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Chapter 1

UNIT I: Group

1.1 Relations

Definition 1.1.1. A binary relation or simply a relation p from a set A into a set B
is a subset of A x B.
If an ordered pair (a,b) € p we say that a is related to b in the given relation and

we write apb. If (a,b) ¢ p we say that a is not related to b in the given relation.

Examples 1.1.2. Let p be the set of all ordered pairs (m,n) of integers such that
m < n, le.,

p=A{(m,n) €ZXZ:m<n}.

Then p is a binary relation on Z.

Examples 1.1.3. Let p = {(z,y) : x,y € R, 22 +y* =1, y > 0}. Then p is a binary
relation on R. S is the set of points in the Euclidean plane constituting the semicircle

lying above the z-axis with center (0,0) and radius 1.

Definition 1.1.4. Let p be a binary relation on a set A. Then p is called
(i) reflexive if for all x € A, xpzx,
(i) symmetric if for all x,y € A, xpy implies ypz,

(iii) transitive if for all z,y,z € A, xpy and ypz imply zpz.

Definition 1.1.5. A binary relation p on a set A is called an equivalence relation on

A if p is reflexive, symmetric, and transitive.



Examples 1.1.6. Let A = {1,2,3,4,5,6} and p = {(1,1),(2,2),(3,3),(4,4), (5,5), (6,6),
(2,3),(3,2)}. Then p is an equivalence relation on A.

Examples 1.1.7. (i) Let L denote the set of all straight lines in the Euclidean plane
and p; be the relation on L defined by for all 1,1y € L, (I1,15) € py if and only if Iy

and [, are parallel. Then p; is an equivalence relation on L.

(ii) Let L be defined as in (i) and py be the relation defined on L by for all I, € L,
(I1,l3) € py if and only if [; and Iy are perpendicular. Let [ be a line in L. Since [
cannot be perpendicular to itself, (I,1) € ps. Hence, py is not reflexive and so ps is not

an equivalence relation on L. Also, ps is not transitive.

Examples 1.1.8. Let n be a fixed positive integer in Z. Define the relation =,, on Z
by for all x,y € Z, x =, y if and only if n|(x —y), i.e., x —y = nk for some k € Z. We

now show that =, is an equivalence relation on Z.
(i) Forallz € Z, z—x = 0 = On. Hence, for all z € Z,  =,, x. Thus, =, is reflexive.

(ii)) Let z,y € Z. Suppose x =, y. Then there exists ¢ € Z such that gn = x — y.

Thus, (—¢)n =y — x and so n|(y — x). Hence, =, is symmetric.

(iii) Let z,y,z € Z. Suppose x =, y and y =,, z. Then there exist ¢,r € Z such that
gn=x —yand rn =y — z. Thus, (¢+r)n =2 — z and g + r € Z. This implies
that © =,, z. Hence, =, is transitive. Consequently, =,, is an equivalence relation

on Z.

Definition 1.1.9. Let p be an equivalence relation defined on a set S. Let x € S. The

equivalence class [z] determined by the element x is defined by

[z] ={y € S: zpy}

Since xpx, x € [x] so that any equivalence class is non-empty.

Examples 1.1.10. Consider the relation p defined on Z by zpy < x — y is a multiple

of 3. Then p is an equivalence relation on Z and so



0] ={y €Z: y—0=3k where k € Z} = {0, £3,46,--- }
N ={3k+1: keZ}={-,-5-21,4,7,---}
2] ={3k+2: keZ}={ ,-4,-1,2,58, -}
B]={3k+3: kezZ}=[0]=1[6]=1[9] ="

In fact, it is easy to see that [0], [1], [2] are the only three distinct equivalence classes.
Any two distinct equivalence classes are disjoint and the union of all these equivalence

classes is equal to Z.

Definition 1.1.11. Let p be an equivalence relation defined on a set S. Then the set

of all equivalence classes is called the quotient set of S and is denoted by S/p.

Definition 1.1.12. Let S be any set. A collection of pairwise disjoint non-empty

subsets of S whose union is S is called a partition of S.

Examples 1.1.13. Let S = {1,2,3,4,5}. Then the subsets {1}, {2},{3,4}, {5} form
a partition of S. Hence the set of all singleton’s of a non-empty set .S forms a partition

of S.

Theorem 1.1.14. Let p be an equivalence relation deefined on a set S. Then
(i) apb < [a] = [b)].
(ii) Any two distinct equivalence classes are disjoint.

(i) S is the union of all the equivalence classes.

Proof. (i) Let apb. Suppose z € [a]. Then xpa. Since apb, by transitivity, we get zpb
and so x € [b]. Hence [a] C [b]. Similarly [b] C [a]. Hence [b] = [al.

Conversely, let [a] = [b]. Then a and b belong to the same equivalence class. Hence
apb.

(i) Tt is enough if we prove that [a] N [b] # 0 = [a] = [b].
Suppose [a] N [b] # 0. Then there exists ¢ € S such that ¢ € [a] N [b]. Clearly ¢ € [a]
and ¢ € [b]. From this, we have cpa and cpb. This implies that apb and hence [a] = [b].

(iii) Since each element a of S is in [a], the union of all equivalence classes is S. O



By Theorem 1.1.14, shows that every equivalence relation defined on a set S gives rise

to a partition of S. The following theorem deals with the converse situation.

Theorem 1.1.15. Any partition of a set S determines an equivalence relation p such

that the members of the partition are precisely the equivalence class determined by p.

Proof. If a,b € S, we define apb < a and b belongs to the same member of the
partition. Obviously p is reflexive and symmetric. Now let apb and bpc.

apb < a and b belongs to the same partition set A.

bpc < b and c belongs to the same partition set B.
Suppose A # B. Since b € A and b € B, AN B # (). This is a contradiction since
any two partition sets are disjoint. Hence A = B. Thus a and ¢ € A and so that apc.
Hence p is transitive and so p is an equivalence relation.

Now let a € S. Let A be the unique member of the partition such that a € A.

Then [a] = A (by definition of p). O

The equivalence relation p defined in Theorem 1.1.15 is called the equivalence rela-

tion induced by the given partition .

Problem 1.1.16. Find the equivalence relation induced by the partition {{1}, {2, 3}, {4}}
of S = {1,2,3,4}.

Solution. The equivalence relation p induced by the given partition is given by the

following subset of S x S, {(1,1),(2,2),(3,3),(2,3),(3,2), (4,4)}.

Problem 1.1.17. Find the equivalence relation induced by the partition {A, B} of Z
where A ={0,1,2,...},B={-1,-2,-3,...}.

Solution. Let z,y € Z. Then zpy < z,y € Aor x,y € B. Therefore zpy < x,y <0

or z,y < 0.

Problem 1.1.18. If p and o are equivalence relations on defined on a set S, prove

that p N o is an equivalence relation.



Solution. Letz € S. Then zpx and xox (since p, o are reflexive). Therefore z(pNo)z.
Hence p N o is reflexive.

Let x(pNo)y. Then zpy and xoy. Therefore ypr and yox (since p, o are symmetric).
Therefore y(p N o)z and hence p N o is symmetric.

Let z(pNo)y and y(p N o)z. Then (zpy and zoy) and (ypz and yoz). Therefore
(xpy and zoy) and (ypz and yoz). Therefore zpz and xoz (since p, o are transitive).

Therefore z(p N o)z. Hence p N o is transitive.

Problem 1.1.19. Show that the union of two equivalence relations need not be equiv-

alence relation.

Solution. Let S = {1,2,3}. Let p = {(1,1),(2,2),(3,3),(1,2),(2,1)} and o =
{(1,1),(2,2),(3,3),(2,3),(3,2)}. Clearly p and o are equivalence relations on S. Now
pUc = {(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)}, p U o is not transitive since
(1,2),(2,3) € pUo but (1,3) ¢ pUo. Therefore p U o is not an equivalence rela-

tion.

Problem 1.1.20. What are the smallest and largest equivalence relations on a set S.

Solution. Any relation on S is a subset S x S. Consider the subset /A of S x S given
by A = {(z,z): x € S}. Now let p be any other equivalence relation on S. Since p is
reflxive, p contains AA. Hence A is the smallest equivalence relation on S.

Obviously the largest equivalence relation on S is given by the subset S x S.

Problem 1.1.21. Let A be a set with n elements.
(i) Find the number of relations that can be defined on A.

(ii) Find the number of reflexive relations that can be defined on A.

Solution. (i) Any relation on a A is a subset of A x A. Since A has n elements, A x A
has n? elements. Therefore the number of relations that can be defined on A is equal

to the number of subsets of A x A = 27°.



(ii) Let A = {(a,a) : a € A}. Any reflexive relation A is of the foorm A U B
where B is any subset of (4 x A) — A. Further (A x A) — A has n? — n elements.

Therefore the number of reflexive relation on A is equal to the number of subsets of

(Ax A) — A =2,

1.2 Functions

Definition 1.2.1. Let A and B be non-empty sets. A function or a mapping f from
A to B, written as f : A — B is a rule which asigns to each element a € A a unique
elements b € B.

The element b which corresponds in this way to a given element a € A is called the
image of a under f and is written as f(a).

Also if f(a) = b then a is called a pre-image of b under f. A is called the domain
of fand {f(a): a € A} is called the range of f.

Two functions f,g: A — B are said to be equal if f(z) = g(z) for all x € A.

Examples 1.2.2. 1. Consider the function f :Z — Z given by f(x) = 2x. Clearly
the domain of f is Z. The range of f is given by {f(z): v € Z} = {2z : = €
7} =27.

2. Consider the function f : R — R given by f(z) = 2. Any positive real number z
has two pre-image under f given by /x and —y/x and any negative real number

x does not have a pre-image under f. Hence the range of f is RT U {0}.

3. Let E C R. The function xg : R — R defined by

1 ifze€F
Xe(T) =
0 ifz¢FE

is called the characteristic function on E.

Definition 1.2.3. Let f : A — B be a function. The graph of f is defined to be
{(a, f(a)) : a € A}. A function may be specified by its graph, which is a subset of



A x B. Thus a function from A to B is a relation such that each element of A is related

to exactly one element of B.

Remark 1.2.4. A relation from A to B may be fail to be a function in any one of the

following ways.
(i) An element a € A may be related to more than one element in B.

(ii) An element a € A may not be related to any element in B.

Examples 1.2.5. 1. Let A =1{1,3,5,7,9} and B = {2,4,6,8}. Consider the rela-
tion from A to B given by the following subsets of A x B.

{(1,2),(1,4),(3,6),(5,8), (7,4)}.

This is not a function from A to B. Since 1 is related to 2 and 4. Further 9 is

not related to any element of B.

1

2. The following relation defined on R by {(z,cos™'z) : = € R} is not a function,

since £ = 0 is related to more than one element.

Definition 1.2.6. A function f : A — B is one-one(injective) if distinct elements
in A have distinct images in B under f. In other words f is 1-1 if x,y € A and
x#y = f(x)# f(y) or equivalently f(z) = f(y) = 2 =y.

The mapping f is called onto(surjective) if the range of f is equal to B. Thus if f
is onto, every element of B has a pre-image in A.

If f: A— B isboth 1-1 and onto then f is called bijective. In this case every

element in B has exactly one pre-image in A.

Examples 1.2.7. 1. Consider f : Z — Z given by f(x) = 2z is 1-1, but not onto.
For, f(z) = f(y) = 2v =2y = x = y. Hence f is 1-1. The element 3 € Z does

not have any pre-image. Hence f is not onto.
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2. Consider f : Z — Z given by f(z) =x+ 3. fis 1-1 for, f(z) = f(y) =+ 3 =
y+3 = x = y. Also any element y has x = y— 3 as its pre-image under f. Hence

f is onto. Hence f is bijection.

3. f:R — R given by f(x) = 2z is 1-1 and onto. Each element y € R has y/2 as

its pre-image.

4. Consider f: R — RT given by f(x) = e®. Clearly f(z) = f(y) => e* =€V = x =
y. Therefore f is 1-1. Also any element y € R™ has 2 = log y as its pre-image

under f. Therefore f is onto. Hence f is bijection.

5. The function f : R — R defined by f(z) = 1/(1 + 2?) is not 1-1, since the
elements a and —a have the same image under f. Further f is not onto, since

every element < 0 does not have a pre-image.

Definition 1.2.8. Let f : A — B be a function. Let S C A. The restriction of f to
S, denote by f|S, is a function from S to B defined by (f|S)(z) = f(z) for all x € S.

Example 1.2.9. Let f : R — R defined by f(z) = 1/(1 + |z|). fIRT : RT — R, is
given by (f|R")(z) =1/(1+ ).

Definition 1.2.10. Let f: A — B and g : B — C be two functions. We define the
composite of these functions go f : A — C by the rule (g o f)(a) = g(f(a)) for all

a€ A

Examples 1.2.11. 1. If f : R — R is given by f(z) = 2> and g : R — R is
given by g(z) = sin x, then (f o g)(z) = f(g(z)) = f(sin z) = (sin x)* and
(go f)(z) = g(f(x)) = g(a®) = sin x2. Thus in general go f # fog.
2. If f: R — Zis given by f(z) = [z] and g : Z — N U {0} is given by g(n) = |n/,
then go f: R — NU{0} is given by (g0 f)(x) = g(f(z)) = g([z]) = [[=].

Theorem 1.2.12. let f: A — B, g: B— C, and h:C — D. Then ho(go f) =

ho g)o f. That is, composition of functions is associative.
Y
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Proof. First note that ho(go f): A— D and (hog)o f: A— D.
Let x € A.

Then [ho(go f)|(z) = hl(go [)(@)] = hlg(f(z))] = (hog)(f(z)) = [(hog)o fl(z).
Thus, by the equality of two functions, ho (go f) = (hog) o f. a

Theorem 1.2.13. Let f : A — B, g : B — C be bijections. Then go f: A — C is

also bijection.

Proof. Let z,y € A. Then

(gof)x)=(g90f)ly) = g(f(x))=g(f(y)).
= f(x)= f(y) (since gis1—1)

= zr =y (since fis1—1)

Therefore g o f is 1-1.

Now, let z € C. Since g : B — C is onto, there exists y € B such that g(y) = z.
Again, since f : A — B is onto, there exists z € A such that f(z) = y. Therefore
(go f)(x)=g(f(x)) =g(y) = z and so g o f is onto. Hence g o f is bijection. O

Theorem 1.2.14. Let f : A — B, g: B — C be two functions. Then
(i) go f is 1-1= f is 1-1.
(ii) go f is onto= g is onto.

Proof. (i) Let go f be 1-1. Let z,y € A. Then

fx)=fly) = g(f(x))=9(f())
= (gof)(x)= (g0 f)(y)

= x=y(since go fis1—1).

Therefore f is 1-1.
(ii) Let go f be onto. Let z € C. Then there exists © € A such that (go f)(z) = 2.

Therefore g(f(z)) = z and so z has f(z) as its pre-image under g. Hence g is onto. O

12



1.3 Inverse of a function

Definition 1.3.1. Let f : A — B be a bijection. Then for each b € B, there exists a
unique element a € A such that f(a) =b. We now define f~!: B — A by f~1(b) = a.

f~tis called the inverse of the function f.

Problem 1.3.2. Show that f : R — R defined by f(z) = 2z — 3 is a bijection and
find its inverse. Compute f~'o f and fo f~1.

Solution. Let z,y € R. Suppose f(z) = f(y). Then 2z — 3 = 2y — 3 and so z = y.
Hence f is 1-1. Let y € R. If f(x) = y, then 2z — 3 = y and so = = (y + 3)/2.
Hence (y + 3)/2 is the pre-image of y under f and so f is onto. Hence f is a bijection
and f~! : R — R is given by f~'(z) = (z +3)/2. Now (f~'o f)(z) = f~(f(z)) =
f12x—3)=[2x—3)+3]/2=zand (f o f)(z) =z

Problem 1.3.3. Show that f : R — {3} — R — {1} given by f(z) = 2= is a bijection

and find its inverse.

: _ z—2 __ y—2 _
Solution. Let z,y € R. Suppose f(z) = f(y). Then 2= = =5 and so x = y. Hence
fis 1-1. Now, let y € R — {1}. If f(x) =y, then = = % is the pre-image of y under
f and so f is onto. Hence f is bijection and f~! : R — {1} — R — {3} is given by

) =

Problem 1.3.4. Show that f : R — (0, 1) defined by f(z) = 3 [1 + %Iﬂ] is a bijection.

Solution. Clearly f(0) = 1/2. When = > 0, f(z) = § [1+ %], Hence (1/2) <
f(z) < 1. Similarly when = < 0, f(z) = 1 [1 + ££] and hence 0 < f(z) < 1/2. Hence
f maps (0,00) to (1/2,1) and (—o00,0) to (0,1/2). Let z,y € (0,00). Then
fla)=fly) =3 [1+ %] :%[1+$} = 15 =15 = *(l4+y) =y(l+z) =z =y.
Hence f is 1-1. Now, let y € (1/2,1). To prove f is onto we must find = € (0, c0) such
that f(z) = y. Now, f(m):y:>%[1+1_f—x} Zyéﬁ:%—lﬁm:%

Hence f is onto.

Problem 1.3.5. Show that a set X is infinite if and only if there exists a bijection
between X and a proper subset A of X.
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Solution. Suppose X is finite and suppose there exists a bijection f : A — X where
A is a proper subset of X. Since f is a bijection A and X have the same number of
elements. But A C X. Hence A = X which is a contradiction. Hence X is infinite.

Conversely suppose X is infinite. Choose a sequence of distinct elements
T1,%9, ..., Tp,... In X. Let A = X — {x1}. Clearly A is a proper subset of X.
Define f: X — A by f(z;) = ;11 and f(z) = x if x # z,;. Hence f is a bijection from
X to A.

Definition 1.3.6. Let A be any set. The function iy : A — A defined by ia(z) = x
for all x € A is called the identity function on A. Thus i4 leaves every element of A

fixed.

Theorem 1.3.7. Let f: A — A be any function. Then foiy =iso f = f.

Proof. Let x € A. Then (foia)(z) = f(ia(z)) = f(x). Hence fois = f. Similarly
’iA o) f == f O

Theorem 1.3.8. Let f: A — B be a bijection. Then f~!: B — A is also a bijection
and f~lof=i4gand fofl=ig.

Proof. Let y;,y42 € B. Since f : A — B is a bijection, there exist x1,z9 € A such
that f(x1) = y1 and f(z2) = y2. Therefore f~!(y;) = x1 and f~(y2) = xo. Now
[N y) = (y2) = 21 = 29 = f(21) = f(22) = y1 = yo. Hence ' is 1-1.

Now, let x € A. Let f(z) =y. Then f~'(y) = x. Thus every element z € A has
f(x) as its pre-image under f~!. Hence f~! is onto. Also (f~'o f)(z) = f~1(f(z)) =

x =is(x). Hence f~'o f =i,. Similarly fo f~! =ig. O

Theorem 1.3.9. A function f : A — B is a bijection if and only if there exists a
unique g : B — A such that go f =i4 and fog=1ip.

Proof. Let f : A — B be a bijection. Then f~! : B — A is also a bijection and
ftof=tigand fof!=ipg. Now,let g: B — A be any other function such that

gof=iaand fog=ip. Lety € B. Let g(y) = x. Then f(z) = f(g(y)) = (fog)(y) =
ip(y) =y. Hence f~' =2 = g(y). Thus f~! =g.

14



Conversely, suppose there exists a function g : B — A such that go f = i, and
fog=ip Letz,y € A Then f(z) = f(y) = 9(f(2)) = 9(f(y))= (g0 f)(z) =
(go f)(y) = ia(z) =1a(y) = x =y. Hence f is 1-1. Now, let y € B. Then ¢(y) € A.
Also, f(g9(y)) = (fog)(y) =ip(y) =y. Therefore f is onto. Hence f is a bijection. O

Theorem 1.3.10. If f : A — B and g : B — C are bijection then (gof)™' = f~log™'.

Proof. Since f and g are bijections, (go f) : A — C is a bijection. Therefore
(go f)7t: C — Ais a bijection. Also f~': B — A and ¢! : C — B are bijections.
Therefore f~tog=!: C' — Ais a bijection. Now, let z € C. Since g is onto, there exists
y € B such that g(y) = z. Since f is onto, there exists z € A such that f(z) = y.
Now, by definition ¢g~!(z) =y and f~'(y) = z. Hence (f'og™)(2) = (g7 (2)) =
fHy) = 2. Also (go f)(z) = g(f(x)) = g(y) = z and hence (g o f)"'(2) = . From
this, we get (go f)™' = ftog™. O

Definition 1.3.11. Any function f : A — B induces two natural set mappings.
If S C A, the image of S under f denoted by f(S) is the subset of B given by
{f(z): x € S}. Again if T C B, the inverse image of T under f denoted by f~(T)
is the subset of A given by {x : f(x) € T'}.

Examples 1.3.12.

1. Let f:Z — Z be given by f(x) = 2z. Then
(a) f({1,2,3}) = {2,4,6}.
(b) f~*({1,3,5}) = 0, since there is no element x € Z such that f(z) =1 or 3 or 5.
(c) f71({2.3,5}) = {1}.

2. Let f: R — R be the constant function given by f(z) = 3. Then f(S) = {3} for any

non-empty subset S or R and

. o if3¢T
f7H(T) =
R if 3 €T, where T C R.

Note that the image of a non-empty set is non-empty whereas the inverse image of a

non-empty set may be empty.

15



Remark 1.3.13. The associated with any function f : A — B, there are two functions;
one from o(A) — p(B), which also denoted by f, which assigns to each subset S of
A the image set f(S) C B and another from o(B) — o(A), denoted by f~!, which
assigns to each subset 7" of B its inverse image f~! C A. The reader should carefully
note this double meaning for the symbols f and f~!. The function f~!: o(B) — o(A)

is not in general the inverse of the function f : o(A) — o(B).

Theorem 1.3.14. Let f : A — B be a function. Let A; and As be subsets of A and
B; and By be subsets of B. Then

(i) f(0) =

(i) A1CA2=>f( 1) € f(As)

(i) f(A1UAz) = f(A1) U f(A2)

(iv) f(AiNAz) C f(Ar1) N f(A2)

(v) f7H(0) =0

(vi) f71(B) = A

(vii) f7H(B1U By) = fH(B1) U f~1(By)
(vil)) f~H(B1N Bo) = f~H(B1) N fH(Bo)
(i

x) B = [T (B)]"

Proof. (i) Clearly f(0) =

(i) Let x € f(A1). Then = = f(y) for some y € A; C Ay and so = € f(As).

(iii) Let z € f(A1 U Ay). Then x = f(y) for some y € A; U Ay and z € f(A;) U f(A2).
Let z € f(A1) U f(A2). Then z = f(z1) = f(x2) for some z; € A; for i = 1,2. Hence
z € f(ALUAy).

(iv) Suppose z € f(A; N Ay). Then z = f(y) for some y € A; N Ay Clearly z € f(A;)
and x € f(Ay). Hence z € f(Ay) N f(As).

(v) and (vi) follows from definition.

(vii) Suppose z € f~!1(B; U By). Then f(x) € BiU By = f(z) € By or f(z) € By
=z € fYB)orx e f1(By) =z € f4By) U fBy). Hence f~1(B; U By) C
S7Y(By) U f~1(By). The reverse inclusion can be proved by retracing the steps. Hence
fTHB1UBy) = f~H(B1) U f1(Ba).

Similar way, we prove the remaining. a
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Problem 1.3.15. Let f: X — Y be a function. If A C X and B C Y show that (i)
AC A

(i) /' [f(B)) C B

(ili) Give an example to show that equality need not hold in (i) and (ii).

(iv) In each case when will the equality hold?

Solution. (i) Let € A. Then f(x) € f(A) and so z € f~![f(A)]. Hence A C
A

(ii) Let y € f[f~*(B)]. Then there exists z € f~'(B) such that y = f(z). Now,
z € f71(B)= f(z) € B=y € B. Hence f[f*(B)] C B.

(iii) Consider f : R — R defined by f(z) = 2?. Let A = (0,1). Then f(A) = (0,1)
and f7'[f(A)] = (—1,1) which is not a subset of A. Consider B = (—1,0). Then
f7Y(B) = 0. Therefore f[f~(B)] = f(0) = 0 and so B is not a subset of f[f~'(B)].
(iv) We claim that the reverse inclusion is true in (i) if f is 1-1. Let z € f~![f(A)].
Then f(x) € f(A). Since fis 1-1, z € A and so f~![f(A)] C A. Hence equality is
true in (i) if f is 1-1. We claim that the reverse inclusion is true in (ii) if f is onto.
Let y € B. Since f is onto there exists z € X such that f(z) =y. ..y € B= f(x) €
B= e[ (B)= f(x) € [/ (B) =y e [/ (B)]. Hence B C f[f~(B)] and so

equality is true in (ii) if f is onto.

1.4 Groups

Definition 1.4.1. A group is an ordered pair (G, ), where GG is a nonempty set and
* is a binary operation on GG such that the following properties hold:

(G1) For all a,b,c € G, a* (bxc) = (ax*b)*c (associative law).

(G2) There exists e € G such that for all @ € G, a*xe = a = e * a (existence of an
identity).

(G3) For all a € G, there exists a’ € G such that a xa’ = e = @' * a (existence of an

inverse).
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Examples 1.4.2.

1. Z,Q,R and C are groups under usual addition.

a b
2. The set of all 2 x 2 matrices where a,b,c,d € R is a group under ma-
c d
. » 0 , L —a — . .
trix addition. is the identity element and is the inverse of
0 0 —c —d
a b
c d
a
3. The set of all 2 x 2 non-singular matrices where a, b, c,d € R is a group un-
c d
a
der matrix multiplication. is the identity element. The inverse of
0 1 c d
., [ ad
is where |A| = ad — be # 0.
[A] e d

4. N is not a group under usual addition since there is no element e € N such that

rt+e==ux.
5. The set E of all even integers under usual addition is a group.

6. Q" and R* under usual multiplication are groups. 1 is the identity element and the

inverse of a non-zero element a is 1/a.

7. Q* is a group under usual multiplication. For a,b € Qt = ab € Q". Therefore usual
multiplication is a binary operation in Q.

1 € Q7 is the identity element. If a € QT, (1/a) € Q1 is the inverse of a.
8. Z under the usual multiplication is not a group.

9. Let A be any non-empty set. Let B(A) be the set of all bijections from A to itself.
B(A) is a group under the composition of functions. We know that f,g € B(A) =
fog € B(A)(by Theorem 1.4.4). The composition of functions is associative (by
Theorem 1.4.3). i4 : A — A is the identity element (by Theorem 1.5.7). If f: A — A
is a bijection, then f~' : A — A is also a bijection and fo f~! = f~lo f = i,s(by
Theorem 1.5.8)
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10. Let G = {e} and e x e = e. Obviously G is a group.

11. Let G = {1,—1}. G is a group under multiplication. 1 is the identity element. The

inverse of each element is itself. The Cayley table for this group is

12. (o(S), ) is a group. A is associative. Also AAP = PAA = A for all A € o(S).

Hence ® is the identity element. AAA = ® so that inverse of each element is itself.

13. G ={1,i,—1,—i}. G is a group under usual multiplication. The identity element
is 1. The inverse of 1,7, —1 and —i are 1, —¢, —1 and ¢ respectively.

The Cayley table for this group is given by

0 T S R |

10 -1 0 1 0 -1 0
14 LetG: ) ) ?

01 0 1 0 —1 0 -1
G is a group under matrix multiplication. [Construct the Cayley table for this group]

15. C* is a group under usual multiplication given by (a + ib)(c + id) = (ac — bd) +
i(ad + bc).

Proof. (15) Let z,y € C*. Then x = a+ib where a and b are not simultaneously zero
and y = ¢ + id where ¢ and d are simultaneously zero. Now, xy = (a + ib)(c + id) =
(ac—bd)+i(ad+bc). We shall first prove that ad—be and ad+be are not simultaneously

zero. Suppose,

ac—bd =0 (1.1)

and ad + bc =0 (1.2)
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Multiplying (1.1) by d and (1.2) by ¢ and subtracting, we get b(d? + ¢*) = 0. Therefore
either b = 0 or d* + ¢* = 0. Thus either b = 0 or (¢ = 0 and d = 0). Similarly, either
a=0or (c=0and d=0). Thus (e =0and b=0) or (c=0and d=0). Thus x =0
or y = 0 which is a contradiction. Hence zy € C*. Now, let x = a + ib,y = ¢ + id and
z=e+if. Then x(yz) = (a+ib)[(ce—df)+i(de+cf)] = (ace—adf —bde—bcf)+ (bce+
bdf + ade + acf). Similarly, (zy)z = (ace — adf — bde — bef) + (bee + bdf + ade + acf).
Hence z(yz) = (zy)z. Clearly 1+ 40 is the identity element. Also

1 1 a—ib a—1ib o i(ﬁibz) Since g2 + b2 7& O, 1/;1; € C* and is

— _ a
z ~ a+ib ~ (a+ib)(a—ib) ~  a?+b2 (a2+b2)

the inverse of x. Hence C* is a group under usual multiplication. a
16. Let G ={z: z € C and |z| = 1}. Then G is a under usual multiplication.

Proof. (16) Let 21,20 € G. Then |z1| = |z2| = 1, |z122| = |21]|22] = 1 and so
z1, 29 € G. We know that usual multiplication of complex numbers is associative. Also
1 =1+1i0 € G and is the identity element. Now, let 2 € G. Then |z| = 1. Hence

|1/z] =1/]z| =1 and so 1/z € G and is the inverse of z. Hence G is a group. O
17. The set of all n'* roots of unity with usual multiplication is a group.

Proof. (17) Let w = cos(2m/n) + i sin(2m/n). Then the n'® roots of unity are given
by 1,w,w?,...,w" 1. Let G = {1,w,w? ...,w" 1}, We know that w" = 1,w"" = w
etc. Let w",w® € G. Let r +s = gn +t where 0 < ¢t < n. Then w'w® = W™ =
Wit = (W)W = W' € G We know that usual multiplication of complex number is
associative. Clearly 1 € GG is the identity element and the inverse of w” is w™~". Hence

G is a group. O
18. Let G = {a+bv/2: a,b € Z}. Then G is a group under addition.

Proof. (18) Let a+bv/2 and ¢ +dv/2 € G. Then (a+bv2) + (c +dv2) = (a+¢) +
(b4 d)v/2 € G. We know that usual addition is associative. Clearly 0 = 0+ 0v2 € G
is the identity element and —a — bv/2 is the inverse of a + byv/2. Hence G is a group. O

19. Let G be the set of all real numbers except —1. Define * on G by a*b = a+ b+ ab.

Then (G, *) is a group.
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Proof. Let a,b € G. Then a # —1 and b # —1. We claim that a * b # —1. Suppose
axb=—1. Thena+b+ab=—-1sothata+b+ab+1=0,1ie., (a+1)(b+1)=0s0
that either @ = —1 or b = —1 which is a contradiction. Hence a*b # —1 and thus * is a
binary operation on G. Now ax* (b*c) = a*(b+c+bc) = a+ (b+c+bc)+a(b+c+be) =
a+b+c+bc+ab+ac+abc.Also(a*b)xc = (a+b+ab)*c = a+b+ab+c+ (a+b+bc)c =
a+b+c+ab+ ac+ be+ abe. Hence a * (b ¢) = (axb) x c. Also 0 is the identity, for
ax0=a+0+0a=aand Oxa =0+ a+ 0a =a. Now, let a’ be such that a x a’ = 0.
Then a + a' + aa’ = 0 so that @’ = —a/(1 + a). Since a # —1, we have a’ € R — {—1}.

—Eka =

/ _
Alsoa*a—Ha o

_ a2 . . .
+a+ F“a = 0. Hence o' is the inverse of a and so G is a

group. O
20. In R* we define a * b = (1/2)ab. Then (R*, %) is a group.

Proof. Obviously * is a binary operation in R*. Let a,b,c € R*. Then (a % b) x ¢ =
[(1/2)ab] x ¢ = (1/4)abc = a = (b c¢). Hence * is associative. Let e € R* be such that
a x e = a. Therefore (1/2)ae = a and hence e = 2. Let a € R*. Let b € R* be such
that a x b = 2. Then a € R* be such that a * b = 2. Then (1/2)ab = 2, (i.e) b = 4/a.
Thus a * (4/a) = 1/2(4/a)a = 2 i.e., (4/a) is the inverse of a. Thus (R*, ) is a group.

O

21. Let f, : R — R be the function defined by f,(z) = 2 +a. Then G = {f,: a € R}

is a group under composition of functions.

Proof. (21) Let f,, fy € G. Then (f, o fo)(x) = (fu(fo(2))) = falx +b) =2+ b+
a = fyra(x). Hence f, 0 fy = fria € G. We know that composition of mappings is
associative. Also f, o fo = f. = foo fo and so fy is the identity. Also f,o f_, = fo =

f-ao fs. Hence f_, is the inverse of f,. Hence G is a group. a

Definition 1.4.3. Let Z, = {0,1,2,...,n — 1}. Let a,b € Z,,. Then a+b=qgn+r
where 0 < r < n. We define a ®b = r. Let ab = ¢'n + s where 0 < s < n. We
define a ® b = s. The binary operations & and ® are called addition modulo n and

multiplication modulo n respectively.

