
 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
1 

 

B.Sc. MATHEMATICS – I YEAR 
 

DJM1B : ALGEBRA AND SEQUENCES AND SERIES 
 

SYLLABUS 

 

Unit I: Theory of equation: Every equation f(x) = 0 of n
th

 degree has ‘n’ roots, Symmetric 

functions of the roots in terms of the coefficients – Sum of the r
th

 powers of the roots – 

Newton’s theorem – Descartes rule of sign – Rolle’s theorem. 

Unit II: Reciprocal Equation – Transformation of equation – Solution of cubic and 

biquadratic equation – Cardon’s land Ferrari’s methods – Approximate solution of numerical 

equations – Newton’s and Horner’s methods. 

Unit III: Sequence and series : Sequence – limits, bounded, monotonic, convergent, 

oscillatory and divergent sequence – Algebra of limits – Subsequence – Cauchy sequence in 

R and Cauchy’s general principle of convergence. 

Unit IV: Series – convergence, divergence – geometric, harmonic, exponential, binomial and 

logarithmic series – Cauchy’s general principle of convergence – Comparison test – tests of 

convergence of positive termed series – Kummer’s test, ratio test, Raabe’s test, Cauchy’s root 

test, Cauchy’s condensation test. 

Unit V: Summation of series using Binomial, Exponential and Logarithmic series. 

Books for reference: 

1. Algebra – Vol.I, T.K. Manickavachagompillai & others 

2. Sequences and series, S. Arumugam & others  

3. Real Analysis – Vol.I, K. ChandrasekaraRao & K.S. Narayanan 

4. Infinite series, Bromwich.                                                                                    

 

 

 

 

 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
2 

 

DJM1B : ALGEBRA AND SEQUENCES AND SERIES 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.No Contents 

 

Page .No 

UNIT I 

1. Theory of Equations  

2. Every equation f(x) = 0 of nth degree has ‘n’ roots       04 

3. Symmetric functions of the roots in terms of the  

coefficients  

     20 

4. Sum of the rth powers of the roots       27  

5. Newton’s theorem      28 

6. Descartes rules of sign      39 

7. Rolle’s theorem     40 

UNIT II 

8. Reciprocal Equation      44 

9. Transformation of equation      51 

10. Solution of cubic and bi quadratic equation     56 

11. Cardon’s land Ferrari’s methods      62 

12. Approximate solution of numerical equations      70 

13. Newton’s and Horner’s methods      73 

                       UNIT III  

14. Sequence and series  

15. Sequence – limits      86 

16. bounded, monotonic, convergent, oscillatory and 

divergent sequence 

     87 

17. Algebra of limits      97 

18. Subsequence     108 

19. Cauchy sequence in R and Cauchy’s general principle 

of convergence 

    111 

UNIT IV 

20. Series  

21. convergence, divergence geometric, harmonic, 

exponential, binomial and logarithmic series 

     116 

22. Cauchy’s general principle of convergence      118 

23. Comparison test      121 

24. Tests of convergence of positive termed series      122 

25.  Kummer’s test, ratio test, Raabe’s test, Cauchy’s root 

test, Cauchy’s condensation test. 

     128 

UNIT V 

 Summation of series  

26. Binomial series      142 

27. Exponential series      162 

28. Logarithmic series      177 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
3 

 

UNIT I: THEORY OF EQUATION 

Theory of equation: Every equation f(x) = 0 of n
th

 degree has ‘n’ roots, Symmetric functions 

of the roots in terms of the coefficients – Sum of the r
th

 powers of the roots – Newton’s 

theorem – Descartes rule of sign – Rolle’s theorem. 

Theory of Equations: 

Every equation f(x) = 0 of the 𝗇
th

 degree has 𝗇 roots  

Let f(x) be the polynomial a0x𝗇 +a1xn – 1 +…+a𝗇. 

          We assume that every equation f(x) = 0 has at least one root real or imaginary 

Let α1 be a root of f(x) = 0. 

Then f(x) is exactly divisible by x – α1, so that 

f(x) = (x – α1) 𝝓 1 (x) 

                where 𝝓 1(x)  is a rational integral function of degree 𝗇 – 1. 

 Again 𝝓 1 (x) = 0 has a root real or imaginary and let that root be a2. 

 Then 𝝓 1 (x) is exactly divisible by x – α2, so that  

     𝝓 1(x) = (x – α2) 𝝓 2 (x) 

            where 𝝓 2(x) is a rational integral function of degree 𝗇 – 2. 

                                       ∴ f(x) = (x – α1) (x – α2) 𝝓 2 (x). 

 By continuing in this way, we obtain 

    f(x) = (x – α1)(x – α2)…. (x – αn) 𝝓 n(x) 

 where 𝝓 n(x) is of degree n – n, i.e., zero 

 ∴ ϕn(x) is a constant. 

 Equating the coefficients of x𝗇 on both sides we get  

   𝝓 n(x) = coefficients of x𝗇 

    = a0 

 ∴ f(x) =  a0 (x – α1)(x – α2)…. (x – αn). 

 Hence the equation f(x) =0 has n roots, since f(x) vanished when x has any one 

of the values α1, α2, … αn. If x is given any value different from any one of these 𝗇 roots, 

then no factor of f(x) can vanish and the equation is not satisfied. Hence f(x) = 0 cannot have 

more than 𝗇 roots. 
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Example. 1. If α be a real root of the cubic equation 𝗑
3
 + px

2
 +qx + r = 0, of which the 

coefficients are real, show that the other two roots of the equation are real, if 

  p
2 

> 4q + 2pα + 3α
2
. 

Solution. 

 Since α is a root of the equation, x
3
 + px

2
 +qx + r is exactly divisible by x – α. 

 ∴ Let x
3
 + px

2
 +qx + r ≡ (x – α) (x2 + a𝗑 +b). 

  

                  Equating the coefficients of powers of x on both sides, we get  

    p =   ̶  α + a 

    𝑞 =   ̶ 𝑎α + b 

    𝑟 =  ˗̵̶ ̶  b α 

            ∴ a = p + α and b = q + aα = q + α (p + α) 

                         = q + pα + α 2. 

             The other two roots of the equation are the roots of  

              x
2
 + (p + α)x + q + pα + α

2
 = 0 

            Which are real if (p+ α)
2
 – 4 (q+ pα + α

2
) ≥ 0 

  i.e.,p
2
 – 2pα – 4q – 3α

2
  ≥ 0 

  i.e., p
2
 ≥ 4q + 2pα + 3α

2
. 

Example 2. If 𝗑1, 𝗑2, 𝗑3 … 𝗑n are the roots of the equation (a1 – 𝗑) (a2 – 𝗑)… (an – 𝗑)+ k = 

0, then show that a1, a2 …., an  are the roots of the equation 

  (𝗑1 – 𝗑) (𝗑2 – 𝗑) … (𝗑n – 𝗑) – k = 0. 

Solution. 

 Since 𝗑1, 𝗑2, 𝗑3 … 𝗑n are the roots of the equation 

  (a1 – 𝗑) (a2 – 𝗑) … (an – 𝗑) + k = 0 

             We have 

             (a1 – 𝗑) (a2 – 𝗑) … (an – 𝗑) + k    ≡ (𝗑1 – 𝗑) (𝗑2 – 𝗑) … (𝗑n – 𝗑) 

            ∴ (𝗑1 – 𝗑) (𝗑2 – 𝗑) … (𝗑n – 𝗑) – k ≡  (a1 – 𝗑) (a2 – 𝗑) … (an – 𝗑). 

           ∴ a1, a2, a3 … an are the roots of  

 (𝗑1 – 𝗑) (𝗑2 – 𝗑) … (𝗑n – 𝗑) – k = 0. 
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Example. 3. Show that if a, b, c are real, the roots of  

1

𝑥+𝑎
+

1

𝑥+𝑏
+

1

𝑥+𝑐
=

3

𝑥
  are real. 

             

Solution. 

              Simplifying we get  

 𝗑 (𝗑 + b) (𝗑 + c) + 𝗑 (𝗑 +c) (𝗑 + a) + 𝗑 (𝗑 + a) (𝗑 + b) 

     ― 3 (𝗑 + a) (𝗑 + b) (𝗑 + c) = 0 

 Let f(𝗑) be the expression on the left-hand side. It can easily be seen that f (𝗑) is a 

quadratic function of  . 

  ∴ f (― a) = ― a (b― a) (c ― a) 

      f (― b) = ― b (c― b) (a ― b) 

                    f (― c) = ― c (a― c) (b ― c). 

 Without loss of generally let us assume that a> b> c and a, b, c are all positive. 

      Then a – b, b – c, a – c are positive. 

    ∴        f (–a) = – ve. 

   f (–b) = + ve. 

   f (–c) = – ve. 

       ∴  The equation has at least one real root between –a and –b, and another between –b and 

–c. 

 The equation can have only two roots since f (x) = 0 is a quadratic equation. 

  ∴  The roots of the equations are real. 

     

Exercises  

1. If  x
3
+ 3px + q has a factor of the form x

2 
– 2ax + a

2
, show that q

2
+ 4p

3
 = 0. 

2. If  px
3
+ qx + r has a factor of the form x

2
+ ax + 1, prove that p

2
 = pq + r

2
. 

3. If  px
5
+ qx

2
 + r has a factor of the form x

2
+ ax + 1,   prove that  

    (p
2
 – r

2
) (p

2
 – r

2 
+ qr) = p

2
 q

2
. 

4. If  a, b, c are all positive, show that all the roots of 
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1

𝑥−𝑎
 + 

1

𝑥−𝑏
 + 

1

𝑥−𝑐
  =  

1

𝑥
 are real. 

5. If  a > b > c > d and E, A, B, C, D are positive, show that the equation 

E +  
𝐴

𝑥−𝑎
 + 

𝐵

𝑥−𝑏
 + 

𝐶

𝑥−𝑐
 + 

𝐷

𝑥−𝑑
 = 0 

               has no root between a and b, one root between b and c and one between c and d and 

if      

               E > 0,  there is a root > d and if E < 0, there is a root < a. 

6. If a < b < c < d, show that the roots of (x – a) (x – c) = k (x – b) (x – d) 

are real for all values of  k. 

 In an equation with rational coefficients, imaginary roots occur in pairs. 

Let the equation be f(x) = 0 and let α + iβ be an imaginary root of the equation. We 

shall show that  α –  iβ is also a root.  

We have (x – α – iβ)( x – α + iβ) = (x – α)
2
 +  β

2
   ………(1) 

If f(x) is divided by (x – α)
2
 + β

2
, let the quotient be Q(x) and the remainder be Rx + R'              

             Here Q(x) is of degree (n – 2). 

            ∴ f(x) = {( x – α)
2
 + β

2
 } Q(x) + Rx + R'      ………(2)  

          Substituting (α + iβ) for x in the equation (2), we get  

          f(α + iβ) = {( α + iβ – α)
2
 + β

2
} Q(α + iβ) + R(α + iβ) + R' 

            = R(α + iβ) + R' 

   But f(α + iβ) = 0 since α + iβ is a root of f(x) = 0. 

Therefore       

            R(α + iβ) + R' = 0. 

Equating to zero the real and imaginary parts 

                      Rα + R' = 0 and Rβ = 0. 
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                                 Since β ≠ 0, R = 0 and so R' = 0 

                ∴ f(x) = {( x – α)
2
 + β

2
}Q(x). 

                ∴ α – iβ is also a root of f(x) = 0. 

Solved Problems  

1.  Form a rational cubic equation which shall have for roots 1, 3 –  −2. 

        Solution. 

                          Since  3 –  −2 is a root of the equation, 3 +  −2 is also a root. So 

we    

                           have to form an equation whose roots are 1, 3 –  −2, 3 +  −2. 

                            Hence the required equation is (x – 1)(x – 3 –  −2 )( x – 3 +  −2) 

= 0 

                                                          (x – 1){(x – 3)
2
 + 2} = 0 

                                                            (x – 1)(x
2
 – 6x + 11) = 0 

                                                              x
3
 – 7x

2
 +17x – 11 = 0. 

2.  Solve the equation x
4
 + 4x

3
 + 5x

2
 + 2x – 2 = 0 of which one root is – 1 +  −1. 

                     Solution.  

                            Imaginary roots occur in pairs. Hence   – 1 − −1 is also a root of the 

equation. 

                            Therefore the expression on the left side of equation has the factors                      

                           (x +1 − −1 )(x + 1 + −1). 

                       The expression on the left side is exactly divisible by (x + 1)
2
 + 1 , i.e.,x

2
 + 2x 

+ 2. 

                        Dividing x
4
 + 4x

3
 + 5x

2
 + 2x – 2 by x

2
 + 2x + 2, we get the quotient x

2
 + 2x – 

1. 

                       Therefore x
4
 + 4x

3
 + 5x

2
 + 2x – 2  = (x

2
 +2x + 2)(x

2
 + 2x – 1). 

                        Hence the other roots are obtained from x
2
 + 2x – 1 = 0. 

                       Thus the other roots are – 1 ±  2. 
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3.  Show that 
𝑎2

𝑥−𝛼
+

𝑏2

𝑥−𝛽
+

𝑐2

𝑥−𝛾
− x  + δ = 0 has only real roots if a, b, c, α, β, γ, δ are 

real. 

                   Solution. 

                             If possible let p + iq be a root. Then p – iq is also root. 

                              Substituting these values for x, we have  

                                 
𝑎2

𝑝+𝑖𝑞−𝛼
+

𝑏2

𝑝+𝑖𝑞−𝛽
+

𝑐2

𝑝+𝑖𝑞−𝛾
− 𝑝 − 𝑖𝑞 + 𝛿 = 0    ……(1) 

                               
𝑎2

𝑝−𝑖𝑞−𝛼
+

𝑏2

𝑝−𝑖𝑞−𝛽
+

𝑐2

𝑝−𝑖𝑞−𝛾
− 𝑝 + 𝑖𝑞 + 𝛿 = 0    ……(2) 

                              Substituting (2) from (1), we get  

                           −
2𝑎2𝑖𝑞

(𝑝−𝛼)2+𝑞2 −
2𝑏2𝑖𝑞

(𝑝−𝛽)2+𝑞2 −
2𝑐2𝑖𝑞

(𝑝−𝛾)2+𝑞2 − 2𝑖𝑞 = 0 

                           −2𝑖𝑞 2
𝑎2

(𝑝−𝛼)2+𝑞2 +
𝑏2

(𝑝−𝛽)2+𝑞2 +
𝑐2

(𝑝−𝛾)2+𝑞2 + 13 = 0 

             This is only possible when q = 0 since the other factor cannot be zero. In that case the    

               roots are real.     

In an equation with rational coefficients irrational roots occur in pairs. 

Let f(x) = 0 denotes the equation and suppose that a +  𝑏 is a root of the equation 

where a and b are rational and  𝑏  is irrational. We now show that a –  𝑏 is also a root of the 

equation 

                       (x – a –  𝑏 )( x – a  +  𝑏) = (x – a)
2
 – b                                                 …….. 

(1)  

                If f(x) is divided by (x – a)
2
 – b, let the quotient be Q(x) and the remainder be Rx + 

R'. 

                Here Q(x) is a polynomial of degree (n – 2). 

                 ∴ f(x) = {(x – a)
2
 – b} Q(x) + Rx + R'             ……….(2) 
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                 Substituting a +   𝑏 for x in (2), we get  

                  f(a +   𝑏) = {( a +  𝑏 – a)
2
 – b} Q(a +  𝑏) + R(a +  𝑏) + R' 

                                   =   R(a +  𝑏) + R' 

                   but f(a +   𝑏)  = 0, since a +   𝑏 is a root of f(x) = 0. 

                      ∴   Ra + R' + R 𝑏  = 0. 

                       Equating the rational and irrational parts, we have  

                        Ra + R'   = 0 and R = 0. 

                           ∴ R'   = 0. 

                                        Hence f(x) = {(x – a)
2
 – b}Q(x). 

                                         = (x – a –  𝑏)(x – a +  𝑏)Q(x). 

                               ∴ a –  𝑏 is a root of f(x) = 0. 

 

Solved Problems  

Example 1. Frame an equation with rational coefficients, one of whose root is   5 +  2 

                  Solution. 

                           Then the other roots are   5 −  2, − 5 +  2, − 5 −  2 

       Hence the required equation is (x− 5 −  2 )(x − 5 +  2)(x + 5 +  2)(x + 5 −  2) 

= 0 

                                                           i.e.{(x –  5)
2
 – 2 } {( x + 5)

2
 – 2 } = 0 

                                                            i.e.(x
2
 – 2x 5 +3)( x

2
 + 2x 5 +3) = 0 

                                                              i.e.(x
2
 + 3)

2
 – 4x

2
.5 = 0 

                                                               i.e. x
4
 – 14x

2
 + 9 = 0. 
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     Example 2. Solve the equation x
4
 – 5x

3
 + 4x

2
 + 8x – 8 = 0 given that one of the roots is 1 

− 5 . 

                  Solution. 

                     Since the irrational roots occur in pairs, 1 + 5 is also a root. The factors   

                       corresponding to these roots are 

                            (x – 1 + 5 )( x – 1 − 5), i.e.(x – 1)
2
 – 5  

                              i.e. x
2
 – 2x – 4. 

                    Dividing x
4
 – 5x

3
 + 4x

2
 + 8x – 8 by x

2
 – 2x – 4, we get the quotient x

2
 – 3x + 2. 

                    Therefore   x
4
 – 5x

3
 + 4x

2
 + 8x – 8 = (x

2
 – 2x – 4)(x

2
 – 3x + 2) 

                                                                            =  (x
2
 – 2x – 4)(x – 1)(x – 2) 

                                      The roots of the equation are 1 ±  5, 1, 2. 

Example 3. Form the equation with rational coefficients whose roots are  

(i) 1 + 5 −1, 5 −  −1   

(ii) − 3  +  −2. 

Solution : 

(i) 1 + 5 −1, 5 −  −1   

Then the other roots are 1 + 5 −1, 5 −  −1 , 1 −  5 −1, 5 +  −1  

Hence the equation is  

     (x −1 + 5 −1 )(x −1 −   5 −1 )(x − 5 −  −1 )(x − 5 +   −1  )  = 0 

      {(x − 1)2 – ( 5 −1 )2} 2(𝑥 − 5)2 −   −1 
2
3 = 0 

        (x
2
 – 2x +26) (x

2
 – 10x  + 26)  = 0 

         x
4
 – 12x

3
 + 72x

2
 – 312x + 676 = 0. 

 

(ii)   − 3  +  −2 

                  Then the other roots are − 3  +  −2, − 3  −   −2,  3  +  −2,  3  −  −2 

                                              2 𝑥 +  3 
2

−   −2 
2
3  2 𝑥 −  3 

2
−   −2 

2
3 = 0  
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                                                   (x
2
 + 2√3x + 5)(x

2
 – 2√3x + 5) = 0 

                                                                              x
4
  – 2x

2
  + 25 = 0. 

Example 4. Solve : x
4
 – 4x

3
 + 8x + 35 = 0 given that  2 + i√3 is a root of it. 

                     Solution. 

                  Since the irrational roots occur in pair, 2 – i√3 is also a root. 

                         The factors corresponding to these roots are (x – 2)
2
 – (i√3)

2
   

                                                                     x
2
 – 4x + 7. 

                          Dividing x
4
 – 4x

3
 + 8x + 35 by x

2
 – 4x + 7, we get the equation x

2
 + 4x + 5 

                                         x
4
 – 4x

3
 + 8x + 35 = (x

2
 – 4x + 7)( x

2
 + 4x + 5) 

                                                     The roots of the equation are 2 ± i√3, – 2 ± i 

Example 5.Solve the equation 2x
6
 – 3x

5
 + 5x

4
 + 6x

3
 – 27x + 81 = 0 given that one root is  2 − 

 −1. 

                              Solution.  

                            Then the other roots are  2 −  −1,  2 +  −1, − 2 −  −1, − 2 +  −1 

                                                  2 𝑥 −  2 
2

−   −1 
2
3 2 𝑥 +  2 

2
−  −1 

2
3 = 0 

                                                                                     (x
2
 –2√2x + 3)(x

2
 + 2√2x + 3) = 0 

                                                                                                                    x
4
 – 2x

2
 +9 = 0 

      Dividing 2x
6
 – 3x

5
 + 5x

4
 + 6x

3
 – 27x + 81 by x

4
 – 2x

2
 + 9 we get the equation 2x

2
 – 3x + 9 

                   2x
6
 – 3x

5
 + 5x

4
 + 6x

3
 – 27x + 81 = (x

4
 – 2x

2
 +9)( 2x

2
 – 3x + 9) 

           The roots of the equation are  2 ±  −1, , − 2 ±  −1, 3 .
1±𝑖 7

4
/ 

Exercises  

1. Find the equation with rational coefficients whose roots are  

(i) 4 3, 5 + 2 −1 . 

(ii)  −1 −  5. 
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2. Solve the equation x
4
 + 2x

3
 – 5x

2
 + 6x + 2 = 0 given that 1 +  −1 is a root of it  

3. Solve the equation x
6
 – 4x

5
 – 11x

4
 + 40x

3
 + 11x

2
 – 4x – 1 = 0 given that one root 

is 2 −  3. 

Answer :  1. (i)x
4
 – 10x

3
 – 19x

2
 + 480x – 1392= 0,(ii) x

4
 – 8x

2
 + 36 = 0, 2. –2 ±  3, 3. 

2 ± 3, 2 ± 5.  

Relation between the roots and coefficient of equations. 

Let the equation be x
n
 + p1x

n-1 
+ p2x

n-2
 + … + pn-1x + pn = 0.If this equation has the 

roots α1, α2, α3, …, αn, then we have  

x
n
 + p1x

n-1 
+ p2x

n-2
 + … + pn-1x + pn 

= (x – α1)(x – α2)…( x – αn) 

= x
n
 –  𝛼1𝑥𝑛−1 + 𝛼1𝛼2𝑥𝑛−2 − …+(–1)

n
 α1, α2, α3, …, αn 

= x
n
 – S1x

n-1 
+ S2x

n-2
 – … + (–1)

n
Sn 

Where Sr is the sum of the products of the quantities α1, α2, α3, …, αn taken r at a time. 

Equating the coefficients of like powers on both sides, we have 

 – p1     = S1     = sum of the roots. 

(–1)
2
p2  = S2     =  sum of the products of the roots taken two at a time. 

(–1)
3
p3  = S3        =  sum of the products of the roots taken three at a time. 

(–1)
n
pn  = Sn      =  product of the roots. 

If the equation is a0x
n
 + a1x

n-1 
+ a2x

n-2 
+ …+ an-1x + an = 0. 

Divide each term of the equation by a0. 

The equation becomes  𝑥𝑛 +
𝑎1

𝑎0
𝑥𝑛−1 +

𝑎2

𝑎0
𝑥𝑛−2 + ⋯ +

𝑎𝑛−1

𝑎0
𝑥 +

𝑎𝑛

𝑎0
= 0 

and so we have  

 𝛼1 = −
𝑎1

𝑎0
 

 𝛼1𝛼2 =
𝑎2

𝑎0
 

 𝛼1𝛼2𝛼3 = −
𝑎3

𝑎0
 

       α1 α2 α3 … αn   = (−1)𝑛 𝑎𝑛

𝑎0
 

These n equations are of no help in the general solution of an equation but they are 

often helpful in the solution of numerical equations when some special relation is known to 

exist among the roots. The method is illustrated in the examples given below.    
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Example 1. Show that the roots of the equation x
3
 + px

2
 + qx + r = 0 are in Arithmetical 

progression if 2p
3
 – 9pq + 27r = 0 show that the above condition is satisfied by the equation 

x
3
 – 6x

2
 + 13x – 10 = 0. Hence or otherwise solve the equation. 

         Solution. 

Let the roots of the equation x
3
 + px

2
 + qx + r = 0 be α – δ, α, α + δ. 

We have from the relation of the roots and coefficients  

                                   α – δ+ α + α + δ   = – p 

   (α – δ) α + ( α – δ)( α + δ) + α (α + δ) = q 

                                      (α – δ)α (α + δ) = – r. 

Simplifying these equation, we get  

                                 3α = – p                                    …(1) 

                      3 α
2
 – δ

2
  = q                                        …(2) 

                      α
3
 – α δ

2
  = – r.                                     …(3) 

From (1), α = −
𝑝

3
. 

From (2), δ
2
 = 3.−

𝑝

3
/

2

− 𝑞 = 
𝑝2

3
− 𝑞. 

Substituting these value in (3), we get  

.−
𝑝

3
/

3

− .−
𝑝

3
/ .

𝑝2

3
− 𝑞/ = – r 

i.e.,2p
3
 – 9pq + 27 r = 0. 

In the equation x
3
 – 6x

2
 + 13x – 10 = 0. 

p = – 6, q = 13, r =  – 10. 

Therefore 2p
3
 – 9pq + 27 r = 2(–6)

3
 – 9(–6)13 + 27(– 10) = 0 

The condition is satisfied and so the roots of the equation are in arithmetical 

progression. In this case the equations (1), (2), (3) become  

3α =  6 

3 α
2
 – δ

2
  = 13 

α
3
 – α δ

2
  = 10. 

 

α   = 2 , 12 – δ
2
 
  
 = 13  

Therefore        δ
2
 =  –1   

i.e., δ = ± i. 

The roots are 2 – i, 2, 2 + i.  
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Example 2. Find the condition that the roots of the equation ax
3
 + 3bx

2
 + 3cx + d = 0 may be 

in geometric progression. Solve the equation 27x
3
 + 42x

2
 – 28x – 8 = 0 whose roots are in 

geometric progression. 

Solution. 

Let the roots of the equation be 
𝑘

𝑟
, k, kr. 

Therefore 
𝑘

𝑟
 + k +  kr = −

3𝑏

𝑎
                                      …..(1) 

             
𝑘2

𝑟
 + k

2
 +  k

2
r = 

3𝑐

𝑎
                                           ….(2) 

                              k
3
 = −

𝑑

𝑎
                                         …..(3) 

From (1),   𝑘 .
1

𝑟
+ 1 + 𝑟/ = −

3𝑏

𝑎
. 

From (2),  𝑘2 .
1

𝑟
+ 1 + 𝑟/ = 

3𝑐

𝑎
. 

Divided one by the other, we get k = −
𝑐

𝑏
 

Substituting this value of k in (3), we get .−
𝑐

𝑏
/

3

= −
𝑑

𝑎
. 

Therefore ac
3
 = b

3
d. 

In the equation 27x
3
 + 42x

2
 – 28x – 8 = 0 

    
𝑘

𝑟
 + k +  kr = −

42

27
                                      

𝑘2

𝑟
 + k

2
 +  k

2
r = −

28

27
                                                      

                  k
3
 = 

8

27
     

              ∴   k =  
2

3
 . 

          Substituting the value of k in(4), we get 

                  
2

3
.

1

𝑟
+ 1 + 𝑟/ = −

42

27
 

                     3r
2
 + 10r +3 = 0 

                  (3r + 1)(r + 3) = 0 

          Therefore r = −
1

3
 or r = – 3. 

            For both the value of r, the roots are –2, 
2

3
, −

2

9
.  
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Example 3. Solve the equation 81x
3
 – 18x

2
 – 36x + 8 = 0 whose roots are in harmonic 

progression. 

        Solution.  

                  Let the roots be α, β, γ. 

                      Then 
2

β
=  

1

𝛼
+

1

𝛾
  

                       i.e., 2γα = βγ + αβ                              ……(1) 

                      From the relation between the coefficients and the roots we have  

                                 α + β + γ = 
18

81
                                         …….(2) 

                            αβ + βγ + γα = −
36

81
                                     ……..(3) 

                                        α  β γ = −
8

81
                                         ….(4) 

                      From (1) and (3), we get 

                          2γα + γα = −
36

81
  

                                 3γα = −
36

81
 

                      Therefore  γα = −
4

27
       …….(5) 

                      Substituting this value of γα in (4), we get 

                     β .−
4

27
/ = −

8

81
  

                    Therefore  β = 
2

3
. 

                     From (2), we have  

                    α + γ = 
18

81
−

2

3
= −

4

9
        ……(6)  

                     From (5)and (6), we get  

                    α = 
2

9
 and   γ =  −

2

3
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                   The roots are 
2

9
,

2

3
 and −

2

3
. 

Example 4. If the sum of two roots of the equation x
4
 + px

3
 + qx

2
 + rx + s = 0 equals the sum 

of the other two, prove that p
3
 +8r = 4pq. 

            Solution. 

                       Let the roots of the equation be α, β, γ and δ 

                       Then      α + β   = γ + δ                                           …..(1) 

                       From the relation of the coefficients and the roots, we have  

                       α + β + γ  + δ   =  – p            ………(2) 

αβ + αγ + αδ +  βγ + βδ+ γδ    =    q            ………..(3) 

        αβγ + αβδ + αγδ +  βγδ    =    – r         ………..(4) 

                                    αβγδ     =     s           ………..(5) 

        From (1) and (2), we get 

               2(α + β   ) =   – p                             ………(6) 

       (3) can be written as 

      αβ + γδ + (α +  β)(γ +δ)    =    q   

i.e.,   (αβ + γδ) + (α +  β)
2
 = q                           ……(7) 

            (4) can be written as  

αβ(γ + δ) + γδ(α +  β)   =    – r 

       (αβ+ γδ)(α +  β)    =    – r                          ……(8) 

   From (6) and (7), we get  

      αβ + γδ + 
𝑝2

4
 = q  

   ∴       αβ + γδ  = q −
𝑝2

4
                                    …..(9) 
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              From (8), we get  

    −
𝑝

2
(αβ+ γδ)    =    – r 

           αβ+ γδ     =  
2𝑟

𝑝
                                    …….  (10) 

                Equating (9) and (10), we get  

                             q −
𝑝2

4
    =   

2𝑟

𝑝
       

                             4pq – p
3
 = 8r  

                               p
3
 + 8r = 4pq.   

   Example 5. Solve the equation x
4
 – 2x

3
 + 4x

2
 + 6x – 21 = 0 given that two of its roots are 

equal in magnitude and opposite in sign. 

                Solution. 

                          Let the roots of the equation be α, β, γ and δ 

                                   Here γ = – δ 

                              i.e., γ +  δ = 0                             ……(1) 

                          From the relation of the roots and coefficients  

                        α + β + γ  + δ   =  2               ………(2) 

αβ + αγ + αδ +  βγ + βδ+ γδ    =    4            ………..(3) 

        αβγ + αβδ + αγδ +  βγδ    =    – 6         ………..(4) 

                                    αβγδ     =    – 21            ………..(5) 

from (1) and (2), we get  α + β = 2                      …….(6) 

(3) can be written as αβ + γδ + (α +  β)(γ +δ)    =    4  

     αβ + γδ = 4                                              ……(7) 

(4) can be written as  αβ(γ + δ) + γδ(α +  β)   =    – 6 
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              γδ(α +  β)   =    – 6               ………..(8) 

from (6) and (8), we get              γδ = – 3 …..(9) 

but γ +  δ = 0     ∴  γ =  3 ,   δ = − 3. 

               From (7) and (9), we get  αβ = 7 

              ∴ α and β  are the roots of x2 – 2x + 7 = 0. 

              ∴ α = 1 +  −6 , β = 1  − −6 

               Therefore the roots of the equation are ±  3, 1  ± −6. 

Example 6. Find the condition that the general bi quadratic equation ax
4
 + 4bx

3
 + 6cx

2
 + 4dx 

+ e = 0 may have two pairs of equal roots. 

       Solution. 

                Let the roots be α, α, β, β. 

                From the relations of coefficients and roots  

                            2α +2β = −
4𝑏

𝑎
                                 …………….(1) 

                  α
2
 + β

2
  + 4αβ = 

6𝑐

𝑎
                                         …………(2) 

                     2α β
2
 +2 α

2
β = −

4𝑑

𝑎
                                  …………….(3) 

                                α
2
 β

2
   = 

𝑒

𝑎
                                            …………(4) 

                  From (1), we get        α +β = −
2𝑏

𝑎
                          ……..(5) 

               From (3), we get  2αβ(α +β) = −
4𝑑

𝑎
                    

                                         ∴ αβ = 
𝑑

𝑏
                                         ………(6) 

From (5) and (6), we get that α, β are the roots of the equation x
2
 + 

2𝑏

𝑎
𝑥 +

𝑑

𝑏
= 0 

           ∴ ax
4
 + 4bx

3
 + 6cx

2
 + 4dx + e ≡ a.𝑥2 +

2𝑏

𝑎
𝑥 +

𝑑

𝑏
/

2
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                            Comparing coefficients 

                             6c = a .
4𝑏2

𝑎2 +
2𝑑

𝑏
/ and e = 

𝑎𝑑 2

𝑏2   

                           ∴ 3abc =  a
2
d + 2b

3
 and eb

2
 = ad

2
. 

Exercises  

1. Solve the equation 6x
3
 – 11x

2
 + 6x – 1 = 0 whose  roots are in harmonic progression.  

2. Find the values of a and b for which the roots of the equation 4x
4
 – 16x

3
 + ax

2
 + bx – 

7 = 0 are in arithmetical progression. 

3. The roots of the equation 8x
3
 – 14x

2
 + 7x – 1 = 0 are in geometrical progression. Find 

them. 

4. Solve x
4
 – 8x

3
 + 14x

2
 + 8x – 15 = 0, it being given that the sum of two of the roots is 

equal to the sum of the other two. 

5. If two roots of the equation x
4
 + px

3
 + qx

2
 + rx + s = 0 are equal in value but differ in 

sign, show that r
2
 + p

2
s = pqr. 

6. Show that the four roots, α, β, γ and δ of the equation x
4
 + px

3
 + qx

2
 + rx + s = 0 will 

be connected by the relation  α β + γ δ  = 0 if p
2
s + r

2
 = 4qs. 

7. Solve the equation x
4
 – 2x

3
 – 3x

2
 + 4x – 1 = 0given that the product of two of the 

roots is unity. 

Answer : 1.1, 
1

2
,

1

3
, 2.a = 4 or −

4

9
, b = 24 or 

296

9
, 3. 

1

4
,

1

2
, 1, 4. – 1, 5, 1, 3, 7. 

3± 5

2
,
−1± 5

2
 

Symmetric function of the roots 

If a function involving all the roots of an equation is unaltered in value if any two of 

the roots are interchanged, it is called a symmetric function of the roots. 

 Let α1, α2, α3,………αn be the roots of the equation. 

  f (x) = x
n
 + p1x

n – 1
 + p2x

n–2
 + …. + pn = 0. 

 We have learned that 

   S1 = Σ α1 = − p1 

   S2 = Σ α1α2 = p2 
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   S3 = Σ α1 α2 α3 = − p3 

   …………………….. 

   …………………….. 

 Without knowing the values of the roots separately in terms of the coefficients, by using the 

above relations between the coefficients and the roots of an equation, we can express any 

symmetric function of the roots in terms of the coefficients of the equations. 

Example 1. If α, β, γ are the roots of the equations x
3
 + px

2
 + qx + r = 0,    Express the value 

of Σ α
2
 β in terms of the coefficients. 

                  Solution.  

                            We have     α + β + γ = – p 

                              αβ + βγ + γα = q 

                                 αβγ =  – r. 

                 Σ α
2
β  = α

2
β + α

2
γ + β

2
α + β

2
γ + γ

2
α + γ

2
β 

                            = (αβ + βγ + γα) (α + β + γ) – 3αβγ 

                  = q (– p) – 3 (– r) 

                  = 3r – pq. 

Example 2.  If α, β, γ, δ be the roots of the bi quadratic equation x
4
 + px

3
 + qx

2
 + rx + s = 0, 

Find (1) Σ α
2
 , (2) Σ α

2
 βγ, (3) Σ α

2
 β

2 
, (4) Σ α

3
 β and (5) Σ α

4
. 

Solution. 

      The relations between the roots and the coefficients are  

                                   α + β + γ + δ = – p. 

 αβ + αγ + αδ + βγ + βδ + γδ = q 

         αβγ + αβδ + αγδ + βγδ = – r 
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      αβγδ = s. 

                         Σ α
2
 = α

2
 + β

2
 + γ

2
 + δ

2 

                                           
= (α + β + γ + δ)

2 
– 2 (αβ + αγ + αδ + βγ + βδ + γδ) 

                                = (Σ α)
2
 – 2 Σ αβ 

                                = p
2
 – 2q. 

                    Σ α
2
 βγ = (αβγ + αβδ + αγδ + βγδ) (α + β + γ + δ) – 4 αβγδ 

                     = (Σ αβγ) (Σ α) – 4 αβγδ 

                     = pr – 4s. 

                    Σ α
2
 β

2 
= α

2
 β

2
 + α

2
 γ

2
 + α

2
 δ

2
 + β

2
 γ

2
 + β

2
 δ

2 
+ γ

2
 δ

2 

                            
= (Σ αβ)

2
 – 2 Σ α

2 
βγ – 6 αβγδ 

                      = q
2 

– 2 (pr – 4s) – 6s 

                      = q
2
 – 2pr + 2s. 

                    Σ α
3
 β = (Σ α

2
) (Σ αβ) – Σ α

2
 βγ 

                   = (p
2
 – 2q) q – (pr – 4s) 

                  = p
2
q – 2q

2
 – pr + 4s. 

                     Σ α
4 

= (Σ α
2
)
2
 – 2 Σ α

2
 β

2 

                       
= (p

2
 – 2q)

2
 –2 (q

2 
– 2pr + 2s) 

                 = p
4
 – 4p

2
q + 2q

2 
+ 4pr – 4s. 

Example  3. If α, β, γ are the roots of the equation x
3
 + ax

2
 + bx + c =0, from the equation 

whose roots are αβ, βγ, and γα. 

                     Solution. 
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                        The relations between the roots and coefficients are  

                              α + β + γ = – a 

                                    αβ + βγ + γα = b 

                                         αβγ = –c. 

                                                The required equation is 

                   (x – αβ) (x – βγ) (x – γα) = 0 

                  i.e.,  x
3
 – x

2
 (αβ + βγ + γα) (α

2
βγ + αβ

2
γ + αβγ

2
) x – α

2
β

2
γ

2
 = 0 

                  i.e.,  x
3
 – x

2
 (αβ + βγ + γα) + x αβγ (α + β + γ) – (αβγ)

2
 = 0 

                   i.e.,  x
3
 – bx

2
 + acx – c

2
 = 0 

Example  4. If α, β, γ are the roots of the equation x
3
 + px

2
 + qx + r =0, from the equation 

whose roots are β + γ – 2α, γ + α – 2β, α + β –2γ. 

                          Solution. 

                  We have α + β + γ = – p 

                            αβ + βγ + γα = q 

                                 αβγ = – r. 

                        In the required equation  

                     S1 = Sum of the roots = β + γ – 2α + γ + α – 2β + α + β – 2γ 

                        = 0. 

                     S2 = Sum of the products of the roots taken two at a time 

                 = (β + γ – 2α) (γ + α – 2β) + (β + γ – 2α) (α + β – 2γ) + (α + β –2γ) (γ + α – 

2β) 

                 = (α + β + γ – 3α) (α + β + γ – 3β) + 2 similar terms 

                 = (– p – 3α) (– p –3β) + (– p – 3α) (– p – 3γ) + (– p – 3γ) (– p –3β) 
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                 = (p + 3α) (p + 3β) + (p + 3α) (p + 3γ) + (p + 3γ) (p + 3β) 

                 = 3p
2
 + 6p (α + β + γ) + 9 (αβ + βγ + γα) 

                 = 3p
2
 + 6p (– p) + 9q 

                  = 9q – 3p
2
. 

                         S3 = Products of the roots 

                   = (β + γ – 2α) (γ + α – 2β) (α + β – 2γ) 

                    = (α + β + γ – 3α) (α + β + γ – 3β) (α + β + γ – 3γ) 

                     = (– p – 3α) (– p –3β) (– p –3γ) 

                      = – { p
3
 + 3p

2
 (α + β + γ) + 9p (αβ + βγ + γα) + 27 αβγ } 

                       = – { p
3
 + 3p

2
 (– p) + 9pq – 27r } 

                        = 2p
2
 – 9pq + 27r 

                Hence the required equation is 

                       x
3
 – S1x

2
 + S2x – S3 = 0 

                        i.e., x
3
 + (9q –3p

2
) x – (2p

3
 – 9pq + 27r) = 0. 

Example  5. If α, β, γ are the roots of the equation x
3
 + px

2
 + qx + r =0 prove that  

(1) (α + β )( β + γ )( γ + α )  = r – pq  

(2)   α3
 + β

3
  + γ

3
  =  – p

3
 + 3pq – 3r. 

Solution.                                    

                                        We have α + β + γ = – p 

                            αβ + βγ + γα = q 

                                 αβγ = – r. 

         (1).                        (α + β )( β + γ )( γ + α )  =   [– (p + α )( p + β)( p + γ)]  
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 Since α + β + γ = – p                          ∴ α + β  = – p – γ 

                         =   – [p
3
 +p

2
 (α + β + γ) + p (αβ + βγ + γα) + αβγ] 

                         =   –[p
3
 + p

2
 × – p + pq – r] = – [p

3
 – p

3
 + pq – r] = r – pq. 

(2). α
3
 + β

3
  + γ

3
 - 3αβγ = (α + β + γ)[ α

2
 + β

2
 + γ

2
 – (αβ + βγ + γα)] 

 𝛼3 =  𝛼 , 𝛼2 −  𝛼𝛽- + 3𝛼𝛽𝛾;  

                       But  𝛼2 = ( 𝛼)2 − 2  𝛼𝛽 

            Therefore  𝛼3 =  𝛼 ,( 𝛼)2 − 3  𝛼𝛽- + 3𝛼𝛽𝛾; = – p[p2 – 3q] – 3r = – p3 + 3pq – 

3r. 

Example  6. If α, β, γ are the roots of the equation x
3
 + qx + r =0 find the values of 

(1)  
1

𝛽+𝛾
. 

(2)  
𝛽2+𝛾2

𝛽+𝛾
 

Solution. 

Since α, β, γ are the roots of the equation x
3
 + qx + r = 0. 

                                         We have α + β + γ = 0 

                            αβ + βγ + γα = q 

                                 αβγ = – r. 

Therefore β + γ = – α  

(1).  
1

𝛽+𝛾
  =  

1

−𝛼
 =  – 0

1

𝛼
+

1

𝛽
+

1

𝛾
1  = −

 αβ

αβγ
 = 

−𝑞

−𝑟
 =  

𝑞

𝑟
 

(2).  
𝛽2+𝛾2

𝛽+𝛾
 =  

(𝛽+𝛾)2−2βγ

𝛽+𝛾
 = 

 0𝛼2+2
𝑟

𝛼
1

−𝛼
 = 

 𝛼3+2𝑟

−𝛼2  = −  𝛼 − 2  
𝑟

𝛼2 

= −2𝑟  
1

𝛼2 ; since  𝛼 = 0 

But  
1

𝛼2 = 
1

𝛼2 +
1

𝛽2 +
1

𝛾2 = 
𝛼2𝛽2+𝛽2𝛾2+𝛾2𝛼2

𝛼2𝛽2𝛾2  = 
( 𝛼𝛽 )2

(𝛼𝛽𝛾 )2   since (αβ +  βγ +  γα)2 =  𝛼2𝛽2 +

2𝛼𝛽𝛾  𝛼 =  𝛼2𝛽2; since  𝛼 = 0 
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 𝛼2𝛽2 = q
2
 ; 

1

𝛼2 = 
𝑞2

𝑟2 = 
𝑞2

𝑟2 

∴  
𝛽2+𝛾2

𝛽+𝛾
 = 

−2𝑞2𝑟

𝑟2
 = 

−2𝑞2

𝑟
. 

Example  7. If α, β, γ are the roots of the equation x
3
 – px

2
 + qx – r = 0 find the value of  

(1).  
𝛽2+𝛾2

𝛽𝛾
 

(2).  (𝛽 + 𝛾 − 𝛼)2. 

Solution.  

Since α, β, γ are the roots of the equation x
3
 – px

2
 + qx – r = 0  

We have                                         α + β + γ =  p 

                            αβ + βγ + γα = q 

                                 αβγ = r. 

(1).  
𝛽2+𝛾2

𝛽𝛾
 = 

𝛽2+𝛾2

𝛽𝛾
+

𝛼2+𝛽2

𝛼𝛽
+

𝛼2+𝛾2

𝛼𝛾
 = 

𝛼 𝛽2+𝛾2 +𝛾 𝛼2+𝛽2 +𝛽 𝛼2+𝛾2 

𝛼𝛽𝛾
 

 = 
 𝛼2𝛽

𝛼𝛽𝛾
  

But  𝛼2𝛽 = ( αβ +  βγ +  γα)(α +  β +  γ) − 3𝛼𝛽𝛾  

 𝛼2𝛽

𝛼𝛽𝛾
 = 

( αβ  + βγ  + γα )(α + β + γ)−3𝛼𝛽𝛾  

𝛼𝛽𝛾
 = 

𝑞𝑝−3𝑟

𝑟
. 

(2).  (𝛽 + 𝛾 − 𝛼)2 =  (𝛼 + 𝛽 + 𝛾 − 2𝛼)2 =  (𝑝 − 2𝛼)2 =  (𝑝2 + 4𝛼2 − 4𝛼𝛽)  

= 3p
2
 + 4 𝛼2 − 4𝑝  𝛼𝛽 

= 3𝑝2 + 4  . 𝛼/
2

− 2  𝛼𝛽 − 4𝑝2 

= 3𝑝2 + 4𝑝2 − 8𝑞 − 4𝑝2 

= 3𝑝2 − 8𝑞. 
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Example  8. If α, β, γ are the roots of the equation ax
3
 + bx

2
 + cx + d = 0find the value of  

         
1

𝛼2𝛽2
 

Solution. 

Since α, β, γ are the roots of the equation ax
3
 + bx

2
 + cx + d = 0 

 We have                                         α + β + γ =  
−𝑏

𝑎
 

                            αβ + βγ + γα =  
𝑐

𝑎
 

                                 αβγ = 
−𝑑

𝑎
  

 
1

𝛼2𝛽2 = 
1

𝛼2𝛽2 +
1

𝛽2𝛾2 +
1

𝛾2𝛼2 = 
𝛼2+𝛽2+𝛾2

𝛼2𝛽2𝛾2  = 
(α + β + γ)2−2(αβ  + βγ  + γα )

(αβγ )2  =  
.−

𝑏

𝑎
/

2
−2.

𝑐

𝑎
/

.
𝑑

𝑎
/

2  

            = 
𝑏2−2𝑎𝑐

𝑑2  

Exercises  

1. If α, β, γ are the roots of the equation x
3
 + px

2
 + qx + r =0 find the value of                                         

(1) (β + γ – α)
3
 + (γ + α – β)

3
 + (α + β – γ)

3
. 

(2) 
𝛼𝛽

𝛾
 + 

𝛽𝛾

𝛼
 + 

𝛾𝛼

𝛽
. 

  

2. If α, β, γ, δ are the roots of the equation x
4
 + px

3
 + qx

2
 + rx + s =0, 

Evaluate (1) Σ α
2 

βγ,  (2) Σ (β + α + δ)
2 

and  (3) Σ 
1

𝛼2. 

Answer : 1.  (1).24r – p
3
, (2).

2𝑟𝑝−𝑞2

𝑟
 ,   2. (1).pr – 4s , (2).3p

2
 – 2q,(3).

𝑟2−2𝑞𝑟

𝑠
  

 Sum of the powers of the roots of an equation. 

                    Let α1 , α2 , α3 ,……. , αn be the roots of an equation f (x) = 0.The sum of the r
th 

powers of the roots 

 i.e., 𝛼1
𝑟

 + 𝛼1
𝑟

 + …… + 𝛼𝑛
𝑟
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 is usually denoted by Sr. We can easily see that Sr constitutes a symmetric function of the 

roots and hence we can calculate the value of Sr by the methods described in the previous 

article. When r is greater than 4, the calculation of Sr by the previous method becomes 

tedious and in those cases, the following two methods can be used profitably. 

 We have f (x) = (x – α1) (x – α2) ……. (x – αn). 

