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UNIT I
FINITE DIFFERENCES

1.1 Introduction

1.2 Difference Operations

1.3 Factorial Function

1.4 Difference Equations

1.5 Linear Difference Equations

1.1 Introduction

We introduce the idea of finite differences and associated concepts, which have
important applications in numerical analysis.

For example, interpolation formulae are based on finite differences. Through finite
differences, we study the relations that exist between the values that are assumed by the
functions whenever the independent variables change by finite jumps.

1.2 Difference Operations

There are three difference operators namely forward, backward and central difference
operators.

Forward Difference Operator

Consider the function y = f(x). Suppose we are given a table of values of the function
at the points

Xos X =Xy +h, X, =%, +2h, -+, X, =X, +nh.
Let f(X,)=VY,, f(x)=v,, f(x,)=Yy,.
We define
A[f(x)]= f(x+h)-f(x)
Thus Ay, = f(x, +h)— f(x)= f(x,)— F(X,)=Y; — Y-
LAYy =Y Y,

Further, x,, x;, --+, X, are called arguments. The corresponding values of f(x) are
called entries and h is called the interval of differencing.

Similarly, Ay, =y, -V,

A Yoir =Yn —Yna



A is called the forward difference operator and Ay,,Avy,,---,Ay, , are called the first
forward differences of the function y = f(x).

The second order differences of the function are defined by

AZ yn—l = AYn _Ayn—l'

A’ Yo :AY1_Ay0

A Y =AYy, —Ay,

Similarly, higher order differences can be defined. In general the n™ order differences

are defined by the equations

Ay, =Ny, ATy,

These differences of the function y = f(x) can be systematically represented in the
form of a table called forward difference table. We can construct the difference table for any
number arguments and a sample difference table is given for six consecutive arguments.

X y =f(x) Ay A%y A’y A'y Ay
Xo Yo
AY,
X, =X, +h V. A Y,
Ayl ) N Yo
X, = X, +2h Y, A"y, Ay
Ay, Ay ‘
1 5
X, = X, +3h Ys Ay, Ay Ay,
A Y3 N !
, Yo
X, = X, +4h Y, A"y,
Ay,
Xs = X, +5h Vs

In the above forward difference table y,is known as the first entry and

AYy, N Y-+, Ay, are called leading differences.

Note:

Since each higher order difference is defined in terms of the previous lower
differences by continuous substitution of each higher order difference can be expressed in
terms of the values of the function.

Thus




Ny =AY =AY, =Y, =)= (Vi = ¥o)
=Y, -2y, + Y,
Ny, =Ny, -Ny,
= (Y5 =2, + Y1) = (Y, =2y, +¥,)
=Y, -3y, +3y, — ¥,
ANy, =Ny -ANy,
= (¥4 —3Y5 +3y, = ¥,)—(¥s =3y, +3y, - ¥, )
=y, -4y, +6y, -4y, +Y,.

We observed that the coefficients occurring in the right hand side are simply the
binomial coefficients in (1-x)". Hence in general, we have

A’ Yo=Yn— nclyn—l + nc2 Yoo — o +(_1)n Yo-
Properties of the Operator A:

1. A is linear, that is Alaf(x)+bg(x)]=aA[f(x)]+bA[g(x)] where a and b are
constants.

Proof:

Ala f(x)+bg(x)]=[a f(x+h)+bg(x+h)]-[a f(x)+bg(x)]
=a[f(x+h)- f(x)]+b[g(x+h)-g(x)
~ Alaf(x)+bg(x)]=aAlf(x)]+bA[g(x)].
2. A"A'[f(x)]= A" [f(x)]
Proof:

A" A" [f(X)]= (AA---m times)(AA---ntimes) f (x)g
= AA---(m+ntimes) f (x)

A" A ()] = A" [F (X))

3. AlF(x) g()]= f(x+h)[ag()]+ g(x)a[f (x)}

Proof:
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Backward Differences

Consider the function y = f(x). Suppose we are given a table of values of the function
at the points

Xor X =Xy +N, X, =X, +2h, .-+, X, =X, +nh.
Let f(xo)=yo: f(xl)zyv f(xz)=Y2’ T f(xn):yn'
We define
V[f(x)]= f(x)- f(x=h)

Thus vyl =Y1— Yo

Vyzzyz_Y1

Vyn =Yn —Yna-

Vis called the backward difference operator and Vvy,,Vy,,---,Vy, are called the
first order backward differences of the function y = f(x).
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The second order differences of the function y = f(x) are defined by
v? Y,=VY,=-VYy,

v? Y, =Vy;—-Vy,

VZ yn :vyn _vyn—l'

Similarly, higher order differences can be defined. In general, the n™ order differences
are given by,

vy, =V Yi v Yia-

These differences of the function y= f(x) can be systematically represented in the
form of a table called backward differences table.

X y=1f(x) | Vv vy vy vty vy
X Yo vy
0
VZ
X, =X, +h Y, v Yo
Y1 V3 Yo
X, = X, +2h Y, vy VY, vy,
2 Viy, vey
V2 y 4 ’
X3 =X, +3h Ys v 2 vViy,
Vs Viy,
2
X, = X, +4h Y, vy VoY,
4
Xs = X, +5h Vs

As in the case of A we can prove that V is also linear.
Remark:

The relation between the two difference operators is given by V|[f(x+h)]=A f(x).
For, V[f(x+h)]= f(x+h)—f(x)=A f(x)
Similarly,
V2[f(x+2h)]=V[f(x+2h)- f(x+h)]
=V f(x+2h)-Vf(x+h) (since V is linear)
=Af(x+h)-Af(x)

= A[f(x+h)— f(x)]



V2 [f(x+2h)]= A% f(x).
In general,
V[f(x+nh)]= A% f(x).

Hence from the forward difference table of the function f(x) we can obtain backward
differences of all orders.

Central Difference Operator

Sometimes it is convenient to employ another system of differences known as central
differences. We define central difference operator 6 as

5f(x)= f[x+gj— f(x—gj.

Thus if f(x; )= y,then we have

5)/1 =Y1— Y
2
§y§ =Y, Y%
2
5yn—l = yn _yn—l

2

Here the subscript of dy is the average of the subscripts of the two members of the
difference. The higher order differences can define similar to forward and backward
differences.

5%y, =6y, =6y,

2 2

52)/2 :5y§ _5y§
2 2
5%y, =%y, -5y, etc.

2

These differences of the function y = f(x) can be systematically represented in the
form of a table called central difference table.

X y=f(x) | ¢ 5ty 5%y 5ty
Xo Yo 5y,
2
X, =X, +h Y, 5ty
5Y, 5y,
X, =X, +2h Y, 2 52 ., 2




X3=Xo+3h Ys 5y5 st Y,

5%y, 5°Ys
X, =X, +4h Y, 2

Fundamental theorem for Finite Differences

Let f(x) be a polynomial of degree n. Then the n™ difference of f(x) is a constant and
all higher order differences are zero.

1.3 Factorial Function (or) Factorial Notation
Definition

A product of the form x(x-h) (x-2h) ... [x-(n-1) h] is called a factorial function and is
denoted by x™.

- x™ = x(x=h)(x=2h)--[x—(n=1)h].
Thus x® = x, x® = x(x-1) and x® = x(x-1) (x-2).
We observed that x™ is a polynomial of degree n with leading coefficient 1.

The following theorem shows that the formula for the first difference of x™ is
obtained by the simple rule of differentiation.

Theorem:

AX™ =nhx™Y In particular when h =1, Ax™ =nxY,

Proof:
AX™ = (x+h)™ = x®
=(x+h)x(x=h)---[x=(n=2)h]- x(x=h)(x = 2h)---[x = (n=1)h]
=x(x=h)(x=2h)---[x=(n=2)h] {(x + h) =[x = (n=D)h]}
Ax™ = xVnh,
Whenh=1,
AX™ =nx, 1)
Note: 1

From equation (1) we get the formula for first order difference, which is obtained by
the simple differentiation rule.



For example, A2x™ = A[nhx"™V]|=nhax™? =n(n—1)h? x"? proceeding like this
we get

A"x™ = An(n-1)(n—2)---1h" x° =nth".

Note: 2

Any polynomial f(x) of degree n can be expressed in the form
f(x)=cox™ +c,x"Y +...4c,_xY +c, . If f(x) is divided successively by x-0, x-1, x-2, ...,
X-(n-1), then the remainders give the coefficients c,,c, ,,---,C;,C,.
Definition

The reciprocal factorial function x™ for positive integer n is defined as

<) _ 1
(x+h)(x+2h)...(x +nh)

As in the case of factorial function the formula for first order difference of x‘™ is
similar to differentiation rule when h = 1.

Theorem:

A" = (=n)hx Y In particular Ax™" = —nx "V,
Proof:
AXEY = (x+h) " - x

1
(x+2h)(x+3h)---[x+ (n+1)h] " (x+h)(x+2h)---(x +nh)

1
~ (x+h)(x+2h)--[x+(n +1)h]{x+h—[x+(n+1)h]}

—-nh
(x+h)(x+2h)---[x+(n+1)h]

AXT = (=n)hx Y,
Remark:
AXC = A= nhx |
o[- (100~ (1) (o
In general A" x™ =(=1)" h" n(n+1)---(n+r +1)x ™,

Example: 1

Form the forward difference table for the following data:



x| 0 1 12| 3
y | 8|11 |9 ]| 15
Solution
The difference table is given below.
X y Ay A%y Ay Ay
0 8
3
1 11
-5
-2
6 -36
3 15 23
-15
a6 |

Example: 2

Find A (2%).
Solution
A(29) = 2X*_px
A = 25 (2" 1).

Example: 3

Find the n™ difference of e*.

Solution

Ale)=e" —e* —e*(e" ~1)
K (e")= alae”)
Ale(er-1)

(6" -1)ale”)

(e -1e"Je -1)
—e*(e" 1)

Similarly A%(e*)=e* (e" -1f .

Proceeding like this we get A" (ex):

Other Difference Operators

e*(e"-1).
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The shift operator E and averaging operator p.
Definition:

The shift operator E is defined by Ef(x) = f(x+h). Hence E? f(x) = Ef(x+h) = f(x+2h).
In general, for any positive integer n

E" f(x)=f(x+nh)

In particular we have

Eyo=¥y1

E* Yo = V2

E" Yo = Yn.
The inverse operator E™ is defined as

E*f(x) =f(x-h)
For any real number n we have

E" f(x) =f(x+nh).
Note:

E™E" f(x) = E™" f(x)
Definition:

The averaging operator is defined as

f(x+2]+f(x—2}
uf(x) =

2

There are several relation connecting the operators A, V, 8, E, u and the differentiation
operator D.

Example 1:
EV=VE=A.
Solution:
EV=EQQ-E)E=E-1=A.
Also, VE= (1-EYE=E-1=A.

Example 2:
1 1 1
[EZ +E 2}(1+A)2 =2+A.
Solution:

11



R p (L 1)1

E2+E 2 |(l+A)2=| E2+E 2 |E?2
=E+1
=(1+A)+1

i1 1
[E2+E2j@+Aﬁ:2+A.

1.4 Difference Equations

Any situation in which there exists a sequential relation at discrete values of the
independent variable, leads to difference equations. Difference equations may be thought of a
discrete counterpart of differential equations and there is a striking similarity between the
methods of solving difference equations and differential equations.

Definition

An equation involving the differences of an unknown function y = y(x) at one or more

general values of the argument n is called a difference equation.

The following are some examples of difference equations.

Ay, +2y,=n 1)
Ay, +5Ay, +3y, =0 ()
AU, —4Au, +4u =3 (3)

We assume that the consecutive values of independent variable differ by unity. With
this assumption a difference equation can be written in an alternative form, as illustrated
below.

Consider the difference equation, Ay, +2y, =n.

Since Ay, =(E-1)y,=y,,-Y, the above difference equation can be written as
Yo — Y +2yn =n (Ie) Yo T Y, =N

Consider the difference equation (3), A’u, —4Au, +4u, =3,

+Uu

X+1 X

since Au, =(E—1)u, =u, —u, and A%, =(E—1)u, = (E? —2E +1}u, =u,,, —2u
the difference equation (3) can be written as

(u.,-2u,,+u)-4u,, —u )+4u =3

X+2

(ie) u,,—6u,, +9u, =3*.

X+1

Definition
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The order of a difference equation is the difference between the largest and smallest

subscripts occurring in it, when the equation is expressed in the form free of the difference
operator A.

The degree of a difference equation, expressed in the form free of A, is the higher

power of y.

Examples:

1.

Note:

The difference equation Ay, +2y, =n, when expressed in a form free of A is
Y... + Y, =n. The largest subscript in the equation is n+1 and the smallest subscript

in the equation is n. Hence the order of the difference equation is 1. The highest
power of y is 1. Hence the degree of the difference equation is also 1.

The difference equation A’u, —4Au, +4u = 3", when expressed in a form free of A

is u,,, —6u,,, +9u, =3*. The largest subscript in the equation is x+2 and the smallest

subscript in the equation is x. Hence the order of the difference equation is 2. The
highest power of y is 1. Hence the degree of the difference equation is 1.

Consider the difference equation4y? , —2y, V.., +Y:ysr, =0. It is free form A. The
largest subscript here is n+3 and the smallest subscript is n. Hence the order of the
difference equation is 3. The highest power of y is 4 hence the degree of the
difference equation is 4.

The order of the difference equation may not be the highest power of A involved in it.

For example, consider the equation A’y +2Ay_ +y_ = 2". This can be written as

(E _1)2 Yn +2(E _1)yn +Y, = 2".
ie. E’y, =2"

ie y,,,=2"

which is not even a difference equation.

Definitions

Solution

A solution of a difference equation is an expression for y, which satisfies the given

difference equation.

General Solution

A solution in which the number of arbitrary constants is equal to the order of the

difference equation is called the general solution.
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Particular Solution

Any solution which is obtained from the general solution by giving particular values
to the arbitrary constants is called a particular solution.

Example: 1

Write the difference equation A’y, + A%y, + Ay, +y, = 0in the subscript notation.

Solution

The given difference equation can be written as
(E-1y, +(E-1]y, +(E-1)y, +y, =0
(ie) (E®—3E?+3E 1)y, +(E2 —2E +1)y, +(E? —2E +1)y, +(E-1)y, +y, =0
(ie) (E®—2E2 —4E)y, =0
(i€) Yz =2Y0i2 =41 =0.
Example: 2

Find the order of the difference equation A’y —3A%y. +2Ay, + Y, = CO0S7X.

