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UNIT - I 

ELASTICITY 

1.1 Introduction :  

Elasticity is the property by virtue of which a body offers .resistance to any deforming 

force. A material body makes use of this property to regain its original condition when the 

deforming forces are removed. All bodies can be deformed by the action of external forces. 

Bodies which can completely regain their original condition of shape and size on removal of 

deforming forces are said to be perfectly elastic. Bodies which retain their deformed nature 

even after the removal of the deforming forces are said to be perfectly plastic. If external 

forces fail to produce any deformation or relative displacements of the particles of the body, the 

body is said to be perfectly rigid. In general there are no bodies which are perfectly elastic or 

perfectly plastic. Even a quartz fiber which is the nearest approach to a perfectly elastic body 

does not regain its original size and shape from very large deformations. Similarly putty which 

is the nearest approach to a perfectly plastic body tends to regain from small deformations. 

Thus a body is said to be more elastic or plastic when compared to another. Bodies which are 

homogeneous and isotropic are considered here.  

1.2 Stress and Strain:  

A deforming force or load is the combination of external forces acting on a body and its 

effect is to change the form or the dimensions of the body. When there is a load on the body, 

the forces of reaction come into play internally in it, tending to restore it to its original 

condition. This restoring or recovering force per unit area set up inside the body is called the 

stress. It is equal and opposite to the load within elastic limit. If the internal force developed is 

perpendicular to the surface it is called normal stress. The normal stress may be compressive 

or expansive (tensile) according as a decrease or increase in volume is involved.  
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Stress is measured in terms of deforming force acting per unit area of the surface. The 

Unit of stress is Pascal (and its dimension is ML 
-1

 T
-2

). 

The change produced in the body due to change in dimension of a body under a system 

of forces in equilibrium is called strain. It is the amount of deformation suffered by a body 

under applied internal forces. Strain is measured by the change in dimension for unit dimension 

and hence it has no unit. The nature of the strain depends on the nature of the deforming forces.  

The ratio of the change in length per unit length is known as linear strain or 

longitudinal strain which is created by longitudinal stress.  

When equal inward or outward forces are applied normal to all the faces of a cube, a 

change in volume is produced. The ratio of the change in volume per unit volume is known as 

volume strain.  

When equal and opposite forces act tangentially along two opposite faces of a cube, a 

change in shape is produced. Such a strain is called shearing strain or shear and is measured 

by the angle through which a line on the body normal to the force is turned.  

1.3 Hooke’s Law: 

The maximum value of the stress within which a body completely regains its original 

conditions of shape and size when the deforming forces are removed is known as the elastic 

limit.  

Hooke’s law states that within elastic limits, the stress is directly proportional to strain. 

i.e., the ratio of the stress to the strain is a constant. This constant is called the modulus of 

elasticity of the material of body.  

i.e. 
𝑠𝑡𝑟𝑒𝑠𝑠

𝑠𝑡𝑟𝑎𝑖𝑛
= 𝑚𝑜𝑑𝑢𝑙𝑢𝑠𝑜𝑓𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 
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Elasticity of a substance is due to the intermolecular forces. When this force is great as 

in a solid, the modulus of elasticity is high. That is even for a great amount of stress developed, 

strain will be very small.  But when the intermolecular forces are small as in a gas, the 

modulus of elasticity is very small, (i.e) even for a small amount of stress, the corresponding 

strain will be more.  

1.4 Elastic behavior of a material:   

 The elastic behavior of a material of wire can be studied by plotting a curve between the 

stress along the y axis and the corresponding strain on the x axis. The curve is called stress – 

strain curve. Let a wire be clamped at one end loaded at the other end gradually from zero 

value until the wire breaks down. The nature of the stress- strain curve for low carbon steel wire 

is shown in figure 1.1     

 

Fig 1.1 The Stress – strain curve for low carbon steelwire 

 The Part OA of the curve is a straight line which shows that upto the point A, stress is 

proportional to strain i.e. Hooke’s law is obeyed. The point A is called the proportional limit 

which is measured by the maximum stress that can be developed in the given material without 

causing a deviation from Hooke’s law. In the vicinity of the point A there  lies another point A' 

called the elastic limit. i.e.upto the point  A' the wire behaves as a perfectly elastic body. It 

should however be remembered here that it is not necessary that for the part AA' of the curve, 
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the stress should be proportional to the strain. These two points A and A' are very nearer to each 

other and may coincide for some materials. If the wire is loaded beyond the elastic limit A' the 

wire gets stretched and attains a permanent set. i.e. there is a permanent deformation in the  

body after the removal of the deforming forces. 

 On increasing the load still further a point B, called yield point at which extension of the 

wire increase rapidly without an increase in the load. For a given material, the yield point is 

usually determined by the minimum value of stress for which the material begin to deform 

appreciably without an increase of load. The value of the stress at the yield point is called yield 

strength of that material. The elongation without addition in load is called creeping and this 

behavior of the metal is called yielding. If the wire if further loaded, a point represented by C is 

reached after which the wire begins to neck down or flow locally so that its cross-sectional area 

no longer remains uniform. At this point C the wire begins to thin down at some point where it 

finally breaks. At the point C the value of the developed stress is maximum and is called the 

ultimate tensile strength (or) tensile strength of the given material. The tensile strength is 

defined as the maximum value of tensile stress withstand by the material before fracture under a 

steady load.   

Tensile Strength = 
Max .tensile  load  

Original  cross −sec tional  area
 

Usually tensile strength of metals and alloys increases on cooling and  decreases  on heating. 

The stress corresponding to the point D where the wire actually breaks down is called the 

breaking stress. The value of breaking stress is of no practical importance whereas the position 

of point C is very useful in knowing the ultimate strength of the material. The nominal value of 

the breaking stress is found to be less than that of the ultimate strength. 
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 If a body is subjected to a constant stress, it loses its elastic property even within its elastic 

limit. It will regain its elastic property if it is allowed to rest sufficiently. Similarly a wire is 

loaded repeatedly or subjected to a large number of cycles of stresses it gets tired or ruptured 

due to gradual fracture of the material and hence loses its strength apparently. Thus the elastic 

fatigue may be defined as the apparent loss of strength of material or as the progressive fracture 

of the material caused by repeated stress in it.  

 Substances like quartz, phosphor bronze and silver fibers are regain their original 

condition immediately on removal of the deforming forces. That is why they are frequently  

employed as the suspensions  in galvanometers and electrometers, etc. But some other 

materials, like glass fibers take hours to recover from the strain. This delay in regaining the 

normal condition is called elastic after effect.   

 Normally the working stress on a body is kept far below the ultimate tensile stress and is 

never allowed to cross the elastic limit. The above fact is practiced by all design Engineers to 

get higher stability and reliability of the structures. The ratio between the ultimate tensile stress 

and the working stress is called the safety factor. 

i.e. Safety Factor =   
Ultim ate  tensile  Stress

Working  Stress
 

Working load or working stress is determined by the designer on the basis of his experience and 

knowledge. Thus the safety factor depends upon the engineering material and the standard at 

workmanship.   

1.5 Factors affecting Elasticity: 

 Effect of Stress: We have seen that the action of large constant stress or the repeated 

number of cycles of stresses acting in a body affects the elasticity of the body gradually. Taking 
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these into account, the working stress on an  engineering pieces is kept for below its ultimate 

tensile strength.  

 Effect of temperature: Normally the elasticity decreases with the increase of 

temperature. A carbon filament which is highly elastic at normal temperature becomes plastic 

when it a at high temperature. Lead is not a very good elastic material. But at low temperature 

it becomes a very good elastic material. Inward is a special alloy used for making pendulums 

and its elasticity is not affected by temperature changes. Creep resistance is a property by 

which the material can withstand its elastic property without fracture at high temperatures and 

during quick loading. Dispersion hardened materials and coarse grained materials have better 

creep resistance at high temperatures and hence they can withstand their elastic properties even 

at high temperatures.  

 Effect of impurities : The elastic property of a material may increase or decrease due to 

the addition of impurities. If we add carbon in minute quantities to molten iron, the elastic 

properties of iron is increased enormously. But if the carbon content is more than 1% in iron, 

then the strength of iron decreases. Similar the addition of Potassium in gold increases the 

elastic properties of gold. If any addition of impurity atoms distorts the lattice structure of base 

metal, then elastic property of the base metal decreases. These kind of impurity atoms 

generally have different atoms and therefore act as centers of distortion which decrease the  

elastic properties of the base metal.  

 Effect of heat treatment and metal processing:  A grain consists of many small 

interlocking crystals. The various heat treatment processes are adopted to get the desired 

physical and mechanical properties through the changes in micro constituents of the material. 

Annealing (heating and then slow cooling) is one of them which is adopted to increase  

softness and ductility in the materials. But it decreases the elastic properties of the material by 
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decreasing the tensile strength and yield point of the material. This is due to formation of large 

crystal grains.   Hammering and rolling are the metal processing techniques to make thin plates 

and sheets. These break up the grains into smaller units or fine grains resulting an increase of 

elastic properties. So metals with fine grains are stronger than the metals with large or coarse 

grains. However for high temperature applications, we are using materials with large grains 

because they have high creep resistance.  

 Effect of crystalline nature:  For a given metal, the modulus of elasticity is more when 

it is in single crystal form and in the poly crystalline state, its modulus of elasticity is 

comparatively small. However for most of the engineering uses, we are using poly crystalline 

form of metals due to its increased mechanical properties like ductility, malleability, etc.  

1.6 Three Modulii of elasticity : 

   Corresponding to the three types of strain, there are three kinds of modulii of 

elasticity. They are Young's modulus (E), Bulk modulus (K), and Rigidity modulus (N).  

a) Young's Modulus (E): When the deforming force or load is applied to the body only 

along a particular direction, the change per unit length produced in that direction is 

called longitudinal or linear or elongation strain. The force applied per unit area of 

cross-section is called longitudinal (or) linear stress.  

 Within the elastic limit, the ratio of the linear stress to linear strain is called the 

Young's Modulus.  

Therefore, E = 
Linear  Stress

linear  Strain
   =

F/a

ℓ/L

F/ℓ

aL
   Pascals 

Where F is the force applied normal to the area of cross-section 'a' andℓ is the change 

in length produced in an original length 'L'.  

b) Bulk Modulus (K) : The uniform applied force acting normally on the whole surface of 

the body produces a change in volume and there is no change of shape. The force 
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applied per unit area or pressure gives the bulk stress. The change in volume per unit 

volume gives the bulk strain. Thin the bulk modulus 'K' is defined as the ratio of the 

bulk stress to the bulk strain.  

Therefore, K = 
bulk  stress

bulk  strain
   =

F/a

v/V
  =   

F/V

aV
   =

PV

V
   Pascals 

Where F/a= P, is the normal stress or bulk stress or pressure acting on a surface area ‘a’ 

and ‘v’ is the change in volume produced in an original volume ‘V’ 

 The reciprocal of the bulk modulus of a substance is called its compressibility.  

c) Rigidity Modulus (N): Here the applied force changes the shape of the body without 

causing any change in its volume. Let us consider a solid cube ABCDPQRS whose 

lower face DCQP is fixed. A tangential force is applied on the upper face ABRS as 

shown in the figure 1.2. Due to the application of force F on upper face ABRS an equal 

and opposite force comes into play on the lower fixed face DCQP. These two forces 

form a couple which makes the layers, parallel to the two faces to move one over the 

other. Thus the point A shifted to A', B to B', R to R' and S to S'. That is, the lines 

joining the two faces turn through an angle ‘Ө’. The face ABCD is then said to be 

sheared through an angle ‘Ө’.  

 

 

 

Fig. 3.2 Application of shearing force on a solid cube 

Thus the angle of shear or shearing strain or (simply) shear ‘Ө’ is defined as the angle 

through which a line which was originally perpendicular to the tangential force has turned. The 
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shearing stress or tangential stress is the tangential force per unit area of the face ABRS. Thus 

the rigidity modulus 'N' is defined as the ratio of the shearing stress to the angle of shear.  

N =  
Shearing  Stress

angle  of  Shear  
   =

F/a

Ө
  =   

F

aӨ
  =   Pascal 

 All solids have three modulii of elasticity, and fluids (gases and liquids) have only bulk 

modulus of elasticity.  

Poisson’s Ratio (σ) : When a wire is stretched by means of a force it is elongated. It is 

observed that along with an increase in the length of wire, a corresponding contraction in its 

diameter also takes place. The ratio of the change in diameter to the initial diameter is known as 

lateral strain. Within the elastic limit, the ratio of the lateral strain to the longitudinal strain is 

called Poisson's ratio σ.  

Thus σ  =  
lateral  strain

longitudinal  strain
 

∴ 𝛔 =
𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑖𝑛𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑖𝑛𝑙𝑒𝑛𝑔𝑡𝑕 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑙𝑒𝑛𝑔𝑡𝑕 
=

∆𝐷/𝐷

∆𝑙/𝑙
 

 where ∆𝐷 and ∆𝑙 are change in diameter and length respectively and D and 𝑙 are original 

diameter and length respectively. If α and β and the longitudinal strain per unit stress and the 

lateral strain per unit stress respectively, then  

σ =  
β

α  

1.6 Work done per unit volume in deforming a body:  

   Work is done by the deforming forces when the body is strained or deformed. 

The energy so spent in doing work is stored within the body in the form of  elastic potential 

energy or strain energy which appears as heat when the stress in it is relieved.  
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(a) Workdone per unit volume in stretching a wire : 

  Let F be the force applied to a wire fixed at the upper end.  

Workdone in producing a small increase in length ′d𝑙 = F.d𝑙.  

The young’s modulus of elasticity  𝐸 =
FL

a𝑙
 

     ∴ 𝐹 =  𝐸𝑎𝑙 𝐿  

Workdone during the stretch of the wire from 0 to 𝑙 is given by  

w =  
Ea𝑙

L

𝑙

0

. d𝑙 

=  
Ea

L

𝑙2

2
 

=  
1

2

Ea𝑙

L
𝑙 

SinceF =  
Ea𝑙

L
  , 

w =  
1

2 
 F. 𝑙 

=
1

2
 x Strecthing force x elongation produced 

Workdone per unit volume =  
1

2
 x 

Streching force

a
 x 

elongation produced

L
 

=  
1

2
 x Stress x strain 

 

b)  Workdone per unit volume in changing the volume of a solid : 

The workdone in changing the volume from o to v is given by  

w =  P . dv
V

O
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The bulk modulus of elasticity  K = 
PV

v
 

/ W =   
Kv

V

V

O
 dv =   

1

2

K

V
v2 

=  
1

2
ρ. V =

1

2
 x bulk stress x change in volume 

Workdone per unit volume =  
1

2
 x bulk stress x bulk strain. 

C) Workdone  per unit volume during shearing strain :  

In the  case of shear, we can prove that  

Workdone           W =   F. d
𝑙

0
𝑙 =  NL

𝑙

0
𝑙 d𝑙 =  

1

2  
 NL 𝑙2 

=  
1

2
 F 𝑙   [Since N =  

F

aθ
=  

FL

L2𝑙
=  

F

L𝑙
] 

Therefore, workdone per unit volume =  
1

2
 x shearing stress x angle of shear 

Thus we find that in any kind of strain, workdone per unit volume is equal to 
1

2
 x stress x strain.  

 1.8 Relation between three modulii of Elasticity:  

First Part: To derive the relation between E and N: 

 

 

 

Fig 1.4 Application of a Shearing force on a cube. 

Let a tangential force 'F' be applied to the upper face ABRS of a solid cube ABCD 

PQRS whose lower face DCQP is fixed. Further we assume that the solid cube is a  

homogenous and isotropic elastic medium. Let the length of the cube be equal to L meters. Now 
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consider the, vertical section ABCD of the cube. The face ABCD is displaced to the position A 

'B' C D. The diagonal DB increases to DB' whereas the diagonal AC decreases A'C.  