Examples 1.4.4. Show that (Z,, ®) is a group.
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Proof. Clearly & is a binary operation in Z,. Let a,b € Z,,. Then

a+b = qgn+ry where 0 <r;<n (1.3)
b+c = gn-+rywhere ) <ry<n (1.4)
ri+c = qn-+r3where)<r3<n (1.5)

and so a +b+c¢ = (g + g)n +r3 and a + ggn + 2 = (¢1 + g3)n + r3. Hence
a+ 1y = qun +ry where q = ¢ + g3 — q2. Now (a@b)@c =rdc =r3.
Also a® (b® ¢) = a ® ro = r3. Hence @ is associative. Clearly the identity element is

0 and the inverse of a € Z,, is n — a. Hence (Z,,, ®) is a group. O
2. Let n be a prime. Then Z, — {0} is a group under multiplication modulo n.

Proof. Let a,b € Z, — {0}. Then a # 0 and b # 0. Now, by definition a ® b € Z,.
We claim that a ©® b # 0. Suppose a ® b = 0. Then n|ab. Since n is prime, n|a or n|b
and so a = 0 or b = 0 which is a contradiction. Hence a ® b € Z,, — {0}. Now, let
a,b,c € Z, —{0}. Clearly

ab = qn+r; where 0 <ry <n (1.6)
bc = @an+ry where 0 <ry <n (1.7)
ric = qgsn+r3 where 0 <rs <n (1.8)

Thus abc = ginc + ric and so a(gen + r2) = qien + gzn + r3. Hence ary = qqn + 73,
where ¢4 = g1+ q3 —age. Now, (a-b)-c=r;-c=r3. Also, a-(b-¢) = a-ry = r3. Thus
a-b)-c=a-(b-c)and hence ® is associative. Clearly 1 € Z, — {0} is the identity
element. Let a € Z,, — {0}. Since n is prime (a,n) = 1. Hence the linear congruence
ax = 1(mod n) has a unique solution, say, b € Z,, — {0}. Clearly a-b=0b-a = 1. Thus

b is the inverse of a. Hence Z,, — {0} is a group. O

3. The set of all positive integers less than n and prime to it is a group under multipli-

cation modulo n.

Proof. Let G = {m : m < n and (m,n) = 1}. Let p,q € G. Obviously pg # n
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and (pg,n) = 1. Now let pg = sn+r, 0 <r < n. Then p® ¢ = r. We claim that
(r,n) = 1. Suppose (r,n) = a > 1. Then a|r and a|n. Hence a|(r + sn) i.e., a|pg. Also
aln. Hence (pg,n) # 1 which is a contradiction. Thus r € G and so G is closed under
@. We know that multiplication modulo n is associative. Clearly 1 € G is the identity
element. Let a € G. Then (a,n) = 1. Hence the linear congruence ax = 1(mod n) has
a unique solution for z say b. Clearly ab = 1(mod n) and so a ® b = 1. Now we have
to prove that b € G. Suppose (b,n) = c¢. Since ab = 1(mod n),ab = gn + 1. Now c|b
and c|n = ¢|(ab — gqn) = ¢|1l = ¢ =1. Thus (b,n) =1 and b € G and is the inverse of

a. Thus G is a group. a

T T
4. Let G denotes the set of all matrices of the form where z € R*. Then G

is a group under multiplication.

T x Yy oy
Proof. Let A,B e G. Let A= and B =
T x Yy oy
2wy 2wy : e .
Then AB = € (G. We know that matrix multiplication is associative.
2xy 2xy
e e x x e e r x
Let E = be such that AE = A. Then =
e e x x e e r x
2xe 2ze T T
and so = . Therefore 2ze = z and e = 1/2. Hence
2ze 2ze T T
/2 1/2 ) . o vy .
E = is the identity element of G. Let be the inverse of
1/2 1/2 Yy
T T T T 1/2 1/2 2vy 2x
. Then vy = / / and so Y Y =
T x T x Yy oy 1/2 1/2 2xy 2xy
1/2 1/2 x x| x/4 x/4
. Thus2zy = 1/2and y = x/4. Inverse of is :
1/2 1/2 r x x/4 x/4
Hence G is a group. a

5. In N we define a * b = a. Then (N, ) is not a group.

Proof. Clearly * is an associative binary operation on N. However, there is no element
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e € N such that e *x a = a for all a € N. Hence there is no identity element in (N, ).

Hence (N, %) is not a group. O

Definition 1.4.5. A group G is said to be abelian if ab = ba for all a,b € G. A group

which is not abelian is called a non-abelian group.

Examples 1.4.6.
1. Z\ {0}, Q\ {0}, R\ {0} and C\ {0} under usual multiplication are abelian groups.
2. (0(S),A) is an abelian group, since AAB = BAA for all A, B € o(5).

3. (Zn,®) is an abelian group.

1.5 Elementary Properties of a Group

Theorem 1.5.1. Let GG be a group. Then
()] There exists a unique identity element e € G such that e xa = a = a * e for all
acG.

(ii) For all @ € G, there exists a unique inverse a’ € G such that a*ad’ = e =d % a.

Proof. (i) Now G is group. Therefore, by (G2), there exists e € G such that e x a =
a = axe for all a € G. Suppose, let e and €' be two identity elements of G. Then
ee’ = ¢’ (since e is an identity element). Also ee’ = e(since €’ is an identity element).
Hence e = ¢’

(ii) Let a € G. By (G3), there exists a’ € G such that a x @’ = e = @’ * a. Suppose
there exists a” € G such that a * a” = e = a” ¥ a. We show that a’ = a”. Now

a =a xe=ad *x(ax*da")(substituting e = a * a”)
= (a' *a) *a” = exa”(because ¢’ xa =e) = d”.

Thus, o’ is unique. O

We denote the inverse of a by a™!.

Theorem 1.5.2. In a group, the left and right cancellation laws hold (i.e,) ab = ac =

b=c and ba=ca=b=c.
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Proof. Suppose ab = ac = a *(ab) = a '(ac)= (a 'a)b = (a'a)c = eb = ec

= b = c¢. Similarly, we can prove that ba = ca = b = c. O

Theorem 1.5.3. Let G be a group and a,b € G. Then the equation ax = b and ya = b

have unique solutions for x and y in G.

Proof. Consider a™'b € G. Then a(a™'b) = (aa )b = eb = b. Hence a™'b is a
solution of ax = b. Now, to prove the uniqueness, let 1 and x5 be two solutions of
ax = b. Then ax; = b and axy = b. Therefore ax; = axy which implies 1 = x5. Hence
x = a~'b is the unique solution for az = b. Similarly we can prove that y = ba™! is the

solution of the equation ya = b. O

Theorem 1.5.4. Let G be a group. Let a,b € G. Then (ab)™' =b"ta™t and (a™')~' =

a.

Proof. Now (ab)(b™'a™) = a(bb™')a™ = aea™ = aa™" = e. Similarly (b~ 'a"')(ab) =
e. Hence (ab)™! = b~'a~!. Proof of the second part is obvious. O

Corollary 1.5.5. If aj,as,...,a, € G then (ayas---a,)"' = a;ta ) ---a;t.

Definition 1.5.6. Let GG be a group and a € GG. For any positive integer n, we define
a” = aa---a(a written n times). Clearly (a")™! = (aa---a)™ = (a7ta™t---a?!) =

(a™)~!. Now we define a™" = (a™')" = (a™)~'. Finally we define a® = e. Thus a" is

defined for all integers n.

When the binary operation on G is "+”, we denote a + a + --- + a (a written n

times) as na.

Theorem 1.5.7. Let G be a group and a € G. Then
(i) a™a™ = a™™" m,n € Z.

(ii) (a™)" = a™, m,n € Z.

Proof. (i) When n = 0 the result follows directly from the definition. Now let n > 0.
We prove the result by induction n. When m > 0, a™* = a™a'(by definition). When

m=—1, @™ =a’ = e and a™a' = a 'a = e. Hence a™*' = a™a'.
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When m < -2, let m = —p, where p > 2.
(@)a=(aP)a=(aVa=(a P lata= (a7 =a P = gmH!
Hence a™™! = a™a!, for all m € Z and so the result is true for n = 1. Suppose now
that the theorem is valid for n = k > 1. Then a™a* = a™**.
amaftt = a™(a*a) = (a™a*)a = a™**a (hypothesis)

= a™™* 1 (by definition)
Thus is follows that the theorem is valid for n = £+ 1. Hence by induction the theorem
holds for all positive integers n. Finally if n < 0, we can prove the result by induction
on —n.

(ii) Obvious. O
Problem 1.5.8. Show that, in a group G, #? = x if and only if x = e.

Solution. Clearly e? = ee = e. Conversely, let 22 = x. Then zx = ze. Hence by
cancellation law x = e.

An element a € G is called idempotent if a> = a. Thus we have shown that in a
group G. the identity element is the only idempotent element.

Problem 1.5.9. In an abelian group, (ab)? = a?b?.

Solution. Clearly (ab)? = (ab)(ab) = a(ba)b = a(ab)b = (aa)(bb) = a®b*.

In general for any positive integer n, (ab)™ = a™b" (prove by using induction)

Problem 1.5.10. Let G be a group such that a®> = e for alla € G. Then G is abelian.

Solution. Since a®> =¢, aa = e = a =a"'. Now, ab = (ab)™! = b~'a™! = ba. Hence

G is abelian.

Problem 1.5.11. Let G be a group in which (ab)™ = a™b™ for three consecutive

integers and for all a,b € G. Then G is abelian.

Solution. Let a,b € G. Then by hypothesis, (ab)™ = a™b™; (ab)™™! = a™T1pm+!
and (ab)™*? = @™ 22 Now, (ab)™™!' = @™ot = (ab)™(ab) = (a™a)(b™b)
= (a"b™)(ab) = (a™a)(b™b). Hence b™a = ab™ (by cancellation law).

Similarly (ab)™™? = a™ 20" = p" g = ab™ ™ = V"ba = ab™b = b"ba = b"ab

and so ba = ab. Hence G is abelian.
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Problem 1.5.12. Let (H,-) and (K, %) be groups. We define a binary operation O on
H x K by (hy, k1)O(hg, ko) = (hihg, k1 x k). Then H x K is a group. ( H x K is called
the direct product of H and K).

Solution. First we shall prove that O is associative. Let (hy, k1), (he, k2), (hs, k3) €
Hx K.
[(h1, k1)O(ha, ko)|O(hs, k3) = (hiha, ki * ko)O(hs, k3) = ((hiha)hs, (k1 * ka) * k3)
— ((ha(hahs), k1 * (ky % ks)) = (h, k1) O (hoha, ks % ks) = (b1, k1)O[(ha, ko) D (hs, k).
Let e, e; be the identities of the groups H and K respectively. Clearly (e, e;) is the
identity element in H x K. Also (h=!, k1) is the inverse of (h, k). Hence H x K is a

group.

1.6 Permutation Groups

Definition 1.6.1. Let A be a finite set. A bijection from A to itself is called a

permutation of A.

For example, if A = {1,2,3,4} f: A — Agiven by f(1) =2, f(2) =1, f(3) = 4 and
1 2 3 4

21 4 3
An element in the bottom row is the image of the element just above it in the upper

f(4) = 3 is a permutation of A. We shall write this permutation as

TOW.

Definition 1.6.2. Let A be a finite set containing n elements. The set of all permu-
tations of A is clearly a group under the composition of functions. This group is called

the symmetric group of degree n and is denoted by .5,,.

1 2 3
Example 1.6.3. Let A ={1,2,3}. Then S; consists of e = :
1 2 3
1 2 3 1 2 3 1 2 3 1 2 3
p1 = yP2 = yP3 = 1 P4 = 3
2 31 31 2 1 3 2 3 21
1 2 3
Ps = . In this group, e is the identity element. We now compute the
2 1 3

product pips.
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1 2 3
m: Lol 1 2 3
2 3 1 Hencepipo: | | |
pa: | ] 1 23
1 23
1 23 1 23 1 2 3
So that pips = e. Now, pipsy = = = ps.
2 3 1 3 21 2 1 3

Similarly we can compute all other products and Cayley table for this group is given

by

€ P1 P2 P3 Psa Ps

el e pr p2 P3s Ps Ps
Pr|P1 P2 € P4 P5 D3
P2 | p2 € PpP1 Ps P3 P4
Ps | pP3 P5 pa € D2 D1
Ps|Ps P3 P5 P11 € D2

Ps | Ps P4 P3 P2 pP1 €

Thus S5 is a group containing 3! = 6 elements.

In S5, p1ps = pop1 = e so that the inverse of p; is ps. In general the inverse of a

permutation can be obtained by interchanging the rows of the permutation.

1 2 3 45
For example, if p = then the inverse of p is the permutation
3 4 2 5 1
] 34 2 51 1 2 3 4 5
given by p~! = =
1 2 3 45 5 3 1 2 4

In S3, p1ps = ps and pyp1 = p3. Hence p1py # papr so that Ss is non-abelian.
The symmetric group S,, containing n! elements, for, let A = {1,2,...,n}. Any

permutation on A is given by specifying the image of each element. The image of 1 can

be chosen in n different ways. Since the image of two is different from the image of 1, it
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can be chosen in (n — 1) different ways and so on. Hence the number of permutations

of Aisn(n—1)---2-1=n! so that the number of elements in S, is n!.

Definition 1.6.4. Let G be a finite group. Then the number of elements in G is called
the order of G and is denoted by |G| or o(G).

Definition 1.6.5. Let p be a permutation on A = {1,2,...,n}. pis called a cycle
of length 7 if there exist distinct symbols aq, as, ..., a, such that p(a;) = as,p(az) =
as,...,p(a,—1) = a,, and p(a,) = a1, and p(b) = b for all b € A —{ay,as,...,a,}. This
cycle is represented by the symbol (ay,as,- -, a;).

Thus under the cycle (aq,as,--- ,a,) each symbol is mapped onto the following
symbol except the last one which is mapped onto the first symbol and all the other

symbols not in the cycle are fixed.

Example 1.6.6. Let A = {1,2,3,4,5}. Consider the cycle of length 4 given by p =

12345
(2451). Then p = and so (2451) = (4521) = (5124) = (1245).
2 435 1

Remark 1.6.7. Since cycles are special types of permutations, they can be multiplied
in the usual way. The product of cycles need not be a cycle.
For example, let p; = (234) and p, = (1,5). Then
1 23 45 1 2 3 45 1 23 45

P1p2 = = which is not
1 3 4 2 5 5 2 3 4 1 5 3 4 2 1

a cycle.

Definition 1.6.8. Two cycles are said to be disjoint if they have any no symbols in

common.
For example (2 1 5) and (3 4) are disjoint cycles.

Remark 1.6.9. If p; and p, are disjoint cycles the symbols which are moved by p; are

fixed by po and vice versa. Hence multiplication of disjoint cycles is commutative.

1234567

2135674
We shall write this permutation as a product of disjoint cycles. First of all 1 is moved to

Examples 1.6.10. (1) Consider the permutation
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2 and then 2 is moved to 1 thus giving the cycle (1 2). The element 3 is left fixed. Again

starting with 4, 4 is moved to 5, 5 is moved to 6, 6 is moved to 7 and 7 is moved to 4, thus

N 1 234567
giving the cycle (4 56 7). Thus = (12)(4567) = (4567)(12)
2135674
1 234567

(2) Consider the permutation o = € S7. Starting with
2375416

1 we get the cycle (1 23 7 6). The elements 4,5 do not appear in it. Starting with 4
we get the cycle (4 5). Each element of the set {1,2,...,7} occurs in one of the two

cycles. Thus oo = (12376)(45).

1 23 456
(3) Consider the permutation o = . Clearly o = (143)(265).

4 6 1 3 25

Theorem 1.6.11. Any permutation can be expressed as a product of disjoint cycles.

Proof. Let p be a given permutation of the set S = {1,2,...,n}. Let us start with any
symbol a; € S. Let p(ay) = as, p(as) = ag, . ... Since S is finite, these symbols cannot
all the distinct and hence there exists a least positive integer r such that 1 < r < n
and p(a,) = ay.

Let ¢ = (ay,a9,- -+ ,a,). If r =n then p = ¢ so that p is cycle. If r < n, let by be
a symbol in S such that by ¢ (ay, a9, - ,a,). Starting with b; we can construct the
cycles d = (by, by, - - - , bs) as before. Clearly the cycles ¢ and d are disjoint. If r+s=n
then p = cd. If r + s < n then we repeat this process to obtain more cycles until all
symbols appear in one of the cycles. Thus we get a decomposition of p into disjoint

cycles. O

The decomposition of a permutation into disjoint cycles is unique except for the

order of the factors.

Definition 1.6.12. A cycle of length two is called a transposition . Thus a trans-

position (ajas) interchanges the symbols a; and as and leaves all the other elements

fixed.

Theorem 1.6.13. Any permutation can be expressed as a product of transpositions.
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Proof. Since any permutation is a product of disjoint cycles it is enough to prove

that each cycle is a product of transpositions. Let ¢ = (ajas---ay) be a cycle. Then

(aras - --ay) = (ajaz)(aszasz) - - - (aya,). This proves the theorem. O
1 23 45

Examples 1.6.14. (i) Let = (1245) = (12)(14)(15). Then (1245) =
345 21

(2451) = (24)(25)(21) and so the representation of a permutation as a product of trans-
positions is unique.

(ii) Clearly (1345)(26) = (13)(14)(15)(26) = (13)(12)(12)(14)(15)(26). Thus in the
representation of a permutation as a product of transpositions one can always insert

(ab)(ab) in any place since (ab)(ab) is the identity permutation.

Theorem 1.6.15. If a permutation p € S, is a product of r transpositions and also a

product of s transpositions then either r and s are both even or both odd.

Proof. Let p = tyty---t, = tity---t: where ¢;,t} are transpositions. Now consider

the polynomial in n variables xq, xo, - - - , x, given by

A= (x) —x)(x) —w3) - (17 — x) X (T2 — w3) (T2 — 24) - -+ (T2 — Ty)

X e X (Tp1 — Tp) = 1_[(:1cZ — ;)

i<j

For any permutation p € S,, we define
P(A) = TLic;(®pi) — Tp()-

Consider the transposition ¢ = (ij). Then the factor z; — x; in A becomes z; — ;.
Any factor of A in which neither ¢ nor j is equal to k or [ is unchanged. All other
factors of A can be paired to form products of the form +(z; — xy)(z; — z;), the sign
being determined by the relative magnitudes of ¢, 7 and k. Since t interchanges x; and
x; any such product is unchanged. Hence the effect of the transposition ¢ on A is just
to change the sign of A i. e, t(A) = —A. Therefore p(A) = (t1ty- - t,.)(A) = (—=1)"A.
Also p(A) = (tth - t1)(A) = (=1)*A. Therefore (—1)" = (—1)* = r and s are both

even or both odd. O
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Definition 1.6.16. A permutation p € 5, is called even or odd according as p can
be expressed as a product of an even number of transpositions or an odd number of

transpositions respectively.

1 2 3 45 6 7
Examples 1.6.17. (i) Consider the permutation p = and

36 417 25
p = (134)(26)(57) = (13)(14)(26)(57). Therefore p is a product of 4 transposition.

Hence p is an even permutation.

1234567289

254361798
p = (1256)(34)(89) = (12)(15)(16)(34)(89). Therefore p is a product of 5 transposition

(ii) Consider the permutation p =

and so p is an odd permutation.

Theorem 1.6.18. (i) The product of two even permutations is an even permutation.
(i) The product of two odd permutations is an even permutation.

(#ii) The product of an even permutation and an odd permutation is an odd permutation.
(iv) The inverse of an even permutation is an even permutation.

(v) The inverse of an odd permutation is an odd permutation.

(vi) The identity permutation e is an even permutation.

Proof. Let pi, ps be two permutations. If p; is a product of r transpositions and ps is
a product of s transposition, then pyp, is a product of r + s transpositions. Hence (i),
(ii) and (iii) follows. Now suppose that a permutation p is a product of r transpositions,
say, p = t1,ta, ..., t,. Then p~' = (ty,to, -+ ,t,) " =t t;' 7 = t,---tot; and so
p~!is also a product of r transpositions. This proves (iv) and (v). Now, e = (12)(12)

and hence e is an even permutation which proves (vi). O

Theorem 1.6.19. Let A, be the set of all even permutations in S,. Then A, is a

n!
group containing 5 permutations.

Proof. From (i),(vi) and (iv) of Theorem 1.6.18, we see that A, is a group.
Now let B,, be the set of all permutations in S,,. Define f : A, — B, by f(p) = (12)p.
Suppose f(p1) = f(p2) = (12)p1 = (12)ps = p1 = po. Hence f is 1-1. If a € B,,, then
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(12)a € A,, and f[(12)a] = (12)(12)a = «. Hence f is onto. Thus f is a bijection and

hence the number of odd permutations in S,, =the number of even permutations in .S,,.

|
n!
Since S,, contains n! permutations, A, has 5 elements. a

Definition 1.6.20. The group A, of all even permutations in .S,, is called the alter-

nating group on n symbols.

1.7 Subgroups

Definition 1.7.1. Let GG be a set with binary operation * defined on it. Let S C G.
If for each a,b € S, a=xbisin S, we say that S is closed with respect to the binary

operation .

Examples 1.7.2. (i) (Z,+) is a group. The set E of all even integers is closed under
+ and further (E, +) is itself a group.

(ii) The set of G of all non-singular 2 x 2 matrices form a group under matrix

cos 0 —sin 6
multiplication. Let H be the set of all matrices of the form . Then

sin 0 cos 0
H is subset of G and H itself a group under matrix multiplication.

Definition 1.7.3. A subset H of group G is called subgroup of GG if H forms a group

with respect to the binary operation in G.

Examples 1.7.4. (i) Let G be any group. Then {e} and G are trivial subgroups of
GG. They are called improper subgroups of G.

(ii) (Q,+) is a subgroup of (R, +) and (R, +) is a subgroup of (C, +).

(iii) In (Zs, ®), let H; = {0,4} and Hy = {0,2,4,6}. The Cayley tables for H; and Ho

are given by

©(0 2 4 6
|0 4 00 2 4 6
010 4 212 4 6 0
414 0 414 6 0 2
616 0 2 4
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It is easily seen that H; and Hj are closed under @& and (Hy, @) and (Hj, @) are groups.
Hence H; and H, are subgroups of Zsg.

(iv) {1,—1} is a subgroup of (R*,-).

(v) {1,4,—1,—i} is a subgroup of (C*, ).

(vi) For any integer n we define nZ = {nz : x € Z}. Then (nZ,+) is a subgroup
of (Z,+). For, let a,b € nZ. Then a = nx and b = ny where z,y € Z. Hence
a+b=mn(xr+y) € nZ and so nZ is closed under +. Clearly 0 € nZ is the identity
element. Inverse of nx is —nx = n(—x) € nZ. Hence (nZ,+) is a group.

(vii) In the symmetric group Ss, Hy = {e,p1,pa}; Ho = {e,p3}; H3 = {e,ps}; and
Hy = {e, ps} are subgroups.

(viii) A,, is a subgroup of S,,.

1 2 3 4
(ix) The set of permutations H = {e, p1,p2,ps}, where e = ‘p =
1 2 3 4
1 2 3 4 1 2 3 4 1 2 3 4 )
;P2 = D3 = , is a subgroup of ;.
21 4 3 341 2 4 3 2 1

In all the above examples we see that the identity element in the subgroup is the

same as the identity element of the group.

Theorem 1.7.5. Let H be a subgroup of G. Then
(a) the identity element of H is the same as that of G.

(b) for each a € H the inverse of a in H is the same as the inverse of a in G.

Proof. (a) Let e and €’ be the identity of G and H respectively. Let a € H. Now,
¢'a = a(since €’ is the identity of H)
= ea(since €’ is the identity of G and a € G)

€'a = ea = ¢ = a(by cancellation law)

(b) Let @’ and a” be the inverse of a in G and H respectively. Since by (a), G and H
have the same identity element e, we have a'a = ¢ = a”a. Hence by cancellation law,

a =a’. O
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Theorem 1.7.6. A subset H of a group G is a subgroup of G if and only if
(i) it is closed under the binary operation in G.

(11) The identity e of G isin H. (iii)a € H=a"' € H.

Proof. Let H be subgroup of G. The result follows immediately from Theorem 1.7.5.

Conversely, let H be a subset of G satisfying conditions (i), (ii) and (iii). Then,
obviously H itself a group with respect to the binary operation in G. Therefore H is
a subgroup of G. a

Theorem 1.7.7. A non-empty subset H of a group G is a subgroup of G if and only
ifa,bec H=ab™' € H.

Proof. Let H be a subgroup of G. Then a,b € H = a,b-' € H = ab™! € H.

Conversely, suppose H is a non-empty subset of G such that a,b € H = ab™! € H.
Since H # (), there exists a € H. Hence a,a™' € H. Therefore, e = aa™' € H, i.e., H
contains the identity element e. Also, since a,b € H. ea™! € H. Hence a~! € H. Now,
let a,b € H. Then a,b~' € H. Hence a(b~')™! = ab € H and so H is closed under the

binary operation in G. Hence by Theorem 1.7.8, H is a subgroup of G. a

If the operation is + then H is a subgroup of G if and only if a,b € H = a—b € H.

Theorem 1.7.8. Let H be a non-empty finite subset subset of G. If H s closed under

the operation in G then H is a subgroup of G.

Proof. Let a € H. Then a,a? ...,a", ... are all elements of H. But since H is

3

finite the elements a,a?,a®. .., cannot all be distinct. Hence let a” = a®,r < s. Then

a®* " =e € H. Now, let a € H. We have proved that a" = e for some n. Hence

aa™ ! =e. Hence a™! = a" ! € H. Thus H is a subgroup of G. O

Theorem 1.7.8 is not true if H is infinite. For example, N is an infinite subset of

(Z,+) and N is closed under addition. However N is not a subgroup of (Z, +).

Theorem 1.7.9. If H and K are subgroups of a group G then HNK s also a subgroup
of G.
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Proof. Clearly e € HN K and so H N K is non-empty. Now let a,b € H N K. Then
a,b € H and a,b € K. Since H and K are subgroups of G, ab~! € H and ab™! € K.
Therefore ab~! € H N K. Hence by Theorem 1.7.8, H N K is a subgroup of G. O

It can be similarly proved that the intersection of any number of subgroups of G is
again a subgroup of G.

The union of two subgroups of a group need not be a subgroup. For example, 27
and 3Z are subgroups of (Z,+) but 2ZU3Z is not a subgroup of Z since 3,2 € 2Z U 3Z
but 3+ 3 =5 ¢ 27 U 3Z.

Theorem 1.7.10. The union of two subgroups of a group G is a subgroup if and only

if one is contained in the other.

Proof. Let H and K be two subgroups of GG such that one is contained in the other.
Then either H C K or K C H. Therefore HUK = K or HUK = H. Hence HU K
is a subgroup of G.

Conversely, suppose H is not contained in K and K is not contained in H. Then
there exist elements a,b such that a € H,a ¢ K, b€ K, and b ¢ H.

Clearly a,b € HUK. Since HUK is a subgroup of G ab € HUK. Hence ab € H or
abe K. Ifab € H,thena™! € H since a € H. Hence a~'(ab) = b € H, a contradiction.
If ab € K, b™! € K since b € K. Hence (ab)b™! = a € K, a contradiction. Hence
our assumption that H is not contained in K and K is not contained in H is false.

Therefore H C K or K C H. O

Definition 1.7.11. Let A and B be two subsets of a group G. We define AB =
{ab: a € A,b € B}.

If A and B are two subgroups of G, then AB need not be a subgroup of G.
For example, consider G = S3. A = {e,ps} and B = {e,ps}. Then A and B are

SUng'OUpS Of S3' AISO AB = {66, €P4, €p37p3p4} = {€7p47p37p2}- NOW? PaP2 = D5 ¢ AB
Hence AB is not a subgroup of Sj.
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Theorem 1.7.12. Let H and K be subgroups of a group G. Then HK is a subgroup
of G if and only if HK = KH.

Proof. Suppose HK is a subgroup of G. Let kh € KH, where h € H and k € K.
Now h = he € HK and k = ek € HK. Because HK is a subgroup, it follows that
kh € HK. Hence, KH C HK. On the other hand, let hk € HK. Then (hk)™' € HK,
so (hk)™! = hyk, for some hy € H and ky € K. Thus, hk = (hiky) ™t = k;'h{' € KH.
This implies that HK C KH. Hence, HK = KH.

Conversely, suppose HK = KH. Let hiki, hoks € HK, where hi,hy € H and
ki, ky € K. We show that (hiky)(hoks) ™! € HK. Now ko € K and hy € H. Therefore,
ky'hy' € KH = HK. This implies that ky 'hy* = hsks for some hs € H and k3 € K.
Similarly, k1hs € KH = HK, so kihz = hyky for some hy € H and k4 € K. Thus,

(hlk’l)(hgk’g)_l = hlk‘lk‘;lhz_l(because (hgk‘z)_l = k;lhz_l)
= hlkflhgk?g(SUbStitute k’2_1h2_1 = hgk'g)
= h1h4]{?4k'3 S HK(substitute ]€1h3 = h4]€4>

Hence, HK is a subgroup of G. O

Corollary 1.7.13. If A and B are subgroups of an abelian group G, then AB is a
subgroup of G.

Proof. Let x € AB. Then x = ab where a € A and b € B. Since G is abelian,
ab = ba and so x € BA. Hence AB C BA. Similarly BA C AB and AB = BA. Hence
AB is a subgroup of G. O

Problem 1.7.14. Let a € R*. Let H = {a™: n € Z}. Then H is a subgroup of R*.

Solution. Clearly H is non-empty. Now, let z,y € H. Then x = a® and y = a’ where
s,t € Z. Thus zy~' = a®*(a’)"! = a*' € H and so H is a subgroup of R*.

Problem 1.7.15. Let H denote the set of all permutations in S, fixing the symbol 1.

Then H is a subgroup of S,,.
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Solution. Clearly e € H and soH is non-empty. Let a,3 € H. Then a and 3 fix
the symbol 1. Now 3 fixes the symbol 1 = 37! fixes the symbol 1. Hence o3~ fixes
symbol 1. Hence a3~! € H. Thus H is a subgroup of S,,.

Problem 1.7.16. Let G be the set of all 2 x 2 matrices with entries from R. Then

a 0
GG is a group under matrix addition. Let H = :a,beR ). Then H is a

0 b
subgroup of G.

0 0
Solution. Let A,B € H. Then A = ¢ and B = ‘ . Now

A—-—B= — = € H. Hence H is a subgroup of

Problem 1.7.17. Let G be a group. Let H = {a: a € G and ax = za for all z € G}.
(ie) H is the set of all elements which commute with every other element. Show that

H is a subgroup of G.

Solution. Clearly ex = xe = x for all x € G. Hence e € H, so that H is non-empty.
Now, let a,b € H. Then ar = xa and br = zb for all x € G. Now, bx = zb =
b1 (bz)b™ =0 Hab)b ™t = (b7 )abt = b lx(bbY) = exb ™ = b lee = b = bl

Now (ab™Hz = a(b™'z) = a(xzdb™!) = (ax)b™! = (za)b™! = z(ab™'). Thus ab!

commutes with every element of G and so ab™! € H. Hence H is a subgroup of G.

Note 1.7.18. The above subgroup of G is called the center of G and is denoted by
Z(@Q).

Problem 1.7.19. Let G be a group and let a be a fixed element of G. Let H, =
{z: z € G and ax = za}. Show that H, is a subgroup of G.

Solution. Clearly ea = ae = a. Hence e € H, so that H, is non-empty. Then

1

ax = za and ay = ya. Now, ay = ya = vy 'a = ay~ ' -1

Hence a(zy™') = (ax)y™' =

-1 1

(za)y™! = z(ay™) = x(y~ta) = (zy~')a. Hence zy~! commutes with a, zy~' € H,

and so H, is a subgroup of G.

Note 1.7.20. H, is called the normalizer of a¢ in G.
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1.8 Cyclic Groups

Definition 1.8.1. Let G be a group. Let a € G. Then H = {a" : n € Z} is a
subgroup of G.
H is called the cyclic subgroup of G generated by a and is denoted by (a).

Examples 1.8.2. 1. In (Z,+), (a) = 2Z which is the group of even integers.

2. In the group G = (Z10,®), (3) = {0,3,6,9}, (5) = {0,5,10,3,8,1,6,11,4,
9,2,7} = Zno.

3. In the group G = {1,i,—1,—i}, (i) = {i,i®,3,---} = {i,—1,—i,1} = G.

Definition 1.8.3. Let G be a group and let a € G, a is called a generator of G if
(a) = G.
A group G is cyclic if there exists an element a € G such that (a) = G.

Note 1.8.4. If GG is cyclic group generated by an element a, then every element of GG

is of the form a™ for some n € Z.

Examples 1.8.5. 1. (Z,+) is a cyclic group and 1 is the generator of this group.
Clearly —1 is also a generator of this group. Thus a cyclic group can have more

than one generator.
2. (nZ,+) is a cyclic group and n and —n are generators of this group.
3. (Zs,®) is a cyclic group and 1,3,5,7 are all generators of this group.

