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Chapter 1

UNIT I

1.1 Mathematical Induction

Definition 1.1.1. [Well-Ordering Principle]Every nonempty set S of nonnegative

integers contains a least element; that is, there is some integer a in S such that a ≤ b

for all b’s belonging to S.

Theorem 1.1.2. [Archimedean property] If a and b are any positive integers, then

there exists a positive integer n such that na ≥ b.

Proof. Assume that the statement of the theorem is not true, so that for some a and

b, na < b for every positive integer n, Then the set

S = {b − na : n a positive integer}

consists entirely of positive integers. By the Well−OrderingPrinciple, S will possess

a least element, say, b−ma. Note that b− (m + 1)a also lies in S, because S contains

all integers of this form. Furthermore, we have

b − (m + 1)a = (b − ma) − a < b − ma

contrary to the choice of b−ma as the smallest integer in S. This contradiction arose

out of our original assumption that the Archimedean property did not hold; hence, this

property is proven true. 2
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Theorem 1.1.3 (First Principle of Finite Induction.). Let S be a set of positive integers

with the following properties:

(a) The integer 1 belongs to S.

(b) Whenever the integer k is in S, the next integer k + 1 must also be in S.

Then S is set of all positive integers.

Proof. Let T be the set of all positive integers not in S, and assume that T is

nonempty. The Well − OrderingPrinciple tells us that T possesses a least element,

which we denote by a. Because 1 is in S, certainly a > 1, and so 0 < a − 1 < a. The

choice of a as the smallest positive integer in T implies that a − 1 is not a member

of T , or equivalently that a − 1 belongs to S. By hypothesis, S must also contain

(a − 1) + 1 = a, which contradicts the fact that a lies in T . We conclude that the set

T is empty and in consequence that S contains all the positive integers. 2

Remark 1.1.4. When giving induction proofs, we shall usually shorten the argument

by eliminating all reference to the set S, and proceed to show simply that the result

in question is true for the integer 1, and if true for the integer k is then also true for

k + 1.

Example 1.1.5. Consider the Lucas sequence

1, 3, 4, 7, 11, 18, 29, 47, 76, . . .

Except for the first two terms, each term of this sequence is the sum of the preceding

two, so that the sequence may be defined inductively by

a1 = 1

a2 = 3

an = an−1 + an−2 for alln ≥ 3

We contend that the inequality
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an < (7/4)n

holds for every positive integer n. The argument used is interesting because in the

inductive step, it is necessary to know the truth of this inequality for two successive

values of n to establish its truth for the following value.

First of all, for n = 1 and 2, we have

a1 = 1 < (7/4)1 = 7/4 and a2 = 3 < (7/4)2 = 49/16

whence the inequality in question holds in these two cases. This provides a basis for

the induction. For the induction step, choose an integer k ≥ 3 and assume that the

inequality is valid for n = 1, 2, · · · , k − 1. Then, in particular,

ak−1 < (7/4)k−1 and ak−2 < (7/4)k−2

By the way in which the Lucas sequence is formed, it follows that

ak = ak−1 + ak−2 < (7/4)k−1 + (7/4)k−2

= (7/4)k−2(7/4 + 1)

= (7/4)k−2(11/4)

< (7/4)k−2(7/4)2 = (7/4)k

Because the inequality is true for n=k whenever it is true for the integers 1, 2, . . . , k−1,

we conclude by the second induction principle that an < (7/4)n for all n ≥ 1.

1.2 The Binomial Theorem

1.2.1 Introduction

A BINOMIAL is an algebraic expression of two terms which are connected by the

operation ‘+’(or) ‘−’For example, x + 2y, x − y, x3 + 4y, a + b etc· · · are binomials.

Theorem 1.2.1 (The Binomial Theorem). For any natural number n

(x + a)n = nC0x
na0 + nC1x

n−1a1 + · · · + nCrx
n−rar + · · · + nCn−1x

1an−1 + nCnx
0an.
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Proof. We shall prove the theorem by the principle of mathematical induction.

Let P (n) denote the statement:

(x + a)n = nC0x
na0 + nC1x

n−1a1 + · · · + nCrx
n−rar + · · · + nCn−1x

1an−1 + nCnx
0an.

Step 1: Put n = 1

Then P (1) is the statement: (x + a)1 = 1C0x
1a0 + 1C1x

1−1a1

x + a = x + a

∴ P (1) is true

Step 2:Now assume that the statement be true for n = k.

(i.e.,)assume that P (k) be true.

(x + a)k = kC0x
ka0 + kC1x

k−1a1 + · · · + kCrx
k−rar +

· · · + kCnx
0ak be true. · · · (1)

Step 3:Now to prove p(k + 1) is true.

(ie.,)To prove:

(x + a)k+1 = k + 1C0x
k+1a0 + k + 1C1x

(k+1)−1a1 + · · · + k + 1Crx
(k+1)−rar + · · · +

k + 1Ck+1x
0ak+1. Consider (x + a)k+1 = (x + a)k(x + a)

= [kC0x
ka0 + kC1x

k−1a1 + kC2x
k−2a2 + · · · + kC(r−1)x

k−(r−1)a(r−1) + kCrx
k−rar

+ · · · + kCnx
0ak](x + a)

= [kC0x
k+1a0 + kC1x

ka1 + kC2x
k−1a2 + · · · + kC(r−1)x

k−r+2a(r−1) + kCrx
k−r+1ar

+ · · · + kCnxak] + [kC0x
ka + kC1x

k−1a2 + kC2x
k−2a3 + · · · + kC(r−1)x

k−(r−1)ar)

+ kCrx
k−rar+1 + · · · + kCnx

0ak+1]

(x+a)k+1 = kC0x
k+1+(kC1+kC0)x

ka+(kC2+kC1)x
k−1a2+· · ·+(kCr+kCr−1)x

k−r+1ar

+ · · · + kCka
k+1 · · · (2)

We know that kCr + kCr−1 = (k+1)Cr Put r = 1, 2, 3, · · · , etc.

kC1 + kC0 = (k+1)C1

kC2 + kC1 = (k+1)C2
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kCr + kCr−1 = (k+1)Cr for 1 ≤ r ≤ k

kC0 = 1 =(k+1) C0

kCk = 1 =(k+1) C(k+1)

∴(2) becomes (x + a)k+1 =(k+1) C0x
k+1 +(k+1) C1x

ka +(k+1) C2x
k−1a2 + · · · +

(k+1)Crx
k−r+1ar +(k+1) Cka

k+1

∴ P (k + 1) is true.

Thus if P (k) is true, P (k + 1) is true.

∴ By the principle of mathematical induction P (n) is true for all n ∈ N

(x + a)n = nC0x
na0 + nC1x

n−1a1 + · · · + nCrx
n−rar + · · · + nCn−1x

1an−1 + nCnx0an

for all n ∈ N. 2

Some observations:

1. In the expansion

(x + a)n = nC0x
na0 + nC1x

n−1a1 + · · · + nCrx
n−rar + · · · + nCn−1x

1an−1 + nCnx
0an,

the general term is nCrx
n−rar.

Since this is nothing but the (r + 1)th term, it is denoted by Tr+1

i.e. Tr+1 = nCrx
n−rar.

2. The (n + 1)th term is Tr+1 = nCnxn−nan = nCnan, the last term.

Thus there are (n + 1) terms in the expansion of (x + a)n

3. The degree of x in each term decreases while that of ”a” increases such that the

sum of the powers in each term is equal to n.

We can write (x + a)n =
∑n

r=0 nCrx
n−rar

4. nC0, nC1, nC2, . . . , nCn are called binomial coefficients. They are also written as

C0, C1, C2, . . . , Cn.

5. From the relation nCr = nCn−r, we see that the coefficients of terms equidistant

from the beginning and the end are equal.
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6. The binomial coefficients of the various terms of the expansion of (x + a)n for

n = 1, 2, 3, . . . form a pattern.

Binomials Binomial coefficients

(x + a)0 1

(x + a)1 1 1

(x + a)2 1 2 1

(x + a)3 1 3 3 1

(x + a)4 1 4 6 4 1

(x + a)5 1 5 10 10 5 1

This arrangement of the binomial coefficients is known as Pascal’s triangle after the

French mathematician Blaise Pascal (1623-1662). The numbers in any row can be

obtained by the following rule. The first and last numbers are 1 each. The other

numbers are obtained by adding the left and right numbers in the previous row.

1, 1+4=5, 4+6=10, 6+4=10, 4+1=5, 1

Some Particular Expansions:

In the expansion

(x+a)n = nC0x
na0+nC1x

n−1a1+· · ·+nCrx
n−rar+· · ·+nCn−1x

1an−1+nCnx
0an · · · (1)

1. If we put −a in the place of a

∴ (x − a)n =

nC0x
na0 − nC1x

n−1a1 + nC2x
n−2a2 − · · · + (−1)rnCrx

n−rar + · · · + (−1)nnCnx0an

We note that the signs of the terms are positive and negative alternatively.

2. If we put 1 in the place of a in (1) we get

(1 + x)n = 1 + nC1x + nC2x
2 + · · · + nCrx

r + · · · + nCnx
n · · · (2)

3. If we put −x in the place of x in (2) we get

(1 − x)n = 1 − nC1x + nC2x
2 − · · · + (−1)rnCrx

r + · · · + (−1)nnCnxn

Middle Term:

The number of terms in the expansion of (x + a)n depends upon the index n. The

index is either even (or) odd. Let us find the middle terms.
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Case(i): n is even

The number of terms in the expansion is (n + 1), which is odd.

Therefore, there is only one middle term and it is given by Tn
2
+1.

Case(ii): n is odd

The number of terms in the expansion is (n + 1), which is even.

Therefore, there is two middle terms and they are given by Tn+1

2

and Tn+3

2

.

Particular Terms:

Sometimes a particular term satisfying certain conditions is required in the binomial

expansion of (x + a)n. This can be done by expanding (x + a)n and then locating the

required term. Generally this becomes a tedious task, when the index n is large. In

such cases, we begin by evaluating the general term Tr+1 and then finding the values

of r by assuming Tr+1 to be the required term.

To get the term independent of x, we put the power of x equal to zero and get the

value of r for which the term independent of x. Putting this value of r in Tr+1, we get

the term independent of x.

Example 1.2.2. Find the expansion of: (i) (2x + 3y)5 (ii)
(

2x2 − 3
4

)4

Solution.

(i)(2x + 3y)5 = 5C0(2x)5(3y)0 +5 C1(2x)4(3y)1 +5 C2(2x)3(3y)2 +5 C3(2x)2(3y)3

+5 C4(2x)1(3y)4 +5 C5(2x)0(3y)5

= 1(32)x5(1) + 5(16x4)(3y) + 10(8x3)(9y2) + 10(4x2)(27y3)

+ 5(2x)(81y4) + (1)(1)(243y5)

= 32x5 + 240x4y + 720x3y2 + 1080x2y3 + 810xy4 + 243y5
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(ii)

(

2x2 − 3

4

)4

= 4C0(2x
2)4

(

−3

x

)0

+4 C1(2x
2)3

(

−3

x

)1

+4 C2(2x
2)2

(

−3

x

)2

+

4C3(2x
2)1

(

−3

x

)3

+4 C4(2x
2)0

(

−3

x

)4

= (1)16x8 + 4(8x6)

(

−3

x

)

+ 6(4x4)

(

9

x2

)

+ 4(2x2)

(

−27

x3

)

+ (1)(1)

(

81

x4

)

= 16x8 − 96x5 + 216x2 − 216

x
+

81

x4

Example 1.2.3. Using binomial theorem, find the 7th power of 11.

Solution.

