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B.Sc. MATHEMATICS – I YEAR 
 

DJM1A : CALCULUS AND DIFFERENTIAL EQUATIONS 
 

SYLLABUS 
 

 

UNIT -1  

 

 Curvature – radius of curvature - Cartesian and polar - centre of curvature - Involute 

and evolute - Asymptotes in Cartesian and polar co-ordinates. 

 

UNIT – 2 

 

Evaluation of double and triple integrals-Jacobeans, change of variables. 

 

UNIT -3 

 

First order differential: equations of higher degree- solvable for p, x and y- Clairaut’s 

form/ linear differential equations of second order- Particular integrals for functions of the 

form, X
n
, e

ax
, eax(f(x)). Second order differential equations with variable coefficients. 

 

UNIT – 4 

 

 Laplace transform – Inverse transform – Properties-Solving differential equations. 

Simultaneous equations of first order using Laplace transform. 

 

UNIT – 5 

 

 Partial differential equations of first order – formation – different kinds of solution – 

four standard forms- Lagranges method. 

 

Books :  

 

1) Calculus Vol.1, Vol.2 & Vol.3, By T. K. Manickavachagompillai & others. 

 

2) Calculus Vol.1, & Vol.2, By S. Arumugam and Isaac. 
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UNIT -1 : CURVATURE 

Curvature – radius of curvature - Cartesian and polar - centre of curvature - Involute and 

evolute - Asymptotes in Cartesian and polar co-ordinates. 

 

CURVATURE 

 

1. 1 Curvature and radius of curvature   

 

 The curvedness of a curve at a point  on it is measured by the rate of change of Ψ 

 

 with respect to s, where Ψ is the angle made by the tangent at  with the x-axis and s is the 

 

 arcual distance of  from a fixed point Q on the curve, that is by dΨ/ds. 

 

 This rate is called the curvature of the curve at . 

 

Curvature of a circle  

 

 Consider a circle as in the figure whose centre is C and radius a. Let Ψ be the angle 

 

 made by the tangent at any point  with the x-axis. If the arcual distance of  from O is s,  

 

then s = aΨ. This is the intrinsic eqn of the circle.  

 

Differentiating this w.r.t ‘s’, we get  

 

  

ads

d

ds

d
a

1

.1









 

 

So, in the case of circle, the curvature is a constant which is the reciprocal of the 

radius.  
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1.2 Radius of curvature  

 

 The reciprocal of Curvature of a curve at a point is called the radius of curvature of 

the curve at the point. So it is 
d

ds
. 

 

The radius of Curvature of a circle is its radius.  

 

Notation 

 

Radius of Curvature is denoted by . 

 

Remark :1 

 

   In the case of a straight line the change of Ψ is zero and hence 





d

ds

ds

d
,0  

 

Remark : 2 

 

 If the curve is such that, as ‘s’ increases, Ψ increases, then 
ds

d
is +ve and, so  is +ve.  

 

ie) if the curve is concave,  is +ve otherwise is –ve In general,  is given as its absolute 

value, namely  .  

 

 

1.3. Cartesian formula for the radius of curvature 

  

 We know that  tan
dx

dy
 

 

  .sec.sec 22

2

2

dx

ds

ds

d

dx

d

dx

yd 



  
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  





 cos
sec

2

2

3

ds

dx
as

dx

dd

ds
y

 

 

2

2

2 2
3

)tan1(

dx

yd


  

 

  

2
3

2

2

2

1

dx

yd

dx

dy






















  

 

  

2
3

2

2

2

1

dx

yd

dx

dy






















  

 

Examples:  

 

1. What is the radius of curvature of the curve x
4
 +  y

4
 = 2 at the point (1,1)? 

 

Soln: 

 

 Given the curve x
4
 +  y

4
 = 2  

 

 Differentiating the above equation, we get 

 

   .044 33 
dx

dy
yx  

  

 .44 33

dx

dy
yx   
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.
3

3

y

x

dx

dy
  

   

Differentiating this once again, we get  

 

  
4

23

2

2
3

y

yx
dx

dy
x

dx

yd










 .  

At the point (1,1), .6,1
2

2


dx

yd
and

dx

dy
 

 

.
3

2

6

)11( 2
3




  

 

2. Show that the radius of curvature at any point of the catenary 
c

x
cy cosh is equal to the         

length of the portion of the normal intercepted between the curve and the axis of x. 

 

Soln:  

 

 Given 
c

x
cy cosh

 

Differentiating the above equation, we get
 

 

  
c

x

dx

dy
sinh   

 

Now,`
c

x

c

x

dx

dy 32

2

coshsinh11
2

32
3






























  

 

 Also .cosh
1

2

2

c

x

cdx

yd
  
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 Here 
c

y

c

x
c

c

x

c

c

x
2

2

3

cosh

cosh
1

cosh

  

 

Again at any point (x,y) 

 

the normal 
c

y

c

x
y

dx

dy
y

22

cosh1

2
1





















  

 

 Radius of curvature = length of the normal. 

 

3. If a curve is defined by the parametric equation x=f () and y=(), prove that the 

curvature is 
  2

3

2'2'

''''''1

yx

xyyx







   

Soln: 

 

where dashes denote differentiation with respect to . 

 

 
'

'

x

y

d

dx

d

dy

dx

dy



 

 

  
dx

d

x

y

d

d

x

y

dx

d

dx

yd 





















'

'

'

'
2

2

 

 

 

  
'

1

'

''''''
2 xx

xyxy 
  

 

  
3'

''''''

x

xyxy 
  
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2
3

2
3

2

2
3

2

2

2

'

'
1'

''''''

1

1





































x

y
x

xyxy

dx

dy

dx

d y


 

 

 .
)''(

''''''
2

322 yx

xyyx




  

 

4. Prove that the radius of curvature at any point of the cycloid x =a ( + sin) and  

y = a (1 - cos) is 4 a cos .
2


  

Soln: 

 

From the given equations , 

 

x =a ( + sin) 

 

 differentiation with respect to . 

 

)cos1( 


 a
d

dx

 




sin
2

2

a
d

xd


 

 

y = a (1 - cos)  

 

differentiation with respect to . 

 




sina
d

dy


 

 
 

.cos
2

2




a
d

yd
  
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Substituting the values in the formula obtained in the previous example, we get  

 

 
  2

3
2222 sin)cos1(

)sin(sincos)cos1(1





 aa

aaaa




   

 

 
  2

3

)cos1(2

)cos1(
3

2










a

a
 

 

 
  22

3

cos4

1

2/cos4

2/cos2

2

2







aa
  

 

  .
2

cos4


 a  

 

5. Find  at the point ‘t’ of the curve x = a (cos t + t sin t); y  = a (sin t – t cos t) 

 

Soln:  

 

Given the curve 

 

x = a (cos t + t sin t);     y  = a (sin t – t cos t) 

 

 .cos)cossinsin( tattttta
dt

dx
  

 

 .sin)sincos(cos tattttta
dt

dy
  

 

 .tant
dx

dy
  

 

Differentiating with respect to x,  
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tattat
t

dx

dt
t

dt

d

dx

yd
3

2

2

2

cos

1

cos

1
sec)(tan   

 

.
cos

1

)tan11

3

2

2

2

2

2
3

2
3

at
tat

t

dx

yd

dx

dy



























  

  

 

 (The formula of Ex.3 can also be employed) 

 

Exercise 1: 

 

 1. Find the radius of curvature for the curves  

  (a) y = e
x
 at the point where it crosses the y – axis  

  (b) )4/1,4/1(1atyx   

  (c)y
2
 = x

3
 + 8 at the point (-2, 0). 

  (d) xy = 30 at the point (3,10) 

  (e) (x
2  

+ y
2
)
2 

= a
2 

(y
2 

– x
2
) at the point (0, a) 

 

 Polar form. 

 

 Let r = f() be the given curve in polar coordinates.  

 

  x = r cos  and y = r sin , may be regarded as the parametric equations of the 

given curve the parameter being . 

 

 





sincos r
d

dr

d

dx
  

 

and 





cossin r
d

dr

d

dy
  
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andr
d

dr

d

rd

d

xd









cossin2cos

2

2

2

2

  

 










sincos2sin
2

2

2

2

r
d

dr

d

rd

d

yd
  

 

Substituting these values in the formula for  in parametric from and simplifying we 

get  

 

.
2

)(
2

2

21̀

2

2

1

2

2

3
2

1

2




d

rd
rand

d

dr
rwhere

rrrr

rr





  

 

 

1.4  The  coordinates of the centre of curvature  

 

 Let the centre of curvature of the curve y = f ( x) corresponding to the point P (x,y)  

be X and Y. 

 

X = ON  

 

                                     = OQ – NQ  = OQ – MP 

 

   =  X  -  PC sin Ψ  =  x -  sin Ψ. 

 

  Y =  NC   

 

                                     =  NM + MC 

  

   = QP + PC cos Ψ = y +  cos Ψ. 

 

If y1 and y2 denote 
2

2

dx

yd
and

dx

dy
 we know that  
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1

2

1 tan
)1( 2

3

yand
y




   

  
2

1

1

2

1 1
sin

1

1
cos

y

y
and

y 



   

  
2

2

11

2

1

1

2

2

1 )1(

)1(

)1(

2
1

2
3

y

yy
x

y

y

y

y
XX







  

 

  
2

2

1

2

12

2

1 )1(

)1(

1)1(

2
1

2
3

y

y
y

yy

y
yY







  

 

The locus of the centre of curvature for a curve is called the evolute of the curve.  

 

 

Examples. 

 

1. Find the co-ordinates of the centre of curvature of the curve xy = 2 at the point 

(2,1). 

 

Soln:  

 

Given  the curve xy = 2 

 

 Here y = 
x

2
  

Differentiating with respect to ‘x’ we get 

 

 .
42

32

2

2 xdx

yd
and

xdx

dy
  

 

.2/12/1)1,2(
2

2

andivelyarerespect
dx

yd
and

dx

dy
ofvaluestheAt   
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.
4

1
3

2

1
2

1
)

4

1
1(

2 


X  

 

.
2

1
3

2
1

4
11

1 


Y  

 

  The centre of curvature is ).
2

1
3,

4

1
3(   

 

2. Show that in the parabola y
2 

= 4ax at the point t,   = - 2a  (1+t
2
)
3/2

,  X=2a + 3a t
3
,  

Y = -2a t
3
. Deduce the equation of the evolutes. 

 

Soln: 

  

                   x = a t
2
, y = 2 at.  

 

  a
dt

dy
at

dt

dx
2,2     

 

                      tat

a

dx

dy 1

2

2
  

                       

                      
dt

dx

tdt

d

dx

dy

dx

d

dx

yd



















1
2

2

 

32 2

1
2

1

at
at

t
  

 

2
3

2
3

)1(21 2

2

22

ta
dx

yd

dx

dy





















  
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3

2
2

2

2

2

2

1

11
11

at

tt
at

dx

yd

dx

dy

dx

dy

xX

























  

 

232 ata   

 

at

at

tat

dx

yd

dx

dy

yY 2

2

1

1
1

2

1

2

2

2

2

2



















  

 

Eliminating t from X and Y 

 

 
2

3

3

2
2 







 


a

aX
ay  

 

Squaring both sides and simplifying, we get 

  

32 )2(427 aXYa   

 

The locus of (X,Y) is 27ay
2 

= 4 (x-2a)
3 

 

The curve is called a semi – cubical parabola. 

 

3. Find the evolute of the ellipse 1
2

2

2

2


b

y

a

x
.Any point on the ellipse is (a cos , b sin ) 

 

 Soln: 




 sin;cos a
d

dx
ax   




 cos;sin b
d

dy
by   
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dx

d
ec

a

b

a

b

dx

d

dx

yd 
 2

2

2

cos)cot( 
 

 





sin

1

adx

d




 

 

3
2

cosec
a

b
  

 

2

2

2

1

dx

yd

dx

dy

dx

dy

xX






















  

 






3

2

2

2

2

cos

cotcot1

cos

ec
a

b

a

b

a

b

a



















  

 

a

ba 322 cos)( 
  

 

2

2

2

1

dx

yd

dx

dy

yY











  

 






3

2

2

2

2

cos

cot1

sin

ec
a

b
a

b

b



  

 

.sin3
22


b

ba 
  
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and
ba

aX 3
1

22
cos 










  

 

3
1

22
sin 














ba

bY
  

 

 

To eliminate , squaring and adding, we get  

 

1

3
2

3
2

2222























 ba

by

ba

ax
 

 

1.,.

3
2

3
2

2222





















 ba

by

ba

ax
ei  

 

The locus of (X,Y) is the four cusped hypocycloid. 

 

3
2

3
2

3
2

)()()( 22 babyax   

 

 

4. Show that the evolute of the cycloid 

 

 
.)cos1();sin( cycloidanotherisayax  
 

 Soln: 

 

Given 

)sin(   ax
 

Differentiating with respect to θ 

)cos1( 


 a
d

dx
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)cos1(  ay
 

Differentiating with respect to θ 

 

.sin


a
d

dy
  

 

.
2

cot
)cos1(

sin 









a

a

dx

dy
 

 

dx

d
ec

dx

d

dx

yd 
.

2
cos

2

1

2
cot 2

2

2









  

 

2
sin4

1

4 a

  

 

 

 

 

  sin2)sin( aa   

 

)sin(  a  

 

2
sin4

1
2

cot1

4

2





a

yY





  

 

)cos1(2)cos1(   aa  

 

2
sin4

1
2

cot)
2

cot1(

4

2





a

xX




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)cos1(  a  

 

 The locus of (X,Y) is  

 

 )cos1();sin(   ayax  

 

This is also a cycloid. 

 

 5. Find the centre of curvature of y = x
2
 at the origin. 

 

 Solution. We have y = x
2
. 

 

22 21  yandxy  

 

20),0,0( 21  yandyAt  

 

Let (x, y) be the centre of curvature at (0,0). 

 

.0)1( 2

1

2

1  y
y

y
xX  

2

11

2

2

1 



y

y
yY  

 Centre of curvature is (0, 
2

1
). 

 

 6. Find the evolute of the curve given by .sincos 33   yandax  

 

Solution. We have .sincos 33   yandax   

 

 ecayandy cossec)3/1(tan 4

21   

 

Let (X, Y) be the centre of curvature. 
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




ec

a
ay

y

y
xX

cossec

)tan1(tan3
cos)1(

4

2
32

1

2

1 
  

 

]1......[cossin3_cos 23  aa   






ec

a
a

y

y
yY

cossec

)tan1(tan3
sin

1
4

2
3

3

2

1 



  

]2......[sincos3sin 23  aa   

 

 Now, to find the equation of the evolute, we have to eliminate  from [1] and [2] we 

have  

 

 .)sin(cos 3  aYX  

 .)sin(cos 3  aYX  

 3

2

3

2

3

2

3

2

2)2()()( aaYXYX   

 .2)()(),( 3

2

3

2

3

2

ayxyxisYXoflocusThe   

 

7.Find the evolute of the parabola axy 42   

 

Solution. We have axy 42   

 

3/4/2 2

21 yayandyay   

 

Let (X, Y) be the centre of curvature.  

 

a

ay
xy

y

y
xX

2

4
)1(

22
2

1

2

1 
  

 ]2.....[)1(23 byax  
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2

3

2

2

1

4

1

a

y

y

y
yY 


  

]3.....[)1(
2 2

3

by
a

x
  

 

From[2] and [3] eliminating x , we have  

 

 a

aX

a

x
Y

27

)2(44 33
2 

  

 

 
32 )2(427 aXaY   

  

32 )2(427),( axayisYXoflocusThe   

 

Theorem 8 The normal to a given curve is tangent to its evolute. 

 

Proof. We know that the coordinates of the centre of curvature of the given curve are given 

by  

 

 2

1

2

1 1( y
y

y
xX   

 

2

2

11

y

y
yY


  

 

 These two equations can be taken as the parametric equation of the evolute with x as 

parameter.  

 

 










 











2

2

2

3122

121

2

1 )1(21
y

yyy
yyy

y

y

dx

dX
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)1)(1(21
2

2

312

1

2

1
y

yy
yy 

 

)3
2

2

3

3

1

2

2

312

1
y

yy

y

yy
y 

 

 

).3( 3

2

13

2

32

2

`1 yyyy
y

y
  

 

3

2

13

2

34

2

3

2

121

1 3
)1(2 2

yyyy
y

yyyy
y

dx

dY
Now 











 

  

 

)3(
1

3

2

13

2

212

2

yyyyy
y

  

1

1

ydX

dY
     ….(1) 

 

 

But 
dX

dY
is the slope of the tangent to the evolute and y1 is the slope of the tangent to 

the given curve at the corresponding point and their product is -1 (by 1). 

 

 Tangent to the evolute is normal to the given curve.  

 

Exercises  

 

1. Find the coordinates of the center of curvature at the indicated points. 

 

 [a] y = x
2
 at )

4

1
,

3

1
(  

 [b] xy = c
2 

at (c,c). 

 [c] x = a  (cos t + t sin t), y=a (sin t – t cos t) at ‘t’. 

 [d] y = x log x at the point where y’ = 0. 
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Exercise 2:  

 

1. Find the coordinates of the centres of curvature at given points on the curves : 

 

 















2log,
3

;seclog)3(

).,(;)2(

)
4

1,
2

1(;)1(

2

2


xy

cccxy

xy

 

 

2. Prove that the circle of curvature at the point (t
2
, 2t) of the curve y

2
=4x cuts the curve 

again  at a point whose ordinate is – 6t. Calculate the coordinates of the centre of 

curvature.  

 

1.5  Evolute and involute.  

 

 We have already defined evolute of a curve as the locus of the centre of curvature and  

 

deduced the equations of the evolute of the parabola and ellipse.  

 

 If the evolute itself be regarded as the original curve, a curve of which it is the evolute 

 

 is called an involute. 

 

 It may be noted that there is but one evolute but an infinite number of involutes. 

 

 Radius of curvature when the curve is given in polar co-ordinates  

 

 Let us assume that the equation of the curve in polar coordinates be r = f (). 

 

 In the figure,  

    

  .   
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  .1








d

d

d

d
  

 

We have proved that  

 

.tan
















d

dr

r

dt

d
r  

 

Differentiating w.r.t , we get  

 

 
2

2

22

2






























d

dr

d

rd
r

d

dr

d

d
Sec   

 

 
2

2

22

2sec

1





























d

dr

d

rd
r

d

dr

d

d
 

 

2

2

22

2

2

1

1





































d

dr

d

rd
r

d

dr

d

dr

r
 

 

2

2

2

22

r
d

dr

d

rd
r

d

dr
























 

 









d

d

d

d
1  
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2

2

2

22

1

r
d

dr

d

rd
r

d

dr
























 

 

2

2

2

22

2 2

r
d

dr

d

rd
r

d

dr
r

























 

 

 

We have proved in the previous chapter that   

 

2
1

2

2























 d

dr
r

d

ds
 

 








d

d

d

ds

d

ds
.  

 



















































2

22

2

2

2

2

2

2

2
1







d

rd
r

d

dr
r

r
d

dr

d

dr
r  

 

2

22

2

2

2

2

2
3





d

rd
r

d

dr
r

d

dr
r

































  

 

 

Examples . 

 

1. Find the radius of curvature of the cardioid r = a (1-cos). 
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Soln: 

Given r = a (1-cos). 

