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UNIT   I 

1.1 Matter Waves 

According to Debroglie, the wavelength λ associated with a moving particle having 

momentum p is given by 

mv

h

p

h
      where h is Planck’s constant 

This wave associated with a particle is called matter waves. 

Consider a particle possessing wave length λ. The value of ψ at any point x at time t is given 

by 

tor

t





2sin

sin

0

0




  

where ν is the frequency of the particle. Let the particle moves with velocity v along positive 

x-direction. Using Lorentz transformation theory, we can write 

                                                       




















2

2

2

1

'
'

c

v

c

vx
t

t  

                                       























2

2

2

0

1

'
'2

sin

c

v

c

vx
t

               (1.1) 

But the standard equation of wave motion is 



















'

'
'

'

2
sin0

u

x
t

T


                 (1.1A) 

where 0  is the amplitude, 'T  is the period and 'u  is the phase velocity 

Comparing eqns. (1.1)  and (1.1A) 

v

c
u

2

'   and    


















2

2

1

'
'

1

c

vT


                                       (1.2) 

According to Einstein’s mass-energy relation 

hcmE  2
0    or     

h

cm 2
0  

Substituting this  in eqn. (1.2) 
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The wavelength of the particle 

hmc

c

v

u
2

2

'

'

frequency

velocity 
   

or   
mv

h
                   (1.3) 

This is the expression for the de-Broglie wavelength for a particle of mass m moving with 

velocity v 

 

1.2 Schroedinger time-independent wave equation.  

The classical wave equation is written as, 

    
2  = 2

2

2

1

dt




               (1.4) 

where   is the displacement and v is the velocity of the wave. Let the wave amplitude  is 

periodic in time t as 

     (r, t)=  (r)                           
(1.5)

 

Substituting eq. (1.5) in eq. (1.4), we get  

  
2  = 




2

2

  

Or     2 0
2

2





  

or            
2

0
4

2

2





 since 







 2
  

 and  being the frequency and wavelength of the de-Broglie waves. Rearranging the terms, 

we get the wave equation in the form 

  
2
 +  (4

2
/

2
) = 0.                           (1.6) 

From the expression for de-Broglie wavelength  = ,
m

h

p

h
  

h

mc

c

v

hcm
v

2

2

2

2
0

1

' 












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  
2
 + 2

2224

h

vm 
  = 0. 

Now, 
2

2

1
mvVE   where E is the total energy and V is the potential energy of the 

system from which, 

  mv = )(2 VEm            and the wave equation becomes  

  
2
  + 0)(

2
2

VE
m


                                              (1.7) 

This equation is known as Schroedinger time-independent wave equation.  

 

1.3 Schroedinger Time-dependent equation  

 

Schrodinger time independent wave equation can be written as 

0)(
2

2

2
  VE

m


 

Mulktiplying on the right by 
tie 
and rearranging we get, 

  -
ti

er





 )(
2

 +  
titi E

h

m
V

h

m  



   e 

8
e 

8
2

2

2

2

            (1.8) 

The right hand side can be written as 

    ),(
)(-i

8
 ),(

8
2

2

2

2

tr
t

E

h

m
trE

h

m










 

     =
t

tih

h

m



 ),(

2

8
2

2

r




      since   E=   

                                               =
t

tim



 ),(2 r


 

Substituting this in eqn. (1.8), we get 

or   
t

iV
m 











 

 2
2

2
 

This is the required Schoedinger time – dependent wave equation  

 

(a) Solution of the Time dependent Schroedinger equation  

The Schroedinger Time-dependent wave equation is written as, 
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-
t

tx

i
txxV

x

tx

m 






 ),(
),()(

),(

2 2

22


             (1.9) 

Now   ),( tx  can be expressed as the product of two functions, one involving the time 

coordinate alone and the other position coordinate alone. That is, 

    (x,t) = ψ(x) (t) 

Substituting this in the eqn. (1.9) and simplifying we get, 

  
dt

td

ti
xxV

dx

xd

mx

)(

)(

1
)()(

)(

2)(

1
2

22 


















    

The left hand side is a function of x while the right hand side is a function of t only. But x and 

t are independent coordinates. This is possible only when they are separately equal to a 

constant (E) 

Hence,    ExxV
dx

xd

mx









 )()(

)(

2)(

1
2

22






  

   and  E
dt

td

ti


)(

)(

1 




            (1.9A) 

From the first of equations (1.9A) ,  

     ,0)()(
2)(

22

2

 xxVE
m

dx

xd





              (1.10) 

which is Schroedinger time independent wave equation whose solution is given by (x). 

Considering the second of equations (1.9A), we have  

)(
)(

tE
i

dt

td





  

or .
)(

)(
dtE

i

t

td







 

Integrating,   log 


iEt
t )(  

or  











tEi
t nexp)(  

or    in general for the n
th

 state,      











tEi
t n

n exp)(  

Hence the general solution is  

(x,t) =  
n

nn txa ),(  =  








n

n
nn

tiE
xa


exp)(             (1.11) 
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(b) Stationary State Solutions 

Consider the probability distribution function * for a system in the state represented by 

the wave function  

 (x, y, z, t) = 










 

tiE
zyxa n

n
n

n exp),,(
1

             (1.12) 

Taking the complex conjugate  

* (x, y, z ,t) = 











tiE
zyxa m

m

m

m exp),,(**             (1.13) 

Multiplying eqns. (1.12)  and (1.13), 







 

 


tEEi
zyxzyxaazyxzyxaa nm

mnmn

m n

mnmn

)(
exp),,(),,('),,(),,(* 

          '  indicates nm   

If an values are zero for all values except for one value of En then * will be independent 

of time and the state represented by wave function  would be stationary. In this case the 

wave function is represented by  












tEi
zyxatzyx n

nnn exp),,(),,,(                         (1.14) 

 

1.4 Physical significance of  

 

The wave function is large where the particle is most likely to be and small elsewhere. The 

finite region in which the wave function  is  appreciably different from zero is called a wave 

packet. According to Max Born, the absolute square of (r,t), that is   
2
 gives the 

probability per unit volume of finding the particle at some position r at any time t. The 

probability of finding the particle in a volume element d  is P(r,t) d   = (r,t) 
2
 d . The 

total probability of finding the particle in the whole region is unity.  

                                  ie.   
2
 d  = 1                         (1.15) 

 satisfying this condition is said to be a normalised wave function. 

(a) Limitations on   : 

a)  must be finite for all values of x, y, z of the region 

b)  must be single valued 

c)  must be continuous in all regions  
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d)  is analytical i.e. it possesses continuous first order derivative 

e)  vanishes at infinity space 

 

1.5 Orthogonal, Normalised and Orthonormal wave functions 

For any two wave function, 
1  (x) and 

2 (x) in the limit a to b, if  the condition 

                                     .0)()( 1
*

2  dxxx

a

b

         

is satisfied then, then  )(1 x    and   )(2 x   are said to be mutually orthogonal wave functions 

We know that the probability of finding a particle in the volume element d is given by     

ψψ* d or 
2
 d. The total probability of finding the particle in the entire space is unity. 

                              i.e.,  1),(
2

  dtr                   

where the integration extends over the entire space.  

This  can also be written as,  

                                          1),(),(  dtt rr  

Any wave function satisfying the above condition is said to be normalized to unity or simply 

normalised. If   is not a normalised wave function, then it can be made normalised by 

multiplying it with a constant called normalisation constant (A). 

To find the normalisation constant,  

                   dAA *)(     1
2

 dA     or     




 d
A

*

2 1           (1.16) 

The functions  which are orthogonal as well as normalised are called ortho-normal functions.  

1.6 Pobability current density 

If P(r) is the probability of finding a particle at a given point, then the probability of finding 

the particle in a volume V bounded by the surface  area A is 

 

















VV

VV

d
dt

d

dt

d
d

dt

d

dt

dP
ie

ddrPP








*
*

*.

*)(

          (1.17) 

From Time dependent Schrodinger eqn. 
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t

iV
m 





 

 2
2

2
             (1.18) 

The complex conjugate of the above eqn. is              (1.19) 

 
t

iV
m 




*
**

2

2
2 

 


 

Multiplying equations (1.18) by *  and (1.19) by   and subtracting the two we get 

 *)*(
2

*
* 22 


 

imdt

d

dt

d 
 

Using this eqn. (1.17) can be written as 

  
V

d
imdt

dP
 *)*(

2

22
 

                               ie.    
A

dA
imdt

dP
*)*(

2



 (volume integral is changed into               

                                                                                                          surface integral) 

If we define a new vector S such that, 

 *)*(
2

),(  
im

trS


, then  we can write 

 

0div

div.



 

S
dt

dP
or

SdAS
dt

dP

A             (1.20) 

This is analogous to the equation of continuity in hydrodynamics 0



jdiv

t


. Here  is 

the fluid density and j is the current density. Thus we can define S is the probability current 

density 

 

1.7 Expectation values of dynamical quantities  

The average value  or the expected value of any function f(x) is given by 
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 f =  dxxf  )(*               (1.21) 

Thus the expectation value is the mathematical expectation for the result of a single 

measurement or it is the average of the large number of measurements on independent 

systems.  The expectation value of position vector r is given by  

                                   r    dtt ),r(r),r(*              (1.22) 

The expectation value of potential energy (V)  is  

 V    =   dtt ),r(V),(r*             (1.23) 

We can prove the classical equations are valid for the expectation values of the dynamical 

quantities, For example, consider the classical equation, 

E = V
m

p


2

2

 

Considering expectation values throughout we get, 

 E   =  V
m

p

2

2

 

Operating on a wave function      gives 

 E     =   V
m

p
  

2

2

 

Using the operator formalism 





  ip

t
iE ˆ,ˆ , we can write the above eqn. as 

 






 V

mt
i 2

2

2


             (1.24) 

Multiply eqn. (1.24) on the left by *,  

 



 V

mt
i *2

2
**

2


                             (1.25) 

This means the expectation value is obtained by corresponding operator acting on   and 

multiplied on the left by * . Therefore  

 E   = 


 dipd
t

i )(; ** 



                       (1.26) 
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1.8 Ehrenfest Theorem (Newton’s  Law of motion) 

Statement: 

The average motion of a wave packet described by a wave function   agrees with the 

corresponding classical motion of the particle. That is, 

 

            (a)          
m

p

dt

dr
  

            (b)    V
dt

dp
              (1.27) 

Proof: 

The Schroedinger time dependent wave equation is written as 




V
mt

i 


 2
2

2




 

 
















V

m

mit
or

2

2 2

2 


             (1.28)

 

Taking its  complex conjugate,  

  















V

m

mit 2

*2 2

2 


             (1.29) 

For a normalized wave function, the expectation value of x is given by 

 x  = 




 dx*             (1.30) 

Differentiating w.r.t. t,    
























d

t
xdx

tdt

xd
*

*

         (1.31) 

                                                                                                      since dx/dt=0.
 

