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Unit - |

Metric Spaces

Introduction

A Metric Space is a set equipped with a distance function, also called a metric, which
enables us to measure the distance between two elements in the set.

1.1 Definition And Examples
Definition 1.1.1 A Metric Space is a non empty set M together with a function
d: M x M — R satisfying the following conditions.

(i) dx,y)>0forallx,yeM

@i d(x,y)=0ifandonlyifx=y

@) d(x,y)=d(y,x)forallx,yeM

(iv) d(x,z)< d(x,y)+d(y,z)forallx,y,zeM /[ Triangle Inequality ]

d is called a metric or distance function on M and d(x , y) is called the distance
between x and y in M. The metric space M with the metric d is denoted by (M , d) or
simply by M when the underlying metric is clear from the context.

Example 1.1.2 Let R be the set of all real numbers. Define a functiond : M X M - R
by d(x,y)=|x-y|. Thend is a metric on R called the usual metric on R.

Proof.
Letx,yeR.
Clearlyd(x,y)=|x-y|> 0.

Moreover,d(x,y)=0&s [x—-y|= 0.

& x-y = 0.
& X=y
dix,y)=[x-y|
=ly—x|
=d(y ,x).

~d(x,y)=d(y, x).



Letx,y,zeR.
dix,z)=|x—-z]
=Ix-y+y-z|
<|X=yly-z]
=d(x,y) +d(y, 2).
~d(x,z)<dx,y) +d(y, 2).
Hence d is a metric on R.

Note. When R is considered as a metric space without specifying its metric, it is the
usual metric.

Example 1.1.2

Let M be any non-empty set. Define a functiond: M x M =R by d(x, y) = {O ifx=y

lifx#y
Then d is a metric on M called the discrete metric or trivial metric on M.
Proof.

Letx,yeM.

Clearlyd(x,y)>0andd(x,y)=0 x=Yy.

Oifx=y
lifx#y

Also, d(x,y) = {
=d(y, Xx).

Letx,y,zeM.

We shall prove that d(x , z) < d(x,y) + d(y, z).

Case (i) Suppose x =y =z.

Thend(x,z)=0,d(x,y)=0,d(y,z)=0.

~d(x,z)<dx,y) +d(y, 2).

Case (ii) Suppose x =y and z distinct.

Thend(x,z)=1,d(x,y)=0,d(y,z)=1.
~d(x,z)<dx,y) +d(y, 2).



Case (iil) Suppose x = z and y distinct.
Thend(x,z)=0,d(x,y)=1,d(y,2)=1.
2 d(x,z)<d(x,y) +d(y, 2).
Case (iv) Suppose y = z and x distinct.
Thend(x,z)=1,d(x,y)=1,d(y,z)=0.
~d(x,z)<dx,y) +d(y, 2).
Case (V) Suppose X # Y + Z.
Thend(x,z)=1,d(x,y)=1,d(y,z)=1.
2 d(x,z)<d(x,y) +dy, 2).
In all the cases, d(x , z) <d(X, y) + d(y, 2).
Hence d is a metric on M.

1.2 OPEN SETS IN A METRIC SPACE

Definition 1.2.1 Let (M, d) be a metric space. Let a € M and r be a positive real
number. The open ball or the open sphere with center a and radius r is denoted by
Bq4 (a, r) and is the subset of M defined by B4 (a, r) = {x e MAd(a, x) <r}. We write
B(a, r) for B4 (a, r) if the metric d under consideration is clear.

Note. Sinced(a,a)=0<r,a€ Bgy(a,r).
Examples 1.2.2

1. In R with usual metric B(a,r)=(a-r,a+r).
2. In R? with usual metric B(a, r) is the interior of the circle with center a and
radius r.
M if r>1
{a}ifr<i
Definition 1.2.3 Let (M , d) be a metric space. A subset A of M is said to be open in
M if for each x € A there exists a real number r > 0 such that B(x , r) € A.

3. Inadiscrete metric space M, B(a, r) = {

Note. By the definition of open set, it is clear that @ and M are open sets.
Examples 1.2.3

1. Any open interval (a, b) is an open set in R with usual metric.
For,
Letx € (a, b).



Choose a real number r such that 0 <r < min { x-a, b-x }.
Then B(x,r) € (a, b).
~ (a,b)isopeninR.
2. Every subset of a discrete metric space M is open.
For,
Let A be a subset of M.
If A =0, then A is open.
Otherwise, let x € A.
Choose a real number r such that 0 <r < 1.
Then B(x, r) ={x } € A and hence A is open.
3. Set of all rational numbers Q is not open in R.
For,
Let x €Q.
For any real number r > 0, B(x, r) = (X - r, X + r) contains both rational and
irrational numbers.
~ B(x, r) € Qand hence Q is not open.
Theorem 1.2.4 Let (M, d) be a metric space. Then each open ball in M is an open set.

Proof.

Let B(a,r) be an open ball in M.
Letx € B(a,r).

Thend(a, x) <r.
Takeri=r—d(a, x). Thenr;> 0.
We claimthat B(x, r)) € B(a,r).
Let ye B(x, ry). Thend(x,y) <r;.
Now, d(a,y) <d(a,x) +d(x,y)
<d(a,x)+r;
=d(a,x)+r—d(a, x)

=r.

~d(a,y)<r.

~y €B(a,r).

~B(x,r)cB(a,r).



Hence B(a, r) is an open ball.

Theorem1.2.5 In any metric space M, the union of open sets is open.
Proof.

Let {A,} be a family of open sets in M.

We have to prove A =U A, isopen in M.

Letx € A.

Then x € A, for some a.

Since A, is open, there exists an open ball B(x, r) such that B(x, r) € A,.
~B(x,r) €A

Hence A is open in M.

Theorem 1.2.6 In any metric space M, the intersection of a finite number of open sets
IS open.

Proof.

Let A, A,, ....,A, be open sets in M.

We have to prove A=A NA, N ....NA,isopenin M.
Letx € A.

Thenxe AVvi=1,2,...,n.

Since each A, is open, there exists an open ball B(x, r;) such that B(x , r;) € A;.
Taker=min{ry,rp, ..., }.

Clearlyr>0and B(x,r) € B(x,r;) Vi=1,2,...,n.
Hence B(x,r) € AvVi=1,2,...,n

~B(x,r) €A

~ Alisopenin M,

Theorem 1.2.7 Let (M, d) be a metric space and A € M. Then A is open in M if and
only if A can be expressed as union of open balls.

Proof.



Suppose that A is open in M.

Then for each x € A there exists an open ball B(x ,r,) such that B(x, r,) € A.
2 A= UygenB(x,1y).

Thus A is expressed as union of open balls.

Conversely, assume that A can be expressed as union of open balls.

Since open balls are open and union of open sets is open, A is open.

1.3 Interior of a set

Definition1.3.1 Let (M , d) be a metric space and A € M. A point x € A is said to be
an interior point of A if there exists a real number r > 0 such that B(x , r) € A. The set
of all interior points is called as interior of A and is denoted by Int A.

Notel.3.2 Int A € A.

Examplel.3.3In R with usual metric, let A =[1, 2]. 1 is not an interior points of A,
since for any real numberr>0,B(1,r) = (1 —r, 1+ r) contains real numbers less
than 1. Similarly, 2 is also not an interior point of A. In fact every point of (1, 2) is a
limit point of A. Hence IntA=(1, 2).

Notel.3.4(1)Int@ =@ and Int M = M.
(2) Aisopen IntA=A.
(BA)AcSB=IntAc IntB

Theorem1.3.5 Let (M , d) be a metric space and A € M. Then Int A = Union of all
open sets contained in A.

Proof.

Let G=uU{B/Bisanopen set contained in A }

We have to prove Int A = G.

Letx € IntA.

Then x is an interior point of A.

=~ there exists a real number r > 0 such that B(x , r) € A.

Since open balls are open, B(x, r) is an open set contained in A.

~B(x,r)cG.



“XEG.

SINEAC G (1)

LetxeG.

Then there exists an open se B such that B € A and x € B.

Since B is open and x € B, there exists a real number r >0 such that B(x,r) € B € A.
~ X is an interior point of A.

~X€EIntA.

SGCINtA e, )

From (1) and (2), we get Int A =G.

Notel.3.6 Int A is an open set and it is the largest open set contained in A.
Theorem1.3.7 Let M be a metric space and A, B € M. Then

1) Int(AnB)=(IntA) n(IntA)
2) Int(AUB)2(IntA) U (IntA)

Proof.

(H)AnBcA=Int(AnB) < IntA.
Similarly, Int (AN B) CIntB.
AINt(ANB) S (INtA) N(INLA) oo (a)
INNAC AandIntBCS B.
~(IntA) n(IntA)SANB
Now, (Int A) n (Int A) is an open set contained in A NB .
But, Int (A n B) is the largest open set contained in A NB .
~(NtA) N(INEA) SINt(ANB) ooeeee, (b)
From (a) and (b) , we get Int (AN B) =(Int A) n (IntA)

(2) A€ A UB=Int AC Int (A U B)

Similarly, Int BE Int (A U B)
~Int(AuB)2(IntA) U (IntA)



Notel.3.8 Int (A U B)need not be equal to(Int A) U (Int A)

For,

In R with usual metric, let A=(0,1]and B=(1, 2).

AuB=(0,2).

~Int(AuB)=(0,2)

Now, Int A(0,1)and Int B=(1, 2) and hence (Int A) U (IntA)=(0,2)—{2}.
~Int (AU B)#(Int A) U (Int A)

1.4 Subspace

Definition1.4.1 Let (M , d) be a metric space. Let M; be a nonempty subset of M.
Then My is also a metric space under the same metric d. We call (M, , d) is a subspace
of (M, d).

Theorem1.4.2 Let M be a metric space and M; a subspace of M. Let A € M;. Then A
Is open in My if and only if A =G n My where G is open in M.

Proof.
Let B,(a, r) be the open ball in M with center a and radius r.

Then By(a, r) = B(a, r) n Mywhere B(a, r) is the open ball in M with center a and
radius r.

Let A be an open set in M.
Then A = Uy ea Bi(X, 1(X))
=Uxea[B(x, r(x)) N My)]
= [Uxea B(x, (X)) N M;
=G N My where G = Uy ea B(X, (X)) which is open in M.
Conversely, let A = G n M; where G is open in M.
We shall prove that A is open in M;.
Let x €EA.
Then x € G and x € M;.

Since G is open in M, there exists an open ball B(x , r) such that B(x,r) € G.
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~BXx,nNnnNnMcGn M.
i.e.Bi(a,r) € A
~ A'is open in M.

Examplel.4.3 Consider the subspace M; =[0, 1] U [2, 3] of R.

A =10, 1] isopenin M; since A = (-é ,g) c M, where (-% ,g)is open in R.
Similarly, B=[2,3], C=[0,3], D=, 1] are open in My,

Note that A, B, C, D are not open in R.

1.5 Closed Sets.

Definition1.5.1A subset A of a metric space M is said to be closed in M if its
complement is open in M.

Examples 1.5.2

1. In R with usual metric any closed interval [a, b] is closed.
For,

[a,b]°=R-[a,b]=(-,a)u (b, ).

(-o,a)and(b, «) are open sets in R and hence (-, a) U (b, «) is open in R.
i.e.[a,b] isopeninR.

~ [a, b] isopeninR.

2. Any subset A of a discrete metric space M is closed since A° is open as every
subset of M is open.
Note. In any metric space M, @ and M are closed sets since @ = M and M® = @ which
are open in M. Thus @ and M are both open and closed in M.

Theorem 1.5.3 In any metric space M, the union of a finite number of closed sets is
closed.

Proof.
Let A;, A,, ...., A, be closed sets in a metric space M.
LetA:Al UA2 Uu.... UAn

We have to prove A is open in M.

10



Now, A°=[A; UA,U....UA.J
= A NAS N .... N AS [ By De Morgan’s law.]
Since Ajis closed in M, Afis open in M.
Since finite intersection of open sets is open, A] NA5 N .... N A is open in M.
i.e. A®is openin M.,
~ Aisclosed in M.
Theorem 1.5.4 In any metric space M, the intersection of closed sets is closed.
Proof.
Let {A,} be a family of closed sets in M.,
We have to prove A=n A, isopen in M.
Now, A°= (N A,)°
= UA, [ ByDe Morgan’s law.]
Since A, is closed in M, A¢ is open in M.
Since union of open sets is open, UA;, is open.
i.e. A® isopenin M.
~ Ais closed in M.

Theorem 1.5.5 Let M, be a subspace of a metric space M. Let F,€ M;. Then F; is
closed in My if and only if F; = F n My where F is a closed set in M.

Proof.

Suppose that F; is closed in M.

Then M, — Fyis open in M.

&~ M;—F; =A N M;where A is open in M.
Now, F; = A°n M.

Since A is open in M, A®is closed in M.

Thus, F; = F n M; where F = A% is closed in M.

Conversely, assume that F; = F n M; where F is closed in M.

11



Since F is closed in M, F° is open in M.

-~ F*n My is open in M.

Now, M; — F; = F* n My which is open in M.
~ Fqisclosed in My.

1.6 Closure.

Definition1.6.1 Let A be a subset of a metric space (M, d). The closure of A, denoted
by A, is defined as the intersection of all closed sets which contain A.

i.e. A=N{B|Bisclosedin Mand B 2 A}
Note 1.6.2

(1) Since intersection of closed sets is closed, A is a closed set.
(2) A2 A
(3) Ais the smallest closed set containing A.
(4) Alisclosed © A=A
GYA=A.
Theorem 1.6.3Let (M, d) be a metric space. Let A, B € M. Then

(DAcB=>ACB

(2)AuB=A U B

(3)ANBSA NB
Proof.

(1) LetACB.
B2B2A.
Thus B is a closed set containing A.
But A is the smallest closed set containing A.
~ACcCB.
(2)AS AUB.
~by (1), A AUB.
Similarly , B € AUB..
~AUBCAUB (a)
Alis a closed set containing A and B is a closed set containing B.
~ A U Bis a closed set containing AU B .
But AUB is the smallest closed set containing A UB .
~ AUBCAUB (b)
From (a) and (b) we get AUB=A U B.

12



(3)ANBCA.
~ ANBCA.
Similarly, ANBCSB .
~ ANBSANB
Notel.6.4 ANB need not be equalto ANB .

For example, in R with usual metrictake A=(0,1)andB=(1, 2).
ANB=0=>ANB=0.
ButAnB=[0,1]n[1,2]={1}.
~ANB#ANB.
1.7 Limit Point.

Definition 1.7.1 Let (M, d) be a metric space and A € M. A point X € M is said to be
a limit point of A if every open ball with center x contains a point of A other than x.

ie. Bx,nN(A-{x})#0 forallr>0.

The set of all limit points of A is denoted by A .

Example 1.7.2 In R with usual metric let A= (0, 1).

Every open ball with center 0, B(0, r) = (-r, r) contains points of (0, 1) other than 0.
=~ 0'is a limit point of A.

Similarly, 1 is a limit point of A and in fact every point of A is also a limit Point of A.

For each real number x < 0, if we choose r such that 0 < r < —g , then B(x , 1)
contains no point of (0, 1), and hence x is not a limit point of limit point of A.

Similarly, every real number x > 0 is not a limit point of A.
Hence A'=[0, 1].

Example 1.7.3 In R with usual metric, Z has no limit point.
For,

Let x be any real number.

If X is an integer, then B(x , %) =(X- % , X + %) has no integer other than x.

~ X is not a limit point of Z .

13



If x is not an integer, choose r such that 0 < r <|x-n| where n is the integer closest to x.
Then B(x, r) = (x—r, X + r) contains no integer.

Hence x is not a limit point of Z.

Thus no real number x is a limit point of Z.

~Z'=0.

Example 1.7.4 In R with usual metric, every real number is a limit point of Q .

For,

Let x be any real number.

Every open ball B(x, r) = (X —r, X + r) contains infinite number of rational numbers.
~ X 1s a limit point of Q.

~Q'=R.

Theorem 1.7.5 Let (M, d) be a metric space and A € M. Then x is a limit point of A
If and only if every open ball with center x contains infinite number of points of A.

Proof.
Let x be a limit point of A.

We have to prove every open ball with center x contains infinite number of
points of A.

Suppose not.

Then there exists an open ball B(x , r) contains only a finite number of points
of A and hence of (A—{ x }).

LetB(x, ) N(A-{x})={xq, X, ..., Xp}.
Letry=min{d(x,x)/i=1,2,....,n}.

Since x #x;,d(X,X)>0Vi=1,2,...... , n and hence r; > 0.
Moreover, B(x,r) N (A—{x})=0.

~ X Is not a limit point of A.

This is a contradiction.

14



=~ every open ball with center x contains infinite number of points of A.

Conversely, assume that every open ball with center x contains infinite number
of points of A.

Then, every open ball with center x contains infinite number of points of

A-{x}
Hence x is a limit point of A.

Note 1.7.6 Any finite subset of a metric space has no limit points.

Theorem 1.7.7 Let M be a metric space and A€ M. Then A= AUA"'.
Proof.

Letx EAUA".

We claim that x € A .

Suppose X ¢ A .

Then,x e M -A.

Since A is closed , M - A is open.

-. there exists an open ball B(x , r) such that B(x , 1) S M - A .
~BX,DNA=0.

~BXxX,NNA=0.[+AcCA].

~Xx&AUA', which is a contradiction.

“XEA.

SAUA'CA (1)

Let x€A.

We have to prove x EAU A ' .
If x € A thenx EAUA" .
Suppose x € A.

We claim that x €A .
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Suppose x & A
Then there exists an open ball B(x , r) suchthat B(x, ) n (A-{x})=0.
~BXx, NN A=0.[+x¢A]
~ACSB(X,n°.
Since B(x, r) is open, B(x , r)° is closed.
Thus B(x, r)° is a closed set containing A.
But, A is the smallest closed set containing A.
Hence A € B(x, )°.
Now, X & B(x, )°.
~ x & A, which is a contradiction.
~x€A'andhencexEAUA".
ACAUA" )
From (1) and (2), we get A= AUA ",
Corollaryl.7.8 A is closed if and only if A contains all its limit points.
Proof.
Aisclosed ©® A=A,
©A=AUA'.
SACA'.
Corollary 1.79x €A B(X, )N A#@Vr>0.
Proof.
XEA=>XEAUA".
~XEA orxe A'.
IfxeA,thenxeB(x,rNn A.
Ifxe A' thenB(x, NN (A-{x})#0Vr>0.

ThusB(x, NN A#@Vvr>0.
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Conversely, letB(x, )N A#@V r>0.
We have to prove x € A

Ifx €A, thenx €A.
Ifx¢ A thenA=A-{x}.
~BX,nnNn (A-{x})#0Vr>0.
~ X is a limit point of A.
~XE A
ZXEA,
Corollary 1.7.10 x€ A < G n A #@ for all open set G containing x.
Proof.
Letx €A.
We have to prove G n A #@ for all open set G containing Xx.
Let G be an open set containing X.
Then there exists an open ball B(x , r) such that B(x, r) € G.
Sincex € A, B(x,r) N A#®and hence G N A # @.
Conversely, assume that G N A # @ for every open set containing x.
ThenB(xX, NN A#@Vr>D0.
~XEA.
1.8 Bounded Sets in a Metric space.

Definition 1.8.1 Let (M, d) be a metric space. A subset A of M is said to be bounded
if there exists a positive real number k such that d(x , y) <k V X,y € A.

Example 1.8.2 Any finite subset A of a metric space (M, d) is bounded.
For,
Let A be any finite subset of M.

If A= then A is obviously bounded.
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Let A# @ .Then {d(x, y)/x,y € A} is a finite set of real numbers.
Let k =max {d(x, y)/x,y € A}.

Clearly d(x,y)<k forall x,y € A.

=~ A'is bounded.

Example 1.8.3 [0,1] is a bounded subset of R with usual metric since d(x , y) <1 for
all x,ye[0,1].

Example 1.8.4 (0, %) is an unbounded subset of R.

Example 1.8.5 Any subset A of a discrete metric space M is bounded since
dix,y)<1forallx,ye€A.

Note 1.8.6 Every open ball B(x, r) in a metric space (M, d) is bounded.
For,

Lets,te B(x,).

d(s,t)<d(s,x)+dx,t)<r+r.

~d(s,t)<2r.

Hence B(x , r) is bounded.

Definition 1.8.7 Let (M, d) be a metric space and A € M. The diameter of A, denoted
by d(A), is defined by d(A)=l.u.b {d(x, y)/x,y € A}.

Example 1.8.8 In R with usual metric the diameter of any interval is equal to the
length of the interval. The diameter of [0, 1] is 1.

1.9 Complete Metric Spaces.

Definition 1.9.1 Let (M, d) be a metric space. Let (x,) be a sequence in M. Let x € M.
We say that (X,) converges to x if for every € > 0 there exists a positive integer N such
that d(x, , X) < € for all n > N. If (x,) converges to x , then x is called a limit of (x,)
and we write lim, _, . X, =X 0r X, = X.

Note 1.9.2 (1) x, — x if and only if for every ¢ > 0 there exists a positive integer N
such that x, € B(x , €) ¥ n = N. Thus, the open ball B(x , r) contains all but a finite
number of terms of the sequence.

(2) x, - x if and only if (d(x,, X) ) = O.
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Theorem 1.9.3 The limit of a convergent sequence in a metric space is unique.
Proof.
Let (M, d) be a metric space and let (x,) be a sequence in M.
Suppose that (x,) has two limits say x and y.
Let £ > 0 be given.
Since X, — X, there exists a positive integer N, such that d(x, , X) < &/2 for all n > N;.
Since x, — Y, there exists a positive integer N, such that d(x, , X) < /2 for all n > N,.
Let N=max { N;, N, }.
Then, d(x, y) < d(x, Xn) +d(Xn, Y)
< gf2+¢/2
~d(x,y)<e.
Since ¢ > 0 is arbitrary , d(x , y) = 0.
SX =Y.
Theorem1.9.4 Let (M, d) be a metric space and A € B. Then

Q) X is a limit point of A < there exists a sequence (x,) of distinct points
in A such that x, = X .

(i) X € A o there exists a sequence (X,) in A such that x, = X .
Proof.

(1 Let x be a limit point of A.
Then every open ball B(x , r) contains infinite number of points of A.
Thus, for each natural number n, we can choose x, € B(x, %) such that
Xn F Xq, X2, X3, ..., Xn-1 -
Now, (X,) is a sequence of distinct points in A and d(X, , X) < % v n.
# (d(%, X)) > 0.

Xy o X

Conversely, assume that there exists a sequence (X,) of distinct points in
A such that x, —» X .

We have to prove x is a limit point of A.
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Let it be given an open ball B(x , €).

Since x, — X, there exists a positive integer N such that
d(x,,x)<eVvVn=>N.

~ X, €EB(X,e)vn=>N.

Since x, are distinct points of A, B(x , €) contains infinite number of
points of A.

Thus, every open ball with center x contains infinite number of points of
A.

Hence x is a limit point of A.

(i) Letx€eA.
Thenx €eAU Al
If X € A then the constant sequence X, X, X, ..... iS a sequence in A
converges to X.
If x ¢ A, then x €A,
~ X is a limit point of A.
=~ by (i), there exists a sequence (X,) in A converges to X.
Conversely, assume that there exists a sequence (x,) in A such that
Xy = X.
Then every open ball B(x , €) contains points in the sequence and hence
points of A.

SXEA.

Definition 1.9.5 Let (M, d) be a metric space. Let (X,) be a sequence in M. Then (x,)
is said to be a Cauchy sequence in M if for every € > 0 there exists a positive integer N
such that d(x, , X) < eforalln, m > N.

Theorem 1.9.6 Every convergent sequence in a metric space (M , d) is a Cauchy
sequence.

Proof. Let (x,) be a convergent sequence in M converges to X € M.
We have to prove (x,) is Cauchy.
Let € > 0 be given.

Since x, — X, there exists a positive integer N such that d(x, , X) < e/2 forall n > N.
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s d(Xn , Xm) < d(Xq, X) +d(X, Xm)
<g/2+¢g/2foralln, m>N.

& d(Xn, Xm) < eforalln, m>N.
Hence (x,) is a Cauchy sequence.

Definition1.9.7 A metric space M is said to be complete if every Cauchy sequence in
M converges to a point in M.

Example 1.9.8 R with usual metric is complete.

Theorem 1.9.9 A subset A of a complete metric space M is complete if and only if A
is closed.

Proof.

Suppose that A is complete.

We have to prove A is closed.

For that it is enough to prove A contains all its limit points.
Let x be a limit point of A.

Then there exists a sequence (X,) in A such that x, = X .
Since A is complete x € A.

=~ A contains all its limit points.

Hence A is closed.

Conversely, assume that A is a closed subset of M.

Let (x,) be a Cauchy sequence in A.

Then (x,) be a Cauchy sequence in M.

Since M is complete, there exists X € M such that x, = X ..

Thus (x,) is a sequence in A such that x, = X .

~“XEA.

21



Since A is closed A = A and hence x € A.
Thus every Cauchy sequence (x,) in A converges to a point in A.
~ A'is complete.

Note 1.9.10 Every closed interval [a , b] with usual metric is complete since it is a
closed subset of the complete metric space R.

Theorem 1.9.11 [ Cantor’s Intersection Theorem |

Let M be a metric space. Then M is complete if and only if for every sequence ( F, )
of nonempty closed subsets of M suchthatF; 2 F22 ....F,2 ....and (d(F,)) = 0,
> F,£0.
n=1"n

Proof.
Let M be a complete metric space.

Let ( F,) be a sequence of nonempty closed subsets of M such that

and (d(F,))—=0, ()
We have to prove N, F, #0 .

For each natural number n , we choose a point x,, in F,.

By (1), Xn, Xn+1, Xn+2, -.... all lie in F,,.

le.XnEFVM=>=n. 3)
We claim that (x,) is a Cauchy sequence in M.

Let € > 0 be given.

Since (d(F,) ) — 0, there exists a positive integer N such that
d(F,)<evn=N.

Inparticular, d(Fy) <e. 4)
Now, letm, n > N.

Then by (3), Xm , X, € Fy.
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~ d(Xm, Xn) <€ .[By (4)]

Thus d(Xpym , Xp) <eVvVm,n>N.

~ (X,) is a Cauchy sequence in M.

Since M is complete, there exists x € M such that x, = X .
We show that x € N, Fp.

For any natural number n, X, Xn+1 , Xn+2 IS @ S€QUENCe in F, converges to X.

“XEF,.

Since F, is closed, F, = F,.
~XEF,.

= X € NpZy Fo.

Hence N;_, F, = 0.

Conversely, assume that for every sequence ( F, ) of nonempty closed subsets
of Msuchthat F, 2 F,2 ... F,2....and (d(F,)) -0, N, F, #0.

We have to prove M is complete.
Let (x,) be a Cauchy sequence in M.
We claim that x,, —» x for some x € M.

Define a decreasing sequence of setsF; 2 F, 2 ....2F, 2 ...... as follows
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~F, 2F, 2......2F, 2......
Thus (F,, ) is a decreasing sequence of closed sets.

Since (x,) is a Cauchy sequence, for given € > 0 there exists a positive integer
N such that d(X, , Xy,) <€ ¥ h,m > N.

~d(Fy) <e.
Now, F, € FyVn>N=d(F,)<evn=N.
But d(F,,) = d(F,,) .
SAF)<eVNSN (5)
~ (d(F)) - 0.

Hence by hypothesis, N, F, # @ .

Letx € N, Fy .

Thenx, X, €F, .

~dX, X) < d(Fy) -

~d(X,,X)<e Yn=N [By(5)]

S Xp = X

~ M is complete.