 

 Differentiating w.r.t , we get  

 

.cos,sin
2

2







a
d

rd
anda

d

dr
  

 

  2
3

2
3

)sin()cos1( 2222

2

2 


aa
d

dr
r 





















  

   .
2

sin8 33 
a  

)cos1(cossin2)cos1(2 22222

2

22

2 










 aaa

d

rd
r

d

dr
r  

 

2
sin6 22 

a  

 

2
sin

3

4

2
sin6

2
8

22

33







 a

a

Sina

  

 

ar2
3

2


.
 

 

2. Show that the radius of curvature of the curve  

 

 
1

1






n

ra
isnCosar

nn
nn 

 

Soln: 

 

Taking logarithms on both sides and differentiating, we get  
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



 n

nn

d

dr

r

n

cos

sin
  

 




nr
d

dr
tan  

 

Differentiating once again w.r.t. , we get  

 

  

` 


nnrn
d

dr

d

rd 2

3

2

sectan   

 

 nnrnr 22 sectan   

 






nnrnrnrr

nrr
2222222

222

sectantan2

tan(




  

 





nn

r

nrn

nr

cos)1(sec)1(

sec
22

33





  

 

1)1(

. 1









n

ra

rn

ar nn

n

n

 

 

Particular cases.  

 

 i) Putting n = 2, we get Bernouilli’s lemniscate; 

  
r

a

3

2

  

 ii) when n = -2 we have a rectangular hyperbola. 

 

  
2

3

a

r
  
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 iii) when n = ½, we get cardioids; ar
3

2
  

 

 iv) when n = -1/2, we get a parabola, 
a

r 2/32
  

 

 v) when n =1. we get a circles ;  
2

a


. 

 

1.6 Asymptotes  in Cartesian and  polar co-ordinates. 

 

Asymptotes of polar curves. 

 

Theorem: For the polar curves of the form )(
1

f
r
 the asymptotes are 

)('

1
)sin(

i

i
f

r


 

where i ’s are the roots of the equation f() = 0. 

 

Proof: Let P (r,) be any point on the curve )(
1

f
r
 ………………… (1) 

As P tends to infinity along the curve r  . Hence from (1) we note that 

when r  , f()  0. 

 

Let the roots of the equation f() = 0 

be i where i = 1,2,3 ………. 

 

Hence i ’s are the only directions along which the branches of the curve tend to infinity. Let 

us consider the branch corresponding to the value  = 1. 

 

For this branch   1, r  . 

 

We know that the polar equation of any line is p = r cos( - ) 

where p is the length of the perpendicular from the pole on the line and  is the angle which 

this perpendicular makes with the initial line and (r,) is any point on the line.  
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 Consider an asymptote to the branch corresponding to  = 1. 

 Let it be p = r cos ( - ) ………………. (2) 

 

For this branch corresponding to  = 1. the equation of the asymptote will be determined if 

we find p and . 

 

 Draw ON perpendicular to the line (2).  

 Then ON = p and XON = . 

 Draw PM perpendicular to the line (2) and PL perpendicular to ON.  

  PM = LN = ON - OL = p-OP cos( - ) 

  = p - r cos( - ).  

  )cos(  
r

p

r

PM
  ……………………… (3). 

 

Since (2) is an asymptote of (1), by definition, PM  0 as P  . 

 

(i.e) As r  , f()  0 as   1 so that 0
r

p
   

  From (3) 










)cos(limlim

11


 r

p

r

PM
 

 (i.e)  )cos(lim00
1







 

 

  0 = cos(1 - ). Hence .
2

1


   

 

 .
2

1


    …………………………. (4) 

 

Also using )(
1

f
r
 in (3) we get 

)(

)cos(





f
pPM



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






 


 )(

)cos(
lim0 have  we aslimit  Taking

1

1





 f
p

  

 

                                                   )(

)cos(
lim

1 



 f
p




  

 

 
(4)) (Using

)(

2
cos

lim
)(

)cos(
lim

1

11
































 








 ff
p

 

            







 


 )(

)sin(
lim 1

1 



 f  

 

            







 


 )('

)cos(
lim 1

1 



 f  

 

      (Using L-Hospital’s rule) 

  

           










)('

0cos

1f  

 

 
.

)('

1

1f
p 

 

 

Substituting the values of p and  in (2) we get  

 

         
)sin(

2
cos

)('

1
11

1















 rr

f  

 

 
.

)('

1
)sin(

1

1



f

r 
 

 

This is the required asymptote corresponding to  = 1. 
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Similarly the other asymptotes corresponding to the other roots of  

f() = 0 can be got.  

 

Working rule to find the asymptotes of the polar curves.  

 

 
).(

1
 form in theequation polar   the Write1. f
r


  

 2. Find the roots of f() = 0. Let the roots be 1,2,3……. 

 

 3. Find f() and calculate f() at  = 1,2,3……. 

                                   

,
)('

1
)sin(,

)('

1
)sin( as asymptotes  theof equations  theThen write 4.

2

2

1

1






f

r
f

r 

    .........
)('

1
)sin(

3

3



f

r   

 

Solved problems.  

 

Problem 1. Find the equations of the asymptotes of the following curves 

 

 (i) r  = a    (ii) r log  = a. 

 

Solution. (i): The equation of the given curve in the form  )(
1

f
r
  

 

 we have .)(
1

a
fthatso

ar





  

 

 Now, .0.00)(  


 Hence
a

f
 

 

Also, .
1

)0('.
1

)('
a

fHence
a

f 
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  The equation of the asymptote is .
1

)0('

1
)0sin(

af
r   

 (i.e) r sin  = a.  

 

(ii)  The equation of the given curve in the form )(
1

f
r


 

 
we have .

log
)(

log1

a
fthatso

ar







 

 

 Now, f() = 0   1. =  Hence.0
log





a   

 

Also,  .
a

1
(1)f' Hence.

1
)(' 




a
f

  

 

 
 The equation of the asymptote is .

)1('

1
)1sin( a

f
r 

  

 (i.e) r sin(-1) = a .  

 

Problem 2. Find the equation of the asymptotes of the curve  

r(
2 

- 
2
) = 2aθ 

Soln: The equation of the given curve in the form 

 )f(
1


r   

 

we have .
2

)(
2

1 2222










a
fthatso

ar







  

 

 
Now, 0

2
0)(

22










a
f

  

 

    
2
 = 

2
. 
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     = .  

 

Also, 
2

22

2

222

2

)(2

2

1
)('










aa
f










 


 

 

 
.

1
)('.

1

2
)('

2

22

a
fAlso

aa
f 


 






 

 

   The equation of the asymptote corresponding to  =  is 

 

  
.

)('

1
)sin( a

f
r 




 

 

 (i.e) -r sin  = a. Hence r sin  + a = 0 ………..(1) Similarly the asymptote 

corresponding to  = - is 

 

  
.

1

)('

1
)sin(

af
r 







 

 

 (i.e) r sin  + a = 0 which is same as (1).  

 

 Hence there is only one asymptote for the given curve.  

 

Problem 3. Find the equation of the asymptotes of the curve 
cos1


a

r
    

Solution. The equation of the given curve in the form )(
1

f
r


 

 

 
we have .

cos1
)(

cos11

a
fthatso

ar




 





 

 

 
Now, 0

cos1
0)( 




a
f



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    1 - cos  = 0  

    cos  = 1                             

     = 2n0 where n ϵ Z 

     = 2n  where n ϵ Z. 

 

   
Now,  .n  allfor 0

a

2n sin 
)(2nf' Hence.

sin
)(' Z

a
f 







 

 Zn  allfor 
)2('

1


nf  

 

Hence the curve has no asymptotes.  

 

Problem 4. Find the equation of the asymptotes of the curve r cos  = a sin . 

Solution. Writing the equation of the given curve in the form ).(
1

f
r


 

 

 
we have .

sin

cos
)(

sin

cos1










a
fthatso

ar


 

 

 Now, f() = 0  cos  = 0  

 

                                   
.

2
)12( Znwheren 



 

 

 
Since 









2

2

sin

1cos
)('

cot
)(

aa

ec
fhavewe

a
f 

 

 

 
Now, .

2
)12(sin

1

2
)12('

2

Znallfor

na

nf 

























 

 

                    )
2

(sin

1

2 
 



na   
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            
.

1

)1(

1

2/sin)1(

1
22

aaa
nn








  

 

 The asymptotes are given by Zn

nf

nr 



















 ,

2
)12('

1

2
)12(sin






 

 (i.e) anr 







 



2
)12(sin

  

 

 
(i.e) .

2
)12(sin Znallforanr 








 



 

 

 
(i.e) ar 












2
sin

 

 

 
(i.e) r cos  = a 

 

 (i.e) .
)1(

cos
n

a
r




 

 

For different values of n ϵ Z we get only two asymptotes r cos  = -a and r cos  = a.  

Hence the asymptotes are r cos  = a. 

 

Exercises.  

 

 Find the asymptotes of the following curves.  

 

 (i) 
1




a
r    (ii) r(1 - e


) = a 

 

Tracing of curves f(x,y) = 0 (Cartesian Coordinates) 
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 Suppose a curve is represented in terms of Cartesian coordinates by the equation 

f(x,y) = 0. The following points provide useful informations regarding the shape and nature 

of the curve. 

 

I. Symmetry of the curve.  

 

(a) Symmetry about the x - axis: 

 

 A curve f(x,y) = 0 is symmetric about the x-axis if f(x,-y) = f(x,y).  

 

 Example. y
2
 = 4ax; x

2
 + y

2
 = a

2
; y

4
 + y

2
 + x

3
 = 0 are curves which are symmetric 

about the    x - axis.     

 

 But x
2
 + y

2
 = ay is not symmetric about the x-axis.   

 

(b) Symmetry about the y - axis. 

 

 A curve f(x,y) = 0 is symmetric about the y - axis if f(-x,y) = f(x,y) 

 

 Example. x
2
 = 4ay; x

2
 + y

2
 = a

2
; y = x

4
 + x

2
 + a are symmetric about y - axis.                            

But x
2
 + y

2
 = ax is not symmetric about y - axis. 

 

 Note. x
2
 + y

2
 = a

2
 is symmetric about x - axis and y - axis. In this case the equation 

involves even and only even powers of x as well as y. 

 

(c) Symmetry about the line y = x 

 

 If f(x,y) = f(y,x) then the curve is symmetric about the line y = x.  

 

 Example. x
2
 + y

2
 = a

2
; x

3
 + y

3
 = 3axy; xy = c

2
 are symmetric about the line  y = x. 
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(d) Symmetric about the origin. (Symmetric in opposite quadrants) 

 

 If f(-x,-y) = f(x,y) then the curve is symmetric about the origin (symmetric in opposite 

quadrants) 

 

 Examples. x
2
 + y

2
 = a

2
; xy = c

2
 are symmetric about the origin.  

 

 x
3
 + y

3
 = 3axy; y

2
 = x

3
 are not symmetric about the origin. 

 

Note. From the above examples the equation of the circle has all symmetric properties we 

have discussed so far. 

 

Points of intersection with the coordinate axes. 

 

 To obtain the points where the curve f(x,y) = 0 intersects the x - axis put  y = 0 in the 

equation and solve for x. Similarly, to find the points where the curve intersects the y - axis 

put x = 0 in the equation and solve for y.  

 

 Examples. The curve x
2
 + y

2
 = a

2
 crosses the x - axis at (a,0) and (-a,0) and crosses 

the y - axis at (0,a) and (0,-a). 

 

 The curve y
2
 = 4ax passes through the origin. 

 

IV. Tangents to the curve.  

 

(a) Tangents at the origin.  

  

 If the origin is found to be a point on the curve then the tangents at the origin are 

obtained by equating to zero the lowest degree terms occuring in the equation.  

 

 Example.  y
2
 = 4ax passes through the origin and the lowest degree term occuring in 

it is 4ax which when equated to zero becomes 4ax = 0 
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 (i.e) x = 0. Hence y - axis is the tangent to the parabola at the origin. 

 

 Also x
3
 + y

3
 = 3axy passes through the origin at which x = 0 and  y = 0 are the 

tangents. 

 

 For the curve a
2
y

2
 = a

2
x

2
 - x

4
, y = x are the tangents at the origin. 

 

(b) Tangents at any other point (h,k) other than the origin.  

 

 Find 
dx

dy
at (h,k) and it gives the slope of the tangent to the curve at this point. This 

will be useful to deside the nature of the tangent - whether parallel to the x - axis or y - axis or 

inclined tangent.  

 

V. Asymptotes.  

 

 The concept of asymptotes described in the previous chapter will be helpful to know 

about the asymptotes in tracing any curve.  

 

(a) Asymptotes parallel to the x - axis.  

 

 These are obtained by equating to zero the coefficient of the highest power of x.  

 

 Example. (y+a)x
2
 + x - 1 = 0 has an asymptote y = -a parallel to the x - axis.  

 

(b) Asymptotes parallel to the y - axis.  

 

 These are obtained by equating to zero the coefficient of the highest power of y. 

 

 Example. y
2
(4 - x

2
) = x

3
 - 1 has asymptotes 4 - x

2
 = 0 (i.e) x = 2 and 𝜆 = -2 are two 

asymptotes parallel to the y - axis.  
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(c) Inclined asymptotes.   

 

 Taking y  = mx + c as an asymptote we can find m and c by substituting y = mx + c in 

the equation and equating to zero the various powers of x starting from the highest power.  

 

 

Polar Coordinates : (Tracing a curve f(r,θ) = 0): 

 

 To trace curve given  in terms of polar coordinates by the equation f(r,θ) = 0.  

 

I. Symmetry of the curve.  

 

(a) Symmetry about the initial line: 

  

 The curve f(r,θ) = 0 is symmetric about the initial line θ = 0 if f(r, -θ) = f(r, θ).    

 

 Example. r = a(1+cosθ);  r = a(1-cosθ); r = a cos2θ Symmetric about the initial line. 

 

However  r = a(1-sinθ) is not Symmetric about the initial line. 

 

 Symmetry about the pole 

. 

The curve  is symmetric about the pole  if f(-r,θ) = f(r, θ).    

 

Example:  r
2
 = a

2
 cos2θ ; r

2
 = a

2
 sin2θ  are Symmetric about the pole. 

.        

(c) Symmetry about θ = 
𝝅

𝟐
 

 

 The curve f(r,θ) = 0 is symmetric about the line θ = 
𝜋

2
 (y-axis) if f(r, 𝜋, -θ) = f(r, θ).  : 

 

Example : r = a(1+sinθ) ; r = a sin3θ are symmetric about θ = 
𝜋

2
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Tangents at the pole.  

 

We put r = θ in the equation of the curve and solve the resulting equation for θ.If there 

exists a real solution α for θ,then the curve passes through the pole and the line θ=α is 

a tangent to the curve at the pole.  

 

Region in which the curve lies. 

 

1) If the maximum value of r is a, then the curve lies within the circle r = a. 

 

2) If there exist values of θ for which r2<0 so that r becomes imaginary then the curve 

does not exist for those values of θ. 

 

 Example: r
2
=a

2
 sin2θ does not exist if  

𝜋

2
 < θ < 𝜋 

 

Value of 𝜙. 

 The angle 𝜙 which a tangent at(r, θ) makes with the initial line is found from the 

formula tan𝜙= r
𝑑𝜃

𝑑𝑟
 

 

Asymptotes: 

 If there is no finite value α for θ such that r͚  , then the curve f(r, θ) = 0 has no 

asymptotes 

 

Points on the curve: 

 Giving different values for θ we can get different points on the curve which will be of 

use in tracing the curve and ascertain whether r increases or decreases in the region. 

 

Tracing a curve x = f(t), y = g(t)  (parametric equations) 

 

 

(i) Suppose x = f(t), y = g(t) are parametric eqations of a curve where t is the parameter. 

 

If it is possible to eliminate the parameter between the two equations and get the 
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Cartesian form of the curve we proceed as in the case of Cartesian coordinates. 

 

(ii) If the parameter t can not be easily eliminated 

 

(a) Find 
𝑑𝑦

𝑑𝑥
 = 

𝑑𝑦

𝑑𝑡
  ×  

𝑑𝑡

𝑑𝑥
  

(b) Give different values to the parameter t and find x, y, 
𝑑𝑦

𝑑𝑥
. This gives different points 

on the curve end slopes of the tangents at these points. 

(c) We plot the points and trace the curve. 

 

Solved Problems: 

 

Problem 1 : Trace the curve    3
2

3
2

3
2

)()()( ayx    (four cusped cycloid or asteroid) 

Solution:        

 Given the curve 
3

2
3

2
3

2

)()()( ayx    ……………………….(1) 

 

  Clearly the curve is symmetrical about both the axes. Hence it is enough to discuss 

 

The nature of the curve in the first guadrant only. 

 

 To find the points of intersection of the curve with x-axis, we put y=0 in eqn (1) 

We get  3
2

3
2

)()( 2ax 

 
Therefore x

2 
= a

2
 and hence x=± a. 

Hence the curve meets the x-axis at (0,a) and (-a,0). 

Similarly, the curve meets the y-axis at (a,0) and (0,-a).  

From eqn (1) 

3
2

3
2

1 

















a

x

a

y

,we see that if │x│> a,then 

 

3
2










a

y

 < 0 and hence y is imaginary. 

Hence the curve does not lie beyond x = ± a 

Similarly, the curve does not lie beyond y = ± a 
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3, 








x

y

dx

dy
Also

 
3

 
3

 

 

 

0








dx

dy

 

At (a, 0) and hence x-axis is a tangent to the two branches of the curve 

 at (a, 0) lying in the first and fourth quadrants. 

Hence the curve has a cusp of first kind at (a, 0). 

 Similarly, the curve has cusps of first kind at (0, a), (-a, 0), (0,-a). 

Hence the curve is known as four cusp hypocycloid. 

 Also, the curve is concave in [0,a]. 

Hence the form of the curve is as shown in the fig. 

 

Note: The parametric equation of this curve can be taken as x= acos
3
θ; y = asin

3
θ . 

 

Problem 2 : Trace the curve y
2
 (2a - x) = x

3
 (cissoid)

 
 

Solution. y
2
 (2a - x) = x

3
 ……………………………… [1] 

 

Since [1] contains even power of y the curve is symmetrical about the x-axis.  

 

Obviously it passes through the origin.  

 

 The tangents at the origin are given by y
2
 = 0 and they are real and coincident. Hence 

the origin is a cusp.   

 The curve meets the x-axis and y-axis only at the origin.  

Equating the coefficient of the highest degree term in y to zero we get x - 2a = 0. The 

asymptotes parallel to the y - axis is x - 2a = 0 and this is the only asymptote to the curve. 
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 Writing the given equation as .
2 xa

x
xy


  (Considering the positive root) we see 

that y is imaginary when x < 0 or when x > 2a.  

 

 Hence the curve does not lie to the left of the y - axis and to the right of the line          

x = 2a. 

 

 As x increases from 0 to 2a y increases from 0 to . 

 

 Hence the form of the curve is as shown in the figure and the curve is called cissoid.    

 

 

 

 

Problem 3: Trace the curve r = a(1+cos ) where a > 0 (cardioid).  

 

Solution. We note the following from the equation of the given curve. The curve is 

symmetric about the initial line.  

 

 When  =  we have r = 0. Hence the curve passes through the pole and further  =  

is the tangent at the pole.  

