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Chapter 1

UNIT 1

1.1 Rectangular cartesian coordinates in space

Let a rubber ball be dropped vertically in a room The point on the floor, where the
ball strikes, can be uniquely determined with reference to axes, taken along the length
and breadth of the room. However, when the ball bounces back vertically upward, the
position of the ball in space at any moment cannot be determined with reference to two
axes considered earlier. At any instant, the position of ball can be uniquely determined
if in addition, we also know the height of the ball above the floor. If the height of the
ball above the floor is 2.5 cm and the position of the point where it strikes the ground
is given by (5,4), one way of describing the position of ball in space is with the help
of these three numbers (5, 4,2.5). Thus, the position of a point (or an article) in space
can be uniquely determined with the help of three numbers.

In this unit, we will discuss in details about the co-ordinate system and co-ordinates
of a point in space, distance between two points in space, position of a point dividing
the join of two points in a given ratio internally/externally and about the projection
of a point/line in space.

Recall the example of a bouncing ball in a room where one corner of the room was
considered as the origin.

It is not necessary to take a particular corner of the room as the origin. We could
have taken any corner of the room (for the matter any point of the room) as origin of

reference, and relative to that the coordinates of the point change. Thus, the origin
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can be taken arbitarily at any point of the room.

Let us start with an arbitrary point O in space and draw three mutually perpen-
dicular lines X'OX, Y'OY and Z'OZ through O. The point O is called the origin of
the co-ordinate system and the lines X'OX, Y'OY and Z'OZ are called the x-axis, the
y-axis and the z-axis respectively. The positive direction of the axes are indicated by
arrows on thick lines in Fig. 1.0. The plane determined by the X-axis and the Y-axis
is called xy-plane (XOY plane) and similarly, yz-plane (YOZ-plane) and za-plane
(ZOX-plane) can be determined. These three planes are called co-ordinate planes.

The three coordinate planes divide the whole space into eight parts called octants.
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Fig. 1.0.

Now, let P be any point in space. Let x,y, 2 denote the perpendicular distances
from P to the yz, zx and xy coordinate planes repectively. Then the three real num-
bers z,y, z are called the rectangular cartesian coordinates of P and the point
P is represented by the ordered triple (x,y, z). Conversely, any ordered triple of real
numbers (z,y, z) represents a unique point in space. Thus the set of points in space

can be identified with the set R = {(z,y, 2)|z,y,2 € R}.

Note 1.1.1. The space R? is divided into eight octants by the coordinate planes.
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Note 1.1.2. The points on the z,y plane are of the form (x,y,0) the point on the yz
plane are of the form (0,y,z) and the points on zz plane are of the form (x,0, z).

Note 1.1.3. The points on the z-axis are of the form (x,0,0) and the points on the
y-axis are of the form (0,y,0) and the points on the z-axis are of the form (0,0, z).

1.2 Distance Formula

Theorem 1.2.1. If P(x1,y1,21) and Q(za,ys2, 22) are two points then
PQ = \/(1’2 —21)? + (Y2 —y1)? + (22 — 21)%

Proof. Let P(x1,y1,21) and Q(z2,ys, 22) be two given points.
Draw PM and QN perpendicular to the zoy plane. Then M is (z1,y1,0) and N is

(552,9270)-

— O

4 Fig1.1

Therefore MN? = (x5 —x1)*+ (y2 —y1)? Draw PL perpendicular to QN. Since PM N L
is a rectangle PL = M'N and M P = NL. Now from right triangle PL(Q) we have

PQ* = PL*>+ LQ?
= MN?+ (NQ — NL)?
= MN?*+ (NQ— ML)?

= [(x2 —21)* + (y2 — 1)?] + (22 — 21)?]

PQ = \/(z2 — 1) + (g2 — 11)? + (22 — 21)? =
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Theorem 1.2.2. The point of division R of the line joining P(x1,y1, z1) and Q(x2, Yo, 22)

internally in the ratio | - m s

lxo+may  lyot+myr  lzo+mz
l+m 7 [+m 7 [+m

Proof. Let P(x1,y1,21) and Q(x2,ys, 22) be the two given points. Let R (z,y, z) be
the point of division of P(Q in the ratio [ : m internally.
PR _ L
Therefore RO — M-
Draw PL, RN and QM perpendicular to the xoy plane. Draw PT and RS perpendic-

ular to NR and M@ respectively

n O

Y

Clearly, APRT is similar to ARQ.S, we have

TR _ PR _ 1
SQ  RQ m

Therefore —2 = L
29—2 m
_ lzod+mzy
Z = I+m
.. . lzo+mxq
Similarly, we can prove that the other two coordinates of R are @I ~Irm
[

Corollary 1.2.3. If R divides the line joining P(x1,y1,21) and Q(x2,Yya, 22) exter-
lxo—maxy lyo—myy lzo—mzy
l-m * I-m 7 I-m

nally in the ratio | : m then R is
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Corollary 1.2.4. The midpoint of the line joining P(x1,y1,21) and Q(xa,ys, 22) is

<931+932 y1+y2 21+Z2)
2 2 2

Corollary 1.2.5. The centroid of the triangle whose vertices are (x;,y;, z;) i= 1,2,8

<x1+x2+l’3 Y1 ty2+ys3 Zl+22+23>
5 3 ) 3 3 :

1.3 DIRECTION COSINES AND DIRECTION
RATIOS

Definition 1.3.1. Let o, 3,7 be the angles made by a straight line with the positive
directions of the coordinate axes. These angles are called the direction angles and

the cosines of these angles are called the direction cosine (d.c) of the line.

Note 1.3.2. The direction cosines of a line are usually denoted by l,m,n so that

Il =cos a, m=cos 3, and n = cos 7.

Note 1.3.3. The direction cosines of the x,y and z-axis are respectively 1,0,0; 0,1,0
and 0,0, 1.

Theorem 1.3.4. If [, m,n are the d.c of a line the I> + m? 4+ n? = 1.

Proof. Consider the line A which has the direction cosines [, m,n. Draw a line through

O parallel to the line A. Take any point P(z,y, z) on the line A\. Let OP = r.

Then r = /22 + y2 + 22 (1)
Draw PN perpendicular to OX.

From right A ONP, cos a = . Similarly, cos 3 = ¥ and cos 7 = Z.

P4+ mP4n? = cos’a+ cos? B+ cos®y
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Hence the theorem. O

Definition 1.3.5. Any three numbers a,b, c which are proportional to d.c of a line are
called the direction ratios (d.r) or direction numbers of the line. Hence | = ak;

m = bk; n = ck where k is a nonzero constant.

1.3.1 The relation between direction cosines and direction ra-
tios
If we know the direction ratios a, b, ¢ of a line then we can find the direction cosines

as follows. We have [ = ak; m = bk; n = ck; for k # 0.
Now, I> +m? + n? = 1. Hence k?(a® +b* +¢*) =1

Therefore
1
k=t——— .
Va2 + b2+ 2
Therefore d.c are
a b c

+ , =+ ,+ ,
Va2 + 02+ Va2 2+ Va2 022
where the positive or negative sign is taken throughout.

Theorem 1.3.6. The direction ratios of the line joining P(x1,y1,z1) and Q(x2,ya, 22)

are ro — T1,Y2 — Y1,22 — 21-

Proof. In Fig. 1.1, LQ) = 25 — 2.
Let PQ make angles «, 3, with the positive direction of the coordinate axes.
In the right-angled triangle APLQ, ZPQL = 7.
;. Cos 7y = % = 22 where r = PQ.

Similarly, cosa = #2-*1 and cos § = £

LTy — X1,Y2 — Y1, 22 — 21 are the direction of PQ). O

Corollary 1.3.7. If P(x1,y1,21) and Q(xa,ys, 22) are two points, then the d.c
of the line PQ are

T — X1 Y2 — Y1 22

B RN S R ) 3 ey
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Theorem 1.3.8. The angle between two lines whose direction cosines are [, m,n and

ly, m1,nq respectively is given by cos 6 =l +mmq + nn;.

Proof. Let OP and OQ be the two lines drawn through O and parallel to the given
lines. Let # be the angle between the lines.

Let OP =r and OQ = r;.

Therefore P is (Ir,mr,nr) and @ is (371, my7r, ni71).

In AOPQ, we have PQ?* = OP? + OQ?* —2 OP OQ cos 0 (1)
Therefore PQ? = r? 4+ r? — 2rry cos 6

Also PQ* = (lry —Ir)* + (myry — mr)® + (nyry — nr)?

= Tf(lf + m% + n%) + 7’2(l2 +m? + n2) —2rry(lly + mmy + nny)

=72 472 = 2rr (ll; + mmy + nny) -+ (2)

From(1) and (2), we get cos8 = ll; + mmy + nn;. O

Corollary 1.3.9. sinf = /(Imy — [ym)? + (mny — myn)? + (nly — nyl)?

sin?d = 1—cos’f
= 1—(ll; +mm; +nny)?
= (+m*+n*)(] +mi +nl) — (lly + mmy +nny)?
= (I®m? = 2lmlymy + BEm?) + (m*n? — 2mnmyn; + min?)

+ (n*? — 2nn4ll, + nil?)

Therefore sinf = +/(Imy —1ym)? + (mny —mun)2 + (nly —nql)?

Corollary 1.3.10. If a,b,c and ay, by, cy are the direction ratios of the lines then the
aa1+bbi+ccq and

angle between the lines is given by cos 0 =
\/(abl—alb)Q—i—(bcl—blc)2+(ca1—cla)2

Va24b2+c2\ /a2 +b3+c2

sin 0 =
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Corollary 1.3.11. Two lines whose d.c are [,m,n and ly, my,n; respectively are per-

pendicular if and only if ll; + mmq + nny = 0.

Corollary 1.3.12. Two line whose d.r are a,b,c and a1, by, c; are perpendicular if and

only if aay + bby + ccy =0

Corollary 1.3.13. Two lines with direction cosines [, m,n and l,, m1,n, are parallel

if and only Zf% = mﬂl = nﬂl and consequently if and only if a% = % = é

Proof. The two lines are parallel < sinf) = 0

=% (lm1 — l1m>2 + (mm — mln)Q + (nh — nll)2 =0
& Imy —Ilim =0;mny —mn =0;nl; —nil =0
l m n

R4 —_= — = —
ll mi 1

consequently if and only if all =0 = o a

Area of the triangle with vertices A(z1,y1,21); B(22,Y2,22); C(x3,ys,23)

Let the area of the triangle ABC be A. Let the angles made by the plane of the
AABC with the coordinate planes be a, 3, v respectively. Then [, m,n are the direction
cosines of the normal to the plane containing triangle ABC so that [2 + m? + n? = 1.
Then, cosa = [; cos f = m; cosy = n;

cos? v + cos? B+ cos? vy = 1 < (1)
Let Ay, By, C1; A3 BoCy and A3 B3C'3 be the orthogonal projections of the triangle ABC'
on the xy plane; zz plane; yz plane respectively. Then the vertices of A;B;C} are
(1, 11,0);(z2, y2,0);(x3, y3, 0); the vertices of AyByCy are (1,0, 21);(xe, 0, 29);(x3, 0, 23)
and the vertices of A3B3C5 and (0,1, 21);(0, y2, 22); (0, y3, 23).

1 y1 1 Tz 1 y1oz 1
"Alzé T2 Yo 1 5A2:% To 2z 1 andA;),:% y2 22 1

r3 yz 1 T3 23 1 ys 23 1

We know that projection of the area A enclosed by a curve in a plane is A cos6

10
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where 0 is the angle between the plane of the curve containing the given area and

the plane of projection. Since Ay, Ay, Az are the orthogonal projections of A we have

A =Acosa ; Ay =Acost ; Az = Acosn.

AT+ A3+ A3 = A*(cos®a+cos® 3+ cos?y) = A? (using (1))

\/A%+A§+A§

LA

1.4 Solved Problems.

Problem 1.4.1. Show that the point (2,3,5), (—1,5,—1) and (4, —3,2) form an
isosceles right-angled triangle.

Let the points be A, B, C respectively.

Then AB*= (2+1)*+ (3—5)*+ (5 +1)? = 49.

BC*=(-1-4)*+(5+3)?+ (-1 +2)* = 98.
CA?=(4—-2)2+(-3-3)?+(2—5)? =49.

Therefore AB = CA and BC? = AB? + C A%2.Hence ZA = 90°.

Therefore ABC' is an isosceles right-angled triangle.

Problem 1.4.2. The line joining A (5,2,4) and B(—4,3,5) meets the planes YOZ,
XOY in C, D respectively. Find the coordinates of C' and D and the ratios in which
they divide AB.

5—4)\ 243X 4+5/\) If
1+X 7 14007 14X /0

the point lies on the YOZ plane its z-coordinate must be zero and so 5—4A = 0, A = %.

. . 23 41
Therefore C' is the point (O, 5 3).

The point which divides AB in the ratio A : 1 has coordinates (

Since A is positive, C' divides AB in ratio 5 : 4.

If the point lies on the XOY plane, its z-coordinate must be zero and so 4 + 5\ = 0,
That is, A = —2. D is therefore (41, —2,0) and it divides AB externally in the ratio
4:5.

Problem 1.4.3. Find the direction cosines of the line joining the points (3, —5,4) and

(1,-8,-2).
The direction cosines of the line are proportional to 3 — 1, =5+ 8,4 + 2.

11
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That is , proportional to 2,3,6.
Let them be 2k, 3k, 6k.

But (2k)? + (3k)? + (6k)*=1.
That is, 49k*=1 i.c., k = £1.

Taking the positive value for k, the direction cosines of the line are %,

~lw
o

Problem 1.4.4. Find the ratio in which the xy plane diwvides the line joining the points
A(7,4,-2) and B(8,—5,3). Also find the point of division.

Solution. Let AB meet the xy-plane at C'. Let P be any point on AB dividing
it in the ratio k : 1.

. (8k+T —5k+4d 3k—2
Then P is (355, 25 357 (1)

If this lies on the xy plane then z-coordinate of C' must be zero.

315%12:0' Hence3k—2:080thatk:§.

.. C divides AB internally in the ratio 2:3.

.. Substituting k = % in (1), we get C' is (%7,

(S

0).
Problem 1.4.5. Find the direction cosines of the line which is equally inclined to axes.

Solution. Let the lines have direction cosines [, m,n where [ = cosa; m = cos [3;
n = cos~y where «, 3,y are the angles which the line makes with the positive direction
of the z,y, z axes respectively.

Given that the line is equally inclined to the axes. Hence a = = 7.

We know, for the line, {2 +m? + n? = 1.
= cos? o+ cos? 3 + cos?y = 1.
= 3cos?a = 1. Hence cos? a = 1/3, which implies cosa = £(1/v/3).

.. The direction cosines are \/Lg, \/Lga \/Lg
Problem 1.4.6. Find the d.c of the lines AB and CD where A = (1,2,—4), B(2,1,-3),
C(4,6,—1) and D(5,7,0). Hence find the acute angle between them.

Solution. The d.r of the line AB are 1 —2,2 —1,—4+ 3.
= d.r of AB are —1,1, —1.

12
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.. d.c of AB are \_/—%, \/L§7 \_/—% (taking the positive value of the root sign).
The d.r of the line CD are 4 — 5,6 —7,—1 — 0.
— d.r of CD are —1,—1,—1.

. -1 -1 —1
c.d.cof CD are VRNV

Let 6 be the acute angle between AB and C'D.

W=
W=

cocosf =1 +mmy +nny =5 — 3+
.0 =cos™ 1(1/3) (since 6 is acute)

Problem 1.4.7. Show that the angle between two diagonals of a cube is cos™ 1(\%)

Solution. Let the length of each side of the cube be a.
OP and RB is a pair of diagonals where O = (0,0,0), P = (a,a,a), R = (0,0,a) and
B = (a,a,0).
. d.r of OP are a,a,a.
Hence d.c of OP are \/L§7 \/Lg, \/Lg
d.r of RB are a,a,—a.

Zy
004) | R (a,0,a q
(0,89 P
(aaa)
o a,0,0)
(0,0, o U D ¢
A\ (a,3,0)

Hence the d.c of RB are \/ig, \/Lg, —\/Lg

Therefore the angle 6 between the two diagonals is given by cos 6 =

S
S
_|_
S
S

4 (L
V3 V3 )"

13



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

+
W=
|
Wl
I
Wl

[ W=
I

Q

@}

»n
L

—~

W=

~—

Problem 1.4.8. A line makes angles o, 3,7, with four diagonals of a cube. Prove

that sin®a + sin + sin®*y + sin?6 = 3.

Solution. Refer the above figure.
The four diagnols of the cube are OP, RB, AQ and SC.

The direction cosines of

1 1 1
SVEVE VG

Let the d.c of the given line be [,m,n.

Let it make angles «, 3,v,d with these four diagonals respectively.

o V3 V3 V3
cosf = g mo_
V3 V3 V3

cosy = L_m. o mn
T BT VB

l m n

cosd = ———=——

cos? a4 cos? B + cos?y + cos?§ = (I + m? + n?) = 3
oo (1T =sin® @) 4 (1 —sin® §) + (1 — sin®7) 4 (1 —sin*0) = 3

,',Sin2a+sin2ﬁ+sin27+sin25:4—%zg

Problem 1.4.9. A line makes 30° and 120° with the positive directions of the x and

y axes respectively. What angle does it make with the positive direction of the z-azxis?

14
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Solution. [ = cos 30° = ‘/7§ and m = cos 120 = —%.

Now 2 +m? +n? = 1.

Therefore n = 0. Hence cos y=0.
oy = 90°.

Therefore the line makes 90° with the positive direction of the z-axis.

Problem 1.4.10. Find the locus of P such that PA? + PB? = k* where A is (3,4,5)
and B is (—=2,3,=7) and k is constant.

Solution. Let P be (x¢, 4o, 20) be a point on the locus. PA? + PB? = k?

= (0—3)2+ (o —4)2 + (20 = 5)2 + (o + 1)2 + (yo — 3)2 + (Zo — 7)2 = k2.

= 203 + 22 + 222 — 4wy — 14y + 420 + 109 — k% = 0.

Therefore the locus of (g, Yo, 20) is 22% + 2y? + 22% — 4o — 14y + 42 + 109 — k? = 0.

Problem 1.4.11. Show that (i) the lines joining the midpoints of the opposite edges
of a tetrahedron are concurrent;

(i) their point of concurrency is the centroid of the tetrahedron.

Solution. Let ABCD be the tetrahedron whose vertices are A(x1,y1, 21);
B(xa,y2, 22); C(x3,y3,23) and D(z4,Ya, 24).

(i) AC, BD; AB,CD; AD, BC are the three pairs of opposite edges.

Let My, My, M3,

My, Ms, Mg be their midpoints respectively.
M, is (331-1-3?3’ Y11ys Z1+Zs); M, is ($2+334 Y21Ys Z2+Z4)_

2 2 72 2 0 2 9 2
Therefore the mid points of the line M; M, is <%, Zfl, %)

The symmetry of this result shows that midpoints of M3M, and M;M; is the same as
the midpoint of M;Ms.

Hence My My, M3M,, MsMg are concurrent.

(ii) We know that the centroid G of the tetrahedron divides the line joining each vertex
to the centroid of the opposite triangular face in the ratio 3:1

Let H be the centroid of the triangular face BCD.

15
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Therefore H is (w2+3§3+w4’ y2+%3+y47 22+2§+24)

We have AG : GH =3: 1.

(ratmatea) g
Therefore the xz-coordinate of G is ( 3 ) ! — 221

3+1 4
Therefore G is (ﬁ zu %) .

4 7 4

Hence the result follows.

Problem 1.4.12. If two pairs of opposite edges of a tetrahedron are perpendicular.

Show that third pair is also perpendicular.

Solution. Let AB,CD; AC,BD; AD, BC be the three pairs of opposite edges of a
tetrahedron ABCD; let the first two pairs be perpendicular.

That is AB L. CD and AC' 1. BD.

We claim that AD 1 BC.

Let (x;,y;, z;) i=1,2,3,4 be the vertices of the tetrahedron ABCD.

The d.r of AB are x5 — x1, 92 — y1, 22 — 21 and the d.r of CD are x4 — x3,ys — Y3, 24 — 23
AB L CD = (zg —x1)(xg —x3) + (y2 —y1) + (ya — y3) + (20 — z1) (24 — 23) = 0 ...(1)
AC L BD = (x5 — 1) (g —x2) + (ys —v1) + (s —y2) + (23 — 21)(za — 22) = 0 ...(2)
Now, (23 — z1)(®4 — @3) + (Y2 — y1) + (y4 — y3) + (22 — 21) (21 — 23)

= ToTy — ToT3 — T1T4 + X123 — X3X4 + T3T2 + T1T4 — T1T2
= X9T4 + T1T3 — T3Tyg — T1T2
= .T4(LU2 — 133) — .Tl(ﬂfg — 133)

= (x4 —x1)(z2 — 73) -~ (3)

We get similar results by interchanging y and z with x in (3).

Subtracting (2) from (1) and using (3), we get

(w4 — 1) (22 — 23) + (Y4 — 1) (Y2 — y3) + (24 — 21) (22 — 23) = 0
. AD 1 BC. Hence the result.

Problem 1.4.13. If the sum of the squares of opposite sides of a tetrahedron are equal

prove that its opposite sides are at right angles.

Solution. Let O(0,0,0); A(z1,v1,21); B(xa,ya, 20); C(x3,y3,23) be the coordinates

of the vertices of the tetrahedron.

16
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Then OA, BC'; OB, AC; OC, AB are the three pairs of opposite sides of the tetrahedron.
Given OA? + BC? = OB*+ CA? = OC? + AB?.

We have to prove OA, OB, OC" are perpendicular to BC, AC, AB respectively.
Taking OA? + BC? = OB? + C A?, we get

ot yi + 2+ (s — 22)” 4+ (U — y2)” + (5 — 22)° = 23+ yo + 25 + (w3 — 2)" + (Y3 —
Y2)? + (23 — 29)%

2 2(xox3 + Yoy + 2023) = 2(x1m3 + Y1ys + 2123).

