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UNIT-I

Reduction formulae -Types, integration of product of powers of algebraic and trigopnometric
functions, integration of product of powers of algebraic and logarithmic functions - Bernoulli’s

formula.
Chapterl: Sections 1.1- 1.4

1.1.Reduction Formulae
A Reduction formula expresses an integral I, that depends on Some integer n in terms of
another integral I that involves a smaller integer m. If one repeatedly applied this formula,

one may then express I, in terms of a much simpler integral.

1.2.Integration of Product of Powers of Algebraic and Trigonometric Functions:
Result 1:

I =] x" e*dx, where n is a positive integer.

Here dv = e* dx,

v=[exdx ="
a

u=x"
ax

a-ea(2) -2

n ; edx n
XD ey lgx == xn -2 g
a a a a

The auxiliary integrals of the same types as the given integral but with index n reduced by 1.

Such a formula is called a Reduction formula and by successive applications, we can evaluate

ax

In. The ultimate integral is obviously [e* dx = eT

Result 2:

In= x" cos ax dx, where n is a positive integer.

In= j x" cos ax dx = j <" d (Sinaax)

Hereu=x",v="""

n «;
x"sinax n
n-1
—__I)(

sin ax dx
a
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x"sinax n pg —Cos ax
e g2

xMsinax n

_ -1 _
= ™ 1 cos ax - D (402 005 ax dx
a a? a?
n o -1
— ¥ sinax 5;” ax _ % X" cos ax - "(Zz 2

The ultimate integral is either | x cos ax dx (or) Jcos x dx according as n is odd or even.

. _ sin ax
(i) | x cos ax dx =[x d (—a )
- x sin ax

17 .
-—fsmaxdx
a a

_xsinax

1
+— . COS ax
a a

sin ax

(i) | cosaxdx =

Result 3:
I = [ sin" x dx, where n is a positive integer.
In =] sin™* x sin x dx
= - sin™x cos x + (n-1) J(sin™?x cos x) cos x dx
= - sin™x cos x + (n-1) Jsin™ x (1- sin®x) dx
= - sin™x cos x + (n-1) Jsin™? x dx - (n-1) [sin” x dx
=-sin"™ x cos X + (n-1) In2 -(n-1) Iy
I= - sin™ x cos X + (N-1) In2 -(N-1) In2— N In+ Iy
The ultimate integral is | sin x dx or [dx according as n is odd (or) even.
(i.e.) -cos x (or) x

Corollary 1:
From equation, (1) = I, = _71( sin"! x cos x ) + "T_l I (by Reduction formula for [sin"x dx)

T
Ly . -1, . 2, n-1 T/ e
. 2 n - n-1 2 2 n-2
#fy"? sin®xdx= —(sin"t xcosx)g +— [[7? sin"7? x dx

4
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=0+ (nT_l) f:/z sin™ 2 x dx
sl = (nT_l) I (where I = f:/z sin™ x dx

Changing nto n-2, n-4, n-6, ...... in successive steps

We get,
Ino= (Z_:z) In-

Ina = (:—:z) Ins and so on

Case (i):

If n is an even positive integer, then

n-1 n-3 531
- - = 2
In o hoz PO 2"{0 1 dx
n . -1 n-3 53 1 P
[2 sinhxdx =" 222 2=.=.Z, ifniseven.
0 n  n-— 64 2 2
Case (ii):

If n is an odd positive integer, then

T

42 = .

I =— —........ -=.)2sinx dx
n n-2 53 Y0

Example 1:

T
Jy /2 sinbx dx
Solution:

If niseven
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S
Ny
]
S
o
=
Q
X
1
o lu
|l w

6-1 6-3 53 17
n=6-> — —........ -—.—.=
6  6-2 642" 2
T . 5 3 53 1w
= | 2sinxdx = 32 S=.s.=
0 6 4 64 2 2
51
32
Example 2:
T
Jy /2 sin7x dx
Solution:
If nis odd
T ; n-1 n-3 42 .
f/z sin"xdx=—.—.......=% (nisodd)
0 n n-2 5
T . 7-1 7-3 42
f/z sinxdx=—."—.......==%
0 7 7-2 53
—6 4 42
gt R
_642
7" 53
_ 48
105
_16
35

Example 3:

If] sin"x dx, if n be an odd positive integer, we can directly integrate without using the reduction

formulae. For instance, let us find [ sin® x dx.
Solution:
[ sin® x dx =] sin* x sin x dx.

= [ (1- cos® )?sin x dx

Lety=cosx =dy =-sinx dx
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=- [ (1-y?)?dy

= - (1-2y*+y*) dy

2y% y°
=—-yV+ ——-=—
yr=5-%

2cos3x  cosSx

=- COS X +——— -
3 5

Example 4:
T/ 2\1/2

Evaluate [ /2 x(1-x%)"* dx
Solution:
Put x =sin 0
dx=cos 0 dO
Whenx=0,06=0

X=1,0=n/2

The integral becomes,
"2 o 2 _ (" 2
J, /% sin 6 cos® 6 do = [ ' cos*0 d (-cos 6)

= [F2T/2 = [0-(-1/3)] =L
Result 4:
In =| cos"x dx, where n is a positive integer.
In =J cos™x cos x dx

= [ cos™x d (sin x)

= cos "x sin x + (n-1)f cos "2x sin x (sin x) dx

= cos ™ x sin x +(n-1)f sin® cos™x dx

= cos " x sin x +(n-1) | (1-cos®x) cos "2x dx

= cos™ x sin X + (n-1) In2 - (n-1) In

7
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In =cos™xsin X+ (n-1) Inz =N In+ Iy

n = cos™xsinx+ (N-1) ln2 ...... (1)
The ultimate integral is | cos x dx (or)[dx
(i.e.) sin x (or) x according as n is odd or even.
Corollary 2:

From equation (1)

Vs
Ly cos™ xsinx 3 , (n-1) T/, -
2 n - 2 2 n-2
fo cos™x dx = ( ~ )o * ~ fo cos™ “x dx

(n

— 71' . . L.
=0+ nl) Jo /2 cosn=2x dx as the first term vanishes at both limits

_ (-1 7/ _
=~— [, "% cos"?x dx
[ = Fis continuous function on [0,a] if foa f(x)dx = foa f(a—x)dx]

Ih = fon/z cos™x dx = fon/z cos™ (g—x) dx

T
=/, /2 sinnx dx

n-1 n-3 4 2 . .
71-/2 Tﬁggl if nis odd
. n _ _
fo sin"x dx = n-1 n-3 53 1m . .
—_—— ..=.=.=.— if niseven
n n-2 6 4 2 2

Example 5:

fon/z cos®x dx

Solution:

fon/z cos®x dx = f:/z cos® (g —x) dx
= f:/z sin®x dx

“ niseven
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S
Ny
2
S
S
=
Q
=

|
K
-
olu
|l w
N |

. 8-1 8-3 53 1m
f/z sin8x dx =—.=— 222
0 8 8-2 6 4 2 2
-7531~=
86422
351
256

Example 6:

Vs
Jy /2 cosSx dx
Solution:

/ . m
Jo'? cos®xdx = [ "% cos® (;—x) dx

T
= J, /2 sinSx dx
~ nis odd
/2 . s _ 5-1 5-3 4 2
[ 72 sinxdx = Z—.>—. |
0 5 "5-2 5°3
4 2
=-.-.1
5°3
T1s
Example 7:

In | cos"x dx, if n be an odd positive integer, we can directly integrate employing the reduction

formula. For example, take Jcos’x dx

Solution:

[ cos™x dx = [ cos®x cos x dx

Puty = sin X & dy = cos x dx (vcos?x = 1-sin®x  (cos?x)®=(1-sin?x)?
= | (1-sin®)® cos x dx

=] (1-y?* dy
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=] (1-y?+3y*-y®) dy

7

_ 3y5  y
-yt -2

. . 3sinSx sin”x
=sin x - sin®x + —

Result 5:
Imn=] sin™x cos"x dx  (m, n being positive integers)
Let Imn =] sin™x cos™x dx

= | cos™x (sin™x cos x) dx

m+1

4 sin™M*lx . . sin x
= c0s "X = ——- [(-(n-1)cos™x sin X) ——dx
am+1 -1 ; ;
=cos "Ix X 4 B2 e0s™2x sin™ X sin?x dx
m+1 m+1
4. sin™*lxy  n-1 g .
= cos "x + =—[cos™x sin™ x (1- cos?x) dx
m+1 m+1
4. sin™*lxy  n-1 R . n-1 ]
= cos "Ix + 2 [cos™x sin™ X dx - ——[cos"x sin™ x dx
m+1 m+1 m+1
_ Nl Sin™tlx n—1 n—1
= + - e =
€os "X —— — Im,n-2 — Imn

=(m+1) Imn=cos "x sin™ x + (n-1) Imn-2 - (N-1) Imn

=(M+1) Imp=cos "X sin™ x + (N-1) Imp2 ~~ .......l. (a)

Here, the power of cos x has been reduced by 2.

We may, by a similar argument, arrive at the Reduction Formula in the Form
(Mm+1) Imp=-sin™! x cos "x+ (M-1) Im2n  ....... (b)

Here, the power of sinx has been reduced by 2

To apply this formula, we note two cases.

Case (i): Let m (or) n be an odd integer, say n

Applying the formula (a) successively,

10
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The ultimate integral is,

nﬂHﬂ

m+1

X

Im1=/ sin™x cos x dx =

If however, m is odd, we can use (b) and the ultimate integral is

_C05n+1

n+1

. X
l1m = [sin x cos" X dx =

If both m and n are odd, reduce the smaller index.

Note:

When either m (or) n (or)both are odd, we can integrate sin™x cos"x directly without recourse

to a reduction formula.

Case (ii): Let both m and n be even positive integers

Let n<m. Applying (), the ultimate integral is, Imo= Jsin™x dx
Which has been discussed in 13.3

Similarly, In=J sin™x dx

=n In = - sin"*x cos X +(n-1) In2

Corollary 3:

s
fo /2 sinm x cos™x dx (m, n being positive integer)

s
cos™ x sin™t1lx >

Y3
) /2 sin™x cos™ x dx = [ f "2 sinmyx cos"2x dx
0 m+1 0 m+n

= — f /2 sinmx cos™2x dx as the first term vanishes at both limits.

n-1 1 n-3 , -
= Js "2 sinmyx cos™*x dx

n1+71 m+n—2

_n-1 n-3 n-5

e dma (or) Impo according as n is odd (or) even

() Ifnisodd,

V3
Im1= J, /2 sin™x cos x dx

11

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



_ [sinmﬂx]g _ 1
- m+1 107 m+1
When n is odd,
n . n-1 n-3 2 1
) 2 sinmx cos™ x dx = L =2
0 m+n m+n-2 m+3 m+1
(i) Ifniseven,
Ty . n-1 n-3 1w
Imo= [ /2 sin™x dx =——.——....... ==,
m0 fO m+n m+n-2 22

=~ (By corollary 1)
When m is even

Vi
. n—1 n-3 1 m-1m-3 1m
) 2 sinmx cos™ xdx =L 2 — .=
0 m+n m+n-—2 m+1 m m-2 22

Example 8:

[ sin®x cos®x dx

Solution:

Put y =sin X & dy = cos x dx

[ sin®x cos®x dx =] sin®x cos?x cos x dx
= | sin®x (1-cos?x) cos x dx
=y (1Y) dy
=[y*-yPdy

»?

9

=Y
7

_sin’x sin®x

7 9

Example 9:
[ sin®x cos®x dx
Solution:

[ sin®x cos®x dx = | sin®x cos*x cos X dx
12
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= | sin (1- sin?x)? cos x dx

=

=]y (1-y?)? dy
=]y® (1-2y% +y*) dy

=] (y*-2yt+y*®) dy

v 2y y
10 12 14
10 12 14
vy oyt
10 6 14
sin10x _ sin1%x n sint%x
10 6 14
Example 10:
T
Jo /2 sinéx cosSx dx
Solution:
Here, m=6, n=5
fn/z sin™x cos™ x dx =2~ 123 L moimes
0 m+n m+n=-2""""""" m+1 m m-2
T . 4 21 8
) /2 sinSx cosdx dx=—+.2.1=2,
0 11 9 7 693
Example 11:
T
Js /2 sinéx cos*x dx
Solution:
Here, m=6, n=4
fn/z sin™x cos™ x dx = —— =3 —_momes
0 m+n  m4n-2""""""" m+1 m m-2
E 6—3 -3

0

Y3
) /2 sinéx cos*x dx =

6+4 6+4-2"""6-2"

im
22

13
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Result 6:
I= [ tan"x dx (n being a positive integer)
In=| tan™ 2x tan2x dx

= [tan™ %x (sec?x — 1)dx

= [tan"2x d(tan X) - | tan™ 2 dx

tan™ 1x |
- = In-2
n—-1

(i) When n is even the ultimate integral is | dx = x
(i) When n is odd, the ultimate integral is | tan x = log sec x

[ [tanx dx = |

sin x - [y : — . -

——dx= -] - putting y = cos x; dy =-sin x
=-logy=logcosx =log (secx) ]

Example 12:

[tan*x dx

Solution:

tan3x

[tan*x dx = — [ tan?x dx

By putting n = 4 in the formula for I

3
:tanTx_ [ (sec?x — 1) dx
_ tan3x
=—— — tanx +x
Example 13:

/4
f tan3x dx
0

Solution:

V3

/

fon/‘* tan3x dx = [@] - f:/“ tan x dx
0

14
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Putn=3, == + [lo cosx]n/“—l + lo ki_ﬂl (1- log 2)
YT 9 0 "2 9573 9

Result 7:
In = cot"x (n being a positive integer)
Jeot"x dx = | cot™?x cot?x dx
= Jcot "2 x cot®x dx
=[ cot™? x (coses?x - 1) dx
=] cot™ x d (-cot X) - Jcot"2x dx

_ cot™%x

n-1 In2
The ultimate integral is [dx (or) [ cot x
(i.e.) x (or) log sin x according as n is even (or) odd.
Result 8:
In = [sec" x dx (n being a positive integer)
[sec™x dx = [sec™? x dx (tan X)
= sec™x tan x - (n-2) Jsec"?x tan®x dx
= sec™?x tan x - (n-2) [sec"2x (sec?x - 1) dx
= sec™?x tan x - (n-2) Jsec? x dx + (n-2) Jsec™?x dx
=sec™?x tan X - (N-2) In + (N-2) In2
= (n-1) In = sec™x tan X +(n-2) In2

(i) If n be an odd integer, the ultimate integral is

[sec x dx = log (tan x + sec x)

sec x (sec ¢+ tan x)
w)sec x dx =
[ '[ f seccx + tan x

y = sec X + tan x, dy = sec x (sec x+ tan x) dx = Ia;—y =logy = log (sec x + tan x)]

15
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(i) If n be an even integer the ultimate integral is Jdx = x

Example 14:
I=]sec®x dx
Solution:
Let | sec® x dx= | sec?x sec x dx
=[secx d (tan x)
= sec x tan x -| tan? x sec x dx
= sec x tan x -J (sec? - 1) sec x dx
=sec xtan x - | + log (sec x + tan x)
~2l = sec x tan x+ log (sec x +tan x)
Example 15:
[sec® x dx
Solution:
[sec® x dx = [sec*x sec?x dx
= sec* x d (tan x)
Where t = tan x
=[(1-)? dt

= [(1+26%+t%) dt

2tan 3 tan®x

[sec® x dx = tan x + -

Result 9:
In = [cosec™x dx (n being or positive integer)
ln=lcosec” x dx = -Jcosec™?x dx d (cot x)