    Taking logarithms on both sides and differentiating, we get 

          
f´ (𝑥)

f (𝑥)
 = 

1

𝑥−𝛼1  
 + 

1

𝑥−𝛼2  
 + ……+ 

1

𝑥−𝛼𝑛  
 

         
xf´  (𝑥)

f (𝑥)
 = 

𝑥

𝑥−𝛼1  
 + 

𝑥

𝑥−𝛼2  
 + ……+ 

𝑥

𝑥−𝛼𝑛  
                               

                 = 
1

1−𝛼1
𝑥

 + 
1

1−𝛼2
𝑥

 + ……+ 
1

1−𝛼𝑛
𝑥

 

                 = (1 − 𝛼1
𝑥

)
-1

 + (1 −
𝛼2

𝑥
)

-1 
+ ….. + (1 − 𝛼𝑛

𝑥
)

-1 

                           
= 1 + 

𝛼1

𝑥
 + 

𝛼1
2

𝑥2
 + …. + 𝛼1

𝑛

𝑥𝑛  + … 

                        +  1 + 
𝛼2

𝑥
 + 

𝛼2
2

𝑥2
 + …. + 𝛼2

𝑛

𝑥𝑛  + … 

                            + ………………………….. 

                        + 1 + 
𝛼𝑛

𝑥
 + 

𝛼𝑛
2

𝑥2
 + …. + 𝛼𝑛

𝑛

𝑥𝑛  + … 

                       = n + (Σ α1) 
1

𝑥
 + (Σ 𝛼1

2) 
1

𝑥2
 + ….. + (Σ 𝛼1

𝑟 ) 
1

𝑥𝑟
 + …. 

                       = n + S1 . 
1

𝑥
 + S2 . 

1

𝑥2   
 + …. + Sr . 

1

𝑥𝑟   
 +…. 

               ∴   Sr = Coefficient of  
1

𝑥𝑟
 in the expansion of  

xf´  (𝑥)

f (𝑥)
.  
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Example. Find the sum of the cubes of the roots of the equation x
5
 = x

2
 + x + 1. 

Solution. 

 The equation can be written in the form  

  f (x) = x
5
 – x

2
 – x – 1 = 0 

 Sr = Coefficient of  
1

𝑥3
 in the expansion of  

x (5𝑥4  − 2x− 1)

    𝑥5  − x2  − x − 1 
 

             = Coefficient of  
1

𝑥3
 in      

5− 2

𝑥3− 
1
𝑥4

1− 
1

𝑥3− 1

𝑥4− 
1

    𝑥5

 

             =   “               “      (5 – 
2

𝑥3
−

1

𝑥4
) (1 −

1

𝑥3
−

1

𝑥4
−

1

    𝑥5
)

-1
 

  
 =     “              “    (5 – 

2

𝑥3
−

1

𝑥4
)  1 +

1

𝑥3
+

1

𝑥4
+

1

    𝑥5
+  .

1

𝑥3
+

1

𝑥4
+

1

    𝑥5/
2

+

… 

  =      “              “      (5 – 
2

𝑥3
−

1

𝑥4
) (1 +

1

𝑥3
+ … ) 

  = 3. 

Newton’s Theorem on the sum of the powers of the roots.    

 Let α1 , α2 , α3 ,……. , αn be the roots of an equation 

  f (x) = x
n
 + p1x

n-1
 + p2x

n-2
 + …… pn = 0 

 and let be Sr = 𝛼1
𝑟

 + 𝛼2
𝑟

 + …… + 𝛼𝑛
𝑟  so that S0 = n.                          

  f (x) = (x – α1) (x – α2) ……. (x – αn). 

Taking logarithms on both sides and differentiating, we get                    

             
f´ (𝑥)

f (𝑥)
 = 

1

x − 𝛼1  
 + 

1

x – 𝛼2  
 + ……+ 

1

𝑥−𝛼𝑛  
                            

      i.e., f´ (x) = 
f (x) 

𝑥−𝛼1  
 + 

f (x) 

𝑥−𝛼2  
 + ……+ 

f (x) 

𝑥−𝛼𝑛  
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By actual division, we obtain 

  
f (x) 

𝑥−𝛼1  
= xn-1 

+ (α1 + p1) x
n-2

 + (𝛼1
2+ p1α1 + p2) x

n-3
  

     + ….. (𝛼1
𝑛−1 + p1𝛼1

𝑛−2 +….+ pn-1) 

  
f (x) 

𝑥−𝛼1  
= xn-1 

+ (α2 + p1) x
n-2

 + (𝛼2
2+ p1α2 + p2) x

n-3
  

     + ….. (𝛼2
𝑛−1 + p1𝛼2

𝑛−2 +….+ pn-1) 

  …………………………………………………………. 

  
f (x) 

𝑥−𝛼𝑛  
= xn-1 

+ (αn + p1) x
n-2

 + (𝛼𝑛
2+ p1αn + p2) x

n-3
  

     + ….. (𝛼𝑛
𝑛−1 + p1𝛼𝑛

𝑛−2 +….+ pn-1). 

 Adding all these functions, we get 

  f´(x) = nx
n-1

 + (S1 + np1)x
n-2

 +  (S2 + p1S1 + np2)x
n-3

  

     +……(Sn-1 + p1Sn-2 +…. npn-1). 

 But f´(x) is also equal to 

 nx
n-1

 + (n – 1) p1x
n-2

 + (n – 2) p2x
n-3

 +….+ 2pn-2 + pn-1. 

    Equating the coefficients in two values of  f´(x) , we obtain the following relations : 

       S1 + p1 = 0 

     S2 + p1S1 + 2p2 = 0 

                S3 + p1S2 + p2S1 + 3p3 = 0 

                                      S4 + p1S3 + p2S2 + p3S1 + 4p4 = 0 

   ……………………………………. 

   ……………………………………. 
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              Sn-1 + p1Sn-2 + p2Sn-3 +…. + pn-2S1 + (n – 1) pn-1 = 0 

From these (n – 1) relations we can calculate in succession the values of S1 , S2 , S3 , … Sn-1  

in terms of the coefficients p1 , p2 , p3 ,…. pn-1 . We can extend our results to the sums of all 

positive powers of the roots, viz., Sn , Sn+1 , …. Sr where r > n. 

We have x
r-n 

f (x) = x
r
 + p1x

r-1
 + p2x

r-2
 + … + pnx

r-n
. 

Replacing in this identity, x by the roots α1 , α2 , α3 ,……. , αn, in succession and adding, we 

have 

        Sr + p1Sr-1 + p2Sr-2 + …. + pnSr-n = 0 

Now giving r the values n, n +1, n +2,…… successively and observing that S0 = n, we obtain 

from the last equation  

 Sn + p1Sn-1 + p2Sn-2 +…. + npn = 0 

 Sn+1 + p1Sn + p2Sn-1 +…. + pnS1 = 0 

 Sn+2 + p1Sn+1 + p2Sn +…. +  pnS2 = 0 

and so on. 

Thus we get 

 Sr + p1Sr-1 + p2Sr-2 +…. + rpr = 0 ,  if r < n 

   And  Sr + p1Sr-1 + p2Sr-2 +…. pnSr-n  = 0 , if r ≥ n. 

Cor. To find the sum of the negative integral powers of the roots of f (x) = 0, put x = 
1

𝑦
  and 

find the sums of the corresponding positive powers of the roots of the transformed equation. 

 Example 1. Show that the sum of the eleventh powers of the roots of x
7
 +5x

4
 + 1 = 0 is zero. 

Solution. 

      Since 11 is greater than 7, the degree of the equation, we have to use the latter 

equation in Newton’s theorem. 
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 If we assume the equation as  

 x
7
 + p1x

6
+ p2x

5
+ p3x

4
+ p4x

3
+ p5x

2
+ p6x + p7 = 0, 

     we have p1 = p2 = p3 = p4 = p5 = p6 = 0, p3 = 5, p7 = 1. 

  ∴   S11+ p1S10+ p2S9+ p3S8+ p4S7 + p5S6 + p6S5 + p7S4 = 0 

               i.e., S11 + 5S8 + S4 = 0        ……(1) 

        Again 

             S8+ p1S7+ p2S6+ p3S5+ p4S4+ p5S3+ p6S2+ p7S1 = 0 

  i.e., S8 + 5S5 + S1 = 0                       ……(2) 

               Using the first equation in the Newton’s theorem 

               S5+ p1S4+ p2S3+ p3S2+ p4S1+ 5p5 = 0 

  i.e., S5 + 5S2 = 0                            ……(3) 

          Again 

            S4+ p1S3+ p2S2+ p3S1+ 4p4 = 0 

                    i.e., S4 + 5S1 = 0                                             ……(4) 

         Again 

                   S2+ p1S1+ 2p2= 0 

       i.e., S2 = 0                                                                     ……..(5) 

                 Also S1 = 0                                                                     ……..(6) 

                 From (4) , (5) and (6) , we get S4 = 0 

                  From (3) , (5) , we get S5 = 0 

                  From (2), we get S8 = 0 
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                   Substituting the values of S4 , S8 in (1) , we get S11 = 0. 

Example 2. If a + b + c + d = 0, show that  

 
𝑎5+ 𝑏5  + 𝑐5+ 𝑑5

5
 = 

𝑎2+ 𝑏2  + 𝑐2+ 𝑑2

2
 . 

𝑎3+ 𝑏3  + 𝑐3+ 𝑑3

3
  

Solution.   

Since a + b + c + d = 0, we can consider that a, b, c, d are the roots of the equation  

x
4
 + p1x

3
+ p2x

2
+ p3x+ p4 = 0  where p1 = 0. 

From Newton’s theorem on the sums of powers of the roots, we get 

  S5+ p1S4+ p2S3+ p3S2+ p4S1 = 0             ……..(1)  

  S4+ p1S3+ p2S2+ p3S1+ 4p4 = 0                  ……(2) 

   S3+ p1S2+ p2S1+3p3 = 0    .…….(3) 

     S2+ p1S1+ 2p2= 0   ………(4) 

    S1+ p1= 0  ………(5)  

From (5), we get S1 = 0 

From (4), we get S2 = - 2p2 

From (3), we get S3 = - 3p3 

From (1), we get S5 - 3p2p3 - 2p3p2 = 0 

 i.e., S5 = 5p2p3. 

  ∴   
𝑠5

5
 = 

𝑠2

2
 . 

𝑠3

3
 

i.e., 
𝑎5+ 𝑏5  + 𝑐5+ 𝑑5

5
 = 

𝑎2+ 𝑏2  + 𝑐2+ 𝑑2

2
 . 

𝑎3+ 𝑏3  + 𝑐3+ 𝑑3

3
  . 
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Example 3.  Find 
1

𝛼5
+

1

𝛽5
+

1

    𝛾5
 where α , β , γ are the roots of the equation  

  x
3
 + 2x

2
 – 3x – 1 = 0. 

Solution. 

 Put x = 
1

𝑦
 in the equation, then the equation becomes 

 
1

𝑦3
+

2

𝑦2
−  

3

𝑦
 − 1 = 0 

          i.e., y
3
 +3y

2
 – 2y – 1 = 0 

    The roots of the equation are 
1

𝛼
 , 

1

𝛽
 , 

1

𝛾
 . 

               ∴  
1

𝛼5
+

1

𝛽5
+

1

    𝛾5
 = S5 for the equation y

3
 + 3y

2
 – 2y – 1 = 0. 

       From Newton’s theorem on the sum of the powers of the roots of the equations, we get  

   S5 + 3S4 – 2S3 – S2 = 0     

  S4 + 3S3 – 2S2 – S1 = 0    

  S3 + 3S2 – 2S1 – S0 = 0   

           S2 + 3S1 – 4 = 0     

         S1 + 3 = 0. 

           ∴   S1= – 3, S2 = 13, S3= –42, S4 = 149, S5 = –518. 

  ∴     
1

𝛼5
+

1

𝛽5
+

1

    𝛾5
 = –518. 

 

Example 4. Show that the sum of the m
th 

powers, where  m ≤ n, of the roots of the equation 

x
n
 – 2x

n-1
– 2x

n-2
–……….– 2x – 2 = 0 is 3

m 
–1. 
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Solution. 

           If m ≤ n, we get from the Newton’s theorem 

 Sm – 2 Sm-1 – 2 Sm-2 – ….. – m . 2 = 0 

 Sm-1 – 2 Sm-2 – ….. – (m–1) 2 = 0. 

          Subtracting one from another, we get 

 Sm – 3 Sm-1 – 2 = 0 

 i.e.,     Sm = 2 + 3 Sm-1 

        = 2 + 3 (2 + 3 Sm-2) 

      = 2 + 3.2 + 3
2
 Sm-2 

       = 2 + 3.2 + 3
2 

(2 + 3 Sm-3) 

       = 2 + 3.2 + 3
2 
.2 + 3

3
 Sm-3. 

            Continuing like this, we get 

 Sm = 2 + 3.2 + 3
2
. 2 + 3

3
. 2 +……. + 3

m-1
. S1 

            But S1 = 2.  

    ∴  Sm =  2 + 3.2 + 3
2
. 2 + 3

3
. 2 +……. + 3

m-1
. 2 

               =  2 (1+ 3 + 3
2 

+ 3
3 

+…. + 3
m-1

) 

                = 2 . 
(3𝑚 −1)

2
 

                = 3𝑚 − 1 

Example 5. Determine the value of  𝝓(α1 ) +𝝓 (α2 ) + …. + 𝝓 (αn ) 

Where  α1 , α2 , α3 , ….. αn are the roots of f (x) and 𝝓(x) is any rational and integral function of 

x. 
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         Solution. 

           We have        
f´(𝑥)

f(𝑥)
 = 

1

x − 𝛼1  
 + 

1

x – 𝛼2  
 + ……+ 

1

𝑥−𝛼𝑛  
                    

             and     
f´(𝑥) 𝜙 (𝑥)

f(𝑥)
 = 

𝜙 (𝑥)

x − 𝛼1  
 + 

𝜙 (𝑥)

x – 𝛼2  
 + ……+ 

𝜙 (𝑥)

𝑥−𝛼𝑛  
       

Performing the division and retaining only the remainders on both sides of the equation, we 

have  

              
𝑅0𝑥𝑛−1+ 𝑅1𝑥𝑛−2+ …+ 𝑅𝑛−1  

𝑓(𝑥)
 = 

𝜙 (𝛼1)

x − 𝛼1  
 + 

𝜙 (𝛼2)

x – 𝛼2  
 + ……+ 

𝜙(𝛼𝑛 )

𝑥−𝛼𝑛  
. 

      Hence 

                     𝑅0𝑥𝑛−1 +  𝑅1𝑥𝑛−2 +  … +  𝑅𝑛−1 = Σ 𝝓(α1 ) (x – 𝛼2)…( 𝑥 − 𝛼𝑛 ). 

                     Equating the coefficients of  𝑥𝑛−1 on both sides of the equation, 

                     We get  Σ 𝝓(α1 ) = 𝑅0. 

Example 6. If the degree of 𝝓(x) does not exceed n −2, prove that    
𝜙(𝛼𝑟)

f´(𝛼1)

𝑛

1
 = 0. 

       Solution. 

                   We have partial functions 

                         
 𝜙 (𝑥)

f (𝑥)
 = 

𝐴1

x − 𝛼1  
 + 

𝐴2

x – 𝛼2  
 + …+ 

𝐴𝑛

𝑥−𝛼𝑛  
 

           ∴  𝜙(x ) = 𝐴1 x – 𝛼2   x – 𝛼3 … x – 𝛼𝑛  + 𝐴2 x – 𝛼1  x – 𝛼3 …  x – 𝛼𝑛 + … 

    + 𝐴𝑛 x – 𝛼1  x – 𝛼2 …  x – 𝛼𝑛−1 . 

         Put x = 𝛼1 . ∴ 𝜙(α1 ) = 𝐴1 𝛼1 – 𝛼2  𝛼1 – 𝛼3 … 𝛼1 – 𝛼𝑛 . 

                         f (x) =  x – 𝛼1  x – 𝛼2 …  x – 𝛼𝑛 . 

                         f´(x) =  x – 𝛼2  x – 𝛼3 …  x – 𝛼𝑛  +  x – 𝛼1  x – 𝛼3 …  x – 𝛼𝑛   
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                          + ……….+ x – 𝛼1  x – 𝛼2 … .  x – 𝛼𝑛−1 . 

                         ∴   f´(𝛼1) =  𝛼1 – 𝛼2  𝛼1 – 𝛼3 …. 𝛼1 – 𝛼𝑛 . 

                              ∴   𝜙 (𝛼1) = 𝐴1 f´(𝛼1) 

                               i.e.,     𝐴1 = 
 𝜙  (𝛼1)

f´(𝛼1)
. 

                            Hence  
 𝜙 (𝑥)

f (𝑥)
 = 

 𝜙 (𝛼1)

f´(𝛼1)
 . 

1

x − 𝛼1  
 + 

 𝜙  (𝛼2)

f´ (𝛼2)
 . 

1

x – 𝛼2  
+ ⋯ + 

 𝜙 (𝛼𝑛 )

f´ (𝛼𝑛 )
 . 

1

𝑥−𝛼𝑛  
 

                                  =  
𝜙(𝛼𝑟 )

f´(𝛼𝑟 ) 

𝑛

𝑟=1
 . 

1

x − 𝛼𝑟  
 . 

                               ∴  
 𝑥 𝜙 (𝑥)

f (𝑥)
 =  

𝜙(𝛼𝑟)

f´(𝛼𝑟 ) 

𝑛

𝑟=1
 . 

𝑥

x − 𝛼𝑟  
 . 

                                   =  
𝜙(𝛼𝑟 )

f´(𝛼𝑟 ) 

𝑛

𝑟=1
 . 

1

(1 − 
𝛼𝑟
𝑥 

) 
 . 

                                   =   
𝜙(𝛼𝑟)

f´(𝛼𝑟 ) 

𝑛

𝑟=1
  1 +

𝛼𝑟

𝑥 
+ .

𝛼𝑟

𝑥 
/

2

+ ⋯  . 

                                 
𝜙(𝛼𝑟)

f´(𝛼𝑟)

𝑛

𝑟=1
= term independent of x in 

 𝑥 𝜙 (𝑥)

f (𝑥)
. 

                                          𝜙 (𝑥) is of degree n – 2 , f (x) is of degree n. 

                                  Hence 𝑥 𝜙 (𝑥) is of degree n – 1. 

                                    ∴   
 𝑥 𝜙 (𝑥)

f (𝑥)
 = 

𝐵0𝑥𝑛−1+𝐵1𝑥𝑛−2+⋯.+𝐵𝑛−1

𝑥𝑛 +𝑝1𝑥𝑛−1+⋯.+𝑝𝑛
 

                              = 

𝐵0
𝑥

+
𝐵1
𝑥2  +⋯..

𝐵𝑛−1
𝑥𝑛

1+
𝑝1
𝑥

+
𝑝2
𝑥2  +⋯..

𝑝𝑛
𝑥𝑛

 

                                    Hence in the expansion of  
 𝑥  𝜙  (𝑥)

f (𝑥)
 there is no term independent of x. 

                                  ∴   
𝜙(𝛼𝑟)

f´(𝛼𝑟)

𝑛

𝑟=1
 = 0.  
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Exercises  

1. Show that the sum of the fourth powers of the roots of the equation  

    x
5
 +px

3
 + qx

2
+ s = 0 is 2p

2
. 

2. If α, β, γ are the roots of x
3
 + qx + r =0 prove that  

(1) 3𝑠2𝑠5 = 5𝑠3𝑠4. 

(2) 
𝛼5+ 𝛽5  + 𝛾5

5
  =  

𝛼3+ 𝛽3  + 𝛾3

3
 . 

𝛼2+ 𝛽2  + 𝛾2

2
. 

(3) 
𝛼7+ 𝛽7  + 𝛾7

7
  =  

𝛼5+ 𝛽5  + 𝛾5

5
 . 

𝛼2+ 𝛽2  + 𝛾2

2
. 

3. Show that the sum of the ninth powers of the roots of x
3
 +3x + 9 = 0 is zero. 

4. Prove that the sum of the twentieth powers of the roots of the equation  

    x
4
 +ax + b = 0 is 50 a

4
b

2 
 – 4b

5
. 

Descartes’ Rule of signs. 

An equation f (x) = 0 cannot have more positive roots than there are changes of sign in f (x) 

       Let f(x) be a polynomial whose signs of the terms are 

  + + - - - + - + + + - + -. 

In this there are seven changes of sign including changes from + to – and from – to +. We 

shall show that if this polynomial be multiplied by a binomial (corresponding to a positive 

root ) whose signs of the terms are + – , the resulting polynomial will have atleast one more 

change of sign than the original. Writing down only the signs of the terms in the 

multiplication, we have 

  + + – – – + – + + + – + – 

               + – 

                           – – + + + – + – – – + – + 

             + + – – – + – + + + – + – 

  +±–± ± +– + ± ± – +– +  
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Here in the last line the ambiguous sign ± is placed wherever there are two different signs to 

be added. Here we see in the product 

(1) An ambiguity replaces each continuation of sign in the original polynomial. 

(2) The sign before and after an ambiguity or a set of ambiguities are unlike and 

(3) A change of sign is introduced in the end. 

Let us take the most unfavourable case and suppose that all the ambiguities are 

replaced by continuations, then the sign of the terms become 

  + + – – – + – + + + – + – + 

 The number of changes of sign is 8. Thus even in the most unfavourable case there is 

one more change of sign than the number of changes of sign in the original 

polynomial. Therefore we may conclude in general that the effect of multiplication of 

a binomial factor x – α is to introduce at least one change of sign. 

  Suppose the product of all the factors corresponding to negative and imaginary 

roots of  f(x) = 0 be a polynomial F(x). The effect of multiplying F(x) by each of the 

factors x – α, x – β, x – γ,….. corresponding to the positive roots, α, β, γ is to 

introduce at least one change of sign for each, so that when the complete product is 

formed containing all the roots, we have the resulting polynomial which has at least as 

many changes of signs as it has positive roots. This is Descartes’ rule of sign. 

 Descartes’ rule of signs for negative roots. 

 Let f (x) = (x – 𝛼1) (x – 𝛼2)…… (x – 𝛼𝑛 ). 

 By subtracting  – x  instead of x in the equations, we get 

  f (– x) = (– x – 𝛼1) (– x – 𝛼2)…… (– x – 𝛼𝑛 ). 

 The roots of f (– x) = 0 are – 𝛼1, – 𝛼2, …. , – 𝛼𝑛 . 

  ∴  The negative roots of f(x) = 0 become the positive roots of f(– x) = 0. 

        Hence to find the maximum number of negative roots of f(x) = 0 , it is enough to 

find the maximum number of positive roots of  f(– x) = 0. 

         So we can enunciate Descartes’ rule for negative roots as follows. 
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No equation can have a greater number of negative roots then there are changes of sign 

in the terms of the polynomial f (–x). 

     Example. Determine completely the nature of the roots of the equation x
5
 – 6x

2 
–  4x + 5 

= 0. 

                  Solution. 

 The series of signs of the terms are + – – +. 

 Here there are two changes of sign. 

 Hence there cannot be more than two positive roots. 

 Changing x into –x , the equation becomes 

              –x
5
 – 6x

2 
+ 4x + 5 = 0 

     i.e., x
5
 + 6x

2 
–  4x – 5 = 0. 

The series of the signs of the terms are 

  + + – –. 

Here there is only one change of sign. 

 ∴  There cannot be more than one negative root. 

So the equation has got at the most three real roots. The total number of roots of the 

equation is 5. Hence there are at least two imaginary roots of the equation. We can also 

determine the limits between which the real roots lie. 

            x = – ∞   – 2  – 1  0  1  2  ∞ 

x
5
 – 6x

2 
–  4x + 5 =   –       –      +   +  –  +  + 

The positive roots lie between 0 and 1 , and 1 and 2 , the negative root between –2 and –

1. 

Exercises  

1. Show that the equation x
7
 – 3x

4  
– 2x

3
 – 1 = 0 has at least four imaginary roots. 

2. Show that x
6
 + 3x

2  
– 5x + 1 = 0 has at least four imaginary roots. 

3. Prove that the equation x
4
 + 3x – 1 = 0 has two real and two imaginary roots. 

4. Show that 12x
7
 – x

4  
+10x

3
  – 28 = 0 has at least four imaginary roots. 
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Rolles’ Theorem. 

          Between two consecutive real roots a and b of the equation f (x) = 0 where f (x) is a 

polynomial , there lies at least one real root of the equation f´(𝑥) = 0. 

 Let f (x) be (x–a)
m 

 (x–b)
m

 𝜙 (x) where m and n are positive integers and 𝜙 (x) is not 

divisible by (x – a) or by (x – b). since a and b are consecutive real roots of f (x), the sign of 

𝜙 (x) in the interval 𝑎 ≤ x ≤ b is either positive throughout or negative throughout, for if it 

changes its sign between a and b, then there is a root of  𝜙 (x) = 0 that is of f (x) = 0 lying 

between a and b, which is contrary to the hypothesis that a and b are consecutive roots. 

 ∴   f´(𝑥) = (x – a)
m 

 n(x – b)
n-1

 𝜙 (x) + m(x – a)
m-1 

(x – b)
n
 𝜙 (x) + (x – a)

m 
(x – b)

n
 𝜙´ (x) 

       = (x – a)
m-1 

 (x – b)
n-1

 𝜒 (x), 

Where 𝜒 (x) =  𝑚 x – b + n (x – a) 𝜙 (x) + (x – a) (x – b) 𝜙´ (x). 

   ∴     𝜒 (a) = 𝑚 a – b 𝜙 (a) 

 𝜒 (b) = 𝑛 b – a 𝜙 (b). 

𝜒 (a)  and   𝜒 (b) have different signs since 𝜙 (a) and 𝜙 (b) have the same sign. 

 ∴    𝜒 (x) = 0 has atleast one root between a and b. 

Hence f´(𝑥) = 0 has at least one root between a and b. 

        Cor. 1.  If all the roots of  f (x) = 0 are real , then all the roots of  f´(𝑥) = 0 are also real. 

 If f (x) = 0 is a polynomial of degree n , f´(𝑥) = 0 is a polynomial of degree n – 1  and 

each root of  f´(𝑥) = 0 lies in each of the ( n – 1) intervals between the n roots of f (x) = 0.  

        Cor. 2. If all the roots of  f (x) = 0 are real , then all the roots of  f´(𝑥) = 0 , f´´(𝑥) = 0 , 

f´´´(x) = 0 are real. 

        Cor. 3.  At the most only one real root of  f (x) = 0 can lie between two consecutive 

roots of  f´(𝑥) = 0 , that is the real roots of f´(𝑥) = 0 separate those of f (x) = 0. 

        Cor. 4. If f´(𝑥) = 0 has r real roots, then f (x) = 0 cannot have more than (r +1) real 

roots. 
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        Cor. 5. f (x) = 0 has at least as many imaginary roots as f´(𝑥) = 0. 

Example 1. Find the nature of the roots of the equation 4x
3
 – 21x

2 
+ 18x + 20 = 0. 

     Solution. 

 Let us consider the function f (x) = 4x
3
 – 21x

2 
+ 18x + 20. 

 We have f´(𝑥) = 12x
2  

– 42x + 18 

   = 6(2x – 1) (x – 3). 

 Hence the real roots of  f´(𝑥) = 0 are  
1

2
 and 3. So the roots of f (x) = 0, if any will be 

in the intervals between – ∞ and 
1

2
, 

1

2
 and 3, 3 and + ∞ respectively. 

       x :   – ∞    
1

2
   3    ∞  

  f (x) :     –      +    –     + 

 ∴  f (x) must vanish , once in each of the above intervals.  

Hence f (x) = 0 has three real roots. 

Example 2. Show that the equation 3x
4
 – 8x

3 
– 6x

2 
+ 24x – 7 = 0 has no positive, one 

negative and two imaginary roots. 

               Solution. 

 Let f (x) be  3x
4
 – 8x

3  
– 6x

2 
+ 24x – 7. 

We have f´(𝑥) = 12x
3
 – 24x

2  
– 12x – 24 

  = 12(x+1) (x – 1) (x – 2). 

The roots of  f´(𝑥) = 0 are – 1 , + 1 , + 2. 

     x  :   – ∞   – 1   + 1   + 2    + ∞ 

 f (x) :     +      –       +      +      + 
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 ∴   f (x) = 0 has a real root lying between  – 1 and – ∞, one between – 1 and + 1 and two 

imaginary roots. 

 We know that  f ( + 1) = + , f (0) = – . 

 ∴  The real root lying between – 1 and + 1 lies between 0 and + 1 . hence it is a positive root. 

The other real root lies between – 1 and – ∞ and so it is a negative root. 

Example 3. Discuss the reality of the roots x
4
 + 4x

3  
– 2x

2 
– 12x + a = 0 for all the values of 

a. 

            Solution. 

 Let f (x) be x
4
 + 4x

3  
– 2x

2 
– 12x + a. 

 ∴       f´(𝑥) = 4x
3
 + 12x

2  
– 4x – 12 

          = 4(x + 1) (x – 1) (x + 3). 

 ∴      The roots of  f´(𝑥) = 0 are  – 3 , – 1 and 1. 

        x :    – ∞    – 3    – 1       1       + ∞     

  f (x) :      +     a – 9   7+ a   a – 9     + 

If  a – 9 is negative and 7 + a is positive , the four roots of  f (x) are real. 

 ∴  If  – 7 <  a < 9 , f (x) = 0 has four real roots. 

If a > 9 , then f (x) is positive throughout and hence all the rots of  f (x) = 0 are imaginary. 

If  a < – 7 , the sign of  f (x) at – ∞ , – 3 , – 1 ,  1 , + ∞   are respectively + , – , – , – , +. 

Hence f (x) = 0 has two real roots and two imaginary roots. 

Exercises  

1. Prove that all the roots of the equation x
3
– 18x + 25 = 0 are real. 

2. Find the  nature of  the roots of the equation 

(1) 4x
3
 – 21x

2  
+ 18x

 
+ 30 = 0. 
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(2) 2x
3
 – 9x

2  
+ 12x

 
+ 3 = 0. 

(3) x
4
 + 4x

3  
– 20x

2
 + 10 = 0. 

3. Show that the equation f (x) = (x – a)
3
 + (x – b)

3 
+ (x – c)

3 
= 0 has one real and two 

imaginary roots. 

Answer : 2.(1). One negative root and two imaginary roots, (2). One negative root and 

two imaginary roots, (3). All the roots are real. 
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UNIT II: RECIPROCAL EQUATION 

Reciprocal Equation – Transformation of equation – Solution of cubic and biquadratic 

equation – Cardon’s land Ferrari’s methods – Approximate solution of numerical equations 

– Newton’s and Horner’s methods. 

 Reciprocal roots. 

       To transform an equation into another whose roots are the reciprocals of the roots of the 

given equation. 

 Let α1 , α2 , α3 , ….. αn be the roots of the equation 

   x
n
 + p1x

n-1
 + p2x

n-2
 + …… pn = 0. 

We have  

 x
n
 + p1x

n-1
 + p2x

n-2
 + …… pn ≡ (x – 𝛼1) (x – 𝛼2)…… (x – 𝛼𝑛 ). 

      Put x =  
1

𝑦
, we have 

 . 
1

𝑦
/

𝑛

+ p1. 
1

𝑦
/

𝑛−1

+ p2. 
1

𝑦
/

𝑛−2

+…..+ pn 

  = . 
1

𝑦
− 𝛼1 / . 

1

𝑦
− 𝛼2  /…... 

1

𝑦
− 𝛼𝑛  / 

Multiplying throughout  by  y
n 

, we have  

 pny
n
 + pn-1y

n-1
 + pn-2y

n-2
 + ……+ p1y + 1 = 0 

  = (α1  α2 ….. αn) . 
1

𝛼1
− 𝑦 / . 

1

𝛼2
− 𝑦 /…... 

1

𝛼𝑛
− 𝑦 / 

Hence the equation  

 pny
n
 + pn-1y

n-1
 + pn-2y

n-2
 + ……+ p1y + 1 = 0 has roots  

1

𝛼1
 , 

1

𝛼2
 , … , 

1

𝛼𝑛
  

Reciprocal equation. 

          If an equation remains unaltered when x is changed into its reciprocal, it is called 

reciprocal equation. 
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Let    x
n
 + p1x

n-1
 + p2x

n-2
 + ……+ pn-1x + pn = 0.    ……(1) 

 be a reciprocal equation. When x is changed into its reciprocal 
1

𝑥
, we get the transformed 

equation  

 pnx
n
 + pn-1x

n-1
 + pn-2x

n-2
 + ……+ p1x + 1 = 0 

 x
n
 + 

𝑝𝑛−1

𝑝𝑛
 x

n-1
 + 

𝑝𝑛−2

𝑝𝑛
 xn-2

 + …. + 
𝑝1

𝑝𝑛
 x + 

1

𝑝𝑛
 = 0   ….(2) 

Since (1) is a reciprocal equation , it must be the same as (2), 

 ∴   
𝑝𝑛−1

𝑝𝑛
 = p1 , 

𝑝𝑛−2

𝑝𝑛
 = p2 …  

 𝑝1

𝑝𝑛
 = pn-1 and 

1

𝑝𝑛
 = pn. 

 ∴  𝑝𝑛
2 = 1. 

 ∴   pn = ± 1. 

Case i.  pn = 1. 

Then  𝑝𝑛−1 =  p1 , 𝑝𝑛−2 =  p2 ,  𝑝𝑛−3 =  p3 , …… 

In this case the coefficients of the terms equidistant from the beginning and the end are equal 

in magnitude and have the same sign. 

Case ii.  pn = – 1, we have  

  𝑝𝑛−1 = – p1 , 𝑝𝑛−2 = – p2 , ….  𝑝1 =  – pn-1. 

In this case the terms equidistant from the beginning and the end are equal in magnitude but 

different in sign. 

 Standard form of reciprocal equations. 

If α be a root of a reciprocal equation,  
1

𝛼
 must also be a root, for it is a root of the transformed 

equation and the transformed equation is identical with the first equation, Hence the roots of a 

reciprocal equation occur in pairs 

  𝛼, 
1

𝛼
, β,  

1

𝛽
, … 
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 When the degree is odd one of its roots must be its own reciprocal. 

   γ = 
1

𝛾
  

       i.e., γ
2
 = 1. 

       i.e., γ = ± 1. 

          If the coefficients have all like signs, then  – 1 is a root ; if the coefficients of the 

terms equidistant from the first and last have opposite signs, then + 1 is a root. In either case 

the degree of an equation can be depressed by unity if we divide the equation by x +1 or by x 

– 1. The depressed equation is always a reciprocal equation of even degree with like signs for 

its coefficients. 

  If the degree of a given reciprocal equation is even , say n = 2m and if terms 

equidistant from the first and last have opposite signs, then 

   𝑝𝑚  = – pm. 

       i.e.,  𝑝𝑚  = 0 , so that in this type of reciprocal equations, the middle term is absent. Such 

an equation may be written as  

                   x
2m

 – 1 + p1x(x
2m-2 

– 1) + ….. 0 . 

Dividing by  x
2 

– 1 , this reduces to a reciprocal equation of like signs of even degree. Hence 

all reciprocal equations may be reduced to an even degree reciprocal equation with like sign, 

and so an even degree reciprocal equation with like signs is considered as the standard form 

of reciprocal equations. 

A reciprocal equation of the standard form can always be depressed to another of half 

the dimensions. 

 It has been shown in the previous article that all reciprocal equations can be reduced 

to a standard form, in which the degree is even and the coefficients of terms equidistant from 

the beginning and the end are equal and have the same sign. 

 Let the standard reciprocal equation be  

a0x
2m

 + a1x
2m-1

 + a2x
2m-2

 +….. amx
m
 +….+ a1 x + a0  = 0. 
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Dividing by x
m

 and grouping the terms equally distant from the ends, we have  

 a0.𝑥𝑚 +
1

𝑥𝑚
/+ a1.𝑥𝑚−1 +

1

𝑥𝑚 −1
/+…..+ am-1.𝑥 +

1

𝑥
/+ am = 0 

 Let x + 
1

𝑥
  = z and 𝑥𝑟 +

1

𝑥𝑟  = Xr 

 We have the relation  Xr +1 = z . Xr –  Xr-1. 

 Giving r in succession the values 1, 2, 3, … 

 We have  X2= z X1 –  X0 = 𝑧2– 2  

      X3= z X2 –  X1 = 𝑧3– 3z 

      X4= z X3 –  X2 = 𝑧4– 4𝑧2 + 2 

      X5= z X4 –  X3 = 𝑧5– 5𝑧3 + 5z 

and so on. Substituting these values in the above equation. We get an equation of the 𝑚𝑡𝑕  

degree in z. To every root of the reduced equation in z, correspond two roots of the reciprocal 

equation. Thus if k be a root of the reduced equation, the quadratic x + 
1

𝑥
  = k , i.e., 𝑥2 – kx + 

1 = 0 gives the two corresponding roots 
𝑘± 𝑘2−4

2
  of the given reciprocal equation. 

Example 1.  Find the roots of the equation x
5
 + 4x

4
 + 3x

3
 + 3x

2  
+ 4x

 
+ 1 = 0. 

      Solution. 

           This is a reciprocal equation of odd degree with like signs. 

        ∴ (x+1) is a factor of x
5
 + 4x

4
 + 3x

3
 + 3x

2  
+ 4x

 
+ 1 

           The equation can be written as  

  x
5
 + x

4
 + 3x

4
 + 3x

3
 + 3x

2  
+ 3x

 
+ x + 1 = 0 

i.e., x
4
(x +1)+ 3x

3
(x +1)+ 3x(x +1)+1(x +1) = 0 

i.e., (x +1) (x
4
 + 3x

3
 + 3x

 
+ 1) = 0. 
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     ∴  x +1 = 0 or x
4
 + 3x

3
 + 3x

 
+ 1 = 0. 

Dividing by x
2
, we get x

2
 + 3x +

3

𝑥
+

1

𝑥2 = 0 

 .𝑥2 +
1

𝑥2
/ + 3 .𝑥 +

1

𝑥
/ = 0 . 

Put 𝑥 +
1

𝑥
 = z.   ∴  𝑥2 +

1

𝑥2
 = 𝑧2 – 2  

 ∴  𝑧2 – 2 + 3z = 0 

 ∴  z = 
−3± 17

2
 . 

Hence  𝑥 +
1

𝑥
 = 

−3± 17

2
 

i.e., 2𝑥2 +  −3 +   17  x + 2 = 0  

or    2𝑥2 +  −3 −  17  x + 2 = 0. 

From these equations x can be found. 

Example 2. Solve the equation 6x
5
 – x

4
 – 43x

3
 + 43x

2 
+ x – 6 = 0. 

              Solution. 

 This is a reciprocal equation of odd degree with unlike signs.  

                Hence x – 1 is a factor of the left- hand side. 

 The equation can be written as follows: 

 6x
5
 – 6x

4
 + 5x

4 
– 

 
5x

3
 – 38x

2  
+ 5x

2
 – 5x + 6x – 6 = 0 

i.e., 6x
4
 (x – 1)+ 5x

3
(x – 1) – 38x

2 
(x – 1)+ 5x(x – 1)+ 6 (x – 1) = 0  

i.e., (x – 1) (6x
4
+ 5x

3
– 38x

2
+ 5x+6) = 0 

 ∴  x – 1 = 0 or  6x
4
+ 5x

3
– 38x

2 
+ 5x + 6 = 0 . 

We have to solve the equation 6x
4
+ 5x

3
– 38x

2 
+ 5x + 6 = 0. 
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Dividing by x
2 , 

6x
2 

+ 5x – 38+ 
5

𝑥
 + 

6

𝑥2
 = 0  

 i.e., 6.𝑥2 +
1

𝑥2/+5.𝑥 +
1

𝑥
/ – 38 = 0. 

 Put 𝑥 +
1

𝑥
 = z.   ∴  𝑥2 +

1

𝑥2
 = 𝑧2 – 2. 

The equation becomes  

             6(𝑧2– 2) + 5z – 38 = 0 

          i.e.,  6𝑧2 + 5z – 50 = 0 

          i.e., (2z–5) (3z+10) = 0. 

     ∴     𝑥 +
1

𝑥
=  

5

2
  or   𝑥 +

1

𝑥
= – 

10

3
 

        i.e.,   2x
2
– 5x + 2 = 0  or  3x

2 
+ 10x + 3 = 0   

        i.e.,   (2x – 1) (x – 2) = 0  or  (3x + 1) (x + 3) = 0 

        i.e.,   x = 
1

2
  or 2   or   – 

1

3
  or – 3. 

 ∴   The roots of the equation are 1, 
1

2
 , 2, – 

1

3
 and – 3.   

Example 3.  Solve the equation 6x
6
 – 35x

5
 + 56x

4
 – 56x

2  
+ 35x – 6 = 0. 

       Solution. 

 There is no mid-term and this is a reciprocal equation of even degree with unlike 

signs. We can easily see that x
2 

– 1 is a factor of the expression on left-hand side of the 

equation. 

 The equation can be written as  

         6(x
6 

– 1) – 35x(x
4 

– 1) + 56x
2
(x

2 
– 1) = 0 

  i.e.,  6(x
2 

– 1)( x
4 

+ x
2 

+1) – 35x(x
2 

– 1) + (x
2 

+ 1) ) + 56x
2
(x

2 
– 1) = 0 
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 i.e.,  (x
2 

– 1) (6x
4
– 35x

3
 + 62x

2 
– 35x + 6) = 0 

 i.e.,  x = 1  or  – 1  or   6x
4
– 35x

3
+62x

2
– 35x+6 = 0. 

Dividing by x
2 
, we get   6x

2 
– 35x+ 62 – 

35

𝑥
 + 

6

𝑥2 = 0.  

 6.𝑥2 +
1

𝑥2
/– 35.𝑥 +

1

𝑥
/ + 62 = 0. 

Put 𝑥 +
1

𝑥
 = z.   ∴  𝑥2 +

1

𝑥2
 = 𝑧2 – 2. 

 ∴       6(𝑧2– 2) – 35z + 62 = 0 

          i.e.,  6𝑧2 – 35z – 50 = 0 

          i.e., (3z–10) (2z– 5) = 0 

   z = 
10

3
  or   

5

2
 . 

      ∴     𝑥 +
1

𝑥
=  

10

3
  or   𝑥 +

1

𝑥
=  

5

2
 

        i.e.,   3x
2
– 10x+3 = 0  or  2x

2
– 5x+2 = 0   

        i.e.,   (x – 3) (3x – 1) = 0  or  (x – 2) (2x – 1) = 0 

        i.e.,   x = 3  or   
1

3
   or  2  or    

1

2
   

 ∴   The roots of the equation are 1, – 1 , 3 ,  
1

3
 , 2  and  

1

2
.   

Exercises  

Solve the following equations:- 

1. x
4
 – 10x

3
 + 26x

2
 – 10x

  
+ 1 = 0. 

2. x
4
 + 3x

3
 – 3x

  
– 1 = 0.     

3. 2x
6
 – 9x

5
 + 10x

4
 – 3x

3
 + 10x

2
 – 9x

  
+ 2 = 0. 

4. 2x
5
 + x

4
 + x

  
+ 1 = 12x

2
(x +1).      

5. x
5
 – 5x

3
 + 5x

2
 – 1 = 0. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
51 

 

6. x
6
 + 2x

5
 + 2x

4
 – 2x

2
 – 2x

  
– 1 = 0. 

Answer : 1.3 ± √8, 2 ± √3, 2. ± 1, 
−3± 5

2
, 3. 2,  

1

2
,

3± 5

2
,
−1± −3

2
, 4.−1, −2, − 

1

2
,

3± 5

2
 , 

5.1, 1, 1,  
−3± 5

2
 , 6. ± 1, 

−1±𝑖 3

2
, 

−1±𝑖 3

2
. 

Transformation in general. 

Let α1 , α2 , …., αn be the roots of the equations f (x) = 0, it is required to find an equation 

whose roots are 

 𝜙 (α1), 𝜙 (α2), … , 𝜙 (αn). 

The relation between a root x of f (x) = 0 and a root y of the required equation is y = 𝜙 (x). 

       Now if x be eliminated between f (x) = 0 and y = 𝜙 (x), an equation in y is obtained 

which is the required equation. 

     By means of the relations between the roots and coefficients of an equation we can 

establish a relation between the corresponding roots given and the required equations. A few 

examples will illustrate the methods of procedure. 

Example 1.  If α , β , γ are the roots of the equation  x
3
 + px

2
 + qx

  
+ r ≡ 0, from the equation 

whose roots are  𝛼–
1

𝛽𝛾
 , 𝛽–

1

𝛾𝛼
 , 𝛾–

1

𝛼𝛽
. 

Solution. 

  We have  𝛼–
1

𝛽𝛾
  

   = 𝛼–
𝛼

𝛼𝛽𝛾
 

   = 𝛼–
𝛼

−𝑟
 since 𝛼𝛽𝛾 = – r  

   = 𝛼 +
𝛼

𝑟
. 

  ∴  y = 𝑥 +
𝑥

𝑟
. 

 ∴ The required equation is obtained by eliminating x between the equations 
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  y = 𝑥 +
𝑥

𝑟
.                 …….. (1) 

     x
3
 + px

2
 + qx

  
+ r = 0             ………(2) 

From (1) , we get  x = 
𝑦𝑟

1+𝑟
  

Substituting this value of x in the equation (2), we get  

        r
3
y

3
+ pr(1+ r) y

2
 + q(1+ r)

2
y +(1+ r)

3 
= 0. 

Example 2. If a , b , c be the roots of the equation x
3
 + px

2
 + qx

  
+ r = 0, find the equation 

whose roots are  bc – a
2 

, ca – b
2  

, ab – c
2 
. 

Solution. 

              We have bc – a
2 

= 
𝑎𝑏𝑐

𝑎
 – a

2 

    
     = – 

𝑟

𝑎
 – a

2 
since abc = – r . 

Hence the required equation is obtained by eliminating x between the equations 

          y = – 
𝑟

𝑥
 – x

2                          
  …….. (1) 

    
and  x

3
 + px

2
 + qx

  
+ r = 0                  ……..(2) 

    From (1) , we get  x
3
 + xy

  
+ r = 0     …….(3) 

Subtracting (3) from (2) , we get 

  px
2
 + qx

  
– xy = 0        

 i.e.,        x(px + q – y) = 0   

 i.e., x = 0  or  px + q – y = 0. 

   x cannot be equal to zero. 

            ∴     px + q
  
– y = 0. 
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  ∴    x =  
𝑦−𝑞

𝑝
. 

Substituting this value of x in equation (2) , we get  

  .
𝑦−𝑞

𝑝
/

3
+ 𝑝. .

𝑦−𝑞

𝑝
/

2
+ 𝑞. .

𝑦−𝑞

𝑝
/ + 𝑟 = 0 

i.e.,  y
3 

+ (p
2
– 3q) y

2 
+ (3q

2
– p

2
q) y

 
+ p

3
r – q

3 
= 0. 

Example 3. If α , β , γ are the roots of the equation  x
3
 –  6x

  
+ 7 = 0, from the equation 

whose roots are  α
2
 + 2α

  
+ 3, β

2
 + 2β

  
+ 3, γ

2
 + 2γ

  
+ 3. 

Solution. 

   Here we have to eliminate x between the equations  

  x
3
 –  6x

  
+ 7 = 0                ……… (1) 

            and   y = x
2
 + 2x

  
+ 3 

          i.e.,  x
2
 + 2x

  
+ (3 – y) = 0     ………(2) 

   Multiplying (2) by x and subtracting (1) from it , we get  

 2x
2
+ (9 – y) x – 7 = 0                    ……….(3) 

From (2) and (3) , we get 

   
𝑥2

−14−(9−𝑦)(3−𝑦)
 = 

𝑥

7+2(3−𝑦)
 = 

1

(9−𝑦)−4
, 

so that  (13 − 2𝑦)2  
= (5 – y)( – y

2
 + 12y – 41) 

 i.e.,  
  
y

3
 – 21y

2
 + 153y – 374 = 0. 

Example 4. If α , β , γ are the roots of the equation x
3
 + px

2
 + qx

  
+ r = 0, find the value of  

(α
2
 +1) (β

2
 +1) (γ

2
 +1). 
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Solution. 

    From the equation whose roots are 

            α
2
 +1, β

2
 +1, γ

2
 +1. 

   For that, eliminate x between  

             y = x
2
+1                       ………(1) 

   and    x
3
 + px

2
 + qx

  
+ r = 0               ………(2) 

Equation (2) can be written as  

 x(x
2
 + q) = –(px

2
 + r) 

  i.e.,   x(y – 1+ q) = – {p(y – 1) + r} since from (1) x
2 

= y – 1. 

Squaring x
2(y − 1 + q)2  

=  {𝑝(𝑦 − 1) + 𝑟}2 

i.e.,  (y – 1) (y − 1 + q)2=  {𝑝(𝑦 − 1) + 𝑟}2 

i.e.,  y
3
+ y

2
 term + y term −(q − 1)2 − (p − r)2 = 0. 

