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UNIT I: THEORY OF EQUATION

Theory of equation: Every equation f(x) = 0 of " degree has ‘n’ roots, Symmetric functions
of the roots in terms of the coefficients — Sum of the r™ powers of the roots — Newton’s

theorem — Descartes rule of sign — Rolle’s theorem.

Theory of Equations:

Every equation f(x) = 0 of the nt degree has n roots
Let f(x) be the polynomial apx" +a1x*-1+...4+an.
We assume that every equation f(x) = 0 has at least one root real or imaginary
Let a1 be a root of f(x) = 0.
Then f(x) is exactly divisible by x — a1, so that
f6) = (x-a1) ¢1(x)
where ¢ 1(x) is a rational integral function of degree n - 1.
Again ¢ 1 (Xx) = 0 has a root real or imaginary and let that root be aj.
Then ¢ 1 (X) is exactly divisible by x - az, so that
$1(x) = (x-0az) ¢2(¥)
where ¢ 2(x) is a rational integral function of degree n - 2.
) = (x-a1) (x-az) 2 (%)
By continuing in this way, we obtain
fx) =(x-a1)(x-az)... (x-an) ¢n(x)
where ¢ n(x) is of degree n - n, i.e., zero
= ¢n(X) is a constant.
Equating the coefficients of x" on both sides we get
¢ n(x) = coefficients of x"
= do
~f(x) = a0 (x - a1)(x - az)... (X - am).
Hence the equation f(x) =0 has n roots, since f(x) vanished when x has any one
of the values a1, az, ... an. If x is given any value different from any one of these n roots,

then no factor of f(x) can vanish and the equation is not satisfied. Hence f(x) = 0 cannot have

more than n roots.
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Example. 1. If a be a real root of the cubic equation X+ px? +gx + r = 0, of which the
coefficients are real, show that the other two roots of the equation are real, if
pzz 4q + 2pa + 3d’.
Solution.
Since a is a root of the equation, X+ px? +gx + r is exactly divisible by x — a.

~Letx® + pX2 +gX + 1 = (x - ) (x2 + ax +b).

Equating the coefficients of powers of x on both sides, we get

p=—-a+ta
gq=-aa+b
r=-ba

~a=p+aandb=q+ax=q+a(p+a
=q+pa+a?
The other two roots of the equation are the roots of
x2+(p+a)x+q+pa+a2:0
Which are real if (p+ a)® — 4 (q+ pa+ o) = 0
i.e.,p2 — 2pa —4q - 3a° >0
e, p2 > 4q + 2pa + 3a?.
Example 2. If X1, x2, X3 ... xn are the roots of the equation (a1 - x) (a2 - X)... (an -x)+ k=
0, then show that a1, a2 ..., an are the roots of the equation
xX1-x) (x2-%X) .. Xn-x) -k =0.
Solution.
Since X1, X2, X3 ... xn are the roots of the equation
(a1-x)(@-%X)...(an-x) +k=0
We have
(a1-x)(@-%X) ...(an-X)+k =x1-x) (X2-X%X) ... Xn —X%)
S(x1=-xX) (x2=-%X) ... Xn=-x) -k= (a1-x) (a2 -X) ... (an - X).
) a, a3 ... anare the roots of

(x1-x) (x2-%X) ... xn-x) -k =0.
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Example. 3. Show that if g, b, care real, the roots of

ﬁ+ﬁ+ﬁ=% are real.
Solution.
Simplifying we get
X(X+b)(x+c)+x(x+c) (x+a)+x(x+a)(x+Db)
—3xX+a)(x+b)(x+c)=0
Let f(x) be the expression on the left-hand side. It can easily be seen that £(x) is a
quadratic function of .
~f(—a)=—a(b—a)(c—a)
f(—b)=—b(c—b)(a—Db)
f(—c)=—c(a—c) (b—0).
Without loss of generally let us assume that a> b> c and a, b, c are all positive.

Thena—b, b—c, a—c are positive.

f(-a) =—ve.
f (-b) = + ve.
f (-c) = - ve.

=~ The equation has at least one real root between —a and —b, and another between —b and

The equation can have only two roots since f (x) = 0 is a quadratic equation.

~ The roots of the equations are real.

Exercises

1 1f X+ 3px + q has a factor of the form X2~ 2ax + a’, show that q2+ 4p3 =0.
2. If px3+ gx + r has a factor of the form X2+ ax + 1, prove that p2 =pq+ 2.
3. If px5+ qx2 + r has a factor of the form x*+ ax + 1, prove that

(0 -r) (0 -r*+an) =p’ .
4. If a, b, care all positive, show that all the roots of
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5 If a>b>c>dandE, A, B, C, D are positive, show that the equation

has no root between a and b, one root between b and ¢ and one between ¢ and d and

E >0, thereisaroot>dand if E <0, thereis aroot < a.

6. Ifa<b <c<d,show that the roots of (x—a) (x—c) =k (x—Db) (x—d)

are real for all values of k.
In an equation with rational coefficients, imaginary roots occur in pairs.

Let the equation be f(x) =0 and let a + i} be an imaginary root of the equation. We

shall show that o — if is also a root.
We have (X — o — i) (X — o+ iB) = (X — )’ + B> ......... (1)
If f(x) is divided by (x — a)? + B2, let the quotient be Q(x) and the remainder be Rx + R’
Here Q(x) is of degree (n — 2).
af)={(x—0)?+p*} Qx)+Rx +R' ... 2)
Substituting (a + i) for x in the equation (2), we get
f(a+iB) = {( @ +ip - a)* + B’} Q(a + iB) + R(a. +iB) + R’
=R(a +iB) + R’
But f(a + iB) = 0 since a + if} is a root of f(x) = 0.

Therefore
R(a+ip) + R' = 0.

Equating to zero the real and imaginary parts

Ra+R'=0and RB=0.
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Since #0,R=0and soR'=0

 F(x) = {(x — @)’ + BIQ(X).

~ o — i is also a root of f(x) = 0.
Solved Problems

1. Form a rational cubic equation which shall have for roots 1, 3 — v —2.
Solution.

Since 3 —+/—2isaroot of the equation, 3 + vV—2 is also a root. So
we

have to form an equation whose roots are 1, 3 —v—2, 3 + V—2.
Hence the required equation is (X — 1)(Xx —3 —vV—=2)(x -3 +/=2)

(x-1){(x-3)*+2}=0
(x—1)(x*—6x +11) =0
X3 - 7x? +17x - 11 =0.

2. Solve the equation x* + 4x® + 5x? + 2x — 2 = 0 of which one root is — 1 + v/—1.

Solution.

Imaginary roots occur in pairs. Hence — 1 —/—1 is also a root of the

equation.
Therefore the expression on the left side of equation has the factors
(X +1 —V=1)(x + 1 +v/-1).
The expression on the left side is exactly divisible by (x + 1)+ 1, i.e.,x* + 2x
+ 2.
Dividing x* + 4x3 + 5x + 2x — 2 by X* + 2x + 2, we get the quotient x> + 2x —
1.

Therefore x* + 4x3 + 5x? + 2x — 2 = (X +2x + 2)(x* + 2x — 1).
Hence the other roots are obtained from x> + 2x — 1 = 0.

Thus the other roots are — 1 + /2.
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3. Show that — + — + — — x + 6 =0 has only real roots if a, b, c, a, B, v, d are
x—a x—f x=y
real.
Solution.

If possible let p + iq be a root. Then p —iq is also root.

Substituting these values for x, we have

a’® b? c? , _
erl,q_a+p+iq_ﬁ +p+iq_y—p—lq+6—0 ...... (1)
a? b2 c?
- ] 6=0 ...... 2
p—iq-a = p-iq—p * p—iq—y ptig+ 2)

Substituting (2) from (1), we get

2a’iq 2b2iq 2ciq
-a)?+q%2  ®-B)°+q% (p—-y)?+q¢?

—2iqg=0

1]
o

. a? b2 c?
—2iq {(p—a)2+q2 t o T oir T 1}

This is only possible when g = 0 since the other factor cannot be zero. In that case the
roots are real.

In an equation with rational coefficients irrational roots occur in pairs.

Let f(x) = 0 denotes the equation and suppose that a + /b is a root of the equation

where a and b are rational and Vb is irrational. We now show that a — /b is also a root of the

equation
(x—a-vb)(x-a +vb)=(x—-a)¥’-b ...
(1)
If f(x) is divided by (x —a)? — b, let the quotient be Q(x) and the remainder be Rx +
R'.

Here Q(X) is a polynomial of degree (n — 2).

~f)={(x-a)?-b}Q(X) +Rx+R' ... 2)
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Substituting a + /b for x in (2), we get
fla+ vb)={(a+vb-a)’-b} Q(a+vh) +R(@+vb) +R'
= R(@a++Vb)+R'
but f(a + v/b) =0, sincea+ Vb is a root of f(x) = 0.
. Ra+R' +RvVb =0.
Equating the rational and irrational parts, we have
Ra+R' =0andR=0.
~R" =0.
Hence f(x) = {(x — a)* — b}Q(x).
= (x—a—Vb)(X —a+ Vb)Q(X).

~a—/b is aroot of f(x) = 0.

Solved Problems

Example 1. Frame an equation with rational coefficients, one of whose root is V5 + v2

Solution.

Then the other roots are V5 —v2, —V/5 + V2, =5 — /2

Hence the required equation is (x—v5 — V2 )(x —=V5 + V2)(x +V5 + V2)(x +V5 — V/2)

ie{(x—V5)2-23}{(x+/5)?-2}=0
i.e.(x* - 2xv/5 +3)( x* + 2xv/5 +3) = 0
ie.(x*+3)°—4x°5=0

ie.x*—14x°+9=0.
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Example 2. Solve the equation x* — 5x® + 4x? + 8x — 8 = 0 given that one of the roots is 1

—/5.

Solution.
Since the irrational roots occur in pairs, 1 ++/5 is also a root. The factors
corresponding to these roots are
(x—1+/5)(x—1—5),ie(x—1)%-5

ie. x> —2x— 4.

Dividing x* — 5x® + 4x? + 8x — 8 by x* — 2x — 4, we get the quotient x* — 3x + 2.

Therefore x*—5x° + 4x% + 8x — 8 = (x* — 2x — 4)(x* — 3x + 2)
= (= 2x—4)(x - 1)(x - 2)
The roots of the equation are 1 ++/5, 1, 2.

Example 3. Form the equation with rational coefficients whose roots are
(i) 1+5/=1,5—-+-1
(i)  —V3 +vV=-2,
Solution :
(i) 1+5/-1,5-+/-1

Then the other rootsare 1 + 5v—1,5—+v—-1,1— 5V—1,5++/—1
Hence the equation is

(x=1+5/=1)(x-1 — 5V=1)(x =5 — V=1)(x =5 + V=1 ) =0
(&= 12 - (V=13 {(x -5 = (v=1)°} =0

(x* —2x +26) (xX*— 10x +26) =0

x* —12x% + 72x* - 312x + 676 = 0.

(ii) -3 +V-2
Then the other roots are —v3 ++v/—2, —V/3 — V=2,V3 +V=2,V/3 —v/=2

(c+v3) - ()} (- ¥3) - (V=2)} =0

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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U=y
(% +2V3x + 5)(x* = 2V3x + 5) =0
x* —2x* +25=0.
Example 4. Solve : x* — 4x* + 8x + 35 = 0 given that 2 + i3 is a root of it.
Solution.
Since the irrational roots occur in pair, 2 — iV3 is also a root.

The factors corresponding to these roots are (x — 2)? — (iV3)?

X2 —4ax + 7.
Dividing x* — 4x® + 8x + 35 by x* — 4x + 7, we get the equation x* + 4x + 5
x*— 4x3 + 8x + 35 = (}? — 4x + 7)( X* + 4x + 5)
The roots of the equation are 2 +iV3, — 2 + i

Example 5.Solve the equation 2x® — 3x° + 5x* + 6x° — 27x + 81 = 0 given that one root is V2 —

Vv—1.
Solution.

Then the other roots are V2 — vV—1,v2 + V=1,—vV2 = V-1, —V2 + V-1
(=D - (D) Y+ VD) - (=) =0
(¢ 2\2x + 3)(x* + 2V2x +3) =0
x'—2x*+9=0
Dividing 2x° — 3x> + 5x* + 6x° — 27x + 81 by x* — 2x* + 9 we get the equation 2x* — 3x + 9

2x% = 3x° + 5x* + 6x° — 27x + 81 = (x* — 2x* +9)(2x* — 3x + 9)

The roots of the equation are V2 + vV-1,, -2 + V-1, 3 (1iiﬁ)

Exercises

1. Find the equation with rational coefficients whose roots are
(i) 43,5+ 24—1.
(i) V-1-+5.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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2. Solve the equation x* + 2x> — 5x% + 6x + 2 = 0 given that 1 + v—1 is a root of it

3. Solve the equation x° — 4x> — 11x* + 40x* + 11x* — 4x — 1 = 0 given that one root
isV2 — /3.
Answer : 1. (i)x* — 10x® — 19x* + 480x — 1392= 0,(ii) x* — 8x* + 36 =0, 2. -2 + /3, 3.
2 V3,2 /5.

Relation between the roots and coefficient of equations.

Let the equation be X" + pix™™ + pox™? + ... + ppaX + pn = O.If this equation has the

roots oy, oy, 03, ..., dn, then we have

X"+ poX™+ pox™2 + L+ praX + pa
=(X—ag)(X —a2)...(X—oap)
=X"—Yax" Y agayx™ 2 — L AH=1D)" ay, 0, 0, ..., On
= X" SXMh 4+ SxE L+ (1)"S,
Where S; is the sum of the products of the quantities oy, oy, as, ..., oy taken r at a time.
Equating the coefficients of like powers on both sides, we have
—p1 =S; =sum of the roots.
(-1)°p, =S, = sum of the products of the roots taken two at a time.
(-<1)%3 =S; = sum of the products of the roots taken three at a time.
(-1)"pn =S, = product of the roots.
If the equation is aoX" + a;x"™ + aX" 2+ ...+ an1X + a, = 0.
Divide each term of the equation by a.
an

The equation becomes x™ + Z—lxn‘l + Z—Zx”‘z 4ol In_y
0 0

ao ao

and so we have

a;
2.4 ="
a;
2“1“2 _a_o
as
Zalazaa = _a_o

002 03...0n =(—1)"2
aop

These n equations are of no help in the general solution of an equation but they are
often helpful in the solution of numerical equations when some special relation is known to

exist among the roots. The method is illustrated in the examples given below.
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Example 1. Show that the roots of the equation x® + px? + gx + r = 0 are in Arithmetical
progression if 2p® — 9pq + 27r = 0 show that the above condition is satisfied by the equation
x> — 6x% + 13x — 10 = 0. Hence or otherwise solve the equation.
Solution.
Let the roots of the equation x> + px® + gx +r=0be a — 3, a, o + 3.
We have from the relation of the roots and coefficients
a—o0ta+ta+d =-p
(a—3)a+t(a—-90)(a+td)+a(at+d)=q
(a—d)a (a+d)=—r.

Simplifying these equation, we get

30=—p (D
302-8% =q (2
—0d =-r. ...(3)

From (1), a = — %‘

2

From (2), 8% = 3(— g)z —q=E-q.

Substituting these value in (3), we get

(9 - (-9E-0)=

i.e.,2p®—9pg+27r=0.

In the equation x® — 6x° + 13x — 10 = 0.

p=-6,q=13,r= -10.

Therefore 2p® — 9pq + 27 r = 2(-6)° — 9(-6)13 + 27(- 10) = 0

The condition is satisfied and so the roots of the equation are in arithmetical

progression. In this case the equations (1), (2), (3) become

30=6
30°-8% =13
ol —a & =10.

o =2,12-8* =13
Therefore  &°= -1
ie,0==%i.

Therootsare 2 —1i, 2, 2 + 1.
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Example 2. Find the condition that the roots of the equation ax® + 3bx? + 3cx + d = 0 may be
in geometric progression. Solve the equation 27x> + 42x* — 28x — 8 = 0 whose roots are in

geometric progression.

Solution.

Let the roots of the equation be é K, Kkr.

Therefore é +k+ kr= —i—b (D)
L =2 2
K=-2 n(3)

From (1), k(}+ 1 +r) = —3a—b.

From (2), k2 G +14+ r) - ?;_C
Divided one by the other, we get k = —%

3
Substituting this value of k in (3), we get (—5) = —*.

Therefore ac® = bd.

In the equation 27x> + 42x* — 28x —8 = 0

k 42
-+k+ kr=—=
r 27
k2 28
—+kK+ Kr=-=
r 27
8
K =—
27
2
k==,
3

Substituting the value of k in(4), we get

{(e1er)e-

3’ +10r+3=0
@Br+1)(r+3)=0
Thereforer = — § orr=-3.

For both the value of r, the roots are —2, % — %
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Example 3. Solve the equation 81x> — 18x* — 36x + 8 = 0 whose roots are in harmonic

progression.

Solution.

Let the roots be a, B, v.

+

IS
< |+

2
Then 5=

ie., 2ya =Py +af
From the relation between the coefficients and the roots we have

18
a—l—B—I—y:S—l

36
aB—i-By—i-'ya:——Sl
8

From (1) and (3), we get

2ya + ya ”

__36
3ya = ”

Therefore yo = — >
Substituting this value of ya in (4), we get

8

B(~3)=

wilN

Therefore =

From (2), we have

From (5)and (6), we get

2

2
o=-and y= —
9 i 3
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The roots are =,= and —
9°3 3

Example 4. If the sum of two roots of the equation x* + px® + gqx® + rx + s = 0 equals the sum
of the other two, prove that p* +8r = 4p.

Solution.
Let the roots of the equation be a, 3, y and o
Then a+p =7+ e

From the relation of the coefficients and the roots, we have

APty 48 = —p e, )
aBtoy+tad+t By+BSHYS = g e 3)
aPy +apd+oyd+ Byd = —r (4)
aBys = s . (5)

From (1) and (2), we get
2@+B )= -p (6)
(3) can be written as

afy +yd+ (a+ B)(y+0)

Il
Q

ie, (@p+yd)+(a+ PP=q ... (7)
(4) can be written as
af(y +8) +yd(a+ p) = —r
(ap+yd)@+ P = -r L (8)
From (6) and (7), we get
ap+ys+l=q

2

oaf+y5 =q—L e(9)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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From (8), we get

~S(aptyd) = -r

N

r

+ = —
af+ yod .

Equating (9) and (10), we get

p _ 2r
a-7 = >
4pg—p° = 8r
p® + 8r=4pq.

Example 5. Solve the equation x* — 2x® + 4x? + 6x — 21 = 0 given that two of its roots are

equal in magnitude and opposite in sign.
Solution.
Let the roots of the equation be a, 3, y and o
Herey=-90
ie,y+ 6=0

From the relation of the roots and coefficients

atBry +86 =2 ... )

aBtoy+adt By +BIHYS = 4 e 3)

aPy +apd+oyd+ Byd = —6 ... 4)
apyd = —21 (5)

from (1) and (2), we get a+ =2
(3) can be writtenas afp +yo + (o + B)(y +0) = 4
af +yo=4

(4) can be written as ap(y +8) +yd(a+ B) = —6

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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yo(a+ B) = -6 (8)
from (6) and (8), we get vo=-3....09)

buty+ =0 «~ y=+3, §=-v3.
From (7) and (9), we get afp =7
~ o and B are the roots of x2 —2x + 7 = 0.
ca=1+vV=6.,p=1 —/—6
Therefore the roots of the equation are + v3, 1 +v—6.

Example 6. Find the condition that the general bi quadratic equation ax* + 4bx® + 6cx? + 4dx
+ e = 0 may have two pairs of equal roots.

Solution.
Let the roots be a, a, B, .

From the relations of coefficients and roots

4b

2e2p=-= L (1)
o + B2 +4a[3=6a—c ............ )
2afPH20%p==2 3)
o’ p? = ; ............ (4)
From (1), we get o+ =— 2 ........ (5)
From (3), we get 2aB(o +f) = — ﬂ
w o= % ......... (6)

From (5) and (6), we get that a, B are the roots of the equation X2+ %x + % =0

2
2
saxt + 4bx3 + 60x2 + 4dx + e = a(x2 + fx +%)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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Comparing coefficients

4b2 | 2d d?
6c:a(—2+7)ande:a—

a b2
=~ 3abc = a’d + 2b% and eb? = ad®.
Exercises

1. Solve the equation 6x> — 11x* + 6x — 1 = 0 whose roots are in harmonic progression.

2. Find the values of a and b for which the roots of the equation 4x* — 16x® + ax? + bx —
7 =0 are in arithmetical progression.

3. The roots of the equation 8x® — 14x* + 7x — 1 = 0 are in geometrical progression. Find
them.

4. Solve x* — 8x% + 14x? + 8x — 15 = 0, it being given that the sum of two of the roots is
equal to the sum of the other two.

5. If two roots of the equation x* + px® + gx? + rx + s = 0 are equal in value but differ in
sign, show that r* + p%s = par.

6. Show that the four roots, o, B, v and & of the equation x* + px® + gqx® + rx + s = 0 will
be connected by the relation a f+yd =0if pzs +r’= 4qs.

7. Solve the equation x* — 2x*> — 3x? + 4x — 1 = Ogiven that the product of two of the
roots is unity.

) 11 _ 4, 296 , 1 1 34V5 —145
Answer.1.1,5,5,2.a—4or—;,b—24orT,3.Z,E,1,4.—1,5,1,3,7.7, >

Symmetric function of the roots

If a function involving all the roots of an equation is unaltered in value if any two of

the roots are interchanged, it is called a symmetric function of the roots.
Let a4, 0p, 03,......... an be the roots of the equation.
f(x)=x"+ plxn*1 + pgxnf2 + ... + pn=0.
We have learned that

S1=Zu=—p1

So =X oqap = P2
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Without knowing the values of the roots separately in terms of the coefficients, by using the
above relations between the coefficients and the roots of an equation, we can express any
symmetric function of the roots in terms of the coefficients of the equations.

Example 1. If a, B, y are the roots of the equations X3 + px2 +gx+r=0, Expressthe value

of = o B in terms of the coefficients.
Solution.
Wehave o+tp+y=-p
af + Py +ya=q
afy= —r.
) az[i = oc2B + oczv + Bza + BZY + YZG + YZB
= (op + Py +vyo) (a+ P +v)—3afy
=q(=p)-3("
=3r—pg.

Example 2. If a, B, v, 6 be the roots of the bi quadratic equation x* + px3 + qx2 +rx+s=0,

Find ()T o, 2) = o’ By, 3) T’ B, @)= o’ Band (5) T o,
Solution.
The relations between the roots and the coefficients are
at+tB+y+d=-p.
af +ay +ad+Py+Po+y5=q

afy+apd +oayd+Pyd=—r
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afyo =s.
S o=+ Rt
:(a+B+y+6)2—2(aB+ay+a8+By+BS+ya)
— (o)’ 2% of
:p2—2q.
S o By = (aPy + aBd + ayd + Byd) (o + P +y + ) — 4 aPyd
=(Z apy) (Ea) -4 opyd
= pr—4s.
52 e ol Pt 24 L+ R B
— (o)’ — 2 o By — 6 afyd
:q2—2(pr—4s)—6s
:q2—2pr+23.
Lo’ B=(E o) (T ap)-Ta’ By
= (p° - 20) g — (pr — 4s)
= p%q — 2q° — pr + 4s.
Za4=(2a2)2—22a2 B2
= (p° - 20)* -2 (o — 2pr +25)
=p* - 4p°q + 297 + 4pr — 4s.

Example 3. If a, B, vy are the roots of the equation x2 + ax? + bx + ¢ =0, from the equation

whose roots are af, By, and ya.

Solution.
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The relations between the roots and coefficients are
at+tPt+y=-a
of + Py +ya=>b
afy =—c.
The required equation is
(x—ap) (x=PBy) (x—ya) =0
ie., X° % (aB + By + yo) (@°By + ap’y + oy’) x — a’pPy° = 0
ie., X° X% (aB + By +yo) + x ay (a+ P +7) — (aPy) =0
ie., xS — bx2 + acx — 02 =0

Example 4. If a, B, y are the roots of the equation X+ px2 + gx + r =0, from the equation

whose roots are B+ vy —2a, vy + a— 2, a +  —2y.
Solution.
Wehavea+pB+y=—p
of + Py +ya=q
afy=-r.
In the required equation
S;=Sum oftheroots=B+y—-2a+y+a—-2+a+p—2y
= 0.
S, = Sum of the products of the roots taken two at a time

=B+y-200@+ta-20+PFry-20)(a+P-27)+(a+B-2y)(vta-
2B)

=(a+B+y—3a)(a+p+y-—3B)+2 similar terms

=(p-30) (=p-3p) + (=p-30) (=p-3y) + (=p—37) (-p-3P)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
22



g
=

=(+3a)(p+3p)+(p+3a)(p+3y)+(+3y)(p+3P)
=3p"+6p (a+B+y)+9(ah+ By +ya)
=3p°+6p (- p) +9q
=9q9- 3p2.
S3 = Products of the roots
=PB+ty—20)(y+a-2p)(atp-2y)
=(@+P+y-30)(a+B+y-3p) (atp+y-3y)
=(=p-30) (-=p-3p) (= p-3Y)
=—{p°+3p° (@+B+7)+9p (B + By +y0) + 27 oy }
=—{p>+3p’ (-p) +9pg-27r}
= 2p2 —9pq + 27r
Hence the required equation is
X° —SX° + Spx — S5 =0
i.e., X2+ (9q -3p%) x — (2p° — 9pq + 27r) = 0.
Example 5. If a, B, y are the roots of the equation x>+ pX2 + gx + r =0 prove that

(1) (@+B)B+y)(y+a) =r-pq
2) o®+p° +y® = —p’+3pq-3r.

Solution.
Wehavea+pB+y=—p
of +py tya=q
afy=-r.

(). (a+B)(B+y)y+a)= [(P+a)(p+p)(p+7)]
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Sincea+pB+y=—p satfB =-p-y

—[p° +p* (o + B +7v) + p (0B + By +ya) + afy]

[p*+p*x—p+pg—r]=—[p’-p°+pg—rl=r-pa.

(2). o® +B° +y°-30By = (a+ B+ y)[ o+ B +v° — (af + Py +ya)]
Yad=YalXa?-YaB]+3apy;
ButYa?=Ca)*—-2%af

Therefore Y a® =Y a [C a)? — 3 aB] + 3afy; = —p[p2 — 3q] — 3r =—p3 + 3pq —
3r.

Example 6. If a, B, y are the roots of the equation X2 + gx + r =0 find the values of

1
DX
B2+}’2
2 L5
Solution.

Since a, B, y are the roots of the equation X+ gx+r=0.
Wehavea+B+y=0
af + Py +ya=q
afy=-r.

Therefore B+ y=—a

Aoyl A i Yo _ZXeB_za_4g
(l)'zﬁﬂ/ _Z—a_ [a+ﬁ+y] apy -r 7

¥)2=2By _ Z[“Z‘Fzﬂ _Yad3+2r
B+y T -« —a?

AIREE =-Sa-255

=—2r2ai2;since2a =0

11 apeptyietal  (Bap)?
gz 'yt a?p?y? "~ (apy)?

200y Y a =Y a’B? sinceyYa=0

But Zal—z = al_z+ since (af + By + ya)? = La’p? +
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202 _ 2.1 _q%>_q
Xa'p =0 X5=5;

B2yt _ —2¢%r _ —2¢?
o B+y r2 r

Example 7. If a, B, y are the roots of the equation - px2 + gx —r = 0 find the value of

ﬁ2+ 2
.25

2. 2B +y— )

Solution.

Since a, B, y are the roots of the equation X pX2 +gx—r=0

We have at+B+y=p
af + Py +ya=q
afy=r.
Brty? _ pP4y® | a+p? | aP4y? _ a(BPy?)+y(a+p2)+p(a’+y?)
1). = =
()Zﬁy ﬁy+aﬁ+ay apy
_Za’p
aBy

But a?f=(ap + By + yo)(a + B + y) — 3afy

Ta’f _ (aB +PBy +ya)(a+p+y)-3afy _ gp—3r
apy apy ro

2. 2B +y—a)* =X(a+ B +y—2a)* =X(p — 2a)* = L(p® + 4a® — 4ap)

=3p’+4Ya? —4pY ap

2
=3p2+4[(2a) —ZZaﬁ]—élpz
= 3p? + 4p® — 8q — 4p*?