Note 1.9.12 In the above theorem N,F, contains exactly one point, since if it

contains distinct points x and y, then d(F,,) = d(x , y) for all n and hence ( d(F,,) ) does
not converge to 0.

1.10 Baire’s Category Theorem.
Definition 1.10.1 A subset A of a metric space M is said to be nowhere dense in M if
INtA=¢.

Definition 1.10.2 A subset A of a metric space M is said to be of first category in M if
A can be expressed as a countable union of nowhere dense sets.
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If A is not of first category, then we say it is of second category.
Examplel.10.3 In R with usual metric, every finite subset A is nowhere dense.
Example 1.10.4 In R with usual metric, the subset Q is of first category.

For,

Since Q is countable it can be expressed as countable union of singleton sets and each
singleton set is nowhere dense in R.. Thus, Q is countable union of nowhere dense
sets. Hence Q is of first category.

Example 1.10.5 If M is a discrete metric space, then any nonempty subset A of M is
not nowhere dense set. Also A is of second category.

Theorem 1.10.6 Let M be a metric space and A € M. Then A is nowhere dense if and
only if each nonempty open set contains an open ball disjoint from A.

Proof.
Suppose that A is nowhere dense.

Let G be a nonempty open set.

Since A is nowhere dense, INntA=@ .

~. A does not contain G.

- there exists x € G such that x & A.

x & A = there exists an open ball B(x , r;) such that B(x , r)) NA=@ .
G is open = there exists an open ball B(x , r,) such that B(x, r,) € G.
Letr=min{ry,n}

Then G contains B(x , r) and disjoint from A.

Conversely, assume every nonempty open set contains an open ball disjoint from A.
We claim that Int A= ¢ .

Letx €A.

We claim that x is not an interior point of A.
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Suppose X is an interior point.

Then there exists an open ball B(x , r) such that B(x,r) € A.
Now, every open ball in B(x, r) intersects with A, which is a contradiction.
Hence x is not an interior point of A .

~IntA=9.

=~ A'is nowhere dense set.

Theorem 1.10.7 [Baire’s Category Theorem |

Any complete metric space is of second category.

Proof.

Let M be a complete metric space.

We claim that M is not of first category.

Let (A,) be a countable collection of nowhere dense sets in M.
We shall prove that U;Z; A, # M.

Since M is open and A; is nowhere dense, there exists an open ball B, of radius less
than 1 suchthat BN A; =9 .

Let F, be the concentric closed ball whose radius is g times that of B;.
Now, Int F, is open and A, is nowhere dense.

~ Int F, contains an open ball B, of radius less than % suchthatB, N A, =0 .

Let F, be the concentric closed ball whose radius is g times that of B,.
Now, Int F, is open and A; is nowhere dense.

~ Int F, contains an open ball B; of radius less than % suchthat Bs N Az =0 .

Let F5 be the concentric closed ball whose radius is é times that of Bs.

Proceeding like this we get a sequence of nonempty closed balls F,, such that
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FL2F2...... Fo2....andd(Fn) <.
s~ (d(Fy))—>0asn - o,
Since M is complete, By Cantor’s intersection theorem, there exists a point x € M
Such that x € N;Z; Fy.
Moreover, F, N A, =@ Vn.
“XEA, Vn.
X & U A
& Une A = M.
Hence M is of second category.
Corollary 1.10.8 R is of second category.

Proof.

R is a complete metric space. Hence, R is of second category.
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Unit 11
CONTINUITY
2.1 Continuity of functions.

Definition 2.1.1 Let (M;, d;) and (M, , d,) be two metric spaces. Let a € M;. A
function f: M; — M, is said to be continuous at a if for each £ >0 , there exists & >0
such that 0<d;(x, a)<d = d,(f(x), f(a)) <e. The function f is said to be
continuous if it is continuous at every point of M.

Note 2.1.2 d;(x, a) <8 = d,(f(x), f(d)) <e ©x € B (a, )= f(x) € B (f(a), &).
& f(B (a 8))<B (f(a), ¢).

Theorem 2.1.3 Let (M, dy) and (M,, d,) be two metric spaces. A function

f: M, — M, is continuous if and only if f*(V) is open in M; whenever V is open in
M.

Proof. Assume that f is continuous.

Let V be open in M;.

We have to prove f*(V) is open in M;.

If f1(V) = ¢, then it is open.

Let (V) # o.

We shall prove that for each x € (V) there exists an open ball B(x , 3)
such that B(x , 8) € (V).

Let x € f*(V). Then f (x) € V.

Since V is open, there exists an open ball B(f(x),&) such that
B(f(xX),e) S V......... (1)

Now, since f is continuous, there exists an open ball B(x, 6) such that
f(B(x, 8)) € B(f(x), ).
By (1), f(B(x, 8)) € V and hence B(x , 8) € f*(V).

~ (V) is open.
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Conversely, assume that (V) is open in M; whenever V is open in M,.

To prove f is continuous, we shall prove that f is continuous at every point
of M.

Let x € M;and let € > 0 be given.
We know that, B(f(x) , €) is an open set in M.
By hypothesis, f*(B(f(X) , €)) is open in Mj.
Also, x € FH(B(f(x) , €)) .
=~ there exists 6 >0 such that B(x , 8) < f'l(B(f(x) , €)).
~f(B(x, 3)) € B(f(x), ¢).
f is continuous at x.
Since x € My is arbitrary, f is continuous on M;.

Note 2.1.4 f is continuous if and only if inverse image of every open set is open.

Theorem 2.1.5 Let (M, , dy) and (M, , d,) be two metric spaces. A function

f: M; — M, is continuous if and only if £1(W) is closed in M; whenever W is closed
in M.

Proof. Assume that f is continuous.

Let W be a closed set in M.

Then WC is an open set in M.
By hypothesis, f*(W°) is open in M;.
C
But (W)= [fi(w)|
-1 C. .
[f (W)] IS open in M.
~ FH(W) is closed in M;.
Conversely, assume that £1(W) is closed in M, whenever W is closed in M.

To prove f is continuous, we shall prove that f*(V) is open in M; whenever V
IS open in M.
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Let V be an open set in M.

~ VCis aclosed setin M,.

By hypothesis, f*(V°) is a closed set in M;.
. -1 C. .
(i.e) [f (V)] is a closed set in M.

~ f1(V) is an open set in M;.
Thus, inverse image of every open set is open under f.
=~ T is continuous.
Note 2.1.6 f is continuous if and only if inverse image of every closed set is closed.

Theorem 2.1.7 Let (M, d;) and (M, d,) be two metric spaces. Then f: M; — M, is
continuous if and only if f(A)< f( A) forall A € M.

Proof. Assume that f is continuous.
We have to prove f(A)< f(A) for all A © M,.
Let A € M;. Then f(A) € M,.
f(A) is a closed set in M.
Since f is continuous, f(f(A) ) is closed in M.
Since f(A) 2 f(A), F1(f(A) 2 A
But A is the smallest closed set containing A.
~ ACf(f(A)).
~f(A) S TA).
Conversely, let f(A)< f(A) for all A € M.

To prove f is continuous, we shall prove that f1(W) is closed in M; whenever
W is closed in M.

Let W be a closed set in M.
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By hypothesis, f(f*(W)) < frL(w) .

W

N

=W (Since W is closed.).

Thus, f(f*(W)) € W.

~ Fiw) € F1(w) .

Also, (W) < f1(W) .

~Frow) = FHw) .
Hence f1(W) is closed.

~ fis continuous.

Theorem 2.1.8 Let (M., d;) and (M, , d,) be two metric spaces. Let x € M. A
function f: M; — M, is continuous at x if and only if x, — x in M; = f(x,)— f(X) in
M.

Proof.
Suppose that f is continuous at Xx.

Let (x_ ) be asequence in My such that x, — x.

We shall prove that f(x,) — f(x) .

Let € > 0 be given.

Since f is continuous at X, there exists 6 >0 such that

dy (y,x)<dé=d, (fly), f(X)) <& ............ (1).
Since x, — x, there exists positive integer N such that
d; (X, ,X)<dVn>N.

ady (F(X, ), f(X) <evVn>N.[By(1)]

- f(x,)— () .

Conversely, assume that x, — x = f(x,)— f(X) .

We have to prove f is continuous at X.
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Suppose not. Then there exists £ > 0 such that for all 6 >0
f(B(x, 8)) € B(f(x) , ¢).
Thus for each natural number n, f(B(x , %)) Z B(f(x) , ¢).
Choose X, suchthat X, € B(X, ,d)but f(x ) % B(f(x),¢).
adp (X, , X< %for allnand d, (f( x, ), f(x)) > ¢ forall n.

» X, — xand f(x ) does not converge to f(x).
This is a contradiction.

-~ fis continuous at X.

Problem 2.1.9 Let (M., d,) and (M, , d,) be two metric spaces. Then prove that any
constant function f : M; — M, is continuous.

Solution.
Let f: M; — M, be given by f(x) = ¢ where ¢ € M, is a constant.
We have to show that f is continuous.
Let V be an open set in M,.

¢ ifxeV
M, ifxeV "’

Now, F1(V) = {
In both cases , f*(V) is an open set.
Thus, inverse image of every open set is open under f.

~ fis continuous.

Problem 2.1.10 Let My, M5, M3 be metric spaces. If f: M; - M, and g: M, — M;
are continuous, then prove that gof : M; — M, is also continuous.

I.e. composition of two continuous functions is continuous.
Solution.
Let W be an open set in M5 .

Since g is continuous, g**(W) is open in M.

Since f is continuous, f*(g"1(W)) is open in M;.
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Now, f(g™ (W) = (g o D) (W).
= (g o) (W) is open in M;.
Hence g o f is continuous.

Problem 2.1.11 Let f be a continuous real valued function defined on a metric space
M. Let A = { x € M|f(Xx) > a where a €R }. Prove that A is closed.

Solution.
A={xeM|f(x)>awherea€R}
={xeM|[f(x) €[a,x)}
=fi([a,»)).
Now,[ a, ) is a closed subset of R.
Since f is continuous, ([ a, ) ) is a closed subset of M.
~ A'is closed.
Problem 2.1.12 Letf: M - R and f : M — R be continuous functions. Prove that
f+g : M — R is continuous.
Solution.
Letxe M.
We show that f + g is continuous at x.
Let x, beasequencein M suchthat x, — x.
Since f and g are continuous, f(x,) — f(x) and g(x,) — g(x) .
= f(%n) + 9(xy) — f(X) + g(x) .
Le. (f+g)(x,) — (f+g)(x) .
=~ f+g is continuous at x.

Note 2.1.13 In a similar way, we can prove that f — g, fg, cfif c € R and é

iIf g(x) # 0 V x € M are continuous.
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2.2 Homeomorphism.

Definition 221 Let (M , d;) and (M, , d,) be two metric spaces.
A function f: M; — M, is said to be a homeomorphism if the following holds.

(1) fis a bijection.
(2) f is continuous.

(3) f* is continuous.

M; and M, are said to be homeomorphic if there exists a homeomorphism between
them.

Definition 2.2.2 A function f:M; — M, is said to be an open mapping if for every
open set G in My, f(G) is open in M..

I.e. image of every open set in M, under f is open in M.

Definition 2.2.3 A function f: M; — M, is said to be a closed mapping if for every
closed set F in My, f(F) is closed in M.

I.e. image of every closed set in My under f is closed in M,.
Theorem 2.2.4 Let f : M; — M, be a bijection. Then the following are equivalent.

(2) f is a homeomorphism
(2) f is a continuous open map
(3) f is a continuous closed map

Proof.
We shall prove that (1) & (2) and (1) © (3) .
Suppose that f is a homeomorphism.
Then f and f* are continuous.
We have to prove f is an open mapping.

Let G be an open set in M.

Since f* : M, — My is continuous, (f1)~1(G) is open in M.
I.e. f(G) is open in M.

~ fis an open map.

Conversely, assume that f is a continuous open map.
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We prove that f* is continuous.

Let G be an open set in M.

Since f is an open mapping, f(G) is open in M,.
i.e. (FH~L(G) is open in M.

« 1 is continuous.

The proof of (1) & (3) is similar.

Note 2.2.5 Let f: M; — M, be a homeomorphism. Then a subset G of M is open in
M, if and only if f(G) is open in M.

For,
Since f is a homeomorphism, f is a continuous open mapping.

Since f is open mapping, G is open in M; = f(G) is open in M.

Since f is continuous, f(G) is open in M, = f1(f(G)) = G is open in M;.
~ G isopenin M; & f(G) is open in My,

Thus a homeomorphism f: M; — M, gives not only a 1 — 1 correspondence
between the elements of the two spaces but also a 1 — 1 correspondence
between their open sets.

Note 2.2.6 Let f : M; — M, be a homeomorphism. Then a subset F of M is closed in
M, if and only if f(F) is closed in M.

Example 2.2.7 The metric spaces (0,1) and (0 , «) with usual metric are
homeomorphic.

For,

Define f: (0,1) - (0, ) by f(x) = X

1-x
We show that fis 1 — 1 and on to.
Letx,y€e(0,1).

o X
00 = 1Y) = 7= -1

=>x(1-y)=y(1l-x
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SX-XY=y-XYy
S>X=Y.

Hence fis1—1.

Lety € (0, ).

- x
Now, f(X) =y = =Y

=>Xx=y(1-X)
=X =Yy —Xy
SX+XYy=y

=>x(1+y)=y

1yTy € (0, 1) is the pre image of y under f.
~ fisonto.

Thus f is a bijection and hence : (0, ) — (0, 1) by f(x) = ﬁ is a bijection.

Also, f and f* are continuous.
=~ fis a homeomorphism.
2.3 Uniform Continuity.

Definition 2.3.1 Let (M, d,) and (M, , d,) be a metric space. A function f: M; - M,
Is said to be uniformly continuous on My, if for every € > 0 there exists § > 0 such that

di(x, y) <8 = d(f(x) , f(y)) <e.

Note 2.3.2 Every uniformly continuous function is continuous but the converse need
not be true.

Example 2.3.3 The function f: [0, 1] = R given by f(x) = x? is uniformly continuous
on [0, 1].

For,

Let £ > 0 be given.
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Letx,y €0, 1].
Now, |f(0)- f(y)| = [x*- y?|
=x+yl [x-y]|

<2|x-y|

€

Choose 6= 5

Then, |x - y| <8 = [f(x)- f(y)| <.
=~ fis uniformly continuous on [0, 1] .

2.4 Discontinuities of R
Definition 2.4.1

A function f: R—R is said to approach to a limit £ as x tends to a if given ¢ > 0
there exists & > 0 such that 0 < [x-a|< § = [f(X) - £ | < 0 and we write JT."= ¢,
Definition 2.4.2

A function f is that to have ¢ as the right limit at x=a if given & > 0 there exists
&> 0 such that a < x < a+ §=|f(X) - £ |< € and we write , 0 = ¢

Also we denote the right limit £ by f(a+)

A function f is that to have ¢ as the right limit at x=a if given & > 0 there exists

5>0suchthata<x <a—&= [f(X) - £ |< € and we write , =

Also we denote the right limit £ by f(a-)

Note 1
Jm(x) = £ if and only if i = f(x)= , imT(x)= £ .
le.
Jim“f(x) = ¢ if and only if the left and right limits of f(x) at x = a exist and are
equal.
Note 2

The definition of continuity of f at x=a can be formulated as follows.
f is continuous at a if and only if f(a+) = f(a-)=f(a) .
Note 3

If M “f(x) does not exist then one of the following happens.
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1. im"(x) does not exists.
2. mEx) does not exists.
3. mE(x) and , '™ ™F(x) exists and are not equal.
Definition 2.4.3
If a function f is discontinuous at a then a is called a point of discontinuity for
the function.
If a is a point of discontinuity of a function then any one of the following cases
arises.
i lim (%) exists but is not equal to f(a).
ii. Jim B (x) and |, ™ FF(x) exists and are not equal.
iii.  Either ,™™f(x) or , '™=f(x) does not exists.
Definition 2.4.4
Let a be a point of discontinuity for f(x). a is said to be a point of discontinuity
of the first kind if , '™ 5f(x) and , " ™f(x) exists and both of them are finite and not
equal. a is said to be a point of discontinuity of the second kind if either , "™ ™(x) or
Jim E(x) does not exist.
Definition 2.4.5
Let ACR. A function f :A — R is called monotonic increasing if x , ye A and
X<y = f(x) < f(y).
f is called monotonic decreasing if X, ye A and x > y = f(x) >f(y).
f is called monotonic if it is either monotonic increasing or monotonic decreasing.
Theorem 2.4.6
Let f:[a, b] &> R be a monotonic increasing function. Then f has a left limit and
a right limit at every point of (a, b). Also f has a right limit at a and f has a left limit at
b. Further
X <y = f(x+) <f(y-)
Similar result is true for monotonic decreasing functions.
Proof
Let f: [a, b] &> R be monotonic increasing.

Let xe[a, b]. Then {f(t) | a <t < x} is bounded above by f(x).
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We claim that f(x-) = ¢

Let € >0 be given. By definition of l.u.b there exists t such that a <t < x and
?-e<f(t) <.
st<u<x=L-e<ft)<fu)<¢

(- f 1s monotonic increasing)
= -e<fuy s
S X- 0 <US X = £- g < f(u) < £ where 6 = x-t
~f(x-)=+¢
Similarly we can prove that f(x+) =g. I. b. {f(t) | x <t <b}.
Now we shall prove that X <y = f(x+) < f(y-)
Letx<y.
Now, f(x+) = g.l.b {f(t)/x <t <b}
=g.l.b {f(t)/x <t<y} (1)
(~+ fis monotonic increasing)
Also f(y-) =Lub {f(t)/a<t<y}
= Lub {fR)/x <t<y} )

~ f(x+) <1 (y-) [by (1) and (2)]
The proof for monotonic decreasing functions is similar.
Theorem 2.4.7

Let f:[a, b] — R be a monotonic function. Then the set of points of [a, b] at
which f is discontinuous is countable.
Proof

We shall prove the theorem for a monotonic increasing function.

Let E = {x |xe[a, b] and f is discontinuous at x}.

Let xeE. Then f(x+) and f(x-) exists and f(x-) < f(x) < f(x+)

If f(x-) = f(x+) then f(x-) = f(x)=f(x+)

~ T is continuous at x, which is a contradiction.

& f(x-) # f(x+)

o f(x-) < f(x+)

Now choose a rational number r(x) such that f(x-) < r(x) < f(x+)

39



This defines a map r from E to Q which maps x to r(x).
We claim that r is 1-1.

Let x; <X,.

- T t) < f(xo-).

Also f(X;-) <r(xy) <f (X1+)

And f(xz-) <r(x2) <f (x2t)

2 1(x) < F(xa+) < F(xpr) < r(x2)

Thus X1 < Xy = r(Xy) < r(Xy).

~r:E—>Qisl-I

=~ E is countable.

2.5 Connectedness

Definition 2.5.1 A separation of a metric space M is a pair A, B of nonempty disjoint
open subsets of M whose union is M.

M is said to be a connected metric space if there is no separation for M.
Example 2.5.2 Any discrete metric space with more than one element is connected.

For,

Let M be a metric space with more than two elements.

Choose anelementae Mand let A={a}.

Then A° is a proper subset of M.

Now, A and A® forms a separation of M.

=~ M is not connected.

Theorem 2.5.3 Let (M, d) be a metric space. Then M is connected if and only if @ and
M are the only sets which are both open and closed in M.

Proof.
Suppose that M is connected.
We have to prove @ and M are the only sets which are both open and closed in M.
Suppose not.

Then there exists a proper subset A of M which is both open and closed in M.
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Now, A and A°® forms a separation of M, which is a contradiction.

Conversely, assume that @ and M are the only sets which are both open and
closed in M.

We have to prove M is connected.
Suppose not.
Then there exists a separation A, B of M.
A is a proper subset of M which is both open and closed in M, a contradiction.
~ M is connected.
Theorem 2.5.4 Let (M, d) be a metric space. Then the following are equivalent.
(i) The sets A and B form a separation of M.
(i1) A and B are nonempty disjoint closed sets in M whose union is M.

(iii) A and B are nonempty disjoint sets in M whose union is M and
ANB =ANB = 0.

Proof.
We shall prove that (i) < (ii) and (ii) & (iii)
(i) = (ii).
Suppose that A and B forms a separation of M.
Then A and B are nonempty disjoint sets in M whose union is M.
We have to prove A and B are closed in M.
Now, A =B®and B = A"
Since A and B are open in M, A° and B are closed in M.
I.e., A and B are closed in M.
- (i) = (ii).
The proof of (ii) = (i) is similar.
(i) = (iii).

Suppose that A and B are nonempty disjoint closed sets in M whose union is M.
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We have to prove ANB = ANB = .

Since B is closed, B = B.

~ ANB=ANB=@.

Similarly, ANB = @.

(iii) = (i).

Suppose that A and B are nonempty disjoint sets in M whose union is M and
ANB =ANB = 0.

We have to prove A and B are closed in M.
Letx € A.

SinceANB=0, x ¢ B.

Since AUB =M, x € A.

~ACA.

ButA c A

~ A=A and hence A is closed.

Similarly, B is closed.

Theorem 2.5.5 Let M be a connected metric space. Let A be a connected subset of M.
If B is a subset of M such that A € B € A then B is connected. In particular, A is
connected.

Proof.

Suppose B is not connected.
Then there exists a separation B, , B, of B.

Since By and B, are open in B, B; = G; N B and B, =G, N B, where G; and G,
are open in M.

NOW,8281UBZZ(GlmB) U(szB):(Gl UGz)mB
~BE€G, UGy,andhence AS G; UG,.

Take A1=GlﬂAandA2: GgmA
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Then A;and A, are open in A.
Also, A;U A= (G N A) U (G,N A)
=(Gi UGy)NA
=A[SinceAC G, UG, ]
AN A= (GiNA)N (G, N A)
=(G; NGy)N A
c (G; N Gy)N B[ Since A € B]
=(G;NB) N (G,N B)
=B; N B,
=0.
Since A is connected, either A; =@ or A, = Q.
Without loss of generality , assume that A; = @ .
.e.GiNA=0.
Since G, isopen, GiNA=0 .
~GNB=@.[SinceBSA]
i.e. By = @, which is a contradiction.
=~ B is connected .
2.6 Connected subsets of R.
Theorem 2.6.1 A subspace of R is connected if and only if it is an interval.
Proof.
Suppose that A is a connected subset of R .
We have to prove A is an interval.
Suppose not .
Then, there existsa,b,c € Rsuchthata<b<canda,ce Abutb¢ A.

Define A;j=(-o,b)nAand A, =(b, ©)NA.
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Since (-« ,b)and (b, o« )areopeninR, A;and A, are open in A.
Moreover, AN A, =@ and A; U A, = A.

Clearlyae Ajandc €A, .

SArFEQand Ay = D .

Thus, A is the union of a pair of nonempty disjoint open sets A; and A, .
~ Alis not connected, which is a contradiction.

Hence A is an interval.

Conversely, assume that A is an interval.

We have to prove A is connected.

Suppose not.

Then, there exists nonempty disjoint closed sets A;and A, in A such
that A = A]_ U Az.

Choose x € A; and z € A..

SinceAiNA,=0,X #2Z.

W X<ZOorz<x.

Without loss of generality we assume that x < z.

Now, x,z € Aand A is an interval.
~[x,Z]SAS AL UA,

Hence every element of [x , z] is either in A, or in A,.
Lety=lLub. {[x,z] n A }.

Clearlyx<y<z.

By the definition of l.u.b. , for each € > 0 there exists t € [x , z] N A; such that
y-e<t=gy.

~y—,y+te)n([X,z]nA) =0 Ve>0.
SYEX,ZIN A, .

Since [x,z] NnA;isclosedin A,y €[x,z]nA;
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yEAl .................... (1)

Again, by the definition of y, for each ¢ > 0 there exists s € A, such
thaty <s< y+e.

S(y-,y+te)nA, #0 ve>0.
~YEA,.
Since Ayisclosedin A, ye Ay ... (2)
~YEAINA[BY(1)&(2)]
This is a contradictionto AN A, =0 .
Hence A is connected.
2.7 Connectedness and continuity.
Theorem 2.7.1 Let M, be a connected metric space. Let M, be any metric space. Let
f: M; = M, be a continuous function. Then f( M) is a connected subset of M,.
I.e. continuous image of a connected set is connected.
Proof.
Let f (M) = A so that f is a continuous function from M; on to A.
We claim that A is connected.
Suppose A is not connected.

Then, there exists a proper subset B of A which is both open and closed in A.

Hence f*(B) is a proper subset of M; which is both open and in M;.
~ My is not connected which is a contradiction.
Hence A is connected.

Theorem 2.7.2 [ intermediate value Theorem ]

Let f be a real valued continuous function defined on an interval 1. Then f takes
every value between any two value it assumes.

Proof.

Leta, b €l and let f(a) # f(b).
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Without loss of generality we assume that f(a) < f(b).
Let c be a real number such that f(a) < ¢ < f(b).

The interval 1 is a connected subset of R.

Since f is continuous, f(I) is a connected subset of R .
Hence (1) is an interval.

Also f(a) , f(b) € f(I).

~ [f@) , f(b)] < (1) .
~cef(l).[Sincef(a) <c<f(b)]

~ ¢ =1(x) forsomex € 1.
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Unit 11
Compactness
3.1 Compact Metric Spaces.

Definition 3.1.1 Let M be a metric space. A collection of open sets {G,} is said to be
an open cover for M if U G, = M. A sub collection of {G_} which itself is an open
cover is called a subcover.

Definition 3.1.2 A metric space M is said to be compact if every open cover for M
has a finite subcover.

i.e. for each collection of open sets {G,} such that U G, = M , there exists a finite sub
collection {Gy, ,Gq, , -, G, } SUCh that UL, G, = M.

Theorem 3.1.3 Let M be a metric space. Let A € M. Then A is compact if and only if
for every collection {G_} of open sets in M such that U G,2 A there exists a finite sub
collection {Gy, ,Gq, , -, G, } SUch that UL, G, 2 A.

I.e. A'is compact if and only if every open cover for A by sets open in M has a finite
subcover.

Proof.
Let A be a compact subset of M.
Let {G,} be acollection of open sets in M such that U G,2 A.
Then(UG,) N A=A
~U (G, NnA)=A
Since G, isopen in M, G, n Aisopen in A.
~ {G, N A} is an open cover for A.
Since A is compact, this open cover has a finite subcover say
{Ge,NA G, NA, ....., Gg NA.
2 UL (G, NA) = A
~ (UL Gy )nA=A

L Gy 2 A
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Conversely, assume that for every collection {G,} of open sets in M such that
U G,2 A there exists a finite sub collection {G,, ,Gy, , .-, Gg, } SUCh that
L1 G2 A

We have to prove A is compact.
Let {H,} be an open cover for A.
Then H, isopenin AV a.
~H, =G, nAwhere G, isopenin MV a.
Nowu H,=A= U (G,nA)=A.
= (UG,)NA=A.
= UG, 2A.

Hence by our assumption, there exists a finite sub collection
{Ga; ,Gay»wervr Gy, } such that UL, G, 2 A,

(UL G, )NA=A,

~ ULi(G, NA) = A

Uity Hy, = A

Thus {Ho(1 Hey s oennes Han} is a finite subcover of the given open cover {H,} of A.

~ A'is compact.
Theorem 3.1.4 Any compact subset A of a metric space (M, d) is closed.
Proof.

We shall prove that A is open.

Lety € A°.

Now, foreachx € A, x #y.

~d(x,y)=r,>0and B(x 2 n By, 2)= 9.

Clearly the collection { B(x ,%X) / x € A '} is an open cover for A by sets

open in M.
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Since A is compact, there exists X; , X5, ...., X, € A such that

ULiBE,=D2A (1)
LetV, = NE, B 29,
Then V, is an open set containing .