That is, x5(xs — 1) + y3(y2 — y1) + 23(22 — 21) =0

Therefore OC is perpendicular to AB. Similarly, we can prove OB is perpendicular to

AC and OC is perpendicular to AB.

Problem 1.4.14. From a point P(x1,y1,21) a plane is drawn at right angles to OP

5
2x1y121

meeting the coordinate azes at A,B,C. Prove that the area of the triangle ABC'is

where 1 is the algebraic distance of OP.

C

X

Y

Solution. From the right triangle OPA, we have OA=rseca where « is the angle
which line makes with the positive direction of the z-axis.
Therefore A is (rseca,0,0). similarly, B(0,rsec3,0); C(0,0,sec)
From the right-angled triangle OA; P, we have x; = r cos a.

sec v = r/xy. Similarly sec § = r/y; and secy = r/x;.
Therefore, the vertices of the triangles ABC' are A(r?/x1,0,0); B(0,7%/y1,0); C(0,0,72/2)
Now, arc of AABC = A = \/A? + A2 + A2 where

Y1 21 1 0 0 1
Ay =1 —| 2 S
1=3|y 2 1L|=|r/nn 0 1|=g—
ys 23 1 0 r*/z 1
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Similarly Ay =

7,.4
22’1%1

() (£ ) = () (i
' 2 R A 2 xiyiLd

o rh . 2 2 2 _ .2
=S (since xf + yi + 2{ = r?)

Problem 1.4.15. Show that the straight lines whose d.c are given by 21 —m + 2n=0

and lm + mn +nl = 0 are at right angles.

Solution. Given 2l —m +2n =0
L2(hy - () +2=0 (1)

Also given Im + mn + nl = 0.

L)+ () =0 - (2)
From (1), we get 2 = 2(L) 4 2 -+ (3)
Substituting(3) in (2) we get 2(£)2+2(L) +2(L) +2+ (L) =0

2(;)+5(;) +2=0

This is a quadratic equation in 7l7 and solving we get % = -2, —%.

From(3), we get ™ = —2,1

If Iy, m1,nq and Iy, ms, ny are the direction cosines of the two given lines then we have

b= _gym = 9
1

n1 1
E--pm-1
LAk — 1 and mme —
Colils = nyng and myme = —2n1n9

Now, l1ly + mims 4+ ning = ning — 2n1ng + ning = 0

Therefore the two lines are perpendicular.

Exercises 1.4.16. 1. Find the distance between the following pairs of points (1, —3, 2)
and (2,5, —4).

2. Find the point dividing line joining (3,2,1) and (3,—3,6) in the ratio 3 : 2

‘internally and externally.
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3. Find the direction cosines of the lines whose direction ratios are (i) 3, —4,5 (ii)

2,-1,3

4. Find the direction ratios and direction cosines of the line joining the points

(1,2,-1) to (2,1,3).

5. Find the direction cosines of the lines which makes 45° with OX, 60° with OY
and 120° with OZ.

1.5 plane

In this section, we study several forms of the equation of a plane in R3.

Definition 1.5.1. A plane in R? is defined to be the locus of a point (x,y, z) satisfying

a linear equation of the form ax + by + cz = 0 where a, b, c are not all zero.

Theorem 1.5.2. FEquation of a plane pasing through a given point (x1,y1,21) and

having a normal whose d.r are a,b, ¢ is given by a(x — x1) + b(y — y1) + ¢(z — z1) = 0.

Proof. Let A(xy,y1,21) be a given point on the plane. Let LM be a normal to the
plane. The d.r of LM are a,b,c. Let P(z,y,z) be any point on the plane. Then AP
is perpendicular to LM.
Also d.r of AP are v — 1,y — y1,2 — 21.

a(r —x1) + by —y1) +c(z —21) =0 (1)

Since P(z,y, z) is arbitrary, equation (1) represents the equation of the plane. a

Theorem 1.5.3. The equation of the plane passing through the points A(xy1,y1,21),
B(x2, Y2, 22) and C(z3,ys, z3) is given by

r y z 1
T z1 1
1 N oA _0 (1)
To Yo 2 1
T3 Y3 z3 1
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Proof. Let the equation of the plane be az + by + cz + d = 0. - (2)

Since A, B, C' lie on this plane we have

ar1+byr +cx1+d=0 -+ (3)
axrs +bys +czo+d =0 -+ (4)
azrs +bys +cz3+d=0 - (5)
Eliminating the constants a, b, ¢ from (2)(3)(4) and (5) we get the result(1). O

Note 1.5.4. In numerical problems, it is convenient to solve the three equation (3),

(4),and (5) in terms of d directly and get the equation of the plane on substitution in

(2)-

Aliter. The equation of any plane passing through (xy, 41, 21) can be written in the
form

a(x —x1) +b(y —y1) +c(z—2) =0 (1)

If this passes through (x9, 39, 22) and (z3,ys, 23) also, we have
alr —x) + by —y1) +c(z—2) =0
a(r —x1) + by —y1) +c(z —21) =0 - (3)

Eliminating a, b, ¢ from (1), (2) and (3), we have

r—T1 Yy—hn =<z—2A
Tg—21 Yo—y1 -2z |=0
Ty —T1 Ys— Y1 23— %1
which is the equation of the plane passing through (z1,y1,21), (22,2, 22) and

(I37 Ys, 23)-

Note 1.5.5. To verify whether four points are coplanar we have to find the equation
of the planes passing through any three points and check whether the fourth point lie

on it or not. Equivalently, the four points are coplanar if
r y z 1
T Y1 2 1

To Yo 2 1

—_

Tr3 Y3 Zz3
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Theorem 1.5.6. (Intercepts form) The equation of the plane having intercepts

a,b,c with the coordinate aves is T+ ¥ + 2 = 1.

Proof. Let the equation plane be Axr + By +Cz+ D =0 (1)
Let this plane meet the coordinate axes OX,0Y,0Z at P,Q, R respectively.

o, OP=a; OQ =b; OR=c.

Therefore P is (a,0,0); @ is (0,b,0) and R is (0,0, ¢).

Since P, ), R lie on the plane we have

Aa+D=0;Bb+d=0;Cc+ D = 0.

L A=-2.B=-2.0=-L2

Therefore, equation (1) becomes —2z — 2y — —2z 4+ D = 0.

That is, £+ %+ 2 = 1.

Hence the theorem. O

Theorem 1.5.7. (Normal form) The equation of a plane can be written as
lx + my + nz = p where [,m,n are the d.c of the normal to the plane and p is the

length of the perpendicular from the origin to plane.

Proof. Let the plane meet the coordinate axes at A, B, C' with intercepts a, b, ¢;
Therefore, the equation of the plane is 7 + ¥ + 2=1 (1)
Let the length of the perpendiuclar OD from O to the plane be p.

_ _ 0D _
Now, | = cos/DOA = 57 = L.
Therefore @ = %. Similarly b = 2 and ¢ = £.
Therefore equation (1) of the plane becomes % +5 =1

That is, lz + my + nz = p. O

Note 1.5.8. The above equation of the plane can also be written as
xcos a—+ycos B+ zcos v =p where a, 3,7 are the angles which the normal to the

plane makes with the coordinate axes.
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1.5.1 Transformation to the normal form

The general equation of the plane ax + by + cz + d = 0. (1)
where a? + b? + ¢ # 0 can be transformed to the normal form
lx +my +nz =p. - (2)
Equations (1) and (2) represent the same plane if ¢ = £ = £ = %j =k (say)
Therefore, [ = ¢, m = %,n = ¢ and p:—%.
Since 2+ m? +n? =1 we get k = £ \/52 + b? + c?

b
@ b
e Va2+b2+c2’ m vV a2+b2ji—027

C —
n==+ ————;and p = t———— - (3
Va2 +b?+c? b= a2+ )
Now we choose the sign of k£ opposite to that of d so as to make p positive.

Substituting (3) in (2), we obtain the required normal form.

Note 1.5.9. For the plane ax + by + cz+d =0 a,b,c are d.r of the normal to plane

and +—=% +b +—==
VEa) TR T V(D)
positive) denote the d.c of the normal to the plane.

(with suitable sign so that p is always

Example 1.5.10. The d.r of the normal to plane 2x — 3y + 62 + 7 = 0 are 2, —3, 6.
Hence the direction cosines are —%, %, —g and the length of the normal from the

origin to the plane is % =1

1.6 ANGLE BETWEEN TWO PLANES

Definition 1.6.1. Angle between two planes is defined to the angle between the

normals to them from any point.

Theorem 1.6.2. The angle 6 between planes ax + by + cz +d = 0 and
a1z + b1y + c1z +dy = 0 is given by cosh = £ [ aa) +bb) fcey }

V(2 a?)y/ (X a?)
Proof. The d.c of the normal to plane ax + by + cz +d = 0 are

a b c
V2 a?) V(T a) /(a2
The d.c of the normal to the plane a1x + b1y + c12 + d; = 0 are
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ai by c1

VZa) V(Zad) V/(Za})

Therefore the angle between the planes is given by cosf = + {%}
a al

Corollary 1.6.3. The planes ax +by +cz+d=0; a1z + by +c12+dy =0 are at

right angles if and only if aa; + bby + cc; =0

Corollary 1.6.4. The planes ax +by +cz+d =0 and a1z + b1y + c1z+dy =0 are

parallel if and only if 2= % =+ Hence the equation of a plane parallel to

ar + by + cz +d = 0 is of the form ax + by + cz + k = 0.

Theorem 1.6.5. Length of the perpendicular from a point A(x1,y1,21) to the plane

ax1+by1+cz1+d
(a2 +b2+4-c2)

aas+by+cz+d=02’s:|:

Proof. Let lx +my+ nz+ = p be the normal form of the plane ax + by +cz+d = 0.
Therefore | = +—2— d

b c
m=+—n==2Ft—— and p = +—F——="—.
NoxE) JEa e P T e
Now equation of the plane through the given point A(z1,y1, 21) and parallel to the
plane lx + my + nz = p is given by lx +my + nz = p;
where p; is the length of the perpendicular from the origin to the plane.

Since (x1,y1,21) lies on (1) we have lxq + my; + nz; = py

Now the length of the perpendicular from (z1,y1, 21) to the given plane is

p—p1 = p—lzy—my —nzxn

d axy by, cz
- 4 4 + ,+ .
V(2 a?) { VZa) V(Ze) V(Z a2)}
axq +by1 + cz1 +d

(22 a?)

Hence the result. O

Theorem 1.6.6. Fquation of a plane through the line of intersection of two given

planes m1 = 0 and my = 0 is m + Ay = 0 (A is a constant).
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Proof. Let mi =ax+biy+ciz+di =0 (1)
Ty = Qo + boy + oz +dy =0 - (2)
be the two equations of the two planes.

Consider the equation 7w + Amy = 0

That is, (a1 + b1y + c12 + dy)(asx + boy + caz + dg) = 0 - (3)
Equation (3) is of the first degree in z,y, z and hence represents a plane.

further any point (x1,y, 21) satisfying (1) and (2) also satisfies (3). Hence (3) passes
through the line of intersection (1) and (2).

Two sides of a plane. Consider a plane and two points A and B not lying in the
plane. Then the points A, B may lie on (i) opposite sides of the plane or (ii) in the
same side of the plane.

If A, B lie on either side of the plane, the segment AB has common point with the
plane whereas if A, B lie in the same side of the plane the segment AB does not have
a common point with the plane.

We proceed to find a criterion for two given points to lie on the same or different

sides of a given plane. a

Theorem 1.6.7. Two points A(xy,y1,21),B(x2, Y2, 29) lie on the same or different
sides of the plane ax + by + cz + d = 0 according as axy + by, + cz; + d and

azxs + bys + czo + d are of the same or different signs.

Proof. Let the line AB meet the given plane at P. Let P divide AB in the ratio
k1. If k is positive P divides AB internally and if k is negative P divides AB
externally.

That is., if k is positive A, B lie on opposite sides of the plane and if £ is

negative A, B lie on the same side of the plane.

P s (Rzato ety kb)) and P lies on the plane.

k+1 7 k41 7 k41

Hence we have a (’“ﬁ%) —l—b(’“’,f—jf“) —i—c(]“,f—rfl) +d=0

Cok(axg +bys + czo +d) + (az1 + bys + ¢ +d) =0

. k — _ ax1+by1+cz1+d
T azx2+byz+czo+d

k is negative if axy + by; + cz1 + d and axs + bys + ¢z + d are of opposite signs.

Hence the result follows. O
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Example 1.6.8. The origin and (2, —3,7) lie on the same side of the plane
20 — 3y + 224+ 8=0.
For, by substituting the two points in the expression 2z — 3y + 2z + 8 the values are

of same signs.

Example 1.6.9. (2,1,1) and (2,5, —1) lie on different sides of the plane
r — 2y + 3z + 4 = 0.(verify)

Example 1.6.10. Find the equation to the plane through (3,4,5) parallel to the
plane 2z 4 3yz = 0.

The equation to any plane parallel to this plane is

204+ 3y — +k = 0.

If it passes through the point (3,4, 5).

23)+3(4)—5+k=0

That is,k = —13.

Hence the equation of the required plane is 2x + 3y — 2z — 13 = 0.

Example 1.6.11. Find the angle between the planes

2v —y+z2=6,r+y+22=3.

The direction cosines of the normals to the planes are proportional to 2,-1,1 and 1,1,2
respectively.

If 6 be the angle between the planes then,

2—142 _ 3 _

1
V@2 /(e VeVE 2
Y —y
s 0=1

cost =

Example 1.6.12. Find the equation of the plane which passes through the point
(—1,3,2) and perpendicular to the two planes = + 2y + 2z = 5, 3z + 3y + 2z = 8.
Let the equation of the required plane be Az + By + Cz +d = 0.
It passes through the point (—1, 3, 2).

—A+3B+2C+D=0 (1)
The plane is perpendicular to the planes z + 2y + 22 = 5 and 3z + 3y + 22 = 8
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L AT2B 420 =0 . (2)
3A+3B+2C =0 - (3)
From the equations(2)(3) we get 4 = £ = &

Let each be equal to k.

Then A = -2k, B =4k, C' = —3k.

Substituting the value of A, B, C' in equation(1), we get D = —8k.
Hence the eqution of the plane is —2kx + 4ky — 3kz — 8k = 0.
That is, 2z — 4y + 32+ 8 = 0.

Example 1.6.13. Find the distance between the parallel planes 2z — 2y — 2 +3 =0
and 4 —4y + 2z +5=0.

Find a point on the plane 2z — 2y — 2 + 3 = 0 and the distance

between the two parallel planes is the perpendicular distance from

that point to the plane 4x — 4y + 22 +5 = 0.

The first plane meets the z-axis at the point (0,0, —3).

The length of the perpendicular from (0,0, —3) to the plane

4o — 4y +22+5=0is +——=085_ — 41

(42442 +422) 6

Hence the distance between the parallel planes is &.

6

1.7 Projection of a line

Definition 1.7.1. (i) The projection of a point on a line is the foot of the

perpendiculars drawn from the point on the line.

(ii) The projection of a finite straight line on another is the portion of the second
line intercepted between the projections of the extremities of the finite line on
the second.

Thus, the projection on AB on a line | is A1 By, where Ay and By are the feet of the

perpendiculars drawn from the points A, B on L.

Result 1.7.2. The projection of a finite straight line AB on another straight line C'D
1s AB cos @ where 6 is the angle between AB and C'D.
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Proof. Draw AD’ parallel to C'D. Then the angle between AB and AD’, That is,
/BAD’ is §. Through A and B draw two planes, each perpendicular to C'D, the first
one cutting CD and AD’ at P and A and the second cutting them at ) and D’

respectively.

AD' is parallel to PQ; AP is parallel to D'Q).

AD' = PQ.

A /‘D/

R ol Ry 5

PQ is the projection of the line AB and C'D.
But BD’ is perpendicular to AD.
ABcost = AD'.

Projection of ABon CD = BQ
= AD'
= ABcosf

1.7.1 Solved problems

Problem 1.7.3. Find the equation of the plane passing through (1,1,0), (1,2,1) and
(—2,2,-1)

Solution. Let the equation of the required plane be ax + by +cz+d =0 (1)
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Since the given points lie on it we have

a+b+d=0 (2)
a+2b+c+d=0 (3)
—2a+2b—c+d=0 -+ (4)
2)—(3)= —b—c=0 -(5)
(3) — (4) = 3a+2c =0 -(6)
From (5) and (6) we have -4 = L = £ = k(say)

Therefore a = —2k;b = —3k; c = 3k.
Substituting in (2) we have d = 5k.
Therefore (1) becomes —2x — 3y + 3z + 5 = 0.

Problem 1.7.4. Find the equation of the plane passing through (2,2,1) and (9, 3,6)
and perpendicular to the plane 2z + 6y + 62 = 9.

Solution. Equation of the plane passing through (2,2,1) is

a(z —2)b(y —2) +c(z—1)=0 -+ (1)
where a, b, ¢ are the d.r of the normal to the plane to determined.

Since (9, 3,6) lies on this plane, we have 7a + b+ 5¢ = 0 - (2)
Since the plane (1) is perpendicular to 2x + 6y + 6z = 9,

we have 2a + 6b + 6¢ = 0 -+ (3)
Solving (2) and (3) we have —L24 = _Lg? = 4—00

Therefore % = _L5 = k (say)

Therefore a

b
!
= 3k,b=4k,c = —5k.

(1), we get 3(x —2) +4(y—2) —5(z—1)=0
Therefore 3z 4+ 4y — 52 — 9 = 0.

Substituting in

Problem 1.7.5. Find the equation of the plane throught (2,3, —4) and (1,—1,3) and

parallel to the x-axis.

Solution. Equation of the plane passing through (2,3, —4) is
alr —2)+bly—3)+c(z+4)=0 (1)
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where a, b, ¢ are the d.r of the normal to the plane which is to be determined.
Since (1, —1,3) also lies on the we have
—a—4b+T7c=0 - (2)
Since the plane (1) is parallel to the z-axis its normal is perpendicular to the x-axis
whose d.r are 1,0,0.

al+b0+c0=0=a=0 - (3)
From (2) and (3), we get a = 0,b = 7k, and ¢ = 4k.
Substituting in (1) we get the equation of the required place as
Tk(y —3) +4k(z+4) = 0.

Ty + 4z — 5 = 0 is the equation of the required plane.

Problem 1.7.6. Find the equation of the plane which passes through the point
(3,—2,4) and is perpendicular to the line joining the points (2,3,5) and (1,—2,3).

Solution. Since the plane is perpendicular to the line joining A(2,3,5) and
B(1,-2,3), the line AB is normal to the plane.

The d.r of the normal AB are 1,5,2.

Therefore the equation of the required plane is 1(z — 2) + 5(y + 2) + 2(z — 4) = 0.
That is, x + 5y + 22 — 1 = 0.

Problem 1.7.7. Find the equation of the plane which passes through the point
(1,—2,1) and is perpendicular to each of the planes 3x +y+ 2z —2 =0 and
r—2y+2+4=0.

Solution. Let the equation of the plane be ax + by + cz +d =0 -+ (1)

It passes through (1,—2,1). Hence we get

a—2b+ct+d=0 - (2)
Since (1) is perpendicular to the planes 3z +y+2—2=0and x — 2y + z+4 =0,

we have 3a +b+c¢=0 -+ (3)
a—2b+c=0 - (4)

b
Therefore % =5 = %:(k say)
c.a=3k;b=2k;c=—Tk.
Substituting in (2), we get d = 0.
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Therefore the equation of the required plane is 3z — 2y — 7z = 0.

Problem 1.7.8. The foot of the perpendicular from the origin to a plane is
(2,—1,2). Find the equation of the plane.

Solution. Let axz + by + cz + d = 0 be the equation of the required plane. We know
a, b, c are d.r of the normal to the plane. Since P(2,—1,2) is the foot of the
perpendicular from the origin O to the plane, OP is the normal to that plane. Hence
d.r of normal to the plane are 2, —1, 2.

Therefore the equation of the plane becomes 2z — y 4+ 2z +d = 0.

Since (2, —1,2) lies on it we have 4 + 1+ 4 +d = 0. Hence d = —9.

220 —y+ 22 —9 =0 is the equation of the required plane.

Problem 1.7.9. Find the coordinate of the foot of the perpendicular drwan from the

origin to the plane 2x — 3y + z — 7 = 0.

Solution. Let P(z1,y1,21) be the foot of the perpendicular from the origin.

Since P(x1,y1,21) lies on the plane we have 221 —3y; + 21 —7=0 - (1)
The direction ratios of OP are 1 — 0,y; — 0,z — 0.

That is, d.r of OP are x1,y, 21.

OP is normal to the given plane whose direction ratios are 2, —3, 1.

Therefore % = % = 2—11 = k (say)

Therefore x1 =2k ;y1 = =3k ;21 =k
Substituting in (1), we get 4k + 9k + k = 7. Hence k = 3

. _ _ 3 _ 1
..$1—17y1——§,21—§-

Therefore the foot of the perpendicular is (1, —

nojee

1
s 9 )

Problem 1.7.10. A plane meets the coordinate azes at A, B,C such that the centroid
of the AABC' is the point («, 3,7). Show that the equation of the plane is

z y z —

. T 3 + 5 3.

Solution. Let the equation of the plane be ax + by + cz +d =0 - (1)

Since it meets the z-axis at A we get A = (—g, 0, O).
Similarly, B = (07 —%,0) and C = (0,(), _%)
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Centroid of AABC is ( =, %, _3%)

But the centroid of AABC'is given to be (a, (3,7).
e ai— = frand —L =

Soa= —;i,b— __B andc——%

Therefore the equation of the required plne (1) becomes

—4n® — 55y — 52 +d = 0. That is, 244 —|—§:3

Problem 1.7.11. A moving plane passes through a fized point (o, 3,7) and
intersects the coordinate axes at A, B,C. Show that the locus of the centroid of the
AABC is ¢+ 941 =3,

Solution. Let A be (a,0,0), B(0,0,b) and C(0,0,c).
Let (z1,y1,21) be the centroid of the triangle ABC.

r=%y=%n=¢ (1)

Now the equation of the plane ABC'is £ + 4 + 2 = 1.
It passes through the fixed point («, 3,7).
210 41=1. Hence—+3yl+321 =1 by (1).
Thatis & 4+ 52 4+ 2 =3
xr1 Y1 Z1

Therefore the locus of (z1,1,21) is 2 + g +1=3.