117 = (1 + 10)7

= 7C0(1)7(10)0 +7 C1(1)6(10)1 +7 C2(1)5(10)2 +7 C3(1)4(10)3 +7 C4(1)3(10)4 +

7C5(1)2(10)5 +7 C6(1)1(10)6 +7 C7(1)0(10)7

= 1 + 70 +
7 × 6

1 × 2
102 +

7 × 6 × 5

1 × 2 × 3
103 +

7 × 6 × 5

1 × 2 × 3
104 +

7 × 6

1 × 2
105 + 7(10)6 + 107

= 1 + 70 + 2100 + 35000 + 350000 + 2100000 + 7000000 + 10000000

= 19487171

Example 1.2.4. If n ∈ N, in the expansion of (1 + x)n prove the following :

(i) Sum of the binomial coefficients = 2n

(ii) Sum of the coefficients of odd terms = Sum of the coefficients of even terms =

2n−1

Solution. The coefficients nC0, nC1, nC2, . . . , nCn in the expansion of (1 + x)n are
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called the binomial coefficients, we write them as C0, C1, C2, · · · , Cn,

(1 + x)n = C0 + C1x + C2x
2 + · · · + Crx

r + · · · + Cnx
n

It is an identity in x and so it is true for all values of x.

Putting x = 1 we get 2n = C0 + C1 + C2 + · · · + Cn · · · (1)

put x = −1 0 = C0 − C1 + C2 − C3 + · · · (−1)nCn

⇒ C0 + C2 + C4 + · · · = C1 + C3 + C5 + · · ·
It is enough to prove that

C0 + C2 + C4 + · · · = C1 + C3 + C5 + · · · = 2n−1

Let C0 + C2 + C4 + · · · = C1 + C3 + C5 + · · · = k · · · (2)

From (1),C0 + C1 + C2 + · · · + Cn = 2n

2k = 2nFrom (2)

k = 2n−1

From (2), C0 + C2 + C4 + · · · = C1 + C3 + C5 + · · · = 2n−1

1.3 The Division Algorithm

Theorem 1.3.1 (Division Algorithm). Given integers a and b, with b > 0, there exist

unique integer q and r satisfying

a = qb + r 0 ≤ r < b

The integers q and r are called, respectively, the quotient and remainder in the division

of a by b.

Proof. We begin by proving that the set

S = {a − xb : x an integer; a − xb ≥ 0}
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is nonempty. To do this, it suffices to exhibit a value of x making a − xb nonnegative.

Because the integer b ≥ 1. we have |a|b ≥ |a|, and so

a − (−|a|)b = a + |a|b ≥ a + |a| ≥ 0

For the choice x = −|a|,then, a − xb lies in S. This paves the way for an application

of the Well-Ordering Principle , from which we infer that the set S contains a

smallest integer, call it r. By the definition of S, there exists an integer q satisfying

r = a − qb 0 ≤ r

We argue that r < b, If this were not the case, then r ≥ b and

a − (q + 1)b = (a − qb) − b = r − b ≥ 0

The implication is that the integer a − (q + 1)b has the proper form to belong to the

set S. But a − (q + 1)b = r − b < r, leading to a contradiction of the choice of r as

the smallest member of S. Hence, r < b.

Next we turn to the task of showing the uniqueness of q and r. Suppose that a has

two representations of the desired form, say,

a = qb + r = q′b + r′

where 0 ≤ r < b, 0 ≤ r′ < b. Then r′ − r = b(q − q′) and, owing to the fact that the

absolute value of a product is equal to the product of the absolute values,

|r′ − r| = b|q − q′|

Upon adding the two inequalities −b < −r ≤ 0 and 0 ≤ r′ < b, we obtain

−b < r′ − r < b or, in equivalent terms, |r′ − r| < b. Thus, b|q − q′| < b, which yields

0 ≤ |q − q′| < 1

Because |q − q′| is a nonnegative integer, the only possibility is that |q − q′| = 0,

whence q = q′; this, in turn, gives r = r′, ending the proof. 2
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Corollary 1.3.2. If a and b are integers, with b 6= 0, then there exist unique integers q

and r such that

a = qb + r 0 ≤ r < |b|

Proof. It is enough to consider the case in which b is negative. Then |b| > 0, and

Theorem 1.3.1 produces unique integers q′ and r for which

a = q′|b| + r 0 ≤ r < |b|

Noting that |b| = −b, we may take q = −q′ to arrive at a = qb + r, with 0 ≤ r < |b|. 2

Example 1.3.3. Show that the expression a(a2 + 2)/3 is an integer for all a ≥ 1.

According to the Division Algorithm, every a of the form 3q, 3q + 1, or 3q + 2.

Assume that first of these cases. Then

a(a2+2)
3

= q(9q2 + 2)

which clearly is an integer. Similarly, if a = 3q + 1. then

(3q+1)((3q+1)2+2)
3

= (3q + 1)(3q2 + 2q + 1)

and a(a2 + 2)/3 is an integer in this instance also. Finally, for a = 3q + 2, we obtain

(3q+2)((3q+2)2+2)
3

= (3q + 2)(3q2 + 4q + 2)

an integer once more. Consequently, our result is established in all cases.

1.4 The Greatest Common Divisor

Definition 1.4.1. An integer b is said to be divisible by an integer a 6= 0, in symbols

a|b, if there exists some integer c such that b = ac. We write a ∤ b to indicate that b is

not divisible by a.

Theorem 1.4.2. For integers a,b,c, the following hold
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(a) a|0, 1|a, a|a.

(b) a|1 if and only if a = ±1.

(c) If a|b and c|d, then ac|bd.

(d) If a|b and b|c, then a|c.

(e) a|b and b|a if and only if a = ±b.

(f) If a|b and b 6= 0, then |a| ≤ |b|.

(g) If a|b and a|c, then a|(bx + cy) for arbitrary integers x and y.

Proof. We shall prove assertions (f) and (g), leaving the other parts as an exercise.

If a|b, then there exists an integer c such that b = ac; also b 6= 0 implies that c 6= 0.

Upon taking absolute values, we get |b| = |ac| = |a||c|. Because c 6= 0, it follows that

|c| ≥ 1, whence |b| = |a||c| ≥ |a|.
As regards (g), the relations a|b and a|c ensure that b = ar and c = as for suitable

integers r and s. But then whatever the choice of x and y,

bx + cy = arx + asy = a(rx + sy)

Because rx + sy is an integer, this says that a|(bx + cy), as desired. 2

Definition 1.4.3. Let a and b be given integers, with at least one of them different

from zero. The greatest common divisor of a and b, denoted dy gcd(a, b), is the

positive integer d satisfying the following:

(a) d|a and d|b.

(b) If c|a and c|b, then c ≤ d.

Example 1.4.4. The positive divisors of −12 are 1, 2, 3, 4, 6, 12, whereas those of 30

are 1, 2, 3, 5, 6, 10, 15, 30; hence, the positive common divisors of −12 and 30 are

1, 2, 3, 6, Because 6 is the largest of these integers, it follows that gcd(−12, 30) = 6. In

the same way, we can show that
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gcd(−5, 5) = 5 gcd(8, 17) = 1 gcd(−8,−36) = 4

Theorem 1.4.5. Given integers a and b, not both of which are zero, there exist integers

x and y such that

gcd(a, b) = ax + by

Proof. Consider the set S of all positive linear combinations of a and b:

S = {au + bv : au + bv > 0; u, v integers}

Notice first that S is not empty. For example, if a 6= 0, then the integer |a| = au + b.0

lies in S, where we choose u = 1 or u = −1 according as a is positive or negative. By

virtue of the Well-ordering Principle, S must contain a smallest element d. Thus,

from the very definition of S, there exists integers x and y for which d = ax + by. We

claim that d = gcd(a, b).

Taking stock of the Division Algorithm, we can obtain integers q and r such that

a = qd + r, where 0 ≤ r < d. Then r can be written in the form

r = a − qd = a − q(ax + by)

= a(1 − qx) + b(−qy)

If r were positive, then this representation would imply that r is a member of S,

contradicting the fact that d is the least integer in S (recall that r < d). Therefore,

r = 0, and so a = qd, or equivalently d|a. By similar reasoning, d|b, the effect of

which is to make d a common divisor of a and b.

Now, if c is an arbitrary positive common divisor of the integers a and b, then part

(g) of Theorem 1.4.2 allows us to conclude that c|(ax + by); that is, c|d. by part (f) of

the same theorem, c = |c| ≤ |d| = d, so that d is greater than every positive common

divisor of a and b. Piecing the bits of information together, we see that d = gcd(a, b).

2
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Corollary 1.4.6. If a and b are given integers, not both zero, then the set

T = {ax + by : x, y are integers}

is precisely the set of all multiples of d = gcd(a, b).

Proof. Because d|a and d|b, we know that d|(ax + by) for all integers x, y. Thus,

every member of T is a multiple of d. Conversely, d may be written as d = ax0 + by0

for suitable x0, and y0, so that any multiple nd of d is of the form

nd = n(ax0 + by0) = a(nx0) + b(ny0)

Hence, nd is a linear combination of a and b, and, by definition, lies in T . 2

Definition 1.4.7. Two integers a and b, not both of which are zero, are said to be

relatively prime whenever gcd(a, b) = 1.

Theorem 1.4.8. Let a and b be integers, not both zero. Then a and b are relatively

prime if and only if there exist integers x and y such that 1 = ax + by.

Proof. If a and b are relatively prime so that gcd(a, b) = 1, then Theorem 1.4.5

guarantees the existence of integers x and y satisfying 1 = ax + by. As for the

converse, suppose that 1 = ax + by for some choice of x and y, and that d = gcd(a, b).

Because d|a an d|b, Theorem 1.4.2 yields d|(ax + by), or d|1. Inasmuch as d is a

positive integer, this last divisibility condition forces d to equal 1 (part (b) of

Theorem 1.4.2 plays a role here), and the desired conclusion follows. 2

Corollary 1.4.9. If gcd(a, b) = d, then gcd(a/d, b/d) = 1.

Proof. Before starting with the proof proper, we should observe that although a/d

and b/d have the appearance of fractions, in fact, they are integers because d is a

divisor both of a and of b. Now, knowing that gcd(a, b) = d, it is possible to find

integers x and y such that d = ax + by. Upon dividing each side of this equation by d,

we obtain the expression
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1 =
(

a
d

)

x +
(

b
d

)

y

Because a/d and b/d are integers, an appeal to the theorem is legitimate. The

conclusion is that a/d and b/d are relatively prime. 2

Corollary 1.4.10. If a|c and b|c, with gcd(a, b) = 1, then ab|c.

Proof. In as much as a|c and b|c, integers r and s can be found such that

c = ar = bs. Now the relation gcd(a, b) = 1 allows us to write 1 = ax + by for some

choice of integers x and y. Multiplying the last equation by c, it appears that

c = c.1 = c(ax + by) = acx + bcy

If the appropriate substitutions are now made on the right-hand side, then

c = a(bs)x + b(ar)y = ab(sx + ry)

or, as a divisibility statement, ab|c. 2

Theorem 1.4.11 (Euclid’s Lemma). If a|bc, with gcd(a, b) = 1, then a|c.

Proof. We start again from Theorem 1.4.5, writing 1 = ax + by, where x and y are

integers. Multiplication of this equation by c produces

c = 1.c = (ax + by)c = acx + bcy

Because a|ac and a|bc, it follows that a|(acx + bcy), which can be recast as a|c. 2

Theorem 1.4.12. Let a, b be integers, not both zero. For a positive integer d,

d = gcd(a, b) if and only if

(a) d|a and d|b.

(b) Whenever c|a and c|b, then c|d.
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Proof. To being, suppose that d = gcd(a, b). Certainly, d|a and d|b, so that (a)

holds. In light of Theorem 1.4.5, d is expressible as d = ax + by for some integers x, y.