Since B(x, =) N By =) =6, VynB(x,=)=@Vvi=12,...n.

“Vyn UL B (x,5)1=0.
“VyNnA=¢. [By()]
~Vy S A®,

Thus, for each y € A® there exists an open set V, containing y such that V,CA°

~ A= Uy eac Vy .

~ A% is open .

Hence A'is closed.
Theorem 3.1.5 Any compact subset A of a metric space M is bounded.
Proof.

Letx € A.

Now, { B(x, n)/n €N } is an open cover for A by sets open in M.

Since A is compact, there exists natural numbers nq, n,, ..., ny, such that
UK, B(x, n) 2 A.

Let N=max { ny, ny, ..., ng}.
Then UK, B(x, n)=B(x,N).
~B(X,N)2A.

Since B(x, N) is bounded and subset of a bounded set is bounded, A is
bounded.

Theorem 3.1.6 A closed subset A of a compact metric space M is compact.
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Proof.
Let {G,} be acollection of open sets in M such that U G,2 A.
~A"UUG, =M.
Since A is closed, A° is open.
~ {G,} U { A® }is an open cover for M.
Since M is compact this open cover has a finite subcover say
{Ga, Gy s v » G,r AL
2 (UL Gy, ) UA® =M,
L G2 A
Hence A is compact.
Theorem 3.1.7 [ Heine Borel Theorem ]
Any closed interval [a, b] is a compact subset of R.
Proof.
Let {G,} be a collection of open sets in R such that U G, 2 R.

LetS={xe€[a,b]/[a,x]can be covered by a finite number of G,’s. }
Clearly a € S and hence S # @.

Since S is bounded above by b, l.u.b of S exists.

Letc=lu.bofS.

Clearlyc € [a, b].

= C € G, for some index a;.

Since G, is open , there exists € > 0 such that B(x , €) € G, .
i.e.(C—¢,c+¢g) SG,,.

Choose x; € [a, b] such that x; <c and [x; , €] € G,,.

Since x; <c, [a, X4] is covered by a finite number of G, ’s.

These finite number of G,’s together with G,, covers [a, c].
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=~ by the definitionof S, c € S.

Now, we claim that ¢ = b.

Suppose ¢ #b.

Then choose x; € [a, b] such that x, > cand [c, X;] € G, .

Since [a, c] is covered by a finite number of G,’s , these finite number of G,’s
together with G, covers [a, X;].

~ X, € S, which is a contradiction to c is L.u.b of S[+x, > c].

Hence c = b.

~ [a, X] can be covered by a finite number of G,’s.

~ [a, b] is a compact subset of R .
Theorem 3.1.8 A subset A or R is compact if and only if A is closed and bounded.
Proof.

If A is compact, then A is closed and bounded.

Conversely, assume that A is closed and bounded subset of R .

Since A is bounded, A has a lower bound and an upper bound say a and b
respectively.

Then AC [a, b].

Since AisclosedinR,An[a,b]isclosedin|[a,b].
l.e. Aisclosedin [a, b].

Thus, A is a closed subset of the compact space [a, b].
Hence A is compact.

3.2 Compactness and Continuity.

Theorem 3.2.1 Let M, be a compact metric space and M, be any metric space. Let f:
M;— M, be a continuous function. Then f( M, ) is compact.

I.e. Continuous image of a compact metric space is compact.

51



Proof.

Coroll
metric

Proof.

Without loss of generality we assume that f( My ) = M,.

Let {G,} be a collection of open sets in M, such that U G, = M.,.

~UG, =f(M,).
~fluG,)=M,.
~Ufl(G,)=M,.

Since f is continuous, f *(G, ) is open in M,Va .
~{f1(G,) }is an open cover for M;.
Since M1 is compact, this open cover has a finite subcover say
{F1(Guy). TH(Guy)s -onn  TH(Goy)
= FH UL Gy ) = My
i1 Gg, =f(My) = M.

Thus {Go(1 N Gan} is a finite subcover for the given open cover {G,} of
M.

Hence M, is compact.

ary 3.2.2 Let f be a continuous map from a compact metric space M, into any
space M,. Then f( M,) is closed and bounded.

Since f is continuous, f( My ) is compact and hence closed and bounded.

Theorem 3.2.3 Any continuous mapping f defined on a compact metric space

(Mg, d

Proof.

1) into any other metric space (M, , d,) is uniformly continuous on M.

Let > 0 be given.
Let X eM;.

Since f is continuous at x, for €/2 > 0 , there exists 8, > 0 such that
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di(x,y) <0, = do(f(X), f(y)) <e2 ... (1)
Clearly, { B(x, %) / X € M1} is an open cover for M.
Since M, is compact, there exists X; , X, , ...., X, € My such that
n 8Xi —
i=1 B(Xi ,5") =M.

8x; &

bxz O y
reTR-n Ry &

Let § =min {

Now, we shall prove that d(p, q) < 6 = d,(f(p) , f(Q)) <eV p,q € M.

Letp, g€ Mjsuchthatd,(p,q) <6

P e M= P € UL B(x , )
By,
= P € B(x; ,%)forsomeisuch that 1 <i<n

5y
=>d1(p X ) < ?I < 8Xi

2 by (1), do(f) , FOG)) < €2 e )
Similarly, dy(f(q) , f(%)) < €2 oo 3)
Now, da(f(p) , 1(a)) =< da(f(p) , F(xi)) + d2(F(xi) , 7(q))

<egl2+¢/2 [By(2)and(3)]
- do(F(p) , F(@)) <e.
Thus, di(p, q) <6 =dy(f(p),f(q)) <e Vp,qeEM,.
Hence f is uniformly continuous.
3.3 Equivalent forms of Compactness.

Definition 3.3.1 A collection T of subsets of a set M is said to have finite intersection
property if the intersection of any finite number of elements of ¥ is nonempty.

Theorem3.3.2 A metric space M is compact if and only if every collection of closed
sets in M with finite intersection property has nonempty intersection.

Proof.

Suppose that M is compact.

53



Let {F,} be a collection of closed subsets of M with finite intersection property.
We have to prove NF, # @ .
Suppose NF, =0 .
Then (NF,)° =M.
~ UF,*=M. [ By De Morgan’s laws ]
Since each F, is closed, each F,° is open.
Thus, { F,° } is an open cover for M.
Since M is compact, this open cover has a finite subcover say
{Fa, Fop e, Fo )
~ UL Fo, =M.
~(Niz1Fy ) =M.
?=1 F(xi =0.
This is a contradiction to the collection {F,} has finite intersection property.
~NF,#0.

Conversely, assume that every collection of closed sets in M with finite
intersection property has nonempty intersection.

We have to prove M is compact.

Let {G,} be an open cover for M.

~ UG, =M.

2 (UG =0.

“NG=9.

Since each G, is open , each G,° is closed.

Hence F={ G, } is a collection of closed sets whose intersection is empty.

=~ by hypothesis, this collection does not have finite intersection property.
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Hence there exists a finite sub collection {G, ©, G,,° | ....., G, } such that
nr:]_ Gaic = @ .
- (U{l=1 Gai)c =0.

{121 GU,i =M.

Thus the given open cover {G,} of M has a finite subcover { G,,, G, ,

Hence M is compact.
Definition 3.3.3 A metric space M is said to be totally bounded if for every
e> 0, there exists a finite number of elements X, X», ....., X, € M such that
B(X;,e)UB(X2,€)U........ B(x,, €) =M.
A nonempty subset A of a metric space M is said to be totally bounded if the
subspace A is totally bounded metric space.
Theorem 3.3.4 Any compact metric space is totally bounded.
Proof.

Let M be a compact metric space.

We have to prove M is totally bounded.

Let € > 0 be given.

Now, { B(x, €) / x € M } is an open cover for M.

Since M is compact, there exists points X, , X5, ..... , X, € M such that

M=B(X;,g) UB(Xz,€) U ....... U B(X,, ¢€) .

Hence M is totally bounded.
Theorem 3.3.5 Any totally bounded subset A of a metric space M is bounded.
Proof.

Let A be a totally bounded subset of a metric space M.

Then for given €> 0, there exists points X; , X, , ....., X, € A such that
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A=Bi(X;,e)UBi(X,e)U....... U B1(X, , €) where B(X; , €) are open
balls in A.

Since open balls are bounded sets and finite union of bounded sets is bounded,
A is bounded.

Note3.3.6 The converse of the above theorem is not true.
For,
Let M be an infinite set with discrete metric.
Then M is bounded.
Also, B(x,1) ={x } forall x e M.,

Since M is infinite, M cannot be expressed as finite union of open balls of
radius 1.

Hence M is not totally bounded.

Definition 3.3.7 Let (x,) be a sequence in a metric space M. If ny<n,<....<m<.......
is a sequence of positive integers, then (X, ) is a subsequence of (x,).

Theorem 3.3.8 A metric space M is totally bounded if and only if every sequence in
M contains a Cauchy subsequence.

Proof.
Suppose that every sequence in M contains a Cauchy subsequence.
We have to prove M is totally bounded.
Let &> 0 be given.
Choose x; € M.
If B(X;, €) = M, then M is totally bounded.
If B(X1, €) # M, Then choose x, € B(X; , €) — M so that d(x; , Xp) > €.
If B(X;, €) UB(X,, €) =M, then M is totally bounded.

Otherwise, choose X3 € [B(Xy, €) U B(X,, €)] — M so that d(xs , X;) > € and
d(X3 , Xz) =€ .

We proceed this process and if the process is terminated at a finite stage means
M is totally bounded.
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Suppose not, then we get a sequence (X,) in M such that d(x,, , X,) > € ifn#m

=~ (Xn) cannot be a Cauchy sequence, which is a contradiction.
Conversely, suppose that M is totally bounded.
LetS;={Xq1, X2, ..... D ST } be a sequence in M.

If one of the terms in the sequence is repeated infinitely, then S; contains a
constant subsequence which is in fact a Cauchy sequence.

So, we assume that no terms of S; is repeated infinitely so that the range of S;
is infinite.

Since M is totally bounded, M can be covered by a finite number of open balls
of radius %

Hence one of these balls contains infinite number of terms of the sequence S;.

~ S; contains a subsequence Sy, = { X571 , X979 , ..... v Xop s e } which lies within
- 1
an open ball of radius 3

Similarly, S, contains a subsequence S; = { X3; , X35, ..... y X3 s -.... } Which
lies within an open ball of radius § :

We repeat the process of forming successive subsequences and finally we take
the diagonal sequence S = { X171 , Xoo , ..... s Xnn s eeees }

We claim that S is a Cauchy subsequence of S;.

S .1

If m > n then both x,,and x,, lie within an open ball of radius -
2

d(Xmm , Xnn) < H .

2
S 0(Xmm » Xpn) <€V m,nz=-.

Hence S is a Cauchy subsequence of S;.
Thus every sequence in M has a convergent subsequence.

Corollary3.3.9 A nonempty subset of a totally bounded set is totally bounded.
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Proof.

Let A be a totally bounded subset of a metric space M.

Let B be a nonempty subset of A.

Let (x,) be a sequence in B.

Since B € A, (x,) is asequence in A.

Since A is totally bounded, (x,) has a Cauchy subsequence.
Thus every sequence in B has a Cauchy subsequence.

=~ B is totally bounded.

3.4 Sequentially Compact.

Definition 3.4.1 A metric space M is said to be sequentially compact if every
sequence in M has a convergent subsequence.

Theorem 3.4.2 Let (x,) be a Cauchy sequence in a metric space M. If (x,) has a
subsequence (x,, ) converges to x , then (x,) converges to X.

Proof.

Suppose that (x,) has a subsequence (X, ) which converges to x.
We have to prove x, = X.
Let € > 0 be given.

Since (x,) is a Cauchy sequence, there exists a positive integer N such that

d(xn,xm)<§v N,Mm=Ny (1)
Since x, — X, there exists a positive integer N, such that
d(Xp, , X) < g VN =Ny (2)

Let N=max { Ny, N, }. Fixn, = N.

Now. d(X, , X) < d(X,, Xp) +d(X,, , X)
<-+-v¥n=N
2 2

~d(Xy,,X)<eV n=N.
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Definition 3.4.3 A metric space M has Bolzano — Weierstrass property if every
infinite subset of M has a limit point.

Theorem 3.4.4 In a metric space M the following are equivalent.

Proof.

0] M is compact.

(i) M has Bolzano — Weierstrass property
(ili) M is sequentially compact

(iv) Mistotally bounded and complete.

(i) = (i)

Let M be compact metric space.

Let A be an infinite subset of M.

Suppose that A has no limit point.

Let x e M.

Since x is not a limit point if A, there exists an open ball B(x, ry) such that
Bx,r)N(A-{x}=0.

B(x, ry) contains at most one point of A (contains x if X € A).

Now, { B(x, ry) / X € M } is an open cover for M.

Since M is compact, there exists points X, , X, ..... , X, € M such that
M=B(X1, Iy) UB(X2,Iy,) U ... UB(Xy, Iy,) -
S ACSB(Xy, Iy) UB(X2 Iy,) U ..o UB(Xy,Iy,) -

Since each B(x, , ry,) has at most one point of A, A must be finite.
This is a contradiction to A is infinite.

Hence A has a limit point.

(i) = (iii)

Suppose that M has Bolzano — Weierstrass property.

We have to prove M is sequentially compact.
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Let (x,) be a sequence in M.

If the range of (x,) is finite , then a term of the sequence is repeated infinitely
and hence (x,) has a constant subsequence which is convergent.

Otherwise (x,) has infinite number of distinct terms.
By hypothesis, this infinite set has a limit point say x.

=~ forany r > 0, the open ball B(x, r) contains infinite number of terms of the
sequence (X,).

Choose a positive integer n; such that x,, € B(x , 1).
Now, choose n, > n; such that x,, € B(x , %) :
In general, for each positive integer k we choose ni> ny.; such thatx, € B(x, %) :

Then (x,,) is a subsequence of (x,) and d(x,, , X) < %v k.

o Xp, = X
Thus (x,,) is a convergent subsequence of (x,).

Hence M is sequentially compact.

(i) = (iv)

Suppose that M is sequentially compact.

Then every sequence in M has a convergent subsequence.
We have every Cauchy sequence is convergent.

Thus, every sequence in M has a Cauchy subsequence.
Hence M is totally bounded.

Now, we prove that M is complete.

Let (x,) be a Cauchy sequence in M.

By hypothesis, (x,) contains a convergent subsequence (X, ).
Let X, — X.

Then x, — X.

60



~ M is complete.

(iv) = (i)

Suppose that M is totally bounded and complete.
We have to prove M is compact.

Suppose not.

Then there exists an open cover {G,} for M which has no finite subcover.
Take r,= 2—1,]

Since M is totally bounded, M can be covered by a finite number of open balls
of radius ry .

Since M is not covered by a finite number of G,’s , at least one of these open
balls say B(X; , r1) cannot be covered by finite number of G,’s .

Now, B(X; , ry) is totally bounded.

Hence as before we can find x, € B(X; , ry) such that B(x, , r,) cannot be
covered by finite number of G,’s .

Proceeding like this we get a sequence (x,) in M such that B(x, , r,) cannot be
covered by finite number of G,’s and X,+1 € B(X,, I,)-

Let m and n be positive integers with n <m.

NOW, d(Xn ) Xm) S d(Xn ) Xn+1) + d(Xn+1 y XI"I+2) + ............ + d(Xm_l y Xm)
< rn + rn+1 + ....... + rm_1
1 1 1
< on + il T F
1 ,1 1
2n—_1 (F + F + o )
1
< —
Zn-l

~ (Xp) is a Cauchy sequence in M.
Since M is complete, there exists x € M such that x, - X .

Now, x € G, for some o.
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Since G, is open, there exists € > 0 such that B(x , €) € G, .
We have x, = x and r,= %—>O.

= there exists a positive integer N such that

d(x, , X) <§and rn<§ Vn>N.

Fix n>N.

We claim that B(x,, r,) € B(X, €) .

y € B(Xn ' rn) = d(Xn ' y) < rn<§

= d(%y, %) + (X, V) < 5+ 5

=>dXx,y)<e
= YyeB(x,e¢).
~BXn, ) €B(x,¢) €G,.
Thus, B(x,, r,,) is covered by a single G, , which is a contradiction.

Hence M is compact.
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UNIT IV

4.1  Complex number
Definition
A complex number z is of the form x+iy where x and y are real numbers and i
is an imaginary unit with the property that i>=1, x and y are called the real and
imaginary part of z and we write x=Re z and y=Im z.
If x=0, the complex number z is called purely imaginary. If y=0 then z is real.
Two complex numbers are said to be equal iff they have the same real parts and
the same imaginary parts.
Let C denote the set of all complex numbers.
Thus C is {x+iy/x, yeR}
Definition
We define addition and multiplication in C as follows
Let z;=x,+iy; and z,=X,+iy,
21+2Z; =(Xg + Xp) +i(y1 + Vo)
2123 = (X1X2- Y1 Y2) +i (XY2 + X2Y1)
Remark 1

. . + i —
If Z1=X1H1Yys, and Zo=Xot+1Y, ;ﬁ 0 then Z1 _ X1X21Y1y2 1 y1X2—X1Y2
Z2

x5+y5 x5+y5
Remark 2

It is important to note that there is no order structure in the complex number
system so that we cannot compare two complex numbers.
Remark 3

The complex number a+ib can also be represented by the ordered pair of real
numbers (a, b).
4.1.2 Conjugation and modulus

Let z = x + iy be a complex number. Then the complex number x-iy is called
the conjugate of z and it is denoted by Z.

The mapping f : C—C defined by f(z) = Z is called the complex conjugation.

Note 1. zisrealiffz=72
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2. Z=12

3. z+z:2Rezsothatxzzzi
4. z-z:ZiImzsothaty:?
5. itz =ntn

6. (H)=2

N
N

(Y]

Theorem 4.1.2

If o is a root of the polynomial equation f(z) = agz"+a;z" *+...+an.1z+a,=0 where
ao, a1, ..., apeR and ag#0 then @ is also a root of f(z)=0

(ie.) The non-real roots of a polynomial equation with real co-efficients occur
In conjugate pairs.
Proof

Since a is a root of f(z)=0, we have f(a)=0

Hence ago"+a;a" .. . +a,0+a,=0

= apa” +a; 0" 1+ +a, ja+a,=0

= Fp " +3; A+, .43, @ +3,=0

= aga +a, 0" +...Fan., X +3,=0

= a(@)+ay ()" ... .+an.4 (@) +a,=0

= f()=0 so that @ is also a root of f(z)=0.
Definition

Let z = x+iy be a complex number. The modulus or absolute value of z denoted
by |z] is defined by |z]=\/x% + y2.
Remark

|z| represents the distance between z=(x, y) and the origin O=(0, 0).
Theorem 4.1.3

I. |z| > 0 and |z|=0 iff z=0

i.  zz=|z
i, [z12o] = |z4] |22]
iv. |2|= 2 provided z, £ 0
z2 |z2|
2 _ 2 2 =
V. |21%25|" = |24]" +[zo|" + 2Re (21 Z)|
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Vii |21z = [z +[zf - 2Re (21 2l
Vi, [20+2of+ (2020 = 2(|2af + [22f)

Solved Problems

Problem 1
Find the absolute value of w
3+4i
Solution
| (1+3i) (1-21) = [1+3i] |(1-20)]
3+4i - 3+4i
_ VIOVS
T 5
_ V2x5v5
T s
=202z
Problem 2

Find the condition under which the equation az+bz+c=0 in one complex
unknown has exactly one solution and compute that solution.
Solution

az+bz+c=0 (1)
Taking conjugate we have,

az+bz+c=0

= az+bz+c =0 (2)
(1) xa=>aaz+abz+ac=0 (3)
(2) xb=bbz+baz+bc=0 (4)

(3)—(4) = z(aa - bb) +ac-bc =0
= z(ja]* - |b]) = bc - ac
Hence if |a| # |b|, the given equation has unique solution and the solution is

bc—ac

givenby z = PP

Problem 3

If z, and z, are two complex numbers prove that |%|:1 if either |z4|=1 or
—4141

|z,|=1. What exception must be made if |z,|=1 and |z,|=1.
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Solution

Suppose |z:|=1. Hence |Z;|=1 and z; Z, = |z¢)* = 1.

(21722 | — %1722 |
Now | ——=| =|——
122 Z1Z1—21-22
_| Z1—Z)
z1(z122)
1
=1 =1

Z1

Similarly if |z|=1, we have |——= & Z2| 1. If|z4)=1 and |z,]=1, then the result is true

provided 1-7,z,#0
ie. if -2, 212, #0
ie. if ;% |z1[*2,
ie. if zi# 2,
Inequalities
Theorem 4.1.4
For any three complex numbers z4, z, and zs.
I. -lz| <Re z< |7
. -lz| <Im z <[]
. |z3+2Zy <zy4|+|zo|. (Triangle inequality)
V. [21-2Zo] = |z4]-|Zo]]
Proof
Let z = +iy
Hence |z| = \/x% + y2
Now -\/x2 +y? <x<,/x% +y?
and -\/xZ +yZ <y<.x2 +y?
~ -]zl <Rez<|z|and -|z| < Im z < 7]
Hence (i) and (ii) are proved.
1) Triangle inequality
|21 + 25| < |z4] + |22
2 + 2 = (21%22) (21 + 2,) v[zf* = 2z
=(21%2) (21 +22)

= 2121+ 212125711257
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= |zl + (24Zo 21 20) +|2of
= |21 + (21Zo+ 217,) 2o
= |z:* + 2 Re(212,) +(z,f*
<|zf’ + 2 [(24Z)|+zol’
= |21 + 2 [24] [Zol+|2of
= |z’ + 2 |z4] 2ol *+|zof [+|22] = [Z2]]
= (jzal + [22))°
Thus |21+ 2o < (|za] + 22])°
2y + zo| < |z +Hzo
V) [z1- 2o 2 ||z 22|
21=(21°2)) + 2,
|21] = (21-22) + 22| < |21 - 25| + 23]
= 21| - |22 <21 - 23] 1)
Z;=(22-21)+ 74
|22 = (22-21) + 21| < |22~ 24| + |24
= |2a]-[24] < |22-24]
= -([z4]-|z2]) < |2z2-24]
= |24]-|22] - |22-24] (2)
From (1) and (2)
- |22-24| < |z4]-l22| < |21-23)
ie. - [z1-22] < |za]-[z2] < 24-2,]
= -||z4|-|22]| < |21-22]
ie. - (2125 = ||za|-[z2|
Note
For any complex numbers z;, z,, ..., z, We have |z,+2,+...+z,| < |z4]+|2|
+... 7tz
Polar form of a complex number
Consider any non zero complex number z=x+iy.
Let (r, ©) denote the polar co-ordinates of the point (X, y)
Hence x=rcos0andy=rsin 6
~Z=r(cos 0 +sin 0)
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We notice that r = |z|:\/)(27+y2 which is the magnitude of the complex
number and 0 is called the amplitude or argument of z and is denoted by arg z
or amp z.

We note that the value of arg z not unique. If 6 = arg z then 6 + 2n © where n is
any integer is also a value of arg z. The value of arg z lying in the range (-x, ) is
called the principal value of arg z.

Theorem 4.1.5

If z, and z, are any two non zero complex numbers then
I. —arg z, = arg z;

i. arg z,z, =arg z, +arg z,
i. arg [z—;] =argz;-arg z,
Proof

Let z; = ry(cos O, + i sin 6,)

~ Z3 =ry(cos 6; —1sin 6,)

=ry(cos (-64) +isin (-0,))

Hence arg z; = -0,
= -arg z;.

. argz; = -arg z;

i) Let z; = ry(cos 6, + i sin 6,) and
Z, = Iy(cos 0, + i sin 6,)

= argz;=0;andargz, =6,

NoOw z; Z, =7 1,(C0S O, +i1sin0) (cos O, +isin 6,) (cos 6, + isin O,)

= rqrp[(cos (0,+6,)+ sinb; sinB,) +i (sinB, cosO, + c0sO, Sinb,)]

= r4r,[(cosO; 6,) +isin(0; + 6,)]

sarg z12,=0,+0,

=arg z; +arg 2,

. arg 21z, = arg z, + arg z,

i) arg (2—;) = arg z, —arg z,

z1 _ ri(cos B1+isin 01)

Z ry(cos 02+1i sin 03)
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[r_l] [ (cos B1+isin 01) _ cos O2+1isin 0;

rp (cos 62+ sin 07) cos 02+1 sin 67
— ry
= ()

_ T (cos 61— 02)+1isin (01—602)
= (2t

= (%) [cos(0y - 62) +isin(6; - 62)

(cos 87 cos B2+ sin 67 sin B2+ i(sin 01 cos B2 — cos 07 sin 07)

]

(cos20y+sin? 0;)

arg [2_;] =01-6;
= arg z; — arg z,
- arg [z—;] = arg z; —arg 2,

Theorem 4.1.6
Let z=r (cos 6 + i sin 0) be any non zero complex number and n be any integer.
Then z"=r" (cos n0 + i sin no).
Proof
We first prove this result for positive integers by induction on n.
When n=1
z' = r* (cos 0 + i sin 0)
ie. z =r (cos O + i sin ©) which is true.
Hence the theorem is true when n=1.
Suppose the result is true for n=m.
Hence z" = r™ (cos m@ + i sin mO)
To prove the result is true when n=m+1
Now z™' =z"z
=r™ (cos mO +isin m ) r (cos 0 +isin 0)
= ™1 [(cos mO cos O - sin O sin m 0) +i (cos MO sin O + sin mO cos 6)]
= ™! [cos (m+1) © + i sin(m+1) 6]
Hence the result is true for n=m+1
Hence z" = r" [cos n 0 + i sin n@] for all positive integers n.

The result is obviously true if n=0

_ 1
Now z! ==

Z
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1
r(cos 0 +i sin 6)
1 cos 6 —isin 0

X
r (cos 0 +i sin 6) (cos 6 —isin 0)

=rt [ cos (—0)+ i sinff—0) ]
- cos 20 + sin 20

= ! [cos(-6) + i sin(-0)]

=~ The result is true for n=-1. Hence it follows that the result is true for all negative
integers.
Hence z" = r" (cos n0 + i sin no) for all neZ.
Corollary: (De-Movire’s theorem)

(cos 0 + i sin ©)" = cos nO + i sin nO
Solved Problem
Problem 1

For any three distinct complex numbers z, a, b the principal value of arg [5]

represents the angle between the line segment joining z and a and the line segment
joining z and b taken in the appropriate sense.
Solution

Let A, B, P be the points in the complex plane representing the complex

numbers a, b, z respectively.

Then AP = OP - OA

=z—-a
BP=0P - OB
=z-b

=~ The complex numbers z-a, z-b are represented by the vectors AP and BP
respectively.

Hence the principal value of arg [E] gives the angle between the line segment
AP and BP taken in the appropriate sense.
4.2  Circles and Straight lines

Equation of circles and straight lines in the complex plane can be expressed

interms of z and Z.
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General equation of circles

Equation of the circle with centre a and radius r is given by |z-a|=r

ie. |zaf=r

= (z2) (z=a) =1 [*[z'=27]

= (z-a) (z-3) =1

—zZ-az-az+aa-r’'=0
This equation is of the form

zzZ+az+az+p=0whereisareal number. Further any equation of the
above form can be written as |z+o|* = aa — B and hence represents a circle provided
ad — B > 0. It represents a circle with centre — o and radius /o — B.

Thus the general equation of a circleisgivenbyzz+az+ az+ =0 where

is real and aa - > 0.

General equation of straight lines
To find the general equation of the straight line passing through a and b, we

note that arg [E] represents the angle between the lines joiningatozand b to z

where z is any point on the line joining a and b.

