
1 
 

DJM3B - REAL AND COMPLEX ANALYSIS 

 

Unit I: Metric spaces – open sets – Interior of a set – closed sets – closure – completeness – 

Cantor’s intersections theorem – Baire – Category Theorem. 

Unit II: Continuity of functions – Continuity of compositions of functions – Equivalent 

conditions for continuity – Algebra of continuous functions – hemeomorphism – uniform 

continuity – discontinuities connectednon – connected subsets of R – Connectedness and 

continuity – continuous image of a connected set is connected – intermediate value 

theorem. 

Unit III: Compactness – open cover – compact metric spaces – HerniBorel theorem. 

Compactness and continuity – continuous image of compact metric space is compact – 

Continuous function on a compact metric space in uniformly continuous – Equivalent forms 

of compactness – Every compact metric space is totally bounded – Bolano – Weierstrass 

property – sequentially compact metric space. 

Unit IV: Algebra of complex numbers – circles and straight lines – regions in the complex 

plane – Analytic functions Cauchy – Rienann equations – Harmonic functions – Bilinear 

transformation translation, rotation, inversion – Cross – ratio- Fixed points – Special bilinear 

transformations. 

Unit V: Complex Integration – Cauchy’s integral theorem – Its extension – Cauchy’s integral 

formula – Morera’s theorem – Liouville’s theorem – fundamental theorem of algebra – 

Taylor’s series – Laurent’s series – Singularities. Residues – Residue Theorem – Evaluation of 

definite integrals of the following types.∫0
2π  F (Cos x, sin x) dx and 2 ∫-∞

∞f(x)

g(x)
 dx 

Books for reference: 

1. Modern Analysis – Arumugam and Issac. 
2. Real Analysis – Vol. III – K. ChandrasekharaRao and K.S. Narayanan, S. Viswanathan 

Publisher. 
3. Complex Analysis – Narayanan &ManicavachagamPillai 
4. Complex Analysis – S. Arumugam&Issac. 
5. Complex Analysis – P. DuraiPandian 
6. Complex Analysis – Karunakaran, Narosa Publishers. 

 

  



2 
 

Unit - I 

Metric Spaces 

 

Introduction 

A Metric Space is a set equipped with a distance function, also called a metric, which 

enables us to measure the distance between two elements in the set. 

1.1 Definition And Examples 

Definition 1.1.1 A Metric Space is a non empty set M together with a function 

d : M × M → R satisfying the following conditions. 

(i) d(x , y) ≥ 0 for all x , y ε M 

(ii) d(x , y) = 0 if and only if x = y 

(iii) d(x , y) = d(y , x) for all x , y ε M 

(iv) d(x , z) ≤  d(x , y) + d(y , z) for all x , y , z ε M [ Triangle Inequality ] 

d is called a metric or distance function on M and d(x , y) is called the distance 

between x and y in M. The metric space M with the metric d is denoted by (M , d) or 

simply by M when the underlying metric is clear from the context. 

Example 1.1.2 Let R be the set of all real numbers. Define a function d : M × M → R 

by d(x , y) = | x – y |. Then d is a metric on R called the usual metric on R. 

Proof. 

Let x , y ε R. 

Clearly d(x , y) = | x – y | ≥  0. 

Moreover, d(x , y )= 0 ⇔ |x – y | =  0. 

   ⇔ x – y  =  0. 

                                                   ⇔  x = y 

d(x , y) = | x – y | 

                        = | y – x | 

                        = d(y ,x). 

 ∴ d(x , y) = d(y , x). 



3 
 

Let x , y , z ε R. 

d(x , z) = | x – z | 

            = | x – y + y - z | 

            ≤ | x – y |+| y – z | 

            = d(x , y) + d(y , z). 

∴ d(x , z) ≤ d(x , y) + d(y , z). 

Hence d is a metric on R. 

Note. When R is considered as a metric space without specifying its metric, it is the 

usual metric. 

Example 1.1.2 

Let M be any non-empty set. Define a function d : M x M →R by d(x , y) =  
0 if x = y

1 if x ≠ y
  

Then d is a metric on M called the discrete metric or trivial metric on M. 

Proof. 

Let x , y ε M. 

Clearly d(x , y) ≥ 0 and d(x , y ) = 0 ⇔ x = y . 

Also, d(x , y) =  
0 if x = y

1 if x ≠ y
  

                      = d(y , x) . 

Let x , y , z ε M. 

We shall prove that d(x , z) ≤ d(x , y) + d(y , z). 

Case (i) Suppose x = y = z. 

Then d(x , z) = 0 , d(x , y) = 0 , d(y , z) = 0 . 

∴ d(x , z) ≤ d(x , y) + d(y , z). 

Case (ii) Suppose x = y and z distinct. 

Then d(x , z) = 1 , d(x , y) = 0 , d(y , z) = 1 . 

∴ d(x , z) ≤ d(x , y) + d(y , z). 
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Case (iii) Suppose x = z and y distinct. 

Then d(x , z) = 0 , d(x , y) = 1 , d(y , z) = 1 . 

∴ d(x , z) ≤ d(x , y) + d(y , z). 

Case (iv) Suppose y = z and x distinct. 

Then d(x , z) = 1 , d(x , y) = 1 , d(y , z) = 0. 

∴ d(x , z) ≤ d(x , y) + d(y , z). 

Case (v) Suppose x ≠ y ≠ z. 

Then d(x , z) = 1 , d(x , y) = 1 , d(y , z) = 1. 

∴ d(x , z) ≤ d(x , y) + d(y , z). 

In all the cases, d(x , z) ≤ d(x , y) + d(y , z). 

Hence d is a metric on M. 

1.2 OPEN SETS IN A METRIC SPACE 

Definition 1.2.1 Let (M , d) be a metric space. Let a ∈ M and r be a positive real 

number. The open ball or the open sphere with center a and radius r is denoted by 

Bd (a , r) and is the subset of M defined by Bd (a , r) = {x ∈ M ⁄d(a , x) < r}. We write 

B(a , r) for Bd (a , r) if the metric d under consideration is clear. 

Note. Since d(a, a) = 0 < r, a ∈ Bd (a , r). 

Examples 1.2.2 

1. In R with usual metric B(a , r) = (a - r , a + r). 

2. In R
2
 with usual metric B(a , r) is  the interior of the circle with center a and 

 radius r. 

3. In a discrete metric space M, B(a , r) =  
M if r>1
  a   if r≤1

  

Definition 1.2.3 Let (M , d) be a metric space. A subset A of M is said to be open in 

M if for each x ∈ A there exists a real number r > 0 such that B(x , r) ⊆ A. 

Note. By the definition of open set, it is clear that ∅ and M are open sets. 

Examples 1.2.3 

1. Any open interval (a , b) is an open set in R with usual metric. 

For, 

Let x ∈ (a , b). 
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Choose a real number r such that 0 < r ≤ min { x-a , b-x }. 

Then B(x , r) ⊆ (a , b). 

∴ (a , b) is open in R. 

2. Every subset of a discrete metric space M is open. 

For, 

Let A be a subset of M. 

If A = ∅, then A is open. 

Otherwise, let x ∈ A. 

Choose a real number r such that 0 < r ≤ 1. 

Then B(x , r) = { x } ⊆ A and hence A is open. 

3. Set of all rational numbers Q is not open in R. 

For, 

Let x ∈Q. 

For any real number r > 0, B(x , r) = (x - r , x + r) contains both rational and 

irrational numbers. 

∴ B(x , r) ⊈ Q and hence Q is not open. 

Theorem 1.2.4 Let (M , d) be a metric space. Then each open ball in M is an open set. 

Proof.  

Let B(a ,r) be an open ball in M. 

Let x ∈ B(a , r). 

Then d(a , x) < r. 

Take r1= r – d(a , x). Then r1 > 0. 

We claim that B( x , r1) ⊆ B( a , r). 

Let yϵ B( x , r1). Then d(x , y) < r1. 

Now, d(a , y) ≤ d(a , x) + d(x , y) 

<d(a , x) + r1 

= d(a , x) + r – d(a , x) 

= r. 

∴d(a , y) < r. 

∴y ∈ B(a , r). 

∴ B( x , r1) ⊆ B( a , r). 
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Hence B(a , r) is an open ball. 

Theorem1.2.5  In any metric space M, the union of open sets is open. 

Proof. 

Let  Aα  be a family of open sets in M. 

We have to prove A = ∪ Aα is open in M. 

Let x ∈ A. 

Then x ∈ Aα for some 𝛼. 

Since Aα is open, there exists an open ball B(x , r) such that B(x , r) ⊆ Aα. 

∴ B(x , r) ⊆ A. 

Hence A is open in M. 

Theorem 1.2.6 In any metric space M, the intersection of a finite number of open sets 

is open. 

Proof. 

Let A1, A2, ….,An be open sets in M. 

We have to prove A = A1 ∩ A2 ∩ …. ∩ Anis open in M. 

Let x ∈ A. 

Then x ∈ Ai∀ i = 1, 2, … , n. 

Since each Ai is open, there  exists an open ball B(x , ri) such that B(x , ri) ⊆ Ai. 

Take r = min { r1 , r2 , … , rn }. 

Clearly r > 0 and B(x , r) ⊆ B(x , ri)  ∀ i = 1, 2, … , n. 

Hence B(x , r) ⊆ Ai∀ i = 1, 2, … , n. 

∴ B(x , r) ⊆ A. 

∴ A is open in M. 

Theorem 1.2.7 Let (M , d) be a metric space and A ⊆ M. Then A is open in M if and 

only if A can be expressed as union of open balls. 

Proof. 
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Suppose that A is open in M. 

Then for each x ∈ A there exists an open ball B(x ,rx) such that  B(x , rx) ⊆ A. 

∴ A =  B(x , rx)x ∈ A . 

Thus A is expressed as union of open balls. 

Conversely, assume that A can be expressed as union of open balls. 

Since open balls are open and union of open sets is open, A is open. 

1.3 Interior of a set 

Definition1.3.1 Let (M , d) be a metric space and A ⊆ M. A point x ∈ A is said to be 

an interior point of A if there exists a real number r > 0 such that B(x , r) ⊆ A. The set 

of all interior points is called as interior of A and is denoted by Int A. 

Note1.3.2 Int A ⊆ A. 

Example1.3.3In R with usual metric, let A = [1 , 2]. 1 is not an interior points of A, 

since for any real number r > 0 , B(1 , r) = (1 – r , 1 + r) contains real numbers less 

than 1. Similarly, 2 is also not an interior point of A. In fact every point of (1 , 2) is a 

limit point of A. Hence  IntA = (1 , 2). 

Note1.3.4(1)Int ∅ = ∅  and Int M = M. 

(2) A is open ⇔Int A = A. 

(3) A ⊆ B ⇒Int A⊆ Int B 

Theorem1.3.5 Let (M , d) be a metric space and A ⊆ M. Then Int A = Union of all 

open sets contained in A. 

Proof. 

Let G = ∪{ B / B is an open set contained in A } 

We have to prove Int A = G. 

Let x ∈ Int A . 

Then x is an interior point of A. 

∴ there exists a real number r > 0 such that B(x , r) ⊆ A. 

Since open balls are open, B(x , r) is an open set contained in A. 

∴ B(x , r) ⊆ G. 
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∴x ∈ G . 

∴Int A ⊆ G             ……………………………..  (1) 

Let x ∈ G . 

Then there exists an open se B such that B ⊆ A and x ∈ B. 

Since B is open and x ∈ B, there exists a real number r > 0 such that B(x , r) ⊆ B ⊆ A. 

∴ x is an interior point of A. 

∴ x ∈ Int A . 

∴ G ⊆ Int A              …………………………..  (2) 

From (1) and (2), we get Int A = G. 

Note1.3.6 Int A is an open set and it is the largest open set contained in A. 

Theorem1.3.7 Let M be a metric space and A , B ⊆ M. Then 

(1) Int (A ∩ B) = (Int A)  ∩ (Int A) 

(2) Int (A ∪ B) ⊇ (Int A)  ∪ (Int A) 

Proof. 

(1) A ∩ B ⊆ A ⇒Int (A ∩ B) ⊆ Int A . 

Similarly, Int (A ∩ B) ⊆Int B . 

∴Int (A ∩ B) ⊆ (Int A)  ∩ (Int A)     ……………………………  (a) 

IntA ⊆ A and Int B ⊆ B . 

∴ (Int A)  ∩ (Int A) ⊆ A ∩ B 

Now, (Int A)  ∩ (Int A) is an open set contained in A ∩B . 

But, Int (A ∩ B) is the largest open set contained in A ∩B . 

∴(Int A)  ∩ (Int A) ⊆ Int (A ∩ B)   ……………………………..  (b) 

From (a) and (b) , we get Int (A ∩ B) = (Int A)  ∩ (Int A) 

 

(2) A ⊆ A ∪ B⇒Int A⊆ Int (A ∪ B) 

Similarly, Int B⊆ Int (A ∪ B) 

∴Int (A ∪ B) ⊇ (Int A)  ∪ (Int A) 
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Note1.3.8 Int (A ∪ B)need not be equal to(Int A)  ∪ (Int A) 

For, 

In R with usual metric, let A = (0 , 1] and B = (1 , 2). 

A ∪ B = (0 , 2). 

∴Int (A ∪ B) = (0 , 2) 

Now, Int A (0 , 1) and Int B = (1 , 2) and hence (Int A)  ∪ (Int A) = (0 , 2) – { 2 }. 

∴Int (A ∪ B)≠(Int A)  ∪ (Int A) 

1.4 Subspace 

Definition1.4.1 Let (M , d) be a metric space. Let M1 be a nonempty subset of M. 

Then M1 is also a metric space under the same metric d. We call (M1 , d) is a subspace 

of (M, d). 

Theorem1.4.2 Let M be a metric space and M1 a subspace of M. Let A ⊆ M1. Then A 

is open in M1 if and only if A = G ∩ M1 where G is open in M. 

Proof. 

Let B1(a , r) be the open ball in M1 with center a and radius r. 

Then B1(a , r) = B(a , r) ∩ M1where B(a , r) is the open ball in M with center a and 

radius r. 

Let A be an open set in M1. 

Then A =  B1(x , r(x))x ∈A  

             = [B(x , r(x)) ∩ M1)]x ∈A  

             = [ B(x , r(x))] x ∈A ∩ M1 

            = G ∩ M1 where G =  B(x , r(x)) x ∈A which is open in M. 

Conversely, let A = G ∩ M1 where G is open in M. 

We shall prove that A is open in M1. 

Let x ∈A . 

Then x ∈ G and x ∈ M1. 

Since G is open in M, there exists an open ball B(x , r) such that  B(x , r) ⊆ G. 
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∴ B(x , r) ∩ M1 ⊆ G ∩ M1. 

i.e. B1(a , r) ⊆ A. 

∴ A is open in M1. 

Example1.4.3 Consider the subspace M1 = [0 , 1] ∪ [2 , 3] of R. 

A = [0 , 1] is open in M1 since A = (-
1

2
 ,

3

2
) ⊆ M1 where (-

1

2
 ,

3

2
)is open in R. 

Similarly, B = [2 , 3], C = [0 , 
1

2
], D = (

1

2
 , 1] are open in M1. 

Note that A, B, C, D are not open in R. 

1.5 Closed Sets. 

Definition1.5.1A subset A of a metric space M is said to be closed in M if its 

complement is open in M. 

Examples 1.5.2 

1. In R with usual metric any closed interval [a , b] is closed. 

For, 

[a , b]
c
 = R – [a , b] = ( - ∞ , a) ∪ (b , ∞). 

( - ∞ , a) and(b , ∞) are open sets in R and hence ( - ∞ , a) ∪ (b , ∞) is open in R. 

i.e. [a , b]
c
 is open in R. 

∴ [a , b] is open in R. 

2. Any subset A of a discrete metric space M is closed since A
c
 is open as every 

subset of M is open. 

Note. In any metric space M, ∅ and M are closed sets since ∅c
 = M and M

c
 = ∅ which 

are open in M. Thus ∅ and M are both open and closed in M. 

Theorem 1.5.3 In any metric space M, the union of a finite number of closed sets is 

closed. 

Proof. 

Let A1, A2, …. , An be closed sets in a metric space M. 

Let A = A1 ∪ A2 ∪ …. ∪ An. 

We have to prove A is open in M. 
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Now, A
c
 = [ A1  ∪ A2 ∪ …. ∪ An]

c 

= A1
c  ∩A2

c  ∩ …. ∩ A𝑛
c  [ By De Morgan’s law.] 

Since Aiis closed in M, A𝑖
cis open in M. 

Since finite intersection of open sets is open, A1
c  ∩A2

c  ∩ …. ∩ A𝑛
c is open in M. 

i.e. A
c
 is open in M. 

∴ A is closed in M. 

Theorem 1.5.4 In any metric space M, the intersection of closed sets is closed. 

Proof. 

Let  Aα  be a family of closed sets in M. 

We have to prove A = ∩ Aα is open in M. 

Now, A
c
 = (∩ Aα)

c 

               = ∪Aα
c   [ ByDe Morgan’s law.] 

Since Aα is closed in M, Aα
c  is open in M. 

Since union of open sets is open, ∪Aα
c  is open. 

i.e. A
c 
 is open in M. 

∴ A is closed in M. 

Theorem 1.5.5 Let M1 be a subspace of a metric space M. Let F1⊆ M1. Then F1 is 

closed in M1 if and only if F1 = F ∩ M1 where F is a closed set in M. 

Proof. 

Suppose that F1 is closed in M1. 

Then M1 – F1 is open in M1. 

∴ M1 – F1 = A ∩ M1 where A is open in M. 

Now, F1 = A
c ∩ M1. 

Since A is open in M, A
c
 is closed in M. 

Thus, F1 = F ∩ M1 where F = A
c
 is closed in M. 

Conversely, assume that F1 = F ∩ M1 where F  is closed in M. 
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Since F is closed in M, F
c
 is open in M. 

∴ F
c ∩ M1 is open in M1. 

Now, M1 – F1 = F
c ∩ M1 which is open in M1. 

∴ F1 is closed in M1. 

1.6 Closure. 

Definition1.6.1 Let A be a subset of a metric space (M , d). The closure of A, denoted 

by A , is defined as the intersection of all closed sets which contain A. 

i.e. A  = ∩  B   B is closed in M and B ⊇ A  

Note 1.6.2 

(1) Since intersection of closed sets is closed, A  is a closed set. 

(2) A ⊇ A. 

(3) A is the smallest closed set containing A. 

(4) A is closed ⇔ A = A  . 

(5) A  = A  . 

Theorem 1.6.3Let (M , d) be a metric space. Let A , B ⊆ M. Then 

(1) A ⊆ B ⇒ A  ⊆  B  

(2) A∪B       = A  ∪  B  

(3) A∩B        ⊆ A  ∩ B  

Proof. 

(1) Let A ⊆ B . 

B  ⊇ B ⊇ A. 

Thus B  is a closed set containing A. 

But A  is the smallest closed set containing A. 

∴ A  ⊆  B  . 

(2) A ⊆ A ∪ B. 

∴by (1),  A  ⊆ A∪B       . 

Similarly , B  ⊆ A∪B       . 

∴ A  ∪  B  ⊆ A∪B                             ……………………….. (a) 

A is a closed set containing A and B  is a closed set containing B. 

∴ A  ∪  B is a closed set containing A ∪ B . 

But A∪B       is the smallest closed set containing A ∪B . 

∴  A∪B       ⊆ A∪B                                 ……………………….. (b) 

From (a) and (b) we get A∪B       = A  ∪ B  . 
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(3) A ∩ B ⊆ A. 

∴ A∩B       ⊆A  . 

Similarly, A∩B       ⊆B  . 

∴ A∩B       ⊆A ∩ B  

Note1.6.4 A∩B        need not be equal to A ∩ B  . 

For example, in R with usual metric take A = (0 , 1) and B = (1 , 2) . 

A ∩ B = ∅⇒A∩B        = ∅ . 

But A ∩ B  = [0 , 1] ∩ [1 , 2] = { 1 }. 

 ∴ A∩B        ≠ A ∩ B  . 

1.7 Limit Point. 

Definition 1.7.1 Let (M , d) be a metric space and A ⊆ M. A point x ∈ M is said to be 

a limit point of A if every open ball with center x contains a point of A other than x. 

i.e. B(x , r) ∩ ( A – { x } ) ≠∅ for all r > 0. 

The set of all limit points of A is denoted by A⃓. 

Example 1.7.2 In R with usual metric let A = (0 , 1). 

Every open ball with center 0, B(0 , r) = (-r , r) contains points of (0 , 1) other than 0. 

∴ 0 is a limit point of A. 

Similarly, 1 is a limit point of A and in fact every point of A is also a limit Point of A. 

For each real number x < 0, if we choose r such that 0 < r ≤ −
x

2
 , then B(x , r) 

contains no point of ( 0 , 1) , and hence x is not a limit point of limit point of A. 

Similarly, every real number x > 0 is not a limit point of A. 

Hence A⃓ = [0 , 1]. 

Example 1.7.3 In R with usual metric, Z has no limit point. 

For, 

Let x be any real number. 

If x is an integer, then B(x , 
1

2
) = (x - 

1

2
 , x + 

1

2
) has no integer other than x. 

∴ x is not a limit point of Z . 
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If x is not an integer, choose r such that 0 < r < x-n  where n is the integer closest to x. 

Then B(x , r) = (x – r , x + r) contains no integer. 

Hence x is not a limit point of Z. 

Thus no real number x is a limit point of Z. 

∴ Z⃓ = ∅ . 

Example 1.7.4 In R with usual metric, every real number is a limit point of Q . 

For, 

Let x be any real number. 

Every open ball B(x , r) = (x – r , x + r) contains infinite number of rational numbers. 

∴ x is a limit point of Q. 

∴ Q
⃓ = R. 

Theorem 1.7.5 Let (M , d) be a metric space and A ⊆ M. Then x is a limit point of A 

if and only if every open ball with center x contains infinite number of points of A. 

Proof. 

Let x be a limit point of A. 

We have to prove every open ball with center x contains infinite number of 

points of A. 

Suppose not. 

Then there exists an open ball B(x , r) contains only a finite number of points 

of A and hence of (A – { x }). 

Let B(x , r) ∩ ( A – { x } ) =  x1,  x2, …. , xn . 

Let r1 = min { d(x , xi) / i = 1 , 2 , ….. , n }. 

Since x ≠ xi , d(x , xi) > 0 ∀ i = 1 , 2 , …… , n and hence r1 > 0. 

Moreover, B(x , r1) ∩ ( A – { x } ) = ∅ . 

∴ x is not a limit point of A. 

This is a contradiction. 
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∴ every open ball with center x contains infinite number of points of A. 

Conversely, assume that every open ball with center x contains infinite number 

of points of A. 

Then, every open ball with center x contains infinite number of points of 

 A – { x }. 

Hence x is a limit point of A. 

Note 1.7.6 Any finite subset of a metric space has no limit points. 

Theorem 1.7.7 Let M be a metric space and A ⊆ M. Then A = A∪ A⃓ . 

Proof. 

Let x ∈A∪ A⃓ . 

We claim that x ∈ A . 

Suppose x ∉ A . 

Then, x ∈ M - A . 

Since A is closed , M - A is open. 

∴ there exists an open ball B(x , r) such that B(x , r) ⊆ M - A . 

∴ B(x , r) ∩ A = ∅ . 

∴ B(x , r) ∩ A = ∅ . [ ∵ A ⊆A ]. 

∴ x ∉ A ∪ A⃓ , which is a contradiction. 

∴ x ∈ A . 

∴ A ∪ A⃓⊆A                  …………………………  (1) 

Let  x ∈ A . 

We have to prove x ∈A∪ A⃓ . 

If x ∈ A, then x ∈A∪ A⃓ . 

Suppose x ∉ A. 

We claim that x ∈A⃓. 
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Suppose x ∉ A⃓. 

Then there exists an open ball B(x , r) such that B(x , r) ∩ ( A – { x } ) = ∅ . 

∴ B(x , r) ∩  A = ∅ . [ ∵ x ∉ A ] 

∴ A ⊆ B(x , r)
c
 . 

Since B(x , r) is open, B(x , r)
c
 is closed. 

Thus B(x , r)
c
 is a closed set containing A. 

But, A is the smallest closed set containing A. 

Hence A ⊆ B(x , r)
c
 . 

Now, x ∉ B(x , r)
c
 . 

∴ x ∉ A , which is a contradiction. 

∴ x ∈A⃓and hence x ∈ A ∪ A⃓ . 

 A ⊆ A ∪ A⃓                ……………………………  (2) 

From (1) and (2), we get A = A∪ A⃓ . 

Corollary1.7.8 A is closed if and only if A contains all its limit points. 

Proof. 

 A is closed ⇔ A = A  . 

                     ⇔ A = A ∪ A⃓ . 

                                 ⇔A ⊆ A⃓ . 

Corollary 1.7.9 x ∈ A ⇔ B(x , r) ∩  A ≠ ∅ ∀ r > 0. 

Proof. 

x ∈ A ⇒ x ∈ A ∪ A
⃓
 . 

∴ x ∈ A  or x ∈  A⃓ . 

If x ∈ A , then x ∈ B(x , r) ∩  A . 

If x ∈  A⃓, then B(x , r) ∩  (A – { x }) ≠ ∅ ∀ r > 0. 

Thus B(x , r) ∩  A ≠ ∅ ∀ r > 0. 
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Conversely, let B(x , r) ∩  A ≠ ∅ ∀ r > 0. 

We have to prove x ∈ A . 

If x ∈ A , then x ∈ A . 

If x ∉ A, then A = A – { x } . 

∴ B(x , r) ∩  (A – { x }) ≠ ∅ ∀ r > 0. 

∴ x is a limit point of A. 

∴ x ∈  A⃓. 

∴ x ∈ A . 

Corollary 1.7.10  x ∈ A ⇔ G ∩ A ≠∅  for all open set G containing x. 

Proof. 

Let x ∈ A . 

We have to prove G ∩ A ≠∅  for all open set G containing x. 

Let G be an open set containing x. 

Then there exists an open ball B(x , r) such that B(x , r) ⊆ G. 

Since x ∈ A , B(x , r) ∩ A ≠ ∅ and hence G ∩ A ≠ ∅. 

Conversely, assume that G ∩ A ≠ ∅ for every open set containing x. 

Then B(x , r) ∩  A ≠ ∅ ∀ r > 0. 

∴ x ∈ A . 

1.8 Bounded Sets in a Metric space. 

Definition 1.8.1 Let (M , d) be a metric space. A subset A of M is said to be bounded 

if there exists a positive real number k such that d(x , y) ≤ k ∀ x , y ∊ A. 

Example 1.8.2 Any finite subset A of a metric space (M , d) is bounded. 

For, 

Let A be any finite subset of M. 

If  A = ⌀  then  A is obviously bounded. 
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Let A ≠ ⌀ .Then {d(x , y)/x , y ∊ A} is a finite set of real numbers. 

Let k = max {d(x , y)/x , y ∊ A}. 

Clearly d(x , y) ≤ k for all x , y ∊ A. 

∴ A is bounded. 

Example 1.8.3 [0,1] is a bounded subset of R with usual metric since d(x , y) ≤ 1 for 

all x , y ∊ [0,1]. 

Example 1.8.4 (0 , ∞) is an unbounded subset of R. 

Example 1.8.5 Any subset A of a discrete metric space M is bounded since  

d(x , y) ≤ 1 for all x , y ∊ A. 

Note 1.8.6 Every open ball B(x , r) in a metric space (M , d) is bounded. 

For, 

Let s , t ∊ B(x , r). 

d(s , t) ≤ d(s , x) + d(x , t) < r + r. 

∴ d(s , t) < 2r. 

Hence B(x , r) is bounded. 

Definition 1.8.7 Let (M , d) be a metric space and A ⊆ M. The diameter of A, denoted 

by d(A), is defined by d(A)= l.u.b {d(x , y)/x , y ∊ A}. 

Example 1.8.8 In R with usual metric the diameter of any interval is equal to the 

length of the interval. The diameter of [0 , 1] is 1. 

1.9 Complete Metric Spaces. 

Definition 1.9.1 Let (M , d) be a metric space. Let (xn) be a sequence in M. Let x ∈ M. 

We say that (xn) converges to x if for every 𝜀 > 0 there exists a positive integer N such 

that d(xn , x) < 𝜀 for all n ≥ N. If (xn) converges to x , then x is called a limit of (xn) 

and we write limn → ∞ xn = x or xn → x . 

Note 1.9.2 (1)   xn → x if and only if for every ε > 0 there exists a positive integer N 

such that xn ∈ B(x , ε) ∀ n ≥ N. Thus, the open ball B(x , r) contains all but a finite 

number of terms of the sequence. 

(2)   xn → x if and only if ( d(xn , x) ) → 0. 
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Theorem 1.9.3 The limit of a convergent sequence in a metric space is unique. 

Proof. 

Let (M , d) be a metric space and let (xn) be a sequence in M. 

Suppose that (xn) has two limits say x and y. 

Let ε > 0 be given. 

Since xn → x , there exists a positive integer N1 such that d(xn , x) < ε/2 for all n ≥ N1. 

Since xn → y , there exists a positive integer N2 such that d(xn , x) < ε/2 for all n ≥ N2. 

Let N = max { N1 , N2 }. 

Then, d(x , y) ≤ d(x , xN) + d(xN , y) 

                       <   ε/2 + ε/2 

∴ d(x , y) < ε. 

Since ε > 0 is arbitrary , d(x , y) = 0. 

∴ x = y. 

Theorem1.9.4 Let (M, d) be a metric space and A ⊆ B. Then 

(i) X is a limit point of A ⇔ there exists a sequence (xn) of distinct points 

in A such that xn → x . 

(ii) X ∈ A ⇔ there exists a sequence (xn)  in A such that xn → x . 

Proof. 

(i) Let x be a limit point of A. 

Then every open ball B(x , r) contains infinite number of points of A. 

Thus, for each natural number  n , we can choose xn ∈ B(x , 
1

n
) such that 

xn ≠ x1, x2, x3, …. , xn-1 . 

Now, (xn) is a sequence of distinct points in A and d(xn , x) < 
1

n
 ∀ n. 

∴ ( d(xn , x) ) → 0. 

∴ xn → x . 

Conversely, assume that there exists a sequence (xn) of distinct points in 

A such  that xn → x . 

We have to prove x is a limit point of A. 
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Let it be given an open ball B(x , ε). 

Since xn → x , there exists a positive integer N such that  

d(xn , x) < ε ∀ n ≥ N. 

∴  xn ∈ B(x , ε) ∀ n ≥ N. 

Since xn are distinct points of A, B(x , ε) contains infinite number of 

points of A. 

Thus, every open ball with center x contains infinite number of points of 

A. 

Hence x is a limit point of A. 

(ii) Let x ∈ A . 

Then x ∈A ∪ A∣. 

If x ∈ A then the constant sequence x, x, x, ….. is a sequence in A 

converges to x. 

If x ∉ A, then x ∈A∣. 

∴ x is a limit point of A. 

∴ by (i), there exists a sequence (xn) in A converges to x. 

Conversely, assume that there exists a sequence (xn)  in A such that  

xn → x . 

Then every open ball B(x , ε) contains points in the sequence and hence 

points of A. 

∴ x ∈ A . 

Definition 1.9.5 Let (M , d) be a metric space. Let (xn) be a sequence in M. Then (xn) 

is said to be a Cauchy sequence in M if for every ε > 0 there exists a positive integer N 

such that d(xn , xm) < ε for all n , m ≥ N. 

Theorem 1.9.6 Every convergent sequence in a metric space (M , d) is a Cauchy 

sequence. 

Proof. Let (xn) be a convergent sequence in M converges to x ∈ M. 

We have to prove (xn) is Cauchy. 

Let ε > 0 be given. 

Since xn → x , there exists a positive integer N such that d(xn , x) < ε/2 for all n ≥ N. 
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∴ d(xn , xm) ≤ d(xn , x) + d(x , xm) 

< ε/2 + ε/2 for all n , m ≥ N. 

∴ d(xn , xm) < ε for all n , m ≥ N. 

Hence (xn) is a Cauchy sequence. 

Definition1.9.7 A metric space M is said to be complete if every Cauchy sequence in 

M converges to a point in M. 

Example 1.9.8 R with usual metric is complete. 

Theorem 1.9.9 A subset A of a complete metric space M is complete if and only if A 

is closed. 

Proof. 

Suppose that A is complete. 

We have to prove A is closed. 

For that it is enough to prove A contains all its limit points. 

Let x be a limit point of A. 

Then there exists a sequence (xn) in A such that xn → x . 

Since A is complete x ∈ A. 

∴ A contains all its limit points. 

Hence A is closed. 

Conversely, assume that A is a closed subset of M. 

Let (xn) be a Cauchy sequence in A. 

Then (xn) be a Cauchy sequence in M. 

Since M is complete, there exists x ∈ M such that xn → x . 

Thus (xn) is a sequence in A such that xn → x . 

∴ x ∈ A . 
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Since A is closed A = A and hence x ∈ A. 

Thus every Cauchy sequence (xn) in A converges to a point in A. 

∴ A is complete. 

Note 1.9.10 Every closed interval [a , b] with usual metric is complete since it is a 

closed subset of the complete metric space R. 

Theorem 1.9.11 [ Cantor’s Intersection Theorem ] 

Let M be a metric space. Then M is complete if and only if for every sequence ( Fn ) 

of nonempty closed subsets of M such that F1 ⊇ F2 ⊇ .…Fn ⊇ …. and ( d(Fn ) ) → 0 , 

 Fn
∞
n=1  ≠ ∅ . 

Proof. 

Let M be a complete metric space. 

Let ( Fn ) be a sequence of nonempty closed subsets of M such that 

F1 ⊇ F2 ⊇ …… Fn ⊇ ….                   …………………….  (1) 

and ( d(Fn ) ) → 0 ,                              ……………………  (2) 

We have to prove  Fn
∞
n=1  ≠ ∅ . 

For each natural number n , we choose a point xn in Fn. 

By (1), xn, xn+1, xn+2, …..  all lie in Fn. 

i.e. xm ∈ Fn ∀ m ≥ n.                            …………………… (3) 

We claim that (xn) is a Cauchy sequence in M. 

Let ε > 0 be given. 

Since ( d(Fn ) ) → 0 , there exists a positive integer N such that 

 d(Fn ) < ε ∀ n ≥ N. 

In particular, d( FN ) < ε .                  ……………………. (4) 

Now, let m , n ≥ N. 

Then by (3), xm , xn ∈ FN. 
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∴ d(xm , xn) < ε . [ By (4) ] 

Thus d(xm , xn) < ε ∀ m , n ≥ N. 

∴ (xn) is a Cauchy sequence in M. 

Since M is complete, there exists  x ∈ M such that xn → x . 

We show that x ∈  Fn
∞
n=1 . 

For any natural number n, xn, xn+1 , xn+2 is a sequence in Fn converges to x. 

∴ x ∈ Fn . 

Since Fn is closed, Fn = Fn. 

∴ x ∈ Fn. 

∴ x ∈  Fn
∞
n=1 . 

Hence  Fn
∞
n=1  ≠ ∅ . 

Conversely, assume that for every sequence ( Fn ) of nonempty closed subsets 

of M such that F1 ⊇ F2 ⊇ … Fn ⊇ …. and ( d(Fn ) ) → 0 ,  Fn
∞
n=1  ≠ ∅ . 

We have to prove M is complete. 

Let (xn) be a Cauchy sequence in M. 

We claim that xn → x for some x ∈ M. 

Define a decreasing sequence of sets F1 ⊇ F2 ⊇ …..⊇ Fn ⊇ …… as follows 

F1 =  x1 ,x2 , ….., xn , …….  

F2 =  x2 ,x3 , ….., xn , …….  

…..    ……    ……..    ….. 

…..   ……    …….   …… 

Fn =  xn ,xn+1 , …..,…….. ..  

……    …..   …….   ……. 
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∴ F1  ⊇ F2  ⊇ ……..⊇ Fn  ⊇ …… 

Thus (Fn ) is a decreasing sequence of closed sets. 

Since (xn) is a Cauchy sequence, for given ε > 0 there exists a positive integer 

N such that d(xn , xm) < ε  ∀ n,m ≥ N. 

∴ d(FN) < ε . 

Now, Fn ⊆ FN ∀ n ≥ N ⇒ d(Fn) < ε ∀ n ≥ N. 

But d(Fn) = d(Fn) . 

∴ d(Fn) < ε ∀ n ≥ N           ………………………….  (5) 

∴ ( d(Fn) ) → 0 . 

Hence by hypothesis,  Fn
∞
n=1  ≠ ∅ . 

Let x ∈  Fn
∞
n=1  . 

Then x , xn ∈ Fn  . 

∴ d(xn , x) ≤ d(Fn) . 

∴ d(xn , x) < ε  ∀ n ≥ N  [ By (5) ] 

∴ xn → x . 

∴  M is complete. 