Thus, if c|a and c|b, then c|(ax + by), or rather c|d. In short, condition (b) holds.

Conversely, let d be any positive integer satisfying the stated conditions. Given any

common divisor c of a and b, we have c|d from hypothesis (b). The implication is that

d ≥ c, and consequently d is the greatest common divisor of a and b. 2

1.5 The Euclidean Algorithm

Let a and b be two integers whose greatest common divisors is desired. Because

gcd(|a|, |b|) = gcd(a, b), there is no harm in assuming that a ≥ b > 0. The first step is

to apply the Division Algorithm to a and b to get

a = q1b + r1 0 ≤ r1 < b

If it happens that r1 = 0, then b|a and gcd(a, b) = b. When r1 6= 0, divide b by r1 to

produce integers q2 and r2 satisfying

b = q2r1 + r2 0 ≤ r2 < r1

If r2 = 0, then we stop; otherwise, proceed as before to obtain

r1 = q3r2 + r3 0 ≤ r3 < r2

This division process continues until some zero remainder appears, say, at the

(n + 1)th stage where rn−1 is divided by rn (a zero remainder occurs sooner or later

because the decreasing sequence b > r1 > r2 > · · · ≥ 0 cannot contain more than b

integers).
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The result is the following system of equations:

a = q1b + r1 0 < r1 < b

b = q2r1 + r2 0 < r2 < r1

r1 = q3r2 + r3 0 < r3 < r2

.

.

.

rn−2 = qnrn−1 + rn 0 < rn < rn−1

rn−1 = qn+1rn + 0

We argue that rn, the last nonzero remainder that appears in this manner, is equal to

gcd(a, b). Our proof is based on the lemma below.

Lemma 1.5.1. If a = qb + r, then gcd(a, b) = gcd(b, r)

Proof. If d = gcd(a, b), then the relations d|a and d|b together imply that d|(a− qb),

or d|r. Thus, d is a common divisor of both b and r. On the other hand, if c is an

arbitrary common divisor of b and r, then c|(qb + r), whence c|a. This makes c a

common divisor of a and b, so that c ≤ d. It now follows from the definition of

gcd(b, r) that d = gcd(b, r). 2

Example 1.5.2. Let us see how the Euclidean Algorithm works in a concrete case by

calculating, say, gcd(12378, 3054). The appropriate applications of the Division
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Algorithm produce the equations

12378 = 4.3054 + 162

3054 = 18.162 + 138

162 = 1.138 + 24

138 = 5.24 + 18

24 = 1.18 + 6

18 = 3.6 + 0

Our previous discussion tells us that the last nonzero remainder appearing in these

equations, namely, the integer 6, is the greatest common divisor of 12378 and 3054:

6 = gcd(12378, 3054)

Theorem 1.5.3. If k > 0, then gcd(ka, kb) = k.gcd(a, b)

Proof. If each of the equations appearing in the Euclidean Algorithm for a and b is

multiplied by k, we obtain

ak = q1(bk) + r1k 0 < r1k < bk

bk = q2(r1k) + r2k 0 < r2k < r1k

.

.

.

rn−2k = qn(rn−1k) + rnk 0 < rnk < rn−1k

rn−1k = qn+1(rnk) + 0

But this is clearly the Euclidean Algorithm applied to the integers ak and bk, so that

their greatest common divisor is the last nonzero remainder rnk; that is,

gcd(ka, kb) = rnk = k.gcd(a, b)
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as stated in the theorem. 2

Corollary 1.5.4. For any integer k 6= 0, gcd(ka, kb) = |k|gcd(a, b).

Proof. It suffices to consider the case in which k < 0. Then −k = |k| > 0 and, by

Theorem 1.5.3

gcd(ak, bk) = gcd(−ak,−bk)

= gcd(a|k|, b|k|)

= |k|gcd(a, b)

An alternate proof of the above Theorem runs very quickly as follows: gcd(ak, bk) is

the smallest positive integer of the form (ak)x + (bk)y, which, in turn, is equal to k

times the smallest positive integer of the form ax + by; the latter value is equal to

k.gcd(a, b). 2

Definition 1.5.5. The least common multiple of two nonzero integers a and b, denote

by lcm(a, b), is the positive integer m satisfying the following:

(a) a|m and b|m.

(b) If a|c and b|c, with c > 0, then m ≤ c.

Theorem 1.5.6. For positive integers a and b

gcd(a, b)lcm(a, b) = ab

Proof. To being, put d = gcd(a, b) and write a = dr, b = ds for integers r and s. If

m = ab/d, then m = as = rb, the effect of which is to make m a (positive) common

multiple of a and b.

Now let c be any positive integer that is a common multiple of a and b; say, for

definiteness, c = au = bv. As we know, there exist integers x and y satisfying

d = ax + by. In consequence,
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c
m

= cd
ab

= c(ax+by)
ab

=
(

c
b

)

x +
(

c
a

)

y = vx + uy

This equation states that m|c, allowing us to conclude that m ≤ c. Thus, in

accordance with Definition of lcm, m = lcm(a, b); that is,

lcm(a, b) = ab
d

= ab
gcd(a,b)

which is what we started out to prove. 2

Corollary 1.5.7. For any choice of positive integers a and b, lcm(a, b) = ab if and only

if gcd(a, b) = 1.

1.6 The Diophantine Equation ax + by = c

Theorem 1.6.1. The linear Diophantine equation ax + by = c has a solution if and only

if d|c, where d = gcd(a, b). If x0, y0 is any particular solution of this equation, then all

other solutions are given by

x = x0 +
(

b
d

)

t y = y0 −
(

a
d

)

t

where t is an arbitrary integer.

Proof. To establish the second assertion of the theorem, let us suppose that a

solution x0, y0 of the given equation is known. If x′, y′ is any other solution, then

ax0 + by0 = c = ax′ + by′

which is equivalent to

a(x′ − x0) = b(y0 − y′)

By the corollary to Theorem 1.4.8, there exist relatively prime integers r and S such

that a = dr, b = ds. Substituting these values into the last-written equation and

canceling the common factor d, we find that

r(x′ − x0) = s(y0 − y′)
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The situation is now this: r|s(y0 − y′), with gcd(r, s) = 1. Using Euclid’s lemma, it

must be the case that r|(y0 − y′); or, in other words, y0 − y′ = rt for some integer t.

Substituting, we obtain

x′ − x0 = st

This leads us to the formulas

x′ = x0 + st = x0 +
(

b
d

)

t

y′ = y0 − rt = y0 −
(

a
d

)

t

It is easy to see that these values satisfy the Diophantine equation,regardless of the

choice of the integer t; for

ax′ + by′ = a

[

x0 + (
b

d
)t

]

+ b
[

y0 − (
a

d
)t

]

= (ax0 + by0) +

(

ab

d
− ab

d

)

t

= c + 0.t

= c

Thus, there are an infinite number of solutions of the given equation, one for each

value of t. 2

Example 1.6.2. Consider the linear Diophantine equation

172x + 20y = 1000

Applying the Euclidean’s Algorithm to the evaluation of gcd(172, 20), we find that

172 = 8.20 + 12

20 = 1.12 + 8

12 = 1.8 + 4

8 = 2.4
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whence gcd(172, 20) = 4. Because 4|1000, a solution to this equation exists. To

obtain the integer 4 as a linear combination of 172 and 20, we work backward

through the previous calculations, as follows:

4 = 12 − 8

= 12 − (20 − 12)

= 2.12 − 20

= 2(172 − 8.20) − 20

= 2.172 + (−17)20

Upon multiplying this relation by 250, we arrive at

1000 = 250.4 = 250[2.172 + (−17)20]

= 500.172 + (−4250)20

so that x = 500 and y = −4250 provide one solution to the Diophantine equation in

question. All other solutions are expressed by

x = 500 + (20/4)t = 500 + 5t

y = −4250 − (172/4)t = −4250 − 43t

for some integer t. A little further effort produces the solutions in the positive

integers, if any happen to exist. For this, t must be chosen to satisfy simultaneously

the inequalities

5t + 500 > 0 −43t − 4250 > 0

or, what amounts to the same thing,

−9836
43

> t > −100

Because t must be an integer, we are forced to conclude that t = −99. Thus, our

Diophantine equation has a unique positive solution x = 5, y = 7 corresponding to the

value t = −99.
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Corollary 1.6.3. If gcd(a, b) = 1 and if x0, y0 is a particular solution of the linear

Diophantine equation ax + by = c, then all solutions are given by

x = x0 + bt y = y0 − at

for integral values of t.

Example 1.6.4. A customer bought a dozen pieces of fruit, apples and oranges, for

$1.32. If an apple costs 3 cents more than an orange and more apples than oranges

were purchased, how many pieces of each kind were bought?

To set up this problem as a Diophantine equation, let x be the number of apples

and y be the number of oranges purchased; in addition, let z represent the cost(in

cents) of an orange. Then the conditions of the problem lead to

(z + 3)x + zy = 132

or equivalently

3x + (x + y)z = 132

Because x + y = 12, the previous equation may be replaced by

3x + 12z = 132

which, in turn, simplifies to x + 4z = 44.

Stripped of inessentials, the object is to find integers x and z satisfying the

Diophantine equation

x + 4z = 44 (1.1)

Inasmuch as gcd(1, 4) = 1 is a divisor of 44, there is a solution to this equation. Upon

multiplying the relation 1 = 1(−3) + 4.1 by 44 to get

44 = 1(−132) + 4.44

25



it follows that x0 = 132, z0 = 44 serves as one solution. All other solutions of

Equation (1.1) are of the form

x = −132 + 4t z = 44 − t

where t is an integer.

Not all of the choices for t furnish solutions to the original problem. Only values of

t that ensure 12 ≥ x > 6 should be considered. This requires obtaining those values

of t such that

12 ≥ −132 + 4t > 6

Now, 12 ≥ −132 + 4t implies that t ≤ 36, whereas −132 + 4t > 6 gives t > 341
2
. The

only integral values of t to satisfy both inequalities are t = 35 and t = 36. Thus, there

are two possible purchases: a dozen apples costing 11 cents apiece(the case where

t = 36), or 8 apples at 12 cents each and 4 oranges at 9 cents each(the case where

t = 35).
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Chapter 2

UNIT II

2.1 The Fundamental Theorem of Arithmetic

Definition 2.1.1. An integer p > 1 is called a prime number, or simply a prime, if its

only positive divisors are 1 and p. An integer greater than 1 that is not a prime is termed

composite.

Theorem 2.1.2. If p is a prime and p|ab, then p|a or p|b.

Proof. If p|a, then we need go no further, so let us assume that p ∤ a. Because the

only positive divisors of p are 1 and p itself, this implies that gcd(p, a) = 1. (In

general, gcd(p, a) = p or gcd(p, a) = 1 according as p|a or p ∤ a.) Hence, citing

Euclid’s lemma, we get p|b. 2

Corollary 2.1.3. If p is a prime and p|a1a2 · · · an, then p|ak for some k, where

1 ≤ k ≤ n.

Proof. We proceed by induction on n, the number of factors. When n = 1, the

stated conclusion obviously holds; whereas when n = 2, the result is the content of

Theorem 2.1.2. Suppose, as the induction hypothesis, that n > 2 and that whenever

p divides a product of less than n factors, it divides at least one of the factors. Now

p|a1a2 · · · an.

27



From Theorem 2.1.2, either p|an or p|a1a2 · · · an−1. If p|an, then we are through. As

regards the case where p|a1a2 · · · an−1, the induction hypothesis ensures that p|ak for

some choice of k, with 1 ≤ k ≤ n − 1. In any event, p divides one of the integers

a1, a2, . . . , an. 2

Corollary 2.1.4. If p, q1, q2, · · · , qn are all primes and p|q1q2 · · · qn, then p = qk for

some k, where 1 ≤ k ≤ n.

