen value
of [A]

Example 5:

Using the power method, find the largest eigenvalue and the corresponding eigenvector of

15 0 1
[A]=]-05 05 -05
-05 0 0
Solution:
Assume
1
[XOT=|1
1

15 0 1 1
[A[IX®]=|-05 05 -05(1
-05 0 0 |1

Y® =25-0.2
1-0.2]
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AW =25

We will choose the first element of [X (] to be unity.
1

[X®]=|-0.2

-0.2

15 0 1 1
[A][X®]=|-05 05 -05|-0.2
-05 0 0 |-02

1.3
=|-05
-05

1
[X ®?]=1.3 -0.3846
~0.3846

A® =13

1
[X®]=|-0.3846
—0.3846

The absolute relative approximate error in the eigenvalues is

1(2) _ 1(1)

1@ x100

el =

= ‘1l3 _1.5‘ X 100

=92.307%

Conducting further iterations, the values of A" and the corresponding eigenvectors is given in

the table below
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i | 0

2|13 ~0.38462
~0.38462

1
3|1.1154 | [-0.44827
—0.44827

1
4(1.0517 | |—-047541| | |e,| (%)
—0.47541

1
5 | 1.02459 | | —0.48800
| —0.48800

92.307

16.552

The exact value of the eigenvalue is 4 =1 and the corresponding eigenvector is

1
[X]=|-05
~0.5

5.6 Cayley Hamilton theorem:

Every square matrix satisfies its own characteristic equation. Let A be a non-singular Matrix
i.e. m = 0 from the Cayley Hamilton theorem

We have @A™ +a, A"t +a A" %+ +@, I =0............ (1)

Pre -Multiplying equation (1) by A™% we get

ap A" +a AV ra AR +a, A7 =0 (since AT =A"1)

a, A7 =-(ap A" +a AR +y_1 1)
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A7 =la, -(agA™ 2 +a, A" 3+ +a,_,I)

Example 1:

Verify that A:G _2 1) satisfies its own characteristic equation & hence find A*
To find the characteristic equation
Characteristic equation is|A— 12| =0
|1 — A 2

2 —-1-24
(1— A)(—1— 4)-4=0

=0

-1—A+L+A%-4 =0

A%-5=0

To find A* A%-51=0

1 2 1 2 1 O /0 O

G DG )l -6 o
Hence A Satisfies its own characteristic equation

Multiplying (A) by A2, we get

A* 5A*=0
A =47 :5(3 g):(205 205)
Example 2:

Use Cayley —Hamilton theorem to find the inverse of A= G g)

To find the characteristic equation
Characteristic equation is [A— 14| =0
77— 3 0
2 b— A
(7— A)(6— 4)-6=0
42 +A*-13 1 -6 =0
A*-131-36 =0
To Find A™*
By Cayley —Hamilton theorem we get
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AZ%-13A-361 =0
A1 A%-134A471-36471 =0
A-131+-36 471 =0
-1 _1 _
A e (13— A)

(6 2-G )
(5 )

Example 3
8 —8 2
Verify Cayley —Hamilton theorem for the matrix A=|4 —3 -2
3 —4 1
To find characteristic equation:
8 -8 2
Let A=[4 —3 —2|the characteristic equation is A*-a ;A% + @, 1 -3 =0
3 —4 1

Wherea; = sum of leading diagonal elements =8-3+1 = 6

1, = sum of the minors of the leading diagonal elements

:|—3 —2|+|8 2|_|_ |8 —8

—4 1113 1 4 -3
=-3-8+8-6-24+32

=1
8 —8 2
a; = |4|=[4 -3 -2
3 —4 1
= §(-3-8)+ 8(4+6)+2(-16+9)=-88+68-14
=22

The characteristic equation is A* — 642 — 1 +22 =0

Verification: To verify Cayley —Hamilton theorem we have to prove that A* — 647 — A+
221 =0

8 -8 2 8 —8 2
Now A*=14 -3 =-2|+|4 -3 -2
3 —4 1 3 4 1
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38 —48 34

=[14 —15 12]

11 —-16 15
38 —48 34] [8 -8 2
A*=A*+A=|14 -15 12*[4 -3 —2]
11 —16 151 13 —4 1

214 —-296 206]
88 —115 70
69 —100 69 .

