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UNIT -1 : CURVATURE
Curvature — radius of curvature - Cartesian and polar - centre of curvature - Involute and

evolute - Asymptotes in Cartesian and polar co-ordinates.

CURVATURE
1. 1 Curvature and radius of curvature
The curvedness of a curve at a point p on it is measured by the rate of change of ¥
with respect to s, where W is the angle made by the tangent at p with the x-axis and s is the
arcual distance of p from a fixed point Q on the curve, that is by d¥/ds.
This rate is called the curvature of the curve at p.
Curvature of a circle
Consider a circle as in the figure whose centre is C and radius a. Let ¥ be the angle
made by the tangent at any point p with the x-axis. If the arcual distance of p from O is s,
then s = a¥. This is the intrinsic eqn of the circle.
Differentiating this w.r.t ‘s’, we get

1-a9%
ds
cdy 1

Tds a

So, in the case of circle, the curvature is a constant which is the reciprocal of the

radius.
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1.2 Radius of curvature

The reciprocal of Curvature of a curve at a point is called the radius of curvature of

the curve at the point. So it is ﬁ
dv

The radius of Curvature of a circle is its radius.
Notation
Radius of Curvature is denoted by p.

Remark :1

In the case of a straight line the change of ¥ is zero and hence ?j—lf =0,p= ;—; =

Remark : 2

. . ) dy . .
If the curve is such that, as ‘s’ increases, ¥ increases, then d_ is +ve and, so p is +ve.
S

ie) if the curve is concave, p is +ve otherwise is —ve In general, p is given as its absolute

value, namely |p].

1.3. Cartesian formula for the radius of curvature

dy

We know that — =tan¥
dx
2
-8 Y —sec? p IY e dF O
dx dx ds dx
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_ds  sec’V _ dx
S =y as——=cosY
dvy d ds

(+tan?¥)”*
d’y
dx?

Examples:

1. What is the radius of curvature of the curve x* + y* = 2 at the point (1,1)?

Soln:

Giventhe curve x* + y*=2

Differentiating the above equation, we get

45° +4y° o
dx

4x° = —4y3ﬂ.
dx

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



d’y

oo

At the point (1,1), % =-1and

_@+n* V2
P=""% 3

: . X.
2. Show that the radius of curvature at any point of the catenary y = ccoshE is equal to the

length of the portion of the normal intercepted between the curve and the axis of x.

Soln:

. X
Given y =ccosh—
c

Differentiating the above equation, we get

3

dy\’ 5 XY X
Now,‘[ljt(—yj} :[1+sinh2—j =cosh® =
dx c c

2

Also 3— cosh—.

c

x
N
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Here p = 1

Again at any point (X,y)
dy )’ & X y?
the normal = y{lJ{—yj } — ycoshX =¥
dx cC ¢

.. Radius of curvature = length of the normal.

If a curve is defined by the parametric equation x=f (8) and y=¢(6), prove that the
curvature is 1 = xy_—yxs
P (x2+y2)

Soln:

where dashes denote differentiation with respect to 6.

dy _dy dx_y
dx do do x

d’y :i(l'j :i(L'j%
dx* dx\x') de\x')dx

~ y||X|_y|X|| i
X|2 Xl

R A
:T
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L wd Yy
s % %
p 2 12
(o] el

dx X
_Xyry'x!

4. Prove that the radius of curvature at any point of the cycloid x =a (6 + sin6) and
. 0
y=a(l-cosO)is4acos —.

Soln:

From the given equations ,
X =a (0 + sind)

differentiation with respect to 6.

%:a(ﬂcos@)

de

2
47 —asiné
y=a (1 - coso)

differentiation with respect to 6.

d_y =asiné
do

2
d;z/ =acosd.
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Substituting the values in the formula obtained in the previous example, we get

1 _a(l+cosd)acos #—asind(—asinb)
P [a? @+ cos6)? +a2sin 6]

_a’(l+coso)
a®[2(1+coso)]"

_2cos’@l2 1
alacos?0/2]* 4acos”

0
.p=4acos—.
p 2

5. Find p at the point ‘t’ of the curve x =a (cost+tsint); y =a (sint—1t cost)
Soln:
Given the curve

Xx=a(cost+tsint); y =a(sint-tcost)

X . .
% =a(-sint+sint+tcost)=atcost.

% =a(cost—cost+tsint)=at sint.

<Y tant.

dx

Differentiating with respect to x,
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2
d Z:i(tant)ﬂzseczt
dx° dt dx

11
atcost atcos’t

{“(dy

dx ~ 1 ~
d? B
dx?

Lp= =

2%

j } 1+tan?t)”
y atcos®t
2

(The formula of Ex.3 can also be employed)
Exercise 1:

1. Find the radius of curvature for the curves

(a) y = €* at the point where it crosses the y — axis
(b) Vx+4Jy =1at(1/4,1/4)

(c)y? = x* + 8 at the point (-2, 0).

(d) xy = 30 at the point (3,10)

(e) (¢ + y*)? = a? (y*— x°) at the point (0, a)

Polar form.
Let r = f(0) be the given curve in polar coordinates.

- X=rcos0andy=rsin 6, may be regarded as the parametric equations of the

given curve the parameter being 6.

% = cos@ﬂ— rsiné
dée dée

and ﬂ=sin0£+ rcosd
deo do
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2 2
d )2( =cosed—r2—25in ei—rcoseand
deo deo de
2 2
d Zzsined 2—2cos€£—rsim9
do deo de

Substituting these values in the formula for p in parametric from and simplifying we

get

3
2 2y2 2
:—z(r +£1 ) where riz—dr andr, _dr 2
r’+2r" —rr, de do

1.4 The coordinates of the centre of curvature

Let the centre of curvature of the curve y = f ( X) corresponding to the point P (X,y)
be Xand Y.

X =ON

=0Q-NQ =0Q - MP

X -PCsin¥ = x-psin'.
Y = NC
= NM+MC

=QP+PCcos¥=y+pcosV.

2
If y; and y, denote ﬂand d—Z we know that
dx dx
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2\%
:Mand tany =y,

.COSY _ 1 andsiny = Yi

VL+Yf VI+Y;

oy @YDy vy

Y,  (@+yR)E Y
2\% 2
M CESS L SN 5%
Y, 1+ yl) 2 Y,

The locus of the centre of curvature for a curve is called the evolute of the curve.

Examples.

1. Find the co-ordinates of the centre of curvature of the curve xy = 2 at the point
(2,2).

Soln:
Given the curve xy =2

2
Herey = <

Differentiating with respect to ‘x” we get

2
dx X dx X

2

.~ At (2,1)the values of % and 3)(2/ arerespectively —1/2 and1/2.
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a+hxr
X =24—4 2_3-°
1 4
2
1+
Y =1+ %:33_
% 2

. The centre of curvature is (3%,3%).

2. Show that in the parabola y* = 4ax at the pointt, p =-2a (1+t%)*? X=2a+ 3at’,

Y = -2a t*. Deduce the equation of the evolutes.

Soln:

x =—at,y=2at

.'.%:Zat,d—y=2a
dt dt
Oy _2a 1
Tdx 2at t
L d%y :i(d_VJ ziﬁﬂ
Tdx? dxldx) dtlt) dt
1 1
=—— +2at=—
t? 2at®

%
dy) | . d% 23
o=l1 -+ =—2a(l+t°)"”
L { J{dxj } dx® d+t)
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. = at? 1
dx? - 2at®
= 2a+ 3at?
) e
2
Y+ gz, ) _ 2at+ —=-2at
dx? 2at

Eliminating t from X and Y

%
X —-2a
=—24a
y ( 3 j

Squaring both sides and simplifying, we get

27aY? =4(X -2a)’
The locus of (X,Y) is 27ay? = 4 (x-2a)°

The curve is called a semi — cubical parabola.

3. Find the evolute of the ellipse —+t>)/—2 =1.Any point on the ellipse is (a cos 6, b sin 6)
a

Soln:

X=acos 0;%=—asin 0
dée

y:bsine;ﬂzbcose
de
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2
d Z:i(—gcot6)=gcosecz<9%
dx* dx a a dx
do 1
dx -—asiné
=——-cosec’d
2
l+[dyj dy
dx ) | dx
X =X- 5
d7y
dx®
2 b
(1+ — cot’? HJ( cot 9]
a a
=acoséd—

b
—-cosec’d
a

b2
1+—cot’ 6
—bsing——2
=bsing b 5
—, cosec’d
a

sin®o.
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To eliminate 6, squaring and adding, we get

%

% _
(%5 (%) -
a‘—b a--b

%

%
. ax by
'e(m} *(ﬁj =t

.. The locus of (X,Y) is the four cusped hypocycloid.

(@07 +(by)" = (@ -

4. Show that the evolute of the cycloid

x=a(fd—sind);y = a(l- cos #)is another cycloid .

Soln:

x=a(@—-sin o)

Differentiating with respect to 0

& =a(l—cos o)
dé

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

16



y=a(l-coséd)

Differentiating with respect to 0

ﬂ =asiné.
do
Cdy asiné

,_.
N

S =———————=(0
dx a(l-coséd)

d’y d ( 9) 1 ,0 do
—=—| cot— |=—=cosec’ —.—
dx dx 2 2 dx
_ 1

dasin* =

(1+ cot® Q) cot ¢
2 2

X =X+ 1

4asin4g
2

=a(@—-sin )+ 2asing

=a(f@—-sinf)
1+cot2g
Y =
y+ ] 1
4asin® =

=a(l—cosd)—2a(l—cosb)
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=—a(l—cosH)

.. The locus of (X,Y) is

x=a(@+sinf);y =—a(l—cosf)

This is also a cycloid.

5. Find the centre of curvature of y = x* at the origin.

Solution. We have y = x2.

sy, =2xand y,=2

. At(0,0),y,=0and y,=2

Let (x, y) be the centre of curvature at (0,0).

.. Centre of curvature is (0, %).

6. Find the evolute of the curve given by x=acos’dand y =sin*é.
Solution. We have x =acos’dand y = sin®é.

.y, =—tan@and y,=(1/3a)sec’ cosecd

Let (X, Y) be the centre of curvature.
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2
AX =x= 1t yd) :aCO839+3atan40(1+tan 0)
Y2 sec” #cosecd

=acos’#+ 3asin®@cosé......[1]

2

2
Y=y+1+ A =asin39+3atan4¢9(1+tan 0)
Y3 sec” gcosecd

=asin®#+3acos’ Gsiné......[2]

Now, to find the equation of the evolute, we have to eliminate 6 from [1] and [2] we
have

X +Y =a(cos 4 +sin6)°.

X —Y =a(cos 8 +sin 6)°.

2 2 2 2

(X +Y)® +(X =Y)3 =a3(2)=2a?

wIN
wlN

2
~.The locus of (X,Y)is(X+Yy)?® +(x—y)* =2a3.
7.Find the evolute of the parabola y* = 4ax
Solution. We have y* = 4ax

~y,=2alyandy,=-4a’/y3

Let (X, Y) be the centre of curvature.

2 2
X =X_L(1+ y12)= X+ﬂ
Y, 2a

=3x+2a (byl)....[2]
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- by 1) ....[3]

From[2] and [3] eliminating X , we have

_4x® 4(X -2a)°
a 27a

Y2

-.27aY? =4(X -2a)®
. The locus of (X, Y)is 27 ay® = 4(x —2a)’
Theorem 8 The normal to a given curve is tangent to its evolute.

Proof. We know that the coordinates of the centre of curvature of the given curve are given

by

X :X—L(1+ y;

2

Ly
Y,

Y=y

These two equations can be taken as the parametric equation of the evolute with x as

parameter.

dX Y, — Y,y
S =1—(%J2y1y2 -1+ yf){z—”}

dx 2 e
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“1-2y2 - L+ y2) - 2%

2

3
=_3y12 + Y13£3 + Y1 )2/3)

2 2

=T 3y -y, - y2y,).
Y,

2y,y,. — @+,
Nowd—Y=y1+{ AGRPNE
dx Y2

}33/32 - y3 - y12 y3
_ 1 2 2
__2(3y1y2 — Y=Y ys)

Y,

dy 1
So— = (1
dX Y, D

Y . i
But j—x is the slope of the tangent to the evolute and y; is the slope of the tangent to

the given curve at the corresponding point and their product is -1 (by 1).
.. Tangent to the evolute is normal to the given curve.

Exercises

1. Find the coordinates of the center of curvature at the indicated points.

[a] y = X2 at (%&)

[b] xy = c?at (c,c).
[c]x=a (cost+tsint), y=a (sint—tcost)at ‘t’.

[d] y =x log x at the point where y’ = 0.
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Exercise 2:

1. Find the coordinates of the centres of curvature at given points on the curves :

Wy=x* (%, %)

(2)xy=c?; (c,c).
(3) y=logsecx; (% log 2)

2. Prove that the circle of curvature at the point (t%, 2t) of the curve y?=4x cuts the curve

again at a point whose ordinate is — 6t. Calculate the coordinates of the centre of

curvature.

1.5 Evolute and involute.

We have already defined evolute of a curve as the locus of the centre of curvature and

deduced the equations of the evolute of the parabola and ellipse.

If the evolute itself be regarded as the original curve, a curve of which it is the evolute

is called an involute.

It may be noted that there is but one evolute but an infinite number of involutes.
Radius of curvature when the curve is given in polar co-ordinates

Let us assume that the equation of the curve in polar coordinates be r = f (0).

In the figure,

y=0+¢.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

22



.'.d—‘//:1+%.
[ dé

We have proved that

do r

tang=r—= :
an ¢ rdt (er
do

Differentiating w.r.t 6, we get

)12
, do (d@ de?

Sec go@: Y
(40
PR

cdp_ 1 (de do?

do sec’o dr )2

[at)

(drj2 d?r
— | =r
1 do d6?

1+ r’ (drjz
&)

déo

d_¢:1+d_§0
do do
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do d6?

o)
| +r
deo

2 2
r2+2(dr) —ro| '

We have proved in the previous chapter that

ds ) (drj2 &
=—={r’ 4| —
do do

Examples .

1. Find the radius of curvature of the cardioid r = a (1-cos6).
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Soln:

Givenr =a (1-cos0).

Differentiating w.r.t ©, we get

2
i:asin H,andd—l;:aCOSQ.
do deo

3

SANEA ERR——

do
= 8a° sin3g.
2
) dr)® dr 2 2 2 ain2 2
r-+2 FY] —rdg2 =a“(l—cosH)° +2a“sin“ & —a“ cos d(1—cos )
=6azsinzg
2
3cin3
p_8a Sin® — —iasin—
6aZsin?’ 3 2

2. Show that the radius of curvature of the curve

n,.—n+l

r"=a"Cosn@is
n+1

Soln:

Taking logarithms on both sides and differentiating, we get
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ndr_ nsinng

rdé cosné
ﬂ =-rtannd
do

Differentiating once again w.r.t. 6, we get

2
. Lz :_d—rtanne—nrseczne
dé dé

=r tan*nf-nrsec’nd

B (r’+r’tan’ n@
r+2r2tan’n@-r?tan®nd+nrisec’né

o,

_ r’sec’ng r
(n+1)r?sec’nd (n+1)cosné

n,.—n+1

_ra" _a'r
(n+DHr"  n+1

Particular cases.

1) Putting n = 2, we get Bernouilli’s lemniscate;
a2
"3r

i) when n = -2 we have a rectangular hyperbola.
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iii) when n = %, we get cardioids; p=33\/§

3/2

Ja

iv) when n = -1/2, we get a parabola, p=

v) when n =1. we get a circles ; p=;

1.6 Asymptotes in Cartesian and polar co-ordinates.
Asymptotes of polar curves.

Theorem: For the polar curves of the form 1 f (©) the asymptotes are rsin(@—6,) = %
r )

where 6; ’s are the roots of the equation f(0) = 0.