4. (Z,,®) is a cyclic group for all n € N; 1 is a generator of this group. In fact if

m € Z, and (m,n) = 1 then m is a generator of this group.

5. G ={1,i,—1,—i} is a cyclic group under usual multiplication; 7 is a generator,
—i is also a generator of G. However —1 is not a generator of G since (—1) =

{1,-1} £ G.

6. G = {1,w,w?} where w # 1 is a cube root of unity is a cyclic group, w and w?

are both generators of this group.
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7. In this group G = (Z; — {0}, ®), 3 and 5 are both generators. Here 2 is not a
generator of G since (2) = {2,4,1} # G.

8. Let A be a set containing more than one element. Then (g(A), A) is not cyclic;

for let B € o(A) be any element. Then BAB = ® so that (B) = {B, ®} # o(A).
9. (R,+) is not a cyclic group since for any z € R, (x) = {nz: ne Z} #R
Theorem 1.8.6. Any cyclic group is abelian.

Proof. Let G = (a) be a cyclic group. Let x,y € G. Then x = " and y = a® for

+s

some r,s € Z. Hence xy = a"a® = a'* = a*™" = a®a” = yx. Hence G is abelian. 4

Theorem 1.8.7. A subgroup of cyclic group is cyclic.

Proof. Let GG be a cyclic group generated by a and let H be a subgroup of G. We claim
that H is cyclic. Clearly every element of H is of the form a” for some integer n. Let m
be the smallest positive integer such that a™ € H. We claim that a™ is the generator of
H. Let b€ H. Then b = a™ for some n € Z. Then b = a" = ™" = a™a" = (a™)%a".
Therefore a” = (a™)~%. Now, a™ € H. Since H is a subgroup, (a™)"? € H. Also,
be H. Clearly a" € H and 0 < r < m. But m is the least positive integer such that
a" € H. Therefore r = 0. Hence b = a™ = a? = (a™)?. Every element of H is a power

of ™. Thus H = (a™) and so H is cyclic. O
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Chapter 2

UNIT 1II: Group

2.1 Order of an Element

Definition 2.1.1. Let G be a group and let a € G. The least positive integer n(if it
exists) such that a™ = e is called the order of a. If there is no positive integer n such

that a™ = e, then the order of a is said to be infinite.

Examples 2.1.2.

1 2 3 1 2 3 1 2 3
1. Consider the group Sz, p; = . pr o= =
2 31 2 31 2 31
1 2 3 1 2 3 1 2 3 1 2 3
= ps and Pi’ = =e.
31 2 31 2 2 31 1 2 3
In this case, 3 is the least positive integer such that p? = e. Thus p; is of order 3.

2. Consider (R*,-), From this sequence of elements 2,22 23 ...,2" .... In this case
there is no positive integer n such that 2" = 1 and (2) contains infinite numbers of

elements. Thus the order 2 is infinite.

Theorem 2.1.3. Let G be a group and a € G. Then the order of a is the same as the
order of the cyclic group generated by a.

Proof. Let a be an element of order n. Then a™ = e. We claim that e, a,a?,...,a" !

are all distinct. Suppose a” = a® where 0 <r < s <n. Thena* " =eand s—7r <n
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n

which contradicts the definition of the order of a. Hence e, a,a?,...,a" ! are n distinct

2

elements and (a) = {e,a,a?, ... ,a" '} which is of order n.

2 n—1

If a is of infinite order, the sequence of elements e, a,a”,...,a" ", ... are all distinct

and are in (a). Hence (a) is an infinite group. O
Theorem 2.1.4. In a finite group every element is of finite order.

Proof. Leta € G. If a is of infinite order, then (a) is an infinite subgroup of G, which

is a contradiction since G is finite. Hence the order of a is finite. O

Remark 2.1.5. The converse of the above theorem is not true, i. e., if G is of group in
which every element is of finite order then the group G need not be finite. For example,
if S is of infinite set, then (o(S), A) is an infinite group. In this group AAA = & for
every A € o(5) so that the order of every element other than () is 2.

Theorem 2.1.6. Let G be a group and a be an element of order n in G. Then a™ = e

if and only if n divides m.

Proof. Suppose n|m. Then m = ng where ¢ € Z and ™ = o = (a™)? = ¢e? = e.
Conversely, let a™ = e. Let m = ng +r where 0 < r < n. Now a™ = ¢™"" =

T

a™a” = ea” = a". Thus " = e and 0 < r < n. Now, since n is the least positive

integer such that a" = e, we have r = 0. Hence m = nq and so n|m. O

Theorem 2.1.7. Let G be a group and a,b € G. Then
(i) order of a=order of a™'.
(ii) order of a=order of b 'ab.

(iii) order of ab=order of ba.

Proof. (i) Let a be an element of order n. Then " = e and (a7 !)" = (a") ' = e ! =

e. Now, if possible let 0 < m < n and (a™')™ = e. Therefore (a™)™! = e and a™ = ¢
which contradicts the definition of the order of a. Thus n is the least positive integer
such that (a7')" = e. Hence the order of a™! is n.

(ii) We shall first prove that for any positive integer r. Now (b~'ab)” = b~'a"b and is

trivially true if »r = 1. Now, suppose that it is true for r = k so that (b=tab)* = b~ La*0.
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Then (b~tab)k*tt = (b= ab)*(b~tab) = (b~ a*b)(b~tab) = b~1a**'b. Henceit is true for
all positive integers. Now, let a be an element of order n. Then a™ = e. and so
(b~tab)” = b~ 1a"b =b"teb = e.

Now, if possible, let 0 < m < n and (b='ab)™ = e. Then b~'a™b = e and a™ = e
which contradicts the definition of the order of a. Thus n is the least positive integer
such that (b~'ab)™ = e. Therefore the order of b=tab is n.

(iii) The order of ab =the order of a~!(ab)a =the order of ba by (i). O

Theorem 2.1.8. Let G be a group and let a be an element of order n in G. Then the

order of a®, where 0 < s < n, is n/d where d is the g.c.d of n and s.

Proof. Let (n/d) = k and (s/d) = [ so that k and [ are relatively prime. Now,
(a®)F = a** = ! = o' = (a™)! = e. Further if m is any positive integer such that
(a®)™ = e then a*™ = e. Since order of a is n, we have n|sm. Therefore kd|ldm and so
k|lm. But k and [ are relatively prime. Hence k|m so that m > k. Thus k is the least

positive integer such that (a®)* = e. Hence the order of a®* = k = n/d. a

Corollary 2.1.9. The order of any power of a cannot exceed the order of a.

Corollary 2.1.10. Let GG be a finite cyclic group of order n generated by an element

a. Then a® generates a cyclic group of order n/d where d is the g.c.d of n and s.

Corollary 2.1.11. Let GG be a finite cyclic group of order n generated by an element
a. a® is a generator of GG if and only if s and n are relatively prime. Hence the number
of generators of a cyclic group of order n is ¢(n) where ¢(n) is the number of positive

integers less than n and relatively prime to n.

For example, consider the group (Zi2,®). ¢(12) = 4. Hence the group has exactly
4 generators and they are 1,5,7 and 11.

Problem 2.1.12. If GG is a finite group with even number of elements then GG contains

at least one element of order 2.

Solution. Clearly a is an element of order 2 < a? = ¢ < a~! = a. Hence it is enough

if we prove that there exists an element different from e in G whose inverse is itself.
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Let S={a: a€G,a#a '} Thenae€ S=a'e€ S anda+#a' Hence S contains
an even number of elements. Also e ¢ S. Hence S U {e} contains an odd number

of elements. Since the order of the group is even, there exists at least one element

a ¢ SU{e} such that a = a™'.

Problem 2.1.13. The order of a permutation p is the l.c.m of the lengths if its disjoint

cycles.

Solution. Let p = cyco- - ¢, where the ¢;’s are mutually disjoint cycles of lengths
l;. Now, let p™* = e. Since product of disjoint cycles is commutative, e = p™ =

(creg...c)™ = ey - - . Now, since the elements moved by one cycle are left fixed

by all the other cycles, ¢* = ¢ = --- = ¢ = e. Now, ¢]* = e = [;|m since the order of
¢y = ly. Similarly Iy, 13, ...,[, divide m. Thus m is a common multiple of 1, [, ..., 1.
Thus the order of p is the least such m which is obviously the l.c.m of 11,15, ... [,.

Problem 2.1.14. If a is a generator of the cyclic group G and if there exist two

unequal integers m and n such that a™ = a", prove that G is a finite group.

Solution. Since m and n are unequal we may assume that m > n. Hence m —n is a
positive integer. Also a = a™ = a™ " = e. Therefore the order of a is finite and so

G = (a) is a finite group.

2.2 Cosets

In S3, let H = {e,ps}. Then H is a subgroup of S;. This subgroup does not contain
the elements py, ps, ps and ps. Let us now perform the binary operation between p;
and each element of H. We denote the resultant set by the symbol p; H. Thus p;H =
{p1e, p1ps} = {p1,pa}

Now the element py belongs neither to H nor to p; H. Therefore, we now perform
the binary operation between ps and the elements of H. Thus poH = {pse, paps} =
{p2,ps}. The union of the three sets H,p;H,poH gives all the elements of S; (i.
e.,) S3 = HUp HUpyH. Further H, pyH and p,H are mutually disjoint. Hence
{H,p1H,p2H} is a partition of Ss.
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Definition 2.2.1. Let H be a subgroup of a group G and a € G. The sets aH =
{ah: he€ H} and Ha = {ha: h € H} are called the left and right cosets of H in G,

respectively. The element a is called a representative of aH and Ha.

Examples 2.2.2.

1. Let us determine the left cosets of (5Z,+) in (Z,+). Here the operation is +.
0 + 5Z = 5Z is itself a left coset. Another left coset is 1 +5Z = {1 +5n : n € Z}.
We notice that this left coset contains all integers having remainder 1 when divided
by 5. Similarly 2+ 5Z = {2+5n: n € Z}, 3+5Z = {3+5n: n € Z} and
44+ 5Z={4+5n: neZ}
These are all the left cosets of (5Z,+) in Z. Here also we note that all the left
cosets are mutually disjoint, and their union is Z. In other words the collection of all

left cosets forms a partition of the group.

2. Consider (Zy2,®). Then H = {0,4,8} is a subgroup of G. The left cosets of H
are given by 0 + H = {0,4,8} = H, 1+ H = {1,5,9}, 2+ H = {2,6,10}, and
3+ H ={3,7,11}. We notice that 4 + H = {4,8,0} = H, and 5+ H = {5,9, 1} etc.

Theorem 2.2.3. Let G be a group and H be a subgroup of G. Then
(i))a€e H=aH =H.

(ii) aH =bH = a 'b€ H. (1) a € bH = a™' € Hb™ !,

(iv) a € bH = aH = bH.

Proof. (i) Let a € H. We claim that aH = H. Let x € aH. Then z = ah for
some h € H. Now, a € H and h € H = ah = x € H(since H is a subgroup). Hence
aH C H. Let z € H. Then x = a(a 'z) € aH. Hence H C aH. Thus H = aH.
Conversely, let aH = H. Now a = ae € aH and a € H.

(ii) Let aH = bH. Then a '(aH) = a *(bH) and H = (a~'b)H. Hence a™'b €
H{(by (i)).

Conversely let a='b € H. Then a 'bH = H(by (i)), aa 'bH = aH and so bH = aH.

(iii) Let a € bH. Then a = bH for some h € H and so a™! = (bH)™' = h™1b7! €

Hb~'. Converse can be similar proved.
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(iv) Let a € bH. We claim that aH = bH. Let x € aH. Then x = ah; for some
hy € H. Also a € bH = a = bhy for some hy € H. Therefore x = ((bhy)hy) =
b(hahy) € bH and so aH C bH. Now, let € bH. Then = = bhy for some hy € H and
so b = ahy'. Therefore x = ah; 'hs € aH and so bH C aH. Hence aH = bH.

Conversely, let aH = bH. Then a = ae € aH and so a € bH. O

Theorem 2.2.4. Let H be a subgroup of G. Then

(i) any two left cosets of H are either identical or disjoint.

(i) union of all the left cosets of H is G.

(i) the number of elements in any left coset aH is the same as the number of elements

in H.

Proof. (i) Let aH and bH be two left cosets. Suppose aH and bH are not disjoint.
We claim that aH = bH. Since aH and bH are not disjoint, aH UbH # () and so there
exists an element ¢ € aH UbH. Clearly ¢ € aH, c € bH and so aH = cH, bH = cH.
Hence aH = bH.

(ii) Let a € G. Then a = ae € aH and every element of G belongs to a left cosets
of H. Thus the union of all the left cosets of H is G.

(iv) The map f: H — aH defined by f(h) = ah is clearly a bijection. Hence every

left coset has the same number of elements as H. O

This theorem shows that the collection of all left cosets forms a partition of the
group. The above result is true if we replace left cosets by right cosets. In what

follows, the result we prove for left cosets are also true for right cosets.

Remark 2.2.5. Let H be a subgroup of GG. We define a relation in G as follows.
Define a ~ b < a='b € H. Then ~ is an equivalence relation.
For, a 'a =e € H, a ~ a and hence ~ is reflexive.
Now,a~b=a'be H= (a'b)'e H=b"'ac H=b~a.
Therefore a ~ b = b ~ a and ~ is symmetric.
Now, a~bandb~c=a'be Hand b"'c€ H= (a™'b)(b7'c) e H=a"'ce

H = a ~ c. Hence ~ is transitive and so ~ is an equivalence relation.
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Now, we claim that equivalence class [a] = aH. Let b € [a]. Then b ~ a.

a~'be H.

a~'b = h for some h € H.

b= ah Hence b € aH.

la] C aH.
Also, b € aH = b= ah for some h € H.

=a'b=heH=a~b=10b¢€|al

Thus the left cosets of H in G are precisely the equivalence classes determined by ~.

Hence the left cosets form a partition of G.

Theorem 2.2.6. Let H be a subgroup of G. The number of left cosets of H 1is the

same as the number of right cosets of H.

Proof. Let L and R respectively denote the set of left and right cosets of H. We
define a map f: L — Rby f(aH) = Ha™'. fis well defined. For aH = bH = a~'b €
H=a'e Hh' = Ha ' = Hb™ "' fis 1-1. For, f(aH) = f(bH) = Ha™' = Hb™! =
atece Hhl!=a't=hb"'forsomehe H=a=0b""1'=acbH = aH =bH. fis
onto. For, every right coset Ha has a pre-image under f namely a='H. Hence f is a
bijection from L to R. Hence the number of left cosets is the same as the number of

right cosets. O]

Definition 2.2.7. Let H be a subgroup of G. The number of distinct left (right)
cosets of H in G is called the index of H in G and is denoted by [G : H].

Example 2.2.8. In (Zg, ®), H = {0,4} is a subgroup. The left cosets of H are given by
0+ H=1{0,4=H

1+ H=1{1,5}
2+ H={2,6}
3+ H={3,7}

These are the four distinct left cosets of H. Hence the index of the subgroup H is 4.
Note that [Zg: H| x [H] =4 x 2 =8 = |Zs].

Theorem 2.2.9 (Lagrange’s theorem). Let G be a finite group of order n and H be a
subgroup of G. Then the order of H divides the order of G.
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Proof. Let |H| =m and [G : H] = r. Then the number of distinct left cosets of H in
G is r. By Theorem 2.2.4, these r left cosets are mutually disjoint, they have the same
number of elements namely m and their union is G. Hence n = rm and so m divides

n. O

Corollary 2.2.10. [G: H| = %

Note 2.2.11. Lagrange’s theorem has many important application in group theory.
For example, a group G of order 8 cannot have subgroups of order 3,5,6 and 7. In fact

any proper subgroup of G must be of order 2 or 4.
Note 2.2.12. Any group of prime order has no proper subgroups.

Note 2.2.13. The converse of Lagrange’s theorem is false. (ie) If G is a group of order
n and m divides n, then G need not have a subgroup of order m. For example A4 is a
group of order 12 and it does not have a subgroup of order 6.
However there are groups in which the converse of Lagrange’s theorem is true.

For example, consider S3. This is a group of order 6. {e,ps} is a subgroup of order
2 and {e,p1,p2} is a subgroup of order 3. Hence for every divisor m of 6, there is a

subgroup of S3 of order m.

Theorem 2.2.14. The order of any element of a finite group G divides the order of
G.

Proof. Let G be a group of order n. Let a € G be an element of order m. Then the
order of a is the same as the order of cyclic group (a). Now, by Lagrange’s theorem

the order of the subgroup (a) divides the order of G. Hence m|n. O
Theorem 2.2.15. Every group of prime order is cyclic.

Proof. Let G be a group of order p where p is prime. Let a € G and a # e. By above
theorem order of a divides p. The order of a is 1 or p. Since a # e order of a is p.

Hence G = (a) so that G is cyclic. O

Theorem 2.2.16. Let G be a group of order n. Let a € G then a™ = e.
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Proof. Let the order of a is m. Then m divides n and so n = mq. Hence a™ = a™? =

(™)1 =el =e. O

Theorem 2.2.17 (Euler’s theorem). If n is any integer and (a,n) = 1 then a®™ =

L(mod n). (¢(n) is the number of positive integers less than n relatively prime to n)

Proof. Let G = {m : m < n and (m,n) = 1}. G is a group under multiplication
modulo n. This group is of order ¢(n). Now, let (a,n) =1. Leta=qgn+r; 0 <r <n
so that @ = r(mod n). Since (a,n) =1 we have (n,r) = 1 so that r € G.

rém) — 1

r*™ = 1(mod n)

Also a®™ = 7™ (mod n) so that a®™ = 1(mod n) (since ‘=’is transitive). O

Theorem 2.2.18 (Fermat’s theorem). Let p be a prime number and a be any integer

relatively prime to p. Then aP~' = 1(mod p).

Proof. Since p is prime, ¢(p) = p — 1 and hence the result follows from Euler’s

theorem. O

Theorem 2.2.19. A group G has no proper subgroups if and only if is a cyclic group

of prime order.

Proof. Suppose G is a group of prime order. Then by Lagrange’s theorem, G has no
proper subgroups. Conversely, let G be a group having no proper subgroup. First we
shall prove that G is cyclic. Suppose G is not cyclic. Let a € G and a # e. Then the
cyclic group (a) is a proper subgroup of G which is a contradiction. Hence G is cyclic.
Also G cannot be infinite, for an infinite cyclic group contains a proper subgroup {a?).
Hence G must be of finite order, say, n. We claim that n is prime. If possible let n
be a composite number. Let n = pg where p,q > 1. let a € G be a generator of the
group. Then (a?) is a subgroup of order ¢ and hence is a proper subgroup of G which

is a contradiction. Hence n is prime and G is a cyclic group of prime order. a

Theorem 2.2.20. Let H and K be finite subgroups of a group G. Then
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|HK| = [H|| K|

HNK °

Proof. Let us write A= HN K. Since H and K are subgroups of G, A is a subgroup
of G and since A C H, A is also a subgroup of H. By Lagranges theorem,|A| divides
|H|. Let n = ‘I_Z\" Then [H : A] = n and so A has n distinct left cosets in H. Let
{214, 25A, ..., x,A} be the set of all distinct left cosets of A in H. Then H = U} x;A.

Since A C K, it follows that

We now show that x; K Nz, K = ® if ¢ # j. Suppose ;K Nz K # ® for some i # j.
Then x;K = ;K. Thus, z; 'z; € K. Since x;'z; € H, ;7 'z; € A and so ;A = z;A.
This contradicts the assumption that z1 A, ..., x,A are all distinct left cosets. Hence,
K, ..., x,K are distinct left cosets of K. Also, |K| = |z; K| by theorem 2.2.4 for all
1=1,2,...,n. Thus,

[HEK| = |21 K| + -+ + |2, K| = n| K| = il = . 0

2.2.1 Solved problems

Problem 2.2.21. Let A and B be subgroups of a finite group G such that A is a
subgroup of B. Show that

G : Al=|[G: B]|B: Al

Solution. By Lagrange’s theorem, [G : A] = %, G : B] = % and [B : A] = %.
Hence [G: A][B: A] = GBI _ 181 _ 1. 4]

Problem 2.2.22. Let A and B be two finite subgroups of a group G such that |A| and
|B| have no common divisors. Then show that AN B = {e}.

Solution. AN B is a subgroup of A and B. Then by Lagrange’s theorem, |A N B|
divides |A| and |B|. But by hypothesis |A| and | B| have no common divisors and so
|AN B| = 1. Hence AN B = {e}.
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Problem 2.2.23. Let H and K be two subgroups of a finite group G such that |H| >

V|G| and |K| > \/|G|. Then HN K # {e}.

Proof. Suppose H N K = {e}. Thenn |[HN K| =1 and |[HK| = ﬁ!l?l. Thus

|H||K| > +/|G|\/|G| = |G|, which is a contradiction. Hence H N K # {e}. O

2.3 Normal Subgroups

Definition 2.3.1. A subgroup H of G is called a normal subgroup of G if aH = Ha
for all a € G.
Examples 2.3.2.

1. For any group G, {e} and G are normal subgroups.

2. In Ss, the subgroup {e, p1,p2} is normal.

3. In Ss, the subgroup {e, ps} is not a normal subgroup.

Theorem 2.3.3. FEvery subgroup of an abelian group is a normal subgroup.

Proof. Let G be an abelian group and let H be a subgroup of G. Let a € G. We
claim that aH = Ha. Let © € aH. Then x = ah for some h € H and x = ha (since
G is abelian). Hence z € Ha and so aH C Ha. Similarly Ha C aH, aH = Ha and

hence H is a normal subgroup of G. a

Examples 2.3.4.
1. nZ is a normal subgroup of (Z,+).
2. Every subgroup of (Z,, ®) is normal.
3. Since any cyclic group is abelian any subgroup of a cyclic is normal.

Theorem 2.3.5. Let H be a subgroup of index 2 in a group G. Then H is a normal
subgroup of G.
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Proof. If a € H then H = aH = Ha. If a ¢ H, then aH is a left coset different
from H. Hence H NaH = (). Further, since index of H in G is 2, H UaH = G. Hence
aH = G— H. Similarly Ha = G — H so that aH = Ha. Hence H is a normal subgroup
of G. a

Example 2.3.6. The alternating group A, is a subgroup of index 2 in S,, and hence

is a normal subgroup of S,,.

Theorem 2.3.7. Let N be a subgroup of G. Then the following are equivalent.
(1) aNa™' = N for alla € G.
(111) aNa™* C N for all a € G.

() ana™' € N for alln € N and a € G.

Proof. (i) = (i7) Suppose N is a normal subgroup of G.
aN = Na for all a € G.
aNa™' = Naa™' = Ne = N.
(i1) = (iit) and (i17) = (dv) are obvious.
(iv) = (i) Suppose that ana™ € N for alln € N and a € G. We claim that aN = Na.
Let x € aN.
x = an for some n € N.
z = (ana™')a € Na (since ana™' € N).
aN C Na (1)
Now, let x € Na.
x = na for some n € N.
r=ala 'n(a™!)™) € aN.
Na C aN - (2)
From (1) and (2) we get aN = Na. Hence N is a normal subgroup of G. O

2.3.1 Solved problems

Problem 2.3.8. Prove that the intersection two normal subgroups of a group G is a

normal subgroup.

52



Solution. Let H and K be two normal subgroups of G. Then H N K is a subgroup
of G. Now, let a € G and x € HN K. Then x € H and x € K. Since H and K are
normal axa™' € H and aza™' € K. Hence axa™ € HN K. Thus H N K is a normal

subgroup of G.

Problem 2.3.9. The center H of a group G is a normal subgroup of G.

Solution. The center H of GG is given by
H={a: ae€ G, ar =za for all z € G}

Now let z € H and a € G. Hence ax = xa and so z = axa~* € H Hence H is a normal

subgroup of G.

Problem 2.3.10. Let H be a subgroup of G. Let a € G. Then aHa™ " is a subgroup
of G.

Solution. ¢ =aea™! € aHa ! and hence aHa™! # ®. Now, let x,y € aHa'. Then

1

r = ahja™! and y = ahya™! where hy,hy € H. Now, zy~' = (ahia™')(ahoa™')™! =

(ahia=Y(ahy'a™) = a(hihy')a™! € aHa™'. Hence aHa™" is a subgroup of G.

Problem 2.3.11. Show that if a group G has exactly one subgroup H of given order,

then H is a normal subgroup of G.

Solution. Let the order of H be m. Let a € G. Then by above problem, aHa ™" is also
a subgroup of G. We claim that |H| = [aHa | = m. Now, consider f : H — aHa™!
defined by f(h) = aha™t. fis 1-1, for, f(h1) = f(hs) = ahia™ = ahoa™ = hy = hs.
f is onto, for, let x = aha™" € aHa™'. Then f(h) = x. Thus f is a bijection and so
|H| = |aHa™'| = m. But H is the only subgroup of G of order m and so aHa™' = H.

Hence aH = Ha and so H is a normal subgroup of G.
Problem 2.3.12. Show that if H and N are subgroups of a group G and N is normal

in G, then HN N is normal in H. Show by an example that H N N need not be normal
in G.
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Solution. Let x € HN N and a € H. We claim that axza™* € H N N. Now,
z € Nand a € H = axa™' € N (since N is a normal subgroup). Also z € H and
a € H= azra™' € H (since H is a group). Hence axza™ € HN N. Hence HN N is a
normal subgroup of H.

The following example shows that H N /N need not be normal in G. Let G = S;.
Take N = G and H = {e,p3}. Now H NN = H which is not normal in G.

Problem 2.3.13. If H is a subgroup of G and N is a normal subgroup of G then H N

is a subgroup of G.

Solution. To prove that HN is a subgroup of G, it is enough if we prove that HN =
NH.

Let x € HN. Then v = hn where h € H and n € N. Therefore z € hN. But
hN = Nh(since N is normal). Therefore z € Nh and so x = nyh where n; € N. Hence
x € Nh and so HN C NH. Similarly NH C HN and hence HN is a subgroup of G.

Problem 2.3.14. M and N are normal subgroups of a group G such that MNN = {e}.

Show that every element of M commutes with element of N.

Solution. Let a € M and b € N. We claim that ab = ba.
Consider the element aba='b~!. Since a=* € M and M is normal, ba='b~! € M.
Also, since b € M, so that aba™'b~' € N. Thus aba™'b™' € M N N = {e}. Hence

aba='b~! = e, so that ab = ba.

Theorem 2.3.15. A subgroup N of G is normal if and only if the product of two right

cosets of N is again a right coset of N.

Proof. Suppose N is a normal subgroup of G. Then NaNb = N(aN)b= N(Nab) =
NNab = Nab.

Conversely suppose that the product of any two right cosets of IV is again a right
coset of N. Then NaNb is a right coset of N. Further ab = (ea)(eb) € NaNb. Hence
NaNb is the right coset containing ab. Hence NaNb = Nab.
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Now, we prove that N is a normal subgroup of G. Let a € G and n € N. Then
ana™' = eana™' € NaNa™!' = Naa™' = N and so ana™! € N. Hence N is a normal

subgroup of G. a

Theorem 2.3.16. Let N be a normal subgroup of a group G. Then G/N is a group
under the operation defined by NaNb = Nab.

Proof. By above theorem the operation given by NaNb = Nab is well defined binary
operation in G/N. Now, let Na, Nb, Nb € G/N. Then Na(NbNc) = Na(Nbc) =
Na(bc) = N(ab)e = (NaNb)Nec. Thus the binary operation is associative. Now, Ne =
N € G/N and NaNe = Nae = Na = NeNa. Thus Ne is the identity element. Also
NaNa™' = Naa™' = Ne = Na 'Na and Na™' is the inverse of Na. Hence G/N is a

group. O

2.4 Quotient Groups

Definition 2.4.1. Let N be a normal subgroup of G. Then the group G/N is called

the quotient group(factor group) of G modulo N.

Example 2.4.2. 3Z is a normal subgroup of (Z,+). The quotient group Z/3Z =
{3Z +0,3Z + 1,3Z + 2}. Hence Z/3Z is a group of order 3.

2.5 Isomorphism

Let w # 1 be a cubic root of unity. Let G = {1,w,w?}. G is a group under usual
multiplication. The Cayley table for G is given by

(Z3,®) is a group and its Cayley table is given by
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(0 1 2
010 1 2
111 2 0
212 0 1

We note that these two tables for the groups of order 3 keep the same pattern. In
fact any group of order 3 is cyclic and hence it is easily seen that all groups with 3
elements are ”like” each other. Thus if two groups G and G’ are "like” each other, it
should be possible for us to obtain G’ from G by remaining each element z in G with
the name of an element 2’ in G'. The renaming of the elements of GG can be achieved
by means of a bijection f : G — G'. If x € G we view f(z) as a new name for z.
Finally if the groups are to be ”like” each other, then if z and y are in G the new
name for zy should be f(x)f(y) so that f(xy) = f(x)f(y). Note that the product zy
is computed in G and the product f(x)f(y) is computed in G'. Two groups which
are like each other are usually called :somorphic. The following definition makes these

ideas mathematically precise.

Definition 2.5.1. Let G and G’ be two groups. A map f : G — G’ is called an
isomorphic if
(i) f is bijection.
(i) f(ay) = f(2)f(y) for all 2,y € G.
Two groups G and G’ are said to be isomorphic if there exists an isomorphism

f:G— G If two groups G and G’ are isomorphic we write G = G'.

Theorem 2.5.2. [somorphism is an equivalence relation among groups.

Y

Proof. For any group G, ig : G — G is clearly an isomorphism. Hence G = G'.
Therefore the relation is reflexive. Now, let G =2 G’ and let f : G — G’ be an
isomorphism. Then f is a bijection. .. f~!: G’ — G is also a bijection.

Now, let o',y € G'. Let f~}(2') = x and f~'(y') = y. Then f(2') = x and
F@) =y o floy) = F@) @) = oy = f @) =2y = f()f (). Hence

f is an isomorphism. Thus G = G’ and hence the relation is symmetric.
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Now, let G =2 G' and G' &£ G”. Then there exists isomorphisms f : G — G’ and
g:G'"— G". Since f and g are bijections, go f : G — G” is also a bijection. Now, let
x,y € G. Then

(90 f)(wy) = glf(zy)] = g[f(x)f(y)](since f is an isomorphism)
— gl (@)]g1f ()] (since g is an isomorphism)
= (g0 f)x)(ge Ny)

Hence g o f is an isomorphism. Thus G = G” and hence the relation is transitive.

Hence isomorphism is an equivalence relation among groups. O

Examples 2.5.3.

1. (Z,+) = (2Z,+). Consider f : Z — 27 given by f(x) = 2x. Clearly f is a bijection.
Also f(x+y) =2(x +y) =2x+ 2y = f(x) + f(y) Hence f is an isomorphism.

a 0
2. Let G = ca€R* ). G is a group under matrix multiplication. We
00
a 0
claim that G = (R*,-). Consider f : G — R* given by = a. Clearly f is a
00
a 0 b 0 ab 0
bijection. Now, let A = and B = € G. Then AB =
00 00 0 0

and so f(AB) =ab= f(A)f(B). Hence f is an isomorphism.

3. (R,+) = (R*,-). Consider f: R — RT given by f(x) = e*. Clearly f is a bijection.
Also f(x +y) =2e"TY =e* +¢e¥ = f(x) + f(y). Hence f is an isomorphism.

4. G = R —{—1} is a group under * defined by a xb = a + b+ ab. We claim that
G = (R*,-). Consider f : G — R* given by f(z) = x+ 1. Clearly f is a bijection. Also
flaxy)=fle+y+ay)=v+y+ay+1=(r+1)(y+1) = f(x)f(y) Hence f is an
isomorphism.

5. (Z,,®) is a group. Let G denote the set of all n'* root of unity. G is a group under
usual multiplication. We claim that (Z,,®) = G. Consider f : Z,, — G given by
f(m) = w™ where w = cos(2m/n) + isin(2w/n). Clearly f is a bijection. Let a,b € Z,.
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Let a +b=qgn +r where 0 <r <n. Then a ® b = r. Hence
fla®b) =w" (1)
Also f(a)f(b) = wiw® = witt = W = W = 1w" = W" - (2)

From (1) and (2), we get f(a @ b) = f(a)f(b). Hence f is an bijection.

Theorem 2.5.4. Let f : G — G’ be an isomorphism. Then
(i) f(e) = ¢ where e and ¢’ are the identity elements of G and G’ respectively. (ie). In

an isomorphism identity is mapped onto identity.

(if) fla™h) = [f(a)] "
Proof.

(i) To prove that f(e) = €' it is enough if we prove that o’ f(e) = f(e)a’ = o’ for all
a € G'. Letd € G'. Since [ : G — G’ is a bijection, there exists such that a € G such
that f(a) = da/. Hence d’'f(e) = f(a)f(e) = f(ae) = f(a) = a'. Similarly, f(e)a’ = d'.
Hence f(e) = ¢

(i) Tt is enough to prove that f(a)f(a™) = f(a™)f(a) = €. Now, f(a)f(a™t) =
flaa™) = f(e) = ¢’. Also, f(a™")f(a) = f(a™'a) = f(e) = ¢’. Thus f(a)f(a™") =
fla™")f(a) = ¢ and so [f(a)]™" = f(a™"). O

Remark 2.5.5. The concept of isomorphism for groups is extremely important. Since
two isomorphic groups G and G’ have essentially the same structure, if one group G
has an additional property (for example abelian or cyclic) then the group G’ also has

its additional property. This seen in the following three theorems.