= 3p? - 8q.
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Example 8. If a, B, y are the roots of the equation ax® + bx? + cx + d = Ofind the value of

1
Z aZﬁZ

Solution.

Since a, B, y are the roots of the equation ax +bx> +cx+d=0

We have a+[3+y=_7b
c
ap + By +ya= -
—d
afy =—
2 c
5 1 _ 11 _a?4p2 4 _ (o +B+y)P—20p +By +y) _ (—2) —2(5)
a?B?  a2B? ' B2y? ' y2q2 a2B2y2 (aBy)? a (i)z
_ b2%-2ac
=—
Exercises

1. If a, B, y are the roots of the equation x>+ pX2 + gx + r =0 find the value of
(D) B+y-0)’+@+a-By+(@+Bp-7°
@+ I
2. Ifa,p,y, o are the roots of the equation x* + px3 + qx2 +rx +s =0,
Evaluate (1) £ o’ By, (2) = (B +a+35) and (3) T .

2 TZ— r
Answer : 1. (1).24r —p®, (2).2”’% . 2.(1).pr—4s, (2).3p* - 2q,(3).%
Sum of the powers of the roots of an equation.

Letog ap o3, .

powers of the roots

e, af +taf+...... +aj,

_ o be the roots of an equation f (x) = 0.The sum of the "
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is usually denoted by S;. We can easily see that S, constitutes a symmetric function of the
roots and hence we can calculate the value of S; by the methods described in the previous

article. When r is greater than 4, the calculation of S; by the previous method becomes

tedious and in those cases, the following two methods can be used profitably.
Wehave f(X) = (X —aq) (X—ap) ....... (x —ap).

Taking logarithms on both sides and differentiating, we get

f 1 1 1
W__L 4+ L 4 4
f(x) x—aq xX—ay X—ay
e
G S S + =
f(x) xX—aq xX—ay X—ay,
1 1 1
—a T +—
X X X

= -+ =Dt (1)

2
a a n
—+=+ .+t

=1+
:Lxx2 x

1 1 1
=n+(2a1);+(2af)x—2+.....+(za{)x7+....

1 1

1
=N+S;. -+ S 5+ .S —
x x x

xf" (x)

1
Sy = Coefficient of — in the expansion of .
xT f(x)
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Example. Find the sum of the cubes of the roots of the equation X =x2+x+1.
Solution.
The equation can be written in the form
f(x)=x5—x2—x—1=0

x (5x% —2x—1)
x> —x2—-x—1

- 1. :
Sy = Coefficient of — in the expansion of
X

= Coefficient of 13 in
X

—_ « 2 1 1 1 1 1
- (5_x3_x4)(1_x3_x4_ x5)
. . 2 1 1 1 1 1 1 \?2
= (5——3——) 1+—3+—4+—5+ (—3+—x4+—x5) +
2 1 1
= “« “« (5_x_3_x_4) (1+x_3+ ...)

Newton’s Theorem on the sum of the powers of the roots.

Letag o, a3, _ap be the roots of an equation

F)=x"+poxX" X" pn=0
and letbe S;=aj +aj +...... + a7, so that Sp = n.

FX)=(X—ag) X—0ap) ....... (X — ap).

Taking logarithms on both sides and differentiating, we get

fw__1 . 1 4 + :
f(x) x—-—a X -0y X—an
. , f f f
e, (xX)= ) + ®) +... + (@)
xX—aq X—a>y X—qn
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By actual division, we obtain

f(x) n-1 n-2 n-3
ey X + (0y +p1) X+ (af+ prog + p2) X

+o (@ pra i+ 4 pny)

f(x) n-1 n-2 n-3
sz + (0 + P1) X+ (a5+ prog + p2) X

+ o (@3 prad i A o)

f(x) n-1 n-2 n-3
=X "t (antp)X + (ap+ pron + P2) X
n

+o (@ T+ pral2 4. 4 ppa).
Adding all these functions, we get
£ = X"+ (Sy + npy)x™* + (S + pSy+ nppX™

oo (Sp-1 + P1Sn2 t+.... npp-1).

But f'(x) is also equal to
nX" (0= 1) pox™# (0= 2) pox™2 .+ 202 + Pt
Equating the coefficients in two values of f (x) , we obtain the following relations :
Sp+p1=0
Sp+p1Sy +2p2=0
S+ P1Sz +p2Sy +3p3 =0
S+ P1S3+P2Sy +p3Sy +4ps =0
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Sn-1+ P1Sn2 + P2Spz+.... + Pp2S1+ (N—1) pr.1 =0

From these (n — 1) relations we can calculate in succession the values of S;,S;,, Sz, ... Sp1
in terms of the coefficients p1, p2, P3,.... Pn-1 - We can extend our results to the sums of all

positive powers of the roots, viz., Sp, Sp+1, .... Srwhere r > n.
We have X" f (x) = X" + piX™ + poX2 + L+ px™.

Replacing in this identity, x by the roots o1 o, a3 . 0p, In succession and adding, we

have
Sr+P1Sr1 +P2Sr2+ ...+ PnSrn =0

Now giving r the valuesn, n +1, n +2,...... successively and observing that Sg = n, we obtain

from the last equation
Sn+ p1Sp1 + P2Sp2 ...+ Npp =0
Sp+1+ P1Sn + p2Sp1 ...+ ppS1=0
Sne2+ P1Sn+1 + P2Sp+.... + PrS2 =0
and so on.
Thus we get
Sr+pP1Sr1 +PaSro ... +pr=0, ifr<n
And S;+p1Sr1 + PaSro t.... PnSrn =0, ifr=n.
Cor. To find the sum of the negative integral powers of the roots of f (x) = 0, put x = }1} and
find the sums of the corresponding positive powers of the roots of the transformed equation.
Example 1. Show that the sum of the eleventh powers of the roots of x +5x* + 1 =0 s zero.

Solution.

Since 11 is greater than 7, the degree of the equation, we have to use the latter

equation in Newton’s theorem.
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If we assume the equation as
X"+ ppx°+ pox’+ pax*+ pax’+ psx’+ pex + pr =0,
we have py = P2 =P3=ps=Ps=Ps=0, p3=5, p7 = 1.

w S11t P1S10t P2Sot P3Sgt PaS7 + PsSe + PeSs + P7S4=10

I.e.,, Sy +5Sg+S4=0 ...

Again

Sg+ p1S7+ P2Set+ P3Ss+ PaSat PsSzt PeSat P7S1=0

i.e., Sg+5S5+S:=0

Using the first equation in the Newton’s theorem
S5t P1Sat P2S3t P3Sot PaSit+ 5ps =0
i.e., Ss+55,=0
Again
Sat p1Sgt P25zt p3Si+4ps =0
i.e, S4+551=0
Again
Sot p1S1t+ 2p=0
ie.,,So=0
Also S;=0
From (4), (5) and (6) , we get S4=0
From (3), (5) , we get S5 =0

From (2), we get Sg=0
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Substituting the values of S4, Sgin (1) , we get S11 = 0.

Example 2. Ifa+ b +c +d =0, show that

aS+ b5 +c3+d% _a’+b%+c24+d? ad+b3+c34d3
5 B 2 ' 3

Solution.

Since a+ b + ¢ +d =0, we can consider that a, b, ¢, d are the roots of the equation
4 3 2 _ _

X+ p1X T+ poX~+ pax+ pg =0 where p; = 0.

From Newton’s theorem on the sums of powers of the roots, we get

Ss+ P1Sat+ P2Sat+ p3Sy+ psS1=0 (D
Sgt p1Szt+ P2Sot+ p3Sit4ps=0 L 2
Sat p1Sot+ poS1+3p3=0 Ll 3)
Sot+ p1S1+2p,=0 .l 4)
Si+p=0 (5)

From (5), we get S =0

From (4), we get S, = - 2p;

From (3), we get S3= - 3p3

From (1), we get Ss - 3pop3 - 2p3p2 =0

i.e., S5 = 5pyp3.

a®+b>+c3+d> _a’+b?+c%+d? al+b3+c3+4d3
5 - 2 : 3

ie.,
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Example 3. Find = +—=+ 5 where o, B, y are the roots of the equation

BS
x3+2x2—3x—1=0.
Solution.

1. : :
Putx = . in the equation, then the equation becomes

1 2
— 4 —
y3

== 5= 1=0

< |w

ie., y3 +3y2 -2y-1=0

) 1 1 1
The roots of the equationare —, —, —
a' By’

" — + [;5 + 7 = Sg for the equatlony +3y -2y-1=0.

From Newton’s theorem on the sum of the powers of the roots of the equations, we get
S5+354—2S3-S5,=0
S4+353-2S,-51=0
S3+35,-251-59=0
Sp+351-4=0

S1+3=0.

S1=-3, S, =13, S3=-42, S, = 149, S5 = -518.

L4+l 4+ 1= 518
ﬂ5 y®

Example 4. Show that the sum of the m" powers, where m < n, of the roots of the equation

XMoo —2x—2=0is3"—
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Solution.

If m < n, we get from the Newton’s theorem
Sm—-2Sm1-2Sm2—.....—-.m.2=0
Sm1—2Sm2— ... — (M-1) 2 =0.
Subtracting one from another, we get
Sm—3Sp1-2=0
i.e, Sn=2+3Sh1
=2+3(2+3Sh)
=2+32+3%S
=2+32+3%°(2+3Sn3)
=2+32+32.2+3%S,3.
Continuing like this, we get
Sm=2+32+3%2+3% 2+, +3™ 5
But S; =2.
fSm=2+32+3°.2+3° 2+ +3™2
=2(1+3+3%+3%+. . +3™h

@"-1
2

=2.
=3" -1
Example 5. Determine the value of ¢(ay1) +¢ (a2) +.... + ¢ (an)

Where a3 oy os, ..... an are the roots of f (x) and ¢(x) is any rational and integral function of

X.
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Solution.
f : 1 |
We have () + + o +
fx) x—a; x-ap -
and f(x)¢>(x)= é (x) + ¢ (x) + o + =
f(x) X —a; X-Qay X—ay

Performing the division and retaining only the remainders on both sides of the equation, we
have

Rox™ 14 Ryx" 24+ .+ R,_1 _ ¢@) + é (@) L
f(x) X —aq X -y x—an

Hence
Rox" 1+ Rix" 2+ .4+ R_1 =2 ¢(a1) (x- a3)...(x — ).
Equating the coefficients of x™~! on both sides of the equation,
We get X ¢p(a1) =R,.

Te@) g
1 f(a1)

Example 6. If the degree of ¢(x) does not exceed n —2, prove that

Solution.

We have partial functions

¢ __ A, A2 + 4+
f(x) x—aq X -0y xX—an,

o) = Ay(x- ap) (x- ). (x- @n) + Ag(x- a1)(x- @3) o (x- n) +
b Ay (x- @)(x- @) o (x- @nis).
Putx = a . plar) = Ay (e - a2)(as - a3)... (@ - ).
() = (x- @) (x- az) . (x- @),

fO)=(x-a2)(x- a3) . (x- ;) + (x- 1) (x- a3) .. (x - @)
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Fo, +(x- ay)(x- az) . (X - @n_q).
() = (a1 - ap)(as - a3)....(a1 - ay).

¢ (a1) = Ay F(ay)

_ ¢ (a1)

e, A= Fag)

1

b0 _p@) 1 9@ 1 )

fG) fla) "x—a;  f(ap) "x-a; f (@) " x—ap
:z" pla) _ 1
rm Fla) x—ay
e g @) "x—ap
:z" $la) _ 1
r=pfla) "=
n 2
= b(ar) & 4 (%) 4
- zm Far) {1 T (x) ¥ }
x ¢ (x)

" g
Zrzl Fla) term independent of x in T

Hence

¢ (x) is of degree n — 2, f (x) is of degree n.
Hence x ¢ (x) is of degree n — 1.

x ¢ (x) _ Box™ 14+Byx" 2+ 4B, _4

f(x) xM4p1x 4 4py
Bo,B1,. . Bn-1
— x_ x? + xn

Hence in the expansion of quzx()x) there is no term independent of x.

. Zn M = O
r=1 f'(ar)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

36



Exercises

1. Show that the sum of the fourth powers of the roots of the equation
X +px3 + qx2+ s=0is 2p2.
2. Ifa, B, y are the roots of 4 gx + r =0 prove that
(1) 3syS5 = 55384.

) 5 B 3 ' 2

(Z7+ﬁ7 +y7 a5+,85 +y5 a2+[32 +y2

(3) =

7 5 ) 2

3. Show that the sum of the ninth powers of the roots of x2 +3x + 9 = 0 iis zero.
4. Prove that the sum of the twentieth powers of the roots of the equation

x* +ax + b = 0is 50 a’b® — 4b°,
Descartes’ Rule of signs.
An equation f (x) = 0 cannot have more positive roots than there are changes of sign in f (x)
Let f(x) be a polynomial whose signs of the terms are
++---F-+++-+-,

In this there are seven changes of sign including changes from + to — and from —to +. We
shall show that if this polynomial be multiplied by a binomial (corresponding to a positive
root ) whose signs of the terms are + —, the resulting polynomial will have atleast one more
change of sign than the original. Writing down only the signs of the terms in the

multiplication, we have

o+t

+ —
et +
o+t

tr—F+++-+F+E-+-+
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Here in the last line the ambiguous sign =+ is placed wherever there are two different signs to

be added. Here we see in the product

(1) An ambiguity replaces each continuation of sign in the original polynomial.
(2) The sign before and after an ambiguity or a set of ambiguities are unlike and
(3) A change of sign is introduced in the end.

Let us take the most unfavourable case and suppose that all the ambiguities are

replaced by continuations, then the sign of the terms become
t+t———+—F+++—+—+

The number of changes of sign is 8. Thus even in the most unfavourable case there is
one more change of sign than the number of changes of sign in the original
polynomial. Therefore we may conclude in general that the effect of multiplication of

a binomial factor x — a is to introduce at least one change of sign.

Suppose the product of all the factors corresponding to negative and imaginary
roots of f(x) = 0 be a polynomial F(x). The effect of multiplying F(x) by each of the
factors X — a, X — B, x — v,..... corresponding to the positive roots, a, B, v is to
introduce at least one change of sign for each, so that when the complete product is
formed containing all the roots, we have the resulting polynomial which has at least as

many changes of signs as it has positive roots. This is Descartes’ rule of sign.
Descartes’ rule of signs for negative roots.
Letf(X)=(X—a1) X—ay)...... (X —ay).
By subtracting — x instead of x in the equations, we get
fX)=(-X—a1) = X—-ay)...... (=X —ay).
Therootsof f(—x)=0are—ay,—ay, ....,— a,.
-~ The negative roots of f(x) = 0 become the positive roots of f(— x) = 0.

Hence to find the maximum number of negative roots of f(x) = 0, it is enough to

find the maximum number of positive roots of f(— x) = 0.

So we can enunciate Descartes’ rule for negative roots as follows.
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No equation can have a greater number of negative roots then there are changes of sign

in the terms of the polynomial f (—x).

Example. Determine completely the nature of the roots of the equation X~ 6x°— 4x +5

=0.
Solution.
The series of signs of the terms are + — — +.
Here there are two changes of sign.
Hence there cannot be more than two positive roots.
Changing x into —x , the equation becomes

X —6X2+4x+5=0
i.e.,x5+6x2— 4x -5=0.

The series of the signs of the terms are

S
Here there is only one change of sign.
-~ There cannot be more than one negative root.
So the equation has got at the most three real roots. The total number of roots of the
equation is 5. Hence there are at least two imaginary roots of the equation. We can also
determine the limits between which the real roots lie.

=—o0 -2-1012
X°—6X — AX+5= —  — o+ 4+ ++
The positive roots lie between 0 and 1, and 1 and 2, the negative root between —2 and —
1.

Exercises

1. Show that the equation x" —3x* —2x* 1 =0 has at least four imaginary roots.
Show that x°® + 3x? — 5x + 1 = 0 has at least four imaginary roots.

Prove that the equation x* + 3x — 1 = 0 has two real and two imaginary roots.

oW N

Show that 12x” — x* +10x® — 28 = 0 has at least four imaginary roots.
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Rolles’ Theorem.

Between two consecutive real roots a and b of the equation f (x) = 0 where f (X) is a

polynomial , there lies at least one real root of the equation f (x) = 0.

Let f (x) be (x-a)™ (x-b)™ ¢ (x) where m and n are positive integers and ¢ (X) is not
divisible by (x — a) or by (x — b). since a and b are consecutive real roots of f (x), the sign of
¢ (X) in the interval a < x < b is either positive throughout or negative throughout, for if it
changes its sign between a and b, then there is a root of ¢ (x) = 0 that is of f (x) =0 lying

between a and b, which is contrary to the hypothesis that a and b are consecutive roots.
£ = (x-a)" n(x=b)"" ¢ () + mx—a)™" (x—b)" ¢ () + (x )" (x—b)" ¢ (¥)
= (x=a)™" (x=b)"" x (%),
Where x (X) = {m(x-b) + n (x-a)}¢ (X) + (x—a) (x—b) ¢" (X).
x @ =m(a-b)¢ (a)
x (b) =n(b-2a)¢ (b).
x (@ and y (b) have different signs since ¢ (a) and ¢ (b) have the same sign.
x (X) =0 has atleast one root between a and b.
Hence f (x) = 0 has at least one root between a and b.

Cor. 1. If all the roots of f (x) =0 are real , then all the roots of f (x) =0 are also real.

If f (x) = 0 is a polynomial of degree n, f'(x) =0 is a polynomial of degreen—1 and

each root of f (x) =0 lies in each of the ( n — 1) intervals between the n roots of f (x) = 0.

Cor. 2. If all the roots of f (x) =0 are real , then all the roots of f'(x)=0,f"(x) =0,

77 (x) = 0 are real.

Cor. 3. At the most only one real root of f (x) =0 can lie between two consecutive
roots of f'(x) =0, that is the real roots of f' (x) = 0 separate those of f (x) = 0.

Cor. 4. If f (x) = 0 has r real roots, then f (x) = 0 cannot have more than (r +1) real

roots.
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Cor. 5. f (x) = 0 has at least as many imaginary roots as f (x) = 0.
Example 1. Find the nature of the roots of the equation 43— 21x% + 18x + 20 = 0.
Solution.
Let us consider the function f (x) = 4x3 — 21x° + 18x + 20.
We have f (x) = 12x° — 42x + 18

=6(2x—-1) (x-3).

Hence the real roots of f'(x) =0 are % and 3. So the roots of f (x) =0, if any will be

. . 11 )
in the intervals between — oo and 25 and 3, 3 and + oo respectively.

fx): - + - +
-~ f(X) must vanish , once in each of the above intervals.
Hence f (x) = 0 has three real roots.

Example 2. Show that the equation 3x* — 8x>— 6x° + 24x — 7 = 0 has no positive, one

negative and two imaginary roots.
Solution.
Let f (x) be 3x* —8x> — 6x%+ 24x — 7.
We have f (x) = 12X° — 24x% — 12x — 24
= 12(x+1) (X — 1) (X — 2).
Therootsof f'(x)=0are—1,+1,+2.
X: -0 -1 +1 +2 +o

fx): + - + + +
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f (x) =0 has a real root lying between — 1 and — oo, one between — 1 and + 1 and two
imaginary roots.

We know that f(+1)=+,f(0) =—.

~ The real root lying between — 1 and + 1 lies between 0 and + 1 . hence it is a positive root.

The other real root lies between — 1 and — co and so it is a negative root.

Example 3. Discuss the reality of the roots x* +4x3 — 2x*— 12x +a = 0 for all the values of

a.

Solution.
4 3 2
Letf(x) bex +4x™ —2x"—12x + a.
_ a8 2
f'(x) =4x" +12x" —4x - 12
=4(x+1) (x-1) (x + 3).
The roots of f'(x) =0are —3,—-1and 1.
X: —oo -3 -1 1 + 00
f(x): + a-9 7+a a-9 +
If a—9is negative and 7 + a is positive , the four roots of f (x) are real.

~ If —7< a<9,f(x)=0 has four real roots.

Ifa>9, then f (x) is positive throughout and hence all the rots of f (x) = 0 are imaginary.

If a<—7,thesignof f(x)at—o,-3,-1, 1,+ o arerespectively +,—,—,—, +.
Hence f (x) = 0 has two real roots and two imaginary roots.
Exercises

1. Prove that all the roots of the equation x>~ 18x + 25 = 0 are real.
2. Find the nature of the roots of the equation

(1) 4x> — 21x° + 18x + 30 = 0.
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(2) 2x° —9x% + 12x +3 =0.
3) x* + 4> —20x* + 10 = 0.
3. Show that the equation f (x) = (X — a)3 +(X— b)3 +(x— c)3 = 0 has one real and two

imaginary roots.
Answer : 2.(1). One negative root and two imaginary roots, (2). One negative root and

two imaginary roots, (3). All the roots are real.
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UNIT II: RECIPROCAL EQUATION

Reciprocal Equation — Transformation of equation — Solution of cubic and biquadratic
equation — Cardon’s land Ferrari’s methods — Approximate solution of numerical equations

— Newton’s and Horner’s methods.
Reciprocal roots.

To transform an equation into another whose roots are the reciprocals of the roots of the

given equation.
Let oy oy as, ..... oy be the roots of the equation
X"+ px " px i pn=0.
We have

X" px " px ™ P = (X—ay) (X—ay)...... (X —ay).

1
Put x = —, we have
y

Multiplying throughout by y", we have

DY + Pray" ™ + P2y 2 APy +1=0

= (g ag.....an)(al—l—y) (é—y)(i—y)

Hence the equation

pnyn + pn_ly”'l + pn_zy”'2 +...... + p1y + 1 = 0 has roots L , L Y eery—

a1 az an
Reciprocal equation.

If an equation remains unaltered when x is changed into its reciprocal, it is called

reciprocal equation.
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Let X"+ px" ™+ px"i 4. +PnaX + pn=0. ...... (1)

be a reciprocal equation. When x is changed into its reciprocal % we get the transformed

equation
n n-1 n-2 _
PnX + PnaX FPpoX +pXx+1=0
- - - - 1
O L )
pn pn pn Pn

Since (1) is a reciprocal equation , it must be the same as (2),

Pelzpy epy.. b= pn-landi: Pn.
" op2=1,
pn=+ 1.
Casei. p,=1.

Then Pn-1= P1,Pn—2= P2, Pn—3= P3,......

In this case the coefficients of the terms equidistant from the beginning and the end are equal

in magnitude and have the same sign.

Caseii. p,=-1, we have

Pn-1 — _pl,pn—z = - p2,.... P1 = — Pn-1-

In this case the terms equidistant from the beginning and the end are equal in magnitude but
different in sign.

Standard form of reciprocal equations.

If o be a root of a reciprocal equation, % must also be a root, for it is a root of the transformed
equation and the transformed equation is identical with the first equation, Hence the roots of a

reciprocal equation occur in pairs

1 1

a,a, B, E,
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When the degree is odd one of its roots must be its own reciprocal.

= l
Y Y
ie., yz =1
e, y=1 1

If the coefficients have all like signs, then — 1 is a root ; if the coefficients of the
terms equidistant from the first and last have opposite signs, then + 1 is a root. In either case
the degree of an equation can be depressed by unity if we divide the equation by x +1 or by x
— 1. The depressed equation is always a reciprocal equation of even degree with like signs for

its coefficients.

If the degree of a given reciprocal equation is even , say n = 2m and if terms

equidistant from the first and last have opposite signs, then

Pm :_pm-

i.e., p,,, =0, so that in this type of reciprocal equations, the middle term is absent. Such

an equation may be written as

2m-2

xzm—1+p1x(x -1H)+.....0.

Dividing by X2 1 , this reduces to a reciprocal equation of like signs of even degree. Hence
all reciprocal equations may be reduced to an even degree reciprocal equation with like sign,
and so an even degree reciprocal equation with like signs is considered as the standard form

of reciprocal equations.

A reciprocal equation of the standard form can always be depressed to another of half

the dimensions.

It has been shown in the previous article that all reciprocal equations can be reduced
to a standard form, in which the degree is even and the coefficients of terms equidistant from

the beginning and the end are equal and have the same sign.

Let the standard reciprocal equation be

2m 2m-1 2m-2 m
apX~ + aX + apX +....anX +...ta;X+ag =0.
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Dividing by x™ and grouping the terms equally distant from the ends, we have

1
1

xm—

ao(xm + xim)+ al(xm—1 + )+.....+ am_l(x + §)+ am =0

Letx+% =zand x" +xir:Xr
We have the relation X;+1=2. X,— X1,
Giving r in succession the values 1, 2, 3, ...
We have X,=2z X;— Xg=2z%-2
X3=zXo— X1 =23-3z
X4= 2 X3— Xo=z*— 472 +2
Xs5=27 Xq— X3=2°-523 4 527

and so on. Substituting these values in the above equation. We get an equation of the m®"

degree in z. To every root of the reduced equation in z, correspond two roots of the reciprocal

. . . . 1 .
equation. Thus if k be a root of the reduced equation, the quadratic x + - = k,ie,x?—kx+

. . k+VkZ— . . .
1 = 0 gives the two corresponding roots — of the given reciprocal equation.

Example 1. Find the roots of the equation x> +4x" + 3% +3x% +4x+1=0.

Solution.

This is a reciprocal equation of odd degree with like signs.
. 5 4 3 2
o (x+1) is a factor of X™ +4x" +3x™ +3x” +4x+ 1
The equation can be written as
CAx 3+ 3+ 3 +3x+x+1=0
i.e., X (x +1)+ 3x3(x +1)+ 3x(x +1)+1(x +1) = 0

ie., (x +1) (x* +3x° +3x+ 1) =0.
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A x+1=00rx*+3C+3x+1=0.

Dividing by x%, we get x* + 3x +;+ xiz =0

(x2+xiz)+3(x+§)20.

1 1
PUtx +-=2. «» x*+—==22-2
X X
v z2-2+32=0
_ —3+V17
=—.

1 —3+V17
Hence x + " = >

ie,2x2+ (=3 + V17)x+2=0

or 2x2+ (=3 — V17)x+2=0,

From these equations x can be found.

Example 2. Solve the equation 6x° — X —43x° +43x°+x -6 =0.

Solution.

This is a reciprocal equation of odd degree with unlike signs.
Hence x — 1 is a factor of the left- hand side.

The equation can be written as follows:
6x° — 6x" + 5x*— 5x> — 38x” +5x°—5x + 6X—6=0
ie., 6x* (x-1)+ 5x3(x -1)- 38x° (x-1)+5x(x-1)+6(x-1)=0
i.e., (x — 1) (6x*+ 5x°— 38x%+ 5x+6) = 0
@ X—1=00r 6x+5x-38x°+5x+6=0.

We have to solve the equation 6x*+ 5x°— 38x° + 5x + 6 = 0.
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Dividing by x”*6x" + 5x - 38+ > + = = 0
ie., 6(x? + xiz)+5(x + %) ~38=0.
Putx +=2. x> +5=72-2
The equation becomes
6(z2-2) +52-38=0
ie,  6z2+5z-50=0
e, (2z-5) (3z+10) = 0.

1 5
Xt-=-o XxX+-=-—
x 2 x 3

ie., 2x2—5x+2:0 or 3x2+10x+3:0

e, 2x-1)(x-2)=0or 3x+1)(x+3)=0

. 1 1
ie, X=—or2 or -— or-3.
2 3

. 1 1
. The roots of the equation are 1, 7 2, - 3 and - 3.

Example 3. Solve the equation 6x° — 35x° + 56x" — 56x° + 35X — 6 = 0.

Solution.

There is no mid-term and this is a reciprocal equation of even degree with unlike
signs. We can easily see that x*— 1 is a factor of the expression on left-hand side of the

equation.

The equation can be written as
6(x°— 1) — 35x(x" — 1) + 56x° (x>~ 1) = 0

e, B0C—1)(X +x2+1) - 3B5x(X2— 1) + (X*+ 1)) + 56x°(x*~ 1) =0
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e, (X—1)(6x" 35x> + 62x°—35x + 6) =0
ie, x=1o0r —1 or 6x"— 35x>+62x*— 35x+6 = 0.
Dividing by X’ , We get 6x>— 35x+ 62 — 3x—5 + x% =0.
2, 1 1 _
6(x2 +)- 35(x + x) +62=0,
1_ 2 -2
PUtX+;—Z. Xt —==z4-2.