Proof. By virtue of Corollary 2.1.3, we know that p|qk for some k, with 1 ≤ k ≤ n.

Being a prime, qk is not divisible by any positive integer other than 1 or qk itself.

Because p > 1, we are forced to conclude that p = qk. 2

Theorem 2.1.5 (Fundamental Theorem of Arithmetic). Every positive integer n > 1

can be expressed as a product of primes; this representation is unique, apart from the

order in which the factors occur.

Proof. Either n is a prime or it is composite; in the former case, there is nothing

more to prove. If n is composite, then there exists an integer d satisfying d|n and

1 < d < n. Among all such integers d, choose p1 to be the smallest (this is possible by

the Well − Ordering Principle). Then p1 must be a prime number. Otherwise it too

would have a divisor q with 1 < q < p1; but then q|p1 and p1|n imply that q|n, which

contradicts the choice of p1 as the smallest positive divisor, not equal to 1, of n.

We therefore may write n = p1n1,where p1 is prime and 1 < n1 < n. If n1 happens

to be a prime, then we have our representation. In the contrary case, the argument is

repeated to produce a second prime number p2 such that n1 = p2n2; that is,

n = p1p2n2 1 < n2 < n1

If n2 is a prime, then it is not necessary to go further. Otherwise, write n2 = p3n3,

with p3 a prime:

n = p1p2p3n3 1 < n3 < n2
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The decreasing sequence

n > n1 > n2 > · · · > 1

cannot continue indefinitely, so that after a finite number of steps nk−1 is a prime,

call it, pk. This leads to the prime factorization

n = p1p2 · · · pk

To establish the second part of the proof-the uniqueness of the prime factorization-

let us suppose that the integer n can be represented as a product of primes in two

ways; say,

n = p1p2 · · · pr = q1q2 · · · qs r ≤ s

where the pi and qj are all primes, written in increasing magnitude so that

p1 ≤ p2 ≤ · · · pr q1 ≤ q2 ≤ · · · qs

Because p1|q1q2 · · · qs, Corollary 2.1.4 of Theorem 2.1.2 tells us that p1 = qk for some

k; but then p1 ≥ q1. Similar reasoning gives q1 ≥ p1, whence p1 = q1. We may cancel

this common factor and obtain

p2p3 · · · pr = q2q3 · · · qs

Now repeat the process to get p2 = q2 and, in turn,

p3p4 · · · pr = q3q4 · · · qs

Continue in this fashion. If the inequality r < s were to hold, we would eventually

arrive at

1 = qr+1qr+2 · · · qs

which is absurd, because each qj > 1. Hence, r = s and

p1 = q1 p2 = q2, · · · , pr = qr

making the two factorizations of n identical. The proof is now complete. 2
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Corollary 2.1.6. Any positive integer n > 1 can be written uniquely in a canonical form

n = pk1

1 pk2

2 · · · pkr

3

where, for i = 1, 2, · · · , r, each ki is a positive integer and each pi is a prime, with

p1 < p2 < · · · < pr.

Theorem 2.1.7 (Pythagoras). The number
√

2 is irrational.

Proof. Suppose, to the contrary, that
√

2 is a rational number, say,
√

2 = a/b,

where a and b are both integers with gcd(a, b) = 1. Squaring, we get a2 = 2b2 , so

that b|a2. If b > 1, then the Fundamental Theorem of Arithmetic guarantees the

existence of a prime p such that p|b. It follows that p|a2 and, by Theorem 2.1.2, that

p|a; hence, gcd(a, b) ≥ p. We therefore arrive at a contradiction, unless b = 1. But if

this happens, then a2 = 2, which is impossible (we assume that the reader is willing

to grant that no integer can be multiplied by itself to give 2). Our supposition that
√

2 is a rational number is untenable, and so
√

2 must be irrational. 2

2.2 The Sieve of Eratosthenes

Example 2.2.1. The foregoing technique provides a practical means for determining

the canonical form of an integer, say a = 2093. Because 45 <
√

2093 < 46, it is

enough to examine the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43. By trial, the

first of these to divide 2093 is 7, and 2093 = 7.299. As regards the integer 299, the

seven primes that are less than 18 (note that 17 <
√

299 < 18) are 2, 3, 5, 7, 11, 13, 17.

The first prime divisor of 299 is 13 and, carrying out the required division, we obtain

299 = 13 · 23. But 23 is itself a prime, whence 2093 has exactly three prime factors,

7, 13, and23:

2093 = 7 · 13 · 23

Theorem 2.2.2 (Euclid). There is an infinite number of primes.
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Proof. Euclid’s proof is by contradiction. Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, · · · be

the primes in ascending order, and suppose that there is a last prime, called pn. Now

consider the positive integer

P = p1p2 · · · pn+1

Because P > 1, we may put Theorem 2.1.5 to work once again and conclude that P is

divisible by some prime p. But p1, p2, · · · , pn are the only prime numbers, so that p

must be equal to one of p1, p2, · · · , pn. Combining the divisibility relation p|p1p2 · · · pn

with p|P , we arrive at p|P − p1p2 · · · pn or, equivalently, p|1. The only positive divisor

of the integer 1 is 1 itself and, because p > 1, a contradiction arises. Thus, no finite

list of primes is complete, whence the number of primes is infinite. 2

Theorem 2.2.3. If pn is the nth prime number, then pn ≤ 22n−l

.

Proof. Let us proceed by induction on n, the asserted inequality being clearly true

when n = 1. As the hypothesis of the induction, we assume that n > 1 and that the

result holds for all integers up to n. Then

pn+1 ≤ p1p2 · · · pn+1

≤ 2.22 · · · 22n−1

+ 1 = 21+2+22+···+2n−1

+ 1

Recalling the identity 1 + 2 + 22 + · · · + 2n−1 = 2n−1, we obtain

pn+1 ≤ 22n−1 + 1

However, 1 ≤ 22n−l for all n; whence

pn+1 ≤ 22n−1 + 22n−1

= 2.22n−1 = 22n

completing the induction step, and the argument. 2
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Corollary 2.2.4. For n ≥ 1, there are at least n + 1 primes less than 22n

.

Proof. From the theorem, we know that p1, p2, · · · , pn+1 are all less than 22n

. 2

2.3 The Goldbach Conjecture

Lemma 2.3.1. The product of two or more integers of the form 4n + 1 is of the same

form.

Proof. It is sufficient to consider the product of just two integers. Let us take

k = 4n + 1 and k′ = 4m + 1. Multiplying these together, we obtain

kk′ = (4n + 1)(4m + 1)

= 16nm + 4n + 4m + 1 = 4(4nm + n + m) + 1

which is of the desired form. 2

Theorem 2.3.2. There are an infinite number of primes of the form 4n + 3.

Proof. In anticipation of a contradiction, let us assume that there exist only finitely

many primes of the form 4n + 3; call them q1, q2, · · · , qs. Consider the positive integer

N = 4q1q2 · · · qs − 1 = 4(q1q2 · · · qs − 1) + 3

and let N = r1r2 · · · rt be its prime factorization. Because N is an odd integer, we

have rk 6= 2 for all k, so that each rk is either of the form 4n + 1 or 4n + 3. By the

lemma, the product of any number of primes of the form 4n + 1 is again an integer of

this type. For N to take the form 4n + 3, as it clearly does, N must contain at least

one prime factor ri of the form 4n + 3. But ri cannot be found among the listing

q1, q2, · · · , qs, for this would lead to the contradiction that ri|1. The only possible

conclusion is that there are infinitely many primes of the form 4n + 3. 2
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Theorem 2.3.3 (Dirichlet). If a and b are relatively prime positive integers, then the

arithmetic progression

a, a + b, a + 2b, a + 3b, · · ·

contains infinitely many primes.

Theorem 2.3.4. If all the n > 2 terms of the arithmetic progression

p, p + d, p + 2d, · · · , p + (n − 1)d

are prime numbers, then the common differenced is divisible by every prime q < n.

Proof. Consider a prime number q < n and assume to the contrary that q ∤ d. We

claim that the first q terms of the progression

p, p + d, p + 2d, · · · , p + (q − 1)d (2.1)

will leave different remainders when divided by q. Otherwise there exist integers j

and k, with 0 ≤ j < k ≤ q − 1, such that the numbers p + jd and p + kd yield the

same remainder upon division by q. Then q divides their difference (k − j)d. But

gcd(q, d) = 1, and so Euclid’s lemma leads to q|k − j, which is nonsense in light of the

inequality k − j ≤ q − 1.

Because the q different remainders produced from Equation (2.1) are drawn from

the q integers 0, 1, · · · , q − 1, one of these remainders must be zero. This means that

q|p + td for some t satisfying 0 ≤ t ≤ q − 1. Because of the inequality

q < n ≤ p ≤ p + td, we are forced to conclude that p + td is composite. (If p were less

than n, one of the terms of the progression would be p + pd = p(l + d).) With this

contradiction, the proof that q|d is complete. 2
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Chapter 3

UNIT III

3.1 Basic properties of congruence

Definition 3.1.1. Let n be a fixed positive integer. Two integers a and b are said to

be congruent modulo n, symbolized by

a ≡ b(mod n)

if n divides the difference a − b; that is, provided that a − b = kn for some integer k.

Theorem 3.1.2. For arbitrary integers a and b, a ≡ b(mod n) if and only if a and b

leave the same nonnegative remainder when divided by n.

Proof. First take a ≡ b(mod n), so that a = b + kn for some integer k. Upon

division by n, b leaves a certain remainder r; that is, b = qn + r, where 0 ≤ r < n.

Therefore,

a = b + kn = (qn + r) + kn = (q + k)n + r

which indicates that a has the same remainder as b.

On the other hand, suppose we can write a = q1n + r and b = q2n + r, with the

same remainder r (0 ≤ r < n). Then

a − b = (q1n + r) − (q2n + r) = (q1 − q2)n

34



whence n|a − b. In the language of congruences, we have a ≡ b(mod n). 2

Example 3.1.3. Because the integers −56 and −11 can be expressed in the form

−56 = (−7)9 + 7 − 11 = (−2)9 + 7

with the same remainder 7, Theorem 3.1.2 tells us that −56 ≡ −11(mod 9). Going in

the other direction, the congruence −31 ≡ 11(mod 7) implies that −31 and 11 have

the same remainder when divided by 7; this is clear from the relations

−31 = (−5)7 + 4 11 = 17 + 4

Theorem 3.1.4. Let n > 1 be fixed and a, b, c, d be arbitrary integers. Then the

following properties hold:

(a) a ≡ a(mod n).

(b) If a ≡ b(mod n), then b ≡ a(mod n).

(c) If a ≡ b(mod n) and b ≡ c(mod n), then a ≡ c(mod n).

(d) If a ≡ b(mod n) and c ≡ d(mod n), then a + c ≡ b + d(mod n) and

ac ≡ bd(mod n).

(e) If a ≡ b(mod n), then a + c ≡ b + c(mod n) and ac ≡ be(mod n).

(f) If a ≡ b(mod n), then ak ≡ bk(mod n) for any positive integer k.

Proof. For any integer a, we have a − a = 0 · n, so that a ≡ a(mod n). Now if

a ≡ b(mod n), then a − b = kn for some integer k. Hence, b − a = −(kn) = (−k)n

and because −k is an integer, this yields property (b).

Property (c) is slightly less obvious: Suppose that a ≡ b(mod n) and also

b ≡ c(mod n). Then there exist integers h and k satisfying a− b = hn and b− c = kn.