16
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= - cosec™x cot X - (n-2) Jcosec™2x cot?x dx

= - cosec™?x cot X -(n-2) Jcosec™?x. (cosec®x -1) dx
= - c0sec™?x cot X - (N-2) In+(n-2) In-
= (n-1) In = -cosec™?x cot X +(n-2) I

(1) If n be an odd integer, the ultimate integral is

[ cosec x dx = - log (cosec x + cot X)

cosec x (cosec x + cot x
[+ Jcosec x dx = ( ) dx
(cosec x + cot x)

d + cot
= .[Alcosecx cotx) = - log (cosec X + cot X)]

cosec x + cotx

(i) If n be an even integer, ultimate integral is [dx = x

Example 16:
[cosecx dx
Solution:

Jcosec*x dx = | cosec?x cosec? x dx

- Jcosec®x d(cot x)

- J(1+y?) dy , where y= cot x; cot? = cosec?x -1 ;1+cot?x = cosec?x

3
- y
=-y .

cot3x
=-cotXx-——

Example 17:
[cosec®x dx

Putting n =5 in the above formula for I,

_ —cosec"2x cotx , n-2
|n-—————————————'+'———|n£
n-1 n—-1

—cosec3x cot x

3
n=5= Jcosec’x dx = + 5 J cosec®x dx

17
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__ —cosec3x cot x

a 4
[ Let 1=/ cosec®xdx
I =] cosec x. cosec?x dx
Applying integrating by parts rule.
I = cosec Jcosec?x dx - | [;—xcosec x Jcosec?x] dx

| = cosec (-cot x)-Jcosec x cot x. cot x dx + ¢
| = - cosec x cot X -Jcosec x cot?X + ¢
" C0Sec?x -cot?x = 1
| = -cosec X. cot X - [cosec x (cosec?X - 1) dx + ¢
| = - cosec . cot X -Jcosec®x dx + [cosec x dx +¢

21 = - cosec X. cot x+ log |cosec x - cot x| + ¢

N | =

[- cosec x. cot X + log |cosec X - cot X| +C

1.3.Integration of Logarithmic Functions:
Result 10:

Imn = x™(log X)"dx (where mand n are positive integers)
Hence (or) otherwise evaluate [x*(log x)° dx

Solution:

Imn=[(log x)"d —)

xm+1
m+1

= (logx)" - #Jxm(log X)"Ldx

XM+l n
= (log X)"— — — Imn-
( 9 ) m+1 m+1 m,n-1

xm+1

The ultimate integral is Imo= [x™ dx =
m+1

18
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I(log x)% x4 dx = I(log x)®3 d(x?s)

= (log x)°- Zl(log x)2x* dx

= (log %)°- J(log 1)

x5
== (log X)*- = x5(log )+~ [x*(log x)dx

x5 x5 x5
== (log X)*- = x5(log X)*+—~{*-log x- =}

= x*{=(log X)° - =(log x)*+—log x- =3}
Result 11:
[ e%* cos bx dx, a and b are constants.
Let C = [ e%* cos bx dx
S = [ e% sin bx dx
C+iS = [ e® (cos bx + i sin bx) dx

= [ e**e*dx  (by Euler’s Formula e® = cos 8 + i sin 6)

ex(a+ib)

:fex(a+ib)dx —
(a+ib)

_ ax (a-ib)ethx

(a+ib)(a—ib)

= pax (a—ib) (cos bx+isin bx)
(a?+b?)

ax (a—ib) (cos bx+isin bx)
(a?+b2)

C = Real part of e

C=e (a—ib) (cos bx+i sin bx)
(a?+b?)

(a—ib) (cos bx+isin bx)
(a?+b?)

S = Imaginary part of e®*

ax asinbx—b cosbx
(a%+b?)

S=e

19
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Example 18:

[ e** cos 3x dx

Solution:

C = [ e?* cos 3x dx = Real Part of [ e?*e3*dx
= Real Part of [ e¥(*30dx

o X(2+30)

= Real Part of

2+3i
2x
= Real Part ofe1—3 (2 — 3i)(cos 3x + i sin 3x)
e2X .
=0 (2 cos3x + 3sin 3x)

Example 19:

[ e™*sin?xdx

Solution:
—x —x [1—cos2 x 1 -
[ e *sin?xdx=] e x( CZS x)dx = _eT_E e™* cos 2x dx
__e* 1 (—e'x cos 2x +2sin Zx)
T2 2 5
Example 20:

f e cos mx cos nx dx
Solution:
f e cosmx + cosnx dx = —f e™*{cos(m + n)x + cos(m — n)x}dx

2

a=ab=m+n

_ 1 ax {acos(m+n)x+(m+n)sin(m+n)x+acos(m—n)x+(m—n)sin(m—n)x}
T2 a?+(m+n)? a?+(m-n)?

20
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Exercises Problem:

Problem 1:

[
If In= fo /zx” sin x dx , n being positive integer, prove that In + n(n-1)In2 =n (g)
Solution:
i
Let In= fo/zx” sin x dx

n 4
2 2

[ x"(-cos X)]; - n JZx™ (-cos x) dx

A

=n J2x" cos x dx

n[ x™*(sin x)]% - n(n-l)[fogxn'2 (sin x) dx ]

n—-1
n(g) -n(n-1) In2
n—-1
In+ n(n-1)ln2 = N (g)
Problem 2:

T
Evaluate | /2 x5 sin x dx

Solution:
V3
— "/ -
LetIn= [ /> x™ sinx dx
n-—1
aln= n(g) -n(n-1) In2
Putting n=5, we have,
I5=5 (%)4- 20 I3

Again putting n=3, we have,

ls= 3 (g)2 61
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Vs
Now, I1=f0/2x sin x dx

=[-xcosx +sinx]2 =1 (Integrating by parts)

=15 =5(2)* 20 Is
=5(3)"-206(3) -6 1
=5 (3)4- 60(§)2+ 120 Iy
=5(3) 60 (5) + 120
=120 - 15 w41,
Problem 3:

Establish a Reduction Formula for fon/z x™ cos x dx hence find fon/z x3 cos x dx

Solution:

In=f0n/2x” cosxdX ... (1)

4

ln={ X" (sin x )2} - fon/z sinx nx™1dx

n
= (g) -sin (%) -0- nfon/z x" 1sin x dx

(E)n -n {[ X" (-cos x )]% - fon/z —cosx(n—1)x"2dx}

2

In = (E)n -n {- (g)”'l (-cos g) - fon/z —cosx(n—1)x"2dx}

In +n(n-1) Iz = (E)n ............. )

2

Put n=3in (1)
22
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> 13= [/2x3 cos x dx
-(3) 3Gy
_ (g)3 3@ I
=(5) 66+
5=(5) -an40
[«= L= [ /2x cosx dx

A

1z (2o
[xsinx]§- J,"*sinx dx

A

. s
;-0-(-cosx)g

- =T
= (0+1) ; 1]
Problem 4:

Establish a Reduction Formula for [ x" sin ax dx hence find fon/z x3 sin x dx

Solution:

Let I,= | x" sin ax dx

- (_ cc;s ax) - [x™ (M) dx (Integrating by parts)

a

-1 _
= — X" ¢0s ax +2Ixnlcosaxdx

_ -1 n .1 (Ssinax 2 (sinax
=—x"cosax +=- [X' ( )-(n-l)Ix“ (T) dx ]

a

-1 _ . -1
=1y cosax +2% x" sinax - 2|

x"2 sin ax dx
a a? a?

-1 _ - -1
=1 xncosax +4 x™ sinax -2,
a a a

a® In=-ax"cos ax + n x "*sin ax - n(n-1) Iy

23
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Vs
To prove: | /2%3 sin x dx

Letln=n G) o n(n-1) In-.
ls= 3 (g)2 -3(2) lsa.
I3= 3(%)2-6|1

pud . T
I1=f0/2x sinxdx =[-X CoSX+sinXx | 2 =1

0
2
ls3=3 (g) -6
Problem 5:
If Un = f, x™e~*dx Prove that Uy~ (n+a)Un1 + a(n-1)Un2 = 0
Solution:
Un= foa x"e *dx
= foa x"d(—e™™)
=[—x"e*]§ +n foa e Xx"ldx
= —a"e ™+ n Unt
Thus Uy - Upg= —a™e™@* ... (1)
Similarly Up1= —a™e %+ (n-1)Un-2
Hence aUni=—a"e *+a(n-1)Un2 ........... 2
Equation (1) — (2) gives,
Un - (n+a) Un1 + a(n-1) Un2 = 0.

Problem 6:

If f:/z cos™x cosn x dx = f(m,n), Prove that f(m,n) 2% f(m—1,n—1). Hence prove

m
2n+1'

that f(m,n) =
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Solution:

sinnx
jcosmx cosnx dx =jcosmxd< - )

cos™x sin nx m
=—01t fcosm 1x.sinx.sin nx dx

= w mfcosm x{cos(n — 1) x — cosnx cos x }dx

coSs xslnnx m
=+ — [ cos™ 1x.cos(n— 1) x. dx——fcos x.cosnx.dx

Hence f(m, n) = f:/z cos™x cosn x dx

+ [T

+——1J cos™ 1x cos(n— 1) x dx }

= — {(cos xsmnx)0

—_ f(m —1,n — 1) as the first term vanishes at both limits.

m+n

Putting m = n,

fm == f(n—1Ln—-1)=5 f(n—2,n—2) = — f(0,0)

271

By the repeated application of the same formula,

/2 _ T
~ondo dx = on+1
Problem 7:
If fon/z cos™x sin nx dx = f(m,n), Prove that f(m, n) = ﬁ m f(m—1,n— 1), Hence

deduce that f(m,n) = [2+ + + + +—]

n+1
Solution:

f(m, n) = fon/z cos™x sinnx dx

_1 (m/2 m
—;fo cos™xd(— cosnx)

/2
cosnx m (m/2 _ .
= [—cosmx( ~ )] - ;fo cos™ 1x.sinx.cosnx dx

_ 1 77,'/2 -1 . :
“n — [, "" cos™ 'x [sinnx.cos x — sin[(n — 1)x]] dx

25
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[ since sin(nx — x) = sin nx cosx — cos nx. sin x]

== — %f:/z cos™x.sinx dx + %fon/z cos™ 1xsin[(n — 1)x] dx

= -— %f(m,n)+%f(m—1,n—1)

: (1+m)f(m n) = 1+mf(m—1n—1)
h n T nn ’

<m+n>f(m,n)= %+%f(m—1,n—1)

m

o f(m,n) = ! + fm—1,n-1)

m+n m+n

Now,
1 m
f(m,m) _ﬂ-l_ﬂ fm—1m-—1)

=141 — -
—2m+2f(m 1,m-—1)

-1, 11 1 _ _
_m+2[2m—2+2f(m 2,m 2)]

_ 1 1 J_1[ 1
2m  2%2(m-1) 22 12m-4

+§f(m—3,m—3)]

1 1 1 1

2 T2 T B T T /(D)

Now, f(1,1) = fon/z cos x sin x dx

:lfn/z sin 2x dx
270

_ [— cos Zx]n/z_ 1
4 0 2

1 1 1 1 1
~ flmn) =—+ + ot s (—)

m  22(m-1) 23(m-1) 2

1 [zm 2m-1

= +
2m+l | m m-1

4ot
1
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f(m' Tl) = om+1 Il

Problem 8:

If[n =fm,

[Hint: Put x = tan 6]

Solution:

x dx
In - f(x2+1)n

+ 2n

_ x
= +2n [

— x —
I +2nf (x2+1)

oI J— x
T (x2 4+ 1)

s 2nl, = (2n—

x dx
- [

Putx =tan @
= dx = sec?0 d@
Xx=0=0=0

Xx=1=6="1"
4

1 tan 8

o (tan26 + 1)2

+ 2nl,

I, +

22
2

Show that 2nln+1 = (2n-1) Iy +

x%dx

x2+1)7’1+1

X
I = (x2+1)n f(

1+x2%—1dx
(x2+1)n+1

dx

Sec?6 do =

-4+ —
m

+*
( 2+1)n

Hence find f

dx
L evesrrey

- 2n1n+1

x
(x2+1)"

Y

2 tané 5
(S 20)2 Sec<0 do

= J# cos®6 tan 6 d6

( 2+1)2

dx.

27

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



= J#sin 6 cos 6 db

— J-OZ sin229 d@

_1]-cos26 %

- EI: 2 ]0

=2 [~ cos2( %) + cos 0]

2 4

-1 =1

=, [0+1]=;
Problem 9:
If I, = foﬂ/z 6Sin"6de and n > 1, Prove that I,, = "T_lln_z + % Deduce that I5 = %
Solution:

I, = [(sin®)""1(0 sin 8)d6
Taking u = (sing)™ !
du=6sin6 do

we getv=-6cos6f +sin b
L

o I, = [(sin@ — 6 cos H) (sin B)" ]2

—(n—-1) fon/z (sinf® — 6 cos 0)(sin )" 2 cos 6 db
=1-(n-1) ["*sin"6 cos 6 d0 + (n — 1) [;/* 0(sin 0)""2 cos20 df

=1-(n-1) 7% (sin )" Ld(sin 0) + (n — 1) [;/* 6(sin )2 (1 — sin26) d6

=1-2=[sin"0]5"* + (n = Dy — (n = D,
n—1
cL(+(m-1)=1- (T) +(n—-11,_,
1
S nln = E + (n —_ 1) In_z
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1 n—1
tlh=gt ( n )In_z

Now, Is = (3) Is + =
CINE

Also, I, = [/* 0 sin 6 do

= [—6cos 617 + fn/z cos 8 df = [—6cos O + sin ]

0

_ 700+45
T 1125

_ 745 149
1125 225

Problem 10:

If I, = fon/z xcos"xdx where n > 1, Show that I,, = ;—; + n%

Solution:

I, = fon/z xcos™xdx ............ (1)

/2
I, = f xcos™ 1x cos xdx
0

u = xcos™ x : dv = cos xdx

/2 _
o =1

I,

/2
I, = [xcos™ x sin x]g/2 — f (x(n — 1)cos™ 2x(—sinx) + cos™ 1x.1) sin x dx
0

/2
I,=0-— f —(n — 1)xcos™ 2xsin?xdx + cos™ 1x.sin xdx
0
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/2 71'/2
I, =n- l)f xcos™2x(1 — cos?x)dx — f cos™ 1x sinx dx
0 0

/2 /2
L,=mn-1) j (xcos™ 2x—xcos™x)dx —f t"1dt
0 0

since t = cosx; dt = —sinx dx
tTl T[/Z

/2 %
L,=mn-1) j xcos™%x — (n — 1)] x cos"xdx + [—]
0 0 nlo

o= (=Dl — =Dl + [

1
I, + (n— 1)In =(n- 1)In—z - E

-1 n-1
=ty e
Problem 11:

Integrate e* sin 2x

Solution:

asin bx — b cos bx

fe“" sin bx dx = e®*

a? + b?
a=1,b=2
f e*sin2x dx = e* sin 2x — 2 cos 2x = i[sin 2x — 2 cos 2x]
12 + 22 5
Problem 12:

Integrate e 3% sing

Solution:
ax
ax o; — i —
fe sin bx dx PR [asin bx — b cos bx]
fe‘3x sinfdx = e —35inf—1cos{
277 (=3)2+(1/2)2 2 2 72
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je‘3xsinfdx— [ 351n ——cos ]
2 2

9+ (1/4)

]e‘3x sinfdx—_4 [3SII1 + cos ]
2 2

Problem 13:

Integrate e?* cos(3x + 4)

Solution:
ax
j e cosbx dx = pr— [acos bx + b sin bx]
Herea=2,b=3
2x
.[ e?* cos(3x + 4)dx = 2332 [2cos(3x + 4) + 3sin(3x + 4)x]

2x

e
.[ e?* cos(3x + 4) dx = e} [2cos(3x + 4) + 3sin(3x + 4)x]

Problem 14:
Integrate e ~3* sin 3x sin 2x
Solution:

2 sin A sin B = cos(A-B) - cos(A+B)

sin 3x sin 2x =

N| =

[cos(3 — 2x) — cos(3 + 2x)]

[cos x — cos 5x]

NI»—\

[cos x — cos 5x]dx

l\.)Ib—\

fe‘“ sin 3x sin 2x dx =fe‘3

:%[fe‘“ cosx dx — [e™3* cos5x dx ]
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e—3X

.
=1{ ‘ (=3 cosx +sinx) —

2 (-3)2+12 (—3)2+52

1 e—3x e—3x
=§{ 10 (=3 cosx +sinx) — 34 (—3c055x+551n5x)}

e 3 {sin x—3cosx , 3cos5x—5sin5x }
4 5 5

Problem 15:

Integrate e** cos 3x

Solution:

ax
j e cosbx dx = pr— [acos bx + b sin bx]
Herea=4,b=3

4x
.[ e** cos3xdx = yPREY) [4cos 3x + 3 sin 3x]

etx .
= [4cos3x + 3 sin 3x]

Problem 16:

Integrate e** sin(bx + c)

Solution:
ax
f e sin bx dx = PrEwN] [asin bx — b cos bx]
Herea=a,b=Db
ax
f e™ sin(bx + c)dx = 212 [a sin(bx + ¢) — b cos(bx + ¢)]
— eax ] —
== [a sin(bx + ¢) — b cos(bx + ¢)]
Problem 17:

Integrate e*cos?xdx

(=3 cos5x + 5sin Sx)}
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Solution:

5 cos2x +1 1
e*cos®xdx = | e* (T) dx = 3 e*(cos2x + 1)dx

=%[fexc052xdx+fexdx]

ax

[ e% cosbxdx = [acos bx + b sin bx]

a%+b?