 

 Let   be the angle made by the tangent at (r, )  with the initial line.  

 

 Now, .
22

tan
2

cot
sin

)cos1(
tan 































a

a

dr

d
r     
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2

0

2



 Hence when  = 0, 

2


  and r = 2a.  

 

Thus the tangent at (2a, 0) is perpendicular to the initial line.  

 

 Since the maximum value of r is 2a, no portion of the curve lies to the right of the 

tangent at (2a, 0) and hence the curve lies within the circle r = 2a.  

 

 The following table gives a set of points lying on the curve.  

 

  

 0 /4 /2  - /2 - /4 

r 2a a (1+
2

1
) a 0 a a (1+

2

1
) 

  

 

 When  increases from 0 to 2, r is positive and it decreases from 2a to 0. The form of 

the curve is as shown in the figure and it is a cardioid.  

 

 

 

 

Problem 4 : Trace the curve r
2
 = a

2
 cos 2  (Lemniscate of Bernoulli)  

 

Solution. The curve is symmetric about the pole and the initial line.  
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 Negative values of cos 2  give imaginary values of r. Hence the curve lies in the two 

quadrants bounded by .
4

5
,

4

3
;

4
,

4

7 









  and   

 

 The lines 
4

7
,

4

5
;

4

3
,

4











  are tangents to the curve at the people.  

 

 Some points on the curve are given below.  

 

  

 0 /4 3/4 5/4 7/4 

r A 0 0 0 0 

 

 When  increases from 
4

7
  to 2 (=0), r incerases from 0 to a and when  

increases from 0 to 
4


  r decreases from a to 0.  

 

 The form of the curve is as shown in the figure below.  

 

 

 

Problem 5  : Trace the curve r = a(1-cosθ) 

 

Soln: The curve is symmetric about the initial line. 
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 It passes through the pole. 

  

 tan𝜙 = tan(θ/2).  Hence 𝜙 = θ/2. 

At (2a, 𝜋), the tangent is perpendicular to the initial line. 

 

 

 

Problem 6 : Trace the curve r = sin 3 . 

 

Solution. The curve is symmetric about the line 
2


   

 

 r = 0  sin 3  = 0  3  = 0 or multiple of  

 

                                  = 0, .
3

5
,

3

4
,

3

3
,

3

2
,

3


  

 

 For  = 0 the curve passes through the pole.  

 

Further  = 0,  =  ; 
3

5
,

3

2
;

3

4
,

3











  and are the tangents to the curve at the 

pole       

                  

 Since |sin 3θ| ≤1, r ≤ a. Hence the curve lies entirely within the circle r = a. 

 

 We get different points on the curve as shown in the table. 
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θ 0 π/6 π/3 π/2 2π/3 5π/6 π 

r 0 a 0 -a 0 A 0 

 

When  0 ≤ θ ≤ π/ 3 the curve has one loop around θ = π/6.      

 

When  4π/3 ≤ θ ≤ 5π/ 3 the curve has another loop around θ = 3π/2.      

 

When  2π/3 ≤ θ ≤ π the curve has yet another loop around θ = 5π/6.     

 

The form of the courve as shown in the figure and it is known as three leaved rose.   
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UNIT – 2 : EVALUATION OF DOUBLE INTEGRALS 

Evaluation of double and triple integrals-Jacobeans, change of variables. 

 

EVALUATION OF DOUBLE INTEGRALS 

 

1.1 Double Integrals: 

 

 Let f(x,y) be a continuous function defind on a closed rectangle R = {(x,y)/ a  x  b 

and c  y  d}. 

 For any fixed x[a,b] consider the integral 
d

c

dyyxf .),(  

The value of this integral depends on x and we get a new function of x. This can be 

integrated with respect to x and we get .),( dxdyyxf

b

c

d

c

  







 

This is called an iterated integral. 

 Similarly we can define another integral .),( dydxyxf

d

c

b

a

  







 

 For continuous functions f(x,y) we have 

 

   ),(),(),( dydxyxfdxdyyxfdydxyxf

d

c

b

a

b

c

d

cR

   
















  

 

 We omit the proof of this result. 

 

 If f(x,y) is continuous on a bounded region S and if S is given by S = { (x,y)/ a  x  b 

and 1(x)  y  2(x)} where 1 and 2 are two continuous functions definded on [a, b] then 

 

   𝑓 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 =     𝑓 𝑥, 𝑦 𝑑𝑦
𝜑2(𝑥)

𝜑1(𝑥)
 𝑑𝑥

𝑏

𝑎𝑆
 

 

The inerated integral in the right hand side is also written in the form 
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   𝑑𝑥  𝑓 𝑥, 𝑦 𝑑𝑦.
𝜑2(𝑥)

𝜑1(𝑥)

𝑏

𝑎
 

 

 Similarly if S = { (x,y) / c  y  d and 1(y)  x  2(y)} 

then  

   𝑓 𝑥, 𝑦 𝑑𝑥 𝑑𝑦 =     𝑓 𝑥, 𝑦 𝑑𝑥
𝜑2(𝑦)

𝜑1(𝑦)
 𝑑𝑦

𝑑

𝑐𝑆
 

 

 If S cannot be written in neither of the above two forms we devide S into finite 

number of subregions such that each of the subregion can be represented in one of the above 

forms and we get the double integral over S by adding the integrals over these subregions. 

 

 Hence to evaluate   ),(
D

dydxyxf we first convert it to an iterated integral of the two 

forms given above. 

 

 

Solved Problems. 

Problem 1. Evaluate  

1

0

2

0

2 .dxdyxyI  

 

Solution. 

 

 

 
1

0

2

0

2 dxdyxyNow
3

4

23

8
8

3

1

3

1
1

0

1

0

2
2

0

1

0

3 
















 

x
dxxdxxy

 

 

.
3

4
1

0

2

0

2

   dxdyxyThereforeI

 

 

Problem :2 Evaluate  

a ax

ax

dxdyxyI

4

0

2

4

2

.  
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Solution.  dx
xy

I

a ax

ax

 









4

0

2

4/

2

22
 

   

   = 
3

64

963

4

2

1

16
4

2

1 4
4

0

2

63

2

44

0

a

a

xax
dx

a

x
axx

aa


















  

 

Problem : 3  Evaluate    

a b

dydxyxI
0 0

22
 

 

 Solution.  dyby
b

dyxy
x

I

aba

 


















0

2
3

00

2
3

33
 

 

      

a

byyb

0

33

33








  

      = 1/3 ab (a
2
 + b

2
). 

 

Problem 4.  Evaluate 

  






22 /1

0

3

0

axba

dyyxdxI  

 

 Solution. 

  

dxyxI

axba
22 /1

00

33

2

1


 







  

 

      

a
a

a

x
xbdx

a

x
xb

0

2

6
42

0 2

2
32

64

1

2

1
1

2

1

















   

      
24

24ba
 . 

 

Problem 5 : Evaluate  
 




1

0
22

2/1

0

.
1

dxdy
yx

x
I
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 Solution.  dx
x

xy
xI  










2/1

0

1

0

)(1sin

                         

 

 

        

2/1

0

2/1

0

211 1sinsin xxxxdx (integration by parts) 

     .1
2

3

12


π
 

 

Problem 6 : Evaluate 
θaπ

θddrθrI

cos

00

sin  

 Solution. θdrθI

θaπ cos

0

2

0
2

1
sin 








   

 

      

π π

θdθaθdθθa
0 0

2222 )(coscos
2

1
sincos

2

1
 

      πθa 0

32 cos
6

1
  

 

     = 1/3 a
2 

 

Problem 7. Evaluate  
 

θddr
ar

r
π




0

222

2/

0

 

 Solution Let 
 

θddr
ar

r
I

π







0

222

2/

0

 

   θd
ar

θd
ar

rd ππ 

  
































0

2/

0

22

2/

0 0

222

2

1

2

1

)(

)(
2

1

 

 

   

2/

0

2

2/

0

2 22

1
ππ

a

θ

a

θd








   
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24a

π
 . 

 

 Change of order of Integration: 

 

Problem 1.       Evaluate 
D

dxdyxyI where D is the region bounded by the curve x = y
2
,      

x = 2-y, y=0 and y = 1. 

 

Solution. The given region bounded by the curves is given in the figure. 

 

In this region x various from 0 to 2. When 0  x  1, for fixed x  

 

y varies from 0 to x. when 1 ≤ x ≤ 2,y various from 0 to 2-x. 

  

                The region D can be subdivided into two regions D1 and D2 as shown in the figure. 

    

    
D D D

dxdyxydxdyxydydxxy
1 2

 

         




1

0 0

2

1

2

0

x x

dxdyxydxdyxy  

     .
2

1

2

1
2

0

2

1

2

0

1

0

2 dxxydxxy

xx 

 
















  

      dxxxdxx  

2

1

2

1

0

2 )2(
2

1

2

1
 

      

2

1

342

1

0

3

3

4

4

1
2

2

1

6

1

















 xxxx  

      = )]
3

4

4

1
2()8

3

4
16

4

1
8[(

2

1

6

1


 

=9/24 (verify). 
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Problem 2. Evaluate 
D

dxdyyx 22 where D is the circular disc x
2
+y

2
  1. 

Solution.  In D, x varies from -1 to 1. For a fixed x. y varies from -  21 x  to  21 x  

  

 

 

  







D

x

x

dxdyyxdydxyx

1

1

1

1

2222

2

2

 

    

 

dxdyyx

x

 




1

0

1

0

22

2

4  

    

 

dxyx

x21

0

1

0

32

3

1
4



 







  

dxxx 

1

0

2/322 )1(4  



2/

0

42 cossin
3

4
π

θdθθ  (Putting x=Sin) 

2426.4.2

1.3.1

3

4 ππ

















 . 

 

 

Problem 3.  Change the order of integration in 

     

2/

0

cos2

0

),(

π θa

θddrrθrfI  

Solution We have r =2a cos represents a circle with centre (a, 0) and radius a. 

  

             Since 0    /2 the region of integration is the 

semicircular disc lying in the first quadrant. 

 

In this region r varies from 0 to 2a.  

 Futher r = 2a cos implies  = cos
-1

 (r/2a). 

 

 Hence for each fixed r, varies from 0 to cos
-1

(r/2a). 

 Hence  





a ar

drθdrθrfI

2

0

)2/(cos

0

1

),( . 
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Problem 4. Evaluate 
D

xy dxdyeI /  where D is the region bounded by the straight lines y=x; 

y=0 and x=1. 

 

Solution. The rigion D is a triangle as shown in the figure. 

 

In this region x varies from 0 to 1. For each fixed x,y varies from 0 to x. 

   

1

0 0

/

x

xy dxdyeI  

  dxxe

x

xy

0

1

0

/

  

         1
2

1
)1(

1

0

  edxex . 

Problem 5: Evaluate 
D

dydxyx 22
 where D is the circular disc x

2
+y

2
  1. 

Solution. In D, x varies from -1 to 1. 

 For a fixed x,y varies from 
21 x to 

21 x  

   








1

1

1

1

2222

2

2

x

xD

dxdyyxdydxyx  

     




1

0

1

0

22

2

4

x

dxdyyx  

    dxyx

x21

0

1

0

32

3

1
4



 







  

    dxxx 

1

0

2/322 )1(4  

    

2/

0

42 cossin
3

4


 d  (Putting x= sin) 

    

















26.4.2

1.3.1
4

π
 

    = /24. 
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Problem 6. Evaluate   dydxyx
D

  22 where D is the region bounded by y=x
2
, x = 2 and y=1. 

 

Solution. The region of integration is as shown in the figure. 

 In this region x varies from 1 to 2 and for each fixed x,y varies from 1 to x
2
. 

      .2

2

1 1

222

2

dxdyyxdydxyx

x

D

    

    dxyyx

x2

1

2

1

32

3

1
 








  

     

    dxxx 









2

1

64

3

1
 

    
105

1286

21

1

5

1
2

1

75 







 xx

 

 

 

Problem 7.  Evaluate .
0

dydx
y

e
I

x

y

 
  



 

Solution.  We notice that we must integrate first w.r.t.x. Hence we change the order of 

integration. The region of integration is as shown in the figure. (We note the D is an 

unbounded region and the given integral is an improper double integral). 

 

In the region D, y varies from 0 to . For each fixed y,x varies from 0 to y. 

 

dydx
y

e
I

y y

 
 


0 0  

dyx
y

e
y

y

00


 











 

   

 




 

00

yy edye

 

      = 1. 

Exercises. 

1. Evaluate the following integrals. 
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(a) dxdyx  

1

0

2

0

)2(

    

dydxyxIb   

1

0

2

0

22 )()

 

 

1.2 TRIPLE INTEGRALS: 

 

 The definition triple integrals for a funtion f(x,y,z) defind over a region D 

is R
3
 is analogus to the definition of double integral is defind is  the definition . 

we replace rectangles by parallelopipeds and area by volume to obtain the 

corresponding definition of triple integrals. 

 

 A triple integral of a function defind over a region D is denoted by 

 

 
D

dzdydxzyxf ),,(

 
or 

D

dVzyxf ),,( or 
D

zyxdzyxf ).,,(),,(

 

 

 The triple integral can be expressed as an integrated integrals in several 

ways. 

 

 For example is a region D in R
3
 is given by  

 

D = {(x,y,z)/ a  x  b; 1(x)  y  2(x) 1(x,y)  z  2(x,y) then  

 

 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 =     𝑓 𝑥, 𝑦, 𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 

Ψ2 x,y 

Ψ1(x,y

Φ2 x 

Φ1 x 

𝑏

𝑎𝐷

 

 

This can also be written as  

  𝑑𝑦  𝑓 𝑥, 𝑦, 𝑧 𝑑𝑧  

Ψ2 x,y 

Ψ1(x,y

Φ2 x 

Φ1 x 

𝑏

𝑎
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Similarly under suitable conditions a given triple integral can be 

expressed as an iterated integral in five other ways by permuting the variables. 

 

Solved Problems. 

Problem 1. Evaluate   

a x y

dxdydzxyzI
0 0 0

 

Solution:  

  dxdyxyzI

ya x

00 0

2

2

1
  










 

dxxydxdyxy

xaa x

00

4

0 0

3

4

1

2

1

2

1
  










 

aa

xdxx
0

6

0

5

6

1

8

1

8

1








   

 = a
6
/48 

 

Problem 2.   Evaluate I= 
D

dzdydxxyz where D is the region bounded by the 

positive octant of the sphere x
2
+y

2
+z

2 
= a

2
. 

 

Solution:  

The projection of the given region in the x-y plane (z = 0) is the region 

bounded by  

the circle x
2
+y

2
 = a

2
 and lying in the first quadrant as shown in the figure. 

 

   In the given region x varies from 0 to a. For a fixed x,y varies from 0 to 

.)( 22 xa 

  
 For a fixed (x,y), z varies from 0 to 

 
.)( 222 yxa   
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     
 



a xa yxa

dxdydzxyzI
0

)(

0

)(

0

22 222

 

      




a xa

dxdyyxaxy
0

)(

0

222

22

)(
2

1
 

      

a

dxxax
0

222 )(
8

1
(Verify) 

      
a

xa
0

322 )(
3

1

16

1








  

        = a
6
/48. 

 

Problem 3. Evaluate   




a x yx

zyx dxdydzeI

log

0 0 0

. 

Solution.    .

log

0 0

0 


a x
yxzyx dxdyeI  

    
 

a x

yxyx dxdyee

log

0 0

)(2
 

  dxee

xa

yxyx

0

log

0

)(2

2

1
 








   

  dxeee

a

xxx

 









log

0

24

2

3

2

1
 

  dxeee

a

xxx

log

0

24

4

3

8

1








  

  = .
8

3

4

3

8

1 24  aaa  

 

Problem 4.  Evaluate  


D
zyx

dzdydx
I

3)1(
 Where D is the region bounded by the 

planes x = 0,    y = 0, z = 0 and x+y+z = 1. 
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Solution. The given region is a tetrahedron. The projection of the given region 

in the x-y plane is the triangle bounded by the lines x = 0, y = 0 and x+y=1 as 

the shown in the figure. 

  

        In the given region x varies from 0 to 1. For each fixed x,y varies from 0 to 

1-x. For each fixed (x,y), z varies from 0 to 1-x-y. 

 

  
 




1

0

1

0

1

0

3)1(

x yx

zyx

dxdydz
I  

     





1

0

1

0

1

0

2
1

2

1
x

yx

dxdyzyx  

   

    














1

0

1

0

2
1

4

1

2

1
x

dxdyzyx

                     

 

  dxyxy

x



 









1

0

1

0

1)1(
4

1

2

1
 

  dxxx








 

1

0

1)1(
2

1
)1(

4

1

2

1
 

  

1

0

2 )1log(
2

1

8

1

4

1

2

1








 xxxx  

  
16

5
2log

2

1
 . 

Excersies. 

1. Evaluate the following triple integrals. 

a)   


1

0

1

0

2

22 yx

dxdydzxyz  

b)    

a b c

dzdydxzyx
0 0 0

)(  

c)   
1

0

2

0

2

1

2 dzyzxdydx  
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1.3  JACOBIANS: 

 In this section we introduce the concept of Jacobian of a transformation 

which plays an important role in change of variables in double and triple 

integrals. 

 

Definition. Consider the transformation given by the equations 

 

x = x(u, v, w); y = y(u, v, w); z =z (u, v, w) where the functions x,y,z have 

continuous first order partial derivatives. 

 The Jacobian J of the transformation is defind by 

   

w

z

v

z

u

z
w

y

v

y

u

y
w

x

v

x

u

x

J



































  

 The jacobian is also denoted by 
),,(

),,(

wvu

zyx
J




  

 

 For a transformation in two variables x = x (u,v) and y = y(u,v) the 

Jacobian is given by a determinant of order two. Hence .
),(

),(

vu

yx
J




  

Examples. 

 

1. The transformation from cartesian coordinates (x,y) to polar coordinates (r,)  

 

Soln: 

 

        Given that x = rcos and y = r sin. 

 

𝜕𝑥

𝜕𝑟
 = cosθ : 

𝜕𝑦

𝜕𝑟
 = sinθ  
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𝜕𝑥

𝜕𝜃
 = -r sinθ : 

𝜕𝑦

𝜕𝜃
 = r cosθ  

 








cossin

sincos

r

r

y

r

y

x

r

x

J





















 

 = rcos2θ+r sin2θ = r(cos2θ+ sin2θ) = r. 

 

2. The transformation from cartesian coordinates (x,y,z) to spherical polar coordinates 

(r,,)  

  

Soln: Given that    

x = rsincos 

y= rsinθ sinφ 

z = rcos 

 Here 0     and 0    2. 

 

𝐽 =  
𝜕 𝑥,𝑦,𝑧 

𝜕 𝑟,𝜃,𝑧 
=











































zz

r

z

yy

r

y

xx

r

x

J

 

 

=  
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 𝑟𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 −𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃 0

  

 

= sinθcosφ[0+r
2
sin

2
θcosφ]-rcosθcosφ[0-rsinθcosθcosφ] 

 

-rsinθsinφ[- rsin
2
θsinφ-rcos

2
θsinφ] 

 

= r
2
 sin. (on simplification). 
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3. The transformation from cartesian coordinates (x,y,z) to Cylindrical coordinates (r,,z)  

 

Soln: 

 given that x = rcos, y = rsin, z = z. 