Proof: Let P (r,0) be any point on the curve 1 ) P (1)
r

As P tends to infinity along the curve r — c. Hence from (1) we note that

when r — oo, f(0) — 0.

Let the roots of the equation f(0) =0
be O wherei=1,2,3 ..........

Hence 6; ’s are the only directions along which the branches of the curve tend to infinity. Let

us consider the branch corresponding to the value 6 = 0;.
For this branch 6 — 64, r > .
We know that the polar equation of any line isp =r cos(6 - a)

where p is the length of the perpendicular from the pole on the line and « is the angle which

this perpendicular makes with the initial line and (r,0) is any point on the line.
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Consider an asymptote to the branch corresponding to 6 = 6.

Letitbep=rcos(0-a) ................... (2)

For this branch corresponding to 6 = 6,. the equation of the asymptote will be determined if

we find p and o.

Draw ON perpendicular to the line (2).
Then ON = p and £XON = q.

Draw PM perpendicular to the line (2) and PL perpendicular to ON.

-, PM = LN =ON - OL = p-OP cos(0 - o)
=p-rcos(d - a).

PM P os0-a) e 3).
r r

Since (2) is an asymptote of (1), by definition, PM — 0 as P — .

(i.e) Asr — oo, f(0) > 0 as 6 — 6, so that P50
r

- From (3) lim M _ lim [E —cos(0 - a)}

06 r r

(i.e) 0=0-lim [cos(0—a)]

- 0=cos(6;- ). Hence 6,—« :%.

_cos(@-a)

Also using l= f(0) in(3)weget PM =p
r f(0)
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Taking limit as & — 6, we have 0 = lim [ p

06,

_cos(f—a)
f(0)

cos(@ -6+ ﬂ)

o o Cos(@-a) . i
s p = fim === 0 - LL@ 0 (Using (4))
i {—sin(@—@l)}
0->6; f(6)
—iim {cos(&—el)}
o-6|  f'(6)
(Using L-Hospital’s rule)
_ | cosO
L@
oo 1
o p @)

Substituting the values of p and o in (2) we get

w .
=rcos| -6, +— |=-rsin(@ -6,
gy {00+ rsno-

1

- rsin(@-6) = m

This is the required asymptote corresponding to 6 = 6.
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Similarly the other asymptotes corresponding to the other roots of
f(6) = 0 can be got.

Working rule to find the asymptotes of the polar curves.

1. Write the polar equation in the form % = ().

2. Find the roots of f(0) = 0. Let the roots be 01,6,,0s.......

3. Find f'(0) and calculate f'(0) at 6 = 04,0,,05.......

4. Then write the equations of theasymptotesas rsin(6—6,) = L rsin(6-o,) = Il :
(@) f(6,)
: 1
rsin(@—6,)=— -——........
"0

Solved problems.
Problem 1. Find the equations of the asymptotes of the following curves

Mro=a (i) rlog 6 =a.

Solution. (i): The equation of the given curve in the form 1 = 1(0)
r
we have 1 = gsothat f(0) = Q.
r a a

Now, f(O) :O:>§=O.Hence6=0.

Also, f'(0) = 1. Hence f'(0) = 1.
a a
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.. The equation of the asymptote is rsin(¢—0) = 1 = E
f'(0) a

(i.e)rsin®=a.

(if) The equation of the given curve in the form %: f(6)

we have 1 IoLgsothat f(0) = Ioﬂ_
r a a

Now, f(0) =0 = m%e =0.Hence 6 =1.

Also, f'(0) = i. Hencef'(1) = 1.
ad a

.. The equation of the asymptote is rsin(@—-1) = fi(l) =a.

(i.e)rsin(6-1)=a.

Problem 2. Find the equation of the asymptotes of the curve

r(6?- n°) = 2a0

Soln: The equation of the given curve in the form

1)
r
22 22
we have 1=‘9 ad sothatf(e)ze T
r 2a0 2a0

6% —r? _0

Now, f(8)=0=
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= 0 = +m.

2 _(p2 2 2, 2
Also, f'(g) = —|20 =0 =7) | 0+
2a o 2ad

2 2
)= Ao fr(n) =
2ar a

1
.

.. The equation of the asymptote corresponding to 6 = 1t is

rsin(@—r) = LI a
f'(7)
(ie)-rsind=a.Hencersin0+a=0........... (1) Similarly the asymptote
corresponding to 6 = -wt is
rsin(@+r) = 1 :i.
f'(-)

(i.e) rsin 6 + a = 0 which is same as (1).

Hence there is only one asymptote for the given curve.

Problem 3. Find the equation of the asymptotes of the curve r = 1 7
—CO0S

Solution. The equation of the given curve in the form 1_ f(0)
r

we have * = 129059 ¢ ihat f(0) = 1-coso
r a

1-cos@

Now, f(8)=0= 0
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=1-cos0=0
=cos0=1
= 0=2ntx0 whereneZ

= 0=2nwt whereneZ.

sin@ sin2nrx

Now, f'(#)=——Hencef'(2nx) = =0forallneZ.
a

.————=owforallneZz
f'(2nx)

Hence the curve has no asymptotes.

Problem 4. Find the equation of the asymptotes of the curve r cos 6 = a sin 6.

Solution. Writing the equation of the given curve in the form 1 f(0).
r

we have 1_ CO_SH sothat f (0) = cosd

r asiné asing’

Now, f(8) =0 =cos 6 =0

= 60=(2n +1)%where neZ.

2
Since f(@):wwehavef'(e)z_cosec H:_ _12
a a asin“ ¢
. T 1
Now, f [(2n+1)—}: forallne Z.

. o T
—asin {(Zn +1)2}

1

asinz(nﬂ+%)
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T dCysing2f a-)*  a

o
. T
f{&n+nz}

.. The asymptotes are given by rsin{&— (2n +1)£} = ne”Z

(i.e) —rsin[(Zn +1)%—¢9}:—a
(i.e) rsin{(Zn +1)%—¢9}=aforallnez.
(i.e) rsin(%—@j:ia

(i.e)rcos 6 =+a

(i.e) rcosd =

a
)"

For different values of n € Z we get only two asymptotes r cos 6 = -a and r cos 0 = a.

Hence the asymptotes are r cos 6 = +a.
Exercises.
Find the asymptotes of the following curves.

ad

. o _
71 @ir(l-eM)=a

(i) r=

Tracing of curves f(x,y) = 0 (Cartesian Coordinates)
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Suppose a curve is represented in terms of Cartesian coordinates by the equation
f(x,y) = 0. The following points provide useful informations regarding the shape and nature
of the curve.
I. Symmetry of the curve.
(a) Symmetry about the x - axis:

A curve f(x,y) = 0 is symmetric about the x-axis if f(x,-y) = f(x,y).

Example. y* = 4ax; x* + y* = &%, y* + y* + x* = 0 are curves which are symmetric

about the  x - axis.
But x* + y* = ay is not symmetric about the x-axis.
(b) Symmetry about the y - axis.
A curve f(x,y) = 0 is symmetric about the y - axis if f(-x,y) = f(x,y)

Example. x? = 4ay; x* + y* = a% y = x* + x? + a are symmetric about y - axis.

But x* + y* = ax is not symmetric about y - axis.

Note. x* + y? = a? is symmetric about x - axis and y - axis. In this case the equation

involves even and only even powers of x as well as y.
(c) Symmetry about the line y = x
If f(x,y) = f(y,x) then the curve is symmetric about the line y = x.

Example. x> + y* = a% x° + y® = 3axy; xy = ¢ are symmetric about the line y = x.
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(d) Symmetric about the origin. (Symmetric in opposite quadrants)

If f(-x,-y) = f(X,y) then the curve is symmetric about the origin (Ssymmetric in opposite

quadrants)

Examples. x* + y? = a; xy = ¢ are symmetric about the origin.

x> +y® = 3axy; y? = x° are not symmetric about the origin.

Note. From the above examples the equation of the circle has all symmetric properties we

have discussed so far.
Points of intersection with the coordinate axes.

To obtain the points where the curve f(x,y) = 0 intersects the x - axis put y =0 in the
equation and solve for x. Similarly, to find the points where the curve intersects the y - axis

put x = 0 in the equation and solve for y.

Examples. The curve x? + y* = a® crosses the x - axis at (a,0) and (-a,0) and crosses
the y - axis at (0,a) and (0,-a).

The curve y* = 4ax passes through the origin.

IV. Tangents to the curve.

(a) Tangents at the origin.

If the origin is found to be a point on the curve then the tangents at the origin are

obtained by equating to zero the lowest degree terms occuring in the equation.

Example. y? = 4ax passes through the origin and the lowest degree term occuring in

it is 4ax which when equated to zero becomes 4ax =0
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(i.e) x = 0. Hence y - axis is the tangent to the parabola at the origin.

Also x® + y* = 3axy passes through the origin at which x = 0 and y = 0 are the
tangents.

For the curve a’y? = a®” - x*, y = +x are the tangents at the origin.

(b) Tangents at any other point (h,k) other than the origin.

Find g_y at (h,k) and it gives the slope of the tangent to the curve at this point. This
X

will be useful to deside the nature of the tangent - whether parallel to the x - axis or y - axis or

inclined tangent.
V. Asymptotes.

The concept of asymptotes described in the previous chapter will be helpful to know

about the asymptotes in tracing any curve.
(a) Asymptotes parallel to the x - axis.
These are obtained by equating to zero the coefficient of the highest power of x.
Example. (y+a)x? + x - 1 = 0 has an asymptote y = -a parallel to the x - axis.
(b) Asymptotes parallel to the y - axis.
These are obtained by equating to zero the coefficient of the highest power of y.

Example. y?(4 - x?) = x* - 1 has asymptotes 4 - x* = 0 (i.e) x = 2 and A = -2 are two

asymptotes parallel to the y - axis.
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(c) Inclined asymptotes.

Taking y = mx + c as an asymptote we can find m and ¢ by substitutingy = mx + c in
the equation and equating to zero the various powers of x starting from the highest power.
Polar Coordinates : (Tracing a curve f(r,0) = 0):

To trace curve given in terms of polar coordinates by the equation f(r,0) = 0.

I. Symmetry of the curve.
(a) Symmetry about the initial line:

The curve f(r,0) = 0 is symmetric about the initial line 6 = 0 if f(r, -0) = f(x, 0).

Example. r = a(1+cosB); r=a(l-cosh); r =a cos20 Symmetric about the initial line.
However r = a(1-sin0) is not Symmetric about the initial line.

Symmetry about the pole

The curve is symmetric about the pole if f(-r,0) = f(r, 0).

Example: r’ =a?cos20 ; 1° = a sin20 are Symmetric about the pole.
(¢) Symmetry about 0 = %

The curve f(r,0) = 0 is symmetric about the line 6 = % (y-axis) if f(r, , -0) = f(r, 0). :

Example : r = a(1+sinf) ; r = a sin360 are symmetric about 6 = %
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Tangents at the pole.
We put r = 0 in the equation of the curve and solve the resulting equation for 6.If there
exists a real solution a for 0,then the curve passes through the pole and the line 6=a is
a tangent to the curve at the pole.
Region in which the curve lies.

1) If the maximum value of r is a, then the curve lies within the circle r = a.

2) If there exist values of 0 for which r2<0 so that r becomes imaginary then the curve

does not exist for those values of 0.
Example: r*=a? sin20 does not exist if % <0<m

Value of ¢.

The angle ¢ which a tangent at(r, 8) makes with the initial line is found from the

de
formula tang= r—

Asymptotes:

If there is no finite value o for 6 such that r — oo, then the curve f(r, 6) = 0 has no
asymptotes
Points on the curve:

Giving different values for 6 we can get different points on the curve which will be of

use in tracing the curve and ascertain whether r increases or decreases in the region.

Tracing a curve x = f(t), y = g(t) (parametric equations)

(i) Suppose x =f(t), y = g(t) are parametric eqgations of a curve where t is the parameter.

If it is possible to eliminate the parameter between the two equations and get the
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Cartesian form of the curve we proceed as in the case of Cartesian coordinates.

(i1) If the parameter t can not be easily eliminated

. dy _dy dt
2 =2 x =
(a) Find dx dt dx

(b) Give different values to the parameter t and find X, v, Z—y This gives different points

.
on the curve end slopes of the tangents at these points.

(c) We plot the points and trace the curve.

Solved Problems:

Problem 1 : Trace the curve () +(y)”* =(a ) (four cusped cycloid or asteroid)

Solution:

% % %
Given the curve (¥)” +(¥)"=()
Clearly the curve is symmetrical about both the axes. Hence it is enough to discuss
The nature of the curve in the first guadrant only.

To find the points of intersection of the curve with x-axis, we put y=0 in egn (1)
We get (x)* = (a%)”
Therefore x* = a® and hence x=% a.
Hence the curve meets the x-axis at (0,a) and (-a,0).

Similarly, the curve meets the y-axis at (a,0) and (0,-a).

%
y

%
&) =)
From egn (1) \ @ 4/ we see that if |x | > a,then

y

G
@/ < 0and hencey is imaginary.

Hence the curve does not lie beyond x =+ a

Similarly, the curve does not lie beyondy =+ a
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Also, (ﬂ) =3
dx X

VT

3 3

HE
At (a, 0) and hence x-axis is a tangent to the two branches of the curve
at (a, 0) lying in the first and fourth quadrants.
Hence the curve has a cusp of first kind at (a, 0).

Similarly, the curve has cusps of first kind at (0, a), (-a, 0), (0,-a).
Hence the curve is known as four cusp hypocycloid.

Also, the curve is concave in [0,a].

Hence the form of the curve is as shown in the fig.

Note: The parametric equation of this curve can be taken as x= acos®0; y = asin® .

Problem 2 : Trace the curve y* (2a - x) = x (cissoid)
Solution. Y2 (2a-X) = X3 woeeeeeeeie e [1]
Since [1] contains even power of y the curve is symmetrical about the x-axis.
Obviously it passes through the origin.
The tangents at the origin are given by y* = 0 and they are real and coincident. Hence
the origin is a cusp.
The curve meets the x-axis and y-axis only at the origin.

Equating the coefficient of the highest degree term in y to zero we get x - 2a=0. The
asymptotes parallel to the y - axis is x - 2a = 0 and this is the only asymptote to the curve.
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Writing the given equation as y = X, | 2aX " (Considering the positive root) we see

that y is imaginary when x < 0 or when x > 2a.

Hence the curve does not lie to the left of the y - axis and to the right of the line

X = 2a.
As x increases from 0 to 2a y increases from 0 to oo.

Hence the form of the curve is as shown in the figure and the curve is called cissoid.

Y A

y

P> x
o 1 (2a,0)
'

Problem 3: Trace the curve r = a(1+cos 6) where a > 0 (cardioid).

Solution. We note the following from the equation of the given curve. The curve is

symmetric about the initial line.

When 6 =t we have r = 0. Hence the curve passes through the pole and further 6 =«

is the tangent at the pole.

Let ¢ be the angle made by the tangent at (r, 6) with the initial line.

Now, tan¢:r%:a(l+—c_os¢9):_cot 9 =tan £+Q :
dr —asind 2 2 2
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.'.9:£+9 Hence when 6 =0, ¢:£and r=2a.
2 2 2

Thus the tangent at (2a, 0) is perpendicular to the initial line.

Since the maximum value of r is 2a, no portion of the curve lies to the right of the

tangent at (2a, 0) and hence the curve lies within the circle r = 2a.

The following table gives a set of points lying on the curve.

0 0 /4 /2 oL -1/2 -l4

When 0 increases from 0 to 27, r is positive and it decreases from 2a to 0. The form of

the curve is as shown in the figure and it is a cardioid.

A

0= n/2

0=0

Problem 4 : Trace the curve r* = a? cos 2 6 (Lemniscate of Bernoulli)

Solution. The curve is symmetric about the pole and the initial line.
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Negative values of cos 2 6 give imaginary values of r. Hence the curve lies in the two

quadrants bounded by 6 = iz 0= E; and @ = 3z 0= —5”.
4 4 4 4
. Vs 37 S5r 1z
The lines 0 = " 0= 7 0= 7 ,0 = 1 are tangents to the curve at the people.