The roots of the equation are α
2
 +1, β

2
 +1, γ

2
 +1. 

   ∴   Products of the roots  

            (α
2
 +1) (β

2
 +1) (γ

2
 +1) = (q − 1)2 + (p − r)2. 

Example 5. If α is a root of  x
2(x + 1)2 − 𝑘(𝑥 − 1) (2x

2
 + x

  
+ 1) = 0, prove that  

𝛼+1

𝛼−1
                

is also a root. 

Solution. 

From the equation whose roots are  
𝛼+1

𝛼−1
 , 

𝛽+1

𝛽−1
 , 

𝛾+1

𝛾−1
 , 

𝛿+1

𝛿−1
. 

For that, eliminate x between the equations 

  y = 
𝑥+1

𝑥−1
                   ……...(1) 
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and  x
2(x + 1)2 − 𝑘(𝑥 − 1) (2x

2
 + x

  
+ 1) = 0        ……..(2) 

From (1), we get x = 
𝑦+1

𝑦−1
. 

Substituting this value of x in (2), we get  

               .
𝑦+1

𝑦−1
/

2

 2
𝑦+1

𝑦−1
+ 13

2

+ k.
𝑦+1

𝑦−1
− 1/. 2. .

𝑦+1

𝑦−1
/

2

+
𝑦+1

𝑦−1
+ 1  = 0 

            i.e., (y + 1)2(2y)2 − k . 2 .(y – 1) . {2(y + 1)2  
+ y

2
−1 +(y − 1)2} = 0 

            i.e., 4y
2(y + 1)2 − k . 2 .(y – 1) (4y

2 +2y + 2) = 0 

            i.e.,  y
2(y + 1)2 − k . (y – 1) (2y

2
+y + 1) = 0. 

We get the same equation as the original equation. 

 ∴   
𝛼+1

𝛼−1
   is a root of  x

2(x + 1)2 − k . (x – 1) (2x
2
+x + 1) = 0. 

Example 6. Find the equation whose roots are the squares of the differences of the roots of 

the equation x
3
+px + q = 0 ( p and q being real). Hence deduce the condition that all the 

roots of the cubic shall be real. 

Solution. 

 Let α, β, γ  be the roots of the equation  x
3
+px + q = 0. 

 We have to form the equation whose roots are  (β − γ)2, (γ − α)2, (α − β)2. 

 (β − γ)2 = β
2
+ γ

2
−2βγ 

      = α
2
 + β

2
+ γ

2
− α

2−
2αβγ

𝛼
 

      = (α + β + γ  )2 −2(αβ+βγ+γα) − α
2
−

2αβγ

𝛼
. 

Here we have  α + β + γ  = 0 , αβ + βγ + γα = p ,  αβγ = −𝑞. 

  ∴    (β − γ)2 = −2p− α
2 

+ 
2q

𝛼
. 
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Hence to get the transformed equation eliminate x between the equations  

 y = −2p− x
2 

+ 
2q

𝑥
                  ………(1) 

  and   x
3
+px + q = 0                         ……...(2) 

(1) can be written as  

    x
3
+(y + 2p) x−2q = 0               ……..(3) 

Subtracting (2) from (3) , we get (y + p) x – 3q = 0. 

  ∴    
x = 

3q

𝑦+𝑝
. 

Substituting this value of  x in (1), we get  

 .
3q

𝑦+𝑝
/

3

+ p .
3q

𝑦+𝑝
/+ q = 0. 

Simplifying   y
3
 + 6py

2
 + 9p

2
 y

 
+ 4p

2 
+ 27q

2
 = 0. 

      ∴     (β − γ)2, (γ − α)2, (α − β)2 
= – (4p

2 
+ 27q

2
). 

If  α ,β ,γ  are real, then α − β , β − γ , γ − α  are real and may be positive or negative . 

     ∴     (β − γ)2, (γ − α)2, (α − β)2 
 are all positive. 

Hence (1)    (β − γ)2, (γ − α)2, (α − β)2  is +ve 

        i.e., 4p
2 

+ 27q
2 

 is –ve. 

 (2)    (β − γ)2, (γ − α)2, (α − β)2  is +ve 

        i.e.,  −6p is +ve 

        i.e.,    p is –ve. 

    4p
2 

+ 27q
2
 is negative implies that p is –ve. 

      ∴    
The condition for the roots of the equation to be real is 4p

2 
+ 27q

2 
is negative. 
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Cubic equation. 

1. Let the cubic equation be x
3
+ax + b = 0. 

Method 1. The equation can be written as  x
3
= −ax − b. 

        The  x-coordinates of the intersection of the curves y = x
3 

and y = −ax − b will be 

give the roots of the equation. 

         y = x
3
 curve has a point of inflection at the origin. 

Method 2. Multiply the equation by x. 

        We get x
4
 + ax

2
 + bx = 0 

      i.e., (𝑥2)2 + x
2 

+ (a – 1)x
2
 + bx = 0. 

       We can easily see that the roots of the equation are the x- coordinates of the points of 

intersection of the parabola y = x
2 

and the circle 𝑦2+ y
 
+ (a – 1)y + bx = 0. 

        Here the origin is to be excluded since we have multiplied the equation by x. 

2. If the cubic equation is ax
3
 + bx

2
 + cx + d = 0, we can diminish the roots of the cubic 

by h and get an equation without the  x
2 

term. One of the above two methods can be 

adopted to get the roots. The equation can be written as 

ax
3 

= – bx
2
 – cx – d 

        i.e., x
3
 = – 

b

𝑎
 x

2 
– 

c

𝑎
 x – 

𝑑

𝑎
. 

The roots are the x-coordinates of the intersection of the curves    

y = x
3 

               and   y =  – 
b

𝑎
 x

2 
– 

c

𝑎
 x – 

𝑑

𝑎
. 
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Example 1. Find graphically all the roots of  x
3
−7x + 6 = 0. 

Solution. 

Method 1.  The equation can be written as x
3
= 7x − 6.The x-coordinates of the points of 

intersection of the curve  y = x
3
 and the straight line      y = 7x−6 will give the roots of the 

equation.The line y = 7x−6 intersects the curve in three real points and x-coordinates of the 

points are 1, 2, −3. 

 ∴   The roots of the equations are 1, 2, −3. 

 

 

 

 

 

 

 

 

 

Method 2.  Multiply the equation by  x . 

We get  x
4 

– 7x
2
 + 6x = 0 

         i.e.,  (𝑥2)2 + x
2 

– 8x
2
 + 6x = 0. 

The roots are the x- coordinates of the intersection of the curves    

         y = x
2  

and  𝑦2+ y
 
– 8y + 6x = 0. 
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   The first curve is a parabola and the second is a circle whose centre is (– 3 , 4) and the 

radius 5. 

      By drawing the curves, we can see that the curves intersect at the point whose x- 

coordinates are 1 , 2 , and – 3. 

 ∴  The roots of the equation are 1 , 2 , and – 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2. Show that the equation x
3 

– 3x
2
 + 3x – 7 = 0 has only one real root. Find the root 

graphically to the first decimal place. 

Solution. 

      The equation can be written as x
3 

= 3x
2
 – 3x + 7. 

       Hence the root are the x-coordinates of the points intersection of the curves    

         y = x
3  
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   and   y = 3x
2
 – 3x + 7. 

 If we draw the two curves on a graph paper we will see that the two curves will 

intersect only in one point and the x-coordinate of that point is 2.8. Hence the equation has 

only one real root and that is 2.8 approximately. 

 

 

 

 

 

 

 

 

 

 

 

Bi quadratic equations. 

         Let the equation of the bi quadratic be x
4 

+ ax
3 

+ bx
2
 + cx + d = 0. 

 Two conics in general intersect in four points. 

Therefore our attempt should be to find two conics, the x- coordinates of whose points of 

intersection are the roots of the given equation. 

 The equation can be written as  

  (𝑥2 +
a

2
𝑥)2– 

 𝑎2

4
𝑥2+ bx

2
 + cx + d = 0. 

i.e., (𝑥2 +
𝑎

2
𝑥)2+𝑥2+(𝑏 − 1 −

 𝑎2

4
)𝑥2+ cx + d = 0. 
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                             Let  y = x
2
+

𝑎

2
 x                                                ……….(1) 

   Then the equation becomes 

        𝑦2 + 𝑥2+(𝑏 − 1 +
 𝑎2

4
) (𝑦 −

𝑎

2
𝑥) + cx + d = 0 

     i.e.,  𝑥2+ 𝑦2 −
𝑎

2
(𝑏 − 1 −

 𝑎2

4
−

2𝑐

𝑎
) x +(𝑏 − 1 +

 𝑎2

4
) y + d = 0       …….(2) 

      The equation (1) represents a parabola and (2) a circle. 

      Trace the curves on a graph paper and the x- coordinates of the points of intersection are 

the roots of the given equation . 

Example. Solve the equation  x
4 

– 2x
3 

+ 4x
2
 + 6x – 19 = 0 graphically. 

Solution. 

 The equation can be written as (𝑥2– 𝑥)2+ 3x
2
 + 6x – 19 = 0 

        Let   y = x2– x                                …………(1) 

     Then the equation becomes   y2 + x
2
+ 2x

2
 + 6x – 19 = 0 

               i.e.,  x
2 

+ 𝑦2 + 2(y+x) + 6x – 19 = 0 

               i.e.,  x
2 

+ 𝑦2 + 8x + 2y – 19 = 0 

               i.e.,  (𝑥 + 4)2+(𝑦 + 1)2 = 36 

               i.e.,   (𝑥 + 4)2+(𝑦 + 1)2 = 6
2
               ………..(2) 

      Trace the curves (1) and (2) on a graph paper. 

      The curves intersect only in two real points. 

Therefore the given equation has only two real roots and they are approximately 1.6 and 1.7. 
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Exercises  

1. Solve graphically the following equations:- 

(1) x
3 

–6x – 9 = 0 

(2) x
3 

–3x – 2 = 0 

(3) x
3 

–7x – 6 = 0 

2. Solve graphically the following equations:- 

(1) x
3 

– x
2 

– 33x + 61 = 0 

(2) x
3 

– x
2 

+ 2x – 3 = 0 

(3) x
3 

– 6x
2 

+ 9x – 4 = 0 

(4) x
3 

– 7 = 0 

(5) 4x
3 

– 6x
2 

+ x + 2 = 0 

3. Solve graphically by using  y = x
2 

 and a circle or otherwise  3x
4 

– x
2 

+ 3x – 4 = 0 

Cardon’s method. 

         Let the equation be x
3
+px + q = 0.      ……….. (1) 

Let x be u + v. Substituting this value of x in equation (1), we get  
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   (u +  v)3+ p (u + v) + q = 0. 

i.e., u
3 

+ v
3
 + 3uv (u + v) + p (u + v) + q = 0 

i.e., u
3 

+ v
3
 + q + (u + v) (3uv + p) = 0. 

Choose u and  v  such that  3uv + p = 0. 

Then the equation reduces to  

 u
3 

+ v
3
 + q = 0                                     …………(2) 

  with the condition 3uv + p = 0                       …………(3) 

Eliminate  u  from (2) and (3) , we get  

 (−
p

3𝑣
)3 + v

3
 + q = 0  

 i.e., v
6
+ qv

3
 −

 𝑝3

27
 = 0                            ………..(4) 

   Similarly eliminate  v  from  (2) and (3) , we get 

             u
6
+ qu

3
 −

 𝑝3

27
 = 0                            ………..(5) 

  From (4)  and  (5) relations, we get that 

    u
3 

and  v
3
 are the roots of the equation 

         t
2 

+ qt −
 𝑝3

27
 = 0                            ………..(6) 

   u
3 

and  v
3 

can be determined from this equation 

      u
3
 = −

𝑞

2
 +   (

 𝑞2

4
 +  

 𝑝3

27
)

1
2  ,    v

3
 = −

𝑞

2
− (

 𝑞2

4
 +  

 𝑝3

27
)

1
2 

           Roots of equation (6) are real only when  
 𝑞4

4
 +  

 𝑝3

27
 ≥ 0. In that case two roots of 

equation (1) are imaginary and one root real or two of the roots of the equation (1) are real. 

 Let 
 𝑞4

4
 +  

 𝑝3

27
 i.e., 4p

3 
+ 27q

2
 is positive. 
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 Then   u
3 

and v
3 

are real and let u
3
 = m

3
 and  v

3
 = n

3
. Here we obtain 3 values of u 

viz.,  

  m , 𝜔m , 𝜔
2
m and 3 values of  v viz., n , 𝜔n , 𝜔

2
n , where 𝜔 and 𝜔

2
 are the cube roots of 

unity.     

 Hence we get 9 combinations for u + v. Out of the nine combinations, the following 3 

combinations values are only valid for u + v since. 

   u
3
v

3
 = −

 𝑝3

27
  i.e.,  uv = −

𝑝

3
 . 

   m + n ;  𝑚𝜔+ n𝜔
2
  and   m𝜔

2
+𝑛𝜔. 

 Hence they are the roots of the given equation (1). The solution of the cubic equation 

depends on the roots of the equation (6). 

 The roots of the equation (6) are imaginary if  q
2
 + 

 4𝑝3

27
< 0. In that case both u

3 
and 

v
3 

are imaginary and hence u and v are the cubic roots of imaginary quantities. This has no 

arithmetical meaning. Hence Cardon’s method is not useful. So before trying to solve a 

cubical equation, find the nature of its roots. If all the three roots are real we can not use 

Cardon’s method to get arithmetic values for the roots. 

Example 1.  Solve the equation x
3 

– 6x – 9 = 0. 

Solution.  

 Here p = – 6 and q = – 9 

          4p
3
+ 27q

2
 = 4(– 6 )3+27(– 9 )2 

= 1323 > 0. 

 Hence the equation has no real root and two imaginary roots and so Cardon’s method 

is applicable. 

 ∴    x = u + v where u
3 

and v
3
 are the roots of the equation 

    t
2
+ qt −

 𝑝3

27
 = 0 
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  i.e.,   t
2
  – 9t  + 8 = 0  

  i.e., (t – 8)(t – 1) = 0 

 ∴   u
3 

= 8  and  v
3 

= 1. 

 Hence 2+1 i.e., 3 is one of the roots of the equation. The other roots are  2𝜔 + 𝜔
2
 and 

2𝜔
2
 + 𝜔. Or since 3 is one of the roots of the equation, dividing the given equation by x – 3 , 

we get the other rots of the given equation. They are the roots of the equation x
3 

+ 3x + 3 = 0. 

Hence the given equation has the 3 roots 

  3, 
−3+𝑖 3

2
  ,   

−3−𝑖 3

2
   

 These are the same as 3, 2𝜔 + 𝜔
2
  and  2𝜔

2
 + 𝜔. 

Example 2.  Solve the equation x
3 

–9x
2
 + 108 = 0. 

Solution. 

     Transform this equation into one without the second term, i.e., the term without x
2
 term. 

This can be done by decreasing the roots by 3.That equation is x
3 

–27x + 54 = 0. 

      If α, β, γ are the roots of the equation (1), the roots of the given equation are α + 3, β + 3 

and γ + 3. 

      Here u
3 

and v
3 

are the roots of the equation. 

      t
2 

+ qt −
 𝑝3

27
 = 0 where q = 54, p = − 27. 

      i.e.,   t
2 

+ 54t +(27 )2 = 0 

       i.e.,       (𝑡 + 27 )2  = 0 

Hence two of the roots of the equation are equal 

 ∴   u
3 

= − 27 and v
3 

= − 27.      

Hence u = − 3 and v =  − 3. 
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  ∴   The roots of the equation (1) are 

          − 6, −3𝜔  −3𝜔
2
  and  −3𝜔

2
 − 3𝜔 

Since  𝜔 and 𝜔
2 

are the cubic roots of the unity 

     1 + 𝜔 + 𝜔
2
 = 0. 

Hence these roots are  − 6, 3, 3. 

         ∴   The roots of the given equation are  − 3, 6 and 6.   

 Solution of bi quadratic equations.  

 Of the several methods of solution of a bi quadratic equation, the simplest is due to Ferrari. 

The method is illustrated below. 

        Let the equation be 

 x
4 

+ px
3 

+ qx
2 

+ rx + s = 0. 

        Express the left side of the equation as the difference of squares of a quadratic function 

and a linear function. 

        The equation can be written as 

           (x2 +
p

2
x)2– (𝑞–

p

4

2
)x2+ rx + s = 0. 

         The equation can be expressed as 

           (x2 +
p

2
x + 𝜆)2–   

p

4

2
− 𝑞 + 2𝜆 x2 + (𝜆𝑝 − 𝑟)𝑥 + 𝜆

2
− 𝑠  = 0 

     Which is of the form 

            (x2 +
p

2
x + 𝜆)2– (𝛼𝑥 + 𝛽)2 = 0 

     Where   α2 = 
p

4

2
– q + 2λ, 2αβ = λp – r,  β2 = λ2– s. 

    Eliminating α and β from these equations, we get 
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          4.
p

4

2
− 𝑞 + 2𝜆/(𝜆2 − 𝑠) =  (λp –  r)

2
 

    At least the root of this cubic equation in λ is real. From the real root of this equation, α  

and β can be determined. 

     Hence the given equation can be factorized into  

  x2 +
p

2
x + 𝜆 ± (𝛼𝑥 + 𝛽) = 0.  

    Solving the two quadratic equations, all the four roots of the bi quadratic can be 

determined. Hence the solution of the bi quadratic equation depends on the solution of a 

cubic equation, which can be solved by Cardon’s Method or by trial and error method which 

is explained in the article Newton’s method of divisors. 

Example 1.  Solve the equation 4x
4 

+ 4x
3 

– 7x
2 

– 4x – 12 = 0 

    This equation can be written as  

 (2x2 + x)2– ax2– 4x – 12 = 0 

         i.e.,  (2x2 + x + λ)2–{(4λ+ 8) x2+ (2λ + 4) x + λ2 +  12 } = 0 

         i.e.,   (2x2 + x + λ)2–(𝛼𝑥 + 𝛽)2 = 0 

    Where  α2 = 4(λ + 2)  , 2αβ = 2(λ + 2) , β2 =  λ2+12 

     Eliminating α and β from these relations, we get  

          16(λ + 2)(λ2+12) =  4(λ + 2)2 

     Which reduces to  

            (λ + 2)(4λ2–λ + 46) = 0. 

      The only real root of the equation is – 2. 

       Hence the given equation reduces to  

  (2x2 + x – 2)2– (4)2 = 0 

              i.e., (2x2 + x + 2) (2x2 + x – 6) = 0 
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            The roots of  2x2 + x + 2 = 0 are 
−1±𝑖 15

4
 

           The roots of  2x2 + x – 6 = 0 are –2 and  
3

2
. 

      ∴  The roots of the given biquadratic equation are  

                    –2, 
3

2
  and  

−1±𝑖 15

4
. 

Example  2.  Solve the equation x
4 

– 4x
3 

– 10x
2 

+ 64x + 40 = 0 

        This equation can be written as  

 (x2 − x)2– 14x2  + 64x + 40 = 0 

     and hence as 

            (x2–  2x + λ)2–{(2λ+14) x2– (4λ+64) x+ λ2– 40 } = 0 

         i.e.,   (x2–  2x + λ)2–(𝛼𝑥 + 𝛽)2 = 0 

    Where  α2 = 2(λ+7)  , 2αβ = – 4(λ+16) , β2 =  λ2–40. 

     Eliminating α and β from these relations, we get  

          8(λ + 7)(λ2–  40) =  16(λ + 16)2 

     On simplification, this equation reduces to  

           λ
3 

+5λ
2 

– 104λ – 792 = 0 

     792 = 2333(11). On trial we find that 11 satisfies the equation.  

    Dividing by λ – 11, we get λ
2 

+ 16λ + 72 = 0 which gives imaginary roots. 

    When λ = 11, α = ± 6, β = ± 9, αβ = –54. 

         ∴  α = 6, β = –9 or α = –6,  β = 9. 

  Both pairs of the values will lead to the same factorization of the expression on the left side. 

Hence the equation reduces to  
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                      (x2–  2x + 11)2– (6𝑥 − 9)2 = 0 

          i.e., (x2 + 4x + 2)( x2–  8x + 20) = 0 

      Hence the roots of the given equation are  

                  – 2 ±  2  and 4 ±2i.  

Example 3.  Solve the equation 2x
4 

+ 6x
3 

– 3x
2 

+ 2 = 0. 

Solution. 

         Transform this equation into another whose roots are twice the roots of the given 

equation. The transformed equation is 

       2x
4
+ 6(2) x

3
– 3(2

2
) x

2
+ 2(2

4
) = 0 

   Which reduces to  

        x
4 

+ 6x
3 

– 6x
2 

+ 16= 0                                     …………..(1)  

   This equation can be written as 

        (x2 +  3x + λ)2–{(2λ+15) x2+ 6λx+ λ2– 16 } = 0 

    The equation can be expressed as 

         (x2 +  3x + λ)2 –(𝛼𝑥 + 𝛽)2 = 0 where 

        α2 = 2λ+15 , 2αβ = 6λ , β2 =  λ2–16. 

     Eliminating α and β from these relations, we get  

          4(2λ + 15)(λ2–  16) =  36𝜆2 

     Simplifying we get 2λ
3 

+6λ
2 

– 32λ – 240 = 0        ……….(2) 

           240 = 24(3)(5), by trial we see that λ = 5 is a root of (2). 

      Hence α = ± 5, β = ± 3, αβ = 15. 

         ∴  α = 5, β = 3 or  α = –5,  β = –3. 
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      Hence for both pairs of values (1) reduces to  

                 (x2 +  3x + 5)2 –(5𝑥 + 3)2 = 0. 

        i.e.,  (x2 +  8x + 8)( x2– 2x + 2) = 0 

The root of  this equation are  – 4 ± 2 2  and 1 ±i. Hence the roots of the given equation are 

– 2 ±  2  and  
1 ±i

2
. 

 Exercises  

Solve the equations 

1. x
3 

+ 3x
2 

+ 6x + 4 = 0 

2. x
3 

– x
2 

–
 
16x + 20 = 0 

3. x
3 

+ 6x
2 

+ 9x + 4 = 0 

4. 3x
4 

– 10x
3 

+ 6x
2 

– 10x +3 = 0. 

5. x
4 

– 8x
3 

–  12x
2 

+60x +63 = 0. 

Answers : 1. –1, –1± i√3, 2. 2, 2, –5, 3. –4, –1, –1, 4. ± i, 3, 
1

3
, 5. –1, –3, 1 ± 2i. 

Solution of numerical equation 

An equation such as 3x
3
 – 2x

2
 – 5x + 7 = 0, where coefficient are numbers are called 

numerical equation. Such an equation may have real and imaginary roots. Among the real 

roots, some roots may be commensurable and some incommensurable. We shall give below 

some methods to determine the commensurable and approximations to incommensurable 

roots of a numerical equation. 

A rational fraction cannot be a root of an equation with integral coefficients, the 

coefficient of x
n
 being unity      

If possible let 
𝑎

𝑏
  (a fraction in its lowest terms) be a root of the equation x

n
 + p1x

n – 1 
+ 

p2 x
n – 2 

+…+ pn = 0, where p1, p2, p3, … ,pn are integers. 

Therefore .
𝑎

𝑏
/

𝑛

+ p1  .
𝑎

𝑏
/

𝑛−1

+ p2 .
𝑎

𝑏
/

𝑛−2

+ … + pn = 0. 

Multiplying throughout by b
n – 1 

, we get 
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−
𝑎𝑛

𝑏
 = p1a

n – 1 
+ p2 ba

n – 2 
+ p3 b

2
a

n – 3 
+…+ pnb

n – 1  
….(1) 

a is not divisible by b. 

Therefore  
𝑎𝑛

𝑏
 = a fraction.  

But each term on the right side of (1) is an integer. We have therefore a fraction equal 

to an integer which is impossible. Hence 
𝑎

𝑏
  cannot be a root of the equation. So the 

real roots of the equation are either integer or incommensurable roots. 

Integral roots 

Since pn is numerically equal to the product of all the roots, it is evident that integral 

roots are the exact divisors of pn. Hence to find the integral roots of an equation we have to 

find the factors of pn which satisfy the equation. If the coefficient of x
n
 is not unity but p0 then 

transform the equation into another whose roots are those of the given equation multiplied by 

p0. In the new equation p0 will be a common factor in all the coefficients of the terms. We can 

divide the equation by p0 and get an equation with the coefficient of the first term unity.  

Example 1. Solve the equation x
4
 + 2x

3
 – x – 2 = 0. The integral roots must be found among 

the values ± 1, ± 2 which are the factors of – 2. By Descartes’ rule of signs. It can have at the 

most one positive root. 

Solution. 

Substituting these value in the expression on the left side, we can see that 1, – 2 are the roots 

of the equation. 

We can easily see that  

x
4
 + 2x

3
 – x – 2 = (x – 1)(x + 2)(x

2
 + x + 1). 

∴The other roots of the equation are  
−1± −3

2
   

Example 2. Find the rational root of 2x
3
 – x

2
 – x – 3 = 0 and hence complete the solution of 

the equation. 

Solution. 

Multiply the roots of the equation by 2. 

2x
3
 – 2x

2
 – 4x – 24 = 0. 

x
3
 – x

2
 – 2x – 12 = 0. 
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The integral roots must be found among the values  ± 1, ± 2, ± 3, ± 4, ± 6, ± 12 

Substituting these values in the equations, we find + 3 is the only root  

3

2
 is the only rational root of the original equation. 

We can easily see that the other roots are     
−1± −3

2
  . 

If we can find limits between which the real roots of an equation lie it is possible to limit the 

number of trials. We shall give below some elementary methods to determine such limits. 

One way of finding the upper limit is to group the term of the equations in such a way that 

each group is separately positive. Consider for example the following equations: 

(1) 2x
3
 – 5x

2
 + x + 10 = 0. 

This may be written in the form  

x
2
(2x – 5) + (x + 10) = 0. 

If x > 3, each one of the group is positive. Thus the upper limit of the real roots may 

be taken as 3. 

(2) 3x
4
 + 6x

3
 + 12x

2
 – 4x – 10 = 0. 

i.e., 3x
4
 + (6x

3
 – 4x) + 12x

2
 – 10 = 0. 

i.e., 3x
4
 + 2x (3x

2
 – 2) + 2(6x

2
 – 5) = 0. 

Each one of the group is positive if x > 1. The upper limit may be taken as 1. 

(3) 5x
5
 – 7x

4
 – 10x

3
 – 23x

2
 – 90x – 417 = 0. 

Distributing the higher power of x among the negative terms, the equation may be 

written as  

x
5
 – 7x

4
 + x

5
 – 10x

3
 + x

5
 – 23x

2
 + x

5
 – 90x + x

5
 – 417 = 0. 

i.e., x
4
(x – 7) + x

3
 (x

2
 – 10) + x

2
( x

3
 – 23) + x (x

4
 – 90) + (x

5
 – 417) = 0. 

If x > 7, each group is positive. Hence the upper limit may be taken as 7. 

(4) x4
 – x

3
 – 2x

2
 – 4x – 24 = 0. 

Multiplying the equation by 4 and distributing the highest powers among the negative 

terms, we get  

(x
4
 – 4x

3
) + (x

4
 – 8x

2
) + (x

4
 – 16x) + (x

4
 – 96) = 0. 

x
3
(x – 4) + x

2
(x

2
 – 8) + x(x

3
 – 16) + (x

4
 – 96) = 0. 

Here the upper limit is 4. 

To find the lower limits of the real roots it is enough to find the lower limits of the 

negative roots of the equation. The negative roots of f(+ x) = 0 are the positive roots 
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of f( - x)  = 0. Hence the lower limit of the negative roots of f(x) = 0 is the upper limit 

(with the sign changed) of the positive roots of the equation f( - x ) = 0. 

If the numerically greatest negative coefficient in the equation f(x) =  x
n
 + p1x

n – 1 
+ p2 

x
n – 2 

+…+ pn = 0 is equal to – p, then p + 1 is an upper limit to the positive roots. 

f (x) > 0 if x
n
 > p(x

n – 1 
+ x

n – 2 
+ …+ 1) 

i.e., if  > p 
𝑥𝑛 −1

𝑥−1
      

i.e., if  > p 
𝑥𝑛

𝑥−1
      

i.e., if   x
n
 .1 −

𝑝

𝑥−1
/ > 0 

i.e., if   .1 −
𝑝

𝑥−1
/ > 0 

i.e., x – 1 > p 

i.e., x > p +1. 

Hence according to this rule the upper limits in the previous article are 6, 11, 18, 25. 

If α is a root of the equation  

f(x) =  x
n
 + p1x

n – 1 
+ p2 x

n – 2 
+…+ pn = 0 then x – α is a factor of f (x). 

let the quotient when f (x) is divided by x – α be  

x
n – 1 

+ b1x
n – 2 

+ … + b
n – 1 

. 

Hence we have  

f (x) ≡ (x – α )(x
n – 1 

+ b1x
n – 2 

+ … + b
n – 1

)  

if we put x = k in the identity, we have  

f (k) =  (k – α )(k
n – 1 

+ b1k
n – 2 

+ … + b
n – 1

). 

Therefore k – α is a factor of f (k). 

In particular if k = 1, or – 1, f(1) is divisible by 1 – α  and f (– 1) is divisible by – 1 – 

α, i.e., f(1) is divisible by α – 1 and f (– 1)  by α + 1. Before testing any divisor α for a 

root, calculate f (1) and  f (– 1) such of the divisor decreased by 1 which fail to divide 

exactly f (1) and the divisors increased by 1 which fail to divide f (– 1) are to be 

rejected. 

Newton’s method of divisors. 

Let the given equation be  

        f(x) =  p0x
n
 + p1x

n – 1 
+ p2 x

n – 2 
+…+ pn = 0 where p0,  p1, p2, …, pn are integers. 

If α is a rational root of the equation, then α is a factor of pn and f (x) is exactly 

divisible by x – α  
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Let the equation when f (x) is divided by x – α 

b0x
n – 1 

+ b1x
n – 2 

+ …+ b
n – 1

. 

Here b0, b1, b2, …, b
n – 1 

are integers  

∴   p0x
n
 + p1x

n – 1 
+ p2 x

n – 2 
+…+ pn = (x – α)( b0x

n – 1 
+ b1x

n – 2 
+ …+ b

n – 1
) 

Equating the coefficient of like powers on both sides, we have  

p0 = b0 

p1 = b1 – αb0 or p1 – b1 =   – αb0 

p2 = b2 – αb1 or p2 – b2 = – α b1 

…………………………………… 

…………………………………… 

pr = br – α br-1  or pr – br = – α br-1  

……………………………………. 

pn – 1 = bn – 1 – αbn – 2  or pn – 1 – bn – 1 =  – αbn – 2. 

pn =   – αbn – 1 

pn is divisible by α and the quotient is – bn – 1  

pn,        pn – 1,      pn – 2,        …           p2,        p1,      p0 

          – bn – 1,    – bn – 2,   ……          – b2,   – b1,    – b0   

                     – αbn – 2   – αbn – 3        ……                – αb1   – αb0       0 

In the first line the successive coefficients p0,  p1, p2, …, pn in the reverse order of 

their occurrence are written and the quotient – bn – 1 when pn is divided by α is written below 

pn – 1 and added, we get – αbn – 2. If this is divided, by α and the quotient– bn – 2 is written 

below pn – 2 and added, we get  – αbn – 3.  If we continue this process, in the end we get zero 

since  p0 = b0. Since b0, b1, b2, …, bn – 1 are integers, if at any stage the quotient we get is a 

fraction, we can at once infer that α is not a root of f (x) = 0. Also the last quotient b0 must be 

equal to p0. 

Example 1. Solve the equation  x
4
 – 2x

3
 – 13x

2
 + 38x – 24 = 0 by finding the rational roots  

Solution. 

The equation can be grouped as follows: 

x
4
 – 5x

3
 + 3x

3
 – 13x

2
 + 38x – 24 = 0 

i.e., x
3
(x – 5) + x

2
 (3x – 13) + 2( 19x – 12) = 0 
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Hence the upper limit of the real root is 5. 

Changing x into – x, we get x
4
 + 2x

3
 – 13x

2
 – 38x – 24 = 0 

The term of the equation can be grouped as follows: 

x
4
 – 13x

2
 + x

3
 – 38x + x3 – 24 = 0. 

i.e., x
2
(x

2
 – 13) + x (x

2
 – 38)  + (x

3
 – 24) = 0 

if x = 7, each group is positive. 

  Therefore the lower limit of the negative root is – 7, 

Hence the real roots of the equation lies between – 7 and 5. 

The divisors of 24 (other than ± 1) are  ± 2, ± 3, ± 4, ± 6, ± 8, ± 12, ± 24. 

Since the real roots lies between – 7 and 5 it is enough to test for roots the divisors   

                           ± 1,  ± 2, ± 3, ± 4, – 6.  

Here  f(x) = x
4
 – 2x

3
 – 13x

2
 + 38x – 24 . 

Hence f (1) = 0 and f (– 1) =  – 72  

∴ 1 is a root of the equation and  (– 1) is not a root of it. 

If α is a root of f (x) = 0, then α + 1 is a factor of f (–1). 

If 1 is added to the divisors to be tested, i.e., ± 2, ± 3, ± 4,  – 6 , we get 3, 4, 5, – 1,  – 2, –3, – 

5, 

5 and – 5 are not factors of – 72. 

Hence the divisor  4 and – 6 are to be rejected. 

We can apply Newton’s method of divisors for obtaining the rational roots. 

– 2       –24   38  – 13  – 2  + 1 

                   12   –25   19 

                  50   – 38   17  

The trial divisor – 2 has to be rejected since it does not divide 17 exactly 
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                    2           –24     38     – 13  –2  + 1 

                                          –12       13     0   – 1  

                                            26         0    – 2    0  

Hence 2 is root of the equation. When f (x) is divided by x – 2, we get the quotient x
3
 – 

13x + 12 = 0. We shall test the other divisors ± 3, – 4 on the equation. 

           

                           –3             12    – 13    0    1  

                                                     – 4  

                                                    – 17  

Therefore – 3 is not a root. 

                                              3              12    – 13    0      1 

                                                                          4    – 3   – 1  

                                                                         –9    – 3     0 

Therefore  3 is a root of the equation 

                                            –4               – 4      3      1  

                                                                          1     – 1  

                                                                          4        0 

Therefore – 4 is a root of the equation and hence the roots of the equation are 1, 2, 3 and 

– 4. 

Example 2. Find all the rational roots of the equation 4x
3
 + 20x

2
 – 23x + 6 = 0    ……(1) 

Solution. 

Multiply the roots of the equation m. 

Then the transformed equation becomes  

4x
3
 + 20mx

2
 – 23m

2
x + 6m

3
 = 0 

If we take m = 2 then 4 will become the common factor of all the terms of the equation. 

In that case the equation becomes  x
3
 + 10x

2
 – 23x + 12 = 0   ………….(2) 

Find the rational roots of the equation. These rational roots of the equation will be twice 

the roots of the original equation. The transformed equation can be written as  

x
3
 + x(10x – 23) + 12 = 0 

When x = 3, the expression on the left side is positive. Hence 3 is the upper limit of the 

real roots. 

Changing x into – x, the equation becomes  

–  x
3
 + 10x

2
  + 23x + 12 = 0 
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i.e.,  x
3
 – 10x

2
 – 23x – 12 = 0 

i.e., 3x
3
 – 30x

2
 – 69x – 36 = 0 

i.e., (x
3
 – 30x

2
) + (x

3
 – 69x) + (x

3
 – 36) = 0 

i.e., x
2
 (x – 30) + x(x

2
 – 69) + (x

3
 – 36) = 0. 

x > 30, to make each group +ve. 

∴  The lower limit of the real roots is – 30. 

Hence the real roots lie between – 30 and 3. The rational roots of the equation (2) are the 

factors of 12 and hence they can be found among the values ±1, ±2, ±3, ±4, ±6, ±12. 

From the limits of the real roots, it is enough to test for roots the divisors    ±1, ±2, –  3, –  

4, –  6, –  12 

f (1) = 0, f(–  1) = 44. 

Hence 1 is a root of the equation and – 1 is not a root of the equation. If 1 is added to the 

divisor we get 3, – 1, – 2, – 3, – 5, – 11. 

3, – 3, – 5 are not the factor of  44. 

Hence the divisors 2, –  4, –  6 are to be rejected. The remaining divisors are – 2, – 3, – 

12. We shall apply Newton’s method of divisors. 

                                         – 2        12    – 23       10     1 

                                                               – 6 

                                                              – 29 

Therefore – 2 is not a root  

                                – 3        12    – 23    10    1 

                                                    – 4        9  

                                                   – 27      19 
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Therefore – 3 is not a root  

                     – 12                  12   – 23         10     1 

                                                    – 1              2     – 1  

                                                     – 24          12     0 

Therefore – 12 is a root of the equation . 

Hence the rational roots of (2) are – 12 and 1. Since irrational roots and imaginary roots 

occur in pairs, the third roots is also rational. We can easily show that 1 is a repeated root 

of the equation (2). Hence the root of the original equation are 
1

2
,

1

2
, −6. 

Example 3. Solve the equation 3x
4
 – 40x

3
 + 130x

2
 – 120x + 27 = 0 given that it has two 

integral roots. 

Solution. 

The terms of the equation can be grouped  as  

(3x
4
 – 40x

3
)   +  (130x

2
 – 120x)  + 27 = 0 

i.e., x
3
 (3x – 40) + 10x(13x – 12) + 27 = 0. 

Each group is positive if x = 14. 

The upper limit of the real roots is 14. 

Changing x  into – x, we get the equation transformed into 3x
4
 + 40x

3
 + 130x

2
 + 120x + 

27 = 0 whose lower limit of positive roots is zero. Hence the limits of the roots of the 

original equation are 0 and 14. The integral roots are found among the factors of 27, i.e., 

among the values ±1, ±3, ±9, ±27. 

The real roots lies between 0 and 13. 

Hence we to test for roots only the divisors 1, 3, 9. 

f (1) = 0 , f (–1) = 320. 

Hence 1 is a root of the equation and – 1 is not a root. 
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The divisors 3 and 9 increased by 1 are the factors of 320. Hence 3 and 9 are the roots. 

We shall apply Newton’s method of divisors to find the quotient when the expression on 

the left side is dived by (x – 1),(x – 3),(x – 9) and incidentally verify that 3,9 are the roots 

of  equation.  

                             1        27      –120      130     – 40    3 

                                                    27        – 93      37   – 3  

                                                     93           37     – 3      0 

                                   3        –27       93     – 37      3 

                                                                –9         28     –3  

                                                                84        – 9      0 

                              9         9     – 28      3 

                                                     1     – 3  

                                                     27      0 

Hence the quotient is 3x – 1 . 

Hence the equation becomes (x – 1)(x – 3)(x – 9)(3x – 1) = 0 

∴ The roots are 1, 3, 9 and 
1

3
  

Exercises  

Solve the following equation, given that they commensurable roots 

1. x
3
 – 5x

2
 – 18x + 72 = 0. 

2. x
4
 – 39x

2
 + 46x – 168 = 0. 

3. x
5
 – 12x

4
 + 25x

3
 – 48x

2
 – 26x + 60 = 0. 

4. 2x
4 

+ x
3
 – 2x

2
 – 4x – 3 = 0. 

Answers : 1.3,6, - 4, 2. 6, -7, 
1± −15

3
, 3. 1, - 1,  10, 4. 

3

2
, −1,

−1±3𝑖

3
. 
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Horner’s method                           

 This method can be used to determine both the commensurable and the 

incommensurable roots of a numerical equation. First we shall explain the method for 

obtained the positive root. The procedure is to determine the root figure by figure, first the 

integral part and then the first decimal place, then the second decimal place and so on until 

the root terminates or the root has been obtained to the required degree of approximation. The 

main principle involved in this method is diminishing the roots by certain known quantities 

by successive transformations. In this method the successive transformations can be exhibited 

in a compact form and the roots can be obtained to any number of places of decimals 

required. 

First we have to find by trial two consecutive integers between which a real positive 

root of the equation lies. This will give the integral part of the root. Let it be a first diminish 

all the roots of the equation by a. Then the transformed equation will have a root between 0 

and 1. In order to avoid decimal in the working,  all the roots of this transformed equation are 

multiplied by 10. Then the new transformed equation has a root between 0 and 10. By trial 

find the integers between which the root lies and thus find the integral part of the root. Let it 

be b. Then diminish the roots be b and again multiply the roots by 10 and continue the 

process till we get the root to the number of decimal we required.  

Example 1. The equation x
3
 – 3x + 1 = 0 has a root between 1 and 2. Calculate it to three 

places of decimals. 

Solution. 

Since the roots lies between  1 and 2, the integral part of the root is 1. Diminish the root of 

the equation by 1. 

                                      1        0        – 3          1                                                                            

(1 

                                                1          1          – 2  

                                                1        – 2          - 1  

                                                1           2  

                                                2           0  
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                                                1 

                                                3 

The transformed equation is x
3
 + 3x

2
 – 1 = 0 

This equation has therefore  a root between 0 and 1. 

Multiply the roots of this equation by 10. 

Then the equation transforms into x
3
 + 30x

2
 – 1000 = 0 

We can easily see that a root of this equation lies between 5 and 6. Diminish the roots of the 

equation by 5. 

                      1        30           0               – 1000                                                                             

(5 

                                 5           175                 875  

                                35          175               – 125  

                                5            200 

                                40           375 

                                 5 

                                45 

The transformed equation is x
3
 + 45x

2
 + 375x – 125 = 0. 

This equation has therefore a root between 0 and 1. 

Multiply the roots of the equation by 10. 

Then the equation transforms into x
3
 + 450x

2
 + 37500x – 125000 = 0. 

We can easily see that a root of this equation lies between 3 and 4. 

Diminish the roots of this equation by 3.  

                          1                 450             37500         – 125000                                              (3 
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                                              3                1359              116577 

                                          453               38859               – 8423  

                                           3                   1368 

                                         456                 40227 

                                           3 

                                         459 

The transformed equation is x
3
 + 459x

2
 + 40227x – 8423 = 0. 

Multiply the roots be 10.  

Then the equation transforms into x
3
 + 4590x

2
 + 4022700x – 8423000 = 0. 

We can easily see that a root of this equation lies between 2 and 3.diminish the root be 2 

                         1           4590        4022700               – 8423000                                    (2  

                                      2               9184                       80637668 

                                      4592       4031884                  – 359232  

                                        2           9188 

                                    4594        4041072 

                                      2 

                                  4596 

The transformed equation is x
3
 + 4596x

2
 + 4041072x – 359232 = 0 

Multiply the roots by 10. Then the equation transforms into  

x
3
 + 45960x

2
 + 404107200x – 359232000 = 0 

We can easily see that a root of this equation lies between 0 and 1. We can stop with this 

since we require the root correct to three decimal places. Thus the root correct to three 

decimal places is 1.532. In the actual presentation we need write only the coefficients of the 
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various transformed equations omitting completely the powers of x. The series of arithmetical 

operations is represented as follows: 

                                               1        0                  – 3                 1                           (1.5320 

                                                          1                      1               – 2  

                                                          1                     – 2          – 1000  

                                                          1                        2                875 

                                                          2                         0              – 125000  

                                                          1                       175             116577 

                                                          30                    175             – 8423000 

                                                           5                     200                     8063768 

                                                           35                      37500           – 359232000  

                                                            5                        1359 

                                                           40                        38859 

                                                            5                           1368 

                                                           450                   4022700 

                                                            3                          9184 

                                                           453                     4031884 

                                                             3                            9188 

                                                            456                        401407200 

                                                             3  

                                                           4590 

                                                            2 

                                                          4592 
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                                                              2 

                                                           4594 

                                                               2 

                                                           45960 

Example 2. Find the positive root of the equation x
3
 – 2x

3
 – 3x – 4 = 0 correct to three places 

of decimals. 

Solution.  

by   Descartes’ rule of signs, there can be at the most only one positive root and we can easily 

see that it lies between 3 and 4. The process is exhibited as follows: 

                                              -2                – 3                       – 4                                   (3.2842 

                                               3                    3                          0 

                                               1                     0                     – 4000  

                                               3                    12                         2688 

                                               4                     1200                 -1312000 

                                                3                     144                           1242752 

                                               70                    1344                           - 69248000  

                                               2                        148                                64746224 

                                              72                     149200                            – 4501776000 

                                                2                       6144                                       3243903688 

                                              74                      155344                                      – 1257872312 

                                              2                          6208 

                                            760                     16155200 

                                             8                           31356 
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                                           768                      16186556 

                                            8                            31392 

                                          776                       1621794800 

                                            8                                   157044 

                                         7840                                1621951844 

                                            4 

                                          7844 

                                             4 

                                          7848 

                                              4 

                                         78520 

                                             2 

                                          78522 

∴   The roots correct to three decimal places is 3.284 

Exercises  

1. Find the positive root, correct to two decimal places of the equation x
3
 + 3x

2
 + 2x – 5 

= 0. 

2. Find the real  root of x
3
 + 6x = 2 to three places of decimals 

3. Find the root between 0 and 1 correct to three places of decimal of the equation x
3
 + 

18x – 6 = 0. 

4. Find the root of the equation x
3
 – 5x – 11 = 0 which lies between 2 and 3 correct to 

two places of decimals. 

Answers : 1.0.90, 2.0.327, 3. 0.33, 4. 2.99.    
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UNIT III: SEQUENCE AND SERIES 

Sequence and series : Sequence – limits, bounded, monotonic, convergent, oscillatory and 

divergent sequence – Algebra of limits – Subsequence – Cauchy sequence in R and Cauchy’s 

general principle of convergence. 

Sequences                                                

 Definition. Let f : ℕ → ℝ be a function and let f (n) = an. Then a1, a2, a3, …, …, an, 

….. is called the sequences in ℝ determined by the function f and is denoted by (an). an is 

called the n
th

 term of the sequence. The range of the function f which is a subset of ℝ, is 

called the range of the sequence

Examples. 

1. The function f : ℕ → ℝ given by f (n) = n determines the sequence 1, 2, 3, …, …, n, 

… 

2. The function f : ℕ→ ℝ given by f (n) = n
2
 determines the sequence 1, 4, 9, …, …, 

n
2
,…                                                                                                                                                                                                                                                                                                                     

3. The function f : ℕ → ℝ given by f (n) = (–1)
n
 determines the sequence –1,1, –1, 1, 

…, Thus the terms of a sequence need not be distinct. The range of this sequence ie 

{1, –1}. Thus we see that the range of a sequence may be finite or infinite. 

4. The sequence ( (–1)
n+1

) is given by 1, –1, 1,  –1… The range of this sequence is also 

{1, –1}. However we note that the sequence ( (–1)
n
) and ( (–1)

n+1
) are different. The 

first sequence starts with –1 and the second sequence starts with 1. 

5. The constant function f : ℕ → ℝ given by f (n) = 1 determines the sequence 1, 1, 1, 

…, … such a sequence is called a constant sequence 

6. The function f : ℕ → ℝ given by  

 

f (n)  =  

1

 2
 𝑛 if 𝑛 is even

1

 2
 (1 − 𝑛) if 𝑛 is odd

 determines the sequence 0,1, –1, 2, –2, …,n, – n, 

….The range of this sequence is Z 
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7. The function f : ℕ→ ℝ given by f (n) = 
n

n+1
 determines the sequence 

1

2
 , 

2

3
, 

3

4
, …., 

n

𝑛+1
,... 

8. The function  f : ℕ → ℝ given by f (n) = 
1

n
 determines the sequence 1 

1

2
 , 

1

3
, ….  

1

n
, 

… 

9. The function f : ℕ →ℝ given by f (n) = 2n+3 determines the sequence 5,7,9,11, … 

10. Let x ∈  ℝ. The function f : ℕ→ ℝ given by f (n) = x 
n-1

 determines the geometric 

sequence 1, x, x
2
,……..x

n
,………. 

11. The Sequence (– n) is given by –1, –2, –3,… – n,…… The range of this sequence is 

the set of all negative integers. 

12. A sequence can also be described by specifying the first few terms and stating a rule 

for determining an in terms of the previous terms of the sequence. For example, let 

a1 = 1, a2 =1, and an = an–1+an– 2. Then, a3 = a2 + a1 = 2; a4 =a3 + a2 = 3 and so on. We 

thus obtain the sequence 1,1,2, 3,5,8,……….This sequence is called Fibonacci’s 

sequence. 