Shearing Stress =  
F

area   ABRS
   =

F

L2  
   = T … 1.1 

Let α and β be the longitudinal and lateral strains per unit stress. We know that a 

shearing stress along AB is equivalent to an equal tensile stress along DB and an equal 

compression stress along AC right angles. Hence, extension along diagonal DB due to tensile 

stress, along DB = DB .T.  

Extension along diagonal DB due to compression stress along DC = DB .T.β 

Therefore, total extension along DB = DB .T. (α + β) 

=   2LT  ( α + β …         1.2 

Draw a perpendicular BM on DB'. Then Practically DB= DM and the increase in the 

length of diagonal DB is equal to B'M.  

Since  is very small, A𝐵 ′𝐶 = 90° 

Hence   𝐵𝐵′ M = 45° 

Therefore B'M=BB'   Cos 45°  =   
BB ′

 2
=  

𝑙

 2
…           1.3  

Where 𝑙 = BB'. Equations 1.2 and 1.3 are giving the value of B'M.  

Therefore, B'M = 
𝑙

 2
 =   2   L T (α + β)  

 Rearranging this equation, we get  

T. L

𝑙
=  

1

2 α + β 
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T

𝑙/L
=  

T

θ
=

1

2 α 1 + β/α 
 

Since 
T

θ
= N,  

1

α
= E and σ =  β/α 

N =  
E

2 1 + σ 
 

(or)  E = 2N   1 + σ …            1.4 

Second Part: 

To derive the relation between E and K:  

Consider an unit cube ABCDPQRS, Let the stresses TX act perpendicular to faces. 

ASPD and BRQC, the stresses Ty act perpendicular to faces SRQP and ABCD and the stresses 

TZ act perpendicular to faces ABRS and AQPD respectively. If α is the elongation per  unit 

length per unit stress along the direction of the  applied stress then elongation produced in the 

edges AB, BR and BC will be Txα , Tyα and Tzα respectively.  

 

 

 

 

 

 

 Fig 1.5 Application of bulk stress on a cube.  
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If β is the contraction produced per unit length per unit stress in a direction 

perpendicular to the applied stress, then contraction produced perpendicular to the edges AB, 

BR and BC will be Txβ, Tyβ and Tzβ respectively. Hence the resultant lengths of AB, BR and 

BC are as follows: 

AB′ = 1 + Txα − Tyβ − Tzβ 

BR′ = 1 + Tyα − Txβ − Tzβ 

BC′ = 1 + Tzα − Txβ − Tyβ 

∴ New volume of the cube = AB′ × BR′ × BC′ = V′ 

=  1 + Txα − Tyβ − Tzβ ∙  1 + Tyα − Tzβ − Txβ ∙  1 + Tzα − Txβ − Tyβ  

Since α and β are very small, terms containing their squares and higher powers can be 

neglected. 

V′ = 1 + α Tx + Ty + Tz − 2β Tx + Ty + Tz  

= 1 +  α − 2β  Tx + Ty + Tz  

 Assume that the stresses acting on all the faces are equal.  

i.e. Tx = Ty = Tz = T  

Therefore V′ = 1 + 3T α − 2β  

 Hence increase in volume = V′ − V =  1 + 3T α − 2β  − 1 

     = 3T α − 2β  

 Instead of applying the stretching force outwardly, let a pressure P be applied on all the 

faces to compress the cube. Then the contraction in volume is also equal to 3P α − 2β . 

 Here the compressive stress is represented by pressure ‘P’ 

 Bulk Strain =
Change  in Volume

Original  Volume
=

3P α−2β 

1
 

Now Bulk Modulus K =
Bulk Stress

Bulk Strain
=

P

3P α − 2β 
=

1

3 α − 2β 
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=
1

3α α − 2β α  
=

E

3 1 − 2σ 
 

  E = 3K(1 − 2σ)    ……1.5  

Third Part: 

 To connect the equations connecting E and N & E and K. From equations (1.4) and 

(1.5), we get, 

E = 2N 1 + σ = 3K  1 − 2σ       ……  1.6 

From equation (1.4), we get       

2 + 2𝜍 =
𝐸

𝑁
 

From equation 1.5 we get  

1 − 2σ =  
E

3K
…              1.7 

Adding the equations (1.6)  and (1.7), we get 

3 =  
E

N
+  

E

3K
 = E  

1

N
+

1

3K
  

Rearranging this equation, we get  

3

E
=  

1

N
+  

1

3K
 

Multiplying both sides of this equation by 3, we get 

9

E
=  

3

N
+  

1

K
… . .                    1.8  

Poisson’s Ratio ′𝛔′in terms of K and N: 

From equation (1.6), we, get 

2N  1 + σ = 3 K  1 − 2σ  

2𝑁𝜍 + 6 𝐾𝜍 = 3𝐾 − 2𝑁 

Therefore  𝜍 =  
3𝐾−2𝑁

6𝐾+2𝑁
…                                          1.9 
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Limiting values of  ′𝝈′: 

From equation (1.6), We get 

3K (1 – 2 𝜍) = 2𝑁 (1 + 𝜍) 

We know that K and N are always positive quantities. Further the least value of N and K are 

equal to zero.  

When N= 0, the maximum value of Poisson ratio is given by  

𝜍 =  
3𝐾

6𝐾
=  

1

2
 

On the other hand if N = ∞. , then 

the minimum value value of Poisson’s ratio is given by 

𝜍 =  

3𝐾

𝑁
6𝐾

𝑁

−2

+2
   =  

3𝐾

∞
6𝐾

∞

−2

+2
 =  −1 

Hence -1 <𝜍 <
1

2
 

Alternative Method:  

i) If 𝜍is to be positive ,the right hand side expression must be positive, Hence left hand 

side expression is also positive. This possible if 2 𝜍 < 1  𝑜𝑟 <
1

2
 

ii) If 𝜍 is a negative quantity, then the left hand side expression is positive. Hence the 

right hand side expression is also positive. This ic possible only when ( 1 + 𝜍)  is 

positive or 𝜍>-1. 

 Therefore, the limiting values of 𝜍are -1 and 0.5 (or) -1 <𝜍< 0.5 

In practice, however 𝜍cannot be negative, Since a negative value of 𝜍 implies a lateral 

extension instead of lateral contraction in a direction normal to that along which 

extension takes place. There is no such material so far. In actual  practice, the value of 𝜍 

lies between 0.2 to 0.4.  
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1.9 Twisting couple on a Cylinder:  

 

 

 

 

 

 

 Fig 1.6  

a) Twisting couple on a cylinder 

b) Base view of the cylinder with coaxial shell. 

Consider a short cylinder (or wire) of length  and radius a, clamped at the upper end 

AB. Let a twisting couple be applied to the face A'B' as shown by the arrow head in a direction 

perpendicular to the length of the cylinder (Fig. 1.6 a).  

As a result of this external twisting couple 'C', the radius of each circular cross-section 

of the cylinder is turned about the axis of cylinder through an angle θ called the angle of twist. 

Hence the radius O`P is twisted through an angle θ to the position O'P' as shown in figure 1.6 a, 

This is called pure shear since there is no change in length or radius and only the shape of the 

cylinder is changed. Due to elasticity of the material, a restoring couple is set up inside the 

cylinder which is equal and opposite to the twisting couple under equilibrium.  

A line CP on the rim of the cylinder parallel to oo' is displaced to cp' through an angle 

an ∅called angle of shear, due to twisting couple. The displacement PP’ is maximum for the 

points lying on the rim and goes on decreasing as we move towards o', the centre of the 

cylinder. Let us calculate the value of the twisting couple on this cylinder. Imagine this solid 

cylinder consisting of coaxial cylindrical shells.  
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Consider one such cylindrical shell of radius x and thickness dx (Fig. 1.6 b).  

The angle of shear ∅will have the maximum value when x = a and least at 0'. But the 

angle of twist θ will be the same for all shells. Since ∅is small, PP
'
= 𝑙∅ 

Similarly  PP' = x θ     (Refer Fig.-1.6b)   

 Therefore,  𝑙  = xθ 

  ∅   =   
𝑋θ

𝑙
 

Rigidity Modulus N  =   
𝑇

∅
 =  

𝑇
X θ

𝑙

   Where T is the shearing stress acting on the cylinder.  

 (or)   𝑇 =  
𝑁𝑥θ

𝑙
 

The base area of the hollow cylindrical shell of thickness  

dx = 2 𝜋𝑥𝑑𝑥 

Therefore, the shearing force acting on this area = 2 𝜋𝑥𝑑𝑥.
𝑁𝑥θ

𝑙
 

      =  
2𝜋𝑁θ

𝑙
𝑥2  d𝑥 

Moment of this force about oo' (axis of cylinder) =  
2𝜋𝑁θ

𝑙
𝑥3  d𝑥 

This expression gives the magnitude of the couple required to twist an infinitesimally 

thin cylindrical shell of radius x through an angle θ. Hence the total couple 'C', required to twist 

the whole cylinder of radius 'a' about its own axis oo', may be obtained by integrating the above 

expression between the limits x = 0 to x = a. 

Thus C =   
2𝜋𝑁θ

𝑙

𝑎

0
𝑥3𝑑𝑥 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
20 

 

=  
2𝜋𝑁θ

𝑙
 
𝑋4

4
 

0

𝑎

=  
𝜋𝑁θ𝑎4

2𝑙
 

In the above expression if θ = 1  radian, then we get, 

Twisting couple per unit twist = 
𝜋𝑁𝑎4

2𝑙
 

This twisting couple required to produce a twist of unit radian in the cylinder is called 

the torsional rigidity or modulus of torsion for the material of the cylinder.  

1.10 Shafts: 

A Shaft is thick rod of high rigidity modulus of elasticity that can rotate on bearings 

about its own axis with an arrangement for the application of a couple at one end and with an 

attachment to a load at the other end. A good shaft should transmit the couple applied at one 

end to the other end without any appreciable twist to itself. Even for large couples applied, the 

twist in the shaft should be very small.  

Thus the efficiency of a shaft varies as  
𝐶

θ
 or 

𝜋𝑁𝑎4

2𝑙
. 

For good shafts with high transmission efficiency, we prefer thick rods of material of 

high rigidity modulus of elasticity.  

1.1 Torsion pendulum: 

A torsion pendulum is used to determine the rigidity modulus ‘N’ of the materials of 

wire and the moment of inertia of a given disc or cylinder about its axis of suspension by the 

method of torsinal oscillations.  
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Principle:  

A torsion pendulum consists of a metal wire clamped to a rigid support at one end and 

carries a heavy circular disc at the other end. When the disc is subjected to a slight rotation and 

left free, it starts oscillating periodically about the wire as axis.  

 

 

When a wire or cylinder of length ′ℓ′ and radius ‘a’ is subjected to an external couple or 

torque, it is twisted and a restoring couple proportional to the twist is developed in it due to 

elastic reaction. This restoring couple produces an angular acceleration in the wire in a direction 

opposite to that of the twist. During untwisting itself, it rotates beyond its equilibrium position. 

Hence it is twisted again and the produced angular acceleration is now in the opposite direction. 

This process is repeated and thus the system executes torsional oscillations. Consider an 

intermediate state when the wire is under twist ′𝜃 ′ and the disc is moving with an angular 

acceleration, 

𝛼 =  
𝑑2𝜃

𝑑𝑡2
.    𝐴𝑡𝑡𝑕𝑖𝑠𝑠𝑡𝑎𝑔𝑒, 

Potential energy confined to wire,        equal 

to the work done in twisting  =   𝑀𝑜𝑚𝑒𝑛𝑡𝑜𝑓𝑡𝑕𝑒𝑐𝑜𝑢𝑝𝑙𝑒. 𝑑𝜃
𝜃

0
  it through  θ 

      =   𝑐𝜃𝑑𝜃 =  
𝜃

0

1

2
𝑐𝜃2 

                     Where C is the couple per unit twist.  

Kinetic energy confined to                        

the rotating suspended mass                                  =  
1

2
 𝑚𝑖 𝑣𝑖

2 =  
1

2 
𝜔2  𝑚 𝑖𝑟𝑖2 
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Where mi’s and vi’s are the mass and velocity of the particles ,constituting the suspended 

mass and vi = ri ω.  Where ri is the radius vector of the i
th

 particle from the axis of suspension 

and (ω) is its angular velocity.  

Therefore the total energy of the system  =   
1

2  
𝑐𝜃2 +  

1

2
𝐼𝜔2 

According to the law of conservation of energy, this total energy is a constant at every 

instant. 

                               Therefore 
1

2  
𝑐𝜃2 +  

1

2
𝐼𝜔2   =   Constant 

1

2  
𝑐𝜃2 +  

1

2
𝐼  

𝑑𝜃

𝑑𝑡
 

2

=   Constant 

Differentiating this with respect to time , we get  

1

 2
𝑐 2𝜃

𝑑𝜃

𝑑𝑡
+

1

2
𝐼  2  

𝑑𝜃

𝑑𝑡
  .

𝑑2𝜃

𝑑𝑡2
 = 𝑜 

∴ 𝐼
𝑑2𝜃

𝑑𝑡2
+  𝐶𝜃 = 0 

                                                 i.e.
𝑑2𝜃

𝑑𝑡 2  + 
𝐶

𝐼
𝜃 =   0  (or) 

𝑑2𝜃

𝑑𝑡2
=  −

𝐶

𝐼
𝜃 

This equation represents a simple har monic motion of period.  

𝑇 =       2𝜋  1
𝐶  

Thus the torsional oscillations made by the torsion pendulum are simple harmonic and 

the period of the oscillation is controlled by moment of Inertia of the suspended mass about the 

axis of suspension and couple per unit twist produced in the wire, carrying the suspended mass. 

 

 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
23 

 

Experiments:  

(i) Determination of Rigidity modulus of a wire and moment of inertia of a 

circular disc about the axis of its suspension:  

 

 

 

 

 

The torsion pendulum is formed by the given circular disc suspended whose rigidity 

modulus is to be determined. The experiment consists of three parts:  

First, the disc is set into oscillations without any cylindrical masses on the disc. The 

mean period of oscillation ‘T0’ is found out.  

Now  T0  =  2π 𝐼ₒ/𝑐 

Where Io is the moment of inertia of the disc about the axis of suspension.  

A symmetrical line (diameter) is drawn on the suspended disc passing through the point 

of suspension. Now two equal cylindrical masses (= 500 gms) are placed symmetrically on this 

line such that they are very nearer to the axis of wire as shown in figure 1.7a. The distance d1  

of the centre of gravity of each mass from the axis of wire is measured. The mean period of 

oscillations ‘T1’ is found out by making torsional oscillation with masses on the disc,  

Therefore      𝑇1  = 2π 𝐼₁/𝑐 
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where I1 = io + 2 io + 2 md1
2
  from the parallel  axis theorem. Here io is the moment of 

inertia of each mass about an axis passing through its centre and perpendicular to its plane and 

m is the mass of each cylindrical mass. 

Therefore 𝑇2  = 2π 𝐼₂/𝑐 

Where I2   =  𝑖𝑂 +  2 𝑖𝑜 +  2 𝑚𝑑2
2

  

Now I 2 – I1 = 2 𝑚 ( 𝑑2
2 − 𝑑1

2) 

T2
2
 – T1

2 =   
4𝜋2

𝐶
 𝐼2 − 𝐼1  

     Therefore 
𝑇0

2

(𝑇2 
2−𝑇1 

2)
 =  

𝐼𝑜

(𝐼2−𝐼1) 
 

Substituting the value of ( I2 – I1 ) in this equation, we get 

𝐼0

2𝑚(𝑑2 
2 −𝑑1 

2 )
=

𝑇0
2

(𝑇2 
2−𝑇1 

2)
   

Io = 2𝑚(𝑑2 
2 − 𝑑1 

2 ).
𝑇0

2

(𝑇2 
2−𝑇1 

2)
kg m

2 
 

Thus the moment of inertia of the disc about the axis of rotation is calculated substituting the 

values of T0, T1, T2,d1 and d2 in the above formula.  

