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Introduction

“Mathematics is the Queen of the Sciences and Number Theory is the Queen of
Mathematics” - Gauss.

Mechanics is a branch of Science which deals with the action of forces on bodies. Mechanics
has two branches called Statics and Dynamics.

Statics is the branch of Mechanics which deals with bodies remain at rest under the influence
of forces.

Dynamics is the branch of Mechanics which deals with bodies in motion under the action of
forces.

Definitions:
Space: The region where various events take place is called a space.

Body: A portion of a matter is called a body.
Rigid body: A body consists of innumerable particles in which the distance between any two
particles remains the same in all positions of the body is called a rigid body.

Particle: A particle is a body which is very small whose position at any time coincides with a
point.

Motion: If a body changes its position under the action of forces, then it is said to be in
motion.

Path of a particle: It is the curve joining the different positions of the particle in space while
in motion.

Speed: The rate at which the body describes its path. It is a scalar quantity.

Displacement (vector quantity): It is the change in the positions of a particle in a certain
interval.
Velocity (vector quantity): It is the rate of change of displacement.

Acceleration (vector quantity): It is the rate of change of velocity.

Equilibrium: A body at rest under the action of any number of forces on it is said to be in
equilibrium.

Equilibrium of two forces

Qe > P

If two forces P, Q act on a body such that they have equal magnitude, opposite directions,
same line of action then they are in equilibrium.

Force (vector): Force is any cause which produces or tends to produce a change in the
existing state of rest of a body or of its uniform motion in a straight line. Force is represented
by a straight line (through the point of application) which has both magnitude and direction.

Types of forces: Weight, attraction, repulsion, tension, thrust, friction etc.
By Newton’s third law, action and reaction are always equal and opposite.



Directions of Normal Reaction ‘R’ at the point of contact.

1. When arod AB is in contact with a

R
smooth plane, R is perpendicular to the B
plane at the point of contact A. od

Smooth A Plane

2. When arod AB is resting on a R
smooth peg P, R is perpendicular to
the rod at the point of contact P. %5’9
A

3. When arod AB is resting on a
smooth sphere, R is normal to the

sphere at the point of contact C.

4. When a rod AB is resting on
the rim of a hemisphere, with

R
B
C
A
R1
one end A in contact with the R
inner surface and C in contact B
with the rim. Then the normal
reactions R at A is normal to

the spherical surface and passes

through the centre O, Ry at C is
perpendicular to the rod.

Regular polygon is a polygon with equal sides. Its vertices lie on a

circle.



UNIT |
Forces Acting at a Point

Introduction

Forces are represented by straight lines with magnitude and direction. Forces acting on a
rigid body may be represented by straight lines with magnitude and direction passing through the

same point and we say the forces are acting at a point. If P, P, ,P5........ are the forces acting

on a rigid body it is easy to find a single force whose effect is same as the combined effect of
P,P,P . Then the single force is called the resultant. P;,P,,P; ..... are called the
components of the resultant. In this section we study some theorems and methods to find the
resultant of two or more forces acting at a point.
1.1 Parallelogram law of forces (Fundamental theorem in statics)

If two forces acting at a point be represented in magnitude and direction by the sides of a
parallelogram drawn from the point, their resultant is represented both in magnitude and
direction by the diagonal of the parallelogram drawn through that point.

D C
Q
— —> —>
AB+ AD=A
A P B ie)P+Q=R
The resultant of two forces acting at a point
D C
R
Q
¢ R a [
A P B E

Let the two forces P and Q acting at A be represented by AB and AD. Let « be the angle
between them.

ie. ZBAD =«

Complete the parallelogram ABCD.

Then the diagonal AC will represent the resultant.



Let Z/CAB = ¢

Draw CE Lr toAB. Now BC=AD =Q.
From the right angled A CBE,

A
SinCBE :E i.e. sina:E
BC Q

..CE = Qsina........ Q)
_ BE BE
COSox = —_— =
BC Q
~.BE = Qcosa ... .. .. (i)
R? = AC? = AE? + CE? = (AB + BE)? +CE®

= (P+Qcos @) +(Qsina)?

= P2 + 2PQcosa + Q 2

"R = 3(P2+2PQcosa +Q?)
tan g = E: Qsina
AE P+Qcosa

Result 1 If the forces P and Q are at right angles to each other, then « = 90°;

R:\/P2+Q2 tan¢:%

Result 2 If the forces are equal (i.e.) Q =P, then

R =vP2+2P2cosa+ P2 = \/2P2(1+c03a)

= \/ZPZ.ZCOSZg = 2PcosZ
2 2
Psi . Zsingcosg
_ sin o sin o 2 2
P T B iPeosa 1 - o
+Pcosa 1+cosa 2c0s2 &

o
= tan —




Thus the resultant of two equal forces P, P at an anglea is 2 P cos % in a direction

bisecting the angle between them.
Result 3 Resultant R is greatest when cos & is greatest.
i.e. whencosa=1or a=0"
ie) Greatest value of RisR =P +Q.
R is least when cos « is least.
i.e. whencosa = —1 or o = 180% Least value of R is P~Q.
Problem 1
The resultant of two forces P, Q acting at a certain angle is X and that of P, R acting at
the same angle is also X. The resultant of Q, R again acting at the same angle is Y, Prove that.
Q°+R°-Y
Prove also that, if P+ Q+R=0,Y =X,

Solution:
Let o be the angle between P and Q
Given
X? = P2+ Q*+2PQcosa  ......... (1)
xX? = P2+ R*+2PRCOSQ  .oveee.n. (2)
Y2 = Q*+R?*+20QRCOS @ covvveen.. (3)

(1) - (2) gives 0 = Q2—R2 +2Pcos a (Q—R)

i.e.0 = (Q-R)(Q+R+2Pcosa)
ButQ # RandsoQ—-R =0

42 Q+R+2Pcosa =0

cos o = —Q+R ........ 4
2P

Substitute (4) in (1),

P2+Q2+2PQ {_(Q+R

2P

>
I

ﬂ=P2+Q2 Q*-QR

p2 = x2+QR.i.e.P:(x2+QR)%



Substitute (4) in (3),

2 _ 2 2 (Q+R
Y = Q°+R +2QR{(2P ﬂ
_ 2, 2 QRQ+R)
= Q°+R >
.'.—QR(%JrR) = Q*+R?-Y?
- QR(Q+R)
Q2 +R? _Y?2
IfP+Q+R = 0,thenQ+R= —-P,
..From (4),cosa = —Q+R:i:1
2P 2P 2
1
COSo=— =
2
X? = PP+R®+PR.. .. .. (5)
Y2 = Q°+R*+QR.. .. .. (6)
(5) — (6) gives
X2 -Y? = P?-Q*+PR-0QR
=P-Q(FP+Q+R)
= (P-Q).0=0
S X=Y
Problem 2

Two forces of given magnitude P and Q act at a point at an angle & . What will be the

maximum and minimum value of the resultant?

Solution:

i. Maximum value of the resultant

P+Q

ii. Minimum value of the resultant

P~ Q.



Problem 3

The greatest and least magnitudes of the resultant of two forces of constant magnitudes
are R and S respectively. Prove that, when the forces act at an angle 2 ¢, the resultant is of

magnitude \/R2 cos? @+ $?sin? Q

Solution:
Given,R=P + Q, S = P-Q, where P and Q are two forces.
When P and Q are acting at an angle 2¢

Resultant= P2 +Q2 1 2PQ.c0s2¢

VP2 +Q? )+ 2PQlcos? p-sin? o)
\/(PZ +szsin2 (p+C032 (/))—}— 2|:’Q(COS2 (p—SinZ (P)

JP2+Q% +2PQeos? p + (P2 +Q2 - 2PQ)sin?

S

\/R20052¢)+stin2 Q
Problem 4

The resultant of two forces P and Q is at right angles to P. Show that the angle between

the forces is cos_l(— gj

Solution:

Let « be the angle between the two forces P and Q. Given ¢ = 90”

D c
Q AR
a
\ -
A P B
We know, tang = _Qsina
P+Qcosa
Qsina

ie. tan90° = <> 7
P+Qcosa



1 _ Qsina
0 P+Qcosa
S P+Qcosa = 0

P
.. COSax = -—

Q
L= cos_l(— EJ

Q
Problem 5

The resultant of two forces P and Q is of magnitude P. Show that, if P be doubled, the

new resultant is at right angles to Q and its magnitude will be \/4P2 —Q2 :

Solution:
Let o be the angle between P and Q
D €
p
¢ >
A Q B

Given, P? = P2+Q2 +2PQcos «x .
. Q (Q+2Pcos &) =0

5. COSar = _Q
2P
If P is doubled, let R be the new resultant, and ¢ be the angle between Q and R.
~RZ = (2P} +Q?+2(2P)Q.coscx
= 4P? + Q2% +4P —gj
a2

4P? +Q% -2Q%2 =4P? -Q?

- R=4/4P% -Q?
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_ (2P)sine _  2Psina

tangp = ZP) = Q
Q+(2P)cosa Q+2P[_J
2P
. 2Psina
l.e. tang =
0
.COS ¢ = 0 = ¢=90

~ Qisatright angles to R.

Problem 6
Two equal forces act on a particle, find the angle between them when the square of their

resultant is equal to three times their product.

Solution:

A P B

Let o be the angle between the two equal forces P, P, and let R be their resultant.
-~ R? = P2+ P2 4 2P.P.cosa

2P?(1+cosa) = 2P2 x 2cos? %

ie R? = 4chosZg
2
R =2prcosZ
Given, R2 = 3x Px P =3p?2
~.3p? = 4p?% cos? &
oa 3 a V3
S.COS™ — = — = COS— = —
4 2 2



11

£ =30

= a=060"

Problem 7
If the resultant of forces 3P, 5P is equal to 7P find
I. the angle between the forces

ii. the angle which the resultant makes with the first force.

Solution:
Let o be the angle between 3P, 5P
i Given (7TP)> = (3P)*+ (5P)*+ 2 (3P) (5P) .cos
49P° = 9P? + 25P*+ 30P°cos &
. 15P? = 30P? cosa
. Cos = L

- = o= 60°
2

ii. Let ¢ be the angle between the resultant and 3P.

P+Qcosa
5P.sina

3P +5P.cosa

5P.sin 60°
3P +5P.cos60°

5><l/g
2

3+(5x1j
2
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53
tan = SALS
¢ 11
L@ = tan—* ﬂ
11

1.2 Triangle of forces
If three forces acting at a point can be represented in magnitude and
direction by the sides of a triangle taken in order, they will be in

equilibrium.

N
Let the forces, P,Q,R act at a point O and be represented in

magnitude and direction by the sides AB,BC,CA of the triangle ABC.

To prove : They will be in equilibrium.
Complete the parallelogram BADC.

ie) The resultant of the forces P, Q at O is represented in magnitude

and direction by AC.
The third force R acts at O and it is represented in magnitude and

direction by CA.

Hence P+Q+R=AC + CA=0
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Principle

If two forces acting at a point are represented in magnitude and direction

by two sides of a triangle taken in the same order, the resultant will be

represented in magnitude and direction by the third side taken in the

reverse order.
1.3 Lami’s Theorem

If three forces acting at a point are in equilibrium, each force is proportional to the
sine of the angle between the other two.
X

Proof:

By converse of the triangle of forces, the sides of the triangle OAD
represent the forces P,Q,R in magnitude and direction.

By sine rule in AOAD , we have
OA AD DO

- - 1
sin Z/ODA sin Z/DOA sin ZLOAD M
But ZOAD = alt.~/BOD =180° - /MON

-.sin ZODA=sin(180° — ZMON )=sin ZMON —....... @)

Also /DOA=180°% — /NOL

..sin ZDOA =sin (1800 - ANOL):sin ZNOL ... (3)



And ~OAD =180° — /BOA=180° — ~/LOM

- sin ZOAD =sin(180° -~ ZLOM )=sin ZLOM
Substitute (2), (3), (4) in (1),

OA  AD DO

sin /MON sin Z/NOL sin ZLOM

o P _ Q _ R
sin ZMON sin ZNOL sin ZLOM
P Q R

sin(Q.R) _sin(R,P) sin(P,Q)

Problem 8

14

Two forces act on a particle. If the sum and difference of the forces are at right angles to

each other, show that the forces are of equal magnitude.

Solution:

A P B

Let the forces P and Q acting at A be represented in magnitude and direction by the lines

AB and AD. Complete the parallelogram BAD.

Then P+Q= AB+ AD = AC
P-Q =AB-AD
= AB+ DA
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Given AC and DB are at right angles.
The diagonals AC and BD cut at right angles.

.. ABCD must be a rhombus.
..AB = AD.
P=Q.

Problem 9

Let A and B two fixed points on a horizontal line at a distance ¢ apart. Two fine light
strings AC and BC of lengths b and a respectively support a mass at C. Show that the tensions of

the strings are in the ratiob(a® + ¢z —b?): a(b? + ¢ —a?)

Solution

Forces Ty, T, W are acting at C.
By Lami’s theorem,

h T
sin ZECB sin LECA
Now sin ~ECB =sin(180° — ~DCB)

=sin «DCB
=sin (90° — ZABC)= cos ZABC

sin ZECA=sin(180° — Z/ACD)
=sin ZACD
= sin (90° — ZBAC)=cos /BAC
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¢ +a%-b?
n 0T . T1 _cosB _ 2ca
cos/ABC cos/BAC Ty COSA (p2,c2_52
2bc
T, _[c®+a®-b? X[ 2bc jb(02+a2b2)
T 2ca b2 +c?-a? a(b2+c2—a2)
Problem 10

ABC is a given triangle. Forces P,Q,R acting along the lines OA,0OB,0C are in
equilibrium. Prove that

()P : Q : R=a%(b? +c? —a?):b?(c? +a? —b?): c*(a® +b? —c?) if O is the cicumcentre of the
triangle.

(i)P:Q:R== cosg : cos% : cos% if O is the incentre of the triangle.

(iii) P : Q : R=a:b:c if O is the ortho centre of the triangle.
(iv)P:Q:R=0A:0OB:OC if Ois the centroid of the triangle,

Solution:

By Lami’s theorem,

P Q R

sin ZBOC N sin LCOA N sin ZAOB

(i) O is the circumcentre of the A ABC

/BOC =2/BAC =2A; Z/COA=2B and ZAOB=2C



P B Q B R
sin2A sin2B  sin 2C
e~ - _ R
" 2sin AcosA  2sinBcosB  2sin CcosC

Q) =

2 2 2
But cos A:b+c—a and sin A:2—A
2bc bc

Where A is the area of the triangle ABC

2A@2+02—a2)
bc 2bc

c.2sin AcosA=2

2A(b2 +c2 - a2)
) b2c?

2A(c2 +a? —bZ)

Similarly 2sin BcosB = )
ca

2A(a2 +b? —cz)

2sinCcosC = 2b2

a
Substitute in (2)
Ph2c? B Qc?a? B RaZb?
2A(b2 +c? —az) ZA(CZ +a’ —b2) 2A(a2 +b? —cz)

2122
Divide by 2 2-C

P _ Q _ R
az(b2 +c? —az) bz(c2 +a? —b2) cz(a2 +b? —c2)

(i1) O is the in-centre of the triangle,
OB and OC are the bisectors of ZBand £C

17



- sBoC =180° - B _C _1g00 —(E+9j
2 2 2 2

= 180" —(900 —5j:900 LA
2 2

Similarly ZCOA = 90° +% /AOB =90° +%

1) = P _ Q _ R

sin 900+é sin 900+E sin 900+9
2 2 2

P Q _ R
A~ B __C
COSs — COSs — COS —
2 2 2

(iii) O is the ortho-centre of the triangle
AD, BE, CF are the altitudes of the triangle
AFOE is a cyclic quadrilateral.

.. /FOE +A=180° , . /FOE =180° - A
- Z/BOC =180 — A
Similarly, ZCOA=180° - B, ZAOB =180° -C

Hence (1) becomes

P _ Q _ R
sin(180° — A) sin{180° -B) sin{180° —C|
P Q R

i.e

"SinA sinB _ sinC

o P_Q_R ( a b c j

a b cl snA snB sinC

18



(iv) O is the centroid of the triangle

ABOC= ACOA= AAOB= %AABC

ABOC = %OB.OC sin /BOC = % AABC
-.sin /BOC = 2AABC
30B.0OC
Similarly, sin Z/COA = 2AABC , sin ZAOB = 2AABC
30C.0A 30A0B

Hence (1) becomes P.30B.OC _ Q.30C.0A _ R.30A0B

2AABC 2AABC 2AABC

i.e. P.OB.OC = Q.0C.0OA=R.0A.0B

Dividing by OA.OB.OC, we get P = Q = R .
OA OB OC

1.4 Parallel forces:

19

Forces acting along parallel lines are called parallel forces. There are two types of parallel

forces known as like and unlike parallel forces. Since the parallel forces do not meet at a point, in

this chapter we study methods to find the resultant of two like parallel and unlike parallel forces.

Parallel forces acting on a rigid body have a tendency to rotate it about a fixed point. Such

tendency is known as moment of the parallel forces. Here we study the theorem on moments of

forces about a point.

Definition:

Two parallel forces are said to be like if they act in the same direction, they

are said to be unlike if they act in opposite parallel directions.
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The resultant of two like parallel forces acting on a rigid body

Proof:
Let P and Q be two like parallel forces acting at A and B along the lines AD and BL.At A
and B, introduce two equal and opposite forces F along AG and BN. These two forces F balance

each other and will not affect the system.

Now, R is the resultant of P and F at A and R 5 is the resultant of Q and F at B as in the
diagram.

Produce EA and MB to meet at O. At O, draw YOY! parallel to AB and draw OX
parallel to the direction of P.

Resolve R1 and R o at O into their original components. R4 at O is equal to F along ov!l
and P along OX. R at O is equal to F along OY and Q along OX.

The two forces F, F at O cancel each other. The remaining two forces P and Q acting

along OX have the resultant P+Q (sum) along OX.
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Find the position of the resultant
Now, AB and OX meet at C.

Triangles, OAC and AED are similar.
- 0C AC . ; OC AC
. = e =
AD ED P F
FOC =P.AC .. (1)

Triangles OCB and BLM are similar.

OC CB ) OC CB
= ie =
BL LM Q F

FOC=QCB ... (2)
1) &(2) = P.AC=Q.CB
_AC Q
ie) — = —
CB P

ie) ‘C’ divides AB internally in the inverse ratio of the forces.

The resultant of two unlike and unequal parallel forces acting on a rigid body:

O

A
7
-7
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Proof:

Let P and Q at A and B be two unequal unlike parallel forces acting along AD and BL.

LetP > Q.
At A and B introduce two equal and opposite forces F along AG and BN. These two balances
each other and will not affect the system.
Let Rq be the resultant of F and P at A and R, be the resultant of F and Q at B. as in the
diagram.
Produce EA and MB to meet at O. At O, draw Y ' QY parallel to AB and draw OX parallel to the
direction of P.
Resolve R1 and R » at O into their components. Ry at O is equal to F along QY ' and P along
XO. R at Oisequal to F along OY and Q along OX.
The two forces F, F at O cancel each other. Now, the remaining forces are P and Q along the
same line but opposite directions.
Hence the resultant is P ~ Q (difference) along XO.
Find the position of the resultant

Now, AB and OX meet at C.

Triangles OCA and EGA are similar.

OoC CA . OC CA
EG GA P F

Triangles OCB and BLM are similar.

OC CB - OC CB
BL LM’ Q F

LFOC=QCB ... (2)
(and(2) = | pAC=0Q.CB

o CA _Q
CB P

ie) ‘C’ divides AB externally.

Note : The effect of two equal and unlike parallel forces can not be replaced by a single force.
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The condition of equilibrium of three coplanar parallel forces

P P+Q Q
A cl B
R

Let P, Q, R be the three coplanar parallel forces in equilibrium. Draw a line to meet the
forces P, Q, R at the points A, B, C respectively.
Equilibrium is not possible if all the three forces are in the same direction.
Let P + Q be the resultant of P and Q parallel to P. Hence R must be equal and opposite
toP + Q.
- R=P+Q (in magnitude, opposite in direction)
.. P.AC=Q.CB

P Q P+Q R

CB AC CB+AC  AB

H , = =
enee CB _AC _ AB

ie) If three parallel forces are in equilibrium then each force is proportional to the distance

between the other two.

Note: The centre of two parallel forces is a fixed point through which their resultant
always passes.
Problem 11
Two men, one stronger than the other, have to remove a block of stone weighing 300 kgs.
with a light pole whose length is 6 metre. The weaker man cannot carry more than 100 Kkgs.
Where the stone be fastened to the pole, so as just to allow him his full share of weight?
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Solution:

v

100 300 200

Let A be the weaker man bearing 100 kgs., B the stronger man bearing 200 kgs. Let C be
the point on AB where the stone is fastened to the pole, such that AC = x. Then the weight of the
stone acting at C is the resultant of the parallel forces 100 and 200 at A and B respectively.

. 100.AC = 200.BC

i.e. 100x =200 (6-x) = 1200 — 200x
. 300x = 1200 or x=4
Hence the stone must be fastened to the pole at the point distant 4 metres from the weaker
man.

Problem 12
Two like parallel forces P and Q act on a rigid body at A and B respectively.
2
a) If Q be changed to 6 , show that the line of action of the resultant is the same as it would

be if the forces were simply interchanged.
b) If P and Q be interchanged in position, show that the point of application of the resultant will

be displayed along AB through a distance d, where d = E_g .AB .
+

Solution:

Pa 40
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Let C — be the centre of the two forces.
ThenP. AC=Q.CB ............. (1)

P
(@) If Q is changed to —, (P remaining the same), let D be the new centre of parallel

forces.
P2
ThenP.AD=—DB........ ..... (2)
Q
QAD=PDB................ 3)

Relation (3) shows that D is the centre of two like parallel forces, with Q at A and P at B.
(b) When the forces P and Q are interchanged in position, D is the new centre of parallel

forces.

LetCD=d
From (3), Q. (AC+CD) =P. (CB - CD)
i.e. QAC+Qd=P.CB-P.d
(Q+P).d=P.CB-Q.AC
=P (AB-AC)-Q (AB-CB)
=(P-Q).AB[--P.AC =Q.CB from (1)]

d =P_QAB
P+0O

Problem 13

The position of the resultant of two like parallel forces P and Q is unaltered, when the position of

P and Q are interchanged. Show that P and Q are of equal magnitude.

Solution:

p
A
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Let C be the centre of two like parallel forces P at A and Q at B.

LPAC=QCB......ceeeeenee (1)
When P and Q are interchanged, the centre C is not altered (given)
S QAC=PCB.......evvnennnn. ()
W_P_Q
(2 Q P
. p2 =2
P=+ Q
Problem 14

P and Q are like parallel forces. If Q is moved parallel to itself through a distance x, prove that

: X
the resultant of P and Q moves through a distance Q
P+Q
Solution:
'z P 'z Q A Q
| | X
A 'C 'D B B’

Let C be the centre of P and Q at A and B.
~P.AC=QCB ............ (1)

Let D be the new centre of P at A and Q at B’ such that BB’ = x
S~ P.AD=QDB’ ........................ (2)

ie) P(AC +CD)=Q[DB +BB'] = Q[(CB-CD)+ x]
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(P + Q)CD =Q.X using (1)

~CcD=_X
P+Q

Problem 15

Two unlike parallel forces P and Q (P>Q) acting on a rigid body at A and B
respectively be interchanged in position, show that the point application of the resultant in AB

will be displayed along AB through a distance E+ Q AB.

