
 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

1 

 

B.Sc. STATISTICS - I YEAR 

DJS1A : REAL ANALYSIS AND MATRICES 

SYLLABUS 

Unit - I 

Sets - Countability, Open and Closed sets of real numbers. Sequences – Convergent 

and Divergent sequences, Bounded and Monotone sequences, Cauchy sequences. Series of 

real numbers - Convergence and divergence-series with nonnegative terms - comparison test - 

D‘Alembert‘s ratio test - Cauchy‘s root test. - conditional and absolute convergence.  

Unit - II 

Differentiation - Limit of a function of a single variable, Continuity properties of a 

continuous function in a closed interval, Derivatives, Rolle‘s Theorem, Mean value theorem, 

Taylor‘s theorem.  

Unit - III 

Integration - Concept of Riemann Integral, Sufficient condition for Riemann 

integrability, Darboux theorem, Fundamental theorem, First mean value theorem – Improper 

Riemann integrals. Beta and Gamma Integrals. 

Unit - IV 

Matrices - Operations on Matrices – Symmetric and Skew-symmetric Matrices – 

Conjugate of a Matrix – Determinant of a Matrix – Inverse of a Matrix.  Solving system of 

linear equations. Elementary transformations, Elementary matrices, Row and Column ranks – 

rank of a matrix. Reduction to Normal form, Equivalent matrices.   

Unit - V 

Characteristic roots and vectors, Cayley- Hamilton theorem, Minimal equation of a 

matrix. Quadratic Form – Matrix of a quadratic form – rank, signature and classification of 

quadratic forms – Sylvester‘s of Inertia. 

REFERENCE BOOKS:: 

1. Arora, S. (1988) Real Analysis, Satya Prakashan Mandir, New Delhi.  

2. Shanthi Narayan. (2003) Elements of Real Analysis, S. Chand & Co, New Delhi  

3. Somasundaram, D. and Choudhary, B. (2002) A First Course in Mathematical Analysis,  

    Narosa, Chennai  

4. Rudin, W. (2000) Principles of Mathematical Analysis, McGraw Hill, New York.  

5. Malik, S.C. and Arora, S. (2009) Mathematical Analysis, New Age Science, New Delhi. 

6. Vasishtha, A. R. (2014) Matrices, Krishna Prakashan, Meerut.  

7. Shanthi Narayan and Mittal, P. K. (2000) A Text Book of Matrices, S. Chand & Co,  

    New Delhi 

8. Gentle, J. E. (2007) Matrix Algebra Theory, Computations and Applications in Statistics,  

    Springer, New York.  

9. Richard Bronson (2011) Matrix Operations, Schaum‘s Ouline Series, McGraw Hill,  

    New York.  

10. Searle, S. R. (2006) Matrix Algebra useful for Statistics, Wiley Interscience, New York. 

 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

2 

 

Unit - I 

1.1 Sets: 

            A set is a collection of objects (or) elements. Typically, the type of all the elements in 

a set is the same. For example - All the elements in a set could be integers. However, it is 

possible to have different types of elements in a set. (An analogy for this is that usually a 

book bag contains just books. But sometimes it may contain other elements such as pencils 

and folders as well). We have two usual methods of denoting the elements in a set: 

1) Explicitly list all the elements inside a set of curly braces {}, as follows: {1,2,4,5,6,7} 

2) Given a description of the elements in a set inside of a set of curly braces as follows:  

{2x | xN}. 

To understand the second method, we must define the various symbols that are used 

in this notation. Here is a list of the symbols we will be using: 

| - translates to ―such that‖ 

- ―is an element of‖ 

- ―is a proper subset of‖  

- ―is a subset of‖ 

 

Now we must define what a subset is. A subset is also a set. So, if we have sets A and 

B, AB if for all xA, xB. In layman‘s terms, a set A is a subset of a set B, if all the 

elements in the set A also lie in the set B.  

Note: A  B iff A  B  AB. 

We still must define what {2x | xN} really means. Here it is in English: ―The set of 

all numbers of the form 2x such that x is an element of the natural numbers.‖ (Note: The set 

N denotes the natural numbers, or the non-negative integers as per the book). So, the set 

above could also be listed as {0, 2, 4, 6, ...}. Now that we have gotten that out of the way, 

let‘s talk about the empty set (). The empty set is a set with no elements in it. In our 

standard notation, we could denote it as {}. It is also very common to use , to denote the 

empty set. It‘s important to denote that the following are not equal:  , {0}, and 0. The first 

two are sets, while the third is an element. However, the empty set has no elements while {0} 

contains one element, zero. Typically, sets will be denoted by uppercase letters. There are 

some other sets we should be familiar with since they come up so often. Here they are: 
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Z = {0, 1, -1, 2, -2, ...} (the set of integers) 

N = {0, 1, 2, 3, ...} (the set of non-negative integers) 

Z
+
 = {1, 2, 3, ...} (the set of positive integers) 

Q = {a/b | a, bZ  b0} 

R = the set of real numbers... 

 

Also, one last definition... |A| for a set A is known as the ―cardinality‖ of A, which equals the 

number of elements in A. 

1.2 SET OPERATORS: 

Now we are ready to discuss set operators. We can use several operators on existing 

sets to define new ones. The first two operators are binary operators, union and intersection. 

In each of these examples, let A and B be sets. 

Union (): A  B = {x | xA  xB} 

Intersection (): A  B = {x | xA  xB} 

Complement ():A = {x | xA} 

Relative complement (–): B – A = {x | xB  xA} 

In General, the union of two sets contains all elements in either set and the 

intersection of two sets contains all elements in both sets. To define the complement, we must 

define what a universe is. For each set, there is a possible set of elements. This possible set of 

elements is known as the universe. Typically, you will be told what the universe is for each 

problem.  

The complement of a set contains all the elements in the universe that are NOT in the 

set itself. You can think of relative complement as the subtraction between two sets. B – A 

refers to a set that subtracts out all the elements from A out of B. Now if an element of A 

wasn't in B to begin with, there‘s no need to take it out of B at all... Also, an identity that we 

can use is that B – A = B A. 

1.3 Equality of Sets: 

There are three different ways that we can show two sets to be equal. The first two are 

going to be analogous to the methods used in logic. 

1) Use the laws of set theory. 

2) Use the table method. 
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 Use the laws of set theory 

1. A = A                                                 Law of Double Complement 

2. (A  B) = A B        De Morgan’s Laws 

    (A  B) = A B                                De Morgan’s Laws 

3. A  B = B  A                   Commutative Laws 

    A  B = B  A                                          Commutative Laws 

4. A  (B  C) = (A  B)  C                      Associative Laws 

    A  (B  C) = (A  B)  C                      Associative Laws 

5. A  (B  C) = (A  B)  (A  C)            Distributive Laws 

    A  (B  C) = (A  B)  (A  C)            Distributive Laws 

6. A  A = A, A  A = A         Idempotent Laws 

7. A  = A, A  U = A         Identity Laws 

8. A A = U, A A =                    Inverse Laws 

9. A  U = U, A  =          Domination Laws 

10. A  (A  B) = A                    Absorption Laws 

11.  A  (A  B) = A                                      Absorption Laws 

 

1.4 Countability 

1.4.1 Countable and Uncountable sets:  

Two sets A and B are said to be equivalent if there exists a function f: A B, which is 

one – to - one and onto. If A is equivalent to B, we write A  B 

Examples: - 

                   1. {a, b} {1,2} 

                   2. {a,b,c} {x,y,z} 

                   3. {1,2,3…….} {2,4,6……} 

1.4.2 Definition:   

A set S is said to be countable (or denumerable) if either S is finite or S is equivalent 

to N, the set of all positive integers. An infinite set which is not countable, is said to be 

uncountable (or non-denumerable) 
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Examples: - 

 1.The set {A, B, C} of the vertices of a triangle is countable, it is a finite set, and hence 

countable. 

2. The empty set  is countable; it is a finite set and hence countable. 

3. The set n of all positive integers is countable, the identity function I: N N is one -to -one 

onto, and hence N is countable.  

4. The set Z of all integers is countable. Define f: N Z, by the rule f(n)= , n=1,3, 5…. 

and f(n)= , n=2, 4…. Then f: N Z, is one- to -one onto. Therefore Z N, and hence Z is 

countable. 

5. Show that the set R of all real numbers is uncountable. 

We know, the set [0,1] is uncountable, and since [0,1]   R therefore the set R is also 

countable 

1.4.3 Theorem: 

If a set A is countable, and B  A, then B is also countable. 

Proof: Since A is countable, there exists a function f: N A, which is one –to- one onto. Let 

f(n)= , n =1,2,3,4, 5……... the elements of a can be arranged as 

. 

Now, we define a function g: N B, by the rule: Let  be the first positive integer, such 

that .Set g (1) = . Let >  be the next positive integer, such 

that . 

Set g (2) = . Continuing in this way, we get g(k) = . . > , for all k N, 

then clearly g: N  B is one- to- one and onto. Therefore B N, and hence, B is countable 

1.4.4 Example:  

The set of all rational numbers in [0, 1] is countable. 

Solution: We know that, the set  of all positive rational numbers is countable  

Now, {all rational numbers in [0, 1]} = [0,1] . 

Therefore, the set of all rational numbers in [0,1] is countable. 

1.4.5 Theorem:  

The set of irrational number is uncountable. 
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Proof: Let A denote the set of irrational numbers. Let, if possible, A is countable. We know 

that the set Q of rational number is countable. 

Since A and Q are uncountable A , i.e, R must be countable. But R is not countable. 

Thus, the assumption that A is countable leads to contradiction. Hence A, i.e., the set of 

irrational numbers is uncountable. 

1.4.6 Open and Closed sets of real numbers: 

A set is said to be open if it is a neighbourhood of each of its points. Thus, if A be an 

open set and x is any member of A, then by the definition of an open set an open interval ] a, 

b[ such that x ]a, b[ A. Equivalently, A is open if for each x A, there exists >0 such that 

]x- , x+ [  A. 

Note:  To show that A is not open we should prove that there exists at least one point of A of 

which is not a neighbourhood i.e. there exists some x  A such that for each >0, however 

small] x- , x+  [ is not a sub-set of A. 

1.4.7 Definition:  

A set G  R is said to be an open set, if it is a neighbourhood of each of its points. 

1.4.8 Theorem:  

A set G  R is open if and only if, for each p G, there exists a >0 such that  G. 

Proof:  

i) The condition is necessary. Let G  R be an open set and let p be any point of G. By 

definition G is a neighbourhood of p,   b>0, such that  G. 

ii) The condition is also sufficient. Let G  R and suppose for each p  b>0, such 

that G. Then, for each p  is a neighbourhood of each of its points.   G is open. 

1.5 Sequences: 

A sequence is a set function of domain is the set N of natural numbers whereas the 

range may be to set S. In others words a sequence in a set S in a rule which assigns to each 

natural numbers a unique element of S.  

The elements of the set can be either numbers or letters or a combination of both.   

The elements of the set all follow the same rule (logical progression). The number of 

elements in the set can be either finite or infinite. A sequence is usually represented by using 
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brackets of the form {} and placing either the rule or a number of elements inside the 

brackets. Some simple examples of sequences are listed below. 

The alphabet: {a, b, c, ..., z}, The set of natural numbers less than or equal to 50: {1, 

2, 3, 4, ..., 50}, The set of all natural numbers: {1, 2, 3, ..., n, ...}, The set {an} where an = an-1 

+ 1, a1 = 1. 

1.5.1 Real sequence: 

A real sequence is a function where domain is the set N of all natural numbers and 

range a subset of the set R of real numbers symbolically f: N R or x: N R is a real 

sequence.  

The sequence is denoted by { } or > x < where , ,………... are called 

1,2……n terms of the sequence and it occurs different position and are treated as distinct 

terms. 

1.5.2 Range of Sequence: 

The set of all distinct term of a sequence is called its range. In a sequence since f N is 

an infinite set N. The range of a sequence may be a finite set. For example: If = , 

then  = {-1, +1,-1,+1…………}   the range = {-1, +1} 

1.5.3 Constant sequence: 

A Sequence { } defined by  =C R  is called a constant sequence. Thus 

{ }={c,c,c………c}   is a sequence with range {c}. 

1.5.4 Algebra of sequences: 

Given any two sequences {an} with limit value A, {bn} with limit value B, and any two 

scalars k, p, the following are always true: 

(a)  {k an + p bn   } is a convergent sequence with limit value kA + p B. 

(b)  {an *bn  } is a convergent sequence with limit value AB. 

(c)  {  } is a convergent sequence with limit value A/B provided that B  0. 

(d)  if f(x) is a continuous function with Lxf
x




)(lim , and if an = f (n) for all values of 

n then {an} converges and has the limit value L. 

(e)  if an  cn bn ,  then  {cn}  converges with limit value  C  where  ACB. 
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Note 1:  

If each element of a sequence {an} is no less than all its predecessors (a1a2a3a4 ...) then 

the sequence is called an increasing sequence. If each element of a sequence {an} is no 

greater than all its predecessors (a1 a2a3a4 ...) then the sequence is called a decreasing 

sequence. 

Note 2:  

A monotonic sequence is one in which the elements are either increasing or decreasing. If 

there exists a number M such that an M for all values of n then the sequence is said to be 

bounded. 

1.5.5 Convergent Sequence: 

If  then the sequence converge to l. 

Equivalently a sequence  is said to converge to a real number l (i.e) if given  

 however small,  a positive integer m such that  the real 

number l is called the limit of the sequence { }. 

1.5.6 Divergent Sequence: 

1. A sequence is said to be divergent to  for any positive real number k between large 

when a positive integer m such that  

 

2.A sequence is said to divergent to  for any positive real number k however large 

then a positive integer m such that  

 

3. A sequence is said to be a divergent sequence if it diverges to or   (i.e)  

or  

Example: the sequence is {n} and { } diverge to +  similarly the sequence –n and –

diverge to -  

1.5.7 Standard Sequences:  

Some of the most important sequences are 

(1)   ,,, 321 rrrrn  . This sequence converges whenever -1 <r 1. 

(2)   ,3,2,1 rrrrn  . This sequence converges whenever r  0. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

9 

 

1.6 Bounded and unbounded sequence  

1.6.1 Bounded Sequence: 

            A Sequence is said to be bounded if it is bounded above as well as below. Thus, the 

sequence   two real numbers k and K   

k   where {k  (i.e) if the range of the sequence is bounded. A 

Sequence is said to be unbounded if it is not bounded. 

1.6.2 Bounded Above Sequence: 

A Sequence { } is said to be bounded above if there  a real number k such that 

 (i.e) if the range of the sequence is bounded above. 

1.6.3 Bounded Below Sequence: 

           A Sequence { } is said to be bounded above if there  a real number k such that 

 (i.e) if the range of the sequence is bounded below. 

1.6.4 Least Upper Bound of a Sequence: 

  If a Sequence { } is said to be bounded above if there  a real number such that 

 is called upper bound of the sequence. If  

then ,  is the bound of the sequence implies, if any number 

> bound of the sequence. Therefore, if a sequence is bounded above it 

has infinitely many upper bounds of all upper bounds of the sequence, if k is the least then k 

is called a least upper bound (LUB) of the sequence. It has the following properties. It is an 

upper bound of the sequence  given >0, k- .Since k is the (LUB), k-

even an upper bound. Implies there exists at least one positive integer m such that 

am , Not less than are equal to k- Implies am   k- . 

1.6.5 Greatest Lower Bound of a Sequence: 

If a sequence { } is bounded below then  a real number such that  

  is called lower bounded of the sequence. If , then 

, implies  is also a lower bound of the sequence, if a sequence is 

bounded below. If a sequence { } is bounded below then infinitely many lower bound of 

all the lower bounds of the sequence. If k is the greatest, then k is called greatest lower bound 

(GLB) of the sequence. 

It has the following properties: 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

10 

 

1. It is the lower bound of the sequence implies . 

2. Given since is the greatest lower bound (GLB)  is not even a 

lower bound implies at least one positive integer such that k+k not less than or equal to 

implies (or) . 

1.6.6 Limit of a Sequence: 

Let { } be a sequence and l  The real number l is said to be the limit of a 

sequence { } if to each , (m depending on  such that 

The limit of { } then  

{ } . 

1.6.7 Monotone Sequence:  

1. A sequence {  is said to be monotonically increasing, if                 

{  

 (i.e) …….  

2. A sequence {  is said to be monotonically decreasing,  

if {  

 (i.e) …….  

3. A sequence {  is said to be monotonic. If it is either monotonically increasing or 

decreasing. 

4. A sequence {  is said to be strictly monotonic increasing.  

{  

5 A sequence {  is said to be strictly monotonic decreasing.  

{  

6. A sequence {  is said to be strictly monotonic. If it is either strictly monotonically 

increasing or strictly monotonically increasing. 

1.6.8 Theorem: 

Every convergence sequence has a unique limit or a sequence cannot converge to more than 

one limit. 

Proof: Assuming the continuity  =l and =m where l     

Then . Let , since 
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 = l , n  ……………...…….… (1) 

Similarly, since = m n  …… (2) 

Let M = max ( ), then (1) & (2) holds the n  we have 

 <   

 [from (1) & (2)]  =  

 (i.e) l=m. 

1.7 Cauchy general Principle of Convergence of a Sequence: 

1.7.1 Theorem:  

The necessary and sufficient condition for the convergence of the sequence  is that 

to every positive number , however small their correspondence a positive integer m such 

that < n  and for all integer values of p>0. 

Proof: 

1. Necessary Condition 

Let the sequence be convergent that is, it has a finite limit say A when given  however 

small  a positive integer m such that  < n , it follows that 

 

                       =  n  

2. Sufficient Condition 

< n  is p>0 taking n=m we get 

< n is p>0. Since is finite it follows the  different from  

which <  however large p may be (i.e.)  is finite,  is finite moreover 

since  it follows that  cannot be different from  (i.e) 

the sequence has a unique limit. Hence it is convergent thus the conditional is sufficient. 

Example: 1:   

Apply the Cauchy principle of convergence to show that the series 1+ is not 

convergent 
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Solution: =1+  , =1+ +…….  suppose that series 

converges  a positive integer m such that for every n  m and for every p>0, we have 

<  where  is an arbitrary small quantity (i.e) 

<  =  as implies 

<  in particular when n=m and p =m we see that 

 > =  Now  is at our choice and taken the values containing 

< . Thus, it is contradiction. Hence the series is not convergent. 

Example: 2  

Verify the series is convergent are not =1-  

Given =1-  , =1- +……  

Therefore, 

=

 

=   

=  now 

  = (the last term will 

positive whether p is odd or even) (i.e) >0.  

Hence = (the last term will be positive 

whether p is even or odd) <  provided n > (  -1) 

Let m be any integer >  -1), then we have < n  p>0 

1.7.2 Theorem:  

Every Cauchy Sequence is bounded. 

Proof: Let {  be Cauchy sequence for given =I  such that 
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<q n  

Implies n . Let k= Min { , 

 K= Max { Then n  Hence  is bounded. 

1.8 Series:  

A series is a sum of elements. The sum can be finite or it can be infinite. The elements 

of the series can be either numbers or letters or a combination of both. A series can be 

represented  

(a) By listing several elements along with the appropriate sign (+ or -) between the elements 

(or) 

(b) By using what is called sigma notation with only the general term and the range of 

summation indicated. 

Examples: 1.8.1 

(1) 1 +2 +3………. +n 

(2)    

10

1

1
1

n

n
n Both examples represent the same series. 

As with sequences the main areas of interest with series are:  

(a) The determination of the general term of the series if the general term is not given, and  

(b) Finding out whether the sum of the given series exists.  

1.8.2 Series Tests: 

The Series tests are as follows:  

General (n
th

) Term Test (also known as the Divergence Test): 

If 0lim 


n
n

a , then the series  


1n na  diverges. 

Note: This test is a test for divergence only, and says nothing about convergence. 

1.8.3 Geometric Series Test: 

A geometric series has the form 


0n

nra , where ―a‖ is some fixed scalar (real 

number). A series of this type will converge ifr< 1, and the sum is 
r

a

1
. A proof of this 

result follows. Consider the  partial sum and ―r‖ times the partial sum of the series 

1321

321




kk

k

k

k

arararararSr

ararararaS




 

The difference between r and  is    11 1  k

k raSr .  
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If r 1, we can divide by (r - 1), to obtain   
 
 1

11








r

ra
S

k

k .  

Since the only place that ―k‖ appears on the right in this last equation is in the 

numerator, the limit of the sequence of partial sums {Sk} will exist if the limit as   Sk   

exists as a finite number. This is possible if r< 1, and if this is true then the limit value of 

the sequence of partial sums, and hence the sum of the series, is 
r

a
S




1
. 

Sample Problem:1  

Evaluate


 1 2

1
n nn

.  

The general term  can be rewritten as
1

111
2 





nnnn

an . We now consider the 

partial sums S1, S2, S3, ...  Sn, ...  until a pattern emerges and then the limit value S will be 

determined. 

1

1
1

1

111
1

5

1
1

5

1

4

1

4

1
1

4

1
1

4

1

3

1

3

1
1

3

1
1

3

1

2

1

2

1
1

2

1
1

2

1
1

4

3

2

1



















































































nnnn
S

S

S

S

S

n



 

Since we have now determined the general pattern, the limit value S of the sequence 

of partial sums, and hence the sum of the series is seen to have a value of ―1‖. 