Problem 1.7.12. Find the equation of the plane through the intersection of the

planes 3x —y+2z—4=0, x +y+ 2z —2 =0 and passing through the point (2,2,1).

Solution. The required plane is 3z — y + 2z — 4+ a(x + y + 2z — 2) = 0 where a is to
be determined.

Since (2,2,1) lies on it, we have 6 —2+2—-44+a(2+2+1—-2)=0

.24 3a = 0. Hence a = —%.
Therefore the equation of the required plane is
3t —y+2z—4—-3(x+y+2—-2)=0

That is, 7z — 5y + 42 — 8 = 0.

Problem 1.7.13. Find the equation of the required plane through the intersection of
the planes © + 3y — z = 4 and 2x + 2y + 2z = 1 which is perpendicular to the plane
r+y—4z=0.
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Solution. The equation of the required plane is of the form
r+3y—z—4+aRr+2y+2z-1)=1
S(1+2a)z4+(3+2a)y+ (-14+2a)z—4—a=0

Since it is perpendicular to z + y — 4z = 0, we have

.. —4a+ 8 =0 Hence a = 2.

Therefore the equation of the required plane is
r+3y—z—4+22r+2y+22—1)=0.

That is, 5z + Ty + 32 — 6 = 0.

Problem 1.7.14. Find the equation of the plane which is the rotation by an angle «

of lx + my = 0 about its line of intersection with z = 0.

Solution. The required plane is the plane passing through the intersection of the
two planes [z + my = 0 and z = 0 and hence its equation is lx + my + Az = 0 for
some A to be determined.

Given « is the angle between the planes lx +my = 0 and [z + my + Az = 0.

12 4+ m? + \(0)
V2 +mA12+m2+ N\
cos? a(l? +m?)(I* + m* + \?) = (I + m?)?

COS ¥ =

[cos® a(l* + m® + \?*)] = (I> + m?)
M cos® a = (17 + m?)(1 — cos® a)

M\ = (> + m?) tan® .

Hence A = £vI12 + m? tana
Therefore the equation of the required planes are lz + my £ [VI[? + m? tana = 0.

Exercises 1.7.15. 1. Find the angle between the planes z —y + 22 — 9 = 0 and
2r+y+z=T.

2. Find the equation of the plane which passes through the point (2,-4,5) and is
parallel to the plane 4x 4+ 2y — 72 4+ 6 = 0.

3. Find the equation of the plane passing through the points (1,2,3) and (-4,1,-2)
and perpendicular to the plane 7x + 2y — 2 4+ 3 = 0.
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Chapter 2

UNIT 11

2.1 Lines

We obtain different forms of equation of a straight line in space.
1.Non-symmetric form. We know that two planes in general intersect in a line.
Hence a line in space can be represented by two linear equations.
m i ax + by +cz+dp =0 and my : asx + boy + coz + dy = 0.
2.Symmetric form. We can write the equations of a line if we know its direction
cosines and a point on it.
Let A(z1,y1,21) be a given point on the line. Let I, m,n be the d.c of the line. Let
P(z,y, z) be any point on the line.
Therefore the direction ratios of AP are x — x1,y — y1,2 — 21.

r—x] y—y1 2—Z21

Since the d.c are [,m,n we have #5% = =0 = 251 = ¢ (1)

Hence #=% = ¥4 = 2= = r represents the equations of the given line.
m n

Note 2.1.1. Any point on the line (1) is (z1 + Ir,y1 + mr, z; + nr).

Note 2.1.2. The equation of a line passing through (x1, 41, 21) and having direction

ratios (a,b,c) are also given by =" = ¥4 = =r

Note 2.1.3. The equations of a line given in non symmetric form can be converted

to symmetric form as follows.
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Let the equation of the two planes be 7 : a1x 4+ byy + ¢12 + d; = 0 and

o : s + boy + coz + dy = 0. Let my = 0 and 7 = 0 intersect along a line
L:m =my=0. Let d.r of L be [, m,n.

Since the line L lies on both m; = 0 and 73 = 0 the normals to the planes‘are

perpendicular. Hence a1l 4+ bym 4+ cin = 0; asl + bam 4+ con = 0

l m n

bico — boc;  cra9 — coay a1y — ashy
Therefore the d.r of L are bicy — bacy, cras — coay, a1by — asby.
We now find a point A on L by considering the point where it meets the plane
z =0 (zy-plane), (say). It is got from equations a;x + b1y + dy = 0 and
asx + by + dy = 0.

: z _ Yy _ 1
o bldg — b2d1 N d16L2 — dg(ll B (llbg — CLle

A s (bldQ — bady diaz — daay O)

arby — Cl2517 a1by — azby ’

Hence the equation of the line L in symmetric form is

[ bida—bady [ diag—daa1
x <a1b27a2b1) y (a1b27a2b1 ) Z — 0

bica — bacy C1G2 — C2a7 - aiby — aghy
Instead of finding the point where the given line meet the plane z = 0, we can also

find the point where L meets plane x = 0 or y = 0.

3. Two-points form. Equation of straight line can be obtained when two points on
the line are known.

If A(z1,91,21) and B(xg, ya, 29) are two points on a line, then the direction ratios of
the line are o — x1, Y2 — Yo, 20 — 21.

Therefore the equation of the line is £=%L = LUl — 221
Tr2—x] Y2—Y1 22—21

Problem 2.1.4. Find the direction cosines of the line 2”;1 = 4y1_3 = 2'20’3.

Also find a point on it.

Solution. The given line can be rewritten as
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2(x+%) __4(y—%) __2(2—%)

3 1 0

w .,

. x+l -2 zZ—3 . . .
That is, 722 = yl/f = —*. Hence the direction ratios are (%, i, O).

. . . 6 1
Therefore the direction cosines are (\/—37, el O).

A point on the line is (—%, %, %)

Problem 2.1.5. Find the value of k so that the lines “:—_31 = % = Zgg’ and

xg;kl = y—f’ = Z_—_56 may be perpendicular to each other.

Solution. The direction ratios of the lines are —3, 2k, 2 and 3k, 1, —5.
Since the lines are perpendicular, we have (—3)3k + (2k)1 +2(—5) =0
Hence k = —10/7.

Problem 2.1.6. Prove that the lines t+vy — 2z =5;9c — by + z =4 and
6 — 8y + 42 =3;x 4+ 8y — 62+ 7 =0 are parallel.

Solution. Let a,b, c be the direction ratios of the line determined by the planes
r+y—2=95;9r —dy+z=4.

Since the line is perpendicular to the normals of the above two planes, we have
a+b—c=0

9a —5b+c=0.

a b
T4 T S0 T~

That is,% = £ =

B

ES T[S

Therefore the direction ratios of the first lines are 2,5,7.
Similarly, we can prove that the direction ratios of the second lines are 2,5,7.

Hence the direction ratios of the two lines are proportional. Hence they are parallel.

Problem 2.1.7. Find the angle between the lines
r—2y+z=0=z4+y—2z—3andr+2y+z2—5=0=8x+ 12y + 52.

Solution. The first line is the intersection of the two planes x — 2y + z = 0 and
x+y—2z2—3=0. Let a, b, c be direction ratios of the line. Since the line is

perpendicular to the normals of the above two planes

We have a — 2b+ =0 (1)
a+b—c=0 - (2)
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. a [

a_b_c¢
1T 27 3

Therefore the direction ratios of the first line are 1, 2, 3.
Let the direction ratios of the second line be aq, by, c;.
Soar+20+¢=0

8ay + 120y + 5¢; = 0. Hence %5 = %1 ="

Therefore the d.r of the second lines are —2, 3, —4.

Therefore the angle 6 between the two lines is given by

aay + bby + ccy
VO a?) /(X))
24612 -8
VI4V29  V/14v29

cos

.0 =cos™! (\/%) . (acute angle)

Problem 2.1.8. Find in symmetrical form the equations of the line given by

r+5y—2z="T2x—->5y+32+1=0.

Solution. The required line is the intersection of the planes
r+dy—z2—7=0
20 —5y+32+1=0

normal of (1) and (2), we have

a+5b—c=0

2a —5b+3c=0

.a _ b _ _c

.16 = = = —5z. Hence d.r are 2, -1, —3.

We now find one point on the line.

The line meets the xy-plane z = 0 at the point (z,y,0) where (z,y)

satisfy the equations x + by =7
20 — by = —1
Solving (5) and (6), we get © = 2,y = 1.
Therefore a point on the line is (2, 1,0).
1 _ 2

Therefore the equations of the lines are 5’%2 ===Z
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Problem 2.1.9. Find the coordinate of the point of intersection of the lines

z—1 _ y—2 __ z43 : —
L = == = 203 with the plane 2z + 4y — 2+ 1= 0.

Solution. Any point on the given line is P(1 + 2r,2 — 3r, =3 + 4r).
If P lies on the plane 2z 4+ 4y — z + 1 = 0, then

20 +2r)+4(2—-3r)— (=3+4r)+1=0.

Therefore 4r — 12r —4r +24+8+3+4+1=0

Therefore —12r = —14. Hence r = 7/6.

Therefore P is (1 + %, 2 — %, -3+ 13—4)

Therefore P is (%, %3’ g)

Problem 2.1.10. Find the perpendicular distance of the point P(1,1,1) from the line
:”3;2 = yTJr?’ = . Also find the foot of the perpendicular.

Solution. Let A be the foot of the perpendicular form P(1,1,1) on the line.
Therefore AP is perpendicular to the line.

The direction ratios of the lines are 3,2, —1.

The coordinates of A can be taken as (2 + 3r, =3 + 2r, —r)

Therefore the direction ratios of AP are 1+ 3r, —4 + 2r, —r — 1.

Since AP is perpendicular to the line we have

(1+3r)34+ (—4+2r)2+ (—r—1)(-1) =0.

2

Therefore 14r = 4. Hence r = z

Therefore A is (2 + g, -3+ %, —%) = (2—70, —7177 —%) .

Therefore the foot of the perpendicular is (%, =17 —%) )

20 2 17 2 2
AP = (=1 — -1 ———1).
(F-) (=) (5
2
118
AP = =2
(%)

Problem 2.1.11. Find the point where the line xT_Q = %l = ZZ—G meets the plane

2v4+4y —2—-2=0.
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Solution. Let ””7_2 Sy . ’21’—6 =7.

Therefore the coordinates of any point on the line are
(24 2r,4 — 3r, —6 + 4r).

If this point lies on the plane 2x + 4y — z — 2 = 0, we get
22+2r)+4(4—3r) — (=6+4r) —2=0.

That is, r = 2

Hence the coordinates of the required point are (6, —2,2).

Problem 2.1.12. Find the foot of the perpendicular from the origin on the line
3r—y—2z2—4=0=4x — 3y — 2z + 2.

Solution. Let L be the line of intersection of the given planes. Let a,b, ¢ be the d.r
of the line L. Since L is perpendicular to the normal of both the planes we have
3a—b—c=0;4a —3b—2c=0.

e b _ ¢

21T 27 D5

Hence d.r of the L are -1,2,-5.

Let A be the point of intersection of L with xy-plane, z = 0.

The coordinates of A are obtained by solving 3z —y = 4 and 4x — 3y = —22.

Therefore A is (14/5,22/5,0).

r—(14/5) _ y—(22/5) _ 2
-1 2 -5

Hence the equation of the line L is
Any point P on the line L is P(—r + 14/5,2r + 22/5, —5r)

The d.r of OP are —r + 14/5,2r +22/5, —5r.

Suppose P is the foot of the perpendicular from O to the line L.
Then, OP is perpendicular is to L gives

—1(—r+14/5) +2(2r 4 22/5) — 5(=5r) = 0.

. 30r = —6. Hence r = —1/5

Therefore P is (3,4,1)

Problem 2.1.13. Find the image of the point (2,3,4) under the reflection in the

plane v — 2y + 5z = 6.

Solution. Let P(2,3,4) be the given point and let P’ be its image under the

reflection in the plane x — 2y + 52 = 6.
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The d.r of the normal to the plane are 1, -2, 5.
Therefore the d.r of PP are also 1, -2, 5.

z—2 _ y—3 __ z—4

1 -2 5
Therefore P’ is of the form (24 r,3 — 2r, 4 + 5r).

Mid point of PP"is Q(2 +1/2,3 —r,4 4+ 5r/2).

Hence the equations of the line are

Since Q lies on the plane (1) we have (2+1r/2) —2(3 —r) 4+ 5(4+5r/2) =6

24 1)2— 6428 +20+25r/2 = 6
Therefore 157 = —10. Hence r = —2/3.
Therefore P'is (2 —2/3,3+4/3,4 —10/3).

That is, P’ is (%, 13—3, %)

Problem 2.1.14. Find the image of the point (1,3,4) under the reflection under the

y—3 _ z—4

plane 2x-y+2+3=0. Hence prove that the image of the line :”Tfl =L = 18

z+3 _ y—5 __ z—2
==

-5 —-10°

= —3

Solution. Let P(1,3,4) be the given point and P’ be its image in the plane

2e—y+2+3=0
The direction ratios of the normal to the plane 2-1,1.

Therefore the direction ratios of PP’ are also 2,-1,1.

Hence the equations of the line PP’ are mT_l = % = ZI“

The coordinates of P" are (1 + 2r,3 —r,4 + r) for some r.

Mid point of PP’ is Q(1+22r+1’ 37§+3’ 4+;+4)

That is, Q is (r + 1,3 —7/2,44+1r/2).

This point () lies on the plane 2x —y +2+3 =0

S 2r+1) =B =r/2)+(44+71/2)+3=0

.. 3r = —6. Hence r = —2.

Therefore P is (1 — 4,34 2,4 —2) That is, P'is (—3,5,2).

Therefore the image of (1,3,4) under reflection is (-3, 5, 2)
3 _ 24

We now find the point where the line £ = 4= = =

meets the plane 20 —y+ 2+ 3 = 0.

(2)

Any point on the line (2) is R(r + 1,3 — 2r,4 — 3r) and it lies in the plane (1).

Hence 2(1 4 2r) — (3 —2r)+ (4 —3r) +3 = 0.
Therefore r = —6. Hence R is (—5,15,22).
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Since R lies in the plane (1) the image of R in the plane (1) is itself.
Therefore the line RP’ is the image of the line (2) and its equation are

T+3 y—>5 _ z=2
—3+5 5—15 2—-22°
: z+3 _ y—=> __ z—2
That is, 5= = 55 = 555
e z+H3 _y=5 __ z-2
That is, 5° = =2 = 45

Exercises 2.1.15. 1. Find the equation of the straight line joining the points
(2,5,8) and (—1,6,3).
2. Find the perpendicular distance from P(3,9,—1) to the line x__+§% = y%m = 2_5&

3. Put in the symmetrical form the lines

(i) 3z —2y+2—1=0=5x+4y — 62 — 2.

(i) 4z +4y — 5z — 12 = 0 = 8z + 12y — 13z — 32.

2.2 PLANE AND A STRAIGHT LINE

Theorem 2.2.1. Let L : % = -0 = 241 - (1)
be a line and m: ax + by +cz +d =0 - (2)
be a plane. The condition that

(i) the line L be parallel to the plane 7 is axy +by; +cz1 +d # 0 and al + bm +cn = 0;

(ii) the line L to lie in the plane 7w is axy + by, + ¢z +d =0 and al + bm + cn = 0.

Proof. [i] The coordinates of any point on the line (1) are (x1 + Ir, y; + mr, z; +nr).
Suppose this point lies on the plane (2), then

a(zy +1Ir) +b(yr +mr) +c(z +nr)+d =0

That is, r(al + bm + cn) + (axy + by, + cz1 +d) =0 -+ (3)
If the line is parallel to plane, no point of the line lies on the plane.

Therefore no value of r satisfies(3). Hence al + bm + e¢n = 0 and

ary + by, +cz; +d # 0.

[ii] The line (1) will lie in the plane (2) if every point on the line lies in the plane.
Hence (3) must be satisfied by all values of r.

Therefore al + bm + c¢cn = 0 and azxy + by; + cz1 +d = 0. O
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Example 2.2.2. Find the equations of the orthogonal projection of the line

“”4;2 = yT_l = % on to the plane 8x + 2y + 9z — 1 = 0.

The required orthogonal projection lies in the plane drawn through the given line
perpendicular to the given plane.

The equation of any plane containing the given line is

Alx —2)+Bly—1)+C(z—4)=0 (1)
subject to the condition

4A+2B+3C =0 - (2)
Plane (1) is perpendicular to the plane 8x + 2y + 92z —1 =10

Therefore 84 + 2B 4+ 9C = 0 -+ (3)
From (2) and (3), we get &4 = £ = & Thatis, 4 = £ = £

Substituting the value of A, B, in (1), we get the equation of the plane(1) as
3z —2)—3(y—1)—2(z —4) =0
That is, 3z — 3y — 224+ 5= 0.

2.3 Coplanar Lines

Theorem 2.3.1. The condition for two lines *T5 = -8 = =241 e (1)
and I?f? = y;éﬁ — 22222 e (2)

Tog —T1 Yo2—Y1 22— 21

to be coplanar is I m ny =0

ly mo U

Proof. Two coplanar lines must be either parallel or intersecting.

The lines (1) and (2) are parallel if % =0 =M

Suppose the lines are not parallel.

Therefore Let the lines intersect at P(say).

Therefore the coordinates of any point on the line (1) are

(x1 + Ly gy + mar, 2z + nyr).

The coordinates of any point on the line (2) are (x5 + lor1, y2 + mary, 22 + nory)

Since P is a common point for (1) and (2), we have
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1+ lir = 2o + lory; y1 + mar = Yo + mory; 21 + Ny = 23 + nory for some values of r
and 7.
(x1 — )+ lir —lor; =0

(Y1 — y2) +mar —mary =0
(21 — 29) + myr —ngry =0
Eliminating » and r; form the above three equations, we get

T1— 29 U1y

y1—y2 my my | =0

21— 2y Ny Mg

Ty —T1 Y2 —Y1 22— 21

That is, [ my n =0

lg mo %)
Further the above conditions is satisfied even if % = % = Z—; and hence it is the
required condition for the given lines to be coplanar. Hence the theorem. a

Note 2.3.2. If the line given by (1) lies in the plane

ax+by+cz+d=0 -+ (1)
then, we have azi + by, +cz1 +d =0 - (2)
and al +bm +cn =0

From(1) and (2), the equation of the plane of the plane containing the line can be
written as a(x — x1) + b(y — 1) + ¢(z — 21) = 0 together with the condition

al +bm +cn = 0.

Theorem 2.3.3. The angle between the line

S = UL = 2220 g the plane ax + by + cz =0 is
al+bm+cn

ven by sin @ = :
gwen by V(@0 +2)\/(P+m?4n?)

Proof. Let 6 be the angle between the given plane and the straight line.
Therefore 90 — @ is the angle between the line and the normal to plane.
The direction ratios of the normal to the plane are a, b, c and the direction ratios of

the line are [, m,n.

. al+bm~+cn
Therefore cos(90 — 6) = @)\ (Brmiin2)

Hence the theorem. O
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Corollary 2.3.4. The line *5* = 41 = 221 45 parallel to the plane
ar + by + cz+d =0 if and only if al + bm + cn = 0.

Theorem 2.3.5. The equation of the plane containing two lines

S = — = (1)

T—x2 __ Y“Y2 __ z—Zz2 .
and = e T (2)
To—T1 Yo~ R2—=2

ly mao no

Proof. The equation of the plane containing the line (1) is
a( —z1) +b(y —y1) +c(z —21) =0 -+ (A)
subject to aly +bmy +cny =0 -+ (B)
Also the line (2) is perpendicular to normal to the plane (A).
coaly +bmy +cng =0 - (0)
Eliminating a, b, ¢ from (A),(B) and(C), we get the required equation. O

Theorem 2.3.6. The length of the perpendicular from a point P(x1,y1,21) to the line
z—a _ y=B _ z=vy (1)

l n

1/2
18 (£E1 - a)2 + (y1 — ﬁ)z + (2’1 — 7)2 — [l(”"l_0‘)+m(y1—ﬁ)+"(21—7)2]

124+m?2+4n?

Proof. Let PL be the perpendicular from P to the line (1).

Then L is (a + lr, 8 + mr,y + nr) for some r.

Therefore d.r of PL are x1 —a —lr,y; — 8 —mr,zy — vy — nr.

Since PL is perpendicular to the line (1), we have
l(zy—a—=1Ir)+m(yy— G —mr)+n(zy —y—nr) =0

SAl(wy —a) +myy — B) +n(z — ) = (1?2 +m? +n?) -+ (2)
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(z1—a)+m(y: —B)+n(z1—)
(P+m4n?)

Therefore r =

Now PL? = (v1—a—Ir)*+(y— B —mr)?+ (2 — 7 —nr)?

= (m1—a)+ @ —B)°+ (21— 7) = 2r[l(z1 — ) + m(y: — B) +

n(z — )] +r*(1* + m* + n?)

= (t1—a)+ (= 0"+ (21 =) =272+ m® +n?) +

r2(l2 +m?+ n2)

= (m1—a)’+ (1 —B)*+ (21— 7)) = r*(*+m* +n?)

Hence the result.

2.4 Skew lines

Definition 2.4.1. Two straight lines in space which are not coplanar are called skew

lines.

Note 2.4.2. There is only one straight line which is perpendicular to both the skew

lines.

Definition 2.4.3. The shortest distance (abbreviated by S.D.) between two skew lines

1s the length of the common perpendicular drawn to the lines.

Theorem 2.4.4. Shortest distance between the skew lines
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Tog —T1 Y2 —Y1 22— 21
L my ni

lg Mo Mo
VX (lima—lamy )2

1s given by S.D =

Proof. Let A(z1,y1,21) be a point on the line Ly and B(z2,ys, 22) be a point on Ls.
Consider a plane 7 containing the line L; and parallel to Ls.
Then every point on L, will be equidistant from this plane.