Solution:

Let C be the centre of two unlike parallel forces P at A and Q at B.
~PAC=QCB ..................... (1)

Let D be the new centre when P and Q are interchanged in position.
~QAD=PDB .................... (2)

ie) Q(AC-CD)=P.(DA+AB)

i.e.) Q[(CB—AB)-CD]=P|(AC-CD)+ AB]

QCB-Q.AB-QCD=P.AC-P.CD+P.AB

~.(P-Q)CD =(P+Q).AB using (1)

_P+Q
_P—Q

-.CD .AB
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Problem 16

A light rod is acted on by three parallel forces P, Q, and R, acting at three points distant
2, 8 and 6 ft. respectively from one end. If the rod is in equilibrium, show that P: Q: R = 1:2:3.
Solution

A P AQ

P, Q, R are parallel forces acting on the rod AD at B, D, C respectively.
Given, AB = 2 ft, AD = 8ft, AC = 6ft.
.. BC = 4ft, CD = 2ft, BD = 6ft.
For equilibrium of the rod, each force should be proportional to the distance between the other

two.

.'.E=9=E:>P:Q:R:2:4:6
2 4 6

S P:Q:R=1:2:3

1.5 Moment of a force (or) Turning effect of a force
Definition:
The moment of a force about a point is defined as the product of the force and the

perpendicular distance of the point from the line of action of the force.
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Moment of F about O =Fx ON =F x p.
Note: Moment of F about O is zero if either F = O (or) ON = O.
i.e.) F =0 (or) AB passes through O.
Hence, moment of a force about any point is zero if either
the force itself is zero (or) the force passes through that point.

Physical significance of the moment of a force
It measures the tendency to rotate the body about the fixed point.

Geometrical Representation of a moment

0] )
> [ > |
A F B N A F N B

Let AB represent the force F both in magnitude and direction and O be any given point.
.". the moment of the force F about O
=FXON=ABxON=2. A AOB
= Twice the area of the triangle AOB
Sign of the moment
If the force tends to turn the body in the anticlockwise direction, moment is positive.
If the force tends to turn the body in the clockwise direction, moment is negative.

Varignon’s Theorem of Moments

The algebraic sum of the moments of two forces about any point in their plane is
equal to the moment of their resultant about that point.
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Proof:
Case 1 Let the forces be parallel and O lies i) Outside AB
P+Q =R
A
P Q
A
A
|
0 A C B

Let P and Q be the two parallel forces acting at A and B. P + Q be their resultant R acting at C.
such that

PAC=Q.CB ...c..ccoeeer (1)
Algebraic sum of the moments of P and Q about O
=P.OA+Q.0OB

=P x (OC-AC)+Qx (0OC +CB)
= (P +Q).0C -P.AC +Q.CB
= (P+Q).0C using (1)
=R.0C
= moment of R about O.
i) P and Q are parallel and O lies within AB
A C 0] B

P R=P+Q Q

Algebraic sum of the moments of P and Q about O
=P.OA-Q.0OB
=P. (OC+CA)-Q. (CB-CO)
= (P+Q).0C+P.CA-Q.CBhy (1)
=R.0C
= moment of R about O.
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Case 11 iii) P and Q meet at a point and O any point in their plane. O lies outside the angle
BAD
0 D C
|
Q R
A >
P B

Through O, draw a line parallel to the direction of P, to meet the line of action of Q at D.
Complete the parallelogram ABCD such that AB, AD represent the magnitude of P and Q and
the diagonal AC represents the resultant R of P and Q.

Algebraic sum of the moments of P and Q about O
=2. A AOB+2.A AOD
=2 A ACB+2. AAOD[ ' AAOB= A ACB]
=2 AADC+2 AAOD
=2 (A ADC + A AOD)
=2. AAOC
= Moment of R about O.
iv) O lies inside the angle BAD
Algebraic sum of the moments of P and Q about O:
=2 AAOB-2 AAOD

=2 AACB-2 AAOD D 0 <
=2 AADC-2 A AOD Q R

=2 (A ADC - A AOD)

=2. AAOC A - 8

= moment of R about O.
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Problem 17
Two men carry a load of 224 kg. wt, which hangs from a light pole of length 8 m. each end of
which rests on a shoulder of one of the men. The point from which the load is hung is 2m. nearer
to one man than the other. What is the pressure on each shoulder?
Solution

Rl A ARZ

224

AB is the light pole of length 8m. C is the point from which the load of 224 kgs. is hung.
Let AC =x. Then BC =8 —x. given (8—Xx) —x =2

i.e) 8-2x=20r2x =6.

S.x=3.i.e. AC=3and BC =5.

Let the pressures at A and B be Rq and R kg. wt. respectively. Since the pole is in

equilibrium, the algebraic sum of the moments of the three forces R1, R, and 224 kg. wt. about

any point must be equal to zero.
Taking moments about B,
224CB-R1.AB=0
i.e.224 x5—-R; x8=0.

_ 224 x5

“ R =140.

Taking moments about A,
Ro.AB—-224.AC=0.

ie.8R, —224 x3=0.

| 224x3

- R
278

84
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Problem 18
A uniform plank of length 2a and weight W is supported horizontally on two vertical

props at a distance b apart. The greatest weight that can be placed at the two ends in succession

without upsetting the plank are W, and W, respectively. Show that
W, W, b

+ =—,
W+W, W+W, a

Solution

Let AB be the plank placed upon two vertical props at C and D. CD = b. The weight W of
the plank acts at G, the midpoint of AB,

AG=GB=a
When the weight W is placed at A, the contact with D is just broken and the upward reaction at

D is zero.

«—
Fe—o

W,

There is upward reaction Ry at C.
Take moments about C, we have

W;. AC = W.CG
i.e. Wy (AG - CG) = W.CG
W1.AG = (W +W,).CG

ie.Wpa = (W+W,) CG



34

When the weight W , is attached at B, there is loose contact at C. The reaction at C becomes

zero. There is upward reaction R , about D.
Take moments about D, we get

W.GD =W, (GB-GD)

GD (W+W2):W2.GB:W2 .a

Gp= W22 2)
W +W2
CG+GD=CD=b

L Ma | Wea

W +W1 W +W2

W, N W, _9
W +W1 W +W2 a

Problem 19

The resultant of three forces P, Q, R, acting along the sides BC, CA, AB of a triangle
ABC passes through the orthocentre. Show that the triangle must be obtuse angled.

If #/A=120°, and B = C, show that Q+R =P /3.

Solution:




Let AD, BE and CF be the altitudes of the triangle intersecting at O, the orthocentre.
As the resultant passes through O, moment of the resultant about O = O.
.. Sum of the moments of P, Q, R about O =0

P.OD+Q.OE+R.OF =0 ........... (1)
Inrt. £/dABOD, ZOBD = Z/EBC =90°-C.
~.tan(90°-C) = ob
BD

. oD
i.e)cotC= —

BD
OD=BDcotC............. (2)

From rt. ZdAABD, cosB = E
AB

cosC
.. From(2),0D =ccosB.cotC = ccosB.——
sinC
C
= ——.cosBcosC
sinC

= 2R'cosBcosC(- LC =2R’, R’ is the circumradius of the A)
sin

Similarly OE = 2R’cosC cosA
and OF = 2R'cosAcosB

Hence (1) becomes
P.2R'cosBcosC +Q.2R'cosCcos A+R.2R'cos AcosB =0
Dividing by 2R’cos AcosBcosC,

P N Q N R _
cosA cosB cosC
Now, P, Q, R being magnitudes of the forces, are all positive.
(3) may hold good, if at least one of the terms must be negative.
Hence one of the cosines must be negative.

i.e) the triangle must be obtuse angled.
If A =120° and the other angles equal, then B=C = 30°
Hence (3) becomes
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P Q R
+ + =

cos120° cos30° co0s30°
. P Q+R
i.e. + =0

-3 (3

2 2

ie.Py/3=Q+R

1.6 Couples: Definition

Two equal and unlike parallel forces not acting at the same point are said to constitute a
couple.

Examples of a couple are the forces used in winding a clock or turning tap. Such forces acting
upon a rigid body can have only a rotator effect on the body and they can not produce a motion
of translation.

The moment of a couple is the product of either of the two forces of the couple and the
perpendicular distance between them,

The perpendicular distance (p) between the two equal forces P of a couple is called the
arm of the couple. A couple each of whose forces is P and whose arm is p is usually denoted by

(P, p).

A couple is positive when its moment is positive i.e., if the forces of the couple tend to
produce rotation in the anti-clockwise direction and a couple is negative when the forces tend to
produce rotation in the clockwise direction.

1.7 Equilibrium of three forces acting on a Rigid Body.

In the previous sections we have studied theorems and problems involving parallel forces
and forces acting at a point. Here we study three important theorems and solved problems on
forces acting on a rigid body and their conditions of equilibrium.

Theorem

If three forces acting on a rigid body are in equilibrium, they must be coplanar.
Proof:
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Let the three forces be P,Q,R
Given : They are acting on a rigid body and in equilibrium.
Take ‘A’ on the force P, and B on the force Q such that AB is not parallel to R.

.. Sum of the moments of P, Q, R about AB=0[.". P,Q, R are in equilibrium]
Now, moment of P and Q about AB =0 [*.* P and Q intersect AB].
.. Moment of R about AB =0, Hence R must intersect AB at a point C

Similarly if D is another point on Q such that AD is not parallel to R, we prove, R must
intersect AD at a point E.

Since BC and DE intersect at A, BD, CE, A lie on the same plane. i.e) ‘A’ lies on the
plane formed by Q and R. Since A is an arbitrary point on the force P, every point on the force P
lie on the same plane.
ie) P, Q, R lie on the same plane.

Three Coplanar Forces — theorem
If three coplanar forces acting on a rigid body keep it in equilibrium, they must be either
concurrent or all parallel.
Proof:
Let P, Q, R be the three forces acting on a rigid body keep it in equilibrium.
.". One force must be equal and opposite to the resultant of the other two.
.". they must be parallel or intersect.
Case 1: If P and Q are parallel (like or unlike)
Then the resultant of P and Q is also parallel. Hence R must be parallel to P and Q.
Case 2: If P and Q are not parallel: (intersect)
They meet at O. Therefore, by parallelogram law, the third force R must pass through O.
i.e) the three forces are concurrent.
Note: A couple and a single force can not be in equilibrium
Conditions of equilibrium
1. If three forces acting at a point are in equilibrium, then each force is proportional to the
sine of the angle between the other two.
2. If three forces in equilibrium are parallel, then each force is proportional to the distance

between the other two
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Two Trigonometrical theorems
. . : BD m
If D is any point on BC of a triangle ABC such that E:_ and ZADC =46,
n

Z/BAD =, Z/DAC = f3 then

1) (m+n)cot@ = m.cota —n.cot B 2) (m+n)coté = n.cotB—m.cotC.
Proof:
A
)
B m D n C

. m BD BD DA
1. Given, — = = .
n DC DA DC
Using, sine formulain A ABD, A ADC,
m _sin ZBAD _ sin ZACD

= X
n sin ZABD sin ZDAC

m__sina  sin(0+p)

n sin(@-a) sing

_sina (sin @.cos S +cos B.sin B)
sin 8 (sin @cos a —cos 6.sin o)

Divide by sin a.sin 8.sin g

m _cotpB+cotd

N cota—cotd
-.m(cot & —cot @) = n(cot B +cot §)

(m-n)cot & =m.cota —n.cot B
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m_BD DA
'n DA DC
_ sin ABADXsin ZACD

sin ZABD sin ZDAC

__ sin(@-B)sinC  _ sinC.sin(9-B)
sin B.sin[180°—~(#+C)] sinB.sin(¢+C)

_ sin C x(sin 6.cos B —cos @sin B)

sin B(sin C cos @ +cosCsin )
Divide by sin B sin C sin&@
m _ cotB-cotd

N cotd+cotC
-.m(cot @+ cotC)=n(cot B—cot &)

~.(m+n)cotd =ncotB—-mcotC

Problem 20

A uniform rod, of length a, hangs against a smooth vertical wall being supported by
means of a string, of length I, tied to one end of the rod, the other end of the string being attached
to a point in the wall: show that the rod can rest inclined to the wall at an angle & given by

What are the limits of the ratio of a: | in order that equilibrium may be possible?
Solution:

C
7
L
A ‘\ » R
90°
AN/
GV
w
|




AB is the rod of length a, with G its centre of gravity and BC is the string of length .

The forces acting on the rod are:

(i). Its weight W acting vertically downwards through G.

(ii). The reaction R at A which is normal to the wall and therefore horizontal.
iii) The tension T of the string along BC.

These three forces in equilibrium not being all parallel, must meet in a point L.
Let the string make an angle « with the vertical.

.. ZACB =a = ZGLB.

/LGB =180°-6 andZALG =90°, AG:GB=1:1,
Using the trigonometrical theorem in A ALB
(1+1)cot(180° — #) =1.cot90° —1.cotxr
i.e) —2cotd = —cotax

2cotéd=cotar ........c.one.nnl. (1)
Draw BD Lto CA.
From rt. ZdACDB,BD = BC.sina =l.sin«
rt. ZdAABD,BD = ABsing=asiné
slsina=asing ............ (2)

Eliminate « between (1) and (2).

We know that c0seC?a =1+COt2 & oovvvivveeeeii, 3)

_ asin
(2) =sin @ =——— ..coseca = I ........................ 4)
| asin @

Substitute (4) and (1) in (3)
|2 2
75 =1+4cot“ @
a“sin“@
12
ie. — =sin0+4cos’d=1+3cos’0

a2

2 2 .2
.'.300329:|——1:| a

a’ a’

40
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Equilibrium position is possible, if cos’ 0 positive and less than 1

12 _a?>0ie 12>a%ra%<1? ... (6)
2.2
Also > <lie. 12 -a% <3aor 12 < 4a?
3a
|2
. 2
Le.ad” >— . (7)
4
2
~_<a’<|?
4

1 a2 1 a
By (6) & (7 —<—<l==<—<1.
(BY®&M] < z<l=35<

Problem 21
A beam of weight W hinged at one end is supported at the other end by a string so that

the beam and the string are in a vertical plane and make the same angle @ with the horizon.

W [
Show that the reaction at the hinge is 7 8+ cosec?d

Solution:
0 Let AB be the beam of weight W and G its centre of
N L gravity.
AN BC is the string
The force acting on the beam are:
: T i) Its wt. W acting vertically
° down wards at G
R 30-6 ii) the tension T along BC
. iii) the reaction R at the hinge A.
A 90°
v




For equilibrium (i) , (ii) and (iii) must meet at L.

BC and AB make the same angle @ with the horizon.
.. They make 90° — & with the vertical LG,

i.e. ZBLG=90°-0= /LGB

Let ZALG =«

Using trigonometrical theorem in A ALB, AG:GB =1:1
(1+1)cot(90° — ) =1.cotar —1.cot(90° - 8)

i.e. 2 tand =cota —tan @

dtand=cota ................... (1)

Applying Lami’s theorem at L,

R W
sin(90°-0) sin(90°- 0+ )

R W W

" Cos0 sin[0°—0-a) cos(0—a)

‘R= Wcoso W cos &
" cos(@—a) cos@cosa+sin Gsin

_ W cosé
sina(cosécota +sind)

B W cos @
sin cr(cos 6.3tan @ + sin 6)

[By (1)]

_ Wcos&coseca W cotd

= = .COSECO{=VZVCOI67 1+cot2a

3sin @+sin @

= V%.cot@ 1+9tan? @
=VZV\/cot20+ :VZV\/cot20+1+8
= V%\/cose029+8

42
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Problem 22

A solid cone of height h and semi-vertical angle « is placed with its base flatly against a

smooth vertical wall and is supported by a string attached to its vertex and to a point in the wall.

Show that the greatest possible length of the string is h /1+%tan2 a.

(The centre of gravity of a solid cone lies on its axis and divides it in the ratio 3 : 1 from the

vertex.)
Solution: 0’
O/T/
R < C
v B

3
Wall

Let A be the vertex, & height AD = h.

A
Semi-vertical angle DAC =« .

G divides AD in the ratio 3: 1
Length AQ' is greatest, when the cone is just in the point of turning about C.
At that time, normal reaction R must be perpendicular to the wall.

Since, the cone is in equilibrium, the three forces T, W, R must be concurrent at O.

AAOG & AAO'D are similar.

AO"_AD_ h 4 .4 (1)
20 AG (th 3 ,_AOZEAO .....................
4
Now, OG =CD.
From AACD,tanazgzg ..CD=htan«
AD h

..OG=htana
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From AAOG, AO? = AG? +GO?
2
= Ghj +(h.tana )

2
9h +h?.tana

_9h? +16h%tan’ o
16

AO%=h ( +tan2aj

- AO = h‘/—+tan a
():>AO’——><h>< /—+tan a
h,/1+—tan o
Problem 23

A heavy uniform rod of length 2a lies over a smooth peg with one end resting on a smooth

vertical wall. If ¢ is the distance of the peg from the wall and @ the inclination of the rod to the

wall, show that c=a sin3(9

Solution:
R,
O | -
A 7 g R1
0
° A 4
D
\
G
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Forces acting on the rod AB are
) WeightwatG ({)
i) Reaction Rq at A ( L to the wall)
iii) Reaction R » at the peg P ( L to the rod)

For equilibrium, W, Rq,R o must be concurrent at O.

From rightangled triangle ADP (DP =¢)
SiNf=—.......c...coeeinnnl (1)
From AAOP,sin 8 = A ()
AO
From AOGA,sin 8 = A (3)
AG
Ox(2)x(@)=sin30= S P OA_ ¢ ¢
AP AO AG AG a

c=asin®e@

Problem 24
A heavy uniform sphere rests touching two smooth inclined planes one of which is inclined
at 60° to the horizontal. If the pressure on this plane is one-half of the weight of the sphere,
prove that the inclination of the other plane to the horizontal is 30°

Solution:
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Let the sphere centre C rest on the inclined planes AM and BN. MA makes 60° with the
horizontal and let NB make an angle & with the horizon.
The forces acting are

)] Reaction R 5 at A perpendicular to the inclined plane AM and to the sphere and

hence passing through C.

i) Reaction Rg at B which is normal to the inclined plane BN and to the sphere and
hence passing through C.

iii) W, the weight of the sphere acting vertically downwards at C along CL.

Clearly the above three forces meet at C.

Also ZACL =60°and ZBCL=«a
Applying Lami’s theorem,
Ra W

sina sin(60+a)

W sin

Ry —_ o0&
A sin(60°+ a)

From (1) and (2), we have
W sin« W

sin(60°+a) 2

i.e. 2sin a =sin(60°+ &) = sin 60° coser + c0s60°sin o

] ) 3 1. . .
i.e.2sin o = —COSO!+ESIn o or 4sihga = \/§c03a+sm o

i.e.3sin a=+3cosa or % :ﬁzi
cosa 3 /3

ietanoz—ioroc—ieoo

L. NG
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Problem 25

A uniform solid hemisphere of weight W rests with its curved surface on a smooth
horizontal plane. A weight w is suspended from a point on the rim of the hemisphere. If the plane

8w
base of the rim is inclined to the horizontal at an angle @, prove that tan @ = W

Solution:

Draw GL perpendicular to OC and BD perpendicular to OC. Base AB is inclined at an angle
6 with the horizontal BD. Forces acting are i) Reaction R ii) Weight W at G iii) Weight w

at B.
Since these three forces are parallel, and in equilibrium each force is proportional to the distance
between the other two.

W w
Now, AOBD = BD =0OBco0sé =rcosé

3r
Here, OG = E r — radius

GL =0G. sin 0 = %sin 2

_ W w
”(1):rc050_(3r. j

—siné@
8

tan0:8—W
3W
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UNIT I
2.1 Friction

In the previous sections we have studied problems on equilibrium of smooth bodies.
Practically no bodies are perfectly smooth. All bodies are rough to a certain extent. Friction is the
force that opposes the motion of an object. Only because of this friction we are able to travel
along the road by walking or by vehicles. So friction helps motion. It is a tangential force acting
at the point on contact of two bodies. To stop a moving object a force must act in the opposite
direction to the direction of motion. Such force is called a frictional force. For example if you
push your book across your desk, the book will move. The force of the push moves the book. As
the books slides across the desk, it slows down and stops moving. When you ride a bicycle the
contact between the wheel and the road is an example of dynamic friction.

Definition

If two bodies are in contact with one another, the property of the two bodies, by means of
which a force is exerted between them at their point of contact to prevent one body from sliding
on the other, is called friction; the force exerted is called the force of friction.

Types of Friction

There are three types of friction
1) Statical Friction 2) Limiting Friction 3) Dynamical friction.

1. When one body in contact with another is in equilibrium, the friction exerted is just
sufficient to maintain equilibrium is called statical friction.

2. When one body is just on the point of sliding on another, the friction exerted attains its
maximum value and is called limiting friction; the equilibrium is said to be limiting equilibrium.

3. When motion ensues by one body sliding over another, the friction exerted is called
dynamical friction.

2.2 Laws of Friction

Friction is not a mathematical concept; it is a physical reality.

Law 1 When two bodies are in contact, the direction of friction on one of them at the point of
contact is opposite to the direction in which the point of contact would commence to move.
Law 2 When there is equilibrium, the magnitude of friction is just sufficient to prevent the body

from moving.
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Law 3 The magnitude of the limiting friction always bears a constant ratio to the normal reaction
and this ratio depends only on the substances of which the bodies are composed.

Law 4 The limiting friction is independent of the extent and shape of the surfaces in contact, so
long as the normal reaction is unaltered.

Law 5 (Law of dynamical Friction)

When motion ensues by one body sliding over the other the direction of friction is
opposite to that of motion; the magnitude of the friction is independent of the velocity of the
point of contact but the ratio of the friction to the normal reaction is slightly less when the body
moves, than when it is in limiting equilibrium.

Friction is a passive force: Explain
1) Friction is only a resisting force.
2) It appears only when necessary to prevent or oppose the motion of the point of contact.
3) It can not produce motion of a body by itself, but maintains relative equilibrium.
4) ltis a self-adjusting force.
5) It assumes magnitude and direction to balance other forces acting on the body.

Hence, friction is purely a passive force.
Co-efficient of friction
The ratio of the limiting friction to the normal reaction is called the co-efficient of

friction. It is denoted by

F
ie) | R Y| = | F=4R
Note: 1) x depends on the nature of the materials in contact.

2) Friction is maximum when it is limiting. 4R is the maximum value of friction.

3) When equilibrium is non-limiting, F < /R i.e.) R <u
4) Friction ‘F’ takes any value from zero upto 4R.
Angle of Friction

B C B C

RA

=

\ 4
\
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Let OA = F(Friction), OB =R (Normal reaction) &(Yf be the resultant of F and R.

If B6C=¢9, tam9=§:%:E ........... (1)
OB OB R
As F increases, @ - increases until F reaches its maximum value uR. In this case,
equilibrium is limiting.
Definition
“When one body is in limiting equilibrium over another, the angle which the resultant reaction

makes with the normal at the point of contact is called the angle of friction and is denoted by 4~

VAN
In the limiting equilibrium, BOC = A = angle of friction.

ctana=BC _OA_ MR _
OB OB R
u=tanAi

i.e.) The co-efficient of friction is equal to the tangent of the angle of friction.