Solution

The given difference equation can be written as

(E-1)y, -3(E-1)*y, +2(E -1)y, + Y, = c0s 7

ie. (E°—3E2+3E-1)y, —3(E2 - 2E +1)y, +2(E -1)y, + Y, = C0s 2
ie. (E3—6E2 +11E —5)y, = cos

" Yis —0Y,., +11y,., —5Y, =C0S 7X

This difference equation is free from A.
.. The order of the given difference equation is (n+3) - n = 3.

Example: 3
Show that ynzl—gis a solution of the difference  equation
n
(n+1)y,,, +ny, =2n—-3.

Solution

(n+1)y,,, +ny, =(n +1)(1—ij+ n(l—zj

n+1 n

=n+1-2+n-2

14



(n+1)y,,, +ny, =2n-3.

Y, = 1—g is a solution of the given difference equation.
n

Formation of Difference Equations

In the case of differential equations difference equation can be formed by eliminating
the constants from the given equation. We can see some examples.

Example: 1
Form the difference equation by eliminating the constant a fromy, =a3".
Solution
y,=a3".
S Y =a3"t = 3(a3” )= 3y,,.
-~ Yo —3Y, =0is the required difference equation.

Example: 2

Form the difference equation by eliminating the arbitrary constants A and B from the
equation y, =Aa" + Bb"where a = b.

Solution
Yy, =Aa" +Bb" @)
LY =Aa"™ +Bb™
(i) Yo =a(Aa" )+b(Bb") @)
Similarly
Yoo =a2(Aa" }+b?(Bb") 3)

Eliminating Aa" and Bb" from equation (1) and (3) we get

Y 1 1
You @ b|=0.
yn+2 a2 bz

(i.€) y, (b2 —a’b)-y,.o(b2 a2+ y,,o(b—a)=0
yn+2 (b - a)_ yn+1(b - a)(b + a)+ yn ab(b - a) =0

S Yo —(@+b)y,,, +aby, =0(Since a % b).

1.5 Linear Difference Equations
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The difference equation of the form
AgYner tA1Ynra +- ALY, :f(n) (1)
where ay,a,,---,a,and f(n) are functions of n is called a linear difference equation.

If a,,a,,---,a,are constants then equation (1) is called a linear difference equation
with constant coefficients.

Equation (1) can also be written in the form
(aOEr +a,E™ 4 ta, ,E Jra,)yn =f(n).

In this section, deal with linear difference equation with constant coefficients and
discuss the methods of solving them. The methods are analogous to the methods of linear
differential equations with constant coefficients.

Definition
Consider the difference equation
(aOEr+a1E”‘1+-~-+ar_1E+ar)yn =f(n) (1)
Let ¢,(n), ¢,(n), ---, ¢, (n)be r independent solutions of
(aoE" +a,E ™ +--+a,,E+a, )y, =0 @)

Then U, =c¢;¢,(n)+c,0,(n)+---+c,,(n)is the general solution of equation (2) and is called
the complementary function (C.F) of equation (1).

If V, is a particular solution of equation (1) then y,=U,+V,is the complete
solution of equation (1). V, is called the particular integral (P.1) of equation (1).

Thus the complete solution of equation (1) is given by
Y, =CF+P..
Rules for finding Complementary Function

. We first consider a linear difference equation of order one given by
Yn.1 —aY, =0where a is a constant.

Dividing by a™* we get, Y01 _Yn _g
a

n+l an
i.e. A[y—gj =0.
a
Yo _ cwhere c is a constant.

an

.y, —ca" =0is the solution of the given difference equation.
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1. Consider a linear difference equation of second order given by
(E?+aE +bly, =0 )
where a and b are constants.

Then the equation E?+ aE + b = 0 is called the auxiliary equation of equation (1). Let
o, a., be the roots of the auxiliary equation.

Case (i):
ay and o, are real and distinct.

Equation (1) can be written as (E - o) (E - a2) Yo = 0.

We can derive two independent solutions of equation (1) by solving the equations
(E = (x.]_)yn = 0 and (E = aZ)yn = 0

By, | the solution of these equations are y, =c,o4 and y, =c,a;where ci, c; are
arbitrary constants. Hence
Ya =C104 +Coat;
is the general solution of equation (1).

Case (ii):
The roots are real and equal.

Equation (1) takes the form (E - a1)? v, = 0.

Let y, =ajz,.
~(E-a,fYalz, =0.
(i) (E2 - 2Eo, +of bz, =0

n+2

. n+2
. . al Z

o =200z +aftPz =0
Z,0—2Z,,+2,=0

(E?—2E+1)=0

(i.e) (E-1)°z, =0

ANz, =0.

.z, =C, +Cc,nwhere cy, C; are arbitrary constants. Hence
y,, =(c, +¢,n)a'is the general solution.

Case (iii):
The roots are imaginary.

Let the roots be o + i and a - if.
Y, =C(a+ip)" +c,(a—ip)

17



=, [r(cos6 +isin®)]" +c,[r(cos6—isin®)]" [putting o = r cos ® and B = r sin 6]
r"[c,(cosnB+isinn®)+c,(cosnd—isinno)|

r"[A, cosn6+ A, sinno]

where A;, A, are arbitrary constants and r =/a® +f% and 0= tan‘l[Ej.

(0

-y, =r"[A, cosnb+ A, sinnb]is the general solution where r and 0 are given above.

I11. Working Rule to find the C. F of the Difference Equation

(aoEr JralEr‘l+--~+ar_1E+a,)yn =f(n)
From the auxiliary equation
aE" +a,E™ +---+a,,E+a, =0

Let oy, o, ..., a, be its roots.

If o4, ap, ..., o are all distinct then the C. F is
0] +Cy0ly ++-+C 0L .
If o1 = iz, the corresponding part of the C.F is (¢, +¢,n)af .
If o1 = a2 = ag, the corresponding part of the C.F is (c1 +cC,Nn +c3n2)af .
If there is a part of complex roots o + i3, a - i the corresponding part of the C.F is

r" (c, cosnd+c,sinnd) where r = /a.® +B* and 0 = tan‘l(Ej .
o

Rules for finding P.1:

Consider the difference equation (aOEr +a,E™ +---+a,,E+a, )yn =f(n).

(i.e) ®(E)y, =f(n) where §(E)=a,E" +a,E™" +---+a,E+a,.

Type I:

F(n) = a" where a is a constant.
d(E)" =(aoE" +a,E ™ +---+a, E+a,)a"

n+r—1+._.+aran

=a,a"" +a;a
:(ao a' +alar*1+---+ar)a”

=d(a)a"
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1
SPl=—=a"=
)

¢(E
Suppose ¢(a) = 0.
Then ¢(a) = (E—a) ¥ (E).

Let Lan =b,
E-a

a

o) if ¢(a)=0.

~(E-a)b, =a"

bn+1_abn =a"

. bn+1 _b_n: 1
arH—l an a
.-.A(_nj:l
a") a
by _n
s
b, =na""
—El a"=na""!
~a

By similar argument, we have

1 n_ n(n-1) -2

(E-af 2!
1 n_ n(n—l)(n—z) n-3
E-af = =&
In general,
1 o n(r)an—r
(E-a) r!
Type II:
F(n) is a polynomial in n.
1
Pl=—=|f
i)
1
= (I)(l-l—A) [f(n)]



We expand [p(1+A )] "in ascending powers of A and operate on f(n).
Type Il1:
f(n) = cos kn or sin kn.

itn ikn

l .
we can compute ——e"" by

¢(E)

Since coskn = real part of e™ and sinkn = imaginary part of e

using the formula given in Type I.
Equating real and imaginary part we get the required P.I.

Type IV:

f(n)=a"g(n)

1 1 [,
Pi= 0=k o)

Now,

q)(E)[a” g(n)]: (ao E'+a,E"™'+--+a,, E+ar)[a” g(n)]
=a,a"" g(n+r)+a;a™ g(n+r—1)+---+a,a"g(n)
:[aoarErg(n)+alar‘1Er‘lg(n)+~-~+a,g(n)Jan
=a" ¢(aE)g(n)

: ! a"g(n =ian n :L n

WE)[ g(n) d)(E)[ g(n) ¢(E)f()

~Pl=a"

1
mg(n)-

Example: 1

Solve Yn+1 — 2Yn-1 + 2Yn1 = 0.
Solution
The given equation can be written as
E*Yne1 — 2EYn1 + 2Yn1 = 0
~(E2-2E+2)y, , =0
The auxiliary equation is E? — 2E + 2 = 0.

2++-4
2

The roots are =1+i=a+ip (say)

The complete integral is y,,_, =r"* [Acos(n —1)0 + Bsin(n —1)6]where
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= \/W =2 and 0= tan‘l(%j = tan‘l(l):g
Y= (\/5 )H {Acos(@} + Bsin(@ﬂ .

Example: 2
Solve (4E2 —4E +1)y, =2" +27".
Solution

The auxiliary equation is 4E? — 4E + 1 = 0.

(i.e) (2E — 1)* = 0. Hence the roots are

I\)IH
I\)lH

n
The CF=(A+ Bn)[%j

Particular integral P.I =(2;J (2” +2‘”)
4E° -4E+1

n n
Now (2;)(2"): -~ =5
4E? —4E +1 4x2°—4x2+1 9

i) (s )
[215 1 J( j
e (2

Hence the complete solution is y, = C.F + P.1.

Yo =(A+ Bn)(%)n +2+M(1jn2 .

9 2 2

Exercises:

1. Construct the difference table for the following data.

X | 45 | 50 55 60 65

y | 80 | 95 | 120 | 100 | 85

2. Form the difference table for the following data:
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X 0 1 2 3 4 5

y 1 5 19 55 | 125 | 241

and hence find A’ y,.
Form the difference table for the following data:

X 0 1 2 3 4 5 6

y 2 5 8 20 30 | 10 3

and hence find A° y,.

Form the difference table of the function y = x®+ x>~ 2x + 1 forx =-1, 0, 1, 2, 3, 4.
Form the difference table for the functiony = x®*+ x + 1 atx =0, 1, 2, 3, 4 and hence

find (i) A%y, (i) Ay, (i) A'y,.

Find the order and degree of the following difference equations.

() Y01 =3y, =3" (i) Yoo =You+Y,=0 (i) y, -y, ,+6y,,=0.
Find the order and degree of the following difference equations.

(i) E?Yy +3EYpa+ Yo =N (il) Yyi3+3Ypi2 — Y, =n%2".

8. Show that y, =(A+Bn)2"is a solution of the equation vy, ., -4y, +4y, =0.
n n+2 n+1 n

9. Form the difference equation by eliminating a from y, =a5".

10.

11.

12.
13.

Form the difference equation by eliminating a and b from each of the relations given
below.

(i) y, =a2" +b3" (i) y, =a2* +b5*  (iii))y, =a2* +b(-2)*
(iv) y, =(an+b)3".
Solve the difference equationy, ., =3y, 4 +2y, =5"+2".

Solve the difference equationu,,,, +U,,, +U, =n%+n+1.
Solve the following difference equations
() Yeoo —8Yya +15y, =0  (ii) (E>~5E+6)y, =0 (i) (A2 +3A+1)y, =0.

*kkkhkk

UNIT-II
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INTERPOLATION

2.1 Introduction

2.2 Lagrange’s interpolation formula for unequal intervals
2.3 Inverse interpolation by Lagrange’s method

2.4 Newton’s Divided Difference

2.5 Newton’s divided difference interpolation formula for unequal intervals

2.1 Introduction

Interpolation
Definition

Interpolation is the process of estimating the value of a function at an intermediate
point or the process of finding the value of the function inside the given range is called
interpolation.

Interpolation is the process of finding the most appropriate estimate for missing data.
It is the “art of reading between the lines of a table”. For making the most probable estimate

it requires the following assumptions:

Q) The frequency distribution is normal and marked by sudden ups and downs.

(i) The changes in the series are uniform within a period.

Interpolation technique is used in various disciplines like statistics, economics,
business, population studies, price determination etc. It is used to fill in the gaps in the
statistical data for the sake of continuity of information. For example, if we know the records
for the past five years except the third year which is not available due to unforeseen
conditions, the interpolation technique helps to estimate the record for that year too under the

assumption that the changes in the records over these five years have been uniform.
Extrapolation
Definition

Extrapolation is the process of finding the values outside the given interval.

It is also possible that we may require information for future in which case the process

of estimating the most appropriate value is known as extrapolation.
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Given a set of tabular values of a function y=f(x) where the explicit nature of the
function is not known, then f(x) is replaced by a simpler function ¢(x) such that f(x) and ¢(x)
agree with the set of tabulated points. Any other value may be calculated from ¢(x). This
function ¢(x) is known as interpolation function. In particular if ¢(x) is a polynomial then the
process is called polynomial interpolation and ¢(x) is called an interpolating polynomial. The
existence of an interpolating polynomial is supported by Weierstras’s approximation theorem
which asserts that any continuous function on a closed interval can be approximated by a

polynomial.
2.2 Lagrange’s interpolation formula for unequal intervals

Let y=f(x) be the function such that f(x) is taking the values yo, Y1, ..., yn
corresponding to X= Xg, Xu, ..., Xn.
In the case of the values of independent variable are not equally spaced and when the
differences of dependent variable are not small, we will use Lagrange’s interpolation formula.
Let f(x) be a polynomial in x of degree n. Lagrange’s interpolation formula for
unequal intervals is
(X )k, )(x—x,)
Xo =Xy (Xg =Xy )-+(Xo =X,
(¢ X0 )X =X XX ~Xg ) (x =%,
(X1 =X Xq = X5 )+ (%, =X,
(= xg X = o) - (x%, 1) i)

(Xn _XO)(Xn _Xl)(xn _XZ)"'(Xn ~Xp

(%o )+

y:f(X)z(

()

Example: 1
Using Lagrange’s interpolation formula, find the value corresponding to x=10 from

the following table:

X | 516|911

y | 12 [ 13 [ 14 | 16

Solution

Given Xp=5,Xx1=6,X, =9, x3=11,x=10
Yo = f(Xo) = 12

Y1 =1f(x)) =13

Y, =f(xp) =14

Y3 =f(xs) =16

24



(x—xo)(x—xz)(x—x3) f
X1—X0XX1—X2XX1—X3)
(X—XO)(X—Xl)(X—XZ) f(X3)

X3 _Xo)(x3 _Xl)(x3 _Xz)

(X=X (X =X, X —X3) f
Xo _Xl)(XO —Xz)(xo —X3)
xxo)x X)X %)
(Xz _Xo)(xz _Xl)(XZ _Xa)

(x,)+

y=f(x)=( (x0)+(

(X2)+(

_ (10-6)10-9)10-11) 12)+ (10-5)10-9)10-11) 13)
~ (5-6)5-9)5-11) (6-5)6-9)6-11)
(10-5)10-6)10-11) (10-5)10-6)10-9)

(9-5Y9-6)9-11) (14)+ (L1-5)11-6)11-9) 1)

4.1.1 5.1(-1) 5.4.1 5.4.1 5.4.1
=2=2(12 1 14 14 16
1.4.6( » 1.35 (3)+4.3.2( )+4.3.2( )+6.5.2( )

= 14.63.
Y=f(x) = f(10) = 14.63.