Some points on the curve are given below.

0 0 /4 3n/4 | 5n/4 Trld

When 0 increases from 6 = 777[ to 2rt (=0), r incerases from 0 to a and when 6

. T
increases from 0 to 0 = Zr decreases from a to 0.

The form of the curve is as shown in the figure below.

A =2

0= 3n/4 0= n/4

Problem 5 : Trace the curve r = a(1-cosf)

Soln: The curve is symmetric about the initial line.
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It passes through the pole.

tang = tan(0/2). Hence ¢ = 0/2.

At (2a, m), the tangent is perpendicular to the initial line.

&

0= n/2

Problem 6 : Trace the curve r =sin 3 6.
Solution. The curve is symmetric about the line & =%

r=0=sin36=0=360=0ormultiple of ©

7w 27 37 4rx 5Srx
:>e :01 Ty oy v T
33 3 3 3

For 6 = 0 the curve passes through the pole.

Further6=0,0=m; & :%,9 :%;and 0 :2{,0 :%are the tangents to the curve at the

pole
Since |sin 30| <1, r < a. Hence the curve lies entirely within the circle r = a.

We get different points on the curve as shown in the table.
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0 0 /6 /3 /2 27/3 5t/6 s

When 0 <0 <n/ 3 the curve has one loop around 6 = 1/6.
When 4x/3 <0 < 51/ 3 the curve has another loop around 6 = 37/2.
When 27/3 < 0 <& the curve has yet another loop around 6 = 57/6.

The form of the courve as shown in the figure and it is known as three leaved rose.

L, 8=n/2
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UNIT -2 : EVALUATION OF DOUBLE INTEGRALS

Evaluation of double and triple integrals-Jacobeans, change of variables.

EVALUATION OF DOUBLE INTEGRALS

1.1 Double Integrals:

Let f(x,y) be a continuous function defind on a closed rectangle R = {(x,y)/ a<x <D
andc<y<d}.

For any fixed xe[a,b] consider the integral i f (X, y)dy.

The value of this integral depends on x and we get a new function of x. This can be
integrated with respect to x and we get jlﬁ f(x,y) dy}dx.
This is called an iterated integral.

d| b
Similarly we can define another integral J.D f (X, y)dx}dy.

clLa

For continuous functions f(x,y) we have

jj f(x, y)dxdyz'[{ff(x, y)dy}dx=_[{ff(x, y)dx}dy

We omit the proof of this result.

If f(X,y) is continuous on a bounded region S and if Sisgivenby S={ (x,y))a<x<b

and @1(x) <y < @2(X)} where ¢; and o, are two continuous functions definded on [a, b] then

[l; feoydxdy = [} [[7%7) £ y)dy| dx

The inerated integral in the right hand side is also written in the form
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b x
[} dx [727) F G y)dy.

Similarly if S={ (x,y) / c <y <dand @1(y) <X < p2(Yy)}
then

[l fGyydxdy = [*[[2°0) fCey)dx]| dy

If S cannot be written in neither of the above two forms we devide S into finite
number of subregions such that each of the subregion can be represented in one of the above
forms and we get the double integral over S by adding the integrals over these subregions.

Hence to evaluate H f(x,y)dxdy we first convert it to an iterated integral of the two
D

forms given above.

Solved Problems.

12
Problem 1. Evaluate | :”xy2 dy dx.
00

Solution.

2

12 1 1 L

1 1 8| x 4

Now| | xy? dy dx = {—xyg’} dx == 8xdx=—{_} _4
ﬂ !3 3! 32 3

0

12
4
Thereforel = | | xy? dydx = —.
[ o=
4a2+/ax
Problem :2 Evaluate | :I Ixydydx.
0 x%a
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aar o p2Yax
Solution. | = {i} dx

Problem : 3 Evaluate | =ﬁ.(x2 + yz)dxdy
00

Solution. | = J.{
0

=1/3ab (@ + b?).

a  byf{x?ra?
Problem 4. Evaluate | :Idx Ixe’ydy
0 0

a'b’
T4
172 1 X
Problem 5 : Evaluate | = ———dydx.
0 -([ }il_ X2y2 i
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1/2
Solution. l=|x
0

1/2

1/2
= J'sin‘1 xdx = [xsin‘l X++1-x? ]0 (integration by parts)
0

:£+£_1.
12 2

T acosf

Problem 6 : Evaluate | =I Irsinedr do
0 0

T acosf
Solution. | = Isin QF rz} do
0 2

0

:lja2 cos® AsinA dé :—Eazjcoszed(cose)
20 2 0

=—%a2[cos30]§

Problem 7. Evaluate _[I—
0 O

Solution Let | = j I%drd&
0 O
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Change of order of Integration:

Problem 1.  Evaluate | = _U xy dy dx where D is the region bounded by the curve x = y?,
D

x=2-y,y=0andy = 1.
Solution. The given region bounded by the curves is given in the figure.

In this region x various from 0 to 2. When 0 <x < 1, for fixed x

y varies from 0 to x. when 1 <x <2,y various from 0 to 2-x.

(1,0) (2,0)

The region D can be subdivided into two regions D; and D, as shown in the figure.

Ijxydxdy:jjxydydx+jjxydydx
D D1 D2

2 2—-x

1x
:J.J.xydydx+J'J'xydydx
00 10
Jx 2-x

1 2 -
v | ol
=||=xy° | dx+||=xy dx.
[la] el ]

:_Ixzdx+ 2J.x(2 X)?dx

1

1 2
Fxﬂ L I:ZX += L x* 4 xﬂ
6 |, 2 4" 3|

1 tre 1 __X 1.4
==+ 0l8+ 5 16 -2 x8)— 2+ —)]
=0/24 (verify).
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Problem 2. Evaluate H x?y?dxdy where D is the circular disc x*+y* < 1.
D

Solution. In D, x varies from -1 to 1. For a fixed x. y varies from -\/(1— xz) to \/(1— xz)

o]
ﬂ' x*y*dxdy = j. lj x> y*dy dx
D

-1_ 2

1
= 4'[ X2 (1-x*)¥%dx
0

wl2

:g [sin®@cos* 0do (Putting x=Sine)
0
_£[1-3-1](£j_1
3l246)\2) 24°

Problem 3.  Change the order of integration in

/2 2acosd
| = j _[f(r,&)rdrd@

0 0

Solution We have r =2a cos6 represents a circle with centre (a, 0) and radius a.

Since 0 < 6 < 7/2 the region of integration is the

semicircular disc lying in the first quadrant.

4

In this region r varies from 0 to 2a. o 0 e

Futher r = 2a cos® implies 6 = cos™ (r/2a).

Hence for each fixed r,0 varies from 0 to cos™(r/2a).

2acosi(r/2a)

Hence I:j jf(r,@)rd@dr.
0

0
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Problem 4. Evaluate | = ﬂey’xdxdy where D is the region bounded by the straight lines y=x;
D

y=0 and x=1.

Solution. The rigion D is a triangle as shown in the figure.

In this region x varies from 0 to 1. For each fixed X,y varies from 0 to x.

A

O ey

j'ey’xdydx
0

X

[xe’"*] dx

1,1

O ey

0 (0,0)

:ix(e—l)dx:%(e—l).

Problem 5: Evaluate H x2y? dxdy where D is the circular disc x*+y? < 1.
D

Solution. In D, x varies from -1 to 1.

For a fixed x,y varies from —+1—x? to v1—x2

s || xPy%dxdy = 1 1_X>2<2y2dydx
[evasy-]

112

1
= 4.[ x?(L—x*)*%dx
0

72

:g Isinz @cos* & (Putting x= sin@)
0

{5525

= n/24.

o9
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Problem 6. Evaluate H (x2 + y2)dx dy where D is the region bounded by y=x?, x = 2 and y=1.
D

Solution. The region of integration is as shown in the figure.

In this region x varies from 1 to 2 and for each fixed x,y varies from 1 to x2.

N

X

” X2 +y2 dxdy=_2”x +y? dydx A
11

2

2 X
J{x y+3Y } dx K 7 )
1 1 (1,1) (2,1)

v

00 00 _y

Problem 7.  Evaluate | _HTdde
0 x

Solution. We notice that we must integrate first w.r.t.x. Hence we change the order of
integration. The region of integration is as shown in the figure. (We note the D is an

unbounded region and the given integral is an improper double integral).
In the region D, y varies from 0 to . For each fixed y,x varies from 0 to y.

e”’ e T
——dxdy :j —X| dy
y ol Y

0

gl
= Ie‘ydy = [— e‘y]:

=1.
Exercises.

1. Evaluate the following integrals.
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() Jl..zf(x+2)dydx b)l :jz(x2+yz)dxdy

1.2 TRIPLE INTEGRALS:

The definition triple integrals for a funtion f(x,y,z) defind over a region D
is R% is analogus to the definition of double integral is defind is the definition .
we replace rectangles by parallelopipeds and area by volume to obtain the

corresponding definition of triple integrals.

A triple integral of a function defind over a region D is denoted by
m f(x,y,z)dxdydz or m f(x,y,z)dV or J’H f(x,y,2)d(x,V,2).

The triple integral can be expressed as an integrated integrals in several

ways.
For example is a region D in R? is given by

D ={(x,y,2)/ a<x <b; ¢:1(X) <y < h2(X) w1(X,y) <z < wa(X,y) then

b DP2(x) Y2(xy)

gjf(x,y,Z)dxdydz=ff f f(x,v,z)dz dy dx

a ®1(x) Yi(xy

This can also be written as
b D2(x) Yo (x,y)

[ | & | reyad

a ®1(x) Yi(xy
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Similarly under suitable conditions a given triple integral can be

expressed as an iterated integral in five other ways by permuting the variables.

Solved Problems.

axy
Problem 1. Evaluate | =J.nyz dz dy dx
000

Solution:
! :Ti{lxyzz}ydydx
00 2 0
1ax ; a , X
=—”xy dydx== {—xy } dx
00 0 0
_lj.x5dx—l[1x6:|
89 816 |,
= a%/48

Problem 2. Evaluate 1= [[[ xyz dxdy dzwhere D is the region bounded by the
D

positive octant of the sphere x*+y*+z° = a°.

Solution:

The projection of the given region in the x-y plane (z = 0) is the region
bounded by
the circle x*+y” = a* and lying in the first quadrant as shown in the figure.

In the given region x varies from 0O to a. For a fixed x,y varies from 0 to

(@ =x?).

For a fixed (X,y), z varies from 0 to

V(@ -x*-y%).
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T ROE—

0

P
B 16{3(61 X)l,
= a%/48.

loga x x+y

Problem 3. Evaluate | = I I J.e“y”dzdydx.
000
loga x
Solution. 1= | .[[ex*y*z];”dydx.
00

loga x
_ J' J‘[e2(x+y) _ex+y]dy dx
00

X

loga —1
_eZ(x+y) _ ex+y dX
2

=£_

loga
- I le“x—éezwex} dx
L2 2

0

loga

= Fe“x S +ex} dx
8 4 0

2 3

3
=>-a'->a*+a--.
8 4 8

Where D is the region bounded by the

Problem 4. Evaluate |=m%d23
5 (X+y+z+1)

planesx =0, y=0,z=0andx+y+z=1.
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Solution. The given region is a tetrahedron. The projection of the given region

in the x-y plane is the triangle bounded by the lines x =0, y = 0 and x+y=1 as

the shown in the figure.

In the given region x varies from 0 to 1. For each fixed x,y varies from O to

1-x. For each fixed (x,y), z varies from 0 to 1-x-y.

1-x1-

gl

]y dz dy dx
5 (X+ y+z+1)°

11-x

- _%I | [(x+ y+2 +1)’2:[;_X_ydydx

1

:_EJ' J' H—(x+ y+z +1)‘2}dydx

_%'[By+(x+ y+1)1} dx

0 0

{1(1—x)+%—(x+1)‘1

1

Excersies.

1. Evaluate the following triple integrals.

1 2 2
c) f dxj dyj' x?yz dz
0 0 1

—log(x +1)}
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1.3 JACOBIANS:
In this section we introduce the concept of Jacobian of a transformation
which plays an important role in change of variables in double and triple

integrals.
Definition. Consider the transformation given by the equations

x =x(u, v, w); y =y(u, v, w); =z (u, v, w) where the functions x,y,z have
continuous first order partial derivatives.
The Jacobian J of the transformation is defind by

ou ov ow
Ly ¥y
ou ov ow
oo a
ou ov ow

The jacobian is also denoted by J = o(x.y.2)
o(u,v,w)

For a transformation in two variables x = x (u,v) and y = y(u,v) the

Jacobian is given by a determinant of order two. Hence J = Z((ﬁ’ \5:))

Examples.
1. The transformation from cartesian coordinates (x,y) to polar coordinates (r,0)
Soln:

Given that x = rcos6 and y = r sin®.

dx 0 .
Z = cosh : 2L =sind
or or
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0x . dy
— =-rsind : = =r cos0
30 90

OX OX
J_g %_cos@ —rsing
1% 9| |sin@ rcosd
or 06

= rcos’0+r sin®0 = r(cos?0+ sin®0) =r.

2. The transformation from cartesian coordinates (x,y,z) to spherical polar coordinates
(r.6,0)

Soln: Given that
X = rsinBcose
y= 1sinf sing
Z =rcoso

Here0<0<rmand 0< ¢ < 2m.

OX OX OX

or 00 Oogp

P S A
9(r.0,2) or 00 Oogp

0z 01 o2

or 00 Ogp

sinfcosgp rcosOcosep —rsinBsing
= |sinfsing rcosfOsing rsinfcose
cos@ —rsinf 0

= sin@coscp[0+rzsinzecoscp]-rcos@cosq)[O-rsinecosOcoscp]
-rsinBsing[- rsin®Osing-rcos?0sing]

= r?sin6. (on simplification).
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3. The transformation from cartesian coordinates (x,y,z) to Cylindrical coordinates (r,0,z)

Soln:

given that x = rcos6, y = rsin6, z = z.

cos@d -rsing 0O

J:%zsine rcosd O
r,o,z

0 0 1

= cos0(rcosO)+rsinB(sinf) =r

4. Consider the transformation x +y = u, 2x-3y = v.
Soln:

Given x +y =u, 2x-3y = V.

1 1
S X==@u+Vv)and y==(2u-v
5( )and y 5( )

Solved Problems.
Problem 1. If x+y+z=u; y+z=uv; z=uvw then find J.

Solution. From the given three transformations we get X = u-uv; y = uv-uww; z = uvw.

ou ov ow
Nowd =|Y ¥ X
ou ov ow
@ a
ou ov ow
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1-v -u 0
—v(l-w) u(l-w) -—uv
vWw uw uv

= (1-v)[uPv(1-w)+ uAvw]+u[vAu(1-w)+uv>w]

=(1-v)[uv- u’v w+ uAvw]+u[vZu- viu w+uv’w]
= UPV- UPV W+ UAVW-UAVHUAVAW-UAVPWAHVPU2-VAUPWAHUAVPW

= u?v

ox.y) _ 1

Problem 2. If u=x?-y? and v = 2xy prove that =
oU,v)  4u+v?

u u 2X =2
Solution. Consider M: xSy _|<X y
ou,v) v V| 2y  2x
=44y = A0CHY) . (1)

We have (X2 + y*)% = (x*-y?)? + (2xy)? = u+V°,
Xyt =AutevE (2)
From (1) and (2) we get y =4Ju® +V°

(% y)

Coxy) _ 1
oY) auR+v?

Excercises.

ouy) oy _,

1. Prove that ) =1.
o(x,y) o(u,v)

1.4 CHANGE OF VARIABLES IN DOUBLE AND TRIPLE INTEGRALS.
The evaluation of a double or a triple integral sometimes becomes easier when we

transform the given variables into new variables.
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We state without proof the following theorem regarding change of variables in double

and triple intergrals.