= If z, a, b are collinear then arg [E] =0orn

222 s real. Hence 22 = [ 22 ]
z—b z—b z—b
ZzZ—a _ rz-—a

il B

= (z-a) (z - b) = (z-b) (z - 3)
= zZ-az-bz+ab=zzZ-3az-bz+ab
=—az-bz-az+bz+ab-ab=0
= (@-b)z-(a-b)z+(@b-ab)=0
= (@-b)z—(a-b)z+2ilm(@ab)=0
- Imz:%T =z-7Z=2ilmZ]
~i(@-b)z—i(a-b) Z - 2Im (a b) = 0. This equation is of the formaz+aZz+p=0
where o = 0 and B is real.
Further any equation of the above form represents a straight line. This can be

easily seen by changing the above equation into Cartesian form.
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=~ The general equation of a straight line isgivenby o« z+azZ+  =0. Where a #0
and p is real.
Theorem 4.2.1

Equation of the line joiningaand bis(a-b)z+ (b-a)Z+ (ab-ab)=0
Theorem 4.2.2

If a and b are two distinct complex numbers where b # 0, then the
equation z = a + t b where t is a real parameter represents a straight line passing
through the point a and parallel to b.
Proof

Let z be any point on the line passing through a and parallel to b. The vectors
represented by z —a and b are parallel.

Hence z —a = tb for some real number t. Hence z =a + t b, which is the
equation of the required straight line.
Definition

Two points P and Q are called reflection points for a given straight line ¢ iff £ is
the perpendicular bisector of the segment PQ.
Theorem 4.2.3

Two points z; and z, are reflection points for the line az + oz + p = 0 iff
azy+taz;+p=0.
Proof

Let z; and z; be reflection points for the straight lineaz+az+p=0 1)

Toprovethatoz; +az, +p=0

For any point z on the line we have

|z-2z4=z-2) [+ 2z, 2, are reflection points]
= [z-zf = |z- 2
=@-21). (z2-2)=(2-2)z—2) [*|zf = 27]
=(2-21) Z-7)=(2-2)(Z-72)
= 7777 -2 7Y =27 -2~ 2o 7+ 2p 7
=77~ 271Vv2yZ-21Z%+2171-2,7Z,=0

=72(Zo-721)+Z2(2,-21) +2171-2,7,=0 (2)
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Since the equation is true for any point z on the given line it may be regarded
as the equation of the given line.
~ From (1) and (2) we get
o [od B

= = =k (Say)

Zp—Z1 Z3—21 Z1Z1—Z2%Z3

sa=k(zo—2);a =k (Zx-zZ) and B=k(z1 Z1— 2, Z»)
S0zt 0z Y==K (21 (Zo-71) + 22 (Zo- 20+ 21021 2, 7))
=0
~azitaz+p=0
Conversely, suppose az;+ az, +f =0 (3)
Subtracting (3) from (1) we get
a(z-2zy) +-0(z-7,)=0
= A (2-21) = -(Z - Z»)
Taking modulus on both sides
= [al] z-z4| = |ol[Z - Zo|
= lz-z|=2-Z| = 7= 7| [~|o|=a]
=|z-24] = [z-2,)
=~ z,and z, are reflection points for the line oz + az+p=0
Definition
Two points P and Q are said to be inverse points with respect to a circle with
centre 0 and radius r if Q lies on the ray OP and OP. OQ = r2.
Theorem 4.2.4
z, and z, are inverse points with respect to a circle zz + az + oz + p=0
iffz,. Zp2taz;taz,+ =0
Proof
Suppose z; and z, are inverse points with respect to the
circle zz + az + oz + p=0 (1)
(1)  can be rewritten as
Iz +af = oa - B
». The centre of the circle is —o. and radius is \/a@ — B

Since
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z; and z, are inverse points w.r. to (1)
we have, arg(z;+a) = arg (z,+a) (2)
and |zy+a| |z, + a| = aa—f (3)
s arg(zita) z; T @ =arg (zi+a) + arg (z; + o)
=arg (z+a) - arg (z; + @)
=0 [~ by (2)]
~(z1+0) (z, + ) is a +ve real number.
Hence using (3) we get (z;+a) z, + a = oo —
= (z1ta) (Z, + @) = a0
N1 Zpt Az taz;+p=0
Converse can be similarly proved.
Note 1:

Let z4, Z,, z3 and z, be four distinct points which are either con-cyclic or

(z1-23)(z2—24)

llinear. Then ar
coflinea enarg [ (z1-24)(z2—23)

] is either 0 or & depending on the relative positions

of the points.

(z1-23)(z2-24)

Hence
(z1—24)(z2-23)

is purely real.

Note 2 :
The equation pzz +az+az +B =0 (1)
Where p and f are real and o - pp >0 can be taken as the joint equation of the
family of circles and straight lines. When p # 0, it represents a circle. When p=0, it
represents a straight line. Further z, and z, are inverse points or reflection points w.r.to
(1) iff pzy Z, + @ z;+0. Z, +p=0
Solved problems

Problem 1 : Prove that the equation | % | = A where A is a non negative parameter
—42

represents a family of circles such that z, and z, are inverse points for every member

of the family.
Solution:
Given, | =2 =)= | 22" =2
AR A} YASA)

= [Z2] [2]=w

YA} YA~
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= (2-21) Z-71) =N (2- 22)(Z - 72)

= 77-712-2Z+ 217 = N2 Tl 27+ 2y 7y

= (1N 22+ (M2 Z-71) 7 + (20*-21) (2474-M2,2Z,) =0 (1)

(1) represents acirclewhen L # 1
Using Note 2, it can be verified that z; and z, are inverse points w.r.to (1). When A=1,
the given equation represents a straight line which is the perpendicular bisector of the
line segment joining z; and z,. Clearly z, and z, are reflection points for this line.

Problem 2

Prove that arg [5] = u where p is a real parameter, represents a family of
circles every member of which passes through a and b.
Solution

For any fixed value p, arg [5] = u is the locus of a point z such that the
angle between the lines joiningatozandbtozis .

Clearly this locus is the arc of a circle passing through a and b the remaining
part of the circle is represented by the equation arg [E] = u+m. Hence the result
follows.

Exercise

1. Show that the inverse point of any point a with respect to the unit circle |z|=1 is

SIS

2. Find the inverse point of —i with respect to the circle 2z z+(i-1) z-(i+1) z = 0.

4.3 Regions in the complex plane.
Definition

Let z, be any complex number. Let € be a +ve real number. Then the set of all
points z satisfying |z-zy| < € is called a neighbourhood of z, and is represented by
N.(zo) or S(zo, €). Thus Ng(zo) = {z/1z-z¢| < €}.
Note 1: |z - zo| < € represents the interior of the circle with centre z, and radius .
Note 2: |z - zy| < € represents the set of points on and inside the circle with centre z,

and radius € and is called the closed circular disc with centre z, and radius «.
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Definition

Let SCC. Let zoeS. Then z; is said to be an interior point of S if there exists a
neighbourhood N,(zy) such that N.(zo)<S.

S is called an open set if every point of S is an interior point of S.
Definition

Let SCC. Let z4eS. Then z; is called a limit point of S if every neighbourhood
of z, contains infinitely many points of S.

Sis called a closed set if it contains all its limit points.
Remark

A set S is closed iff its complement C-S is open.
Definition

Let SCC. Let zoeC. Then z; is called a boundary point of S if z, is a limit point
of both S and C-S. Thus z, is a boundary point of S iff every neighbourhood of z,
contains infinitely many points of S and infinitely many points of C-S.
Definition

Let SCC. Then S is called a bounded set if there exist a real number k such that
|z| <k for all zeS.
Definition

Let SCC then S is called a connected set if every pair of points in S can be
joined by a polygon which lies in S.
Definition

A non empty open connected subset of C is called a region in C.
Example

a) LetD = {z/Rez>1}

Let z = x+iy. Then D = {z/x>1}

=~ D is nonempty, open and connected.

~ DisaregioninC.

Here D is the half plane as shown in the figure.
Example

Let D={z/|z-2+i| < 1}
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I.e. D is the set of all complex number satisfying |z-(2-1)| < 1. Clearly D
represents the closed disc with centre 2-i and radius 1. Also D is a connected and
bounded set. But the points which lie on the circle |z-(2-1)| =1 are not interior points of
D. Hence D is not open. Hence D is not a region.

Example
Let D ={z/Im z/>1}
Let D=x+1iy
D ={z/ly| > 1}
={zly>1lory<-1}
={zly > 1} u {z/ly <-1}

Clearly D is the union of two half planes and it is unbounded as shown in the
figure.

Obviously if z; is any complex number with Im z,;>1 and z, is any complex
number with Imz,<-1 then z, and z, cannot be joined by a polygon entirely lying in D.
Hence D is not connected. Hence D is not a region.

Example

D={zl0<argz<T™/, }isaregioninC.

Example

LetD={z/0<argz< % and |z| >1} D is as shown in the figure. Clearly D is an

unbounded region in C.
Example
Let D = {z/1 < |z| < 2} D is the region bounded by the circles |z|=1 and |z|=2.
Such a region is called an annulus or annular region.
Exercise

1. For each of the following subsets of C sketch the set and determine whether it

IS a region.
a) Imz>1 b) |z|>0,0<argz<-
c) |2z+3|>4 d) |z-4| > |z|

e) 0<|z-zy| < & where z; is a fixed point and 6 is a +ve number.
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2. If the points z,, z,, 5 are the vertices of an equilateral triangle prove
that z2+22+22 = 212,+ Z,75+ 2323

3. If zisavariable point and Re [%] = 0 prove that the locus of z is a circle.

4.4 Analytic functions
Definition

A function f defined in a region D of the complex plane is said to be analytic at
a point aeD if f is differentiable at every point of some neighbourhood of a.

Thus f is analytic at a if there exist €>0 such that f is differentiable at every
point of the disc s(a, €)={z/|z-a|< &}.

If f is analytic at every point of a region D then f is said to be analytic in D.
Definition

A function which is analytic at every point of the complex plane is called an
entire function or integral function. For example any polynomial is an entire function.
Remark

If f is analytic at a point a then f is differentiable at a. However the converse is
not true.

For example, f(z)=|z|* is differentiable only at z=0.

Hence f is differentiable at z=0 but not analytic at z=0.
Remark

f(z) is analytic in a region D if and only if the real and imaginary parts of f(z)
have continuous first order partial derivatives that satisfy the Cauchy-Riemann
equation u,=vy and uy= -v, for all points in D.

Further it follows that if f(z) is analytic in D then u and v have continuous
partial derivatives of all orders.
Theorem 4.4.1

An analytic function in a region D with its derivative zero at every point of the
domain is constant.
Proof

Let f(z) = u(x, y) + iv(x, y) be analytic is D in f'(z) = 0 for all zeD.

- 1 _ - _ -
Since f(z) = uxtivy = vy-iuy
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We have uy =uy=v,=Vv, =0

~ u(X, y) and v (x, y) are constant functions and hence f(z) is constant.
Remark

The above theorem is not true if the domain of f(z) is not a region.

For example let D = {z/|z| < 1} U {z/|z| > 2}.

D is not a connected subset of C so that D is not region.

Let f: D-C be define by f(z) = {} f [2[5; clearly f'(z) = 0 for all points zeD and
f is not a constant function in D.
Solved Problems
Problem 1

An analytic function in a region with constant modulus is constant.
Solution

Let f(z) = u(x, y) +iv (X,y) be analytic in a domain D.

Given |f(z)| is constant.

=~ u? + v = c where c is a constant (1)
[~z=u+iv

= |z|=VuZ + vZ ]

Differentiating equation (1)

Partially w.r. to x.

20U, +2vVv, =0

= UU, + VW, =0 (2)

Differentiating equation (1) partially w.r. to y.

2uuy +2vvy =0

= Uuy + v, =0 (3)

Using C.R. equation uy = vy and uy = -v, in (2) and (3) we get,
Ul —VUy =0 (4)

uuy +vu, =0 (5)
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(4)xu=u’u,—uvu,=0
(5) XV=>uvu,+Vv*u,=0
Adding (W+v)u,=0
= u,=0 [~ u?+Vv?=constant]
Similarly we can prove that v, =0
= F1(2) = uy + vy
=0
ie. fi(2)=0
Hence f is constant.
Problem 2
Any analytic function f(z) = u+iv with arg f(z) = constant is itself a constant.
Solution

Given arg f(z) = constant

= tan™ () = c; where ¢ is a constant.
u

= E = k where K is a constant.
~v=Kku

Differentiating partially w.r.to x and w.r. to y

Vy = K Uy (1)
vy = KUy (2)
1) = k==

X
(2) = vy= kuy

i — Vx

I.e. Vy - ux . Uy
= UgVy = VyUy
: UXUX' VXuy:()
= Uxlyx— Uy (-uy) = (using C.R equations uy = vy and vy = -Uy)
= uZ+u=0
= Ux=0anduy=0

Hence u is constant.
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Similarly we can prove that v is constant.
~ f=u+ivis constant.
Problem 3
If f(z) and f(z) are analytic in a region D, show that f(z) is constant in that
region.
Solution
Let f(z) = u(x,y) +iv(x,y)
= f(z) =u(x, y) —iv(x, y)
=u(x, y) +i-v(x, y))
Since f(z) is analytic in D, C.R. equation are satisfied.
~ We have uy = vy and uy = -Vvy.
Since f(z) is analytic in D, C.R. equations are satisfied.
~ We have uy = -vy and Uy = vy
Adding we get, 2uy=0and 2u, =0
= Ux=0andu,=0
Hence u, = 0 = v,
w Y (2) = U+ ive =0
=~ f(z) is constant in D.
Problem 4
Prove that the functions f(z) and f(z) are simultaneously analytic.
Solution
Suppose f(z) = u(x, y) + iv(x, y) is analytic in a region D.

Then the first order partial derivatives of u and v are continuous and satisfy the

. du _ dv
C.R. equations %~ 2y (1)
ov _ —du
% Oy (2)

Now f(Z) = u(x, -y) + iv (X, -y)
vZE=XHY =>Z=X-1y
fZ) =u(x,-y)-iv(x,-y)
= ug(X,y) + ivi(x, y) where ui(x,y) = u(x, -y)
and vy(X, y) = -v(X, -y)
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dup _du _9v_ vy i
Hence % “ox 3y ox (using(1))

du du _dv _ 0dv
and —=-—=—=—
dy dy  0x 0x

=~ The first order partial derivatives of u, and v, are continuous and satisfy the
Cauchy-Riemann equations in D.
~ f(Z) is analytic in D.

Similarly if f(z) is analytic in D then f(z) in also analytic in D.

Problem 5
92 92
= ——, prove that
dxdy 0dyox
2 2 2
o7 L9 9
ax2  dy? 0x 07
Solutions
Letz=x+1y

ax=2(z+z)andy=—(z2-7)

0 _ 0 0x + a Ody
9z 0x 9z 9y 0z

|
21
—_
S
N
~
R
N
+
2l
<
>~

G}

1 4 (1,0 .90 1
Y YU
2  0dy R ‘0x dy 2i
1 (a2 . 92 1( 92 1 92

- | — +i + - X-+—

4 (0x?2 " o9xdy) 4\0yoax i 0y?

1((a% , a2 ,. 4?2 1 92
=+ 4 + -
4 ((0x2  oy? dxdy i 0xody

|
2|

N
2|
2|
—

ax2  ay 0x dy i
1 [62 + 02]
4 \9x2 ay?
02 | 9?2 a2
> —+ —=
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Exercise

1. Prove that an analytic function whose real part is constant is itself is constant.

2. Prove that an analytic function whose imaginary part is constant is itself a
constant.

3. It f=u+ivis analytic in a region D and uv is constant in D then prove that f
reduces to a constant.

4. If f = u+iv is analytic in a region D and v = u? in D then prove that f reduces to
a constant.

5. Determine the constants a and b in order that the function
f(z) = (*+ay’—2xy)+i (bx*-y?+2xy) should be analytic. Find f'(z).

6. Test whether the following functions are analytic.

iy Z*+z (ii) €* (cosy +I sin y)
(i) e*(cosy—isiny) (iv) e (cosy—isiny)
Answers
4. a=-1 b=1 fl(z) = (1+i)Z 6) (i) yes.
(i) Yes (i) No. (iv) Yes.

4.5 The Cauchy-Riemann Equations
Theorem 4.5.1

Let f(z) = u(x, y) +iv (X, y) be differentiate at a point zo = Xq + iyp then u(X, y)
and v(x,y) have first order partial derivatives u,(Xo, Yo), Uy (Xo, Yo), Vx(Xo, Yo) and
Vy(Xo, Yo) at (Xo, Yo) and these partial derivatives satisfy the Cauchy-Riemann
equations (C.R. equations) given by ux(Xo, Yo) = Vy(Xo, Yo) and uy(Xo, Yo) = -Vx (Xo, Yo)-

Also f(zg) = Uy (Xo, Yo) +i Vx (Xo, Yo).

= Vy (Xo, Yo) =1 Uy (Xo, Yo)-

Proof

Since f(z) = u(x, y) +i v(x, y) is differentiable at zo = Xo + i Y, , ﬁ‘ﬁow
exist and hence the limit is independent of the path in which h approaches to zero.

Leth=h; +ih,.

Zoth =Xxy+iyy+hy+ih,

=Xo+hy +1(Yo+hy)
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f(zo+h)—f(zg)

h
— u(xg+hq,yo+hy)+iv(xg+hy,yo+hp)—u (xo,y0)—iv(x0yo)
(h1+ihy)

- [U(X0+h1,y0+hz)—U(Xo,yo)]_H [V(Xo+h1.y0+h2)—V(Xo,yo)]

Now

(hq1+ihyp) (h1+ihy)
Suppose h—0 along the real axis so that h=h;.

Then fl(zo) — }lllin)(;’ f(ZO+hhll)_f(ZO)

— lim@ u(zo+hy yo)—u(zoyo)

+I h]_—)O hl

= Ux(Xo, Yo) + 1 Vx(Xo, ¥o) (1)

Now suppose h—0 along the imaginary axis so thath =i h,

gl _ lim f(zo+h2)—f(zo)
~f(z0) = ihzm—l>0 T ing
—  lim u(xg, yo+h2)—u(zo,yo) + 1 lim v(xg, yo+h2)—v(xo.y0)
~ hy;—>0 ihy hy—0 ihy
_ [uy(XO'YO)]H [Vy(XOIYO)]
i i
1
== Uy(Xo, Yo) * Vy(Xo, Yo)
= -1 Uy(Xo, Yo) *+ Vy(Xo, Yo) (2)

From (1) and (2) we get

f(20) = Ux (Xo, Yo) + i Vx(Xo, Yo) = Vy(Xo, Yo) — 1 Uy(Xo, Yo)
Equating real and imaginary parts we get

Ux(Xo, Yo) = Vy(Xo, Yo)

Uy(Xo, Yo) = -Vx(Xo, Yo)
Remark 1

Since f'(z) = U+ i V= vy — i U,

We have [f'(2)]° = u2 + v2 = u? + v2

Also [f(z)]" = u? + u? = vZ + v2

Further [f'(2)|* = ux vy — Uy Vy

uy uy
- |Vx vy |

_0(uyv)
a(xy)
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Remark 2

The Cauchy-Riemann equations provide a necessary condition for
differentiability at a point. Hence if the C.R.equations are not satisfied for a complex
function at any point then we can conclude that the function is not differentiate.
For example, consider the function

fz)=z=x-1y
Hence u(x, y) =xand v(X, y) = -y
S U(X y) =1land vy(x, y) =-1
= Uy # vy S0 that C.R. equations are not satisfied at any point z.
Hence the function f(z) = z is nowhere differentiable.
Remark 3

The C.R. equations are not sufficient for differentiability at a point.
Theorem 4.5.2

Let f(z) = u(x, y) + iv (X, y) be a function defined in a region D such that u, v
and their first order partial derivatives are continuous in D. If the first order partial
derivatives of u, v satisfy the Cauchy-Riemann equations at a point (x, y)eD then f is
differentiable at z = x+iy .
Proof

Since u(x, y) and its first order partial derivatives are continuous at (x, y), we

have by the mean value theorem for functions of two variables.

U(x +hy, y+hy)-u(x,y) =hyu(x,y) + houy (X, y) + hy ey + hy & (1)
where g; and e, —» 0as h; and h, > 0
Similarly

V(X +hy, y +hy) - V(X y) = hy VX, Y) + ha vy (X, y) +hyeg + h; gy (2)
where

g3, e4—>0ash;andh, -0
let h=h; + ih,

Z=X+1iy
& z+h = x+hy +i (y+h,)

f(z+h) - f(2)

Then
h
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= = [u(x+hy, y+hy) +i v(xthy, y+ho)] - [u(x, y) +i v(x.y)]
= % {u(x+hy, y+hy) -u(x, y)I +i [v (x+hy, y+hy) —v (x,y)}

= = [{hy ux(xy) +hoUy(xy) + hy &1 + hy 5]
+ifhy Vi(X, Y) +h2 Vy(x, y) +hy 2 + h &2} [using (1) and (2)]

= = [ uxy) +Hv () Hho{(Uy (xy) + ivy(xy)}

+hy(ey + 1 €3) +hy(e, + 1 &4)]

- % [ ux(X,Y) -iuy(x,y)3+hs {uy (X,Y) + ite(X,y)}

+hy(g; + €3) +hy(e, + &4)] using C.R. equation
= % [({ha+i hy) ux(x,y) -i(ha+i hy) (uy (X,Y) + hi(erties) +ho(es + €4)]
= % [(h ux(x,y) — i huy (X,y) + hi(esties) +hao(e, + i €4)]
= UO0Y) — i Uy (oY) + 2 (arties) + 32 (e + i 24)
Now, Since | 2| <1, 3 (e;+ ie) - 0 ash — 0

Similarly ‘;—2 (ep+ ics) > 0ash — 0

im i@ fz+h)—f(z) _ .
L m S = (%, y) — iuy(X, Y)

Hence f is differentiable.
Example 1
Let f(z) = e* (cosy +isiny)
s~ Uu(x,y) =e*cosyand v (x,y)=e“cosy
Then uy(X, y) = €* cos y and vy(x, y) = €* cos y.
~Uy(X, y) = -e"siny and vy(X, y) =€*siny
= Uy(X, y) = -vy(X, Y)
Thus the first order partial derivatives of u and v satisfy the Cauchy-Riemann
equations at every point.
Further u(x, y) and v(x, y) and their first order partial derivatives are
continuous at every point. Hence f is differentiable at every point of the complex

plane.
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Example 2

Let f(z) = |z
2 @) =u(x y) +iv (x, y) =X +y°
~ulx,y) =x*+y?and v(x, y) =0
Hence uy(Xx, y) = 2x, uy(X, y) = 2y
Vi(X, Y) = 0 = vy(X, y)

Clearly the Cauchy-Riemann equations are satisfied at z=0.
Further u and v and their first order partial derivatives are continuous and hence f is
differentiable at z=0.

Also we notice that the C.R. equations are not satisfied at any point z # 0 and
hence f is not differentiable at z # 0.

Thus f is differentiable only at z = 0.
Theorem 4.5.3

(Complex form of C R equations)

Let f(z) = u(x, y) + iv (X, y) be differentiable then the C R equations can be put
in the complex form as f, = -ify.
Proof

Let f(z) = u(x, y) +iv (X, y)

Then f, = uy + vy

and f, = uy +ivy
Hence fy = -ify © uy + ivy = -i(uy +ivy)

S Uy + iVy = vy - iUy
© Uy = vy and vy = -Uy

Thus the two C.R. equations are equivalent to the equation f, = -if,.
Theorem 4.4

(C.R equations in polar co-ordinates)

Let f(z) = u(r, 8) +iv (1, 0) be differentiable at z = re*®# 0. Then Z—: ===

odv__1 2u )= (%% 49

;—-r.ae.Furtherf(Z) z(ar+'ar)
Proof

Z=re"#0

87



=r(cos 0 + sin 0)

~X=rcosOandy=rsin0

du _Odu dx ., du 0
Hence==2= . Z+2 2
dr 0x Odr Jdy Or

. d d i) .
ie,—==2=.c050+—.sin0 (1)
dr 0x dy

Ju Jdv  0x + dv dy
90  ax 90 ay 06
av . av

= —(-rsinf) + —cos 6
0x ay

10v ov . av
S—— = - — + —
~ o Sin 0 ™ cos 0

:%9”9+%0%905m90Rewmmm)

=5 (using (1)

du_ 10
Thus ==-=
or r 00

1 0du

_ d
Similarly we can prove that = =-=-=
dar r 00

du  0v du 0dx du Ody . ,0v 0x _dv 0dy
—+—)= —_YV—t - =)+t (. —+t—. =
Nowr(ar ar) r[(axlar 6y'8r) I(axlar 6y'6r)]

- Bu o i Y o
—r[(axcose+ays|ne)+|(axcose+aysln6)]
- ou , ;0v i ou i v
—rcose(ax+|ax)+rsme(ay+|ay)
(i piy (o
_X(ax+lax)+ly(0y Iay)

=x f(z) + iy f(2)

= (x +iy) f(2)

=zf(2)

Ry = (2
"f(z)_z 6r+| 6r)
Theorem 4.5.5

If f(z) is a differentiable function, the C.R. equation can be put in the form

of
— = 0.
0z

Proof

of _ of ox  of dy
9z 0x 9z 9y 0z
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= % (1/2) + g—}f, ('1/21)

of

Thus % =0e P -i %which is the complex form of the C.R. equations.

Thus the C.R. equations can be put in the form % =0
Solved Problems
Problem 1

Verify Cauchy-Riemann equations for the function f(z) = z°.
Solution

f(2)

2° = (x+ iy)®
%3 + 3x¥(iy) + 3x(iy)? + (iy)°®
(X% -3xy?) +i (3%%y-Y°)

~u(x, y) = x° -3xy? and v(x, y) = 3x%y — y*
~ Uy = 3x?-3y? and v, = 6xy
uy = -6xy and vy = 3x° — 3y
Here uy = vy and Uy = -Vy.
Hence the Cauchy-Riemann equations are satisfied.
Problem 2
Prove that the following functions are nowhere differentiable.
() f(z)=Rez (ii) f(z) =e*(cosy—isiny)
Solution
(i) f(z2) =Rez.
le. f(z) = x
~u(x,y)=xand v(x,y) =0
~Uy=landv,=0
uy=0andvy,=0
Since uy # vy the C R equations are not satisfied at any point.
Hence f(z) is nowhere differentiable.
(i) f(z)=¢€"(cosy—isiny)
=g*cosy—iesiny

s U(X, y) =e*cos yand v(x, y) =-e*siny
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s Uy =e€*cosyandv,=-esiny
uy=-e*sinyand v, = -e* cos y
Uy # vy and Uy # -Vy
~ C.R equations are not satisfied at any point and hence f(z) is no where
differentiable.
Problem 3

|z

Prove that f(z):{ZRe “if z# 0 is continuous at z = 0 but not differentiable at z=0.
0 ifz=0

Solution
First we shall prove that ,"™ f(z)=0.
Now [f(z) — O] = [f(z)|

_ |zRe z|

|z

_ lz] |Re z]|

|z|
= |Re z|
Further |Re z| < |z|.
=~ For any given € >0, if we choose & = ¢, we get,
lz| =|z-0|1< 8 = [f(2)-0| = |Re z| <|z| < ¢
l.e.|z-0| <0 = |f(2)-0|<e
Hence f is continuous at z=0

Now we prove that f(z) is not differentiable at z=0
f(z)—f(0) _zRez

z—0 z |z|
—Rez__ X \wherez=z+i
Tzl Xy B y

Along the path y = mx,

f(z)—£(0) _ X _ 1
z—0 Vx24+m?2x? V14+m?