Substituting the value of 
t


and 

t


from equation (1.28) and (1.29) into equation (1.31), 

we get, 

 dV
m

mi
xdxV

m

midt

xd





























2

2**

2

2 2

2

2

2 






 

     dx
mi

dx
mi 









 2**2

22


           (1.32)

 

The first integral on R.H.S. can be integrated by parts by taking xu   and  *2dv  
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         dxdxdx )(.. 22  












          (1.33)
 

Using Gauss divergence theorem, the first term of the integral of R.H.S can be transformed to 

an integral over a surface at infinity  and since the wave function  vanishes at infinity, we 

have  

      0.  








dAxdx             (1.34)
 

Thus from equation (1.33), we get  

     dxdx )(22  






            (1.35) 

Integrating again equation (1.35) by parts and again the  surface integral  vanishes at infinity,  

we have  

   dxdx )(22  






             (1.36) 

Using equation (1.36), equation (1.32) becomes  













 dx
mi

dx
midt

xd
)(

2
)(

2

22 

 

 dxx
mi

])([
2

22 







 




 d
xmi




 


 








             (1.37)

 

 d
x

i
m 

















 

1

    
 


x

p
m

1

      
 

Considering y and z  components, we have  

 p
mdt

d 1r               (1.38)
 

Differentiating once again the eqn. (1.37)  and multiplying by m, 
























































 d

txi
d

xti
d

xdt

d

idt

x
pd

*
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


 dV
x

m

xmii
d

x
V

m

mii














































 )(
2

22

2

*
2

22

2 







 







 d
x

Vm

xxm








































2

22)2(
2

2



            (1.39)
 

The first two terms cancel out and we get  



























x

V
d

x

V

dt

x
pd

              (1.40)
 

Considering all other components, we get  

           


V
dt

pd
= F (force acting on the system)            (1.41)

 

This eqn. shows  that the rate of change of  
 
momentum is equal to force, which is Newton’s 

second law of motion. 

 

1.9 Postulates of wave mechanics  

Postulate:1 

Quantum system is characterised by a wave function ),( tr . It is a complex function of 

space and time and contains all possible informations  about the system. 

Postulate:2 

The probability of observing  a particle at time t  within volume dτ  is 

 dtr
N

trdP
2

),(
1

),(                          (1.42) 

Postulate:3 

Any wave function ),( tr can be expanded interms of complete set of orthonormal functions 

as 

)()(),( rtCtr a

a

a                 (1.43) 
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Postulate:4 

Time evolution of a system described by the wave function ),( tr is given by the Schrodinger 

equation 

 


V
mt

i 





 2
2

2


            (1.44)

 

 

1.10 Dirac’s ‘BRA’ and ‘KET’ vectors : Dual Space  

 

The quatum matrix theory can be put into compact form by making use of notations invented 

by Dirac. Accordingly each dynamical state may be represented by a certain type of vector 

known as ket vector or simply ket represented by the symbol ,| In order to distinguish the 

kets from each other, we complete each symbol by inserting a particular letter in the middle. 

For example a|  denotes the ket vector corresponding to state a  of the system 

notation)oldin( a  

The kets form a linear vector space and any linear combination of several ket vectors is also a 

ket vector. For example let us consider two kets a|  and b| and two arbitrary complex 

numbers 21 candc the linear combination. 

     bcacv ||| 21              (1.45) 

is also a vector of ket space.  

Accordingly ket vectors may be multiplied by complex numbers and added together to give 

other ket vectors. The vectors of dual space are called bra vectors or simply bras and denote 

in general one of them by the symbol | , the mirror image of the symbol for a ket vector. If 

one wants to specify a particular one of them by a label ,b (say), it is written in the middle as 

|b . 

There exists one to one correspondence between the vectors of bra and ket spaces. Bra and 

ket thus associated by this one to one correspondence are said to be conjugate of each other 

and are labelled by the same indices. Thus the bra conjugate to ket a|  is represented by the 

symbol |a ; subject to the conditions  

|||| baba   

and             || acac  
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The connection between dual spaces is given by defining the scalar product of a bra vector 

and a ket vector such that  

 dqba baba 


 ),||  

We have the rules that any complete bracket expression denotes a number and any 

incomplete bracket expression denotes a vector of the bra or ket space according to whether it 

contains the first or second part of bracket. The first three (bra) and the last three (ket) letters 

of bracket provide the names for the two kinds of state vectors (bra and ket). The bra vector 

| is analogous to the complex conjugate (or hermitian adjoint) of the wave function of the 

system. Evidently we have  

 abba ||  

   bababba ||||||  

   bacbca |||  

where c is any number. 

The bra conjugate to ket      bcac |||| 21    is 

|||| 21 bcac 


  

Thus the correspondence between the kets and bras is analogous to the correspondence 

between the wave functions of wave mechanics and their complex conjugates. We further 

note that if a ket vanishes, its conjugate bra also vanishes and vice – versa. A bra and a ket 

vectors are said to be orthogonal if their scalar product is zero. The length of a bra vector 

|a  or of its conjugate imaginary ket vector a| is defined as the square root of the possible 

number  aa | . 

 

1.11 Hilbert Space 

A set of n vectors ia is said to be linearly independent if there exists no relation between 

them of the form  

     



n

i

ii ac
1

0       

except for .0........21  nccc  Otherwise such a relation will reduce the number of 

independent terms. If ia and ja are mutually orthogonal i.e., their scalar product denoted by 

),( ji aa vanishes for ,ji then ia and ja are linearly independent. In three dimensional space 
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the maximum number of linearly independent vectors is obviously three. In general, any set 

of n -linearly independent vectors spans an n -dimensional linear space denoted by .nR  This 

purely abstract concept of n -dimensional space ( n  a finite real positive integer) indeed 

becomes essential in many problems in modern physics.  A linear operator 
nRP ofˆ transforms 

one vector nRu of into another vector nRofv  

i.e.,                                         .vˆ uP         

 

A vector iu which is carried over by a given operator P̂ . An operator of n -dimensional 

space nR  has in general n  eigen values. If some of them coincide, the system is said to have 

degeneracy.  All these notions can be carried out into a (complex) space with (countable) 

infinitely many dimensions )( n . If one imposes restriction that the scalar product  

     





1

2
2

),(| u
i

iuuu      

exists, where ...)u,(u 2.1u  is a sequence of real or complex scalars and is called a vector i.e., 

if all infinite series which occur and convergent, then the space is said to be Hilbert space.  

In brief the vector space is said to be Hilbert space if it is complex and of countable infinite 

dimensions such that all infinite series occurring in it are convergent.  In Quantum Mechanics 

we often deal with complex functions and the corresponding Hilbert space is that of 

quadratically integrable (complex) function in i   variables )....,,( 21 iqqq  

Let us now consider some properties of Hilbert space and some operations in it. The scalar 

product of two functions viz., )....,,(and)....,,( 2121 ii qqqgqqqf is defined by 

)....,,()....,,(( 2121 ii qqqgqqqf  

   iii dqdqqdqqqgqqqf ....,,)....,,()....,,( 212121


   

The condition (1.69) then becomes  

   exists....|| 21

2 Cdqdqdqf i       

which is true for wave function 

Now the wave function are orthogonal when  

   0....)....,()....,( 212121  iii dqdqdqqqqgqqqf    
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In Quantum Mechanics a state function  contains all the physically relevant information 

about a physical system at a given instant of time and is represented by a vector along a 

direction in the Hilbert space. If   represents a physical state, then   and a constant 

multiple of   both represent this state. Therefore the arbitrary representative vector of the 

ray is usually normalised to one.  

The states specified by different functions, i (forming complete basic set) and represented 

by vectors along mutually perpendicular axes form a complete orthogonal system of 

coordinates axes in the Hilbert space. The completeness of the system means that any wave 

function associated with vector  in the Hilbert space can be represented as the vector-sum 

of its components along these axes i.e.,  

     
i

iib        

there being an axis for each i . Thus each ib corresponds to the (complex) component of 

arbitrary vector along i -axis.  

The multiplication of two finite matrices is defined as  

    
i

inmimn BAAB)(       

where m  denotes the row and i  the column of matrix A. This law may be extended to the 

matrices having infinite number of rows and columns in the Hilbert space. Then this 

multiplication is same as that obeyed by two operators. Hence any operator Â can be 

associated a matrix A whose matrix elements  are defined as  

     
n

nmn

n

nmnmm AAA      

where  ),( mnmnnm AdqAA     

with respect to a basic set of eigen functions n . As each integral has a certain numerical 

value, therefore  

),( mnmnnm AdqAA     

gives a doubly infinite array of number i.e. a matrix. Now a matrix operating on a wave 

function (vectors) can be represented as a linear transformation in the Hilbert space .For 

example in the equation.  

     .gAf                
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‘A’ transforms gof int where gf and are two wave functions (vectors) in the Hilbert 

space. Unless specified we consider only those eigen functions which are located in the 

Hilbert space. This imposes a restriction to discrete spectrum. 

1.12 Hermitian operator 

Operator A is said to be Hermitian if for two square integrable functions  and  the 

following condition is  satisfied. 

   || AA               

Adjoint or Hermitian conjugate of an operator: 

For an orbitrary operator A, we can define another operator A+ such that 

  || AA . Then A
+
 is called the adjoint or Hermitian conjugate of A 

(a) Properties of Hermitian operators: 

(i) Product of two Hermitian operators is Hermitian, if and only if, they 

commute 

Consider two Hermitian operators A and B. If they commute then we will show AB is 

hermitian. Let )(x  and )(x are two functions. If A is hermitian, then we can write, 

     |||| BAAB  

If B is also hermitian , 

    ||| BABA  

   || AB   |BA                                         (1.46) 

IF C=AB is hermitian then, 

   |||||| ABCCAB                      (1.47) 

From eqns.(1.46) and (1.47),   AB=BA.   Thus AB is hermitian only if they commute. 
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(ii) Eigen values of hermitian operator are real: 

Let       
nn

a
n

A  ||  

Now,  nnnnn aA  |||                   (1.48) 

Also   nnnnn aA  ||
*

                      (1.49) 

If  A  is  hermitian  then  nnnn AA  ||| . Using (1.48) and (1.49), we get  

*nana                 (1.50) 

Hence the eigen values of hermitian operators are real 

(iii) Eigen functions of a hermitian operator corresponding to different eigen 

values are orthogonal to each other. 