Theorem 4.1.
Consider a transformation given by the equation x = x (u,v) and y = y(u,v) where x
and y have continuous first order partial derivatives. Let the region D in the x-y plane be

mapped into the region D* in the u-v plane. Further we assume that the Jacobian of the

transformation J=0 for all points in D. Then H f(x,y)dxdy = J] f [x(u,v), y(u,v)]|J|du dv.
D D*

Similarly for triple integrals we have

m f(x,y,z)dxdydz = m f [x(u,u, w), y(u,v,w), z(u,v,w)]|3|du dv dw

We now proceed to evaluate some double and triple integrals by making appropriate

change of variables.

Solved Problems.

Problem 1. Evaluate | = ﬂm by transforming to plor coordinates Where D is the
5 [X2+y2

region enclosed by the circles x*+y” = a? and x*+y? = 4a” in the first quardrant.

Solution:
Put x = rcos6 and y = rsin6
We know that J=r. A
Further in the given domain D,

0<O0<m/2andac<r<2a. (oo

(0,a) 'X)
”’Zza(rcose rsing

S = _[ .[ jrdr do 0 (@0)  (2a0) >

0 a

r

2a

nl2 1
= J‘cosesinﬁ[—rﬂ do
0 3 0

3 /2
:7% J'cos@sinede

0
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3 /2

7a . .
=3 E[sm 6d(sind)

:%ae’[sinze]gl2

Problem 2. Evaluate the improper integral | :Ie’xzdx.
0

e-afers)

je’(xz*yz’dx dy.
0

Solution. 12=11

Oy 8

Put x =rcosb and y = rsinf. Hence J =r.
The region of integration is the first quadrant.

Hence r varies from 0 to « and 0 varies from 0 to «/2.

o 7l2 ) A

K ='([ '([ e rdodr =%£e"2rdr.

v

:EI_le‘rzd(_rz):£|:_1e"2j| (0,0)
2172 2 27 |,

=n/2 (1/2) =nl4

1-x*—y? " T(mw
Problem 3. Prove that | =J‘I — dxdy:—[——lj.
S\ 1+x"+y 412

Where D is the positive quadrant of the circle x*+y?=1.

Solution. Put x = rcos® and y = r sin®.
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J=r.
FutherinD,0<r<1and0<0<x/2.

17/2 1—r2 1/2
o :J' J' rdédr
¢ o (1+r?

1 _y2
:ﬁj( 1r ]rdr
29\ N1-r*

T 1[ 1-t j . )
=— dt (by putting r* =1t)
4! V1-t?

=%[sinlt+(1—t2)“2]g

=2 Z )
4\ 2
Problem 4. Prove that

22 h2y2 _ a2y2 \M2
(RS P
slah”+b°x"+a’y 4\ 2
X2 2
Where D is the Positive quadrant of the ellipse ?+— =

Solution. Putx =au and y = bv.

g0y _ja o
“ou,v) [0 b

‘zab.

Let D* be the image of D under the above transformation. Then D* is the region

bounded by the unit circle u*+v? = 1 in the first quadrant.

e[1- 018t - (v 03 T
Now. '_g{1+(x2/a2)+(y2/b2)} dxdy
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- ab%(%—l). (by problem 3).

Problem 5. Evaluate .[J'q/x + y dxdy where D is the parallelogram bounded by the lines
D

x+y = 0; x+y = 1; 2x-3y = 0 and 2x-3y = 4.

Solution.

Put x+y = u and 2x-3y = v.
Then J=-1/5 (using by above example 1.3 of 4)

Also D is transformed into the rectangle bounded by the linesu=0;u=1;v=0and
V=4,

Problem 6. Evaluate | = Hj xyz dx dy dz where D is the positive octant of the ellipsoid
D

2 2 2
X Z
—2 +y—2+—2 = 1
a- b c
Solution.

Putx =au,y=bvandz=cw.
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a 0 o0

J:M:O b 0/=abc.
o(u,v,w)
0 0 c

Let D* be the image of D under the above Transformation. The D* is the positive
octant of the sphere u*+v+w? = 1.

o :II abcuvwdu du dw
e
=a’h%c? m uvw du dv dw.
it

Now, put u =r sinf cose
V =T sin0d sing
W = cosO

Then J = r? siné. (above example 1.3 of 2)

17m/2w/2

= azbzczjj J r° sin36 cosB cosg sing de d dr
00 0

1 /2 /2

= azbzczjrSdrj sin30 cosB def sing cose dg.
0 0 0

- atet o], el ool

_a?b?c?
48

Excercise 1. Evaluate the following double integrals using change of variables or otherwise

over the region indicated.

a). J:[w/(xz +y?) dxdy ;D is the a region bounded by the circle x* + y* = @,
D
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b). ﬂ e ) dxdy D is the region bounded by the circle x? + y? = a2,
D

c). _”\/(X2 +y?) dxdy D is the region in the x-y plane bounded by x* + y* = 4 and
D

x2Hy2 = Q.
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UNIT -3 : FIRST ORDER DIFFERENTIAL

First order differential: equations of higher degree- solvable for p, x and y- Clairaut’s form/
linear differential equations of second order- Particular integrals for functions of the form,

X", e, eax(f(x)). Second order differential equations with variable coefficients.

1.1 Equations of the first order, but of higher degree.

TYPE A:- Equations solvable for p (= %).
X

dy

We shall denote —
dx

hereafter by p.

Let the equation of the first order and of the n™ degree in p be

pn + Plpn-l'l‘Pzpn-z‘i‘. T o o (1)
where Py Py...... P, denote functions of x and y.

Suppose the first number of (1) can be resolved into factors of the first degree of the

form
(P-R1) (P-R2) (P-Rs) ... (p - Rn)
Any relation between x and y which makes any of these factors vanish is a solution of (1).
Let the primitives of p - R1=0, p- R,=0, etc be
01X, y,€1) =0, ¢2(X,¥,C2) = 0...on (X,Y,Cn)=0.
respectively, where ¢y, Co, ...... cnare arbitrary constants. Without any loss of
generality, we can replace ¢y, Cy, ....cn by C, where c is an arbitrary constant. Hence the

solution of (1) is

01(X, ¥, C). p2(X,y,¢) ... on (X, y,C)=0.
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Examples.

1) Solve x?p? + 3xyp + 2y* = 0.
Soln:

Solving forp, p = —¥or = —Z—Xy.(Quadratic eqn)

ﬂ:_l ,ﬂ-i-lzo
dx X dx x
d_x+ d_y =0

x y

Integrating,

log x+log y =log ¢

Therefore xy = ¢ .. (D)

ﬂ:_ﬂ ’ﬂ_*_ﬂzo
dx X dx X

dy , 2dx _
\Y X
Integrating,

o)

log y+2logx = log ¢

ie) log y + log x> = log ¢

yx>=c¢ (2
The solution is (xy — ) (yx*-c) = 0.

2 2
]p+xy+y—2—y—y—=0.
X X

2y

2) Solve p? +(x+ y——=
X
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Soln:

Solving for p, p =%— y(or)p =%— X (Quadratic egn)

dy (v dy 'y
—=|=-y|(or)—==-X
dx (x yj( )dx X

v _ (1—1jdxorﬂ—l =-X
y X dx x

Integrating on,

log y = log x —x+logc

ie)logy-log x = -x+log ¢

log Y- -x+logc
X

Y —ce™

X

i.e.,y=cxe™

dx dx
The second equation is linear in y. Hence the solution is ye 5 :—Ixe 5 dx+c

i.e.,X:—x+c

X

i.e.,y=-x+cx
The general solution is (y-cxe™) (y+x?-cx) = 0.

TYPE B :-Let the differential equation (1) of 2 be put in the form f (X, y, p) = 0. When it

cannot be resolved into rational linear factors as in 5.1, it may be either solved for y or x.
Equations solvable fory.

f(x,y,p) = 0 can be put in the form
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y=F (X,p) .1

Differentiating with respect to x, p = @ (x,p,Z—Z)

This, being an equation in the two variables p and x, can be integrated by any of the

foregoing methods. Hence we obtain

Y(x,p,c) =0 ....(2)
Eliminating p between (1) and (2), the solution is got.

Equations solvable for x:

f (X, y,p) = 0 can be put in the form
x=F (Y, p) ...

Differentiating with respect to y,1 = (p(y, p?j
Y y

Integrating leads to ¥ (y, p,c) =0 ....(2)
Eliminating p between (1) and (2), the solution of (1) is got.
Examples

1) Solve xp?-2yp+x=0:

Soln:

2
Solving fory, y = x%
p

Differentiating with respect to x, [Z—z =p]

2 2
p +1+Xp -1dp
2p 2p® dx

p:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

72



Integrating, p = cx.
Eliminating p between this and the given equation, the solution is

2 cy = ¢?%+1.

2) Solve x = y*+ log p (D

Soln:

(This is easily solvable for x only)

Diffenentiating with respect to y,

1:2y+1d_p

p pdy

$+ 2py =1.This is linear in p and hence.
y

p e’ =jey3dy+c. ...(2)

(It must be noted that the integral on the R.H.S. cannot be integrated in finite terms.)
The eliminant of p between (1) and (2) gives the solution.

Note. In the above problem, the solution has not been got explicity by eliminating p.

But we have x and y expressed in terms parameter p. This will do.
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1.2 Clairaut’s form.

The equation known as Clairaut’s is of the form

y=px + f (p) e (D)

Differentiating with respecttox, p=p + {x+ f (p)}j—s

d—p=00rx+f(p):0.
dx

j—i =0, integrating on, p = c, a constant.

.. The solution of (1) isy = cx + f ().

We have to replace p in Clairaut’s equation by c. The other factor y + f (p) = 0 taken along
with (1) give, on eliminating of p, a solution of (1). But this solution is not included in the
general solution (2). Such a solution as this is called a singular solution.

Examples.

1) Solve y = (x-a) p-p°

Soln:
This is Clairaut’s equation; hence the solution is
- 2
y=(x-a) c- C

2) Solve y = 2px + yp?

Soln:
Putting X =2x and Y =y*

dX=2dx: dY = 2ydy
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AP=—l=
dX

yp

The equation transforms into Y = XP + P?
This is Clairaut’s equation; hence Y=cX+c*
The solution is y? = 2xc + ¢

We have an extended form of Clairaut’s equation of the type

y=xf(p) +o(p).
Differentiating with respect to x .. (D)

P=1®) +'0)+ ¢ (]
o, B o)
o T(p)-p p-f(p)

This is linear in X and hence gives F (x,p,c)=0
The eliminant of P between this equation and (1) give the solution of (1).

Example.
1) Solve y = xp+x(1+p?*?
Soln:

Given y = xp+x(1+p??2

Differentiating with respect to x.

p=p+@1+p?)* +%{X+_xp }

X 1+ p®
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N+pi+p Ao

Hence d
) T x

. dp pdp ax
Integrating, '[\/1+ e +-[1+ o? +I7_ logc

ie,log(p++1+ p2)+%log(1+ p®)+logx =logc.

log (p++/1+p° +1+ p*)x=logc

{p 1+ p? +1+ pzj&:c )
Eliminating p between (1) and (2) the solution is got.

1.3 LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

A typical linear equation of the second order with constant coefficients is
dy . dy
a—+b—+cy=x . 1
o ax Y M
where a,b ,c are constants and X is a function of x.

Let us consider (1) without the second number,

. d’ dy
ie,a +b—=+cy=0 (2
dx>  dx 4 @

The solution of this equation (2) is called the complementary function of (1).
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: : d
To solve (2), assume as a trial solution y = e™ for some value of m. Now % =

2
me™ and ZTZ =m?e™*,  Substituting these values in (2), we get

e™(am®+bm+c = 0 )

Hence m satisfies am®+bm+c=0. This equation in m is called the auxiliary equation.

Three cases can arise in the solution of the auxiliary equation.

Case(i). Let the auxiliary equation (3) has two real and distinct roots m; and m,,

. y=e™*and y = e™,* are solutions of (2).

Hence A e™*, B e™,* are solutions of (2), where A and B are arbitrary constants. Thus
y=Ae"* + B e™," is the most general solution of (2) as the number of constants occuring in
this solution is two, equal to the order of the differential equation.

Case (ii). Let the auxiliary equation (3) has two roots equal and real.

Let m,=m;. The solution y= A e™* + B e™,* becomes.

(A+B)eM*=ce™* . 4
where c is a single arbitrary constant equal to A+B. Thus the number of constants is reduced
to one which is one short of the order of the differential equation (2) and therefore (4) ceases
to represent the general solution. Hence we proceed as follows :

Let us put my = m; + € and allow € to tend to zero.

The solution is
y A emlx + B e(ml+€)X

ele + (A+ B eEX)
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by the exponential theorem
= e" " (A+B+¢ B X) the other terms tending to zero as € — 0.
We can choose B sufficiently big so as to make ¢ B finite ase — 0.

and A large with opposite sign to B so that A + B is finite.

If A+ B+ C and B = D, the solution corresponding to two equal roots my is e™* (C

+ D Xx).

Case (iii). Let the auxiliary equation has imaginary roots.

As imaginary roots ocuur in pairs, let m; =a + i3 where o and B are real; then m;= o

-ip.
The solution is y = A e @)X B guiB)
—e ox [A ein + B_in]
=e ®{Acos B x+isinp x+ B (cosp x —isin Bx)} by Euer’s
formula.
=e“* (c cos B x + Dsin Bx), where C and D are arbitrary
constants.
This can also be written as y = A e** cos (Bx+B), where A and B arbitrary constants.
Examples.
2
1) solve 4Y 45, 4y 0
dx dx
Soln:

The auxiliary equation is m?-5m +4 =0
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(m-1) (m-4)=0
m=1 and m=4.

-.complimentary functiony = A e* + B e*

2

4y _gy-0

2)Solve —2- —
) dx?
Soln:

The auxiliary equation is m? -9= 0
m?-32 =0 ; (M-3)(m+3)=0

m=3 and m=-3
~CFy=Ae¥+Be*

3)Solve 3—)2(2/+ 2%+ y=0
Soln:
The auxiliary equation is m? + 2m + 1 =0, i.e., (m+1)*= 0.
m = - 1 twice.
~CFy=e"(A+BX).

2
4)Solve d_g/ + 4ﬂ+ 4=0
dx dx

Soln:
The auxiliary equation is m? + 4m + 22 =0, i.e., (m+2)*= 0.
m = - 2 twice.
Ly=e*(A+BX).
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2

d dy
5) Solve ——-3—=>+5y=0
) dx* d y

X
Soln:

The auxiliary equation is m*>—3m + 5 = 0.

+/11i
2

Solving,(quadratic eqn form) m= 3

Ly= e?{ASin(g x] +B sin[g XJ}

2

6solve 4 Y +4Y 113y -0
dx dx

Soln:
The auxiliary equation is m? +4m 13 = 0.
—4+6i

Solving,(quadratic eqn form) m =

m=-2=+3i

- y=e2{ASin(3x)+ Bsin(3x)}
Exercises:

Solve the following equations :-

2 2
1. d Z— ﬂ+8y:0 2. OI—2’+ﬂ+4y=0
dx dx dx®  dx
3 Y 4 40 4 9V 3 4 g
CaE ax YT A dx YT
The operators D and D!
d2

d
Let D stand for the operator — and D? for —
dx dx

This symbol D satisfies the commutative, associative, and distributive laws; for
(D™+D") u=(D"+D™u = D"u +D"u
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D™.D"u=D".D"u=D""u
and D (u+v) =D (v+u).

We can define the inverse operator D™ as one such that when it operates on any
function of x and subsequently the operation by D is performed, the function is left unaltered.

Thus D™ represents integration.

X

We shall define the operator : 1D) as the inverse of the operator f (D). i.e.,

1
f(D)
is that function of x which, when operated upon by f(D) yields X.