Hence the shortest distance is the perpendicular distance of any point on Ls to the

C

:
1
D B Ly

plane 7.

Therefore the shortest distance is C'D (refer figure). The equation of the plane 7 can

be taken as

a(lz —x1) + by —y1)+c(z—2)=0 -+ (3)
subject to al; +bmy +cnqy =0 < (4)
Since the plane is parallel to Ly we have aly + bmgy + cng =0 -+ (5)
From (4)and(5) we get ——t—n = -t = -t

Therefore the equation of the plane 7 is
(mang — mamy)(x — 1) + (naly — n2li)(y — y1) + (hma — by )(z —21) =0 ---(6)
Therefore the shortest distance S.D = the perpendicular distance from B(zs, y2, 22)

to the plane(6).

(ming — mony ) (w2 — 1) + (naly — n2l1) (Y2 — y1) + (lhma — loma) (22 — 21)

S.D =
\/Z (mang — many)?

Hence the shortest distance can be expressed in the form as given in the theorem.
Now, we find the equation of the line of shortest distance C'D.

C'D is the intersection of the planes AC'D and BDC'.

Let I, m,n be the direction ratios of C'D.
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Therefore the equation of the plane ACD is

r—I1 Y-y z2—2
T I mq ni =0 (1)

) m n

The equation of the plane BDC' is

r—21 Yy—th =z2—2
T @ l2 meo N9 =0 (2)

) m n

Since C'D is perpendicular to L; and Ly, we have
Iy + mmy +nny =0 and Uy + mmsg + nny =0

Hence l =" = - -+ (3)
ming—Mmaony nilo—nsly limo—Ilamy

Therefore the equations of the shortest distance C'D are given by m; = 0 and m =0

where [, m, n are given by (3). O

Note 2.4.5. If the shortest distance between the two lines Ly and Lo is zero then the

lines are coplanar.

2.4.1 Solved problems

Problem 2.4.6. Find the equation of the plane containing the point (—1,7,2) and

thelme%rg:y%“?:z__f (1)

Solution. The equation of the plane containing the line (1) is

a(z+3)+by+2)+c(z—2)=0 -+ (2)
subject to 2a + 3b — 2c¢ =0 -+ (3)
Since the plane passes through (—1,7,2), we have from (2)

204+90 =0 -+ (4)
From (3) and (4), we have & = 2 = &

Therefore a = 18k, b = —4k, c = 24k;
Substituting in (2), we get the equation of the plane as 9z — 2y + 12z = 1.
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Problem 2.4.7. Find the equation of the plane which contains the two parallel lines

= — (1)

r—3 y+2 =z2+4

1 2 3 - (2)

Solution. The equation of the plane containing the line (1) is given by

alx—1)+bly—2)+¢(z—3)=0 - (3)
subject to a +2b+3c =0 -+ (4)
Since the line (2) lies on the plane (3), the point (3, —2, —4) lies on it.

Therefore from (3), we have 2a —4b —7c¢ =0 -+ (b)
From (4) and (5), we have % = & = <.

Therefore a = —2k,b = 13k, c = —8k.
Therefore the equation of the plane is —2z + 13y — 82z = 0.

Problem 2.4.8. Prove that the lines £ = £ = 2-2 = 4 — 2.2 Y — 2 gpe
l m n’ly mi ny’l2 ma n2
I m n
coplanar if | I, m; ny | =0.
ly my no

Solution. Obviously, the three lines intersect at (0,0,0). Hence they determine a
plane.

Now, the equation of the plane containing these two lines is

r oy =z
I m n |=0
ll miy MM
That is, (mn; —min)z — (Ing — ln)y + (Imy —lim)z =0 (1)

Suppose the three lines are coplanar. Then the third line also lies on (1).
Therefore the normal to the plane (1) is perpendicular to the third line.
Therefore lo(mny — min) — mo(lng — l1n) + na(lmy — lym) =0

la ma mo

Thatis, | I m n |=0

L m ny
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I m n
Thatis, | I, m; ny | =0

ly my no

Problem 2.4.9. Show that the lines ’“"T_l = %L = % and %‘5 =48 — 22T g

coplanar and find the equation of the plane containing them.

Solution. Here (21,91, 21) = (2,4,5) and (22,y2, 22) = (5,8, 7).
We know that the lines are coplanar if

T — T2 Y1 —Y2 21— 22

[ m n =0
I my n
T1—T2 Y1~ Y2 21— 2 -3 —4 =2
Now, l m n =1 2 2 |=0 (verify)
l my ni 2 3 2
r—2 y—4 z-—5
Equation of the plane containing the line is 1 2 2 =0

2 3 2
That is, 2z — 2y +2—-1=0

Problem 2.4.10. Prove that the lines

z—1 z—06
d pr— 2:
an 1 Y+ 5

are coplanar. Find the point of intersection. Also find the equation of the plane

determined by the lines.

1 m

Solution. Here the condition - = & = nﬂl is not satisfied. Hence the lines are not

151 mi

parallel. Hence if the lines are to be coplanar they must intersect.
The coordinates of any point on the line (1) are
P(2r+3,-5r+2,3r+1)

The coordinates of any point on the line (2) are
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Q(—4r  + 1,11 —2,2r; + 6)

The two lines intersect if 2r + 3 = —4ry + 1;

—b5r+2=7ry —2and 3r +1 = 2r; + 6 for some values of r, r;.
Therefore 2r + 4r; = —2

—b5r—r1=—4

3r—2r =95

Solving (5) and (6), we get r =1 and r; = —1.

These values satisfy the equation (7) also.

Hence the two lines intersect. The point of intersection P is (5, —3,4) (from (3)).
The equation of the plane containing the two lines (1) and (2) is given by

r—3 y—2 z—1
2 -5 3 =0

—4 1 2
That is, 13z + 16y + 182 — 89 = 0.

Problem 2.4.11. Find the shortest distance and the equation of the line of shortest

a8 — u0 — 2z gpng

T+ z+2 __ Y z=T7
—4 6 2 1

distance between the straight lines T2 — ¥ — 2

Solution.
T2 =21 Y2~ < —2A
l my n
Iy Mo o
\/Z (ming — maony)?
Here (21,91, 21) = (—3,6,0);(z2, y2, 22) = (—2,0,7)
(I1,m1,n1) = (—4,6,2) and (ly, ma, ng) = (—4,1,1).

S.D =

Ty — T2 Y1 —Y2 21— 22 I -6 7
Now, l my n, |=|-4 6 2|=168
l2 mo %) —4 1 1

Z (m_mz — m2n1)2 = (m1n2 — m2n1)2 + (n1l2 — 7’L2l1)2 + (l1m2 — lgm1)2

=(6—2)*+ (=8 +4) + (—4 + 24)*
=16 4+ 16 4 400+ = 432

S. D — 168 _ 168 _ 14
: /432 123 V3

The equation of the line of shortest distance is
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r—x1 Y—h <2—21 r—x1 Y—UY1 <2—21
I mq n =0= ly ) ng
{ m n l m n
[ m n
where = =
ming — Moy n1l2 — n211 l1m2 — 12m1
I m n
4 —4 20
That is,
[ n
1 -1 5

Hence the equation of shortest lines is
r+3 y—6 22— r—2 y z-=7
—4 6 2 |[=0=] -4 1 1
1 -1 5 1 -1 5
Therefore 162 + 11y — 2 — 18 = 0 = 2z + Ty + z — 3 (verify)

Problem 2.4.12. Find the shortest distance between the lines Ly and Lo if
L :232 =0 =79

Ly:2v —2y+2—-3=0=2xr—y+22z-09.

Solution. Let 7 be the plane through L, and parallel to L;. Then the shortest
distance between L; and Ls is the perpendicular distance from (5,6,9) to the plane
7. The equation of 7 is of the form.

20 -2y +2—-3+A2xr —y+22—-9)=0

That is, (2+ 2Nz + (-2 =Ny + (1+2\)z— (3+9)\) =0 -~ (1)
Since 7 is parallel to Ly, the normal to 7 is perpendicular to L.
Therefore 3(2 + 2X) — 4(—2 — X) + (1 + 2X) = 0. Hence A=-2
Therefore from (1), the equation of 7 is 2x 4+ 3y + 6z = 33 = 0.

o p 25)+3(6) +609) —33 _
(22 +32 +6%)

Problem 2.4.13. Find the shortest distance between the lines
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20 —2y+32—-12=0=22+2y+=2 (1)
20 — 2 =0bx — 2y +9 - (2)

Solution. The equation of a plane containing the line (1) is

20 -2y +32— 12+ A\2x +2y+2) =0

That is, 2+ 2Nz + (=2+2 )y + 3+ A)z—12=0 -+ (3)
The equation of a plane containing the line (2) is

(2x-2)4p(bx — 2y +9) =0

We find the values of A and p such that the planes (3) and (4) are parallel. We have

242\ . —=242X __ 34X L. (5)

245 —2p -1

Taking the first two ratios in (5), we get

O\~ 3u+TA—2=0 - (6)
Taking the second and third ratios in [5], we get

A=3p+An+1=0 - (T)
From (7), we get A = %& )
Substituting (8) in (6) we get 2 (%) —3u+7 (%) u—2=0

That is, 24+ 6p — 3+ 3u? + T+ 21p* — 24+ 2u =0
That is, 24p? + 12p = 0. Hence 12u(2u+ 1) =0

Therefore =0 or p = —3

Hence from (8), we get A =1or A = —%

When A = 1,u = 0 does not satisfy (5).

Hence we take \ = —% and p = —%

Hence the planes (3) and (4) become

r—2y+22—9=0 - (9)
r—2y+224+9=0 --+(10)

The point of intersection of (9) with the z-axis is (0,0,9/2)
Therefore the required shortest distance is the perpendicular distance from (0,0,9/2)
to the plane (10) = £ ($) =

P+ (-2?+27]

Problem 2.4.14. Find the shortest distance and the equation of the line of shortest

distance in symmetrical form of the lines

x—3 y+9 _ 2—10 z—15 _ y—29 _ 2—5
3 —16 7 and 52 = =

= 3 5
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Solution. Coordinates of any point P on the first line are (3r +8, —16r — 9, 7r + 10).
Coordinates of any point g on the second line are (3s + 15,8s + 29, —5s + 5).
Let P@) be the shortes distance.
Direction ratios of PQ are (3s —3r + 7,85+ 16r +38) + 7(=5bs —7r —5) =0
and 3(3s —3r +7) — 16(8s + 167 + 38) — 5(—5s — 7r — 5) = 0.
That is, 77s + 157r = =311 (1)
and 7s + 11r = —25 - (2)
Solving (1) and (2) we get r=-1 and s=-2.
Therefore P is (5,7,3) and @ is (9,13,15).
S PQ=1/(9-5)2+ (13—=7)2+ (15— 3)2 = /16 + 36 + 144
V196 = 14.

The equations of the line of shortest distance are

=5 _ y—=7 __ z-3
5-9 © 7-13 = 3-15

That is, 2= = &) = 23

That is, 25 = &1 = 223

Problem 2.4.15. Find the distance of the point (3,4,5) from the point of

intersection of £=3 = 2 = Z2 with the plane x4y + z = 2.

Solution. We note the point A(2,3,5) is a point on the line.
Any point on the line is P(r + 3,2r 4+ 4,2r 4+ 5).
If P is the point of intersection of the line with the plane, then P lies on the plane.
(r+3)+2r+4)+2r+5) =2
or = —10. Hence r = —2.
Therefore P is (1,0,1).
Hence the required distance AP = /(3 —1)2+ (4 —0)2+ (5 — 1)2
=V/36
=6

Problem 2.4.16. Find the shortest distance between the lines %1 = % = Zf’ and

w

r—2 Yy—

_ z—4
3 7 4 T 5
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Solution.
Ta—=T1 Y2—W% 22— 2
l my ny
Iy Mo o
V2 (limy — lymy)?
Here (z1,y1,21) = (1,2,3) and (29, y2, 22) = (2, 3,4)

S.D =

To—T1 Yo— WY1 22— 21 1 11
Now, lL my ng |[=|2 3 4|=0
12 mo N9 3 4 5

Hence the lines are coplanar.

Problem 2.4.17. Find in symmetrical form, the equation of the orthogonal

projection of the line xT_l = 3%2 = Z;‘* (1)

on the plane 3x + 4y + 5z = 0. - (2)

Solution. The orthogonal projection of the line (1) is the intersection of plane (2)
and plane containing the line (1) perpendicular to the plane (2).

The equation of the plane containing the line (1) is

alr —1)+bly—2)+C(z—4)=0 -+ (3)
subject to 2a + 30+ 4c =0 -+ (4)
The plane (3) is perpendicular to (2). Hence 3a + 4b + 5¢ = 0.

From (4) and (5), we have % = % = % =k (say)

a=—k;b=2k;c=—k.

Therefore the equation of the plane (3) isx —2y+2z—1=0. -+ (6)
Therefore the required line is the intersection of the plane (2) and (6).

Now, we get the equations of the line in the symmetrical form.

Let «, 3,7 be the direction ratios of the line.

S3a+4B8+by=0and a—20+v=0

Hence the direction ratios are 7,1, —5.
The line meets the xy plane a = 0. Hence x — 2y = 1 and 3x + 4y = 0.
Solving the two equations, we get the point as (%, I—g’, 0).

2 3
. . T—F +-=
Therefore the equations of the line are —*= = yfll =%
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Problem 2.4.18. Find the condition that the lines
T+ by +ciz+diy =0 = agx + by + coz + da (1)
and azx + b3y + c3z2 +d3 =0 = agx + byy + c4z + dy - (2)

may be coplanar.

Solution. Let the lines represented by the equations (1) and (2) be coplanar. Then
(1) and (2) will have a common point say (z1,y1, 21)-

Hence it lies on all the four planes which determine the two lines.

a1y + blyl +c1z1 + d1 = 0
asxq + bgyl + coz1 + d2 = 0
azry +b3y1 + 321 +dz = 0

a4 + b4y1 +cyz1 + d4 =0

Eliminating x1,y1, z; from the above four equations, we get the required conditions as

ap by d

ay by co dy

=0
as bg C3 dg
Qg b4 Cy d4
Exercises 2.4.19. 1. Prove that the following lines are coplanar and find the

equation of the plane in which they lie.

(1) =3 __ y—=2 _ z—1., z—1 __ y+2 _ z-—6.
2 =5 3 7 —4 1 20

(ii)x—l—lz#:z—l;x—2y+2z—3:0:x—4y+52—8.

. _ _ _ _9 _ .
2. Show that the lines %8 = % = £ 710 and 315 =5 % = % are skew lines.

3. Find the shortest distance and the equation of the shortest distance between

the following skew lines

r—1 y—2 _ z—3.x—2 y—4 z—5
2

4 5

3 4 7 3

54



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

2.5 Sphere

Definition 2.5.1. A sphere is the locus of a point in space which moves such that
its distance from a fized point is constant. The fized point is called the centre of the

sphere and the fized distance is called the radius of the sphere.

We now proceed to find several forms of the equation of a sphere.

1. Centre radius form

Theorem 2.5.2. The equation of the sphere with centre C(a,b,c) and radius r is
given by (x —a)> + (y — b)? + (z — ¢) = r?.

Proof. Let P(xg,yo,20) be any point on the sphere.

Hence C'P? = r?

Therefore (xg — a)? + (yo — b)% + (20 — ¢)? = r%.

Therefore the locus of (zg, Yo, 20) is (z — a)* + (y — b)* + (z — ¢)? = 2. O

Corollary 2.5.3. The equation of the sphere with centre origin and radius r is
x2+y2—|—z2 =72
2. General form of a sphere

Theorem 2.5.4. The equation x° + y* + 2% + 2ux + 2vy + 2wz + d = 0 represents a

sphere with centre (—u, —v, —w) and radius vVu? + v* + w? — d.

Proof. The given equation can be written as
(z+u)+ (y+v)+ (z+w)? =+ +w?—d

This represents the locus of a point (z,y, z) which moves such that its distance from

the point C'(—u, —v, —w) is equal to the constant vu2 + v + w? — d

Hence the given equation represents a sphere with centre (—u, —v, —w) and radius

Vu?+ 02 +w? —d O

Note 2.5.5. The eqution ax? + ay® + az? + 2ux + 2vy + 2wz + d = 0 represents a

2

sphere with a centre (—%, - —%) and radius \/(Z—z + =+ ”2:—22 — g).

v
a a
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Note 2.5.6. The equation 2% + y? + 22 + 2uz + 2vy + 2wz + d = 0 can be denoted as
S =0 where S = 2% + y? + 22 + 2ux + 20y + 2wz + d.

3. Diameter form

Theorem 2.5.7. The equation of the sphere described on the line joining the points
A(x1,11,21) and (xq,y2, 29) as diameter is given by

(. —z1)(z —22) + (y —y) (Y —v2) + (2 — 21)(2 — 22) = 0.

Proof. Let P(x,y) be any point on the sphere with AB as diameter.

Therefore the direction ratios of AP are x — x1,y — y1, 2 — 21 and the direction ratios
of BP are x — X9,y — Y2, 2 — 2a.

Consider the circle passing through A, B and P. This circle also has AB as diameter
and hence ZAPB = 90°. [i.e] AP is perpendicular to BP.

Therefore (z — z1)(z — 22) + (y — v1)(y — y2) + (2 — 21) (2 — 22)=0

Since this is true for any point (z,y, z) on the sphere it represents the equation of the

required sphere. a

2.6 Tangent Plane

Definition 2.6.1. The straight line joining two points P and @) on a surface is called
a chord of the surface. When Q moves along the surface and ultimately coincides with
P the limiting position of P(Q) touches the surface at P and is called a tangent line of
the surface.

In the case of a sphere with centre C' there are many tangent lines at a point P on it,
all of them being perpendicular to the radius C'P. All these tangents lie on the plane
through P perpendicular to C'P. This plane is called the tangent plane of the sphere
at P.

Theorem 2.6.2. The equation of the tangent plane to the sphere
22 +y? + 22 + 2uw + 2vy + 2wz +d =0 at P(xy,y1,21) is
zry+yp + 221 +ule+x) oy +y1) +w(z+ z) +d=0.
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Proof. The centre of the given sphere is C'(—u, —v, —w). The tangent plane to the
sphere at P(z1,y;, 21) passes through P and has C'P as its normal.
The direction ratios of CP are 1 + u,y1 + v, 21 + w.
Hence the equation of the tangent plane at P is
(o1 + 0)(w — 21) + (91 + 0)(y — 9) + (21 + ) (5 — 21) = 0.
That is, xz1 + yy1 + 221 + ur + vy +wz = 23 + y3 + 27 + uzry + vy + wz
That is, xx1 +yy1 + 221 +uw(z + 1) + vy + 1) +w(z +21) +d
=2 +y? + 27 + 2uxy + 20y + 2wz +d
= 0 [since the (z1,y1, 21) lies on the sphere]

Hence the result. O

2.6.1 Angle of intersection of two spheres

The angle of intersection of two spheres at a common point is the angle between the
tangent planes to them at that point. Since the angle between the two tangent planes
at the common point is same as the angle between their normals at that point we
note that the angle between the two sphere is same as the angle between the radii of
the two spheres at the common point. Also we note that the angle of intersection at
every common point of the sphere is the same.

Suppose the two spheres S = 0 and S;=0 with centre A and B and radii r and rq,
respectively, cut orthogonally then, AB? = AP? + BP?, where P is the common
Point and AP = r and BP = ry.

Theorem 2.6.3. The condition for two spheres

S =a?+y?+ 22+ 2ur + 20y + 2wz +d =0 and

S = 2% +y® 4+ 22 + 2upx + 20y + 2wz + dy = 0 to cut orthogonally is
2uuy + 2vvy + 2wwy; = d + d;.

Proof. The centre of S =0 is A(—u, —v, —w) and radius
r=/(u?+v?+w?—d).

The centre of S =0 is B(—uy, —v;, —w;) and radius

r =/ (43 + v} +wi—dy).
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Let P be a common point.

The two spheres cut orthogonally if 7* + r? = AB?.

(u2+v2+w2—d)—|—(u%+v%+w%—dl) = (ul—u)2+(vl—v)2+(w1—w)2
= u® +uf — 2uuy + v + 0] — 200, +

w? 4+ w? — 2ww,

2uuy + 2vv; + 2ww; = d + dy O

2.7 Plane Section

Theorem 2.7.1. A plane section of a sphere is a circle.

Proof. Let a plane 7 cut a sphere of radius r» and Centre C.

Let P be a point on the plane section. We claim that the locus of P is a circle.

Let N be the foot of the perpendicular drawn from C' to the plane 7.

Therefore NP=v/C P2 — C N2 = \/r2 — C' N2 which is a constant. Hence the locus of
P is a circle with centre N and radius v/r2 — C N2. O

Note 2.7.2. The section of a sphere by a plane through its centre is known as a great

circle and the centre and radius of a great circle are the same as that of the sphere.
Note 2.7.3. The curve of intersection of a sphere by a plane is a circle. Hence a

circle can be represented by two equations one being the equation of a sphere S and

the other a plane 7. Hence S = 0 and m = 0 given together represent a circle.
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Note 2.7.4. Let S = 22 + y? + 22 + 2ux + 2vy + 2wz + d = 0 and
m=axr+by+cz+d=0. Then S+ 7 = 0 (where A is a constant) represents the
equation of a sphere passing through the circle given by S = 0 and = = 0. For,

s+ Am = 0 represents a sphere. Further S = Am = 0 is satisfied by the points common

to S=0 and 7w = 0.

Note 2.7.5. Two intersecting sphere also determine a circle. For, if S = 0 and
S1 = 0 represent two spheres then S — .S; = 0 is a first degree equation in z,y, z and
hence represents a plane.

Hence 'S =0and S —S;=0"or ’S; =0 and S — S; = 0’ determine a circle.

Solved Problems

Problem 2.7.6. Find the equation of the sphere with centre (1, —1,2) and radius 3.