Example: 2
Find the polynomial f(x) by using Lagrange’s formula and hence find f(3) for
x | 0 1 2 5

f)| 2 | 3 | 12 | 147

Solution
GivenXg=0; X1 =1; X, =2; Xx3=5
Yo = f(x0) =2
y1="1(x1) =3
yo =f(x2) = 12

Y3 = f(X3) =147

The Lagrange’s formula is

Deomleoxaleons) g,y Loofeoxelion) g,
i ey et LSS i e L

L oo Ll

- S Ba)

y:f(x):(

(Xo)+(
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(x—1)x -1)x-5) (2)+ X(x—2)x~-5) @)+

-6 4
x(x —1)(x —5) 12)+ X(x—1)x —2) (147)
-6 60
Which is the polynomial of y=f(x)

y=f(3)= (3—1)(3_—61)(3— 5) )+ 3(3- 22(3— 5) @)+

3(3-1)3-5) 12)+ 3(3-1)3-2) (147)
-6 60
y = f(3) = 44.5,

2.3 Inverse interpolation by Lagrange’s method

The process of finding a value of x for the corresponding value of y is called inverse
interpolation. In such a case, we will take y as independent variable and x as dependent
variable.

Therefore the Lagrange’s inverse interpolation formula is

=y y-ya) (y-ya) ¢
Yo=Y ) Yo~ Y2 ) (Yo—Yn)

V=Yo )y =¥2)(y=ya)
(V2= Yo )V =¥2) (V2= ¥n)

(Y =yo )XY =Y XY =Y2)- (Y= Vn1)
R Y Ay v R

x=f(y)=( (yo)+

()

Example: 1
Find the value of x, corresponding to y = 100 from the following table:
X 3 5 7 9 11

y | 6 | 24 | 58 | 108 | 174

Solution
Givenyp=6,y; =24, y, =58, y3 =108, y, = 174 also, y = 100
x = f(y);
Xo = f(yo) =3, X1 = f(y1) =5, x2 = f(y2) =7, X3 = f(ys) = 9
The Lagrange’s formula for inverse interpolation is

Y=y Xy =Yz)-(y=yn)
Yo _Y1)(YO _Y2)"‘(YO _yn).f(y0)+

(Y= Yo)y = ¥2)-(y=Ya)
(Ve = Yo )y: —¥2) (v _yn).f(y1)+.

X=f(Y)=(

. o4
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(Y=Y )y =Y Ny =¥o)- (Y= ¥ns)
(Vo = Yo ¥n =YXV = Y2) (Yo = Ynus

= 0.3534 — 1.5155 + 2.8870 + 7.0676 — 0.1369
x = f(y) = 8.6556.

)-f(yn)

Example: 2
Find the value of x when y = 85 using Lagrange’s formula for the table

X 2 ) 8 14

y | 94.8(87.9]81.3]68.7

Solution
Giveny,=94.8,y; =87.9,y, =81.3, y3=68.7, also, y = 85
x = f(y);
Xo = f(yo) = 2, X1 = f(y1) =5, X2 = f(y2) = 8, x5 = f(y3) = 14
The Lagrange’s formula for inverse interpolation is

Y=y Xy =Yz)-(y=yn)
Yo _Y1)(YO _Y2)"'(YO _yn).f(y0)+

Y =Yo )y =a) - (y=ya)
(V1= Yo )V —¥2) (Vs —¥n)

O =yoky =y ky=¥o) - =yns) ¢y
" n
(Vo = Yo)¥n =Y )N¥n =¥2)- (Yo = Yns)
=-0.1438778 + 3.3798011 + 3.3010599 — 0.2331532
= 6. 3038.
Therefore the value of x when y=85 is 6.3038.

x=10) =

AT

2.4 Newton’s Divided Difference

Let the function y = f(x) takes the values f(xo), f(x1), ..., f(xn) corresponding to the

values X1-Xo, X2 — X1, X3 — X2, ..., Xn-Xn-1 N€ed not to be equal.

Be first divided difference of f(x) for the argument Xxo, X; is defined as FO4q) =T(xo)
X1 —Xo

it is denoted by f(Xo, X1) Or [Xo, X1] or Af(Xo).

f(x1) —f(X,)
X, —Xo

(i.e) T(xo,x;) =

27



x | f(x) | Af(x) A%f(x) A*(x)
Xo f(Xo)
F (X0 %))
f(x,)—f(x
x| fxy | = DT le_x(o o
f(X0,X1,%5)
=f(X2X1)_f(X1XO) f(X X, . X X)
F(x0%,) X, X 01 X1 X2, X3
(%) — F(x,) _ F(xaXoX5) = F(XoX1X5)
X2 | f(x2) :ﬁ (X, X5, X3) X3 —Xg
2 _ Flxax,) —f(xpXy) f(Xy, X5, X3, X,)
£ X% _ F(XpXaX4) = F(X1XXo)
(X2,X3) (X, X5, X,) - X4 =X,
X3 | f(xs) :—f(XZ)_f(X3) _ F(Xyx3) —f(X3X,)
4%y
(X0, %)
_ f(xy) =f(Xo)
X4 | T(Xa) X4 —Xg

f(XX,X3X ) = F (XX X5X3)

Fourth divided difference is A*f(x) = (Xq, X1, X5, X5, X4) =

Properties of Divided Differences
Property: 1

The value of any divided difference is independent of the order of the arguments. That
is, the divided differences are symmetrical in all their arguments.

Flxg )= 1O)=T0t6)_ FO00)=T0s)

Xy =Xy Xo =Xy

Xl!XO) 1)
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Again f(X X )= f(xo) _ f(Xl) _ f(Xo) 4 f(Xl) @)
’ o Xo—=Xy  Xg=X; Xg—=X; X;—Xg

In the same way, f(xl,xo): xf(X;) +xf(xox) 3)
1770 0~ M

From equation (2) and equation (3), we have f(x,,%;)="F(X;,X).
Similarly,

f(X11X2)_f(Xo’X1)
X, —Xo

_ 1 f(x1)+f(x2) ~ f(Xo)+ f(x,)

X, — X {[xl—xz xz—xJ (xo—x1 xl—xoﬂ
! H 11 jf(xm f(§2>_f(§o>}
_ 1 {(X X, — X )f(x1)+ f()iz)_f(xo)}

X, =X 1_X2)(X1_Xo

f(xo) 4 f(x,) N f(x,)
Xo=X1)(Xo =X5) (X =Xo)(X; =X5) (X, =Xg)(X; —X;)

From equation (4), we find

f(XO’X1'X2):

Fxoxuxz) = (4)
F(X0, X1, %) =F(Xq, X, X5 ) = F Xy, X5, X ) =+
This shows that f(x,,x,, X, )is independent of the order of the arguments.

By mathematical induction, we can prove that

Xgs X1, Xg, 4 Xy )= f(xo) + fx,) 4o
o i) (Xo =1 )(Xo =Xz )-+(Xo =X )~ (Xq =Xo )Xy =X )+ (X1 =X, )
N f(Xn)

(Xn - XO)(Xn - Xl)' ) '(Xn - Xn—l) .
This is symmetrical we know that any two arguments. Therefore, the divided differences are

symmetrical we know that any two arguments.

Property: 2
The operator A is linear.
Proof:

If f(x) and g(x) are two functions o and 3 are constants, then

A[ocf(x)+[3g(x)]: [af(X1)+Bg(x1)][af(x0)+Bg(x0 )]

X1 =Xy
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f(xl)_f(xo)+Bg(X1)—9(Xo)
Alaf(x)+Bg(x)]=a A f(x)+pAg(x).
Corollary: 1

Setting o = B =1, A[f(x)+g(x)]=Af(x)+Ag(x).

=

Corollary: 2
Setting B =0, Afaf(x)]=aAf(x).

Property: 3

The n™ divided differences of a polynomial of degree n are constants.
Proof:
Taking f(x) = x" where n is a positive integer,

£(xo,X )=f(X1)—f(Xo): X1 —Xg
o X1=Xo X1 =X

=XP X X XA et
= a polynomial function of degree (n-1) and symmetrical in Xo, X1 with leading
coefficient 1.
Again,

f(Xl’XZ)_f(XO’Xl)
Xy = Xg

f(XO,X1X2)=

(xg‘1 + X, X572 +---+x{“1)—(x8‘1 + X, Xp72 +---+x{“1)

X, —Xp
n-1 n-1 n-2 n-2 n-2
X —X X (X —X ) X X, —X
_X2 o, XXz 0o ), ... % (2 o)
Xy —Xp Xy —Xp X, =Xy

= (xg’2 FXo XD e XD )+ X, [xg’3 +Xo X5+ x8"°’]+---+x{"2
= a polynomial of degree (n - 2) and symmetrical i Xo, X1, X2 with leading
coefficient 1.

Proceeding in this way, the r'" divided differences of x” will be a polynomial of degree
(n-r) and symmetrical in Xo, X1, X2, ..., Xr With leading coefficient 1.

Hence n™ order divided differences of x" will be a polynomial of degree n — n =0 ,
with leading coefficient 1. That is, its value is 1.
Thatis A"X" =1.

A™Mx" =0, fori=12,...
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Hence, A" [aoxn +alx”‘1+-~-anJ
—a, A" +a, A"+ 4 Aa,
=87 1+0+0+---+0=a,.
Note:

Conversely, if the n™ divided difference of a polynomial is constant, then the

polynomial is degree of n.

Relation between Divided Differences and Forward Differences
If the arguments X, Xi, X, .. are equally spaced, then we have,
X1 —Xg =Xy =X =Xg3 =X, =X, —X,4 =h.

(k)= o 1) - T T0)_ AT

1 1
AN f(x)= AF(xy)—Af(xo) ﬁAf(Xl)—HAf(XO)

X, =X 2n
:# A F(x,)
Similarly,
NF(x, )= A:nggo)
A 1(xg)= 1 08o)

2.5 Newton’s divided difference interpolation formula for unequal intervals
y =F(x) =F(Xo) + (x =X )F (X, X1) + (X =X ) (X = X1).F (X, X1, X7)
+ (X=X ) (X=X )(X—X5)F(Xq, Xq, XpX3) 4+ -+
+(X=Xo)(X =X )(X = X3) - (X=X _1 )F (X, X3, X X3, %) -
Example: 1

Using Newton’s divided difference formula, find the values of f(2), f(8) and f(15)
given the following table:

X 4 5 7 10 11 13

f(x) | 48 | 100 | 294 | 900 | 1210 | 2028

Solution

We form the divided difference table since the intervals are unequal.
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x | fx) | Af) A%(X) A%(x) AF(X)
4 |48
10048
5 |100 =52
5-4 907-52 _ ..
294 -100 7-4 21-15
— =97 =1
T|294 1 7-5 202-97 _,, | 10-4 0
_ 10-5 _
900-294 ., 21-21_,
10 | 900 10-7 310-202 - 11-5 0
1210-900 _,, | 117 33-27
11 | 1210 | 11-10 409-310 . | 13-7
_ 13-10
2028-1210 _, o
13-11
13 | 2028

By Newton’s Divided Difference interpolation formula is

y=1(X) =F(Xq)+ (X =Xo)F(Xg,X1) + (X=X ) (X =%X1).F (X0, X7, X7)

+(X=Xg) (X=X )(X=X;).F(Xq,X7,X,X3)

Here xo =4, X1 =5, X, =7, X3 =10, X4 =11, X5 = 13

Also, f(xo) =48, f(Xq,X;) =52, f(Xq, Xy, X5) =15, F(Xg,X;,X,X5) =1

y = f(x) = 48 +(x-4)(52)+(x-4)(X-5)(15)+(x-4)(x-5)(x-7).1

f(2) = 48+(2-4)(52)+(2-4)(2-5)(15)+(2-4)(2-5)(2-7)

f(2) = 4

f(8) = 48+(4)(52)+(4)(3)(15)+(4)(3)(1)

(8) = 448

f(15) = 48 + 11 (52) + (11)(10)(15) + (11)(10)(8)

f(15) = 3150.

Example: 2

Using Newton’s divided difference formula, find u(3) given that u(1) = -26, u(2) = 12,

u(4) = 256, u(6) = 844.

Solution

We form the divided difference table since the intervals are unequal.

f(x)

AF(X)

A*(X)

A(X)
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12+26
2 |12 2-1 122 -38
_ 28
256-12 4-1 43-28 4
4 |256 | 4-2 204-122 _,. | °7F
_ 6-2
844-256 .,
6-4

6 | 844

Newton divided difference interpolation formula is
y=T(X) =F(Xg) + (X =X)F (Xq,X;) +(X—Xg)(X—X;)F(Xq, X1, X5)
+ (X = X)X =X )(X—X5).F(Xg, X1, X5X3)
Here,
y = u(X) = u(Xg) + (X —Xo) U(Xo,X1) + (X —Xo) (X —X1) U(X0,X1,X2)

+(X —Xp) (X —X1) (X —X2) U(X0,X1,X2,X3)

Here,
Xo=1,X1=2,X2= 4,X3=6
u(Xo) = -26, u(Xo,X1) = 38, U(Xo,X1,X2) = 28, U(X0,X1,X2,X3) =3
u(x) =-26 + (x-1)(38) + (x-1)(x-2)(28) + (x-1) (x-2)(x-3) (3)
forx =3,
y=u(X) =-26 + (3-1) (38) + (3-1) (3-2) (28) + (3-1) (3-2) (3-4) (3)
=-26+76+56—-6
u(3) =100.
Newton’s Forward and Backward Interpolation Formula for Equal Intervals

Newton’s Forward Interpolation Formula

p(p-D o, , PE-D(R-2) s
2!

y=F(x)=Yo+PAyo + .

Yo+ Yo+

where p = , h is the width of interval

X = Xo + ph.
Newton’s Forward Interpolation Formula

y=1(X) =y, +pVy, +wvzyn +Wv3yn I
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X —_
where p = .

X = Xp + ph.
Example: 1

Using Newton’s forward interpolation formula, find the polynomial f(x) satisfying the
following data. Hence evaluate y at x = 5.

