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Unit - I 

Electrostatics  

1.1 Basic concepts :-   

Electrostatics :-  It deals with the behaviour of stationary charges. There are two 

kinds of electric charges : Positive and negative. Like charges repel each other and unlike 

charges attract each other. All charges in nature occur in integral multiples of the basic unit, 

ie., q = ne, where n is either a + ve or –ve integer. That is, the charge exists in discrete 

packets rather than in continuous amounts. That is, the charge is quantized. 

 From the law of conservation of electric charge, charge can neither be created nor 

destroyed. From the electrostatic behaviour, the materials are divided into two categories: 

conductors of electricity and insulators (dielectrics).  Bodies which allow the charge or 

electricity to pass through them are called conductors, e.g.:- metals, human body, earth, 

graphite etc.,  Bodies which do not allow the charge or electricity to pass through them are 

called insulators. e.g:- glass, mica, ebonite, plastics.  

1.2 Coulomb’s Law :- 

Statement :- The force between two point charges is directly proportional to the 

product of the charges and inversely proportional to square of the distance between them.  

ie  F   q1 q2   

 2
1

r
  

Where q1 and q2 are two point charges and r be the distance between the two charges. 

 F  = c 
2

21

r

qq
  

Where c is a constant. In SI units  c =
04

1


 

Where   is called the permittirity of  free space (ie vacuum). 

 F = 
04

1


  

2

21

r

qq

       (1.1)

 

The measured value of   is 8.85418 x 10
-12

  C
-12

 N
-1

 m
-12

, (or F M
-1

) 

This gives,
 04

1


 = 9x10

9
 N m

2
 C

-2 

 Coulomb’s law can also be written as, 

 F = 
2

21

r

qq
x 9x10

9  
Newtons  
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For medium, the Coulomb’s law may be written as, 

 F = 
4

1
   

2

21

r

qq
      (1.2) 

Where  is the permittiviry of  medium. 

The relative permittivity r medium  

 r = 
o


  

The value of r for air is 1. 

In equation (1.1), if 121 qq  and ,1r we have, 

F Newtons  9x10
1

1x1
x10x9  

4

1 9

2

9

2

21

0


r

qq

      

The SI unit of charge is  Coulomb.  

A Coulomb is defined as the quantity of charge which, when at a distance of I metre in 

vacuum or air from an equal and similar charge experiences a repulsive force of 9x10
9 

N.  

1.3 Electric Field : 

 Electric field at a point is defined as the force that acts on a unit +ve charge placed at 

that point.  

             E = 
q

F
 

Where F is the electrostatic force and q is the + ve  electric charge. 

 The SI unit for electric field is Newton / Coulomb. For discrete stationary charges, the 

net electric field at a point is  

 E = E1 + E2 + E3 + ...................  Ei 

  = 







 ......

4

1
2

2

2

2

1

1

0 r

q

r

q


 

  = 












2

2

04

1

i

i

r

q


 Where  i = 1,2,3.............. 

For a continuous charge distribution, the electric field E at any point is given by  

 E =  2

04

1

r

dq


 

1.4 Electric dipole : 

Consider two charges –q at point A and +q at point B, the distance between them 

being 2d  (Fig.1.1)  such a charge configuration is called an electric dipole.  
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B
qq

d
A



2

 

Fig. 1.1 

The magnitude of the dipole moment  is given by the product of any one of the charges and 

the distance between them  

p = q x 2d 

The unit of p is Coulomb – metre.  

1.5: Electric flux  

 The total number of lines of force cutting through a surface is called the electric flux 

through the surface.  

 

In other words, the net outward flow or flux is the average out drawn normal 

components of the electric field E times the area of the  surface. It is denoted by 
E

  

E = (average normal component of  E )  x  area  

The electric flux through a small area ds is shown in Fig.1.2. 

 

Fig.1.2 

 dE =  E.  = E ds  Cos  

Where  is the angle between E and the normal to the area ds  

The electric flux through the entire surface is  

                     E  =  ∫E.ds   

If E is uniform over the entire surface area, we can write.  

 

SE
E


..

  

The flux of the electric field is scalar. Its unit is N m
2
 C

-1 
or Vm.  

ds
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1.6: Gauss’s Law :- 

   Statement :  

           The total flux of the electric field E over any closed surface is equal to 
0

1


times the 

total net charge enclosed by the surface.  

 = 


q
sdE  .  

Proof :- 

(i) For a charge inside the closed surface 

Consider a single point charge +q located at a point O inside a closed surface S 

(Fig.1.3).  Let ds be a small area element at a distance r from q.  

 

Fig.1.3 

The electric field  

 E  = 
04

1

   2r

q

 

The flux through the area ds is given by  

 d = E. ds = Eds Cos  

  = 










2

04

1

r

q

   ds Cos  =    o

q

4  








2r

Cosds 

 

But 2r

Cosds 
  = d  = Solid angle subtended by the area ds at  o. 

 d  = d
q

o4  
 

 The total flux through the entire closed surface S is given by  

  =  φd  =  
o

q

4  dr  = 


4x
4 o

q

  o

q



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 



q

  Which is Gauss’s law. 

Gauss’s law holds even if there are a number of charges q1, q2, .............qn enclosed by a 

surface, S, because of the superposition principle.  

(ii) For a charge outside the closed surface  

Consider a point charge +q situated at 0 outside the closed surface (Fig.1.4) 

 

 

Fig.1.4 

Let an elementary cone from 0 with small solid angle d   cut the closed surface at two 

elements of area ds1 and ds2. Magnitude of flux through  ds1 and ds2 are equal. Therefore,  

Total flux through ds1 and ds2 = .0
44 00




d
q

d
q

  

 The total flux due to a charge outside is Zero.  

1.7: Differential from of  Gauss’s law :- 

 Suppose the charge is distributed over a volume. Let   be the charge density. Then 

the total charge within the closed surface enclosing the volume is given by  

                     Q =  dV  

We can write the integral form of Gauss’s law as 

  dsE.   =   dV


1
                                   (1.3) 

By Gauss divergence, theorem 

  dsE.   =   dVE).(            (1.4) 

Comparing the Eqs. (1.3) and (1.4), we get  

   dVE).(  =  dV


1
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 . E = 



 

This is differential form of Gauss’s law.  

1.8: Applications : 

(1)  Electric field due to a uniformly charged sphere : 

 A spherically symmetric charge distribution means the charge density   at any point 

depends only on the distance of the point from the centre and not on the direction. 

 Consider a total charge q distributed uniformly throughout a sphere of radius R.  

Case (i) : When the point P lies outside the sphere  

 P is a point at a distance r from the centre O (Fig.1.5). Now we find the electric field 

E at P. Draw the concentric sphere (shown dotted) of radius OP with centre O. This is the 

Gaussian surface. At all points of this sphere, the magnitude of the electric field E is the same 

and its direction is perpendicular to the surface. Angle between E and ds is Zero. 

 

 

Fig.1.5 

The flux through this surface is  

  dsE.   =  Eds  = E x 4r
2
. 

By Gauss’s law, 

 E x 4r
2 = 



q   

 
(or) E  = 

24 r

q

o  

Hence the electric field at an external point due to uniformly charged sphere is the same as if 

the total charge is concentrated at its centre.  
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Case(ii) : When the point lies on the surface  

 Here    r = R 

  E = o

q

4    
2R

q

 

Case(iii) : When the point lies inside the sphere  

 P
1
 is a point inside the sphere (Fig 1.6). P

1
 is at a distance r from the centre O. Draw a 

concentric sphere of  radius r (r  R) in the centre at O. This is the Gaussian surface.  

 

 

Fig.1.6 

  

Total charge enclosed by the Gaussian surface  

  q
1
 = 

 3

3

4
r

  x    3

3

4
R

q


 =  3

3

R

r
q

 

 Here P = charge density = Charge per unit volume =    3

3

4
R

q


 

The outward flux through the surface of the sphere of  radius r is  

 

   dsE.  = E x 4r
2 

 

Applying Gauss’s law, 

  E x 4r
2 

= 


1q
 = 

 



q
 

3

3

R

r

 

 E = 
o

q

4    3R

r
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Then E  r. At the centre of  the sphere. E = 0. 

 

2). Electric field due to an isolated uniformly charged conducting sphere (or) charged     

spherical shell.  

 In an isolated charged spherical conductor any excess charge on it is distributed 

uniformly over its surface and there is no charge inside it. 

Case (i): At an external point :- 

 Consider a point P near but outside a uniformly charged sphere of radius R with a 

charge q (Fig.1.7). Let  = 
24 R

q

 .  P is at a distance r from the centre O. Draw a concentric 

sphere of  radius OP with centre. This is the Gaussian surface.  

 

 

Fig.1.7 

The flux through this surface is  

  dsE.   = Eds  = E x 4r
2
. 

By Gauss’s law, E x 4r
2 

= 


q
 

 (or)  
04

1


E

   
2r

q
  

The E is therefore, the same as that due to a charge q situated at the centre of the sphere.  

Case (ii) : At a point on the surface. 

 E = 
o4

1

   
2R

q
  ( sincer  r = R) 

Case (iii):- At a point inside :- 
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 Let P
1
 be an internal point. Through P

1 
draw a concentric sphere. The charge inside 

this sphere is zero. Hence at all points inside the charged conducting sphere, E = 0. 

3. Electric field due to a uniform infinite cyclndrical charge. 

 Let us consider  that electric charge is distributed uniformly within an infinite cylinder 

of radius R. Let   be at charge density. Now we wish to find E at any point distant r from 

the axis lying (i) inside (ii) on the surface and (iii) outside the cylindrical charge distribution.  

Case (i) :-  When the point lies outside the charge distribution. 

 Let P1 be a point at a distance r (>R) from the axis of the cylinder (Fig.1.8). Draw a 

coaxial cylinder of radius r and length l such that P1 
 
lies on the surface of this cylinder. 

 From symmetry, the Electric field E is every where normal to the curved surface and 

has the same magnitude all points on it. The electric flux due to plane faces is zero. So the 

total electric flux is due to the curved surface alone. 

 The electric flux due to curved surface  =  dsE.  = E x 2rl. 

 

Fig.1.8 

The net charge enclosed by the  Gaussian surface = q = (R
2
l) x   

 By Gauss’s law ,  E x 2rl. = R
2
l  /o. 

(or) E = 
r

R





2

2

 

Case (ii) :- When the point lies on the surface of charge distribution (r = R) 

 Let  P2 be the point on the surface of charge distribution. 

By Gauss’s law, 

 E x 2Rl = 
0

/12 R   
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  E = 




2

R
 

Case (iii):- When the point lies inside the charge distribution (r  R)  

 Let P3 be the point at a distance (r  R) from the axis of the cylinder. Consider  a 

coaxial cylindrical surface of radius r and length l such that P3 lies on the curved surface of 

this cylinder.  