Theorem 2.5.6. Let f: G — G’ be an isomorphism. If G is abelian, then G’ is also

abelian.

Proof. Let o/, € G'. Then there exist a,b € G such that f(a) = da’ and f(b) =V
Now, a't/ = f(a)f(b) = f(ab) = f(ba) = f(b)f(a) = b'a’. Hence G’ is abelian. O

Theorem 2.5.7. Let f : G — G’ be an isomorphism. Let a € G. Then the order of a
is equal to the order of f(a). (ie) Isomorphism preserves the order of each element in

a group.
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Proof. Suppose the order of a is n. Then n is the least positive integer such that
a" = e. Now,

[f(a)]"

f(a)--- f(a) (f(a) written n times)

f(a)™ (since f is an isomorphism)

fle)=¢.

Now, if possible let m be a positive integer such that 0 < m < n and [f(a)]™ = €.
Then f(a™) = [f(a)]™ = €. But f(e) = €. Since f is 1-1 we have a™ = e which

contradicts the definition of the order of a. Hence n is the least positive integer such

that [f(a)]™ = €’ and so the order of f(a) is n. O

Theorem 2.5.8. Let f : G — G’ be an isomorphism. Let G is cyclic then G’ is also

cyclic.

Proof. Let a be a generator of the group G. We shall prove that f(a) is a generator of
the group G'. Let ' € G'. Since f is a bijection, there exists x € G such that f(z) = '
Now, since G = (a),x = a™ for some integer n. Hence 2’ = f(x) = f(a™) = [f(a)]™
Since 2’ € G’ is arbitrary every element of G’ is of the form [f(a)]" so that G’ = (f(a)).

Hence G’ is cyclic. O

2.5.1 Solved problems

Problem 2.5.9. Show that (R*,-) is not isomorphic to (R, +).

Solution. In (R,+) every element other than 0 is of infinite order. But in (R*,-)
there exists an element (other than 1) of finite order. For example, —1 is of order 2 in

(R*,+). Hence we cannot find an isomorphism from R*,- to (R, +).

Problem 2.5.10. Show that (Z4, @) is not isomorphic to Vj.

Solution. In Z4, 1 is an element of order 4. But in V} every element other than e
is of order 2. Hence the two groups are not isomorphic. This can also be proved by

nothing that Z, is cyclic and V} is not cyclic.
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Problem 2.5.11. If G is a group and G’ is a set with a binary operation and there
exists a 1-1 mapping f from G onto G’ such that f(ab) = f(a)f(b) for all a,b € G then

show that G’ is also a group.

Solution. Let a',0/,¢ € G’ Since f : G — G’ is a bijection, there exists a,b,c € G
such that f(a) = d’; f(b) =V'; f(c) = . Since G is a group, (ab)c = a(bc) = f[(ab)c] =
Fla(be)] = F(ab)f(c) = f(a)f(be) (by hypothesis) = [f(a) F(BIF() = F(a)[f(B)F(O)
= (a't')’ = a'(b'd). Thus the binary operation in G’ is associative.

Now, let e € G be the identity element. Let a’ € G'. Since f : G — G’ is a bijection,
there exists a € G such that f(a) = a’. Now, ae = ea = a. = f(ae) = f(ea) = f(a)
= f(a)f(e) = f(e)f(a) = f(a) = d' f(e) = f(e)a’ = a’ = f(e) is the identity in G’. Let
a' € G'. Since f: G — G is a bijection, there exists a € G such that f(a) = a’. Now,
= a o= e = flaa) = fla~'a) = f(e). = fa)f(a™) = Fa~)f(a) = /(o)
= df(a™') = faHd = f(e). = f(a™') is the inverse of a’ in G'. Hence G’ is a

group.

Problem 2.5.12. Let G be any group. Show that f : G — G given by f(x) = 27! is

an isomorphism < G is abelian.

Solution. Let f: G — G given by f(z) = 27! be an isomorphism. We claim that G
is abelian. Let x,y € G. Then

flz=ly™) = f(z71) f(y™") (since f is an isomorphism).

T e € I

() )= )Ty T Sy =ay.

Hence G is abelian.

(
(

Conversely, suppose G is abelian. Clearly f : G — G given by f(z) = 27! is a

bijection. Now, f(zy) = (zy)™' = y~'z7! = 27y~ (since G is abelian) = f(z)f(y).

Hence f is an isomorphism.

Theorem 2.5.13. Any infinite cyclic group G is isomorphic to (Z,+).

Proof. Let G be an infinite cyclic group with generator a. Then G = {a™ : n € Z}.
Define f : Z — G by f(n) = a™. Since G is infinite, n # m = a" # a™. Hence f is
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1-1. Obviously f is onto. Now, f(n+m) = a"™ = a"a™ = f(n)f(m). Hence f is an

isomorphism. O

Corollary 2.5.14. Any two infinite cyclic groups are isomorphic to each other. Let G
and G’ be two infinite cyclic groups. By above theorem, G = (Z,+) and (Z,+) = G'.

Thus G = G’ (since = is an equivalence relation).

Theorem 2.5.15. Any finite cyclic group of order n is isomorphic to (Z,, ®).

Proof. Let G be a cyclic group of order n with generator a. Then G = {e, a, a?,
a1}
Define f : Z, — G by f(r) = a". Clearly f is a bijection. Now, let r,s € Z,. Let
r&s=-=t. Thenr+5:qn+t, where 0 <t < n and so
flr&s) = a’ (1)
Also, f(r)f(s) =a"a® = a"™* = a?t" = a?a' = (a")%a" = ea’ = a' -+ (2)

From (1) and (2), we get f(r & s) = f(r)f(s). Hence f is an isomorphism. O
Corollary 2.5.16. Any two finite cyclic groups of the same order are isomorphic.

Theorem 2.5.17 (Cayley’s theorem). Any finite group is isomorphic to a group of

permutations.

Proof. We shall prove this theorem in 3 steps. We shall first find a set G’ of permu-
tations. Then we prove that G’ is a group of permutations and finally we exhibit an
isomorphism ¢ : G — G'.
Step 1.L et G be a finite group of order n. Let a € G. Define f : G — G by
fa(x) = ax. Now, f,is 1-1, since f,(x) = fo(y) = ax = ay = x = y. f, is onto(since if
y € G, then f,(a"'y) = a(a™'y) = y). Thus f, is a bijection. Since G has n elements,
fa 1s just a permutation on n symbols.

Let G'={f,: a € G}.
Step 2. We prove G’ is a group. Let f,, fo € G'. (fao fo)(x) = fu(fo(2)) = fulbx) =
a(br) = (ab)x = fu(x). Hence f, o f, = fau. Hence G’ is closed under composition of
mappings f. € G’ is the identity element. The inverse of f, in G is f,!.
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Step 3. We prove G = G'. Define ¢ : G — G’ by ¢(a) = f,. ¢(a) = ¢(b) = f, =
fo = fo(z) = fo(x) = ax = bx = a = b. Hence ¢ is 1-1. Obviously ¢ is onto. Also
o(ab) = fap = fao fo = ¢(a) o ¢(b). Hence ¢ is an isomorphism. O

Example 2.5.18. Consider the group G = {e, a,b} whose multiplication table given
by

By Cayley’s theorem G is isomorphic to the permutation group G’ = {f., fa, f»} where

e a b e a b e a b
fe ;fa: ;and fb:
e a b a b e b e a

Definition 2.5.19. An isomorphism of a group G to itself is called an automorphism

of G.
Examples 2.5.20.

1. Any group G has at least one automorphism namely ig.

2. The map f : R* — R* defined by f(a) = a~! is an automorphism. Then f is a
bijection. Also f(ab) = (ab)™!' =bla™ = a7 b~ = f(a)f(b). More generally if G is
abelian, f : G — G defined by f(a) = a™! is an automorphism.

3. The mapping ¢ given by ¢(z) = z is an automorphism of the additive group of
complex numbers. Clearly ¢ is a bijection and ¢(z +w) = (z + w) = Z +w = ¢(z) +

P(w).

4. Let G be any group. Let a € G. Then ¢, : G — G defined by ¢,(r) = axa™
is an automorphism of G. For, let z,y € G. Then ¢,(z) = ¢u(y) = azxa™ =
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aya~' = z = y(by cancellation law). Thus ¢, is 1-1. Also ¢,(ara™) = a(a " za)a™! =

1

(aa Y)x(aa!) = exe = x. Hence a~'xa is the pre-image of x under ¢. Also ¢,(zy) =

arya~' = (aza™)(aya™t) = ¢u(x)da(y). Thus ¢, is an automorphism of G.

Definition 2.5.21. The automorphism ¢, : G — G defined in example 4(2.5.20) is
called an inner automorphism of the group G.

Let G be a group. The set of all automorphisms of GG is denoted by Aut G. The set
of all inner automorphisms of G is denoted by I(G).

Theorem 2.5.22. For any group G,
(i) Aut G is a group under composition of functions.

(ii) I(G) is a normal subgroup of Aut G.

Proof.

(i) Let f,g € Aut G = f and g are isomorphisms of G to itself = fog is an isomorphism
of G to itself (Theorem 2.4.2).
f € Aut G = f~! € Aut G. Clearly composition of functions is associative. Hence

Aut G is a group.

(ii) Let ¢q,dp € I(G). Then (¢u¢p)(x) = ¢o(brb™) = a(bxb™)a™! = (ab)x(ab)™' =
dap(x). Hence ooty = dap € 1(G). ¢ is the identity element of I(G) and the inverse of
¢a 18 ¢q-1. Hence I(G) is a subgroup of Aut G.

We now prove that /(G) is a normal subgroup of Aut G. Let o € Aut G and ¢, €
I(G). Then (ag,a™)(z) = ad.(a™(z)) = alaa™(x)a™) = ala)aa™ (x)ala™) =
a(a)z[a(a)]™ = o) (T) . adea™ = ¢a@) € I(G). Hence I(G) is a normal subgroup
of Aut G. O

Theorem 2.5.23. Let G be a cyclic group generated by a. Let f : G — G be a
mapping such that f(xy) = f(x)f(y). Then f is an automorphism of G if and only if

f(a) is a generator of G.

Proof. Let f be an automorphism of G. We shall prove that f(a) is a generator of
G.

63



Case 1. Let G be a finite cyclic group of order n. Then order of a is n. By theorem,

f(a) is also an element of order n and hence f(a) is a generator of G.

Case 2. Let G be infinite. Suppose f(a) is not a generator of G. Let H = (f(a)).

Then H is a proper subgroup of G.

We claim that f(G) = H. Let 2/ € f(G). Then 2’ = f(x) for some z € G. Now,
x = a" for some n since G = (a). Therefore z = f(a™) = [f(a)]” € H and so f(G) C H.

Now, let x € H. Then z = [f(a)]” for some n. Therefore x = f(a™). Hence
r € f(G), HC f(G) and hence f(G) = H. Since H is a proper subgroup of G, f is
not onto which is a contradiction. Hence f(a) is a generator of G.

Conversely let f : G — G be a mapping such that f(zy) = f(z)f(y) and let f(a)
be a generator of G. We shall prove that f is an automorphism. It is enough if we
prove that f is 1-1 and onto. Let x € G. Since f(a) is a generator of G, z = [f(a)]|"
for some n. Clearly f(a™) = [f(a)]” = x. Thus z has a pre-image a™ under f. Hence

f is onto. Now, to prove f is 1-1.
Case 3. G is finite.

Since any function from a finite set onto itself is necessarily 1-1(verify), f is 1-1.
Case 4. G is infinite.

Let z,y € G and let x = a™,y = a™ and n > m. Now, f(z) = f(y) = f(a") =
fa™) = [f(a)]” = [f(a)]™ = [f(a)]"™ =0=n—m = 0 (since f(a) is an element
of finite order) = n = m = a" = ™ = x = y Hence f is 1-1. Thus f is an

automorphism. O

Note 2.5.24. Let G be a cyclic group generated by a. Then any automorphism
f: G — G is completely determined by the image f(a) of the generator. For, if x € G
is any element then x = o™ for some integer n and hence f(x) = f(a™) = [f(a)]™.
As an example, consider (Z4, ®). Here 1 is a generator of this cyclic group.
If f(1) =3, then
fRQ=fel)=f1)ef1)=303=2;
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Theorem 2.5.25. The number of automorphism of a cyclic group of order n is ¢(n).

Proof. Let G be a cyclic group of order n. Let a € G be a generator. If f: G — G
is an automorphism then f is completely determined by specifying the image of a.
The only possible images of a are any one of the generators of G. Hence the number
of automorphisms is equal to the number of generators of G. But the number of
generators of a cyclic group of order n is ¢(n). (by corollary). Hence the number of

automorphisms of a cyclic group of order n is ¢(n). O

2.5.2 Solved problems

Problem 2.5.26. Construct the group of automorphisms of (Z4, ®).

Solution. 1 and 3 are the only 2 generators of Z,. Hence there are only 2 auto-
morphisms of Z4, say f and g. They are given by f(1) = 1 and ¢g(1) = 3. Hence

Problem 2.5.27. Construct the group of automorphisms of (Z, +).

Solution. 1 and -1 are the only 2 generators of Z. Hence there are only 2 automor-
phisms of Z say f and g. They are given by f(1) = 1 and ¢g(1) = —1. f(1) =1
gives the identity automorphism. ¢g(1) = —1 determines the automorphism given by

g(x) = —x. Hence Aut Z = {f, g9} = Zo.

Problem 2.5.28. Let G be a finite abelian group of order n and let m be a positive in-
teger relatively prime to n. Then f : G — G defined by f(x) = 2™ is an automorphism
of G.

Solution. since m and n are relatively prime, there exist integers v and v such that
mu +nv = 1. Now, let z € G. Then x = ™™ = gMug" = g™M%e = ™  Hence

r = 2™, Now, f(z) = f(y) = 2™ = y™ = 2™ = y™ = z = y Hence f is 1-1.
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Also f(z") = 2™ = z. . Every element z has pre-image z* under f. Hence f is
onto. Also, f(zy) = (xy)™ = a™y™ (since G is abelian) = f(z)f(y) Hence f is an

isomorphism.

Problem 2.5.29. Show that Aut Zg =2 V,.

Solution. The generators of Zg are 1, 3, 5, 7. The different automorphisms of Zg
are fi1, fa, f3, fa given by fi1(1) = 1; fo(1) = 3; f3(1) = 5; and f4(1) = 7. We shall now
compute fo o fs. (fao f3)(1) = fo(f3(1)) = f2(5) = 1@ 1@ 1D 1) = fo(1) ® fo(1) ®
(1)@ fo(1) @ fo(1) =38383@0383=7T7= f4(1) Thus fr 0 f3 = f4. Similarly we
can find f;o f;, i,7 =1,2,3,4. The Cayley table of Aut Zs is

ol fi fo fs [fu
filh fo s fa
Lol fe i o s
fs | fs fa fi fo
falfa fs o S

Clearly Aut Zg =V,

Example 2.5.30. Let n be any given positive integer. Let x € Z and © = qn + r,
where 0 < r < n. We define f(z) =r. f is mapping from (Z, +) to (Z,,®). We claim
that f(a +0) = f(a) ® f(b) for all a,b € Z. Let a = ¢n + r1, 0 < r; < n so that
fla) =7 and b = gan + 19, 0 < 19 < n so that f(a) = ry. Let r1 +1ry = qzn + 13
0 <73 <nsothat 1 @ ry =rs. Therefore a+b= (¢1 + ¢+ q3) +r3s = f(a+0b) = rs.
Also f(a) ® f(b) =11 ©re =713 and so f(a+b) = f(a) ® f(b). Note that f is not an

isomorphism since f is not 1-1.

Definition 2.5.31. A map f form a group G into a group G’ is called a homomorphism
if f(ab) = f(a)f(b) for all a,b € G.
Obviously every isomorphism is a homomorphism and a bijective homomorphism

is an isomorphism.

Examples 2.5.32.
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1. f:(Z,+) — (Z,+) defined by f(x) = 2z is a homomorphism. For, f(x + y) =
2(x +y) =22+ 2y = f(x) + f(y). Note that fis 1-1.

2. f:(R*:) — (R*,-) defined by f(x) = |z| is a homomorphism. For, f(zy) = |zy| =
|z|ly| = f(x)f(y). This homomorphism is onto.

3. f:G — G defined by f(a) = €', where € is the identity in G’ is a trivial homomor-
phism. For, f(ab) = ¢ =¢€'e’ = f(a)f(b).

4. f : (Z,4) — (C*,-) defined by f(n) = ™ is a homomorphism. For, f(n +m) =
i"tm = "™ = f(n)f(m). Note that f is neither 1-1 nor onto.

5. f: (RxR,+) — (R,+) given by f(z,y) = « is a homomorphism.
6. Let G be a group and N a normal subgroup of G, f : G — G/N given by f(a) = Na

is a homorphism. f is called the canonical homomorphism from G to G/N. Note that

f is onto.

Definition 2.5.33. Let f: G — G’ be a homomorphism.
(i) If f is onto, then it is called an epimorphism.

(i) If f is 1-1, then it is called a monomorphism.

Note 2.5.34. If f : G — G’ is an epimorphism then G’ is called a homomorphic image
of G.

A homomorphism of a group to itself is called an endomorphism.

Theorem 2.5.35. Let f: G — G’ be a homomorphism. Then

(i) fle) =

(i) fa) = [f(a)J—l.

(iii) If H is a subgroup of G, then f(H) is a subgroup of G'.
(iv) If H is normal in G, then f(H) is normal in f(G).

(v) If H' is a subgroup of G/, then f~!(H’) is a subgroup of G.
(vi) If H' is normal in f(G), then f~*(H’) is normal in G.

Proof. (i) Let a € G. Then f(a) = f(ae) = f(a)f(e). Hence f(e) = €. (ii)
fla)f(a™') = f(e) = €. Hence f(a™') = [f(a)]™t. (iii) Let H be a subgroup of G.
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Since H is non-empty, f(H) is also non-empty. Now, let z,y € f(H). Then z = f(a)
and y = f(b) where a,b € H and so zy~' = f(a)[f(b)]' = f(a)f(b') = f(ab™"). Now,
since H is a subgroup of G, ab™ € H. Therefore zy~! = f(ab™') € f(H) = f(H) is a
subgroup of G'.

(iv) Let H be normal in G. Let # € f(H) and y € f(G). We claim that yzy=' €
f(H). Now, x = f(a) and y = f(b) where @ € H and b € G. Since H is normal in
G, bab™' € H and so f(bab™') € f(H) = f(b)f(a)f(b7') € f(H) = yxy~* € f(H).
Hence f(H) is normal in f(G).

(v) Since f(e) = ¢ € H';e € f~'(H') and hence f~'(H') # ®. Now, let a,b €
f~YH'). Then f(a), f(b) € H = f(a)[f(b)]' € H. = f(ab™') € H' (ie), ab™! €
f~Y(H'). Hence f~'(H’) is a subgroup of G.

(vi) Let # € f~Y(H') and a € G. Then f(z) € H' and f(a) € f(G). Since H' is
normal in f(G), f(a)f(z)[f(a)]! € H and so f(aza™') € H'. Thus f~'(H’) is normal

in G. O

Examples 2.5.36.
1. Consider the homomorphism f : (Z,+) — (Z,, ®) which is given in the beginning
of this section.
Let K ={x: z € Z, f(x) = 0}. Clearly K = nZ which is a normal subgroup of Z.
2. Consider the homomorphism f : (R*,-) — (R*,-) which is given by f(x) = |z|. Let
K ={z: x € R* f(z) = 1}. Clearly K = {1,—1} which is a normal subgroup of
(R*,-).
Definition 2.5.37. Let f : G — G’ be a homomorphism. Let K = {z: =z € G, f(x) =
¢'}. Then K is called the Kernel of f and is denoted by ker(f).

Theorem 2.5.38. Let f: G — G’ be a homomorphism. Then the kernel K of f is a

normal subgroup of G.

Proof. Since f(e) = ¢/,e € K and hence K # ®. Now, let z,y € K. Then f(z) =

¢ = f(y) and so f(zy™) = f(2)f(y™") = f(@)[f(y)]} = €)™ = e’e’ = ¢’. Thus
ry~! € K. Hence K is a subgroup of G. Now, let + € K and a € G. Then,
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flaza™) = f(a)f(2)f(a™") = fla)e'[f(a)] ™!
= f(a)[f(a)]"* = €. and axza™' € K. Hence K is a normal subgroup of G.
Aliter. {€'} is a normal subgroup of f(G). Hence ker f = f~'({¢'}) is a normal

subgroup of G. O

Theorem 2.5.39 (Fundamental theorem of homomorphism). Then Let f : G — G’
be a homomorphism. Let K be the kernel of f. Then G/K = G’

Proof. Define ¢ : G/K — G’ by ¢(Ka) = f(a).
Step(i) ¢ is well defined.

Let Kb = Ka. Then b € Ka. Hence b = ka where k € K. Now, f(b) =
f(ka) = F()f(a) = €f(a) = f(a) and 50 $(KD) = f(b) = f(a) = G(Ka). Hence
o(Ka) = 6(Kb).

Step(ii) ¢ is 1-1.

For ¢(Ka) = ¢(Kb) = f(a) = f(b) = f(a)[f()] ™' =€ = f(ab)™' =¢' = ab™ €
K =a€ Kb= Ka= Kb.

Step(iii) ¢ is onto.

Let a’ € G'. Since f is onto, there exists a € G such that f(a) = d’.

Step(iv) ¢ is a homomorphism. ¢(KaKb) = ¢(Kab) = f(ab) = f(a)f(b) = ¢(Ka)p(KDb).
Thus ¢ is an isomorphism from G/K onto G'. Hence G/K = G'. O

2.5.3 Solved problems
Problem 2.5.40. Let f : G — G’ be a homomorphism. Then f is 1-1 if and only if

ker f ={e}.

Solution. Obviously fis 1-1 = f = {e}.
Conversely let ker f = {e}. We prove fis 1-1. f(z) = f(y) = f(2)[f(y)] ' =¢ =

flay ™ =¢ = oyt €ker f=ay ' =¢ = 2z =y. Hence f is 1-1.

Problem 2.5.41. Let G be any group and H be the center of G. Then G/H = I(G),

the group of inner automorphisms of G.
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Solution. Consider f : G — I(G) defined by f(a) = ¢,. Then f(ab) = ¢ =
¢a 0 ®p = f(a)f(b). Hence f is a homomorphism. Clearly f is onto. Now, we claim
that ker f = H. a € ker f < f(a) = ¢ < do = Pe.

S gu(r)=xforallz € G aral=xforalz € G ar=zaforallz € G&a€
H. Hence ker f = H. By the fundamental theorem of homomorphism G/K = I(G).

Problem 2.5.42. Show that R*/{1, -1} = R™.

Solution. Consider f : R* — R* defined by f(z) = |z|. Clearly f is an epimor-
phism and ker f = {1,—1}. Hence by the fundamental theorem of homomorphism
R*/{1,-1} ¥ R*.

Problem 2.5.43. Any homomorphic image of a cyclic group is cyclic.

Solution. Let G be a cyclic group and f : G — G’ be an epimorphism. Let a is a

generator of G. Then f(a) is a generator of G’. Hence G’ is cyclic.

Problem 2.5.44. Show that the map f: (C,+) — (R, +) defined by f(z +iy) =y is
an epimorphism and ker f = R. Deduce that C/R = R.

Solution. Let z; = 1 +iy; and 23 = x9 +iys. Then 21 + 20 = (21 + x2) + i(y1 + yo2).
. flz14+29) = y1+y2 = f(z1)+ f(22). Hence f is a homomorphism. Clearly f is onto.
Now, ker f={x+iy: f(x+iy) =0} = {x +iy: y =0} = R. By the fundamental
theorem of homomorphism, C/R = R.
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Chapter 3

UNIT III: Ring

3.1 Definitions and examples

A group is an algebraic system with one binary operation. The familiar examples of
real numbers and 2 X 2 matrices are systems which involve two binary operations.
In this chapter we study algebraic systems with two binary operations. We start
considering the system Z of integers. Z has two binary operations ”+” and ”-” (Z, +)
is an abelian group. Multiplication is an associative binary operation in Z. These two
binary operations are connected by the two distributive laws given by a(b+c) = ab+ac
and (a + b)c = ac+ be. A generalization of these basic properties in Z leads us to the

concept of a system called ring.

Definition 3.1.1. A non-empty set R together with two binary operations denoted
by 4+ and - and called addition and multiplication which satisfy the following axioms
is called a ring .

(i) (R,+) is an abelian group.

(ii) - is an associative binary operation on R.

(iii)a-(b+c¢)=a-b+a-cand (a+b)-c=a-c+b-cforallab,ceR.

Notation 3.1.2. The unique identity of the additive group (R, +) is denoted by 0 and
is called the zero element of the ring and the unique additive inverse of a is denoted

by —a.
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Examples 3.1.3.
L. (Z> +, '); (Qa +, '); (Ra +, '); (Ca +, ) are all rings.
2. (2Z,+,-) is a ring.

3. Let R={a+bv2: a,bc$Z}. Clearly R is an abelian group under usual addition.
let a4+ bv/2 and ¢+ dv/2 € R. Then (a + bv/2)(c + dv/2) = (ac + bd) + (bc + ad)v/2 €
R. Since the two binary operations are the usual addition and multiplication, the
distributive laws and the associative law hold. Thus R is a ring with usual addition

and multiplication.

4. Let R ={a+ib: a,b € Z}. Then R is a ring under usual addition and multipli-
cation. This ring is called the ring of Gaussian integers. In general, any subset of
complex numbers which is a group under addition and is closed for multiplication is a

ring(Verify).

5. {0} with binary operation "4” and ”-” defined as 04+ 0 =0 and 0-0 = 0 is a ring.

This is called the null ring.

6. In R x R we define (a,b) + (¢,d) = (a + ¢,b+d) and (a,b) - (¢c,d) = (ac, bd). Here
(Rx R, +) is an abelian group. The identity is (0, 0) and the inverse of (a, b) is (—a, —b).
Further (a,b)[(c, d)+(e, f)] = (a,b)(c+e,d+f) = (ac+ae, bd+bf) = (ac,bd)+(ae,bf) =
(a,b)(c,d)+ (a,b)(e, f). Similarly [(a,b)+ (c,d)](e, f) = (a,b)(e, f)+ (¢, d)(e, f). Hence
(R x R,+,-) is a ring.

7. Let (R,+) be any abelian group with identity 0. We define multiplication in R by
ab = 0 for all a,b € R. Clearly a(bc) = 0 = (ab)c so that multiplication is associative.
Also a(b+¢) =0 = ab+ ac and (a + b)c = 0 = ac + be. Hence R is a ring under these
operations. This ring is called the zero ring. This example shows that any abelian

group with identity 0 can be made into a ring by defining ab = 0.

8. (Zn,®,®) is a ring, for, we know that (Z,,®) is an abelian group and ® is an
associative binary operation. We now prove the distributive laws. Let a,b,c € Z,.
Then b®c = (b+c)(mod n). Hence a® (b c) = a(b+c)(mod n). Also a®b = ab(mod n)
and a ® ¢ = ac(mod n) so that (a ©®b) & (a ® ¢) = (ab+ ac)(mod n). Since a ® (b® c)
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and (a ©®b) ® (e ®c¢) € Zy,, we have a ©® (b @ ¢) = (a ®b) ® (a ® ¢). Similarly
(a®b)©c=(a®c)® (b c). Hence (Z,,P,®) is a ring,.

9. (o(5),A,N) is a ring. We know that (o(S5),A) is an abelian group(refer example 12
of section 1.1). Also N is an associative binary operation on o(S). It can easily be
verified that AN (BAC) = (AN B)A(ANC) and (AAB)NC = (ANC)A(BNC).
Hence (o(5),A,N) is a ring.

10. Ms(R) under matrix addition and multiplication is a ring.

11. Let R be the set of all real functions. We define addition and multiplication by
(f+9)(x) = f(z)+g(x) and (fg)(z) = f(x)g(z). Then R is a ring. Clearly addition of
functions is associative and commutative. The constant function 0 defined by 0(z) = 0,
is the zero element of R and —f is the additive inverse of f. Hence R is an abelian
group. The associativity of multiplication and the distributive laws are consequences

of the corresponding properties in R. Hence R is a ring.

12. Let A be any group. Let Hom(A) be the set of all endomorphisms of A. Let
f,g € Hom(A). We define f 4+ g by (f + g)(x) = f(xz) + g(x) and fg = fog. Then
Hom(A) is a ring.

Proof. Let f,g € Hom(A). Then (f+g)(z+vy) = f(z+y)+g(z+y) = f(x)+ f(y)+
9(x)+9(y) = f(x)+g(z)+ f(y)+9(y) = (f+9)(@)+(f+9)(y). Hence f+g € Hom(A).
Obviously + is associative. Since A is an abelian group f+¢g =g+ f.

If 0 is the identity element of the group A then the homomorphism 0 defined by
0(a) =0, for all a € A is the zero element of Hom(A).

Now, let f € Hom(A). The function —f defined by (—f)(z) = —[f(x)] is also a
homormorphism, since (— ) (z+y) = —[f(z-+1)] = ~[f(@)+ )] = (~N)@)+(~ )
Clearly f 4 (—f) = 0 and hence — f is the additive inverse of f. Thus Hom(A) is an
abelian group.

Now, (fog)(z+y) = flg(z+y)] = flgx) +9(y)] = flg(@)]+ flg(y)] = (fog)(x) +
(fog)(y). Hence fog € Hom(A). Similarly (f+g)oh = foh+goh. Thus Hom(A)

is a ring. O
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13. Let @) be the set of all symbols of the form ag+aqi+asj+ask where ag, aq, as, az € R.
Two such symbols ag + a1i + asj + ask and by + byi + boj + b3k are defined to be equal
if and only if a; = b;,7 = 1,2,3. We now make () into a ring by defining + and - as
follows. For any x = ag + a1i + asj + azk and y = by + b1t + byj + b3k,

r+y = (ap + a1i + azj + agk) + (bo + byi + baj + bzk)
= (ag + by) + (ay + b1)i + (ag + b2)j + (a3 + bs)k and
xy = (ag + a1i + asj + ask)by + byi + byj + bsk)
= (apby — a1by — asbs — agbs) + (apby + a1by + asbs — azbe)i +
(apbg + asby + asby — a1bs)j + (agbs + aszby + a1bs — ashy)k.

The formula for the product comes form multiplying the two symbols formally and
collecting the terms using the relations i* = j2 = k? = ijk = —1,ij = —ji = k, jk =
—kj =14 and ki = —ik = j. Clearly + is associative and commutative. 0 = 0+:0+0j +
0k is the zero element. —ag—a1i—as) —ask is the additive inverse of ag+a1i+aq) +ask.
The associative law of multiplication and the two distributive laws can be easily verified.

Hence (@, +, ) is a ring. This ring is called the ring of quaternions.

a b
14. The set R of all matrices of the form where a,b € R is a ring under
b a
matrix addition and multiplication.
a b c d
Proof. Let A= and B = € R.
—b a —d ¢
a b c d a+c b+d
A+ B = + = €ER
—b a —d ¢ —(b+d) a+c
a b c d ac—bd  ad+ be _
AB = = € R. Clearly matrix ad-
—b a —d ¢ —(ad + ac) ac—bd
—a —b
dition is commutative and associative. € Risthe zero element.
0 0 b —a
a b
is the inverse of the matrix . Further matrix multiplication is associative
—b «a
and the distributive laws are valid for 2 x 2 matrices. Hence R is a ring. a
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3.2 Elementary properties of rings

Theorem 3.2.1. Let R be a ring and a,b € R. Then
(i) 0a = a0 =0

(if) a(=b) = (—a)b = —(ab)

(iii) (—a)(—b) = ab

(iv) a(b — ¢) = ab — ac.

Proof.

(i) a0 = a(0 +0) = a0 + a0. .. a0 = 0.(by cancellation law in (R,+)). Similarly
Oa = 0.

(i) a(=b) +ab=a(—=b+b) =a0 =0 = a(—b) = —(ab). Similarly, (—a)b = —(ab).
(iif) By(ii), (—a)(=b) = —[a(=b)] = —(—ab) = ab.

(iv) a(b—c) =alb+ (—c)] = ab+ a(—c) = ab — ac. O

3.2.1 Solved problems

Problem 3.2.2. If R is a ring such that a® = a for all @ € R, prove that
(i)a+a=0

(i)a+b=0=a=0b

(iii) ab = ba

Proof. (i) a+a = (a+a)(a+a) = a(a+a)+a(a+a) = aat+aa+aa+aa = (a+a)+(a+a)
Hence a +a = 0.

(ii) let a+b=0. By (i) a+ a = 0. Therefore a + b = a + a so that a = b.

