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Introduction 
 

“Mathematics is the Queen of the Sciences and Number Theory is the Queen of 

Mathematics” - Gauss. 

 

Mechanics is a branch of Science which deals with the action of forces on bodies. Mechanics 

has two branches called Statics and Dynamics. 
 

Statics is the branch of Mechanics which deals with bodies remain at rest under the influence 

of forces. 

 

Dynamics is the branch of Mechanics which deals with bodies in motion under the action of 

forces. 
 

Definitions: 

Space: The region where various events take place is called a space. 
 

Body: A portion of a matter is called a body. 

Rigid body: A body consists of innumerable particles in which the distance between any two 

particles remains the same in all positions of the body is called a rigid body. 
 

Particle: A particle is a body which is very small whose position at any time coincides with a 

point. 
 

Motion: If a body changes its position under the action of forces, then it is said to be in 

motion. 
 

Path of a particle: It is the curve joining the different positions of the particle in space while 

in motion. 
 

Speed: The rate at which the body describes its path. It is a scalar quantity. 
 

Displacement (vector quantity): It is the change in the positions of a particle in a certain 

interval. 

Velocity (vector quantity): It is the rate of change of displacement. 
 

Acceleration (vector quantity): It is the rate of change of velocity. 

Equilibrium: A body at rest under the action of any number of forces on it is said to be in 

equilibrium. 

Equilibrium of two forces 
 

Q  P 
 

If two forces P, Q act on a body such that they have equal magnitude, opposite directions, 

same line of action then they are in equilibrium. 

 

Force (vector): Force is any cause which produces or tends to produce a change in the 

existing state of rest of a body or of its uniform motion in a straight line. Force is represented 

by a straight line (through the point of application) which has both magnitude and direction. 
 

Types of forces: Weight, attraction, repulsion, tension, thrust, friction etc. 

By Newton‟s third law, action and reaction are always equal and opposite. 
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Directions of Normal Reaction „R‟ at the point of contact. 
 

 

1.  When a rod AB is in contact with a 

smooth plane, R is perpendicular to the 

plane at the point of contact A. 

 

 

2.  When a rod AB is resting on a 

smooth peg P, R is perpendicular to 

the rod at the point of contact P. 

 

 

3. When a rod AB is resting on a 

smooth sphere, R is normal to the 

sphere at the point of contact C. 

 
 
 

R   
B 

 

rod 

 

Smooth A Plane 
 

 

R  
 

B 

O P -Peg 
 

A 

 

R   
B 

 

C 

 

A 

 

4. When a rod AB is resting on   

the rim of a hemisphere, with  R1 

one end A in contact with the  R 

inner surface and C in contact  B 

with the rim. Then the normal 
O C 

  

reactions  R at A is normal to A  

the spherical surface and passes   

through the centre O, R1 at C is   

perpendicular to the rod. 

     

Regular polygon is a polygon with equal sides. Its vertices lie on a 

circle. 
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UNIT I 
Forces Acting at a Point 

 Introduction 

 Forces are represented by straight lines with magnitude and direction. Forces acting on a 

rigid body may be represented by straight lines with magnitude and direction passing through the 

same point and we say the forces are acting at a point. If 32,1 , PPP ……..  are the forces acting 

on a rigid body it is easy to find a single force whose effect is same as the combined effect of 

321 ,, PPP  …….. Then the single force is called the resultant. 321 ,, PPP  ….. are called the 

components of the resultant. In this section we study some theorems and methods to find the 

resultant of two or more forces acting at a point. 

1.1 Parallelogram law of forces (Fundamental theorem in statics) 

 If two forces acting at a point be represented in magnitude and direction by the sides of a 

parallelogram drawn from the point, their resultant is represented both in magnitude and 

direction by the diagonal of the parallelogram drawn through that point. 

 D                                   C 

                            Q                  

                                                      R                          

                                                                       


 ACADAB   
 

 

                     A            P               B                  ie) P + Q = R 
 

The resultant of two forces acting at a point 
                                   D                                           C 

 

                                                         R 

                            Q                            

 
                       

                                                                           

                         A                             P             B              E 

Let the two forces P and Q acting at A be represented by AB and AD. Let   be the angle 

between them. 

 i.e.  BAD    

 Complete the parallelogram ABCD. 

 Then the diagonal AC will represent the resultant. 
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 Let CAB   

 Draw CE r    to AB. Now BC = AD = Q. 

 From the right angled CBE, 

 sin C


B E 
BC

CE
   i.e. sin

Q

CE
  

 CE  =  Q sin .... ... ... (i) 

 cos   = 
Q

BE

BC

BE
  

 BE  =  Q cos   .... ... ... (ii) 

 R
2
 = AC

2
 =  AE

2
 + CE

2
 = (AB + BE)

2
 +CE

2
 

   = (P + Q cos 2)   + (Q sin )
2
 

   =  P
2
 + 2PQcos + Q 

2 

       R  =  2 22 cos2 QPQP               

  tan  = 




cos

sin

QP

Q

AE

CE


  

 

Result 1 If the forces P and Q are at right angles to each other, then  = 90
o
 ; 

 R = 
22 QP        tan 

P

Q
   

Result 2  If the forces are equal (i.e.) Q = P, then 

 R     cos12cos2 2222  PPPP   

   = 
2

cos2.2 22 
P  = 2P

2
cos


 

 tan     = 

2
cos2

2
cos

2
sin2

cos1

sin

cos

sin

2 















 PP

P
 

  = 
2

tan


 

 ie)   
2


    
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 Thus the resultant of two equal forces P, P at an angle  is 2 P cos 
2


 in a direction 

bisecting the angle between them. 

Result 3 Resultant R is greatest when cos  is greatest.
 

 i.e. when cos = 1 or  = 0
o. 

 
ie) Greatest value of R is R = P +Q. 

 R is least when cos  is least. 

      i.e. when cos = 1  or   = 180
o.  

Least value of R is P~Q. 

Problem 1 

  The resultant of two forces P, Q acting at a certain angle is X and that of P, R acting at 

the same angle is also X. The resultant of Q, R again acting at the same angle is Y, Prove that. 

  P = (X
2
 + QR

 
222

2
1

)
YRQ

RQQR






  

  Prove also that, if P + Q + R = 0, Y = X. 

 

Solution: 

 Let   be the angle between P and Q 

 Given  

 X
2 

=  P
2
 + Q

2
 + 2PQ cos       …….... (1) 

 X
2 

=  P
2
 + R

2
 + 2PR cos        ........... (2) 

 Y
2 

=  Q
2
 + R

2
 + 2QR cos       ........... (3) 

 (1) – (2) gives 0 =  Q 2
R 2    + 2P cos  ( RQ  ) 

  i.e. 0      =  (Q – R) (Q+R+2P cos ) 

 

 But Q   R and so Q – R  0 

 

  Q + R + 2Pcos  = 0 

    cos   = 
P

RQ

2


   ........ (4) 

  Substitute (4) in (1),  

 X
2
 =  P

2
 + Q

2
 + 2PQ 















 


P

RQ

2
= P

2
 + Q

2 
–  Q

2
 – QR 

  P
2
 =  X

2
 + QR. i.e. P = (X

2
 + QR 2

1
)
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 Substitute (4) in (3),  

 Y
2
 =  Q

2
 + R

2
 + 2QR 















 


P

RQ

2
 

  =  Q
2
 + R

2
 

 
P

RQQR 
  

 
P

RQQR 
  =  Q

2
 + R

2
 – Y

2 

         P = 
 

222 YRQ

RQQR




 

If P + Q + R  =   0, then Q + R =  P , 

From (4), cos  = 
P

RQ

2


 = 

2

1

2


P

P
 

   cos 
2

1
    

  X
2
 =   P

2
 + R

2
 + PR... ...   ... (5) 

   Y
2
 =   Q

2
 + R

2
 + QR ... ...   ... (6) 

 (5) – (6) gives 

 X
2
 – Y

2
 =   P

2
 – Q

2
+ PR – QR 

   = (P – Q) (P + Q + R) 

   =   (P – Q).0 = 0 

       X = Y 

 

Problem 2 

  Two forces of given magnitude P and Q act at a point at an angle . What will be the 

maximum and minimum value of the resultant? 

 

Solution: 

i. Maximum value of the resultant   =  P + Q 

 

ii. Minimum value of the resultant   =  P~ Q. 
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Problem 3 

  The greatest and least magnitudes of the resultant of two forces of constant magnitudes 

are R and S respectively. Prove that, when the forces act at an angle 2 , the resultant is of 

magnitude  2222 sincos SR     

   

Solution: 

 Given, R = P + Q, S = P-Q, where P and Q are two forces. 

 When P and Q are acting at an angle 2  

Resultant = 2cos.222 PQQP    

      =     2222 sincos2  PQQP  

      =       222222 sincos2cossin  PQQP  

      =      222222 sin2cos2 PQQPPQQP   

      =  2222 sincos SR 
.
  

Problem 4 

  The resultant of two forces P and Q is at right angles to P. Show that the angle between 

the forces is 









Q

P1cos  

Solution: 

 Let be the angle between the two forces P and Q. Given   = 90
o. 

                                                         D                                          C 

 

                                                                                   Q                 R 

                                                                                                          

                                                                                                   A                 P                      B 

 We know, tan   = 




cos

sin

QP

Q


 

  i.e. tan 90
o
  = 





cos

sin

QP

Q


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0

1
  = 





cos

sin

QP

Q


  

   cosQP   = 0 

   cos  = 
Q

P
   

   







 

Q

P1cos  

 

Problem 5 

  The resultant of two forces P and Q is of magnitude P. Show that, if P be doubled, the 

new resultant is at right angles to Q and its magnitude will be
224 QP  . 

 

Solution: 

 Let   be the angle between P and Q 

                      D                                     C 

 

 

                                  P                 P 

 

                                             

                                                        

                                               A                      Q            B                                               

Given, 
2P   = 

2P +
2Q  + cos2PQ . 

 Q (Q+2Pcos )  = 0 

 
P

Q

2
cos    

If P is doubled, let R be the new resultant, and  be the angle between Q and R. 

 
2R  =     cos.222 22

QPQP   

  = 









P

Q
PQQP

2
44 22   

  = 22222 424 QPQQP   
 

   
224 QPR   
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     tan =      
 
  



cos2

sin2

PQ

P


 =  











P

Q
PQ

P

2
2

sin2 
  

 i.e. tan  = 
0

sin2 P

 
  

 cos   =        0        ⇒  φ = 90
0
 

  

 ∴ Q is at right angles to R.  

 

Problem 6  
  Two equal forces act on a particle, find the angle between them when the square of their 

resultant is equal to three times their product. 

Solution: 

                                       D                                C  

                                P                 R    

                               

              A                  P            B 
  

Let   be the angle between the two equal forces P, P, and let R be their resultant. 

 
2R   = cos..222 PPPP   

   =  
2

cos22cos12 222 
  PP  

 i.e.
2R   = 

2
cos4 22 

P   

  

     
  

Given, 2R   =  233 PPP   
 

 23P   = 
2

cos4 22 
P

 
  

 
2

cos2   = 
4

3
   

2
cos


 = 

2

3
 

R  = 2Pcos
2


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      
2


 =30

o
  

  

         α = 60
0
 

  

 

Problem 7 

  If the resultant of forces 3P, 5P is equal to 7P find 

  i. the angle between the forces 

  ii. the angle which the resultant makes with the first force.  

 

Solution: 

Let   be the angle between 3P, 5P 

 i. Given (7P)
2 

 =  (3P)
2
+ (5P)

2
+ 2 (3P) (5P) .cos  

  49P
2
  =  9P

2
 + 25P

2
+ 30P

2
cos  

  215P  = cos30 2P  

  cos  = 
2

1
  α = 60

0
 

 

 ii. Let   be the angle between the resultant and 3P. 

  tan  = 




cos

sin

QP

Q


 

     

                                                = 




cos.53

sin.5

PP

P


 

     

                                                = 




60cos.53

60sin.5

PP

P
 

    = 













2

1
53

2

3
5
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  tan   = 
11

35

 

 

     = 














11

35
tan 1  

 

1.2 Triangle of forces  

 

If three forces acting at a point can be represented in magnitude and 

direction by the sides of a triangle taken in order, they will be in 

equilibrium. 

 

M  D C  

   Q        R  Q 

Q  
A P B  

  

O  

R               P                         L    
 
                                            N 
                                         

Let the forces, P,Q,R act at a point O and be represented in 

magnitude and direction by the sides AB,BC,CA of the triangle ABC. 

 

To prove : They will be in equilibrium. 

Complete the parallelogram BADC. 

 

P+Q = AB  + AD  = AB + BC   

 

                             =  AC  
 

ie) The resultant of the forces P, Q at O is represented in magnitude 

and direction by AC. 

 

The third force R acts at O and it is represented in magnitude and 

direction by CA. 

 

Hence P+Q+R = AC + CA =0  
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Principle 

 

If two forces acting at a point are represented in magnitude and direction 

by two sides of a triangle taken in the same order, the resultant will be 

represented in magnitude and direction by the third side taken in the 

reverse order. 

1.3 Lami‟s Theorem    

 If three forces acting at a point are in equilibrium, each force is proportional to the 

sine of the angle between the other two. 

                                                                                          X 

 

                                                                          

                                                                               Y                     Z        

 

 

 

 

 

 

Proof: 

 

                   By converse of the triangle of forces, the sides of the triangle OAD 

represent the forces P,Q,R in magnitude and  direction. 

 

 By sine rule in OAD , we have 

 
OAD

DO

DOA

AD

ODA

OA







 sinsinsin
 ……………. (1) 

 But MONBODaltOAD  0180.  

   MONMONODA  sin180sinsin 0
 …….. (2) 

 Also NOLDOA  0180  

   NOLNOLDOA  sin180sinsin 0
 ……. (3) 

        M 
 
                    B                                 D 
              Q 
 
                         
 
 

            O                                                 
                                                                           A   P       L                            
                     R 
        
         N 
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 And LOMBOAOAD  00 180180  

  LOMLOMOAD  sin180sinsin 0
 ……. (4) 

Substitute (2), (3), (4) in (1),  

LOM

DO

NOL

AD

MON

OA







 sinsinsin
 

i.e. 
LOM

R

NOL

Q

MON

P







 sinsinsin
 

),sin(),sin().sin( QP

R

PR

Q

RQ

P
  

 

Problem 8 

  Two forces act on a particle. If the sum and difference of the forces are at right angles to 

each other, show that the forces are of equal magnitude. 

 

Solution: 

 

      D                               C 

 

                        Q 

                       

 

 

A              P                 B 

 
 Let the forces P and Q acting at A be represented in magnitude and direction by the lines 

AB and AD. Complete the parallelogram BAD. 

 

 Then P+Q= ACADAB    

P-Q = ADAB  

 = DAAB  

 

 = ABDA  

 = DB   
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Given AC  and DB  are at right angles. 

The diagonals AC and BD cut at right angles. 

 

ABCD must be a rhombus. 

AB = AD.  

P = Q. 

 

Problem 9 

  Let A and B two fixed points on a horizontal line at a distance c apart. Two fine light 

strings AC and BC of lengths b and a respectively support a mass at C. Show that the tensions of 

the strings are in the ratio    222222 : acbabcab   

 

  Solution                                       

                            A            c          D          B 

                                      

        

         T1                     T2                                              

                                               b          a 

                                                    C 

                                                             

  

                                                  E   W 
 

Forces T1, T2, W are acting at C. 

By Lami‟s theorem, 

)1........(
sinsin

21

ECA

T

ECB

T





 

Now sin  DCBECB  0180sin  

  = sin DCB  

  = sin   ABCABC  cos900

 

 

sin  ACDECA  0180sin  

 = sin ACD  

 = sin   BACBAC  cos900
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BAC

T

ABC

T




 coscos

21
 













 













 



bc

acb

ca

bac

A

B

T

T

2

2

cos

cos

222

222

2

1  

 


2

1

T

T  
 222

222

222

222 2

2 acba

bacb

acb

bc

ca

bac




























 
  

 

Problem 10 

  ABC is a given triangle. Forces P,Q,R acting along the lines OA,OB,OC are in 

equilibrium. Prove that            

(i)P : Q : R=    :: 22222222 bacbacba   2222 cbac   if O is the cicumcentre of the 

triangle.        

(ii) P : Q : R= 
2

cos:
2

cos:
2

cos
CBA

  if O is the incentre  of the triangle. 

(iii) P : Q : R= a:b:c  if O is the ortho centre of the triangle. 

(iv) P : Q : R=OA : OB : OC if O is the centroid of the triangle, 

 

Solution: 

 

 

 

 

 

                               By Lami‟s theorem,  

 
AOB

R

COA

Q

BOC

P







 sinsinsin
 …………… (1) 

 

 (i) O is the circumcentre of the  ABC 

 CAOBandBCOAABACBOC 22;22   

                                     A 
 
                                P 
 
                        O 
                Q             R 
                                      
     B                                            C 

 

                                                A 
 
                     
                            F 
 
                                                  O    E 
 
  B                                          
                                                D         C 
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C

R

B

Q

A

P

2sin2sin2sin
)1(      

 i.e. 
CC

R

BB

Q

AA

P

cossin2cossin2cossin2
  ……. (2) 

 

 But 
bc

acb
A

2
cos

222 
  and 

bc
A




2
sin  

   where   is the area of the triangle ABC 

 

 
bcbc

acb
AA

2

2
2cossin2

222 
  

  = 
 

22

2222

cb

acb 
 

Similarly 
 

22

2222
cossin2

ac

bac
BB


  

CCcossin2
 

22

2222

ba

cba 
 

Substitute in (2)  

 
     222

22

222

22

222

22

22

.

2

.

cba

bRa

bac

acQ

acb

cbP








 

Divide by 
2

222 cba
 

     222222222222 cbac

R

bacb

Q

acba

P








 

 

(ii) O is the in-centre of the triangle, 

OB and OC are the bisectors of B and C 
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









22
180

22
180 00 CBCB

BOC  

                 

                = 
2

90
2

90180 000 AA









  

Similarly COA = 
2

90,
2

90 00 C
AOB

B
  

(1) 



































2
90sin

2
90sin

2
90sin 000 C

R

B

Q

A

P
 

i.e. 

2
cos

2
cos

2
cos

C

R

B

Q

A

P
  

 

(iii) O is the ortho-centre of the triangle 

AD, BE, CF are the altitudes of the triangle 

AFOE is a cyclic quadrilateral. 

0180 AFOE  , AFOE  0180  

BOC  = A0180  

Similarly, BCOA  0180 , CAOB  0180  

Hence (1) becomes 

     C

R

B

Q

A

P







 000 180sin180sin180sin
 

i.e. 
C

R

B

Q

A

P

sinsinsin
  

i.e. 
c

R

b

Q

a

P
  










C

c

B

b

A

a

sinsinsin
  
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(iv) O is the centroid of the triangle 

 BOC =  COA = AOB = ABC
3

1
 

 BOC = ABCBOCOCOB 
3

1
sin.

2

1
 

OCOB

ABC
BOC

.3

2
sin


  

 

Similarly, 
OAOC

ABC
COA

.3

2
sin


  , 

OBOA

ABC
AOB

.3

2
sin


  

  

Hence (1) becomes 
ABC

OBOAR

ABC

OAOCQ

ABC

OCOBP







 2

.3.

2

.3.

2

.3.
 

  

i.e. P.OB.OC = Q.OC.OA = R.OA.OB 

 

 Dividing by OA.OB.OC, we get 
OC

R

OB

Q

OA

P
 . 

 

1.4 Parallel forces:  

 

        Forces acting along parallel lines are called parallel forces. There are two types of parallel 

forces known as like and unlike parallel forces. Since the parallel forces do not meet at a point, in 

this chapter we study methods to find the resultant of two like parallel and unlike parallel forces. 

Parallel forces acting on a rigid body have a tendency to rotate it about a fixed point. Such 

tendency is known as moment of the parallel forces. Here we study the theorem on moments of 

forces about a point.  

 Definition:   

   

  Two parallel forces are said to be like if they act in the same direction, they 

are said to be unlike if they act in opposite parallel directions. 
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The resultant of two like parallel forces acting on a rigid body   
   

   

 

                                                                        P 

                                                              Q 

                                

                                    1R        P                X 

                         E                 D                             Q   2R  

  L M 

 

Proof: 

Let P and Q be two like parallel forces acting at A and B along the lines AD and BL.At A 

and B, introduce two equal and opposite forces F along AG and BN. These two forces F balance 

each other and will not affect the system. 

 Now, R1 is the resultant of P and F at A and R 2  is the resultant of Q and F at B as in the 

diagram. 

           Produce EA and MB to meet at O. At O, draw YOY1  parallel to AB and draw OX 

parallel to the direction of P. 

 Resolve R1 and R 2  at O into their original components. R1 at O is equal to F along OY1  

and P along OX. R 2  at O is equal to F along OY and Q along OX. 

 The two forces F, F at O cancel each other. The remaining two forces P and Q acting 

along OX have the resultant P+Q (sum) along OX. 

 

 

G         F    A                         C                     B       F       N 

                    F                             O                       F 

Y                                                                    Y 
Y 
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Find the position of the resultant 

 Now, AB and OX meet at C. 

Triangles, OAC and AED are similar. 

ED

AC

AD

OC
  ie) 

F

AC

P

OC
  

 ACPOCF ..    ……………………… (1) 

Triangles OCB and BLM are similar. 

                 LM

CB

BL

OC
  ie) 

F

CB

Q

OC


 

 CBQOCF ..    ……………………….. (2) 

(1) & (2)     

 

 ie) 
P

Q

CB

AC


 

 

ie) „C‟ divides AB internally in the inverse ratio of the forces. 

 

The resultant of two unlike and unequal parallel forces acting on a rigid body: 

 

                               Y                                            Y 

                                      P 

                                        Q         E          D 

                                         C P      B F        N 

       X  

   L            M 

P.AC = Q.CB 

R1 

R2 
Q 

O 

    G             A 

F 

F  F 
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Proof: 

           Let P and Q at A and B be two unequal unlike parallel forces acting along AD and BL. 

            Let P > Q. 

At A and B introduce two equal and opposite forces F along AG and BN. These two balances 

each other and will not affect the system. 

Let R1 be the resultant of F and P at A and R 2  be the resultant of F and Q at B. as in the 

diagram. 

Produce EA and MB to meet at O. At O, draw Y OY parallel to AB and draw OX parallel to the 

direction of P. 

Resolve R1 and R 2  at O into their components. R1 at O is equal to F along  YO   and P along 

XO. R 2  at O is equal to F along OY and Q along OX. 

The two forces F, F at O cancel each other. Now, the remaining forces are P and Q along the 

same line but opposite directions. 

 Hence the resultant is P ~ Q (difference) along XO. 

Find the position of the resultant 

 Now, AB and OX meet at C. 

Triangles OCA and EGA are similar. 

,
GA

CA

EG

OC
  ie) 

F

CA

P

OC
  

   ACPOCF ..   …………………… (1) 

Triangles OCB and BLM are similar. 

,
LM

CB

BL

OC
  ie) 

F

CB

Q

OC
  

   CBQOCF ..   …………………… (2) 

(1) and (2)     

 

 ie) 
P

Q

CB

CA
  

ie) „C‟ divides AB externally. 

  

Note :  The effect of two equal and unlike parallel forces can not be replaced by a single force. 

P.AC = Q.CB 
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The condition of equilibrium of three coplanar parallel forces  

 

        P                                 P+Q Q 

 

 A                                C        B 
                                          
                                             R   
 

Let P, Q, R be the three coplanar parallel forces in equilibrium. Draw a line to meet the 

forces P, Q, R at the points A, B, C respectively. 

Equilibrium is not possible if all the three forces are in the same direction. 

Let P + Q be the resultant of P and Q parallel to P. Hence R must be equal and opposite 

to P + Q. 

 R = P + Q  (in magnitude, opposite in direction) 

CBQACP ..   

 

AB

R

ACCB

QP

AC

Q

CB

P







 

 

 

Hence,  

 

ie) If three parallel forces are in equilibrium then each force is proportional to the distance 

between the other two. 

 

Note: The centre of two parallel forces is a fixed point through which their resultant 

always passes. 

Problem 11 

           Two men, one stronger than the other, have to remove a block of stone weighing 300 kgs. 

with a light pole whose length is 6 metre. The weaker man cannot carry more than 100 kgs. 

Where the stone be fastened to the pole, so as just to allow him his full share of weight? 

 

AB

R

AC

Q

CB

P
  
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Solution: 

 x  6 – x  

            A C B 

 

 

 100    300                  200 

 

Let A be the weaker man bearing 100 kgs., B the stronger man bearing 200 kgs. Let C be 

the point on AB where the stone is fastened to the pole, such that AC = x. Then the weight of the 

stone acting at C is the resultant of the parallel forces 100 and 200 at A and B respectively. 

 100.AC = 200.BC 

   i.e. 100x = 200 (6-x) = 1200 – 200x 

      300x = 1200 or x=4 

Hence the stone must be fastened to the pole at the point distant 4 metres from the weaker 

man. 

Problem 12 

Two like parallel forces P and Q act on a rigid body at A and B respectively. 

a) If Q be changed to 
Q

P2

 , show that the line of action of the resultant is the same as it would 

be if the forces were simply interchanged.          

b) If P and Q be interchanged in position, show that the point of application of the resultant will 

be displayed along AB through a distance d, where AB
QP

QP
d .




 .               

Solution: 

  

P Q 

 

 

A C D B 
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 Let C – be the centre of the two forces. 

 Then P. AC = Q.CB …………. (1) 

(a) If Q is changed to 
Q

P2

, (P remaining the same), let D be the new centre of parallel 

forces. 

 Then P.AD = 
Q

P2

 DB …. ….  ….. (2) 

  Q.AD = P.DB ……………. (3) 

Relation (3) shows that D is the centre of two like parallel forces, with Q at A and P at B. 

(b) When the forces P and Q are interchanged in position, D is the new centre of parallel 

   forces. 

Let CD = d 

From (3), Q. (AC+CD) = P. (CB – CD) 

i.e. Q.AC + Q.d = P.CB – P.d 

                       (Q + P).d = P.CB – Q.AC  

                                       = P (AB – AC) – Q (AB – CB) 

                            = (P – Q).AB[P.AC = Q.CB from (1)] 

  

 

 

Problem 13 

The position of the resultant of two like parallel forces P and Q is unaltered, when the position of 

P and Q are interchanged. Show that P and Q are of equal magnitude.              

Solution:                                                                                                                                                                           

 

 

                       

 

d    = AB
QP

QP
.




  

P                                                                    Q 
 
 
 
 
 
 
A                                 C                               B 
 
 
 

Q                                                                   P 
 
 
 
 
 
 
A                                            C                     B 
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Let C be the centre of two like parallel forces P at A and Q at B. 

  P.AC = Q.CB ……………… (1) 

When P and Q are interchanged, the centre C is not altered (given) 

  Q.AC =P.CB ………………. (2) 

 

 
P

Q

Q

P


)2(

1
  

 

 
22 QP   

 

 

 

 

 

 

Problem 14 

               

    P and Q are like parallel forces. If Q is moved parallel to itself through a distance x, prove that 

the resultant of P and Q moves through a distance  
QP

Qx


. 

Solution: 

 

 P Q Q 

 

  

 A                     C          D               B B  

 

Let C be the centre of P and Q at A and B. 