 The charge q
1
 inside this Gaussian surface  =  lR2

 

By Gauss’s law,    E x 2rl = 
0

/12 R  

E = 




2

r
 

4. Field due to a uniformly charged Hollow cylinder 

 Consider a uniformly charged hollow cylinder of radius R (Fig.1.8) Let  be the 

charge per unit length. P is a point at a distance r (r > R) from the axis of the cylinder. Draw a 

coaxial cylindrical Gaussian surface of radius r and length l. The electric flux due to the top 

and botton circular caps is zero. 

 The electric flux due to curved surface =  dsE.  = E x 2rl. The net charge enclosed 

by the Gaussian surface = q = .1  

 By Gauss’s law,  E x 2rl  =  


l
  

    E  =  
ro



2     

Let  be the surface density of charge on the cylinder, then  = 2R 

  E = 



 

 If we construct a Gaussian surface inside the hollow cylinder, it will encloses no 

charge. Therefore, the electric field inside a charged hollow cylinder is zero.  

1.9: Electric potential  

 The electric potential at any point is defined as the work done in bringing a unit +ve 

charge from infinity to that point. 

 If W is the work done upon a charge ‘q’ to bring it from infinity to a given point in an 

electric field, then the potential at that point is given by  
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                                     V  = 
q

W
 

 V is expressed in volts. It is a scalar quantity.  

1.10: Potential difference  

 The workdone in moving a unit +ve charge between two points gives the potential 

difference between the two points (Fig.1.9).                                  

 

Fig.1.9 

Mathematically. 

 VA – VB  = 
q

WAB   

Where VA and VB  stand and for the potential at A and B.  

Electric potential in vector form :- 

 Let A and B be two points in a non uniform electric field. Let a test charge ‘q’ move 

from A to B along any path (Fig.1.10).   

 

Fig.1.10 

Let E be the electric field at any point P. The electric field exerts a force qE on the charge q. 

That is 

F  = - qE 

 The work done for a small displacement dl along AB = F.dl 

  The total work done in moving the charge from A to B is 

 WAB = 
B

A

dlF.  =  

B

A

dlEq .  (F = -qE) 
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(or)    
q

WAB   =  
B

A

dlE.  

But VA – VB = 
q

WAB  

  VA – VB =  
B

A

dlE.  

It the point A lies at infinity. VA = o, Then the potential at the point B is 

  VB   =  
B

A

dlE.  

1.12: Relation between the electric field and electric potential  

 The potential difference between two points in an electric field depends only on the 

coordinates of those points and is independent of the path taken in going from one point to 

the other. 

 To find the electric field in terms of electric potential, consider the potential at two 

neighboring points A(x,y,z) and B (x+dx, y+ dy, z+dz) at a distance ‘dl’ apart in the region. 

The potential difference V is going from A to B is given by  

 dv = dz
z

v
dy

y

v
dx

x

v














             (1.5) 

But we know 

  dv  =  - E. dl                                                                                              (1.6) 

Comparing (1.5) and (1.6), we get   

                                   -E. dl = dz
z

v
dy

y

v
dx

x

v














           

Also  l  =  x + iy + zk  

  dl  =  i dx + j dy + k dz  

 -E. dl  =  -E. (i dx + j dy + k dz) =  dz
z

v
dy

y

v
dx

x

v














  

   = 






















z

v
k

y

v
j

x

v
i . (i dx + j dy + k dz) 

  -E =  






















z

v
k

y

v
j

x

v
i  

  -E  =  grad v =  v 
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 (or) E  =  - v where    = 






















z
k

y
j

x
i  

This is the relation connects the electric field and electric potential. 

1.13: Potential due to a point charge :- 

 Let +q be an isolated point – charge situated in air. P is a point distant r from +q 

(Fig.1.11) 

     

  

                                                    Fig.1.11   

 The electric filed  E = 
o4

1

   
2r

q

                                             (1.7) 

 The potential at P is given by  

                           




r

dlEV .
                                          (1.8) 

 The displacement dl of the unit charge is directed towards the left. E is directed 

towards the right. Thus the angle between E and dl is 180. 

 
 E.dl   =  Edl Cos 180 = -E dl.  

 r  is measured from the charge +q as origin. As we move a distance dl to the left, the 

value of r decreases. Thus dl = -dr. 

  E.dl  =  -E dl  =  E dr. 

Thus equation  (1.8) becomes, 

 



r

dlEV .
 =  





r

dlEV .
     =   o

q

4


   



r

r

dr

2  

  V = o4

1

   r

q

 

 This is the expression for the potential at a point r due to a point charge. 
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1.14. The electric potential at a point due to a dipole. 

 Consider a dipole AB with +q charge at A and –q charge at B separated by a distance 

2l 
 
as shown in Fig.1.12.  Let 0 be the mid point of the dipole.  Let P be a point in free space 

at a distance r from 0 and let angle POB = , Ap = r1 and BP = r2. 

  

 

Fig.1.12 

The electric potential at P due to the charge +q  =  
1

4 ro

q

   . 

 The electric potential at P due to thecharge –q = 
2

4 ro

q





 

 Hence the net potential at P due to the dipole is 

  V  = 
2

4
1

4 ro

q

ro

q






   

 (or) V = 










21

11

4 rro

q


        (1.9)

 

 Let MB and AN be drawn perpendicular to PO. Then OM = ON = l cos . As r l, 

BP MP = r-OM = r – l Cos  and AP = PN = r + ON = r + l cos . 

Hence from Eq. (1.9), we have  

  V = 












  cos

1

cos

1

4 lrlro

q

 

   = )2cos22(

coscos

4 



 lr

lrlr

o

q




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   = )2cos22(4

cos2





lro

lq

  

 Since r l,  the quantity l
2
 cos

2
    can be neglected.  

 The product 21q in called electric dipole moment  

    21q = P  

 Hence   V = 24

cos

ro

p





 

Special cases:-  

(i) When point P lies on the axial line of the dipole on the side of the +ve charge q, =0, 

Cos  = 1. 

 V = 24 ro

p

  

(ii)  When the  point P lies on the axial line of the dipole on the side of the –ve charge q, 

=180, Cos  = -1. 

 V = 24 ro

P

  

(iii) When the point P lies on the equatorial line of the dipole.  

  
.0,02/,2/  VCos
 

1.15  Capacitance of a conductor  

The  ratio Q/V is called the capacitance of the conductor and is denoted by C. 

                       C  =  Q/V 

The unit of capacitance is Farad. 

A conductor has a capacitance of one Farad, if a charge of 1 coulomb given to it raises its 

potential by 1 volt.  

 1μF = 10
-6

F,  1pF = 10
-12

F. 

1.16:  Capacitance of a spherical capacitors :- 

(i)  Outer sphere earth connected : 

A and B are two spherical conductors of radii a and b. A is charged and B is earthed as 

shown in fig.1.13.  Let the charge on the conductor A be +q. Due  to induction, a charge –q is 

induced on the inner substance of the outer sphere. A uniform electric field E is established 
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between the spheres directed from A to B radially.  Consider the element of radius x and 

thickness dx. Then electric field at P1, 

  E  =  24 xo

q

  

Potential difference between P1 and P2 = dv 

 

 

Fig.1.13 

 dv = -E dx = -
dx

xo

q

24   

Potential difference between A and B, 

    V  =    
 
a

b
dx

x

q

24   

    = 

a

b x

dx

xo

q

224  = 

a

xo

q







1

4  

    = 






 











ab

ab

o

q

bao

q

 4

11

4  

       V  =   






 

ab

ab

o

q

4  

 But  C = q / V  = 






 

ab

ab

q
q

4
 = 









 ab

ab4

 

   The capacity of the spherical capacitor  

  C  =  








 ab

ab4

 

For Medium 
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  C   =  








 ab

abr4

 

ii) Inner sphere earth connected :- 

 A Charge +q is given to the outer conductor, +q1 is on its inner surface and +q2 is on 

its outer surface as shown in fig.1.14. 

 q = q1 + q2 

 

Fig.1.14 

The + q1 charge on the inner surface of the outer conductor induces charge - q1 on the inner 

sphere and + q1, flows to the earth. The charge +q1 on the inner surface of the outer sphere 

and - q1 on  the inner sphere form a spherical capacitor whose capacitance will be  

  = 
ab

abo



4

 

 The capacitance of the outer surface of the sphere having a charge +q2 and radius b = 

4ob. 

 Total capacitance  C   =   
abo

ab

abo 


4
4


   

     = 
ob

ab

ab
o  44 










  













ab

abbab 2

 

     = ab

abo



24

 

 Capacitance of the spherical capacitor with its inner sphere earthed in the air medium  

   C   = ab

abo



4

 

(iv) Capacitance of isolated conducting sphere :- 

The capacitance of the spherical capacitor is  
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  C  =     ab

abo



4

 =    




 

11

4

a

o

 

 If the outer sphere is infinite radius (b=) then we are left with an isolated conducting 

sphere. Its capacitance is (put b =) in the above equation. 

    C  =   
ao

a

o 


4
11

4





 

Then the capacitance of an isolated sphere of radius ‘a’ metre  is   4oa  Farad. 

1.17: Capacitance of a cylindrical capacitor.  

 A cylindrical capacitor consists of two coaxial cylinders of radius a and b and length l 

as shown in fig.1.15. We assume that l  b,  ie the length of the cyclinder l is large 

compared to the radius of the cylinder. Let the inner cylinder A be given a charge +q and the 

outer cylinder B be earthed. Due to the electrostatic induction the inner surface  of  B  is 

charged to –q.  To find the electric field intensity E between the cylinders, consider a 

Gaussian cylindrical surface of radius r and length l closed by plane caps as shown in 

fig.1.15(a).   

 

Fig.1.15 

According to Gaussis law, 

  =     
 



q
dsE.

 

The flux is normal to the Gaussian cylindrical surface and no flux passes through the plane 

caps. Therefore the above surface integral involves only the cyclindrical surface.  

 ie       
 



q
dsE
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  E x 2rl  =   

q
 

  E =    
rl

q

2  

The potential difference between the cycllinders is given by  

 V = 
a

b

drE .  

As the angle between E and dr is zero, since E is radial ie along r . So, drE .  = Edr. Hence  

 V = 
a

b

Edr  = dr
a

b rl

q


2
 

 V  = 
rl

q

2
  loge 









a

b
 

  The capacitance  C =  

)(log
2 a

b

erl

q

q

V

q



  

  C = 
 

a
b

e

rl

log

2 
 

The capacitance of the cylindrical capacitor is  

  C = 
 

a
b

rl

10
logx3026.2

2 
 

 It the space between the cylinders is filled with a dielectric of dielectric constant r, 

then, 

  C = 
 

a
b

lr

10
logx3026.2

2 
 

1.18 Energy stored in a capacitor  

 The energy of a charged condenser is equal to the workdone in charging it. The 

workdone (dW) in bringing a small charge dq to the capacitor when the potential is V, then  

  dW  =  Vdq 

 Hence the total workdone in charging it with a charge q is  

  W  = 

a

b
Vdq  

We know 
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  V  =  
c

q ,   W =  dq
q

c

q

0

= 

q

o
qdq

C

1
 = 

q
q

C
0

2

21














 

  W = 
C

q2

2

1
 

But  q  =   CV  

 Workdone   = 
C

Vc 22

2

1
   =   2

2

1
CV  

  W  = 
2

2

1
CV  Joule 

This is the work done to store the energy in a charged condenser.  