6(z2-2)—352+62=0
ie., 6z2-352-50=0

ie., (3z-10) (2z-5) =0

10 5
Z=— 0r -—.
3 2
1 10 1 5
X+-=—o x+-= =
x 3 x 2

ie., 3x—10x+3=0 or 2x°-5x+2=0

e, xX-3)(3x-1)=0or (x-2)(2x-1)=0
ie, x=3 or = or 2 or H
3 2

1

1
,§,2 and Y

. The roots of the equationare 1, -1, 3

Exercises

Solve the following equations:-

1. x* - 10x°+26x°—10x +1=0.

2. x*+3x%°-3x-1=0.

3. 2x° - 9x° +10x* — 3>+ 10x° — 9x +2=0.
4. 2x5+x4+x+1=12x2(x +1).

5. xX°—5x>+5x>—1=0.
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6. x6+2x5+2x4—2x2—2x_1:0_
Answer:1.31\/8,21\/3,2_11"&\/5, 3.2, %’31;\/_, 1+2\/_ 4-1,—2 — ; 3+2v”
51,1 1, 3+\/— 6.1, —1+n/§ —1+n/‘

2

Transformation in general.

Letoyg, ay, ...., a, be the roots of the equations f (x) =0, it is required to find an equation

whose roots are

¢ (01), ¢ (a2), ..., ¢ (an).
The relation between a root x of f (x) = 0 and a root y of the required equation isy = ¢ (X).

Now if x be eliminated between f (xX) =0 and y = ¢ (x), an equation in y is obtained

which is the required equation.

By means of the relations between the roots and coefficients of an equation we can
establish a relation between the corresponding roots given and the required equations. A few

examples will illustrate the methods of procedure.

Example 1. Ifa, B, y are the roots of the equation X3+ px2 +gx +r = 0, from the equation

whose roots are « 1 B 1 1
By’ 24 ap’

Solution.

1
We have a——
By

a .
= a——since apy=-r
a
=a+-.
T
X
S Yy=EX 4 -
y=x+-

-~ The required equation is obtained by eliminating x between the equations
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y=x+= . @)
r
CAHplHaxtr=0 ... @

-
From (1) , we get x = .

Substituting this value of x in the equation (2), we get
Cy*+ pr(l+ 1)y’ +q(L+ 1)y +(1+ 0’ =0.

Example 2. If a, b, c be the roots of the equation X3+ px2 +gx +r =0, find the equation

2 2 2
whose roots are bhc—a“,ca—b" ,ab—-c".

Solution.

2 abc 2
We have bc — a :T—a

r 2 .
=———a sinceabc=-r.
a

Hence the required equation is obtained by eliminating x between the equations

- r 2
y=-7-%X (1)
and x3+px2+qx +r=0 ... (2)
From (1) , we get X3 + Xy +r=0 ....... (3)

Subtracting (3) from (2) , we get
px2 +0gx —xy=0
ie., X(px +g—-y)=0
ie,x=0 or px+q-y=0.
X cannot be equal to zero.

px+q-y=0.
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Substituting this value of x in equation (2) , we get

(3%;)3 + p. (yp%q)z +q. (yp%q) +r=0
ie, y*+ (p*-30) ¥’ + (3q°-p’g) y+ p°r—q° = 0.

Example 3. If a, B, v are the roots of the equation X2 Bx +7= 0, from the equation

whose roots are o + 2a + 3, [32 +2B +3, y2 +2y +3.
Solution.

Here we have to eliminate x between the equations
3
X —6x+7=0 ... (1)
and y:x2+2x +3

e, X +2X+(3-y)=0 ... )
Multiplying (2) by x and subtracting (1) from it , we get

2% (9-YV)X-T=0 . 3)

From (2) and (3) , we get

x? x _ 1

14— (3—y)  742G—y) _ (O—)—4'

so that (13 — 2y)2=(5—y)(— y* + 12y — 41)
. 3 2 _
e, y —21y +153y—-374=0.
Example 4. If o, B, vy are the roots of the equation X3+ px2 +gx +r =0, find the value of

(@® +1) (B° +1) (v° +1).
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Solution.
From the equation whose roots are
of +1, p% +1, v° +1.
For that, eliminate x between
_ 2
y=x+1 ... (1)
3 2 _
and X +px"+gx+r=0 ... (2)

Equation (2) can be written as
X(<* + q) = —(px° +1)
i.e., x(y—1+q)=—{p(y-1) + r} since from (1) X’ = y—1.
Squaring xz(y —1+q)?={p(y—1) + 1}
ie, Y-1)(—-1+9%*= {p(y—1) +r}
' 3 1V (N2 —
e, y+ y2 term +yterm —(q— 1) — (p—r)* =0.
The roots of the equation are o +1, B2 +1, y2 +1.
Products of the roots
2 2 2 _ 2 2
(@ +1) B +) (" ) =(@q-D*+ (p—-n*-
. 2 2 2 _ a+1
Example 5. If ais a root of X" (x+ 1)* — k(x — 1) (2x" +x + 1) =0, prove that oy
is also a root.

Solution.

a+l pB+1 y+1 6+1
a-1"p-1"y-1"6-1

From the equation whose roots are

For that, eliminate x between the equations

y=——r ceeenn(D)
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and X’(x+ 12 —k(x—1) @2 +x+1)=0 ... )
_y+l
From (1), we get x = -t

Substituting this value of x in (2), we get

B4+ ) (- 1) 2 () +E+1)=0
e, ( + D2@y)? —k.2.(y-1) {2y + D2+y’'~1+(y - 1)?}=0
e, dy’(y+1)2—K.2.(y—1) (4y> +2y + 2) =0
ie, V(y+1D2—k.(y—1) (2y°+y+ 1) =0.
We get the same equation as the original equation.
. g is a root of x(x + 1)2 — k. (x— 1) 2x*+x + 1) = 0.

Example 6. Find the equation whose roots are the squares of the differences of the roots of
the equation X3+px + q =0 (pand g being real). Hence deduce the condition that all the

roots of the cubic shall be real.

Solution.
Let a, B, y be the roots of the equation X3+px +q=0.

We have to form the equation whose roots are ( —v)?, (y — )2, (a — B)?.

(B—v)? =B+ v —2By

— o + B 2= o Zafv
= (a+B+y )2 —2aBtrive) — o'~ 2.

Herewe have a+B+vy =0,0B + Py +ya=p, afy=—q

2
(B=v)?=~2p—o’+ 0
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Hence to get the transformed equation eliminate x between the equations

2q

—_— —_ 2 —
y=-2p—Xx"+ ol PP (1)
and X3+px+q:0 ceeeen(2)
(1) can be written as
(Y +20) Xx=24=0 oo 3)

Subtracting (2) from (3) , we get (y + p) x—3q =0.

_3q
y+p’

Substituting this value of x in (1), we get

() +p () a=o0
Simplifying y3 + 6py2 + 9p2 y+ 4p2 + 27q2 =0.
(B =12 (v — 02, (a — B)2 = — (4p” + 27¢°).
If a,B,y arereal, thena — 3, — v,y — a are real and may be positive or negative .
(B=v)% (y — 0)?, (a — B)? are all positive.
Hence (1) (B—V)% (v — @)? (a—B)* is+ve
.e., 4p2 + 27q2 IS -ve.
2 B-V4G—w? (a—B)? is+ve
i.e., —6pis+ve
i.e., pis-ve.
4p2 + 27q2 Is negative implies that p is -ve.

. The condition for the roots of the equation to be real is 4p2 + 27q2 IS negative.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

56



Cubic equation.

1. Let the cubic equation be x>+ax + b = 0.
Method 1. The equation can be written as x’= —ax —b.

The x-coordinates of the intersection of the curves y = x3and y = —ax — b will be

give the roots of the equation.
y= x2 curve has a point of inflection at the origin.
Method 2. Multiply the equation by x.
Wegetx4+ax2+bx:0
ie., (x2)% +x°+ (a— 1)x* + bx = 0.

We can easily see that the roots of the equation are the x- coordinates of the points of

intersection of the parabolay = x*and the circle yi+y+(a-1)y+bx=0.
Here the origin is to be excluded since we have multiplied the equation by x.

2. If the cubic equation is ax> + bx? + cx + d = 0, we can diminish the roots of the cubic
by h and get an equation without the x* term. One of the above two methods can be
adopted to get the roots. The equation can be written as

3 2
ax’=—bx"—cx—d

] 3 b 2 c d
e, X =—=XxX"—=XxX-—-.
a a a

The roots are the x-coordinates of the intersection of the curves
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Example 1. Find graphically all the roots of X*—7x + 6 = 0.

Solution.

Method 1. The equation can be written as x°= 7x — 6.The x-coordinates of the points of

intersection of the curve y = x2 and the straight line  y = 7x—6 will give the roots of the
equation.The line y = 7x—6 intersects the curve in three real points and x-coordinates of the

points are 1, 2, —3.

The roots of the equations are 1, 2, —3.
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Method 2. Multiply the equation by x .
We get X' 7x% +6x =0
ie., (x2)2+x°—8x*+6x=0.
The roots are the x- coordinates of the intersection of the curves
y=X

and y?+y—8y+6x=0.
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The first curve is a parabola and the second is a circle whose centre is (— 3, 4) and the
radius 5.

By drawing the curves, we can see that the curves intersect at the point whose x-
coordinatesare 1, 2, and — 3.

=~ The roots of the equationare 1, 2, and — 3.
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e .
ANSEREEETE A '
=3,4)\ P
\ b 2
- ;L‘(\E‘ T
. < 3 Bt ,
= } s L)
»! 3 O1+2 X
' 5

b 2

S

Example 2. Show that the equation x>~ 3x% +3x— 7=0has only one real root. Find the root
graphically to the first decimal place.

Solution.
The equation can be written as xC=3x% _3x + 7.

Hence the root are the x-coordinates of the points intersection of the curves

y=X
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and y:3x2—3x+7.

If we draw the two curves on a graph paper we will see that the two curves will
intersect only in one point and the x-coordinate of that point is 2.8. Hence the equation has

only one real root and that is 2.8 approximately.
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Bi quadratic equations.
Let the equation of the bi quadratic be X' +ax+ b’ +cx+d=0.

Two conics in general intersect in four points.

Therefore our attempt should be to find two conics, the x- coordinates of whose points of

intersection are the roots of the given equation.

The equation can be written as
a a’ 5, 2
(x? +§x)2—Tx +bx“+cx+d=0.

2
e, ( +5x) +x2+(b — 1 — )xP+ ox+d =0,
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Let y:x2+§x .......... (1)
Then the equation becomes
2
Y +x2H(b—1+0) (7 —5%) +cx+d=0

2 2
e, Xy —S(b—1-S - x+(b-1+)y+d=0 ... )

a
The equation (1) represents a parabola and (2) a circle.

Trace the curves on a graph paper and the x- coordinates of the points of intersection are

the roots of the given equation .
Example. Solve the equation x*- 2%+ 4’ +6x-19=0 graphically.
Solution.
The equation can be written as (x?- x)2+ 3x* + 6x — 19 = 0
Let y=x*-x (1)
Then the equation becomes y? + X+ 2x° +6x—-19=0
e, X2+ y2 + 2(y+x) + 6x— 19 =0
e, X’ +y2+8x+2y-19=0
e, (x+4)2+(y +1)2=36
ie, (x+4)X+@y+1)2=6° ... )
Trace the curves (1) and (2) on a graph paper.

The curves intersect only in two real points.

Therefore the given equation has only two real roots and they are approximately 1.6 and 1.7.
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Exercises

1. Solve graphically the following equations:-
(1) x> 6x-9=0
) x}3x-2=0
(3) x*-7x-6=0
2. Solve graphically the following equations:-
1) x3-x*_33x+61=0
) x}-x*+2x-3=0
(3) X —6x2+9x—4=0
@) x*-7=0
(5) 362 +x+2=0

3. Solve graphically by using y = x% and a circle or otherwise 3x*—x*+3x - 4=0
Cardon’s method.
Let the equation be x3+px +q=0. ... (1)

Let x be u + v. Substituting this value of x in equation (1), we get
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(u+ v)3+pu+v)+q=0.
i.e.,u3+v3+3uv(u+v)+p(u+v)+q:0
ie., u3+v3+q+(u+v) (Buv +p) =0.
Choose uand v such that 3uv +p =0.
Then the equation reduces to

G+vi+gq=0 )

with the condition 3uv+p=0 ... 3)

Eliminate u from (2) and (3) , we get

3
(-3’ +V +g=0

3
ie., vo+ qv3 — 5—7 =0 4)

Similarly eliminate v from (2) and (3) , we get
6, 3 p3
U+ qu” —o== o L (%)

From (4) and (5) relations, we get that

u*and v are the roots of the equation

t? +qt———0 ........... (6)

u*and v can be determined from this equation

v =—-—(q—+

4 3
Roots of equation (6) are real only when 4 5—7 = 0. In that case two roots of

equation (1) are imaginary and one root real or two of the roots of the equation (1) are real.

4 3
Let qT + 5—7 ie., 4p3 + 27q2 is positive.
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3 3 3 3 3_ 3 .
Then u and v arereal and letu™ =m” and v™ =n". Here we obtain 3 values of u

viz.,

2 . 2 2
m, wm , w"m and 3 values of vviz.,n, wn, w™n, where w and w" are the cube roots of

unity.

Hence we get 9 combinations for u + v. Out of the nine combinations, the following 3

combinations values are only valid for u + v since.

33=_1 - _
UV’ =——= e, uv=

wis

2 2
m+n; mw+nw and mo +nw.

Hence they are the roots of the given equation (1). The solution of the cubic equation

depends on the roots of the equation (6).

3
The roots of the equation (6) are imaginary if q2 + %< 0. In that case both u®and

V3

are imaginary and hence u and v are the cubic roots of imaginary quantities. This has no
arithmetical meaning. Hence Cardon’s method is not useful. So before trying to solve a
cubical equation, find the nature of its roots. If all the three roots are real we can not use

Cardon’s method to get arithmetic values for the roots.
Example 1. Solve the equation x°—6x—-9=0.
Solution.
Herep=—6andg=-9
4p>+ 27q7 = 4(- 6 )3+27(-9 )%= 1323 > 0.

Hence the equation has no real root and two imaginary roots and so Cardon’s method

is applicable.

x = u + v where u® and v are the roots of the equation
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ie, 2 -0t +8=0
e, (t—8)(t-1)=0
u3:8 and v3:1.

Hence 2+1 i.e., 3 is one of the roots of the equation. The other roots are 2w + w” and
2w% + w. Or since 3 is one of the roots of the equation, dividing the given equation by x — 3,
we get the other rots of the given equation. They are the roots of the equation x3+3x+3=0.

Hence the given equation has the 3 roots

3—3+i\/§ —3-iV3
' 2 ! 2

These are the same as 3, 2w + a)2 and 2cu2 + w.
Example 2. Solve the equation x°-9x” + 108 = 0.
Solution.

Transform this equation into one without the second term, i.e., the term without x* term.

This can be done by decreasing the roots by 3.That equation is x> 27x + 54 =0,

If a, B, y are the roots of the equation (1), the roots of the given equationare o + 3, p + 3

and y + 3.

Here u® and v* are the roots of the equation.
t2+qt—;4;:0Whereq:54, p=-—27.
ie, t2+54t+(27)2=0
e, (t+27)2 =0
Hence two of the roots of the equation are equal
u*=—27andv¥=— 27.

Henceu=—-—3andv= —3.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
65



The roots of the equation (1) are
2 2
—6,—3w —3w” and —3w” — 3w
Since w and w® are the cubic roots of the unity
1+w+ wz =0.
Hence these roots are — 6, 3, 3.
~ The roots of the given equation are — 3, 6 and 6.

Solution of bi quadratic equations.

Of the several methods of solution of a bi quadratic equation, the simplest is due to Ferrari.

The method is illustrated below.

Let the equation be
X+ px3+qx2+ rx+s=0.

Express the left side of the equation as the difference of squares of a quadratic function

and a linear function.

The equation can be written as
x2+2x)2( —Bz)x2+ X +s=0
2 q 4 )
The equation can be expressed as
2
(x* + %x + A)Z—{(% —q+ 2/1))(2 +(Ap—r)x+ A — s} =0
Which is of the form
% +Ex+ D)% (ax + )2 =0
2 _P? 2 =92
Where o =2 —q+20N208=Ap—1, B =A—s.

Eliminating a and B from these equations, we get
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4(%2 —q+ 2/1)(/12 —s)= (Qp-1°

At least the root of this cubic equation in A is real. From the real root of this equation, a

and [} can be determined.

Hence the given equation can be factorized into
x? +gx+/1 + (ax + B) =0.

Solving the two quadratic equations, all the four roots of the bi quadratic can be
determined. Hence the solution of the bi quadratic equation depends on the solution of a
cubic equation, which can be solved by Cardon’s Method or by trial and error method which

is explained in the article Newton’s method of divisors.
Example 1. Solve the equation P+ a1 ax-12=0
This equation can be written as
(2x% + x)2-ax?-4x - 12=0
e, 2x2+x +0)2—{(@r+8) x>+ A+ 4) x+2A* + 12} =0
ie., (2x2+x +A)%~(ax+£)*=0
Where o =4(L+2) ,20p=2(L+2), B2 = A2+12
Eliminating o and B from these relations, we get
16(A + 2)(A%+12) = 4(A + 2)*
Which reduces to
A+ 2)(4r2-r+46)=0.
The only real root of the equation is — 2.
Hence the given equation reduces to
(2x% +x-2)%-(4)?=0

ie, (2x2 +x+2)(2x> +x-6)=0
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—14iy15
The roots of 2x2 +x+2=0 are+\/_

3
The roots of 2x? + x-6 =0 are -2 and >

=~ The roots of the given biquadratic equation are

3 —1+iV/15
-2,= and ———.
2 4

Example 2. Solve the equation X'~ 4x3— 10x° + 64x + 40 = 0
This equation can be written as
(x> —x)%-14x> +64x +40=0
and hence as
(x%- 2x + 0)2{(2A+14) x>~ (4\+64) X+ A%-40}=0
e, (x2-2x +A)%(ax+p)*=0
Where o? = 2(A+7) , 2af =— 4(A+16) , B2 = A2-40.
Eliminating o and B from these relations, we get
8(A + 7)(A*- 40) = 16(A + 16)?
On simplification, this equation reduces to
A2 +50°— 1043 - 792 =0
792 = 2333(11). On trial we find that 11 satisfies the equation.
Dividing by A — 11, we get 2%+ 16\ + 72 = 0 which gives imaginary roots.
WhenA=11,a=4+6,p=19, aff =-54.
~a=6,=-9ora=-6, f=9.

Both pairs of the values will lead to the same factorization of the expression on the left side.
Hence the equation reduces to
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(x?- 2x +11)%2-(6x —9)? =0
i.e., (x? +4x + 2)(x%- 8x +20)=0
Hence the roots of the given equation are
-2 ++2 and 4 £2i.
Example 3. Solve the equation 2x*+ 6x° —3x*+2 = 0.

Solution.

Transform this equation into another whose roots are twice the roots of the given

equation. The transformed equation is
2x*+ 6(2) x>~ 3(2%) x*+ 22 =0
Which reduces to
X6 6x2+16=0 (1)
This equation can be written as
(x? + 3x + )2 {2M+15) x>+ 6Ax+A%-16}=0
The equation can be expressed as
(x? + 3x + )% —(ax + B)? = 0 where
o =20+15, 20P = 6, B2 = A%-16.
Eliminating o and B from these relations, we get
421 + 15)(A%- 16) = 36412
simplifying we get 22° +62%~32.-240=0  .......... )
240 = 2*(3)(5), by trial we see that . = 5 is a root of (2).
Hencea=+5,f =% 3, af = 15.

~a=5pf=30r a=-5 p=-3.
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Hence for both pairs of values (1) reduces to
(x> + 3x +5)2 -(5x + 3)?=0.
i.e., (x4 8x +8)(x*-2x +2)=0

The root of this equation are -4 + 2v/2 and 1 +i. Hence the roots of the given equation are

1 +i
-2++/2 and T_l

Exercises

Solve the equations

X+ 3¢C+6X+4=0

X -x%—16x+20=0

1

2

3. XCH+BX+IX+4=0
4 3 2 _

4, 3x —10x"+6Xx —10x +3 =0.

5. x*—8x°— 12x% +60x +63 = 0.

Answers : 1. -1, -1+ iV3,2.2,2,-5,3. 4,-1,-1,4. %1, 3, %, 5.-1,-3,1+2i.

Solution of numerical equation

An equation such as 3x® — 2x* — 5x + 7 = 0, where coefficient are numbers are called
numerical equation. Such an equation may have real and imaginary roots. Among the real
roots, some roots may be commensurable and some incommensurable. We shall give below
some methods to determine the commensurable and approximations to incommensurable

roots of a numerical equation.
A rational fraction cannot be a root of an equation with integral coefficients, the
coefficient of X" being unity

1

If possible Iet% (a fraction in its lowest terms) be a root of the equation x" + p;x"~~ +

p2 Xn—2+“ A+ pn = 0’ Where pl’ pz’ p3, e ,pn are intEQErS
a n a n—1 a n—2 _
Therefore (Z) +P1 (Z) + P2 (Z) +...Fpn=0.

Multiplying throughout by b"~*, we get
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—%: pia" t+paba’ P+ pgbia” 4.+ pb” (1)

a is not divisible by b.
Therefore % = a fraction.

But each term on the right side of (1) is an integer. We have therefore a fraction equal

to an integer which is impossible. Hence % cannot be a root of the equation. So the

real roots of the equation are either integer or incommensurable roots.
Integral roots

Since pn is numerically equal to the product of all the roots, it is evident that integral
roots are the exact divisors of p,. Hence to find the integral roots of an equation we have to
find the factors of p, which satisfy the equation. If the coefficient of x" is not unity but po then
transform the equation into another whose roots are those of the given equation multiplied by
po. In the new equation po will be a common factor in all the coefficients of the terms. We can

divide the equation by po and get an equation with the coefficient of the first term unity.

Example 1. Solve the equation x* + 2x* — x — 2 = 0. The integral roots must be found among
the values £ 1, + 2 which are the factors of — 2. By Descartes’ rule of signs. It can have at the

most one positive root.

Solution.

Substituting these value in the expression on the left side, we can see that 1, — 2 are the roots

of the equation.

We can easily see that
X+ 23 —x—2=(x—1)(X + 2)(X* + x + 1).

—1+v-3

~The other roots of the equation are

Example 2. Find the rational root of 2x> — x* — x — 3 = 0 and hence complete the solution of

the equation.
Solution.

Multiply the roots of the equation by 2.
2x3 —2x* —4x — 24 = 0.
X2 —x*—2x—12=0.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
71



i

ST
The integral roots must be found among the values +1,+£2,+3,+4,£6,+ 12
Substituting these values in the equations, we find + 3 is the only root

% is the only rational root of the original equation.

We can easily see that the other roots are 143 :

If we can find limits between which the real roots of an equation lie it is possible to limit the
number of trials. We shall give below some elementary methods to determine such limits.
One way of finding the upper limit is to group the term of the equations in such a way that

each group is separately positive. Consider for example the following equations:

(1) 2x® —5x% + x + 10 = 0.
This may be written in the form
X?(2x — 5) + (x + 10) = 0.
If x > 3, each one of the group is positive. Thus the upper limit of the real roots may
be taken as 3.
(2) 3x* + 6x° + 12x* — 4x — 10 = 0.
i.e., 3x* + (6x°—4x) + 12x* ~ 10 = 0.
i.e., 3x* +2x (3x* - 2) + 2(6x* — 5) = 0.
Each one of the group is positive if x > 1. The upper limit may be taken as 1.
(3) 5x° — 7x* — 10x° — 23x* — 90x — 417 = 0.
Distributing the higher power of x among the negative terms, the equation may be
written as
X°—Tx* +x° —10x% + x° - 23x% + x> — 90x + X° — 417 = 0.
e, X*(x —7) + x3 (x* = 10) + x*(x® - 23) + x (x* —90) + (x° — 417) = 0.
If x > 7, each group is positive. Hence the upper limit may be taken as 7.
(4) x* —x®—2x*—4x - 24 =0.
Multiplying the equation by 4 and distributing the highest powers among the negative
terms, we get
(x* — 4x%) + (x* — 8x%) + (x* — 16x) + (x* — 96) = 0.
X3(x — 4) + x*(x* — 8) + x(x® — 16) + (x* — 96) = 0.
Here the upper limit is 4.
To find the lower limits of the real roots it is enough to find the lower limits of the

negative roots of the equation. The negative roots of f(+ x) = 0 are the positive roots
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of f( - x) = 0. Hence the lower limit of the negative roots of f(x) = 0 is the upper limit

(with the sign changed) of the positive roots of the equation f(- x ) = 0.

If the numerically greatest negative coefficient in the equation f(x) = x" + p.x"*

+ pz
X" "2+...+ pn= 0 is equal to — p, then p + 1 is an upper limit to the positive roots.
f)>0ifx">pX" 1+ x" 2+ ..+1)

x™—1

x—1

e, if >p

e, if >p-—

e, if x" (1 - ﬁ) >0

ie.if (1---)>0

e, x-1>p

e, x>p+l

Hence according to this rule the upper limits in the previous article are 6, 11, 18, 25.
If a is a root of the equation

f(x) = X"+ px" 1+ po X" % +...+ py = 0 then X — o is a factor of f (x).

let the quotient when f (x) is divided by X — o be

ORE S ) SRR RN VL

Hence we have

fx)=(x—a)X" T+ bx" 2+ .. +b" Y

if we put x = k in the identity, we have

f(k)= (k—o)K" *+bk" ?+...+b" 1),

Therefore k — a is a factor of f (k).

In particular if k = 1, or — 1, f(1) is divisible by 1 — a and f (- 1) is divisible by — 1 —
a, i.e., f(1) is divisible by o — 1 and f (— 1) by a + 1. Before testing any divisor a for a
root, calculate f (1) and f (- 1) such of the divisor decreased by 1 which fail to divide
exactly f (1) and the divisors increased by 1 which fail to divide f (— 1) are to be

rejected.
Newton’s method of divisors.

Let the given equation be
f(X) = pox" + pox" 1+ po X" %+...+ pn = 0 where po, p1, P2, ..., pn are integers.
If o is a rational root of the equation, then a is a factor of p, and f (X) is exactly

divisible by X — a
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Let the equation when f (x) is divided by X — a

n-1

box +b1Xn72+...+bn71.

Here by, by, by, ..., b" *are integers

" X" P pn = (X —o)(boX" T+ b 2+ L+ b Y

Pox" + p1x
Equating the coefficient of like powers on both sides, we have
Po = bo
p1=Db;—abgorp;—by= —aby
p2=by—abiorp,—by=—ab;

Ph-1= bn_1—abn_2 Or pnfl_bnflz —abp_2.

Pph= —abp_1

pn is divisible by a and the quotient is — b,

Pns Pn-1, Pn-2 P2, P, Po
—bno1, —bno2 ... —by, —b1, —bo

—abp_2 —obp_3 —ab; —abg 0

In the first line the successive coefficients po, P1, P2, ..., pn IN the reverse order of
their occurrence are written and the quotient — b, _; when p, is divided by a is written below
pn - 1 and added, we get — aby _ ,. If this is divided, by a and the quotient— b, _ » is written
below p, _, and added, we get — ab, 3. If we continue this process, in the end we get zero
since po = bo. Since by, by, by, ..., by _1 are integers, if at any stage the quotient we get is a
fraction, we can at once infer that a is not a root of f (x) = 0. Also the last quotient by must be

equal to po.

Example 1. Solve the equation x* — 2x® — 13x? + 38x — 24 = 0 by finding the rational roots
Solution.

The equation can be grouped as follows:

x*—5x%+3x% - 13x* +38x — 24 =0

ie., x*(x—5) +x* (3x—13) +2(19x—12) =0
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Hence the upper limit of the real root is 5.
Changing x into — x, we get x* + 2x% — 13x* —38x - 24 =0
The term of the equation can be grouped as follows:
x* —13x° + x>~ 38x +x3 - 24 =0.
e, X’ —13) +x (xX*—38) +(x*-24)=0
if x =7, each group is positive.
Therefore the lower limit of the negative root is — 7,
Hence the real roots of the equation lies between — 7 and 5.
The divisors of 24 (otherthan £ 1)are £2,+3,+4,£6,+8,+ 12, + 24,
Since the real roots lies between — 7 and 5 it is enough to test for roots the divisors
+1, £2,£3,£4,-6.
Here f(x) = x*—2x*—13x* + 38x — 24 .
Hencef(1)=0andf(-1)= - 72
~ 1 is aroot of the equation and (- 1) is not a root of it.
If a is a root of f (x) = 0, then a + 1 is a factor of f (-1).