The rigidity modulus of the material of the wire can be calculated as follows: 

                              We know that, 

𝐶 =
𝜋𝑁𝑎4

2ℓ
 

Where a is the radius wire and  is the length of wire. 

Since 𝑇0
2 = 4𝜋2 𝐼ₒ

𝐶
 and using the above  equation for I0 , we get 

 

𝐶 =
𝜋𝑁𝑎 4

2ℓ
=  4𝜋2 𝐼0

𝑇0
2 =

4𝜋2

𝑇0
2  2𝑚(𝑑2 

2 − 𝑑1 
2 ).

𝑇0
2

(𝑇2 
2−𝑇1 

2)
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Therefore 𝑁 =  
16𝜋𝑚 ℓ(𝑑2 

2 −𝑑1 
2 )

𝑎4(𝑇2 
2−𝑇1 

2)
  Pascals 

 Determination of the moment of inertia of an irregular body:  

Here the torsion pendulum is formed by a cradle suspended by a steel wire ( Refer 

figure 1.7b). The cradle is in the form of a horizontal circular disc fixed to a rectangular 

metallic frame as in figure. At the centre of disc, there is a concentric circular grove to place the 

body. First the mean period of oscillation 'T0' is found out for any mass on the cradle.  

       Therefore,    T0  =  2π 𝐼ₒ/𝑐 

where I0 is the moment of inertia of the cradle about the axis of rotation. 

Now place a regular body on the cradle such that the axis of the wire passes through the centre 

of gravity of the body placed  in the cradle. Find the mean period of oscillation 'T1’. 

                           Therefore,    T1  =  2π (𝐼ₒ + 𝐼₁)/𝐶 

Where I1 is moment of inertia of the regular body which can determined with the help of 

the dimensions of the body.  

Replace the regular body by the given irregular body. Find the mean period of 

oscillation 'T2’.  

Therefore,     T2  =  2π (𝐼ₒ + 𝐼₂)/𝐶 

Where I2 is the moment of inertia of the irregular body at the axis passing through its 

centre of gravity and perpendicular to the  plane.  

T1
2
 – T 0

2 =  
4𝜋2

𝐶
I1 

T2
2
 – T 0

2 =  
4𝜋2

𝐶
I2 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
26 

 

(   T1
2– T0

2) 

(T2
2– T0

2 )
=

I1

I2

 or I2 =  I1  
T2

2 − T0
2

T1
2 − T0

2  

Substituting the values of I1, To, T1 and T2 in the above equation the value of ‘ I' the 

moment of inertia of the given irregular body can be determined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
27 

 

UNIT - II 

BENDING OF BEAMS 

A beam is a rod or a bar of uniform cross section of homogeneous and isotropic elastic 

material whose length is large compared to its thickness.  

2.1 Basic Assumptions involved in the simple theory of bending:  

 The cross section of the beam remains unaltered during best so that that  

shearing stresses over any section are negligibly small.  

The radius of curvature of bent beam is large compared with its thickness.  

The minimum deflection of the beam is small compared with its length and 

The Young’s modulus of the beam is not changed during bending. Thus we  

are going to see the simple and pure bending only.  

2.2 Plane of bending and Neutral axis of a bent beam:  

A beam may be considered as consisting of a number of thin plane horizontal layers 

called surfaces placed one above the other. Now each plane layer or surface consists of a 

number of parallel longitudinal metallic fibres placed side by side and are called longitudinal 

filaments lying on convex side of the bent beam are elongated and those lying on concave side 

are shortened. However some of the filaments lying in the median plane of the beam remain 

unaltered in length and are called neutral filaments and the median plane containing these is 

known as neutral surface.  
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The plane in which bending takes place is known as plane of bending and obviously it 

is the vertical plane when the beam is placed horizontally. The line attained by the intersection 

of neutral surface and plane of bending is called neutral axis. A line perpendicular to the plane 

of bending on which centre of curvature of all the bent filaments lie is called axis of bending. 

2.3 Bending moment:  

 

 

  In the bent beam let EF be the neutral surface (in the above fig). The plane XY 

represents a transverse section of the beam normal to EF. The filament AB, shown above the 

neutral surface gets elongated and thus it is under a stretching force F. Similarly the filament 

CD, shown below the neutral surface, gets compressed and thus it is under a compressive force 

'F'. These two forces constitute a clockwise couple. This couple is called external couple or 

bending couple and it has atendency to rotate the beam clockwise. Again as the beam is at rest, 

the moment of this couple must be balanced by an internal couple tending to rotate the beam 

anticlockwise. Thus when the filament above EF is stretched by F, an equal but opposite 

restoring force f arises in it. Similarly when the filament below EF is compressed by F, an equal 

and opposite restoring force f arises in it. These forces f and f constitute an anticlockwise 

internal couple which is called balancing couple or restoring couple which has a tendency to 

rotate the beam anticlockwise. If the moments of all external couples acting over all filaments 

in the cross section XY are added we get the moment of the external couple which bends the 

beam. If the moments of all the internal couples acting over all filaments in the section XY are 

added we get the moment of the internal restoring couple which balance the external couple. 

Thus in equilibrium position,  
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moment of bending couple = moment of restoring couple.  

The moment of the internal restoring couple is called bending moment or internal 

bending moment of the beam. 

 

   

  

Let a beam ABCD having rectangular cross section be bent in the form of an arc of a 

circle of radius R with the centre at O. Consider a small portion ab of neutral axis of the beam 

subtending an angle θ at the centre O.  a'b' is another small portion of a filament at a distance 'z' 

above the neutral filament ab. Before bending a'b' = ab. After bending, a'b' > ab since a'b' is 

above the neutral surface.  

When, θ is small 

𝑎′𝑏′ =   𝑅 + 𝑧 𝜃 

𝑎𝑏 = 𝑅𝜃 

Therefore increase in length of small element a’b’ = a’b’ – ab.  

=  𝑅 + 𝑧 𝜃 − 𝑅𝜃 

  = zθ 

          Strain in a’b’=  
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑖𝑛𝑙𝑒𝑛𝑔𝑡 𝑕

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑙𝑒𝑛𝑔𝑡 𝑕
  =  

𝑍𝜃

𝑅𝜃
=  

𝑍

𝑅
 

        Let BB՛C՛C be the cross section of the beam perpendicular to plane of bending (refer 

figure 2.). The line FF' lies in the neutral surface. Let us consider an area of cross section δA of 

a՛b' at a distance z above the neutral line FF' on this cross section BB'C'C. 
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 The Young's Modulus of the material of the beam 'E' =  
𝑆𝑡𝑟𝑒𝑠𝑠

𝑆𝑡𝑟𝑎𝑖𝑛
 

Therefore, stress on this area 𝛿𝐴 = 𝐸. 𝑆𝑡𝑟𝑎𝑖𝑛 = 𝐸
𝑍

𝑅
 

           Total internal force on the area  

𝛿𝐴 = 𝐸
𝑍

𝑅
𝛿𝐴 

Moment of this force about the neutral line FF'  

= 𝐸
𝑧

𝑅
𝛿𝐴. 𝑧 =  

𝐸

𝑅
𝛿𝐴𝑧2 

 So the total moment of these internal forces acting above and below the neutral line  

              FF' =  
𝐸

𝑅
 𝛿𝐴𝑧2 

 where  𝛿𝐴𝑧2=  Ig   the geometrical moment of inertia of the cross section area of the beam 

about a horizontal axis through its centroid.  Ig is also equal to AK
2
 where A is the cross 

sectional area of the beam and K, the radius of gyration of this cross sectional area about a 

horizontal axis through its centroid.  

       Thus the moment of the restoring .couple or the bending moment  

=  
𝐸

𝑅
𝐼𝑔  

As discussed above, 
𝐸𝑙𝑔

𝑅
  , the moment of all the internal forces balances the external couple. 

The quantity 𝐸𝐼𝑔  =  𝐸𝐴𝐾2 is called the flexural rigidity of the beam. Geometrical moment of 

inertia of the beam is also equal to the (mechanical) moment of inertia 'I'  if the beam has an 

unit mass per unit area.  
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Note:  

(i) If the cross section of the beam is rectangular then A = b x d where b is the breadth of 

the face BB'C'C and d the thickness of the beam. The moment of inertia of the 

rectangle BB'C'C about the axis FF՛ parallel to the side BB՛=  𝑀𝐾2 = 𝑀
𝑑2

12
 

                      (i.e)   K
2   

=   d
2
 /12 

Therefore, geometrical moment of inertia of the beam  

𝑙𝑔 =  𝐴𝐾2  =  
𝑏𝑑𝑑2

12
=  

𝑏𝑑3

12
 

(ii) If the cross section of the beam is circular and has a radius 'r', then A = 𝜋𝑟2. 

       Moment of inertia about FF
1
 = MK

2
 = M 

𝑟2

4
 

                       Therefore,  𝐾2 =
𝑟2

4
 

Hence geometrical moment of inertia of the beam about the neutral surface  

′𝐼𝑔
′ =  𝜋𝑟2

𝑟2

4
=  

𝜋𝑟4

4
 

 

 

 

2.4 Depression of a cantilever:  

 A cantilever is a beam fixed horizontally at one end and loaded at the other end. The 

Young's modulus of the material of the cantilever can be determined using the value of 

depression produced in that cantilever.  



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
32 

 

 Let PQ be the neutral axis of a cantilever fixed at P. Let ℓbe its length and the weight of 

the cantilever be negligible. It is loaded at Q with a weight and so the end Q is depressed to Q՛.  

 

 

 

 

 Consider a point A at a distance  x from the fixed end 'P' as shown in the above figure 

The moment of the couple due to the load 'W' = bending couple         

                                                                           = W.AQ = W(ℓ −x)  

This must be equal to the moment of restoring couple (or) bending moment, 
𝐸𝑙𝑔

𝑅
   , under 

equilibrium conditions.  

                                            Therefore, W(ℓ −x) = 
𝐸𝑙𝑔

𝑅
 

       Where R is the radius of curvature of the neutral axis at A. Let B be another point at a 

distance dx from A and AB subtending an angle 'd𝜃' at O. When θ is small, dx = Rθ dx  

                                                  Hence,   R =
𝑑𝑥

𝐷𝜃
 

Substituting the value of R in the above equation, we get 

𝑊 ℓ − 𝑥 =  𝐸𝐼𝑔
𝑑𝜃

𝑑𝑥
 

𝑊 ℓ − 𝑥 𝑑𝑥 =  𝐸𝐼𝑔𝑑𝜃 
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 Draw tangents at A and B meeting the vertical line OQ' at C and D respectively.   

 Then the depression of B below A is evidently  

𝐶𝐷 = 𝑑𝑦 =    ℓ − 𝑥 𝑑𝜃 

 
𝑑𝑦

ℓ − 𝑥
 = 𝑑𝜃 

Substituting the value of d𝜃  in the above equation, we get 

𝑊 ℓ − 𝑥 𝑑𝑥 =  𝐸𝐼𝑔  
𝑑𝑦

ℓ − 𝑥
  

𝑖. 𝑒. 𝑊 ℓ − 𝑥 2𝑑𝑥 =  𝐸𝐼𝑔𝑑𝑦 

                                                                  Thus dy =  
𝑊 ℓ−𝑥 2

𝐸𝐼𝑔
𝑑𝑥 

Therefore  total  depression of the cantilever ‘y’ 

=  
𝑊

𝐸𝐼𝑔
  ℓ − 𝑥  2

ℓ

0

 𝑑𝑥 =  
𝑊

𝐸𝐼𝑔
  ℓ2   − 2ℓ𝑥 + 𝑥2 

ℓ

0

𝑑𝑥  

=  
𝑊

𝐸𝐼𝑔
 ℓ2 𝑥 −  

2ℓ 𝑥2

2 
+  

𝑥3

3
 

0

ℓ

 =  
𝑊

𝐸𝐼𝑔
 ℓ3 − ℓ3 +

ℓ3

3
  

𝑦 =  
𝑊ℓ3

3𝐸𝐼𝑔
 

Hence the Young's modulus of the material of the cantilever  

𝐸 =  
𝑊ℓ3

3𝑦𝐼𝑔
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Note: When the weight of the cantilever is effective, then in addition to the weight W at Q the 

weight of the portion  ℓ − 𝑥   of the cantilever is also acting at the mid point or the centre of 

gravity of this portion. If w be the weight per unit length of the cantilever, a weight of  

w (ℓ − 𝑥) is acting at a distance  ℓ − 𝑥  /2 from the section AB.  

Under equilibrium conditions, the total bending moment,  

                    W  ℓ − 𝑥 + 𝑤  ℓ − 𝑥 
 ℓ−𝑥 

2
=  

𝐸𝐼𝑔

𝑅
=  𝐸𝐼𝑔     

𝑑𝜃

𝑑𝑥
 

𝑤 ℓ − 𝑥 𝑑𝑥 +
𝑤   

2
 ℓ − 𝑥 2𝑑𝑥

𝐸𝐼𝑔
  =   𝑑𝜃 

Therefore dy =   ℓ − 𝑥 𝑑𝜃 =  
𝑊

𝐸𝐼𝑔
 ℓ − 𝑥 𝑑𝑥 +

𝑤

2𝐸𝐼𝑔
 ℓ − 𝑥 3 𝑑𝑥 

∴ 𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ′𝑦′ =  
𝑊

𝐸𝐼𝑔
  ℓ − 𝑥 2

ℓ

𝑜

 𝑑𝑥 +
𝑤

2𝐸𝐼𝑔
  ℓ − 𝑥 3 𝑑𝑥

ℓ

𝑜

 

                                Put (ℓ − 𝑥) = 𝑢 

Therefore      –dx = du and  𝑑𝑥 =  𝑑𝑢
ℓ

𝑜

ℓ

𝑜
 

Hence y = 
𝑊

𝐸𝐼𝑔
 𝑢2𝑑𝑢

ℓ

𝑜
+

𝑤

2𝐸𝐼𝑔
 𝑢3𝑑𝑢

ℓ

𝑜
 

                   =  
𝑊ℓ3

3𝐸𝐼𝑔
 +  

𝑤ℓ4

8𝐸𝐼𝑔
 

If 𝑊1   = 𝑤ℓ   =   𝑤𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑡𝑕𝑒 𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟, 𝑡𝑕𝑒𝑛  

𝑦 =  𝑊 +  
3

8
𝑊1   

ℓ3

3𝐸𝐼𝑔
 

When 𝑊1 ≪ 𝑊   𝑡𝑕𝑒𝑛 𝑦 =
𝑊ℓ3

3𝐸𝐼𝑔
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2.5  Young's modulus by Cantilever (Statical Method):  

 

 

 

A given rod (or bar) whose Young's modulus is required is clamped firmly and 

horizontally at one end. A weight hanger is suspended from the free end of it as shown in the 

above figure . A vertical pin is also fixed firmly to the free end of the rod using wax. A 

travelling microscope is focussed on the pin and the image of the tip of the pin is made to 

coincide with the point of intersection of the cross wires.  

The microscope reading (R0) is noted. (We can take the reading by coinciding the image of the 

tip of the pin with the horizontal cross wire also). A small mass(  50gms)is placed in the 

weight hanger. The loaded end of the rod then gets depressed and the top of the pin also gets 

lowered by the same amount. The microscope is adjusted to get the image of the tip at the point 

of intersection of the cross wires and the microscope reading is again noted. The load is 

increased in equal steps and the corresponding microscope readings are noted. These 

observations are repeated while loads are removed from the weight hanger in equal steps. The 

results are tabulated as under: 

 

Load 

kg 

Microscope readings  Depression 

for M kg. 

wt. 