Note 1.9.12 In the above theorem  Fn
∞
n=1  contains exactly one point, since if it 

contains distinct points x and y, then d(Fn) ≥ d(x , y) for all n and hence ( d(Fn) ) does 

not converge to 0. 

1.10 Baire’s Category Theorem. 

Definition 1.10.1 A subset A of a metric space M is said to be nowhere dense in M if 

Int A = ∅ . 

Definition 1.10.2 A subset A of a metric space M is said to be of first category in M if 

A can be expressed as a countable union of nowhere dense sets. 



25 
 

If A is not of first category, then we say it is of second category. 

Example1.10.3 In R with usual metric, every finite subset A is nowhere dense. 

Example 1.10.4 In R with usual metric, the subset Q is of first category. 

For, 

Since Q is countable it can be expressed as countable union of singleton sets and each 

singleton set is nowhere dense in R.. Thus, Q is countable union of nowhere dense 

sets. Hence Q is of first category. 

Example 1.10.5 If M is a discrete metric space, then any nonempty subset A of M is 

not nowhere dense set. Also A is of second category. 

Theorem 1.10.6 Let M be a metric space and A ⊆ M. Then A is nowhere dense if and 

only if each nonempty open set contains an open ball disjoint from A. 

Proof. 

Suppose that A is nowhere dense. 

Let G be a nonempty open set. 

Since A is nowhere dense, Int A = ∅ . 

∴ A does not contain G. 

∴ there exists x  ∈ G such that x ∉ A. 

x ∉ A ⇒ there exists an open ball B(x , r1) such that B(x , r1) ∩ A = ∅ . 

G is open ⇒ there exists an open ball B(x , r2) such that B(x , r2) ⊆ G. 

Let r = min { r1 , r2 }. 

Then G contains B(x , r) and disjoint from A. 

Conversely, assume every nonempty open set contains an open ball disjoint from A. 

We claim that Int A = ∅ . 

Let x ∈ A . 

We claim that x is not an interior point of  A . 
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Suppose x is an interior point. 

Then there exists an open ball B(x , r) such that B(x , r) ⊆  A . 

Now, every open ball in B(x , r) intersects with A, which is a contradiction. 

Hence x is not an interior point of  A . 

∴ Int A = ∅ . 

∴ A is nowhere dense set. 

Theorem 1.10.7 [Baire’s Category Theorem ] 

Any complete metric space is of second category. 

Proof. 

Let M be a complete metric space. 

We claim that M is not of first category. 

Let (An) be a countable collection of nowhere dense sets in M. 

We shall prove that  An ≠∞
n=1  M. 

Since M is open and A1 is nowhere dense, there exists an open ball B1 of radius less 

than 1 such that B1 ∩ A1 = ∅ . 

Let F1 be the concentric closed ball whose radius is 
1

2
 times that of B1. 

Now, Int F1 is open and A2 is nowhere dense. 

∴ Int F1 contains an open ball B2 of radius less than 
1

2
 such that B2 ∩ A2 = ∅ . 

Let F2 be the concentric closed ball whose radius is 
1

2
 times that of B2. 

Now, Int F2 is open and A3 is nowhere dense. 

∴ Int F2 contains an open ball B3 of radius less than 
1

4
 such that B3 ∩ A3 = ∅ . 

Let F3 be the concentric closed ball whose radius is 
1

2
 times that of B3. 

Proceeding like this we get a sequence of nonempty closed balls Fn such that 
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F1 ⊇ F2 ⊇ …… Fn ⊇ …. and d( Fn ) < 
1

2
n . 

∴ ( d(Fn ) ) → 0 as n  → ∞ . 

Since M is complete, By Cantor’s intersection theorem, there exists a point x ∈ M 

Such that x ∈  Fn
∞
n=1 . 

Moreover, Fn ∩ An = ∅  ∀ n . 

∴ x ∉ An   ∀ n . 

∴ x ∉  An
∞
n=1  . 

∴   An
∞
n=1  ≠ M. 

Hence M is of second category. 

Corollary 1.10.8 R is of second category. 

Proof. 

R is a complete metric space. Hence, R is of second category. 
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Unit II 

CONTINUITY 

2.1 Continuity of functions. 

Definition 2.1.1 Let (M1 , d1) and (M2 , d2) be two metric spaces. Let a ∈ M1. A 

function f : M1  → M2 is said to be continuous at a if  for each ε >0 , there exists δ >0 

such that 0 < d1 x ,  a  < δ ⇒  d2 f(x) ,  f(a)  < ε . The function f is said to be 

continuous if it is continuous at every point of M1. 

Note 2.1.2 d1 x,  a  < δ ⇒ d2 f(x) ,  f(a)  < ε  ⇔ x ∈  B  a , δ ⇒ f x ∈  B  f a , ε . 

                        ⇔ f B  a, δ  ⊆B  f a , ε . 

Theorem 2.1.3 Let (M1, d1) and (M2, d2) be two metric spaces. A function 

f : M1  → M2 is continuous if and only if f
-1 V  is open in M1 whenever V is open in 

M2. 

Proof. Assume that f is continuous. 

 Let V be open in M1. 

 We have to prove f
-1 V  is open in M1. 

 If f
-1 V  = φ , then it is open. 

 Let f
-1 V  ≠ φ. 

 We shall prove that for each x ∈  f-1 V  there exists an open ball B(x , δ)  

  such that B(x , δ) ⊆ f
-1 V . 

 Let  x ∈ f
-1 V . Then f (x) ∈ V. 

 Since V is open, there exists an open ball B(f(x) , ε) such that  

  B(f(x) , ε ) ⊆ V. ……..(1) 

 Now, since f is continuous, there exists an open ball  B(x , δ) such that  

 f(B(x , δ)) ⊆  B(f(x) , ε).  

 By (1), f(B(x , δ)) ⊆ V and hence B(x , δ) ⊆ f
-1 V .    

 ∴  f-1 V  is open. 
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 Conversely, assume that f
-1 V  is open in M1 whenever V is open in M2.  

 To prove f is continuous, we shall prove that f is continuous at every point  

  of M1.  

 Let x ∈ M1 and let ε > 0 be given. 

 We know that, B(f(x) , ε) is an open set in M2. 

 By hypothesis, f
-1

(B(f(x) , ε)) is open in M1. 

 Also, x ∈ f
-1

(B(f(x) , ε)) . 

 ∴ there exists δ >0 such that B(x , δ) ⊆ f
-1

(B(f(x) , ε)). 

 ∴ f(B(x , δ)) ⊆  B(f(x) , ε). 

  ∴    f  is continuous at x. 

Since x ∈ M1 is arbitrary, f is continuous on M1. 

Note 2.1.4 f is continuous if and only if inverse image of every open set is open. 

Theorem 2.1.5 Let (M1 , d1) and (M2 , d2) be two metric spaces. A function 

f : M1  → M2 is continuous if and only if f
-1 W  is closed in M1 whenever W is closed 

in M2. 

Proof. Assume that f is continuous. 

 Let W be a closed set in M2. 

 Then W∁  is an open set in M2. 

 By hypothesis, f
-1

(W∁) is open in M1. 

 But f
-1 W∁ =  f-1

(W) 
∁

. 

 ∴  f-1
(W) 

∁

 is open in M1. 

 ∴  f
-1

(W) is closed in M1. 

 Conversely, assume that   f
-1 W  is closed in M1 whenever W is closed in M2. 

To prove f is continuous, we shall prove that f
-1 V  is open in M1 whenever V 

is open in M2. 
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 Let V be an open set in M2. 

 ∴ V∁ is a closed set in M2. 

 By hypothesis,  f
-1

(V∁) is a closed set in M1. 

 (i.e)  f-1
(V) 

∁

 is a closed set in M1. 

 ∴  f
-1

(V) is an open set in M1. 

 Thus, inverse image of every open set is open under f. 

 ∴ f is continuous. 

Note 2.1.6 f is continuous if and only if inverse image of every closed set is closed. 

Theorem 2.1.7 Let (M1 , d1) and (M2 , d2) be two metric spaces. Then f : M1  → M2 is  

continuous if and only if f  A   ⊆ f( A )        for all A ⊆ M1. 

Proof. Assume that f is continuous. 

 We have to prove f A  ⊆ f(A)      for all A ⊆ M1. 

 Let A ⊆ M1. Then f(A) ⊆ M2. 

 f(A)      is a closed set in M2. 

 Since f is continuous, f
-1

(f(A)      ) is closed in M1. 

 Since f(A)      ⊇ f(A), f
-1

(f(A)     ) ⊇ A . 

 But A  is the smallest closed set containing A. 

 ∴  A  ⊆ f
-1

(f(A)      ). 

 ∴f( A  ) ⊆ f(A)      . 

 Conversely, let f A  ⊆ f(A)      for all A ⊆ M1. 

To prove f is continuous, we shall prove that f
-1 W  is closed in M1 whenever 

W is closed in M2. 

Let W be a closed set in M2. 
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By hypothesis, f(f
-1

(W)
        

) ⊆ ff
-1

(W)
         

 . 

          ⊆ W  

          = W (Since W is closed.).  

Thus, f(f
-1

(W)
        

) ⊆ W. 

∴  f-1
(W)

        
⊆  f-1 W  . 

Also, f
-1 W  ⊆ f

-1
(W)

        
 . 

∴ f
-1 W  = f

-1
(W)

        
 . 

Hence f
-1 W  is closed. 

∴ f is continuous. 

Theorem 2.1.8 Let (M1 , d1) and (M2 , d2) be two metric spaces. Let x ∈ M1. A 

function f : M1  → M2 is continuous at x if and only if  xn  → x in M1 ⇒ f(xn)→ f(x) in 

M2. 

Proof. 

 Suppose that f is continuous at x. 

 Let ( x
n 

) be a sequence in M1 such that  xn  → x . 

 We shall prove that f(xn) → f(x) . 

 Let ε > 0 be given. 

 Since f is continuous at x, there exists δ >0 such that  

 d1  y , x  < δ ⇒ d2  f(y) , f(x)  < ε   ………… (1). 

 Since  xn  → x , there exists positive integer N such that  

 d1   xn   , x  < δ ∀ n ≥N . 

 ∴ d2  f( xn  ) , f(x)  < ε ∀ n ≥N . [ By (1) ] 

 ∴ f(xn)→ f(x) . 

 Conversely, assume that  xn  → x  ⇒  f(xn)→ f(x) . 

 We have to prove f is continuous at x. 
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 Suppose not. Then there exists ε > 0 such that for all δ > 0 

 f(B(x , δ)) ⊈ B(f(x) , ε). 

 Thus for each natural number n, f(B(x , 
1

n
)) ⊈ B(f(x) , ε). 

 Choose  xn  such that   xn ∈ B( xn  , δ) but  f( x
n  

) ⊈ B(f(x) , ε) . 

 ∴ d1   xn   , x < 
1

n
 for all n and d2  f( xn  ) , f(x)  ≥  ε for all n. 

 ∴  xn  → x and  f(x
n
) does not converge to f(x). 

This is a contradiction. 

   ∴ f is continuous at x. 

Problem 2.1.9 Let (M1 , d1) and (M2 , d2) be two metric spaces. Then prove that any 

constant function f : M1  → M2 is continuous. 

Solution. 

 Let f : M1  → M2 be given by f(x) = c where c ∈ M2 is a constant. 

 We have to show that f is continuous. 

 Let V be an open set in M2. 

 Now, f
-1

(V) =  
∅   if x ∉ V

M1  if x ∈ V
   . 

  In both cases , f
-1

(V) is an open set. 

 Thus, inverse image of every open set is open under f. 

∴ f is continuous. 

Problem 2.1.10 Let M1, M2, M3 be metric spaces. If f : M1  → M2 and g : M2  → M3 

are continuous, then prove that g∘f : M1  → M2 is also continuous. 

 i.e. composition of two continuous functions is continuous.  

Solution. 

 Let W be an open set in M3 . 

 Since g is continuous, g-1(W) is open in M2. 

 Since f is continuous, f
-1

(g-1(W)) is open in M1. 
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Now, f
-1

(g-1(W)) = (g ∘ f) -1(W). 

∴ (g ∘ f) -1(W) is open in M1. 

Hence g ∘ f is continuous. 

Problem 2.1.11 Let f be a continuous real valued function defined on a metric space 

M. Let A =   x ∈ M f x  ≥ a where a ∈R  . Prove that A is closed. 

Solution. 

 A =   x ∈ M   f x ≥ a where a ∈ R   

     =   x ∈ M   f x  ∈ [ a , ∞)   

     = f
-1

([ a , ∞) ). 

          Now,[ a , ∞) is a closed subset of R. 

         Since f is continuous, f
-1

([ a , ∞) ) is a closed subset of M. 

 ∴ A is closed. 

Problem 2.1.12 Let f : M → R and f : M → R be continuous functions. Prove that  

f+g : M → R is continuous. 

Solution. 

 Let x ∈ M . 

 We show that f + g is continuous at x. 

 Let  xn   be a sequence in M such that  xn  → x . 

 Since f and g are continuous, f(xn) → f(x) and g(xn) → g(x) . 

 ∴ f(xn) + g(xn) → f(x) +  g(x) . 

 i.e. (f+g)(xn) → (f+g)(x) . 

 ∴ f+g is continuous at x. 

Note 2.1.13 In a similar way, we can prove that f – g, fg, cf if c ∈ R and 
f

g
   

  if g(x) ≠ 0 ∀ x ∈ M are continuous. 
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2.2 Homeomorphism. 

Definition 2.2.1 Let (M1 , d1) and (M2 , d2) be two metric spaces.  

A function  f : M1  → M2 is said to be a homeomorphism if the following holds. 

(1) f is a bijection. 

(2) f is continuous. 

(3) f
-1

 is continuous. 

M1 and M2 are said to be homeomorphic if there exists a homeomorphism between 

them. 

Definition 2.2.2 A function  f : M1  → M2 is said to be an open mapping if for every 

open set G in M1, f(G) is open in M2. 

i.e. image of every open set in M1 under f is open in M2. 

Definition 2.2.3 A function  f : M1  → M2 is said to be a closed mapping if for every 

closed set F in M1, f(F) is closed in M2. 

i.e. image of every closed set in M1 under f is closed in M2. 

Theorem 2.2.4 Let f : M1  → M2 be a bijection. Then the following are equivalent. 

(1) f is a homeomorphism 

(2) f is a continuous open map 

(3) f is a continuous closed map 

Proof. 

 We shall prove that (1) ⇔ (2)  and (1) ⇔ (3) . 

 Suppose that f is a homeomorphism. 

 Then f and f
-1

 are continuous. 

 We have to prove f is an open mapping. 

 Let G be an open set in M1. 

Since f
-1 ∶ M2 → M1 is continuous, (f

-1)−1(G) is open in M1. 

i.e. f(G) is open in M2. 

∴ f is an open map. 

Conversely, assume that f is a continuous open map. 
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We prove that f
-1

 is continuous. 

Let G be an open set in M1.  

Since f is an open mapping, f(G) is open in M2. 

i.e. (f
-1)−1(G) is open in M2. 

∴ f
-1

 is continuous. 

 The proof of  (1) ⇔ (3) is similar. 

Note 2.2.5 Let f : M1  → M2 be a homeomorphism. Then a subset G of M1 is open in 

M1 if and only if f(G) is open in M2. 

For, 

 Since f is a homeomorphism, f is a continuous open mapping. 

 Since f is open mapping, G is open in M1 ⇒ f(G) is open in M2. 

 Since f is continuous, f(G) is open in M2 ⇒ f
-1

(f(G)) = G is open in M1. 

∴ G is open in M1 ⇔ f(G) is open in M2. 

Thus a homeomorphism f : M1  → M2 gives not only a 1 – 1 correspondence 

between the elements of the two spaces but also a 1 – 1 correspondence 

between their open sets. 

Note 2.2.6 Let f : M1  → M2 be a homeomorphism. Then a subset F of M1 is closed in 

M1 if and only if f(F) is closed in M2. 

Example 2.2.7 The metric spaces (0 ,1) and (0 , ∞) with usual metric are 

homeomorphic. 

For, 

 Define f : (0 ,1) → (0 , ∞) by f(x) = 
x

1-x
 . 

 We show that f is 1 – 1 and on to. 

 Let x , y ∈ (0 , 1). 

 f(x) = f(y) ⇒ 
x

1-x
 = 

y

1−y
 

         ⇒ x (1 – y) = y (1 – x) 
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         ⇒ x – x y = y – x y 

         ⇒ x = y . 

 Hence f is 1 – 1. 

 Let y ∈ (0 , ∞). 

 Now, f(x) = y ⇒ 
x

1-x
 = y 

   ⇒ x = y (1 – x) 

   ⇒ x = y – xy 

   ⇒ x + xy = y 

   ⇒ x (1 + y) =y 

   ⇒ x = 
y

1+y
 

 ∴ 
y

1+y
 ∈ (0 , 1) is the pre image of y under f. 

 ∴ f is on to. 

 Thus f is a bijection and hence f
-1

: (0 , ∞) → (0 , 1) by f(x) = 
x

1 + x
 is a bijection. 

 Also, f and f
-1

 are continuous. 

 ∴ f is a homeomorphism. 

2.3 Uniform Continuity. 

Definition 2.3.1 Let (M1 , d1) and (M2 , d2) be a metric space. A function f : M1 → M2 

is said to be uniformly continuous on M1, if for every ε > 0 there exists δ > 0 such that 

d1(x , y) < δ ⇒ d2(f(x) , f(y)) < ε . 

Note 2.3.2 Every uniformly continuous function is continuous but the converse need 

not be true. 

Example 2.3.3  The function f : [0 , 1] → R given by f(x) = x
2
 is uniformly continuous 

on [0 , 1]. 

For, 

 Let ε > 0 be given. 
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 Let x , y ∈ [0 , 1]. 

 Now,  f x - f(y)  =  x2- y2   

        =  x + y   x - y  

         ≤ 2  x - y  

 Choose δ= 
ε

2
 . 

 Then,  x - y  < δ ⇒  f x - f(y)  < ε. 

 ∴ f is uniformly continuous on [0 , 1] . 

2.4 Discontinuities of R 

Definition 2.4.1 

 A function f: RR is said to approach to a limit ℓ as x tends to a if given ε > 0 

there exists δ > 0 such that 0 < |x-a|< δ ⟹ |f(x) - ℓ | < 0 and we write  xa
lim⁡= ℓ. 

Definition 2.4.2 

A function f is that to have ℓ as the right limit at x=a if given ε > 0 there exists  

δ > 0 such that a < x < a + δ⟹|f(x) - ℓ |< ε and we write  xa+
lim  ⁡= ℓ 

 Also we denote the right limit ℓ by f(a+) 

A function f is that to have ℓ as the right limit at x=a if given ε > 0 there exists  

δ > 0 such that a < x < a – δ ⟹ |f(x) - ℓ |< ε and we write  xa−
lim  ⁡= ℓ 

 Also we denote the right limit ℓ by f(a-) 

Note 1 

  xa
lim⁡f(x) = ℓ if and only if  xa+

lim  ⁡= f(x)=  xa−
lim⁡f(x)= ℓ . 

 i.e.  

 xa
lim⁡f(x) = ℓ if and only if  the left and right limits of  f(x) at x = a exist and are 

equal. 

Note 2 

 The definition of continuity of f at x=a can be formulated as follows. 

 f is continuous at a if and only if f(a+) = f(a-)=f(a) .  

Note 3 

 If  xa
lim ⁡f(x) does not exist then one of the following happens. 
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1.  xa+
lim⁡⁡f(x) does not exists. 

2.  xa−
lim⁡⁡f(x) does not exists. 

3.  xa+
lim⁡⁡f(x) and  xa−

lim⁡⁡f(x) exists and are not equal. 

Definition 2.4.3 

 If a function f is discontinuous at a then a is called a point of discontinuity for 

the function. 

 If a is a point of discontinuity of a function then any one of the following cases 

arises. 

i.  xa
lim ⁡⁡f(x) exists but is not equal to f(a). 

ii.  xa+
lim⁡⁡f(x) and  xa−

lim⁡⁡f(x) exists and are not equal. 

iii. Either  xa−
lim⁡⁡f(x) or  xa+

lim⁡⁡f(x) does not exists. 

Definition 2.4.4 

Let a be a point of discontinuity for f(x). a is said to be a point of discontinuity 

of the first kind if  xa+
lim ⁡⁡f(x) and  xa−

lim⁡⁡f(x) exists and both of them are finite and not 

equal. a is said to be a point of discontinuity of the second kind if either  xa+
lim⁡⁡f(x) or 

 xa−
lim⁡⁡f(x) does not exist. 

Definition 2.4.5 

 Let A⊆R. A function f :A  R is called monotonic increasing if x , yA and 

x<y ⟹ f(x) ≤ f(y). 

f is called monotonic decreasing if x, yA and x > y ⟹ f(x) ≥f(y). 

f is called monotonic if it is either monotonic increasing or monotonic decreasing. 

Theorem  2.4.6 

 Let f:[a, b]  R be a monotonic increasing function. Then f has a left limit and 

a right limit at every point of (a, b). Also f has a right limit at a and f has a left limit at 

b. Further 

 x < y ⟹ f(x+) ≤ f(y-) 

 Similar result is true for monotonic decreasing functions. 

Proof 

 Let f : [a, b]  R be monotonic increasing. 

 Let x[a, b]. Then {f(t) | a ≤ t < x} is bounded above by f(x). 
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 We claim that f(x-) = ℓ 

 Let ε >0 be given. By definition of l.u.b there exists t such that a ≤ t < x and  

ℓ - ε < f(t) ≤ ℓ. 

∴ t < u < x⟹ ℓ- ε < f(t) ≤ f(u) ≤ ℓ 

   (∵ f is monotonic increasing) 

   ⟹ ℓ – ε < f(u) ≤ ℓ 

 ∴ x- δ < u< x ⟹ ℓ- ε < f(u) ≤ ℓ where δ = x-t 

∴ f(x-) = ℓ 

Similarly we can prove that f(x+) =g. l. b. {f(t) | x < t ≤ b}. 

Now we shall prove that x < y ⟹ f(x+) ≤ f(y-) 

Let x < y. 

Now, f(x+) = g.l.b {f(t)/x < t ≤ b} 

          = g.l.b {f(t)/x < t ≤ y}          (1) 

  (∵  f is monotonic increasing) 

Also f(y-)   = l.u.b {f(t)/a ≤ t < y} 

          = l.u.b {f(t)/x ≤ t < y}    (2) 

∴  f (x+) ≤ f (y-) [by (1) and (2)] 

The proof for monotonic decreasing functions is similar. 

Theorem 2.4.7 

 Let f:[a, b]  R be  a monotonic function. Then the set of points of [a, b] at 

which f is discontinuous is countable. 

Proof 

  We shall prove the theorem for a monotonic increasing function. 

 Let E = {x |x[a , b] and f is discontinuous at x}. 

 Let xE. Then f(x+) and f(x-)  exists and  f(x-) ≤ f(x) ≤ f(x+) 

 If f(x-) = f(x+) then f(x-) = f(x)=f(x+) 

 ∴ f is continuous at x, which is a contradiction. 

 ∴ f(x-) ≠ f(x+) 

 ∴ f(x-) < f(x+) 

Now choose a rational number r(x) such that f(x- ) < r(x) < f(x+) 
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This defines a map r from E to Q which maps x to r(x). 

We claim that r is 1-l. 

Let x1 < x2 .  

 ∴ f(x1+) < f(x2-).   

Also f(x1-) < r(x1) < f (x1+) 

And  f(x2-) < r(x2) < f (x2+) 

 ∴ r(x1) < f(x1+) < f(x2-) < r(x2)   

Thus x1 < x2 ⟹ r(x1) < r(x2). 

 ∴ r : EQ is 1 - l 

 ∴ E is countable. 

2.5 Connectedness 

Definition 2.5.1 A separation of a metric space M is a pair A, B of nonempty disjoint 

open subsets of M whose union is M. 

 M is said to be a connected metric space if there is no separation for M. 

Example 2.5.2 Any discrete metric space with more than one element is connected. 

 For, 

        Let M be a metric space with more than two elements. 

       Choose an element a ∈ M and let A = { a }. 

       Then A
с
 is a proper subset of M. 

       Now, A and A
с
 forms a separation of M. 

       ∴ M is not connected. 

Theorem 2.5.3 Let (M, d) be a metric space. Then M is connected if and only if ∅ and 

M are the  only sets which are both open and closed in M. 

Proof. 

 Suppose that M is connected. 

       We have to prove ∅ and M are the only sets which are both open and closed in M. 

 Suppose not. 

 Then there exists a proper subset A of M which is both open and closed in M. 
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 Now, A and A
с
 forms a separation of M, which is a contradiction. 

Conversely, assume that ∅ and M are the only sets which are both open and 

closed in M. 

We have to prove M is connected. 

Suppose not. 

Then there exists a separation A, B of M. 

A is a proper subset of M which is both open and closed in M, a contradiction. 

∴ M is connected. 

Theorem 2.5.4 Let (M , d) be a metric space. Then the following are equivalent. 

(i) The sets A and B form a separation of M. 

(ii) A and B are nonempty disjoint closed sets in M whose union is M. 

(iii) A and B are nonempty disjoint sets in M whose union is M and 

         A∩B  = A ∩B = ∅. 

Proof. 

 We shall prove that (i)  ⇔ (ii) and (ii) ⇔ (iii) 

 (i)  ⇒ (ii). 

 Suppose that A and B forms a separation of M. 

Then A and B are nonempty disjoint sets in M whose union is M. 

We have to prove A and B are closed in M. 

 Now, A = B
с
 and B = A

с
. 

 Since A and B are open in M, A
с
 and B

с
 are closed in M.  

 i.e., A and B are closed in M. 

 ∴ (i)  ⇒ (ii). 

 The proof of (ii)  ⇒ (i) is similar. 

 (ii)  ⇒ (iii). 

       Suppose that A and B are nonempty disjoint closed sets in M whose union is M. 



42 
 

 We have to prove  A∩B  = A ∩B = ∅. 

 Since B is closed, B = B . 

 ∴ A∩B  = A∩B = ∅. 

 Similarly, A ∩B = ∅. 

 (iii)  ⇒ (i). 

 Suppose that A and B are nonempty disjoint sets in M whose union is M and  

A∩B  = A ∩B = ∅. 

We have to prove A and B are closed in M. 

Let x ∈ A . 

SinceA ∩B = ∅ , x ∉ B. 

Since A∪B = M, x ∈ A. 

 ∴ A  ⊆ A. 

But A ⊆ A . 

 ∴ A = A   and hence A is closed. 

Similarly, B is closed. 

Theorem 2.5.5 Let M be a connected metric space. Let A be a connected subset of M. 

If B is a subset of M such that  A ⊆ B ⊆ A  then B is connected. In particular, A  is 

connected. 

Proof. 

 Suppose B is not connected. 

 Then there exists a separation B1 , B2  of B.  

Since B1 and B2 are open in B, B1 = G1 ∩ B and B2 = G2 ∩ B, where G1 and G2 

are open in M. 

 Now,B = B1 ∪ B2 = (G1 ∩ B)  ∪ (G2 ∩ B) = (G1  ∪ G2) ∩ B . 

 ∴ B ⊆ G1  ∪ G2 and hence A ⊆ G1  ∪ G2 . 

 Take  A1 = G1 ∩ A and A2 =  G2 ∩ A . 
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 Then A1 and A2 are open in A. 

 Also, A1 ∪ A2 = (G1 ∩ A) ∪ (G2 ∩ A) 

                         = (G1  ∪ G2) ∩ A 

             = A [ Since A ⊆ G1  ∪ G2 ] 

  A1 ∩ A2 = (G1 ∩ A) ∩ (G2 ∩ A) 

                          = (G1  ∩ G2) ∩ A 

              ⊆ (G1  ∩ G2) ∩ B [ Since A ⊆ B] 

             = (G1 ∩ B) ∩ (G2 ∩ B)  

              = B1  ∩ B2 

              = ∅ . 

 Since A is connected, either A1 = ∅ or A2 = ∅ . 

 Without loss of generality , assume that A1 = ∅ . 

 i.e. G1 ∩ A = ∅ . 

Since G1 is open, G1 ∩ A  = ∅ . 

 ∴ G1 ∩ B = ∅ . [ Since B ⊆ A  ] 

i.e. B1 = ∅ , which is a contradiction. 

 ∴ B is connected . 

2.6 Connected subsets of R. 

Theorem 2.6.1 A subspace of R is connected if and only if it is an interval. 

Proof. 

 Suppose that A is a connected subset of R . 

 We have to prove A is an interval. 

 Suppose not . 

 Then, there exists a , b , c ∈ R such that a < b < c and a , c ∈ A but b ∉ A . 

 Define A1 = ( - ∞ , b ) ∩ A and A2 = ( b ,  ∞ ) ∩ A . 
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 Since ( - ∞ , b ) and ( b ,  ∞ ) are open in R , A1 and A2 are open in A. 

 Moreover, A1 ∩ A2 = ∅ and A1 ∪ A2 = A. 

Clearly a ∈ A1 and c ∈ A2 . 

 ∴ A1 ≠ ∅ and A2 ≠ ∅ . 

Thus, A is the union of a pair of nonempty disjoint open sets A1 and A2 .  

∴ A is not connected, which is a contradiction. 

Hence A is an interval. 

Conversely, assume that A is an interval. 

We have to prove A is connected. 

Suppose not. 

Then, there exists nonempty disjoint closed sets A1and A2 in A such  

  that A = A1 ∪ A2. 

Choose x ∈ A1 and z ∈ A2. 

Since A1 ∩ A2 = ∅ , x  ≠ z. 

 ∴ x < z or z < x. 

Without loss of generality we assume that x < z. 

Now, x , z  ∈ A and A is an interval. 

 ∴ [x , z] ⊆ A ⊆ A1 ∪ A2. 

 Hence every element of [x , z] is either in A1 or in A2. 

Let y = l.u.b. { [x , z] ∩ A1 } . 

Clearly x ≤ y ≤ z . 

 By the definition of l.u.b. , for each ε > 0 there exists t ∈ [x , z] ∩ A1 such that  

y – ε < t ≤ y . 

∴ (y –  , y + ε) ∩ ([x , z] ∩ A1) ≠ ∅  ∀ ε > 0 . 

.∴ y ∈  x , z ∩ A1  . 

Since [x , z] ∩ A1  is closed in A , y ∈ [x , z] ∩ A1  
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∴ y ∈ A1.     ……………….. ( 1 ) 

Again, by the definition of  y, for each ε > 0 there exists s ∈ A2 such  

  that y ≤ s <  y + ε . 

∴ (y –  , y + ε) ∩ A2  ≠ ∅  ∀ ε > 0 . 

∴ y ∈ A2 . 

Since A2 is closed in A, y ∈ A2 ………….. ( 2 )   

∴ y ∈ A1 ∩ A2 [ By ( 1 ) & ( 2 ) ]. 

This is a contradiction to A1 ∩ A2 = ∅ . 

Hence A is connected. 

2.7 Connectedness and continuity. 

Theorem 2.7.1 Let M1 be a connected metric space. Let M2 be any metric space. Let  

f : M1 → M2 be a continuous function. Then f( M1 ) is a connected subset of M2. 

 i.e. continuous image of a connected set is connected. 

Proof. 

 Let f ( M1 ) = A so that f is a continuous function from M1 on to A. 

 We claim that A is connected. 

 Suppose A is not connected. 

 Then, there exists a proper subset B of A which is both open and closed in A. 

 Hence f
-1

(B) is a proper subset of M1 which is both open and in M1. 

 ∴ M1 is not connected which is a contradiction. 

 Hence A is connected. 

Theorem 2.7.2 [ intermediate value Theorem ] 

 Let f be a real valued continuous function defined on an interval I. Then f takes 

every value between any two value it assumes. 

Proof. 

 Let a , b ∈ I and let f(a) ≠ f(b). 
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 Without loss of generality we assume that f(a) < f(b). 

 Let c be a real number such that f(a) < c < f(b). 

 The interval I is a connected subset of R. 

 Since f is continuous, f(I) is a connected subset of R . 

 Hence f(I) is an interval. 

 Also f(a) , f(b) ∈ f(I). 

 ∴ [f(a) , f(b)] ⊆ f(I) . 

 ∴ c ∈ f(I) . [ Since f(a) < c < f(b) ] 

 ∴ c = f(x) for some x ∈ I . 
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Unit III 

Compactness 

3.1 Compact Metric Spaces. 

Definition 3.1.1 Let M be a metric space. A collection of open sets  Gα  is said to be 

an open cover for M if ∪ Gα = M. A sub collection of  Gα  which itself is an open 

cover is called a subcover. 

Definition 3.1.2  A metric space M is said to be compact if every open cover for M 

has a finite subcover. 

i.e. for each collection of open sets  Gα  such that ∪ Gα = M , there exists a finite sub 

collection  Gα1
 ,Gα2

 , ….. , Gαn
  such that  Gαi

n
i=1  = M. 

Theorem 3.1.3 Let M be a metric space. Let A ⊆ M. Then A is compact if and only if 

for every collection  Gα  of open sets in M such that ∪ Gα⊇ A there exists a finite sub 

collection  Gα1
 ,Gα2

 , ….. , Gαn
  such that  Gαi

n
i=1 ⊇ A. 

i.e. A is compact if and only if every open cover for A by sets open in M has a finite 

subcover. 

Proof. 

 Let A be a compact subset of M. 

 Let   Gα  be a collection  of open sets in M such that ∪ Gα⊇ A. 

 Then (∪ Gα) ∩ A = A. 

 ∴∪ (Gα ∩ A) = A. 

 Since Gα is open in M, Gα ∩ A is open in A. 

 ∴  Gα ∩ A  is an open cover for A. 

          Since A is compact, this open cover has a finite subcover say 

  Gα1
∩A ,Gα2

∩A , ….. , Gαn
∩A . 

 ∴  (Gαi
∩ 𝐴)n

i=1  = A. 

 ∴ (  Gαi

n
i=1  ) ∩ A = A. 

∴  Gαi

n
i=1 ⊇ A. 



48 
 

Conversely, assume that for every collection  Gα  of open sets in M such that 

∪ Gα⊇ A there exists a finite sub collection  Gα1
 ,Gα2

 , ….. , Gαn
  such that 

 Gαi

n
i=1 ⊇ A. 

We have to prove A is compact. 

Let  Hα  be an open cover for A. 

Then Hα is open in A ∀ 𝛼. 

∴ Hα = Gα ∩ A where Gα is open in M ∀ 𝛼. 

Now ∪ Hα = A ⇒   ∪ (Gα ∩ A) = A. 

                   ⇒   (∪ Gα) ∩ A = A. 

                ⇒    ∪ Gα ⊇ A.  

Hence by our assumption, there exists a finite sub collection 

 G𝛼1
 , G𝛼2

 , … . . , G𝛼𝑛
  such that  Gαi

n
i=1  ⊇ A. 

∴ (  Gαi

n
i=1  ) ∩ A = A. 

∴  (Gαi
∩ 𝐴)n

i=1  = A. 

 HαI

n
I=1  = A. 

         Thus  Hα1
 ,Hα2

 , ….. , Hαn
  is a finite subcover of the given open cover  Hα  of A. 

∴ A is compact. 

Theorem 3.1.4 Any compact subset A of a metric space (M , d) is closed. 

Proof. 

 We shall prove that Ac is open. 

 Let y ∈ Ac . 

 Now, for each x ∈ A , x ≠ y. 

 ∴ d(x , y) = rx > 0 and B(x ,
rx

2
) ∩ B(y , 

rx

2
) = ∅ . 

 Clearly the collection { B(x ,
rx

2
) / x ∈ A } is an open cover for A by sets  

open in M. 
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 Since A is compact, there exists x1 , x2 , …. , xn ∈ A such that 

 B(x ,
r𝑥𝑖

2
)𝑛

𝑖=1  ⊇ A             ……………………………….. (1) 

Let Vy =  B(y ,
r𝑥𝑖

2
)𝑛

𝑖=1  . 

Then Vy  is an open set containing y. 

Since B(x , 
r𝑥𝑖

2
) ∩ B(y ,

r𝑥𝑖

2
) = ∅ , Vy ∩ B(x , 

r𝑥𝑖

2
) = ∅ ∀ i = 1, 2, …. , n . 

∴ Vy ∩ [ B  x ,
r𝑥𝑖

2
 𝑛

𝑖=1 ] = ∅ . 

∴ Vy ∩ A = ∅ .     [ By (1) ] 

∴ Vy ⊆ Ac . 

Thus, for each y ∈ Ac there exists an open set Vy containing y such that Vy⊆Ac 

. 

∴ Ac =  Vyy ∈Ac  . 

∴ Ac is open . 

Hence A is closed. 

Theorem 3.1.5 Any compact subset A of a metric space M is bounded. 

Proof. 

 Let x ∈ A. 

 Now, { B(x , n) / n ∈N } is an open cover for A by sets open in M. 