Let P be any Hermitian operator and 21  and  be any two eigen functions of P. If A and 

B are the two distinct eigen values of P corresponding to 21  and , then we can write 

22

11





BP

AP




   or     

*****

*****

222

111





BBP

AAP




 since A and B are real.                 (1.51) 

From the general characteristics of the Hermitian operator P, 

 dPdP 1212 ***                  (1.52) 

Using eqn. (1.51), 

 dBdA 1212 **      or     dBdA 1212 **    

or    0*)( 12    dBA  

or 0* 12   d   since    BA  . Hence proved.                             (1.53)   
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1.13 Proof of Uncertainty principle for one-dimension Wave packet  

The uncertainty in position along X - axis, by analogy with the standard deviation of 

statistics, may be  defined as  

       
2

xxx             (1.54) 

where  x is the expectation value of .x  The probability of finding the particle between co-

ordinates x and dxx  is given by ,)()( dxxx   so that expectation of average value of 

,x for normalised function )(x , is written as  

       ,)()( dxxxxx             (1.55) 

Similarly the uncertainty in momentum is represented as  

     
  

2
ppp            (1.56) 

where  p is the expectation value of momentum defined as  

 











 dx

x
ip  

 

         


 dx

x
i 




                        
(1.57)

 

Let us choose        .0 px  

Now consider the integral  

dxx
dx

d
i )(    

Integrating by pars,  

  








 dx

dx

d
xixidxx

dx

d
i


  )(  

             =   





 dx

dx

d
xi


0  since ψ vanishes at infinity. 

But   1dx  for normalised wave  function.  

 idxx
dx

d
idxx

dx

d
i 


 





 

or    idxx
dx

d
idxx

dx

d
i 








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As the right hand side is imaginary, therefore it must be equal to the imaginary part of left 

hand side i.e.,  i2 imaginary part of  idxx
dx

d
i 


 


            (1.58)

    

Taking modulus of both sides and then  squaring we get  

 
2

2

PartofImaginary4  


 dxx
dx

d
i 


           (1.59) 

But we have  

  dxx
dx

d
idxx

dx

d
i 




 



  ofpartimaginary         

Equation (1.59) can now be written as  

  
2

2

4  


 dxx
dx

d
i 


              (1.60) 

According to Schwarz inequality, we have  

    dxφφdxffdxφf
2

             (1.61) 

So that the left hand side of equation (1.59) (using  xdxdif  and)/( can be 

written as  

 













.44

2

dxxxdx
dx

d
i

dx

d
idxx

dx

d
i 





  

Therefore equation (1.59) itself can be written as  

 










.4 22  dxxdx

dx

d
i

dx

d
i 


 

or          .
4

2
2

2


 dxx
dx

d
i 


 

or          .
4

2
22 

 xp              (1.62) 

      Since  dxxx  22   

and    .

2

2 dx
dx

d
ip


  

Applying conditions expressed by (1.58) to equations (1.54) and (1.56), we get  
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and     











,)(,

)(

22

22

pp

xx
             (1.63) 

Using (1.63), equation (1.62) becomes 

4
)()(

2
22 
 px  

or     
2


 px              (1.64) 

(a) Commutation Relation between Position and Momentum : 

(i) Let us find the commutation relation between  .and xpx  

In operator formalism

 
xi

ppandxx x






ˆˆ  

Consider the operation of  xpx, on a function ),(x  

i.e.,     )()ˆˆˆˆ()(ˆˆ xxppxxpx xxx               (1.65) 

 We have   
xi

px x









ˆ  

and    


















x
x

i
x

xi
xpx





)(ˆˆ  

 Equation (1.65) gives  

  


















x
x

ixi
xpx x








ˆˆ  

                                








i
ix

x
x

x
i


















  

i.e.   ipx x ˆˆ                         (1.66) 
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UNIT II 

2.1 Linear Harmonic oscillator  

In the case of a liner harmonic oscillator the force F = - K x can be  represented by the 

potential energy  function 22/1)( KxxV   

From the  Schroedinger  equation, 

  
.0

2

12 2

22

2









 


xKE

m

dx

d

       (2.1) 

Introducing a variable  = α x, where α is constant, we can write, 

  










d

d

dx

d

d

d

dx

d


 

and              
2

2
2

2

2

...
















d

d

d

d

dx

d

d

d

d

d

dx

d

dx

d


















 

Therefore eq. (2.1) becomes  

 .0
2

2

2

222

2

2 













 












mKmE

d

d
      (2.2) 

or     

.0
2

24

2

222

2









 










mKmE

d

d

      (2.3) 

Let us choose α such that     
1

42




mK

  and       
22

2






mE


 

Therefore equation (2.3) assumes the dimensionless form  

 
.0)( 2

2

2

 




d

d

        (2.4) 

Let the solution is of the form  

   22

)()(   eH
      (2.5) 

where H() is a polynomial of finite order in . If we consider the  positive sign in the 

exponent, then  will diverge as   . From eqn. (2.5)  

  


















2
exp)(

2
exp)('

22 








HH

d

d

 

and        



















2
exp)(

2
exp)(

22
''

2

2 








HH

d

d

 

  


























2
exp)(

2
exp)(

2
exp)(

2
2

22 






 HHH
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  



























2
exp)()1(

2
exp)(2

2
exp)(

2
2

22 






 HHH

 

Substituting the value of () and 
2

2





d

d in equation (2.4) we get  

  0)()()()()(2)(
2

exp 22
2












HHHHH

 

or              
0)()1()(2)(   HHH

   (2.6) 

 

Energy Levels.  

Using power series, we can solve equation (2.6)  

Let 

  
....),()( 2

210   aaaH s

 a0 0, s  0    

  =
vs

v

v

v

v

v

s aa 








  
00  

On differentiation,  1)(   vs

v

v vsa
d

dH


  

and    

2

2

2

)1()(   vs

v

v vsvsa
d

Hd


  

Substituting these values in equation (2.6), we get, 

 

       0)1()(2)1()( 12    vs

v

v

vs

v

v

vs

v

v avsavsvsa 
 

or    
0)1()(2)1()(

2





vs

v

v

vs

v

v

vs

v

v avsavsvsa  
 (2.7) 

For  H() to be a solution for all values of ξ, the coefficient of the individual powers of  

must vanish separately, i.e., equating to zero the coefficients of various powers of  we get 

      s(s-1) a0 = 0 

          (s + 1) (s) a 1 = 0 

              (s+2) (s+1) a2 – (2s + 1- ) a 0 = 0 

             (s+3) (s+2) a3 – (2s + 3 - ) a 1 = 0 

                                  ... ... ... .... .. .. ... .... .... ... ... .. .. ..  

                                  ... ... ... ... ... ... ... ... ... .... ... ... ....  

        (s+ν + 2) (s + ν + 1) av + 2 – (2s + 2 ν +1 -  ) av = 0                (2.8) 

From these expressions we can write, 

   av+2  = va
vsvs

vs

)2()1(

122



 
    

 (2.9) 
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where v is an integer. Since a0 cannot be equal to zero, from the first of equations (2.8), s = 0 

or  1. If a0 is equal to zero, only odd powers appear. With a1 equals to zero, the series 

contains even powers only. If we examine the convergence of the power series solution 

defined by equation (2.9), we find that as ν  , (av+2)/av 2/v, so that the series converges 

for all finite values of .  

Considering the series expansion of  
2e ,  we have  

2
e

 
= 

...
)!12/()!2/(

...
!3!2

1

264
2








vv

vv



 

 = b0 + b2 
2
 + b4 

4
  +  bv 

v
 + bv + 2

v+2
 + ... 

 

vb

b

v

v

v

b

b

v

v

v

v 2

v

Lim
or

2

2

!)2/(

1

!)12/(

1

22 





 

 

This shows that H() diverges approximately as e
2 

and the product 
22

)(  eH  
 
will behave 

like  

2/2

e in this region which tends to    
 as,

.So this is not an acceptable 

solution. This situation can be avoided by coosing   in such a way that the power series for 

H() cuts off at some term, making H () a polynomial. 

From eqn (2.9), by making  

     = 2s + 2v + 1. 

we can make the series cut off. The index s can still be either 0 or 1, and corresponding to 

these values,  is equal to 2v + 1 or 2v+3 where 2v is an even integer. Or, 

   = (2n+1).                   n=0,1,2... 

Then  
nE2  )12(  n

K

m

 

or  

.
2

1
cn nE 










    

  n   =  0,1,2...             ...(2.9A) 

where c = 
m

K
is the classical 

angular frequency of the 

oscillator. 

½  ωc 

3/2  ωc 

5/2  ωc 

7/2  ωc 

9/2  ωc 

Fig. 2.5 

E 
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Zero point energy.  The energy levels given by equations (2.9A) are discrete and have equal 

spacings. When n=0, the finite value of lowest energy or ground state energy is (1/2) ћc. 

Hence  zero point energy is given by, 

   c0
2

1
E

 

and all higher energy levels are separated by an amount equal to ћc. Zero point energy is 

characteristic of quantum mechanics and is related to the uncertainty principle.  

 

 

2.2 Infinitely deep potential well or particle in one-dimensional box  

 

Consider a square potential well with infinitely high sides, as indicated in figure (2.1). The 

particle is bounded by impenetrable rigid walls of width 2a as shown.The potential of the 

well is represented by, 

                        V(x) = 0  for –a <x < a   and 

                                V(x) =  , for x a  

The boundary condition on the wavefunction is, it vanishes at the wall. That is  

 

0  axax   

The wave equation for x a is  

           0
2

22

2

 


E
m

dx

d

           
 0V

 

           2

22

2

2 2
,0



mE
where

dx

d
 



         

 

The general solution of this eqn can be written as, 

                             =  A cos α x +B sin α x. (2.10) 

Applying the boundary conditions, 

  = 0 at x = a  and   = 0 at x = - a 

We get,      A cos  a  +  B sin  a   =0.       (2.11) 

 and  A cos  a  - B sin  a   =0.      (2.12) 

0 -a +a 

Fig.2.1  
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Adding and subtracting equations (2.11) and (2.12), we get, 

  2 A cos  a   = 0          and       2 B sin  a   =0.  

There are two possible solutions namely,  

(i) A  = 0 or  cos a  =  0. 