M 

While 

loading 

m 

While 

Unloading 

M 

Mean 

m 
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                                                                                Mean value of y = …… m  

The distance from the fixed end of the rod to the point where, the weight hanger is 

suspended is measured and it is taken as the length ′ℓ′    of the cantilever. If the 

cantilever has circular cross section, its radius is measured using a screw gauge; if it 

has rectangular cross section then its breadth and thickness are measured. 

We know that,  

W=  
𝑦ℓ3

3𝐸𝐼𝑔
      (assuming the weight of the rod is negligible)  

Therefore,  𝐸 =
𝑊ℓ3

3 𝑦 𝐼𝑔
=

𝑀𝑔ℓ3

3 𝑦 𝐼𝑔
 

If the cantilever has circular cross section, 𝐼𝑔 =
𝜋𝑟 4

4
 

If the cantilever has rectangular cross section 𝑙𝑔 =
𝑏𝑑 3

12
 

 

2.6  Oscillations of a Cantilever:  

Let a rod be clamped rigidly at one end and a load is attached at  the o ther  

end.  Assume that  the mass of  the  rod i s  negl igible .  Let the load be depressed 

a little and released. The rod begins to oscillate simple harmonically due to its 

bending and unbending. 

           The bending force on the cantilever = Mg 

Where M is the mass of the load attached at the free end and  g is the 

acceleration produced in it. 

                 The restoring force produced =  -Ky  =   
−3𝐸𝐼𝑔 𝑦

ℓ3
 

Where y is the displacement of the cantilever from its equilibrium position and 

 Kis the force constant (or) force per unit displacement of the cantilever.  
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In equilibrium,  

             Bending force  =       Restoring force 

Therefore   

  Mg  =  −
3𝐸𝐼𝑔𝑦

ℓ
     

𝑀
𝑑2𝑦

𝑑𝑡2 =

−3𝐸𝐼𝑔𝑦

ℓ3
 

               Therefore, 
𝑑2𝑦

𝑑𝑡 2
=

−3𝐸𝐼𝑔𝑦

𝑀 ℓ3
= −𝜔2𝑦 

This is the equation of a simple harmonic motion with angular frequency 

 𝜔2 =
3𝐸𝐼𝑔

𝑀ℓ3
 

Therefore the load executes SHM with a period ‘T’ given by  

 T=  2𝜋 
𝑀ℓ3

3𝐸𝐼𝑔
  (or)  𝑇2 =

4𝜋2𝑀 ℓ3

3 𝐸𝐼𝑔
 

2.7  Young’s modulus by Cantilever (Dynamical method):  

 Let a cantilever be loaded with a mass ‘M’ kg as shown in the above figure. Let the 

loaded end of the cantilever be depressed from its equilibrium position and released.  Find the 

period of oscillation of the cantilever. Then add another 50gms and once again find the period. 

The load is increased in equal steps and the corresponding periods are noted. Then draw a graph 

between the square of the period and the corresponding mass in the weight hanger. It should be 

a straight line. Find the slope of the line.  

𝑆𝑙𝑜𝑝𝑒 =
𝑑𝑇2

𝑑𝑀
=

4 𝜋2 ℓ3

3 𝐸𝐼𝑔
 

𝑇𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐸 =  
4𝜋2ℓ3

3  𝐼𝑔
𝑥 

1

𝑠𝑙𝑜𝑝𝑒 
 

Note: By means of finding the mean value of 
𝑀

𝑇2 of different loads, one can also find the value 

of E. In that case, 

    𝐸 =
4𝜋2ℓ3

3 𝐼𝑔

𝑀

𝑇2
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2.8 Workdone in bending a Cantilever: 

 We know that , 

   Work done  = Force x displacement of the cantilever  

   Bending force = Mg = 3𝐸𝐼𝑔 
𝑦

ℓ3 
  

because, in equilibrium conditions, the bending force is equal and opposite to the restoring 

force.  

 /Work done =
3𝐸𝐼𝑔

ℓ3  𝑦. 𝑦 =   
3𝐸𝐼𝑔

ℓ3 𝑦2  

This is stored in the form of elastic potential energy of the cantilever.  

 

2.9 Uniform Bending and Non uniform Bending:  

 When an uniform load is acting on the beam, the envelope of the bent beam forms an 

arc of a circle and the bending is called uniform bending.  When we load the beam only at a 

point of the beam the envelope of the bent would not form an arc of a circle and the bending is 

called non uniform bending. Therefore cantilever bending is a non uniform bending.  

Non uniform bending (A beam supported symmetrically on two knife edges and loaded In 

the middle):  

  

 

 

 

 

 

Consider a light beam supported symmetrically on two knife edges A and B at a distance ‘ℓ′ 

apart with a load W at the middle point ‘C’ of the beam. The reaction at each knife edge is 

equal to 
𝑊

2
   in the upward direction.  

 Since the middle part of the beam .is practically horizontal, it may be equal 

to two inverted cantilevers fixed at C and being loaded at A and B with a load 
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𝑊

2
acting in the upward direction. The length of each inverted cantilever is equal 

to  ℓ/2 .  

By considering the  above  fac t s ,  t h e  ' e l eva t ion  o f  t h e  b eam  a t  A  o r  B  

ab o v e  C  o r  t h e  d ep r e s s i o n  o f  t h e  b eam  a t  t he  middle  i s  given  by  

    𝑦 =
𝑊

2
 .(

ℓ

2
)3

3 𝐸𝐼𝑔
=

𝑊ℓ3

48 𝐸𝐼𝑔
 

Experiment: 

T h e  g i v e n  b e a m  i s  s u p p o r t e d  o n  t w o  k n i f e  e d g e s  i n  t h e  s a m e  

hor izonta l  l evel ,  equal  l engths  pro ject ing beyond the  suppor t s .  A ver t ica l  

p i n  i s  f i x ed  a t  t h e  c en t r e  o f  b eam  b y m ean s  o f  w ax .  T h e  w e i gh t  h an g e r  i s  

a t t a c h e d  a t  t h e  m i d d l e  u s i n g  t h r e a d .  In  t h e  m i c r o s c o p e ,  t h e  i m a g e  of  

the  t ip  of  the  p in  i s  made to  co incide  wi th  the  hor izonta l  cross -wi re , ,  The  

loads  are  added to the  hanger  in  s teps  of  50  gms and the microscope,  i s  

ad j u s t ed  s o  t h a t  t he  t i p  o f  t h e  i m age  o f  t h e  p i n  j u s t  co i n c i d e s  w i t h  t he  

ho r i zon ta l  c ros swi r e  i n  each  cas e  and  the  mic rosco pe  r ead ings  a re  n o t ed .  

T h e  o b s e r v a t i o n s  a r e  r ep ea t e d  w h i l e  u n l o ad i n g  t h e  h a n g e r  i n  same s teps  

and the  readings are  tabulated as  under :  

 

 

Load 

kg. 

Microscope Readings  Depression for M k.g.wt 

‘y’ 

M 
While loading m While unloading 

M 

Mean 

m 
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                                                  Mean value of y= ……..m  

using the formula   𝐸 =
𝑀𝑔ℓ3

48 𝑦𝐼𝑔
,    E can be determined  

Uniform Bending:  

 

 

 

 

 

 

 

Consider a light beam CD supported symmetrically on two knife edges at A and B and loaded 

with equal weights W at each end as shown in the above figure. Hence the reaction at each 

knife edge is equal to W. Now the beam bends uniformly and forms an arc of a circle of radius 

R.  

                  The bending moment =W.x =
𝐸𝐼𝑔

𝑅
 

                      where  x  is the distance from loaded end and knife edge.  

If the centre of the beam is elevated through a distance y, then by property of circles (Rule of 

Sagitha)  

   
ℓ

2
.
ℓ

2
  =  2𝑅 − 𝑦 . 𝑦  

𝑖𝑒.
ℓ2

4
= 2𝑅𝑦 − 𝑦2 

Since y is very small, 𝑦2 𝑐𝑎𝑛 𝑏𝑒 𝑛𝑒𝑔𝑖𝑒𝑐𝑡𝑒𝑑.  

        

                                                  Therefore, 
ℓ2

4
= 2 𝑅𝑦 

1

𝑅
=

8𝑦

ℓ2
 

Substituting the value of 
1

𝑅 
 in the above equation,  we get 
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                                            Wx=
𝐸𝐼𝑔

2
. 8𝑦  

                                          y=
𝑊𝑥ℓ2

8 𝐸𝐼𝑔
 

                                      E = 
𝑊𝑥ℓ2

8 𝑦𝐼𝑔
 

 

Experiment: 

T h e  g i v e n  b e a m  i s  s u p p o r t e d  o n  t w o  k n i f e  e d g e s  i n  t h e  

s a m e  ho r i z on t a l  l ev e l ,  eq u a l  l en g th s  p r o j ec t i n g  be yo n d  th e  s up po r t s .  

A  v e r t i c a l  p i n  i s  f i x e d  a t  t h e  c e n t r e  o f  t h e  b e a m  b y  m e a n s  o f  

w a x .  T w o  w e i g h t  h a n g e r s  a r e  a t t a c h e d  a t  a  d i s t a n c e  x  f r o m  t h e  

k n i f e  e d g e s .  I n  t h e  m i c r o s c o p e  t h e  i m a g e  o f  t h e  t i p  o f  t h e  p i n  

i s  m a d e  t o  c o i n c i d e  w i t h  t h e  h o r i z o n t a l  c r o s s - w i r e .  T h e  l o a d s  

a r e  a d d e d  t o  t h e  h a n g e r s  i n  s t e p s  o f  5 0  g m s  s i m u l t a n e o u s l y  a n d  

t h e  m i c r o s c o p e  i s  a d j u s t e d  s o  t h a t  t h e  t i p  o f  t h e  i m a g e  o f  t h e  

p i n  j u s t  c o i n c i d e s  w i t h  t h e  h o r i z o n t a l  c r o s s - w i r e  i n  e a c h  c a s e  

a n d  t h e  m i c r o s c o p e  r e a d i n g s  a r e  n o t e d .  T h e  ob s er v a t io ns  a re  

r ep ea t ed  w hi l e  u n lo ad i n g  t h e  h an ge r  i n  s am e  s t eps  and  the readings  

are tabulated as  under:   

 

 

 

 

Load 

k.g. 

Microscope readings   

Depression ‘y’ for 

M kg. wt. 

M 

while loading 

m 

while 

unloading 

m 

Mean 

m 
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                                                                             Mean value of y = ………m  

Then using the formula, E= 
𝑀𝑔 𝑥 ℓ2

8 𝑦𝐼𝑔
, E can be determined. 

 

2.10  Application to girders – I form girders:  

 

 

 

 

 

 

 

When a heavy girder is supported at its ends, it is bent non uniformly under its 

own weight into the form of an inverted double cantilever. We know that the 

depression of its mid-point is given by 

𝑦 =
𝑀𝑔 ℓ3

48 𝐸𝐼𝑔
 

If it has rectangular cross section of breadth b and thickness ‘d’  

𝐼𝑔 =  
𝑏𝑑3

12
 

                                         Therefore,  y= 
𝑀𝑔 ℓ3

48 𝐸
𝑏𝑑 3

12

=
𝑀𝑔 ℓ3

4 𝐸 𝑏𝑑 3
 

 

When a beam is used as a girder, it should have minimum depression under its own 

weight. Further depression of the girder should be small for a given load also. This 

can be achieved by decreasing its length or span, increasing E and increasing b or d. 

When we decrease the length of the girder, the depression is reduced. But it is 

found that the decreasingℓ  to get minimum depression is not economical inso many 
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respects. By selecting the girder material with high Young's  

modulus (like steel) one can get the small depression. Since d occurs in the 

equation in the form of d
3
, therefore a smaller change in d produces the same effect 

as a larger change in b. The corresponding increase in volume of the girder will be 

much smaller when d is increased than when b is increased so .as to have the same 

value of depression. it is therefore more economical to have a large depth end( 

small breadth). For purposes of stability the upper and lower parts of the cross 

section will be broader so that the section will have the shape of I. This can be 

explained in another way. When a girder is supported at its two ends, its middle part 

is depressed and the surfaces above and below its neutral surface are compressed and 

extended respectively. Compression is maximum at the upper face and extension is 

maximum at the lower face since stresses are maximum there. Stresses are 

decreasing as we proceed towards the neutral surface from either side. It follows 

therefore that the upper and lower faces of the girder should be much stronger that its 

middle portions. In other words, the middle portion of the girder may be made of a 

much smaller breadth than the upper and the lower faces, thus saving a good amount 

of material with no loss in its strength. That is why the girders have the shape of I. 

 

 

 

 

 

 

 

 

 

 

UNIT - III 

SURFACE TENSION 

3.1 Introduction  
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Fig. 3.1 

 Any liquid in small quantity, so that gravity influence is negligibly small, will always 

assume the form of a spherical drop. e.g., rain drops, small quantities of mercury placed on a 

clean glass plate etc. So a liquid must experience some kind of force, so as to occupy a 

minimum surface area. This contracting tendency of a liquid surface is known as surface 

tension of liquid. This is a fundamental property of every liquid.  

 Surface tension is that property of liquids owing to which they tend to acquire minimum 

surface area.  

Small liquid drops acquire spherical shape due to surface tension. Big drops flatten due 

to weight.  

 The following experiment illustrates the tendency of a liquid to decrease its surface area.  

 When a camel hair brush is dipped into water, the bristles spread out [Fig. 3.1 (a)]. 

When the brush is taken out, the bristles cling together on 

account of the films of water between them contracts [Fig. 3.1 

(b)]. This experiment clearly shows that the surface of a liquid 

behaves like an elastic membrane under tension with a tendency to 

contract. This tension or pull in the surface of a liquid is called its 

surface tension.     

 Definition: Surface tension is defined as the force per unit length of a line drawn in the 

liquid surface, acting perpendicular to it at every point and tending to pull the surface apart 

along the line.  

 Unit of Surface Tension: Surface tension is force per unit length. So its SI unit is 

Newton per meter (𝑁𝑚−1) 

Dimensions of Surface Tension: Surface tension is the ratio of a force to a length.  

  

   Surface tension   = force/length  

   Dimensions of force  = 𝑀𝐿𝑇−2     

 Dimensions of length  = L  

 ∴ Dimensions of surface tension  = 
𝑀𝐿𝑇−2

𝐿
=  𝑀𝑇−2 

The dimensional formula for surface tension is [𝑀𝑇−2] 
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Fig.3.2 

Fig.3.3 

3.2. Molecular interpretation: 
 

Consider three moleculesA, B and C of a liquid (Fig. 3.2). The circles around them indicate 

their respective spheres of influence. 

(i) The molecule A is well within the liquid. It is attracted     

equally in all directions by the other molecules lying within its 

sphere of influence. Therefore, it does not experience any 

resultant force in any direction. This happens only as 

long as the sphere of influenceis well within the liquid.       

(ii) The sphere of influence of molecule B lies partly outside the liquid. The upper half of the sphere 

contains fewer molecules attaching the molecule B upwards, than the lower half attracts it 

downwards. Hence, there is resultant downward force acting on B. 

(iii) Themolecule C lies on the surface of the liquid. Half of its sphere of influence lies above the 

surface of the liquid and contains only a few vapor molecules. But there are many liquid mol-

ecules in its entire lower half. Thus the resultant downward force in this case is the maximum. 