Bounded Sequences 

Definition. A sequence (an) is said to be bounded above if there exists a real number 

k such that an ≤ k for all n ∈ ℕ. k is called an upper bound of the sequence (an). 

 

 A sequence (an) is said to be bounded below if there exists a real number k 

such that an ≥ k for all n. k is called a lower bound of the sequence (an). 

 

 A sequence (an) is said to be a bounded sequence if it is both bounded above 

and below. 

 

Note. 

1. A sequence (an) is bounded if there exists a real number k > 0 such that   𝑎𝑛    < k 

for all n 

Examples. 

1. Consider the sequence 1,
1

2
, 

1

3
, …….. 

1

n
,… Here 1 is the 𝑙.u.b and 0 is the g. 𝑙.b. 

It is a bounded sequence. 
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2. The sequence 1,2,3, …….., n,…….. is bounded below but not bounded 

above. 1 is the g. 𝑙.b of the sequence. 

3. The sequence –1, –2, –3,… – n, … is bounded above but not bounded below. 

–1   

      is the 𝑙.u.b of the sequence. 

4. 1, –1, 1, –1, …. is a bounded sequence. 1 is the l. u. b –1 is the g. l. b of the 

sequence 

5. Any constant sequence is a bounded sequence. Here 1.u.b = g. l. b = the 

constant term of the sequence. 

 

Monotonic sequence  

                Definition: A sequence (an) is said to be monotonic increasing if an ≤ an + 1 for all 

n. (an) is said to be monotonic decreasing if an ≥ an + 1 for all n. (an) is said to be strictly 

monotonic decreasing if an < an + 1 for all n. (an) is said to be monotonic if it is either 

monotonic increasing or monotonic decreasing. 

Example.  

1. 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, …. is a monotonic  increasing sequence. 

2. 1, 2, 3, 4 ….,n, ….. is a strictly monotonic  increasing sequence. 

3. 1, 
1

2
,  

1

3
, 

1

4
, … 

1

𝑛
, … is a strictly monotonic  decreasing sequence. 

4. The sequence (an) given by 1, –1, 1, –1, 1, … is neither monotonic  increasing nor 

monotonic  decreasing. Hence (an) is not a monotonic sequence. 

5. .
2𝑛−7

3𝑛+2
/ is a monotonic increasing sequence. 

 

Proof. an – an + 1 = 
2𝑛−7

3𝑛+2
 – 

2(𝑛+1)−7

3(𝑛+1)+2
 

                                     = 
−25

(3𝑛+2)(3𝑛+5)
  < 0. 

  ∴ an < an + 1. 
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 Hence the sequence is monotonic increasing. 

6. Consider the sequence (an) where  

                  an = 1+ 
1

1!
 + 

1

2!
 + …. 

1

𝑛!
 = Clearly (an) is a monotonic increasing sequence. 

 

 Note: A monotonic increasing sequence (an) is bounded below and q1 is the g.𝑙.b of 

the sequence. A monotonic decreasing sequence (an) is bounded above and a1 is 𝑙. u. b of the 

sequence. 

 

Solved Problem. 

 Show that if (an) is a monotonic sequence then .
𝑎1  + 𝑎2  + … +𝑎𝑛

𝑛
/  is also a monotonic 

sequence. 

                                                                                                       

 

Solution. Let (an) be a monotonic increasing sequence. 

                         ∴ a1 < a2  < a3 …. < an <       ….. (1) 

  Let b   = .
𝑎1  + 𝑎2  + … +𝑎𝑛

𝑛
/ 

Now, bn + 1 – bn    =  
𝑎1  + 𝑎2  + … +𝑎𝑛+1

𝑛+1
−

𝑎1  + 𝑎2  + … +𝑎𝑛

𝑛
 

 

       >    
𝑛𝑎𝑛+1−(𝑎1  + 𝑎2  + … +𝑎𝑛)

𝑛(𝑛+1)
 

 

       =   
𝑛𝑎𝑛+1−(𝑎𝑛  + 𝑎𝑛  + … +𝑎𝑛)

𝑛(𝑛+1)         by(1) 

       =  
𝑛(𝑎𝑛+1−𝑎𝑛) 

𝑛(𝑛+1)
 

       >   0.                 

 

∴ bn + 1 ≥ bn. 

∴ (bn) is monotonic increasing. 

The proof is similar if (an) is monotonic decreasing. 
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Convergent sequences 

Definition. A sequence (an) is said to converge to a number 𝑙 if given 𝜖 > 0 there exists a 

positive integer m such that   an  –  𝑙   < 𝜖 for all n ≥m. We say that  𝑙  is the limit 

of the sequence and we write  lim𝑛→∞ 𝑎𝑛 = 𝑙 or (an) → 𝑙 

 

 Note.1 (an) → 𝑙 iff given 𝜖 > 0 there exists a natural number m such that 

an ∈( 𝑙 –𝜖,  𝑙 + 𝜖, ) for all n ≥ m i.e, All but a finite number of terms of the sequence 

lie within the interval (𝑙 − 𝜖 , 𝑙 + 𝜖). 

 

Note.2  The above definition does not give any method of finding the limit 

of a sequence. In many cases, by observing the sequence carefully. We can guess 

whether the limit exists or not and also the value of the limit. 

 

   Theorem 3.1.  A sequence cannot converge to two different limits. 

  

 Proof. Let (an) be a convergent sequence. 

                       If possible let 𝑙1 and 𝑙2 be two distinct limits of (an). 

                       Let 𝜖  > 0 be given. 

 Since (an) →𝑙1 , there exists a natural number n1 

            such that    𝑎𝑛 − 𝑙1 < 
1

2
 𝜖 for all n ≥ n1                  ……….(1) 

 Since (an) → 𝑙2, there exists a natural number n2 

           such that  𝑎𝑛 − 𝑙2  < 
1

2
 𝜖 for all n ≥ n2     --------- (2) 

           Let m = max {n1 , n2}  

           Then    𝑙1 − 𝑙2  =  𝑙1 − 𝑎𝑚 + 𝑎𝑚 − 𝑙2  

                                   ≤  𝑎𝑚 − 𝑙1 +  𝑎𝑚 − 𝑙2  

               < 
1

2
 𝜖 + 

1

2
 𝜖 ( by 1 and 2) 

                                  = 𝜖 

 

∴  𝑙1 − 𝑙2 <  𝜖 and this is true for every 𝜖 > 0. Clearly this is possible only if 𝑙1 − 𝑙2 

= 0. Hence 𝑙1 = 𝑙2 
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Examples 

1. Lim    
1

𝑛
  = 0 

n →∞ 

Proof.  Let 𝜖 > 0 be given. Then  
1

𝑛
− 0  =  

1

𝑛
 < 𝜖 if 𝑛 >

1

𝜖
. Hence if we 

choose m to be any natural number such that   𝑚 >
1

𝜖
 then 

1

𝑛
− 0 < 𝜖 for 

all n ≥ m. 

               lim    
1

𝑛
  = 0 

             n →∞ 

 

Note. If  𝜖 = 1/100, then m can be chosen to be any natural number greater than 

100. In this example the choice of m depends on the given 𝜖 and [ 1/ 𝜖 ] + 1 is the 

smallest value of m that satisfies the requirements of the definition. 

 

2. The constant sequence 1, 1, 1, …… converges to 1. 

Proof. Let 𝜖 > 0 be given 

Let the given sequence be denoted by (an). 

Then an = 1 for all n. 

∴ │an – 1│=│1 – 1│ = 0 <   𝜖  for all n 𝜖 N. 

 

∴│an –1│< 𝜖 for all n ≥ m where m can be chosen to be any natural 

number. 

∴  Lim   an = 1 

   n →∞ 

Note. In this example, the choice of m does not depend on the given 𝜖 

 

3. Lim      
𝑛+1

𝑛
  = 1 

    n→∞ 

 

Proof. Let 𝜖 > 0 be given. 

                              Now,  │
𝑛+1

𝑛
−  1│= │1 + 

1

𝑛
− 1 │= │

1

𝑛
 │ 
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                 ∴ If we choose m to be any natural number greater than 
1

𝜖
 we 

have,   

                              │
𝑛+1

𝑛
− 1│< 𝜖 for all n ≥ m 

 

                           ∴    Lim     
𝑛+1

𝑛
 = 1 

                                    n →∞ 

 

4. Lim     
1

2𝑛  = 0 

                 n →∞ 

 

           Proof. Let 𝜖 > 0 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛 

         Then│
1

2𝑛  
−  0│= 

1

2𝑛  < 
1

𝑛
 (∴2n > n ∀ 𝑛 𝜖 N). 

                ∴ │
1

2𝑛 −  0│< 𝜖 for all n ≥ m where m is any natural number greater 

than  
1

∈
 

                ∴  lim       
1

2𝑛  =  0                                  

                     n →∞       

 

5. The sequence ( (–1) n) is not convergent 

Proof.  Suppose the sequence( (–1) n) converges to 𝑙 

Then, given 𝜖  > 0, there exists a natural number m such that │( –1) n –𝑙│ 

< 𝜖  for all n > m. 

∴  │(–1)m – (–1) m+1 │= │( –1) m – 𝑙+ 𝑙 – (–1) m+ 1│ 

                                      ≤ │(–1) m –𝑙│ +│( –1) m + 1 – 𝑙│ 

  <  𝜖  + 𝜖   = 2 𝜖 

But  │(–1) m – (–1) m+1│ = 2. 

∴2 < 2 𝜖 i.e., 1 < 𝜖 which is a contradiction since 𝜖 > 0 is arbitrary. 

 

∴ The sequence ( (–1) 
n
) is not convergent. 

 

Theorem 3.2.  Any convergent sequence is a bounded sequence. 
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Proof. Let (an) be a convergent sequence. 

 

            Let    lim  an = 𝑙                  

        n →∞  . 

 

Let  𝜖 > 0 be given. Then there evists m 𝜖 N such that │an  −𝑙│< 𝜖 for all n ≥ 

m. 

 

∴ │ an│ < │𝑙│ + 𝜖 for all n ≥ m. 

 

Now, let k = max { │a1 │, │a2 │ ……….., │am – 1│,│𝑙 │ +  𝜖 } 

Then │an│≤ k for all n. 

∴ (an) is a bounded sequence. 

 

Note. The converse of the above theorem is not true. For example, the sequence ( 

(−1) 
n
) is a bounded sequence. However it is not a convergent sequence. 

 

Divergent  sequence   

 

Definition.     A sequence (an) is said to diverge to ∞ if given any real number k > 0, there 

exists m 𝜖 N such that an > k for all n ≥ m. In symbols we write (an) →∞  or 

 Lim   an  =    ∞ 

n→∞ 

Note. (an) → ∞ if given any real number k > 0 there exists m 𝜖 N such that an  𝜖 ( 

k, ∞) for all n ≥ m  

 

 

Examples 

1. (n) → ∞ 

Proof. Let k > 0 be any given real number. 
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Choose m to be any natural number such that m > k 

Then  n > k for all n ≥ m. 

 ∴ ( n) → ∞ 

 

2. (n
2
 ) →∞ 

Proof. Let k > 0 be any given real number. 

Choose m to be any natural number such that m > √k 

Then n
2
 > k for all n > m  

∴  ( n
2
 ) →∞ 

3.  (2 
n
) →∞ 

Proof. Let k > 0 be any given real number. 

Then 2
n
 > k ⇔ n log 2 > log k 

                     ⇔ n > 
log  k

log  2
 

Hence if we choose m to be any natural number such that m > 
log  k

log  2
,           

then 2n > k for all n ≥ m  

 ∴ (2 
n
) →∞ 

 Definition. A sequence (an) is said to diverge to −∞ if given any real 

number k < 0 their exists m 𝜖 N such that that an < k for all n ≥ m. In symbols we 

write  

Lim   an  =   − ∞, or (an) →  −∞ 

n→∞ 

Note. (an) →  −∞ iff given any real number k < 0, there exists m 𝜖 N such that an 

𝜖( −∞, k) for all n ≥ m 

 A sequence ( an) is said to be divergent if either (an) →  ∞ or (an) → −∞ 

Theorem 3.3. (an) → −∞ iff (−an) → −∞ 

 Proof.  Let (an) →∞ 

 Let k < 0 be any given real number. Since (an) →  ∞ there exists m 𝜖 N 

such that an > − k for all n ≥ m 

∴ − an < k for all n ≥ m 
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∴  (− an) → −∞.  

Similarly we can prove that if (− an) → −∞ then (an) →∞. 

 

Theorem 3.4. If (an) → ∞ and an ≠ 0 for all n 𝜖 N then (
1

𝑎𝑛
) → 0. 

Proof. Let  𝜖 > 0 be given. Since(an) → ∞, there exists m 𝜖 N such that an > 
1

𝜖
  for all 

n ≥ m 

∴  
1

𝑎𝑛
< 𝜖 for all n ≥ m 

∴  
1

𝑎𝑛
 < 𝜖 for all n ≥ m. 

∴
1

𝑎𝑛
→ 0.  

  Note. The converse of the above theorem is not true. For example, consider the 

sequence (an) where 

an = 
(−1)𝑛

𝑛
   Clearly (an) → 0  

Now ( 
1

𝑎𝑛
 ) = ( 

𝑛

(−1)𝑛  
 ) = −1, 2, − 3, 4, …….. which neither converges nor diverges to 

∞ or − ∞ 

thus if a sequence (an) →0, then the sequence (
1

𝑎𝑛
 ) need not converge or 

diverge. 

 

Theorem 3.5. If (an) → 0 and an > 0 for all n 𝜖 N , then (
1

𝑎𝑛
) → ∞ 

        Proof.  Let k > 0 be any given real number.  

Since (an) → 0 there exists m 𝜖 N such that │an │< 
1

𝑘
 for all n ≥ m 

  ∴  an < 
1

𝑘
 for all n ≥ m   ( since an > 0) 

  ∴  
1

𝑎𝑛
 > k for all n ≥ m 

  ∴ (
1

𝑎𝑛
) → ∞ 

 

Theorem 3.6. Any sequence (an) diverging to ∞ is bounded below but not 

bounded above. 
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 Proof. Let (an) → ∞. Then for any given real number k > 0 there exists m∈ 

N such that an > k for all n > m.                                                                         

………(1) 

 

 ∴ k is not an upper bound of the sequence (an) 

  

           ∴ (an) is not bounded above 

 Now let 𝑙 = min { a1, a2, ….am, k}. 

 From (1) we see that an  > 𝑙 for all n. 

           ∴ (an) is bounded below 

 

Theorem 3.7. Any sequence (an) diverging to −∞ is bounded above but not 

bounded below. 

 Proof is similar to that of theorem 3.6 

  

 Note  1. The converse of the above theorem is not true. For example, the function 

f : ℕ→ℝ defined by  

  f (n) =    0 if n is odd 

       
1

2
 n if n is even determines the sequence 0,1,0,2,0,3,….. which is 

bounded below and not bounded above. Also for any real number k > 0, we cannot find 

a natural number m such that an > k for all n > m. 

 

  Hence this sequence does not diverge to ∞. 

Similarly f : ℕ → ℝ given by f (n) =    8
0 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 

 
1

2
 n if n is even

  

Determines the sequence 0, −1, 0, −2, 0, ….. which is bounded above and not bounded 

below. However this sequence does not diverge to − ∞.  

 

Oscillating sequence   

Definition .  A sequence (an) which is neither convergent nor divergent to ∞ or −∞ is 

said to be an oscillating sequence. An oscillating sequence which is bounded is said to be 
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finitely oscillating.  An oscillating sequence which is unbounded is said infinitely 

oscillating. 

 

 Examples. 

 

1. Consider the sequence ( −1 𝑛 ). Since this sequence is bounded it cannot to ∞ or 

− ∞ (by theorems.6 and 7). Also this sequence is not convergent (by example 5 

of theorem 4). Hence ( −1 𝑛) is a finitely oscillating sequence. 

 

2. The function f : ℕ → ℝ  defined by 

f (n)=  

1

2
 n if n is even

1

2
 (1 − n) if n is odd

  

determines the sequence 0 , 1 , −1 , 2 , −2 , 3 , ….. The range of this sequence is Z. 

Hence it cannot converge or diverge to ±∞. This sequence is infinitely oscillating. 

The Algebra of limits 

     In this section we prove a few simple theorems for sequences which are very useful 

in calculating limits of sequences. 

 Theorem 3.8. If (𝑎𝑛) → a and (𝑏𝑛) → b then (𝑎𝑛 + 𝑏𝑛) → a + b. 

 Proof. Let 𝜖 > 0 be given. 

Now  𝑎𝑛 + 𝑏𝑛 − 𝑎 − 𝑏  =  𝑎𝑛 − 𝑎 + 𝑏𝑛 − 𝑏  

                                             ≤  𝑎𝑛 − 𝑎 + 𝑏𝑛 − 𝑏  …..(1) 

Since (𝑎𝑛) → a , there exist a natural number 𝑛1 such that  𝑎𝑛 − 𝑎  < 
1

2
 𝜖 for all n ≥ 𝑛1  

….(2) 

 Since (𝑏𝑛) → b , there exist a natural number 𝑛2  such that  𝑏𝑛 − 𝑏  < 
1

2
 𝜖 for all n ≥ 𝑛2  

….(3)   

    Let m = max{𝑛1 , 𝑛2} 

  Then  𝑎𝑛 + 𝑏𝑛 − 𝑎 − 𝑏  < 
1

2
 𝜖 + 

1

2
 𝜖 = 𝜖 for all n ≥ m. 
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                                                  (by 1 , 2 and 3) 

     ∴  (𝑎𝑛 + 𝑏𝑛) → a + b. 

Note. Similarly we can prove that  (𝑎𝑛 − 𝑏𝑛) → a − b. 

Theorem 3.9. If (𝑎𝑛) → a and k ∈ R then (𝑘 𝑎𝑛) →  𝑘 a. 

 Proof.  If k = 0 , (𝑘 𝑎𝑛) is the constant sequence 0 , 0 , 0 , …. And hence the result is 

trivial. 

Now , let k ≠ 0. 

Then  𝑘𝑎𝑛 − 𝑘𝑎  =  𝑘   𝑎𝑛 − 𝑎    ………..(1) 

Let 𝜖 > 0 be given. 

Since (𝑎𝑛) → a , there exist m ∈ N  such that  

  𝑎𝑛 − 𝑎  < 
𝜖

 𝑘 
  for all n ≥ m.     ……….(2) 

    ∴   𝑘𝑎𝑛 − 𝑘𝑎  < 𝜖 for all n ≥ m by ( 1 and 2). 

      ∴ (𝑘𝑎𝑛) →  𝑘a. 

Theorem 3.10. If (𝑎𝑛) → a and (𝑏𝑛) → b then (𝑎𝑛𝑏𝑛) → ab. 

Proof. Let 𝜖 > 0 be given. 

Now ,  𝑎𝑛𝑏𝑛 − 𝑎𝑏  =  𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏 + 𝑎𝑛𝑏 − 𝑎𝑏  

                                     ≤  𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏  +  𝑎𝑛𝑏 − 𝑎𝑏  

                                     =  𝑎𝑛    𝑏𝑛 − 𝑏  +  𝑏   𝑎𝑛 − 𝑎  …….(1) 

    Also, since (𝑎𝑛) → a, (𝑎𝑛) is a bounded sequences.  

        ∴   There exist a real number k > 0 such that  𝑎𝑛   ≤ k  for all n.    …….(2) 

    Using (1) and (2) we get 

      𝑎𝑛𝑏𝑛 − 𝑎𝑏  ≤ k  𝑏𝑛 − 𝑏  +  𝑏   𝑎𝑛 − 𝑎  …..(3) 

 Now since (𝑎𝑛) → a , there exist a natural number 𝑛1 such that  
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            𝑎𝑛 − 𝑎  > 
𝜖

2 𝑏 
 for all n ≥ 𝑛1 …………..(4) 

    Since (𝑏𝑛) → b, there exist a natural number 𝑛2  such that 

                𝑏𝑛 − 𝑏  < 
𝜖

2𝑘
 for all n ≥ 𝑛2          ………………(5) 

   Let m = max{𝑛1 , 𝑛2}. 

Then       𝑎𝑛𝑏𝑛 − 𝑎𝑏  < k.
𝜖

2𝑘
/ +  𝑏  .

𝜖

2 𝑏 
 / = 𝜖 for all n ≥ m (by 3 , 4 and 5) 

  Hence (𝑎𝑛𝑏𝑛) → ab. 

Theorem 3.11. If (𝑎𝑛) → a and 𝑎𝑛  ≠ 0 for all n and 𝑎 ≠ 0 then .
1

𝑎𝑛
 / → 

1

𝑎
 . 

Proof. Let 𝜖 >0 be given 

  We have  
1

𝑎𝑛
−

1

𝑎
  =  

𝑎𝑛 −𝑎

𝑎𝑛 𝑎
  = 

1

  𝑎𝑛    𝑎 
  𝑎𝑛 − 𝑎  ……..(1) 

Now , 𝑎 ≠ 0 Hence  𝑎  > 0  

 Since (𝑎𝑛) → a there exist 𝑛1 ∈ N such that  

    𝑎𝑛 − 𝑎  < 
1

2
  𝑎  for all n ≥ 𝑛1. 

 Hence     𝑎𝑛   > 
1

2
  𝑎  for all n ≥ 𝑛1.                …………(2) 

   Using  (1)  and  (2)  we get  

   
1

𝑎𝑛
−

1

𝑎
  < 

2

   𝑎 2  𝑎𝑛 − 𝑎  for all n ≥ 𝑛1   …………….(3) 

 Now since (𝑎𝑛) → a , there exist 𝑛2  ∈ N such that 

  𝑎𝑛 − 𝑎  < 
1

2
𝜖  𝑎 2for all n ≥ 𝑛2 .     …………..(4) 

 Let m = max{𝑛1 , 𝑛2}. 

     ∴   
1

𝑎𝑛
−

1

𝑎
  < 

2

   𝑎 2
  

  𝑎 2𝜖

 2
 = 𝜖     for all n ≥ m (by 3 and 4) 

         ∴ .
1

𝑎𝑛
 / → 

1

𝑎
 . 
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Corollary. Let (𝑎𝑛) → a and (𝑏𝑛) → b where 𝑏𝑛  ≠ 0 for all n and b ≠ 0. 

   Then .
𝑎𝑛

𝑏𝑛
 / → 

𝑎

𝑏
. 

 Proof.  .
1

𝑏𝑛
 / → 

1

𝑏
.  ( by theorem 3.11) 

            ∴   .
𝑎𝑛

𝑏𝑛
 / → 

𝑎

𝑏
.  ( by theorem 3.10) 

Note. Even if lim𝑛→∞ 𝑎𝑛  and lim𝑛→∞ 𝑏𝑛  do not exist, lim𝑛→∞( 𝑎𝑛 + 𝑏𝑛 ) , lim𝑛→∞( 𝑎𝑛𝑏𝑛) 

and lim𝑛→∞(
𝑎𝑛

𝑏𝑛
) may exist. For example let 𝑎𝑛  =  −1 𝑛 and 𝑏𝑛  =  −1 𝑛+1. Clearly 

lim𝑛→∞ 𝑎𝑛and lim𝑛→∞ 𝑏𝑛  do not exist. Now (𝑎𝑛 + 𝑏𝑛) is the constant sequence 0 , 0 , 0 , 

….. Each of (𝑎𝑛𝑏𝑛) and  (𝑎𝑛/𝑏𝑛) is the constant sequence −1 , −1 , ….. Hence (𝑎𝑛 + 𝑏𝑛) → 

0 . (𝑎𝑛𝑏𝑛) → −1 and                    (𝑎𝑛/𝑏𝑛) → −1. 

Theorem 3.12.  If (𝑎𝑛) → a then ( 𝑎𝑛  ) →  𝑎 . 

Proof. Let 𝜖 > 0 be given  

 Now   𝑎𝑛  −  𝑎   ≤  𝑎𝑛 − 𝑎    …………(1) 

 Since (𝑎𝑛) → a there exist m∈ 𝑵 such that  𝑎𝑛 − 𝑎  < 𝜖  for all n ≥ m. 

   Hence from (1) we get   𝑎𝑛  −  𝑎   < 𝜖 for all n ≥ m. 

 Hence ( 𝑎𝑛  ) →  𝑎 . 

Theorem 3.13. If (𝑎𝑛) → a and 𝑎𝑛  ≥ 0 for all n then a ≥ 0. 

Proof. Suppose  a < 0 . Then −a > 0. 

Choose 𝜖 such that 0 < 𝜖 < −a so that a + 𝜖 < 0. 

 Now , since (𝑎𝑛) → a , there exist m ∈ N such that  𝑎𝑛 − 𝑎  < 𝜖  for all n ≤ m. 

   ∴  a−𝜖 < 𝑎𝑛  < a+𝜖 for all n ≤ m. 

 Now, since a+𝜖 < 0 , we have 𝑎𝑛  < 0 for all n ≥ m which is a contradiction since 𝑎𝑛  ≥ 0. 

   ∴  a ≥ 0. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
101 

 

Note. In the above theorem if 𝑎𝑛  > 0 for all n , we cannot say that a > 0 . For example 

consider the sequence   .
1

𝑛
/ . Here 

1

𝑛
 > 0 for all n and .

1

𝑛
/ → 0.  

Theorem 3.14. If (𝑎𝑛) → a , (𝑏𝑛) → b and 𝑎𝑛  ≤ 𝑏𝑛   for all n , then a ≤ b. 

Proof. Since 𝑎𝑛  ≤ 𝑏𝑛 , we have 𝑏𝑛  −𝑎𝑛  ≥ 0 for all n.  

Also ( 𝑏𝑛 − 𝑎𝑛)→ 𝑏 – a ( by theorem 3.8). 

 ∴ 𝑏 – a ≥ 0 ( by theorem 3.13) 

 ∴  b ≥ a. 

  Theorem 3.15. If  (𝑎𝑛) → 𝑙, (𝑏𝑛) → 𝑙 and 𝑎𝑛  ≤ 𝑐𝑛  ≤ 𝑏𝑛  for all n, then (𝑐𝑛) → 𝑙. 

Proof. Let 𝜖 > 0 be given. 

 Since (𝑎𝑛) → 𝑙 , there exist 𝑛1 ∈ N such that  𝑙 − 𝜖 < 𝑎𝑛< 𝑙 + 𝜖 for all n ≥ 𝑛1. 

Similarly, there exist 𝑛2  ∈ N such that  𝑙 − 𝜖 < 𝑏𝑛< 𝑙 + 𝜖 for all n ≥ 𝑛2 . 

 Let m = max{𝑛1 , 𝑛2}. 

  ∴ 𝑙 − 𝜖 < 𝑎𝑛  ≤ 𝑐𝑛  ≤ 𝑏𝑛  < 𝑙+ 𝜖 for all n ≥ m. 

∴ 𝑙 − 𝜖 < 𝑐𝑛  < 𝑙 + 𝜖 for all n ≥ m. 

 ∴  𝑐𝑛 − 𝑙  < 𝜖 for all n ≥ m. 

   ∴ (𝑐𝑛) → 𝑙 . 

Theorem 3.16. If  (𝑎𝑛) → 𝑎  and 𝑎𝑛  ≥ 0 for all n and  𝑎 ≠ 0 , then     𝑎𝑛  →  𝑎. 

Proof. Since 𝑎𝑛  ≥ 0 for all n, a ≥ 0.( by theorem 3.13) 

 Now,   𝑎𝑛 −  𝑎  =   
 𝑎𝑛 −𝑎

 𝑎𝑛 + 𝑎
  . 

Since (𝑎𝑛) → 𝑎 ≠ 0 . as in theorem 11 we obtain 𝑎𝑛  > 
1

2
 a for all n ≥ 𝑛1 

   ∴   𝑎𝑛  >  (
1

2
 a ) for all n ≥ 𝑛1. 
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  ∴   𝑎𝑛 −  𝑎  < 
 2

( 2+1) 𝑎
  𝑎𝑛 − 𝑎  for all n ≥ 𝑛1 …….(1) 

 Now, let 𝜖 > 0 be given. 

Since (𝑎𝑛) → 𝑎, there exist 𝑛2  ∈ N  such that  

   𝑎𝑛 − 𝑎  < 𝜖  𝑎 ( 2 + 1)/  2 for all n ≥ 𝑛2    ………(2) 

Let m = max{𝑛1 , 𝑛2}. 

Then   𝑎𝑛 −  𝑎  < 𝜖 for all n ≥ m (by 1 and 2). 

  ∴   𝑎𝑛  →  𝑎. 

Theorem 3.17. If  (𝑎𝑛) → ∞  and (𝑏𝑛) →  ∞ then (𝑎𝑛 + 𝑏𝑛) → ∞. 

Proof. Let k > 0 be any given real number. 

 Since (𝑎𝑛) → ∞, there exists 𝑛1 ∈ N such that 𝑎𝑛  > 
1

2
 k for all n ≥ 𝑛1. 

Similarly there exists 𝑛2  ∈ N  such that 𝑏𝑛  > 
1

2
 k for all n ≥ 𝑛2 . 

Let  m = max{𝑛1 , 𝑛2}. 

Then 𝑎𝑛+ 𝑏𝑛  > k for all n ≥ m. 

 ∴ (𝑎𝑛 + 𝑏𝑛) → ∞. 

Theorem 3.18. If (𝑎𝑛) → ∞  and (𝑏𝑛) →  ∞ then (𝑎𝑛𝑏𝑛) → ∞. 

Proof. Let k > 0 be any given real number. 

Since (𝑎𝑛) → ∞, there exist 𝑛1 ∈ N such that  𝑎𝑛  >  𝑘 for all n ≥ 𝑛1. 

Similarly there exists 𝑛2  ∈ N  such that 𝑏𝑛  >  𝑘 for all n ≥ 𝑛2 . 

Let  m = max{𝑛1 , 𝑛2}. 

Then 𝑎𝑛𝑏𝑛  > k for all n ≥ m. 

  ∴ (𝑎𝑛𝑏𝑛) → ∞. 
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Theorem 3.19. Let (𝑎𝑛) → ∞  then 

(i) If c >0 , (c 𝑎𝑛) → ∞ 

(ii) If c < 0 , (c 𝑎𝑛) → − ∞ 

Proof. (i) Let c > 0. 

   Let k > 0 be any given real number. 

         Since (𝑎𝑛) → ∞, there exist m ∈ 𝑵 such that 𝑎𝑛  > 
𝑘

𝑐
 for all n ≥ m. 

         ∴  c 𝑎𝑛   > k for all n ≥ m. 

        ∴ (c 𝑎𝑛) → ∞. 

           (ii) Let c < 0 . Let k < 0 be any given real number. Then 
𝑘

𝑐
 > 0. 

   ∴  There exists m ∈ N such that 𝑎𝑛  > 
𝑘

𝑐
 for all n ≥ m. 

    ∴  c 𝑎𝑛   <  k for all n ≥ m (since c < 0). 

     ∴  (c 𝑎𝑛) → − ∞. 

Theorem 3.20. If (𝑎𝑛) → ∞  and (𝑏𝑛) is bounded then (𝑎𝑛 + 𝑏𝑛)→ ∞. 

Proof.  

Since (𝑏𝑛) is bounded, there exists a real number m < 0 such that 𝑏𝑛  > m for all n. …..(1) 

 Now, let k > 0 be any real number. 

Since m < 0 , k – m > 0. 

Since (𝑎𝑛) → ∞ , there exists 𝑛0  ∈ N such that 𝑎𝑛  > k – m  for all n ≥ 𝑛0 .      …………(2) 

 ∴ 𝑎𝑛 + 𝑏𝑛> k – m + m = k for all n ≥ 𝑛0  (by 1 and 2). 

  ∴  (𝑎𝑛 + 𝑏𝑛)→ ∞. 

Solved Problems.    

1. Show that  lim𝑛→∞

3𝑛2+2𝑛+5

6𝑛2+4𝑛+7
   = 

1

2
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Solution.    𝑎𝑛  = 
3𝑛2+2𝑛+5

6𝑛2+4𝑛+7
 = 

3+
2

𝑛
+

5

𝑛2

6+
4

𝑛
+

7

𝑛2

 

 Now , lim
𝑛→∞

 .3 +
2

𝑛
+

5

𝑛2
/  

                 = 3 + 2 lim
𝑛→∞

 
1

𝑛
 + 5 lim

𝑛→∞
 

1

𝑛2
 . 

                  = 3 + 0 + 0 = 3 

Similarly , lim
𝑛→∞

 .6 +
4

𝑛
+

7

𝑛2
/ = 6 

    ∴  lim
𝑛→∞

  𝑎𝑛  = lim
𝑛→∞

 
3+

2

𝑛
+

5

𝑛2

6+
4

𝑛
+

7

𝑛2

 

                        = 
lim ⁡
𝑛→∞

3+
2

𝑛
+

5

𝑛2

lim
𝑛→∞

 6+
4

𝑛
+

7

𝑛2

 

                          = 
3

6
 = 

1

2
 . 

2. Show that  lim
𝑛→∞

 .
12+22…+𝑛2

𝑛2
/ = 

1

3
. 

Solution. We know that 12 + 22 … + 𝑛2 = 
𝑛(𝑛+1)(2𝑛+1)

6
. 

    ∴  lim
𝑛→∞

 
12+22…+𝑛2

𝑛2
 = lim

𝑛→∞
 
𝑛(𝑛+1)(2𝑛+1)

6𝑛2
. 

                                    = lim
𝑛→∞

 
1

6
 .1 +

1

𝑛
/  .2 +

1

𝑛
/ 

                                     = 
1

3
. 

3. Show that lim𝑛→∞
𝑛

 (𝑛2+1) 
  = 1. 

 Solution.   lim𝑛→∞
𝑛

 (𝑛2+1) 
 = lim

𝑛→∞
 

1

 .1+
1

𝑛 2/ 
 

             = 
1

lim
𝑛→∞

 .1+
1

𝑛2/ 
   (By theorem 3.11) 
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                = 
1

 lim
𝑛→∞

.1+
1

𝑛2/ 
     (By theorem 3.16) 

                = 1 

4. Show that if (𝑎𝑛) → 0   and (𝑏𝑛) is bounded, then (𝑎𝑛𝑏𝑛) → 0. 

Solution. Since (𝑏𝑛) is bounded, there exists k > 0 such that  𝑏𝑛   ≤ k for all n. 

 ∴    𝑎𝑛𝑏𝑛   ≤ k  𝑎𝑛   . 

Now, let 𝜖 > 0 be given. 

 Since (𝑎𝑛) → 0  there exists m ∈ N such that   𝑎𝑛   < 
𝜖

𝑘
  for all n ≥ m.  

    ∴    𝑎𝑛𝑏𝑛   < 𝜖 for all n ≥ m. 

    ∴  (𝑎𝑛𝑏𝑛) → 0. 

5. Show that lim
𝑛→∞

 
sin 𝑛

𝑛
   = 0. 

Solution.  sin 𝑛  ≤ 1 for all n. 

   ∴   (sin 𝑛) is a bounded sequences 

  Also , .
1

𝑛
/ → 0. 

  ∴  .
sin 𝑛

𝑛
/ → 0 (by problem 3.4). 

6. Show that lim
𝑛→∞

(𝑎1/𝑛)  = 1 where a > 0 is any real number. 

Solution. Case (i) Let a = 1 . Then 𝑎1/𝑛  =1 for each n . Hence (𝑎1/𝑛) → 1 

Case (ii) Let a > 1. Then 𝑎1/𝑛  >1.  

   Let 𝑎1/𝑛  =1 + 𝑕𝑛  where 𝑕𝑛  > 0. 

   ∴   a = (1 +  𝑕𝑛)
𝑛   

            = 1 + 𝑛𝑕𝑛  + ……. + 𝑕𝑛
𝑛. 
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            >1 + 𝑛𝑕𝑛 . 

    ∴ 𝑕𝑛  < 
𝑎−1

𝑛
 . 

   ∴  0 <  𝑕𝑛  < 
𝑎−1

𝑛
 . 

Hence lim
𝑛→∞

 𝑕𝑛 = 0. 

           ∴  (𝑎1/𝑛) = (1 +  𝑕𝑛
 ) →1. 

Case (iii) Let 0 < a < 1. Then 
1

𝑎
  > 1. 

    ∴ .
1

𝑎
/

1
𝑛 

 → 1 (By case (ii) ) 

         ∴  .
1

𝑎1/𝑛
/ → 1. 

       ∴  (𝑎1/𝑛) → 1. 

7. Show that lim𝑛→∞(𝑛)
1

𝑛  = 1. 

Solution. Clearly  𝑛1/𝑛  ≥ 1 for all n. 

 Let  𝑛1/𝑛  = 1 +  𝑕𝑛  where  𝑕𝑛  ≥ 0. 

Then n = (1 + 𝑕𝑛)
𝑛  

              = 1 + 𝑛𝑕𝑛 +𝑛𝑐2 𝑕𝑛
2  + ….. + 𝑕𝑛

𝑛 . 

              >
1

2
 n(n – 1) 𝑕𝑛

2  

     ∴  𝑕𝑛
2  < 

2

(𝑛−1)
 

            ∴   𝑕𝑛  <  
2

𝑛−1
. 

       Since  
2

𝑛−1
  → 0 and 𝑕𝑛  ≥  0 , (𝑕𝑛 ) → 0. 

                ∴  ( 𝑛1/𝑛) = (1 +  𝑕𝑛) → 1. 
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8. Show that lim
𝑛→∞

  .
1

 (2𝑛2+1) 
+

1

 (2𝑛2+2) 
+ ⋯ +

1

 (2𝑛2+𝑛) 
/ = 

1

 2 
. 

Solution. 

  Let  𝑎𝑛  = 
1

 (2𝑛2+1) 
+

1

 (2𝑛2+2) 
 + …… + 

1

 (2𝑛2+𝑛) 
. 

   Then we have the inequality  

          
𝑛

 (2𝑛2+𝑛) 
 < 𝑎𝑛  < 

𝑛

 (2𝑛2+1) 
. 

               ∴  
1

 .2+
1

𝑛
/ 

 < 𝑎𝑛  < 
1

 .2+
1

𝑛 2/ 
. 

Now,  lim
𝑛→∞

 
1

 .2+
1

𝑛
/ 

 = lim
𝑛→∞

 
1

 .2+
1

𝑛2/ 
 = 

1

 2 
. 

       ∴  lim
𝑛→∞

 𝑎𝑛  = 
1

 2 
.  ( By theorem 3.15). 

9. Give an example to show that if (𝑎𝑛) is a sequence diverging to ∞ and (𝑏𝑛) is a 

sequence diverging to – ∞ then (𝑎𝑛  + 𝑏𝑛) need not be a divergent sequence. 

Solution. Let (𝑎𝑛) = (𝑛) and (𝑏𝑛) = (– 𝑛).  

Clearly (𝑎𝑛) → 0   and (𝑏𝑛) → – ∞. 

However (𝑎𝑛  + 𝑏𝑛) is the constant sequence 0 , 0 , 0 ,…. Which converges to 0. 

Exercises. 

1.Evaluate the limits of the following sequences as n → ∞. 

(a) .
(𝑛2+3)(𝑛3+9)

(𝑛+1) (𝑛4+6)
/ 

(b) 
 (3𝑛2−5𝑛+4)

2𝑛−7
 

(c) .
1+2+3+⋯+𝑛)

𝑛2
/ 
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(d) .
13+23+⋯+𝑛3)

𝑛4
/ 

2.A sequence (𝑎𝑛) is called a  null sequence  if  (𝑎𝑛) → 0. Show that if (𝑎𝑛) and (𝑏𝑛) are 

null sequences then (𝑎𝑛 + 𝑏𝑛) , (𝑎𝑛𝑏𝑛) , (k𝑎𝑛) and ( 𝑎𝑛  )are also null sequences. 

3.If (𝑎𝑛) → – ∞ and (𝑏𝑛) → – ∞, then show that (𝑎𝑛 + 𝑏𝑛) → – ∞ and (𝑎𝑛𝑏𝑛) →  ∞. 

4.Prove the following. 

(a) lim
𝑛→∞

.
1

 (𝑛2+1) 
+

1

 (𝑛2+2) 
+ ⋯ +

1

 (𝑛2+𝑛) 
/ = 1. 

5.Give examples of sequences (𝑎𝑛) and (𝑏𝑛) such that 

(a) (𝑎𝑛) →  ∞ (𝑏𝑛) →  ∞ and (𝑎𝑛– 𝑏𝑛 ) converges to 5. 

(b) (𝑎𝑛) →  ∞ (𝑏𝑛) →  ∞ and (𝑎𝑛– 𝑏𝑛) →  ∞. 

(c) (𝑎𝑛) →  𝑙 , (𝑏𝑛) →  ∞ and (𝑎𝑛𝑏𝑛) → – ∞. 

Answers : 1.(a). 
1

2
,(b).  

3

2
,(c). 

1

2
,(d). 

1

4
 ,  

 Subsequences 

Definition. Let (𝑎𝑛) be a sequence. Let (𝑛𝑘) be a strictly increasing sequence of natural 

numbers. Then (𝑎𝑛𝑘 ) is called a subsequence of (𝑎𝑛). 

Note. The terms of a subsequences occur in the same order in which they occur in the 

original sequence. 

Examples. 

1.  (𝑎𝑛) is a subsequence of any sequence (𝑎𝑛). Note that in this example the interval 

between any two terms of the subsequence is the same, (i.e.,) 𝑛1=2 , 𝑛2=4 , 𝑛3=6 ,… 𝑛𝑘  

= 2k. 

2.  (𝑎𝑛2 ) is a subsequence of any sequence (𝑎𝑛). Hence 𝑎𝑛1 = 𝑎1 , 𝑎𝑛2 = 𝑎4 , 𝑎𝑛3 = 𝑎9 ….. 

Here the interval between two successive terms of the subsequence goes on increasing 
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as k becomes large. Thus the interval between various terms of a subsequence need not 

be regular. 

3. Any sequence (𝑎𝑛) is a subsequence of itself. 

4. Consider the sequence(𝑎𝑛) given by 1, 0, 1, 0 …. Now, (𝑎𝑛) given by 1, 1, 1, ….. is a 

sequence of (𝑎𝑛) . Here (𝑎𝑛) is not convergent whereas the subsequence (𝑏𝑛) converges 

to 1. Thus a subsequence of a non-convergent sequence can be a convergent sequence. 

Note. A subsequences of a given subsequence (𝑎𝑛𝑘 ) of a sequence (𝑎𝑛) is again a 

subsequence of (𝑎𝑛). 

Theorem 3.21. If a sequence (𝑎𝑛) converges to l . then every subsequence(𝑎𝑛𝑘 ) of (𝑎𝑛) 

also converges to l. 

Proof. Let 𝜖 > 0 be given. 

Since (𝑎𝑛) → 𝑙 there exists m ∈ 𝑵 such that 

   𝑎𝑛 − 𝑙  < 𝜖 for all n ≥ m. …….(1) 

Now choose  𝑛𝑘0 ≥ m. 

Then k ≥ 𝑘0 ⇒ 𝑛𝑘  ≥ 𝑛𝑘0 ( ∵ (𝑛𝑘) is monotonic increasing) 

                         ⇒ 𝑛𝑘  ≥ m. 

                          ⇒    𝑎𝑛𝑘 − 𝑙  < 𝜖 (by 1) 

   Thus  𝑎𝑛𝑘 − 𝑙  < 𝜖 for all k ≥ 𝑘0. 

       ∴ (𝑎𝑛𝑘 ) → 𝑙 .            

Note 1. If  a subsequence of a sequence converges, then the original sequence need not 

converges, then the original sequence need not converge. 

Note 2. If a sequence (𝑎𝑛) has two subsequences converging to two different limits, then 

(𝑎𝑛) does not converge. For example, consider the sequence (𝑎𝑛) given by  

    𝑎𝑛     

1

𝑛
 if n is even

1 +
1

𝑛
 if n is odd
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Here the subsequence (𝑎2𝑛) → 0 and the subsequence (𝑎2𝑛) → 𝑙. Hence the given 

sequence (𝑎2𝑛)does not converge. 

Theorem 3.22.If the subsequences (𝑎2𝑛−1) and (𝑎2𝑛) of a sequence (𝑎𝑛) converge to the 

same limit 𝑙 then (𝑎𝑛) also converges to 𝑙 . 

Proof. Let 𝜖 > 0 be given. Since (𝑎2𝑛−1) → 𝑙 there exists 𝑛1 ∈ 𝑵 such that  𝑎2𝑛−1 − 𝑙  < 𝜖 

for all 2𝑛 − 1 ≥ 𝑛1. 

 Similarly there exists 𝑛2 ∈ 𝑵 such that  𝑎2𝑛 − 𝑙  < 𝜖 for all 2𝑛 ≥ 𝑛2 . 

   Let  m = max{𝑛1 , 𝑛2}. 

Clearly   𝑎𝑛 − 𝑙  < 𝜖 for all n ≥ m. 

    ∴ (𝑎𝑛) → 𝑙 .            

Note. The above result is true even if we have 𝑙 → ∞ 𝑜𝑟 − ∞. 

Definition. Let (𝑎𝑛) be a sequence. A natural number m is called a peak point of the 

sequence (𝑎𝑛) if 𝑎𝑛  < 𝑎𝑛  for all n > m. 

Example. 

1. For the sequence ( ½), every natural number is a peak point and hence the 

sequence has infinite number of peak point. In general for a strictly monotonic 

decreasing sequence every natural number is a peak point. 

2. Consider the sequence 1 , 
1

2
 , 

1

3
 , − 1 , − 1 , …… Here 1 , 2, 3 are the peak points of 

the sequence. 

3. The sequence 1 , 2  , 3 , …… has no peak point. In general a monotonic increasing 

sequence has no peak point. 

Theorem 3.23.  Every sequence (𝑎𝑛) has no monotonic subsequence. 

Proof. Case (i) (𝑎𝑛) has infinite number of peak points. Let the peak points be  

   𝑛1 <  𝑛2  < …. < 𝑛𝑘  < ……   Then 𝑎𝑛1 > 𝑎𝑛2 > ….. > 𝑎𝑛𝑘  > …. 

        ∴ (𝑎𝑛𝑘 ) is a monotonic decreasing subsequence of (𝑎𝑛). 
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Case (ii) (𝑎𝑛) has only a finite number of peak points or no peak points. 

   Choose a natural number 𝑛1 such that there is no peak point greater than or equal to 

𝑛1. Since 𝑛1 is not  a peak point of (𝑎𝑛) , there exists 𝑛2  > 𝑛1 such that 𝑎𝑛1 ≥ 𝑎𝑛2. Again 

since 𝑛2  is not a peak point , there exist : 𝑛3  > 𝑛2  such that 𝑎𝑛3 ≥ 𝑎𝑛2.Repeating this 

process we get a monotonic increasing subsequence (𝑎𝑛𝑘 ) of (𝑎𝑛). 

Theorem 3.24. Every bounded sequences has a convergent subsequences. 

Proof. Let (𝑎𝑛) be a bounded sequence. Let (𝑎𝑛𝑘 ) be monotonic subsequence of (𝑎𝑛) 

since (𝑎𝑛) is bounded (𝑎𝑛𝑘 ) is also bounded. 

  ∴ (𝑎𝑛𝑘 ) is a bounded monotonic sequence and hence converges. 

   ∴ (𝑎𝑛𝑘 ) is a convergent subsequence of (𝑎𝑛). 

Exercises. 

1. Prove that if a sequence (𝑎𝑛) diverges to ∞ then every subsequence of  (𝑎𝑛) also 

diverges to ∞. 

2. Prove that if a sequence (𝑎𝑛) diverges to  −∞ then every subsequence of (𝑎𝑛) 

also converges to −∞. 

3. Give examples of (i) a sequence which does not diverge to but ∞ ha s a 

subsequence diverging to ∞ (ii) a sequence which does not diverge to −∞ but 

has a subsequence diverging to −∞ (iii) a sequence (𝑎𝑛) having two 

subsequences, one converging to ∞ and the other diverging −∞. 

4. Prove that each of the following sequences is not convergent by exhibiting two 

subsequences converging to two different limits. 

(i) 1 , 
1

2
 , 1 ,  

1

3
 , 1 , 

1

4
 , ….. 1 , 

1

𝑛
 , …… 

(ii) 1 , 2, 1 , 3 , 1 , 4 , ….. 

(iii) ((−1𝑛)) 

Cauchy sequences. 