If 1 is added to the divisors to be tested, i.e., +2,£3,+4, —6,weget3,4,5 -1, —2,-3,—
S5,

5 and — 5 are not factors of — 72.
Hence the divisor 4 and — 6 are to be rejected.

We can apply Newton’s method of divisors for obtaining the rational roots.

- 2 |24 38 -13 -2 +1
12 -25 19
50 -38 17

The trial divisor — 2 has to be rejected since it does not divide 17 exactly
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-12 13 0 -1
26 0 -2 0
Hence 2 is root of the equation. When f (x) is divided by x — 2, we get the quotient x® —

2 ‘24 38 —13 -2 +1

13x + 12 = 0. We shall test the other divisors + 3, — 4 on the equation.

-3 ‘ 12 -13 0 1
4
~17

Therefore — 3 is not a root.

3 12 -13 0 1

4 -3 -1

-9 -3 0
Therefore 3 is a root of the equation

—4 -4 3 1

1 -1

4 0
Therefore — 4 is a root of the equation and hence the roots of the equation are 1, 2, 3 and
— 4.
Example 2. Find all the rational roots of the equation 4x® + 20x* —23x +6=0 ...... (1)
Solution.

Multiply the roots of the equation m.
Then the transformed equation becomes
4% + 20mx* — 23m*x + 6m°> =0
If we take m = 2 then 4 will become the common factor of all the terms of the equation.
In that case the equation becomes x* + 10x* = 23x + 12 =0 ............. )
Find the rational roots of the equation. These rational roots of the equation will be twice
the roots of the original equation. The transformed equation can be written as
X2+ x(10x - 23) +12=0
When x = 3, the expression on the left side is positive. Hence 3 is the upper limit of the
real roots.
Changing x into — x, the equation becomes
— X3+ 10x* +23x+12=0
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ie, xX*-10x*—23x—-12=0

i.e., 3x° —30x* —69x — 36 =0

ie., (3= 30x%) + (x*— 69x) + (x>~ 36) = 0
i.e., X (x —30) + x(x* — 69) + (x> — 36) = 0.
x > 30, to make each group +ve.

= The lower limit of the real roots is — 30.

Hence the real roots lie between — 30 and 3. The rational roots of the equation (2) are the

factors of 12 and hence they can be found among the values £1, £2, £3, £4, £6, £12.

From the limits of the real roots, it is enough to test for roots the divisors £1, £2, — 3, —
4,— 6,— 12

f(1) =0, f(— 1) = 44.

Hence 1 is a root of the equation and — 1 is not a root of the equation. If 1 is added to the
divisorwe get3,—-1,-2,-3,-5, - 11.

3, — 3, — 5 are not the factor of 44.

Hence the divisors 2, — 4, — 6 are to be rejected. The remaining divisors are — 2, — 3, —

12. We shall apply Newton’s method of divisors.
-2 12 -23 10 1

-6

-29

Therefore — 2 is not a root

-3 12 -23 10 1

4 9

-27 19

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
77



Therefore — 3 is not a root

-12 12 -23 10 1
-1 2 -1
—24 12 0

Therefore — 12 is a root of the equation .

Hence the rational roots of (2) are — 12 and 1. Since irrational roots and imaginary roots

occur in pairs, the third roots is also rational. We can easily show that 1 is a repeated root

of the equation (2). Hence the root of the original equation are %% —6.

Example 3. Solve the equation 3x* — 40x> + 130x? — 120x + 27 = 0 given that it has two
integral roots.

Solution.

The terms of the equation can be grouped as
(3x*—40x%) + (130x*—120x) +27=0
i.e., x* (3x — 40) + 10x(13x — 12) + 27 = 0.
Each group is positive if x = 14.

The upper limit of the real roots is 14.

Changing x into — x, we get the equation transformed into 3x* + 40x® + 130x* + 120x +
27 = 0 whose lower limit of positive roots is zero. Hence the limits of the roots of the
original equation are 0 and 14. The integral roots are found among the factors of 27, i.e.,

among the values 1, £3, £9, £27.

The real roots lies between 0 and 13.

Hence we to test for roots only the divisors 1, 3, 9.
f(1)=0, f(-1) = 320.

Hence 1 is a root of the equation and — 1 is not a root.
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The divisors 3 and 9 increased by 1 are the factors of 320. Hence 3 and 9 are the roots.

We shall apply Newton’s method of divisors to find the quotient when the expression on

the left side is dived by (x — 1),(x — 3),(x — 9) and incidentally verify that 3,9 are the roots

of equation.
1 27 120 130 -40 3

27 -93 37 -3

93 37 -3 0

3 27 93 -37 3

-9 28 -3

84 -9 0
9 9 -28 3
1 -3
27 0

Hence the quotient is 3x — 1.
Hence the equation becomes (x — 1)(x —3)(x —9)(3x—1) =0
~ The roots are 1, 3, 9 and §

Exercises
Solve the following equation, given that they commensurable roots

1. xX*—5x*—18x + 72 =0.

2. x* - 39x% + 46x — 168 = 0.

3. x°—12x* + 25x% — 48x* — 26x + 60 = 0.
4, 2x*+x3 - 2x* —4x -3 =0.

Answers : 1.3,6, - 4, 2. 6, -7, = 1° V3—15 3.1,-1, 10, 4. % _1’—1;;31-_
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Horner’s method

This method can be used to determine both the commensurable and the
incommensurable roots of a numerical equation. First we shall explain the method for
obtained the positive root. The procedure is to determine the root figure by figure, first the
integral part and then the first decimal place, then the second decimal place and so on until
the root terminates or the root has been obtained to the required degree of approximation. The
main principle involved in this method is diminishing the roots by certain known quantities
by successive transformations. In this method the successive transformations can be exhibited
in a compact form and the roots can be obtained to any number of places of decimals

required.

First we have to find by trial two consecutive integers between which a real positive
root of the equation lies. This will give the integral part of the root. Let it be a first diminish
all the roots of the equation by a. Then the transformed equation will have a root between 0
and 1. In order to avoid decimal in the working, all the roots of this transformed equation are
multiplied by 10. Then the new transformed equation has a root between 0 and 10. By trial
find the integers between which the root lies and thus find the integral part of the root. Let it
be b. Then diminish the roots be b and again multiply the roots by 10 and continue the

process till we get the root to the number of decimal we required.

Example 1. The equation x* — 3x + 1 = 0 has a root between 1 and 2. Calculate it to three
places of decimals.

Solution.

Since the roots lies between 1 and 2, the integral part of the root is 1. Diminish the root of
the equation by 1.

1
1 1 -2
1 2 [

1 2

R
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3
The transformed equation is x*> + 3x*~1 =0
This equation has therefore a root between 0 and 1.
Multiply the roots of this equation by 10.
Then the equation transforms into x* + 30x? — 1000 = 0

We can easily see that a root of this equation lies between 5 and 6. Diminish the roots of the
equation by 5.

1 30 0 ~ 1000
G
5 175 875
35 175 125
5 200
40 375
5
45

The transformed equation is x* + 45x? + 375x — 125 = 0.

This equation has therefore a root between 0 and 1.

Multiply the roots of the equation by 10.

Then the equation transforms into x® + 450x? + 37500x — 125000 = 0.
We can easily see that a root of this equation lies between 3 and 4.
Diminish the roots of this equation by 3.

1 450 37500 —125000 3
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3 1359 116577
453 38859 e
3 >
_;;;— 40227
3
459

The transformed equation is x® + 459x* + 40227x — 8423 = 0.
Multiply the roots be 10.
Then the equation transforms into x® + 4590x? + 4022700x — 8423000 = 0.

We can easily see that a root of this equation lies between 2 and 3.diminish the root be 2

1 4590 4022700 — 8423000 (2
2 9184 80637668
4592 4031884 — 359232
2 9188

4594 4041072

4596
The transformed equation is x® + 4596x? + 4041072x — 359232 = 0
Multiply the roots by 10. Then the equation transforms into
x® + 45960x° + 404107200 — 359232000 = 0

We can easily see that a root of this equation lies between 0 and 1. We can stop with this
since we require the root correct to three decimal places. Thus the root correct to three
decimal places is 1.532. In the actual presentation we need write only the coefficients of the
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various transformed equations omitting completely the powers of x. The series of arithmetical

operations is represented as follows:

1 0 -3 1 (1.5320
1 1 -2
1_ -2 —1000
1 2 875
\2 0 — 125000
1 175 116577
30 175 — 8423000
5 200 8063768
35 37500 | — 359232000
5 1359
w0 38859
5 1368
450 4022700
3 9184
E3 4031884
3 9188
—45; 401407200
3
4590
2
4592
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4594

45960

Example 2. Find the positive root of the equation x* — 2x® — 3x — 4 = 0 correct to three places

of decimals.
Solution.

by Descartes’ rule of signs, there can be at the most only one positive root and we can easily

see that it lies between 3 and 4. The process is exhibited as follows:

P _3 _4 (3.2842
3 3 0
1 0 — 4000
3 12 2688
4 1200 -1312000
3 144 1242752
70 1344 - 69248000
2 148 64746224
72 149200 l-—4501776000
2 6144 3243903688
_;;f— 1;;;;;—— 1257872312
2 6208
760 16155200
8 31356
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3
B L
s 16186556
. 31392
;;;“ /1621794800
_j{__J 157044
7840 1M
_4
7844
4
7848
4
78520
2
78522

. The roots correct to three decimal places is 3.284
Exercises

1. Find the positive root, correct to two decimal places of the equation x3 + 3x? + 2x — 5
=0.

2. Find the real root of x> + 6x = 2 to three places of decimals

3. Find the root between 0 and 1 correct to three places of decimal of the equation x> +
18x -6 =0.

4. Find the root of the equation x® — 5x — 11 = 0 which lies between 2 and 3 correct to
two places of decimals.
Answers : 1.0.90, 2.0.327, 3. 0.33, 4. 2.99.
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UNIT I11: SEQUENCE AND SERIES

Sequence and series : Sequence — limits, bounded, monotonic, convergent, oscillatory and
divergent sequence — Algebra of limits — Subsequence — Cauchy sequence in R and Cauchy'’s

general principle of convergence.
Sequences

Definition. Let f: N — R be a function and let f (n) = a,. Then ay, a,, as, ..., ..., an,
..... 1s called the sequences in R determined by the function f and is denoted by (ap). a is

called the n™ term of the sequence. The range of the function f which is a subset of R, is

called the range of the sequence

Examples.

1. The function f : N — R given by f (n) = n determines the sequence 1, 2, 3, ..., ..., n,

2. The function f : N— R given by f (n) = n? determines the sequence 1, 4,9, ..., ...,

2
n,..

3. The function f: N — R given by f (n) = (-1)" determines the sequence —1,1, -1, 1,
..., Thus the terms of a sequence need not be distinct. The range of this sequence ie
{1, -1}. Thus we see that the range of a sequence may be finite or infinite.

4. The sequence ( (—1)”+1) isgivenby 1, -1, 1, —1... The range of this sequence is also
{1, -1}. However we note that the sequence ( (-1)") and ( (—1)”+1) are different. The

first sequence starts with —1 and the second sequence starts with 1.
5. The constant function f : N — R given by f (n) = 1 determines the sequence 1, 1, 1,
..., ... Such a sequence is called a constant sequence

6. The functionf: N — R given by

1 ...
Enlfnlseven

f(n) =
% (1 —-n)ifnisodd

determines the sequence 0,1, -1, 2, -2, ...,n, — N,

.... The range of this sequence is Z
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10.

11.

12.

L
RS0

The function f: N— R given by f (n) = nL-l-l determines the sequence

N | =
wN
S w

n
n+1'""

The function f: N — R given by f (n) = % determines the sequence 1

N =
[SSE

) o9 e

=20 e

The function f: N —R given by f (n) = 2n+3 determines the sequence 5,7,9,11, ...

Let X € R. The function f : N— R given by f (n) = X " determines the geometric
sequence 1, X, X°, ......... X e,
The Sequence (- n) is given by -1, -2, -3,... —n,...... The range of this sequence is

the set of all negative integers.

A sequence can also be described by specifying the first few terms and stating a rule
for determining a, in terms of the previous terms of the sequence. For example, let
ar=1,a =1, and a, = a,1+a,_,. Then, az = a,+ a; = 2; a; =az+ a, = 3 and so on. We
thus obtain the sequence 1,1,2, 3,5.8,.......... This sequence is called Fibonacci’s

sequence.

Bounded Sequences

Definition. A sequence (a) is said to be bounded above if there exists a real number

k such that a, <k for all n € N. k is called an upper bound of the sequence (a).

A sequence (an) is said to be bounded below if there exists a real number k

such that a, > k for all n. k is called a lower bound of the sequence (a;).

A sequence (a,) is said to be a bounded sequence if it is both bounded above

and below.

Note.

1. A sequence (a,) is bounded if there exists a real number k > 0 such that |a,| <k

forall n

Examples.

1. Consider the sequence 1,%, % ........ % Here 1 is the l.u.b and 0 is the g. L.b.

It is a bounded sequence.
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2. The sequence 1,2,3, ........ R T is bounded below but not bounded
above. 1 is the g. l.b of the sequence.

3. The sequence -1, -2, -3,... —n, ... is bounded above but not bounded below.

is the L.u.b of the sequence.

4. 1,-1,1,-1, .... is a bounded sequence. 1 is the I. u. b -1 is the g. I. b of the
sequence

5. Any constant sequence is a bounded sequence. Here 1.ub = g. I. b = the

constant term of the sequence.

Monotonic sequence

Definition: A sequence (a,) is said to be monotonic increasing if a, <a, + 1 for all
n. (a,) is said to be monotonic decreasing if a, > a, + 1 for all n. (ay) is said to be strictly

monotonic decreasing if a, < a, + 1 for all n. (a,) is said to be monotonic if it is either

monotonic increasing or monotonic decreasing.

Example.
1. 1,2,2,3,3,3,4,4,4,4, .... 1s amonotonic increasing sequence.
2. 1,2,3,4....n,.....is a strictly monotonic increasing sequence.
1 11 1 . . . .
3. 1, ST RETE e is a strictly monotonic decreasing sequence.
n

4. The sequence (ap) given by 1, -1, 1, —1, 1, ... is neither monotonic increasing nor

monotonic decreasing. Hence (ap) is not a monotonic sequence.

2n—=7Y\ . .. .
5. ( ) IS @ monotonic Increasing sequence.
3n+2

2n—7 2(n+1)-7
3n+2  3(n+1)+2

Proof. 8, —an+1=

—25
= <
(3n+2)(3n+5)

Sap<apt+ 1l
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Hence the sequence is monotonic increasing.

6. Consider the sequence (a,) where

1

_ 1,1 _ . . .
ap =1+ TRk Clearly (an) is @ monotonic increasing sequence.

Note: A monotonic increasing sequence (an) is bounded below and q; is the g.l.b of

the sequence. A monotonic decreasing sequence (a,) is bounded above and a; is L. u. b of the

sequence.

Solved Problem.

. . . ait+az+..+a . .
Show that if (a,) is a monotonic sequence then (#) is also a monotonic
n

sequence.

Solution. Let (ay) be a monotonic increasing sequence.

A< <A ... <A< (D)
a1 +an+..+a
et = (eztate)
n

_aptaz+..tap4 ai+az+..+a,
n+1 n

NOW, bn+1_bn

nanp+1—(aq +az + .. +a,)
— n(n+1)

nanp+1—(@n +an + ... +ay)
- n(n+1) by(1)

n(an4+1—an)
n(n+1)

0.

[V

5 Pnv1> Dby,
-~ (by) is monotonic increasing.

The proof is similar if (a,) is monotonic decreasing.
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Convergent sequences
Definition. A sequence (ay) is said to converge to a number [ if given € > 0 there exists a

positive integer m such that |a, - [ | <€ for all n >m. We say that [ is the limit

of the sequence and we write lim,_. a, =1 or (an) — [

Note.1l (an) — [ iff given € > 0 there exists a natural number m such that
an €(l—€, [ +¢,) for all n > m 1.e, All but a finite number of terms of the sequence

lie within the interval (I — e, [ +¢€).

Note.2 The above definition does not give any method of finding the limit
of a sequence. In many cases, by observing the sequence carefully. We can guess

whether the limit exists or not and also the value of the limit.
Theorem 3.1. A sequence cannot converge to two different limits.

Proof. Let (an) be a convergent sequence.
If possible let 1 and l2 be two distinct limits of (an).
Let € >0 be given.

Since (an) —11 , there exists a natural number n;

such that |a, — [;|< % e foralln>n:. . (1)

Since (an) — l2, there exists a natural number ng
such that |a, — ;| < % e foraln>n. ©)
Let m = max {n1, na}
Then |l —L|=|l4 —a, +a, — ]
<lam — Ll + lam — L]
<%e+%e(by 1 and 2)

=€

. |l{ — I,|< € and this is true for every € > 0. Clearly this is possible only if [; — [,

= 0. Hencel; = [,
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Examples

1. Lim =0

n —oo

Proof. Let € > 0 be given. Then E — 0| = % <eifn> é Hence if we

choose m to be any natural number such that m > % then|% - O| < € for
alln > m.

) 1
Iim — =0
n

n —oo

Note. If € =1/100, then m can be chosen to be any natural number greater than
100. In this example the choice of m depends on the given € and [ 1/€ ] + 1 is the

smallest value of m that satisfies the requirements of the definition.

2. The constant sequence 1, 1, 1, ...... converges to 1.
Proof. Lete >0 be given
Let the given sequence be denoted by (an).

Then an, =1 for all n.

|an—1|=|1—1| =0< € forallneN.

«|an—1|<e for all n > m where m can be chosen to be any natural
number.
~ Lim ap=1
n —»oo
Note. In this example, the choice of m does not depend on the given €
3. Lim = =1

n—>0oo

Proof. Let € > 0 be given.

Now, |”nj_ 1|= |1+%—1 | = |%|
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~ If we choose m to be any natural number greater than % we

have,
|nT+1—1|<eforalln2m
Lim =1
n
n —oo
4. Lim —=0

n —oo

Proof. Let e > 0 be given
1 _1 1,
ThenlzT— O|—2—n<;(--2n>nVn6N).
1 :
o w0 | < € for all n > m where m is any natural number greater

than 1
€

5. The sequence ( (—1) ") is not convergent

Proof. Suppose the sequence( (—1) ™) converges to [
Then, given € > 0, there exists a natural number m such that | (=1)n-l |
<e foralln>m.
S e e e S [ Ve e B C Ve
<) ] +| (=) mr1—q|
<et+te =2¢€
But |1 m— (1) ™| =2.

~2<2eie. 1<ewhichisa contradiction since € > 0 is arbitrary.

~ The sequence ( (=1) ") is not convergent.

Theorem 3.2. Any convergent sequence is a bounded sequence.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
92



Proof. Let (a,) be a convergent sequence.

Let lim an=1

n —oo .

Let € > 0 be given. Then there evists m € N such that | an —I | <eforalln>

m.
o | an| < [1] + €foralln>m.

Now, letk =max { |a1 |, |az | -cooeeeenn am-1], |t ] + €}
Then |an|§kfor all n.

= (ap) 1s a bounded sequence.

Note. The converse of the above theorem is not true. For example, the sequence (

(—1) ") is a bounded sequence. However it is not a convergent sequence.
Divergent sequence

Definition. A sequence (a,) is said to diverge to oo if given any real number k > 0, there
exists m € N such that an > k for all n > m. In symbols we write (an) —o or

Lim a, = oo

n—>0o
Note. (an) — oo if given any real number k > 0 there exists m € N such that an €

k, o) for alln > m

Examples
1. (nN)—> oo

Proof. Let k > 0 be any given real number.

(
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Choose m to be any natural number such that m >k
Then n >k for all n > m.

~(n) > oo

2. (n*) >0

Proof. Let k > 0 be any given real number.

Choose m to be any natural number such that m >k
Thenn® >k forall n > m

s ( n? ) >0

3. 2") >
Proof. Let k > 0 be any given real number.

Then2">k & nlog2 > log k

log k
&Sn>
log 2
_ log k
Hence if we choose m to be any natural number such that m > 12§ >

then 20 >k for alln>m

~ 2" oo

Definition. A sequence (an) is said to diverge to —o if given any real
number k < 0 their exists m € N such that that an < k for all n > m. In symbols we
write
Lim a, = —oo,o0r(a;) » —oo
n—oo
Note. (a,) — —oo iff given any real number k < 0, there exists m € N such that an
€(—oo, k) foralln>m

A sequence ( an) is said to be divergent if either (an) — o or (an) —» —
Theorem 3.3. (an) — — iff (—an) — —

Proof. Let (an) —o

Let k <0 be any given real number. Since (an) — o there exists m e N

such that an,>—kforalln>m

s—an<kforalln>m
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& (= ap) — —oo,

Similarly we can prove that if (— an) — —o0 then (an) —oo.

Theorem 3.4. If (an) — o and an # 0 for all n € N then (ai) — 0.

Proof. Let € > 0 be given. Since(an) — oo, there exists m € N such that a, > % for all
n=>m

1
a—<€foralln2m
1

.

< e for all n > m.

an

1
& — - 0.
an

Note. The converse of the above theorem is not true. For example, consider the

sequence (an) where
_ =
an=-—— Clearly (an) — 0
Now (ai) =( ﬁ) =-1,2,—3,4, ........ which neither converges nor diverges to

o0 Or — oo

thus if a sequence (an) —0, then the sequence (ai ) need not converge or

diverge.

Theorem 3.5. If (an) — 0 and an > 0 for all n € N, then (ai) —

Proof. Let k > 0 be any given real number.

Since (an) — 0 there exists m € N such that | an | < % foralln>m
" an<%foralln2m ('since an > 0)

.~ L>kforalln>m

Theorem 3.6. Any sequence (an) diverging to o is bounded below but not

bounded above.
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Proof. Let (an) — 0. Then for any given real number k > 0 there exists me

N such that an > k for all n > m.

~ kK is not an upper bound of the sequence (an)

~ (an) is not bounded above
Now let [ = min { a3, az, ....am, k}.
From (1) we see that a, > [ for all n.

= (an) is bounded below

Theorem 3.7. Any sequence (an) diverging to —oo is bounded above but not
bounded below.

Proof is similar to that of theorem 3.6

Note 1. The converse of the above theorem is not true. For example, the function
f: N>R defined by
f(n) = (0ifnisodd
{% nif n is even determines the sequence 0,1,0,2,0,3,..... which is

bounded below and not bounded above. Also for any real number k > 0, we cannot find

a natural number m such thata, > kforalln > m.

Hence this sequence does not diverge to oo.
O0if nisodd

Similarly £:N - R given by f(n) = {% nifnis even
Determines the sequence 0, —1, 0, —2, 0, ..... which is bounded above and not bounded

below. However this sequence does not diverge to — oo.

Oscillating sequence
Definition . A sequence (an) which is neither convergent nor divergent to oo or —oo is

said to be an oscillating sequence. An oscillating sequence which is bounded is said to be
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finitely oscillating. An oscillating sequence which is unbounded is said infinitely

oscillating.
Examples.

1. Consider the sequence ((—1)"). Since this sequence is bounded it cannot to o or
— oo (by theorems.6 and 7). Also this sequence is not convergent (by example 5

of theorem 4). Hence ((—1)") is a finitely oscillating sequence.

2. The function f: N - R defined by

1 . .
Enlfnlseven

f(n)=
( > (1-n)ifnis odd

determines the sequence 0,1,—1,2, -2, 3, .... The range of this sequence is Z.

Hence it cannot converge or diverge to +oo. This sequence is infinitely oscillating.
The Algebra of limits

In this section we prove a few simple theorems for sequences which are very useful

in calculating limits of sequences.
Theorem 3.8. If (a,,) = aand (b,) = b then (a,, + b,,) > a+Db.
Proof. Let € > 0 be given.
Now |a, + b, —a—b|=|a, —a+ b, — b|
<la, — al+|b, = b| ....(1)

: . 1
Since (a,) — a, there exist a natural number n; such that |a,, — a| < € foralln > ny

(2)

Since (b,) — b, there exist a natural number n, such that |b,, — b| < % eforalln >n,
..(3)

Let m = max{ny,n,}

Thenlan+bn—a—b|<%e+%e=eforalln2m.
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(by 1,2 and3)
~ (a, +by)—>a+b.
Note. Similarly we can prove that (a,, —b,) > a—Db.
Theorem 3.9. If (a,,) > aand k e Rthen (ka,) = ka.

Proof. Ifk =0, (k a,) is the constant sequence 0,0, 0, .... And hence the result is

trivial.
Now, letk # 0.
Then |ka,, — ka| = |k| |a, — a| .......... (D

Let € > 0 be given.
Since (a,) — a, there exist m € N such that

Ian—a|<|i—I foraln>m. ... (2)

~ |ka,, — ka| < € foralln = m by (1 and 2).
~ (kay) = ka.
Theorem 3.10. If (a,,) — a and (b,) — b then (a, b,) — ab.
Proof. Let € > 0 be given.
Now, |a, b, — ab| = |a,b, —a,b + a,b — ab|
<|a,b, — a,b| + |a,b — ab|
=|a,| |b, — b| + |b| |a, — a| ....... (D
Also, since (a,) = a, (a,) is a bounded sequences.
~ There exist a real number k > 0 such that |a,| <k foralln. ... (2)
Using (1) and (2) we get
|a,b, —ab| <k|b, — b| + |b]| |a, — a| .....(3)

Now since (a,) — a, there exist a natural number n, such that

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

98



|a, —a|>mf0ralln>n1 .............. 4

Since (b,) — b, there exist a natural number n, such that

|b, — b| <§forannzn2 .................. (5)
Let m = max{nq, n,}.
Then |a,b, —ab| < k( ) + |b| (2|b| ) =eforalln>m (by 3,4 and 5)
Hence (a, b, ) — ab.

Theorem 3.11. If (a,,) = aand a,, # 0 for all n and a # 0 then (i) 1

an a

Proof. Let € >0 be given

1

= la, —al ....... (D

lan|lal

ap—a

We have

a, a

anpa
Now, a # 0 Hence |a| > 0

Since (a, ) — a there exist n; € N such that

|a, —a|< |a| for alln > n;.

Hence |a,|>- |a| foralln>n;. ... (2)

Using (1) and (2) we get

1 1

T a la, —alforalln>n; ..o 3

la I2

Now since (a, ) — a, there exist n, € N such that
1

la, — al <56|a|2f0ralln2n2. .............. (4)

Let m = max{n,n,}.

1 1

a, a

)3
Sl—)—--.
an a

2 la|?e
lal?2 2

=¢ foralln>m (by3and4)
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Corollary. Let (a,) — aand (b,) = b where b, # 0 forallnand b # 0.

Then (Z—: ) - %.

Proof. (bi) - %. ( by theorem 3.11)

n (Z—") - %. ( by theorem 3.10)

Note. Even if lim,,_,,, a, and lim,,_,,, b,, do not exist, lim,,_, (a, + b,) , lim, . (a,b;,)

and limn_)oo((;—") may exist. For example let a, = (—1)" and b,, = (—1)"*1. Clearly

lim,, . a,and lim, ., b,, do not exist. Now (a, + b,,) is the constant sequence 0,0, 0,
..... Each of (a,b,) and (a,/b,) is the constant sequence —1, —1, ..... Hence (a, + b,) —
0.(a,b,) = —1and (a,/b,) = —1.

Theorem 3.12. If (a,,) — a then (|a,|) — |al.

Proof. Let € > 0 be given

Now||an|—|aI|S|an—a| ............ (D)

Since (a,) — a there exist me N such that |a,, — a| < € foralln > m.
Hence from (1) we get |Ian| — |a|| < eforalln>m.

Hence (|a,|) = |al.

Theorem 3.13. If (a,,) @ aand a,, = 0 for all n then a > 0.

Proof. Suppose a < 0.Then —a > 0.

Choose € such that 0 < e < —asothata + € < 0.

Now, since (a,) — a, there exist m € N such that |a,, — a| < € foralln < m.
~a—e<a, <ateforalln <m.

Now, since a+€ < 0, we have a,, < 0 for all n = m which is a contradiction since a,, = 0.