(ii) B  = 0 or sin a  =  0. 

For  sin a  = 0,  a  = , 2, 3 .......... n /2  where n is even 

And for  cos 
  
a  =0,       a   = /2, 3/2, ....= n/2,  where n is an odd integer. 

We have,                  
2

2 2



mE
       or     

m
E

2

22 
     (2.13) 

or   in general,           2

222

8 am

n
En


   since,   =n  /2a.    (2.14) 

There are  an infinite sequence of discrete energy levels that correspond to all positive 

integral values of n.  

 

Wave function.  The general form of wave functions may be written as  

   n   =    
a

xn
A

2
cos


  when n is odd   (2.15) 

                        n  =    
a

xn
B

2
sin


  when n is even   (2.16) 

To  normalise the wave function n  : 

From eqn (2.15),  

1
2

cos222
 



dx
a

xn
A

a

a

n




 

               

1
2

2
cos1

2

2













dx
a

xnA
a

a

  

On simplifying the above integral we get, 

)./1(
12 aAor
a

A   

Similarly we can show, )./1( aB  

  

Hence the normalized wavefunctions are,  

E1 

E2 

E3 

E4 

ψ1 

Ψ2 

Ψ3 

Ψ4 

-a +a 
Fig. 2.2 
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n    =   
a

xn

a 2
cos

1 
      (n = 1, 3, 5,...).                       (2.17) 

n  =    
a

xn

a 2
sin

1 
  (n = 2, 4, 6,...).                    (2.18) 

The energy levels and wavefunctions are shown in fig. (2.2) The successive energy states 

differ by half wavelength. The lowest energy level has  only half wavelength. The points 

between           a  x  - a, where the wave function vanishes are called a node. For a 

particular energy state, characterised by the quantum number n, the number of intermediate 

nodes is (n-1). Wavefunctions n(x) for odd n are even functions of x. Such functions are said 

to have an even parity (symmetric). Similiary n(x) for even n are odd functions 

(antisymmetric) and have an odd parity.  

 

2.3 Energy levels for One – Dimensional Square Well Potential of finite depth (bound 

states) 

-Let us  consider a simple one – dimensional well of finite depth. Let, the potential be equal 

to zero within a distance a on either side of the 

origin, and equal to +V elsewhere, a shown in 

Fig. (2.3). 

                                     












ax

a x

V
V

   for 

 < < a-for 0
  

   

In the region where x< a, the Schrodinger 

wave equation is  

        

)0(0
2

122

1

2

 VE
m

dx

d







 

or   
01

2

2

1

2

 


dx

d

 

where   
2
 = 








2

2



mE
 

The general solution of this equation is, 

1 = A cos x + B sin x 

V V 

V(x) 

0 -a +a 

Fig. 2.3 

II I III 
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Similarly, the wave equation outside this region is 

0)(
2

22
2

22
 


EV

m

dx

d

  

or            .02

2

2

2

2

 


dx

d
   Where  








 )(

2

2

2

EV
m


  

This has the general solution  

2  =  C e
 x

   +    D e-
 x

   

The boundary conditions at x = +  requires that  

for   x>a ,           C = 0 

and for  x<-a             D= 0 

Thus we have wave functions in the three regions as, 

 

   1   =   A cos α x +B sin α x  -a < x < a,   (2.19) 

   2   =   C e
 x

        x < - a    (2.20) 

   3    =   D e- 
 x

        x >a          (2.21) 

 

Considering the equations (2.19) and (2.21) and applying  the boundary condition   

axax 


)
3

()
1

( 
 

We have  

A  cos  a +  B  sin  a = D e -
 a

           (2.22) 

 

and applying   the other boundary condition 

                                               axax
dx

d

dx

d


















 31 

      

-A  sin  a +   B α cos a = -D e-
  a

                (2.23) 

Again  at x = – a and by applying  (1) x = -a = (2) x = -a  we have  

A  cos  a -  B  sin  a = C e -
 a

               (2.24) 

And by applying 
axax dx

d

dx

d



















 21 
we have, 

a
eCaBaA





 cossin           (2.24A) 

Adding equations (2.22) and (2.24) we have, 
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          2 A  cos  a  = (C + D) e -
 a

      (2.25) 

And subtracting eqns. (2.22) and (2.24) we have 

                                    2 B  sin  a  = (D - C) e -
 a

       (2.26) 

Similarly from equation (2.23) and (2.24A) we have, 

  2 B   cos  a  = (C - D) e -
 a

      (2.27) 

  2 A  sin  a  = (C + D) e -
 a

      (2.28) 

Dividing eqn. (2.28) by (2.25) gives 

     tan  a =  ,      (2.29) 

and from eqns. (2.27) and (2.26)  

              cot  a = -  ,      (2.30) 

A solution of the equations (2.29) and (2.30) is obtained graphically.  

Now consider equation (2.29) and let  =  a and η= a , then  

      tan  =  

and  
2
 + 

2
 = 

2
 a

2
 + 

2
 a

2
 = a

2
 [α

2
 + 

2
] = 2

22



mVa

= constant for a given system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since  and  are  positive values, the energy levels are found from the intersection in the  

first quadrant of the curve of  tan   against   with the circle of known radius 

2/1

2

2

2











mVa

 

η 

η=ξtanξ 
η=-ξcotξ 

ξ ξ 

η 

 

a a 

b b 

c c 

Fig. 2.4 
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Curves for three values of  Va
2 

are shown in figure (2.4).  

 

The product Va
2 

is a measure of the strength of the potential well – which binds the particle 

to the well. In other words, the greater the depth (V)  and breath (a) of a well, the greater the 

number of bound states and greater the probability of retaining a particle in the well. 

The first three increasing values of Va
2 

give altogether one, two and three energy levels, 

respectively. As a special case let V approaches infinity. For the first group of solutions, 

   tan  a =  /   

    a = (2n + 1) /2  

The characteristic energy values are  

   

 
28

22212

am

n
n

E 

       with n = 0,1,2 ...     (2.31) 

For the second group of solutions,  

   tan  a = -  
 

 
   0.  

or       na   

The characteristic energy values are  

  

 
28

222
2

am

n
n

E 

       n = 0, 1, 2...      (2.31A) 

2.4 Rectangular potential barrier 

Let us consider the one-dimensional problem where the potential is defined as in fig.2.5. 

  

 































axfor

axforV

xforxV

0

0

00)(

0  

    (2.31) 

Here we have a potential barrier 

between 0x and ax . If a 

particle having energy less than 

V(x)=V0 

I II          III 

V0 

         E 

X=0 X=a 

V(x)=0 V(x)=0 

Fig. 2.5 
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,.,., 00 VEeiV  approaches this barrier from the left, i.e., from 1
st
 region, classically the 

particle will always be reflected and hence will not penetrate the barrier. However, wave 

mechanics predicts that the particle has some probability of penetrating to region 3
rd

, the 

probability of penetration being greater if 
0VE   classical mechanics predicts that the 

particle will always be transmitted ; while according to wave-mechanics, the particle has a 

finite probability of transmission and hence it is not certain that the particle will penetrate the 

barrier. 

The Schroedinger equation for  region-I is  

    0
2

122

1

2








E

m

x 
 (since )0V .   (2.32) 

The Schroedinger equation for II region is  

    .0)(
2

2022

2

2








VE

m

x 
   (2.33) 

The Schroedinger equation for III region is  

    .0
2

322

3

2








E

m

x 
     (2.34) 

Here 21, and 
3 are the wave-functions for I, II and III regions respectively.  

The general solutions of equations (2.32) (2.33) and (2.34) may be written as  

    
 /

1

/

11
11 xipxip

eBeA


    (2.35) 

    
 /

2

/

22
22 xipxip

eBeA


   (2.36) 

    
 /

3

/

33
11 xipxip

eBeA


     (2.37) 

where 1p and 2p ,are  the momenta of particle in the corresponding regions, which are given 

by  

    
















)v-2m(Ep

 2mE 

02

1P
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2211 ,,, BABA and 
3B are constants to be determined by boundary conditions.  

In equation (2.35) the first term represents the wave travelling along +ve X -axis in the I 

region, i.e., the incident wave and second term represents the wave travelling along negative 

X -axis i.e., wave reflected at .0x  

In equation (2.36), the first term represents the wave travelling along (+) ve X -axis in the II 

region, i.e., the wave transmitted at 0x and second term represents the wave travelling 

along (-) ve X -axis in the II region, i.e., the wave reflected at .ax  

In equation (2.37) the first term represents the wave travelling along (+)ve X -axis in the III 

region, i.e., the wave transmitted ax and the second term represents the wave travelling 

along (-)ve X -axis in the III region; but no wave travels back from infinity in III region. 

Consequently ,0
3
B so that the solution of equation (2.34), i.e., equation (2.37) can be 

written as 

     
/

33
1xip
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For the evaluation the constants 
2211 ,,, BABA and 

3A we shall apply the conditions at the 

two boundaries 0x  and .ax  

One conditions is that  must be continuous at the boundaries, i.e.,  
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The other condition is x /  must be continuous at the boundaries i.e.,  
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    (2.41) 

Applying boundary condition (2.40A) to equations (2.35) and (2.36), we have  

     2211 BABA     (2.42) 

Applying boundary condition (2.40B) to equations (2.36) and (2.39), we get  
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Differentiating equations (2.35), (2.36) and (2.39), we get  
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Applying boundary conditions (2.41) to these equations, we get 
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Solving (2.42) and (2.47) for 
1A and ,1B we get  
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Solving (2.43) and (2.48) for 
2A and ,2B we get  
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Substituting values of 
2A and 

2B from these equations in (2.49) and (2.50), we get  



                                                                                                                                                                                   
33 
 

 











































   /2

2

1

1

2/2

2

1

1

2/13

1
1111

4

apaipaip e
p

p

p

p
e

p

p

p

p
e

A
A              (2.53A) 

 











































   /2

2

1

1

2/2

2

1

1

2/13

1
1111

4

apaipaip e
p

p

p

p
e

p

p

p

p
e

A
B         (2.53B) 

Equation (2.53A) may be written as  
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Dividing equation (2.53B) by (2.53A), we get, 
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Now we consider the following two cases :  
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Case (i) ;0VE  in this case ),(2,2 021 VEmpmEp  both are real so  
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   Transmission coefficient 
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Reflection Coefficient  
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Case (ii), ,0VE  then ,21 mEp  is real and ),(2 02 VEmp  is imaginary, therefore  

2ip is real.