[e*cos2xdx = [cos 2x + 2 sin 2x]

12422

_ 1fe* : x
= 2[5 (cos2x + 2sin2x) +e ]

x 2 dx = —
e cos“xax 2 5

j e* cos2x + 2sin 2x
1+ ]
Exercises 1:

1.Evaluate [(logx)®x? dx and [(logx)® x> dx
2. Evaluate (i) [ sin®x dx (i) [2 sin*x dx

3. Evaluate (i) [% sin6 d6 cos”6 do (i) Jg sin?6 (sin®6 + cos*6 )do
2

4. Evaluate (i) [ tan® x dx (i) [2 tan x dx
5. Evaluate (i) [ cot* x dx (ii) [ sec* x dx (iii) [ cosec® x dx
6. Integrate (i) e* sin3x cos 2x (ii) e%* cos 5 x cos 4x

1.4.Bernoulli’s Formula

Theorem :1 (Integrating by parts)
Let u and v be differentiable function of x. Then [udv = uv — [ v du.

Proof:

We know that = (uv) = u % + p 2
dx dx dx

Integrating we get,
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d d
uv = fuidx+fvﬁdx

=fudv+ [vdu

.-.judv=uv—jvdu

Note: The method of evaluating a given integral by using the above theorem is called

integration by parts. In applying this method, we must choose u and v carefully so that the

resulting integral is simplex than the given integral.

Theorem: 2 (Bernoulli’s Formula)

Let u and v be differentiable function of x. Suppose there exists a positive integer n such that

u™ = 0,then fudv =uv —u'v, + vy, — " v+ - + (1) "uMy,

where v, = [vdx; v, = [vidx
Proof:
fudv=uv— [vdu (bytheorem2.1)
=uv— [u' d(v,)
=uv—u'vy + [ vdu’
=uv—u'v, + [u'd(v,)
=uv —u'v; +u'v, — [vydu”

Proceeding like this we get the required formula
fudv =uv—u'v, +u'v, —u""vy +

Example 1:

Evaluate [ x*e*dx

Here u = x* dv = e*dx
u' = 4x3 v=e

u'=12x* v, =e
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u" =24x v, =¢e”*
u'"" =24 vy =e*

judv =uv—u'v, +u'v, —u""vy + -

]x“exdx = x%*e* —4x3e* + 12x%e* — 24xe* + 24e* — ---

Example 2:
Evaluate [ x3 cos 2x dx

Solution:
j x3 cos2x dx

Here u = x3 dv = cos 2x dx

sin 2x
u' = 3x? =
2
— COS 2Xx
u’' =6x v, =
4
—sin 2x
uIII — 6 2 —
8
CcoS 2x
U3 =
16

f 3 oy dx = x3 sin 2x 3 2(—c052x>_|_6 (—sian) 6<c052x)
x°cos2xdx = > X 2 X 8 6

. 3x2cos2x  3xsin2x  3cos2x
[x3sm2x+ T, ]

N | =

Exercises Problem:
Problem 1:
Integrate x3e~2%

Solution:

35

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



u" = 6x vy =
4
e—zx
u” =6 Vv, = —
8
e—zx
vy =

By Bernoulli’s formula

]udv =uv—u'v, +u'v, —u""vy + -

j 5 —2xd . _e—2x 3 ) e—Zx iy e—Zx 6 e—Zx N
xX-e X=X 2 X 4 X 3 16

= %e‘zx[—4x3 — 6x2% — 6x — 3]

= %e‘zx[4x3 + 6x% + 6x + 3]
Problem 2:

Integrate [ x* sin x dx

Solution:
f x*sin x dx

Here u = x* dv = sinx dx

u' = 4x3 V= —CoSX
u'" =12x* v, = —sinx
u'"' = 24x V, = COSX
u'"" =24 vy = sinx

Uy = —COSX

By Bernoulli’s formula.,

36

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



fudv =uv—u'v, +u'v, —u""vy + -
]x“ sinxdx = x*(—cosx) — 4x3(—sinx) + 12x?cosx — 24xsinx  + 24(—cosx)

]x“ sin x dx = cos(—x* + 12x? — 24) + 4x(x? — 6) sinx

Problem 3:
Integrate [ x3sin 3x dx

Solution:
j x3 sin 3x dx

Here u = x3 dv = sin 3x dx

cos 3x
u' = 3x? v=—
3
sin 3x
u'"'=6x v,=-
9
cos 3x
uIII — 6 2 —
27

By Bernoulli’s formula.,

n
fudv =uw —u'vy+u'v,—u" vy + -

) cos 3x sin3x cos 3x sin 3x
fx3sm3xdx=x3 (— )— x? (— ) x(

3 9 27 )T
[x3sin3xdx = %[ 3x(2-3x%) cos3x+sin3x(9x?-2)]

Problem 4:

Integrate [ x2(e*+ e™) dx

Solution:

[ x2(e*+e™) dx
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Here u = x2 dv = e*- e~
u' =2x v=e+e*
u’" =2 v, =ef-e”
By Bernoulli’s formula.,
]udv =uv—u'v, +u'v, —u""vy + -
[ x2(e*+ ) dx = (x2) (e - e%)-2x(e*-e™) - 2x (e* + &) + 2(e*-e”)
=x%e* - x%e™X-2xe* - 2xe™ +2e* - 2e
= (X%-2x+2) e + (-x?-2x-2) e
= (X2-2x+2) e - (X2+2x+2) e
Exercises 2:
1. [x3sinnxdx

2. [ x5 cosgdx

38

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



UNIT-II

Multiple Integrals - definition of double integrals - evaluation of double integrals — double
integrals in polar coordinates - Change of order of integration.

Chapter 2: Sections 2.1-2.5

2.1. Multiple Integrals:

Let f(x) be a continuous function in the closed interval from x = a to x = b. Hence the
function is bounded in the interval. Let b > a. Divide the interval (a, b) into n sub-intervals
X1 —Q,Xy —Xq,X3— Xy .. b — Xp_1, Where a, x4, x5, X3 ... ... Xn—1,b are inascending order
of magnitudes. Let &, be any point of the sub-interval (x,-_,, x,). Taking a = x, and b = x,

Consider the sum f(x;)(x; — xg) + f(x3) (0 — x1) wen e . fe) (e — xp_q).

This sum tends to a definite limit when the number n of the sub-intervals tends to infinity, i.e.,
the length of each sub-interval tends to zero, as a and b are finite. We have already seen that

this limit is called the definite integral of f(x) with respect to x from x=a to x=b and is written

as f;f(x)dx. Even in the case of simple functions the evaluation of an integral from this

definition is not quite easy. So we evaluate f: f (x)dx from the following result:

[ fG)dx = F(b) — F(a), where - F(x) = £ (x).

2.2. Definition of the double integral:

i o e Fa¥ 13
. -
— e "-_
| A&
| {1 _
x 0 :
y'
Figure 2.1

Let f(x,y) be a continuous and single valued function of x and y within a region R bounded
by a closed curve C upon the boundary C. Let the region R be subdivided in any manner into

n sub-regions of area AA;, AA,, ... ... ,AA,,.
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Let (Er, 77r) be any point in the sub-region of area AA, and consider the sum

?zl f(fp' UT)AAT-

The limit of this sum as n - oo and A4, - 0 (r = 1,2, ....) is defined as the double integral

of f(x,y) over the region R.

Thus [f, f(oy)dA = lim S f (&, 7,) A4,

The region R is called the region of integration corresponding to interval of integration (a, b)

in the case of the single integral. This integral is sometimes written as || fR f(x,y)dxdy.

2.3. Evaluation of the double integral:

H
& |
c “la
— L Ars
I F
._i-— v
m | a b A
Figure 2.2
da 200
ff(x,y)dA=f f f(x,y)dxdy
R c 1(y)

The double integral is evaluated by considering f(x, y) as a function of x alone but regarding
y as a constant and integrating it between x = f;(y) and f,(y) and then integrating the

resulting function of y betweeny = cand y = d.
Similarly, by taking the sum of the terms in each column and then adding these sums.

b @2(x)

[ remaa=[ | rayayas

a 91(x)

40

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



gk

Hence f(x, y) is first considered as a function of y alone and integrated between ¢, (x)and
¢, (x) where the equations of the curves PLQ and PMQ are respectively y = ¢, (x) and

@, (x) and then the resulting function of x is integrated between x = a and x = b.
Corollary 1:

If the region of integration is a rectangle between the lines x = a,x = b,y = ¢,y = d then

]f(x,y)dA=fff(x,y)dydx

b d
= f f f(x, y)dxdy

C

Thus for constant limits, the order of integration is immaterial.

Note:

ffz(J’)
()

y = fi(x) and y = f,(x) for the values of x between a and b. For changing its order, one

The integral f; f(x,y)dxdy is the integral over the region bounded by two curves

should sketch the region of integration. From the sketch, the limits of x and y should be

determined.
Example 1:

Evaluate [ [ xy dx dy over the area in the first quadrant bounded by the circle

x2 + y? = q?
Solution:

4

II__'“fu y = Ve

| o™

| !| I'.

|

%‘:"

Figure 2.3

If x is constant y varies from o to Va? — x? , x varies fromoto a
41
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= %fo (a’x — x3)dx
=1|:a2x2_x_4adx
2l 2 41y
1 ,a*
=)

Example 2:
Evaluate [f (x? + y?)dxdy over the region for which x,y areeach > 0andx +y < 1

Solution:

|

Figure 2.4
If x is constant y varies fro 0 to 1 — x.

x varies from0to 1

[fGe? + y?dxdy = [ [~ (% + y*)dydx
= Jy Iy + X137 dx
= fol[xz (1—-x)+ %]dx
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= fol(x2 —x3+

3

= f01(3x2 —3x3+1—-3x—3x%—-x%)/3 dx

= %fol(—4x3 + 6x2 —3x + 1)dx

2.4. Change of order of integration:

Example 1:
Change the order of integration in the integral fxaz o f;j;c XY dx dy and evaluate it.

Solution:

Figure 2.5

Given, x varies from 0 to a

2
y varies from % to 2a — x

(i.e.,) The region is bounded by x =0, x =aand y = %z,y =2a—x
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By changing the order of integration we first integrate with respect to x and then with respect

toy

Therefore, y varies from 0 to a

X varies o to \/ay
and y varies from a to 2a

x varies 0 to 2a -y

a r2a—x a rJay 2a r2a-y
] jz xy dxdy =f f xy dxdy+j j xy dxdy
0 % o Jo a Jo
x2%yl./a aIx2y|2a —
=f ZXV dy+j =2 Y dy
o | 2 0 al 2 0
1 a 1 2a
=§f ayzdy+§j (2a - y)?y dy
0 a

1[ay®la 1 (%@
==|=—| +=| (4a%+y?—4ay)yd
2l3 0+2fa (4a® +y ay)y dy

1a4- 1 2a

N hadl B 2 3 _ 2
2I3l+2-[1 (4a’y + y>® — 4ay?) dy
_a4+1 4a’y? y* 4ay3|2a
6 2| 2 4 3 10
a* 1 2a
—_—— _ 2,2 4 _ 3
G +24[24ay + 3y* — 16ay°] 0
a* 1

T _ 4 _ 4

e + 74 [160a* — 155a*]
_a4+5a4_4a4+5a4

6 24 24

_9a4

24

_3a4

8
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Example 2:

=00

By changing the order of integration, evaluate [;_ "~ [ " ? dxdy.

Solution:

Figure 2.6
Given x varies from 0 to oo, y varies from x to co.
By changing the order of integration, we first integrate with respect to x and with respect to y
x varies fromx=0tox=y

y varies fromy=0toy = o

.[oofooe—y y=® rx=a -y
—dxdy = f f —dxdy
0 x y y=0 x=0 y

f°° .[-y e Y
= —dxdy

o Jo VY

@ xe‘y]y

= d

.’; [ y 10 4
=f (e +0)dy

0

= f e Ydy
0
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Exercises Problem:
Problem 1:
Evaluate the following integrals.
- a rb 2 2
(i) [, % +y?) dxdy.
Solution:
If y is constant x varies from QO to b

x varies from 0 to a

a rb a x3 b
j j (x% + y?) dxdy = f I— + yle dy
o Jo o L3 0

aflp3 a b3+3by3
=f — + by? dy=j —|dy
o L3 0 3

1 1 3by3|a
=§f (b3+3by3)dy=§[b3y+ 3 lo
0
1 a
I 3
0%y +by*]
1
=§[ab3+ba3]
ab
=3 [b? + a?]

a rb ab
f f (x? + y?) dxdy = —[b? + a?]
o Jo 3

(ii) f03 flz xy(x +y) dydx.

Solution:
If X is constant y varies from 1 to 2.

x varies from 0 to 3.

o Sy e+ ) dydx = 7[Ry +xy?) dydx = [ [ (5) + 2 (%
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|

— b - —|dx

3 8x x? x|
j 2x% + — — — ——|dx
ol ]

3 2 3
]3 (12x?% + 16x — 3x2 — 2x) 4
0 6 ¥

1 3
gj (12x2% + 16x — 3x? — 2x) dx
0

() o) ()

[4x3 + 8x2 — x3 — x?] 0

N -

3
[3x3 + 7x2] 0

N -

[3(3)3+7(3)?] ==[81+63] = %(144) =24

N -
N =

3 (2
f xy(x +y)dydx = 24
1

iii) foa fob xy(x —y) dxdy.