Solution. The required equation is (z — 1)* + (y — 1) + (2 — 1)? = 32
That is, 22 + > + 22 — 20+ 2y — 42 — 3 = 0.

Problem 2.7.7. Obtain the equation of the sphere having its centre at the point
(6,—1,2) and touching the plane 2z — y + 2z = 0.

Solution. Since the plane touches the sphere, the radius r is the perpendicular
distance from the centre (6, —1,2) to the plane 2z —y + 2z — 2 = 0.

|20 (=D+2(2)—2| _ |12+1+4+4-2| _ 15 _
Therefore r==+ { JErCm | [ 7 } =3 =95

Therefore the equation of the sphere is (z — 6)% + (y + 1)? + (2 — 2)? = 5%

That is, 22 +y> + 22 — 120 + 2y — 42 + 16 = 0.

Problem 2.7.8. Find the equation of the sphere passing through the points (0,0,0),
(1,0,0) (0,1,0) and (0,0,1).

Solution. Let the equation of the sphere be

22+ 9+ 22 + 2uz + 20y + 2wz +d =0

It passes through the origin and so d = 0.

The point (1,0,0) lies on the sphere and so 1 + 2u + d = 0 and hence u = —1/2.
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The point (0, 1,0) lies on the sphere and so 1 + 2v +d = 0 and hence v = —1/2.
The point (0,0, 1) lies on the sphere and so 1 + 2w + d = 0 and hence w = —1/2.

Therefore the equation of the sphere is 22 +y> + 22 — 2 —y — 2 = 0.

Problem 2.7.9. Find the equation of the sphere passing through the points (1,1,2),

(—=1,1,2) and having the centre of the sphere on the line
r+y—2z2—1=0=2r—y+2—2.

Solution. Let the equation of the sphere be

22+ 9%+ 22+ 2ux + 2vy + 2wz +d =0

It passes through the points (1,1, —2) and (—1, 1, 2).
Therefore 1 +1+44+2u+2v—4w+d=0

Therefore 2u + 2v — 4w +d = —6

Similarly, —2u + 2v 4+ 4w +d = —6

The centre (—u, —v, —w) lies on the line determined by the two planes
r+y—z—1=0and2x —y+2—2=0.

Therefore —u —v+w =1

—2ut+v—w=2

(1)-(2) = 4u—8w =0

From (5), we get u = 2w.

Therefore (3) and (4) become —w — v = 1.

—Sw +v =2

From (6) and (7), we get w = —1/2 and v = —1/2.
From (3), we get u = —1 and from (1), we get d = —5.

Therefore the equation of the sphere becomes 22 +y? + 22 — 22—y — 2 — 5 = 0.

Problem 2.7.10. Find the equation of the sphere passing through the circle

2?2+ +22—4=0, 20 +4y+62—1 = 0 having its centre on the plane x +y+ 2 = 6.

Solution. The equation of the sphere passing through the circle determined by the

sphere and the plane is given by
2+ + 22— 4+ N20 + 4y +62—1) =0
That is, 22 +y? + 22 — 4+ 2 x + 4 \y + 6 2 —4— X =0
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Its centre is (A, —2X, —3\).

This centre lies on the plane x +y + 2z = 6.

Therefore A — 2\ — 3\ = 6. Hence —6\ = 6. Hence A = —1
Equation of the required sphere is got from (1) as

P+ 22 —4—-20—4y—62—3=0

Problem 2.7.11. Show that the sphere s=x* + y* + 2? + 2ux + 2vy + 2wz +d = 0
will cut the spheres Sy = 2% + y? + 22 + 2wz + 2v1y + 2wy 2 + di = 0 in a great circle
if 2uuy + 2vvy + 2wwy — (d + dy) = 2r? where 2r} where ry is the radius of the later

sphere.

Solution. The plane 7w determined by S =0 and S; =01is S — S; =0 and it is
m:2(u—u)r+2(v—v)y+2(w—w)z+d—dy =0.

The intersection of the spheres S = Oand S; = 0 will be a great circle if the centre
(—uy, —v1, —wy) of S; = 0 lies on the plane 7 = 0.

2w —u)ug + 2(v —v)vg + 2(w —wy)wy +d —dy = 0.

o 2uug + 2oy + 2wwy + d — dy — 2ud — 202 — 2wi = 0.

2 2uuy + 20v; + 2wwy = 2(ud + 02 + wi) +d — dy

=2(r? +dy) +d — dy (since 7 = u? +v? +w? — d,)

=2ri +d+d,

o 2uug + 2oy + 2wwy — (d +dy) = 212

Problem 2.7.12. Prove that the two spheres
Si=a?+y?+ 22 20 +4y —42=0;S =22+ 1> + 22+ 100 +22+10=0
touch each other and find the point of contact.

Solution. The centre of S; =0 is Cy(1, —2,2) and radius is

ro= /(1) 22+ (<2)? =

The centre of S,=0 is Cy(—5,0, —1) and radius is

vy — VETT 10 — /T6 — 4

The distance between the centres, C1Cy =36 +4+9=7=1r; + 1y

Hence the two spheres touch each other externally.
The point of contact P is the point of division of the line joining C; and Cs in the

ratios 3:4 internally.
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Y

_(3(=5)+4(1) 3(0)+4(=2) 3(=1)+4(2) | _ 11
HenceP—< 314 0 314 0 344 >_(_7’

|00
~J|ot

).

Problem 2.7.13. Find the equations of tangent planes of the sphere
2?2 + 9%+ 22 — 4o — 4y — 42 + 10 = 0 which are parallel to the plane x — z = 0.

Solution. Let (z1,y1, 21) be the point on the sphere at which the tangent plane is
drawn. The equation of the tangent plane at (x1,yi,21) is

zry+yy + 221 — 2+ x1) —2(y+ 1) —2(z+21) +10-10

That is, (z1 —2)z + (y1 —2)y + (21 — 2)z — 221 — 2y; — 22, + 10 =10

That is, (1 —2)x + (y1 —2)y + (21 — 2)z — 221 —2y; — 22, + 10 =10 (1)
This line parallel to x — z = 0.

: 11;2 — yl(;2 — 21_712 — k(say)

sr=k+2,y1=2,21=—-k+2 - (2)
Since (x1,y1, 21) lies on the sphere, we have

(k+2)24+22+ (—k+2)?—4(k+2)—8—4(—k+2)+10=0.

Sk Ak +A4+4+ K -4k +4 -4k —-8—-8+4k—8+10=0

.2k — 2 =10. Hence k = £1.

Therefore from (2), the points are (3,2,1) and (1,2, 3).

Therefore from(1), the equation of the tangent planes are z — z — 2 = 0 and

—x+2—2=0.

Problem 2.7.14. Prove that the two spheres 2 + y? + 2* + 6y + 22 + 8 = 0 and
22 +y? + 22 + 62 + 8y + 4z + 20 = 0 intersect each other orthogonally.

Solution. From the equation of the spheres, we have
u=0,v=3,w=1d=8. uy =3,v; =4,w, =2,d; =20
Here 2uu; + 2vvy + 2ww; — (d+dy) =0+ 24 +4 — (8+20) = 0.

Hence the two spheres intersect orthogonally.

Problem 2.7.15. Find the equation of the spheres that passes through the two points
(0,3,0),(—2,—1,—4) and cuts orthogonally the two spheres
S 2?4+ PP+ 240 -32=2=0,8 : 22®+ P +22)+ax+3y+4=0.

Solution. Let the equation of the sphere be
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2?2+ y? + 2% + 2ux + 2vy + 2wz + d = 0.

(0,3,0) lies on the sphere gives 6v + d = 0.

(—2,—1,—4) lies on the sphere gives —4u — 2v — 8w + d = —21.
The sphere S=0 is cut orthogonally by the sphere given by (1)
gives 2u(1/2) + 2v(0) + 2w(—3/2) = d — 2.

That is, u — 6w —d = —2

The sphere S; = 0 is cut orthogonally by the sphere given by (1) gives
2u(1/4) + 2v(3/4) + 2w(0) = d + 4

That is, u + 3v — 2d =4

solving (2), (3), (4), (5), we get u =1,v = —1,w =2 and d = —3.
Hence the equation of the sphere is

>+t + 22+ 20 -2y —42—-3=0.

Problem 2.7.16. Find the condition for the plane lx +my + nz = p to be a tangent

plane to the sphere % + y? + 2% + 2ux + 2vy + 2wz + d = 0.

Solution. The centre of the sphere S = 0 is (—u, —v, —w) and the radius is

Vu? +0? +w? —d.
The plane [z + my + nz = pis a tangent to the sphere if the perpendicular

distance from the centre (—u, —v, —w) = radius.

. —lv—mv—nw—p — 2 2 2 _
A = Ve ot e’ —d

o (lu 4+ mu +nw + p)? = (12 +m? 4+ n?)(u? + v? + w? — d), which is the required

condition.

Problem 2.7.17. Show that the plane 2x — 2y + z 4+ 12 = 0 touches the sphere
2?2 +y? + 22 =20 — 4y + 22— 3 =0. Also find the point of contact.

Solution. The centre of the sphere is (1,2, —1) and the radius is 3.(verify)
The perpendicular distace from (1,2, —1) to the given plane

: 0 2-4-1412 _ 9 _
2x-2y+7z+12=0 is o 3 3.

Thus, the perpendicular distance from the centre to the plane =radius of the sphere.

Therefore 2z — 2y 4+ z + 12 = 0 is a tangent plane to the given sphere.

The direction ratios of the normal to the plane are 2,-2,1.
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Therefore the equation of the perpendicular from the centre to the plane is
rz—2 _ y—2 _ z4+1

2 -2 1 -
Any point on this line is given by P(2r +1, —=2r +2,r — 1).

This point P is the point of contact if it lies on the plane 2x — 2y + z + 12 = 0.
Therefore 2(2r + 1) = 2(—=2r+2) 4+ (r — 1) = 12 =0.
Therefore 9r = —9 = r = —1.

Therefore the point of contact P is (—1,4, —2).

Problem 2.7.18. Find the equation of the sphere through the circle
22+ P+ 22+ 20+ 3y +52=0; 20+ 6y — 52 — 6 = 0 and passing through the centre
of the sphere S=2* +y? + 22 — 20 — 4y + 62 + 1 = 0.

Solution. The centre of the sphere S =0 is (1,2, —3).

The equation of the required sphere is of the form

2?2+ y? + 22+ 20+ 3y + 52 + AM2x + 6y — 5z — 6) =0 (1)
It passes through (1,2, —3).

Hence 14+4+9+246-154+X(2+13-6)=0

. —TA+T7=0. Hence A\=1

Therefore, from(1), the equation of the sphere is

22+ 92+ 22+ 40+ 9y + 102 — 6 = 0.

Problem 2.7.19. Find the equation of the sphere through the circle
S=a?+y?+22—4=0and S; =2*> +y* + 22 + 42 — 2y + 42 — 10 = 0 and through
the point (2,1,1).

Solution. The plane 7 determined by S =0 and S; = 0 is

S-S =—-4r+2y—424+6=0

Sm=2r—y+22-3=0

Now the equation of the required sphere is

S+Ar=a+y* +22—4+ 22—y +22-3)=0 (1)
It passes through the point (2,1, 1).

Hence 4+1+1-4+\(4-1+42-3)=0.

.20 = —2. Hence A = —1
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Therefore from(1) the equation of the sphere is
2+ 4+ —-204+y—22—-1=0.

Problem 2.7.20. The circle on the sphere 2 + y? + 2% + 6y — 10z + 23 = 0 has
centre (1,2, —2). Find its equation.

Solution. The centre of the sphere is C'(0, —3,5). The plane section of the sphere is

a circle whose centre is N(1,2, —2).

Therefore NC' is the normal to the intersecting plane. Hence d.r of NC are 1,5,-7.
Therefore the equation of the intersecting plane takes the form x+5y-7z+d=0.

It passes through (1,2, —2).

Therefore 1+10+144-d=0. Hence d = —25.

Hence its equation is z 4+ 5y — 7z — 25 = 0.

Therefore the equation of the circle is given by

24y 4+ 2246y —102+23=0=2x+ by — 7z — 25.

Problem 2.7.21. Find the centre and radius of the circle determined by the spheres
S=a?+1y?+22+10y — 42— 8 =0.

Solution. The centre of the sphere is C'(0, —5,2) and radius
R=,/02 452 + (=2)2 + 8 = /37
Let O be the centre of the circle of the determined by S=0 and 7 = 0.

Therefore C'P is perpendicular to the plane x +y + 2z — 3 = 0.
Therefore the direction ratios of CO are (1,1,2).

Hence the equation of CO are { = y—f’ = 212
Any point CO is (r,r — 5,7 + 2).
If this point lies on the plane z +y + 2z —3 =0, we have r + (r — 5) + (r +2) — 3 = 0.

Therefore 3r = 6. Hence r = 2. Hence O is (2, —3,4).
Now CO? = (0 —2)2 + (=5 +3)2 + (2 —4)? = 12
Radius of the circle = VR2 — CO? = /37 — 12 = /25 = 5.

Problem 2.7.22. If r is the radius of the circle given by
S:x? +y? 4+ 22+ 2ux + 2uy + 2wz +d = 0;7 : lw +my + nz = 0, prove that
(r2 +d)(1? + m? +n?) = (mw — )% + (nu — lw)? + (lv — mu)?
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Solution. The centre of the sphere S = 0 is C(—u, —v, —w) and radius
R=/(u®+v?+w?—d)
Let A be the centre of the circle determined by S = 0 and © = 0.

Then CA is perpendicular to the plane m = 0.

The d.r of C'A are the d.r of the normal to the plane 7 = 0 and they are [, m, n.

Therefore the equation of the line C'A are (leru) = (y;;v) = (ZJ,FLw)-

The point A is (kl — u, km — v, kn — w) for some k.

Since A lies on the plane 7, I((kl — u) + m(km — v) + n(kn —w) = 0.
k(P +m? 4+ n?) = lu+ mo + nw.

Therefore k %

Now,

= (W +v*+w® —d)—[(kD)*+ (km)* + (kn)2]
= (W +vP+w® —d)— (> +m*+n?)
= (WP+v*+w?—d)— (h;;r”;;:?g) (I +m® +n?)
(P +m*+n?) = W+ +w—d)(+m®+n?) — (lu+mo+ nw)?
(PP HmE+n?) = (P +m® 4 n?) (w40 +w?) = (lu+mu + nw)?
= (mw —m)*+ (nu — lw)* + (lv — mu)?

Problem 2.7.23. Find the equations of the spheres which pass through the circle
2y 22— 20+ 2y +42—3=0;2x +y+ 2z —4=0 and touch the plane
3r+4y — 14 = 0.

Solution. Let S=z? +y? + 2% —2x 4+ 2y + 42 — 3 =0;

T=2r4+y+z2—4=0

Then S + Am = 0 represents a sphere passing through the circle determined by S=0
and m = 0.

S=d =P+ 20+ 2+ 42— 3+ A2y +2z—4)=0.

That is, 22 + y* + 22 = 22(1 = A) +y2+ A) + 24+ X)) — (3+41) =0 -~ (1)
Center is (1 — \), =22, —4£2) and
radius is
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= (1= 22+ (B52)2 + (52)2 4 (3 + 4))
Since the sphere touches the plane 3z 4+ 4y — 14 =, the perpendicular distance from
the centre of the sphere to this plane is equal to the radius of the sphere.

B SN (R (42 4+ (344
That is, —2(5A + 15) = 54/4(1 = A2+ (2+ A2+ (4 + M) 2+ 4(3 +4))

2 100(A + 3)% = 25[(4 4 4X2 — 8A) + (4 4+ A% +4X) + (16 + A% + 8\) + (12 + 16))]
That is, 4(A% 4+ 6A + 9) = 6A% + 20\ + 36

That is, 2\ — 4\ =0

Hence A\=0or A =2

Using these values of A in (1), we get the equations of the spheres is

Pyt -2ty +2-3=0; 2® +y* + 27+ 20+ 4y + 62— 11 =0.

Problem 2.7.24. Prove that the circles
2?2+t + 22— 204+ 3y +42—-5=0;5y+62+1=0 and
2?4+ +22 -3 —4y+52—6=0; x+2y—T72=0 lie on the same sphere and find

1ts equation.

Solution. The equation of any sphere through the first circle is

2?4+t + 22204+ 3y+42 -5+ Aby+62+1)=0

That is, 22 + 32 + 22 =22+ y(3 +5A) +22(2+3X) =5+ A =0 (1)
The equation of any sphere through the second circle is

24yt + 22 -3 —4dy+52—6+N(x+2y—72)=0

That is, 2 + 2 + 22 —2(3 = N) = 2y2 = N)+2(b—7N)—6=0

Equations (1) and (2) will represent the same sphere if
3—N=2,-22-XN)=34+5\5-TN=2(24+3\);—6=—-5+ .

That is, A’ =1 and A = —1 (from the first and last equations).

Also we observe that these values of A and X satisfy the other two equations also.
Hence the two circles lie on the same sphere and its equation is

2?4+t —20-2y—22—-6=0

Problem 2.7.25. A sphere of constant radius v always passes through the origin and
meets the coordinate axes in A, B,C'. Prove that the locus of the centroid of the

triangle ABC' is the sphere 9(x* + y* + 22) = 4r?
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Solution. Let the equation of the sphere OABC' be
2?4+ y? + 2% + 2ur + 20y + 2wz +d =0 (1)
since it passes through the origin d = 0.

Hence u? + v? + w? = r?%

The sphere meets the z-axis at A.

To find z coordinate of A, we put y = z = 0 in (1) and we get 2% + 2ux = 0.
Hence x = —2u.
Hence A is (—2u,0,0). Similarly B is (0, —2v,0) and C'is (0,0, —2w)

The centroid of the triangle ABC'is (=3%, =2, =2%) = (21,41, 21) (say)

. _ _ 2u. __ —2v. _ —2w
STl = T3 = g sk = g

2 2 2 __ 47,2 2 2y 4,2
Now, 7 +yi + 27 = 5(u° +v* +w?) = gr

Therefore the locus of (z1,y1, 21) is 9(z? + y* + 22) = 42

Problem 2.7.26. A moving plane intersects the coordinate axes in A, B,C. If the
plane always passes through a fizes point (a,b,c) prove that the locus of the centre of

the sphere OABC' is % + s + g = 2.

Solution. Let the sphere OABC' be

24y + 22+ 2ur 4+ vy + 2wz +d =0 (1)
Since it passes through O we get d = 0.

The centre of the sphere is (—u, —v, —w).

The sphere intersects the x-axis at A. To find z-coordinate of A we put y =2 =0 in
(1) and we get 2% + 2uz = 0. Hence x = —2u.

Therefore A is (—2u, 0, 0).

Similarly B is (0, —2v,0) and C(0,0, —2w).

The equation of the sphere ABC' is _éu + _%U + = =1.

—2w

Since it passes through the fixed point (a, b, ¢), we have
a b c
—2u + —2v + =1

—2w

Now, let (xq, Yo, 20) be the centre of the sphere OABC whose locus we to find. Hence
(.I'(), Yo, ZO) = (_u7 -, —U}>
SLUu = —xo, v = —1Yg and w = —2
. . . a b c
Substituting in (2), we get T + 20 T 20— 1
Therefore the locus of (z¢, Y0, 20) is ¢ + 3 +£=2
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Exercises 2.7.27. 1. Find the equation of the sphere whose centre is (1,4,2) and

radius 3 units.
2. Find the centre and radius of the sphere 222 + 2y? + 222 — 20+ 4y +22+3 =0

3. Find the equation of the sphere through the circle
2?2 +y? + 2% =9;20 + 3y + 42 = 5 and the point (1,2, 3)

4. Obtain the equation of the circle lying on the sphere
22 +y? + 2% — 2x + 4y — 62 + 3 = 0 and having its centre at (2,3, —4).
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Chapter 3

UNIT 111

3.1 VECTOR DIFFERENTIATION

3.1.1 INTRODUCTION

Vector Calculus is an essential part of Mathematics background required for
study of Physics and Chemistry. There are two types of quantities which are defined
in Physics, one with direction and the other without direction. Some of the scalar
quantities are mass, length, time , volume etc. They are designated with some real
number with units. Quantities without direction are called scalars. The other kind
of quantity is vector. It has unit with direction. Some of these types of quantities
are displacement, velocity, momentum etc.

Scalar: A Physical Quantity which has magnitude only is called as a Scalar.

Ex: Every Real number is a scalar.

Vector: A Physical Quantity which has both magnitude and direction is called as
Vector.

Ex: Velocity, Acceleration.

Geometric description of vectors

We are used to describing the location of any point in the plane by choosing two
perpendicular ’coordinate axes’ (the x and y axes), and specifying the corresponding
(x,y)-coordinates of any given point. In the same way, we can describe where points

are in three dimensional space by choosing three mutually perpendicular axes, which
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we call the z,y, and z-axes. To say where some given point Pis, we travel from the
origin to P, first along the z-axis, then parallel to the y-axis, and finally parallel to
the z-axis. The distances we had to go in the z,y, and 2 directions are the x,y, and z
coordinates of our point P.

We assume that the reader is familiar with the basic results in vector algebra. We
give a brief summary of these results in the next section. We denote vectors by bold

face Roman letters.

3.1.2 VECTOR ALGEBRA

Through out this chapter i, j, k stand for unit vectors along the coordinate
axes OX,0Y,0Z respectively. If P(x,y, z) is any point, its position vector is given
by OP = zi + yj + zk.

The modulus of r is given by |r| = r = /22 + y2 + 22.

Definition 3.1.1. Let a and b be two vectors. The scalar product or dot product of a
and b is defined to be a.b = ab cos where 0 is the angle between the two vectors

when drawn from a common origin.

Note 3.1.2. (i) a-b=Db-a (i.e) dot product is commutative.
ii)a-a=la]* =a*
iii) a- b =0 if a and b are perpendicular vectors.
iv)a-b=0=a=0orb=0or aand b are perpendicular vectors.