 CBQACP ..   …………. (1) 

Let D be the new centre of P at A and Q at B  such that BB   = x  

BDQADP  ..  …………………… (2) 

ie)    BBDBQCDACP    =   xCDCBQ   

QP   

x  
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   xQCDQP . using (1) 

  

                                         

    

 

Problem 15 

 

                Two unlike parallel forces P and Q (P>Q) acting on a rigid body at A and B 

respectively be interchanged in position, show that the point application of the resultant in AB 

will be displayed along AB through a distance .AB
QP

QP




  

 

Solution:      

 P 

 

 

 B 

                       C D A 

 Q 

 

Let C be the centre of two unlike parallel forces P at A and Q at B. 

 CBQACP ..   ………………… (1) 

Let D be the new centre when P and Q are interchanged in position.  

 DBPADQ ..   ……………….. (2) 

i.e.)    ABDAPCDACQ  .  

i.e.)      ABCDACPCDABCBQ  .  

ABPCDPACPCDQABQCBQ ......   

   ABQPCDQP ..   using (1) 

 

QP

Qx
CD


  

AB
QP

QP
CD .




  
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Problem 16 

               A light rod is acted on by three parallel forces P, Q, and R, acting at three points distant 

2, 8 and 6 ft. respectively from one end. If the rod is in equilibrium, show that P: Q: R = 1:2:3. 

Solution   

 P Q 

 

 C 

 A B D 

 R  

 

P, Q, R are parallel forces acting on the rod AD at B, D, C respectively.  

Given, AB = 2 ft, AD = 8ft, AC = 6ft. 

  BC = 4ft, CD = 2ft, BD = 6ft. 

For equilibrium of the rod, each force should be proportional to the distance between the other 

two. 

6:4:2::
642

 RQP
RQP

 

  

 

1.5 Moment of a force (or) Turning effect of a force 

Definition:  

The moment of a force about a point is defined as the product of the force and the 

perpendicular distance of the point from the line of action of the force. 

 

 O 

    p  

 A F N B 

3:2:1::  RQP  
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Moment of F about O = F x ON = F x p. 

Note: Moment of F about O is zero if either F = O (or) ON = O. 

i.e.) F = 0 (or) AB passes through O.  

Hence, moment of a force about any point is zero if either  

        the force itself is zero (or) the force passes through that point.  

Physical significance of the moment of a force 

 It measures the tendency to rotate the body about the fixed point. 

 Geometrical Representation of a moment 

                                          O                                     O 

                                                                                                      

  

     

      A      F                     B         N            A          F      N            B 

 

Let AB represent the force F both in magnitude and direction and O be any given point. 

 the moment of the force F about O 

              = F x ON = AB x ON = 2.   AOB 

 = Twice the area of the triangle AOB 

Sign of the moment 

If the force tends to turn the body in the anticlockwise direction, moment is positive. 

If the force tends to turn the body in the clockwise direction, moment is negative. 

 

 Varignon‟s Theorem of Moments  

 

         The algebraic sum of the moments of two forces about any point in their plane is 

equal to the moment of their resultant about that point. 
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Proof:    

Case 1  Let the forces be parallel and O lies  i) Outside AB 

 P+Q =R 

                               P                                                 

                                                                                         

 

 

 

Let P and Q be the two parallel forces acting at A and B. P + Q be their resultant R acting at C. 

such that 

 P.AC = Q.CB     …………….. (1) 

Algebraic sum of the moments of P and Q about O 

 = P.OA + Q.OB 

 = P x (OC – AC) + Q x (OC + CB) 

 = (P +Q).OC – P.AC +Q.CB 

 = (P+Q).OC using (1) 

 = R.OC 

 = moment of R about O. 

ii) P and Q are parallel and O lies within AB 

 A  C O B 

 

   

 

 P                       R=P+Q                               Q 

Algebraic sum of the moments of P and Q about O  

 = P.OA – Q.OB  

 = P. (OC+CA) – Q. (CB – CO) 

 = (P+Q).OC + P.CA – Q.CB by     (1) 

 = R.OC 

 = moment of R about O. 

 Q 

   
O                           A                             C                                          B 
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Case II  iii) P and Q meet at a point and O any point in their plane. O lies outside the angle 

BAD 

 

  

 

         

   

Through O, draw a line parallel to the direction of P, to meet the line of action of Q at D. 

Complete the parallelogram ABCD such that AB, AD represent the magnitude of P and Q and 

the diagonal AC represents the resultant R of P and Q. 

 

Algebraic sum of the moments of P and Q about O 

 = 2.   AOB + 2. AOD 

 = 2   ACB + 2.  AOD [  AOB =  ACB] 

 = 2  ADC + 2  AOD 

 = 2 ( ADC +  AOD) 

 = 2.  AOC 

 = Moment of R about O. 

iv) O lies inside the angle BAD 

Algebraic sum of the moments of P and Q about O: 

 = 2  AOB – 2  AOD 

 = 2  ACB – 2  AOD 

 = 2  ADC – 2  AOD 

 = 2 ( ADC –  AOD) 

 = 2.  AOC 

 = moment of R about O. 

 

 

          D                O                    C                                           
 
   Q                       R    
               
                  
 
A                     P                   B 
 
 
 

  O                D                                                            C 
 
 
 
      Q                           R  
 
 
     A                 
                                        P                            B 
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Problem 17 

Two men carry a load of 224 kg. wt, which hangs from a light pole of length 8 m. each end of 

which rests on a shoulder of one of the men. The point from which the load is hung is 2m. nearer 

to one man than the other. What is the pressure on each shoulder?  

Solution 

             R1  R 2  

 

 x         C 

 A       B 

  

AB is the light pole of length 8m. C is the point from which the load of 224 kgs. is hung. 

Let AC = x. Then BC = 8 – x.  given ( 8 x) – x =2 

i.e) 8 – 2x = 2 0r 2x = 6. 

 x = 3. i.e. AC = 3 and BC = 5. 

Let the pressures at A and B be R1  and R 2  kg. wt. respectively. Since the pole is in 

equilibrium, the algebraic sum of the moments of the three forces R1 , R 2  and 224 kg. wt. about 

any point must be equal to zero. 

Taking moments about B, 

224 CB – R1 .AB = 0 

i.e. 224 .085 1  R  

.140
8

5224
1 


R  

Taking moments about A,  

R 2 .AB – 224.AC = 0. 

i.e. 8R 2  224 .03   

84
8

3224
2 


R  

 

224 
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Problem 18 

                 A uniform plank of length 2a and weight W is supported horizontally on two vertical 

props at a distance b apart. The greatest weight that can be placed at the two ends in succession 

without upsetting the plank are W1   and W 2  respectively. Show that   

.
2

2

1

1

a

b

WW

W

WW

W






  

 

Solution 

Let AB be the plank placed upon two vertical props at C and D. CD = b. The weight W of 

the plank acts at G, the midpoint of AB, 

AG = GB = a  

When the weight W1  is placed at A, the contact with D is just broken and the upward reaction at 

D is zero. 

 

 

 R1                                       R 2  

                    

                                                           

    

 

There is upward reaction R1  at C. 

Take moments about C, we have 

W1 . AC = W.CG 

i.e. W1  (AG – CG) = W.CG 

 W1 .AG = (W +W1).CG 

i.e. W a.1  = (W+W1 ) CG 

                                                                             
 
 
          
      A                  C                        G                                 D         B 
                
   
  
    W1               W                                          W2      
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CG = 

1

1

WW

aW


……………. (1) 

When the weight W 2  is attached at B, there is loose contact at C. The reaction at C becomes 

zero. There is upward reaction R 2  about D. 

 Take moments about D, we get 

 W.GD = W 2  (GB –GD) 

                   GD (W+W 2 ) = W 2 .GB = 2W  .a 

                  GD = 

2

2

WW

aW


 ………… (2) 

  

  

 b
WW

aW

WW

aW








2

2

1

1  

  
a

b

WW

W

WW

W





 2

2

1

1  

 

Problem 19 

                 The resultant of three forces P, Q, R, acting along the sides BC, CA, AB of a triangle 

ABC passes through the orthocentre. Show that the triangle must be obtuse angled. 

 If ,120A  and B = C, show that Q+R = P 3 .  

     

Solution:                         

   

    

   

  

     

 

CG + GD = CD = b 

                                                                   A   
                                       
                                                     F                 
                                                                               E 
                                    R                            O                                                          
                                                       
 
                                                                                        Q 
  
                  90-C 
  B                                     P                       D                        C 
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Let AD, BE and CF be the altitudes of the triangle intersecting at O, the orthocentre. 

As the resultant passes through O, moment of the resultant about O = O. 

 Sum of the moments of P, Q, R about O = O 

P.OD+Q.OE+R.OF = 0 ……….. (1) 

In rt. .90, CEBCOBDBODd   

 
BD

OD
C  )90tan(  

 i.e) cot C = 
BD

OD
 

 OD = BD cot C …………. (2) 

From rt. ,ABDd
AB

BD
B cos   

CBcODFrom cot.cos),2(   = 
C

C
Bc

sin

cos
.cos  

                            = CB
C

c
coscos.

sin
  

                           = R
C

c
CBR  2

sin
(coscos2  , R  is the circumradius of the  )  

Similarly OE = ACR coscos2   

and          OF = BAR coscos2   

Hence (1) becomes 

0coscos2.coscos2.coscos2.  BARRACRQCBRP  

Dividing by ,coscoscos2 CBAR   

0
coscoscos


C

R

B

Q

A

P
 …… (3) 

Now, P, Q, R being magnitudes of the forces, are all positive. 

 (3) may hold good, if at least one of the terms must be negative. 

Hence one of the cosines must be negative. 

i.e) the triangle must be obtuse angled. 

If A = 120  and the other angles equal, then B = C = 30  

Hence (3) becomes 



36 

 

0
30cos30cos120cos










RQP
 

i.e. 0

2

3

2

1





























RQP

 

 

i.e. P RQ3  

 

1.6 Couples: Definition 

 

  Two equal and unlike parallel forces not acting at the same point are said to constitute a 

couple. 

 

Examples of a couple are the forces used in winding a clock or turning tap. Such forces acting 

upon a rigid body can have only a rotator effect on the body and they can not produce a motion 

of translation. 

 The moment of a couple is the product of either of the two forces of the couple and the 

perpendicular distance between them, 

 

 The perpendicular distance (p) between the two equal forces P of a couple is called the 

arm of the couple.  A couple each of whose forces is P and whose arm is p is usually denoted by 

(P, p). 

 

 A couple is positive when its moment is positive i.e., if the forces of the couple tend to 

produce rotation in the anti-clockwise direction and a couple is negative when the forces tend to 

produce rotation in the clockwise direction.  
 

1.7 Equilibrium of three forces acting on a Rigid Body. 

 In the previous sections we have studied theorems and problems involving parallel forces 

and forces acting at a point. Here we study three important theorems and solved problems on 

forces acting on a rigid body and their conditions of equilibrium.     

Theorem 

If three forces acting on a rigid body are in equilibrium, they must be coplanar. 

Proof: 

 

 

 

 

 
 
        P      
               R 

 
                                      B                                C 
         A                     
                               
                                        D                        E 
                         
                                    Q 
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Let the three forces be P,Q,R 

Given : They are acting on a rigid body and in equilibrium. 

 Take „A‟ on the force P, and B on the force Q such that AB is not parallel to R. 

 Sum of the moments of P, Q, R about AB = 0 [ P,Q, R are in equilibrium] 

Now, moment of P and Q about AB = 0 [ P and Q intersect AB]. 

 Moment of R about AB = 0, Hence R must intersect AB at a point C 

 Similarly if D is another point on Q such that AD is not parallel to R, we prove, R must 

intersect AD at a point E. 

 Since BC and DE intersect at A, BD, CE, A lie on the same plane. i.e) „A‟ lies on the 

plane formed by Q and R. Since A is an arbitrary point on the force P, every point on the force P 

lie on the same plane. 

ie) P, Q, R lie on the same plane. 

 

Three Coplanar Forces – theorem  

 If three coplanar forces acting on a rigid body keep it in equilibrium, they must be either 

concurrent or all parallel. 

Proof: 

 Let P, Q, R be the three forces acting on a rigid body keep it in equilibrium. 

 One force must be equal and opposite to the resultant of the other two. 

 they must be parallel or intersect. 

Case 1: If P and Q are parallel (like or unlike) 

 Then the resultant of P and Q is also parallel. Hence R must be parallel to P and Q. 

Case 2: If P and Q are not parallel: (intersect) 

 They meet at O. Therefore, by parallelogram law, the third force R must pass through O. 

  i.e) the three forces are concurrent.  

Note: A couple and a single force can not be in equilibrium 

Conditions of equilibrium 

1. If three forces acting at a point are in equilibrium, then each force is proportional to the 

sine of the angle between the other two. 

2.  If three forces in equilibrium are parallel, then each force is proportional to the distance 

between the other two 
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Two Trigonometrical theorems 

 If D is any point on BC of a triangle ABC such that 
n

m

DC

BD
  and ADC , 

  DACBAD ,  then 

1)    cot.cot.cot nmnm             2)   .cot.cot.cot CmBnnm    

 

Proof:  

                                                  A 

                                                   

 

 

 

     

                                      )    

                      B     m     D         n               C 

 

1. Given, 
DC

DA

DA

BD

DC

BD

n

m
.  

Using, sine formula in  ABD,  ADC, 

 
DAC

ACD

ABD

BAD

n

m











sin

sin

sin

sin
 

 
 









sin

sin

sin

sin 





n

m
 

= 
 
 







sin.coscossin

sin.coscos.sin

sin

sin




  

Divide by   sin.sin.sin  





cotcot

cotcot






n

m
 

    cotcotcotcot  nm  

    cot.cot.cot nmnm   
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2. 
DC

DA

DA

BD

n

m
.  

 = 
DAC

ACD

ABD

BAD










sin

sin

sin

sin
 

 = 
 

  CB

CB









180sin.sin

sin.sin
 = 

 
 CB

BC









sin.sin

sin.sin
 

 = 
 
 



sincoscossinsin

sincoscos.sinsin

CCB

BBC




 

Divide by sin B sin C sin  

C

B

n

m

cotcot

cotcot









 

    cotcotcotcot  BnCm  

 

 

 

 

Problem 20 

A uniform rod, of length a, hangs against a smooth vertical wall being supported by 

means of a string, of length l, tied to one end of the rod, the other end of the string being attached 

to a point in the wall: show that the rod can rest inclined to the wall at an angle    given by 

.
3

cos
2

22
2

a

al 
  

 What are the limits of the ratio of a: l in order that equilibrium may be possible? 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

CmBnnm cotcotcot)(    

       
          C 
 

                

                   T 
 
                               L 
         A                                              R  

                    90
0  

                    1      

                          G        
                         
                          w  
                                            l 
 
           D                                       B     
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AB is the rod of length a, with G its centre of gravity and BC is the string of length l.  

The forces acting on the rod are: 

(i). Its weight W acting vertically downwards through G. 

(ii). The reaction R at A which is normal to the wall and therefore horizontal.   

iii) The tension T of the string along BC. 

These three forces in equilibrium not being all parallel, must meet in a point L.  

Let the string make an angle   with the vertical. 

.GLBACB    

 90180 ALGandLGB  ,  AG:GB = 1 :1, 

Using the trigonometrical theorem in   ALB  

   cot.190cot.1180cot)11(   

 i.e)  cotcot2   

  cotcot2    ……………… (1) 

Draw BD  to CA. 

From rt.  sin.sin., lBCBDCDBd    

rt.  sinsin, aABBDABDd   

 sinsin al   ………… (2) 

Eliminate   between (1) and (2). 

We know that  22 cot1cos ec   …………………… (3) 

(2)  sin 
l

a 


sin
  




sin
cos

a

l
ec  …………………… (4) 

Substitute (4) and (1) in (3) 




2

22

2

cot41
sin


a

l
 

i.e.  222

2

2

cos31cos4sin 
a

l
 

2

22

2

2
2 1cos3

a

al

a

l 
   
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2

22
2

3
cos

a

al 
   ………………… (5) 

 Equilibrium position is possible, if 2cos  positive and less than 1 

022  al  i.e. 
2222 loraal   ……………….. (6) 

Also 1
3 2

22




a

al
 i.e. 

22222 43 aloraal   

i.e. 
4

2
2 l

a      …………………… (7) 

22
2

4
la

l
    

[ By (6) & (7) ]    1
4

1
2

2


l

a
 = .1

2

1


l

a
 

Problem 21 

  A beam of weight W hinged at one end is supported at the other end by a string so that 

the beam and the string are in a vertical plane and make the same angle   with the horizon. 

Show that the reaction at the hinge is 2cos8
4

ec
W

        

   

Solution: 

Let AB be the beam of weight W and G its centre of 

gravity.  

BC is the string 

The force acting on the beam are: 

i) Its wt. W acting vertically  

down wards at G 

ii) the tension T along BC  

iii) the reaction R at the hinge  A. 

 

 

 

                  C 

                                 L 

                                

                              𝛼                                  
                                                           T 
                                                                         B                                             
                          
                                     90-𝜃 
          R 
                                
                            G                           

                                 

     A                     90
0
  

                                                                     
                                 W 

 90  
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For equilibrium (i) , (ii) and (iii) must meet at L. 

BC and AB make the same angle   with the horizon. 

 They make 90   with the vertical LG, 

i.e. LGBBLG  90  

Let ALG  

Using trigonometrical theorem in  ALB, AG:GB = 1:1 

       90cot.1cot.190cot11  

i.e. 2  tancottan   

 3  cottan   ………………. (1) 

Applying Lami‟s theorem at L,  

    


 90sin90sin

WR

 

i.e. 
    





cos90sincos

WWR

 

  







sinsincoscos

cos

cos

cos







WW
R  

                              = 
 



sincotcossin

cos



W
 

                              = 
 



sintan3.cossin

cos



W
  [By (1)] 

      = 




 2cot1cot
4

cos.
4

cot

sinsin3

coscos




W
ec

WecW
 

     =  2tan91cot.
4


W

 

     = 81cot
4

9cot
4

22  
WW

 

     = 8cos
4

2 ec
W

 



43 

 

Problem 22 

            A solid cone of height h and semi-vertical angle   is placed with its base flatly against a 

smooth vertical wall and is supported by a string attached to its vertex and to a point in the wall. 

Show that the greatest possible length of the string is 2tan
9

16
1h . 

(The centre of gravity of a solid cone lies on its axis and divides it in the ratio 3 : 1 from the 

vertex.) 

Solution:   

 

 

 

 

 

 

 

Let A be the vertex, & height AD = h. 

Semi-vertical angle 


ACD  . 

G divides AD in the ratio 3: 1 

Length OA   is greatest, when the cone is just in the point of turning about C. 

At that time, normal reaction R must be perpendicular to the wall. 

Since, the cone is in equilibrium, the three forces T, W, R must be concurrent at O. 

DOAAOG  &  are similar. 

3

4

4

3















h

h

AG

AD

AO

OA
                                     ………………… (1) 

Now, OG = CD. 

From 
h

CD

AD

CD
ACD  tan,    tanhCD  

 

AOOA
3

4
  

tan.hOG   

     

                O  

 
                                O          T 
     R                                                         C 

 
 A                           G                        D  

                                  
                                        
                                                              B 
                              W                       W

al
l 
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From 
222, GOAGAOAOG   

   =  2
2

tan.
4

3
hh 








 

   = 22
2

tan.
16

9
h

h
  

   = 
16

tan169 222 hh 
 

AO 







 222 tan

16

9
h  

2tan
16

9
.  hAO  

  2tan
16

9

3

4
1  hOA  

 

 

 

 

Problem 23 

        A heavy uniform rod of length 2a lies over a smooth peg with one end resting on a smooth 

vertical wall. If c is the distance of the peg from the wall and   the inclination of the rod to the 

wall, show that   c = a sin 3
 

Solution: 

 

 

 

 

 

 

 

 

2tan
9

16
1.  hOA  

                                        
       R2 

                                          O 

        A                                             R1 

                                 

                        90  

        D     c             P 
 

                       

                                           

                                         G 
                                          
                                          W       B 
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Forces acting on the rod AB are 

i) Weight W at G    

ii) Reaction R1  at A (   to the wall) 

iii) Reaction R 2  at the peg P (   to the rod) 

For equilibrium, W, R1 ,R 2  must be concurrent at O. 

From rightangled triangle ADP    (DP = c) 

 
AP

c
sin …………………. (1)  

From 
AO

AP
AOP  sin,  ………………….. (2) 

From 
AG

OA
OGA  sin,  ………………….. (3) 

     
AG

OA

AO

AP

AP

c
 3sin321  = 

a

c

AG

c
  

  

 

Problem 24 

        A heavy uniform sphere rests touching two smooth inclined planes one of which is inclined 

at 60  to the horizontal. If the pressure on this plane is one-half of the weight of the sphere, 

prove that the inclination of the other plane to the horizontal is 30  

Solution: 

 

 

 

 

                                         

 L 

 

3sinac   

RB                    RA       
          C 

         60
o
  

  
    
     B 
 
  

 

         
      A 
     
       60

o
 

M 
N 
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Let the sphere centre C rest on the inclined planes AM and BN. MA makes 60  with the 

horizontal and let NB make an angle   with the horizon. 

The forces acting are  

i) Reaction R A  at A perpendicular to the inclined plane AM and to the sphere and 

hence passing through C. 

ii) Reaction R B  at B which is normal to the inclined plane BN and to the sphere and 

hence passing through C. 

iii) W, the weight of the sphere acting vertically downwards at C along CL. 

Clearly the above three forces meet at C. 

Also  BCLandACL 60  

Applying Lami‟s theorem, 

  


60sinsin

WRA  

 





60sin

sinW
RA  …………………. (1) 

But 
2

W
RA   ……………… (2)  

From (1) and (2), we have  

  260sin

sin WW


 


 

i.e. 2 sin    sin60coscos60sin60sin   

i.e. 2 sin  sin
2

1
cos

2

3
  or  sincos3sin4   

i.e. 3 sin  cos3  or 
3

1

3

3

cos

sin





 

i.e. tan 
3

1
  or  30  
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Problem 25 

        A uniform solid hemisphere of weight W rests with its curved surface on a smooth 

horizontal plane. A weight w is suspended from a point on the rim of the hemisphere. If the plane 

base of the rim is inclined to the horizontal at an angle , prove that 
W

w

3

8
tan                

Solution: 

 

 

 

 

 

 

 

 

Draw GL perpendicular to OC and BD perpendicular to OC.  Base AB is inclined at an angle 

𝜃 with the horizontal BD.  Forces acting are  i) Reaction R c    ii) Weight W at G   iii) Weight w 

at B. 

Since these three forces are  parallel, and in equilibrium each force is proportional to the distance 

between the other two. 

GL

w

BD

W
  ………………… (1) 

Now,  coscos rOBBDOBD   

                 Here, OG = ,
8

3r
 r – radius  

      GL = OG. sin  sin
8

3r
   

     














sin
8

3cos
)1(

r

w

r

W
 

 

 W

w

3

8
tan    

                                   
 
                                            RC 
   
 
 
                            A         
 
                                           O 
                            

                            G                            B  

                   
                                          C    
                                  W                     w 
                                 

D 

  L 
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UNIT II 

2.1 Friction 

In the previous sections we have studied problems on equilibrium of smooth bodies. 

Practically no bodies are perfectly smooth. All bodies are rough to a certain extent. Friction is the 

force that opposes the motion of an object. Only because of this friction we are able to travel 

along the road by walking or by vehicles. So friction helps motion. It is a tangential force acting 

at the point on contact of two bodies. To stop a moving object a force must act in the opposite 

direction to the direction of motion. Such force is called a frictional force. For example if you 

push your book across your desk, the book will move. The force of the push moves the book. As 

the books slides across the desk, it slows down and stops moving. When you ride a bicycle the 

contact between the wheel and the road is an example of dynamic friction.      

Definition  

If two bodies are in contact with one another, the property of the two bodies, by means of 

which a force is exerted between them at their point of contact to prevent one body from sliding 

on the other, is called friction; the force exerted is called the force of friction. 

 Types of Friction 

 There are three types of friction   

1) Statical Friction 2) Limiting Friction  3) Dynamical friction. 

 1. When one body in contact with another is in equilibrium, the friction exerted is just 

sufficient to maintain equilibrium is called statical friction. 

 2. When one body is just on the point of sliding on another, the friction exerted attains its 

maximum value and is called limiting friction; the equilibrium is said to be limiting equilibrium. 

 3. When motion ensues by one body sliding over another, the friction exerted is called 

dynamical friction. 

2.2 Laws of Friction   

Friction is not a mathematical concept; it is a physical reality.  

Law 1 When two bodies are in contact, the direction of friction on one of them at the point of 

contact is opposite to the direction in which the point of contact would commence to move. 

Law 2 When there is equilibrium, the magnitude of friction is just sufficient to prevent the body 

from moving. 
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Law 3 The magnitude of the limiting friction always bears a constant ratio to the normal reaction 

and this ratio depends only on the substances of which the bodies are composed. 

Law 4 The limiting friction is independent of the extent and shape of the surfaces in contact, so 

long as the normal reaction is unaltered.  

Law 5 (Law of dynamical Friction) 

  When motion ensues by one body sliding over the other the direction of friction is 

opposite to that of motion; the magnitude of the friction is independent of the velocity of the 

point of contact but the ratio of the friction to the normal reaction is slightly less when the body 

moves, than when it is in limiting equilibrium. 

 

Friction is a passive force: Explain  

1) Friction is only a resisting force. 

2) It appears only when necessary to prevent or oppose the motion of the point of contact. 

3) It can not produce motion of a body by itself, but maintains relative equilibrium. 

4) It is a self-adjusting force. 

5) It assumes magnitude and direction to balance other forces acting on the body. 

Hence, friction is purely a passive force. 

Co-efficient of friction  

The ratio of the limiting friction to the normal reaction is called the co-efficient of 

friction. It is denoted by  

  

            i.e.)      

Note: 1)   depends on the nature of the materials in contact. 

 2) Friction is maximum when it is limiting. R  is the maximum value of friction. 

 3) When equilibrium is non-limiting, RF    i.e.) 
R

F
  

 4) Friction „F‟ takes any value from zero upto .R   

 

Angle of Friction 

    

                                                                      

                                            

                                                                                                     

 


R

F  

RF   

  B                                                     C                B                                                                    C 
 
 
 
R                                                                      R        
 

                                                                               

                               

  O                                   F             A                  O                                     R                         A                  
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Let OA = F(Friction), ROB   (Normal reaction) &OC  be the resultant of F and R. 

If 
R

F

OB

OA

OB

BC
COB 



 tan,  ……….. (1) 

 As F increases,   - increases until F reaches its maximum value .R  In this case, 

equilibrium is limiting. 

Definition  

“When one body is in limiting equilibrium over another, the angle which the resultant reaction 

makes with the normal at the point of contact is called the angle of friction and is denoted by ”  

 In the limiting equilibrium, 


COB = angle of friction. 




 
R

R

OB

OA

OB

BC
tan  

 

 

i.e.) The co-efficient of friction is equal to the tangent of the angle of friction. 

 

 

Cone of Friction 

 

 

 

 

 

 

 

                                             

 tan  

   
   
   
   
  R 
   
   
   
       
 

                            

    
 
                                                       

R                    O        R
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  We know, the greatest angle made by the resultant reaction with the normal is   (angle 

of friction) where  .tan 1    Consider the motion of a body at O (its point of contact) with 

another. When two bodies are in contact, consider a cone drawn with O as vertex, common 

normal as the axis of the cone,   - be the semi-vertical angle of the cone. Now, the resultant 

reaction of R and R  will have a direction which lies within the surface or on the surface of the 

cone. It can not fall outside the cone. This cone generated by the resultant reaction is called the 

cone of friction. 

 

2.3 Equilibrium of a particle on a rough inclined plane. 

 

 

 

 

 

 

 Let   - be the inclination of the rough inclined plane, on which a particle of weight W, is 

placed at A. Forces acting on the particle are, 

1) Weight W vertically downwards 

2) Normal reaction R,  r to the plane. 