1.8.4 Integral Test: 

Given a series of the form


kn na , set an = f(n) where f(x) is a continuous function 

with positive values that are decreasing for xk.   If the improper integral    

L

kxL
dxxf )(lim   

exists as a finite real number, then the given series converges.    If the improper integral 

above does not have a finite value, then the series above diverges. If the improper integral 

exists, then the following inequality is always true 















px
ppn n

px
dxxfaadxxf )()(

1
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By adding the terms from n = k to n = p to each expression in the inequalities above it is 

possible to put both upper and lower bounds on the sum of the series.   Also, it is possible to 

estimate the error generated in estimating the sum of the series by using only the first ―p‖ 

terms. If the error is represented by , then it follows 

that 









px
p

px
dxxfRdxxf )()(

1
. 

1.8.5 Convergent and divergent series: 

An infinite series  this said to be convergent if associate sequence of n is the 

partial sum is convergent and it is denoted by  where is  sum of the series. 

An infinite series   is said to be divergent to  (or) according as  diverges 

to  (or)  respectively. An infinite series  is said to be oscillates finitely (or) 

infinitely according as a oscillates finitely (or) infinitely. 

Problem1: 

Discuss the convergence of series 1+2+3+4+……. +n+……..  

Solution: Let {  be the partial sum of n terms of the given series 1+2+3+4+……..+n 

= , =  

=  therefore  is divergent 

Problem2:  

Discuss the nature of series 2-2+2-2+2………. 

Solution: Let  be the partial sum of n terms of the given series. =2, =2-2=0 

=2-2+2=2,   , } does not tend to unique limit. Therefore is 

oscillatory finite. Hence the given series neither convergent nor divergent.  

1.9 Comparison Tests: 

There are four comparison tests that are used to test series. There are two convergence 

tests, and two divergence tests.  To use these tests, it is necessary to know a number of 

convergent series and a number of divergent series.   For the tests that follow, we shall 

assume that  


1n nc  is some known convergent series, that 


1n nd  is some known 

divergent series, and that 


1n na  is the series to be tested.   Also, it is to be assumed that for 
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n {1, 2, 3... (k-1)} the values are finite, and that each of the series contains only positive 

terms. 

1.9.1 Standard Comparison Tests:  

  Convergence Test: If  


1n nc  is a convergent series and   ancn for all nk, then 




1n na  is a convergent series. 

  Divergence Test: If  


1n nd  is a divergent series and andn for all nk, then 


1n na  

is a divergent series. 

1.9.2 Limit Comparison Tests: 

Convergence Test: If 


1n nc  is a convergent series and  L
c

a

n

n

n



lim  where 0 

L<, then 


1n na  is a convergent series. 

Divergence Test: If 


1n nd  is a divergent series and  L
d

a

n

n

n



lim Where 0 <L, 

then 


1n na  is a divergent series. The choice for the reference series 


1n nc  or 


1n nd  is 

often the geometric series 


0n

nra or the hyper harmonic series (or p-series)  


1

1

n
pn

. The 

p-series 


1

1

n
pn

converges absolutely when p>1 and diverges otherwise. A special case is the 

harmonic series 


 4

1

3

1

2

1

1

11

1n n
, which diverges (p = 1). 

[The alternating p-series 
 








1

1

n
p

n

n
converges absolutely when p>1, 

Converges conditionally when 0<p1 and diverges otherwise]  

1.9.3 Alternating Series Test: 

Given a series  


1n na  = a1 + a2 + a3 + ... + a(k-1) + 


kn na where a1 , a2 , a3 , ... , a(k-

1) can be any finite real numbers, and 01 

n

n

a

a
  for all  nk ,if 0lim 


n

n
a , then the series 

converges. If 0lim 


n
n

a , then the series diverges. 
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1.9.4 Ratio Test:  

Given a series 


1n na with no restriction on the values of the an‘s except that they are 

finite, and that L
a

a

n

n

n




1lim , the series converges absolutely whenever 0 L< 1, diverges 

whenever 1 < L  , and the test fails if L = 1. 

1.9.5 Root Test: 

Given a series 


1n na with no restriction on the values of the  except that they 

are finite, and that    La n
n

n




1

lim , the series converges whenever 0L< 1, diverges 

whenever 1 <L, and the test fails if L = 1. 

1.9.6 Comparison test: 

The theorems we state and prove below, enable us to analyse the behaviour or 

convergence or divergence of a given term series, by comparison with some suitable positive 

term series, whose behaviour is already known to us. For this reason, the tests that the 

theorems provide, are called comparison tests. 

First Comparison test: Let  and  be two positive term series, such that 

is convergent, and  A , for all n  A being a positive constant then  

convergent. 

Proof: for each positive integer n, let 

=     ………………………..………..(1) 

=      …………………………..……..(2) 

So, that, >and, > are sequence of partial sums of the two positive term series 

 and  respectively. As each, > and, > are both monotone increasing 

sequence  

Now, we know A>0, such that A   

for all n (3) m+1, m+1…….(n-1), n and adding the 

numbers on respective side. 

   A (or) 

 A      or  A  +  A  n  …. (4) 
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Since  is convergent, the sequence, > of partition sums is bounded above, so that 

for some V>0,    n  

From 4 and 5       A V +  A  n  

or, > is bounded above. Hence convergent. 

1.9.7 Theorem:  

Let  and  be two positive term series, such that  

i) is divergent, and 

ii) B , for all n  B being a positive constant then 

divergent. 

Proof: for each positive integer n, let 

=     ……………..………..(1) 

=     …….………………....(2) 

So that, >and, > are sequence of partial sums of the two positive term series  

and  respectively. As such, >and, > are both monotone increasing sequence  

Now, we know A >0, such that  B  n (3) 

m+1, m+1…….(n-1),n and adding the numbers on respective sides 

   B  

 B      or  B  +  B  )   n  ……….(4) 

Since  is divergent, the sequence, > is not bounded above,  for each G>0, 

however large there exists n  . From 4 and 5    large  

n  B G +  AB Since G>0 is arbitrary, > is not 

bounded above. Hence divergent. 

1.9.8 Theorem: 

Let  and  be two positive term series, such that for some positive constant 

A and B, B    for all n  then the two series converge or diverge together. 

Proof: We have 0 < B  n  

Since  n      

 0 < B l n    ……………………... (1) 
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Case 1: Let  be convergent  

Also from (1)    n  

 By first comparison test for convergence 

 Be also convergent ……………………..…………..(2) 

Case 2: Let  be divergent  

Also from (1)    n  

 By first comparison test for divergence 

 Be also divergent …………………….……………..(3) 

Thus   is convergent if  is convergent and  is divergent  

if  is divergence   …………………………………… (4) 

Now the inequalities (1) can also be put in the form 

0 <  n …..………………..……....……..(5) 

 The role of and  in (4)  is convergent if  is convergent and  is 

divergent  

if  is divergent ……………………………………… (6) 

From (4) and (6) the two series  converge or diverge together. 

1.9.9 Theorem: 

 Let  and  be two positive term series if  =l  0 then the two series 

converge or diverge together  

Proof: since >0 for all n > 0  n  

 if   =l 0 …………………………….……….(1) 

But, it is known, then l  0, therefore l>0 …………… (2) 

Now, let  be chosen, such that l-  >0. Then there exits m  such that 

n   

 (or) 

l-  < < l+  n   …………………………………(3) 

Putting B= l-  , A= l+   , we have positive constants A and B, such that  
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B < <A  n    …………………………………… (4) 

Since >0 for all n,  B < < A   for all n    Hence the series  

converge or diverge together 

1.9.10 Second Comparison test: 

Theorem: Let  and  be two positive term series, such that  

is convergent, and 

, for all sufficiently large values of n   then   convergent. 

Proof: Let m  N, such that ,  n  

Putting n=m+1, m+2, m+3,………..(n-1), we get 

 ,  ………………… , multiplying the numbers on the 

respective sides 

 n  (or)   )  n  

Since     is convergent and   is a positive constant.  By first comparison test, 

  also convergent. 

1.9.11 Theorem: 

Let  and  be two positive term series, such that  

is divergent, and 

, for all sufficiently large values of n   then   divergent. 

Proof: Let m  N, such that   n  

Putting n=m+1, m+2, m+3,………..(n-1), we get 

 ,  ………………… , multiplying the numbers on the 

respective sides  n  (or)     )  n  

Since     is divergent and   is a positive constant.  By first comparison test, 

  also divergent. 
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Example: 1 

Examine for convergence the series  

Solution: The nth term of the series is  

>0   n . Therefore, the given series   of positive terms 

Now  =  

=  for large value of n,  is small and  behaves 

like  

Let  be the series, where = . Then we know    is convergent. 

Now  =  

= (1-0) (1-0) = (  .  by first comparison test, the two series converge or 

diverge together. Since    is convergent.  The given series  also convergent. 

Example: 2 Show that the series  is divergent  

Solution: Here, the nth term of the series is >0,  n . Therefore 

  of positive term series  

Now,  =  

for large value of n,  behaves as . Let = .and consider the series    which is of 

type  with p= <1 and hence divergent  

=  = (  

Therefore, by first comparison test, the two series is converge or diverge 

together. 

Since    is divergent, Therefore the given series    also divergent. 
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1.9.12 D’ALEMBERT’S RATIO TEST: 

This test is due to the French mathematician Jean Le Rand D‘ALEMBERT‘S 

Theorem: Let  be a positive term series and suppose  =l then 

1. If l >1, the series is convergent, and  

2. If l <1, the series is divergent,  

3. If l =1, the test fails. 

Proof: We know > 0           n  

>0     ,  n  

 = l   then l  0 

Case 1: Suppose   l >1. We choose  be such that   l - 1.  

Now   = l   therefore given  m such that 

< n  

(or) - < l+  n  

Setting -  =r we have r> 1 or <1 

Now, we have 

 n  

<1   n  

m+1, m+1…….(n-1), we get  

………………….. 

……………………. 

 

Multiplying the numbers on the respective sides  

.Now the geometric series  with common ratio <1 is 

convergent 
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Therefore, by first comparison Test  

 is convergent, if l>1 

Case 2: Let l <1, we can choose  such that l+ < 

 =l   given  m such that, <  n  

 

(or) l- < l+  n  

Setting l+  =  we have < 1 or >1 

Now, we have  for all n   ( for all n <1 

m+1, m+1……. (n-1), and multiplying the sides of resulting inequalities, we 

get  

        n >m (  

Since   .1,  as n  

Thus 0 

Hence,  is divergent, if l<1 

: Let l=1. Consider the two series  and  

If  =  then  =  as n  

f  =  then  as n  

Thus  in each case, but   is divergent while convergent. Therefore, when 

l=1. The test fails 

Example: 1. Examine the convergent the series , where  

Solution: The nth term > 0   for all n  

Therefore: , is a positive term series. Now  

Therefore =  =  
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= = (1+0) <1 

Therefore, By D‘alembert‘s Ratio Test, the given series  is divergent 

Example: 2 Examine the convergence the series 

1+ + +……. 

Solution: The nth term     for all n  

Therefore , is a positive term series. Now  

Therefore =  

As 1 and (  

=+ >1 

The given series  is convergent 

Example: 3 Examine the convergence the series 

1+ + +……. + +………. x>0 

Solution: The nth term     for all n  since x>0 

, is a positive term series. Now  

=  

Since   

=+ >1 for all x > 0 

 By D‘alembert‘s Ratio Test, the given series  is convergent for all x > 0 

1.9.13 Cauchy’s root test 

We shall now introduce several intrinsic tests of convergence. Each of them 

dependents on the items of the given itself. We begin with Cauchy‘s root test 

Theorem:  

               Let  be a positive term series and suppose  =l then 
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1. If l<1, the series is convergent, and  

2. If l>1, the series is divergent,  

3. If l=1, the test fails. 

Proof: 

Case 1: Suppose   l<1. Let  be such that l< l+ 1. Setting l+ , we have r <1 

Now      =l,  m such that 

<  n  (  l- < < l+  n ,  

l+  n  

(or) <  n  

Since r<1, the geometric series Let  converges 

 By comparison test  is convergent 

Case 2:  Suppose   l >1. Let  be such that l - 1. Setting l- , we have >1. 

Now  =l,  given   m such that,

 
<     n  

 l- < < l+  n  

l-  n  (or <  n  

Since > 1, the geometric series Let  diverges 

 By comparison test  is divergent 

Case 3: Suppose   l=1.We shall now that the test limits, which means the test fails to give a 

clear conclusion. We consider two examples 

A)    , here =  and     =  

=  

B)    , here =  and     =  

=     =    =  
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Thus, we each value  ,but, we know otherwise,  is divergent write  

is convergent.Hence, the test fails when l=1 

Example 1: Examine for convergent the series  

1+  +  +  +………….. 

Solution: 

Here, the  term  of the series is  

>0  l n  

  is a positive term series? 

    =    =  and  

  Therefore, Cauchy‘s root test, the series  is convergent 

Example 2: Examine for convergent the series whose nth term is  

 

Solution: The nth term  of the series is  

                                                        =  

                                                               

                                                 

 

                                                                   =1   

                                                                     = <1 

By Cauchy‘s root test, the series  is convergent 

Example 3 Examine for convergent, the series 

  …………+ +…….. x> 0 

Solution: Here, the nth term  of the series is = >0 for all n , 
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 =  ,  

  =     

 =  =   By Cauchy‘s root test, the series is convergent if x<3 and diverges x>3.Now, when 

x = 3, =   

                                                       =  

Let = then  is of the type with p =2 and therefore convergent  

, by comparison test,  is convergent  

Hence, the given series is  

i)  Convergent, if x  3 

ii)  Divergent if x  3  

1.9.14 Conditional and Absolute Convergence: 

A convergent series that contains an infinite number of both negative and positive 

terms must be tested for absolute convergence. A series of the form 


1n na  is absolutely 

convergent if 


1n na  the series of absolute values is convergent. If


1n na  is convergent, 

but 


1n na  the series of absolute values is divergent, then the series 


1n na  is 

conditionally convergent. 

Note: 

In some cases, it is easier to show that 


1n na  is convergent. It then follows immediately 

that the original series 


1n na  is absolutely convergent. This series converges absolutely 

when, 

130i.e.

4

5
lim

1
30










x

n

n
x

n
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The radius of convergence is   R = 1. When (x + 3) = 1, the given series becomes 


 0 4

1
n n

 

which is a divergent series. When (x + 3) = -1, the given series becomes 
 




 


0 4

1
n

n

n
 which is 

a [conditionally] convergent alternating series. Hence, the series will converge whenever -1 

x+3 < 1. This can also be expressed by saying that the interval of convergence I for this 

series is I= {x | -4 x< -2}, or I= [4, 2). 

1.9.15 Conditional and absolute convergence: 

Suppose  is a series of numbers of positive and negative signs (that is, arbitrary 

signs). By taking Absolute value  of each term of the given series, we obtain a new 

series . Of course,  is a series of positive terms 

Definition: 1 A series  is said to be absolute convergence if  is convergent 

Definition: 2 A series  is said to be conditionally convergence if  is convergent 

but  is divergent 

Examples: 

1. The series  ,where =  is absolute convergence, here 

=  

= . Now is of type  with p=2 >1, which is convergent.  is 

convergent. Hence  is absolute convergence. 

2. The series , where =  is conditionally convergence, here 

=  

= . Now  is of type  with p=1, which is divergent. But, it can be shown 

by Leibnitz theorem that  is convergent  is convergent. Hence the 

series  is conditionally convergence 

1.9.16 Theorem: An absolute convergent series is also convergent. 

Proof:  which is absolute convergent. Then by definition   

 is convergent………(1) 
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 By Cauchy‘s general principle of convergence, given >0, there exists m N, such that 

<   

for all n ………(2) 

Now, let us examine for convergence the series , let >0, then by (2) 

<

 provided n , . Hence, given >0,  m N, such that 

<     

  for all n  

 By Cauchy‘s general principle of convergence   is convergent 

Example: 1 Show that the series + +…….+  Converges absolutely for all values 

of x. 

Solution: The nth term  of the series is  =   x R. taking absolute values   =  

 =  Now   

           =  =  

Since  as n  

  

                         =+ >1, for all x R and hence by D‘Alenbents‘ Ratio test 

 is convergent.  The given series  is absolutely convergent  

 

Example: 2 Show that the series  is conditionally convergent. 

Solution: the   term  of the series is 

   

where  

 The series is of alternating type. Now, 
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  = <0  

 And hence <  is monotone decreasing.  

Also  =0.   Leibnitz theorem, the given series  

 is convergent …………….(1) 

Now, = =  is of the type  with p= <1,  is divergent 

……..(2) 

From (1) and (2)  is conditionally convergent. 

Example: 3 Show that the series + +……. +  Converges if and only if 

-1 < x  

Solution: Here the  term  of the series is  = and  

 = . Let us examine the convergence of  we have  

      =  

 =  

 =  

          =  

          =  

           =  

           =  

 by D‘alembert‘s test, the series  is convergent if >1 (or)  and the series 

is  is divergent  if <1 (or) The series absolutely convergent if 

and hence, the series is convergent for all x, -1<x<1 when x = 1, the series becomes  
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1- -………. This is an alternating series. The term is  (or) is 

, where >0 

Now = <0 <  is monotone decreasing 

Also ,  Leibnitz test, the series is 

convergent. Again, when x=-1 the series becomes 1- -………+ ... This 

series is known to be divergent. Hence the given series is convergent if and only if -1<x<1 
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UNIT - II 

2.0 Differentiation:  

Definition : 

Let f be a function defined on an interval I: and c  

 ,c+h  and h 0. If it exists, is called the derivative of f at c, and denoted 

by f‘(c) or D f (c). Also, f is said to be derivative at c, if f has a derivative at c 

 

Notations for the Derivative and rules: 

The derivative of )(xfy   may be written in any of the following ways: 

     )(xf  ,      y ,       
dx

dy
,       )(xf

dx

d
,     or    )(xfDx . 

  I.  Basic Differentiation Rules  

      A.  Suppose c and n are constants, and f and g  are differentiable functions. 

(1)  )()( xcgxf   

       )(
)()()()()()(

)( limlimlim xgc
xb

xgbg
c

xb

xcgbcg

xb

xfbf
xf

xbxbxb



















 

(2)  )()()( xkxgxf   

       
xb

xkxgbkbg

xb

xfbf
xf

xbxb 











)]()([)]()([)()(
)( limlim  

                    = )()(
)()()()(

limlim xkxg
xb

xkbk

xb

xgbg

xbxb













 

(3)  )()()( xkxgxf   

       
xb

xkxgbkbg

xb

xfbf
xf

xbxb 











)()()()()()(
)( limlim  

                     =  
xb

xkxgxkbgxkbgbkbg

xb 





)()()()()()()()(
lim  

                     = 









































 xb

xgbg
xk

xb

xkbk
bg

xbxbxbxb

)()(
)(

)()(
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       =   )()()()( xgxkxkxg    (Product Rule) 

(4)   )()()()()()()()(
)(

)(
)( xfxkxkxfxgxgxkxf
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xf  
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 2)(

)()()()(

)(

)(
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)(
)(

)(

)()()(
)(

xk

xkxgxgxk

xk
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xf
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












 . 

       This derivative rule is called the Quotient Rule. 

(5)  cxf )(  
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0)()(

)( limlimlimlim 
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


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(7)  nxxf )(  
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hnx   (Power Rule) 

Example 1:  Suppose f and  g  are differentiable functions such that  3)1( f , 

       7)1( g , 2)1( f , and 4)1( g .  Find (i) )1()(  gf , (ii) )1()(  fg , 

       (iii) )1()( fg , (iv) )1(












f

g
, and  )1(












g

f
. 

        (i)  242)1()1()1()(  gfgf  

       (ii)  6)2(4)1()1()1()(  fgfg  

      (iii)  2)14(12)2(7)4(3)1()1()1()1()1()(  fggffg  

      (iv)  
  9

26
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1412
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22
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
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       (v)  
  49
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Example 2:  If 11753)( 234  xxxxxf , find )(xf  . 

       710940)1(7)2(5)3(34)( 2323  xxxxxxxf  

Example 3:  If 
53 2

753
4)(

xxx

xxf  , then find )(xf  . 

         513
2

2
1

53 2
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753
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5
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23
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
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                    =
623 5

623
5

2
1 35522

35522
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xxxx  
 

Example 4:  If 
43
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)(

2






x
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xf , then find )1(f  . 
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B. Trigonometric functions 

(1)  xxf sin)(   
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     C.  Composition and the generalized derivative rules 

(1)   ))(())(()( xkgxkgxf    
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 xb

xkgbkg

xb

xkgbkg

xb

xfbf
xf

xbxbxb

))(())(())(())(()()(
)( limlimlim  

                      














 xb

xkbk

xkbk

xkgbkg

xkbk

xkbk

xbxb

)()(

)()(

))(())((
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   This derivative rule for the composition of functions is called the Chain Rule. 

(2)   Suppose that ))(()( xkgxf   where nxxg )( .  Then nxkxf )]([)(  . 
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         11 )())(()()(
 

nnn xknxkgnxxgxxg . 

  Thus,  )(xf    )()()())((
1

xkxknxkxkg
n   .   

This derivative rule for the power of a function is called the Generalized Power Rule. 

2.1 Limits and Continuityod a function of a single variable 

Limit – used to describe the way a function varies.  

a) Some vary continuously – small changes in x produce small changes in f(x) 

b) others vary erratically or jump 

c) is fundamental to finding the tangent to a curve or the velocity of an object 

Average Speed during an interval of time = distance covered/the time elapsed (measured in 

units such as: km/h, ft/sec, etc.)  