It follows that

a − c = (a − b) + (b − c) = hn + kn = (h + k)n
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which is a ≡ c(mod n) in congruence notation.

In the same vein, if a ≡ b(mod n) and c ≡ d(mod n), then we are assured that

a− b = k1n and c− d = k2n for some choice of k1 and k2. Adding these equations, we

obtain

(a + c) − (b + d) = (a − b) + (c − d)

= k1n + k2n = (k1 + k2)n

or, as a congruence statement, a + c ≡ b + d(mod n). As regards the second assertion

of property (d), note that

ac = (b + k1n)(d + k2n) = bd + (bk2 + dk1 + k1k2n)n

Because bk2 + dk1 + k1k2n is an integer, this says that ac − bd is divisible by n,

whence ac ≡ bd(mod n).

The proof of property (e) is covered by (d) and the fact that c ≡ c(mod n). Finally,

we obtain property (f) by making an induction argument. The statement certainly

holds for k = 1, and we will assume it is true for some fixed k. From (d), we know

that a ≡ b(mod n) and ak ≡ bk(mod n) together imply that aak ≡ bbk(mod n), or

equivalently ak+1 ≡ bk+1(mod n). This is the form the statement should take for

k + 1, and so the induction step is complete. 2

Example 3.1.5. Show that 41 divides 220 − 1. We begin by noting that

25 ≡ −9(mod 41), whence (25)4 ≡ (−9)4(mod 41) by Theorem 3.1.4(f); in other

words, 220 ≡ 81 · 81(mod 41). But 81 ≡ −1(mod 41), and so 81 · 81 ≡ 1(mod 41).

Using parts (b) and (e) of Theorem 3.1.4, we finally arrive at

220 − 1 ≡ 81 · 81 − 1 ≡ 1 − 1 ≡ 0(mod 41)

Thus, 41|220 − 1, as desired.

Example 3.1.6. For another example in the same spirit, suppose that we are asked

to find the remainder obtained upon dividing the sum
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1! + 2! + 3! + 4! + · · · + 99! + 100!

by 12. Without the aid of congruences this would be an awesome calculation. The

observation that starts us off is that 4! ≡ 24 ≡ 0(mod12); thus, for k ≥ 4,

k! ≡ 4! · 5 · 6 · · · k ≡ 0 · 5 · 6 · · · k ≡ 0(mod 12)

In this way, we find that

1! + 2! + 3! + 4! + · · · + 100! ≡ 1! + 2! + 3! + 0 + · · · + 0 ≡ 9(mod 12)

Accordingly, the sum in question leaves a remainder of 9 when divided by 12.

Theorem 3.1.7. If ca ≡ cb(mod n), then a ≡ b(mod n/d), where d = gcd(c, n).

Proof. By hypothesis, we can write

c(a − b) = ca − cb = kn

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime integers r

and s satisfying c = dr, n = ds. When these values are substituted in the displayed

equation and the common factor d canceled, the net result is

r(a − b) = ks

Hence, s|r(a − b) and gcd(r, s) = 1. Euclid’s lemma yields s|a − b, which may be

recast as a ≡ b(mod s); in other words, a ≡ b(mod n/d). 2

Corollary 3.1.8. If ca ≡ cb(mod n) and gcd(c, n) = 1, then a ≡ b(modn).

Corollary 3.1.9. If ca ≡ cb(mod p) and p ∤ c, where p is a prime number, then

a ≡ b(mod p).

Proof. The conditions p ∤ c and p a prime imply that gcd(c, p) = 1. 2
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Example 3.1.10. Consider the congruence 33 ≡ 15(mod 9) or, if one prefers,

3 · 11 ≡ 3 · 5(mod 9). Because gcd(3, 9) = 3, Theorem 3.1.7 leads to the conclusion

that 11 ≡ 5(mod 3).

A further illustration is given by the congruence −35 ≡ 45(mod 8), which is the same

as 5 · (−7) ≡ 5 · 9(mod 8). The integers 5 and 8 being relatively prime, we may cancel

the factor 5 to obtain a correct congruence −7 ≡ 9(mod 8).

3.2 Binary and Decimal Representations of

Integers

Example 3.2.1. To calculate 5110(mod 131), first note that the exponent 110 can be

expressed in binary form as

110 = 64 + 32 + 8 + 4 + 2 = (110110)2

Thus, we obtain the powers 52j

(mod 131) for 0 ≤ j ≤ 6 by repeatedly squaring while

at each stage reducing each result modulo 131:

52 ≡ 25(mod 131) 516 ≡ 27(mod 131)

54 ≡ 101(mod 131) 532 ≡ 74(mod 131)

58 ≡ 114(mod 131) 564 ≡ 105(mod 131)

When the appropriate partial results-those corresponding to the 1’s in the binary

expansion of 110—are multiplied, we see that

5110 = 564+32+8+4+2

= 564 · 532 · 58 · 54 · 52

≡ 105 · 74 · 114 · 101 · 25 ≡ 60(mod 131)

As a minor variation of the procedure, one might calculate, modulo 131, the powers

5, 52, 53, 56, 512, 524, 548, 596 to arrive at
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5ll0 = 596 · 512 · 52 ≡ 41 · 117 · 25 ≡ 60(mod 131)

which would require two fewer multiplications.

Theorem 3.2.2. Let P (x) =
∑m

k=0 ckx
k be a polynomial function of x with integral

coefficients ck. If a ≡ b(mod n), then P (a) ≡ P (b)(mod n).

Proof. Because a ≡ b(mod n), part(f) of Theorem 3.1.4 can be applied to give

ak ≡ bk(mod n) for k = 0, 1, · · · ,m. Therefore,

cka
k ≡ ckb

k(mod n)

for all such k. Adding these m + 1 congruences, we conclude that

m
∑

k=0

cka
k =

m
∑

k=0

ckb
k(mod n)

or, in different notation, P (a) ≡ P (b)(mod n). 2

Corollary 3.2.3. If a is a solution of P (x) ≡ 0(mod n) and a ≡ b(mod n), then b also

is a solution.

Proof. From the last theorem, it is known that P (a) ≡ P (b)(mod n). Hence, if a is

a solution of P (x) ≡ 0(mod n), then P (b) ≡ P (a) ≡ 0(mod n), making b a solution. 2

Theorem 3.2.4. Let N = am10m + am−110m−1 + · · · + a110 + a0 be the decimal

expansion of the positive integer N , 0 ≤ ak < 10, and let S = a0 + a1 + · · · + am. Then

9|N if and only if 9|S.

Proof. Consider P (x) =
∑m

k=0 akx
k, a polynomial with integral coefficients. The key

observation is that 10 ≡ 1(mod 9), whence by Theorem 3.2.2, P (10) ≡ P (l)(mod 9).

But P (10) = N and P (1) = a0 + a1 + · · · + am = S, so that N ≡ S(mod 9). It follows

that N ≡ 0(mod 9) if and only if S ≡ 0(mod 9), which is what we wanted to prove. 2
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Theorem 3.2.5. Let N = am10m + am−110m−1 + · · · + a110 + a0 be the decimal

expansion of the positive integer N , 0 ≤ ak < 10, and let

T = a0 − a1 + a2 − · · · + (−l)mam. Then 11|N if and only if 11|T .

Proof. As in the proof of Theorem 3.2.4, put P (x) =
∑m

k=0 akx
k. Because

10 ≡ −1(mod 11), we get P (10) ≡ P (−1)(mod 11). But P (10) = N , whereas

P (−1) = a0 − a1 + a2 − · · · + (−l)mam = T , so that N = T (mod 11). The implication

is that either both N and T are divisible by 11 or neither is divisible by 11. 2

Example 3.2.6. To see an illustration of the last two results, take the integer

N = 1, 571, 724. Because the sum

1 + 5 + 7 + 1 + 7 + 2 + 4 = 27

is divisible by 9, Theorem 3.2.4 guarantees that 9 divides N . It also can be divided

by 11; for, the alternating sum

4 − 2 + 7 − 1 + 7 − 5 + 1 = 11

is divisible by 11.

3.3 Linear Congruence and The Chinese

Remainder Theorem

Theorem 3.3.1. The linear congruence ax = b(mod n) has a solution if and only if d|b,
where d = gcd(a, n). If d|b, then it has d mutually incongruent solutions modulo n.

Proof. We already have observed that the given congruence is equivalent to the

linear Diophantine equation ax − ny = b. From Theorem 1.6.1, it is known that the

latter equation can be solved if and only if d|b; moreover, if it is solvable and x0, y0 is

one specific solution, then any other solution has the form

x = x0 + n
d
t y = y0 + a

d
t

40



for some choice of t.

Among the various integers satisfying the first of these formulas, consider those

that occur when t takes on the successive values t = 0, 1, 2, · · · , d − 1:

x0, x0 + n
d
, x0 + 2n

d
, · · · , x0 + (d−1)n

d

We claim that these integers are incongruent modulo n, and all other such integers x

are congruent to some one of them. If it happened that

x0 + n
d
t1 ≡ x0 + n

d
t2(mod n)

where 0 ≤ t1 < t2 ≤ d − 1, then we would have

n
d
t1 ≡ n

d
t2(mod n)

Now gcd(n/d, n) = n/d, and therefore by Theorem 2.1.7 the factor n/d could be

canceled to arrive at the congruence

t1 ≡ t2(mod d)

which is to say that d|t2 − t1. But this is impossible in view of the inequality

0 < t2 − t1 < d.

It remains to argue that any other solution x0 + (n/d)t is congruent modulo n to

one of the d integers listed above. The Division Algorithm permits us to write t as

t = qd + r, where 0 ≤ r ≤ d − 1. Hence

x0 +
n

d
t = x0 +

n

d
(qd + r)

= x0 + nq +
n

d
r

= x0 +
n

d
r(mod n)

with x0 + (n/d)r being one of our d selected solutions. This ends the proof. 2

Corollary 3.3.2. If gcd(a, n) = 1, then the linear congruence ax ≡ b(mod n) has a

unique solution modulo n.
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Example 3.3.3. First consider the linear congruence 18x ≡ 30(mod 42). Because

gcd(18, 42) = 6 and 6 surely divides 30, Theorem 3.3.1 guarantees the existence of

exactly six solutions, which are incongruent modulo 42. By inspection, one solution is

found to be x = 4. Our analysis tells us that the six solutions are as follows:

x ≡ 4 + (42/6)t ≡ 4 + 7t(mod 42) t = 0, 1, · · · , 5

or, plainly enumerated,

x ≡ 4, 11, 18, 25, 32, 39(mod42)

Example 3.3.4. Let us solve the linear congruence 9x ≡ 21(mod 30). At the outset,

because gcd(9, 30) = 3 and 3|21, we know that there must be three incongruent

solutions.

One way to find these solutions is to divide the given congruence through by 3,

thereby replacing it by the equivalent congruence 3x ≡ 7(mod 10). The relative

primeness of 3 and 10 implies that the latter congruence admits a unique solution

modulo 10. Although it is not the most efficient method, we could test the integers

0, 1, 2, · · · , 9 in turn until the solution is obtained. A better way is this: Multiply

both sides of the congruence 3x ≡ 7(mod 10) by 7 to get

21x ≡ 49(mod 10)

which reduces to x ≡ 9(mod 10). (This simplification is no accident, for the multiples

0 · 3, 1 · 3, 2 · 3, · · · , 9 · 3 form a complete set of residues modulo 10; hence, one of them

is necessarily congruent to 1 modulo 10.) But the original congruence was given

modulo 30, so that its incongruent solutions are sought among the integers

0, 1, 2, · · · , 29. Taking t = 0, 1, 2, in the formula

x=9+10t

we obtain 9, 19, 29, whence

x ≡ 9(mod 30) x ≡ 19(mod 30) x ≡ 29(mod 30)
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are the required three solutions of 9x ≡ 21(mod 30).