 Since A is compact, there exists natural numbers n1, n2, … , nk, such that 

 B(x , k
i=1  nk) ⊇ A. 

 Let N = max { n1, n2, … , nk}. 

 Then  B(x , k
i=1  nk) = B(x , N) . 

 ∴ B(x , N) ⊇ A. 

 Since B(x , N) is bounded and subset of a bounded set is bounded, A is 

bounded. 

Theorem 3.1.6 A closed subset A of a compact metric space M is compact. 
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Proof. 

 Let   Gα  be a collection  of open sets in M such that ∪ Gα⊇ A. 

 ∴ Ac ∪ ∪ Gα = M. 

 Since A is closed, Ac is open. 

 ∴  Gα ∪ { Ac } is an open cover for M. 

 Since M is compact this open cover has a finite subcover say 

  Gα1
 ,Gα2

 , ….. , Gαn
,  Ac . 

 ∴ ( Gαi

n
i=1  ) ∪ Ac = M. 

 ∴  Gαi

n
i=1 ⊇ A. 

 Hence A is compact. 

Theorem 3.1.7 [ Heine Borel Theorem ] 

 Any closed interval [a , b] is a compact subset of R. 

Proof. 

 Let  Gα  be a collection of open sets in R such that ∪ Gα⊇ R. 

 Let S = { x ∊ [a , b] / [a , x] can be covered by a finite number of Gα’s. } 

 Clearly a ∊ S and hence S ≠ ⌀. 

 Since S is bounded above by b , l.u.b of S exists. 

 Let c = l.u.b of S. 

 Clearly c ∊ [a , b]. 

 ∴ c ∊ G𝛼1
 for some index 𝛼1. 

 Since Gα1
 is open , there exists ε > 0 such that B(x , ε) ⊆ Gα1

. 

i.e. (c – ε , c + ε) ⊆ G𝛼1
. 

Choose x1 ∊ [a , b] such that x1 < c and [x1 , c] ⊆ G𝛼1
. 

Since x1 < c , [a , x1] is covered by a finite number of Gα’s. 

These finite number of Gα’s together with G𝛼1
 covers [a , c]. 
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∴ by the definition of S , c ∊ S. 

Now, we claim that c = b. 

Suppose c ≠ b. 

Then choose x2 ∊ [a , b] such that x2  > c and [c , x2] ⊆ G𝛼1
. 

Since [a , c] is covered by a finite number of Gα’s , these finite number of Gα’s 

together with G𝛼1
 covers [a , x2]. 

∴ x2 ∊ S , which is a contradiction to c is l.u.b of S [∵x2  > c ]. 

Hence c = b. 

∴ [a , x] can be covered by a finite number of Gα’s. 

∴ [a , b] is a compact subset of R . 

Theorem 3.1.8 A subset A or R is compact if and only if A is closed and bounded. 

Proof. 

 If A is compact, then A is closed and bounded. 

 Conversely, assume that A is closed and bounded subset of R . 

Since A is bounded, A has a lower bound and an upper bound say a and b 

respectively. 

 Then A ⊆ [a , b]. 

 Since A is closed in R , A ∩ [a , b] is closed in [a , b] . 

 I.e. A is closed in [a , b]. 

 Thus, A is a closed subset of the compact space [a , b]. 

 Hence A is compact. 

3.2 Compactness and Continuity. 

Theorem 3.2.1 Let M1 be a compact metric space and M2 be any metric space. Let f : 

M1→ M2 be a continuous function. Then f( M1 ) is compact. 

 i.e. Continuous image of a compact metric space is compact. 
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Proof. 

 Without loss of generality we assume that f( M1 ) = M2. 

 Let  Gα  be a collection  of open sets in M2 such that ∪ Gα = M2. 

 ∴∪ Gα = f( M2 ). 

 ∴ f
- 1

(∪ Gα ) = M1. 

 ∴∪ f
- 1

(Gα ) = M1. 

 Since f is continuous, f
- 1

(Gα ) is open in M1∀𝛼 . 

 ∴{ f
- 1

(Gα ) } is an open cover for M1. 

Since M1 is compact, this open cover has a finite subcover say 

 f- 1 Gα1
 , f- 1 Gα2

 , …… , f
- 1 Gαn

  . 

∴ f
- 1

( Gαi

n
i=1  ) = M1. 

 Gαi

n
i=1  = f( M1 ) = M2. 

Thus  Gα1
 ,Gα2

 , ….. , Gαn
  is a finite subcover for the given open cover  Gα  of 

M2. 

Hence M2 is compact. 

Corollary 3.2.2 Let f be a continuous map from a compact metric space M1 into any 

metric space M2. Then f( M1) is closed and bounded. 

Proof.  

 Since f is continuous, f( M1 ) is compact and hence closed and bounded. 

Theorem 3.2.3 Any continuous mapping f defined on a compact metric space  

(M1 , d1) into any other metric space (M2 , d2) is uniformly continuous on M1. 

Proof. 

 Let 𝜀> 0 be given. 

 Let x ∈M1. 

 Since f is continuous at x, for ε/2 > 0 , there exists δx > 0 such that  
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d1(x , y) <δx ⇒ d2(f(x) , f(y)) < ε/2          ………………..  (1) 

Clearly, { B(x , 
δx

2
) / x ∈ M1} is an open cover for M1. 

Since M1 is compact, there exists x1 , x2 , …. , xn ∈ M1 such that  

 B(xi ,
δxi

2
)n

i=1  = M1. 

Let δ = min { 
δx 1

2
 , 
δx 2

2
 , ….. , 

δx n

2
 }. 

Now, we shall prove that d1(p , q) < δ ⇒ d2(f(p) , f(q)) < ε ∀ p , q ∈ M1. 

Let p , q ∈ M1such that d1(p , q) < δ 

P ∈ M1⇒ P ∈  B(xi ,
δxi

2
)n

i=1  

 ⇒ P ∈ B(xi ,
δxi

2
) for some i such that 1 ≤ i ≤ n 

 ⇒d1(p ,xi ) < 
δxi

2
 < δxi

 

∴ by (1), d2(f(p) , f(xi)) < ε/2                    …………………  (2) 

Similarly, d2(f(q) , f(xi)) < ε/2                   …………………  (3) 

Now, d2(f(p) , f(q)) ≤ d2(f(p) , f(xi)) + d2(f(xi) , f(q)) 

                                < ε/2 + ε/2 [ By (2) and (3) ] 

∴ d2(f(p) , f(q)) < ε . 

Thus, d1(p , q) < δ ⇒ d2(f(p) , f(q)) < ε  ∀ p , q ∈ M1. 

Hence f is uniformly continuous. 

3.3 Equivalent forms of Compactness. 

Definition 3.3.1 A collection Ғ of subsets of a set M is said to have finite intersection 

property if the intersection of any finite number of elements of Ғ is nonempty. 

Theorem3.3.2 A metric space M is compact if and only if every collection of closed 

sets in M with finite intersection property has nonempty intersection. 

Proof. 

 Suppose that M is compact. 
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 Let  Fα  be a collection of closed subsets of M with finite intersection property. 

 We have to prove  Fα ≠ ∅ . 

 Suppose  Fα = ∅ . 

 Then ( Fα)
c
 = M. 

 ∴  Fα
c = M. [ By De Morgan’s laws ] 

 Since each Fα is closed, each Fα
c is open. 

 Thus, { Fα
c } is an open cover for M. 

 Since M is compact, this open cover has a finite subcover say   

  Fα1

c, Fα2

c  , ….. , Fαn

c  . 

 ∴ Fαi

cn
i=1 = M. 

 ∴( Fαi

n
i=1 )c = M . 

 ∴ Fαi

n
i=1  = ∅ . 

 This is a contradiction to the collection  Fα  has finite intersection property. 

 ∴  Fα ≠ ∅ . 

Conversely, assume that every collection of closed sets in M with finite 

intersection property has nonempty intersection. 

We have to prove M is compact. 

Let  Gα  be an open cover for M. 

∴  Gα = M. 

∴ ( Gα)c
 = ∅ . 

∴  Gα
c
= ∅ . 

Since each Gα is open , each Gα
c is closed.  

Hence Ғ= { Gα
c } is a collection of closed sets whose intersection is empty. 

∴ by hypothesis, this collection does not have finite intersection property. 
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Hence there exists a finite sub collection  Gα1

c, Gα2

c  , ….. , Gαn

c  such that 

 Gαi

cn
i=1  = ∅ . 

∴ ( Gαi
)cn

i=1  = ∅ . 

∴ Gαi

n
i=1  = M. 

Thus the given open cover  Gα  of M has a finite subcover { Gα1
,  Gα2

 , 

……. , Gαn
 }. 

Hence M is compact. 

Definition 3.3.3 A metric space M is said to be totally bounded if for every  

ε> 0 , there exists a finite number of elements x1 , x2 , ….. , xn ∈ M such that  

B(x1 , ε) ∪ B(x2 , ε) ∪ …….. B(xn , ε)  = M. 

A nonempty subset A of a metric space M is said to be totally bounded if the  

subspace A is totally bounded metric space. 

Theorem 3.3.4 Any compact metric space is totally bounded. 

Proof. 

 Let M be a compact metric space. 

 We have to prove M is totally bounded. 

 Let ε > 0 be given. 

 Now, { B(x , ε) / x ∈ M } is an open cover for M. 

 Since M is compact, there exists points x1 , x2 , ….. , xn ∈ M such that 

 M = B(x1 , ε) ∪ B(x2 , ε) ∪ ……. ∪ B(xn , ε) . 

Hence M is totally bounded. 

Theorem 3.3.5 Any totally bounded subset A of a metric space M is bounded. 

Proof. 

 Let A be a totally bounded subset of a metric space M. 

 Then for given ε> 0 , there exists points x1 , x2 , ….. , xn ∈ A such that 
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 A = B1(x1 , ε) ∪ B1(x2 , ε) ∪ ……. ∪ B1(xn , ε) where B1(xi , ε) are open  

 balls in A. 

 Since open balls are bounded sets and finite union of bounded sets is bounded, 

A is bounded. 

Note3.3.6 The converse of the above theorem is not true. 

For, 

 Let M be an infinite set with discrete metric. 

 Then M is bounded. 

 Also, B(x , 1) = { x } for all x ∊ M. 

 Since M is infinite, M cannot be expressed as finite union of open balls of 

radius 1. 

 Hence M is not totally bounded. 

Definition 3.3.7 Let (xn) be a sequence in a metric space M. If n1< n2< …. < nk< ……. 

is a sequence of positive integers, then (xnk
) is a subsequence of (xn). 

Theorem 3.3.8 A metric space M is totally bounded if and only if every sequence in 

M contains a Cauchy subsequence. 

Proof. 

 Suppose that every sequence in M contains a Cauchy subsequence. 

 We have to prove M is totally bounded. 

 Let ε> 0 be given. 

 Choose x1 ∊ M. 

 If B(x1 , ε) = M , then M is totally bounded. 

 If B(x1 , ε) ≠ M , Then choose x2 ∊ B(x1 , ε) – M so that d(x1 , x2) ≥ ε . 

 If B(x1 , ε) ∪ B(x2 , ε) = M , then M is totally bounded. 

Otherwise, choose x3 ∊ [B(x1 , 𝜀) ∪ B(x2 , 𝜀)] – M so that d(x3 , x1) ≥ ε and  

d(x3 , x2) ≥ ε  . 

We proceed this process and if the process is terminated at a finite stage means 

M is totally bounded. 
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Suppose not, then we get a sequence (xn) in M such that d(xn , xm) ≥  𝜀 if n ≠ m 

. 

∴ (xn) cannot be a Cauchy sequence, which is a contradiction. 

Conversely, suppose that M is totally bounded. 

Let S1 = { x11  , x12 , ….., x1n , ….. } be a sequence in M. 

If one of the terms in the sequence is repeated infinitely, then S1 contains a 

constant subsequence which is in fact a Cauchy sequence. 

So, we assume that no terms of S1 is repeated infinitely so that the range of S1 

is infinite. 

Since M is totally bounded, M can be covered by a finite number of open balls 

of radius  
1

2
. 

 Hence one of these balls contains infinite number of terms of the sequence S1. 

∴ S1 contains a subsequence S2 = { x21 , x22 , ….., x2n , ….. } which lies within 

an open ball of radius  
1

2
 .  

Similarly, S2 contains a subsequence S3 = { x31 , x32 , ….., x3n , ….. } which 

lies within an open ball of radius  
1

3
 . 

We repeat the process of forming successive subsequences and finally we take 

the diagonal sequence S = { x11 , x22 , ….., xnn , ….. }. 

We claim that S is a Cauchy subsequence of S1. 

If m > n then both xmmand xnn lie within an open ball of radius 
1

n
 . 

∴ d(xmm , xnn) < 
2

n
 . 

∴ d(xmm ,  xnn) < ε ∀  m , n ≥ 
2

ε
 . 

Hence S is a Cauchy subsequence of S1. 

Thus every sequence in M has a convergent subsequence. 

Corollary3.3.9 A nonempty subset of a totally bounded set is totally bounded. 
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Proof. 

 Let A be a totally bounded subset of a metric space M. 

 Let B be a nonempty subset of A. 

 Let (xn) be a sequence in B. 

 Since B ⊆ A,  (xn) is a sequence in A. 

Since A is totally bounded, (xn) has a Cauchy subsequence. 

Thus every sequence in B has a Cauchy subsequence. 

 ∴ B is totally bounded. 

3.4 Sequentially Compact. 

Definition 3.4.1 A metric space M is said to be sequentially compact if every 

sequence in M has a convergent subsequence. 

Theorem 3.4.2 Let (xn) be a Cauchy sequence in a metric space M. If (xn) has a 

subsequence (xnk
) converges to x , then (xn) converges to x. 

Proof. 

 Suppose that (xn) has a subsequence (xnk
) which converges to x. 

 We have to prove xn → x . 

 Let ε > 0 be given. 

 Since (xn) is a Cauchy sequence, there exists a positive integer N such that  

 d(xn , xm) < 
ε

2
 ∀  n , m ≥ N1                 ………………………  (1) 

 Since xnk
→ x , there exists a positive integer N2 such that 

 d(xnk
 , x) <  

ε

2
 ∀ nk ≥ N2                         ……………………...  (2)  

 Let N = max { N1 , N2 }. Fix nk ≥ N. 

 Now. d(xn , x) ≤ d(xn ,  xnk
) + d(xnk

 , x) 

    < 
ε

2
 +  

ε

2
∀ n ≥ N 

 ∴ d(xn , x) < ε ∀  n ≥ N. 
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 ∴ xn →  x . 

Definition 3.4.3 A metric space M has Bolzano – Weierstrass property if every 

infinite subset of M has a limit point. 

Theorem 3.4.4 In a metric space M the following are equivalent. 

(i) M is compact. 

(ii) M has Bolzano – Weierstrass property 

(iii) M is sequentially compact 

(iv) M is totally bounded and complete. 

Proof. 

(i)    ⇒ (ii) 

Let M be compact metric space. 

Let A be an infinite subset of M. 

Suppose that A has no limit point. 

Let x ∊ M. 

Since x is not a limit point if A, there exists an open ball B(x , rx) such that  

B(x , rx) ∩ (A – { x }) = ∅ . 

B(x , rx) contains at most one point of A (contains x if x ∊ A).  

Now, { B(x , rx) / x ∊ M } is an open cover for M. 

Since M is compact, there exists points x1 , x2 , ….. , xn ∊ M such that 

M = B(x1 , rx1
) ∪ B(x2 ,rx2

) ∪ ……. ∪ B(xn , rxn
) . 

∴ A ⊆ B(x1 , rx1
) ∪ B(x2 ,rx2

) ∪ ……. ∪ B(xn , rxn
) . 

Since each B(x1 , rxi
) has at most one point of A, A must be finite. 

This is a contradiction to A is infinite. 

Hence A has a limit point. 

(ii) ⇒ (iii) 

Suppose that M has Bolzano – Weierstrass property. 

We have to prove M is sequentially compact. 
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Let (xn) be a sequence in M. 

If the range of (xn) is finite , then a term of the sequence is repeated infinitely 

and hence (xn) has a constant subsequence which is convergent. 

Otherwise (xn) has infinite number of distinct terms. 

By hypothesis, this infinite set has a limit point say x. 

∴ for any r > 0 , the open ball B(x , r) contains infinite number of terms of the 

sequence (xn). 

Choose a positive integer n1 such that xn1
∊ B(x , 1). 

Now, choose n2 > n1 such that xn2
∈ B(x , 

1

2
) . 

In general, for each positive integer k we choose nk> nk-1 such thatxnk
∊ B(x , 

1

k
) . 

Then (xnk
) is a subsequence of (xn) and d(xnk

 , x) < 
1

k
∀ k . 

∴ xnk
→  x . 

Thus (xnk
) is a convergent subsequence of (xn). 

Hence M is sequentially compact. 

(iii) ⇒ (iv) 

Suppose that M is sequentially compact. 

Then every sequence in M has a convergent subsequence. 

We have every Cauchy sequence is convergent. 

Thus, every sequence in M has a Cauchy subsequence. 

Hence M is totally bounded. 

Now, we prove that M is complete. 

Let (xn) be a Cauchy sequence in M. 

By hypothesis, (xn) contains a convergent subsequence (xnk
). 

Let xnk
→  x . 

Then xn →  x . 
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∴ M is complete. 

(iv) ⇒ (i) 

Suppose that M is totally bounded and complete. 

We have to prove M is compact. 

Suppose not. 

Then there exists an open cover  Gα  for M which has no finite subcover. 

Take rn= 
1

2n . 

Since M is totally bounded, M can be covered by a finite number of open balls 

of radius r1 . 

Since M is not covered by a finite number of Gα’s , at least one of these open 

balls say B(x1 , r1) cannot be covered by finite number of Gα’s . 

Now, B(x1 , r1) is totally bounded. 

Hence as before we can find x2 ∊ B(x1 , r1) such that B(x2 , r2) cannot be 

covered by finite number of Gα’s . 

Proceeding like this we get a sequence (xn) in M such that B(xn , rn) cannot be 

covered  by finite number of Gα’s and xn+1 ∊ B(xn , rn). 

Let m and n be positive integers with n < m. 

Now, d(xn , xm) ≤ d(xn , xn+1) + d(xn+1 , xn+2) + ………… + d(xm-1 , xm)  

   < rn + rn+1 + ……. + rm-1 

   < 
1

2n + 
1

2n+1 + …………. + 
1

2m-1
 

   < 
1

2n-1
 (

1

2n + 
1

2n + ……. ) 

   < 
1

2n-1
 

∴ (xn) is a Cauchy sequence in M. 

Since M is complete, there exists x ∊ M such that xn →  x . 

Now,  x ∊ Gα for  some  α. 
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Since Gα is open, there exists 𝜀 > 0 such that B(x , ε) ⊆ Gα . 

We have xn →  x  and  rn= 
1

2n → 0 . 

∴ there exists a positive integer N such that 

d(xn , x) < 
ε

2
 and rn<

ε

2
  ∀ n ≥ N. 

Fix n ≥ N. 

We claim that B(xn , rn) ⊆ B(x , ε) . 

y ∊ B(xn , rn)  ⇒ d(xn , y) < rn<
ε

2
 

             ⇒ d(xn , x) + d(xn , y) <  
ε

2
 +  

ε

2
 

          ⇒ d(x , y) < ε 

          ⇒ y ∊ B(x , ε) . 

∴ B(xn , rn) ⊆ B(x , ε) ⊆ Gα . 

Thus, B(xn , rn) is covered by a single Gα , which is a contradiction. 

Hence M is compact. 
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UNIT IV 

 

4.1  Complex number 

Definition 

 A complex number z is of the form x+iy where x and y are real numbers and i 

is an imaginary unit with the property that i
2
=1, x and y are called the real and 

imaginary part of z and we write x=Re z and y=Im z. 

 If x=0, the complex number z is called purely imaginary. If y=0 then z is real. 

 Two complex numbers are said to be equal iff they have the same real parts and 

the same imaginary parts. 

 Let C denote the set of all complex numbers. 

 Thus C is {x+iy/x, yR} 

Definition 

 We define addition and multiplication in C as follows 

 Let z1=x1+iy1  and z2=x2+iy2 

             z1+z2 =(x1 + x2) +i(y1 + y2) 

             z1z2 = (x1x2 - y1 y2) +i (x1y2 + x2y1) 

Remark 1 

 If z1=x1+iy1, and z2=x2+iy2 ≠ 0 then 
z1

z2
 = 

x1x2+y1y2

x2
2+y2

2  + 
 i  y1x2−x1y2

x2
2+y2

2   

Remark 2 

 It is important to note that there is no order structure in the complex number 

system so that we cannot compare two complex numbers. 

Remark 3 

 The complex number a+ib can also be represented by the ordered pair of real 

numbers (a, b). 

4.1.2  Conjugation and modulus 

 Let z = x + iy be a complex number. Then the complex number x-iy is called 

the conjugate of z and it is denoted by z .    

 The mapping f : CC defined by f(z) = z  is called the complex conjugation. 

Note 1. z is real iff z = z  
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 2. z  = z 

 3. z + z  = 2 Re z so that x = 
z+z 

2
 

 4. z - z  = 2i Im z so that y = 
z−z 

2i
 

 5. z1 + z2          = z1 +z2  

 6. (
z1

z2
)     = 

z1   

z2   
 

Theorem 4.1.2 

 If α is a root of the polynomial equation f(z) = a0z
n
+a1z

n-1
+…+an-1z+an=0 where 

a0, a1, …, anR and a0≠0 then α   is also a root of f(z)=0 

 (ie.)  The non-real roots of a polynomial equation with real co-efficients occur 

in conjugate pairs. 

Proof 

 Since α is a root of f(z)=0, we have f(α)=0 

 Hence a0α
n
+a1α

n-1
+…+an-1α+an=0 

 ⟹ a0α
n + a1α

n−1 + ⋯+ an−1α + an
                                           = 0  

 ⟹ a 0 αn   +a 1 αn−1      +…+a n-1 α  +a n=0 

 ⟹ a0α 
n
+a1α 

n-1
 +…+an-1 α  +a n=0 

 ⟹ a0(α )
n
+a1(α )

n-1
+…+an-1(α  )+an=0 

 ⟹ f(α )=0 so that α  is also a root of f(z)=0. 

Definition 

 Let z = x+iy be a complex number. The modulus or absolute value of z denoted 

by |z| is defined by |z|= x2 + y2. 

Remark 

  |z| represents the distance between z=(x, y) and the origin O=(0, 0). 

Theorem 4.1.3 

i. |z| ≥ 0 and |z|=0 iff z=0 

ii. zz  = |z|
2
  

iii. |z1z2| = |z1| |z2| 

iv. | 
z1

z2
 | =  

 |z1|

|z2|
  provided z2 ≠ 0 

v. |z1+z2|
2
 = |z1|

2
 +|z2|

2
 + 2Re (z1 z 2| 
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vi. |z1-z2|
2
 = |z1|

2
 +|z2|

2
 - 2Re (z1 z 2| 

vii. |z1+z2|
2
+ |z1-z2|

2
 = 2(|z1|

2
 + |z2|

2
) 

Solved Problems 

Problem 1 

 Find the absolute value of   
(1+3i) (1−2i)

3+4i
 

Solution 

 | 
(1+3i) (1−2i)

3+4i
 | = 

 1+3i  |(1−2i)|

3+4i
 

   = 
 10 5

5
 

   = 
 2x5 5

5
 

   = 
 2x5

5
 = 2 

Problem 2 

 Find the condition under which the equation az+bz +c=0 in one complex 

unknown has exactly one solution and compute that solution. 

Solution 

 az+bz +c=0     (1) 

Taking conjugate we have, 

 az + bz + c                = 0  

  ⟹ a z +b z+c  = 0   (2) 

(1)  x a  ⟹ a a z + a b z  + a c = 0  (3)  

(2)  x b ⟹ bb  z + ba  z  + bc  = 0  (4)  

(3) – (4) ⟹ z(aa  - bb ) + a c - bc  = 0   

   ⟹ z(|a|
2
 - |b|

2
) = bc  - a c 

   Hence if |a| ≠ |b|, the given equation has unique solution and the solution is 

given by z = 
bc −a c

|a|2−|b|2
 

Problem 3 

 If z1 and z2 are two complex numbers prove that  |
z1−z2

1−z1z 1  
|=1 if either |z1|=1 or 

|z2|=1. What exception must be made if |z1|=1 and |z2|=1.  

 



66 
 

Solution 

 Suppose  |z1|=1. Hence |z 1|=1 and z1 z 1 = |z1|
2
 = 1. 

  Now |
z1−z2

1−z 1z2  
|  = |

z1−z2

z1z 1− z 1−z2  
| 

   = |
z1−z2

z 1(z1z2) 
|   

   = |
1

z 1  
| = 1 

Similarly if |z 2|=1, we have |
z1−z2

1−z 1z2  
|=1 .  If |z1|=1 and |z2|=1, then the result is true 

provided  1- z 1z2≠ 0 

  ie. if z1-z1 z 1z2 ≠ 0 

  ie. if z1≠ |z1|
2
z2  

  ie. if z1≠ z2  

Inequalities 

Theorem 4.1.4 

 For any three complex numbers z1, z2 and z3. 

i. -|z| ≤ Re z ≤ |z| 

ii. -|z| ≤ Im z ≤ |z| 

iii. |z1+z2| ≤ |z1|+|z2|.  (Triangle inequality) 

iv. |z1-z2| ≥ ||z1|-|z2|| 

Proof 

 Let z = +iy 

 Hence |z| =  x2 + y2   

Now - x2 + y2  ≤ x ≤  x2 + y2   

and - x2 + y2  ≤ y ≤  x2 + y2   

∴ -|z| ≤ Re z ≤ |z| and -|z| ≤ Im z ≤ |z| 

Hence (i) and (ii) are proved. 

iii)  Triangle inequality 

 |z1 + z2| ≤ |z1| + |z2| 

 |z1 + z2|
2
 = (z1+z2) ( z1 + z2         )    ∵|z|

2
 = zz  

     = (z1+z2)  ( z1 + z2          )   

     = z1z 1+ z1z 2+z2z 1+z2z 2 
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     = |z1|
2 
+ (z1z 2+z 1z2)+|z2|

2
 

     = |z1|
2 
+ (z1z 2+ z1z 2

      )+|z2|
2
 

     = |z1|
2 
+ 2 Re(z1z 2) +|z2|

2
 

     ≤ |z1|
2 
+ 2 |(z1z 2)|+|z2|

2
 

     = |z1|
2 
+ 2 |z1| |z 2|+|z2|

2
 

     = |z1|
2 
+ 2 |z1| |z2|+|z2|

2   
[∵|z2| = |z 2|] 

       = (|z1|
 
+ |z2|)

2  
 

Thus  |z1
 
+ z2|

2 
≤ (|z1| + |z2|)

2
 

 ∴ |z1
 
+ z2| ≤ |z1| +|z2| 

iv)  |z1
 
- z2| ≥ ||z1| -|z2|| 

 z1 = (z1-z2) + z2 

 |z1| = |(z1-z2) + z2| ≤ |z1
 
- z2| + |z2| 

 ⟹ |z1| - |z2| ≤ |z1 - z2|    (1) 

 z2 = (z2 – z1) + z1  

 |z2| = |(z2-z1) + z1 | ≤ |z2
 
– z1| + |z1| 

 ⟹ |z2|-|z1| ≤ |z2-z1| 

 ⟹ -(|z1|-|z2|) ≤ |z2-z1| 

  ⟹ |z1|-|z2| - |z2-z1|      (2) 

From (1) and (2) 

  - |z2-z1| ≤ |z1|-|z2| ≤ |z1-z2|   

     ie.  - |z1-z2| ≤ |z1|-|z2| ≤ |z1-z2|   

      ⟹ -||z1|-|z2|| ≤ |z1-z2| 

     ie.  - |z1-z2| ≥ ||z1|-|z2|| 

Note 

 For any complex numbers z1, z2, …, zn we have |z1+z2+…+zn| ≤ |z1|+|z2| 

 +…+|zn| 

Polar form of a complex number 

 Consider any non zero complex number z=x+iy. 

 Let (r, ) denote the polar co-ordinates of the point (x, y) 

 Hence x = r cos  and y = r sin  

∴ z = r (cos  + sin ) 
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 We notice that r = |z|= x2 + y2  which is the magnitude of the complex 

number  and  is  called  the  amplitude or  argument  of  z and  is  denoted  by  arg z 

or amp z. 

 We note that the value of arg z not unique.  If  = arg z then  + 2n π where n is 

any integer is also a value of arg z.  The value of arg z lying in the range (-π, π) is 

called the principal value of arg z. 

Theorem 4.1.5 

 If z1 and z2 are any two non zero complex numbers then 

i.  –arg z1 = arg z 1 

ii.  arg z1z2 = arg z1 + arg z2 

ii.  arg [ 
z1

z2
] = arg z1 - arg z2 

Proof 

 Let z1 = r1(cos 1 + i sin 1) 

 ∴ z 1 = r1(cos 1 – i sin 1) 

 = r1(cos (-1) + i sin (-1)) 

Hence arg z 1  = -1 

  = -arg z1. 

 ∴ arg z 1 = -arg z1 

ii) Let z1 = r1(cos 1 + i sin 1) and 

       z2 = r2(cos 2 + i sin 2) 

 ⟹ arg z1 = 1 and arg z2 = 2 

 Now z1 z2 = r1 r2(cos , + i sin )    (cos 2 + i sin 2) (cos 1 + i sin 1) 

 = r1r2[(cos (1+2)+ sin1 sin2) +i (sin1 cos2 + cos1 sin2)] 

 = r1r2[(cos1 2) + i sin(1 + 2)] 

 ∴ arg z1z2 = 1 + 2 

  = arg z1 + arg z2 

 ∴ arg z1z2 = arg z1 + arg z2 

iii) arg (
z1

z2
) = arg z1 – arg z2 

  
z1

z2
  = 

r1(cos 1+ i sin 1)

r2(cos 2+ i sin 2)
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      =  [ 
r1

r2
 ] [ 

(cos 1+ i sin 1)

(cos 2+ sin 2)
 x 

cos 2+ i sin 2

cos 2+ i sin 2
 ]  

      =  ( 
r1

r2
 ) [ 

(cos 1 cos 2+ sin 1 sin 2+ i(sin 1 cos 2− cos 1 sin 2)

(cos 2 2+ sin 2 2)
 ] 

      =  ( 
r1

r2
 )( 

(cos 1− 2)+ i sin (1−2)

1
 ) 

      =  ( 
r1

r2
 ) [cos(1 - 2) + i sin(1 - 2) 

 arg [
z1

z2
] = 1 - 2 

  = arg z1 – arg z2 

∴ arg [
z1

z2
] = arg z1 – arg z2 

Theorem 4.1.6 

  Let z=r (cos  + i sin ) be any non zero complex number and n be any integer. 

Then z
n
= r

n
 (cos n + i sin n). 

Proof 

 We first prove this result for positive integers by induction on n. 

When n=1 

 z
1
 = r

1
 (cos  + i sin ) 

 ie. z = r (cos  + i sin ) which is true. 

Hence the theorem is true when n=1. 

Suppose the result is true for n=m. 

Hence z
m
 = r

m
 (cos m + i sin m) 

To prove the result is true when n=m+1 

Now   z
m+1

  = z
m

 z 

  = r
m

 (cos m + i sin m ) r (cos  + i sin ) 

  = r
m+1

 [(cos m  cos  - sin  sin m ) +i (cos m sin  + sin m cos )] 

  = r
m+1

 [cos (m+1)  + i sin(m+1) ]  

Hence the result is true for n=m+1 

Hence z
n
 = r

n
 [cos n  + i sin n] for all positive integers n. 

The result is obviously true if n=0 

 Now z
-1

 = 
1

z
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   = 
1

r(cos  +i sin )
 

   = 
1

r
 x 

cos   −i sin  

(cos  +i sin ) (cos  −i sin )
 

   = r
-1

 [ 
cos  − + i sin⁡(−)

cos 2 + sin 2 
 ] 

   = r
-1

 [cos(-) + i sin(-)] 

∴ The result is true for n=-1. Hence it follows that the result is true for all negative 

integers. 

Hence z
n
 = r

n
 (cos n + i sin n) for all nZ.  

Corollary:   (De-Movire’s theorem) 

 (cos  + i sin )
n
 = cos n + i sin n 

Solved Problem 

Problem 1 

 For any three distinct complex numbers z, a, b the principal value of arg [
z−a

z−b
] 

represents the angle between the line segment joining z and a and the line segment 

joining z and b taken in the appropriate sense. 

Solution 

 Let A, B, P be the points in the complex plane representing the complex 

numbers a, b, z respectively. 

Then AP       = OP       - OA       

      = z – a 

         BP       = OP       - OB       

     = z – b 

∴ The complex numbers z-a, z-b are represented by the vectors AP       and BP       

respectively. 

 Hence the principal value of arg [
z−a

z−b
] gives the angle between the line segment 

AP and BP taken in the appropriate sense. 

4.2  Circles and Straight lines 

 Equation of circles and straight lines in the complex plane can be expressed 

interms of z and z . 
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General equation of circles 

 Equation of the circle with centre a and radius r is given by |z-a|=r 

 ie. |z-a|
2
 = r

2
  

 ⟹ (z-a) (z − a       ) = r
2
  [∵|z|

2
 = z z ] 

 ⟹ (z-a) (z  - a  ) = r
2
  

 ⟹ z z  -az  - a z + a a  - r
2
 = 0 

This equation is of the form   

  z z  + α  z + α z  + β = 0 where β is a real number.  Further any equation of the 

above form can be written as |z+α|
2
 = αα  – β and hence represents a circle provided 

αα  – β > 0. It represents a circle with centre – α and radius  αα − β. 

  Thus the general equation of a circle is given by z z  + α  z + α z  + β = 0 where β 

is real and αα  - β > 0. 

General equation of straight  lines 

  To find the general equation of the straight line passing through a and b, we 

note that arg [ 
z−a

z−b
 ] represents the angle between the lines joining a to z and b to z 

where z is any point on the line joining a and b. 

 ∴ If z, a, b are collinear then arg [ 
z−a

z−b
 ] = 0 or π 

 ∴ 
z−a

z−b
  is real. Hence 

z−a

z−b
 = [ 

z−a      

z−b
 ] 

 ∴ 
z−a

z−b
  =  [ 

z  − a  

z  − b  
] 

  ⟹ (z-a) (z  - b ) = (z-b) (z  - a ) 

 ⟹ z z  – a z  - b  z + a b  = z z  – a  z - b z  + a  b 

  ⟹ a  z - b  z - a z  + b z  + a b  - a  b = 0 

 ⟹ (a  - b ) z – (a - b) z  + (a b  – a b       ) = 0 

 ⟹ (a  - b ) z – (a - b) z  + 2i Im (a b ) = 0 

     ∵ Im z = 
z−z 

2 i
   ⟹ z - z  = 2i Im z] 

∴ i(a  - b )z – i(a-b) z  - 2Im (a b ) = 0.  This equation is of the form α  z + α z  + β = 0 

where α ≠ 0 and β is real. 

 Further any equation of the above form represents a straight line. This can be 

easily seen by changing the above equation into Cartesian form. 
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∴ The general equation of a straight line is given by α  z + α z  + β = 0. Where α ≠ 0 

and β is real. 

Theorem 4.2.1 

 Equation of the line joining a and b is (a  - b ) z + (b-a) z  + (a b  - a  b) = 0 

Theorem 4.2.2 

 If  a  and  b  are two distinct  complex  numbers  where b ≠ 0,  then the 

equation z = a + t b where t is a real parameter represents a straight line passing 

through the point a and parallel to b. 

Proof 

 Let z be any point on the line passing through a and parallel to b.  The vectors 

represented by z – a and b are parallel. 

 Hence z –a = tb for some real number t.  Hence z = a + t b, which is the 

equation of the required straight line. 

Definition  

 Two points P and Q are called reflection points for a given straight line ℓ iff ℓ is 

the perpendicular bisector of the segment PQ. 

Theorem 4.2.3 

 Two  points  z1  and z2  are  reflection  points  for  the  line  α z + αz  + β = 0 iff  

α  z1 + α z 2 + β = 0. 

Proof 

 Let z1 and z2 be reflection points for the straight line α  z + α z  + β = 0 (1) 

 To prove that α  z1 + α z 2 + β = 0 

 For any point z on the line we have  

  |z - z1| = |z - z2|     [∵ z1, z2 are reflection points]  

⟹ |z – z1|
2
 = |z – z2|

2
 

⟹ (z – z1) . (z − z1)          = (z – z2) (z − z2)           [∵ |z1|
2
 =  z z ] 

⟹ (z – z1)  (z − z 1) = (z – z2) (z  - z 2) 

⟹ z z  – z z 1 - z1 z  + z1 z 1 = z z  - z z 2 – z2 z  + z2 z 2 

⟹ z z 2 – z z 1 + z2 z  - z1 z  + z1 z 1- z2 z 2 = 0 

⟹ z (z 2 – z 1) + z  (z2 - z1) + z1 z 1 - z2 z 2 = 0      (2) 
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  Since the equation is true for any point z on the given line it may be regarded 

as the equation of the given line. 