+a=0.
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e S

Note. In the above theorem if a,, > 0 for all n, we cannot say thata > 0 . For example

consider the sequence (l) . Here % > 0 for all n and (%) - 0.

n

Theorem 3.14. If (a,,) » a, (b,) 2 band a, < b, foralln,thena<b.
Proof. Since a,, < b,,, we have b,, —a,, = 0 for all n.
Also ( b,, — a,)— b - a ( by theorem 3.8).
~b-a=0(bytheorem 3.13)
s~ b>a.
Theorem 3.15. If (a,) — [, (b,) = land a, < c, < b, forall n, then (c¢,) = L
Proof. Let € > 0 be given.
Since (a,) = [, there existn; E Nsuchthat [ —e <a,<[l+ eforalln >n;.
Similarly, there exist n, € N such that [ — e < b, <[ + € for all n > n,.
Let m = max{nq, n,}.
~l—e<a,<c, <b,<l+eforalln>m.
~l—e<c,<l+eforalln>m.
~le, =l <eforalln>m.
~ () - L.
Theorem 3.16.If (a,) > a and a, >0 forallnand a#0,then (Ja,)-Va.

Proof. Since a, > 0 for all n, a > 0.( by theorem 3.13)

Now, \/a—n—\/a|= \/Z_::E .

. . . 1
Since (a,) - a # 0. as in theorem 11 we obtain a,, > ;2 foralln > ny

aoa, > (% a) foralln > n;.
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w|Jan —Va <ﬁlan —alforalln =7y ......(1)
Now, let € > 0 be given.
Since (a,) = a, there exist n, € N such that
la, —a|<eva(W2+1)/v2foralln=>n, ... (2)
Let m = max{n, n,}.
Then |,/a, — Va| <€ foralln > m (by 1 and 2).
~ (Jan) - Va.
Theorem 3.17.If (a,) = o and (b,) = oo then (a, + b,) — .

Proof. Let k > 0 be any given real number.

: . 1
Since (a, ) = oo, there exists n; € N such that a,, > B k foralln > n;.

Similarly there exists n, € N such that b,, > % k foralln = n,.

Let m = max{nq,n,}.

Then a,+ b,, > kforalln > m.

~(a, + b,) = oo.

Theorem 3.18. If (a,,) = o and (b,,) = oo then (a,b,) — .

Proof. Let k > 0 be any given real number.

Since (a,) = oo, there exist n; € N such that a, >k foralln > n;,.
Similarly there exists n, € N such that b, > vk for all n > n,.

Let m = max{nq, n,}.

Then a, b, >k foralln > m.

 (@nby) > oo.
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Theorem 3.19. Let (a,,) = o then

) Ifc>0,(ca,) > >
(i) Ifc<0,(ca,)—>—o

Proof. (i) Letc > 0.

Let k > 0 be any given real number.

Since (a,) = o, there exist m € N such that a,, > % foralln > m.
~ ca, >kforalln>m.

~(cay,) — .

(i) Let c < 0. Let k < 0 be any given real number. Then % > 0.

: k
=~ There exists m € N such that a,, > - foralln > m.

~ ca, < kforalln>=m (since c <0).
~ (ca,) > — oo.
Theorem 3.20. If (a,,) = o and (b,,) is bounded then (a,, + b,,)— co.
Proof.
Since (b, ) is bounded, there exists a real number m < 0 such that b, > m for all n. .....(1)
Now, let k > 0 be any real number.
Sincem<0,k-m>0.
Since (a,) = o, there exists ny € Nsuch thata, >k-m foralln>n,. .........(2)
~a, +b,>k-m+ m=kforalln>n; (by 1and 2).
~ (a, + by)— oo.
Solved Problems.

. 3n24+2n+5 1
1. Show that llm —_— ==
N2 6n2+4n+7 2
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2. 5
: 3n2+2n45 3t 17
Solution. a, =—; =—0
én“+4n+7  6+—+—
n n

Now, lim (3 +2+3)
n n

n—-oo

:3+21im1+51imi.

n-oo N n—oo n2

=3+0+0=3

n—aoo

Similarly , lim (6 +24 Z—Z) =6

_ L 3+l

.~ lim a, = lim ——2%~
6+—+

n—o0 n—o0 " Tl_z_
g2y S

_1111r—r>1£'3+n+n_2_

_ . 4 7
lim 6+, +

n—o0 nz

2 2 2
2. Show that lim (1+2—+n) = %
Solution. We know that 12 + 22 ...+ n? = w.

. 12422 4n? . nn+1)(2n+1)
~lim ——— = lim ———=

n—0o0 n2 n—oo 6n?

=im2(1+3) (2+7)

_1
=7
3. Show that limn_)oo ﬁ =1
n

1
Solution. lim,_,,, —— = lim ——
7O J@P 41D now /(1+ L)
nZ

-1 (By theorem 3.11)

Jim (147)
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4. Show thatif (a,) = 0 and (b,) is bounded, then (a,b,) — 0.
Solution. Since (b,,) is bounded, there exists k > 0 such that |b,,| < k for all n.
o~ |a,b,| <kla,].
Now, let € > 0 be given.

Since (a,) = 0 there exists m € N such that |a,| < % foralln > m.

= |a,b,| <€ foralln>m.

sin n

= 0.

5. Show that lim

n—-oco N

Solution. |sinn| < 1 for all n.

~ (sinn) is a bounded sequences

Also, (%) - 0.

: (Sizn) — 0 (by problem 3.4).

6. Show that lim (a'/®) = 1 where a > 0 is any real number.

n—-oo

Solution. Case (i) Leta = 1. Then a'/® =1 for each n. Hence (a'/") - 1
Case (ii) Leta > 1. Then a/* >1.
Let al/® =1 + h,, where h,, > 0.

~a=(1+ n)"
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Hence lim h, = 0.

n—00

v (@™ =1+ h,) -1

Case (iii) Let0 <a < 1. Then% > 1.

1

(é) " 51 (By case (i) )

(all/") -1

(al/n)_) 1.

1
7. Show thatlim, . (n)» = 1.

Solution. Clearly n/* > 1 for all n.
Let n'/® =1+ h, where h,, > 0.
Thenn= (1 + h,)"
=1+ nh,+nc, h2 + ....+ h?
1 2
> n(n-1) h;

. B2 2
. hn < =

’2
'hn< E

Since ’nz—l —0andh, = 0, (h,) > 0.

A (n)=(1 + hy) - 1.
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. 1 1 1 1
8. Showthatgl_rllo (\/(anﬂ) +\/(2n2+2) + +m) ==

Solution.

1 1 1
Let a, = Tt + M) + . +

Then we have the inequality

n n
J@2nZ+n) < an < JnZ+) '

. - <a,< L -
(2+7) (2+,2)
Now, lim L - lim ! = L.
n—0o

SN EORE N

~ lim a, = % ( By theorem 3.15).

n—-oo

9. Give an example to show that if (a,,) is a sequence diverging to o and (b,) is a

sequence diverging to - oo then (a,, + b,) need not be a divergent sequence.
Solution. Let (a,,) = (n) and (b,) = (- n).
Clearly (a,,) = 0 and (b,,) = - co.
However (a,, + b,) is the constant sequence 0, 0, 0,.... Which converges to 0.
Exercises.

1.Evaluate the limits of the following sequences as n — oo.

(n2+3)(n3+9))
(n+1) (n*+6)

@ (

J(Bn2-5n+4)

2n—-7

(C) (1+2+3-|2----+n))

n

(b)
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13+23+---+n3))

n4

@ (

2.A sequence (a,) is called a null sequence if (a,) — 0. Show thatif (a,)) and (b,) are

null sequences then (a, + b,), (a,b,), (ka,) and (]a,|)are also null sequences.
3.If (a,) » - o0 and (b,) = - o, then show that (a, + b,) » - o and (a, b, ) — ©o.

4.Prove the following.

(2) lim (J(n21+1) + J(n21+2) ot Jﬁ) =1
5.Give examples of sequences (a, ) and (b,,) such that
(a) (a,) = oo (b,) = o0 and (a,- b, ) converges to 5.
(b) (@) = o (by) > o0 and (a,-by) = .

(©) (a)— L, (by) = o and (a,b,) = - oo.

Answers : 1.(a). %,(b). \E,(C). %,(d).%,

Subsequences

Definition. Let (a,,) be a sequence. Let (n;) be a strictly increasing sequence of natural

numbers. Then (a, ) is called a subsequence of (a,).

Note. The terms of a subsequences occur in the same order in which they occur in the

original sequence.
Examples.

1. (a,) is a subsequence of any sequence (a, ). Note that in this example the interval
between any two terms of the subsequence is the same, (i.e.,) ny=2,n,=4,n3=6,...n,

= 2k.

2. (a,2) is a subsequence of any sequence (a, ). Hence a,; = a;, a,, = a4, a,3 = ag .....

Here the interval between two successive terms of the subsequence goes on increasing
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as k becomes large. Thus the interval between various terms of a subsequence need not

be regular.
3. Any sequence (a,) is a subsequence of itself.

4, Consider the sequence(a,) givenby 1,0, 1, 0 .... Now, (a,) givenby 1,1, 1, ....is a
sequence of (a,) . Here (a,) is not convergent whereas the subsequence (b,,) converges

to 1. Thus a subsequence of a non-convergent sequence can be a convergent sequence.

Note. A subsequences of a given subsequence (a,; ) of a sequence (a,) is again a

subsequence of (a,).

Theorem 3.21. If a sequence (a, ) converges to l. then every subsequence(a,; ) of (a,,)

also converges to l.
Proof. Let € > 0 be given.
Since (a,) — [ there exists m € N such that
la, —l] <eforalln>m. ... (D
Now choose n;y = m.
Then k > kq = ny, = nyy ( (n,) is monotonic increasing)
=N, =m.
= lay — Ul <e(by1)
Thus |a,, — | < e forall k > k.
(@) = L.

Note 1. If a subsequence of a sequence converges, then the original sequence need not

converges, then the original sequence need not converge.

Note 2. If a sequence (a, ) has two subsequences converging to two different limits, then
(a,) does not converge. For example, consider the sequence (a,) given by

1 .0 .

- if nis even

a
" 1+%ifnisodd
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Here the subsequence (a;,) = 0 and the subsequence (a;, ) — L. Hence the given

sequence (a,,)does not converge.

Theorem 3.22.1f the subsequences (a;,_1) and (a,, ) of a sequence (a,,) converge to the

same limit [ then (a,) also convergesto[.

Proof. Let € > 0 be given. Since (a,,_;) — [ there exists n; € N such that |ay,,_; — | <€

forall 2n — 1 > n;.

Similarly there exists n, € N such that |a,, — [| < € for all 2n = n,.
Let m = max{nq, n,}.

Clearly |a, — | < e foralln > m.
~(an) ~ L.

Note. The above result is true even if we have [ — oo or — oo.

Definition. Let (a,,) be a sequence. A natural number m is called a peak point of the

sequence (a,) ifa, < a, forall n > m.
Example.

1. For the sequence ( %2), every natural number is a peak point and hence the
sequence has infinite number of peak point. In general for a strictly monotonic

decreasing sequence every natural number is a peak point.

2. Consider the sequence 1, % % -1,—-1, ... Here 1, 2, 3 are the peak points of

the sequence.
3. Thesequencel,?2,3, ... has no peak point. In general a monotonic increasing

sequence has no peak point.
Theorem 3.23. Every sequence (a,) has no monotonic subsequence.
Proof. Case (i) (a,) has infinite number of peak points. Let the peak points be
m<n<..<n<... Thena,; >a,; > ... >ay > ..

~ (a,) is a monotonic decreasing subsequence of (a,).
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Case (ii) (a,) has only a finite number of peak points or no peak points.

Choose a natural number n, such that there is no peak point greater than or equal to
n,.Since n, is not a peak point of (a,,) , there exists n, > n; such that a,; = a,;. Again
since n, is not a peak point, there exist : n; > n, such that a,,3 > a,,.Repeating this

process we get a monotonic increasing subsequence (a,; ) of (a,).
Theorem 3.24. Every bounded sequences has a convergent subsequences.

Proof. Let (a,,) be a bounded sequence. Let (a,; ) be monotonic subsequence of (a,)

since (a,) is bounded (a,; ) is also bounded.
= (any ) is a bounded monotonic sequence and hence converges.
~ (an) is a convergent subsequence of (a,).

Exercises.

1. Prove thatif a sequence (a, ) diverges to oo then every subsequence of (a,) also
diverges to co.

2. Prove thatif a sequence (a,) diverges to —oo then every subsequence of (a,)
also converges to —oo.

3. Give examples of (i) a sequence which does not diverge to but o has a
subsequence diverging to oo (ii) a sequence which does not diverge to —oo but
has a subsequence diverging to —oo (iii) a sequence (a, ) having two
subsequences, one converging to oo and the other diverging —oo.

4. Prove that each of the following sequences is not convergent by exhibiting two
subsequences converging to two different limits.

1 1 1 1

(1) 1:5:1; g,l,z,.....

(i) 1,2,1,3,1,4,...
i)  ((=1"))
Cauchy sequences.

Definition. A sequence (a,) is said to be a Cauchy sequence if given € > 0, there

exists ny € N such that |a,, — a,,| < € foralln, m = n,.
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g =S
Note. In the above definition the condition |a, — a,,| < € for alln, m > n, can be

written in the following equivalent form, namely, |an+p - an| < e foralln=ny and

for all positive integers p.

Examples

1. The sequence (%) is a Cauchy sequence

Proof. Let (a,) = (%) Let € > 0 be given. Now, |a,, — a,,,| =

-~ If we choose n; to be any positive integer greater than 1/€, we get

la, — a,,| <eforalln, m > n,.
1Y .
2 (Z) is a Cauchy sequence.

2. The sequence ((—1™)) is not a Cauchy sequence.
Proof. Let (a,) = ((—1")).
lan — an4al = 2.
If € < 2, we cannot find ny such that |a,, — a,,;1| < € for all n > n,,.
((—=1™)) is not a Cauchy sequence.
3. (n) is not a Cauchy sequence.
Proof. Let (a,) = (n).
s lay, —ap] = 1ifn#m.
~ If we choose € < 1, we cannot find n, such that |a,, — a,,| < € foralln, m > n,.
~ (n) is not a Cauchy sequence.

Theorem 3.25. Any convergent sequence is a Cauchy sequence.

Proof.

Let (a,) — L. Then given € > 0, there exists n, € N such that |a,, — [| < %6 for all n > ny.
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a, —ay|=la, = l+1—a,|
<la, =l + |l —ayl
<%e+%e=ef0ralln,m2no.
~ (a,) is Cauchy sequence.
Theorem 3.26. Any Cauchy sequence is a bounded sequence is bounded sequence.
Proof. Let (a,) be a Cauchy sequence.
Let € > 0 be given. Then there exists ny, € N such that |a,, — a,,| < € foralln, m = n,.
s an| < laggl + € forn > ny.
Now, letk = max { |a{|, |ay|, .... |anol+ € }.
Then |a, | < k for all n.
~ (a,) is a bounded sequence.

Theorem 3.27. Let (a,,) be a Cauchy sequence. If (a,) has a sequence (a, ) converging

to , then (a,) = L
Proof.

Let € > 0 be given. Then there exists ny € N such that |a,, — a,,| < € foralln, m > n,

(1)

Also since (a,; ) = [, there exists ko € N such that
Iank—l|<%6forallk2ko .............. (2)

Choose n; such that n, > ny, and n,
Then |a,, — | = |a, — ap; + ap — 1|
< |an - ankl + |ank - ll

1 1
<56+56=6foralln2no.
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Hence (a,) — L.

Theorem 3.28 (Cauchy’s general principle of convergence)

A sequence (a,) inR is convergent iff it is a Cauchy sequence.

Proof. In theorem 25 we have proved that any convergent sequence is a Cauchy

sequence.

Conversely, let (a,) be a Cauchy sequence in R.

~ (a,) is a bounded sequence (by theorem 26)

There exist a subsequence (a,; ) of (a,) such that (a,; ) = | ( by theorem 23)

~ (a,) — | (bytheorem 27).

Revision questions on chapter 3.

Determine which of the following statements are true and which are false.

© © N o s W N

o S G
N R O

The range of a sequence is an infinite set.

Two sequences are equal if they have the same range.

Any convergent sequence is bounded.

Any bounded sequence is convergent.

Any monotonic sequence is bounded.

Any monotonic sequence is convergent.

Any bounded monotonic sequence is convergent.

Any monotonic sequence which is not bounded is divergent.

Any monotonic sequence cannot oscillate.

. Sum of two convergent sequences is again a convergent sequence.
. Sum of two divergent sequences is again a divergent sequence.

. Sum of two monotonic sequences is a monotonic sequence.

13.
14.
15.
16.
17.

Sum of two monotonic increasing sequences is a monotonic increasing sequence.
Sum of two oscillating sequences is again an oscillating sequence.

A constant sequence is both monotonic increasing and monotonic decreasing.
An oscillating sequence is always bounded.

Any constant sequence is convergent.
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18.1f (a,,)— 0 then (1/a,) — oo.

19.1f (a,)— 0 and a,, > O for all n, then (1/a,) diverges to oo.

20.1If (a,)— 0 and a, < 0 for all n, then (1/a,) diverges to —oo.

21.1f (a,)— o and a, # 0 for all n, then (1/a,) — 0.

22.1f (a,)— o0 and (ca,) — co.

23.1f (a,)— o and c > 0, then (ca, ) — oo.

24. Any convergent sequence is a Cauchy sequence.

25. Any Cauchy sequence of real numbers is convergent.

26. Any Cauchy sequence is bounded.

27.Every sequence has infinitely many subsequences.

28. Any subsequence of a convergent sequence is convergent.

29. Every sequence has a convergent subsequence.

30. Every bounded sequence has a converge subsequence.

31. Every sequence has a monotonic subsequence.

32. Every sequence has a limit point.

33. Every sequence has a finite limit point.

34. Every bounded sequence has a finite limit point.

35. Every sequence has a finite number of limit point of the sequence.

36. The limit of a convergent sequence is a limit point of the sequence.

37.1f ais a limit point of a sequence (a,) , then (a,)— a.

38.1If ais a only limit point of a sequence (a, ) then (a,)— a.

39.1f ais a limit point of a sequence (a, ), then there exists a subsequence
converging to a.

40. Every sequence has an upper limit.

41. Every sequence has a lower limit.

42.For any sequence (a,) , lower limit a,, < upper limit (a,).

43. A sequence (a,) — a iff lower limit (a, ) = upper limit (a,) = a

44.1im (a, + b,) =lim a,, + lim b,
Answers.

1,2,4,5,6,11,12,14, 16, 18, 22, 29, 33, 35, 37, 44, are false 3, 7 to 10, 13, 15,17, 19,
20,21, 23,t0 28, 30 to 32, 34, 36, 38, to 43 are true.
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UNIT IV: SERIES

Series — convergence, divergence — geometric, harmonic, exponential, binomial and

logarithmic series — Cauchy’s general principle of convergence — Comparison test — tests of

convergence of positive termed series — Kummer'’s test, ratio test, Raabe’s test, Cauchy’s root

test, Cauchy’s condensation test.
Infinite series

Definition. Let (a,) = a4, ay, .... a, , .... be a sequence of real numbers. Then the

formal expression a; +a; + ...+ a, +..... is called an infinite series of real numbers and

is denoted by ¥ a,, or ). a,,.
Letsy=ay;s,=a,tay;s3=a,+a,+az+.. s,=a;+a, +-+a,.
Then (s,,) is called the sequence of partial sums of the given series ). a,,.

The series }; a,, is said to converge, diverge or oscillate according as the sequence of

partial sums (s,,) converges, diverges or oscillates.
If (s,)— s, we say that the series )’ a,, converges to the sum s.

We note that the behavior of a series does not change if a finite number of terms are

added or altered.
Examples.

1. Consider theseries1+1+1+1...... Here s, = n. Clearly the sequence (s,,)

diverges to . Hence the given series diverges to oo.

2. Consider the geometric series 1 + r + rZ4 ... +7r™+.... Here,
1_ n
S, =1+r+r2+.. +rn_1=1_rr

Case (i) 0 <r < 1.Then(r™)—-0

1
AN (Sn e I:;

=~ The given series converges to the sum an

rt—1

Case (ii)r> 1. Then s, = — .
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Also (r™")— cowhenr > 1.
Hence the series diverges to co.
Case (iii) r = 1. Then the series becomes 1 + 1 + ....
=~ (s,) = (n). which diverges to co.
Case (iv) r=—1.
Then the series becomes 1 -1+ 1 -1+ ......

) _{Oifniseven
Sn = lifnisodd’

= (s,) oscillates finitely.
Hence the given series oscillates finitely.
Case (v) r< —1.
= (1) oscillates infinitely
= (s,) oscillates infinitely.
Hence the given series oscillates infinitely.

3. Consider the series 1 + % + % + ... + ni +....

1
(n—-1)!

1,1
Thensn=1+;+z+.....+

The sequence (s,) = e
=~ The given series diverges to .

Note 1. Let }; a, be a series of positive terms. Then (s, ) is a monotonic increasing
sequence. Hence (s,,) converges or diverges to o according as (s, ) is bounded or

unbounded. Hence the series Y’ a,, converges or diverges to .

Thus a series of positive terms cannot oscillate.
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Note 2. Let }; a,, be a convergent series of positive terms converging to the sum s. Then s

isthe L u. b. of (s,). Hence s, < s for all n.
Also given € > 0 there exists m € N such that s— € < s,foralln > m.
Hence s> e < s, < s foralln <m.

Theorem 4.1. Let )’ a, be a convergent series converging to the sum s. Then lim,, ., a,

=0

Proof.lim,,_,,, a,, = lim (s, — s,_1)
n—oo

= lim s, — lim s,,_4
n—oo n—oo

=s-s5=0.
Note 1. The converse of the above theorem is not true. ie., If lim a,, = 0, then ) a,,need

: : 1 .1 :
not converge. For example, consider the series ), ~. Here lim — = 0. However the series

n—-oo N

> % diverges.

Note 2. If lim a,, # 0 then the series ), a,, is not convergent. If further }; a,, is a series of

positive terms then the series cannot oscillate and hence the series diverges.

Theorem 4.2. Let ) a,, converge to aand ), b, converge to b.Then )\(a, # b,)

converges to a # b and }; ka,, converges to ka.
Proof. Let s, =a; +a, + ...+ a, and t, = b; +b, + ...+ b,,.
Then (s,,) - aand (t,) = b.
S(s, #F¥ty)—a#+b
Also (s, # t,) is the sequence of partial sums of }.(a,, # b,)).
~ Y(a, # b,) converges to a# b.

Similarly ). ka,, converges to ka.
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Theorem 4.3 (Cauchy’s general principle of convergence)

The series ), a, is convergent iff given € > 0 there exists ny € N such that

|ans1 4 ansz + -+ + ay4p| < € forall 1> ng and for all positive integers p.
Proof. Let ), a,, be a convergent series.
Lets, =a; +....+ a, .
~. (s,) is a convergent sequence.
=~ (sp) is a Cauchy sequence
= There exists ny € N such that |s,,, — s,| < € forall 2> n, and for all p € N.

o |ans1 4 @niz + -+ + ayyp| < e forall 1= ny and forall p € N.

Conversely if |an+1 +a,p++ an+p| < e forall n=>n; and for all p € N then (s,)

is a Cauchy sequence in R and hence (s,) is convergent.
=~ The given series converges.

Solved Problems.

1. Apply Cauchy’s general principle of convergence to show that the series Z(%) is

not convergent.

: 1 1
Solution. Lets, =1+ St et

n

. 1, .
Suppose the series Z(;) is convergent.

~ By Cauchy’s general principle of convergence, given € > 0 there exists m € N such

that |sn+p — sn| <eforall n=mand forall p €N.

|1 + 2+ ....+L—(1 + 2+ ....+1) <forall > mand forall p €N.
2 n+p 2 n

— +L 4 L| <eforall 7= mand forall p €N.
n+1 n+2 n+p
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. . .1 1 1
In particular if we take n=m and p=m we obtain — + — ...+ —>

m+1 m+2 m+m

no <€ which is a contradiction since € > 0 is arbitray.

=~ The given series is not convergent.

2. Applying Cauchy’s general principle of convergence prove that

1+ % +§ ....+(—1)"%+...is convergent.

Solution. Lets, =1 + 3 +7 ...+

n

1 1 (—pp-1

n+1 n+2 n+p

1 1 N (—pp—1
n+l n+2 n+p

: : if piseven
n+p—1 n+p p

1 ., .
mlfplsodd

>0
1 1 (—pp-1
S — S| =T ... +
n+p n n+1 n+2 n+p
_ 1 ( 1 1 )
T+l n+2 n+3/ U
1
<—
n+1

< € providedn > G - 1).
=~ By Cauchy’s general principle, the given series is convergent.

Exercises.

1. Show that the series Z(i) converges to the sum 1.

2. If ), c, is a convergent series of positive terms then so is ), a,, ¢, where (a,) is a

bounded sequence of positive terms.
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3. If) d, is a divergent sequence of positive terms then so is }; a,, d,, where (a,) is
a sequence of positive lower bound.
4. Showthat®+ =+ =+ = + =+ = + ... = — (Hint: E this series as th
. Showthat-+ S+ =+ +5+5+ =3 (Hint: Express this series as the
sum of two geometric series).
5. Let aand bbe two positive real numbers. Show that the series
a+b+a’?+b*+a®+b3 ... Converges if both 2 and b < 1 and diverges

if eithera>1or 6> 1.
6. Show that the series ), cos (%) is divergent.

(Hint: Consider the limit of the nth term).
Comparison test
Theorem 4.4 (Comparison test)

(D) Let )’ ¢, be a convergent series of positive terms. Let }; a,, be another
series of positive terms. If there exists m € N such that a,, <c, forall n
>m, then }; a,, is also convergent.

(i)  Let),d, be a divergent series of positive terms. Let ), a, be another series
of positive terms. If there exists m € N such that a, < d,, for all n>m, then

Y. a, is also divergent.

Proof (i) Since the convergence or divergence of a series is not altered by the removal
of a finite number of terms we may assume without loss of generality that a,, < ¢, for all

n.
Lets, =c¢; +¢c; + ...+ ¢, and t, = a; +a; + ...+ a,.
Since a, < ¢, we have t,, <s,.
Now, Since }; ¢, is convergent, (s,) is a convergent sequence.
~ (s,) is a bounded sequence.
~ There exists a real positive number & such that s, < k for all n.
~ty,< kforalln>m

Hence (t,) is bounded above.
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Also (t,,) is a monotonic increasing sequence.
=~ (t,) converges
-~ ), a, converges.
(ii)Let ). d,, diverge and a,, = d,, for all n.
Sty =S,
Now, (s,) is diverges to oo.
~ (s,) is not bounded above.
=~ (t,) isnot bounded above.
Further (t,) is monotonic increasing and hence (t,) diverges to .
. ) a, diverges to oo.
Theorem 4.5.

() If ), ¢, converges and if lim,, _,,, (z—" exists and is finite then }; a,, also
n

converges.

(i) If) d, diverges and if lim,,_,, Z—" exists and is greater than zero then )’ a,

diverges.

Proof (i).Letlim,_ i—" =k

Let € > 0 be given. Then there exists n; € N such thati—” < k+ eforall n >n,.

n
a, < (k+¢€)c, forall n >n,.
Also since Y. ¢, is a convergent series, ).(k + €) ¢, is also convergent series.

- By comparision test )’ a,, is convergent.

(iD)Let lim, o =* = &> 0.

n

Choose = %k . Then there exists n; € N such that & — %k < Z—” < k+ %k for all n =>n;.
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an

1
d—>5kforalln2n1.

a, >%k d, forall n >n;.

Since ); d,, is a divergent series, ). 3 k d,, is also divergent series.

~ By comparision test, ), a,, diverges.
Theorem 4.6.

(D) Let Y ¢, be a convergent series of positive terms. Let )’ a,, be another series

of positive terms. If there exists m € N such that 2 < =* for all n> m, then

n Cn
Let Y a, is convergent.

(i)  Let) d, be adivergent series of positive terms. Let )’ a,, be another series of

"y . - n dn
positive terms. If there exists m € N such that Intl < d—“ for all n = m, then

an n

Let Y a, is divergent.

Proof. (i) “”—“<a_n(... nt1 an)

Cn+l  Cn an Cn

an . . .
- C—” is a monotonic decreasing sequence.
n

: 6:—” < k for all nwhere k=j—1.
n 1

~ a, < kc, foralln €N.

Now, Y; ¢, is convergent. Hence ) kc,, is also a convergent series of positive terms.
~ Y. a, is also convergent
(ii)Proof is similar to that of (i).

Note 1. Theorem 4.5 and 4.6 are alternative forms of the comparison test mentioned in

theorem 4.4 and these forms of the comparison test are often easier to work with.