1.19: Loss of energy during sharing of charges : 

 When two conductors at different potential are connected together by a wire, the 

charge flows, from the conductor at the higher potential to that at the lower potential, until 

their potentials are equal. During this process the system loses energy. 

 Let A and B be the two conductors of capacities C1 and C2 charged to potentials V1 

and V2 respectively as shown in fig.1.16. 

 

              Fig:1.16. Sharing of charges between two charged conductors.  

 Energy stored in the conductor A before contact = 
2

112

1
Vc  

 Energy stored in the conductor B before contact = 
2

222

1
Vc  

 Total energy stored before contact (E1) = 
2

112

1
Vc + 

2
222

1
Vc   

when the two conductors are joined by a wire, the common potential  

  V = Total charge / total capacity  

   = 

21

2221

cc

VcVc




  

  Total energy of the conductors after contact   

  E2 = 
2)

21
(

2

1
Vcc   



22 
 

  E2  = )
21

(
2

1
cc 

 
 2

21

2
2211

cc

VcVc




 

   = 
 

 
21

2

2
2211

cc

VcVc




 

Loss of energy due to contact, 

 E1 – E2  = 
2

112

1
Vc +

2
222

1
Vc - 

 

 221

2
2211

cc

VcVc




 

   = 
 2

21
2

1

cc 
 





  2)

2211
()

2
22

2
11

(
21

VcVcVcVccc  

   =  
21

2

1

cc 
 





  )

2121
2()

2
2

2
1

(
21

VVccVVcc  

   =  
21

2

21

cc

cc




 )2)( 21

2

2

2

1 VVVV   

   =  
21

2

21

cc

cc



  )2)
21

( VV   

 E1 – E2  =     2
21

21
2

21 VV
cc

cc



 

 Since (V1 – V2)
2
 in always +ve quantity, E2 must be less than E1. Hence there is a loss 

of energy on sharing their charges. The balance of energy (E1-E2) appears partly as heat in the 

connecting wires and partly as light and sound if sparking occurs.  
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Unit – II 

Chemical Effects of Electrical Current  

2.1 Electrolysis :- 

 When an electric current passes through certain compounds in solution or molten 

state, they are decomposed. The decomposition of compounds by an electric current is called 

electrolysis. 

 These compounds are known as electrolytes. Acids, bases and metallic salts are some 

examples of electrolytes. Alcohol and glycerine are some examples of non-electrolytes.  

Examples : 

1. When an electric current is passed through the dilute sulphuric acid (H2So4 using 

platinum electrodes, the H2So4 is decomposed into hydrogen and sulphate radical.  

4
So

2
H

4
So

2
H  

current

electric
  

2. During the electrolysis of sodium chloride using platinum electrodes, it decomposes as 

follows. 

NaCl  Na + Cl↑ 

2.2   Faraday’s  law of electrolysis  

(1) First law : 

 The mass of an element or ion liberated (or deposited) from an electrolyte at the 

respective electrodes is directly proportional to the quantity of electricity.  

m  q      but       q  =  it    

     m  it 

   (or)  m = z it  or  m  = zq 

Where z is a constant  called electro chemical equivalent. (e.c.e)  

coulomb

grams


q

m
z  

II.  Second law :- 

 If the same quantity of electricity passes through different electrolytes, the masses of 

the elements (or ions) liberated at the respective electrodes are proportional to their chemical 

equivalent.  

ie    constanta

3

3

2

2

1

1 
E

m

E

m

E

m
 

(or)     m1 = z1 q, m2 = z2 q,  m3 = z3 q 
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Faraday 1 constanta

3

3

2

2

1

1 
E

qz

E

qz

E

qz
 

(or)    Faraday 1 constanta

3

3

2

2

1

1 
E

z

E

z

E

z
 

1Faraday :-  

 It may be defined like this, one faraday is the quantity of electricity that must be 

passed through an electrolyte to liberate one gram equivalent of a element.  

 (or) It may also be define like this, ie 

 1 Faraday  = Avagadro’s number x charge on the electron. 

2.3: Electrical conductivity of an electrolyte  

 The current passing through an electrolyte is given by  

R

eE
I


  

where E is the applied emf, e is the back emf  due to polarization and R is  the resistance of 

the electrolyte. The variation of current with the applied emf  is show in Fig.2.1. 

 

Fig.2.1 

If l is the length of the electrolyte through which the current passes and ‘a’ is area of cross - 

section of the electrodes, then  

a

l
R

a

l
R  (or)  

Where  is the specific resistivity of the electrolyte  

ie        
l

Ra
  ohm – metre 

The reciprocal of the specific resistivity is called specific conductivity () of the electrolyte. 

111 
 mohm


  
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The equivalent conductivity () of an electrolyte is defined as the ratio of the specific 

conductivity  to the concentration   C,         

                                                                         
C


   

2.4: Determination of specific conductivity of electrolytes – Kohlrausch Bridge  

 The cell containing the electrolyte whose conductivity has to be determined is 

introduced into one arm (R) of a wheatstone’s bridge as shown in Fig.2.2.   

 

 

Fig.2.2 

    The other resistances are P,Q and S. To detect the balancing point of the bridge, a head – 

phone (HP) is connected when the state of balance is indicated by minimum sound through 

the head phone. An alternating current (a.c) is passed through the network and the resistances 

P,Q and R adjusted for minimum sound through the head phone. Then, 

S

R

Q

P
  

or             S
Q

P
R x  

If  l  is the length of column of electrolyte in the tube, a is the area of each plate, and  is the 

specific resistance 

l

Ra

a

l
R  


(or)

 

 

The specific conductivity  of the electrolyte is then determined by 



1

  
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2.5: Thermo electricity  

 It deals with heat energy is transformed into electrical energy or vice versa, ie., 

current produced without use of a cell or a battery and this current is known as thermoelectric 

current.  

2.5.1: Seebeck effect 

 When two dissimilar metal wires are joined together so as to form a closed circuit and 

if the two junctions are maintained at different temperatures, an emf is developed in the 

circuit (Fig.2.3). This phenomenon is called the Seebeck effect. This arrangement is called 

thermocouple. The emf developed is called thermo emf.  Seebeck arranged the metals in a 

series as  

Bi, Ni, Pd, Pt, Cu, Mn, Hg, Pb, Sn, Au, Ag, Zn, Cd, Fe, Sb 

when a thermocouple is formed between any two of them, the thermoelectric current flows 

through the hot junction from the metal occurring earlier to the metal occurring later in the 

list. The metals to the left of Pb are called thermoelectrically negative and those to its right 

are thermoelectrically  positive.  

 

Fig.2.3 

2.5.2: Variation of thermo emf  with  temperature 

  If the temperature of the cold junction of thermocouple be kept at OC and the 

thermo emf  ‘e’  plotted against the temperature T of the hot junction, the graph is a parabola 

as shown in Fig.2.4.  

 The temperature of the hot junction at which the thermo emf becomes maximum is 

called the neutral temperature (Tn) and is a constant for given pair of metals.  
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 The temperature at which the reversal of thermo emf takes place is called the 

temperature of inversion.  

 

 

Fig.2.4 

 The relation between emf ‘e’ and the temperature T is expressed by the equation, 

 e = aT + bT
2 

(2.1)
 

where ‘a’ and ‘b’ are constants. 

Differentiating the Eq.(2.1)  we get, 

bTa
dT

de
2

 

At T = Tn , e is maximum, ie   .0
dT

de
 

Thus,    0 = a + 2bTn 

(or)     Tn  =  - a / 2b                         (2.2) 

At  T = Ti    ,   e = 0 

    0  = a Ti  + bTi
2 

or
 

Ti  =  - a / b
     

                             (2.3) 

Comparing  Eqs. (2.2) and (2.3), we get, 

ni TT 2

 
2.6: Laws thermo emf  

1.  Law of intermediate metals :- 

 This law states that the addition of a third metal into any thermoelectric current does 

not alter the thero emf,  provided the metal is at the same temperature at the point where it is 

introduced.  
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 If  aEb   is   the  emf  for  a couple made of metal A and B and bEc that for the couple 

of metals B and C, then  the  emf  for couple of metals A and C is given by  

aEc  = aEb   + bEc 

2. Law of intermediate temperatures :- 

 

The thermo emf 
3

1E of a thermocouple whose junctions are maintained at 

temperatures T1 and T3 is equal to the sum of the emf 
2

1E and 
3

2E when the junctions are 

maintained at temperatures T1, T2 and T2, T3 respectively, Thus, 

3

1E = 
2

1E + 
3

2E  

2.7:  Peltier effect  

 When a current is passed through a circuit formed by two dissimilar metals, heat is 

evolved at one junction and absorbed at the other junction. This effect is known as Peltier 

effect.  Peltier effect is a reversible effect.  

 The amount of heat H absorbed or evolved at a junction is proportional to the charge 

‘q’ passing through the junction, ie., 

H  q     (or) H  it  

(or)     H =  it 

Where  is a constant called Peltier coefficient. 

When I = 1 ampere and t= 1 sec  then  H =   

Ie.,  the energy that is liberated or absorbed at a junction between two dissimilar metals due 

to the passage of unit quantity of electricity is called Peltier coefficient.  

Difference between Peltier and Joule’s effect.  

Peltier effect Joule’s effect 

1.  It is a reversible effect  1.  It is not a reversible effect  

2.  It takes place at the junctions only  2.  It takes place throughout the conductor.  

3.  It may be a cooling or heating effect  3.  It is always a heating effect  

4.  It is directly proportional to I (ie., H= it) 4.  It is directly proportional to square of the 

current  ( H=I
2
R) 

5.  It depends upon the direction of the 

current  

5.  It is independent of the direction of the 

current  

 

2.8: Thomson effect :- 

 When a current flows through an unequally heated metal, there is an absorption or 

evolution of heat energy absorbed or evolved when a charge of the 1 coulomb flows in the 

metal between two points which differ in temperature by 1C. 

 The Thomson effect is reversible one.  
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 The metals like Ag, Zn, Sb and Cd shows +ve Thomson effect. 

 The mtals like Pt, Ni, Co and Bi shows –ve Thomson effect. 

 For lead, the Thomson effect is zero. 

Thomson coefficient () 

 The Thomson coefficient  of a metal is defined as the amount of heat energy 

absorbed or evolved when a charge of 1 coulomb flows in the metal between two points 

which differ in temperature by 1C. 