X 4 6 8 10

y 1 3 g | 10

Solution

We form the difference table

X Y | ay A%y Ay
4 1
3-1=2
6 3 5-2=3
8-3=5 -3-3=6
5 | g 2-5=-3
10-8=2
10 10

There are only 4 data given. Hence the polynomial will be degree 3.

Therefore Newton’s —Gregory Forward interpolation Formula is

y=f() =y, + i Ay + p(p2| D a2y, +|0(|o—1:)%!(|o—2) Ay,
Here yo = 1; p_XhXO:XT_4

7 L e P i e
y=f(x)=1+ 22 @)+ 2 @+ A2 2 (o)

3
11 .3 2
Ly=f(x) =§[—x 1 21x —126x+24o]
When x=5,
1 3 2
-y =1(5) =§[‘ (5)° + 21(5) ~126(5) + 240]=1.25

Y =1.25when x = 5.

Example: 2
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A third degree polynomial passes through the points (0,-1), (1,1), (2,1) and (3,-2)
using Newton’s forward interpolation formula find the polynomial. Hence find the value at
1.5.

Solution

We form the difference table

x |y |ay A%y Ady
0 11

1+41=2
. 0-2=-2

* a0 -3+2=-1

> |, -3-0=-3

-2-1=-3
3 122

There are only 4 data given. Hence the polynomial will be degree 3.

Therefore Newton’s —Gregory Forward interpolation Formula is

p p(p-1) A2 p(p-1(p-2) Ay
21 3 0

y=Ff(X)=yo + Ay +

1 Yo+

X=X, _x—ij_x

Hereyp=-1; p= . 1

y:f(x):—1+%2+¥(—2)+W(—1)

ny=Ff(x)= —%[x?’ +3x2 —16x + 6]
When x= 1.5,
Ly=f@15)= —%[(1.5)3 +3(1.5)2 ~16(L5) + 6|=1.3125

Y =1.3125 when x = 1.5.
Example: 3

Use Newton’s backward difference formula to construct an interpolating polynomial
of degree 3 for the data: f(-0.75) = - 0.07181250; f(-0.5) = -0.024750; f(-0.25) = 0.33493750;
f(0) = 1.10100. Hence find f(-1/3).
Solution

We form the difference table
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-0.75 | 0.07181250
0.0470625

0.312625
0.3596875 0.09375
0.400375

-0.50 | _0.024750

-0.25 | 0.33493750
0.7660625

0 1.10100

Newton’s backward difference formula is

+1 +1)(p+3
%vngrp(p ) g2y, | PO ;(p ) vy,

y=f(x)=ys+ T

where p= ; p = 4x.

AX(4x +1)(4x +2)
3

-y =F(x)=1.10100+ 4—; (0.7660625) + w (0.406375) +

y =f(x) =x°+4.001x* +4.002x +1.101

1 1\° 1) 1
~.f[__j=(__j +4.001[——) +4.002(——j+1.101:0.174518518.
3 3 3 3

Exercises:
1. Using Lagrange’s interpolation formula, find f(4) given that f(0) = 2, f(1) = 3, {(2) 12,
f(15) = 3587.
2. Find the third degree polynomial f(x) satisfying the following data. Also, find f(4),
f(6).

X 1 3 5 7

y | 24 | 120 | 336 | 720

3. Using Lagrange’s interpolation find y(2) from the following data

X 0 1 3 4 5

y 0 1 81 | 256 | 625

4. Apply Lagrange’s inverse formula to obtain the root of equation f(x) = 0. Given that,
f(0) = -4; f(1) = 1; f(3) = 29; f(4) 52.
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5. Find f(x) as a polynomial in x for the following data by Newton’s divided difference

formula:

f(x) | 1245| 33 | 5 | 9 |1335

6. Using Newton’s Divided difference formula, fit a polynomial to the data and hence

find y chosen x = 1.

J(1 51 1
7. Iff(x) = % find f(a, b, c, d) or A (Ej (or) A [Ej:_abcd

8. Using Newton’s forward interpolation formula, find the polynomial satisfying the

following data. Hence find f(x).

X 0 5 10 15

y 14 | 379 | 1444 | 3584

9. Use Newton’s forward interpolation formula find the cubic polynomial which takes

places the following values:

X 0 1 2 3

10. State Lagrange’s interpolation formula.

11. What is the Lagrange’s formula to find y if there sets of values (xo, Yo), (X1, X2) and
(y1, Y2) are given.

12. What is the assumption we make when Lagrange’s formula is used?

13. Give the inverse of Lagrange’s interpolation formula.

14. Using the Newton’s divided difference formula, find the missing value from the table:

X 1 2 4 5 6

y |14 |15 5 | - | 9

*hkkkk
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UNIT — 111
NUMERICAL DIFFERENTIATION AND INTEGRATION

3.1 Introduction

3.2 Numerical Differentiation
3.3 Numerical Integration

3.4 Trapezoidal Rule

3.5 Simpson’s One Third Rule
3.6 Simpson’s Three Eight Rule
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3.7 Waddle’s Rule
3.8 Cote’s Method

3.1 Introduction
We assume that a function f(x) is given in a tabular form at a set of n+1 distinct points

Xo, X1, ..., Xn. From the given tabular data, we require approximations to the derivatives
f(0(x"),r>1, where x’ may be a tabular or a non-tabular point. We consider the cases
r=1,2.

In many applications of science and engineering, we require to compute the value of

b
the definite integral jf(x) dx, where f(x) may be given explicitly or as a tabulated data. Even

a
when f(x) is given explicitly, it may be a complicated function such that integration is not
easily carried out.
Here, we shall derive numerical methods to compute the derivatives or evaluate an

integral numerically.

3.2 Numerical Differentiation
Approximation to the derivatives can be obtained numerically using the following two
approaches
(i) Methods based on finite differences for equispaced data.
(if) Methods based on divided differences or Lagrange interpolation for non-uniform data.
Numerical differentiation is the process of calculating the derivation of a given

function by means of a table of given values of that function. That is, if (x;, y;) are the given
2

set of values, then the process of computing the values of d—y,d—z,m,etc. at a given point is

dx dx
called numerical representation.
The interpolation formula depends on the particular value of x at which the
derivatives are required.
(i) If the values of x are not equally spaced, we represent the function by Newton’s
divided difference formula and the derivatives are obtained.
(ii) If the values of x are equally spaced the derivatives are calculated by using Newton’s

Forward or backward interpolation formula.

3.3 Numerical Integration
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b
The process of evaluating a definite integral _[ f(x) dx from a set of tabulated values

(xi, vi); i=0, 1, ..., n of the integrand y = f(x) is called numerical integration.

Newton cote’s formula (or) General Quadrature formula for equidistant coordinates

b
Let | = Iy dx where y = f(x) takes the values Yo, Y1, ..., yn fOr Xo, X1, ..., Xn. Let us

divide the interval (a, b) into n sub intervals of width h so that Xy = a, X; = Xoth, X, = Xo+2h,
..., Xn = Xo+tnh = b. After simplification, we get

n(2n-3) ., n(h-2) e

Xn n
| = | ydx=nhy, +—=Ay, + Ay, +
[y T e T

Xo

Yot 1)

which is the general quadrature formula.

By putting n = 1 in equation (1), Trapezoidal rule is obtained.

By putting n = 2 in equation (1), Simpson’s % rule is obtained.

By putting n = 3 in equation (1), Simpson’s g rule is obtained.

3.4 Trapezoidal Rule
Putting n = 1 in equation (1), we get

Xo+h

X, 1
J‘y dx = _[ y dx = h[yO +§Ay0}
h
:E[ZYO +Ayo]
h
:E[yo +(yo +AYO)]
h
=5 o+ v.]

Similarly,

Xp Xo+2h 1
J.y dx = I y dx = h{yl +§Ayl}

Xy Xo+h

h
=5Pm+Am]
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=g[y1 +(y, + Ay, )]

h
=5[y1+y2]

and so on.

Xq Xo+nh
[yd= ] de=2[ynl+yn]

a Xo+(n-1)h

.. Adding all the above, we get

ng dx = g[(yO +y,)+2(y, +y, + Y, +---+Y,_, )] which is called Trapezoidal Rule.

3.5 Simpson’s % Rule (or) Simpson’s Rule

Putting n = 2 in equation (1) and neglecting the differences of higher order than
second order. We get,

" h
[y ax=Zlyo +ya)+ 40y + Yo+ oo Yo )+ 2Ya + Yo ooy )]

Xo

Note:

It should be noted that for applying this rule, the interval must be divided into even
number of sub intervals of width h.

3.6 Simpson’s gth Rule

Putting n = 3 in equation (1) and neglecting the higher order differences above the
third, we get

" 3h
[y dx =20y + Yo )+ 800+ Vo + Yt Yoot Voa )+ 2o+ Yo oot Y]

Note:

This is not as accurate as Simpson’s rule. This rule is used when the number of
subintervals is a multiple of 3.

Example: 1

dx
1+x

1
Using Trapezoidal rule, evaluate j taking 8 intervals.

-1

2
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Solution

Given y = f(x)=1 ! .
+X

Givenx=-1to 1.

.. Length of interval = 2.

“h=2-025. wh= b-a
8 number of int ervals
= 1-(-1) =0.25
8

.. We form a table

x| -1 1]-075]-05| -025 | O 0.25 0.50 | 0.75

y | 05| 064 | 08 | 09412 | 1 | 0.9412 | 0.8 | 0.64

. Trapezoidal rule is .fy dx = g[(y0 +y )+ 2y, + Y, Y+ Y )]

1
j 1 dx:0'25[(O.5+0.5)+2(0.64+O.8+0.9412+1+0.9412+O.8+0.64)]

2
1+ X

_ 0% [1+2(5.7624)|

=1.5656.

Example: 2

1
Evaluate I dx
X

with h = 1by Trapezoidal rule.
o1+ 6

2

Solution

Given y = f(x):1 1 .
+X

Givenx=0to 1

Alsoh:l.
6
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The table is

x| 0 1/6 2/6 | 3/6 | 4/6 5/6 1

y | 1| 36/37 | 9/10 | 4/5 | 9/13 | 36/61 | 1/2

By Trapezoidal rule,

" h
[y i =2 [(yo + Yo )+ 200, + o + Yo bt Vo)

1
RS PRVIESERENERE 3
14X 2 2) 37 10 5 13 31

= iF + 2(3.9554)}
12| 2

=0.7842.

Example: 3

5.2
Evaluate Ilog e* dxby using (i) Trapezoidal rule (ii) Simpson’s rule (iii) Simpson’s
4

g rule, given that h = 0.2.

Solution
Giveny = f(x) = log &*
Xx=4t05.2,h=0.2.

The table is

y | 1.737 | 1.824 | 1.910 | 1.997 | 2.084 | 2.171 | 2.258

(i) By Trapezoidal rule,

f h
Jy o= 2yo +¥a)+ 20y + ¥z + Yo 0o ¥

Xo

= O—f [(1.737 + 2.258) + 2(1.824 +1.910 +1.997 + 2.084 + 2.171)]
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= 0.3967.

(i1) By Simpson’s rule (or) Simpson’s %rule,
' h
[y de=2llyo + )+ Ay + s+t Yoa )+ 2ya ya b+ Y]

5.2
jlog e* dx = O—f [(1.737 +2.258) + 4(1.824 +1.997 + 2.171) + 2(1.910 + 2.084)]
4

= 0.0666[3.995+4(5.992)+2(3.994)]

=2.394.

(iii) By Simpson’s g rule,

" 3h
[y ix = 2o [(yo + Yo )+ 800+ Yo + Yt Yoot Vs )+ 2o+ Yo oot o)

- _3(?3'2) [(1.737 + 2.258) + 3(1.824 +1.910 + 2.084 + 2.171) + 2(1.997 )]

=2.3967.

Romberg’s Method

b
Romberg’s method is used to evaluate the integral of the form | = J ydx.
a

For Romberg’s method, let us apply Trapezoidal rule several times find the value of
I’s as follows:

I1: Dividing ‘h’ into 2 parts (i.e) g

I: Dividing ‘h’ into 4 parts (i.e) 2 (lzz)

I3: Dividing ‘h’ into 8 parts (i.e) g (%}

I4: Dividing ‘h’ into 16 parts (i.e) % (%j

and so on.
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Applying Romberg’s formula,

SRS

For Iy, 125 o, 13; 13, 14; ...

We get the values of 1. This method continues till we get two successive values of I’s
are equal. The systematic refinement of the values of I’s is called Romberg’s method.

Example: 1

1
Use Romberg’s method to comparej
0

ik Correct to 4 decimal places and hence
+ X

find an approximate value of .

Solution

Let | :Jl‘ ox

0

1+ x?
To find 14:

- : . . h
Dividing h into 2 parts (i.e) 5

~h=2"%_0s
2

y:
1+ x?

By Trapezoidal rule,

= 2050 +va)+ 20

_ O_f [1+0.5)+2(0.8)]

=0.775.

To find I,:
- . . h
Dividing h into 4 parts (i.e) 7
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s h= T =0.25
x| 0 0.02 0.50 | 0.75 1
y | 1| 0941 08 | 064 | 05
By Trapezoidal rule,
I, = 025 —==[(1+0.5)+2(0.941+0.8 +0.64)]
=0.7828.
To find I3:
Dividing h into 8 parts (i.e) &24
s h= 1-0 =0.125
8
x| 0| 0125 0.25 0.375 0.5 0.625 | 0.75 | 0.875 1
y | 1| 09846 | 0.9412 | 0.8767 | 0.80 | 0.7191 | 0.64 | 0.5664 | 0.5

By Trapezoidal rule,

0.125 [(

I3 =

= 0.78475.
By Romberg’s Formula:

Iteration 1:

(252

(0.7828 - 0.775]

=0.7828 +

| =0.7854.

Iteration 2:
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1+0.5)+2(0.984 +0.94 +0.876 + 0.8+ 0.719 + 0.64 + 0.56)]




i

0.78475— O.7828j
3

=0.78475—- (

| =0.7854.
From the last two iterations, | = 0.7854.

To find &t

=0.7854

1
dx
But J.1+ NG
0

0.7854 ="
4

7 =4(0.7854)
7 ~3.1416.
Two points and three points Gaussian Quadrature formulas

Gaussian Quadrature

1
Gauss derived a formula which is used to evaluate the integral of the form jF(u) du.
-1

One point Gaussian Formula

1
The one point Gaussian formula is given by I f (x)dx = 2. (0)which is exact for
-1

polynomials of degree up to 1.

Two point Gaussian Formula

47



1
The two point Gaussian formula is If(x)dx = f(— %J+ f(\/gj and this is exact
-1

for polynomial of degree up to 3.