3) Frictional force F, along the plane upwards (Since the body tries to slip down). 

Resolving the forces along and perpendicular to the plane, 

 F =  cos,sin WRW   

tan
R

F  

        
 
 
 
     R                    F        
  
               A         

                              

       

                W                  
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But 
R

F
  tan  

i.e)  tantan   

   

When   tan,
R

F
 

Hence, it is clear that “when a body is placed on a rough inclined plane and is on the point of 

sliding down the plane, the angle of inclination of the plane is equal to the angle of friction.” 

Now   is called as the angle of repose. 

 Thus the angle of repose of a rough inclined plane is equal to the angle friction when 

there is no external force act on the body. 

2.4 Equilibrium of a body on a rough inclined plane under a force parallel to 

the plane.  

A body is at rest on a rough plane inclined to the horizon at an angle greater than the angle of 

friction and is acted on by a force parallel to the plane. Find the limits between which the force 

must lie. 

   

Proof:  

        Let   be the inclination of the plane, W be the weight of the body& R be the normal 

reaction. 

Case 1: Let the body be on the point of slipping down. Therefore R  acts upwards along the 

plane. 

 

 

 

 

 

 

                                                  P 
 
             R                                                 

                               R  

    
    
                     

sinW   cosW
    

        W  
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Let P be the force applied to keep the body at rest. 

Resolving the forces along and perpendicular to the plane, 

 sinWRP   ……………….. (1) 

 cos.WR   ………………… (2) 

  cos.sin. WWP   

   cos.tansin W  

 =  


sincoscos.sin
cos


W

 

  


 sin.
cos

W
 

Let 
 




cos

sin.
1




W
P  

Case ii Let the body be on the point of moving up. Therefore limiting frictional force R  acts 

downward along the plane. 

 

 

 

 

 

                          

 

 Let P be the external force applied to keep the body at rest.  

Resolving the force, 

 sin;cos WRPWR    

 sincos. WWP   

=  


sin.coscossin
cos


W

 

                                                                      
             R                        P                            
                                                                                          
 
 
 
                                                                                       

sinW        cosW   

R   

                          W                                      
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=  


sin.
cos

W
 

Let  


 sin.
cos

2
W

P  

If 1PP  , body will move down the plane. If 2PP  , body will move up the plane. 

 For equilibrium P must lie between 1P  and 2P . 

i.e.)  

 

2.5 Equilibrium of a body on a rough inclined plane under any force. 

Theorem: A body is at rest on a rough inclined plane of inclination   to the horizon, being 

acted on by a force making an angle   with the plane; to find the limits between which the 

force must lie and also to find the magnitude and direction of the least force required to 

drag the body up the inclined plane. 

 

 

 

 

 

 α  

 

 

Let α be the inclination of the plane, W be the weight of the body, P – be the force acting at an 

angle   with the inclined plane and R – be the normal reaction. 

Case i: The body is just on the point of slipping down. Therefore the limiting friction R  acts 

upwards. 

Resolving the forces along and r  to the inclined plane, 

 sincos WRP   ……………….. (1) 

21 PPP   

                                                     
               P                                   
     
         
                       R                            µR 
                                          

                                                   
 

                                       
                   A                                 
                                         

     W sin  
 
 
 
 

         cosW          

         W    

    
                 P 
    
   R                
    
          

                                           

                        
              A                 

    sinW                                               

        R                       cosW

                W    
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 cossin WRP   ………………….. (2) 

  sincos PWR   

     sinsincoscos1 WPWP   

     cossinsincos  WP  

 
 





sincos

cossin






W
P  

We have  tan  

 




sin.tancos

cos.tansin






W
P  

 




sin.sincos.cos

sin.coscossin




W  

 
 








cos

sin
W  

Let 
 
 








cos

sin
.1 WP  

Case ii: The body is just on the point of moving up the plane. Therefore R  acts downwards. 

Resolving the forces along and r  to the plane. 

  sin.cos WRP   …………………. (3) 

  cos.sin WRP   …………………. (4) 

  sincos PWR    

     sin.sincoscos3 WPWP   

     cossinsincos  WP  

 
 
 



sin.tancos

cos.tansin






W
P  

 
 
 



sin.sincoscos

cos.sincos.sin






W
 

 
 
 








cos

sin.W
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Let 
 
 








cos

sin.
2

W
P  

To keep the body in equilibrium, 1P  and 2P  are the limiting values of P. 

Find the least force required to drag the body up the inclined plane 

 We have, P = 
 
 







cos

sin
.W  

P is least when   cos  is greatest. 

 i.e.) When   1cos   

 i.e.) When 0   

 i.e.) When    

 

 

Hence the force required to move the body up the plane will be least when it is applied in a 

direction making with the inclined plane an angle equal to the angle of friction. 

i.e.) “The best angle of traction up a rough inclined plane is the angle of friction” 

Problem 1 

  A particle of weight 30 kgs. resting on a rough horizontal plane is just on the point 

motion when acted on by horizontal forces of 6kg wt. and 8kg. wt. at right angles to each other. 

Find the coefficient of friction between the particle and the plane and the direction in which the 

friction acts. 

Solution:  

 

 

 

 

 

  

 Let AB (=8) and AC (=6) represent the  

   sin.WPofvalueLeast  

     C                                                        D
                                            
                       
 6      
                                                  10  
     
     
     
     
     
       
    A     8  B      
F      
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Let AB = 8 and AC = 6 represent the directions of the forces, A being the particle. 

 The resultant force = 
22 68   = 10kg. wt. and this acts along AD, making an angle 










5

4
cos 1

 with the 8kg force. 

 Let F be the frictional force. As motion just begins, magnitude of F is equal to that of the 

resultant force. 

 10F  ……………… (1) 

 If R is the normal reaction on the particle, 

 R = 30 ………………….. (2) 

 If   is the coefficient of friction as the equilibrium is limiting, RF   

10 = 30.           .
3

1

30

10
  

 

Problem 2 

  A body of weight 4 kgs. rests in limiting equilibrium on an inclined plane whose 

inclination is 30 . Find the coefficient of friction and the normal reaction. 

 

Solution: 

 

 

 

 

 

 

 

 

 

 Since the body is in limiting equilibrium on the inclined plane, it tries to move in the 

downward direction along the inclined plane. 

      
      

   R                                                R   

      
      
      
      
      

 W sin 30                   

    W cos 30  

          

                     30      

      
      
      
                W = 4 kg 
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  Frictional force R  acts in the upward direction along the inclined plane. Resolving 

along and r  to the plane, 

  30sinWR  ………………… (1) 

 = 32
2

3
.4   

 R = 30cos.W  …………………. (2) 

 = 2
2

1
4   

 
 
  3

1

2

1
   

 ,
3

1
tan     

 

Problem 3 

  A uniform ladder is in equilibrium with one end resting on the ground and the 

other against a vertical wall; if the ground and wall be both rough, the coefficients of friction 

being    and   respectively, and if the ladder be on the point of slipping at both ends, show 

that  , the inclination of the ladder to the horizon is given by 





2

1
tan


 . Find also the 

reactions at the wall and ground.            

Solution: 

 

 

 

 

 

 

 

 

 

 30  

   S                                                                                 

                                                  
   B                                         S               
  
 
                            
                                          G                      R 
 
                                                                           
      
                                                         θ 
   

        C           R       E                            A                 

       
                                  W         
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  AB is the uniform ladder, whose weight W is acting at G such that AG = GB. 

Forces acting are, 

1. Weight W 

2. Normal reaction R at A 

3. Normal reaction S at B 

4. R       

5. S  

When the ladder is on the point of slipping at both ends, frictional forces RS  ,  act along 

CB, AC respectively. 

 Since the ladder is in equilibrium resultant is zero. 

 Resolving horizontally and vertically, 

RS             ……….. (1)   

WSR   …………. (2) 

  WRR    

   WR 1   

 

By Varigon‟s theorem on moments, taking moments about A 

AEWACSBCS ...    

 cos..cos.sin. AGWABSABS   

 cos.
2

1
.cos.sin. WSS   










2

AB
AG  

 cos.
2

sin. 







 S

W
S  

 
S

W

2
tan   = 1

11
2



















W

W  = 







2

1
 

 = 




2

21 
 

 

 

Problem 4 

  In the previous problem, when     show that ,290    where   is the angle 

of friction. 

 


1

W
R  








1

W
S  






2

1
tan


  
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Solution: 

 In the previous problem, we have proved  





2

1
tan


  

Put     , we get 






2

1
tan

2
   =  




tan;

tan2

tan1 2




  

  =  


290tan2cot
2tan

1
  

i.e.)   290tantan      

 

Problem 5 

  A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal 

plane and its upper end against an equally rough vertical wall. If   be the inclination of the 

ladder to the vertical, prove that tan
21

2







  where   is the coefficient of friction.    

Solution: 

 

 

 

 

 

 

 

 

 

 

 

When the ladder AB is in limiting equilibrium, five forces are acting as marked in the figure. 

                                                                                   

      S        S         L          

 

B                        S           

 

                                        

 

                                           R                      
                     
                            G                               R              
 
                                              
 

                                                                                                  

 

C                                          R       A  

                     
                         W              

 290   
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1) Weight of the ladder W 

2) Normal reaction R at A 

3) Normal reaction S at B 

4) Frictional force R  

5) frictional force S  

Let SR ,  be the resultant reactions of R, R  and S, S  respectively. 

 We have 3 forces WSR ,,  . For equilibrium, they must be concurrent at L. 

In  


GLAAGLLAB ;180,  

1:1:,90 


GBAGGLB   

 By trigonometrical theorem in   LBA, 

(1+1)      cot.190cot.1180cot   

 cottancot.2   




tan

1tan2 
  






tan2

tan1
cot

2
  

i.e.) 




 2

1

tan

1 2
  

 

 

Problem 6 

  A uniform ladder rests with its lower end on a rough horizontal ground its upper end 

against a rough vertical wall, the ground and the wall being equally rough and the angle of 

friction being .  Show that the greatest inclination of the ladder to the vertical is 2 . 

Solution 

 In the previous problem, we have proved, 
21

2
tan







  But  tan  

 



 2tan

tan1

tan2
tan

2



   

21

2
tan







  

 2  
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Problem 7 

  A ladder which stands on a horizontal ground, leaning against a vertical wall, is so loaded 

that its C. G. is at a distance a and b from its lower and upper ends respectively. Show that if the 

ladder is in limiting equilibrium, its inclination   to the horizontal is given by 
 




ba

ba




tan  

where  ,  are the coefficients of friction between the ladder and the ground and the wall 

respectively.              

Solution: 

  As in problem 5, five forces are acting on the ladder  

Here, AG : GB = a: b 

 By Trigonometrical theorem in ,LBA  

       cot.90cot.90cot. abab   

i.e.)     cot.tan.tan 1 abba   

ba

b
a



















.

tan  = 
 



ba

ba



 .

 

 

Problem 8 

 

  A ladder AB rests with A on a rough horizontal ground and B against an equally rough 

vertical wall. The centre of gravity of the ladder divides AB in the ratio a: b. If the ladder is on 

the point of slipping, show that the inclination   of the ladder to the ground is given by 

)(
tan

2

ba

ba








  where   is the coefficient of friction. 

 

Solution: 

 

 In the previous problem,  

Put    in 
 




ba

ba




tan  

 

 ba

ba










2

tan  
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Problem 9 

  A ladder AB rests with A resting on the ground and B against a vertical wall, the 

coefficients of friction of the ground and the wall being   and   respectively. The centre of 

gravity G of the ladder divides AB in the ratio 1: n. If the ladder is on the point of slipping at 

both ends, show that its inclination to the ground is given by 
 

.
1

1
tan











n

n
 

Solution: 

 Put a : b = 1 : n in  problem7. 

 
 




n

n






1

1
tan

 

Problem 10 

  A ladder of length l2  is in contact with a vertical wall and a horizontal floor, the angle of 

friction being   at each contact. If the weight of the ladder acts at a point distant kl  below the 

middle point, prove that its limiting inclination   to the vertical is given by 

.2cos2cotcot  eck  

Solution: 

 

 

 

 

 

  

Forces are acting as marked in the figure. For equilibrium, the three forces WSR ,,   

must be concurrent at L, where W – be the weight of the ladder. 

In .;, klCGlCABCLAB   

 lkkllCGBCBG )1(   

                S                  L                         

               
1S    

         B                         S    

     

                                              
1R     

                             C      
                                   kl   G              R           

                                                          

                                                       

                    R                           A   

                                          
                                           W 



64 

 

 


180,90 AGLGLB  

  .1; lkkllCGCAGAGLA 


  

   kkGABG  1:1:  

 By Trigonometrical theorem in ,LBA  

            .cot.190cot.1180cot].11[  kkkk   

       cot.1tan.1cot2 kk   

     tan1cot1cot2 kk   

   




cot

1cot.1 2 kk 
  

= 
   





cot

1cot1cot 22  k
 

 





cot.2

cos.1cot
cot

22 eck
  

= 












 












cot.2

cot1

tan.cot2

tan1 2

2

2

k  

= 












 



















 cot.tan.2

tan1

tan1

tan2

1

2

2

2

k  

= 
 2sin

1
.

2tan

1
k  

ie)  2cos.2cotcot eck  

Problem 11 

  A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal 

plane and with the upper end against a smooth vertical wall. If   be the inclination of the ladder 

to the vertical, prove that, ,2tan    where   is the coefficient of friction.          
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Solution: 

 

 

 

 

 

 

 

 

Since the wall is smooth, there is no frictional force. Forces acting on the ladder are i) its weight 

W,  ii) Frictional force R   iii) R at A    iv) S at B. For equilibrium, the three forces 

SRW ,,   must be concurrent at L. where 
1R is the resultant of R and R . In triangle LAB,  

 


CBAGABGGLBGLAAGL .1:1:;90,,180  

By Trigonometrical theorem in ,LAB  

     cot.190cot.1180cot11   

 cot0cot.2   

 tan

1

tan

2
   tan2tan     i.e)  

 

Problem 12 

  A particle is placed on the outside of a rough sphere whose coefficient of friction is  . 

Show that it will be on the point of motion when the radius from it to the centre makes an angle 

1tan  with the vertical. 

 

 2tan   

 
 
                                            L    
          B                                                                             S 

                                   90            

                         

 

                                        G                 
1R        

                                                                           R 

                                                                  

                                                                              

 
 

         C                                         R              A      

 
                                          W 
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Solution: 

 

 

 

 

 

 

 Let O be the centre, A the highest point of the sphere and B the position of the particle 

which is just on the point of motion. Let AOB   

 The forces acting at B are: 

1) the normal reaction R  

2) limiting friction R   

3) Its weight W, 

Since the particle at B is in limiting equilibrium, 

Resolving along the normal OB, 

 cosWR   …………………. (1) 

Resolving along the tangent at B, 

 sinWR   ……………….. (2) 

 
 


1

2
 tan    

 

2.6 Equilibrium of Strings 

 
When a uniform string or chain hangs freely between two points not in the same vertical 

line, the curve in which it hangs under the action of gravity is called a catenary.  If the weight 

per unit length of the chain or string is constant, the catenary is called the uniform or common 

catenary. 

 

2.7 Equation of the common catenary: 

 A uniform heavy inextensible string hangs freely under the action of gravity; to find the 

equation of the curve which it forms. 

                                     

                                            R                 R    

                                  A                      
                                             
                                                          B 
                                         

                                                

                                     O           
                                                    W   

 1tan  
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 Let ACB be a uniform heavy flexible cord attached to two points A and B at the same 

level, C being the lowest, of the cord.  Draw CO vertical, OX horizontal and take OX as X axis 

and OC as Y axis.  Let P be any point of the string so that the length of the are CP = s 

 Let ω be the weight per unit length of the chain. 

 Consider the equilibrium of the portion CP of the chain. 

 The forces acting on it are: 

(i) Tension T0 acting along the tangent at C and which is therefore horizontal. 

(ii) Tension T acting at P along the tangent at P making an angle Ψ with OX. 

(iii) Its weight ws acting vertically downwards through the C.G. of the arc CP. 

For equilibrium, these three forces must be concurrent. 

 Hence the line of action of the weight ws must pass through the point of the 

intersection of T and To. 

 Resolving horizontally and vertically, we have  

   Tcos Ψ = To … …  (1) 

        and Tsin Ψ = ws … … (2) 

       Dividing (2) by (1), tan Ψ = 
𝐰𝐬

𝑇0
 

 Now it will be convenient to write the value of To the tension at the lowest point,  

as To = wc … … (3) where c is a constant.  This means that we assume To, to be equal to the 

weight of an unknown length c of the cable. 
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 Then tan Ψ = 
𝒘𝒔

𝒘𝒄 
 = 

𝒔

𝒄 
 

    ∴ S = ctanΨ … … … (4) 

 Equation (4) is called the intrinsic equation of the catenary. 

 It gives the relation between the length of the area of the curve from the lowest point to 

any other point on the curve and the inclination of the tangent at the latter point. 

 To obtain the certesian equation of the catenary,  

 We use the equation (4) and the relations 

 
𝑑𝑦

𝑑𝑠
 = sin Ψ and 

𝑑𝑦

𝑑𝑥
 = tan Ψ which are true for any curve. 

Now 
𝑑𝑦

𝑑𝛹
 = 

𝑑𝑦

𝑑𝑠
. 

𝑑𝑠

𝑑𝛹
 

= sin Ψ 
𝑑

𝑑Ψ 
c tan Ψ 

= sin csec
2
Ψ = csec Ψ tan Ψ 

∴ y = ʃ csec Ψ tan Ψ dΨ + A 

= csec Ψ + S 

If y = c when Ψ = 0, then c = csec0 + A 

∴ A = 0 

Hence y = csec Ψ … … … (5) 

∴ y2
 = c

2
 sec Ψ = c

2
 (1 + tan

2
 Ψ) 

= c 
2 

+ s 
2
 … … (6)   

𝑑𝑦

𝑑𝑥
 = tan Ψ = 

𝑠

𝑐
 = 

 𝑦2−𝑐2

c
 

∴  
dy

 𝑦2−𝑐2
 = 

dx

c
 

Integrating, cos h
-1

  
𝑦

𝑐
  = 

𝑥

𝑐
 + B 

When x = 0, y = c 

i.e. cos h
-1

 1 = 0 + B or B = 0 

∴ cos h
-1

  
𝑦

𝑐
  = 

𝑥

𝑐
 

i.e. y = ccos h  
x

𝑐
  … … (7) 

(7) is the Cartesian equation to the catenary. 

We can also find the relation connecting s and 𝑥. 
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Differentiating (7). 

𝑑𝑦

𝑑𝑥
 = csinh 

𝑥

𝑐
.   

1

𝑐
  = sinh 

𝑥

𝑐
  

From (4), s = ctan Ψ = c.  
𝑑𝑦

𝑑𝑥
 = csinh 

𝑥

𝑐
 … (8) 

Definitions: 

The Cartesian equation to the catenary is y = ccosh 
𝑥

𝑐
 .  cosh 

𝑥

𝑐
 is an even function of x.  Hence 

the curve is symmetrical with respect to the y-axis i.e. to the vertical through the lowest point.  

This line of symmetry is called the axis of the catenary. 

 

 Since c is the only constant, in the equation, it is called the parameter of the catenary and 

it determines the size of the curve. 

 The lowest point C is called the vertex of the catenary. The horizontal line at the depth c 

below the vertex (which is taken by us the x – axis) is called the directrix of the catenary. 

  

If the two points A and B from where the string is suspended are in a horizontal line, then 

the distance AB is called the span and the distance CD (i.e. the depth of the lowest point C below 

AB) is called the sag. 

 

2.8 Tension at any point: 

 We have derived the equations 

T cos Ψ = T0 … … … … (1) 

And T sin Ψ = ws … … … … (2)  

We have also put T0 = wc … … … (3) 

 Equation (3) shows that the tension at the lowest point is a constant and is equal to the 

weight of a portion of the string whose length is equal to the parameter of the catenary.  From the 

equation (1), we find that the horizontal component of the tension at any point on the curve is 

equal to the tension at the lowest point and hence is a constant. 

 From equation (2), we deduce that the vertical component of the tension at any point is 

equal to ws i.e. equal to the weight of the portion of the string lying between the vertex and the 

point. (∴ s = are CP) 
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Squaring (1) and (2) and then adding, 

T
2
 = T

2
0 + w

2
s

2
 

=w
2
c

2
+w

2
a

2
 

=w
2
(c

2
+s

2
) 

=w
2
y

2
 using equation (6) of page 377 

∴T = wy … … … (4) 

Thus the tension at any point is proportional to the height of the point above the origin.  It is 

equal to the weight of a portion of the string whose length is equal to the height of the point 

above the directrix. 

 

Important Corollary: 

 

Suppose a long chains is thrown over two smooth pegs A and B and is in equilibrium 

with the portions AN and BN‟ hanging vertically.  The potion BCA of the chain will from a 

catenary. 

 

 

 
 

  The tension of the chain is unaltered by passing overt the smooth peg A.  The 

tension at A can be calculated by two methods. 

 On one side (i.e. from the catenary portion), Tension at A = w.y where y is the height of 

A above the directrix. 

 On the other side, tension at A = weight of the free part AN hanging down  

                                                             = w. AN 

∴ y=AN 

In other words, N is on the directrix of the catenary. 

Similarly N‟ is on the directrix. 

Hence if a long chain is thrown over two smooth pegs and is in equilibrium, the free ends 

must reach the directrix of the catenary formed by it. 
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Important Formulae: 

 The Cartesian coordinates of a point P on the catenary are (x, y) and its intrinsic 

coordinates are (s, Ψ).  Hence there are four variable quantities we can have a relation connecting 

any two of them.  There will be 4C2 = 6 such relations, most of them having been already 

derived.  We shall derive the remaining.  It is worthwhile to collect these results for ready 

reference. 

(i) The relation connecting x and y is 

y = ccosh 
𝑥

𝑐
    … … (1) 

and this is the Cartesian equation to the catenary. 

(ii) The relation connecting s and Ψ is 

s = ctan Ψ … … (2) 

(iii) The relation connecting y and Ψ is 

y=csecΨ … … … (3) 

(iv) The relation connecting y and s is 

y
2
 = c

2
+s

2
 …. … … (4) 

 

(v) The relation connecting s and x is 

s = csinh 
𝑥

𝑐
 

(vi) We have y = ccosh 
𝑥

𝑐
 and y = csec Ψ,  

∴ sec Ψ = cosh 
𝑥

𝑐
 

 ∴  
𝑥

𝑐
  = cosh -1(secΨ) 

        = log(𝑠𝑒𝑐𝛹 +  𝑠𝑒𝑐2Ψ − 1 

        = log(𝑠𝑒𝑐𝛹 + tan 𝛹) 

 ∴ 𝑥 = 𝑐𝑙𝑜𝑔 (𝑠𝑒𝑐𝛹 + 𝑡𝑎𝑛𝛹) … … (6) 

This relation can also be obtained thus: 

𝑑𝑥

𝑑𝛹
 = 

𝑑𝑥

𝑑𝑠
. 

𝑑𝑠

𝑑𝛹
 

     = cos Ψ. 
𝑑

𝑑𝛹
 (ctan Ψ ) since 

𝑑𝑥

𝑑𝑠
 = cos Ψ for any curve 

     = cos Ψ. Csec2Ψ – csecΨ 
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Integrating, x = ʃ csec Ψ dΨ + D 

                       = clog (secΨ + ranΨ) + D 

At the lowest point, Ψ = 0 and x = 0 

∴ 0 = clog (sec0+tan0 + D 

i.e. 0 = D 

∴ x= clog (secΨ + tan Ψ)  

(vii) The tension at any point = wy … … (7), where y is the distance of the point from the 

directrix. 

(viii) The tension at the lowest point = wc … … (8) 

  

       sinh
-1

 x = log(x+ 𝑥2 + 1) 

cosh
-1

 x = log(x+ 𝑥2 − 1) 

 

2.9  Geometrical Properties of the Common catenary: 

 

 

 Let P be any point on the catenary y = ccosh 
𝑥

𝑐
 . 

 PT is the tangent meeting the directrix (i.e. the x axis) at T. 

angle PTX = Ψ 

PM (=y) is the ordinate of P and PG is the normal at P. 

Draw MN ⊥ to PT. 

From ΔPMN.      MN  = PMcosΨ 

=ycosΨ 
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=csecΨ cos Ψ 

=c=constant 

i.e. The length of the perpendicular from the foot of the ordinate on the tangent at any point of 

the catenary is constant. 

Again tan Ψ = 
𝑃𝑁

𝑀𝑁
=  

𝑃𝑁

𝐶
 

∴ PN = Ctan Ψ = S arc CP 

PM
2
 = NM

2
 + PN

2
 

∴ y2
 = c

2
+s

2
, a relation already obtained. 

If is the radius of curvature of the catenary at P, 

P= 
𝑑𝑠

𝑑𝛹
=  

𝑑

𝑑𝛹
 (ctan Ψ) = csec

2
Ψ 

Let the normal at P cut the x axis at G. 

Then PG. cos Ψ = PM = y 

 

∴ PG = 
𝑦

𝑐𝑜𝑠𝛹
=  csecΨ. secΨ = csec

2
Ψ 

∴  𝜌 = PG 

 Hence the radius of curvature at any point on the catenary is numerically equal to the 

length of the normal intercepted between the curve and the directrix, but they are drawn in 

opposite directions. 

Problem 13 

A uniform chain of length l is to be suspended from two points in the same horizontal 

line so that either terminal tension is n times that at the lowest point.  Show that the span must be 

l

 𝑛2−1
 log(n+  𝑛2 − 1 

Solution: 

Tension at A = wyA 

And tension at C  =  w.yC  since T = wy at any point 

Now w.yA  =  n.w.yC 

∴ yA  =  nyC  = nc 

But yA  =  ccosh 
𝑥𝐴

𝑐
   =   nc 

∴ cosh 
𝑥𝐴

𝑐
   =   n 
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or    
𝑥𝐴

𝑐
   =   cosh

-1
 n  =  log (n+  𝑛2 − 1) 

∴ xA  =  clog (n+  𝑛2 − 1 ) … … … (1)  

We have to find c. 

y
2

A    = c
2
+s

2
A, sA denoting the length of CA.  

=   c
2
 + 

l2

4
 (as total length = l) 

i.e. n
2
c

2
   =   c

2
+ 

l2

4
 

or c
2
   =   

l2

4(n2−1)
 

∴ c   =   
l2

2 𝑛2−1
 … … (2) 

Substituting (2) in (1), 

               xA   =   
l2

2 𝑛2−1
 log (n+  𝑛2 − 1) 

∴ span AB  =  2xA   =   
l

 𝑛2−1)
 log (n+  𝑛2 − 1) 

Problem 14 

A box kite is flying at a height h with a length l of wire paid out, and with the vertex of 

the catenary on the ground.  Show that at the kite, the inclination of the wire to the ground is 

 2 tan
-1

 
h

𝑙
 and that its tensions there and at the ground are 

w(l2+h2)

2h
 and  

w(l2−h2)

2h
 where w is the 

weight of the wire per unit of length. 

Solution: 

                                Y                          A 

 

                                                              h 

                             C               l              L 

                             

                                  c 

 

                               O                           M                       X 
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C is the vertex of the catenary CA, A being the kite.  The origin O is taken at a depth c 

below C. 