 It is expressed in joules per coulomb per C. (or) volt / C. 

2.9: Total  emf  in a thermocouple. 

 Let J1, and J2 be the hot and cold junction of thermocouple made of metals A and B. 

Let T1 and T2 be the absolute temperature of the hot and cold junctions and 1 and 2 the 

Peltier coefficients at these temperature. Let A and B the Thomson coefficient of the metal 

A and B both taken +ve for simplicity (Fig. 2.5). 

 

Fig.2.5 

  

The net emf in volts acting in the circuits given by the workdone in taking 1 coulomb of 

charge completely round the circuit once. 

 

 Energy absorbed at J1 due to Peltier effect = 1 joules  

 Energy liberated at J2 due to Peltier effect = 2  joules  

 

 Energy liberated at A due to Thomson effect = 
1

2

T

T
T

d
A

 joules  

The energy absorbed at B due to Thomson effect  


1

2

T

T
T

d
B

 joules  
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Net energy absorbed  

E = 1  2   - dT
B

T

T
A

) 
1

2

(    

But  this energy gives resultant emf  in the thermocouple  

ie     

E = 1  2   - dT
B

T

T
A

) 
1

2

(    

2.10: Thermo electric power :- 

 It is defined as the rate of change of thermo emf  with  respect to temperature  

We know 

E = aT + bT
2

  

bTa
dT

dE
2   which is called Thermoelectric power   

If a graph is plotted between thermoelectric power and temperature, it is a straight line.  

2.11: Thermodynamics of Thermocouple  

 Let A and B be two metals forming of a thermocouple, with one junction at a lower 

temperature T and the other at a higher temperature T + dT as shown in Fig: 2.6. 

 

Fig.2.6 

Let  and +d be the Peltier coefficients at T and T + dT respectively. Let A and B be the 

Thomson coefficients for the metals A and B respectively. Then, assuming the thermoelectric 

current to pass from A to B at the hot junction, the energy gained by unit quantity of 

electricity is  + d and - due to the Peltier effect, A dT and B dT due to the Thomson 

effect. Hence the total gain of  energy by unit quantity of electricity for the complete circuit is 

 + d -  + A dT - B dT = d + (A - B) dT 

Since this gain to energy is the numerically equal to the thermo emf dE in the circuit 

dE = d + (A - B) dT                                                                      (2.4) 
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From II
nd

 law of thermodynamics, 

 .0






dT

T

BA

TdTT

d 
 

or                                        T ( + d) -  (T+dT)  + (T+dT)  (A B)  dT = 0 

   Td - dT + T (A - B) dT = 0.     

(neglecting the term involving dT
2
) 

(or)     0)(  dTdT
T

d BA 


  

(or)     


 ddT
T

dTBA  )(                    (2.5) 

Substituting the emf  (Eq. 2.5) in Eq. (2.4)  we get, 

   


 ddT
T

ddE                   (2.6) 

(or)     
dT

dE
T

                    
(2.7) 

Thus, the Peltier coefficient for a junction of a pair of metals is the product of the absolute 

temperature (T) of the junction and the thermoelectric power at the temperature. 

  

Peltier coefficient = Absolute temp x Thermoelectric power  

From Eq.(2.4),  we have,  

    
dT

dE

TBA



               (2.8) 

By differentiating the Eq. (2.7) we get 

  
dT

dE

dT

Ed
T

dT

d


2

2
                     (2.9) 

Substituting the values from Eqs. (2.7) and (2.9) in Eq. (2.8) we get, 

dT

dE

dT

Ed
T

dT

dE

BA


2

2


 

Or    
2

2

dT

Ed
T

BA
  

If the metal A is lead, A =0, Hence  

2

2

dT

Ed
T

B
  
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2.12: Thermo – Electric Power diagrams  

 Thermo – electric power diagram often called Tait’s diagram is a plot of thermo – 

electric power P against the temperature.  

 We know 

E = aT + bT
2 

A graph between E and T is a parabola  

bTa
dT

dE
2  

Where
dT

dE
is called thermo – electric power. 

 A graph between thermo electric power (dE/dT) and difference of temperature (T) is a 

straight line (Fig.2.7). This graph is called Thermo – electric power line (or) the thermo 

electric diagram. Thomson coefficient of lead is zero. So generally thermoelectric lines are 

drawn with lead as one metal of the thermocouple. The  thermocouple line of a Cu-Pb 

couple has a +ve slope while that of Fe - Pb couple has a -ve slope. 

 

Fig.2.7 

 

2.13: Uses of Thermo – electric power diagrams  

       (i) Determination of Total emf 

 MN represents the thermo – electric power line of a metal like copper coupled with 

lead.   MN has a +ve slope (Fig.2.8). 

 Let A and B be two points corresponding to temperatures T1 K and T2 K respectively.  

 Consider a small strip abdc of thicknes dT with junctions maintained at temperatures 

T and (T+dT). 

 The emf developed when the two junctions of the thermocouple differ by dT is 
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 dE = dT 








dT

dE
= area abcd 

 Total emf developed when the junctions of the couple are at temperatures T1 and T2 is 

Es = )
2

1

(

T

T
dT

dE
dT      = area ABDC 

 

Fig.2.8 

ii) Determination of Peltier emf  

 Let 1 and 2 be the Peltier coefficients for the junctions of the couple at temperature 

T1 and T2 respectively.  

 The Peltier coefficient at the hot junction (T2) is 

                                            (2)  =  T2 

2
TdT

dE








=  OB x BD = area OBDF. 

Similarly, Peltier coefficient at the cold junction (T1) is  

  1  =  T1 

1
TdT

dE








=    OA x AC = area OACE. 

 1 and 2 give the Peltier emfs at T1 and T2.  Peltier emf  between temperatures Tl and 

T2 is 

Ep = 2 - 1 = area OBDF – area OACE 

                                               = area ABDFECA 

(iii) Determination of Thomson emf  

 Total  emf developed in a thermocouple between temperature T1 and T2 is  
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Es = dT

T

T
ba )

2

1

()
12

(          

Here a and b represent the Thomson coefficients of two metals constituting thermocouple.  

 If the metal A is copper and B is Lead, then B = 0. 

   Es = dT

T

T
A

)
2

1

()
12

(         

 (or)        EdT

T

T
A

 12
)

2

1

(   

Thus, the magnitude of Thomson emf is given by  

ETh = E )
12

(       Area ABDFECA – Area ABDC  

= Area CDFE 

iv) Thermo emf in a general couple neutral temperature and temperature of inversion  

 Let us consider a thermo couple consisting of any two metals, say Cu and Fe. AB and 

CD are the thermo – electric power lines for Cu and Fe with respect to lead (Fig.2.9)  

 

Fig.2.9 

 

Let T1 and T2 be the temperature of the cold and hot junctions corresponding to P and Q. 

 Emf of Cu – Pb Thermocouple = area PQB1A1 

 Emf of Fe – Pb Thermocouple = area PQD1C1  

 Emf of CU- Fe thermocouple is  

  
Cu
Fe

E   =  Area PQD1C1 - Area PQB1A1 

   = Area A1B1D1C1  
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 Tn is called the neutral temperature at which two power lines intersect with each 

other. 

 Suppose temperatures of the junctions, T1 and T2 for a Cu-Fe thermocouple are such 

that the neutral temperature Tn lies between  T1 and T2 (Fig.2.10). Then the thermo emf will 

be represented by the difference between the areas A1NC1 and B1D1N because these areas 

represent opposing emf’s. In particular case when Tn = (T1 +T2)/2. These areas are equal and 

the resultant emf is zero. In this case T2 is the temperatre of inversion” for Cu-Fe 

thermocouple.  

 

Fig.2.10 

 

2.14: Applications of thermo electric effect :-  

 The important applications of thermoelectric effects are, 

1. Thermopile :- 

 The thermopile consists of a number of small strips of antimony and bismuth placed 

alternately as shown in the Fig. (2.11) 

 

 

Fig.2.11 
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 The ends are soldered and the combination is so arranged that the bismuth-antimony 

junctions lie at one side forming the hot junction and the antimony – bismuth junction lie at 

the opposite side forming the cold junction. A sensitive Galvanometer is included in series 

with the pile. When the hot junction is exposed to the Thermal radiation. The rise in 

temperature produces a thermo-electric current in the circuit, which in turn, produces a 

deflection in the galvanometer. In the  actual construction, the strips are arranged in the form 

of a cube with all the hot junctions forming one face of the cube and all the cold junctions 

forming the opposite face. The different layers of the strips are insulated with paraffin paper 

or mica. The thermopile is mounted on a vertical stand and is provided with a conical 

protector to avoid stray radiations. 

2). Boy’s radio micrometer: 

 The Boy’s radio micrometer is a highly sensitive instrument to measure the amount of 

thermal radiations. 

 It consists of Antimony – Bismuth (A and B in Fig: 2.12) thermocouple with the 

lower junction is contact with a blackened platinum or copper disc (D). The thermocouple 

circuit is completed by a single loop of copper wire. The copper is suspended between the 

poles N and S of a powerful horse – shoe magnet by means of fine quartz fibre and a glass 

rod. The suspension fibre is provided with a small mirror to measure the angular deflection of 

the loop by the lamp and magnetic field just as in the case of a suspended moving coil 

galvanometer. The angular deflection produced is directly proportional to the quantity of 

thermal radiation falling per sec on the platinum disc. 

 

Fig.2.12 
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3. Thermo – milli ammeter  

 It is devised by Sir, J.A. Fleming. It is a very sensitive ammeter and it is used for 

measuring both alternating and direct continuous current. This instrument consists of a fixed 

wire of Constantan. One junction of a Bismuth – Tellurium thermocouple is soldered to a 

Constantan wire at C, where as the other junction is connected scale arrangement. A magnet 

screen (not shown in the Fig:2.13) surrounds the lower part of the instrument to protect the 

diamagnetic bismuth from the field of the horse – shoe magnet. The whole system is provided 

with a brass case to protect it from air currents.  

 

 

 

Fig.2.13 

 When the thermal radiation is incident on the blackened platinum disc., a thermo 

electric current is set up in the circuit and this, in turn, rotates the copper loop in the a 

galvanometer by means of leads E and D. The current to be measured is allows to pass 

through the wire AB. As a result, a deflection is obtained in the galvanometer due to the 

thermo electric current developed. 

 The unknown current corresponding to the observed deflection can be directly read 

from a pre obtained calibration curve. The calibration curve is obtained by sending known 

currents through AB and observing the resultant deflections. For better sensitiveness, the 

thermo electric part of the apparatus is enclosed in an evacuated glass bulb.  
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UNIT – III 

Transient Currents  

3.1: Transient Phenomena 

 Transient phenomena are phenomena that exist only for short a while and are not 

simple periodic functions of time. 

3.2: Transient currents and voltages  

 Production of currents and voltages in a circuit in a very short interval of time is 

called transient currents and voltages. During the transient process, the currents and voltages 

in the circuit are functions of time. 