=  

1.free fall = (discovered by Galileo) a solid object dropped from rest (not moving) to 

fall freely near the surface of the earth will fall a distance proportional to the square of 

the time it has been falling y = 16t²    y is the distance fallen after t seconds, 16 is 

constant of proportionality 

Example:  A rock breaks loose from a cliff, what is the average speed 

a) during first 4 seconds of fall 

b) during the 1 second interval between 2 sec. and 3 sec. 

a)    =     =    = 64ft/sec 

                    b)        =       =   80 ft/sec       

2.1.1 Average Rates of Change and Secant Lines:  

Find by dividing the change in y by the length of the interval:       

Average rate of change of y = f(x) with respect to x over interval [x1, x2] 

    =     

  =         h  

Note: Geometrically the rate of change of over the above interval is the slope of the line 

through two point of the function (curve) = Secant      
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2.1.2 LIMITS:  Let f(x) be defined on an open interval about c, except possibly at c itself. if 

f(x) gets very close to L, for all x sufficiently close to c we say that f(x), approaches the limit 

L written as: 

   =L the limit of f(x) approaches c = L    

Example:1 Suppose you want to describe the behaviour of:  when x is very close to 4. f(x) 

=  

a) First, the function is not defined when x = 4 

b) To see what happens to the values of f(x) when x is very close to 4, observe the graph of 

the function in the viewing window 3.5≤x≤4.5 and 0≤y≤3 -- use the trace feature to move 

along the graph and examine. The values of f(x) as x get closer to 4   

c) Also, notice the ―hole‖ at 4 

d) The exploration and table show that as x gets closer to 4 from either side (+/-) the 

corresponding values of f(x) get closer and closer to 2. 

Therefore, the limit as x approaches 4 = 2,   =2            

Identity Function of Limits:  for every real number c, 

         =c 

 Ex:  =2    

2.1.3 Limit of a Constant: if d is a constant then  

=d,  =3 

 &  =4. Nonexistence of Limits (limit of f(x) as x approaches c may fail to exist it.) 

1.f(x) becomes infinitely large or infinitely small as x approaches c from either side 

ex:  

2.f(x) approaches L as x approaches c from the right and f(x) approaches M with M≠L, as x 

approaches c from the left.    

A. Function is not defined when x=0. & according to def. of absolute value, |x| = x when x>0 

and |x| = -x when x<0 so 2 possibilities:  if x>0 then f(x) = 1    If x<0 then f(x) = -1  

 B. if x approaches 0 from the right, then corresponding values always are 1 

 C. if x approaches 0 from the left (-values) then corresponding values are always -1 
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 D. So don‘t approach the same real # as required by def. of limit –Therefore, the limit 

doesn‘t exist  

3. f(x) oscillates infinitely many times between numbers as x approaches c from either Side.  

Example:1  , the values oscillate between -1 and 1 infinitely many times, not 

approaching one particular real number – so limit doesn‘t exist. 

2.1.4 Calculating using the Limit Laws: 

If L, M, c and k are real numbers and: 

    and     

1.  Sum Rule: +M      

2.  Difference Rule:  -M    

3. Product Rule:  M    

4.  Quotient Rule:  

5.  Constant Multiple Rule:  lim (k·f(x)) = k·L =  ,the 

limit of constant times a function is the constant times the limit 

6. Power Rule:  if r and s are integers with no common factors and s≠0 then: 

   = L     

7. If f(x) is a polynomial function and c is any real number, then  

    = f (c) 

Example: 1    (difference rule) 

   =lim x · lim x + lim 3 · lim x – lim 6 (product rule)  

   =lim x · lim x + 3 lim x – 6 (limit of a constant rule)  

              =  (-2) (-2) + 3(-2) – 6  (limit of x/Identity rule) 

   = -8 

 

Example: 2    (Done in 1 step)          

   =-.857                                         
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Example: 3        

Denominator. Is 0 at x=3, so try to simplify 

 =  

 Cancel out new fraction = x +1 

                               = (3) + 1 = 4  

Example: 4       

              =  

     =  

              =  

    =    

     = -1/3 

Sample Problem1: Find the limit of 































n

n

1

1
sin

. Consider
 
x

x
xf

sin
)(  .We know from 

L ‘Hospital‘s Rule that as x approaches zero, the function approaches the limit value of one.    

Hence, by item (d) above the sequence converges and has the limit value of one. 

Sample Problem 2: Find the limit of
 









n

nsin
. Here we wish to use item (e) above as the 

squeeze theorem.   It is easy to show that for every value of n,
nn

n

n

1)sin(1
 , and 

that both the first and third sequences converge and that they both have the limit value of 

zero.   Hence, it follows that 
 









n

nsin
 converges and has the limit value of zero. 

 

2.1.5 Sandwich Theorem:  

Refers to a function f whose values are sandwiched between the values of 2 other 

functions g and h that have the same limit, L, the values of f must also approach L: Suppose 
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that g(x)≤f(x)≤h(x) for all x in some open interval containing c, except possibly at x =c itself.  

Suppose also that: 

  = h (x) =L then f(x )  =L 

Ex. if √5 – 2x² ≤ f(x) ≤ √5 - x² for -1≤x≤1 

 find f (x) 5 -2(0) ² ≤f(x) ≤ √5 – (0) ²   it gives      √5≤f(x)≤√5 

Theorem: If f(x) ≤ g(x)  x in some open interval containing c, except possibly at x = c, 

itself, and the limits of f and g both exist as x approach c, then:  

2.1.6 The Precise Definition of a Limit:  

 Let f(x) is defined on an open interval about (c), except possibly at (c) itself. We say 

that the limit of f(x) as x approaches (c) is the number L and write: for every 

number ε > 0,  a corresponding number δ > 0 such that  x 

   0 <|x – c| < δ& |f(x) - L| < ε 

ε = indicates how close f(x) should be to the limit (the error tolerance) 

δ = indicates how close the c must be to get the L (distance from c) 

Example: 1 Prove that the   =9            

 Step 1: c = 1, and L =9   so 0<|x - 1|<δ and |(2x+7) - 9|<ε 

 Step 2: In order to get some idea which δ might have this property work    backwards from 

the desired conclusion? 

   |(2x+7)-9|<ε 

    |2x - 2|<ε 

   |2(x-1) |<ε (factor out common) 

   |2| |x-1|<ε 

   2|x-1|<ε (divide by 2) 

                   = |x-1|<ε/2   -- this says that ε/2 would be a good choice for δ 

Step 3: go forward:|x-1|<ε/2 (get rid of 2 by multiplying on both sides2|x-1|<ε 

                       |2||x-1|<ε 

                       |2(x-1) |<ε 

                       |2x-2|<ε (rewrite -2 as 7-9) 

                       |(2x+7)-9|<ε 

                       |f(x) - 9|<ε    ε/2 has required property and proven  
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2.1.7 Finding δ algebraically for given epsilons  

The process of finding a δ>0 such that for all x: 

 0<|x – c|<δ     ----- |f(x) - L|<ε    can be accomplished in 2 ways: 

1. Solve the inequality |f(x) - L|<ε to find an open interval (a,  b) containing x0 on Which 

the inequality holds for all x≠ c 

2. Find a value of δ>0 that places the open interval (c – δ, c + δ) centred at x0 inside the 

interval (a, b).  The inequality |f(x)-L|<ε will hold for all x≠c in this δ-interval 

Example: 1 Find a value of δ>0 such that for all x, 0<|x-c|<δ ---- a<x<b 

 If a=1 b=7 c=2   so 1<x<7 

 Step 1: |x-2|<δ   --- -δ<x-2<δ   ---   -δ+2<x<δ+2 

 Step 2: a) -δ+2 =1 -δ=-1 --- δ = 1 

             b)  δ+2 = 7   δ=5   closer to an endpoint therefore the value of δ 

which assures |x-2|<δ    1<x<7 is smaller value δ=1  

Example: 2 Find an open interval about c on which the inequality |f(x) - L|<ε holds.  Then 

give a value for δ>0 such that for all x satisfying 0<|x-c|<δ the inequality |f(x)-L|<ε holds. 

 If f(x)=√x, L=´   c=µ  ε=0.1 

Step 1: |√x -½|< 0.1 implies - 0.1<√x - ½< 0.1 implies      0.4<√x<.6   implies   0.16<x<.36   

Step 2: 0<|x-¼|<δ = -δ<x - ¼<δ =   -δ+µ<x<δ+µ 

  a)   -δ+µ =.16    -δ.=-09 -- δ=.09 

  b)  δ+µ=.36 --- δ= .11 Therefore, δ=.09   

Example:3 With the given f(x), point c and a positive number ε, Find L =  then 

find a number δ>0 such that for all x.  

f(x)=-3x-2   x0=-1  ε=.03, lim (-3x-2)  

                                = (-3) (-1)-2 = 1 

Step 1: |f(x)-L|<ε    = |(-3x-2)-1|<.03  

                                = -.03<-3x-3<.03 

                                 = -1.01<x<-.99 

Step 2: |x-x0|<δ = |x-(-1) | <δ =  -δ<x+1<δ  =  -δ-1<x<δ-1 

a) -δ-1 =-1.01   distance to nearer endpoint of -1.01 = .01 

b) δ-1=-.99 distance to nearer endpoint of -.99 =.01 therefore:  δ=.01 

2.1.8 One-Sided Limit – a limit if the approach is only from one side: 

A. Right-hand limit = if the approach is from the right 
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   Where x  > c 

B. Left-hand limit = if the approach is from the left 

  Where x < c 

 All properties listed for two sided limits apply for one side limits also. 

Two Sided Limit Theorem;  a function f(x) has a limit as x approaches c if and only if it has 

left-handed and right hand limits there and the one sided limits equal:      if 

and only if:     and  

2.1.9   Precise Definitions of Right Hand and Left Hand Limits: 

f(x) has right hand limit at x0(c) and write:        ;if for every number ε>0 

there exists a corresponding number δ>0, such that  x  ,   

 x0<x<x0+δ    |f(x) – L| <ε, f(x) has left hand limit at x0(c) and write
 

 if for every number ε>0 there exists a corresponding number δ>0 such that for all x    x0-

δ<x<x0  |f(x) – L|<ε 

Theorem – In radian measure its limit as Θ0 = 1 so…  =1 (Θ in radians), finite 

Limits as    x ±∞ (have outgrown their finite bounds) 

Definition:  Limit as x approaches ∞ or -∞: 

1. Say f(x) has the limit L as x approaches infinity and write: if, for every 

number ε>0, there exists a corresponding number M such that for all x: x>M   

2. Say f(x) has the limit L as x approaches minus infinity and write:  , if for 

every number ε > 0, there exists a corresponding number N such that for all x: x < N   

2.2.10 Properties of Infinite Limits 

1.  Constant function   

     2.   = 0 Identity function           

     3. Sum, Difference, Product, Constant Multiple, Quotient, and Power Rule all the same 

with infinity limits as with regular limits. 
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2.2.11 Limits of Rational Functions:  

 Divide the numerator and denominator by the highest power of x in the denominator. 

What happens depends then on the degree of the polynomial: 

Example: 1 Find  

     =    

  

  So does not exist because the limits are not the same 

2.2 Continuity: 

Definition:  

A function g is continuous at a, if  = g(a). A function is continuous if it is 

continuous at every a, in its domain. Note that when we say that a function is continuous on 

some interval it is understood that the domain of the function includes that interval.  

For (example) the function f(x) = 1-  is continuous on the interval 

1 < x < 5 but is not continuous on the interval 1 < x < 1. 

Continuous – if you can draw a graph of f(x) at or a certain point without lifting your pencil. 

Discontinuous – anytime there is a break, gap or hole at a point in the curve 

a) point of discontinuity – the point where the gap/jump is 

Right-Continuous – continuous from the right – at a point x=c in its domain if  

   

Left-Continuous – continuous from left- at a point c if,  

2.2.1 Continuity at a point:  

1 At an Interior Point – if function y = f(x) is continuous on interior point c of its domain if                   

 

2. At an Endpoint – y=f(x) is continuous at a left endpoint a, or at right endpoint b, 

if:  (or)
   

Example 1: Without graphing, show that the function is continuous at x = 

3  
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Step 1: show                 =             

Step 2: show    = limit of quotient     

 =   =   limit of a product 

  =        =limit of a root      =    

  =    

 So lim f(x) = f (3) and is continuous at x = 3 

2.2.2 Definition of Continuity/Continuity Test: 

A function f(x) is continuous at x = c if and only if it meets the following 3 conditions: 

1.  f(c) exists – c lies in the domain of f 

2.    Exists (f has a limit as x approaches c)                
 

3.   = f(c) (the limit equals the function value) 

2.2.3 Continuity of Special Functions: 

a) Every polynomial function is continuous at every real number. 

b) Every rational function is continuous at every real number in its domain. 

c) Every exponential function is continuous at every real number. 

d) Every logarithmic function is continuous at every positive real number. 

e) F(x) = sin x and g(x) = cos x are continuous at every real number. 

f) H(x) = tan x is continuous at every real number in its domain. 

2.2.4 Continuity on the Interval:  

 A function is continuous on the interval if and only if it is continuous at every 

point of the interval [a, b]. If the function is continuous on the closed interval [a, b] provided 

that f is continuous from the right at x= a and from the left at x=b and continuous at every 

value in the open int. (a, b). 

2.2.5 Properties of Continuty functions: 

 If the functions f and g are continuous at x=c, then the following combinations 

are continuous at x = c. 

1.  Sums:   f + g 

2.  Differences:  f-g 
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3.  Products:  f·g 

4.  Constant Multiples:  k·f for any number k 

5.  Quotients:  provided g(c) ≠0 

6.  Powers:  provided it is defined on the open interval containing c, and r, s is integer. 

Example: 1 Show that h(x) = √x³ -3x² + x + 7 is continuous at x = 2 

Steps: first show f (2) = 2³-3(2)²+2+7 = 5, Then check g(x) = √x which is continuous b/c by 

power property  =     

      So, with c=2 and f(c) =5, the composite function g◦f given by: 

  (g◦f)(x)= (g (f(x)) =g(x³-3x²+x+7) = √x³-3x²+x+7 

2.2.6 Continuous Extension to a Point:  

 Often a function (such as a rational function) may have a limit even at a point where it 

is not defined. 

if f(c) is not defined, but  = L exists, a new function rule can be defined as: 

  f(x)     =    f(x)  if x is in the domain of f 

              =    L          if x =c 

 In rational functions, f, continuous extensions are usually found by cancelling common 

factors. 

Example: 1 Show that f(x)=  has a continuous extension to x=2, find the extension                  

  

First factor   =   which is equal to f(x) for x≠2, but is continuous at x=2 

shows continuous by plugging into new function= =  have removed the point of 

discontinuity at 2. 

2.2.7 Intermediate Value Theorem for Continuous Functions: 

 A function y = f(x) that is continuous on a closed interval [a,b] takes on every value 

between f(a) and f(b).  In other words, if y0 is any value between f(a) and f(b) theny0 = f(c) 

for some c in [a,b] 

 What this is saying Geometrically is that – any horizontal line y=y0 crossing the y-

axis between the numbers f(a) and f(b) will cross the curve y=f(x) at least once over 

the interval. 
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 For this theorem-the curve must be continuous with no jumps/breaks. 

 This theorem tells us that if f is continuous, then any interval on which f changes 

signs contains a zero/ root of the function. 

2.2.8 Tangents and Derivatives: 

 We will now study how to find the tangent of an arbitrary curve at point P(x0, f(x0)) 

To do this we must: 

1. Calculate the slope of the secant through P and a point Q(x0+h, f(x0+h)) 

2. Then investigate the limit of the slope as h approaches 0 

a) if limit exists—we call it the slope of the curve at P and define the tangent at P 

to be the line through P having this slope 

b) The slope of the curve y=f(x) at the point P(x0, f(x0)) is the following: 

    (Provided the limit exists) 

  The tangent line to the curve at P is the line through P with this slope. 

  y=y0 + m(x-x0) 

2.2.9 Difference Quotient of F:  

 has a limit as h approaches 0 called the derivative of f at x0 

1) if interpreted as the secant slope—the derivative gives the slope of the curve 

and tangent at the point where x=x0 

2) if interpreted at the average rate of change– the derivative gives the function‘s 

rate of change with respect to x at x=x0 

Example: 1 Find an equation for the tangent to the curve at the given point.  Then sketch the 

curve and tangent together. 

 y= (x-1)² +1 at pt (1, 1) 

   =  

            =    

   = lim h = 0 (b/c constant), so at (1,1)   y=1+0(x-1), y=1 is tangent line 

Example: 2 Find the slope of the function‘s graph at the given point.  Then find an equation 

for the line tangent to the graph there. 

 F(x)    = x-2x² (1, -1)  
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                     =    

                     =   =-3 

 At (1, -1) = y +1 = -3(x-1) 

2.3 Rolle’s theorem:  

If f is a function such that 

 (i) f is continuing in the closed interval [a, b] 

(ii) f‘ (x) exists for every point x in the open interval (a, b) or] a,b[ 

(iii) f (a) = f (b) there is a point c where  (c) = 0   

Proof: The function f, being conditions in the closed interval [a, b] is bounded and attains its 

least upper bound and greatest lower bound. Let M, m be the least upper bound and greatest 

lower bound of, f respectively and it can be such that 

 f (c) = M, f (d) = m either M=m or M m 

Now M=m implies f (x) = M  implies f ‗(x) = 0  

Thus, the theorem is true in this case, now suppose that M m, as f (a) = f (b) and M m 

atleast one of the numbers M and m must be different from f (a) and f (b). Let M be different 

from each of f (a) and f (b) we have M= f (c),  

M f (a), M f (b), Now f (c) f (a), implies c a 

f (c) f (b), implies c b, thus a <c < b. The function is derivable at c. We shall show that  

f ‗(c) , If f ‗(c)>0, there exists > 0 such that 

 f (x) f (c) =M 0 . But M being the least upper bound, we have  

f (x)  M  

Thus, we have a contradiction we cannot have f ‗(c) , 

Now suppose that f ‗(c) < , so that there exists  >0 such that  

f (x) f (c)=M . 

This again is not possible. Thus, we cannot have f ‗(c) < . We conclude that 

 f ‗(c)= . 

Problem: 1 

Verify Rolle‘s Theorem for the following function 

 f(x) = 2 + -4x -2 in [-  
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Solution: 

Since f is a rational integral function of x it is continuous and differentiable for all real values 

of x. Hence the first two condition of Rolle‘s Theorem are satisfied in any interval in order to 

find the interval. 

 Let f(x) =0  

2 + -4x -2=0 

+1)-2(2x +1) =0 

+1) (  

+1) =0       and        (  

x=     x =  

f( )=- f( )=f(-1) consider the interval [-  all the conditions of rolle‘s theorem is 

satisfied to verify the  condition obtain f‘(x), f ‘(x)=6 +2x-4 implies 6 +2x-4 =0. 

Equating it to zero, we get value of x as   

6 +2x-4 =0,  

3 +x-2 =0, 

 (x+1) (x- ) =0 

x =-1,    x=  

Where f‘ (-1) =6 +2(-1)-4 =0, 

f‘ ( )=6 +2( )-4 =0, Since both the points x=-1 and x=  lie in the open interval [-

 Rolle‘s theorem is satisfied. 

2.4 Mean Value Theorem:  If two functions F and f is 

 i) Continuous in the interval [a, b] 

ii) Derivable in the interval  

iii) F‘(x)  then there exists one point c  

Such that  =  

Proof: Let a function ф can be defined by ф (x) =f(x)+ A F(x) where A is a constant, to be 

determined such that 
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  A =  

ф (a) = ф (b) requires F (b) – F(a) ≠ 0 if it is zero, then functions F would satisfies all the 

conditions of Rolle‘s theorem A=   A function ф is continuous in the [a, b] 

derivable in the] a, b[ and ф (a) = ф (b).Hence by Rolle‘s theorem. For all there exist a point c 

belongs to] a, b [ such that ф‘(c) = 0. 

ф (x) = f (x) +A F (x) 

                 ф‘(x) = f (x) + A F‘(x) 

                  At x = c, 

Ф‘ (c) = f ‗(c) +A F ‗(c) 

                 o = f ‗(c) + A F‘ (c) 

 

 =    using (1) F‘(c) ≠ 0 

2.5 Taylor’s Theorem: 

If f is a real valued   function on [a, a+h]  all the derivatives upto  are continuous 

in a  and  exists in a  then  

f(  f( f‘( + f`‘‘( ,  

0 <  

Proof: p is a given positive integer, then there exists, at least one number,  between 0 and 1 

such that 

F( f(  f‘( + +f‘‘(  ……(  

The above equation implies the continuity of each off, f ‘,f``…….  in the closed interval 

[a, a+h ]. 

Let a function  be defined by 

f( f( f‘( + f‘‘(

+A  

Here A is a constant to be determined such that (a) = (a+h) thus a is given by 
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 f( f( f‗( + f`‘‘(  ….(2) 

The function  is continuous in the closed interval [a, a+h], derivable in the open interval ] a, 

a+h [ and Hence by rolle‘s theorem, there exists atleast one number,  

between 0 and 1 such that  =0 but =  -

A  

0= =  -A  

Implies A= , for  and h  

Substituting the values of A in the required result (1) 

i. Reminder after n terms, the term = , is known as 

Taylor‘form of Remainder  after n terms and is due to Schlomileh and Roche. 

ii) Putting p = 1, we obtain = , which form of reminder is 

due to Cauchy. 

     iii) Putting p = n, we obtain = , which is due to Lagrange. 