Note 2. The comparison test can be used only if we already have a large number of

series whose convergence or divergence are known. We know that a geometric series
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2. " converges if 0 < r< 1 and diverges if > 1. In the following theorem we give

another family of series whose behavior is known.
Theorem 4.7. The harmonic series ), — nip convergesif p>1landif p< 1.
Proof.
Case (i) Let p=1. Then the series becomes Z(%) which diverges.
Case (ii) Let p< 1. Then n? < nfor all n.
~ By comparison test ) nip diverges.
Case (iii) Let p> 1.
LetS, =1+ o+ 2+ b .

1

@ i-p
—14+ (zip + 3%) + (4% + 5%-'_6% + 7%)4-.... I (Zi)p + (27111)1? + ...
<12(3) 445 2 ()
=1+2p;_1+22+_2+....+m

CSpe <l () et ()

2r—1 2r—1

1
2r—1

Now, since p> 1, p—1 > 0. Hence <1.

1425+ (5 )2+ ..... +(5) <= = k(say).

p—1 _
2 p—T

Szn+1 -1 < k
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2m+1

Now let n be any positive integer. Choose m € N such that n < — 1. Since (s,) isa

monotonic increasing sequence, s, < Som+1 _q.
Hence s,, < k for all n.
Thus (s,,) is a monotonic increasing sequence and is bounded above.

~ (sy) is convergent.
1,
. ),—is convergent.
nb
Solved problems.

. . 1
1. Discuss the convergence of the series ), oD

. 1 1
Solution. T D < =7

1
n3/2

Also ), is convergent

. 1.
~ By comparision test, }; JoiiD IS convergent.

Vn+i—/n

2. Discuss the convergence of the series ), >
n

Solution. a,, = ntl;p_\m
_ n+l-n
T P (Vnri+n)
_ 1
_-nP(VEIT+JZS
1
Now, let b,, = T.
Pty

n 2

1
nP*z

anp _
A Zn—)oo Z_Zn—mo np ( /—n+1+\/n—)

1
T+1/n+1

= ZTL—)OO

N
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Also Y., . b, is convergent if p + % > 1 and divergent if p+ % <1

. . 1 . . 1
% Ynow Ay 1S convergent if p > 2 and divergent if p < >

. : 124224402
3. Discuss the convergence of the series ), —
. 12422 4---4n?
Solution. Let a, = ———F—
n*+1
_ n(n+1)(2n+1)
T b(nt+1)

Now, let b,, =%.

n2(n+1)(2n+1)

. an _
* Lnosoo b, Yoo 6(nt+1)

()ar
6(1+-7)

= Zn—)OO
Also ) b, is divergent
% ) a, is divergent

. . 1,22 33
4. Discuss the convergence of the series 1 + Ztatat ..

nn

Solution. Let a,, =

T (n+pntl
1
Let bn = ;
. an _ nn+1
.. Zn—)oo E - Zn—)oo (n+1)n+1
=3 1
= in-oo ;  \n+l
(1)
n

=1so.

€

Also Y., b, is divergent.

S Yo @y is divergent
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5. Discuss the convergence of the series ¥ (loglogn) =8 ",

Solution. Let a,, = (loglogn)~°8 "
. a, =n"% where n = log (loglogn).
Since )., ., log loglogn = oo, there exists m € N
such that On > 2 forall n> m.
~n ™ <n2foralln=>m.
~a,=n"?forall n>m.
Also Y n™? is convergent.

~ By comparison test the given series is convergent.

1

6. Show that} ——=

N =

Solution. Let a, = T
lear] :
Clearly a, < =

1.
Also ), = is convergent
n

~ By comparison test, the given series converges

Now, a,, = — —1[ ! - ]
'Y T 4n2 17 2l2n-1 2n+1l

S Sy = aq +a2 + ot a,

G-+ 69 s -5
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11
4n2-1  2°

2

Exercises. Discuss the convergence of the following series whose nth terms are given

below.
b @ Oy
)i ) ) s
D OFsreer O
A0/ + 1) = V(n? - (11) ) (12)
(13) s

(14)Show that if ) a, is convergent then Y a2 .

a a
Y. —— and ),——— are also convergent.
1+a, 1+n<ay

Answers: 1.D, 2.C, 3.D, 4.C, 5.D, 6.D,7.D,8.C,9.Cifp > 2,10.C,11.D,12.D,13.C.

Kummer’s test

Theorem 4.8 (Kummer’s test)

Let ) a,, be a given series of positive terms and ), - be a series of a positive terms
n

diverging to oo. Then

an

() Y. a, converges if lim, (dn - dn+1) >0 and

an+1

(i) XY a, diverges if lim,,_,, (dn o dn+1) <0.

an+1

a—”—dn+1)=l>0.

Proof. (i) Letlim,, o, (dn

an+1
We distinguish two cases.
Case (i) lis finite.

Then given € > 0, there exists m € N such that

l-e<d,~—d, ., <l+eforalln=>m

an+1

(3n3+2n+5)1/4
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~dpa, —dpy1a,41> (L-€) a,qforall n> m.
. 1
Taking € = 3 [, we get
1
d,a, — dps10n41> 2 la, i forall n> m.
Now,letn>m

1
dmam - dm+1am+1> 2 ! Am+1

1
Am+10m+1 — Am+2@m+2> 9 lam2

Adding, we get

@y — @y > 5 U@ + - + @)

1
SdpQy > > L (s,—Sm)-

2dpmam +l—sny,

sy, < l

which is independent of n.
=~ The sequence (s,) of partial sum is bounded.
. Y a, is convergent.

Case (ii) [ = co.

Then given real number & > 0 there exists a positive integer m such that

dy (=) = dyy > k forall nzm.

An+1

~dpa, —dy1an41>ka,q foralln=> m.
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Now, let n > m. Writing the above inequality for m, m+1,....(n - 1) and adding we get
dnty, —dy,a, > k(apy ++ ay)
= k(Sp—Sm)-

Sy @ >k (S—Sm)-

dmam

k

LS, < + Sy

= The sequence (s, ) is bounded and hence }; a,, is convergent.
(i) limy ., (d P dyr) = 1<0.
Suppose [ is finite.
Choose € > O such that! +€ < 0.
Then there exists m € N such that

| +€< dn%—dn+1<l+e < 0 forall n>m.

d,a, <d,;1a,.forall n > m.
Now let n=> m
dmam < dm+1am+1
dn—lan—l < dnan

dpan, <d,a,.

Also, by hypothesis Y, d—1 is divergent.

dma
Hence },;7_; —

is divergent.
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~ By comparison test }; a,, is divergent.

The proof is similar if | = —oo.

a

Pt dy1) =0.

Notel. The above test fails if lim,,_,., (dn

Note2.The divergence of }:(1/ d,,) has not been used in the proof of (i).

Corollary 1.(D’ Alembert’s ratio test)

an

Let ), a, be a series of positive terms. Then ), a,, converges if lim
n—oo ap41

> 1 and diverges

an

<1

if lim
n—-oo an+1

Proof. The series 1 + 1 + 1 + .... is divergent

. We can put d, = 1 in Kummer’s test.

an

=1

a
Thend, — —d,41=
aAn+1 an+1

an

~ ), a, converges if lim ( - 1) >0

n—-oo \an+1

an

> 1.

~ ) a, converges if lim
n—-oo An+1

Similarly ¥ a,, diverges if lim —— < 1.

n—oo An+1
Corollary 2. (Raabe’s test)

an

Let Y a, be a series of positive terms . Then }; a,, converges if limn ( - 1) > 1 and
n—00

an+1

diverges if limn( o 1) <1

n—-co An+1

: 1. ..
Proof. The series ), ~is divergent.

~ We can put d,, = n in Kummer’s test.

an

Then dna%— dyi1=n (n+1)

an+1
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Y. a, converges if lim n( o 1) > 1 and diverges if lim n( o 1) <1

n—oo An+1 n—oo an4+1

Solved problems.

1.2.3

. 1,12
1. Testthe convergence of the series sttt

. 1.2.3...
Solution. Let a, = T(Z:—l—l)

a, __ 2n+3 _ 2+43/n
Ap+1 T o+l 1+1/n’

an

~ lim =2>1.

n-oo An+1

~ By D’ Alembert’s ration test }; a,, is convergent.

2. Test the convergence of ), T;l—'

. ap _ (n+Dn™ 1
ana1 (DM (14 1)"
n

. lim == =l<1

n-oo An+1 €

% ) a, is divergent.

: 2"l
3. Test the convergence of the series ), n—: :

2%n!
nn ’

Solution. Let a, =

ap, _ (n+1)ntl _1 (1 4 l)n
n

a an+1 - (n+1)nn" 2

Clim =S

n-oo dn+1

~ By ratio test the series converges.

. 3!
4. Test the convergence of the series ). n—:

Solution. As in the above problem, we find that lim ;—" = %
n—oo ap41

<1

~ By ratio test the series diverges.
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5. Test the convergence of the series ), fnn?xn where xis any positive real

number.

Solution. Since x is positive the given series is a series of positive terms.

an ’n(n+2) 1
NOW,an+1— (n+1)" (x)

_m_%)(z)

- 1+1/n \x/*
. a 1

s lim ——= =,
n—oo An+1 x

~ By ratio test ), a,, converge if x< 1 and diverges if x> 1.

If x=1 the test fails.

" 1
Whenx=1,aqa, = /m T Va+1/n)

o lim a, = 1.

n—>0oo

=~ The series diverges .

real number.

Solution. Since xis a positive real number, the given series is a series of positive terms.

x2n—2
Leta, = o 2’ (n>1).
. ap _ 2n (1)
T oanyr 2n—2 \x2/J°
an 1

n—-oo an+1 x

- The series test, the series converges if x? < 1 and diverges if x> >1.

The series converges if x< 1 and diverges if x > 1. If x= 1 the test fails.
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1
When x=1 a, = :
2n—-2

. : : 1 o
By comparing with the series Z(;) we see that the series diverges

. n?+41
7. Test the converges of the series ), o

. a 5(n2+1
Solution. 22— = > )
an+1 (n+1)“+1

_ 5(n2+1)
- n24+2n+2

1
_ 5(1+n_2-)
n24+2n42
. a
s lim — =5.

n—-oo An+1

By ratio test the series converges.

8. Test the convergence of the series G + l) + (i i) + ( ! i) +

. 1,1
Solution. Let a, =+

2" 3"
T oongn

ap _ 6(2"+3M)
: an i1 - on+ly 3n+1”

_ 212"+ Q"]
[1+(§)n+1]

. a
lim — = 2.
n—-o ap41

~ By ratio test the given series converges.
9. Test the convergence of the series ), %

n

Solution. Let a,, =—.

. ap __ n+l (1)
" ans1 n x/J
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(149,

an

~ lim ==
n—oo ap41 x

The series converges if x < 1 and diverges if x > 1.

If x =1, the series converges if x < 1 and diverges if x > 1.

. 1
If x =1, the series becomes ), ~ which is divergent.

10. Test the convergence of the series T:I—I: (p>0).

. nP
Solution. Let a, = —.

a, _ nP(n+1)
(41 (n+1)P

_ n+1
T (A+1/n)p

an

~ lim
n—-oo an+1

= 00,

By ratio test ), a,, is convergent.

1,12 5,123
11. Test the convergence of the series x + 3 §x2+§ = X3+

1230t
3572n+1) "

a, _ 2n+3 (1)
an+1  n+l \x/°

0]

. a 2
» lim — ==
n—-oo an+1 x

Solution. Leta, =

: . 2
=~ By ratio test the series converges 1f; > 1.

=~ The series converge if x <2 and diverges if x >2 .

If x = 2, the ratio test fails.
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. a 2n+3
In this case — =
Ap+1 2n+2

an _ 1
) Apn+1 T 2n+42"

. Tl( an _1)= n _ 1
an+1 2n+2  2+2/n’

. limn(a” —1)=%.

n—oo an+1

~ By Raabe’s test the series diverges.

Exercises. Test the convergence of the following series.

l+a  (1+a)(2+a)

W1+ tamer T
DL

(3)1+a+ LD @By |
(4)%x + %xz + %x3+ ......
G

©) L5

(DT

(8)=+; .§+ . § §+

22 2242 224262
91+ 3—2+ 3752 + 375272 b

Answers: 1.Cif>a,2.Cif0<x<1,3.Cifa<0,4.Cifx<2,5.Cifx>1,6.Cifx
<1,7.Cif0<x<1,8.Cifx2<1,9.D.

Root test and condensation test
Theorem 4.10 (Cauchy’s root test)

Let )’ a, be a series of positive terms. Then }; a,, is convergent if lim,,_,,, a,1/» < 1and

divergentif lim, o, a 1/n >1

Proof. Case(i) let lim,,_,,, a, 1/n =1 <1.
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Choose € > 0 such that [ + € < 1. Then there exists m € N such that a 1/» <[+ € forall

n=m
~ap<(l + e)"foralln>m.
Nowsincel+€e<1,)(l + €)™ is convergent.
. By comparison test ); a, is convergent.
Case (ii) Letlim, o a,1in =1 > 1.
Choose € > 0 such that [ — e > 1.
Then there exists m € N such that
a,im >1— € forall n=>m.
~ap,>({—e)foralln>m.
Now, since [ — €, ),(l — €) " is divergent
By comparison test, }; a,, is divergent.

Note. The following is a more general form of Cauchy’s root test. Let }; a,,be a series of
positive terms. Then ), a, is convergent if /im sup a,1» <1 and divergent if

limsup a,in > 1.
Theorem 4.11. (Cauchy’s condensation test)
Leta; +a; +az + ... +apte (D

Be a series of positive terms and whose terms are monotonic decreasing. Then this

series converges or diverges according as the series

&g+ g*agz + .t ghtagn + e (2)
converges or diverges where g is any positive integer > 1.
Proof. Lets; =a; +a; +az + ...... +a, and

ty =80y +g° a2+ ..+ g" agn
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agn)

+ ( agn—1+1 + agn—l_l_z + seun +

< gay + (9% = g) agFet(@" — ") agn
(~ The terms of the series are monotonic decreasing).

=gay +(Eg-1Dag + .. +g" (g~ 1) a1

=ga1+ (g- 1 (gay +g* ag2 + ..o +gn1 agn-1)
=g+ (8- Dty-1.

Sgn < gaq +(g - 1) tn-1-
=~ If the series (2) converges, then (1) converges.

Now, sgu = ga, + (9> —g) az+

-1
:gag +gT (gZagZ + ...+gﬂag11)

-1
g_(tn - gag)

If the series (2) diverges, then (1) diverges.

Solved problem.

1
1. Test the convergence of ). Qog 1"

. 1
Solution. Let a, = Qog )"

1

'.'?va—nzlogn
» lim Yfa, =0<1.

n—00

138
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1

~ By Cauchy’s root test ). Togn)® converges.

2. Test the convergence of ), (1 + %)

Solution. Let a,, = (1 + %)_n

-n

(14

1

. lim ’{/a_n=;

n—>0oo

~ By Cauchy’s root test the series converges.

3. Prove that the series ), e~ Vnxn converges if 0 <x < 1 and diverge ifx > 1

Solution. Let a,, = e~Vnyn

am =e Wy,

~ lim a 1m =x
n—oo nl/
~ By Cauchy’s root test the given series converges if 0 < x < 1 and diverges if x > 1.

n3+a
4. Testthe convergence of ¥ ——.

3
. n°+a
Solution. Leta, = T ,b, = =

L an (n3+a) (zn) _ (n3+a)( 2n )
’ T \2n4a/ \n3/) T\ a3 2n+q

by,
- (1 + :_3) (ngin )

3

- By comparison test, the given series is convergent or divergent according as ), — is
271

convergent or divergent.
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nz)l/n_ n3/mn

Now, b im = (z_n

lim n3/" =1

n—0oo

Also lim b, 1/ =%

n—0o0
=~ ), b,is convergent

Y. a, is convergent.

1
nlogn’

5. Test the convergence of ),

1

Solution. By Cauchy’s condensation test, ), g n

Zn
2™ log 2™

1 1
nlogZ_logZ

1

-

) =2

. 1 ..
Now the series ), - diverges.

The given series diverges.

6. Test the convergence of the series }; oy

n

Solution. The given series converges or diverges with the series ) T g T

1 1 5 1
(log 2)PnP ~ (log 2)P “ np"

=2
The series ), % converges if p > 1 and diverges if p < 1.

The given series converges if p > 1 and diverges p < 1.

1

. 1,1, 1 1 1
7. Test the convergence of the series Sttt ts tt-

Solution. We have

1\
(3117) if niseven
anl/n = 1 1/n . .

(2(n+—1)/2) lf nis odd

converges or diverges with the series
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! if nis even

V3

2 L.
T if nis odd.
22(1+2)

1
Now, the sequence (25(1 + %)) converges to (1/v2) as n — oo,

~(1/V2) and (1/v/3) are the only limit points of the given sequences.
limsup a,im =(1/N2) < 1.
=~ By Cauchy’s root test the given series is convergent.
Note. In this case the limit of a,1/» does not exists since /im inf a,in # limsup a,im

Exercises. Test the convergence of the following.

2

W(1-1)

@)
©hE-
(4)x 27+ D"
(5)Te™

© To
NI

(8) 3 eV

OP X

1 1 1 1 1 1 1 1
(10) E+1+2_2+2_3+2_4+2_5 +2—4 +2_7+2_6""

Answers: 1.C, 2.C,3.C,4.C,5.C,6.C,7.Cifp>0,8.C,9.D, 10. C.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
141



UNIT V: SUMMATION OF SERIES
Summation of series using Binomial, Exponential and Logarithmic series.
BINOMIAL SERIES

When n is a positive integer (x + a)" can be expanded as (x + a)™ = x™ + ,C;. x" " la +
nCy. x"2a% +.. 4+ ,C,. x™ 7. a"+...+ a,.. This is known as the binomial theorem for the positive

integer n. When n is a rational number (1 + x)" can be expanded as an infinite series when -1 <x <1

(i.e) |[x] < 1anditis given by

(1+x)"=1+ ’;—’f + —"(Y;!_l) X2+ "—("_1)';5"_”1) PSR ()

This is known as binomial series for (1+ x)" where n is a rational number.
General term

The (r + 1) ™ term in the expansion is often denoted by
Ur+1 or Tr+1 : Ur+1 = I’lCr x""a’

We may obtain any particular term by giving r particular values. Thus the first term is
obtained by writing r = 0, the second by writing r = 1 and so on . So the (r +1) " term is

called the general term.
Thuswe get (x +a)" = X'y C,x""a"
Note:-

(1) The expansion contains (n + 1) terms.
(2) The numbers ,Cy, nCy .... nCr .....nC, are called the Binomial Coefficients. They are
sometimes written as C, , C; , C,,.These binomial coefficients are all integers since ,C, is

the number of combinations of n things taken r at a time.
(3) SinceCy = C,,C; = Cpq, ...... C, = C,_, , the coefficients of terms equidistant

from the beginning and the end of the expansion are equal.
Summation of various series involving Binomial Coefficients

It is convenient to write the Binomial theorem in the form
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(1+x)" = Co+Cyx + Cyx?+...+C,.x"+....C, x".

We can seen in the expansion that the coefficients of terms which are equidistant from

the beginning and the end are equal.

Cp=C,=1,Ci= C,_1=n.... and in general.

n!

C,= Cp_,=

T (=)l
Some important particular cases of the Binomial expansion.
1—x)"t=1+x+x2+x3+.....

(1—x)"2=1+2x+3x%+4x3+.....
1
(1-x)3= 5{1.2 +2.3x + 3.4x%+ 45x3+...}
1
1-x)"* = 5{1.2.3 +2.3.4x + 3.4.5x%+ 4.5.6x3+...}

(1 _ x)_n —14nx+ n(n+1) x2 + n(n+1)(n+2) x3 n

2! TR AR
1 1.3 1.3.5
(1—%)"Y2= 1+x+—x2+ =253 4
2 2.4 2.4.6
1 1.4 1.4.7
(1—x)"V3=1+x+—a+——x3+ ...
3 3.6 3.6.9

Application of the Binomial theorem to the summation of series.

We have proved when |x| <1, for all values of n

(I+x)"=1+nx+ n(nZ'_l) 241 D0=2) 3

3!

(1—x)" =1—nx + n(n—1) 2+ n(n—-1)(n—2) N
2! 3!

n(n+1) o — n(n+1)(n+2) N

I+x)™=1—nx+ o 3

(1—2)™=14+nx+ n(r12+1) 2+ n(n+1)(n+2) 2

3!
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Solved problems

: o . 3 5
Example 1. Find the sum to infinity of the series 1 + 7 + '3 +

@ | v
+

S w
_
I\Jl\]

3
4
Solution.

The factors in the numerators form an A.P with common difference 2: we therefore
divide each of these by 2.

Each of the factors in the denominator has 4 for a factor; removing 4 from each will leave a
factorial . Hence we have

------

Then the series becomes

1+£X+MX2 +Mx3+

T o X T
=1-x"

— 1L -3

- (1 2)

= 2+/2.

1.4 1.4.7 1.4.7.10

Example 2. Sum the series to infinity = 10 5 10 575 10 15 20"

Solution.

The numerators form an A.P . with 3 as common difference and the denominators are

factorials, each of whose factors has been multiplied by 5.

~ The series can be written as
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e =S
1 4 1 4 7 1 4 7 10
g=33 (_3)2+§§§ (_§)3+§§§? (_5)4+
1. 5 1.2.3° 5 1.2.3.4 5
Putn=- and x=—-
n(n+1 nn+1)(n+2 nn+1)(n+2)(n+3
.-.S:( )x2+( )( )x3+( )(n+2)( )x4.....

2! 3! 4!

n(n+1) xz n n(n+1)(n+2) x3
2! 3!

=1+nx+

=(1-x)"-1-nx

- 3v-1/3 _ 1
=(1+79) 1+ 3.

il w

—Ligyum_2
=7 ) 5

. . .. .. 15 1521 , 15.21.27
Example 3. Sum the series to infinity. — + +
16 1624 16.24.32

Solution.

The factors in the numerator form an A.P. with common difference 6 and those of the
denominator an A.P with common difference 8.

Let S be the sum of the series.

15

mans =)+ 55 (5550

The factors of the denominators do not begin with 1. Hence one additional factor ,

namely unity, has to be introduced into the denominator of each coefficient. The number of

factors in the numerator is to be the same as that of the factors in the denominator. So we

. . : : . 9
have to introduce an additional factor in the numerator also, which factor is clearly .

1

o L2, 9152
(_)+666(_) 466
1.2 \8 1.2.3 8 1.2.

27
=)+
4 \8

Since the index of x in every term must be the same as the number of factors in the

oo
c\|(_,.l

wc:\|’\J

. 9¢=
6

numerator or denominator of the coefficient, we have

9 6 22 2 2823
S.—.—=ﬁ(—) o866 6(—) +...
68 2! \8 3t \8

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
145



9 6
Put ==n and x=-.
6 8

ES - n(n+1) xz + n(n+1)(n+2) x3 N

2! 3!
=1+—+ n(n;l) x* + n(n+13)'(n+2) S+ (1+nx)
= (1=-x)""=(1+nx)
_ 1 _ O\-9/6 _ 26
- (1 8) (1 + 6 . 8)
_ 1372 _ 9
- (4) (1 + 8)
_47
47
S=—.
9
: o .1 1.3 1.3.5
Example 4. Find the sum of to infinity of the series — — + - ...
24 2432 24.32.40

Solution.

Proceeding as in the previous example, we get

S ORECR Ok
3°\8 34°\8/ 345 \8
In order to express this in the standard binomial form, the factor 1 . 2 must be inserted in
each denominator, and two additional factors must be then inserted in each numerator to
secure that the number of factors in the numerator is the same as that in the denominator. In
order that the factors of the numerator may remain in A.P. the additional factors(which

should be the same in each term) must be —% =

The index of x should be the same as the number of factors in the numerator.
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_3 _1g1 (z)z
2° 2°772°\8
3 11 3 135 3 1135
3 11 3 _3_135 _3_1135
__2 22(2) _ 27277 (Z)4= 2722722 (Z)5+
3! 8 4! 8 5! "\8

e, —
128 3!

3 2
fn=—-=-,x=-.
2 8

NELI —ny [ 1
i 14+x)™+{1-nx

=—(1+ )3/2+{1+

—5v/5 3 3
= —\/_ +1+-+—
8 8 128
_ 179 -5v5
T 128 8

S = 2(179 - 80V5).

Exercises

3S - n(n+1)(n+2) 3 _ n(n+1)(n+2)(n+3) o

4!

n(n+1) 2
2! x}

3 1

2z (3

Find the sum to infinity of the following series:

1

3 51 357
( ) 1t 23 e
3.18 3.18.33
(2) +
50 50.100 50.100.150
5 5.7 5.7.9
B—Ft—+—"-+.....
3.6 3.69 3.69.12
3 3.7 3.7.11
Ok Rt e
18 18.24 18.24.30
1 58 1 5.8.11
(5) — + - + L=
3642 369 43 36912 44
1.3 1.3.5
(6)

23(3') C 2%y 2505
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1
.5 10\ /s 2 .1 1
Answers: 1. 3/3 — 3, 2. (7) ~1,3.V3-2, 42 {8(27) [a — 17},

2
1 4 /3 7 23 2
5-5{(5) ‘g}’ 652 3V2

Sum of coefficients.

If f (X) can be expanded as an ascending series in X, we can find the sum of the list
(n+1) coefficients.

Let f(X)=ag+aix +axx? +agx3+....+a,x"+.....
(1-x)1=1+x+x2+ x3+

f(x
(Tj= (ap + a1x + azx? +azx3+ ... +a,x"+...). (1+x+ x%+..)

.. . f(x
Coefficientof x™ in % =qgta;+at..ta,.

Thus, to find the sum of the first (n+1) coefficients in the expansion of f (x), we have

f
only to find the coefficient of x™ of the expansion of 1(%2

Example 1. Find the sum of the coefficients of the first (r +1) term in the expansion of
(1-x)73.

Solution.

(1—x)73
_x '

The required result is the coefficient of x” in the expansion of

i.e., in the expansion of (1 —x)™*

. . 4.5 4.5.6 r+1)(r+2)(r+3
|.e.,|n1+4X+?X2+TX3+ ...... +( )(3')( )Xr

~ Sum of the (r +1) coefficients in the expansion of

3 g r+1D)(a+2)(r+3)
P .

(1—x)
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(1+x)™
(1-x)3

Example 2. If n is a positive integer and =ag+ax + ax? +agxd+ ...

a,x"+...

1
Showthat ay +a; + a,+...+t a,_1 = 3N (n+2)(n+7) 2n*,

Solution.
o - 1 . (1+x)"
The sum required = coefficient of x in the expansion of FrE T
p— (13 (13 (1+x)n
- a-0*
Now (1 + x)" ={2-(1-x)}"
—onon. 2 (1ox) + “(“ Don21_ )%
n(n—1)(n—2) 23 (1 - x)?
3!
Involving powers of (1 — x ), higher than third.
A+x)" 2" n.2" 1 n.m-12"2 nmh-1)(n-2)
Hence (1-0* (1-x2)* (1-x)3 MY (1-x)2  31(1-x) 2

+an integral expression of (n—4 )" degree.

Coefficient of x™~1 in (1- x)"*is n(n+1)(n+2)

3!
« (1-x)2i n(nz-:-l)
) (1-x)"%isn
) (1-x)tis1
Hence the coefficient of x"~! in gt’gz i

2"n(n+1)(n+2) 2" n?(n+1) + 2" 2n(n-1) on-3 n(n—1)(n—2)
3! - 2! 2! - 3!
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K-3
e =S
2" In(n+1)(n+2 —DHn-
= n(n; J(+2) _ on-2p2 (n+1) + 2" 3n2(n — 1)- 2n—+ 20 1,;01 2)
n—4
= . {8 (n+1) (n+2) - 12n (n+1) + 6n(n-1) - (n - 1)(n - 2)}
2" *n 2 2 2 2
= { 8n?+24n+16 - 12n?- 12n+6n?- 6n -n? + 3n -2}
21’1—4
=— 2 (n? +9n + 14)
_ 2"t (n+2)(n+7)
- 3
1 2n4p
= 5n(n+ 2)(n+7) T
Exercises
) . 1 1 2
1. Find the sum of n terms of the series 1+ n + n(?: )+n(n+1 2)(3n+ )+
2x—4

2. Find the sum of the first n+1 coefficients in the expansion of ——————is
(1+x)(1—-2x)

ascending powers of x.
3. Showthatif a,, be the coefficient of x™ in the expansion of (1 +

x)n,then whatever nbe 20— al+az+..+ (—1) m—1am—1=

(n—1)(n-2)...(n—m+1)

_ m-—1
(m-1)! ( 1) '
Answers : 1. n!(n_l)!,Z.{l + (—1)" — 2+,

Integro-Binomial Series.
When n is a positive integer we know that
(14 x)" = Co+Cyx + Cpx?+....C,x"+.... (1)

Changing ninto (n—1) in (1) , we get

O @0 2y

-1 _
A+x)" =1+ T ”
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+ n(n—-1) x+n(n—1)(n—2) 2
1! 2!