   

The transmittance or the transmission coefficient is given by  
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And reflection coefficient is given by,       
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2.5 The Rigid rotatOr with free axis  

The system, consisting of two spherical particles attached together, separated by finite fixed 

distance and capable of rotating about an axis passing through the centre of mass and normal 

to the plane containing the two particles, constitutes, a rigid rotator. If these two particles are 

constrained, to remain in one plane, then the direction of the axis of rotation is fixed and so 

the system is called the rigid rotator with fixed axis. If the plane of these two particles can 

move, then the axis of rotation is free to take any position in space and so the system is called 

the rigid rotator with free axis. In a diatomic molecule the atoms vibrate with respect to each 

other and so the distance between atoms will not be always constant ; while the distance apart 

of the equilibrium position is constant. Thus the system of diatomic molecules is not really 

 

Transmitted wave 

Incident wave 

V0 

X=0 X=a 

E 

 
Fig. 2.7 
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rigid; how ever; it may be treated, at least as a first approximation, as a rigid rotator with free 

axis.  

Energy for the rotator 

The kinetic energy of a particle of mass m  can be expressed as  

    )(
2

1 222
zyxmT       (2.57) 

where zyx  ,,  are the components of the velocity of a particle along YX , and Z  axes 

respectively. The transformation between Cartesian co-ordinates ),,( zyx and spherical co-

ordinates  φ)θ,(r, are given by  
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so that the kinetic energy in spherical co-ordinates is expressed as  
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  rrrmT               (2.59) 

If the distance r of the particle from the origin is fixed, its derivative r  will be zero ; then 

from equation (2.59) the kinetic energy would be  

    )sin(
2

1 2222    mrT     (2.60) 
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Axis of rotation 

Fig. 2.7 
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Taking ,O the centre of mass of the rotator, as origin, the K.E. of the particle of mass 
1m is 

given by  
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As there is no potential energy of the rotator, total energy is given by  
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, the moment of interia of the system about the axis passing through the 

centre of mass and perpendicular to the line joining the two masses. 
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The moment of inertia of the rotator may be expressed in a more convenient form as follows :  

According to definition of centre of mass, 
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But      210 rrr       or      102 rrr   

Substituting this in eqn. (2.64) we get  
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is called the reduced mass of the system. 

From equations (2.60) and (2.63) it is evident that the rigid rotator behaves like a single 

particle of mass  given by eqn. (2.68) placed at a fixed distance, equal to unity (since 

)1r from the origin, which in this case is the centre of mass of the system.  

Wave equation for the rotator :  The Schroedinger wave equation in three dimensions in 

spherical co-ordinates is given by  
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For a rigid rotator we have seen that potential energy is zero. 1r  and the mass m  may be 

replaced by the moment of inertia .I  Therefore the Schroedinger wave equation for a rigid 

rotator becomes  
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This equation consists of two variables   and    which represent the precessional motion of 

the rotator’s free axis and the rotation of the system respectively.  
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Solution of wave equation : Eigen function for the Rotator  

Equation (2.70) may be solved by the method of separation of variables, i.e., the wave-

function ),(  may be represented by  

   )()(),(         (2.71) 

Where )( is function   alone and )( is the function of   alone.  

Substituting in equation (2.70) and dividing throughout by  , we get  
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Multiplying this equation by 2sin we get  
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In this equation L.H.S is a function of   alone, while R.H.S is a function of   alone. 

Therefore if this equation is to be satisfied, both sides must be equal to the same constant, 2m

(say) i.e.,  
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Equation (2.74) may be rewritten as  
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      (2.75) 

The solution of above equation may be written as  

                             imeA                 where      3,2,1,0 m etc.  (2.76) 
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A is any arbitrary constant which may be chosen in such a way that the function is 

normalised,                      

 i.e.,              
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Thus the normalised function is  
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Multiplying equation (2.74) by ,
sin 2

 we get  
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Let us introduce a new variable x   such that   cosx  

so that    )1(sin 2x       (2.79) 

Then     
x

x

x 




















sin    (2.80) 

and in general,         
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Using equation (2.80) and (2.81)  and (2.82), equation (2.78) can be written in terms of x   as 
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                                 where  
2

2



IE
    (2.84) 

Equation (2.83) is known as Legendre’s equation. It has physical significance only for values 

of x   between the limits of -1 and +1 since x  is equal to cos . 
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    )()1()( 2/2 xXx m       (2.85) 

Where )(xX  is the function of x   only.  

Equation (2.85) yields  
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where we have assumed 
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Using equations (2.85) and (2.86a), equation (2.83) can be written as 
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Dividing throughout by 
2/2)1( mx , we get  

  0)1()1(2)1( 2  XmmXxmXx   

or   02)1( 2  XXxXx       (2.88) 
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Now let us assume that )(xX may be expressed as a power series, as, 

 ..................3
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2

210  xaxxaaX      (2.90) 

or    ..................32
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321  xaxaaX     
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and    .......1262 2
432  xaxaaX     (2.91) 

substituting these values in equation (2.88) and simplifying, we get  
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In order that the series may be zero for all possible values of x , the coefficients of individual 

powers of x   must vanish separately, i.e., in general  
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Substituting values of  and  in above equation, we get  
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This is called recursion formula for the coefficients in power series for ).(xX  

In order to obain a satisfactory wave function  , it is necessary that )(xX should be a 

polynomial breaking off after a finite number of terms, as in the case of harmonic oscillator. 

The series will break after n
th

 term if the numerator of equation (2.92) is zero 

i.e.    0)1)((  mnmn  

       )1)((  mnmn     (2.93) 

Therefore, the sum )( mn may be replaced by l , where l  is also zero or an integer.  

  ),1(  ll  ,...3,2,1,0 nml       (2.94) 

Substituting this value of  in equation (2.83), we get  
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The solution of above equation contains the factor called the associated Legendre function 

)(xPm

i which may be defined as  
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              where )(xPl is Legendre polynomial of degree .l  

The solution of equation (2.95) is written as  
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Where B is normalizing constant.  

 From orthogonal properties of associated Legendre’s Polynomials, 
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According to normalizing condition, 
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Substituting the value of B in (2.96) the normalized wave function  is given by  
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The complete wave-function or eigen-function for the rigid rotator is given by  
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45 
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Eigen values or energy levels of the rigid rotator.  

From equations (2.84) and (2.94), we have  
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This equation gives allowed values for the energy (i.e. eigen values) of a rigid rotator with 

free axis. 

2.6 Rigid Rotator in a Fixed Plane  

If we consider the rotator to be only in XY plane, then 90 and hence the 

Schroedinger’s equation, in this case may be written as  
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Eigen functions: The solution of equation (2.104) can be written as  
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      im

m Ae      (2.106) 

where A is arbitrary constant and ....,2,1,0 m  

According to normalisation condition  

 



2

0
1dmm  

or     ,1
2

0 


dAeAe imim
 

or  122 A  or  
)2(

1


A  

         The eigen functions are given by                 
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Eigen values : From equation (2.105), we have  
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2.7 The Hydrogen atom  

 

The Schroedinger wave equation is 

written as  
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In spherical polar coordinates (fig 2.8) 

   x = r sin  cos  

   y = r sin  sin  

   z = r cos  

 

The expression for 
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Fig. 2.8 
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polar coordinates is expressed as,  
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Hence the Schroedinger wave equation in a spherically symmetric potential may be written in 

the spherical coordinates as  
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The solution of the above equation  can be separated in different variables of   andr,  by 

writing. 

     (r,,) = R(r)  ()  () 

and  differentiating, dividing throughout by  = R   and multiplying by r
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The second term of this equation depends only on  and the rest is independent of . Hence 

the second term should be equal to a constant . Let the constant is equal to -m
2 

That is,          
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With this value for the second term, equation (2.107a) now can be written as,  
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The I and IV terms of this equation depend only on r and the II and III terms only on ; 

therefore each part must be equal to a  constant, (say) λ. 
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Equation (2.108), (2.110) and (2.111) are known as ,  and r equations respectively.  

 

(b) Solution of  equation : 

 The   equation is   02

2

2




m
d

d



 

This is a second order differential equation whose solution is given by  

     = A e 
 i m ,    

  (2.112) 

where A is an arbitrary constant. The constant may be evaluated by normalizing , i.e., 

   



2

0
1d

 
   




2

0

2 1dA

                            or         
2

1
A

     

(2.113) 

therefore the solution becomes    

  





mie


2

1

                                    (2.114) 

The single valuedness of the function  indicates that it should have the same value at  = 0 

and  = 2; hence   

    

mieAA
2



 

or    

mi
e

2

 = cos 2 m  i sin 2  m = 1
 

  (2.115) 

This is true  only when m is zero or an integer (positive or negative). Thus we write  

   

,
2

1 



ime         

m = 0,  1,  2, .......    (2.116)

 The  quantity m is called the magnetic quantum number . 

 

Solution for  equation : 

In the θ-equation  .0
sin

sin
sin

1
2

2









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
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 





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

m

d

d

d

d
 

Let  x = cos , 

we have  

           dx

d

dx

d

d

dx

d

d 









sin
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or  
dx

d

d

d



sin

                     (2.117) 

  dx

d

d

d 






 2sinsin

 

or  
dx

d
x

d

d 



)1(sin 2




      (2.118) 

Using equations (2.117) and (2.118), the 



 equation becomes  

 .0
2

1

2

)21( 









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

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

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
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m

dx

d
x

dx

d


     (2.119) 

If  = l  (l + 1), then 

 .0
21

2
)1()21( 
























 


x

m
ll

dx

d
x

dx

d

                        (2.120) 

Comparing this with associated Legendre equation  

 .0)(
1

)1()()1(
2

2
2 




















 xp
x

m
llxp

dx

d
x

dx

d m

l

m

l

 

gives the solution of equation (20) as  

  = B 
m

lp  (x)  = B 
m

lp  (cos )     | m | < l.                     (2.121) 

B is normalization constant which is evaluated by normalising  in the following way. 