∴ From (1) and (2) we get  

 
α  

z 2−z 1
 = 

α 

z2−z1
 = 

β 

𝑧1z 1− 𝑧2z 2
 = k (say) 

∴ α = k (z2 – z1); α   = k (z 2 - z 1) and β = k(z1 z 1 – z2 z 2 ) 

∴ α z1 + αz 2  +β = k [z1 (z 2 - z 1) + z 2  (z2 - z1 + z1 z 1– z2 z 2] 

 = 0 

∴ α z1+ α z2+β = 0 

Conversely, suppose α z1+ αz 2 +β = 0         (3) 

Subtracting (3) from (1) we get 

 α  (z – z1) + -α(z  - z 2)= 0 

⟹ α  (z-z1) = -α(z  - z 2) 

Taking modulus on both sides 

⟹ |α || z-z1| = |α||z  - z 2| 

⟹ |z-z1| = |z  - z 2| = |z − z2         |   ∵|α| = |α | 

⟹|z-z1| = |z-z2| 

∴ z1and z2 are reflection points for the line α z + αz +β=0 

Definition 

 Two points P and Q are said to be inverse points with respect to a circle with 

centre 0 and radius r if Q lies on the ray OP and OP. OQ = r
2
. 

Theorem 4.2.4 

 z1 and z2 are inverse points with respect to a circle zz  + α z + αz  + β=0 

 iff z1. z 2+ α  z1+ α  z2+ β = 0 

Proof 

 Suppose z1 and z2 are inverse points with respect to the  

 circle zz  + α z + αz  + β=0           (1) 

 (1) can be rewritten as 

  |z + α|
2
 = αα  - β 

∴ The centre of the circle is –α and radius is  αα − β  

Since 
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 z1 and z2 are inverse points w.r. to  (1) 

we have, arg(z1+α) = arg (z2+α)         (2) 

  and |z1+α| | z2 + α         |  = αα  – β        (3) 

∴ arg(z1+α) z2 + α          = arg (z1+α) + arg (z2 + α)               

           = arg (z1+α) - arg (z2 + α)               

           = 0 [∵ by (2)] 

∴(z1+α) (z2 + α)             is a +ve real number. 

Hence using (3) we get (z1+α) z2 + α          = αα  – β 

⟹ (z1+α) (z 2 + α  ) = αα –β 

∴ z1 z 2 +  α  z1 + α z 2 +β = 0 

Converse can be similarly proved. 

Note 1:  

  Let z1, z2, z3 and z4 be four distinct points which are either con-cyclic or 

collinear. Then arg [ 
 z1−z3 (z2−z4)

 z1−z4 (z2−z3)
 ] is either 0 or π depending on the relative positions 

of the points. 

 Hence  
 z1−z3 (z2−z4)

 z1−z4 (z2−z3)
  is purely real. 

Note 2 :  

  The equation pzz  + α z + αz  + β = 0       (1) 

 Where p and β are real and  αα  - pβ ≥0 can be taken as the joint equation of the 

family of circles and straight lines. When p ≠ 0, it represents a circle. When p=0, it 

represents a straight line. Further z1 and z2 are inverse points or reflection points w.r.to 

(1) iff pz1 z 2 + α  z1+α z 2 +β=0 

Solved problems 

Problem 1 : Prove that the equation  | 
z−z1

z−z2
 | = λ where λ is a non negative parameter 

represents a family of circles such that z1 and z2 are inverse points for every member 

of the family. 

Solution: 

 Given,  | 
z−z1

z−z2
 | = λ ⟹ | 

z−z1

z−z2
 |   

  
2

= λ
2
 

  ⟹  [ 
z−z1

z−z2
 ]  [ 

z−z1       

z−z2
 ] = λ

2
 



75 
 

 ⟹  [ 
z−z1

z−z2
 ]  

z − z 1

z − z 2
 = λ

2 

 ⟹ (z - z1) (z  – z 1) = λ
2
 (z - z2)( z  - z 2) 

 ⟹ zz  - z 1  z – z z  + z1 z 1 = λ
2
(z z   - z 2 z – z2 z  - + z2 z 2) 

 ⟹ (1-λ
2
) zz  + (λ

2 z 2 - z 1) z + (z2λ
2
-z1)  (z1 z 1-λ

2
z2 z 2) = 0   (1) 

 (1) represents a circle when λ ≠ 1 

Using Note 2, it can be verified that z1 and z2 are inverse points w.r.to (1).  When λ=1, 

the given equation represents a straight line which is the perpendicular bisector of the 

line segment joining z1 and z2. Clearly z1 and z2 are reflection points for this line. 

Problem 2 

 Prove that arg [ 
z−a

z−b
 ] =  where  is a real parameter, represents a family of 

circles every member of which passes through a and b. 

Solution 

 For any fixed value , arg [ 
z−a

z−b
 ] =  is the locus of a point z such that the 

angle between the lines joining a to z and b to z is  . 

 Clearly this locus is the arc of a circle passing through a and b the remaining 

part of the circle is represented by the equation arg [ 
z−a

z−b
 ] = +π.  Hence the result 

follows. 

Exercise 

1. Show that the inverse point of any point α with respect to the unit circle |z|=1 is 

1

α 
 . 

2. Find the inverse point of –i with respect to the circle 2z z +(i-1) z-(i+1) z  = 0. 

4.3 Regions in the complex plane. 

Definition 

 Let z0 be any complex number. Let ε be a +ve real number. Then the set of all 

points z satisfying |z-z0| < ε is called a neighbourhood of z0 and is represented by 

Nε(z0) or S(z0, ε). Thus Nε(z0) = {z/1z-z0| < ε}. 

Note 1:   |z - z0| < ε represents the interior of the circle with centre z0 and radius ε.   

Note 2:   |z - z0| ≤ ε represents the set of points on and inside the circle with centre z0 

and radius ε and is called the closed circular disc with centre z0 and radius ε.   
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Definition 

 Let S⊆C. Let z0S. Then z0 is said to be an interior point of S if there exists a 

neighbourhood Nε(z0) such that Nε(z0)⊆S. 

 S is called an open set if every point of S is an interior point of S. 

Definition 

 Let S⊆C. Let z0S. Then z0 is called a limit point of S if every neighbourhood 

of zo contains infinitely many points of S. 

 S is called a closed set if it contains all its limit points. 

Remark 

 A set S is closed iff its complement C-S is open. 

Definition 

 Let S⊆C. Let z0C. Then z0 is called a boundary point of S if zo is a limit point 

of both S and C-S. Thus zo is a boundary point of S iff every neighbourhood of zo 

contains infinitely many points of S and infinitely many points of C-S. 

Definition 

 Let S⊆C. Then S is called a bounded set if there exist a real number k such that 

|z| ≤ k for all zS. 

Definition 

 Let S⊆C then S is called a connected set if every pair of points in S can be 

joined by a polygon which lies in S. 

Definition 

 A non empty open connected subset of C is called a region in C. 

Example 

a) Let D = {z/Rez>1} 

Let z = x+iy. Then D = {z/x>1} 

∴ D is nonempty, open and connected. 

∴ D is a region in C. 

Here D is the half plane as shown in the figure. 

Example 

 Let D={z/|z-2+i| ≤ 1} 
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 i.e. D is the set of all complex number satisfying |z-(2-i)| ≤ 1. Clearly D 

represents the closed disc with centre 2-i and radius 1.  Also D is a connected and 

bounded set. But the points which lie on the circle |z-(2-i)| =1 are not interior points of 

D. Hence D is not open. Hence D is not a region. 

Example 

 Let  D = {z/Im z/>1} 

 Let  D = x + iy 

        D = {z/|y| > 1} 

  = {z/y > 1 or y <-1} 

  = {z/y > 1} ∪ {z/y <-1} 

 Clearly D is the union of two half planes and it is unbounded as shown in the 

figure. 

 Obviously if z1 is any complex number with Im z1>1 and z2 is any complex 

number with Imz2<-1 then z1 and z2 cannot be joined by a polygon entirely lying in D. 

Hence D is not connected. Hence D is not a region. 

Example 

 D = {z/0 < arg z < π 4  } is a region in C. 

Example 

 Let D = {z/0 < arg z < 
π

4
 and |z| >1} D is as shown in the figure. Clearly D is an 

unbounded region in C. 

Example 

 Let D = {z/1 < |z| < 2} D is the region bounded by the circles |z|=1 and |z|=2. 

Such a region is called an annulus or annular region. 

Exercise 

1. For each of the following subsets of C sketch the set and determine whether it 

is a region. 

a) Imz >1  b)  |z| > 0, 0 ≤ arg z ≤ 
π

4
  

c)  |2z+3|>4  d)  |z-4| ≥ |z| 

e)  0 < |z-z0| < δ where z0 is a fixed point and δ is a +ve number. 
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2. If the points z1, z2, z3 are the vertices of an equilateral triangle prove  

   that z1
2+z2

2+z3
2 = z1z2+ z2z3+ z3z1 

3. If z is a variable point and Re [ 
z−4

z−2i
 ] = 0 prove that the locus of z is a circle. 

4.4  Analytic functions 

Definition 

 A function f defined in a region D of the complex plane is said to be analytic at 

a point aD if f is differentiable at every point of some neighbourhood of a. 

 Thus f is analytic at a if there exist ε>0 such that f is differentiable at every 

point of the disc s(a, ε)={z/|z-a|< ε}. 

 If f is analytic at every point of a region D then f is said to be analytic in D. 

Definition 

 A function which is analytic at every point of the complex plane is called an 

entire function or integral function. For example any polynomial is an entire function. 

Remark 

 If f is analytic at a point a then f is differentiable at a. However the converse is 

not true. 

 For example, f(z)=|z|
2
 is differentiable only at z=0. 

 Hence f is differentiable at z=0 but not analytic at z=0. 

Remark 

 f(z) is analytic in a region D if and only if the real and imaginary parts of f(z) 

have continuous first order partial derivatives that satisfy the Cauchy-Riemann 

equation ux=vy and uy= -vx for all points in D. 

 Further it follows that if f(z) is analytic in D then u and v have continuous 

partial derivatives of all orders. 

Theorem 4.4.1 

 An analytic function in a region D with its derivative zero at every point of the 

domain is constant. 

Proof 

 Let f(z) = u(x, y) + iv(x, y) be analytic is D in f
1
(z) = 0 for all zD. 

 Since f
1
(z) = ux+ivx = vy-iuy 
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  We have ux = uy = vx = vy = 0 

 ∴ u(x, y) and v (x, y) are constant functions and hence f(z) is constant. 

Remark 

  The above theorem is not true if the domain of f(z) is not a region. 

 For example let D = {z/|z| < 1} ∪ {z/|z| > 2}. 

 D is not a connected subset of C so that D is not region. 

 Let f: D-C be define by f(z) = {  2 if   z >2
1 if   z <1

 clearly f
1
(z) = 0 for all points zD and 

f is not a constant function in D. 

Solved Problems 

Problem 1 

 An analytic function in a region with constant modulus is constant. 

Solution  

 Let f(z) = u(x, y) +iv (x,y) be analytic in a domain D. 

 Given |f(z)| is constant. 

 ∴ u
2
 + v

2
 = c where c is a constant  (1)       

 [∵ z = u + iv  

  ⟹ |z| =  u2 +  v2   ] 

 Differentiating equation    (1) 

 Partially w.r. to x. 

 2u ux + 2v vx = 0   

  ⟹ uux + vvx = 0     (2) 

 Differentiating equation (1) partially w.r. to y. 

 2u uy + 2vvy = 0   

  ⟹ uuy + vvy = 0     (3) 

 Using C.R. equation ux = vy and uy = -vx in (2) and (3) we get, 

 uux – vuy = 0      (4) 

uuy + vux = 0      (5) 
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 (4) x u ⟹ u
2
 ux – uv uy = 0     

 (5) x v ⟹ uv uy + v
2
 ux = 0     

       ----------------------  

 Adding       (u
2
 + v

2
) ux = 0     

   ⟹ ux = 0    [∴ u
2
 + v

2
 = constant] 

 Similarly we can prove that vx = 0 

 ∴ f
1
(z) = ux + ivx 

   = 0  

 i.e. f
1
(z) = 0 

Hence f is constant. 

Problem 2 

 Any analytic function f(z) = u+iv with arg f(z) = constant is itself a constant. 

Solution 

 Given arg f(z) = constant 

  ⟹ tan
-1

 ( 
v

u
 ) = c; where c is a constant. 

  ⟹ 
v

u
  = k where k is a constant. 

 ∴ v = ku  

Differentiating partially w.r.to x and w.r. to y 

  vx = k ux    (1) 

  vy = k uy    (2) 

(1)  ⟹   k =  
vx

ux
  

(2)  ⟹   vy =  k uy 

 i.e.  vy = 
vx

ux
 . uy  

      ⟹  uxvy =  vx uy 

      ⟹  uxux -  vx uy = 0 

      ⟹  uxux – uy (- uy ) =  (using C.R equations ux = vy and vx = -uy) 

      ⟹  ux
2 + uy

2 = 0 

      ⟹  ux = 0 and uy = 0 

Hence u is constant. 
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Similarly we can prove that v is constant. 

 ∴ f = u + iv is constant. 

Problem 3 

 If f(z) and f(z)      are analytic in a region D, show that f(z) is constant in that 

region. 

Solution 

 Let f(z) =  u(x, y) + iv (x, y) 

 ∴ f(z)      = u(x, y) – iv(x, y) 

  = u(x, y) + i(-v(x, y)) 

Since f(z) is analytic in D, C.R. equation are satisfied. 

 ∴ We have ux = vy and uy = -vx. 

 Since f(z)      is analytic in D, C.R. equations are satisfied. 

 ∴ We have ux = -vy and uy = vx 

 Adding we get, 2 ux = 0 and 2 uy = 0 

      ⟹  ux = 0 and uy = 0 

 Hence ux = 0 = vx   

 ∴ f
1
(z) = ux + ivx = 0 

 ∴ f(z) is constant in D. 

Problem 4 

 Prove that the functions f(z) and f(z ) are simultaneously analytic. 

Solution  

 Suppose f(z) = u(x, y) + iv(x, y) is analytic in a region D. 

 Then the first order partial derivatives of u and v are continuous and satisfy the 

C.R. equations 
∂u

∂x
 = 

∂v

∂y
    (1) 

   
∂v

∂x
 =  

−∂u

∂y
    (2) 

 Now f(z ) = u(x, -y) + iv (x, -y) 

 ∵ z = x+iy  ⟹ z  = x – iy 

  f(z )       = u(x, -y) - iv (x, -y) 

         = u1(x,y) + iv1(x, y) where u1(x,y) = u(x, -y) 

   and  v1(x, y) = -v(x, -y)  
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Hence    
∂u1

∂x
 = 

∂u

∂x
 = 

∂v

∂y
 = 

∂v1

∂x
    (using(1)) 

  and      
∂u1

∂y
 = -

∂u

∂y
 = 

∂v

∂x
 = 

∂v1

∂x
     

 ∴ The first order partial derivatives of u1 and v1 are continuous and satisfy the 

Cauchy-Riemann equations in D. 

 ∴ f(z )       is analytic in D. 

 Similarly if f(z )       is analytic in D then f(z) in also analytic in D. 

Problem 5 

 If  
∂2

∂x ∂y
 = 

∂2

∂y ∂x
 , prove that 

     
∂2

∂x2
 + 

∂2

∂y2
 = 4 

∂2

∂x ∂z 
 

Solutions 

 Let z = x+ iy 

 ∴ x = 
1

2
 (z+ z ) and y = 

1

2i
 (z - z ) 

Hence     
∂

∂z 
 = 

∂

∂x
 . 
∂x

∂z 
 + 

∂

∂y
 . 
∂y

∂z 
 

            = 
1

2
 
∂

∂x
 - 

1

2i
 
∂

∂y
 

            = 
1

2
 ( 

∂

∂x
 + i 

∂

∂y
 ) 

∴  
∂2

∂z ∂z 
 =  

∂

∂z
  ( 

∂

∂z 
 )  

  =  
∂

∂x
 ( 

∂

∂z 
 ) 

∂x

∂z
 + 

∂

∂y
 .( 

∂

∂z 
 ) 

∂y

∂z
  

  =  
∂

∂x
   

1

2
 ( 

∂

∂x
 +i 

∂

∂y
)   

1

2
 + 

∂

∂y
   

1

2
 (
∂

∂x
 +i 

∂

∂y
 )  x 

1

2i
 

  =  
1

4
   

∂2

∂x2
 +i 

∂2

∂x ∂y
  + 

1

4
  

∂2

∂y ∂x
 x 

1

i
 + 

∂2

∂y2
  

  =  
1

4
    

∂2

∂x2
 + 

∂2

∂y2
  +i  

∂2

∂x ∂y
 + 

1

i
  

∂2

∂x ∂y
  

  =  
1

4
   

∂2

∂x2
 + 

∂2

∂y2
 + 

∂2

∂x ∂y
 (i+ 

1

i
 ) 

  =  
1

4
   

∂2

∂x2
 + 

∂2

∂y2
  

 ⟹ 
∂2

∂x2
 + 

∂2

∂y2
 = 4 

∂2

∂z ∂z 
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Exercise 

1. Prove that an analytic function whose real part is constant is itself is constant. 

2. Prove that an analytic function whose imaginary part is constant is itself a 

constant. 

3. It f = u+iv is analytic in a region D and uv is constant in D then prove that f 

reduces to a constant. 

4. If f = u+iv is analytic in a region D and v = u
2
 in D then prove that f reduces to 

a constant. 

5. Determine the constants a and b in order that the function  

f(z) = (x
2
+ay

2
–2xy)+i (bx

2
-y

2
+2xy) should be analytic. Find f

1
(z). 

6. Test whether the following functions are analytic. 

(i) z
3
 + z.   (ii)  e

x 
 (cosy +I sin y) 

(ii) e
x
 (cos y – i sin y) (iv)  e

-x
 (cos y – i sin y) 

Answers 

4.   a=-1   b=1   f
1
(z) = (1+i)z

2
   6) (i) yes. 

(ii)   Yes (iii)  No.  (iv)  Yes. 

4.5 The Cauchy-Riemann Equations 

Theorem 4.5.1 

 Let f(z) = u(x, y) +iv (x, y) be differentiate at a point z0 = x0 + iy0 then u(x, y) 

and v(x,y) have first order partial derivatives ux(x0, y0), uy (x0, y0), vx(x0, y0) and  

vy(x0, y0) at (x0, y0) and these partial derivatives satisfy the Cauchy-Riemann 

equations (C.R. equations) given by ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = -vx (x0, y0). 

 Also f
1
(z0) = ux (x0, y0) +i vx (x0, y0). 

   = vy (x0, y0) –i uy (x0, y0). 

Proof 

 Since f(z) = u(x, y) +i v(x, y) is differentiable at z0 = x0 + i yo ,  h0
lim⁡ f z0+h −f(z0)

h
 

exist and hence the limit is independent of the path in which h approaches to zero. 

 Let h = h1 + i h2. 

 z0+h   = x0 + i y0 + h1 + i h2 

          = x0 + h1 + i (y0 + h2) 
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Now 
f z0+h −f(z0)

h
 

= 
u x0+h1 , y0+h2 + i v x0+h1 , y0+h2 −u  x0 ,y0 − i v(x0 ,y0)

(h1+ i h2)
 

=    
u  x0+h1 , y0+h2 − u x0 , y0 

(h1+ i h2)
  +i   

v  x0+h1 , y0+h2 − v x0 , y0 

(h1+ i h2)
 

  Suppose h0 along the real axis so that h=h1. 

Then f
1
(z0)     =  h0

lim⁡ f z0+h1 −f(z0)

h1
 

  =  h10
lim⁡  

u z0+h1  ,y0 −u z0y0 

h1
 

   +i  h10
lim⁡  

v x0+h1 ,y0 −v z0y0 

h1
 

  = ux(x0, y0) + i vx(x0, y0)    (1) 

Now suppose h0 along the imaginary axis so that h = i h2  

∴ f
1
(z0)     =  i h20

lim   f z0+h2 −f(z0)

i h2
 

  =  h20
lim⁡  

u x0 , y0+h2 −u z0 ,y0 

i h2
 +  h20

i  lim     
v x0 , y0+h2 −v x0 ,y0 

i h2
 

   =   
uy  x0 ,y0 

i
  +i   

vy  x0 ,y0 

i
 

   = 
1

i
 uy(x0, y0) + vy(x0, y0)     

   = -i uy(x0, y0) + vy(x0, y0)   (2)   

From (1) and (2) we get 

 f
1
(z0) = ux (x0, y0) + i vx(x0, y0) = vy(x0, y0) – i uy(x0, y0) 

Equating  real and imaginary parts we get 

 ux(x0, y0) = vy(x0, y0)  

 uy(x0, y0) = -vx(x0, y0)  

Remark 1 

 Since f
1
(z) = ux+ i vx = vy – i uy. 

 We have |f
1
(z)|

2
 = ux

2 + vx
2 = uy

2 + vy
2 

 Also |f
1
(z)|

2
 = ux

2 + uy
2 = vx

2 + vy
2 

Further |f
1
(z)|

2
 = ux vy – uy vx   

     = |  vx     vy

ux    uy
| 

     = 
∂(u,v)

∂(x,y)
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Remark 2 

 The Cauchy-Riemann equations provide a necessary condition for 

differentiability at a point. Hence if the C.R.equations are not satisfied for a complex 

function at any point then we can conclude that the function is not differentiate. 

For example, consider the function 

 f(z) = z  = x – iy 

Hence u(x, y) = x and v(x, y) = -y 

∴ ux(x, y) = 1 and vy(x, y) = -1 

∴ ux ≠ vy so that C.R. equations are not satisfied at any point z. 

Hence the function f(z) = z  is nowhere differentiable. 

Remark 3 

The C.R. equations are not sufficient for differentiability at a point. 

Theorem 4.5.2 

 Let f(z) = u(x, y) + iv (x, y) be a function defined in a region D such that u, v 

and their first order partial derivatives are continuous in D. If the first order partial 

derivatives of u, v satisfy the Cauchy-Riemann equations at a point (x, y)D then f is 

differentiable at z = x+i y . 

Proof 

 Since u(x, y) and its first order partial derivatives are continuous at (x, y), we 

have by the mean value theorem for functions of two variables. 

 u(x + h1, y + h2) - u(x, y) = h1 ux(x, y) + h2 uy (x, y) + h1 ε1 + h2 ε2   (1) 

where ε1 and ε2  0 as h1 and h2  0 

Similarly 

 v(x + h1, y + h2) - v(x, y) = h1 vx(x, y) + h2 vy (x, y) + h1 ε3 + h2 ε4   (2) 

where 

 ε3, ε4  0 as h1 and h2  0 

let h=h1 + ih2 

 z = x + iy  

∴ z+h = x+h1 + i (y+h2) 

Then  
f(z+h) – f(z) 

h
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   = 
1

h
 [u(x+h1, y+h2) +i v(x+h1, y+h2)] - [u(x, y) +i v(x,y)] 

   = 
1

h
 {u(x+h1, y+h2) -u(x, y)] +i [v (x+h1, y+h2) –v (x,y)} 

= 
1

h
 [{h1  ux(x,y) +h2 uy(x,y) + h1 ε1 + h2 ε2] 

  +i{h1 vx(x, y) +h2 vy(x, y) +h1 ε3 + h2 ε4} [using (1) and (2)] 

  = 
1

h
 [h1{ ux(x,y) +ivx(x,y)}+h2{(uy (x,y) + ivy(x,y)} 

 +h1(ε1 + i ε3) +h2(ε2 + i ε4)] 

= 
1

h
 [h1{ ux(x,y) -iuy(x,y)}+h2 {uy (x,y) + iux(x,y)} 

 +h1(ε1 + ε3) +h2(ε2 + ε4)]  using C.R. equation 

= 
1

h
 [({h1+i h2)  ux(x,y) -i(h1+i h2) (uy (x,y) + h1(ε1+iε3) +h2(ε2 + ε4)]   

= 
1

h
 [(h ux(x,y) – i h uy (x,y) + h1(ε1+iε3) +h2(ε2 + i ε4)]   

= ux(x,y) – i uy (x,y) + 
h1

h
  (ε1+iε3) + 

h2

h
 (ε2 + i ε4) 

Now, Since | 
h1

h
 | ≤ 1, 

h1

h
 (ε1+ iε3)  0 as h  0 

Similarly  
h2

h
 (ε2+ iε4)  0 as h  0 

 ∴   h0
lim⁡  

f z+h)−f(z 

h
 = ux(x, y) – iuy(x, y) 

Hence f is differentiable. 

Example 1 

 Let f(z) = e
x
 (cos y + i sin y) 

∴ u(x, y) = e
x
 cos y and v (x, y) = e

x
 cos y 

Then ux(x, y) = e
x
 cos y and vy(x, y) = e

x
 cos y. 

∴ uy(x, y) = -e
x
 sin y and vx(x, y) = e

x
 sin y 

∴ uy(x, y) = -vy(x, y) 

Thus the first order partial derivatives of u and v satisfy the Cauchy-Riemann 

equations at every point. 

 Further u(x, y) and v(x, y) and their first order partial derivatives are 

continuous at every point.  Hence f is differentiable at every point of the complex 

plane. 
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Example 2 

 Let f(z) = |z|
2
   

∴ f(z) = u(x, y) + iv (x, y) = x
2
 + y

2
  

∴ u(x, y) = x
2
 + y

2
 and v(x, y) = 0  

Hence ux(x, y) = 2x, uy(x, y) = 2y 

vx(x, y) = 0 = vy(x, y) 

 Clearly the Cauchy-Riemann equations are satisfied at z=0. 

Further u and v and their first order partial derivatives are continuous and hence f is 

differentiable at z=0. 

  Also we notice that the C.R. equations are not satisfied at any point z ≠ 0 and 

hence f is not differentiable at z ≠ 0. 

 Thus f is differentiable only at z = 0. 

Theorem 4.5.3 

 (Complex form of C R equations) 

 Let f(z) = u(x, y) + iv (x, y) be differentiable then the C R equations can be put 

in the complex form as fx = -ify. 

Proof 

 Let f(z) = u(x, y) +iv (x, y) 

 Then fx = ux + ivx   

 and fy = uy + ivy   

Hence fx = -ify ⇔ ux + ivx = -i(uy +ivy) 

      ⇔ ux + ivx = vy - iuy 

     ⇔ ux = vy and vx = -uy 

Thus the two C.R. equations are equivalent to the equation fx = -ify. 

Theorem 4.4 

 (C.R equations in polar co-ordinates) 

 Let f(z) = u(r, ) +iv (r, ) be differentiable at z = re
i 

≠ 0. Then 
∂u

∂r
 = 

1

r
 
∂v

∂
  

  
∂v

∂r
 =- 

1

r
 . 
∂u

∂
 . Further f(z) = 

r

z
 ( 

∂u

∂r
 + i 

∂v

∂r
 ) 

Proof 

 Z = re
i 

≠ 0 
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    = r(cos  + sin ) 

∴ x = r cos  and y = r sin  

Hence 
∂u

∂r
 = 

∂u

∂x
 . 
∂x

∂r
 + 

∂u

∂y
 . 
∂y

∂r
 

 i.e., 
∂u

∂r
 = 

∂u

∂x
 . cos  + 

∂u

∂y
 . sin     (1) 

Also 
∂u

∂
 =  

∂v

∂x
 .  

∂x

∂
 + 

∂v

∂y
 . 
∂y

∂
 

     =  
∂v

∂x
 (-r sin ) + 

∂v

∂y
 cos  

∴ 
1

r
 
∂v

∂
  = - 

∂v

∂x
 sin  + 

∂v

∂y
 cos  

  = 
∂u

∂y
 sin  + 

∂u

∂x
 cos  (using C R equations) 

 = 
∂u

∂r
  (using (1)) 

Thus  
∂u

∂r
 = 

1

r
 
∂v

∂
   

Similarly we can prove that  
∂v

∂r
  = - 

1

r
 
∂u

∂
   

Now r ( 
∂u

∂r
 + 

∂v

∂r
 ) = r [( 

∂u

∂x
 . 
∂x

∂r
 + 

∂u

∂y
 . 
∂y

∂r
 ) +i ( 

∂v

∂x
 . 
∂x

∂r
 + 

∂v

∂y
 . 
∂y

∂r
 )] 

  = r [( 
∂u

∂x
 cos  + 

∂u

∂y
 sin ) +i ( 

∂v

∂x
 cos  + 

∂v

∂y
 sin )] 

 = r cos  ( 
∂u

∂x
 + i 

∂v

∂x
 ) + r sin   ( 

∂u

∂y
 + i  

∂v

∂y
 ) 

 = x ( 
∂u

∂x
 + i 

∂v

∂x
 ) + i y ( 

∂v

∂y
 - i  

∂u

∂y
 ) 

 = x f
1
(z) + iy f

1
(z) 

 = (x +iy) f
1
(z) 

 = z f
1
(z) 

∴ f
1
(z) = 

r

z
 ( 

∂u

∂r
 +i  

∂v

∂r
 ) 

Theorem 4.5.5 

 If f(z) is a differentiable function, the C.R. equation can  be  put  in  the  form 

∂f

∂z 
 = 0. 

Proof 

 
∂f

∂z 
 = 

∂f

∂x
 . 
∂x

∂z 
 + 

∂f

∂y
 . 
∂y

∂z 
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     = 
∂f

∂x
 (1 2 ) + 

∂f

∂y
 (-1 2i ) 

Thus 
∂f

∂z 
 = 0 ⇔ 

∂f

∂x
 = -i 

∂f

∂y
 which is the complex form of the C.R. equations. 

Thus the C.R. equations can be put in the form 
∂f

∂z  
 = 0 

Solved Problems 

Problem 1 

Verify Cauchy-Riemann equations for the function f(z) = z
3
. 

Solution 

 f(z) =  z
3
 = (x+ iy)

3
   

        = x
3
 + 3x

2
(iy) + 3x(iy)

2
 + (iy)

3
  

        = (x
3
 -3xy

2
) +i (3x

2
y-y

3
) 

∴ u(x, y) = x
3
 -3xy

2
 and v(x, y) = 3x

2
y – y

3
 

∴ ux  = 3x
2
 -3y

2
 and vx = 6xy 

   uy  = -6xy and vy = 3x
2
 – 3y

2
 

Here  ux = vy and uy = -vx. 

Hence the Cauchy-Riemann equations are satisfied. 

Problem 2 

 Prove that the following functions are nowhere differentiable. 

(i) f(z) = Re z     (ii)  f(z) = e
x
(cos y – i sin y) 

Solution 

 (i)  f(z) = Re z. 

  i.e. f(z) = x 

  ∴ u(x, y) = x and v(x, y) = 0 

   ∴ ux = 1 and vx = 0 

   uy = 0 and vy = 0 

   Since ux ≠ vy the C R equations are not satisfied at any point. 

 Hence f(z) is nowhere differentiable. 

 (ii) f(z) = e
x
 (cos y – i sin y) 

         = e
x
 cos y – ie

x
 sin y 

  ∴ u(x, y) = e
x
 cos y and v(x, y) = -e

x
 sin y 
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  ∴ ux = e
x
 cos y and vx = -e

x
 sin y 

      uy = -e
x
 sin y and vy = -e

x
 cos y 

      ux ≠ vy and uy ≠ -vx  

∴ C.R equations are not satisfied at any point and hence f(z) is no where 

differentiable. 

Problem 3 

Prove that f(z)=  
zRe  z

|z|
 if z ≠ 0 is continuous at z = 0 but not differentiable at z=0. 

       0       if z=0 

Solution 

 First we shall prove that  z0
lim f(z)=0. 

 Now |f(z) – 0| = |f(z)| 

   = |
zRe  z

|z|
| 

   = 
 z  |Re  z|

|z|
 

   = |Re z| 

 Further |Re z| ≤ |z|. 

∴ For any given ε >0, if we choose δ = ε, we get, 

 |z| = |z-0|< δ ⟹ |f(z)-0| = |Re z| ≤ |z| < ε 

 i.e. |z-0| < δ ⟹ |f(z)-0| < ε 

Hence f is continuous at z=0 

Now we prove that f(z) is not differentiable at z = 0 

 
f(z)− f(0)

z−0
 = 

z Re  z

z |z|
 

                        = 
Re  z

|z|
 = 

x

 x2+y2
  where z = z + i y 

Along the path y = mx, 

 
f(z)− f(0)

z−0
 = 

x

 x2+m2x2
 = 

1

 1+m2
 

∴ The value of the limit depends on m and hence on the path along which z0 

∴  z0
lim f(z)− f(0)

z−0
 does not exist. 

∴ f(z) is not differentiable at z = 0. 

Problem 4 

 Prove that f(z) = z Im z is differentiable only at z=0 and find f(0). 
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Solution 

 f(z) = z Im z 

        = (x+iy) y = xy + i y
2
 

∴ u(x, y) = xy and v(x, y) = y
2
 

∴ ux = y, vx = 0, uy = x and vy = 2y 

  Clearly the C.R. equations are satisfied only at z = 0. 

Further all the first order partial derivatives are continuous. 

Hence f(z) is differentiable only at z=0. 

f
1
(z) = ux + ivx 

∴ f
1
(0) = ux(0,0) + ivx(0, 0) = 0 + 0 =0 

Problem 5 

    
xy 2(x+i y)

x2+y4
  if  z ≠ 0 

 Show that f(z) =  

    0   if z = 0 

 is not differentiable at z = 0 

Solution  

 
f z − f(0)

z−0
 = 

xy 2(x +i y )

x 2+y 4  −0

x+i y − 0
  

 = 
xy 2(x+i y)

x2+y4
 x 

1

x+i y
 = 

xy 2

x2+y4
 

Along the path x = my
2
   

 
f z − f(0)

z−0
 = 

my 4

m2y4+y4
 = 

m

m2+1
 

  The value of the limit depends on m and hence depends on the path along  

which z 0 

∴  z0
lim f z − f(0)

z−0
 does not exist. 

∴ f(z) is not differentiable at z = 0 

Problem 6 

      
x3 1+i −y3(1−i)

x2+y2
  if  z ≠ 0 

 Prove that the function f(z) = 

      0   if   z = 0 

Satisfies C.R. equations at the origin but f
1
(0) does not exist. 
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Solution  

       
x3 1+i −y3(1−i)

x2+y2
  if  z ≠ 0 

  f(z) = 

       0           if   z = 0      

 

       
x3− y3+i (x3+ y3)

x2+y2
  if  z ≠ 0 

  f(z) = 

       0             if   z = 0     

 

Here u(x, y) =  
x3− y3

x2+y2
 and v(x, y) = 

x3+ y3

x2+y2
 if (x, y) ≠ (0, 0) and u(0, 0) = v(0, 0) = 0 

Now, ux(x, y) =  h0
lim u x+h,y − u(x,y)

h
  

∴ ux(0, 0) =  h0
lim⁡u h,0 − u(0,0)

h
  

        =  h0
lim⁡

h 3

h 2 
− 0

h
  =  h0

lim⁡ 
h3

h3  
 = 1 

   uy(x, y) =  h0
lim⁡ 

u x,y+h − u(x,y)

h
 

  uy(0, 0) =  h0
lim⁡ 

u 0,   h − u(0,0)

h
 

      =  h0
lim⁡ 

− 
h 3

h 2 

h
  =  h0

lim⁡- 
h3

h3  
 = 1 

 Similarly we can prove that vx(0, 0) = 1 and vy (0, 0)=1 

Thus   ux(0, 0) = vy(0, 0) = 1 and  

 uy(0, 0) = -vx(0, 0) = -1. So that 

C.R. equations are satisfied at z = 0.  

Now 
f z − f(0)

z−0
 =  

x 3− y 3+i  x 3+ y 3 

x 2+y 2 −0 

x+i y−0
  

   =   
x3− y3

 x2+y2 (x+i y)
 + 

i  x3+ y3 

 x2+y2 (x+i y)
  

 Along the path y = mx we have y=mx 

 
f z − f(0)

z−0
 =  

x3− m3  x3

 x2+m2  x2 (x+i mx )
 + i 

x3+ m3  x3

 x2+m2  x2  x+i mx  
 

    =  
x3 1− m3 

x3(1+ m2) (1+i m)
 + 

i x3 1+ m3 

x3 1+ m2  1+im 
 

   =  
1− m3

(1+ m2) (1+i m)
 + 

i  1+ m3 

 1+ m2  1+im 
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  Hence the value of the limit depends on the path along which z0 

 Thus  z0
lim  

f z − f(0)

z−0
 does not exist. 

 Hence f is not differentiable at 0. 

Problem 7 

 Prove that f(z) = sin x cos hy + i cos x sin hy is differentiable at every point. 