Solution:

If x is constant, y varies from a to b. X varies fromo to a

a rb a rb
f f xy(x —y)dxdy = f f (x?y — y*x) dydx
0 0 0 0

b4
3 [0

fa [x%b  xb3]
227 lax
0
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-,

1 a

=Ej (3x2b?% — 2xb3) dx
0

1[ x3 x%\]a

_Zlap2 (X)) o3 (Xl

;[ (3) 2b (2)_0

1] al a?\|

_ 2(4° ) _ 53 (%

f(5)-2(3)

[b2a3 _ b3a2]

3x2%b? — 2xb3l
% | %

N -

a rb azbz(a—b)
[*[[s9tey axay - L2
0 Yo

iv) flz flx xy?dydx
Solution:

If x is constant y varies from 1to x , x varies from 1 to 2

2 7 2 0003
x
f fxyzdydxzf [%]’fdx
1 1 1

3

2 1
= [ - dx
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V) [ (% + y?) dydx
Solution:

If x is constant y varies from 0 to x . x varies from 0 to a

a rx _raf y31*
o Iy 2+ y?)dydx = [ |x*y + ?]o dx

a X 1
.[ f (x2 + y?)dydx = za*
o Jo 3

vi) foz fxzzx(Zx + 3y) dydx

Solution:

If x is constant y varies from x?2 to 2x . x varies from 0 to 2

2 2 2 292X
Js fxzx(Zx +3y) dydx = | [ny + 3%]% dydx

B 2 2\2
= foz »2x(2x) 43 (Zx(xz) +3 %)] dx

2

[ 4
= foz 4x2 + 6x2% — 2x3 — 3%] dx

fz [8x2412x2—4x3-3x*
0 2

| dx

= %f02[8x2 + 12x?% — 4x3 — 3x*]dx

3 3 4 572
:l[gx_+12x__4x__3x_]
2l 3 3 4 51
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_1 [20(2)3 n 42)* 3(2)5]

2L 3 4 5
=220 - 16 -]
213
_1 '800—528]
T2l 15
g
15
2 (2 136
oy Jia (x4 3y) dydx = =
vu)f f 3dydx
Solution:

If x is constant y varies from 0 to Va? — x2 . x varies from 0 to a

V72
a Va?-x? _ rafy*
fo fo y3 dydx - fO I:T]O dx

= [y [ ax

Z)Z

= [ gy

= ifoa(a“ + x* — 2a*x?)dx

374
[a x+——2a2x—]
31p

-lslr-\

1 [15a5+3a5—10a5]
4

15
VaZ=x2 2a5
f f y?dydx ==

viii) [ [ x2dxdy

Solution:
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If y is constant x varies from vy to 2 — y and y is varies from 0 to 1

1 1 P
j x2dxdy = j I?l dy
0 0 vy

= L[5 - e

y

S‘ST

3
1 [23—3(2)2y+3(2)(y)2—y3—(y)f]

= ; dy
3
[8 12y+6y%—y yf]
=J 3 dy

tfo-sre-1-1-3

[160-120+40-5—8]
20

1
3

1
== [200 — 133]

__ 67
60

/2 o rdrdf
|X)f fo (r2+a2)2

Solution:

T/2 oo /2

.f .f(rzd:izi)z f def(r2+a2)z

_ /2 [ at
- [0]0 fo E
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7
jj rdrd0 _m
(r2+a?)?  4a?
0 0
X) fg fOE(asinZH + bcos26)dOdg

Solution:

/2 /2

T

2 2

]](asinZB + bcos20)dOd¢ = f (asin20 + bcosZB)dHJ d¢
00 0 0

T
B n[ acos26 N bsinZH]f
) 2 2 1

T acosm bsinm acos0 bsin0
=3[= ( )]

2 2 2 2
T a
=25 +3]
_ Ta
T2
XI) fnéjz J-ZCOSQ Zd do
Solution:
/2 2c0s0 /2
r3
f f r2drdf = f [?]gwsede
-n/2 o —1/2
_ (m/2
= f_n/2(2c050)3d9

/2
—f /2 C0S°

= fné/zz cos? 0d(sind)

TL'

{[cos 0 sin 6]? +f2 2sin%6cos0do

2 2

Vs
82 r5; . ,
= =~ [?xsin® 6dsing
2
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/2 2c0s0

j j r2drdf =

-n/2 o

Xii) fon fa(1+c059)

0
Solution:

a(l4+cos0)

0

1 a(1+cosO)

r?sinfdrdo

T

T
3
T
j f r?sinfdrdf = f[?]g(lmsg) sin 6d6
0

0

= éfon a3(1 + cos 6)"3 sinf dO

= —a;fon(l + cos 6)"3d(cos 6)

a_3 [(1+cosﬂ)4]n
3 4 0

= —a; [(1 4+ cosm)* — (1 + cos0)*]

, 4a3
r?sinfdrdf = =
0 0

Problem 2:

Find the value of [[(a? — x?)dxdy taken over half the circle x? + y? = a? in the positive

quadrant

Solution:
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e

oooooooo

If we take x as constant, y varies from 0 to va? — x? and x varies from 0 to a

aZ-x2

s varaye [ [ drdv(@® - %)
ﬂ(a x%)dxdy Jof xayla: —x

= [y @ —xHyly» "
= [(a® — x®)Va? — 22 dx
= foa(a2 - xz)%dx

Put x = sinf , dx = acos06d6@

x=0:0=0andx=a=>9=§

v
2
3
= f(az — a’*sin? 0)2 acosHdo
0

Vi
2
3
= f a3(1 — sin? 8)zacos6do

0

n 3
= J2a*(1 - sin® §)zcos6d6
= a* [2cos* 0 do

= a* [2 cos® 6 d(sin)

4

= a*{[cos® Osin 0] + JZ 3sin? 6 cos? 6 d6}

— 3% f0§ (sinze)2 40

2

3a* 21—00549

4 Y0 2

do
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Problem 3:

Change the order of integration in the following integrals.

i) [[ === dydx

x2+y2
i) =

x2+y2

i) [0 x? dxdy

2

dxdy

iv) 17+ y) dxdy

Solution:

i) [ 5= dydx

x%+y?

Given x varies fromy to a, y varies from0 to a
By changing the order of integration, we first integrate with respect to y and with respect to x.
x varies fromy =0toy = x

yvariesfromx =0tox =a

y=a rx=a x x=a ry=x X
dydx =f f ———dydx
a X x d d
_fo fo xZ 4 y2 P
ar 1 x
=f [x.—tan‘1 X] dx
0 b x10

) 1 1 1
smce,j-mdy = Etan

Y
a
a X 0
= f [tan‘1 ——tan~! —] dx
0 X X
a
= f [tan™' 1 —tan~! 0]dx
0
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]a]x x dvd _ma
o Jy X2+ y? Y=

Solution:
Given x variesfromx =ytox =a

y varies from0to a

By changing the order of integration, we first integrate with respect to y and with respect to x

X varies fromo to a

y varies from o to x

y=X xz

y=a xX=a xZ x=a
f f ———dydx =f f —_—
y=0 Jx=y (/x%+y? x=0 Jy=0 /x%+ y?
¢ x
= f [xz log(y +/x2 + yz)] 0 dx
0

dydx

since,

dx
e — 2 2
f — xz—log(x+\/a + x2)

- [ [(e108 (x +775) - (s 100+ (575 0))
_ foa [(x210g (x +2x2)) - (x210g (V?))] dx
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- fo a[(xz log(x +v2x)) — (x?logx)]dx

_ ] “[(?logx(1 +v2)) — (x? log0)]dx

= ]Oa[(xz logx + x2log(1 + V2) — x2logx)]dx
_ ] "¢ log(1 +v2)]dx

~ log(1 + v2) f v dx

s + 22"

~ log(1 +V2) (?)

_ (?) log(1 +v2)

i) [ 2V x2 dxdy

Solution:

Given x varies from o to a

y varies from 0 to 2+vax

By changing the order of integration, we first integrate with respect to x and with respect to y

2
X varies from Z—a to a

y varies from o to 2a
x=a ry=2vax y=2a rx=a
f f x?dxdy = f f x? dxdy
x=0 Yy=0 0 x=y?/4a

y:
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3 64a3
7
_1 3y_ y 2a
64a3.7] 0
1 (2a)?
=—|a32a) — -
@20 - G 7 0]
1 - 128a’
3| T 64a3.7
1 2a’
=gt =2
“© 77
3 2a* 1
-3 7
3 2a* [6
- 3 7
3 4q*
7
a r2vax 4q*
f f x?dxdy = —
0 0 7
. 3 44—
iv) [, [ Y(x + y) dxdy
Solution:

Given x varies from1to /4 — y

y varies from 0 to 3
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y=0 x=,4-y
x2=4-y 2=4—y

2 —

x* =4 2=—(y—4)
x=i2 0(0,4‘)

By changing the order of integration, we first integrate with respect to y and with respect to x

x varies from 1 to 2, y varies from 0 to 4 — x?

y=3 x=[4-y x=2 y=4—x2
] j (x +y)dxdy = f f (x +y)dxdy
y=0 Yx=1 x=1 Yy=0

= . _.Xy 2 0 X

1 2

=§f [8x — 2x2 + 16 + x* — 8x?] dx
1

_1'8x2 2x4+16 +x5 8x3] 2
202 s *TE T3
= Hlaay -8+ 1602+ 328D - (4 C 416+ 2 8)
2| 3 4 5 3
_lie—gr32422 -5 44 ]
21 5 3 3
0432 %o + + ]
21 5 3 3
10y, 31 561
B 5 3 4
171200 + 372 — 1120 + 15]
"2 60
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_ 1 467]
2160

_ 467
120

= 3.89

3 /4y
j j (x +y)dxdy = 3.89
0 J1

2.5. Double integral in polar co-ordinates:

Figure 2.7

To evaluate the double integral in polar co-ordinates first integrate f(r, 0), r with respect to r
keeping 0 constant between the limits r=fi(0) and r=f>(0) and integrate the remaining expression

with respect to 6 between 6=a and 6=p,

=£,(0
wffy fa0)rdrde = [ [P0 rf(r,6)dr do

Regarding dA as a rectangle its area will be product of a pair of adjacent sides say TU and UV

dA = (rdf@)dr = rdrdf

W
e s
o i
/ﬁ e
Figure 2.8
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Hence the double integral in Cartesian form [f, f(x,y)dxdy transforms into

I, f(rcos6,r sin)rdrdf.

Example 1:

Evaluate [[ rv/a* — r?dr d@ over the upper half of the circle r=a cos@

Solution:

rva®—r?drdo= /2 pacos6 . [02 _ 12 dr do
o Jo

0

- _ % f:/z [ g(az_ r2)3/2]0a0059 do

=—1 [7*](a% — a%c0s26))*2 —(a?)?] do

0

- _gfn/z[az(l _ COSZG))S/Z _(a)s] do

0

= _a—sf(;T/Z(sin36 —1)do

3

=2 [T2(1 - sin®6) do

3

_a® m/2 /2 .
=< [J, " de— ;7" sin6 do]

0

3 z T
= %[[6'](2) — | sin*@sin6d6)]

= ag[g - f:/z sin?0d(—cos8)d0]

T
2c0s%°0,7

lo

3
= a;[g +[—sin®0cosO +

Figure 2.9

— frr/z foacose(az _ T2)1/2 d(_Trz)de
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a3(3n—4)

a3(3m-4)

2 2 —
[[rva*—r*drdo= P

Example 2:

By transforming into polar co-ordinates evaluate f

the circles x2+y2=a2 and x2+y2<b? (b>a)
Solution:

By transforming into polar co-ordinates, we get r=a & r=b.

ﬂ- x2y? dxdy J-Zn fb r%c0s?0 r’sin*@ ¢ dr do

x2+y? r%c0s?0+ r’sin?@

21 b r*sin?6cos?0
= 7 ) e dr o

= fozn f; r® sin*0cos?Or dr dO

= f —]a° sin?0 cos?0 dr dO

_ b*-a* IZn(sinZB

) dr do

4_a* j-Zn 1-cos@

) do

ff x%y? dxdy Tr(b4—a)

x2+y?
Example 3:

By changing into polar co-ordinates evaluate the integral

foza Js 2 2 4 y?)dxdy.
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Solution:

The region bounded by x=0 & x=2a; y=0 & y=+/2ax — x*

(i.e.) The region of integration is the semicircle above the x-axis. Changing into polar, the

region becomes r=2a cos 6 & 0=0 to /2

foza fo 2ax—x2(x2 + y?¥)dxdy = fon/z fozacosg(rzcosze + r25in?0)rdrd0

= [T7% [229°%% 120520 + sin26)rdrdd

- f(;'[/Z fOZacose r3drd6

- f:/ 2 [g] 02acos9 do

_ /2 (2a cosH)
= J e ag

= 4a [ cos*6d6
foza fo Zax—xz(xz +y*)dxdy :3?4

Exercises:

1. Evaluate [[ 73 sin?6 dr d6 over the area of the circle r = a cos 6
2. Evaluate [[ r2 cos 6 dr d over the loo of the lemniscate 72 = a? cos 26

3. Evaluate [ r? sinf dr d6 over the upper half of cardioid r = a (1 + cos 6)
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UNIT-I1

Triple integrals — applications of multiple integrals - volumes of solids of revolution - areas
of curved surfaces — change of variables - Jacobian.

Chapter 3: Sections 3.1- 3.5.
3.1. Triple Integrals:

If f(x,y,2) is continuous and a single valued function of x, y and z over the region of space

R enclosed by the surface S.

f2(2) re2(v.2)
]f(x y,z)dV = ff f f(x,y,z)dxdydz.

1(2) Y91(3,2)

The limits z,, z,. f;(2), f,(2), 1 (v, 2), 9, (y, z) can be determined from the equation of the
surface S.

Note 1:

When integrating with respect to x in the above integral y, z are treated as constants and also

when integrating with respect to y, z is treated as a constant.
Note 2:

When the integral is given [[[ f(x,y, z)dx dy dz with limits, it is often these limits that show
the order of integration. If the limits are not constants the integration should be in the order in

which dx, dy, dz is given in the integral.

Example 1:

Evaluate [[[ xyz dx dy dz taken through the positive octant of the sphere x? + y? + z? = a?.
Solution:

Given the region of integration is the positive octant of the sphere x? + y2 + z2 = a?. Inthe

region, z various from o to /a? — x? — y?, y various form 0 to Va? — x?, x various from
0toa.

a VaZz-x2 . Ja2-x2-y2
f f f xyzdxdydz = f f f xyzdxdydz
o Jo 0
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a2-x2-y2
—l dy dx
0

1 a
= —j j xy(a? — x? — y?)dy dx
2Jy Jo

N
dx

4 2 2
1 a*x a2x3+x5r
4 2 2],
1 a® af’_l_a6
2|8 8 24
48

ab
f j f xyzdxdydz = 18

3.2. Applications of Multiple Integrals
Find the area enclosed between x=a, x=b, by y=f(x), y=F(x).

Let P be (x, y) and Q be (x+Ax,+Ay). Hence the area of the rectangle PQRS is Ax.Ay. We
may imagine the whole area divided into such elements and if we can sum them the required

area is obtained.

}" # -
[ ]
| o
—_—tT E.C‘c -
[ PER -
__1___ ___Fo—"“'_'-'-
ey || —
O o b
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w = M[

o

Figure 3.1

Regarding x and Ax as constants for the time being, the sum for the vertical strip

, y: - - Y2
y, to y, is AJI;‘—EO Ax ¥ Ay.This can be written as Ax fy1 dy

Having found the area of the strip, we can add up all such strip between x=a and x=b, we get

the required area as

b Y2
1,0 [ Ca
a 1
- b 2
(ie) J, dx fyyl dy
b ry,
j dy dx
a

Y1

In the same way the co-ordinates of the centre of gravity can be expressed as

Nxaxdy _ _ [[ydxdy

~ [Jaxady Iy ax ay

The limits of integration to be taken to cover the given area.