(

(

(
(v)a-(b4+c)=a-b+a-c
(viji-i=j-j=k-k=1
(vi)i-j=j-k=k-i=0
(

Vlll) Ifa= ali + CLQj + Clgk and b = b11 + bQJ + bgk thena-b = (llbl + agbg + a3b3.

Definition 3.1.3. Let a,b be two non zero vectors. Then the vector product or
cross product of a and b is a vector perpendicular to both a and b with magnitude
absin @ where 0 < 6 < 7 is the angle between a and b and whose direction is along a
unit vector n such that a,b,n form a right handled system.

Thus ax b=absinf n.
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Note 3.1.4. (i) |a x b|=area of the parallelogram with a,b as adjacent sides.
ii) axb = -bxa (i.e) cross product is not commutate.

iii) axb = 0 if a and b are parallel.

v)ixi=jxj=kxk=0

(

(

(iv) a x (b4c) = a x b4ax ¢

(

(vi)ixj=k, jxk=i, kxi=j
(

Vlll) If a:ali -+ (Zgj —+ agk and b:bll + bQJ + bgk

i j k
then a x b = (agbg — agbg)i + ((lgbl — alb3)j + (ale - a2b1)k = | a a9 as
b by b3

Definition 3.1.5. The scalar triple product or box product of three vectors
a,b,c is defined to be the scalar a.(bxc). It is sometimes denoted by [abc].
a; as as
It can be easily verified that a.(bxc)=| by by by
G C2 C3
Note 3.1.6. a.(bxc) represents the volume of the parallelopiped formed by the

coterminous edges a,b,c.

Note 3.1.7. [abc] = [bca] = [cab]

Note 3.1.8. [abc| = -[bac]| =-[cba] = -[acb]

Note 3.1.9. The vectors a,b,c are coplanar if and only if [abc] = 0.

Result 3.1.10. l.ax (bx c¢)=(a-¢c)b—(a-b)c
2(axb)xec=(a-c)b—(b-c)a
a.c a-d

b-c b-d
4.(ax b) x (¢ x d) = [abd]c — [abc]d.

3.(ax b).(ex d)=

3.1.3 DIFFERENTIATION OF VECTORS

Definition 3.1.11. Let r=r(t)=x(t)i+ y(t)j+ 2(t)k be a vector valued function of a

scalar variable t.
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r is said to be differentiable if

i — r(t + At) — r(t)
At—0 At

exists and in this case we write

drr(t+ A - (1)
dt - At—0 At

Theorem 3.1.12. Let 7= 7(t) = z(t)i+ y(t)j+ z(t)k be a differentiable function.
Then % = z'(t)i+y (t)j+ 2 (1)k.
Proof.

de . r(t+At) —r(t)
AT

_ Alirilo lw(t + Ag5 — x(t)} - {y(t + AAti — y(t)} it {z(t + At) — z(t)} I

=2 Wi+y )i+ 7k O

Theorem 3.1.13. If u(t)=x(t)i+y(t)j+z(t)k and v(t)=X(t)i+Y(t)j+Z(t)k then

() = ud + &y,

Proof. u.v=x(t)X(t)+y(t)Y(t)+z(t)Z(t).

" %(u.v) = ()X () +2'(O)XE) +y@)Y' )+ @)Y () + 2(6)Z'(t) + 2 (t) Z(¢).
= [2(OX'() +y@®)Y'(t) + () Z'(t)] +
[#'()X(8) + Y ()Y (¢) + 2'(£) Z(1)]
dv du

= u.a + E.V

Theorem 3.1.14. L(uxv) =ux @ + &y

73



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

E %mxv)=[@®Zuwwwﬁmy4y@z@+yﬁp@m
—[(x()Z'(t) + 2" (1) Z(t) — (X (1)2'(t) + X' (t)(t))]]
+ [(z(O)Y'(t) + 2/ ()Y (1) — (X (t)y'(t) + X' (D)y(t))]k
)

= (W) Z2'(t) —y' () Z2@)]i = [(=() Z'(t) = X'(t)2(1))]]

i j k i
= | z) y@) =) [t 20 yE) @O
X'(t) Y'(t) Z'(t) X() Y(@) Z()

dv  du

= uxX—+ — X
WXy T Y

Theorem 3.1.15. d(gtu) = fdu 4 Z—’:u where f is a scalar values function f(t).

Proof is left as an exercise.
Theorem 3.1.16. < [fgh] = [fg ] + [f %h] + [¥ gh]

Proof.

d d df d
lfeh] = —{f(gxh)}=—.(gxh)+f-(gxh)
dh

df dg
_ Clexn+f(ex 2% p
g+ (gxdt+dtx )

df dg dh
= |=gh| + |f-2h| + [fg— | .
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3.1.4 Solved problems

Problem 3.1.17. If r= a cos wt + bsin wt where a,b are constant vectors and w is

a constant, prove that 7 x % = w(a x b) and 4 dtQ I+ wir = 0.
Solution.
dr :
7 = Tawsin wt + bw coswt
d*r
— = —aw’coswt — bw?sinwt
dt?
d*r 5
— = —w"(acoswt+ bsinwt
dt? ( )
G5+ -
dr : .
Now, r x - = (acoswt + bsinwt) X (—aw sin wt + bw cos wt)

= wa X bcosw?t — wb x asin® wt
= wa X beosw?t + wa x bsin® wt

= w(axb).

Problem 3.1.18. If u(t) is a vector which is constant in magnitude prove that

du
dat

u

S0 s perpendicular to u.

=0 or

du

Solution. u.u= ¢ (a constant) = 2 u 4 u.9% = (. Hence u. Ccilt =0
" (fl‘; = 0 or 2% is perpendicular to u.
Exercises 3.1.19. 1. If r = ae*! + be ! show that ¢ dt2 — w?r = 0 where a and b

are constant vectors.
2. Differentiate (r —) with respect to t.

d (r\ _ lde _ 1dr
3. Expand dt (F) Tordt rZarl
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3.2 GRADIENT

In differential calculus, we have introduced the operator . When applied to a
differentiable function f(z) it yields another functioin % %. In this section we introduce
another operatorV(to be read as del) given by

0 0 0

i 4= 4 k—.
v 18x+J8y+ 0z

Definition 3.2.1. Let o(x,y, z) be a real valued function having continuous first

order partial derivatives. We define Vi = 432 + J—E + k—“—’ Z 152

Vi is called gradient of ¢ and is denoted by grad ¢. Thus, the gradient of a

scalar function ¢ is a vector valued function.

Example 3.2.2. If p(z,y, z) = vy + yz> then

[ T R I SN

= 9%+ 2oy + 2%)j + 3y2’k

3.2.1 Geometrical interpretation

Let ¢(z,y, z) be a scalar valued function having continuous partial derivatives.
Let P(zo,yo, 20) be any point. Let ¢(zq, o, 20) = ¢

Then the equation ¢(x,y, z) = c represents a surface. Obviously (xo, yo, 20)
lies on this surface Along this surface dp = 0.
That is, ‘pdx + 9 dy —I— Sodz =0
That is, Vip.dr =0 where dr = idz + jdy + kdz.
. Vi is perpendicular to dr as long as dr represents a change from P to () where )
remains on the surface p(z,y,2) = ¢
*. Vi is normal to all the tangents to the surface at P(xq, 3o, 20)-
Hence V¢ represents the normal to the surface ¢(z,y,2) =c.

Hence the unit normal to n to the surface ¢(x,y, z) = ¢ is given by n:%
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Definition 3.2.3. Let a be a unit vector. The component of the vector V¢ in the
direction a s given by a.V¢ and is called the directional derivative of ¢ in the
direction a. This can be interpretted as the rate of change of ¢ at (x,y, z) in the

direction a

Note 3.2.4. Let P = (z,y,2) and @ = (x + Az, y + Ay, z + Az) be two neighbouring
points and As be the distance between P and Q).
dp Opdr Odpdy Opdz dr

— Vo

Th = — — —_ = —.
o ds Oxds Oyds 0zds ds

Since % is a unit vector %.Vgp is the directional derivative of ¢ in the direction of %.

" %‘f = %.Vgp has a maximum value when V¢ and % have the same directions.
Therefore the maximum value of the directional derivative takes place in the direction

of Vi and its magnitude is |V .

Equation of the tangent plane to the surface to ¢(x,y, 2) = ¢ at a point
A(z0, Yo, 20)-

Let P(z,y,z) be any point on the tangent plane whose position vector is
r =xi+yj+ zk.
A is the point of contact of the tangent plane with the surface whose position vector
is ro = xoi + yoj + 20k.
Then r-ry is a vector on the tangent plane. (V) at (zo, 4o, 20) is the normal to the
surface and hence perpendicular to the tangent plane.
At the point (xg, yo, 20), (r-r9).(Ve) =0 (1)
Since it is true for all points r on the tangent plane, (1) represents the equation of the

tangent plane.

Equation of the normal line

Let r = xi 4+ yj + zk be any point on the normal line at A(z, yo, z0) Wwhose position

vector is r = xi + yj + zk. Hence r-r( lies along the normal line at A. Hence Vy at

(20, Yo, 20) is parallel to r — rq so that at (zo, Yo, 20), (r—19) X Vo =0 - (2)
Since it is true for all points r on the normal line (2) represents the equation of

the normal.

Equation of the (i) tangent line (ii) normal plane at a given point
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A(xo, Yo, z0) of the curve which is the intersection of the two surfaces ¢(x,y,z) = ¢

and ¥ (z,y, z) = co.

(i) Let C be the curve along which the two surfaces intersect.

Let A(zo,yo, 20) be a point on C' whose position vector is 1o = xgi + yoj + 20k. Let

r = zi+ yj + zk be any point on the tangent line at A to the curve C.

Ve at (xo, Yo, 20) and Vi at (z, yo, 20) represent the normals to the surface ¢ = C}

and 1 = (5 respectively and both these are perpendicular to the tangent line at A.
Therefore r-ry is parallel to (Vi x V) at (o, Yo, 20) so that (zo, Yo, 20),

r-ry X (Vi x V1) represents the equation of the tangent line at A.

(ii) Also the equation of the normal plane at (zo, yo, 20) is given by at (xo, ¥o, 20),

(r-rg) - (Vo x Vb)) = 0.
Theorem 3.2.5. grad(p + 1) = grady + grady

Proof.

) 0 )
grad(p £¢) = V(p+y)= (i% +ja—y + k&) (o)

Op  Op | Oy Oy oY L 0y
= — +j—+k— |+ |i—+j—+k—
(lax +J8y+ 82) (lax +‘]3y+ 0z

= Vy+ V.

= grady + grady

Theorem 3.2.6. grad(yvy) = pgrady + Ygrady

Proof.

grad(gy) = Zi(%(w))_zi@%w%)
- T Lo (Ligy) o (i)

= p(VY) + (V) = ¢ grady + 1 gradyp

Theorem 3.2.7. grad (ﬁ) = (¢grad ¢ — pgrad 1) /1)*
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Proof.

0 | V5E — oo

gmd(%) - V(g)zz‘a_x@:zl[ N 8]
1 Z 0 Z o
- E[ 1¢8_i_ w(‘?x}

= (Ygrade — pgrady) [{?

3.2.2 Solved problems

Problem 3.2.8. If r is the position vector of any point P(x,y, z), prove that

grad r" = nr"2r,

Solution. Let r = i+ yj + zk. Then r? = 22 + 9% + 22

-.2r (28) = 2z. Hence 9& — 2 Slmllarly, Yand & =2

o™ or" or"
Now, gradr” = Vr" =i +3J a +k r

Ox dy 0z
or or _,0r
— n—1-"" n—1-"" knr el
iz o et 9z
= nrvt i —|—_] + k- ] = nr" % (xi + yj + zk)
= " Pr

Problem 3.2.9. If p(x,y) = log\/2% + y? show that

— (kr)k
{r-(k.r)k}.{r- (k.7 )k}

grad ¢ =
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Solution.

grad ¢ = Vlog\/ 2%+ y?> = —Vlog 24y )

B dp .0p 0O 5, 9
= 2(18x+J8y+k8z)lag(x +y°)

b)) ol

B i+ yj
(@i 4 yg)- (21 + yj)
r —zk . . .
= r— oK) (r — oK) (since r = zi + yj + zk)
r-(k.r)k

= (since k.r = z2)

{r-(k.r)k}.{r-(k.r)k}

Problem 3.2.10. Show that ¢ (a.r)=a for any constant vector a.

Solution. Let a = a1i+ asj + ask
Therefore a.r = a1z + asy + asz.
dp

0 Jyp . .
V(a.r) = <18_ +J (;; ka ) (a1 + agy + azz) = a1i+ azj + ask = a

Problem 3.2.11. Obtain the directional derivative of p = xy? + yz* at the point
(2,-1,1) in the direction of 1+ 23+ 2k.

Solution. Vo = 3% + (2zy + 23)j + 3yz°k

At (2,-1,1), we get Vo =i — 3j — 3k.

The unit vector of the given direction a is (i+2j+2k)/3.
Therefore the required directional derivative is a.Vyp = —11/3

Problem 3.2.12. Find the unit normal to the surface ¥3 — syz + 23 =1 at (1,1,1).

Solution. Let o = 23 — syz + 23 — 1.
Let n denote the unit normal to the surface.

Then n:‘v—g
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Now, Vo = (32% — y2)i — zzj + (322 — ay)k.
S Veat (1,1,1) = 2i — j + 2k. Hence n:§(2i —j+2k)

Problem 3.2.13. If Vi = 2zyz3i+ 22235 + 32%y22k then find ®(z,y, 2)
i B(1,-2,2) = 4

Solution. Vy = (ig—i —|—jg—‘§ + kg—f) = 2zy23i + 222%j + 32%y2’k.

- )
%—3 = 2223 (2)
92 = 31%yz? -+ (3)

Integrating (1),(2),(3) w.r.to x,y, z respectively we get,

D =y + f(y,2); @ = 2yz® + g(x,2); @ = 2°y2" + h(z,y)

- ® = 2%y2® + k where k is a constant.
Given ¢(1,—2,2) = 4. Hence 4 = —16 + k. Hence k = 20.
o D(x,y, 2) = 2Py + 20

Problem 3.2.14. Find the equation of the (i) tangent plane and (ii) normal line to
the surface xyz = 4 at the point (1,2,2).

Solution. Let ¢ = xyz —4
Vo =yzi+ zzj + zyk
At (1,2,2) Vi = 4i+ 2j + 2k.
The position vector of (1,2,2) is rg =i+ 2j + 2k.
(i) The equation of the tangent plane is given by (r-ry).Vp =0
S -1Di+(y—2)j+ (2 —2)k].(4i+2j+2k) =0
Ar -1 42y —2)+2—2)=0

S 20 +y+2=6
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(ii) The equation of the normal line at (1,2,2) is given by (r-rg) x Vi =0

2y —2) =2z =2)fi- [2(z = 1) —4(z = 2)j +[2(z - 1) —4(y = 2)]k =0
Equating the coefficients of i,j,k on both sides,
(y—2)=(2—2);(x—1)=2(2 — 2); (x — 1) = 2(y — 2) which can be written in

. . . . _ 92 _
symmetric form in rectangular cartesian coordinates as x2—1 = yT = 212.

Problem 3.2.15. Find the angle between the surfaces x* + y* + 2% = 29 and
2+ P+ 22 +4r — 6y —82—47=0 at (4,-3,2).

Solution. Let p(x,y,2) =22 +y*+22—-20=0

V(x,y,2) = 22 +y* + 2% + 4o — 6y — 82 — 47

Vo = 2xi+ 2yj + 22k; Vo at (4,-3,2)=8i-6j+4k

Vi = 2z +4)i+ (2y — 6)j + (22 — 8)k; Vo at (4.-3,2)=12i-12j-4k

(1)
- (2)
-(3)
- (4)

We know that the angle between two surfaces is the angle between the tangent

planes at a common point and hence the angle between the normals at that point.
Equations (3) and (4) represent the normal to the surfaces (1) and (2) at

(4,-3,2) respectively

Let 6 be the angle between the normals (3) and (4) at (4,-3,2)

Vo Vy 96 + 72 — 16
Vel V] /82 4+ (—6)2 + 42,/122 + (—12)2 + (—4)2
152 19
= = = /19/29
V1164304 /2919 /
0 = cos ! \/19/29

. cos 6

Problem 3.2.16. Determine the constants a and b so that the surface
512 — 2yz — 9z = 0 will be orthogonal to the surface ax?y + bz* = 4 at the point
(1,-1,2).

82



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

Solution. Let p(x,vy,2) = bz — 2yz — 9z and ¥ (x, vy, 2) = ax’y + bz% — 4
Vo = (102 — 9)i — 22j — 2yk and Vv = 2axi + az?j + 20zk.
Therefore at (1,-1,2), Vo =i —4j + 2k and V¢ = —2ai + aj + 4bk.
The two surfaces will be orthogonal at (1,-1,2) if the surface normals to the two
surfaces at (1,-1,2) are perpendicular.
Hence Vo.Vi =0 at (1,—1,2).
So(i—4 4 2k).(—2ai + aj + 40k) =0

Therefore —2a — 4b + 8b = 0. That is, 8 — 6a = 0 -+ (1)
Further (1, —1,2) lies on both the surfaces,
Taking (1, —1,2) = 0, we have —a +4b =4 - (2)

Solving (1) and (2), we get a = 2 and b = 3/2.

Exercises 3.2.17. 1. Find the grad ® for the following at the points indicated.
(i) (z,y,2) = 20— 47 at (a,b,0)

(ii) ®(z,y,2) = zyz at (z1,y1, 21).
2. If & = 222 + e¥/* and ) = 22%y — xy? find V(P + ¢) and V(®y) at (1,0,2).
3. Find the unit normal to the surface zy32% = 4 at (-1, —1,2).

4. Find the equation of the tangent plane at the origin to the surface
2?2 +y? 4+ 22+ 8v — 6y + 4z = 0.

5. Find the angle between the surfaces 22 + y? + 22 = 9 and z = 22 + 3> — 3 at the
point (2, —1,2).

6. Find the directional derivative of ¢ = xy + yz + zx at the point (1,2,3) in the
direction of 3i + 4j + 5k.

7. Find the directional derivative of ¢ = 4 ¢**7¥** at the point (1,1, —1) in the

direction towards the point (—3,5,6).
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3.3 DIVERGENCE AND CURL

Definition 3.3.1. Let f= fii+ fo7+ f3k be a vector valued function. The
divergence of f denoted by V.f or div fis defined by

_0fi  O0fa  Ofs . Of
VI= Ox + oy + 0z e

The curl of f denoted by V x f or curl f is defined by

B . Of . [(0fs 0Ofy (O0fi  Ofs Ofs  0fi
ot g =S o =45y - 52) +a(% - 5) -+ - %)

ik
=] 9 98 4
oxr Oy Oz
fi 2 fs

Note 3.3.2. The divergence of a vector valued function is a scalar valued function.
Note 3.3.3. The curl of a vector valued function is a vector valued function.

Note 3.3.4. If a = ayi + asj + ask the symbol a. V stands for the operator

8 8 8
a1, t G235, T a3g;-

Examples 3.3.5. 1) Letr = xi + yj + zk.
divr=Vr=14+14+1=3and curlr =0

2) Let f = 2231 — 22%y2j + 2yz'k.

Then V.f = 2% — 2222 + 8yz3 and V x f = (22* + 22%y)i + 322?j — 4ayzk (verify)

Definition 3.3.6. A vector fis called solenoidal if div f= 0.

A wvector fis called irrotational if curlf =0

Theorem 3.3.7. div (f+g) = div f+ div g.
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Proof. Let f= fii+ foj + fsk and g = ¢1i + ¢2j + g3k

. 0 0 0
div(f+g) = V.f+g = %(fl +g1) + 8_y(f2 + g2) + &(f:& + g3)

dfi  0fa  Ofs dg1 | 0g2  Ogs
(8$+8y+8z \or Ty T oz
= V.f+ V.g = divf + divg

Theorem 3.3.8. Let f be a vector valued function and ® a scalar valued function.
Then V.(@f) = (VO).f+ (V.HD
That is, div(®f) = (grade).f+ (divf) .

Proof. Let f= fii+ foj + f3k.

V.(Df) = V.(fii+ Dfoj + Bfsk)

= L@p)+ 3(%) + @)

q>%+f1 )—i—(@%‘i‘fz )+(af?’ farm )
y
0

Ox
(25

= (a—j+g—§j+g—fl€) .(f1i+f2j+f3k)+(%+%+%)¢
(V (

! or oy | 02
O).f+ (V..

Theorem 3.3.9. V.(fx g9) =g.(Vx f) — f£(V x g)
That is, div(f x g) = g.curlf — f.curlg.

Proof.

div(fxg) = V.(fxg) =) i (a(fx g))
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O
Theorem 3.3.10. div grad® = V.V = V2® where V? = 88—;2 + % + g—;
Proof. V& = 32i+ 3j+ 7k
02 920 9’9
- V.V® = = V°0.
0x? * 0y? + 0722
O

Note 3.3.11. The operator V? is called the Laplacian operator. If ® is a scalar
valued function, V2® is also a scalar valued function. If f = f1i + foj + f3k, we define
V= (V2)i+ (V)i + (V2 fa)k.

Theorem 3.3.12. curl(f+ g) = curlf+ curlg.

That is, V x (f+9) =V x g+ V x g.

Proof.

.0 . of .0
V x(f+g) = le%(f—kg):le%—l—lea—i
= Vxf+Vxg

Theorem 3.3.13. curl (fx g) = (g.V)f— (fV)g+ fdiv g— g div f

Proof.

.0 . og Og
curl(fxg)=Vx (fxg) = leg(fxg):z)x{fx%jtaxg}

= fdivg—gdivf+(gV)f—(fV)g
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Theorem 3.3.14. div curl f=V.(V x f) =0

Proof. Let f= fii+ foj + f3k

Cotoi(Y OB\ (05 K\ (0% 0%
"VXf_l(ay 82) (82 8:6) k(@x Gy)

Ofs  0fa 0 (0fi O0fs 0 (0fs 0fi
VAV x )= m%ﬁﬁﬁ*@%?ﬂﬂ*@%?ﬁﬁ
_Pfs Pfa 0*fs N *fp  Pfn  O*fi

~ Ozdy 00z Oydxr  0O0ydz 020w B 0z0y =0

Theorem 3.3.15. curl grad ® =V x (V®) =0

Proof. Vo = 1 + ‘?;I’ + M)k

L[ 0*®  O*D . 0*®  O*® 0*® 9*d
LV (Ve) =i (ayaz a 828y) - (89&82 a 3z8x> Tk ((%cay a 8y3x) B

Theorem 3.3.16. grad(f.g) = fx curlg+ g x curlf+ (£ V)g+ (g.V)f.