Example:1 f (  f ( f ‗( + f`‘‘( ,find the value of  as x  if f 

(  (  

Solution: f (  (  

 f ‗( ( ,  

f ‗‘( (  

f ‗‘ ( + =  substituting expression  

f (  ( ( +  when x a we get 

 = 0+0+  

 = . Therefore, the Taylor‘s theorem is verified 
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UNIT - III 

INTEGRABLE FUNCTIONS: 

The process of finding antiderivatives is called antidifferentiation, more commonly 

referred to as integration. We have a particular sign and set of symbols we use to indicate 

integration: 

 

We refer to the left side of the equation as ―the indefinite integral of  with respect to " 

The function   is called the integrand and the constant  is called the constant of 

integration. Finally the symbol  indicates that we are to integrate with respect to  

Using this notation, we would summarize the last example as follows:  

 

Using Derivatives to Derive Basic Rules of Integration 

As with differentiation, there are several useful rules that we can derive to aid our 

computations as we solve problems. The first of these is a rule for integrating power 

functions, and is stated as follows:  

 

We can easily prove this rule. Let . We differentiate with 

respect to and we have:  

 

The rule holds for What happens in the case where we have a 

power function to integrate with say . We can see that the rule 

does not work since it would result in division by . However, if we pose the problem as 

finding  such that , we recall that the derivative of logarithm functions had 

this form. In particular, . Hence  
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In addition to logarithm functions, we recall that the basic exponentional function, 

was special in that its derivative was equal to itself. Hence, we have  

 

Again, we could easily prove this result by differentiating the right side of the 

equation above. The actual proof is left as an exercise to the student.  

As with differentiation, we can develop several rules for dealing with a finite number of 

integrable functions. They are stated as follows:  

If and  are integrable functions, and  is a constant, then  

 

Example 2: 

Compute the following indefinite integral.  

 

Solution: 

Using our rules, we have  

 

Sometimes our rules need to be modified slightly due to operations with constants as is the 

case in the following example.  
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Example 3: 

Compute the following indefinite integral:  

 

Solution: 

We first note that our rule for integrating exponential functions does not work here since 

However, if we remember to divide the original function by the constant then 

we get the correct antiderivative and have  

 

We can now re-state the rule in a more general form as  

 

Differential Equations 

We conclude this lesson with some observations about integration of functions. First, recall 

that the integration process allows us to start with function from which we find another 

function such that This latter equation is called a differential equation. 

This characterization of the basic situation for which integration applies gives rise to a set of 

equations that will be the focus of the Initial Value Problem.  

Example 4: 

Solve the general differential equation  

Solution: 

We solve the equation by integrating the right side of the equation and have  

 

We can integrate both terms using the power rule, first noting that and have  
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3.1 Riemann Integration: 

In elementary calculus, the process of integrations treated as the inverse operation of 

differentiation and the integral of the function is called an anti-derivative. The definite 

integral is given by Germany mathematician Riemann (1820-1866) in this concept dealing 

with closed finite intervals [a,b] so that (b-a)   r implies 

 a  more over all function f will be assume to be a real valued functions defined and 

bounded on [a,b].Thus symbolically f(a,b) and  where k is a positive real 

number. 

3.1.1 Definition of partition of closed interval: 

Let I =[a,b]  be a finite closed interval a< <  is the 

finite ordered set P={  ,  is called a partition of I, the (n+1) points  

,  are called partition points of P. The n closed sub intervals 

 (i.e) 

= ) = [a, b] = I, Where … … are called the segments of partition 

of p. 

3.1.2 Norm of a Partition: 

The maximum of the length of the sub intervals of a partition p is called the Norm or 

Mesh of the partition p and denoted by  

3.2 Definition of Reimann Integral: 

A bounded function  is said to be Riemann integral function or R- integral on [a,b] if 

its lower and upper Riemann integrals are equal. 

3.3 Darboux’s Theorem: 

 Let f be a bounded function on the closed interval [a, b] then given any >0,  a 

for all partition P with <  

U (P, f) <  and L(P, f)>  

Proof: Be definition of if there exists a partition such that >0,  

U (P, f) <  . Let  has K points other than the end points a and b. we may 

assume that K  1 if possible by allowing refinement of    
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Let  = . Let P be a partition with < < . We will show that the conclusion of 

the theorem holds for this partition P. Let  be the comment refinement of and P. Let 

has r more points than P. We see that these points are points of  and as  has k points 

other than end points we have 0 < r < K. Now we have 0  U (P,f) - 

L(P,f) ………….….(1) 

and also we have U(P,f)  L(P,f) ………………..(2) 

Combining (1) and (2) we get U(P,f)  +  

 + as (0  r  K and  

 +  =  

Example:1 consider the function f(x) = x in the interval [0.1], we have that f R (0,1) and 

 

For any positive integer n we consider the partition  of [0.1] in {0, . 

As the function is monotone increasing in  we have M=  , m =  

Also, we have = . Hence U (P, f) =  =  

3.4 Fundamental theorem of integral calculus: 

Statement: let f be a continuous function defined on [a, b] and ф be a differential function on 

[a, b] such that ф‘(x)= f(x) [a, b] then  dx=ф(b) ф(a) 

Proof: Let F=  dx and F‘(x) = f(x) [a, b] also given that ф(x)= f(x), F‘(x)= 

ф‘(x) 

F‘(x)- ф‘(x) =0, implies [F‘- ф‘]x=0 

F‘- ф‘=c, c is constant  

 f (x) +c 

f (a) +c, f(b) +c but from the definition  

F(x)=  dx =0 

F (b) - F(a)= +c- +c, =0 
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 dx =  

3.5 First mean Value Theorem:  

Statement:  Let  be a reimann integral on [a, b] then  ‗ ‘ lies between  

 = (b-a) 

Proof: From the definition of Riemann sums  

  L(P,f)  

  L(P,f)  taking supremimum on the above inequality we get, 

  Sup L(P ,f)  

 dx   ………(1) 

Also, we know that   U(P, f)  taking infimum on the above 

inequality we get, 

m   inf U (P ,f)  

m  dx    ……..(2). As f is Riemann integral we have 

 dx   =  …………………….(3) 

 combining (1) (2) and (3) m  

⇒  where  is the values lies between the bounds m and  

3.6 Improper Integrals 

If the function f becomes unbounded on [a, b] or if the limits of the integration becomes 

infinite then the symbol  


b

a

dxxf )( , is called the improper integral 

First kind  

If either one or both limits are infinite and the enterable is bounded 

Second kind 

It the intervals are finite and f becomes unbounded then it is called improper integrals of 

second kind 
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3.7 Integral with Infinite Intervals 

Definition: If the function f id bounded the inferable for x a then by definition  

1.  If  
M

a

dxxf )(  exists for every number 

aM  , then 


a

dxxf )( lim
M 

M

a

dxxf )(  provided this limit exists (as a finite number). 

2.  If  
b

M

dxxf )(  exists for every number bM  ,  

Then 


b

dxxf )( lim
M 

b

M

dxxf )(  provided this limit exists (as a finite number). 

[Note:  The integrals 


a

dxxf )(  and 


b

dxxf )(  are said to be convergent if the 

corresponding limit exists and divergent if the limit does not exist.]  

 Is said to be converge to the value M if given 

   


 





a

a

dxxfdxxfdxxf )()()( .  

 [Note:  Any real number a can be used.] 

 

Problems: 

 1. Evaluate dx
x



1

2

1
. 




dx
x

1

2

1
lim

M


 dxx

M

1

2
lim

M









M

x 1

1
lim

M

11
1













M
 dx

x


1

2

1
Converges to 2. 

 

2.  Evaluate  dx
x



1

1
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  dx
x



1

1
 =  lim

M

dx
x

M


1

1
 = lim

M

 Mx 12  

                                               = lim
M

   22 M dx
x



1

1
 diverges. 

  3.  Evaluate dxe x




0

.    

dxe x




0

 =  lim
M

dxe

M

x


0

 = lim
M

 0

M

xe  

= lim
M

 Mee 0 = 1 – 0 = 1   dxe x




0

 converges to 1. 

  4.  Evaluate dx
x





 21

1
dx

x




 21

1
 = dx

x
dx

x
dx

x 











0

2

0

2

0

2 1

1
2

1

1

1

1
 (by 

symmetry) =2 

 2 lim
M


 dx

x

M

0

21

1
 2 lim

M

  Mx 0arctan 2 lim
M

  0arctanarctanM  

 2 lim
M









 



2
2arctanM dx

x



 21

1
 converges to  . 

 

 5.  Evaluate


1

ln dxx . 




1

ln dxx =  lim
M 

M

dxx

1

ln  = lim
M

 Mxxx 1ln   = lim
M

[ MMM ln  –  

  11ln1  ] = lim
M

   1)1(ln MM 






 











1)1(lnlimlim MM
MM

 

  1 


1

ln dxx  diverges. 
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 6.  Evaluate




0

dxxe x . 

 




0

dxxe x  =  lim
M




M

x dxxe

0

lim
M

    Mxx exe 0 lim
M











 M

xx ee

x
0

1
 

 

 lim
M 























00

101

eeee

M
MM

.  By L‘Hospital‘s Rule, lim
M










Me

M
 

 

 lim
M

0
1








 

Me
.  Thus, lim

M 






















00

101

eeee

M
MM

 = 1)10()00(  . 

 Thus, 




0

dxxe x  converges to 1. 

3.7.1 Improper Integral with Discontinuous Integral: 

 Definition 

 1.  If f is continuous on [a, b) and is discontinuous at b, then 
b

a

dxxf )(  

lim
bM 

M

a

dxxf )(  if this limit exists (as a finite number). 

2.  If f is continuous on (a, b] and is discontinuous at a, then 
b

a

dxxf )(  

lim
aM 

b

M

dxxf )(  if this limit exists (as a finite number). 

Note:  The improper integral 
b

a

dxxf )(  is called convergent if the corresponding limit exists 

and divergent if the limit does not exist. 
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3.  If f has a discontinuity at c, where bca  , and both 
c

a

dxxf )(  and  


b

c

dxxf )(  are convergent, then we define 

 
b

a

dxxf )( 
c

a

dxxf )(  
b

c

dxxf )( . 

 Examples: 

1.  Evaluate dx
x

1

0

2

1
= dx

x
1

0

2

1
= lim

0M



 dxx

M

2

1

lim
0M








 11

M
x

lim
0M











M

1
1  

        dx
x

1

0

2

1
 diverges. 

2.  Evaluate dx
x

4

0

1
. 

dx
x

4

0

1
= lim

0M




dxx
M

4

2
1

lim
0M

  42 Mx lim
0M

  M24   4024 dx
x

4

0

1
 

Converges to 4. 

 

3.  Evaluate dx
x 

1

0

21

1
. 

dx
x 

1

0

21

1
 =  lim

1M

dx
x

M

 
0

21

1
 = lim

1M

  Mx 0arcsin  = 

  lim
1M

  
2

01arcsin0arcsinarcsin


M dx
x 

1

0

21

1
 Converges to

2


. 

4.  Evaluate dxx
1

0

ln . 
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dxx
1

0

ln = lim
0M

 dxx

M

1

ln lim
0M

   1ln Mxxx  

 )11ln1(
lim

0M

 1)ln( MMM
lim

0M

 10)ln( MM
lim

0M

MM ln .  

  

By L‘Hospital‘s Rule,  

lim
0M

MM ln = lim
0M

M

M

1

ln
 = lim

0M




2
1

1

M

M 5 

lim
0M

0)( M .  Thus, lim
0M

 dxx

M

1

ln 1 dxx
1

0

ln  converges to – 1. 

5.  Evaluate dx
xx

2

1

ln

1
.   

dx
xx

2

1

ln

1
 = lim

1M

 dx
xx

M

2

ln

1
lim

1M

  2)ln(ln Mx  

= lim
1M

)2ln(ln lim
1M

)ln(ln M )()2ln(ln)0ln()2ln(ln))1ln(ln()2ln(ln   

 ⇒ dx
xx

2

1

ln

1
 diverges. 

 

6.  Evaluate dx
x

e x


4

0

. 

dx
x

e x


4

0

 = lim
0M

 dx
x

e

M

x
4

lim
0M

  42 M

xe lim
0M

 Mee 22 4   

    =  2222 202 eee dx
x

e x


4

0

 Converges to 22 2 e . 
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 (7)  
 dx

x

1

0

21

1
lim

1M


 dx

x

M

0

21

1
lim

1M

   0arcsinarcsinarcsin lim
1

0 


Mx
M

M
= 

2
0arcsin1arcsin


 .  

 Thus, dx
x 

1

0

21

1
 converges to 

2


. 

(8)  


dx
x

e x

1

2

1

lim
M

 dx
x

e
M

x

1

2

1

    eeee M

M

M
x

M




1
1

1

1

limlim .   

Thus, dx
x

e x




1

2

1

 converges to 1e . 

(9)  
 dx

x

4

0
4

1
lim

4M


 dx

x

M

0
4

1   4}442{42 limlim
4

0
4


 

Mx
M

M

M

. 

 Thus,  

4

0

4

1

x
 converges to 4. 

(10)   dx
x

e x
4

0

lim
0M

 dx
x

e

M

x
4

    22222 24

0

4

0
limlim 

 

eeee M

M
M

x

M

.  

 Thus, dx
x

e x


4

0

 converges to .22 2 e  

(11)  
 

dx
xx

e




2
ln

1
 =  lim

M  


M

e
xx

2
ln

1
11

ln

1

ln

1
limlim 



















 

 Mx M

M

eM

.   

Thus,  
 

dx
xx

e




2
ln

1
 converges to 1. 

(12)  dx
x

x

 

3

0

29
 =  lim

3M


 dx

x

x
M

0

29
   

 

399 2

3
0

2

3
limlim Mx
M

M

M

 3. 
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  Thus, dx
x

x

 

3

0

29
 converges to 3. 

(13)  dx
x

x





0

6

2

1
 =  lim

M

dx
x

x
M

 
0

6

2

1
 

                          = 



















)arctan(
3

1
)arctan(

3

1 3

0

3
limlim Mx
M

M

M

 
623

1
0











 .  

Thus, dx
x

x





0

6

2

1
 converges to

6


. 

(14) dx
xx 

2

1

2 1

1
= lim

1M


 dx

xx
M

2

2 1

1
  



2secsec
2

1
lim arcxarc M
M

  
3

0
3

seclim
1






Marc
M

.  

 Thus, dx
xx 

2

1

2 1

1
 converges to

3


. 

(15)  dxxe x






0

 =  lim
M

dxxe x






0

 = 
























MM

M

M

xx
M ee

M

ee

x 11
limlim

0

{0 – 1} 

                       = 110
1

lim 












M

M e
.  Thus, dxxe x






0

 converges to 1. 

(16)  dx
x




1

21

1
 =  

lim
M


 dx

x

M

1

21

1
    



1arctanarctanarctan limlim 1 Mx
M

M

M 442


 .   

Thus, dx
x




1

21

1
 converges to 

4


. 
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(17)  dx
x

x





0

21
 =  

lim
M


 dx

x

x
M

0

21






















2

0

2 1ln
2

1
1ln

2

1
limlim Mx
M

M

M

 00 .  Thus, 

dx
x

x





0

21
 diverges. 

(18)  dx
xx

e




ln

1
 =  lim

M

 dx
xx

M

e

ln

1     


eMx
M

M

e
M

lnlnlnlnlnln limlim  0 .  

     Thus, dx
xx

e




ln

1
 diverges. 

(19)  dx
x

x





0

21

arctan
 =  lim

M


 dx

x

x
M

0

21

arctan
M

M

x
0

2)(arctan
2

1
lim











 

                      =
822

1
0)(arctan

2

1 22

2
lim























M
M

. 

  Thus, dx
x

x





0

21

arctan
 converges to 

8

2
. 

(20)   dx
xx

e

1

ln

1
lim

1M

 dx
xx

e

M

ln

1    
 

Mex
M

e

M
M

lnlnlnlnlnln limlim
11

  )(0 .  

 Thus, dx
xx

e


1

ln

1
 diverges. 

(21)   dx
xx

e

1

2)(ln

1
lim

1M

 dx
xx

e

M

2)(ln

1








 











 

  Mx M

e

MM ln

1

1

1

ln

1
limlim

11

 

 1 .  Thus, dx
xx

e


1

2)(ln

1
 diverges. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

65 

 

 

3.8 Gamma and Beta functions:  

 In this section, we discuss the Gamma and beta functions. These functions arise in the 

solution of physical problems and are also of great importance in various branches of 

mathematical analysis.  

3.8.1 Euler’s integrals:  

Definition of Beta function: 

 The definite integral dx, for m >0, n >0 is known as the beta 

function and is denoted by B(m, n). Beta function is also called the Eulerian integral of the 

first kind. Thus, B (m, n) = dx, for m>0,n>0   

……….……………(1) 

Definition of Gamma function: 

 The definite integral dx, for, n>0   ………………………… (2) is 

known as the gamma function and is denoted by . Gamma function is also called the 

Eulerian integral of the second kind. 

3.8.2 Properties of Gamma function:  

1. To show that =1 

Proof: By the definition of Gamma function 

 = dx,   ……………….(1) 

           From (1) dx, =  dx =1 

2. To show that = n , n.>0 

Proof: By the definition of Gamma function = dx 

= dx 

          = - dx, on integrating by parts 

            =  +0 +n dx    ……… (1) Now we have  

           =  =  =0 
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           Also by definition = dx 

           Using the above facts (1) reduces to = n  

3. If n is non-negative integer, then = n  

Proof: we know that for n>0, we have (from property (2)) 

= n = n  =n(n-1)  by property (2) again 

= n (n-1) (n-2)  (by repeated use of property 2 and the fact that n is positive 

integer) 

=n  as =1   

  Extension of definition Gamma function  for n>0 

   When n>0, we known that = n  

   So that   ……………… (1) 

          Let -1 < n < 0. Then -1<n implies  so that  is well defined by 

definition and so R.H.S of (1) is well defined. Thus  is defined for -1 < n <0 by (1). 

Similarly,  is given by (1) for -2 < n <-1. -3 < n < -2 and so on. Thus (1) defined  for 

all values of n except n=0 ,-1,-2,-3,……. 

3.8.3 Property: 

 To show that  =  , if n is zero or a negative integer. 

Proof: putting n = 0 in (1), we get   implies  …………..……….(3) 

Again, putting n = -1 in (1), we get    i⇒  by (2) ……………. (4) 

Next putting n = -2 in (1), and using (3) we get    ⇒ , and so on. 

Thus, we find that if n is zero or negative integer. 

3.8.4 Theorem:  To show that  

Proof: From definition of gamma function   = dt ……… (1) 

Replacing n by  in (1), we have  

= dt  
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= 2 du …………(2) 

[Pitting t=  so that dt=2u du] 

2 dx and =2 dy ………….(3) 

[Limits remaining the same, we can write x or y as the variable in the integral of (2)]. 

Multiplying the corresponding sides of two equations of (3), we get 

 =2 dx =2 dy 

 = 4 dydx=4 d dr (on changing the variable to polar co-

ordinates (r, where x= r cos , y= r sin , so that  and  

dx dy = rd dr. The area of integration is the positive quadrant of xy-plane) 

 =2 d =2 d  , putting so that 

2rdr=dv. Hence =  =   =2[  

Thus      -----------(4) 

Remark, from (3) and (4) 2 dx=  

3.8.5 Transformation of gamma function: 

Form 1: To show that = dx, n>0 

Proof: By definition = dx, n>0 ………..(1)   

[Putting t=  so that dx= dt] then (1) gives = dt  

(or) = dx   …….(2) 

Particular Case n=  in (ii), Then =2 dx    ………………..(3) 

Form 2: Show that = dx, n>0, k>0 

Proof: By definition = dx, n>0 ………..(1)   

[Putting kt=x so that dx= kdt] then (1) gives  
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= kdt (or ) 

= dx   (or ) 

dx =  

Form 3: To Show that = dx, n>0 

Proof: By definition = dx, n>0 ………..(1)   

[Putting t=  so that - dx= dt] then (1) gives  

 dt as t= =   

= dx, n>0 

Form 4: To show that = dx, n>0 

Proof: By definition = dx, n>0 ………..(1)   

[Putting x=  so that dx= 2tdt] then (1) gives 

 = dt or =  

 

3.8.6 Solved examples based on Gamma function: 

Problem 1: 

 i) dx       ii) dx 

Solution: dx   = dx = =4  =24 by definition of gamma 

function 

iii) I= dx put 2x = t so that dx= dt, then we have) I= dt 

=   

= , by definition of gamma distribution 

                = 6 =  

Problem 2  

 i)    ii)      iii)  
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Solution: We know that  ………..(1) 

Part (i), Putting n=  in (1).   

                                                        =   

                                                       =-2 , as  =  

Part (ii), Putting n=  in (1) we have .  =  

                                                                        =  (-2  

                                                                        = as   

                                                                        =  

Part (iii), Putting n=  in (1) we have .  =  using part (ii) 

Example 1: If n is a positive integer, prove that  =1.3.5…(2n+1)  

Using the formula n  , n>0 ………………(1) 

=   

        =(n- )  

        =(n- )  using (1) 

       =(n- )  

       =  

      =  

{by repeated application of (1) and noting that (2n-1)(2n-3)….. are all odd} 

 as  

              =  
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=  

Example 2: If n is a positive integer and m >-1, Prove that  

 =  

Solution: Let I=  Put  =-t so that x=  and dx=-  

I= ,  logU=-  and log 1=0] 

  =   

 =  , provided m+1 >0i.e m>-1 

  =    [ , n being the integer] 

Example 3: With certain limitations on the value of a, b, m and n prove that 

 

 

Solution: Let I=   ….(1) 

(or) 

I=  …….…….(2) 

Where  =   …………………...……………(3) 

 =  ………………..……..…………..(4) 

Put =t, i.e x  so that dx= . Then (3) becomes 

 =   

=   

 = , by definition of gamma function, taking m>0, a>0 similarly = , n>0, b>0  

 From (1) and (2), we have I = =  
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UNIT - IV 

MATRICES 

4.Introduction: 

Matrix is a rectangular array of real numbers.  We will use the double subscript notation, that 

is the element from matrix A in the  row and the  column is denoted by a ij . 

 The dimensions of a matrix are given by rows columns (order m n).   

 A matrix is a square if it is n n, then we say it has order n.  The main diagonal of a 

square matrix is all the elements, a ij , with i = j. 