214 —296 206
A® —6A4% — A+221= 88 —115 70}

—10{] 69
—48 34 1 0 0] [0 O O
14—1512 —2—|—22{]1{] 0 0 0
—16 15 0 0 1110 0 O
Example 4
1 0 3
Verify Cayley —Hamilton theorem for the matrix A=|2 1 -1
1 -1 1
To find characteristic equation:
8 —8 2
LetA=|4 —3 —2|, The characteristic equation is A*-a;A* + a, 1 -a; =0
3 —4 1

Where @4 = sum of leading diagonal elements =1+1+1 =3

@, = sum of the minors of the leading diagonal elements
1 =101 3 1
‘| | +| 1| N |2
=-1-1+1-3+1-0=-1
1 0 3
1 -1
1 -1 1
=1(1-1)+ 0(2+1)+3(-2-1)
=-9

— 4=

The characteristic equation is A* — 312 — 1 +9 =0
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Verification: To verify Cayley —Hamilton theorem we have to prove that A% — 342 — A+

91 =0
Now AE: —1” —1]
—1 —1
-3 6
=[3 2 4]
-2 5
—3 6
A3=A2*A= ” —1]
—2 5 —1
4 —9
=[11 —2 11]
1 -7 7
—34% — A+91=
-9 21 —3 6 1 0 3 1 0 0
—2 11] [ 2 4]—[2 1 —1|+9|0 1 'D]
-2 5 1 -1 1 0 0 1
0 0 0
:[D 0 'D]
0 0 0

Hence Cayley —Hamilton theorem is verified

5.7 Minimal Equations:

Let f(x) is a polynomial is the indeterminate x and A is a square matrix of order n. If
f(x) = O, then we say that the polynomial f(x) annihilates the matrix A. Every matrix satisfies
its characteristic equation and the characteristic polynomial of a matrix A is a non-zero
polynomial, i.e a polynomial in which the coefficients of various terms are not all zero.
Therefore, atleast the characteristic polynomial of A is a non-zero polynomial that annihilates
A. Thus, the set of those non-zero polynomial which annihilate A is not empty.

5.7.1 Monic Polynomial:

A polynomial is x in which the coefficient of the highest power of x is unity is called

a monic polynomial, e.g. x* + 4x2 — (3x) + 5 is a monic polynomial of degree 3 over

the field of real numbers. Among those non-zero polynomials which annihilates a matrix A,
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the polynomial which is monic and which is of the lowest degree is of special interest. It is
called the minimal polynomial of the matrix A.

5.7.2 Minimal equation of a Matrix.

The monic polynomial of lowest degree that annihilates a matrix A is called the
minimal polynomial of A. Also, if f(x) is the minimal polynomial of A, the equation f(x) =0
is called the minimal equation of the matrix A.

If A'is of order n, then its characteristic polynomial is of degree n.

Since the characteristic polynomial of A annihilates A, therefore the minimal polynomial of
A cannot be of degree greater than n. Its degree must b less than or equal to n.

Theorem 1: The minimal equation of a matrix is unique.

Let the minimal polynomial of a matrix A is of degree r. Then no non-zero polynomial of
degree less than r on annihilates A. Let

fx)= x” +a,x"T+a, x4+ ... +a,._;x+a,and
9(x) =x" + byx" t+b,x" "% + ...........+b,._;x + b, be two minimal polynomials of
A. Then both f(x) and g(x) annihilate A.

Therefore, we have
f(A) =0 and g(A) = 0. These give

A"+ a, A Ha, A7+ e A+ a =0 (1) &
A"+ b A" b, AT+ b A+ DB T=0............ 2)
Subtracting (1) and (2), we get,

(by —a, YA +((b, —a, JA" 2+ - ... (b, =a)=0 ........ 3)

From (3) we see that the polynomial on L.H.S also annihilate A. Since the degree is less than

r, therefore it must be a zero polynomial. This gives
(by—a,)=0,(by—a,)=0,.......(b, —a, ) =0,
Thus (b, = a, ) (b; = a, ), (b, = a,).