Three point Gaussian Formula

1
The three point Gaussian formula is I f(x)dx =
-1

which is exact for polynomial of degree up to 5.

© | oo
—h
—
o
A
oo
1
—h
VR
|
olw
N—
+
—_
7~ N\
U1l w
N—
1

Note:

b 1
Q) The integral I F(t) dt, can be transformed into .[ f (x)dx by the linear
a -1

transformation.

t:{(b—a)x+(b+a)]

2

b 1
(i)  The integraljF(x) dx , can be transformed into I f (t)dt by the linear
a -1
transformation.

{(b—a)t;(b+a)}.

Example: 1
¢ dx
Evaluate I iy by two point and three point Gaussian formula and compare with
1+ X
exact value.
Solution

1
By two point Gaussian formula, If(x)dx: f(— 1J+ f( l)
-1

3 3
. 1
Given f(x)= .
(x) 1+ x?
[ 1} 1 3
f - — :—1:Z
3 1+-
3
[1} 1 3
"W3l=7 173
3 1+
3
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+X
1
By three point Gaussian formula, j f(x)dx =
-1
1
fl0)=——=1
©) 1+0
f — .= :—3:§
> 1+
5
R =—3=2
5/ ,.3 8
5
1
If()dx:g 1+§{§ §}
_1 9 " 9l8 8
8 5 10
=—4+x—
9 8

1
o [ £(x) dx =1.5833.
-1

But exact value is

¢ odx ¢ odx
-[1+x2 =2-[1+x2

-1 0

= 2tan*(x)};

= 2(tan*(1)—tan *(0))

)

NN

j X _1 5708

~ =
S1+X

Thus, exact value is 1.5708.

By Gaussian two point formula value is 1.5.
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By Gaussian three point formula value is 1.5833.

Example: 2

XZ

1+ x* ax.

1
Using three point Gaussian Quadrature formula, evaluate I
-1

Solution
i 8 5 3 3
Three point Gaussian Quadrature formula is I f(x)dx = 5 f(0)+§{f[— g]+ f{ gﬂ
I

X2

1+ x* ax

1
Given I

-1

Here f(x)=

Similarly,
()
jlf(x)dx:gf(ong_ gj”( gﬂ

8 5/15 15
=—x0+—| —+—
9 9{34 34}

1 X2
o[+ dx=0.4902.
1+ X

Double integrals using Trapezoidal and Simpson’s Rules

f(x,y) dx dyusing Trapezoidal and

D — T
[ —y

We shall evaluate double integral | =

Simpson’s rule.

The formula for the evaluation of a double integral can be obtained by repeatedly
applying the Trapezoidal and Simpson’s rules.
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Trapezoidal Rule for Double Integral

The formula for the evaluation of double integral using Trapezoidal rule is,

» (sum of thevaluesat four corner of the box)+
l=— 2(sum of thevaluesat the boundary of thebox except the corner)+
4(sumof the remaing values)

where h — length of x values and k — length of y values.
Simpson’s Rule for Double Integral

The formula for the evaluation of double integral using Simpson’s rule is,

(sum of thevaluesat four corner of the box)-+
| =—| 4(sumof thevaluesat the boundary of the box except the corner )+
16(sumof the remaing values)

where h — length of x values and k — length of y values.

Example: 1

22
Evaluate ” f X, y dx dy by Trapezoidal rule for the following data:
00

Xx[0]05|1]15 ]2

Solution

Here,h=0.5,k=1.
2
0

By Trapezoidal rule,

fxy dx dy

O ey N
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(sum of thevaluesat four corner of the box)-+
| =—| 2(sumof thevaluesat the boundaryof the box except the corner )+

hk

4 .
4(sumof the remaing values)

| = 25.375.

Example: 2

11
Using Simpson’s — rule evaluate I j
00

Solution

x=0,05,1;,y=0,0.5, 1. The table values are

_ (0'54)—X1[(2+5+14+4)+2(3+4+5+11+11+8+6+3)+4(4+6+9)]

dx dytakingh =k =0.5.
y

X 0 0.5 1
y
0 1 0.6667 0.5
0.5 | 0.6667 0.5 0.4
1 0.5 0.4 0.3333
Let
1
j dx dy
o l+Xx+y

By Simpson’s rule,

» (sum of thevaluesat four corner of the box)+
| = —| 4(sumof thevaluesat the boundary of the box except the corner )+

16(sumof the remaing values)

9(0)= 035 [(@+0.5)+4(0.6667)]+ [1.5+ 2.66668]

9(0)=0.69441889.

9(05)=22[(

0.6667 + 0.4)+[3.0667 + 4(0.5)]]
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9(0.5)=0.51111.
0(1)= % [(0.5+0.3333)+4(0.4)]

9(1)=0.405538.

Hence

_0° (0.9441889 + 0.405538) + 4(0.51111)]

| =0.5241.
3.7 Weddle’s Rule

Put n = 6 in Newton-Cot’s Quadratic formula and neglecting all differences of orders
higher than sixth, we get

X0+nh 3h
I f(x)dx :E[(yo +5Y; +Y, +6Ys + Y4 +5Ys + Y6 )+ (Ve +5Y7 +Yg +6Yg + Yig +5Y13 + V1)

X0

-+ (Yo +5Yn5+Yn 4 +6Yns+Yno+5Yna+Yn)l
This equation is called Weddle’s rule.
X5 =Xg +5h
Example: 1

1

Evaluate j 1d—X using Weddle’s rule with 6 equal intervals.
0

Solution
Heren:6,.'.h=1,
6
Let y:f(x):i x:Olggﬁ
1+x 6 66 6
x o J1 Jz J3 J4s 1
6 6 6 6 6
1 1 0.8571 |0.75 |0.667 |06 |0.5455 |0.5
y_l+x
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By Weddle’s rule,

19 3h
—_—dX=I6bb+5Yy+Yz+6Y3+y4+5YJ

ol+X
( j
6

= T[:H 5(0.8571) +0.75+6(0.6667) + 0.6 +5(0.5455 + 0.5]

=0.69320.
3.8 Newton’s — Cote’s Formula (or) Cote’s Formula

b
Newton’s-Cote’s formula gives a way for computing the integral jf(x)dx
a

numerically, when y = f(x) is known at equidistance values of x, but its derivation is based

on the integration of Lagrange’s interpolation formula.

b n n
[f(x)dx=h>"y, [C\ (u)du
a k=0 0

[ul[-n+u]"™

_ (_1\"-k
Where Ck(u)_( 1) kl(n_k)l

Here C, (u) is a polynomial of degree n equation is called the cote’s polynomial.
Example: 1

Find the Cote’s polynomials for n=1.
Solution

The Cote’s polynomials are Co(u) and Cy(u)

[l [-n+u]™

— (_1\"-k
C(w)=(1) KI(n—K)!

Putn=1andk=0in C,(u)

Co(u) =M=—u +1.

0(1-0)!
_ 1 _
Ci(u)= D) =U.
Example: 2

Find the Cote’s polynomials for n=2.
Solution

[ul [-n+u]"™

_ (_1\n-k
Cr(u)=(-1) KI(n—K)!
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[uP[-2+uf

Co(u) =
(V) 01(2—-0)!
_(=2+u)(-1+u)
2
~2-3u+u?
2
Cl(U) _ [u]l'[_2+u]1
nE2-n!
_ u(-2+u)
1
= 2u-u?
2 0
C,(U) = [uF [-2+u]
21(2-2)!
_u(u-1)
2
2
—u+u
C2 (U)= 2
Exercises:
2 dx
1. Evaluate the integral Il > using Trapezoidal rule with two subintervals.
11+ x

2
2. Dividing the range into 10 equal parts, find the value of '[sin x dx by (i) Trapezoidal rule
0
(ii) Simpson’s rule.
1
3. Using Simpson’s one third rule evaluate jxeX dx taking 4 intervals. Compare your result
0

with actual value.

0.7
4. Calculate J-e’x Jx dx taking 5 ordinates by Simpson’s rule.
0.5

using Romberg’s method. Hence, obtain an approximate value of m.

2
5. Evaluatef zdx
o X +4

6. Using Romberg’s method, Evaluate jsin x dx correct to four decimal places.
0

1
1+t2

1
7. Using three point Gaussian Quadrature formula, Evaluatej dt.
0
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10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.

X2 +2x+1

Evaluate_[ ( 1)
X+

dx by Gaussian three point formula.
Evaluate Ie’xz dx using the three point Gaussian Quadrature.

Evaluate j —— by Gaussian formula with two points.
1+x

5
: : 1
Use Gaussian three point formula and evaluatej— dx.
X

1 1
Using Gaussian three point formula, evaluate (i) I(sz +5x4) dx (i) j(3x2 +5x4)dx.
-1 0

Also compare with exact values.
2 X

Evaluate J.efE dx by Gaussian two point formula.

Evaluate ”(H_XXH_y) dx dy by Trapezoidal rule with h = k = 0.25.

Evaluate _[ I >

11
direction.

yz numerically with h = 0.2 along x direction and k = 0.25 along y

32
The function f(x, y) is defined by the following table. Compute ”f X, y dx dy using
10

Simpson’s rule in both direction.

1 2 1.5 1.3 1.4 1.6

2 3.1 2.5 2 2.3 2.9

3 4.2 4 3.8 4.1 4.4

6

Apply Weddle’s rule to evaluate the approximate value of the integral
0

dividing the range into 6 equal parts.

Compute Cote’s polynomials for n =3, 4, 5 and 6.

Compute Cote Numbers for n=1, 2, 3, 4, 5and 6.

Verify that sum of Cote’s Numbers is 1 for n=1, 2, 3, 4, 5 and 6.
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UNIT-IV
NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS

4.1 Introduction

4.2 Picard’s Method

4.3 Initial Value Problem for Ordinary Difference Equations
4.4 Multistep Method

4.5 Runge - Kutta Method

4.6 Solution of Algebraic and Transcendent Equations

4.1 Introduction

Many problems in science and engineering can be reduced to the problem of solving
differential equations satisfying given conditions. By applying analytical methods we can
solve several standard types of differential equations. However the differential equations
appearing in physical problems are quite complex and may not posses closed form solutions.
In such cases they can be solved numerically.

We know that the general solution of a differential equation of the n™ order has n
arbitrary constants. In order to compute the numerical solution of such an equation we need
n conditions. If all the n conditions are specified at the initial point only then it is called an
initial value problem. If the conditions are specified at two or more points, then it is called a

boundary value problem.

Consider the initial value problem g_y =f(x,y) with the initial condition y(xo) = yo.
X

This problem can be solved any of the methods give the solution in one of the two

forms given below:

57



Q) A series for y in terms of powers of x, from which the value of y can be obtained by
direct substitution. The methods of Taylor and Picard belong to this type. In these
methods y is approximated by a truncated series and each term of the series is a
function of x. The information about the curve at one point is used and the solution is
not iterated. Hence these methods are called single step methods or point wise
methods. A solution of this type is called a point wise solution.

(i)  Given a set of tabulated values of x and y, we obtain y by iterative process. The
methods of Euler, Runge — Kutta, Milne, Adams — Bashforth etc. belong to this type.
In these methods, the values of y are computed by short steps ahead for equal
intervals h of the independent variable. These values are iterated till we get the

desired accuracy. Hence these methods are called step by step methods.

4.2 Picard’s Method
Consider the first order differential equation
dy
—=f(x, 1
o oY) @)

with initial condition y =y, when X = Xo.
We now replace equation (1) by an equivalent integral equation.
Integrating equation (1) we get

Tdy = ]('f(x,y)dx

Y0 X0
(.6 y=yo+ JF(x,y)dx Q)
X0
This is an integral equation which contains the unknown y under the integral sign.
Equation (2) is equivalent to equation (1) since any solution of equation (2) is a solution of
equation (1) and vice versa.
The first approximation y; to the solution is obtained by putting y = yo in f(x,y) and
from equation (2) we have
Y1=Yo+ Tf(X,YO)dX :
X0
Similarly for the second approximation y,, put y =y, in f(x,y) and from equation (2)
we have
X
Yo=Yo+ _[f(x,yl)dx.
X0

Continuing this process the n™ approximation is given by
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Yn=Yo+ If(X,yn_l)dX :

X0
This is known as Picard’s iteration formula.
Note:
Picard’s method gives a sequence of approximations yi, Y», ... each giving a better
result than the preceding one. But this can be applied only to equations in which the

successive integration can be obtained easily.

Example: 1
Using Picard’s method solve g—y =1+ xy with y(0) = 2. Find y(0.1), y(0.2) and y(0.3).
X
Solution
The Picard’s iteration formula for the differential equation
dy

ol f(x,y)isy, =yo + [f(X,y,4)dx wheren=1,2, ...
X0

Given f(x, y) =1+ xy, Xo=0and yp = 2.
The first approximation is
X
y1=Yo+ [T(x,y)dx
X0

=2+ [f(x,2)dx
0

X
=2+ [(1+2x)dx
0

Yy, =2+ X+X°.

The second approximation is

Yo=Yot If(X’Y1)dX

X0
=2+ﬂl+x(2+x+x2)dx
0

, x2 x4
Yo =24+ X+X"+—+—.
3 4

The third approximation is
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Y3=Yo Tt J.f(X'YZ)dX
X0
X 3 4
=2+ [[1+x 24 x+x2 + 2+ 2 ||dx
X0 3 4

3 X4 X5 X6

Ya= 24X+ X4+ T T
3 4 15 24

Putting x = 0.1, 0.2 and 0.3 in equation (1) we get
y; = y(0.1)= 2.1104

Yy, = y(0.2)=2.2431
ys = y(0.3)=2.4012 .

Example: 2
. : . d —X
Find the value of y(0.1) by Picard’s method given &y_y=x
dx y+X
Solution
The Picard’s iterative formula for the

X
dy =f(x,y)isy, =Yo+ [f(X,y,4)dx wheren=12,...
dx %0

y—X
Heref(x,y)=——,x,=0and y, =1.
(x,y) Xty 0 Yo

The first approximation is

X
Y =Yo + [ (XY )dx
0

X
1+ j[—1+ %) dx (By partial fraction)
0

=1+[-x+2log, (1+x)
A =1_x+2loge(1+x)-
Putting x = 0.1 we get,
y, =y(0.1)=1-0.1+ 2log, (1+0.1)
—0.9+2x0.0953
y; =1.0906.
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4.3 Initial Value Problem for Ordinary Difference Equations

The differential equation together with initial conditions is called an initial value

problem. In this unit, we are going to solve numerically, the first order initial value problem

defined by,

d
d—i=f(x,y);y(xo)=yo-

The solution of such initial value problem can be obtained by two different methods:

1. Single step method
2. Multi step method.

The following are the single step method:

1.