 Matrices relate to systems of equations - we can write the system of equations without the 

variables, addition signs, and equal signs. So, if the system of equations is: 

  

  

  

Then the augmented matrix is and the coefficient matrix 

is  

Note that any time a term is missing from the system of equations we must put a zero in its 

place in the matrix. 

1. A rectangular array of mn numbers arranged in the form 

     



















mnmm

n

n

aaa

aaa

aaa









21

22221

11211

 

 is called an mn matrix. 

                                            e.g. 
2 3 4

1 8 5






 is a 23 matrix.   

e.g. 

2

7

3















 is a 31 matrix. 
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2. If a matrix has m rows and n columns, it is said to be order mn. 

   e.g. 

2 0 3 6

3 4 7 0

1 9 2 5















 is a matrix of order 34.  

     e.g.

1 0 2

2 1 5

1 3 0



















 is a matrix of order 3. 

3.  a a a
n1 2

  is called a row matrix or row vector. 

4. 

b

b

b
n

1

2



















 is called a column matrix or column vector. 

    e.g.

2

7

3















 is a column vector of order 31. 

 e.g.   2 3 4 is a row vector of order 13. 

5. If all elements are real, the matrix is called a real matrix. 

6. 

a a a

a a a

a a a

n

n

n n nn

11 12 1

21 22 2

1 2




  


















 is called a square matrix of order n and a a a
nn11 22

, , ,     is 

called the principal diagonal. 

 (e.g) 
3 9

0 2






 is a square matrix of order 2. 

7. Notation:   a a A
ij m n ij m n 

 ,        ,     ,  ...
 

4.1 Some Special Matrix: 

If all the elements are zero, the matrix is called a zero matrix or null matrix, denoted by O
m n

. 

e.g. 
0 0

0 0






 is a 22 zero matrix, and denoted by O

2
. Let  A a

ij n n



 be a square 

matrix. 

(i) If a
ij
 0 for all i, j, then A is called a zero matrix. 
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ii) If a
ij
 0 for all i<j, then A is called a lower triangular matrix. 

(iii) If a
ij
 0 for all i>j, then A is called an upper triangular matrix. 

  

a

a a

a a a
n n nn

11

21 22

1 2

0 0 0

0

0





 

















   

a a a

a

a

n

nn

11 12 1

22
0

0 0

0 0





 






















 

i.e.  Lower triangular matrix                     Upper triangular matrix 

 e.g.1

1 0 0

2 1 0

1 0 4















 is a lower triangular matrix. 

e.g.2 
2 3

0 5







 is an upper triangular matrix. 

4.2 Diagonal matrix. 

Let  A a
ij n n




 be a square matrix. If a
ij
 0 for all i j  , then A is called a diagonal 

matrix. 

e.g. 

1 0 0

0 3 0

0 0 4
















  is a diagonal matrix. 

If A is a diagonal matrix and a a a
nn11 22

1    , then A is called an identity matrix or 

a unit matrix, denoted by I
n
. 

e.g.  I
2

1 0

0 1







 ,  

            I
3

1 0 0

0 1 0

0 0 1
















 

4.3 Arithmetic’s of Matrices:  

Two matrices A and B are equal if they are of the same order and their corresponding 

elements are equal. 

i.e.      a b a b i j
ij m n ij m n ij ij 

          for all , . 
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e.g.  
a

b

c

d

2

4

1

1














             a b c d1 1 2 4, , , . 

           
2 3

4 0

2 4

3 0













  & 

                    

2 1

3 0

1 4

2 3 1

1 0 4























 

Let  A a
ij m n




 &  B b
ij m n




.  

Define A B  as the matrix  C c
ij m n




 of the same order such that c a b
ij ij ij
   for 

all i=1, 2..., m and j=1, 2..., n. 

e.g.  
2 3 1

1 0 4

2 4 3

2 1 5


















 







 

913

214

o
 

           1. 

2 1

3 0

1 4

2 3 1

1 0 4























  is not defined. 

           2. 
2 3

4 0
5







   is not defined. 

       Let  A a
ij m n




.  

Then    


A a
ij m n

 

and A-B=A+(-B) 

e.g. If A 







1 2 3

1 0 2
 & 

              B 








2 4 0

3 1 1
. 

 Find -A and A-B. 

-A = 












201

321
  

A-B = 












114

321
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4.4 Properties of Matrix Addition: 

Let A, B, C be matrices of the same order and O be the zero matrix of the same order. Then 

   (a) A + B=B + A 

   (b) (A+B) + C=A+(B+C) 

   (c) A+ (-A) = (-A) +A=O 

   (d) A + O=O + A 

4.5 Scalar Multiplication: 

Let  A a
ij m n




, k is scalar. Then kA is the matrix  C c
ij m n




 defined by 

c ka
ij ij
  ,     i, j  i.e.  kA ka

ij m n



 

e.g.  If A 









3 2

5 6
 ,    

              Then -2A= 












1210

26
  

                     (1)   -A = (-1) A 

  (2) A – B=A + (-1) B 

4.5.1 Properties of Scalar Multiplication: 

Let A, B be matrices of the same order and h, k be two scalars. Then       

 (a) k(A+B) =kA + kB 

 (b) (k + h) A=kA + hA 

 (c) (hk)A=h(kA)=k(hA) 

4.5.2 Definition: Transpose Matrix  A a
ij m n




. The transpose of A, denoted by AT
, or A  

, is defined by  

  A

a a a

a a a

a a a

T

m

m

n n nm n m





















11 21 1

12 22 2

1 2




 


 

e.g.             A 









3 2

5 6
, 

             the AT   








62

53
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e.g.             A 









3 0 2

4 6 1
, 

           then AT   e.g 

                      A  5 , then 

                      5TA  

4.5.3 Properties of Transpose: 

Let A, B be two mn matrices and k be a scalar, then  

(a) AA TT )(  

 (b) ( )A B T  TB)(  

 (c) ( )kA T  k 

4.6 Symmetric matrix: 

 A square matrix A is called a symmetric matrix if 

                   A AT  .  

i.e. A is symmetric matrix  

          i, jA A a aT

ij ji
 

e.g.  

1 3 1

3 3 0

1 0 6





















  is a symmetric matrix. 

e.g.  

1 3 1

0 3 0

1 3 6





















  is not a symmetric matrix? 

4.6.1 Skew-Symmetric: 

Definition: Square matrix A is called a skew-symmetric matrix if  

             A AT   . 

i.e. A is skew-symmetric matrix  

            i, jA A a aT

ij ji
 

e.g. 

























051

503

130

A  is a skew-symmetric matrix. 
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 4.7 Conjugate of a matrix: 

The matrix obtained from any given matrix A, on replacing its elements by the corresponding 

conjugate numbers is called the conjugate of A and denoted by  

Example  

























0852

232

1321

2

ii

iii

ii

A  

         and  

























0852

232

1321

2

ii

iii

ii

 

4.8 Matrix Multiplication: 

Let  A a
ik m n




 &  B b
kj n p




. Then the product AB is defined as the mp matrix 

 C c
ij m p




 where c a b a b a b a b
ij i j i j in nj ik kj

k

n

    


1 1 2 2
1

 . 

i.e.   AB a b
ik kj

k

n

m p







 


1

 

e.g. Let 

32

23

401

132
    and  

41

03

12












 




















 BA . Find AB and BA. 

e.g. Let ,
12

01
   and 

41

03

12

22

23

































 BA  Find AB. Is BA well defined? 

In general, ABBA. i.e. matrix multiplication is not commutative. 

4.8.1 Properties of Matrix Multiplication: 

   (a) (AB)C = A(BC) 

   (b) A(B+C) = AB+AC 

   (c) (A+B) C = AC+BC 

   (d) AO = OA = O 

   (e) IA = AI = A  

   (f) k(AB) = (kA)B = A(kB) 

   (g) ( )AB B AT T T . 

 

                     (1) Since AB BA; 
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   Hence, A(B+C)  (B+C) A & A(kB)  (kB)A. 

  (2) A kA A A kI A kI A2     ( ) ( ) . 

  (3) AB AC O A B C O      ( )  

     OCBOA  or      

e.g. Let A B C






 







 









1 0

0 0

0 0

0 1

0 0

1 0
, ,    , Then 

AB AC 













 
















1 0

0 0

0 0

0 1

1 0

0 0

0 0

1 0
  

               






 









0 0

0 0

0 0

0 0
 

               








0 0

0 0
 But A  O  and  B  C, so  

AB AC O A O B C        or  . 

4.9 Determinants: 

Definition: Let  A a
ij

  be a square matrix of order n. The determinant of A, det A or 

|A| is defined as follows: 

  (a) If n=2, det A
a a

a a
a a a a  11 12

21 22

11 22 12 21
 

  (b) If n=3, det A

a a a

a a a

a a a


11 12 13

21 22 23

31 32 33

 (or)

 det A a a a a a a a a a  
11 22 33 21 32 13 31 12 23

  a a a a a a a a a
31 22 13 32 23 11 33 21 12

 

e.g. Evaluate   (a)      
1 3

4 1
  

                       (b) det

1 2 3

2 1 0

1 2 1



 















 

                        e.g.         If

3 2

8 1

3 2 0

0

x

x



 , find the value(s) of x. 
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                    det A

a a a

a a a

a a a


11 12 13

21 22 23

31 32 33

 

        a
a a

a a
a

a a

a a
a

a a

a a11

22 23

32 33

12

21 23

31 33

13

21 22

31 32

 

  or    a
a a

a a
a

a a

a a
a

a a

a a12

21 23

31 33

22

11 13

31 33

32

11 13

21 23

 

  or  . . . . . . . . .  

       By using 

  

  

  

 

Exercise: 

 Evaluate  (a) 

3 2 0

0 1 1

0 2 3

   

                      (b) 

0 2 0

8 2 1

3 2 3

   

4.9.1 Properties of Determinants: 

(1) 

a b c

a b c

a b c

a a a

b b b

c c c

1 1 1

2 2 2

3 3 3

1 2 3

1 2 3

1 2 3

   i.e. det( ) detA AT  . 

(2) 

a b c

a b c

a b c

b a c

b a c

b a c

b c a

b c a

b c a

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

    

 

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

2 2 2

1 1 1

3 3 3

2 2 2

3 3 3

1 1 1

    

(3) 

a c

a c

a c

a b c

a b c
1 1

2 2

3 3

1 1 1

2 2 2

0

0

0

0

0 0 0

   

(4) 

a a c

a a c

a a c

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

1 1 1

1 1 1

3 3 3

0   
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(5) If 
a

b

a

b

a

b

1

1

2

2

3

3

  , then 

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

0  

(6) 

a x b c

a x b c

a x b c

a b c

a b c

a b c

x b c

x b c

x b c

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3







   

 

(7) 

pa b c

pa b c

pa b c

p

a b c

a b c

a b c

a b c

pa pb pc

a b c

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

   

 

pa pb pc

pa pb pc

pa pb pc

p

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

3
1 1 1

2 2 2

3 3 3

  

 (1) 

pa pb pc

pa pb pc

pa pb pc

p

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3






























 

 (2) If the order of A is n, then det( ) det( ) A An  

(8) 

a b c

a b c

a b c

a b b c

a b b c

a b b c

1 1 1

2 2 2

3 3 3

1 1 1 1

2 2 2 2

3 3 3 3













 

 

x y z

x y z

x y z

C C C
x y z y z

x y z y z

x y z y z

1 1 1

2 2 2

3 3 3

2 3 1

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

 
 
 
 

 



 

 

 

 

Exercise: 

 (1) Evaluate  (a) 

1 2 0

0 4 5

6 7 8

 ,  

                       (b) 

5 3 7

3 7 5

7 2 6

 

(2) Evaluate                      

1

1

1

a b c

b c a

c a b







 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

81 

 

(3) Factorize the determinant  

   

x y x y

y x y x

x y x y







 

(4) Factorize each of the following : 

  (a) 

a b c

a b c

3 3 3

1 1 1

        

  (b) 

2 2 2

1 1 1

3 3 3

2 2 2

3 3 3

a b c

a b c

a b c  
 

4.9.2 Multiplication of Determinants: 

             Let A
a a

a a
 11 12

21 22

 , 

                                B
b b

b b
 11 12

21 22

 

  Then A B
a a

a a

b b

b b
 11 12

21 22

11 12

21 22

 

           
 

 

a b a b a b a b

a b a b a b a b
11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

 

4.9.3 Minors and Cofactors: 

Definition: Let A

a a a

a a a

a a a
















11 12 13

21 22 23

31 32 33

, then A
ij
 , the cofactor of a

ij
 , is defined by  

 A
a a

a a11

22 23

32 33

  , A
a a

a a12

21 23

31 33

   , ... , A
a a

a a33

11 12

21 22

 . 

Since 
3332

1312

21 
aa

aa
aA  + a

a a

a a22

11 13

31 33

a
a a

a a23

11 12

31 32

 

  232322222121 AaAaAa   

4.9.4 Theorem:         (a)  a A a A a A
A i j

i ji j i j i j1 1 2 2 3 3 0
  








det    if  

         if  
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                     (b)  









ji

jiA
AaAaAa jijiji

  if         0

  if   det
332211

 

e.g. a A a A a A A
11 11 12 12 13 13

   det , a A a A a A
11 21 12 22 13 23

0   , etc. 

 

e.g.  Let A

a a a

a a a

a a a
















11 12 13

21 22 23

31 32 33

 and 
ijc  be the cofactor of a

ij
 , where1 3 i j, . 

  (a) Prove that I

ccc

ccc

ccc

A |A|

332313

322212

312111


















 

  (b) Hence, deduce that 
2

332313

322212

312111

)|A|(

ccc

ccc

ccc

 

4.10 Inverse of Square Matrix By Determinants: 

Definition: The cofactor matrix of A is defined as cofA

A A A

A A A

A A A
















11 12 13

21 22 23

31 32 33

. 

Def. The adjoint matrix of A is defined as 

       





















332313

322212

312111

)(

AAA

AAA

AAA

cofAadjA T

. 

e.g.  If A
a b

c d







 , find adjA. 

e.g.     (a) Let A 















1 1 3

1 2 0

1 1 1

, find adjA. 

 (b) Let B  

















3 2 1

1 1 1

5 1 1

, find adjB. 

e.g.  Given that A  

















3 2 1

1 1 1

5 1 1

, find A1
. 
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e.g.    Suppose that the matrix A
a b

c d







  is non-singular, find A1

. 

e.g.             Given that A 








3 5

1 2
, find A1

. 

4.10.1 Theorem:  A square matrix A is non-singular if   0. 

e.g. Show that A 








3 5

1 2
 is non-singular. 

e.g.  Let A

x x

x

x



 

 

















1 2 1

1 2 1

5 7

, where x R . 

  (a) Find the value(s) of x such that A is non-singular. 

  (b) If x=3, find A1
. 

 A is singular (non-invertible) if A1
 does not exist. Then  

 A square matrix A is singular if  = 0. 

4.10.2 Properties of Inverse matrix: 

Let A, B be two non-singular matrices of the same order and  be a scalar. 

(1) ( )


A A 1 11
 

(2) ( )A A  1 1
 

(3)  ( )A AT T 1 1  

(4)  ( )A An n 1 1   for any positive integer n. 

(5) ( )AB B A  1 1 1
 

(6) The inverse of a matrix is unique. 

(7) 
A

A
det

1
)det( 1   

 (8)  If M

a

b

c
















0 0

0 0

0 0

, Then       M

a

b

c

























1

1

1

1

0 0

0 0

0 0

. 

 (9)      If M

a

b

c
















0 0

0 0

0 0

,  
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     then  M

a

b

c

n

n

n

n

















0 0

0 0

0 0

 where n 0. 

e.g. Let A 














4 1 0

1 3 1

0 3 1

 ,  

                B 

 

 















1 3 1

0 13 4

0 33 10

 

      and   M 














1 0 0

0 1 0

0 0 2

. 

  (a) Find A1
 and M 5

. 

  (b) Show that ABA M 1
. 

  (c) Hence, evaluate B5
. 

e.g. Let A 








3 8

1 5
 

             & P 









2 4

1 1
. 

  (a) Find P AP1
. 

  (b) Find An
, where n is a positive integer 

e.g.            (a) Show that if A is a 3x3 matrix such that A At   , then =0. 

            (b) Given that B 





















1 2 74

2 1 67

74 67 1

,  

   Use (a), or otherwise, to show det( )I B  0 .  

   Hence deduce that det( )I B 4 0 .   

     x x x3 238 361 900 0    . 

4.10.3 Inverse of a Square Matrix: 

 If a, b, c are real numbers such that ab=c and b is non-zero, then  

 a
c

b
cb  1  and b1

 is usually called the multiplicative inverse of b. 
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 If B, C are matrices, then 
C

B
 is undefined. 

4.10.4 Definition: A square matrix A of order n is said to be non-singular or invertible if and 

only if there exists a square matrix B such that AB = BA = I. The matrix B is called 

the multiplicative inverse of A, denoted by A1
i.e. IAAAA   11 .  

4.10.5 Definition: If a square matrix A has an inverse, A is said to be non-singular or 

invertible. Otherwise, it is called singular or non-invertible. 

e.g.  
3 5

1 2






  And 

2 5

1 3










  are both non-singulars. 

i.e.  A is non-singular if A1
 exists. 

4.10.6 Theorem: The inverse of a non-singular matrix is unique. 

                     (1) I I 1
,so, I is always non-singular. 

  (2) OA = O  I, so O is always singular. 

  (3) Since AB = I imply BA = I. 

Hence proof of either AB = I or BA = I is enough to assert that B is the inverse 

of A. 

e.g.      Let A 








2 1

7 4
. 

  (a) Show that I A A O  6 2
. 

  (b) Show that A is non-singular and find the inverse of A. 

  (c) Find a matrix X such that AX 









1 1

1 0
. 

Theorem: Let A, B be two non-singular matrices of the same order and  be a scalar. 

  (a) ( )A A  1 1
. 

  (b) TA  is a non-singular and ( ) ( )A AT T 1 1
. 

  (c) An
 is a non-singular and ( ) ( )A An n 1 1

. 

  (d) A is a non-singular and ( )


A A 1 11
. 

  (e) AB is a non-singular and ( )AB B A  1 1 1
. 
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Exercise 

1. Given      A = 






 

76

52
 

            B = 








 32

60
 

           C = 








15

27
 find: 

a) A + B 

b) C – A 

c) 3A 

d) 4B + 2C 

2. Given A = 

















16

04

22

 B = 








92

05
  

        and C = 








42

31
 

a) Is AB defined? Calculate AB. Can you calculate BA? 

b) Is BC defined? Calculate BC. Is CB defined? If so calculate CB. 

c) Is it the case that BC = CB? 

3. Find product matrices for the following: 

a) 















 





















53

02

41

035

703

412

  

 b) 






























z

y

x

104

523
 

4. Given A = 








642

531
 and B = 

















1

3

5

 caculate: 

a) AI  b) IA  c) BI  d) IB 
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5. Given A and B as defined in question 4 find: 

a) A‘  b) B‘ 

6. Given A = 








 25

42
 and B = 









 51

03
 find      a) A

-1
  b) B

-1 

4.11 Solving a System of linear Equations Using Matrices: 

Solving a 22 system of linear equations by using the inverse matrix method 

A system of linear equations can be solved by using our knowledge of inverse matrices. 

The steps to follow are: 

1.Express the linear system of equations as a matrix equation. 

2.Determine the inverse of the coefficient matrix. 

3.Multiply both sides of the matrix equation by the inverse matrix. 

4. To multiply the matrices on the right side of the equation. 

5.The inverse matrix must appear in front of the answer matrix. (the number of columns in   

the first matrix must equal the number of rows in the second matrix). The solution will appear 

as:  

























2

1

10

01

c

c

y

x
  where 21 candc  are the solutions. 

Examples:  Solve the following system of linear equations by using the inverse matrix 

method: 

1.  












154

192

yx

yx
 

Solution:        

























15

1

14

92

y

x
    This is the matrix equation that represents the system.   

If    









14

92
A      then      

34

362





A

A
 




























34

2

34

4
34

9

34

1

1A

























34

2

34

4
34

9

34

1

1A  

This is the determinant and the inverse of the coefficient matrix. 







































































15

1

34

2

34

4
34

9

34

1

14

92

34

2

34

4
34

9

34

1

y

x
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































































34

30

34

4
34

135

34

1

34

2

34

36

34

8

34

8
34

9

34

9

34

36

34

2

y

x
 

                
















































34

34
34

136

34

34

34

0
34

0

34

34

y

x
 

                      



























1

4

10

01

y

x
     the common point or solution is (4, -1).  

This is the result of multiplying the matrix equation by the inverse of the coefficient matrix.   

2. 












859

4563

yx

yx
 

Solution:   































8

45

59

63

y

x
 

 If A 












59

63
  then 

39

5415





A

A
 

























39

3

39

9
39

6

39

5

1A  












































































8

45

39

3

39

9
39

6

39

5

59

63

39

3

39

9
39

6

39

5

y

x
 


































































39

24

39

405
39

48

39

225

39

15

39

54

39

27

39

27
39

30

39

30

39

54

39

15

y

x
 


















































39

429
39

273

39

39

39

0
39

0

39

39

y

x
 































11

7

10

01

y

x
      The common point or solution is (-7, -11).                                           
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In the next example, the products will be written over the common denominator instead of 

being written as two separate fractions. 

3.  












3756

134

yx

yx
 

Solution:  

























 37

13

56

14

y

x
         

                     If 











56

14
A     then 

14

620





A

A
 































14

4

14

6
14

1

14

5

1A  






















14

4

14

6
14

1

14

5

1A  


































































 37

13

14

4

14

6
14

1

14

5

56

14

14

4

14

6
14

1

14

5

y

x
 






















































14

14878
14

3765

14

206

14

2424
14

55

14

620

y

x
 


















































14

70
14

28

14

14

14

0
14

0

14

14

y

x
 































5

2

10

01

y

x
     The common point or solution is (-2, -5). 