A different approach to the problem is to use the method that is suggested in the

proof of Theorem 3.3.1. Because the congruence 9x ≡ 21(mod30) is equivalent to the

linear Diophantine equation

9x − 30y = 21

we begin by expressing 3 = gcd(9, 30) as a linear combination of 9 and 30. It is found,

either by inspection or by using the Euclidean Algorithm, that 3 = 9(−3) + 30 · 1, so

that

21 = 7 · 3 = 9(−21) − 30(−7)

Thus, x = −21, y = −7 satisfy the Diophantine equation and, in consequence, all

solutions of the congruence in question are to be found from the formula

x = −21 + (30/3)t = −21 + 10t

The integers x = −21 + 10t, where t = 0, 1, 2, are incongruent modulo 30 (but all are

congruent modulo 10); thus, we end up with the incongruent solutions

x ≡ −21(mod 30) x ≡ −11(mod 30) x ≡ −1(mod 30)

or, if one prefers positive numbers, x ≡ 9, 19, 29(mod 30).

Theorem 3.3.5 (Chinese Remainder Theorem). Let n1, n2, · · · , nr, be positive

integers such that gcd(ni, nj) = 1 for i 6= j. Then the system of linear congruences

x ≡ a1(mod n1)

x ≡ a2(mod n2)

·

·

·

x ≡ ar(mod nr)

has a simultaneous solution, which is unique modulo the integer n1n2 · · ·nr.
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Proof. We start by forming the product n = n1n2 · · ·nr. For each k = 1, 2, · · · , r, let

Nk = n
nk

= n1 · · ·nk−1nk+1 · · ·nr,

In words, Nk is the product of all the integers ni with the factor nk omitted. By

hypothesis, the ni are relatively prime in pairs, so that gcd(Nk, nk) = 1. According to

the theory of a single linear congruence, it is therefore possible to solve the congruence

Nkx ≡ 1(mod nk); call the unique solution xk. Our aim is to prove that the integer

x̄ = a1N1x1 + a2N2x2 + · · · + arNrxr

is a simultaneous solution of the given system.

First, observe that Ni ≡ 0(mod nk) for i 6= k, because nk|Ni in this case. The result

is

x̄ = a1N1x1 + · · · + arNrxr ≡ akNkxk(mod nk)

But the integer xk was chosen to satisfy the congruence Nkx ≡ 1(mod nk), which

forces

x̄ ≡ ak · 1 ≡ ak(mod nk)

This shows that a solution to the given system of congruences exists.

As for the uniqueness assertion, suppose that x′ is any other integer that satisfies

these congruences. Then

x̄ ≡ ak ≡ x′(mod nk) k = 1, 2, · · · , r

and so nk|x̄ − x′ for each value of k. Because gcd(ni, nj) = 1, Corollary 2 to Theorem

1.4.8 supplies us with the crucial point that n1n2 · · ·nr|x̄ − x′; hence x̄ ≡ x′(mod n).

With this, the Chinese Remainder Theorem is proven. 2
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Example 3.3.6. The problem posed by Sun-Tsu corresponds to the system of three

congruences

x ≡ 2(mod 3)

x ≡ 3(mod 5)

x ≡ 2(mod 7)

In the notation of Theorem 3.3.5, we have n = 3 · 5 · 7 = 105 and

N1 = n
3

= 35 N2 = n
5

= 21 N3 = n
7

= 15

Now the linear congruences

35x ≡ 1(mod 3) 21x ≡ 1(mod 5) 15x ≡ 1(mod 7)

are satisfied by x1 = 2, x2 = 1, x3 = 1, respectively. Thus, a solution of the system is

given by

x = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 = 233

Modulo 105, we get the unique solution x = 233 = 23(mod 105).

Example 3.3.7. For a second illustration, let us solve the linear congruence

17x ≡ 9(mod 276)

Because 276 = 3 · 4 · 23, this is equivalent to finding a solution for the system of

congruences

17x ≡ 9(mod 3) x ≡ 0(mod 3)

17x ≡ 9(mod 4) x ≡ 1(mod 4)

17x ≡ 9(mod 23) 17x ≡ 9(mod 23)

Note that if x ≡ 0(mod 3), then x = 3k for any integer k. We substitute into the

second congruence of the system and obtain
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3k ≡ 1(mod 4)

Multiplication of both sides of this congruence by 3 gives us

k ≡ 9k ≡ 3(mod 4)

so that k = 3 + 4j, where j is an integer. Then

x = 3(3 + 4j) = 9 + 12j

For x to satisfy the last congruence, we must have

17(9 + 12j) ≡ 9(mod 23)

or 204j ≡ −144(mod 23), which reduces to 3j ≡ 6(mod 23); in consequence,

j ≡ 2(mod 23). This yields j = 2 + 23t, with t an integer, whence

x = 9 + 12(2 + 23t) = 33 + 276t

All in all, x ≡ 33(mod 276) provides a solution to the system of congruences and, in

turn, a solution to 17x ≡ 9(mod 276).

Theorem 3.3.8. The system of linear congruences

ax + by ≡ r(mod n)

cx + dy ≡ s(mod n)

has a unique solution modulo n whenever gcd(ad − bc, n) = 1.

Proof. Let us multiply the first congruence of the system by d, the second

congruence by b, and subtract the lower result from the upper. These calculations

yield

(ad − bc)x ≡ dr − bs(mod n) (3.1)

The assumption gcd(ad − bc, n) = 1 ensures that the congruence
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(ad − bc)z ≡ 1(mod n)

possess a unique solution; denote the solution by t. When congruence (3.1) is

multiplied by t, we obtain

x ≡ t(dr − bs)(mod n)

A value for y is found by a similar elimination process. That is, multiply the first

congruence of the system by c, the second one by a, and subtract to end up with

(ad − bc)y ≡ as − cr(mod n) (3.2)

Multiplication of this congruence by t leads to

y ≡ t(as − cr)(mod n)

A solution of the system is now established. 2

Example 3.3.9. Consider the system

7x + 3y ≡ 10(mod16)

2x + 5y ≡ 9(mod16)

Because gcd(7 · 5 − 2 · 3, 16) = gcd(29, 16) = 1, a solution exists. It is obtained by the

method developed in the proof of Theorem 3.3.8. Multiplying the first congruence by

5, the second one by 3, and subtracting, we arrive at

29x ≡ 5 · 10 − 3 · 9 ≡ 23(mod 16)

or, what is the same thing, 13x ≡ 7(mod 16). Multiplication of this congruence by 5

(noting that 5 · 13 ≡ 1(mod 16)) produces x = 35 = 3(mod 16). When the variable x

is eliminated from the system of congruences in a like manner, it is found that

29y ≡ 7 · 9 − 2 · 10 ≡ 43(mod 16)
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But then 13y ≡ 11(mod 16), which upon multiplication by 5, results in

y ≡ 55 ≡ 7(mod 16). The unique solution of our system turns out to be

x ≡ 3(mod 16) y ≡ 7(mod 16)
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Chapter 4

UNIT IV

4.1 Fermat’s Little Theorem and Pseudo primes

Theorem 4.1.1 (Fermat’s theorem). Let p be a prime and suppose that p|a. Then

ap−1 ≡ 1(mod p).

Proof. We begin by considering the first p − 1 positive multiples of a; that is, the

integers

a, 2a, 3a, · · · , (p − 1)a

None of these numbers is congruent modulo p to any other, nor is any congruent to

zero. Indeed, if it happened that

ra ≡ sa(mod p) 1 ≤ r < s ≤ p − 1

then a could be canceled to give r ≡ s(mod p), which is impossible. Therefore, the

previous set of integers must be congruent modulo p to 1, 2, 3, · · · , p − 1, taken in

some order. Multiplying all these congruences together, we find that

a · 2a · 3a · · · (p − 1)a ≡ 1 · 2 · 3 · · · (p − 1)(mod p)

whence

ap−1(p − 1)! ≡ (p − 1)!(mod p)
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Once (p − 1)! is canceled from both sides of the preceding congruence (this is possible

because since p|(p − 1)!), our line of reasoning culminates in the statement that

ap−l ≡ 1(mod p), which is Fermat’s theorem. 2

Corollary 4.1.2. If p is a prime, then ap ≡ a(mod p) for any integer a.

Proof. When p|a, the statement obviously holds; for, in this setting,

ap ≡ 0 ≡ a(mod p). If p ∤ a, then according to Fermat’s theorem, we have

ap−1 ≡ 1(mod p). When this congruence is multiplied by a, the conclusion

ap ≡ a(mod p) follows. 2

Lemma 4.1.3. If p and q are distinct primes with ap ≡ a(mod q) and aq ≡ a(mod p),

then apq ≡ a(mod pq).

Proof. The last corollary tells us that (aq)p ≡ aq(mod p), whereas aq ≡ a(mod p)

holds by hypothesis. Combining these congruences, we obtain apq ≡ a(mod p) or, in

different terms, p|apq − a. In an entirely similar manner, q|apq − a. Corollary 2 to

Theorem 1.4.8 now yields pq|apq − a, which can be recast as apq ≡ a(mod pq). 2

Theorem 4.1.4. If n is an odd pseudo prime, then Mn = 2n − 1 is a larger one.

Proof. Because n is a composite number, we can write n = rs, with 1 < r ≤ s < n.

Then, according to Problem 21, Section 2.3, 2r − 1|2n − 1, or equivalently 2r − 1|Mn,

making Mn composite. By our hypotheses, 2n ≡ 2(mod n); hence 2n − 2 = kn for

some integer k. It follows that

2Mn−1 = 22n−2 = 2kn

This yields

2Mn−1 = 2kn − 1

= (2n − 1)(2n(k−1) + 2n(k−2) + · · · + 2n + 1)

= Mn(2n(k−1) + 2n(k−2) + · · · + 2n + 1)

= 0(mod Mn)
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We see immediately that 2Mn − 2 ≡ 0(mod Mn), in light of which Mn is a pseudo

prime. 2

Theorem 4.1.5. Let n be a composite square-free integer, say, n = p1p2 · · · pr, where

the pi are distinct primes. If pi − 1|n − 1 for i = 1, 2, · · · , r, then n is an absolute pseudo

prime.

Proof. Suppose that a is an integer satisfying gcd(a, n) = 1, so that gcd(a, pi) = 1

for each i. Then Fermat’s theorem yields pi|api−l − 1. From the divisibility hypothesis

pi − 1|n − 1, we have pi|an−1 − 1, and therefore pi|an − a for all a and i = 1, 2, · · · , r.

As a result of Corollary 2 to Theorem 1.4.8, we end up with n|an − a, which makes n

an absolute pseudo prime. 2

4.2 Wilson’s Theorem

Theorem 4.2.1 (Wilson). If p is a prime, then (p − 1)! ≡ −1(mod p).

Proof. Dismissing the cases p = 2 and p = 3 as being evident, let us take p > 3.

Suppose that a is any one of the p − 1 positive integers

1, 2, 3, · · · , p − 1

and consider the linear congruence ax ≡ 1(mod p). Then gcd(a, p) = 1. By Theorem

3.3.1, this congruence admits a unique solution modulo p; hence, there is a unique

integer a′, with 1 ≤ a′ ≤ p − 1, satisfying aa′ ≡ 1(mod p).

Because p is prime, a = a′ if and only if a = 1 or a = p − 1. Indeed, the congruence

a2 ≡ 1(mod p) is equivalent to (a − 1) · (a + 1) ≡ 0(mod p). Therefore, either

a − 1 ≡ 0(mod p), in which case a = 1, or a + 1 ≡ 0(mod p), in which case a = p − 1.