Solution 

 f(z) =sin x cos hy + i cos x sin hy 

∴ u(x, y) = sin x cos hy and v(x, y) = cos x sin hy. 

ux = cos x cos hy and vx = -sin x sin hy. 

uy = sin x sin hy and vy = cos x cos hy. 

∴ ux = vy and uy = -vx for all x, y 

Hence C.R equation are satisfied at every point. 

 Further all the first order partial derivatives are continuous. 

Hence f(z) is differentiable at every point. 

Problem 8 

 Find constants a and b so that the function f(z) = a(x
2
-y

2
) +i b xy+c is 

differentiable at every point. 

Solution 

 Here u(x, y) = a(x
2
-y

2
)+c and v(x, y) = b xy 

 ux = 2ax ; vx by 

 uy = -2ay and vy = bx 

Clearly ux = vy and uy = -vx iff 2a=b. 

∴ C.R equations are satisfied at all points iff 2a=b. 

∴ The function f(z) is differentiable for all values of a, b with 2a=b 

Problem 9 

 Show that f(z) =  r (cos  2  + i sin  2 ) where r>0 and 0<< 2π is 

differentiable and find f
1
(z). 

Solution 

 f(z) =  r (cos  2  + i sin  2 ) 
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 u =  r (cos  2 ) and v =  r sin  2  

∴ 
∂u

∂r
 = 

1

2 r
 cos (  2 ) and 

∂v

∂r
 = 

1

2 r
 sin (  2 ) 

∂u

∂
 = 

 r
−

2
 sin (  2 ) and 

∂v

∂
 = [ 

 r

2
 cos ( 2 )] 

 Now 
1

r
 
∂v

∂
   = 

1

r
  [ 

 r
 

2
  cos  2 )] 

         = 
1

2 r
 cos (  2 )  

         = 
∂u

∂r
 

 Thus 
∂u

∂r
 = 

1

r
  
∂v

∂
 

Similarly  
∂v

∂r
 = - 

1

r
 . 
∂u

∂
 

          = 
1

2 r
 sin(  2 ) 

Hence the C.R. equations in polar form) are satisfied. 

Further all the first order partial derivatives are continuous. 

Hence f
1
(z) exist  

Also f
1
(z)  =   

r

z
 (
∂u

∂r
 +i 

∂v

∂r
 ) 

  =   
r

z
  ( 

1

2 r
 cos(  2 ) + 

i

2 r
 sin(  2 )  

  =   
r

2 r 2
  [cos(  2 ) + i sin(  2 ) ] 

  =   
1

2z
  [ r (cos(  2 ) + i sin(  2 ) ] 

  =   
1

2z
  x  z = 

1

2 z
 

Hence f
1
(z) = 

1

2 z
 

[∵ z = re
i

 

i.e. z = r (cos  + sin ) 

 z =  r (cos  + sin )
½
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=  r cos(  2 ) + i sin(  2 ) ] 

4.6 Harmonic functions 

Definition 

 Let u(x, y) be a function of two real variables x and y defined in a region D. 

u(x, y) is said to be a harmonic function if  
∂2u

∂x2
 + 

∂2u

∂y2
 = 0 and this equation is called 

Laplace’s equation. 

Theorem 4.6.1 

  The real and imaginary parts of an analytic function are harmonic functions.  

Proof 

 Let f(z) = u(x, y) +iv (x, y) be an analytic function. 

 Then u and v have continuous partial derivatives of first order which satisfy the 

C.R. equation given by 
∂u

∂x
 = 

∂v

∂y
 and 

∂u

∂y
 = - 

∂v

∂x
 . 

  Further 
∂2u

∂x ∂y
 = 

∂2u

∂y ∂x
 and 

∂2v

∂x ∂y
 = 

∂2v

∂y ∂x
 

 Now 
∂2u

∂x2
 + 

∂2u

∂y2
 = 

∂

∂x
 (
∂u

∂x
) + 

∂

∂y
 (
∂u

∂y
) 

     = 
∂

∂x
 (
∂v

∂y
) + 

∂

∂y
 (- 

∂v

∂x
) 

     = 
∂2v

∂x ∂y
 - 

∂2v

∂y ∂x
 = 0 

Thus u is a harmonic function. Similarly we can prove that v is a harmonic function. 

Remark 1 

 Laplace’s equation provides a necessary condition for a function to be the real 

or imaginary part of an analytic function. 

 For example if u(x, y) = x
2
 + y, 

  
∂2u

∂x2
 = 2; 

∂2u

∂y2
 = 0 

 and     
∂2u

∂x2
 + 

∂2u

∂y2
 = 2 

Thus u(x, y) is not harmonic function and hence it cannot be the real part of 

any analytic function. 
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Definition 

 Let f = u+iv be an analytic function in a region D. Then v is said to be a 

conjugate harmonic function of u. 

Theorem 4.6.2 

 Let f = u+iv be an analytic function in a region D. Then v is a harmonic 

conjugate of u if and only if u is a harmonic conjugate of –v. 

Proof 

 Let v be a harmonic conjugate of u. 

 Then f = u+iv is analytic 

∴ if = iu-v is also analytic. 

Hence u is a harmonic conjugate of –v.  Similarly we can prove the converse part. 

Theorem 4.6.3 

 Any two harmonic conjugates of a given harmonic function u in a region D 

differ by a real constant. 

Proof 

 Let u be a harmonic function.  Let v and v* be two harmonic conjugates of u 

Then u+iv and u+iv* are analytic in D.  

 Since u+iv is analytic in D, by C.R. 

 equation 
∂u

∂x
 = 

∂v

∂y
 and 

∂u

∂y
 = - 

∂v

∂x
     (1) 

 since u+iv* is analytic in D, by C.R  

 equation 
∂u

∂x
 = 

∂v∗

∂y
 and 

∂u

∂y
 = - 

∂v∗

∂x
     (2) 

From (1)  &  (2) 

 
∂u

∂x
 = 

∂v

∂y
 = 

∂v∗

∂y
 and 

∂u

∂y
 = - 

∂v

∂x
  = - 

∂v∗

∂x
 

  ∴ 
∂v

∂y
 = 

∂v∗

∂y
 and 

∂v

∂x
  = 

∂v∗

∂x
 

Hence 
∂

∂y
 (v-v*) = 0 and 

∂

∂x
 (v-v*) = 0 

 ∴ v-v* = c (a constant) 

 ∴ v=v*+c  where c is a real constant. 
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Remark  

 The Cauchy-Riemann equation can be used to obtain a harmonic conjugate of a 

given harmonic function. 

Milne-Thompson Method 

 Let u(x, y) be a given harmonic function.  Let f(z) = u(x, y) +iv(x,y) be an 

analytic function. 

 Then f
1
(z) = ux(x,y) + i vx(x, y) 

         = ux(x,y) - i uy(x, y) 

 Let 1 (x, y) = ux(x, y) and 2 (x, y) = uy(x, y) 

 We have x = 
z+z 

2
 and y = 

z−z 

2i
 

 Hence f
1
(z) = φ1 (

z+z 

2
 , 

z−z 

2i
 ) - iφ2(

z+z 

2
 , 

z−z 

2i
 ) 

 Putting z = z  we obtain f
1
(z) = φ1(z,0) -i φ2 (z,0) 

 Hence f(z) = ∫ [φ1(z, 0) –i φ2(z, 0)] dz+c 

Note 

 It can be proved in a similar way that the analytic function f(z) with a given 

harmonic function v(x, y) as imaginary part is given by f(z) = ∫ [ℵ1(z, 0) +iℵ2(z, 0)] 

dz+c where ℵ1(x, y) = vy and ℵ2(x, y) = vx. 

Solved Problems 

Problem 1  

 Prove that u=2x-x
3
+3xy

2
 is harmonic and find its harmonic conjugate. Also 

find the corresponding analytic function. 

Solution 

 u = 2x-x
3
+3xy

2
 

∴ ux = 2-3x
2
+3y

2
; uxx = -6x 

   uy = 6xy; uyy = 6x 

∴ uxx+ uyy = -6x+6x=0 

Hence u is harmonic. 

Let v be the harmonic conjugate of u. 

∴ f(z) = u+i v is analytic. 

By Cauchy-Riemann equations we have 
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vy = ux = 2-3x
2
+3y

2
   

     ie   vy = 2-3x
2
+3y

2
   

Integrating w.r. to y we get   

  v=2y-3x
2
y+y

3
+ λ(x)    (1) 

where λ(x) is an arbitrary function of x 

∴ vx = -6xy + λ(x) 

Now vx = -uy  

⟹ -6xy + λ(x) = -6xy 

⟹ λ(x) = 0 ⟹ λ(x) = c where c is a constant. 

Thus v = 2y-3x
2
y+y

3
+c   [From (1)] 

Now f(z) = (2x-x
3
+3xy

2
)+i(2y-3x

2
y+y

3
)+ic  

      = 2(x+iy) – [(x
3
-3xy

2
)+i(3x

2
y-y

3
)]+ic 

     = 2z – z
3 
+ ic 

∴ f(z)=2z-z
3
+ic  is the required analytic function 

Problem 2 

 Show that u = log x2 + y2 is harmonic and determine its conjugate and hence 

find the corresponding analytic function f(z). 

Solution 

u=log x2 + y2 = 
1

2
 log (x

2
+y

2
) 

∴ ux = 
1

2
 . 

1

x2+y2
 . 2x = 

x

x2+y2
 

uxx = 
 x2+y2 −x.2x

(x2+y2)2
 = 

y2−x2

(x2+y2)2
 

similarly uyy = 
x2−y2

(x2+y2)2
 

obviously uxx + uyy = 0 and hence u is harmonic 

Let v be a harmonic conjugate of u. 

∴ f(z)=u+iv is an analytic function. 

By C.R. equation we have, 

 vy = ux 

      = 
x

x2+y2
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ie. vy = 
x

x2+y2
 

Integrating w.r. to y we get 

 v = tan
-1

 (
y

x )+ (x) where φ(x) is an arbitrary function of x. 

 Now vx = 
1

1+
y 2

22

 ( 
−y

x2
 ) + φ(x) 

 Also vx = -uy   

   ⟹ 
−y

x2+y2
 + φ(x) = 

−y

x2+y2
 

  ⟹ φ(x) = 0 

 Hence φ(x) = c 

   ∴ v =  tan
-1

 (
y

x )+c 

 ∴f(x) = u+iv = log x2 + y2 + i [tan
-1

 (
y

x )+c] 

Problem 3 

 Show that u(x, y) = sin x co shy + 2 cos x sin hy + x
2
-y

2
+4xy is harmonic.  

Find an analytic function f(z) interms of z with the given u for its real part. 

Solution 

 ux = cos x cos hy – 2 sin x sin hy + 2x + 4y 

 uxx = -sin x cos hy – 2 cos x sin hy + 2 

 uy = sin x sin hy + 2 cos x cos hy -2y + 4x 

 uyy = sin x cos hy + 2 cos x sin hy -2 

∴ uxx + uyy = 0 

Hence u is harmonic 

Now let φ1(x, y) = ux and φ2(x, y) = uy. 

  ∴ φ1(z, 0) = cos z cos h 0-2 sin z sin h 0 + 2z 

       = cos z + 2z 

 Similarly φ2(z, 0) = 2 cos z +4z 

 ∴ f(z) = ∫ [φ1(z, 0) – i φ2(z, 0)]dz 

  = ∫ [cosz + 2z – i (2 cos z + 4z) dz 

  = sin z + z
2
 – 2 i sin z – 2 iz

2
 + c 



100 
 

 Problem 4 

 Find the analytic function  

 f(z) = u +iv if u+v = 
sin 2x

cos h2y−cos 2x
 

Solution 

 u + v = 
sin 2x

cos h2y−cos 2x
      (1) 

  ∴ ux+vx = 
(cos h 2y−cos 2x) (cos 2x) 2−sin 2x(0+sin  2x 2)

(cos h 2y –cos 2x)2
 

  ∴ ux+vx = 
2(cos h 2y−cos 2x) cos 2x −2 sin 2 2x

(cos h 2y –cos 2x)2
   (2) 

 and 

     uy+vy = 
(cos h 2y−cos 2x) x 0−sin 2x x (2 sin hy )

(cos h 2y –cos 2x)2
 

  ⟹ uy+vy = 
−2 sin 2x sin  h 2y  

(cos h 2y –cos 2x)2
     (3) 

 Since the required function f(z) = u+iv is to be analytic, u and v satisfy the C.R. 

equation ux = vy and uy = -vx. 

Using these equations in (2), we get, 

 ux- uy = 
2(cos  h 2y−cos 2x) cos 2x−2 sin 2 2x 

(cos h 2y –cos 2x)2
 

 ∴ ux(z, 0) – uy(z, 0) = 
2(1−cos  2z) cos 2z−2 sin 22z

(1−cos 2z)2
    

             = 
(2−2 cos  2z) cos 2z−2 sin 22z

(1−cos 2z)2
    

            = 
2 cos  2z−2(cos 22z+sin 22z)

(1−cos 2z)2
    

            = 
−2 (1−cos  2z)  

(1−cos 2z)2
 = 

−2

1−cos 2z
   

            = -  
2

2 sin 2z
  = - cosec

2
z    (4) 

Using C.R. equations in (3) we get 

 uy + ux = 
−2 sin  2x sin h 2y

(cos h 2y−cos 2x)2
 

  ∴ uy(z, 0) + ux(z, 0) = 0     (5) 

Now adding (4) and (5) we get 

 2 ux(z, 0) = -cosec
2
z  

 ∴ ux(z, 0) = 
−1

2
 cosec

2
 z      (6) 
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Subtracting (4) from (5) we get  

 2uy(z, 0) = cosec
2
z 

 ⟹ uy(z, 0) =  
1

2
 cosec

2
 z     (7) 

Now f(z) = u(z, 0) + iv (z, 0). 

 ⟹ f
1
(z) = ux(z, 0) + i vx (z, 0)  

     = ux(z, 0) – i uy (z, 0)  

     = 
−1

2
 cosec

2
 z - i 

1

2
 cosec

2
 z 

 ie) f
1
(z) = 

−1

2
 (1+i) cosec

2
 z 

Integrating w.r. to z, we have 

 f(z) = ( 
1+i

2
 ) cot z + c 

Problem 5 

  Given v(x, y) = x
4
-6x

2
y

2
+y

4
 find f(z) = u(x, y)+iv(x, y) such that f(z) is analytic 

Solution 

 v(x, y) = x
4
-6x

2
y

2
+y

4
  

        vx = 4x
3
-12xy

2
  

        vxx = 12x
2
-12y

2
  

        vy = -12x
2
y+4y

3
  

        vyy = -12x
2
+12y

2
  

 vxx+vyy = 12x
2
-12y

2
-12x

2
+12y

2 

   = 0 

   ∴ v(x, y) is harmonic. 

 Let f(z) = u+iv be the required analytic function. 

By Cauchy – Riemann equations ux = vy  

  ∴ ux = -12x
2
y+4y

3
  

  ∴ Integrating with respect to x we get u=-4x
3
y+4xy

3
+ λ(y) where λ(y) is an 

arbitrary function of y. 

  ∴ uy = -4x
3
+12xy

2
+ λ(y) = -vx. 

  ∴ -(4x
3
-12xy

2
)=-4x

3
+12xy

2
+ λ(y) 

    ⟹ λ(y) = 0 so that λ(y) =  c where c is a constant. 
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  ∴ u = -4x
3
y+4xy

3
+ c  

  ∴ f(z) = (-4x
3
y+4xy

3
+ c) +i(x

4
-6x

2
y

2
+y

4
)  

   = i[(x
4 
- 6x

2
y

2
+y

4
) +i(4x

3
y-4xy

3
)]+c 

   = i[(x+iy)
4
]+c 

   = i z
4
+c  

Problem 6 

 Find the analytic function f(z) = u+iv given u-v = e
x
 (cos y – sin y) 

Solution 

u-v = e
x
 (cos y – sin y)      (1) 

   Diff w.r.to x, ux – vx = e
x
 (cos y – sin y)   (2) 

  Differentiate (1) w.r. to y,  

     uy-vy = e
x
 (-sin y – cos y) 

  ie  uy – vy = -e
x
 (sin y + cos y)   (3) 

  Since the required function is to be analytic, it has to satisfy the C.R equations. 

∴ using C.R. equations in (3) we get,  

 -vx-ux=-e
x
 (sin y + cos y)     (4) 

 Solving (2) and (4) we get 

 ux = e
x
 cos y       (5) 

 and vx = e
x
 cos y      (6) 

Integrating (6) w.r. to x, we get, 

  v = e
x
 sin y + f(y) 

  ∴ vy = e
x
 sin y + f

1
(y) 

 ⟹ ux = e
x
 cos y + f

1
(y)    [∴  vy = ux] 

 ⟹ e
x
 cos y = e

x
 cos y + f

1
(y) 

 ⟹ f
1
(y) = 0 

Hence f(y) = c1 where c1 is a constant. 

 ∴ v = e
x
 sin y + c1 

From (1) u = e
x
 cos y + c2 

Now, f(z) = u+ iv 

     = e
x
 cos y + c2 + i (e

x
 sin y + c1) 

     = e
x
 (cos y + i sin y) + (c2 + i c1) 
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     = e
x
 . e

iy
 + α where α is a complex constant. 

     = e
x+iy

 + α  

     = e
z
 + α  

Problem 7 

 Find the constant a so that u(x, y) = ax
2
-y

2
+xy is harmonic. Find the analytic 

function f(z) for which u is the real part. Also find its harmonic conjugate. 

Solution 

 u = ax
2
-y

2
+xy 

Given that u is harmonic 

Hence it satisfies Laplace’s equation 

 
∂2u

∂x2
 + 

∂2u

∂y2
 = 0 

Now 
∂u

∂x
 = 2a x+y 

 
∂2u

∂x2
 = 2a 

  
∂u

∂y
  = -2y+x 

  
∂2u

∂y2
  = -2 

  
∂2u

∂x2
 + 

∂2u

∂y2
 = 0  ⟹ 2a-2 = 0 

    ⟹ a = 1 

  ∴ u = x
2
-y

2
+xy 

Hence ux = 2x+y and uy = -2y+x 

Let φ1(x, y) = ux = 2x+y 

and φ2(x, y) = uy = -2y+x 

 ∴ φ1(z, 0) = 2z and φ2(z, 0)=z 

 ∴ f(z) = ∫ [φ1(z, 0)-iφ2(z, 0)]=dz 

            = ∫ (2z-iz) dz 

           = z
2
 - 

iz 2

2
 + c 

           = (x+iy)
2
 – 

i(x+iy)2

2
 + c 

           = (x
2
-y

2
+2i xy) – 

i

2
 (x

2
-y

2
+2i xy) 
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           = (x
2
-y

2
+xy)+i (2xy + 

y2−x2

2
 ) + c 

 ∴ v(x, y) = 2xy + ( 
y2−x2

2
 ) is the harmonic conjugate of u(x, y) 

Problem 8 

 If f(z) is analytic prove that (
∂2

∂x2
 + 

∂2

∂y2
) |f(z)|

2 
=4 |f

1
(z)|

2
 

Solution 

 Let f(z) = u+iv 

 |f(z)| =  u2 + v2  

 |f(z)|
2
 = u

2
+v

2
 = φ (say) 

 and f
1
(z) = ux + i vx 

 Also φ = u
2
 + v

2
   

 ∴ 
𝜕φ

𝜕𝑥
 = 2u.ux + 2vvx  

  
∂2φ

∂x2
  = 2 [u.uxx+ux.ux+v.vxx+vx.vx] 

       = 2 [ux
2+uuxx+ vx

2
 + vvxx] 

Similarly 
∂2φ

∂y2
 = 2 [uy

2+uuyy+ vy
2

 + vvyy] 

       = 2 [vx
2+uuyy+ ux

2
 + vvyy] 

  [Using C.R equation] 

Since u and v are harmonic, 

 uxx + uyy = 0 and vxx + vyy = 0 

∴ 
∂2φ

∂x2
 + 

∂2φ

∂y2
   = 2[ux

2 + uuxx+ vx
2

  + vvxx+vx
2+ uuyy+ux

2+v.vyy ] 

  = 2 ux
2 +2vx

2 + u(uxx+uyy) +2vx
2+2ux

2
 + v(vxx +vvyy) 

  = 4[ux
2 + vx

2] 

  = 4[ux+i vx|
2
 

  = 4[f
1
(z) |

2
 

Exercise 

1. If u+v = (x-y) (x
2
+4xy+y

2
) and f(z) = u+iv, find the analytic function f(z) in 

terms of z. 

2. Find the real part of the analytic function whose imaginary part is e
-x

 [2 xy cos 

y + (y
2
-x

2
) sin y]. Construct the analytic function. 
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3. Prove that the function u=sin hx sin y is harmonic.  Also find the harmonic 

conjugate.  

Answers : 

1. z
3
+c 

2. u = e
-x

 [(x
2
-y

2
)cos y+2xy sin y]; f(z) = e

-x
 [(x

2
-y

2
) + 2i xy] (cos y – i sin y) 

3. v = -cos h x cos y 

4.7  Bilinear Transformations 

Translation : w = z+b 

 Consider the transformation w = z+b. If z = x+iy, w = u+iv and b = b1+ib2 then 

the image of the point (x, y) in the z-plane is the point (x+b1, y+b2) in the w-plane. 

 Under this transformation the image of any region is simply a translation of 

that region.  Hence the two regions have the same shape, size and orientation.  In 

particular the image of a straight line is a straight line and the image of a circle with 

centre a and radius r is a circle with centre a+b and radius r. 

 We note that ∞ is the only fixed point of this translation when b≠0. 

Rotation  w = az where |a|=1. 

 Consider the transformation w = az where |a|=1. 

 Let z = re
i

 and a=e
iα

 so that |a|=1. 

 ∴ w = az=e
iα

 (re
i

 ) = re
i(+α)

 

 ∴ A point with polar co-ordinates (r, ) is  the  z-plane is  mapped  to  the  point 

(r, + α) in the w-plane. Hence this transformation represents a rotation through an 

angle α=arg α about the origin. Under this transformation also straight lines are 

mapped into straight lines and circles are mapped into circles. 

 We note that 0 and ∞ are the two fixed points of this transformation. 

Inversion : w = 
1

z
 

Consider the transformation w =  
1

z
 

Put z = re
i

 

 w =  
1

x
 = 

1

re i
 

 i.e. w = ( 
1

r
 ) e

-i
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  This  transformation can  be  expressed  as  a  product  of  two  transformations 

T1(z) = ( 
1

r
 ) e

i
 

and T2(z) = re
-i

 = z  

 For, (T1◦ T2)(z) = T1(T2 (z)) 

      = T1(re
-i

) 

      = ( 
1

r
 ) e

-i 
= 

1

z
 

  The transformation T1(z) = ( 
1

r
 ) e

i  
represents the inversion with respect to the 

unit circle |z|=1 and T2(z) = z  represents reflection about the real axis. 

 Hence the transformation w = 
1

z
 is the inversion w.r.to the unit circle followed 

by the reflection about the real axis. 

  Here points outside the unit circle are mapped into points inside the unit circle 

and vice versa. Points on the circle are reflected about the real axis. 

 However the family of circles and lines are again mapped into the family of 

circles and lines. 

 We note that the fixed points of the transformation w = 
1

z
 are 1 and -1. 

Problem 1 

 Show that the region in the z-plane given by x>0 and 0<y<2 is mapped into the 

region in the w-plane given by -1<u<1 and v>0 under the transformation w = iz+1. 

 

 

 y 

           v 

       (x,0) 

 

 

 

 

 

    x 

  z - plane    (-1, 0)             (1,0)   u 

 

                 w - plane 

 

 

Solution 

 Let z=x+iy  and w=u+iv 

 w = iz+1 

⟹ w = i(x+iy) +1 
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⟹ u+iv = (-y+ix) +1  

⟹ u+iv = 1-y+ix 

 ∴ u = 1-y  and v=x 

   x > 0 ⇔ v > 0 

   y > 0 ⟹ 1-u > 0 

 ⟹ 1> u  

 ie u < 1 

   y < 2 ⟹ 1-u < 2 

 ⟹ -1< u  

∴   -1 < u < 1 

∴ x > 0 ad 0 < y < 2 ⇔ v > 0 and -1 < u < 1. 

Hence the given region is mapped into the region v>0 and -1<u<1 as shown in the 

figure. 

Problem 2 

 Find the image of the square region with vertices (0, 0), (2, 0), (2, 2), (0, 2) 

under the transformation w = (1+i) z+ (2+i). 

 

         v 

 y          C' 

                       

  D                     C             

 

        D'       B'  

               

 

              A' 

 A              B  x    

  z - plane                       u 

 

                 w - plane 

 

Solution 

 w = (1+i)z + (2+i) 

Under this transformation, 

 A(0, 0) is mapped into A
1
=(1+i) (0+0i)+2+i = 2+i = (2,1) 

 B(2, 0) is mapped into B
1
=(1+i) (2+0i)+2+i = 2+2i+2+i = 4+3i = (4, 3)  

 C(2, 2) is mapped into C
1
=(1+i) (2+2i)+2+i = 2+2i+2i = 2+5i = (2,5)  

D(0, 2) is mapped into D
1
 = (1+i) (0+2i)+2+i = 2i-2+2+i = 3i = (0,3) 
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∴ The required image region is another square A
1
 B

1
 C

1
 D

1
 as given in the 

figure. 

Problem 3 

 Show that by means of the inversion w = 
1

z
, the circle given by |z-3|=5 is 

mapped into the circle |w+ 
3

16
 | = 

5

16
 

Solution 

 The circle |z-3|=5 is mapped into | 
1

w
 - 3| = 5  [Since  z = 

1

w
 ] 

Now | 
1

w
 -3| = 5 ⟹ | 

1

u+iv
  -3| = 5 

 ⟹ | 
1−3u−3iv

u+iv
  | = 5 

 ⟹ | (1-3u)-3iv | = 5| u+iv| 

 ⟹ (1-3u)
2
 +9v

2
 = 25(u

2 
+ v

2
) 

 ⟹ 1-6u + 9u
2
 +9v

2
 = 25u

2 
+ 25v

2
 

 ⟹ 16u
2
 + 16v

2
 + 6u-1= 0 

 ⟹ u
2
 + v

2
 + 

6

16
 u - 

1

16
 = 0 

This is a circle with centre (−
3

16
, 0) and radius  ( 

3

16
)2 +

1

16
 

 [Since  centre = (-g, -f), radius =  g2 + f 2 − c   ] 

 =   
9

256
+

1

16
 

 =   
9+16

256
 =   

25

256
 = 

5

16
 

 Hence the image circle in the w-plane is given by the equation |w+
3

16
|=

5

16
 

Problem 4 

 Find the image of the circle |z-3i|=5 under the map w = 
1

z
 . 

Solution 

 The image of the circle |z-3i| =3 under the transformation w = 
1

z
 is given by the 

equation | 
1

w
 - 3i | =3 

 Now  | 
1

w
 - 3i | =3 
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 ⟹ | 
1

u+iv
 - 3i | =3 

 ⟹  | 
1−3i(u+iv)

u+iv
 | =3 

 ⟹  
|1−3iu +v|

u+iv
 =3 

 ⟹ | (1+3v)-3iu| = 3|u+iv| 

⟹  (1 + 3v)2 + (3u)2  = 3 u2 + v2 
  

 Squaring on both sides, 

 (1+3v)
2
 + (3u)

2
 = 9 (u

2
 + v

2
) 

⟹ 1+6v+9v
2
+9u

2
 = 9u

2
+9v

2
  

⟹ 6v+1 = 0 which represents a straight line. 

Hence the image of the circle |z-3i|=3 under w = 
1

z
 in the z-plane is the straight 

line 6v+1 = 0 in the w-plane. 

Problem 5 

 Find the image of the strip 2<x<3 under w = 
1

z
. 

Solution 

  The transformation w = 
1

z
 can be written in Cartesian coordinates as  z = 

1

w
 

    x+iy = 
1

u+iv
 

  = 
1

u+iv
 x 

u−iv

u−iv
 

 i.e.)  x+iy = 
u−iv

u2+v2
 

  ⟹  x = 
u

u2+v2
 , y = 

−v

u2+v2
 

 Now x > 2 ⟹  
u

u2+v2
 > 2  

 ⟹  u > 2 (u
2
 + v

2
) 

 ⟹  2u
2
 + 2v

2
 –u < 0 

 ⟹  u
2
 + v

2
 – 

u

2
 < 0 

Now u
2
 + v

2
 – 

u

2
 = 0 is the equation of a circle with centre ( 

1

4
 , 0) and radius 

1

4
 . 

Now x < 3 

 ⟹  
u

u2+v2
 < 3 
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 ⟹  3 (u
2
 + v

2
) > u 

 ⟹  3 (u
2
 + v

2
) –u > 0 

 ⟹  u
2
 + v

2
 – 

u

3
  > 0 

 2g = - 
1

3
 ⟹ g = - 

1

6
 , f=0; c=0 

  ∴ centre (-g, -f ) = ( 
1

6
, 0) 

 radius =  g2 + f 2 − c =  (
1

6
)2 + 0 − 0 = 

1

6
 

  u
2
 + v

2
 – 

u

3
  = 0 is the equation of the circle with centre ( 

1

6
, 0) and radius 

1

6
.   

  ∴ The region x > 2 mapped into a region represented by u
2
 + v

2
 – 

u2

2
  < 0, which 

is the interior of the circle with centre ( 
1

4
 , 0) and radius 

1

4
 . 

Also the region x < 3 is mapped into the exterior of the circle with centre ( 
1

6
, 0) and 

radius  
1

6
 . 

∴ The strip 2 < x < 3 is mapped. Onto the region bounded by the circles u
2
 + v

2
 = 

u

2
  

and  

 u
2
 + v

2
 = 

u

3
  in the w. plane 

    y 

         v 

 

 

 

 

 

 

    X             u 

   

 

 

  z – plane     w - plane 
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Bilinear Transformation 

 A transformation of the form w = T(z) =  
az +b

cz +d
     …. (1) where a, b, c, d are 

complex constants and ad-bc  ≠ 0 is called bilinear transformation or Mobius 

transformation. 

 We define T(∞) = 
a

c
 and T(- 

d

c
 ) = ∞. Hence T become a 1-1 onto map of the 

extended complex plane onto itself. 

 The inverse of (1) is given by 

 w = 
az +b

cz +d
      

 ⟹ w (cz +d) = az + b 

 ⟹ w cz + wd = az + b 

 ⟹ w cz - az = -dw + b 

 ⟹ z (cw - a) = -dw + b 

 ⟹ z = 
−dw + b

cw−a
      

∴ z = T
-1

(w) = 
−dw + b

cw−a
 which is also a bilinear transformation. 

Note :  

 All the elementary transformation (translation, rotation, magnification or 

contraction, Inversion) are bilinear transformations. 

Theorem: 

 Any bilinear transformation can be expressed as a product of translation, 

rotation magnification or contraction and inversion. 

Proof 

 Let w = T(z) = 
az +b

cz +d
 where ad-bc ≠ 0 be the given bilinear transformation 

Case (i) c=0 

 Hence  d ≠ 0 [∵  ad – bc ≠ 0] 

∴ (1) ⟹ w = 
az +b

d
  

  = ( 
a

d
 ) z + ( 

b

d
 ) 

 Now, let T1(z) = ( 
a

d
 ) z and T2(z) = z+( 

b

d
 )  

T1 and T2 are elementary transformations and (T2◦T1) (z) = T2 (T1(z)) 
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           = T2 [( 
a

d
 ) z] = 

a

d
 z + 

b

d
 

           = T(z) 

  ie.  (T2◦T1) (z) = T(z) 

case (ii)  c ≠ 0 

 w = 
az +b

cz +d
 

     = 
az +

ad

c
+ b− 

ad

c

 c[z + 
d

c
 ]

 

     = 
a z+

d

c
 + b−( 

ad

c
)

 c[z + 
d

c
 ]

 

     = 
a

c
 + 

b−(
ad

c
)

cz +d
 

Now let T1(z) = cz+d 

   T2(z) =  
1

z
  

   T3(z) = (b - 
ad

c
 ) z  

   T4(z) = z + ( 
a

c
 )  

    (T4◦T3◦T2◦T1) (z)  = T4◦T3◦T2(T1 (z)) 

   = T4◦T3◦T2(cz+d) 

   = T4◦T3  ( 
1

cz +d
) 

   = T4 [(
bc−ad

c
) (

1

cz +d
)]  

   = (
bc−ad

c
) (

1

cz +d
) + 

a

c
  

   = (
bc−ad +acz +ad

c(cz +d)
) 

   = 
(ac +b)

(cz +d)
 = 

az +b

cz +d
 = T(z) 

Hence the theorem. 

Solved Problems 

Problem 1 

 Show that the transformation w = 
5−4z

4z−2
 maps the unit circle |z| =1 into the circle 

of radius unity and centre - 
1

2
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Solution 

w = 
5−4z

4z−2
 

  4wz – 2w = 5-4z 

 (4w+4)z = 5+2w 

 Z = 
5+2w

4w+4
 

Now, |z| = 1 

 ⟹ z z  = 1 

 ⟹ ( 
5+2w

4w+4
 )  (

5+2w 

4w +4
) = 1 

 ⟹ (5+2w) (5+2w ) = (4w+4) (4w +4) 

 ⟹ 25+4ww  + 10w + 10w  = 16ww  +16+16w + 16w  

 ⟹ 12ww  + 6w  + 6w – 9 =0 

 ⟹ ww  + 
1

2
 w  + 

1

2
 w – 

3

4
 =0 

  This represents the equation of the circle with center - 
1

2
 and radius 

  
1

4
+

3

4
 =1.  Hence the result. 

 [∵ Equation of the circle is zz  + α z + α z  + β = 0 

∴ centre = -α and radius r =  α α − β ] 

Problem 2 

 Show that the transformation w = 
2z+3

z−4
 maps the circle zz  - 2 (z + z )=0 into a 

straight line given by 2(w+w )+3=0 

Solution 

 w = 
2z+3

z−4
 

  ∴ w(z-4) = 2z+3 

    z(w-2) =  3 + 4w 

 ∴ z = 
3+4w

w−2
    

 The image of the circle zz  – 2(z + z ) = 0 is 

 (
3+4w

w−2
) (

3+4w        

w−2
) -2 [ 

3+4w

w−2
 + ( 

3+4w        

w−2
 )] = 0 
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⟹ (
3+4w

w−2
)  (

3+4w 

w −2
)-2 [

3+4w

w−2
 + 

3+4w 

w −2
] = 0 

⟹ 
9+12w +12w+16ww 

 w−2 (w −2)
) – 

2[ 3+4w  w −2 + w−2  3+4w  ]

 w−2 (w −2)
 = 0 

⟹ 
16ww +12w +12w+9

 w−2 (w −2)
) – 

2[ 3w −6+4w −8w +(3w+4ww −6−8w )]

 w−2 (w −2)
 = 0 

⟹ 
16ww +12w +12w+9−2(8ww −5w−5w −12)

 w−2 (w −2)
 = 0 

⟹ 12w +12w+9+10w+10w +24=0 

⟹ 22w +22w+33 = 0 

⟹ 2(w+w ) +3 = 0 which is obviously a straight line. 

Problem 3 

 Show that w = 
z−1

z+1
 maps the imaginary axis in the z-plane onto the circle |w|=1. 

What portion of the z-plane corresponds to the interior of the circle |w|=1. 

Solution 

|w|=1 

⇔ |
z−1

z+1
 | = 1 

⇔ |z-1| = |z+1| 

⇔ |x+iy-1| = |x+iy+1| 

⇔  (x − 1)2 + y2 =   (x + 1)2 + y2  

⇔ (x-1)
2
+y

2
 = (x+1)

2
+y

2
  

⇔ x
2
-2x+1 = x

2
+2x +1 

⇔ 4x = 0 

⇔ x = 0 

  Hence the transformation w = 
z−1

z+1
 maps the imaginary axis x=0 onto the unit 

circle |w|=1. 

 Also since the point z=1 is mapped to w=0, it follows that the half plane x>0 is 

mapped onto the interior of the circle |w|=1. 
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Exercise 

1. Show that the transformation w = 
i−iz

1+z
 maps the unit circle |z|=1 into the real 

axis of the w-plane. 

2. Show that the transformation w = 
iz+2

4z+i
 maps the real axis in the z-plane to a 

circle in the w-plane. Find the centre and radius of the circle. 

4.8 Cross Ratio 

Definition 

 Let z1, z2, z3, z4 be four distinct points in the extended complex plane. The 

cross ratio of these four points denoted by (z1, z2, z3, z4) is defined by 

    
 z1−z3 (z2−z4)

(z1−z4)(z2−z3)
 if none of z1, z2, z3, z4 is ∞ 

    
 z1−z3 

(z1−z4)
 if z2 = ∞ 

 (z1, z2, z3, z4) =  
 z2−z4 

(z1−z4)
 if z3 = ∞ 

    
 z1−z3 

(z2−z3)
 if z4 = ∞ 

    
 z2−z4 

(z2−z3)
 if z1 = ∞ 

Theorem 4.8.1 

 Any bilinear transformation preserver cross ratio. 