  



0

1sin d  

 1)()(*

1

1

2 




dxxPxPB m

l

m

l

     Hence   B =  





















)!(

)!(

2

)12(

ml

mll

 (2.122) 

Thus the solution is  

  
)( = 

),(cos
)!(

)!(

2

)12(


m

lp
ml

mll





















           (2.123) 

with  

     )()1()( 2/2 xp
dx

d
xxp l

m

m
m

m

l    

and  
lx

dx

d
xP

l

l

l

l )1(2)(
2

/1

  
                                                                                           

where x = cos  
 

Solution of r-equation (radial equation ) 
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In this problem V(r) = -
r

Ze2

, where Z is the atomic number. Consider this problem to one – 

electron or hydrogen – like atom.  

Equation for radial part can be written as  

 .0
2

)1(21
2

22

2

2

2








 









R

r

ll

r

Ze
E

hdr

dR
r

dr

d

r 

 


 

Let 

 = αr       or  r  =  /α ; 

Then r-equation becomes  

  .0
2

2

2)1(22

2

2

2

2

2

12 









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
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
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


R
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E

d

dR

d

d
























   (2.124) 

For bound states, ie. E < 0, 

                       
.0
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



 
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
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or   
.0

)1(2||21
22

2

22

2

2






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

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
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llZeE

d
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d

d
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








        (2.125) 

Choosing  α such that  

  
,

4

1||2
22




 E and   

    
2

22
'

h

aZe





 

 
The equation (2.125) can be written as  

  

.0
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)1(

4

1'2
2

1













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




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


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d
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d

d








     (2.126) 

where the particular choice of the number (1/4) for the eigen value term
22

2



 E
 is arbitrary . 

For large , the equation (2.126) has the form  

   

.0
4

11 2

2









R

d

dR

d

d





     (2.127) 

The solutions of equation (2.127) are  

    R =e 
+
 
/2   

and   R =e 
-
 
/2       

(2.128)
  

Only the second solution is satisfactory (vanishing for   ). The exact solution of 

equation (2.126) is of the form  

   R() = F()e 
-
 
/2   

Substituting this value in equation (2.127), we have  

.0)(1('
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1
)(')2()('' 2/

2
22 











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

 eFllFF

         (2.129) 
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As e
-ρ/2

 is not zero, the expression within the square brackets is zero : 

   .0)()1()1'()(')2()(''2   FllFF

      (2.130) 

Let    F() = 
s
 L() 

   F() = s
s-1

 L + 
s
 L 

   F() = s (s-1) 
s-2 

L+2 s
s-1 

L + 
s 
L 

Substituting these values in  equation (2.130), 

  .0)1()1'((2)1(')22('' 22  LllssssLsL    
(2.131) 

Let     L() = 


0r

r
ra    

i.e.,     F() = 






0r

rs

ra       (2.132)  

Substituting the values of F(), F(), and F() in eq. (2.130) we have  
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(2.132a) 

Equating the coefficients of  
s
 in eq. (2.132a), we have  

  0)1(2)( 0 allslss  

                                      0,sin0)1()( 0  acelllss  

It means that either s = l or s = -(l+1); the value s=-(l+1) does not satisfy the condition of 

well – behaved function and so, the  only accepted value of s is l. Comparing now the 

coefficients of 
s+r+1

 we can write, 

  rr arsallrsrsrs )'1()1()1(2))(1( 1    
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The series (2.132) represented by coefficients (2.133) behaves like e
ρ
 for large  and 

therefore R = e
-/2

 F() will diverge as e
+/2, 

which is not an acceptable solution.. Therefore 

the series must break off after certain number of terms. From eq (2.133) let, 

l + nr + 1 -  = 0  (putting s =l) 

or     = nr + l + 1.     (2.134) 

Replacing 
’
 by integer n, n = nr + l + 1.      (2.135) 

It is seen that n is a positive integer and is identified as total quantum number.  Eq. (2.131) 

may now be written as (putting s = l and replacing  by n): 

  0)1('1)12(''  LlnLlL    (2.136) 

Comparing it with the associated Laguerre equation  
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q

p

q

p

q LpqLpL   

We obtain, p = 2l + 1, q = n+l and so we get the solution of r-equation as  
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Here, C is the normalisation constant given by, 
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(e)  Energy of atomic levels and degeneracy. 

   We have assumed that    
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Replacing ’ by n 

22

42

2
||

n

eZ
EE nn




     (2.137) 

Equation (2.137) is the expression for energy of an atomic state of a hydrogen – like atom 

defined by the principal quantum  number n. 

Now consider the equation  

n = nr + l + 1 

can be satisfied for a given n for several combinations of nr and  l. This implies that there are 

several possible wave functions for a given energy value (n fixed). When this happens the 

state is said to be degenerate. This holds good for every value of n > 1. 
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 To determine the degeneracy 

From equation (2.137) it is clear that energy eigen –values depend upon n and so are 

degenerate with respect to both l and m. Thus for each value of n, l can vary from 0 to n – 1 

and for each of these l values, m can vary from – l to +l. So, the total degeneracy is 








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1
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)1)((2
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n

l
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In particular  

   m = 0,  1,  2, .....  l 

   l = 0, 1,2 ... (n-1) 

Coulomb field 

Non Coulomb field  

central field 

Non central 

field 

n=1 

n=2 

n=3 

l=0 

l=0 

l=0 

l=1 

l=2 

l=1 

m=0 

m=0 

m=-1 

m=0 

m=0 

m=-2 

m=-1 

m=+1 

m=+2 

m=+1 

Fig. 2.9 

m=-1 

m=+1 

m=0 
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so that for n=2, we have l=0, m=0, and l=1, m=0,+1,-1 giving four wave functions or 

quantum states etc. Fig. (2.10) shows the different eigen – states in case of hydrogen – like 

atom.  

The solution for radial wave function is found as 
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
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The complete solution for the problem of hydrogen atom is obtained by multiplying the 

solutions )()(),(   andrR  

 

2.8 Normal or Ground state of Hydrogen Atom 

For the ground state of the atom, 

n = 1, l=0, m=0, and hence the wave-function is  
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a
where a0 is the radius of Bohr’s first orbit    (2.139) 
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since this expression for probability density is independent of  and , the normal hydrogen 

atom is spherically symmetric. Consider a small value dV = r
2 

sin  dr d d, then the 

probability of finding the electron in this volume is given by  
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For a spherical shell between radii r and r + dr, this value becomes 

= drr
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Thus the probability of finding  the electron between the distance r and r + dr from the 

nucleus is  drr
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a
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The radial distribution function P(r) is given by  
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The probability is maximum when dP/dr = 0. 
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Thus in the normal state, the maximum probability of finding the electron is at a distance 

equal to the radius of the first Bohr’s orbit.  

 

 

 

 

 

 

 

 

 

 

 

 

UNIT III 
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31 Perturbation theory 

Perturbation theory is of two types. 

1. Time independent perturbation theory 

2. Time dependent perturbation theory 

In time independent or stationary perturbation theory, the Hamiltonian is separated into two 

parts, one represents the characteristics of the system which can be solved exactly and the 

other due to perturbation.  

Perturbed Hamiltonian ')0( HHH   where )0(H  represents the unperturbed part and 'H the 

perturbed part. 

Time independent perturbation theory for nondegenerate case 

The schrodinger eqn. is written as 

     EH   

The Hamiltonian 








 V

m
H 2

2

2

  

Expanding H interms of some parameter λ as, 

   ...)2(2)1()0(  HHHH      (3.1) 

Let the energy eigen values are )0()0(

2

)0(

1 ..., nEEE  and the eigen functions are )0()0(

2

)0(

1 ..., n . It 

is possible to expand the eigen functions and eigen values as power series in λ as 

  ...)2(2)1()0(  nnnn EEEE      

...)2(2)1()0(  nnnn       (3.2) 

Substituting these En and n values in the schrodinger eqn.    nnEnH     we get 

...)...)((...))(( )2(2)1()0()2(2)1()0()2(2)1()0()1()0(  nnnnnnnnn EEEHH 

 

Collecting the like coefficients of λ, 



                                                                                                                                                                                   
57 
 

)0()0()1()1()0()2()2()0(
2

)0()1()1()0(

)1()1()2()0(2)0()1()1()0()0()0(

...)()(

......)()(

nnnnnnnnn
n

nn

nnnnn

EEEEEE

HHHHH



 





 

 For this eqn. to be valid for all values of λ, the coefficient of equal powers of λ on both sides 

must be equal. 

Comparing the coefficient of λ
0
, 

    )0()0()0()0(

nnn EH         

Comparing the coefficient of λ
1
, 

   )0()1()1()0()0()1()1()0(

nnnnnn EEHH                      (3.3) 

Comparison of coefficient of λ
2
 gives 

   ))1()1()0()2()2()0()1()1()2()0(

nnnnnnnn EEEHH     etc.     (3.3A) 

These eqns. represent unperturbed, first order, second order etc. perturbation equations. 

 

First order perturbation theory: 

To find the first order correction to energy En
(1)

 

Consider the first order eqn  )0()1()1()0()0()1()1()0(

nnnnnn EEHH    

)1(

n  can be expanded as a series by using expansion theorem as 

   
)0(

0

)1(

m
m

mn C




                          (3.3B) 

Substituting this eqn in (3.3) we get, 

)0()1()0()0()0()1()0()0(

nnmnmnm

m

m EECHHC       by using )0()0()0()0(

mmm EH    

or    )0()1()0()1()0()0()0(

nnnmnmm EHEEC         (3.4A) 

Multiply the above on the left by  
*)0(

n and integrating we get, 

 dEdHdEEC nnnnnmnmm

m

n
)0(*)0()1()0()1(*0)0()0()0(*)0( ][    (3.4B) 

    Here we have used the kronecker delta function        
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jiif

jiifd ijji




1

0)0(*)0( 
  (3.4C) 

Therefore, 

  11)0()1(*)0()1( || nnnnn HnHndHE                            

To find the first order correction to wave function )1(

n : 

Multiplying eqn (3.4A) by *)0(

m  and integrating, 

  dEdHdEEC nmnnmnmn

m

mm

)0(*)0()1()0()1(*)0()0(*)0()0()0( ][    

Applying the condition (3.4C), 

nm
EE

dH
C

nm

nm

m 





,
)0()0(

)0()1(*)0( 
                              

Substituting this value of Cm in eqn (3.3B) we get the first order correction for the wave 

function. 