We shall assume that the order of the operators f(D) and

L can be interchanged.
f(D)

1 1
The f (D) {f(D)X}:ﬁf(D)X:X

1.4 Particular integral.

Consider equation (1) which can be written symbolically as
(aD*+ bD +¢) y = x

or shortly f (D) y = X, where f (D) =aD’+b D +c¢.

Let y = u be a particular solution of this equation.

Let Y be the complementary function of (1)

Theny =Y + u is the general solution of (1).

u is called the particular integral of (1).

In symbolic form, it is written as X

1
f(D)
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1

e, Pl =—g——
aD” +bD+c

Special methods of finding P.1.

(@) Let X be of the form e**

De*=oe*

More generally, D" e**= (a") e

- f(D)e”" = f(x)e”*as f (D) is a quadratic in D in our case.

et = (o) e

Operation on both sides by
f(D) f(D)

1 w1
e” = e
f(D) f(a)

If f (o) #0,

Case (i). Hence the rule is:

e”, replace Dby aif f (o) # 0

Case (ii) If f (o) = 0, o satisfies the auxiliary equation f (m) = 0. Then we proceed as follows:

(i) Let the auxiliary equation have two distinct roots m; and m, and let oo = my,

Thenf(m) =a(m-mg) (m-my)
=a(m-a) (m - my)

1 .

P.l. = e
a(D-a)(D-m,)
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~ 1
“a(D-a) (a-m,)

e“bycase(i)above

1
(D-0a)

To find

e”™ let usputz=

Operating on both sides by D — a,Z—i —az=e"
This is linear equation of the first order; hence
ze™=fe™dx=x.
(It must be noted that no constant of integration is added as we are evaluating only a

particular integral.

If the constant be added there will occur in the general solution 3 constants as there

are already in the C.F. and thus one constant will be too many).

ax

‘“Z=xe

1
—X
a(e—m,)

ax

Hence P.l. = e

(ii) Let the auxiliary equation have two equal rootes each equal to a.
i.e., my;=Mmj; = a.

.~.f(m) =a (m-0)°

1 1
P.l.= e” =
a(D-a)’ a(D-a)(D-a)

oax

_1Xe™

_a D—a

oxX

If z=
-0 dx
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2

Sloving, ze ™ = j xdx = X? (no constant is added).

Examples.

Ex.1.Slove (D*+5D+6)y = e*.

Soln:
To find the C.F of (D*+5D+6)y = 0.
The auxillary equation is m* + 5m + 6 = 0.
(m+2)(m+3)=0

m=-2and -3.

CF=Ae>*+Be*

1 X

Pl.=————¢
D“+5D+6

1
=—¢e*on replacing D by 1
1 p gD by

X

3X +e_
12

-2X

y=Ae " +Be"

2) Slove (3D*+D -14)y = 13 e**.

Soln:

To find the C.F of (3D%*+D-14)y =0.

The Auxillary equation is 3m? + m - 14 = 0.
Sloving, m =2 and -7/3

Sy =Ae¥+Be™®

P.l.= 1 13e
(D-2)(3D+7)
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_E 1 e2x
13D-2

L e by 4 case (ii)

y=Ae2X + Be B + xe2¥
3) Slove (D?- 2m D + m?)y = ™.
Soln:
To find the C.F of (D? -2mD + m?) = 0.
The auxillary equation is K? - 2mk + m? = 0.
(Note. K is used here instead of the usual m as there is already another m).
i.e., (k-m)?>=0
.. k=m twice
C.F.=e™ (A + Bx).

P.l —#e"‘x—x—zemX by 4 case (ii)
" (D-m)? 2

XZ
Ly= emX(AJr Bx +?j

Excersice
Solve the following equations:-
1. (D?-5D +6)y=e* 2. (D?-6D +13) y = 5e.
3. (D*-4D +6)y=5e% 4. (D*-2D+1)y=2e*.

(b) Let X be of the form cosax or sin ax, where a is a constant.
D sin ax = cosox.
2 2
D? sin ax = -a” sin ox.

.0 (D) sin ox= @(-a®) sin dx, as ¢ (D?) is a rational integral function of D>.
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Operating on both sides by

1 .
sinax = sin ax

2
Case (i). If ¢( a®) #0,— (DZ) ) & (—a?)

Hence the rule is :
Replace D? by -o?, Provided ¢(-o?) # 0.

The same rule applies if sin ax be replaced by cosa x

1
e.; (Dz)cos ax = -~ cosax.

Case (ii).If ¢(-0) = 0,D? +o? is a factor of ¢(-D?).

To evaluate —;
D° +a

. 1
————sinax =———. Imaginary part of e** as
D+« D+«

i0x

e = cos ax + i sin ax by Euler’s formula;

) . 1 -
= imaginary part of ————e'“
g yp D? +a?
1] 1 iax
. —e
(D—-ai)(D +ai)

1 .
= " —————e"“by4(a
(D—ai)Zaie y4@

fax

Xe

by 4(a)

. Xi .
= ——(cosax +isin ax)
2a

X COS aX
2a

> Sinax, the above rule fails. Hence the following procedure is adopted.
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Similarl #cosax
Y. D? +a? 2a

Examples.

Ex. 1. Solve (D?- 3D +2) y = sin 3x.
Soln:
To find the C.F of (D?- 3D +2) y = 0.
The auxiliary equation is m? - 3m + 2 = 0.
(m-2)(m-1)=0
m=1and 2.
CF.=Ae¢"+Be™

P.I.=2;sin3x
D“+3D+2

= msin 3xon replacing D by -9 by 4(b)

3D +7
In order to apply the above rule, we must aim at getting D terms only in the

sin 3x

denominator; hence we write

1 _  3-7 _ 3D-7
3aD+7 (3D-7)(3D+7) 9D?-49

and proceed.

P I.:wsim&x.
9D -49
d . .
—3—(sin 3x) + 7sin 3x
dx

ST oCg_ae A

~ —9c0s3x + 7sin 3x
-130

y=C.F. +P.l.
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d7y

dt?

Ex. 2 Show that the solution of the differential equation

q (sin pt—1 psin 2t)
that y = 0 and d—3t/=0whent:0, isy=A

4 p? if p #£2.1f p =2, show that

A(sin 2t — 2t cos 2t)
y= 3

Soln:
d
Let D stand for E here.

To find the C.F of (D?*+4) y = 0.

The auxillary equation is m? + 4 = 0.

m?=-4

m =+ 2i.

.. C.F.=\cos 2t + usin 2t , where A and p are arbitrary constants.

(Note that the independent variable is t.)

P.l.= asin pt
D’ +4 P

-2 Asin pt if p’£ 4 by 4(b).

..y =\ cos2t+ p sin 2t+(A/4-p?) sin pt
To determine the values of A and p, we note that when

dy

t=0,y=0and —=0.
Y dt
S.0=A
2 = 22 sin2t+ 2ucos 2+ ~cos pt.
Ap
S 0=2u+
A
Ap
- (2
A a7 ?
. 1.
A(sin pt —=sin 2t)
Hence, y = 22
(4-p°)
Ifp=2, Pl.=— Asin 2t
D°+4

+4y = Asin pt which is such
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Imaginary part of
ginary p D?+4

A _2it
(D +2i)(D-2i)

Imaginary part of

2it

: A
Imaginary part of Ite
i

— At cos 2t
4

y = A€0S 2t + usin 2t—%c052t.
Whent=0,y=0 CLoA=0.

% =—2Asin 2t + 2 cos 2t —%(cos 2t — 2tsin 2t)

A A
0=2p-7 n=g

A(sin 2t — 2t cos 2t)
y= 3 :

3)Slove (D? - 4D + 3)y = sin 3x COS 2X.
Soln:
To find the C.F of (D? - 4D +3)y = 0.
To auxillary equation is m? - 4m + 3 = 0.
(m-3)(m-1)=0
m =1and 3.
CF.=Ae +Be¥

P..I.=2;sin3xc032x
D -4D+3
1 sin5x +sin x
D?-4D+3 2

B 1 sin5x N 1 sin x
 _25-4D+3 2  —1-4D+3 2
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2D-11 . .
=———————sinbx+————_sinx
— 4(4D%-121) 4(1—4D?)

_ 10cos5x —11sin 5x N sin X +2c0s X
884 20

y=C.F. +P.l.

10cos5x —11sin5x N sin X+ 2¢0s X
y=Ae*+B e + 884 20

4) Slove (D* + 16) y = 2™ + cos4x.

Soln:
To find the C.F of (D? + 16 )y = 0.
The auxiliary equation is m? + 16 = 0.
m2+42=0 ; m = +4i.
C.F. is = Acos 4x + B sin 4x.
Now 2e ¥ = 22 e ¥
D”+16
= 27) ¥

P.1.; corresponding to cos4x = 2;003 4x
D°+16

= ﬁ Real part of e*
+
1 4ix

= Real part of . —e
(D +4i)(D-4i)

= Real part of l_xe4iX
8i
Xi -
= Real part of —g(cos 4x +1isin4x)
= 5sin 4x.
8

.y = Acos4x+Bsin 4x+§e3X +§sin 4x.
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Excersices
Solve the following equations:-
1. (D*+ 4) y = sin 3x. 2. (D? + D +1)y = sin 2x.

3. (D*-8D+9)y = 8cos5X. 4. (D*-2D-8)y = 4 cos 2x.

(c) Let X be of the form x™ (a power of x), m being a positive integer.

To evaluate x", raise f(D) to power -1 and expand in ascending powers of D

as far as Dm. (The higher powers of D operating on X™ give Zero and hence are omitted.)
Thesse terms in the expansion of f{(D)}" operating on x™ give the particular integral

required.
Examples.

1)Solve (D +D +1) y = X2
Soln:
To find the C.F of (D?+D +1) y = 0:

The auxillary equation is m?+m + 1 = 0.

—1++/3i

2

CF.= X/ZLACOS\/_T-% Bsin %}

1+D+D?

Solving, m=

~(1+D+D?) "X
={1- (D + D?) + (D + D?)*}x’, the powers of D higher than 2 are

dropped.
= (1+D)x* = x* —2x.

y=C.F+P.L.
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y= eX’Z(Acos@Jr Bsin @]+ X2 —2X
2 2
2) Solve (D?*+4D+5)y = e*+x>+c0s2X.
Soln:
To find the C.F of (D*+4D+5)y = 0.
The auxiliary equation is (m?+4m+5) = 0.
Solving, m = -24i.

C.F. =e®(A cos x + B sinx).

X

P.I. Corresponding to = —————e
D°+4D+5
1, 1.
1+4+5 10
P.1. Corresponding to x*= —————x°
5+4D+D
2 -1
:1(“@} 0
5 5

_1|, (4D+D*) (4D+D’ ° (4D+D?
5 5 5

2
_1); 4D 1ID° 24 1sls
5|7 5 25 125

E 12x? N 66x 144
5 25 125

P.1., can also be found by assuming
y=A X+ B x*+C x +D.

P.1.3 corresponding to COS2X = %cos 2X
D“+4D+5

_ 1 os2x on putting -4 for D?
1+4D

—-4D COS 2X +8sin 2x
COS2X =

~1-16D 65
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y=C.F.+P.l.; +P.l.o+ P.l3

1

CO0S 2X +8sin 2x

. 1
y = e?(A cos x + Bsinx) +—e*+=4x°—
10 5

Exercise:

Solve the following equations : -
1. (D*1)y = 2+ 5x.
2.(D-1)°y=x.

3. (D?+D +1) y = X + sin x.

(d) X is of the form e™ V, where V is any function of x.

D™ V) = a e* V+ e®Dv = ™ (D+a) V.

D?(e™ V) = D{e®(D+a) V}
=ae™ (D +a) V +e™ (D?+aD) V
=e™(D? + 2aD + &%)V = e™ (D+a)’ V.
It follows by induction that D"(e™ V) = e®(D+a)" V.
- (D) e®V =¢e*f(D+a) V.

) ) 1
Operating on both sides hy ——
p g y £(D)
a 1 ax
e?V = e*f(D+a)V.
f(D)

If we set f(D+a) V= V4, then this result gives,

v Ly ot oemy,
f(D+a) ' f(D)

Hence LeaXX = eax# X
f(D) f(D+a)
Examples.

Slove (D? -4D +3) y = e”sinx.
Soln:
To find the C.F of Slove (D*4D+3)y = 0.

12x2 . 66x 144
5 25 125

}+

65
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The auxiilary equation is m? -4m + 3 = 0.
(m-1)(m-3)=0
..m=1and3
CF.=A¢"+Be¥
P.I. :ﬁme-xsmx

=e™ 5 L Sinx by the above rule
(D-1)%-4(D-1)+3

1 .
=€ —————3SInx
D°-6D+8

5 sinx on putting -1 for D

o 7sin X +6c0s X
85
y=C.F. +P.l

_, 78I X +6c0s X
85

y=Ae*+Be*+e

Solve (D*+2D+5)y = xe*.
Soln:
To find the C.F of (D*+2D+5) y = 0.
The auxiliary equation is m® + 2m + 5 = 0.
Solving, m = -1+2.
C.F. =¢e™ (A cos2x + B sin 2x).
1 x
——————Xe
D°+2D+5
) 1
e X
(D+1D)*+2(D+1)+5
‘ 1
2—X
D°+4D+8

P.l.=

X

1 o L
=e T x (as D can be omitted in thr dinomiator for only x occurs
+

in numerator)
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:e_(l_E)X
8 2

e* 1
=—| X——
2

y=C.F. +P.l.
y =e™ (A cos2x + B sin 2x)+%(x—%}

Exercises

Solve the following equations : -
1. D*+1)y=(x*+1)e"

2. (D*+4)y =xe*

3. (D?-4D + 3) y = e*cos 2x.

4. (D*- 2D + 2)y = e*cosx.

1.5  Linear equations with variable coefficients.
We shall first consider the homogeneous linear equartion. A homogeneous linear

equation of the second order is of the form

2
ax2—¥+bx%+cy =X
dx dy

Where a, b, ¢ are constrants and X is a function of X.

Method 1 By putting z = logx or x = &, this equation can be transformed into one with

constant coeffieients.

. d
We introduce here an operator 0 = xd—. Now,
X

ﬂ_O'YE_Ei-Xﬂ—ﬂzDyisttandsforOli

dx dzdx xdz' dx dz 7

d’y_1dizdz 1y 1 d%

dy, D
- ==(D-1
OIZ) x2( )y

dx2 xdx2dx x2dz X2 dz2
d’y
x2—2=D(D-1
N ( )y
We note that D:i:xﬂ=6
dz dx
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So, putting x = e in (1) the equation (1) becomes {a D(D-1)+bD +c}y=27 ...... 2
where Z is a functiuon of z into which X has been transformed. This equation (2) is a linear

equation with constant coefficients and hence the foregoing method can be adopted.

Method 2. Without transforming (1) into a linear equation with constant coeffieients, an
independent method may be given.

To find the complementary function of (1), we have to slove

2
d—Z/erxﬂ+cy =0
dx dx

ax?

If x™, for some value of m, be taken as a tentative solution, then, on subsitution, we
get

am (m-1) + bm+c=0.

This, being an equation of the seocnd degree in m, has two roots m;, m,. Hence the
complementry function of (1) is C; x™+ C,x™?, taking the two roots to be distinct.

If however, a root m; be repeated twice putting m,; = m; + € where € — 0, the

corresponding of the C.F. is

x™(C,+C, xe) =x™(C, +C, e°%)
2 2
= x”‘l{C1 +C, (I+ e.log x+#em.,)}

e’ being neglected as e— 0. Putting C,e = B and C; +C, = A, the part of the C.F.

arising from the two equal roots my_ is x™(A+ Blog x)

To find the Particular Integral.

2
The P.1. of ax® d Z +bxﬂ+cy =X e (1) is now found.
dx dx

Using 6 = %the first member of (1) can be symbolically written as f(0)y, where f(0)

= a0(0-1) + b0 +c.
~.(1) can be written as f(0) y = X.