T herefore f(x) =g(x) and thus the minimal equation of A is unique

5.8 Quadratic Form:

A homogeneous polynomial of second degree in any number of variables is called a
quadratic form
Note: homogeneous polynomial of second degree means each and every term in any

expression should have degree two.
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5.8.1 Matrix of the Quadratic form:

Examples:1

i) X2+ 5X, X, +X7 is a quadratic form in the variables X; and X,

i) X7+ 2X,X, +X7 +XZ 3X,X;  +X,Xjis a quadratic form in three
variables X; and X,. X5

iii) X7+ 2X; X, +X7 +X5+-5X, X, +5X7 -2X, X+ X, X, + 5X, X5 is a quadratic form in
four variables X, X,. X3 and X,

Note that the degree of each and every term in the above expression is two

A quadratic form in 3 variables X; and X, . X; is given by

f(X; X;.X3) = a, X7 +a;; X Xy +aq3 X, Xy +ay, X, X, +05,X3  +ay; X, X,
+ a3y Xz X; 4025 X3 X, +04,X3

The quadratic form can be written by

=X" AX
Xy
Where X=| X5 |and A is called the matrix of the Quadratic form
X3

Example: 2

Write the matrix of the Quadratic form 2 X7 + 2 X; X, 6 X, X; +6 X, X, -
2XZ | 4X3

2
Here (111:2 322:-2 ,(133:4 alzzﬂ-z 125 =1

A31= 31:';_6 =—3, A3;= ay3=a, 1=§ =3
2 1 -3

Hence the matrix of the form is 1 -2 3
—3 3 4
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Example: 3

Write the Quadratic form corresponding to the following symmetric matrix is
0 -1 2

-1 1 4

2 4 3

Solution: Quadratic form corresponding to the symmetric matrix A is

0 -1 21/4;
X' AX = (X, X5 X3)|—1 1 4| X, |Using matrix multiplication, we have
2 4 31\AX;

X
=0X; — X, 2X; X, + X, +4X; 2X, 44X, 13X, ) le
X;
=0X;, — X, 2X;)) X, + (X, + X, +4 X )X+ (2X, 14X, +3X; )X,
=0X{-2 X, X,+4 X, X; +8X, X, +X7 | 3X3
Note
1. Rank of the symmetric matrix A is called the rank of the Quadratic form X' AX
2. If the Rank of A is r<n 9number of variables) then the Quadratic form is singular
otherwise non-singular
Transformation
Let X’AX be a quadratic form where A is the matrix of the quadratic form
Let X=PY be a non-singular linear transformation (P is non-singular) then we have
X’AX = (PY)’ APY
=P’Y’ A PY=Y’ (P’AP)Y
=Y’DY where D =(P’AP)
Let us choose P to be the matrix of a set of orthogonal eigenvectors of A. now the matrix P is
orthogonal (since P’=P~land P’AP is a diagonal matrix D whose elements are the
eigenvaluesd, A5, 45 of A
Here Y’DY is also a quadratic form in variable ¥;,¥2, V3 thus the quadratic form X’AX is
reached to the canonical form

In other words, a quadratic form X’AX in 3 unknownX,,X,,X3 can be reduced to the

canonical form
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diy,® +d;y,” +dyy,® Wherey; )y, Yzare the new unknowns. Some of the

coefficients d4,d-, d5 may of course be zero.

Note:

1. If the matrix p is orthogonal the transformation X=PY is called an orthogonal
transformation

2. The above method is applicable only when the eigenvectors of A are linearly independent
and mutually orthogonal

5.8.2 Theorem: Fundamental theorem on quadratic forms. Any quadratic form may be

reduced to canonical form by means of non-singular transformations
Proof: Let X’AX ......... (1) be a quadratic form of rank 3

Therefore, A is of rank 3. Then there exists a non-singular matrix P, such that

'g g) where D is exists a non-singular matrix of order 3

Apply the non-singular transformations X=PY in (1) where

%6 14
X:( X, )and Y:( ¥, )We get
X3 Y;

X’ AX =(PY)' A(PY)

(P’AP) =(

=YP'APY
=Y"(P'AP) Y
(D 0
=Y (U B)Y by (2)
0 -1 21/4hK
=LY -1 1 4[| % =d,y? +d,v,7 + dsy,® which is the
2 4 31\L

canonical form of the given quadratic form.
Example 1
Reduce the quadratic form 2X2 +2 X; X, -2 X; X; —4 X, X3 +X5 | X3 to canonical

form through an orthogonal transformation.