To find the second order correction to energy En
(2)

 

The second order correction to wave function )2(

n  can be expressed as 

   
m

mmn g )0()2(                             (3.5) 

Substituting (3.5) and (3.3B)  in (3.3A), we get 

)0()2()0()1()0()0()0()1()0(
)0( nnmnmmnmmmmm EECEgHCHg     

or   )0()1()1()0()0()0( ][][ m

m

nmmnmm HECEEg  )0()2(

nnE     (3.6) 

                                                         Here we have used )0()0()0()0(

mmm EH    

Multiplying this eqn with *)0(

n  and integrating over the space variables and applying the 

kronecker delta function we get, 

  dHCE mn

m

mn

)0()1(*)0()2(
                   

Substituting the value of mC we have, 
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
 





m nm

mnnm

n nm
EE

dHdH
E ,

)0()0(

)0()1(*)0()0()1(*)0(

)2(


 

or  





'

)0()0(

2)1(

)2(
)||(

n
mn

n nm
EE

nHm
E    if )1(H is Hermitian.                     

To find the second order correction to wave function )2(

n : 

Multiplying the eqn (3.6) by *)0(

m  and integrating, 

 

 

or        nmdHE
EE

C
g

m

mmn

nm

m
m 


   )0()1(*)0()1(

)0()0(                              

Substituting this value of mg  in eqn. (3.5) we get the second order perturbed wave function. 

3.2 Zeeman Effect (without electron spin) 

The change in the energy levels of an atom when it is placed in uniform external magnetic 

field, is called the Zeeman effect. Let us consider that the field strength B is applied on a 

hydrogen atom, so that an electron of reduced mass  carrying the charge '' e is moving in a 

field whose vector potential is A. The magnetic induction B in terms of vector potential A 

can be written as  

AAB xcurl   

Then the constant magnetic potential A in terms of magnetic induction B can be expressed as  

     r).(B
2

1
A x      

[since A)  Br A    r    B x(for x xx   

          2AA-3Ar)(A.-Ar) (                 .  

 )( rxB
2

1
        A   

  

 





m

nmnmnmm

m

mmnmm

dEdHEC

dEEg





)0(*)0(20()0()1(1*)0(

)0(*)0()0()0(

][

][
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The classical Hamiltonian of a particle of mass  carrying charge e and moving in field of 

vector potential A may be expressed as  

)()(
2

1
)( 2 rArP, VepH 


 

        =  2

22

2
)(

2
)(

2
ApAApr

p



ee
V   

        = HHH 0
 

where     ),(
2

2
0

r
P

VH 


 is the unperturbed Hamiltonian             

    )(
2

pAAp 


e
H   

and    
2

2

2
A



e
H   

Ist Order Zeeman effect :  

For weak fields and second order perturbation term H  containing 
2

A  may be neglected and 

hence the perturbed Hamiltonian takes the form  

  )(
2

)(
2

2

0 pAApr
p




e
VHHH    


i

PP
ˆ  and keeping in mind the vector identity 

div   AA(A div)  

or      A(A )() A  

We note  









ii


AApAAp )(  

  AA
ii


)(  

    AAA)
ii


(  
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       AA) 2(
i

     (3.7) 

)x(
2

1
)]x(

2

1
[ rr BBA   

Using the vector identity  

div getwe,curlcurl)x( BAABBA   

   0xand0x  rB      (3.8) 

and    )ψx(r
2

1
ψ)(

2

1
ψA  BrxB   (3.9)  

using (3.8) and (3.9) equation (3.7) gives  









  )x(

2

1
20)( r

i
BpAAp


 

      =   )xr(x p
i

r 







 BB


 

           = .LB       (3.10) 

        or      LB.pAAp         (3.11) 

The energy eigen functions of the unperturbed H atom are usually chosen to be eigen state 

of zL  with eigen values mm ,  being magnetic quantum number. It is customary for 

convenience to choose magnetic field along Z axis then 
zBLLB  

First order energy correction  

 nBL
e

nnHnE z |
2

|||


 

   B
e

mnnmB
e

 2
|

2


      (3.12) 
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can take for )12( l values 

since m varies form l to l   

 with a difference of unity  

The selection rule permits only 

those transitions in which 

magnetic quantum number m 

changes by 0 or .1 This 

selection rule coupled with 

expression (3.12) is sufficient to 

explain the spectrum of normal 

Zeeman effect. For an example 

we consider the transitions 

between two states with 2l

and ,1l (i.e. between d and 

p states). The transitions are shown in the fig. 3.1  

 

3.3 First  Order stark effect in Hydrogen atom   

The effect of change in energy levels of an atom in the presence of an electric field is called 

stark effect. The unperturbed Hamiltonian of  Hydrogen  is given by, 

r

e
H

2

0

2
2

)0(

4

1

2 



 where r is the distance between the nucleus and the electron of an 

hydrogen atom and µ-the reduced mass 

Due to an external electric field of strength E, the perturbed Hamiltonian term is given as 

  cos' rEeH  , where e is the charge of the electron           (3.13) 

For the ground state of the atom, n=1, l=0, m=0 

The non-degenerate wave function is 

m=+2 

m=+1 

m=0 

m=-1 

m=-2 

m=+1 

m=0 

m=-1 

l=2 

(d-state) 

l=1 

(p-state) 

Δm=0 Δm=-1 Δm=+1 

Fig. 3.1 
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


4

1
)(),()( 100010100 rRYrRnlm   

for the ground state of hydrogen, the first order energy correction due to perturbation is 

0100

'
*
100100,100

'
 





 dHH  since H’ is having odd parity  

Thus there is no first order stark effect in hydrogen atom 

 

First Excited State 

Consider the first excited state of hydrogen. Here n=2,  l=0, 1 and m=1, 0, -1. The 

corresponding wave functions are, 

  

parityodderRYrR

parityodderRYrR

parityoddrRYrR

parityevenrRYrR

i

i

























 







sin
8

3
)(),()(

sin
8

3
)(),()(

cos
4

3
)(),()(

4

1
)(),()(

211,1211,21

211121211

211021210

200020200

            (3.14) 

Out of the four wave functions 
200 is of even parity and all other wave functions are of odd 

parity. The secular determinant is given as 

0

)1(
' 1,21,1,21' 210,1,21' 211,1,21' 200,1,21

' 1,21,210

)1(
' 210,210' 211,210' 200,210

' 121,211' 210,211

)1(
' 211,211' 200,211

' 1,21,200' 210,200' 211,200

)1(
' 200,200



















EHHHH

HEHHH

HHEHH

HHHEH

                       (3.15) 

If the integrand value is of odd parity, then the integral value is zero. Hence, 

0200

)1(*

200

'

200,200  




 dHH  since 
200 - even parity and )1(H  is odd parity and the net 

integrand is odd parity. In the same manner we can show 

)1(

210,121

)1(

211,121

)1(

121,210

)1(

211,210

)1(

121,211

)1(

210,211

)1(

121,121

)1(

210,210

)1(

211,211 ,,,,,,,,  HHHHHHHHH  are all zeros 
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Consider 







 dddrrrRerrRH i sin)(sin
8

3
cos)(

4

1 2

2120

)1(

211,200   

But, 0

2

0

 


dei . Hence  0)1(

211,200 H  

On the same ground, )1(

200,121

)1(

121,200

)1(

200,211 ,,  HHH  are zero 

So we are left with two elements namely )1(

210,200H and )1(

200,210H  

First, let us evaluate )1(

210,200H : 

    dHH 210

)1(*

200

)1(

210,200
 

Here, 
















































00

2/3

0

210

00

2/3

0

200

2
exp

32

1
cos

4

3

2
exp2

2

1

4

1

a

r

a

r

a

a

r

a

r

a









  where 0a  is the Bohr’s first orbit radius                 

Using these values and cos)1( rH  and assuming 
0a

r , we get the r-integral value as, 

 







  

 



0 0

54

4

0

5

0 2
38

1
  dede

a

a
 

 =   0
0 332
38

65 a
a

  

The Θ-integral gives the value as 2/3    and 

φ-integral gives 2π 

Therefore,

 

00

)1(

210,200 32
3

2
)33(

4

3

4

1
aaH  


 

Similarly we get 
0

)1(

200,210 3aH  eE 

Substituting these values the secular determinant becomes 

3eEa0 

3eEa0 
0,0 

unperturbed 

Fig.3.2 
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  0

000

03

000

030

)1(

)1(0

)1(

0)1(











E

Ea

E

aE

 

There are four roots for this determinant as E
(1) 

=0, 0, 3 0a , -3 0a  

The corresponding perturbed energy values are 

 
00 3,3,0,0

)1(
eEaeEaE                           (3.16) 

Thus for the first excited state of hydrogen atom, one energy level is raised by 3eE 0a , and 

one is decreased by the same amount. The other two levels remain unchanged. 

3.4 The Variation Method 

 The expectation value of energy in normalized state  is given by 

      dHE *
     (3.17) 

If we choose the wave function  as variable function, then the integral (3.17) is known as 

variation integral and gives an upper limit to the energy E0 of the lowest state of the system. 

The function  is the variation function and its choice may be quite arbitrary, but more 

wisely, it is chosen such that E approaches more closely to E0. If the variation function  

equals the function 0 of the lowest state, then energy E will be equal to E0, i.e. 

  00

*

0 EdHE      (3.18) 

If ψ ≠ ψ0, they by expansion theorem ψ may be expanded in terms of a complete set of 

orthonormal functions 0, 1, 2…obtaining 

   nnn

n n

nnnn EHandaawitha    1
*

 (3.19) 

Substituting this in equation (3.17), we get 

     dHaaE mnm

n

n **     (3.20) 

But   Hm =Emm 
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we have 

     dEaaE mmnm

n

n **  

                           dEaa mnmm

n

n **       

                         = 
n

nmmmn Eaa *  

Therefore 
n

nnn EaaE *    












nmfor

nmforSince mn

0

1
 

    
n

nn Ea
2

||        

Substracting the ground state energy E0 from both sides, we get 

    
n

nn EEaEE 0

2

0 ||      (3.21) 

As |an|
2
 is positive and En ≥ E0 (always) for all values of n; therefore right hand side is 

positive or zero. Thus we have proved that < E > is always an upper limit to E0, i.e. 