(ili) a+b=(a+0b)(a+b) =ala+b) +bla+b) =aa+ab+ ba+ bb = a+ ab+ ba + b.

Hence ab + ba = 0, so that by(ii), ab = ba. O

Problem 3.2.3. Complete the Cayley table for the ring R = {a, b, ¢, d}
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+la b ¢ d a b c d
ala b ¢ d ala a a a
b|b a d c bla b

clec d a b cla a
d|d c b a dia b c

Solution. First we shall compute cb.
cb = (b+ d)b from addition table
= bb + db = b+ b from multiplication table
= a from addition table Now, cc = ¢(b+d) = cb+ cd = a+ a = abc =
(c+d)c=cc+dc=a+c=cbd=bb+c) =bb+bc=>b+c=ddd= (b+c)d =
bd 4+ cd = d + a = d Hence the completed table for multiplication is

a b ¢ d

3.3 Isomorphism

In the study of any algebraic system, the idea of two systems being structurally the
same is of basic importance. In algebra, this concept is always called isomorphism.

As in the case of groups, isomorphism between two rings can be defined as follows.

Definition 3.3.1. Let (R, +,) and (R, +, ) be two rings. A bijection f: R — R’ is
called an isomorphism if
() f(a+b) = f(a) + F(b) and
(i) f(ab) = f(a)f(b) for all a,b € R.
If f: R — R’ is an isomorphism, we say that R is isomorphic to R’ and write

R~R.
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Note 3.3.2. Let R and R’ be two rings and f : R — R’ be an isomorphism. Then
clearly f is an isomorphism of the group (R, +) to the group (R’,+). Hence f(0) =0’
and f(~a) = —f(a).

Examples 3.3.3. 1. f: C — C defined by f(z) = Z is an isomorphism. For, clearly
f is a bijection. Also f(z1 + 22) = 21 + 22 = 21 + 22 = f(21) + f(22), andf(z122) =
%172 = f122 = f(21) f(22).

2. Let C be the ring of complex numbers. Let S be the set of all matrices of the

b
form ¢ where a,b € R. Then S is a ring under matrix addition and matrix
—b a
multiplication. Refer example 14 of section 3.1. Now the mapping f : C — S defined
a b
by f(a + ib) = is an isomorphism. Clearly f is a bijection. Now let
—b a
) 4 , , a+c b+d
r=a+iband y =c+id. f(x+y)= fla+1b) + (c+id)] = =
—(b+d) a+c
a b c d o )
) . = f(z) + f(y). Similarly f(zy) = f(x)f(y).(verify).
—b a —d c

3. The groups (Z,+) and (2Z,+) are isomorphic under the map f : Z — 27Z given by
f(z) = 2z. However f is not an isomorphism of the ring (Z,+) to (2Z,+). Since

f(zy) = 22y and f(z)f(y) = 222y = 4ay so that f(zy) # f(z)f(y). In fact there is
no isomorphism between the rings (Z,+) and (27Z, +)(verify).

3.4 Types of Rings

Compared with addition in R, the multiplication in R is relatively unknown to us. For
example the definition of a ring does not guarantee the existence of an identity with
respect to multiplication. The ring (27Z, +, ) has no multiplicative identity. Even if a
ring has a multiplicative identity some elements of the ring may not have multiplicative
inverses. For example, the ring (Z,+,-) has 1 as a multiplicative identity and all the
elements of Z except 1 and -1 do not have multiplicative inverses.

Again in a ring R, the multiplication need not be commutative. For example, in the
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ring of 2 X 2 matrices matrix multiplication is not commutative. Hence we get several

special classes of rings by imposing conditions on the multiplication structure.
Definition 3.4.1. A ring R is said to be commutative if ab = ba for all a,b € R.

Examples 3.4.2.

1. The familiar rings, Z, Q, R are all commutative. The following are examples of non-

commutative rings.

2. Let F denote the set of all functions from R to R. We define (f+g)(x) = f(z)+g(x)
and f-g= fog. Then (F,+,-) is non-commutative ring.

3. The ring of quaternions given in section 13 of section 3.1 is a non-commutative ring
since ij = k and j1 = —k.

4. M>(R) is non-commutative ring.
Definition 3.4.3. Let R be a ring. We say that R is a ring with identity if there exists
an element 1 € R such that al = a = 1a for all @ € R.
Examples 3.4.4.

1. The familiar rings Z, Q, R are all rings with identity.

2. (nZ,+,-) when n > 1 is a ring which has no identity.

3. M3(R) is a ring with identity.
Note 3.4.5. Consider the null ring {0}. In this case 0 is both additive identity and
multiplicative identity. This is the only case where 0 can act as the multiplicative
identity, for if 0 is the multiplicative identity in a ring R, then Oa = a for all a € R.
But in any ring 0a = 0. Hence a = 0, so that R = {0}. In what follows we will exclude
this trivial case when speaking of the multiplicative identity. Hence whenever we speak

of a multiplicative identity in a ring, we assume that the multiplcative identity is not

0.

Theorem 3.4.6. In a ring with identity the identity element is unique.
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Proof. Let 1,1’ be multiplicative identities. Then 1-1" = 1(considering 1’ as identity)
and 1-1" = 1'(considering 1 as identity). Therefore 1 = 1. Hence the identity element

is unique. O

Definition 3.4.7. Let R be a ring with identity. An element u € R is called a unit in
R if it has a multiplicative inverse in R. The multiplicative inverse of u is denoted by

ut.

For example, (Z,+,-) , 1 and -1 are units.
In M5(R), all the non-singular matrices are unit.

In Q, R and C every non-zero elements are unit.

Theorem 3.4.8. Let R be a ring with identity. The set of all units in R is a group

under multiplication.

Proof. Let U denote the set of all units in R. Clearly 1 € U. Let a,b € U. Hence
a”t, b7 exists in R. Now (ab)(b~'a™') = a(bb™')a™! = ala™' = aa™' = 1. Similarly
(b~'a"')(ab) = 1. Hence ab € U. Also (a™!)"'=aandsoa € U = a~! € U. Hence U

is a group under multiplication. O

Definition 3.4.9. Let R be a ring with identity element. R is called a skew field or

a diwvision ring if every non-zero element in R is a unit.

(i. e.,) For every non-zero a € R, there exists a multiplicative inverse a=! € R such
that aa™' = a~!'a = 1. Then in a skew field the non-zero elements form a group under

multiplication.

Definition 3.4.10. A commutative skew field is called a field. In other words a field
is a system (F,+, ) satisfying the following conditions.

(i) (F,+) is an abelian group.

(ii) (F' —{0},-) is an abelian group.

(i) a-(b+c¢)=a-b+a-cforalab,ceF.

Examples 3.4.11. 1. Q, R and C are fields under usual addition and multiplication.
2. Let p be a prime. Then (Z,, ®, ®) is field.
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Proof. (Z,,®,®) is a ring (by example 8 in section 3.1). Also since p is prime
(Z, — {0},®) is an abelian group.
Hence (Z,,®, ®) is a field. O

a b
3. Let M be the set of all matrices of the form N where a,b € C. Then M
—-b a

is a skew field under matrix addition and multiplication.

a b c d
Proof. Let A,Be€ M. Let A= B and B = _ . Then
—-b a —d ¢
a+c b+d a+c b+d
A+ B = o = € M. Hence M is closed under
—b—d a+c —(b+d) a+c
. i, . . o L . 0 0
matrix addition. Obviously matrix addition is associative and commutative.
0 0

—a —b a b
is the zero element of M. 3 is an additive inverse of 3 . Hence

b -—a -b a

c d
M is an abelian group under matrix addition. Now, AB = 3 _
-b a —d ¢
ac—bd  ad+be o zZ W )
= L which is of the form . Hence M is closed
—bc —ad —bd + ac —w Z
under matrix multiplication.
Further matrix multiplication is associative and € M is the multiplica-
0 1

a b
tive identity. Now, let A = | _ be a non-zero matrix in M. Then either a # 0

b @

or b # 0 so that either |a| > 0 or |b| > 0. Hence |A| = aa + bb = |a|? + [b]> > 0. Thus
A is a non-singular matrix and has an inverse and A~ € M. Thus M is a skew field.

Also since matrix multiplication is not commutative, M is not a field. a

4. Let @ be the ring of quarternions given in example 13 of section 3.1. @ is a skew

field but not a field.

Proof. We have proved that (Q,+,) is a ring. 1 = 1+ 0i 4+ 05 + 0k is the identity

element. Let x = ag + a1? + asj + azk be a non-zero element in (). Then not all
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ao, a1, Az, az are zero. Let o = a2 + af + a3 + a3. Clearly o # 0. Let y = (ap/ar) —
(a1/a)i — (az/a)j — (ag/a)k. Now, y € @ and zy = yx = 1(verify). Thus @ is a skew
field. In @, multiplication is not commutative since ij = k and ji = —k. Hence @ is

not a field. O

5. (Z,+,-) is a commutative ring with identity but not a field since 1 and -1 are the

only non-zero elements which have inverses.

Theorem 3.4.12. In a skew field R, (i) ax = ay,a # 0=z =1y
(ii) za = ya,a # 0 = x = y((i) and (ii) are cancellation laws in rings)

(i) ar =0 < a=0or z = 0.

Proof.

(i) Let ar = ay and a # 0. Since R is a skew field there exists a=! € R such that

aa™' =a"'a =1. Hence ax = ay = a '(az) = a Y ay) = 2 =y.
(ii) can be proved similarly.

(iii) If a = 0 or x = 0 clearly ax = 0. Conversely let az = 0 and a # 0. Then ax = a0
=z = 0 by(i). O

Note 3.4.13. Thus in a skew field the product of two non-zero elements is again a

non-zero element. However this is not true in an arbitrary ring. For example,

1. Consider the ring (R x R, +,+) where ‘+’and ‘’are defined by (a,b) + (¢,d) =
(@ + ¢,b+d) and (a,b) - (¢,d) = (ac,bd). R x R is a commutative ring with
identity. Here (1,0)(0,1) = (0,0).

2. The product of two non-zero matrices can be equal to the zero matrix. For

10 0 0 0 0
example, =

00 10 0 0

Definition 3.4.14. Let R be a ring. A non-zero element a € R is said to be a zero-

divisor if there exists a non-zero element b € R such that ab = 0 or ba = 0.
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Examples 3.4.15.

1. In the ring R x R, (1,0) and (0, 1) are zero divisors, since (1,0)(0,1) = (0,0). In fact

all the elements of the form (a,0) and (0,a) where a # 0 are zero divisors.

10 0 0
2. In the ring of matrices , are zero divisors, since
0 0 11
10 0 0 00
0 0 11 0 0

3. In the ring Z5, 3 is a zero-divisor, since 3 ® 4 = 0. Also 2,4,6 are zero-divisors.
4. In the ring of integers, no element is a zero-divisor.

5. No skew field has any zero-divisor.

Theorem 3.4.16. A ring R has no zero-divisors if and only if cancellation law is valid

in R.

Proof. Let R be a ring without zero-divisors. Let ax = ay and a # 0. Then
ax —ay = 0 and so a(z —y) = 0 and a # 0. This implies x — y = 0 (since R has no
zero-divisors) = x = y. Thus cancellation law is valid in R.

Conversely let the cancellation law be valid in R. Let ab = 0 and a # 0. Then

ab =0 = a0. Hence by cancellation law b = 0. Hence R has no zero-divisors. O
Theorem 3.4.17. Any unit in R cannot be a zero-divisor.

Proof. Let a € R be a unit. Then ab = 0 = a !(ab) = 0 = b = 0. Similarly

ba =0 = b= 0. Hence a cannot be a zero-divisor. O

Note 3.4.18. The converse of the above theorem is not true. (ie.,) a is not a zero-
divisor does not imply «a is a unit. For example, in Z, 2 is not a zero-divisor and 2 is

not a unit.

Definition 3.4.19. A commutative ring with identity having no zero-divisor is called
in integral domain. Thus in an integral domain ab = 0 = either a = 0 or b = 0. Or

equivalently ab=0and a #0=0=0; or a # 0 and b # 0 = ab # 0.
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Examples 3.4.20. 1. Z is an integral domain.

2. nZ where n > 1 is not an integral domain since the ring nZ does not have an

identity.
3. 715 is not an integral domain since 4 is a zero-divisor in Zis.

4. Z7 is an integral domain.

Theorem 3.4.21. 7Z, is an integral domain if and only if n is prime.

Proof. Let Z, be an integral domain. We claim that n is prime. Suppose n is not
prime. Then n = pg where 1 < p <nand 1 < ¢ <n. Clearly p©q¢q = 0. Hence p and ¢
are zero-divisors and so Z, is not an integral domain which is a contradiction. Hence
n is prime.

Conversely, suppose n is prime. Let a,b € Z,. Then a ® b = 0 = ab = qn where
q € Zy. = nlab = n|a or n|b (since n is prime) = a =0 or b = 0. .. Z, has no
zero-divisors. Also Z, is a commutative ring with identity. Hence Z, is an integral

domain. 0
Theorem 3.4.22. Any field F is an integral domain.

Proof. It is enough to prove that F' has no zero-divisors. Let a,b € F,ab = 0 and
a # 0. Since F is a field a™! exists. Now, ab=0=a"'(ab) =0 =0b=0. . F has

no zero-divisors. Hence F' is an integral domain. a

Note 3.4.23. The converse of the above theorem is not true. (i. e.,)An integral domain

need not be a field. For example Z is an integral domain but not a field.

Theorem 3.4.24. Let R be a commutative ring with identity 1. Then R is an integral

domain if and only if the set of non-zero elements in R is closed under multiplication.

Proof. Let R be an integral domain. Let a,b € R—{0}. Since R has no zero-divisors
ab # 0 so that R — {0} is closed under multiplication.

Conversely, suppose R — {0} is closed under multiplication. Then the product of
any two non-zero elements is a non-zero element. Hence R has no zero-divisors so that

R is an integral domain. a
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Theorem 3.4.25. Let R be a commutative ring with identity. Then R is an integral

domain if and only if cancellation law is valid in R.

Theorem 3.4.26. Any finite integral domain is a field.

Proof. Let R be a finite integral domain. We need only to prove that every non-
zero element in R has a multiplicative inverse. Let a € R and a # 0. Let R =
{0,1,a4,as,...,a,}. Consider {al,aa,,aas,...,aa,}. By theorem 3.4.24 all these el-
ements are non-zero and all these elements are distinct by Theorem 3.4.25. Hence

1

aa; = 1 for some a; € R. Since R is commutative , aa; = a;a = 1 and so that a = a™".

Hence R is a field. O

Remark 3.4.27. The above result is not true for an infinite integral domain. For

example consider the ring of integers. It is an integral domain but not a field.

Theorem 3.4.28. 7Z, is a field if and only if n is prime.

Proof. By theorem 3.4.26, Z,, is an integral domain if and only if n is prime. Further

Z,, is finite. Hence the result follows from Theorem 3.4.26. O
Theorem 3.4.29. A finite commutative ring R without zero-divisors is a field.

Proof. If we prove that R has an identity element then R becomes an integral domain
and hence by Theorem 3.4.26 it is a field. So we prove the existence of identity. Let R =
{0,1,a1,as,...,a,}. Let @ € R and a # 0. Then the elements al, aay,aas, ..., aa,,
are distinct and non-zero and so aa; = a for some 7. Since R is commutative, we have
aa; = a;a = a. We now prove that a; is the identity element of R. Let b € R. Then
b = aa; for some j and so a;b = a;(aa;) = (a;a)a; = aa; = b. Thus a;b = ba, = b. Since

b € R is arbitrary, a; is the identity of R. Hence the theorem. O

3.4.1 Solved problems

Problem 3.4.30. Prove that the set F of all real numbers of the form a + bv/2 where

a,b € Q is a field under the usual addition and multiplication of real numbers.
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Solution. Obviously, (£, +,-) is an abelian group with 0 as the zero element. Now, let
a+bv2and c+dv2 € F. Then (a+bv/2)(c+dv/2) = (ac+2bd)(ad+bc)y/2 € F. Since
the two binary operations are the usual addition and multiplication of real numbers,
multiplication of real numbers, multiplication is associative and commutative and the

two distributive laws are true. 1 = 1+0+/2 € F and is the multiplicative identity. Now,

let a + bv/2 € F —{0}. Then a and b are not simultaneously 0. Also a+ll)\/§ = Z;fgg.
We claim that a® — 2b% # 0.
Case(i) a # 0 and b = 0, then a? — 2b* = a* # 0.
Case(i) a = 0 and b # 0, then a® — 2b? = —2b* #£ 0.
Case(i) a # 0 and b # 0. Suppose a* — 2b* = 0.

Then a? = 2b* so that a?/b> = 2. Hence a/b = +v/2. Now, a/b € Q and v2 ¢ Q.
This is a contradiction. Hence a? — 2b* # 0 and so a—i—ix/i = (=2%z) — (2%%) V2€eF
and is the inverse of a + byv/2. Hence F is a field.

Problem 3.4.31. Z is a ring of integers and R is any ring.

Then Z x R = {(m,z): m € Z and x € R}. We define @ and ® on Z x R as follows.
(m,z) ® (n,y) = (m+n,x+y);(m,x)® (n,y) = (mn,my + nx + ry) where nx and
my denote respectively the concerned multiples of the elements x and y in R. Prove
that Z x R is a ring under & and ®. Also prove that Z x R is commutative if and only

if R is commutative.

Solution. Clearly Z x R is an abelian group under & with (0,0) as the identity
element and the additive inverse of (m,z) is (—m, —x). Clearly Z x R is closed under
®. Let (m,x),(n,y),(p,2) € Z x R.
[(m,z) © (n,y)] © (p, z) = (mn, my + nx + zy) © (p, 2)
= (mnp,mnz + p(my + nx + xy) + (my + nx + xy)=z)
= (mnp, mnz + pmy + pnx + pry + myz + znxr + ryz)
Now,  (m,z)®[(n,y) © (p, 2)] = (m,2) © (np, nz + py + yz)
= (mnp,m(nz + py +yz) + npx + x(nz + py + yz))
= (mnp, mnz + mpy + myz + npr + nzx + pry + ryz)
Hence @ is associative. Now, (m,z) ® (1,0) = (m,z) and (1,0) ® (m,z) = (m,x).
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. (1,0) is the identity element of Z x R. Now,
(m,z) ©[(n,y) & (p, 2)] = (m,2) © (n+p,y + 2)
= (m(n+p),my +2) + (n+p)z+z(y + 2))
= (mn + mp,my + mz + nx + pr + vy + xz)
= (mn + mp,my + nx + xy + mz + pr + xz)
= (mn,my + nx + xy) ® (mp, mz + px + xz)
= (m,2) ® (m, ) ® (m, 7)(p, 2
Left distributive law is true. Similarly we can verify the right distributive law,
[(m,z) ® (n,y)] © (p,2) = (m, ) © (p,2) & (n,y)(p, 2)
Hence Z x R is a ring with identity. Suppose R is commutative. Then
(m,z) ® (n,y) = (mn, my + nx + xy)
= (nm,nz + my + yz) (since R is commutative zy = yz)
=(n,y) ® (m,z) .. Z x R is commutative.
Conversely, suppose Z x R is commutative. Hence
(m,x) ® (n,y) = (n,y) ® (m, x)(mn, my + nx + zy) = (nm, nx + my + yx)
Hence my + nx + xy = nx + my + yxr = my + nx + yx.

. xy = yr = R is commutative.

Problem 3.4.32. Give an examples of

(i) a finite commutative ring with identity which is not an integral domain.
(ii) a finite non-commutative ring.

(iii) an infinite non-commutative ring with identity.

(

iv) an infinite ring having no identity.
Solution.

(i) A = (Z4,®,0®) is a finite commutative ring with identity 1. We have 2 ® 2 = 0.

Thus 2 is a zero-divisor in A and hence A is not an integral domain.

(ii) Consider the set My(Z3) of all matrices with entries from Zs. Clearly My (Zs3) is

finite and is also a ring under matrix addition and multiplication.

10 1 2 1 2 1 2 10 1 1
Further = and =

0 2 21 1 2 21 0 2 2 2
and hence M(Z3) is non-commutative.
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(iii) M3(R) is an infinite non-commutative ring with identity

(iv) (Za,+,-) is an infinite ring with no identity.

Problem 3.4.33. Prove that the only idempotentt elements of an integral domain are

0 and 1.

Solution. Let R be an integral domain. Let a € R be an idempotent element. Then
a’? = a so that a®> —a = a(a—1) = 0. Since R has no zer-divisors, a(a—1) =0 = a =0
ora—1=0. Hence a =0 or a = 1. Hence 0 and 1 are the only idempotent elements

of R.

Problem 3.4.34. Let I’ be a finite field with n elements. Prove that ¢ = a for all

a€F.

Solution. If a = 0, then obviously a” = a = 0. Hence, let a # 0. Since F' is a field,
F — {0} is a group under multiplication and |F — {0}| = n — 1. Hence a"~! =1 and

so a™ = a.

Problem 3.4.35. Prove that in the case of a ring with identity the axiom a+b =b+a
is redundant. (i. e.;) The axiom a+ b = b+ a can be derived from the other axioms of

the ring.

Solution. Using the two distributive laws of aring. (1+1)(a+b) = 1(a+b)+1(a+b) =
a+b+a+band(1+1)(a+b) = (1+1)a+(1+1)b = a+a+b+b. .. a+b+a+b = a+a+b+b.
Hence b+ a = a + b(by cancellation laws).

Problem 3.4.36. If the additive group of a ring R is cyclic prove that R is commuta-

tive. Deduce that a ring with 7 elements is commutative.

Solution. (R,+) is a cyclic group. Let R = (a). Let x,y € R. Then z = ma

and y = na where m,n € Z Now, xy = mana = (a+a+---+a)(a+a+---+a) =

m times n times
mna® = nma® = nama = yx. Hence R is a commutative ring.

Now, let R be a ring with 7 elements. Then (R, +) is a group of order 7. Hence

(R,+) is cyclic. Hence R is commutative.
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Problem 3.4.37. Let R and R be rings and f : R — R’ be an isomorphism. Then
(i) R is commutative= R’ is commutative.

(ii) R is ring with identity= R’ is a ring with identity.
(iii) R is an integral domain=- R’ is an integral domain.
(

iv) R is a field= R’ is a field.

Solution.

(i) Let «’,/ € R'. Since f is onto, there exists a,b € R such that f(a) = & and
f(b) =V. Now, a'b = f(a)f(b) = f(ab) (since f is an isomorphism)
= f(ba) (since R is a commutative ring)
= f(b)f(a) =Vd'. Hence R’ is a commutative ring.
(ii) Let 1 € R be the identity element of R. Let a’ € R’. Then there exists a € R such

that f(a) = a’. Now, f(1)a’ = f(1)f(a) = f(la) = f(a) = o’. Similarly o’f(1) = d
and so f(1) is the identity element in R’. Hence R’ is a ring with identity.

(iii) Let R be an integral domain. Then by (i) and (ii), R’ is a commutative ring
with identity . Now, we prove that R’ has no zero-divisors. Let a’,b' € R’ and
a' = 0. Since f is onto there exist a,b € R such that f(a) = &’ and f(b) = ¥'.
coadtl =0= f(a)f(b) =0= f(ab) =0 = ab =0 (since f is 1-1)

= a=0or b=0 (since R is an integral domain)

= f(a)=0or f(b)=0=a =0ord =0 and so R is an integral domain.

(iv) We need to prove that every non-zero element in R’ has an inverse. Let ¢’ € R’
and a’ # 0. Then there exists a € R — {0} such that f(a) = a’. Now, f(a™)d =
flaHf(a) = f(a"ta) = f(1). Hence f(a™') is the inverse of a'.

Problem 3.4.38. Prove that the only isomorphism f : Q — Q is the identity map.

Solution. Since f is an isomorphism f(0) = 0 and f(1) = 1. Now, let n be a positive
integer.
f(n)=f(1+1+---+ 1)(written n times)
= f(1)+ f(1) +-- -+ f(1)(written n times)
=141+ + 1(written n times) = n.
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Now, if n is a negative integer, let n = —m where m € N. Then f(n) = f(-m) =
—f(m) = —m = n. Thus for any integer n, f(n) = n. Now,let a € Q. Then a = p/q

where p,q € Z. Hence f(a) = f(p/q) = flpa™") = f0)f(¢7") = fFOIf(@] =
pq~' = p/q = a. Hence f is the identity map.

3.5 Characteristic of a ring

Let R be a ring. Then (R, +) is a group. For any a € R we have na =a+a+ ... + a

(written n times).
Note 3.5.1. For the ring Zg we have 6a = 0 for all a € Zg.

Definition 3.5.2. Let R be aring. If there exists a positive integer n such that na = 0,
for all a € R then the least such positive integer is called the characteristic of the ring

R. If no such positive integer exists then the ring is said to be of characteristic zero.

Examples 3.5.3.
1. Zg is a ring of characteristic 6.

2. Z is a ring of characteristic zero, since there is no positive integer n such that na = 0

for all a € Z.

3. M3(R) is a ring of characteristic zero.

4. (o(S),A,N) is a ring of characteristic 2, since 24 = AAA = ® for all A € o(S5).

5. Any boolean ring is of characteristic 2(refer solved problem 1 of section 3.2)
Theorem 3.5.4. Let R be a ring with identity 1. If 1 is an element of finite order in

the group (R, +) then the order of 1 is the characteristic of R. If 1 is of infinite order,

the characteristic of the ring is 0.

Proof. Suppose the order of 1 is n. Then n is the least positive integer such that
n-1=0. (ie.,) 1+1+---4 1(n times)= 0. Now, let a € R. Then, na =a+a+---+
a (n times) =1-a+1-a+---+1-a=(14+1+---+1)a. =0-a = 0. Thus na = 0 for
all @ € R. Hence the characteristic of the ring is n. If 1 is of infinite order then there,

is no positive integer n such that n-1 = 0. Hence the characteristic of the ring is 0. O
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Theorem 3.5.5. The characteristic of an integral domain D is either 0 or a prime

number.

Proof. If the characteristic of D is 0 then there is nothing to prove. If not be the
characteristic of D be n.

If n is not prime, let n = pg where 1 < p < n and 1 < ¢ < n. Since characteristic of
Disnwehaven-1=0. Hencen-1=pg-1= (p-1)(g-1) = 0. Since D is an integral
domain either p-1 =0 or ¢g-1 = 0. Since p - ¢ are both less than n, this contradicts

the definition of the characteristic of D. Hence n is a prime number. a
Corollary 3.5.6. The characteristic of any field is either 0 or a prime number.
Proof. Since every field is an integral domain the result follows. a

Note 3.5.7.

1. The characteristic of an arbitrary ring need not be prime. For example Zg is of

characteristic 6.

2. The converse of the above theorem is not true. (ie.,) If the characteristic of a ring R
is prime then R need not be an integral domain. For example the ring (o(S), A, N) is
of characteristic 2 but not an integral domain. If A and B are two disjoint nonempty

subsets of S we have AN B = ® and hence A and B are zero divisors in g(5).

Theorem 3.5.8. In an integral domain D of characteristic p, the order of every element

in the additive group is p.

Proof. Let a € D be any non-zero element. Let the order of a be n. Then n is the
least positive integer such that na = 0. Now, by the definition of characteristic of D we
have pa = 0. Hence n|p. Now, since p is prime, n =1orn=p. f n=1na=a=0

which is a contradiction. Hence n = p. Thus the order of a is p. a

Note 3.5.9. The above result is not true for an arbitrary ring. For example the

characteristic of the ring Zg is 6 whereas the order of 2 € Zg is 3.
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3.6 Subrings

Definition 3.6.1. A non-empty subset S of a ring (R, +,-) is called a subring if S

itself is a ring under the same operations as in R.

Examples 3.6.2.

. 27 is a subring of Z.
. Z is a subring of Q.
Q is a subring of R.

4. R is a subring of C.

a 0
The set of all matrices of the form is a subring of Ms(R).

0 0
. {0} and R are subrings of any ring. They are called the trivial subrings of R.
S ={a+bv/2: a,b € Q} is a subring of R.
. {0,2} is a subring of Z,.

Theorem 3.6.3. A non-empty subset S of a ring R is a subring if and only if a,b €
S=a—-beSandabesS.

Proof. Let S be a subring of R. Then (S,+) is a subgroup of (R,+) Hence a,b €
S=a—beS. Also since S itself is a ring ab € S.

Conversely, let S be a non-empty subset of R such that a,b € S = a—b¢€ S and
ab € S. Then (S,+) is a subring of (R,+). Also S is closed under multiplication.
The associative and distributive laws are consequences of the corresponding laws in R.

Hence S'is a subring. a

3.6.1 Solved problems
Problem 3.6.4. Let X be any set and let F' be the set of (o(5), A, N).

Solution. Let A, B € F. Then A and B are finite sets. Hence (A —B)U (B — A) =
AAB is a finite set so that AAB € F.
Similarly AN B € F. Thus F is a subring.
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Problem 3.6.5. Let R be a ring with identity. Then S = {n-1: n € Z} is a subring
of R.

Solution. Let a,b € S. Then a =n-1 and b = m -1 for some n,m € Z. Hence
a—b=n-1-m-1=(n—-m)-1€8. Alsoab=(n-1)(m-1) = (nm)-1 € S. Hence
S is a subring of R.

Problem 3.6.6. Give an example of
a) a ring without identity in which a subring has an identity.
b) a subring without identity, of a ring with identity.

(
(
(c) a ring with identity 1 in which a subring has identity 1’ # 1.
(d) a subring of a non-commutative ring which is commutative.
(

e) a subring of a field, which is not a field.

Solution.

a 0
a) Consider the set 2 of all matrices of the form where a, 0 € KR. en 1 1s
(a) Consider th R of all i f the f h be R. Then R i
b 0

a ring under matrix addition and multiplication(verify). We now prove that this ring

c
does not have an identity. Let be a matrix such that

a 0
b 0

ac 0 a 0

b 0 ad 0
=ac=aandad=b=c=1and d =ba"'.

z
S
=
— O o
ST
o o
N RS TS
—— O ©o
>~ 2
o o
Il
— O O
S
o
I
S
o

c a 0
Hence the matrix depends on the matrix so that the ring R does
d 0 b 0
not have an identity element.
a
However the subring S of R consisting of all matrices of the form has
b 0
10
as identity.
00

(b) 2Z is a subring of Z, Z has 1 as the identity but 2Z does not have an identity.
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10 0
(c) M3(R) is a ring with identity . The subring : a €R » has
d 1 0 0

0
0 0

the identity

(d) Example give in (c).
(e) Qis a field, Z is a subring of Q but Z is not a field.

Theorem 3.6.7. The intersection of two subrings of a ring R is a subring of R.

Proof. Let A, B be two subrings of R. Let a,b € AN B. Then a,b € A and B. Since
A and B are subrings a — b,ab € A and B and so a —band ab € ANB = ANB is

subring of R. a

Note 3.6.8.
1. The union of the two subring need not be a subring.

2. The union of two subrings of a ring is again a subring if and only if one is contained

in the other.

Definition 3.6.9. A non-empty subset S of a field (F,+, ) is called a subfield if S is

a field under the same operations as in F.
For example, Q is a subfield of R and R is a subfield of C.

Theorem 3.6.10. A non-empty subset S of a field F is a subfield if and only if
(i)a,be S=a—beS and
(i) a,b € S and b#0=ab™' € S.

Proof. The proof follows by applying theorem 1.9.8 to the groups (F,+) and (F —

{0}7 ) u

3.7 Ideals

We now introduce the concept of an ideal in a ring. Ideals play an important role in the
development of ring theorey similar to the role played by normal subgroups in group

theory.
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Definition 3.7.1. Let R be a ring. A non-empty subset of R is called a left ideal of
R if
(i)a,bel=a—-bel.
(ii)aelandr € R=racl.
1 is called a right ideal of R if
(i)a,bel=a—-bel.
(ii)aelandr € R=ar € l.
I is called an ideal of R if I is both a left ideal and right ideal.

Thus in an ideal the product of an element in the ideal and an element in the ring
is an element of the ideal. In a commutative ring the concepts of the left ideal, right
ideal and ideal ccoincide.

Examples 3.7.2.
1. In any ring, R, {0} and R are ideals. They are called improper ideals of R.

2. 27 is an ideal of Z.

Proof. Let a,b € 2Z. Then a — b € 27Z. Let a € 2Z and b € 27Z. Then ab is even and
hence ab € 27Z. Thus 2Z is an ideal of Z. In general nZ is an ideal of Z(prove). O

a 0
3. In M5(R) the set of all matrices of the form is a left ideal and it is not a
b 0

right ideal. Clearly A, B € S = A—-B € S. Now, let A € S and B € My(R). Let

a O
A= and B = b . Then
b 0 r S
a 0 a+qgb 0
BA — P q _ p q
r s b 0 ra+sb 0
Hence S is a left ideal. However
a 0 ap a
AB = L b ¢ S. Hence S is not a right ideal.
b 0 r s bp bq

4. Let R be any ring. Let a € R. Let aR = {ax : x € R}. Then aR is a right ideal of
R. Similarly Ra = {za : x € R}. Then Ra is a left ideal of R. Let az,ay € aR. Then
ar —ay = a(r —y) € aR. Let ax € aR and y € R. Then (az)y = a(xy) € aR. Thus
aR is a right ideal. Similarly Ra is a left ideal of R.
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Definition 3.7.3. If R is a commutative ring then a R = Ra is an ideal. This is called

the principal ideal generated by a and is denoted by (a).