Cone of Friction

A
\ 4

LR o uR
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We know, the greatest angle made by the resultant reaction with the normal is A (angle

of friction) where A = tan_l(,u). Consider the motion of a body at O (its point of contact) with
another. When two bodies are in contact, consider a cone drawn with O as vertex, common
normal as the axis of the cone, A - be the semi-vertical angle of the cone. Now, the resultant
reaction of R and R will have a direction which lies within the surface or on the surface of the

cone. It can not fall outside the cone. This cone generated by the resultant reaction is called the

cone of friction.

2.3 Equilibrium of a particle on a rough inclined plane.

£

Let @ - be the inclination of the rough inclined plane, on which a particle of weight W, is

placed at A. Forces acting on the particle are,
1) Weight W vertically downwards
2) Normal reaction R, _Lr to the plane.
3) Frictional force F, along the plane upwards (Since the body tries to slip down).

Resolving the forces along and perpendicular to the plane,

F=Wsing, R=W cosé

.’.E:tane
R
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But%<,u stand < u

i.e) tanfd <tan A
SO< A

When H:Z,g:tan/lz,u

Hence, it is clear that “when a body is placed on a rough inclined plane and is on the point of
sliding down the plane, the angle of inclination of the plane is equal to the angle of friction.”
Now A is called as the angle of repose.

Thus the angle of repose of a rough inclined plane is equal to the angle friction when

there is no external force act on the body.

2.4 Equilibrium of a body on a rough inclined plane under a force parallel to
the plane.

A body is at rest on a rough plane inclined to the horizon at an angle greater than the angle of

friction and is acted on by a force parallel to the plane. Find the limits between which the force

must lie.

Proof:
Let & be the inclination of the plane, W be the weight of the body& R be the normal
reaction.

Case 1: Let the body be on the point of slipping down. Therefore @R acts upwards along the

plane.

W sin o
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Let P be the force applied to keep the body at rest.
Resolving the forces along and perpendicular to the plane,
P+R=Wsina .................... (1)

R=W.cosa ..................... (2)

S P=W.sina— uW cosa

=W (sin & —tan A.cos ]

= W [sin ce.cos A —cosarsin ]
cos A

W )
- sin(e-2
- sin(a— A1)

W.sin(a — 1)
cos A
Case ii Let the body be on the point of moving up. Therefore limiting frictional force /R acts

Let P]_ =

downward along the plane.

Let P be the external force applied to keep the body at rest.
Resolving the force,
R=Wcosa; P=R+Wsin«

S P=uWcosa+Wsin o

= W [sin 2cosa + cos A.sin a]
cos A
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S (a@+A)
cos A

Let P, = C;Nq.sin (a+A)

If P <P, body will move down the plane. If P > P,, body will move up the plane.

.". For equilibrium P must lie between P, and P, .

le) | p>P>PR

2.5 Equilibrium of a body on a rough inclined plane under any force.

Theorem: A body is at rest on a rough inclined plane of inclination & to the horizon, being
acted on by a force making an angle @ with the plane; to find the limits between which the
force must lie and also to find the magnitude and direction of the least force required to

drag the body up the inclined plane.

“aW cosa

Let a be the inclination of the plane, W be the weight of the body, P — be the force acting at an
angle @ with the inclined plane and R — be the normal reaction.

Case i: The body is just on the point of slipping down. Therefore the limiting friction 4R acts
upwards.

Resolving the forces along and _L r to the inclined plane,

PcosO+ R=Wsina ................... (1)



55

Psin@+R=WcCoSc&x ....................... (2)
-.R=Wcosa—Psing

~.(1)= Pcos@+ u(W cos o — Psin 8) =W sin «
P(cos@ — usin ) =W (sin a — ucosa)

b ~ W(sina—ucosa)
h cos @ — usin

We have u=tanA

o W (sin o —tan A.cos )
cos@—tan A.sin @

(sin czcos A —cosa.sin 1)
cos#.cos A —sin 6.sin A
W sin(o— 1)

cos(6+ 1)

sin(a— 1)

Let P, =W.
! cos(6+A4)
Case ii: The body is just on the point of moving up the plane. Therefore ,uR acts downwards.

Resolving the forces along and _L I' to the plane.
PcosO— R=W.sina .................... (3)
Psin@+R=W.coSx ...................... (€))
R=Wcosa—Psin 6

(3)= Pcosé — (W cosa — Psin 8)=W.sin «
P(cos@+ usin @) =W (sin a + pcosc)

_W(sina +tanA.cosa)
(cos@+tan A.sin @)

_ W(sin @.cos 4 +sin A.cos @)
(cos@cos A +sin 6.sin 1)
_W.sin(a +4)
cos(@— 1)
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Let P _Wsin(a+4)
27 cos(0-1)

To keep the body in equilibrium, P, and P, are the limiting values of P.

Find the least force required to drag the body up the inclined plane
We have, P = W.M
cos(@-A4)

P is least when cos(@— 1) is greatest.
i.e.) When cos(@—1)=1
i.e.) When 6-1=0
i.e) When =1

~. Least value of P =W.sin(a+1)

Hence the force required to move the body up the plane will be least when it is applied in a
direction making with the inclined plane an angle equal to the angle of friction.
i.e.) “The best angle of traction up a rough inclined plane is the angle of friction”
Problem 1

A particle of weight 30 kgs. resting on a rough horizontal plane is just on the point
motion when acted on by horizontal forces of 6kg wt. and 8kg. wt. at right angles to each other.
Find the coefficient of friction between the particle and the plane and the direction in which the
friction acts.

Solution:
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Let AB =8 and AC = 6 represent the directions of the forces, A being the particle.
The resultant force = V82 +6° = 10kg. wt. and this acts along AD, making an angle

Cos_l(gj with the 8kg force.

Let F be the frictional force. As motion just begins, magnitude of F is equal to that of the
resultant force.

F=10.................. (1)
If R is the normal reaction on the particle,
R=30..cccciiiiiinn (2)
If 1 is the coefficient of friction as the equilibrium is limiting, F = /R
10 1

Problem 2
A body of weight 4 kgs. rests in limiting equilibrium on an inclined plane whose
inclination is 30°. Find the coefficient of friction and the normal reaction.

Solution:

W sin 300
W cos 300

30°

wW=4kg

Since the body is in limiting equilibrium on the inclined plane, it tries to move in the

downward direction along the inclined plane.
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.". Frictional force xR acts in the upward direction along the inclined plane. Resolving
along and L r to the plane,
LR=Wsin30° ..................... (1)

A =30°

Problem 3
A uniform ladder is in equilibrium with one end resting on the ground and the

other against a vertical wall; if the ground and wall be both rough, the coefficients of friction

being 1 and 4 respectively, and if the ladder be on the point of slipping at both ends, show

o . .. 1— ' .
that @, the inclination of the ladder to the horizon is given by tané = HE Find also the

2u
reactions at the wall and ground.
Solution:
l{
S
ﬂﬂ
B S
G R
)
C R E A
v
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AB is the uniform ladder, whose weight W is acting at G such that AG = GB.
Forces acting are,

1. Weight W
Normal reaction R at A
Normal reaction S at B

LR

H'S

When the ladder is on the point of slipping at both ends, frictional forces 'S, 4R act along
CB, AC respectively.

Since the ladder is in equilibrium resultant is zero.
.". Resolving horizontally and vertically,

o~ wbn

S=iR ... (1)

R+uS=W ... )

R+ 4/ (1R)=W

RA+m)=W= | o W g MW

1+t
By Varigon’s theorem on moments, taking moments about A

S.BC + 4'S.AC =W.AE
S.ABsin 8 + 1'S.ABcos @ =W.AG.cos &

S.sin @+ u'S.cosd :W.%.cos@ [ AG = %}

~.S.sin @ = {V?V—y’s}cosﬁ

.'.tanﬁzﬂ—y’ = \W 1:1+,uy -y
2S M 2u
HW
2
Lﬂwl}
_ v -2 !
- 2 tan9=1 HE
H 24
Problem 4

In the previous problem, when =z show that @ =90° — 21, where A is the angle
of friction.
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Solution:
. 1— !
In the previous problem, we have proved tané = 2,uu
y7i

Put 1= u', we get
2 2
1—/1 :w,[la:tanﬂ]

n =
tan ¢ 2,1 2tan A
-1 _cot2a- tan(90°—24)
tan24
ie) tand=tan(90°-21) .. | #=90°-22
Problem 5

A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal

plane and its upper end against an equally rough vertical wall. If @ be the inclination of the

ladder to the vertical, prove that tan 8 = 24 5 where u is the coefficient of friction.
1-u

Solution:
!
Y7 S/,\L
"v’ \‘
PA \
B| &4 LR
o » R’
\
\\
1}
A\
C TR A
W v

When the ladder AB is in limiting equilibrium, five forces are acting as marked in the figure.



1) Weight of the ladder W
2) Normal reaction R at A
3) Normal reaction S at B
4) Frictional force 4R
5) frictional force 1S

Let R',S" be the resultant reactions of R, tR and S, 4S respectively.

.". We have 3 forces R’,S’,W . For equilibrium, they must be concurrent at L.

N N
In ALAB,LGA=180°-6;ALG =1

VAN
BLG=90-4,AG:GB=1:1
.". By trigonometrical theorem in A LBA,
(1+1) cot(180°—6)=1.cot(90°— 1)—1.cot A

2
—2.cotd =tan A —cotA :tan—/”t—l
tan A
2
.'.coté’zw
2tan A
1 1-4°
ie.) _H stan@ = 24
tanéd  2u 1—/12

Problem 6
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A uniform ladder rests with its lower end on a rough horizontal ground its upper end

against a rough vertical wall, the ground and the wall being equally rough and the angle of

friction being A. Show that the greatest inclination of the ladder to the vertical is 24 .

Solution
In the previous problem, we have proved, tané@ = Zﬂz But u=tan A
1-u
.'.tanezm—nfztanu = | - 9=21
1-tan“ 4 =
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Problem 7
A ladder which stands on a horizontal ground, leaning against a vertical wall, is so loaded

that its C. G. is at a distance a and b from its lower and upper ends respectively. Show that if the

ladder is in limiting equilibrium, its inclination & to the horizontal is given by tangzw
(a+b)u

where u, 1’ are the coefficients of friction between the ladder and the ground and the wall

respectively.

Solution:

As in problem 5, five forces are acting on the ladder

Here, AG:GB=a:b

.". By Trigonometrical theorem in ALBA,

(b +a).cot(90 + #)=b.cot(90 — 1')—a.cot A

i.e.) (a+b)—tan@)=b.tan ' —a.coti

o) oe
—b.u ,
S tan@ = 2 = a-buu

a+b (a+b)u

Problem 8

A ladder AB rests with A on a rough horizontal ground and B against an equally rough
vertical wall. The centre of gravity of the ladder divides AB in the ratio a: b. If the ladder is on

the point of slipping, show that the inclination € of the ladder to the ground is given by

a—bu?
tand =" where 4 is the coefficient of friction.
u(a+h)

Solution:

In the previous problem,

Put =1 in tané':m a—bu

(a+b)u .'.tanezﬂ(aer)
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Problem 9
A ladder AB rests with A resting on the ground and B against a vertical wall, the

coefficients of friction of the ground and the wall being x and 4 respectively. The centre of
gravity G of the ladder divides AB in the ratio 1: n. If the ladder is on the point of slipping at

1-nuy

both ends, show that its inclination to the ground is given by tan 8 =
(n+1)u

Solution:
Puta:b=1:nin problem?7.

tanezl_nﬂﬂ’
(L+n)u

Problem 10
A ladder of length 2l is in contact with a vertical wall and a horizontal floor, the angle of
friction being A at each contact. If the weight of the ladder acts at a point distant k|l below the
middle point, prove that its limiting inclination € to the wvertical is given by

cotd =cot21 -k cosec2.

Solution:

Forces are acting as marked in the figure. For equilibrium, the three forces R’,S’\W
must be concurrent at L, where W — be the weight of the ladder.
In ALAB,BC =CA=1;CG =KI.

~.BG=BC+CG =1+kl=(1+k)I
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N AN
BLG=90°-4,LGA=180°-6

ALG = 4;GA=CA—CG = K| =(1-k).
BG:GA=(1+k):(1-k)
.". By Trigonometrical theorem in  ALBA,
[(1+k)+(@—k)].cot(180° — @) = (1+k).cot(90° — 1) — (1—k).cot A.
2(~cotd)=(L+k)tan 2 —(1—k).cotd
~.2cotd = (1-k)cotA —(1+k)tan A

(1-k)cot® 21 —(1+k)

cotA

_ {cot? 2-1)—klcot? 1 +1)
) cot A

(cot2 A —1)— k.cosec?A
2.cotA

cotd =

1- tan2 A 3 l{ljt cot2 ﬂ,}

2cotA.tan? A 2.coti
- 1 | 1+tan?2
[Ztan/ij 2.tan2 J.cot A
1—tan2/1

_ 1,1
tan24  sin2A

ie) cotd =cot24 —k.cosec24

Problem 11
A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal
plane and with the upper end against a smooth vertical wall. If & be the inclination of the ladder

to the vertical, prove that, tan@ =2, where p is the coefficient of friction.
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Solution:

los]

Since the wall is smooth, there is no frictional force. Forces acting on the ladder are i) its weight

W, i) Frictional force 1R li) Rat A iv) S at B. For equilibrium, the three forces

W,R’,S must be concurrent at L. where Rlis the resultant of R and UR . Intriangle LAB,

A A A A
LGA=180°-60,ALG=4,BLG=90°BG:GA=1:1.ABC =4
By Trigonometrical theorem in ALAB,

(1+1)cot(180° — #)=1.cot90° —1.cot A

—2.cotd=0-cotA

2 1
tand tanA

~tangd=2tan 1 i.e) tand =2u

Problem 12

A particle is placed on the outside of a rough sphere whose coefficient of friction is /.

Show that it will be on the point of motion when the radius from it to the centre makes an angle

tan 4 with the vertical.
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Solution:

Let O be the centre, A the highest point of the sphere and B the position of the particle
which is just on the point of motion. Let Z/AOB =6
The forces acting at B are:
1) the normal reaction R
2) limiting friction 4R
3) Its weight W,
Since the particle at B is in limiting equilibrium,
Resolving along the normal OB,

R=Wcos@ ...................... (1)
Resolving along the tangent at B,
MR=Wsin@ ................... ()

(2)

—~= u=tanf =

®

2.6 Equilibrium of Strings

When a uniform string or chain hangs freely between two points not in the same vertical
line, the curve in which it hangs under the action of gravity is called a catenary. If the weight
per unit length of the chain or string is constant, the catenary is called the uniform or common

catenary.

2.7 Equation of the common catenary:

A uniform heavy inextensible string hangs freely under the action of gravity; to find the

equation of the curve which it forms.



Let ACB be a uniform heavy flexible cord attached to two points A and B at the same
level, C being the lowest, of the cord. Draw CO vertical, OX horizontal and take OX as X axis
and OC as Y axis. Let P be any point of the string so that the length of the are CP =s

Let o be the weight per unit length of the chain.

Consider the equilibrium of the portion CP of the chain.

The forces acting on it are:

Q) Tension Ty acting along the tangent at C and which is therefore horizontal.

(i)  Tension T acting at P along the tangent at P making an angle ¥ with OX.

(iii)  Its weight ws acting vertically downwards through the C.G. of the arc CP.

For equilibrium, these three forces must be concurrent.
Hence the line of action of the weight ws must pass through the point of the
intersection of T and T,.
Resolving horizontally and vertically, we have
TcosW=T,... ... (@)

Dividing (2) by (1), tan ¥ ===
0

Now it will be convenient to write the value of T, the tension at the lowest point,
asTo=wc ... ... (3) where c is a constant. This means that we assume T,, to be equal to the

weight of an unknown length c of the cable.

67
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Thentan ¥ =2 =2
wc

~S=ctan¥ ... ... ... (4)
Equation (4) is called the intrinsic equation of the catenary.
It gives the relation between the length of the area of the curve from the lowest point to
any other point on the curve and the inclination of the tangent at the latter point.
To obtain the certesian equation of the catenary,
We use the equation (4) and the relations

dy . d .

% = sin ¥ and % = tan P which are true for any curve.
b _dy ds

Now dy  ds’ d¥

=sin¥ ﬁc tan ¥

= sin csec®¥ = csec ¥ tan W
~y=fcsecWtanP d¥Y + A
=csecY +S

If y = ¢ when ¥ = 0, then ¢ = csecO + A

~A=0
Hencey=csecV¥ ... ... ... (5)
~y?=c?sec W =c? (1 +tan’ V)
=c?+s?... .. (6)
2_p2

2 —tan ==
d c c

dy _dx

yZ—cZ ¢

. 1 Y\ _x
Integrating, cos h (?) ==+ B
Whenx=0,y=c¢
ie.cosh’1=0+BorB=0
~cosh™ (X) ==

[ c

i - X
i.e.y=ccosh (C) ...... (7)
(7) is the Cartesian equation to the catenary.

We can also find the relation connecting s and x.
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Differentiating (7).

d . 1.
2 =¢sinh %, = =sinhZ
dx c ¢ c

From (4), s =ctan ¥ =c. Z—Z =csinh % ... (8)
Definitions:
The Cartesian equation to the catenary is y = ccosh f . cosh f is an even function of x. Hence

the curve is symmetrical with respect to the y-axis i.e. to the vertical through the lowest point.

This line of symmetry is called the axis of the catenary.

Since c is the only constant, in the equation, it is called the parameter of the catenary and
it determines the size of the curve.
The lowest point C is called the vertex of the catenary. The horizontal line at the depth ¢

below the vertex (which is taken by us the x — axis) is called the directrix of the catenary.

If the two points A and B from where the string is suspended are in a horizontal line, then
the distance AB is called the span and the distance CD (i.e. the depth of the lowest point C below
AB) is called the sag.

2.8 Tension at any point:

We have derived the equations

TcosW=To... ... ... ... (1)

And TsinW=ws... ... ... ... (2)

We have also put To=wc ... ... ... (3)

Equation (3) shows that the tension at the lowest point is a constant and is equal to the
weight of a portion of the string whose length is equal to the parameter of the catenary. From the
equation (1), we find that the horizontal component of the tension at any point on the curve is
equal to the tension at the lowest point and hence is a constant.

From equation (2), we deduce that the vertical component of the tension at any point is
equal to ws i.e. equal to the weight of the portion of the string lying between the vertex and the
point. (-- s = are CP)
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Squaring (1) and (2) and then adding,
-|-2 — TZO + WZSZ
=wc’+w’a’
=w?(c*+s?)
=w?y? using equation (6) of page 377
ST=wy o oo (4)
Thus the tension at any point is proportional to the height of the point above the origin. It is

equal to the weight of a portion of the string whose length is equal to the height of the point
above the directrix.

Important Corollary:

Suppose a long chains is thrown over two smooth pegs A and B and is in equilibrium

with the portions AN and BN’ hanging vertically. The potion BCA of the chain will from a
catenary.

sowa

Z o

The tension of the chain is unaltered by passing overt the smooth peg A. The
tension at A can be calculated by two methods.

On one side (i.e. from the catenary portion), Tension at A = w.y where y is the height of
A above the directrix.
On the other side, tension at A = weight of the free part AN hanging down
=w. AN
~y=AN
In other words, N is on the directrix of the catenary.

Similarly N’ is on the directrix.

Hence if a long chain is thrown over two smooth pegs and is in equilibrium, the free ends
must reach the directrix of the catenary formed by it.
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Important Formulae:

The Cartesian coordinates of a point P on the catenary are (x, y) and its intrinsic
coordinates are (S, ¥). Hence there are four variable quantities we can have a relation connecting
any two of them. There will be 4C, = 6 such relations, most of them having been already
derived. We shall derive the remaining. It is worthwhile to collect these results for ready
reference.

Q) The relation connecting x and y is
y = ccosh % ...... (1)
and this is the Cartesian equation to the catenary.

(i) The relation connecting s and ¥ is

s=ctan¥ ... ... (2)

(ili)  The relation connecting y and ¥ is
y=csec¥ ... ... ... 3)

(iv)  The relation connecting y and s is
V= CPHs? (4)

(v)  The relation connecting s and X is
s=csinh =
[
(vi)  We havey = ccosh f and y = csec P,
~ sec ¥ = cosh %
% = cosh -1(sec'?)

= log(sec¥ + Vsec’¥ — 1

= log(sec¥ + tan¥)
~x =clog (sec¥ + tan¥) ... ... (6)
This relation can also be obtained thus:
dx _dx ds
d¥  ds’ d¥

d . dx
=cos V. o (ctan ¥ ) since -~ cos Y for any curve

=cos V. Csec2¥ — csecV
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Integrating, x = [ csec ¥ d¥ + D

= clog (sec¥ +ran¥) + D
At the lowest point, ¥ =0 and x =0
~ 0 =clog (secO+tan0 + D

i.e.0=D
~ x= clog (sec¥ + tan V)

(vii)  The tension at any point =wy ... ... (7), where y is the distance of the point from the
directrix.

(viii) The tension at the lowest point =wc ... ... (8)

sinh™ x = log(x+vx2 + 1)
cosh™ x = log(x+VxZ — 1)

2.9 Geometrical Properties of the Common catenary:

i ol

Let P be any point on the catenary y = ccosh % .

PT is the tangent meeting the directrix (i.e. the x axis) at T.
angle PTX =¥
PM (=y) is the ordinate of P and PG is the normal at P.
Draw MN 1 to PT.
From APMN. MN =PMcos¥
=ycos¥V
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=csec¥ cos ¥
=c=constant
i.e. The length of the perpendicular from the foot of the ordinate on the tangent at any point of

the catenary is constant.

) PN PN
Agamtan ¥ =— = —
gan ta MN C

~PN=ctan¥ =S arc CP
PM? = NM? + PN?
~y? = c?+s?, arelation already obtained.

If is the radius of curvature of the catenary at P,

—4s _ 4 — csec?
P= = I (ctan ¥) = csec™V

Let the normal at P cut the x axis at G.

Then PG. cos ¥ =PM =y

~ PG =—L— = csec?. sec? = csec?¥
cos¥
Lop = PG

Hence the radius of curvature at any point on the catenary is numerically equal to the
length of the normal intercepted between the curve and the directrix, but they are drawn in
opposite directions.

Problem 13
A uniform chain of length | is to be suspended from two points in the same horizontal

line so that either terminal tension is n times that at the lowest point. Show that the span must be

1 2 —
W log(n+ Vn 1
Solution:

Tension at A = wya
And tension at C = w.yc since T = wy at any point
Now w.ya = n.w.yc
~Ya = Nyc =nc

Butya = ccosh%’* = nc

coshXC—A =n



or =% = cosh™n = log (n+VnZ 1)

“Xa = clog(n+vn2 —1)......... (1)
We have to find c.

y?a = c%+5%s, sa denoting the length of CA.

2
= ¢*+ < (as total length = 1)

. 12
i.e.n’c® = C2+Z

orc’® =

S C =
Substituting (2) in (1),
12
Xa = Znﬁ |Og (n+ vn? — 1)
~span AB = 2xa = %_1) log (n+vn? —1)

Problem 14
A box kite is flying at a height h with a length | of wire paid out, and with the vertex of
the catenary on the ground. Show that at the kite, the inclination of the wire to the ground is

12+h? 12—h?
W(—)and W(—

2 tan™ % and that its tensions there and at the ground are — ) where w is the

weight of the wire per unit of length.