 Draw a plane RS parallel to the free surface PQ of the liquid at a distance equal to the molecular 

range. The layer of the liquid between the planes PQ and RS is called the surface film. Hence all the 

molecules in the surface film are pulled downward due to the cohesive force between molecules. 

 If a molecule is to be brought from the interior of the liquid to the surface of the liquid, work has to be 

done against the downward cohesive force acting upon it. Hence, molecules in the surface film have greater 

potential energy than the molecules inside the liquid. The potential energy of a system tends towards a 

minimum. Hence the surface film tends to contract, so as to contain minimum number of molecules in it. 

Thus the surface of the liquid is under tension and behaves like a stretchedelastic membrane. 

Surface Energy: The potential energy per unit area of the surface film is called its surface 

energy. 

 

 

3.3Pressure Difference across a Liquid Surface 

(a) If the free surface of the liquid is plane [Fig. 3.3 (a)],the resultant force due to Surface 

Tension 
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Fig.3.4 

on a molecule on the surface is zero. 

(b) If the free surface of the liquid is concave [Fig. 3.3 (b)],the resultant force due to Surface 

Tension on a molecule on the surface acts vertically upwards. 

(c) If the free surface of the liquid is convex [Fig. 3.3(c)], the resultant force due to Surface Tension on 

a molecule on the surface acts vertically downwards (into the liquid).  

3.4 Excess pressure Inside a Liquid Drop  

 A spherical liquid drop has a convex surface [Fig. 3.4 (i)]. The molecules near the surface of the drop 

experience a resultant force, acting inwards due to surface 

tension. Therefore the pressure inside the drop must be greater 

than the pressure outside it. Let this excess pressure inside the 

liquid drop over the pressure outside it he p.  

Imagine the drop to be divided into two exactly 

equal halves. Consider the equilibrium of the upper half of the drop [Fig. 3.4 (ii)]. r is the radius 

of the drop and σ it’s Surface Tension.  

Upward force on the plane face             = 𝑝 𝜋 𝑟2 

ABCD due to the excess pressure p  

 

Downward force due to surface tension acting        = 𝜍 2 π r 

along the circumference of the circle ABCD  

 

    𝑝 𝜋 𝑟2 =  𝜍 2 𝜋 𝑟 

    𝑝 =
2𝜍

𝑟
 

Example. What would be the pressure inside a small air bubble of 10
-4 

m radius, situated just 

below the surface of water. Surface Tension of water may be taken to be 70x10
-3 

Nm
-1

 and the 

atmospheric pressure to be 1.012x10
5 

Nm
-2

. 

Solution.  

Excess of pressure inside the spherical 

air bubble over that of the atmosphere            = 𝑝 =
2

𝑟
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Fig.3.5 

Here,      =70x10
-3 

Nm
-1

, r=10
-4 

m 

 Excess pressure      =  
2

𝑟
=

2𝑋(70𝑋10

10−4

−3)
= 1400 Nm

-2
 

     

Total pressure inside the air bubble = Atmospheric pressure + Excess pressure = 

1.012x10
5
+1400=1.026x10

5 
Nm

-2
. 

  

3.5 Excess Pressure inside a Soap Bubble  

 Consider a soap bubble of radius r [Fig. 3.5 (i)]. Let p be the excess pressure inside it. A 

soap bubble has two liquid surfaces in contact with air, 

one inside the bubble and the other outside the bubble.  

is the surface tension of soap solution.  

 Consider the equilibrium of the upper half (or the 

upper hemisphere of the bubble [Fig. 3.5 (ii)].  

 Upward force on the plane face  

 ABCD due to the excess pressure p      = p π 𝑟2 

  

 Downward force due to surface  

 tension acting along the circumference         = 2 x  2 π r =4 π r  

 of the circle ABCD 

 

For equilibrium of the hemisphere,  

   𝑝 𝜋 𝑟2 = 4 𝜋 𝑟 

    𝑝 =  
4

𝑟

 

Example: The Pressure of air in a bubble of 7 x 10
-3

m diameter is 8x 10
-3

 m of water above the 

atmosphere pressure. Calculate the Surface Tension of the soap. Solution.  

 

Excess of pressure inside a soap                 = 𝑝 =  
4

𝑟
 

bubble over that outside it  

           

Here,  p =8x10
-3 

m of water = (8x10
-3) 

x 1000x9.81 Nm
-2 

  
= 78.48 Nm

-2  
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r  = (7x10

-3
) /2=3.5x10

-3
 m.  

  𝜍 =
𝑝𝑟

4
=

78.48𝑥93.5𝑥10

4

−3
 

       = 68.67x10
-3 

Nm
-1  

3.6 Molecular forces:  

There are two kinds of molecular forces:  

(i) adhesive forces (ii) cohesive forces. 

(i) Forces of attraction between molecules of different substances are known as adhesive 

forces. For example, the force of attraction between the glass molecules of a beaker 

and molecules of water contained in it is an adhesive force. Adhesive force is 

different for different pairs of substances.  

(ii) Force of attraction between molecules of the same substance is called cohesive force. 

This force varies inversely probably as the eighth power of the distance between two 

molecules. Hence, it is very appreciable when the distance between two molecules is 

small. It is the greatest in solids, less in liquids and the least in gases. Therefore, a 

solid has a definite shape, a liquid has a definite free surface and a gas has neither.  

The maximum distance up to which a molecule exerts a force of attraction on another is 

called the range of molecular attraction and is generally of the order of 10−9 m. A sphere with 

the molecule as centre and the range of molecular attraction as radius is called the sphere of 

influence of the molecule. The molecule attracts and is, in turn, attracted by the molecules 

present inside this sphere. 

3.7 Variation of Surface Tension with Temperature 

Liquids are of two types, viz., (i) unassociated liquid and (ii) associated liquid. An unassociated liquid 

contains the individual molecules of that liquid. Example: Benzene and carbon tetrachloride. An 

associated liquid contains groups of molecules of quite another type. These groups, however, tend to 

break up into single molecules with a rise in temperature. At the ordinary temperatures, water is 

known to consist of groups, consisting of two H2O molecules, in addition to ordinary single H2Omolecules. 

Thus water is an associated liquid at these temperatures. 

The S.T. of an unassociated liquid is found to decrease with rise of temperature, according to 

the simple formula 𝜍𝑡 = 𝜍𝑜 1 − 𝛼𝑡 where  𝜍𝑡 is the  S.T. at  𝑡𝑜  𝐶, 𝜍𝑜𝑎𝑡 0𝑜  𝐶 𝑎𝑛𝑑 𝛼  is  the 

temperature coefficient of  S.T. for the liquid. Van der Waals and Ferguson suggested other relations 

from which could be easily deduced that the S.T. is zero at the critical temperature. The best relation 
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connecting S.T. and temperature, for both associated and unassociated liquids, is due to Eotvos. This 

formula was later modified by Ramsay and Shields. 

This is represented by  

𝜍 (𝑀𝑣𝑥)3/2 = 𝑘  𝜃𝑐 − 𝜃 − 𝑑 𝑤𝑕𝑒𝑟𝑒 𝜍 = 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑡 𝜃 𝐾, 𝜃𝑐   = Critical 

temperature, d = a constant, varying from 6 to 8 for most of the liquids, k = another `constant 

having the value 2.12 for associated liquids and 2.22 for unassociated liquids. 

                         x = Coefficient of association 

=
𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔𝑕𝑡 𝑜𝑓 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑙𝑖𝑞𝑢𝑖𝑑 

𝑚𝑜𝑙. 𝑤𝑡. 𝑜𝑓 𝑡𝑕𝑒 𝑢𝑛𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑙𝑖𝑞𝑢𝑖𝑑 𝑤𝑖𝑡𝑕 𝑡𝑕𝑒 𝑠𝑎𝑚𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 
 

M= molecular weight of the unassociated liquid and v its specific volume. This shows that the S.T. 

is zero, when 𝜃 = (𝜃𝑐 − 𝑑) i.e., at a temperature a little 

below the critical temperature.  

3.8 Capillary rise and energy consideration 

If a tube of very narrow bore (called capillary) is 

dipped in a liquid, it is found that the liquid in the capillary 

either ascends or descends relative to the surrounding 

liquid. This phenomenon is called capillarity. The root 

cause of capillarity is the difference in pressures on two 

sides of (concave and convex) curved surface of liquid. 

When a uniform capillary tube, open at both ends, is 

partially dipped vertically (fig 3.6) in a liquid that wets the tube, the surface of the liquid inside 

the tube is concave upward. The pressure in the liquid just below the meniscus is less than the 

atmospheric pressure above by 2S/R, where S is the surface tension of the liquid and R is the 

radius of curvature of meniscus. Hence the liquid rises in the capillary tube till the weight of the 

volume of liquid lifted in it is balanced by the above difference in pressure. 

Let h be the height of the liquid column in the capillary above the free surface of the 

liquid outside. If  h≫r, the radius of the tube, the meniscus at the top may be considered 

hemispherical of radius of curvature R≈ r. 

Volume of the liquid lifted, V=volume of a liquid cylinder of height h+ volume of liquid 

in the meniscus. 

Fig 3.6 
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𝑉 = 𝜋𝑟2𝑕 + (𝜋𝑟2 × 𝑟 −
2

3
𝜋𝑟2) 

=  𝜋𝑟2𝑕 +
1

3
𝜋𝑟3 

= 𝜋𝑟2  𝑕 +
1

3
𝑟  

Weight of the liquid lifted = 𝜋𝑟2  𝑕 +
1

3
𝑟 𝜌𝑔, where ρ is the density of the liquid. 

The liquid makes contact with the tube along a line 2𝜋𝑟. If S be the tension, acting tangentially 

to the liquid surface, the vertical component of it is S𝑆𝑐𝑜𝑠𝜃. so that the total upward force due 

to it is 2𝜋𝑟𝑐𝑜𝑠𝜃. 

At equilibrium, therefore, we have 

2𝜋𝑟𝑆𝑐𝑜𝑠𝜃 = 𝜋𝑟2(𝑕 +
1

3
𝑟)𝜌𝑔 

𝑆 =
𝑟(𝑕+1/3 𝑟)𝜌𝑔

2𝑐𝑜𝑠𝜃
                   (3.1) 

If 𝜃 = 0, as is the case of pure water in clean glass, 𝑐𝑜𝑠𝜃 = 1 and so we obtain 

𝑆 =
1

2
𝑟  𝑕 +

1

3
𝑟 𝜌𝑔 from (3.1 ) 

=
1

2
𝑟𝐻𝜌𝑔 

Where 𝐻 = 𝑕 +
1

3
𝑟,  the effective height. 

When a capillary tube is dipped vertically into a liquid which wets the walls of the tube, 

there is a rise of the liquid inside the tube. The rise, obviously, takes place against the action of 

gravity and the liquid, therefore, must gain in potential energy. The question, therefore, arises as 

to where does it get this increasing potential from.  For , according to the law of conservation of 

energy, energy can only be converted from one form into another, but cannot be created. the 

explanation is, however, simple. 

We have three surfaces of separation to consider when a capillary tube is immersed in a liquid, 

viz.,  i) an air-liquid surface ii) an air-glass surface and iii) an glass-liquid surface, each having 

its own surface tension, different from the others, and equal to its free surface energy per unit 

area. 
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Fig 3.7 

 Now, as the plane liquid surface in the tube acquires a curvature, the air liquid surface 

increases and, as the liquid rises in the tube, the glass liquid surface increases, the air glass 

surface decreasing by an equal amount. Thus, the surface energy of the air liquid and the glass 

liquid surfaces increases while that of the air glass surface decreases by the same amount. In 

other words, the energy required to raise the liquid in the capillary tube is obtained from the 

surface energy of the air glass surface. 

On the other hand, a liquid, which does not wet the walls of the tube, gets depressed inside it, 

below its level outside the tube. In this case, obviously, the glass liquid surface decreases, 

whereas the air glass surface increases by an equal amount, resulting in an net increase in the 

surface energy of the whole system .This energy is derived from the depression of the liquid 

inside the tube, those gravitational potential energy is thus decreased by an equal amount. 

3.9Jaegar’s Method  

 Principle: The experiment is based on the principle that the pressure inside an air 

bubble in a liquid is greater than the pressure outside it by 2σ/r. Here σ is the S.T. of the liquid 

and r the radius of the air bubble. This excess pressure can be directly found and hence σ can be 

calculated.  

 

Apparatus: An aspirator A is closed with a two- holed stopper through which pass two glass 

tubes (fig 3.7). One of these is connected to a water reservoir through a stopcock B and the 

other is joined through a tap C to a manometer M and a vertical tube DE. The tube DE ends in a 

narrow orifice at E and dips into the experimental liquid contained in a beaker.  

Experimental Details: If the stopcock B is opened, water flows into the aspirator and the air in 

the aspirator is displaced. The displaced air forces its way through the tube DE and forms air 

bubbles at E. The size of each air bubble gradually grows. When its radius becomes equal to the 

radius of the tube at E, it becomes unstable and breaks away. During the growth of the bubble, 

the pressure inside increases and reaches a maximum value at the instant of detachment. The 

difference in manometer levels h1 is noted just when the bubble detaches itself. At the moment 

of detachment, 

 the pressure inside the bubble = p1 =H+h1 ρ1 g, where  
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 H= atmospheric pressure, h1 =the difference in manometer levels, and  

 ρ1 = density of the manometric liquid.  

 The pressure outside the bubble  =p2=H+h2 ρ2 g    

 at the same time  

Where h2 = Length of the tube dipping in the experimental liquid and  

ρ2 =Density of the experimental liquid. 

   Excess pressure           = p = (H+h1ρ1 g) – (H+h2 ρ2 g) 

   inside the bubble  

       = (h1 ρ1-h2 ρ2) g  

But the excess pressure inside the bubble = 2σ/r 

Hence     2σ/r          = (h1ρ1-h2 ρ2) g  

    or σ= ½ rg (h1ρ1- h2 ρ2)  

Advantages: 

1. The angle of contact need not be known 

2.   The continual renewal of the liquid air interface helps in avoiding contamination  

3. The experiment does not require a large quantity of liquid. 

4. The liquid in the beaker may be heated to various temperatures. Hence the S.T. of a liquid can be 

determined  at various  temperatures. 

Drawbacks: 

1. The exact value of the radius of the bubble when it breaks away cannot be ascertained. 

2. The drop may not be hemispherical and of quite the same radius as the aperture at E. 

3. The calculations are based on the assumption of static conditions but the phenomenon is not entirely 

statical. 

For these reasons, this method does not give very accurate results for the surface tension. 
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Fig. 4.1 

UNIT IV 

VISCOSITY 

4.1 Introduction  

Consider two parallel planes A and B separated by a distance [Fig.4.1].  Let the plane B 

be at rest and the plane A be moving with a uniform velocity. Let the space between the two 

plans be filled with a gas or liquid. So the layer of liquid in contact with B will be at rest while 

the layer in contact with A will move the maximum velocity. The layers in between will move 

the different velocities, decreasing from A to B. So a velocity gradient is set up. Because of 

this, the liquid will exert a force at A in a direction opposite to its motion tending to reduce its 

velocity. Similarly at B, a force will be exerted urging it to move in the direction of motion of 

A. As a net result, the relative velocity between the layers A and B will gradually decreases. 

This property of the liquid by which it resists the relative motion between its different layers is 

known as viscosity or internal friction of the liquid.  

 

 

 

 

It is to be noted that an external tangential force has to be applied to maintain this 

relative motion between the layers of the liquid; otherwise the liquid will not flow. According 

to Newton's third law of motion, internal forces from within the liquid will be brought into play 

opposing the flow of the liquid. These internal forces are called viscous forces or viscous drag. 

These forces are similar to forces of friction in solids.  