 

4.  












82

113

yx

yx
 

Solution:    























 

8

11

21

13

y

x
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 If  A 






 

21

13
         then 

7

16





A

A
 






















7

3

7

1
7

1

7

2

1A  













































 



















 8

11

7

3

7

1
7

1

7

2

21

13

7

3

7

1
7

1

7

2

y

x
 

         






















































7

2411
7

822

7

61

7

33
7

22

7

16

y

x
 

 



























5

2

10

01

y

x
     The common point or solution is 

(-2, 5) 

 

Exercises:  Solve the following systems of linear equations by using the inverse matrix 

method: 

1.  












2172

2135

yx

yx
      2.  













4223

4832

yx

yx
   

 3.  












534

362

yx

yx
   4.













824

1

yx

yx
 

Answers: 

Solving systems of linear equations using the inverse matrix method 

1.  












2172

2135

yx

yx
    If    














72

35
A   then 

  635 A  

   29A  

















 




























7

35
7

14

7

7

7

0
7

0

7

7

y

x
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



















































 

29

5

29

2
29

3

29

7

29

5

29

2
29

3

29

7

11 AA  

































21

21

72

35

y

x
 












































































21

21

29

5

29

2
29

3

29

7

72

35

29

5

29

2
29

3

29

7

y

x
 






















































29

10542
29

63147

29

356

29

1010
29

2121

29

635

y

x
 


















































29

147
29

210

29

29

29

0
29

0

29

29

y

x
 































07.5

24.7

10

01

y

x
 

 

2. 












4223

4832

yx

yx
   If 










23

32
A  

  then 94 A 5A  


















































 

5

2

5

3
5

3

5

2

5

2

5

3
5

3

5

2

11 AA  



























42

48

23

32

y

x
 







































































42

48

5

2

5

3
5

3

5

2

23

32

5

2

5

3
5

3

5

2

y

x
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




















































5

84144
5

12696

5

49

5

66
5

66

5

94

y

x
 














































5

60
5

30

5

5

5

0
5

0

5

5

y

x
 



























12

6

10

01

y

x
 

3.  












534

362

yx

yx
    

    If 













34

62
A  

then 246 A , 

     18A  

























18

2

18

4
18

6

18

3

1A  































5

3

34

62

y

x
 











































































5

3

18

2

18

4
18

6

18

3

34

62

18

2

18

4
18

6

18

3

y

x
 






















































18

1012
18

309

18

624

18

88
18

1818

18

246

y

x
 
















































18

2
18

21

18

18

18

0
18

0

18

18

y

x
 































11.

61.1

10

01

y

x
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4.












824

1

yx

yx
         If 














24

11
A    then  

42 A     
&     

























2

1

2

4
2

1

2

2

1A   












24

11


















8

1

y

x

 

 






















































2

84
2

82

2

24

2

44
2

22

2

42

y

x
 

              


















































2

4
2

6

2

2

2

0
2

0

2

2

y

x
 

               





























2

3

10

01

y

x
 

4.12 Elementary Transformations of Matrices: 

Elementary transformations of a matrix find a whole application in various 

mathematical problems. For example, they by in a basis of the known gauss method (method 

of exception of unknown values) for solution of linear equations   

Elementary transformations of a matrix are:  

1. Rearrangement of two rows (Columns) 

2. Multiplication of all row (Column) elements of a matrix 

3. Addition of two rows (Columns) of the matrix multiplied by the same number, not equal to 

zero. 

Two matrices are called equivalent if one of them is maybe received from another after final 

number of elementary transformations. Generally equivalent matrixes are not equal, but have 

the same rank. 

Calculations of determinants by means of Elementary transformations: 

By means of Elementary transformations, it is easy to calculate a determinant of a 

matrix. For example, it is required to calculate a determinant of the matrix. 











































































8

1

2

1

2

4
2

1

2

2

24

11

2

1

2

4
2

1

2

2

y

x
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         Where  then it is 

possible to bear multiplier  ,  

  now multiplying from elements 

if the  column (j  appropriating elements of the column, multiplied  on . We will 

receive the determinant 

  which is equal to 

  =  where 

 =  

 =  -     (i,j = 2,3,4…….n) 

Then we repeat the same actions for  and, if all 

 elements  (j = 2,3,4…….n), then we will receive finally   

 ……….  
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If for any intermediate determinant  its left upper element =0, it is 

necessary to rearrange rows or column in  so that a new left upper element will not be 

equal to zero. If 0 it always can be made. Thus it is ncecssary to consider that the sign on 

a determinant changes on what element  is the main one(that is when the matrix is 

transformed so that =1). Then the sign on an appropriating determinant is equal to 

 

Example:1 by mean of Elementary transformations result the matrix  

A=  to a tringle type 

Solution: Frist we will multiply the first row of the matrix by 4, and the second by (-1) and 

add the first row to the second 

= , now we will  multiply the first row of the matrix by 4, and the 

third  by (-1) and add the first row to the third = , finally we will  

multiply the second row of the matrix by 2, and the third  by (-1) and add the second row to 

the third = . As a result the upper triangular matrix  is received. 

4.13 Elementray Matrices : 

A matrix obtain form a unit matrix, by subjecting it to any of the elementry 

transformations is called an elementray matrices. 

4.13.1 Symbols for Elementray Matrices: 

I .  will also denote the matrix obtain by interchaging the  and  columns, for, 

as may easily be seen, the matrices obtained by interchaging the  and  rows or  the  

and   columns of a unit matrix are the same.  

II. (a)  (c) will denote the matrix obtained by multiplying  the row of the unit 

matrix c.  

It the first from I in only one position, viz the (i,i)th  
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I  (c) 

(i,i) (i,j) (i,i) (i,j) 

1 0 c 0 

 

 (c) will also denote the matrix obtained by multiplying the  by c. 

 

        III. (a)  (k) will denote the matrix, obtained by adding to  the elements  

row of the unit matrix, the products by k odf the corresponding elements of the 

 

It differs  from I in only one place, viz the (i,j)th  

I  (k) 

(i,i) (i,j) (i,i) (i,j) 

1 0 c 0 

 

 (k) which is the transpose of  (k) will denote the matrix obtained by adding to 

the elements of the    the products by k of the corresponding elements of 

the  

4.13.2 Determinants of Elementary Matrices: 

  It is easy to see that  = -1,  =c 0 

 =   =1 So that every elementary matrix is non –singular. This fact also 

shows the basis of our insisting that, c, must not be zero 

4.13.3 Definition Of Row Rank And Column Rank: 

The dimension of the row space of A is called the row rank of A and the dimension of 

the column space of A is called the column rank of A.  

Since the basis of the row space of A is  

      11000,10110,10201  , 

the dimension of the row space is 3 and the row rank of A is 3. Similarly,  
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


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






 4

2

1

3

,

2

3

2

2

,

1

2

3

1

 

is the basis of the column space of A. Thus, the dimension of the column space is 3 and the 

column rank of A is 3. 

 Important Result: 

         The row rank and column rank of the nm  matrix A are equal.  

4.13.4 Definition of the Rank of a Matrix: 

Since the row rank and the column rank of a nm matrix A are equal, we only refer to the 

rank of A and write  Arank .  

 Important Result: 

If A is a nm matrix, then  

n

AnullityArank







space null  theofdimension   the  spacecolumn   theofdimension  the

)()(
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A  and 5n . 
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1

 

is a basis of column space and thus   3Arank . The solutions of 0Ax  are  

Rsssxsxxxx  212514321 ,  , , ,0 ,0 ,0 . 
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Thus, the solution space (the null space) is \


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
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
















































































































1

0

0

0

0

 ,
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0

21 spanss . 

Then, 























0

1

0

0

0

 and 























1

0

0

0

0

 are the basis of the null space. and   2Anullity . 

Therefore, rank(A) + nullity(A) = 3+2 =5= n 

  Important Result: 

Let A be nn  matrix. A is non-singular if and only if   nArank   

 rank(A) = n  A is non-singular det(A) 0 

  solution.  nontrivial  a  has  0      AxnArank  

4.13.5 Reduction to Normal From: 

Theorem: Every no zero matrix of rank r, can by a sequence of elementary transformations, 

be reduced to the form 

 

 being the unit matrix. The from obtained here is the normal form. Let A be a given non-

zero matrix. Since A≠ 0, it has at least one non-zero element.  

Let  =k  0 

By interchanging the row with the first row and the column with the first column, we 

obtain a matrix B such that  =k  0 

Dividing the element of the first row by k, we obtain a matrix C such that =1. 

Subtracting from the elements of the first column by we obtain a matrix D such that  

=0 

As in the preceding step, subtracting from each of the other column and rows, suitable 

multiple of the first column and first row respectively, we obtain a matrix E such that each of 
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the column in its first row and column, excepting the one in the (1,1)  place, is 

zero. Then E is the form  

 

If, now, O, we can deal with it as we did with ,  without affecting the first row and 

the first column. 

Thus proceeding, we shall obtain a diagonal matrix of the given form. 

Since elementary transformations do not alter the rank, the finally obtained diagonal matrix, 

whose rank is r, must have, r and only r non-zero elements. 

Note: 

 If a matrix B is obtained from a matrix A is an elementary transformation, we write A B. 

4.13.6 Equivalence of Matrices: 

Definition: Let A  (F)  and B  (F). A is said to be equivalent to B, if 

there exists two non-singular matrices, P ,Q whose elements are member of f such that  

A= PBQ 

 The following theree properties of this relation are fundamental 

I Reflexivity : Every matrix, A, is equivalent to itself, for we have A  so that P = I, Q= 

I 

II Symmetry: If  A, is equivalent to B over F, then B is also equivalent to A over F, for 

 A= PBQ ⇒ P= where are non -singular matrices over F 

III.Transitivity: If  A, is equivalent to B over Fand  B is  equivalent to C over F, then  A is 

also equivalent to C over F for A= PBQ  B= LCM 

⇒ A= where PL , MQ , being the products of non-singular 

matrices are non -singular matrices over F 

Because of the these properties of non singular matrices over F, are relation 

“equivalance of matrices over F, is reflectivie, symmetiric and transitive.” 

4.13.7 Criterian for Equivalance: 

Theorem: 1   

The nx n matrices over a field F are equivalance over F, if and only if they have the same 

rank. 
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Let A, B be equivalance over F. There exists non-singular matrices P,Q, over F such that 

A= PBQ   

As multiplication with a non-singular matrix does not after the rank , the rank of A and B are 

the same. 

Let now A,B have the same rank, r . If A and B are both equivalance over F to the matrix  

 

so that, because of the symmetic and the transitivity of the equivalance relation, the matrices 

A, B are equivalent over F. 

4.13.8 Canonical matrices for equivalance over a Field, class Partitions: 

Because of the these fundamental properties of  reflexivity, symmetiric and 

transitivity, the relation of equivalance of matrices over F divides the set of all m x n 

matrices over F into a system of mutually exclusive classes such that     

 i) each member of the set belongs to same class. 

ii ) two members of the same class are equivalent. 

iii) No two members of two different classes are equivalent. 

Again by the theorem in (i) above, we see that each class is uniquely characterize by the 

rank of any of its members so that the rank is invariant for members of a same class. 

As the rank of an m x n matricx can assume any value between 0 and 

 (m , n ) say = k, we see that the number of different classes obtain by the equivalence  

relation, in question, is k+1. 

O, …….  

Their ranks respectively are 0,1,2, 3…….k 

Each of these (k+1) matrices is a representative of one of the (k+1) classes referred to 

above in the sense that  

i. Each of the (k+1) classes contains one matrix of the above set, and  

ii. Each member of the set belongs to some class. These (k+1) member are said is 

to be the canonical matrices for the set of (m x n) matrices over a field F, with 

respect to the relation of equivalence of matrices over F. Every (m x n) matrix 

over F is equivalence to one and only one canonical matrix. 
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UNIT – V 

5.1 Characteristic roots and vectors: 

 Let A 









3 1

2 0
 and let x denote a 2x1 matrix. 

 (a) Find the two real values 
1
 and 

2
 of   with 

1
>

2
 

   Such that the matrix equation  

   (*) Ax x   has non-zero solutions.   

 (b) Let x
1
 and x

2
 be non-zero solutions of (*) corresponding to 

1
 and 

2
 

respectively.  Show that if x
x

x1

11

21








   and  x

x

x2

12

22








  then the matrix X

x x

x x







11 12

21 22

 

is non-singular. 

 (c) Using (a) and (b), show that  AX X











1

2

0

0
 

 and hence  A X Xn

n

n













1

2

10

0
 where n is a positive integer. 

Example 1:  

Find the Eigenvalues and Eigen vectors of A =  




 - 1   - 26 

   1    - 3 
.  For the eigenvalues one has  A - 

I   =   






 - 1 -       - 26  

      1       - 3 -  
 

  0          =    

                                 =   






 - 1 -       - 26  

      1       - 3 -  
   

                                 =   (- 1 - )(- 3 - ) – (1)(- 26) 

               =   2
 + 4  + 3 +  26   

                                  =   2
  + 4  + 29 

So the eigenvalues are 

 

     =   
- 4  (-4)

2
 - (4)(1)(29) 

(2)(1)
   

                          =   
- 4  100 

2
   

                           =   -2  5i 
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So     1   =   - 2 + 5i          &     

                     2   =   - 2 - 5i 

This example illustrates a general feature of complex eigenvalues of matrices that have real 

entries, i.e. they occur in complex conjugate pairs.  One reason is that the characteristic 

equation   = 0 is a polynomial equation in  with real coefficients and for such 

equations the roots occur in complex conjugate pairs.  We shall see another reason below.  

For the eigenvectors for 1 = - 2 + 5i one has 

                               A - 1I =  A – (- 2 + 5i)I  

                                                   =  




 1 - 5i      - 26  

    1       - 1 - 5i 
 

                   So an eigenvector v = 




 x 

 y 
 satisfies 

  




 0 

 0 
   = (A - I)v   =   





 1 - 5i      - 26  

    1       - 1 - 5i 



 x 

 y 
 

                                                  =   




 (1 - 5i)x  -        26y  

            x  +  (-1 - 5i)y 
 

So                 (1 - 5i) x  -  26y   =   0 

              x  +  (- 1 - 5i)y   =   0 

If one multiplies the second equation by 1 – 5i one obtains the first.  So, any solution to the 

second equation is also a solution to the first.  So it suffices to solve the second equation 

whose solution is x = (1 + 5i)y.  So, an eigenvector v for 1 = - 2 + 5i has the form 

  v   =   




 x 

 y 
   =   





 (1 + 5i)y 

       y 
  

                                        =   y




 1 + 5i 

    1 
 

So any multiple of the vector v1 = 




 1 + 5i 

    1 
 is an eigenvector for 1 = - 2 + 5i. 

For 2 = - 2 - 5i all the previous computation that we did for 1 = - 2 + 5i remain the same 

except we replace i by – i.  So, it is not hard to see that any multiple of the vector 




 1 - 5i 

    1 
 is 

an eigenvector for 2 = - 2 - 5i. 

This example illustrates a general feature of the eigenvectors for complex eigenvalues, 

namely the eigenvector for complex conjugate eigenvalues have complex conjugate 

components.  It was not hard to see why this was true in the above example, and the same 
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argument can be used in general.  However, there is a slightly different argument that is 

useful in other similar situations. 

If z = x + yi is a complex number with real and imaginary parts x and y then the complex 

conjugate of z is z
_
 = x – yi.   

For example, 3 - 2i
_____

 = 3 + 2i.  The operation of taking complex conjugate has several simple 

algebraic properties.  Some of these are 

(1)  z + w
_____

   =   z
_
  +  w

_
    

                     =   z
_

  -  w
_

 

(2)  zw
__

   =   z
_
w
_

   

                =   z
_
 / w

_
 

 

The operation of taking complex conjugates can be extended to vectors and matrices.  If 

v = 









 z1

 z2 

.

 zn 

 is a vector with complex components, then its complex conjugate is v
_
 = 









z1

__

z2

__

.

 zn

__

.  If  









 a11a12

a1n 

 a21a22
a2n 

    

 am1am2
amn 

 is a matrix with complex components then its complex conjugate is A
_

 = 









 a11

__
   a12

__
      a1n

__
 

 a21

__
   a22

__
      a2n

__
 

    

 am1

__
   am2

__
      amn1

__
 

. 

Example 2: 

If v = 




 2 - 3i 

 5 + 4i 
 then v

_
 = 




 2 + 3i 

 5 - 4i 
.  

 If A = 




 2 - 3i    7 + i 

 5 + 4i   6 - 8i 
 then A

_
 = 




 2 + 3i    7 - i 

 5 - 4i     6 + 8i 
. 
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The algebraic properties (1) and (2) of complex conjugates for numbers extends to complex 

conjugates of vectors and matrices, e.g. if  is a complex number, u and v are vectors and A 

and B are matrices then  

 u + v
_____

   =   u
_
  +  v

_
   A + B

_____
   =   A

_
  +  B

_
 

(3) u
__

   =   
_

u
_
 A

__
   =   

_
A
_

 Au
__

   =   A
_

u
_
  AB

__
   =   A

_
B
_

 

 

The following proposition shows that complex eigenvalues of matrices with real entries occur 

in conjugate pairs. 

5.2 Proposition : 

Suppose A is a matrix with real entries and  is an eigenvalue of A with eigenvector v.  Then 


_

 is also an eigenvalue of A and v
_
 is an eigenvector for 

_
. 

Proof:  One has Av = v.  Taking complex conjugates of both sides gives Av
__

 = v
__

.  Using (3) 

gives A
_

v
_

 = 
_

v
_

. Which proves the proposition? 

Problem 1: 

Consider the mapping that takes a point v = 




 x

 y 
 and rotates it by an angle  = /4 to the new 

point w = 




 r

 s 
.  We know that w = Rv where R = R/4 is the matrix for a rotation by /4.  In 

general, the matrix R for a rotation by  is given by R  = 






 cos     - sin  

 sin        cos  
.  In the case 

 = /4 one has sin (/4) = cos (/4) = 1/ 2 .  So, R = 
1

2 
 




 1   - 1 

 1     1 
.  The eigenvalues of R 

cannot be real since no non-zero vector v is mapped on to the line through itself when it is 

rotated by /4.  To find the eigenvalues of R we proceed as usual. 

  R - I   =   









 

1

2 
 -         - 

1

2 
  

      
1

2 
       

1

2 
 -  
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  0   =   det(R - I )   =   









 

1

2 
 -         - 

1

2 
  

      
1

2 
       

1

2 
 -  

 

                                                   =   








 
1

2 
 -  

2

 +  
1

2
 

So            








 
1

2 
 -  

2

   =   - 
1

2
 - 

1

2 
  

                                                   =   
1

2 
 

So, the eigenvalues are  

                         1   =   
1

2 
 + 

1

2 
i          

     and                                2   =   - 
1

2 
 - 

1

2 
i 

For the eigenvectors for 1 = 
1

2 
 + 

1

2 
i one has 

  A - 1I  =  A – (
1

2 
 + 

1

2 
i)I   

                                =  
1

2 
 




 - i   - 1 

   1   - i 
 

So, an eigenvector v = 




 x 

 y 
 satisfies 

  




 0 

 0 
   =   (A - I)v   =   

1

2 
 




 - i   - 1 

   1   - i 



 x 

 y 
  

                                                   =  
1

2 



 - ix  -  y  

   x  -  iy 
 

So   - ix  -    y     =   0 

         x  -  iy   =   0 

 

If one multiplies the first equation by i one obtains the second.  So any solution to the 

first equation is also a solution to the second.  So it suffices to solve the first equation whose 

solution is y = - iy.  So an eigenvector v for 1 = 
1

2 
 + 

1

2 
i has the form v = 





 x 

 y 
 = 





   x 

 - ix 
 = 
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x




  1 

 - i 
.  So any multiple of the vector v1 = 





  1 

 - i 
 is an eigenvector for 1 = 

1

2 
 + 

1

2 
i.  

Taking complex conjugates one sees that v2 = 




 1 

 i 
 is an eigenvector for 2 = 

1

2 
 - 

1

2 
i. 

Problem 2: Show that the eigenvalues of R  = 






 cos     - sin  

 sin        cos  
 are 1 = cos   +  (sin ) i 

and 2 = cos   -  (sin ) i and the corresponding eigenvectors are v1 = 




  1 

 - i 
 and v2 = 





 1 

 i 
. 

Problem 3:  Show that the eigenvalues of A = 




 0   - 2 

 1     2 
 are 1 = 1 + i and 2 = 1 - i and the 

corresponding eigenvectors are v1 = 




      2 

 - 1 - i 
 and v2 = 





      2 

 - 1 + i 
 

Problem 4: 

Find the eigenvalues and eigenvectors of the matrix: 

.
21

12








A  

A) First, we start by finding the eigenvalues, using the equation derived above: 

.
21

12

0

0

21

12































 ΙA  

If you like, just consider this step as, ―subtract   from each diagonal element of the matrix in 

the question‖. 

Next, we derive a formula for the determinant, which must equal zero: 

   .0321122
21

12
2 









 

We now need to find the roots of this quadratic equation in . 

In this case the quadratic factories straightforwardly to: 

   .013322    

The solutions to this equation are 11  & 32  . These are the eigenvalues of the matrix A .  