Definition.  A sequence (𝑎𝑛) is said to be a Cauchy sequence if given 𝜖 > 0, there 

exists 𝑛0 ∈ 𝑵 such that  𝑎𝑛 − 𝑎𝑚   < 𝜖 for all n , m ≥ 𝑛0 . 
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Note. In the above definition the condition  𝑎𝑛 − 𝑎𝑚   < 𝜖 for all n , m ≥ 𝑛0  can be 

written in the following equivalent form, namely ,  𝑎𝑛+𝑝 − 𝑎𝑛   < 𝜖 for all n ≥ 𝑛0  and 

for all positive integers p. 

Examples  

1. The sequence .
1

𝑛
/ is a Cauchy sequence  

Proof. Let (𝑎𝑛) = .
1

𝑛
/. Let 𝜖 > 0 be given. Now,  𝑎𝑛 − 𝑎𝑚   =  

1

𝑛
−

1

𝑚
 . 

   ∴  If we choose 𝑛0  to be any positive integer greater than 1/𝜖 , we get  

   𝑎𝑛 − 𝑎𝑚   < 𝜖 for all n , m ≥ 𝑛0 . 

      ∴  .
1

𝑛
/ is a Cauchy sequence. 

2. The sequence ((−1𝑛)) is not a Cauchy sequence. 

         Proof. Let (𝑎𝑛) = ((−1𝑛)) . 

              ∴    𝑎𝑛 − 𝑎𝑛+1  = 2. 

            ∴    If 𝝐 < 2 , we cannot find 𝑛0  such that  𝑎𝑛 − 𝑎𝑛+1  < 𝜖 for all n ≥ 𝑛0 . 

              ∴    ((−1𝑛)) is not a Cauchy sequence. 

3. (n) is not a Cauchy sequence. 

          Proof. Let (𝑎𝑛) = (n). 

     ∴   𝑎𝑛 − 𝑎𝑚   ≥  1 if n ≠ m. 

   ∴  If we choose 𝝐 < 1 , we cannot find 𝑛0  such that  𝑎𝑛 − 𝑎𝑚   < 𝜖 for all n , m ≥ 𝑛0 . 

      ∴  (n) is not a Cauchy sequence. 

Theorem 3.25.  Any convergent sequence is a Cauchy sequence. 

Proof.  

Let (𝑎𝑛) → 𝑙. Then given 𝝐 > 0, there exists 𝑛0 ∈ 𝑵 such that  𝑎𝑛 − 𝑙  < 
1

2
𝜖 for all n ≥ 𝑛0 . 
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           ∴    𝑎𝑛 − 𝑎𝑚   =  𝑎𝑛 − 𝑙 + 𝑙 − 𝑎𝑚   

                                     <  𝑎𝑛 − 𝑙  +  𝑙 − 𝑎𝑚   

                                      < 
1

2
𝜖 + 

1

2
𝜖 = 𝜖 for all n , m ≥ 𝑛0 . 

        ∴  (𝑎𝑛)  is Cauchy sequence. 

 Theorem 3.26. Any Cauchy sequence is a bounded sequence is bounded sequence. 

Proof.  Let (𝑎𝑛) be a Cauchy sequence. 

Let 𝜖 > 0 be given. Then there exists 𝑛0 ∈ 𝑵 such that  𝑎𝑛 − 𝑎𝑚   < 𝜖 for all n , m ≥ 𝑛0 . 

      ∴    𝑎𝑛   <  𝑎𝑛0  + 𝜖 for n ≥ 𝑛0 . 

 Now , let k = max {  𝑎1  ,  𝑎2  , ….  𝑎𝑛0 + 𝜖 } . 

  Then  𝑎𝑛   ≤ k for all n. 

   ∴  (𝑎𝑛) is a bounded sequence. 

Theorem 3.27. Let (𝑎𝑛) be a Cauchy sequence. If (𝑎𝑛) has a sequence (𝑎𝑛𝑘 ) converging 

to  , then (𝑎𝑛) → 𝑙. 

Proof. 

Let 𝜖 > 0 be given. Then there exists 𝑛0 ∈ 𝑵 such that  𝑎𝑛 − 𝑎𝑚   < 𝜖 for all n , m ≥ 𝑛0   

….(1) 

 Also since (𝑎𝑛𝑘 ) → 𝑙, there exists 𝑘0 ∈ 𝑵 such that  

                     𝑎𝑛𝑘 − 𝑙  < 
1

2
𝜖 for all k ≥ 𝑘0              …………..(2) 

   Choose 𝑛𝑘  such that 𝑛𝑘  > 𝑛𝑘0 and 𝑛0  

     Then  𝑎𝑛 − 𝑙  =  𝑎𝑛 − 𝑎𝑛𝑘 + 𝑎𝑛𝑘 − 𝑙   

                                 ≤  𝑎𝑛 − 𝑎𝑛𝑘   +  𝑎𝑛𝑘 − 𝑙  

                                  < 
1

2
𝜖 + 

1

2
𝜖 = 𝜖 for all n ≥ 𝑛0 . 
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    Hence (𝑎𝑛) → 𝑙. 

  Theorem 3.28 (Cauchy’s general principle of convergence)  

 A sequence (𝑎𝑛) in R  is convergent iff it is a Cauchy sequence. 

Proof. In theorem 25 we have proved that any convergent sequence is a Cauchy 

sequence. 

 Conversely, let (𝑎𝑛) be a Cauchy sequence in R. 

  ∴  (𝑎𝑛) is a bounded sequence (by theorem 26) 

 ∴   There exist a subsequence (𝑎𝑛𝑘 ) of (𝑎𝑛) such that (𝑎𝑛𝑘 ) → 𝑙 ( by theorem 23) 

   ∴  (𝑎𝑛) → 𝑙  ( by theorem 27). 

                                     Revision questions on chapter 3. 

Determine which of the following statements are true and which are false. 

1. The range of a sequence is an infinite set. 

2. Two sequences are equal if they have the same range. 

3. Any convergent sequence is bounded. 

4. Any bounded sequence is convergent. 

5. Any monotonic sequence is bounded. 

6. Any monotonic sequence is convergent. 

7. Any bounded monotonic sequence is convergent. 

8. Any monotonic sequence which is not bounded is divergent. 

9. Any monotonic sequence cannot oscillate. 

10. Sum of two convergent sequences is again a convergent sequence. 

11. Sum of two divergent sequences is again a divergent sequence. 

12. Sum of two monotonic sequences is a monotonic sequence. 

13. Sum of two monotonic increasing sequences is a monotonic increasing sequence. 

14. Sum of two oscillating sequences is again an oscillating sequence. 

15. A constant sequence is both monotonic increasing and monotonic decreasing. 

16. An oscillating sequence is always bounded. 

17. Any constant sequence is convergent. 
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18. If (𝑎𝑛)→ 0 then (1/𝑎𝑛) → ∞. 

19. If (𝑎𝑛)→ 0 and 𝑎𝑛  > 0 for all n, then (1/𝑎𝑛) diverges to ∞. 

20. If (𝑎𝑛)→ 0 and 𝑎𝑛  < 0 for all n, then (1/𝑎𝑛) diverges to −∞. 

21. If (𝑎𝑛)→ ∞ and 𝑎𝑛  ≠ 0 for all n, then (1/𝑎𝑛) → 0. 

22. If (𝑎𝑛)→ ∞ and (c𝑎𝑛) → ∞. 

23. If (𝑎𝑛)→ ∞ and c > 0, then (c𝑎𝑛) → ∞. 

24. Any convergent sequence is a Cauchy sequence. 

25. Any Cauchy sequence of real numbers is convergent. 

26. Any Cauchy sequence is bounded. 

27. Every sequence has infinitely many subsequences. 

28. Any subsequence of a convergent sequence is convergent. 

29. Every sequence has a convergent subsequence. 

30. Every bounded sequence has a converge subsequence. 

31. Every sequence has a monotonic subsequence. 

32. Every sequence has a limit point. 

33. Every sequence has a finite limit point. 

34. Every bounded sequence has a finite limit point. 

35. Every sequence has a finite number of limit point of the sequence. 

36. The limit of a convergent sequence is a limit point of the sequence. 

37. If a is a limit point of a sequence (𝑎𝑛) , then (𝑎𝑛)→ 𝑎. 

38. If a is a only limit point of a sequence (𝑎𝑛) then (𝑎𝑛)→ 𝑎. 

39. If a is a limit point of a sequence (𝑎𝑛), then there exists a subsequence 

converging  to a. 

40. Every sequence has an upper limit. 

41. Every sequence has a lower limit. 

42. For any sequence (𝑎𝑛) , lower limit 𝑎𝑛 < upper limit (𝑎𝑛). 

43. A sequence (𝑎𝑛) → 𝑎 iff lower limit (𝑎𝑛) = upper limit (𝑎𝑛) = a. 

44. lim (𝑎𝑛 + 𝑏𝑛) = lim 𝑎𝑛 + lim 𝑏𝑛 . 

Answers. 

   1, 2, 4, 5, 6, 11, 12, 14, 16, 18, 22, 29, 33, 35, 37, 44, are false 3, 7 to 10, 13, 15, 17, 19, 

20, 21, 23, to 28, 30 to 32, 34, 36, 38, to 43 are true. 
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UNIT IV: SERIES 

Series – convergence, divergence – geometric, harmonic, exponential, binomial and 

logarithmic series – Cauchy’s general principle of convergence – Comparison test – tests of 

convergence of positive termed series – Kummer’s test, ratio test, Raabe’s test, Cauchy’s root 

test, Cauchy’s condensation test. 

Infinite series 

  Definition. Let (𝑎𝑛) = 𝑎1 , 𝑎2 , ….. 𝑎𝑛  , ….. be a sequence of real numbers. Then the 

formal expression 𝑎1 +𝑎2 + …..+ 𝑎𝑛  +….. is called an infinite series of real numbers and 

is denoted by  𝑎𝑛
∞
1  or  𝑎𝑛 . 

     Let 𝑠1 = 𝑎1 ; 𝑠2 = 𝑎1 + 𝑎2 ; 𝑠3 = 𝑎1 + 𝑎2 + 𝑎3 +….  𝑠𝑛  = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 . 

Then (𝑠𝑛) is called the sequence of partial sums of the given series  𝑎𝑛 . 

  The series  𝑎𝑛  is said to converge, diverge or oscillate according as the sequence of 

partial sums (𝑠𝑛) converges, diverges or oscillates. 

 If (𝑠𝑛)→ 𝑠, we say that the series  𝑎𝑛  converges to the sum s. 

We note that the behavior of a series does not change if a finite number of terms are 

added or altered. 

Examples. 

1. Consider the series 1 + 1 + 1 + 1…… Here 𝑠𝑛  = n. Clearly the sequence (𝑠𝑛) 

diverges to ∞. Hence the given series diverges to ∞. 

2. Consider the geometric series 1 + r  + 𝑟2 + …… +𝑟𝑛+…. Here ,  

  𝑠𝑛  = 1 + r  + 𝑟2 + …… +𝑟𝑛−1 = 
1−𝑟𝑛

1−𝑟
. 

              Case (i) 0 < r < 1. Then( 𝑟𝑛)→0   

   ∴  (𝑠𝑛) →  
1

1−𝑟
. 

   ∴ The given series converges to the sum 
1

(1−𝑟)
 

               Case (ii) r > 1. Then 𝑠𝑛  = 
𝑟𝑛 −1

𝑟−1
 . 
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Also ( 𝑟𝑛)→ ∞ when r > 1. 

Hence the series diverges to ∞. 

Case (iii) r = 1. Then the series becomes 1 + 1 + ….  

   ∴ (𝑠𝑛) = (n). which diverges to ∞. 

Case (iv) r = −1. 

   Then the series becomes 1 −1 + 1 −1 + …… 

  ∴ 𝑠𝑛  =  
0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
1 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 . 

   ∴ (𝑠𝑛) oscillates finitely. 

Hence the given series oscillates finitely. 

Case (v) r < −1. 

  ∴ (𝑟𝑛) oscillates infinitely  

∴ (𝑠𝑛) oscillates infinitely. 

Hence the given series oscillates infinitely. 

3. Consider the series 1 + 
1

1!
 + 

1

2!
 + ….. + 

1

𝑛!
 +….. 

Then 𝑠𝑛  = 1 + 
1

1!
 + 

1

2!
 + ….. + 

1

(𝑛−1)!
 

The sequence (𝑠𝑛) →  𝑒  

 ∴ The given series diverges to ∞. 

Note 1. Let  𝑎𝑛  be a series of positive terms. Then (𝑠𝑛) is a monotonic increasing 

sequence. Hence (𝑠𝑛) converges or diverges to ∞ according as (𝑠𝑛) is bounded or 

unbounded. Hence the series  𝑎𝑛  converges or diverges to ∞. 

Thus a series of positive terms cannot oscillate. 
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Note 2. Let  𝑎𝑛  be a convergent series of positive terms converging to the sum s. Then s 

is the l. u. b. of (𝑠𝑛). Hence 𝑠𝑛  ≤ s  for all n. 

Also given 𝜖 > 0 there exists m ∈ N such that s → 𝜖 <  𝑠𝑛 for all n ≥ m. 

 Hence s → 𝜖 <  𝑠𝑛 ≤ s  for all n ≤ m. 

Theorem  4.1. Let   𝑎𝑛  be a convergent series converging to the sum s . Then lim𝑛→∞ 𝑎𝑛  

= 0 

Proof. lim𝑛→∞ 𝑎𝑛  = lim
𝑛→∞

 (𝑠𝑛 − 𝑠𝑛−1) 

                                 = lim
𝑛→∞

 𝑠𝑛 − lim
𝑛→∞

 𝑠𝑛−1 

                                  = s  –  𝑠 = 0. 

Note 1. The converse of the above theorem is not true. ie., If  lim 𝑎𝑛  = 0, then  𝑎𝑛 need 

not converge. For example, consider the series  
1

𝑛
 . Here lim

𝑛→∞
 
1

𝑛
 = 0. However the series 

 
1

𝑛
 diverges.  

Note 2. If lim 𝑎𝑛  ≠ 0 then the series  𝑎𝑛  is not convergent. If further  𝑎𝑛  is a series of 

positive terms then the series cannot oscillate and hence the series diverges. 

Theorem 4.2.  Let  𝑎𝑛  converge to a and  𝑏𝑛  converge to  b . Then  (𝑎𝑛 ≠ 𝑏𝑛) 

converges to a ≠ 𝑏 and  𝑘𝑎𝑛  converges to ka. 

Proof. Let  𝑠𝑛  = 𝑎1 +𝑎2 + …..+ 𝑎𝑛  and 𝑡𝑛  = 𝑏1 +𝑏2 + …..+ 𝑏𝑛 . 

 Then (𝑠𝑛) → 𝑎 and (𝑡𝑛) → 𝑏. 

∴ (𝑠𝑛 ≠ 𝑡𝑛) → a ≠ 𝑏 

  Also (𝑠𝑛 ≠ 𝑡𝑛 ) is the sequence of partial sums of  (𝑎𝑛 ≠ 𝑏𝑛 ). 

    ∴   (𝑎𝑛 ≠ 𝑏𝑛) converges to a ≠ 𝑏. 

 Similarly  𝑘𝑎𝑛  converges to ka. 
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Theorem 4.3 (Cauchy’s general principle of convergence) 

The series  𝑎𝑛 is convergent iff given 𝜖 > 0 there exists 𝑛0  ∈ N such that                                

 𝑎𝑛+1 + 𝑎𝑛+2 + ⋯ + 𝑎𝑛+𝑝   < 𝜖 for all n ≥ 𝑛0  and for all positive integers p. 

Proof. Let  𝑎𝑛  be a convergent series. 

   Let 𝑠𝑛  = 𝑎1 +…..+ 𝑎𝑛  . 

     ∴ (𝑠𝑛) is a convergent sequence. 

   ∴  (𝑠𝑛) is a Cauchy sequence  

  ∴ There exists 𝑛0  ∈ N such that  𝑠𝑛+𝑝 − 𝑠𝑛   < 𝜖 for all n ≥ 𝑛0  and for all 𝑝 ∈ N. 

     ∴   𝑎𝑛+1 + 𝑎𝑛+2 + ⋯ + 𝑎𝑛+𝑝   < 𝜖 for all n ≥ 𝑛0  and for all 𝑝 ∈ N. 

     Conversely if   𝑎𝑛+1 + 𝑎𝑛+2 + ⋯ + 𝑎𝑛+𝑝   < 𝜖 for all n ≥ 𝑛0  and for all 𝑝 ∈ N then (𝑠𝑛) 

is a Cauchy sequence in R and hence (𝑠𝑛) is convergent.  

    ∴ The given series converges. 

Solved Problems. 

1. Apply Cauchy’s general principle of convergence to show that the series  (
1

𝑛
) is 

not convergent. 

Solution. Let 𝑠𝑛  = 1 + 
1

2
 + …. + 

1

𝑛
. 

     Suppose the series  (
1

𝑛
) is convergent. 

  ∴  By Cauchy’s general principle of convergence, given 𝜖 > 0 there exists 𝑚 ∈ N such 

that   𝑠𝑛+𝑝 − 𝑠𝑛   < 𝜖 for all n ≥ 𝑚 and for all 𝑝 ∈ N. 

       ∴  1 +  
1

2
 + … . + 

1

𝑛+𝑝
− (1 +  

1

2
 + … . + 

1

𝑛
)  < for all n ≥ 𝑚 and for all 𝑝 ∈ N. 

     ∴   
1

𝑛+1
 +

1

𝑛+2
 … . + 

1

𝑛+𝑝
  < 𝜖 for all n ≥ 𝑚 and for all 𝑝 ∈ N. 
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In particular if we take n = 𝑚 and p = 𝑚 we obtain 
1

𝑚+1
 +

1

𝑚+2
 … . + 

1

𝑚+𝑚
 > 

1

2𝑚
 + ⋯ +  

1

2𝑚
 = 

1

2
. 

   ∴ 
1

2
 < 𝜖 which is a contradiction since 𝜖 > 0 is arbitray. 

    ∴  The given series is not convergent. 

2. Applying Cauchy’s general principle of convergence prove that                                    

1 + 
1

2
 +

1

3
 … . +(−1) 𝑛

1

𝑛
 +… is convergent. 

Solution. Let 𝑠𝑛  = 1 +  
1

2
 +

1

3
 … . +

(−1) 𝑛

𝑛
. 

        ∴   𝑠𝑛+𝑝 − 𝑠𝑛   =   
1

𝑛+1
 +

1

𝑛+2
 … . + 

(−1)𝑝−1

𝑛+𝑝
  

            Now, 
1

𝑛+1
−

1

𝑛+2
 … . +  

(−1)𝑝−1

𝑛+𝑝
 

               = .
1

𝑛+1
−

1

𝑛+2
/ + ……. +  

1

𝑛+𝑝−1
−

1

𝑛+𝑝
 𝑖𝑓 𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛

1

𝑛+𝑝
 𝑖𝑓 𝑝 𝑖𝑠 𝑜𝑑𝑑

      

                 >0 

   ∴   𝑠𝑛+𝑝 − 𝑠𝑛   = 
1

𝑛+1
−

1

𝑛+2
 + ….. +  

(−1)𝑝−1

𝑛+𝑝
 

                               = 
1

𝑛+1
− .

1

𝑛+2
−

1

𝑛+3
/ −……. 

                               < 
1

𝑛+1
. 

                                < 𝜖 provided n  > .
1

𝜖
− 1/. 

  ∴ By Cauchy’s general principle, the given series is convergent. 

Exercises. 

1. Show that the series  (
1

2𝑛
) converges to the sum 1. 

2. If  𝑐𝑛  is a convergent series of positive terms then so is  𝑎𝑛 𝑐𝑛  where (𝑎𝑛) is a 

bounded sequence of positive terms. 
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3. If  𝑑𝑛  is a divergent sequence of positive terms then so is  𝑎𝑛 𝑑𝑛  where (𝑎𝑛) is 

a sequence of positive lower bound. 

4. Show that 
2

5
 + 

4

52 + 
2

53 + 
4

54 + 
2

55 + 
4

56 + ….. = 
7

12
  (Hint: Express this series as the 

sum of two geometric series). 

5. Let a and b be two positive real numbers. Show that the series                                           

a + b + 𝑎2 + 𝑏2 + 𝑎3 + 𝑏3 ……………. Converges if both a  and b  < 1 and diverges 

if either a > 1 or b > 1. 

6. Show that the series  𝑐𝑜𝑠(
1

𝑛
) is divergent.  

(Hint: Consider the limit of the n th term). 

 Comparison test 

 Theorem 4.4 (Comparison test) 

(i) Let  𝑐𝑛  be a convergent series of positive terms. Let  𝑎𝑛  be another 

series of positive terms. If there exists 𝑚 ∈ N such that  𝑎𝑛  ≤ 𝑐𝑛  for all n 

≥m, then  𝑎𝑛  is also convergent. 

(ii) Let  𝑑𝑛  be a divergent series of positive terms. Let  𝑎𝑛  be another series 

of positive terms. If there exists 𝑚 ∈ N such that  𝑎𝑛  ≤ 𝑑𝑛  for all n ≥m, then 

 𝑎𝑛  is also divergent. 

Proof  (i) Since the convergence or divergence of a series is not altered by the removal 

of a finite number of terms we may assume without loss of generality that 𝑎𝑛  ≤ 𝑐𝑛  for all 

n.  

   Let 𝑠𝑛  = 𝑐1 +𝑐2 + …..+ 𝑐𝑛   and  𝑡𝑛  =  𝑎1 +𝑎2 + …..+ 𝑎𝑛 . 

  Since 𝑎𝑛  ≤ 𝑐𝑛  we have 𝑡𝑛  ≤ 𝑠𝑛 . 

Now, Since  𝑐𝑛  is convergent, (𝑠𝑛) is a convergent sequence. 

           ∴  (𝑠𝑛) is a bounded sequence. 

                ∴  There exists a real positive number k  such that 𝑠𝑛  ≤ k  for all n. 

                ∴  𝑡𝑛  ≤ k  for all n ≥ m 

    Hence (𝑡𝑛) is bounded above. 
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       Also (𝑡𝑛)  is a monotonic increasing sequence. 

    ∴ (𝑡𝑛)  converges  

    ∴   𝑎𝑛  converges. 

          (ii)Let  𝑑𝑛  diverge and 𝑎𝑛  ≥ 𝑑𝑛  for all n. 

  ∴ 𝑡𝑛 ≥ 𝑠𝑛  . 

  Now, (𝑠𝑛) is diverges to ∞. 

     ∴  (𝑠𝑛) is not bounded above. 

    ∴ (𝑡𝑛)  is not bounded above. 

  Further (𝑡𝑛)  is monotonic increasing and hence (𝑡𝑛) diverges to ∞. 

     ∴   𝑎𝑛  diverges to ∞. 

Theorem 4.5. 

(i) If  𝑐𝑛  converges and if lim𝑛→∞
𝑎𝑛

𝑐𝑛
 exists and is finite then  𝑎𝑛  also 

converges. 

(ii) If  𝑑𝑛  diverges and if lim𝑛→∞
𝑎𝑛

𝑑𝑛
 exists and is greater than zero then  𝑎𝑛  

diverges. 

Proof  (i) . Let lim𝑛→∞
𝑎𝑛

𝑐𝑛
 = k. 

   Let  𝜖 > 0 be given. Then there exists 𝑛1 ∈ N such that 
𝑎𝑛

𝑐𝑛
 < k + 𝜖 for all n ≥ 𝑛1. 

     ∴   𝑎𝑛  < (k + 𝜖) 𝑐𝑛  for all n ≥ 𝑛1. 

Also since  𝑐𝑛  is a convergent series,  (𝑘 +  𝜖) 𝑐𝑛   is also convergent series. 

     ∴ By comparision test  𝑎𝑛  is convergent. 

         (ii)Let  lim𝑛→∞
𝑎𝑛

𝑑𝑛
 = k > 0. 

Choose =
1

2
𝑘 . Then there exists 𝑛1 ∈ N such that k  − 

1

2
𝑘 < 

𝑎𝑛

𝑑𝑛
 < k + 

1

2
𝑘 for all n ≥ 𝑛1. 
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     ∴   
𝑎𝑛

𝑑𝑛
 > 

1

2
𝑘 for all n ≥ 𝑛1. 

    ∴   𝑎𝑛  > 
1

2
𝑘 𝑑𝑛  for all n ≥ 𝑛1. 

   Since  𝑑𝑛  is a divergent series,  
1

2
𝑘 𝑑𝑛  is also divergent series. 

      ∴  By comparision test,  𝑎𝑛  diverges. 

Theorem 4.6. 

(i) Let  𝑐𝑛  be a convergent series of positive terms. Let  𝑎𝑛  be another series 

of positive terms. If there exists 𝑚 ∈ N such that 
𝑎𝑛 +1

𝑎𝑛
 ≤ 

𝑐𝑛+1

𝑐𝑛
 for all n ≥ m, then 

Let  𝑎𝑛  is convergent. 

(ii) Let  𝑑𝑛  be a divergent series of positive terms. Let  𝑎𝑛  be another series of 

positive terms. If there exists 𝑚 ∈ N such that 
𝑎𝑛+1

𝑎𝑛
 ≤ 

𝑑𝑛 +1

𝑑𝑛
 for all n ≥ m, then 

Let  𝑎𝑛  is divergent. 

Proof. (i)  
𝑎𝑛 +1

𝑐𝑛 +1
 ≤ 

𝑎𝑛

𝑐𝑛
 .∵  

𝑎𝑛 +1

𝑎𝑛
 ≤  

𝑐𝑛+1

𝑐𝑛
 / 

      ∴  
𝑎𝑛

𝑐𝑛
 is a monotonic decreasing sequence. 

     ∴  
𝑎𝑛

𝑐𝑛
  ≤ k  for all n where k = 

𝑎1

𝑐1
 . 

      ∴  𝑎𝑛  ≤ 𝑘𝑐𝑛  for all 𝑛 ∈ N. 

Now,  𝑐𝑛  is convergent. Hence  𝑘𝑐𝑛  is also a convergent series of positive terms. 

      ∴   𝑎𝑛  is also convergent  

       (ii)Proof is similar to that of (i). 

 Note 1. Theorem 4.5 and 4.6 are alternative forms of the comparison test mentioned in 

theorem 4.4 and these forms of the comparison test are often easier to work with. 

Note 2. The comparison test can be used only if we already have a large number of 

series whose convergence or divergence are known. We know that a geometric series 
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 𝑟𝑛  converges if 0 ≤ r < 1 and diverges if r ≥ 1. In the following theorem we give 

another family of series whose behavior is known. 

Theorem 4.7. The harmonic series   −
1

𝑛𝑝  converges if p > 1 and if p ≤ 1. 

Proof. 

Case (i) Let p =1. Then the series becomes  (
1

𝑛
) which diverges. 

Case (ii) Let p < 1. Then np < n for all n. 

   ∴  
1

𝑛𝑝
 > 

1

𝑛
 . 

   ∴ By comparison test  
1

𝑛𝑝  diverges. 

Case (iii) Let p > 1. 

   Let 𝑆𝑛  = 1 + 
1

2𝑝  + 
1

3𝑝  + ….. + 
1

𝑛𝑝  .    

Then 𝑆2𝑛+1  −1 = 1 + 
1

2𝑝  +….. +
1

(2𝑛 +1−1)𝑝  

                              = 1 + .
1

2𝑝  + 
1

3𝑝/ + .
1

4𝑝  +  
1

5𝑝 +
1

6𝑝  +  
1

7𝑝/+…. +
1

(2𝑛 )𝑝  + 
1

(2𝑛+1)𝑝  + … 

+
1

(2𝑛+1−1)𝑝  

                                                              < 1 + 2.
1

2𝑝
 / + 4.

1

4𝑝
 /+…+2𝑛 .

1

(2𝑛 )𝑝
 / 

                               = 1 + 
1

2𝑝−1
 + 

1

22𝑝−2
 + …. + 

1

(2(𝑝−1))𝑛
 

   ∴   𝑆2𝑛 +1  −1 < 1 + 
1

2𝑝−1 + .
1

2𝑝−1 /
2

+….. + .
1

2𝑝−1 /
𝑛

. 

Now, since p > 1,  p −1 > 0. Hence 
1

2𝑝−1 ≤ 1. 

   ∴     1 + 
1

2𝑝−1
 + .

1

2𝑝−1
 /

2

+….. + .
1

2𝑝−1
 /

𝑛

  < 
1

1−
1

2𝑝−1

  = k (say). 

            ∴     𝑆2𝑛+1  −1 < k. 
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Now let n  be any positive integer. Choose 𝑚 ∈ N such that n ≤ 2𝑚+1 − 1. Since (𝑠𝑛) is a 

monotonic increasing sequence , 𝑠𝑛  ≤ 𝑆2𝑚 +1  −1. 

    Hence 𝑠𝑛  < k  for all n. 

  Thus (𝑠𝑛) is a monotonic increasing sequence and is bounded above. 

     ∴  (𝑠𝑛) is convergent. 

     ∴   
1

𝑛𝑝  is convergent. 

Solved problems. 

1. Discuss the convergence of the series  
1

 (𝑛3+1)
 

Solution.   
1

 (𝑛3+1)
  <  

1

𝑛3/2. 

   Also  
1

𝑛3/2 is convergent  

    ∴  By comparision test,  
1

 (𝑛3+1)
 is convergent. 

2. Discuss the convergence of the series   
 𝑛+1− 𝑛

𝑛𝑝 . 

Solution.   𝑎𝑛  = 
 𝑛+1− 𝑛

𝑛𝑝   

                          = 
𝑛+1−𝑛

𝑛𝑝 ( 𝑛+1+ 𝑛)
 

                          = 
1

𝑛𝑝 ( 𝑛+1+ 𝑛)
 

Now, let 𝑏𝑛  = 
1

𝑛
𝑝+

1
2

. 

       ∴   
𝑎𝑛

𝑏𝑛
𝑛→∞  =  

𝑛
𝑝+

1
2

𝑛𝑝 ( 𝑛+1+ 𝑛)𝑛→∞  

                              =  
1

 1+1/𝑛+1𝑛→∞  

                            = 
1

2
 . 
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    Also  𝑏𝑛𝑛→∞  is convergent if p + 
1

2
 > 1 and divergent if  p + 

1

2
 < 1  

      ∴   𝑎𝑛𝑛→∞  is convergent if p > 
1

2
 and divergent if p < 

1

2
 . 

3. Discuss the convergence of the series  
12+22+⋯+𝑛2

𝑛4+1
. 

Solution. Let  𝑎𝑛  = 
12+22+⋯+𝑛2

𝑛4+1
 

                                 = 
𝑛(𝑛+1)(2𝑛+1)

6(𝑛4+1)
. 

      Now , let 𝑏𝑛  = 
1

𝑛
 . 

       ∴   
𝑎𝑛

𝑏𝑛
𝑛→∞  =  

𝑛2(𝑛+1)(2𝑛+1)

6(𝑛4+1)𝑛→∞   

                              =  
.1+

1

𝑛
/(2+

1

𝑛
)

6(1+
1

𝑛4)
𝑛→∞  

   Also  𝑏𝑛  is divergent  

      ∴   𝑎𝑛  is divergent  

4. Discuss the convergence of the series 1 + 
1

22 + 
22

33 + 
33

44 + ….. 

Solution. Let 𝑎𝑛  = 
𝑛𝑛

(𝑛+1)𝑛+1. 

             Let 𝑏𝑛 = 
1

𝑛
. 

      ∴   
𝑎𝑛

𝑏𝑛
𝑛→∞  =  

𝑛𝑛+1

(𝑛+1)𝑛 +1𝑛→∞                 

                             =  
1

.1+
1

𝑛
/
𝑛+1𝑛→∞  

                             = 
1

𝜖
 > 0. 

Also  𝑏𝑛𝑛→∞  is divergent.                        

   ∴   𝑎𝑛𝑛→∞  is divergent  
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5. Discuss the convergence of the series  (log log n)−log n∞
3 . 

Solution. Let  𝑎𝑛  = (log log n)− log n  

    ∴  𝑎𝑛   = 𝑛−𝜃𝑛  where 𝜃𝑛 = log (log log n). 

 Since  log log log n𝑛→∞  = ∞ , there exists 𝑚 ∈ N 

   such that 𝜃𝑛 ≥ 2 for all  n ≥ m. 

        ∴  𝑛−𝜃𝑛  ≤ 𝑛−2 for all n ≥ m. 

        ∴ 𝑎𝑛  = 𝑛−2 for all n ≥ m. 

Also  𝑛−2 is convergent. 

      ∴  By comparison test the given series is convergent. 

6. Show that  
1

4𝑛2−1
 = 

1

2
 . 

Solution.  Let  𝑎𝑛  = 
1

4𝑛2−1
. 

     Clearly 𝑎𝑛   < 
1

𝑛2. 

     Also  
1

𝑛2 is convergent  

     ∴  By comparison test, the given series converges 

  Now, 𝑎𝑛  = 
1

4𝑛2−1
 = 

1

2
0

1

2𝑛−1
−

1

2𝑛+1
1. 

      ∴  𝑠𝑛  = 𝑎1 +𝑎2 + …..+ 𝑎𝑛  

                = 
1

2
0.

1

1
−

1

3
/ + .

1

3
−

1

5
/ + ⋯ + .

1

2𝑛−1
−

1

2𝑛+1
/1   

                 = 
1

2
 01 −

1

2𝑛+1
1  . 

           ∴       𝑠𝑛𝑛→∞  = 
1

2
. 
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     ∴       
1

4𝑛2−1
 = 

1

2
 . 

Exercises. Discuss the convergence of the following series whose n th  terms are given 

below. 

(1) 
5+𝑛

3+ 𝑛2                                      (2) 
1

𝑛 (𝑛2+1)
                           (3) 

𝑛

(𝑛2+1)2/3 

(4) 
𝑛

(𝑛2+1)3/2
                               (5) 

1

𝑛− 𝑛  
                                 (6) 

𝑛(𝑛+1)

(𝑛+2)(𝑛+3)(𝑛+4)
 

(7) 
1

𝑎+𝑛𝑥
                                      (8) 

(𝑛+1)2

𝑛𝑘 +(𝑛+2)𝑘                           (9) 
𝑛+1

𝑛𝑝  

(10) 𝑛 (𝑛2 + 1) −  (𝑛2      (11) 
(𝑛+𝑎)(𝑛+𝑏)

𝑛(𝑛+1)(𝑛+2)
                   (12) 

(2𝑛2−1)1/3

(3𝑛3+2𝑛+5)1/4 

(13) 
1

𝑛 log 𝑛         

(14) Show that if   𝑎𝑛  is convergent then   𝑎 𝑛2  . 

    
𝑎𝑛

1+𝑎𝑛
  and   

𝑎𝑛

1+ 𝑛2𝑎𝑛
  are also convergent. 

Answers: 1.D, 2.C, 3.D, 4.C, 5.D, 6.D, 7.D, 8.C, 9.C if p > 2, 10.C,11.D,12.D,13.C. 

 Kummer’s test 

Theorem 4.8 (Kummer’s test) 

Let   𝑎𝑛  be a given series of positive terms and  
1

𝑑𝑛
 be a series of a positive terms 

diverging to ∞. Then  

(i)  𝑎𝑛  converges if lim𝑛→∞ .𝑑𝑛
𝑎𝑛

𝑎𝑛 +1
− 𝑑𝑛+1/ > 0 and 

(ii)  𝑎𝑛  diverges if lim𝑛→∞ .𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1/ < 0 . 

Proof.  (i) Let lim𝑛→∞ .𝑑𝑛
𝑎𝑛

𝑎𝑛 +1
− 𝑑𝑛+1/ = 𝑙 > 0. 

We distinguish two cases. 

Case (i) 𝑙 is finite. 

Then given 𝜖 > 0, there exists 𝑚 ∈ N such that  

      𝑙 – 𝜖 < 𝑑𝑛
𝑎𝑛

𝑎𝑛 +1
− 𝑑𝑛+1 < 𝑙 + 𝜖 for all n ≥ m 
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    ∴  𝑑𝑛𝑎𝑛 − 𝑑𝑛+1𝑎𝑛+1> (𝑙 – 𝜖) 𝑎𝑛+1for all n ≥ m. 

Taking  𝜖 = 
1

2
 𝑙 , we get 

     𝑑𝑛𝑎𝑛 − 𝑑𝑛+1𝑎𝑛+1> 
1

2
 𝑙 𝑎𝑛+1 for all n > m. 

Now , let n ≥ m 

      ∴  𝑑𝑚𝑎𝑚 − 𝑑𝑚+1𝑎𝑚+1> 
 1

2
 𝑙 𝑎𝑚+1 

 𝑑𝑚+1𝑎𝑚+1 − 𝑑𝑚+2𝑎𝑚+2> 
 1

2
 𝑙 𝑎𝑚+2 

               …………………………………. 

               …………………………………. 

       𝑑𝑛−1𝑎𝑛−1 − 𝑑𝑛𝑎𝑛>
 1

2
 𝑙 𝑎𝑛 . 

Adding, we get 

         𝑑𝑚𝑎𝑚 − 𝑑𝑛𝑎𝑛 >  
 1

2
 𝑙(𝑎𝑚+1 + ⋯ +  𝑎𝑛) 

      ∴ 𝑑𝑚𝑎𝑚 − 𝑑𝑛𝑎𝑛 >  
 1

2
 𝑙 (𝑠𝑛−𝑠𝑚 ) where  𝑠𝑛= 𝑎1 +𝑎2 + …..+ 𝑎𝑛 . 

          ∴ 𝑑𝑚𝑎𝑚  >  
 1

2
 𝑙 (𝑠𝑛−𝑠𝑚 ). 

    ∴  𝑠𝑛  < 
 2𝑑𝑚 𝑎𝑚 +𝑙−𝑠𝑚  

𝑙
 which is independent of n. 

      ∴ The sequence (𝑠𝑛) of partial sum is bounded. 

    ∴   𝑎𝑛  is convergent.  

Case (ii) 𝑙 = ∞. 

  Then given real number k  > 0 there exists a positive integer m such that 

          𝑑𝑛 .
𝑎𝑛

𝑎𝑛 +1
/ − 𝑑𝑛+1 > k  for all n ≥m. 

   ∴ 𝑑𝑛𝑎𝑛 − 𝑑𝑛+1𝑎𝑛+1> 𝑘 𝑎𝑛+1 for all n ≥ m. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
130 

 

Now, let n ≥ m. Writing the above inequality for m , m+1,…..(n – 1)  and adding we get 

       𝑑𝑚𝑎𝑚 − 𝑑𝑛𝑎𝑛 >  𝑘 (𝑎𝑚+1 + ⋯ +  𝑎𝑛) 

                                   = k (𝑠𝑛−𝑠𝑚 ). 

     ∴  𝑑𝑚𝑎𝑚 > 𝑘 (𝑠𝑛−𝑠𝑚 ). 

       ∴  𝑠𝑛 <  
 𝑑𝑚 𝑎𝑚

𝑘
 + 𝑠𝑚 . 

  ∴ The sequence (𝑠𝑛) is bounded and hence  𝑎𝑛  is convergent. 

(𝑖𝑖) lim𝑛→∞ .𝑑𝑛
𝑎𝑛

𝑎𝑛 +1
− 𝑑𝑛+1/ = 𝑙 < 0. 

Suppose 𝑙   is finite. 

Choose 𝜖 > 0 such that 𝑙 + 𝜖 < 0. 

Then there exists 𝑚 ∈ N such that  

      𝑙 + 𝜖 < 𝑑𝑛
𝑎𝑛

𝑎𝑛+1
− 𝑑𝑛+1< 𝑙+ 𝜖 < 0 for all n ≥ m. 

    ∴   𝑑𝑛𝑎𝑛 < 𝑑𝑛+1𝑎𝑛+1for all n ≥ m. 

 Now  let n ≥ m 

      ∴  𝑑𝑚𝑎𝑚 < 𝑑𝑚+1𝑎𝑚+1 

          …………………………………. 

          …………………………………. 

       𝑑𝑛−1𝑎𝑛−1 < 𝑑𝑛𝑎𝑛  

∴      𝑑𝑚𝑎𝑚 < 𝑑𝑛𝑎𝑛 . 

   ∴    𝑎𝑛 >
 𝑑𝑚 𝑎𝑚

𝑑𝑛
. 

Also, by hypothesis  
 1

𝑑𝑛
 is divergent. 

   Hence  
 𝑑𝑚 𝑎𝑚

𝑑𝑛

∞
𝑛=1  is divergent. 
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    ∴ By comparison test  𝑎𝑛  is divergent. 

The proof is similar if 𝑙  = −∞. 

Note1. The above test fails if  lim𝑛→∞ .𝑑𝑛
𝑎𝑛

𝑎𝑛 +1
− 𝑑𝑛+1/ =0. 

Note2.The divergence of  (1/ 𝑑𝑛) has not been used in the proof of (i). 

Corollary 1.(D’ Alembert’s ratio test) 

  Let  𝑎𝑛  be a series of positive terms. Then  𝑎𝑛converges if lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
> 1 and diverges 

if         lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
< 1. 

Proof. The series 1 + 1 + 1 + …. is divergent 

   ∴   We can put 𝑑𝑛 = 1 in Kummer’s test. 

Then 𝑑𝑛
𝑎𝑛

𝑎𝑛 +1
− 𝑑𝑛+1= 

𝑎𝑛

𝑎𝑛 +1
 = 1 

  ∴  𝑎𝑛   converges if lim
𝑛→∞

.
𝑎𝑛

𝑎𝑛 +1
− 1/ >0 

  ∴  𝑎𝑛   converges if lim
𝑛→∞

𝑎𝑛

𝑎𝑛 +1
 > 1. 

   Similarly  𝑎𝑛  diverges if lim
𝑛→∞

𝑎𝑛

𝑎𝑛+1
 < 1. 

Corollary 2. (Raabe’s test) 

  Let  𝑎𝑛  be a series of positive terms . Then  𝑎𝑛  converges if lim
𝑛→∞

𝑛 .
𝑎𝑛

𝑎𝑛+1
− 1/ > 1 and 

diverges if lim
𝑛→∞

𝑛 .
𝑎𝑛

𝑎𝑛+1
− 1/ < 1. 

Proof. The series  
1

𝑛
 is divergent. 

    ∴  We can put 𝑑𝑛 = 𝑛 in Kummer’s test. 

 Then 𝑑𝑛
𝑎𝑛

𝑎𝑛 +1
− 𝑑𝑛+1= 𝑛

𝑎𝑛

𝑎𝑛 +1
− (𝑛 + 1) 

                                        = 𝑛 .
𝑎𝑛

𝑎𝑛 +1
− 1/ − 1 
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 ∴      𝑎𝑛   converges if lim
𝑛→∞

 𝑛 .
𝑎𝑛

𝑎𝑛+1
− 1/ > 1 and diverges if lim

𝑛→∞
 𝑛 .

𝑎𝑛

𝑎𝑛 +1
− 1/ < 1. 

Solved problems. 

1. Test the convergence of the series 
1

3
 + 

1.2

3.5
 + 

1.2.3

3.5.7
 + …. 

Solution. Let 𝑎𝑛  = 
1.2.3….𝑛

3.5.7…..(2𝑛+1)
. 

  ∴    
𝑎𝑛

𝑎𝑛 +1
 = 

2𝑛+3

𝑛+1
 = 

2+3/𝑛

1+1/𝑛
. 

  ∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
 = 2 > 1. 

 ∴  By D’ Alembert’s ration test  𝑎𝑛  is convergent. 

2. Test the convergence of  
𝑛𝑛

𝑛!
.  

 ∴ 
𝑎𝑛

𝑎𝑛+1
 = 

(𝑛+1)𝑛𝑛

(𝑛+1)𝑛+1 = 
1

.1+
1

𝑛
/
𝑛     

∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
 = 

1

𝜖
 < 1 

  ∴   𝑎𝑛  is divergent. 

3. Test the convergence of the series  
2𝑛 𝑛!

𝑛𝑛  . 

Solution. Let  𝑎𝑛  = 
2𝑛 𝑛!

𝑛𝑛
. 

  ∴ 
𝑎𝑛

𝑎𝑛 +1
 = 

(𝑛+1)𝑛 +1

(𝑛+1)𝑛𝑛
 = 

1

2
 .1 +

1

𝑛
/

𝑛

. 

    ∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
 = 

𝑒

2
 > 1. 

   ∴  By ratio test the series converges. 

4. Test the convergence of the series  
3𝑛 𝑛!

𝑛𝑛 . 

Solution. As in the above problem, we find that  lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
 = 

𝑒

2
 < 1 

∴  By ratio test the series diverges. 
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5. Test the convergence of the series   
𝑛

𝑛+1
𝑥𝑛  where x is any positive real 

number. 

Solution. Since x  is positive the given series is a series of positive terms. 

Now, 
𝑎𝑛

𝑎𝑛 +1
 =  

𝑛(𝑛+2)

(𝑛+1)𝑛   .
1

𝑥
/ 

                    = 
 (1+

2

𝑛
)

1+1/𝑛
 .

1

𝑥
/. 

          ∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
 =  

1

𝑥
  . 

   ∴  By ratio test  𝑎𝑛  converge if x < 1 and diverges if x > 1. 

   If x = 1 the test fails. 

  When x = 1 , 𝑎𝑛  =  
𝑛

𝑛+1
 = 

1

 (1+1/𝑛)
. 

   ∴ lim
𝑛→∞

 𝑎𝑛  = 1. 

  ∴ The series diverges . 

6.  Test the convergence of the series 1 + 
𝑥2

2
 + 

𝑥4

4
 +

𝑥6

6
 +….. where x  is any positive 

real number. 

Solution. Since x is a positive real number, the given series is a series of positive terms. 

    Let 𝑎𝑛  = 
𝑥2𝑛−2

2𝑛−2
 , ( n > 1). 

   ∴  
𝑎𝑛

𝑎𝑛 +1
 = 

2𝑛

2𝑛−2
 .

1

𝑥2/. 

    ∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
 = 

1

𝑥2. 

   ∴  The series test , the series converges if 𝑥2  < 1 and diverges if 𝑥2  >1. 

    ∴   The series converges if x < 1 and diverges if  x  > 1. If x = 1 the test fails. 
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When x = 1    𝑎𝑛  = 
1

2𝑛−2
. 

 By comparing with the series  (
1

𝑛
) we see that the series diverges. 

7. Test the converges of the series  
𝑛2+1

5𝑛 . 

Solution.     
𝑎𝑛

𝑎𝑛 +1
 = 

5(𝑛2+1)

(𝑛+1)2+1
 

                               = 
5(𝑛2+1)

𝑛2+2𝑛+2
 

                                = 
5.1+

1

𝑛2/

𝑛2+2𝑛+2
. 

      ∴ lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
 = 5. 

   ∴   By ratio test the series converges. 

8. Test the convergence of the series .
1

2
+

1

3
/ + .

1

22 +
1

32/ + .
1

23 +
1

33/ + ….. 

Solution. Let 𝑎𝑛  =
1

2𝑛 +
1

3𝑛  

                                =  
2𝑛 + 3𝑛

2𝑛 3𝑛 . 

       ∴  
𝑎𝑛

𝑎𝑛+1
 = 

6(2𝑛 + 3𝑛 )

2𝑛+1+ 3𝑛+1. 

                 = 
2[2𝑛 + (

2

3
)𝑛 ]

[1+.
2

3
/
𝑛+1

]
 

      ∴  lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛+1
 = 2. 

   ∴  By ratio test the given series converges. 

9. Test the convergence of the series  
𝑥𝑛

𝑛
. 

Solution. Let  𝑎𝑛  = 
𝑥𝑛

𝑛
. 

    ∴  
𝑎𝑛

𝑎𝑛 +1
  = 

𝑛+1

𝑛
  .

1

𝑥
/. 
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                  = .1 +
1

𝑛
/ .

1

𝑥
/. 

     ∴  lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
 = 

1

𝑥
. 

   ∴   The series converges if x  < 1 and diverges if x  > 1. 

If x  = 1 , the series converges if x  < 1 and diverges if x  > 1. 

  If  x  = 1 , the series becomes  
1

𝑛
 which is divergent. 

10.  Test the convergence of the series 
𝑛𝑝

𝑛!
 (p > 0). 

Solution. Let  𝑎𝑛  = 
𝑛𝑝

𝑛!
 . 

    ∴   
𝑎𝑛

𝑎𝑛 +1
  = 

𝑛𝑝 (𝑛+1)

(𝑛+1)𝑝  

                    = 
𝑛+1

(1+1/𝑛)𝑝 . 

     ∴  lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
 = ∞ . 

    ∴   By ratio test  𝑎𝑛  is convergent. 