Proof 

Let w = 
az +b

cz +d
 , ab-bc ≠ 0 be the given bilinear transformation 

Let z1, z2, z3, z4 be four distinct points.  

Let their images under this transformation bet w1, w2, w3, w4 respectively. 

We assume that all the zi and wi are different from ∞. 

Claim 

(z1, z2, z3, z4) = (w1, w2, w3, w4 ) 

   We have wi = 
az i +b

cz i +d
 (i=1, 2, 3, 4) 

   Now w1-w3 = 
az 1+b

cz 1+d
 - 

az 3+b

cz 3+d
 

  = 
(az 1+b) (cz 3+d)−(cz 1+d)((az 3+b)

 cz 1+d (cz 3+d)
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      (acz1z3+adz1+bcz3+bd) 

  =  
−(acz 1z3+bcz 1+adz 3+bd )

 cz 1+d (cz 3+d)
 

  = 
(ad−bc )z1+(bc−ad )z3

 cz 1+d (cz 3+d)
 

  = 
 ad−bc x(z1−z3)

 cz 1+d (cz 3+d)
 

  = k1 (z1-z3) (say) 

Similarly      w2 - w4 = k2(z2 - z4) 

   ∴ (w1-w3) (w3-w4) = k1 k2(z1-z3) (z2-z4) 

   = k(z1-z3) (z2-z4) 

Similarly we can prove that  

(w1 - w4) (w2-w3) = k(z1 - z4) (z2 - z3) 

   ∴ 
 w1−w3   w2−w4 

 w1−w4   w2−w3 
 = 

 z1−z3   z2−z4 

 z1−z4   z2−z3 
 

   ∴ (w1, w2, w3, w4) = (z1, z2,z3,z4) 

Hence the claim. 

The proof is similar if one of the zi or wi is ∞. 

Note 1 

Four distinct point z1, z2,z3,z4 are collinear or concyclic iff (z1, z2,z3,z4) is real. 

Note  2 

 The bilinear transformation which map the three points z1, z2,z3 to three points 

w1, w2, w3 is given by (z, z1, z2,z3) = (w, w1, w2, w3) 

Solved Problems 

Problem 1 

 Find the bilinear transformation which maps the points z1=2, z2=i, z3=-2 onto 

w1=1, w2=i, w3=-1 respectively. 

Solution 

 Let the image of any point z under the required bilinear transformation be w. 

Since bilinear transformation preserves cross ratio we have, 

 (w, 1, i, -1) = (z, 2, i, -2) 

 
 w−i   1+1 

 w+1   1−i 
 = 

 z−i   2+2 

 z+2   2−i 
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2 w−i 

w−i w+1−i
 = 

4(z−i)

2z−iz+4−2i
 

 (w-i) (2z-iz+4-2i) = (2z-2i) (w-iw+1-i) 

  ⟹ 2zw-iwz+4w-2iw-2iz-z-4i-2  

  =2zw-2iwz+2z-2iz-2iw-2w-2i-2 

 ⟹ iwz-3z+6w-2i = 0 

 ⟹ w(iz+6) = 3z+2i 

 ⟹ w = 
3z+2i

iz +6
 

This is the required bilinear transformation. 

Problem 2 

 Find the bilinear transformation which maps z1, z2, z3 to w1, w2, w3 respectively 

where z1=∞, z2=i, z3=0 and w1=0, w2=i, w3=∞ 

Solution  

 Let the image of any point z under the required bilinear transformation be w. 

Since bilinear transformation preserves cross ratio we have 

 (w, w1, w2, w3) = (z, z1, z2, z3) 

  ⟹ (w, 0, i, ∞) = (z, ∞, i, 0) 

 ⟹ 
w−i

0−i
 = 

z−i

z−0
 

 ⟹ zw-iz = -iz-1 

 ⟹ w = 
−1

z
 which is the  

required bilinear transformation. 

Problem 3 

Find the bilinear transformation which maps the points z1=0, z2=-i and z3=-1 into 

w1=i, w2=1 and w3=0 respectively. 

Solution 

 Let the image of any point z under the required bilinear transformation be w. 

Since bilinear transformation preserves cross ratio we have 

 (z, 0, -i, -1) = (w, i, 1, 0) 

  ∴ 
 z+i (0+1)

 z+1 (0+i)
 = 

 w−1 (i−0)

 w−0 (i−1)
 

  ⟹ w(i-1)(z+i) = i
2
(w-1)(z+1) 
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  ⟹ w(zi-1–z-i) = - (wz+w-z-1) 

 ⟹ wzi-1w–zw-wi = -wz-w+z+1 

 ⟹ wi(z-1) = z+1 

 ⟹ w = 
z+1

i(z−1)
 

∴ w = -i ( 
z+1

z−1
 ) which is the required bilinear transformation. 

Problem 4 

 Determine the bilinear transformation which maps 0, 1, ∞ into i, -1, -i 

respectively. Under this transformation show that the interior of the unit circle of the 

z-plane maps onto the half plane left to the v-axis (left half of the w-plane). 

Solution 

 The required bilinear transformation is given by the equation, 

 (w, i, -1, -i) = (z, 0, 1 ∞) 

  ∴ 
(w+1)(i+1)

(w+i)(i+1)
 = 

z−1

0−1
 

 ⟹ 
2i(w+1)

wi +w−1+i
 = 1-z 

 ⟹ 2iw+2i = wi+w-1+i-ziw-zw+z-iz 

 ⟹ wi-w+zwi+zw=-i-1+z-iz 

 ⟹ w[(i-1)+z(i+1)] = z(1-i)-(1+i) 

  ∴ w =  
z 1−i − (1+i)

z 1+i −(1−i)
   

         =  
z−( 

1+i

1−i
 )

z−( 
1−i

 1+i
 )
   

         =  
z−i

z−1
i 
 = 

z−i

(z+i)
 

∴ The required bilinear transformation is w = 
z−i

(z+i)
 

  The equation of the left  half of the  w-plane  and the interior  of the  unit circle 

in z-plane are Re w < 0 and |z|<1 respectively. 

 Now Re w < 0 ⇔ Re ( 
z−i

z+i
 ) < 0 

     ⇔ Re [ 
 z−i (z −i)

|z+i|2
) < 0 

    ⇔ Re [(z-i) (z -i) < 0 
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    ⇔ Re [(zz -i (z+z )-1)] < 0 

    ⇔ Re (zz ) -1< 0   [∵ i(z + z ) is imaginary] 

    ⇔ [z]
2
 < 1 

    ⇔ [z] < 1 

∴ The left half plane is mapped into the interior of the unit circle. 

4.9  Fixed Points of Bilinear Transformations 

  If w = f(z) is any transformation from the z-plane to w-plane, the fixed points 

of the transformation are the solutions of the equation z=f(z). 

  Consider a bilinear transformation given by w = 
az +b

cz +d
 where ad-bc ≠ 0 

 The fixed points or invariant points of the bilinear transformation are given by 

the roots of the equation z = 
az +b

cz +d
  . 

   i.e.  cz
2
 + (d-a)z-b = 0 

case (i)    c ≠ 0; (d-a)
2
+4bc ≠ 0 ⟹ 2 finite fixed points 

case (ii)   c ≠ 0; (d-a)
2
+4bc = 0 ⟹ one finite fixed point. 

case (iii)  c = 0; a ≠ d ⟹ ∞ and one finite fixed point. 

case (iv)  c = 0, a = d ⟹ ∞ is the only fixed point. 

Theorem 4.9.1 

  Any bilinear transformation having two finite fixed points α and β can be 

written in the form 
w−α

w−β
 = k ( 

z−α

z−β
 ). 

Proof 

 Let T be the given bilinear transformation having α and β as fixed points. Let 

the image of any point γ under T be δ. 

 Then the bilinear transformation T is given by (w, δ, α, β) = (z, γ, α, β). 

  ∴  
 w−α (δ−β)

 w−β (δ−α)
  = 

 z−α (γ−β)

 z−β (γ−α)
  

  ⟹ 
w−α

w−β 
 = k 

 z−α 

 w−β 
  where k = 

 γ−β (δ−α)

 γ−α (δ−β)
  

Definition 

 Let T be a linear transformation with two finite fixed points α, β. If k = 

 γ−β (δ−α)

 γ−α (δ−β)
 is real, T is called hyperbolic and if |k| = 1, T is called elliptic. 
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Theorem 4.9.2 

  Any bilinear transformation having ∞ and α ≠ ∞ as fixed points can be written 

in the form w – α = k(z- α). 

Proof  

 Let T be the given bilinear transformation having ∞ and α as fixed points. Let 

the image of any point γ under T be δ. 

 Then the bilinear transformation is given by (w, δ, α, ∞) = (z, γ, α, ∞) 

 ∴ 
w−α 

δ−α
  = 

z−α 

γ−α
 

 ⟹ w–α = ( 
δ−α 

γ−α
 ) (z – α) 

 ⟹ w–α = k (z-α) where k = 
δ−α 

γ−α
 

Definition 

 A bilinear transformation with only one finite fixed point is called parabolic. 

Theorem 4.9.3 

 Any bilinear transformation having ∞ as the only fixed point is a translation. 

Proof 

 Let w = 
az +b 

cz +d
 be the bilinear transformation having ∞ as the only fixed point. 

 Then c=0 and a=d 

∴ The bilinear transformation reduces to the form w = 
az +b 

a
 

∴  w = z +( 
b 

a
) which is a translation. 

Theorem 4.9.4 

  Let C be a circle or a straight line and z1, z2 be inverse points or reflection 

points with respect to C. Let w1, w2 and C1 be the images of z1, z2 and C under a 

bilinear transformation. Then w1 and w2 are inverse points or reflection points with 

respect to C1. (i.e.) a bilinear transformation preserves inverse points. 

Proof 

 Let the equation of C be 

 ρzz  + αz  + α z + β = 0  (1) 

 since z1 and z2 are inverse points w.r. to C by a theorem, we have 

 ρz1z 2 + αz 2 + α z1 + β = 0  (2) 
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 Let the given bilinear transformation be w = 
az +b 

cz +d
 where ad-bc ≠ 0 

 ∴ z = 
dw−b 

−cw +a
 

Under the given bilinear transformation (1) is transformed into 

 ρ [
dw−b 

−cw +a
] [

d  w   −b  

−c  w +d 
 ] + α [ 

d w −β  

−c  w +a 
 ] + α   [

dw−β 

−cw +a
 ] + β = 0  (3) 

Also (2) is transformed into, 

ρ [
dw1−b 

−cw1+a
 ] [ 

d w 2−b   

−c w 2+a 
 ] +α [

d w 2−b   

−c w 2+a 
] +α  [

dw1−b  

−cw1+a
] + β = 0   (4) 

clearly (4) is the condition for w1 and w2 to be the inverse points with respect to (3). 

Hence the theorem. 

Note: 

 We shall regard the centre of the circle and ∞ as inverse points with respect to 

the circle. 

Solved Problems 

Problem 1 

 Find the invariant points of the transformation w = 
z 

2−z
 . 

Solution 

The invariant points of w = f(z) are got from f(z) =  z. 

∴ f(z) = z ⟹ z = 
z 

2−z
 

 2z –z
2
-z = 0 

⟹ z – z
2
 = 0 

⟹ z (1– z) = 0 

⟹ z = 0 or z = 1 

∴ The invariant points are 0, 1. 

Problem 2 

 Find the invariant points of the transformation w = 
1 

z−2i
 

Solution 

 f(z) = z 

  ⟹ z = 
1 

z−2i
 

 ⟹ z
2
-2iz-1 = 0 
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 ⟹ (z-i)
2
 = 0 

 ⟹ (z-i) = 0 

 ⟹ z = i 

Hence i is the only fixed point. 

Problem 3 

 Prove that the transformation w = z  is not a bilinear transformation. 

Solution 

Any bilinear transformation, other than the identity transformation has two 

fixed points. However the transformation w = z  has infinitely many fixed points, 

namely all real numbers.  Hence it is not a bilinear transformation. 

4.10 Special Bilinear Transformation 

Theorem 4.10.1 

 A bilinear transformation w = 
az +b 

cz +d
 where ad-bc ≠ 0 maps the real axis into 

itself if and only if a, b, c, d are real. Further this transformation maps the upper half 

plane. Im z ≥ 0 into the upper half plane Im w ≥ 0 if and only if ad-bc > 0. 

Proof 

 Suppose a, b, c, d are real. 

 Then obviously z is real ⟹ w is also real. 

∴ The real axis is mapped into itself. 

Conversely consider any bilinear transformation T that maps the real axis into itself.  

∴ There exist real number x1, x2, x3 such that T(x1)=1, T(x2)=0 and T(x3)= ∞ 

∴ The bilinear transformation T is given by (z, x1, x2, x3) = (w, 1, 0, ∞) 

 ⟹ 
 z−x2 (x1−x3) 

 z−x3 (x1−x2)
 = 

w−0 

1−0
 = w 

∴ w = 
az +b 

cz +d
 where a = x1-x3; b= -x2(x1-x3), c=(x1-x2) and d=-x3(x1-x2) 

Since x1, x2, x3 are real, a, b, c, d are also real. 

Now  2i Imw = w-w     [∵ Im w = 
w−w  

2i
 ] 

⟹2i Im w = 
az +b 

cz +d
 – 

az +b 

cz +d
 

        = 
 acz z + adz +bc z + bd − (acz z + ad z  + bcz +bd )

 cz +d (cz +d)
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        = 
ad z−z  + bc (z −z)

|cz +d|2
 

        = 
 ad−bc (z−z )

|cz +d|2
 

        = 2i [  
 ad−bc 

|cz +d|2
 ] Im z [∵ Im z = 

z−z 

2i
 ] 

     ∴ Im w =  
(ad−bc )

|cz +d|2
 Im z. 

∴ The upper half plane Im z ≥ 0 is mapped onto the upper half plane.  

    Im w ≥ 0 ⇔ ad-bc>0. 

Theorem 4.10.2 

 Any bilinear transformation which maps the unit circle |z|=1 onto the unit circle 

|w|=1 can be written in the form w=e
iλ

 [ 
z−α

α z−1
 ] where k is real. 

 Further  this  transformation  maps  the  circular disc |z| ≤ 1 onto  the circular  

disc |w| ≤ 1 iff |α|<1. 

Proof 

 Let w = 
az +b

cz +d
 where ad-bc ≠ 0 be any bilinear transformation which maps |z|=1 

onto |w|=1 

 0 to ∞ are inverse points with respect to the circle |w|=1. 

 Hence their pre-images (- 
b

a
 ) and (- 

d

c
 ) are inverse points with respect to |z|=1. 

∴ (- 
b

a
 )  (- 

d 

c
 ) = 1 [using theorem in 4.2] 

∴ If α = -( 
b

a
 ) then ( 

1

α 
 ) = - 

d

c
  

∴  w = 
az +b

cz +d
 

         = 
a[(z− −

b

a  
 ]

c[z−(− 
d

c 
 )

 

         = ( 
a

c
 )  [ 

z−α

z−
1

α 

 ] 

         = ( 
aα 

c
 )  ( 

z−α

α z−1
 ) 

Now let |z| = 1  Hence |w|=1 

∴ 1=|w| = | 
aα 

c
 | |

z−α

α z−1
| 

    = | 
aα 

c
 | |

z  −α 

α z−zz 
|  [since zz  =1 ] 



124 
 

   = | 
aα 

c
 | |

z  −α 

α −z 
|   

   = | 
aα 

c
 | 

Thus | 
aα 

c
 | = 1 

∴ 
aα 

c
 = e

iλ
 for some real number λ 

∴ w = e
iλ
 (

z−α

α z−1
 ) where λ is real. 

Now ww  -1   = e
iλ
 (

z−α

α z−1
 ) e

-iλ   
[

z  −α 

αz −1
 ] -1 

  =  
 z−α (z  −α )

 α z−1 (αz −1)
 ) – 1 

   = 
 zz − α z−αz −αα  −(αα zz −α z−αz +1)

 α z−1  αz −1 
 

  = 
zz −(1−αα )+ αα −1)

|αz −1|2
 

  = 
 1−αα  (zz −1)

|αz −1|2
 

 The transformation maps  |z|≤1onto |w|≤1 

   ⇔ 1-αα  > 0 

  ⇔ αα  < 1 

  ⇔ |α| < 1 

Theorem 4.10.3 

 Any bilinear transformation which maps the real axis onto unit circle |w|=1 can 

be written in the form w = e
iλ
( 

z−α

z−α 
 ) where λ is real. 

 Further this transformation maps the upper half plane Im z ≥ 0 onto the unit 

circular disc |w|≤1 iff Im α > 0. 

Proof 

 Let w = 
az +b

cz +d
 where ad-bc ≠ 0 be any bilinear transformation which maps the 

real axis onto the unit circle |w|=1.  0 and ∞ are inverse points with respect to the unit 

circle |w|=1. 

 Hence their pre-images – ( 
b

a
 ) and – ( 

d

c
 ) are reflection points with respect to 

the real axis. 

 ∴ If α = – ( 
b

a
 ) then α  = - ( 

d

c
 ) 
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Now w = 
az +b

cz +d
  

   =  ( 
a

c
 ) [ 

z+ 
b

a

z+
d

c

 ] 

   =  ( 
a

c
 ) [ 

z− α

z−α 
 ] 

Now suppose z is real. 

 Hence |w|=1 

 ∴ | 
a

c
 | | 

z− α

z−α 
 | = 1 

Now since z is real, z = z  and hence 

 |z – α|  = |z –  α       
| 

  = | z  - α | 

  = |z - α | 

∴ | 
a

c
 | = 1.  Hence 

a

c
 = e

iλ
, λ is real. 

∴ w = e
iλ
 ( 

z− α

z−α 
 ) where λ is real the required transformation  

 Now ww  -1 = e
iλ

( 
z− α

z−α 
 ) e

-iλ
  ( 

z − α  

z −α
 ) -1 

       = [ 
z− α

z−α 
 ] [

z − α  

z −α
]-1 

  = 
 zz −α z−αz +αα  −  zz −αz−α z +αα   

|z−α |2
 

 = 
 αz+α z −αz +α z 

|z−α|2
 

 = 
 α−α ) (z−z  

|z−α|2
 

  = 
 2iIm α) (2iImz  

|z−α|2
 

 = 
−4Imz  Imα

|z−α|2
 

∴ The bilinear transformation maps the upper half plane Im z ≥ 0 onto the disc |w| ≤ 1 

iff Im α > 0. 

Solved Problems 

 Find the general bilinear transformation which maps the unit circle |z|=1 onto 

|w|=1 and the points z=1 to w=1 and z=-1 to w=-1. 
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Solution 

 We know any bilinear transformation which maps |z|=1 onto |w|=1 is of the 

form w = e
iλ 

( 
z− α

α z−1
 ) where λ is real. Since 1 and -1 are again mapped to 1, -1 

respectively we have  

 1 = e
iλ 

( 
1− α

α −1
 )    (1) 

 -1 = e
iλ 

( 
−1− α

−α −1
 ) = e

iλ 
( 

1+ α

(1+α )
 )   (2) 

Dividing (1) by (2) 

 -1 =  ( 
1− α

α −1
 ) (

1+ α 

(1+α)
 )    

 -(α -1) (1+α) = (1-α) (1+α ) 

⟹ -[α  + αα -1-α] = 1+ α  – α - αα    

⟹ -α  - αα +1+α = 1+ α  – α - αα    

⟹ 2α-2α  = 0 

⟹ α = α       (3) 

Using (3) in (1) we get 

 1=  e
iλ
 ( 

 1− α

α−1
 ) 

  ⟹ e
iλ 

= -1 

∴ The required transformation is w = 
α−z

αz−1
. 

Problem  2 

 Prove that the transformation given by α wz–bw + b z+a=0 maps the unit circle 

|z|=1 onto the unit circle |w|=1 if |b| ≠ |a|. 

Solution 

 a wz – bw - b z+a = 0 

  ∴ w = 
b z− a

a z−b
 

Now ww  -1 = ( 
b z−a

a z−b
 ) ( 

bz −a 

az −b 
 ) -1 

          =  
(bb zz −a  b z−ab z +aa )−(a az z −ab    z−ab z +bb )

 a z−b  az −b  
 

          =  
|b|2zz +|a|2−|a|2zz −|b|2         

| a z−b |2
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          =  
zz (|b|2− a|2 −(|b|2−|a|2)

|a z−b|2
  

          =  
(|b|2− a|2 (zz −1)

|a z−b|2
  

If |b| ≠|a| then ww -1=0 ⇔ zz -1=0 

∴ The unit circle |z|=1 is mapped onto the unit circle |w|=1 if |b| ≠ |a|. 
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UNIT V 

 

5.1  Complex Integration 

Definition 

 Let f(t) = u(t)+iv(t) be a continuous complex valued function defined on [a, b]. 

We define ∫  
b

a
f(t)dt = ∫  

b

a
u(t)dt+i∫  

b

a
v(t)dt 

Remark 

1.  Re∫  
b

a
f(t)dt =∫  

b

a
Re[f(t)]dt. 

2.  Im∫  
b

a
f(t)dt = ∫  

b

a
Im[f(t)]dt. 

3. ∫  
b

a
[f(t)dt + g(t)]dt = ∫  

b

a
f(t)dt + ∫  

b

a
g(t)dt . 

4. ∫  
b

a
cf(t)dt = c∫  

b

a
f(t)dt where c is any complex constant. 

Lemma : 

 |∫  
b

a
f(t)dt| ≤ ∫  

b

a
|f(t)|dt 

Proof 

 Let ∫  
b

a
f(t)dt = re

i
 

 |∫  
b

a
f(t)dt|=|re

i
| = |r(cos + i sin )| 

     = |r (cos + ir sin | 

     =  r2cos2 + r2sin2 = r 

     = e
-i 
∫  

b

a
f(t)dt 

     = Re(e
-i 
∫  

b

a
f(t)dt)  (since r is real) 

     = Re(∫  
b

a
 e

-i 
f(t)dt))  

     = ∫  
b

a
 Re(e

-i 
f(t)dt))  

     ≤ ∫  
b

a
|e

-i 
f(t)|dt 

     = ∫  
b

a
|e

-i 
||f(t)|dt 

     = ∫  
b

a
|f(t)|dt 

   [∴ |e
-i 

| = 1] 
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Thus |∫  
b

a
f(t) dt| ≤ ∫  

b

a
|f(t)|dt 

Definition 

 Let C be a piecewise differentiable curve given by the equation z=z(t) where 

a≤t≤b. Let f(z) be a continuous complex valued function defined in a region 

containing the curve C.  We define ∫  
 

C
f(z)dz = ∫  

b

a
f(z(t)) z(t)dt. 

Example 1 

  ∫  
 

C

dz

z−a
 = 2πi where C is the circle with centre a, radius r given by the equation 

z = a+re
it
, 0 < t < 2π . 

∫
dz

z−a
 = ∫  

2π

0

rie it

re it
 dt 

 = i∫  
2π

0
dt = 2πi 

Remark 

1.  ∫  
 

−C
f(z)dz = -∫  

 

C
f(z)dz  

2.  ∫  
 

c
f(z)dz = -∫  

 

C1
f(z)dz +∫  

 

C2
f(z)dz +… + ∫  

 

Cn
f(z)dz where  

 C =  C1+ C2 + ….+Cn. 

Definition 

 Let C be a  pricewise  differentiable  curve given  by the equation  z=z(t) where 

a ≤ t ≤ b. Then the length ℓ of C is defined by ℓ = ∫  
b

a
|z(t)|dt. 

Example  2 

 Consider the circle C with centre a and radius r. The parameter equation of C is 

given by z=a+re
it
 where 0< t < 2π. 

 z(t) = ire
it
   

 ℓ = ∫  
2π

0
|z'(t)|dt 

  ∴  ℓ = ∫  
2π

0
|ire

it
|dt 

        = ∫  
2π

0
rdt = r(t)0

2π  

        = 2 πr. 

Theorem 5.1.1 

 |∫  
 

C
f(z)dz | ≤   Mℓ where 

 M =  max{|f(z)|/zC} and ℓ is the length of C. 
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Proof 

 Suppose C is given by the equation z = z(t) where a ≤ t ≤ b. By definition of M, 

we have  |f(z(t))| ≤ M for all t, a≤t≤b. … (1) 

 Now | ∫  
 

c
f(z)dz | = |∫  

b

a
f(z(t))z(t)dt| 

         ≤ ∫  
b

a
|f(z(t))z(t)|dt 

       = ∫  
b

a
|f(z(t))||z(t)|dt 

       ≤ ∫  
b

a
M|z(t)|dt using (1) 

      = M ∫  
b

a
 |z(t)|dt = Mℓ 

∴ |∫  
 

c
f(z)dz| ≤ Mℓ. 

Solved Problem 

            0  if n ≠ 1 

1. Prove that ∫  
 

C

dz

(z−a)n
 =    where C is the circle with centre a and radius  

            2πi if n=1  r and nZ. 

Solution 

 The parametric equation of the circle C is given by z-a=re
i

, 0 ≤ t ≤ 2π 

 
dz

dt
 = z(t) = ire

it
. 

 ⟹ dz = ire
it
 dt  

Now ∫  
 

c

dz

(z−a)n
 = ∫  

2π

0

ire it

(re it )n
 dt 

  = 
i

rn−1
   ∫  

2π

0
e

i(1-n)t 
dt 

  = 
i

rn−1
  

ei 1−n t

i(1−n)
  

 0

 2π

      provided n ≠ 1 

  = 
i

(1−n)rn−1
  [e

i(1-n)2π
 – e

0
] 

  = 
1

(1−n)rn−1
  [1-1] 

  = 0 

If n=1,  ∫  
 

C

dz

z−a
 = 2πi (Refer example (1)] 
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Problem 2 

 Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first 

quadrant.  Without actually evaluating the integral show that |∫  
 

C

dz

z2+1
 | = 

π

3
 

Solution 

 Let f(z) = 
1

z2+1
 

 Since C is the circular arc of radius 2 lying in the first quadrant, the length ℓ of 

C is given by 

 ℓ = 
1

4
 (2π x 2) = π 

Also on C, |z
2
+1| = |z

2
-(-1)| ≥ |z

2
| - |-1|  

         = |z|
2
-1  

         = 4-1=3 

Thus |z
2
+1| ≥ 3 

⟹ | 
1

z2+1
 | ≤ 

1

3
 

∴ By theorem 5.1.1  |∫  
 

c

dz

z2+1
 | ≤ 

π

3
 

Problem 3 

  Show that ∫  
 

C
|z|

2
dz = -1+i where C is the square with vertices O (0,0), A(1,0), 

B(1,1) and C(0, 1) 

Solution  

 C=C1+C2+C3+C4 where C1,C2,C3 and C4 are the line segments OA, AB, BC and 

CO as shown in the figure. The parametric equation of C1 is given by x=t and y=0 

where 0≤t≤1. 

Hence z(t)=t and z(t)=1 

∴ ∫  
 

C1
|z|

2
dz = ∫  

1 

0
t
2
dt = [

t3

3
 ]0

1 = 
1

3
 

The parametric equation of C2 is given by y=t and x=1 where 0≤t≤1. Hence 

 Z(t) = 1+it 

⟹ z(t)=i 

∴ ∫  
 

C2
|z|

2
dz = ∫  

1 

0
|1+it|

2
idt 

  = i ∫  
1 

0
(1+t

2
)dt 
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 = i [t+ 
t3

3
 ]0

1  

 =  
4i

3
 

The parametric equation of C3 is given by y=1 and x=1-t; 0 ≤ t ≤ 1 

Hence z(t) = (1-t)+i 

⟹ z(t) = -1 

∴ ∫  
 

C3
|z|

2
dz = ∫  

1 

0
|(1-t)

2
+1](-1)dt 

         = -∫  
1 

0
(t

2
-2t+2)dt 

        = -[
t3

3
 - 2 

t2

2
 + 2t]0

1  

        = -
4

3
 

The parametric equation of C4 is given by x=0, y=1-t, 0 ≤ t ≤ 1 

Hence z(t)=i(1-t) and z(t)=-i 

∴ ∫  
 

C4
|z|

2
dz = ∫  

1 

0
 (1-t)

2 
(-i)dt 

         = -i [
(1−t)3

3
]0

1  = - 
i

3
 

Hence ∫  
 

C
 f(z)dz = 

1

3
 + 

4i

3
 - 

4

3
 - 

i

3
  

        = -1 + i 

5.2  Cauchy’s Integral theorem 

Definition 

 Let p(x, y) and q(x,y) be two real valued functions. Then the differential 

equation p(x, y)dx+q(x, y)dy = 0 is said to be exact if there exist a function u(x, y) 

such that 
∂u

∂x
 = p and 

∂u

∂y
 = q. 

Note 

 ∫  
 

C
pdx+qdy depends only on the end points of C if and only if the integrand is 

exact. 

Theorem 5.2.1 

 Let f(z) be a continuous complex valued function defined on a region D. Then 

∫  
 

C
f(z)dz depends only on the end points of C if and only if there exists an analytic 

function F(z) such that F(z)=f(z) in D. 
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Proof 

 ∫  
 

C
f(z)dz = ∫  

 

C
f(z)(dx+idy)   [since z = x+iy] 

     = ∫  
 

C
f(z) dx+if 

∫  
 

C
f(z)dz depends only on the end points of C if and only if there exist a function F(z) 

defined on D such that 
∂F

∂x
 = f(z) and 

∂F

∂y
 = if (z). 

∴
∂F

∂x
 = 

1

i
  
∂F

∂y
  so that 

∂F

∂x
 = -i 

∂F

∂y
 which is the complex form of the Cauchy Rieman 

equation for F(z). 

 Since f(z) is continuous, the partial derivatives of F(z) are also continuous and 

hence F(z) is analytic in D and F(z)=f(z). Hence the theorem. 

Corollary 1 

 Let f(z) be a continuous complex valued function defined on a region D then 

∫  
 

C
f(z) dz = 0 for every closed curve C lying in D iff there exist an analytic function 

F(z) such that F(z)=f(z) in D. 

Corollary 2 

   ∫  
 

C
 (z-a)

n
 dz = 0 for every closed curve C provided n ≥ 0. 

Theorem 5.2.2  (Cauchy’s theorem) 

 Let f be a function which is analytic at all points inside and on a simple closed 

curve C. Then ∫  
 

C
 f(z) dz = 0 

Proof 

 Let D be the closed region consisting of all points interior to C together with 

the points on C. 

 Let ε > 0 be given. 

 Let Cj(j=1, 2, …, n) denote the boundaries of the squares and partial squares 

covering D such that there exist a point zj lying inside or on Cj satisfying 

 |
f z −f(zj )

z−zj
 f (zj)|< ε    (1) 

for all z distinct from zj and lying within or on cj. 

   
f z −f(zj )

z−zj
 - f (zj) if z≠zj  

Let δj(z) =   

  0   if z = zj  
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Clearly δj(z) is a continuous function  

   f(z) = f(zj)-zj f(zj)+ z f(zj)+(z-zj) δj(z) 

∴ ∫  
 

Cj
 f(z)dz = ∫  

 

Cj
f(zj)dz-∫  

 

Cj
zj f (zj)dz +∫  

 

Cj
z f (zj)dz +∫  

 

Cj
(z-zj) δj(z)dz 

           = f(zj)∫  
 

Cj
dz-zj f (zj)∫  

 

Cj
dz + f (zj) ∫  

 

Cj
zdz + ∫  

 

Cj
(z-zj) δj(z)dz 

          = ∫  
 

Cj
(z-zj) δj(z)dz.   [since ∫  

 

Cj
dz=0 and ∫  

 

Cj
zdz=0 

∴    n
j=1 ∫  

 

Cj
f(z)dz =   n

j=1 ∫  
 

Cj
(z-zj) δj(z)dz     (2) 

 Now in the sum   n
j=1 ∫  

 

C j
f(z)dz the integrals along the common boundary of 

every pair of adjacent sub regions cancel each other (since the integral is taken in one 

direction along that line segment in one subregion and in the opposite direction in the 

other) (refer figure) 

 Hence only the integrals along the arcs which are the parts of C remain. 

∴    n
j=1 ∫  

 

Cj
f(z)dz = ∫  

 

C
f(z)dz 

∴ From (2) ∫  
 

C
f(z)dz =   n

j=1 ∫  
 

Cj
(z-zj) δj(z)dz 

∴|∫  
 

C
f(z)dz| = |  n

j=1 ∫  
 

Cj
(z-zj) δj(z)dz| ≤   n

j=1 ∫  
 

C
|(z-zj)δj(z)|dz 

         =   n
j=1 ∫  

 

Cj
| z-zj| |δj(z)|dz 

∴|∫  
 

C
f(z)dz| ≤   n

j=1 ∫  
 

Cj
| z-zj| |δj(z)|dz      (3) 

Now if Cj is a square and sj is the length of its side then |z-zj| <  2 sj for all z on Cj. 

Also from (1) we have |δj(z)|<ε and hence ∫  
 

Cj
|z-zj||δj(z)|dz < ( 2sjε) (4sj) [by theorem 

5.1.1] 

  = 4 ( 2Ajε)          (4) 

 Where Aj is the area of the squre Cj.  

 Similarly for a partial square with boundary Cj if lj  is the length of the arc of C 

which forms a part of Cj.  

We have ∫  
 

Cj
|z-zj||δj(z)|dz < ( 2sj)ε(4 sj+lj)<(4 2Aj ε+ 2 slj (5) 

Where S is the length of a side of some square containing the entire region D as 

well as all the squares originally used in covering D. 
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We observe that the sum of all Aj’s that occur in the right hand side of (4) and 

(5) do not exceed S
2
 and the sum of all the ℓj’s is equal to L (the length of C) using (4) 

and (5) in (3) we obtain 

|∫  
 

C
f(z)dz| < (4 2S

2
 +  2 SL)ε 

 = kε where k = 4 2S
2
 +  2 SL is a constant. 

Thus |∫  
 

C
f(z)dz| < k ε 

Since ε is arbitrary we have ∫  
 

C
f(z)dz = 0 

Definition 

 A region D is said to be simply connected if every simple closed curve lying in 

D encloses only points of D. 

Definition 

 A region which is not a simply connected is said to be multiply connected 

region. 

Theorem 5.2.3 (Cauchy’s theorem for simply connected regions) 

 Let f be a function which is analytic in a simply connected region D. Let C be 

any simple closed curve lying within D.  Then ∫  
 

C
f(z)dz = 0. 

Theorem 5.2.4  (Cauchy’s theorem for multiply connected regions) 

 Let C be a simple closed curve. Let Cj (j=1, 2, …, n) be a finite number of 

simple closed curves lying in the interior of C such that the interiors of Cj’s are 

disjoint. Let D be the closed region consisting of all parts within and on C except the 

points interior to each Cj. Let B denote the entire oriented boundary of D consisting of 

C and all the Cj described in a direction such that the points of D are to the left of B. 

Let f be a function which is analytic in D. Then ∫  
 

B
f(z)dz = 0. 

5.3   Cauchy’s Integral Formula 

Theorem 5.3.1 

 Let f(z) be a function which is analytic inside and on a simple closed curve C. 

Let z0 be any point in the interior of C. Then f(z0) = 
1

2πi
 ∫  

 

C

f(z)

z−z0
 dz. 

Proof 

     Choose a circle Co with centre z0 and radius r0 such that C0 lies in the interior of C. 
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 Now z0 is the only point inside C at which the function 
f(z)

z−z0
 is not analytic and 

hence is analytic in the region D consisting of all points inside and on C except the 

points interior to C0. 

 Hence ∫  
 

C

f(z)dz

z−z0
 = ∫  

 

C0

f(z)dz

z−z0
  

 = ∫  
 

C0
( 

f z −f z0 +f z0 

z−z0
 ) dz  

 = ∫  
 

C0
 

f z −f z0 

z−z0
  dz + ∫  

 

C0
 

f z0 

z−z0
 dz 

 = ∫  
 

C0
( 

f z −f z0 

z−z0
 ) dz+ f(z0) ∫  

 

C0

 dz 

z−z0
  

 = ∫ (
 

C0

f z −f z0 

z−z0
 )dz+ f(z0) (2πi) 

Thus ∫  
 

C

f(z)dz

z−z0
 = ∫  

 

C0

f z −f(z0)

z−z0
 dz + (2πi) f(z0)      (1) 

Claim  

 ∫ (
 

C0

f z −f z0 

z−z0
 )dz = 0 

 Since f(z) is analytic inside and on C, it is continuous at z0. 