Proof.

grad(f.g) + Z i%(f.g) = Z i [f% + %g}
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g ., 08
> Of ( ) = D fx (lx a?) +Z(f.1)a—$
G, 0g
= fx (Zl X 8_$> -+ (Zfl%)
og G,
= fX( lX&)-f-(fZl%g)
= fxcurlg+ (fV)g (2)
Similarly, >~ (%8.g)i=g x curl f+ (g.V) f -+ (3)
Substituting (2) and (3) in (1), we get the result. O

Theorem 3.3.17. V x (®f) = VO x f+ &(V x f)

Proof.

curl(®f) = V x (f) = Z{ Xa%@f)} Z[i (g_iﬁq)gi)}
_ {Za_xz} ><f+<I>Z<1><—)

= VO xf+ ¢(V xf)

Theorem 3.3.18. curl(curlf) = grad divf — V*f
That is,V x (V x f) = V(V.f) — V*f
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Proof.
: _ (9 0k (0K _0fs\ | (9f Oh
LV = < ) <6z ax) k(ax ay>
{<%—%)~(%—%ﬂi
or Oy Jz  Ox

Pfo  0fs 32f1 32f1 .
Oydxr  0z0x 02’2

Vx(Vxf) =

- ¥

M

i) (5.2)

-2 (e ) - (3 52
- Y{gmmn- )i

= Z{aﬁ } S (v

&

I
<l

(V.f) -

Definition 3.3.19. A vector fis called a harmonic vector if V2f= 0.

Corollary 3.3.20. If f is a harmonic vector, then V x (V x f) = V(V.f)

Proof. V x (V x ) = V(V.f) — V*f = V(V.{) (since f is harmonic)

3.3.1 Solved problems
Problem 3.3.21. Find curl curl f at the point (1,1,1) if f= 2*yi+ z2j+ 2yzk

Solution.

i j k
curl f=V xf=| 2 % 2 =2z —2)i+ (2 — 29k
22y xz 2z

coeurl curl £=V x (V x f) = (22 + 2)j.

LA (1,1,1), VX (V xf) =4j
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Problem 3.3.22. Prove that divr = 3 and curl r= 0 where r is the poistion vector

of a point (x,y, z) in space.

Solution. Let r = xi + yj + zk.

divr = V.or= (1% +jg+k%) (2i+yj+ 2zk)

0 dy 0
oxr Oy 0z
8x+8y+8z L
.0 .0 0 . .
curlr = er—<1%+_]a—y+k$)><(931+y.]+2k)

= 0i4+0j+0k=0

Problem 3.3.23. Prove that div(r™r) = (n+ 3)r™. Deduce that r"r is solenoidal if

and only if n = —3.

Solution. r"r = r"(zi+ yj + zk).

codiv (r'r) = (%(mr”) + %(yr”) + %(zr”)
. nOor 1 N oy O
= r +anr £+r + ynr P + 7"+ znr 92
n n—2¢,2 2, .2 : r_zr
= 3r"+nr" (2" +y° + 2°) (since —— = — etc)

= (3+n)r"

Now, r"r is solenoidal if and only if div r"r = 0. That is, if and only if (3 +n)r" =0
That is, if and only if n = —3.

Problem 3.3.24. Show that the vector
f=(*—2>+3yz — 2x)i+ (3zz + 2xy)j + (3zy — 222 + 22)k is both irrotational and

solenoidal.

Solution. Let f= fii+ f3j + f3k where
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fi = (% — 22+ 3yz — 22); fo = (Bzz + 22y); f3 = (Bwy — 222 + 22)

g _8f1 8f2 af?)__ _ —
Cdivf= o + By + 9 242z —-2x+2=0

Also,curl £ =0 (verify). Hence f is irrotational.

Hence f is both irrotational and solenoidal.

Problem 3.3.25. If f is solenoidal, prove that curl curl curl curl f=V* f

Solution.

curl curl curl curlf = VxVxVxVxf
= V xVx[V(V.f) - V)
= V x V x (=V?*f) (since f is solenoidal V.f = 0)
= V x V x g where g = —V?f
= V(Vg) -V
= —V?g [since V.g = V.(=V?*f) = V*(V.f) = (]
= —V*(-V?)
= Vf

Problem 3.3.26. If ¢(x,y, z) is any solution of Laplace’s equation, prove that Vo is

both solenoidal and irrotational.

Solution. Since ¢ is a solution of Laplace equation, we have VZp = 0 - (1)
Now, div(Ve) = V.(Vy) = VZp =0 (by(1)). Hence Vg is solenoidal.
Now, curl(Vy) =V x (Vy) = 0 (verity)

.. Vi is irrotational. Hence the result.

Problem 3.3.27. Prove that curl(r X a) = —2a where a is a constant vector.
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Solution.

curl(r x a) = Vx(rxa):Z[ix%(rxa)}

= Z ix @ Xa+rx %
B Oz Oz
. or ) .
= Z {1 X (8_ X a)} (since a is a constant vector)

= ) [ix(ixa)] (since % — i)

= ) [(.a)i- (ia)a] = ) [(i.a)i- a
= [(i.a)i - a]+[(j.a)j - a]+[(k.a)k - a
= (i.a)i+(j.a)j+(k.a)k - 3a=a - 3a

= -2a.

Exercises 3.3.28. 1. If V¢ = (y + sin 2)i + xj + zcoszk, find ¢(z,y, 2).

2. Show that div(%) = %

3. If f = a%2i — 2y32%) + xy’2k find
(i) div £ (ii) curl f at (1,—1,1)

4. Find divergence and curl of the vector

(i) (zyz?, yza?, zzy?) (ii) (x cos z, ylogr, —2%)
5. Show that ® = ax? + by? + c2? satisfies laplace’s equation if a + b+ ¢ = 0.
6. Prove that (f x V) x r = —2f where r=xi+yj+zk.

7. Prove that the vector (i) (3y*z?, 42322, —3x2y?) is solenoidal.

(i) (22 —yz,y — zz, 2% — xy) is irrotational.

8. Let f be a vector valued function and ¢ be a scalar valued function. Prove that

div(pf) = (gradg).f+ (divf) .

9. If f = (ax + 3y + 42)i + (v — 3y + 32)j + (3 + 2y — 2)k is solenoidal, find the

constant a.

10. Prove that div (a X gmd%) = 0, where a is a constant vector.
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Chapter 4

UNIT IV

4.1 LINE AND SURFACE INTEGRALS

4.1.1 INTRODUCTION

In this chapter, introduce the concept of line and surface integrals leading to the
theorems of Green, Stokes and Gauss which express these integrals as a certain

double or triple as the case may be.

4.1.2 LINE INTEGRALS

b
Another way of generalising the Riemann integral [ f(z)dx is by replacing the

a
interval [a, b] by a curve in R®. In this generalisisation the integrand is vector valued

function f = f + 1i+ foj + fsk.

Definition 4.1.1. Let C' be a curve in R® described by a continuous vector valued
function r= r(t) = s(t)i+ y(t)j+ z(t)k where a <t < b.

Let f= fi(z,y,2)i+ fo(z,y,2)j+ f3(x,y, 2)k be a continuous function defined
i some region which contains the curve C. The line integral of f over C' denoted

by [ f.dr is defined by
e,

[ £ = [fle(t), y(0), 2002/ (0) + lo0),y(0), 201/ (0) + flat), (), 2(0) (D)t

C a

Work done by a force
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A force is said to do work when its point of application moves. When a
particle acted on by a force f, move from a point r to a neighbouring point r + Ar,
the work done in this small displacement is defined to be the scalar product f.Ar. If

the particle describes an are C, then the work done is given by the line integral [ f.dr
c

4.1.3 Solved problems

Problem 4.1.2. Evaluate [ f.dr where f= (2> 4+ y*)i+ (2* — y?)j and C is the curve
C
y = 22 joining (0,0) and (1,1).

Solution. The parametric equation of the curve can be taken as x = t;y = t> where

0<t<I1

1
/f.dr = / (£ + M1+ (¢ — t*)2¢]dt

Problem 4.1.3. If f= 2?1 — xyj and C is the straight line joining the points (0,0)
and (1,1), find [ f.dr.
loj

Solution. The equation of the given line is y = x and its parametric equaion can be

takes as x =t,y =t where 0 <t < 1.
1

L fde=[(t*—t)=0
c

0
Problem 4.1.4. Evaluate [ f.dr where f= (2? + y?)i — 2zyj and the curve C is the

rectangle in the x —y plane bounded by y =0,y = b,z = 0,2 = a.

Solution. Let O = (0,0),A = (0,a),B = (a,b) and C = (0,b) be the vertices of the

given rectangle.
Hence ff.dr: f f.dr + f f.dr + f f.dr + f f.dr
c OA AB BC co

Now the parametric equation of OA can be taken as x = t,y = 0 where 0 <t < a.
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[ fdr = [ 2dt = 5
OA

b
[ fdr = [(—2at)dt (since x = a,y =t and 0 <t < b along AB)
AB 0

=—ab?

f f.dr = — f f.dr
BC

= [(t* + b*)dt (since x = t,y = b and 0 <t < b along C'B)
0
:—(ga "‘CLbQ)
[ fdr=— [ fdr
co oc
b
= — [, 0dt
=0 (since x =0,y =t and 0 <t < b along OC)
o fdr = 3a® — ab® — (5 + ab®) 40

= —2ab?.

Problem 4.1.5. If f= (2y + 3)i + 2zj + (yz — x)k, evaluate [ f.dr along the

c
following paths C.

(i) v =2t%y=t;2=1> fromt =0 to 1.

(ii) The polygonal path P consisting of the three line segments AB, BC' and C'D
where A = (0,0,0),B = (0,0,1),C = (0,1,1) and D = (2,1,1).

(#ii) The straight line joining (0,0,0) and (2,1,1).

Solution.

ux/fm _ /ﬂm+3mp+%5+@4—%%&ﬂm

C
8 1 3 6
— 28 62 26 24T Zyod
% + +3 +7 5]0
-3 3 7 5 8
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(ii)/f.dr = /f.dr+/f.dr—|— /f.dr

P AB BC CD
1

/f.dr = /OdtzO (since x =0;y =0;z=tand 0 <t <1 along AB)

AB

0
1
/f.dr = /Odt:O (since x =0;y =t;2=1and 0 <t <1 along BC)

BC 0
2
/f.dr = /5dt:0 (since x =1l;y =1;z =t and 0 <t < 2 along CD)
cp 0
_ 212 _
= [5t*], = 10.

Hence [ f.dr = 10.
P
(iii) The parametric equation of the line joining (0,0,0) and (2,1,1) can be takes as

r=2ty=tz=twhere 0 <t <1.

1

/f.dr = /[(2t +3)2 42t + (¢ —2t)]dt

(3% + 2t + 6)dt = [t* 4+ t* + 6]}

Il
oo O\H o

Problem 4.1.6. Find the work done by the force F = 3xyt — 523+ 10xk along the
curve C, x = 2,y = 2t2, 2 = 3 from t=1 to t=2.

Solution. F.dr = (3zyi — 5zj + 10zk).(dxi + dyj + dzk)
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= 3xydr — S5zdy + 10zdz

C

Total work done /F.dr = /3xydm — bzdy + 10xdz
C
2
3(t2 + 1)(2%)2tdt — 5t3(4t)dt + 10(t* + 1)(3t?)dt

[(12¢° + 12¢%) — 20t* + (30t* + 30t2)]dt

I
— — mS—

(12° + 10t* + 12° + 30¢2)dt
1
= [2t° +2t° + 3t* + 10£°)3

= 320 —-17 =303

(4,2)
Exercises 4.1.7. 1. Evaluate [ f.dr where f = (v 4+ y)i+ (y — x)j along
(1,1)
(i) the parabola y* = x;

(ii) The straight line joining (1,1) and (4,2).

2. Evaluate [ f.dr where f = (22 —y +4)i+ (5y + 3z — 6)j where C is the
boundary of the AABC in the x — y plane with vertices at A(0,0), B(3,0) and

C'(3,2) traversed in anticlockwise direction.

3. If f= (2 — y®)i+ 2xyj evaluate [, f.dr along the curve C' in the x — y plane
given by y = z* — z from the point (1,0) to (2,2).

4. If £ = (3z — 2y)i + (y + 22)j — 2k evaluate [ f.dr from (0,0,0) to (1,1,1) where
C is a path consisting of
(i) the curve z = t,y = t?, 2 = t3;

(ii) the straight line joining (0,0,0) to (1,1, 1).

5. Find the total work done in moving a particle in a field of force
F = 2xyi — 3zj — 52k along the curve . = t,y = t* + 1 and 2z = 2t*> from t = 0
to 1.
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4.2 SURFACE INTEGRALS

Definition 4.2.1. Consider a surface S. Let n denote the unit outward normal to the
surface S. Let R be the projection of the surface S on the x —y plane. Let f be a
vector valued function defined in some region containing the surface S. Then the

surface integral of f over S is defined to be

//f.ndS:/ ’J;:;‘dx dy

S R

Note 4.2.2. We can also define surface integral by considering the projection of the

surface on the y — z plane or z — x plane.

4.2.1 Solved problems

Problem 4.2.3. Fuvaluate [[ f.n dS where f= (z + y*)i — 2xj+ 2yzk and S is the
S
surface of the plane 2z 4+ y + 22 = 6 in the first octant.

Solution. Let ¢(x,y,2) =2x +y+22—6

The unit surface normal n = ‘gf; — 2ifj+2k

3
fn = %[Q(x +y?) — 27 + 4yz)]
_ %[2(1- +y%) — 22 + 2y(6 — 22 — y)]
4
— §[3y — zy]

f.
Therefore ﬁ: 2(3y — zy)
The projection of the surface on the x — y plane is the region R bounded by

the axes and straight line 2z + y = 6 as shown in figure.
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Y

O (3,0) X

//f.n s = /2(3y—wy)dxdy

S R
3 6—2z

=2 [ ey ayiyis

1 —2x
= 2] 3/2—51'192]8 *dx

DO W

= 2 [%(6 —27)% - %x(6 —27)%dx

S, O — .,

= [-18(3?%) — 3* +8(3%) + %(63)]

= &1

Problem 4.2.4. Evaluate [[(V x f).n dS where f = y*i+ yj— xzk and S is the
S

upper half of the sphere x? + y* + 2% = a® and z > 0.

Solution. Let p(x,y,2) = 22 +y* + 2% — a?

The unit surface normal n is given by

Ve 2zit2yj+2:k

Vel T o fagyrg 2
=(1/a)(zi+ yj + zk).

Also V x f = zi —2yk

s AV xf)n=(1/a)(yz — 2yz) = —(1/a)yz

Also, n.k=(1/a)z

n
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The projection of the surface on the & — y plane is the circle 22 + y? = a?. Let R
denote the interior of the circle.
o JJ(V x £).ndS = — [[ ydzdy
S R
Put  =rcosf and y = rsinf. Hence |J| =r
21 a 2

S Jf(Vx£)ndS =— [ [rsinfrdrdd = — [ 3asin6df =0
00 0

Problem 4.2.5. Evaluate [[ f.n dS where f= (2* — yz)i — 22%yj+ 2k and S is the

surface of the cube bounded by x =0,y =0,z =0,z =a,y = a and z = a.

Z
- D
E
G
O X
/A F
Solution. On the face OABC, n = —i and =z = 0.
//f.n as = //yzdydz
OABC 00
r1
= /§a22dz
0
1
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On the face DEFG,n=iand z =a

.'.//f.ndS = /a/a(a3—yz)dydz

DEFG

On the face OGDC, n = —j, y = 0.

.'.//f.ndS—//dedZ—O
0 0

OGDC

On the face AFEB, n=jand y = a

a

a a 2
// f.n dS = //—2:U2adxdz = /—2x2a2dx: —§a5
0

AFEB 0 0
On the face OAFG, n= —k, and z =0

// fn dS = //—dedy = —2a®
0 0

OAFG
On the face CBED, n =k, and z = a

// f.n dS://—2dxdy:2a2
00

CBED

1 1 2 1
.'.//f.n ds = Za4+(a5 - Za4) +0— §a5 —2a* + 2a* = §a5

S

Exercises 4.2.6. 1. Evaluate [[(2? 4 y?) dS where S is the surface of the cone
s

2% = 3(2? + y*) bounded by z = 0 and z = 3.

2. Evaluate [[f.n dS where f = zi+ zj — 3y®zk and S is the surface of the
S

cylinder 22 + y? = 16 included in the first octant between 2 = 0 and z = 5

101



Manonmaniam Sundaranar University D.D. & C.E. II B.Sc. Mathematics

3. If f = 4wz — y*j + yzk, evaluate [[f.n dS; S is the surface of the cube
s
bounded by z =0,z =1,y =0,y =1,2=0, and z = 1.

4. Evaluate [[ A.n dS where A = 18ai — 12j + 3yk and S is that part of the plane
S
2z 4 3y + 62 = 12 which is located in the first octant. That is,

x>0, y>0, 2>0.

5. Compute [ £.dS, where f = z?yi + y*j + 2k over the cylindrical surface,
S

22 +1y? =4, 0 < z <5 included in the first octant.

6. Compute [ f.dS, where f = yi+ zj + zk over the cylindrical surface,
5

2?2 +9y? = a?, 0 < z < h included in the first octant.

7. Compute [ £.dS, where f = yzi+ zzj + zyk over the entire surface of a sphere
S
2 +yP 4+ 22 =4

8. Compute [ £.dS, where f = yzi+ zzj + xyk over the surface of a sphere
S

22 + 3% + 2% = 1 which lies in the first octant.

9. Compute [ f.dS, where f = y?z%i + 2%22j + 2%y’k over the surface of a sphere
s
2% 4+ y? + 22 = 1 above the zy-plane and bounded by this plane.

10. Compute [ f.dS, where f = yzi+ zzj + xyk over the entire surface of a sphere
5
224+ + 22 =4

11. Compute [ f.dS, where f = zi+ yj + zk over the surface of triangular plane
s
with vertices (1,0,0), (0,1,0) and (0,0, 1).

4.3 volume integral

A triple integral of a function define over a region D in R? is denoted by

SIS f(z,y,2) dv dy dz o [[[ f(z,y,2) dV or [[[ f(z,y,2) d(z,y,2).
D D D
The triple integral can be expressed as an iterated integral in several ways. For

example, if a region D in R? is given by
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D:{(I,y,z)|a <z < b7 ¢1<I> < Y < ¢2(x)7¢1($7y) <z< 1/)2([5,3;)}
then
a ¢2() P2 (z,y)

[ f(x,y, 2)dedydz== [ [ [ [f(z,y,2)dzdydz.
D b ¢1(x) Y1(z,y)

Note 4.3.1. [[[ dzdydz represents the volume of the region D.
D
log a = z+y

Problem 4.3.2. Fvaluate I = [ [ [ """ dzdydx.
0 0 0

Solution.

h= / / [ rt=]g ™ dyda
0 0

4 3 2z
= / [% — 62 + em] dx
0
[ pde 32t log a
L 8 4 0
a*  3a? n 3
— _—— — a — —
8 4 8

132
Problem 4.3.3. Evaluate [ [ [ xy*dzdydx
011
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Solution.

2

13 2 3
///xyZdzdydx = /xda@/gfdy/zdz
01

1

Problem 4.3.4. Express the volume of the sphere 2 + y* + 22 = a® as a volume

integral and hence evaluate it.

Solution. Required volume =2x volume of the hemisphere above the xoy-plane.

/a2 —x2—qy2
a ) a?—x?—y

Va2
Required volume = 2 / / / dzdydx
Va0
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Taking a® — 22 = b?, when integration with respect to y is performed.
g g

a

b
V = 2//\/62—y2dydx

—b —b

a

b
= 4 / V0? — y?dydz [since 1/b? — y? is an even function of y.]

—a 0

a b2 b
= 4/(% bQ—y2+§sm—1%)0dx

Problem 4.3.5. Evaluate [[[(x+y+ z) dedydz where V is the region of space
inside the cylinder x + y* = a® that is bounded by the planes z = 0 and z = h.

Solution. The equation 22 4+ y* = a? (in three dimensions (that is in space))
represents the right circular cylinder whose axis is the z-axis and base circle is the

one with centre at the origin and radius equal to a.

a Va?—z? h
I = / / /(x +y + 2)dzdydz
0 _yar? 0
a Va2-z? )
= / / [(x +y)h + ?} dydx
Yoy
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[by using porperties of odd and even functions]

= 2h/(x+g) va? — x2dx

—a

= 2h2/\/a2 — 22dx
0

[since xv/a? — 22 is odd and va? — 22 is even]

2 a
_ o (gm N %sm15>

a/y

za2h2
2

r+y+2+1)
planest =0,y =0,z=0andr+y+2+1=1.

Problem 4.3.6. Evaluate I = fff( drdydz 5 where D is the region bounded by the
D

Solution. The given region is a tetrahedron. The projection of the given
tetrahedron in z — y plane (z = 0) is the triangle bounded by the lines x = 0,y = 0

and z + y = 1 as shown in the following figure.

(0,1

(00) .0

in the given region x varies from 0 to 1. For each fixed x,y varies from 0 to 1 — x. For
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cach fixed (z,y), z varies from 0 to 1 —z — y.