3.3: Growth and decay of current in L-R circuit 

  (i)  Growth of current in L-R circuit. 

 Consider a circuit consisting of a battery of a steady emf  E, an inductance L and a 

resistance R as shown in Fig.3.1. 

 

Fig.3.1 

When the key is suddenly pressed, there is growth of current in the circuit and a back emf is 

induced. Let I be the current at any instant of time t then  

   E = RI + L 
dt

dI
      (3.1) 

When the current reaches maximum value I0, the back emf   L .0
dt

dI
 

   E = RI0       (3.2) 

From eqns (3.1) and (3.2), we have,  

RI0  =  RI + L 
dt

dI
 

    R  (I0 – I)  =  L 
dt

dI

     (3.3)
 

Taking  (I0 – I)   = x 

Differentiating with respect to time, we get  
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dt

dx

dt

dI




 

Substituting this in eq. (3.3), we get  

dt

dx
LRx 

 

dt
L

R

x

dx


 

Integrating, 

     
kt

L

R
xe log

  where k is a constant  

     
kt

L

R
IIe  )

0
(log  

when t = 0,  I = 0, 

kIe 
0

log
 

0
log)

0
(log Iet

L

R
IIe 

 

t
L

R
IeIIe 
0

log)
0

(log
 

t
L

R

I

II
e 













 

0

0log
 

t
L

R

e
I

II






0

0

 

(or)     

t
L

R

eI

I





0

1
 

 

or,     

t
L

R

e
I

I



1

0   

    
)1(0

t
L

R

eII




     (3.4) 
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The quantity  L/R is called the time constant  of the circuit.  

Time constant  

 The quantity 
R

L
 has the dimension of time and is called the time constant () of the 

L-R circuit. 

 If 
R

L
 = t, then I = I0 (1-e

-1
) = I0 (1-

e

1
)  =  0.632 I0. 

Thus, 

 The time constant 
R

L of a L-R circuit is the time taken by the current to grow from 

zero to 0.632 times the maximum value of current - I0 in the circuit.   

 The graph between current and time at the time of the growth of current is shown in 

Fig.3.2. 

 

Fig.3.2 

3.4: Decay of current in a circuit containing L and R 

 When the circuit is broken, an induced emf, equal to -L
dt

dI
is again produced in the 

inductance L and it slows down and decay to zero. The current in the circuit decays from 

maximum value I0 to zero. During the decay, let I be the current at time t. In this case E=0. 

 The emf equation for the decay of current is  

dt

dI
LRI 0

     (3.5)  
 

dt
L

R

I

dI
  

 Integrating, kt
L

R
Ie log  ,             where k is a constant. 

when  t=0,    I=I0,         loge I0 =k 

      
0

loglog Iet
L

R
Ie   
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(or)      t
L

R

I

I 


0

log  

or,     

t
L

R

e
I

I





0

 

    

t
L

R

eII




0

     (3.6) 

Eq.(3.6)  represents the current at any instant t during decay. A graph between current and 

time during decay is shown in Fig. 3.3. 

 

Fig.3.3 

Time constant: 

 t   = 00

1

0 365.0
1

, II
e

eII
R

L
 

 

  The time constant 
R

L
of a L-R circuit may also be defined as the time in which the 

current in the circuit falls to 
e

1
of its maximum value when emf  is removed. 

 Fig .3.4  shows that the growth and decay curves are complementary with each other.  

 

Fig.3.4 

3.5: Charge and Discharge of a capacitor through a Resistor  

 (i) Growth of charge. 

 Consider a circuit consisting of a cell of emf  E, a key K, a capacitor C and a 

resistance R as shown in Fig. 3.5. 
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Fig.3.5 

When the current is started, let q be the instantaneous charge on the condenser and I be the 

instantaneous current.   

  The emf equation for the CR circuit is  

E
c

q
RI   

But   
dt

dq
I rate of flow of charge, 

Hence,   E
c

q

dt

dq
R   

(or)   
c

q
E

dt

dq
R   

 and  
c

q
E 0  

(or)   
c

q

c

q

dt

dq
R  0  

   
c

qq

dt

dq
R

)( 0   

CR

dt

qq

dq





)( 0

 

Integrating,   - K
CR

t
qqe  )

0
(log  

Where K is a constant  

Applying the initial condition, 

 When  t=o,  q=o,
 

Kqe 
0

log  

00 log)(log q
CR

t
qq ee   

(or)   
CR

t
qqq ee  00 log)(log  

   
CR

t

q

qq
e










 

0

0 )(
log  
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CRt
e

q

qq /

0

0 



 

(or)    
CRt

e
q

q /

0

1


  

(or)    
CRt

e
q

q /
1

0


  

(or)    q  =  q0 (1-e
-t/CR

)     (3.7) 

This is called instantaneous value of the charge at time t. The term CR is called time constant 

of the circuit. 

Time constant  

 At the end of time t = CR, 

  the Eq. (3.7) becomes,  )1(0
t

t

eqq


  

     )
1

1()1( 0

1

0
e

qeq  

 

0632.0 qq   

Thus, the time constant may be defined as the time taken by the capacitor to get charged to 

0.632 times its maximum value.  

The growth of charge is shown in Fig.3.6 

 

Fig.3.6 

 

3.6: Decay of charge (Discharging of a capacitor though Resistance)  

 Let the capacitor having charge q0 be now discharged by opened the key K. The 

charge flows out of the capacitor. In this case E = 0. 

 The emf equation is  

0
c

q

dt

dq
R  

(or)     dt
CRdt

dq 1
  
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Integrating,    ,log K
CR

t
qe 


     where K is a constant  

Initial condition,   when t = 0,  q = q0, 

Kqe  0log  

0loglog q
CR

t
q ee 


  

Or,     
CR

t
qq ee


 0loglog  

CR

t

q

q
e




0

log  

Or     
CRte

q

q /

0

  

     
CRteqq /

0

     (3.8) 

 

This is called the instantaneous value of the charge during the discharge. The graph for decay 

of charge is shown in Fig.3.7. 

 

 

Fig.3.7 

Time constant: If we put t = CR  in Eq.(3.8), we get q = q0e
-1

 

            Ie q = q0 x 1/e,    q = 0.368 q0 

Hence time constant may also be defined as the time taken by the capacitor to discharge the 

charge from 0.368 of its maximum value. 

3.7  Grow of charge in a circuit with inductance, capacitance and resistance 

    Consider  a circuit containing an inductance L, capacitance C and resistance R 

joined in series to a cell of emf  E (Fig.3.8). When the key is pressed, the capacitor is charged. 

Let Q be the charge on the capacitor and I the current in the circuit at an instant t during 

charging. Then, the P.d. across the capacitor is 
C

Q
 and the self induced emf  in the inductance 
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coil is  
dt

dIL , both being opposite to the direction of E. The P.d a cross the resistance R is 

RI. 

 

Fig.3.8 

The equation of emf is  

     
E

C

Q
RI

dt

dI
L 

    (3.9)
 

But  

2

2

dt

dI
and

dt

Qd

dt

dQ
I   

E
C

Q

dt

dQ
R

dt

Qd
L 

2

2

 

Or            0
2

2





LC

CEQ

dt

dQ

L

R

dt

Qd
 

Putting      
21

and2 K
LC

b
L

R
    we have  

0)(2 2

2

2

 CEQK
dt

dQ
b

dt

Qd
    (3.10) 

Let   x = Q-CE,   Then 
2

2

2

2

dt

Qd

dt

xd
and

dt

dQ

dt

dx
  

Eq. (3.10) becomes,   02 2

2

2

 xK
dt

dx
b

dt

xd
       (3.11) 

Hence the most general solution of Eq. (3.11) is 

tkbb

eB

tkbb

Aex








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

























2222

 

Now  CE = Q0 = final steady charge on the capacitor.  

0QQCEQx   

Hence     

tkbb
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AeQQ
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(or)    

tkbb

eB

tkbb

AeQQ
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0
      (3.12) 

Using initial conditions 

    at   t= 0,  Q = 0 

     0 = Q0 + (A+B) 

Or    A  +  B   =  -  Q0           (3.13) 
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t
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(or)     A – B  =  
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0
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bQ


          (3.14) 

Solving eqs (3.13) and (3.14)  
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
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Substituting the values of A and B in Eq. (3.12), we have  
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                                                                                                                                 (3.17) 

Case 1:- 

 If  b
2
  k

2
, 22 kb  is real. The charge on the capacitor grows experientially with 

time and attains the maximum value Q0 asymptotically (curve 1 of  Fig.3.9). The charge is 

known as over damped or dead beat. 
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Case ii :-   

 If b
2
=k

2
, the charge rises to a maximum value Q0 in a short time (curve 2 in Fig.3.9).  

Such a charge is called critically damped. 

Case iii:- 

 b
2
   k

2
, 22 kb 

is imaginary.  

Let 
22 kb 

 = i,   where 
1i    and   

22 bk 
 

Eq. (3.17) may be written as  
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Let   = k sin    and b = k cos  so that tan  = /b. 
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This equation represents a damped oscillatory charge as shown by the curve (Fig.3.9). The 

frequency of the oscillation in the circuit is given by  
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When   R = 0,   

LC


2

1
  

 

 

Fig.3.9 

 

3.8: Discharge of a Capacitor through an Inductor and a Resistor in series (Decay of 

charge in LCR circuit) 

 Consider a circuit containing a capacitor of capacitance C, an inductance L and a 

resistance R joined in series (Fig.3.10). E is a cell.  k2 is kept open. The capacitor charged to 

maximum charge Q0 by closing the key k1. On opening k1 and closing key k2, the capacitor 

discharges through the inductance L and resistance R. 

 

 

Fig.3.10 

 

Let I be the current in the circuit and Q be the charge in the capacitor at any instant during 

discharge. The circuit equation then is 

0
C

Q
RI

dt

dI
L  
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But      
2

2

dt

dI
and

dt

Qd

dt

dQ
I 
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Q

dt

dQ
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dt

Qd
L  

            0
2

2


LC

Q

dt

dQ

L

R

dt

Qd

                                  (3.19)
 

Let     
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R
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 QK
dt

dQ
b

dt

Qd
      (3.20) 

The General solution of this equation is   

  (3.21) 

 

Where A and B are arbitrary constants  

When t = o, Q = Q0 and from Eq. (3.21), A+ B = Q0             (3.22)
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From Eqs. (3.22) and (3.23) we get,  
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


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Putting these values of A and B in Eq. (3.21), we get,  
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e

)22()22(
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

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 (3.24) 

Case-  i :- 

If b
2
  k

2
, 22 kb  is real and positive and the charge of the capacitor decays 

exponentially, becoming zero asymptotically. This discharge is known as over damped, non 

oscillatory or dead beat. 

Case (ii) :- when b
2
 = k

2
, Q = Q0 e

-bt
 . 