Solution:
ty A
h
C I L
C
%
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C is the vertex of the catenary CA, A being the kite. The origin O is taken at a depth c
below C.
Thenya = c+handsa = arc CA=1
Since y* = ¢+ 5%, we have (c+h)? = ¢? + I?
i.e.h®+2ch = I

_ lZ_hZ
orc= ——......... Q)
We know thats=ctan¥ ... ... ........ ... (2)
Applying (2) at the point A, we have
| =c. tan Wa
s Tan Wa = % = lzz_hll]z substituting for ¢ from (1)
2(3)
= — ... .. 3
-2 ®
2tan7
But tan¥ = T oo e (4)
—tan2—

Comparing (3) and (4), we find that

YAt

tan;atA—l
Y~ fanh
a3 =fan l

or ¥atA= 2tan*

k=2

The tension at A = wW.ya

= w.(c+h)

_ 12—h? _ w(l%+h?)

B W( 2h T h) T 2h
Problem 15

A uniform chain of length I is to have its extremities fixed at two points in the same
horizontal line. Show that the span must be \/1_@ log (3+/8 ) in order that the tension at each

support shall be three times that at the lowest point.
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Solution:

Put n =3 in problem number 13.

Problem 16

A uniform chain of length | is suspended from two points A, B in the same horizontal

line. If the tension A is twice that at the lowest point, show that the span AB is VL? log (2++/3)
Solution:

Put n =2 in problem number 13.

Problem 17
A uniform chain of length 2l hangs between two points A and B on the same level. The
tension both at A and B is five times that at the lowest point. Show that the horizontal distance

between A and B is \/l—g log (5+2/3)

Solution:
Put n =5 and length = 2l in problem number 13.
Problem 18

If T is the tension at any point P and Ty is the tension at the lowest point C then prove
that T2 — To? = W? where W is the weight of the arc CP of the string.
Solution:

Given T is the tension at P. Let w be the weight per unit length and y is the ordinate of P.
Then T = wy.
Also Tg = wc
AT T8 = why? — wAe?
=W (y* - ¢)
— WZSZ

:W2
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2.10 Suspension Bridges:

In the case of a suspension bridge the main load is the weight of the roadway. We have
two chains hung up so as to be parallel, their ends being firmly fixed to supports. From different
points of these chains, hang supporting chains or rods which carry the roadway of the bridge.
These supporting rods are spaced at equal horizontal distances from one another and so carry
equal loads. The weight of the chain itself and the weights of the supporting rods may be
neglected in comparison with that of the horizontal roadway. The weight supported by each of
the rods may therefore be taken to be the weight of equal portions of the roadway. Hence the
figure of each chain of a suspension bridge approximates very closely to that of a parabola.
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UNIT I
3.1 Projectiles.

Definitions:
i. A particle projected into the air in any direction with any velocity is called a projectile.

Ii.  The angle of projection is the angle made by the initial velocity with the horizontal
plane through the point of projection.

iii.  The velocity of projection is the velocity with which the particle is projected.

iv.  The trajectory is the path described by the projectile.

v.  The range on a plane through the point of projection is the distance between the point of
projection and the point where the trajectory meets that plane.

vi.  The time of flight is the interval of time that elapses from the instant of projection till the

instant when the particle again meets the horizontal plane through the point of projection.

Two fundamental principles
i.  The horizontal velocity remains constant throughout the motion.

ii.  The vertical component of the velocity will be subjected to retardation g.

3.2 Equation of the path of the projectile

Y

Let a particle be projected from O, with initial velocity u and « be the angle of projection. Take
OX and OY as x and y axes respectively. Let P (x,y) be the position of the particle in time t secs.
Now u can be divided into two components as u cos« in the horizontal direction and usina in

the vertical direction.
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Now, horizontal velocity ucos « is constant throughout the motion.

~x=(ucosa)t (1)

Vertical velocity is subjected to retardation ‘g’

~y=(usina) t —% gt> )

Eliminate ‘t’ using (1) and (2)

X
ucos o

(1):>t:

) X 1 X 2
(2)= y=usina ->g.
ucosa 2 \ucosa

2
ox
——— s 3)

y=Xxtana — 5
2U° Ccos” o

2

xtan a.2u? cos? a — gx2

2u2 cos? o
2u? cos? ay = X.2u2 sin ¢z cos a — gx2

gx2 —2u? sin ez cos a.x = —2u? cos? a.y

Xg_2u25ina005ax_—2u2c052a
g g
X2_2uzsinacosax+u4sin2acosza_u4sin2acosza_2u2cosza
g g2 g2 g
2 2 2 2 2 i 2
. u“sin a cos a 2U° cos“ a ucsin‘ o«
ie) | X— =— y——— | 4)
g g 29
2 o 202
- . in in
Shifting the origin to us aCOSa’u Sh_a
g 29
2u® cos® «
X2=-22 Y (5)

g



(5) is the equation of a parabola of the form X 2= _ 4ay,

_2u%cos’a 2
whose latus-rectum is =0~ > % — —(u Ccos a)2
g g
2 . .
= —|horizontal velocity
g
_(u?sina.cosa u?sin?a
Vertex is ,
g 29

3.3 Characteristics of the motion of the projectile
1. Greatest height attained by a projectile.
2. Time taken to reach the greatest height.
3. Time of flight.
4. The range on the horizontal plane through the point of projection.
Derive formula for the characteristics
3.3.1 Greatest height h
When the particle reaches the highest point at A, its direction is horizontal.
.. At A, vertical velocity =0
Let AB =h.

Consider the vertical motion and using the formula “y2 =y? +2aS”
_u®sin®a
29
% Highest point of the path is the vertex of the parabola.
3.3.2 Time taken to reach the greatest height T

O = (usin &)? —2g.h ~h

Let T be the time taken to travel from O to reach the greatest height at A.
At A final vertical velocity is zero
At O initial vertical velocity is usin &

Using the formula “v =u + at”

O=usina—gT .. | 1 =usina
g
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3.3.3 Time of flight t

Let t be the time taken to travel from O to C along its path. At C, vertical distance

. i . . 1
traveled is zero. Consider the vertical motion and by the formula S=ut+5at2 :

O =usina .t—%gt2

ie) t (usina—%gtjzo
. 1
~t=0 or usma—Egt:O

ie) t =0 or  t=2usna :Z(US:;“J:ZT
g

t = 0 gives the time of projection.

2usin o

.. Time of flight t=

% Time of flight = 2 x time taken to reach the greatest height.

3.3.4 The range on the horizontal plane through the point of projection R
Range R = OC = horizontal distance traveled during the time of flight.
= horizontal velocity x time of flight
2usina _ 2u®sinacosa  u®sin 2a
g g g
. 2(ucosa)usinar) _ 2UV

% Horizontal range R = =
g g

Where U — initial horizontal velocity, V — initial vertical velocity.

= UCOS o X
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Problem 1

A body is projected with a velocity of 98 metres per sec. in a direction making an angle tan 13
with the horizon; show that it rises to a vertical height of 441 metres and that its time of flight is

about 19 sec. Find also horizontal range through the point of projection (g=9.8 metres / sec?)

Solution:
Givenu=98; o =tan '3i.etan o =3
.'.sina:‘c’in—a-COSa: tne __tna _ 3

cosa seca \1itan2eq V10

oS g — sina 1
tana 10

u?sina  98x98x9
29 10x2x9.8

Time of flight = 2USN & _ 2x98x3 _ g a4
g /10 x9.8

= 6x3.162 =18.972 =19 secs. nearly

= 441 metres

Greatest height =

2u2 sin & cos &
g
= 29898 3 1 = 588 metres

X X
9.8 V10 V10

Horizontal range =

Problem 2
If the greatest height attained by the particle is a quarter of its range on the horizontal plane

through the point of projection, find the angle of projection

Solution
Let u be the initial velocity and « the angle of projection

usin? o

Greatest height =
29
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2u2 sin & cos a
g

Horizontal range =

2u? sin ¢ cos a
g

. u%sin?a 1
Given — =—x
29 4

. u?sin®a _ u®sin acosa
2 29

iesing =cos ¢ = tan a=1 .. a =45°

Problem 3
A particle is projected so as to graze the tops of two parallel walls, the first of height ‘a’
at a distance b from the point of projection and the second of height b at a distant ‘a’ from the
point of projection. If the path of particle lies in a plane perpendicular to both the walls, find the
range on the horizontal plane and show that the angle of projection exceeds tan™3.
Solution:

Let u be the initial velocity, « be the angle of projection.

ox°
Equation to the path is y = Xtana — 7 3
2U° cos” «
2
ie y=xt—g—X2(1+t2) where t=tana ....... (1)
2u
The tops of the two walls are (b, a) and (a, b) lie on (1)
2
C oA gb 2
s.a=bt— 1+t<) ... )
96 02)
2
b=at—92 (14+¢2) 3)
2u
2
From (2), a— bt = — 9b2 (1+t2) .......... @)
2u
2
From (3), b— at=—£(1+t2) .......... )

2u?
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a—bt b?
Dividing (4) by (5), —— =—
9(4)by 6), | — =
i.eb®—ab®t=a’—a’ht = t@b-ab)=a’-b
_ a%-b® _(a-b)a® +ab+b?) a®+ab+p?
"~ a’b-ab? ab(a-b) ab
2 2 2 2 ITRY)
g d +ab+b :(a 2ab+b )+3ab:(a b) £3....(6)
ab ab ab
(6) = tana >3 or ¢ >tan 13
g(1+t2) a-bt bt-a
From (4), = =
) 2u® —b? b?
bla2 +ab+b?)
: ab _az+ab+b2—a2
b? ab?
b(a+b) a+b
= =— .. 7
ab® ab @
2 a3 2
Horizontal range = u'sinZa _ _2u tz in2a——2tan?
g glt+t?) 1+tan” a
= t.a—b from (7)
a+b
(a2+ab+b2). ab _ a’+ab+b’
ab a+b a+b
Problem 4

A particle is thrown over a triangle from one end of a horizontal base and grazing the
vertex falls on the other end of the base. If A, B are the base angles, and « the angle of
projection, show that tana =tan A +tan B
Solution:

LN
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Let u be the velocity of projection and « the angle of projection and let t secs be the time
taken from Ato C. Draw CD L AB and let CD = h.

Consider the vertical motion, h = vertical distance described in time t
) 1
=usin a-t—= gt?
2
AD = horizontal distance described intimet=ucos « -t

. 1 .,
u sin a-t—Egt

CD h
From ACAD,tan A= = =
AD AD ucos o -t
= tan o e+ (1)
2U COS

. 2u” sin cr cosa
AB = horizontal range = ———

2u? sin a cos a

..DB=AB-AD= —ucoso-t
g
CcD h
From ACDB, tan B = =
202 sin a cos &
—ucosa-t
g
usin et 1gt2
al——
_ 2
2u? sin & cos a
—ucos at
g
gt(u sin 1 gtj
3 2
u cos ar(2u sin a — gt)
t(2usin o — gt t
S L @ _ e @)

2u cos a(2u sin o — gt) - 2ucos«

(1) +(2) = tanA + tanB = tan«
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Problem 5
Show that the greatest height which a particle with initial velocity v can reach on a vertical wall

2 2
. . N a .
at a distance ‘a’ from the point of projection is v._ga Prove also that the greatest height

29 2v?

above the point of projection attained by the particle in its fight is v6/29(v4 + gzaz)

Solution:
ox°
Equation to the path is y=Xtana — 5 o e (1)
2V Cos” o
2
Putx =ain (1), y=atana — Zga 5
2V° Cos“ a
2
y =at —%(1+t2) wheret=tan ¢  ........ )
2V
. . . _ dy d?y . .
y is a function of t. .. y is maximum when — = 0 and —— s negative.
dt
Differentiating (2) with respect to t,
2 2
dy _, ga® . gat
dt 2v? v2
2 2
d_zy = —% = negative
dt Vv
2 2
Vv
So y is maximum when a—&zt =Qort=— ... 3)
Vv ga
2

Put t="— in (2)
ga

2 2 4
Maxvalueofyza-v——ga 1+ v
ga 2v? 92 2

Greatest height during the flight
vZsin? o B v2 1 v?
29 29 cosec’a 29(1+ cot? a)
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Problem 6

a. A projectile is thrown with a velocity of 20 m/sec. at an elevation 30°. Find the greatest
height attained and the horizontal range.
b. A particle is projected with a velocity of 9.6 metres at an angle of 30°. Find
i. The time of flight
ii. the greatest height of the particle.

Solution:
Given u = 20m/sec; « = 30°

2 2 2(.: An0 P
sin 20°1sin 30
Greatest height = ush o _ (I ) =5.1m

29 2x9.8
2 o 2 0
Horizontal range = u”sin 2a = 207 -sin 60 =35.35m
g 9.8
Problem 7

(a) A particle is projected under gravity in a vertical plane with a velocity u at an angle
a to the horizontal. If the range on the horizontal be R and the greatest height attained by h,

2 2

show that u—=h+— and tana=4—h.
29 16h R

(b) A particle is projected so that on its upward path, it passes through a point x feet
horizontally and y feet vertically from the point of projection. Show that, if R be the horizontal

range, the angle of projection is tan _1[X . Lj

X R—=x



Solution:

5 . 2
2Uu°sin ¢ cosa
R? _uzsinza 9

= +
16h 29 2 ¢in2

16[“ sin a}

29

a) h+

_ uzsinzonruzcoszoz_u2

29 29 29

gx°

2u2 cos? o

b) Equation of the path is, y = Xtana —

gx’

SoXtana = Y+ — —5—
2U° Ccos” «

X
.'.tana:X—lr% ............ (1)
X 2u°cos” o

2u2 sin & - cos o 2u2 sin a cos o
—g=
g R

We have R =

2 «
- () —tang =2 + X L 2uT-sinacosa _ y  xtana
X 2u?cos’a R xR

cotan a(l— ij = y
R X

ie tana(ﬂjzz or tana = J._R
R X

X R—x

a= tan‘{xlj
X R-—X
Problem 8

If the time of flight of a shot is T seconds over a range of x metres, show that the

gT?

elevation is tan _1{—] and determine the maximum height and the velocity of projection.

2X

88
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Solution:
Given, horizontal range R = x metres

2usina

Time of flight T =

where « -is the angle of projection

L _ 2u’sinacosa

g
() = gT=2sina. = U= g7
2sin o
212 i
x=2 g T- :lnaCOSa:lng_Cota
4sin“ a - g 2
2 2
4l aT
tanoc:L = a =tan 1{9—J
2X 2X

u?sina  g%T? sin’a _ gT?

Maximum height = 5
29 4sin“a 29 8

Problem 9
A particle is projected from a point P with a velocity of 32m per second at an

angle of 30° with the horizontal. If PQ be its horizontal range and if the angles of elevation from

1
P and Q at any instant of its flight be « and g respectively, show that tan o +tan S = E
Solution:
Yt u=32
C
h
30°
¢ a R



Given, initial velocity u = 32 m/sec, 30° is the angle of projection.

‘t> — be the time taken from P to C.

LetCD=h= usinoz.t—%gt2

h =(32.sin 300) t—%gt2 = vertical distance described in t secs

1 -
=16t——qgt
> g
PD = horizontal distance described in t secs = ucosa.t
= [32c0s30%) t = 32-§t =16+/3t.
From A PCD, tanazzlzL ........
PD 16+/3t
From A QCD, tan B = h _ h PQ = range
’ DQ PQ-PD’
ie tan g = 0o h 5
2(32)“sin30" -cos30 1643t
g
hg

51243 -164/3gt

h |1 g
SO+ (@2)=>tana+tan p = ~+
0@ / 16\/§L 32—gt}

(16t—1gt2j
2 {32—gt+gt}

16+/3 t(32 - gt)

tBo-gt ) a2 1

3243 tB2-g) 3

1
tanag +tan f=—

NE

90

P-be the point of projection.
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Problem 10
A particle is projected and after time t reaches a point P. If t is the lime it takes to move
from P to the horizontal plane through the point of projection, prove that the height of P above

the plane is %gt t

Solution:

v

Let u be the velocity of projection, & be the angle of projection, P be the position of the particle

after t secs. Let t be the time taken to travel from P to A

. Wehave t +t =time of flight = 2using Sousing = ﬂt;—t)
g

Now, y = vertical distance described in t secs = (usin &) t—%gt2
_ glt+t t—lgtz _gtt

2 2 2
.". Height of P above the plane = = gt
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3.4 Range on an inclined Plane:

Let P be the point of projection on a plane of inclination /£, u be the velocity of projection at an

angle o with the horizontal. The particle strikes the inclined plane at Q. Then PQ = r is the
range on the inclined plane. Take PX and PY as x and y axes.
Draw QN L PX.

From APQN, PN=rcosf, QN =rsin S

2

Q(rcos,rsin ) lies on the path. y = xtan & —%
2u° cos” o
2
~.rsin f= rcosﬁ.tana—w
2U° Cos” a

2 -
Dividing by r we get M =CO0S ﬂ.sm—a —sin g
2U° Ccos” cos o

e 2u? cos® & {sin o Cos f—Ccos asin ﬂ}
gcoszﬁ cosa

2u?cosa .
r=2 2%

gcos® f (e -p)
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3.5 Maximum range on the inclined plane, given u the velocity of projection and £ the

inclination of the plane:

Range r on the inclined plane is

e 2u2 cosasin(a — ) B 2

g cos2 y’) g cos2 p

Now u and £ are given, g constant.

[sin(2a - B)—sin g] ... (1)

So r is maximum when [sin(2¢ — £)—sin 3] is maximum.
i.e. when sin (2 — ) is maximum.

i.e.when. 2a - =%

T p :
o =—+2L | for maximum range.

From (1), maximum range on the inclined plane

) 2 . U2
B gcoszﬂ(l_SIrI p)= g(L+sin B)

3.5.1 Time of flight T (up an inclined plane):
From the figure in 6.11, the time taken to travel from P to Q is the time of flight.
Consider the motion perpendicular to the inclined plane. At the end of time T, the distance

u

travelled perpendicular to the inclined plane S = 0, component of g perpendicular to the inclined

plane is g cos £, initial velocity perpendicular to the inclined plane is usin(a—ﬂ).

0=usin(a—ﬂ)|’—%gcosﬂ.T2 using "S=ut+%at2"

_2usin(a-p)
~ gcosp

=T
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3.5.2 Greatest distance S of the projectile from the inclined plane and show that it is
attained in half the total time of flight:

Consider the motion perpendicular to the inclined plane. The initial velocity

perpendicular to the plane is u sin (« - £) and this is subjected to an acceleration gcos £ in the

same direction but acting downwards. Let S be the greatest distance travelled by the particle
perpendicular to the inclined plane. At the greatest distance the velocity becomes parallel to the
inclined plane and hence the velocity perpendicular to the plane is zero.

n 2

Using the formula "v* = u? +2as"

0=[usin(az— B)]* —2gcos B.S

S u®.sin“(c - B)
2.gcos

3.5.3 Time taken to reach the greatest distance t :
When the particle is at the greatest distance from the inclined plane, its velocity becomes
parallel to the inclined plane and the velocity perpendicular to the inclined plane is zero. So, if t

is the time taken to reach the greatest distance, using the formula

“v=u+at”
-.0=[usin(a—pB)|-gcosg-t
i.e. t:w
gcosp
2usin(a - B)

Note : Time of flight T = = 2.t =2 x time taken to reach the greatest distance.

gcosp

Problem 11
Show that, for a given velocity of projection the maximum range down an inclined plane of

1+sin o

inclination « bears to the maximum range up the inclined plane the ratio s
—Sin
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Solution

Let u be the given velocity of projection and & the inclination of the direction of projection with
the plane. u has two components ucosé along the upward inclined plane and usinéd
perpendicular to the inclined plane. g has two components, g sin « along the downward
inclined plane and gcosa perpendicular to the inclined plane and downwards.

Consider the motion perpendicular to the inclined plane. Let T be the time of flight.

Distance travelled perpendicular to the inclined plane intime T =0
i 1
.'.O:ust-T—%gcosz2 ('.'S:ut+§at2j

_2usin 6
gcosa

ie. T

Range up the plane = R;
R1

distance travelled along the plane intime T

ucos@-T—%gsin a-T2
= ucosfg-————gsina

2u? sin @ cosd B 2u2sin asin? @
gCosx gcosza

2 .-
2u©sin @ . :
= ——— —(cosacos & —sin asin 0)
gcos‘ o
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5 2
= Zu—s"znecos(g+ a) = u—2-2cos(¢9+ «)sin @
gcos” « gcos” «
2
= —I[sin(20+a) -sina]
gcos“ &

R; is maximum, when sin(20+«) =1

.. Maximum range up the plane

2 2
=Y a-sing)=—Y% .. (1)

gcos? o g(l+sina)

When the particle is projected down the plane from B at the same angle @ to the plane,

. . 2usin 6 I .
the time of flight T has the same value . The component of the initial velocity along the

gcosa

inclined plane is u cos@ downwards and the component of acceleration g sin « is also
downwards.

Range down the plane = R,
R, = distance travelled along the plane in time T

=ucosd-T +%gsin a-T2

2 -
:2”—3'29(coswcose+sin asin 0)
gcos® a
2 . 2
_ 8'29 coS(0 ) = ———[sin(20 — ) +sin a]
gcos & gcos- «

R, is maximum, when sin (260 - «) = 1.
Maximum range down the plane

2 2

u . u
=——(@A+sina)=— ... )
gcos® g(d-sin )
. Max-range down the plane_  u®  g(l+sina) l+sina

Max-range up the plane  9(-sina) w2 1-sina
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Problem 12
A particle is projected at an angle « with a velocity u and it strikes up an inclined plane
of inclination £ at right angles to the plane. Prove that (i) cot # = 2tan(a - ) (ii) cot f = tan
o —2tan . If the plane is struck horizontally, show that tan o = 2 tan S.
Solution:
The initial velocity and acceleration are split into components along the plane and
perpendicular to the plane.

2usin(a — )

Y - (D)

The time of flightis T =

Since the particle strikes the inclined plane normally, its velocity parallel to the inclined
plane at the end of time T is = 0.

i.e.0=ucos(a-B)-gsin B-T

T :M e (2)
gsinpg
2usin(a — f) _ ucos(a — f) from (1) and (2)
gcosp gsin g
ie.cot # =2tan(¢—-p) ... (i)

2(tan @ —tan )
1+tanatan g

i.e. cotf = , Simplifying we get

cot f +tan ¢ =2tan a—2tan

cot f = tan ¢—2tan S R (1))

If the plane is struck horizontally, the vertical velocity of the projectile at the end of time
T =0. Initial vertical velocity = u sin«, and acceleration in this direction = g (downwards).

Vertical velocity intime T=usin o — gT



usina

sousina—gT=0 or T=

2usin(a — f) _ usin o
gcosp g

Simplifying we get
2sin (a— ) =sin acos B
2(sinacos f—cosasin f) =sinacos 3.

sing cos f=2cosa sin f or tana = 2tan

- 3)

from (1) and (3)

Problem 13
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The greatest range with a given velocity of projection on a horizontal plane is

3000 metres. Find the greatest ranges up and down a plane inclined at 30° to the horizon.