~n(l+x)"1=n
=C +2.CXx+3C3x*+..r.C,x" 7 +...... (2)

Changing ninto (n — 1) in (2) , we get

(n—1)(n—2)x+ (n-1)(n-2)(n-3) 24

M- A+x)"?=(n-1)+—7 -

A=) @A +x)"2=n(n-1)+

n(n—l)'(n—Z)x+n(n—1)(n—2)(n_3) 24

1! 2!
=12.C,+23.C3x+...r(r—1). C.x" "2+ ... 3)
Similarly
nn—1)(n-2) (1 +x)"3=123.C3+2.3.4.C4X +....
+r(r=1)(r-2).Cx"3+..... (4)
and so on.
If n is not a positive integer , the result (1), (2), (3), (4), ..... are also true provided |x| <
1.
In this case Cy , C; , C,, .... do not represent nCy , nCq1 , nC> , ... butj—j!L , % , % y eeens
In a similar way , we can show that
o™ _ 1 Cox + L x24 4L xTHLy
n+1 n+1 2 r+1
1
(151;))62;2) = (n+1)1(n+2) * nj—l X+ %xz T +(rJrl():ﬁ T
and so on.

The series whose general term is f (r) . C,. . x” where f (r) is a polynomial in r is called

an integro-Binomial Series.
To sum up such a series the following method may be adopted.

Express f (r) = ag+a;r + a,r(r — 1)+....
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By giving values0,1,2,....tr,a9,a;,az, ..... can be determined.
f(r).C.x" =ayCr.x"+a;r.Cr.x"+ayr(r—1).Cr. x™+...
X0 f(M).Cox" =ayYy Cr.x"ta Ygr. C.x”
ta, Yo r(r—1). C, . x"+......
=Zag(1+x)"+ax. 2o 7. C. . X"~
+a,x2 30 r(r—1). C, . x" 73 +......
=ay(1+x)" +ax.n(l+x)" +ax’n(n—1). 1 +x)"2+.....
=ap(1+0)" +anx(1+x)" +a,n. (n—1). x?(1 + 0" 2+.....
Example 1. Sum the series >.¢’(r + 1)* C,. . x".
Solution.
Let (r+1)2 = ay+a;r +ar(r—1).
Putr=0 = ap=1
r=1 = a;=3.
Equating the coefficients of r2 on both sides, we get a, = 1.
(r+1)2=1+3r+r(r—1).
A X+ DA Cx" =Y C . x" 3.3y . Cr . x"+Y Y r(r—1). G x"

=Y C, . x" 3.3 1. Cp . x"T H4x2 Y r(r —1). C,

=(1+x0)"+3xn(1+x)" " +x’n(n—1) (1 +x)" 2
=1+ 2 {1 +x)*+3nx(1 +x) + n(n— 1) x%}

=(14+20"2{(n+1)?x% + 3n+ 2)x + 1}.
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P
e =S
I+x _ .2, 52 2 .2 1 42 .3
Example 2. If |x| <1, prove that 0 1°+2°.x+3°.x*+4*.x°+.....t0 © .

Solution.
The nt" term of the series is (n + 1)2. x™.
Express (n + 1)? in the form ag+a;n + a;n(n — 1).
ap=1,a;=3,a,=1.
o m+1D?=1+3n+n(n-1).
XM+ 1DPX"=XE x"+3YF nxtyg n(n—1). x"
=1+x+x%...x"+-.t0 00+3{x+2x? +3x3 + -+ 0}
+{1.2x% + 2.3x3 + 3.4x* + -+- o0}
=(1—x)"1+3x{1+2x+3x%+-to o}
+x2 {1.2 + 2.3x + 3.4x% + --- to oo}
=(1—-2)t4+3x(1-x)"2+x%22(1-x)3

1 + 3x + 2x°
1-x  (1-x)2 (1-x)3

_ (1=x)%+3x(1—x)+2x?

(1-x)3
_ 14x
a0
. +1
Example 3. Sum the series )¢’ :? C,.x"
Solution.
2
We have r+1 — (r+1)
r+2  (r+1)(r+2)

_agtai(r+D+a(r+1)(r+2)
h (r+1)(r+2)
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S (r+1)%=ag+a(r+ D) +a,(r+ 1) +2)
N a():l, 31:_1 ,32:1.

r+l1 _ 1-(r+2)(r+1)(r+2)
" r+2 r+1)(r+2)

_ 1 1
T r+DE+2)  (r+1)

0o r+1 1
ZO r42 T. ZO ( +1)(7"+2) T ZO ( +1)C x +ZO C x
_Z ; ZOO T’+1 +
x2 &0 r+1)(r+2) (r+1)
Yo C..x".
We have learned that
o Cr. 741 1 _ (14x)*!
ZO r+1x + n+l  n+l
5 C, _— 1 L5 = (14x)"+2
0 Gr+D)(r+2) (m+1D)n+2) n+l  (+D)0+2)
o T+ C xT = (14x)"+2 x 1 ]
0 2 " T2 [m+Dm+2) ntl (+D)(@n+2)
_1ra+ontt 1 n
x [ n+1 + n+1]+(1 + x)
_ n (+x)*  14x 4 1
- (1 T X) [ 1 m+1)(n+2)x2 (n+1)x] n+1)(n+2)x2
(1+x)" (1+x)2 (n+2)(1+x) 1
T (n+1)(n+2) [(n T 1)(n T 2) T ] (n+1)(n+2)x?
_@+9® [,2 142 M_ _r
- (n+1)(n+2) [x +3n+2+ x2 + x +1- ( + )] (n+1)(n+2)x
(d+x)" 2_ng1y_ 1
T (n+1)(n+2) [((n+1) X + xz] (m+1)(n+2)x2’
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Exercises

L If(1+x+ x? 2=ao+alx+a2

n(n—1) . Y n! _ . .
T, A2 v (-1 .—T!(n_r)!ao—o unless r is a multiple of 3.

x%+... prove that
dg — n. ar_1+

What is its value in this case?
2. Express —o.2 8 the sum of two partial fractions and hence show that

1+(n- 16+ 20D 24 100D g3,

%{3n+1 + (_ 1)n+1 2n+1}_

Show that 1 +2 (n— 1)+

22(n—2)(n—3)_l_23(n—3)(n—4)(n—5)+
1.2 ' 3] -

{2+ (-1}

Approximate values.

The Binomial series can be used to obtain approximate values and limits of
expressions as follows.

Example 1. Find correct to six places of decimals the values of

1
(9998)1/4°
Solution.

1 \1/4 1
((9998)) T (10000-2)1/4

_ 1
(10%-2)1/4

1
- _ 2 \1/4
10(1 W)/

2 -
_ g

10
1 2 1.2 4
L i1
10
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1 1 1 5
=t —+-=-.—+. ...
10 27105 8°10°

1 5
=01+ > (0.00001) + 3 (0.000000001)

= 0.1 + 0.000005 + 0.0000000005

= 0.1000050005

E (999817 = 0.100005 correct to six places of decimals.

Example 2. Calculate correct to six places of decimals (1.01)'/? — (0.99)%/2,
Solution.
Write x = 0.01.

(LOD)Y2 = (1 4+ x)1/2

1 1 3
c1le 4 82,2280 5,

(09912 = (1 —x)/?

1 1 3
= 1+4- x+2( 7 x2 2'(23#3(3{,

3

oy - ooyt - oft+ E D MR, )

2{ x4 = x3+%x5+ -}

7
_x5 +

_ 1.3
—x+8x +128

(001)+ (0.01) 3+— (0.01)° + -

128
1
=001+ 5(0.000001) + terms not affecting the 8" decimal place

=0.01 + 0.000000125
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=0.010000125

-~ (1.01)Y/2 — (0.99)1/2 = 0.010000 correct to six places of decimals.

Exercises

: 1 : :
1. Find the value of RESYE correct to five places of decimals.

2. Find the expansion of (1 + é)lﬁ and find the cube root of 65 correct to three
places of decimals.

3. Prove that (2)1/3 =1 %(1 + 0.024)1/3 and hence find the cube root of two to four

places of decimals.

1/3
4. Evaluate (m) correct to four places of decimals, without using logarithms.

1 1
5. Find to five places of decimals the value of (1003)3 — (997)s.
Answers: 1. 0.19842, 2. 4.021, 4. 1.0027, 5. 0.02000.

Example 1. When x is small, prove that

(1-3x)"2/34(1-4x)73/% _ 1+ 3X b Ax2
(1-3x)"1/3+(1—4x)"1/4 2

approximately.
Solution.
The expression is equal to

3 7
Bx)3++1+ %.4x+42'—,4(4x)2+---
T 5

Bx)3 4t 1+ xR (40) 2+

L] U
IS
wo| 0o

2
2 .3
_ 1+§3x 1 2

T
1 a5 -
1+§.3x+32! (3x)2+

(3x)*+

SURN
[ D ]

W] =
Wl

W fwo

Since x3 and higher powers of x may be neglected the expression

2+5x+15%x2

- 2+2x+4%x2
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&3
ST
(2+5x+155x2)
- 2(1+x+%x2)
1.2
2+5x+155x

= (1+x+%x2)‘1

= (L+2x+2a) {1+ 21 +20)}
= (1 +§x+%x2){1 —x(l +zx) +x%(1 +zx)2...}
= (1+§x+%x2)(1—x—2x2 +x2)
(x3 and higher powers of x neglected)
= (1 +§x+%x2) (1—x—%x2)

5 31 5 5
=142 2202 2,2 2,2
+2x+4x X 2x 4x

=1+§x+4x2.

7 .
Example 2. Show that vVx% + 16 — Vx2 + 9 = o nearly for sufficiently large values of x.

Solution.
The expression = (x% + 16)'/2 — (x? + 9)1/2

16 9
=x(1+ )V —x(1+ )"

(Since % is small, the expansion is valid)

8 9
=xX+-—-—x—-——
X 2x
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Exercises

1. If x be so small that its square and higher powers may be neglected, find the value of

(1—7)Y3 — (1 +2x)73/*

2. When x is small , show that

(1-x)">/24+(1648x)1/2 _
(1+x)"1/2+(2+x)

23 - .
+Ex approximately.

3. If x be so small that its squares and higher powers may be neglected. Prove that

(94+2x)1/2 4+ (3+4x)
(1-x)1/3

74
= 9+?x nearly.

4. If x be so small that powers of x above x3 may be neglected, show that

(1+x4+x2)+(14x)?
(1—)()1/3

=1+ 4x + 7x% + 6x3.

: : : : ! ! 3c3
5. If cis small in comparison with I, show that (H—C)l/2+(:)1/2 = 2+4C?

approximately.

. 7 .
6. Showthat Vx2 +4 — Vx2 + 1is 1—%x2+6—4 x* nearly when x is small and

3 3 3 .
2x(l— yPeaL @) nearly when x is large.

23
Answer: 1.1 — = X

Extra problem

1. Find the general term in the expansion (4 — 7x)’

valid.

Solution.

(4-7x)%5=472/5(1- 74—")_2/5= 275 (1 - %")_2/5

7x

starting when will the expansion be

-2/5 . . . . e |7x . . 4
(1 — T) can be expanded in binomial series if |T| <1.(i.e)if [x] < =

7x —2/5,

The general term T,.¢in (1 - T) is

) ()

_ (=2)(=7)(=12)....(=57+3) r (7x\"
= -1 (%)

57r!

_2712..(57=3) . o (7x)"
e CORI G

r!

_ 2.712...(5r-3) (7_x)r
B 7! 20
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_ r
The general term in (4 — 7x)**is (2)~*/° _2'7'12";'|'(5r . (;_g) '

2. If x| < % prove that coefficient of X" in the expansion of (2 — 4x)(1 — 2x) % is 2"*
Solution.
x| < 3= |2x| < 1
Hence we can expand (1 — 2x)-2 in binomial series.
Now, (2 —4x)(1 —2x)? = (2-4x) Y5 (r + 1) (2x)"
= (2-4X)[1 +2(2x) + 3(2x)* + ... + n (2X)"" + (N+1)(2x)" + ...]
= (2-4x)[1+22x+3.25%% + ..+ n 2"+ (n+1)2°%" + ... ]
Coefficient of x" = 2(n+1)2"— 4 (n.2"%)
=n2™t+2m 2™ _p2™t=2m
3. Find the coefficient of X" in the expansion (1 — 2x + 3x* —4x® +...)"
Solution.
(1-2x+ 33— 43 +.)"=[(1 + x)2]™
=(1+x)*"
Coefficient of X" in (1 — 2x + 3x* — 4x* +...)™" is same as the coefficient of x" in (1 + x)?"
and it is
_ 2n(2n-1)(2n-2)...(2n—n=T)
n!
_ 2n@n-1)@2n-2)...(n+1)
n!
:Zn(Zn—l) ...... n+D)[nn-1).... 2.1]
nl[1.2....(n—1)n]

_ 2n!
T amr
. . . n 7+x . . .
4. Find the coefficient of X" when T is expanded in ascending power of Xx.
Solution.
Le 7+x A Bx+c

t A0+  14x T 1422
Wecanfind A=3;B=-3;C=4.

7+x _ 3 4—-3x
(A+x)(1+x2)  1+x  1+x?

Therefore
=3(1+x)" + (4 - 3x)(1 +x)*

=31 -x+X =3+ . )+ (4 =31 - x+x' =x"+..)
Case 1.risan odd integer say r = 2n + 1, neN.
Therefore coefficient of X" = coeff.of x*"!
=-3+(3)(-1)"

=-3+ (-3)(—=1)r—D/2

Case 2.r is an even integer say r = 2n, neN.
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Therefore coefficient of X" = coeff.of x*"
=-3+4(-1)"
=-3+4(-1)".
5. If x is so small that its square and higher powers may be neglected prove that

VITx(4-3x) /2

-4 10x
5 =4 3 .(nearly)

Solution.

(=30 3 -
PO 2 = (40 24’2 (1-2) Pl (14 2) 7

(8+5x) /3
=4(145x+ ) (1-2x+ ) (1-Z 4 )
=4 [1 +x (% — g - %)] (neglecting x? and higher power of x)
=4 — 10_x

3
6. Show that 1 + n(l%) + "(;‘;1) (1%)2+ ...... = G%Z)n

Solution.
Put% =y.

_ ny n(n+l) o
Then LH.S =1+ +———y* + -

=(1-x) /awherep=n:a=1 andg =y.Hencex =y.

Hence LH.S=(1—y)™" = (1 - 2—“)_n: (1;“)_” = (ﬂ)n =RHS

1+a 1+a 1-a
2n | 2n(2n+2) | 2n(2n+2)(2n+4) = n , n(m+l)  nnr+1)(n+2)
7. Provethat1 + >t 260 +-=2 [1 tet St T,

Solution.

LHS=1 +%(§) + ”(’;“) @)2 + .

(1"

R.H.S = 2n [1 + %G) +$ G)z + ]

o (1) ()=

LHS=RH.S.
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1.4.7
9. Sum to infinity the series 1 +1 -t m T

Solution.

14 1.4.7
LetS=1+3 st 5101 51015

Therefore S=1 +%(§) + 12—?(%) + ﬂ(E)B + .

=(1-x)™wherep=1;q=3and 2 = g- Hence x =%

Therefore S = (1 - —) 3 (E)_l/3 = (;)1/3 .

10. Sum to oo the series (%)2 + % G) 422 (5)6 + -

Solution.

as= (@) 420"+ 20 -

Therefore S = %G) + %G)Z n 13_'3(%)3 ¥

_—1(1) , -11/1\%  -1.13(1)\3
s=5()+50(6) +506)

IR OIS JORE JORR

=(1-x)"™wherep=1;q= 2and——%
1,

Hence x = 1 . Hence -S+1 = (1 — E)

—(2) /2 \/_ Hence S = 1—1.

\/_
3.7 3.7.11
11. Sum to oo the serles — + T804 + 182430 + o
Solution.
LetS= —+ 37 37U,

18.24 18.24.30
3
3/1 3.7 (1 3.711 /1
—§(g)+ﬁ(g) t3as (z) t+

Therefore%ﬁ_l)(%)2 & 5)( D3 (2)2 4 E9ED37 1)37(6) N

72+ (1'5)<6> = 5)( D(é)

R ey gy

2
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2 _E i - _ -plg =50 = {—l :Z
72+(1 6+72)—(1 X)" " where p = 5;q 4andq—6andhencex 3

5
58 17 _ 2\"/4
Therefore - + - = (1 — §)
5§ (1)5/4 17

"727\3) 72

72 [3_5/4(72)—17] _72 [3_5/4(3)28—17]

w8 = 5 72 5 72

_72[3% ®)-17] _ 72 [827) /417
s 72 5 72

S =§(8(27)1/4— 17).

Exponential Series

We will learn some series which can be summed up by exponential series. We have

proved that for all real values of x.
x — x x2 x"
e —1+§+?+"‘+F+..t0 00 e (1)
In particular when x =1, we have
_ 1 1 1
€—1+E+z+“'+;+..t0 o 2)

and when x = —1 , we have

1

-1 _ 1
e =1-3+35

§+ .--(—1)n.%+.. 0 00 oo, 3)

Changing x into - x in series (1) , we get

— _ X x? X"
ex—1—5+?—---+(—1)".ﬁ+--- .............. (4)
Adding (1) and (4) , we get
eX—e ™ x? x4
> —1+7+T+---tooo ............... (5)
Subtracting (4) from (1) , we get
eX—e™* _x x3 x>
> _F+?+?+. tooo (6)
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When x =1, series (5) and (6) become

e+e_1_ 1 1

> —1+z+z+"'t000 ............. (7
e—e™1 1 1 1

> —E+§+§+"'t000 ............. (®)

Note. It can be verified that e is an irrational number whose value lies between 2 and 3. Further the
value of e correct to four places of decimals is given by e = 2.7183. We shall use these series to

find the sums of certain series. The different methods are illustrated by the following worked
examples..

3 2 3
: 1+3 |, 1+3+3 1+3+ 37+ 3
Example. Sum the series 1 + T T + T + - to oo.

Solution.

Let u,, be the nth term of the series and S be the sum to infinity of the series.

_143+3%4 ... +3n71
u, = |
n:
3n-1 1
3-1 "n!

...................

13" 1
Un =5\
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....................

1 (3t 32 3n 1/(1 1 1
s=y(Fratotirto)(Gratotate)

=5(e == (-1

1
= Se(e?-1).
Exercises
1. Show that (1+Z+Z+m) = (1+§+;+...)
11
_+_+...
2. Show that e+11 = 11! ?i! :
e— Z+E+...
3. Showthat2 {1+ Gogem)* | (loge n)* + :( _|_l)
: 2 " . n+—).
4. Show that Y. nlog

T —

n
If the given series is Y5 f(n).% where f (n) is a polynomial in n of degree r , we can find
constants ag, ag, ... ... a, so that

f(n)=apy+tajn+an(n—1)...+a,n(n—1)...(n—r + 1) and then

o X _ o X o X o XN
L= f ()< = a0 X0 T + @1 nmo Gy T -+ T Zn=0 ropy;

=ag.e*+ax.e*+.....fa,.. x".e*
= (ag +ayx +a,x% + ....a,x") ¥
m+1)®
H [ee]
Example 1. Sum the series }.;7_o———

X

Solution.

Pt (m+1)3=A+Bn+Cnn-1)+Dnn-1n-2).
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Puttingm =0, 1, 2 and equating the coefficients of n3, we get
A=1,B=7,C=6,D=1.
Let the sum of the series be S.

14+7n+6n(n—-1)4+n(n-1)(n-2) X"

n!

S=X0

— ' X" [e) x" 00 x" 1 ' x"
=20 720 D! 625 (n=-2)!" 2 (n=3)!

Now X7 flnl :1+E+7+" = eX
28o(nx—nl)! _x+x1_2'+§—3| = x.e*
Zgo(nx_"z)!_ x2_|_961_3"_|_xz_4' = x2 ex
S=(1+7x+6x%+ x3)e*.
Example 2. Sum the series 11—2| + 12;22 + 12+232!+32 ......... + 12+22::!...+n2 -

Solution.

Let the n'" term of the series be u,, and the sum to infinity be S.

1242244n? _n(n+1)(2n+1) 1

n! 6 n!

Then u, =

Letn(n+1)2n+1)=A+Bn+Cn(n-1)+Dn(n-1)(n-2).
A=0,B=6,C=9,D=-2.

6n+9n(n—1)+2n(n—-1)(n-2) 1

# 8= 2 6 n!

13 1 1ae 1

— \ 00 [0e]

=11 2 ”=1(n—2)!+§ n=1(p-3)!
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e
e =S
3 1
=e+-e+—¢€
2 3
17
= e,
6

Exercises

1. Show that the sum to infinity of the series
2, 3¢ # 2,5 3 _ 2
2 TR e et s c.o=e*(x“ 4+ 5x +4).
2. Find the sum to infinity of the series
46 5 57

3.5
(1) Srx+5x +?x3 +....0

2 3
(2) 1.2 +23x +34.5+45. = ..

3. Sum to infinity the following series:-

142 1+243 14+243+4
W1+ + oy
4 4 4
@Q=+=++ ..
1! 2! 3!

@ 1+2+2+Z 4. .
2! 3! 4!

1.2 2.3 3.4 4.5
4) T+7+?+?+

4. Show that
W5+ +32 428 4 to w=13e
1! 2! 3!
2 2 2 2 2 2
@+ 23 Y L 1o w0 =276

1! 2! 3!

(3) Yoo, L Z5e .

n!

Answers : 2.(1).(x* +7x + 8) €, (2). (x* + 4x + 2)e*, 3.(1).373,(2).15e, (3).e +

1,(4). 3e.

n%+3 x"

n+2 " nl’

Example 1. Sum the series Y51

Solution.
Let the sum of the series be S.

(n%+3)(n+1) n

ThenS=)7"_4 i)
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"SI
e S
Let (M*+3)(n+1)=A+Bn+2)+Cn+2)(n+1)+D(n+2)(n+ Dn.

We can easily findthat A=—-7,B=7,C=—-2and D = 1.

Then s = Yoo_, 77D 20 D@t D+t tbn

n
(n+2)! X

_ o XN o XN 9 o XN o xN
= T Eni i VT 2=t oy 2 2m=t Tt Zn=t oy
2 5 n
o xn X X X X
Now 2n=y (n+2)! 31 + 4! t 51 7777 (n+2)!
_1 x x2
e —1-x—-2)
2 3 n
w X' X X7 X7 x
n=lm+1)! " 21 + 3! T 4 (n+1)!
1
=—(e*—-1-x)
o X x i + x" + =X — 1
n=1r T T n! - €

. x* x | x2 X — x
Zn:lm—X‘l‘ﬁ-l-?‘F....‘f‘(n_l)!“‘ ....=Xxe

e (0% 1 —x — XNt 0% — 1 — ) 9 (o — x
-S—xz(e 1—x 2!)+x(e 1—x)-2(e —1)+xe
=& (43 _ 252 — TV - (32

—xz(x 2x° + 7x 7)+2x2(3x + 2).

.5 .7 9
Example 2. Sum the series T + Y + o +.....

Solution.

th _ (2n+3)
The n‘* termu,, = D)

Put2n+3=A(2n—-1) +B.

Then A=1 and B = 4.
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2n—1+4

Un = " Zn1),

_ -1 4
2n-1)!  (2n-1)!

1 4
= +
(2n-2)!  (2n—1)!

4
U1:1+—
1!
N TRET
U =075

..............

..............

C o 1 1 1 1
Sumtomfmlty—(1+Z+Z+....)+4(E+a+....)

Her2rat (e}

5 3
=—e——.
2 Ze
1 1 1 1
S : 23 3, 47 5% 1+e
Example 3. Prove that the infinite series 1—": - 2—? 3—‘,* -2+ .= -

Solution.

Let u, be the n* term of the series and S be the sum of the series to infinity.

1
(n+1) n—+1

n!

Then u, = (—1)"*!

o 1\n+1 n+1)2+1
=(=D (n+1)!

Putn® +2n+2=A+B (n+l) + C (n+1) n.
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A=1,B=1,C=1

)n+1 1+(n+1)+(n+1n

s U = (=1 (n+1)!

— (_1yn+l 1 1 1
=1 '{(n+1)!+n!+(n—1)!}'

1
n+1)!

1

S= Z?lOZI(_]‘)rH—l . . (n—l)!

+ e (D™ Sz (D™

1 1 1 1 1

m+D! " 21 31 4T

Now 2, (—1)"*".

. n+1 1 _1 1 1 _ -1

>_1(=1) 'E_E_Z-l_i"'__e + 1
o n+1 1 _ 1 1 1
nzl(_l) . (n—l)!_l_i—i_Z'”_e .

s S=1+e7 1

_etl
e
Exercises
1. Show that
M) 5o 5 S = (- 3x - 3) e+ x? — 3},

o (2n—-1) _1
(2) ZTL:l (n+3)n! - ;(43 - 158)

2. Sum to infinity the series
3 4 5 6
(1)E+§+a+;+.....
12 3
(2);+;+;+

@I+2+l4+24..
2! 4!

6! 8!
w Snt+l _e 2
3. Show that }5 a2

22 2% 20 4_1
4. Prove that —+—+—:e
1! 3! 5!

e? '
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1 1 3 1
5. Show that log, 2 —; (log, 2)2+§ (log, 2) ==

Answer : 2(1)%,(2)% (3e — 28—1),(3)%

By equating the coefficients of like powers of x in the expansions of function of x in two

different ways, we can derive some identities. The following examples will illustrated the
method:

Example 1. By expanding (e* — 1)™ in two ways or otherwise prove that

—nCi(n—=D"+,C,(n—=2)" —...... =0wherer<n.

What is the sum of the above series whenr =n?

Solution.

(e¥ =" =e™ — e Dx+ |

= 1+nx+( l) +.. (n:l) +...—n(y 1+(n—1)x+{(n Dz’ +~~-{(n_1)x} +

r!

+nCy [1 +(n— 2)x+{(" 2" | Ao-2x) ]

r!

Coefficient of x" in the expansion of (e* — 1)*

_n" (n-1)" | n=2)"
- F - nCl- r! T nCZI r! T e

= %{nr — i = D) +Cy(n—2)"....}

2 n
Again (ex_l)n:(1+%+’;_!+...%+... —1)n

2 K
:(£+x_+. oy )
1 2!

n (l+£_|_...xn—1 _|_) .
1! 2! n

All terms in the expansion contain x™ and the higher power of x.
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~ If r<n, there will be no term containing x™ in the expansion.
1
D ;{nr - nCl(n — 1)T+ nCz(Tl — 2)7“} =0
ie, n" —,Ci(n—1)"+,C,(n—2)"...=0
If r=n, then

%{"n —nCi(n— D)™+ nC(n—2)"...}

n
= Coefficient of x™ in the expansion of x™ (% + % + - )

n"* — nCl(n - 1)n+ nCz(n - z)n =n!

Example 2. Show that if a” be the coefficient of x™ in the expansion of e®” , then

1 (1 3"
ar-;{Tf +5}

Hence show that

13 23 33
(l)T-l_ +— ...=5Se

4
(u)—+ + 3—+ ...=1be.

Solution.

_1+ex+(e) +(e) _I_(e)

4x

_ er e3x e
= 1+€x+7+?+T+....

xr 22 2 2" X"

r!

2
_ x
—1+(1+x+7+

+1_(1_|_3x+ + - o)t
3! 2!
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e aSE
. L1 20 3
Hence the coefficient of x" =—1—+ — + —¢.
r! 1! 2! 3!
Again
x2 xz x3
eex _el+x+7+~- —e ex+7+§+

x2 %3 1 2 43
=e.{1+(x+;+?+---)+Z(x+7+;+---)2
+ 1 x? 3.
5(x+;+---) ..

- 3_,(L 1,11
Coefficientof x° = e (3! + 2!.2.2! + 3!)