= The value of the limit depends on m and hence on the path along which z—0
M w does not exist.

=~ f(z) is not differentiable at z = 0.

Problem 4

Prove that f(z) = z Im z is differentiable only at z=0 and find '(0).
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Solution

f(z)=zImz

= (x+Hy) y=xy +iy’

= u(x, y) =xy and v(x, y) = y°
S U =Y, V=0, uy=xand vy =2y

Clearly the C.R. equations are satisfied only at z = 0.
Further all the first order partial derivatives are continuous.
Hence f(z) is differentiable only at z=0.
1(2) = uy + vy
= £1(0) = ug(0,0) + ivy(0, 0) = 0 + 0 =0

Problem 5
XyZ(X-I-i y) .
T2nt if z#£0
Show that f(z) =
0 ifz=0
is not differentiable at z=0
Solution
xy 2(x+iy) —0
f(2)—f(0) _ x2+y %
z—0 x+iy —0
_ xyz(x+i y) X 1 _ Xy2
- X2+y4 X+iy - xz+y4

Along the path x = my?

f(z)—£(0) _ my4 _ m
z—0 m2yt+y*  mZ+1

The value of the limit depends on m and hence depends on the path along

which z— 0
o f(zii% does not exist.

= f(z) is not differentiable atz = 0

Problem 6
3 NY—v3 (1 —i
% if z#0
Prove that the function f(z) =
0 if z=0

Satisfies C.R. equations at the origin but f'(0) does not exist.
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Solution
r .3 N_ o301 s
XAty d-D if z#0

xz+y2
f(z) =
L0 if z=0
(x3—y3+i (x3 3y .
yxj+(yz+“ if z#0
f(z) =
if z=0

g

XY 46 (x, y) # (0, 0) and u(0, 0) = v(0, 0) = 0

x3—y3 3
Here u(x, y) = o7 and v(x, y) = 55

— lim u&thy)—uxy)

Now, Ux(X, ) = 5% -
. — limi@u(h,0)—u(0,0)
=~ Uy(0, 0) = 5% o
h3
— lim@hZ " _ lim@h® _ 1
~— h—0 h h—0 h3 -
_ limfuxy+h)—u(xy)
Uy(X, ¥) = 150 W
— lim@@u(0, h)—u(0,0)
uy(0, 0) = ;5% —
h3
— limf@_hZ — lim@ h° _ 1
h—0 h h—0 h3

Similarly we can prove that v,(0, 0) = 1 and vy (0, 0)=1
Thus uy(0, 0) =vy(0,0)=1and
uy(0, 0) = -v4(0, 0) = -1. So that

C.R. equations are satisfied at z = 0.

x3—y3+i (x3+y3) 0

f(z)—f(0 2
Now (z)—£(0) — X +_y
z—0 x+iy—0
)(3—y3 i(x3+y3)

&2+y2)(x+Hy)  &Z+y2)(x+iy)

Along the path y = mx we have y=mx

3,3 . %34 m3 x3

f(z)—f(0) _ x3—m3x i
-0 (x2+m? x2)(x+i mx) (x24m2 x2)(x+i mx)
_ X3(1—m3) ix3(1+ m3)
T x3(1+m2)(1+im)  x3(1+m2)(1+im)
1-m3 i (1+m3)

= (1+m?2)(1+im) (1+m2)(1+im)
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Hence the value of the limit depends on the path along which z—0
Thus "% f(i:% does not exist.

Hence f is not differentiable at 0.
Problem 7
Prove that f(z) = sin x cos hy + i cos x sin hy is differentiable at every point.
Solution
f(z) =sin x cos hy + i cos x sin hy
~ U(X, y) = sin x cos hy and v(x, y) = cos x sin hy.
Uy = COS X cos hy and v, = -sin x sin hy.
Uy = sin x sin hy and v, = cos X cos hy.
~ Ux=Vvyand u, = -v, forall x, y
Hence C.R equation are satisfied at every point.
Further all the first order partial derivatives are continuous.
Hence f(z) is differentiable at every point.
Problem 8
Find constants a and b so that the function f(z) = a(x*-y?) +i b xy+c is
differentiable at every point.
Solution
Here u(x, y) = a(x*-y?)+c and v(X, y) = b xy
Uy = 28X ; Vy by
uy = -2ay and vy = bx
Clearly uy = vy and uy = -vy iff 2a=b.
=~ C.R equations are satisfied at all points iff 2a=b.
=~ The function f(z) is differentiable for all values of a, b with 2a=b
Problem 9

Show that f(z) = v/r (cos 6/2 +1i sin e/2) where r>0 and 0<0< 2 is

differentiable and find f*(z).

Solution

f(z) = /r (cos 9/2 + i sin e/2)
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u =+ (cos e/2) and v = /r sin 6/2

Jou_ 1 0 w_1 in(®
s o= 5208 ( /Z)andar—zﬁsm( /)

du _ (0 CAZ P
— = sin( /Z)andae—[ - cos ( /)]
1ov _1 vt 6
Now -~ == [ cos /)]
_ 1 0
= 57 C0s ( /)
—0u
" or
u _19v
ThUS;—r 30
.. ov _ l a_u
Similarly T3

= =sin(%/,)

Hence the C.R. equations in polar form) are satisfied.
Further all the first order partial derivatives are continuous.

Hence !(z) exist

) = E i
Alsofi(z) = S(C+2)

= (5rcos(95) + o=sin( 7))

r

= Loos( %) +isin(9/,)]

= [Vr (cos( %) +isin(9/,)]

Hence f!(z) = zi

N

[z =re"
I.e.z=r(cos 0 + sin 0)

vz = /r (cos 0 + sin 0)”
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=reos(9/,) +isin(9/,) ]

4.6 Harmonic functions
Definition
Let u(x, y) be a function of two real variables x and y defined in a region D.

Zu 2].1 - - -
u(x, y) is said to be a harmonic function if 37 + g? = 0 and this equation is called

Laplace’s equation.
Theorem 4.6.1

The real and imaginary parts of an analytic function are harmonic functions.
Proof

Let f(z) = u(x, y) +iv (X, y) be an analytic function.

Then u and v have continuous partial derivatives of first order which satisfy the

. . du _ dv du _ dv
C.R. equation given by %y and 5= ok

d%u _ 9%u d%v _ 9%
Further = an =
dxdy 0dyodx 0xdy 0dyodx

0%u  9%u _ 8 ,0uy , 9 ,du
—_— —_ () 4+ — (—
Now axz  dy?  ox (6X) ay (ay)
J ,0v d av
= (—)+—(-—
0x (6y) dy ( 6X)
_ 0%y ) a%v
"~ ox dy 0dyox B

Thus u is a harmonic function. Similarly we can prove that v is a harmonic function.
Remark 1

Laplace’s equation provides a necessary condition for a function to be the real
or imaginary part of an analytic function.

For example if u(x, y) = X2 + Y,

d%u d%u
2 = ’ 2 = O
ax ay
9%u 9%u
and —+—=2
ox2  dy?

Thus u(x, y) is not harmonic function and hence it cannot be the real part of

any analytic function.
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Definition

Let f = u+iv be an analytic function in a region D. Then v is said to be a
conjugate harmonic function of u.
Theorem 4.6.2

Let f = u+iv be an analytic function in a region D. Then v is a harmonic
conjugate of u if and only if u is a harmonic conjugate of —v.
Proof

Let v be a harmonic conjugate of u.

Then f = u+iv is analytic
~ if = iu-v is also analytic.
Hence u is a harmonic conjugate of —v. Similarly we can prove the converse part.
Theorem 4.6.3

Any two harmonic conjugates of a given harmonic function u in a region D
differ by a real constant.
Proof

Let u be a harmonic function. Let v and v* be two harmonic conjugates of u
Then u+iv and u+iv* are analytic in D.

Since u+iv is analytic in D, by C.R.

. ou _ dv du _  0v
equation —— = ™ and 3 = o (1)

since u+iv* is analytic in D, by C.R

. ou _ dv* du _  0dvx
equation —— = % and 3 = ox (2)

From (1) & (2)
du _ dv _ dvx d Ju ov ov*

dx 0y ay dy ax ax

ov _ Ovx ov av=
Ls—=—and— =
dy ady ax ax

Hence ;—y (v-v*) =0 and % (v-v*) =0

~ V-v* = ¢ (a constant)

~ V=V*+C where c is a real constant.

96



Remark

The Cauchy-Riemann equation can be used to obtain a harmonic conjugate of a
given harmonic function.
Milne-Thompson Method

Let u(x, y) be a given harmonic function. Let f(z) = u(x, y) +iv(x,y) be an
analytic function.

Then f(z) = u(x,y) + i Vy(X, )

= u(x,Y) - i uy(x, y)
Let 61 (X, y) = ux(X, y) and 6 (X, y) = uy(x, y)

We havex:%ﬁandy:%

Hence f'(2) = g1 (52, 22) - ipa(52, 22

Putting z = Z we obtain f'(z) = ¢1(z,0) -i ¢, (z,0)

Hence f(z) = [ [91(z, 0) —i ¢,(z, 0)] dz+c
Note

It can be proved in a similar way that the analytic function f(z) with a given
harmonic function v(x, y) as imaginary part is given by f(z) = [ [Ry(z, 0) +iR,(z, 0)]
dz+c where R;(X, y) = vy and Ry(X, y) = Vx.
Solved Problems
Problem 1

Prove that u=2x-x>+3xy? is harmonic and find its harmonic conjugate. Also
find the corresponding analytic function.
Solution

U = 2X-X>+3xy?

o Uy = 2-3%%43Y7; Uyy = -6X

Uy = 6XY; Uyy = 6X

Uyt Uy = -6X+6x=0

Hence u is harmonic.

Let v be the harmonic conjugate of u.

~ f(z) = u+i v is analytic.

By Cauchy-Riemann equations we have
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Vy = Uy = 2-3x%+3y°
ie vy = 2-3x*+3y?
Integrating w.r. to y we get
V=2y-3XCy+y + A(x) (1)
where A(x) is an arbitrary function of x
& Vy = -6Xy +A/(X)
Now v, = -uy
= -6Xy + \'(X) = -6Xy
= A'(X) =0 = AM(X) = ¢ where c is a constant.
Thus v = 2y-3x%y+y*+c [From (1)]
Now f(z) = (2x-x3+3xy?)+i(2y-3x°y+y*)+ic
= 2(x+iy) — [(C-3xy*)+i(3x*y-y?)] +ic
=2z2-7*+ic
~ f(z)=2z-2%+ic is the required analytic function
Problem 2
Show that u = |og\/m is harmonic and determine its conjugate and hence

find the corresponding analytic function f(z).

Solution
1 2
=log,/x? ==log (x+
u=logy/x2 +y? =~ log (X*+y?)
1 1 X
..UX—E.W.ZX—W
Usw = (X2+y2)—x.2x _ y2—x2
X7 (x24y2)2 T (x2+y2)2
o _ x2y2
similarly uy, = Y

obviously u, + uyy, = 0 and hence u is harmonic
Let v be a harmonic conjugate of u.
=~ f(z)=u+iv is an analytic function.

By C.R. equation we have,
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- _ X
€. Vy = m
Integrating w.r. to y we get

v = tan™ (y/X)+ 0(x) where ¢(x) is an arbitrary function of x.

=L (Zy+o
Nowvx—1+y2 (Z)+e'(x)

22
Also vy = -Uy
-y ' -7y
+ =
X2 +y2 ¢'(x) X2 +y?2
= ¢'(X) =0

Hence ¢(x) =c

~v=tant Y/ +c

~f(X) = utiv = logy/x? + y2 +i [tan™ (V/y)+c]

Problem 3

Show that u(x, y) = sin x co shy + 2 cos x sin hy + x*y?+4xy is harmonic.
Find an analytic function f(z) interms of z with the given u for its real part.
Solution

Uy = COS X €0S hy — 2 sin x sin hy + 2x + 4y

Uyx = -SIN X c0S hy — 2 cos x sin hy + 2

Uy = sin X sin hy + 2 cos x cos hy -2y + 4x

Uyy = sin X cos hy + 2 cos x sin hy -2
Sl + Uy =0
Hence u is harmonic
Now let @1(X, ) = Uy and @,(X, ) = Uy.

% @1(z,0)=coszcosh0-2sinzsinh 0+ 2z

=C0SZ+2z
Similarly @,(z, 0) = 2 cos z +4z
=+ (@) = [ [9:(z, 0) i 0s(z, 0)]dz
= [[cosz +2z—i (2 cos z + 4z) dz

=sinz+z°-2isinz—2iz’+c¢
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Problem 4

Find the analytic function

f(z) = u +iv if urv = — 22

cos h2y—cos 2x

Solution
sin 2x
u+y=—n (1)
cos h2y—cos 2x
(cos h 2y—cos 2x) (cos 2x) 2—sin 2x(0+sin 2x 2)
R TNE AVAR= >
(cos h 2y -cos 2x)
2(cos h 2y—cos 2x) cos 2x —2sin 2 2x
o Uy = 2SR 2 ) (2)
(cos h 2y -cos 2x)2
and
cos h 2y—cos 2x) x 0—sin 2x x (2 sin h;
Uy vy = ( y ) 2 ( y)
(cos h 2y -cos 2x)
_ —2sin 2xsin h 2y
= Uytvy = (3)

(cos h 2y -cos 2x)2

Since the required function f(z) = u+iv is to be analytic, u and v satisfy the C.R.
equation uy = vy and uy = -V,.
Using these equations in (2), we get,

Uom U, = 2(cos h 2y—cos 2x) cos 2x—2 sin 2 2x
7y (cos h 2y -cos 2x)2

2(1—cos 2z)cos 2z—2 sin 22z
(1—cos 2z)2

=~ Uk(Z, 0) —uy(z, 0) =

_ (2—2cos 2z) cos 2z—2 sin22z

(1—cos 2z)?2
_2cos 2z—2(cos %2z+sin?2z)
(1—cos 2z)?
_ —2(1—cos 2z) _ -2

(1—cos 2z)2 1—cos 2z

= - cosec’z (4)

2 sin 2z
Using C.R. equations in (3) we get

—2sin 2xsin h 2y

Uy + U = (cos h 2y—cos 2x)2

2 Uy(z, 0) + Uy(z,0) = 0 )
Now adding (4) and (5) we get

2 Uy(z, 0) = -cosec’z

“ Uy(z, 0) = _71 cosec’® z (6)
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Subtracting (4) from (5) we get
2uy(z, 0) = cosec’z
= uy(z, 0) = %cosec2 z @)
Now f(z) = u(z, 0) +iv (z, 0).
= f1(2) = u(z, 0) +i v, (z, 0)
= Ux(z, 0)—1iuy(z,0)
= _?1 cosec’ z - i % cosec’ z
ie) '(z) = = (1+i) cosec’ z
Integrating w.r. to z, we have
f(z) = (=) cotz+c
Problem 5
Given v(x, y) = x*-6x%y*+y” find f(z) = u(x, y)+iv(x, y) such that f(z) is analytic
Solution
v(x, y) = X*-6x2y%+y*
vy = 4x3-12xy?
Vi = 12%%-12y2
vy = -12X°y+4y?
Vyy = -12x%+12y7
VicHVyy = 12x3-12y%-12x*+12y?
=0
= V(X, y) is harmonic.
Let f(z) = u+iv be the required analytic function.
By Cauchy — Riemann equations uy = vy
o Uy = 12Xy +4y?
~ Integrating with respect to x we get u=-4x’y+4xy*+ A(y) where A(y) is an
arbitrary function of y.
o Uy = -AXCH12XY5+ N (Y) = -Vy.
o -(4x3-12xy?)=-4x3+12xy*+ X' (y)

= A'(y) = 0 so that A(y) = ¢ where c is a constant.
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a U= -ACy+Haxy*+ ¢
« £(2) = (-4x3y+axy*+ c) +i(x*-6x2y*+y?)
= i[(X* - 6x3y*+y*) +i(4x%y-4xy?)]+c
= i[(x+iy)'J+c
=iz'c
Problem 6
Find the analytic function f(z) = u+iv given u-v =¢" (cos y —sin y)
Solution
u-v = e* (cos y —siny) (1)
Diff w.r.to x, u, — v, = €* (cos y —sin y) (2)
Differentiate (1) w.r. toy,
Uy-Vy = € (-sin y — cos y)
ie uy— vy =-e*(siny +cos y) (3)
Since the required function is to be analytic, it has to satisfy the C.R equations.
=~ using C.R. equations in (3) we get,
~Vy-Uy=-€" (sin y + oS Y) (4)
Solving (2) and (4) we get
Uy =€ cosy (5)
and v, = e cos y (6)
Integrating (6) w.r. to X, we get,
v=e"siny +f(y)
L vy =esiny + fi(y)
= uc=e‘cosy+fi(y) [~ vy=uy
= e*cosy =e*cosy + fi(y)
= f'(y)=0
Hence f(y) = ¢, where ¢, is a constant.
sv=etsiny+cy
From (1) u=¢e*cosy + ¢,
Now, f(z) = u+ iv
=e*cosy+c,+i(e*siny+cy)

=g (cosy+isiny)+(c,+icy)
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= e*. e + o where o is a complex constant.
— ex+iy +
=e’+a
Problem 7
Find the constant a so that u(x, y) = ax>y?+xy is harmonic. Find the analytic
function f(z) for which u is the real part. Also find its harmonic conjugate.
Solution
u = ax?-y’+xy
Given that u is harmonic

Hence it satisfies Laplace’s equation

P, oo
axZ  dy?
Now u _ 2a X+
0x y
a%u _
ﬁ =2a
du
—_ = - +
™ 2y+X
Pu _ o5
6y2
9%2u  9%u
_t = - -Z =
E =0 =22=0
=a=1
U= X5yPHxy

Hence u, = 2x+y and uy, = -2y+X
Let gi(X, Y) = Ux = 2x+y
and (X, y) = Uy = -2y+X
% @1(z, 0) =2z and @,(z, 0)=z
= 1(2) = [ [91(z, 0)-iga(z, 0)]=dz
= [ (2z-iz) dz

2
iz
:ZZ-—+C
2

roiin2  i(xHiy)?
= (xriy)? - L0 4 ¢

= (x%-y?+2i xy) —% (C-y?+2i xy)
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= (CyPrxy)H (2xy + 225 ) e

“ V(X Y) = 2xy + ( yz:‘z ) is the harmonic conjugate of u(x, y)
Problem 8
. . az . a2 2 _ 2 1elyon2
If f(z) is analytic prove that (ﬁ + ﬁ) [f(2)|" =4 [ (2)|

Solution
Let f(z) = u+iv
[f(2)| = VuZ + v2
f2) = u™+v* = ¢ (say)
and 1(2) = ug + i vy
Also ¢ = u® + V2

20

. = 2U.Uy + 2VVy
dx

e _
ﬁ - 2 [u-uXx+uX.uX+V.Vxx+Vx.Vx]

= 2 [uZ+Uly+ V2 + Wiy
Similarly 327(5 = 2 [uz+uuyy+ vy +vvy]
= 2 [vZ+uuyy+ uZ +vvy,]
[Using C.R equation]
Since u and v are harmonic,
Uxx + Uy = 0 and vy, + vy, =0

% L %0 _ o2 2 2 2
oty C 2[ug + Ukt Vi + VWitV + Ul tug +V.vyy |

= 2 uZ +2v2 + U(Uxx+Uyy) +2VE+202 + V(Vyy +VVyy)
= 4[ug + v¢]
= 4ucti Vi
=4[f'(2) [
Exercise
1. If utv = (x-y) (X*+4xy+y?) and f(z) = u+iv, find the analytic function f(z) in
terms of z.
2. Find the real part of the analytic function whose imaginary part is ™ [2 Xy cos

y + (y>-x%) sin y]. Construct the analytic function.
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3. Prove that the function u=sin hx sin y is harmonic. Also find the harmonic
conjugate.
Answers :
1. Z4c
2. u=e*[(x*y?)cos y+2xy sin y]; f(z) = e™ [(x*-y?) + 2i xy] (cos y —i sin y)
3. vV =-coshxcosy
4.7  Bilinear Transformations
Translation : w = z+b
Consider the transformation w = z+b. If z = x+iy, w = u+iv and b = b, +ib, then
the image of the point (x, y) in the z-plane is the point (x+b,, y+b,) in the w-plane.
Under this transformation the image of any region is simply a translation of
that region. Hence the two regions have the same shape, size and orientation. In
particular the image of a straight line is a straight line and the image of a circle with
centre a and radius r is a circle with centre a+b and radius r.
We note that oo is the only fixed point of this translation when b0.
Rotation w = az where |a|=1.
Consider the transformation w = az where |a|=1.
Let z = re'® and a=e'* so that |a|=1.
- W = az=e'® (reie) — rel(®+®)
=~ A point with polar co-ordinates (r, ©) is the z-plane is mapped to the point
(r, 6+ a) in the w-plane. Hence this transformation represents a rotation through an
angle o=arg o about the origin. Under this transformation also straight lines are
mapped into straight lines and circles are mapped into circles.

We note that 0 and o are the two fixed points of this transformation.

. 1
Inversion : w = -

Z

Consider the transformation w = %

Put z = re'®

1 1
W= -=—

x rel

i.e.W:(%)e'ie
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This transformation can be expressed as a product of two transformations
Ti(2) = (7)€"
and To(z) =re™ =7
For, (T1° T5)(2) = To(T2 (2))
= Ty(re™)
=(z)e®=2
The transformation T(z) = (%) e represents the inversion with respect to the
unit circle |z|=1 and T,(z) = Zz represents reflection about the real axis.
Hence the transformation w = % is the inversion w.r.to the unit circle followed

by the reflection about the real axis.

Here points outside the unit circle are mapped into points inside the unit circle
and vice versa. Points on the circle are reflected about the real axis.

However the family of circles and lines are again mapped into the family of

circles and lines.
We note that the fixed points of the transformation w = % are 1 and -1.

Problem 1
Show that the region in the z-plane given by x>0 and 0<y<2 is mapped into the

region in the w-plane given by -1<u<1 and v>0 under the transformation w = iz+1.

z - plane (-1,0)

Solution
Let z=x+iy and w=u+iv
w=iz+1

= W = i(X+iy) +1
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= u+iv = (-y+ix) +1
= U+iv = 1-y+ix
-~ u=1-y and v=x
x>0eov>0
y>0=1-u>0
= 1>u
leu<l
y<2=1l-u<2
= -1<u
. -l<uxl
~x>0ad0<y<2ev>0and-l1<u<l.
Hence the given region is mapped into the region v>0 and -1<u<1 as shown in the
figure.
Problem 2
Find the image of the square region with vertices (0, 0), (2, 0), (2, 2), (0, 2)

under the transformation w = (1+i) z+ (2+i).

Vv

w - plane
Solution
w = (1+i)z + (2+i)
Under this transformation,
A(0, 0) is mapped into A'=(1+i) (0+0i)+2+i = 2+i = (2,1)
B(2, 0) is mapped into B'=(1+i) (2+0i)+2+i = 2+2i+2+i = 4+3i = (4, 3)
C(2, 2) is mapped into C'=(1+i) (2+2i)+2+i = 2+2i+2i = 2+5i = (2,5)
D(0, 2) is mapped into D* = (1+i) (0+2i)+2+i = 2i-2+2+i = 3i = (0,3)
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= The required image region is another square A' B* C' D* as given in the
figure.
Problem 3

Show that by means of the inversion w = % the circle given by |z-3|=5 is

: - 3 5
mapped into the circle jw+ —|= —

Solution

The circle |z-3|=5 is mapped into | % -3|=5 [Since z= l]

Now|=-3/=5=|—— -3|=5

|1—3u—3w

u+iv
= | (1-3u)-3iv | = 5| u+iv]|
= (1-3u)? +9v? = 25U’ + V°)
= 1-6U + 9u® +9v? = 25u% + 25V?

= 16U° + 16Vv> + 6U-1=0

=5

6 1
S uw+vV+—=u-—=0
16 16

This is a circle with centre (— % 0) and radius (%)2 + i

[Since centre = (-g, -f), radius = \/g? + f2 — ¢ ]

9 1

256 16

_fo+16 _ [ 25 _ 5
Al 256 Al 256 16

Hence the image circle in the w-plane is given by the equation |W+%|:%

Problem 4

Find the image of the circle |z-3i|=5 under the map w = L

Z

Solution

The image of the circle |z-3i| =3 under the transformation w = % is given by the
equation | % -3i|=3

Now |--3i|=3
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= | —-3i|=3
u-+iv

1-3i(u+iv) | _
| ——1=3

u+iv
[1-3iu+v| _
[l -3

u+iv

= | (1+3v)-3iu| = 3|u+iv|

= /(1 +3v)2 + 3u)? =3VuZ +v2
Squaring on both sides,

(1+3v)% + (3u)® = 9 (U* + V7)

= 1+6v+9v>+9u? = 9u?+9v?

= 6v+1 = 0 which represents a straight line.
Hence the image of the circle |z-3i|=3 under w = % in the z-plane is the straight

line 6v+1 = 0 in the w-plane.

Problem 5

Find the image of the strip 2<x<3 under w = %

Solution

. 1 . . . . 1
The transformation w = - can be written in Cartesian coordinates as z =
VA

w

X+iy =

u+iv
1 u—iv
=—X—
u-+iv u—iv
i.e.) X+Hy =~
e y u+v2
= X=— =—
u2+V2’y u+v2
u
Now x> 2 = ﬁ>2
u“+v

= u>2 U +V9)
= 2U°+2v¥-u<0

= U +Vv--<0

Now u? + v — % = 0 is the equation of a circle with centre ( i , 0) and radius i .
Now x < 3
u
= u+v2 < 3
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= 3Ul+Vv)>u
= 3WU*+Vv)-u>0
= u2+v2—§ >0
— 1 — 1 — ) = —
29—-§=>g—-g,f—0,0—0

=~ centre (-g, -f) = (%, 0)

radius = /g2 + f2 —c = /(%)2+0_0:§

u

u?+v2— - =0iis the equation of the circle with centre ( % 0) and radius %

= The region x > 2 mapped into a region represented by u? + v —% < 0, which
Is the interior of the circle with centre ( % , 0) and radius i :
Also the region x < 3 is mapped into the exterior of the circle with centre ( % 0) and

. 1
radius -.
6

u

= The strip 2 < x < 3 is mapped. Onto the region bounded by the circles u? + v = 2

and

u+v? = % in the w. plane

y

N

A

ST\

A
»

z —plane w - plane

N
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Bilinear Transformation

az+b
cz+d

A transformation of the formw =T(z) = ....(1) where a, b, ¢, d are

complex constants and ad-bc # 0 is called bilinear transformation or Mobius

transformation.
We define T(x) = % and T(- %) = o0, Hence T become a 1-1 onto map of the

extended complex plane onto itself.

The inverse of (1) is given by

_az+b
cz+d

= w(cz+d)=az+Db
= wcz+wd=az+h
= WwWCecz-az=-dw+Db

=z(cw-a)=-dw+b

—dw+b
7=
Cw —a
; —dw+b . . .
~ z=T*Hw) == which is also a bilinear transformation.
CwW —a

Note :

All the elementary transformation (translation, rotation, magnification or
contraction, Inversion) are bilinear transformations.
Theorem:

Any bilinear transformation can be expressed as a product of translation,

rotation magnification or contraction and inversion.