The P.1.is LX , Where L is the inverse operator defined as in 3
f(0) f(0)

If f(0) = (0 - a1) (0 - 0), the P.1. can be put either as
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evaluation of

To find

1 1
0-a) (0-a,)

Or( A + A jX
0—a, 0O-a,

by the method of partial fractions.

It must be noted that in the first form, the order of the operators is not commutative.

first on the right. Thus the general method og finding the P.I. ultimately depends on the

X.

-

X.
—a

X.

Let u=
—

By definition of inverse operator, Xg—u—au =X
y

This equation is linear in u and hence its solution is
ux™ = Ix‘“‘lx dx
no constant being added as this is a particular integral.

U= x"‘J‘x*‘HX dx

(It is advisable for the student to commit this result to memory).

Special method of evaluating the P.1. when X is of the form x™.

me:xi(x’“):mx’“.
dx

6> x" :xi(m x™)=m?x"
dx

Generally, f (8) x™ = f (m) x™.

Here, the operations indicated by the factors are to be taken in succession, beginning with the
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Operating on both sides by fi x" = f(m) 1 ym

—X.
@ f(0)

1 . 1
X = X .
f(0) f(m)

If, f(m)=0,

If, however, f(m) = 0, then (@) = (8-m) ¢ (@) when ¢ (m) # O.P.1. becomes

1 x™ | x™™* x™ dx by the above general method

$(m)
=———x"log x.

1
¢(m)

If m be repeated two times in f(m) =0,

the P.I. is % where f(m) = (6-m)2.

Examples:
2
Ex.1. Solve 3x’ d—¥+ x y =X
dx dx
Soln:

. d .
Puttingz =log x and D :Ethe equation becomes

[3D (D-1) + D+1] = €

The auxiliary equation is 3m?—2m + 1 =0
m=1+~/2i

C.F.=e? (Acos~/2 z+ Bsin+/2 )

1
p(m) 6 —m

1

m
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=x{Acos («/E log x) + (Bsin (ﬁ log x)}

1 2

3D°-2D+1

1
= e’ by84(a
3-2+1 Y34

e _Xx
2 2

y=C.F. +P.l.

=X[Acos («/E log x) + Bsin (ﬁ log x) +1/2]

2
Ex.2. Solve x? d_z/ + xﬂ +Yy =log x.
dx dx

Soln:
Puttingz =log x and D =%the equation becomes
[D (D-1) + (D+1)]y =2
ie., (D*+1)y=z

The auxiliary equation ism?+1 =0
C.F.=Acosz+Bsinz

= A cos (log x) + B sin (log x).

P.l.= z=(1+D?*)"z

D? +1

=(1-D*+..)z=1z
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.y =Acos (log x) + B sin (log x) + log x

2
d y+3xﬂ+y: 1

Solve x* —— —
dx dx (1-x)

Soln:

Puttingz=log x and D =%the equation becomes

1
[D(D—1)+3D +1]yzm

ie.,(D°+2D+1)y=

(1-x)?
The auxiliary equation is (m + 1)*=0

c.m=-1twice

CF.=e*(A+B2) :1(A+ Blog x)
X

P.l.= 1 5 ! 5 Changinthotheoperator6?:xi
(0+1)° 1—x) dx

1
T (0+))

_ dx
X 1J‘ ) by §8.2

1 11
6+ x1-x

4 dx a1 1
X jx(l—x)_x J.[;Jrﬁjdx
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=—log—.
—X
y=C.F.+Pl
R
Solve x> —2-+4x—=+2y =e*.
dx dx
Soln

. d :
Puttingz =log x and D =Ethe equation becomes

(D*+3D +2)y=¢"
The auxiliary is m* + 3m + 2 = 0.
som=-1lor-2.

CF.=Ae?+Be?=Ax'+Bx>2

P.I.=;ex,where9=xi
@+1)(0+2) dx

_[ 11 }ex
0+1 6+2
=x" J'ex dx — x7? jxex dxby§8.2.

=xte*—x? (xe* — e

y=Axt+Bx%e+x?%e".
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2

Solve x° —X

dx? dx X

Soln:

dy ﬂer: log xsin (log x) +1

Puttingz =log x and D =%the equation becomes

(D-1)y = (ZS|r;Zz+1).

The auxiliary equation is (m - 1)> = 0; m = 1 twice.

CF.=e*(A+Bz)=x(A+BlogXx).

P.l [zsinz+1]e™*

_ 1
" (D-1)?

. 1 .
=e D2 [zsinz+1]by84(d)

iz

=x"| Imaginary part of ze
{ ginary partof =
=x7| I.P.of eiz_;zz+E

| (D+i-2) 4

=x‘{l.P.of 1 _{z +g(i +2)}+1}
3-4i 5 4

]
+_
4

:

=x| 1.P.of e — 1 > 1—_2D Z+=
i i-2) i—2

=x"1 1 32+ﬂ sinz + 4z+E COS Z +l
25 5 5 4
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1 6 4 1
=———+4+——c0s (log x) + ——sin log x + ——log x{4 cos (log x) + 3sin (log x
100x T o5n (log x) T75x gx+- log {4 cos (log x) (log x)}

y=C.F+P.l.
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UNIT -4 : LAPLACE TRANSFORM

Laplace transform — Inverse transform — Properties-Solving differential equations.
Simultaneous equations of first order using Laplace transform.

THE LAPLACE TRANSFORMS

1.1. Definition: If a function f(t) is defined for all positive values of the variable t and

o0

if je‘“ f (t)dt exists and is equal to F(s), then F(s) is called the Laplace transform of f(t) and
0

is denoted by the symbol L{f(t)}.

Hence L{f(t)}= J.e’S‘ f (t) dt=F(s). The operator L that transforms f(t) into F(s) is
0

called the Laplace transform operator.

Note: Sgtw F(s)=0.
Definitions. Piecewise continuity.
A function f (t) is to be piecewise continuous in a closed interval [a,b]if it is defined on that
interval and is such that the interval can be broken up into a finite number of sub-intervals in
each of which f (t) can have only ordinary finite discontinuities in the interval.

Exponential order.

A function f(t) is said to be of exponential order if SLt e*'f(t)=0, or if for some number s,

the product |f(t) |<M for t>T,i.e..e™” |f(t) | is bounded for large value of t,say fort > T.
Sufficient conditions for the existence of the Laplace transform.
(i) f(t) is continuous or piecewise continuous in the closed interval [a,b], where a>0

(i1) it is of exponential order
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(iii) t" f(t) is bounded near t = 0 for some number n>1.
From the definition the following results can easily be proved:-
) L{fO+ o (OF = L{O} + L{o()}

Proof:

We have L{f(t)+ ¢(t)}= Te-st[f (t)+ 4(t)]dt

= Te“ f(t)dt +Tes‘¢(t) dt

L ={f(t)}+ L{s()}.
(i) L{c f(t)} = cL {f(t)}, where c is a constant
Proof:

We have L{cf(t)}= Te‘“c f (t)dt

0

= cje’“ f (t)dt

=cL{f(t)}

(i) L {F (O} = sL{fO)} f(0).

Proof:

We have L{f (t)}:Te‘S‘ f'(t) dt
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=f(t)fe | [ f(t)(-s)e*dt (on integration by parts)
0

:-f(0)+sT f(t)e™ dt

=s L{f(t)}-(0)
(iv)  L{FO}=s"L{f()} -sf(0)-sf (0)
Poof:
L{f"(0}= L{F' (1)}, where F(t)=f(t)
=s {F(O}-F(0)=s L{F([®)}-f(0)

=s[s L{f()}-f(0)]-f(0)
=s’L{f(t)}-s f(0) - ' (0).

(v) By extending the previous result, we get
L{f" (t)}=s"L{f (t)}-s"" f(0) —s"* f'(0)...— f"*(0)

(vi)  IfL{f()} = F(s), then

@ FO=ImsF ©)

() 0 FO=IgsEE)

Proof:

' OY=s LT (O}-(0)
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=sF (s)—f(0)
Taking limits as s —oo on both sides, we get

lim[sF (s)— f (0)]=lim L{f"(t)}

0

=lim |e™ f'(t)dt
~limsF(s)=f(0)
~lim £ (0

This result is known as Initial value theorem.

Taking limits as s —0 on both sides of L {f’ ()}, we get
IimO[S F(s)-f (O)]zlin(’)lje_St f'(t)dt
0

:T f'(t)dt

=[fOL

=lim f (t)-  (0).
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IlerOl sF (s):ltlgg f(t)
This result is known as final value theorem.
- _at 1 -
(Vii) L(e®)=——provideds+a>0.
S+a
Proof:

L(e™) :J.e*St e dt
0

:J'e—(s+a)t dt
0

|: e—(s+a)t :|°° 1
—(s+a)], s+a
(Vii) L (e""t):é provided s —a > 0.

Proof:

L (eat) :J.e—st eat dt
0

:Te‘“‘)t dt
0

|: e—(s—a)t TO 1
—(s-a)], s-a

S
Corolary:. L (cosh at) :SZ 2
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Proof:

We have

at —at
L (cosh at) = L[e +2€ j

1 1
=—LE")+=LE™
> (™) > ™)

a
Corolary:. L(sinh at) :SZ 22

Proof:

We have

at —at
L(sinhat)=L(e _28 j

1 1
==L(e")-=L(e™
5 (e™) > ™)

a

L (sinhat) = —
s -a

2

(Viii) L (cosat)=———
s“+a
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Method1.
Proof:

We have

L (cos at) = je'“ cos at dt
0

_| e*(-scosat+asinat)
s’ +a’ .
s
s? +a?

Method 2.

L (cos at) = real partof J' e e dt
0

= real part of L (e%")

=real partof i
s-ai

S+ai

s?+a?

= real partof

s
s?+a?

Method 3. Let f(t) be cos at.

Then f' (t) = a sin at, f” (t) = -acos at.

We have L {f" (t)} = s°L {f(t)} — s f(0) — f'(0).
. L {- acos at} = S’L{f()} — s f(0) - f (0).

We have f(0) =1, f' (0) = 0.

-, -a’L (cosat) = s°L (cos at) — s

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



i.e., (s*+a) L (cos at) =s.

~.L(cosat)=

s’ +a’

(ix) (Lsinat)=———
s“+a

Proof:

We have L (sin at)=fe‘St sinatdt
0

| e (—ssinat—acosat)
s?+a’ .

_a
s? +a’

Aliter. Let f(t) be sin at, then f' (t) = a cos at.
We have L {f'(t)} = s L{f(t)} — f(0)

i.e,L(acosat)y=sL (sinat)-0

i.e.,a— > " =sL(sinat)-0

s.L(sinat)=
( ) s’ +a’

) L(t“)=r(5”nfll)

Proof: We have L (t”):je’Stt” dt
0

Put st = x,then dt :l dx.
S

.-.L(t”)=T (Sne‘xédx
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1

n+1
S

_[x” e dx
0

_I'(n+1)

n+l
S

When n is a positive integer I'(n+1) = p1

n! . .
- L(t")=—7F when nis a + ve integer
S

Cor. L(1):1
s
1
L(t2)=£3
s
1.1
iy T6R2) "G Jx
L{t)= §¥/2 = §¥/2 :253/2
1
1—‘*
L(t™?)= (2)= Jr
S1/2 281/2
Examples:

Ex.1. Find L (% + 2t + 3)
Soln:

L (t2+2t+3) = L(t?) + 2L (t) + 3L (1)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

112



Ex.2. Find L(sin? 2t).

Soln:

Since, sin® 2t {#),We have

L (sin? 2t)=L(—1_C§S4t]

1 1
=—L(1)-—L(cos4t
5 @ 5 ( )

A
2\s s%+16

s (s* +16)

Ex.3. Find L(sin® 2t).

Soln:

Since sin 6t = 3 sin 2t — 4 sin® 2t, we have

L (sin’ 21)= L(Bsm 2t—sin 6t]

3 . 1 ]
=—L(sin2t)—=L(sin6t
2 ( ) 2 ( )

2 1 6
s? +2° 45°+6°

3
4
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~ 48
C(sP+4) (s +36)

Ex.4. Find L {f(t)}, where
F(t) =0when0<t<2

=3whent>2.
Soln:

We have

L{f (t)}:Te‘S‘ f (t)dt

Oy

e f () dt+[e™ f(t)dt
2

O ey

e~ (0) dt + j e (3) dt
2

=3.[e‘5‘dt
2
_3 —2s

1.2 The inverse transforms.
Let the symbol L™ {F (s)} denote a function, whose Laplace transform is F(s).Thus if

L {f(t)} = F(s) then f(t) = L™ {F(s)}.

The most obvious way of finding the inverse transform of a given function is to look
into the table of transforms and get the function whose Laplace transform is the given

function.

We can compile the table of transforms from the known results.
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s.no  f(t)

10.

11.

12.

13.

14.

15.

at

cosh at

sinh at

cos at

Sin at

t2 eat

tn eat
e sin bt
e cosht

tsin at

t cos at

nt . .
——(nisa+veint eger)

n+1
S

_
(s-a)’
2
(s-a)’
nl

(S _ a) n+1

_ b
(s+a)? +b?

(nisa+veinteger)

s+a
(s+a)®>+b’

2as

(s* +a®)’

s> —a’

(s* +a%)’

We can modify the results we have obtained in finding the Laplace transforms of

functions to get the inverse transforms of functions.
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(i) If L {f()} = F(s), then L {e™(t)} = F (s+a).

Hence we get the result

L {F(s+a)} = e™ f(1)}

= e LT F(9).

Thus for example

o 1 gt 1 e?sindt
(s+2)° +16 s?+4° 4

3.Lt %:e3t Lt (ﬁjze& cos 2t.
-3)% + +
4. (éj:fl s
S+2s+5 (s+1)?%+2°
e (s+1)-1
s+1)° +22
(s+1)
SUE] P S ) P
(s+1)% + 2° (s+1)% + 2°

S 1
—e ' L*? —et?
(sz+22] (32+22j

. sin2t

—e'cos2t—e
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t

=e7(2 Cos 2t —sin 2t).

(i) If L{F (0)3=F(s),then L[ f (at)]zi . Gj
This result can be written in the form

L F F Gﬂ _ £ (at), where f (t) =L F(s)

a

Putting iz k,wehave

L'F [(ks)]:% f Gj where f (t)=L"F (s).

Examples:

: s
Find L' | ————
[sza2 + b2}

Soln:

Pl _lr)
s’a’+b? as’a’+b*> a

sa
Where F(sa) = ———
(52) s?a? +b?
S
S F(8)=———
(s) s® +b?
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S 1 sa
I [ (S T . .
LZaZJFbZJ a Lza2+b2}

1

== L"'[F (as)]
a

)

S 1 bt
HencelL=| —— |=—-cos| — |.
Lza2+b2} a’ [aj

(iii) If L {f(t)} = F (s), then L {tf(t)}= -F' (s)
Hence we get the result

L™ {F'(s)} = - th(t) = tL™ {F()}-
Examples.

i S
Ex.1.FindL!| ————
L"‘ +a2)2}

Soln:

, _ S
F (S)_|:(SZ +a2)2:|
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Ex.2.Find L* | — >
(s"-1)

Soln:

1 _ S . — S
Here F (s)_—(S2 Ry ~F(9) I—(SZ Y ds.

=£sinht.
2
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Ex3.FindLt| "%
(s +4s+5)

Soln:

S+2

HereF'(S)=-———5
) (s® +4s+5)?

1

I:(8)22(32 +4s +5)

|_71 S+2 __tL,]_ 1
(s® +4s+5)? —2(s*+4s+5)

:£|_*1 ;
2 s’ +4s+5

te ' sint

(iv) If L {f(0)} = F (5), then L {tf()} = - F' (s).

This theorem can be used in the following way to get inverse transforms of certain functions:

example L* [Iog Ss—jLﬂ
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Soln:

Let this be equal to f(t).