Xy
Solution: The given quadratic form is X’ AX, where X:( X, )
X;

andX°=(X; X, X3)
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Step: 1 To find the matrix of the quadratic form:
The matrix of the quadratic form is

2 1 -1
A=l 1 1 -2
-1 -2 1

Step: 2 To find characteristic equation:

The characteristic equation is A*-a; A% + a, 4 -a; =0
Where @ = sum of leading diagonal elements
=2+1+1 =4

@, = sum of the minors of the leading diagonal elements

s e Ay B

=-1-442-1+2-1
=1
2 1 -1
a3:|A|: 1 1 _2
-1 -2 1
= 2(1-4)-1(1-2)-1(-2+1)
=-4

The characteristic equation is A* — 412 — 1 +4 =0
Step: 3 To find eigenvalues:

A2 —4Q7 —2+4=0

When 4=1, 1-4-1+4 =0

Therefore A4 =1 is a root

—3+v9+16 345
2 T2

A2 —321-4=0 A= =4 or -1

Eigen values are 4 =1, -1,4

Step : 4 to find eigenvectors:

The eigenvectors X =( Xy X, X3 ) are given by
- )X, + X, — X; =0

X, +(1—-4)X, — 2X; =0

—X, —2X, +(1— 2)X; =0

Case (i): When A =-1, the eigenvector is given by
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3X1 + XE - Xa :0
Xl + 2 XQ - ZXE :O

Taking first two equations and solving, we get

X5 X, X;

1 -1 3 1
2 -2 1 2

X X &g
—242 -1+6 6-1

X
it S Tz :ﬁ =k

li] 5 a3

X, =0k X, =5k

X3 =5k (taking k= %) i.e the eigenvector is (0,1,1) and its normalized form is

1 1
(U;E, EJ

Case (ii): When 4 =-1, the eigenvector is given by
Xl + Xz — Xg =0

X1+{]X2_2X3 O

—X; — 2X, + 0X; =0 considering the first equations, we have

Xy X; X
1 -1 1 1
0 -2 1 0
X X Xa K

—2-0 -1+2 0-1
X, = 2k: X, =k:
X3 =-k (taking k= —1) i.e. the eigenvector is (2, -1,1) and its normalized form is

2 11
NN,

Case (iii): When A =4, the eigenvector is given by
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—X; — 2X, — 3X; =0 considering the first equations, we have

Xy X, X

1 -1 -2 1

-3 -2 1 -3
Xy Xo X

Xl = _Sk. Xz :_Sk

X; =—b5k (taking k:_Tl) i.e. the eigenvector is (1,1, -1) and its normalized form is

( 2 1 -1
'RV

Step: 5 to find modal matrix:

The normalized modal matrix is

0 = — 0 = =
Ve 42 vz 4z
1 -1 1 ' 2 -1 1
Pp=| = —= —= P =l = —= — | Let X=PY.......... (2) be the orthogonal
Y2 w6 43 R - T -
1t 1t
vz Ve 3 ST Y
transformation substituting (2) in (1), we get
X’ AX =(PY)' A(PY) =YP'APY
-1 0 01/ %
Now V'(P'AP)Y=(Y, V,. V3l 0 1 Of| 13
0 0 4I\Y

= —y;% +¥,% + 4y, % which is the required canonical form of
the given quadratic form.
Example: 2
Reduce the quadratic form X7 -2 X, X, 2 X, X; +2X, X; +2X5 . X5 to
canonical form through an orthogonal transformation

Solution: The given quadratic form is X’ AX where
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X5
X:(Xz )and x=(X; X, X3)
X3

Step: 1 To find the matrix of the quadratic form:

The matrix of the quadratic form is

1 -1 0
A=|—1 2 1
0 1 1

Step: 2 To find characteristic equation:
The characteristic equation is A*-a; A% + a, 4 -a; =0
Where @; = Sum of leading diagonal elements =1+2+1 = 4

a,- = Sum of the minors of the leading diagonal elements

:ﬁ i+|é 2|+ |_11 _21| =2-1+1+2-1=3

1 -1 0
as=|4l=|-1 2 1
0 1 1

=1(2-1) +1(-1-0) +0 =0
The Characteristic equation is A* — 442 — 31 =0
Step: 3 To find eigenvalues:
A =4 =32 =0, 2(X* =42t +3y=0

—4+V16-12 442

When 2 =0( A7 — 44" + 3y=0,1= =3or1

Eigen values are 1=0,1,3

Step: 4 to find eigenvectors:

The eigenvectors X =( Xy X, X3 ) are given by
1-X — X, —04X; =0

X, +(2-1)X, + X; =0

0X, +X, +(1— 1)X; =0

Case (i): When A =0, the eigenvector is given by

X, — X, +0X; =0
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0X, + X, + X, =0

Taking first two equations and solving, we get

X, X; X

-1 0 1 -1
2 1 -1 2
X

1 — XZ — XE- :k
-1-0 0-1 2-1
X

1 :ﬁ :X3 =k
-1 -1 1
Xl - _k: Xz :k
X5 =k (taking k=-1) i.e. the eigenvector is (1,1,-1) and its normalized form is
1 1 -1
(ﬁ! 7’ *-TE]