 This represents a non – oscillatory discharge. This discharge is known as critically 

damped . The charge decreases to zero experientially in a short time. 

Case iii :-   

 If b
2
  k

2
, 

22 kb  is imaginary. 

22 kb 
= i where   = 

22 kb 
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Let  = sin  and b = k cos ,   so that tan    =  /b. 
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This equation represents a damped oscillatory charge. The charge oscillates above and below 

zero till it finally settles down to zero value.  
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 The frequency of oscillation in the circuit in given by  
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When   R = 0,   

     
LC


2
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The condition for oscillatory discharge is  

C
LRor

L

R
2)(

LC

1

4 2
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3.9 Measurement of High resistance by Leakage  

 When a capacitor of capacitance C and initial charge Q0, is allowed to discharge 

through a resistance R for a time t, the charge remainting on the capacitor is given by  

CRteQQ /
0



 
CRteQQ /

0
/ 

 

CR

t

Q

Q
e  )(log 0
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
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Q

Q
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Q

Q
C

t
R

e
0

10

0 log3026.2log  

If R is high, CR will be high and the rate of discharge of capacitor will be very slow. Thus if 

we determine Q0/Q from experiment, then R can be calculated. 

Connections are made as shown in Fig.3.11. C is a capacitor of known capacitance. R 

is the high resistance to be measured. B.G is a ballishc galvanometer. E is  a cell and K1, K2, 

K3 tap keys. Keeping K2 and K3 open, the capacitor is charged by depressing the key K1. K1 is 

then opened and at once K3 is closed. The capacitor discharges through the galvanometer, 

which records a throw 0. The throw 0 is proportional to Q0. The capacitor is again charged 

to the maximum value keeping K2  and K3 open and closing K1.   
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Fig.3.11 

K1 is then opended and K2 is closed for a known time t. Some of the charge leaks 

through R. K2  is oponed and at once K3 is closed. The charge Q remaining on the capacitor 

then discharges through the galvanometer. The resulting throw  is noted.  

The Q     Now 


00 
Q

Q
 



0
10log3026.2

t
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A series of values of t and  are obtained. A graph is plotted between  t and  
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which is a straight line. Its slope gives the mean value of  t/ 
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As C is known the value of R can be calculated.
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UNIT – IV  

j - Operator Method  

 

4.1: Use of Operator j in study of A.C. circuits  

 The operator j is defined as a quantity which is numerically equal to 1 , and which 

represents the rotation of a vector through 90  in anti – clockwise direction – j represents the 

rotation of a vector through 90  in clockwise direction. 

 We know that in A.C circuits, LE and 
CE

 
always lie at 90  in anti clockwise and 

clockwise direction respectively with respect to RE  (Fig.4.1).  

. 

Fig.4.1 

Hence total emf of a circuit having L,C, R, will be  

C
jE

L
jE

R
EE   

A source of alternating Eemf is denoted by  

tEE sin0  

Interms of complex form, 

tj
eEE


0

  

The instantaneous current in the A.C. circuit, 

)sin(
0

  tII  

In complex form, 

)(
0

 


tj
eII  

Since the voltage across the inductor leads the current passing through it by 90 , the 

inductive reactance L can be written as .,, ieLj ,  

L
jXLj

L
Z    
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Since the voltage across the capacitor lags the current passing through it by 90  the 

capacitive reactance 
C

1
 
can be written as 

Cj
Cj


 1/   

C
X

1
.,. j

C

j

Cj
cZei 





 

A complex impedance can be written as the sum of a real term and imaginary term which are 

to be resistance and complex reactance respectively, 

,jXRz       where   
C

X
L

XX 
 
is the effective reactance of the circuit.  

4.2: LCR Circuit – Series Resonance Circuit. 

 Consider a circuit containing an inductance L, a capacitance C and a resistance R 

joined in series (Fig.4.2).   

 

Fig.4.2 

 The series circuit is connected to an AC supply given by  

tj
eEE


0


    (4.1) 

The total complex impedance is  

C
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L
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    (4.2) 

Where                                R

C
L






1

tan




 

Using ohm’s law in complex form, the complex current in the circuit is  








j
e

C
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Z

E
I

2)1(2
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


 



55 
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    (4.3) 

But     2)1(2

0
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C
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
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
     

    
)(

0
 


tj

eII
     (4.4) 

The actual emf is the imaginary part of the equivalent complex emf . Hence the actual 

current in the circuit is obtained by taking the imaginary part of the above complex current. 

)sin(
)1(

)(Im
22

0 






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C
LR

E
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 The equivalent  impedance of the series LCR circuit  

2)1(2
C

LR


 

 

The current ‘lags’ behind the voltage by an angle  













 
R

C
L





1

1tan

 

4.3: Parallel Resonant Circuit :- 

 

 In this circuit, capacitor C is connected in parallel to the series combination of 

resistance R and inductance L. The combination is connected across the AC source. (Fig.4.3) 

 

Fig.4.3 

 The applied voltage is 

tjeEE 
0

 

The complex impedance of L-branch 

LjRZ 
1  
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Complex impedance of C – branch 

Cj
Z



1
2

  

21 ZandZ  are parallel  

Cj
LjR

Cj
LjRZZZ














1

1

11

2

1

1

11
 

=  
 

  
Cj

LjRLjR

LjR










 

= 











 2222 )()( LR

L
Cj

LR

R







 

The current    
Z

E
Z

EI
1

x
 

























2222 )()( LR

L
Cj

LR

R
EI







 

Let                      
2)(2

sin;
2)(2

cos
LR

L
CA

LR

R
A













  

)(
0)cos(







tj
AeE

j
AeEsonAjAEI  

Where     
 2)(2/

)2)(2(1tan
LRR

LR

L
C














  

 
)

222
(

2222

2
2

LR

L
C

LR

R
A






 




  
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or     


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


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


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2

21

2

1
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L

R

LC
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 This is the resonant frequency of the circuit. If R is very small so that 
2

2

L

R
 is 

negligible compared to 
LC

1  

 LC


2

1
0
  

At such a minimum admittance, ie., maximum impedance, the circuit current is 

minimum. The  graph between current and frequency is shown in Fig 4.4. 

 

 

Fig.4.4 

 

Impedance at Resonance :- 

                            At resonance,  
R

LR
Z

22 )(
  

                           But       
C

L
LR  22 )(     at resonance  

RC
LZ 

 

 Thus smaller the resistance R, larger is the impedance. If R is negligible, the 

impedance is infinite at resonance. 

Rejecter circuit :- 

 The parallel resonant circuit does not allow the current of the same frequency as the 

natural frequency of the circuit. Thus it can be used to suppress the current of this particular 

frequency out of currents of many other frequencies. Hence the circuit is known as rejector 

or filter circuit.  
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Comparison between series and Parallel resonant circuit 

Series resonance circuit  Parallel resonance circuit  

1.  An acceptor circuit  1.  A rejector circuit  

2.  Resonant frequency 

LC
r




2

1
  

2.  Resonant frequency  

LC
r




2

1
  

3.  At resonance the impedance is a 

minimum equal to the resistance in the 

circuit.  

3.  At resonance the impedance is maximum 

nearly equal to infinity.  

4.  Selective  4.  Selective  

5.  Used in the turning circuit to separate 

the wanted frequency from the incoming 

frequencies by offering low impedance 

at that frequency.  

5.  Used to present a maximum impedance 

to the wanted frequency, usually in the 

plate circuit of value.  

 

4.4: Power in AC circuit containing resistance, inductance and capacitance.  

 Consider an AC circuit containing resistance, inductance and capacitance, E and I 

vary continuously with time. Therefore power is calculated at any instant and then its mean is 

calculated over a completed cycle.  

 The instantaneous values of the voltage and current are given by  

tEE sin0  

)(sin0   tII  

Where  is the  phase difference between current and voltage. 

Hence power at any instant is 

)(sinsin
00

  ttIEIxE  

 )2(coscos
002

1
  tIE  

Average power consumed over one complete cycle is  






T
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T
dtEI

P

0
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= cosrmsIrmsE  

φcosx ampere)(Virtualx volts)(Virtualpoweraverage    

The term (virtual volts x virtual ampere) is called apparent power and cos  is called the 

Power factor. 

 Thus, factorPowerxpowerapparentpowerTrue   

(or) the power factor is the ratio of the true power to the apparent power. 

 

Fig.4.5 

For a circuit containing resistance, capacitance and  inductance  in series, 
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From Fig.4.5, the expression for the power factor is  
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Special cases :- 

1. In a purely resistive  circuit, 1cos,0   or  

      
vv IE xpowertrue   

2. In a purely inductive circuit, current lags behind the applied emf by 90
0
 so that 

0cos,90    

Thus true power consumed = 0. 

3. In a purely capacitive circuit, current leads the applied voltage by 90  so that 

.090cos)90(cosor,90   

0powertrue   

4. In an ac circuit containing a resistance and inductance in series, 

Power factor 
22 )(

cos
LR

R





  

5. In an ac circuit contain a capacitance C and a resistance R in series, 

  

)
2

22

1
(

cos

R
C

R







  

4.5: Wattless Current  

 The average power dissipated during a complete cycle is cosvv IE . 

 “The current in A.C. circuit is said to be Wattless, when the average power consumed 

in the circuit is zero:. 

 If an ac circuit is purely inductive or purely capacitive with no ohmic  resistance, 

angle 
2

  . So that 0cos  or the power consumed is zero. The current in such a circuit 

does not perform any useful work and is rightly called the Wattless (or) idle current.  

4.6: Choke coil  

 A Choke coil is an inductance coil which is used to control the current in an ac circuit. 

 Construction  

 A choke consists of a coil of several turns of insulated thick copper wire of low 

resistance but large inductance, wound over a laminated core (Fig.4.6). The core is layered 

and is made up of thin sheets of stalloy to reduce hysteresis losses. The laminations are 

coated with shellac to insulate and bound together firmly so as to minimise loss of energy due 

to eddy currents.  
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Fig.4.6 

 

Principle :- 

 The average power dissipated in the choke coil is given by  

 cos
2

1
00 IEP  

 The power factor 
222

cos
LR

R





  

The inductance L of the choke coil is quite large on account of its large number of turns and 

the high permeability of iron core, while its resistance R is very small. Hence cos is nearly 

zero. Therefore the power absorbed by the coil is extremely small. Thus the choke coil 

reduces the strength of the current without appreciable wastage of energy. The only waste of 

energy is due to the hysteresis loss in the iron core. The loss due to eddy currents is 

minimised by making the core laminated.  

 

Uses :- 

 Chocking coils are very much used in electronic circuits, mercury lamps and sodium 

vapour lamps.  

 

Preference of choke coil over an ohmic resistance – why? 

 The current in an ac circuit can also be diminished by using an ordinary ohmic 

resistance (rheostat) in the circuit. But such a method of controlling a.c. is not economical as 

much of the electrical energy )( 2 RtI supplied by the source is wasted as heat. Hence the 

choke coil is to be preferred over the ohmic resitance.  