Proof

Letw=T(z) = iz: where ad-bc # 0 be the given bilinear transformation
Case (i) c=0

Hence d #0 [+ ad —bc # 0]
(1) — W= az+b

a b
=(3)z+(3)
Now, let T,(2) = (%) z and Ty(z) = z+( 3)
T, and T, are elementary transformations and (T»°T,) (z) = T, (T1(2))
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=T,[(3)z]=2z+=
=T(2)
ie. (T,°Ty) (2) =T(2)
case (ii) c#0
_az+b
- cz+d

az+ 4 p-2d
- C C

clz +ﬂ]

[z+d]+b &
S ezt d
=2 + b_(%)

c cz+d

Now let T1(z) = cz+d

Tz(Z):i
Ta2) = (b-*)z
T4(Z):Z+(§)

(TaoT3oT2eTy) (2) = TaeT3To(T1 (2))
= T4°T3°T2(CZ+d)

czi—d)
= Ta [ ad) G
(bc ad) (

_ (bc —ad +acz +ad)
c(cz+d)

= -|_40-|_3 (

)]

cz+d

) +

cz+d c

_ (ac+b) _ az+b _
" (cz+d)  cz+d (2)

Hence the theorem.
Solved Problems
Problem 1

Show that the transformation w = % maps the unit circle |z| =1 into the circle

of radius unity and centre - %
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Solution
5—4z7
47-2
4wz — 2w = 5-4z
(4w+4)z = 5+2w

_ 5+2w
4w +4

Now, |z| =1

W =

=zz=1

5+2w 5+2w
( 4w +4 ) (4VT/+4

)=1

= (5+2w) (5+2wW) = (4w+4) (4w+4)

= 25+4ww + 10w + 10W = 16ww +16+16w + 16W
= 12ww + 6w + 6w — 9 =0
=~W\Tv+§w+%w-%:0

This represents the equation of the circle with center - % and radius

+ = =1. Hence the result.

=
Sl w

[+ Equation of thecircleiszz+az+az+p =0

=~ centre = -o.and radius r = \/a @ — B ]
Problem 2

Show that the transformation w = % maps the circle zz - 2 (z + Z)=0 into a
straight line given by 2(w+w)+3=0

Solution
_ 2z+3

z—4
& W(z-4) = 2z+3
z(w-2) = 3+4w

_ 3+4w
7=

w—2

The image of the circle zz—-2(z +Z) =0 is

(3+4w) (m) [ 3+4w + (3-1-—4w )] -0

w—2 w—2 w—2 w—2
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3+4w, 3+4w 3+4w
)-2[

N (W_Z) ( 3+4w]

+

w—2 w—2 wW—2

—]=0
9+12w+12w+16ww 2[B+4w)(W—2)+(w—2)(3+4w)]

(w=2)(W-2) )~ (w=2)(W-2) =0

16wv_v+12v_v+12w+9) 2[(BW—6+4W —8w)+(BW+4WW —6—8W)]

(w=2)(W—2) (w=2)(W-2) =0

16WW+12W+12w+9—2(BWW—5w—5w—12) _
(w=2)(w-2)

0

= 12w+12w+9+10w+10W+24=0
= 22w+22w+33 =0
= 2(w+w) +3 = 0 which is obviously a straight line.
Problem 3
Show that w = % maps the imaginary axis in the z-plane onto the circle |w|=1.

What portion of the z-plane corresponds to the interior of the circle |w|=1.

Solution

& |z-1| = |z+]]
& [xtiy-1 = [x+iy+1]

e Jx—1D2+y?=J(x+1)2+y?

& (x-1)%#y* = (x+1)*+y

& x%-2x+1 = X*+2x +1

©4x=0

©x=0

Hence the transformation w = 5 maps the imaginary axis x=0 onto the unit
circle |w|=1.

Also since the point z=1 is mapped to w=0, it follows that the half plane x>0 is

mapped onto the interior of the circle |w|=1.
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Exercise
1. Show that the transformation w = % maps the unit circle |z|=1 into the real
axis of the w-plane.
2. Show that the transformation w = g maps the real axis in the z-plane to a
circle in the w-plane. Find the centre and radius of the circle.
4.8 Cross Ratio
Definition
Let zy, 2y, Z3, Z4 be four distinct points in the extended complex plane. The

cross ratio of these four points denoted by (z1, z, Z3, Z4) is defined by
[ (z1—23)(z2—24)

if none of z4, z,, 73, 24 IS 0
(z1—24)(22—23)
G3)if 7, = o0
(z1—24)
—_ (22_24) f —_
(21,25, 23, 24) = < e LE< Rk
(21_23) |f 7,= 00
(z2—23) 4
(z2—124) . _
\ (z2-23) LEZE

Theorem 4.8.1
Any bilinear transformation preserver cross ratio.

Proof

b ) - )
z +d , ab-bc # 0 be the given bilinear transformation

Letw =

cz+

Let zy, 2y, Z3, Z4 be four distinct points.

Let their images under this transformation bet wy, wy, w3, w, respectively.
We assume that all the z; and w; are different from oo.

Claim

(21, 23, 23, 24) = (Wy, Wp, W3, Wy)

azj+b
czi+d

We have w; = (i=1, 2, 3, 4)

az1+b az3z+b
czi+d cz3+d

Now wq-w3 =

_ (az1+b) (cz3+d)—(cz1+d)((az3+b)
- (cz1+d)(cz3+d)

115



(aczyzz+adz,+bcza+bd)
_ —(aczq1z3+bcz 1 +adz3+bd)
- (cz1+d)(cz3+d)
_ (ad—bc)zq+(bc—ad)z3
T (cz1+d)(cz3+d)

_ (ad—bc)x(z1-23)
" (cz1+d)(cz3+d)

=Ky (21-23) (say)
Similarly — wy - Wy = Ky(25 - Z4)
w (W1-ws3) (W3-Wy) = Ky Ka(21-23) (22-24)
= Kk(z1-23) (22-24)
Similarly we can prove that

(W1 - Wg) (Wo-W3) = K(Z1 - 24) (22 - Z3)

. (Wi—ws3) (wa—wa) _ (21-73) (z2—24)
(wi—wyg) (Wo—w3)  (z1-24) (z2-23)

o (W, Wo, W3, Wy) = (21, Z2,23,24)
Hence the claim.
The proof is similar if one of the z; or w; is o.
Note 1
Four distinct point z,, z,,23,z4are collinear or concyclic iff (z1, 2,,23,24) is real.
Note 2
The bilinear transformation which map the three points z,, z,,z5 to three points
Wy, W, W3 is given by (z, 2y, 25,23) = (W, Wy, W, W3)
Solved Problems
Problem 1
Find the bilinear transformation which maps the points z,=2, z,=i, z;=-2 onto
w,=1, W,=i, Ws=-1 respectively.
Solution
Let the image of any point z under the required bilinear transformation be w.
Since bilinear transformation preserves cross ratio we have,
w,1,i,-1)=(z, 2,1, -2)

(w—i) (1+1) _ (z—1) (2+2)
w+1) (1-i)  (z+2) (2—i)
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2w—i) _  4(z—1)
w—iw+1-i 2z—iz+4-2i

(w-i) (2z-1z+4-2i) = (2z-2i) (w-iw+1-1)

= 2ZW-iwz+4w-2iw-2iz-z-4i-2
=2ZW-2iwz+2z-2iz-2iw-2w-2i-2

= iwz-3z+6w-2i =0
= W(iz+6) = 3z+2i

3z+2i
= W=

iz+6

This is the required bilinear transformation.

Problem 2
Find the bilinear transformation which maps z4, z,, z; to wy, W,, W3 respectively

where z,=00, Z,=1, 23=0 and w;=0, W,=I, W3=00
Solution

Let the image of any point z under the required bilinear transformation be w.
Since bilinear transformation preserves cross ratio we have

(W, W1, Wa, Wa) = (Z, 21, 25, Z3)

= (W, 0, i, ©) = (z, o, i, 0)

w—i zZ—i

0—i z-0

= ZW-iz = -iz-1

= w == which s the
required bilinear transformation.
Problem 3
Find the bilinear transformation which maps the points z,=0, z,=-i and zz=-1 into
w=i, W,=1 and w3=0 respectively.
Solution

Let the image of any point z under the required bilinear transformation be w.
Since bilinear transformation preserves cross ratio we have

(z,0,-i,-1) =(w, i, 1,0)

. (z+)(0+1) _ (w—1)(i-0)
" +1)(0+)  (w—0)(i-1)

= w(i-1)(z+i) = i%(w-1)(z+1)
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= W(zi-1-z-i) = - (wz+w-z-1)
= wzi-1lw—zw-wi = -wz-w+z+1

= wi(z-1) = z+1

z+1
— W =
i(z—-1)

LW =i (S) which is the required bilinear transformation.

Problem 4
Determine the bilinear transformation which maps 0, 1, « into i, -1, -i
respectively. Under this transformation show that the interior of the unit circle of the

z-plane maps onto the half plane left to the v-axis (left half of the w-plane).

Solution
The required bilinear transformation is given by the equation,

(W, i, -1, -i) = (z, 0, 1 o0)

. (w+D(+1) _ E

To(wH)(+1)  0-1
2i(w+1)

wi+w—1+i

= 2Iw+21 = Wi+w-1+i-zIiw-zw+2z-iz

=1-z

= WI-W+zZWi+zw=-i-1+z-iz
= w[(i-1)+z(i+1)] = z(1-i)-(1+i)
_z(1-D)—(1+i)
T z(1+)—(1-i)
2=(15)
z—(13)
z—i _ z—i

Z—1/i (z+i)

zZ—i
(z+i)

=~ The required bilinear transformation is w =

The equation of the left half of the w-plane and the interior of the unit circle
in z-plane are Re w < 0 and |z|<1 respectively.
NowRew<O<:>Re(z—:)<O

(z—i)(zZ—1)
< Re [W) <0

& Re [(z-) (z-)) < 0
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& Re [(zz-1 (z+2)-1)] <0
& Re (zz) -1<0 [+~ i(z + Z) is imaginary]
e[z <1
e [z]<1
=~ The left half plane is mapped into the interior of the unit circle.
4.9  Fixed Points of Bilinear Transformations
If w = f(2) is any transformation from the z-plane to w-plane, the fixed points

of the transformation are the solutions of the equation z=f(z).
Consider a bilinear transformation given by w = % where ad-bc # 0

The fixed points or invariant points of the bilinear transformation are given by

az+b
cz+d

the roots of the equation z =
i.e. cz®+ (d-a)z-b=0

case (i) ¢ #0; (d-a)*+4bc # 0 = 2 finite fixed points

case (i) ¢ #0; (d-a)’+4bc = 0 = one finite fixed point.

case (iil) ¢=0; a # d = oo and one finite fixed point.

case (iv) ¢=0,a=d = o is the only fixed point.

Theorem 4.9.1
Any bilinear transformation having two finite fixed points o and § can be

written in the form =—— = k (==).
w—3 z—

Proof
Let T be the given bilinear transformation having o and 3 as fixed points. Let
the image of any point y under T be 3.

Then the bilinear transformation T is given by (w, 9, a, B) = (z, v, o, B).

. W—0(-B) _ E=)G=p)
W-B)E—)  @-By—)

— 2 o ) oY yhere k = YROW
w—R (w—B) (y—a)(8—B)
Definition

Let T be a linear transformation with two finite fixed points a, B. If k =

y—B)(6—a)

is real, T is called hyperbolic and if |k| = 1, T is called elliptic.
(y—a)(6—P)
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Theorem 4.9.2

Any bilinear transformation having oo and a # oo as fixed points can be written
in the form w — a = K(z- a).
Proof

Let T be the given bilinear transformation having oo and a as fixed points. Let
the image of any point y under T be 3.

Then the bilinear transformation is given by (w, 8, a, ©) = (z, v, a, ©)

L w-a _z—a

5—a Y—a
— (3% (7 _
=>W—(x—(y_a)(z o)

5—a
y—«

= W-a = K (z-a) where k =

Definition

A bilinear transformation with only one finite fixed point is called parabolic.
Theorem 4.9.3

Any bilinear transformation having o as the only fixed point is a translation.

Proof

az+b
cz+d

Then ¢=0 and a=d

Letw = be the bilinear transformation having o as the only fixed point.

az+b

~ The bilinear transformation reduces to the form w =

W =2z +( b;) which is a translation.

Theorem 4.9.4

Let C be a circle or a straight line and z,, z, be inverse points or reflection
points with respect to C. Let wy, w, and C; be the images of z;, z, and C under a
bilinear transformation. Then w; and w, are inverse points or reflection points with
respect to C;. (i.e.) a bilinear transformation preserves inverse points.
Proof

Let the equation of C be

pzz+oaz+oaz+B=0 (1)

since z; and z, are inverse points w.r. to C by a theorem, we have

pzliz + 0z, + 0z, + B =0 (2)
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Let the given bilinear transformation be w = % where ad-bc # 0

dw —b
Z=
—cw +a
Under the given bilinear transformation (1) is transformed into
dw—b ; . dW-b dw—pB —_ rdw-B _
p[—Cw+a] [—EVT/+H] +a[—Ev_v+z_1] Ta [—cw+a] +B_O (3)
Also (2) is transformed into,
dwi-b dw,—b dw,—b — rdwq—b _
P [—cw1+a ] [—6w2+5] ta —EVT/2+§] ta [—cw1+a] *p=0 (4)

clearly (4) is the condition for wy; and w;, to be the inverse points with respect to (3).
Hence the theorem.
Note:

We shall regard the centre of the circle and oo as inverse points with respect to
the circle.
Solved Problems

Problem 1

Find the invariant points of the transformation w = ZZ— :

Solution

The invariant points of w = f(z) are got from f(z) = z.

wf@)=z=>z2="

2—z
2z -7°-2=0
—=27z-72°=0
=z(1-2)=0

=z=0o0rz=1
=~ The invariant points are 0, 1.
Problem 2

Find the invariant points of the transformation w = ! .

z—2i
Solution
f(z) =z

1

z—2i

- 7=

= 7%-2iz-1=0
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= (z-)*=0

= (z-i) =0

=z=i
Hence i is the only fixed point.
Problem 3

Prove that the transformation w = Z is not a bilinear transformation.
Solution

Any bilinear transformation, other than the identity transformation has two
fixed points. However the transformation w = z has infinitely many fixed points,
namely all real numbers. Hence it is not a bilinear transformation.
4.10 Special Bilinear Transformation
Theorem 4.10.1

- : b ..
A bilinear transformation w = % where ad-bc # 0 maps the real axis into

itself if and only if a, b, ¢, d are real. Further this transformation maps the upper half
plane. Im z > 0 into the upper half plane Im w > 0 if and only if ad-bc > 0.
Proof
Suppose a, b, ¢, d are real.
Then obviously z is real = w is also real.
=~ The real axis is mapped into itself.
Conversely consider any bilinear transformation T that maps the real axis into itself.
=~ There exist real number Xy, X,, X3 such that T(x;)=1, T(x,)=0 and T(x3)= o
=~ The bilinear transformation T is given by (z, X1, X5, X3) = (w, 1, 0, )

(z—x2)(x1—x3) _ w0
(z—x3)(x1—x2)  1-0

=W

az+b
cz+d

LW = where a = X;-X3; b= -X5(X1-X3), C=(X1-X») and d=-X3(X1-X»)

Since Xy, Xo, X3 are real, a, b, ¢, d are also real.

Now 2i Imw=w-w [ Imwz%]

az+b az+b
cz+d cz+d

=2 Imw=

_ (aczz+ adz +bcz+bd)— (aczz+ adz + bez +bd)
(cz+d)(cz+d)
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_ad(z—z)+bc(z—2)
|cz+d |2

_ (ad—bc)(z—2)
T Jez+d)?

_ ~: p (ad—bc)
=al lcz+d |2

(ad—bc)
|cz+d |2

]Imz[-:lmz:?]

~Imw = Im z.

=~ The upper half plane Im z > 0 is mapped onto the upper half plane.
Imw >0 < ad-bc>0.

Theorem 4.10.2

Any bilinear transformation which maps the unit circle |z|=1 onto the unit circle
Iw|=1 can be written in the form w=e" [ ] where K is real.

Further this transformation maps the circular disc |z| <1 onto the circular
disc |w| < 1 iff |a/<1.
Proof

Letw = % where ad-bc # 0 be any bilinear transformation which maps |z|=1
onto |w|=1

0 to oo are inverse points with respect to the circle |w|=1.

Hence their pre-images (- g) and (- %) are inverse points with respect to |z|=1.

(-g) (- %) =1 [using theorem in 4.2]

slfa=-(2)then (=) =-5

C

(oW

_az+b
cz+d

Now let |z =1 Hence |w|=1

|aa||z O(|

aa
o e

az—1

[since zz =1 ]

AZ—ZZ
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_ | ax | |Z —Hl
C oa—z

=2
Thus | | =1

? = e" for some real number A

~w=e" (=== where A is real.
oaz—1
_ _ gz Sy rZ—Q _

Now ww -1 =e (—aZ_1 )e [_az-1] 1

_ (z-a)(z-—a) B

B (&z—l)(ai—l)) 1
_ (zz—az—az—aa)—(aazz—az—az+1)
B (@z—1)(az—1)

_ zz—(1—a0)+ aa—1)
laz—1]2

_ (1—a@)(zz-1)
T Jaz—-1)2

The transformation maps |z|<lonto |w|<1
< 1l-aa>0
Soaa<l
o<1
Theorem 4.10.3
Any bilinear transformation which maps the real axis onto unit circle |w|=1 can
be written in the form w = e'( %) where A is real.
Further this transformation maps the upper half plane Im z > 0 onto the unit
circular disc |w|<1 iff Im o > 0.

Proof

az+
cz+

Letw = z where ad-bc # 0 be any bilinear transformation which maps the

real axis onto the unit circle |w|=1. 0 and oo are inverse points with respect to the unit
circle |w|=1.
Hence their pre-images — ( E) and — ( %) are reflection points with respect to

the real axis.

sfa=—(2)thend@=-(%)
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|
~—~

|
~
~
o Y
d

(2122

Z—0
Now suppose z is real.

Hence |w|=1

R

=1

C Z—O

Now since z is real, z = zZ and hence

z-a] =]z~ qf
=|z-q
=z -

|§|: 1. Hence%ze”,Ms real.

7—
Z—0

~w=e™ (Z2) where A is real the required transformation
] = el Py e (228
Nowww-l—e(z_a)e (2_0() 1

== 1

Z—O Z—

_ (zz—az—az+an)— (zz—az—az+aa)

|lz—a|?
_ (az+az—az+az)
|z—a?

_ (a—) (z—2)

|z—a|?

_ Qilma) (2ilmz)
|z—a|?

_ —4Imz Ima

|z—a|?

=~ The bilinear transformation maps the upper half plane Im z > 0 onto the disc |w| <1
iff Im o > 0.

Solved Problems

Find the general bilinear transformation which maps the unit circle |z|=1 onto
|w|=1 and the points z=1 to w=1 and z=-1 to w=-1.
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Solution

We know any bilinear transformation which maps |z|=1 onto |w|=1 is of the
form w = e ( %) where A is real. Since 1 and -1 are again mapped to 1, -1
respectively we have

1= (129 (1)

1= ()= () @

Dividing (1) by (2)

_ (1l-«a 1+«
1= a—1 ) ((1+a))

-(a-1) (1+0) = (1-0) (1+a)
= -[a + ax-1-a] =1+ @ — o - o
= -a-o0tlta=1+a—a-oax
= 20-2a=0
o= (3)

Using (3) in (1) we get

— b1z
1= " (—)
=et=-1
- The required transformation is w = ==

Problem 2

Prove that the transformation given by awz—bw + bz+a=0 maps the unit circle
|z]=1 onto the unit circle |[w|=1 if |b| # |a.
Solution

awz — bw - bz+a=0

_bz-a
~ az-b
— _ ,bz-a bz—a
Now ww -1 = ( — ) (az—B) 1

(bbzz—a bz—abZ+aa)—(aazz—abz—abz+bb)
(éz—b)(aZ—B)

|b|2zZ+|a|?—|a|?zZ—|b|?
|(az—b)|?
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2Z(|b|?—[a|?)—(|b|?—[a]|?)
|]az—b|?

(Ib|?-|a|?)(zz—-1)
|]az—b|?2

If |b| #|a| then ww-1=0 & zZ-1=0

= The unit circle |z|=1 is mapped onto the unit circle [w|=1 if |b| # |a].
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UNIT V

5.1 Complex Integration
Definition
Let f(t) = u(t)+iv(t) be a continuous complex valued function defined on [a, b].
We define [ f(t)dt = [ u()dt+i [ v(t)dt
Remark
1. Ref f(t)dt=[ Re[f(®)]dt.
2. Imf] f(®)dt= [ Im[f)]t.

3. [Prdt+ g(tldt= [ f(tydt + [ gt
4, fab cf(tydt=c fab f(t)dt where c is any complex constant.
Lemma :
1} fode < [ Fo)ce
Proof
Let [ f(t)dt = re®
|fab f(t)dt|=|re"’| = |r(cos® + i sin 0)|

= |r (cosO + ir sin 6]

=Vr2cos20 + r2sinZ0 = r

=™ [” f(t)dt

= Re(e™ [ f(t)dt) (since r is real)
= Re(f; e f(t)dt))

= 7 Re(e™f(t)dt))

< [P 1" f(t)ldt

= [ 1™ (DIt

= [} [fldt

[ 1= 1]
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Thus [ ft) de| < [ [FOldt
Definition

Let C be a piecewise differentiable curve given by the equation z=z(t) where
a<t<b. Let f(z) be a continuous complex valued function defined in a region
containing the curve C. We define [ f(z)dz = fab f(z(t)) z'(t)dt.
Example 1
c Zdea = 2mi where C is the circle with centre a, radius r given by the equation

z=a+re", 0<t<2m.

d_z_J-Zn rielt
z—a 70 reit
. 2T .
=if, dt=2mi
Remark

1. J_ f@)dz = -, f(z)dz
2. J. f(2)dz = -fcl f(z)dz +fc2 f(z)dz +... + fcn f(z)dz where
C= Ci+Cy+....+C,.
Definition
Let C be a pricewise differentiable curve given by the equation z=z(t) where
a<t<b. Then the length ¢ of C is defined by ¢ = [ [/(®)ct.
Example 2
Consider the circle C with centre a and radius r. The parameter equation of C is
given by z=a+re" where 0< t < 2.
z'(t) = ire"
= [ 2@l
ao0= [0 el
= f02“ rdt = r(t)3"
= 2mr.

Theorem 5.1.1
[, f(z)dz| < M where

M = max{|f(z)|/zeC} and ¢ is the length of C.
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Proof
Suppose C is given by the equation z = z(t) where a <t <b. By definition of M,
we have [f(z(t))] <M for all t, a<t<b. .. (D

Now | [, f(z)dz | =|f; f(z(t)z ()
< [ fz®)z (t)lct
= [ fz@)llz Oldt
< [}’ Miz'(t)dt using (1)
=M [ [zt = Me
o |f. f(z)dz) < ML.

Solved Problem

0 ifn#1
dz

1. Prove that | ks where C is the circle with centre a and radius

27 if n=1 rand neZ.
Solution

The parametric equation of the circle C is given by z-a=re®, 0 <t< 2=
dz _ _ iy _ st
" =Z'(t) =ire".
= dz = ire" dt

dz 2m relt
=,

c (z—a)? ~Jo (reit)n

i 2 i(1-
1 fo T e|(1 n)t dt

- rn—1

Now

r"—1|i(1-n)

i [ei(1-n)t |2m .
= provided n # 1
0
_ i i(1-n)2 0
- (1-n)rn-1 [e " € ]

1
(1-n)rn-1

=0

[1-1]

Ifn=1, [, ZdTZa = 2xi (Refer example (1)]
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Problem 2
Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first

|_T[

quadrant. Without actually evaluating the integral show that | fc di =3

z2+1
Solution

Letf(z) = =

Since C is the circular arc of radius 2 lying in the first quadrant, the length ¢ of
C is given by

(= % 2rx2)==n

Also on C, |2%+1| = |2%-(-1)| > |2} - |-1]

=21
= 4-1=3
Thus [2%+1] > 3
1 1
= | 72 +1 | S§

dz
7241

- By theorem 5.1.1 |_ | Sg

Problem 3
Show that fc |z|%dz = -1+i where C is the square with vertices O (0,0), A(1,0),
B(1,1) and C(0, 1)
Solution
C=C,+C,+C3+C,4 where C,,C,,C3 and C, are the line segments OA, AB, BC and
CO as shown in the figure. The parametric equation of C, is given by x=t and y=0
where 0<t<I.
Hence z(t)=t and z'(t)=1
i Jg, lePdz= [ fdt= [§ b=
The parametric equation of C, is given by y=t and x=1 where 0<t<1. Hence
Z(t) = 1+it
= Z'(t)=i

i Jg, lePdz = [ [1itfidt

=i [} 1+t
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. t3
[+ 1o

4i

The parametric equation of Cs is given by y=1 and x=1-t; 0 <t < 1
Hence z(t) = (1-t)+i
=7'(t)=-1
w Jy, 2Pz = f (-t +1](-1)dt
=-f, (P-2t+2)dt
3 2
=-[-25+ 21

The parametric equation of C, is given by x=0, y=1-t, 0 <t <1
Hence z(t)=i(1-t) and z'(t)=-I

5kJﬁm:g (1-t)2 (-i)dt

a3 i
=[5l =-5

Hence J. f(z)dz :§+§-§-§
=-1+i

5.2 Cauchy’s Integral theorem
Definition

Let p(x, y) and qg(x,y) be two real valued functions. Then the differential
equation p(x, y)dx+q(x, y)dy = 0 is said to be exact if there exist a function u(x, y)
such that Z—: = p and Z—; =Jq.
Note

fc pdx+qdy depends only on the end points of C if and only if the integrand is
exact.
Theorem 5.2.1

Let f(z) be a continuous complex valued function defined on a region D. Then

fc f(z)dz depends only on the end points of C if and only if there exists an analytic

function F(z) such that F'(z)=f(z) in D.
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Proof
J. f(2)dz = [, f(z)(dx+idy) [since z = x+iy]
= J. f(2) dx+if
fc f(z)dz depends only on the end points of C if and only if there exist a function F(z)

defined on D such that = = (z) and Z—i = if (2).

A 3 % 5o that 2 = -i 2 which is the complex form of the Cauchy Rieman
Jx 1 dy 0x ay

equation for F(z).

Since f(z) is continuous, the partial derivatives of F(z) are also continuous and
hence F(z) is analytic in D and F'(z)=f(z). Hence the theorem.
Corollary 1

Let f(z) be a continuous complex valued function defined on a region D then

fc f(z) dz = 0 for every closed curve C lying in D iff there exist an analytic function
F(z) such that F'(z)=f(z) in D.
Corollary 2

fc (z-a)" dz = 0 for every closed curve C provided n > 0.

Theorem 5.2.2 (Cauchy’s theorem)
Let f be a function which is analytic at all points inside and on a simple closed
curve C. Then f. f(z) dz=0

Proof

Let D be the closed region consisting of all points interior to C together with
the points on C.

Let € > 0 be given.

Let C;(G=1, 2, ..., n) denote the boundaries of the squares and partial squares

covering D such that there exist a point z; lying inside or on C; satisfying
|f(Z)_f(Zj)

Z—Z]'
for all z distinct from z; and lying within or on c;.
f(z)—f(z))

Z—Zj

f'@<e (1)

-1'(z) if z#z;

Let 51'(2) =
0 ifz=z
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Clearly 9j(z) is a continuous function
f(z) = 1(z)-z; ¥ (zj)+ 2 (z)+(z-Z)) 6j(2)
fcj f(z)dz = fcj f(zj)dz-fcj z; f'(z))dz +ij 2 f'(z))dz +ij (z-z)) §;(z)dz
:f(zj)fcj dz-zjf’(zj)fcj dz +f'(z) fcj zdz + fcj (z-z)) §;(z)dz
= fcj (z-z)) 8j(z)dz. [since fcj dz=0 and fcj zdz=0
T f, @Az =B [ (22) 52z (2)
Now in the sum ¥, fc]- f(z)dz the integrals along the common boundary of

every pair of adjacent sub regions cancel each other (since the integral is taken in one
direction along that line segment in one subregion and in the opposite direction in the

other) (refer figure)
Hence only the integrals along the arcs which are the parts of C remain.