4.2 Stream - lined, and turbulent motion 

Consider the flow of liquid through a narrow tube. The velocity of flow is greatest along 

the axis of the tube. The layers in contact with the walls of the tube will be at rest. An external 

pressure - head is to be applied for the liquid to flow. If this pressure - head is constant, the 

liquid settles down into steady motion. Each particle will move parallel to the axis of the liquid, 

with a constant velocity gradient along the radius of the tube. This orderly motion is possible 
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Fig. 4.2 Fig. 4.3 

only if the tube is narrow enough and the pressure head is not large. Such a smooth and orderly 

motion of the liquid is called stream - lined motion. 

If however, the pressure - head is large enough, the liquid particles are accelerated 

axially. Now the resultant motion of the liquid is not orderly, but violent. Such a motion is 

called turbulent motion.  

The velocity of the fluid at which orderly motion ceases and turbulent motion sets in is 

known as the Critical Velocity (Vc) For orderly motion, external pressure head 𝑃 𝛼 𝑉𝑐
2. It has 

been found that  

𝑉𝑐 =
𝐾𝜂

𝜌𝑟
 

Where ρ is the density of the liquid, η is the viscosity of the liquid and r is the radius of the 

tube. K is a constant called Reynolds’ number. For narrow tubes, K is approximately 1000. 

4.3 Coefficient of Viscosity  

Consider a liquid flowing over a horizontal surface. The layer in contact with the surface is 

at rest. The velocities of other layers increase uniformly from layer to layer. The velocity is 

maximum for the top layer [Fig. 4.2].  

 

 

Consider two layers of liquid separated by a distance dz [Fig. 4.3]. Let 𝜐 and 𝜐+d𝜐 be the 

velocities of two layers. So the velocity gradient is d𝜐/dz. Let A be surface area of the layer. The 

viscous force is directly proportional to the surface area A and velocity gradient d𝜐/dz.  

   𝐹 = 𝐴
𝑑𝜐

𝑑𝑧
𝑜𝑟 𝐹 = 𝜂 𝐴

𝑑𝜐

𝑑𝑧
 

Definition: The coefficient of viscosity is defined as the tangential force per unit area 

required to maintain a unit velocity gradient.  

Unit of η is   𝑁 𝑠 𝑚 −2.   It is called the Pascal second.  

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑜𝑓  𝜂 =  
(𝐹)

 𝐴   𝑑𝜐𝑙𝑑𝑧  
=

𝑀𝐿𝑇−2

𝐿2  
𝐿𝑇−1

𝐿
 

= [𝑀𝐿−1𝑇−1] 
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Fig. 4.4 

4.4 Rate of Flow of Liquid in a Capillary Tube - Poiseuille’s formula 

Consider horizontal capillary tube to length l and radius a through which a liquid 

flows [Fig. 4.4] is the coefficient of viscosity of the liquid. p is the pressure difference 

between the ends of the tube. The velocity of the liquid is maximum along and is zero at the 

walls. (dv/dr) is the velocity gradient.  

 

 

 

 

 

 

Consider a cylindrical shell of the liquid of inner radius r an outer radius r+dr (Fig. 4.4 (b)]  

 The surface area of the shell = A = 2πrl.  

The backward dragging viscous force acting on this layer is  

    𝐹1 = −𝜂𝐴
𝑑𝑣

𝑑𝑟
= −𝜂2𝜋𝑟𝑙

𝑑𝑣

𝑑𝑟
 

The driving force on the liquid shell, accelerating it forward  

   𝐹2 = 𝑝𝑥𝜋𝑟2 

   𝜋𝑟2 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠 − section of the innercylinder.  

Here,  

When the motion is steady,  

backward dragging force (𝐹1) = driving force  𝐹2  

    −𝜂2𝜋𝑟𝑙
𝑑𝑣

𝑑𝑟
= 𝑝𝜋𝑟2 

     𝑑𝑣 =
−𝑝

2𝜂𝑙
𝑟 𝑑𝑟 

Integrating,     𝑣 =
−𝑝 

2𝜂𝑙

𝑟

2

2
+ 𝐶    (C is constant)  

When     𝑟 = 𝑎, 𝑣 = 0 

     0 =
−𝑝

2𝜂𝑙

𝑎

2

2
+ 𝐶. 

or      𝐶 =  
𝑝𝑎

4𝜂𝑙

2
  

     𝑣 =
𝑝

4𝜂𝑙  
 𝑎2−𝑟2

 . 
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Volume of liquid flowing per second through this shell  

   dV = (Area of cross –section of the shell) x Velocity 

    =[2π r dr]    
𝑝

4𝜂𝑙
(𝑎2 − 𝑟2  

    
𝜋𝑝

2𝜂𝑙
(𝑎2𝑟 − 𝑟3) 𝑑𝑟 

The Volume of the liquid flowing out per second is obtained by integrating the expression for 

dv between the limits r = 0 to r=a 

    𝑉 =  
𝜋𝑝

2𝜂𝑙
 𝑎2𝑟 − 𝑟3 𝑑𝑟 =

𝜋𝑝

2𝜂𝑙

𝑎

0
 𝑎2 𝑟

2

2
−

𝑟

4

4
 
𝑎
0

 

         = 
𝜋 𝑝

2𝜂𝑙

𝑎

4

4
 

    V = 
𝜋𝑝𝑎

8𝜂𝑙

4
 

This is Poiseuille’s formula for the rate of flow of liquid through a capillary tube. 

4.5. Stokes’ Law  

 Suppose a small metallic sphere is dropped into a highly viscous liquid. The viscous 

force F experienced by a falling sphere depends on  

(i) the terminal velocity 𝜐of the ball  

(ii) the radius r of the ball and  

(iii) the coefficient of viscosity (η) of the liquid.  

  F= 𝑘𝜐𝑎𝑟𝑏 η𝑐  

Here, k is a dimensionless constant.  

The dimensions of these quantities are: 𝐹 = 𝑀𝐿𝑇2 ;  𝜐 = 𝐿𝑇−1; 𝑟 = 𝐿; 

   𝜂 = 𝑀𝐿−1𝑇−1 (k is a number; it has no dimension)  

  𝑀𝐿𝑇2 =  𝐿𝑇−1 𝑎𝐿𝑏(𝑀𝐿−1𝑇−1)𝑐  

  𝑀𝐿𝑇2 = 𝑀𝑐 𝐿𝑎+𝑏−𝑐 𝑇−𝑎−𝑐  

Equating the powers of M, L and Ton either side,  

 𝑐 = 1;  𝑎 + 𝑏 − 𝑐 = 1 𝑎𝑛𝑑 − 𝑎 − 𝑐 = −2 

Solving,   𝑎 = 1; 𝑏 = 1𝑎𝑛𝑑 𝑐 = 1  

∴   𝐹 = 𝑘𝜐𝑟𝜂 

Stokes experimentally found the value of k to be 6π 

∴   𝐹 = 6𝜋𝜐𝑟𝜂. 
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Fig. 4.5 

Expression for terminal velocity 

Let ρ be the density of the ball and ρ’ the density of the liquid.  

  The weight of the ball = 
4

3
𝜋𝑟3 𝜌𝑔 

The weight of the displaced liquid =
4

3
𝜋𝑟3 𝜌𝑔 

The apparent its terminal velocity υ weight of the ball = viscous force F.  

     6πυrη =
4

3
𝜋𝑟3  𝜌 − 𝜌′ 𝑔 

or      𝜐 =
2

9

𝑟

𝜂

2
 𝜌 − 𝜌′ 𝑔 

   ∴  𝜂 =
2

9

𝑟

𝜐

2
 𝜌 − 𝜌′ 𝑔 

4.6. Determination of 𝜼 of a Highly Viscous Liquid (Stokes’ Method)  

 Stokes’ method is suitable for highly viscous liquids like castor oil and glycerin. The 

experimental liquid is taken in a tall and wide jar [Fig.4.5]. Four or five 

marks A,B,C,D… are drawn in the outside of the jar at intervals of 5 cm. A 

steel ball is gently dropped centrally into the jar. The time taken by the ball 

to move through the distances. AB, BC, CD, … are noted. When the times 

for two consecutive transits are equal, the ball has reached terminal velocity.  

  

 

Now another ball is gently dropped into the jar. When the ball just reaches a mark below the 

terminal stage, the time (1) taken by the ball to move through a definite distance (x) is noted.  

∴ Terminal velocity = υ = x/t. 

The experiment is repeated for varying distances. The mean value of 𝝊 is found.   

 The radius of the ball is measured accurately with a screw gauge. The density of the ball 

ρ and the density of the liquid ρ’ are found by the principle of Archimedes.  

η is calculated using the formula,  

    𝜂 =
2

9

𝑟

𝑣

2
(𝜌 − 𝜌′) g 

4.7 Analogy between liquid flow and current flow 

1. As the liquid flows through a tube, mass of the liquid gets displaced. The 

corresponding volume of liquid flowing per sec is given by  
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Fig. 4.6 

 𝑉 =
𝜋𝑃𝑟4

8𝜂 Ɩ
         (1) 

In a current carrying conductor charges get displaced. The 

electric current is given by I= Q t = 
charge

time
      (2) 

Thus V is analogous to I.  

 Volume of liquid flow / sec. is analogous to charge flow / see  

or current.  

2) V = 𝑃

 
8𝜂 Ɩ

𝜋𝑟 4 
        (3) 

Also we know that,  

Electric current (I) =  
potenti al  difference  or  EMF

Resistance  
=

E

R
     (4) 

Comparing (3) & (4) we see that the pressure – head P is analogous to the EMF or 

potential difference an  

 
8𝜂Ɩ

πr4 corresponds to R,  the resistance.  

 So 
8𝜂Ɩ

πr4 is called the Viscous resistance. 

 Thus electrical resistance is analogous to viscous resistance.  

3) P corresponds to E  

 Flow of liquid depends on the pressure difference between the ends of the tube. 

Similarly flow of current depends on the potential difference between the ends of a wire. Thus 

potential difference is analogous to pressure difference or pressure head.  

4.8 Equation of Continuity 

Consider a liquid of density p flowing through a non –uniform tube AB (Fig. 4.6). Let a1 
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Fig. 4.7 

and a2 be the cross- sectional areas of the tube at the points A and B. Let the velocity of the 

liquid at A and B is v1 and v2 respectively.  

The mass of liquid crossing each section of the tube per unit time must be by the same.  

∴𝑎1𝑣1 𝑝 = 𝑎2𝑣2𝑝  𝑜𝑟  𝑎1𝑣1 = 𝑎2𝑣2. 

This is the ‘equation of continuity’.  

4.9 Energy of a Liquid in flow 

We have the three types of energy possessed by a liquid in flow, viz, (i) kinetic energy, 

(ii) potential energy and (iii) pressure energy.  

 (i) Kinetic Energy.  

Clearly, the kinetic energy of a mass m of a liquid, flowing with velocity v, is given by 

1

2
mv 2 .If we consider unit volume of the liquid, m=ρ, the density of the liquid, and, therefore, we 

have  

  Kinetic energy per unit volume of the liquid =1

2
ρ𝑣2 

And, if we consider unit mass of the liquid, m=1, and, therefore.  

 Kinetic energy per unit mass of the liquid = 1

  2
𝑣2 

(ii) Potential Energy.  

The potential energy of a liquid of mass m at a height h above the earth’s surface is 

equal to mgh. Again if we consider unit volume of the liquid, m= ρ, the density of the liquid, 

and, therefore.  

Potential Energy per unit volume of the liquid = ρgh  

But, if we consider unit mass of the liquid, m=1 and we have  

Potential Energy per unit mass of the liquid = gh.  

(iii) Pressure Energy.  

Consider a tank A, Containing a liquid of density 

ρ provided with narrow side tube T, cross-sectional area 
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a, properly fitted with a piston P that can be smoothly moved in and out, Let the hydrostatic 

pressure due to the liquid, at level of the axis of the side tube, be p, so that the force on the 

piston is = p.a. If, therefore, more liquid is to be introduced into the tank, this much force has to 

be applied to the piston in moving it inwards. Let the piston be moving slowly inwards through 

a distance x, so that the velocity of the liquid be very small and there may be not kinetic energy 

acquired by it. Then, clearly, a volume of liquid a. x., or a mass a. x. ρ of it, is forced into the 

tank, and an amount of work p.a.x. is performed to do so. This work, (or energy), p.a.x, 

required to make the liquid move against pressure p, without imparting any velocity to it, thus 

becomes the energy of the mass a. x. ρ of the liquid in the tank, for it can do the same amount of 

work in pushing the piston back, when escaping from the tank. It is referred to a s the pressure 

energy of the liquid.  

 Thus pressure of a mass a.x.ρ of the liquid is equal to p.a.x and, therefore,  

Pressure energy per unit mass of the liquid = 
𝑝.𝑎.𝑥.

𝑎.𝑥.ρ
=

𝑝

ρ
=

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  

𝑑𝑒𝑛𝑠𝑖𝑡𝑦
 

Now, if we consider unit volume of the liquid, we have pressure energy of volume a.x of the 

liquid = p.a.x  

Pressure energy per unit volume of the liquid = 
p.a.x 

a.x
 = p, the pressure of the liquid. 

Total energy of the liquid in motion = Pressure energy + Kinetic energy + Potential energy 

∴ Total energy per unit mass of the flowing liquid =  
p

ρ
+

v2

2
+  gh 
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UNIT V 

GRAVITATION 

5.1. Introduction  

 Humanity has speculated about the origin of the universe since the dawn of man. The 

real renaissance of astronomy began with Nicholas Copernicus, who made the first fully 

predictive mathematical model of a heliocentric system which is against Ptolemy’s geocentric 

system. Galileo discovered that Nicholas Copernicus was right and that the earth was not the 

centre of the solar system. In the following century, this model was elaborated and expanded by 

Kepler and supporting observations made using a telescope were presented by Galileo. He had 

developed three laws governing the motion of the five then-known planets. He did not have a 

theoretical model for the principles governing this movement, but rather achieved them through 

trial and error over the course of his studies. Newton's work, nearly a century later, was to take 

the laws of motion he had developed and apply them to planetary motion to develop a rigorous 

mathematical framework. 

 Newton realized that all motion, whether it was the orbit of the moon around the earth 

or an apple falling from a tree, followed the same basic principles. By his dynamical and 

gravitational theories, he explained Kepler’s laws and established the modern quantitative 

science of gravitation. Newton's law of gravity defines the attractive force between all objects 

that possess mass. Understanding the law of gravity, one of the fundamental forces of physics, 

offers profound insights into the way our universe functions. This universal force would also 

act between the planets and the Sun, providing a common explanation for both terrestrial and 

astronomical phenomena. 

5.2. Newton's Law of Gravitation  

 Thus Newton succeeded in reducing the three laws of Kepler into a single law known as 

the Newton’s law of gravitation. It describes the attraction between two points of mass in space 

separated from some distance, r. The forces of attraction depend on the mass of each object and 

the magnitude of r. 

 The law states that every particle of matter in this universe attracts every other particle 

with a force which is directly proportional to the product of their masses and inversely 

proportional to the square of the distance between them.  

 If 𝑚1 and 𝑚2 are the masses of two particles situated at a distance r apart, the force of 

attraction between them is given by  
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 𝐹𝛼 
𝑚1𝑚2

𝑟2  

𝐹 =
𝐺𝑚1𝑚2

𝑟2
 

Where, 𝐹 is called the gravitational force and 𝐺 is a proportionality constant. 𝐺 is known as 

universal gravitational constant. It is termed a "universal constant" because it is thought to be 

the same at all places and all times. Its unit and dimensions are 𝑁𝑚2𝑘𝑔−2 and 𝑀−1𝐿3𝑇−2 

respectively and has a value of 6.673 × 10−11  𝑁𝑚2 𝑘𝑔−2. The gravitational constant is 

numerically equal to the force exerted by a mass of 1 kg on another equal mass situated at a 

distance of 1 metre from it.  