Case (ii): When 4 =1, the eigenvector is given by
0X, — X, —0X; =
X, + X, + X; =0
0X, + X, + 0X; =0 considering the first equations, we get
X3=0
Xy = X5

1

=)

1
Therefore the eigenvector is (1, 0, 1) and its normalized form is (E, U’w :

Case (iii): When A =3, the eigenvector is given by
- Xl - Xz + Xg :O

0X; + X, — 2X; =0 considering the first equations and solving we get
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-1-0 042 2-1

Xy =—k: X, =2k, X; =k (taking k=-1) i.e. the eigenvector is (1,-2,-1) and its

_ 1 -2 -1
normalized formis (=,—=,—=)
VB Ve e

Step: 5 to find modal matrix:

The normalized modal matrix is

1 L 1
V3 Wz e V3 W3 43
=l = 0 Z=| Ps{= 0 =
V3 V6 V2 V2
-1 1 I
V3 Wz 4e Ve e Ve
Let X =PY.......... (2) be the orthogonal transformation substituting (2) in (1),
we get
X’ AX =(PY)'APY)
=YP'APY
00 01/%;
Now Y'(P'AP)Y = (V; V.. ¥o)[0 1 0ff ¥
0 0 31\%;
= y,% + 3132 which is the required canonical form of the given

quadratic form.

Example 3

Reduce the quadratic form X7 - +2 X, X5 to canonical form by means of an orthogonal
transformation. Determine its nature

Solution:

The given quadratic form is X’AX =X7 - +2 X, X,

Step: 1 To find the matrix of the quadratic form:

The matrix of the quadratic form is

1 0 0
A=l0 0 1
0 1 0

Step: 2 To find characteristic equation:
The characteristic equation is A*-a;A* + a, 4 -a; =0

Where @; = Sum of leading diagonal elements
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=1+0+0 =1

> = Sum of the minors of the leading diagonal elements

£ 3 o o

1 0 0
a=|Al=l0 0 1| =-1
0 1 0

The characteristic equation is A* — A2 — 1 =-1

Step :3 To find eigenvalues: A* — A — 1 =-1

When 4 =1 1-1-1+1 =0 therefore A =1 is aroot
A% =1=%1

Eigen valuesare A1 =11, -1

Step: 4 to find eigenvectors:

The eigenvectors X =( Xy X, X3 ) are given by
11X, +0X, +0X, =0

0X,—42X, + X5 =0

0X, +X, +—41X; =

Case (i): When 4 =-1, the eigenvector is given by

2X1:0
2X, + X, =0

0
Therefore, the eigenvector is X :(—k) the simplest eigen vector is

k
0
w3
1

Case (ii): When A =1, the eigenvector is given by
0X; =0= X, takes any value
- Xz + Xa :0

XZ = Xa PUth :k,Xa :k
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X, = ky =0

The simplest eigen vector is

—1
X, = ( 1 )taking k=-1
1

X

Case (iii): Let X; = (J’) be the third eigenvector which is the orthogonal to X
z

=X FVFZ0 e (A)

Also, we have y-z =0 (therefore X satisfies (1) ................ (B)

(B) S0 V= Z o (©€)

X=2z (sub(C) in (1))
Take z=1, y=1, x=2

2
The eigenvector X; = (1)

1
Now we have the following 3 eigenvectors

() =3 - (1)

Step: 5 to find modal matrix:

The normalized modal matrix is

-1 y -1 1
0 = — 0 = —=
NERR) V2o 42
-1 1 1 1 1 1
P=l = = —= P=sl= = —=
Y2 Y3 ve Y3 43 43
1 2z 1
V2 4z Y Ve Ve s
Step :6 To find P' AP
Let X =PY.......... (2) be the orthogonal transformation substituting (2) in (1), we get

X’AX =(PY)'A(PY) =YP'APY

Now ¥Y'(P'AP) Y = (Y, V.. V3)

1 0 O1/%
0 0 1| ¥5
0 1 oI\Y;
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PN =

===

2 I . : .

= 2 4+ y,~ — ;% which is the required canonical form of the given
quadratic form. Since the eigenvalues are 1,1,-1.Hence one eigenvalue is negative and two
eigenvalues are positive. Hence the quadratic form is indefinite.