2
3.
4

Euler method

Modified Euler method
Taylor series method
Runge - Kutta method.

All the above methods, require the information at a single point at x = X.

The following are the multi step methods:
1. Milne’s method
2. Adam’s — Bashforth method.

Euler and Modified Euler methods

Taylor’s series method and Picard’s method are used to yield the solution of a

differential equation in the form of power series. But Euler methods are used to find the

solution in the form of table values of equally spaced points.

Euler Method

The formulais y,,, =y, +hf(X,,y,);n=0123,--

Modified Euler method Formula

1 1
Yo=Y +hf|:xn +§h,yn +§hf(xn,yn)]

Example: 1

Using Euler’s method, find y(0.2), y(0.4), y(0.6) from (Cj_y =Xx+Y;y(0)=1.
X

Solution
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Given y'=x+Y; h=X; — Xo
Hereh=0.2

’:d—yzf(x,y)=x+y
dx

By Euler method
To find y; = y(0.2)

Y1 =Yo +hf(Xq,Y0)

y

=1+0.2(Xo +Y,)
=1+02(0+1) =12

y1 =12

To find y; = y(0.4)

Y2 =Y1+hf(Xy,y1)
=1.2+0.2(x; +Y,)
=12+0.2(0.2+1.2) =1.48

y, =1.48

To find y; = y(0.6)
Y3 =Y, +hf(X3.y,)

=1.48+0.2(X, +Y5,)

=1.48 +0.2 (0.4+1.48) = 1.48
ys = 1.856.
Example: 2

Using Euler’s method, solvey' =x+Yy+xy, y(0) =1. Compute y at x = 0.1, by taking

h =0.05.

Solution

x | 0 [0.05/|0.10

Given y'=x+y+xy =f(x,y); h=0.05

Y txy)=xry oy
dx
By Euler method

62



To find y; = y(0.05)
Y1 =Yo +hf(Xo,¥o)

=1+0.05(Xy + Yo + XoYo)

=1+0.05 (0+1+0) = 1.05
y; =1.05
To find y, = y(0.10)
Y2 = y1 +hf (Xo, Yo)

=1.05+0.05(X; +Y; +X;Y;)

=1.05+ 0.05 (0.05+1.05+0.05x1.05) = 1.107625
y» =1.107625.
Example: 3

Compute y at x = 0.25 by modified Euler method given y’'=2xy, y(0) =1

Solution

Given y' =2xy =f(X,y) g—y =2Xy
X

X 0 |0.25

y | 1| wn

To find y; = y(0.25)
By modified Euler method,

1 1
Ynia =Yn +hf[xn +Eh’yn +§hf(xn!yn)}

h h
Y1=Yo +hf[xo +E’y0 +Ef(XO!yO)}

y, =1+ 0.25f[0+%,1+0'—225.2x0y0}

y1 =y(0.25) = 1.625.
Example: 4

Using modified Euler’s method, compute y(0.1) with h=0.1 from
, 2X
y =y—7y(0)=1-

Solution
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Given y’:j—i:f(x,y)zy—%x

To find y; = y(0.1)
By modified Euler method,

1 1
Yni1 = Yn +hf[xn +§h’yn +§hf(xn’yn)}
h h
Y1=Yo +hf| X, +§ayo +Ef(XO'yO)

y, =1+ O.lf{0+%,l+o7'l.(yo —%H

0

y1=Yy(0.1) = 1.09548.

Taylor Series Method

Consider the differential equation
dy
=2 :f X’ , X =
y'= g = TO0Y)Y(Xe) =Yg
The solution of the above equation obtained by Taylor series as follows:

X=X , X=X 2 " X=X 2 -
y(x)=yo+( m O)yo+( 2!0) yo+( 3!°) Yo+

It is called power series solution.

In general, the Taylor’s algorithm is given as follows:

h !/ h2 n h3 "
Yna=Yn +iyn +Eyn +§yn +--- wheren=0,1,2,3, ...

where h is the step size; h =x; — Xo.

Example: 1
Find by Taylor’s series method, the values of y at x = 0.1 and x = 0.2, correct to four

decimal places from S—y =x?y—1,y(0) =1.
X

Solution

Here xo=0;yp =1

Ly =xy-1 Yo =XgYo -1
=0(1)-1=-1
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y" = X2y +y2x Y6 =X0Yo +2X0Yo

Y"=XZY'+2X}/ yg =0
ym — 2Xy/ + y2 + X2yﬂ + y/2X yg = 2y0 + 4X0y6 + beg
ym — 2y + 4Xy1 + X2y” yg’ =2

y(iV) — 2y! +4(Xyﬂ+ yr) + (Xzy'"—l—y”ZX) y(lv) = 2y5 + 4(X0y6 + yEJ)
(iv) _
m y = —6

y™ =6y’ +6xy” + X2y

Therefore Taylor series of y(x) about X, = 0 is given by

X—X ' X=X ? " X—X ’ m
y(x)=y0+( m °)yo+( 2!0) yo+( 3!0) Yo+

yo) 1+ X0 gy X207 (X ;Io)g @+ g

—0 (x=0)*
u 2! 4l

Hence y(0.1) = 0.9003
Also, y(0.2) = 0.8023.
Example: 2

Solve y'=y? +x; y(0)=1 using Taylor series method and computer y(0.1) and y(0.2).

Solution
Giveny(0) =1
Here Xo = 0; yo = 1.
y! — X2 +X ylo =1
y' =2yy' +1 Yo =3
ym — 2(yyu+ ylyr) +4Xy! + X2y” yg =8
i m ", N ", (iv) =
y™ =2y +yy +yy +yy) | Y =34

To find y(0.1):
Let y1 = y(X1)
h? h?

Taylor algorithm is y; =Y, +£y0 +Ey0 +§y0 I

0.01 0.001 N 0.0001

YO =1+ S+ @)+ @)+ (34

y(0.1) =1.116411
To find y(0.2):
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Let y2 = y(x2)
Then by Taylor’s algorithm

2 3
"

Yo=Y, +EYQ +Ey1'+%y1 +--- where h=0.1
Given y' =y? +x

Y, =y,° +x, =1.3463

yi =2y, 2y; =4.006

Yy =2yy" +2y'* =12.5696

y(0.2) =1.1164+ (0.1)(1.3463) +O'T01 (4.006) + %?1(12.5696) T

y(0.2) =1.2732.
4.4 Multistep Method (Predictor-corrector method)

Predictor-corrector methods are methods which require function values at X,, Xnp-1,

Xn-2, Xn-3, fOr the computation of the function value at Xp+1.

A predictor is used to find the value of y at xn+1 and then a corrector formula is used
to improve the value of yp.;.

The following two methods are multi-step methods:
1. Milne’s predictor-corrector method
2. Adam’s Predictor-corrector method.
Milne’s predictor-corrector method
(i) To use Milne’s predictor-corrector method, we need at least 4 values prior to the
required values.
(if) Knowing four consecutive values of y namely yy.3, Yn-2, Yn-1, Yn, We calculate yn.1

using predictor formula. (Use yn+1 on right hand formula to get, better y,., after
correction)

(iii)Predictor formula is used to predict the values of y,.1 at Xn+1 and then a corrector

formula is used to improve the values of y.1.
(iv)In Milne’s predictor corrector method may have been computed by Taylor’s series or

Euler’s method of modified Euler’s method or Runge - Kutta method or Picard’s
method.

Milne’s Predictor Formula:
4h ’ ! ’
Yap =Yo +?[ZY1 -yt 23’3]-

Milne’s Corrector Formula
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h ! ! ! !
Yac =y2+§[y2+4y3+y4] where y), =f(X,,Y4,P).

Example: 1
Using Milne’s method, compute y(0.8) given that :—y =1+y?with y(0) = 1, y(0.2) =
X
0.2027, y(0.4) = 0.4228 and y(0.6) = 0.6841.
Solution
Given
X y | y=l+y
(=1+y2=1+1°=2
Xo 0 (o | Yo=l+yo=l+l'=
Xy 0.2 02027 | Yi=1+Yy?=1+(0.2027)* = 1.0410
X2 0.4 04228 | Yo =1+y;=1+(0.4228)* =1.1787
Xa 0.6 0684 | Ys=1+Yy3=1+(0.6841)=1.4681
X4 0.8 ? ?
To find y(0.8):
X4=0.8; h=0.2

By Milne’s predictor formula,
4h ! ! !
Yap=Yo+— (21 -2 +2y3]
=1.0239
ya=Ff(X4,y,)=1+ (1.02398)? = 2.0480
y, =2.0480.
By Milne’s Corrector formula,
h ! ! !
Yac =Y2 +§[V2 —4y; + y4]

= 0.4228 + 0—:[1.178+4(1.4681)+2.0480]

y(0.8) = 1.0294.
Example: 2
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Giveng—y:x3+y, y(0) = 2, the values of y(0.2) = 2.073, y(0.4) = 2.452 and
X

y(0.6) = 3.023 are got by Runge - Kutta method of fourth order, Find y(0.8) by Milne’s

predictor -corrector method taking h = 0.2.

Solution
Given
X y y=x*+y
Xo 0 2Yo Yo =Xp+Yo=0+2=2
X1 0.2 2.073 i =%; +y, =(0.2)° +2.073 = 2.081
X2 0.4 2452 Y5 =X +Y,=(0.4)° +2.452 = 2.516
X3 0.6 3.023 Y5 =X3+Y;=(0.6)° +3.023 = 3.239
X4 0.8 ? ?
To find y(0.8):
X4=0.8; h=0.2

By Milne’s predictor formula,
4h ! ! !
Yap=Yo +?[ZY1 -yt 2y3]

=2+ @ [2(2.081) — 2.516 + 2(3.239)]

= 4.1664
s Yy =F(X40,Yap)

= (0.8, 4.1664)

=(0.8)° + 4.1664 = 4.6784
y, =4.6784

By Milne’s Corrector Formula,
h ! ! !
Yac=Y2 +§[V2 +4y;+ YA]

= 2.452+O;32[2.516+4(3.239) +4.6784]

=3.79536
The corrected value of y(0.8) = 3.79536.

4.5 Runge - Kutta method
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The Taylor’s series method of solving differential equations numerically in restricted
because of the evaluation of the higher order derivatives Runge - Kutta methods of solving
initial value problems do not require the calculations of higher order derivatives and give
greater accuracy.

Second — Order Runge - Kutta method

Considerj—y =f(X,Y),¥(Xy) =Y, then the value of y; is obtained as follows:
X
Y1 =Y +Ay where Ay=k;
where k, = hf{x+h,y+ﬁ}
2 2
k, =hf(x,y).
Third — Order Runge - Kutta method

Considerj—y =f(X,Y),¥(Xq) =Y, then the value of y is obtained as follows:
X

Y1 =Yo +AY
where Ayzé(k1 +4k, +Kjz)

where k; =hf(x,y)

k, = hf[x+g,y+%j
ks =hf(x+h,y+2k, —k,).
Fourth — Order Runge - Kutta method
This method is commonly wused for solving the initial value problem

d
%=f(x,y),y<xo>=yo-

The value of y, =y(x,) is obtained as follows:
To find y;
Y1=Yo +AY

Where Ay :%[k1 +2k, + 2Ky + K, |

where k; =hf(Xq,Y,)

h k
K, =hf| Xg+—=,Y, +—
2 (o 2Y0 2}

h k
Ky =hf| Xg+—=,Y, +—2
3 (o 2yo 2}
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k, =hf(x, +h,y, +Ks).
Example: 1
Given :—y:x3+y, y(0) = 2. Compute y(0.2), y(0.4) and y(0.6) by Runge - Kutta
X

method of fourth order.

Solution

Given y'=f(x,y)=x>+y

Also
x| 0 [02|04]06
Y| 2 | Y| Y|y
To find y;.
Fourth order Runge - Kutta formula is
Y1=Yo +AY

Where Ay:%[kl +2k, + 2Ky + K, ]

where k; =hf(Xg,Y,)

h k
K, =hf| Xg+—=,Y, +—
2 (o 23’0 2)

h k,
ks = hf(xo 5 Yot j

k, =hf(x, +h,y, +Ks)
k, =0.2(0,2) =0.2(0%® +2) =0.4
K, =o.2(o 022 2+ 0;] 0.4402

k; = 0.2(0 + %,2 + 0.4402

j: 0.44422

k, =0.2(0+0.2,2+0.44422) = 0.490444
Ay=%[k1 +2K, + 2K + Ky
= %[0.4 +2(0.4402) + 2(0.44422) + 0.490444] = 0.44321

V1 = Yo+ Ay = 2 + 0.44321 = 2.44321
y(0.2) ~ 2.44321
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similarly, y, = y(0.4) = 2.99 (k; = 6.4902, k, = 0.5430, ks =0.5483, k4 =0.6111, Ay = 0.5473)
ys = y(0.6) = 3.68 (k; = 0.6108, k, = 0.6841, ks =0.6914, k4 =0.7795, Ay = 0.6902).

Example: 2

. " dy y>-x% .
Using Runge - Kutta method of 4" order, solve —==-———with y(0) = 1 at
dx  y“+x
x=0.2.
Solution
2 2
Giveny'=Y_—*_;h=0.2
Yy +X
x | o |02
y | 1| %
To find y;:
Fourth order Runge - Kutta formula is
Y1=Yo +AY

where Ay:%[kl +2k, +2K; + K, ]

where k; =hf(Xg,Y,)

h k
K, =hf| Xg+—=,Y, +—
2 (o 23’0 2)

h k
K, =hf| X, +—,y, +—2
3 ( 0*5 Yo 2)
k, =hf(x, +h,y, +Ks)

2 2

K, =o.2{y X }: 0.2

y2+x

k, =0.2f [O + 0—22 1+ %) =0.19672

ks =0.1967
k, =0.1891
y1=(0.2) = yo + Ay = 1 + 0.19598 = 1.19598.
4.6 Solution of Algebraic and Transcendent Equations
In mathematics, we often come across problems of obtaining solutions of equations of

the form f(x) = 0. If f(x) is a polynomial then the equation f(x) = 0 is called an algebraic

equation.
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Equations which involve transcendental functions like sin X, cos X, tan x, log x and e*

etc., are called transcendental equations.

X2 +5x+6=0, 2x> —x+4=0,x> —x3+2x+3=0and some examples of algebraic
equations.

3x+sinx+2=0, log,y x—2x=10,ae* +bsinx+ccos x+d logx+x=0 are some

examples of transcendental equations.