Newton’s Law is called the Universal Law of Gravitation in the sense that it hold good 

everywhere, right from huge interplanetary distances to the smallest terrestrial ones. 
 

5.3. Gravitational potential and gravitational field intensity  

 A region of space around a body within which a gravitational force of attraction can be 

experienced is called its gravitational field.  

 The gravitational potential V at a point in a gravitational field is the amount of work 

done in moving an unit mass from this point to infinity against the gravitational force of 

attraction. The gravitational potential difference between two points in a gravitational field is 

the amount of work done in taking an unit mass from one point to the other point against the 

gravitational force of attraction. Thus the gravitational potential V is defined as the gravitational 

potential energy per unit mass of a body in a gravitational field.  

i.e.  𝑉 =  
−𝐺𝑀𝑚

𝑟

1

𝑚
 = 

−𝐺𝑀

𝑟
 

where 
−𝐺𝑀𝑚

𝑟
 is the gravitational potential energy of a particle of mass m and the earth having 

mass M.  

 The negative potential energy of the system containing the particle of mass m and earth 

indicates that the particle is bound to the earth by earth's attractive force on the particle.  

The gravitational field intensity 'g' at a point is the gravitational force experienced by an 

unit mass placed at that point.  

Thus      g = 
𝐹

𝑚
 = 

−𝐺𝑀𝑚

𝑚𝑟2  = 
−𝐺𝑀

𝑟2  

 The negative sign indicates the attractive nature of the gravitational force. 

 The gravitational field is a vector field. Each point in this field has a vector associated 

with it.  
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Consider two points A and B lying very near to each other at a distance dr in a gravitational 

field ‘g’ of a particle acting in the direction indicated in figure 5.1. 

 The work done in taking an unit mass from 𝐵 to 𝐴 = 𝑔. 𝑑𝑟 

This work also represents the difference of potential 𝑑𝑉 between 𝐴  and 𝐵. Hence 

𝑑𝑉 =  −𝑔𝑑𝑟  (or) 𝑔 =  
−𝑑𝑉

𝑑𝑟
  

Where, the negative sign shows only that the intensity decreases as distance increases. Hence 

the intensity of gravitational field at a point can also be defined as the gravitational potential 

gradient at that point.  

 

 

Gravitational potential due to a point mass 

 

 

  

Let a point mass m be situated at P (Fig.5.2). The attraction due to it at a point O, distant x from 

P, is directed towards P and is of magnitude 
𝐺𝑚

𝑥2 . The work done on the system in moving a unit 

mass by a small amount dx is
𝐺𝑚

𝑥2  𝑑𝑥. 

This is equal to the potential difference dV between the points dx apart.  

  So  

𝑑𝑉 =  
𝐺𝑚

𝑥2
𝑑𝑥 

Hence Potential at Q, distant r from P, is 

V= 𝐺
𝑚

𝑥2 𝑑𝑥 = 𝐺𝑚 
𝑑𝑥

𝑥2  = −𝐺𝑚[
1

𝑥
]

𝑟

∞

𝑟

∞

𝑟
∞

 

=  −
𝐺𝑚

𝑟
 

5.4. Gravitational Potential and field intensity due to a spherical shell 

Consider an uniform spherical shell of radius R and centre O. Let 𝜍 be its surface density.  

 Therefore Mass of the shell 𝑀 =  4𝜋𝑅2𝜍 

 

Fig.5.1 

Fig 5.2 
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Case 1: Potential at external points 

 Let us find an expression for the potential at a point 𝑃 outside the shell. Join 𝑃𝑂 and let 

𝐴𝑂𝐴′ be the diameter which passes through P. Consider a thin slice of the shell between two 

planes 𝐵𝐶 and 𝐵′𝐶′ at right angles to 𝐴𝑂𝐴′ . Join 𝑃𝐵, 𝑂𝐵 and 𝑂𝐵′ . 

Let ∟AOB = θ and ∟AOB’ = θ+ dθ 

 OP = r    PB = a 

Hence the arc 𝐵𝐵′ =  𝑅𝑑𝜃 

 

 

 

 

 

 

Radius of the slice 𝐵′𝐵𝐶𝐶′ =  𝐵𝑄 = 𝑅 𝑆𝑖𝑛𝜃 

 Area of the slice = 2𝜋𝑅 𝑆𝑖𝑛𝜃 𝑅𝑑𝜃 

 Mass of the slice = 2𝜋𝑅 𝑆𝑖𝑛𝜃 𝑅𝑑𝜃 𝜍 

Each point of the slice is at the same distance a from P  

Potential at P due to the slice = 𝑑𝑉 = −𝐺
 2𝜋𝑅2   𝜍𝑆𝑖𝑛𝜃𝑑𝜃

𝑎
 

In the triangle 𝑂𝑃𝐵, 𝑎2 =  𝑅2 + 𝑟2 −  2𝑅𝑟𝑐𝑜𝑠𝜃 

Differentiating this, we get 

                  2𝑎 𝑑𝑎 = 2𝑅𝑟𝑠𝑖𝑛𝜃   𝑑𝜃𝑅 and 𝑟 are constants 

  𝑎 =
𝑅𝑟    𝑠𝑖𝑛𝜃    𝑑𝜃

𝑑𝑎
 

Hence   𝑑𝑉 =
−𝐺 2𝜋𝑅 2𝜍 𝑠𝑖𝑛𝜃   𝑑𝜃  𝑑𝑎

𝑅𝑟𝑠𝑖𝑛𝜃𝑑𝜃
 

−𝐺 2 𝜋𝑅 𝜍 𝑑𝑎

𝑟
             (5.1) 

 Potential V at P due to the whole spherical shell is obtained by integrating the above 

equation between the limits 𝑎 = 𝑟 − 𝑅 and 𝑎 = 𝑟 + 𝑅 

 

𝑉 =  −  
𝐺 2𝜋𝑅 𝜍 𝑑𝑎

𝑟

𝑟+𝑅

𝑟−𝑅

=  
−𝐺 2𝜋𝑅 𝜍 

𝑟
 𝑎 𝑟−𝑅

𝑟+𝑅 

 

Fig.5.3. Potential due to a spherical shell 
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−𝐺 2𝜋𝑅 𝜍 .2𝑅

𝑟
=  

−𝐺 4𝜋𝑅2𝜍  

𝑟
 

Thus         𝑉 =  
−𝐺𝑀

𝑟
 

Where 𝑀 = 4𝜋 𝑅2 𝜍, the mass of the shell.  

Thus for the external points, this spherical shell behaves as if the whole mass of the shell is 

concentrated at its centre.  

Case 2: Potential for points on surface of the shell   

Let us consider a point which lies on the surface of the shell itself. The limits for the value of a 

will be 0 and 2R. Hence  

 Potential at a point on the surface of the shell 𝑉 =  
−𝐺2𝜋𝑅𝜍𝑑𝑎

𝑟

2𝑅

0
 

      =
−𝐺2𝜋𝑅𝜍

𝑟
[𝑎]0

2𝑅  

      =
−𝐺2𝜋𝑅𝜍

𝑟
2𝑅 

      =
−𝐺4𝜋𝑅2𝜍

𝑟
     

      =
−𝐺𝑀

𝑟
=

−𝐺𝑀

𝑅
               [r=R] 

      V=
−𝐺𝑀

𝑅
     

Case 3: Potential for internal points 

 If the point P is inside the shell, the potential at that point is obtained by integrating 

equation (5.1) between the limits 𝑎 = 𝑅 − 𝑟 and 𝑎 = 𝑅 + 𝑟. 

𝑉 =  −  𝐺

𝑅+𝑟

𝑅−𝑟

 2𝜋𝑅𝜍 𝑑𝑎 

𝑟
=  −𝐺 

 2𝜋𝑅𝜍  

𝑟
[𝑅 + 𝑟 − 𝑅 + 𝑟]  

=  −𝐺 4𝜋𝜍𝑅 =  −𝐺 
4𝜋 𝑅2𝜍

𝑅
=  

−𝐺𝑀

𝑅
 

 Thus the gravitational potential is constant for all internal points and is equal to the 

value of the potential on the surface of the shell.  
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The gravitational field intensity due to a spherical shell: 

Case 1: For external points 

 We know that the gravitational potential for external points,  

𝑉 =  
−𝐺𝑀

𝑟
 

 𝑔 =  
−𝑑𝑉

𝑑𝑟
=  

−𝐺𝑀

𝑟2               (5.2) 

Thus the intensity is inversely proportional to the square of the distance of the point from the 

centre of the shell.  

Case 2: For points on the surface of the shell 

 Putting  r=R in the expression (5.2) we get the gravitational field at the point on the 

surface of the shall  

  𝑔 =
𝐺𝑀

𝑅2  

Case 3: For Internal points 

  For internal points   𝑉 =  
−𝐺𝑀

𝑅
 

𝑔 =  
−𝑑𝑉

𝑑𝑟
= 𝑂 

Hence the intensity is zero for all internal points due to constant potential inside.  

 

 

 

 

 

 

 

Fig. 5.4. Graphical representations of the variation of the field intensity and 

the potential of a spherical shell   
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5.5. Gravitational potential and field intensity due to a solid sphere 

Case 1: For External points 

  

 

 

Let the radius of the sphere be R and let P be a point outside the sphere at a distance r from its 

centre O. If 𝜌 is the mass per unit volume of the sphere, the mass of the sphere is given by 

𝑀 =  
4

3
 𝜋𝑅3𝜌 

The sphere may be imagined to be made up of a large number of concentric spherical shells. 

Consider a shell of radius 𝑥 and thickness 𝑑𝑥. 

 Surface area of the shell  = 4𝜋 𝑥2 

 Volume of the shell  = 4𝜋 𝑥2  . 𝑑𝑥 

 Mass of the shell   = 4𝜋 𝑥2  𝑑𝑥. 𝜌  

 Each shell will produce a potential at the point P as if its mass is concentrated at O.  

 Therefore Potential due to shell at      𝑃 =  − 
𝐺 .𝑀𝑎𝑠𝑠  𝑜𝑓  𝑠𝑕𝑒𝑙𝑙

𝑟
 

 =  −𝐺 
4𝜋 𝜌 𝑥2  𝑑𝑥  

𝑟
 

Potential due to the solid sphere     =  − 𝐺
𝑅

𝑂

4𝜋 𝜌 𝑥2  𝑑𝑥  

𝑟
 

 =  −𝐺 
4𝜋𝜌

𝑟

𝑅3

3
 

=  −
𝐺𝑀

𝑟
 Since 𝑀 =  

4

3
𝜋𝑅3𝜌, Mass of sphere     (5.3)  

Further gravitational intensity at P is given by 

 𝑔 =  
−𝑑𝑉

𝑑𝑟
=  

−𝐺𝑀

𝑟2                                        (5.4) 

Fig 5.5 
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Thus for external points, this solid sphere behaves as if the whole mass of the sphere is 

concentrated at its centre.  

Case 2: For points on the surface of the shell  

 If the point P lies on the surface of the solid sphere, we have r=R 

 Putting r=R in eqn (5.3)we get  

 The potential at point on surface= 
−𝐺𝑀

𝑅
 

and the gravitational intensity  

𝑔 =
𝑑𝑉

𝑑𝑟
=

−𝐺𝑀

𝑅2       putting r=R in equation (5.4) 

Case 3: For internal points  

 Let P be a point inside the sphere at a distance 𝑟 from its centre. Then this point P is 

considered to be an external point for all shells having radii 𝑥 < 𝑟 and an internal point for the 

shells having radii 𝑥 > 𝑟. 

 Therefore Potential at P = − 
𝐺𝑑𝑚

𝑟

𝑅

𝑂
+   

−𝐺𝑑𝑚

𝑥

𝑅

𝑟
 

where dm is the mass of the shell of radius x and thickness dx. 

 Therefore  𝑑𝑚 = 4𝜋𝜌𝑥2  𝑑𝑥 

 Therefore 𝑉 =  
−𝐺

𝑟
 4𝜋𝜌𝑥2𝑑𝑥

𝑟

𝑂
−  𝐺  

4𝜋𝜌𝑥2𝑑𝑥

𝑥

𝑅

𝑟
 

    = − 
𝐺

𝑟
𝑀′ −  𝐺 4𝜋𝜌  

𝑥2

2
 
𝑟

𝑅

 

Where 𝑀′ =  
4

3
 𝜋𝑟3𝜌 = mass of the sphere with radius 𝑟. 

 Hence 𝑉 =  −
𝐺𝑀′

𝑟
−  𝐺 4𝜋𝜌 [

𝑅2

2
− 

𝑟2

2
] 

   =  −
𝐺𝑀′

𝑟
−  𝐺 

4𝜋𝜌  𝑅2

2
+  𝐺 

4𝜋𝜌𝑟2

2
 

Since 
4

3
 𝜋𝑅3𝜌 = 𝑀  = mass of the whole solid sphere and  

Fig 5.6 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
69 

 

𝑀′ =  
4

3
 𝜋𝑟3𝜌 

𝑀′ =  𝑀 
𝑟3

𝑅3
 

V  =  −
𝐺𝑀′

𝑟
− 

3𝐺𝑀

2𝑅
+ 

3𝐺𝑀′

2𝑟
 

 =
𝐺𝑀′

2𝑟
− 

3𝐺𝑀

2𝑅
 

 −
3𝐺𝑀

2𝑅
[1 − 

𝑟2

3𝑅2
] 

Further gravitational intensity at 𝑃 is given by 

𝑔 =  −
𝑑𝑉

𝑑𝑟
=  −

𝐺 𝑀 𝑟

𝑅3
 

 

 

 

 

 

 

From Fig. 5.7., we see that for points outside the sphere, the field intensity and potential 

are the same as that due to a particle of mass M at the centre of the sphere. For internal points, 

the field intensity linearly increases with 𝑟 in its magnitude and is maximum at the surface of 

the sphere and the potential is maximum at the centre and then gradually decreases.  

5.5. Acceleration due to Gravity 

 The force of attraction exerted by the earth on a body is called gravitational pull or 

gravity. We know that when force acts on a body, it produces acceleration. Therefore, a body 

under the effect of gravitational pull must accelerate. The acceleration produced in a freely 

falling body under the effect of gravity is called acceleration due to gravity, it is denoted by g. 

Using Newton's second law of motion (F = m g) and Newton's law of gravitation, we get  

Fig. 5.7 Graphical representations of variation of 

field intensity and potential of a solid sphere  
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𝐹 = 𝑚𝑔 =
𝐺𝑀𝑚

𝑅2
 

𝑔 =
𝐺𝑀

𝑅2
 

From the expression, it is clear that the value of ‘g’ is independent of mass, shape and size of 

the body but depends upon mass and radius of the earth. i.e. earth produces same acceleration in 

a light as well as heavy body. 

Acceleration due to gravity is a vector quantity and its direction is always towards the 

centre of the earth. The S.I. Unit of ‘g’ is m/s² or N/Kg. the dimensional formula of acceleration 

due to gravity is [M
0
LT

-2
]. Its average value is taken to be 9.8 m/s

2
 on the surface of the earth at 

mean sea level. It is constant at a given place. However it slightly differs from place to place on 

the surface of the earth. 

5.6. Variation of the acceleration due to gravity  

The value of acceleration due to gravity varies due to the following factors:  

(a) Shape of the earth (b) Axial rotation of the earth (c) Depth below the earth surface and (d) 

Height above the earth surface 

a) Variation of g with shape of earth 

The earth is not a perfect sphere, but bulges at equator and flattened at the poles. Its 

equatorial radius is about 21km more than the polar radius. Therefore if a body is taken from 

pole to equator its distance from the centre of the earth will change. Consequently, the 

gravitational force also varies. As g is inversely proportional to square of radius of earth, the 

value of g is minimum at the equator and maximum at the poles. 

b) Variation of g with latitude (rotation of the earth) 

 

 

 

  

 Consider the earth to be a perfect sphere of radius R with centre at O. We know that 

the earth rotates about its own axis with a certain angular velocity ω. During rotation, each 

Fig. 5.8 
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particle lying on the surface of the earth must rotate in a horizontal circle with same angular 

velocity ω about the rotation axis. 