11. Test the convergence of the series 
1

3
𝑥 +

1

3
 
2

5
𝑥2+

1

3
 
2

5
 
3

7
 𝑥3+…… 

Solution.  Let 𝑎𝑛  = 
1.2.3….…..𝑛

3.5.7(2𝑛+1)
 𝑥𝑛 . 

            ∴   
𝑎𝑛

𝑎𝑛+1
  = 

2𝑛+3

𝑛+1
 .

1

𝑥
/. 

                           = 
2+3/𝑛

1+1/𝑛
 .

1

𝑥
/. 

     ∴  lim
𝑛→∞

 
𝑎𝑛

𝑎𝑛 +1
   = 

2

𝑥
. 

  ∴ By ratio test the series converges if 
2

𝑥
 > 1. 

    ∴ The series converge if x  < 2  and diverges if x  >2  . 

   If x  = 2, the ratio test fails. 
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In this case 
𝑎𝑛

𝑎𝑛+1
 = 

2𝑛+3

2𝑛+2
 

      ∴  
𝑎𝑛

𝑎𝑛 +1
− 1 = 

1

2𝑛+2
. 

   ∴  𝑛 .
𝑎𝑛

𝑎𝑛 +1
− 1 / = 

𝑛

2𝑛+2
 = 

1

2+2/𝑛
. 

   ∴  lim
𝑛→∞

𝑛 .
𝑎𝑛

𝑎𝑛 +1
− 1 / = 

1

2
. 

   ∴  By Raabe’s test the series diverges. 

Exercises. Test the convergence of the following series. 

(1) 1 + 
1+𝛼

1+𝛽
 +

(1+𝛼)(2+𝛼)

(1+𝛽)(2+𝛽)
 + ….. 

(2)  
𝑥𝑛

 (2𝑛+3)
 

(3) 1 + 𝑎 +  
𝑎(𝑎+1)

2!
 + 

(𝑎+1)(𝑎+2)

3!
 +…. 

(4) 
1

𝑥
𝑥 + 

2!

3.5
𝑥2 + 

3!

3.5.7
𝑥3+…… 

(5)  
 𝑛

𝑛+1
𝑥𝑛  

(6)   
𝑥𝑛

(2𝑛−1)2𝑛
 

(7)  
𝑛+1

𝑛3 𝑥𝑛  

(8) 
𝑥

1 
+

1

2
 .

𝑥2

3
+  

1

2
 .

𝑥2

3
 .

𝑥3

5
+…. 

(9) 1 + 
22

32 + 
22 .42

32 .52 + 
22 .42 .62

32 .52 .72+….. 

Answers : 1.C if β > α, 2.C if 0 ≤ x < 1, 3.C if a ≤ 0, 4.C if x < 2, 5. C if x > 1, 6. C if x 

≤ 1, 7. C if 0 ≤ x ≤ 1, 8. C if x2≤ 1, 9. D.  

Root test and condensation test 

Theorem 4.10  (Cauchy’s root test) 

  Let  𝑎𝑛  be a series of positive terms. Then  𝑎𝑛  is convergent if lim𝑛→∞ 𝑎𝑛1 𝑛  < 1 and 

divergent if  lim𝑛→∞ 𝑎𝑛1 𝑛  >1 

Proof. Case(i) let  lim𝑛→∞ 𝑎𝑛1 𝑛  = 𝑙 < 1. 
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Choose 𝜖 > 0 such that  𝑙 + 𝜖 < 1. Then there exists 𝑚 ∈ N such that  𝑎𝑛1 𝑛 < 𝑙 + 𝜖 for all 

n ≥ m 

  ∴ 𝑎𝑛< (𝑙 +  𝜖) 𝑛  for all n ≥ m. 

  Now since 𝑙 + 𝜖 < 1 ,  (𝑙 +  𝜖) 𝑛   is convergent.   

   ∴  By comparison test  𝑎𝑛  is convergent. 

 Case (ii) Let lim𝑛→∞ 𝑎𝑛1/𝑛  = 𝑙 > 1. 

  Choose 𝜖 > 0 such that  𝑙 − 𝜖 > 1. 

Then there exists m ∈ N  such that  

   𝑎𝑛1/𝑛   > 𝑙 −  𝜖  for all n ≥ m. 

  ∴  𝑎𝑛  > (𝑙 −  𝜖) 𝑛  for all n ≥ m. 

Now, since 𝑙 −  𝜖,  (𝑙 −  𝜖) 𝑛  is divergent  

   ∴   By comparison test,  𝑎𝑛  is divergent. 

Note. The following is a more general form of Cauchy’s root test. Let  𝑎𝑛 be a  series of 

positive terms. Then  𝑎𝑛  is convergent if lim sup  𝑎𝑛1/𝑛  < 1 and divergent if                                       

lim sup  𝑎𝑛1/𝑛   > 1. 

Theorem 4.11. (Cauchy’s condensation test) 

 Let 𝑎1 + 𝑎2 + 𝑎3 + …… +𝑎𝑛+…..                 …………..(1) 

Be a series of positive terms and whose terms are monotonic decreasing. Then this 

series converges or diverges according as the series 

     g𝑎𝑔  + 𝑔2𝑎𝑔2  + …. + 𝑔𝑛𝑎𝑔𝑛  + …..             …………..(2) 

 converges or diverges where g is any positive integer > 1. 

Proof. Let 𝑠1 = 𝑎1 + 𝑎2 + 𝑎3 + …… +𝑎𝑛  and  

                        𝑡1  = g𝑎𝑔  + 𝑔2  𝑎𝑔2  + …. + 𝑔𝑛   𝑎𝑔𝑛  
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Then   𝑠𝑔𝑛  = (𝑎1 + 𝑎2 + 𝑎3 + …… +𝑎𝑔) + (𝑎𝑔+1 + 𝑎𝑔+2 + ….. +   𝑎𝑔2 ) + 

                       ………………………………………………………………………………….. 

                       + (  𝑎𝑔𝑛−1+1 +   𝑎𝑔𝑛−1+2 + …. +    𝑎𝑔𝑛 ) 

                       ≤ g𝑎1 + (𝑔2 − 𝑔) 𝑎𝑔+…..+(𝑔𝑛 − 𝑔𝑛−1)   𝑎𝑔𝑛−1  

                      ( ∵ The terms of the series are monotonic decreasing). 

                       = g𝑎1 + (g – 1) 𝑎𝑔  + ….. + 𝑔𝑛−1(𝑔 –  1)   𝑎𝑔𝑛−1  

                      = g𝑎1+ (g – 1) (g𝑎𝑔  + 𝑔2  𝑎𝑔2  + …. + 𝑔𝑛−1  𝑎𝑔𝑛−1 ) 

                      = g𝑎1+ (g – 1) 𝑡𝑛−1. 

   ∴    𝑠𝑔𝑛  ≤ g𝑎1 + (𝑔 –  1)  𝑡𝑛−1. 

   ∴  If the series (2) converges, then (1) converges. 

Now,   𝑠𝑔𝑛  ≥ g𝑎𝑔  + (𝑔2 − 𝑔)   𝑎𝑔2+ ……. +(𝑔𝑛 − 𝑔𝑛−1)   𝑎𝑔𝑛  

= g𝑎𝑔+ 
 𝑔−1

𝑔
 (g2ag2 + …+gnagn) 

 = g𝑎𝑔+ 
 𝑔−1

𝑔
( 𝑡𝑛  − g𝑎𝑔) 

= 𝑎𝑔  + 
𝑔−1

𝑔
 𝑡𝑛 . 

∴   If the series (2) diverges, then (1) diverges. 

Solved problem. 

1. Test the convergence of  
1

(log 𝑛)𝑛  

Solution.  Let   𝑎𝑛  = 
1

(log 𝑛)𝑛  

    ∴  𝑎𝑛
𝑛  = 

1

log 𝑛
 

         ∴  lim
𝑛→∞

  𝑎𝑛
𝑛  = 0 < 1. 
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  ∴  By Cauchy’s root test  
1

(log 𝑛)𝑛
 converges. 

2. Test the convergence of  .1 +
1

𝑛
/

−𝑛2

 . 

Solution. Let  𝑎𝑛  = .1 +
1

𝑛
/

−𝑛2

 

    ∴  𝑎𝑛
𝑛  = .1 +

1

𝑛
/

−𝑛

 

    ∴  lim
𝑛→∞

  𝑎𝑛
𝑛  = 

1

𝑒
  

   ∴  By Cauchy’s root test the series converges. 

3. Prove that the series  𝑒− 𝑛𝑥𝑛  converges if 0 < x < 1 and diverge if x > 1 

Solution. Let 𝑎𝑛  = 𝑒− 𝑛𝑥𝑛  

   ∴   𝑎𝑛1/𝑛  = 𝑒−1/ 𝑛𝑥. 

   ∴  lim
𝑛→∞

    𝑎𝑛1/𝑛  = x. 

   ∴  By Cauchy’s root test the given series converges if 0 < x < 1 and diverges if x > 1. 

4.  Test the convergence of  
𝑛3+𝑎

2𝑛 +𝑎
. 

Solution.  Let 𝑎𝑛  = 
𝑛3+𝑎

2𝑛 +𝑎
  , 𝑏𝑛  = 

𝑛3

2𝑛  

       ∴  
𝑎𝑛

𝑏𝑛
 = .

𝑛3+𝑎

2𝑛 +𝑎
/ .

2𝑛

𝑛3/ = .
𝑛3+𝑎

𝑛3 / .
2𝑛

2𝑛 +𝑎
/ 

                                           = .1 +
𝑎

𝑛3/  
1

1+(
𝑎

2𝑛 )
 . 

    ∴  lim
𝑛→∞

 
𝑎𝑛

𝑏𝑛
 = 1. 

   ∴  By comparison test, the given series is convergent  or divergent according as  
𝑛3

2𝑛
 is 

convergent or divergent. 
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 Now ,   𝑏𝑛1/𝑛  = .
𝑛2

2𝑛
/

1/𝑛

= 
𝑛3/𝑛

2
. 

     lim
𝑛→∞

 𝑛3/𝑛  = 1 

Also lim
𝑛→∞

  𝑏𝑛1/𝑛  = 
1

2
 

     ∴   𝑏𝑛 is convergent 

      ∴     𝑎𝑛  is convergent. 

5. Test the convergence of   
1

𝑛 log 𝑛
. 

Solution. By Cauchy’s condensation test,  
1

𝑛 log 𝑛
 converges or diverges with the series  

   
2𝑛

2𝑛 log 2𝑛  =  
1

𝑛 log 2
 = 

1

log 2
  

1

𝑛
. 

  Now the series  
1

𝑛
 diverges. 

  ∴   The given series diverges. 

6. Test the convergence of the series  
1

𝑛(log 𝑛)𝑝 . 

Solution. The given series converges or diverges with the series  
2𝑛

2𝑛 (log 2𝑛 )𝑝 . 

                 =  
1

(log 2)𝑝 𝑛𝑝  = 
1

(log 2)𝑝
 

1

𝑛𝑝 . 

  The series  
1

𝑛𝑝
 converges if p > 1 and diverges if p ≤ 1.  

  ∴   The given series converges if p > 1 and diverges p ≤ 1. 

7.  Test the convergence of the series  
1

2
 + 

1

3
 + 

1

22 + 
1

32 +
1

23  + 
1

33 +…. 

Solution.  We have   

         𝑎𝑛1/𝑛  =  
.

1

3𝑛/2/
1/𝑛

  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

.
1

2(𝑛+1)/2/
1/𝑛

 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
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1

 3
 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

2

2
1
2(1+

1

𝑛
)

 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.
  

Now, the sequence .2
1

2(1 +
1

𝑛
)/ converges to (1/ 2) as n → ∞. 

    ∴(1/ 2) and (1/ 3) are the only limit points of the given sequences. 

 lim sup   𝑎𝑛1/𝑛  = (1/ 2) < 1.  

       ∴ By Cauchy’s root test the given series is convergent. 

Note. In this case the limit of   𝑎𝑛1/𝑛  does not exists since lim inf    𝑎𝑛1/𝑛 ≠ lim sup   𝑎𝑛1/𝑛  

Exercises. Test the convergence of the following. 

(1) .1 −
1

𝑛
/

𝑛2

                                

(2) .
𝑛

𝑛+1
/

𝑛2

 

(3)  
1

𝑛𝑛  𝑛
 

(4)  2−𝑛+(−1)𝑛
    

(5)  𝑒−𝑛2
 

(6)   
𝑛3

3𝑛  

(7)   
1

𝑛𝑝 𝑛  

(8)   𝑒 𝑛𝑥𝑛  

(9)   
1

𝑛 (log 𝑛)
∞
𝑛=2  

(10)  
1

2
 + 1 + 

1

22 +
1

23 + 
1

24 +
1

25  + 
1

24  +
1

27 +
1

26  …. 

Answers : 1.C, 2. C, 3.C, 4. C, 5. C, 6. C, 7. C if p > 0, 8. C, 9. D, 10. C. 
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UNIT V: SUMMATION OF SERIES 

Summation of series using Binomial, Exponential and Logarithmic series. 

BINOMIAL SERIES  

When n is a positive integer (x + a)
n
 can be expanded as (𝑥 + 𝑎)𝑛  = 𝑥𝑛  + n𝐶1. 𝑥𝑛−1a + 

n𝐶2. 𝑥𝑛−2𝑎2 +…+ n𝐶𝑟 . 𝑥𝑛−𝑟 . 𝑎𝑟+…+ 𝑎𝑛 .. This is known as the binomial theorem for the positive 

integer n. When n is a rational number (1 + x)
n
 can be expanded as an infinite series when – 1 < x < 1 

(i.e)  𝑥  < 1 and it is given by 

 (1 + x)
n
 = 1 + 

𝑛𝑥

1!
 + 

𝑛(𝑛−1)

2!
 𝑥2+ . . . +  

𝑛(𝑛−1)…(𝑛−𝑟+1)

𝑟!
 𝑥𝑟+ . . .      (1) 

This is known as binomial series for (1+ x)
n
 where n is a rational number. 

General term 

   The (r + 1) 
th

 term in the expansion is often denoted by 

        U𝑟+1 or T𝑟+1 .   U𝑟+1 = n𝐶𝑟  𝑥𝑛−𝑟  𝑎𝑟  

   We may obtain any particular term by giving r particular values. Thus the first term is 

obtained by writing r = 0, the second by writing r = 1 and so on . So the (r +1) 
th

 term is 

called the general term. 

      Thus we get  (𝑥 + 𝑎)𝑛  =     𝑛𝐶𝑟𝑥
𝑛−𝑟𝑎𝑟𝑛

𝑟=0   

Note:- 

(1) The expansion contains (n + 1) terms. 

(2) The numbers  n𝐶0, n𝐶1 …. n𝐶𝑟  ….. n𝐶𝑛  are called the Binomial Coefficients. They are 

sometimes written as C0 , C1 , C𝑛 .These binomial coefficients are all integers since n𝐶𝑟  is 

the number of combinations of n things taken r at a time.  

(3) Since C0 =  C𝑛  , C1 =  C𝑛−1 , …… C𝑟 =  C𝑛−𝑟  , the coefficients of terms equidistant 

from the beginning and the end of the expansion are equal. 

 Summation of various series involving Binomial Coefficients   

        It is convenient to write the Binomial theorem in the form  
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           (1 + 𝑥)𝑛  = C0+C1𝑥 + C2𝑥2+….+C𝑟𝑥
𝑟+….C𝑛𝑥𝑛 . 

        We can seen in the expansion that the coefficients of terms which are equidistant from 

the beginning and the end are equal. 

         ∴   C0= C𝑛  = 1 , C1=  C𝑛−1= n …. and in general. 

   C𝑟=  C𝑛−𝑟= 
𝑛!

𝑟!(𝑛−𝑟)!
. 

Some important particular cases of the Binomial expansion. 

          (1 − 𝑥)−1 = 1+ x + 𝑥2 + 𝑥3+….. 

          (1 − 𝑥)−2 = 1 + 2x + 3𝑥2 + 4𝑥3+…..  

         (1 − 𝑥)−3 =  
1

2
{1.2 + 2.3x + 3.4𝑥2+ 4.5𝑥3+….} 

        (1 − 𝑥)−4  =  
1

6
{1.2.3 + 2.3.4x + 3.4.5𝑥2+ 4.5.6𝑥3+…} 

           (1 − 𝑥)−𝑛  = 1 + nx + 
n(n+1)

2!
𝑥2 + 

n(n+1)(n+2)

3!
𝑥3 + …… 

        (1 − 𝑥)−1/2 =  1 + 
1

2
x + 

1.3

2.4
𝑥2+ 

1.3.5

2.4.6
𝑥3 + …… 

         (1 − 𝑥)−1/3 = 1 + 
1

3
x + 

1.4

3.6
𝑥2+ 

1.4.7

3.6.9
𝑥3 + …… 

 Application of the Binomial theorem to the summation of series. 

    We have proved when  𝑥  < 1 , for all values of n 

      (1 + 𝑥)𝑛 = 1 + nx + 
n(n−1)

2!
𝑥2 + 

n(n−1)(n−2)

3!
𝑥3 + …… 

      (1 − 𝑥)𝑛 = 1− nx + 
n(n−1)

2!
𝑥2 + 

n(n−1)(n−2)

3!
𝑥3 + …… 

    (1 + 𝑥)−𝑛  = 1 − nx + 
n(n+1)

2!
𝑥2 − 

n(n+1)(n+2)

3!
𝑥3 + …… 

     (1 − 𝑥)−𝑛  = 1 + nx + 
n(n+1)

2!
𝑥2 + 

n(n+1)(n+2)

3!
𝑥3 + ……  
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Solved problems  

Example 1. Find the sum to infinity of the series 1 + 
3

4
 + 

3

4
 .

5

8
+

3

4
 .

5

8
+

7

12
 +… 

Solution. 

      The factors in the numerators form an A.P with common difference 2: we therefore 

divide each of these by 2. 

    Each of the factors in the denominator has 4 for a factor; removing 4 from each will leave a 

factorial . Hence we have 

       1 + 

3

2

1
 . 

2

4
 + 

3

2
.  

5

2

1.  2
 . .

2

4
/

2
+ 

3

2
.  

5

2
.  

7

2

1.  2.  3
 . .

2

4
/

3
+ …… 

i.e.,  1 + 

3

2

1!
 . 

1

2
 + 

3

2
.  

5

2

2!
 . .

2

4
/

2
+ 

3

2
.  

5

2
.  

7

2

3!
 . .

2

4
/

3
+ …… 

    Put n = 
3

2
   and x = 

1

2
. 

Then the series becomes 

      1 + 
𝑛

1!
 x+ 

𝑛(𝑛−1)

2!
𝑥2 + 

𝑛(𝑛−1)(𝑛−2)

3!
𝑥3 + …… 

             =  (1 − 𝑥)−𝑛  

             = (1 −
1

2
)−3/2 

             = 2 2. 

Example 2. Sum the series to infinity  
1 .  4

5 .  10
− 

1 .  4 .  7

5 .  10 .  15
+

1 .  4 .  7 .  10

5 .  10 .  15 .  20
 ….. 

Solution. 

         The numerators form an A.P . with 3 as common difference and the denominators are 

factorials, each of whose factors has been multiplied by 5. 

       ∴  The series can be written as  
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      S = 

1

3
.  

4

3

1 .  2
 . .−

3

5
/

2
+ 

1

3
.  

4

3
 .  

7

3
 

1 .  2 .  3
 . .−

3

5
/

3
+ 

1

3
.  

4

3
 .  

7

3
 .  

10

3

1 .  2 .  3 .  4
 . .−

3

5
/

4
+ …. 

 Put n = 
1

3
   and   x = −

3

5
. 

    ∴  S = 
n(n+1)

2!
𝑥2 + 

n(n+1)(n+2)

3!
𝑥3 + 

n(n+1)(n+2)(n+3)

4!
𝑥4….. 

             = 1 + nx + 
n(n+1)

2!
𝑥2 + 

n(n+1)(n+2)

3!
𝑥3 

            = (1 − 𝑥)−𝑛 − 1 − nx 

            = (1 +
3

5
)−1/3 − 1 +  

1

3
 . 

3

5
 = 

1

2
 (5)1/3 −

4

5
. 

Example 3. Sum the series to infinity.   
15

16
 + 

15.21

16.24
 + 

15.21.27

16.24.32
 +…… 

Solution. 

 The factors in the numerator form an A.P. with common difference 6 and those of the 

denominator an A.P with common difference 8. 

      Let S be the sum of the series. 

   Then S = 

15

6

2
..

6

8
/ + 

15

6
.
21

6

2 .3
. .

6

8
/

2

+ 
15
6

.
21
6

.
27
6

2.3.4
. .

6

8
/

3

+ ….. 

        The factors of the denominators do not begin with 1. Hence one additional factor , 

namely unity, has to be introduced into the denominator of each coefficient. The number of 

factors in the numerator is to be the same as that of the factors in the denominator. So we 

have to introduce an additional factor in the numerator also, which factor is clearly  
9

6
. 

       ∴  
9

6
S = 

9

6
.
15

6

1.2
.

6

8
/+

9

6
.
15

6
.
21

6

1.2.3
 .

6

8
/

2

+

9

6
.
15

6
.
21

6
.
27

6

1.2.3.4
 .

6

8
/

3

+… 

      Since the index of x in every term must be the same as the number of factors in the 

numerator or denominator of the coefficient, we have 

      S. 
9

6
.

6

8
 = 

9

6 
.
15

6

2!
.

6

8
/

2

+

9

6 
.
15

6
 .

21

6

3!
.

6

8
/

3

+… 
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      Put   
9

6
 = n  and   x = 

6

8
. 

        ∴ 
9

6
S = 

n(n+1)

2!
𝑥2 + 

n(n+1)(n+2)

3!
𝑥3 + …… 

                    = 1 + 
n

1!
+ 

n(n+1)

2!
𝑥2 + 

n(n+1)(n+2)

3!
𝑥3 + …… −(1+nx) 

                    =  (1 − 𝑥)−𝑛  − (1 + nx) 

                     = (1 −
6

8
)−9/6 − (1 + 

9

6
.

6

8
) 

                      = (
1

4
)−3/2 − (1 + 

9

8
) 

                       = 
47

8
. 

       ∴          S = 
47

9
. 

Example 4. Find the sum of to infinity of the series 
1

24
−

1.3

24.32
 + 

1.3.5

24.32.40
− …. 

Solution. 

 Proceeding as in the previous example, we get  

   S = 

1

2

3
..

2

8
/ + 

1

2
.
3

2

3.4
. .

2

8
/

2

+

1

2
.
3

2
.
5

2

3.4.5
. .

2

8
/

3

+ ….. 

     In order to express this in the standard binomial form, the factor 1 . 2 must be inserted in 

each denominator, and two additional factors must be then inserted in each numerator to 

secure that the number of factors in the numerator is the same as that in the denominator. In 

order that the factors of the numerator may remain in A.P. the additional factors(which 

should be the same in each term) must be  −
3

2
 , 

1

2
. 

      ∴    −
3

2
. −

1

2
.S. 

1

1.2
 = 

−
3

2
.−

1

2
.
1

2

1.23
..

2

8
/ − 

−
3

2
.−

1

2
.
1

2
.
3

2

1.2.3.4
. .

2

8
/

2

+ 
−

3

2
.−

1

2
.
1

2
.
3

2
.
5

2

1.2.3.4.5
. .

2

8
/

3

 

     The index of x should be the same as the number of factors in the numerator. 
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       ∴    The series is to be multiplied by  .
2

8
/

2

. 

      ∴  −
3

2
. −

1

2
.S. 

1

2
. .

2

8
/

2

 

          = 
−

3

2
.−

1

2
.
1

2

3!
.

2

8
/

3
− 

−
3

2
.−

1

2
.
3

2
.
5

2

4!
. .

2

8
/

4

+
−

3

2
.−

1

2
.
1

2
.
3

2
.
5

2

5!
. .

2

8
/

5

+…… 

    i.e.,  
3S

128
 = 

n(n+1)(n+2)

3!
𝑥3 −

n(n+1)(n+2)(n+3)

4!
𝑥4+……. 

      If n = − 
3

2
 , x = 

2

8
. 

         ∴  
3S

128
 = − (1 + 𝑥)−𝑛+ { 1−nx+

n(n+1)

2!
𝑥2} 

                       = − (1 +
2

8
)3/2 + { 1+ 

3

2
.

2

8
+

− 
3

2
 .− 

1

2
 

2!
.

2

8
/

2

} 

            = 
−5 5

8
 + 1 + 

3

8
 + 

3

128
 

           = 
179

128
−

−5 5

8
. 

   ∴   S = 
1

3
(179 − 80 5 ). 

Exercises  

Find the sum to infinity of the following series: 

(1) 
3

1
 + 

3.5

1.2
.

1

3
 + 

3.5.7

4.8.12
 +……    

(2) 
3

50
 + 

3.18

50.100
 + 

3.18.33

50.100.150
 + ….. 

(3) 
5

3.6
 + 

5.7

3.6.9
 + 

5.7.9

3.6.9.12
 + …… 

(4) 
3

18
 + 

3.7

18.24
 + 

3.7.11

18.24.30
 + ….. 

(5) 
5

3.6
.

1

42
 + 

5.8

3.6.9
. 

1

43
 + 

5.8.11

3.6.9.12
. 

1

44
 +…. 

(6) 
1

23(3!)
 −

1.3

24(4!)
 + 

1.3.5

25(5!)
 +…… 
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Answers: 1. 3
5

3 − 3, 2. .
10

7
/

1
5 

− 1, 3.  3 −
2

3
, 4.

1

5
28(27)

1
4 − 173, 

5. 
1

2
8.

4

3
/

2
3 

−
7

6
9, 6.

23

24
−

2

3
 2.  

 Sum of coefficients. 

         If f (x) can be expanded as an ascending series in x, we can find the sum of the list 

(n+1) coefficients. 

         Let    f (x) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + …. + 𝑎𝑛𝑥𝑛 +….. 

         (1 − 𝑥)−1 = 1 + x +  x 2 +   x 3 + ……. 

             ∴  
f (x)

1−𝑥
 = (𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + …. + 𝑎𝑛𝑥𝑛 +…..) . (1 + x +  x 2 +…) 

              ∴    Coefficient of   x 𝑛  in 
f (x)

1−𝑥
 = 𝑎0 + 𝑎1 + 𝑎2+…+ 𝑎𝑛 . 

        Thus, to find the sum of the first (n+1) coefficients in the expansion of  f (x), we have 

only to find the coefficient of  x 𝑛  of the expansion of  
f (x)

1−𝑥
. 

Example 1. Find the sum of the coefficients of the first (r +1) term in the expansion of 

(1 − 𝑥)−3. 

Solution. 

        The required result is the coefficient of  x 𝑟  in the expansion of   
  (1−𝑥)−3

1−𝑥
. 

       i.e., in the expansion of   (1 − 𝑥)−4 

      i.e., in 1 + 4x + 
4.5

2!
 x 2  + 

4.5.6

3!
x 3  + ……+ 

(r+1)(r+2)(r+3)

3!
x 𝑟    

       ∴  Sum of the (r +1) coefficients in the expansion of  

    (1 − 𝑥)−3 is  
(r+1)(r+2)(r+3)

6
. 
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Example 2. If n is a positive integer and  
  (1+𝑥)𝑛

  (1−𝑥)3
 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + …. + 

𝑎𝑛𝑥𝑛 +… 

Show that  𝑎0 + 𝑎1 + 𝑎2+…+ 𝑎𝑛−1 = 
1

3
 n (n+2)(n+7) 2𝑛−4. 

Solution. 

      The sum required = coefficient of   x 𝑛−1  in the expansion of  
  (1+𝑥)𝑛

  (1−𝑥)3(1−𝑥)
. 

                               =            “                                    “               
  (1+𝑥)𝑛

  (1−𝑥)4
. 

  Now (1 + 𝑥)𝑛            = { 2 – (1 –  x )} 𝑛  

                                     = 2𝑛– n . 2𝑛−1(1 – x ) + 
n(n−1)

2!
2𝑛−2 (1 –  x ) 

2
–   

n(n − 1)(n − 2)

3!
2𝑛−3 (1 –  x )3  

      Involving powers of (1 – x ), higher than third. 

     Hence  
  (1+𝑥)𝑛

  (1−𝑥)4
 = 

  2𝑛

  (1−𝑥)4
 – 

  𝑛  .  2𝑛−1

  (1−𝑥)3
 + 

  𝑛  .(𝑛−1)2𝑛−2

 2! (1−𝑥)2
 – 

n(n−1)(n−2)

3!(1−𝑥)
2𝑛−3   

                                                               + an integral  expression of  (n – 4 )
th

 degree. 

        Coefficient of  𝑥𝑛−1  in (1 –  x )−4 is 
n(n+1)(n+2)

3!
 

                       “                (1 –  x )−3 is  
n(n+1)

2!
  

                       “                (1 –  x )−2 is  n. 

                            “                  (1 –  x )−1 is  1. 

      Hence the coefficient of  𝑥𝑛−1 in  
  (1+𝑥)𝑛

  (1−𝑥)4
 is 

          
2𝑛 n(n+1)(n+2)

3!
 – 

2𝑛−1𝑛2(n+1)

2!
 + 

2𝑛−2n(n−1)

2!
 . n – 2𝑛−3 n(n−1)(n−2)

3!
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        = 
2𝑛−1n(n+1)(n+2)

3
 – 2𝑛−2𝑛2(𝑛 + 1) + 2𝑛−3𝑛2(𝑛 − 1)– 2𝑛−4 n(n−1)(n−2)

3
 

        = 
2𝑛−4

3
 n { 8 (n+1) (n+2) – 12n (n+1) + 6n(n– 1) – (n – 1)(n – 2)} 

          = 
2𝑛−4𝑛

3
 { 8𝑛2+24n+16 – 12𝑛2– 12n+6𝑛2– 6n –𝑛2 + 3n –2} 

          = 
2𝑛−4𝑛

3
 (𝑛2 + 9n + 14) 

          = 
2𝑛−4𝑛(𝑛+2)(𝑛+7)

3
 

        =  
1

3
𝑛(𝑛 + 2)(𝑛 + 7)

2𝑛−4𝑛

3
. 

Exercises  

1. Find the sum of n terms of the series 1+ n + 
n(n+1)

1.2
+

n(n+1)(n+2)

1.2.3
+….. 

2. Find the sum of the first n+1 coefficients in the expansion of  
2x−4

(1+𝑥)(1−2𝑥)
 is 

ascending powers of x. 

3. Show that if  𝑎𝑚  be the coefficient of  𝑥𝑚  in the expansion of (1 +

𝑥)𝑛 , then whatever n be  𝑎0 − 𝑎1+𝑎2+…+ (−1) 𝑚−1𝑎𝑚−1 = 

(n−1)(n−2)….(𝑛−𝑚+1)

(𝑚−1)!
 (−1) 𝑚−1. 

Answers : 1. 
(2𝑛−1)!

𝑛!(𝑛−1)!
,2.*1 + (−1)𝑛 − 2𝑛+2+. 

 Integro-Binomial Series. 

           When n is a positive integer we know that   

             (1 + 𝑥)𝑛  = C0+C1𝑥 + C2𝑥2+….C𝑟𝑥
𝑟+….                     (1) 

        Changing n into (n – 1) in (1) , we get 

              (1 + 𝑥)𝑛−1 =1 +  
(n−1)

1!
𝑥+

(n−1)(n−2)

2!
𝑥2+….. 
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      ∴  𝑛(1 + 𝑥)𝑛−1 = n + 
n(n−1)

1!
𝑥+

n(n−1)(n−2)

2!
𝑥2+….. 

                 = C1 + 2. C2.x +3 C3.x
2 + ….r. C𝑟.x

𝑟−1  + ……         (2) 

        Changing n into (n – 1) in (2) , we get 

         (n – 1) (1 + 𝑥)𝑛−2 = (n – 1) + 
(n−1)(n−2)

1!
𝑥 + 

(n−1)(n−2)(𝑛−3)

2!
𝑥2 + …. 

       ∴ (n – 1) (1 + 𝑥)𝑛−2 = n(n – 1) + 
n(n−1)(n−2)

1!
𝑥 + 

𝑛(n−1)(n−2)(𝑛−3)

2!
𝑥2 + …. 

        = 1.2. C2+2.3. C3x + ….r (r – 1) . C𝑟x𝑟−2 + …..                   (3) 

     Similarly 

                n (n – 1)(n – 2) (1 + 𝑥)𝑛−3 = 1.2.3. C3+2.3.4. C4x +…. 

                                                                   + r (r – 1)(r – 2) . C𝑟x𝑟−3 +…..                   (4) 

and so on. 

    If  n  is not a positive integer , the result (1) , (2) , (3) , (4) , ….. are also true provided  𝑥  < 

1.  

  In this case C0 , C1 , C2 , …. do not represent n𝐶0 , n𝐶1 , n𝐶2 , … but 
n1

1!
 , 

n2

2!
 , 

n3

3!
 , ….. 

     In a similar way , we can show that  

     
(1+𝑥)𝑛 +1

𝑛+1
 = 

1

𝑛+1
 + C0𝑥 + 

C1

2
𝑥2+ ….+ 

C𝑟

𝑟+1
𝑥𝑟+1+…. 

    
(1+𝑥)𝑛+1

(𝑛+1)(𝑛+2)
 = 

1

(𝑛+1)(𝑛+2)
 + 

1

𝑛+1
𝑥 + 

C0

1.2
𝑥2 + … +

C𝑟

(𝑟+1)(𝑟+2)
𝑥𝑟+2+…. 

  and so on. 

      The series whose general term is f (r) . C𝑟  . 𝑥𝑟  where f (r) is a polynomial in r is called 

an integro-Binomial Series. 

       To sum up such a series the following method may be adopted. 

       Express f (r) = a0+a1𝑟 + a2𝑟(𝑟 − 1)+….     
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       By giving values 0 , 1 , 2 , …. r , a0 , a1 , a2 , ….. can be determined. 

         f (r) . C𝑟𝑥
𝑟  = a0C𝑟. 𝑥𝑟+a1𝑟 . C𝑟. 𝑥𝑟+a2𝑟(𝑟 − 1) . C𝑟. 𝑥𝑟+… 

 ∴   𝑓(𝑟)∞
0 . C𝑟  . 𝑥𝑟  = a0   ∞

0  C𝑟 . 𝑥
𝑟+a1   𝑟.∞

0  C𝑟 . 𝑥
𝑟   

                                                    +a2   𝑟(𝑟 − 1).∞
0  C𝑟 . 𝑥

𝑟+…… 

                                 = a0(1 + 𝑥)𝑛 + a1𝑥.   𝑟.∞
0  C𝑟  . 𝑥𝑟−1 

                                                      +a2𝑥2   𝑟(𝑟 − 1).∞
0  C𝑟 . 𝑥𝑟−2+…… 

     = a0(1 + 𝑥)𝑛 + a1𝑥. 𝑛(1 + 𝑥)𝑛−1+a2𝑥2𝑛(𝑛 − 1). (1 + 𝑥)𝑛−2+….. 

      = a0(1 + 𝑥)𝑛 + a1𝑛. 𝑥(1 + 𝑥)𝑛−1+a2𝑛. (𝑛 − 1). 𝑥2(1 + 𝑥)𝑛−2+….. 

Example 1. Sum the series   (𝑟 + 1)2∞
0  C𝑟  . 𝑥𝑟 . 

Solution. 

 Let  (𝑟 + 1)2 =  a0 + a1𝑟 + a2𝑟(𝑟 − 1). 

                Put r = 0      ∴  a0 = 1 

                       r = 1      ∴  a1 = 3. 

      Equating the coefficients of  𝑟2 on both sides, we get  a2 = 1. 

  ∴    (𝑟 + 1)2 = 1 + 3r + r(r – 1). 

   ∴   (𝑟 + 1)2.∞
0  C𝑟𝑥

𝑟=   ∞
0 C𝑟  . 𝑥𝑟+3.   𝑟.∞

0  C𝑟 . 𝑥
𝑟+  𝑟(𝑟 − 1).∞

0  C𝑟   𝑥𝑟  

                                   =   ∞
0 C𝑟  . 𝑥𝑟+3𝑥.   𝑟.∞

0  C𝑟 . 𝑥𝑟−1+𝑥2   𝑟(𝑟 − 1).∞
0  C𝑟  

𝑥𝑟−2 

            = (1 + 𝑥)𝑛 + 3𝑥. 𝑛(1 + 𝑥)𝑛−1 + 𝑥2𝑛(𝑛 − 1) (1 + 𝑥)𝑛−2 

              = (1 + 𝑥)𝑛−2 { (1 + 𝑥)2+3𝑛𝑥(1 + 𝑥) + 𝑛(𝑛 − 1) 𝑥2} 

             = (1 + 𝑥)𝑛−2 {(𝑛 + 1)2𝑥2 + (3𝑛 + 2)𝑥 + 1}. 
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Example 2.  If  𝑥  < 1, prove that  
1+𝑥

(1−𝑥)3
 = 12 + 22. 𝑥 + 32. 𝑥2 + 42 . 𝑥3 +….. to  ∞ . 

Solution. 

      The  𝑛𝑡𝑕  term of the series is (𝑛 + 1)2. 𝑥𝑛 . 

     Express (𝑛 + 1)2 in the form a0+a1𝑛 + a2𝑛(𝑛 − 1). 

       ∴   a0 = 1 ,  a1 = 3  , a2 = 1. 

      ∴   (𝑛 + 1)2 = 1 + 3𝑛 + 𝑛(𝑛 − 1). 

    ∴   (𝑛 + 1)2∞
0 𝑥𝑛=  ∞

0 𝑥𝑛+3   𝑛.∞
0 𝑥𝑛+  𝑛(𝑛 − 1).∞

0  𝑥𝑛  

                              = 1 + 𝑥 + 𝑥2…... 𝑥𝑛 + ⋯. to  ∞ + 3{ 𝑥 + 2𝑥2 + 3𝑥3 + ⋯ ∞} 

                                                                           + { 1.2𝑥2 + 2.3𝑥3 + 3.4𝑥4 + ⋯ ∞} 

                                    = (1 − 𝑥)−1 + 3𝑥 {1 + 2𝑥 + 3𝑥2 + ⋯ 𝑡𝑜  ∞} 

                                                                            +𝑥2  * 1.2 + 2.3𝑥 + 3.4𝑥2 + ⋯ 𝑡𝑜 ∞+ 

                                     = (1 − 𝑥)−1 + 3𝑥 (1 − 𝑥)−2 + 𝑥2 . 2(1 − 𝑥)−3 

                                      = 
1

1−𝑥
 + 

3𝑥

(1−𝑥)2
 + 

2𝑥2

(1−𝑥)3
 

                                 = 
(1−𝑥)2+3𝑥(1−𝑥)+2𝑥2

(1−𝑥)3
 

                                 = 
1+𝑥

(1−𝑥)3
. 

Example 3.   Sum the series  
𝑟+1

𝑟+2
.∞

0  C𝑟𝑥
𝑟  

Solution. 

 We have  
𝑟+1

𝑟+2
 = 

(𝑟+1)2

(𝑟+1)(𝑟+2)
 

                               = 
a0+a1(𝑟+1)+a2(𝑟+1)(𝑟+2)

(𝑟+1)(𝑟+2)
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          ∴  (𝑟 + 1)2 = a0 + a1(𝑟 + 1) + a2(𝑟 + 1)(𝑟 + 2) 

     ∴  a0 = 1 ,  a1 = − 1  , a2 = 1. 

              ∴   
𝑟+1

𝑟+2
 = 

1−(𝑟+2)(𝑟+1)(𝑟+2)

(𝑟+1)(𝑟+2)
 

                       = 
1

(𝑟+1)(𝑟+2)
−

1

(𝑟+1)
 +1. 

    ∴   
𝑟+1

𝑟+2
∞
0 C𝑟.𝑥

𝑟  =  
1

(𝑟+1)(𝑟+2)
∞
0 C𝑟𝑥

𝑟  −  
1

(𝑟+1)
∞
0 C𝑟𝑥

𝑟 +  C𝑟𝑥
𝑟∞

0  

                              = 
1

𝑥2
 

1

(𝑟+1)(𝑟+2)
∞
0 C𝑟 . 𝑥𝑟+2 −

1

𝑥
 

1

(𝑟+1)
∞
0 C𝑟 . 𝑥𝑟+1 +

 C𝑟 . 𝑥𝑟∞
0 . 

      We have learned that 

                 
C𝑟.

𝑟+1
∞
0 𝑥𝑟+1 + 

1

𝑛+1
 = 

(1+𝑥)𝑛+1

𝑛+1
 

              
C𝑟.

(𝑟+1)(𝑟+2)
∞
0 𝑥𝑟+2 + 

1

(𝑛+1)(𝑛+2)
 + 

𝑥

𝑛+1
 = 

(1+𝑥)𝑛+2

(𝑛+1)(𝑛+2)
. 

    ∴    
𝑟+1

𝑟+2
∞
0 C𝑟.𝑥

𝑟  = 
1

𝑥2
0

(1+𝑥)𝑛+2

(𝑛+1)(𝑛+2)
−

𝑥

𝑛+1
−

1

(𝑛+1)(𝑛+2)
1  

− 
1

𝑥
0

(1+𝑥)𝑛+1

𝑛+1
+

1

𝑛+1
1+(1 + 𝑥)𝑛  

          = (1 + 𝑥)𝑛 [ 1 + 
(1+𝑥)2

(𝑛+1)(𝑛+2)𝑥2
−

1+𝑥

(𝑛+1)𝑥
] −

1

(𝑛+1)(𝑛+2)𝑥2
 

           = 
(1+𝑥)𝑛

(𝑛+1)(𝑛+2)
0(𝑛 + 1)(𝑛 + 2) +

(1+𝑥)2

𝑥2
−

(𝑛+2)(1+𝑥)

𝑥
1 −

1

(𝑛+1)(𝑛+2)𝑥2
 

           = 
(1+𝑥)𝑛

(𝑛+1)(𝑛+2)
0𝑥2 + 3𝑛 + 2 +

1

𝑥2 +
2

𝑥
+ 1 −

(𝑛+2)

𝑥
− (𝑛 + 2)1 −

1

(𝑛+1)(𝑛+2)𝑥2 

           = 
(1+𝑥)𝑛

(𝑛+1)(𝑛+2)
[(𝑛 + 1)2 −

𝑛

𝑥
 + 

1

𝑥2
] − 

1

(𝑛+1)(𝑛+2)𝑥2
. 
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Exercises  

1. If  (1 +  𝑥 +  𝑥2)2 = a0+a1𝑥 + a2𝑥2+… prove that  

a0 − 𝑛. a𝑟−1+
𝑛(𝑛−1)

1.2
a𝑟−2 − …. +(−1)2. 

𝑛!

𝑟!(𝑛−𝑟)!
a0= 0  unless r is a multiple of 3 . 

What is its value in this case? 

2. Express  
1

1−𝑥−6𝑥2
 as the sum of two partial fractions and hence show that  

1 + (n – 1)6 + 
(𝑛−2)(𝑛−3)

2!
62+

(𝑛−3)(𝑛−4)(𝑛−5)

3!
63+… = 

1

5
{3𝑛+1+ (−1)𝑛+12𝑛+1}. 

3. Show that  1 +2 (n – 1)+ 
22(𝑛−2)(𝑛−3)

1.2
+

23(𝑛−3)(𝑛−4)(𝑛−5)

3!
+…= 

1

3
{2𝑛+1+ (−1)𝑛}. 

 Approximate values. 

           The Binomial series can be used to obtain approximate values and limits of 

expressions as follows. 

  Example 1. Find correct to six places of decimals the values of  
1

(9998)1/4
. 

Solution. 

           .
1

(9998)
/

1/4
 = 

1

(10000−2)1/4
 

                                 = 
1

(104−2)1/4
 

                           = 
1

10(1−
2

104)1/4
 

                            = 
(1−

2

104)−1/4

10
 

                          = 
1 + 

1 

4 
 .  

2

104  + 

1
4

 .  
5
4

2!
 .  

4

108+⋯.

10
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         = 
1

10
 + 

1

2
 . 

1

105
 + 

5

8
 . 

1

109
 +…. 

                         = 0.1 + 
1

2
 (0.00001) + 

5

8
 (0.000000001) 

                            = 0.1 + 0.000005 + 0.0000000005 

                            = 0.1000050005 

   ∴  
1

(9998)1/4
 = 0.100005 correct to six places of decimals. 

Example 2. Calculate correct to six places of decimals  (1.01)1/2 − (0.99)1/2. 

Solution. 

    Write x = 0.01. 

              ∴   (1.01)1/2 = (1 + 𝑥)1/2 

                                  = 1 + 
1

2
𝑥 +

1

2
(−

1

2
)

2!
𝑥2+

1

2
..−

1

2
/..−

3

2
/

3!
𝑥3+…. 

               (0.99)1/2 =  (1 − 𝑥)1/2     

                           =   1 + 
1

2
𝑥 +

1

2
.(−

1

2
)

2!
𝑥2 −

1

2
.(−

1

2
)(−

3

2
)

3!
𝑥3+…. 

    ∴ (1.01)1/2 − (0.99)1/2 =  28
1

2
𝑥 +

1
2

..−
1
2
/..−

3
2
/

3!
𝑥3 +

1
2

..−
1
2
/..−

3
2
/..−

5
2
/.−

7
2
/

3!
𝑥5 + ⋯ 9 

                                            = 22
1

2
𝑥 +

1

16
𝑥3 +

7

256
𝑥5 + ⋯ 3 

                                            = 𝑥 +
1

8
𝑥3 +

7

128
𝑥5 + ⋯ 

                                      = (0.01) + 
1

8
(0.01) 3+

7

128
(0.01)5 + ⋯ 

                                      = 0.01 + 
1

8
(0.000001) + terms not affecting the 8𝑡𝑕  decimal place 

                                          = 0.01 + 0.000000125 
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                                          = 0.010000125 

         ∴ (1.01)1/2 − (0.99)1/2 = 0.010000 correct to six places of decimals. 

Exercises  

1. Find the value of  
1

(128)1/3
 correct to five places of decimals. 

2. Find the expansion of  (1 +
1

64
)1/3 and find the cube root of 65 correct to three 

places of decimals. 

3. Prove that (2)1/3 = 1 
1

4
(1 + 0.024)1/3 and hence find the cube root of two to four 

places of decimals. 

4. Evaluate  .
0.998

1.002
/

1/3
 correct to four places of decimals, without using logarithms. 

5. Find to five places of decimals the value of  (1003)
1

3 − (997)
1

3 . 

Answers: 1. 0.19842, 2. 4.021, 4. 1.0027, 5. 0.02000. 

 

Example 1. When x is small, prove that 
(1−3x)−2/3+(1−4x)−3/4  

(1−3x)−1/3+(1−4x)−1/4  
= 1+ 

3

2
x + 4𝑥2 

approximately. 

Solution. 

      The expression is equal to  

   = 
1+

2

3
.3𝑥+

2
3

 .  
5
3

2!
(3𝑥)2+

2
3

 .  
5
3

 .  
8
3

3!
(3𝑥)3+⋯+ 1 + 

3

4
.4𝑥+

3
4

 .  
7
4

2!
(4𝑥)2+⋯

1+
1

3
.3𝑥+

1
3

 .  
4
3

2!
(3𝑥)2+

1
3

 .  
4
3

 .  
7
3

3!
(3𝑥)3+⋯+ 1 + 

1

4
.4𝑥+

1
4

 .  
5
4

2!
(4𝑥)2+⋯

 

 

   Since 𝑥3 and higher powers of x may be neglected the expression  

                          = 
2+5𝑥+15

1

2
𝑥2

2+2𝑥+4
1

2
𝑥2
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                     = 
(2+5𝑥+15

1

2
𝑥2)

2(1+𝑥+
9

4
𝑥2)

 

                     = 
2+5𝑥+15

1

2
𝑥2

2
 .  (1 + 𝑥 +

9

4
𝑥2)−1 

                     = (1 +
5

2
𝑥 +

31

4
𝑥2){ 1 + 𝑥(1 +

9

4
𝑥)}−1 

                     = .1 +
5

2
𝑥 +

31

4
𝑥2/ {1 − 𝑥 .1 +

9

4
𝑥/ + 𝑥2(1 +

9

4
𝑥)2…} 

                     = .1 +
5

2
𝑥 +

31

4
𝑥2/ .1 − 𝑥 −

9

4
𝑥2 + 𝑥2/ 

                                   ( 𝑥3 and higher powers of x neglected) 

                        = .1 +
5

2
𝑥 +

31

4
𝑥2/ .1 − 𝑥 −

5

4
𝑥2/ 

                         = 1 +
5

2
𝑥 +

31

4
𝑥2 − 𝑥 −

5

2
𝑥2 −

5

4
𝑥2 

                         = 1 +
3

2
𝑥 + 4𝑥2. 