If f(x) = 0 is a quadratic equation ax’ + bx + x = 0, we have a simple formula namely

—b++/b?%-4ac

X = to find its roots.
2a

However, if f(x) is a polynomial of higher degree or an expression involving
transcendental functions we have no simple formula to find roots.
Due to limitations of analytical methods, formula giving exact numerical values of the
solutions exist any in very simple cases.
Hence, we have to use approximate methods to get solutions with good degree of
accuracy.
We have different methods for obtaining approximate solutions for algebraic and
transcendental equations.
Q) Iterative Method
(i)  Aitken’s A’ Method
(ili)  Bisection Method
(iv)  Regula - Falsi Method
(V) Newton — Raphson Method.

Iterative Method (or) Method of Successive Approximation (or) fixed Point Method

To solve the equation f(x) = 0 by the iteration method, we start with the
approximation value of the root. The equation f(x) = 0 is expressed as X = ¢(x) is called fixed
point equation.

If Xo is the starting approximate value to the actual root ‘a’ of x = ¢(X), be first
approximation is X1 = ¢(Xo), second approximation is X,= ¢(x;) and so on.

In general we have X, = ¢(Xn.1), N = 1, 2, 3, ... Here X, is the n" iteration and the values
of x, gives the root of the given equation at the n™ iteration.
Sufficient Condition for Convergence of Iteration (statement of fixed point Theorem)

Let x = o be a root of the equation f(x) = 0 which is equivalent to x = ¢(x). Let I

be any interval containing the root a. If |¢’(x)|<1for all x in I, then the sequence of
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approximations Xg,X,,--+,X, to the root o, provided the initial approximation Xo is chosen
inl
Example: 1
Solve the equation x* + x> — 1 = 0 for the root by iteration method correct to 4 decimal
places.
Solution
Let f(x) = x3 + x? -1
f(0) = -1 (negative)
f(1) = 1 (positive)
The root lies between 0 and 1.
Let xo = 0.5.
Express f(x) = 0 as x = ¢(x).
XX+ x4-1=0
=x*+x4=1

= x? (x+1) =1

1
=S>X=—
X+1
L _ex)
= X = =\1l+X) 2
VX +1

3
20L+x)2
Here I = [0, 1].

-2W®X=%=05<1

O L -=0.1768<1.

2% 22
The condition of convergence is satisfied.

Iteration formula:
Xn=0¢ (Xp-1);n=1,23, ..

Iteration 1: n = 1; xq = initial value is 0.5
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Iteration 2: n=2,

Iteration 3: n = 3,

Iteration 4: n = 4,

Iteration 5: n =5,

Iteration 6: n = 6,

Iteration 7: n =7,

From 6" and 7" iterations, x = 0.7549.

Example 2:

Find the cube root of 15 correct to 4 decimal places by the iteration method.

Solution

Let x be the cube root of 15.

X3 = 15.
f(x) =x*-15

The equation is x*~15=0

=x>=15

1
= x=(15)s

X =0(Xg)= i ixo = \/1+10.5 =0.8165.
X =4)- Jli X, i+ 01.8165 =0z,
X =dlxe)= J1+1x2 } \/1+;.742 =0T

Xa =4lx:)= \/1ix3 B J1+c)1.7577 =018,
g =0lxa)= \/1ix4 ) \/1+ci7543 =075,
X =4lxo)= \/1i Xs Lt 01.7550 =019,
X7 =4lxs)= Jlixﬁ N 01.7549 =01,

= X # ¢(X), which is constant, convergence is not satisfied.

S x2xx=15

=x° :E:x:\/gzx:q)(x).
X X



f(x) = x*-15
f(2) =8 -15=-7 (negative)
f(3) =27 — 15 = 12 (positive)

The root lies between 2 and 3.

Let Xo =2.5; ¢(x)= L
X

Iteration formula is X, = ¢(Xn-1); N =1, 2, 3, ...

X, = 0(Xo)=0(2.5)= \/g =2.4495.

15

X, = d(X; )= 9(2.4495)= 52295 " 2.4746.

X5 = 0(X, )= (2.4746)= 5 i§46 =2.4620.

X, = d(X;5)=§(2.4620)= igzo = 2.4683.

x5 = (X, )= 0(2.4683)= igss =2.4652.
15

X = d(X5 )= §(2.4652) = 54652 " 2.4667 .

15

X7 = d(Xg )= (2.4667)= 2667 = 2.4659 .
Xg = (X5 )= §(2.4659) = 1(‘:’59 = 2.4663.
15
Xg = 0(Xg) = 0(2.4663) = 2663 " 2.4662 .
15
X1 = 0(Xg) = 0(2.4662) = Toas ~ 24662.

.. X=2.4662.
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Newton — Raphson Method (or) Newton’s Method (or) Method of Tangents
This method starts with an initial approximation to the root of the equation. A better
and closer approximation to the root can be found by using an iterative process.

Newton — Raphson formula:

Example: 1

Using Newton — Raphson method, find the root of x* — 6x + 4 = 0 and correct its 4
decimal points.
Solution

Newton — Raphson formula is
f(X;
Xi+1=Xi_{ (x;) ;

Let f(x)=x>—6x+4; f'(x)=3x*-6

—h
~
X
o —

-.f(0)= 4 (positive)

f(1) = -1 (negative)

The root lies between 0 and 1.

Let the initial approximation be x, = 0.5.

Iteration: 1,i=0

Iteration: 2,i=1

3
X, :xl—{f,(xl)}zo.n%— (0.7143) —6(057143)+4 07319,
f'(x,) 3(0.7143)° -6

Iteration: 3,1 =2

_ B} _ , _
Xy =%, - f,(xz) 07319 (0.7319) —6(057319)+4 07320
F'(x,) . 3(0.7319)° -6
Iteration: 4,1 =3
i} _ _ ; _
Xy = X, - f’(xg) 07320 (0.7320) —6(057320)+4 07320
[ F'(x5) . 3(0.7320)* -6

The value of x is 0.7320.

Example: 2
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Solve by Newton - Raphson method x* — x — 10 = 0.

Solution

Let f(x)=x*—x—-10; f'(x)=4x>-1

f(0) = -10 (negative)

f(1) = -10 (negative)

f(2) =5 (positive)

The root lies between 0 and 2.

Let the initial approximation be x, = 1.5.
Newton — Raphson formula is,

Iteration: 1,i=0

4
X, =x1—{f,(xl)}=2.015— (2015) ~2015°101 g 741,
f(x,) 4(2.015f -1

Iteration: 3,i=2

4
x3=x2{M}=1.8741— (1.8741) _1'83741_10 =1.8559..
f(x,) 4(1.8741) -1

Iteration: 4,i=3

4
X, = Xq - f’(x3) 18550 (1.8559) —1.8559—10 _ 18556
f'(x;) 4(1.8559)° -1

Iteration: 5, i =4

4
X5=X4{f,(x“)}= L gse | (1:8556) —1.83556—10 1856
f'(x,) 4(1.8556)° —1

Comparing the 4™ and 5" iteration, we conclude that x = 1.8556.

Exercises:
1. Find the approximate solution for x = 0.1, x = 0.2 by Picard’s method for the equation

y'=x+Y,y(0)=1. Check the result with exact value.
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10.

11.

12.

13.

14.

15.

16.

Find the second approximation for S—y =x+Yy? +1,y(0)=0by Picard’s method.
X

Solve g—y =y? +x? with y(0) = 1. Use Taylor series at x = 0.2 and 0.4. Find x = 0.1.
X

Using Taylor series method find y at x = 0.1 correct to four decimal places from

Y e y, y(0) = 1 with h = 0.1. Compute terms up to x*.

dx
Using Taylor’s series method, find y(1.1) given y' =x+Vy,y(1)=0
Using Taylor’s series method in the first five terms in the expansion , find y(0.1)

correct tot three decimal places, given that Zl_y —eX—y? y(0) =1
X

By Taylor’s series method find y(0.1) given that y"=y+xy’, y(0) =1, y'(0)=0.

Using Euler’s method find y(0.3) of y(x) satisfies the initial value problem.

ay _ l(x2 +y)y?,y(0.2) =1.1114.

dx 2

Using Euler’s method find the solution of the initial value problemj—y= log(x+vY),
X

y(0) =2 at x = 0.2 by assuming h = 0.2.

Evaluate y(1.2) correct to three decimal places, by the modified Euler method, given

that g—y = (y—xz)s,y(l) =0 takingh=0.2.
X
Solvey'=1-vy, y(0) = 0 by modified Euler method.

Using modified Euler’s method find f(0.1) if j—y =x% +y?
X

Consider the initial value problem,g—y—y—x2 +1, y(0) = 0.5, using modified Euler

=
method, find y(0.2).
Using Runge - Kutta method of fourth order find y(0.1) and y(0.2) for the initial value

problem dy_ y2,y(0)=1.
dx

Xy
1+Xx

Use the fourth order Runge - Kutta method to compute y for x = 0.1 given y' = 5

,Y(0)=1,takeh=0.1.

Find y(0.8) given that y':y—xz, y(0.6) = 1.737 by using Runge - Kutta method of
fourth order. Take h = 0.1
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17.

18.

19.

20.

21.
22.
23.
24,
25.
26.
217.
28.

By applying the fourth order Runge - Kutta method find y(0.2) from y'=y—x, given
that y(0) =2 and h =0.1.

Using Milne’s method find y(4.4) given that 5xy’+y?—2=0 given y(4) = 1,
y(4.1) = 1.0049, y(4.2) = 1.009 and y(4.3) = 1.0143.

Solve y'=x-y?,0<x <1, y(0) =0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762
by Milne’s method to find y(0.8) and y(1).

Using Milne’s method find y(2) if y(x) is the solving of g—y = % (x +y) given y(0) = 2,
X

y(0.5) = 2.636, y(1) = 3.3595 and y(1.5) = 4.968.

Find real root of the equation x* + x* — 100 = 0 correct to 5 decimal places.

Solve " — 3x = 0 by iteration method.

Find the negative root of the equation x> — 2x + 5 = 0.

Use the method of fixed point iteration to solve the equation 3x — log;o X = 6.

Solve x = cos x by Newton - Raphson method.

Solve €* = 3x by Newton - Raphson method.

Solve €™ = sin x by Newton - Raphson method.

Find the real root of x* — 3x — 5 = 0, that lies between 2 and 3, correct to 3 decimal

places by Newton - Raphson method.

*kkk*k
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UNIT V

SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS

5.1 Introduction

5.2 Difference Methods of Obtaining the Solution
5.3 Gauss Elimination Method

5.4 Gauss Jordan Method

5.5 Method of Factorization

5.6 Crout’s Method

5.1 Introduction

Algebraic Equation

An expression of the form f(x)=ayx" +a,x" " +---+a, ;x+a, wherea,,a,,--,a, are
constants with ag = 0 and n is a positive integer is called a polynomial in x of degree n.

The polynomial f(x) = 0 is called an algebraic equation of degree n.
Transcendental Equation

If f(x) contains some other function. Such as trigonometric, logarithmic and
exponential etc. Then f(x) is called transcendental equation.

The value of x which satisfies f(x) = 0 is called its root.
Solution

The process of finding the roots of an equation is known as the solution of that
equation.

We shall discuss some numerical methods for the solution of algebraic and
transcendental equation.

5.2 Difference Methods of Obtaining the Solution
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Simultaneous Linear Algebraic Equations

Simultaneous linear algebraic equations occur in various fields of Science and
Engineering. We know that a given system of linear equations can be solved by applying
Cramer’s rule. But this method is found to be impractical for large system of linear
equations, since the calculations are tedious. To solve such equations, there are other
numerical methods, which are particularly suited for computer operations.

To find the solution for the simultaneous linear equations, we have two types of
numerical methods.

(i) Direct Method
(i) Indirect Method

Direct Method
The following are the direct methods.

(i) Gauss — Elimination method
(i)  Gauss — Jordan Method

Indirect Method (Iterative Method)
The following are the indirect methods.

(i) Gauss — Seidel method
(i)  Gauss — Jacobi method

5.3 Gauss — Elimination Method

This method is the most effective direct solution technique. In this method, consider
the given system of equations to be AX = B.

In Gauss elimination method, we start with the augmented matrix A|B (A with B) of
the given system and transform it to U|K (upper triangular matrix with k — rows) i.e a matrix
in which all elements below the leading diagonal elements are zero by eliminating row
operations. Finally, the solution is obtained by back substitution process.

Principles of Gauss Elimination method
[A, B] — upper triangular matrix (U|K), then find x, y, z by back substitution process.
Example: 1
Solve the equations
2X+y+4z=12
8x—-3y+2z=20

4x +11y—z =33
81



by Gauss elimination method.
Solution

The given system of equations is equivalent to AX = B where

2 1 4 X 12
A={8 -3 2 |; X=|yland B=|20
4 11 -1 Z 33

2 1 4 12\R

~(A|B)=|8 -3 2 20|R,
4 11 -1 33)R,
2 1 4 12
R, &> R, —4R,
=10 -7 -14 -28
R, > R, - 2R,

0 9 -9 9

2 1 4 12
=l0 -7 -14 -28 R3—>R3+§R2
0 0 -27 -27

= (UKK)
Using Back substitution method,
277 = -27
z=1
-7y -14z = -28
y=2
S2X+y+4z=12
X=3
~x=3;y=2andz=1.
Example: 2

Solve the system of equations

28X +4y—z =32
Xx+3y+10z=24

2X+17y+4z=35
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using Gauss — elimination method.
Solution

The given system of equation is equivalent to AX = B where

28 4 -1 X 32
A=|1 3 10|; X=|y|and B=|24
2 17 4 z 35

28 4 -1 32\R
~(A|B)=| 1 3 10 24|R,
2 17 4 35)R,

1 3 10 24
=(28 4 -1 32|R ©R,
2 17 4 35

1 3 10 24

R, - R, — 28R,
—|0 -80 -281 —640
R, > R, — 2R,
0 11 -16 -13
1 3 10 24
11

=|0 -80 -281 -640|R,>Ry+ R,
0 0 -5464 -101

= (UIK).
using back substation method,
-54.64z = -101
z=185
Also,
-80y — 281z = -640
y=15
Also,
Xx+3y+10z=24
x=1.

~x=1;y=15andz=1.85.
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5.4 Gauss — Jordan Method

This method is a modification of Gauss — elimination method. Here, we consider the
given system of equations to be AX = B. In Gauss — Jordan method, we start with the
augmented matrix (A|B) of the given system of equations and transform it to diagonal matrix
of unit matrix by elementary row operations. Finally, the solution is obtained directly
without back substitution process.

ie. (A|B)—2 5(D|K)or (I |K).
Example: 1

Solve the following equations by the Gauss — Jordan method.

X+2y+2=8;2x+3y+4z=20; 4x+y+2z=12.