5.9 Index and Signature of the real Quadratic Form:

Let X’AX be the given quadratic form in the variablesX;,X5............ Xp

e X AX =d 3,2 +d, X2 + daVaZ+. ... A, X% (1)
Let the rank of A be r. Then X’AX consists only ‘r’ terms
The number of positive terms in (1) is called the index of the quadratic form and it is denoted
by ‘s’. The difference between the number of positive terms and the negative terms Is called
the signature of the quadratic form (i.e)
signature= (number of posotive terms) — (number of negative terms)
= s- (rank of A-s) = s-(r-s)
Therefore s =2s-r
Where s - number of positive terms
r-rank of A
Examples: 1

Find the index and signature of the quadratic form 3 X7 -2 X, X, +2X, X; —2 X, X
+bX: + 3X?

3 -1 1
Solutions: The matrix of the quadratic form is A={ —1 5 -1
1 -1 3

The rank of Ais 3

The canonical form of the above quadratic form is 2 y2 +3y5 , 65
Now Index(s) = Number of positive items=3

Rank(r) =3

Therefore signature =2s-r = 6-3 =3

5.9.1 Classification of Quadratic Form:

Let X’AX be the given real quadratic form where ‘A’ is the matrix of the quadratic

form.
Let the eigenvalues of A be,A,45,3. Now the quadratic form X’AX is said to be

a) Positive definite if all the eigenvalues 44,4,,A3 are positive
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b) Negative definite if all the eigenvalues A,,45,A3 are negative
c) Positive semi definite if at least one eigenvalues is zero and remaining are positive
d) Negative semi definite if at least one eigenvalues is zero and remaining are
negative
e) Indefinite if some eigenvalues are positive and some eigenvalues are negative
Example : 1

Discuss the nature of the quadratic form

10 -2 -5
The matrix of the quadratic formis A ={ —2 2 3
-5 3 5

The eigenvalues of A are 0,3,14. Here one eigenvalue is 0 and the remaining are positive.
Hence the given quadratic form is positive semi definite
Example: 2

Discuss the nature of the quadratic form

-3 -1 -3
The matrix of the quadratic formis A = | —1 3 -3
-3 -3 -5

The eigenvalues of A are 4, -1,-8. Here we have positive and negative.

Hence the given quadratic form is indefinite.

5.9.2 Null Space & Nullity of a Matrix:

Definition: The subspace generated be the vectors X such that AX= O is called the column
null space of the m x n matrix A and its dimension n-r called the column nullity of the matrix.
Thus

Rank+ column nullity = No. columns

Note: Similarly, the subspace of the solution of

Y A=0 is called the row null space and its dimension m -r is the row nullity of the matrix so
that Rank+ row nullity = Number of rows

5.9.3 Reduction of a real quadratic form:

Theorem 1: If A be any n-rowed real symmetric matrix of rank r, then there exists a real non-
singular matrix P such that, P’AP = diag [1,1....,1,-1,-1,....,-1,0,...0]

So, that 1, appears p times and, -1, appears r-p times.
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Proof: A is a real symmetric matrix of rank r. Therefore, there exists a non-singular real
matrix Q such that Q’AQ is a diagonal matrix D with precisely r non-zero diagonal elements.
Let Q’AQ =D=diag [A A2, ... M.o.....0].

Suppose that p of the non-zero diagonal elements are positive. Then r-p are negative.

Since in a diagonal matrix the positions of the diagonal elements occurring in i™ & j™ rows
are interchanged by applying the congruent operation R; <=>R;,

Ci <=>C;j, . Therefore, without any loss of generality we can take A1 Ao,
and A3 Ay Arto be negative.

Ap to be positive

Let S be the n x n (real) diagonal matrix with diagonal elements.
If we take P= QS, then P is also real non-singular matrix and we have
P’AP = (QS)’ A (QS) = S’Q’AQS = $’DS = SDS
=diag [1,1,...1,-1,-1,....,-1,0,...0]
So, that 1 and -1 appear p and r-p times respectively.

Corollary: If X’AX is a real quadratic form of rank r in n variables, then there exists a real
non-singular liner transformation X=PY which transforms X’AX to the form

Y’ P’APY = yi%+ .. +Ypm Yor1 s -V
5.9.4 Canonical or Normal form of a real quadratic form Definition:

If X’AX is a real quadratic form in a variable, then there exists a real non-singular
liner transformation X= PY which transforms X’AX to the form

Y’P’APY = y1 % + Yp2e Yor1 s .y

In the new form the given quadratic form has been expressed as a sum and difference of the
squares of the new variables. This latter expression is called the canonical form or normal
form of the given quadratic form.