Example 2. Show that  𝑥2 + 16 −  𝑥2 + 9 = 
7

2𝑥
  nearly for sufficiently large values of x. 

Solution. 

               The expression  =  (𝑥2 + 16)1/2 − (𝑥2 + 9)1/2 

                                       = 𝑥(1 +
16

𝑥2
)1/2 − 𝑥(1 +

9

𝑥2
)1/2 

                                     = 𝑥(1 +
1

2
.

16

𝑥2 − ⋯ ) − 𝑥(1 +
1

2
.

9

𝑥2 − ⋯ ) 

    (Since  
1

𝑥
 is small, the expansion is valid) 

                                    = 𝑥 +
8

𝑥
− 𝑥 −

9

2𝑥
 

                                    = 
7

2𝑥
 nearly. 
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Exercises  

1. If x be so small that its square and higher powers may be neglected, find the value of  

             (1 − 7x)1/3 − (1 + 2x)−3/4 

2. When x is small , show that 
(1−x)−5/2+(16+8x)1/2  

(1+x)−1/2+(2+x) 
= 1+ 

23

40
𝑥2 approximately. 

3. If x be so small that its squares and higher powers may be neglected. Prove that 

(9+2x)1/2+(3+4x) 

(1−x)1/3  
= 9+

74

5
𝑥 nearly. 

4. If  x  be so small that powers of  x above 𝑥3 may be neglected, show that 

(1+x+𝑥2)+(1+x)2  

(1−x)1/3
= 1+ 4𝑥 + 7𝑥2 + 6𝑥3. 

5. If c is small in comparison with l, show that (
𝑙  

𝑙+𝑐 
)1/2+(

𝑙 

𝑙−𝑐 
)1/2 = 2+

3c3  

4𝑙2
 

approximately. 

6. Show that   𝑥2 + 4 −  𝑥2 + 1 is 1−
1

4
𝑥2+

7

64
𝑥4 nearly when x is small and 

3

2𝑥
(1−

3

4𝑥2 +
3

8𝑥4) nearly when x is large. 

Answer: 1.1 −
23

6
𝑥.  

Extra problem  

1. Find the general term in the expansion (4 – 7x)
-2/5

 starting when will the expansion be 

valid. 

Solution. 

 (4 – 7x)
-2/5

 = 4−2 5 .1 −
7𝑥

4
/

−2 5 

= 2−4 5 .1 −
7𝑥

4
/

−2 5 

 

.1 −
7𝑥

4
/

−2 5 

can be expanded in binomial series if  
7𝑥

4
  < 1. (i.e) if  𝑥 <

4

7
  

The general term Tr+1 in .1 −
7𝑥

4
/

−2 5 

is  

 = 
−

2

5
.−

2

5
−1/.−

2

5
−2/…...−

2

5
−𝑟+1/.−

7𝑥

4
/
𝑟

𝑟!
 

= 
(−2)(−7)(−12)…..(−5𝑟+3)

5𝑟𝑟!
(−1)𝑟 .

7𝑥

4
/

𝑟
 

= 
2.7.12…..(5𝑟−3)

𝑟!
(−1)2𝑟 .

7𝑥

20
/

𝑟
 

= 
2.7.12…..(5𝑟−3)

𝑟!
.

7𝑥

20
/

𝑟
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The general term in   (4 – 7x)
-2/5

 is  (2)−4 5 2.7.12……(5𝑟−3)

𝑟!
.

7𝑥

20
/

𝑟
. 

2. If  𝑥 <  
1

2
 prove that coefficient of x

n
 in the expansion of (2 – 4x)(1 – 2x)

-2
 is 2

n+1
 

Solution. 

  𝑥 <  
1

2
 ⟹  2𝑥 <  1 

Hence we can expand (1 – 2x)-2 in binomial series. 

Now, (2 – 4x)(1 – 2x)
-2

 = (2 – 4x)  (𝑟 + 1)(2𝑥)𝑟∞
0  

= (2 – 4x)[1 + 2(2x) + 3(2x)
2
 + ... + n (2x)

n-1
 + (n+1)(2x)

n
 + ...] 

= (2 – 4x)[1 + 2.2x + 3.2
2
x

2
 + ... + n 2

n-1
x

n-1
 + (n+1)2

n
x

n
 + ...] 

Coefficient of x
n
 = 2(n+1)2

n
 – 4 (n.2

n-1
) 

= n.2
n+1 

+ 2
n+1

 – n 2
n+1

 – n 2
n+1 

= 2
n+1

. 

3. Find the coefficient of x
n
 in the expansion (1 – 2x + 3x

2
 – 4x

3
 +...)

-n
 

Solution. 

 
 
(1 – 2x + 3x

2
 – 4x

3
 +...)

-n
 = ,(1 + 𝑥)−2-−𝑛  

= (1 + 𝑥)2𝑛  

Coefficient of x
n
 in (1 – 2x + 3x

2
 – 4x

3
 +...)

-n
 is same as the coefficient of x

n
 in (1 + 𝑥)2𝑛  

and it is  

= 
2𝑛(2𝑛−1)(2𝑛−2)…..(2𝑛−𝑛−1      )

𝑛!
 

= 
2𝑛(2𝑛−1)(2𝑛−2)….(𝑛+1)

𝑛!
 

=
2𝑛(2𝑛−1)……(𝑛+1),𝑛(𝑛−1)…….2.1-

𝑛!,1.2……(𝑛−1)𝑛-
 

= 
2𝑛!

𝑛!𝑛!
. 

4. Find the coefficient of x
n
 when 

7+𝑥

(1+𝑥)(1+𝑥2)
 is expanded in ascending power of x. 

Solution. 

Let  
7+𝑥

(1+𝑥)(1+𝑥2)
 = 

𝐴

1+𝑥
+

𝐵𝑥+𝑐

1+𝑥2 . 

We can find A = 3; B = – 3; C = 4. 

Therefore 
7+𝑥

(1+𝑥)(1+𝑥2)
 = 

3

1+𝑥
+

4−3𝑥

1+𝑥2. 

= 3(1+x)
-1

 + (4 – 3x)(1 +x
2
)

-1
 

= 3(1 – x + x
2
 – x

3
 + ...) + (4 – 3x)(1 – x

2
+ x

4
 – x

6
 + ...) 

Case 1. r is an odd integer say r = 2n + 1, n∈N. 

Therefore coefficient of x
r
 = coeff.of x

2n+1 
 

= - 3 + (-3)(-1)
n
 

= - 3 + (-3)(−1)(𝑟−1) 2  

Case 2.r is an even integer say r = 2n, n∈N. 
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Therefore coefficient of x
r
 = coeff.of x

2n
 

= -3 + 4(-1)
n
 

= - 3 + 4(-1)
r/2

.    

5. If x is so small that its square and higher powers may be neglected prove that 

 1+𝑥(4−3𝑥)
3

2 

(8+5𝑥)
1

3 
 = 4 -  

10𝑥

3
 .(nearly) 

Solution. 

  

 1+𝑥(4−3𝑥)
3

2 

(8+5𝑥)
1

3 
 = (1 + 𝑥)

1
2 4

3
2 .1 −

3𝑥

4
/

3
2 

8
1

3 .1 +
5𝑥

8
/

−1
3 
 

= 4.1 +
1

2
𝑥 + ⋯ / .1 −

9

8
𝑥 + ⋯ / .1 −

5𝑥

24
+ ⋯ / 

= 4 01 + 𝑥 .
1

2
−

9

8
−

5

24
/1 (neglecting x

2
 and higher power of x) 

= 4 −
10𝑥

3
. 

6. Show that 1 + n.
2𝑎

1+𝑎
/ + 

𝑛(𝑛+1)

1.2
.

2𝑎

1+𝑎
/

2
+ ...... = .

1+𝑎

1−𝑎
/

𝑛
. 

Solution. 

Put 
2𝑎

1+𝑎
= 𝑦. 

Then L.H.S = 1+ 
𝑛𝑦

1!
+

𝑛(𝑛+1)

2!
𝑦2 + ⋯  

= (1 − 𝑥)
−𝑝

𝑞  where p = n; a = 1 and 
𝑥

𝑎
= 𝑦. Hence x = y. 

Hence L.H.S = (1 − 𝑦)−𝑛  = .1 −
2𝑎

1+𝑎
/

−𝑛
= .

1−𝑎

1+𝑎
/

−𝑛
= .

1+𝑎

1−𝑎
/

𝑛
  = R.H.S 

7. Prove that 1 +
2𝑛

3
+

2𝑛(2𝑛+2)

3.6
+

2𝑛(2𝑛+2)(2𝑛+4)

3.6.9
+ ⋯ = 2 01 +

𝑛

3
+

𝑛(𝑛+1)

3.6
+

𝑛(𝑛+1)(𝑛+2)

3.6.9
+

… 

Solution. 

L.H.S = 1 + 
𝑛

1!
.

2

3
/ +

𝑛(𝑛+1)

2!
 .

2

3
/

2
+  …  

= .1 −
2

3
/

−𝑛
 = .

1

3
/

−𝑛
= 3𝑛  

R.H.S = 2𝑛  1 +  
𝑛

1!
.

1

3
/ +

𝑛(𝑛+1)

2!
 .

1

3
/

2
+ …   

= 2𝑛  .1 −
1

3
/

−𝑛
 = 2𝑛 .

2

3
/

−𝑛
= 3𝑛  

L.H.S = R.H.S. 
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            9. Sum to infinity the series 1 + 
1

5
+ 

1.4

5.10
+  

1.4.7

5.10.15
 + ....... 

Solution.  

Let S = 1 + 
1

5
+  

1.4

5.10
+ 

1.4.7

5.10.15
 + ....... 

  

Therefore S = 1 + 
1

1!
.

1

5
/ +

1.4

2!
.

1

5
/

2
+

1.4.7

3!
.

1

5
/

3
+ ⋯ 

= (1 – x)
-p/q 

where p = 1; q = 3 and 
𝑥

𝑞
=

1

5
. Hence x = 

3

5
 

Therefore S = .1 −
3

5
/

−1
3 

= .
2

5
/

−1
3 

=  .
5

2
/

1
3 

 . 

10. Sum to ∞ the series .
1

2
/

2
+

1

2!
.

1

2
/

4
+

1.3

3!
.

1

2
/

6
+ ⋯ 

Solution. 

Let S = .
1

2
/

2
+

1

2!
.

1

2
/

4
+

1.3

3!
.

1

2
/

6
+ ⋯ 

 

Therefore S = 
1

1!
.

1

4
/ +

1

2!
.

1

4
/

2
+

1.3

3!
.

1

4
/

3
+ ⋯  

-S = 
−1

1!
.

1

4
/ +

−1.1

2!
.

1

4
/

2
+

−1.1.3

3!
.

1

4
/

3
+ ⋯ 

-S + 1 = 1 +
−1

1!
.

1

4
/ +

−1.1

2!
.

1

4
/

2
+

−1.1.3

3!
.

1

4
/

3
+ ⋯ 

 

= (1 – x)
-p/q 

where p = 1; q = 2 and 
𝑥

𝑞
=

1

4
 

Hence  x = 
1

2
 . Hence –S+1 =  .1 −

1

2
/

1
2 
 

= .
1

2
/

1
2 

=
1

 2
. Hence S = 1 - 

1

 2
 . 

11. Sum to ∞ the series 
3

18
+ 

3.7

18.24
+  

3.7.11

18.24.30
 + ....... 

Solution. 

Let S =  
3

18
+  

3.7

18.24
+  

3.7.11

18.24.30
 + ....... 

= 
3

3
.

1

6
/ +

3.7

3.4
.

1

6
/

2
+

3.7.11

3.4.5
.

1

6
/

3
+ ⋯ 

Therefore 
𝑆(−5)(−1)

1.2
.

1

6
/

2
=

(−5)(−1)3

3!
.

1

6
/

2
+

(−5)(−1)3.7

4!
.

1

6
/

4
+ ⋯ 

5𝑆

72
+ 1

(−5)

1!
 

1

6
 +

(−5)(−1)

2!
 

1

6
 

2

= 1 +
(−5)

1!
 

1

6
 +

(−5)(−1)

2!
 

1

6
 

2

+
(−5)(−1)3

3!
 

1

6
 

3

+ ⋯ 
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5𝑆

72
+ .1 −

5

6
+

5

72
/ = (1 – x)

-p/q 
where p = 5;q = 4 and 

𝑥

𝑞
=  

1

6
 and hence x = 

2

3
 

Therefore 
5𝑆

72
+

17

72
= .1 −

2

3
/

5
4 
 

∴
5𝑆

72
=  

1

3
 

5
4 

− 
17

72
 

∴ 𝑆 =  
72

5
 

3
−5

4 (72)−17

72
  = 

72

5
 

3
−5

4 (3)28−17

72
  

      = 
72

5
 

3
3

4  (8)−17

72
  = 

72

5
 

8(27)
1

4 −17

72
  

                     S  = 
1

5
.8(27)

1
4 −  17/. 

Exponential Series 

      We will learn some series which can be summed up by exponential series. We have 

proved that for all real values of x. 

        𝑒𝑥  = 1 +
𝑥 

1!
+

 x2  

2!
+ ⋯ +

 x𝑛  

n!
+.. to    ∞                          …………..(1) 

     In particular when x = 1 , we have 

         𝑒 = 1 +
1 

1!
+

1 

2!
+ ⋯ +

1 

n!
+.. to    ∞                                …………..(2) 

     and when x = −1 , we have 

       𝑒−1 = 1 −
1 

1!
+

1 

2!
−

1 

3!
+ ⋯ (−1)𝑛 .

1 

n!
+.. to    ∞       …………..(3) 

    Changing x into – 𝑥 in series (1) , we get 

        𝑒−𝑥  = 1 −
𝑥 

1!
+

 x2  

2!
− ⋯ + (−1)𝑛 .

 x𝑛  

n!
+ ⋯                     …………..(4) 

    Adding (1) and (4) , we get  

        
𝑒𝑥−𝑒−𝑥  

2
 = 1 +

 𝑥2  

2!
+

 𝑥4  

4!
+ ⋯ to  ∞                                     ……………(5) 

    Subtracting (4) from (1) , we get 

       
𝑒𝑥−𝑒−𝑥  

2
 = 

𝑥 

1!
+

 𝑥3  

3!
+

 𝑥5  

5!
+ ⋯ to  ∞                                        ………….(6) 
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     When x = 1 , series (5) and (6) become 

        
𝑒+𝑒−1  

2
 = 1 +

1 

2!
+

1 

4!
+ ⋯ to  ∞      ………….(7) 

         
𝑒−𝑒−1  

2
 = 

1 

1!
+

1 

3!
+

1 

5!
+ ⋯ to  ∞      ………….(8) 

Note. It can be verified that e is an irrational number whose value lies between 2 and 3. Further the 

value of e correct to four places of decimals is given by e = 2.7183. We shall use these series to 

find the sums of certain series. The different methods are illustrated by the following worked 

examples.. 

Example. Sum the series 1 +
1+3 

2!
+

1+3+ 33 

3!
+

1+3+ 32+ 33 

4!
+ ⋯ to  ∞. 

Solution. 

     Let 𝑢𝑛  be the 𝑛𝑡𝑕  term of the series and S be the sum to infinity of the series. 

     ∴           𝑢𝑛  = 
1+3+ 32+ ………+ 3𝑛−1  

𝑛!
 

                    = 
 3𝑛−1 

3−1
 . 

1 

𝑛!
 

                     = 
1 

2
.

 3𝑛  

𝑛!
−

1 

𝑛!
/ 

      ∴          𝑢1 = 
1 

2
.

 31  

1!
−

1 

1!
/ 

                 𝑢2 = 
1 

2
.

 32  

2!
−

1 

2!
/ 

                 𝑢3 = 
1 

2
.

 33  

3!
−

1 

3!
/ 

                  ………………. 

                  ………………. 

                   𝑢𝑛  = 
1 

2
.

 3𝑛  

𝑛!
−

1 

𝑛!
/ 
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                  ……………….. 

                  ………………. 

            S = 
1 

2
.

 31  

1!
+

 32  

2!
+ ⋯ +

 3𝑛  

𝑛!
+ ⋯ / −

1 

2
.

1 

1!
+

1 

2!
+ ⋯ +

1 

𝑛!
+ ⋯ / 

                = 
1 

2
 ( 𝑒3 − 1) − 

1 

2
(𝑒 − 1) 

                 =  
1 

2
𝑒( 𝑒2 − 1). 

Exercises 

1. Show that  (1 +
1 

2!
+

1 

4!
+ ⋯ )2 =  (1 +

1 

3!
+

1 

5!
+ ⋯ )2 

2. Show that  
𝑒+1 

e−1
 = 

1 

1!
+

1 

3!
+⋯ 

1 

2!
+

1 

4!
+⋯

.  

3.  Show that 2 { 1 +  
(log 𝑒 𝑛)

2!

2
 +  

(log 𝑒 𝑛)

4!

4
+…..} = .𝑛 +

1 

n!
/.    

4. Show that  
𝑛−1 

n!
∞
1  = 1. 

 If the given series is  𝑓(𝑛).
 𝑥𝑛 

n!
∞
𝑛=0  where f (n) is a polynomial in n of degree r , we can find 

constants a0, a1, … … a𝑟  so that  

      𝑓(𝑛) = a0+a1𝑛 + a2𝑛(𝑛 − 1) … . +a𝑟𝑛(𝑛 − 1) … . (𝑛 − 𝑟 + 1) and then 

      𝑓(𝑛).
 𝑥𝑛 

n!
∞
𝑛=0  = a0  

 𝑥𝑛  

n!
∞
𝑛=0  + a1  

 𝑥𝑛  

(n−1)!
∞
𝑛=0  + …. +a𝑟  

 𝑥𝑛  

(n−r)!
∞
𝑛=0  

                            = a0. 𝑒𝑥+a1𝑥. 𝑒𝑥+…..+a𝑟 . 𝑥𝑟. 𝑒𝑥 

                        = (a0 + a1𝑥 + a2𝑥2 + ….a𝑟𝑥𝑟) 𝑒𝑥  

Example 1. Sum the series   
 (𝑛+1)

3
  

n!
∞
𝑛=0 .  𝑥𝑛 . 

Solution. 

            Put  (𝑛 + 1)3 = A + B 𝑛 + C 𝑛 (𝑛 – 1) + D 𝑛 (𝑛 – 1)(𝑛 – 2). 
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     Putting 𝑛 = 0 , 1 , 2 and equating the coefficients of  𝑛3, we get    

                      A = 1, B = 7, C = 6, D = 1. 

   Let the sum of the series be S. 

    S =  
1+7𝑛+6𝑛(𝑛−1)+𝑛(𝑛−1)(𝑛−2)  

n!
∞
0  𝑥𝑛  

      =  
 𝑥𝑛  

n!
∞
0  + 7  

 𝑥𝑛  

(n−1)!
∞
0  + 6  

 𝑥𝑛  

(n−2)!
∞
0 +  

 𝑥𝑛  

(n−3)!
∞
0  

Now       
 𝑥𝑛  

n!
∞
0  = 1 +

𝑥 

1!
+

𝑥2  

2!
+ ⋯ = 𝑒𝑥  

         
 𝑥𝑛  

(n−1)!
∞
0 = 𝑥 +

𝑥2 

1!
+

𝑥3 

2!
… = 𝑥. 𝑒𝑥 

          
 𝑥𝑛  

(n−2)!
∞
0 =  𝑥2 +

𝑥3 

1!
+

𝑥4 

2!
… = 𝑥2. 𝑒

𝑥
 

           
 𝑥𝑛  

(n−3)!
∞
0 =  𝑥3 +

𝑥4 

1!
+

𝑥5 

2!
… = 𝑥3. 𝑒

𝑥
 

     ∴   S = (1 + 7𝑥 + 6𝑥2 +  𝑥3) 𝑒𝑥 . 

Example 2. Sum the series  
12  

1!
+

12+22  

2!
+

12+22+32  

3!
.........+ 

12+22+⋯+𝑛2  

𝑛!
+….. 

Solution. 

     Let the  𝑛𝑡𝑕  term of the series be 𝑢𝑛  and the sum to infinity be S. 

    Then  𝑢𝑛  = 
12+22+⋯+𝑛2  

𝑛!
 = 

𝑛(𝑛+1)(2𝑛+1) 

6
 
1 

𝑛!
 

    Let 𝑛(𝑛 + 1)(2𝑛 + 1) = A + B𝑛 + C𝑛 (𝑛 – 1) + D𝑛 (𝑛 – 1)(𝑛 – 2). 

           ∴           A = 0, B = 6, C = 9, D = –2. 

       ∴  S =  
6𝑛+9𝑛(𝑛−1)+2𝑛(𝑛−1)(𝑛−2)  

6
∞
𝑛=1  

1 

𝑛!
 

             =  
1  

(n−1)!
∞
𝑛=1  + 

3 

2
 

1 

(n−2)!
∞
𝑛=1 + 

1 

3
 

1  

(n−3)!
∞
𝑛=1  
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               = e + 
3 

2
e + 

1 

3
e 

              = 
17

6
e. 

Exercises  

1. Show that the sum to infinity of the series  

  22 + 
32  

1!
𝑥 + 

42  

2!
𝑥2 + 

52  

3!
𝑥3 + …. = 𝑒𝑥 (𝑥2 + 5𝑥 + 4). 

2. Find the sum to infinity of the series 

(1) 
3.5 

1!
𝑥 + 

4.6 

2!
𝑥2 + 

5.7 

3!
𝑥3 + ….∞ 

(2) 1.2 + 2.3𝑥 + 3.4.
𝑥2  

2!
+4.5. 

𝑥3  

3!
…. 

3. Sum to infinity the following series:- 

(1) 1 +
1+2 

2!
+

1+2+3 

3!
+

1+2+3+4 

4!
+….. 

(2) 
14  

1!
+

24  

2!
+

34  

3!
 + … 

(3) 1 +
3 

2!
+

5 

3!
+

7 

4!
+….. 

(4) 
1.2 

1!
+

2.3 

2!
+

3.4 

3!
+

4.5 

4!
+….. 

4. Show that 

(1) 5 +
2.6 

1!
+

3.7 

2!
+

4.8 

3!
+….. to  ∞ = 13e. 

(2) 
12 .  22  

1!
 + 

22 .  32  

2!
 + 

32 .  42  

3!
+ …. to  ∞ = 27e. 

(3)  
𝑛3−𝑛+1 

𝑛!
∞
𝑛=1  = 5e −1. 

Answers : 2.(1).(x2 +7x + 8) ex, (2). (x2 + 4x + 2)ex, 3.(1).
3𝑒

2
,(2).15e, (3).e + 

1,(4). 3e. 

Example 1. Sum the series   
𝑛2+3 

𝑛+2
∞
𝑛=1  . 

𝑥𝑛  

𝑛!
. 

Solution. 

      Let the sum of the series be S. 

      Then S =  
(𝑛2+3)(𝑛+1) 

(𝑛+2)!
∞
𝑛=1  . 𝑥𝑛 . 
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      Let  (𝑛2 + 3)(𝑛 + 1) = A + B(𝑛 + 2) + C(𝑛 + 2)(𝑛 + 1) + D(𝑛 + 2)(𝑛 + 1)𝑛. 

    We can easily find that A = −7, B = 7, C = −2 and D = 1. 

  Then S =  
−7+7(𝑛+2)−2(𝑛+2)(𝑛+1)+(𝑛+2)(𝑛+1)𝑛 

(𝑛+2)!
∞
𝑛=1  . 𝑥𝑛 . 

            = −7  
 𝑥𝑛  

(𝑛+2)!
∞
𝑛=1  + 7.  

 𝑥𝑛  

(n+1)!
∞
𝑛=1   −2  

 𝑥𝑛  

n!
 ∞

𝑛=1 +  
 𝑥𝑛  

(n−1)!
∞
𝑛=1  

    Now  
 𝑥𝑛  

(𝑛+2)!
∞
𝑛=1  = 

𝑥 

3!
+

𝑥2  

4!
+

𝑥5  

5!
+….+

 𝑥𝑛   

(𝑛+2)!
 + …. 

                          = 
1 

𝑥2
(𝑒𝑥 − 1 − 𝑥 −

𝑥2  

2!
). 

           
 𝑥𝑛  

(n+1)!
∞
𝑛=1  = 

𝑥 

2!
+

𝑥2  

3!
+

𝑥3  

4!
 +….+ 

 𝑥𝑛   

(𝑛+1)!
 + …. 

                           = 
1 

𝑥
(𝑒𝑥 − 1 − 𝑥). 

           
 𝑥𝑛  

n!
∞
𝑛=1  = 

𝑥 

1!
+

𝑥2  

2!
+….+

 𝑥𝑛   

𝑛!
 + …. = 𝑒𝑥 − 1. 

           
 𝑥𝑛  

(n−1)!
∞
𝑛=1  = 𝑥 +

𝑥 

1!
+

𝑥2 

2!
+….+

 𝑥𝑛   

(𝑛−1)!
 + …. = 𝑥𝑒𝑥  

        ∴  S = 
−7 

𝑥2
(𝑒𝑥 − 1 − 𝑥 −

𝑥2  

2!
)+ 

7 

𝑥
(𝑒𝑥 − 1 − 𝑥) −2 (𝑒

𝑥
− 1)+ 𝑥𝑒𝑥  

              = 
𝑒𝑥

𝑥2
(𝑥3 − 2𝑥2 + 7𝑥 − 7)+ 

7 

2𝑥2
(3𝑥2 + 2). 

Example 2. Sum the series  
5 

1!
+

7 

3!
+

9 

5!
+….. 

Solution. 

   The  𝑛𝑡𝑕  term u𝑛  = 
(2𝑛+3) 

(2𝑛−1)!
 

        Put 2𝑛 + 3 = A(2𝑛 − 1) + B. 

    Then A = 1  and B = 4. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
169 

 

            ∴  u𝑛  = 
2𝑛−1+4 

(2𝑛−1)!
 

                   = 
2𝑛−1

(2𝑛−1)!
 + 

4 

(2𝑛−1)!
 

                  = 
1

(2𝑛−2)!
 + 

4 

(2𝑛−1)!
 

          ∴  u1 = 1 + 
4 

1!
 

              u2 = 
1 

2!
 + 

4 

3!
 

              u3 = 
1 

4!
 + 

4 

5!
 

            ………….. 

            ………….. 

    Sum to infinity = ( 1 + 
1 

2!
 + 

1 

4!
 +….) + 4( 

1 

1!
 + 

1 

3!
 +….) 

                        = 
1 

2
.𝑒 +

1 

𝑒
/+ 4 . 

1 

2
 . .𝑒 −

1 

𝑒
/ 

                       = 
5 

2
𝑒 −

3 

2𝑒
. 

Example 3. Prove that the infinite series   
2 

1 

2
 

1!
 − 

3 
1 

3
 

2!
+

4 
1 

4
 

3!
−

5 
1 

5
 

4!
 + ….. = 

1+𝑒 

𝑒
.  

Solution. 

    Let u𝑛  be the 𝑛𝑡𝑕  term of the series and S be the sum of the series to infinity. 

 Then   u𝑛  = (−1)𝑛+1
(n+1) 

1 

𝑛 +1
 

𝑛!
  

               = (−1)𝑛+1 (𝑛+1)2+1 

(𝑛+1)!
. 

   Put 𝑛2 + 2𝑛 + 2 = A + B (𝑛+1) + C (𝑛+1) 𝑛. 
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     ∴   A = 1 , B = 1 , C = 1. 

   ∴   u𝑛  = (−1)𝑛+1 1+(𝑛+1)+(𝑛+1)𝑛 

(𝑛+1)!
 

              = (−1)𝑛+1 . 2
1 

(𝑛+1)!
+

1 

𝑛!
+

1 

(𝑛−1)!
3. 

    ∴   S =  (−1)𝑛+1 .  
1 

(𝑛+1)!
∞
𝑛=1  +  (−1)𝑛+1 .  

1  

n!
∞
𝑛=1  +  (−1)𝑛+1 .  

1  

(n−1)!
∞
𝑛=1  

   Now  (−1)
𝑛+1

.  
1 

(𝑛+1)!
∞
𝑛=1  = 

1 

2!
−

1 

3!
+

1 

4!
 …. = 𝑒−1 

                 (−1)𝑛+1 .  
1  

n!
∞
𝑛=1  = 

1 

1!
−

1 

2!
+

1 

3!
 …= −𝑒−1 + 1 

           (−1)𝑛+1 .  
1  

(n−1)!
∞
𝑛=1  = 1 −

1 

1!
+

1 

2!
 …= 𝑒−1. 

             ∴  S = 1 + 𝑒−1 

                  = 
𝑒+1 

e
 . 

 Exercises  

1. Show that  

(1)    
𝑛−1  

n+2
∞
𝑛=1  . 

𝑥𝑛  

n!
 = 

1 

𝑥2
{(𝑥2 − 3𝑥 − 3) 𝑒𝑥+

1 

2
𝑥2 − 3}. 

(2)   
(2𝑛−1)  

(n+3)n!
∞
𝑛=1  = 

1 

2
(43 − 15𝑒) 

 

2. Sum to infinity the series 

(1) 
3 

1!
+

4 

3!
+

5 

5!
+

6 

7!
+….. 

(2) 
1 

3!
+

2 

5!
+

3 

7!
+….. 

(3) 
3 

2!
+

5 

4!
+

7 

6!
+

9 

8!
+….. 

3. Show that   
5𝑛+1  

(2n+1)!
∞
0  = 

𝑒 

2
+

2 

𝑒
 

4. Prove that  
22

 

1!
+

24
 

3!
+

26
 

5!
 = 

𝑒4−1 

𝑒2
. 
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5. Show that log𝑒 2 −
1 

2!
(log𝑒 2)2+

1 

3!
(log

𝑒
2)3…… = 

1 

2
. 

Answer : 2(1).
1

𝑒
,(2).

1

2
(3𝑒 − 2𝑒−1),(3).

1

2𝑒
. 

   By equating the coefficients of like powers of x in the expansions of function of x in two 

different ways, we can derive some identities. The following examples will illustrated the 

method: 

Example 1. By expanding  (𝑒𝑥 − 1)𝑛  in two ways or otherwise prove that  

    𝑛𝑟 − n𝐶1(𝑛 − 1)𝑟+ n𝐶2(𝑛 − 2)𝑟 −…… = 0 where r < n. 

      What is the sum of the above series when r = n? 

Solution. 

             (𝑒𝑥 − 1)𝑛  = 𝑒𝑛𝑥 − n𝐶1𝑒(𝑛−1)𝑥 + …. 

             = 1 + 𝑛𝑥 +
(𝑛𝑥)

2
 

1!
+. . .

(𝑛𝑟)
𝑟

 

𝑟!
+…− n𝐶1  1 + (𝑛 − 1)𝑥 +

{(𝑛−1)𝑥}
2

 

2!
+ ⋯

{(𝑛−1)𝑥}
𝑟

 

𝑟!
+

… 

                                     + n𝐶2  1 + (𝑛 − 2)𝑥 +
{(𝑛−2)𝑥}

2
 

2!
+ ⋯

{(𝑛−2)𝑥}
𝑟

 

𝑟!
+ ⋯  …. 

   Coefficient of   𝑥𝑟   in the expansion of  (𝑒𝑥 − 1)𝑛  

                =  
𝑛𝑟  

𝑟 !
− n𝐶1.

(𝑛−1)𝑟  

𝑟 !
+ n𝐶2.

(𝑛−2)𝑟  

𝑟 !
−…… 

               = 
1 

𝑟!
{𝑛𝑟 − n𝐶1(𝑛 − 1)𝑟

+ n𝐶2(𝑛 − 2)𝑟….} 

     Again   (𝑒𝑥 − 1)𝑛  = (1 +
𝑥 

1!
+

𝑥2 

2!
+ ⋯

𝑥𝑛 

𝑛!
+ ⋯ − 1)𝑛  

                                   =  .
𝑥 

1!
+

𝑥2 

2!
+ ⋯

𝑥𝑛 

𝑛 !
+ ⋯ /

𝑛

 

                                = 𝑥𝑛  .
1 

1!
+

𝑥 

2!
+ ⋯

𝑥𝑛−1 

𝑛!
+ ⋯ /

𝑛

. 

All terms in the expansion contain  𝑥𝑛  and the higher power of x. 
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  ∴  If  r < n , there will be no term containing 𝑥𝑟  in the expansion. 

       ∴   
1 

𝑟!
{𝑛𝑟 − n𝐶1(𝑛 − 1)𝑟

+ n𝐶2(𝑛 − 2)𝑟….} = 0 

         i.e.,  𝑛𝑟 − n𝐶1(𝑛 − 1)𝑟
+ n𝐶2(𝑛 − 2)𝑟 …. = 0 

  If  r = n , then  

          
1 

𝑛!
{𝑛𝑛 − n𝐶1(𝑛 − 1)𝑛

+ n𝐶2(𝑛 − 2)𝑛….} 

                     = Coefficient of  𝑥𝑛  in the expansion of 𝑥𝑛 .
1 

1!
+

𝑥 

2!
+ ⋯ /

𝑛

 

                    = 1 . 

  ∴  𝑛𝑛 − n𝐶1(𝑛 − 1)𝑛
+ n𝐶2(𝑛 − 2)𝑛…. = 𝑛! 

Example 2. Show that if  𝑎𝑟  be the coefficient of  𝑥𝑛  in the expansion of   𝑒𝑒 𝑥
 , then 

      𝑎𝑟  = 
1 

𝑟!
2

1𝑟
 

1!
+

2𝑟
 

2!
+

3𝑟
 

3!
3. 

Hence show that 

(𝑖)
13

 

1!
+

23
 

2!
+

33
 

3!
+ … = 5𝑒 

(𝑖𝑖)
14

 

1!
+

24
 

2!
+

34
 

3!
+ … = 15𝑒. 

Solution. 

𝑒𝑒 𝑥
 = 1 + 𝑒𝑥 +

(𝑒𝑥)
2

 

2!
+

(𝑒𝑥)
3

 

3!
+

(𝑒𝑥)
4

 

4!
+…. 

       = 1 + 𝑒𝑥 +
𝑒2𝑥 

2!
+

𝑒3𝑥 

3!
+

𝑒4𝑥 

4!
+…. 

        = 1 + (1 + 𝑥 +
𝑥2 

2!
+ ⋯

𝑥𝑟 

𝑟!
+….) + 

1 

2!
(1 + 2𝑥 +

22𝑥2 

2!
+ ⋯

2𝑟𝑥𝑟 

𝑟!
+….) 

                                   + 
1 

3!
(1 + 3𝑥 +

32𝑥2 

2!
+ ⋯

3𝑟𝑥𝑟 

𝑟 !
+….)+… 
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 Hence the coefficient of  𝑥𝑟  = 
1 

𝑟!
2

1𝑟
 

1!
+

2𝑟
 

2!
+

3𝑟
 

3!
3. 

Again 

      𝑒𝑒 𝑥
 = 𝑒1+𝑥+

𝑥2 

2!
+⋯

 = 𝑒. 𝑒𝑥+
𝑥2 

2!
+

𝑥3 

3!
+⋯

 

             = 𝑒. {1 + (𝑥 +
𝑥2 

2!
+

𝑥3 

3!
+ ⋯ ) +

1 

2!
 (𝑥 +

𝑥2 

2!
+

𝑥3 

3!
+ ⋯ )2  

                                   + 
1 

3!
(𝑥 +

𝑥2 

2!
+ ⋯ )3 + …} 

  Coefficient of  𝑥3 = 𝑒 .
1 

3!
+

1 

2!
. 2.

1 

2!
+

1 

3!
/ 

                               = 
𝑒 

3!
 (1 + 3 + 1) = 

5𝑒 

3!
. 

     We have shown that the coefficient of  𝑥3 

                           = 
1 

3!
  

13
 

1!
+

23
 

2!
+ ⋯   

       ∴    
1 

3!
  

13
 

1!
+

23
 

2!
+

33
 

3!
+ ⋯   = 

5𝑒 

3!
 

        ∴   
13

 

1!
+

23
 

2!
+

33
 

3!
+….. = 

5𝑒 

3!
. 

  Similarly equating the coefficient of  𝑥4 , we get the second result. 

Example 3. Prove that if n is a positive integer 

      1 −
𝑛 

12
𝑥 +

𝑛(𝑛−1) 

12 . 22
𝑥2 −

(𝑛−1)(𝑛−2) 

12 . 22 . 32
𝑥3 + ⋯ 

                  = 𝑒𝑥{ 1 −
𝑛+1 

12
𝑥 +

(𝑛+1)(𝑛+2) 

12 . 22
𝑥2 −

(𝑛+1)(𝑛+2)(𝑛+3) 

12 . 22 . 32
𝑥3+….}. 

Solution. 

            𝑒𝑦   = 1 +
𝑦 

1!
+

𝑦2 

2!
+

𝑦3 

3!
+….. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
174 

 

     (1 −
𝑥  

𝑦
)𝑛  = 1 – 𝑛.

𝑥 

𝑦
+

𝑛(𝑛−1) 

2!
. (

𝑥  

𝑦
)2 −

𝑛(𝑛−1)(𝑛−2) 

3!
(
𝑥  

𝑦
)3+….. 

     ∴  1 −
𝑛 

12
𝑥 +

𝑛(𝑛−1) 

12 . 22
𝑥2 −

(𝑛−1)(𝑛−2) 

12 . 22 . 32
𝑥3 + ⋯  

      = the term independent of y in the product of  𝑒𝑦 (1 −
𝑥 

𝑦
)
𝑛
. 

     𝑒𝑦 (1 −
𝑥 

𝑦
)
𝑛
 = 𝑒𝑥 . 𝑒𝑦−𝑥 . 

(𝑦−𝑥)𝑛  

𝑦𝑛
 

              = 𝑒𝑥 .{ 1 + 
(𝑦−𝑥) 

1!
 + 

(𝑦−𝑥)2  

2!
+….} 

(𝑦−𝑥)𝑛  

𝑦𝑛
 

               = 𝑒𝑥  8
(𝑦−𝑥)𝑛 +

(𝑦−𝑥)𝑛+1 

1!
 + 

(𝑦−𝑥)𝑛+2 

2!
 +⋯ 

𝑦𝑛
9 

    The term containing 𝑦𝑛  in the expression  

        (𝑦 − 𝑥)𝑛 +
(𝑦−𝑥)𝑛+1  

1!
+

(𝑦−𝑥)𝑛+2  

2!
+ ⋯  

      is   𝑦𝑛  −
𝐶𝑛+1

  1
  

1!
 𝑦𝑛 . 𝑥 +

𝐶𝑛+2
  2

  

2!
 𝑦𝑛  𝑥2…. 

      ∴    Term independent of y in  𝑒𝑦 (1 −
𝑥 

𝑦
)
𝑛
  is 

           𝑒𝑥 {1 −
𝐶𝑛 +1
  1

  

1!
 𝑥 +

𝐶𝑛+2
  2

 . 𝑥2 

2!
−  ….} 

       = 𝑒𝑥 {1 –
(𝑛+1) 

(1!)2  𝑥 +
(𝑛+2)(𝑛+1) 

(2!)2
𝑥2 −  ….}. 

   Hence the required result. 

Exercises  

1. Show that , if n is a positive integer  

n . 1𝑛+1 −
𝑛(𝑛−1) 

2!
. 2𝑛+1+

𝑛(𝑛−1)(𝑛−2) 

3!
. 3𝑛+1 −…. = (−1)𝑛 . 𝑛.

(𝑛+1)! 

2
. 

2. Find the coefficient of  𝑥𝑟  in the expansion of  
𝑒𝑛𝑥 −1 

1−𝑒−𝑥
 ,  n being a positive integer and 

find the values of 
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(1) 12 + 22 + 32 +…..+ 𝑛2 

(2) 13 + 23 + 33 +…..+ 𝑛3 

(3) 14 + 24 +…..+ 𝑛4 

 

3. By means of the identity  𝑒
𝑥2+

1 

𝑥2+2
 = 𝑒(𝑥+

1

𝑥
)2

 show that 

   𝑒2{ 1 +
1 

(1!)2
+

1 

(2!)2
+

1 

(3!)2
 ….} = 1 + 

2! 

(1!)3
+

4! 

(2!)3
+

6! 

(3!)3
 + …. 

 [ Left side = term independent of x in 𝑒2. 𝑒𝑥2
. 𝑒𝑥

1
2  

   

  𝑒(𝑥+
1

𝑥
)2

 = 1 + 
(𝑥+

1

𝑥
)2  

1!
 + 

(𝑥+
1

𝑥
)4  

2!
 + 

(𝑥+
1

𝑥
)6  

4!
 + …… 

  Term independent of x in the above expansion  

                 = 1 + 
𝐶2

  1
  

1!
 + 

𝐶4
  2

  

2!
 + 

𝐶6
  3

  

3!
+…..] 

Answer : 2(1).
𝑛(𝑛+1)(2𝑛+1)

6
,(2).

𝑛2(𝑛+1)2

4
,(3).

𝑛(𝑛+1)(6𝑛3+9𝑛2+𝑛−1)

60
. 

Extra problems 

1. Find the coefficient of x
n
 in 

𝑎+𝑏𝑒 𝑥 +𝑐𝑒 2𝑥

𝑒3𝑥  . 

Solution. 

𝑎+𝑏𝑒 𝑥 +𝑐𝑒 2𝑥

𝑒3𝑥   = (𝑎 + 𝑏𝑒𝑥 + 𝑐𝑒2𝑥)𝑒−3𝑥    

                               = 𝑎𝑒−3𝑥 + 𝑏𝑒−2𝑥 + 𝑐𝑒−𝑥  

= a .1 −
(3𝑥)

1!
+

(3𝑥)2

2!
− ⋯ +

(−1)𝑛 (3𝑥)𝑛

𝑛!
+ ⋯ / + b .1 −

(2𝑥)

1!
+

(2𝑥)2

2!
− ⋯ +

(−1)𝑛 (2𝑥)𝑛

𝑛!
+ ⋯ / + c 

.1 −
(𝑥)

1!
+

(𝑥)2

2!
− ⋯ +

(−1)𝑛 (𝑥)𝑛

𝑛!
+ ⋯ /  

∴ coefficient of x
n
 in 

𝑎+𝑏𝑒 𝑥 +𝑐𝑒 2𝑥

𝑒3𝑥  is = 
(−1)𝑛

𝑛!
 ,𝑎3𝑛 + 𝑏2𝑛 + 𝑐-. 

2. What is the coefficient of x
n
 in the expansion of (1 + x)e

1+x
 in ascending powers of x. 

Solution. 

(1 + x)e
1+x

 = (1 + x) e e
x
 

    = e(1 + x) 01 +  
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ +

𝑥𝑛−1

(𝑛−1)!
+

𝑥𝑛

𝑛!
…  1 

Therefore coefficient of x
n
 in (1 + x)e

1+x
 is  = e 0

1

𝑛!
+

1

(𝑛−1)!
1 
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= e 0
1

𝑛!
+

𝑛

𝑛!
1 = 

𝑒

𝑛!
(1 + 𝑛) . 

3. Prove that log 2 – 
(𝑙𝑜𝑔2)2

2!
+

(𝑙𝑜𝑔2)3

3!
− ⋯ =

1

2
. 

Solution. 

Put log 2 = y. 

Therefore L.H.S = y -  
𝑦2

2!
+

𝑦3

3!
− ⋯ 

= -0−
𝑦

1
+

𝑦2

2!
−

𝑦3

3!
+ ⋯ 1 

= -(e
- y

 – 1) = 1 – e
-log 2

 = 1 - 
1

2
 = 

1

2
. 

4. Prove that 

1

2!
+

1

4!
+

1

6!
+⋯

1+
1

3!
+

1

5!
+⋯

 = 
𝑒−1

𝑒+1
 

Solution. 

L.H.S = 

1

2
 𝑒+𝑒−1 

1

2
(𝑒−𝑒−1)

  = 
𝑒2+1−2𝑒

𝑒2−1
 

= 
(𝑒−1)2

(𝑒+1)(𝑒−1)
 = 

𝑒−1

𝑒+1
. 

5. Show that if a > 1. S = 1 + 
1+𝑎

2!
+ 

1+𝑎+𝑎2

3!
+ ⋯ =  

𝑒𝑎 −𝑒

𝑎−1
. 

Solution. 

n
th
 term Tn = 

1+𝑎+𝑎2+⋯+𝑎𝑛−1

𝑛!
 = 

𝑎𝑛

𝑛!(𝑎−1)
. 

Therefore Tn = .
1

𝑎−1
/ 0

𝑎𝑛

𝑛!
−

1

𝑛!
1 .............. (1) 

Putting n = 1, 2, 3, ...  in (1) we get 

T1 = .
1

𝑎−1
/ 0

𝑎

1!
−

1

1!
1 

T2 = .
1

𝑎−1
/ 0

𝑎2

2!
−

1

2!
1 

T3 = .
1

𝑎−1
/ 0

𝑎3

3!
−

1

3!
1 

...  ...  ...  ... ... 

...  ...  ...  ... ... 

Adding we get  

S = .
1

𝑎−1
/ 0.

𝑎

1!
+

𝑎2

2!
+. . / − .

1

1!
+

1

2!
+

1

3!
+ ⋯ /1 

= .
1

𝑎−1
/ ,(𝑒𝑎 − 1) − (𝑒 − 1)- = 

𝑒𝑎 −𝑒

𝑎−1
. 

6. Prove that S = 1 + 
1+2

2!
+

1+2+3

3!
+ ⋯ =

3𝑒

2
. 

Solution. 

n
th
 term Tn = 

1+2+⋯+𝑛

𝑛!
 

=  
𝑛(𝑛+1)

2𝑛!
=

𝑛+1

2(𝑛−1)!
. 
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Let  n+ 1 =A +B(n – 1). 

Putting n = 1 and n = 0 we get A = 2; B = 1. 

Therefore  Tn = 
2+(𝑛−1)

2(𝑛−1)!
 

Therefore  Tn  = 
1

(𝑛−1)!
+

1

2(𝑛−2)!
 ................(1) 

Putting n = 1, 2, 3, ... in (1) we get 

T1 = 1 

T2 = 
1

1!
+

1

2!
 

T3 = 
1

2!
+ .

1

2
/

1

1!
 

T4 = 
1

3!
+ .

1

2
/

1

2!
 

...  ...  ...  ... ... 

...  ...  ...  ... ... 

Adding we get S = 01 +
1

1!
+

1

2!
+ ⋯ 1+ 

1

2
 01 +

1

1!
+

1

2!
+ ⋯ 1 

=  e + 
1

2
𝑒 = 

3𝑒

2
. 

7. Find S =  
𝑛−1

(𝑛+2)𝑛!
𝑥𝑛∞

𝑛=1 . 

Solution. 

Here the n
th
 term Tn = 

𝑛−1

(𝑛+2)𝑛!
𝑥𝑛  

                                = 
𝑛2−1

(𝑛+2)!
𝑥𝑛 . 

Now, let n2 – 1 = A + B(n + 2) + C(n +2)(n +1). 

We get A = 3, B = - 3, C = 1 

Therefore Tn = 
3

(𝑛+2)!
𝑥𝑛 −

3

(𝑛+1)!
𝑥𝑛 +

1

𝑛!
𝑥𝑛    ...............................(1) 

Putting n = 1, 2, 3, ... in (1)we get 

T1 = 
3

3!
𝑥 −

3

2!
𝑥 +

1

1!
𝑥    

T2 = 
3

4!
𝑥2 −

3

3!
𝑥2 +

1

2!
𝑥2    

T3 = 
3

5!
𝑥3 −

3

4!
𝑥3 +

1

3!
𝑥3   

 ...  ...  ...  ... ... 

...  ...  ...  ... ... 