 

 

100

0cossin

0sincos

),,(

),,(





r

r

zr

zyx
J









 

   = cosθ(rcosθ)+rsinθ(sinθ) = r
 

 

4. Consider the transformation x +y = u, 2x-3y = v. 

Soln: 

Given  x +y = u, 2x-3y = v. 

 

)3(
5

1
vux  and )2(

5

1
vuy   

 .
5

1

5

1

5

2
5

1

5

3

),(

),(










vu

yx
J

 

Solved Problems. 

 

Problem 1. If x+y+z=u; y+z=uv; z=uvw then find J. 

 

Solution. From the given three transformations we get x = u-uv; y = uv-uww; z = uvw. 

 

 Now

w

z

v

z

u

z
w

y

v

y

u

y
w

x

v

x

u

x

J




































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=
uvuwvw

uvwuwv

uv





)1()1(

01

 

 

= (1-v)[u
2
v(1-w)+ u

2
vw]+u[v

2
u(1-w)+uv

2
w] 

 

=(1-v)[u
2
v- u

2
v w+ u

2
vw]+u[v

2
u- v

2
u w+uv

2
w] 

 

= u
2
v- u

2
v w+ u

2
vw-u

2
v

2
+u

2
v

2
w-u

2
v

2
w+v

2
u

2
-v

2
u

2
w+u

2
v

2
w 

= u
2
v 

 

Problem 2. If u=x
2
-y

2
 and v = 2xy prove that 

224

1

),(

),(

vuvu

yx








  

Solution. Consider 
xy

yx

vv

uu

vu

yx

yx

yx

22

22

),(

),( 






 
    =4x

2
+4y

2
 = 4(x

2
+y

2
)............. (1) 

 

 We have (x
2
 + y

2
)
2
 = (x

2
-y

2
)
2
 + (2xy)

2
 = u

2
+v

2
. 

 2222 vuyx          ………..(2) 

 From (1) and (2) we get 224
),(

),(
vu

yx

vu





 

 
224

1

),(

),(

vuvu

yx







 . 

 

Excercises. 

1. Prove that .1
),(

),(
.

),(

),(










vu

yx

yx

vu
 

 

1.4 CHANGE OF VARIABLES IN DOUBLE AND TRIPLE INTEGRALS. 

 The evaluation of a double or a triple integral sometimes becomes easier when we 

transform the given variables into new variables. 
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 We state without proof the following theorem regarding change of variables in double 

and triple intergrals. 

 

Theorem 4.1. 

 Consider a transformation given by the equation x = x (u,v) and y = y(u,v) where x 

and y have continuous first order partial derivatives. Let the region D in the x-y plane be 

mapped into the region D* in the u-v plane. Further we assume that the Jacobian of the 

transformation J0 for all points in D. Then   .),(),,(),(
*

dvduJvuyvuxfdydxyxf
DD

   

Similarly for triple integrals we have 

  dwdvduJwvuzwvuywuuxfdzdydxzyxf
D D

 
*

),,(),,,(),,,(),,(  

 We now proceed to evaluate some double and triple integrals by making appropriate 

change of variables. 

 

Solved Problems. 

Problem 1. Evaluate 



D yx

dydxxy
I

22
by transforming to plor coordinates Where D is the 

region enclosed by the circles x
2
+y

2
 = a

2
 and x

2
+y

2
 = 4a

2
 in the first quardrant. 

 

Solution:   

 Put x = rcos and y = rsin 

 We know that J= r. 

 Further in the given domain D,  

0    /2 and a  r  2a. 

  

  θddrr
r

θrθr
I

π a

a

  









2/

0

2
sincos

 

          θdrθθ

aπ 2

0

2/

0

3

3

1
sincos 








  

 

        θdθθ
a

π



2/

0

3

sincos
3

7
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        )(sinsin
3

7
2/

0

3

θdθ
a

π

  

          2/

0

23 sin
6

7 
a  

       .
6

7 3a
  

Problem 2. Evaluate the improper integral dxeI x





0

2

. 

Solution.  .
00

2 22




























 







 dyedxeIII yx  

    
 


0 0

)( 22

dydxe yx
. 

 Put x = rcos and y = rsin. Hence J = r. 

 The region of integration is the first quadrant. 

 Hence r varies from 0 to  and  varies from 0 to /2. 

 

.
2

00

2/

0

2 22

drredrdreI rr

 






 





 

 

     

















 

0

2

0

22

2

1

2
)(

2

1

2

rr e
π

rde
π

 

 

      = /2 (1/2)  = /4 

 

  
2


 I . 

 

 Problem 3. Prove that 




















  1

241

1
2/1

22

22 ππ
dydx

yx

yx
I

D

. 

Where D is the positive quadrant of the circle x
2
+y

2
=1. 

 

Solution. Put x = rcos and y = r sin. 
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  J = r. 

 Futher in D, 0  r  1 and 0    /2. 

 

  drθdr
r

r
I

π 2/11

0

2/

0

2

2

1

1
  












  

 

         drr
r

rπ
2/11

0

2

2

1

1

2  











  

 

        drr
r

r
 
















1

0
4

2

1

1

2


 

   

        dt
t

tπ
 



















1

0
21

1

4
  (by putting r

2
 = t) 

         1

0

2/121 )1(sin
4

tt  
 

        .1
24













 

 

Problem 4. Prove that 

ab
ππ

dydx
yaxbba

yaxbba

D






















 1

24

2/1

222222

222222

 

Where D is the Positive quadrant of the ellipse 1
2

2

2

2


b

y

a

x
. 

Solution. Put x = au and y = bv. 

  .
0

0

),(

),(
ab

b

a

vu

yx
J 




  

 Let D* be the image of D under the above transformation. Then D* is the region 

bounded by the unit circle u
2
+v

2
 = 1 in the first quadrant. 

 

 Now, dydx
byax

byax
I

D

 













2/1

2222

2222

)/()/(1

)/()/(1
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  dvduJ
vu

vu

D

 













2/1

22

22

1

1
 

 

  dvdu
vu

vu
ab

D

 













2/1

22

22

1

1
 

 

  ).1(
4

2
 


ab  (by problem 3). 

 

Problem 5. Evaluate dydxyx
D

  where D is the parallelogram bounded by the lines     

x+y = 0; x+y = 1; 2x-3y = 0 and 2x-3y = 4. 

 

Solution. 

 Put x+y = u and 2x-3y = v. 

 

               Then J = -1/5   (using by above example  1.3 of 4) 

   

 Also D is transformed into the rectangle bounded by the lines u = 0; u = 1; v = 0 and 

V = 4. 

     duvududvu
4

0

1

0

1

0

4

0
5

1

5

1
  










 

     

1

0

2/3

3

2

5

4








 u

 

     

= -8/15 

Problem 6. Evaluate 
D

dzdydxxyzI where D is the positive octant of the ellipsoid 

1
2

2

2

2

2

2


c

z

b

y

a

x
. 

Solution.  

 

Put x = au, y = bv and z = cw. 
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  .

00

00

00

),,(

),,(
abc

c

b

a

wvu

zyx
J 




  

 Let D* be the image of D under the above Transformation. The D* is the positive 

octant of the sphere u
2
+v

2
+w

2
 = 1.  

 

  
*D

dwduduuvwabcI

 

  

        =a
2
b

2
c

2


*D

 uvw du dv dw. 

 

Now, put u = r sin cos 

    v = r sin sin 

    w = r cos 

 Then J = r
2
 sin.  (above example 1.3 of 2) 

 

 . ̇. 𝐼 =  𝑎2𝑏2𝑐2    𝑟5 𝑠𝑖𝑛3𝜃 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑 𝑑𝜑 𝑑𝜃 𝑑𝑟 

π/2

0

π/2

0

1

0

 

 =  𝑎2𝑏2𝑐2  𝑟5𝑑𝑟   𝑠𝑖𝑛3𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃   𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑑𝜑.  

π/2

0

π/2

0

1

0

 

 

       

= 𝑎2𝑏2𝑐2  
1

6
𝑟6 

0

1

 
1

4
𝑠𝑖𝑛4𝜃 

0

𝜋/2

 
1

2
𝑠𝑖𝑛2𝜑 

0

𝜋/2

 

 

       = 
𝑎2𝑏2𝑐2

48
. 

 

Excercise 1. Evaluate the following double integrals using change of variables or otherwise 

over the region indicated. 

a). dydxyx
D

  )( 22
;D is the a region bounded by the circle x

2
 + y

2
 = a

2
.
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b). dydxe
D

yx


 )( 22

 

D is the region bounded by the circle x
2
 + y

2
 = a

2
.

  

c). dydxyx
D

  )( 22
D is the region in the x-y plane bounded by x

2
 + y

2
 = 4 and 

x
2
+y

2
 = 9.
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UNIT – 3 : FIRST ORDER DIFFERENTIAL 

First order differential: equations of higher degree- solvable for p, x and y- Clairaut’s form/ 

linear differential equations of second order- Particular integrals for functions of the form, 

X
n
, e

ax
, eax(f(x)). Second order differential equations with variable coefficients. 

 

1.1 Equations of the first order, but of higher degree. 

 

TYPE A:- Equations solvable for p ).(
dx

dy
  

We shall denote 
dx

dy
hereafter by p. 

 

Let the equation of the first order and of the n
th

 degree in p be  

p
n 

+ P1p
n-1

+P2p
n-2

+….+ Pn=0    …(1) 

 

where P1, P2……Pn denote functions of x and y. 

 

 Suppose the first number of (1) can be resolved into factors of the first degree of the 

form  

 

 (p - R1) (p - R2) (p - R3) …. (p - Rn) 

 

Any relation between x and y which makes any of these factors vanish is a solution of (1). 

 

 Let the primitives of p - R1= 0, p - R2= 0,  etc be 

 

 1(x, y, c1) = 0, 2 (x, y, c2) = 0 … n   (x, y, cn) = 0. 

 

 respectively, where c1, c2, …… cn are arbitrary constants. Without any loss of 

generality, we can replace c1, c2, ….cn by c, where c is an arbitrary constant. Hence the 

solution of (1) is 

 

1(x, y, c).2 (x, y, c) … n   (x, y, c) = 0. 
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Examples. 

 

1) Solve x
2
p

2
 + 3xyp + 2y

2
 = 0. 

Soln: 

 Solving for p, p = .
2

x

y
or

x

y
 (Quadratic eqn) 

 x

y

dx

dy


      
0; 

x

y

dx

dy

 

𝑑𝑥

𝑥
+  

𝑑𝑦

𝑦
  = 0 

Integrating, 

 

log x+log y =log c 

 

 Therefore xy = c   … (1)  

 

 x

y

dx

dy 2


  
0

2
; 

x

y

dx

dy

    

0
2


x

dx

y

dy
 

Integrating, 

 

log y+2logx = log c 

 

ie) log y + log x
2
 = log c

    

 

 yx
2
 = c   …(2) 

 

The solution is (xy – c) (yx
2
-c) = 0. 

 

2) Solve .0
2 2

2

2
2 










x

y
y

x

y
xyp

x

y
yxp
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Soln:

  

Solving for p,
 

x
x

y
pory

x

y
p  )(  (Quadratic eqn)  

 

x
x

y

dx

dy
ory

x

y

dx

dy









 )(

 

 

x
x

y

dx

dy
ordx

xy

dy









 1

1

 

Integrating on, 

log y = log x –x+logc 

 

ie)logy-log x = -x+log c 

 log 
x

y
= -x + log c 

 
𝑦

𝑥
=ce

-x 

i.e., y = cxe
-x 

 

The second equation is linear in y. Hence the solution is  



 

cdxxeye x

dx

x

dx

 

i.e., cx
x

y
  

i.e., y = - x
2
 + cx 

 

The general solution is (y-cxe
-x

) (y+x
2
-cx) = 0. 

 

 TYPE B :-Let the differential equation (1) of  2 be put in the form f (x, y, p) = 0. When it 

cannot be resolved into rational linear factors as in  5.1, it may be either solved for y or x.  

 

Equations solvable for y. 

 

f(x,y,p) = 0 can be put in the form 
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    y = F (x,p)        ….(1) 

 

Differentiating with respect to x, p = φ (x,p,
𝑑𝑝

𝑑𝑥
) 

 

     This, being an equation in the two variables p and x, can be integrated by any of the 

foregoing methods. Hence we obtain 

 

  Ψ(x,p,c) = 0       ….(2) 

Eliminating p between (1) and (2), the solution is got. 

 

 Equations solvable for x: 

f (x, y,) = 0 can be put in the form  

 x= F (y, )       ….(1)    

 

Differentiating with respect to .,,
1

, 









dy

dp
pyy 


 

 

Integrating leads to Ψ (y, p, c) = 0    ….(2) 

 

Eliminating  between (1) and (2), the solution of (1) is got.  

 

Examples 

 

1) Solve xp
2
-2yp+x=0: 

 

Soln: 

Solving for y, 
p

p
xy

2

)1( 2 
  

Differentiating with respect to x, [
𝑑𝑦

𝑑𝑥
= 𝑝] 

 

 
dx

dp

p

p
x

p

p
p

2

22

2

1

2

1 



  
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2

22

2

)1(

2

1

p

p

dx

dp
x

p

p 




 

 

p

dp

x

dx
  

 

Integrating, p = cx. 

  

Eliminating p between this and the given equation, the solution is 

 

2 cy = c
2
x

2
+1. 

 

 

2) Solve  x = y
2 

+ log p  … (1)  

 

Soln:  

(This is easily solvable for x only) 

 

Diffenentiating with respect to y, 

pdy

dp
y

p

1
2

1
  

 

.12  py
dy

dp
This is linear in p and hence.  

 

.
32

  cdyeep yy
  ….(2) 

 

(It must be noted that the integral  on the R.H.S. cannot be integrated in finite terms.) 

 

 The eliminant of p  between (1) and (2) gives the solution.  

 

Note. In the above problem, the solution has not been got explicity by eliminating p. 

But we have x and y expressed in terms parameter p. This will do.  
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 1.2 Clairaut’s form.  

 

The equation known as Clairaut’s is of the form  

y= px + f (p)     ….. (1) 

Differentiating with respect to x, p = p +  
dx

dp
pfx )(  

 
dx

dp
0 or x + f (p) = 0. 

 

0
dx

dp
, integrating on, p = c, a constant.  

 

The solution of (1) is y = cx + f (c). 

 

We have to replace p in Clairaut’s equation by c. The other factor y + f (p) = 0 taken along 

with (1) give, on eliminating of p, a solution of (1). But this solution is not included in the 

general solution (2). Such a solution as this is called a singular solution.  

 

Examples. 

 

1) Solve y = (x-a) p-p
2 

Soln: 

 

This is Clairaut’s equation; hence the solution is 

 

y= (x-a) c- c
2 

 

2) Solve y = 2px + y
2
p

2
 

Soln: 

 

Putting X =2x and Y =y
2,  

 

dX=2dx: dY = 2ydy 
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yp
dX

dY
P   

 

The equation transforms into Y = XP + P
2 

 

This is Clairaut’s equation; hence Y=cX+c
2. 

 

The solution is y
2
 = 2xc + c

. 

  

We have an extended form of Clairaut’s equation of the type 

 y = x f (p) +  (p). 

 

Differentiating with respect to x   … (1) 

 

 p = f (p) + [xf '(p) + ' (p)⦌
dx

dp
 

 
)(

)('

)(

)('

pfp

p

ppf

pxf

dp

dx








 

 

 This is linear in X and hence gives F (x, p , c ) = 0 

 

 The eliminant of P between this equation and (1) give the solution of (1). 

 

Example.  

1) Solve y = xp+x(1+p
2)1/2  

Soln: 

Given y = xp+x(1+p
2)1/2 

 

Differentiating with respect to x. 

 


















2

)2

1
)1( 2

1

p

xp
x

dx

dp
ppp  
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Hence dp .0
)1(

1
2

2






x

dx

p

pp
 

 

Integrating,   





c
x

dx

p

dpp

p

dp
log

11
22

 

 

.loglog)1log(
2

1
)1(log.,. 22 cxpppei   

 

cxppp log)11(log 22   

 

  cxppp  22 11
    …(1)    

 

 

Eliminating p between (1) and (2) the solution is got.  

 

1.3  LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT 

COEFFICIENTS 

 

 A typical linear equation of the second order with constant coefficients is  

Xcy
dx

dy
b

dx

yd
a 

2

2

     …… (1)  

 

where a,b ,c are constants and X is a function of x. 

 

 Let us consider (1) without the second number, 

 

 0.,.
2

2

 cy
dx

dy
b

dx

yd
aei       …..(2) 

 

 The solution of this equation (2) is called the complementary function of (1). 
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 To solve (2), assume as a trial solution y = e
mx

  for some value of m. Now  
𝑑𝑦

𝑑𝑥
=

𝑚 𝑒𝑚𝑥 𝑎𝑛𝑑
𝑑2𝑦

𝑑𝑥2 = 𝑚2𝑒𝑚𝑥 .  Substituting these values in (2), we get  

 

e
mx

(am
2
+bm+c = 0       ….. (3) 

 

 Hence m satisfies am
2
+bm+c=0. This equation in m is called the auxiliary equation.  

 

 Three cases can arise in the solution of the auxiliary equation.  

 

 Case(i). Let the auxiliary equation (3) has two real and distinct roots m1 and m2. 

 

  y=e
m1x

 and y = e
m

2
x 
are solutions of (2). 

 

 Hence A e
m

1
x
, B e

m
2

x
 are solutions of (2), where A and B are arbitrary constants. Thus 

y= A e
m

1
x
 + B e

m
2

x
 is the most general solution of (2) as the number of constants occuring in 

this solution is two, equal to the order of the differential equation.  

 

 Case (ii). Let the auxiliary equation (3) has two roots equal and real.  

 

 Let m2=m1. The solution y= A e
m

1
x
 + B e

m
2

x
 becomes. 

 

 (A+B) e
m

1
x
 = c e

m
1

x
   ……4 

 

where c is a single arbitrary constant equal to A+B. Thus the number of constants is reduced 

to one which is one short of the order of the differential equation (2) and therefore (4) ceases 

to represent the general solution. Hence we proceed as follows : 

 

 Let us put m2 = m1 + ϵ and allow ϵ to tend to zero.  

 

 The solution is  

  y  =  A e
m

1
x
 + B e

(m
1

+ϵ) x 

   
= e

m
1

x
 + (A + B e

ϵ x
) 
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   = 



















 .....

2
1e

22
m1

x
xBA

x
 

by the exponential theorem 

 = e
m

1
x 
(A+B+ϵ B x) the other terms tending to zero as ϵ ⟶ 0. 

 We can choose B sufficiently big so as to make ϵ B finite asϵ ⟶ 0. 

and A large with opposite sign to B so that A + B is finite.  

 

 If A + B + C and ϵB = D, the solution corresponding to two equal roots m1 is e
m

1
x
 (C 

+ D x). 

 

 

Case (iii). Let the auxiliary equation has imaginary roots.  

 

 As imaginary roots ocuur in pairs, let m1 = + i where  and  are real; then m2 =   

- i. 

 

 The solution is y  = A e 
(+i)x

 + B e
-i)x

 

    = e 
x

 [A e
ix + 

B-
ix

] 

    = e 
x

 {A cos  x + i sin  x + B (cos x – isin x)} by Euer’s 

formula. 