Solution:

30

v

Let u be the velocity of projection, € be the inclination of direction of projection with the

2

plane. Given UE =3000m = u? = 3000 x g

At the end of time t, distance travelled perpendicular to the inclined plane is zero.

~0=using-T —%gcosao0 T2



O=usin H-T—lg-ﬁ-T2
27 2
LT 4u sin €
g+/3

Range up the inclined plane, S=ucos@-T —% g-sin 300 .72

qusing 1 16u®sin’g

X
g3 40 3g?

|
c
o
o
72}
D

4u? sin 6?cos<9_4u2 sin? 6

g3 39
2 .
S= 4u—smg[\/§cos¢9—sin 9]

39
Max. range is got when sin( 20+300) =1

ie. 20+30°=90° - 9=30°

Max. range up the inclined plane

2 o 0
= Simax :%[ﬁcossoo ~sin30°]

4% x> B3 1] 2
= 2|:\/§x——§}:§><3000 Smax =2000m

39 2
2
. Range down the inclined plane = -—[sin(20-a)+sin o]
gCcos” a
Max. range down the inclined plane
2 2
u . o| 4u
— Y hysin300|= ho
g - cos? 30° b ] 39 [ %]

2
_ 2 53000 = 6000m

g

99
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Problem 14
An inclined plane is inclined at an angle of 30° to the horizon. Show that, for a given

velocity of projection, the maximum range up the plane is 1/3 of the maximum range down the
plane.

Solution:

Max. range up the plane =

42
g-cos?30°

Max. range down the plane = [1+ sin 300]
a? 3_2u°

39 2 g

2

2U

Max. range up the plane = %x

= %xmax-range down the plane

Problem 15
If the greatest range down an inclined plane is three times its greatest range up the plane
then show that the plane is inclined at 30° to the horizon..
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Solution

Greatest range down the inclined plane Ry
2
u i
Ry = —[1+ sin a]

gcos? o

Greatest range down the inclined plane R,
2

R, = u—z[l—sin o]
gCcos‘ o
Given, R; = 3R,
u2 2
ie. ———[L+sin a]=3- —[1-sina]
gcos” a gCcos‘ a
) 1
sinag== - a=30°
2
Problem 16

A particle is projected in a vertical plane at an angle « to the horizontal from the foot of a plane
whose inclination to the horizon is 45°. Show that the particle will strike the plane at right angles

if tan o =3.
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Solution:
usin &

A

usin( @ -45°)

cos( -4%°)

gsi
g gcos450

o

45
(0] ucosax

When the particle strikes the plane at right angles, velocity parallel to the plane is zero.
0= ucos(a—450) —g-sin 450 .7

B ucos(a—450) B ucos(a—450)

B B e T (1)

gsin 459 g.i

J2

‘(a0

Also, time of flight, T = 2 sin o %5 ) @)
g-cos45
ucos(a—450)_ 2u 'sin(a—450)
J2 V2

:>cos(a—45°)= 2-sin(a—45°) :>2-tan(a—450)=1

_ 0
9 tan o tan45O 1
1+tan g« -tan45

l+tana

ie. 2(tana—1) =1+tanx

stana =3
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Problem 17

A particle is projected with speed u so as to strike at right angles a plane through the point of
2

projection inclined at 30° to the horizon. Show that the range on this inclined plane is 47L
g

Solution:

30°

3

Since u is the velocity of projection, ﬂ’:30o is the inclination of the inclined plane, we have
proved, Range on the inclined plane = OA
_2ulsing
g(1+ 3sin 2 ﬁ)
_ 2u®-sin30°
g(1+ 3sin 2 300)

w?

3. 6 Impulsive Forces
3.6.1 Impulse:
The term impulse of force is defined as follows:
(1) The impulse of a constant force F during a time interval T is defined as the
product FT.
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Let f be the constant acceleration produced on a particle of mass m on which F acts and
u, v be respectively the velocity at the beginning and end of the period T.
Then v-u =fT and F = mf.
Hence the impulse | = FT = mfT = m(v-u)
=change of momentum produced.
(2) The impulse of a variable force F during a time interval T is defined to be the time

integral of the force for that interval.

i.e. Impulse | = foT Fdt. This is got as follows. During a short interval of time At, the
force F can be taken to be constant and hence elementary impulse in this interval = F. At. Hence
the impulse during the whole time T for which the force F acts is the sum of such impulses and

T
= AtLio ZF.AtszT Fdt.
t—0

. . . d
Since F is variable, F=m. i

So impulse = foT m Z—: dt = mv —mu, where u and v are the velocities at the beginning

and end of the interval and hence this is also equal to the change of momentum produced.
Thus whether a force is a variable or constant,

its impulse = change of momentum produced.

3.6.2 Impulsive Force:

The change of momentum produced by a variable force P acting on a body of mass m
fromtimet=ttot=ty is fttlz P dt. Suppose P is very large but the time interval t, - t; during
which it acts is very small. It is quite possible that the above definite integral tends to a finite
limit. Such a force is called an impulsive force.

Thus an impulsive force is one of large magnitude which acts for a very short period of
time and yet produces a finite change of momentum.

Theoretically an impulsive force should be infinitely great and the time during which it
acts must be very small. This, of course, is never realized in practice, but approximate examples

are (1) the force produced by a hammer-blow (2) the impact of a bullet on a target. In such cases
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the measurement of the magnitude of the actual force is impracticable but the change in
momentum produced may be easily measured. Thus an impulsive force is measured by its
impulse i.e. the change of momentum it produces.

Since an impulsive force acts only for a short time on a particle, during this time the
distance travelled by a particle having a finite velocity is negligible. Also suppose a body is
acted upon by impulsive forces is very short, during this time, the effect of the ordinary finite

forces can be neglected.

3.7. Collision of Elastic Bodies

A solid body has a definite shape. When a force is applied at any point of it tending to
change its shape, in general, all solids which we meet with in nature yields slightly and get more
or less deformed near the point. Immediately, internal forces come into play tending to restore
the body to its original form and as soon as the disturbing force is removed, the body regains its
original shape. The internal force which acts, when a body tends to recover its original shape
after a deformation or compression is called the force of restitution. Also, the properly which
causes a solid body to recover its shape is called elasticity. If a body does not tend to recover its
shape, it will cause no force of restitution and such a body is said to be inelastic. When a body
completely regains its shape after a collision, it is said to be perfectly elastic. If it does not come
to its original shape, it is said to be perfectly inelastic.
Definitions:

Two bodies are said to impinge directly when the direction of motion of each before
impact is along the common normal at the point where they touch.

Two bodies are said to impinge obliquely, if the direction of motion of either body or
both is not along the common normal at the point where they touch.

The common normal at the point of contact is called the line of impact. Thus, in the

cause of two spheres, the line of impact is the line joining their centres.
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3.8. Fundamental Laws of Impact:

1. Newton’s Experimental Law (NEL):

When two bodies impinge directly, their relative velocity after impact bears a
constant ratio to their relative velocity before impact and is in the opposite direction. If
two bodies impinge obliquely, their relative velocity resolved along their common normal
after impact bears a constant ratio to their relative velocity before impact, resolved in the
same direction, and is of opposite sign.

The constant ratio depends on the material of which the bodies are made and is
independent of their masses. It is generally denoted by e, and is called the coefficient (or

modulus) of elasticity (or restitution or resilience).

This law can be put symbolically as follows: If us, u, are the components of the velocities
of two impinging bodies along their common normal before impact and v, v, their component
velocities along the same line after impact, all components being measured in the same direction

and e is the coefficient of restitution, then
AL,
U — U
The quantity e, which is a positive number, is never greater than unity. It lies between 0
and 1. Its value differs widely for different bodies; for two glass balls, one of lead and the other
of iron, its value is about 0.13. Thus, when one or both the bodies are altered, e becomes
different but so long as both the bodies remain the same, e is constant. Bodies for which e = 0
are said to be inelastic. For perfectly elastic bodies, e=1. Probably, there are no bodies in nature
coming strictly under wither of these headings. Newton’s law is purely empirical and is true

only approximately, like many experimental laws.

2. Motion of two smooth bodies perpendicular to the line of Impact:

When two smooth bodies impinge, the only force between them at the time of impact is
the mutual reaction which acts along the common normal. There is no force acting along the
common tangent and hence there is no change of velocity in that direction. Hence the velocity of

either body resolved in a direction perpendicular to the line of impact is not altered by impact.
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3. Principle of Conservation of Momentum (PCM) :
We can apply the law of conservation of momentum in the case of two impinging bodies.
The algebraic sum of the momenta of the impinging bodies after impact is equal to the algebraic

sum of their moments before impact, all momenta being measured along the common normal.

3.9. Impact of a smooth sphere on a fixed smooth plane:

A smooth sphere, or particle whose mass is m and whose coefficient of restitution is e,

impinges obliquely on a smooth fixed plane; to find its velocity and direction of motion after

impact.
N
A eucosa
u
v
0
o
C »
usina

A P B

Let AB be the plane and P the point at which the sphere strikes it. The common
normal at P is the vertical line at P passing through the centre of the sphere. Let it be PC.
This is the line of impact. Let the velocity of the sphere before impact be u at an angle a
with CP and v its velocity after impact at an angle 8 with CN as shown in the figure.

Since the plane and the sphere are smooth, the only force acting during impact is
the impulsive reaction and this is along the common normal. There is no force parallel to
the plane during impact. Hence the velocity of the sphere, resolved in a direction parallel
to the plane is unaltered by the impact.

Hence v sin 8 = u sina .. (D
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By Newton’s experimental law, the relative velocity of the sphere along the common
normal after impact is (-e) time its relative velocity along the common normal before
impact. Hence
vcosf -0 = -e(-ucosa-0)
I.e.vCOS fd =eucosa ...(2)
Squaring (1) and (2), and adding, we have

V2 = u? (sin a + e* cos® a )

i.e.v = U+Vsin?a + e2cos?a .. (3)
Dividing (2) by (1), we have cot 6 = e cot a .. (4)

Hence the (3) and (4) give the velocity and direction of motion after impact.

Corollary 1: If e = 1, we find that from (3) v = u and from (4) 6 = a. Hence if a
perfectly elastic sphere impinges on a fixed smooth plane, its velocity is not altered by
Impact and the angle of reflection is equal to the angle of incidence.

Cor. 2: If e =0, then from (2), v cos 8 = 0 and from (3), v = u sin a. Hence cos 8
=0i.e. # =90° Hence the inelastic sphere slides along the plane with velocity u sin «

Cor. 3: If the impact is direct we have a« = 0. Then 8 = 0 and from (3) v=cu.
Hence if an elastic sphere strikes a plane normally with velocity u, it will rebound in the
same direction with velocity eu.

Cor. 4: The impulse of the pressure on the plane is equal and opposite to the
impulse of the pressure on the sphere. The impulse | on the sphere is measured by the
change in momentum of the sphere along the common normal.

| = mvcosB-(-mucosa)

m (v cos 6 + u cos a)

m (Cu COS o + U COS )

= mucosa(l+e)
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Cor. 5: Loss of kinetic energy due to the impact

1 1 1 1 .
= Emuz- Emvzz Emuz- Emu2 (sin?a +e?cos’a)

mu® (1 —sina +e®cos? a)

mu? (cos® a - e? cos %o )

R NP, N~

(- %) mu?cos’ a

If the sphere is perfectly elastic, e = 1 and the loss of kinetic energy is zero.

Problem 18
A particle falls from a height h upon a fixed horizontal plane: if e be the
coefficient of restitution, show that the whole distance described before the particle has

1+e?
1—e?

finished rebounding is h ( ) Show also that the whole time taken is .

1+e 2h
1_
Solution:

Let u the velocity of the particle on first hitting the plane. Then u? = 2gh. After
the first impact, the particle rebounds with a velocity eu and ascends a certain height,
retraces its path and makes a second impact with the plane with velocity eu. After the
second impact, it rebounds with a velocity c®u and the process is repeated a number of
times. The velocities after the third, fourth etc. impacts are eu e’u etc.

N
The height ascended after the first impact with velocity eu is &S0y )~

_e?u?

_Zg

The height ascended after the second impact with velocity e 2u is e*u?/2g and so
on.

=~ Total distance travelled before the particle stops rebounding

2,2 4.2 6,, 2
—h+2(FE—+"—+Z—+... ... ... )
2g 2g 2g
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e Z.Zgh 1

=h+ .
g 1—e?

2e?
1—e? )

=h(1+

(1+e?)
(1-e?)

Considering the motion before the first impact, we have the initial velocity = 0,

acceleration = g, final velocity = u and so if t is the time taken, u =0 + gt.

= u _ velocity
g g

Time interval between the first and second impacts is
= 2 x time taken for gravity to reduce the velocitiy to 0.
= 2. velocity / g
=2eul/qg.
Similarly time interval between the second and third impacts
=2 e u/g and so on.

So total time taken

2 3
= SH2(Z 4+ S R4 00)
g g g g
=4, Zeu(:|_+e+ez+ ......... to 00)
g g
u 2eu 1 u 2e
=—+ — = - 1
g g 1l-e g[1+1—e]
u 1+e
=—+(—
» (=)
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3.10 Direct impact of two smooth spheres:

A smooth sphere of mass m; impinges directly with velocity u; on another smooth sphere
of mass my, moving in the same direction with velocity u,. If the coefficient of restitution is e, to
find their velocities after the impact:

Solution:

AB is the line of impact, i.e. the common normal. Due to the impact there is no tangential
force and hence, for either sphere the velocity along the tangent is not altered by impact. But
before impact, the spheres had been moving only along the line AB (as this is a case of direct
impact). Hence for either sphere tangential velocity after impact = its tangent velocity before
impact = 0. So, after impact, the spheres will move only in the direction AB. Let their velocities
be vy and v,.

By Newton’s experimental law, the relative velocity of m, with respect to m; after impact
is (-e) times the corresponding relative velocity before impact.

“Vo—vi=-e(Up—U) L. (1)

By the principle of conservation of momentum, the total momentum along the common
normal after impact is equal to the total momentum in the same direction before impact.

SMivitMmMaVvo=miur+moauy ....... 2)
(2) — (1) x m, gives
v1 (Mg + my) =mjyu; + my Uy + emy (Uz — Ug)

=myuy (L+e)+(mi—emy) up

avy = mpuz (1+e)+ (mg-emy)ug (3)

mi+moy
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(1) xmy + (2) gives

Vo (Mg + my) =-emy (Uz— Ug) + Maug + Mou;
=myug (1 +e)+ (my—emy) Uz

e miuis (1+e)+(mz-emq)up (4)
2 mi+my

Equations (3) and (4) give the velocities of the spheres after impact.

Note: If one sphere say m, is moving originally in a direction opposite to that of m,, the
sign of u, will be negative. Also it is most important that the directions of v, and v, must be
specified clearly. Usually we take the positive direction as from left to right and then assume
that both v, and v, are in this direction. If either of them is actually in the opposite direction, the
value obtained for it will turn to be negative.

In writing equation (1) corresponding to Newton’s law, the velocities must be subtracted
in the same order on both sides. In all problems it is better to draw a diagram showing clearly
the positive direction and the directions of the velocities of the bodies.

Corollary 1. If the two spheres are perfectly elastic and of equal mass, then e = 1 and m;

=m,. Then, from equations (3) and (4), we have

mquz.2+0
2m1

m1u1_2+0

= Uy and Vo= m
1

Vi = = Uuj.

i.e. If two equal perfectly elastic spheres impinge directly, they interchange their
velocities.
Cor: 2. The impulse of the blow on the sphere A of mass m; = change of momentum of

A=m (V1 — Ul).

mp Uy (1+e)+mq—emy)ul
my - U

mi+moy

mp uz (1+e)+mju;—emzui—myu;—mzug ]

- m, [
mq+mp

mim2uz (1+e)—my ug(q4e)l

mq+mjp
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mq mp (1+e) (uz—uq)

mi+mj

The impulsive blow on m; will be equal and opposite to the impulsive blow on m;.
Loss of kinetic energy due to direct impact of two smooth spheres:

Two spheres of given masses with given velocities impinge directly; to show that there is
a loss of kinetic energy and to find the amount:

Let m; m; be the masses of the spheres, u; and uy, vi and v, be their velocities before and
after impact and e the coefficient of restitution.

By Newton’s law, v, — Vi = -e (Uz— Uz) .. (D)

By the principle of conservation of momentum,

Mm1Vi + MaVa = Myl + Moy ....(2)

Total kinetic energy before impact

:émlulz 4‘%mzuz2
and total kinetic energy after impact

1 2,1 2
=-MmyiVy +=-MyVvo
2 2
Change in K.E. = initial K.E. — final K.E.
1 2,1 2 1 2 1 2
= - + - - -—
> miyuz > mou; > mavy > maVo

1 1
= 2 mz (U1 - V1) (Ul + Vl) + 2 mo (U2 - V2) (Ug + V2)

= % My (Uz- V1) (Ur+vy) + % My (V1— Ug) (Uz+ Vo)
[ my(Uz-Vv2) = my (vi-u) from (2) ]

= % m; (ul - V]_) [Ul— up - (VZ_ Vl) ]

% my (Uz - V1) [up—uz + e (Uuz—uyp)] using (1)

~my (ug-va) (ur—uz) (1-e) - (3)

Now, from (2), my (uz— V1) = my (V2 + Up)

Lo m ¥ = Y27 %2 oandeach =W

my mq mq+mpy

— Vitvy—up

1~ w2)t(v,—v1)
mq+mjp

i.e. each =
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= T u)Te TN ) g (1)

mi+mjy

(ul— uz) (1+e)
mi+mj

my (ul— uy) (1+e)

tfuyy T V1 T p— and substituting this in (3),
Changein KE. = L Zimatuzu)dre)t-u)aze)
2 mi+m;
_1 mymy (ug —uz)® (1- e?) (4)
2 mi+mj

As e < 1, the expression (4) is always positive and so the initial K.E. of the system is
greater than the final K.E. So there is actually a loss of total K.E. by a collision. Only in the
case, when e=1, i.e. only when the bodies are perfectly elastic, the expression (4) becomes zero
and hence the total K.E. is unchanged by impact.

Problem 19

A ball of mass 8 gm. moving with a velocity of 10 cm. per sec. impinges directly on
another of mass 24 gm., moving at 2cm per sec. in the same direction. If e = %, find the
velocities after impact. Also calculate the loss in kinetic energy.

Solution:

Let v; and v, cm. per sec. be the velocities of the masses 8gm and 24 gm respectively

after impact.
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By Newton’s Law, vo-vy = - > (2-10) =4 ...... (1)
By the principle of momentum,
24v, +8v; =24 x2+8x10=128
i.e.3vp, +v; =16
Solving (1) and (2), v =1 cm. / sec., v, =5 cm./ sec.

The K.E. before impact = % .8.10% + % . 24.2?
= 448 dunes

The K.E. after impact = % .8.1%+ % . 24.5% = 304 dines
~ Loss in K.E. = 144 dynes

Problem 20
If the 24 gm.mass in the previous question be moving in a direction opposite to that of the

8 gm. mass, find the velocities after impact.

Solution:

Let v, and v, cm/sec. be the velocities of the 8gms and 24 gms mass respectively
after impact.

By Newton’s law,

Vo-vi=-2(-2-10)= 6 ... (1)
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By conservation of momentum,
24v, +8v; =24 x (-2) +8x10=32ie.3v,+vi=4 ...l (2)

Solving (1) and (2), v, = - % cm/sec v, = % cm/ sec.

The negative sign of v, shows that the direction of motion of the 8 gm. Mass is
reversed, as we had taken the direction left to right as positive and assumed v1 to be in

this direction. Since v2 is positive, the 24gm. ball moves from left to right after impact,

so that its direction of motion is also reversed.

Problem 21
A ball overtakes another ball of m times its mass, which is moving with % th of its

velocity in the same direction. If the impact reduces the first ball to rest, prove that the

m+n
m (n—-1)

coefficient of elasticity is

Deduce that m > ﬁ

Taking AB as positive direction (as shown in the previous diagram), let the mass
of the first ball be k and u its velocity along AB before impact. Then, for the second ball,
the mass is mk and in Is the velocity before impact. After impact, the first ball is reduced

to rest and let v be the velocity of the second ball.

By Newton’s law of impact, we have

V-0=-e (%-u)iev="0" . (1)
By principle of conservation of momentum along AB,
KxO+mk.V:ku+mk.%u

ie. mv:u+%u:@ -(2)

Substituting value of v from (1) in (2), 12 have

meu (n—-1) _ u(m+n) _ (m+n)

n n m (n—1)

Now e is positive and less than 1.
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~sm{-1)>m+nie. mn—2m>n

~mnh-2)> norm>nnT2
3.11 Oblique impact of two smooth spheres:

A smooth sphere of mass m; impinges obliquely with velocity u; on another
smooth sphere of mass m, moving with velocity u,. If the directions of motion before

impact make angles o, and a, respectively with line joining the centres of the spheres and

if the coefficient of restitution be e, to find the velocities and directions of motion after

impact.

Vi V2

Let the velocities of the spheres after impact be v, and v, in directions inclined at
angles 0; and 0, respectively to the line of centres. Since the spheres are smooth, there is
no force perpendicular to the line of centres and therefore, for each sphere the velocities
in the tangential direction are not affected by impact.

~ vl sin 01 = ul sin al ... (1)and

V5 sin 0, = U, sin o ... (2

By Newton’s law concerning velocities along the common normal AB,

V, cos 0, —Vy cos 0; = -e (U2 COs ap — U1 cos (1.1) (3)
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By the principle of conservation of momentum along AB,
M, V5 cos 0, + My V4 cos 67 =M, U, cos o + My Uy cos oy (4
(4) — (3) x m2 gives
V1 cos 01. (My + my) = m, U, cos o + My Ug cos ay
+ em; (U, cos ay - Uy COS 0ly)

) _ujcos aj(mq— emy)+ mpyupcos oy (1+e)
I.e. Vi cos 0 = ... (5
mq+my

(4) + (3) x my gives

_uzcos az(mpy_emq)+ mqujcos a (1+e)
V, cos 0, = ... (6)
mq+mjy

From (1) and (5), by squaring and adding, we obtain v, and by division, we have
tan ;. Similarly from (2) and (6) we get v,* and tan 6,. Hence the motion after impact is
completely determined.

Corollary 1. If the two spheres are perfectly elastic and of equal mass, thene =1
and my=ms.

Then from equations (5) and (6) we have

0+mq uy cos ay.2
Vi cos 01 = = u,Cos oy
2 m1q

0+mq uq cos oy .2
And V, cos 0, = - 21 22 = w cos oy
mq

Hence if two equal perfectly elastic spheres impinge, they interchange their
velocities in the direction of the line of centres.

Corollary 2. Usually, in most problems on oblique impact, one of the spheres is at
rest. Suppose m; is at rest i.e. u, = 0.

From equation (2), v, sin 6, = 0 i.e. 6, = 0. Hence m2 moves along AB after
impact. This is seen independently, since the only force on m, impact is along the line of
centres.
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Corollary 3:
The impulse of the blow on the sphere A of mass m;
= change of momentum of A along the common normal

=my (vq cosB; — u; cosaqy)

_ ui cos a1 (mq—emy)+ myuycos ay (1+e)
=1my [ — Uq COS 4
mq+mjy
[ m; u; €COS @ — em; Uy COS 04y + mj U, CoS Oy + em; u, C0S O, —M; Uy COS 0y — MM, Uy COS Oy ]
= m
! m; + m,

mq [my up cos ap (1+e)— myuqcos aq (1+e)]

mq+m;

_ mq my(l+e)
- —(U» COS o — UuU4COS
mi +m, ( 2 2 1 1 )

The impulsive blow on m, will be equal and opposite to the impulsive blow on m;.