We will now solve for an eigenvector corresponding to each eigenvalue in turn. First, we will 

solve for 11   : 

To find the eigenvector we substitute a general vector 









2

1

x

x
x  into the defining equation: 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

107 

 

.1
21

12

,

2

1

2

1





























x

x

x

x

xAx 

 

By multiplying out both sides of this equation, we form a set of simultaneous equations: 

  ,
2

2

2

1

21

21























x

x

xx

xx
or 

,0

,0

.2

,2

21

21

221

121









xx

xx

xxx

xxx

 

Where we have taken everything over to the LHS. It should be immediately clear that 

we have a problem as it would appear that these equations are not solvable! However, as we 

have already mentioned, the eigenvectors are not unique: we would not expect to be able to 

solve these equations for one value of 1x  and one value of 2x . In fact, all these equations let 

us do is specify a relationship between 1x  and 2x , in this case: 

,021  xx or, ,12 xx   

So, our eigenvector is produced by substituting this relationship into the general vector x : 

.
1

1













x

x
x  

This is a valid answer to the question; however, it is common practice to put 1 in place of 1x  

and give the answer: .
1

1










x  

We follow the same procedure again for the second eigenvalue, 32   . First, we write 

out the defining equation:
,3

21

12

,

2

1

2

1





























x

x

x

x

xAx 

 

and multiply out to find a set of simultaneous equations: 

.32

,32

221

121

xxx

xxx




 

Taking everything over to the LHS we find: 
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.0

,0

21

21





xx

xx

 

This time both equations can be made to be the same by multiplying one of them by minus 

one. This is used as a check: one equation should always be a simple multiple of the other; if 

they are not and can be solved uniquely then you have made a mistake. 

Once again, we can find a relationship between 1x  and 2x , in this case 21 xx  , and form our 

general eigenvector: .
1

1











x

x
x  

As before, set 11 x  to give: .
1

1








x Therefore our full solution is:

.
1

1
,3

;
1

1
,1

22

11





















x

x





 

Problem 5: 

You will often be asked to find normalized eigenvectors. A normalized eigenvector is an 

eigenvector of length one. They are computed in the same way but at the end we divide by 

the length of the vector found. To illustrate, let‘s find the normalized eigenvectors and 

eigenvalues of the matrix: 

.
47

25












A  

A) First, we start by finding the eigenvalues using the eigenvalues equation: 

.
47

25
0IA 

















  

Computing the determinant, we find: 

   ,07245   And multiplying out:           .062   

This quadratic can be factorized into    023   , giving roots 21  & 32  .  

To find the eigenvector corresponding to 21    we must solve: 

.2
47

25

,

2

1

2

1

































x

x

x

x

xAx 

 

When we compute this matrix multiplication we obtain the two equations: 
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.247

,225

221

121

xxx

xxx




 

Moving everything to the LHS we once again find that the two equations are identical: 

,027

,027

21

21





xx

xx

 

And we can form the relationship 12
2

7
xx   and the eigenvector in this case is 

thus: .

2

7
1

1
















x

x

x  

In previous questions, we have set 11 x , but we were free to choose any number. In this case 

things are made simpler by electing to use 21 x  as this gets rid of the fraction, 

giving: .
7

2








x  

This is not the bottom line answer to this question as we were asked for normalized 

eigenvectors. The easiest way to normalize the eigenvector is to divide by its length, the 

length of this vector is: 

.5372 22 x Therefore, the normalized eigenvector is:   ,
7

2

53

1
ˆ 








x  

The chevron above the vector‘s name denotes it as normalised. It‘s a good idea to confirm 

that this vector does have length one: 

.1
53

53

53

49

53

4

53

7

53

2
ˆ

22


















x  

We must now repeat the procedure for the eigenvalue 32   . We find the simultaneous 

equations are: 

,077

,022

21

21





xx

xx
 

and note that they differ by a constant ratio. We find the relation between the components, 

21 xx  , and hence the general eigenvector: 

,
1

1











x

x
x and choose the simplest option 11 x  giving: .

1

1








x  
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This vector has length 211  , so the normalised eigenvector is: .
1

1

2

1
ˆ 








x  

Therefore, the solution to the problem is:

.
1

1

2

1
ˆ,3

;
7

2

53

1
ˆ,2

22

11





















x

x





 

Problem 6:  

Sometimes you will find complex values of ; this will happen when dealing with a rotation 

matrix such as: 

,
01

10







 
A  

Which represents a rotation though 90 . In this example, we will compute the eigenvalues 

and eigenvectors of this matrix. 

A) First start with the eigenvalue formula: 

.
1

1
0IA 

















  

Computing the determinant, we find: ,012   

Which has complex roots i .  This will lead to complex-valued eigenvectors, although 

there is otherwise no change to the normal procedure.  

For i1  we find the defining equation to be:
.

01

10

,

2

1

2

1

























 



x

x
i

x

x

xAx 

 

Multiplying this out to give a set of simultaneous equations we find: 

.

,

21

12

ixx

ixx




 

We can apply our check by observing that these two equations can be made the same by 

multiplying either one of them by i . This leads to the eigenvector: .
1










i
x Repeating this 

procedure for i 2 , we find: .
1 









i
x Therefore our full solution is: 
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.
1

,

;
1

,

22

11





















i
i

i
i

x

x





 

5.4 DEFINITION OF EIGENVALUES AND EIGENVECTORS OF A SQUARE 

MATRIX 

If ][A  is a nn  matrix, then 0][


X  is an eigenvector of ][A  if  

][][][ XXA   

Where  is a scalar and 0][ X .  The scalar   is called the eigenvalue of ][A and ][X  is 

called the eigenvector corresponding to the eigenvalue  . 

 Eigenvalues of a square matrix: 

To find the eigenvalues of a nn matrix ][A , we have 

][][][ XXA   

    0][][][  XXA   

0]][[][][  XIXA   

  0]])[][[]([  XIA   

Now for the above set of equations to have a nonzero solution, 

     0])[]det([  IA   

This left-hand side can be expanded to give a polynomial in   and solving the above 

equation would give us values of the eigenvalues.  The above equation is called the 

characteristic equation of ][A . 

For a ][A nn  matrix, the characteristic polynomial of A  is of degree n  as follows 

0])[]det([  IA  , giving 

02

2

1

1  

n

nnn ccc   

Hence, this polynomial has n  roots. 

 

 Problem:7 

Find the eigenvalues of the physical problem of the matrix 















75.075.0

5.13
][A   
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Solution: 

      


















75.075.0

5.13
][][ IA  

    0)5.1)(75.0()75.0)(3()det(   IA  

0125.1375.025.2 2    

               0125.175.32    

)1(2

)125.1)(1(4)75.3()75.3( 2 
  

   
2

092.375.3 
  

   3288.0,421.3  

So, the eigenvalues are 3.421 and 0.3288. 

Problem :8 

Find the eigenvectors of 















75.075.0

5.13
A  

Solution: The eigenvalues have already been found in Example 1 as 

3288.0,421.3 21    

Let       









2

1
][

x

x
X

,

be the eigenvector corresponding to  

421.31   

Hence 

                            0]])[[]([ 1  XIA   

0
10

01
421.3

75.075.0

5.13

2

1








































x

x
 

                  





























0

0

671.275.0

5.1421.0

2

1

x

x
 

If sx 1 then  

sx

xs

2808.0

05.1421.0

2

2




 

The eigenvector corresponding to 421.31   then is  
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











s

s
X

2808.0
][  

 











2808.0

1
s  

The eigenvector corresponding to  

421.31    is  

 








 2808.0

1
 

Similarly, the eigenvector corresponding to  

3288.02   is  










781.1

1
  

 

Problem 9: 

Find the eigenvalues and eigenvectors of  

Solution: The characteristic equation is given by 

0])[]det([  IA   

0

05.0

5.05.05.0

105.1

det 





























  

0)]5.0)(5.0()0)(5.0)[(1()]0)(5.0())(5.0)[(5.1(    

025.025.12 23    

To find the roots of the characteristic polynomial equation 

025.025.12 23    

We find that the first root by observation is 1  

As substitution of 1 gives 

025.0)1(25.1)1(2)1( 23   

00  So    )1(  is a factor of  

25.025.12 23   . 

To find the other factors of the characteristic polynomial, we first conduct long division 
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25.0

25.025.121

2

23







  

         23    

            ______________________ 









2

2 25.025.1
 

   
25.025.0

25.025.0








 

Hence 

)25.0)(1(25.025.12 223    

To find zeroes of 25.02   , we solve the quadratic equation, 

 025.02   , to give 

       
)1(2

)25.0)(1)(4()1()1( 2




 

2

01




  

5.0,5.0  

So       5.0 and 5.0  are the zeroes of  

5.02    

Giving              )5.0)(5.0(25.02    

Hence 025.025.12 23   can be rewritten as 

0)5.0)(5.0)(1(   to give the roots as 

                                 5.0,5.0,1  

These are the three roots of the characteristic polynomial equation and hence the eigenvalues 

of matrix [A]. 

Note that there are eigenvalues that are repeated.  Since there are only two distinct 

eigenvalues, there are only two eigen spaces.  But, corresponding to 5.0  there should be 

two eigenvectors that form a basis for the eigen space corresponding to 5.0 . 

Given: 0][)][(  XIA  then 
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























































0

0

0

05.0

5.05.05.0

105.1

3

2

1

x

x

x







,

 For 5.0 , 

          























































0

0

0

5.005.0

5.005.0

101

3

2

1

x

x

x

 

Solving this system gives: axbxax  321 ,,  

 So



































a

b

a

x

x

x

3

2

1

 

            





































0

0

0 b

a

a

 

          





































0

1

0

1

0

1

ba  

So the vectors 

















1

0

1

 and 

















0

1

0

 form a basis for the Eigen space for the eigenvalue 5.0  and 

are the two eigenvectors corresponding to 5.0 . 

For 1 , 























































0

0

0

105.0

5.05.05.0

105.0

3

2

1

x

x

x

 

Solving this system gives 

       axaxax 5.0,5.0, 321   

The eigenvector corresponding to 1  is  

                       









































5.0

5.0

1

5.0

5.0 a

a

a

a

 

 Hence the vector 
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



















5.0

5.0

1

 

is a basis for the eigen space for the eigenvalue of 1 , and is the eigenvector corresponding 

to 1 . 

5.5 THEOREMS OF EIGENVALUES AND EIGENVECTORS: 

Theorem 1:If ][A  is a nn  triangular matrix – upper triangular, lower triangular or 

diagonal, the eigenvalues of ][A  are the diagonal entries of ][A . 

Theorem 2: 0  is an eigenvalue of ][A  if ][A  is a singular (noninvertible) matrix. 

Theorem 3: ][A  and  T][A  have the same eigenvalues. 

Theorem 4: Eigenvalues of a symmetric matrix are real. 

Theorem 5: Eigenvectors of a symmetric matrix are orthogonal, but only for distinct 

eigenvalues. 

Example :1  

What are the eigenvalues of?  























2.7062

05.759

0037

0006

][A   

Solution: Since the matrix ][A  is a lower triangular matrix, the eigenvalues of ][A  are the 

diagonal elements of ][A .  The eigenvalues are 

2.7,5.7,3,6 4321  
 

Example :2 

One of the eigenvalues of 

 





















712

953

265

][A is zero.  Is ][A  invertible?  

Solution: 0  is an eigenvalue of ][A , that implies ][A , is singular and is not invertible 

Example :3 

Given the eigenvalues of 
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













 



5.818

255.3

65.32

][A are 711.4,33.12,547.1 321    

What are the eigenvalues of ][B if? 



















5.826

155.3

85.32

][B  

Solution: 

Since TAB ][][  , the eigenvalues of ][A  and ][B  are the same.  Hence eigenvalues of ][B  

also are 

711.4,33.12,547.1 321    

Example :4 

Given the eigenvalues of 















 



5.818

255.3

65.32

][A  

Are 711.4,33.12,547.1 321    

Calculate the magnitude of the determinant of the matrix.  

Solution: 

Since 321]det[ A 711.433.12547.1 88.89  

One of the most common methods used for finding eigenvalues and eigenvectors is the power 

method.  It is used to find the largest eigenvalue in an absolute sense.  Note that if this largest 

eigenvalue is repeated, this method will not work.  Also, this eigenvalue needs to be distinct.  

The method is as follows: 

 1.Assume a guess ][ )0(X  for the eigenvector in ][][][ XXA   

equation.  One of the entries of ][ )0(X  needs to be unity. 

2.Find  

][][][ )0()1( XAY   

3.Scale ][ )1(Y  so that the chosen unity component remains unity.  

][][ )1()1()1( XY   
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4. Repeat steps (2) and (3) with  

][][ )1(XX   to get ][ )2(X . 

5. Repeat the steps 2 and 3 until the value of the eigenvalue converges.   

If sE is the pre-specified percentage relative error tolerance to which you would like the 

answer to converge to, keep iterating until 

 si

ii

E





100
)1(

)()1(




 

Where the left-hand side of the above inequality is the definition of absolute percentage 

relative approximate error, denoted generally by sE  A pre-specified percentage relative 

tolerance of  m 2105.0  implies atleast m  significant digits are current in your answer.  

When the system converges, the value of   is the largest (in absolute value) eigen value 

of ][A  

Example 5: 

Using the power method, find the largest eigenvalue and the corresponding eigenvector of  





















005.0

5.05.05.0

105.1

][A  

Solution: 

Assume  

     



















1

1

1

][ )0(X  





































1

1

1

005.0

5.05.05.0

105.1

][][ )0(XA  

             





















5.0

5.0

5.2

 

             





















2.0

2.0

1

5.2)1(Y  
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5.2)1(   

We will choose the first element of ][ )0(X  to be unity. 

     





















2.0

2.0

1

][ )1(X  









































2.0

2.0

1

005.0

5.05.05.0

105.1

][][ )1(XA  

             





















5.0

5.0

3.1

 





















3846.0

3846.0

1

3.1][ )2(X  

               3.1)2(   

   





















3846.0

3846.0

1

][ )2(X  

The absolute relative approximate error in the eigenvalues is 

100
)2(

)1()2(








 a  

     100
5.1

5.13.1



  

     %307.92  

 

Conducting further iterations, the values of )(i and the corresponding eigenvectors is given in 

the table below 
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i  )(i  ][ )(iX  

1 2.5 





















2.0

2.0

1

 

2 1.3 





















38462.0

38462.0

1

 

3 1.1154 





















44827.0

44827.0

1

 

4 1.0517 





















47541.0

47541.0

1

 (%)a  

5 1.02459 





















48800.0

48800.0

1

 _____ 

   92.307 

   16.552 

The exact value of the eigenvalue is 1  and the corresponding eigenvector is 





















5.0

5.0

1

][X  

5.6 Cayley Hamilton theorem: 

Every square matrix satisfies its own characteristic equation. Let A be a non-singular Matrix 

i.e. A  = 0 from the Cayley Hamilton theorem  

We have  +  +  +………. +  =0 …………(1) 

Pre -Multiplying equation (1) by  we get  

 +  +  +………. +  =0       (since  ) 

 = -(  +  +……….+       
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 =1/an -(  +  +……….+        

Example 1: 

Verify that A=  satisfies its own characteristic equation & hence find  

To find the characteristic equation   

Characteristic equation is IA  =0 

 =0 

( )-4=0 

-1 +λ + -4 =0 

-5=0 

To find -5I=0 

 -5 =  

Hence A Satisfies its own characteristic equation   

Multiplying (A) by , we get  

   -5 = 0 

   =5     =5  =  

Example 2: 

Use Cayley –Hamilton theorem to find the inverse of A=  

To find the characteristic equation   

Characteristic equation is  IA  =0 

 =0 

( )-6 =0 

42 + -13 -6 =0 

-13 -36 =0 

To Find  

By Cayley –Hamilton theorem we get 
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-13A-36I =0 

-13 -36  =0 

A-13I+-36  =0 

 =  

       =    

        =  

Example 3 

Verify Cayley –Hamilton theorem for the matrix   A=  

To find characteristic equation: 

Let A = the characteristic equation is -  -  =0 

Where  = sum of leading diagonal elements =8-3+1 = 6 

 = sum of the minors of the leading diagonal elements 

              =  +  

              =-3-8+8-6-24+32 

              =-1 

 =  

           = 8(-3-8)+ 8(4+6)+2(-16+9)=-88+68-14 

           = -22 

The characteristic equation is  6  +22 =0 

Verification: To verify Cayley –Hamilton theorem we have to prove that  6 + 

22I =0 

Now                                    =   
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*  

                                                  

6 +22I= - 

 =  

 

Example 4 

Verify Cayley –Hamilton theorem for the matrix   A=  

To find characteristic equation: 

Let A = , The characteristic equation is -  -  =0 

Where  = sum of leading diagonal elements =1+1+1 = 3 

             = sum of the minors of the leading diagonal elements 

                 =  +  

                 = -1-1+1-3+1-0=-1 

           =   

              = 1(1-1)+ 0(2+1)+3(-2-1) 

              = -9 

The characteristic equation is  3  +9 =0 
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Verification: To verify Cayley –Hamilton theorem we have to prove that  3 + 

9I  =0 

Now                                          =  

                                                                          

                                         

                                                     =  

 

3 +9I=

                                         

=  

Hence Cayley –Hamilton theorem is verified  

5.7 Minimal Equations: 

Let f(x) is a polynomial is the indeterminate x and A is a square matrix of order n. If 

f(x) = O, then we say that the polynomial f(x) annihilates the matrix A. Every matrix satisfies 

its characteristic equation and the characteristic polynomial of a matrix A is a non-zero 

polynomial, i.e a polynomial in which the coefficients of various terms are not all zero. 

Therefore, atleast the characteristic polynomial of A is a non-zero polynomial that annihilates 

A. Thus, the set of those non-zero polynomial which annihilate A is not empty. 

5.7.1 Monic Polynomial:  

A polynomial is x in which the coefficient of the highest power of x is unity is called 

a monic polynomial, e.g.  is a monic polynomial of degree 3 over 

the field of real numbers. Among those non-zero polynomials which annihilates a matrix A, 
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the polynomial which is monic and which is of the lowest degree is of special interest. It is 

called the minimal polynomial of the matrix A. 

5.7.2 Minimal equation of a Matrix.  

The monic polynomial of lowest degree that annihilates a matrix A is called the 

minimal polynomial of A. Also, if f(x) is the minimal polynomial of A, the equation f(x) =0 

is called the minimal equation of the matrix A. 

If A is of order n, then its characteristic polynomial is of degree n.  

Since the characteristic polynomial of A annihilates A, therefore the minimal polynomial of 

A cannot be of degree greater than n. Its degree must b less than or equal to n. 

Theorem 1: The minimal equation of a matrix is unique. 

Let the minimal polynomial of a matrix A is of degree r. Then no non-zero polynomial of 

degree less than r on annihilates A. Let  

f(x) = +  and  

g(x) = +  be two minimal polynomials of 

A. Then both f(x) and g(x) annihilate A.  

Therefore, we have  

f(A) =O and g(A) = 0. These give  

+  =0 ….……..….(1) &  

+  …………..(2) 

Subtracting (1) and (2), we get, 

+(  =0  ………(3) 

From (3) we see that the polynomial on L.H.S also annihilate A. Since the degree is less than 

r, therefore it must be a zero polynomial. This gives  

.  

Thus   

fore f(x) =g(x) and thus the minimal equation of A is unique 

5.8 Quadratic Form: 

A homogeneous polynomial of second degree in any number of variables is called a 

quadratic form  

Note: homogeneous polynomial of second degree means each and every term in any 

expression should have degree two. 
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5.8.1 Matrix of the Quadratic form: 

Examples:1 

 i) + 5  +    is a quadratic form in the variables  

ii) + 2  +  +  -3   + is a quadratic form in three 

variables .  

iii) + 2  +  + +-5  +5  - +  is a quadratic form in 

four variables . and  

Note that the degree of each and every term in the above expression is two  

A quadratic form in 3 variables .  is given by 

f( , ) =  +  +  +  +  

+  +  +  

The quadratic form can be written by  

f( , )=  =( . )  

                                                    =  AX 

Where X=  and A is called the matrix of the Quadratic form 

Example: 2 

Write the matrix of the Quadratic form 2  + 2  -6  -

2  

Here =2 =-2  , =4    = = 1 

= 31=-  , =   = =  

Hence the matrix of the form is   
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Example: 3 

Write the Quadratic form corresponding to the following symmetric matrix   is  

 

Solution: Quadratic form corresponding to the symmetric matrix A is 

 AX = ( . ) Using matrix multiplication, we have  

= (0  +2  +  +4  +3 )  

= (0  +2  + + (  +4  +3 )  

= 0  - 2 +4  +  

Note 

1. Rank of the symmetric matrix A is called the rank of the Quadratic form  AX 

2. If the Rank of A is r<n 9number of variables) then the Quadratic form is singular 

otherwise non-singular 

Transformation  

Let X‘AX be a quadratic form where A is the matrix of the quadratic form  

Let X=PY be a non-singular linear transformation (P is non-singular) then we have  

 X‘AX = (PY)‘ A PY 

=P‘Y‘ A PY=Y‘ (P‘AP)Y 

=Y‘DY where D =(P‘AP) 

Let us choose P to be the matrix of a set of orthogonal eigenvectors of A. now the matrix P is 

orthogonal (since P‘= and P‘AP is a diagonal matrix D whose elements are the 

eigenvalues ,  of A 

Here Y‘DY is also a quadratic form in variable , thus the quadratic form X‘AX is 

reached to the canonical form 

In other words, a quadratic form X‘AX in 3 unknown ,  can be reduced to the 

canonical form 
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 +  Where , are the new unknowns. Some of the 

coefficients ,  may of course be zero. 