Then yA  =  c + h and sA  =  arc CA = l 

Since y
2  

=  c
2
 + s

2
, we have (c+h)

2
  =  c

2
 + l

2 

i.e. h
2
+2ch  =  l

2 

or c =  
l2−h2

2h
 … … … (1) 

We know that s = c tan Ψ … … …. …. …. (2) 

Applying (2) at the point A, we have 

l = c. tan ΨA 

∴ Tan ΨA  =  
l

𝑐
  =  

2hl

l2−h2   substituting for c from (1) 

                         =  
2(

h

𝑙
)

1−(
h

𝑙
)2

  … … (3) 

But tanΨ  =  
2𝑡𝑎𝑛

Ψ

2

1−tan 2Ψ

2

  … … (4) 

 Comparing (3) and (4), we find that 

 𝑡𝑎𝑛
Ψ

2
 at A =  

h

𝑙
 

                  ∴  
Ψ

2
  = tan

-1h

𝑙
 

or  Ψ at A =  2tan
-1

 
h

𝑙
 

The tension at A =  w.yA 

                                     =  w.(c + h) 

                      =  w  
𝑙2−ℎ2

2ℎ
+  ℎ   =  

w(𝑙2+ℎ2)

2ℎ
  

 

Problem 15 

A uniform chain of length l is to have its extremities fixed at two points in the same 

horizontal line.  Show that the span must be 
l

 8
 log (3+  8 ) in order that the tension at each 

support shall be three times that at the lowest point. 
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 Solution: 

  Put n = 3 in problem number 13. 

 

Problem 16 

A uniform chain of length l is suspended from two points A, B in the same horizontal 

line.  If the tension A is twice that at the lowest point, show that the span AB is 
l

 3
 log (2+  3 )  

 Solution: 

               Put n = 2 in problem number 13. 

 

Problem 17 

A uniform chain of length 2l hangs between  two points A and B on the same level.  The 

tension both at  A and B is five times that at the lowest point.  Show that the horizontal distance 

between A and B is 
𝑙

 6
 log (5+2  3 )  

 Solution: 

  Put n = 5 and length = 2l in problem number 13. 

Problem 18 

    If T is the tension at any point P and T0 is the tension at the lowest point C then prove 

that T
2
 – T0

2
 = W

2 
 where W is the weight of the arc CP of the string. 

Solution: 

  Given T is the tension at P.  Let w be the weight per unit length and y is the ordinate of P.   

Then T =  wy.  

 Also T0  =  wc 

 ∴ T
2 

– T0
2 

 =  w
2
y

2 
 –  w

2
c

2 

                                           
= w

2 
(y

2
 –  c

2
)   

     =  w
2
s

2
  

     =  W
2
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2.10 Suspension Bridges: 

 

  In the case of a suspension bridge the main load is the weight of the roadway.  We have 

two chains hung up so as to be parallel, their ends being firmly fixed to supports.  From different 

points of these chains, hang supporting chains or rods which carry the roadway of the bridge.  

These supporting rods are spaced at equal horizontal distances from one another and so carry 

equal loads.  The weight of the chain itself and the weights of the supporting rods may be 

neglected in comparison with that of the horizontal roadway.  The weight supported by each of 

the rods may therefore be taken to be the weight of equal portions of the roadway.  Hence the 

figure of each chain of a suspension bridge approximates very closely to that of a parabola.   
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UNIT III 

    3.1 Projectiles. 

Definitions: 

i. A particle projected into the air in any direction with any velocity is called a projectile. 

ii. The angle of projection is the angle made by the initial velocity with the horizontal 

plane through the point of projection. 

iii. The velocity of projection is the velocity with which the particle is projected. 

iv. The trajectory is the path described by the projectile.  

v. The range on a plane through the point of projection is the distance between the point of 

projection and the point where the trajectory meets that plane. 

vi. The time of flight is the interval of time that elapses from the instant of projection till the 

instant when the particle again meets the horizontal plane through the point of projection. 

 

Two fundamental principles 

i. The horizontal velocity remains constant throughout the motion. 

ii. The vertical component of the velocity will be subjected to  retardation g. 

 

3.2  Equation of the  path of the projectile 

 

 

 

 

 

 

  

 

Let a particle be projected from O, with initial velocity u and   be the angle of projection. Take 

OX and OY as x and y axes respectively. Let P (x,y) be the position of the particle in time t secs. 

Now u can be divided into two components as u cos  in the horizontal direction and sinu  in 

the vertical direction. 

         Y 
 
                   u 
                                   
                       P      A 
                       y      
                                    X 

            O    x       M    B               C         
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Now, horizontal velocity cosu  is constant throughout the motion. 

  tux cos     ………………… (1) 

Vertical velocity is subjected to retardation „g‟  

  2

2

1
sin gttuy       ………………. (2) 

Eliminate „t‟ using (1) and (2) 

 
cos

1
u

x
t   

 
2

cos
.

2

1

cos
sin2 













u

x
g

u

x
uy  

 



22

2

cos2
tan

u

gx
xy    ………………. (3) 

 = 



22

222

cos2

cos2.tan

u

gxux 
 

2222 cossin2..cos2 gxuxyu    

yuxugx .cos2.cossin2 2222    

y
g

u
x

g

u
x

 222
2 cos2cossin2 

  

y
g

u

g

u

g

u
x

g

u
x .

cos2cossincossincossin2 22

2

224

2

2242
2 

  

ie) 






























g

u
y

g

u

g

u
x

2

sincos2cossin 2222
2

2 
……… (4) 

Shifting the origin to 














g

u

g

u

2

sin
,

cossin 222 
  

Y
g

u
X .

cos2 22
2 

    ……………….. (5) 
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(5) is the equation of a parabola of the form ,42 aYX    

whose latus-rectum is  2
22

cos
2cos2




u
gg

u
   

      =  22
velocityhorizontal

g
 

Vertex is 














g

u

g

u

2

sin
,

cos.sin 222 
 

3.3   Characteristics of the motion of the projectile 

1. Greatest height attained by a projectile. 

2. Time taken to reach the greatest height. 

3. Time of flight. 

4. The range on the horizontal plane through the point of projection. 

Derive formula for the characteristics 

3.3.1   Greatest height h 

  When the particle reaches the highest point at A, its direction is horizontal. 

 At A, vertical velocity = 0 

Let AB = h. 

Consider the vertical motion and using the formula “ aSuv 222  ” 

  hguO .2sin
2
   

g

u
h

2

sin 22 
  

 Highest point of the path is the vertex of the parabola. 

3.3.2  Time taken to reach the greatest height   T 

  Let T be the time taken to travel from O to reach the greatest height at A.  

At A final vertical velocity is zero 

At O initial vertical velocity is sinu   

Using the formula “v = u + at” 

gTuO  sin    

 

  

g

u
T

sin
  
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3.3.3  Time of flight  t 

  Let t be the time taken to travel from O to C along its path. At C, vertical distance 

traveled is zero. Consider the vertical motion and by the formula  
2

2

1
atutS   , 

2

2

1
.sin gttuO    

ie) 0
2

1
sin 








 gtut   

0 t  or 0
2

1
sin  gtu   

ie) 0t  or 
g

u
t

sin2
  = T

g

u
2

sin
2 







 
 

t = 0 gives the time of projection. 

 Time of flight  
g

u
t

sin2
  

 

 Time of flight = 2 x time taken to reach the greatest height. 

 

3.3.4  The range on the horizontal plane through the point of projection R 

Range R = OC  = horizontal distance traveled during the time of flight. 

     = horizontal velocity x time of flight 

     = 
g

u
u




sin2
cos     = 

g

u

g

u  2sincossin2 22

  

  Horizontal range R = 
  

g

uu  sincos2
 = 

g

UV2
 

 Where U – initial horizontal velocity, V – initial vertical velocity.  
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Problem 1 

A body is projected with a velocity of 98 metres per sec. in a direction making an angle 3tan 1
 

with the horizon; show that it rises to a vertical height of 441 metres and that its time of flight is 

about 19 sec.  Find also horizontal range through the point of projection (g=9.8 metres / sec
2
) 

 

Solution: 

 Given u = 98;   = tan 
-1

3 i.e tan   = 3 

 
10

3

tan1

tan

sec

tan
cos

cos

sin
sin

2

















  

  
10

1

tan

sin
cos 




  

Greatest height = 
8.9210

99898

2

sin 22






g

u 
 = 441 metres 

Time of flight = 106
8.910

3982sin2







g

u 
 

   = 19972.18162.36  secs. nearly 

Horizontal range = 
g

u  cossin2 2

 

    = 
10

1

10

3

8.9

98982



 = 588 metres 

 

Problem 2 

  If the greatest height attained by the particle is a quarter of its range on the horizontal plane 

through the point of projection, find the angle of projection       

Solution 

 Let u be the initial velocity and   the angle of projection 

  Greatest height   = 
g

u

2

sin 22 
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  Horizontal range = 
g

u  cossin2 2

 

  Given 
g

u

g

u  cossin2

4

1

2

sin 222

  

       i.e 
g

u

g

u

2

cossin

2

sin 222 
  

  i.e sin  = cos     tan  =1      = 45
0 

 

Problem 3 

   A particle is projected so as to graze the tops of two parallel walls, the first of height „a‟ 

at a distance b from the point of projection and the second of height b at a distant „a‟ from the 

point of projection.  If the path of particle lies in a plane perpendicular to both the walls, find the 

range on the horizontal plane and show that the angle of projection exceeds tan
-1

3.  

Solution:        

  Let u be the initial velocity,   be the angle of projection.  

Equation to the path is 



22

2

cos2
tan

u

gx
xy   

  i.e  2

2

2

1
2

t
u

gx
xty    where  tant ……. (1) 

 The tops of the two walls are (b, a) and (a, b) lie on (1) 

   a  =  2

2

2

1
2

t
u

gb
bt   ……… (2) 

         b =  2

2

2

1
2

t
u

ga
at   ………. (3) 

 From (2), a   2

2

2

1
2

t
u

gb
bt   ………. (4) 

 From (3), b  2

2

2

1
2

t
u

ga
at   ………. (5) 
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Dividing (4) by (5), 
2

2

a

b

atb

bta





 

i.e b
3
 – ab

2
 t = a

3
 – a

2
bt    t (a

2
b – ab

2
) = a

3
 – b

3 

        
 
  ab

baba

baab

bababa

abba

ba
t

2222

22

33 )( 










  


 

ab

abbaba

ab

baba 32
tan

2222 





 
3

2





ab

ba
…..(6) 

      (6)  3tan3tan 1  or  

 From (4), 
 

222

2

2

1

b

abt

b

bta

u

tg 








 

  = 

 

2

222

2

22

ab

ababa

b

a
ab

babab







 

     =
ab

ba

ab

bab 



2

)(
  ………… (7) 

Horizontal range =   
g

u 2sin2

 = 
 2

2

1

2

tg

tu


 






2tan1

tan2
2sin


  

       =   
ba

ab
t


.  from (7)  

       =   
 

ba

ab

ab

baba




 22

 =   
ba

baba



 22

 

 

Problem 4 

   A particle is thrown over a triangle from one end of a horizontal base and grazing the 

vertex falls on the other end of the base.  If A, B are the base angles, and   the angle of 

projection, show that      tan  = tan A + tan B  

Solution:      

 

 

 

 

 

   Y 
 
 
                                        C 
 
                                     h 
 
                                                              X 

      A                              D              B                                 
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 Let u be the velocity of projection and   the angle of projection and let t secs be the time 

taken from A to C.  Draw CD  AB and let CD = h. 

Consider the vertical motion, h = vertical distance described in time t 

         2

2

1
sin gttu    

AD = horizontal distance described in time t = u cos  t  

From CAD,
tu

gttu

AD

h

AD

CD
A










cos

2

1
sin

tan

2

 

             = 



cos2

tan
u

gt
   …… (1) 

      AB = horizontal range = 
g

u  cossin2 2

 

 DB = AB – AD = tu
g

u
 


cos

cossin2 2

 

From CDB,  


















tu
g

u

h

DB

CD
B




cos
cossin2

tan
2

 

   = 


















tu
g

u

gttu

.cos
cossin2

2

1
.sin

2

2






 

   =   
 gtuu

gtugt

















sin2cos

2

1
sin

 

 

   =   




cos2)sin2(cos2

)sin2(

u

gt

gtuu

gtugt





……….. (2) 

                  

 (1) + (2)   tanA + tanB = tan  
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Problem 5 

Show that the greatest height which a particle with initial velocity v can reach on a vertical wall 

at a distance „a‟ from the point of projection is 
2

22

22 v

ga

g

v
  Prove also that the greatest height 

above the point of projection attained by the particle in its fight is  2246 2 agvgv    

Solution:      

Equation to the path is  



22

2

cos2
tan

v

gx
xy    …….. (1) 

 Put x = a in (1),      



22

2

cos2
tan

v

ga
ay   

    y  = at  2

2

2

1
2

t
v

ga
  where t = tan   …….. (2) 

y is a function of t.  y is maximum when 0
dt

dy
 and 

2

2

dt

yd
 is negative. 

Differentiating (2) with respect to t, 

 
2

2

2

2

2
2 v

tga
at

v

ga
a

dt

dy
  

 
2

2

2

2

v

ga

dt

yd
  = negative  

So y is maximum when 0
2

2


v

tga
a  or 

ga

v
t

2

   ……(3) 

Put 
ga

v
t

2

  in (2)  

Max value of 















22

4

2

22

1
2 ag

v

v

ga

ga

v
ay  

    = 
2

222

2

22

2222 v

ga

g

v

g

v

v

ga

g

v
  

Greatest height during the flight 

  =   
 


2

2

2

222

cot12cos

1

22

sin




g

v

ecg

v

g

v
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  = 
















4

22

2

12
v

ag
g

v
 from (3) 

  = 
 224

6

2 agvg

v


 

 

Problem 6 

 

a. A projectile is thrown with a velocity of 20 m/sec. at an elevation 30
0
.  Find the greatest 

height attained and the horizontal range. 

b. A particle is projected with a velocity of 9.6 metres at an angle of 30
0
.  Find 

  i. The time of flight 

  ii. the greatest height of the particle. 

 

Solution: 

 Given u = 20m/sec;  = 30
0
 

 Greatest height = 
 

m
g

u
1.5

8.92

30sin20

2

sin
20222







 

 Horizontal range = m
g

u
35.35

8.9

60sin202sin 022







 

 

Problem 7 

  (a) A particle is projected under gravity in a vertical plane with a velocity u at an angle 

 to the horizontal.  If the range on the horizontal be R and the greatest height attained by h, 

show that 
h

R
h

g

u

162

22

  and 
R

h4
tan  . 

  (b) A particle is projected so that on its upward path, it passes through a point x feet 

horizontally and y feet vertically from the point of projection.  Show that, if R be the horizontal 

range, the angle of projection is 











xR

r

x

y1tan . 
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Solution: 

 a) 































g

u

g

u

g

u

h

R
h

2

sin
16

cossin2

2

sin

16 22

2
2

222






 

  = 
g

u

g

u

g

u

22

cos

2

sin 22222




 

b) Equation of the path is, 



22

2

cos2
tan

u

gx
xy   

 



22

2

cos2
tan

u

gx
yx   

 



22 cos2

tan
u

gx

x

y
    ………… (1) 

We have 
R

u
g

g

u
R

 cossin2cossin2 22




  

(1) 
R

u

u

x

x

y 




cossin2

cos2
tan

2

22


  = 

R

x

x

y tan
  

x

y

R

x









 1tan  

ie 
x

y

R

xR








 
tan   or 

xR

R

x

y


 .tan  











 

xR

R

x

y1tan  

Problem 8 

  If the time of flight of a shot is T seconds over a range of  x  metres, show that the 

elevation is 















x

gT

2
tan

2
1

and determine the maximum height and the velocity of projection. 
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Solution: 

 Given, horizontal range R = x metres 

 Time of flight 
g

u
T

sin2
    ………. (1) 

where  -is the angle of projection 

 
g

u
x

 cossin2 2

  

 )1(    gT = 2u sin .   

 

 



cot

2

1

sin4

cossin2 2

2

22





 gT

g

Tg
x   

 
x

gT

2
tan

2

        

 

 Maximum height = 
g

Tg

g

u

2

sin

sin42

sin 2

2

2222 




   = 

8

2gT
 

 

Problem 9 

   A particle is projected from a point P with a velocity of 32m per second at an 

angle of 30
0
 with the horizontal.  If PQ be its horizontal range and if the angles of elevation from 

P and Q at any instant of its flight be  and  respectively, show that 
3

1
tantan    

Solution: 

            Y 32u  

                                                      C 

 

 h 

                      30
0
 

             

                 P        D                Q                  X       

sin2

gT
u   














 

x

gT

2
tan

2
1  

    
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Given, initial velocity u = 32 m/sec, 30
0
 is the angle of projection.  P-be the point of projection.  

„t‟ – be the time taken from P to C. 

Let CD = h = 
2

2

1
.sin gttu   

20

2

1
)30sin.32( gtth  =  vertical distance described  in t secs 

  = 
2

2

1
16 gtt   

PD  = horizontal distance described in t secs = tu .cos  

 =   t030cos32  = t
2

3
32   = t316 . 

From  PCD ,  
t

h

PD

h

316
tan     …….. (1) 

From  QCD, ,tan
PDPQ

h

DQ

h


      PQ  =  range   

ie          

t
g

h

316
30cos30sin)32(2

tan
002














 
  

          = 
gt

hg

3163512 
  ………(2) 













gt

g

t

h

32

1

316
tantan)2()1(   

           =  





















)32(

32

316

2

1
16 2

gtt

gtgt
gtt

 

           =   
 

)32(

32

332

32

gtt

gtt





   =  

3

1
   

             

 3

1
tantan    
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Problem 10 

  A particle is projected and after time t reaches a point P.  If  t  is the lime it takes to move 

from P to the horizontal plane through the point of projection, prove that the height of P above 

the plane is 
'

2

1
tgt   

Solution: 

                                y 

 

 

                                         u 

 

 

                                        t    

                                               y                       t
'
 

                           

    

Let u be the velocity of projection,   be the angle of projection, P be the position of the particle 

after t secs.  Let 
't  be the time taken to travel from P to A 

 We have 
'tt   = time of flight = 

g

u sin2
  sinu  = 

 
2

'ttg 
 

Now, y = vertical distance described in t secs  =   2

2

1
sin gttu   

  = 
  2

'

2

1

2
gt

tttg



     

2

'gtt
  

 Height of P above the plane = 
2

'gtt
  

 

 

 

 

 yxP ,  

  

O         x        B                          A              X 
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3.4 Range on an inclined Plane:     

 

 

 
 
 
 
 
 
 
 
 

 

Let P be the point of projection on a plane of inclination  , u be the velocity of projection at an 

angle   with the horizontal. The particle strikes the inclined plane at Q. Then PQ = r is the 

range on the inclined plane. Take PX and PY as x and y axes. 

Draw PXQN  . 

From  sin,cos, rQNrPNPQN     

  sin,cos rrQ  lies on the path. 



22

2

cos2
tan

u

gx
xy   

 





22

2

cos2

cos
tan.cossin

u

rg
rr   

Dividing by r we get 








sin

cos

sin
.cos

cos2

cos
22

2


u

gr
  








 










cos

sincoscossin

cos

cos2
2

22

g

u
r                        

 r =  



sin

cos

cos2
2

2

g

u
 

 

 

 

 
              y 
                                                        Q 
 
                    u 

                                                gcos  

                                      g 

                       

 
           P                                          N                            X 
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3.5  Maximum range  on the inclined plane, given u the velocity of projection and   the 

inclination of the plane: 

Range r on the inclined plane is  

 



sin)2sin(

coscos

)sin(cos2

2

2

2

2





g

u

g

u
r  ….. (1) 

 Now u and   are given, g constant.  

So r is maximum when    sin2sin   is maximum. 

 i.e. when sin (2   ) is maximum. 

  i.e.when. 
2

2


   

    

   for maximum range. 

 

 

From (1), maximum range on the inclined plane   

  =  
)sin1(

sin1
cos

2

2

2




 


g

u

g

u
 

3.5.1  Time of flight T (up an inclined plane):    

 From the figure in 6.11, the time taken to travel from P to Q is the time of flight. 

Consider the motion perpendicular to the inclined plane. At the end of time T, the distance 

travelled perpendicular to the inclined plane S = 0, component of g perpendicular to the inclined 

plane is cosg , initial velocity perpendicular to the inclined plane is   sinu . 

   2.cos
2

1
sin0 TgTu    using "

2

1
" 2atutS 

 

 

 
 




cos

sin2

g

u
T


  

 

 

24


    
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3.5.2  Greatest distance S of the projectile from the inclined plane and show that it is 

attained in half the total time of flight: 

         

 Consider the motion perpendicular to the inclined plane.  The initial velocity 

perpendicular to the plane is u sin ( - ) and this is subjected to an acceleration gcos   in the 

same direction but acting downwards.  Let S be the greatest distance travelled by the particle 

perpendicular to the inclined plane. At the greatest distance the velocity becomes parallel to the 

inclined plane and hence the velocity perpendicular to the plane is zero. 

 Using the formula "2" 22 asuv   

    Sgu .cos2sin0
2    

 
 




cos.2

sin. 22

g

u
S


  

 

3.5.3  Time taken to reach the greatest distance t  : 

When the particle is at the greatest distance from the inclined plane, its velocity becomes 

parallel to the inclined plane and the velocity perpendicular to the inclined plane is zero.  So, if t 

is the time taken to reach the greatest distance, using the formula 

“ atuv  ”    

    tgu   cossin0  

 i.e. 
 





cos

sin

g

u
t


  

Note : Time of flight T = 
 




cos

sin2

g

u 
 = 2.t  = 2   time taken to reach the greatest distance. 

 

 

Problem 11 

Show that, for a given velocity of projection the maximum range down an inclined plane of 

inclination   bears to the maximum range up the inclined plane the ratio 




sin1

sin1




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Solution 

 

 

 

 

 

 

                                                                 

                                                                        g 

  

  

Let u be the given velocity of projection and   the inclination of the direction of projection with 

the plane.  u has  two components ucos along the upward inclined plane and usin  

perpendicular to the inclined plane.  g has two components, g sin   along the downward 

inclined plane and gcos  perpendicular to the inclined plane and downwards. 

 Consider the motion perpendicular to the inclined plane.  Let T be the time of flight.  

Distance travelled perpendicular to the inclined plane in time T = 0 

 2cos
2

1
sin0 TgTu     








 2

2

1
atutS  

 i.e. 




cos

sin2

g

u
T   

 Range up the plane = R1 

 R1= distance travelled along the plane in time T  

     = 
2sin

2

1
cos TgTu    

 = 










22

22

cos

sin4
sin

2

1

cos

sin2
cos

g

u
g

g

u
u   

 = 







2

222

cos

sinsin2

cos

cossin2

g

u

g

u
  

 = )sinsincos(cos
cos

sin2
2

2







g

u
 

u 


u 

B
u 

u
u 

u sin
 

 g cos α  

      g sin   

O 

u cos         

      
      
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 = 






sin)cos(2

cos
)cos(

cos

sin2

2

2

2

2


g

u

g

u
 

 =  


sin)2sin(
cos2

2


g

u
 

R1 is maximum, when 1)2sin(   

Maximum range up the plane  

= 
)sin1(

)sin1(
cos

2

2

2




 


g

u

g

u
   ………… (1) 

 When the particle is projected down the plane from B at the same angle   to the plane, 

the time of flight T has the same value 




cos

sin2

g

u
.  The component of the initial velocity along the 

inclined plane is u cos  downwards and the component of acceleration g sin   is also 

downwards. 

 

 Range down the plane = R2 

 R2 = distance travelled along the plane in time T 

 =
2sin

2

1
cos TgTu    

 = )sinsincos(cos
cos

sin2
2

2







g

u
 

 =  






sin)2sin(

cos
)cos(

cos

sin2
2

2

2

2


g

u

g

u
 

R2 is maximum, when sin (2    ) = 1. 

Maximum range down the plane  

= 
)sin1(

)sin1(
cos

2

2

2




 


g

u

g

u
   ………….. (2) 

planetheuprangeMax

planethedownrangeMax




 = 





 sin1

sin1)sin1(

)sin1( 2

2









 u

g

g

u
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Problem 12 

  A particle is projected at an angle   with a velocity u and it strikes up an inclined plane 

of inclination   at right angles to the plane.  Prove that (i) cot  = 2tan( - ) (ii) cot  = tan

 2tan . If the plane is struck horizontally, show that tan .tan2     

Solution:    

 The initial velocity and acceleration are split into components along the plane and 

perpendicular to the plane.   

The time of flight is 




cos

)sin(2

g

u
T


    ….. (1) 

 Since the particle strikes the inclined plane normally, its velocity parallel to the inclined 

plane at the end of time T is = 0. 

 i.e. 0 = u cos ( - ) – g sin T  

 
 





sin

cos

g

u
T


     ….. (2) 

 








sin

)cos(

cos

)sin(2

g

u

g

u 



 from (1) and (2) 

 i.e. cot   = 2 tan (   )   …… (i) 

 i.e. 





tantan1

)tan(tan2
cot




 , Simplifying we get 

 cot   + tan   = 2 tan  2 tan    

 cot   =  tan  2 tan      ….. (ii) 

 If the plane is struck horizontally, the vertical velocity of the projectile at the end of time 

T = 0.  Initial vertical velocity = u sin , and acceleration in this direction = g (downwards). 

 Vertical velocity in time T = u sin   gT    
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  u sin  gT = 0  or  T = 
g

u sin
  ….. (3) 

  
g

u

g

u 



 sin

cos

)sin(2



  from (1) and (3)  

 Simplifying we get 

2 sin (   ) = sin  cos  

2(sin cos  cos sin ) = sin cos . 

sin cos = 2cos sin  or  tan = 2tan  

 

Problem 13 

  The greatest range with a given velocity of projection on a horizontal plane is            

3000 metres.  Find the greatest ranges up and down a plane inclined at 30
0
 to the horizon. 

Solution: 

 

 

 

 

 

 

   

 

 

 Let u be the velocity of projection,   be the inclination of direction of projection with the 

plane.  Given gum
g

u
 30003000 2

2

 

At the end of time t, distance travelled perpendicular to the inclined plane is zero. 

 
2030cos

2

1
sin0 TgTu    

               y 
 
 
 
                                                            u 

                                                                             

                               u 
 
 
                                                           g 
                        

                      

                        30
0 

 

                                                                                                                                                                   X 
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2

2

3

2

1
sin0 TgTu    

 

  
3

sin4

g

u
T


  

   

Range up the inclined plane,  S = 2030sin
2

1
cos TgTu   

      = 
2

22

3

sin16

4

1

3

sin4
cos

g

u
g

g

u
u


   

      = 
g

u

g

u

3

sin4

3

cossin4 222 
  

 S =  


sincos3
3

sin4 2


g

u
 

Max. range is got when 1)302sin( 0   

  i.e. 
00 90302  030  

Max. range up the inclined plane  

=  00
02

max 30sin30cos3
3

30sin4


g

u
S  

= 3000
3

2

2

1

2

3
3

3

2

1
4 2













g

u

 mS 2000max   

 Range down the inclined plane =   


sin2sin
cos2

2


g

u
 

Max. range down the inclined plane 

    
2

11
3

4
30sin1

30cos

2
0

02

2





g

u

g

u
 

 m
g

u
600030002

2 2

  
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Problem 14 

  An inclined plane is inclined at an angle of 30
0
 to the horizon.  Show that, for a given 

velocity of projection, the maximum range up the plane is 1/3 of the maximum range down the 

plane. 