Loss of kinetic energy due to oblique impact of two smooth spheres:

Two spheres of masses m; and m, moving with velocities u; and u, at angles a;
and a, with their line of centres, come into collision. To find an expression for the loss of
Kinetic energy:

The velocities perpendicular to the line of centres are not altered by impact.
Hence the loss of kinetic energy in the case of oblique impact is therefore the same as in
the case of direct impact if we replace in the expression (4) on page 236, the quantities u,

and u, by u; cos a4 and u, cos a, respectively.

1
Therefore the loss is = - —~"2 (1 —e?2) (u; COS a; — Uy COS 0y ) >
2mq+mp

We shall now derive this independently.

Let v, and v, be the velocities of the spheres after impact, in directions inclined at
angles 01 and 02 respectively to the line of centres. As explained in § 8.7 the tangential
velocity of each sphere is not altered by impact.
~Vysin0; =Upsinag ... (1)and v, sin B, = U, sinay ... (2)

By Newton’s of rule



V,c08 0, — Vi cos 0, =-e (U, cos ap— Uy cos oy ) ... (3)
By conservation of momenta,
MmyV, cos 0, + My V4 cos 67 =M, Uy cos o + My Ug cos oy
i.e. my (Uy cos oy - Vq cos 01) = my (Vo cos 0, — Uy cos ay) ... (4)
Change in K.E.
1 2.1 21 2 _1 2
:Em1u1+5m2u1-5m1v1 'Em2V2

1 . 1 .
=M u? (cos ® ay + sin %ay) + ~ My U, 2 (cos? o, + sin 2 ayp)
1 . 1 .
- my v, (cos 2 0, + sin %0,) - ~m, vZ (cos® 0, + sin 2 6,)
_1 2 2 1 2 2 1 2 2
=5 My ui Cos a1+5m2 uj COS” 0 - My Vi COS 04
1 .
->m, v cos 20, using (1) and (2)
1 1

= oM (uf cos oy - vi cos’ 0, ) + > My (u3 cos® o, - vZ €os” 0, )

1
=-m (ug cos ay + vy cosO; ) (Ug cos ay- vy cos 0;)

1
tom; (us cos ap + V5 cosB,) (Uy cos ap- Vo cos 6,)

1

=-m (ug cos ay + vy cosB; ) (Ug cos ay- vy cos 0;)
1 .
-3 (us cos ap + V, cosb,). my (Ug cos ay- vy cos 07 ) using (4)

1

=-my (U cos oy - Vq cosB; ) (Ug cos ay+ vy cos B - Uy cos oy - Vo cos 6,)

2

1
=-m (uy cos ay - Vi cosBy ) [uy cos ay + U, cos o

+e (uycos ay - Ug cos ay) ] Using (3)
= % my (Uy cos ay - Vi cosO; ) (Upcosag-Upycosap) (L—e) .....(»5)

Now from (4),

uq €CoS a9 — Vvq cos 1 _ vy cos B2 — up cos ap

mpy mq

ujq Cos o — Vi1 cos 81+ vy cos B — up cos oy

and each =
mq+mjy

120
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(uq cos ag— up cos ap)+ ( vy cos 6 — vy cos 01)

mi+my
_upcos a1 — Uup cos ap —e (up €cos oy — uq €OS Qq .
= ) using (3)
mi+my
_ (ug cos a1 — upcos ap )(1+e)
mq+mjy
mjy (1+e
~ U COS Oy — Vq COS 61=L (uj; cos a4 — u, cos ay)
mq+mp
Substituting in (5),
. 1 mq my(1+e)
Changein K.E. == (uy cos a4 — U, cos Ay )
2 mi+my
X (upcos o — upcos ay) (1+ e)
1 mq mp 2 2
=———(1-e¢ u; COS 0y — Uy COS QA
My tm, ( ) (uy 1 2 2)

If the spheres are perfectly elastic, e = 1 and the loss of kinetic energy is zero.
Problem 22

A ball of mass 8 gms. moving with velocity 4 cms. Per sec. impinges on a ball os
mass 4 gms. Moving with velocity 2 cm. per sec. If their velocities before impact be

inclined at angle 30° and 60° to the joining their centres at the moment of impact, find
their velocities after impact when e = %

Solution:

In the diagram in the oblique impact of two smooth spheres, let m; = 8 u; =4
ag = 30°, m,=4, u,=2, 0, =60°

Let the velocities of the spheres after impact be v, and v, in directions inclined at
angles 0; and 0, respectively to the line of centres.

The tangential velocity of each sphere is not affected by impact

* vy sin 0; =4 sin 30° =2 (1)
and v, sin 0, = 2 sin 60° = /3 ..(2)
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By Newton’s Law,

V,cos 0, — Vi cos 0; = - e (2 cos 60° — 4 cos 30°)

1 1 V3
=-3(25-47)
(2v3-1) ...(3)

By conservation of momenta along AB,

4V, cos 0, + 8vy cos 0; = 4 x 2 cos 60° + 8 x 4 cos 30° =4 + 16 V3

i.e.V,cos 0, +2v; cos 0; = 1 + 443 —..(4)
3
~3vicosb; =1 +4\/§-%(2\/§- 1) = +26\/§
. 1
i.e.v; cos 0" = +22\/§ ...(5)
From (4), vocos 0,=1+4v/3 -1-2v/3 = 24/3 ...(6)
From (1) and (5), v§ =2%+( 1+22‘/§ )
—44 1+ 4\/§+12: 29 + 443
4 4
29— 443
vy = ———— CM. per sec.
s 4
Dividing (1) by (5), tan 01 = NG

From (2) and (6)
v,>=3+12=15and .- vV, = V15 cm/ sec

Dividing (2) by (6), tan 0, = —



123

Problem 23
A smooth sphere of mass m impinges obliquely on a smooth sphere of mass M
which is at rest. Show that if m = eM, the directions of motion after impact are at right

angles. (e is the coefficient of restitution)

Solution:

Vi

Considering the sphere M, its tangential velocity before impact is zero and hence after
impact also, its tangential velocity is zero.

(~+ During impact, there is no force acting along the common tangent).

Hence, after impact, M will move along AB. Let its velocity be v,. Let the velocity of m
be v; at an angle 0 to AB, after impact.

By Newton’s rule v, —V; cos 0 =-e (0 —ucos a)

I.e. Vo— V7 cos B =eu cos a ..(1)

By conservation of momenta along AB,

M.vo+mvycos =M. 0+ m.ucosa ...(2)

Multiplying (1) by M and subtracting from (2),
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mvy cos 0 + M vy cos 6 =mu cos o — M eu cos a

. —eM .0
|.€.V10089=ucosa(m e ):ucosa ('.'m:eM)
m+M m+M

=0
s cos®=0or0=90°
i.e. The direction of motion of m is perpendicular to AB.
Problem 24
Two equal elastic balls moving in opposite parallel direction with equal speeds
impinge on one another. If the inclination of their direction of motion to the line of
centres be tan™ (ve ) where e is the coefficient of restitution, show that their direction of
motion will be turned through a right angle.
Solution:
L

Let m be the mass of either sphere: AB is the line of impact. Before impact, the
directions of motion are LA and BM making the same acute angle a with AB as shown in

the figure. Let u be their velocity.
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After impact, let the sphere A proceed in the direction AK with velocity v, at an
angle 0, to AB and the sphere B proceed in the direction BN with velocity v, at an angle
0, to AB.

The tangential velocity of either sphere is not affected by impact.

% Vy8in 0; =usin a ... (I)and
V, sin 0, =u sin o ...(2)
By Newton’s Law, (resolving all velocities along AB),
Vo, cos 0 —VicosO;=-e(-ucosa—ucosa)
1.e. V5 cos 0, + V1 cos 0, =2 eu cos a ...(3)
By conservation of momenta along AB,
m (V, cos 0, ) +m. vq cos 6, = m (-u cos a ) + mu cos a
I.e.V,cos 0, +Vvycos0,=0 ...(4)
(4) — (3) gives vy cos 6; =-2 eu cos a
s Vycos B;=-eucosa ...(5
From (4), v, cos 0, = - v; cos 6; = eu cos a ...(6)
Dividing (1) by (5),

tan 0; = - %tanaZ-E\/E (+wa=tan"!+/e given)

1 1 0
- — = - = - = +
= e cota=tan (90" + a)

91:'900+(1

Dividing (2) by (6), tan 0, = % tan o = cot a = tan (90° - o)
02 = 900 — Q.

Hence their directions of motion are turned through a right angle.



126

UNIT IV
SIMPLE HARMONIC MOTION

Simple Harmonic Motion (S.H.M) is an interesting special type of motion in nature,
having forward and backward oscillation (or) to and fro oscillation about a fixed point. The fixed
point is known as the mean position or equilibrium position. When the oscillation is very small
we prove the motion is simple harmonic. In this section we study about the resultant of two
S.H.M’S of the same period in the same straight line and in two perpendicular lines. Also we
find the periodic time of oscillation of a simple pendulum.

Examples

Small oscillation of a cradle, simple pendulum, seconds pendulum, simple equivalent
pendulum, transverse vibrations of a plucked violin string etc.
Hooke’s law

Tension of an elastic string or spring is directly proportional to its extended length and
indirectly proportional to its natural length.

4.1 Simple Harmonic Motion in a straight line
Definition

When a particle moves in a straight line so that its acceleration is always directed
towards a fixed point in the line and proportional to the distance from that point, its
motion is called Simple Harmonic Motion.

X

A P - 0« » A
Let O be a fixed point on the straight line A* OA on which a particle is having simple

harmonic motion. Take O as the origin and OA as the X axis. Let P be the position of the particle

at time t such that OP = x. The magnitude of the acceleration at P is uXwhere u is a positive

constant. The acceleration at P in the positive direction of the X axis is — p X towards O.

2

Hence the equation of motion of P is d—2X =—UX ... (1)
dt



Equation (1) is the fundamental differential equation representing a S.H.M.

If v is the velocity of the particle at time t (1) can be written as

vd—V: —uxi.e. vidv = —uxdx . (2)
dx
2 2
. Vv
Integrating (2), we have > = _#XT +C i (3)
Initially let the particle starts from rest at the point A where OA = a
Hence when x=a,v=0= dx
dt
1a* @’
Putting these in (3), 0 = 5 tcorc= ES

SVEPE —u X2+ A= (az—xz)

LV =+ w/,u iaz—Xzi .......... (4)

Equation (4) gives the velocity v corresponding to any displacement x.
Now as t increases, x decreases. So 3—: IS negative.

Hence we take the negative sign in (4),

dx 2 2
2 oy=— ac —x veeeeend(S
il \/u( ) &)
B 2(JIX - \/; dt

;;(a —X ’

Integrating, cos X Ju t+A
a
Initially when t = 0, x = a, cos 11=0+A= A=0
'.cos‘liz\/;tor X=acCos Jut ... (6)
a

To get the time from A to A*, putx = —a in (6)

We have cos /ut=-1=cos z,t= 7

Ju
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‘. The time from A to A’ and back = 2—”

Iz

Equation (6) can be written as

X =acos \/; t=acos (\/; t+27r):acos(\/;t+4 ) etc

=acos Ju (t+%] = acos \/Z(H%J etc.

Differentiating (6),

%:—a\/; csin Jut

= —aJusin (Ju t+2 7) = —aJu sin (Ju t+4 z)etc.

= —au sin \Ju (t+ 2—ﬂ):—a wosin \fu (t+ 4—”)etc.
Ju Ju

The values of 3—: are the same if t is increased by 2r or by any multiple ofz—ﬂ. Hence

Ju Ju

7 the particle is again at the same point moving with the same velocity in the

Ju

same direction. Hence the particle has the period

after a time

27

Ju

T= 2—” ; frequency = % = 2—7[

Ju Ju

The distance through which the particle moves away from the centre of motion on either
side of it is called the amplitude of the oscillation.
Amplitude = OA = OA'=a.
ZT”, is independent of the amplitude. It depends only on the
U

constant x# which is the acceleration at unit distance from the centre.

The periodic time =

Deductions : 1) Maximum acceleration = x.a = g . (amplitude)

2) Since v = y/u(a? — x?), the greatest value of visat x =0 and its

Maximum velocity = a [ = \/u . (amplitude) at the centre
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General solution of the S.H.M. equation

o d?%x
The S.H.M. equation is — = —uX
dt
d?x
ie. —+ ux=0_.. . (1)
d t?

(1) is a differential equation of the second order with constant coefficients. Its general
solution is of the form

X=Acos Ju t+Bsin Ju t . )

where A and B are arbitrary constants.
Other forms of the solution equivalent to (2) are

x=Ccos(\Jut+¢&)...(3)andx=Dsin (Ju t+a) ... (4)
% If the solution of the S.H.M. equation is x = a cos (\/; t + ¢), the quantity & is called

the epoch.
Definition

If two simple harmonic motions of the same period can be represented by
x, =a, cos ( [u t+ &, )andx, =a,c0s (\/u t+ &9)

& &
T

* |If g =¢, the motions are in the same phase.

= The difference in phase =

» If ¢ =¢, = &, they are in opposite phase.
4.2 Geometrical Representation of S.H.M
If a particle describes a circle with constant angular velocity, the foot of the perpendicular
from the particle on a diameter moves with S.H.M.
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Let AA’ be the diameter of the circle with centre O and P be the position of the particle
at time tsecs. Let N be the foot of the perpendicular drawn from P on the diameter AA'. P
moves along the circumference of the circle with uniform speed and describes equal arcs in equal

times. Let @ — be the angular velocity. .. ZAOP = ot

IFON=x,Op=a,then,x=acos (@t) .................. (1)
% =—amsin(ot) ................ (2)
2
? =—aw?cos(at)=—@?X  ooiiiiiiil (3)
t

(3) shows that the motion of N is simple harmonic. When P moves along the circumference of

the circle starting from A, N oscillates from Ato A" and A’to A.

Periodic time of P = Periodic time of N -2z
[0
(along the circle) (along the diameter)
Problem 1

A particle is moving with S.H.M. and while making an oscillation from one extreme
position to the other, its distances from the centre of oscillation at 3 consecutive seconds are

X1, X2, X3, Prove that the period of oscillation is

Solution:

If a is the amplitude, u the constant of the S.H.M. and x is the displacement at time t, we

know that x =acos [ t ..... (1)

Let X1, X X3, be the displacements at three consecutive seconds ty, t +1, t; +2.

Then X;=acos \/; t, e (2)
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.. X + X3 =a[cos (\/7t1+2\/;) + COS (\/,LTtl)]
= a.2 cos \/;t1+2\é;+\/2t1 . COS \/;t1+2\éZ—\/;t1

=2acos (\/; t1+\/;j.cos\/; =2x,. €08 /i

M = COS J7h \/; :Cos_l(%j
X2
. 2
Period = \/Z = 2z
Ho sl Xt Xs
2X2

Problem 2

If the displacement of a moving point at any time be given by an equation of the form

X=2acos w t+Dbsin w t, show that the motion is a simple harmonic motion.

If a = 3, b=4, w= 2 determine the period, amplitude, maximum velocity and maximum
acceleration of the motion.

Solution:
Givenx=acos wt+bsinat  .................. (1)
Differentiating (1) with respect to t,
3—1(: —awsin ot+bwcoswt ........................ ()
(ZTzzx =-w?cos wt-bw’sinwt

= —w’@coswt+bsinwt)=-w 2x....(3)
.. The motion is simple harmonic.

The constant x of the S,H.M. = o°.

. 2
.. Period = Rl 2—” _ 2r

\/; - —7271' Secs.

Amplitude is the greatest value of x.
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When x is maximum,% =0.

dt
i i i b 4
—awsin at +bwcosat =0i.e.asin ot =bcos wtortan w t= <=3
When tan wt= 2. sin wt= + and cos wt= >
Greatestvalueofx:ax§+bxg:3ag4b:3.3;4.4:5

Hence amplitude = 5.

Max. acceleration = . Amplitude =4 x5 =20

Max. velocity = \/; Amplitude =2 x 5 =10
Problem 3
Show that the energy of a system executing S.H.M. is proportional to the square of the
amplitude and of the frequency.

Solution:
X

A’ PP > O « P A

The acceleration at a distance x from O = u x.
Force = mass xacceleration =m ux
If the particle is given displacement dx from P,
work done against the force =m g x. dx
Total work done in displacing the particle to a distance x
X X2
=moxdx=m pu"— . (1)
0 2
Work done = potential energy at P.
If v iis the velocity at P. we know that v2= z(a? - x?),

2 1

. Kinetic energy at P = % mv?= Emy(a2 —~ xz) ........... )
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The total energy at P = Potential energy + Kinetic energy

- MeC Mgz _yz). i ()
o, S

Total energy atP « a?

If n is the frequency, we know that
I S S/
Period [ o J 27

Ju

.'.\/;:27rn or y:47z2n2

2n22 2.2 2

Total energy = %m. 47°n’a? =27°ma’n? an

Problem 4
A mass of 1 gm. Vibrates through a millimeter on each side of the midpoint of its path
256 times per sec; if the motion be simple harmonic, find the maximum velocity,

Solution:

Maximum velocity v = ,/u.a

1

Given, frequency = — )
1 4 T 2
Ju =2x256x 7.

Given, amplitude =a =1 millimeter =1 x 10 c.m.

1_267

.. Maximum velocity, V =2 x 256 x 7 x 0 cm/ sec

Problem 5
In a S.H.M. if f be the acceleration and v the velocity at any time and T is the periodic

time. Prove that f°T? +4xz2v? is constant.

Solution:

Velocity at any time,v. =~ = \/y‘az —x? )



Periodic time T
2

For, S.H.M, d—zx
dt

- f

4
- 272 + 4722 :,uzxz.—ﬂ +4r ,uz(az —X2)

a’x
" dt?

— ILX

=f.

4 72'2/1X2 + 47r2ya2 - 47[2;0(2

472 mz (constant)

Problem 6
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A body moving with simple harmonic motion has an amplitude ‘a’ and period T. Show

that the velocity v at a distance x from the mean position is given by v’T? = 47z2(a2 - x"')

Solution:

We know, v = ,u(a2 - xz)

Problem 7

If the amplitude of a S.H.M. is ‘a’ and the greatest speed is u, find the period of an

oscillation and the acceleration at a given distance from the centre of oscillatin.

Solution:

Given, amplitude =a

Max. velocity = u.
ie) Ju a=u =

u
H="
a
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) . 2 2r.a
Period of oscillation T = - crd secs.

Ju oou
_d?x ux .
Acceleration —— =M X = - units.
dt a

Problem 8
A particle, moving in S.H.M. has amplitude 8 cm. If its maximum acceleration is 2cm/sec?,
find (i) its period (ii) maximum velocity and (iii) its velocity when it is 3 cm. from the extreme
position
Solution:

Maximum acceleration = 2 cm/ sec® = z.a.= ux8.

1

=21
AT Ty

Period T = 2—” =27 X i=47r SECS.

MRt

Max. velocity = \/; a= %x 8 = 4cm/sec.

When the particle is 3 cm from the extreme position, x =5 cm.

. velocity?=v? = y(a? - x?) = %(64—25) = ?

.'.v:%\/@ cm / sec.

Problem 9
A particle moves in a straight line. If v be its velocity when at a distance x from a fixed
point in the line and v® =a— B x*where «, 8 are constants, show that the motion is simple

harmonic and determinc its period and amplitude.

Solution:

Given,vi=a — BX’..cccccunn.... 0



Differentiating, 2v. % = -2/ dx { Vv

dt
dv

a——ﬁx

ie) ——=—f X

.. The motion is a S.H.M. \/; = \/E

Period T = 2—”

e
Ju B
Amplitude is the maximum value of x.

. . dx
X - IS maximum, when pr =0

.'.vzza—ﬂxzzo,:x:\/g
B
.'.Amplitude:\/g

p

_
dt

Problem 10

|
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If the distance x of a point moving on a straight line measured from a fixed origin on it
and velocity v are connected by the relation 4v* = 25— x?,show that the motion is simple

harmonic. Find the period and amplitude of the motion.

Solution:
Given, 4v2=25 —x%............. 1))
Differentiating, 8v. — = —ZX.%
dt
_dv 1
S—=—S X
dt 4
d’x__ 1,
dt?

. 1
Hence the motion isa S.H.M. Here x = 2
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..Period = 2—” =27J4 =4r secs.

T

Amplitude = maximum value of x.

) ) X
X IS maximum when % =0

le) 25 — x2 =0.=> X = +5. Maximum value of x= 5.

amplitude =5

4.3 Composition of two simple Harmonic Motions of the same period and in

the same straight line

Since the period same, the two separate simple harmonic motions are represented by the

2

. . . d“x
same differential equation d_2 =—u X
t

Let x, and x, be the displacements for the separate motions.

X,=a, cos(\/; t+ 51] , a1 - amplitude

X, =a, COS (\/; t+gz), a, — amplitude
Let x be their resultant displacement, then x = x1+X»
ie) x = alcos(\/;t +gl)+ a, cos(\/;t +52)

= allcos\/;t.cosq —sin \/;t.sin 51J+ ap [cos\/;t.cos,ez —sin \/;t.sin 52J

= €0+ ut(ay COSg +ay Cossy) —sin ./ ut(agsing +aysing,)

= cos \[ut.Acose —sinJut.Asine ... (1)
where A cos ¢ =a 1C0Sg; +@pC0S8p  Lieeiiieiinnn, (2)
Asin g =a, sin g+asingy ... 3)

Squaring (2) and (3) and adding,

Al=al +al+2amcos(g—5) 000 4)
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Dividing (3) by (2), tan & = A3Ma+&she (5)
d1C0S& +ap COSen

Now (1) becomes x = A . (cos/utcos & —sin |/tsin )
=A .cos (\/;Hg) ......... (6)

The resultant displacement given by (6) also represents a simple harmonic motion of the same

period as the individual motions.

4.4 Composition of two simple Harmonic motions of the same period in two

perpendicular directions

If a particle possesses two simple harmonic motions of the same period, in two

perpendicular directions, we can prove that its path is an ellipse. Take, two _Lr lines as x and y

axes. The displacements of the particle can be taken as x = a, cos \/; t (1)

y=a2cos(\/ﬁ t +gj ......... )

Eliminate ‘t’ between (1) and (2)

(2) = y=a,cos/u t. cos e.—a,sin/u t. sin ¢

X G
=a, |Cos &—-—sin &, 1——2 by (1)
al al
2
X . X
l=cos(c:.——5|n . 1——2
a2 al al

2
. XCO0S¢g . X
.e. Y =-Sine. 1——2
a a aj
Squaring,

2 2 2 2
X“CO0S“ & 2XyCoSg ) X .
y + — Xy :S|n28——28In28

a af Ha Y}
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2 2

ie. X——Z—Xy0055+y—2:sin25 .......... (3)
8 aa, as
This is of the form ax? + 2hxy + by? = 4 ....... 4)
cos ¢ 1

Wherea:—z,h: — b=—

al ajay a,
(4) represents a conic with centre at the origin.