Then L {f(t)}=log z—+21

s+1

- L{tf (t)}———l o

:_i[mg (s+1)—log(s-1)]
ds

11

=——

s+1 s-1

. G141
so-v( ()

=g —¢
=2sinht.

23|nht

~f()=
(v) L[J.f(x)dx]:lL[f(t)].
° S
Soln:

Let j f (x) dxbe F (t)

ThenF' (t) =f(t)and F (0) =0
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~J{F @)} =sL{F({t)}-F (0)
=sL{F (1)}

e, L{f (t)}:sL{j f (x)dx}

Hence Lj[ f (x) dx :% L{f(t)}.

This result can also be used to find the inverse transforms of certain funcitons.

j F(x)dx=L" [1{f (t)}}
° S
If L {f()} = F(s), then
L]1 ;
L [—F(s)} :If(x)dx,
S 0

Where f(t) = L™ F(s).

AL F F (s)} :j L {F (s)}dt.
S 0

Examples.
- _1 1
Ex.1.Find L
s(s+a)
Soln:

BEEER R
s(s+a) | p\s+a

=Jt‘e‘at dt

0
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=1(1—e’a‘).
a

Ex.2.Find L* %
s(s“+a°)

Soln:
1 t 1
L ——— =L dt
[3(52+a2)} -([ (32+a2j

© sinat
a

dt

0

_1| —cosat t
al a |

: 1
Ex.3.FindL!| ————
{ (s> + az)z}

Soln:

L {%} =L F%}
(s*+a”) s (s°+a°)

:jL‘l{—z > 2}dt
5 (s“+a’)
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t .
In
=_[ tsinat at
0

2a

t

1 [—tcos at sin at}
+

"2al a a? |,

1 .
=——(SInat—atcosat).

2 3

a

(vii)The method of partial fractions can be used to find the inverse transform of certain
functions.

The method is illustrated in the following examples.

Examples.

Ex 1 FindL {;}

s(s+1)(s+2)
Soln:
We can split 1 into partial fractions as
s(s+1)(s+2)
11 1 1 1

R R
2s S+1 2s+2

L {;}1 L (1) L (Lj
s(s+1)(s+2)| 2 S s+1

cLp szl—e‘t ey
2 s+2) 2 2

Ex.2. FindL* 1 .
(s+1)(s“+2s5+2)
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Soln:

Splitting into partial fractions, we have

1 1 s+l
(s+1)(s*+2s+2) s+1 s*°+2s+2

. L—l 1
| (s+D)(s?+25+2)

) e e)
s+1 s +25+2

=e' _e'cost

=e'(1- cos t)

Ex.3. Find L{ 1+2s }

(s+2)°*+(s-1)?°

Soln:

1425 1 (s+2)*-(s-1?
(s+2)%(s-1)? 3" (s+2)?(s-1)°?

1 1
3| (s-1)? (s+2)? ]
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Hence L* { 1+2s }

(s+2)°(s-1)*

:EL—{ 1 }_EL—{
3 | (s-D)*| 3 |(s+2)?

1o 1 a
=§(e t)—5(9 t)

=%(et —e ).

Exercises

Find the inverse transforms of :

1 s
"(s-3)5 T (s—b)2ta®’

cs+d s
(s+a)2+b? "(s+3)°

Laplace transformation can be used to solve ordinary differential equations with

constant coefficients.

Examples.

2
Ex.1. Solve the equation %J&d—-

3y =sin t given that yz%zowhentzo

Soln:The equation can be written in the form

y'+2y' -3y =sint.

Applying Laplace transforms to both sides, we have

L(y"+2y' —3y)=L(sint)
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Le., LO)+2L(y)-S3L )=
1

S*L(y)—sy(0) y'(0)+2{sL(y)—-y(0)}-3L(y)= 71

Substituting the values of y(0) and y' (0) in the equations

S’y +2sy-3y= where y=L(y).

s?2+1’

(s +2s-3)y=

s?+1

1
(s*+2s-3)(s*+1)

7:

1
T (5+3)(5-1) (2 +1)

ny=L'= L -
(s-1)(s+3)(s“ +1)

On splitting into partial fractions, we get
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1
40 8

Ex.2. Show the solution of the differential equation ((jjt

0 and %zOWhent: 0is y=A
A(sin 2t - 2t cos 2t)

showthaty = 3

Soln:

y" + 4y = A sin kt

L (y") +4L (y) = A L (sin kt)

2y—sy(0)-y'(0)+4y=A——
s y—-sy(0)-y'(0)+4y T

Sincey (0) =0, y' (0) = 0, we have

k
s +k?

(s°+4)y=A.

K
(8P +4) (s +Kk?)

=-—* +1et —icost—lsint.
10 5

sin kt—Ksin 2t
—Zzif k=2 If k=2,
4k

,whereL(y)=Y.

1
~y=AKL?
y (s> +4)(s* +k?)

Case(i). Ifk #2,

11
y:AKL-l 52+42 52+k2
(k*—4)

+4y=Asinkt which is such thaty =
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BNALS P SN S
K —4| s?+4  §24kK?

_ Ak {sin 2t sin kt}
k-4 2 k

= A 5 (sin kt—Ksin Zt)
4-k 2
Case (ii). K=2. Then
1
y=2AL"
y {@M4x§+®}

=2AL-1{ 2 : 2 2}
(s°+29)

= 2A.L3 (sin 2t —2t cos 2t)
2(2)

= % (sin 2t — 2t cos 2t).

Note:-The special advantage of this method in solving differential equations is that the initial
conditions are satisfied automatically.lt is unnecessary to find the general solution and

determine the constsnts using the initial conditions.

1.3 The Laplace transform can also be used to solve systems of differential
equations.

Ex.1. Solve the simultaneous equations.
3%+%+2x=1
.. (1)
95+4gx+3y=0

dt dt Q)

givenx=0=yatt=0.
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Soln:

Applying Laplace transforms to both the equations, (1) becomes

BL(X)+L(y)+2L(x)=L(2)
i.e.,3{s%-X (0)}+5 Y-y (0)+2% :%

whereX=L(X),y=L(y).

Since x(0) =0, y(0) =0, we have

3SY+S)7+2Y=£
S

i.e., (3s+ 2)X+537=1
S

Equation (2) becomes
L(x)+4L(y)+3L(y)=0
i.e., sX—x(0)+4{sy-y(0)}+3y =0
i.e.,sX+(4s+3)y=0

Solving (3) and (4), we get

% 4s+3
s(s+1)(11s+6)

o 1

y (Q1s+6)(s+1)

_ 1 { 4s+3 }
X=L"=
s(s+1)(11s+6)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

130



s s+1 11s+6)

:1[1(1)_1L-1(ij_§g 1
2 s) 5 s+1) 10 11s+6)

y=L" 1
(11s+6)(s+1)
_L-l{l 1 _E 1 }
5s+1 5 11s+6

zlLl[_l j_E iLfl 1
5 s+1) 511 s+£

11

6
:le*‘—ie_lil.
5 5

Ex.2. Solve the simultaneous equations.

%—3—{—2x+2yzl—2t
(1)
2
it§+2%+x:0
..(2)

With the conditionsx =0,y = O,z—)t(=0when t=0

Soln:
Applying Laplace transforms to both the equations, equation(1) becomes

L(X)-L(y)-2L(X) +2L(y)=L(1)-L(2t)
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i.e.,sX—x(0)-sy+ y(O)—2>‘<+27=1—£

2

s s
e, SX-Sy-2%+2y=2— 2
s s
i.e.,(s—2)>‘(—(s—2)y=58_22
o1
X'y:S—2

Equation (2) becomes

L(x)+2L(y)*L(X)=0

i.e.,s*X—sx(0)—x'(0)+2sy—2y(0)+x=0

i.e.,s*X+2sy+Xx=0

ie, (s +1)x+2sy=0

Solving equations (3) and (4) for xand y, we get

g 2 y=— s?+1
s(s+1)?’ s? (s+1)?
=71 2

s(s+1)?

411 1 1
=2L" ———
s s+1 (s+1)

:z{L1(3‘“(;1)_“{(;1)2}

=2(1-e'-te".

e

. ()
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s +1
=Lt =
y {sz(s+1)2}
F s? +1
=—jL‘1 - bdt
5 s(s+1)

:—le.{l— 2 2}dt
0 s (s+)1)

t
:—j(l—Zte’t)dt
0

=2-t-2(t+1) e™.
Laplace transform can be used to solve differential equations with variable coefficients.

We have shown that
d
L{t f (t)}=—£ L{f ()}

2d2

and{t® f (t)}=(-1)°— L{f (t)}.

These results are used to solve equations containing variable coefficients.
The following worked out examples will illustrate the method.

Examples.

Ex.1. Solve the equation
d 2
d 2

Soln:

(2+t) +3y t —1when y(0)=0.

Taking Laplace transforms on both sides, we have
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L (ty") - L {(2+t) y} + 3L (y) = L (t-1)

i.e.,—%{sz L(y)-sy(0)-y'(0)}

—2{sL<y)—y(0>}+di{sL(y)—y(O)}+3L(y>=i2—1.
S S S

LetL(y)bey.
Putting y(0) =0,

d o o d, _ _1-s
——{s*Y-y'(0)}-2(s ) +—(sY)+3y ="
ds ds S

ie.,—s’ 24y —2sy-— 23y+sﬂ+y+3y: _ZS
ds ds S

s-1
2

ie.,—(s? —s)d—y—4(s ~-1)y=
ds

0, 47,47 1
ds s s
Solving this equation, y—1 iz %
25s° s

Sy= 1 (iz] +clLt (%j
s s S

t ctd
—4+—.
2 6

Hence y=%+ At®, Where A is an arbitrary constant.

d’y . dy
Ex.2. Solve the equation. “g;2 td——y Oif y(0)=0and y'(0)=1.
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Soln:

Taking Laplace transforms on both sides, we have

Ly +L(ty)-L(y)=0
i.e.,SZL(y)—sy(O)—y'(O)—%{sL(y)—y(O)}—L(y)=0
y(0) =0,y (0) =1.

Putting L (y)=Y,we gets® 7—1—%(5 y)-y=0

4V

ie,s’y-1-s—=
y ds

~y-y=0

i.e.,sd—y—(s2 ~-2)y+1=0
ds

—s?/2 _ -s%]2

Solving this equation ys*e e "?+c.
1 e—52/2
Sy=—+cC
Y= s?

yis a Laplace transform.

~limy=0,..c=0.

S—0

1

Hence y=—
s

Taking inverse transformy = t.

Certain equations involving integrals can also be solved by Laplace transform

Example. Determine y which satisfies the equation

t
%+3y+2.[ydt:t for which y(0)=0.
0
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Soln:

Taking Laplace transforms on both sides, we get
t
L(y)+3L(y)+2L ([ ydt)=L(t)
0

i.e.,sL(y)—y(0)+3L(y)+§L(Y)=Siz

Putting L (y) =y and substituting y(0) = 0, we have

1

V61D (+2)

. y:L—l 1
h s(s+1)(s+2)
y:L-l{z 111 L}
2's s+1 2542

=£|_—1 1 Lt i +£L‘l i
2 S s+1) 2 S+2
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UNIT -5: PARTIAL DIFFERNTIAL EQUATIONS

Partial differential equations of first order — formation — different kinds of solution — four
standard forms- Lagranges method.

11 PARTIAL DIFFERNTIAL EQUATIONS

Partial differential equations are those which involve one or more parital derivatives.
The order of a partial differnential equation is determined by the highest order of the partial
derivativeoccuring in it. For the present, we shall restrict ourselves to partial differential
equations involving one dependent variable z and only two indepandent variables x and y. In

what follows, we shall donote

oz _ o0z _ 91 _ 01 _ 0’z _
—=p, —=0, — =1, =sand — =t.
OX oy 0 oxoy oy

Derivation of partial differential equations.
Parrial differential equations can be derived either by the elimination of (1) arbitrary
constants from a relation between x, y, z

Or (2) of arbitrary function of these variables.
By elimination of arbitrary constants.
Consider the function
f(x,y,z,a,by=0 (1)
Containing two independent arbitrary constants a and b. To eliminate two constants,
we require three equations. Differentiating equation (1) partially with respect to x and y in

turn, we obtain

+p—=0 (2

+p—=0 3

a3

OX 0z

o, 3

oy oz
Eliminating a and b, we get a partial differential equation of the first order of the form

F(x,vy,z,p,q) =0.

Examples.

Ex. 1. Eliminate a and b form z = (x+a) (y+b).
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Soln:

Differentiating partially with repect to x

—= b
dx y+

le) p=y+b

Again ,Differentiating partially with repect to y

dz
— =X+a

dy
p = y+b, g 3 x+a.

d
Eliminating Jf)ifferentiating partially with repectto x aand b, we get z = pq

Ex.2. Obtain the partial differential equation of all spheres whose centres lie on the plane z
=0 and whose radius is constant and equal to r.
Soln:
The Cartesian equation of all such spheres can be written in the form
(X-a)?+ (y-b)2+2=r* . (1)
Where a and b are independent arbitrary constants and r is the fixed given constant.
Differentiating (1) partially with respect to x and y in turn,we obtain
2(x-a)+2z (dz/dx)=0
(x-+pz=0 ()
(y-b)+gz=0 3)
Eliminating a and b between equations (1), (2) and (3), we obtain
ZZ(p2+q2+1):r2
By the elimination of arbitrary functions.
Let u and v be any two functions of x,y,z and connected by arbitrary relation

éuv)y=0 (1)

Differentiating equation (1) partially with respect to x and y in turn,we get
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[u X ] a¢( +—pj=0
3 ov \ox oz Q)

o¢
ou
a5 a w55
oy F3 ov\oy oz 3)

[au ] between equations (2) and (3),we get a partial
Eliminating the ratio oy o

differential equation of the first order, viz.,

Pp+Qq=R (4)
Where

o M v o)
Cazox axor Az,x)

ouov auav_ a(u,v)

oxoy oyox axy

—

Equation (4) is known as Lagrange’s linear equation.
Examples:

Ex. 1.Elimiate the arbitrary function from z = f(x*+y?)

Soln:
2=+ 1)
Differentiating partially with respect to x and y
p=feP+yA2x @)
a=f A2y e 3)

Eliminating f' (x*+y?) from (2) and (3), we get py = gx.
Ex. 2 Eliminate the arbitrary functions f and ¢ from the relation Z = f(x+ay) + ¢ (x-ay).
Soln:

Given Z = f(x+ay) + ¢ (X-ay). .ooiiiiiiiii (1)
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Differentiating partially with respect to x and y

p=fxtay)y+'(x-ay) 2)
q=af (xtay)-ad’ (x-ay) e (3)
Differentiating these again, with respectto x an 'y
2Z " "
Lofatap+¢—ay) e @)
622 " "
Pyl af'(x+ay)+a*d' (x—ay) (5)
2 2
From (4) and (5), we get 6—§ =a’ 6_§
oy OX

Excersises

1. Obtain a partial differential equation by eliminating a,b from each of the following :-
1) Z=ax+by+a

X2 + y2 ZZ

a2 +b_2 :1

i)
Differential integrals of partial differential equations.

A solution or integral of a partial differential equation is a relation between the dependent
and the independent variables that satisfies the differential equation. It will be noted that two
types of solutions may occur as solutions of the same equation. For example, consider the
equations

Z=ax + by (D)
and z = xf(>) (2)
If we eliminate the arbitrary constants a and b from the equation (1) and the arbitrary

function from the equation (2),we get the same differential equation xp + yq =z

Hence z = ax + by and z= xf(%) are solutions of the equation
Xp + yg=z.
A solution containing as many arbitrary constants as there are independent variables
is called a complete integral.
A solution obtained by giving particular values to the arbitrary constants in a

complete integral is called particular integral.
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Singular Integral.
LetF(x,vy,2p,9q)=0 .. (1)

be the partial equation whose complete integral is
d(X, ¥, 2,3b)=0 2

The eliminant of a, between

d(X,y,2ab)=0
% _,
oa
% _,
ob

When it exists ,is called the singular integral.
Geometrically, this represents the envelope of the two parameter surfaces represented

by the complete integral (2) of (1).The two parameters occurring in (2) are a and b.