X fcj f(z)dz = [, f(z)dz
~ From (2) J. f(2)dz = XL, fc]- (z-z)) j(z)dz
“|fe T@)dz] = XL, fcj (z-z)) §(2)dz| < X}y [, I(z-2))8(2)ldz
=21 fcj | z-zj| 8;(2)|dz
“fe @)z <y J, 1221 3y(2)ldz 3)
Now if C; is a square and s; is the length of its side then |z-z| < v2 s; for all z on C;.
Also from (1) we have |8;(z)|<e and hence fcj |z-2j||8;(z)|dz < (\/Esjs) (4s;) [by theorem

5.1.1]
=4 (V2Ag) (4)
Where A; is the area of the squre C;.
Similarly for a partial square with boundary C; if |; is the length of the arc of C
which forms a part of C;.
We have fcj |z-2j||8;(z)]dz < (\/Esj)s(4 sj+|j)<(4\/§Aj eV/2 sl; (5)
Where S is the length of a side of some square containing the entire region D as

well as all the squares originally used in covering D.

134



We observe that the sum of all A;’s that occur in the right hand side of (4) and
(5) do not exceed S? and the sum of all the ?j’s is equal to L (the length of C) using (4)
and (5) in (3) we obtain

| f(2)dz| < (4v2S* + V2 SL)e

= ke where k = 44/25° + /2 SL is a constant.

Thus |f, f(z)dz| <ke
Since ¢ is arbitrary we have fc f(z)dz=0
Definition

A region D is said to be simply connected if every simple closed curve lying in
D encloses only points of D.

Definition

A region which is not a simply connected is said to be multiply connected
region.

Theorem 5.2.3 (Cauchy’s theorem for simply connected regions)

Let f be a function which is analytic in a simply connected region D. Let C be
any simple closed curve lying within D. Then [, f(z)dz = 0.

Theorem 5.2.4 (Cauchy’s theorem for multiply connected regions)

Let C be a simple closed curve. Let C; (j=1, 2, ..., n) be a finite number of
simple closed curves lying in the interior of C such that the interiors of C;’s are
disjoint. Let D be the closed region consisting of all parts within and on C except the
points interior to each C;. Let B denote the entire oriented boundary of D consisting of
C and all the Cj described in a direction such that the points of D are to the left of B.
Let f be a function which is analytic in D. Then fB f(z)dz = 0.

5.3 Cauchy’s Integral Formula
Theorem 5.3.1

Let f(z) be a function which is analytic inside and on a simple closed curve C.

Let z, be any point in the interior of C. Then f(z;) = % c 1)
i Z—7(

dz.

Proof

Choose a circle C, with centre zy and radius ry such that Cq lies in the interior of C.
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()

Now z, is the only point inside C at which the functlon |s not analytic and

hence is analytic in the region D consisting of all points inside and on C except the

points interior to C,.

f(z)dz _ f(z)dz
Z—171( B Co Z—1Z(

Hence |.
— f(z)—f(z0)+f(z0)
- fc ( 2—7 ) dZ

Wote) g, g 1) g

Co Z—Z1( Z—ZQ

0 z2—Zg

: fCO(@ )+ f(zo) (2ni)

Thus f, “@% = [ 070 45 4 (oni) f(z) 1)

Z—7Z¢ 0 Z—7Z(

Claim

f(z)—f(zo)
fco( )dz=0

yASYAY)
Since f(z) is analytic inside and on C, it is continuous at z,.
=~ Given ¢ > 0 there exist. >0 such that |z-zg) <& = |f(2) - f(zo)|<e

If we choose ry < 9, then |z-z| < 1o = |f(2)-(z0)|<e

Hence |, (“Z) @) ydz | < (=) (nro) [By theorem 5.1.1]

Thus |fCO(M)dz| <ne
Z—7Z0

Since ¢ is arbitrary we have f (M )dz=0

Hence the claim.

From (1), we get | % d, = 2mi f(z)

ff(z) =— [ *2 gz,

2mi YC z—z
Theorem 5.3.2
Let f(z) be analytic in a region D bounded by two concentric circles C, and C, and on

the boundary. Let zy be any point in D. Then

f(z)=— [ ~2qgz. L[ &

2mi Y€1 z—zg 2mi YC2 z—zg
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Example
Consider | :%3 where C is the circle |z-2|=5
Let f(z2)=1

The point z=3 lies inside C.

Hence by Cauchy’s integral formula,

[, = = 2ni f(3) = 2ni

-3
Example 2
Let C denote the unit circle |z|=1
Then f, —dz= . — uz
e? om0~ -
fc —; 4z = 2mi ¢ = 2mi
Solved Problems
Problem 1

Z2 -
Evaluate using Cauchy’s integral formula L ) *> dz. Where C is |z|=4

2mi /C z-3
Solution

f(z) = Z2+5 is analytic inside and on |z| = 4 and z = 3 lies inside it.

~ By Cauchy’s integral formula,

1 2245 _
2—me — dz = f(3)
= 3%+5=14
Problem 2
Evaluate fc Z;; dz where C is positively oriented circle |z-i|=2
Solution
1 _ 1
22+4 (z+2i)(z—2i)
= L (= - 1) by partial fraction
= aw G T P '

Now, 21 lies inside C and by Cauchy’s integral formula we have fc Ze_—zzl dz = 2xii &

eZ

7244

Also -2i lies outside C and hence fc dz is analytic inside and on C.
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Hence by Cauchy’s theorem % dz=0

) e’ 1 p o 2 (\—T L2
e —7; 02 = (2mi e™-0)=Ze

Problem 3

: 2 2
Sin tZ“+Ccos Tz
—)d

z-1)(z-2)
Where C is the circle |z|=3

Evaluate . (

Solution
By partial fraction

_t -t _ 1
(z—1)(z-2) T z2-2 z-1

Let f(z) = sin & 2% + cos 1z
Then f(z) is analytic inside and on C and the points 1 and 2 lie inside C. Hence by
Cauchy’s integral formula
J. 22 dz = 2nif(1)
= 2mi(sin & + coS T)
= 2mi(0+(-1))= -2mi
Similarly f, ~ dz = 2mif(2)
= 2mi(cos 4n + sin 4m)
= 2mi(1+0)= 2mi

Hence [ @) 47 = 21i — (-2ni) = 4ni

C (z-1(z-2)
Problem 4
Evaluate (9—ZZ+)2(2+1) where C is the circle |z|=2 taken in the positive sense.
Solution
Let f(z) = 9_222

Clearly f(z) is analytic with in and on C. By Cauchy’s integral formula,
zdz _ @
fC (9—22)(z+i) fC z+i

T

= 2mi f(-i) = 2mi (=) = 3

138



Exercise

ANS : 2mi

eZ dt

2. Show that —f =sintift> 0and C is the circle |z|=3.

Theorem 5.3.3 (Morera s theorem)

If f(z) is continuous in a simply connected domain D and if fc f(z)dz=0 for

every simple closed curve C lying in D then f(z) is analytic in D. (This theorem is the
converse of Cauchy’s theorem)

Proof
By corollary 1 of theorem 5.2.1 there exists an analytic function F(z) such that

FY(z)=f(z) in D.
Also we know the derivative of an analytic function is an analytic function.
Hence F!(z) is analytic in D
=~ f(z) is analytic in D.
Theorem 5.3.4
Let f be analytic inside and on a simple closed curve C. Let z be any point

inside C. Then f(2) = — | (;f?)z dc

Proof

By Cauchy’s integral formula we have f(z) = ﬁ c 2(2 d¢

 f+h)—f(z) _ 1.1 f@© o f©
- h " h [zm fC {—(z+h) aG 2mi fC ¢- zdC

_ 1 [CING)
~ h(2mi) fC e ) A

(—z—h
_ 1 hf ()
" h2mi fc[((—z—h)((—z) 1dg
_ 1 f(©)d¢
= [, e ®

2mi JC (@-z-h)(@-2)

F(Q)dL FQ)d1
Now Jo e e oo

(@) ()
= - d
fc[(z—z—h)(z—z) (z—z)z] S
_r f© 11
—Jc (z—z)[z—z—h z—z]dc

f@ 8=z—(@C—z-h)
d
C @2 [(Z—Z—h)(i—z)] e
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_ £(Q)dg
=hJ; ((—2—h)((~2)?

Lo @i 1 Qb £(9dg
“2mi JC (C—z-h)(@C—z) 2mi JC (@(-2)2  2mi JC (—z—h)((—2)2
 fGth)—f@) 1 f@dg _ h £(9)dg -
o h 2mi fC C-2)2  2mi fC ((—z—h)((~2)? (2) [using (1)]

Now let M denote the maximum value of |f({)|on C. Let L be the length of C
and d be the shortest distance from z to any point on the curve C.
=~ For any point { on C we have | {-z|>d and | {-z-h | > | {-z | -|h| > d-|h|

@ M
~2)2(@-2=h) | = d2(dIh])

Hence |
@

From (2) we get

|f(z+h)—f(z)_if f(c)dz| |h| ML )
h 2mi “C (C— —2n d2(d-|h)])

. lim (fE+h)—f@) 1f f(z)dc)

" h—=0 h S 2miJC (-

. lim f(z+h)—f(z)):Lf f(7)dg

" h—0 h 2mi JC ((—2)2

. 1 f@Qdg

B f( ) ~2milc (Z—Z)Z)

Remark

By using induction on n we can prove that for any positive integer n we have

n ()
00 =2, O

Note

Thus an analytic function has derivatives of all orders and the derivate of an
analytic function is again analytic.
Thorem 5.3.5

(Cauchy’s Inequality)

Let f(z) be analytic inside and on the circle C with centre z, and radius r. Let M

Proof
M denote the maximum of [f(z)| on C.
~ [f(z)) <Mon C
f(z)dz
=]

C (Z Zo)n+1

We have f"(zy) = —

2mi
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(n) _ n_' f(z)dz
|f (Zo)l - | fC (z—zg)" 1 |

2mi

n! M
— (2 mr) (by theorem 5.1.1)

—2m

_ nlM

rn
n!M

rin

Hence [f"(zo)| <

Theorem 5.3.6 (Liouville’s theorem)

A bounded entire function in the complex plane is constant.
Proof

Let f(z) be a bounded entire function. Since f(z) is bounded there exist a real
number M such that [f(z)| <M for all z. Let zg be any complex number and r>0 be any

real number.
By Cauchy’s inequality we have [f'(Zq)| < % . Taking the limit as r—o we get

f '(z0)=0. Since z, is arbitrary, f '(z,)|=0 for all z in the complex plane.
=~ f(z) is a constant function.
Theorem 5.3.7
(Fundamental theorem of algebra)
Every polynomial of degree > 1 has atleast one zero (root) in C.
Proof
Let f(z) be a polynomial of degree >1. Suppose f(z) has no zero in C. Then
f(z) # 0 for all z.

Further f(z) is an entire function in the complex plane.

1 . . .
. P is also an entire function.
VA

Also as z >, f(z) >

S —0asz -
" f(z)

Solved Problems
Problem 1

z3dz

(2z+i)3

Evaluate | where C is the unit circle.
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Solution

f z3dz 1 z3dz
C (2z+i)3 8°C (Z+l§)3

Let f(z) = z°. Then f '(z)=3z% and f "'(z)=6z.
Also _?1 lies inside C

3d 1,2 "
Hence [, (222;)3 —(—“l)f (—)

_2111 6( 1/2)

Problem 2

sin 2zdz
T[l
4
4 )

Evaluate : f

where C is |z|=1,
Solution
Let f(z) = sin 2z

Since f(z) is analytic and %1 lies inside C

. sin 2z _ 2mi g,
= e =

(z— m)4

Now f'(z) = 2 cos 2z, f''(z )=-4sin 2z
""" (z) = -8 cos 2z
Hence ' (%i) =-8 cos (%i)

=-8 cosh ("/5)

sinz _ —8mi
“ e dz =—=cosh (™/5)

(z—mi)*
Problem 3
Evaluate | m dz where C is |z|=3
Solution
1 _ (z4+2)—(z+1)
(24+2)(z+1)2  (z+2)(z+1)2
_ 1 1
T @+D)? (z42)(z+1)
1 1 1

- (z+1)2 - z+1 z+2
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dz

i e T gtk Gtk o
We note that z=-2, -1 lie in the interior of C
Let f(z) = €. It is analytic in C.
Also f'(z) = ¢
By Cauchy’s integral formula,
J == dz=2ri f(-2)
=27 e

. : dz = 2mi f(-1) = 2ni e

[, —S=dz= (Z) /(1) =2mie’

(z+1)2
. e oo a2l
- fc eI dz =2mi [e"-e"+e ]

= 27i ¢

Exercise

1. Evaluatef %dz where C in the circle |z|=4. [Ans : -2mi(1+m7i)]

a2
2. Evaluatef o7 42 where Ciis the circle [z]=2. [Ans : 21

3
5.4  Taylor’s Series
Theorem 5.4.1 (Taylor’s theorem)

Let f(z) be analytic in a region D containing z,. Then f(z) can be represented as

(Zo) " (Zo)

a power series in z-z, given by (z) = f(z) + — (z 20) + —22 (z-20)* + .

f< )(zO)

ot 22 (2-70)% +..

The expansion is valid in the largest open disc with centre z, contained in D.
Proof

Let r>0 be such that the disc |z-zq|<r is contained in D.

LetO<ry<r. Let C; be the circle |z-zo| = r;. By Cauchy’s integral formula, we

have
@)=, é(‘j) (1)

Also by theorem on higher derivatives we have,

2mi
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(n) f(§)d¢
f ( ) 21 fCl ((—z)nt1 (2)
1 1
Now —=— ——
0 -z ({—z0)—(z—z0)
N S
(i—Zo)(l—%)

i~z i~z -G

Z—Z()\n
- 1 1+(Z ZO)+(Z ZO) n +(Z ZO) 1+(§ ZO)
(-z0)

n

(using the identity ﬁ =l+a+o’.... +a"t+

1-«
S S RN ) O o 10 KPR .10
—20  G-20)*  (G-70)? G-z (G-z0)"(§-2)

(i)

Now multiplying throughout by , Integrating over C, and using (1) and (2) we get

f f@dg _ f f(Z)dZ f f(©)dg
Ci -z  2miJC1 -z 2m C1 ({—z0)?
(Z—Zo)“f f(©)dg

2mi “C1 (3-2)(G—z)"

n—1
(z—z¢) f f(©)dq +R (3)

-Z0) ...+
(z-29) +... = e

2mi

where Rn =
=Dy .
= 1(2) = f(20)+f @) (2-20) + 22 (2-20)" + ... + 22 (2-20) 4R,
Here  lies on C; and z lies in the interior of C; so that |(-zo|=r; and |z-zq|<ry
* 627 (C-20)-(2-20)| = [E-Zol-|2-20| = 11-[z-Z0|
1 1
<

[C—z| — ri—|z—zg|

Let M denote the maximum value of |f(z)| on C;.

|z—zo " M(27rq)
<
Then [Ro| < 2n (r1—lz—zo) 1}

[Since By theorem, | [ f(z)dz|<Ml]

m|z—z| ( |z—z¢| )n_1

" (r1-lz—z0l) rq
Also 272l ¢
rq

Hence ,'m"R,=0

f(Zo)

=~ Taking limit as n—oo in (3) we get, f(z)=f(z) + (z o)+ (2o)X(z-20)*+...

A )(ZO) (z-20)"+..
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Note 1

The above series is called Taylor’s series of f(z) about the point zy. The
expansion is valid in some neighbourhood of z,.
Note 2

The Taylor series expansion of f(z) about the point zero is called the

Maclaurin’s series. Thus the Maclaurin’s series of f(z) is given by
f(z) =f(0) + - f'(0) + - f "(0) : %f(”)(O) +....
Example 1

The Taylor’s series for f(z) = % about z=1 is given by,

% = f(1) + f/f!l) (z-1) +- ”2(!1) (z-1)°+ % (z-1)+....
Now f(z) === f(1)=1
f'(2) =- iz = f'(1)-1
f(2) =5 = f"(1)=2
f(2) = 5 =f"(1)=-6
Hence the Taylor’s series expansion for % about 1 is i = 1-(z-1) + (z-1)%(z-1)*+
This expansion is valid in the disc |z-1|<1.
Example 2

Let f(z) = €°
Then ™ (z)=e for all n and hence f™(0)=1.

72 73 z0
Hence the Maclaurin’s series for e” is given by e” = 1+ = TRETRETRIE A= - ..

n:

Maclaurin’s series expansion of some of the standard functions are given below

1. ¢ —1-;+—. +(-1)" —+ .. (|| <)
z2n—
2. smz—z-;+—+ +(1)nl — -+ (121 <0)
z2n—
3. cosz—l-—|+—+ +(1)”1 — - (12l <)
. oz 723 z5 z2n—1
4. sinhz = F+§+E+”‘+(zn—1)!"'(|Z|<°°)
2n
5, coshz—1+—!+z+...+(22n)!+..(|z|<oo)
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6. = =1-2+7°-2°+ .+ (1) "+ .. (z<1)

[uny

1
[ 1+z+22+ 22+ .. +2"+ ... (z|<1)

8. log (1+2) =z -2+ % . ()" Z+ . (lz<1)

2,3

9. log (1-7) = z- - .. -S4 . (zi<])

Solved Problems
Problem 1

Expand cos z into a Taylor’s series about the point z = g and determine the

region of convergence.
Solution

Let f(z) = cos z.

= The Taylor’s series for f(z) about z= = IS f(z) = f( ) + &2 f ( ) / il Vi

£r(1/)+ ¢ /2) f "'(ﬁ/2)+
Now f(z) = cos z. Hence f("/,) = 0.
f'(z) = -sinz. Hence f'("/,;) =-sin ™/, =-1
f"(z) = -cos z. Hence f"'("/5)=-cos T/, =0
f'"(z) =sinz. Hence f"'("/,)=sin™/, =1
@/

=~ The Taylor’s series for cos z about z = 1'[/2 ISCOSZ=- i

N (Z_T[/2)3 ) (Z_T[/Z)S N
3! 5!

The expansion is valid throughout the complex plane.
Problem 2

Expand f(z) = sin z a Taylor’s series about z = % and determine the region of

convergence of this series.

Solution

R . T . _ z="/p) ,
The Taylor’s series for f(z) about z = —-is f(z) = f(/4) + T/‘* f'("/4)

/4) fN(T[/ )+
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Here f(z) = sin z. Hence f(“/4) = %

f'(z) = cos z. Hence f'("/,) = %

f "(z) = -sin z. Hence f "("/,) = -sin™/, = ‘721
f'"(z) = -cosz. Hence f'"("/,) = - %
=~ The Taylor’s series for sin z
aboutz ="/, issinz:%+(z_1—1:/4)(\/i§)-# (%)+...
=L R ETM T,

This expansion is valid in the entire complex plane.
Problem 3

Expand f(z) = E as a Taylor’s series
(1) about the pointz =0
(i)  about the point z = 1. Determine the region of convergence in each case.
i f@) ==
= (z-1) (1+2)*
= (z-1) 1-z+2%-22 +...) if |zI<1
= (-22+2%-.. ) - (1-z+2*- 2°..)
= -1422-22°+27°+. .
The region of convergence is |z| < 1

.. z—1
i) f(z) = =
_z—1

T (24z-1)

-1 -1 1.1
== D)

z—1 z—1 z—1.2 z—1.3 . z—1
== [-—+(5) - () +...]if [ I<1

) z-1? (z-1)3
2 22 23

—Z_

. . . -1 . . .
The region of convergence is given by |ZT| < 1 which is same as the circular

disc |z-1]<2
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Problem 4
i. —=1+ Y, (n+1) (z+1)" when |z+1|<1

z—1n

ii. Z— —+ Z 1 ()" (n+1)(—) when |z-2|<2

Solution
i -1
' 22 [1—(z+1)]?
= [1-@+1)]”

= 142(z+1)+3(z+1)*+4(z+1)* + ... if [z+1[<1

=1+, (n+1) (z+1)"when |z+1|<1

1 _ 1
72 [z—2+2]?

1

- [2(1+55))°

Z—2, -2
1+
z—2 2

[1-2(=2) +3(52)" -] if | =2 <1

1
N

z—2 1 zZ—2
X2(7)+ZX3(T)2-

4>|>—x N N N

+2X0 ()" (n+1) (52

Here the region of convergence is |%|< 1 which is the same as the circular disc
|z-2|<2.
Problem 5

Expand ze? in a Taylor’s series about z=-1 and determine the region of

convergence.
Solution
Let f(z) = ze®
= 7 p2z+1-])
=z @ g

= = [(z+1-1)e**™]

— elz [(Z+1)e2(z+1)_e2(z+l)]

2(z+1) [2(z+1)]?

]

[(Z+1) {1+ 2(z+1) [2(z+1)

DL -

148



2(z+1) 42 (z+1)3 2(z+1) 22 (z+1))?

= {@+D) + R A s )

_ eiz [-1+ (1_%) (z+1) + (%-g) (z+1)* + (22—! - %) (Z+1)%+...]

This expansion is valid throughout the complex plane.

Problem 6
Find the Taylor’s series to represent ———— in |z| < 2
(z+2)(z+3)
Solution
z2—-1 _ z2-1
(z+2)(z+3) T 2245246
_ 5z+7
z24+52+6
=1 [E el
] 1+ —_ i
z+2 z+3
_ 38
T T 204y 304D
=1+ (1) -5+ D
2 2 3 3
_ 3 z 22 z3 8 z 22 z3
—l+—(1-—+—2-2—3+...)-3(1-54'3—2-3—24-...)
3
—(1+-'-) ('—+—)Z+ ﬁ'g)z +.

+ 8 3
:__+Z 1(1)n1 (3n+1_2n+1)zn

And the expansion is valid in |z|<2.

5.5 Laurent’s series

Any function which is analytic in a region containing the annulus ry<|z-zy|<r,
can be represented in a series of the form ¥, a,(z-z,)"

Theorem (Laurent’s theorem)

Let C, and C, denote respectively the concentric circles |z-zq|=r, and |z-zo|=r,
with ry <r,. Let f(z) be analytic in a region containing the circular annulus r,<|z-zq|<r,
. Then f(z) can be represented as a convergent series of positive and negative powers
of z-z, given by

f(z) = 2=

(Z 7z )n + 2;100:0 an(Z'ZO)n . Where
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_ 1 £(2)dg

- 1 £(7)d¢
" omi JCy (C—zp)~n+1

and a, = 2mi Jc; (C—zg)n*1

Proof

Let z be any point in the circular annulus r,<|z-zq|<r,. Then by theorem 5.3.2
fQdg 1 f©)dg

C2 ¢—z 2mi“C2y -z

f(Qdg , 1 f(9)dg
). —+—fc o )

2mi "2 (—z 2mi b1 (—z

we have f(z) = —

~1(2) =

As in the proof of Taylor’s theorem, we have

ﬁ fcz % dé= ao+al(Z'Zo)+az(Z'Zo)2 +.o.F an-1(Z'Zo)n_1"'Rn(Z) 2)
1 f(¢)dg
where a, = — | i and
_ (z=zp)" f(Q)dg
Ra(2) = 2mi sz (C—20)" ({—2)
NOW L = ;
z—( z—7209+zg—(
_ 1
z—29—((—zp)
-
(z-20)[1— =52

=20 \n

_ 1 {—29 (=20 2 (=20 \n—1 ((z zo))
=+ + A= R W =7
(Z—Zg)[ ((Z—Zo)) ((Z—Zo) ) ((Z_ZO) ) [ )J

1- ((z -z()
Multiplying by and integrating over ¢,
f(Z)dZ by by by
we get, f et e o zo)n — +5,(2) (3)
_ 1 QA o _ 1 F(Q)({—20)" d3
where by = 2mi fcl ({—=z¢) nt1’ n— 2mi(z—zg)" fCl z—(
From (1), (2) and (3) we get f(z) = ag+ai(z-2o)+ ... +an1(z-20)"" +—
0
b bn-1
R m"'Rn(Z)"‘Sn(Z) (4)

The required result follows if we can prove that R,—0 and S,—0 as n—o.
Now, if {eC, then |(-Z¢|=r; and

|2-C|=\(z-20)-( &-20)| = |z-20|-11

If {eCy,then | {-zp| =1, and

1C-2l = 1(-20) — (z-20)| 2 127|220
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Now let M denote the maximum value of |f(z)| in C,UC.,.

lz—zo|"~1  M(2mry)
2m r3 (r2—|z—z|)
Mlz—zgo|  lz—20l\n—1

- (Fz—IZ—Zol)( ry )

Then |R,| < [IJ. f(z)dz| < m#]

Slnce - <1 R,—>0asn—>wx
2

Also |S;| < |

Mr] (2mry)
z—zo|" 2n(|lz—zgl-11

Mrq ( rq )n
~ (lz=zol-r1) " |z—20]

Since

<1,S,—> 0asn—>wx

|z— Zol

Hence by taking limit n—o0 in (4) we get
f(z) = X%

Hence the theorem.

n=l (z oo+ Zin=o an(z-20)"

Solved Problems

Problem 1

2 1/2

Find the Laurent’s series expansion of f(z) = z°e™* about z=0.

Solution
f(z) = 2% about z=0

Clearly f(z) is analytic at all point z # 0.

1

()2 G

)3

Now, f(z) =z [1+ LI .

+on]

=2+~ =+ ——+ 1 73
Z[l —t oot s .13z

1
=47t — ]
2 3z 472

This is the required Laurent’s series expansion for f(z) at z=0.

Problem 2
Expand #(12_2) as a power series in z in the regions (i) |z|<1 (ii) 1<|z|<2
(i) |z]>2.
Solution
_ -1
Let f(z) = rEy—
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By splitting into partial fractions, we have f(z) = ﬁ - ﬁ

Q) The only points where f(z) is not analytic are 1 and 2. Hence f(z) is analytic

in |z|<1 and hence can be represented as a Taylor’s series in |z|<I.
1 1

— A, 1 4 241
=-(1-07+3 (1-3)
:—(1+Z+22+...+zn+...)+l(1+5+£+...+£+...)
2 2 4 2n
0 1
=30 [2"+5 ()"

=Yn=o (

(i) f(z) is analytic in the annular region 1<|z|<2 and hence can be expanded as a

1 n
on+1 -1) z

Laurent’s series in this region.
_ 1 1

&=t o
_ 1 1

= + =
z(1-7)  2(1-3)

T Iv-1.1m 2v1
(1-2)+2(1-2)

Z

S[AH(Z) + (2)P ]S M)+ (2) L)

Z

[];1<1and| 5] <1]

— \'o0 1 + y® z"
_ano zn+1 Zn:O on+1

This gives the Laurent’s series expansion in 1<|z|<2.

(iii)  f(z) is analytic in the domain |z|>2 and in this domain we have |2/Z| <1.

1
1—(

]

Hence f(z) =~ [ =]~

NN

)

| —

[1- ()72~ [1- (5)] 7

[(1+ (S )2 ) = () (52 + ]

N |~ N
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Z Zn+1
Problem 3
Find the Laurent’s series for —————about z = -2.
(z +1)( z+2)
Let f(z) = —( DeD)
1,2
z+1  z+2
e N
T @+2)-1 742
_ 1 2
1-(z+2) z+2
— . 142
= [1-(z+2)] " + =
= [1+(z+2) + (z+2)* .1+ 3
= ﬁ + 1+ (z+2) + (z+2)° + ...
Problem 4
_ z+4 , . .
If f(z) = Sy find Laurent’s series expansion
in (1) 0 <|z-1|<4 and (ii) |z-1>4.
Solution
Let f(z) = W By expressing f(z) into partial fractions we get
_ 1 1 5
f(z) = 16613 16G-1) 4(z—1)2
(i) 0<|z-1|<4

Hence0<|%|<1
1 1 5
f(z) = 16(z—1+4) 16(z—1) 4(z—1)2
1 o1 5
64(1+21) 16(z-1)  4(z-1)?