2 -2
1 cos” & in

Also, ab —h? = — _sn e =+ve

812822 8.128.22 a12a22

Hence (3) represents an ellipse.

If ¢ =0, equation (3)= X_Y_ 0 (straight line).
q a
fe=nx,3) = i+l =0 (straight line).
a5 4
2 2
ife=7,(3) =~ + 2 =1 (ellipse).
2 a  a

T . .
If ¢= Eand a,= a,, the path is the circle x2+y2 = a12

Problem 11
Show that the resultant of two simple harmonic motions in the same direction and of

equal periodic time, the amplitude of one being twice that of the other and its phase a quarter of a

period in advance, is a simple harmonic motion of amplitude V5 times that of the first and

-1
whose phase is in advance of the first by > of a period.
T
Solution:
Let the two displacements be
X1=q4 cos(\/; t+ 81) ............ (1) [ they have equal periodic time,
M is same]
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82\/__81 = phase difference (given) = %xz—ﬂ
P

Ju
_ T T
..82—8125 or 82254‘81

We know that the resultant displacement is X = A cos [\/; t+ 5) )]

Where a, = 23; and

2 +a,% +2a1a, cos(&; — &5)

where A% =a,
=a,°+Ha” +4a,° cos(— 900): 5a,”
. amplitude of the resultant motion = A = a,~/5

a,S8ing; +a,sing
Alsotan ¢ = 2> 1 792 2
a, COS&; +a, COSE,

[ - Asine=a;sing +a,sing,, AcC0Sg =ay COSg; +a, COSE, ]

_ asing + 2alsin(900 + 81)

a, CoSgy + 28 cos(900 + 51)

o sing _ sing; +2c0s&
' cOse  COsg —2sing

sin ecosg; —2sin gsin g =sin g, COSg +2C€0S¢ 1 COS &

osin (e—&)=2cos(e—g) ie.tan (6—&)=2 " e—g =tan 12

.g—glztan_lzztan_lz (sz
Ju o w2 \Ju

_tan12

27

of a period

Problem 12
Two simple harmonic motions in the same straight line of equal periods and differing in

phase by % are impressed simultaneously on a particle. If the amplitudes are 4 and 6, find the

amplitude and phase of the resulting motion



Solution:

Let the two S.H.M. in the same straight line of equal periods and differing in phase by % be,

given, Acos e=4=3a; Asineg =6=2a,

. Amplitude of the resultant motion A = J(Acose)? + (ASing)?
=VJ16+36 =52
A=2413
A Sing 6 3
tan ¢ = = —=—
A Cose 4 2

g =tan _1(§j
2

which is the phase of the resulting motion.

4.5 Motion of a particle suspended by a spiral spring

141

A particle is suspended from a fixed point by a spiral spring of natural length a and

modulus 4. If it is displaced slightly in the vertical direction, discuss the subsequent motions
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Let AB = a, natural length of the spring which is fixed at A. Let m be the mass of the particle
connected at B, which pulls the spring and comes to rest at C such that the increased length BC =

I. At C, the mass ‘m’ is in equilibrium. Hence the downward force mg and the upward force T

must be equal at C. ie) T =mg

Al
But, by Hooke’s law, T = —
a
Al
Lo =0 (1)
a

Let the particle be slightly displaced vertically downwards through a distance and then released.
It will begin to move upwards. Let P be the subsequent position of the particle so that CP= x

The forces acting at P are the weight and the upward tension.

Hence the equation of motion is

d?x .
m-—-= Resultant downward force = mg — Tension at P.
dt

=mg-— 4 (AP-AB)
a

=mg —% @P)=mg — % (1+x)
a a

= -2 pemg=2l1 by )

6. —=—""X ...(2)

Equation (2) represents a S.H.M.

2
Period = il :272'@

A A
am

Problem 13
Two bodies, of masses M and M, are attached to the lower end of an elastic string

whose upper end is fixed and hang at rest; M’ falls off. Show that the distance of M from the



upper end of the string at timet is atb+ c cos \/%t, where a is the unstretched length of the

string, and b and c are the distances by which it would be stretched when supporting M and M",

respectively.

Solution
O..
Let OA = a be the natural length of the elastic string, which
is fixed at O. When the string supports M,
a
Mg = upward Tension.
A } By Hooke’s law,
b
. Ab
B upward Tension at B = —
X a
Ab
P Mg="" e, (1)
a
C
c When the string supports M?,
M'g = upward Tension at C = A
a
AC
i) Mig= = )

1)+ (@) =M +I\/I':§(b+c)

ie) AtC, M+ M’ isin equilibrium.
When M’ falls off, M will move towards B.
Let P be the position of M at time t seconds such that BP = x
Forces acting at P are,
(i) Weight Mg ii) Upward tension

2

. : . X
.. At P, equation of motion of M is M 2—2 = resultant downward force.
t



= Mg—g(OP—OA)
A
= Mg-Z (AP
g-~(AP)
A
= Mg-Z(b
g-=(b+x)
= Mg_l_b_ix
a a
=-x o
a
d?x A
—=—— X
dt?2  aM

.. The motion of M at P is simple harmonic
Amplitude=BC=c¢

.". Displacement = x=c.cosJi t
aM
_ g
= C.COS E' t by (1)

.. Distance of M from O at timet=OP = OA + AB + BP

=a+bh+x

=a+b+c.cos \/g.t
b

144



Problem 14
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A Particle of mass m is tied to one end of an elastic string which is suspended from the

other end. The extension caused in its length is b. If the particle is pulled down and let go, show

: . . : . b
that it executes simple harmonic motion and that the period is 2 72'\/:
g

Solution:

Let AB be the natural length of the elastic string. When
m is tied at the other end, extended length is b. and the mass is
in equilibrium at C.

SAtC,mg=T-= ’%b (1)

When the mass is pulled down and released let P be the
subsequent position such that CP = x
At P, equation of motion is

d?x
— = resultant downward force
dt
_ Ab+x)  Ax
=mg - =—— [by ()]
a a
2
d7x - _i,x. (2)
dt? am

(2) shows that the motion is simple harmonic

~Period T = 2% = 2—”:2@/&—”‘ :272'\/E by (1)
Ju [a 2 g
am
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4.6 Simple Harmonic Motion On a Curve

If P is the position of a particle on a curve at time t and if
the tangential acceleration at P varies as the arcual distance of P
measured from a fixed point A on the curve and is directed towards
A, then the motion of P is said to be simple harmonic.

X
: : : : d?s :
The differential equation for the S.H.M. on a curve will be of the form d_2 =—us, s is the arc
t
distance AP.

4.7 Simple pendulum

A simple pendulum consists of a small heavy particle or bob suspended from a fixed
point by means of a light inextensible string and oscillating in a vertical plane.
Period of oscillation of a simple pendulum

0]

Let OA =1 be the length of the pendulum where O is the point of suspension. Let ‘m’ be the

AN
mass of the bob and P be the position of the bob in time t secs and arc AP =s, AOP =6
The two forces acting are i) mg (i«) ii) Tension T along PO.

mg is resolved into two components i) mgcosé along OP.

ii) mg sin @ along PL.
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mg cosé and T balances each other.

2

The equation of motion at P is m.% =—mg.sind ............... (1)
t

[Negative sign shows that mgsin & is towards A.]
When & is small, sin 8 = 6

d?s
L= =—0.0 ()

dt?

2
Bus=10, =3, - 959 3)

I dt? I
(3) shows that the motion of the bob at P is simple harmonic when & is small.
g

Hence = n

PeriodT:Z—”:Z—ﬂ:Zﬂ\/I
Ju \ﬁ g
|

4.8 Simple equivalent pendulum
A simple pendulum which oscillates in the same time as the given pendulum is called the
Simple Equivalent Pendulum.

Consider two motions represented by the equations.

d?x
—=—UX...... (1)
dt?
2
s_ 95 ..o
dt2 |
We know that (1) and (2) are S.H. motions and (2) is the equation of motion of a simple
pendulum.
g
They represent equivalent motions, if u :Ig ie. | I= ;
g

The length of the simple equivalent pendulumis —.
U
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4.9 The Seconds Pendulum

A seconds pendulum is one whose period of oscillation is 2 seconds.

2

Hence if | is its length, we have 2 = 27[\/I R 9
g T

The length of the seconds pendulum is %
/4

Note : Since the time of oscillation of a seconds pendulum is 2 secs, it makes 43200 oscillation

per day. If it gains n seconds a day, it makes 43200 +2 oscillations in 86,400 secs.

Hence its period = ﬂ ......................... (1)

43200 +
2

If it loses n seconds a day, it makes 43200 —g oscillation in 864000 secs.

So its period = 86400 (2)

43200 - "
2

Problem 15
Find the length of a simple pendulum which oscillates 56 times in 55 seconds
Solution:

Given, T = ﬁ Secs.
56

ButT=2 ﬂ\/I I- length of the pendulum
g
T_55
g 56
I 55 55x7 5

g 56x27 56x2x22 32

1 (5Y) 25
’E‘(ﬁj_@
..

1024

x 9.8 =0.239m.
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Problem 16
Show that an incorrect seconds pendulum of a clock which loses x seconds a day must be

shortened by é percent of its length in order to keep correct time.

Solution:

Let I,I* be the correct and incorrect lengths of the seconds pendulum of a clock

~T=2r l=864ﬂ:2 secs 1)
g 43200
When it loses x seconds a day,
1
, ”\ﬁ: 86400 : 2
9 43200 -%
2
(2) 11 43200 1
@) 4000 - % 1-
2 86400

(approximately)

1 -2

-.'_:;:(1_ X j 14

| . 86400 86400
(_86400]

Il

ie) — =1+ —
| 43200

o L B
43200

ie) L Percent of |
432

X . . .
.. Length should be shortened by el percent of its length in order to keep correct time.
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Problem 17

A pendulum whose length is I makes m oscillations in 24 hours. When its length is slightly
. e Lo _2nl
altered, it makes m+n oscillations in 24 hours. Show that the diminution of the length is —

m
nearly.

Solution:

Given , when the length of the pendulum is |, it makes ‘m’ oscillations in 24 hrs.

.'.TZZ;Z\/I:% M
g m

When its length is altered, let | —1" be its length and it makes m+n oscillations per day.

/ 1
.. Periodictime T=2rx |- = 24 (2)
g m+n
Qjm+n: I1
(2) m V-

: I* n
ie) 1+ — =1+ — (nearly)
2 m

. 2nl
- 1"=— nearly
m

Problem 18
A seconds pendulum which gains 10 seconds per day at one place loses 10 seconds per

day at another. Compare the acceleration due to gravity at the two places.
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Solution:

Let g1 g, be the acceleration due to gravity at the two places where the pendulum gains 10

secs per day and loses 10 secs per day respectively.

When it gains, Periodictime =27 1 = 24x60x60 1)
g, 43200+5

When it loses, Periodic time =2 « L :M 2
g, 43200-5

where | is the length of the pendulum

@ g, 43195 g, (43205)

S = = .
2) g, 43205 g, (43195)

Problem 19

If 1, is the length of an imperfectly adjusted seconds pendulum which gains n seconds in one
hour and 1, the length of one which loses n seconds in one hour at the same place, show that the

411,

Il +|2 +21[|1|2

true length of the seconds pendulum is

Solution:

Let | be the true length of the seconds pendulum. For the same place g is constant,

TZZﬂ\/g = 2secs (1)

Let I, be the length of the pendulum, when it gains n seconds in one hour.

.. Period =2 n\/E _ 3600 - (2
9 1800+ >

Let I, - be the length of the pendulum, when it loses n seconds in one hour.

.. Period 27;\/E = &On 3)
9 1800 -
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n
1800 + "
O LT 2 4, N ()
@ |4 1800 3600
n
1800 —
WP ", n (5)
@ |l 1800 3600

(4)+(5):>\/I+\P:2
Iy I,
I 2l

Squaring, —+—+ =4
1yl

I, +1 2
o [ =4
[ Iyl \”1'2}

441,

Il + IZ + 21”1'2
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UNIT V

MOTION UNDER THE ACTION OF CENTRAL FORCES

In this unit we study components of velocities and accelerations in two mutually
perpendicular directions. We deal with the motion under the action of a force always directed

towards a fixed point and derive formulae for various velocities and accelerations together with

polar form and pedal form of central orbits.

5.1 Velocity and acceleration in polar co- ordinates

Radial and Transverse velocities

(r+or,0+00)

<V

Consider a particle moves in a plane curve. Let P (r,8) be its position in time t and
Q(r +46r,0+66) be its position in time t+5t. Take O — as the pole and OX- as initial line.
Velocity along the radius vector OP in the direction of r increasing is called the radial velocity
and the velocity in the direction L r to OP in the direction of & increasing is called the
transverse velocity.

Lim displacement along OP in time &t
Radial velocity at P oa—0 =

_ . PN _ Lim ON-OP
LM s 50 &

o—0
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Lim  (r+dr)coss0—r

&0 &
2
(r+5r){1+( 0) +on } r
_ Lim
S0 P

Lim (r+&)1)-r

= , neglecting higher powers of 66
a—0 ot | I MOnErP

_ Lim o :g_f
a—0 o dt

Radial velocity = r

Lim QN _ Lim (r+or)sin 50
a—->0 a&a a&->0 o

(r+5r){5¢9—(§0)3+ ......... }

Transverse velocity at P =

Lim 3

=at—>0
ot

Lim

= (r+a)o6 , neglecting higher powers of 56
a—0 a

Lim Lim

=0 > roo. (r.é‘[—wﬁJ
S A

=r d_H =r 9

dt

Transverse velocity = r 8

Radial and Transverse Accelerations
Let u, v be the radial and transverse velocities at (r,6) and (u+du) and (v+o&v)be the

radial and transverse velocities at Q (r + or,0 + 56)
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u+aou

Lim | Change of velocity along OP in time &

Radial acceleration =
a—-0 X

Lim [(u + 8l )cos 56— (v + &) cos(90° — 59)} .y

&0 &

_ Lim (u+su)a]-(v+ ov)66)-u]
A —>0 X

_ Lim si-vso

a—0 X

_ Lim &u y Lim 5o
A0 8& A&—o0&

du deo dr do
= ——-V—, whereu= —,v=r—

dt dt dt dt
- dfan) oo b0

dt\ dt dt ~ dt

2 2
:u—r(d—ej =f-r6?

dt? dt

~.Radial acceleratbn =i —ré?
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[Change in velocity perpendicular to OP intime &J

. Lim
Transverse acceleration =
a—>0 ot
_Lim [(u+au)sin 56+ (v +&)sin (90° - 56)]—v
a—0 A
_Lim  [(u+du)sin 50+ (v+&v)cos 50]-v
=Y &

when 66 is small, sin 68~ 560
Lim  [(u+8u)50)+(v+v)1)-v]

= and cosdé ~1
X —0 X
Lim {u5¢9+&/} d@ dv dr do
= =U—+— Whereu= — ,v=r—
x—0 Io. | dt dt dt dt
dr dé d( d@j
= —+—| r—
dt dt dt\ dt

dr d@ d?0 do dr
=t r—t—.—
dt dt dt?2 dt dt

d20 _dr dé
r— 2422 22,
dt? dt dt

- 19(p200) 14
r dt dt r dt

.. Transverse acceleration = 1%(#9)
r

Magnitude
1 | Radial Component of velocity .
r
2 | Transverse Component of velocity :
re
3 | Radial component of acceleration 2
r-ré
4 | Transverse component of acceleration | 1 )
rdt
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Corollary

(1) Suppose the particle P is describing a circle of radius ‘a’. Then r = a throughout the
motion

Hence r =0 and the radial acceleration = F— r 92

=0-ap?=-ab’
Transverse acceleration = 1d (r2 9) _1 a’0=ad
rodt a
(2) The magnitude of the resultant velocity of P
2
.2 . .2 :
=\r +(rd)% =\r +r20)

and the magnitude of the resultant acceleration

I T B
—\/(r re ) +[r dt(r 0)]

Problem 1
The velocities of a particle along and perpendicular to a radius vector from a fixed origin

are Ar2and u&z where pand A are constants. Show that the equation to the path of the

A : .
particle is 5+C =+ \here C is a constant. Show also that the accelerations along and

2r2

2 n4 3
perpendicular to the radius vector are 22213 —& and ,u(ﬂrﬁz +%]

r r
Solution:
. . dr 2
Radial velocity = — = Ar (D
dt
Transverse velocity = r ?j—f = ,u02 )]

Dividing (2) by (1), we have
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o uez o, 40 udr
“ar ar? 0% 3

Integrating, —% = —2— +C
r

ie. X -t ¢ e (3)
o2 6
(3) is the equation of the path,

. " d2r dr ~q2.3 .
Differentiating (1) ——=A4-2r— = 2A°r” using (1)
dt? dt

Radial acceleration = r—r 62 = Z d (—)
'[

2 2 4
= 2/12r3—r(—#0 )2 233 KT 0 using (2)
r r

2
] 1 . 1
Transverse acceleration = —~—(r2 0) = _.i(rZ ﬂ)
r dt r dt r

do 402 dr

1d M2
= - — reo—
Ca e 9= 0

prel

2 3
= Hor. oM 1 92 r2) = 249" 1 are?]
r r r

Problem 2
The velocities of a particle along and perpendicular to the radius from a fixed origin are
A rand u @; find the path and show that the acceleration along and perpendicular to the radius
22

vector are A%r _HO and 9(/”&)
r r

Solution:
. : . . dr
Given, radial velocity = = at =Ar 1)
Transverse velocity = r6 = 10 (2)

Radial acceleration = F—rg?



2
= At {”Tej [by (1) & (2)]

2,2 2,2
S PN A A LA
r r

Transverse acceleration = 11(rzé) = li[rgy_ﬁ)
r dt r dt r

= %%(y r (9) = %.,u[ré"+¢9 r']

= ﬁ[r.“—gw.z r}
r r

Transverse ace. = ye[ﬁ + l}
r

4o
@ _ dt _u0 _pn0
@ dr Ar Ar
dt
dr AT 0 A2

plrt
Integrating, logé = 711 + C; C - constant

= _L+C
Ar

log g=c-H

i.e. Ar

which is the equation of the path

159
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Problem 3
The velocities of a particle along and perpendicular to the radius vector from a fixed
origin area and b. Find the path and the acceleration along and perpendicular to the radius

vector.
Solution:
. . , dr
Radial velocity = ¥ = P a 1)
: : do
Transverse velocity = r@ =r m =b (2)

2 2
Radial acceleration = ¥ =r@? = a7r_ r(d—ej
dt? dt

rmW,rzg{ﬂzgézo
dt
b2

b 2
.. Radial acceleration = — r(—j -
r r

Transverse acceleration = l.g(rzé): lE(rZE]
r dt r dt r
= li(br) = Egza_b
r dt r dt r
To find the path
40
@:izg i.e.rd—gzgzﬂzgde
@ dr a dr a r b
dt

. a .
Integrating, log r = EH + C, where C — is constant

ad
~.r=AeP | isthe equation of the path.
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Problem 4
A point moves so that its radial and transverse velocities are always 2 1a 6 and Ar.

Show that its accelerations in these two directions are A (2a-r) and that its path is the curve
r=a @ +C.

Solution:
. : . dr
Given, radial velocity r = at =2Aaé 1)
. . dag ;
Transverse velocity r 6 = ra = Ar 2 =0=A1

Radial acceleration (R.A) = I — rg? = Zla(il—f — r[ﬂz]

=2 da-A-rx

R-A=2*(2a-r)

. 1 .
Transverse acceleration (T.A) = — % (r 2(9)
r

= %%(rz-i)z %-Zr r

= i 2r.2aé
[

TA=4 1%a6

96
@: de _ Ar _ T i.e.rd—6’=L
()] dr 2380 2a# dr 2aé

dt

.28 @ =dr

2
Integrating, 2a % +C =r,C - constant

_ 2
r=C+aé is the equation of the path.
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Problem 5
If a point moves so that its radial velocity is k times its transverse velocity then show that

its path is an equiangular spiral.

Solution:
Given, radial velocity = k x transverse velocity
ie. r=kré
ie. ar_ k.r.d—e
dt dt
r
29 ko
r

Integrating, logr =k € +log A, A — constant

i.e. log (Lj =k .. r_ ek?
A A

which is an equiangular spiral.

Problem 6
If the radial and transverse velocities of a particle are always proportional to each other,

show that the equation of the path is of the formr = A. e KO where A and k are constants.

Solution:
Given radial velocity « transverse velocity

ie f a rd=r=Xkré,k- constant

:gzk.de

r
Integrating, logr=Keé+ log A
logr—logA = k¢

ie) log (%} Y
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r
ielog | — |=k..0
g(Aj

,
= ek = r=Aek?

Problem 7
A point moves in a circular path of radius ‘a’ so that its angular velocity about a fixed
point in the circumference of the circle is constant, equal to @ .Show that the resultant

acceleration of the point at every point of the path is of constant magnitude 4 aw?.

Solution:

Let O — be the fixed point (pole), OC — initial line. Polar

equation of the circle isr =2 acos &. Let P (r,&) be the

position at time‘t’ Angular velocity about O is@=w

(constant)

Radial velocity =r =—(2asin )0 = —2awsin 6

¥ =—(2awcos 0)) = —2aw? cosd

— —w*(2acos0)
——w’r
Radial acceleration at P = F—rg?

— 0’1 —r.o°

—20°r = —2w*(2acos 0)

—daw’ cosd

Transverse acceleration at P
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=2 o(-2awsin §) = —4aw?sin 6

-. Resultant acceleration = \/(— 4ae’ cos6) + (- 4aw’ sin 0f

= 4a w*

Problem 8
A point moves with uniform speed v along a cardioid r = a (1+ cos @ ). Show that

sec%
2a
2

is constant equal to iL (iii) the magnitude of the resultant acceleration is 3760
a

(1) its angular velocity @ about the pole is v (i1) the radial component of the acceleration

Solution:
Given, pathisr=a (1+ cosH) .................. (1)

Uniform speed v = resultant velocity = ¢ +(rd)
(1) = r=a(-sing)g

¥ = —alsin 6.6 + 6 cos 6.6
= —(acos9)9* —adsin 0.

Vo= \/azéz sin? 0+ [a(1+coso)df

= Ja26?sin? 9+a292(1+ 2c0s 6 + cos? 9)

Ja2d? + a?6?(1+2cos )

= 222602 + 2c0s 0.a%6°
=a6J2 l+cosd

=2 a 6 [2cos? %

_ ] 2]
V—ZaH.COSA

- Vv Vv
0=w=—" = [—j.secfy
P2l 2

2a.cosé 2a




Radial acceleration = i — réz

= —(acos0)9? —(asin #)F —a(l+cosO)d?

= —a(l+2cos0)9% —H(asin 0)%[%sec%.tan %}

= 2 _25 0/ Y secO/ |¢

= —a(l+2cos6)d 23|n9.tané{2a.secé}0

= —a(l+ 2C059{V.5809/T —Zsin otan 9/{\/sec.9/}2
2a 2] 2 2| 2a 2

2
- _a Zﬁlzgltﬁ'g}
a 4a2J(sec A{(+ cos )+2 anA.sm

v (sec2 9/ _(1+ 2c0s 0)+sin Q}
a 2 2

_ v (seczg/_(1+2cos¢9)+1(1—cose)}
2 2

=0 % [g](secz %[g 1+ cos@)}
(sec2 A l(1+ cos8)]

2,0 .0 3V
= ——| —|sec”—.cos“ — = ——| —
4| a 2 2 4

w
o[ So

w
<
N

165
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- 2.2 Racos® 9]

-1, Za.v.[e;cosz 9;-(sn04)04]
__3av cosZH/ {_Secfy} sin ¢
Y

- —mx[m%-sm %)

- -
2a.2cos? % 'COS% h %
_ 3v?2
TA = —E-tan%

-. Resultant acceleration = ++/(R.A)? +(T.A)’
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5.2 Differential Equation of central orbits

A particle moves in a plane with an acceleration which is always directed to a fixed
point O in the plane. Obtain the differential equation of its path.