Note 3.7.4. If R is a commutative ring with identity 1 then a = al € (a). This may

not be true if the ring R does not have an identity.
For example,consider the ring 2Z. Here (4) = {0, £8,+16,+24,...,} and 4 € (4).

Remark 3.7.5. (i) Every left ideal of a ring R is a subring of R. Let I be a left ideal
of R. Let a,b € I. Then by definition, a — b and ab € I. Hence [ is a subring of R.
(ii) Similarly every right ideal of R is also a subring of R.

(iii) Any ideal of R is a subring of R. (by(i) and (ii))

(iv) However, a subring of R need not be an ideal of R.

For example, Z is a subring of Q but Z is not an ideal of QQ since 1 € Z and % € Q but
1-1¢Z.

Theorem 3.7.6. Let R be a ring with identity 1. If [ is an ideal of R and 1 € I, then
I =R.

Proof. Obviously I C R. Now, let r € R. Since 1l € I, r-1=r¢€ [. Thus R C I.
Hence R = 1. a

Theorem 3.7.7. Let F be any field. Then the only ideals of F are {0} and F. (i.e.,)A
field has no proper ideal.

Proof. Let I be an ideal of F'. Suppose I # {0}. We shall prove that [ = F'. Since
I # {0}, there exists an element a € I such that a # 0. Since F' is a field a has a
multiplicative inverse a=! € F. Now, a € [ and a™! € FF = aa~! =1 € I. Hence by

above theorem, [ = F'. a

Theorem 3.7.8. Let R be a commutative ring with identity. Then R is a field if and

only if R has no proper ideals.

Proof. If R is a field, by above theorem, R has no proper ideals.
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Conversely, suppose R has no proper ideals. To prove that R is a field we need to
show that every non-zero elementt in R has an inverse. Let a € R and a # 0. Consider
the principal ideal aR. Since R is a ring with identity, a = a-1 € aR and so aR # {0}.
Since R has no proper ideals, aR = R. Hence there exists x € R such that ax = 1 and

x 1s the inverse of a. Hence R is a field. O

Definition 3.7.9. An integral domain R is said to be a prinipal ideal domain(PID) if

every ideal is a principal ideal.

Examples 3.7.10.
1. Z is a principal ideal domain since every ideal of Z is of the form nZ.

2. Any field F is a principal ideal domain since the only ideals of F are {0} and (1) = F'.

3.8 Quotient rings

Let R be a ring. Let (I,+) be a subgroup of (R, +). Since addition is commutative in
R, I is a normal subgroup of (R, +) and hence the collection R/I = {[+a: a € R} isa
group under the operation defined by (I 4+a)+ (I +b) = I+ (a+b). To make R/I aring,
we have to define a multiplication in R/I. It is natural to define (I +a)(/+0b) = I +ab.
But we have to prove the multiplication is well defined (ie.,) it is independent of the
choice of the representatives from the casets. We shall prove that this happens if and

only if I is an ideal.

Theorem 3.8.1. Let R be a ring and I be a subgroup of (R, +). The multiplication
in R/I given by
(I +a)({ +b) =1+ abis well defined if and only if I is an ideal of R.

Proof. Let I be anideal of R. To prove multiplication is well defined, let I+a; = I +a
and I +by =1+0b. Thena, € [ +aand by € [ +b. . a; =iy +aand by =13+ b
where 41,45 € I. Hence a1by = (i1 + a)(ig + b) = i142 + i1b + aiy + ab. Now since [ is
an ideal we have 119,110, aio € I. Hence a1b; = i3 + ab where i3 = 1115 + 116 + ais € I.

a1by € I + ab. Hence I +ab =1+ a1b;.
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Conversely suppose that the multiplication in R/I given by (I +a)({ +b) = I + ab
is well defined. To prove that I is an ideal of R. Let i € I and r € R. We have to prove
that ir,ri € I Now, [ +ir=([I+i){+r)=UI+0)I+7r)=1+0r=1. - ir el

Similarly 7z € I. Hence I is an ideal. O

Definition 3.8.2. Let R be any ring and I be an ideal of R. We have two well defined
binary operations in R/I given by (I+a)+([+b) = [+(a+b) and (I+a)(l+b) = [+ab.
It is easy to verify that R/I is a ring under these operations.

The ring R/1 is called the quotient ring of R modulo I

Examples 3.8.3.

1. The subset I = {0,3} of Zg is an ideal (verify) Zg/I = {I,I + 1,1 + 2} is a ring
isomorphism to Zs. Here Zg is not an integral domain but the quotient ring Zg/I is an
integral domain.

2. The subset pZ where p is prime is an ideal of the ring R. Z/pZ = {pZ,pZ+1,--- | pZ+

(p—1)}. It is easy to see that the ring Z/pZ = Z,. Here Z is an integral domain but
not a field whereas Z/pZ is a field.

3.9 Maximal ideals

We have seen that if R is a ring and [ is an ideal of R then R/I is a ring. Further
is R is commutative then R/ is also commutative. We now proceed to answer the
following questions for commutative rings with identity. Which ideals I give rise to

quotient rings that are (i) and (ii) integral domains?

Definition 3.9.1. Let R be a ring. An ideal M # R is said to be a maximal ideal of
R if whenever U is an ideal of R such that M C U C R then either U = M or U = R.
That is, there is no proper ideal of R property containing M.

Examples 3.9.2.

1. (2) is a maximal ideal in Z. For, let U be an ideal properly containing (2). Then U
contains an odd integer say, 2n + 1 and so 1 = (2n+1) —2n € U = U = Z. Thus
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there is no proper ideal of Z properly containing (2). Hence (2) is a maximal ideal of

Z.

2. Let p be any prime. Then (p) is maximal ideal in Z. Let U be any ideal of Z such
that (p) C U. Since every ideal of Z is a principal ideal U = (n) for some n € Z. Now,
p€ (p) CU = peU=(n)and p = mn for some integer m. Since p is prime either
n=1orn=p. Suppose n = 1. Then U = Z.

Suppose n = p. Then U = (p) and so there is no proper ideal of Z properly

containing (p). Hence (p) is a maximal ideal in Z.
3. In any field F', (0) is a maximal ideal of F' since the only ideals of F' are {0} and F.

4. Let R be the ring of all real valued continuous functions on [0,1]. Let M = {f €
R : f(1/2) = 0}. Clearly M is an ideal of R. Let U be any ideal of R properly
containing M. Then there exists a function g(z) € U such that g(1/2) # 0. Let
g(1/2) = c¢. Take h(z) = g(x) —c¢. Then h(1/2) = g(1/2) —c = ¢ —c = 0 and so
h(z) € M C U. Also g(z) € U. Hence g(z) —h(z) eU andsoce U = 1=cct €U
= U = R. Thus there is no proper ideal of R properly containing M. Hence M is

maximal in R.

5. (4) is not a maximal ideal in Z. For, (2) is proper ideal of Z properly containing (4).

Theorem 3.9.3. Let R be a commutative ring with identity. An ideal M of R is
maximal if and only if R/M is field.

Proof. Let M be a maximal ideal in R. Since R is a commutative ring with identity
and M # R, R/M is also a commutative ring with identity. Now, let M + a be a non-
zero element in R/M is that a ¢ M. We shall now prove that M + a has multiplicative
inverse in R/M.

Let U = {ra+m : r € R and m € M}. We claim that U in an ideal of
R. (ra+my) — (rea +mg) = (11 — r2)a+ (mg — mg) € U. Also, r(ra+ my) =
(rr1)a +rmy € U (since rmy € M). Therefore U is an ideal of R.

Now, let m € M. Then m = 0a+m € U and so M C U. Alsoa =1la+0¢€ U
and a ¢ M. Therefore M # U. = U is an ideal of R properly containing M. But M
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is a maximal ideal of R. Therefore U = R. Hence 1 € U and so 1 = ba + m for some
be R.

Now, M +1 = M + ba +m = M + ba(since m € M) = (M + b)(M + a). Hence
M +1b is the inverse of M +a. Thus every non-zero element of R/M has inverse. Hence
R/M is a field.

Conversely, suppose R/M is a field. Let U be any ideal of R properly containing
M. Then there exists an element a € U such that a ¢ M. M + a is a non-zero
element of R/M. Since R/M is a field M + a has an inverse, say M + b. Therefore
(M+a)(M+b)=M+1=M+ab=M+1=1—abe M. But M C U. Hence
l—abeU. Alsoace U =abeU. Clearly 1 = (1—ab)+abe U,1 € U andso U = R.
Thus there is no proper ideal of R properly containing M. Hence M is a maximal ideal

in R. O

3.10 Prime ideal

Definition 3.10.1. Let R be a commutative ring. An idesl P # R is called a

prime ideal if ab € P = either a € P or b € P.

Examples 3.10.2.

1. Let R be an integral domain. Then (0) is a prime ideal of R. For, ab € (0) = ab=0
= a=0or b= 0(since R is an I.D) = a € (0) or b € (0).
2. (3) is a prime ideal of Z. For, ab € (3) = ab = 3n for some integer n.
= 3lab = 3|a or 3|b = a € (3) or b € (3).

*. (3) is a prime ideal.

Note 3.10.3. In fact for any prime number p, the ideal (p) is a prime ideal in Z. (4)
is not a prime ideal in Z.

For, 2 x 2 € (4), But 2 ¢ (4).

Theorem 3.10.4. Let R be any commutative ring with identity. Let P be an ideal of

R. Then P is a prime ideal < R/P is an integral domain.
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Proof. Let P be a prime ideal. Since R is a commutative ring with identity R/P is
also commutative ring with identity. Now, (P +a)(P+b) = P+0= P +ab= P
=ab€e P =a€ Porbe P (since P is a prime ideal) = P+a=Por P+b=P
Thus R/P has no zero divisors and so R/P is an integral domain.

Conversely, suppose R/P is an integral domain. We claim that P is a prime ideal
of R. Let ab € P. Then P+ab =P = (P+a)(P+b) =P = P+a=Por
P +b = P(since R/P is an integral domain) = a € P or b € P = P is a prime ideal
of R. O

Corollary 3.10.5. Let R be a commutative ring with identity. Then every maximal

ideal of R is a prime ideal of R.

Proof. Let M be a maximal ideal of R. Then R/M is a field = R/M is an integral

domain =- M is a prime ideal. a

For example, (0) is a prime ideal of Z but not a maximal ideal of Z.

3.11 Homomorphism of rings

Definition 3.11.1. Let R and R’ be rings. A function f : R — R’ is called a homo-
morphism if
(i) fla+0b) = f(a) + f(b) and
(i) f(ab) = f(a)f(b) for all a,b € R.
If fis 1-1, then f is called a monomorphism. If f is onto, then f is called an

eptmorphism. A homomorphism of a ring onto itself is called an endomorphism.
Note 3.11.2.

1. Obviously an isomorphism of a ring is a homomorphism and a 1-1, onto homomor-

phism is an isomorphism.

2. The name homomorphism is used for mapping between groups and between rings.
In groups, a homomorphism preserves the binary operation of the group. Since rings
have two binary operations, a ring homomorphism is defined as a mapping preserving

the two binary operations in a ring.
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3. Condition (i) of ring homomorphism says that f is a group homomorphism from the

additive group (R, +) to the additive group (R',+).

Examples 3.11.3.

1. f: R — R defined by f(a) = 0 for all @ € R is obviously a homomorphism. f is

called the trivial homomorphism.
2. Let R be any ring. The identity map ¢ : R — R is obviously a homomorphism.

3. Let R be any ring. f: R x R — R given by f(x,y) = z is a ring homomorphism.
For, f[(a,b) + (¢,d)] = f(a +c,b+d) =a+c= f(a,b) + f(c,d)
Also, fl(a,b)(e, d)] = f(ac,bd) = ac = f(a,b) f(c, d).

4. f:7Z — Z, defined by f(x) = r where = gn +r, 0 < r < n is a homomorphism.
For, let a,b € Z. Let a = ¢an + r; where 0 < ry <n, b= gan + ry where 0 < ry < n,
r1 + 1y = q3n + r3 where 0 < r3 < n and riry = qun + r4 where 0 < ry < n.

Now, (a+b) = (g1 +@)n+r+ro= (g1 + ¢ +q)n+r3
fla+b)=r3=r1®&ry= f(a)® f(b)
Also,
ab = (qn+71)(g2n+r2) = n(qgen+7ri1ga+r2q1) + 7172 = n(qrgan+7r1G2 +72q1 +qa) + 74
flab) =rs=r Ory= f(a) ® f(b)
Hence f is a homomorphism.

5. Let R be a ring and I be an ideal of R. Then ® : R — R/ defined by ®(z) =+

is a ring homomorphism. ® is called the natural homomorphism.
P=I+(x+y)=U+z)+{+y) =)+ d(y)
O(ry) =T +ay = (I +2)(I +y) = P(x)P(y)

Hence & is a ring homomorphism.

Theorem 3.11.4. Let R and R’ be rings and f : R — R’ be a homomorphism. Then,
) £(0) =0

(i) f(—a) = —f(a) for all a € R.

(iii) If S is a subring of R, then f(.5) is a subring of R’. In particular f(R) is an subring
of R.
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(iv) If S is an ideal of R, then f(S) is an ideal of f(R).

(v) If S’ is a subring of R/, then f~!(.9) is a subring of R.

(vi) If S’ is an ideal of f(R), then f~'(S’) is an ideal of R.

(vii) If R is a ring with identity 1 and f(1) # 0, then f(1) = 1’ is the identity of f(R).
(

viii) If R is a commutative ring then f(R) is also commutative.

Proof. Since f is a homomorphism of the group (R, +) to (R, +), the results (i) and
(ii) are obvious.

(iii) Since S is a subring of R, (S,+) is a subgroup of (R,+) and hence f(S) is a
subgroup of (R',+). Now, let a/,0’ € f(S). Then o’ = f(a) and ¥’ = f(b) for some
a,be S and a'b' = f(a)f(b) = f(ab) € f(S). Hence f(S) is a subring of R'.

(iv) Let S be an ideal of R. To prove that f(S) is an ideal of f(R) it is enough if we
prove that ' € f(R) and o’ € f(S) = 7’d’ and ¢’ = f(a) where r € R and a € S.
Now, since S is an ideal of R, ra and ar € S. Hence f(ra) = f(r)f(a) = 1'd’" € f(9).
Similarly a'r" € f(S). Hence f(S) is an ideal of f(R).

(v) Let S’ be asubring of R'. Since (S', +) is a subgroup of (R, +), f~1(5’) is a subgroup
of (R,+). Now, let a,b € f~1(S’). Then f(a), f(b) € S" = f(ab) = f(a)f(b) € S
(since S is a subring of R) = ab € f~1(5’). Hence f~1(S’) is a subring of R.

(vi) Proof is similar to that of (v).

(viii) Let R be a ring with identity 1. Let o’ € f(R). Then o’ = f(a) for some a € R.

Now, a'f(1) = f(a)f(1) = f(al) = f(a) = «'. Similarly f(1)a’ = da’/. Also f(1) # 0.
Hence f(1) is the identity of f(R). O

Definition 3.11.5. The kernel K of a homorphism f of a ring R to a ring R’ is defined
by {a: a € R and f(a) =0}.

Theorem 3.11.6. Let f : R — R’ be a homomorphism. Let K be the kernel of f.
Then K is an ideal of R.

Proof. By definition, K = f~'({0}). Since {0} as an ideal of f(R), by (vi) of theorem,
K is an ideal of R. a
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Theorem 3.11.7 (The fundamental theorem of homomorphism). Let R and R’ be
rings and f : R — R’ be an epimorphism. Let K be the kernel of f. Then R/K = R'.

Proof. Define ®: R/K — R by ®(K +a) = f(a).

(i) @ is well defined, for, let K+b= K +a. Thenb € K+a = b = k+a where k € K =
f(b) = f(k+a) = f(k)+f(a) = 0+ f(a) = f(a) = ©(K+b) = f(b) = f(a) = P(K+a).
(i) @ is 1-1.
For, ®(K +a) = ®(K +b) = f(a) = f(b) = f(a) — f(b) =0
= fla)+ f(-b)=0= fla—b)=0=a—-beK=>acK+b=>K+a=K+b
(iii) @ is onto. For, let a’ € K. Since f is onto, there exists a € R such that f(a) = d'.
Hence ®(K +a) = f(a) =d'.
(iv) ® is homomorphism.
For, ®[(K +a) + (K +b)] = ®[K + (a + b)] = f(a + b)
= f(a) + f(b) (since f is a homomorphism) = ®(K + a) + ®(K + ).
and O[(K + a)(K +b)] = ®(K + ab) = f(ab)
— #(a)f(b) (since f is a homomorphism) = ®(K + a)®(K + b)

Hence ® is an homomorphism. Hence R/K = R’ O

3.11.1 Solved problems

Problem 3.11.8. The homomorphic image of an integral domain need not be an

integral domain.

Solution. f : Z — Z4 defined by f(a) = r where a = 4g+7, 0 < r < 4is a
homomorphism of Z onto Z4. Here Z is an integral domain and Z, is not an integral

domain since 2 ® 2 = 0.

Problem 3.11.9. Any hoomomorphism of a field to itself is either 1-1 or maps every

element to 0.

Solution. Let F' be a field and f : FF — F' be a homomorphism. Let K be the kernel
of f. Then K is an ideal of F' andK = {0} or K = F. If K = {0} then f is 1-1. If
K = F then f(a) =0 for all a € F.
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Chapter 4

UNIT 1IV: Vector Space

4.1 Introduction

Upto this point we have been introduced to two basic algebraic systems namely groups
and rings. In this chapter we introduce another algebraic system known as vector
spaces. The idea of a vector arises in the study of various physical applications. Many
physical entites like mass, temperature etc., are characterised in terms of a real number
and are called scalars. Other physical entities such as the velocity of a particle or force
acting at a point are determined only when both magnitude and direction are specified.
Such entities are called vectors. Since the concept of direction is geometrical a vector
can be represented geometrically by a line segment whose direction is that of the given
vector and whose length represents the magnitude of the vector. Two vectors u and v
passing through a point O can be added by the usual parallelogram law of forces and
we obtain the vector u 4+ v. The vector of zero magnitude is the zero vector denoted
by 0 and clearly u+0 = 0+ u = u. If a vector u is represented by a line segment AB ,
then the vector represented by the line segment B—A, is called the negative of u and is
denoted by —u and it is clear that u+ (—u) = (—u) + u = 0. Further this addition of
vectors is commutative and associative. Hence the set V' of vectors at a point O in a
plane is an abelian group with respect to addition.

If u is a vector then u + u = 2u is evidently a vector in the same direction as u,

but of twice its magnitude. This introduces a new concept of multiplication of a vector
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by a scalar, the resulting product being a vector. Thus given any real number o and a
vector u passing through O then au is the vector whose direction is either the same as
that of u or opposite to that of u according as @ > 0 or @ < 0 and whose magnitude
is || times the magnitude of u. This association gives rise to a map from R x V' to
V given by (a,u) — au. It can be easily be verified that (o + f)u = au + fu and
a(u+v) = au+ av where u,v € V and «, § € R. These ideas motivate the following

abstract definition of a vector space V' over a field F.

4.2 Definition and Examples

Definition 4.2.1. A non-empty set V is said to be a vector space over a field F' if
(i) V is an abelian group under an poeration called addition which we denote by +.

(ii) For every a € F and v € V|, there is defined an element av in V' subject to the
following conditions.

(a) a(u+v) =au+ av for all u,v € V and o € F.

(b) (a4 B)u=au+ pu for allu € V and o, 8 € F.

(¢) a(fu) = (af)u for all u € V and «, 5 € F.

(d) lu=wufor all u € V.

Remark 4.2.2.
1. The elements of F' are called scalars and the elements of V' are called vectors.

2. The rule which associates with each scalar o € I and a vector v € V', a vector av is
called the scalar multiplication. Thus a scalar multiplication gives rise to a function
from F' x V — V defined by («,v) — aw.

Examples 4.2.3.

1. R x R is a vector space over a field R under the addition and scalar multiplication

defined by (21, 22) + (y1,%2) = (21 + Y1, T2 + y2) and a(zy, 12) = (wy, avy).
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Proof. Clearly the binary operation + is commutative and associative and (0,0) is
the zero element. The inverse of (x1,x3) is (—x1, —x2). Hence (R x R, +) is an abelian
group. Now, let u = (x1,22) and v = (y1,92) and let «, 5 € R. Then

alu+v) = al(ry, ) + (Y1,y2)] = a(xr + y1, 22 + y2) = (axy + ayy, ez + ays)

= (azy, axg) + (ay1, aya) = a(z1, x2) + a(y1, y2) = au + av. Now,
(a+8) = (a+ B)(z1,22) = ((a + B)z1, (a0 + B)22) = (w1 + By, g + P9)
= (axy, axy) + (Bry, fra) = axy, 22) + Bx1, 22) = au + fu.

Also a(fu) = a(fB(x1,22)) = a(fBz1, frs) = (afxy, afxs) = (af)(x1,22) = (af)u

Obviously lu =u .. R x R is a vector space over R. a

2. R" = {(x1,29,...,2,) : z; € Rj1 < i < n}. Then R” is a vector space over R
under addition and scalar multiplication defined by (x1, z2, ..., 2,) + (Y1, Y2, - - -, Yn) =

(x1+ Y1, T2+ Y2y, T +yn) and a(zq, T, ..., T,) = (Qx1, 9, . .., QTy).

Proof. Clearly the binary operation + is commutative and associative. (0,0, ...,0) is
the zero element. The inverse of (z1,xo, ..., x,) is (—z1, —%2, ..., —z,). Hence (R", +)
is an abelian group. Now, let u = (z1,29,...,2,) and v = (y1,%2,...,¥y,) and let
a, 3 € R. Then
a(u+v) =z, 22, T0) + (Y1, Y2, Yn)] = @@ + Y1, 22+ Y2, T+ Yn)
= (axy + ayr, axs + ays, . .., oz, + ayy) = (g, axe, . .., axy,) + (ayr, ays, . . ., ayy,)
=z, 29, ..., Tn) + a(y1,Y2, .., Yn) = au+ av. Similarly (« + f)u = au + fu and

a(fu) = (af)u. . lu=u. . R™ is vector space over R. O
Note 4.2.4. We denote this vector space over by V,(R).

3. Let F' be any field. Let F" = {(z1,z9,...,2,) : z; € F}. In F™ we define addition
and scalar multiplication as in above example. Then F" is a vector space over F' and

we denote this vector space by V,,(F).

Note 4.2.5. In this example if we take n = 1 then we see that any field F' is a vector
space over itself. The addition and scalar multiplication in this vector space are simply

the addition and multiplication of the field F'.
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4. C is a vector space over the field R. Here addition is the usual addition in C and
the scalar multiplication is the usual multiplication of a real number and a complex

number. (ie).,(z1+1ix2)+ (y1+iy2) = (x1+y1) +i(r2+y2) and oz +izg) = axg +ios.

Proof. Clearly (C,+) is an abelian group. Also the remaining axioms of a vector
space are true since the scalars and vectors involved are complex numbers and further

the operations are usual addition and multiplication. Hence C is a vector space over

R. O

5. Let V={a+ bW2: abe Q}. Then V is a vector space over Q under addition and

multiplication.

Proof. Obviously V is an abelian group under usual addition. The remaining axioms
of a vector space are true since the scalars and vectors are real numbers and the

operations are usual addition and multiplication. Hence V' is a vector space over Q. O

6. Let F be a field. Then Fx], the set of all polynomials over F', is a vector space over
F under the addition of polynomials and scalar multiplication defined by
alag + a1z + -+ - + ap2") = aag + aa T + - - - + aa,z”.

7. The set V of all polynomials of degree < n including the zero polynomial in F[z] is

a vector space over the field F' under the addition and scalar multiplication defined as

in example 6.

Proof. Let f,g € V. Then f and g are polynomials of degree < n. .. f + g and af
are of degree < n. .. f + g,af € V. The other axioms of a vector space can easily be

verified. Hence V' is a vector space over F. O

8. The set My(R) of all 2 x 2 matrices is a vector space over R under matrix addition

and scalar multiplication defined by

a b aa ab

c d ac ad

9. Let V be the set of all functions from R to R. Let f,g € V. We define (f + g)(x) =
f(z) + g(x) and (af)(x) = a[f(x)]. V is a vector space over R.(verify)
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10. Let V' denote the set of all solutions of the dif and only iferential equation 2% —

7% + 3y = 0. Then V is a vector space over R.

Proof. Let f,g € V and a € R. Then
28L 7% 1 3f=0and 224 — 7% +35=0
2 2
2(%—1—%)—7(%%—%)%—3“—1—9):0
25 (f +9) —TE(f+9) +3(f +9) =0
Hence f +¢ € V. Also 2%(04]‘) — 7L (af) 4+ 3(af) = 0. Hence oof € V. Since the

operations are usual addition and scalar multiplication, the axioms of vector space are

true. Hence V' is a vector space over R. O

11. Any sequence of real numbers aq,as,...,a,,... is usually denoted by the symbol
(a,). Let V denote the set of all sequence of real numbers. V' is a vector space over
the field of real numbers. The addition and scalar multiplication are defined by

(an) + (by) = (a, + b,) and a(a,) = (aay,).

12. Let V = {0}. V is a vector space over any field F' under the obvious operations of

addition and scalar multiplication.

13. R is not a vector space over C. Clearly (R, +) is an abelian group. But the scalar
multiplication is not defined, for if « = a+ib € C and u € R, then au = au+ ibu ¢ R.

Therefore R is not vector space over C.

14. Consider R x R with usual addition. We define scalar multiplication by a(z,y) =
(ax, a*y). Then R x R is not a vector space over R. Clearly R x R with usual addition
is an abelian group. (a+8)(z,y) = ((a+0)z, (a+8)%*y) = (ax+ Bz, ®y+ F*y+2a8y)
Also, a(z,5) + B(z.y) = (az,0%) + Bz, B) = (az + Az, a’y + () Hence (a +
B)(x,y) # a(z,y) + B(z,y). .. R x R is not a vector space over R.

15. Consider R x R with usual addition. Define the scalar multiplication as «(a,b) =
(0,0). Clearly R x R is an abelian group. Also,

(i) a(u+v) =0 and au+ av = 0+ 0 = 0; so that a(u + v) = au + av.
(ii) Similarly (o + f)u = au + fu = 0.
(ili) a(fu) = (af)u = 0.

However 1(a,b) = (0,0). Hence it is not a vector space.
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Note 4.2.6. In this example all the axioms except the axiom lu = u cannot be derived
from the other axioms of the vector space. Thus the axiom lu = w is independent of

the other axioms of the vector space. We say that the axiom 1u = w is irredundant.

16. Let V' be the set of all ordered pairs of real numbers. Addition and multiplication
are defined by (z,y)+ (z1,y1) = (r+ 21,y +y1) and oz, y) = (x, ay) where z,y, x1,y
and « are real numbers. Then V' is not a vector space over R. Clearly V' is an abelian
group under the operation + defined above.

Let o, 5 € R and (z,y) € V. Now,
(a+ B)(z,y) = (z,(a + B)y) = (z,ay + Fy)
Also a(r,y) + B(z,y) = (z,ay) + (z, By) = (22, ax + By)
(a+0)(x,y) # ale,y) + Bz, y)

Hence V is not a vector space over R.

17. Let R™ be the set of all positive real numbers. Define addition and scalar multipli-
cation as follows u + v = wv for all u,v € R™; au = u® for all v € R" and a € R.

Then R* is a real vector space.

Proof. Clearly (R",+) is an abelian group with identity 1.(verify) Now,
a(u+v) = a(uv) = (w)* = u*v® = au + av.

(a+ B)u = ut’ = u*u® = au + Bu.

a(Bu) = auf = (vP)* = u* = u*® = (af)u.

Also 1u = ul = u. . RT is a vector space over R. O

Remark 4.2.7. Commutativity of addition in a vector space can be derived from the

other axioms of the vector space (ie.,) the axiom of commutativity of addition in a

vector space is redundant, for,

1+ Du+v)=lu+v)+1l(u+v)=lu+lv+lut+lv=ut+v+u+v

Also (1+1)(u+v)=1+Nu+(1+1)v=u+u+v+o.
ut+vt+ut+v=ut+u+ov+o.

v+u=u-+o.

Theorem 4.2.8. Let V' be a vector space over a field F', Then
(i) a0 =0 for all « € F.
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(ii) ov =0 for allv € V.
(iii) (—a)v = a(—v) = —(aw) for all « € F and v € V.

(iv)av=0=a=0o0rv=0.

Proof.
(i) a0 = a(0+ 0) = a0 + 0. Hence a0 = 0.
(ii) Ov = (0 + 0)v = 0v 4 Ov. Hence Ov = 0.

(iii) 0 = [a+ (—a)]v = av + (—a)v. Hence (—a)v = —(awv). Similarly a(—v) = —(aw).

Hence (—a)v = a(—v) = —(av).

(iv) Let av = 0. If a = 0, there is nothing to prove. ."Let a # 0. Then o' € F. Now,

v=1v=(at'a)v =aav) = a0 =0. O

4.3 Subspaces

Definition 4.3.1. Let V be a vector space over a field F. A non-empty subset W of

V' is called a subspace of V' if W itself is a vector space over F' under the operations

of V.

Theorem 4.3.2. Let V' be a vector space over a field F. A non-empty subset W of V/
is a subspace of V' if and only if W is closed with respect to vector addition and sccalar

multiplication V.

Proof. Let W be a subspace of V. Then W itself is a vector space and hence W is
closed with respect to vector addition and scalar multiplication.

Conversely, let W be a non-empty subset of V' such that u,v € W = u+v e W
and u € W and o € F' = au € W. We prove that W is a subspace of V. Since W is
non-empty, there exists an element u € W. -, Qu=0€ W. Alsov e W = (-1)v =
—v € W. Thus W contains 0 and the additive inverse of each of its element. Hence W
is an additive subgroup of V. Also u € W and o € F' = au € W. Since the elements
of W are the elements of V' the other axioms of a vector space are true in W. Hence

W is a subspace of V. O
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Theorem 4.3.3. Let V' be a vector space over a field F. A non-empty subset W of V'
is a subspace of V if and only if u,v € W and o, € F = au+ pv € W.

Proof. Let W be a subspace of V. Let u,v € W and o, 3 € F'. Then au and fv € W
and hence au + fv € W.

Conversely, let u,v € W and o, € F = au+ fv € W. Taking a = 3 = 1, we
get u,v e W =u+veW. Taking 8 =0, we get « € FFand u € W = a € F and

ueW = au e W. Hence W is a subspace of V. O

Examples 4.3.4.

1. {0} and V are subspaces of any vector space V. They are called the trivial subspaces

of V.

2. W ={(a,0,0) : a € R} is a subspace of R?, for, let u = (a,0,0),v = (b,0,0) € W
and «, 5 € R. Then au + fv = a(a,0,0) + 5(b,0,0) = (ca + 5b,0,0) € W. Hence W

is a subspace of R3.

Note 4.3.5. Geometrically W consists of all points on the z-axis in the Euclidean 3

space.

3. In R3 W = {(ka, kb, kc) : k € R} is a subspace of R3. For, if u = (kya, kib, ki1c) and
v = (koa, kab, kac) € W and «, 3 € R then au + v = a(kia, kb, k1c) + B(kaa, kab, ko)
= ((aky + Bkz)a, (aky + Bka)b, (aky + Bkz)c) € W Hence W is a subspace of R3.

Note 4.3.6. Goemetrically W consists of all points of the line £ = ¥ = 2 provided
a,b,c are not all zero. Thus the set of all points on a line through the origin is a
subspace of R?. However a line not passing through the origin is not a subspace of R3,

since the additive identity (0,0,0) does not lie on the line.
4. W = {(a,b,0) : a,b € R} is a subspace of R3. T consists of all points of the
xy-plane.

5. Let W be the set of all points in R? satisfying the equation lz +my+nz = 0. W is a
subspace of R®. For, let u = (a1, by, ¢1) and v = (ag, by, c) € W and a, 8 € R. Then we
have la;+mb;+nc; = 0 = lag+mbs+nce. Hence a(lay+mby+ncy)+5(lag+mby+ncey) =
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0. (ie.,) l(aay + Baz) + m(aby + Bba) + n(acy + feg) = 0. (e.,) au + fv € W so that
W is a subspace of R3.

Note 4.3.7. Geometrically W consists of all points on the plane [z + my + nz = 0,
which passes through the origin.

6. Let W ={f: f € Flz] and f(a) = 0}. (ie.,) W is the set of all polynomials in
Flx] having a as a root where a € F. Then W is a vector space over F. We observe
that © —a € W and hence W is non-empty. Let f,¢g € F|x| and o, € F. To prove
that af + 39 € W we have to shoe that a is a root of af + Bg. Now, (af + [Bg)(a) =
af(a) 4+ Bg(a) = a0 + 0 = 0. Hence a is a root of af + fBg. .. af + g€ W and W

is a subspace of F[x].

a 0
7. W= . a,b € R 3 is a subspace of My(R).