 

Solution: 

 

 

 

 

 

 

Max. range up the plane =  0

02

2

30sin1
30cos


g

u
  = 

g

u

3

2 2

 

Max. range down the plane =  0

02

2

30sin1
30cos


g

u
 

       = 
g

u

g

u 22 2

2

3

3

4
  

Max. range up the plane = 
g

u22

3

1
  

       = planethedownrangemax
3

1
 

 

 

Problem 15 

  If the greatest range down an inclined plane is three times its greatest range up the plane 

then show that the plane is inclined at 30
0
 to the horizon.. 

 

 

 

 
                                      u 
 
                                        
                                        g sin 30

0
 

                        

                      ucos                   g            g cos 30
0 

                     

               30
0
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Solution 

 

 

 

 

 

 

 

 

 

Greatest range down the inclined plane R1  

  


sin1
cos2

2

1 
g

u
R  

Greatest range down the inclined plane R2  

  


sin1
cos2

2

2 
g

u
R  

Given, R1 = 3R2 

 i.e.    3sin1
cos2

2


g

u  


sin1
cos2

2


g

u
 

 
2

1
sin     

030  

 

Problem 16 

A particle is projected in a vertical plane at an angle   to the horizontal from the foot of a plane 

whose inclination to the horizon is 45
0
.  Show that the particle will strike the plane at right angles 

if tan  =3. 

 

 

 

 

 
                                u 
 
                                                   g sin  
 

                                 u cos   

                                                    g              g cos  

                       
                     
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Solution: 

  

 

 

 

 

 

 

 

 

 

When the particle strikes the plane at right angles, velocity parallel to the plane is zero. 

 TguO  00 45sin)45cos(  

 

2

1

)45cos(

45sin

)45cos( 0

0

0









g

u

g

u
T


  ……. (1) 

Also, time of flight,  
 

0

0

45cos

45sin2






g

u
T


  ……. (2) 

 
   

2

1
.

45sin2

2

1

45cos
)2(&)1(

00

g

u

g

u 








 

   )45sin(245cos 00      145tan2 0    

  1
45tantan1

45tantan
2

0

0






















   

  1
tan1

1tan
2 

















 

   

                  i.e.  tan1)1(tan2      

                  3tan    

 

 

                    u sin   

 
 
u sin( -45

0
)      

 
                               u 
 
                                                               ucos( -45

0
) 

 
                                    gsin45

0 

                                                                    g             gcos45
0
 

                                            45
0
  

                       O                           u cos  
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Problem 17 

A particle is projected with speed u so as to strike at right angles  a plane through the point of 

projection inclined at 30
0
 to the horizon.  Show that the range on this inclined plane is 

g

u

7

4 2

 

Solution: 

  

 

 

 

 

 

 

Since u is the velocity of projection, 
030  is the inclination of the inclined plane, we have 

proved,  Range on the inclined plane = OA 

   
 


2

2

sin31

sin2






g

u
 

   
 02

02

30sin31

30sin2






g

u
 

   















4

3
1

2

1
2 2

g

u

  
g

u

7

4 2

  

 

3. 6 Impulsive Forces 
 

3.6.1 Impulse: 
The term impulse of force is defined as follows: 

(1) The impulse of a constant force F during a time interval T is defined as the 

product FT. 

                            u 

 

 

                               

                                           

                                                           A 

 
 

                 

                             30
0
 

                     O 
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Let f be the constant acceleration produced on a particle of mass m on which F acts and 

u, v be respectively the velocity at the beginning and end of the period T.  

 Then v-u = fT and F = mf. 

Hence the impulse I = FT = mfT = m(v-u) 

     =change of momentum produced. 

(2) The impulse of a variable force F during a time interval T is defined to be the time 

integral of the force for that interval. 

 i.e. Impulse I =   
𝑇

𝑜
 Fdt.  This is got as follows.  During a short interval of time ∆t, the 

force F can be taken to be constant and hence elementary impulse in this interval = F. ∆t.  Hence 

the impulse during the whole time T for which the force F acts is the sum of such impulses and 
 

=  
Lt

∆ t → 0
   F. ∆t =   

T

o

F dt.    

𝑇

𝑡−0

 

Since F is variable, F = m . 
dv

dt
  

So impulse =   
𝑇

𝑜
m 

𝑑𝑣

𝑑𝑡
 dt  =  mv – mu, where u and v are the velocities at the beginning 

and end of the interval and hence this is also equal to the change of momentum produced.   

Thus whether a force is a variable or constant,   

   its impulse = change of momentum produced. 

 

3.6.2 Impulsive Force: 

The change of momentum produced by a variable force P acting on a body of mass m 

from time t = t1 to t = t2 is   
𝑡2

𝑡1
P dt.  Suppose P is very large but the time interval t2 - t1 during 

which it acts is very small.  It is quite possible that the above definite integral tends to a finite 

limit.  Such a force is called an impulsive force.  

 Thus an impulsive force is one of large magnitude which acts for a very short period of 

time and yet produces a finite change of momentum. 

Theoretically an impulsive force should be infinitely great and the time during which it 

acts must be very small.  This, of course, is never realized in practice, but approximate examples 

are (1) the force produced by a hammer-blow (2) the impact of a bullet on a target.  In such cases 
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the measurement of the magnitude of the actual force is impracticable but the change in 

momentum produced may be easily measured.  Thus an impulsive force is measured by its 

impulse i.e. the change of momentum it produces. 

Since an impulsive force acts only for a short time on a particle, during this time the 

distance travelled by a particle having a finite velocity is negligible.  Also suppose a body is 

acted upon by impulsive forces is very short, during this time, the effect of the ordinary finite 

forces can be neglected.  

 

3.7. Collision of Elastic Bodies 

  A solid body has a definite shape. When a force is applied at any point of it tending to 

change its shape, in general, all solids which we meet with in nature yields slightly and get more 

or less deformed near the point.  Immediately, internal forces come into play tending to restore 

the body to its original form and as soon as the disturbing force is removed, the body regains its 

original shape.  The internal force which acts, when a body tends to recover its original shape 

after a deformation or compression is called the force of restitution.  Also, the properly which 

causes a solid body to recover its shape is called elasticity.  If a body does not tend to recover its 

shape, it will cause no force of restitution and such a body is said to be inelastic.  When a body 

completely regains its shape after a collision, it is said to be perfectly elastic.  If it does not come 

to its original shape, it is said to be perfectly inelastic. 

Definitions: 

 Two bodies are said to impinge directly when the direction of motion of each before 

impact is along the common normal at the point where they touch. 

 Two bodies are said to impinge obliquely, if the direction of motion of either body or 

both is not along the common normal at the point where they touch. 

 The common normal at the point of contact is called the line of impact.  Thus, in the 

cause of two spheres, the line of impact is the line joining their centres. 
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3.8. Fundamental Laws of Impact: 

1. Newton‟s Experimental Law (NEL): 

When two bodies impinge directly, their relative velocity after impact bears a 

constant ratio to their relative velocity before impact and is in the opposite direction.  If 

two bodies impinge obliquely, their relative velocity resolved along their common normal 

after impact bears a constant ratio to their relative velocity before impact, resolved in the 

same direction, and is of opposite sign. 

 The constant ratio depends on the material of which the bodies are made and is 

independent of their masses.  It is generally denoted by e, and is called the coefficient (or 

modulus) of elasticity (or restitution or resilience). 

 

 This law can be put symbolically as follows: If u1, u2 are the components of the velocities 

of two impinging bodies along their common normal before impact and v1, v2 their component 

velocities along the same line after impact, all components being measured in the same direction 

and e is the coefficient of restitution, then  

v2  − v1

u2  − u1
 =  −e. 

            The quantity e, which is a positive number, is never greater than unity.  It lies between 0 

and 1.  Its value differs widely for different bodies; for two glass balls, one of lead and the other 

of iron, its value is about 0.13.  Thus, when one or both the bodies are altered, e becomes 

different but so long as both the bodies remain the same, e is constant.  Bodies for which e = 0 

are said to be inelastic. For perfectly elastic bodies, e=1.  Probably, there are no bodies in nature 

coming strictly under wither of these headings.  Newton‟s law is purely empirical and is true 

only approximately, like many experimental laws. 

 

2. Motion of two smooth bodies perpendicular to the line of Impact: 

 When two smooth bodies impinge, the only force between them at the time of impact is 

the mutual reaction which acts along the common normal.   There is no force acting along the 

common tangent and hence there is no change of velocity in that direction.  Hence the velocity of 

either body resolved in a direction perpendicular to the line of impact is not altered by impact. 
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3. Principle of Conservation of Momentum (PCM) : 

 We can apply the law of conservation of momentum in the case of two impinging bodies.  

The algebraic sum of the momenta of the impinging bodies after impact is equal to the algebraic 

sum of their moments before impact, all momenta being measured along the common normal. 

 

3.9. Impact of a smooth sphere on a fixed smooth plane: 

 
 A smooth sphere, or particle whose mass is m and whose coefficient of restitution is e, 

impinges obliquely on a smooth fixed plane; to find its velocity and direction of motion after 

impact. 

 

 

 

 

 

 

 

 

 

 

 Let AB be the plane and P the point at which the sphere strikes it.  The common 

normal at P is the vertical line at P passing through the centre of the sphere. Let it be PC.  

This is the line of impact.  Let the velocity of the sphere before impact be u at an angle α 

with CP and v its velocity after impact at an angle 𝜃 with CN as shown in the figure.  

 Since the plane and the sphere are smooth, the only force acting during impact is 

the impulsive reaction and this is along the common normal.  There is no force parallel to 

the plane during impact.  Hence the velocity of the sphere, resolved in a direction parallel 

to the plane is unaltered by the impact. 

 Hence v sin 𝜃 = u sin𝛼         … (1) 

α 
θ 

u sin α 

u 
eu cos α 

v 

A                                               P                                             B                               

  C 

N 
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By Newton‟s experimental law, the relative velocity of the sphere along the common 

normal after impact is (-e) time its relative velocity along the common normal before 

impact.  Hence 

v cos 𝜃 - 0  =  -e (-u cos 𝛼 - 0) 

     i.e. v cos 𝜃 = eu cos 𝛼        …(2) 

Squaring (1) and (2), and adding, we have  

v
2
  =  u

2
 (sin

2
 𝛼 + e

2
 cos

2
 𝛼 ) 

         i.e. v  =  u  sin2α + e2cos2α      ... (3)  

Dividing (2) by (1), we have cot 𝜃 = e cot 𝛼       ... (4) 

Hence the (3) and (4) give the velocity and direction of motion after impact. 

 

Corollary 1: If e = 1, we find that from (3) v = u and from (4) 𝜃 = 𝛼. Hence if a 

perfectly elastic sphere impinges on a fixed smooth plane, its velocity is not altered by 

impact and the angle of reflection is equal to the angle of incidence. 

Cor. 2: If e = 0, then from (2), v cos 𝜃 = 0 and from (3), v = u sin 𝛼.  Hence cos 𝜃 

= 0 i.e. 𝜃 = 90
o
.  Hence the inelastic sphere slides along the plane with velocity u sin 𝛼 

Cor. 3: If the impact is direct we have 𝛼 = 0.  Then 𝜃 = 0 and from (3) v=cu.  

Hence if an elastic sphere strikes a plane normally with velocity u, it will rebound in the 

same direction with velocity eu. 

Cor. 4: The impulse of the pressure on the plane is equal and opposite to the 

impulse of the pressure on the sphere.  The impulse I on the sphere is measured by the 

change in momentum of the sphere along the common normal. 

I  =  mv cos θ - ( - mu cos α) 

    =  m (v cos θ + u cos α) 

    =  m (cu cos α + u cos α)  

   =  mu cos α (1 + e) 
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Cor. 5: Loss of kinetic energy due to the impact 

                                         =  
1

2
 mu

2
 -  

1

2
 mv

2 
=  

1

2
 mu

2
 -  

1

2
 mu

2
  (sin

2
 𝛼  + e

2
 cos 

2
 𝛼 ) 

                                         =  
1

2
 mu

2
 (1 – sin

2
 𝛼  + e

2
 cos 

2
 𝛼)  

                                         =  
1

2
 mu

2 
(cos

2
 𝛼  - e

2
 cos 

2
α ) 

                                         =  
1

2
 (1 – e

2
) mu

2 
cos

2
 𝛼   

If the sphere is perfectly elastic, e = 1 and the loss of kinetic energy is zero. 

 

Problem 18 

 A particle falls from a height h upon a fixed horizontal plane: if e be the 

coefficient of restitution, show that the whole distance described before the particle has 

finished rebounding is h   
1 + e2

1− e2
 . Show also that the whole time taken is 

1 + e  

1− e  
. 

2ℎ

𝑔
. 

Solution: 

Let u the velocity of the particle on first hitting the plane.  Then u
2
 = 2gh.  After 

the first impact, the particle rebounds with a velocity eu and ascends a certain height, 

retraces its path and makes a second impact with the plane with velocity eu.  After the 

second impact, it rebounds with a velocity c
2
u and the process is repeated a number of 

times.  The velocities after the third, fourth etc. impacts are e
3
u e

4
u etc.  

 The height ascended after the first impact with velocity eu is  
(velocity ) 2

2g
  

                                                                                                  = 
e 2u 2

2g
  

 The height ascended after the second impact with velocity e 2u is e
4
u

2
/2g and so 

on. 

∴  Total distance travelled before the particle stops rebounding 

= h + 2 (
e 2u 2

2g
 + 

e 4u 2

2g
 + 

e 6u 2

2g
 + … … … ) 

= h + 
2 .  e 2u 2

2g
  ( 1 + e 2 + e4 + … … … to ∞ ) 
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  = h + 
e 2u 2

g
 .  

 1

1− e 2
 

   = h + 
e 2 .2gh   

g
 .

 1

1− e 2
 

  = h (1 + 
2e 2

1−e 2  
 ) 

 = h.  
(1+ e 2)  

(1− e 2)
  

Considering the motion before the first impact, we have the initial velocity = 0, 

acceleration = g, final velocity = u and so if t is the time taken, u = 0 + gt. 

              ∴ t =  
u

g
  =  

velocity   

g
  

Time interval between the first and second impacts is 

                        = 2 x time taken for gravity to reduce the velocitiy  to 0. 

                       = 2. velocity / g 

                       = 2 eu / g. 

Similarly time interval between the second and third impacts 

                    = 2 e
2
 u/g and so on.  

So total time taken  

        =  
u

g
 + 2( 

eu

g
+ 

e 2u

g
+ 

e 3u

g
+ … … ∞) 

        = 
u

g
 +  

2 e u

g
  ( 1 + e + e

2
 + … … … to  ∞) 

        = 
u

g
 +  

2 e u

g
 .  

1

1−e
=  

u

g
[ 1 +  

2e

1−e
 ] 

        = 
u

g
 + ( 

1+e

1−e
  )  

=  
 2gh

g
 (

1 + e  

1− e  
 ) =     

1 + e  

1− e  
   

2h

g
. 
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3.10 Direct impact of two smooth spheres: 

 A smooth sphere of mass m1 impinges directly with velocity u1 on another smooth sphere 

of mass m2, moving in the same direction with velocity u2.  If the coefficient of restitution is e, to 

find their velocities after the impact: 

Solution:  

 

 

 

 

 

 

 

 

 

  AB is the line of impact, i.e. the common normal. Due to the impact there is no tangential 

force and hence, for either sphere the velocity along the tangent is not altered by impact.  But 

before impact, the spheres had been moving only along the line AB (as this is a case of direct 

impact).  Hence for either sphere tangential velocity after impact = its tangent velocity before 

impact = 0.  So, after impact, the spheres will move only in the direction AB.  Let their velocities 

be v1 and v2. 

 By Newton‟s experimental law, the relative velocity of m2 with respect to m1 after impact 

is (-e) times the corresponding relative velocity before impact. 

 ∴ v2 – v1 = -e (u2 – u1)   …….(1) 

 By the principle of conservation of momentum, the total momentum along the common 

normal after impact is equal to the total momentum in the same direction before impact. 

 ∴ m1 v1 + m2 v2 = m1 u1 + m2 u2    …….(2) 

(2) – (1) x m2 gives 

v1 (m1 + m2) = m1 u1 + m2 u2 + em2 (u2 – u1) 

= m2 u2 (1 + e) + (m1 – em2) u1 

∴ v1 =  
 

m2  u2  (1 + e) + (m1  – em 2) u1

m1+ m2
      … (3) 

    u1                      A                  v1                   u2                     B                v2 
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(1)  x m1 + (2) gives 

v2 (m1 + m2) = - em1 (u2 – u1) + m1u1 + m2u2 

= m1u1 (1 + e) + (m2 – em1) u2 

∴ v2 =  
 

m1  u1  (1 + e) + (m2  – em 1) u2

m1+ m2
     … (4) 

 

Equations (3) and (4) give the velocities of the spheres after impact. 

Note: If one sphere say m2 is moving originally in a direction opposite to that of m1, the 

sign of u2 will be negative.  Also it is most important that the directions of v1 and v2 must be 

specified clearly.  Usually we take the positive direction as from left to right and then assume 

that both v1 and v2 are in this direction.  If either of them is actually in the opposite direction, the 

value obtained for it will turn to be negative. 

In writing equation (1) corresponding to Newton‟s law, the velocities must be subtracted 

in the same order on both sides.  In all problems it is better to draw a diagram showing clearly 

the positive direction and the directions of the velocities of the bodies. 

Corollary 1.  If the two spheres are perfectly elastic and of equal mass, then e = 1 and m1 

= m2.  Then, from equations (3) and (4), we have  

 v1 =  
 

m1  u2 . 2 + 0 

2m1
  = u2 and v2=  

 
m1  u1 . 2 + 0 

2m1
  = u1.    

 i.e. If two equal perfectly elastic spheres impinge directly, they interchange their 

velocities. 

Cor: 2. The impulse of the blow on the sphere A of mass m1 = change of momentum of 

A = m1 (v1 – u1). 

                    =    m1  

 
m2  u2    1+e  + 

 
m1− em 2 )u1  

 
m1+ m2

  −  u1   

 

                  =    m1  

 
m2  u2    1+e  + 

 
m1  

 
u1− em 2 u1−

 
m1  

 
u1− 

 
m2  

 
u1   

 
m1+ m2

     

 

            =    

 
m1[ 

 
m2 

 u2    1+e  − 
 

m2  u1   1+e   ] 
 

m1+ m2
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           =    
m1   m2    1+e    ( u2 − u1 )  

 
m1+ m2

 

The impulsive blow on m2 will be equal and opposite to the impulsive blow on m1.  

Loss of kinetic energy due to direct impact of two smooth spheres: 

 Two spheres of given masses with given velocities impinge directly; to show that there is 

a loss of kinetic energy and to find the amount: 

 Let m1 m2 be the masses of the spheres, u1 and u2, v1 and v2 be their velocities before and 

after impact and e the coefficient of restitution. 

 By Newton‟s law, v2 – v1 = -e (u2 – u1)    … (1) 

 By the principle of conservation of momentum, 

m1v1 + m2v2 = m1u1 + m2u2   ….(2) 

Total kinetic energy before impact 

                                 = 
1

2
 m1 u1 

2
 + 

1

2
 m2u2

2
  

and total kinetic energy after impact 

                                 = 
1

2
 m1v1

2
 + 

1

2
 m2v2

2
 

Change in K.E. = initial K.E. – final K.E. 

                           = 
1

2
 m1u1

2
 + 

1

2
 m2u2

2
 - 

1

2
 m1v1

2
 - 

1

2
 m2v2

2 

                         =  
1

2
 m1 (u1 - v1) (u1 + v1) + 

1

2
 m2 (u2 - v2) (u2 + v2) 

                         =  
1

2
 m1 (u1 - v1) (u1 + v1) + 

1

2
 m1 (v1 – u1) (u2 + v2) 

                                   [∵   m2 (u2 - v2)  =  m1 (v1 - u1) from (2) ] 

                         =  
1

2
 m1 (u1 - v1) [u1 – u2  -  (v2– v1) ] 

=  
1

2
 m1 (u1 - v1) [u1 – u2 + e  (u2 – u1)]  using (1) 

=  
1

2
 m1 (u1 - v1) (u1 – u2 ) ( 1 – e )   …..(3) 

Now, from (2), m1 (u1 – v1) = m2 (v2 + u2)  

 ∴  
 
u1  −  v1   

m2
 =   

 
v2− u2   

m1
  and each = 

 
u1  −  v1+

 
v2− u2   

m1+ m2
   

i.e. each = 

 
(u1

 −  u2 )+
 

(v2
− v1   )

m1+ m2
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=  

 
(u1

 −  u2 )−e 
 

(u2
− u1   )

m1+ m 2
   using (1)  

=  

 
(u1

 −  u2 )   
 

(1 
+ e  )

m1+ m2
    

∴
 
u1

 −   v1 =   
m2  

 
(u1

 −  u2 )   
 

(1 
+ e  )  

m1+ m2
  and substituting this in (3),  

Change in K.E. =   
1

2
  

m1  m2  (u1  − u2) 
 

(1 
+ e  ) (u1  − u2  )  

 
(1 

− e  )   

m1+ m2
 

   = 
1

2
  

m1  m2  (u1  − u2) 2  
 

(1−  e
2

 ) 

m1+ m2
  …(4) 

 

As e < 1, the expression (4) is always positive and so the initial K.E. of the system is 

greater than the final K.E.  So there is actually a loss of total K.E. by a collision.  Only in the 

case, when e=1, i.e. only when the bodies are perfectly elastic, the expression (4) becomes zero 

and hence the total K.E. is unchanged by impact. 

Problem 19 

  A ball of mass 8 gm. moving with a velocity of 10 cm. per sec. impinges directly on 

another of mass 24 gm., moving at 2cm per sec. in the same direction.  If e = ½, find the 

velocities after impact.  Also calculate the loss in kinetic energy.  

Solution: 

 

 

 

 

 

 

 

 

 

 

 

Let v1  and v2 cm. per sec. be the velocities of the masses 8gm and 24 gm respectively 

after impact.  

10                      A                  v1                   2                                B                v2 

8                                                                      24 
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By Newton‟s Law, v2-v1 = - 
1

2
 (2-10) = 4 …… (1) 

By the principle of momentum, 

24v2 + 8v1 = 24 x 2 + 8 x 10 = 128 

i.e. 3v2 + v1 = 16 

Solving (1) and (2), v1 = 1 cm. / sec., v2 = 5 cm./ sec. 

The K.E. before impact = 
1

2
 . 8.10

2
 + 

1

2
 . 24.2

2
 

   = 448 dunes 

 

The K.E. after impact = 
1

2
 . 8.1

2
 + 

1

2
 . 24.5

2
 = 304 dines 

∴  Loss in K.E. = 144 dynes 

 

Problem 20 

If the 24 gm.mass in the previous question be moving in a direction opposite to that of the 

8 gm.   mass, find the velocities after impact. 

Solution:       

   
 
 

 

 

 

 

 

 

 

  Let v1 and v2 cm/sec. be the velocities of the 8gms and 24 gms mass respectively 

after impact. 

By Newton‟s law, 

V2 – v1 = - 
1

2
  −2 − 10 =  6            ……… (1) 

8                                                          24 

       10                      A                  v1                   2                     B                v2 
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By conservation of momentum, 

24v2 + 8v1 = 24 x (-2) + 8 x 10 = 32 i.e. 3v2 + v1 = 4            ………….. (2)  

Solving (1) and (2), v1 =  -  
7

2
 cm/sec v2 = 

1

2
 cm / sec.  

The negative sign of v1 shows that the direction of motion of the 8 gm. Mass is 

reversed, as we had taken the direction left to right as positive and assumed v1 to be in 

this direction.  Since v2 is positive, the 24gm. ball moves from left to right after impact, 

so that its direction of motion is also reversed. 

 

Problem 21 

   A ball overtakes another ball of m times its mass, which is moving with 
1

𝑛
 th of its 

velocity in the same direction.  If the impact reduces the first ball to rest, prove that the 

coefficient of elasticity is 
𝑚+𝑛

𝑚 ( 𝑛−1)
   

Deduce that m ˃ 
n

 n−2
 

Taking AB as positive direction (as shown in the previous diagram), let the mass 

of the first ball be k and u its velocity along AB before impact.  Then, for the second ball, 

the mass is mk and 
u

 n
 is the velocity before impact.  After impact, the first ball is reduced 

to rest and let v be the velocity of the second ball. 

By Newton‟s law of impact, we have  

v – 0 = -e. ( 
u

n
 - u ) i.e. v = 

eu ( n−1 )

n
     .. (1) 

By principle of conservation of momentum along AB, 

K x 0 + mk. V = ku + mk. 
1

n
 u 

i.e. mv = u + 
m

u
 u = 

u ( m+n )

n
       ..(2) 

Substituting value of v from (1) in (2), 12 have 

meu ( n−1 )

n
  =   

u( m+n )

n
 or e = 

( m+n )

m (n−1 )
 

Now e is positive and less than 1.  
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∴ m (n – 1 ) ˃ m + n i.e. mn – 2m ˃ n 

∴ m (n – 2 ) ˃  n or m ˃ 
n 

n−2
 

3.11 Oblique impact of two smooth spheres: 

 A smooth sphere of mass m1 impinges obliquely with velocity u1 on another 

smooth sphere of mass m2 moving with velocity u2.  If the directions of motion before 

impact make angles α1 and α2 respectively with line joining the centres of the spheres and 

if the coefficient of restitution be e, to find the velocities and directions of motion after 

impact.  

 

 

 

 

 

 

 

 

 

 

 

 

 Let the velocities of the spheres after impact be v1 and v2 in directions inclined at 

angles θ1 and θ2 respectively to the line of centres.  Since the spheres are smooth, there is 

no force perpendicular to the line of centres and therefore, for each sphere the velocities 

in the tangential direction are not affected by impact. 

 ∴ v1 sin θ1 = u1 sin α1     …  (1) and  

v2 sin θ2 = u2 sin α2      …  (2) 

 By Newton‟s law concerning velocities along the common normal AB, 

v2 cos θ2 – v1 cos θ1 = -e (u2 cos α2 – u1 cos α1)   ... (3) 

 

α1 α2 

θ1 
θ2 

u1                                                  m1                                                             u2                          m2 

v1                                                                                                       v2 
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 By the principle of conservation of momentum along AB,  

m2. v2 cos θ2 + m1 v1 cos θ1 = m2 u2 cos α2 + m1 u1 cos α1  ….(4)  

(4) – (3) x m2 gives 

v1 cos θ1. (m1 + m2) = m2 u2 cos α2 + m1 u1 cos α1  

+ em2 (u2 cos α2 - u1 cos α1) 

i.e. v1 cos θ1 = 
u1 cos  α1(m1− em 2 ) +  m2 u2 cos   α2   1+e  

m1 + m2 
        … (5) 

(4) + (3) x m1 gives  

V2 cos θ2 = 
u2 cos  α2(m2− em 1 ) +  m1 u1 cos   α1   1+e  

m1 + m2 
             … (6) 

From (1) and (5), by squaring and adding, we obtain v1
2
 and by division, we have 

tan θ1.  Similarly from (2) and (6) we get v2
2
 and tan θ2.  Hence the motion after impact is 

completely determined. 

 Corollary 1. If the two spheres are perfectly elastic and of equal mass, then e = 1 

and m1=m2. 

Then from equations (5) and (6) we have 

V1 cos θ1 = 
0+m1  u2  cos  α2  .2   

2  m1 
 =   u2 cos  α2  

And V2 cos θ2 = 
0+m1  u1  cos  α2  .2   

2  m1 
 =   u1 cos  α1  

Hence if two equal perfectly elastic spheres impinge, they interchange their 

velocities in the direction of the line of centres. 

Corollary 2. Usually, in most problems on oblique impact, one of the spheres is at 

rest.  Suppose m2 is at rest i.e. u2 = 0. 