Similarly the moment of inertia of an area about an axis through the origin perpendicular, to
the xy-plane can be expressed as [[ (x? + y2) dx dy , the limits being taken to cover the whole
area since x2 + y? is the square of the distance from the origin to the element of area.
Example 1:

2

a

2
Find the area enclosed by ellipse = + % =1.

Solution:

Figure 3.2
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oooooooo

The area of the ellipse=4 (area in the first quadrant) =4 CAB

N | =

o\ 2
Keeping x constant for the time being, y varies from 0 to {(1 - %) } and then allowing x to

vary. x varies from O to a
1
2

b(1-%
Hence the area of the ellipse = foa Jy ( ¢ ) dy dx

Simplifying, we get the area as mab.
Example 2:

Find the centroid of the area enclosed by the parabola y? = 4 ax the axis of x and the latus

rectum of the parabola.
Solution:
Let (x,y ) be the co-ordinates of the centroid .

o J3 1 x dy dx

Then x = 24%5——
Jo 7t ay ax

Ly dy dx
foa foyl dy dx

}_1:

Where y, = V4ax

3 3a

Simplifying, we get X = (?a 'T)
Example 3:

2 2
A plane lamina of non-uniform density is in the form of a quadrant of the ellipse x—z + y—z =1.
a b

If the density at any point (x,y) be K xy, where K is a constant, find the co-ordinates of the

centroid of the lamina.
Solution:

Let (x,y ) be the co-ordinates of the centroid.
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f“fb(l_ﬁ_z)

_ Kxyxdy dx
Then x = 22 -
b(l—ﬁ>z
a a?
o fo K xy dy dx

1
b(1-22)?
_ foafo( “Z)nyydydx
y= ;

K xy dy dx

fa fob(l_?)

0

1-==
a2

x%\2
b
Numerator of ¥ = Kfoa fo( ) x%y dydx
¥
2
a y2 b(“%)
= j K|— x? dx
0 2 0

K (¢ x?
=E,f0 bz (1—;) dex

b2 [x3 x51°
= K — ===
213 5a?
0
b?[a® a°
- 7_?_?1
a3b?
- 15

N[

(%)

b
Denominator of ¥ = Kfoa Jy xy dydx

1
L
a yz b(l’Z_Z)Z
=fo— dx
0 2 0
KbZ a x2
= > j; x<1—§> dx

Kb [x2 x*]*
"2 [7_4512]0
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B Ka?b?

8
=3¢ 5_8
Y=Y T
Example 4:

The density of the material of a right circular cylinder of radius a varies as the distance from
the axis and as the distance from one end. find the radius of gyration about the axis.

Solution:

Figure 3.3

Take a section of the cylinder perpendicular to the axis at distances x and x+dx. It will be a
circular strip of radius a. Take two concentric circles of radii r and r + Ar on this circular strip
and consider the solid between these two circles with thickness Ax as the element of volume
dv.

dv = 2nr ArAx and density p = A rx
Then the mass of the element= A 2nrArAx rx
Hence the mass of the cylinder M = Afoh foa 2mr? x dr dx

B na3h?
3

Moment of inertia of this element about the axis of the cylinder
= 21 Ar?x ArAx r?

Hence the M. of the cylinder about the axis

h ra
=f fZ/lr“xdrdx
o Jo

B ma®h?
5

Let the radius of gyration be K
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542
Then, MK? =" 3

. 3p2 5p2
e 22 k2 ="22 )

3a?
5

ie. K? =

3.3. Volumes of Solids of revolution:

Let AB of a lane curve y=f(x). Let AB revolve about the x-axis. Let the co-ordinates of P,Q be

(X, y), (x+Ax, y + Ay) respectively. Complete the rectangle PQRS.

The area of this rectangle=Ax. Ay. In making a complete revolution the area PQRS generates

a solid whose volume is 7{(y + Ay)? — y?}Ax
i.e. {2y Ay Ax + (Ay)?Ax}
i.e., 2w y Ay Ax to the first order of infinitesimals.

Hence the total volume is

Example 1:
Find the volume of a segment of height h of a sphere of radius a.
Solution:

The equation of the generating circle is x? + y% = a?, the centre being the origin and the x-

axis being perpendicular to the plane which cuts of the segment.

\Va2—x2
Volume of the segment= 2m [ [

A e
y
= an l—l dx
a—h 2 0

ydy dx
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nfa (a® — x?) dx

a—h
Th
= Bah—h?)

3.4. Areas of curved surfaces:

Let z=f(x, y) be the equation of the surface AB and suppose it is required to calculate the area

of aregion s’ lying on the surface.

Project s’orthogonally on the XY plane and let S denote this region. Draw lines parallel to the
x and y-axis and divide the area S into rectangles of areas Ax.Ay. Then the orthogonal

projection of the element of area PQRT on the to the XOY plane is Ax Ay.

Figure 3.4

~ Ax Ay = area of PQRT cos a where «a is the angle between the XOY plane and the tangent

plane at p, i.e., between the z-axis and the normal line perpendicular to the tangent plane at P.

The direction cosines of the normal to the surface F(x,y,z) = 0 are proportional to Z_i 3_5 Z—Z
and so in this particular case they are proportional to z—i ,z—; ,—1
since F(x,y,z) = f(x,y) —z=10
1
Hence cos a = T
2 Z\2 2
(&) +G)
2 2 2
0z dz 2
Area PQRT= {(E) +(5) + 1} Ax Ay
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, _ . . 6_2)2 (% 2
Hence s’ = IAIQICI_I)IOtZZ{(ax + %
Ay—0

jj{ 2 6;) 1};dxdy

The limits of integration depending on the projection on the XOY plane of the region S’. We
can easily show that it is also equal to

[ f+@) + )T e

Where S is the projection of S’ in the XOZ plane or equal to

-[] oG+ G e

Where S is the projection of S" on the YOZ plane.

[y

[

Example 1:
Find the area of the surface of the sphere of radius r.

Solution:

Figure 3.5

Taking the origin as the centre and radius r, the equation of the sphere is x% + y? + z% = r?

Let us consider the surface of the sphere in the first octant. It will be éof the surface of the

sphere. The orthogonal projection of this surface area on the XOY plane is the quadrant of the

circle x? + y% = r2 in that plane.
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2 2
Hence this surface area [[ {(Z—i) + (2—;) + 1} dy dx

Taken over the area of the quarter of the circle x? + y? = r2 on the positive quadrant

6_2_ x 0z y

6x__z’6y_ z

1

= Surface area of the sphere = 8 [ {’Zc—j + Z—j + 1}E dy dx

1
2+ 2+ 25
=8ﬂ(x yz z7) dy dx

—8ﬂrd d

frfm rdy dx
=8
o Jo

/-r-Z — x2 _y2

2

r
=8 = 4qr?

2
Example 2:
Find the area of the surface of the sphere x? + y2 + z? = 9a? cut-off by the cylinder

x? + y? = 3ax.

Solution:

Figure 3.6

The Projection of the required area S on the xoy plane is the circle x? + y2 = 3ax. On the

sphere z = \/9a2 — x2 — y?2
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0z X

ox 9a?-x2-y?
0z y
dy  J9a% —x2 —y?2

[

9z\? az\2)2 . . .
s=[/, {1 + (5) + (5) } dx dy where R is the region enclosed by the circle

x?+y? = 3ax

=]L {1+<9a2_x2_y2) +<9a2_x2_y2>} dx dy

ﬂ 3a dx d
= X
R \/9a2—x2—y2 Y

= 3a [f, % changing to polar.

N| =

The polar equation of the circle is r=3a cosé. To cover the area of this circle r varies from 0 to

3a cosd and 6 from —ZE ZE

ZE 3a cosé rdrdo
N

_ZE 0 9a? —r?
=9a?(m — 2)

Example 3:

Find the portion of the cone x2 + y2 = 4z2 lying above the xoy plane and inside the cylinder

x?+y% =3y

Solution:

Figure 3.7
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x?+y% =3y
=1 2 2
On the cone 7= JxZ+y
0z _1_x
ax 2. x2—y2 '
dz 1 y

dy 2 x2 — y2
1

1 x? y% )2
S = 14+ = dxd
,[fR { +2x2+y2+x2+y2} ey

= ?f J dx dy, where R is the circle x> + y* = 3y

\/'_ 2
e ()

__ 95

Y
Example 4:
The centre of a sphere of radius r is on the surface of right cylinder, the radius of whose base

is % . Find the area of the surface of the cylinder intercepted by the sphere.

Solution:

Figure 3.8

The equation of the sphere is x? + y2? + z2 = r? and the equation of the cylinder is
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@- D2 +y2= (L)

e, x2+y2=rx

[

2 2Y3
Projecting on the zox plane, we have S = [ [, {1 + (z—z) + (Z—Z) } dz dx
On the cylinder y? = rx — x?2

dy _r—2x 0y _
ax 2y '9z

The Projection of the area on the zox plane is the curve by eliminating y from x2 + y2 = rx
and x? + y? + z2 =12
ie., z?+rx =1r?

Hence the required area

3 (r—Zx)Z%
—foR {1+4—yz} dz dx

JAy? + 4x? — 4rx + 12
=zﬂ 2

y
_ 5 .[’fdzdx

dz dx

J’f dz dx
=7r e —
Vrx — x?
r Vri-rx dz dx
=7r E—
-’:) -I-—Vrz—rx VX — x2
—9 fr r2—1x dx
= ar 0 Vrx—x2
r
T
= er £ dx
o Vx
= 472,
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3.5. Change of variables

Jacobian:

Ifu = f(x,y),v = @(x,y) be two continuous function of the independent variables x and y

au a_u
du du dv Jv ax ay| - .
such that 99y 9%’ 3y are also continuous in x and y then aw ov is called the Jacobian of
6x 5

u, v with respect to x, y and is denoted by J ( ) or ——

9 (wv)
o0y

In case of three variables u, v, w which are functions of x, y, z the Jacobian of u, v, w with

ou

0x

. . ov

respect to x, y, z is defined as o
ow

dx

ou

oy
v

oy
ow

oy

du
0z

av

uv,w
5| 8s is denoted by]( )or

a(uw,v,w)
9(x,y,2)

ow

0z

Two important results regarding Jacobians:

Result:

If u, v are function of x, y and x, y are themselves function of ¢, n then

du du ou
a(uw) 6(x y) _ ax 5 a¢
dxy)  9@m | dv|[ov
ax dy | 19¢

Now ——

Ju Juj
a¢ on| _ d(u,v)
v dv| a(n)

g oy

Result 2:

d(w,v)d(x,y)
d(x,y)0(wv)

v
an

dudx OJudy OJudx OJudyj
9xdC Taya. oxon ayon
av 0x dv 0y dav 6x dav 6y
dx 0( 0y 0( dx 677 6y 677

o(uv) _ d(xy) _ o(uw)
oxy) 0¢Gm  9m)
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By 1,

d(w,v) d(x,y) 9(u,v)
(x,y)d(u,v)  9(u,v)

Now,

o ou

o(uv) _ |ou ov _|1 0 -1

owv)  [ov v i1 1l
du Odv

Since u and v are independent variables

ou B ov B
ov  ou
Hence

0(u,v) 9(xy)
0(x,y) 0w, v)

Corollary:

For three variables

I) a(u,v,w) _ a(x,y,z) _ a(u,v,w)
0(xy,z) (&m0 a(¢ny)
”) d(uv,w) d(x,y,2) _

d(x,y,z) 0(u,v,w) -
Example 1:

Given that x+y =wu,y =uvchange the wvariables to wu,v in the integral

1
[f[xy(1 — x — y)]2dxdy taken over the area of the triangle with sides x =0,y = 0,x +y =

1 evaluate it.

Solution:
Givenx+y=u,y =uv
X=u-—y

>x=u—uvandy =uv
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dx 0Ox
=6(x,y)=% %=|1—v
o(u,v) |0y Ody v

ou ov

J

_u_ _ _
u|_(1 nut+uv=u

Also,x=0=>u(l—-v) =0

u=0andv=1alsov=0andu=1
[[lxy(1 = x — y)|edxdy = ) 1 vl = v)(1 - u + uv — uv)]*(1/2) ududv
= [} [y — u2v?) (1 — u)]eududd
= [1u2(1 —wyidu f v2(1 - v)idv

8m 2w

© 1054 105

2T

.U [xy(1—x— y)]%dxdy =70t

Example 2:
Evaluate [[(x — y)*e**Ydxdy where R is the square with vertices (1,0), (2,1), (1,2) & (0,1)
Solution:

Given the vertices of the square are (1,0), (2,1), (1,2) & (0,1)

The region is bounded by E = 31%?

x—1=y=x-y=1

1x-2)=-(y-1) > x-2)=-y+1
x+y—3=0

x+y=3

- -2

=
=
<

0-1 1-2
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, ~pt e

o

-1x-1)=-W-2)= x+1=-y+

x—y+1=0
x—y=-1
x-1_y=0
0-1  1-0

x-D=-()=x-1=-y

o(u,v)

Letu=x+y&v=x—y&]=a(xy)

Thenu=1u=3,v=—-1Lv=1

=|1 _11|=_2

[f(x = y)*e*tYdxdy = fl_l f13 vte' (=Ddudv

-1 3
=—2f, vdv [ e*du

-1
_ _a[»® 3 _1|_1_
__5[5]1 le®]1 = 5[ 5

Example 3:

HIGETD

5

Evaluate [[ xydxdy where R is the region in the first quadrant bounded R by the hyperbolas

x24+y2=a2&x2—y2=Db2andthecircles x2 +y2=c2 & x2+y2=d?(0<a<b<

c<d)
Solution:
Letu =x%2—y% & v=x2?+y?

u=a*,u=»b0*& v=c?v=d?

_ 6(1{,17) _ ZX _Zy — =
J = o =l 2y | 4xy + 4xy = 8xy
a(xy) _ 1
a(uv)  8xy
) _ u_:bz v=d2 a(x'y)
o [ xydxdy = [,Z [25 xy 5o dudv
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If xydxdy == (b? — a?)(d? — c?)
Example 4:

Find the area of the curvilinear quadrilateral bounded by the four parabolas y? = ax, y? = bx,

x? =cy, x? =dy.

Solution:

Y Y
_o(uy) _ x2 x| _ 4 _ 4 _ _
]_6(x,y)_ ) _x_z—l 4=-3
y y
oxy) _ _ 1
a(uy) 3

_ b d J(xy)
J[dxdy=[,__ [ ) Tudv

=c a(u,v

b od , 1
=, fvzc(—g)dudv

_ _l b d _ (b—a)(d-c)
=—; llelvle ==——
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UNIT-IV

Beta and Gamma functions — infinite integral — definitions — recurrence formula of Gamma
functions — properties of Beta and Gamma functions - relation between Beta and Gamma

functions - Applications.
Chapter 4: Sections 4.1- 4.6
Beta and Gamma functions
4.1. Definitions:
i)fo1 x™ (1 — x)"dx form > 0,n > 0 is known as Beta function and
it is denoted by g (m, n).
i) f0°° e *x™"1dx for n > 0 is known as Gamma function and it is denoted by I'(n).
4.2.Convergence of I'(n)
Theorem 1:
Prove that I'(n) convergence for n > 0.

Proof:
We know that, T'(n) = fooo x"le X dx = fol x" e ™ dx + flz x" e *dx
The first integral is lirr& fslt x™1 e dx if this limit exists.