4.3.1 Solved problems

Problem 4.3.8. Prove that the intersection of two subspaces of a vector space V' is a

subspace.

Solution. Let A and B be two subspaces of a vector space V over a field F. We
claim that AN B is a subspace of V. Clearly 0 € AN B and hence AN B is non-empty.
Now, let u,v € AN B and «, 3 € F. Then u,v € A and u,v € B. . au+ v € A and
au+ fv € B (since A and B are subspaces) .. au+ v € AN B. Hence AN B is a

subspace of V.

Problem 4.3.9. Prove that the union of two subspaces of a vector space need not be a

subspace.

Solution. Let A ={(a,0,0): a € R}, B={(0,0,0): b€ R}. Clearly A and B are
subspaces of R? (example 2 of section 4.2). However A U B is not a subspace of R3.

For, (1,0,0) and (0,1,0) € AU B. But (1,0,0) + (0,1,0) = (1,1,0) ¢ AU B.
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Problem 4.3.10. If A and B are subspaces of V prove that A+ B={veV: v=
a+ba € Ab € B} is a subspace of V. Further show that A 4+ B is the smallest
subspace containing A and B. (ie.,)If W is any subspace of V containing A and B
then W contains A + B.

Solution. Let v;,v5 € A+ B and o € F. Then v; = a1 + b1,v3 = as + by where
ar,as € Aand by, by € B. Now, v1+vy = (a;+b1)+(as+bs) = (a1+az)+(b1+b2) € A+B
Also a(a;+b) = aa;+ab; € A+B. Hence A+ B is a subspace of V. Clearly A C A+B
and B C A+ B. Now, let W be any subspace of V' containing A and B. We shall
prove that A+ BC W. Let v € A+ B. Then v = a+ b where a € A and b € B. Since
ACW,aeW. Similarly b € W and a + b = v € W. Therefore A+ B C W so that
A + B is the smallest subspace of V' containing A and B.

Problem 4.3.11. Let A and B be subspace of a vector space V. Then AN B = {0}
if and only if every vector v € A + B can be uniquely expressed in the form v =a + b

where a € A and b € B.

Solution. Let ANB = {0}. let v € A+ B. Let v = a; +b; = as+by where aj,a; € A
and b;,by € B. Then a; —ay = by — b;. But a; —ay € A and by — B; € B. Hence
a; —ag, by —by € ANB. Since AN B = {0}, a; —as = 0 and by — by = 0 so that a; = as
and b; = by. Hence the expression of v in the form a + b where a € A and b € B is
unique. Conversely suppose that any element in A + B can be uniquely expressed in
the form a+b where a € A and b € B. We claim that ANB = {0}. If AN B # {0}, let
ve ANBand v # 0. Then 0 = v—v = 0+ 0. Thus 0 has been expressed in the form
a+ b in two dif and only iferent ways which is a contradiction. Hence AN B = {0}

Definition 4.3.12. Let A and B be subspaces of a vector space V. Then V is called
the direct sum of A and B if

(i)A+B=V

(i) An B = {0}

If V is the direct sum of A and B we write V = A @ B.
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Note 4.3.13. V = A® B if and only if every element of V' can be uniquely expressed

in the form a + b where a € A and b € B.

Examples 4.3.14.

1. In V53(R) let A = {(a,b,0) : a,b € R} and B = {(0,0,¢) : ¢ € R}. Clearly A
and B are subspaces of V and AN B = {0}. Also let v = (a,b,c¢) € V5(R). Then
v = (a,b,0)+ (0,0, c) so that A+ B = V5(R). Hence V3(R) = A& B.

a b
2. In M5(R), let A be the set of all matrices of the form and B be the set

0 0
of all matrices of the form . Clearly A and B are subspaces of My(R) and
c d

0 0
ANB = and A+ B = M(R). Hence M3(R) =A@ B.
0 0

Theorem 4.3.15. Let V be a vector space over F' and W a subspace of V. Let
V/W ={W +wv: v eV} Then V/W is a vector space over F' under the following
operations.

i) WHuv)+WHuv) =W +v1 40y

(i) a(W +v1) = W + av;.

Proof. Since W is a subspace of V' it is a subgroup of (V,+). Since (V, +) is abelian,
W is normal subgroup of (V,+) so that (i) is a well defined operation. Now we shall
prove that (ii) is a well defined operation. W +v; = W + vy = v —vy € W =
a(v; —vg) € W since W is a subspace = av; —avy € W = av; € W + avy =
W + avy = W 4 avs Hence (ii) is a well defined operation.
Now, let W + vy, W 4+ vy, W 4+ v3 € V/W.

Then (W 4vy) + [(W+v)+ (WHws)] = (W) +(W+vag+uvs) = Wv +vg+vg =
(W4 vy +v9) + (W +v3) = [(W +v1) + (W +vy)] + (W + v3) Hence + is associative.
W +0=W e V/W is the additive identity element. For (W + v;) + (W + 0) =
W+wv, = (W+0)+ (W +wvy) for all v, € V. Also W — vy is the additive inverse of
W + v;. Hence V/W is a group under +.
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Further,(W +vi) + (W +wvg) = W t+vi+vo =W Hva+v1 = (W +vg) + (W + 1)
Hence V/W is an abelian group.

Now, let o, B € F. o[(W +v1) + (W +v3)] = a(W + vy +v9) = W + afv; +vg) =
W+ avy +avy = (W4 avy) + (W4 avy) = a(W + 1) + a(W +ve) (o + B) (W + 1) =
W4 (a+ By =W +avy + fvr = (W 4+ avy) + (W + ) = o(W + v1) + (W +
v)a[B(W +v1)] = a(W + fv1) = W + afu l(W + v)) = W + 1lvy = W 4 v; Hence
V/W is a vector space. The vector space V/W is called the quotient space of V' by
w. O

4.4 Linear Transformation

Definition 4.4.1. Let V and W be vector space over a field F.. A mappingT : V — W
is called a homomorphism if

(a) T'(u+v) =T(u) + T(v) and

(b) T(au) = aT'(u) where a € F and u,v € V.

A homomorphism T of vector space is also called a linear transformation.

(i) If T is 1-1 then T is called monomorphism.

(ii) If T is onto then T is called an epimorphism.

(iii) If 7" is 1-1 and onto then T is called an isomorphism.

(iv) Two vector spaces V and W are said to be isomorphic if there exists an isomorphism
T from V to W and we write V = W.

(v) A linear transformation 7' : V' — F is called a linear functional.
Examples 4.4.2.
1. T:V — W defined by T'(v) = 0 for all v € V' is a trivial linear transformation.

2. T:V — V defined by T(v) = v for all v € V' is a identity linear transformation.

3. Let V be a vector space over a field F' and W a subspace of V. Then T : V — V/W
defined by T'(v) = W + v is a linear transformation,
for, T(vy+wve) =T +v1+vo=(W+v1)+ (W +wv) =T(v1) + T (v2)
Also T'(avy) = W + avy = a(W 4 vy) = o1 (vy).
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This is called the natural homomorphism from V to V/W. Clearly T is onto and

hence T is an epimorphism.
4. T : V3(R) — V5(R) defined by T'(a,b,c) = (a,0,0) is a linear transformation.

5. Let V be the set of all polynomials of degree < n in R[z] including the zero

polynomial. T': V' — V defined by T'(f) = % is a linear transformation.

For, T(f+g)=10 a4 ds_p(f)47(g).

Also T'(af) = d(do;f) = afl = aT(f).

6. Let V be asin example 5. Then 7" : V — V,,11(R) defined by T'(ag+a12+- - -+apx") =
(ap,ai, . ..,a,) is a linear transformation.
For, let f =ag+ a1z + -+ agz™ and g = by + byx + - - - + box".
Then f+ g = (ag+bo) + (a1 + b))z + - + (a, + b,)x".
T(f+g)=((ap +bo), (a1 + b1),...,(an+by)) = (ag,a1,...,a,) + (bo, b1, ..., by,)
(/) + T(9)
Also T(af) = (aag, aay, . ..,aa,) = alag, a, ..., a,) = aT(f).
Clearly T"is 1-1 and onto and hence 7T is an isomorphism.
7. Let V denote the set of all sequence inR. T : V' — V defined by T'(ay, as, ..., ap,...) =

(0,ap,as,...,an,...) is a linear transformation.

8. T : R* — R? defined by T'(a,b) = (2a — 3b,a + 4b) is a linear transformation.
Let u = (a,b) and v = (¢,d) and o € R.
T(u+v) =T((a,b)+(c,d)) = T(a+c,b+d) = (2(a+c) —3(b+d), (a+c)+4(b+d))
=(2a+2c—3b—3d,a+c+4b+4d) = (2a — 3b + 2c — 3d,a + 4b + ¢ + 4d)
= (2a — 3b,a +4b) + (2¢ — 3d,c+ 4d) = T(a,b) + T(c,d) = T(u) + T'(v).
Also T(au) =T (a(a,b)) = T'(aa, ab) = (2ca — 3ab, aa + 4ab)
= a(2a — 3b,a + 4b) = aT(a,b) = oT'(u) .. T is a linear transformation.

Theorem 4.4.3. LetT : V — W be a linear transformation. ThenT(V) ={T(v): v €
V'} is a subspace of W.

Proof. Let w; and wy € T(V) and a € F. Then there exist v;,v2 € V such that
T(v1) = wy and T'(ve) = wy. Hence wy + wy = T(vy) + T(vg) = T(v1 + v) € T(V).
Similarly aw; = aT'(v1) = T(awvy) € T(V'). Hence T'(V) is subspace of W. O
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Definition 4.4.4. Let V and W be vector spaces over a field F'and T : V — W be a
linear transformation. Then the kernel of T is defined to be {v: v € V and T'(v) = 0}
and is denoted by ker T. Thus ker T ={v: v € V and T(v) = 0}.

For example, in example 1, ker T'= V. In example 2, ker T'= {0}. In example 5,

ker T is the set of all constant polynomials.

Note 4.4.5. Let T': V — W be a linear transformation. Then 7T is a monomorphism

if and only if ker T'= {0}.

Theorem 4.4.6. [Fundamental theorem of homomorphism] Let V' and W be vector
spaces over a field F' and T': V' — W be an epimorphism. Then

(i) ker T'=V} is a subspace of V and

(i) = =W.

Proof.

(i) Given V; = ker T ={v: v € V and T(v) = 0} Clearly T(0) = 0. Hence 0 €
ker T =Vy .V} is non-empty subset of V. Let u,v € ket T and a, 3 € F. -.T(u) =0
and T'(v) = 0. Now T'(au + fv) = T'(ou) + T(Bv) = o' (u) + BT (v) = a0+ 50 = 0
and so au + pv € ker T. Hence ker T is a subspace of V.

(i) We define a map ¢ : % — W by (Vi +v) = T(v). ¢ is well defined. Let
Vitv=Vi+w - veVi+w .. v=wv+wwheevy € V. - Tw) =T(v +
w) = T(v) + T(w) = 0+ T(w) = T(w) .. (Vi +v) = (Vi +w) .. ¢ is 1-1.
p(Vitv) =e(Vi+w)=Tw)=T(w)=Tw)-T(w)=0=T()+T(-w) =0
=Tw—w)=0=>v—weckerT=V,=>veVi+w=Vi+v=V,+w. pisonto. Let
w € W. Since T is onto, there exists v € V such that T'(v) = w and so p(Vi+v) = w. ¢
is a homomorphism. [(Vi+v)+(Vi+w)] = ¢[(Vi+(v+w)] = T'(v+w) = T(v)+T(w) =
p(Vi+v)+e(Vi+w) Also pla(Vi+v)] = p[(Vi+av)] = T(aw) = oT(v) = oT'(Vi+v).

Hence ¢ is an isomorphism from % onto W and so % =W. O

Theorem 4.4.7. Let V be a vector space over a field F. Let A and B be subspaces

A+B ~ _B
of V. Then a2
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Proof. We know that A + B is a subspace of V' containing A. Hence A*—B is also a

vector space over F. An element of “TB is of the form A+(a+b) wherea € Aand b € B.
But A+a = A. Hence an element of AJ“TB is of form A+b. Now, consider f : B — #
defined by f(b) = A+ b. Clearly f is onto. Also  f(by +bs) = A+ (by + be) =
(A+b1)+(A+by) = f(b)+f(b) and f(ab) = A+ab; = a(A+b)) = af(by). Hence f
is a linear transformation. Let K be the kernel of f. Then K = {b: b€ B, A+b= A}.

Now, A+ b= A if and only if b € A. Hence K = AﬂBandsoAgB’iAzB. O

Theorem 4.4.8. Let V and W be vector spaces over a field F'. Let L(V, W) represent
the set of all linear transformations from V' to W. Then L(V, W) itself is a vector space
over F' under addition and scalar multiplication defined by (f + g)(v) = f(v) + g(v)
and (oof)(v) = af(v),
Proof. Let f,g € L(V,W) and v;,vs € V. Then
(f +9)(v1 +v2) = fvr +v2) + g(v1 +v2) = f(01) + f(v2) + g(v1) + g(v2)
= fv1) +g(v1) + fv2) + g(v2) = (f + g)(v1) + (f + 9)(v2)
Also  (f +g)(aw) = f(aw) + g(aw) = af (v) + ag(v) = a[f(v) + g(v)] = a(f + g)(v).
Hence (f +g) € L(V,W).
Now, (af)(v1 + v2) = (ef)(v1) + (f )(v2) = aof (v1) + af(v2)
= alf(v1) + f(v2)] = af (v1 + v2).
Also (aof)(Bv) = alf(Bv)] = a[Bf(v)] = Blaf(v)] = Bl(ef)(v)]. Hence af € L(V,W).
Addition defined on L(V, W) is obviously commutative and associative.
The function f : V — W defined by f(v) = 0 for all v € V is clearly a linear
transformation and is the additive identity of L(V,W). Further (—f) : V' — W defined
by (—=f)(v) = —f(v) is the additive inverse of f. Thus L(V,W) is an abelian group
under addition. The remaining axioms for a vector space can be easily verified. Hence

L(V, W) is a vector space over F. O

4.5 Span of a set

Definition 4.5.1. Let V be a vector space over a field F. Let vy,vs,...,v, € V.

Then an element of the form ajv; + asvy + - -+ + v, where a; € F is called a

118



linear combnation of the vectors vy, vq, ..., v,.

Definition 4.5.2. Let S be a non-empty subset of a vector space V. Then the set of
all linear combinations of finite sets of elements of S is called the linear span of S

and is denoted by L(.S).

Note 4.5.3. Any element of L(S) is of the form ajv; + agvs + -+ + a,v, where

Qaq,Qo,...,0, € F.

Theorem 4.5.4. Let V be a vector space over a field F' and S be a non-empty subset
of V. Then

(i) L(S) is a subspace of V.

(i))S C L(95).

(iii) If W is any subspace of V such that S C W, then L(S) C W (ie.,) S is the smallest

subspace of V' containing S.

Proof.
(i) Let v,w € L(S) and o, 8 € F. Then v = ajv; + agvy + - - - + av, where v; € S and
a; € F. Also, w = Biw; + Bows + - - - + Bpwy, where w; € S 3; € F.
Now, av + fw = a(av; + aovy + + - - + anv,) + B(Brwr + Bows + « -+ + Brw).
= (aay)vy + -+ (aay) v, + (B61)wr + - - - + (B0m) W, and so av+ fw is
also a linear combination of a finite number of elements of S. Hence av + fw € L(S)

and so L(S) is a subspace of S.
(ii) Let w € S. Then v = 1u € L(S). Hence S C L(S).

(iii) Let W be any subspace of V' such that S C W. Let u € L(S). Then u = ayuy +
Qally + - - - + apu, where u; € S and o; € F. Since S C W, we have uy, us, ..., u, € W

and so u € W. Hence L(S) C W. O

Note 4.5.5. L(S) is called the subspace spanned(generated) by the set S.

Examples 4.5.6.

1. In V3(R) let e; = (1,0,0);e5 = (0,1,0) and e5 = (0,0,1)
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(a) Let S ={ej,es}. Then L(S)={aei+ fes: o,f R} ={(,3,0): «,F € R}

(b) Let S = {e,ea,e3}. Then L(S) = {aei+festves : a, B,y € R} ={(o,5,7) : o, 5,7 €
R} = V3(R) Thus V3(R) is spanned by {ej, s, €3}.

2. In V,,(R) let e; = (1,0,---,0);e2 = (0,1,0,...,0),...,e, = (0,0,...,1).
Let S = {ei,ea,...,e,}. Then L(S) = {ae; + ages + ane, @ o € R} =
{(a1, a9, ...,a,) : a; € R} = V,(R) Thus V,(R) is spanned by {ey,es,...,e,}.

Theorem 4.5.7. Let V be a vector space over a field F. Let S, C V. Then
(a) SCT = L(S) C L(T).

(b) L(SUT) = L(S) + L(T).

(c¢) L(S) = S if and only if S is a subspace of V.

Proof.

(a) Let S C T. Let s € L(S) Then s = ays1 + agsy + -+ - + a8, where s; € S and
a; € F. Now, since S C T, s; € T. Hence ays1 + agsy + -+ - + s, € L(T).

(b) Let s € L(SUT). Then s = ay81 + aasa + -+ + a8, where s; € SUT and «; € F.
Without loss of generality we can assume that s1,ss,...,5, € S and S;,41,...,5, € T'.
Hence ags1 + agsy + -+ + s, € L(S) and aypa1Sma1 + -+ + apsp, € L(T). . s =
(181 4+ agse + -+ + QmsSm) + (Umt1Sma1 + - + apsy) € L(S) + L(T). Also by (a)
L(S) C L(SUT) and L(T) C L(SUT). Hence L(S)+ L(T) C L(SUT). Hence
L(S)+ L(T)=L(SUT).

(¢) Let L(S) = S. Then L(S) = S is a subspace of V. Conversely, let S be a subspace
V. Then the smallest subspace containing S is S itself. Hence L(S) = S. O

Corollary 4.5.8. L[L(S)] = S.

4.6 Linear Independence

In V3(R), let S = {ey, ea,e3}. We have seen that L(S) = V3(R). Thus S is a subset of
V3(R) which spans the whole space V3(R).
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Definition 4.6.1. Let V' be a vector space over a field F'. V is said to be finite
dimensional if there exists a finite subset S of V' such that L(S) = V.
Examples 4.6.2.

1. V3(R) is a finite dimensional vector space.

2. V,(R) is a finite dimensional vector space, since S = {ej,es,...,e,} is a finite sub-
set of V,,(R) such that L(S) = V,(R). In general if F' is any field V,(F) is a finite

dimensional vector space over F'.

3. Let V be the set of all polynomials in F[z] of degree < n. Let S = {1,z,2?,...,2"}.
Then L(S) =V and hence V is finite dimensional.

4. C is a finite dimensional vector space over R, since L({1,i}) = C.

5. In M5(R) consider the set S consisting of the matrices

1 0 01 0 0
A= ;B = O = iD=
00 00 10 01
a b
Then =aA+bB + cC +dD. Hence L(S) = My(R) so that My(R) is finite
c d
dimensional.

Note 4.6.3. All the vector spaces we have considered above are finite dimensional.
However there are vector spaces which cannot be spanned by a finite number of vectors.
For example, consider R[z]. Let S be any finite subset of R[z]. Let f be a polynomial
of maximum degree in S. Let deg f = n. Then any element of L(S) is a polynomial

of degree < n and hence L(S) # R[z|. Thus R[z] is not finite dimensional.

Throughout the rest of this chapter all the vector spaces we consider are finite
dimensional. Although we have defined what is meant by a finite dimensional space
we have not yet defined what is meant by the dimension of a vector space. We
now proceed to introduce the concepts necessary to define the dimension of a finite
dimensional vector space.

Consider the vectors e; = (1,0,0),e2 = (0,1,0),e3 = (0,0, 1) in V3(R).

Suppose that aje; + ases + azes = 0. Then (ay,0,0) + (0, as,0) + (0,0, a3) = (0,0,0).
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co(ar, ag,a3) = (0,0,0). cLap = ay = a3z = 0. (ie.,)age; + azes + ages = 0 if and only
if &1 = as = a3 = 0. Thus a linear combination of the vectors e;, e; and e3 will yield

the zero vector if and only if all the coefficients are zero.

Definition 4.6.4. Let V' be a vector space over a field F'. A finite set of vectors
vy, Vs, ...,U, in V is said to be linearly independent if ajv; + asve + -+ - + v, =

0=a=ay="---=a, =0. If v1,v9,...,v, are not linearly independent, then they

are said to be linearly dependent.

., U, are linearly dependent then there exist scalars ay, ao, . ..

Note 4.6.5. If vy, vo, .. , Qip

not all zero such that ayvq + asve + -+ - + av, = 0.

Examples 4.6.6.

1. In V,,(F), {e1,ea, ..
cetape, =00 = aq(1,0,...,0)+a2(0,1,. ..

.,en} is a linearly independent set of vectors, for, aje; + ageqy +
,0) 4+ 40an(0,0,...,1) = (0,0,...,0) =

,Ozn)z(0,0,...,0):>0z1:a2:--- OZnZO.

(o1, g, . ..

2. In V53(R) the vectors (1,2,1),(2,1,0) and (1, —1,2) are linearly independent. For, let
ar(1,2,1)+as(2,1,0)+as(1, —1,2) = (0,0,0) .". (a1 +2as+as, 2a; +as—ag, a;+2a3) =
(0,0,0)

011+2042+013:0 (].)
2000 + g — a3 =0 (2)
061+2063:O (3)

Solving equations (1),(2) and (3) we get oy = @ = a3 = 0. The given vectors

are linearly independent.
3. In V5(R) the vectors (1,4,—2),(—2,1,3) and (—4,11,5) are linearly dependent. For,
let ar(1,4,—2) + as(—=2,1,3) + as(—4, 11,5) = (0,0,0)

061—2062—4043:0
40[1 +Oé2—|—11013 =0
—2&1 + 30(2 + 5043 =0

a1

—-18

— &2

From (1) and (2), 2 = 2 = k(say)

(1)
(2)
(3)

ap = —18]{7, (6%)

—27k, a3 = k.

These values of a1, s and as, for any k satisfy (3) also. Taking & = 1 we get oy =
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—18, a9 = —27, a3 = 9 as a non-trivial solution. Hence the three vectors are linearly

dependent.

4. Let V be a vector space over a field F'. Then any subset S of V' containing the zero

vector is linearly dependent.

Proof. Let S ={0,vq,...,v,} Clearly @0+ Ov; + Ovg + - - - + Ov,, = 0 where « is any
element of F. Hence for any a # 0, we get a non-trivial linear combination of vectors

in S giving the zero vector. Hence S is linearly dependent. a

Theorem 4.6.7. Any subset of a linearly independent set is linearly independent.

Proof. Let V be a vector space over a field F'. Let S = {vy,vq,...,v,} be a linearly
independent set. Let S’ be a subset of S. Without loss of generality we take S' =
{v1,v9,..., v} where k < n. Suppose S’ is a linearly dependent set. Then there
exist aq, s, ...,ar in F not all zero, such that ayv; + asvy + - -+ + agvr, = 0. Hence
Q101 + agUg + -+ + Uk + Ovgyep + -+ - + Ov, = 0 is a non-trivial linear combination
giving the zero vector. Here S is a linearly dependent set which is a contradiction.

Hence S’ is linearly independent. a
Theorem 4.6.8. Any set containing a linearly dependent set is also linearly dependent.

Proof. Let V be a vector space. Let S be a linearly dependent set. Let S’ D S. If
S’ is linearly independent S is also linearly independent (by theorem 4.5.7) which is a

contradiction. Hence S’ is linearly dependent. O

Theorem 4.6.9. Let S = {vy,v9,...,v,} be a linearly independent set of vectors in a
vector space V over a field F'. Then every element of L(S) can be uniquely written in

the form aqvq + asvs + -+ - + ay,v,, where o € F.

Proof. By definition every elements of L(S) is of the form ajv; + agvy + -+ - + a,v,
Now, ajv; + agve + + - - + v, = B1v1 + Pave + + - - + Buv,. Hence (aq — fB1)vg + (g —
B2)vg + -+ -+ (a, — Bn)v, = 0. Since S is a linearly independent set, o; — 3; = 0 for all

1. .". a; = [3; for all 7. Hence the theorem. O
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Theorem 4.6.10. S = {vy,vs,...,v,} be a linearly independent set of vectors in a
vector space V if and only if there exists a vector v, € S such that v, is a linear

combination of the preceding vectors vy, ve, ..., vp_1.

Proof. Suppose vy, vs,...,v, are linearly dependent. Then there exist aq, as, ..., a, €
F', not all zero, such that ayv; + asve + - - - + v, = 0. Let k be the largest integer for
which ay # 0. Then ajv1+asve+- - 4agvr = 0. . apvp = —Q U —QUs— -+ — Qg1 Ug_1-
covp = (—aptag)vy oo+ (=g tag_1)vg_1. .. vy is a linear combination of the pre-
ceding vectors. Conversely, suppose there exists a vector v, such thatv + k = a0 +
QoVs+ -+ -+ _1Up_1. Hence —ajv; —anvg — -+ - —ay 101 + v+ 0vg 1 +- - -+ 00, = 0.

Since the coefficient of vy = 1, we have S = {vy,vy,...,v,} is linearly dependent. O

Example 4.6.11. In V5(R), let S = [(1,0,0),(0,1,0),(0,0,1),(1,1,1)] Here (1,1,1) =
(1,0,0) 4+ (0,1,0) 4+ (0,0,1). Thus (1,1,1) is a linear combination of the preceding

vectors. Hence S is a linearly dependent set.

Theorem 4.6.12. Let V' be a vector space over F. Let S = {vy,v,...,v,} and
L(S) = W. Then there exists a linearly independent subset S” of S such that L(S") =
W.

Proof. Let S = {vy,vy,...,v,}. If S is linearly independent there is nothing to
prove. If not, let vy be the first vector in S which is a linear combination of the
preceding vectors. Let S; = {v1,v9, ...,V 1,Vks1,.-.,0s}. (ie.,) Si is obtained by
deleting the vector vy, from S. We claim that L(S;) = L(S) = W. Since S; C S,
L(S1) € L(S). Now, let v € L(S). Then v = aqvy + -+ + agvr + - - + ,v,. Now,
vk is a linear combination of the preceding vectors. Let vy = fiv1 + -+ 4+ Br_1Uk_1.
Hence v = ajvy + -+ - + 1051 + ap(B1v1 + -+ + Be—1Vk—1) + Qpr1Vk1 + -+ + QuU,.
.. v can be expressed as a linear combination of the vectors of Sy so that v € L(S).
Hence L(S) C L(Sy). Thus L(S) = L(S;1) = W. Now, if S; is linearly independent,
the proof is complete. If not, we continue the above process of removing a vector from
S1, which is a linear combination of the preceeding vectors until we arrive at a linearly

independent subset S’ of S such that L(S") = W. O
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4.7 Basis and Dimension

Definition 4.7.1. A linearly independent subset S of a vector space V which spans

the whole space V' is called a basis of the vector space.

Theorem 4.7.2. Any finite dimensional vector space V' contains a finite number of
linearly independent vectors which span V. (ie.,) A finite dimensional vector space has

a basis consisting of a finite number of vectors.

Proof. Since V is finite dimensional there exists a finite subset S of V' such that
L(S) = V. Clearly this set S contains a linearly independent subset S” = {vy,va, ..., v,}
such that L(S") = L(S) = V. Hence S’ is a basis for V. O

Theorem 4.7.3. Let V' be a vector space over a field F. Then S = {vy,vs,...,v,} is
a basis for V' if and only if every element of V' can be uniquely expressed as a linear

combination of element of S.

Proof. Let S be a basis for V. Then by definition S is linearly independent and
L(S) = V. Hence by theorem 4.5.9 every element of V' can be uniquely expressed as a
linear combination of elements of S.

Conversely, suppose every element of V' can be uniquely expressed as a linear com-
bination of elements of S. Clearly L(S) = V. Now, let ajv; + agvy + - -+ + v, = 0.
Also, Ovy + Ovg + - - - + Ov,, = 0. Thus we have expresssed 0 as a linear combination of
vectors of S in two ways. By hypothesis a; = as = -+ = a,, = 0. Hence S is linearly

independent. Hence S is a basis. O

Examples 4.7.4.

1. §=1{(1,0,0),(0,1,0),(0,0,1)} is a basis for V3(R) for, (a,b,c) = a(1,0,0)+b(0,1,0)+
c(0,0,1).
Any vector (a, b, c) of V3(R) has been expressed uniquely as a linear combination of the

clements of S and hence S is a basis for V3(R).

2. 8 ={ey,ea,...,e,} is a basis for V,,(F). This is known as the standard basis for
Va(F).
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3. 5={(1,0,0),(0,1,0),(1,1,1)} is a basis for V5(R).

Proof. We shall show that any element (a, b, ¢) of V3(R) can be uniquely expressed as
a linear combination of the vectors of S. Let (a,b,¢) = «(1,0,0) 4+ 3(0,1,0) +~(1,1,1)
Then a +v =a, 6+ =0, v =c¢c Hence « = a—cand f§ = b—c. Thus
(a,b,¢) = (a—¢)(1,0,0) + (b—¢)(0,1,0) +¢(1,1,1). . Sis a basis for V53(R). O

4. S = {1} is a basis for the vector space R over R.

10 0 1 0 0 0 0
5. 8 = , , is a basis for M, (R), since any
0 10 0 1
a b a b 1 0 1
matrix can be uniquely written as =a +0b +
c d c d 0 0 00
0 0
c +d
10 01

6. {1,:} is a basis for the vector space C over R.

7. Let V be the set of all polynomials of degree < n in R[z]. Then {1,z,22, ..., 2"} is

a basis for V.

8. {(1,0),(4,0),(0,1),(0,4)} is a basis for the vector space C x C over R, for (a +ib, c+
id) = a(1,0) 4+ b(7,0) + ¢(0,1) 4+ d(0, ).

9. S ={(1,0,0),(0,1,0),(1,1,1),(1,1,0)} spans the vector space V3(R) but is not a

basis.

Proof. Let S ={(1,0,0),(0,1,0),(1,1,1),(1,1,0)}. Then L(S) = V3(R)(refer exam-
ple 3). Now, since S C ', we get L(S) = V5(R). Thus S spans V3(R). But S is linearly
dependent since (1,1,0) = (1,0,0)(0,1,0). Hence S is not a basis. O

10. Let S ={(1,0,0),(1,1,0)} is linearly independent but not a basis of V3(R).

Proof. Let a(1,0,0)+5(1,1,0) = (0,0,0). Thena+f=0and 8 =0. ..a=F=0.
Hence S is linearly independent. Also L(S) = {(a,0,0) : a,b € R} # V5(R). . S'is

not a basis. O
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Theorem 4.7.5. Let V' be a vector space over a field F. Let S = {vy,va,...,v,}
span V. Let S = {wy, wy, ..., w,} be a linearly independent set of vectors in V. Then

m <n.

Proof. Since L(S) =V, every vector in V and in particular wy, is a linear combination
of vy,vs,...,v,. Hence Sy = {wy,v1,vy,...,v,} is a linearly dependent set of vectors.
Hence there exists a vector vy # w; in S7 which is a linear combination of the preceding
vectors. Let Sy = {wq,v1, ...,V 1,Vk41,--.,0,}. Clearly, L(Sy) = V. Hence w, is a
Inear combination of the vectors in Sy. Hence S = {waq, wy,v1,. .., Vg1, Vkt1, .-+, Un}
is linearly dependent. Hence there exists a vector in S3 which is a linear combination
of the preceding vectors. Since the w;’s are linearly independent, this vector cannot
be wy or wy and hence must be some v; where j # k(say, with j > k). Deletion of
v; from the set S5 gives the set Sy = {wa, w1, V1, ..., Vg1, Vkt1, - -, Vjm1, Ujt1, - - - Un }
of n vectors spanning V. In this process, at each step we insert one vector from
{wy,ws, ..., wy,} and delete one vector from {vy,vq,...,v,}. If m > n after re-
peating this process n times, we arrive at the set {w,, w,_1,...,w;} which spans V.
Hence w1 is a linear combination of wy,ws, ..., w,. Hence {wy,wa,... , wy, w,1,

..., wy} is linearly dependent which is a contradiction. Hence m < n. O

Theorem 4.7.6. Any two bases of a finite dimensional vector space V' have the same

number of elements.

Proof. Since V is finite dimensional, it has a basis say S = {vi,v2,...,v,}. Let
S" = {wy,wa, ..., wy} be any other basis for V. Now, L(S) =V and 5’ is a set of m
linearly independent vectors. Hence m < n. Also, since L(S’) =V and S is a set of n

linearly independent vectors, n < m. Hence m = n. a

Definition 4.7.7. Let V be a finite dimensional vector space over a field F'. The
number of elements in any basis of V' is called the dimension of V' and is denoted by

dim V.

Theorem 4.7.8. Let V' be a vector space of dimension n. Then

(i) any set of m vectors where m > n is linearly dependent.
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(i) any set of m vectors where m < n cannot span V.