 The energy used in establishing the magnetic field in the choke coil is restored when 

the magnetic field collapses. Hence to regulate a.c it is more economical to use a choke than a 

resistance.  
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4.7: Three phase A.C. Generators and Motors  

 A three phase alternator is shown in Fig. 4.7(a).  It consists of three similar 

rectangular coils displaced equally from each ones, i.e. 120 . Each oil is provided with its 

own brushes and slip rings. 

 Three  semf  are generated when they are rotated at a constant velocity in a uniform 

magnetic field. They are of the same frequency and of equal values. Each of the three sources 

of voltage is called a ‘phase’. Each phase voltage lags 120 behind that of the one preceding it 

(Fig. 4.7 (b), (c)).  

 

 

 

Fig.4.7 

 The instantaneous values of emf in each coil may be written as  

)
3

4
(sin),

3

2
(sin,sin 030201





  tEEtEEtEE  

 It can be used to supply a three phase system of three single phase circuits. 

Advantages of 3-phase system:- 

1. In 3-phase alternators the total power does not fluctuate, while in a single phase 

generator the current fluctuates.   

2. The output power of a 3-phase alternator is always greater than that of a single 

phase generator of the same size.   

3. Three phase system is superior for transmission and distribution of electrical 

energy. It involves lot of saving.  

 

Frequency of A.C 

 The frequency of alternating emf,  ν = nm where ‘n’ is the cycles of emf is generated 

per rotation and m is the rotations per see. 
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4.8 Distribution of three phase alternating current.  

 If three separate coils with angular separation of 120  are connected in the armature 

of an a.c dynamo, the voltages in the coils will have a phase difference of 120 . This is called 

3-phase a.c. The three coils can be connected to three loads separately using six separate 

wires as shown in Fig.4.8. Then six heavy wires would be required in three separate single – 

phase systems. However, there are two methods of making connections by using only 4 and 3 

wires. 

 

Fig.4.8 

1. (i)  Star Connection :  

 This method of transmission is used when all the phases are equally loaded. In case of 

balanced load, the neutral wire will be carrying three currents exactly similar but 120  out of 

phase with each other in a symmetrical 3-phase system. Their sum is zero. Hence neutral wire 

can be omitted and only three wires are required for transmission of 3-phase. Load can be put 

between any pair of phase QR, QS or SR (Fig.4.9) 

 

Fig.4.9 

 

The emf between any line and the neutral given the phase voltage 
phE . The emf between 

two outer terminates is called line voltage LV . In the star connection, the line voltage is 3

times the phase voltage. The phase difference between them is 30 . The strength of line 

current is equal to the strength of phase current 
phL II  . The power is consumed in the 

circuit is three times the power per phase. 
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(ii) Three phase four wire system 

 When the load is unbalanced, ie., the different phases are unequally loaded, then 4-

wire system is used instead of 3-wire system. The neutral or star points is connected to a wire 

called neutral line. Three lines are taken from the free ands of Q, R and S and are called the 

phase lines (Fig.4.10 (a). The P.d between phase line is = 3  times the voltage between the 

phase and neutral point. For household supply, only one phase line and a neutral wire are 

connected (Fig 4.10(b)).  For power supply in factories three phase wires and a neutral wire 

are connected to the factory.  

 

Fig.4.10 

 

2. Delta connection  

 The delta connection is shown in Fig.4.11. Here the end of each winding is connected 

to the beginning of the next one, so that they form a closed triangle. In this type of 

connection, the line voltage of a generator is equal to its phase voltage. The line current is 

3  times the phase current. 

 Output can be taken from QR, RS or QS. The windings may be delta connected only 

when the load on the phases is the same  or almost the same. Otherwise the machinery may 

be damaged by strong currents in the closed circuit of the windings.  

 

Fig.4.11 
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UNIT – V 

Magnetic Properties of Materials 

5.1: Magnetic Induction (B) :- 

 If a positive test charge of moving with velocity (V)  through a point in a magnetic 

field experiences a force F, then the magnetic induction B at that point is defined by  

BqVf x  

sin
inductionMagnetictheofmagnitudeThe

qV

F
B . 

 Here   is the angle between .andV B  The magnetic field can be represented by 

lines of induction. The tangent to the line of induction at any point gives the direction of B.  

 Unit : Tesla
mAmpere

Newton
mWeber (or)(or)2


 

5.2: Magnetisation (M) : 

 Magnetisation M of the material is defined as the magnetic dipole moment induced 

per unit volume of the material. 

 Let ‘m’ be the magnetic dipole moment of a specimen of volume V. Then 

V

m
M   

 In unmagnetized matter M will be zero. 

Unit : )(/ 1mAmetreAmpere . 

5.3: Magnetic flux :  

 The number of magnetic induction lines cutting through the surface is called magnetic 

flux. 

SBei /.,.   

 Where S is the surface area  

Unit : weber . 

5.4 Relation between the three magnetic vectors B, H and M 

 Consider a Rowland ring having a toroidal winding of N turns around it. When a 

current oi  
is sent through the winding, the ring is magnetized along it circumferential length. 

Fig.5.1 shows a section of magnetised ring.  The small circles represent the current loops. 

The magnetisation arises due to the alignment of these current loops. 

 No net current inside the current loops because the adjacent currents are in the 

opposite direction. The currents in the outer portions of the outer – most loops remain 
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uncancelled. Therefore the numerous inside current loops can be replaced by a single closed 

current si . Such a current is called Amperian current.  

 

Fig.5.1 

 Let A   =  Area of cross section  

         l  = Circumferential length of the ring.  

 Then volume  lAV   

The ring behaves  like a large dipole of magnetic moment. 

Aim s  

 
l

si

lA

Asi

V

m
M  ionMagnetizat  

The magnetization, therefore, is the surface current per unit length of the ring. This is 

commonly called magnetization current. 

 Now the magnetic induction (B) within the material arises due to the free current oi

and due to the magnetisation of the ring it self 
l

i
ei s.,.   


















 M

l

oNi

l

si

l

oNi
B

00
  

or   
l

oNi
M

B


0


 

 The quantity M
B


0
is called magnetizing field or magnetic field intensity H, ie.,  

HM
B


0

 

(or)    )(0 MHB    

In vector form  )(
0

MHB


   

This is the relation between the three vector B, H and M.  



67 
 

5.5: Magnetic susceptibility )( m :- 

 Experimentally found that, in para and dia magnetic materials, the magnetisation M is 

proportional to the magnetic field intensity H. That is, 

HMorHM m )(  

 The constant m  is called the magnetic susceptibility of the materials.  

It may be defined as the ratio of the magnetization M to the magnetic field intensity H.  

H

M
ei m .,.  

 the magnetic susceptibility of a material is defined as the intensity of magnetization 

acquired by the material per unit field strength. 

 We can classify magnetic material interms of susceptibility  m . 

 If m  is +ve but small, the material is paramagnetic.  

 If m  is +ve but  large, the material is Ferromagnetic.  

If m  is +ve, the material is diamagnetic.  

5.6: Magnetic Permeability )( :- 

 Consider the relation  

       )(0 MHB    

)(0 HH m   

  Hm )1(0     

          H  

Where )1(0 m   is called the magnetic permeability of the material. 

HB   

 Magnetic permeability    of a medium is defined the ratio of magnetic induction to 

the intensity of magnetic field. 

H

B
  

 For vacuum 
0

and0  m  

 Hence magnetic induction in vacuum is HB 00   

The ratio  r
B

B







00

 

 Called the relative permeability  r . Obviously  
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mr  1 . 

 We may also classify magnetic materials in terms of the relative permeability r . 

  Diamagnetism  : 1r  

Paramagnetism  : 1r  

  Ferromagnetism  : 1r  

5.7: The Electron theory of Magnetism  

 The Paramagnetic, diamagnetic and Ferromagnetic behaviour of substances can be 

explained in terms of electron theory of matter. 

 Each electron is resolving around the nucleus. Each moving electrons behaves like a 

tiny current loop and therefore possesses a orbital magnetic dipole moment. Furthermore, 

each electron is spinning about an axis through itself. This spin also gives rise to a magnetic 

dipole moment called spin magnetic dipole moment. In general, the resultant magnetic dipole 

moment of an atom is the vector sum of the orbital and spin magnetic dipole moments of its 

electrons.  

(i) Explanation of Diamagnetism :- 

Diamagnetism occurs when atom consists of an even number of electrons. The 

electrons of such atoms are paired. The electrons in each pair have orbital motions as well as 

spin motions in opposite sense. The resultant magnetic dipole moment of the atom is then 

zero. Hence when such a substance is placed in a magnetic field, the field does not tend to 

align the dipoles of the substance. However, the field modifies the motion of the electrons in 

orbits which are equivalent to tiny current loops. The electron pair and hence the atom, thus 

acquire an effective magnetic dipole moment which is opposite to the applied field. Hence for 

diamagnetic materials    is opposite to H. So the susceptibility m  of a diamagnetic 

substance is negative and is very small. 

 

(ii) Explanation of Paramagnetism  

 In paramagnetic materials, the magnetic field associated with the orbiting and 

spinning electrons do not cancel out. There is a net intrinsic moment in it. The molecules in it 

behaves like little magnets. When such a substance is placed in an external magnetic field, it 

will turn and line up with its axis parallel of the external field. Since Hand  are in the 

same direction in paramagnetics, the susceptibility mχ is +ve. The magnetization of 

paramagnetic substances decreases at the temperature of the substance increases, ie 
T

m
1

  
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(iii) Explanation of Ferromagnetism  

 Ferromagnetic substances are strongly magnetic. A ferromagnetic has a spontaneous 

magnetic moment – a magnetic moment even in zero applied field. The atoms or molecules 

of ferromagnetic materials have a net intrinsic magnetic dipole moment which is primarily 

due to the spin of the electrons. The interaction between the neighbouring magnetic dipoles is 

very strong. It is called exchange interaction and it is present even in the absence of an 

external magnetic field.  

 This effect of the exchange interaction to align the neighbouring magnetic dipole 

moment parallel one another spreads over a small finite volume bulk. This small volume of 

the bulk is called a domain (Fig .5.2). All magnetic moments within a domain will point in 

the same direction resulting in a large magnetic moment. 

                     

               

 Fig.5.2 

 Thus the bulk material consists of many domains. The domains are oriented in 

different directions. The total magnetic moment of a sample of the substance is the vector 

sum of the magnetic moments of the component domain. 

 At very high temperatures, the ferromagnetic materials become paramagnetic 

materials. The critical temperature above which a ferromagnetic materials become a 

paramagnetic material is called the curie temperature.  