 ∴ Given ε > 0 there exist. δ>0 such that |z-z0) < δ  ⟹ |f(z) - f(z0)|<ε 

 If we choose r0 < δ, then |z-z0| < r0 ⟹ |f(z)-f(z0)|<ε 

Hence |∫ (
 

C0

f z −f z0 

z−z0
 )dz | < ( 

ε

r0
 ) (2π r0) [By theorem 5.1.1] 

Thus |∫ (
 

C0

f z −f z0 

z−z0
 )dz | < 2π ε 

Since ε is arbitrary we have ∫ (
 

C0

f z −f z0 

z−z0
 )dz=0  

Hence the claim. 

From (1), we get ∫  
 

C

f z 

z−z0
 dz = 2πi f(z0) 

∴ f(z0) = 
1

2πi 
 ∫  

 

C

f z 

z−z0
 dz. 

Theorem 5.3.2 

Let f(z) be analytic in a region D bounded by two concentric circles C1 and C2 and on 

the boundary. Let z0 be any point in D. Then  

 f(z0) = 
1

2πi 
 ∫  

 

C1

f z 

z−z0
 dz - 

1

2πi 
 ∫  

 

C2

f z 

z−z0
 

 



137 
 

Example 

 Consider ∫  
 

C

dz

z−3
 where C is the circle |z-2|=5 

 Let f(z)=1 

The point z=3 lies inside C. 

Hence by Cauchy’s integral formula, 

∫  
 

C

dz

z−3
= 2πi f(3) = 2πi 

Example 2 

 Let C denote the unit circle |z|=1 

 Then ∫  
 

C

ez

z
 dz = ∫  

 

C

ez

z−0
 dz 

   ∫  
 

C

ez

z−0
 dz = 2πi e

0
 = 2πi 

Solved Problems 

Problem 1 

 Evaluate using Cauchy’s integral formula 
1

2πi
 ∫  

 

C

z2+5

z−3
 dz.  Where C is |z|=4 

Solution 

 f(z) = z
2
+5 is analytic inside and on |z| = 4 and z = 3 lies inside it. 

 

 ∴ By Cauchy’s integral formula, 

1

2πi
 ∫  

 

C

z2+5

z−3
 dz = f(3) 

   = 3
2
+5=14 

Problem 2 

 Evaluate ∫  
 

C

ez

z2+4
 dz where C is positively oriented circle |z-i|=2 

Solution 

 
1

z2+4
 =  

1

 z+2i (z−2i)
  

         =  
1

4i
 (

1

z−2i
 - 

1

z+2i
) by partial fraction. 

Now, 2i lies inside C and by Cauchy’s integral formula we have ∫  
 

C

ez

z−2i
 dz = 2πi e

2i
 

Also -2i lies outside C and hence ∫  
 

C

ez

z2+4
 dz is analytic inside and on C.  
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Hence by Cauchy’s theorem 
ez

z+2i
 dz = 0 

∫  
 

C

ez

z2+4
 dz = 

1

4i
 (2πi e

2i
-0)= 

π

2
 e

2i
 

Problem 3 

 Evaluate ∫  
 

C
(

sin πz2+cos πz2

 z−1 (z−2)
)dz 

Where C is the circle |z|=3 

Solution  

 By partial fraction 

 
1

 z−1 (z−2)
 = 

1

z−2
 - 

1

z−1
 

 Let f(z) = sin π z
2
 + cos πz

2
 

Then f(z) is analytic inside and on C and the points 1 and 2 lie inside C. Hence by 

Cauchy’s integral formula 

 ∫  
 

C

f(z)

z−1
 dz = 2πif(1) 

       = 2πi(sin π + cos π) 

       = 2πi(0+(-1))= -2πi 

Similarly ∫  
 

C

f(z)

z−2
 dz = 2πif(2) 

       = 2πi(cos 4π + sin 4π) 

       = 2πi(1+0)= 2πi 

Hence ∫  
 

C

f(z)

 z−1 (z−2)
 dz = 2πi – (-2πi) = 4πi 

Problem 4 

 Evaluate 
zdz

 9−z2 (z+i)
 where C is the circle |z|=2 taken in the positive sense. 

Solution  

Let f(z) = 
z

9−z2
 

 Clearly f(z) is analytic with in and on C. By Cauchy’s integral formula, 

 ∫  
 

C

zdz

 9−z2 (z+i)
 = ∫  

 

C

f(z)

z+i
 dz 

   = 2πi f(-i) = 2πi ( 
−i

10
 ) = 

π

5
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Exercise 

1. Evaluate  ∫  
 

C

zdz

z2−1
 where C is the positively oriented circle |z|=2.  Ans : 2πi 

2. Show that  
1

2πi
 ∫  

 

C

ezt dt

z2+1
 = sin t if t >  0 and C is the circle |z|=3. 

Theorem 5.3.3  (Morera’s theorem) 

  If f(z) is continuous in a simply connected domain D and if ∫  
 

C
f(z)dz=0 for 

every simple closed curve C lying in D then f(z) is analytic in D.  (This theorem is the 

converse of Cauchy’s theorem) 

Proof 

  By corollary 1 of theorem 5.2.1 there exists an analytic function F(z) such that 

F
1
(z)=f(z) in D. 

 Also we know the derivative of an analytic function is an analytic function. 

 Hence F
1
(z) is analytic in D 

 ∴ f(z) is analytic in D. 

Theorem 5.3.4 

  Let f be analytic inside and on a simple closed curve C. Let z be any point 

inside C. Then f (z) = 
1

2πi
  ∫  

 

C

f(ε)

(ζ−z)2
 dδ 

Proof 

 By Cauchy’s integral formula we have f(z) = 
1

2πi
  ∫  

 

C

f(ε)

ζ−z
 dδ 

∴ 
f z+h −f(z)

h
 = 

1

h
 [

1

2πi
  ∫  

 

C

f(ζ)

ζ−(z+h)
 dδ - 

1

2πi
  ∫  

 

C

f(ζ)

ζ−z
 dδ  

                   = 
1

h(2πi)
 ∫  

 

C

f(ζ)

ζ−z−h
 -  

f(ζ)

ζ−z
 ) dδ 

                   = 
1

h2πi
 ∫ [

 

C

hf (ζ)

 ζ−z−h (ζ−z)
 ] dδ 

                   = 
1

2πi
 ∫  

 

C

f(ζ)dζ

 ζ−z−h (ζ−z)
      (1) 

Now  ∫  
 

C

f(ζ)dζ

 ζ−z−h (ζ−z)
 - ∫  

 

C

f(ζ)dζ

(ζ−z)2
    

                   = ∫ [ 
 

C

f(ζ)

 ζ−z−h (ζ−z)
 - 

f(ζ)

(ζ−z)2
 ] dδ 

                   = ∫  
 

C

f(ζ)

(ζ−z)
 [ 

1

ζ−z−h
 - 

1

ζ−z
 ] dδ 

                   = ∫  
 

C

f(ζ)

(ζ−z)
 [ 

ζ−z−(ζ−z−h)

(ζ−z−h)(ζ−z)
 ] dδ 
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                   = h ∫  
 

C

f(ζ)dζ

(ζ−z−h)(ζ−z)2
  

∴ 
1

2πi
  ∫  

 

C

f ζ dζ

(ζ−z−h)(ζ−z)
 - 

1

2πi
  ∫  

 

C

f ζ dζ

(ζ−z)2
 = 

h

2πi
 ∫  

 

C

f ζ dζ

(ζ−z−h)(ζ−z)2
  

∴ 
f z+h −f(z)

h
 - 

1

2πi
 ∫  

 

C

f ζ dζ

(ζ−z)2
 = 

h

2πi
 ∫  

 

C

f ζ dζ

(ζ−z−h)(ζ−z)2
   (2)  [using (1)] 

 Now let M denote the maximum value of |f(δ)|on C. Let L be the length of C 

and d be the shortest distance from z to any point on the curve C. 

∴ For any point δ on C we have | δ-z | ≥ d and | δ-z-h | ≥ | δ-z | -|h| ≥ d-|h| 

Hence |
f ζ 

(ζ−z)2(ζ−z−h)
 | ≤ 

M

d2 d− h  
 

From (2) we get 

|
f z+h −f(z)

h
 - 

1

2πi
  ∫  

 

C

f ζ dζ

(ζ−z)2
 | ≤ 

|h|

2π
  ( 

ML

d2 d− h  
 ) 

∴  h0
lim ( 

f z+h −f z 

h
 – 

1

2πi
∫  

 

C

f ζ dζ

(ζ−z)2
 ) = 0 

∴  h0
lim ( 

f z+h −f z 

h
 ) = 

1

2πi
∫  

 

C

f ζ dζ

(ζ−z)2
  

∴ f(z) = 
1

2πi
∫  

 

C

f ζ dζ

(ζ−z)2
 ) 

Remark 

  By using induction on n we can prove that for any positive integer n we have 

f
(n)

(z) = 
n!

2πi
 ∫  

 

C

f ζ 

(ζ−z)n +1
 ) dδ 

Note 

 Thus an analytic function has derivatives of all orders and the derivate of an 

analytic function is again analytic. 

Thorem 5.3.5 

 (Cauchy’s Inequality) 

 Let f(z) be analytic inside and on the circle C with centre z0 and radius r. Let M 

denote the maximum of |f(z)| on C. Then |f
(n)

(z0) ≤ 
n! M

rn
   

Proof 

 M denote the maximum of |f(z)| on C. 

∴ |f(z)| ≤ M on C 

We have f
(n)

(z0) = 
n!

2πi
 ∫  

 

C

f z dz

(z−z0)n +1
 



141 
 

|f
(n)

(z0)| = | 
n!

2πi
 ∫  

 

C

f z dz

(z−z0)n +1
 | 

 ≤ 
n!

2π
  

M

rn +1
 (2 πr)   (by theorem 5.1.1) 

 =  
n! M

rn
 

Hence |f
(n)

(z0)| ≤  
n! M

rn
 

Theorem 5.3.6   (Liouville’s theorem) 

 A bounded entire function in the complex plane is constant. 

Proof 

 Let f(z) be a bounded entire function.  Since f(z) is bounded there exist a real 

number M such that |f(z)| ≤ M for all z.  Let z0 be any complex number and r>0 be any 

real number. 

 By Cauchy’s inequality we have  |f (z0)| ≤ 
M

r
 .  Taking the limit as r∞ we get 

f (z0)=0. Since z0 is arbitrary, f (z0)|=0 for all z in the complex plane. 

∴ f(z) is a constant function. 

Theorem 5.3.7 

 (Fundamental theorem of algebra) 

 Every polynomial of degree ≥ 1 has atleast one zero (root) in C. 

Proof 

 Let f(z) be a polynomial of degree ≥1.  Suppose f(z)  has no  zero  in C. Then 

f(z) ≠ 0 for all z. 

 Further f(z) is an entire function in the complex plane. 

∴  
1

f(z)
  is also an entire function. 

 Also as z ∞, f(z) ∞ 

∴  
1

f(z)
  0 as z ∞ 

Solved Problems 

Problem 1 

 Evaluate  ∫  
 

C

z3dz

(2z+i)3
 where C is the unit circle. 
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Solution  

 ∫  
 

C

z3dz

(2z+i)3
 = 

1

8
 ∫  

 

C

z3dz

(z+
i

2
)3

 

Let f(z) = z
3
. Then f (z)=3z

2
 and f (z)=6z.   

Also 
−i

2
 lies inside C 

Hence ∫  
 

C

z3dz

(2z+i)3
 = 

1

8
 (

 2πi

2!
 ) f ( 

−i

2
 ) 

        = 
 2πi

16
 x 6 (- i 2  ) 

       = 
 3π

8
  

Problem  2 

Evaluate : ∫  
 

C

sin  2zdz

(z−
 π i

4
 )4

 where C is |z|=1, 

Solution 

  Let f(z) = sin 2z 

 Since f(z) is analytic and 
 πi

4
 lies inside C 

∴ ∫  
 

C

sin 2z

(z−πi)4
 dz = 

 2πi

3!
 f(

 πi

4
) 

Now f(z) = 2 cos 2z, f(z )=-4sin 2z 

f (z) = -8 cos 2z 

Hence f (
 πi

4
 )  = -8 cos (

 πi

2
 )   

  = -8 cos h (π 2 )   

∴ ∫  
 

C

sinz

(z−πi)4
 dz = 

−8πi

3
 cos h (π 2 )   

Problem 3 

 Evaluate ∫  
 

C

ez

(z+2)(z+2)2
 dz where C is |z|=3 

Solution 

 
1

(z+2)(z+1)2
 = 

 z+2 −(z+1)

(z+2)(z+1)2
 

        = 
1

(z+1)2
 – 

1

(z+2)(z+1)
 

        = 
1

(z+1)2
 – 

1

z+1
 + 

1

z+2
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∫  
 

C

ez

(z+2)(z+1)2
 dz = ∫  

 

C

ez

(z+2)
 dz - ∫  

 

C

ez

(z+1)
 dz + ∫  

 

C

ez

(z+1)2
 dz 

We note that z=-2, -1 lie in the interior of C  

Let f(z) = e
z
. It is analytic in C. 

 Also f(z) = e
z
  

By Cauchy’s integral formula, 

∫  
 

C

ez

z+2
 dz = 2πi f(-2) 

         = 2πi e
-2

 

∫  
 

C

ez

z+1
 dz = 2πi f(-1) = 2πi e

-1
 

∫  
 

C

ez

(z+1)2
 dz = ( 

2πi

1!
 ) f (-1) = 2πi e

-1 

∴ ∫  
 

C

ez

(z+2)(z+1)2
 dz = 2πi [e

-2
-e

-1
+e

-1
] 

  = 2πi e
-2

 

Exercise 

1. Evaluate ∫  
 

C

(ez +z sin h z)dz

(z−πi)2
 dz where C in the circle |z|=4.     [Ans : -2πi(1+πi)] 

2. Evaluate ∫  
 

C

e2z

(z+1)4
 dz where C is the circle |z|=2.        [Ans : 

8πie−2

3
 ] 

5.4 Taylor’s Series 

Theorem 5.4.1  (Taylor’s theorem) 

 Let f(z) be analytic in a region D containing z0. Then f(z) can be represented as 

a power series in z-z0 given by f(z) = f(z0) + 
f(z0)

1!
 (z-z0) + 

f(z0)

2!
 (z-z0)

2
 + … 

         …+ 
f n (z0)

n!
 (z-z0)

2
 +… 

 The expansion is valid in the largest open disc with centre z0 contained in D.   

Proof 

 Let r>0 be such that the disc |z-z0|<r is contained in D.   

 Let 0 < r1 < r.  Let C1 be the circle |z-z0| = r1.  By Cauchy’s integral formula, we 

have  

 f(z) = 
1

2πi
 ∫

𝑓(ζ)

(ζ−z)

 

C1
 dδ     (1) 

 Also by theorem on higher derivatives we have, 
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 f
(n)

(z) = 
n!

2πi
 ∫

𝑓(ζ)dζ

(ζ−z)n +1

 

C1
     (2) 

Now   
1

ζ−z
 = 

1

 ζ−z0 − z−z0  
 

       = 
1

 ζ−z0  1−
z−z0
ζ−z0

  
 

       = 
1

 ζ−z0  
   1+ ( 

z−z0

ζ−z0
 ) +( 

z−z0

ζ−z0
)   

  
2

+…+ (
z−z0

ζ−z0
)   

n−1 + 
( 

z−z0
ζ−z0

)n

1−(
z−z0
ζ−z0

)
  

 (using the identity 
1

1−α
 = 1+ α + α

2
+ …. + α

n-1
 + 

αn

1−α
  

 = 
1

ζ−z0
 + 

z−z0

(ζ−z0)2
 + 

(z−z0)2

(ζ−z0)3
 + ….+ 

(z−z0)n−1

(ζ−z0)n
 + 

(z−z0)n

(ζ−z0)n (ζ−z)
 

Now multiplying throughout by  
f(ζ)

2πi
 , integrating over C1 and using (1) and (2) we get 

1

2πi
 ∫

𝑓(ζ)dζ

ζ−z

 

C1
 = 

1

2πi
 ∫

𝑓(ζ)dζ

ζ−z0

 

C1
 + 

1

2πi
 ∫

𝑓(ζ)dζ

(ζ−z0)2

 

C1
 . (z-z0) +…+ 

(z−z0)n−1

2πi
 ∫

𝑓(ζ)dζ

(ζ−z0)n

 

C1
 + Rn   (3) 

where Rn = 
(z−z0)n

2πi
 ∫

𝑓(ζ)dζ

(ζ−z)(ζ−z0)n

 

C1
  

⟹ f(z) = f(z0)+f(z0)(z-z0) + 
f(z0)

2 !
 (z-z0)

2  
+ … + 

f(n−1)(z0)

 n−1 !
 (z-z0)

n-1
+Rn 

Here δ lies on C1 and z lies in the interior of C1 so that |δ-z0|=r1 and |z-z0|<r1 

∴ |δ-z|=| (δ-z0)-(z-z0)| ≥ |δ-z0|-|z-z0| = r1-|z-z0| 

∴ 
1

|ζ−z|
 ≤ 

1

r1−|z−z0|
 

Let M denote the maximum value of |f(z)| on C1. 

 Then |Rn| ≤  
|z−z0|n

2π
  

M(2πr1)

(r1−|z−z0|) r1
n  

[Since By theorem, |∫  
 

C1
f(z)dz|≤Ml] 

 = 
m|z−z0|

(r1−|z−z0|)
  ( 

|z−z0|

r1
 )n−1 

Also  
|z−z0| 

r1
 < 1 

Hence  n∞
lim⁡Rn=0 

∴ Taking limit as n∞ in (3) we get, f(z)=f(z0) + 
f(z0)

2!
 (z-z0)+f(z0)x(z-z0)

2
+… 

+
f(n )(z0)

n!
 (z-z0)

n
+… 
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Note 1 

 The above series is called Taylor’s series of f(z) about the point z0. The 

expansion is valid in some neighbourhood of z0. 

Note 2 

 The Taylor series expansion of f(z) about the point zero is called the 

Maclaurin’s series. Thus the Maclaurin’s series of f(z) is given by 

 f(z) = f(0) + 
z

1!
 f (0) + 

z2

2!
 f (0) : …+ 

zn

n!
 f

(n)
(0) + …. 

Example 1 

 The Taylor’s series for f(z) = 
1

z
 about z=1 is given by, 

  
1

z
 = f(1) + 

f (1)

1!
 (z-1) +

f (1)

2!
 (z-1)

2 
+ 

f (1)

3!
 (z-1)+…. 

 Now  f(z) = 
1

z
 ⟹ f(1)=1 

  f (z) =- 
1

z2
 ⟹ f (1)-1 

  f (z) = 
2

z3
 ⟹ f (1)=2 

  f (z) =- 
6

z4
 ⟹ f (1)=-6 

Hence the Taylor’s series expansion for 
1

z
 about 1 is 

1

z
 = 1-(z-1) + (z-1)

2
-(z-1)

3
+…. 

This expansion is valid in the disc |z-1|<1. 

Example 2 

Let f(z) = e
z
  

Then f
(n)

(z)=e
z
 for all n and hence f

(n)
(0)=1.  

Hence the Maclaurin’s series for e
z
 is given by e

z
 = 1+ 

z

1!
 + 

z2

2!
 + 

z3

3!
 + …+ 

zn

n!
 +… 

Maclaurin’s series expansion of some of the standard functions are given below 

1. e
-z

 = 1 - 
z

1!
 + 

z2

2!
 … +(-1)

n
 
zn

n!
 + … (|z| <∞) 

2. sin z = z - 
z3

3!
 + 

z5

5!
 +… + (-1)

n-1
 

z2n−1

 2n−1 !
 … (|z| < 0) 

3. cos z = 1 - 
z2

2!
 + 

z4

4!
 +… + (-1)

n-1
 

z2n−2

 2n−2 !
 … (|z| < ∞) 

4. sin hz =  
z

1!
 + 

z3

3!
 + 

z5

5!
 +… + 

z2n−1

 2n−1 !
 … (|z| < ∞) 

5. cos hz = 1+ 
z2

2!
 + 

z4

4!
 +… + 

z2n

 2n !
 +… (|z| < ∞) 
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6. 
1

1+z
  = 1- z + z

2
 - z

3
 + … + (-1)

n
 z

n
 + … (|z|<1)   

7. 
1

1−z
  = 1+ z + z

2
 + z

3
 + … +z

n
 + … (|z|<1)   

8. log (1+z) = z - 
z2

2
 + 

z3

3
 … (-1)

n-1
 
zn

n
 + … (|z|<1)   

9. log (1-z) = -z - 
z2

2
 - 

z3

3
 … - 

zn

n
 + … (|z|<1)   

Solved Problems 

Problem 1 

 Expand cos z into a Taylor’s series about the point z = 
π

2
 and determine the 

region of convergence. 

Solution 

 Let f(z) = cos z. 

∴ The Taylor’s series for f(z) about z = 
π

2
 is f(z) = f(

π

2
) + 

(z−
π

2
)

1!
 f (

π

2
)+ 

(z−π 2 )2

2!
 

       f (π 2 )+ 
(z−π 2 )3

3!
 f (π 2 )+ … 

Now  f(z) = cos z. Hence f(π 2 ) = 0. 

 f (z) = -sin z. Hence  f (π 2 ) = -sin π 2  = -1 

 f (z) = -cos z. Hence  f (π 2 ) = -cos π 2  = 0 

 f (z) = sin z. Hence  f (π 2 ) = sin π 2  = 1 

∴ The Taylor’s series for cos z about z = π 2  is cos z = - 
(z−π 2 ) 

1i
  

       + 
(z−π 2 )3  

3!
 - 

(z−π 2 )5  

5!
 + … 

The expansion is valid throughout the complex plane. 

Problem 2 

 Expand f(z) = sin z a Taylor’s series about  z = 
π

4
  and determine the region of 

convergence of this series. 

Solution  

 The Taylor’s series for f(z) about z = 
π

4
 is f(z) = f(π 4 ) + 

(z−π 4 ) 

1!
 f (π 4 ) 

       + 
(z−π 4 )2  

2!
 f (π 4 ) + …. 
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Here f(z) = sin z.  Hence f(π 4 ) = 
1

 2
 

 f (z) = cos z. Hence f (π 4 ) = 
1

 2
 

 f (z) = -sin z. Hence f (π 4 ) = -sinπ 4  = 
− 1

 2
 

 f (z) = -cosz.  Hence f (π 4 ) = - 
1

 2
 

∴ The Taylor’s series for sin z  

  about z = π 4  is sin z = 
1

 2
 + 

(z−π 4 )

1!
 (

1

 2
) - 

(z−π 4 )2

2!
  (

1

 2
) + … 

   = 
1

 2
 [1+ 

(z−π 4 )

1!
 - 

(z−π 4 )2

2!
 - 

(z−π 4 )3

3!
 + … ] 

This expansion is valid in the entire complex plane. 

Problem 3 

  Expand f(z) = 
z−1

z+1
 as a Taylor’s series  

(i) about the point z = 0 

(ii) about the point z = 1. Determine the region of convergence in each case. 

i. f(z) = 
z−1

z+1
 

   = (z-1) (1+z)
-1

   

   = (z-1) (1-z+z
2
-z

3
 +…) if |z|<1 

   = (z-z
2
+z

3
 -…) – (1-z+z

2
 - z

3
…) 

   = -1+2z-2z
2
+2z

3
+… 

     The region of convergence is |z| < 1 

ii)   f(z) = 
z−1

z+1
 

   = 
z−1

(2+z−1)
 

  = 
z−1

2(1+
z−1

2
)
 = 

z−1

2
 (1+

z−1

2
)   
−1

 

  = 
z−1

2
  [1- 

z−1

2
 + ( 

z−1

2
)   

2
- ( 

z−1

2
)   

3
 + … ] if  | 

z−1

2
 |<1 

  = 
z−1

2
 -  

(z−1)2

22
   

(z−1)3

23
 …  

  The region of convergence is given by |
z−1

2
| < 1 which is same as the circular 

disc |z-1|<2 
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Problem 4 

i. 
1

z2
 = 1+   ∞

n=1 (n+1) (z+1)
n
 when |z+1|<1 

ii. 
1

z2
 = 

1

4
 + 

1

4
   ∞

n=1 (-1)
n
 (n+1) ( 

z−1

2
)   

n
when |z-2|<2 

Solution 

i. 
1

z2
 = 

1

[1− z+1 ]2
  

= [1-(z+1)]
-2 

= 1+2(z+1)+3(z+1)
2
+4(z+1)

3 
+ … if |z+1|<1 

= 1+  ∞
n=1 (n+1) (z+1)

n 
when |z+1|<1 

ii. 
1

z2
 = 

1

[z−2+2]2
  

=  
1

[2(1+
z−2

2
)]   

2   

= 
1

4
 (1 + 

z−2

2
)   
−2

  

= 
1

4
 [1-2( 

z−2

2
 ) +3( 

z−2

2
 )   

2
-…]   if  | 

z−2

2
 |< 1 

= 
1

4
 - 

1

4
 x 2 ( 

z−2

2
 ) + 

1

4
 x 3 ( 

z−2

2
 )   

2
-… 

= 
1

4
 + 

1

4
   ∞

n=1 (-1)
n
 (n+1) ( 

z−2

2
 )   

n
  

  Here the region of convergence is |
z−2

2
|< 1 which is the same as the circular disc 

|z-2|<2. 

Problem 5 

  Expand ze
2z

 in a Taylor’s series about z=-1 and determine the region of 

convergence. 

Solution 

 Let f(z) = ze
2z 

  = z e
2(z+1-1)

  

  = z e
2(z+1)

 . e
-2

  

  = 
1

e2
 [(z+1-1)e

2(z+1)
]  

  = 
1

e2
 [(z+1)e

2(z+1)
-e

2(z+1)
] 

  = 
1

e2
 [(z+1) {1+ 

2(z+1)

1!
 + 

[2(z+1)]2

2!
 + …}- {1+ 

2(z+1)

1!
 + 

[2(z+1)]2

2!
 + …}] 
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  = 
1

e2
 [{(z+1) + 

2(z+1)2

1!
 + 

22(z+1)3

2!
 + …}- {1+ 

2(z+1)

1!
 + 

22(z+1)]2

2!
 +…}] 

  = 
1

e2
 [-1+ (1- 

2

1
 ) (z+1) + ( 

2

1!
 - 

22

2!
 ) (z+1)

2 
+ ( 

22

2!
 - 

23

3!
 ) (z+1)

3
+…] 

 This expansion is valid throughout the complex plane. 

Problem 6 

 Find the Taylor’s series to represent 
z2−1

 z+2 (z+3)
  in |z| < 2 

Solution 

 
z2−1

 z+2 (z+3)
 = 

z2−1

z2+5z+6
 

      = 1- 
5z+7

z2+5z+6
 

      = 1- [ 
−3

z+2
 + 

8

z+3
 ] 

      = 1+ 
3

z+2
 - 

8

z+3
  

      = 1+ 
3

2(1+
z

2
)
 - 

8

3(1+
z

3
)
  

      = 1+ 
3

2
 (1+ 

z

2
 )−1 - 

8

3
 (1+ 

z

3
 )−1 

      = 1+ 
3

2
 (1- 

z

2
 + 

z2

22
 - 

z3

23
 + …) - 

8

3
 (1- 

z

3
 + 

z2

32
 - 

z3

32
 + … ) 

      = (1+ 
3

2
 - 

8

3
 ) + (- 

3

22
 + 

8

32
 )z + ( 

3

2.22
 - 

8

3.32
 ) z

2
 + … 

      = - 
1

6
 +   ∞

n=1 (-1)
n+1

   ( 
8

3n +1
 -  

3

2n +1
 ) z

n
  

  And the expansion is valid in |z|<2. 

5.5  Laurent’s series 

 Any function which is analytic in a region containing the annulus r1<|z-z0|<r2 

can be represented in a series of the form   ∞
−∞ an(z-z0)

n
    

Theorem (Laurent’s theorem) 

 Let C1 and C2 denote respectively the concentric circles |z-z0|=r1 and |z-z0|=r2 

with r1 < r2. Let f(z) be analytic in a region containing the circular annulus r1<|z-z0|<r2 

.  Then f(z) can be represented as a convergent series of positive and negative powers 

of z-z0 given by  

 f(z) =   ∞
n=1  

bn

(z−z0)n
  +   ∞

n=0 an(z-z0)
n
 . where  
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 bn= 
1

2πi
 ∫  

 

C1

f ζ dζ

(ζ−z0)−n +1
 and an = 

1

2πi
 ∫  

 

C2

f ζ dζ

(ζ−z0)n +1
 

Proof 

Let z be any point in the circular annulus r1<|z-z0|<r2. Then by theorem 5.3.2  

  we have f(z) = 
1

2πi
 ∫  

 

C2

f ζ dζ

ζ−z
 - 

1

2πi
 ∫  

 

C2

f ζ dζ

ζ−z
 

∴ f(z) = 
1

2πi
 ∫  

 

C2

f ζ dζ

ζ−z
 + 

1

2πi
 ∫  

 

C1

f ζ dζ

ζ−z
    (1) 

As in the proof of Taylor’s theorem, we have 

   
1

2πi
 ∫  

 

C2

f ζ dζ

ζ−z
 dδ= a0+a1(z-z0)+a2(z-z0)

2
 +… + an-1(z-z0)

n-1
+Rn(z)  (2) 

 where an = 
1

2πi
 ∫  

 

C2

f ζ dζ

(ζ−z0)n +1
 and 

   Rn(z) = 
(z−z0)n

2πi
 ∫  

 

C2

f ζ dζ

(ζ−z0)n (ζ−z)
 

Now 
1

z−ζ
 = 

1

z−z0+z0−ζ
 

      = 
1

z−z0−(ζ−z0)
 

     = 
1

 z−z0 [1−
ζ−z0
z−z0

 

     = 
1

 z−z0 
 1+ (

ζ−z0

 z−z0 
) + (

ζ−z0

 z−z0 
 )2+…+ (

ζ−z0

 z−z0 
 )n−1+ 

(
ζ−z0
 z−z0 

 )n

1−(
ζ−z0
 z−z0 

)
 

Multiplying by 
f(ζ)

2πi
 and integrating over c1,  

  we get,  ∫  
 

c1

f ζ dζ

ζ−z
 = 

b1

z−z0
 + 

b2

(z−z0)2
 + …+ 

bn−1

(z−z0)n−1
 + sn(z)   (3) 

 where bn = 
1

2πi
 ∫  

 

c1

f ζ dζ

(ζ−z0)−n +1
 ; Sn = 

1

2πi(z−z0)n
 ∫  

 

c1

f ζ (ζ−z0)n dζ

z−ζ
 

From (1), (2) and (3) we get f(z) = a0+a1(z-z0)+ …+an-1(z-z0)
n-1

+ 
b

z−z0
 

    + 
b2

(z−z0)2
 + … + 

bn−1

(z−z0)n−1
 +Rn(z) + sn(z)    (4) 

The required result follows if we can prove that Rn0 and Sn0 as n∞. 

Now, if δC, then |δ-z0|=r1 and 

|z-δ|=|(z-z0)-( δ-z0)| ≥ |z-z0|-r1  

If δC2,then | δ-z0| = r2 and 

|δ-z| = |(δ-z0) – (z-z0)| ≥ r2-|z-z0| 
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Now let M denote the maximum value of |f(z)| in C1∪C2. 

Then |Rn| ≤ 
|z−z0|n−1

2π
  

M(2π r2)

r2
n ( r2−|z−z0|)

   [|∫  
 

c
f(z)dz| ≤ mℓ] 

  ≤ 
M|z−z0|

 (r2−|z−z0|)
 (

|z−z0|

 r2
)n−1 

Since 
|z−z0|

 r2
 <1, Rn  0 as n  ∞ 

 Also |Sn| ≤ 
M r1

n  (2π r1)

|z−z0|n 2π( z−z0 −r1
  

    ≤ 
M r1

(|z−z0|−r1)
 ( 

 r1

|z−z0|
 )n  

Since 
 r1

|z−z0|
 < 1, Sn 0 as n∞ 

 Hence by taking limit n∞ in (4) we get  

 f(z) =   ∞
n=1

 bn

(z−z0)n
 +   ∞

n=0 an(z-z0)
n
  

Hence the theorem. 

Solved Problems 

Problem 1 

 Find the Laurent’s series expansion of f(z) = z
2
e

1/z
 about z=0. 

Solution 

 f(z) = z
2
e

1/z  
about z=0 

 Clearly f(z) is analytic at all point z ≠ 0.   

  Now, f(z) = z
2
[1+ 

 1

z
 + 

 (
 1

z
)2

2!
 + 

 (
 1

z
)3

3!
 + …. ] 

       = z
2
[1+ 

 1

z
 + 

1

2!z2
 + 

1

2!z3
 + …. ] 3! z

3
  

       = z
2
+z + 

 1

2
 + 

1

3!z
 + 

1

4!z2
 + …. ] 

This is the required Laurent’s series expansion for f(z) at z=0. 

Problem 2 

 Expand 
−1

 z−1 (z−2)
 as a power series in z in the regions (i) |z|<1 (ii) 1<|z|<2   

  (iii) |z|>2. 

Solution 

  Let  f(z) = 
−1

 z−1 (z−2)
 



152 
 

 By splitting into partial fractions, we have f(z) = 
1

 z−1 
 - 

1

 z−2 
  

(i) The only points where f(z) is not analytic are 1 and 2. Hence f(z) is analytic 

in |z|<1 and hence can be represented as a Taylor’s series in |z|<1. 

∴ f(z)  = 
1

 z−1 
 - 

1

 z−2 
 

 = - 
1

1−z
 + 

1

2−z
 

 = -(1-z)
-1

+  
1

2 (1− 
z

2

   

 = -(1-z)
-1

+ 
1

2
  (1- 

z

2
 )

-1
   

 = -(1+z + z
2
 + … + z

n
 + …) + 

1

2
 (1+ 

z

2
 + 

z2

4
 + … + 

zn

2n
 + …) 

 =   ∞
n=0 [-z

n
 + 

1

2
 (

z

2
)n] 

 =   ∞
n=0 (

1

2n +1
 -1) z

n
  

(ii) f(z) is analytic in the annular region 1<|z|<2 and hence can be expanded as a 

Laurent’s series in this region. 

f(z) = 
1

 z−1 
 - 

1

 z−2 
 

      = 
1

z(1− 
1

z
)
 +  

1

2(1−
z

2 
)
   

      =  
1

z
 (1- 

1

z
 )−1 + 

1

2
 (1- 

z

2
 )−1 

      =  
1

z
 [1+( 

1

z
 ) + ( 

1

z
 )2 +…] + 

1

2
 [1+( 

z

2
 ) + ( 

z

2
 )2 + …] 

   [∵ | 
1

z
 | < 1 and | 

z

2
 | < 1] 

=   ∞
n=0

1

zn +1
 +   ∞

n=0
zn

2n +1
 

This gives the Laurent’s series expansion in 1<|z|<2. 

(iii) f(z) is analytic in the domain |z|>2 and in this domain we have  |2 z | < 1. 

Hence f(z) = 
1

z
 [ 

1

1−
1

z

 ] - 
1

z
 [ 

1

1−( 
2

z
 )
 ] 

   = 
1

z
 [1- ( 

1

z
 )]−1- 

1

z
 [1- ( 

2

z
 )]−1 

  = 
1

z
 [(1+ ( 

1

z
 )+( 

1

z
 )2+…) – (1+( 

2

z
 )+ ( 

2

z
 )2 + …] 
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  =   ∞
n=0

1−2n

zn +1
 

Problem 3 

 Find the Laurent’s series for 
z

 z+1 (z+2)
 about z = -2. 

 Let f(z) = 
z

 z+1 (z+2)
 

    = 
−1

z+1
 + 

2

z+2
 

    = 
−1

 z+2 −1
 + 

2

z+2
 

    = 
1

1−(z+2)
 + 

2

z+2
 

    = [1-(z+2)]−1 + 
2

z+2
 

    = [1+(z+2) + (z+2)
2
 …] + 

2

z+2
 

    = 
2

z+2
 + 1 + (z+2) + (z+2)

2
 + …. 

 

Problem 4 

 If f(z) = 
z+4

 z+3 (z−1)2
 find Laurent’s series expansion  

   in (1) 0 < |z-1|<4 and (ii) |z-1|>4. 

Solution  

 Let f(z) = 
z+4

 z+3 (z−1)2
 By expressing f(z) into partial fractions we get  

  f(z) = 
1

16 z+3 
 - 

1

16 z−1 
 + 

5

4(z−1)2
 

(i) 0 < |z-1|<4 

Hence 0 < | 
z−1

4
 | < 1 

 f(z) = 
1

16 z−1+4 
 - 

1

16 z−1 
 + 

5

4(z−1)2
 

       = 
1

64 1+ 
z−1

4
 
 - 

1

16 z−1 
 + 

5

4(z−1)2
 

       = 
1

64
 (1+ 

z−1

4
)−1- 

1

16 z−1 
 + 

5

4(z−1)2
 

Since | 
z−1

4
 | < 1, we have 

 f(z) = 
1

64
 [1- ( 

z−1

4
) + ( 

z−1

4
 )2- ( 

z−1

4
 )3 +….] - 

1

16 z−1 
 + 

5

4(z−1)2
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       = 
5

4(z−1)2
 - 

1

16 z−1 
 + 

1

64
 - 

1

64
 [ 

z−1

4
 - ( 

z−1

4
 )2+ ( 

z−1

4
 )3 +….]  