Take O as the pole and a fixed line through O as the initial line. Let P (r,8) be the polar
coordinates of the particle at time t and m be its mass. Also let P be the magnitude of the central
acceleration along PO.

The equations of motion of the particle are

m ('r‘—réz) =-mP

ie. r—-rg®> =-p ... (1)
and m-E(rzé):o
r dt
C1.d(,.
e =-—\re¢) =0 ... 2
e r dt( ) @

Equation (2) shows that the transverse component of the acceleration is zero throughout
the motion.

From (2), r?@ = constant = h
To get the polar equation of the path, we have to eliminate t between (1) and (3).

_1
put u = ;
. h )
From(3), =—=hu
r
o dr d(l) 1 du 1 du 1 du dé
Alsof=—=—|Z|=—_"_—_~- ""__ = "7.27
dt dtlu u? dt ul dt u2 do dt
:_iﬂ.h u2=—h% P(T,0)
u2 deo de
P
_1(_ %)__ i(ﬂ).%
dt de do\dg) dt X
d2u 2y
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Substitute r and @ in (1), we get

2 2
—hzuzd—u—lhzu4 =—Pie h‘zuz(CI u +uj=P

dé u do?
) d2u P
ie)u+ = (4
do? h2u?

(4) is the differential equation of a central orbit, in polar coordinates.

Perpendicular from the pole on the tangent - Formulae in polar coordinates
Let ¢ be the angle made by the tangent at P with the radius vector OP.

We know that tang =r ?j—f ......... (1)
From O draw OL perpendicular to the tangent at P and let OL= p.
Thensin ¢ = %:B
OP r

Sop=rsine L (2)

Now eliminate ¢ between (1) and (2).
P
From (2), iz = % = izcos ec’p
p rsimn“e r
_1 ( 2
r = —2 1+ cot (0)

r

2
0 p / L :iz[l+i2(£j ](by 1)
r

r déo
2
. 1 1 1(dr
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: 1 dr dr du 1 du
usingr= — = =

u’@_ﬁ'@_ u2 de
Hence (3) becomes

5.3 Pedal equation (or) (p, r) equation of the central orbit

2
We have %=u2+(duj

— (1)
P do
Differentiating both sides of (1) with respectto 4,
_i.@—zl_jﬂ_kzd_u.ﬂ—Z% u+d2u (2)
p3 de d0 dH dez d0 dg2 ........
2
But the differential equation is u + d—l; = %
do- h-u
Hence (2) becomes —i-@: P %
p3 dé h2y? do
. 1 P P ».,(1
ie. ——dp= du=—r=d| =
p3 P h2y2 h2 (rj
Pr?
= 5 x—izdr:—%dr
h r h
h? d
? . d—f_) =P ... 3)

is the (p, r) equation or the pedal equation to the central orbit.



Problem 9
Find the law of force towards the pole under which the curve

r"=a". cosn & can be described.

Solution:

Givenr"=a" cosn@
1 ..

Putr= = theequationisu™a" cosn@ =1 ... (1)
u

Taking logarithms,
nlogu+nloga+logcosnd =0 ... (2)
Differentiating (2) with respect to ¢

1du nsinng

n-——— =0
ud@ cosnd
du
ie) —=u tann@ ................. 3
)d49 (3)
Differentiating (3) with respect to 4,
2
d_u = unsec? né +tan n@.d—u
do? do
= nusec®né +utanné using (3)
U
u+ =u+nusec’ n @ +utan?n e

=nusec® n 6 +u (1+tanng)
= nu sec >n@+usec? nd = (n+1usec’ ng
= (n +1)u.u2na2n using (1)

- (n +1)a2nu2n+1

2
P =h%? u+d—l2J = h%u? (n+1)a*"u>"
déo

= (n+1)a®" h?ym3

170
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_ onp2 1
= (n +1)a h rzm ........... 4)
1
- P “r2n+3

Important notes

(i) When n=1, the equationisr =acos 6. Thecurveisa circleandP « 1 /r°.

(ii) When n = 2, the equation is r> = a? cos 2 6. This is the Lemniscate of Bernowli and P

1
r7'

a

1

1
(iii) When n = % the equationisr2=a?2 cos

2
ie.r=acos?? - 81+ cosh)
2 2
. . 1
This is a cardioid and P & —
r
-1 -1

. Y o 0
(iv) Whenn = —%, the equationis r 2 =a 2 .COSE

11 0
ie.a2=r? cosz

a 2a

Sor= =
20 1l+coso
2

. 2a
iie —=1+cosé@
Cco r

. 1
This is a parabola and P « —
r

2

(v) When n =- 2, the equationis r “ = a2.cos20

i.e. r2

c0s 20 = a2 (rectangular hyperbola)
Problem 10
A particle moves in an ellipse under a force which is always directed towards its focus.

Find the law of force, the velocity at any point of the path and its periodic time.



Solution:

The polar equation to the ellipse, with pole at focus is

I
—=1+ecos® .. (D
r

where e is the eccentricity and | is the semi latus-rectum.

1 l+e cosé
From (1), u = sz

du e sin o d?u e cosd
Hence — = — and =_
do I do? I
d2u 1+e cos@ e cosd 1
u+ = - —
do? | | |
2
We know that P :u+d_u:}
h2u? de? |
2,2 2
Hence P = Iu :%’ where y:l_

i.e. The force varies inversely as the square of the distance from the pole.

2
Now, i=u2 +(d_uj
p2 do

[1+e cos@]2 (e sin HT 1+2e cos@ +e?
- + =

I I |2
Also h = pv where v is the linear velocity

szﬁ: h2(1+29 c036?+e2)

:i'{1+e2+2(l—j from (1)
|2 r
H

o]

L r

172
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i ;{zﬁl—_ez)} ........ o

r |

Now a and b are the semi major and minor - axes of the ellipse.

" I:ﬁ:ﬂl_—ez):a(l—ez)

a a

put | =all—e?)in (2)

Areal velocity = g

Area of the ellipse = 7zab

7 ab _27zab

U

Periodic Time T

Problem 11
Find the law of force towards the pole under which the curves can be described.

i)r? =a%cos20

[Hint: Putn=2inproblem 9, (i.e, r"=a".cosnd)]
B 22077 ces O
i) r’¢=a’“ cos A
[Hint : Putn = % in problem 9,(i.e.r"=a" cosng)]

ii.) r"cosng =a"
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Solution:

a"u" =cosné [-.-r:% (1)
u

Take log both sides, and differentiate n log a + n log u = log cosn &
ndu_ 1
u dé cosnéd

du =—-utannd (2)
de -

(—sinn@)n

2
d_u = —{u.sec2 né.n + (tan nﬁ)d—u}
402 do

= — |unsec? ng—u.tan? o)
=utan?n #- un.sec? nd
d?u P

We have, u + =
do? hu?

i.e., ututan’nd —un.sec’nf=

u secan(l— n)=

h2u?

ie P=h2(1—nud 1 _h*-n) 1

iv)  r"=Acosnd+B.sinng

Solution:

This equation can be taken as

M= /1.COS(nt9 + 05), A, a are constants.
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.'.1:ﬂ,.u”.cos(m9+oc),'.'r=1
u
Take log both sides and differentiate,
0=1log A+ nlogu+logcos (n6+a)
1 du 1
“N—.—+—7—— |-sin(n@ n=0
udo cos(nd+a) sin(no+ o)
du
So—=u.tan(nf+« 1
0 (no+a) (U

d?u

el u.sec’(n@+a)n+tan(nd + oz).ﬂ

= nu. secz(n9+a)+ u.tanz(n0+a)

= n.u. secz(n€+a)+ u.[secz(n6’+a)—1l

U+——=(n+1usec’(nf+a)=
S+ usect (10401

h2u?
. P=h%(n+1)u’.sec’(no+a)
=h?%(n +1).u‘°’()uu”)2

) 2n+3 _ /”tzhz(n+1)

P «

2n+3

V) a=r sin nf

Solution:

Take log and differentiate au = sinné
i 1
log (au) =logsinn & { r— _}

i.e. loga+logu=log(sinnéd)



ldu 1

. .cosné.n
u de sinn@

ﬂ:nu.cotné?
do

2
Satu n{u.(— cos ec2n¢9>n +cot nﬁ.ﬂ}
462 do

=n l—nu.cose02n9+ nu.cot? n@J

2

= n?ulcot2 ne—cosecanJ =—n-u.

u+d—u_u nu—u(l n)

do?

d u P 2
But, u+ — = =ull—n
do? h2u? ( )

P= h2u3(1—n2)

h(ln)?’:ﬂ]i)

r3

P «a 1
r3
vi) r=asinné
Solution:
l=au.sinnd. {rzl}
u

Take log and differentiate,
O=loga+logu+logsinn @

lau, 1
u dé sinné

(cosn@)n=0

176



i.e lﬂ+ n.cotnd =0
u do

—uz—nu.cotne
do

s
L 1

= —n[u.(— cos eczne.n)+ cot n@.g—u

= —n[—nu.coseczn&—nucot2 nQJ

= nzulcoseczn0+cot2 nHJ

2
d“u

LUt =U+ nucosec?nd + n2ucot?no
dé

2

a
= u+ nzu.—2 ¥ nzu(coseczne—l)
r

na® , a? n?
+nlu -

=u+ 3 >

r r3 r r3
2
Butu+—l;: 2P2
do h“u
2n2a2_(n2—1)_ P
3 . h2,2
b2 2n?a? (n2 1)
.
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viiy 2=en?
r
Solution:
. a
Given = =¢"?
r
~au=en? (1) [ r==
Differentiating, a. du_ e"n
do
du n
=gt
dé a
0 e
At
2
n
= —en?
a
d2u n2 e"? p?
U+——=u+-—ehf == 7 gnt
do a a a
en0
= —(1+ nz):u(l+ n2) by (1)
a
2
u P
But,u+—2: 5 ZZU(].+n2)
do h<u
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viii) r = a. e/t

Solution:

Givenr = a, e /¢t

cot
1=aue? W {ﬂu:l}
Differentiating w.r.to 6,

du
0= a[u.e‘gcom.cot o +ef%ta

de

Cdu ue? cota
So— == oot =—-UcCotx

de e

d2u du 2
. ——=—COta .— =ucot¢a

do? do

d2u 2 2 2
.'.u+@:u+ucot a=ull+cot° a)=u.coseca
du P
Butut —— = —— — u.cosec’a

do h<u

- P =h%u.cosec’a
h?.cosec’a

r3

S Pa—

w

iXx)r=acoshn @

Solution:

1=au.coshn @ (1) [ r= 1}
u



Differentiating w.r.to 6, a{u.n.sinh né + cosh n@.g—;} =0

% =-nu tanh né (2)
do
2
,-_d_u:—n{unsechzneﬂanh ne.ﬂ}
d6? do
= n|nu.sech?n@—nutanh? ng|
=—nZulsech?ng - tanh? n)|
2
.-.372=—n2u[sech2n9+sech2n9—1] ['.-sech29+tanh29=1
=—nu2sech?ng 1]
=—n2u[2a2u? -1
U +ﬂ =-2na%u® +nu+u
R = —2n%a%® +(n2 +1) u.
2
But,u+d l; = 2P2
do h“u
S th 5 =-2n%a%u’® +(n2 +1) u.
u

~P=-2n%a%h?u° + hz(n2 +1) ul

2n%a’h? . (n2 +1)n2

r° rd

2n?a? (n2 +1)
Pa- st 3
r r
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X) rcoshn  =a
Solution:

Given rcoshn @ =a

sau=coshné ...........

Differentiating w.r.to @,

a. d_u =n.sinh n@
do

d2u

a.—2=n2.cosh né
do
2 2
d—uzn—coshne
dg® a
2
But, u + d l;: 2P2
do h<u
n2
S.U+—.coshn@ =
a h2u?2
u+ﬁ au = P
a’ h2y?
i 2 P
ie. U+nu =
h2u?

P = h2u3(1+ nz):ﬁrﬂ)

Poci3
r

[from (2)]

r3

Problem 12
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Find the central acceleration under which the conic IF =1+ ecos &, can be described.
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Solution:
Given equation is, lu =1+ecoséd % =u
l1+ecos@d 1 e
=—————=—+—.c0S0
| I
.d—uz—gsine
do |
2
.d—gz—gcose
do
2
", P :u+d—u:}+gcos¢9—9cosez}
h2u? do? | | I I
p_hu? _h® 1 u | h?_
S | |.r2 2 g MU
1

5.4 Apses and apsidal distances
Definition

If there is a point A on a central orbit at which the velocity of the particle is perpendicular
to the radius OA, then the point A is called an apse and the length OA is the apsidal distance.

Note : At an apse, the particle is moving at right angles to the radius vector.

2
We know that L =u? (d_uj where U = 1

p2 déo r

At an apse, p:rzl. .. Atan apse, ﬂ=0
u déo

Given the law of force to the pole, find the orbit

Given the central acceleration P, we find the path. We use the equation.
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(D)
: . i du
To solve equation (1), we multiply both sides by 2@ , We have

2U.— + : =2 -
do do do2 h2u? dé

2
du 2dudu 2P du

. d > d [du)z 2P du
ie. 4R 9 (duy _ 2P du
do do\ do h2u2 do

Integrating with respect to 6

2

2 du 2P

us+| — | = du+constant ... 2

[dé’j J.h2u2 @
Problem 13

A particle moves with an acceleration yl3au4 —2(a2 —b2)u5J and is projected from an

[z

apse at a distance (a + b) with a velocity 2ib’ Prove that the equation to its orbit is
a-+

r=a+hbcosé

Solution:
Given P :,ul?)au4 —Z(a2 —bZ)J5J
The differential equation to the path is

u+§=#=hﬁ2[3au2—2(a2—b2)13] (1)

Multiplying (1) by 23—; and integrating with respect to 6 we get

u? +(g—;)2 =f]—’gj'[3au2 —Z(a2 —bZ)J3][ju+C
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2 4
:h_§|:au32( 2b2)“7}+c ................. )

Now h = pv = constant = p,V, Where p, and v, are the initial values of p and v respectively.

Jz

Given v, =

and p, = a + b as the particle is projected from an apse

Hence h:(a+b)a—\/;b:\/; i.e. hzz,u
+

2 (du)? 3 .2 p2u’
So (2) becomes u (—j =2[au” —(a“-b°)—]+c N )]
déo 2
Initially at the apse d_u:O and u =i
do a+
Hence substituting these in (3), we have

1, a @-b)| .
(a+b)?> |(a+b)® 2(a+hb)*

2a _(a—b)+C: 1 LC

“(a+h)® (a+h) (a+h)2

=C=0

du? 3 (.2 w2).4 .2
3) = PP = 2au —(a —b)u —u

%:Jzalﬁ —(a2 —b2)u4 —u? :u\/2au—(a2 —bz)u2 -1 ...(4)
du

ie =dé
uy2au— (@2 —b2)u2 -1
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. 4 r—a .
Integrating, COS 1(Tj =0+a ... (5) where « is constant.

If 6 is measured from the apse line, r=a+band 8 =0.

cos‘l(a%b_a) =0+«

iecosTl=a a=0

Hence (5) becomes cos > (%) =0

. r—a
ie ——=cosd
b

r=a+bcoséd
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Problem 14

A particle moves with a central acceleration equal to g - (distance) and is projected

from an apse at a distance ‘a’ with a velocity equal to n times that which would be acquired in

falling from infinity. Show that the other apsidal distance is

Solution:

“Velocity from infinity” means the velocity that acquired by the particle in falling with

the given acceleration from infinity to the particular point given.

If x is the distance at time t from the centre in this motion, the equation is X = —ﬁs
X

Multiply by 2X and integrate

2

X =2u|l—dx+A=—++A
.[Xs oy
. 2
Where x= o0, X=0. Hence A=0and X :L4
2X
.2 .
When x = a, X=L4 and X= L4
2X 2a
Hence v, = initial velocity of projection =n L4 =— A
28 a“\2
For the central orbit, P = ﬁs =u u®
r

The differential equation of the path is



Initial values are p,=a, vV, = —

2
- _n|u 2_Nhp . 4 _2
Hence h = povo_g 5 or h _2—2|.e.—_—2

a 2h? n

du,, a’u?
—)° = +C
dt9) n2

" u2+(

Initially at an apse, d_u =0and u= i
do a

1 1 1 1
So from (3), — = +C .-
a2 n2a2 2 2.2

Ui (=o)? = +— = e (4)

To get the apsidal distance put 3—: =0 in (4)

alut 1 1 2
2 vt 3T, U =0
n2 a? a°n

Hence

ie atut+n’—1-a°nu*=0

(3

187
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ora*u*—n?a®u*+(n*-1)=0
ie (@ u*-1)[a?u’—(n*-1)]=0

ie.au’=1ora’u’=n’-1
iie au=1lorau= \/n2 -1

1 . . o
U = — gives the point of projection
a

2

ie r=
a n? -1

.". apsidal distance is U =

Problem 15

A particle is moving with central acceleration ,u(r5 —C4r) being projected from an apse

at a distance C with velocity C2. /2?;1 , Show that its path is the curve x*+y*=c*

Solution:

Differential equation of the path is

p d2u
=+ 1
h?r? deo? W
4
Given, P = ,u(rS —c4r): ﬂ[u_s_%J



Multiply by 23—; and integrate,

2 4
v2=hzl:(g—;j +u2}=2y{—6ui6+2(;—2}+c1 )

189
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APCRCUI i%is{\/l—(4c4u4 —3)2}

de

- 4udctdu = —\/1— (4c4u4 —3)2d9

4c*udu
ie) — =déo
Jl (Ac u )
16c*udu
=14dé6.
Jl (ﬁc u I
cos‘1(4c4u4 - 3)= 49+c, ... 3)

mmmyu:139=0:>%:o
C
os,‘1(4c4u4 —3)= 40
4u* —3=cos46
~4ct =r*(3+cos46) =r*(3+2cos? 20 -1)

rt(2+2c0s? 20) = r*[2+2(2cos? 9-1)?]

r4[2+2(4<:os4 60— 4cos? 0+1)]

414+ 42c0s* 020052 0|

= 4r*[1+2cos* 9—2cos? 4]
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= 4r*[cos* 0+ (cos* - 2cos? 9 +1)]

4

4r4[cos 0+(l—cos2 9)2]

4c*

4r*[cos* 6 +sin? 4]

A(rcosO)* + (rsin ) 1=4[x* + y*]

where X =rcoséd,y =rsin g

st =xtyt

Problem 16

In a central orbit the force is u u3(3+ 2a2u2); if the particle be projected at a distance

‘a’ with a velocity /572 in a direction making an angle tan ™ (}é) with the radius, show
a

that the equation to the path isr =atand

Solution:
The differential egn. of the path is
d2u D U u3(3+2a2u2)

+U= =
de? h2u? h2u3

2
hz[:j?l;+u) = ,u(3u +2a2u3)

Multiply by 2 3—; and integrating,

du)?
vzza{(ﬁj +u2}=y[3u2+a2u4]+c (1)

Also,p=rsin ¢

- Initially, P =asin ¢ g
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Now, ¢0 =tan _l(%):ﬂan ¢0 =%
. sin s =}/\/§
. po=asing, = y\/g (2)

Also, initially, v = 5—” given.
\/az

2
du 2 2 .2 4|, M
.'.(1):>y(—j +U° |=pufBu” +au” [+
do | | a2

2 2

2 2.2 4. 4
) du 1 2a“u- +a‘u” +1
i.e. (— —2u?+a%ut+—=— =
a a

2
(d_u)z Ca*ut+2a%u?+1 (afu?+1
déo 2

a a
'.'d_u:i a?u? +1
do a
adu
ie. |-————=1dé#
el

~.cot™(au)= 0 +c,.
. 1 V4
Initially, u= —,8=— ..¢, =0
y a 4 1
1

e r=atand
r tand

~.cot™(au)=6. .. au = cotd
a
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Problem 17
A particle is projected from an apse at a distance ‘a’ with a velocity from infinity, the

acceleration being x u’ show that the equation to its path is r? = a® cos26

Solution:

Eqgn. of motion is, force =-ma

. d_"‘x:_g(dsz_dm dx

S gt2 dtldt dx dt
Weknowv:% = ﬂ:_vﬂ
dt X7 dx
Vv a
s fovdv= -2 "dx
0 X=0C
2 x 0 | H a™® y7i
SVE =2 —— | 0=2 =
-6 6 3 al
2
Now, u+d—L21: 2P2
doc hcu
.
~.h? u+dzu _A - =u u®
do? u?

Multiply by 23—;; and integrating,

du du d2u du
hil2u—+2— = — =24 u®—
{ o~ “do ng} “7 e

2 6



Initially, v=V,u = 1 Also at an apse ﬂ =0
a do

)

V2 :hz[i}zﬁ.iJrC
a2 3 a6
ie. o=+t 1C=0=C

3a 3a

(2) = Also, 2

dé
Also,u:—,d—u:—i£
do r2 deo
.i(ﬁjz_i_i_a“-r“ dr
.r4 do 6 2 6 "déo
—rdr
=do
at—r?

Put z =r2 -.dz=2rdr

- _—dZZng,

at —z?2
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) [z
i.e.cos™ (a—zj:26?+C1

Initially, r=a, i.e. z=r’= a2;9=0 =C, =0

cos‘l(izj ~20 = % — 0526

a a2
.2
i.e.) — =Cos 20
a
r2=a?cos26

5.5 Inverse Square Law

Newton’s Law of Attraction

The mutual attraction between two particles of masses m; and m; placed at a distance ‘r’

1my
r2

apart is a force of magnitude y= where » is a constant, known as the constant of

gravitation.

Problem 18

A particle moves in a path so that its acceleration is always directed to a fixed point and

MU
(distance)

cases that arise .

is equal to Show that its path is a conic section and distinguish between the three

2 3



Solution:
Given P = ﬁz
r
2
The (p, r) equation to the path is h—S dp_
p° dr
i.e. h2 @ = /le—;‘
p r

2

Integrate, 7 = ~# 4 constant
-2p r
2

h”_2u +C
p2 r

We know (p, r) equation of a parabolais  p?=ar

2
2
(p, r) equation of an ellipse is b—z _f8
p r
2
2
(p, r) equation of a hyperbola is b—2 = Ta +1
P

Comparing these equations with equation (2)
We get (2) isaparabolaif C=0
(2) is an ellipse if C is negative
(2) is a hyperbola if C is positive

Hence (2) always represents a conic section

Since h =pv where v is the velocity in the orbit at any point P distant r from the pole,
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equation (2) becomes

2
v=£ic
r
2
ve_H_c . (4)
r
. . . . . 2
Now, C is zero, negative or positive according as v* is equal to, less than or greater than M
r
. . i 2
Hence the path is a parabola, an ellipse or a hyperbola according as vZ = <or> el
r

*k*k
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