If @ = X’AX is a real quadratic form of rank r, then A is a matrix of rank r. If the real
non-singular liner transformation X =PY reduces @ to normal form, then P’AP is a diagonal
matrix having 1 and -1 as its non-zero diagonal elements.

Since P’AP is also of rank r, therefore it will have precisely r non-zero diagonal
elements. Thus, the number of terms in each normal form of a given real quadratic form is the
same. Now we shall prove that the number of positive terms in any two normal reductions of
a real quadratic form is the same.

Theorem 1. The number of positive terms in any two normal reductions of a real quadratic
form is the same.

Proof: Let @ = X’AX is a real quadratic form of rank r in n variables. Suppose the real non-
singular linear transformations

X=PY and X=QZ
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Transform @ to the normal forms,

and respectively.
To prove that p=q.

Let p<qg. Obviously yi, ... Yo, Z1, z,, are linear homogeneous functions of, x;,

Since g>p, therefore g-p>0. So, n-(g-p) is less than n. Therefore (n-q) +p is less than n.

Now y; =0, y, =0,............ Yp =0, Zg+1 =0, Z4+2=0,......... z, =0 are (n-g)+p linear homogeneous
equations in n unknowns n, therefore these equations must possess a non-zero solutions.

Let xi=as, ... Xn = ap be a non-zero solution of these equations and let Xi-
[z,eeieiene. an]’. Let Y=[bg,cccceur... bn]’=Y: and Z=[Cy... . cn]” when X=X; Then
b,=0........... bp=0 and cq+1=0, ¢, =0. Putting Y=[by,............. bn]” in (1) and Z=[cy ... cn]’ in

(2), we get two values of & when X=X

These must be equal. Therefore, we have

'b2p+1 Teirsrrsanans = b2|r :C12 o + Cq2
—>bp+1:0, ............ br:O
=> Y1 =0

=>P? X;=0[ X;=PY4]

=>x;=0

Which is a contradiction since X; is a non-zero vector.

Thus, we cannot have p<g. Similarly, we cannot have q<p. Hence, we must have p=g.

Corollary. The number of negative terms in any two normal reductions of a real quadratic
form is the same. Also, the excess of the number of positive terms over the number of
negative terms in any two normal reductions of a real quadratic form is the same.

5.9.5 Signature and index of a real quadratic form.

Definition: Let y:%+................ + Yoo Yot e, -y:? be a nominal form of a real quadratic

form X’AX of rank r. The number p of positive terms in a normal form of X’AX is called the
index of the quadratic form. The excess of the number of positive terms over the number of
negative terms in a normal form of X’AX i.e..., p-(r-p) =2p-r is called the signature of the
quadratic form and is usually denoted by s.

Thus s= 2p-r.

Theorem 1: Two real quadratic forms in n variables are real equivalent if and only if they
have the same rank and index (or signature).

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
140



Proof: Suppose X’AX and Y’BY are two real quadratic forms in the same number of
variables.

Let us first assume that the two forms are equivalent. Then there exists a real non-singular
linear transformation X=PY which transforms X’AX and Y’BY i.c. B=P’AP.

Now suppose the real non-singular linear transformation Y =QZ transforms Y’BY to normal
form Z’CZ. Then C=Q’BQ. Since P and Q are real non-singular matrices, therefore PQ is
also a real non-singular matrix. The linear transformation X= (PQ)Z will transform X’AX to
the form

(PQZ)’ A(PQZ)=2Z’Q’P’ APQZ =2’Q’BQZ =Z’CZ.
Thus, the two given quadratic forms have a common normal form. Hence, they have the same
rank and the same index (or signature).

Conversely, suppose that the two forms have the same rank r and the same signature s. Then
they have the same index p where 2p-r =s. So, they can be reduced to the same normal form

2Z2CL=2 4 + ZpP Zpa1 e, -z7,2

be real non-singular linear transformations, say, X=PZ and Y=QZ respectively. Then P’AP =
C and Q’BQ =C.

Therefore Q’BQ = P’AP. This gives B= (Q’)* P’APQ™ =(Q?) P’APQ'=(PQ Y A(PQ™).
Therefore the real non-singular transformation X=(PQ™) Y transforms X AX to Y'BY. Hence
the two given quadratic forms are real equivalent.

5.9.6 Reduction of a real quadratic form in the complex field.

Theorem 1. If A be any n-rowed real symmetric matrix of rank r, there exists a non-singular
matrix P whose elements may be any complex numbers such that

P'AP=diag[1, 1,...., 1, 0,....,0] where 1, appears r times.