_e _ Se
-3!(1+3+1)- o

We have shown that the coefficient of x3

1 (18 28
B2
21

BETR T
1 (13 2% 33 _5e
;(?+z+§+'“ =
13 23 3 Se
—t =
1! 2! 3! !

Similarly equating the coefficient of x* , we get the second result.

Example 3. Prove that if n is a positive integer

n nn-1) - (n—-1)(n-2) 3
1 =GX+ i X~ g te
_ n+1 n+1)(n+2) - n+1D(n+2)(n+3) 3
=e*{1- 7 Xt 0 gz Xteh
Solution.

2 3
eV =1+2 4+ 4+ X 4 .
1! 2! 3!
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TS R L= NCAC NI
(1= =1-p L2l Gy 2o

n(n-1) 2_(n—1)(n—2) 3

12,22 12,2232 te

n
. 1—1—2x+

= the term independent of y in the product of e” (1 — g)n.

n a2\
ey (1 —_ ﬁ) = ex ey_x M
y ' Coyn

—er {1+ o-—? y o

11 21 ceee yn
I(y_x)n+1 (y_x)n+2
=e* {(y—x)” A VLAY +}
yn

The term containing y" in the expression

n (y_x)n+1 (y_x)n+2
e T T
is y" ——”+fl ym.x +—”+2,C2 yr X2,

Term independent of y in e¥ (1 — %)n is

410 nt+2C2.x*
e*{1 TR .
_ (n+1) n+2)(n+1) -
X(1 — —
=e*{1 ar x + 27 ceei}s

Hence the required result.
Exercises

1. Show that, if nis a positive integer

T R o L R
e™ —1

1—e—*

2. Find the coefficient of x" in the expansion of , N being a positive integer and

find the values of
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(1) 12+ 22+ 3% +....+n?
)13 +23+33+....+nd
() 1*+2*+....+n*

2,1 132
3. By means of the identity e”* 7t2 = o OF)” show that
2 1 1 1 _ 2! 41 6!
l+amtontar = tartar TaE T
1
x2

2
[ Left side = term independent of x in e’.e* .e

12 14 16
+ (x+2) + (x+2) + (x+)

1.2
e(x+;) =1
1! 2! 4!

Term independent of x in the above expansion

_ 201 4Co 6C3
=1+ T + o + T +.....]

n(n+1)(2n+1) n?(n+1)>2 n(n+1)(6n34+9n2+4+n—-1)

Answer : 2(1) ——— (2)——) m

Extra problems

) o A +heX+ 2x
1. Find the coefficient of x" in ===
Solution.
+be* +ce?* _
% = (a + be* + ce®*)e™3*

=ae 3 4+ he X 4 ce™

2 _1\n n 2 _1\n n
ca(1-G0 G0 CE Y (1B Gt e Y

1 2! nl 1 2! n!
(x) | (x)? D" )"
(- =)
x 2x _1\n
- coefficient of x" in &2 ¥ jo = CD" rogn 4 pon 4 (],

e3x

1+x

2. What is the coefficient of x" in the expansion of (1 + x)e
Solution.

(1+x)e™=(1+x)ee"

_ x x2 x3 x4 xn—1 XM
—e(1+x) [1 + E+E+¥+Z+“'+(n—1)!+m"' ]
.- ni e o [L 1
Therefore coefficient of X" in (1 + x)e™"is =e [n! + (n—l)!]

in ascending powers of x.
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=e[%+%]=%(1+n).

2 3
3. Prove thatlog 2 — (l"gz) +(l"g'2) _. :%_
Solution.
Putlog 2 = .
2 y3
Therefore L.H.S = y- T
_ [y . »_
=|-2+% Ly ]

=(eV-1)=1- e'°gz 1-2=2.

1
R
4. Provethat 22 e~ —¢"1

3'-|-SI e+1
Solution.
LHS = Hete™) e211-2e
T = %(e—eil) - e2-1
(e—1)? _e-1
T (e+D(e-1) e+l
5. Showthatifa>1 =1+ Lavel et
Solution.
th _ 1+a+a2+ g1 _ a"
ntermT,= e—
Therefore T, = ( ) [— —— Q)

Puttingn=1,2,3, ... in (1) we get
_( 1 [a 1
T= () [

a—1

r,3
a 1
8 a—1/ L3! 3!

_

Adding we get

=G e5e)-Grade )
=(H) e -D-(e-1]==

6. ProvethatS=1+ ﬁ g8, 3

2
Solution.
1424+
M term T, = "
n!
_nn+l) _ n+l
T oo T 21
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Let n+ 1=A +B(n-1).
Puttingn=1andn=0wegetA=2;B=1.

_ 2+(n-1)
Therefore T, = =D}
_ 1 1
Therefore T, = m + m ................ (1)
Puttingn=1, 2, 3, ... in (1) we get
Tl =1
1,1
T=5+5
_1 1\ 1
Ts= at (E)E
_1 1\ 1
T=3+G)z

AddingwegetS=[1+%+%+ ] [1+ + = +]

1 3e
= + - =—,
€ Ze 2

n—1 n
(n+2)n'

7. FindS=37_4

Solution.

n-—1 n

Here the n™ term T, —( +2)n'x

— n%-1 n
(n+2)!

Now, letn2 —1=A+B(n+2) + C(n +2)(n +1).
WegetA=3,B=-3,C=1

— 3 X" — 3 n l n
Therefore T, = Y Tt F X (1)

Puttingn=1, 2, 3, ... in (1)we get

Tl—%x—1x+ X

Tz—zxz—%x2+%x2

T3—§x3—%x3+%x3

Adding we get

s=3[> +4,+ |-3[5+ ,+---]+[ +§+-~-]

e R T MR

=i(ex—ﬁ—%—1)—%(—1—1)+(ex—1)

x2
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e S
—_ X 3 X 3 X
=set—-—-—5—= e*+3+=-+e* -1
x2 x x2

_ 2e%(x2—3x+3)+(x2-6)
B 2x2 '
292 292 242
8. Showthat— + 2= +2X 4 ... = 27e.

Solution.

nz(n+1)2 _ n(n+1)2
nl (-1

n"term T, =

letn(n+1)’=A+B(n-1)+C(n—-1)(n—-2) + D (n—1)(n—2)(n-23)
wegetA=4B=14;C=8;D=1.

_ 4 14 8 1

Therefore T, = D + ] + R
-4

T, = N

T,==+14

1!

4 14
T3_Z+F+8
4 14 8
T4_§+E+E+1

4 14 8 1
Ts=gt3toatn

Adding we get
Therefore S=4(1+%+%+---)+14(1+%+%+---)+8(1+%+%+---)+
(1+5+5+)

=4e +14e +8e + & = 27e.

Logarithmic series

_ X2 12 3 123 4
log(1+x)—x—§+?x —Tx

x2 x3 4

X
o e
2 3 4

Modification of the logarithmic series.

If —1<x<1,wehave

2 3

log(1+x)=x—x7+x?—.....+(—1)"_1%+... ......... (D)
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It is convenient to remember the form of the series in the case in which x is negative.

Thus
)= —x — a2 1,3
log(1—x)=—x 5 X 3 X
=—(x+ o+ )
2 3
e, —10g(1—x)=x+15x2+1§x3+--- ........... 2)

Adding the series (1) and (2),
log(1 + x) —log(1 — x) = 2x + 2.1§x3 + 2.13x5+ ......

1+x 3 5

i - 4 r o
ie., logl_x—z(x+2+3+ )
X2yt 46
|Og(1+X)+|09(1—X)=—2(7+7+?+“')

1141 1.
log2=1 >ty ot

Using the different forms of the logarithmic series we can find the sums of the certain series.

The following examples will illustrate the methods of such summation.

: _x—1 x2-1 1 x3-1
Example 1. Show that if x>0. log x = ) + 2 oaD? T3 ey

Solution.
s = () 5 G) et et T
= —log (1—;?)+log (1—;:)
= —log xl: +log xi_l
=1og {(57) + 557}
=logx .

By
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The expansion is valid when

X
|x+ <land | | <1 |x+1| is always less than 1.
When || <1, lx+1]>1, ie, x| >0
When x > 0, the expansion is valid .

Example 2. Show that log\/E:1+(15+1—)l+ (l+l)1—+ (l+17)1—+

3/ 4 4 5/42 6 43
Solution.
Right side expression can be written as
11,1 1,110, 11111
2 "4 4742 6 "43 4 5742 7 743

1 2 1 1+x
= log (1—-x°) + l —
. 1 1 1+13 . 1
. The series = — > log (1 — Z) + log T, since x=—

2

:—%log%+log3
Z%IOQQ—%log%
=7 10g (5)

=~ log 12

= log V12.
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Example 3. If a, b, ¢ denote three consecutive integers, show that

| b= L 1 + 1 1 + + 1 1
0Be 0 = 2 08 A 2 08e € 2ac+1 3 " (2ac+1)3
Solution.
1 1 1 1
nght side =— loge a+— loge c+— loge 2ac+1
2 2 2 1_Zac+1
1 1 1 2ac+1
== +— + =
2 loge 4 2 10ge ¢ 2 1Oge 2ac

1 1 ac+1
=—log (ac) + = lo
2 g ( ) 2 9 ac
1 ac+1
=—log ac
2 ac

1
= log (ac + 1).
Ifa, b, c denote three consecutive integersthenb=a+1 andb=c-1
~a=b-1; c=b+1

ac=h%-1 ,ie, ac+1=h%
1;Iog (ac+1) :%Iog (b?) =log b.

Exercises

1. Show that

a+x _  2ax +1 ( 2ax )3+1 ( 2ax )5+
a—x a’+x?2 3 " \a?+x? 5 \a2+x2

log

1

1
. +...
502x—1)°

" (2x-1)3

. 1 1
2. Sum the series + — il
2x-1 3 5

1
3. Show that when —1 <x < 3

x3 x° 2x 1 2x 2 1 2x 3
2+ 4y o2 L (Z)P L 2y
(X+ 3 + 5 ) 1—x 2 1—x 3 1—x
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FRIENR
oSy
4. show that
h2 w 5
log (x + 2h) = 2log (x + h) —log (x) — {(x+h)3 + 2(x+h)3 + 3(x+h)3 + }
5. Show that
1\2_ : 1 |
o (1 +Z) = 2(n+1) 23Mm+1)2  34m+1)3 7 00
6. Show that log, 3= 1+ 77+ = + -

3.22 524 7206 77T

) 1 1 1\1 1 . 1\1 o
N+ (=+=)=+(=+=)=
7. Sum the series (1+2) (3 4)9 (5 6)92+.....t0|nflnlty.

8. Sum to infinity the series Y. (L + 1—) x2tl(x2 < 1),

2n+1 2n)!
1 1 1
9. Prove that 3 -~ (= + o) = 5 log, 10.

1 X 1 1+x x —x
Answer : 2. 2log (=), 7. 9log 3~ 12log 2, 8. 2 [log 1% + x(e* + e7)|.
Series which can be summed up by the logarithmic series.

We can split the general term into partial fractions and using the result

1 1,1 : . . :
log2=1— By + 3 + 7 + .... We can sum certain series. The following examples will

illustrate the method.

o 1
n=12n-1)2n(2n+1)

Example 1. Sum the series ),

Solution.

Let S be the sum of the series and u,, be the n™" term.

Then u =1 : Ll :
T2 2n—1 2n 2 " 2n+1
11 1 1 1

W == .——=+- .=
L7921 27273

11 1 1 1
U == . ———+= .=
2723 4" 25
11 1 1 1
Uy =— . ———+— . —
3 725 6+2 7
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=—1;+log2.

7 9
+

Example 2. Show that 53 34: T

+....00=3log2-1.

Solution.

Let S be the sum of the series and u,, be the n™ term of the series.

2n+3
Then u, = m .

Splitting wu,, into partial fractions, we get

1 1 1
—-3. —+1.
2n—1 2n 2n+1

u, =2.

Giving values 1,2,3,....in u, , we have

w =2.+-31+1.1
1 2 3

-9 1_o1 1
u; =2.5-3.-+1.<

s=2-3 1431 31,31
2 3 4 5
1 1 1 1
_2+3(_E+§_Z+ E)
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1 1
=2+3(1—E+§ ...... —1)

=2+3(log2—1)
=—1+3log 2.
Exercises
Show that the sum of the series to infinity
1 1 1
l. —+—+—+....=log2
1.2 34 36
1 1 1
—_t — + — =9
2. TRETREY, ..=2—1log 2.
1 5 9 13 5
+ + == —
3 123 345 567 789 2 3log 2.
1 5 9 3
4, + + +....=—=—log2
234 456 6.7.8 4

If kisa positive integer and |x| <1, then

2 2
T R S A A

OO_ e +
z:”‘1n+k 1+k  2+k  3+k  4+k

3 4

rk+1 xk+2 xk+3

1
_x_k(k+1 Yoz T s +"'Oo)

1 x2
:—{X+—+_,,,—|——+ + + + ... 00
xk 2

x2 xk
—(X+7+ +7)}

== {—log (1—x)—(x+§+..--+%)}

_ 1 x? x
——x—k{|Og(l—X)+X+7+....+T}

1

Similarly 2;’;;1:: =——{log(1-x) +x}
o ﬁ—_1_{| 1 +X+ﬁ}
n=1., - 7z 1log(l-x) .
w XM _ 1 x?  x3
nei 5=~ Llog (1-x) + X+ —+—}
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Using these result we can sum certain series. The following examples will illustrate the
method.

3 2
. n>+n-+1
Example 1. Sum the series ) p—q ————

n
<
1D x" when |x| <1.

Solution.

Split M into partial fractions
P n(n+2) P '

0 1 1 3 1
Wehave S=)"_{(n—1)+ S -+ 3 = x"

1 x* 3 xm
==l (= DX+ X S X

ne1

o d(n—Dx"=x2+2x3+3x*+ ... 0

=x2(1+2x+3x%+....0)

2
— .2 2 =%
=x“(1-—x) o

Tie1— = —log (1-x).

w X' 1 x?
Zn=1m——x—z{|09(1—x)+x"'7}

L log1 o — 2 {log(1-x) +x+ X}
_(1—x)2 2 g~ 2x2 gt~ 2 7

- ) -1 n+l n
Example 2. Find the sum of the series }.;7_; n((n+)1—)(1:—2) :

Solution.
1 1111 1
nm+1)(n+2) 2 'n n+l 2 n+2

Let S be the sum of the series

—yo(L 1L _ 1 1 1\ qyn+l,n
S_Zl (2'11 n+1+2'n+2)( 1) x
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s
o= =Su
| Zoo( 1)n+1 ) Z ( 1)n+1 n L Z o (= 1)n+1 n
- : 1 i 1 n+
We have
1 ’ i
0T _ 2y
— - 5 3 ) +
1 n 1 2 + 3 |Og(1 X)
oD _x x| A3 _1_("——£+£ )
1 n+1 2 3 v o 3
1
=L {—log 1+ +x}
X
1)L x’ i 1 [ 3
o (71 _x___+—.....-:_2{x___+_ }
y : ; - x4 L3 4 5

= ;—2{ log (1+x) -X + % }
" S= 15 l0g (1+x) = +{ = log (1+x) + x} + ~— { log (1+) X + 7 }

1 2 1 3,1
=S log (1) (1+—+3) - (5 +-)

Exercises

1. Prove that the sum of the infinite series whose n'* term is 1n is 1— log 2.

1
n(n+1) " 2
2. Sum the series

D)

o NZ+1 X"
1 n(n+2)

@ 3o oY

1 n(n+3)

n

o) n
(3) 21 D2y~

3. Show that
3 4 5 3
D2z 2322 T 3423 = 4log3; -1
4. Show that
4r—1 1 _

X VoD 3 |093——|092
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Tl
e S

10r+1 1 _ 3
@ Xt g G 7 - 2 1092 '093

—xX) + (x o 10) @4 —%(Zx3 + 3x% + 6x) — 3logfifl —

9—4 —3x+6
x),(3). 12’; log(1 — x) +T_)+

Calculation of logarithms by means of the logarithmic series.

The direct calculation of logarithms by means of the series

1,213 1 4
+xX)=x—=x2+=x3 —=x*+
Log (1+x) =x > X 3 X 2
is somewhat tedious , since the series is slowly convergent, i.e., very many terms of the
series have to be calculated before a given degree of approximation is attained.

The calculation is usually carried out in practice as follows.

We have proved that

5
log, =2 {x -+ + ..}

When — 1< x<1.

1+ . -1
Let y=7 & 4

) X .
—X y+1

5
1 y—1 1 y—1
- logey = 2{y+1 7-Gm) 3G }
Where y lies between O and + oo.

Put y:% in this series where p and g are positive integers.
3 5
1 (r—q ) 1 (p—q )
= (=) +=.[—) +
» log, p —log. q = 2{(p+q) t 3 (p+q 5 "\ptg

Now if p and q be fairly large and differ little in value, i.e., (p — q) is small, the above series
converges rapidly to the limits, since the terms become small quickly.
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Example. Evaluate log 2 to 5 places of decimals.

Solution.
Put p=2, g=1

1 1 1 1
~ log.2—log.1=2.(3+73. 33+3_5_3+...)

log, 1=0.

2=0.3333333 = =0.037,037 = .—=0.012,3457 — =0.004,1152
3 3 3 3

= .25 =0000,8320 - =0.0004572 .. =0.000,0553 -5 = 0.000,050,8
5 3 7 3 3

S .25 =0000,0056 —=0.000,0056 — .- =0.000,000,5

9 3 11 3

Sum of the first 6 terms is 2 ( 0.346,573,4) approximately

i.e., 0.693,146,8

. log 2 =0.69315 to 5 places of decimals.
We can calculate the error involved in taking only the first six terms.

The difference between log 2 and the sum of the first six terms.

1 1 1
‘2{5'373+E'515+ }

13 313 T 315
2 1
<§3? (1+ + 7+ ™)
<2 1 1
_._._1
13 "313 1—3
<2 1
13 "313° 8
<1_ 1_ 1_
13 311 "4
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1
<= . (0.0000056)

< 0.0000011.

Hence if we take log 2 = 0.69315, there is no error until the 6" place of decimals.

By means of this series by putting p=5, q=4, log, 3 can be calculated.

By putting p=5, q=4, log, 3 can be calculated.

Similarly we can calculated logarithms of numbers.

The application of the exponential and logarithmic series to limits and approximations.

The application is shown in the following examples:

ex —X
Example 1. Evaluate Lt,_, -

g(1+x)

—e

Solution.

eX—e™*

th—>0 log (1+x) °

= th—)O x2 3
X—F‘F?
3 5
2x 2x
L 2x+T+T+
- Hbx-0 ¥2 %3
X—F‘F?‘i‘
2x | 2x
Lt + 3!+ = +
- Hbx-0 ¥ x2
2131
=2.

3 5
Example 2. Evaluate Lt, ., (1 +=+ n—3)"2+7n

Solution.

Let the value of the limit be A.
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LA = 3 5 \n2+7
w A=Lt, L (1 +n_2 + n_3)n n
Taking logarithms on both sides, we have

_ 3 5 2 7
log A=Lty e (145 + )" +n

3,5
=Lty (N* + 7)1 +5 + )

= Lty (n? + 7n){ (5—2 + 5—) S (3— + %)2+1§(3—

= Lty (n? + T){ (5 + =) -5 (3+ 5;)2+1—(3+

. : .1 . 1
Except the first, all the other term will contain —or higher powers of —

~ logA= 3.
A=e3,
Example 3. Prove that, if n is large (n - ;—n) log % =2+ 458n4

and () g2 (14 2y )

n— 45n%

Solution.

:(n— ;—n){log(1+%)—|09(1—%)}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

190



8
=e? {1+ — +..}

Example 4. Show that if e* =1 +xe”* , where x3 and higher powers of x can be
neglected,

1 1
=— 4 —
2! 4!

Solution.

2 3 4

X X X
Now e* =1+ X+—+—+ —+....
2! 3! 4!

_ x? x3 x*
e"—l—x{1+ el + ¥+ a +}

2 3 4
e =x{1+ = + T+ 2+ }

2 3 4
eyx=1+"2—,+x + 4.

ETRERY
Taking logarithms on both sides, we have

2 3 4
yx = log (1+ xz—, + x3—!+ 2—! + )

x x2 x4 1 [(x x2 x3
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=50
3
1 (x x? 3 )
+3(2!+ 3! + 4! T
_x . x? ! .
=3 + e + termsin x™ and higher powers of x.
1 x
Hence y =—+—.
2 24

Exercises

. e*—log (e+ex

1. Evaluate lim,_, %.

e*—log,(1+x)(1+2x)
5x3 '

2. Evaluate lim,_,

. . xe*—log (1+x
5 Find lim,_ 22000
x
log x
x2—-3x+2"
(2+x) log (1+x)+(2—x)logifl—x)

x4

4. Findthe limitas x — 1 of

5. Evaluate lim,_,

. 3 1 .p2
6. Evaluate lim,_. (1 + — n—3)" :

7. Find the value, when x tends to the limit 1 of the expression

log(x°/? — 1) —log(x3/? — 1).

8. Show that when x is small , log {(1 + x) /3 + (1 — x) 1/3 is approximately equal

2
X
to log 2 — 5

i
x logifil +n)

9. By using the fact that (1 + xz)" —e prove that

4

XN 4 (1 =) = pex £+ 1 (ﬁ )
1+ +(1-=) 2e° {1+ (5+5) +
Answer:12,2.—,3.5,4-1,5..—3 6.¢% 7 log ().
10 2 3 3

Extra problems.

1. show that [“2] + 2 [<2]" + L[] +... = logea — logib.

Solution.
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K3

e =S
Therefore L.H.S = x + %xz + §x3 + .
=-log(1—x)

—b b
-1 2) = bof2) ()
=loga-—log b.
=R.H.S.
1 171\ 17 1 \°
2. Prove that log (2n+1) + 5(2n+1) + §(2n+1) +

Solution.
Let ol =X.

1 1
Therefore R.H.S =~ log (”D = Llog (;zn1+1>

2n-1
<3109 (22) =Hog ()

n+1

=log
=L.H.S.

1 1 32

3. Showthat—[log10+27 +E T3t ] log 2.

Solution.
LHS= S[310910+ (2) +2.(2) +2.(2) +]
= - [1091000 - log (1 - 3]

[loglOOO log (125)]

“ 1 (1000><2)
_10 9\

= log2'® =log2=RH.S.

4. Sum to infinity the series (1 + %) + (— + —) (—) + (— + —) (—) + -

4G HE 0 6 o]

SREOR
= 3[%log C—Jj)] - %log (1 — %)
3
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= 0g-3 g (3) =3 [1292 - 3009 3

= ; [log2 — 3log8 + 3log9]

;[logz —9log2 + 6log3]
%[6log3 — 8log?2]
= 9log3 — 12log2.
1 1 _1 1 1
5. Prove that — s ot T et
Solution.
-1

Put x = —

Then L.H.S = x + %xz + §x3

1
2n2  3n3

Iog(n+1)
1

+
=-log(1-x)=- Iog(l — L)
1

Iog( ) log(1+)

=RHS.

_ xz x3 x4 _y y2 y3
6. Ify-x-7+?—7+---provethatx-—+§+—+

1!

Solution.
y=x-T+ 2 -2t ie)y = log(L + )
e/=1+x

Thereforex=¢’ — 1 = [%+§+YB_T+...]_1_
Therefore x = l+ﬁ+ﬁ+...

y3
7. Ifx= y—— T --and |x| < 1show thaty = x+ + +
Solution.

2 y3

— y
X=y- E+¥_

2 3
:-[_1+y__y_+...]

o203
=-[e"-1]
Thusx=1-¢”
e?=1-x

=loge (1 —x)
y =-10ge(1 —Xx)
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XZ x3
Thereforey =X +—+—+--.
8. Iflog (1 —x + X%) be expanded in ascending powers of x in the form a;x + ax* +ax® +........
prove that a; + ag + ag +........ = % log 2.

Solution.

log(1 — x + x%) = log [1::]

= log (1+ x*) — log (1+ X)
3)2 _1)n-1(3)" 2 _{)n—1ymn
:[x3__(x) +...+—( DY) +...]_[x_x_.|_....|_—( D x +]
2 n 2 n

—_1n-1 _1)3n-1
Coefficient of x> is ag, = 2 — — &1

3n
_ ot 1
== 1]
172
== 1[51 ...................... (1)
Puttingn =1, 2, 3, ... in (1) and adding we get
dztagtagt... :g[l—%‘F%—'“]
2
=3 log,2.

. _x—1 1 x%-1 1 x3-1
9. Showthatn‘x>0Iogx—m+5(x+1)2 3aanE T

Solution.

i = () +1 () +36)
2 3

AR GHRHCIEHE I

=-log [1—;‘?]+Iog [1—L]

x+1

X

= -log [ 5] + tog [ 5]
=log x

=L.H.S.

10. If f(x) = x+§x3 +%x5 + - where -1 <x < 1.

Q) Represent f(x) as a logarithmic function
.. 2x _
(i) Hence prove f(1+x2) = 2f(x)

Solution. (i) For — 1 < x <1 we have

log(1 +x) = X - %xz +§x3 — 2t e

4
- 1 2_1.3_ 14
log(1—x)=-x SXT =X =X
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11.

12.

log(1 + x) — log (1—x):2[x+ §x3 +§x5 _|_]

1l [1+x]_ +1 3_|_1 5
209 T %] T*T 3 T5¥

09=3 09 [;%]

142
(i) Now, f (=) = > log (1_1—?>

1+x2.
_1 1+x%+2x
- Elo‘g (1+x2—2x)
_1 1+4x)2
=3log (%)
=2 f(x).

Sum the series to infinity logse —log ¢e + log 276 — 10g g€ + ............
Solution.

logze —log ¢& + l0g 7€ — l0g g1€ + ............

__ 1 1 11
- loge3  log.9  log.27 log.81
1 1 1 1
_loge3 2log.3 = 3log.3 4log.3
1 1 1 1
= [ -_—— ___+ ...]
log.3 2 3 4
=lo‘g—ez=log 2 X logze = log3?2
logeS e 3 34-

Show that (1 + x)*** =1+ x +x? +§ x* neglecting and higher powers of x. Also find an

approximate value of (1.01)""".

Solution.
(14" = log 40+

— e(1+x)log (1+x)

~ e(1+x)(x—%x2+%x3)

12 13
zex+2x X

2 3
1 9 1 3) 1( 1 9 1 3) 1( 1 9 1 3)
= +( + - — = + — + - — = + — + - — =
1+ (x Xt ——x T SXT——x X+ox——x
1 2_13,1.2 3 1.3
~]l+x+= -
1+x X —ox +2!(x +x)+3!x
1
~ 1+x+x2+5x3

Put x = .01 in the result.
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(1.01)101 = 1 + .01 + .0001+ % (.000001) = 1.0101005.

13. ProveS=i+%+

3 + - =2—log2.

1
3.7
Solution.

1
n(2n+1)
To=242

n 2n+1

Here T, =

WecanfindA=1;B=-2

Therefore T, = rl—l T e (D)

Puttingn=1, 2, 3, ... in (1) we get

1 2
T,=2-2
171 3

1 2
T,=1-2
275 5

1 2
To=i—2
873 7

_q.1 1,1
Therefore S=1+-—>+-—

- [-bi-de]

=1-[log2-1]
=2-log 2.
14. ProveS= ———+——-=logd-1
Solution.
=0 )
We have n(n1+1) = % - ﬁ
T, = (=1)"! [% - ﬁ] ........................... 1)
Puttingn=1, 2, 3, ....in (1) we get
T= 13
To= =243
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K-3
S_F;_:.:f.jj
_ 1 1
Ts= 373
Therefore S:1+2(—%+§—%+---)
=1+2(log2-1)
=log4-1.
1\" 1 1 1
15. Prove that log (1 + Z) =1- 2+1)  23(n+1)%  34(m+D)d
Solution.
1
Putm—x
—q1_1 1 2_ 1.3
Therefore R.H.S—l—Ex—Ex —gg X
- N (A2 (L_o1y,3_ .
_1_(1 z)x (2 3)x (3 4)x
—(—y_1,2_1.3_ . 1.1 24 ..
—( xX—5Xx 3X )+(1+2x+3x + )

= _ 1213...)1( 1213...)
(43224300 4 )b (x 50?4323+

= log (1 - x) —~log(1 - X)
= (1 —%) log (1 -X)

= (1-n-1Dlog(1-—)

n+1

- niofi) =122

=L.H.S.

Prepared by

Mr. K.JOHN BOSCO

Assistant Professor, Department of Mathematics,
St. Jude’s College, Thoothoor.
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