If we omit the numbers 1 and p − 1, the effect is to group the remaining integers

2, 3, · · · , p − 2 into pairs a, a′, where a 6= a′, such that their product aa′ ≡ 1(mod p).

When these (p − 3)/2 congruences are multiplied together and the factors rearranged,

we get
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2 · 3 · · · (p − 2) ≡ 1(mod p)

or rather

(p − 2)! ≡ 1(mod p)

Now multiply by p − 1 to obtain the congruence

(p − 1)! ≡ p − 1 ≡ −1(mod p)

as was to be proved. 2

Example 4.2.2. A concrete example should help to clarify the proof of Wilson’s

theorem. Specifically, let us take p = 13. It is possible to divide the integers

2, 3, · · · , 11 into (p − 3)/2 = 5 pairs, each product of which is congruent to 1 modulo

13. To write these congruences out explicitly:

2 · 7 = 1(mod 13)

3 · 9 = 1(mod 13)

4 · 10 = 1(mod 13)

5 · 8 = 1(mod 13)

6 · 11 = 1(mod 13)

Multiplying these congruences gives the result

11! = (2 · 7)(3 · 9)(4 · 10)(5 · 8)(6 · 11) ≡ 1(mod 13)

and so

12! ≡ 12 ≡ −1(mod 13)

Thus, (p − 1)! ≡ −1(mod p), with p = 13.

Theorem 4.2.3. The quadratic congruence x2 + 1 ≡ 0(mod p), where p is an odd

prime, has a solution if and only if p ≡ 1(mod 4).
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Proof. Let a be any solution of x2 + 1 ≡ 0(mod p), so that a2 ≡ −1(mod p).

Because p ∤ a, the outcome of applying Fermat’s theorem is

1 ≡ ap−1 ≡ (a2)(p−1)/2 ≡ (−1)(p−1)/2(mod p)

The possibility that p = 4k + 3 for some k does not arise. If it did, we would have

(−1)(p−1)/2 = (−1)2k+1 = −1

hence, 1 ≡ −1(mod p). The net result of this is that p|2, which is patently false.

Therefore, p must be of the form 4k + 1.

Now for the opposite direction. In the product

(p − 1)! = 1 · 2 · · · p−1
2

· p+1
2

· · · (p − 2)(p − 1)

we have the congruences

p − 1 ≡ −1(mod p)

p − 2 ≡ −2(mod p)

·

·

·
p + 1

2
≡ −p − 1

2
(mod p)

Rearranging the factors produces

(p − 1)! ≡ 1 · (−1) · 2 · (−2) · · · p − 1

2
·
(

−p − 1

2

)

(mod p)

≡ (−1)(p−l)/2

(

1 · 2 · · · p − 1

2

)2

(mod p)

because there are (p − 1)/2 minus signs involved. It is at this point that Wilson’s

theorem can be brought to bear; for, (p − 1)! ≡ −1(mod p), whence

−1 ≡ (−1)(p−1)/2
[

(p−1
2

)!
]2

(mod p)
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If we assume that p is of the form 4k + 1, then (−1)(p−1)/2 = 1, leaving us with the

congruence

−1 ≡
[

(p−1
2

)!
]2

(mod p)

The conclusion is that the integer [(p − 1)/2]! satisfies the quadratic congruence

x2 + 1 ≡ 0(mod p). 2

4.3 The Fermat-Kraitchik Factorization Method

Example 4.3.1. To illustrate the application of Fermat’s method, let us factor the

integer n = 119143. From a table of squares, we find that 3452 < 119143 < 3462; thus

it suffices to consider values of k2 − 119143 for those k that satisfy the inequality

346 ≤ k < (119143 + 1)/2 = 59572. The calculations begin as follows:

3462 − 119143 = 119716 − 119143 = 573

3472 − 119143 = 120409 − 119143 = 1266

3482 − 119143 = 121104 − 119143 = 1961

3492 − 119143 = 121801 − 119143 = 2658

3502 − 119143 = 122500 − 119143 = 3357

3512 − 119143 = 123201 − 119143 = 4058

3522 − 119143 = 123904 − 119143 = 4761 = 692

This last line exhibits the factorization

119143 = 3522 − 692 = (352 + 69)(352 − 69) = 421 · 283

the two factors themselves being prime. In only seven trials, we have obtained the

prime factorization of the number 119143. Of course, one does not always fare so

luckily; it may take many steps before a difference turns out to be a square.
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Example 4.3.2. Suppose we wish to factor the positive integer n = 2189 and happen

to notice that 5792 ≡ 182(mod 2189). Then we compute

gcd(579 − 18, 2189) = gcd(561, 2189) = 11

using the Euclidean Algorithm:

2189 = 3 · 561 + 506

561 = 1 · 506 + 55

506 = 9 · 55 + 11

55 = 5 · 11

This leads to the prime divisor 11 of 2189. The other factor, namely 199, can be

obtained by observing that

gcd(579 + 18, 2189) = gcd(597, 2189) = 199

Example 4.3.3. Let n = 12499 be the integer to be factored. The first square just

larger than n is 1122 = 12544. So we begin by considering the sequence of numbers

x2 − n for x = 112, 113, · · · . As before, our interest is in obtaining a set of values

x1, x2, · · · , xk for which the product (xi − n) · · · (xk − n) is a square, say y2. Then

(x1 · · ·xk)
2 ≡ y2(mod n), which might lead to a nontrivial factor of n.

A short search reveals that

1122 − 12499 = 45

1172 − 12499 = 1190

1212 − 12499 = 2142

55



or, written as congruences,

1122 ≡ 32 · 5(mod 12499)

1172 ≡ 2 · 5 · 7 · 17(mod 12499)

1212 ≡ 2.32 · 7 · 17(mod 12499)

Multiplying these together results in the congruence

(112 · 117 · 121)2 ≡ (2 · 32 · 5 · 7 · 17)2(mod 12499)

that is,

15855842 ≡ 107102(mod 12499)

But we are unlucky with this square combination. Because

1585584 ≡ 10710(mod 12499)

only a trivial divisor of 12499 will be found. To be specific,

gcd(1585584 + 10710, 12499) = 1

gcd(1585584 − 10710, 12499) = 12499

After further calculation, we notice that

1132 ≡ 2 · 5 · 33(mod 12499)

1272 ≡ 2 · 3 · 5 · 112(mod 12499)

which gives rise to the congruence

(113 · 127)2 ≡ (2 · 32 · 5 · 11)2(mod 12499)

This reduces modulo 12499 to

18522 ≡ 9902(mod 12499)

and fortunately 1852 6= ±990(mod 12499). Calculating
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gcd(1852 − 990, 12499) = gcd(862, 12499) = 431

produces the factorization 12499 = 29 · 431.

57



Chapter 5

UNIT V

5.1 The sum and number of divisors

Definition 5.1.1. Given a positive integer n, let τ(n) denote the number of positive

divisors of n and a σ(n) denote the sum of these divisors.

Theorem 5.1.2. If n = pk1

1 pk2

2 · · · pkr
r is the prime factorization of n > 1, then the

positive divisors of n are precisely those integers d of the form

d = pk1

1 pk2

2 · · · pkr
r

where 0 ≤ ai ≤ ki (i = 1, 2, · · · , r).

Proof. Note that the divisor d = 1 is obtained when a1 = a2 = · · · = ar = 0, and n

itself occurs when a1 = k1, a2 = k2, · · · , ar = kr. Suppose that d divides n non

trivially; say, n = dd′, where d > 1, d′ > 1. Express both d and d′ as products of (not

necessarily distinct) primes:

d = q1q2 · · · qs d′ = t1t2 · · · tu

with qi, tj prime. Then

pk1

1 pk2

2 · · · pkr
r = q1 · · · qst1 · · · tu
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are two prime factorizations of the positive integer n. By the uniqueness of the prime

factorization, each prime qi must be one of the pj. Collecting the equal primes into a

single integral power, we get

d = q1q2 · · · qs = pa1

1 pa2

2 · · · par
r

where the possibility that ai = 0 is allowed.

Conversely, every number d = pa1

1 pa2

2 · · · par
r (0 ≤ ai ≤ ki) turns out to be a divisor

of n. For we can write

n = pk1

1 pk2

2 · · · pkr

r

= (pa1

1 pa2

2 · · · par

r )(pk1−a1

1 pk2−a2

2 · · · pkr−ar

r )

= dd′

with d′ = pk1−a1

1 pk2−a2

2 · · · pkr−ar
r and ki − ai ≥ 0 for each i. Then d′ > 0 and d|n. 2

Theorem 5.1.3. If n = pk1

1 pk2

2 · · · pkr
r is the prime factorization of n > 1, then

(a) τ(n) = (k1 + 1)(k2 + 1) · · · (kr + 1), and

(b) σ(n) =
p

k1+1

1
−1

p1−1

p
k2+1

2
−1

p2−1
· · · pkr+1

r −1
pr−1

.

Proof. According to Theorem 5.1.2, the positive divisors of n are precisely those

integers

d = pa1

1 pa2

2 · · · par
r

where 0 ≤ ai ≤ ki. There are k1 + 1 choices for the exponent a1; k2 + 1 choices for

a2, · · · ; and kr + 1 choices for ar. Hence, there are

(k1 + 1)(k2 + 1) · · · (kr + 1)

possible divisors of n.

To evaluate σ(n), consider the product

(1 + p1 + p2
1 + · · · + pk1

1 )(1 + p2 + p2
2 + · · · + pk2

2 ) · · · (1 + pr + p2
r + · · · + pkr

r )
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Each positive divisor of n appears once and only once as a term in the expansion of

this product, so that

σ(n) = (1 + p1 + p2
1 + · · · + pk1

1 ) · · · (1 + pr + p2
r + · · · + pkr

r )

Applying the formula for the sum of a finite geometric series to the ith factor on the

right-hand side, we get

1 + pi + p2
i + · · · + pki

i =
p

ki+1

i −1

pi−1

It follows that

σ(n) =
p

k1+1

1
−1

p1−1

p
k2+1

2
−1

p2−1
· · · pkr+1

r −1
pr−1

2

Example 5.1.4. The number 180 = 22 · 32 · 5 has

τ(180) = (2 + 1)(2 + 1)(1 + 1) = 18

positive divisors. These are integers of the form

2a1 · 3a2 · 5a3

where a1 = 0, 1, 2; a2 = 0, 1, 2; and a3 = 0, 1. Specifically, we obtain

1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180

The sum of these integers is

σ(180) = 23−1
2−1

33−1
3−1

52−1
5−1

= 7
1

26
2

24
4

= 7 · 13 · 6 = 546

Definition 5.1.5. A number-theoretic function f is said to be multiplicative if

f(mn) = f(m)f(n)

whenever gcd(m,n) = 1.
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Theorem 5.1.6. The functions τ and σ are both multiplicative functions.

Proof. Let m and n be relatively prime integers. Because the result is trivially true

if either m or n is equal to 1, we may assume that m > 1 and n > 1. If

m = pk1

1 pk2

2 · · · pkr
r and n = qj1

1 qj2
2 · · · qjs

s

are the prime factorizations of m and n, then because gcd(m,n) = 1, no pi can occur

among the qj. It follows that the prime factorization of the product mn is given by

mn = pk1

1 · · · pkr
r qj1

1 · · · qjs
s

Appealing to Theorem 5.1.3, we obtain

τ(mn) = [(ki + 1) · · · (kr + 1)][(j1 + 1) · (js + 1)]

= τ(m)τ(n)

In a similar fashion, Theorem 5.1.3 gives

σ(mn) =

[

pk1+1
1 − 1

p1 − 1
· · · pkr+1

r − 1

pr − 1

]

[

qj1+1
1 − 1

q1 − 1
· · · qjs+1

s − 1

qs − 1

]

= τ(m)σ(n)

Thus, τ and σ are multiplicative functions. 2

Lemma 5.1.7. If gcd(m,n) = 1, then the set of positive divisors of mn consists of all

products d1d2, where d1|m, d2|n and gcd(d1, d2) = 1; furthermore, these products are all

distinct.