Adding we get  

S = 30
𝑥

3!
+

𝑥2

4!
+ ⋯ 1 − 3 0

𝑥

2!
+

𝑥2

3!
+ ⋯ 1 + 0

𝑥

1!
+

𝑥2

2!
+ ⋯ 1 

   = 
3

𝑥2 0
𝑥3

3!
+

𝑥4

4!
+ ⋯ 1 −

3

𝑥
0
𝑥2

2!
+

𝑥3

3!
+ ⋯ 1 + 0

𝑥

1!
+

𝑥2

2!
+ ⋯ 1 

   = 
3

𝑥2 .𝑒𝑥 −
𝑥2

2!
−

𝑥

1!
− 1/ −

3

𝑥
.−

𝑥

1!
− 1/ + (𝑒𝑥 − 1) 
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   = 
3

𝑥2 𝑒𝑥 −
3

2
−

3

𝑥
−

3

𝑥2 −
3

𝑥
𝑒𝑥 + 3 +

3

𝑥
+ 𝑒𝑥 − 1 

   = 𝑒𝑥 .
3

𝑥2 −
3

𝑥
+ 1/ −

3

𝑥2 +
1

2
= 𝑒𝑥 .

3−3𝑥+𝑥2

𝑥2 / + .
𝑥2−6

2𝑥2 /. 

   = 
2𝑒𝑥 𝑥2−3𝑥+3 + 𝑥2−6 

2𝑥2 . 

8. Show that 
1222

1!
+

2232

2!
+

3242

3!
+ ⋯ = 27e. 

Solution. 

n
th
 term Tn = 

𝑛2(𝑛+1)2

𝑛!
 = 

𝑛(𝑛+1)2

(𝑛−1)!
 

let n(n + 1)
2
 = A + B(n – 1) + C(n – 1)(n – 2) + D (n – 1)(n – 2)(n – 3) 

we get A = 4;B = 14; C = 8; D = 1. 

Therefore  Tn = 
4

(𝑛−1)!
+

14

(𝑛−2)!
+

8

(𝑛−3)!
+

1

(𝑛−4)!
. 

T1 = 
4

1
 

T2 = 
4

1!
+ 14 

T3 = 
4

2!
+

14

1!
+ 8 

T4 = 
4

3!
+

14

2!
+

8

1!
+ 1 

T5 = 
4

4!
+

14

3!
+

8

2!
+

1

1!
 

...  ...  ...  ... ... 

...  ...  ...  ... ... 

Adding we get  

Therefore  S = 4.1 +
1

1!
+

1

2!
+ ⋯ / + 14 .1 +

1

1!
+

1

2!
+ ⋯ / + 8 .1 +

1

1!
+

1

2!
+ ⋯ / +

.1 +
1

1!
+

1

2!
+ ⋯ / 

= 4e +14e +8e + e  = 27e. 

 Logarithmic series  

       log(1 + 𝑥) =  𝑥 −
𝑥2 

2!
 + 

1.2 

3!
𝑥3 −

1.2.3 

4!
𝑥4 ….. 

                         = 𝑥 −
𝑥2  

2
 + 

𝑥3  

3
 −

𝑥4  

4
+….. 

Modification of the logarithmic series. 

    If −1 < x < 1 , we have  

       log(1 + 𝑥) = 𝑥 −
𝑥2  

2
 + 

𝑥3  

3
 − ….. + (−1)𝑛−1 𝑥𝑛 

𝑛
 + …         ………(1) 
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   It is convenient to remember the form of the series in the case in which x is negative. 

    Thus  

         log(1 − 𝑥) = −𝑥 −
1 

2
𝑥2 −

1 

3
𝑥3 …… 

                          = −(𝑥 +
1 

2
𝑥2 +

1 

3
𝑥3 + ⋯ ) 

           i.e.,  − log(1 − 𝑥) = 𝑥 +
1 

2
𝑥2 +

1 

3
𝑥3 + ⋯                          ………..(2) 

   Adding the series (1) and (2),  

         log(1 + 𝑥) − log(1 − 𝑥) = 2𝑥 + 2.
1 

3
𝑥3 + 2.

1 

5
𝑥5+ …… 

     i.e.,   log
1+𝑥 

1−𝑥
 = 2 (𝑥 +

𝑥3  

2
+

𝑥5  

3
+ ⋯ )                                      

            log(1 + x) + log(1 – x) = −2 .
𝑥2

2
+

𝑥4

4
+

𝑥6

6
+ ⋯ /  

             log 2 = 1 −
1

2
+

1

3
− 

1

4
+ ⋯  

Using the different forms of the logarithmic series we can find the sums of the certain series. 

The following examples will illustrate the methods of such summation. 

Example 1. Show that if  x > 0 .  log  𝑥 = 
𝑥−1 

𝑥+1
+ 

1 

2
 .

𝑥2−1 

(𝑥+1)2
 + 

1 

3
 . 

𝑥3−1 

(𝑥+1)3
 + ….. 

Solution.  

  R.H.S. = 
𝑥 

𝑥+1
 + 

1 

2
 . .

𝑥 

𝑥+1
/

2
+ 

1 

3
 . .

𝑥 

𝑥+1
/

3
….. −2

1 

𝑥+1
+ 

1 

2
 .

1 

(𝑥+1)2
+  

1 

3
 .

1 

(𝑥+1)3
… 3 

        = − log  ( 1 −
𝑥 

𝑥+1
) + log  ( 1 −

𝑥 

𝑥+1
) 

       = − log 
1 

𝑥+1
 + log  

𝑥 

𝑥+1
 

        = log 2.
𝑥 

𝑥+1
/ +

1 

𝑥+1
3 

        = log 𝑥   . 
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   The expansion is valid when  

     
𝑥 

𝑥+1
  < 1 and  

1 

𝑥+1
  < 1 ,  

𝑥 

𝑥+1
  is always less than 1.  

  When  
1 

𝑥+1
  < 1 ,  𝑥 + 1  > 1 , i.e.,  𝑥  > 0 

        ∴   When x > 0, the expansion is valid . 

Example 2. Show that   log  12 = 1 + .
1 

2
+

1 

3
/

1 

4
 + .

1 

4
+

1 

5
/

1 

42 + .
1 

6
+

1 

7
/

1 

43 + …. 

Solution. 

   Right side expression can be written as  

          
1 

2
 .

1 

4
 + 

1 

4
 .

1 

42
 + 

1 

6
 .

1 

43
 + ….+ 1 + 

1 

3
 .

1 

4
 + 

1 

5
 . 

1 

42
 + 

1 

7
 .

1 

43
 +….. 

       = 
1 

2
 .

1 

2
/

2
+ 

1 

4
 . .

1 

2
/

4
+ 

1 

6
 . .

1 

2
/

6
+…..+ 1 + 

1 

3
 . .

1 

2
/

2
+

1 

5
 . .

1 

2
/

4
+

1 

7
 . .

1 

2
/

6
+…. 

       = 
1 

2
 . 𝑥2 + 

1 

4
𝑥4 + 

1 

6
𝑥6 +…..+ 1 + 

1 

3
𝑥2 +

1 

5
𝑥4 +

1 

7
𝑥6 + …. When x = 

1 

2
 

       = 
1 

2
 { 𝑥2 +

1 

2
 . 𝑥4 + 

1 

3
𝑥6 + …..} + 

1 

𝑥
 { x + 

1 

3
𝑥3 + 

1 

5
𝑥5 + 

1 

7
𝑥7 + …} 

        =− 
1 

2
 log (1 − 𝑥2) + 

1 

2𝑥
 log 

1+𝑥 

1−𝑥
 .  

    ∴  The series = − 
1 

2
 log  (1 −

1 

4
) + log  

1+
1 

2
 

1−
1 

2

 , since  x = 
1 

2
. 

                        = − 
1 

2
 log  

3 

4
 + log 3 

     = 
1 

2
 log 9 − 

1 

2
log  

3 

4
 

     = 
1 

2
 log .

9.4 

3
/ 

     = 
1 

2
 log 12  

     = log   12. 
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Example 3. If a , b , c  denote three consecutive integers, show that  

   log𝑒 𝑏 =  
1 

2
 log𝑒 𝑎 + 

1 

2
 log𝑒 𝑐 + 

1 

2𝑎𝑐 +1
 + 

1 

3
 . 

1 

(2𝑎𝑐 +1)3 + …. 

Solution. 

Right side = 
1 

2
 log𝑒 𝑎 + 

1 

2
 log𝑒 𝑐 + 

1 

2
 log𝑒

1+ 
1 

2𝑎𝑐 +1
 

1− 
1 

2𝑎𝑐 +1

  

                = 
1 

2
 log𝑒 𝑎 + 

1 

2
 log𝑒 𝑐 + 

1 

2
 log𝑒

 2𝑎𝑐 +1

2𝑎𝑐
 

               = 
1 

2
 log (𝑎𝑐) + 

1 

2
 log 

 𝑎𝑐+1

𝑎𝑐
 

               = 
1 

2
 log 𝑎𝑐 . 

 𝑎𝑐 +1

𝑎𝑐
 

               = 
1 

2
 log (𝑎𝑐 + 1). 

     If a , b , c  denote three consecutive integers then b = a + 1  and b = c – 1  

          ∴  a = b – 1  ;   c = b + 1. 

         ∴   ac = 𝑏2 – 1  , i.e.,   ac + 1 = 𝑏2. 

      ∴  
1 

2
 log (𝑎𝑐 + 1) = 

1 

2
 log (𝑏2) = log b. 

Exercises  

1. Show that  

 log 
 𝑎+𝑥

𝑎−𝑥
 = 

 2𝑎𝑥

𝑎2+𝑥2
 + 

1 

3
 . .

 2𝑎𝑥

𝑎2+𝑥2/
3
 + 

1 

5
 . .

 2𝑎𝑥

𝑎2+𝑥2/
5
 + ….. 

 

2. Sum the series 
 1

2𝑥−1
 + 

1 

3
 . 

1

(2𝑥−1)3
 + 

1 

5
 . 

1

5(2𝑥−1)5
 + …. 

3. Show that when −1 < x <  
1 

3
 

2(𝑥 +
𝑥3  

3
+

𝑥5  

5
+…) = 

 2𝑥

1−𝑥
 − 

1 

2
 . .

 2𝑥

1−𝑥
/

2
 + 

1 

3
 . .

 2𝑥

1−𝑥
/

3
…. 
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4. Show that  

log (𝑥 + 2𝑕) = 2log (𝑥 + 𝑕) − log (𝑥) − 2
𝑕2

(𝑥+𝑕)3
+

𝑕4

2(𝑥+𝑕)3
+

𝑕6

3(𝑥+𝑕)3
+ ⋯ 3. 

5. Show that  

 log𝑒 .1 +
 1

𝑛
/

2
= 1− 

 1

2(𝑛+1)
−

1

2.3(𝑛+1)2
−

1

3.4(𝑛+1)3
 ….. ∞. 

6. Show that  log𝑒 3 = 1 + 
1

3.22
 + 

1

5.24
 + 

1

7.26
 + ….. 

7. Sum the series (1 +
1 

2
) + .

1 

3
+

1 

4
/

1 

9
 + .

1 

5
+

1 

6
/

1 

92
 + ….. to infinity. 

8. Sum to infinity the series  .
1 

2𝑛+1
+

1 

(2𝑛)!
/ 𝑥2𝑛+1 , (𝑥2 < 1). 

9. Prove that  
 1

2𝑛−1
∞
1  .

1 

9𝑛−1
+

1 

92𝑛−1/ = 
1 

2
log

𝑒
10. 

Answer : 2. 
1

2
𝑙𝑜𝑔 .

𝑥

𝑥−1
/, 7. 9log 3 – 12log 2, 8. 

1

2
0𝑙𝑜𝑔

1+𝑥

1−𝑥
+ 𝑥(𝑒𝑥 + 𝑒−𝑥)1. 

 Series which can be summed up by the logarithmic series. 

           We can split the general term into partial fractions and using the result  

 log 2 = 1 − 
1 

2
+ 

1 

3
 + 

1 

4
 + …. We can sum certain series. The following examples will 

illustrate the method. 

Example 1. Sum the series  
1 

(2𝑛−1)2𝑛(2𝑛+1)
∞
𝑛=1  . 

Solution. 

        Let S be the sum of the series and   𝑢𝑛  be the  𝑛th  term. 

          Then    𝑢𝑛  = 
1 

2
 .  

1 

2𝑛−1
−

1 

2𝑛
 + 

1 

2
 . 

1 

2𝑛+1
 

             ∴    𝑢1  = 
1 

2
 .

1 

1
−

1 

2
+

1 

2
 .

1 

3
 

                   𝑢2  = 
1 

2
 .

1 

3
−

1 

4
+

1 

2
 .

1 

5
 

                   𝑢3  = 
1 

2
 .

1 

5
−

1 

6
+

1 

2
 .

1 

7
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                           …………………………………………. 

                            ……………………………………….. 

 

Adding the last fraction of a term with the first fraction of the next term, we get 

       

         S = 
1 

2
−

1 

2
+

1 

3
−

1 

4
+

1 

5
−

1 

6
+

1 

7
 ….. 

          = −
1 

2
+ 1 −

1 

2
+

1 

3
−

1 

4
+

1 

5
−

1 

6
+

1 

7
− …. 

         = −
1 

2
+ log 2. 

Example 2. Show that   
5 

1.2.3
 + 

7 

3.4.5
 + 

9 

5.6.7
 + …. ∞ = 3 log 2 – 1. 

Solution. 

      Let S be the sum of the series and  𝑢𝑛  be the 𝑛th  term of the series. 

      Then   𝑢𝑛  = 
2𝑛+3

(2𝑛−1)(2𝑛+1)
 . 

      Splitting  𝑢𝑛  into partial fractions, we get 

             𝑢𝑛  = 2 . 
1 

2𝑛−1
− 3 .  

1 

2𝑛
 + 1 . 

1 

2𝑛+1
 

       Giving values 1 , 2 , 3 , …. in  𝑢𝑛  , we have 

                  𝑢1  = 2 .
1 

1
− 3 .

1 

2
+ 1 .

1 

3
 

                  𝑢2  = 2 .
1 

3
− 3 .

1 

4
+ 1 .

1 

5
 

                   𝑢3  = 2 .
1 

5
− 3 .

1 

6
+ 1 .

1 

7
 

                           …………………………………………. 

                            ……………………………………….. 

      ∴   S = 2 − 3 .
1 

2
+ 3 .

1 

3
− 3 . 

1 

4
+ 3 .

1 

5
 …. 

                = 2 + 3(−
1 

2
+

1 

3
−

1 

4
+ 

1 

5
) 
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               = 2 + 3(1 −
1 

2
+

1 

3
……− 1) 

                = 2 + 3 ( log 2 −1) 

               = −1 + 3 log 2. 

Exercises  

Show that the sum of the series to infinity 

1. 
1 

1.2
 + 

1 

3.4
 + 

1 

3.6
 + …. = log 2 

2. 
1 

1.3
 + 

1 

2.5
 + 

1 

3.7
 + …. = 2− log 2. 

3. 
1 

1.2.3
 + 

5 

3.4.5
 + 

9 

5.6.7
 + 

13 

7.8.9
 + …. =  

5 

2
 −3 log 2. 

4. 
1 

2.3.4
 + 

5 

4.5.6
 + 

9 

6.7.8
 + …. =  

3 

4
 − log 2 

 If  k is a positive integer and   𝑥  < 1 , then 

          
𝑥2 

𝑛+𝑘
∞
𝑛=1  = 

𝑥 

1+𝑘
 + 

𝑥2  

2+𝑘
 + 

𝑥3  

3+𝑘
 + 

𝑥4  

4+𝑘
 + …… 

                      = 
1 

𝑥𝑘  
.

𝑥𝑘+1  

𝑘+1
+

𝑥𝑘+2  

𝑘+2
+

𝑥𝑘+3  

𝑘+3
+ ⋯ ∞/ 

                       = 
1 

𝑥𝑘  
 { x + 

𝑥2  

2
 + ….+ 

𝑥𝑘  

𝑘
 + 

𝑥𝑘+1  

𝑘+1
 + 

𝑥𝑘+2  

𝑘+2
 + 

𝑥𝑘+3  

𝑘+3
 + … ∞  

                                                                 −( x + 
𝑥2  

2
 + ….+ 

𝑥𝑘  

𝑘
) } 

                       = 
1 

𝑥𝑘  
 { − log (1 – x) −( x + 

𝑥2  

2
 + ….+ 

𝑥𝑘  

𝑘
) } 

                        = −
1 

𝑥𝑘  
 { log (1 – x) + x + 

𝑥2  

2
 + ….+ 

𝑥𝑘  

𝑘
 } 

   Similarly   
𝑥𝑛  

𝑛+1

∞
𝑛=1  = −

1 

𝑥 
 { log (1 – x) + x} 

                     
𝑥𝑛  

𝑛+2

∞
𝑛=1  = −

1 

𝑥2  
 { log (1 – x) + x + 

𝑥2  

2
 } 

                       
𝑥𝑛  

𝑛+3

∞
𝑛=1  = −

1 

𝑥3  
 { log (1 – x) + x + 

𝑥2  

2
+ 

𝑥3  

3
 } 
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  Using these result we can sum certain series. The following examples will illustrate the 

method. 

Example 1. Sum the series   
𝑛3+𝑛2+1 

𝑛(𝑛+2)
∞
𝑛=1  𝑥𝑛  when  𝑥  < 1 . 

Solution. 

       Split  
𝑛3+𝑛2+1 

𝑛(𝑛+2)
  into partial fractions. 

         We have   S =  { (𝑛 − 1) +  
1 

2
 .

1 

𝑛
+ 

3 

2
 .

1 

𝑛+2
∞
𝑛=1  } 𝑥𝑛  

                         =  { (𝑛 − 1)𝑥𝑛∞
𝑛=1  + 

1 

2
  

𝑥𝑛 

𝑛
∞
𝑛=1  + 

3 

2
  

𝑥𝑛 

𝑛+2
∞
𝑛=1  . 

 { (𝑛 − 1)𝑥𝑛∞
𝑛=1  = 𝑥2 + 2𝑥3 + 3𝑥4 + ….. ∞  

                             = 𝑥2 ( 1 + 2x + 3𝑥2 + …. ∞ ) 

                              = 𝑥2 (1 − 𝑥)2 = 
𝑥2  

(1−𝑥)2
. 

               
𝑥𝑛 

𝑛
∞
𝑛=1  = − log (1 – x ). 

               
𝑥𝑛 

𝑛+2
∞
𝑛=1  = −

1 

𝑥2  
 { log (1 – x) + x + 

𝑥2  

2
 } 

    ∴  S = 
𝑥2  

(1−𝑥)2
− 

1 

2
 log (1 – x) − 

3 

2𝑥2
 { log (1 – x) + x + 

𝑥2  

2
 }. 

Example 2. Find the sum of the series   
(−1)

𝑛+1
 𝑥𝑛 

𝑛(𝑛+1)(𝑛+2)
∞
𝑛=1  . 

Solution. 

         
1 

𝑛(𝑛+1)(𝑛+2)
 = 

1 

2
 .

1 

𝑛
−

1 

𝑛+1
+

1 

2
 .

1 

𝑛+2
 

       Let S be the sum of the series  

      S =  .
1 

2
 .

1 

𝑛
−

1 

𝑛+1
+

1 

2
 .

1 

𝑛+2
/∞

1  (−1)𝑛+1 𝑥𝑛  
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         = 
1 

2
 .  

(−1)
𝑛+1

 𝑥𝑛 

𝑛
∞
1 −  

(−1)
𝑛+1

 𝑥𝑛 

𝑛+1
∞
1 +

1 

2
 

(−1)
𝑛+1

 𝑥𝑛 

𝑛+2
∞
1 . 

   We have  

        
(−1)

𝑛+1
 𝑥𝑛 

𝑛
∞
1 =  

𝑥 

1
−

𝑥2 

2
+ 

𝑥3 

3
 ….. = log (1 + x) 

        
(−1)

𝑛+1
 𝑥𝑛 

𝑛+1
∞
1  = 

𝑥 

2
−

𝑥2 

3
+ 

𝑥3 

4
 …… = 

1 

𝑥
 .

𝑥 

2
−

𝑥2 

3
+ 

𝑥3 

4
… . / 

                                                                 = 
1 

𝑥
 { − log (1+x) + x} 

        
(−1)

𝑛+1
 𝑥𝑛 

𝑛+2
∞
1  = 

𝑥 

3
−

𝑥2 

4
+ 

𝑥3 

5
 …… = 

1 

𝑥2 2
𝑥 

3
−

𝑥2 

4
+ 

𝑥3 

5
… . 3 

                                                                 = 
1 

𝑥2 { log (1+x) –x + 
𝑥2  

2
 }. 

      ∴  S = 
1 

2
 log (1+x) −

1 

𝑥
{ − log (1+x) + x} + 

1 

2𝑥2 { log (1+x) –x + 
𝑥2  

2
 } 

             = 
1 

2
 log (1+x) ( 1 + 

2 

𝑥
 + 

1 

𝑥2 ) – ( 
3 

4
 + 

1 

2𝑥
 ). 

Exercises  

1. Prove that the sum of the infinite series whose  𝑛𝑡𝑕  term is  
1 

𝑛(𝑛+1)
 . 

1 

2𝑛  is 1− log 2. 

2. Sum the series 

(1)  
 𝑛2+1 

𝑛(𝑛+2)
∞
1 𝑥𝑛. 

(2)  
 (𝑛+1)

3
 

𝑛(𝑛+3)
∞
1 𝑥𝑛. 

(3)  
 𝑛2 

(𝑛+1)(𝑛+2)
∞
1 𝑥𝑛. 

3. Show that  

(1) 
3 

1.2.2
−

4 

2.3.22
+

5 

3.4.23
−…. = 4 log 

3 

2
−1. 

4. Show that  

(1)  
 4𝑟−1

2𝑟(2𝑟−1)
∞
𝑟=1  .

1 

32𝑟 = log 3 −
4 

3
 log 2. 
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(2)  
 10𝑟+1

2𝑟(2𝑟−1)(2𝑟+1)
∞
𝑟=1  .

1 

22𝑟 = 2− log 2 −
3 

4
 log 3. 

Answer : 2(1).
5−𝑥2

2𝑥2
log(1 − 𝑥) +

 𝑥2+5𝑥−10 

4𝑥(𝑥−1)
,(2).

𝑥

(1−𝑥)2
−

4

9
(2𝑥3 + 3𝑥2 + 6𝑥) − 3log⁡(1 −

𝑥),(3).
9−4𝑥3

12𝑥2
log(1 − 𝑥) +

6𝑥3−𝑥2−3𝑥+6

8𝑥(1−𝑥)
. 

Calculation of logarithms by means of the logarithmic series. 

       The direct calculation of logarithms by means of the series  

            Log (1+ x) = x −
1 

2
𝑥2 + 

1 

3
𝑥3 −

1 

4
𝑥4 + ….. ∞ 

    is somewhat tedious , since the series is slowly convergent, i.e., very many terms of the 

series have to be calculated before a given degree of approximation is attained. 

         The calculation is usually carried out in practice as follows. 

         We have proved that  

                 log𝑒
1+𝑥 

1−𝑥
 = 2 { x −

𝑥3 

3
 + 

𝑥5  

5
 + ….} 

     When  − 1 <  x < 1. 

              Let   y = 
1+𝑥 

1−𝑥
 ,    i.e.,   x =  

𝑦−1 

𝑦+1
.            

        ∴  log𝑒 y = 2 8
𝑦−1 

𝑦+1
+

1 

3
 . .

𝑦−1 

𝑦+1
/

3
+

1 

5
 . .

𝑦−1 

𝑦+1
/

5
+ ⋯ 9 

         Where y lies between 0  and  + ∞. 

    Put  y = 
𝑝 

𝑞
  in this series where p  and  q  are positive integers. 

       ∴  log𝑒 𝑝 − log𝑒 𝑞 = 2 { .
𝑝−𝑞 

𝑝+𝑞
/ + 

1 

3
 . .

𝑝−𝑞 

𝑝+𝑞
/

3
+

1 

5
 . .

𝑝−𝑞 

𝑝+𝑞
/

5
+….. 

   Now if p and q be fairly large and differ little in value, i.e., (p – q) is small, the above series 

converges rapidly to the limits, since the terms become small quickly. 
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Example. Evaluate log 2 to 5 places of decimals. 

Solution. 

    Put  p = 2 ,    q = 1. 

       ∴  log𝑒 2 − log𝑒 1 = 2 . .
1 

3
+

1 

3
 .  

1 

33 +
1 

5
 .  

1 

5
3 + ⋯ / 

        log𝑒 1 = 0. 

      
1 

3
 = 0.333,333,3  

1 

33
 = 0.037,037    

1 

3
 .

1 

33
 = 0.012,345,7   

1 

35
 = 0.004,115,2 

             

      
1 

5
 .

1 

35
 = 0.000,832,0  

1 

37
 = 0.000,457,2      

1 

7
 .

1 

37
 = 0.000,055,3 

1 

39
 = 0.000,050,8    

     
1 

9
 .

1 

39 = 0.000,005,6  
1 

311
 = 0.000,005,6   

1 

11
 .

1 

311
 = 0.000,000,5 

 ∴   Sum of the first 6 terms is 2 ( 0.346,573,4) approximately  

                          i.e.,  0.693,146,8 

   ∴  log 2 = 0.69315 to 5 places of decimals. 

    We can calculate the error involved in taking only the first six terms. 

     The difference between log 2 and the sum of the first six terms. 

                      = 2 2
1 

13
 .  

1 

313
+

1 

15
 .  

1 

515
+ ⋯ 3 

                      <  
2 

13
 2

1 

313
+  

1 

315
+ ⋯ ∞3 

                      <  
2 

13
 .

1 

313
 . ( 1 + 

1 

32
+

1 

34
+ ⋯ ∞) 

                     < 
2 

13
 .

1 

313
 . 

1 

1−
1 

32

 

                     < 
2 

13
 .

1 

313
 .  

9 

8
 

                    < 
1 

13
 .

1 

311  .
1 

4
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                     < 
1 

52
 . ( 0.0000056) 

                       < 0.0000011. 

 Hence if we take log 2 = 0.69315, there is no error until the 6
th

 place of decimals. 

    By means of this series by putting  p = 5 ,  q = 4 , log𝑒 3 can be calculated. 

         By putting  p = 5 ,  q = 4 , log𝑒 3 can be calculated. 

 Similarly we can calculated logarithms of numbers. 

The application of the exponential and logarithmic series to limits and approximations.  

     The application is shown in the following examples: 

Example 1.  Evaluate  𝐿𝑡𝑥→0
𝑒𝑥−𝑒−𝑥  

log (1+𝑥)
 . 

Solution. 

              𝐿𝑡𝑥→0
𝑒𝑥−𝑒−𝑥  

log (1+𝑥)
 . 

           = 𝐿𝑡𝑥→0

( 1 + 𝑥 + 
𝑥2 

2!
….) −( 1− 𝑥 + 

𝑥2 

2!
+

𝑥3 

3!
….) 

𝑥− 
𝑥2 

2!
+

𝑥3 

3!
…

  

           = 𝐿𝑡𝑥→0

2𝑥+ 
2𝑥3 

3!
+

2𝑥5 

5!
+⋯

𝑥− 
𝑥2 

2!
+

𝑥3 

3!
+⋯

 

           = 𝐿𝑡𝑥→0

2+ 
2𝑥 

3!
+

2𝑥4 

5!
+⋯

1− 
𝑥 

2!
+

𝑥2 

3!
−⋯

 

           = 2. 

Example 2.  Evaluate  𝐿𝑡𝑛→∞  (1 +
3 

𝑛2
 +  

5 

𝑛3
)𝑛2+7𝑛  

Solution. 

        Let the value of the limit be A. 
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       ∴  A = 𝐿𝑡𝑛→∞  (1 +
3 

𝑛2
 +  

5 

𝑛3
)𝑛2+7𝑛  

    Taking logarithms on both sides, we have 

    log A = 𝐿𝑡𝑛→∞  (1 +
3 

𝑛2
 +  

5 

𝑛3
)𝑛2+7𝑛  

            = 𝐿𝑡𝑛→∞ ( 𝑛2 + 7𝑛)(1 +
3 

𝑛2
 +  

5 

𝑛3
)  

              = 𝐿𝑡𝑛→∞( 𝑛2 + 7𝑛){ .
3 

𝑛2
 +  

5 

𝑛3
/ −

1 

2
 .

3 

𝑛2
 +  

5 

𝑛3
/

2

+ 
1 

3
 .

3 

𝑛2
 +  

5 

𝑛3
/

3

− ⋯} 

              = 𝐿𝑡𝑛→∞( 𝑛2 + 7𝑛){ .
3 

𝑛2
 +  

5 

𝑛3
/ −

1 

2𝑛4
.3 +  

5 

𝑛
/

2

+ 
1 

3𝑛6
.3 +  

5 

𝑛
/

3

…..} 

              = 𝐿𝑡
𝑛→∞

 { 3 + 
5 

𝑛
 +

21 

𝑛
 + 

35 

𝑛2
−

1 

2𝑛2
.3 +  

5 

𝑛
/

2

− 
7 

2𝑛
.3 +  

5 

𝑛
/

2

+ ….} 

       Except the first , all the other term will contain  
1 

𝑛
  or higher powers of   

1 

𝑛
. 

        ∴  log A =  3. 

         ∴   A = 𝑒3. 

 Example 3. Prove that, if  n  is large  .𝑛 − 
1 

3𝑛
/ log 

𝑛+1 

𝑛−1
 = 2 + 

8 

45𝑛4
 + …. 

         and  .
𝑛+1 

𝑛−1
/

𝑛−
1 
3𝑛

 = 𝑒2 .1 +  
8 

45𝑛4
 +  … / 

Solution. 

  Let  .
𝑛+1 

𝑛−1
/

𝑛−
1 
3𝑛

   be  A. 

               ∴  log A = .𝑛 − 
1 

3𝑛
/ log 

𝑛+1 

𝑛−1
 

                            = .𝑛 − 
1 

3𝑛
/ log 

1+
1 
𝑛

 

1−
1 
𝑛

 

                            = .𝑛 − 
1 

3𝑛
/ { log (1 +

1 

𝑛
) − log (1 −

1 

𝑛
) } 
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                       = 2 .𝑛 − 
1 

3𝑛
/ {

1 

𝑛
 + 

1

3𝑛3
 + 

1 

5𝑛5
 + 

1 

7𝑛7
 + ….} 

                              = 2 { 1 + 
1

3𝑛2
 + 

1 

5𝑛4
 + 

1 

7𝑛6
 + …. − 

1

3𝑛2
−

1 

9𝑛4
 ….} 

                       = 2 {1 + 
4

45𝑛4
+ ….} 

                        = 2 + 
8 

45𝑛4
 

                    ∴   A = 𝑒
2+

8 

45𝑛4  

                            = 𝑒2. {1 +  
8 

45𝑛4
 +…} 

Example 4. Show that if  𝑒𝑥  = 1 + x𝑒𝑦𝑥  , where 𝑥3 and higher powers of  x  can be 

neglected, 

                     y = 
1 

2!
 + 

1 

4!
  

Solution. 

Now  𝑒𝑥  = 1 + x + 
𝑥2  

2!
 + 

𝑥3  

3!
+  

𝑥4  

4!
 +….. 

         ∴    𝑒𝑥 − 1 = x 21 +  
𝑥2 

2!
 + 

𝑥3 

3!
+ 

𝑥4 

4!
 + ⋯ 3 

      ∴   x𝑒𝑦𝑥  = x 21 +  
𝑥2 

2!
 +  

𝑥3 

3!
+ 

𝑥4 

4!
 + ⋯ 3 

       ∴    𝑒𝑦𝑥 = 1 +  
𝑥2 

2!
 + 

𝑥3 

3!
+ 

𝑥4 

4!
 + …. 

   Taking logarithms on both sides, we have  

         yx = log  1 + 
𝑥2 

2!
 + 

𝑥3 

3!
+ 

𝑥4 

4!
 + … .   

              =  
𝑥 

2!
+ 

𝑥2 

3!
 + 

𝑥4 

4!
+ … .   − 

1 

2
.

𝑥 

2!
+  

𝑥2  

3!
 +  

𝑥3  

4!
+ … . /

2
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                                       + 
1 

3
.

𝑥 

2!
+  

𝑥2  

3!
 +  

𝑥3  

4!
+ … . /

3

 

             = 
𝑥 

2
 + 

𝑥2  

24
 + terms in  𝑥4 and higher powers of x. 

   Hence    y  = 
1 

2
 + 

𝑥 

24
. 

  Exercises  

1. Evaluate  lim𝑥→0
𝑒𝑥−log (𝑒+𝑒𝑥 ) 

𝑥2
. 

2. Evaluate  lim𝑥→0
𝑒𝑥−log 𝑒(1+𝑥)(1+2𝑥) 

5𝑥3
. 

3. Find  lim𝑥→0
𝑥𝑒 𝑥−log (1+𝑥) 

𝑥2
. 

4. Find the limit as  𝑥 → 1 of  
log 𝑥 

𝑥2−3𝑥+2
. 

5. Evaluate  lim𝑥→0
(2+𝑥) log (1+𝑥)+(2−𝑥)log ⁡(1−𝑥) 

𝑥4
. 

6. Evaluate  lim𝑛→∞(1 +
3 

𝑛2
+

1 

𝑛3
)𝑛2

 . 

7. Find the value, when x tends to the limit 1 of the expression  

log(𝑥5/2 − 1) −log(𝑥3/2 − 1). 

8. Show that when x is small , log {(1 + 𝑥) 1/3 + (1 − 𝑥) 1/3 is approximately equal 

to log 2 − 
𝑥2

9
. 

9. By using the fact that  (1 +
𝑥 

𝑛
)𝑛  = 𝑒𝑥 log ⁡(1+

𝑥 

𝑛
)
  prove that  

  (1 +
𝑥 

𝑛
)𝑛  + (1 −

𝑥 

𝑛
)−𝑛  = 2𝑒𝑥  {1 + 

1 

𝑛2
 .

𝑥2

3
+

𝑥4

8
/ }. 

Answer : 1.2, 2. 
1

10
, 3. 

3

2
, 4 – 1, 5. .−

1

3
 ,6. 𝑒3, 7 𝑙𝑜𝑔 .

5

3
/. 

Extra problems. 

1. Show that 0
𝑎−𝑏

𝑎
1 +

1

2
0
𝑎−𝑏

𝑎
1

2
+

1

3
0
𝑎−𝑏

𝑎
1

3
+... = logea – logeb. 

Solution. 

Put     
𝑎−𝑏

𝑎
= 𝑥. 
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Therefore L.H.S = x + 
1

2
𝑥2 +

1

3
𝑥3 + ⋯  

= - log(1 – x) 

= - log.1 −
𝑎−𝑏

𝑎
/ = - log.

𝑏

𝑎
/ = log.

𝑎

𝑏
/     

= log a – log b. 

= R.H.S. 

2. Prove that log  
𝑛+1

𝑛
 = .

1

2𝑛+1
/ +

1

3
.

1

2𝑛+1
/

3
+

1

5
.

1

2𝑛+1
/

5
+ ⋯ 

Solution. 

Let 
1

2𝑛+1
  = x.  

Therefore R.H.S = 
1

2
𝑙𝑜𝑔 .

1+𝑥

1−𝑥
/ =  

1

2
𝑙𝑜𝑔 4

1+
1

2𝑛+1

1−
1

2𝑛−1

5 

= 
1

2
𝑙𝑜𝑔 .

2𝑛+2

2𝑛
/ = 

1

2
𝑙𝑜𝑔 .

𝑛+1

𝑛
/ 

= log  
𝑛+1

𝑛
 . 

= L.H.S. 

3. Show that 
3

10
0𝑙𝑜𝑔10 +

1

27 +
1

2
.

1

214 +
1

3
.

32

221 + ⋯ 1 = log 2. 

Solution. 

L.H.S =  
1

10
 3𝑙𝑜𝑔10 + .

3

27/ +
1

2
. .

3

27/
2

+
1

2
. .

3

27/
3

+ ⋯   

= 
1

10
0𝑙𝑜𝑔1000 − 𝑙𝑜𝑔 .1 −

3

27/1 

= 
1

10
 0𝑙𝑜𝑔1000 − 𝑙𝑜𝑔 .

125

27 /1 

= 
1

10
 𝑙𝑜𝑔 .

1000 ×27

125
/ 

= 
1

10
 𝑙𝑜𝑔210 = log 2 = R.H.S. 

4. Sum to infinity the series .1 +
1

2
/ + .

1

3
+

1

4
/ .

1

9
/ + .

1

5
+

1

6
/ .

1

92/ + ⋯ 

Solution. 

 1 +
1

2
 +  

1

3
+

1

4
  

1

9
 +  

1

5
+

1

6
  

1

92
 + ⋯ 

                 = 01 + .
1

3
−

1

9
/ +

1

5
.

1

92/ + ⋯ 1+0
1

2
+

1

4
.

1

9
/ +

1

6
.

1

92/ + ⋯ 1 

                 = 3 
1

3
+

1

3
.

1

3
/

3
+

1

5
.

1

3
/

5
+ ⋯  +

9

2
 

1

9
+

1

2
.

1

9
/

2
+

1

3
.

1

9
/

3
+ ⋯   

                = 36
1

2
𝑙𝑜𝑔 4

1+
1

3

1−
1

3

57 −
9

2
𝑙𝑜𝑔 .1 −

1

9
/ 
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                = 
3

2
log - 

9

2
 𝑙𝑜𝑔 .

8

9
/ = 

3

2
 0𝑙𝑜𝑔2 − 3𝑙𝑜𝑔 .

8

9
/1 

                = 
3

2
,𝑙𝑜𝑔2 − 3𝑙𝑜𝑔8 + 3𝑙𝑜𝑔9- 

                = 
3

2
,𝑙𝑜𝑔2 − 9𝑙𝑜𝑔2 + 6𝑙𝑜𝑔3- 

                = 
3

2
,6𝑙𝑜𝑔3 − 8𝑙𝑜𝑔2- 

                = 9log3 – 12log2. 

5.  Prove that 
1

𝑛+1
+

1

2(𝑛+1)2 +
1

3(𝑛+1)3 + ⋯ = 
1

𝑛
−

1

2𝑛2 +
1

3𝑛3 − ⋯ 

Solution. 

Put x = 
1

𝑛+1
  

Then L.H.S = x + 
1

2
𝑥2 +

1

3
𝑥3 + ⋯ 

= - log(1 – x) = - log.1 −
1

𝑛+1
/ = - log.

𝑛

𝑛+1
/  

= log.
𝑛+1

𝑛
/ = log .1 +

1

𝑛
/ =  

1

𝑛
−

1

2𝑛2 +
1

3𝑛3 − ⋯ 

= R.H.S. 

6. If y = x - 
𝑥2

2
+

𝑥3

3
−

𝑥4

4
+ ⋯ prove that x = 

𝑦

1!
+

𝑦2

2!
+

𝑦3

3!
+ ⋯ 

Solution. 

  y = x - 
𝑥2

2
+

𝑥3

3
−

𝑥4

4
+ ⋯ (i.e) y = log(1 + x) 

e
y
 = 1 + x 

Therefore x = e
y
 – 1 = 0

𝑦

1!
+

𝑦2

2!
+

𝑦3

3!
+ ⋯ 1 − 1. 

Therefore x =   
𝑦

1!
+

𝑦2

2!
+

𝑦3

3!
+ ⋯ 

7. If x = y -  
𝑦2

2!
+

𝑦3

3!
− ⋯ and  𝑥  < 1 show that y = x  +

𝑥2

2
+

𝑥3

3
+ ⋯ 

Solution. 

x = y -  
𝑦2

2!
+

𝑦3

3!
− ⋯ 

= - 0−
𝑦

1!
+

𝑦2

2!
−

𝑦3

3!
+ ⋯ 1 

= - [e
-y

 – 1] 

Thus x = 1 – e
-y

 

e
-y

 = 1 – x  

-y = loge (1 – x) 

y = - loge(1 – x) 
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Therefore y = x + 
𝑥2

2
+

𝑥3

3
+ ⋯ . 

8. If log (1 – x + x
2
) be expanded in ascending powers of x in the form a1x + a2x

2
 +a3x

3
 +........ 

prove that a3 + a6 + a9 +........ = 
2

3
 log 2. 

Solution. 

       log(1 – x + x
2
) = log 0

1+𝑥3

1+𝑥
1   

= log (1+ x
3
) – log (1+ x) 

=  𝑥3 −
 𝑥3 

2

2
+ ⋯ +

(−1)𝑛−1 𝑥3 
𝑛

𝑛
+ ⋯  - 0𝑥 −

𝑥2

2
+ ⋯ +

(−1)𝑛−1𝑥𝑛

𝑛
+ ⋯ 1  

Coefficient of x
3n

 is a3n = 
(−1)𝑛−1

𝑛
−

(−1)3𝑛−1

3𝑛
 

= 
(−1)𝑛−1

𝑛
01 −

1

3
1 

= (−1)𝑛−1[
2

3𝑛
] ......................(1) 

Putting n = 1, 2, 3, ... in (1) and adding we get 

a3 + a6 + a9 + ..... = 
2

3
01 −

1

2
+

1

3
− ⋯ 1 

= 
2

3
 𝑙𝑜𝑔𝑒2. 

9. Show that if x > 0 log x = 
𝑥−1

𝑥+1
+

1

2

𝑥2−1

(𝑥+1)2 +
1

3

𝑥3−1

(𝑥+1)3 + ⋯   

Solution. 

R.H.S = .
𝑥

𝑥+1
/ +

1

2
.

𝑥

𝑥+1
/

2
+

1

3
.

𝑥

𝑥+1
/

3
+ ⋯ 

+  −.
1

𝑥+1
/ −

1

2
.

1

𝑥+1
/

2
−

1

3
.

1

𝑥+1
/

3
− ⋯   

= - log 01 −
𝑥

𝑥+1
1 + log 01 −

1

𝑥+1
1 

= - log 0
1

𝑥+1
1 + log 0

𝑥

𝑥+1
1 

= log x 

= L.H.S. 

10. If f(x) = x + 
1

3
𝑥3 +

1

5
𝑥5 + ⋯ where -1 < x < 1.  

(i) Represent f(x) as a logarithmic function  

(ii) Hence prove f.
2𝑥

1+𝑥2/ = 2f(x) 

Solution. (i) For – 1 < x < 1 we have  

log(1 + x) = x -  
1

2
𝑥2 +

1

3
𝑥3 −

1

4
𝑥4 + ⋯  

log(1 – x) = - x - 
1

2
𝑥2 −

1

3
𝑥3 −

1

4
𝑥4 − ⋯  
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log(1 + x) – log (1 – x) = 20x +  
1

3
𝑥3 +

1

5
𝑥5 + ⋯ 1 

1

2
𝑙𝑜𝑔  

1 + 𝑥

1 − 𝑥
 = x +  

1

3
𝑥3 +

1

5
𝑥5 + ⋯  

              f(x) = 
1

2
𝑙𝑜𝑔 0

1+𝑥

1−𝑥
1 

(ii) Now, f .
2𝑥

1+𝑥2/ =  
1

2
𝑙𝑜𝑔 4

1+
2𝑥

1+𝑥2

1−
2𝑥

1+𝑥2

5   

= 
1

2
𝑙𝑜𝑔 .

1+𝑥2+2𝑥

1+𝑥2−2𝑥
/ 

= 
1

2
𝑙𝑜𝑔 .

1+𝑥

1−𝑥
/

2
 

= 2 f(x). 

11. Sum the series to infinity  log3e – log 9e + log 27e – log 81e + ............ 

Solution. 

 

log3e – log 9e + log 27e – log 81e + ............ 

= 
1

𝑙𝑜𝑔𝑒3
−

1

𝑙𝑜𝑔𝑒9
+

1

𝑙𝑜𝑔𝑒27
−

1

𝑙𝑜𝑔𝑒81
+ ⋯  

= 
1

𝑙𝑜𝑔𝑒3
−

1

2𝑙𝑜𝑔𝑒3
+

1

3𝑙𝑜𝑔𝑒3
−

1

4𝑙𝑜𝑔𝑒3
+ ⋯ 

= 
1

𝑙𝑜𝑔𝑒3
01 −

1

2
+

1

3
−

1

4
+ ⋯ 1 

= 
𝑙𝑜𝑔𝑒2

𝑙𝑜𝑔𝑒3
= 𝑙𝑜𝑔𝑒2 × 𝑙𝑜𝑔3𝑒 = 𝑙𝑜𝑔32. 

12. Show that (1 + x)
1 + x

  = 1 + x + x
2
 +

1

2
 x

3
  neglecting and higher powers of x. Also find an 

approximate value of (1.01)
1.01

. 

Solution. 

(1 + x)
1 + x

  = 𝑒𝑙𝑜𝑔(1+𝑥)1+𝑥
 

= 𝑒(1+𝑥)𝑙𝑜𝑔(1+𝑥) 

≈ 𝑒
(1+𝑥).𝑥−

1

2
𝑥2+

1

3
𝑥3/

 

≈ 𝑒𝑥+
1

2
𝑥2−

1

6
𝑥3

 

≈ 1 + .𝑥 +
1

2
𝑥2 −

1

6
𝑥3/ +

1

2!
.𝑥 +

1

2
𝑥2 −

1

6
𝑥3/

2
+

1

3!
.𝑥 +

1

2
𝑥2 −

1

6
𝑥3/

3
 

≈ 1 + x +
1

2
𝑥2 −

1

6
𝑥3 +

1

2!
(𝑥2 + 𝑥3) +

1

3!
𝑥3 

≈  1 + x + x
2
 + 

1

2
𝑥3 

Put x = .01 in the result. 
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(1.01)1.01  = 1 + .01 + .0001+ 
1

2
(.000001) = 1.0101005. 

13. Prove S = 
1

1.3
+

1

2.5
+

1

3.7
+ ⋯ = 2 − 𝑙𝑜𝑔2. 

Solution. 

Here Tn = 
1

𝑛(2𝑛+1)
  

Tn = 
𝐴

𝑛
+

𝐵

2𝑛+1
 

            We can find A = 1; B = - 2  

             Therefore Tn = 
1

𝑛
−

2

2𝑛+1
 ..............................(1) 

             Putting n = 1, 2, 3, ... in (1) we get 

            T1 = 
1

1
−

2

3
 

             T2 = 
1

2
−

2

5
 

             T3 = 
1

3
−

2

7
 

              ...  ...  ...  ... 

             Therefore  S = 1 + 
1

2
−

1

3
+

1

4
− ⋯  

                                  = 1 –  0−
1

2
+

1

3
−

1

4
+ ⋯ 1 

                                  = 1 – [log 2 – 1] 

                                  = 2 – log 2. 

14.   Prove S =  
1

1.2
−

1

2.3
+

1

3.4
− ⋯ = log 4 – 1  

Solution. 

Tn = (−1)𝑛−1 0
1

𝑛(𝑛+1)
1 

We have 
1

𝑛(𝑛+1)
=

1

𝑛
−

1

𝑛+1
 

Tn = (−1)𝑛−1 0
1

𝑛
−

1

𝑛+1
1 ...........................(1) 

Putting n = 1, 2, 3, ....in (1) we get 

T1 =   
1

1
−

1

2
 

T2 =  −
1

2
+

1

3
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T3 =   
1

3
−

1

4
 

              ...  ...  ...  ... 

              ...  ...  ...  ... 

Therefore  S = 1 + 2 .−
1

2
+

1

3
−

1

4
+ ⋯ / 

= 1 + 2 (log 2 – 1) 

= log 4 – 1. 

15. Prove that log .1 +
1

𝑛
/

𝑛
= 1 −

1

2(𝑛+1)
−

1

2.3(𝑛+1)2 −
1

3.4(𝑛+1)3 − ⋯ 

Solution. 

Put 
1

𝑛+1
= 𝑥 

Therefore  R.H.S = 1 – 
1

2
𝑥 −

1

2.3
𝑥2 −

1

3.4
𝑥3 − ⋯ 

= 1 – .1 −
1

2
/ 𝑥 − .

1

2
−

1

3
/ 𝑥2 − .

1

3
−

1

4
/ 𝑥3 − ⋯ 

= .−𝑥 −
1

2
𝑥2 −

1

3
𝑥3 − ⋯ / + .1 +

1

2
𝑥 +

1

3
𝑥2 + ⋯ / 

= −.𝑥 +
1

2
𝑥2 +

1

3
𝑥3 + ⋯ / +

1

𝑥
.𝑥 +

1

2
𝑥2 +

1

3
𝑥3 + ⋯ / 

= log (1 – x) – 
1

𝑥
log(1 – x) 

= .1 −
1

𝑥
/ log (1 – x) 

= (1 – n – 1)log.1 −
1

𝑛+1
/ 

= – n log.
𝑛

𝑛+1
/  = log.

𝑛+1

𝑛
/

𝑛
 

= L.H.S.    
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