Proof: A is a real symmetric matrix of rank r. Therefore there exists a non-singular real
matrix Q such that Q'AQ is a diagonal matrix D with precisely r non-zero diagonal elements.
Let

Q AQ=D=diag. [A,..., Ar, 0,..., O].
The real numbers As,..., Ay may be positive or negative or both.

Let S be the nxn (complex) diagonal matrix with diagonal elements

- %,,,,,,,,,,,1,........1then S= Diag[%, ...... —,1,........1] is a

WXy . Wy Wy
complex non-singular diagonal matrix and S =S.

e
|-

If we take P=QS, then P is also a complex non-singular matrix and we have
P AP=(QS) A (QS)=S'Q AQS=S DS=SDS=diag. [1, 1,...., 1, 0,....,0] so that 1 appears r times.
Hence the result.

Corollary 1: Every real quadratic form X AX is a complex equivalent to the form z;® +
2,°+.... 2 where r is the rank of A.
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Corollary 2: Two real quadratic forms in n variables are complex equivalent if and only if
they have the same rank.

5.9.6 Orthogonal reduction of a real quadratic form.

Theorem 1. If ¢ = X AX be a real quadratic form of rank r in n variables, then there exists a
real orthogonal transformation X=PY which transforms ¢ to the form

7\41y12 + ceee + 7\4|’y|’2,

where A,..., A, are the, r , non-zero eigen values of A, n-r eigen values of A being equal to
zero.

Proof: Since A is real asymmetric matrix, therefore there exists a real orthogonal matrix P,
such that

P'AP=D,
Where D is a diagonal matrix whose diagonal elements are the eigen values of A.

Since A is of rank r, therefore PXAP=D is also a rank of r. So, D has precisely r non-
zero diagonal elements. Consequently, A has exactly r non-zero eigenvalues, the remaining
n-r eigenvalues of A being zero. Let D= diag. [A4,..., A, O,..., 0].

Since P=P’, therefore P*AP=D — P AP=D — A is congruent to D.

Now conside( the real orthogonal transformation X=PY. We have X AX=(PY)A (PY) =
YPAPY = YPY=MY + ...+ LY

Hence the result.
5.9.7 Sylvester’s law of inertia:

The signature of a real quadratic form is invariants for all normal reductions

Theorem 1: Sylvester’s Law of Inertia. The signature of a real quadratic form is invariant for
all normal reductions.

The number of positive terms in any two normal reductions of a real quadratic form is the
same.

Proof: Let @ = X’AX is a real quadratic form of rank r in n variables. Suppose the real non-
singular linear transformations

X=PY and X=QZ

Transform @ to the normal forms,

2% e, + 2o Zgr s B (2) and respectively.

z,,, are linear homogeneous functions of, x;,
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Since g>p, therefore g-p>0. So, n-(g-p) is less than n. Therefore (n-q) +p is less than n.
Now y1 =0, y»=0,............ Yp =0,

Zg+1 =0, Zg+2=0,......... z, =0 are (n-g)+p linear homogeneous equations in n unknowns,
therefore these equations must possess a non-zero solutions.

Let Xy=ay, ..o Xn = an be a non-zero solution of these equations and

let Xi=[a1,ceeeieene an]’. Let Y=[b1,..c0ccn..... bn]’=Y1

and Z=[Cy ... cn]’” when X=X,

Then b;=0........... bp=0 and cq+1=0, ¢, =0. Putting

Y=[bgyeoirirne bn]” in (1) and Z=[cy,. .. .. cn]’ in (2), we get two values of @ when X=X,
These must be equal. Therefore, we have

Bt e -b%=ci® #un. + cg?

=>Dpe1=0, e r=0

=>Y;=0

=> P! X;=0[ X;=PY4]

=>x,=0

Which is a contradiction since X is a non-zero vector.

Thus, we cannot have p<g. Similarly, we cannot have gq<p. Hence, we must have p=q.
Theorem 2: If A and b are two n-rowed square matrices, then max{(v(A).

v(B) < v(AB) )}= v(A+ v(B) Here v(A) , v(B),v(AB) denote the nullities of the
square matrices A , B, AB respectively

We have already proved that

pA) < p(B)—n = p(AB))}= min{p(A).p(B)} ............. 1)

Now 2(A) < n —v(A),p(A) = n—v(B),p(AB) <n —v(AB)

Substituting these values in {1}, we prove the theorem

Note: The theorem was found by Sylvester in 1984
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