 

    = e
x

 (c cos  x + Dsin x), where C and D are arbitrary 

constants.  

 

 This can also be written as y = A e
 x

 cos (x+B), where A and B arbitrary constants.  

 

Examples. 

 

1) Solve 045
2

2

 y
dx

dy

dx

yd

 

Soln:
  

  The auxiliary equation is m
2 

- 5m + 4 = 0 
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( m -1) (m-4)=0 

 

m=1 and m=4. 

  

complimentary function y = A e
x
 + B e

4x
 

 

2)Solve 09
2

2

 y
dx

yd

 

Soln: 

 The auxiliary equation is m
2
 -9= 0

  
 

m
2
-3

2
 = 0 ; (m-3)(m+3)=0 

 

m=3 and m=-3 

C.F y = A e
3x

 + B e
3x

 

 

 3)Solve 02
2

2

 y
dx

dy

dx

yd
 

Soln: 

The auxiliary equation is m
2
 + 2m + 1 = 0, i.e., (m+1)

2 
= 0. 

  m = - 1 twice. 

 C.F y = e
-x 

(A + B x). 

 

4)Solve 044
2

2


dx

dy

dx

yd
 

Soln: 

The auxiliary equation is m
2
 + 4m + 2

2
 = 0, i.e., (m+2)

2 
= 0. 

  m = - 2 twice. 

  y = e
-2x 

(A + B x). 
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5) Solve 053
2

2

 y
dx

dy

dx

d

 

Soln:
 

The auxiliary equation is m
2
 – 3m + 5 = 0. 

Solving,(quadratic eqn form) 
2

113 i
m


  

 









































 xBxASiney

x

2

11
sin

2

11
2

3

 

6)Solve 0134
2

2

 y
dx

dy

dx

yd

 

Soln:
 

The auxiliary equation is m
2
 +4m 13 = 0. 

Solving,(quadratic eqn form) 
2

64 i
m


  

im 32  

    xBxASiney x 3sin32  
 

 

Exercises: 

 

 Solve the following equations :- 

 

1. 086
2

2

 y
dx

dy

dx

yd
 2. 04

2

2

 y
dx

dy

dx

yd
 

 

3.  044
2

2

 y
dx

dy

dx

yd
 4. 083

2

2

 y
dx

dy

dx

yd
 

 

 The operators D and D
-1

 

 Let D stand for the operator 
dx

d
and D

2
 for 

2

2

dx

d
 

 This symbol D satisfies the commutative, associative, and distributive laws; for  

(D
m

+D
n
) u = (D

n
+D

m
)u = D

n
u +D

m 
u 
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 D
m

.D
n
 u = D

n
.D

m
 u = D

m+n
u 

and D ( u+v) = D (v+u). 

 

 We can define the inverse operator D
-1

 as one such that when it operates on any 

function of x and subsequently the operation by D is performed, the function is left unaltered. 

Thus D
-1 

represents integration. 

 

 We shall define the operator 
)(

1

Df
as the inverse of the operator f (D). i.e., X

Df )(

1

is that function of x which, when operated upon by f(D) yields X. 

 

 We shall assume that the order of the operators f(D) and 
)(

1

Df
can be interchanged.  

 The f (D) xxDf
Df

x
Df










)(
)(

1

)(

1
 

 

1.4  Particular integral. 

 

Consider equation (1) which can be written symbolically as 

 

(aD
2
+ bD + c) y = x  

 

or shortly f (D) y = X, where f (D) = a D
2
 + b D + c . 

 

Let y = u be a particular solution of this equation.  

 

Let Y be the complementary function of (1)  

 

Then y = Y + u is the general solution of (1). 

u is called the particular integral of (1). 

In symbolic form, it is written as X
Df )(

1
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X
cbDaD

IPei



2

1
..,.  

 

 Special methods of finding P.I. 

  

(a) Let X be of the form e
x 

  

 
D e

x 
=  e

x
 

 

More generally, D
n
 e
x

=  (
n
) e

x 

 

)()()( DfasefeDf xx   is a quadratic in D in our case. 

 

Operation on both sides by xx e
Df

fe
Df

 
)(

1
)(,

)(

1
  

 

If f ()  0,  xx e
f

e
Df



 )(

1

)(

1
  

 

Case (i). Hence the rule is: 

 

In xe
Df



),(

1
, replace D by  if f ()  0 

 

Case (ii) If f () = 0,  satisfies the auxiliary equation f (m) = 0. Then we proceed as follows: 

 

(i) Let the auxiliary equation have two distinct roots m1 and m2 and let  = m1. 

 

Then f (m)  =a (m- m1) (m - m2)  

= a (m-) (m - m2)  

 P.I.  = xe
mDDa



 ))((

1

2
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   = 
)(

1

Da
aboveibycasee

m

x )(
)(

1

2



   

To find xe
D



 )(

1


,let  us put z =  

 Operating on both sides by D – α,
𝑑𝑧

𝑑𝑥
 – α z = e

αx
. 

This is linear equation of the first order; hence 

 z e
-αx

 = ʃ e
-αx 

dx = x. 

(It must be noted that no constant of integration is added as we are evaluating only a 

particular integral. 

 

 If the constant be added there will occur in the general solution 3 constants as there 

are already in the C.F. and thus one constant will be too many). 

 

  .˙.  Z = x e
αx 

   

         Hence P.I. = xxe
ma



 )(

1

2
.
 

(ii) Let the auxiliary equation have two equal rootes each equal to α.  

                  i.e., m2 = m1 = α. 

 

 .˙.f (m) = a (m-α)
2
 

 




 xe
Da

IP 

 2)(

1
..

xe
DDa



 ))((

1


 

 

         = 
1

𝑎

𝑋 𝑒𝛼𝑥

𝐷−𝛼
 

 

If 
xαxα xezα

dx

dz
xe

αD
z 


 ,

1
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Sloving,  

2

2x
xdxze xα  (no constant is added). 

  xαe
x

z
2

2



 

  

xαe
x

IP
2

..
2



 

Examples. 

Ex.1.Slove (D
2
+5D+6)y = e

x
. 

Soln: 

 To find the C.F of (D
2
+5D+6)y = 0. 

 The auxillary equation is m
2
 + 5m + 6 = 0. 

 (m+2)(m+3)=0 

 m = -2 and -3. 

 C.F.= A e
-2x

 + B e
-3x

. 

 

xe
DD

IP
65

1
..

2 


 

   

xe
12

1
 on replacing D by 1  

  
12

32
x

xx e
BeAey  

   

 

2) Slove (3D
2
+D -14)y = 13 e

2x
. 

Soln: 

To find the C.F of (3D
2
+D-14)y =0. 

The Auxillary equation is 3m
2
 + m - 14 = 0. 

Sloving,  m = 2 and -7/3 

    .˙. y  = A e
-2x

 + B e
-7x/3

 

Xe
DD

IP 213
)73)(2(

1
..



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xe
D

2

2

1

13

13


   

 

xx xee
D

22

2

1



  by 4 case (ii) 

 

.˙.  y = Ae
2x

 + Be
-7x/3 

+ xe
2x 

 

3) Slove (D
2
- 2m D + m

2
)y = e

mx
. 

Soln: 

 To find the C.F of (D
2
 -2mD + m

2
) = 0. 

 The auxillary equation is K
2
 - 2mk + m

2
 = 0. 

(Note. K is used here instead of the usual m as there is already another m). 

i.e., (k -m)
2
 = 0     

.˙.  k = m twice 

C.F. = e
mx

 (A + Bx). 

 

mxmx e
x

e
mD

IP
2)(

1
..

2

2



  by 4 case (ii) 

 









2

2x
BxAey mx  

 

Excersice 

 Solve the following equations:- 

1.   (D
2
 - 5D + 6) y = e

4x
.
  

2.   (D
2
 - 6D + 13) y = 5e

2x
. 

3.   (D
2
 - 4D + 6) y = 5e

-2x
.
  

4.   (D
2
 - 2D + 1) y = 2e

3x
.

 
  

 

(b) Let X be of the form cosαx or sin αx, where α is a constant. 

 D sin αx = cosαx. 

 D
2
 sin αx = -α

2
 sin αx. 

  (D
2
) sin αx= (-α

2
) sin dx, as  (D

2
) is a rational integral function of D

2
. 
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Operating on both sides by
1

 𝜙 (𝐷2)
, sin 𝛼𝑥 =  

𝜙(−𝛼2)

𝜙 (𝐷2)
sin 𝛼𝑥. 

Case (i). If 𝜙 −𝛼2 ≠ 0,
1

𝜙  𝐷2 
sin 𝛼𝑥 =  

1

𝜙  −𝛼2 
sin 𝛼𝑥 

Hence the rule is : 

 

Replace D
2
  by -α

2
, Provided (-α

2
) ≠ 0. 

 

The same rule applies if sin αx be replaced by cosα x 

 i.e.,
1

𝜙  𝐷2 
cos 𝛼𝑥 =  

1

𝜙  −𝛼2 
cos 𝛼𝑥. 

Case (ii).If  (-α
2
) = 0,D

2
 +α

2
 is a factor of (-D

2
).  

 

To evaluate ,sin
1

22
x

D



 the above rule fails. Hence the following procedure is adopted. 

 

2222

1
sin

1




 


 D
x

D
. Imaginary part of e

αix
 as  

 e
iαx

 =  cos αx + i sin αx by Euler’s formula; 

  = imaginary part of 
xαie

αD 22

1


 

  =        "                   xαie
iαDiαD ))((

1


 

 

  =        "                   xαie
iαiαD 2)(

1


by 4 (a) 

 

  =        "                   
i

xe xi





2
 by 4(a) 

 

  =        "                   )sin(cos
2

xix
xi




  

 

  = 




2

cos xx
  
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Similarly,
a

axx
ax

aD 2

sin
cos

1
22




. 

 

Examples. 

 

Ex. 1. Solve (D
2
 - 3D +2) y = sin 3x. 

Soln: 

 To find the C.F of (D
2
 - 3D + 2) y = 0. 

 The auxiliary equation is m
2
 - 3m + 2 = 0. 

 (m-2)(m-1)=0 

  m = 1 and 2. 

  C.F. = A e
x
 + B e

2x
. 

x
DD

IP 3sin
23

1
..

2 
  

x
D

3sin
239

1


 on replacing D

2
 by -9 by 4(b) 

x
D

3sin
73

1




  

In order to apply the above rule, we must aim at getting D
2
 terms only in the 

denominator; hence we write 

73

1

D
=

499

73

)73)(73(

73
2 








D

D

DD

D
 

and proceed. 

 .3sin
499

)73(
..

2
x

D

D
IP




  

 
49)9(9

3sin7)3(sin3







xx
dx

d

by 4(b) 

 
130

3sin73cos9






xx
 

 y = C.F. + P.I. 
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Ex. 2 Show that the solution of the differential equation ptAy
dt

yd
sin4

2

2

 which is such 

that y = o and 0
dt

dy
when t = 0, is

24

)2sin
2

1
(sin

p

tppt

Ay




 if p ≠2.If p =2, show that 

8

)2cos22(sin tttA
y




 

Soln:
 

 Let D stand for 
dt

d
here. 

To find the C.F of (D
2
+4) y = 0. 

The auxillary equation is m
2
 + 4 = 0. 

m
2
=-4 

 m =  2i. 

.˙. C.F. = λ cos 2t + μ sin 2t , where λ and μ are arbitrary constants. 

(Note that the independent variable is t.) 

pta
D

IP sin
4

1
..

2 
  

ptA
p

sin
4

1
2 

 if p
2
≠ 4 by 4(b). 

.˙. y = λ cos2t+ μ sin 2t+(A/4-p
2
) sin pt 

To determine the values of λ and μ, we note that when 

t = 0, y = 0 and 0
dt

dy
.  

.˙. 0 = λ 

𝑑𝑦

𝑑𝑡
 = -2λ sin2t+ 2μcos 2t+ 

𝐴𝑝

4−𝑃2cos pt. 

24
20

p

Ap
μ




 

)4(2 2p

Ap


        .... (2) 

Hence, 
)4(

)2sin
2

1
(sin

2p

tptA

y





 

If p = 2,  tA
D

IP 2sin
4

1
..

2 

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   =  Imaginary part of 
ite

D

Ap 2

2 4  

   =  Imaginary part of ite
iDiD

A 2

)2)(2( 
 

   =  Imaginary part of 
itte

i

A 2

4
 

   =  
4

2cos tAt

 

  t
At

tμtλy 2cos
4

2sin2cos  .
 

When t = 0, y = 0  .˙.  λ = 0. 

)2sin22(cos
4

2cos22sin2 ttt
A

tt
dt

dy
 

 

 

 

  0 = 2μ -
𝐴

4
, μ =

𝐴

8
. 

   

8

)2cos22(sin tttA
y


 .

 

 

 3)Slove (D
2
 - 4D + 3)y = sin 3x cos 2x. 

Soln:  

 To find the C.F of (D
2
 - 4D +3)y = 0. 

 To auxillary equation is m
2
 - 4m + 3 = 0. 

 (m-3)(m-1)=0 

 m =1 and 3. 

            C.F. = A e
x
 + B e

3x
 

xx
DD

IP 2cos3sin
34

1
...

2 


 

2

sin5sin

34

1
2

xx

DD






 

2

sin

341

1

2

5sin

3425

1 x

D

x

D 




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x
D

D
x

D

D
sin

)41(4

21
5sin

)1214(4

112
22 









 

20

cos2sin

884

5sin115cos10 xxxx 





 

    y = C.F. + P.I. 

y =A e
x
 + B e

3x
 + 20

cos2sin

884

5sin115cos10 xxxx 




 

  

 

4) Slove (D
2
 + 16) y = 2e

-3X
 + cos4x. 

 

Soln: 

To find the C.F of (D
2
 + 16 )y = 0. 

 The auxiliary equation is m
2
 + 16 = 0. 

 m
2
+4

2
=0 ; m = 4i.  

C.F. is = Acos 4x + B sin 4x. 

xx e
D

eNow 3

2

3

16

2
2 




 

    

= (2/7) e
-3x

  

 
P.I.2 corresponding to x

D
x 4cos

16

1
4cos

2 


 

   16

1
2 


D

Real part of e
4ix

 

   = Real part of ixe
iDiD

4

)4)(4(

1


 

   = Real part of 
ixxe

i

4

8

1
 

   = Real part of )4sin4(cos
8

xix
xi

  

  = x
x

4sin
8

. 

  x
x

exBxAy x 4sin
87

2
4sin4cos 3  

. 
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Excersices  

 

Solve the following equations:- 

1. (D
2 

+ 4) y = sin 3x.    2. (D
2
 + D +1)y = sin 2x. 

3. (D
2
-8D+9)y = 8cos5x.    4. (D

2
-2D-8)y = 4 cos 2x. 

 

(c) Let X be of the form x
m

 (a power of x), m being a positive integer. 

 

 To evaluate mx
Df )(

1
, raise f(D) to power -1 and expand in ascending powers of D 

as far as Dm. (The higher powers of D operating on X
m

 give Zero and hence are omitted.) 

Thesse terms in the expansion of f{(D)}
-1

 operating on x
m

 give the particular integral 

required. 

 

Examples. 

 

1)Solve (D
2
 +D +1) y = x

2
. 

Soln: 

 To find the C.F of (D
2
+D +1) y = 0: 

 The auxillary equation is m
2
 + m + 1 = 0. 

 Solving, 
2

31 i
m




 

  













 

2

3
sin

2

3
cos.. 2/ x

B
x

AeFC x
.
 

2

21

1
.. x

DD
IP


  

212)1(. xDD   

2222 })()(1{ xDDDD  , the powers of D higher than 2 are 

dropped. 

xxxD 2)1( 22  . 

 

y = C.F.+ P.L. 
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xx
x

B
x

Aey x 22
2

3
sin

2

3
cos2/ 














   

2) Solve (D
2
+4D+5)y = e

x
+x

3
+cos2x. 

Soln: 

 To find the C.F of (D
2
+4D+5)y = 0. 

 The auxiliary equation is (m
2
+4m+5) = 0. 

 Solving, m = -2i. 

 C.F.  = e
-2x

(A cos x + B sinx). 

 P.I. Corresponding to e
x xe

DD 54

1
2 

  

    
xx ee

10

1

541

1



  

P.I. Corresponding to x
3 3

245

1
x

DD 
  

    
3

1
2

5

4
1

5

1
x

DD









 
  

    3

3
2

2
22

5

4

5

4

5

4
1

5

1
x

DDDDDD






















 








 







 
  

    33
2

125

24

25

11

5

4
1

5

1
xD

DD









  

    









125

144

25

66

5

12

5

1 2
3 xx

x  

 

 P.I.2 can also be found by assuming 

 

   y = A x
3
 + B x

2
+C x +D. 

 P.I.3 corresponding to x
DD

x 2cos
54

1
2cos

2 
  

     x
D

2cos
41

1




 
on putting -4 for D

2 

 

     
65

2sin82cos
2cos

161

41 xx
x

D

D 





  
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    y = C.F. + P.I.1 + P.I.2+ P.I.3 

 

y = e
-2x

(A cos x + B sinx)
 

xe
10

1
 +










125

144

25

66

5

12

5

1 2
3 xx

x
65

2sin82cos xx 
  

Exercise: 

Solve the following equations : - 

1. (D
2
-1) y =  2 + 5x. 

2. (D - 1)
2
 y = x.  

3. (D
2
 +D +1) y = x + sin x. 

 

(d) X is of the form e
ax

 V, where V is any function of x. 

 

 D
2
(e

ax
 V) = a e

ax
 V+ e

ax
Dv = e

ax
 (D+a) V. 

 

 D
2
(e

ax
 V) = D{e

ax
(D+a) V} 

  = ae
ax

 (D + a) V + e
ax

 (D
2 

+ aD) V 

  =e
ax

(D
2
 + 2aD + a

2
)V = e

ax
 (D+a)

2
 V. 

It follows by induction that D
n
(e

ax
 V) = e

ax
(D+a)

n
 V. 

  f (D) e
ax

V = e
ax

 f (D+a) V. 

Operating on both sides by 
)(

1

Df
 

 VaDfe
Df

Ve axax )(
)(

1
 . 

If we set f(D+a) V= V1, then this result gives, 

 11
)(

1

)(

1
Ve

Df
V

aDf
e axax 


 

Hence X
aDf

eXe
Df

axax

)(

1

)(

1


 . 

 

Examples. 

  Slove (D
2
 -4D +3) y = e

-x
sinx. 

Soln: 

 To find the C.F of Slove (D
2
-4D+3)y = 0. 
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 The auxiilary equation is m
2
 -4m + 3 = 0. 

(m-1)(m-3)=0 

 .˙. m = 1 and 3 

 C.F. = A e
x
 + B e

3x
. 

  Sinxe
DD

IP x




34

1
..

2
 

   Sinx
DD

e x

3)1(4)1(

1
2 

 

 

by the above rule 

   Sinx
DD

e x

86

1
2 

 
 

   x
D

e x sin
67

1


 

 
on putting -1 for D

2
 

   Sinx
D

D
e x

23649

67




 

 

   
85

cos6sin7 xx
e x 

 
 

   y = C.F. + P.I.  

y=A e
x
 + B e

3x
+

85

cos6sin7 xx
e x 

 

 

Solve (D
2
+2D+5)y = xe

x
. 