Solution

The given equations is equivalent to AX = B where

1 21 X 8
A=l2 3 4|;X=|y|and B=| 20
4 1 2 z 12
121 8
~(AIB)=]2 3 4 20
1 2 12
1 2 1 8
o 21 2 a4 R, >R, - 2R,
0 —7 —2 _20 R, > R, —4R,
1 0 5 16
o 1 2 4 R, & R, +2R,
0 0 -16 —ag) IR
1 0 5 16 "
=0 -1 2 4 R3—>ﬁ
0 0 1 3
1 0 0 1
lo 210 Zo R, = R, —5R,
- 0o 0 1 3 R, >R, - 2R,
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= (DIK).

~Xx=1ly=2andz=3.
Example: 2

Solve the following equations by Gauss Jordan method.
10x+y+z=12
2x + 10y + z = 13 and
X+y+5z=1.
Solution

The given equations is equivalent to be AX = B where

10 1 1 X 12
A=|2 10 1|;X=|y|and B=|13].
1 1 5 z 7
10 1 1 12
~(A|B) {2 10 1 13
5 7

1 15 7
2 10 1 13|R, ©R,
10 1 1 12

1 1 5 7
R, >R, —2R,
=0 8 -9 -1

R, >8R, —R,

R, = 8R, +9R,
0 0 —473 -473

o
o
[HEN
[N

R, — R, —49R,
R, >R, +9R,
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= (DIK).
~x=1;y=landz=1.
5.5 Method of Triangularization (or) Method of Factorization

This method is also called as decomposition method. In this method, the coefficient
matrix A of the system AX = B is decomposed or factorized into the product of a lower
triangular matrix L and an upper triangular matrix U. We will explain this method in the case
of three equations in three unknowns.

Consider the system of equations
ay1X; +apX, +ay3Xg =hy
851X1 +8pX; +a53X5 =b, 1)

Ag1Xg +a3 X, +a33X3 =D

This system is equivalent to AX = B (2
d;p  Qp a3 X1 b,

where A=|a, a, a, [} X=X, |andB=|b,
dz; a8z dgz X3 bs

Now we will factorize A as the product of lower triangular matrix

1 0
|31 |32

and an upper triangular matrix

0 0 ug
So that
LUX =B ©)
Let UX=Y (4)
and hence LY =B (5)

1 0 0\y,) (b
sy 15 1)\Ys by
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SY1=by b Y 4y, =05l Y+l Yo Y =D
By forward substitution, y1, y», y3 can be found out if L is known. From equation (4),

Upjp U Ugg | X Y1
0 Uy Uyp (X [=]Ys
0 0 ug)\X; Y3

1.8 UpyXg +UppX, +UsX3 =Y,
UypXy +UxX3 =Y)

UxsX3 =Y3

From these X3, X2, X3 can be solved by back substitution, since yi, Y», Y3 are known if
U is known.

Now L and U can be found from LU = A.
1 0 O)fuy up ugp aj;p dpp adg

iefly 1 O0f 0 uy Uyl=[ay ayp ag
I 13 1)L 0 0 ug dz; dzp dsg

Ugp Upp Uz dpp dp  ag
e | lyuyy  lyupp +Uy, [51U33 + Uyg =y ayp app
I3U;  I3Ugp +130Up  ggUpg +155Up5 + Ugg dz dz dg

Equating corresponding coefficients we get nine equations in nine unknowns. From
these 9 equations, we can solve for 31’s and 6 u’s.

That is, L and U are known. Hence X is found out. Going into details, we get
Uy =84;,Upp =84,,U;3 =853. That is the elements in the first row of U are same as the

elements in the first of A.
Also, 1y Upy =y, 15 Uy +Up =ap, lh Uz +Uy =2y

. dy; dp; dy;
Ay =—Uup=ap——"appand Uy =a,——=-a;

11 11 11

Again, 3 Uy =ag;, Uy Uy + 135 Uy =8z, and Ig; Uy + 13 Uyg +Ugs =ags

az;
a az — a. agp
: _dag _ 11
Solving, I3, =—=, 13, = 2
21
1 Ay~ dp
aqg
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Therefore L and U are known.

Note:

In selecting L and U we can also take as

l, 0 O 1 up, Uy,
So that A = LU.
Example: 1

Solve by triangularization method, the following system x + 5y + z = 14,
2x+5y+z=13and 3x +y + 4z = 17.

Solution

This is equivalent to

1 5 1)\(x) (14
2 1 3||y|=|13
31 4)\lz) \17

i.,eAX=B

1 0 O)(uy up ug) (1 51

By seeing, we can write u;; =1,u;, =5,uy3 =1.

88



sy 13 1){0 0 ug
Hence, 1,1 =2, 5l + Uy =1, 15 + Uy =3.
Sy =2,uy =—9, U, =1
Again, I3, =3, 55 + 13Uy, =1 I +15Up; +Ug3 =4

1-15 14 14 5
He="g =g ite=4"3g =

LUX =B implies LY = Bwhere UX =Y

LY =B gives,

1 0 O0f(y; 14

2 1 0]y, |=|13
14

3 Y 11\y; 17

ey, =14, 2y, +y, =13, 3y1+%y2 +y, =17

5
~y; =14y, =-15y, :_§

UX =Y implies,
1 5 1 |x 14
0 -9 1 |y|=|-15
0 O > z >
9 3

(ie)x+5y+z=14

9y +z=-15

5 5

—7=——

9 3

n2=3,y=2,x=1
Example: 2

Solve the following system by triangularization method: x + y + z = 1,
4x+3y—-72=6,3x+5y+3z=4.
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Solution

11 1 X 1

Here A=|4 3 -1|,X=|y|[,B=|6

3 5 3 z 4
1 0 O)(u; up, ugz) (1 1 1
LU=[1l,;, 1 0]] 0 wuy, Uyl=[4 3 -1
l;; I3 1)L0 0 wuzy) (3 5 3

SoUgp =Upy =Ugg =1.

U3y =4, 151Upp +Upy =3,151Us3 +Ups =—1
Sy =4,u,=-1U,;=-5

|3y =3, I3 +135U5 =5, |3y +135U55 + g3 =3
I3, =—2, Uz =10

Now, LUX =B implies LY = B where UX =Y

y1=14y,+y,=6,3y; -2y, +y; =4

nY1=1Yy,=2,y;=5

UX =Y gives,
1 1 1 )(x 1
0 -1 -5]||y|=|2
0 0 -10)\z 5
X+y+z=1
-y-52=2
-10z=5

Hence, zz—l, yzi, x=1.
2 2

5.6 Crout’s Method (Direct Method)
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This is also a direct method. Here also, we decompose the coefficient matrix A as LU
and proceed. But we will follow a different technique as suggested by Crout.

As in the previous method, we want it solve the system

AX =B )
djp dpp A Xy b,
where A=|a, a, ay | X=|X,|andB=|Db,
dz; dz ds X3 by
Suppose we decompose A = LU 2
where L=|1,, 1,, O |andU=[0 1 |y,
Since AX=B,LUX =B
LY =B where UX=Y (3)
LU = A reduces to
ly 0 0|1 up ug djp dp Ag
Iy 1 0|0 1 uyg|=lay ap asp
ls; 13 I3]0 O 1 dgy Az Az
Iy 15Uy I Ugs dyp Ay a3
e |1y Iyupp+1y IyUiz+lpUss  [=[ay 8y Ay

3y TaUpp +1lg  lgaUys +15U0s +15 a3 Az dg3
Equating coefficients and simplifying as in the previous method, we have
Iy =ay;, Iy =2y, |3 =ag

ap a3
Upp =" Ui =

11 ayg
I =y —lyUs,, I3 =ag, —lgU;,

ap3 —lpyUys |

Uy = |33 =53 —lg1Up3 —l3Ups

I22
Now L and U are known.

Since LY = B, we get
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ly, 0 0)(yy (b,
I,y 1, O ||Y2]|] by

FYRLEP R AN ZYAN
Multiplying and equating coefficients,
ly; =by
I21y1 +122Y2 = by

l31Y; +13Y, +1l33y5 =bg

Therefore,
b,
y — =
. aqg
b, -1
y, = 2 21Y1

I22

by —lyy =13y,

3=

|33

Y1
Knowing Y =| vy, |, Land u.

Y3
X can be found out from UX =Y.

Note:

Computation scheme by Crout’s method:

We write down the 12 unknowns 1;,151,15,15,155,133,U55,U55,Us3, Y1, Y5, Y585 @
matrix below called auxiliary matrix or derived matrix.

by U Uig Yy
Derived matrix = l,;, 1, Uy VY, |.

Iy 1l 13 Y3

If we know the derived matrix, we can write L, U and Y. The derived matrix is got as
explained below, using the augmented matrix (A, B).

Q) The first column of D. M (derived matrix) is the same as the first column of A.

(i) The remaining elements of first row of D. M. Each elements of the first of D. M.
(except the first elements 1;1) is got by dividing the corresponding element in
(A, B) by the leading diagonal element of that row.
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(ii)  Remaining elements of second column of D. M.
Since Iy, =a,, —lyUy,, |, =85, —l3Us,
Each element of second column except the top element = corresponding elements
in (A, B) minus the product of the first element in that row and in that column.

(iv)  Remaining elements of second row.
Each element = corresponding elements in (A, B) minus sum of the inner products
of the previously column divided by diagonal element in that row.

(V) Remaining element of third column.
lag =33 —la1Us3 —l5pUo3
The element = corresponding element of (A, B) — (sum of the inner products of
the previously calculated elements in the same row and column).

(vi)  Remaining element of the third row.

_ by —(lyyy; +15pY5)
Y3 =
|33
The element = corresponding element of (A, B) — (sum of the inner products of
the previously calculated elements in the same row and column divided by the
diagonal element in that row.
Example: 1

By Crout’s method, solve the system: 2x + 3y + z = -1, 5x + y + z = 9 and
3X+2y+4z=11.

Solution

2 31 -1
Augmented matrix=(A,B)=|5 1 1 9
3 2 4 11

Let the derived matrixbe D. M= |1, |, Uy, Y,

Step: 1
2
Elements of the first column of D. M are | 5
3
Step: 2
Elements of first row:
a 3
“e =, o
11
11
b, 1
Y1 = , 75
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, 31
2 2
D.M.=|5 .
3
Step: 3
Elements of second column:
I, =a, —Uply
:1—5><§:—E
2 2
I3, =ag, —l3Up,
:2—3><§:—§
2 2
, 3 1
2 2
D.M.=|5 —5
2
3 _°
i 2
Step: 4
Elements of second row:
Asa —Uyal
Ups = 23I 13131
22
1
_l—5><5_i
- 138 13
2
9-5 1
__\2)_ 23
y2_ _E - 13
2
, 3 1
2 2
D.M.=|5 _9 i
2 13
3 _2
i 2
Step: 5
—a3( L) (5)(3)4.3,15_40
2 2 )\ 13 2 26 13
, 3 1
2 2
D.M.=1|5 —E i
2 13
3 .2 40
L 2 13
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Step: 6

{03

Y3 = io :8
13
, 3 1 1
2 2 2
D.M=|s -2 3 B
2 13 13
3 .2 40 2
L 2 13 8 |
The solution is got from UX =Y
1 up U X Y1
e|0 1 uxnl|ly|=|Y2
0O O 1 Z Y3
1 21 1
2 2 1|x 2
0 1 i y|= _§
13 13
0 0 11]|Z 2_1
L i . 8 |
21 3 23 y 1 1
SZ=—,YV+—Z=—— X+—+—=——

8’7 13" 137 2z 2
23 3(2_1)__19

13 13\ 8 8
x=_2f 19| 1f2l) 1_7
2\ 8) 2\8) 2 4
7 19 21
X:—,y=——’ = —
4 8 8
Example: 2

Solve by Crout’s method, the following: X + y + z =3, 2x —y + 3z = 16 and
3X+y-z=-3.

Solution
1 1 1 3
Here, (A,B)=|2 -1 3 16
3 1 -1 -3
Ly Up Ug Y
Let the derived matrixbe D. M. = |15, 1, Uy Y,
FYR FPR PR 2
Step: 1
. _
Elements of the first column of D. M. are = | 2
3
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Step: 2
Elements of first row of D. M:
1 1

3

1113
~.DM.= 2

Step: 3

Elements of second column:
I3y =85 —Upply =—-1-2=-3
|32 == a32 —U12|31 :1—1X3:—2

1 1 13
~DM.=2 -3
3 -2
Step: 4
Elements of second row:
_3-1(+2) 1

-3 3
16-3x2 10

-3 3

Uys

2

~DM=2 -3 —=- —-—
3

Step: 5
Elements of third column:

ggz—l—ugy{_%jpg):_lﬂ

Step: 6
Elements of third row:

-3-33)3)-(-2| -

I
I

Y3 =

1 1 3

~DM.=2 -3 BE.

14

The solution is got from UX =Y, i.e.

96



11 1 (x| | 3

1 10
MR
0 0 1|2 4
X+y+z=3

1. 10
37 3

z=4.
By back substitution, z=4,y = -2, x =1.

Exercises:

1. Solve the following system of equations by Gauss elimination method.
3x+4y+5z2=18
2X—-y+8z=13
5x — 2y +7z = 20.
2. Solve the following system of equations by Gauss elimination method:
X + X, + X3 +X, =4
X, + 77X, + X3+ X, =12
X, + X, +6X; + X, =—5
X, + X, +X; +4X, =—6.
3. Solve the following system of equations by Gauss elimination method.
X, +2X, —=12X, +8x, =27
SX; +4X, + 7%, —2X, =4
—3X, + 71X, +9X; +5x, =11
6x, —12x, —8x; +3x, =49.
4. Solve the following equations by Gauss Jordan method.
2Xx+y+4z=12;8x -3y +2z2=20;4x +11ly—z = 33.
5. Solve the following equations by Gauss Jordan method.
2%, — X, +4X; =9
X, +9X, —6X; =1
—3%; +8X, +5X, =6.
6. Solve the following system of equations by triangularization method:
M X+y+5z=16,2x+3y+z=4and4x+y-z=4
(i) X—y+z=6,2x+4y+z=3and 3x + 2y -2z =-2
(ili) 2x+y+z=12,8x—-3y+2z=20and 4x + 11y —z = 33.
7. Using Crout’s method, solve the following muster of equation:
M X+y+2z=7,3x+2y+4z=13and4x +8y +2z =8
(i) 2X+4y+z=54x+4y+3z=8and4x+8y+z=9
(i) 2x—-6y+8z=24,5x+4y—3z=2and 3x +y + 2z = 16.

%k %k %k %k %k %k k
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