 From equation (2), v2 sin θ2 = 0 i.e. θ2 = 0.  Hence m2 moves along AB after 

impact.  This is seen independently, since the only force on m2 impact is along the line of 

centres. 
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Corollary 3: 

 The impulse of the blow on the sphere A of mass m1 

 = change of momentum of A along the common normal 

= m1  (v1  cos θ1  − u1   cos α1 )  

= m1    
   u1  cos   α1 (m1 − em 2 ) +  m2 u2 cos   α2   1+e  

m1 + m2 
−  u1 cos  α1   

 

=  m1   
     m1 u1  cos  α1 − em2  u1 cos  α1 +  m2 u2 cos  α2 + em2  u2 cos  α2  −m1   u1 cos  α1 −   m2 u1 cos  α1    

m1 + m2 

  

=  
 m1   m2  u2  cos   α2  1+e −   m2 u1 cos   α1  1+e  

m1 + m2 
 

=  
 m1  m2 1+e   

m1 + m2 
   u2 cos  α2 −   u1 cos  α1     

The impulsive blow on m2 will be equal and opposite to the impulsive blow on m1.  

 

Loss of kinetic energy due to oblique impact of two smooth spheres: 

 Two spheres of masses m1 and m2 moving with velocities u1 and u2 at angles α1 

and α2 with their line of centres, come into collision.  To find an expression for the loss of 

kinetic energy: 

 The velocities perpendicular to the line of centres are not altered by impact.  

Hence the loss of kinetic energy in the case of oblique impact is therefore the same as in 

the case of direct impact if we replace in the expression (4) on page 236, the quantities u1 

and u2 by u1 cos α1 and u2 cos α2 respectively.   

Therefore the loss is  =  
1

2
 

 m1  m2

m1 + m2 
  1 − e 2     (u1  cos  α1 −   u2  cos  α2 ) 2 

We shall now derive this independently. 

 Let v1 and v2 be the velocities of the spheres after impact, in directions inclined at 

angles θ1 and θ2 respectively to the line of centres.  As explained in § 8.7 the tangential 

velocity of each sphere is not altered by impact. 

∴ v1 sin θ1 = u1 sin α1 … (1) and v2 sin θ2 = u2 sin α2 … (2)  

By Newton‟s of rule 
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v2 cos θ2 – v1 cos θ1 = - e (u2 cos α2 – u1 cos α1 ) … (3) 

By conservation of momenta, 

m2v2 cos θ2 + m1 v1 cos θ1 = m2 u2 cos α2 + m1 u1 cos α1 

i.e. m1 (u1 cos α1 - v1 cos θ1) = m2 (v2 cos θ2 – u2 cos α2)  … (4) 

Change in K.E. 

= 
1

2
 m1 u1

2 + 
1

2
 m2 u1

2 - 
1

2
 m1v1  

2 - 
1

2
 m2v2  2 

= 
1

2
 m1 u1

2 ( cos 
2
 α1 + sin 

2
α1) + 

1

2
 m2 u2  2 (cos

2
 α2 + sin 2 α2)  

- 
1

2
 m1 v1

2
 ( cos 

2
 θ1 + sin 

2
θ1) - 

1

2
 m2 v2

2 (cos
2
 θ2 + sin 2 θ2)  

= 
1

2
 m1 u1

2  cos 
2
 α1 + 

1

2
 m2 u2

2 cos
2
 α2 - 

1

2
 m1 v1

2 cos
2
  θ1  

- 
1

2
 m2 v2

2  cos 
2
 θ2 using (1) and (2) 

 =  
1

2
 m1 (u1

2  cos α1 - v1
2 cos

2
 θ1 ) + 

1

2
 m2 (u2

2  cos
2
 α2 - v2

2 cos
2
 θ2  ) 

= 
1

2
 m1 (u1 cos α1 + v1 cosθ1 ) (u1 cos α1- v1 cos θ1 ) 

+ 
1

2
 m2 (u2 cos α2 + v2 cosθ2 ) (u2 cos α2- v2 cos θ2 ) 

= 
1

2
 m1 (u1 cos α1 + v1 cosθ1 ) (u1 cos α1- v1 cos θ1 ) 

- 
1

2
 (u2 cos α2 + v2 cosθ2 ). m1 (u1 cos α1- v1 cos θ1 ) using (4)  

= 
1

2
 m1 (u1 cos α1 - v1 cosθ1 ) (u1 cos α1 + v1 cos θ1 - u2 cos α2 - v2 cos θ2 ) 

= 
1

2
 m1 (u1 cos α1 - v1 cosθ1 ) [u1 cos α1 + u2 cos α2  

+ e ( u2 cos α2 - u1 cos α1) ] Using (3) 

= 
1

2
 m1 (u1 cos α1 - v1 cosθ1 ) (u1 cos α1 - u2 cos α2 ) (1 – e )  …..(5) 

Now from (4),  

   u1  cos   α1 −    v1  cos   θ1  

m2 
 = 

   v2  cos   θ2 −    u2  cos   α2  

m1 
 

and each  = 
   u1  cos   α1 −    v1  cos   θ1 +   v2  cos   θ2 −    u2  cos   α2  

m1 + m2 
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= 
  ( u1  cos   α1 −   u2  cos   α2 ) +  (  v2  cos   θ2 −   v1  cos   θ1 ) 

m1 + m2 
 

= 
  u1  cos   α1 −   u2  cos   α2 − e    (u2  cos   α2 −   u1  cos   α1 ) 

m1 + m2 
 using (3) 

= 
  (u1  cos   α1 −   u2  cos   α2  ) (1+ e )  

m1 + m2 
 

∴  u1  cos  α1 −   v1  cos  θ1 = 
 m2 (1+ e )  

m1 + m2 
  ( u1  cos  α1 −   u2  cos  α2 ) 

 

Substituting in (5), 

Change in K.E.  = 
1

2
  

  m1  m2 (1+ e )   

m1 + m2 
  ( u1  cos  α1 −   u2  cos  α2 ) 

x  ( u1  cos  α1 −   u2  cos  α2 ) (1 +  e )    
 

= 
1

2
 

  m1  m2 

m1 + m2 
 (1 – e

2 ) ( u1  cos  α1 −   u2  cos  α2 )
2 

If the spheres are perfectly elastic, e = 1 and the loss of kinetic energy is zero. 

Problem 22 

 A ball of mass 8 gms. moving with velocity 4 cms. Per sec. impinges on a ball os 

mass 4 gms. Moving with velocity 2 cm. per sec.  If their velocities before impact be 

inclined at angle 30
o
 and 60

o 
to the joining their centres at the moment of impact, find 

their velocities after impact when e =  
1

2
  

Solution: 

In the diagram in the oblique impact of two smooth spheres, let m1 = 8 u1  =4        

α1 = 30
0
,  m2 =4, u2= 2, α2 =60

0
 

Let the velocities of the spheres after impact be v1 and v2 in directions inclined at 

angles θ1 and θ2 respectively to the line of centres.   

The tangential velocity of each sphere is not affected by impact 

 ∴  v1  sin θ1 = 4 sin 30
o
 = 2      …(1) 

and v2 sin θ2 = 2 sin 60
o
 =  3       …(2) 
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By Newton‟s Law, 

v2 cos θ2 – v1 cos θ1 = - e ( 2 cos 60
o
 – 4 cos 30

o
 ) 

= - 
1

2
 ( 2.  

1

2
 - 4. 

   3   

2
 ) 

1

2
 ( 2  3 - 1)         …(3) 

By conservation of momenta along AB, 

4v2 cos θ2 + 8v1 cos θ1 = 4 x 2 cos 60
o
 + 8 x 4 cos 30

o
 = 4 + 16  3 

i.e. v2 cos θ2 + 2v1 cos θ1 = 1 + 4 3      …(4) 

∴ 3v1 cos θ1 = 1 + 4 3 - 
1

2
 (2 3 - 1) = 

  3 +  6 3

2
 

i.e. v1 cos θ
1
 = 

  1+  2 3

2
        …(5) 

From (4), v2 cos θ2 = 1 + 4 3 - 1 - 2 3 =  2 3     …(6) 

 

From (1) and (5),   v1
2 = 2

2
 + (

  1+  2 3

2
 )

2
 

= 4 + 
  1+  4 3 + 12

4
 = 

  29 +  4 3

4
 

∴  𝑣1 =
  29− 4 3

2
 cm. per sec. 

Dividing (1) by (5), tan θ1 = 
  4  

1+2 3
 

From (2) and (6) 

v2
2
 = 3 + 12 = 15 and ∴ v2 =  15 cm / sec 

Dividing (2) by (6), tan θ2 = 
  1

2
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Problem  23 

   A smooth sphere of mass m impinges obliquely on a smooth sphere of mass M 

which is at rest.  Show that if m = eM, the directions of motion after impact are at right 

angles.  (e is the coefficient of restitution) 

Solution: 

 

 

 
 

  

 

 

 

 

 

 

 

 

   

 

Considering the sphere M, its tangential velocity before impact is zero and hence after 

impact also, its tangential velocity is zero.  

 (∵  During impact, there is no force acting along the common tangent).   

Hence, after impact, M will move along AB.  Let its velocity be v2.  Let the velocity of m 

be v1 at an angle θ to AB, after impact. 

By Newton‟s rule v2 – v1 cos θ = - e (0 – u cos α ) 

i.e. v2 – v1 cos θ = eu cos α      ...(1) 

By conservation of momenta along AB, 

M. v2 + m v1 cos θ = M. 0 + m. u cos α    …(2) 

Multiplying (1) by M and subtracting from (2),  

 

α 

θ 

v1                                                                                                       

u                                                  m                                                                                      M 

      A                                                                            B                   v2 
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mv1 cos θ + M v1 cos θ = mu cos α – M eu cos α 

i.e. v1 cos θ = 
u cos α ( m−eM )

m+M
 = 

u cos α.0 

m+M
 (∵ m = e M) 

 = 0 

∴ cos θ = 0 or θ = 90
o
 

i.e. The direction of motion of m is perpendicular to AB. 

Problem 24 

  Two equal elastic balls moving in opposite parallel direction with equal speeds 

impinge on one another.  If the inclination of their direction of motion to the line of 

centres be tan
-1

 ( 𝑒 ) where e is the coefficient of restitution, show that their direction of 

motion will be turned through a right angle. 

Solution: 

L                                                                         M                                           N 

 
 

 

 

 

 

    

 

 

 

 

 

Let m be the mass of either sphere: AB is the line of impact.  Before impact, the 

directions of motion are LA and BM making the same acute angle α with AB as shown in 

the figure.  Let u be their velocity. 

 
 
 
 
 
 
                        A                         

 
 
 
 
 
                           B 

 

α α 

θ1 

u                                                                                                                            u                                        v2           

v1         K                                                                                               

θ2 
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 After impact, let the sphere A proceed in the direction AK with velocity v1 at an 

angle θ1 to AB and the sphere B proceed in the direction BN with velocity v2 at an angle 

θ2 to AB.  

 The tangential velocity of either sphere is not affected by impact. 

∴ v1 sin θ1 = u sin α    … (1) and 

v2 sin θ2 = u sin α     …(2) 

By Newton‟s Law, (resolving all velocities along AB), 

v2 cos θ2 – v1 cos θ1 = - e (- u cos α – u cos α ) 

i.e. v2 cos θ2 + v1 cos θ1 = 2 eu cos α   … (3) 

By conservation of momenta along AB, 

m (v2 cos θ2 ) +m. v1 cos θ1 = m (-u cos α ) + mu cos α 

i.e. v2 cos θ2 + v1 cos θ1 = 0    …(4) 

(4) – (3) gives v1 cos θ1 = - 2 eu cos α 

∴ v1 cos θ1 = - eu cos α     …(5) 

From (4), v2 cos θ2 = - v1 cos θ1 = eu cos α  …(6) 

Dividing (1) by (5),  

tan θ1 = -  
1

e
 tan α = - 

1

e
  𝑒   ( ∵ α = tan−1  𝑒   given) 

= -  
1

 e
 = - 

1

tan  α
 = - cot α = tan (90

o
 + α) 

  ∴ θ1 = - 90
o
 + α 

Dividing (2) by (6), tan θ2 = 
1

e
 tan α = cot α = tan (90

o
 - α ) 

  ∴ θ2 = 90
o
 – α.  

 Hence their directions of motion are turned through a right angle. 
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UNIT  IV  

 SIMPLE HARMONIC MOTION  

 

Simple Harmonic Motion (S.H.M) is an interesting special type of motion in nature, 

having forward and backward oscillation (or) to and fro oscillation about a fixed point. The fixed 

point is known as the mean position or equilibrium position. When the oscillation is very small 

we prove the motion is simple harmonic. In this section we study about the resultant of two 

S.H.M‟S of the same period in the same straight line and in two perpendicular lines. Also we 

find the periodic time of oscillation of a simple pendulum.  

Examples  

Small oscillation of a cradle, simple pendulum, seconds pendulum, simple equivalent 

pendulum, transverse vibrations of a plucked violin string etc.  

Hooke‟s law 

Tension of an elastic string or spring is directly proportional to its extended length and 

indirectly proportional to its natural length.     

4.1 Simple Harmonic Motion in a straight line 

Definition 

 When a particle moves in a straight line so that its acceleration is always directed 

towards a fixed point in the line and proportional to the distance from that point, its 

motion is called Simple Harmonic Motion. 

 

 

 

 Let O be a fixed point on the straight line  A 1  OA on which a particle is having simple 

harmonic motion. Take O as the origin and OA as the X axis. Let P be the position of the particle 

at time t such that       OP = x. The magnitude of the acceleration at P is x where  is a positive 

constant. The acceleration at P in the positive direction of the X axis is        x towards O. 

Hence the equation of motion of P is x
dt

xd


2

2

 ……..(1) 

                                                  x 

     A
'
      

'P                    O     P                     A 
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Equation (1) is the fundamental differential equation representing a S.H.M. 

If v is the velocity of the particle at time t (1) can be written as  

v
dx

dv
=   x i.e. vdv =  x dx …………(2) 

Integrating (2), we have c
xv


22

22 
 ………..(3) 

Initially let the particle starts from rest at the point A where OA = a 

Hence when x=a, v = 0 = 
dt

dx
 

Putting these in (3), 0 = 
2

2a
  +c or c = 

2

2a
 

2v =   x 2  + 
2a =  22 xa   

 v =  22 xa    ………. (4) 

Equation (4) gives the velocity v corresponding to any displacement x. 

Now as t increases, x decreases. So 
dt

dx
 is negative. 

Hence we take the negative sign in (4), 

dt

dx
 = v =  22 xa     ……..(5) 

 





22 xa

dx
 dt 

Integrating, cos 1  
a

x
 t + A 

Initially when t = 0, x = a, cos  A011
  

 cos 1  
a

x
  t or       x = a cos   t  ………. (6) 

To get the time from A to A 1 , put x = a  in (6) 

 We have cos  t = 1 = cos  , t = 



 

A=0  
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  The time from A to A  and back = 


2
.  

 Equation (6) can be written as 

x = a cos   t = a cos  (   t +2 ) = a cos (  t + 4  ) etc 

 = a cos   

















2
t  = a cos 





















4
t  etc. 

 Differentiating (6), 

 a
dt

dx
  . sin   t 

 = a sin (   t + 2  ) = a   sin (   t + 4  ) etc. 

 = a  sin   (t + 


2
) = a  sin  (t + 



4
) etc. 

 The values of 
dt

dx
 are the same if t is increased by 



2
 or by any multiple of



2
. Hence 

after a time 


2
 the  particle is again at the same point moving with the same velocity in the 

same direction. Hence the particle has the period 


2
. 

T = 


2
 ; frequency = 

T

1
 = 



2
 

 The distance through which the particle moves away from the centre of motion on either 

side of it is called the amplitude of the oscillation. 

Amplitude = OA = AO  = a. 

 The periodic time = 


2
, is independent of the amplitude. It depends only on the 

constant   which is the acceleration at unit distance from the centre. 

Deductions : 1) Maximum acceleration a.   =  . (amplitude) 

  2) Since v =  22 xa  , the greatest value of v is at   x = 0 and its  

Maximum velocity = a  =  . (amplitude) at the centre  
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 General solution of the S.H.M. equation 

 The S.H.M. equation is 
2

2

td

xd
=  x

 

i.e. 0
2

2

 x
td

xd
      …….(1) 

 (1) is a differential equation of the second order with constant coefficients. Its general 

solution is of the form 

 x = A cos   t + B sin    t   ……..(2) 

 where A and B are arbitrary constants. 

 Other forms of the solution equivalent to (2) are 

x = C cos (  t +  )…. (3) and x = D sin (   t + ) ………(4) 

 If the solution of the S.H.M. equation is x = a cos (   t +  ), the quantity   is called 

the epoch. 

Definition 

If two simple harmonic motions of the same period can be represented by 

 x 1  = a 1  cos    t + 
1

 and x 2  = a 2 cos (   t + 2 ) 

 The difference in phase = 


 21   

 If 21    the motions are in the same phase. 

 If 21    =  , they are in opposite phase. 

4.2  Geometrical Representation of S.H.M 

 If a particle describes a circle with constant angular velocity, the foot of the perpendicular 

from the particle on a diameter moves with S.H.M. 

 

 

 

 

 

 

                                                                                    
                                                             P 
                                  
                                                      a   
                                              
                                                    t   

               A                          O             N           A 
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  Let AA   be the diameter of the circle with centre O and P   be the position of the particle 

at time st sec . Let N be the foot of the perpendicular drawn from P on the diameter AA  . P 

moves along the circumference of the circle with uniform speed and describes equal arcs in equal 

times. Let   – be the angular velocity. tAOP   

If ON = x, Op = a, then, x = a cos ( t)  ……………… (1) 

    ta
dt

dx
 sin   ………………..(2) 

   xta
dt

xd 22
2

2

cos        ………………  (3) 

(3) shows that the motion of N is simple harmonic. When P moves along the circumference of 

the circle starting from A, N oscillates from A to A  and A to A. 

Periodic time of P  =   Periodic time of N       = 


2
 

(along the circle)         (along the diameter)     

 

Problem 1 

  A particle is moving with S.H.M. and while making an oscillation from one extreme 

position to the other, its distances from the centre of oscillation at 3 consecutive seconds are 

.3,2,1 xxx  Prove that the period of oscillation is 








 

2

311

2
cos

2

x


   

Solution: 

 If a is the amplitude,   the constant of the S.H.M. and x is the displacement at time t, we 

know that x = a cos   t ….. (1) 

 Let .3,21, xxx  be the displacements at three consecutive seconds 2,1, 111  ttt .  

 Then  1x = a cos   t 1     ..…. (2) 

2x  a cos   11 t  = a cos   1t  …….(3) 

x 3  a cos  21t = a cos   21t   …….(4) 
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  31 xx   = a [cos   21 t  + cos  1t ] 

= a.2 cos 
2

2 11 tt  
 . cos  

2

2 11 tt  
 

           = 2 a cos 




   1t . cos   = 2x 2 . cos   

2

31

2x

xx 
   = cos   ,    = cos 







 

2

311

2x

xx
 

Period = 


2
  = 








 

2

311

2
cos

2

x

xx


 

Problem 2 

  If the displacement of a moving point at any time be given by an equation of the form       

x = a cos   t + b sin   t, show that the motion is a simple harmonic motion.    

    

  If a = 3, b=4,  = 2 determine the period, amplitude, maximum velocity and maximum 

acceleration of the motion.  

 

Solution:        

 Given x = a cos  t + b sin t ……………… (1) 

 Differentiating (1) with respect to t, 

dt

dx
= a sin  t + b t cos  ……………………(2)      

2

2

dt

xd
 =  2  cos  t – b  2 sin   t 

         =   2 (a cos   t + b sin   t) =  x2
….(3) 

 The motion is simple harmonic. 

 The constant   of the S,H.M. = 
2 . 

  Period = 


2
 = 



2
  = 




2

2
  secs. 

 Amplitude is the greatest value of x. 
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 When x is maximum, 0
dt

dx
. 

tbta  cossin   = 0 i.e. a sin t  = b cos  t or tan   t = 
3

4


a

b
  

 When tan  t = 
3

4
, sin  t = 

5

4
 and cos  t = 

5

3
 

 Greatest value of x = a 5
5

4.43.3

5

43

5

4

5

3








ba
b  

Hence amplitude = 5.  

Max. acceleration =  . Amplitude = 4 x 5 = 20 

Max. velocity =  . Amplitude = 2 x 5 =10 

Problem 3 

  Show that the energy of a system executing S.H.M. is proportional to the square of the 

amplitude and of the frequency. 

Solution: 

                                                                x 

                   A  P           O          P                     A 

     

The acceleration at a distance x from O = x. 

Force = mass acceleration  = m x   

If the particle is given displacement dx from P,  

work done against the         force       = m   x. dx 

 Total work done in displacing the particle to a distance x  

= 
2

2

0

x
mxdxm

x

     ………(1) 

 Work done = potential energy at P. 

 If v is the velocity at P. we know that v  222 xa   ,  

 Kinetic energy at P = 
2

1
 mv 2 =  22

2

1
xam    ……….. (2) 
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The total energy at P   = Potential energy + Kinetic energy 

      =  
222

2
22

2 am
xa

mxm 
 ……...... (3) 

Total energy at P 
2a  

 If n is the frequency, we know that 

n = 






 22

11

















Period
 

  2  n     or   
224 n   

 Total energy = 
222222 24.

2

1
nmaanm    

2n  

Problem 4 

  A mass of 1 gm. Vibrates through a millimeter on each side of the midpoint of its path 

256 times per sec; if the motion be simple harmonic, find the maximum velocity, 

Solution: 

Maximum velocity     v =  . a  

    Given, frequency =
T

1
 = 256 = 





2
. 

           = 2 256    . 

 Given, amplitude = a  = 1 millimeter  = 1   10 1  c.m. 

Maximum velocity, V = 2   256    
10

1
= 

5

256 
 cm/ sec 

 

Problem 5 

  In a S.H.M. if f be the acceleration and v the velocity at any time and T is the periodic 

time. Prove that 
2222 4 vTf   is constant.         

Solution: 

Velocity at any time, v       =  22 xa   
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Periodic time                 T = 


2
, 

2

2

dt

xd
 = f. 

             For, S.H.M, 
2

2

dt

xd
  = x.  

              f   = x.  

                222
2

222222 4
4

.4 xaxvTf  



  

              =  4 222222 44 xax    

              =  4 22 a (constant) 

 

Problem 6 

  A body moving with simple harmonic motion has an amplitude „a‟ and period T. Show 

that the velocity v at a distance x from the mean position is given by  22222 4 xaTv    

   

Solution:          

We know,  222 xav    

   T = 


2
  

2

24

T


   

                                v
2

2
2 4

T


   22 xa   

       22222 4 xaTv    

Problem 7 

  If the amplitude of a S.H.M. is „a‟ and the greatest speed is u, find the period of an 

oscillation and the acceleration at a given distance from the centre of oscillatin. 

Solution: 

 Given, amplitude = a 

Max. velocity            = u. 

 ie)  ua   
a

u
  
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Period of oscillation T = 


2
 = 

u

a.2
 secs. 

       Acceleration x
dt

xd


2

2

  = 
2

2

a

xu
 units. 

 

Problem 8 

        A particle, moving in S.H.M. has amplitude 8 cm. If its maximum acceleration is 2cm/sec 2 , 

find (i) its period (ii) maximum velocity and (iii) its velocity when it is 3 cm. from the extreme 

position 

Solution:      

Maximum acceleration = 2 cm/ sec 2  = 8..   a . 

,
4

1

8

2
  

Period T = 


2
 = 2    4

4

1

1
  secs. 

Max. velocity = .  a = .sec/48
2

1
cm  

When the particle is 3 cm from the extreme position, x  = 5 cm. 

  velocity  2222 xav    =  2564
4

1
  = 

4

39
. 

39
2

1v  cm / sec. 

Problem 9 

  A particle moves in a straight line. If v be its velocity when at a distance x from a fixed 

point in the line and 22 xv   where ,  are constants, show that the motion is simple  

harmonic and determinc its period and amplitude.  

                

Solution: 

  Given, v )1.......(..........22 x   
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Differentiating, 2v. 









dt

dx
v

dt

dx
x

dt

dv
2  

  x
dt

dv
  

 

 ie)  

 

 The motion is a S.H.M.   =   

Period T = 


2
 = 



2
. 

Amplitude is the maximum value of x.  

x - is maximum, when 0
dt

dx
 

 v



  xx ,022  

Amplitude = 



 

 

Problem 10 

  If the distance x of a point moving on a straight line measured from a fixed origin on it 

and velocity v are connected by the relation ,254 22 xv  show that the motion is simple 

harmonic. Find the period and amplitude of the motion.      

Solution:         

Given, 4v 2 = 25 )1....(..........2x  

Differentiating, 8v. 
dt

dx
x

dt

dv
.2  

        ..
4

1
x

dt

dv
  

..
4

1
2

2

x
dt

xd
  

Hence the motion is a S.H.M. Here 
4

1
  

x
dt

xd


2

2
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          Period = 



442

2
  secs. 

                   Amplitude = maximum value of x.  

x  is maximum when 0
dt

dx
 

 Ie) 25 .5.02  xx  Maximum value of x= 5.  

amplitude = 5 

 

4.3 Composition of two simple Harmonic Motions of the same period and in 

the same straight line 

 

 Since the period same, the two separate simple harmonic motions are represented by the 

same differential equation x
dt

xd


2

2

 

 Let x 1  and x 2  be the displacements for the separate motions. 

x 




  111 cos  ta  , a1 - amplitude  

x 2  = a 2  cos 






  2 t , a2 – amplitude  

Let x be their resultant displacement, then x = x 21 x  

ie) x = a    2211 coscos   tat  

=    222111 sin.sincos.cossin.sincos.cos  ttatta   

= cos  2211 coscos  aat    2211 sinsinsin  aat   

= cos  sin.sincos. AtAt     ……….……... (1) 

where A cos   =a 2211 coscos  a       ……………..(2) 

 A sin   = a
1
 sin  221 sin a       …………… (3) 

Squaring (2) and (3) and adding, 

A  2121
2
2

2
1

2 cos2   aaaa    ………..(4) 
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Dividing (3) by (2), tan   = 
2211

2211

coscos

sinsin





aa

aa




        ……..(5) 

 

Now (1) becomes x = A   sinsincoscos. tt   

          = A  . cos   t   ……… (6) 

The resultant displacement given by (6) also represents a simple harmonic motion of the same 

period as the individual motions.   

 

4.4 Composition of two simple Harmonic motions of the same period in two 

perpendicular directions 

 

 If a particle possesses two simple harmonic motions of the same period, in two 

perpendicular directions, we can prove that its path is an ellipse. Take, two  r lines as x and y 

axes. The displacements of the particle can be taken as  x = a 1  cos t      …….. (1)  

  y = a 






   tcos2     ……… (2) 

Eliminate „t‟ between (1) and (2)   

 (2)   y = a  sin.sin.cos.cos 22 tat   

    = a















2
1

2

1
2

1.sin.cos
a

x

a

x
   by (1) 

2
1

2

12

1.sin.cos
a

x

a

x

a

y
   

i.e. 
2
1

2

12

1.
cos

a

x
Sin

a

x

a

y
 


 

Squaring, 

 
 2

2
1

2
2

21
2
1

22

2
2

2

sinsin
cos2cos

a

x

aa

xy

a

x

a

y
  
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i.e.  2

2
2

2

21
2
1

2

sincos
2


a

y

aa

xy

a

x
   ………. (3) 

This is of the form ax 2  + 2hxy + by 2  =   ……. (4) 

where a = ,
1

2
1a

h =  
21

cos

aa


 , b = 

2

2

1

a
 

(4) represents a conic with centre at the origin. 