Proof.

(i) Let S = {vy,ve,---,v,} be a basis for V. Hence L(S) = V. Let S’ be any set
consisting of m vectors where m > n. Suppose S’ is linearly independent. Since S

spans V', m < n which is a contradiction. Hence S’ is linearly dependent.

(ii) Let S’ be a set consisting of m vectors where m < n. Suppose L(S') = V. Now,
S = {vy,vq, -+ ,v,} is a basis for V' and hence linearly independent. Hence by theorem

4.6.5 n < m which is a contradiction. Hence S’ cannot span V. O

Theorem 4.7.9. Let V be a finite dimensional vector space over a field a field F'. Any

linear independent set of vectors in V' is part of a basis.

Proof. Let S = {vy,vs,...,v,} be a linearly independent set of vectors. If L(S) =V
then S itself is a basis. If L(S) # V, choose an element v,;; € V — L(S). Now,
consider S; = {v1,2,...,0,,vy41}. We shall prove that S; is linearly independent by
showing that no vector in .57 is a linear combination of the preceding vectors. Since
{v1,v9,...,v,.} is linearly independent v; where 1 < ¢ < r is not a linear combination
of the preceding vectors. Also v,41 € L(S) and hence v, is not a linear combination
of vy,v9,...,v.. Hence S is linearly independent. If L(S;) = V, then S; is a basis
for V. If not we take an element v, o € V — L(S;) and proceed as before. Since the
dimension of V' is finite, this process must stop at a certain stage giving the required

basis containing S. a

Theorem 4.7.10. Let V be a finite dimensional vector space over a field F'. Let A be
a subspace of V. Then there exists a subspace B of V such that V = A & B.

Proof. Let S = {v;,vs,...,v,.} be a basis of A. By theorem 4.6.9, we can find
Wy, Wy, ..., ws € V such that S" = {vy,vq, -+ , v, wy,wo, ..., ws} is a basis of V. Now,
let B = L({wy,ws,...,ws}). We claim that AN B = {0} and V = A+ B. Now, let
veANDB. Thenv € Aand v € B. Hence v = aqv; + -+ a,v, = frwy + - - - + Bsws

Sooqvy + e+ o, — frwy — - - — Bew, = 0. Now, since S’ is linearly independent,
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a; =0 = 3; for all 7 and j.

Hence v = 0. Thus AN B = {0}.

Now, let v € V. Then v = (aqv1 + - - - + a,v.) + (frwy + - - - + Bsws) € A+ B. Hence
A+B=Vsothat V=A@ B. O

Definition 4.7.11. Let V' be a vector space and S = {vy,vq,...,v,} be a set of
independent vectors in V. Then S is called a maximal linear independent set if

for every v € V — S| the set {v, vy, v9,...,v,} is linearly dependent.

Definition 4.7.12. Let S = {vy,vg,...,v,} be aset of vectors in V' and let L(S) = V.
Then S is called a minimal generating set if for any v; € S, L(S — {v;}) # V.

Theorem 4.7.13. Let V be a vector space over a field F'. Let S = {vy,vg,...,0,} C V.
Then the following are equivalent.

(i) S is a basis for V.

(i) S is a maximal linearly independent set.

(iii) S is a minimal generating set.

Proof. (i)=-(ii) Let S = {v,va,...,v,} be a basis for V. Then by theorem 4.6.8 any
n+1 vectors in V' are linearly dependent and hence S is a maximal linearly independent
set.

(ii)=(iii) Let S = {v1,v9, ..., v,} be a maximal linearly independent set. Now to prove
that S is a basis for V' we shall prove that L(S) = V. Obviously L(S) C V. Now, let
veV. Ifvels, thenv e L(S). (since S C L(S)) If v ¢ S, §" = {v1,v9,...,0,,0}
is a linearly dependent set (since S is a maximal independent set) ."There exists a
vector in S” which is a linear combination of the preceeding vectors. Since vy, vs, ..., v,
are linearly independent, this vector must be v. Thus v is a linear combination of
U1, V2, ..., U,. Therefore v € L(S). Hence V' C L(S). Thus V' = L(S).

(i)=-(iii) Let S = {v1,vq,...,v,} be a basis. Then L(S) = V. If S is not minimal,
there exists v; € S such that L(S — {v;}) = V. Hence S is a linearly independent,
S — {v;} is also linearly independent. Thus S — {v;} is a basis consisting of n — 1

elements which is a contradiction. Hence S is a minimal generating set. (iii)=-((i) Let
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S = {v1,v2,...,v,} be a minimal generating set. To prove that S is a basis, we have
to show that S is linearly independent. If S is linearly dependent, there exists a vector
v, which is a linear combination of the preceeding vectors. Clearly L(S — {vx}) =V
contradicting the minimality of S. Thus S is linearly independent and since L(S) =V,

S is a basis for V. O

Theorem 4.7.14. Any vector space of dimension n over a field F is isomorphic to

Va(F).

Proof. Let V be a vector space of dimension n. Let {vy, va,...,v,} be a basis for V.
Then we know that if v € V', v can be written uniquely as v = v + @vo + - - - + @, vy,
where a; € F. Now, consider the map f : V — V,,(F) given by f(aiv; + -+ anv,) =
(o, g, ..., ar). Clearly fis 1-1 and onto. Let v,w € V. Then v = ayv; + - -+ + a, v,
and w = fiv1 + -+ + B,
flo+w) = fllar + Bi)vi + (as + Bo)va + - - - + (o + Bn)vn]

= ((a1+ 51), (a2 + B2), -+, (o + Bn)) = (o, g, ) + (Br, B2, - -+, B)
Also f(au) = f(aovy + -+ + aayvy,) = (@ag, ag, - -+ aay,)

= a(ag,as,...,a,) = af(v). Hence f is an isomorphism of V' to V,,(F). O

Corollary 4.7.15. Any two vector spaces of the same dimension over a field F are
isomorphic, for, if the vector spaces are of dimension n, each is isomorphic to V,,(F)

and hence they are isomorphic.

Theorem 4.7.16. Let V and W be vector spaces over a field F'. Let T': V — W be

an isomorphism. Then 7" maps a basis of V' onto a basis of W.

Proof. Let {vy,vs,...,v,} beabasis for V. We shall prove that T'(vy), T'(vs), ..., T (v,,)
are linearly independent and that they span W. Now, a;T(vi) + aoT(vg) + -+ +
a,T(v,) =0

= T(avy) + T(agvy) + -+ + T(av,) = 0 = T(aqvy + agvg + -+ + apv,) = 0 =
ajv] + Qavg + - + v, = 0 (since T'is 1-1) = a3 = g = -+ = «a,, = 0 (since
V1,02, ...,0, are linearly independent). .. T'(vq),T(vs),...,T(v,) are linearly inde-

pendent. Now, let w € W. Then since T is onto, there exists a vector v € V
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such that T'(v) = w. Let v = vy + aguy + -+ - + auv,. Then w = T(v) =
T(cv1 + agug + -+ - + avy) = a1 T(v1) + aT(v2) + -+ - + a,, T(v,). Thus w is a linear
combination of the vectors T'(v1),T(v2) ..., T(v,). .. T(v1),T(va)...,T(v,) span W

and hence is a basis for W. O

Corollary 4.7.17. Two finite dimensional vector space V and W over a field F' are

isomorphc if and only if they have the same dimension.

Theorem 4.7.18. Let V and W be finite dimensional vector spaces over a field F.
Let {v1, vy, -+ ,v,} be a basis for V' and let wy,ws, ..., w, be any n vectors in W (not
necessarily distinct) Then there exists a unique linear transformation 7" : V' — W such

that T'(v;) = w;, i =1,2,...,n.

Proof. Let v = ajv; +agve+ - + v, € V. We define T'(v) = ajwy + agwg + -+ - +
anwy,. Now, let x,y € V. Let ¢ = ayvi+asve+- - -+a,v, and y = B+ FBova+- - -+ 5,0,
Sz ty) = (atBoit (e +F2)vet- -+ (an+Gn)on . T(z4y) = (ar+F1)wi+(az+
Bo)wa 4+ 4 (i + B ). = (Qrwr +agwy+- - -+ apwy) + (Brws + fowa +- - -+ Bpw,) =
T(x) + T(y) Similarly T'(ax) = oT(z). Hence T is a linear transformation. Also
vy = lvy + Ovg + - -+ + Ov,. Hence T'(vy) = 1wy + Ows + -+ - + Ow,, = wy. Similarly
T(v;) = w; for alli =1,2,...,n. Now, to prove the uniqueness, let 77 : V' — W be any
other linear transformation such that 7"(v;) = w;. Let v = ajv; +agve+- - -+ ayv, € V.
T (v) = T (v1) + T’ (ve) + -+ - + @, T (v,) = qwy + awwy + -+ + auw, = T(v).
Hence T'="T". O

Remark 4.7.19. The above theorem shows that a linear transformation is completely

determined by its values on the elements of a basis.

Theorem 4.7.20. Let V be a finite dimensional vector space over a field F. Let W
be a subspace of V. Then

(i) dim W < dim V.

(ii) dim 3 = dim V — dim W.

Proof.
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(i) Let S = {wy,wy, ..., wy,} be a basis for W. Since W is a subspace of V', S is a part
of a basis for V. Hence dim W < dim V.

(i) Let dim V =nand dim W =m Let S = {w,ws, ..., w,} be abasis for W. Clearly
S is a linearly independent set of vectors in V. Hence S is a part of a basis in V. Let
S = {wy,wa, ..., Wy, v1,09,- -+, 0.} be a basis for V. Then m +r = n. Now, we claim
S"'={W +v,W +wvy,...,W+w,} is a basis for % Suppose a; (W + v1) + ao(W +
vo) + -+ a(W+uv)=W4+0=W+aw)+ W+ aw)+-+ W+ an,) =

W =W +ayvy + agvg + -+ - + v, = W = aqvy + agvg + - - - + a0, € W. Now, since

{wy, we, -+ ,wy,} is a basis for W, aqvy +agvg+ - - -+ a0, = Brwy + Powa + -+ -+ LW,
Therefore ayv1 + agvg + - - - + v, — frwy — Powsg — - - - — Bpw,, = 0. Hence o = ap =
cv=q, =01 =0y=---= 0, =0and so 5 is a linearly independent set.

Now, let W +wv € . Let v = ayvy + aova + - - - 4+ o0, + Srwy + ows + - - - + By,
Then W +v =W + (v + agva + -+ + v + Srwy + Bowa + -+ + Brpwy,) =
W+ (1v1 + agvg + - - - + a0, ) (since frwy + Pows + -+ + Bpwy, € W) = (W 4+ aqvp) +
(W+agvy)+---+ (W o) =a1(W +v1) + ae(W 4+ vy) + -+ + . (W + v,.) Hence

v

S’ spans 75 so that S is a basis for % and dim % =r=n—-m=dimV —dimW. O

Theorem 4.7.21. Let V be a finite dimensional vector space over a field F. Let A
and B be subspaces of V. Then dim (A + B) = dim A+ dim B — dim (AN B)

Proof. A and B are subspaces of V. Hence AN B is subspace of V. Let S =
{v1,v9,...,v,.} be a basis for AN B Since AN B is a subspace of A and B, S is a

part of a basis for A and B. Let {v,v9,..., 0., us,us, -+ ,us} be a basis for A and
{v1,v9,..., 0., w1, Wo, ..., w} be a basis for B.
We shall prove that {vy,ve, ..., v, w1, us, ..., us, w1, ws, ..., w} be a basis for A+ B.

Let ayvy +agva+- - -+ v+ Bruy + Botg + - - -+ Bsts +y1w1 +Yowa, - - - +y,wy = 0. Then
Brug + Boug + - - -+ Beus = — (@101 + vz + - - - + apv,) — (Yrwy + w2, - - - +ywy) € B.
Hence Siuy + Boug + -+ + Bous € B. Also fiuy + Pous + -+ - + Bsus € A. Hence
Brug + Patig+- - -+ Bsus € ANB and 50 Brug + Botig + - - -+ Bstts = 0101 + 0900+ - -+ 3,0,
Brur + Paug + -+ + By — 6101 — o2 — -+ — 0,0, = 0. Thus By = o = -+ = 3, =

9y =0y = --+ =9, = 0 (Since {uy,us,...,us,v1,v,...,v,.} is linearly independent)
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Similarly we can prove 71 = 72 = --- = % = 0. Thus oy = 3; = v = 0 for all
1 <i<rl1<j<s1<k<t Thus S is a linearly independent set. Clearly S’
spans A + B and so S’ is a basis for A+ B. Hence dim (A+ B) =r +s+t. Also
dim A = r+s;dim B = r+t and dim (ANB) = r. Hence dim A+dim B—dim ANB =
(r+s)+(r+t)—r=r+s+t=dim (A+ B). O

Corollary 4.7.22. If V=A® B,dim V = dim A+ dim B.

Proof. V=A®B= A+ B =V and AN B = {0}. Then dim (AN B) = 0. Hence
dim V =dim A+ dim B. O

133



Chapter 5

UNIT V: Linear Transformation

5.1 Matrix of a Linear Transformation

Let V and W be finite dimensional vector spaces over a field F'. Let dim V = m
and dim W = n. Fix an ordered basis {vy,vs,...,v,} for V and an ordered basis
{wy,wq, ... ,w,} for W. Let T : V. — W be a linear transformation. We have seen

that T is completely specified by the elements T'(vy), T (vs), ..., T(vy). Now, let

3\

T(U1> = a wy + ajpwg + - - - + ap Wy,
T(’Ug) = 921 W1 + A22W2 + -+ A2p Wy,
T(Um> = 0pn1W1 + Ap2W2 +--+ CLmnu}n)

Hence T'(v1),T(vs), ..., T (vy,) are completely specified by the mn elements a;; of the
field F'. These a;; can be conveniently arranged in the form of m rows and n columns

as follows.

134



a3 Q2 - Al

a21 Q22 -+ Q2p

m1 Am2 = Qmp

Such an array of mn elements of F' arranged in m rows and n columns is known
as m X n matrix over the field F' and is denoted by (a;;). Thus to every linear
transformation 7" there is associated with it an m x n matrix over F'. Conversely any

m x n matrix over F' defines a linear transformation 7' : V' — W given by the formula
(1).

Note 5.1.1. The m x n matrix which we have associated with a linear transformation

T :V — W depends on the choice of the basis for V and W.

For exaample, consider the linear transformation T : V5(R) — V4(R) given by
T(a,b) = (a,a +b). Choose {ej,es} as a basis both for the domain and the range.
Then T(e;) =(1,1) =e; + ez

T(es) = (0,1) = es.

Hence the matrix representing 7' is

Now, we choose {e1, e} as a basis for the domain and {(1,1), (1,—1)} as a basis
for the range.
Let wy; = (1,1) and wy = (1,—1). Then T'(e;) = (1,1) = wy, and T'(ez) = (0,1) =
1 0
1/2 —1/2

(1/2)w; — (1/2)w;y. Hence the matrix representing 7' is

5.1.1 Solved problems

Problem 5.1.2. Obtain the matrix representing the linear transformation 7" : V3(R) —

V3(R) given by T'(a,b,c) = (3a,a — b,2a + b+ ¢) w.r.t the standard basis {ej, s, €3}.

Solution. T(e;) =T7(1,0,0) = (3,1,2) = 3e; + €3 + €3
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S
S
I
~

(07 170) = (07 _17 1) = —€3 + €3
(0,0,1) = (0,0,1) = e3
3 1 2

S
e
I
S

Thus the matrix representing T'is | 0 —1 1
0 0 1

Problem 5.1.3. Find the linear transformation 7" : V3(R) — V5(R) determined by the
1 21

matrix | 0 1 1 | w.r.t the standard basis {ej, es, €3}.

-1 3 4

Solution. T(e;)

e1 +2ey +e3=(1,2,1)
T(eg) = 0e; +e3+e3=1(0,1,1)
T(e3) = —eq + 3ex + 4de3 = (—1,3,4).
Now, (a,b,c¢) =a(1,0,0)+b(0,1,0) + ¢(0,0,1) = ae; + bes + ces.
T(a,b,c) =T(ae; + bey + ces) = aT'(er) + bT'(ea) + cT'(e3)
=a(1,2,1) +b(0,1,1) 4+ ¢(—1, 3,4).
T(a,b,c) = (a—c,2a+b+3c,a+ b+ 4c)

This is the required linear transformation.

Definition 5.1.4. Let A = (a;;) and B = (b;j) be two m X n matrices. We define the
sum of these two matrices by A + b = (a;; + b;;).
Note that we have defined addition only for two matrices having the same number

of rows and the same number of columns.

Definition 5.1.5. Let A = (a;;) be an arbitrary matrix over a field F. Let o € F.
We define aA = (aa;;).

Theorem 5.1.6. The set M,,y,(F') of all m x n matrices over the field F' is a vector
space of dimension mn over F' under matrix addition and scalar multiplication defined

above.

Proof. Let A = (a;;) and B = (b;;) be two m X n matrices over the field F. The

addition of m X n matrices is a binary operation which is both commutative and
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associative. The m x n matrix whose entries are 0 is the identity matrix and (—a;;) is
the inverse matrix of (a;;). Thus the set of all m x n matrices over the field F' is an
abelian group with respect to addition. The verification of the following axioms are
straight forward.

(a) a(A+ B) =aA+aB

(b) (a + B)A =aA+ A

(©) (@B)A = a(84)

(d) 1A = A.

Hence the set of all m x n over F' is a vector space over F.

Now, we shall prove that the dimension of this vector space is mn. Let Ej; be the
matrix with entry 1 in the (4, 7)"* place and 0 in the other places. We have mn matrices
of this form. Also any matrix A = (a;;) can be written as A = ) a;;E;;. Hence A is
a linear combination of the matrices F;;. Further these mn matrices F;; are linearly
independent. Hence these mn matrices form a basis for the space of all m x n matrices.

Therefore the dimension of the vector space is mn. O

Theorem 5.1.7. Let V and W be two finite dimensional vector spaces over a field F'.
Let dim V = m and dim W = n. Then L(V,W) is a vector space of dimension mn

over F.

Proof. By theorem 4.3.8, L(V, W) is a vector space over F'. Now, we shall prove that
the vector space L(V, W) is isomorphic to the vector space M, x,(F'). Since My, xn(F)
is of dimension mn, it follows that L(V,W) is also of dimension mn. Fix a basis
{v1,v9,...,vp} for V and a basis {wy,ws,...,w,} for W. We know that any linear
transformation 7" € L(V, W) can be represented by an m x n matrix over F. Let T be
represented by M (T'). This function M : L(V,W) — M,,x,(F) is clearly 1-1 and onto.
Let 11,15 € L(V,W) and M(T3) = (a;;) and M (1) = (b;;).

M(Th) = (aij) = Th(vi) = >25_, aijw;

M(T3) = (byy) = Ta(vi) = D5, bijw;

(Th + Ty) = D77 (aij + bij)w;

M(Ty + Ty) = (aij + bij) = (agy) + (b)) = M(T1) + M(T3).
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Similarly M (a17) = aM(Ty). Hence M is the required isomorphism from L(V, W) to
men(F) O
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5.2 Inner Product Space

Upto this point we have dealt with the algebraic properties of a vector space and these
properties are consequences of the basic operations, namely, vector addition and scalar
multiplcation defined in the vector space. We know that in the usual three dimensional
vector space V3(R) it is possible to talk about the length of a vector and angle between
two vectors. These concepts of length and angle can be defined in terms of the usual
"dot product” or " scalar product” of two vectors. The dot product of u = (ay,by,¢1)
and v = (ag, by, ¢o) is defined by
u-v=ayay + biby + cico

We note that the length of u is given by y/u - u and the angle  between u and v is
determined by cosf = #ﬁ Hence u and v are perpendicular or orthogonal if and
only if u-v = 0.

An inner product on a vector space is a generalisation of the dot product and in
terms of such an inner product we can define the length of a vector and angle between
two vectors. Our study about angle will be restricted to the concept of perpendicularity
of two vectors.

Throughtout this section we shall deal only with vector spaces over the field F of

real or complex numbers.

5.2.1 Definition and Examples

Definition 5.2.1. Let V be a vector space over F. An inner product on V is a
function which assigns to each ordered pair of vectors u,v in V' a scalar in I’ denoted

by (u,v) satifying the following conditions.

(i) (u+v,w) = (u,w) + (v, w)

(ii) (au,v) = alu,v)

(i) (u,v) = (v,u), where (v, u) is the complex conjugate of (u, v).

(iv) (u,u) > 0 and (u,u) = 0 if and only if u = 0.

A vector space with an inner product defined on it is called an inner product space.
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An inner product space is called an Euclidean space or unitary space according as

F is the field of real numbers or complex numbers.

Note 5.2.2. If F is the field of real numbers then condition (iii) takes the form (u, v) =
(v,u). Further (iii) asserts that (u,u) is always real and hence (iv) is meaningful

whether F' is the field of real or complex numbers.
Note 5.2.3. (u, ) = au,v). For, (u,av) = (av,u) = a(v,u) = alv,u) = alu,v).

Note 5.2.4. (u,v +w) = (u,v) + (u, w)

For, (u,v+4w) = (v+w,u) = (v,u) + (w,u) = (v,u) + (w,u) = (u,v) + (u,w).

Note 5.2.5. (u,0) = (0,v) = 0.
For, (u,0) = (u,00) = 0(u,0) = 0.
Similarly (0,v) = 0.

Examples 5.2.6.

1. V,(R) is a real inner product space with inner product defined by

(x,y) = x1y1 + Toy2 + - - - + TpYn Where x = (1,9, ..., x,) and y = (Y1, Y2, -+, Yn)-
This is called the standard inner product on V,,(R).

Proof. Let x,y,z € V,(R) and a € R.
(i) (x+y,2)=(@1+y)n+ (@2 +y2)2za+ -+ (T +yn)2

= (T121 + 1222 + -+ Tn2) + (121 + Y222+ F Ynzn) = (7, 2) + (Y, 2).
(17) (o, y) = ariy; + axays + -+ - + Yy = (Y1 + ToYo + -+ + Tyn) = oz, y).
(@)  (x,y) =21y + Taya + -+ TnYn = Y171 + Yol + 0+ Ypn = (Y, T).

(iv) (x,x) =22 +23+--+22 > O0and(z,z) =0 ifand only if &1 =29y =--- =2, =0

(x,x) =0 if and only if 2 =0 O

2. V,(C) is a complex inner product space with inner product defined by
(x,y) = 2191 + T2l + - - - + 2,4, Where x = (21, T2, ...,x,) and y = (Y1, Y2, - -, Yn)-
This is called the standard inner product on V,,(R).

Proof. Let z,y,z € V,,(C) and a € C
(1) (z+y2) =@ +y)a+ (@ +yp)at -+ (@t yn)
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= (025 + T2+ Tuin) + (Y12 + Y+ yndn) = (T, 2) + (y, 2).
(i1){az, y) = a1yi + axafs + -+ + TpPn = (T11 + T2Yo + - + TaYn) = (2, Y).

(iid) (y,x) = Y1T1 F YoTo + -+ F Yoln = 121 + o2 + - + Yun = (T, Y).
(iv)  (z,x) = 2181 + TaTo + - + Ty = |71 |2 + |22+ + |20]* > 0

(x,x)y =0if and only if x = 0 O

3. Let V be the set of all continuous real valued functions defined on the closed in-

terval [0,1]. V is a real inner product space with inner product defined by (f,g) =
1
f f(t)g(t)dt

Proof. Let f,g,h €V and a € R.

(0F +9.1) = [0+ o010 = [ FObOE+ [ gOROE = (.0 + (.1
(i) f.0) = Oflaf(t)g(t)dt ~a f F(0)glt)dt = ofaf, )
(@)(7,9) = [ Fgto)de | o050 = (g,

1
(w)(f, f) = [|f(@®)]*dt >0 and (f,f) =0 if and only if f =0 O
Definition (;).2.7 . Let V be an inner product space and let x € V. The norm or
length of z, denoted by ||z||, is defined by ||z|| = \/{(x,x). = is called a unit vector
if ||z]| = 1.

5.2.2 Solved Problems

Problem 5. 2 8. Let V' be the vector space of polynomials with inner product given
by (f,g) = ff t)dt. Let f(t) =t+ 2 and g(t) = t* — 2t — 3. Find
i) (f,9) (i) ||f||-

Solution. (i) (f,g) = Oflf(t)g(t)dt = b}(t +2)(t* — 2t — 3)dt

1
=[®- dt:[%”“ 640=%—%—6=—%-
1 1 1
(i) NfI? = = [[/( = [(t+2)%dt = [(1> + 4+ 4)dt
0 0 0

= |:§+2t2+4t:| =14+24+4=2
0
£l =%
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Theorem 5.2.9. The norm defined in an inner product space V' has the following

properties.
(i) ||z]| > 0 and [|z|| = 0 if and only if x = 0.
(if) [Joz]] = [eef]]]
(iii) [z, )| < ||z]/l|y|l (Schwartz’s inequality)
(iv) llz +yl < |l=|| + [ly]| (Triangle inequality)

Proof. (i) ||z|| = v/(z,z) > 0 and ||z = 0 if and only if z = 0.

(i) [loz||* = (o, az) = ofz, az) = ad(z, z) = |af*|lz|*.

Hence [[oz|| = |affl].

(iii) The inequality is trivially true when x = 0 or y = 0. Hence let z # 0 and y # 0.

Consider z =y — %x Then

0< (2,2) = (y — o,y — ko) = (y,y) — iy, 2) — Lk (z,y) + Lol (v, 2)
_ HyQH _ )y (g (ny) + ) (yz) ”3/2H _ <m|/1>j<:v7y>

EE EE
0 < flz*lyl* = Kz »)I”
[, ) 2 < [y 1.

[l

II?

(V) llz+yll* =z +y, 2 +y) = (v, 2) + (@, 9) + (v, 2) + (v, 9)
= llzl* + (2, ) + (2, 9) + [ylI* = l|l]1* + 2Re(z, y) + [|y[|*
< Nl + 20z )l + llyl® < llall® + 2llyll + lylI* - (by (iii)
< (Il + [ly1)*
lz 4yl < =l + ] =

5.3 Orthogonality

Definition 5.3.1. Let V' be an inner product space and let z,y € V. x is said to be
orthogonal to y if (x,y) = 0.

Note 5.3.2. z is orthogonal to y = (v,y) =0 = (x,y) = 0= (y,z) =0
= y is orthogonal to z. Thus x and y are orthogonal if and only if (x,y) = 0.

Note 5.3.3. x is orthogonal to y = ax is orthogonal to y.
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Note 5.3.4. z; and z5 are orthogonal to y = 1 + x5 is orthogonal to y.

Note 5.3.5. 0 is orthogonal to every vector in V' and is the only vector with this

property.

Definition 5.3.6. Let V be an inner product space. A set S of vectors in V' is said to

be an orthogonal set if any two distinct vectors in S are orthogonal.

Definition 5.3.7. S is said to be an orthonormal set if S is orthogonal and ||z|| =1

forallz € S.

Example 5.3.8. The standard basis {e,es,...,¢,} in R” or C" is an orthogonal set

with respect to the standard inner product.

Theorem 5.3.9. Let S = {vy,v9,...,v,} be an orthogonal set of non-zero vectors in

an inner product space V. Then S is linearly independent.

Proof. Let ayv; + agvg + -+ + v, =0

Then (av1 + aovg + -+ + 4+ v, v1) = (0,01) =0
a1 (v, v1) + ag(ve, v1) + -+ + ap(vy, v1) =0
ayg(vy,v1) = 0 (since S is orthogonal)
a; = 0 (since vy # 0)

Similarly as = a3 = --- = a,, = 0. Hence S is linearly independent. a

Theorem 5.3.10. Let S = {v,va,...,v,} be an orthogonal set of non-zero vectors in

V. Letv € V and v = ayvy + aovs + - - - + a,v,. Then oy, = <U7v|}|€2>‘

Proof. (v,v;) = (a1v1 + agvg + - - - + vy, vk)
= a1(v1, V) + gV, Ug) + -+ - + g (Vg, Vg) + - -+ + i (Vp, Vk)
= oy (vk, vg) (since S is orthogonal)

= oy l|ve)?

— <U7vk> O

[or |2

Theorem 5.3.11. Every finite dimensional inner product space has an orthonormal

basis.
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Proof. Let V be a finite dimensional inner product space. Let {vq,vq,...,v,} be a
basis for V. From this basis we shall construct an orthonormal basis {wy, ws, ..., w,}

by means of a construction known as Gram — Schmidt orthogonalisation process.

First we take w; = v;. Let wy = vy — <‘7‘Ji’1w”12> wy. We claim that wy # 0. For, if

wy = 0 then vy is a scalar multiple of w; and hence of v; which is a contradiction since

vy, U9 are linearly independent.

_ (v2,w1) _ (v2,v01) .. _
Also, (wa,wy) = (vg — le,w1> = (v2 — WUhUl) (- wr =)

_ (v2,01) _ _

= (v2,v1) — g (v, v1) = (w2, v1) — (v, 01) = 0.
Now, suppose that we have constructed non-zero orthogonal vectors wy,ws, ..., w.
Then put

k
_ (Vrt1, w))
W41 = V41 — e W
2|

We claim that wg,; # 0. For, if wg,y = 0, then viy; is a linear combination of
w1, Wa, . .., w; and hence is a linear combination of v, vo, . .., vy which is a contradiction
since vy, v, ..., v,y are linearly independent. Also,

(Wiy1, wi) = (g1, wi) — 2?21 <Uﬁ$§’||l§j> (wj, wi)
= (Ut1, W) — W(wmwﬁ = (U1, wi) — (wy, w;) = 0.
Thus, continuing in this way we ultimately obtain a non-zero orthogonal set {wy, ws,

..., w,}. By theorem this set is linearly independent and hence a basis. To obtain an

orthonormal basis we replace each w; by ||$?”. O

5.3.1 Solved Problems

Problem 5.3.12. Apply Gram-Schmidt process to construct an orthonormal basis for
V3(R) with the standard inner product for the basis {vy, vo, v3} where v; = (1,0,1);v9 =
(1,3,1) and vz = (3,2,1).

Solution. Take w; =v; = (1,0,1).
Then |Jwy]]? = (wy,w;) =124+ 0>+ 12 =2 and (w1, v) =1+0+1=2
Put w:@—%%m:uﬁn—man:@&m

lwo [ = 9.

Also (w9, v3) =04+6+0=6 and (wy,v3) =3+0+1=4
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Now, wy = vy — ity — Lettlyy — (3,2,1) — $(1,0,1) — §(0,3,0)
=(3,2,1) —2(1,0,1) — %(0,3,0) = (1,0,-1)
lws]|* = 2.
The orthogonal basis is {(1,0,1), (0,3,0),(1,0,—1)}.

- 1
Hence the orthonormal basis is {(\[, 0, 7) (0,1,0), <\[ 0, —75) }

Problem 5.3.13. Let V be the set of all polynomials of degree < 2 together with
the zero polynomial V is a real inner product space with inner product defined by

f f(z)g(x)dx. Starting with the basis {1, z,2?}, obtain an orthogonal basis
for V.

Solution. Let v; = 1;v, = z and vy = 2. Let w; = v;.
Then ||w:||* = (wy,w) f—1 lde =2

Hence |Jw; || = V2
(v2,w1)

[[wa ]l

W = V2 — w1_$——f zdr = x
[ws||? = (we, w) = f (22de =32
1 1
Now, w3 = v3 — <r|}f’ufﬂ12>w — ﬂ]’i“{fjwz =2 _1 f—1 22dr — (33;) f_1x3dx 21
Jws]* = (w3, ws) = f_ll (2* = 3) do =

Hence the orthogonal basis is {1 x, 2% — é}

The required orthonormal basis is {\%, ‘/751, VI0(32? — 1)}

&iloe

Problem 5.3.14. Find a vector of unit length which is orthogonal to (1, 3,4) in V3(R)

with standard inner product.

Solution. Let z = (x1,x2,23) be any vector orthogonal to (1,3,4). Then z; + 3z +
4x3 = 0. Any solution of this equation gives a vector orthogonal to (1,3,4). For

example x = (1,1, —1) is orthogonal to (1,3,4). Also ||z|| = v/3. Hence a unit vector
orthogonal to (1,2,3) is given by (\/g, 75 —\/Lg)

Note 5.3.15. The set of all vectors orthogonal to (1,3, 4) are points lying on the plane
x + 3y + 4z = 0, which is a two dimensional subspace of V3(R).

Problem 5.3.16. Find an orthogonal basis containing the vector (1,3,4) for V3(R)

with the standard inner product.
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Solution. (1,1,—1) is a vector orthogonal to (1, 3,4) (refer above problem).
Now, let y = (y1, y2,y3) be a vector orthogonal to both (1,3,4) and (1,1, —1).
Then 1y + 3ys +4y3 =0
hr+y2—ys =0
Any solution of this system of equations gives a vector orthogonal to (1,3,4) and
(1,1,—1). For example (7, —5,2) is one such vector. (by cross multiplication method).

Hence {(1,3,4),(1,1,-1),(7,—5,2)} is an orthogonal basis containing (1, 3,4).

146