Now, let a particle of mass m be situated on the surface of the earth at a point p of 

latitude λ. If the earth were atrest, the particle at p experiences a force mg along the radius PO 

towards O. As the earth is rotating about its polar axis NS, the body at p describes a horizontal 

circle with centre at B and radius BP=Rcosλ. During rotation the primary particle at p 

experiences centrifugal force which acts along BP, away from B=mBPω
2 

=m(Rcos λ)𝜔2 

=𝑚𝑅𝜔2𝑐𝑜𝑠𝜆 

Force mg acts along PO.  Resolve mg into two rectangular components (i) mg sin λ along PA 

and (ii) mg cos λ along PB. Out of the resolved component along PB, a portion m R ⍵2 𝑐𝑜𝑠 𝜆   

is used in overcoming centrifugal force.  

 Let the net force be represented by PC. Then  

  PC=mg cos λ –mR ⍵2  cos λ and  PA = mg sin λ 

The resultant force (mg') experienced by P is along PQ, such that  

   (𝑃𝑄)2 = (𝑃𝐶)2 +  (𝑃𝐴)2𝑜𝑟 𝑃𝑄 = [(𝑃𝐶)2 +  𝑃𝐴)2 1/2  

i.e.,    𝑚𝑔′ =  [(𝑚𝑔 𝑐𝑜𝑠 𝜆 − 𝑚𝑅 ⍵2 𝑐𝑜𝑠 𝜆)2 +  (𝑚𝑔 𝑠𝑖𝑛 𝜆)2]1/2  

   = 𝑚𝑔 [1 +
𝑅2⍵4

𝑔2
𝑐𝑜𝑠 2𝜆 −

2 𝑅⍵2

𝑔
𝑐𝑜𝑠2𝜆]1/2  

∴   𝑚𝑔′ = 𝑚𝑔 [1 −
2𝑅⍵2

𝑔
𝑐𝑜𝑠2𝜆] 1/2     [neglecting 

𝑅2𝜔4

𝑔2 𝑐𝑜𝑠2𝜆] 

   = 𝑚𝑔[1 −
𝑅⍵2 cos 2  𝜆

𝑔
] 

   (∵
𝑅⍵2

𝑔
𝑖𝑠 𝑠𝑚𝑎𝑙𝑙, 𝑖𝑡𝑠 𝑕𝑖𝑔𝑕𝑒𝑟 𝑝𝑜𝑤𝑒𝑟𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑒𝑑 ) 

   𝑔′ = 𝑔 [1 −
 𝑅⍵2𝑐𝑜𝑠 2𝜆

𝑔
] 

Or                   𝑔′ = 𝑔 − 𝑅𝜔2𝑐𝑜𝑠2λ 
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This is the required expression. As cos λ and ω are positive, therefore g’˂g 

This shows the value of g decreases due to earth’s rotation. 

at the equator λ=0
o                      

therefore𝑔′ = 𝑔 − 𝑅𝜔2 [minimum]
 

at the polesλ=90
o               

therefore 𝑔′ = 𝑔[maximum]
 

c) Variation of g with altitude (height) 

 

 

 

 

Assuming the earth to be an uniform solid sphere of mass M and radius  𝑅 with centre O. If 

a body of mass 𝑚 is initially placed on the surface of the earth at P (fig 5.9) then we know the 

acceleration due to gravity is 

𝑔 =
𝐺 𝑀 

𝑅2                             (5.5)                                

 If the body is raised to a height 𝑕, above the surface of the earth at a point Q, then its 

distance from the centre of the earth is  𝑅 + 𝑕 . Now the acceleration due to gravity exerted by 

the earth on the body is 

𝑔′ =
𝐺 𝑀 

(𝑅+𝑕)2
                             (5.6)                                   

Dividing (5.6) by (5.5), we get  

 𝑔′

𝑔 =
𝐺𝑀

(𝑅+𝑕)2

𝑅2

𝐺𝑀
=

𝑅2

(𝑅+𝑕)2  

=
𝑅2

𝑅2[1 +
𝑕

𝑅
]2

 

𝑔′ =
𝑔

[1 + 𝑕
𝑅 ]2

 

Fig 5.9 
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                                          𝑔′ = 𝑔[1 + 𝑕
𝑅 ]−2 

Expanding this equation, by using binomial theorem. We have  

𝑔′ = 𝑔[1 − 2𝑕
𝑅 ] Since 𝑕 << 𝑅,  Neglecting the     

 higher powers of h/R 

This expression shows that acceleration due to gravity decreases with the increase of height or 

altitude from the surface of earth.  

d) Variation of g with depth 

 

 

 

 

 

Consider that earth is a homogeneous sphere of mass M and radius R with centre at O. If 

a body of mass m is placed at point P on the surface of the earth, the value of acceleration due 

to gravity on the surface of the earth at this point P is given by 

𝑔 =
𝐺𝑀

𝑅2
 

Let ρ be the uniform density of material of the earth  

𝑀 =
4

3
𝜋𝑅3ρ 

𝑔 =
𝐺[

4

3
𝜋𝑅3ρ]

𝑅2
 

𝑔 =
4

3
𝜋ρGR                         (5.7)      

Now, Let the body be placed at Q, a distance d below the surface of the earth. Its distance from 

the centre O of the earth is (R-d). A sphere of radius (R-d) is drawn from O. The body at Q is 

situated at the surface of inner solid sphere and lies inside the outer spherical shell. The 

Fig.5.10 
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gravitational force on a body inside a shell is always zero. Therefore, the gravitational force of 

attraction acting on a body is only due to inner solid sphere. 

Acceleration due to gravity on the surface of the earth at the point Q is  

𝑔′ =
𝐺𝑀′

(𝑅 − 𝑑)2
 

𝑀′ =
4

3
𝜋 (𝑅 − 𝑑)3ρ 

𝑔′ =
𝐺

4

3
𝜋 (𝑅 − 𝑑)3ρ

(𝑅 − 𝑑)2
 

     =
4

3
𝜋 G (R-d) ρ                (5.8) 

Dividing (5.8) by (5.7), we get  

𝑔′

𝑔
=

𝑅 − 𝑑

𝑅
= 1 −

𝑑

𝑅
 

 𝑔′ = 𝑔 [1 −
𝑑

𝑅
] 

Therefore, the acceleration due to gravity decreases with increase of depth. 

5.7. Escape velocity 

When an object is thrown vertically upwards, it reaches a certain height and returns back 

to the earth. While throwing upwards the height it reaches will vary with the initial velocity. So 

when it is thrown up with a certain minimum initial velocity, the object overcome the 

gravitational pull and goes beyond the earth’s gravitational field and escapes from earth.  The 

initial velocity needed to achieve that condition is called escape velocity. So, escape velocity is 

defined as the minimum initial velocity that will take a body away above the surface of a planet 

when it's projected vertically upwards.  
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Let earth be a perfect sphere of mass M, radius R with centre at O. Let a body of mass m to be 

projected from a point A on the surface of earth (planet). Join OA and produce it further. Take 

two points P and Q at a distance x and (x + dx) from the centre O of the earth. 

To calculate the escape velocity of the earth, let the minimum velocity to escape from the 

earth's surface be ve. Then, kinetic energy of the object of mass m is 

K.E = 
1

2
𝑚𝑣𝑒

2 

When the projected object is at point P which is at a distance x from the center of the 

earth, the force of gravity between the object and earth is 

𝐹 = 𝐺𝑀𝑚/𝑥2 

Work done in taking the body against gravitational attraction from P to Q is given by 

𝑑𝑊 = 𝐹𝑑𝑥 =
𝐺𝑀𝑚

𝑥2
d𝑥 

The total amount of work done in taking the body against gravitational attraction from surface 

of the earth to infinity can be calculated by integrating the above equation within the limits x= 

R tox= ∞. Hence, total work done is 

𝑊 =  𝑑𝑊 =  
𝐺𝑀𝑚

𝑥2
𝑑𝑥

∞

𝑅

∞

𝑅

 

= 𝐺𝑀𝑚 𝑥−2𝑑𝑥 = 𝐺𝑀𝑚  
𝑥−1

−1
 
𝑅

∞∞

𝑅

 

Fig. 5.11 
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𝑜𝑟, 𝑊 =  
𝐺𝑀𝑚

𝑅
 

For the object to escape from the earth's surface, kinetic energy given must be equal to the work 

done against gravity going from the earth's surface to infinity, hence 

1

2
𝑚𝑣𝑒

2 =
𝐺𝑀𝑚

𝑅
 

𝑣𝑒 =  
2𝐺𝑀

𝑅
 

Since, 

𝑔 =
𝐺𝑀

𝑅2
 

𝑉𝑒 =  2𝑔𝑅 

The relation shows that the escape velocity of an object does not depend on the mass of the 

projected object but only on the mass and radius of the planet from which it is projected. The 

escape velocity at the Earth's surface is about 11.2 kilometers per second (25,000 miles per 

hour) and the escape velocity on the Moon's surface is 2.4 kilometers per second (5,300 miles 

per hour).  

5.8.  Kepler’s laws and planetary motion 

German astronomer Johannes Kepler after a life time study work out three empirical laws 

which accurately describe the revolutions of the planets around the sun and are known as 

Kepler’s laws of planetary motion. It opened the way for the development of celestial 

mechanics. These laws are 

1. The law of Orbits: Every planet moves around the sun in an elliptical orbit with sun at one 

of the foci. 

2. The law of Area: The line joining the sun to the planet sweeps out equal areas in equal 

interval of time. i.e. areal velocity is constant. According to this law planet will move slowly 

when it is farthest from sun and more rapidly when it is nearest to sun. It is similar to law of 

conservation of angular momentum. 
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Let the particle move from position P to position P’ in an infinitesimal time interval dt 

as shown in fig.5.12. The area dA, which the radius vector r sweeps, is given by  

𝑑𝐴 =
1

2
𝑟𝑑𝑟 =

1

2
𝑟(𝑟𝑑𝜃) 

 

where d𝜃is the angle swept by the radius vector. Here we have assumed that PP’ is a straight 

line since dr is infinitesimally small.  The areal velocity is given by 

𝑑𝐴

𝑑𝑡
=

1

2
𝑟2 𝑑𝜃

𝑑𝑡
=

1

2
𝑟2⍵                      (5.9) 

where ω is the angular velocity of the particle. Now if m is the mass of the particle, then its 

momentum L is 

 𝐿 = 𝑚𝑟2𝜔                                    (5.10) 

Combining eqn (5.9) and (5.10) we get 

𝑑𝐴

𝑑𝑡
=

𝐿

2𝑚
= 𝐶𝑜𝑛𝑠𝑎𝑛𝑡 

3. The law of periods: The Square of period of revolution (T) of any planet around sun is 

directly proportional to the cube of the semi-major axis of the orbit. 

If T be the periodic time of describing the ellipse by the planet, we have  

T=
𝑎𝑟𝑒𝑎  𝑜𝑓 𝑒𝑙𝑙𝑖𝑝𝑠𝑒  

𝑎𝑟𝑒𝑎𝑙  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  
 

The area of ellipse 𝜋𝑎𝑏 and areal velocity=
𝐿

2𝑚
 

𝑇 =
𝜋𝑎𝑏

𝐿/2𝑚
=

2𝜋𝑎𝑏𝑚

𝐿
 𝑜𝑟 𝑇2 =

4𝜋2𝑚2𝑎2𝑏2

𝐿2
 

The latus rectum of ellipse is, l =
𝑏2

𝑎
 

Fig 5.12 
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∴𝑇2 =
4𝜋2𝑚2𝑎3𝑙

𝐿2
= 𝑜𝑟  𝑇2 ∝ 𝑎3  

5.9. Satellite Motion 

 Satellites are natural or artificial bodies describing orbit around a planet under its 

gravitational attraction. Moon is a natural satellite while INSAT-1B is an artificial satellite of 

earth. Artificial satellites can be launched from the surface of earth with the help of rockets. A 

multistage rocket carries the satellite up to the required height of the orbit. Its last stage tilts the 

satellite into its orbit and gives a final push to acquire the required velocity. The velocity 

required to put the satellite into its orbit around the earth is orbital velocity v0. These satellites 

can be made to revolve around the earth in circular orbits.  

 We will consider a satellite in a circular orbit of a distance (R+h) from the centre of the 

earth, where R = radius of the earth. If m is the mass of the satellite and v0 its speed, the 

centripetal force required for this orbit is 

𝑚𝑣0
2

(𝑅+𝑕)
                       (5.11) 

This centripetal force is provided by the gravitational force, which is 

=  
𝐺𝑀𝑚

(𝑅+𝑕)2           (5.12) 

For revolution of satellite around the earth, the gravitational pull provides the required 

centripetal force. Equating equations (5.11) and (5.12) and 

𝑚𝑣0
2

(𝑅 + 𝑕)
=  

𝐺𝑀𝑚

(𝑅 + 𝑕)2
 

Since 𝑔 =
𝐺𝑀

𝑅2  

𝑚𝑣0
2

(𝑅 + 𝑕)
=  

𝑚 𝑔 𝑅2

(𝑅 + 𝑕)2
 

(or) 𝑣0
2 =  

𝑔𝑅2

(𝑅+𝑕)
 

 The orbital velocity of the satellite 𝑣0 =   𝑔𝑅 , if 𝑅 >> h.  

If  T is the period of revolution of the satellite.  

Then  𝑣0 =  
2𝜋 (𝑅+𝑕)

𝑇
 

Therefore 
4𝜋2  (𝑅+𝑕)2

𝑇2 =  
𝑔 𝑅2

(𝑅+𝑕)
 

(or) 𝑇2 =  
4𝜋2  (𝑅+𝑕)3

𝑔𝑅2
 

𝑇 =  2𝜋 
 (𝑅 + 𝑕)3

𝑔𝑅2
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[Note : When 𝑕 < 𝑅, 𝑇 =  2𝜋 
𝑅

𝑔
= 2𝜋 

𝑅3

𝐺𝑀
. 

The period of revolution of satellite is found to change with the height of the satellite 

above earth.  

5.10. Geostationary orbit 

If the value of (R+ h) is arranged in such a way that T takes for the satellite to complete 

one revolution about the earth is exactly 24 hours. This means that if the orbit of the satellite 

lies on the equatorial plane, the satellite’s angular velocity will be same as that of the earth’s 

angular velocity, and the satellite will appear to be situated at the same position when viewed 

from a point on earth. This orbit is called as geostationary orbit and a satellite placed in such 

orbit is called a geostationary or geosynchronous satellite, communication satellite.Since the 

period of revolution of the satellite around the earth be same as that of earth about its own axis, 

relative velocity of the satellite with respect to earth is zero. So that, the satellite appear 

stationary from any point on earth. 

To have the period of the revolution of the satellite should be 24 hours, it should remain 

at a height 𝑕 given by 

 𝑅 + 𝑕 = (
𝑇2𝑔𝑅2

4𝜋2 )1/3 

=
 (24 × 60 × 60)2  × 9.8 × (6371 × 103)2 

4𝜋2
 

R+h= 42,207 km 

𝑕 =  42,207 − 6371 𝑘𝑚 = 35836 𝑘𝑚  

The orbital velocity of such a satellite in the geostationary orbit will be about 3.07 km/s. 

For any other orbit the velocity and period will be different. 
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