E—

when x is small, the integral behaves like x™ 1 and the limit exists if n > 0. The second

r n+1
integral certainly exists for e* > ’;— (r being any positive integer) > =

! r!

solongasr >n+1.

!
Hence x"le™ < —
X

© — . d .
fo e *x™ 1dx does not excess a constant multiple of | 1°° x—’; which converges.

=~ T'(n) converges for n > 0.
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Corollary:

_rmIr(m)

pGm,n) = I'(m+n)

B (m,n) exists ifm > 0,n >0
4.3. Recurrence formula of gamma functions:
I'(n+ 1) =nl'(n)
Prove that: T(n + 1) = nl'(n) ifn > 0
We know that, T'(n) = fooo e *x" 1dx
'n+1) = fooo e Xx™t1-1dy
= fooo e *x"dx;n =0
= —x"e™* fooo —ndx foooe‘xx"‘ldx
= ;m(_xne-x)g +n fooo e *x"dx
=n fooo e *x" ldx
~T(n+1) =nl'(n)
Note: This recurrence formula is true only when n > 0
Corollary 1:
'n+1) =n!
I'(n) = foooe‘xx”‘ldx

ri) = fooo e *x1ldx

_ (*® - _le* “
= fo e *dx = _1]0
= lim(—e™)P = —e™® + ¢e°
a— oo
r1)=e=1
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4.4. Properties of Beta Function:
i) p(m,n) = p(n,m)
L(m,n) = f01 x™ 11— x)" ldx
Putting x = 1 — y, we have
Bm,n) = [ y» 11— y)™ " (~dy)
= [y ymia - y)midy

= B(n,m)
[This is merely a property of integrals, viz., foaf(x)dx = foaf(a — x)dx]

m-1

i) plmn) = [ T dy
We know that,
f(m,n) = fol x™m 11 =) dx ... (1)
y

Putx = —
1+y

1+y)dy—-yd
dx=( y)dy—-ydy

(1+y)?
_ dy+ydy-ydy _ _dy
(1+y)? (1+y)?
w/ y \1 y \ 1 gy
()= pm,n) =, (E) (1 - E) (1+)2

T (1+y—y)”_1 dy
0 a+y)mt\ 14y (1+y)?

o ym-l (1 )”‘1 dy
0 (1+y)ymt \1+y (1+y)?

m-1

B(m,n) = fow(lfymdy

i) B(mn) =2 [2sin®™1 6 cos® ' 6 db
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We know that,
L(m,n) = f01 x™m M1 =) Ydx o (1)
Put x = sin? 6
dx = 2sinf cosf
(1) = p(m,n) = fog(sin2 )™ 1(cos?8)""1db
= fog sin?m=2 g cos?""2 9 do
=2 fog sin?™~2 @ cos?™~2 @ cos O sin O dO
=2 fog sin?™m~2%1 g cos?™~2*1 9 do
=2 fog sin®™~1 g cos?*™1 6 do
f(m,n) =2 fog sin?™~1 0 cos?™"1 0 do

Which can be written as

B(m,n) = %(m—“ "—“)

2 ' 2
4.5. Relation between Beta and Gamma functions:

rm)r(n)

Prove that (m,n) = Fmem

Proof:

We have I'(m) = 2 [ e x> dx and [(n) = 2 [,” e™"y?"'dy
r(m)'(n) = 4f f e—(x+y)2x2m—1y2n—1dx dy
0 0

Putx = rcos6 ,y =rsinf and x> + y2 =r? | dydx = r dr do

dx 0x
:d(x,y): ar 060 _|cos@ —rsinf
d(r,9) dy 0dy sin @ rcos 6
ar 96

J

=1rcos?0 +rsin?0 =r
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© % .
r(m)'(n) = 4f f e~ ™" (rcos 8)?™ 1(rsin 6)?" 1rd0 dr
o Jo

= 4f000 fge_r2rzm+2n—2(cos O)Zm‘l(sin Q)Zn—lrde dT
o __2 11 r o _
= 4.f0 e (r2)mtn 1Ed(r2) J‘Oz(s]n 6)2"1dg

= 4.% I'(m +n).% B(n,m)

=T'(m+n)B(m,n)

r(m)T'(n) = r(m +n)B(m,n) [ B(m,n) = B(n,m)]
_I'mrm
P = Tnrm

Corollary 1: T G) =+

We have, B(m,n) =2 fOE(Sirl x)2m1 (cos x) 2" 1 dx

1 1
Putmzzandnzz

T 1 1
I (l l) =2 [2(sin %)@ (cosx)*@ 7 dx

2’2
TQrQ _ o (& . _ rmrm
rah - 2lpdx =2l [+ Bmm) =T

rQrG) . (w B
r(1) _2(5_0)_7T

() =

()

Corollary 2:

Vs

p(m,n) = fi(sin 0)?™"1 (cos9)?""1 do = 1,B(m, n)
0 2
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Putting 2m=p and 2n=q

Vs
2 1 mq
: p—-1 q-1 — _ r 7
]0 (sin@)P~" (cos )17+ dO = Zﬁ (2,2)

_1TQrQ

- 2 F(E.‘_g) .......... (1)
If we put g=1in (1), we get
[(sin6)»-1 df = 112D ?)
0 2 F(§+%) ...........
If we put p=q in (1), we get
z 1 (r®)’
sin 0)P~1 (cos B)P"1dO ==
[REDICD T
s P 2
1 F noy-126a0 = (2)
21 ) (5n®) ~20(p)
Putting 26 = ¢ , we get
1 (2 (r<§))2
in@)-1 = 27/
219—1,[; (sin0)P~™* pdo ()
2 (2 (r<§))2
in@)-1 = 27/
Zp‘lj; (sin8)P~" pdo ()
Using equation (2), we get
i e
+1,
zp—lr(pT) I'(p)
p p+1\ _ Vm
FOr(E) =510 e 3)
Putting p=2n, we have
PO (n+3) = 25 T@R) e, 4)
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Putn =

r@rE) =L vz

4

Example 1:
1 1\"
Evaluate [, x™ (log;) dx
Solution:
1
Put log; =t
= et =1
X

=x=e!
dx = —e~tdt
When x =0, t=Ilogoo =

x=1, t=logl=0
fol x™ (logi)n dx = fo(:( e Ot (—e~tdt)
= — [ emmt=tendy
= — [0 e~(m+Digngy

- foooe_(m+1)ttndt

_ -y - v
Puttm+Dt=y = t=-— = dt—1+m

y

When, t=0,y =0

- ER) e
= e
0 \1+m 1+m
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_(®_y" —y dy

= e
0 (1+m)n 1+m

= [ Le‘ydy

0 (1+m)n+1
_ 1 f°° n o=y
T Qemyntido Y€ T4V

fol x™ (logi)n dx=———T(n+1).

(1+myn 1
Example 2:

Evaluate f,” e ™ dx
Solution:

I = foooe‘xzdx

Putx? =t = 2xdx = dt

dt
=>X—\/E =>dJC—2—\/E

X=0, t=o00
— [(®,-t 4t
= et

© = _
:fot tz

=3
2
Example 3:

Evaluate i) fol x7 (1 —x)%dx
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ii) JZsin 6 cos® 6 d
i) [ sin'® 6 d6

iv) [?Vtan 6 d§
Solution:
[ x7 (1 —x)%dx = B(7 + 1,8 + 1)

= pB(8,9)

_rere
T T(849)

7'8!

16!
i) JZsin” 6 cos® 6 db

Jgsin” 6 cos® 0 df = %,8(4,3)

EESYONE)
T2 T(4+3)

13120
T2 6!

1
T 2x60

1
120

T

P 1
[2sin” 6 cos® 6 df = —
0 120

iii) [2sin’® 6 d6 = [2sin'® 6 cos® 6 df

1 11 1
11,1
_1TEIR)

-7 11 1
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9.7 5.3 1
1_XEXEXEXEF( )F( )

2 I'(6)

_ 9X7X5X3X1IXVIXVm
- 2651
631

512

6371'
512

f sin’® 0 do =

|v)f \/taTdB—f sin 0
- fog(sin 6)z d6 (cos 0)2d6
= fog(Sin 9)2(2_1) do (cos 0)26_1)d0
=3AGD

_1TQrQ
2 TC+3)

_1TQrQ
T2 T
1 1 1
=5 TA=)IE)

T

. TT
2 sin—
4

Sl

Example 4:
Express folxm(l—x”)pdx in terms of Gamma functions and evaluate the integral
f01x5(1 — x3)10dx

Solution:

1
Putx"=y = x=yn

nx™" ldx = dy

Where x =0toy =0

lyn(l y)”
e (=

N D™ (1 = y)P
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=%f§ym () a -y
-f y n (1 —y)Pdy

_'B(m n+1 +1)

m-n+i+n
1 T Y P (p+1)

n F(m n+1+n+p+1)

1T(EDT(p+)

Tl F(T+p+ 1)

rEhrao+ 1

1
j x°(1—x3)0dx = =
0 Srét v+

_ 1T@rai

3 I(13)
_ 1 _1xr(11)
T 312x110(11)
—_1
" 396
Example 5:
~19sin2"" 149 B(mn)
2 =
Prove that f (ac0520+bsm20)m+n 2ampn
Solution:
T . s .
2 cos’™1gsin®"~1g 4 fz cos?™19sin?*1¢9 10
o (acos?6 + bsin2g)m+n o COS?M*TZIng(gq + btan2@)m*n

tanf =t 0=0=>t=0

sec?0do = dt 0=§:>t=oo 9 _ gt

cos260

T

_.f (sm@)zn ! do
~ J, \cos® cos?6(a + btan?0)m+n

_f (£)2n1 dat

(a+bt2)m+n
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Vbt = \Jay

Vbdt = %(ay)_%ady

ady
2vay

2n—-1
ay
dt _f°° ( b> ady
0

J, O (a+ a2y

B) L

- fo amn(14y)ymn

2vByay L
_ 1 (> - dy
T opngmtn fo (y)n ! (1+y)m+n
_ Bmn)
2a™mpn

Exercises Problem:

Problem 1:

Show that T (n + %) _ 1.3.5.........1.1..(2n—1)\/E

Solution:

N
| T
-
N——
VY
N
|
w
N——
N |0
N W
!
N\
N | W
P —

()82

2n—-1)(2n-3)...5x3x1
_(n )(nzn) X3X X\/E

N |0
N W
N |-
v
N |-
N—
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Problem 2:

Show that 1.3.5. e (2n-1) _ F(n%)
2.4.6...2n I(n+1)

Solution:

r(n+§) =r(n+§—1)r(n+§—2) %%r(

2n—1)(2n—-3)..5x3x1
=( )( zn) X\/E

1) _ 1X3X5.e x(2n—-1)
r (n + 2) - v

Tn+D=m+1-1Dn+1-2)..21
Im+1D)=mn)(n-1)..21

r (n + %) 135 - VT

rn+1) 2*[(m)(n-1)..2.1]

r (n + %) 135 2n—DVE

Tn+1) 24.6..2n
Problem 3:

Show that 2®4+D _ Bla+ip) _ F@.a)
a p p+q

Solution:

Pp.g+1) 1T@Ir(g+1)
q qTfp+q+1)

_ 1 T®.9r@
q(p+q).T'(p+q)

Bat+) _  T®.I@)
q (p+q)I'(p+q)

pla+1p) 1T+ DHI'(q)
14 pTp+q+1)

_1 pI®.I'q)
p+q).T'(v+q)
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B(q+1,p) I'(p).I'(q)
= ... 2)
p (p+q)I'(r+aq)

Fa) _ _T®I@ (3)
p+q +q)Tp+q) 7

: Bwq+1) _ B(q+1lp) _ B(®.9)
From (1), (2 n = =
om (1), (2) & (3) equatio p . o

Problem 4:

Evaluate the integrals f,~ e~*"dx

Solution:
Putx3 =y
3x%dx = dy
dy= =¥ _

X =T T2
R

d
dx=—y2

3y3
When x = 0, y=20
X=00, y=o

2

© _,3 (% _ydy 1,00 _Z _

Joe¥dx=[er==C[ y3eVdy
3y3

fooo e’ dx =T (g)

Problem 5:
. 1 dx
Evaluate the integral [ ——
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Solution:

We have, B(m,n) = f01 x™ (1 —x)" ldx

Put x3 =1y
3x2dx = dy
dy dy dy
dx = Iz N
Py
d
dx = _yz
3y3

Whenx =0,y =0

x=1,y=1

1 d 1 -
f0ﬁ=f0 (1 —x3)2dx

1 la
=[,A-»N"2%
3y3

101 _z 2z
=3J, (A=) 3y sdy
1 14 142
=, (1 -y ty T ady
1 11
=218 G5)]

_1TQrQ
3 TG+3)

_ 1TQWE
3 T

R _ VAT
0 vVi—x3 3 r(g)'

Problem 6:

Show that f2 Vsinf d6 fon/z \/1_ do =m

sinf
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Solution:
We know that, fog(sina)zm‘1 (cos@)?"~1do = %,B(m, n)
Now, f:/z Vsinfdo = f:/z(sinH)%dO

= fog(sine)z(z)_1 (COSQ)Z(%)_ldQ

=38G.)

fEvsmado =10 1) ()

Vs s

2 1 2 1
.[ do =f (sinB) 2do
0 0

sin@
L 1 1
= [2(sin8)*P ™" (cos6)*P'do

=BG

From (1) & (2) equation,

z n 13\p(1) (Yt
L.H.S foz‘/SinH do [ S:ne do =2 £42 S )* 2( (4)3 (2))

=rGri)

=Vmr
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ST
Uy

Vsinf d@j
o Vsinf

O —— uin

Problem 7:

b ox2dx L dx s
el et
o (1-2)7 Yo (1-x%)2

Solution:

Let x2 = sinf, y? = tanf

b x2dx sinfcosO 1
j 1= f T 19
o (1—x)2 0 (1—sin%28)z 2sinz@

B

/2  sinBcosl

— db
c0s6.2(sin0)z0

fl x%dx

n 1
I = [2(sing)z df
-0z 2

[Whenx =0=26=0, x=1=60 =mn/2]

=1 f:(sine)z(z)_l .(cos@)z(%)_lde

T2

1 31
= 2*2'8 (Z’E)
_1r@rR)
)
1 x2dx 1FG F(%)
=1 ]
it 4 () 5

Putx =y=dx =dy

Whenx=0=>y=0andx=1=>y=1
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b dx 1 dx 1 1
f lzf 1=f(1_y4) 2dy
°(1—-x%2 o (1-yHz o

Put y2 = tanf ,2y dy = sec? 0 d@ ,
Wheny=0=>9=0andy=1:0=%

/4
1 sec? 0

1
] —_— j (1 —tan?6) 2 de
1- 4)2 0 2 tan2 0

1

= [*(sec? 0) ™2 C“iede

26 sinz2@

1

3
= fon/4 cosO cos z0sin 26 do

1 1
= %% :/4 cos z20sin 26d0
1 1
= ifon/‘} sinz(Z)_1 ] cosZ(Z)_1 0 de

11 11

=138CD)

1 x%2dx (1 dx 1 1
© ez a4 G) BTG
=1r (3) r (l)
8 \4 4
\V2m
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Problem 8:

o gmin

Deduce from g(m,n) = |

0 (1+x)min

Solution:

X
Letx—(1+y)=>y—a

3 y _(A+y)1-y1
dx_d((1+y)>_ (1+y)?

dy

dx = (1+y)?