Also, ab ve
aaaaaa

h 
2

2
2

1

2

2
2

2
1

2

2
2

2
1

2 sincos1 
 

Hence (3) represents an ellipse. 

 If   = 0, equation (3)  0
21


a

y

a

x
 (straight line). 

 If   =  , (3)  0
21


a

y

a

x
 (straight line). 

 If 
2


  , (3)  1

2
2

2

2
1

2


a

y

a

x
 (ellipse). 

 If  
2


  and a ,21 a  the path is the circle x

2
1

22 ay   

 

Problem 11 

  Show that the resultant of two simple harmonic motions in the same direction and of 

equal periodic time, the amplitude of one being twice that of the other and its phase a quarter of a 

period in advance, is a simple harmonic motion of amplitude 5  times that of the first and 

whose phase is in advance of the first by 
2

2tan 1

 of a period.          

Solution: 

Let the two displacements be 

x 






  111 cos  ta …………(1)  [ they have equal periodic time,  

         is same] 

x 






  222 cos  ta  ………… (2) 
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Where a 12 2a  and 


 12   = phase difference (given) = 


2

4

1
  

2
12


   or 12

2



   

We know that the resultant displacement is x = A cos  




   t ….. (3) 

where A 2  = a  2121
2

2
2

1 cos2   aaa    

        = a   2
1

02
1

2
1

2
1 590cos44 aaa   

 amplitude of the resultant motion = A = a 51  

Also tan 
2211

2211

coscos

sinsin






aa

aa




   

[ 22112211 coscoscos,sinsinsin  aaAaaA  ] 

 = 
 
 1

0
111

1
0

111

90cos2cos

90sin2sin









aa

aa
 

i.e. 
11

11

sin2cos

cos2sin

cos

sin












  

sin  cos2cossinsinsin2cos 111  1  cos   

 sin    11 cos2    i.e. tan   21    2tan 1
1

  



























 2

2

2tan2tan 11
1  

    = 
2

2tan 1

 of a period  

 

Problem 12 

  Two simple harmonic motions in the same straight line of equal periods and differing in 

phase by 
2


 are impressed simultaneously on a particle. If the amplitudes are 4 and 6, find the 

amplitude and phase of the resulting motion 
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Solution:       

Let the two S.H.M.  in the same straight line of equal periods and differing in phase  by 
2


 be, 

cos.11 ax   t ………….(2)       

  )2(..........cos22   tax  

given, A cos  = 4 = a1 ,  A sin   = 6 = a2 

Amplitude of the resultant motion A  =    22
cos  ASinA   

      = 3616        = 52  

A= 2 13  

 

tan 





CosA

SinA
  = 

2

3

4

6
  

 

                             

 

which is the phase of the resulting motion. 

 

4.5  Motion of a particle suspended by a spiral spring 

 A particle is suspended from a fixed point by a spiral spring of natural length a and 

modulus  . If it is displaced slightly in the vertical direction, discuss the subsequent motions 

      

  

  

  

                                                               

 

 

 

 

  









 

2

3
tan 1  

    A                    
    
        a 
             
B 

 
         l 
C        
    
 
         x 
       
 P           
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Let AB = a, natural length of the spring which is fixed at A. Let m be the mass of the particle 

connected at B, which pulls the spring and comes to rest at C such that the increased length BC = 

l. At C, the mass „m‟ is in equilibrium. Hence the downward force mg and the upward force T 

must be equal at C. ie) T = mg 

But, by Hooke‟s law, T = 
a

l
  

mg
a

l



…………………… (1) 

Let the particle be slightly displaced vertically downwards through a distance and then released. 

It will begin to move upwards. Let P be the subsequent position of the particle so that CP= x 

 The forces acting at P are the weight and the upward tension. 

 Hence the equation of motion is 

 m 
2

2

dt

xd
 = Resultant downward force = mg – Tension at P. 

  = mg – 
a


 (AP-AB) 

  = mg 
a


  (BP) = mg  

a


  (l +x) 

  =  
a

x
  [ mg = 

a

l
 ]  by  (1) 

         i.e. x
madt

xd 


2

2

   ….. (2) 

 Equation (2) represents a S.H.M. 

 Period = 

am



2
  = 2




am
 

 

Problem 13 

  Two bodies, of  masses M and M  , are  attached to the  lower  end of an elastic string  

whose upper end is  fixed and hang  at rest; M   falls off. Show that the distance of  M  from the   
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upper  end of  the string  at  time t  is a+b+ c cos 
b

g
t, where a is the unstretched length of the 

string, and b and c are the distances by which it would be stretched when supporting M and M  , 

respectively. 

Solution 

     

 

 Let OA = a be the natural length of the elastic string, which 

is fixed at O. When the string supports M,  

Mg = upward Tension. 

By Hooke‟s law,  

upward Tension at B = 
a

b
 

a

b
Mg


  ……………….. (1) 

 

When the string supports M
1
, 

                      M
1
g = upward Tension at C = 

a

c
 

ie) M
1
g = 

a

c
 …………………….. (2) 

(1) + (2)  cb
a

MM 


 

ie) At C, M + M   is in equilibrium. 

When M   falls off, M will move towards B. 

Let P be the position of M at time t seconds such that BP = x  

Forces acting at P are,  

(i) Weight Mg   ii) Upward tension 

 At P, equation of motion of M is 
2

2

.
dt

xd
M  = resultant downward force. 

         O 
 
 
 
          a 
 
 
     A 
          b 
     B 
               x 
 
      P 
            
       
           c 
 
       C 
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      =  OAOP
a

Mg 


 

      =  AP
a

Mg


  

      =  xb
a

Mg 


 

      = x
aa

b
Mg


  

      = x
a


  by (1) 

 

 

 

 The motion of M at P is simple harmonic  

Amplitude = BC = c 

 Displacement = t
aM

cx


cos.   

       = t
b

g
c .cos.      by (1) 

 

 Distance of M from O at time t = OP = OA + AB + BP 

          = a + b +x 

          = a + b + c. cos t
b

g
.  

 

 

 

 

 

 

x
aMdt

xd
.

2

2 
  
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Problem 14 

  A Particle of mass m is tied to one end of an elastic string which is suspended from the 

other end. The extension caused in its length is b. If the particle is pulled down and let go, show 

that it executes simple harmonic motion and that the period is 2
g

b
  

Solution: 

  Let AB be the natural length of the elastic string. When 

m is tied at the other end, extended length is b. and the mass is 

in equilibrium at C. 

At C, mg = T = 
a

b
____________(1) 

When the mass is pulled down and released let P be the 

subsequent position such that CP = x 

At P, equation of motion is 

m. 
2

2

dt

xd
  resultant downward force  

= mg  
 

a

x

a

xb 



   [ by (1)] 

  

 

 

 

 (2) shows that the motion is simple harmonic 

Period T = 


2
 = 

am



2
= 2




am
 = 2

g

b
   by (1) 

 

 

 

 

 ..
2

2

x
amdt

xd 
 ________________(2) 

         A 
 
 
              a 
 

 
          B 
 
              b 
 

          
      C   
    
      x 
               P  
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4.6  Simple Harmonic Motion On a Curve     

 

If P is the position of a particle on a curve at time t and if 

the tangential acceleration at P varies as the arcual distance of P 

measured from a fixed point A on the curve and is directed towards 

A, then the motion of P is said to be simple harmonic. 

  

 

 

The differential equation for the S.H.M. on a curve will be of the form 
2

2

dt

sd
s, s is the arc 

distance AP. 

 

4.7  Simple pendulum  

 A simple pendulum consists of a small heavy particle or bob suspended from a fixed 

point by means of a light inextensible string and oscillating in a vertical plane.  

Period of oscillation of a simple pendulum  

 

 

 

 

 

 

 

 

Let OA = l be  the length of the pendulum where O is the point of suspension. Let „m‟ be the 

mass of the bob and P be the position of the bob in time t secs and arc AP = s, 


POA  

The two forces acting are i) mg     ii) Tension T along PO. 

mg is resolved into two components  i) mg cos  along OP. 

     ii) mg sin  along PL. 

 
 
 
                                                 P 
 
                                        s 
      
                   
 
 
 A 

 
    O 
 

                          T 

 
                                                  P 
 

                                                             
 

                               s                      mg 
    A                                    L        
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mg cos  and T balances each other. 

The equation of motion at P is sin..
2

2

mg
dt

sd
m   …………… (1) 

[Negative sign shows that mg sin  is towards A.] 

When   is small, sin    

.
2

2

g
dt

sd
  ……………………… (2) 

But s = 
l

s
l  , , s

l

g

dt

sd
.

2

2

   ……………………… (3) 

(3) shows that the motion of the bob at P is simple harmonic when   is small. 

Hence 
l

g
  

      Period T = 
g

l

l

g







2

22
  

4.8  Simple equivalent pendulum 

A simple pendulum which oscillates in the same time as the given pendulum is called the 

Simple Equivalent Pendulum. 

 Consider two motions represented by the equations. 

x
dt

xd


2

2

…… (1)     

s
l

g

dt

sd


2

2

 …….(2) 

 We know that (1) and (2) are S.H. motions and (2) is the equation of motion of a simple 

pendulum. 

 They represent equivalent motions, if 
l

g
       i.e.          

The length of the simple equivalent pendulum is 


g
. 



g
l   
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4.9  The Seconds Pendulum 

 A seconds pendulum is one whose period of oscillation is 2 seconds. 

 Hence if l  is its length, we have 2 = 2
g

l
     

2

g
l   

The length of the seconds pendulum is 
2

g
 

Note : Since the time of oscillation of a seconds pendulum is 2 secs, it makes 43200 oscillation 

per day. If it gains n seconds a day, it makes 43200 +
2

n
 oscillations in 86,400 secs. 

 Hence its period = 

2
43200

86400

n


  ……………………. (1) 

If it loses n seconds a day, it makes 43200  
2

n
  oscillation in 864000 secs. 

So its period = 

2
43200

86400

n


 …………………………(2) 

Problem 15 

  Find the length of a simple pendulum which oscillates 56 times in 55 seconds  

Solution:     

  Given, T = 
56

55
 secs.  

 But T = 2
g

l
   l- length of the pendulum 

   2
56

55


g

l
  

  
32

5

22256

755

256

55










g

l
 

   
1024

25

32

5
2











g

l
 

  .239.08.9
1024

25
ml    
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Problem 16 

  Show that an incorrect seconds pendulum of a clock which loses x seconds a day must be 

shortened by 
432

x
 percent of its length in order to keep correct time.   

Solution:          

  Let 
1, ll  be the correct and incorrect lengths of the seconds pendulum of a clock 

 T = 2
43200

86400
2 

g

l
  secs _________(1) 

When it loses x seconds a day, 

 2 

2
43200

864001

xg

l



               ________(2) 

2
43200

43200

)1(

)2( 1

xl

l



  =  

86400
1

1

x


 

 

2

2

1

86400
1

86400
1

1























x

xl

l
=

86400

2
1

x
  (approximately)  

ie) 
43200

1
1 x

l

l
  

 

l
x

ll
43200

1   

ie) 
432

1 x
ll   Percent of l 

 Length should be shortened by 
432

x
percent of its length in order to keep correct time. 
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Problem 17 

A pendulum whose length is l  makes m oscillations in 24 hours. When its length is slightly 

altered, it makes m+n oscillations in 24 hours. Show that the diminution of the length is 
m

nl2
 

nearly.                       

 

Solution:         

Given , when the length of the pendulum is l,  it makes „m‟ oscillations in 24 hrs. 

  T = 2
mg

l 24
             __________(1) 

When its length is altered, let  1ll   be its length and it makes m+n oscillations per day. 

  Periodic time T = 2
nmg

ll




 241

   ___________(2) 

  
1)2(

)1(

ll

l

m

nm





  

 ie) 
m

n

l

l




1

1

1
1

 

ie)   
2

1
1

1


















l

l
= 1+ 

m

n
 

     ie) 1+ 
l

l

2

1

       = 1+ 
m

n
 (nearly) 

m

nl
l

2
  nearly                                     

Problem 18 

  A seconds pendulum which gains 10 seconds per day at one place loses  10 seconds per 

day  at another. Compare the acceleration due to gravity at the two places. 
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Solution: 

Let 2,1
gg  be the acceleration due to gravity at the two places where the pendulum gains 10 

secs per day and loses 10 secs per day respectively.  

When it gains,  Periodic time = 2
543200

606024

1 




g

l
   ______(1) 

 

When it loses, Periodic time = 2 
543200

606024

2 




g

l
   _______(2) 

where l  is the length of the pendulum 

  
43205

43195

)2(

)1(

1

2 
g

g
 

 
 2

2

2

1

43195

43205


g

g
 

 

Problem 19 

If 1l   is the length of an imperfectly adjusted seconds pendulum which gains n seconds in one 

hour and 2l  the length of one which loses n seconds in one hour at the same place, show that the 

true length of the seconds pendulum is 

2121

21

2

4

llll

ll


    

Solution:         

Let l  be the true length of the seconds pendulum. For the same place g is constant, 

  T = 2
g

l
    =  2 secs    _______ (1) 

Let 1l  be the length of the pendulum, when it gains n seconds in one hour. 

 Period = 2

2
1800

36001

ng

l



 ____________(2) 

Let 2l - be the length of the pendulum, when it loses n seconds in one hour. 

 Period  
g

l22   = 

2
1800

3600

n


         _________(3) 
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3600
1

1800

2
1800

)2(

)1(

1

n

n

l

l




  ____________(4) 

 
3600

1
1800

2
1800

)3(

1

2

n

n

l

l




   _________(5) 

(4) +(5) 2
21


l

l

l

l
 

Squaring, 4
2

2121


ll

l

l

l

l

l
 

 

 4
2

2121

12 

















llll

ll
l  

 

i.e.) 4
2

21

2121














 

ll

llll
l  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2121

21

2

4

llll

ll
l


  
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UNIT  V  

 MOTION UNDER THE ACTION OF CENTRAL FORCES 

 

 In this unit we study components of velocities and accelerations in two mutually 

perpendicular directions. We deal with the motion under the action of a force always directed 

towards a fixed point and derive formulae for various velocities and accelerations together with 

polar form and pedal form of central orbits. 

 

5.1 Velocity and acceleration in polar  co- ordinates 

Radial and Transverse velocities 

 

 

 

 

 

 

 

 Consider a particle moves in a plane curve. Let P (r, ) be its position in time t  and 

   ,rrQ   be its position in time t+ t. Take O – as the pole and OX- as initial line. 

Velocity along the radius vector OP in the direction of r increasing is called the radial velocity 

and the velocity in the direction   r to OP in the direction of   increasing is called the 

transverse velocity. 

Radial velocity at P   =    
Lim

t 0    

















t

ttimeinOPalongntdisplaceme




 

                                   = Lim
t 0

 
t

PN


   

0t

Lim


  

t

OPON




 

                                                                                  Q 

                                                                                     (   ,rr ) 

                                        rr   

                                                                   ( ,r )          N 

                                                                       P 
                                        r 

                                

                       

O                                                                                                            X 
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                        = 
0t

Lim


  
 

t

rrr



  cos
 

                             =

 
 

t

rrr

t

Lim


























.......
!2

1

0

2

 

                                  

                         = 
  

t

rtr

t

Lim











1

0
, neglecting higher powers of   

 

                         = 
0t

Lim


  

t

r




   = r

dt

dr
  

    

 

 

Transverse velocity at P = 
0t

Lim


  

t

QN


= 

 
t

rr

t

Lim







sin.

0




  

              

 
 

t

rr

t
Lim






















.........
!3

0

3

 

   

                                                   = 
 

t

rr

t

Lim









 0
, neglecting higher powers of   

                                                  = 
t

r
t
Lim




 0 =  
















t
tr
Lim




 0.   

                                                  =  r 
dt

d
  = r   

Transverse velocity = r   

 

Radial and Transverse Accelerations 

 Let u, v be the radial and transverse velocities at  ,r  and  uu    and  vv  be the 

radial and transverse velocities at Q    ,rr  

Radial velocity  = r  
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Radial acceleration = 
0t

Lim


 

















t

ttimeinOPalongvelocityofChange




 

          = 
0t

Lim


 
     

u
t

vvuu








 



 90coscos
 

          = 
0t

Lim


     

      
t

uvvuu



  1
 

          = 
t

vu

t

Lim









 0
 

          = 
0t

Lim

 tt

Lim
v

t

u









0
  

           = ,
dt

d
v

dt

du 
  where u = 

dt

d
rv

dt

dr 
,  

          = 
dt

d

dt

d
r

dt

dr

dt

d 
.








 

          = 
2

2

2

2


  rr

dt

d
r

dt

rd









  

2 rronacceleratiRadial   

                                                                      uu   
                                    
                                       vv      Q 
                                               900     (   ,rr ) 

                                           090  
                                v                              u         
                                          900

                     N 
                          𝛿𝜃                                              ),( rP  

                 θ 
O                                                               X 
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Transverse acceleration = 
0t

Lim


    

 
t

timeOPtolarperpendicuvelocityinChange



int
 

                                       = 
      

t

vvvuu

t

Lim











90sinsin

0
 

                                       = 
0t

Lim


 
    

t

vvvuu



  cossin
  

                                                 when    is small,  sin  

                                      = 
      

t

vvvuu

t

Lim











1

0
 and    1cos   

                                       = 
dt

dv

dt

d
u

t

vu

t

Lim








 









 0
 Where u = 

dt

d
rv

dt

dr 
,  

                                      = 









dt

d
r

dt

d

dt

d

dt

dr 
.  

                                      = 
dt

dr

dt

d

dt

d
r

dt

d

dt

dr
..

2

2 
  

                                      = r ..2
2

2

dt

d

dt

dr

dt

d 
  

                                    =     22 11
r

dt

d

rdt

d
r

dt

d

r









  

 21
r

dt

d

r
onacceleratiTransverse   

      

 Magnitude 

1 Radial Component of velocity .

r  
2 Transverse Component of velocity .

r  

3 Radial component of acceleration 2...

rr  

4 Transverse component of acceleration 










 .
21
r

dt

d

r
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Corollary 

 (1) Suppose the particle P is describing a circle of radius  „a‟.  Then r = a throughout the 

motion 

 Hence 0
..

r  and the radial acceleration = 

.
2

..

rr  

             = 

.
2

.
20  aa   

Transverse acceleration  = 
....

2
.

2 1
)(

1
 aa

a
r

dt

d

r
  

  (2) The magnitude of the resultant velocity of P 

 = ))(

2.
2

2.
2

.2.

 rrrr   

and the magnitude of the resultant acceleration 

 =
2

.
22

2...

)](
1

[)(  r
dt

d

r
rr   

 

 

Problem 1 

  The velocities of a particle along and perpendicular to a radius vector from a fixed origin 

are 
2r and 

2  where  and   are constants. Show that the equation to the path of the 

particle is 
22r

C





  where C is a constant. Show also that the accelerations along and 

perpendicular to the radius vector are  















r
rand

r
r

3
2

42
32 2

2





     

Solution: 

 Radial velocity = 
2r

dt

dr
     …. (1) 

 Transverse velocity = 
2




dt

d
r    ….. (2) 

 Dividing (2) by (1), we have 
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 dr
r

d
ei

rdr

d
r

322

2

..










  

 Integrating, C
22r






 

 i.e. C



22r

     …. (3) 

(3) is the equation of the path, 

Differentiating (1) 
dt

2r
2

2 dr

dt

rd
   = 

322 r  using (1) 

Radial acceleration = 
2

2

2.
2

..

)(
dt

d
r

dt

rd
rr


   

                    = 
r

r
r

rr
42

322
2

32 2)(2





   using (2) 

Transverse acceleration      = )(
1

)(
1 2

2
.

2

r
r

dt

d

r
r

dt

d

r


   

           = )()(
1 222

dt

dr

dt

d
r

r
r

dt

d

r






   

         = ]
2

[)2r( 2
3

22
2










r
r

r
rr

  

Problem 2 

  The velocities of a particle along and perpendicular to the radius from a fixed origin are 

  r and  ; find the path and show that the acceleration along and perpendicular to the radius 

vector are 
r

r
22

2 
   and 










r


      

Solution: 

Given, radial velocity = r
dt

dr
r    _________(1) 

 Transverse velocity = r     _________(2) 

Radial acceleration  =  
2 rr   
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       = 

2











r
rr


     [by (1) & (2)] 

    =  
r

r
22

   = 
r

r
22

2 
   

Transverse acceleration  =  21
r

dt

d

r
      =  









r
r

dt

d

r


.

1 2
 

    =   r
dt

d

r

1
  =  rr

r
  .

1
 

    = 







 r

r
r

r



..  

 

 

 

 

..
)1(

)2(

rr

dt

dr
dt

d
r













  

i.e. 
dr

dr 
  = 




. 

r


 

2
.
r

drd








  

 

Integrating,  log = ;
1

1

C
r





















 C – constant 

       =  C
r





 

 

                        i.e.  

 

                                 which is the equation of the path  

Transverse ace. = 







 




r
 

log   
r

c



   
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Problem 3 

  The velocities of a particle along and perpendicular to the radius vector from a fixed 

origin area and b.  Find the path and the acceleration along and perpendicular to the radius 

vector. 

Solution: 

Radial velocity = a
dt

dr
r   _______(1) 

Transverse velocity = b
dt

d
rr 


   _____(2) 

Radial acceleration  = 2 rr   = 

2

2

2











dt

d
r

dt

rd 
 

Now,    0
dt

da
r

dt

d
r   

 Radial acceleration  = 
r

b

r

b
r

22









  

Transverse acceleration  =  2.
1

r
dt

d

r
 =  









r

b
r

dt

d

r
..

1 2
 

    =  br
dt

d

r
.

1
    = 

r

ab

dt

dr

r

b
.  

To find the path 

a

b

dt

dr
dt

d
r





)1(

)2(
  i.e. r 


d

b

a

r

dr

a

b

dr

d
  

Integrating, log r = ,c
b

a
  where C – is constant  

 

             is the equation of the path. 

 

 

 

b

a

eAr



.  
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Problem 4 

  A point moves so that its radial and transverse velocities are always 2  a   and r . 

Show that its accelerations in these two directions are   2 (2a-r) and that its path is  the curve      

r = a C2 . 

 

Solution: 

Given, radial velocity r  = 2
dt

dr
a   _____________ (1) 

Transverse velocity r   = r r
dt

d



    __________ (2)   

.

 

 Radial acceleration (R.A) = 
2 rr   = 2  2


 r

dt

d
a   

          = 2 2 ra   

 

 

Transverse acceleration (T.A) =  21
r

dt

d

r
 

    =  21
r

dt

d

r
 = rr

r
2


 

    = .
r


 2r . 2 a  

    

 






a

r

a

r

dt

dr
dt

d
r

22)1(

)2(
  i.e. r 





a

r

dr

d

2
  

drda  2  

Integrating, 2a CrC ,
2

2




- constant  

    

             is the equation of the path. 

R  raA  22  

T.A = 4  a2
 

r  = C + a
2  
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Problem 5 

  If a point moves so that its radial velocity is k times its transverse velocity then show that 

its path is an equiangular spiral.   

Solution: 

Given, radial velocity = k  transverse velocity 

   i.e.  rkr .   

 i.e. 
dt

d
rk

dt

dr 
..  

  dk
r

dr
.  

Integrating, log r = k   + log A, A – constant 

i.e. log k
A

r









  

ke
A

r
  

    

 

which is an equiangular spiral. 

 

Problem 6 

  If the radial and transverse velocities of a particle are always proportional to each other, 

show that the equation of the path is of the form r = A. e k  , where A and k are constants.  

Solution: 

 Given radial velocity   transverse velocity 

  i.e ,.   rkrrr  k – constant 

  dk
r

dr
.  

Integrating, log r = K   log A 

       log r – log A  =  k       

  ie) log k
A

r









 

r  = A  e
k
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 i.e log ..k
A

r









 

  ke
A

r
   

 

Problem 7 

  A point moves in a circular path of radius „a‟ so that its angular velocity about a fixed 

point in the circumference of the circle is constant, equal to  .Show that the resultant 

acceleration of the point at every point of the path is of constant magnitude 4 a
2 . 

Solution: 

 

Let O – be the fixed point (pole), OC – initial line. Polar 

equation of the circle is r = 2 a cos  . Let P (r, ) be the 

position at time„t‟ Angular velocity about O is w  

(constant) 

 

 

 

Radial velocity    sin2)sin2( aar    

    cos2cos2 2aar     

        cos22 a  

    r.2  

Radial acceleration at  P  =  
2 rr   

    = 
22 . rr   

    =    cos222 22 ar   

    =   cos4 2a  

Transverse acceleration at P   =  
 
dt

rd

r

2

.
1

= rrw
r

2..
1

 

r = A.e
k

 

                       v              cosv  

                                        

                     sinv        P(r, ) 

 
 

             
O                        C                    A 



164 

 

    = 2   sin2a  =  sin4 2a  

 Resultant acceleration =    2222 sin4cos4  aa   

    = 4a 2  

 

Problem 8  

  A point moves with uniform speed v along a cardioid r = a (1+ cos ). Show that  

(i) its angular velocity   about the pole is v
a2

2
sec

 (ii) the radial component of the acceleration 

is constant equal to 
a

v

4

3 2

 (iii) the magnitude of the resultant acceleration is 
2

3 v
. 

 

Solution: 

  Given, path is r = a  cos1  ………………(1) 

Uniform speed v = resultant velocity =  22  rr   

(1)    sin ar  

    .cos.sin  ar  

    =    sincos 2  aa  . 

 v    =   2222 cos1sin    aa  

     =     222222 coscos21sin   aa   

 =   cos212222   aa  

 = 
2222 .cos22   aa   

 = a 2     cos1  

 = 2  a 
2

cos2 2   

v = 2 a
2

cos.   

2
sec.

2
2

cos.2




 









a

v

a

v  
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Radial acceleration  =  
2 rr   

           =      sincos 2 aa      2cos1  a  

           =     









2
tan.

2
sec

22
1sincos21 2 

a

v
aa   

          =    










2
sec.

22
tan.sin

2
cos21 2

a

va
a  

         =  
22

2
.sec

22
tansin

22
sec.

2
cos21 

















 

a

va

a

v
a  

         =     






















  sin.

2
tan

2

1
cos21

2
sec

4

2

2

2

a

v
a  

        =     
























2
sincos21

2
sec

4

1 22
2 


a

v
 

        =      






















  cos1

2

1
cos21

2
sec

4

1 2
2

a

v
 

       =    
















  cos1

2

3

2
sec

4

1 2
2

a

v
 

       =     cos1
2

sec
4

3 2
2

















a

v
 

      =  
2

cos.
2

sec
4

3 22
2 















a

v
 = 
















a

v2

4

3
 

R.A = constant 

 

Transverse acceleration =  2.
1

r
dt

d

r
 

   =   









2
sec

2
cos1

1 22 
a

v
a

dt

d

r
 

   =   









2
sec

22
cos2.

1 222 
a

v
a

dt

d

r
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   =  va
dt

d

r
.

2
cos.2

1 3  

   =   
22

sin
2

cos3..2
1 2  

 va
r

 

   = 









2
sec

22
cos

3 2 
a

v

r

av
 . sin 

2


 

   =  
2

sin
2

cos
2

3 2
 

r

v
 

   = 
  

 
2

sin
2

cos
cos12

3 2








a

v
     

   = 
2

sin
2

cos

2
cos2.2

3
2

2





a

v
 

T.A  =  
2

tan
4

3 2


a

v
 

 

 Resultant acceleration =    22
.. ATAR   

    

 = 

2
2

2
2

2
tan

4

3

4

3













 















 

a

v

a

v
 

   =  
2

tan1
16

9 2

2

4


a

v
 

   = 
2

sec
16

9 2

2

4


a

v
 

   = 
2

sec
4

3 2


a

v
   

= 









2

3 v
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5.2   Differential Equation of central orbits 

 A particle moves in a plane with an acceleration which is always directed to a fixed 

point O in the plane. Obtain the differential equation of its path.        