1

__( +Z—1 1_ 1 5
64

=) Tea—1) T 4(z—1)2

Since | ?| <1, we have

z—1

@)= [ () + () (5

3 1 5
)7t 16(2—1)+4(z—1)2
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-_ 5 __1 11zl z-142 3 4
T 4(z—1)2  16(z—1) o [ ( ) * ( )
Problem 5
2
Find the Laurent’s series expansion of the function ﬁ valid in the

annular region 2 < |z|<3.

Solution
f(z) = —2—L
Let f(z) = D@3
By splitting f(z) into partial fractions, we get f(z) = 1+ : - %

f(z) is analytic in the annular region 2<|z|<3.

Hence f(z) can be expanded as a Laurent’s series in that region.

f(z) = 1+ — 8

2(142)  3(1+%)

=1+ ()T S )T

=12 (12 H(2)3 GO ]S -2+ (5)2. ]
3 0 2 8 oo VA
=1+ = X0 (1) (2)" -5 Xm0 (D(3)"
o 1)n 2n —1)n z0
=1+3 Zn:O ( S 8Zn =0 &

n+1 3n+1

Problem 6

For the function f(z) = ﬁnd (i) a Taylor’s series valid in a neighbourhood

of z=1 and (i1) a Laurent’s series valid with in an annulus of which centre is the origin.

Solution

_ 2z3+1
f(Z) B z(z+1)

=2z-2+ % + ﬁ (by partial fraction)
_ 1, 1
- 2(2'1) + ; + m (1)
=9(2) + h(2) +j(2)
Where g(z) = 2(z-1), h(z)= % and j(2) = ﬁ

Taylor’s expansion for g(z) about z=i is obviously 2(i-1) + 2 (z-i).

M ]
Taylor’s expansion for h(z) about z=i is given by h(z)=h(i) + Y7, Q) (z-i)"

n!
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Here h(i) = -, N"(z) = =2+ D70! o0 that h®(j) = S22

n+1 jn+1

_1 o ED'n! o n v (DU (E-D"
th@)=t+pe, SO @iy =y, CLE

in+1l’1! in+1

(-1)" —D)"

Similarly we can prove that j(z) = >, e

Hence the Taylor’s expansion for f(z) is

f(2) = 2(i-1)+2(z-0) + T [ + oy 1 @-1)"

(1+i)n+1

(i) f(z) =2z-2 + % + (1+z2)* (from (1)
=222 + -+ (124225 ) if [2[<1
=~ In the annulus 0 < |z|<1 the Laurent’s expansion is given by
f(z) = i -+z+25- 5+
5.6  Singularities
Definition
A point a is called a singular point or a singularity of a function f(z) if f(z) is

not analytic at a and f is analytic at some point of every disc |z-a|<r.

Example 1

Consider the function f(z) = %

Then f(z) = - - forall z# 0

Thus f(z) is analytic except at z=0.
~ z=0 is a singular point of f(z).
Example 2

Consider the function f(z) =

. 0 and i are singular points for f(z).

z(z—i
Definition A
A point a is called an isolated singularity for f(z) if
. f(z) is not analytic at z=a and
ii. there exist r>0 such that f(z) is analytic in 0<|z-a|<r.
(ie) the neighbourhood |z-a|<r contains no singularity of f(z) except a.

Example 1

f(z) = 1 has three isolated singularities z =0, i, -i
2( 2 1)
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Example 2
Consider the function f(z) = ﬁ . The singular points are 0, +xn, 27, ... and

these are isolated singular points.
Types of singularities

Let a be an isolated singularity for a function f(z). Let r>0 be such that f(z) is
analytic in 0<|z-a|<r. In this domain the function f(z) can be represented as a Laurent

series given by
by

)= By 2=

_ 1 f(3)dg _ 1 f(3)dg
T omi fC (¢—a)n+1 and b, = 2mi fC ({—a) ntl

®_, an(z-a)" where

The series consisting of the negative powers of z-a in the above Laurent series

by

(z—a)"

expansion of f(z) is given by Yo, and is called the principal part or singular

part of f(z) at z=a.

The singular part of f(z) at z=a determines the character of the singularity.
There are three types of singularities. They are (i) Removable singularities (ii) Poles
(i) Essential singularities.
Definition

Let a be an isolated singularity for f(z). Then a is called a removable singularity
if the principal part of f(z) at z=a has no terms.
Note

If a is a removable singularity for f(z) then the Laurent’s series expansion of
f(z) about z=a is given by

f(z) = X5-o an(z-a)"

= agtay(z-a)+ ... +ay(z-a)"+ ...

Hence ,'™ f(z) = a,
Hence by defining f(a) = ay the function f(z) becomes analytic at a.
Example 1

sin

- 2 Clearly 0 is an isolated singular point for f(z).

Let f(z) =

3,5

sin z 1 Z
= - -—+ —-
Z(z i ceed)

Now

Z
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2 z4

:1-;4'5-....)

Here the principal part of f(z) at z = 0 has no terms.
Hence z = 0 is a removable singularity

lim Sin z

Also ,'5%

= 1. Hence the singularity can be removed by defining f(0)=1 so that

the extended function becomes analytic at z = 0.
Example 2

zZ—sin z
Z3

Let f(2) =

z = 0 is an isolated singularity

z—sinz _ 1 z3 z°
Further 3 —Z—g[z—(z-?+?-....]
-1 2 2
T30 s 71

~ z =0 1s a removable singularity. By defining f(0) = % the function becomes analytic

atz=0.
Definition
Let a be an isolated singularity of f(z). The point a is called a pole if the

principal part of f(z) at z=a has a finite number of terms. If the principal part of f(z) at

. . b1 b, by
z=a is given by —t ey + ... -

where b, # 0. We say that a is a pole of

order r for f(z).
Note :
A pole of order 1 is called a simple pole and a pole of order 2 is called double
pole.
Example 1
Consider f(z) = e?

A

1 zZ z2
— ==+ 1+ -+ —+ ..
y/ 21 3!
Here the principal part of f(z) at z=0 has a single term i . Hence z=0 is a simple pole
of f(2).
Example 2
f(z) =

COoSs Z
72

has a double poleatz=0
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The principal part of f(z) at z=0 contains the term ziz Hence z=0 is a double

pole of f(2).
Definition

Let a be an isolated singularity of f(z). The point a is called an essential
singularity of f(z) at z=a if the principal part of f(z) at z=a has an infinite number of
terms.
Example

Let f(z) =e” . Obviously z=0 is an isolated singularity for f(z).
1

Further e = 1+ + -
z 21z%2 3z

The principal part of f(z) has infinite number of terms. Hence e% has an
essential singularity at z=0.
Theorem 5.6.1 (Riemann’s theorem)

Let f be a function which is bounded and analytic through outa domain
0<1z-zy|< 6. Then either f is analytic at zy or else z, is a removable singular point of f.
Proof

Consider the Laurent’s series for the function in the given domain about z,. The

f f(z)dz

C(Zz)n+1

—is given by b, = where C is the circle |z-zy|=r

co-efficient b, of
(Z 2mi

where r < 4.

Now since f is bounded there exist a positive real number M such that [f(z)| <M in

O<|Z-Zo|< 0.
f(z)dz
|bn| 2_me (z—20)~ n+1|
L M(27r)
<5-—m1 [bytheorem5.1.1]
= Mr"

Since it is true for every r such that 0 <r < 8, taking limit r—0 we get b,=0.

Hence the Laurent’s series for f(z) has no principal part.
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Hence z, is a removable singular point for f(z).
Problem 1

Determine and classify the singular points of f(z) =

Solution
The singularities of f(z) are given by the values of z for which e*-1=0.

Hence z = 2n «ti, neZ are the singularities of f(z).

z2 zn
Now e*-1= (1+z LTI ER PP s e PO o

n!

2 ZN

:z+22—'+...+—+....

n!

lim _ 2 =1
z—0 eZ—1

lim

Hence 0 is a removable singularity for f(z). Also , ,ohxi eZZ—_l ) = oo if n#0 and hence
2nmti, n#0 are simple poles of f(z).
Problem 2

Determine and classify the singularities of f(z) = sin( % ).

Solution

Clearly 0 is the only singularity of f(z).
Also f(z) =2 - —— + —

st
Thus the principal part of f(z) at z=0 has infinitely many terms and hence 0 is an
essential singularity for f(z).
5.7 Residues
Definition
Let a be an isolated singularity for f(z). Then the residue of f(z) at a is defined

to be the co-efficient of iin the Laurent’s series expansion of f(z) about a and
Is denoted by Res [f(z); a]. Thus Res [f(z); a] = sz fc f(z)dz=b, where Cisa circle

|z-a|=r such that f is analytic in 0<|z-a|<r.

Example
. e?
Consider f(z) = =
er _ 1 z | 7%
Z—Z—Z—Z(l"‘;'l';‘i')
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=~ f(2) has a double pole at z=0
- Res{f(2); 0} = co-efficient of ~=1
The following lemmas provide methods for calculation of residues.
Lemmal
If z=a is a simple pole for f(z) then Res{f(z); a} = ™. (z-a) f(2).
Lemma 2
If a is a simple pole for f(z) and f(z) = where g(z) is analytic at a and
g(a) # 0 then Res{f(z); a} = g(a).
Lemma 3
If ais a simple pole for f(z) and if f(z) is of the form Where h(z) and k(z)

h(a)
k'(a)

are analytic at a and h(a) # 0 and k(a) = 0 then Res{f(z); a} =

Lemma 4

Let a be a pole of order m>1 for f(z) and let f(z) =

g(Z; where g(z) is analytic

>(a)

at a and g(a) # 0. Then Res {f(z); a} = mry

Solved Problems

Problem 1

Solution
Let f(z) = ——
. _ z+1
ie. f(z) = o

~ z=0 and z=2 are simple poles for f(z).
Res {f(2);0} =, (2-0) [ ;-]

i z+1
= ;H—I;o [ ]

z(z-2)
— lim z+1 _ 1
z—0 7—2 2
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Res {f(2); 2} = ™ (2-2) [ ;o5 ]

— lim z+1 _ 3

zZ—2 z 2

Problem 2

1+e?

Z oS Z+sin z

Find the residue at z = 0 of

Solution

Let f(z) = —+=

Z COS Z+sin z

Clearly 0 is a pole of order 1 for f(2).
« Res {f(2); 0} = lim_ lf(()) where

h(z) = 1+ e’ and k(z)=z cos z + sin z
k'(z) =-zsinz+ cos z + cos z

=-zsinz+2cosz
~Res{f(2); 0} =2=1
Problem 3

Find the residue of —) at z=ai

Solution

Let f(Z) = TZ)Z
_ 1
a (z+ai)2(z—ai)?

z = ai and z = -ai are poles of order 2 for f(z)

Let g(Z) = m

~g'(2) = m

=~ Res {f(z); ai} = g'(ai)
2 2
T (ai+ai)3  (2ai)3
-2 =2
T 8a3i3  —8adi
_2i i
" 8a3i2  4a3
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Problem 4

7244
234222427

Find the poles of f(z) =

Solution
_ 22+4
f(Z) " z34222422
_ 22+4
B z(z2+2z+2)
z%+4
z(z+1-1) (z+1+i)

ief(z) =

~0,1-1,-1-i are simple poles for f(z).

Hence f(z) = where

h(z) = 22+ 4 and k(z) =22 +22%+ 22

Hence K'(z) = 3z%+4z+2

Ly =h©@ ¢
Res {f(2): 0} =1 5 =5 =
h(1 1
Res {f(2); i-1}= =
(i—1)%+4

T 3(—1)2+4(3-1)+2

_ —1-2i+1+4

T 3(=1-2i+1)+4i—4+2

_ 421 _ (2-0)

T 2i-2 (=i—-1)

_ @01t

(-1-D)(-1+)

— T2eititl

a 1—-i+i+1

_3i-1

T2
Similarly Res {f(z);-1-i} = (1+31)
Problem 5
Find the residue of % at its poles.

z4(z=4+9)

Solution
Let f(z) = m

and determine the residues at the poles.
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Here z=0 is a double pole and z=3i and z=-3i are simple poles for f(z). To find the

eZ

2249’

Res {f(z); 0} let g(2)= Clearly g(z) is analytic at z=0 and g(0) # 0.

(eZ+9)—ZZ]
(z2+9)?2

Alsog'(z) =€’ [

~ Res {f(z); 0} = %)) (by lemma 4)

_1
9

Now, to find Res{f(2); 3i}; let f(z)= %

So that h(z) = e* and k(z) = z% (z°+9)
Then K'(z) = z°x2z+(z*+9)2z
= 273+27°+18z

= 47°+187

-4 _ h(3i)
~ Res{f(z), 3i} = k(—g)
_ e3i
T 4(31)3+18(30)

e3i

T —108i+54i

__i(cos 3+isin 3)
54

Similarly Res {f(z);-3i} =

—(sin 3+icos 3)
54

5.8 Cauchy’s Residue Theorem
Statement

Let f(z) be a function which is analytic inside and on a simple closed curve C
except for a finite number of singular points z,, z, ..., z, inside C. Then
J. f(2)dz = 2xi 3, Res{f(2); z;}
Proof

Let Cy, C,, ..., C, be circles with centres z,, z,, ...,z, respectively such that all
circles are interior to C and are disjoint with each other. By Cauchy’s theorem for
multiply connected regions we have,

J. f(2)dz = fcl f(z)dz+ fcz f(z)dz+ ...+an f(z)dz +

= 2 mi Res{f(z);z:} + 2 mi Res{f(z);z,}+...+2 i Res{f(z2);z,}
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(By definition of residue)
=2mi %oy Res{f(2);z;}
Solved Problems
Problem 1

Evaluate | 2 \where C is |z]=2
2z+3
Solution

z:—g is the simple pole of f(z) which lies inside the circle |z|=2.

Res f(z); == "™ h(z)) where h(z)=1 and k(z)=2z+3

z>— K(z

- K'(2)=2

« Res {f(2): 5} = ;

~ By Residue theorem [ f(z)dz = 2mi("%)
=7
Problem 2
Evaluate | Z%where C ={z: |z]=1}

Solution

e

Given integral can be written as f. f(z)dz where f(z) = Z—ZZ
=~ f(z) has pole of order 2 at z=0 which lies inside the circle |z|=1.
Letg(z) =e™
Hence g'(z) = -e™

By Lemma 4, Res [f(z); 0] = % =-1

= By residue theorem,

[, f@dz= [, 55 =2mi(-1)

= -2mi
Problem 3
2z 1 .
Prove that |, (;1)3 dz = tiz where Cis |z| = ;
Solution
_ eZz
Let f(z) = e
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f(z) has a pole of order 3 at z=-1

Res {f(z);-1} = % where g(z)=e%*
Now g¢'(z) = 2e%
Now g''(z) = 4e*

4e2
2i

2
o2

Res {f(2);-1} =

= By residue theorem, [. f(2)dz = 2mi( e%)

_ 4mi
e2

Problem 4

Evaluate using (i) Cauchy’s integral formula. (ii) residue theorem

Je 2L 4z where C is the circle [z+1+i[=2.

2242744

Solution

Clearly C is a circle with centre a=-(1+1) and radius 2.

z+1 _ z+1
Now — = 5
z44+2z+4 z4+2z+1+3
_ z+1
(z+1)?+(V3)?
_ z+1
(z+1+iV3) (z+1-iV3)

z+1

[z—(-1-1V3)][z—(-1+iV3)]
Zo=-1+iv/3 and z; = -1-iv/3 are the singular points of the given integrated

Now |zg-a| = |(-1+ iv3)-[-(1+)]|
= |-1+ iV/3+1+i|
= [i(V3+1) = V3 +1>2

and [z;-8 = [-1-iV3-[-(1+i)]]
= |-1-iV3+1+i|
=i(1-V3) |
=+/3-1<2

» 7, =-1-iv/3 lies inside C
1. By using Cauchy integral formula.

z+1
224274+4




z+1
z—(—1-iv3)

We note that f(z) is analytic at all points inside C.

Consider f(z) =

~ By Cauchy’s integral formula,

— J, ~2dz=1(z,)

2mi AR

1 (z+1)dz _ _
ik [2—(1-1V3][z~(~1+iV3)] =f(-1-iV3)

f (z+1)dz _ (—1-iv3)+1

C 72242244  (—1-iV3)— (—1+iV3)
_ —ivV3
T 23

e —

2mi

1
2

. (z+1)dz _l N
- fC 2242244 2 (2ni) =i

. By using residue theorem

f(z) = _r

- 2242744
since z = -1-iv/3 lies inside C

h(-1-iv3)

Res {f(z); -1-iWV3 } = E

where h(z)=z+1

and k(z) = z°+2z+4
= Kk'(z) = 2z+2

~ Res{f(z); -1-iV3} = %

_ —iv3 _1

T i2v3 2

=~ By residue theorem fc f(z)dz = % =mi.
5.9 Evaluation of Definite Integrals

Type 1
fozn f(cos 0, sin 6)do6 where f(cos 0, sin 0) is rational function of cos 6 and sin 0.

To evaluate this type of integral we substitute z=e'. As 6 varies from 0 to 27, z
describes the unit circle |z|=1.

ie+ —i0 +—1
Also cos9 =2 Ze :Z; and
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ele_e—ie z—z"1

sin@ = =—
2 2i

substituting these values in the given integrand, the integral is transformed into

Ji. B(2)dz where 6(z) = f [ 2~ , ] and C is the positively oriented unit circle

|z|=1. The integral fc 0(z)dz can be evaluated using the residue theorem.

Solved Problem

Problem 1

do
5+4sin 0

) 2 do
SO|UtI0n Let I = fO " 544 sin 0

Evaluate f, "

put z = "
Then dz = €. ido
= izdo.

z—z"1

and sin 6 =
The given integral is transformed to

1= — % where C is the unit circle |z]=1

iz[5+4 (“5—)

f dz
C [101+4z—§]
2i
f ZdZ
- 2 i
C z [42 +2101 4]
_ dz
C 2z2+5iz-2
1
Let f(Z) - 22245iz—2
_ 1
222 +4iz+iz -2
_ 1
2z(z+21)+i(z+2i)

_ 1 _ 1
" (z+2D)(2z+) (Z+2i)2(z+;—)

Clearly -2i and _71 lies inside C.
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—i im ol 1 i
Also Res {f(Z), 7} = Zl_l)nll/ZZ(zT)(z-l-l—) X (Z+ 2 )
2

_ lim@_ 1 _ 1

T 2o% 20z42)  3i

Hence by Cauchy’s residue theorem.

—oic 1y 21
| = 2mi( - )= 3
Problem 2
2T do _ 2m
Prove that — == (-l<a<l)
Solution
Put z=¢"

Then sin 0 = % where dz = izd®

2 do d i o
J = ) ——_—where C is the unit circle.
1+asin 0 C iz[1+(Z z )
2i
_ f dz
= [, e —
iz 21+;1iz z]
_ 2dz
C az242iz—a
2
Let f(Z) - az?42iz—a
The poles of f(z) are given by
;= —2i + V—4+4a2
- 2a
Si+ivica? .
= ———— [since -1<a<]
Letzlz% andz,= ————

1+V1—a2
EY

that |z,|<1. Hence there are no singular points on C and z = z; is the only simple pole

We note that |z,| = > 1 [~ -1<a<1]. Also since |z; z,| = 1, it follows

inside C.

) 2
Res {f(z): .} = ,"% (z-z1) [—(Z_Zl)/(i_zz)]
2
= 2]
2
1

=)

a a

168



_ 2 a
- ;[(Zim)]

_ 1
" iVi-a
. 21 do _ . 1
By residue theorem | oo = [—(im)
2mi
 (V1=a?)
Problem 3
_ (T ado _ @
Prove that | = [" ———- = ==—=[a>0]
Solution
de
I = fT[ Ei—cos 20

0 2 105 49
att (——)
_ frr 2ad o
0 2aZ241—cos 26)

0 2a%+41—cos

= [T ad—(pq) (putting 26 = 6)

-1

Put z = €' then cos ¢ = 2=
dz=ie"do
dz = izdo
| = 1 adz
- T C z+z—1

Z[232+1— (T)

_1 adz
- fc 2(2a2+1)—z—z"1
0 M

_ 2a dz
i “C z[2(2a2+1)—z—%]

_2a dz

T Jc [2(2a2+1)z—z2-1

_ . dz

= 2ai fC 22-2(2a2+1)z+1

= 2ai fc f(z)dz (1)
Where f(z) = : and C is the unit circle |z|=1.

z2-2(2a%24+1)z+1

Poles of f(z) are the roots of z2-2(2a*+1)z+1=0
;= 2(2a241)+,/4(2a2+1)2 -4
2

_ 2[(a%+1)+V4at+4aZ+1-1
2
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ie.z= (2a%+1) +2a+va? + 1
Let z; = 2(a%+1) + 2ava? +1 ;z,=(2a’+1)-2ava? + 1 clearly |z;/>1 and

|z; Z,|=1 so that |z,|<1. Hence the only pole inside C is z=z,.
; 1
Res {f(z) z,] = '3, (z-22) PR
1
B z2—721
_ 1
= Caavarit

From (1), by residue theorem,

_ . 2ai
| =2mi [ ]
= [ T

a“+1

Exercise

do i

21
1. Prove that fO m = g

2. Prove that f02" % :%

Type 2

f_io f(x) dx where f(x) = % and g(x), h(x) are polynomials in x and the degree

of h(x) exceeds that of g(x) by atleast two.

To evaluate this type of integral we take f(z) = %. The poles of f(z) are

determined by the zeros of the equation h(z)=0.
Case (i) No pole of f(z) lies on the real axis.

We choose the curve C consisting of the interval [-r, r] on the real axis and the
semi circle |z|=r lying in the upper half of the plane.

Here r is chosen sufficiently large so that all the poles lying in the upper half of

the plane are in the interior of C. Then we have
J. f(2)dz = f_rr f(x)dx + fcl f(z)dz. Where C; is the semi circle.

Since deg h(x) — deg f(x) > 2 it follows that fcl f(z)dz—0 as r — oo and hence

J,. @z = [, fx)dx.
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« [7 f(x)dx can be evaluated by evaluating Jo_ f(@)dz  which in turn can be

evaluated by using Cauchy’s residue theorem.
Case (ii) f(z) has poles lying on the real axis

Suppose a is a pole lying on the real axis. In this case we indent the real axis
by a semi circle C, of radius € with centre a lying in the upper half plane where ¢ is
chosen to be sufficiently small. (refer figure)

Such an indenting must be done for every pole of f(z) lying on the real axis. It

can be proved that fcz f(z)dz = -ni Res {f(z); a}. By taking limit as r—>o0 and e—>0 we

obtain the value of [~ f(x)dx.
Solved Problems
Problem 1

Use contour integration method to evaluate [~ %

Solution

1
1424

Let f(z) =
The poles of f(z) are given by the roots of the equation z*+1=0 which are the
four fourth roots of -1.
z'=-1
z=(-1)*=(cos n + i sin m)*
= ¢cos (2n+1) % +sin (2n+1) % n=0,1,2,3
= ¢i"/s, e1°"/a, &1°"/a, e"™/a which are all simple poles.

We choose the contour C consisting of the interval [-r, r] on the real axis and

the upper semi-circle |z|=r which we denote by C,.
~ J. f(2)dz = fjr f(x)dx + fcl f(z)dz (1)

The poles of f(z) lying inside the contour C are obviously e™/4 and e'*"/4 only. We

find the residues of f(z) at these points.

T = hED _
Res {f(z); e'"/4} = LT where h(z)=1
and k(z) = z*+1
k'(z) = 42°
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= k'(el"/4) = 4(e"/2)®

= 4ei3n/4
. T _ 1 _ e_igﬂ/él-
« Res {f(2); e!"/2} = = T
S 3T e_ign/4
Similarly Res {f(z); e"""/4} = -

By residue theorem,
fc f(z)dz = 2xti (sum of the residues at the poles)
_i3‘l'[/4 e_igﬂ/‘l-

=21ri[e4 +——]

= 22 [cos(3™/,)- i sin (37/,) + cos(O™/,p)-i sin (°T/,,)]

T4

=355 (55
=715
From (1), [*. ::(4 + [, f@dz =5

As r—>oo, fC1 f(z)dz —> 0

. foo dx _ m
oo 14xt V2

is an even function]

® dx _m e
2f0 1+x* V2 [ 1+x%

. foo dx _ m
TJo 14kt 2v2

Problem 2
0 XZ—X+2
Evaluate f_oo x4 +10x2+9
Solution
_ ZZ—Z+2
Let f(Z) T 244102249

Poles of f(z) are the zeros of z*+102°+9=0, z'+10 z*+9 = (2*+9) (z°+1)
s Z =130, i
Hence z = 3i, -3i, i, -i are the simple poles of f(z)

Choose the contour C as shown in the figure
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J, f(2)dz = ffr f(x)dx + fC1 f(z)dz (1)

The poles of f(z) lying within C are i and 3i and both of them are simple poles.
Res{f(2)i} = 1}:%)) where h(z) = z%-z+2 and k(z) =z*+10z+9.

= Kk'(z) = 423+20z

- Res{f(2)i} = {L=*2

4(i)3+20i
1-i _1-i
—4i+20i  16i

7+3i

Similarly Res {f(z); 3i} =

fc f(z)dz = 2mi (sum of the residues at the poles)
_ _1 7+3i
= 2mi( 16i  48i )

3-3i+7+3i )
48i

= 2mi (&)__

= 2mi (

X% —x+2 _5m

r
From (1) f—r x4-10x249 12

Problem 3

Prove that [~ 6+1 ==

Solution

d
Slnce — |s an even function we have f 6+1 =2 fooo xé-)l(-l

Now let f(z) = ﬁ

The poles of f(z) are given by the roots of the equation x°+1 = 0 which are the
sixth roots of -1.

Z=(-1)"s

By De Movre’s theorem, they are given by ei“/6, ei3n/ 6, eisn/ 6, eih/ 6 and

el /6 and they are simple poles.
Now choose the contour C consisting of the interval [-r, r] on the real axis and

the upper semi circle |z|=r which we denote by C;.

The poles of f(z) lying inside C are e /s, e*™/6 and e>"/s
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h(e'"/6)
k'(el"/6)

Res {f(z); ei”"/6} =

and k(z) = 2°+1

= K'(2) = 62°

= K'(e"/6) = 6(e"6)°
-6 eiSn/6

Res {1(0); (¢"e} = —

e151'[/6

_ 1 _151'[/6

251

similarly Res{f(2), e/} = e~""/6 and Res {f(z), e ""/6}= 2 s
=~ By residue theorem,

fc f(z)dz 2mi (sum of the residues at the 3 poles)

.1 —5i 1 —5i 1 —25i
=2ni[-e m/6+:ge m/6+ge /]

:%[(cos%—sin%)ﬂcos%ﬂ—i sin%ﬂ) + (cosz%ﬂ— i sin 25Tﬂ)]
=SSO+ (-
i

From (1)

I inl +]0 f(2)dz =

As r—oo, the integral over C;— 0

© x641 3

. foo dx 21

. J-OO dx _m
o x641 7 3

Exercise

0 X2

1. Using the method of contour integration evaluate |__ DD X

o0 x2 m

2. Prove that f_oo m E

A 0 dx
3. Evaluatei=J__ Zral)?
. T =
Ans: (1) 3 B) =
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