Whenx=0=>y=0andx=1=>y =00

f(m,n) = folx(m‘l)(l —x)" tdx

- J (1 Ji]y)>m_1 (1 1 iy)n_l (1 iyy)z

0o ym—l
=| ————d
0 (1 +_y)nr+n y

o xMm-1
B(m’ n) = fo (1+x)m+n dx

Exercises:

1

1. Show that f:%:Eﬁ (n+%' %)

dx
Vi-xm

2. Evaluate the integrals fol

3. Evaluate the integral fooo e dx

4. show that [ 1’:;2 dx = gsec?
x2 _ 5my2

5. Showthat [

X =
0 (1+x%)3 128
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4.6. Applications of Gamma Functions to Multiple Integrals:

Example 1:

Evaluate the integral [ x? y? dy dx over the triangle x>0, y>0, x + y < 1 in terms of Gamma

functions.
[ xP y2 dy dx over the triangle OAB, where OA and OB are the intercepts on the axes.

1 q+111-%
=] xP Iy l dx
0 q+1];

1

1
= m xP (1 — X)q+1 dx
0

1
=mﬁ(p+1,Q+2)

1 T'(p+DI(q+2)
g+1 T@p+q+3)

T+ DI(g+1)
 T(p+q+3)

Example 2:

Evaluate the integral [f x? y9 dx dy over the positive quadrant of the circle x? + y? = a? in
terms of Gamma functions. Deduce (i) the area of the circle, and (ii) the co-ordinate of the

centroid of a quadrant of the circle.
Solution:

The quadrant of the circle is given by the equations

xZO,yZO,(§)2+<Z)2S1

a
Hence put (5) - Xz (Z) — vz
p a - a -
Then the required integral becomes
1\P 19 -1 -1
If (aXE) (aYE) % aXT.%aY7 dx dy

101

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



abP+a+2 p-1

e, —— [[X 2 y'7 ax ar

overtheregionx >20,y>0,X+Y <1

Hence its value is

arrarz T EE L@t

(i) Area of the circle is 4 [[ dx dy over the region
x=0,y=>0x%+y? <a?

In this case p=0, g=0.

1 1
Area of the circle= 4.% r@r@
: @

= ma?.

(ii) Let (x ,y) be the co-ordinates of the centroid of the quadrant of the circle.

X = % , both the integrals being taken over the region x > 0,y = 0,x% + y? < a?
In the integral [f x? y9 dx dy if we put =1, g=0, we get the numerator.

1
Numerator= 2 2~ G)

+ 1)
_ @ 1im
v i
a3
T3
a3
_ 3 _4a
x—1 —g
Zﬂa2

Similarly y = :—Z.

Hence the centroid is (4—a,4—a)

3m 31
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Example 3:

Evaluate in terms of Gamma functions the integral [[ x? y4 z" dx dy dz taken over the volume
of the tetrahedron givenby x >0,y >0,z>0and X+Y +Z <1.

Solution:

The given integral= fol fol_x fol_x_yxpyq z"dx dy dz

]111—x LTy
= xPyd I l dx dy
o Jo r+1 o

1
r+1

1 r1—x
f f xPy? (1 —x —y)*ldx dy
0o Jo

The area over which the integration to be carried is triangle AOB
ie,x=>0,y>0, X+Y <1.
Letx+y=u,y=uv

e, x=u(l—v),y=uv

.a(x,y): 1-v v|:u
T o(u,v) -u u

~dxdy=ududv

When x=0, u(1 —v) = 0,i.e.,u =00rv=1
Wheny=0, uv =0,i.e,u=00rv =0
Whenx+y=1,u=1

Hence the triangle AOB transforms into the area between
u=0,u=1v=0,v=1Iintheuv lane.

Hence the given integral is

B 1
Tr+1

f f uP(1 —v)P(ur)? (1 —w)tududv
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1 1 1 kol "
= f f uPtatlpd (1 —u)™1(1 — v)? du dv
0

r+1)J,

1 1

1

=———037F1 | uPt9*i (1 —uw)"du f v (1—-v)?dv

r+1)J,

r+1

0

Bp+q+2,7r+2)B(g+1,p+1)

1 T(p+q+2)Tr+2)I(q+ DI'(q+ 1)

r+1

Alter: Putx + y + z = u,y + z = uv, z = uvw. The integral can be evaluated directly.

Example 4:

Prove that [f[

(1-x2-y%-z%)2

dx dy dz

p+q+r+4)

variables for which the expression is real.

Solution:

Putting x? = X,y? =Y, z? = Z, the integral reduces to = fff

[where X,Y,Z are positive subject to X+Y+Z< 1]

1 ~1
=%f0X2de

1 0172 1-X
=§f0X2de0

-1 E
Yz dy [?2d9

Zz 1-X-Y- Z)_EdZ

[ by putting Z= (1 — X — Y — Z)sin?0 ]

1,2 1
= [, X7 (1= X)2dx

56

i @r )

4 T (2)

-z Q) =%

(1XYZ)

— , the integration extended to all positive values of the
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UNIT-V

Geometric and Physical Applications of Integral calculus
Chapter 5: Sections 5.1- 5.4 & Chapter 6: Sections 6.1- 6.5
5.GEOMETRICAL APPLICATIONS OF INTEGRATION
5.1. Areas under plane curves: Cartesian co-ordinates.

We shall find a formula for the area bounded by the arc of the curve y = f(x), the ordinates

X = a, X = b and the portion of the x-axis between them.

Y

Figure 5.1

For definiteness, let us suppose that a < b. in the figure, the graph of y = f(x) is LPQM.
Let OA = aand OB = b. then the ordinates AL and BM are y = f(a) and y = f(b) respectively.
We shall prove that the area bounded by the arc LM, the ordinates AL and BM and the portions

AB of the x-axis is fab f(x)dx.

Let P be any point (X, y) on the curve and Q a neighbouring point (x + Ax,y + Ay) on it. Draw
the ordinates PC and QD and draw PR and QS perpendicular to QD and CP respectively.

Let A represent the area bounded by the arc LP, the ordinates AL, CP and the portion AC of
the x-axis. Then the area ALQD can be represented A + AA so that the area CPQD is AA. From
the figure, it can be seen that the area CPQD is greater than the inner rectangle CPRD and is

less than the outer rectangle CSQD.
Rectangle CPRD = CP. CD =y Ax and
Rectangle CSQD = DQ. CD = (y + Ay)Ax.

~ AA > y Ax but < (y + Ay)Ax.
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AA
:'y<E< (y+Ay)
Proceeding to the limit when Ax — 0.

i—A—>—andy+Ay—>y

z—‘: lies between y and a quantity which tends to y in the imit.
dA

Hence — =y.

~ A = [ydx + C, where C is the constant of integration,

ie.,A= ff(x)dx + C.

Let us denote [ f(x)dx by F(x), then A = F(x) + C.
When x =a, A =0 as A is, by definition, area ALPC.
~0=F@+C ... (1)

When x = b, A = area ALMP which is sought.

=~ The required area ALMP =F(b) + C

= F(b) — F(a) on substituting for C from (1) =[F(x)] . b f f(x)dx.

Figure 5.2

Note:

) There is a point in the above proof which deserves our notice. In the curve we have
drawn, y increases with X. If y decreases as X increases, as in the figure above, the
same formula for the area holds good.

With the same notation, we find here that
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AA < yAx and > (y + Ay)Ax.
s yAx > AA > (y + Ay)Ax.

AA
Y>> (y+Ay).
These inequalities are reversed in the case of an increasing function. But, in the
limit, when Ax — 0, j—i = y and the rest of the proof is the same as before.

Whether y increases or decreases with x, the above formula holds good.

i) One other point also deserves special mention. When part of the area is below the
x-axis, the corresponding ordinates are negative and Ax being taken to be positive,
the area will be negative.

iii) The formula for the area under a curve, the y-axis and the line
y=cy=dis fcd xdy by a similar argument.
Example 1:
Find the area bounded by the curve y? = 4ax, the x-axis and the ordinate x = h.
Solution:

The curve is the parabola which, we know, passes through the origin. The limits for the area

in question are 0 and h.

Hence the required area is

h
4 3\h 4hvah
2f Vdaxdx = ﬁ(){f) = 4
0 3 0 3

(The area bounded by the above parabola and the double ordinate x = h is twice the above

area by symmetry).

Example 2:

Find the area bounded by one arch of the curve y = sin ax and the x-axis.
Solution:

The curve crosses the x-axis when x = 0 and %“ where n is a positive or negative integer. The

limits for one arch are 0 and g Hence the area is
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L 1 it 1 1 2
J@sinaxdx = —~(cosax)a = —;{cosa(g) —cosa( 0)} = —;(—1—1) ==

Example 3:

Find the area bounded by one arch of the cycloid

x = a(B —sin0);y = a(1 — cos 0) and its base.

Solution:

As the point P describes one arch, the parameter 8 varies from 0 to 2.

2T dX

~ Arearequired = f
0
21
= f a(l —cosB)a(l —cosH)do
0

21 21
= a2 f (1 —cos0)?d6 = azf (1 —2cosO + cos?0)do
0 0

2m 1+ cos 20 2m . 2m
=azf (1+—>d6asf cos 0 dO = [sin 0] 0 =0
0 0

2
2m sin 207 2m
= 3ma? as f cos 206d6 = [ =0

o 2 1o

Example 4:
- 2 _ 2 a+x

Find the area of loop of the curve y* = x (;)
Solution:

The limits for the loop are —a and 0.
As the curve is symmetrical about the x-axis,

the area of the loop = twice the area of the loop above the x-axis

=2 fo_l ydx = 2 fo_ax <a+x) dx.

a—x

To integrate, put x = acos 20
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The integral reduces to —2 f# a? cos 26% sin 26d6

4

T

2
= —4a2L cos 20 cos? 6dO

4

ST

= —2a? jﬂ cos 20(1 + cos 20)d6

4

T
2

= —azjﬂ (2cos 28 + 1 + cos46)do
4

_ 2[_ 29+9+Sin4e /2
= —a“ |sin R
U g
—_2|=_1_2
=—a’7-1-4]

-2 (1-5)

Hence the area required is 2a? (1 — E)

5.2.Area of a closed curve:
Let AL and BM be the tangents to the closed curve parallel to the y-axis. Let an intermediate

ordinate meet the curve in two points Py and P2, where Py is (X, y1) and P2 is (X, y2). Let  y1

> y». Denoting the OL and OM by a and b respectively, area LAP:BM = f: yi1dx and area

LAP.BM = f; y,dx. By subtraction, we get the area of the closed curve to be f: (y1 — y2)dx.

Figure 5.3
The integral gives the area whether the x-axis cuts the curve or not. The values y1 and y»

corresponding to any value of x are found by solving the equation of the curve as a quadratic

iny.
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Example 1:

Find the area of the ellipse x? + 4y? —6x +8y +9 =10
Solution:

Writing this as a quadratic in 'y,

4y2 +8y+x2—6x+9=0

If y1and y- be the roots,

x?2—6x+9
y1t+y, =—2and y,y, =T

Hence y, — y, = \/(}/1 + }’2)2 —4y1y,

=4 - (x2—6x+9)

—Jox—x3—5
=/ =0)(x-5)

The two values y; and y» are equal when x =1 and x = 5.

These are the abscissae of the points at which the tangents are parallel to the y-axis.

Hence the area of the ellipse = fls(y1 —vy,)dx

/2

5
= f (VA=) (x=5))dx = 32f sin? @ cos? 6d6
1 0

(on putting x = sin? 6 + 5 cos? 6;dx = —8sin 6 cos Hd0)

N /1 /T
=32(3)(3) (5) = 2n
In some cases, two or more curves form the contour of an area. To find this, we must draw the

curves and find the limits by solving for their points of intersection. The method is best

exemplified by the following example.
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Example 1:

Find the area bounded by the parabolas y?> = 4ax and x*> = 4by

Solution:

Figure 5.4

y? = 4ax has Ox as its axis and x? = 4by has Oy as its axis. To find the abscissae of their

points of intersection, eliminate y between the equations. We get x* = 16b2. 4ax. Hence x =

1 2 1 2
0 or 4asbz; x = 0 corresponds to O the origin. x = 4azbs corresponds to A the other point of

intersection.

Area required = Area OBAL — Area OCAL.

1
3

Area OBAL = f:a "? ydx where y? = 4ax

win

12
4a3b3

b
= 2v/a Vaxdx
0

1 2

4x/5[ g] 4a3b3
= ——-x3

3 0

32

::7§-ab

12
1, 4a3b3 16

=— x%dx = —|[x =—ab

4b J, 12b 0 3

. 32 16 16
=~ The required area > ab — Y ab = 5 ab
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Example 2:
Find the area enclosed between the parabola y = x? and the straight line 2x —y + 3 = 0.

Solution:

Figure 5.5
The straight line cuts off intercepts — 23 and 3 from the axes and its graph is drawn. Let it cut
the parabola at two points.

The abscissae of these points, viz.,, OD and OE are got by eliminating y between the two
equations and solving the resulting quadratic. From the straight line equation, y = 2x + 3.

Putting this in y = x2, we have x? = 2x + 3, i.e., x? — 2x — 3 = 0.

~x=30r—1.Hence OD=3and OE =-1

Area required = f_31(3/1 — v,)dx, where y1 is the ordinate of the straight line corresponding to
X, i.e., y; = 2x + 3 and y- the ordinate y = x?2,
ie,y, =x?

X

3
Hence the area = f_31(2x +3 —x%)dx = (xZ +3x — ?) _31

=949-9 (1 3+1>—102
N 3/ 3

5.3. Areas in polar co-ordinates.

We propose to find a formula for the area bounded by the curve whose polar equation is

r = £(8) and two radii vectors OA and OB. Let XOA and XOB be respectively o and p.

Let P be a point (r, 8) on the curve and P’ a neighboring point (r + Ar,0 + Af) on it. If we
denote the area AOP by A, then the area denoted by AOP’ is A + AA so that area POP’ is AA.
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Let the circle centre O and radius OP and OP’ at M and the circle centre O and radius OP’ cut

OP produced at N.

Area POP’ lies between the areas of the circular sectors OPM and OP’N,
ie. %rer and % (r + Ar)2A6.
%(r + A1)2A0 > AA > %rer

Dividing by A6 and proceesing to the limit as A8 — 0, we have Z—'; = %rz

Figure 5.6

1 1
-'-A=Efr2d6+C=F(0)+thereF(0) =§fr2d9

Putting = a,A=0. ~0=F(a)+C .......(0)
Putting 6 = a,A = area OAB=F(B)+C .......... (i)

By subtraction, area OAB = F() — F(a)

B
_ro)” ;f 2dg

a 2
Example 1:
Find the area of the cardioid r = a(1 + cos 6).

Solution:

Since the curve is symmetrical about the initial line, the area

1
=2f —1r2d6
0 2
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T
= azf (1+ cos 0)%de
0
T
0
= 4azj cos*—=do
0 2

= 8a® [?cos* p dy (on putting g = @)

-5 (3)(5) )

Example 2:

Find the entire area of the lemniscate of Bernoulli 72 = a? cos 26

Solution:

The area consists of two loops and each loop is symmetrical about the initial line.

The area required = 4 x the area of one-half loop of the curve above the initial line.

s T

T

71 4 4

:4f —rzdezzazf cos 20 = a?(sin20) 4 = a?
0 2 0 0

5.4.Approximate Integration:

We now give two rules for evaluating f; f(x) dx approximately. These are useful when

integration is impossible in terms of known functions.

5.4.1 Trapezoidal Rule:

The exact value of f; f(x)dx gives the measure of the area bounded by the curve y = f(x),

X = a, X = b and portion of the x-axis. We shall dissect this area into trapezoids and by adding

their areas, evaluate the total area approximately.