  

  Take O as the pole and a fixed line through O as the initial line. Let P (r, ) be the polar 

coordinates of the particle at time t and m be its mass. Also let P be the magnitude of the central 

acceleration along PO. 

 The equations of motion of the particle are 

 m  2

 rr    = - mP   

 i.e. 
2 rr    = - P  …….  (1) 

and  2r
dt

d

r

m
  = 0   

   i.e.  21
r

dt

d

r
      = 0  …….  (2) 

 Equation (2) shows that the transverse component of the acceleration is zero throughout 

the motion. 

 From (2), 2r  = constant = h       ……… (3) 

 To get the polar equation of the path, we have to eliminate t between (1) and (3). 

                     put u = 
r

1
  

 From (3), 
2

2
uh

r

h
  

Also 
dt

d

d

du

udt

du

udt

du

uudt

d

dt

dr
r















222

1111
  

   = 
 d

du
huh

d

du

u
 2

2

1
 

dt

d

d

du

d

d
h

d

du
h

dt

d
r





















  

  = 
2

2
222

2

2

 d

ud
uhhu

d

ud
h   

 

                                                     P( ,r ) 
 

                              P  

 
 
O                                                                  X 
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Substitute r and 
.
  in (1), we get 

 42
2

22 1
uh

ud

ud
uh


P ie 














 u

d

ud
uh

2

2
22


= P  

ie) u + 
222

2

uh

P

d

ud



…..(4) 

(4) is the differential equation of a central orbit, in polar coordinates.  

 

 Perpendicular from the pole on the tangent - Formulae in polar coordinates 

 Let   be the angle made by the tangent at P with the radius vector OP.  

We know that tan
dr

d
r


     ……… (1) 

From O draw OL perpendicular to the tangent at P and let OL= p.  

 Then sin   = 
r

p

OP

OL
  

 

  p = r sin      ……. (2) 

 

Now eliminate   between (1) and (2).  

From (2), 


2

2222
cos

1

sin

11
ec

rrp
  

=  2

2
cot1

1


r
 

 

=























2

22

1
1

1

d

dr

rr
,(by (1)) 

i.e. 

2

422

111










d

dr

rrp
   ….. (3) 

 
                                                   
 
 
                                                             P 
 

                                                      

                        
                         r 
 
 
 
 
     O                        p                            L 
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Using r = 
 d

du

ud

du

du

dr

d

dr

u


2

1
,

1
 

Hence (3) becomes 

2

4

42

2

1
.

1










d

du

u
uu

P
                  

i. e) 

2
2

2

1










d

du
u

p
  ……………… (4) 

 

5.3   Pedal equation (or) (p, r) equation of the central orbit    

   

 We have 

2
2

2

1










d

du
u

p
   ……… (1) 

Differentiating both sides of (1) with respect to  , 
















2

2

2

2

3
222

2

 d

ud
u

d

du

d

ud

d

du

d

du
u

d

dp

p
  …….. (2) 

But the differential equation is   u + 
222

2

uh

P

d

ud



 

 Hence (2) becomes  
 d

du

uh

P

d

dp

p


223

1
 

i.e. 









r
dr

h

P
du

uh

P
dp

p

11 2

2223
 

            =  dr
h

P
dr

rh

rP

222

2
1

  

P
dr

dp

p

h


3

2

………(3) 

 is the (p, r) equation or the pedal equation to the central orbit. 

 

 

 



170 

 

Problem 9 

  Find the law of force towards the pole under which the curve 

                     r
nn a . cos n   can be described.     

Solution: 

 Given r nann cos  

 Put r = ,
1

u
the equation is u

n
a

n
 cos n   = 1  …… (1) 

 Taking logarithms,  

 n log u + n log a + log cos n   = 0   ……. (2) 

 Differentiating (2) with respect to   

 n 0
cos

sin1






 n

nn

d

du

u
 

 ie) 


nu
d

du
tan    …………….. (3)     

 Differentiating (3) with respect to  , 

 
2

2

d

ud
 =  un sec 2  n  + tan n




d

du
.  

  =  nu 
2sec n  + u tan 2 n  using (3) 

       u + 
d

ud 2

  = u+nu sec 2  n   + u tan 2  n   

  = nu sec 2  n   + u  n2tan1  

  = nu sec    nunnun 222 sec1sec   

  =   nnauun 22.1  using (1)  

  =   1221  nnuan  

                P  =   12222

2

2
22 1. 














 nnuanuh

d

ud
uuh


 

  =   3222 ..1  nn uhan    
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  =  
32

22 1
..1




n

n

r
han     ……….. (4) 

 P 
32

1
nr

  

Important notes 

(i) When n=1, the equation is r = a cos  . The curve is a  circle and P 5/1 r . 

(ii) When n = 2, the equation is r 2  = a 2  cos 2  . This is the Lemniscate of Bernowli and P 

7

1

r
 . 

(iii) When n = ,
2

1
 the equation is r 2

1

= a 2

1

 cos 
2


 

i.e. r = a cos  


cos1
22

2 
a

 

This is a cardioid and P 
4

1

r
  

(iv) When n = ,
2

1
  the equation is 

2
cos.2

1

2

1




 ar  

i.e. a
2

cos2

1

2

1


r  

So r = 

2
cos2 

a
  = 

cos1

2



a
   i.e  cos1

2


r

a
 

This is a parabola and P 
2

1

r
  

(v) When n = - 2 , the equation is 2cos.22   ar  

i.e. r
22 2cos a  (rectangular hyperbola) 

Problem 10 

  A particle moves in an ellipse under a force which is always directed towards its focus. 

Find the law of force, the velocity at any point of the path and its periodic time. 
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Solution: 

 The polar equation to the ellipse, with pole at focus is 

    
r

l
 = 1 + e cos      …….. (1) 

where e is the eccentricity and l is the semi latus-rectum. 

From (1), u = 
l

e

r

cos11 
  

Hence 
d

du
 = 

l

e sin
  and 

l

e

d

ud 



cos

2

2

  

u+  
ll

e

l

e

d

ud 1coscos1

2

2








 

We know that 
ld

ud
u

uh

P 1
2

2

22



 

Hence P = ,
2

22

rl

uh 
  where 

l

h2

  

i.e. The force varies inversely as the square of the distance from the pole. 

Now,  

2
2

2

1










d

du
u

p
 

= 
2

222
cos21sincos1

l

ee

l

e

l

e 





























  
 

 Also h = pv where v is the linear velocity 

 v
 

2

22

2

2
2

cos21

l

eeh

p

h 



 

 = 















 121 2

2 r

l
e

l

l
 from (1) 

 =  
















 22 1

2
1

2
e

r

l

lr

l
e

l


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 = 
 











 


l

e

r

212
       …….. (2) 

Now a  and b are the semi major and minor - axes of the ellipse.  

 
   2

222

1
1

ea
a

ea

a

b
l 


  

Put  21 eal   in (2) 

v 









ar

122  ,  









ar
V

12
  

 Areal velocity = 
2

h
   

Area of the ellipse = ab  

 Periodic Time T  =  










2

h

ab
   = 

h

ab2
 

         = 
l

ab



2
  =  a

b

ab
.

.

2




    

      =  2

3

.
2

a



 

  

Problem 11 

            Find the law of force towards the pole under which the curves can be described.    

       i) r
2

 = a 2cos2
 

[Hint : Put n = 2 in problem 9, (i.e., r nann cos. )] 

 ii)     r 2
1

2
1

a  cos 
2

  

[Hint : Put n = 
2

1  in problem 9,( i.e.,r nann cos )] 

      iii.)  r
nn an cos  
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Solution: 

a nunn cos  









u
r

1
   _________(1) 

Take log both sides, and differentiate n log a + n log u = log cosn    

  nn
nd

du

u

n



sin

cos

1
  

 


nu
d

du
tan   ________(2) 

   












 d

du
nnnu

d

ud
tan.sec. 2

2

2

 

          =   nunun 22 tan.sec   

          = u tan 2  n  -  un. sec 2  n  

 We have, u + 
222

2

uh

P

d

ud



 

i.e.,  u+ u tan n2 un . sec n2 =  
22uh

P
 

u sec  
22

2 1
uh

p
nn    

i.e  P= h  
 

322

2

22

32 1
.

1

.

1
..1






nnnn ua

nh

ua
un  

     = 
  32

2

2

.
1  n

n
r

a

nh
 

32  nrP  

 

iv) r  nBnAn sin.cos   

Solution: 

This equation can be taken as 

                      r    ,,cos.  nn
 are constants. 
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 

u
rnun 1

,cos..1    

Take log both sides and differentiate, 

                       0 = log   n log u + log cos    n  

                  


nd

du

u
n

cos

1
.

1
.       nsin   n = 0 

                
 


 nu

d

du
tan.      _______(1) 

                

   



 d

du
nnnu

d

ud
.tan.sec. 2

2

2

  

                    =  nu. sec      nun 22 tan.  

                    =  n.u. sec     1sec. 22   nun  

               

   
22

2

2

2

sec1
uh

P
nun

d

ud
u  


 

            nunhP 232 sec..1.  

               = h    232 .1 nuun   

               = h   3222 .1  nun   = 
 

32

22 1



nr

nh
 

  

 

 

v)  a = r sin nθ 

Solution: 

 

Take log and differentiate  au = nsin  

            log (au)  = log sin n    









u
r

1
  

i.e. log a + log u = log (sin n ) 

P    
32

1
nr

  
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 nn
nd

du

u
.cos.

sin

1
.

1



  

 

 

 

            

  












 d

du
nnnecun

d

ud
.cotcos. 2

2

2

 

              = n   nnunecnu 22 cot.cos.   

              = n
2
.u   necn 22 coscot    = .2un  

                      

 22

2

2

1 nuunu
d

ud
u 


 

 But, u  2

222

2

1 nu
uh

P

d

ud



 

     232 1 nuhP   

           =  h    
3

22
322 1

.1
r

nh
un


  

 

 

 

vi)  r = a sin n  

Solution: 

           1 = au. sin n .  









u
r

1
  

Take log and differentiate, 

0 = log a + log u + log sin n    

    0.cos
sin

1
.

1
 nn

nd

du

u



 




nnu
d

du
cot.  

P  
3

1

r
  
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    i.e   0cot..
1

 


nn
d

du

u
    

 

          

 

 

      

  












 d

du
nnnecun

d

ud
.cot.cos. 2

2

2

 

        =   nnunecnun 22 cotcos.   

        =   nnecun 222 cotcos   




nunnecunu
d

ud
u 2222

2

2

cotcos   

          = u+  1cos. 22

2

2
2  necun

r

a
un  

          = 
r

n

r

a
un

r

an
u

2

2

2
2

3

22

.   

          = 
r

n

r

an

r

2

3

22

2
1

  = 
 

r

n

r

an 12 2

3

22 
  

                                             But 
222

2

uh

P

d

ud
u 


 

         

 
22

2

3

22 12

uh

P

r

n

r

an



  

         

 










 


2

2

5

22
2 12

r

n

r

an
hP  

        

 










 


3

2

5

22 12

r

n

r

an
P  

 

 


nnu
d

du
cot.



178 

 

vii) 
ne

r

a
  

Solution: 

Given  

         
neau          __________(1) 










u
r

1
  

        Differentiating, a. ne
d

du n


  

          




ne
a

n

d

du
.  

                     ne
a

n

d

ud n ..
2

2



   

                                              =  
ne

a

n
.

2

 

     








n
n

n e
a

n

a

e
e

a

n
u

d

ud
u

222

.   

  =    22 11 nun
a

en




  by (1) 

But,  2

222

2

1 nu
uh

P

d

ud
u 


 

        322232 .11 unhnuhP   

                       

  = 
 

3

22 1

r

nh 
 

  

                

  

 

ne
r

a


P   
3

1

r

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viii) r = a. e
 cot

 

 

Solution: 

Given r = a. e  

  1 = au. e
 cot

                   ___(1)  









r
u

1
  

Differentiating w.r.to  , 

0 = 










 

d

du
eeua .cot.. cotcot

 




 



cot
cot..

cot

cot

u
e

eu

d

du
  

 



 d

du

d

ud
.cot

2

2

  = u cot 2  

  


222
2

cos.cot1cot ecuuuu
d

ud
u   

But u+ 


2

222

2

cos. ecu
uh

P

d

ud
  

  232 cos. ecuhP    

= 
3

22 cos.

r

ech 
 

   

 

 

ix) r = a cosh n   

Solution: 

1 = au. cosh n   _________(1) 









u
r

1
  

 cot

3

1

r
P  
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Differentiating w.r.to   , a 0.coshsinh.. 












d

du
nnnu  

 


nnu
d

du
tanh    _________(2) 














 d

du
nnhunn

d

ud
.tanhsec 2

2

2

 

 =   nnunhnun 22 tanhsec.   

 =   nnhun 222 tanhsec   

   1tanhsec1secsec 22222

2

2

 


hnhnhun
d

ud
  

 =  1sec2 22  nhun  

 =  12 222  uaun  

uunuan
d

ud
u  2322

2

2

2
  =   .12 2322 unuan   

But, u+
222

2

uh

P

d

ud



 

  .12 2322

22
unuan

uh

P
  

        3225222 1.2 unhuhanP   

 = 
 

3

22

5

222 12

r

hn

r

han 
  

            P
 

3

2

5

22 12

r

n

r

an 
                                                 
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x)  r cosh n    = a 

Solution: 

 Given  r cosh n   = a 

 au = cosh n    ………… (1)  







 u

r

1
  

Differentiating w.r.to  , 

 a. 


nn
d

du
sinh.  

            




nn
d

ud
a cosh.. 2

2

2



 

                  


n
a

n

d

ud
cosh

2

2

2

  

But, u + 
222

2

uh

P

d

ud



 

22

2

cosh.
uh

P
n

a

n
u    

 
22

2

.
uh

P
au

a

n
u      [from (1)] 

           i.e. 
22

2

uh

P
unu   

    
3

22
232 1

1
r

nh
nuhP


  

3

1

r
P  

 

Problem 12 

  Find the central acceleration under which the conic 
r

l
 = 1 + e cos  , can be described. 

 


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Solution: 

            Given equation is, cos1 elu    u
r


1
  

  


cos.
1cos1

l

e

ll

e
u 


  

  


sin.
l

e

d

du
  

  cos
2

2

l

e

d

ud



  

            ll

e

l

e

ld

ud
u

uh

P 1
coscos

1
2

2

22
 


 

                   











 



l

h

rrl

h

l

uh
P

2

22

222 1
.   

2

1

r
P  

 

5.4  Apses and apsidal distances 

Definition 

 If there is a point A on a central orbit at which the velocity of the particle is perpendicular 

to the radius OA, then the point A is called an apse and the length OA is the apsidal distance.  

  

Note : At an apse, the particle is moving at right angles to the radius vector. 

 We know that 

2
2

2

1










d

du
u

p
 where 

r
u

1
   

At an apse, 
u

rp
1

 .    At an apse,  0
d

du

 

 

 Given the law of force to the pole,  find the orbit 

 Given the central acceleration P, we find the path.  We use the equation. 
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222

2

uh

P

d

ud
u 


   ….. (1) 

To solve equation (1), we multiply both sides by 
d

du
2 , we have 

    
 d

du

uh

P

d

ud

d

du

d

du
u 

222

2

22.2  

  

   i.e.  
 d

du

uh

P

d

du

d

d
u

d

d











22

2
2 2

 

 Integrating with respect to  ,  

  







 du

uh

P

d

du
u

22

2
2 2


constant  …… (2) 

 

Problem 13 

  A particle moves with an acceleration  5224 )(23 ubaau   and is projected from an 

apse at a distance (a + b) with a velocity 
ba 


.  Prove that the equation to its orbit is 

r = cosba . 

Solution: 

 Given   5224 23 ubaauP    

 The differential equation to the path is 

   3222

2222

2

23 ubaau
huh

P

d

ud
u 




  …. (1) 

 Multiplying (1) by 
d

du
2  and integrating with respect to   we get 

    







 Cduubaau

hd

du
u 3222

2

2
2 23

2


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                      =   C
u

baau
h















2
2

2 4
223

2


 …………….. (2) 

Now h = pv = constant = povo where po and vo are the initial values of p and v respectively. 

Given 
ba

vo





 and po = a + b as the particle is projected from an apse 

 Hence 






ba

bah )(  i.e.  2h                       

So (2) becomes c
u

baau
d

du
u 








 ]

2
)([2

4
223

2
2


  ….. (3) 

Initially at the apse 0
d

du
 and 

ba
u




1
 

Hence substituting these in (3), we have 

 
C

ba

ba

ba

a

ba























4

22

32 )(2

)(

)(
2

1
 

                = C
ba

C
ba

ba

ba

a










 233 )(

1

)(

)(

)(

2

 

         0 C  

(3)     24223
2

2 uubaau
d

du











 

1)(2)(2 22224223  ubaauuuubaau
d

du


  … (4) 

 i.e d
ubaauu

du


 1)(2 222
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Put 
r

u
1

                dr
r

du
2

1
  

 

 
d

r

ba

r

a

dr
r

r









1
2

1

2

222
 

       d
rbaar

dr





222 )(2
  

                            i.e d
arb

dr






22 )(
 

Integrating,  






 

b

ar1cos  …… (5) where   is constant.  

 If   is measured from the apse line,   r = a + b and   = 0. 

        
 0)(cos 1

b

aba
   

                          i.e  1cos 1
  0  

Hence (5) becomes 
 )(cos 1

b

ar

 

                                     
 i.e cos



b

ar
  

                                                   r = a + b cos  
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Problem 14 

  A particle moves with a central acceleration equal to     (distance) and is projected 

from an apse at a distance „a‟ with a velocity equal to n times that which would be acquired in 

falling from infinity.  Show that the other apsidal distance is 

12 n

a
 

Solution: 

 “Velocity from infinity” means the velocity that acquired by the particle in falling with 

the given acceleration from infinity to the particular point given. 

 If x is the distance at time t from the centre in this motion, the equation is  
5

..

x
x


  

 Multiply by 
.

2 x  and integrate  

   A
x

Adx
x

x
45

2.

2

1
2


  

Where x =  , .0
.

x   Hence A = 0 and 
4

2.

2x
x


  

 When x = a, 
4

2.

2x
x


  and  

4

.

2a
x


  

Hence vo = initial velocity of projection  
22 24



a

n

a
n   

For the central orbit, P = 
5

5
u

r



  

The differential equation of the path is 
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 3

2222

2

u
huh

P

d

ud
u




  

Multiplying (1) by 
d

du
2  and integrate with respect to  ,  

   Cu
h

Cduu
hd

du
u 4

2

3

2

22

2

2
)(




 …… (2) 

Initial values are  po = a, 
22



a

n
vo   

Hence h = 
2

2
2

22 a

n
hor

a

n
vp oo


  i.e. 

2

2

22 n

a

h



 

                           C
n

ua

d

du
u 

2

42
22 )(


   ….. (3) 

Initially at an apse, 0
d

du
 and 

a
u

1
  

So from (3), C
ana


222

11
              

222

11

ana

C   


2222

42
22 11

)(
anan

ua

d

du
u 


  …. (4) 

To get the apsidal distance put )4(0 in
d

du



 

Hence 0
11 2

2222

42

 u
naan

ua
 

     i.e  a
4
 u

4
 + n

2
 – 1 – a

2 
n

2
 u

2
 = 0 
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              or a
4
 u

4
 – n

2
 a

2
 u

2
 + (n

2
 – 1) = 0 

         i.e. (a
2
 u

2
 – 1) [a

2
 u

2
 – (n

2
 – 1)] = 0 

              i.e. a
2
 u

2
 = 1 or a

2
 u

2
 = n

2
 – 1      

               i.e  au = 1 or au = 12 n   

             a
u

1
  gives the point of projection 

 apsidal distance is 
a

n
u

12 
  i.e. 

12 


n

a
r  

Problem 15 

  A particle is moving with central acceleration  rcr 45   being projected from an apse 

at a distance C with velocity
3

23 
C , Show that its path is the curve  x

4 
+ y

4 
= c

4
 

Solution: 

 Differential equation of the path is  

 
2

2

22 d

ud
u

rh

p
    …………. (1) 

Given,  P =   rcr 45















u

c

u

4

5

1
  

 
2

2

3

4

72

1





d

ud
u

u

c

uh















  

  347

2

2
2 















  ucuu

d

ud
h 


 



189 

 

Multiply by 
d

du
2  and integrate, 

 12

4

6

2
2

22

26

1
2 c

u

c

u
u

d

du
hv 
































 


   ….. (2) 

Initially, r = c, ie. 
c

u
1

 ,  0,
3

23 




d

du
cv  

 1

6
6

2

26

26

1
2

1
0

3

2
c

c
c

c
hc 


























 


 

 
82

3

2
ch     ,           c1 = 0 

(2)  































2

4

6

2
2

8

26

1
2

3

2

u

c

u
u

d

du
c 


  

               
2

4

6

2
28

26

1

3 u

c

u
u

d

duc






























 

                             

28

2

4

6

2
8

26

1
3 uc

u

c

ud

du
c 



























 

                                      =
























16

9

4

3

2

11
2

44

6
uc

u
 

                                              

= 































2

44
2

6 4

3

4

11
uc

u
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  









244

3

4 341
4

1
uc

ud

du
c


  

                            
  ducducu

24443 3414   

      ie) 

 
d

uc

duuc





244

34

341

4
 

         
 

 



 d

uc

duuc
4

341

16

244

34

. 

                
  2

441 434cos cuc      …… (3) 

Initially, 
c

u
1

 , 0   02 c  

   434cos 441   uc  

 4cos34 44  uc  

 )12cos23()4cos3(4 2444   rrc  

  = ])1cos2(22[)2cos22( 22424   rr  

  = )]1cos4cos4(22[ 244  r  

  =    244 cos2cos244 r  

  = ]cos2cos21[4 244  r  
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  = )]1cos2(cos[cos4 2444  r  

  = ])cos1([cos4 2244  r  

 
44c  =  ]sin[cos4 444  r  

  = ][4])sin()cos[(4 4444 yxrr    

   where  sin,cos ryrx   

 

Problem 16 

  In a central orbit the force is  223 23 uau  ; if the particle be projected at a distance 

„a‟ with a velocity 25
a


in a direction making an angle tan 1   

2
1  with the radius, show 

that the equation to the path is r = a tan . 

 

Solution: 

 The differential eqn. of the path is  

 
 

32

223

222

2 23

uh

uau

uh

p
u

d

ud 




 

  32

2

2
2 23 uauu

d

ud
h 














 


 

Multiply  by 2 
d

du
 and integrating, 

  Cuauu
d

du
av 























 4222

2
22 3


 ________(1) 

Also, p = r sin   

 Initially, 
o

P  = a sin   0  

444 yxc   
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 Now, 
0

  = tan  
2

1tan
2

1
0

1    

 
5

1sin
0
   

 
5

sin
0

aapo      _________(2) 

 

2

422

111










d

dr

rrp
  = u

2
2











d

du
 

Initially, 
22

2
2

51

apo
u

d

du











 

Also, initially, 
2

5

a
v


  given. 

 
2

4222
2

3)1(
a

uauu
d

du 



 























  

i.e. 
2

422
2

1
2

a
uau

d

du











 =  

2

4422 12

a

uaua 
 

2
22

2

22442
112













 














a

ua

a

uaua

d

du


 













 


a

ua

d

du 122


 

 i.e.  


 d
ua

adu

122
 

  1

1cot cau    . 

Initially, u = 
4

,
1 
 

a
 01 c  

    au1cot . cotau  

 
tan

1


r

a

                     
  r = a tan  
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Problem 17 

  A particle is projected from an apse at a distance „a‟ with a velocity from infinity, the 

acceleration being  
7u  show that the equation to its path is 2cos22 ar   

 

Solution: 

              Eqn. of motion is,  force = - ma 

 









dt

dx

dt

d

dt

xd
u

2

2
7  =

dt

dx

dx

d dt

dx

.










  

 

                       We know 
dt

dx
v     

 

                   




a

x

v

dxxvdv 7

0

22   

                        
6

2
6

2

6

0

6
2



















ax
v

a


  = 
63 a


 

Now,  
222

2

uh

P

d

ud
u 


 

5

2

7

2

2
2 u

u

u

d

ud
uh 

















  

Multiply by 2 ;
d

du
 and integrating, 

 



 d

du
u

d

ud

d

du

d

du
uh 5

2

2
2 2.22 












  

.
6

.
2

62
22 C

u

d

du
uh 



























 

dx

dv
v

x


7


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i.e. .
3

6

2

2

C
u

p

h



 

Initially, 
a

uVv
1

,   Also at an apse 0
d

du
 

     

C
aa

hV 









62

22 1
.

3

1 
     ____________(2) 

i.e. CC
aa

 0
33 66


 

               (2)   Also,  

 

 

33

62
2

4

u

d

du
u

a





























  

642
2

uau
d

du












 

 
264

2

uua
d

du












 

Also, u = 
r

1
, 

 d

dr

rd

du

2

1
  

 
r

ra

d

dr

r

ra

rr

a

d

dr

r

44

6

44

26

42

4
,

11 















 

 d
ra

drr







44
 

Put  z  = r
2

 rdrdz 2  

d
za

dz
2

24





 , 

h
46

2
2

33 aa

a 
  
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 
  



  22
222

d

za

dz
 

i.e. cos 1  
12

2 C
a

z









  

Initially, r=a, i.e. z=r 0;22  a  0
1
 C  

 2cos
2

1 







 

a

z
 2cos

2


a

z
 

                   i.e.) 2cos
2

2


a

r
                    

 

                                   ∴ 

 

5.5 Inverse Square Law 

         Newton‟s Law of Attraction 

The mutual attraction between two particles of masses m1 and m2 placed at a distance „r‟ 

apart is a force of magnitude  𝛾
𝑚1𝑚2

𝑟2  where   is a constant, known as the constant of 

gravitation. 

 

 

Problem 18 

 A particle moves in a path so that its acceleration is always directed to a fixed point and 

is equal to 
2)tan( cedis


; Show that its path is a conic section and  distinguish between the three 

cases that arise .   

 

r  2cos22 a
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Solution:       

 Given 
2r

P


 .  

 The (p, r) equation to the path is 
23

2

r
P

dr

dp

p

h 
  ……. (1) 

 i. e. 
23

2

r

dr

p

dp
h   

 Integrate, 
 rp

h 
2

2

2
 constant 

 C
rp

h


2

2

2

    ……. (2) 

We know (p, r) equation of  a parabola is  p
2
 = ar 

(p, r) equation of an ellipse is   1
2

2

2


r

a

p

b
 

(p, r) equation of a hyperbola is 1
2

2

2


r

a

p

b
 

Comparing these equations with equation (2)  

We get   (2)  is a parabola if C = 0 

        (2) is an ellipse if C is negative  

        (2) is a hyperbola if C is positive  

 Hence (2) always represents a conic section 

 Since   h = pv where v is the velocity in the orbit at any point P distant r from the pole,  
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equation (2) becomes  

 C
r

v 
22

   

 C
r

v 
22

                         …….. (4) 

  

Now, C is zero, negative or positive according as v
2
 is equal to, less than or greater than 

r

2
.  

Hence the path is a parabola, an ellipse or a hyperbola according as 
r

orv
2

,2  . 

 

 

*** 
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