Proof. It is harmless to assume that m > 1 and n > 1; let m = pk1

1 pk2

2 · · · pkr
r and

n = qj1
1 qj2

2 · · · qjs
s be their respective prime factorizations. Inasmuch as the primes

p1, · · · , pr, q1, · · · , qs are all distinct, the prime factorization of mn is

mn = pk1

1 · · · pkr
r qj1

1 · · · qjs
s

Hence, any positive divisor d of mn will be uniquely representable in the form
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d = pa1

1 · · · par
r qb1

1 · · · qbs
s 0 ≤ ai ≤ ki, 0 ≤ bi ≤ ji

This allows us to write d as d = d1d2, where d1 = pa1

1 · · · par
r divides m and

d2 = qb1
1 · · · qbs

s divides n. Because no pi is equal to any qj. we surely must have

gcd(d1, d2) = 1. 2

Theorem 5.1.8. If f is a multiplicative function and F is defined by

F (n) =
∑

d|n

f(d)

then F is also multiplicative.

Proof. Let m and n be relatively prime positive integers. Then

F (mn) =
∑

d|mn

f(d)

=
∑

d1|m
d2|n

f(d1d2)

because every divisor d of mn can be uniquely written as a product of a divisor d1 of

m and a divisor d2 of n, where gcd(d1, d2) = 1. By the definition of a multiplicative

function,

f(d1d2) = f(d1)f(d2)

It follows that

F (mn) =
∑

d1|m
d2|n

f(d1)f(d2)

=





∑

d1|m

f(d1)









∑

d2|n

f(d2)





= F (m)F (n)

2
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Corollary 5.1.9. The functions τ and σ are multiplicative functions.

Proof. We have mentioned that the constant function f(n) = 1 is multiplicative, as

is the identity function f(n) = n. Because τ and σ may be represented in the form

τ(n) =
∑

d|n

1 and σ(n) =
∑

d|n

d

the stated result follows immediately from Theorem 5.1.8. 2

5.2 The Mobius Inversion Formula

Definition 5.2.1. For a positive integer n, define µ by the rules

µ(n) =



























1 if n = 1

0 if p2|n for some prime p

(−1)r if n = p1p2 · · · pr,where pi are distinct primes

Theorem 5.2.2. The function µ is a multiplicative function.

Proof. We want to show that µ(mn) = µ(m)µ(n), whenever m and n are relatively

prime. If either p2|m or p2|n, p a prime, then p2|mn; hence, µ(mn) = 0 = µ(m)µ(n),

and the formula holds trivially. We therefore may assume that both m and n are

square-free integers. Say, m = p1p2 · · · pr, n = q1q2 · · · qs, with all the primes pi and qj

being distinct. Then

µ(mn) = µ(p1 · · · prq1 · · · qs) = (−l)r+s

= (−1)r(−1)s = µ(m)µ(n)

which completes the proof. 2
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Theorem 5.2.3. For each positive integer n ≤ 1,

∑

d|n

µ(d) =











1 if n = 1

0 if n > 1

where d runs through the positive divisors of n.

Theorem 5.2.4 (Mobius inversion formula). Let F and f be two number-theoretic

functions related by the formula

F (n) =
∑

d|n f(d)

Then

f(n) =
∑

d|n µ(d)F
(

n
d

)

=
∑

d|n µ
(

n
d

)

F (d)

Proof. The two sums mentioned in the conclusion of the theorem are seen to be the

same upon replacing the dummy index d by d′ = n/d; as d ranges over all positive

divisors of n, so does d′.

Carrying out the required computation, we get

∑

d|n

µ(d)F
(n

d

)

=
∑

d|n



µ(d)
∑

c|(n/d)

f(c)



 =
∑

d|n





∑

c|(n/d)

µ(d)f(c)



 (5.1)

It is easily verified that d|n and c|(n/d) if and only if c|n and d|(n/c). Because of

this, the last expression in Equation (5.1) becomes

∑

d|n





∑

c|(n/d)

µ(d)f(c)



 =
∑

c|n





∑

d|(n/c)

f(c)µ(d)



 =
∑

c|n



f(c)
∑

d|(n/c)

µ(d)



 (5.2)

In compliance with Theorem 5.2.3, the sum
∑

d|(n/c) µ(d) must vanish except when

n/c = 1 (that is, when n = c), in which case it is equal to 1; the upshot is that the
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right-hand side of Equation (5.2) simplifies to

∑

c|n



f(c)
∑

d|(n/c)

µ(d)



 =
∑

c=n

f(c) · 1

= f(n)

giving us the stated result. 2

Theorem 5.2.5. If F is a multiplicative function and

F (n) =
∑

d|n f(d)

then f is also multiplicative.

Proof. Let m and n be relatively prime positive integers. We recall that any divisor

d of mn can be uniquely written as d = d1d2, where d1|m, d2|n, and gcd(d1, d2) = 1.

Thus, using the inversion formula,

f(mn) =
∑

d|mn

µ(d)F
(mn

d

)

=
∑

d1|m
d2|n

µ(d1d2)F

(

mn

d1d2

)

=
∑

d1|m
d2|n

µ(d1)µ(d2)F

(

m

d1

)

F

(

n

d2

)

=
∑

d1|m

µ(d1)F

(

m

d1

)

∑

d2|n

µ(d2)F

(

n

d2

)

= f(m)f(n)

which is the assertion of the theorem. Needless to say, the multiplicative character of

µ and of F is crucial to the previous calculation. 2
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5.3 The Greatest Integer Function

Definition 5.3.1. For an arbitrary real number x, we denote by [x] the largest integer

less than or equal to x; that is, [x] is the unique integer satisfying x − 1 < [x] ≤ x.

Theorem 5.3.2. If n is a positive integer and p a prime, then the exponent of the

highest power of p that divides n! is

∞
∑

k=1

[

n

pk

]

where the series is finite, because [n/pk] = 0 for pk > n.

Proof. Among the first n positive integers, those divisible by p are p, 2p, · · · , tp,

where t is the largest integer such that tp ≤ n; in other words, t is the largest integer

less than or equal to n/p (which is to say t = [n/p]). Thus, there are exactly [n/p]

multiples of p occurring in the product that defines n!, namely,

p, 2p, · · · ,

[

n

p

]

p (5.3)

The exponent of p in the prime factorization of n! is obtained by adding to the

number of integers in Equation (5.3), the number of integers among 1, 2, · · · , n

divisible by p2, and then the number divisible by p3, and so on. Reasoning as in the

first paragraph, the integers between 1 and n that are divisible by p2 are

p2, 2p2, · · · ,

[

n

p2

]

p2 (5.4)

which are [n/p2] in number. Of these, [n/p3] are again divisible by p:

p3, 2p3, · · · ,

[

n

p3

]

p3 (5.5)

After a finite number of repetitions of this process, we are led to conclude that the
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total number of times p divides n! is

∞
∑

k=1

[

n

pk

]

2

Example 5.3.3. We would like to find the number of zeros with which the decimal

representation of 50! terminates. In determining the number of times 10 enters into

the product 50!, it is enough to find the exponents of 2 and 5 in the prime

factorization of 50!, and then to select the smaller figure.

By direct calculation we see that

[50/2] + [50/22] + [50/23] + [50/24] + [50/25]

= 25 + 12 + 6 + 3 + 1

= 47

Theorem 6.9 tells us that 247 divides 50!, but 248 does not. Similarly,

[50/5] + [50/52] = 10 + 2 = 12

and so the highest power of 5 dividing 50! is 12. This means that 50! ends with 12

zeros.

Theorem 5.3.4. If n and r are positive integers with 1 ≤ r < n, then the binomial

coefficient

(

n

r

)

=
n!

r!(n − r)!

is also an integer.

Proof. The argument rests on the observation that if a and b are arbitrary real
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numbers, then [a + b] ≤ [a] + [b]. In particular, for each prime factor p of r!(n − r)!,

[

n

pk

]

≥
[

r

pk

]

+

[

(n − r)

pk

]

k = 1, 2, · · ·

Adding these inequalities, we obtain

∑

k≥1

[

n

pk

]

≥
∑

k≥1

[

r

pk

]

+
∑

k≥1

[

(n − r)

pk

]

(5.6)

The left-hand side of Equation (5.6) gives the exponent of the highest power of the

prime p that divides n!, whereas the right-hand side equals the highest power of this

prime contained in r!(n − r)!. Hence, p appears in the numerator of n!/r!(n − r)! at

least as many times as it occurs in the denominator. Because this holds true for every

prime divisor of the denominator, r!(n − r)! must divide n!, making n!/r!(n − r)! an

integer. 2

Corollary 5.3.5. For a positive integer r, the product of any r consecutive positive

integers is divisible by r!.

Proof. The product of r consecutive positive integers, the largest of which is n, is

n(n − 1)(n − 2) · · · (n − r + 1)

Now we have

n(n − 1) · · · (n − r + 1) =

(

n!

r!(n − r)
!

)

r!

Because n!/r!(n − r)! is an integer by the theorem, it follows that r! must divide the

product n(n − 1) · · · (n − r + 1), as asserted. 2

Theorem 5.3.6. Let f and F be number-theoretic functions such that

F (n) =
∑

d|n

f(d)
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Then, for any positive integer N ,

N
∑

n=1

F (n) =
N

∑

k=1

f(k)

[

N

k

]

Proof. We begin by noting that

N
∑

n=1

F (n) =
N

∑

n=1

∑

d|n

f(d) (5.7)

The strategy is to collect terms with equal values of f(d) in this double sum. For a

fixed positive integer k ≤ N , the term f(k) appears in
∑

d|n f(d) if and only if k is a

divisor of n. (Because each integer has itself as a divisor, the right-hand side of

Equation (5.7) includes f(k), at least once.) Now, to calculate the number of sums
∑

d|n f(d) in which f(k) occurs as a term, it is sufficient to find the number of integers

among 1, 2, · · · , N , which are divisible by k. There are exactly [N/k] of them:

k, 2k, 3k, · · · ,

[

N

k

]

k

Thus, for each k such that 1 ≤ k ≤ N , f(k) is a term of the sum
∑

d|n f(d) for [N/k]

different positive integers less than or equal to N . Knowing this, we may rewrite the

double sum in Equation (5.7) as

N
∑

n=1

∑

d|n

f(d) =
N

∑

k=1

f(k)

[

N

k

]

and our task is complete. 2

Corollary 5.3.7. If N is a positive integer, then

N
∑

n=1

τ(n) =
N

∑

n=1

[

N

n

]

Proof. Noting that τ(n) =
∑

d|n 1, we may writer for F and take f to be the
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constant function f(n) = 1 for all n. 2

Corollary 5.3.8. If N is a positive integer, then

N
∑

n=1

σ(n) =
N

∑

n=1

n

[

N

n

]

Example 5.3.9. Consider the case N = 6. The definition of τ tells us that

6
∑

n=1

τ(n) = 14

By above Corollary,

6
∑

n=1

[

6

n

]

= [6] + [3] + [2] + [3/2] + [6/5] + [1]

= 6 + 3 + 2 + 1 + 1 + 1

= 14

as it should. In the present case, we also have

6
∑

n=1

σ(n) = 33

and a simple calculation leads to

6
∑

n=1

n

[

6

n

]

= 1[6] + 2[3] + 3[2] + 4[3/2] + 5[6/5] + 6[1]

= 16 + 23 + 32 + 41 + 51 + 61

= 33
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