5.8: Determination of Susceptibility – Curie balance method 

 The Curie balance method to find the susceptibility of the specimen is shown in 

Fig.5.3. The specimen is kept inside a porcelain bulb B. The Porcelain bulb is attached to one 

end of a long fibre F form a torsion head T. The other end of the arm carries a scale pan P 

into which suitable weights can be put to obtain balance. A damper D is used to prevent the 

disturbing oscillations. A Pointer 1P  moving on a calibrated. scale S measures the 

displacement produced. 

 The magnetic field is supplied by the pole pieces N and S of an electromagnet which 

are kept inclined at an angle of 70  with respect to the axis of symmetry. When the magnetic  
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Fig.5.3 

field is switched on, the points 1P  gets displaced. The displacement can be measure correct to 

0.001mm using a sensitive microscope. Measuring the displacement and knowing the elastic 

constants of suspension fibre, the force acting on the specimen can be estimated.  

 If the specimen has a susceptibility 1  and is immersed in a medium with 

susceptibility 2 . The force  

dx

ydH
yVHxF

0
)

21
(    

 When xF  is the force along axisx , V the volume of the specimen, H the intensity 

of magnetic field perpendicular to axisx , 
dX

y
dH

 
is the rate of change of magnetic 

field. 

 The value of yH
 
is determined from the search coil and  Ballistic galvanometer. The 

value of 
dx

y
dH

is found from the graph of yH
 

against x . Knowing xF and V the 

susceptibility 
1
   of the specimen can be estimated at any given temperature.  

 Curie’s method is also suitable for the measures of the magnetic susceptibilities of 

paramagnetic liquid and gases.  

 

5.9: Moving Coil Ballistic Galvanometer  

Principle :- 

 When a current is passed through a coil, suspended freely in a magnetic field, it 

experiences a force in a direction given by Fleming’s left hand rule. 

(i)  Construction : 

 It consists of a rectangular coil of thin copper wire wound on a non – metallic frame 

of ivory (Fig.5.4). It is suspended by means of a phosphor – bronze wire between the poles of 
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a powerful horse – shoe magnet. A small circular mirror is attached to the suspension wire. 

Lower end of the coil is connected to a hair – spring. The upper end of the suspension wire 

and the lower end of the spring are connected to terminals 21 TandT . A cylindrical soft iron 

core (C) is placed symmetrically inside the coil between the magnetic poles. This iron core 

concentrates the magnetic field and helps in producing radial field.  

 Ordinary Galvanometer is used to measure current. But B.G is used to measure 

electric charge.  

 

 

Fig.5.4 

 

(ii). Theory :- 

(i)   Consider a rectangular coil of N turns place in uniform magnetic field of magnetic  

induction B (Fig.5.5) ''l  be the length of the coil and ''b  its breadth. 

        Area of the coil lbA  

When a current i passing through the coil, then torque on the coil  

    ABiN       (5.1) 

If the current passes for a short interval ,dt the angular impulse produced in the coil is  

     dtABiNdt      (5.2) 

If the current passes for t secs, the total angular impulse given to the coil is  

   
t

idt
t

ABNtdiABN
t

dt
000

     (5.3) 

Where 
t

idtq
0

= total charge passing through the galvanometer.  
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Fig.5.5 

Let I be the moment of inertia of the coil and '' to its angular velocity, then change in 

angular momention of the coil is I  

    qABNI        (5.4) 

ii)  The kinetic energy of the moving system 
2

2

1
I is used in twisting the suspension wire 

through an angle .  Let C be the restoring torque per unit twist of the suspension wire. Then, 

Work done  = 2
2

1
C  

2
2

12
2

1
 CI   

     (or)  22  CI      (5.5) 

(ii) The period of oscillation of the coil is  

C

I
Tor

C
IT

242)(2


   

    
24

2



CT
I        (5.6) 

Multiplying eqs. (5.5) and (5.6), 
24

222
22






TC
I    

    (or) 





2

CT
I               (5.7) 

Equating (5.4) and (5.7),    




2

CT
qABN   

(or)  

    
 


















ABN

CT
q

2
    (5.8) 
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This gives the relation between the charge flowing and the ballistic throw  of the 

galvanometer, q   

 
















ABN

CT

2
is called the ballistic reduction factor  k  

      q =  k θ       (5.9) 

 

(iii) Correction for damping in Ballistic Galvanometer  

 In Eq.(5.9), the correct value of first throw is obtained by applying damping 

correction, Let 
3

,
2

,
1

 ... be the successive maximum deflection from zero position to the 

right and left (Fig.5.6).  

 

Fig.5.6 

Then it is found that  

   d .......
4

3

3

2

2

1












                         (5.10) 

 The constant d is called the decrement per half vibration. 

 Let ed  so that delog  

 Let   be the true first throw in the absence of damping. 

 
1
  . The first throw 

1
 , is observed after the coil completes a quarter of vibration. 

In this case, the value of the decrement would be 2


e . 











2
12

1






e  

(or)     









2
1

1


  

 We can calculate   by observing the first throw 1  and the eleventh throw 11 . 
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








































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












 












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2

1

3
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 (or)      

11

1log
10

1






e
  

11

1
10

log
10

3026.2




                (5.12) 

 

Where  is called the logarithmic decrement.  




























2
1

12




 ABN

CT
q     (5.13) 

(iv) Dead beat and Ballistic Galanometers : 

 Galvanometers are classified as (i) dead beat (or) a periodic and (ii) ballistic 

galvanometers.   

 A moving coil galvanometer in which the coil is wound on a metallic conducting 

frame is known as a dead beat galvanometer. It is called “dead – beat” because it gives a 

steady deflection without producing any oscillation when a steady current is passed through 

the coil.  

(v) Conditions for a moving coil galvanometer to be dead beat. 

(i) Moment of inertia of the system should be small. 

(ii) Coil should be mounted on a conducting frame. 

(iii) Suspension fibre should be comparatively thicker. 

(vi) Conditions for a moving coil galvanometer to be ballistic.  

(i) The moment of inertia of moving system should be large. 

(ii) Air resistance should be small. 

(iii) Suspension fibre should be very fine. 

(iv) The damping should be small, ie the coil should be wound on a non – 

conducting frame. 

(vii) Current and voltage sensitive of a moving – coil galvanometer :- 

 The figure of merit or current sensitivity  cS  of a moving coil mirror galvanometer 

is the current that is required to produce a deflection of 1mm on a scale kept at a distance of 1 

metre from the mirror. 

 It is expressed in mmA/ . 

 The voltage sensitivity  
v

S  is the potential difference (p.d) that should be applied to 

the galvanometer to produce a deflection of 1mm on a scale at a distance of 1 metre.  
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 It is expressed in mmV / . 

5.10 Measurement of charge sensitiveness (Figure of merit a B.G) 

 The charge passing through a B.G is given by  




















2
1

12
1

12








k

ABN

CT
q  

 Where k is charge  sensitiveness or figure of merit of the galvanometer. It is also 

known as the “ballistic reduction factor” of the galvanometer. 

 Two resistance boxes P and Q  and a key k  are connected in series with an 

accumulator of emf E (Fig.5.7). A capacitor of known capacitance C  is connected to P

through the vibrator V and charging terminal ch  of the charge – discharge  key. The 

capacitor is charged with the p.d across P . The charge on the capacitor can be discharged 

through the  ..GB  included in the circuit through the vibrator and discharge terminal of the 

charge – discharge key. A commutator 
r

C is included in the circuit to reverse the charge in 

the ..GB  

 

Fig.5.7 

Pin1000 and Qin9000  are included. The capacitor is charged and immediately 

discharged through the ..GB  The first throw 
1
  is noted. The experiment is repeated with 

 3000,2000 P etc., keeping  .000,10 QP Mean value of 
1

/P in calculated.  

 Let the capacitance of the capacitor be FC  

 Charge on the capacitor CC
QP

EP
q x


  
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 This charge produces a throw .
1
  

 Undamped throw )
2

1
1(1    

 Charge required to produce unit deflection = k  

C
QP

EP
k x

)(
)

2

1
1(

1 
   

or    divC
P

QP

EC
k /

)
2

1
1(x

1

x
)(



 


 

 The value of  is obtained by observing the first throw 
1
 and then eleventh throw 

11
 and using the relation 

11

1log
10

1




 e  

11

1
10

logx3026.2x
10

1




  

 

5.11: Uses of Ballistic galvanometer  

 

  Absolute Capacitance of a Capacitor :- 

(i) Two resistance boxes P and Q are connected in series with an accumulator of 

emf E (Fig.5.8). A small resistance )1.0(   is taken in P and a large resistance 

 9.9999  in   so that  000,10QP . The mirror galvanometer (MG) and a 

resistance box R are connected across P. With no resistance in R, the steady deflection 

d of the galvanometer is found. A suitable resistance is taken in R till the deflection 

becomes half. The resistance in R is the galvanometer resistance Rg. The experiment is 

repeated for various values of P keeping P+Q constant. 

Current through galvanometer 
gRQP

EP 1
x


      (5.14) 

Current through the galvanometer is also  d
BAN

C
     (5.15) 

From Eqs (5.14) and (5.15)  

gRQP

EP
d

BAN

C 1
x


  
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gRd

p

QP

E

BAN

C 1
xx

)(










   (5.16) 

The mean value of 
d

p is found out from this expt.  

 

Fig.5.8 

 

(ii) the galvanometer coil is set oscillating freely in open circuit. The time for 10 

oscillations is found and the period T is calculated. 

(iii)  Connections are made as shown in Fig.5.9. Resistances )1000(
1

P and 

)9000(
1

Q are included in the boxes P and Q respectively. 

 

Fig.5.9 

Potential difference across P1 

                                                

11

1

QP

EP
V


  
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 The drop of potential across P1 is  used to charge the capacitor by connecting the 

terminals ch and V of the charge discharge key. 

 Charge on the capacitor = 
11

1x
QP

EP
CCVq


     (5.17) 

The terminals Dh and V are now connected so that the capacitor gets discharged through the 

galvanometer. The first throw 
1
 is noted. 









 

 2

1
1

12 ABN

CT
q     (5.18) 

 














 2

1
1

12
11

1
EP

x
ABN

CT

QP
C  

and from Eqs (5.17) and (5.18) 

or   
























 



 2

1
111

1

1

2 E

QP

PABN

CT
C         (5.19) 

Substituting the value of  
BAN

C from Eq. (5.16) in Eq. (5.19). 

 






















 
























 



 2

1
111

1

11

2 E

QP

PRgd

p

QP

ET
C  

But 
11

QPQP   
































 



 2

1
1

1

11

2 Pd

p

Rg

T
C     (5.20) 

The experiment is repeated for various values of P1,  keeping )
11

( QP  same as QP . The 

mean value of 
1

1
P


is calculated. 

iv)  To find  , the coil is set oscillating. The first throw 
1
 and the eleventh 

thrown 
11


 
are noted. Then, 

11

1
10

log
10

3026.2




   

Substituting the values of T, Rg, 








1

1),(,,
Pd

PRgT


and  in Eq.(5.20), C is determined.  
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