Note:  

1. If the matrix p is orthogonal the transformation X=PY is called an orthogonal 

transformation 

2. The above method is applicable only when the eigenvectors of A are linearly independent 

and mutually orthogonal 

5.8.2 Theorem: Fundamental theorem on quadratic forms. Any quadratic form may be 

reduced to canonical form by means of non-singular transformations 

Proof: Let X‘AX ……… (1) be a quadratic form of rank 3 

Therefore, A is of rank 3. Then there exists a non-singular matrix P, such that  

 (P‘AP) =  where D is exists a non-singular matrix of order 3 

Apply the non-singular transformations X=PY in (1) where  

X= and Y=  we get 

X‘AX = A(PY) 

           =Y APY 

           = ( AP) Y  

           = Y    by (2) 

= . )    =  +  which is the 

canonical form of the given quadratic form. 

Example 1 

Reduce the quadratic form 2  + 2  -2  +  to canonical 

form through an orthogonal transformation. 

Solution: The given quadratic form is X‘AX, where X=   

and X‘ =  
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Step: 1 To find the matrix of the quadratic form: 

The matrix of the quadratic form is  

A =  

Step: 2 To find characteristic equation: 

The characteristic equation is -  -  =0 

Where  = sum of leading diagonal elements  

                =2+1+1 = 4 

            = sum of the minors of the leading diagonal elements  

                =  +  

                =-1-4+2-1+2-1 

                =-1 

      =  

                 = 2(1-4)-1(1-2)-1(-2+1) 

                 = -4 

The characteristic equation is  4  +4 =0 

Step: 3 To find eigenvalues: 

 4  +4 =0 

When  =1,   1-4-1+4 =0 

Therefore  =1 is a root 

 -4 =0        =   =     =4 or -1 

Eigen values are  =1, -1,4 

Step : 4 to find eigenvectors: 

The eigenvectors X =  are given by 

(2- )  =0 

 =0 

 =0 

Case (i): When  =-1, the eigenvector is given by 
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3  =0 

 =0 

 =0 

Taking first two equations and solving, we get 

   

1                         -1                        3                             1 

2                         -2                        1                             2      

 

 =    =    =k 

 =    =    =k 

      

 =5k   (taking k= ) i.e the  eigenvector is (0,1,1) and its normalized form is  

(  

Case (ii): When  =-1, the eigenvector is given by 

 =0 

 =0 

 =0 considering the first equations, we have 

 

   

1                        -1                          1                          1 

0                        -2                          1                           0 

 

 =    =    =k 

=k:       

 =- k (taking k= ) i.e. the eigenvector is (2, -1,1) and its normalized form is 

( ) 

Case (iii): When  =4, the eigenvector is given by 
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 =0 

 =0 

 =0 considering the first equations, we have 

   

1                       -1                              -2                            1 

-3                      -2                                1                           -3 

 

 =    =    =k 

=  

 =   (taking k= ) i.e. the eigenvector is (1,1, -1) and its normalized form is 

(  

Step: 5 to find modal matrix: 

The normalized modal matrix is 

P=     ,  =  Let X =PY……….(2) be the orthogonal 

transformation substituting (2) in (1), we get 

X‘AX = A(PY) =Y APY 

Now ( AP) Y = . )  

                                          =   +  which is the required canonical form of 

the given quadratic form. 

Example: 2  

Reduce the quadratic form   - 2  -2  +  to 

canonical form through an orthogonal transformation 

Solution: The given quadratic form is X‘AX where  
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X= and X‘ =  

Step: 1 To find the matrix of the quadratic form: 

The matrix of the quadratic form is  

A =  

 

Step: 2 To find characteristic equation: 

              The characteristic equation is -  -  =0 

Where  = Sum of leading diagonal elements =1+2+1 = 4 

 = Sum of the minors of the leading diagonal elements  

        =  + =2-1+1+2-1=3 

 

 =  

            = 1(2-1) +1(-1-0) +0  = 0 

The Characteristic equation is  4   =0 

Step: 3 To find eigenvalues: 

 4   =0,    4 ) =0 

When  =0  4 ) =0, =   =     =3 or 1 

Eigen values are  = 0,1,3 

Step: 4 to find eigenvectors: 

The eigenvectors X =  are given by 

(1- )  =0 

 =0 

 =0 

Case (i): When  =0, the eigenvector is given by 

 =0 
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 =0 

 =0 

Taking first two equations and solving, we get 

             

-1                            0                                1         -1 

 2                             1                               -1          2 

 

 =    =    =k 

 =    =          =k    

 

=k:       

 =k (taking k=-1) i.e. the eigenvector is (1,1,-1) and its normalized form is  

(  

 

Case (ii): When  =1, the eigenvector is given by 

 = 0 

 = 0 

   =0 considering the first equations, we get  

       = 0 

       

Therefore the eigenvector is (1, 0, 1) and its normalized form is  ( ) 

Case (iii): When  =3, the eigenvector is given by 

 =0 

-  =0 

 =0 considering the first equations and solving we get 

             

-1                         0                  -2                                       -1 

 -1                        1                  -1                                      -1 
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 =    =    =k 

 ,   =   (taking k=-1) i.e. the eigenvector is (1,-2,-1) and its 

normalized form is  (  

Step: 5 to find modal matrix: 

The normalized modal matrix is 

P=     ,  =   

Let X =PY……….(2) be the orthogonal transformation substituting (2) in (1),  

we get 

                    X‘AX = A(PY)  

                               =Y APY 

Now ( AP) Y  = . )  

                               =   which is the required canonical form of the given 

quadratic form. 

Example 3  

Reduce the quadratic form   -    to canonical form by means of an orthogonal 

transformation. Determine its nature  

Solution: 

The given quadratic form is X‘AX =  -   

Step: 1 To find the matrix of the quadratic form: 

The matrix of the quadratic form is  

A =  

Step: 2 To find characteristic equation: 

              The characteristic equation is -  -  =0 

Where   = Sum of leading diagonal elements  
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                  =1+0+0 = 1 

              = Sum of the minors of the leading diagonal elements  

                   =  +  =1 

 =   = -1 

 The characteristic equation is   =-1 

Step :3 To find eigenvalues:   =-1 

When  =1                1-1-1+1 =0 therefore  =1   is a root  

 =1 =±1 

Eigen values are  = 1,1, -1 

Step: 4 to find eigenvectors: 

The eigenvectors X =  are given by 

(1- )  =0 

 =0 

 =0 

Case (i): When  =-1, the eigenvector is given by 

=0 

 =0 

 =0  put  

Therefore, the eigenvector is X =  the simplest eigen vector is   

 

Case (ii): When  =1, the eigenvector is given by 

 =0 takes any value 

 =0 

 =0 ………………………………………………………..(1) 

  Put  
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 =0 

The simplest eigen vector is  

    taking k=-1  

Case (iii): Let  be the third eigenvector which is the orthogonal to  

 =0           …………………………………..……(A) 

Also, we have y-z =0 (therefore satisfies (1) ……….……(B) 

(B)  y= z   ………………………………………………..…(C) 

X=2z (sub(C) in (1)) 

Take z=1, y=1, x=2 

The eigenvector  

Now we have the following 3 eigenvectors  

 

Step: 5 to find modal matrix: 

The normalized modal matrix is 

P=     ,  =  

Step :6 To find  

 Let X =PY………. (2) be the orthogonal transformation substituting (2) in (1), we get 

X‘AX = A(PY) =Y APY 

Now ( AP) Y = . )  
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                             =   which is the required canonical form of the given 

quadratic form. Since the eigenvalues are 1,1,-1.Hence one eigenvalue is negative and two 

eigenvalues are positive. Hence the quadratic form is indefinite. 

5.9 Index and Signature of the real Quadratic Form: 

Let X‘AX be the given quadratic form in the variables , …………  

i.e X‘AX =  + +………. +     ……………..(1) 

Let the rank of A be r. Then X‘AX consists only ‗r‘ terms 

The number of positive terms in (1) is called the index of the quadratic form and it is denoted 

by ‗s‘. The difference between the number of positive terms and the negative terms Is called 

the signature of the quadratic form (i.e) 

signature=  

                        =  s- (rank of A-s) = s-(r-s) 

      Therefore s =2s-r 

Where  s - number of positive terms  

             r-rank of A 

Examples: 1 

Find the index and signature of the quadratic form 3  - 2  +2  

+    

 Solutions: The matrix of the quadratic form is A=  

The rank of A is 3 

The canonical form of the above quadratic form is 2  +  

Now Index(s) = Number of positive items=3 

Rank(r) =3 

Therefore signature =2s-r = 6-3 =3 

5.9.1 Classification of Quadratic Form: 

Let X‘AX be the given real quadratic form where ‗A‘ is the matrix of the quadratic 

form. 

Let the eigenvalues of A be, , ,3. Now the quadratic form X‘AX is said to be 

a) Positive definite if all the eigenvalues , ,𝛌3 are positive  
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b) Negative definite if all the eigenvalues , ,𝛌3 are negative  

c) Positive semi definite if at least one eigenvalues is zero and remaining are positive  

d) Negative semi definite if at least one eigenvalues is zero and remaining are 

negative  

e) Indefinite if some eigenvalues are positive and some eigenvalues are negative 

Example : 1 

Discuss the nature of the quadratic form 

10  - 4  -10   +6  +  

The matrix of the quadratic form is  

The eigenvalues of A are 0,3,14. Here one eigenvalue is 0 and the remaining are positive. 

Hence the given quadratic form is positive semi definite 

Example: 2 

Discuss the nature of the quadratic form 

3  - 2  -6   -6  +  

The matrix of the quadratic form is  

The eigenvalues of A are 4, -1,-8. Here we have positive and negative. 

Hence the given quadratic form is indefinite. 

5.9.2 Null Space & Nullity of a Matrix: 

Definition: The subspace generated be the vectors X such that AX= O is called the column 

null space of the m x n matrix A and its dimension n-r called the column nullity of the matrix. 

Thus  

Rank+ column nullity = No. columns 

Note: Similarly, the subspace of the solution of   

 Y A=O is called the row null space and its dimension m -r is the row nullity of the matrix so 

that Rank+ row nullity = Number of rows 

5.9.3 Reduction of a real quadratic form: 

Theorem 1: If A be any n-rowed real symmetric matrix of rank r, then there exists a real non-

singular matrix P such that, P‘AP = diag [1,1,...,1,-1,-1,....,-1,0,...0] 

So, that 1, appears p times and, -1, appears r-p times. 
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Proof: A is a real symmetric matrix of rank r. Therefore, there exists a non-singular real 

matrix Q such that Q‘AQ is a diagonal matrix D with precisely r non-zero diagonal elements. 

Let Q‘AQ = D= diag [λ1, λ2, .......... λr, 0,......0]. 

Suppose that p of the non-zero diagonal elements are positive. Then r-p are negative.  

Since in a diagonal matrix the positions of the diagonal elements occurring in i
th 

& j
th 

rows 

are interchanged by applying the congruent operation Ri <=>Rj,                

 Ci <=>Cj, . Therefore, without any loss of generality we can take λ1, λ2, .......... λp to be positive 

and λ1, λ2, .......... λr to be negative.  

Let S be the n x n (real) diagonal matrix with diagonal elements. 

If we take P= QS, then P is also real non-singular matrix and we have  

P‘AP = (QS)‘ A (QS) = S‘Q‘AQS = S‘DS = SDS 

         = diag [1,1,...,1,-1,-1,....,-1,0,...0] 

So, that 1 and -1 appear p and r-p times respectively.  

Corollary: If X‘AX is a real quadratic form of rank r in n variables, then there exists a real 

non-singular liner transformation X= PY which transforms X‘AX to the form 

Y‘P‘APY = y1
2
+................+ yp

2
- yp+1

2
-............- yr 

 

5.9.4 Canonical or Normal form of a real quadratic form Definition: 

 If X‘AX is a real quadratic form in a variable, then there exists a real non-singular 

liner transformation X= PY which transforms X‘AX to the form 

Y‘P‘APY = y1
2
+................+ yp

2
- yp+1

2
-............- yr 

2 

In the new form the given quadratic form has been expressed as a sum and difference of the 

squares of the new variables. This latter expression is called the canonical form or normal 

form of the given quadratic form.  

If Ǿ = X‘AX is a real quadratic form of rank r, then A is a matrix of rank r. If the real 

non-singular liner transformation X =PY reduces Ǿ to normal form, then P‘AP is a diagonal 

matrix having 1 and -1 as its non-zero diagonal elements. 

 Since P‘AP is also of rank r, therefore it will have precisely r non-zero diagonal 

elements. Thus, the number of terms in each normal form of a given real quadratic form is the 

same. Now we shall prove that the number of positive terms in any two normal reductions of 

a real quadratic form is the same.  

Theorem 1. The number of positive terms in any two normal reductions of a real quadratic 

form is the same.  

Proof:  Let Ǿ = X‘AX is a real quadratic form of rank r in n variables. Suppose the real non-

singular linear transformations 

X=PY and X=QZ 
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Transform Ǿ to the normal forms, 

y1
2
+................+ yp

2
- yp+1

2
-............- yr 

2
   ---------- (1)  

z1
2
+................+ zq

2
- zq+1

2
-............- zr 

2
   ----------- (2) 

and respectively. 

To prove that p=q. 

Let p<q. Obviously y1, ..................... yn,,  z1, ..................... zn,  are linear homogeneous functions of, x1, 

..................... xn 

Since q>p, therefore q-p>0. So, n-(q-p) is less than n. Therefore (n-q) +p is less than n. 

Now y1 =0, y2 =0,............ yp =0, zq+1 =0, zq+2=0,......... zn =0 are (n-q)+p linear homogeneous 

equations in n unknowns n, therefore these equations must possess a non-zero solutions. 

 Let x1=a1,....................xn = an be a non-zero solution of these equations and let X1= 

[a1,.............an]‘. Let Y=[b1,.............bn]‘=Y1  and Z=[c1,..................cn]‘ when X=X1. Then 

b1=0,..........bp=0 and cq+1=0, cn =0. Putting Y=[b1,.............bn]‘ in (1) and  Z=[c1,..................cn]‘ in 

(2), we get two values of Ǿ when X=X1. 

These must be equal. Therefore, we have 

-b
2

p+1 -............- b
2

r =c1
2
 +..........+ cq

2 

=> b p+1 =0, ............b r = 0 

=> Y1 =0 

=> P
-1 

 X1 =0 [ X1 = PY1] 

=> x1 =0 

Which is a contradiction since X1 is a non-zero vector. 

Thus, we cannot have p<q. Similarly, we cannot have q<p. Hence, we must have p=q.  

Corollary. The number of negative terms in any two normal reductions of a real quadratic 

form is the same.  Also, the excess of the number of positive terms over the number of 

negative terms in any two normal reductions of a real quadratic form is the same. 

5.9.5 Signature and index of a real quadratic form. 

Definition: Let y1
2
+................+ yp

2
- yp+1

2
-............- yr 

2
   be a nominal form of a real quadratic 

form X‘AX of rank r. The number p of positive terms in a normal form of X‘AX is called the 

index of the quadratic form. The excess of the number of positive terms over the number of 

negative terms in a normal form of X‘AX i.e..., p-(r-p) =2p-r is called the signature of the 

quadratic form and is usually denoted by s. 

Thus s= 2p-r. 

Theorem 1: Two real quadratic forms in n variables are real equivalent if and only if they 

have the same rank and index (or signature).  
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Proof: Suppose X‘AX and Y‘BY are two real quadratic forms in the same number of 

variables. 

Let us first assume that the two forms are equivalent. Then there exists a real non-singular 

linear transformation X=PY which transforms X‘AX and Y‘BY i.e. B= P‘AP. 

Now suppose the real non-singular linear transformation Y =QZ transforms Y‘BY to normal 

form Z‘CZ. Then C=Q‘BQ. Since P and Q are real non-singular matrices, therefore PQ is 

also a real non-singular matrix. The linear transformation X= (PQ)Z will transform X‘AX to 

the form 

(PQZ)‘ A(PQZ) = Z‘Q‘P‘ APQZ =Z‘Q‘BQZ =Z‘CZ. 

Thus, the two given quadratic forms have a common normal form. Hence, they have the same 

rank and the same index (or signature). 

Conversely, suppose that the two forms have the same rank r and the same signature s. Then 

they have the same index p where 2p-r =s. So, they can be reduced to the same normal form  

Z’CZ = z1
2
+................+ zp

2
- zp+1

2
-............- zr 

2
    

be real non-singular linear transformations, say, X=PZ and Y=QZ respectively. Then P‘AP = 

C and Q‘BQ =C.  

Therefore Q‘BQ = P‘AP. This gives B= (Q‘)
-1 

P‘APQ
-1 

=(Q
-1

)
‘ 

P‘APQ
-1

=(PQ
-1

)‘A(PQ
-1

). 

Therefore the real non-singular transformation X=(PQ
-1

) Y transforms X
‘
AX to Y

,
BY. Hence 

the two given quadratic forms are real equivalent. 

5.9.6 Reduction of a real quadratic form in the complex field. 

Theorem 1. If A be any n-rowed real symmetric matrix of rank r, there exists a non-singular 

matrix P whose elements may be any complex numbers such that  

P
,
AP= diag[1, 1,...., 1, 0,....,0] where 1, appears r times. 

Proof: A is a real symmetric matrix of rank r. Therefore there exists a non-singular real 

matrix Q such that Q
,
AQ is a diagonal matrix D with precisely r non-zero diagonal elements. 

Let 

Q
‘
AQ=D=diag. [λ1,..., λr, 0,..., 0]. 

 The real numbers λ1,..., λr may be positive or negative or both. 

 Let S be the nxn (complex) diagonal matrix with diagonal elements 

then S= Diag[  is a 

complex non-singular diagonal matrix and S
‘
=S. 

 If we take P=QS, then P is also a complex non-singular matrix and we have 

P
‘
AP=(QS)

‘
A (QS)=S

,
Q

‘
AQS=S

‘
DS=SDS=diag. [1, 1,...., 1, 0,....,0] so that 1 appears r times. 

Hence the result. 

Corollary 1: Every real quadratic form X
‘
AX is a complex equivalent to the form z1

2
 + 

z2
2
+.... zr

2 
where r is the rank of A.  
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Corollary 2: Two real quadratic forms in n variables are complex equivalent if and only if 

they have the same rank. 

5.9.6 Orthogonal reduction of a real quadratic form. 

Theorem 1. If φ = X
‘
AX be a real quadratic form of rank r in n variables, then there exists a 

real orthogonal transformation X=PY which transforms φ to the form  

   λ1y1
2
 + .... + λryr

2
, 

where λ1,..., λr are the, r , non-zero eigen values of A, n-r eigen values of A being equal to 

zero. 

Proof: Since A is real asymmetric matrix, therefore there exists a real orthogonal matrix P, 

such that 

   P
-1

AP=D, 

Where D is a diagonal matrix whose diagonal elements are the eigen values of A. 

 Since A is of rank r, therefore P
-1

AP=D is also a rank of r. So, D has precisely r non-

zero diagonal elements. Consequently, A has exactly r non-zero eigenvalues, the remaining 

n-r eigenvalues of A being zero. Let D= diag. [λ1,..., λr, 0,..., 0]. 

Since P
-1

=P
‘
, therefore P

-1
AP=D → P

‘
AP=D → A is congruent to D. 

Now consider the real orthogonal transformation X=PY. We have X
‘
AX=(PY)

‘
A (PY) = 

Y
‘
P

‘
APY = Y

‘
PY= λ1Y1

2
 + .... + λrYr

2
. 

 Hence the result. 

 5.9.7 Sylvester’s law of inertia: 

 The signature of a real quadratic form is invariants for all normal reductions 

Theorem 1: Sylvester‘s Law of Inertia. The signature of a real quadratic form is invariant for 

all normal reductions.  

The number of positive terms in any two normal reductions of a real quadratic form is the 

same.  

Proof:  Let Ǿ = X‘AX is a real quadratic form of rank r in n variables. Suppose the real non-

singular linear transformations 

X=PY and X=QZ 

Transform Ǿ to the normal forms, 

y1
2
+................+ yp

2
- yp+1

2
-............- yr 

2
   ---------- (1) 

 

z1
2
+................+ zq

2
- zq+1

2
-............- zr 

2
   ----------- (2) and respectively. 

To prove that p=q. 

Let p<q. Obviously y1, ..................... yn,, z1, ..................... zn,  are linear homogeneous functions of, x1, 

..................... xn 
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Since q>p, therefore q-p>0. So, n-(q-p) is less than n. Therefore (n-q) +p is less than n. 

Now y1 =0, y2 =0,............ yp =0, 

 zq+1 =0, zq+2=0,......... zn =0 are (n-q)+p linear homogeneous equations in n unknowns, 

therefore these equations must possess a non-zero solutions. 

 Let x1=a1,....................xn = an be a non-zero solution of these equations and  

let X1= [a1,.............an]‘. Let Y=[b1,.............bn]‘=Y1   

and Z=[c1,..................cn]‘ when X=X1.  

Then b1=0,..........bp=0 and cq+1=0, cn =0. Putting  

Y=[b1,.............bn]‘ in (1) and  Z=[c1,..................cn]‘ in (2), we get two values of Ǿ when X=X1. 

These must be equal. Therefore, we have 

-b
2

p+1 -............- b
2

r =c1
2
 +..........+ cq

2 

=> b p+1 =0, ............b r = 0 

=> Y1 =0 

=> P
-1 

 X1 =0 [ X1 = PY1] 

=> x1 =0 

Which is a contradiction since X1 is a non-zero vector. 

Thus, we cannot have p<q. Similarly, we cannot have q<p. Hence, we must have p=q.  

Theorem 2:  If A and b are two n-rowed square matrices, then max{(v(A).  

v(B)  )}  Here  ,  denote the nullities of the 

square matrices  ,  respectively  

We have already proved that  

(A)  )}  ………….(1) 

Now (A)  

Substituting these values in {1}, we prove the theorem  

Note: The theorem was found by Sylvester in 1984 
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