[ /// dz dy dx
B (r+y+2z+1)3

/ (z+y+2+1)" }1xmdydx
0

[— —(z+y+ 1)2} dy dx

r 1—x
y+(:)s+y+1)_1] dzx
L4 0

1 [[1—2 1 »
== —§ 4 +§—(CL’—|—1) :|dCL’
0
1 [z 22 !
S A A |
2{4 gt og(z + )L
1 5)
- - 9_ =
51092174

Problem 4.3.7. Evaluate I=[[[ zyz dz dy dz where D is the region bounded by the
D

poisitve octant of the sphere 22 + y* + 2° = a®.

Solution. The projection of the given sphere x — y plane (z = 0) is the region
bounded by the circle 2 4+ y? = a? and lying in the first quadrant as shown in the

following figure.

(0.3)

0.0 (a0)

In the given region x varies form 0 to a. For a fixed z,y varies from 0 to
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va? —z?. For a fixed (x,y), =z varies form 0 to y/a? — 22 — y?

2242
a VaZ—z2Z\/a*—z*—y

1 = / / / xyz dz dy dx
0 0 0

a Va?—x?
/ / vy (a* — 2* — y?)dydx

DO | —

O =

o 0
/ v (a® — 2?) dx [verify]
0

a

-]

&% Sl

Exercises 4.3.8. 1. Evaluate [[[(2? + y* 4+ 2*) dz dy dz where D is the region
D
bounded by the planes z +y + 2 =a;x = 0;y = 0; and z = 0.

2. Evaluate [[[2?yz dx dydz where D is the tetrahedron bounded by the planes
d
Jé—{—%—l—i: l; 2 =0,y =0; and 2 = 0.

3. Evaluate [[[zyz (2% 4+ y? + 2?) dx dy dz where D is the positive octant of the
D

sphere 2% + y% + 2% = a%.

4. Compute [f.dV where f= 2zyi — zj + y?k and V is the region bounded by the
v

surfaces t =y=z=0;and v =y =2z = 1.

5. Compute [ f.dV where f = 2zyi — zj + y’k and V is the region bounded by the
v

surfaces ¢ = 0,y = 0,y = 6,2 = 2%, and 2 = 4.

6. Compute [ f.dV where f = zi+ yj + zk and V is the region bounded by
v
r=0,y=0,2=0and 2x 4+ 2y + z = 4.

7. Compute [ £.dV where f = 4zi — 22j + 22k and V is the region bounded by the
v

coordinate planes and the planes r =y =z = 1.
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Chapter 5

UNIT V

5.1 GAUSS, STOKE’S AND GREEN’S
THEOREMS

We state without proof the following theorems which connects line and surface

integrals with double or triple integrals.

Theorem 5.1.1. (Green’s Theorem in Plane)
If R is a closed region of the x-y plane bounded by a simple closed curve C and if M

and N are continuous functions of x and y having continuous partial derivatives in R

then [, M dx+ N dy = [[. (%—JX — %—]‘j) d dy

C' 1is traversed in the anticlockwise direction.

Theorem 5.1.2. (Stoke’s Theorem)
If 8 is an open two sided surface bounded by a simple closed curve C and f is a vector

valued function having continuous first order partial derivatives then

Jof - dr= [[(V x f) ndS where C is traversed in the anticlockwise direction.

Theorem 5.1.3. (Gauss Divergence Theorem)
If V is the volume bounded by a closed surfaces S and f is a vector valued function

having continuous partial derivatives then ffs findS= fffv V.fdV
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Note 5.1.4. In cartesian form, the Gauss divergence theorem can be written as

[fs fr dy dz + fo dz dx + f5 do dy = [[], (afl + 8f2 + af?’) de dy dz

Note 5.1.5. Green’s theorem in space is same as Gauss divergence theorem.

5.1.1 Solved problems

Problem 5.1.6. Verify Green’s theorem for the function
f= (22 + y*)i— 2xyj and C is the rectangle in the xy-plane bounded by
y=0,y=b,2=0 and r = a.

Solution. Let f= (2 + y?)i — 2xyj = M(z,y)i + N(x,y)j where M (x,y) = 2* + *
and N(z,y) = —2xy.

J(Mdx + Ndy) = [ f.dr =—2ab?
c c

Now, ¥ _ OM _ _ (99 4 2y) = —4y

) Ox Jy
ON OM r /
// (———) dedy = —4//ydmdy:—4/aydy
0 0 0

= —2ab°.

// (a—N - a—M) dady = /(Mda: + Ndy)

c

Hence Green’s theorem is verified.

Problem 5.1.7. Verify Green’s theorem for the function
f=(z —y)i—2%j and C is the boundary of the square 0 <z < 2,0 <y < 2.

Solution. Let f= (v —y)i — 2%j = M(x,y)i+ N(z,y)j where M (z,y) = x — y and
N(x,y) = —a°.

[(Mdz + Ndy) = [ f.dr
c C

The boundary C' is split into four smooth curves
Ci(y =0), Cy(x=2), Cs(y =2), Cy(z =0), which are traversed in anticlockwise

direction.
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'y
Cs
(0,2) - (22
04 \ R / 02
(1) m— 20) X

[(Mdz + Ndy) = [(Mdz + Ndy) + [ (Mdz + Ndy)+

C Cq Ca
[(Mdx+ Ndy) + [(Mdx+ Ndy).
Cg C’4

On the curve C, we have

[(Mdz+ Ndy) = [((x —y) dz — 2* dy)
C1 C1

2
= [ zdr=2.

=0

On the curve Cs, we have

[(Mdz+ Ndy) = [((x —y) dz — 2* dy)
C> Ca

2
=—4 [ dy=-8.
y=0

On the curve C3, we have

Cf(Md:c—i—Ndy) :éf((x—y) dr — 22 dy)

(
= [ 2—-2)dx=2.
=0

On the curve Cy, we have

[(Mdz+ Ndy) = [((x —y) de —2* dy) =0
Cy Cy

Hence [(Mdx+ Ndy) =2—-8+2+0=—4
c
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Now, &N _OM _ 95 — (—1) = -2z + 1.

-
e -

Hence Green’s theorem is verified.

2
/1—23: dr dy = —
0

(Mdz + Ndy)

Qe O,

Problem 5.1.8. Verify Green’s theorem for [(—y*dx + x3dy) where C is the
c

boundary of the circular region x® + y* = 1.

Solution. To compute the given integral, we parameterize the circle as follows:

r=cost, y=sintt, 0<t<2m

Y
N~ C
R
\
X’ O X
/Y’
27
Therefore [(—yPdx + 23dy) = [(sin* t + cos* t)dt
c 0
2T
=/ ( + cos 4t) dt
0
= [2t + Lsin 4ﬂ
3

It is given that M = —y3 and N = 2. Therefore

[ (-50)- e
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1
:12/[3:2\/1—5624-%(1—:62)3] dx
0

Using the substitution z = sinf, we get

/ 1
= 12/ [sm2900520 + 300549} df
0
[ 2 2 Iy
= 12/ l(l — cos“0)cos"0 + 3608 0} do
0

=12 [00529 — 200349} df

o
[NIE

1 1 1
1 + 6005 20 — ﬁcos 49] do

Il
-
[\
O\MH
—

_ 3w
)
From (1) and (2), Green’s theorem is verified.

Application of Green’s theorem to find area.

Let M =0 and N = x. Then by Green’s theorem, we have
[[ dz dy = [z dy.

R C
The integral on the left is the area of the region R. Let it be denoted by A.
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Similarly, we assume that M = —y and N = 0. Again by Green’s theorem, we find
that

]f%f dxdy:—gydx. - (2)

From (1) and (2), we get
2A= [[ dady= [xdy— [y dz.
R C C

Az%(fxdy—fydx).
C C
2
Problem 5.1.9. Find the area of the ellipse 2—; + %—2: 1 using Green’s theorem.

Solution. From the above discussion, the area of the ellipse is given by
A= [z dy— [y dx,
c c

2 2
where C is the ellipse & + zé—gz 1.

a

Its parametric equations are x = a cos t, y=0bsint, 0 <t <2m. Thus

A:% /xdy—/ydx

C c
27
/ab(coth + sin’t)dt
0
2
Ly

2
0

= mab

Problem 5.1.10. Using Green’s theorem, evaluate fc(xy — 2%)dx + d*ydy along the
closed curve C formed by y=0,x =1, and y = x

Solution. Green’s theorem is [ Mdx + Ndy = [/, <% — %—Aj) dx dy
C
Here M = xy — 2? and N = 2%y

oM

_ AN _
- Dy = and - = 21y
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(1,1)
y=X
R x=1
(0,0) y=0 (1,0

By Green’s theorem [(zy — 2?)dx + 2*ydy = [[(2zy — z)dzdy
C R

where R is the region enclose by C (refer the above figure)

1
1
Now, //(ny—x)dxdy = // (2zy — x)dzdy
R o Y
1

Hence from (1), we have [, (zy — 2?)dz + 2*ydy = —

_g_£+£T
216/,
1 1 1
_____ +6

L
12°

Problem 5.1.11. Using Green’s theorem, evaluate fC(a:dea: + 1y3dy) where C is the

closed path formed by y = x and y = x> from (0,0) to (1,1).

ox oy

Solution. Green’s theorem is [ Mdx + Ndy = [[ (B—N — a—M) dxdy
C R

Here M = 2%y and N = o3

. ON _ oM __ .2
.%—Oand ay—:)?

By Green’s theorem [(z?ydx + y*dy) = [[(—2?)dzdy
C R

where R is the region enclosed by C' (refer the figure shown below) .
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[ tyiay -

Hence from (1), [(z?ydx + y*dy) = —15
c

Problem 5.1.12. Verify Stokes theorem for the vector function
f=v*+vyj— xzk and S is the upper half of the sphere % 4+ y? + 22 = a? and z > 0

Solution. We have already proved that [[(V x f).n ds =0 Now the boundary C
s

of the hemisphere is given by the equations x = acosf,y = asinf,z =0,0 < 6§ < 27

/f.dr = /dex +ydy — xzdz

C c
2

= /[a2 sin? f(—asin @) + asin 6(a cos §)]df

0
2w 2w

= - / sin® 0df + a* / sin 6 cos 6d0
0 0
= 0 (verify)

C/f.dr = [/(V x f)ndS =0
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Hence Stoke’s theorem is verified.

Problem 5.1.13. Verify Stoke’s theorem for f= 2z — y)i — y2%j — y*2k where S in
the upper half surface of the sphere % +y* + 22 = 1 and C' is its boundary.

Solution. Stokes’s theorem is [f.dr = [[(V x f)n dS
c s
Here S is the hemisphere 22 + 3%+ 22 = 1 and C is the circle 22 +y?> = 1,2 = 0

We find /f.dr = /[(2x — )i — y2%j — y?2K].(dxi + dyj + dzk)
C c
= /(2:10 —y)dz (since C' lies on z = 0)

C
2

= /(2 cosf — sin 6)(— sin 0d6)
0

(using parametric equation of the circle % + y* = 1)
2w

= /[— sin 20 + sin 0]d6

cos20 1 sin 20\ 1> _ .y 1 — cos 26
= +-(0— since sin“f = ———
2 2 2 2

We evaluate f f curl f.n dS
S

i i K
= 9 9 9
CUT‘lf ox oy 0z

20—y —yz® —yz

= i(—2yz+2yz) —j(0)+k(O0+1) =k

The unit surface normal n = ‘g—a where
o=a4+ 1P +22-1=zit+yj+zk

soecurl fn=k.(zi+ yj+ zk) =z
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The projection of S on zy plane is the circular disc R with centre origin and radius 1.

o Jfetos < [f e [f
_ é/z(dazzdy>

= / / dxdy = Area of the unit circle.
R

= 7
Hence Stoke’s theorem is verified.

Problem 5.1.14. Verify Stoke’s theorem for f= (x* — y?)i+ 2xyj in the rectangular

region r = 0,y = 0,x = a,y = b.
Solution. Stoke’s theorem is [f.dr= [[(V x f).ndS
c s

Let O =(0,0), A = (a,0), B = (a,b),C = (0,b) be the vertices of the given rectangle.

.'./f.dr: /f.dr+/f.dr+/f.dr+/f.dr
C OA AB BC co

Therefore the parametric equation of OA can be taken as x =t,y = 0 where 0 <t < a

.-.Oj;‘ fdr = [ dt = <

AB

b

/f.dr = /Qatdt (since x = a,y =t and 0 < t < b along AB)

0
ab?

a

/f.dr =— / fdr = — /(t2 —b?)dt (since v =t,y =band 0 <t < a along CB)
BC CB 0
_ - + ab®
3
b
/f.dr = —/f.dr:—/Odt
co oc 0

(since x =0,y =t and 0 < t < a along OC)
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a’ a’
Thus /f.dr = — +ab® — — + ab® = 2ab?

3 3
c
i j k
— 0 o 0 | —i(0) —; _
Now, curl f= = 3 55 | i(0) —j(0) + k(2y + 2y) = 4yk

22 —y? 22y O

// curl fn dS = // curltn )y
In.k|
S R

Here the surface S denotes the rectangle and unit outward normal n is k.

0b)= (@b
y=h S
(a0)
0 [0.0 y=0 A

b
//curl f.ndS = /
S 0

b

0/

That is, [[ curl f .n dS = 2ab?
S
Thus, from (1) and (2), Stoke’s theorem is verified.

Problem 5.1.15. Fvaluate by using Stoke’s theorem

[(yzdz + zxdy + xydz) where C is the curve 2* + y* =1,z = y*.
c

Solution. We note that
yzdr + zxdy + vydz = (yzi + zzj + zyk).(idz + jdy + kdz)
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=f.dr where f = yzi 4+ zzj + zyk and dr = idz + jdy + kdz
o [(yzde + zady + wydz) = [f.dr = [[(V x f).ndS

¢ C S
But V x f =0 (verify)

- [(yzdz + zxdy + xydz) = 0
c

Problem 5.1.16. Evaluate [(e“dx + 2ydy — dz) by using Stoke’s theorem where C' is
the curve x? +y*> = 4,2 = 2.C
Solution. [(e*dx + 2ydy — dz) = [ f.dr where f=e"i 4 2yj — k and
dr = dxi + dcg;j + dzk. ¢
= [[(Vx f).n dS (by Stoke’s theorem)
where S is any surface whose boundgry is given by 22+ y? = 4 and z = 2.

Now, Vx f=0 (verify)

.'.//(fo).ndS:O

S

/(e""”dx + 2ydy — dz) =0
C

Problem 5.1.17. Using Stoke’s theorem, compute [ f.dr, where
o

f=0G =y +z2x—ay)i+ (22 — 22 + oy —y2)j+ (y* — 2° + yz — zx)k which is defined
i a region of space including a surface S whose boundary C' is the triangle with

vertices (1,0,0), (0,1,0), (0,0,1).

Solution. By Stoke’s theorem, [f.dr = [[(V x f).ndS.
c S

Given surfaceis o =z +y+2—1=0.

Vo _ itjtk
[Vl V3 o

curl £=3(y+ 2)i+ (v + 2)j + (x + y)k. Therefore

/f.dr = //(v x f).ndS.

c

://6(9c+y+z) dx dy

Ray

1=
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:6//dxdy

Ry

60/1
:6/1(1—:5)659;

=3

—_

—x

dy dx

o\

Problem 5.1.18. Verify Gauss divergence theorem for the vector function
[ = (2% —y2)i— 22%yj + 2k over the cube bounded by x =0,y =0,a =0,x = a,y = a

and z = a.

Solution. .. gf f.n dS = £a® (refer problem 4.2.5 of section 4.2)
Now V.f=32? — 222 = z?

/V/ VidV =

o\

1
//xgdzdydx:§//dydz
0 0 0

forie= L
[[nes - /}/Wx e

S \%4

W =

Hence Gauss divergence theorem is verified.

Problem 5.1.19. Verify Gauss divergence theorem for the vector function

f=vyi+ xj+ 2°k for the cylindrical region S given by x*> +y* = a*;2 =0 and z = h;

Solution. V.f=2z

/V/ Vidv =

2 a

/ / 2zrdrdfdz (changing into cylindrical coordinates)
00
2

™

o\: o\,:

/a2zd6dz = /2@27rzdz = ma’h®
0
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The surface S of the cylinder consists of a base S7, the top Sy and the curved
portion Sj.

On S;, z =0, n = —k. Hence f.n = 0. HencefffndS—O
On Sy, 2 = h, n = k. Hence ff fndS = ffh2 dx dy (where D is the region

bounded by the circle 22 + y* = a?) = wh?a 2

\Y
On S5, n |V—S0| where ¢ = 2% 4+ % — a?
2xi+2y;  wi+tyj
2/ 2% + a
Now n.j = %.
f.n
—_— = 21’
n.j]

b
2m
//fndS = //2xdydz=a2// 2cosfdfdz =0
R o 0
//fndS = //f.nd8+// f.ndS—I—// f.n dS
Sa S3
S1

= 7h%d®

// Vidv = //f.ndS:Wh2a2
1 S

Problem 5.1.20. Verify Gauss divergence theorem for
f=(2*—y2)i+ (y* — zx)j + (22 — 2y)k taken over the rectangular parallelopiped,
0<z<a,0<y<bho<z<ec.

Solution. We first evaluate [, f.n dS, where S is the surface of the rectangular
parallelepiped given by 0 < x <a,0 <y <b0,0< 2z <c.

It has the following six faces OABC (zz plane); OAFE (z — y plane);
OEDC(yz plane); DEFG(opposite to xz plane); AFGB(opposite to yz plane);
BCDG (opposite to xy plane).
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Y

On the face OABC, we have y =0, n=—j,0<z <a,0< z<c.

//f.n ds = /a/C[(:c2—Oz)i+(0—zx)j+(22—0x)k].(—j) dz da
] feata
= O/x{z—z]:dx

On the face DEFG we have y=b,n=j,0<zr<a,0<z<c

a C a 2233 c
// fndS = //(b2 — zx)dzdx :/ [622 - 7} dx
DEFG 0 0 0 0
Y 2 22
= / e — —x | de = |[bPexr — ——
2 1,
0

= ab’c— ~c*a?

On the face OAFE, we have 2 =0, n= -k, 0 <z <a,0 <y <b.

a

a b
2 272
'.//f.ndS://xydydx_/{x%] dx:%
0

OAFE
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On the face BCDG, we have z=¢c,n=k, 0<2<a,0<y<b

" //f.n as

BCDG

Similarly, we can prove that

b

//(02 — xy)dy dz
0 0
F b2 2b2
/ [c2b — x—} dx = ac*h — ——
2 4

0

2,2
//fndS—and //fndS—ach—bT

OEDC

ABGF

2 2 1 252 Qb2 b2 2 b2 2
//fndS— aT+<ab20— Zc2a2>+aT+(a021)— GT)+TC+ <a2bc— Tc)
s

= ab*c+ ac®b + a’be

= abc(a+b+c) (1)

Now V.f= 2z + 2y + 22

// (V.f)dV = /// (x+y+2) dzdydx—Q//(xc+yc+ )dydx

000
2 2 2 2 2
= 2/ (xbc+b—+—b>dx:2{ bc—i—bca—kcba}
; 2 T2 )
= abcla+b+C) - (2)

Therefore from (1) and (2), we get [[ fon dS=[[[(V.f) dV
v

s
Hence Guass divergence theorem is verified.
Problem 5.1.21. Fuvaluate [[ zydydz + y*dzdx + yzdxdy where S is the surface
S

2+ yt+ 2t =d?

Solution. Comparing with the cartesian form of Gauss divergence theorem, we have
fi =zy; f2 =y fs = yz so that f = ayi +y%j + yzk.
Vi=y+2y+y=4y.
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By Gauss divergence theorem

[[(xy dy dz + y* dz dx + yz dx dy) = [[[ dydedyd=z
S 1%

where V' is the volume enclosed by the surface of the sphere

a Va2—g? Va?—z2-22
= 4/ / / y dy dz dx
S Y - Y
o Vi a?
/ 0 dz dz (since y is an odd function)
PR

:4/

—a _

= 0

Problem 5.1.22. Prove that for a closed surface S, [[r.n dS =3V, where V is the
S

volume enclosed by S.

Solution. By Gauss’s divergence theorem [[r.ndS = [[[ V.rdV
1%

=3 [[[ v since =3
v

= 3V where V is the volume enclosed by S.

Problem 5.1.23. Show that [[ f.n dS = [[[ a*dV where r = pa and a = Vi and
v
Vo =0.

Solution. By Gauss divergence theorem, we have

//Sf.ndS:// V.fdV (1)
\4

Now V.f = V.(ga)
= ¢(V.a)+ (Vy).a
= ¢(V.a)+a.a=p(V.Vp)+a’

= (V%) + a* = a*(since VZp = 0)

Therefore from (1), we get [[fn dS = [[[ a* dV.
s v
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Exercises 5.1.24. 1. Verify Green’s theorem in the plane for

10.

[(2* = y?) dx + (y* — 2zy) dy where C is the square with vertices
c
(0,0),(2,0), (2,2) and (0, 2).

. Verify Green’s theorem in the plane for [(zy + y?) dax + z* dy where C is the

c
closed curve of the region bounder by y = x and y = 2.

verify Stoke’s theorem for f = 2yi + 3xj — 22k where S is the upper half surface
of the sphere 22 + 2 + 22 = 9.

If f= 2yt + yzj + 3xk verify Stoke’s theorem for the region bounded by the
planes t =0,y =0,z =0and x +y+ 2 =1

Verify Guass divergence theorem for the function f = 2z2i + yzj + 2%k over the

upper half of the sphere 22 + y? + 22 = a?

If S is a closed surface enclosing a volume V' and if f=zi + 2yj + 32k, prove that

ffsf.n dS =6V

Evaluate [ f.dr where f = (2y + 3)r + 2zj + (yz.z)k and the curve C is the
c
straight line joining (0,0,0) and (2,1, 1).

Evaluate by using Stoke’s theorem [(e”dx + 2ydy — dz) where C is the curve
c
224yt =4, z=2.

Evaluate [[fndS where f = (2 — yz)i — 222yj + 2k and S is the surface of the

cube bounded by =0,y =0,z =0, = a,y = a and z = a.

Verify Gauss Divergence theorem for f = yi + zj + 2%k for the cylindrical region

S given by 22 +y?> = a?; 2 = 0 and z = h.
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