Soln: 

 To find the C.F of (D
2
+2D+5) y = 0. 

 The auxiliary equation is m
2
 + 2m + 5 = 0. 

 Solving, m = -12. 

 C.F. = e
-x

 (A cos2x + B sin 2x). 

xxe
DD

IP
52

1
..

2 
  

x
DD

ex

5)1(2)1(

1
2 

  

x
DD

ex

84

1
2 

  

x
D

ex

48

1


 (as D

2
 can be omitted in thr dinomiator for only x occurs 

in numerator) 
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x
Dex











2
1

8
 











2

1

9
x

ex

 

          y = C.F. + P.I. 

y = e
-x

 (A cos2x + B sin 2x) 









2

1

9
x

ex

 

Exercises  

Solve the following equations : - 

1.  (D
2
 + 1) y = (x

2
 + 1) e

x
. 

2.  (D
2
+4) y   = x e

2x
. 

3.  (D
2
 - 4D + 3) y = e

x
cos 2x. 

4.  (D
2
 - 2D + 2)y = e

x
cosx. 

 

1.5 Linear equations with variable coefficients. 

 We shall first consider the homogeneous linear equartion. A homogeneous linear 

equation of the second order is of the form 

  Xcy
dy

dx
bx

dx

yd
xa 

2

2
2

 

 Where a, b, c are constrants and X is a function of X. 

 

Method 1 By putting z = logx or x = e
z
, this equation can be transformed into one with 

constant coeffieients. 

 We introduce here an operator 
dx

d
xθ  . Now, 

 yD
dz

dy

dx

dy
x

dz

d

xdx

dz

dz

dy

dx

dy
 ;

1
if D stands for 

dz

d
 

 yD
x

D

dz

dy

dz

yd

xdz

dy

xdx

dz

dx

zd

xdx

yd
)1()(

111
22

2

222

2

2

2

  

 yDD
dx

yd
x )1(

2

2
2   

We note that θ
dx

dy
x

dz

d
D   
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So,  putting x = e
z
 in (1) the equation (1) becomes {a D(D-1)+ bD + c } y = Z  ...... (2) 

where Z is a functiuon of z into which X has been transformed. This equation (2) is a linear 

equation with constant coefficients and hence the foregoing method can be adopted. 

 

Method 2. Without transforming (1) into a linear equation with constant coeffieients, an 

independent method may be given. 

 To find the complementary function of (1), we have to slove 

0
2

2
2  cy

dx

dy
bx

dx

yd
ax  

 If x
m

, for some value of m, be taken as a tentative solution, then, on subsitution, we 

get 

 am (m-1) + bm + c = 0. 

 This, being an equation of the seocnd degree in m, has two roots m1, m2. Hence the 

complementry function of (1) is C1 x
m1

+ C2x
m2

, taking the two roots to be distinct. 

 If however, a root m1 be repeated twice putting m2 = m1 + є where є → 0, the 

corresponding of the C.F. is 

 )()( log

2121
11 xmm

eCCxxCCx   

   






 

 ).,
2

)(log
log.1(

22

21
1 etc

x
xCCx

m  

 є
2
 being neglected as є→ 0. Putting C2є = B and C1 +C2 = A, the part of the C.F. 

arising from the two equal roots m1, is )log(1 xBAx
m

  

 

 To find the Particular Integral. 

The P.I. of Xcy
dx

dy
bx

dx

yd
ax 

2

2
2

 ............ (1) is now found. 

Using 
dx

d
 the first member of (1) can be symbolically written as f(θ)y, where f(θ)  

= aθ(θ-1) + bθ +c. 

(1) can be written as f(θ) y = X. 

  

The P.I. is X
θf )(

1
, Where 

)(

1

θf
is the inverse operator defined as in 3 

If f(θ) = (θ - α1) (θ - α2), the P.I. can be put either as 
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  X
αθαθ )(

1

)(

1

21   

 Or X
αθ

A

αθ

A












 2

2

1

1  

 by the method of partial fractions. 

It must be noted that in the first form, the order of the operators is not commutative. 

Here, the operations indicated by the factors are to be taken in succession, beginning with the 

first on the right. Thus the general method og finding the P.I. ultimately depends on the 

evaluation of X
αθ 

1
. 

 To find X
αθ 

1
. 

 Let X
αθ

u



1

. 

By definition of inverse operator, xu
dy

du
x   

  𝑖. 𝑒. ,
𝑑𝑢

𝑑𝑥  
−

𝛼

𝑥
𝑢 =

𝑋

𝑥
. 

 

This equation is linear in u and hence its solution is 

 
  dxXxxu αα 1

 

no constant being added as this is a particular integral. 

 
 dxXxxu 1

 

(It is advisable for the student to commit this result to memory). 

 

 Special method of evaluating the P.I. when X is of the form x
m

. 

 

.)( mmm xmx
dx

d
xx   

 

mmm xmxm
dx

d
xx 22 )(   

 

Generally, f (𝜽) x
m

 = f (m) x
m

. 
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Operating on both sides by .
)(

1
)(,

)(

1 mm x
f

mfx
f 

  

If, .
)(

1

)(

1
,0)( mm x

mf
x

f
mf 


 

If, however, f(m) = 0, then f(𝜽) = (𝜽-m)  (𝜽) when  (m) ≠ O.P.I. becomes  mx
mm 

1

)(

1
 

 

 
 mmm xxx

m

1

)(

1


dx by the above general method  

 

 .log
)(

1
xx

m

m


  

 

 If m be repeated two times in f(m) = 0, 

 

 the P.I. is ,
!2

)(log xxm

where f(m) = (𝜽-m)
2
. 

 

Examples: 

Ex.1. Solve xy
dx

dy
x

dx

yd
x 

2

2
23

 

Soln:
 

Putting z = log x and 
dz

d
D  the equation becomes 

 

 [3D (D-1) + D+1] = e
z
.  

 

 The auxiliary equation is 3m
2
 – 2m + 1 = 0 

 

 im 21  

  

 )2sin2cos(.. zBzAeFC z   
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 )}log2(sin()log2(cos{ xBxAx   

 

 
ze

DD
IP

123

1
..

2 
  

 

 4(a)§
123

1
bye z


  

 

 .
22

xe z

  

 

   y = C.F. + P.I.  

  

 ]2/1)log2(sin)log2(cos[  xBxAx  

 

Ex.2. Solve .log
2

2
2 xy

dx

dy
x

dx

yd
x 

 

Soln:
 

Putting z = log x and 
dz

d
D  the equation becomes 

[D (D-1) + (D+1)] y = z 

i.e., (D
2
+1) y = z 

 

The auxiliary equation is m
2 

+ 1 = 0 

 

 C.F. = A cos z + B sin z  

 

        = A cos (log x) + B sin (log x). 

 

 zDz
D

IP 12

2
)1(

1

1
.. 


  

 

        = (1 – D
2
 + ...) z = z. 
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  y = A cos (log x) + B sin (log x) + log x 

 

 Solve 
22

2
2

)1(

1
3

x
y

dx

dy
x

dx

yd
x




 

Soln:

 

 

 Putting z = log x and 
dz

d
D  the equation becomes 

 

 
2)1(

1
]13)1([

x
yDDD


  

 

 i.e.,
2

2

)1(

1
)12(

x
yDD


  

 

The auxiliary equation is (m + 1)
2
 = 0 

 

  m = - 1 twice  

  

 )log(
1

)(.. xBA
x

zBAeFC z  
 

 

 
22 )1(

1

)1(

1
..

x
IP





Changing D to the operator 
dx

d
x  

 

  
  8.2§

)1()1(

1
2

1 by
x

dx
x


 

 

 
xx 


1

11

)1(

1


 

 

   












  dx

xx
x

xx

dx
x

1

11

)1(

11
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 .
1

log
1

x

x

x 
  

 

     y = C.F. + P.I.  

 

 Solve .24
2

2
2 xey

dx

dy
x

dx

yd
x 

 

Soln:
 

 Putting z = log x and 
dz

d
D  the equation becomes 

 

 (D
2
 + 3D + 2) y = e

x
 

 

The auxiliary is m
2
 + 3m + 2 = 0. 

 

  m = -1 or -2. 

 

C.F. = A e
-z

 + B e
-z

 = A x
-1

 + B x
-2

. 

 

dx

d
xwhereeIP x 


 


,

)2()1(

1
..  

 

 
xe















2

1

1

1


 

 

 8.2.§21 bydxexxdxex
x

x

 
   

 

      = x
-1

 e
x
 – x

-2
 (xe

x
 – e

x
) 

 

      = x
-2

 e
x
. 

 

   y = A x
-1

 + B x
-2

 e
x
 + x

-2
 e

x
. 
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 Solve 
x

xx
y

dx

dy
x

dx

yd
x

1)(logsinlog
2

2
2 


 

Soln:
 

 

Putting z = log x and 
dz

d
D  the equation becomes 

.
)1sin(

)1( 2

ze

zz
yD


  

The auxiliary equation is (m - 1)
2
 = 0; m = 1 twice.  

 

C.F. = e
-z

 (A + B z) = x (A + B log x).  

 

zezz
D

IP 


 ]1sin[
)1(

1
..

2
 

 

4(d)§]1sin[
)2(

1
2

byzz
D

e z 


   

 












 

4

1

)2(

1
Im

2

1 izez
D

ofpartaginaryx  

 












 

4

1

)2(

1
..

2

1 z
iD

eofPIx iz
 

 























 

4

1

2

2
1

)2(

1
..

2

1 z
i

D

i
eofPIx iz

 

 






















 

4

1
)2(

5

2

43

1
..1 iz

i
ofPIx  

 




































 

4

1
cos

5

6
4sin

5

4
3

25

11 zzzzx  
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)}(logsin3)(logcos4{log
25

1
logsin

125

4
)(logcos

125

6

100

1
xxx

x
x

x
x

xx
  

 

    y = C.F.+ P.I.  
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UNIT – 4 : LAPLACE TRANSFORM 

Laplace transform – Inverse transform – Properties-Solving differential equations. 

Simultaneous equations of first order using Laplace transform. 

 

THE LAPLACE TRANSFORMS   

 

 1.1. Definition: If a function f(t) is defined for all positive values of the variable t and 

if dttfe st )(
0





exists and is equal to F(s), then F(s) is called the Laplace transform of f(t) and 

is denoted by the symbol L{f(t)}.  

 

 Hence 


 
0

).()( = {f(t)} L sFdttfe st
The operator L that transforms f(t) into F(s) is 

called the Laplace transform operator.  

 

 Note: 0. = F(s)
S

Lt  

 Definitions. Piecewise continuity. 

 

   A function f (t) is to be piecewise continuous in a closed interval [a,b]if it is defined on that 

interval and is such that the interval can be broken up into a finite number of sub-intervals in 

each of which f (t) can have only ordinary finite discontinuities in the interval. 

 

Exponential order. 

 

A function f(t) is said to be of exponential order if  0, = f(t)e-st

S
Lt or if for some number s0, 

the product ⃒f(t) ⃒<M for t>T,i.e.,e
-s0t  ⃒f(t) ⃒ is bounded for large value of t,say for t > T. 

 

 Sufficient conditions for the existence of the Laplace transform.  

 

(i) f(t) is continuous or piecewise continuous in the closed interval [a,b], where a>0 

 

(ii) it is of exponential order 
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(iii) t
n
 f(t) is bounded near t = 0 for some number n>1.  

 

From the definition the following results can easily be proved:- 

 

(i) L {f(t) +  (t)} = L{f(t)} + L{(t)} 

 

Proof: 

 We have   )]()([ = (t)} + {f(t) L
0

dtttfe st  



 

      )()( = 
00








  dttedttfe stst   

 

      (t)}.L{{f(t)} =L   

 

(ii)  L{c f(t)} = cL {f(t)}, where c is a constant  

 

Proof: 

 

 We have   )(= f(t)} {c L
0

dttfce st





 

    )(c =  
0

dttfe st





 

 

    {f(t)}cL =   

 

(iii) L {f' (t)} = sL{f(t)}– f(0).  

 

Proof: 

  We have        )('(t)}L{f'
0




 dttfe st
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       )()(f(t) = 
0

0 


  dtestfe stst
(on integration by parts)  

 

     )( s  f(0)- = 
0




 dtetf st
 

 

     f(0) - {f(t)}L s =  

 

(iv)  L{f'(t)} = s
2
L {f(t)} – s f(0) – s f' (0) 

 

Poof: 

  

  (t)f' F(t)  where(t)},{F' L = (t)}{f" L    

 

   (0)f' - (t)}{f' L s  F(0) - L{F(t)} s =   

 

     (0) f' - f(0)] - {f(t)} L [s s =    

     (0). f' - f(0) s - {f(t)} Ls = 2

  

 

(v) By extending the previous result, we get 

 

)0()}({)}({ 1 fstfLstfL nnn  )0(...)0(' 12   nn ffs  

  

(vi)  If  then F(s), L{f(t)}  

(a) ).(lim)(lim
0

sFstf
st 

   

 

(b)   ).(lim)(lim
0

sFstf
st 

    

Proof: 

 

 )0()}({)}('{ ftfLstfL   
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)0()( fsFs   

 

Taking limits as s →∞ on both sides, we get  

   

  )}('{lim)]0()([lim tfLfsFs
ss 

  

 

  dttfe st

s
)('lim

0







  

 

           = 0. 

 

)0()(lim fsFs
s


  

 

   
)(lim

0
tf

t


 

 

This result is known as Initial value theorem.  

 

Taking limits as s →0 on both sides of L {f’ (t)}, we get 

 

 

 
dttfefsFs st

ss
)('lim)]0()([lim

0
00 







 

 

   




0

)(' dttf
 

 

    

 0)]([ tf
 

 

   
).0()(lim ftf

t


  
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)(lim)(lim

00
tfsFs

ts 


 

 

This result is known as final value theorem.  

 

(Vii)    .0
as

1
)(e L at- 


 asprovided

 

 

Proof: 




 
0

)( dteeeL atstat

 

 

  




0

)( dte tas

 

 

  
















0

)(

)( as

e tas

as 


1
. 

 

(Vii)   .0
as

1
)(e L at 


 asprovided

 

Proof: 





0

)( dteeeL atstat

 

 

  




0

)( dte tas

 

 

  
















0

)(

)( as

e tas

as 


1
. 

 

Corolary:.

 

  at)(cosh L 22 as

s



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Proof: 

We have 

 

 
2

L = at)(cosh L 






  atat ee

 

    

)(
2

1
)(

2

1 atat eLeL 

 

     

    
asas 





1

2

11

2

1

 

 

    
22 as

s




 

 

Corolary:.

 

  at)(sinh L 22 as

a




 

Proof: 

We have 

 

 
2

L = at)(sinh L 






  atat ee

 

    

)(
2

1
)(

2

1 atat eLeL 

 

     

    
asas 





1

2

11

2

1

 

 

    
22 as

a




 

 
a-s

a
 = at)(sinh  L

22

 

 (Viii)  
as

s
 = at) (cos L

22   
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Method1.  

Proof: 

We have  

 dt at cose = at) (cos L
0

st-




  

  

 
at)sinaatcoss(-e

 = 

0

22

st-















as  

 
 

as

s
 =

22   

Method 2. 

 



0

aitst- dteeofpartreal = at) (cos L
 

 

 = real part of L (e
ait

)  

 

  ai-s

1
 ofpart  real = 

 

 

  
22 as

ais
 ofpart  real = 





 

  
22 as

s
 = 

  

Method 3. Let f(t) be cos at.  

 

Then f' (t) = a sin at, f (t) = -a
2
cos at.  

 

We have L {f (t)} = s
2
L {f(t)} – s f(0) – f'(0). 

 L {- a
2
cos at} = s

2
L{f(t)} – s f(0) - f' (0). 

 

We have f(0) = 1, f' (0) = 0.  

 

 - a
2
L (cosat) = s

2
L (cos at) – s  
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i.e., (s
2
 + a

2
) L (cos at) = s. 

22
)(cos

as

s
atL




 

(ix)   
as

a
at)sin (L 

22 


 

Proof: 

We have   sinat)(sin  L
0




 dtate st

 

  


















0

22

)cossin(

as

ataatse st

 

 

 
22 as

a
 = 

  

 

Aliter. Let f(t) be sin at, then f' (t) = a cos at. 

 

 We have L {f'(t)} = s L{f(t)} – f(0) 

 

  i.e., L (a cos at) = s L (sin at) – 0 

 

i.e., 0)(sin
as

s
22




atLsa
 

 
22

)(sin
as

a
atL




 

   

(x) 
1

)1(
)(






n

n

s

n
tL .

   

Proof: We have   )( L
0




 dttet nstn

 

Put st =   .
1

, dx
s

dtthenx 
 

dx
s

e
s

x
tL x

n

n 1
)(

0














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







0

1

1
dxex

s

xn

n

 

 
1

)1(





ns

n

 

When n is a positive integer Γ(n+1) = n! 

integer   ve+ a isn when 
!

)(
1


n

n

s

n
tL

 

Cor.  
1

)1(
s

L   

 

2

1
)(

s
tL 

   

 

3

2 2
)(

s
tL 

 

 

2/32/32/3

2/1

2

)
2

1
(

2

1

(3/2)
)(

sss
tL











 

2/12/1

2/1

2

)
2

1
(

)(
ss

tL






 .
 

Examples: 

 

Ex.1. Find L (t
2
 + 2t + 3) 

 

Soln: 

 

L (t
2
+2t+3) = L(t

2
) + 2L (t) + 3L (1)  

 

 sss

322
23
 .
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Ex.2. Find L(sin
2
 2t).  

 

Soln: 

havewe
t

tSince ,
2

4cos1
2sin, 2








 


 








 


2

4cos1
)2(sin 2 t

LtL
 

 

 
)4(cos

2

1
)1(

2

1
tLL 

 

 

  
22 42

11

2

1




s

s

s  

 

  












16

1

2

1
2s

s

s  

 

 )16(

8
2 


ss  

 

Ex.3. Find L(sin
3
 2t).  

Soln: 

 

Since sin 6t = 3 sin 2t – 4 sin
3
 2t, we have    








 


4

6sin2sin3
)2(sin3 tt

LtL

    

 

 
)6(sin

4

1
)2(sin

4

3
tLtL 

 

 

 
2222 6

6

4

1

2

2

4

3







ss
 

 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
114 

 

 
)36()4(

48
22 


ss

.

 

 

Ex.4. Find L {f(t)}, where 

 F(t)    = 0 when 0 <t ≤ 2  

 = 3 when t > 2.  

Soln: 

We have     

dttfetfL st )()}({
0






 

 



 
2

2

0

)()( dttfedttfe stst

 

     

 



 
2

2

0

)3()0( dtedte stst

  

 

 

dte st





2

3  

  

   =
3

𝑠
𝑒−2𝑠 

 

1.2 The inverse transforms.  

Let the symbol L
-1 

{F (s)} denote a function, whose Laplace transform is F(s).Thus if 

L {f(t)} = F(s) then f(t) = L
-1

 {F(s)}.  

 

 The most obvious way of finding the inverse transform of a given function is to look 

into the table of transforms and get the function whose Laplace transform is the given 

function. 