General Integral

In (2), we shall assume an arbitrary relation of the form b= f(a). Then (2) becomes

flx,y,z,af@=0 ... 3)
Differentiating (2), partial with respect to a,

%+%f'(a):0
ca ob

The eliminant of a between these two equations (3) and(4), if it exists, is called the general
integral of (1).
Solution of partial differential equation in some simple cases.

We shall consider a number of simple exaples, the solutions of which depend only on
the meaning of the partial differentiation.

Examples.

2

Ex.1 Slove

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

141



Soln:
)
oyoy ox\oy

Hence %z f (y) whenf is an arbitrary function.

z:j f (y) dy + p(X)
=F (y) + 6(X).

Here F(y) and ¢(x) are arbitrary functions.

2
Ex. 2 Solve% =siny.

Soln:

0’z

Wzsmy

Integrating on,
oz
—=—cosy+ f(x).
oy
Again integrating,
. Z=-siny + yf(x) + ¢(x), where f and ¢ are arbitrary functions.

Ex.3 Slovex+ yg =0.
OX

Soln: x+ yg =0
OX

82__5

x oy

Integrating on,

L g=-— §+¢(y).

2

Ex.4 Solve 0’z =x* +y?
OX oy

Soln:
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0%z
OX oy

Integrating on,

:X2+y2

oz _ 2., Y}
=X v+ 3 + ¢ (x).

Again Integrating on,

X3y Xy2
I=—-+—+F(X)+f
3 T3 TR+

Ex. 5 Solve xg =2X+Yy+3z
OX

Soln:
x@ =2X+Yy+3z
OX

Dividing by x,

a2 =2+Yy/X+3z/x
OX

The equation can be written in the forms

g_gizz_f_l
OX X X

This is a linear equation.

The integration factor is 1/x°

Hence L (@_35]234

x}lox  x) x* X!

i o Q(L]_Ll
Tlox\ ) X Xt

oz 1 Y 4
'x3_ xz 3x3 ¢(y)

ie.,z :—x—%+ X3 (y)
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0%z
=a’z

Ex.6 Solve ox’ given that when x = 0.

gzasin yand g:0
OX

If Z is a function of x alone, the solution would be

Z = Ae™ +Be * ,where A and B constants.

Soln:

Here z is a function x and y; hence the solution of the equation is

z=f(y)e™ + p(y)e™™

w=f(ae” —¢(ae™

0

o = e™ + ¢’ (e

When x =0, z_ asiny
OX

Soaf(y)-ad (y) =asiny
ie, f(y)-o(y)=siny ... (1)

Whenxzo,gzo

S f(y) +9'(y) =0
Differentiating (1), we get

f(y) - ¢’ (y)=cosy

From (2) and (3), f'(y) = %cosy,q.’)'(y) = —%cosy.

1 . ' 1 .
~ f(y) =3siny+ A, ¢ (y) = —3siny +B.
But from (1), A = B.

Hencez = %sin ye* —%sin ye ¥+ Ae* + Ae ™

= sinysinhax + 2A coshax.
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1.2 Standard types of first order equations
Many of the important equations of the order that occur in practice are one or the

other of the following standard forms.

Hencei(@—3ij =£+l

x*lox  x) x2 X!

Standard 1. The variable X,y,z do not occur explicitly. Such equations are of the form
f(p,q) = 0 where
_ L
x' oy
We can easily verify that z = ax+ by + c is a solution of the equationf(p,q)=0
provided f(a,b) = 0.
Solving this for b, b = F (a)
Hence the complete integral is z = ax + y F(a) +c.
This singular integral is obtained by eliminating a and ¢ between
z=ax+yF()+c
0=x+yF (a)
0=1
The last equation is absurd and shows that there is no singular integral in this case.
To obtain the general integral, we assume an orbitrary relation ¢ = ¢ (a). Then z = ax
+yF(a)+¢(a)
Differentiating partially with respect to a,
0=x+yF' (a)+ ¢ (a).
The eliminant of a between these equations is the general integral.
Note :- The singular and general integral must be indicated besides the complete integral in

every equation. Then only it is said to be completely solved.

Example. Solve p?+g® = npq.

The solution is z = ax + by + ¢, where a*+b® = nab.

+.(n?—4)
Solvingb= 2N £V —4

2

The complete integral is
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y:ax+%(ni1/(n2 —4)+c

Differentiating partially with respect to c, we see that there is no singular integral, as
we get an absurd result.

To find the general integral put c = f (a), where f is arbitrary.
z:ax+%(ni1/(n2 —4))+ f(a).
Differentiating partially with respect to a,

0= x+%(ni1/(n2 —4)+f'(a)

The eliminant of a between these equations gives the general integral.
Excercies

Solve the following equations :-

1. p’+g? = 4. 2.p=0"
3.pg=1. 4. pg+p+q =0.
5. g?-3q+p = 2. 6. 3p?-2q° = 4pq
7.0%-g*=0. 8.p+q=3a

Standard form 2. Only one of the variables x,y,z occurs explicity. Such equations can be
written in one the forms

F(x,p,d) =0, F(y,p, ) =0, F(z, p, q)=0

(i) Let us consider the form F (x, p,q) =0

Since z is a function x and y.

dz:gdx+gdy.
ox oy

= p dx + qdy.
Let us assume thatq=a
The equation becomes F(x, p,a) =0
Sloving this for p, we get p = ¢ (X, a)
..dz = ¢(x,a)dx + a dy.
z= [¢(x,a)dx +ay +b.

This consists of two arbitrary constants a and b and hence it is a complete integral.
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(ii) Let us consider the form F (y, p,q) =0
Let us assume thatp =a
..F(y,a,q)=0.
.q = ¢(y.a)
Hence dz = adx + ¢(y,a) dy
S.z=ax+ [ ¢(ya)dy+ b, Which is complete integral.

(iii) Let us consider the equation F(z,p,q) =0
Let us assume that g = ap.
Then the equation become F (z,p,ap) =0
i.e,p=¢(za)

Hencedz = ¢ (z,a) dx + a ¢ (z,a) dy

dz
¢ (z,a)

ie, =x+ay + ady

i.e.,f% = x + ay + b which is a complete integral.

Examples.
Solve
(i) g=xp +p’
(ii) p = yq°
(i) p(1+q°) = q(z-1)
(i) g=xp+p’°

Soln:
Letg=a
Then a = xp + p?

ie.p’+xp-a=0.

= XE4/(X* +4a)

P= 2
— X+ (x>
Hence dz= X= (2x +42) dx+ay+b
— x4+ /(%2
L [==2= (X" +4a) dx+ay+b

2
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2

- X X 2 sl X
= i{21/(4a+x ) +asinh (m}ﬂﬂﬂl

4

(i) p=yq

Soln:
Letp = &
.o gq=ztaly
Hence dz = & dx + (aly) dy

" z=ax*alogy+b.

(i) p (1+9°) =q (z-1).

Soln:

Letq = ap.

Then p(1 + a%p?) = ap (z-1)

ie., 1+a’p® = a (z-1)
p= i—V(aZ_a_l)_

a
J(@—-a-1)

Hence dz=dexi«/az —a-1dy

ie., ia—dz: dx+ady

J(@-a-1)
. adz
|.e.,J_rJ' NCEr)

ie, +2,(az—a-1)=x+ay+h.

=X+ay+b

Excersies
Solve the following equations :-
1.p=2gx 2.9 =2yp2
3. 9(p’z +p%) = 4. 4.p (1+9) = qz
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Standard form 3

Equations of the form f;(x,p) = f2 (y, q).

In this form the equations is of the first order and the variables are separable. In the
equations z does not appear. We shall assume as a tentative solution that each of these
quantities is equal to a.

f1(x,p) = a, Solving p = ¢1 (a, X).
f2(y,q) = a, Solving g =¢2 (a, y).
Hence dz = ¢; (a,x)dx + ¢2(a,y) dy.
v z= [¢1(a,x)dx + [ ¢, (a,y)dy + bwhich is a complete integral.

Example. Solving the equationp +g=x +.
Soln:
We can write the equation in the form p-x = y-q.
Let p-x =a. Theny-q = a.
Hence p = x+a. q =y-a
.. dz = (x+a) dx + (y-a) dy.
= &y ey

There is no singular integral and the general integral is found as usual.
Standard 4. Clairant’s form

This is of the form z = px + qy + f(p,q).
The solution of the equation is z = ax + by + f(a,b) for p = a and q = b can easily be

verified to satisfy the given equations.

Example. Solve z = pxqy++/(1+ p? +q?)

The complete integral is obviously

z=ax+by./(1+a’+b%).

To find the singular integral, differentiating partially with respect to a and b,
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b 0.

a
X+ ————=0and y+ ——un——=
V1+a®+b? V1+a® +b?
Eliminating a and b the singular integral is x*+y?+z* = 1.
To find the general integral, assume b = f (a), where f is arbitrary.

Then z=ax+f(a)y+{1+a’+ (f ())}"
Differntiating partially with respect to a and eliminate a between the two eqations.

Excersies 26

Solve the following equations:-
1. z=px+gx + pq
2. Z=pxX+qy+ 2\/p_q

3. z:px+qy+£— p.
q

1.3 LAGRANGE’S EQUATION.

We have shown that, if we eliminate the arbitrary function F from the relation F(u,v)

=0, where u and v are functions of x,y,z. we get the equations
o(u,v) N o(u,v) _ o(u,v) _
ay.z) oz, x)  o(xy)
This is expressed in the form Pp + Qg = R, where P,Q and R are function of x,y,z.

This partial differential equation is known as Lagrange’s equation.
In the following article we shall try to find the solution of the equation Pp + Qq = R.

The general solution of the partial differential equation Pp + Qq =R isF (u,v) =0

where F is an arbitrary function and u (x,y,z) = C; and v (x,y,z) = C, from two independent

solutions of the equations %:ﬂzﬁ_
P Q R

Taking total differential on the equation u (x,y,z) = C; we get

6—udx+@dy+a—udz=0.
oz

OX oy

Since u(x,y,z) = Cj is asolution of the equation

dx_dy _dz
P Q R
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PZ—‘)J(+Q%J+ Rg—‘:zo. ............ 1)
Similarly, v(x,y,z) = C; is a solution of the equation
dx_dy _dz
P Q@ R
P%+Q%+ R%:O. ............ (2)
From equation (1) and (2), we get
P Q R 3)

UV OUV Oudv dudv duov duov

oyoZL 0z0oy OZOX OXOZ OXoy oy oX

P Q R
o o(u,v)  o(u,v) o(u,v)

a(y,z) d(z,x) o(xy)

We have shown that the elimination of the arbitrary function F from the equation

F(u,v) =0, where u and v are functions of x,y,z leads to the partial differential equation

a(u,v)+ 8(u,v):6(u,v) .......... (@)
o(y.z) “a(z,x) a(xy)
Substituting from equation (3) in (4), we get the equation
pP+qQ=R (5)
Hence we see that F(u,v) = 0 is a solution of the equation (5).
If u=c; and v = c; are the solutions of d—;:ﬂzg

Q R

Examples.

Ex. 1 Solve (Y + z2)p - Xyq = -Xz

Soln:

This equation can be written as the form

dx dy dz

P Q R
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Where P=(y* + z%) , Q = -xy and R = -xz.

The auxiliary equations are
dx dy dz

ye+z2 —xy  xz

Taking the last two equations, we get dy_dz
y z
Integrating we get log y = log z + constant.

S.—=C
;7 &

Each of the equations (1) is equal to

xdx + ydy + zdz
X(y® +z%) —xy? — xz?

io xdx + ydy + zdz
0 :

- Xdx + ydy + zdz = 0.

Hence after integration this reduces x? + y* +z° =c,.
Hence the general solution of the equation is

F(l,x2 +y° +22j=0.
z

Ex.2 Find the general solution of (y+z)p + (z+x)q = x+y
Soln:

This equation can be written as the form

dx _dy _dz

P Q R
Where P=y+z,Q =z+xand R = x+y
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The auxiliary equations are dx _ dy _ @z
Yy+Z Z+X X+Y

dx+dy+dz dx-dy dy-dz
2(x+y+2z) y—xX z—y

Each is equal to

Taking the first two, we get after integration
%Iog(x+y+z) = -log (y-x) + constant

L (xty+z) (yX)° = Cy
By taking the last two, we get
- log (y-x) = -log (z-y) + constant.
z-y
y—X
Hence the general solution of the equation is

C,

0

F{(x+y+z)(y-x)2,ﬂ}

y—X

Ex. 3 Solvex’ & + yZQ: (X+Y)z
ox oy

Soln: This equation can be written as the form

dx:dy:dz

P Q R
Where P=x?, Q = y? and R =( x+y)z.

The auxiliary equations are

%:ﬂ: dz
x>y (x+Y)z
. dx—dy dz
ie. =
x> —y>  (x+Yy)z
i.e.’dx—dy =$
X-y z
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dx dy

Also — =—=
XZ 2

Hence -(1/x) = -(1/y) + constant.
(11y)-(1/x) = c2
X—y

Hence the solution is F[l—l,—j =0.
y X z

Ex.4 Find the equation of the cone satisfying the equation xp + yq = z and passing through
the circle x* + y? + 72 =4,
Soln: Soln:

This equation can be written as the form

dx:dy:dz

P Q R
Where P=x,Q=yand R=z.

The auxiliary equations are

dx_dy_dz
X y z

Hence two independent solution of the equations are

L i) and Yop e (ii)
y z
: : L Xy
.". The general solution of the equation is F| —,= [=0.
y 2z
Here we have to find a functional relation between > and - such that they also
y Z

satisfy the equations
N i A= p— (iii) and X+y+z =2 ---mmmmm- (iv)

Hence eliminate x,y,z from (i), (ii), (iii) and (iv)
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X y X
:—122—:—
Y a b ab

Substituting values of y,z in terms of x in (iii) and (iv), we get

x> X . 1 1
x? t ot =4 e, X2(1+?+_a2b2j:4'

ie,ab+a+1=0

Now if we replace a by (x/y) and b by (y/z), we get the required surface
Xy +yz+zx=0.

Ex.5 Solve (x* - yz)p + (y*-zx)q = z* - xy.
Soln:

The subsidiary equations are

dx  dy dz
2

xX2—yz y*-zx z’-xy

dx —dy _ d(x-y)
XP—yz—(y* =)  (X=y)(x+y+2)

_ . dly-2)
(Yy-2)(x+y+2)
d(x-y) _d(y-2)
ox-y y-1
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L—==C, e (1)

y—z2

Using multipliers x,y,z each of the subsidiary equations
_ Xdx + ydy + zdz
x>+ vy +2° - 3xyz
_ dx+dy+dz
and is also equal to 5 5 5
x¢ +y“+z-—yz—zx—Xxy
Taking the last two ratios z xdx = (Z x)d (Z X).
2 2 2 2

Integrating, (x+y+z)) (XC+y +7) =C,

2 2

SUXytyz4zZX=C o 2)
From (1) and (2),= (ﬂ, Xy + yz + zx) = 0 ,where f is arbitrary.
y—z2
Note. We should not take the second solution as g = ¢, since each of the subsidiary
equations.
B d(z—-x) B
(z—x)(x+y+2)
But this solution is not independent of the first solution-—2- = ¢, , since >~ +1=c¢, +1
zZ —X y —7
gives 2—Y = ¢, +1which is merely the second solution.
y—2

Excersices 28

Solve given p_ﬂ. q—g'
ox' oy’

l.xp+yq=2z

2.Xp -yq=Xxy

3.ap+hg+cz=0
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