Problem 5 

 Find the Laurent’s series expansion of the function 
z2−1

 z+2 (z+3)
 valid in the 

annular region 2 < |z|<3. 

Solution  

  Let f(z) = 
z2−1

 z+2 (z+3)
 

  By splitting f(z) into partial fractions, we get f(z) = 1+ 
3

z+2
 - 

8

z+3
 

 f(z) is analytic in the annular region 2<|z|<3. 

Hence f(z) can be expanded as a Laurent’s series in that region. 

 f(z) = 1+ 
3

z(1+
2

z
 )
 - 

8

3(1+
z

3
 )
 

        = 1+ 
3

z
 (1+ 

2

z
 )−1 -  

8

3
 (1+ 

z

3
 )−1 

        = 1+ 
3

z
 (1- 

2

z
 +( 

2

z
 )2- (

2

z
 )3+ …] - 

8

3
 [1- 

z

3
 + ( 

z

3
 )2+….] 

        = 1+ 
3

z
    ∞

n=0 (-1)
n
 ( 

2

z
 )

n 
- 

8

3
   ∞

n=0 (-1)
n 
( 

z

3
 )

n
 

        = 1+ 3    ∞
n=0  

(−1)n  2n

zn +1
 -8   ∞

n=0
(−1)n  zn

3n +1
 

Problem 6 

  For the function f(z) = 
2z3+1

z(z+1)
 find (i) a Taylor’s series valid in a neighbourhood 

of z=i and (ii) a Laurent’s series valid with in an annulus of which centre is the origin. 

Solution 

 f(z) = 
2z3+1

z(z+1)
 

         = 2z-2 + 
1

z
 + 

1

z+1
 (by partial fraction) 

        = 2(z-1) + 
1

z
 + 

1

z+1
     (1) 

        = g(z) + h(z) + j(z) 

 Where g(z) = 2(z-1), h(z)= 
1

z
 and j(z) = 

1

z+1
 

Taylor’s expansion for g(z) about z=i is obviously 2(i-1) + 2 (z-i).  

Taylor’s expansion for h(z) about z=i is given by h(z)=h(i) +   ∞
n=1  

h n (i)

n!
 (z-i)

n
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Here h(i) = 
1

i
, h

(n)
(z) = 

(−1)n n!

zn +1
 so that h

(n)
(i) = 

(−1)n n!

in +1
 

∴ h(z) = 
1

i
 +   ∞

n=1
(−1)n n!

in +1n!
 (z-i)

n
 =  ∞

n=0  
(−1)n (z−i)n

in +1
. 

Similarly we can prove that j(z) =   ∞
n=0

(−1)n (z−i)n

(1+i)n +1
 

Hence the Taylor’s expansion for f(z) is  

    f(z) = 2(i-1)+2(z-i) +   ∞
n=0 [

(−1)n

in +1
 + 

(−1)n

(1+i)n +1
 ] (z-i)

n
  

(ii)  f(z) = 2z-2 + 
1

z
 + (1+z)

-1
  (from (1) 

         = 2z-2 + 
1

z
 + (1-z+z

2
-z

3
+…) if |z|<1  

∴ In the annulus 0 < |z|<1 the Laurent’s expansion is given by 

 f(z) =  
1

z
 -1+z+z

2
-z

3
+z

4
 … 

5.6  Singularities 

Definition 

 A point a is called a singular point or a singularity of a function f(z) if f(z) is 

not analytic at a and f is analytic at some point of every disc |z-a|<r. 

Example 1  

 Consider the function f(z) = 
1

z
 

 Then f(z) = - 
1

z2
 for all z ≠ 0 

 Thus f(z) is analytic except at z=0. 

∴ z=0 is a singular point of f(z). 

Example 2 

  Consider the function f(z) =  
1

z(z−i)
 .  0 and i are singular points for f(z). 

Definition A 

 A point a is called an isolated singularity for f(z) if 

i. f(z) is not analytic at z=a and 

ii. there exist r>0 such that f(z) is analytic in 0<|z-a|<r. 

(ie) the neighbourhood |z-a|<r contains no singularity of f(z) except a. 

Example 1 

 f(z) = 
z+1

z2(z2+1)
 has three isolated singularities z = 0, i, -i. 
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Example 2 

 Consider the function f(z) = 
1

sin z
 . The singular points are 0, ±π, ±2π, … and 

these are isolated singular points. 

Types of singularities 

 Let a be an isolated singularity for a function f(z). Let r>0 be such that f(z) is 

analytic in 0<|z-a|<r. In this domain the function f(z) can be represented as a Laurent 

series given by 

 f(z) =   ∞
n=1

bn

(z−a)n
 +   ∞

n=0 an(z-a)
n
 where 

 an = 
1

2πi
 ∫  

 

C

f ζ dζ

(ζ−a)n +1
 and bn = 

1

2πi
 ∫  

 

C

f ζ dζ

(ζ−a)−n +1
 

  The series consisting of the negative powers of z-a in the above Laurent series 

expansion of f(z) is given by   ∞
n=1

bn

(z−a)n
 and is called the principal part or singular 

part of f(z) at z=a. 

  The singular part of f(z) at z=a determines the character of the singularity. 

There are three types of singularities. They are (i)  Removable singularities  (ii)  Poles  

(iii)  Essential singularities. 

Definition 

 Let a be an isolated singularity for f(z). Then a is called a removable singularity 

if the principal part of f(z) at z=a has no terms. 

Note 

 If a is a removable singularity for f(z) then the Laurent’s series expansion of 

f(z) about z=a is given by 

 f(z) =   ∞
n=0 an(z-a)

n
  

        = a0+a1(z-a)+ ….+an(z-a)
n
+ … 

Hence  za
lim f(z) = a0  

Hence by defining f(a) = a0 the function f(z) becomes analytic at a. 

Example 1 

 Let f(z) = 
sin z

z
. Clearly 0 is an isolated singular point for f(z). 

Now 
sin z

z
 = 

1

z
 (z - 

z3

3!
 + 

z5

5!
 - …. ) 
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 = 1- 
z2

3!
 + 

z4

5!
 - …. ) 

Here the principal part of f(z) at z = 0 has no terms. 

Hence z = 0 is a removable singularity 

Also  z0
lim  

sin z

z
 = 1.  Hence the singularity can be removed by defining f(0)=1 so that 

the extended function becomes analytic at z = 0. 

Example 2 

Let f(z) = 
z−sin  z  

z3
 

z = 0 is an isolated singularity 

Further 
z−sin  z  

z3
 = 

1  

z3
 [z-(z - 

z3  

3!
 + 

z5  

5!
 - ….] 

     = 
1  

3!
 - 

z2  

5!
 + 

z4  

7!
 - …. 

∴ z = 0 is a removable singularity. By defining f(0) = 
1  

6
 the function becomes analytic 

at z = 0. 

Definition 

 Let a be an isolated singularity of f(z). The point a is called a pole if the 

principal part of f(z) at z=a has a finite number of terms. If the principal part of f(z) at 

z=a is given by 
b1  

z−a
 + 

b2  

(z−a)2
 + … + 

br  

(z−a)r
 . where br ≠ 0. We say that a is a pole of 

order r for f(z). 

Note : 

 A pole of order 1 is called a simple pole and a pole of order 2 is called double 

pole. 

Example 1 

 Consider f(z) = 
ez

z
 

  
ez

z
 = 

1

z
+  1 +  

z

2!
+  

z2

3!
 + … 

Here the principal part of f(z) at z=0 has a single term 
1

z
 .  Hence z=0 is a simple pole 

of f(z). 

Example 2 

 f(z) = 
cos z

z2
 has a double pole at z = 0 
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 For,  

 
cos z

z2
 = 

1

z2
 (1 - 

z2

2!
 + 

z4

4!
 - …) 

        = 
1

z2
 - 

1

2!
 + 

z2

4!
 - … 

 The principal part of f(z) at z=0 contains the term 
1

z2
.  Hence z=0 is a double 

pole of f(z). 

Definition 

  Let a be an isolated singularity of f(z). The point a is called an essential 

singularity of f(z) at z=a if the principal part of f(z) at z=a has an infinite number of 

terms. 

Example 

 Let f(z) = e½ . Obviously z=0 is an isolated singularity for f(z). 

 Further e½ = 1+ 
1

z
 + 

1

2! z2
 + 

1

3! z3
 + … 

 The principal part of f(z) has infinite number of terms. Hence e
1

z  has an 

essential singularity at z=0. 

Theorem 5.6.1   (Riemann’s theorem) 

 Let f be a function  which is  bounded and  analytic through  out a  domain 

0<1z-z0|< δ. Then either f is analytic at z0 or else z0 is a removable singular point of f. 

Proof 

  Consider the Laurent’s series for the function in the given domain about z0. The 

co-efficient bn of 
1

(z−z0)n
 is given by bn = 

1

2πi
 ∫  

 

C

f z dz

(z−z0)−n +1
 where C is the circle |z-z0|=r 

where r < δ. 

Now since f is bounded there exist a positive real number M such that |f(z)| ≤ M in 

0<|z-z0|< δ. 

∴ |bn|   = | 
1

2πi
∫  

 

C

f z dz

(z−z0)−n+1
| 

 ≤ 
1

2π
 
M(2πr)

r−n +1
  [by theorem 5.1.1] 

 = Mr
n
 

 Since it is true for every r such that 0 < r < δ, taking limit r0 we get bn=0. 

Hence the Laurent’s series for f(z) has no principal part. 
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Hence z0 is a removable singular point for f(z). 

Problem 1 

 Determine and classify the singular points of f(z) = 
z

ez−1
 

Solution 

 The singularities of f(z) are given by the values of z for which e
z
-1=0. 

Hence z = 2n πi, nZ are the singularities of f(z). 

Now e
z
-1= (1+z + 

z2

2!
 + …. + 

zn

n!
 + ….) -1 

     = z + 
z2

2!
 + … + 

zn

n!
 + …. 

 z0
lim  

z

ez−1
 = 1 

Hence 0 is a removable singularity for f(z).  Also  z2nπi
lim    ( 

z

ez−1
 ) = ∞ if n≠0 and hence 

2nπi, n≠0 are simple poles of f(z). 

Problem 2 

 Determine and classify the singularities of f(z) = sin( 
1

z
 ). 

Solution 

 Clearly 0 is the only singularity of f(z). 

Also f(z) = 
1

z
 – 

1

3i z3
 + 

1

5i z5
 …. 

Thus the principal part of f(z) at z=0 has infinitely many terms and hence 0 is an 

essential singularity for f(z). 

5.7 Residues 

Definition  

 Let a be an isolated singularity for f(z).  Then the residue of f(z) at a is defined 

to be the  co-efficient of  
1

z−a
 in  the  Laurent’s  series  expansion of  f(z)  about  a  and 

is denoted by Res [f(z); a].  Thus Res [f(z); a] = 
1

2πi
 ∫  

 

C
f(z)dz=b1 where  C is a circle 

|z-a|=r such that f is analytic in 0<|z-a|<r. 

Example 

 Consider f(z) = 
ez

z2
 

 
ez

z2
 = 

1

z2
 (1+ 

z

1!
 + 

z2

2!
 + …) 
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    = 
1

z2
 + 

1

z
 + 

1

2!
 + 

z

3!
 + 

z2

4!
 +  

∴ f(z) has a double pole at z=0 

∴ Res{f(z); 0} = co-efficient of  
1

z
 = 1 

The following lemmas provide methods for calculation of residues. 

Lemma 1 

 If z=a is a simple pole for f(z) then Res{f(z); a} =  za
lim  (z-a) f(z). 

Lemma 2 

 If a is a simple pole for f(z) and f(z) = 
g(z)

z−a
 where g(z) is analytic at a and  

g(a) ≠ 0 then Res{f(z); a} = g(a). 

Lemma 3 

 If a is a simple pole for f(z) and if f(z) is of the form 
h(z)

k(z)
 where h(z) and k(z) 

are analytic at a and h(a) ≠ 0 and k(a) = 0 then Res{f(z); a} = 
h(a)

k(a)
 

Lemma 4 

  Let a be a pole of order m>1 for f(z) and let f(z) = 
g(z)

(z−a)m
 where g(z) is analytic 

at a and g(a) ≠ 0. Then Res {f(z); a} = 
g m−1  a 

 m−1 !
 

Solved Problems 

Problem 1 

 Calculate the residue of 
z+1

z2−2z
 at it poles. 

Solution 

 Let f(z) = 
z+1

z2−2z
 

  ie. f(z) = 
z+1

z(z−2)
 

 ∴ z=0 and z=2 are simple poles for f(z).  

Res {f(z);0}  =  z0
lim  (z-0) [ 

z+1

z(z−2)
 ] 

  =  z0
lim  z [ 

z+1

z(z−2)
 ] 

  =  z0
lim    

z+1

z−2
  = - 

1

2
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Res {f(z); 2} =  z2
lim  (z-2) [ 

z+1

z(z−2)
 ] 

  =  z2
lim  z+1

z
 = 

3

2
 

Problem 2 

 Find the residue at z = 0 of  
1+ez

z cos  z+sin z
 

Solution 

Let f(z) = 
1+ez

z cos  z+sin z
 

Clearly 0 is a pole of order 1 for f(z). 

∴ Res {f(z); 0} =  z0
lim  h(z)

k(z)
 where 

h(z) = 1+ e
z
 and k(z)=z cos z + sin z 

k(z) = -z sin z + cos z + cos z 

        = -z sin z + 2 cos z 

∴ Res {f(z); 0} = 
2

2
 = 1 

Problem 3 

 Find the residue of 
1

(z2+G2)2
 at z=ai 

Solution 

 Let f(z) = 
1

(z2+a2)2
 

     = 
1

(z+ai)2(z−ai)2
 

  z = ai and z = -ai are poles of order 2 for f(z) 

 Let g(z) = 
1

(z+ai)2
 

∴ g(z) = 
−2

(z+ai)3
 

∴ Res {f(z); ai} = g(ai)  

     = 
−2

(ai+ai )3
 = 

−2

(2ai )3
 

     = 
−2

8a3 i3
 = 

−2

−8a3i
 

     = 
2i

8a3 i2
 = 

−i

4a3
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Problem 4 

 Find the poles of f(z) = 
z2+4

z3+2z2+2z
 and determine the residues at the poles. 

Solution  

  f(z) = 
z2+4

z3+2z2+2z
 

       = 
z2+4

z(z2+2z+2)
 

   ie f(z)     = 
z2+4

z(z+1−i) (z+1+i)
 

∴ 0, i-1,-1-i are simple poles for f(z). 

Hence f(z) = 
h(z)

k(z)
 where 

h(z) = z
2 

+ 4 and k(z) = z
3
 +2z

2
 + 2z 

Hence  k(z) = 3z
2
+4z+2 

Res {f(z); 0} = 
h(0)

k(0)
 = 

4

2
 = 2 

Res {f(z); i-1}= 
h(i−1)

k(i−1)
  

     = 
(i−1)2+4

3(i−1)2+4 i−1 +2
 

    = 
−1−2i+1+4

3 −1−2i+1 +4i−4+2
 

    = 
4−2i

−2i−2
 = 

(2−i)

(−i−1)
 

    = 
 2−i (−1+i)

 −1−i (−1+i)
  

    = 
−2+2i+i+1

1−i+i+1
  

    = 
3i−1

2
  

Similarly Res {f(z);-1-i} = 
−(1+3i)

2
 

Problem 5 

Find the residue of  
ez

z2(z2+9)
 at its poles. 

Solution 

Let f(z) = 
ez

z2(z2+9)
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Here z=0 is a double pole and z=3i and z=-3i are simple poles for f(z). To find the  

Res {f(z); 0} let g(z)= 
ez

z2+9
.  Clearly g(z) is analytic at z=0 and g(0) ≠ 0. 

Also g(z) = e
z
 [

(ez +9)−2z

(z2+9)2
] 

∴ Res {f(z); 0} = 
g(0)

1!
 (by lemma 4) 

    = 
1

9
  

Now, to find Res{f(z); 3i}; let f(z)= 
h(z)

k(z)
 

So that h(z) = e
z
 and k(z) = z

2
 (z

2
+9) 

Then k(z)   = z
2
x2z+(z

2
+9)2z  

           = 2z
3
+2z

3
+18z  

          = 4z
3
+18z  

∴ Res{f(z), 3i} = 
h(3i)

k(3i)
 

      = 
e3i

4(3i)3+18(3i)
 

      = 
e3i

−108i+54i
 

      = 
i(cos 3+i sin  3)

54
 

Similarly Res {f(z);-3i} = 
−(sin  3+i cos  3)

54
 

5.8   Cauchy’s Residue Theorem 

Statement 

 Let f(z) be a function which is analytic inside and on a simple closed curve C 

except for a finite number of singular points z1, z2, …, zn inside C. Then 

∫  
 

C
f(z)dz = 2πi   n

j=1 Res{f(z); zj} 

Proof 

 Let C1, C2, …, Cn be circles with centres z1, z2, …,zn respectively such that all 

circles are interior to C and are disjoint with each other. By Cauchy’s theorem for 

multiply connected regions we have,  

  ∫  
 

C
f(z)dz = ∫  

 

C1
f(z)dz+ ∫  

 

C2
f(z)dz+ …+∫  

 

Cn
f(z)dz + 

       = 2 πi Res{f(z);z1} + 2 πi Res{f(z);z2}+…+2 πi Res{f(z);zn} 
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    (By definition of residue) 

        = 2 πi   n
j=1 Res{f(z);zj} 

Solved Problems 

Problem 1 

Evaluate  ∫  
 

C
 

dz

2z+3
 where C is |z|=2 

Solution 

z=−
3

2
 is the simple pole of f(z) which lies inside the circle |z|=2. 

Res f(z); 
−3

2
 =  

z−
3

2
 

lim    
h(z)

k(z)
 where h(z)=1 and k(z)=2z+3 

  ∴ k(z)=2 

 ∴ Res {f(z); 
−3

2
} =  

1

2
 

 ∴ By Residue theorem ∫  
 

C
f(z)dz = 2πi(½) 

              = πi 

Problem 2 

 Evaluate ∫  
 

C
 

dz

z2ez
 where C ={z: |z|=1} 

Solution 

  Given integral can be written as ∫  
 

C
 f(z)dz where f(z) = 

e−z

z2
  

∴ f(z) has pole of order 2 at z=0 which lies inside the circle |z|=1.  

Let g(z) = e
-z

  

Hence g(z) = -e
-z

  

By Lemma 4, Res [f(z); 0] =  
g(0)

1!
 = -1 

∴ By residue theorem, 

∫  
 

C
f(z)dz = ∫  

 

C
 

dz

z2e2
   = 2πi(-1) 

   = -2πi 

Problem 3 

Prove that ∫  
 

C
 

e2z

(z+1)3
 dz = 

4πi

e2
 where C is |z| = 

3

2
 

Solution 

 Let f(z) = 
e2z

(z+1)3
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f(z) has a pole of order 3 at z=-1  

Res {f(z);-1} = 
g(−1)

2i
 where g(z)=e

2z
 

 Now g(z) = 2e
2z

  

 Now g(z) = 4e
2z

  

Res {f(z);-1} = 
4e−2

2i
 = 

2

e2
 

∴ By residue theorem, ∫  
 

C
f(z)dz = 2πi( 

2

e2
 ) 

           = 
4πi

e2
 

Problem 4 

 Evaluate using (i) Cauchy’s integral formula. (ii) residue theorem 

∫  
 

C
 

z+1

z2+2z+4
 dz  where C is the circle |z+1+i|=2. 

Solution  

 Clearly C is a circle with centre a=-(1+i) and radius 2. 

 Now 
z+1

z2+2z+4
  =   

z+1

z2+2z+1+3
 

   =   
z+1

(z+1)2+( 3)2
 

   =   
z+1

 z+1+i 3 (z+1−i 3)
 

   =   
z+1

 z− −1−i 3  [z− −1+i 3 ]
 

Z0 = -1+i 3 and z1 = -1-i 3 are the singular points of the given integrated 
z+1

z2+2z+4
  

 Now |z0-a| = |(-1+ i 3)-[-(1+i)]| 

        = |-1+ i 3+1+i| 

        = |i( 3+1)| =  3 +1>2 

 and |z1-a|  = |-1-i 3-[-(1+i)]| 

       = |-1-i 3+1+i| 

       = |i(1- 3) | 

       =  3-1<2 

∴ z1 =-1-i 3 lies inside C 

1. By using Cauchy integral formula. 
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Consider f(z) = 
z+1

z−(−1−i 3)
 

 We note that f(z) is analytic at all points inside C. 

∴ By Cauchy’s integral formula, 

 
1

2πi
  ∫  

 

C
 

f(z)

z−z1
dz = f(z1) 

i.e  
1

2πi
  ∫  

 

C
 

(z+1)dz

 z−(1−i 3 [z− −1+i 3 ]
 = f(-1-i 3) 

i.e  
1

2πi
  ∫  

 

C
 

(z+1)dz

z2+2z+4
 = 

 −1−i 3 +1

 −1−i 3 −  −1+i 3 
 

           = 
−i 3

−2i 3
 

           = 
1

2
 

∴ ∫  
 

C
 

(z+1)dz

z2+2z+4
 = 

1

2
 (2πi) = πi 

ii.   By using residue theorem 

 f(z) = 
z+1

z2+2z+4
 

 since z = -1-i 3 lies inside C 

 Res {f(z); -1-i 3 } = 
h −1−i 3 

k −1−i 3 
  where h(z)=z+1  

  and k(z) = z
2
+2z+4 

 ⟹ k(z) = 2z+2 

∴ Res{f(z); -1-i 3} = 
−1−i 3+1

2 −1−i 3 +2
 

   = 
−i 3

−i2 3
 = 

1

2
 

∴ By residue theorem ∫  
 

C
f(z)dz = 

2πi

2
 = πi . 

5.9    Evaluation of Definite Integrals 

Type 1 

        ∫  
2π

0
f(cos , sin )d where f(cos , sin ) is rational function of cos  and sin . 

 To evaluate this type of integral we substitute z=e
i

. As  varies from 0 to 2π, z 

describes the unit circle |z|=1. 

 Also    cos  = 
ei+e−i

2
 = 

z+z−1

2
 and 
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  sin  = 
e1−e−i

2
 = 

z−z−1

2i
 

  substituting these values in the given integrand, the integral is transformed into  

∫  
 

C
(z)dz where (z) = f [ 

z+z−1

2
 , 

z−z−1

2
 ] and C is the positively oriented unit circle 

|z|=1. The integral ∫  
 

C
(z)dz can be evaluated using the residue theorem. 

Solved Problem 

Problem 1 

Evaluate ∫  
2π

0

d

5+4 sin 
 

Solution  Let I = ∫  
2π

0

d

5+4 sin 
 

put z = e
i

  

Then dz = e
i 

. id 

    = izd. 

and sin  = 
z−z−1

2i
 

The given integral is transformed to 

 I = ∫  
 

C
 

dz

iz[5+4 ( 
z−z−1

2i
)
 where C is the unit circle |z|=1 

   = ∫  
 

C

dz

iz   
[10i+4z−

4
z

 ]

2i

  

   = ∫  
 

C

2dz

z [ 
4z2+10i−4

z
]
  

   = ∫  
 

C

dz

2z2+5iz−2
  

Let f(z) = 
1

2z2+5iz−2
 

   = 
1

2z2+4iz+iz−2
 

   = 
1

2z z+2i +i(z+2i)
 

   = 
1

 z+2i (2z+i)
 = 

1

 z+2i 2(z+
i

2
)
 

  Clearly -2i and 
−i

2
 lies inside C.  
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  Also Res {f(z); 
−i

2
} =  z½

lim⁡ 1

2 z+2i (z+
i

2
)
 x (z+ 

i

2
 ) 

           =  z½
lim⁡ 1

2 z+2i 
 =  

1

3i
 

Hence by Cauchy’s residue theorem. 

  I = 2πi( 
1

3i
 ) = 

2π

3
 

Problem 2 

 Prove that ∫  
2π

0

d

1+a sin 
 = 

2π

 1−a2
 (-1< a < 1) 

Solution 

 Put z= e
i

  

 Then sin  = 
z−z−1

2i
 where dz = izd 

  ∫  
2π

 

d

1+a sin 
 = ∫  

 

C

dz

iz[1+(
z−z−1

2i
)
 where C is the unit circle. 

           = ∫  
 

C

dz

iz[ 
2i+az −

a
z

2i
 ]

 

          =  ∫  
 

C

2dz

az 2+2iz−a
 

      Let f(z) = 
2

az 2+2iz−a
 

The poles of f(z) are given by 

     z = 
−2i ±  −4+4a2

2a
 

       = 
−i ±i  1−a2

a
   [since -1<a<1] 

 Let z1 = 
−i+ i  1−a2

a
  and z2 =   

−i− i  1−a2

a
 

  We note that |z2| = 
1+ 1−a2

|a|
 > 1 [∴ -1 < a < 1]. Also since |z1 z2| = 1, it follows 

that |z1|<1. Hence there are no singular points on C and z = z1 is the only simple pole 

inside C. 

Res {f(z): z1} =  zz1
lim  (z-z1) [ 

2
a 

 z−z1  z−z2 
 ] 

   =  [ 
2

a 

z−z2
 ] 

  =   
2

a
    

1

  
−i+i 1−a 2

a
  −   

−i−i 1−a2

a
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  =   
2

a
 [ 

a

  2i  1−a2 
 ] 

  =   
1

i  1−a2
 

By residue theorem  ∫  
2π

0

d

1+a sin 
  = 2πi [ 

1

  i  1−a2 
 

       = 
2πi 

   1−a2 
 

Problem 3 

 Prove that I = ∫  
π

0

ad

a2+sin 2
  = 

π

 a2+1
 [a>0] 

Solution 

 I = ∫  
π

0

ad

a2+ ( 
1−cos 2

2
 )
   

   = ∫  
π

0

2ad

2a2+1−cos  2  )
   

   = ∫  
2π

0

adφ

2a2+1−cos φ
  (putting 2 = ) 

Put z = e
iφ

 then cos φ = 
z+z−1

2
 

dz = i e
iφ

 d 

dz = izdφ 

I = 
1

i
  ∫  

 

C
 

adz

z[2a2+1− ( 
z+z−1

2
)
 

  = 
1

i
  ∫  

 

C
 

adz

z[  
2(2a 2+1)−z−z−1

2
)
 

  = 
2a

i
  ∫  

 

C
 

dz

z[2 2a2+1 −z−
1

z
]
 

  = 
2a

i
  ∫  

 

C
 

dz

[2 2a2+1 z−z2−1
 

  = 2ai ∫  
 

C
 

dz

z2−2 2a2+1 z+1
 

  = 2ai ∫  
 

C
 f(z)dz      (1) 

Where f(z) = 
1

z2−2 2a2+1 z+1
 and C is the unit circle |z|=1. 

Poles of f(z) are the roots of z
2
-2(2a

2
+1)z+1=0  

  z = 
2(2a2+1)± 4(2a2+1)2−4

2
 

    = 
2[(2a2+1)± 4a4+4a2+1−1

2
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      ie.z = (2a
2
+1) ± 2a  a2 + 1 

 Let z1 = 2(a
2
+1) + 2a a2 + 1 ;z2=(2a

2
+1)-2a a2 + 1 clearly |z1|>1 and  

|z1 Z2|=1 so that |z2|<1. Hence the only pole inside C is z=z2. 

Res {f(z) z2] =  zz2
lim  (z-z2) 

1

(z−z1)(z−z2)
 

          = 
1

z2−z1
 

          = 
1

 −4a  a2+1
 

From (1), by residue theorem, 

 I = 2πi [
2ai

−4a a2+1
 ] 

   =  [
π

 a2+1
 ] 

Exercise 

1. Prove that ∫  
2π

0

d

13+5 sin   
  = 

π

6
 

2. Prove that ∫  
2π

0

d

2+cos   
  = 

2π

 3
 

Type 2 

 ∫  
∞

−∞
f(x) dx where f(x) = 

g(x)

h(x)
 and g(x), h(x) are polynomials in x and the degree 

of h(x) exceeds that of g(x) by atleast two. 

  To evaluate this type of integral we take f(z) = 
g(z)

h(z)
. The poles of f(z) are 

determined by the zeros of the equation h(z)=0. 

Case (i) No pole of f(z) lies on the real axis. 

 We choose the curve C consisting of the interval [-r, r] on the real axis and the 

semi circle |z|=r lying in the upper half of the plane. 

 Here r is chosen sufficiently large so that all the poles lying in the upper half of 

the plane are in the interior of C. Then we have 

∫  
 

C
f(z)dz = ∫  

r

−r
f(x)dx + ∫  

 

C1
f(z)dz. Where C1 is the semi circle. 

 Since deg h(x) – deg f(x) ≥ 2 it follows that ∫  
 

C1
f(z)dz0 as r  ∞ and hence 

∫  
 

C1
f(z)dz = ∫  

∞

−∞
f(x)dx. 
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∴ ∫  
∞

−∞
f(x)dx can be evaluated by evaluating ∫  

 

C−
f(z)dz  which in turn can be 

evaluated by using Cauchy’s residue theorem. 

Case (ii) f(z) has poles lying on the real axis 

 Suppose a is a pole lying on the real axis.  In this case we indent the real axis 

by a semi circle C2 of radius ε with centre a lying in the upper half plane where ε is 

chosen to be sufficiently small. (refer figure) 

 Such an indenting must be done for every pole of f(z) lying on the real axis. It 

can be proved that ∫  
 

C2
f(z)dz = -πi Res {f(z); a}. By taking limit as r∞ and ε0 we 

obtain the value of ∫  
∞ 

−∞
f(x)dx. 

Solved Problems 

Problem 1 

 Use contour integration method to evaluate ∫  
∞

0

dx

1+x4
 

Solution 

 Let f(z) = 
1

1+z4
 

 The poles of f(z) are given by the roots of the equation z
4
+1=0 which are the 

four fourth roots of -1. 

 z
4
=-1 

 z = (-1)
4
 = (cos π + i sin π)

4
  

   = cos (2n+1) 
π

4
 + sin (2n+1) 

π

4
 , n=0,1,2,3 

    = eiπ 4 , ei3π 4 , ei5π 4 , ei7π 4  which are all simple poles. 

 We choose the contour C consisting of the interval [-r, r] on the real axis and 

the upper semi-circle |z|=r which we denote by Cr. 

∴ ∫  
 

C
f(z)dz = ∫  

r

−r
f(x)dx + ∫  

 

C1
f(z)dz       (1) 

The poles of f(z) lying inside the contour C are obviously eiπ 4  and ei3π 4  only.  We 

find the residues of f(z) at these points. 

Res {f(z); eiπ 4 } = 
h(eiπ 4 ) 

k(eiπ 4 )
 where h(z)=1 

  and k(z) = z
4
+1 

       k(z) = 4z
3
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 ⟹ k(eiπ 4 ) = 4(eiπ 4 )
3
 

          = 4ei3π 4  

∴ Res {f(z); eiπ 4 } = 
1

4ei3π
4 
  = 

e−i3π
4 

4
 

Similarly Res {f(z); ei3π
4 } = 

e−i9π
4 

4
 

By residue theorem, 

 ∫  
 

C
f(z)dz = 2πi (sum of the residues at the poles) 

     = 2πi [
e−i3π

4 

4
 + 

e−i9π
4 

4
] 

     = 
2πi

4
 [cos(3π 4 )- i sin (3π

4 ) + cos(9π 4 )-i sin (9π
4 )] 

     = 
πi

2
 [(- 

1

 2
 - 

i

 2
 ) + ( 

1

 2
 - 

i

 2
 )] 

     = 
πi

2
 [ 

−2i

 2
 ] 

     = 
π

 2
  

From (1), ∫  
r

−r
 

dx

1+x4
 + ∫  

 

c1
f(z)dz  = 

π

 2
 

 As r∞, ∫  
 

c1
f(z)dz  0 

 ∴ ∫  
∞

−∞

dx

1+x4
 = 

π

 2
 

 ∴ 2∫  
∞

0

dx

1+x4
 = 

π

 2
  [∵

1

1+x4
  is an even function] 

 ∴ ∫  
∞

0

dx

1+x4
 = 

π

2 2
   

Problem 2 

 Evaluate    ∫  
∞

−∞

x2−x+2

x4+10x2+9
 dx 

Solution 

 Let f(z) = 
z2−z+2

z4+10z2+9
 

Poles of f(z) are the zeros of z
4
+10z

2
+9=0 ,   z

4
+10 z

2
+9 = (z

2
+9) (z

2
+1) 

∴ z = ±3i, ±i 

Hence z = 3i, -3i, i, -i are the simple poles of f(z) 

Choose the contour C as shown in the figure 
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∫  
 

c
f(z)dz = ∫  

r

−r
f(x)dx + ∫  

 

c1
f(z)dz     (1) 

The poles of f(z) lying within C are i and 3i and both of them are simple poles. 

Res{f(z)i} = 
h(i)

k i 
 where h(z) = z

2
-z+2 and k(z) =z

4
+10z

2
+9. 

⟹ k(z) = 4z3+20z 

∴ Res{f(z)i} = 
(i)2−i+2

4(i)3+20i
 

          = 
1−i

−4i+20i
 = 

1−i

16i
 

Similarly Res {f(z); 3i} = 
7+3i

48i
 

∴ ∫  
 

c
f(z)dz =  2πi (sum of the residues at the poles) 

       = 2πi ( 
1−i

16i
 + 

7+3i

48i
 ) 

       = 2πi ( 
3−3i+7+3i

48i
 ) 

       = 2πi ( 
10i

48i
 ) =  

5π

12
  

From (1) ∫  
r

–r
 

x2−x+2

x4−10x2+9
 dx = 

5π

12
 

Problem 3 

 Prove that ∫  
∞

0
 

dx

x6+1
 = 

π

3
 

Solution 

 Since 
1

x6+1
 is an even function we have ∫  

∞

−∞
 

dx

x6+1
 = 2 ∫  

∞

0
 

dx

x6+1
 

Now let f(z) = 
1

x6+1
 

 The poles of f(z) are given by the roots of the equation x
6
+1 = 0 which are the 

sixth roots of -1. 

 Z = (−1)
1

6  

  By De Movre’s theorem, they are given by  eiπ 6 , ei3π 6 , ei5π 6 , ei7π 6  and  

ei11π
6  and they are simple poles. 

 Now choose the contour C consisting of the interval [-r, r] on the real axis and 

the upper semi circle |z|=r which we denote by C1. 

 The poles of f(z) lying inside C are e
iπ

6 , ei3π
6  and  ei5π 6  
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Res {f(z); ei5π 6 } = 
h(eiπ 6 )

k(eiπ 6 )
  

and k(z) = z
6
+1 

⟹ k(z) = 6z
5
  

⟹ k(e
iπ

6 ) = 6(e
iπ

6 )
5
 

          = 6 e
i5π

6  

Res {f(z); (e
iπ

6 } = 
1

6 e
i5π

6 
 

            =  
1

6
 e−

i5π
6  

Similarly Res{f(z), e
i3π

6 } 
1

6
 e−

i5π
6  and Res {f(z), e

i5π
6 }= 

1

6
 e−

25π

6  

∴ By residue theorem, 

∫  
 

c
f(z)dz  2πi   (sum of the residues at the 3 poles) 

 = 2πi [ 
1

6
 e
−5iπ

6  + = 
1

6
 e
−5iπ

6  + 
1

6
 e
−25iπ

6 ] 

 = 
2πi 

6
 [ (cos 

5π

6
 – sin 

5π

6
 )+(cos 

5π

2
 – i sin 

5π

2
 ) + ( cos 

25π

6
 – i sin 

25π

6
)] 

 = 
πi 

3
 [(- 

 3

2
 – 

i

2
 )+(0 - i ) + (

 3

2
 – 

i

2
)] 

 = 
πi 

3
 (-i -i) 

2π

3
 

From (1)  

∫  
r

–r
 

dx

x6+1
 +∫  

r

C1
f(z)dz 

2π

3
 

As r∞, the integral over C1 0 

∴ ∫  
∞ 

−∞

dx

x6+1
 = 

2π

3
 

∴ ∫  
∞ 

−∞

dx

x6+1
 = 

π

3
 

Exercise 

1. Using the method of contour integration evaluate ∫  
∞ 

−∞

x2

(x2+1)(x4+4)
 dx 

2. Prove that ∫  
∞ 

−∞

x2

(x2+a2)(x4+b2)
 
π

a+b
 

3. Evaluate i = ∫  
∞ 

−∞

dx

(x2+a2)2
  

Ans :   (1)     
π

3
  (3)   

π

4a3
  