Divide the segment b —a on Ox into n equal parts, each of length Ax. Let us denote the abscissae

of the successive points of division by
xXo(= @), x4, %5, e, Xxn(= b).
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0 Q b X
Figure 5.7

Let the corresponding ordinates be

Yo =f(xo)»y1 =f(x1)'"-"yn =f(xn)

=~ By joining the extremities of consecutive ordinates, we form trapezoids. As the area of the

trapezium is one-half the product of the sum of the parallel sides and the altitude, we get

Area of the first trapezium = %(y0 + y1)Ax,

Area of the second trapezium = % (y1 + y2)Ax,

Area of the last (n™) trapezium = i(yn_1 + y)Ax.

Adding, the sum of the trapezoids = Ax EYO +yi+y,+ ety + %yn}

This expression is an approximation to the required area.

Example 1:
Calculate |, 16x2dx by the trapezoidal rule.

Solution:

We shall, for illustration, divide the interval (1, 6) into five equal parts each of length 1.

o Ax =21 =1,
5

When x =1, 2, 3, 4, 5, 6 the corresponding ordinates y are 1, 4, 9, 16, 25, 36 as y = x°.

By the trapezoidal rule, the area
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1 1
=(§.1+4+9+16+25+§.36>.1=72.5

3
The exact area = ffxzdx = [x?] °= 712.

Hence the error in the approximation is roughly 1 percent.
5.4.2. Simpson’s Rule:

A closer approximation to the area than the trapezoidal rule is furnished by what is known as
Simpson’s rule. Here we join the extremities of successive ordinates by arcs of parabola and

sum up the areas under these arcs.

Let the three points A, B, C on the given curve have ordinates y,, y,, y; whose abscissae are
—h, 0, h respectively. Let us take h to be small. If we pass a parabola through these points with
its axis parallel to the y-axis, its equation is of the form y = a + bx + cx?. The values of a, b,

c are determined by expressing that A(—h,y,), B(0,y,)and C(h, y5) lie on the curve.
~y; =a—bh+ch%y,=a,y; =a+bh+ch?.......(0)

The area bounded by this parabola, the portion of the x-axis and the ordinates x = +h is

L o ™
(-h,0) (h.0)

Figure 5.8
fh( + bx + cx?)dx = +bx2+cx3 th
i a X CcX X =|ax > 3 _h

ch3 2h
=2 ah+T =?(3a+ch2)

From (1), y; + y3 = 2(a + ch?)

Y1 +4y, +y3 = 6a+ 2ch? = 2(3a + ch?)
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Hence the area under the parabolic arc

h
= 3 (y1 + 4y, + y3) ........... (2)

This area is a close approximation to the area ALMC.

Let us take an odd number, i.e., 2n + 1 equidistant ordinates of the given curve and let the

successive ordinates be denoted by vy, 5, ..., Van+1
The area under a parabolic arc passing through extremities of the ordinates
Y1, Y, and yz = 2(3’1 + 4y, + y3) by equation (2)
Similarly, the area under a parabolic arc passing through the extremities of the ordinates

h
Y3, Ya¥s =5 (V2 + 4¥s + ys) and so on.

The total area under several parabolic arcs so drawn,

h
= §{()’1 +4y, +y3) + (3 + 4y, +ys) + -+ ()’(2n—1) + 4yon + Y(2n+1))}

h
= §{y1 +Yonsn + 25 + s+ Vanoy) F 402 + yu + o+ V20 }

Thus Simpson’s rule is: To find an approximate value of the area under a given curve, divide
it into an even number of strips by equidistant ordinates. Multiply one-third the distance
between two consecutive ordinates by the sum of the first, the last, twice the sum of the other

odd ordinates and four times the sum of all the even ordinates.

If the curve crosses the x-axis at one or both ends of the required area, one or both of the

extreme ordinates must be taken as zero.

Example

xdx .
by Simpson’s rule.
1+x2 y p

Compute [ 08

Solution:

We shall divide the range 0 to 8 into eight equal intervals. Corresponding to the abscissae 0, 1,

x
1+x2

...., 8, the values of the ordinates are got from the equation y = and they are
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'2'5'10'17°26'37'50 g5

By Simpson’s rule, the area

0 ) 2 4 6 4 1 3 5 7
2[ + + (5+17+37>+ <2+10+26+50)]

th»A

[0.1231 + 1.5950 + 4.5392] = 2.0824

xdx

By actual mtegratlonf — %[loge(1+x2)]g

1 1
Eloge 65 = E{loglo 65 xlog,10} = 2.086

This error in using Simpson’s rule here is 0.2 percent.
6.PHYSICAL APPLICATIONS OF INTEGRATION
6.1. Centroid:

Let a system of particles of masses m;, m,, ... be situated at points whose co-ordinates are

(x1,v1), (x3,v5,), ..., with reference to fixed axes. The point whose co-ordinates are (x,y) given

rmx — _ymy .

by the equations x = sm Y = T

is called the center of mass of the system.

If instead of a finite number of particles, we have a continuous distribution of matter, as in the
case of a lamina or a rigid body, the summations in the above formulae become definite
integrals. Thus the centre of mass of the body of mass M is given by the equations Mx =
[ xdm and My = [ ydm, where dm is an element of mass of the body concentrated at the point
(%, y). If the lamina or the body be of uniform density, the centre of mass is known as the

centroid.
6.2. Centre of mass of an arc:

Let P be any point (X, y) of a plane arc, whose actual distance from a fixed point on the curve

is s, and p be the line density (i.e., mass per unit length of the curve) at P and let PQ be an

[ pds x

elementary arc ds. Then P (X, y). the formulae for the centre of mass of the arc are x = [ ods

N[ R

2
and % = L2% petween suitable limits. ds is given by the formula ds = {1 + (d—y) } dx in
[ pds dx
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5 1
Cartesian co-ordinates and ds = {(3—2’) + rz}z d@ in polar co-ordinates. When the equation of

the curve is given, —or can be calculated as the case may be. If the arc be uniform, p is a

[ xds andy=fyds

constant and the centroid of the arc is given by x = .
[ds [ds

Example 1:
Find the centroid of the arc of the parabola y? = 4ax between the vertex and the point (x, y).

Solution:

Here yZ—z = 2a.

- ds {H(g)z}

4a2%
dx=<1+?> dX
1
X + a\z
=( )dx
X

f;cxds [F Jx(x+a)dx

—  [yyas [*Jx+a)dx
= 2o Jo Y45 Jo VIXFTA)AX
Fas . andy = (Fas = 2Va .

N =

Hence x =

Q) The denominator is

1Y
1%]

=.,x(x+a)+alog \/ﬂT “;Ha) on putting y? = 4ax.

1
1a [y 4a2 + y2 + 4a?sin

(ii) f x(x + a)dx = fox {(x +%)2 —%2} da

= a—zfe sinh? 6 d6 on putting x + > = ~cosh 6;

sinh 260
-0)

=—f (cosh20 —1)do = 8( >

a2
=3 (sinh 8 cosh 8 — 0)

1
2

=3+ D6 -5 oo

+
N

N
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=K

L a
1 2 x+5+Vx?+ax
=—(x+g)\/x2+ax—a—log 2

2 2 8

N

3 3
(i) Jy Vx+ady=2[Cx+a)2 - a2
Substituting these values of the integrals, x and y are got.

6.3. Centre of mass of a plane area:

Let 54 be an element of area surrounding or at the point (x, y) and p be the density at the point.

The element of mass dm = pdA and the formulae for the center of mass take the form

— _ Jpdax

X and y = {224y (2)

[ paa Tpda
If the area be of uniform density, let the ordinate at distance x cut the curve in points whose
ordinates are y, and y,. Now dA can be taken as (y; — y,)dx, whose center of mass has co-
ordinates x and yl:—yz in the limit when 8x — 0. Hence

Y = fx(yl;yZ)dx d T = I(Y1_yz)(le+yz)dx
J1-y2)dx J1—y2)dx

From the equation of the curve, the values of y, and y, are known and the limits for x are

such as to cover the area in question.

If the area be bounded by the arc y = f(x), the ordinates x = a and x = b and the portion of the
x-axis, then dA = ydx

And this acts (x, %) Hence the centroid is given by

b b

— [ xydx — [ xydx

X =" and x = 4,— ... (3)
J, yax J, yax

If polar co-ordinates be employed and the area be uniform dA can be taken to be almost a

triangle and equal to %rzde. Its center of mass is the median point of this triangle practically,

i.e., the point whose polar co-ordinates are (gr 0) in the limit when 66 — 0.

Hence the centroid of the area is given by
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1 ;
[r3cos0do — f‘ ng( )7”5”19 2 [r3sin0do
andy T ==
[r2de J5r2ae 3  [r2de

1 2
7= f?"zde(g)rcose _2
[ir2q0 3
2

Where the equation of the curve r = f(8) is known and the limits for 6 to cover the area

required are determined in any problem.
Example 1:
Find the centroid of an elliptic quadrant.

Solution:

The equation of ellipse i |s — + = =1.

Using the formulae (3) above,

a
_ d . : _
X = f;;;ydxx as x varies from 0 to a in the elliptic quadrant
0
L
2
foa xb (1 — z—z) dx
= 1
2

a x?2
fO b (1 — ?) dx
Putting x = asin 6 and dx = acos 8 d6 in both the numerator and denominator.

1

__ fzsmﬁcoszede _ [g]
T

fZ cos2 0 do 7

" 31

By symmetry, y = %
Corollary:

The centroid of a circular quadrant is (:—Z g)

Example 2:

Find the centroid of the arc and sector of a circle.
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Figure 6.1
Solution:

Let the arc AB of a circle subtend an angle 2« radians at its center O and let OC be the radius

bisecting the arc. By symmetry, the centre of the arc lies on OC.

Taking OC as the x-axis, let P be any point (X, y) on the arc and let COP be 6 and arc CP be

S.
Then x = acos ® and s = ad.

Hence, for the arc,

f xds f_-:l acos 0 adf sina
d = +a =a
s [ ado a

X =

For the sector AOB, the centroid lies on OC by symmetry. The element of area is %rzde

__.[-+a1 2d6(2> 0_2 sina
X = 5a 3)acos 0 = za—

—-a

Corollary: Putting a = % the centroids of a semi-circular arc and area lie on the middle

. . 2 4
radius at distances ;a and ﬁ from the center.

Example 3:

Find the centroid of the arc enclosed by the cycloid x = a(6 — sin ),y = a(1 — cos 8) and

the x-axis from cusp to cusp.
Solution:

The cusps correspondto 8 = 0 and 6 = 2.
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As the cycloid is symmetrical about the line x = m the centroid lies on the line of symmetry.

Hence x = am and y need only be evaluated.

From (3) of 1.3.

yz 21
J5dx a [[7(1—cos6)do
[ydx 2 .fozn(l — cos 0)2d6

y =

_a fOZHSCOSG%dH B foncos6(;bd(;b

=, =a—x
2 f02n4cos4%d9 Jy cos* ¢ do

On putting g =¢

L 511nrn
2 JZcos® pde €327 5a
a = =

T a——— —~
2 [Zcos* ¢ de

3lm 6

4°2°2

Example 4:

Find the centroid of the one loop of the lemniscate 72 = a? cos 26
Solution:

For the tracing of the curve, vide Vol .1.

By symmetry, the centroid lies on the initial line

Hence y = 0 and x need only be calculated.

From (4) of 1.3.,

V3
_ Jpr*cos0de
X="—n

T
JEr2de

as 6 varies from —% to% in a loop;
n 3
JE( — 2sin* 0)2 cos 6 db
sin20 -
{ 2 }‘5

™ 3
2a 2 [} (cos260)2cos6do 2
=3 =3¢

V3
2 [#(cos 26) db
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T
2

2V2a
= f cos* ¢ d¢p onputting V2sin6 = sin ¢
0

3

in the numerator;

6.4. Centroid of a solid of revolution:

Let the arc LM of the curve y = f(x) revolve about x-axis and generated a solid of revolution.
The element of area RSQP between the ordinates at distances x and x + Ax from O generates
the element of volume which is almost in the form of a cylinder. Hence the element of volume
is y2Ax and its centroid lies on Ox at a distance x from O, when Ax — 0. Taking the solid to

be of uniform density, dm is proportional to 7y 25zx.

P xny?dx  [°y?xdx
a a
Prydx [P y?dx
[ my "y

X = andy =0

Example:
Find the centroid of a uniform solid hemisphere.
Solution:

A hemisphere is generated by revolving the quadrant of the circle x? + y? = a? about one of

its bounding radii taken to be the x-axis.

foayzxdx foa(a2 —x)dx
f:yde foa(a2 — x2)dx
x?\  «x*
(&)%) s
= 3 = — obviouslyy =0
e )
30

6.5. Centroid of surface of revolution:

asy? = a? — x?

X =

By revolving arc LM (fig 10) about the x-axis, we get a surface of revolution. The elementary
area dS generated by the revolution of the arc RS about the x-axis is 2myds and this almost a
frustum of a cone. Its centroid lies on the x-axis at distance x from the origin, when Ax — 0.

Taking the surface to be of uniform density, dm is proportional to 2ryds.
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— 2myds. d
Hence, x = {2mydsx _ Jyxds
[2myds [ yds

andy =0

The limits are to be fixed suitably in each case by drawing the figure of the generator curve.
1
2

ds = 1+(dy)2 dx or ds = 2+(dr)2 do
S = dx X 0or as = 5r d@

is used according as Cartesian or polar co-ordinates are employed.

1
2

Example 1:
Find the centroid of a hollow hemisphere.
Solution:

A hollow hemisphere is generated by revolving the arc AB of a quadrant of a circle about Ox.
(fig 11 of ex.1)

Arc AP =s=af and y = asin 6 ; x = acos 8 and from A to B, 8 varies from 0 to %

s
[ yds.x JZcosOsinfdo

xX = = a.
[ vds z .
JZsin6do
sin2 9%
M _
= qQq—Fx=-
[~ cos 6]% 2
Evidently, y =0
Example 2:

Find the centroid of the surface generated by revolving the cardioid » = a(1 + cos 8) about

the initial line.

Solution:
ds = 2 acos (9> d6 (ex.4 of b)

2

[yds.x f:rz sin@cos@cos%d@

X =

[ yds fonrsinecos%de
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asx =rcosfandy =rsinf

2
T . 0
Jo (1 + cos 6) sin 6 cos 5 do

f:(l + cos 0)*sin 6 cos 0 cos% da
a

on substituting r = a(1 + cos 0)

f: congsin%(Zcoszg— 1) de
= 2a

o 0.0
Jy cos*=sin>de

0 0
ascos 0 = 200525— 1 andsin® = ZSinzcosz

. -0
72
N 251r121T

4
—gCos' 5+ —= 0

= 2a

[~geos*3]3

2
5

Example 3:

Find the centroid of a hemispherical distribution of mass in which the density varies as the

nth power of the distance from the centre.

Solution:

Dissect the solid hemisphere into a number of thin concentric shells as in the figure. Let the

radius of a typical shell ABC be x and its thickness dx. The density p of the material pf this

shell is kx™, where K is a constant.

Figure 6.2
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Hence, the element of mass dm = 2mx?dxkx™ and its center of mass is at a distance § from O
on OD, the normal at O to the plane base, as this shell may be regarded as a hollow

hemisphere of radius x. (Example.1)

=~ The centre of mass of the aggregated of the shells, i.e., the hemisphere lies on OD and its

distance x from O is given by

foa 2mx?dxkx™ (%) 1 foa x"3dx a n+3
[ 2mx2dxkx Efoaxn‘“zdx "2 n+4
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