 

 We can compile the table of transforms from the known results.  
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s.no f(t) F(s) 

1. e
at
 

as 

1

 

2. cosh at 22 as

s

  

3. sinh at 22 as

a

  

4. cos at 22 as

s

  

5. Sin at 22 as

a

  

6. 1 
s

1

 

7. T 2

1

s  

8. t
n )int(

!
1

egerveaisn
s

n
n




 

9. t e
at
 2)(

1

as   

10. t
2
 e

at
 3)(

2
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11. t
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!
1
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n
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12.  e
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 sin bt
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b

  

13.  e
-at

cosbt 22)( bas
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



 

14.  t sin at  222 )(

2

as
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  

15. t cos at  222

22

)( as

as





 

 We can modify the results we have obtained in finding the Laplace transforms of 

functions to get the inverse transforms of functions.  
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(i) If L {f(t)} = F(s), then L {e
-at

f(t)} = F (s+a).   

Hence we get the result  

 

  L
-1

 {F(s+a)} = e
-at

 f(t)}  

 

   = e
-at

 L
-1

 F(s).  

Thus for example   

 

.
1

)(

1
.1

2

1

2

1 te
s

Le
as

L atat  
















   

 

.
4

4sin

4

1

16)2(

1
.2

2

22

1

2

1 te

s
Le

s
L

t
at


 




  

 

.2cos
44)3(

3
.3 3

2

13

2

1 te
s

s
Le

s

s
L tt 




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


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

















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
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

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
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



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
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1
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s
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s
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









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








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1
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1

2
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s
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t
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).2sin2cos2(
2

tt
e t




 

 

(ii)  .
1

)]([),()}({ 









a

s
F

a
atfLthensFtfLIf

 

 

This result can be written in the form  

 

 
)()(),(

1 11 sFLtfwhereatf
a

s
F

a
L  

















 

 

Putting  ,
1

havewek
a


 

 

 
).()(

1
)][( 11 sFLtfwhere

k

t
f

k
ksFL  










 

 

Examples:  

 

Find  
222

1














bas

s
L

 

Soln: 

 

)(
11

222222
saF

abas

sa
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s





  

 

Where   = (sa) F
222 bas
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  
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)(
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s
sF


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






















222

1

222

1 1
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sa
L
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s
L

 

 

 
)]([

1 1 asFL
a



 

 

   

,
1

.
1











a

t
f

aa  

 

Where   (s) FLf(t) -1
 

 

  )(
.

22

1
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s
L


 

 

  = cosbt. 

 

.cos 

















a
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a

t
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1
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1




















a
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s
LHence

 

(iii) If L {f(t)} = F (s), then L {tf(t)}= -F' (s) 

 

Hence we get the result  

 

 L
-1

 {F'(s)} = - tf(t) = tL
-1

 {F(s)}. 

 

Examples. 

Ex.1. 








 222

1-

)
LFind
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s

 

Soln: 

 





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



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s
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 

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
















 

22

1

222

1

(2

1

)( as
tL

as

s
L

 

 

 


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Ex.2. 







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s
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 
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
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

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Ex.3. 











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1-

)54(s
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
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
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
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
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

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
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1
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   2

sin2 tet t

 .

 

 

(iv) If L {f(t)} = F (s), then L {tf(t)} = - F' (s).  

 

This theorem can be used in the following way to get inverse transforms of certain functions: 

- 

example .
1-s

1s
log L1-








 
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Soln: 

Let this be equal to f(t).  

 

 Then L .
2-s

1s
 log {f(t)}



 

 

1

1
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(v)  

t

tfL
s

dxxfL
0

)].([
1

])([

 

Soln: 

 

Let 
t

0

)()( tFbedxxf
 

 

Then F' (t) = f(t) and F (0) = 0  
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)0()}({)}('{ FtFsLtFL 

 
)}({ tFsL

 

   i.e., 

t

dxxfsLtfL
0

})({)}({
 

Hence  
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0

)}.({
1

)(
 

 

 This result can also be used to find the inverse transforms of certain funcitons. 

 




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If L {f(t)} = F(s), then 
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Where f(t) = L
-1

 F(s). 
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Examples. 

Ex.1. 







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Ex.2. 







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Ex.3. 
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
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 (vii)The method of partial fractions can be used to find the inverse transform of certain 

functions.  

 The method is illustrated in the following examples.  

 

Examples. 

 

Ex.1. 
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

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
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Soln: 

Splitting into partial fractions, we have  
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Exercises  

 

Find the inverse transforms of : 

 

1.
𝟏

(𝒔−𝟑)𝟓
 2 .

𝒔

(𝒔−𝒃)𝟐+𝒂𝟐. 

 

   3.
𝒄𝒔+𝒅

(𝒔+𝒂)𝟐+𝒃𝟐                       4.
𝒔

(𝒔+𝟑)𝟓
 

 

Laplace transformation can be used to solve ordinary differential equations with 

constant coefficients.  

 

Examples. 

Ex.1. Solve the equation 
dt

dy

dt

y
2

d
2

2

 - 3y = sin t given that 00  twhen
dt

dy
y

 

Soln:The equation can be written in the form 

 

y + 2y' – 3y = sin t.  

 

Applying Laplace transforms to both sides, we have  

 

L (y + 2y' – 3y) = L (sin t) 
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i.e.,
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-  3 ttee tt  

 

Ex.2. Show the solution of the differential equation ktAy
dt

y
sin4

d
2

2

 which is such that y = 

0 and 0
dy


dt

when t = 0 is .2
4

2sin
2

sin

2






 kif
k

t
k

kt

Ay If k=2, 

8

2t) cos2t  -2t (sinA
 y that show 

 

Soln: 

y + 4y = A sin kt 

 

L (y) + 4L (y) = A L (sin kt) 

 

.)(,4)0(')0(
22

2 yyLwhere
ks

k
Ayysyys 




 

 

Since y (0) = 0, y' (0) = 0, we have  

 

.
s

k
A.  y 4)(s

22

2

k


 

 

 
)()4(s

k
A.  y

222 ks 


 

 

 
)()4(s

1
LKA y 

222

1-

ks 


 

 

Case( i). If k ≠ 2,  

























)4(

1

4

1

LKA y 
2

222
1-

k

kss
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











 

22

1

2

1

2

1
.

4

1

4k

KA
  

ks
L

s
L

 

 

 











k

ktt sin

2

2sin

4k

kA
  

2

 

 

 









 t

k
kt 2sin

2
sin

k-4

A
  

2

 

 

Case (ii). K = 2. Then 












)4()4(

1
AL2  y

22

1-

ss
 












222

1-

)2(

1
AL2  

s
 

 
)2cos22(sin

2(2)

1
2A.  

3
ttt 

 

 

).2cos22(sin
8

A
  ttt 

 

Note:-The special advantage of this method in solving differential equations is that the initial 

conditions are satisfied automatically.It is unnecessary to find the general solution and 

determine the constsnts using the initial conditions. 

 

1.3 The Laplace transform can also be used to solve systems of differential 

equations.  

Ex.1. Solve the simultaneous equations.  

 

123  x
dt

dy

dt

dx

       ... (1) 

 

034  y
dt

dy

dt

dx

      …(2)                   

given x = 0 = y at t = 0. 
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Soln:  

Applying Laplace transforms to both the equations, (1) becomes  

 

 3L (x') + L (y') + 2 L (x) = L (1) 

 

 
i.e.,

s

1
  2)0((0)}x-x{s3  xyys

 

 

where (y).Ly,(x)Lx 
 

 

Since x(0) = 0,  y(0) = 0, we have 

.
s

1
 x2ysx3s 

 

i.e.,
s

1
 ysx2)(3s 

 

Equation (2) becomes  

 

  L (x') + 4 L (y') + 3L (y) = 0 

 

 
i.e., 0  3)}0({4)0(  yyysxxs

 
 

i.e., 0)34(  ysxs
 

 

Solving (3) and (4), we get  

6)(11s1)(ss

34s
 x






 

)1()611(

1
- y




ss
 












 

6)(11s1)(ss

34s
 1Lx
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 























)611

10

33

1

5

1

2

1

L 1-

sss
 

 

 




























 

)611

1

10

33

1

1

5

11
L

2

1
 111-

s
L

s
L

s
 

 

 

11

6

10

3

5

1

2

1
 

t

t ee


 

 

 














)1()611(

1
 1-

ss
Ly

 

 

 













611

1
.

5

11

1

1
.

5

1
L 1-

ss
 

 





























 

11

6

1

11

1
.

5

11

1

1

5

1
 11

s

L
s

L

 

 

.
5

1

5

1
 11

6t

t ee


 

  

Ex.2. Solve the simultaneous equations.  

tyx
dt

dy

dt

dx
2122 

       ... (1) 

02
2

2

 x
dt

dy

dt

xd

                 …(2) 

 

With the conditions x = 0, y = 0, 0
dx


dt

when t = 0 

Soln:
 

Applying Laplace transforms to both the equations, equation(1) becomes  

(2t)L- (1)L(y)2L (x)2L-)(y'L-)(x'L 
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i.e.,
2

21
22)0()0(

ss
yxyysxxs   

i.e.,
2

21
22

ss
yxysxs   

i.e.,
2

2
)2()2(

s

s
ysxs


  

 2s

1
y-x 

        ... (3) 

Equation (2) becomes  

 

L (x) + 2L (y')+ L (x) = 0 

 

i.e., 0)0(22)0(')0(2  xyysxsxxs   

 

i.e., 022  xysxs  

 

i.e., 02)1( 2  ysxs        ... (4) 

get  we, andfor (4) and (3) equations Solving yx  

 

22

2

2 )1(

1
,

)1(

2
x









ss

s
y

ss
 











 

2

1

)1(

2

ss
Lx  














 

2

1

)1(

1

1

11
2

sss
L  

 





































 

2

111

)1(

1

1

11
2

s
L

s
L

s
L

 

 

= 2 (1 – e
-t
 – t e

-t
).  
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






 

22

2
1

)1(

1
.

ss

s
Ly

 

 

dt
ss

s
L

t












 



2

2

0

1

)1(

1

 

 

dt
ss

L

t










 



2

0

1

)1(

21
.

 




t

t dtet
0

)21(
 

 

 = 2 – t – 2 (t+1) e
-t
. 

 

Laplace transform can be used to solve differential equations with variable coefficients.  

 

We have shown that  

)}({)}({ tfL
ds

d
tftL 

 

and )}.({)1()}({
2

2
22 tfL

ds

d
tft   

 

These results are used to solve equations containing variable coefficients.  

 

The following worked out examples will illustrate the method. 

 

Examples. 

Ex.1. Solve the equation  

.0)0(13)2(
2

2

 ywhenty
dt

dy
t

dt

yd
t

 

Soln: 

Taking Laplace transforms on both sides, we have  
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 L (ty) – L {(2+t) y'} + 3L (y) = L (t-1) 

 

 
i.e., )}0(')0()({ 2 ysyyLs

ds

d
  

.
11

)(3)}0()({)}0()({2
2 ss

yLyysL
ds

d
yysL 

 

.)( ybeyLLet
 

 

Putting y(0) = 0, 

 

2

2 1
3)()(2)}0('{

s

s
yys

ds

d
ysyys

ds

d 
  

 

 
i.e.,

2

2 1
322

s

s
yy

ds

yd
sysys

ds

yd
s


  

 

 i.e.,
2

2 1
)1(4)(

s

s
ys

ds

yd
ss


  

 

 i.e.,
3

14

ss

y

ds

yd
  

 

.
1

.
2

1
y equation,  thisSolving

42 s

c

s
  

 

















 

4

1

2

1 111

s
Lc

s
L

s
y  

.
62

3tct
  

 constant.arbitrary an  isA  Where,
2

t
y Hence 3tA  

 

Ex.2. Solve the equation. .1)0('0)0(0
2

2

 yandyify
dt

dy
t

dt

yd
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Soln: 

Taking Laplace transforms on both sides, we have  

 

L (y) + L (t y') – L (y) = 0  

 

i.e., 0)()}0()({)0(')0()(2  yLyysL
ds

d
ysyyLs  

 

 y(0) = 0, y' (0) = 1. 

 

Putting 0)(1,)( 2  yys
ds

d
ysgetweyyL  

i.e., 012  yy
ds

yd
sys  

i.e., 01)2( 2  ys
ds

yd
s  

 

Solving this equation .2/2/2 22

ceesy ss  

 

.
1

2

2/

2

2

s

e
c

s
y

s

  

 . transformLaplace a isy  

 

.0,0lim 


cy
s  

 

Hence
2

1

s
y  

Taking inverse transform y = t.  

 

Certain equations involving integrals can also be solved by Laplace transform 

Example. Determine y which satisfies the equation  

  

t

ywhichfortdtyy
dt

dy

0

.0)0(23
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Soln:
 

Taking Laplace transforms on both sides, we get  

  

t

tLdtyLyLyL
0

)()(2)(3)'(  

i.e.,
2

1
)(

2
)(3)0()(

s
yL

s
yLyyLs   

 

Putting L (y) = y and substituting y(0) = 0, we have   

 

 
2

12
3

s
y

s
yys   

 

 i.e.,
2

12
3

ss
sy 








  
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2
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
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1 2tt ee  
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UNIT – 5 : PARTIAL DIFFERNTIAL EQUATIONS 

Partial differential equations of first order – formation – different kinds of solution – four 

standard forms- Lagranges method. 

 

1.1 PARTIAL DIFFERNTIAL EQUATIONS 
 

Partial differential equations are those which involve one or more parital derivatives. 

The order of a partial differnential equation is determined by the highest order of the partial 

derivativeoccuring in it. For the present, we shall restrict ourselves to partial differential 

equations involving one dependent variable z and only two indepandent variables x and y. In 

what follows, we shall donote 

  
x

z




= p, 

y

z




= q, 

2

2

x

z




 = r, 

yx

z



2

= s and 
2

2

y

z




 = t. 

Derivation of partial differential equations. 

Parrial differential equations can be derived either by the elimination of (1) arbitrary 

constants from a relation between x, y, z 

Or (2) of arbitrary function of these variables. 

By elimination of arbitrary constants. 

Consider the function

 

   0),,,,( bazyxf      .............. (1) 
 

Containing two independent arbitrary constants a and b. To eliminate two constants, 

we require three equations. Differentiating equation (1) partially with respect to x and y in 

turn, we obtain  

  

0









z

f
p

x

f
       ............... (2) 

  0









z

f
p

y

f
       ............... (3) 

 Eliminating a and b, we get a partial differential equation of the first order of the form 

F( x, y,z,p,q) = 0. 

Examples. 

Ex. 1. Eliminate a and b form z = (x+a) (y+b). 
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Soln: 

  Differentiating partially with repect to x 

by
dx

dz


 

Ie) p=y+b 

Again ,Differentiating partially with repect to y 

ax
dy

dz


𝑑𝑦

𝑑𝑥

 

p = y+b, q = x+a. 

Eliminating Differentiating partially with repect to x a and b , we get z = pq 

 

Ex.2. Obtain the partial differential equation of all spheres whose centres lie on the plane z 

=0 and whose radius is constant and equal to r. 

Soln: 

       The Cartesian equation of all such spheres can be written in the form 

  (X- a)
2 

+ (y-b)
2 

+ z
2
 = r

2
        …………..(1) 

   Where a and b are independent arbitrary constants and r is the fixed given constant. 

  Differentiating (1) partially with respect to x and y in turn,we obtain 

2(x-a)+2z (dz/dx)=0 

  (x-a) + pz =0                  …………(2) 

  (y-b) + qz =0                  …………(3)

 Eliminating a and b between equations (1), (2) and (3), we obtain 

 Z
2
 (p

2 
+ q

2 
+ 1) = r

2
 

By the elimination of arbitrary functions. 

Let u and v be any two functions of x,y,z and connected by arbitrary relation 

(u,v) = 0                  ………….(1) 

     Differentiating equation (1) partially with respect to x and y in turn,we get 
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u


























p

z

u

x

u

v


0

















p

z

v

x

v

  ………..(2)   

u



















q

z

u

y

u

v





0

















q

z

v

y

v

   ………..(3) 

  Eliminating the ratio 

















z

u

y

u
 between equations (2) and (3),we get a partial 

differential equation of the first order, viz., 

 

Pp + Qq = R       ………..(4) 

Where 











z

v

y

u
P 









y

v

z

u  
 

.
,

,

zy

vu





 

 











x

v

z

u
Q 









z

v

x

u  
 

.
,

,

xz

vu





 

 











y

v

x

u
R 









x

v

y

u  
 

.
,

,

yx

vu





 

Equation (4) is known as Lagrange’s linear equation. 

Examples: 

Ex. 1.Elimiate the arbitrary function from z = f(x
2
+y

2
) 

Soln: 

  z = f(x
2
+y

2
)       ............... (1) 

Differentiating partially with respect to x and y 

  p = f′(x
2
+y

2
)2x      ............... (2) 

  q = f′ (x
2
+y

2
)2y      ............... (3) 

Eliminating f′ (x
2
+y

2
) from (2) and (3), we get py = qx. 

Ex. 2 Eliminate the arbitrary functions f and  from the relation Z =  f(x+ay) +  (x-ay). 

Soln:  

Given Z =  f(x+ay) +  (x-ay).  …………………..(1) 
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Differentiating partially with respect to x and y 

  p = f′(x+ay)+′(x-ay)      ............... (2) 

  q = af′ (x+ay) -a′ (x-ay)     ............... (3) 

 Differentiating these again, with respect to x an y

 

  
𝜕2𝑧

𝜕𝑥2
= 𝑓 ′′ 𝑥 + 𝑎𝑦 + 𝜙′′ 𝑥 − 𝑎𝑦     ................ (4) 

  

𝜕2𝑧

𝜕𝑥2 = 𝑎2𝑓 ′′ 𝑥 + 𝑎𝑦 + 𝑎2𝜙′′(𝑥 − 𝑎𝑦)   ................ (5) 

From (4) and (5), we get 
2

2
2

2

2

x

z
a

y

z









 

Excersises  

1. Obtain a partial differential equation by eliminating a,b from each of the following :- 

i)  Z = ax +by +a 

ii) 1
2

2

2

22




b

z

a

yx
 

 

Differential integrals of partial differential equations. 

 

     A solution or integral of a partial differential equation is a relation between the dependent 

and the independent variables that satisfies the differential equation. It will be noted that two 

types of solutions may occur as solutions of the same equation. For example, consider the 

equations 

Z = ax + by      …..(1) 

  and z = xf(
𝑦

𝑥
)       …..(2) 

  If we eliminate the arbitrary constants a and b from the equation (1) and the arbitrary 

function from the equation (2),we get the same differential equation xp + yq =z 

 

Hence z = ax + by and z= xf(
𝑦

𝑥
) are solutions of the equation 

  Xp + yq= z. 

 A solution containing as many arbitrary constants as there are independent variables 

is called a complete integral. 

A solution obtained by giving particular values to the arbitrary constants in a 

complete integral is called particular integral. 
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Singular Integral. 

Let F (x, y, z, p, q ) = 0     ……(1) 

 

be the partial equation whose complete integral is  

 (x, y, z, a,b)= 0                  …..(2) 

 

The eliminant of a, between 

  (x, y, z,a, b) = 0 

  0




a


  

0




b


 

When it exists ,is called the singular integral. 

 Geometrically, this represents the envelope of the two parameter surfaces represented 

by the complete integral (2) of  (1).The two parameters occurring in (2) are a and b. 

 

General Integral 

In (2), we shall assume an arbitrary relation of the form b= f(a). Then (2) becomes 

 

  f[x, y, z, a f(a) = 0    …….(3) 

 Differentiating (2), partial with respect to a, 

 

  0)(' 








af

ba


    ………(4) 

The eliminant of a between these two equations (3) and(4), if it exists, is called the general 

integral of (1).  

Solution of partial differential equation in some simple cases. 

 We shall consider a number of simple exaples, the solutions of which depend only on 

the meaning of the partial differentiation. 

Examples. 

Ex. 1 Slove .0
2






yy

z
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Soln:  























y

z

xyy

z2

 

 Hence )(yf
y

z





whenf is an arbitrary function. 

    )()( xφdyyfz  

   = F (y) + (x). 

 Here F(y) and (x) are arbitrary functions. 

Ex. 2 Solve y
y

z
sin

2

2





. 

Soln:

  

y
y

z
sin

2

2






 

Integrating on, 

      )(cos xfy
y

z





. 

Again integrating, 

      .˙.   Z = -siny + yf(x) + (x), where f and  are arbitrary functions. 

Ex.3 Slove 0





x

z
yx . 

Soln:
 

0





x

z
yx  

 

 
y

x

x

z






 

Integrating on, 

 

 . ˙.   𝑧 = − 
𝑥2

2𝑦
+ 𝜙 𝑦 . 

Ex.4 Solve
22

2

yx
yx

z






 

Soln:       
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22
2

yx
yx

z






 

Integrating on, 

 

𝜕𝑧

𝜕𝑥
= 𝑥2𝑦 +

𝑦3

3
+ 𝜙 𝑥 . 

 

Again Integrating on, 

  

)()(
33

23

yfxF
xyyx

z 

 

Ex. 5 Solve 3zy2x
x

z





x

 

Soln:  

3zy2x
x

z





x

 

Dividing by x, 

 

3z/xy/x2
x

z






 

The equation can be written in the forms   

x

y

x

z

x

z





23

 

This is a linear equation. 

The integration factor is 1/x
3 

Hence
433

2
3

1

x

y

xx

z

x

z

x















 

 

i.e.,
433

2

x

y

xx

z

x













.

 

. ˙.  
𝑧

𝑥3
= −

1

𝑥  2
−

𝑦

3𝑥3
+ 𝜙(𝑦)

 

 

 

 

)(
3

.,. 3 yfx
y

xzei 
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Ex.6 Solve   
za

x

z 2

2

2






given that when x = 0. 

ya
x

z
sin




and 0





y

z

 

If Z is a function of x alone, the solution would be 

axax eBeAZ  ,where A and B constants. 

Soln: 

Here z is a function x and y; hence the solution of the equation is  

 

 𝑧 = 𝑓 𝑦 𝑒𝑎𝑥 + 𝜙 𝑦 𝑒−𝑎𝑥  

 

 
𝜕𝑧

𝜕𝑥
= 𝑓 𝑦 𝑎 𝑒𝑎𝑥 − 𝜙 𝑦 𝑎 𝑒−𝑎𝑥  

 

 
𝜕𝑧

𝜕𝑦
= 𝑓 ′ 𝑦 𝑒𝑎𝑥 + 𝜙′(𝑦)𝑒−𝑎𝑥  

When x = 0, ya
x

z
sin




 

 .˙. a f(y) - a  (y) = a siny 

 i.e., f(y) - (y) = sin y   .......... (1) 

When x = 0 , 0




y

z
   

  .˙.f′(y) + ′(y) = 0       ........... (2) 

Differentiating (1), we get 

  f′(y) - ′ (y) = cos y       ............ (3) 

From (2) and (3), 𝑓 ′ 𝑦 =  
1

2
𝑐𝑜𝑠𝑦, 𝜙′ 𝑦 =  −

1

2
𝑐𝑜𝑠𝑦. 

  ∴ 𝑓 𝑦 =
1

2
𝑠𝑖𝑛𝑦 + 𝐴, 𝜙′ 𝑦 =  −

1

2
𝑠𝑖𝑛𝑦 + 𝐵. 

But from (1), A = B. 

Hence axaxaxax eAeAeyeyz   sin
2

1
sin

2

1

 

  = sinysinhax + 2A coshax. 
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1.2  Standard types of first order equations 

 Many of the important equations of the order that occur in practice are one or the 

other of the following standard forms. 

Hence
433

2
3

1

x

y

xx

z

x

z

x















 

Standard 1. The variable x,y,z do not occur explicitly. Such equations are of the form  

f(p,q) = 0 where 

 
y

z
q

x

z
p









 ,

 

 We can easily verify that z = ax+ by + c is a solution of the equationf(p,q)= 0 

provided f(a,b) = 0. 

 Solving this for b, b = F (a) 

 Hence the complete integral is z = ax + y F(a) +c. 

 This singular integral is obtained by eliminating a and c between 

   z = ax + y F(a) + c 

   0 = x + y F′ (a) 

   0 = 1. 

 The last equation is absurd and shows that there is no singular integral in this case. 

 To obtain the general integral, we assume an orbitrary relation c =  (a). Then z = ax 

+ y F (a) +  (a). 

 Differentiating partially with respect to a, 

 0 = x + y F′ (a) + ′ (a). 

 The eliminant of a between these equations is the general integral. 

Note :- The singular and general integral must be indicated besides the complete integral in 

every equation. Then only it is said to be completely solved. 

 

Example. Solve p
2
+q

2
 = npq. 

 The solution is z = ax + by + c, where a
2
+b

2
 = nab. 

Solving
 
2

4( 2 


nna
b

 

The complete integral is  
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cnn

ay
axy  )4((

2

2

 

Differentiating partially with respect to c, we see that there is no singular integral, as 

we get an absurd result. 

 To find the general integral put c = f (a), where f is arbitrary. 

)())4((
2

2 afnn
ay

axz  .

 

Differentiating partially with respect to a, 

 
)(')4((

2
0 2 afnn

y
x 

 

 The eliminant of a between these equations gives the general integral. 

Excercies  

Solve the following equations :- 

 1. p
2
+q

2
 = 4.    2. p = q

2.
. 

 3. pq = 1.    4. pq+p+q =0. 

 5. q
2
-3q+p = 2.   6. 3p

2
-2q

2
 = 4pq 

 7. p
3
-q

3
 = 0.    8. p + q = 3/a 

Standard form 2. Only one of the variables x,y,z occurs explicity. Such equations can be 

written in one the forms 

 F(x, p, q) = 0, F(y, p, q) = 0, F(z, p, q)= 0 

 (i) Let us consider the form F (x, p, q) = 0 

 Since z is a function x and y. 

  

dy
y

z
dx

x

z
dz









 .

 

  = p dx + qdy. 

 Let us assume that q = a 

 The equation becomes F(x, p, a) = 0 

 Sloving this for p, we get  p =  (x, a) 

  .˙.dz = (x,a)dx + a dy. 

  

𝑧 =   𝜙 𝑥, 𝑎 𝑑𝑥 + 𝑎𝑦 + 𝑏. 

 This consists of two arbitrary constants a and b and hence it is a complete integral. 
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 (ii) Let us consider the form F (y, p,q) = 0 

 Let us assume that p = a 

    .˙.F(y, a, q) = 0. 

       .˙.q = (y,a) 

 Hence dz =  adx + (y,a) dy 

  .˙. 𝑧 = 𝑎𝑥 +   𝜙 𝑦 𝑎 𝑑𝑦 + 𝑏, Which is complete integral. 

(iii) Let us consider the equation F(z,p,q) = 0 

Let us assume that q = ap. 

Then the equation become F (z,p,ap)  = 0 

i.e, p =  (z,a) 

 Hence dz =  (z,a) dx + a  (z,a) dy 

 

i.e, 
𝑑𝑧

𝜙(𝑧,𝑎)
= 𝑥 + 𝑎𝑦 + 𝑎𝑑𝑦 

  i.e., ʃ 
𝑑𝑧

𝜙(𝑧,𝑎)
= 𝑥 + 𝑎𝑦 + 𝑏 which is a complete integral. 

 

Examples. 

 Solve 

  (i) q = xp + p
2
 

  (ii) p = y
2
q

2
 

 (iii) p(1+q
2
) = q(z-1) 

(i) q = xp + p
2
 

 

Soln: 

 Let q = a 

 Then a = xp + p
2
 

 i.e. p
2
 + xp - a = 0. 

   
2

)4( 2 axx
p




 

Hence baydx
axx

dz 



2

)4( 2

 

baydx
axx





2

)4( 2
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.
2

sinh)4(
44

12
2

bay
a

x
axa

xx





















 

 

(ii) p = y
2
q

2
 

 

Soln: 

Let p = a
2
 

 .˙.  q =  a/y 

Hence dz = a
2
 dx  (a/y) dy 

 .˙.  z = a
2
x  a log y + b. 

(iii) p (1+q
2
) = q (z-1). 

 

Soln: 

 Let q = ap. 

 Then p(1 + a
2
p

2
) = ap (z-1) 

 ie., 1+a
2
p

2
 = a (z-1) 

 

.
)1(

a

aaz
p




 

Hence  dyaazdx
a

aaz
dz 1

)1(



  

 i.e., dyadx
aaz

dza





)1(
 

 i.e., byax
aaz

dza



 

)1(
 

 i.e., .)1(2 byaxaaz   

 

Excersies  

Solve the following equations :- 

 1.p = 2qx    2. q = 2yp2 

 3. 9(p
2
z +p

2
) = 4.   4.p (1+q) = qz 
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Standard form 3 

 Equations of the form f1(x,p) =  f2 (y, q). 

 

 In this form the equations is of the first order and the variables are separable. In the 

equations z does not appear. We shall assume as a tentative solution that each of these 

quantities is equal to a. 

  f1(x,p) = a, Solving  p = 1 (a, x). 

  f2(y,q) = a, Solving  q = 2 (a, y). 

 Hence dz = 1 (a,x)dx + 2(a,y) dy. 

 ∴ 𝑧 =   𝜙1 𝑎, 𝑥 𝑑𝑥 +   𝜙2  𝑎, 𝑦 𝑑𝑦 + 𝑏which is a complete integral. 

 

Example. Solving the equation p +q = x + y. 

Soln: 

 We can write the equation in the form p-x = y-q. 

 Let p-x = a. Then y-q = a. 

 Hence p = x+a. q = y-a 

  .˙. dz = (x+a) dx + (y-a) dy. 

 

  .˙. 𝑧 =  
(𝑥+𝑎)2

2
+

(𝑦−𝑎)2

2
+ 𝑏. 

 There is no singular integral and the general integral is found as usual. 

 

Standard 4. Clairant’s form 

 

 This is of the form z = px + qy + f(p,q). 

 The solution of the equation is z = ax + by + f(a,b) for p = a and q = b can easily be 

verified to satisfy the given equations. 

 

Example. Solve )1( 22 qpqypxz 
 

 

The complete integral is obviously  

 )1( 22 babyaxz  . 

To find the singular integral, differentiating partially with respect to a and b, 
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0
1 22





ba

a
x and 0

1 22





ba

b
y . 

Eliminating a and b the singular integral is x
2
+y

2
+z

2
 = 1. 

To find the general integral, assume b = f (a), where f is arbitrary. 

Then    z = ax+ f(a) y + {1+ a
2
 + (f (a)

2
)}

1/2 

 Differntiating partially with respect to a and eliminate a between the two eqations. 

 

Excersies 26 

Solve the following equations:- 

 1.  z = px +qx + pq 

 2. pqqypxz 2  

 3.  p
q

p
qypxz  . 

1.3 LAGRANGE’S EQUATION. 

 

 We have shown that, if we eliminate the arbitrary function F from the relation F(u,v) 

= 0, where u and v are functions of x,y,z. we get the equations 

  
),(

),(

),(

),(

),(

),(

yx

vu
q

xz

vu
p

zy

vu














. 

 This is expressed in the form Pp + Qq = R, where P,Q and R are function of x,y,z. 

 This partial differential equation is known as Lagrange’s equation. 

 In the following article we shall try to find the solution of the equation Pp + Qq = R. 

 

 The general solution of the partial differential equation Pp + Qq = R is F (u,v) = 0 

where F is an arbitrary function and u (x,y,z) = C1 and v (x,y,z) = C2 from two independent 

solutions of the equations 
R

dz

Q

dy

P

dx
 . 

 Taking total differential on the equation u (x,y,z) = C1 we get 

   0













dz

z

u
dy

y

v
dx

x

u
. 

 Since u(x,y,z)  =  C1 is a solution of the equation 

   
R

dz

Q

dy

P

dx
  
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  .0














z

u
R

y

u
Q

x

u
P        ............ (1) 

Similarly, v(x,y,z) = C2 is a solution of the equation 

  
R

dz

Q

dy

P

dx
  

   .0














z

v
R

y

v
Q

x

v
P       ............ (2) 

From equation (1) and (2), we get 

  

x

v

y

u

y

v

x

u

R

z

v

x

u

x

v

z

u

Q

y

v

z

u

z

v

y

u

P





















































 

  .............(3) 

 

  
),(

),(

),(

),(

),(

),(
.,.

yx

vu

R

xz

vu

Q

zy

vu

P
ei














 

 

 We have shown that the elimination of the arbitrary function F from the equation 

F(u,v) = 0, where u and v are functions of x,y,z leads to the partial differential equation 

 

  
),(

),(

),(

),(

),(

),(

yx

vu

xz

vu
q

zy

vu
p















      

.......... (4) 

 Substituting from equation (3) in (4), we get the equation 

  pP + qQ = R        ........... (5) 

 Hence we see that F(u,v) = 0 is a solution of the equation (5). 

 If u = c1 and v = c2 are the solutions of 
R

dz

Q

dy

P

dx


 

Examples. 

 

Ex. 1 Solve (y
2
 + z

2
)p - xyq = -xz 

Soln:

  
This equation can be written as the form 

 

R

dz

Q

dy

P

dx
  
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Where P=(y
2
 + z

2
) , Q = -xy and R = -xz. 

 

The auxiliary equations are 

  
xz

dz

xy

dy

zy

dx





 22

   

    .......... (1) 

Taking the last two equations, we get 
z

dz

y

dy


 

Integrating we get log y = log z + constant. 

  
1c

z

y


 

 

Each of the equations (1) is equal to  

  
2222 )( xzxyzyx

zdzydyxdx





 

 

  

.
0

.,.
zdzydyxdx

ei


 

  

.0 zdzydyxdx

 
Hence after integration this reduces x

2
 + y

2
 +z

2
 =c2. 

 

Hence the general solution of the equation is  

  0, 222 







 zyx

z

y
F . 

 

Ex.2 Find the general solution of (y+z)p + (z+x)q = x+y 

 

Soln: 

 

This equation can be written as the form 

 

R

dz

Q

dy

P

dx
  

Where P= y + z , Q = z+x and R = x+y 
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 The auxiliary equations are 
yx

dz

xz

dy

zy

dx








 

 

 Each is equal to 
yz

dzdy

xy

dydx

zyx

dzdydx















)(2
 

 Taking the first two, we get after integration 

  
2

1
log(x+y+z) = -log (y-x) + constant 

  .˙. (x+y+z) (y-x)
2
 = C1 

 By taking the last two, we get 

  - log (y-x) = -log (z-y) + constant. 

   2c
xy

yz





 

 Hence the general solution of the equation is  

  0 ,x)-(y z)+y+(x F 2 












xy

yz
 

 

Ex. 3 Solve zyx
y

z
y

x

z
x )(22 










 

 

Soln: This equation can be written as the form 

 

R

dz

Q

dy

P

dx
  

Where P= x
2
 , Q = y

2
 and R =( x+y)z. 

 

The auxiliary equations are 

zyx

dz

y

dy

x

dx

)(22 


 

zyx

dz

yx

dydx
ei

)(
.,.

22 






 

z

dz

yx

dydx
ei 




.,.
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i.e., log(x-y) = log z + constant. 

 
1c

z

yx





 

Also 
22 y

dy

x

dx
  

Hence -(1/x) = -(1/y) + constant. 

 (1/y)-(1/x) = c2 

 

Hence the solution  is 0,
11








 


z

yx

xy
F . 

Ex.4 Find the equation of the cone satisfying the equation xp + yq = z and passing through 

the circle x
2
 + y

2
 + z

2
 =4, 

Soln: Soln:  

This equation can be written as the form 

 

R

dz

Q

dy

P

dx
  

Where P= x , Q = y and R = z. 

 

The auxiliary equations are  

   z

dz

y

dy

x

dx


 

 Hence two independent  solution of the equations are 

 a
y

x
 ----------- (i) and b

z

y
  ------------ (ii) 

 .˙. The general solution of the equation is 0, 








z

y

y

x
F . 

 Here we have to find a functional relation between 
y

x
and 

z

y
such that they also 

satisfy the equations 

 x
2
+y

2
+z

2
 = 4  ------- (iii) and  x+y+z = 2  ---------- (iv) 

 Hence eliminate x,y,z from (i), (ii), (iii) and (iv) 
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ab

x

b

y
z

a

x
y  ,  

 Substituting values of y,z in terms of x in (iii) and (iv), we get 

 4
22

2

2

2
2 

ba

x

a

x
x  i.e., 4

11
1

222

2 









baa
x . 

 

 2
ab

x

a

x
x , i.e., 2

11
1 










aba
x . 

 

 

2

222

11
1

1
1 










ababa

x

a
  

 

 i.e., 0
222
2


baaba

 

 

 i.e., ab + a+ 1 = 0 

Now if we replace a by (x/y) and b by (y/z), we get the required surface 

 xy + yz + zx = 0. 

 

Ex. 5 Solve (x
2
 - yz)p + (y

2
-zx)q = z

2
 - xy. 

Soln: 

 

The subsidiary equations are 

 

 
xyz

dz

zxy

dy

yzx

dx







 222
 

 

 
))((

)(

)( 22 zyxyx

yxd

zxyyzx

dydx









 

 

     
))((

)(

zyxzy

zyd




  

    
zy

zyd

yx

yxd











)()(
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   1c
zy

yx





         ............ (1) 

Using multipliers x,y,z  each of the subsidiary equations 

   
xyzzyx

zdzydyxdx

3333 


  

𝑎𝑛𝑑 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 
𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧

𝑥2 + 𝑦2 + 𝑧2 −𝑦𝑧−𝑧𝑥−𝑥𝑦
 

 

   

Taking the last two ratios  𝑥 𝑑𝑥 = (  𝑥)𝑑 ( 𝑥).
 

 

 

Integrating, 


2

)( 2zyx
2

222

2

)(
c

zyx




 

 .˙. xy + yz +zx = c2     …………..(2) 

From (1) and (2), 0),( 



 zxyzxy

zy

yx
,where f is arbitrary. 

Note. We should not take the second solution as  
𝑥−𝑧

𝑧−𝑧
= 𝑐2 since each of the subsidiary 

equations. 

   





))((

)(

zyxxz

xzd
 

But this solution is not independent of the first solution
𝑥−𝑦

   𝑧  −𝑥
= 𝑐 1 , since 11 1 




c

zy

yx
 

gives 11 



c

zy

yx
which is merely the second solution. 

 

Excersices 28 

Solve given 
x

z
p




 ; 

y

z
q




 : 

 1. xp + yq = z. 

 2. xp - yq = xy 

 3. ap + bq + cz = 0 
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