< E >   ≥   E0       (3.22) 

This theorem is the basis of the variation method for the calculation of the approximate eigen 

value of the system. If we choose a number of wave-functions  1, 2,3…  and calculate 

the E1, E2, E3... coresponding to them, then each of these values of E is greater than the 

energy E0, So that the lowest one is the nearest to E0. Often the functions 1, 2,3…are 

only distinguished by having different values of some parameter  the process of minimising 

E with respect to this parameter may then be carried out in order to obtain the best 

approximation to E0. Which from the trial function  will follow. 

3.5 Physical applications of Variation method 

Ground State of Helium : We use the variation method with a simple trial function to obtain 

an upper limit for the energy of the ground state of the helium atom. The helium atom 

consists of a nucleus of charge + 2e and two electrons each of charge ‘- e’ If we consider the 

nucleus at rest, the Hamiltonian will be 
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 
12

2
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2
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1

2
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1
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2
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e
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m











     (3.23) 

where  
2

2

2

1 and   and Laplacian operators 

for the first and second electrons  

at a distance r1 and r2 from the nucleus, 

1212 rrr  is the distance between two 

electrons. If the interaction energy 
12

2

r

e
 

between two electrons were not present,     

the ground state eigenfunction  of He would 

be product of two normalized hydrogen like wavefunctions )r()r( 21001100 uu given by 

   
  210/

3
0

3

2100110021 )(
rra

e
a

zrrrr



z
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

  

with 
2

2

0aand2
me

z


   

We shall use (r1, r2) as a trial function and treat z to be the variation parameter, so that it is not 

necessarily equal to 2. The expectation value of Hamiltonian H is the sum of expectation 

values of kinetic energy and potential energy individually. 

       H = K.E. + P.E.  

= T + V + interaction energy 













12

2

r

e
of electrons. 

then  <H> = <T> + <V> + 
12

2

r

e
 

Now the expectation values of hydrogen-like atoms (having one electron) with z atomic 

number in general are 

.
1

Since.
2

,
2 010

2

0

22

ara
V

a
T

zzeez
  

But helium atom in ground state has two electrons, so it will be twice of hydrogen-like atom,   

i.e.  < T > =  
0

22

2

2

a

ez
= 

0

22

2a

ez
      (3.24) 

+Ze 

-e 

-e r1 

r2 

r12 

Fig. 3.3 
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and  < V > =  2 × 
0

2

0

2

42

aa

ezez
      (3.25) 

Hence   < H > = 
12

2

0

2

0

22
4

2 r

e

aa

ezez
     (3.26) 

Electron Interaction Energy : The expectation value of the interaction energy between the  

electron is   

<
12

2

r

e
> =     2

3

1

3

21
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2
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* rdrdrr
r

e
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 2
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Substituting, 

  
1212

0

22

0

11

o

r
a

z2
,r

a

z2
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a

z2
  
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 



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3

1
3
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2

2
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2 21
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
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

dd
e

a

ze

r

e
 

Solving the spherically symmetric integral by knowledge of electrostatics as in perturbation 

theory, we get 

   
2

0

2

2
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2

20
a32

ze

r

e



  

    
0

2

a8

ze5
       (3.27) 

The expectation value of Hamiltonian (3.26) for the trial function is 

  







 zz

a
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a
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Differentiating with respect to z and for minimum <H>, equating the differential to zero, 

  

,0
8

27
2

0

2














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












zz

a

e
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H

 

This gives  .69.1
16

27
z  Thus the lowest upper limit for the ground state energy of helium 

atom obtained with trial function 
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   (3.28) 

By the help of perturbation method, the ground state energy of helium atom comes out 

0

2

85.2
a

e
 , where 2

0

2

0
em

a


 . 

The hydrogenetic wavefunctions give the best energy value when 
16

27
z   rather than 2. It 

indicates that each electron screens the nucleus from the other electron, therefore the effective 

nuclear charge being reduced 









16

5

16

27
2..ei  by of an electronic charge. 

Hence "effective charge" in the nucleus is less than 2.  

3.6 Connection formulas for penetration of a barrier   

Figure (3.4) represents potential function V(x) as a function of x. Let a particle has energy E. 

Then the whole region is divided into three regions 

Region I where V > E 

Region II where E > V 

Region III where V > E  

There are two types of turning 

points, specified by points x1 and 

x2. When we pass from region I 

to II, then at the turning point x1, 

the barrier is to the left.  But if 

pass from region II to region III, 

the barrier is to the right. 

In region I, the wave-function 

decreases exponentially, for

   then,2and EVmpx 1

   is approximated as 

 

Region I 

Region II 

Region III 

V 

X1 X2 

V(x) 

Fig. 3.4 

E 
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 







 

x

x

1

1

1
1

dp
exp

p

A



x
                  (3.28a) 

In region II, the wave function  is oscillatory given by 

  






















 

x xx



pd
iexp

p

Cpd
iexp

p

B

2

x

2

2   (3.29) 

In region III, the wave-function decreases exponentially for x  

  







 

x

x

x

2

dp
exp

p

D 1

1

3


     (3.30) 

The regions of validity of these wave-forms of wave-functions are separated by the classical 

turning points near which W.K.B. approximation fails. As 1, 2, 3 are all the 

approximations of the same function , therefore the constants A, B, C and D cannot all be 

arbitrary. 

To connect the wave-functions at the turning points we assume that the potential energy 

function is approximately linear in the neighbourhood of turning points x1 and x2. Thus at x1 

and x2, we write  

   



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   (3.31) 

The schroedinger wave-equation 

      0)(VE
2

d

d
22

2




x
m

x 
    

In the neighbourhood of x = x1 and x = x2, this  eqn. takes the form  

  0)(
C2

d

d
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1

2
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
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m

x 
  (near x1)   (3.32) 

and   0)(
C2

d

d
22

2

2

2




xx
m

x 
  (near x2)   (3.33) 

Now we change the variable in equation (3.32) by substituting 
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z 1
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2

1 xx
m
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


       (3.34) 

                                  
x

z

zx d

d

d

d

d

d 



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Making these substitutions in (3.32), we get 
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d
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
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       (3.35) 

Similarly by substituting  2
2
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1
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equation (3.33) becomes     0z
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      (3.36) 

Equation (3.35) and (3.36) are Airy functions. We require a function which vanishes 

asymptotically for large positive z (z > 0) corresponds to x <x1 and x>x2) such a function is 

  Ai(z) = dssz
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
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


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      (3.37) 

For Large (z) it has asytnptotic form 
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

    (3.39) 

If the energy E is sufficiently large, the de-Broglie wavelength associated with the particle is 

extremely small so the regions of validity of linear approximations contain many 

wavelengths. The function Ai(z) which passes smoothly through the turning point provides 

the required connections among the approximate forms equations (3.28a), (3.29) and (3.30). 
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In the neighbourhood of x1, we have  
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Comparison of (3.40) and (3.41) with equations (3.38) and (3.39) shows that the functions 

approximated to the left of x1 by 
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has on the right the approximation 
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A similar analysis in the neighbourhood of points x2 shows that the function approximated to 

the right of x2 by 
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is approximated in region II by 
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Again the solution of equation (3.33) is the Airy function 
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This has asymptotic forms 
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A similar argument  leads to the connection formulae 
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     (3.49) 

Hence, the connection formulae at turning point x = a may be expressed in terms of Barrier to 

the right and Barrier to the left as follows. 

Barrier to the Right : Let V > E to the right of x = a. 

For decreasing exponential 
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   (3.50)

 

 

 

 

V(x) 

E 

X=a 

V<E 

V>E 

Fig.3.5 
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For increasing exponential 
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Barrier to the left: Let V > E to the left of x = a. 

For decreasing exponential 
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For increasing exponential 
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   (3.54A) 

It may be noted that the connection formulae enable us only to obtain the relation between the 

solutions in a region at some distance to the right of the turning point x = a, with those in a 

region some distance to the left. In order to obtain the form of the wave-function in the 

intermediate region, we should consider the exact, solution, which involves Bessel functions 

of order 
3

1
. 

For applying W.K.B. approximation, the following requirements must be satisfied. 

1. On either side of the turning point, there exist regions when the potential function 

changes slowly so that W.K.B. approximation is applicable. 

2. In the region near the turning point x = a, where W.K.B. method becomes 

inapplicable, the kinetic energy can be represented approximately by a straight line (E 

– V) = C (x – a). In other words the potential should not undergo a large fractional 
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change in slope within this region. Inside the barrier W.K.B. approximation begins to 

hold after      

                        

dx
)]EV(m2[

x

a 
 

becomes appreciably greater than unity. 

  

3.7 Time Dependent Perturbation Theory    

Consider the wave eqn, 

 
t
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


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The general solution of the above eqn is 
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Consider the Hamiltonian              








 HHH )1()0(    

)0(H is the unperturbed Hamiltonian and 
)1(H  is a small perturbation varying very slowly 

w.r.t. time 

Substituting H in the perturbed eqn   EH we get 
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The general solution of this eqn is 
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Substituting (3.56)  and using 
t
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Multiply by *)0(

m  and integrating 
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or  ...2,1,0,)(
1

)(
)( )0(

)1(
*)0( 




  mdHta

i
ta

t

ta
nm

n

nm
m 


  

multiplying and dividing by 







)(exp tE

i
m


 and using  


nm

mn

EE 
  we get 

)exp(')(
1

)( tiHta
i

ta mnmn

n

nm 


                     (3.57) 

       where   dHH nmmn 
)0()1(*)0()1(  

the perturbation is so small such that )(tan
 does not vary very much with time.to find the 

value of an(t) 

Let ...)()()( )2(21)0(  tataata nnnn                           (3.58) 

Substituting (3.58) in (3.57) we get 

)exp(...)()( )1(221)0(
tiHaaa

i
ta mnmnnn

n

nm   


    (3.58a) 

Zereo Order Calculation: 

Equating the coefficient of 0 we get the zero order calculation as 

 0
)()0(






t

tam
   or   constant)()0( tam t               (3.59) 

This gives the initial state of the system. Let us assume the system is in particular state ‘l’ at 

t=0. That is 0)0()0( la    or    ilia )0(  

First order calculation: 

Equating the coefficients of   λ     in eqn (3.58a), 

 d
t

ta
idHta nm

n

n
nm

n

n

)0(*)0()0()1(*)0( )(
)( 




  
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 )exp()()( )1()0()1( tiHta
i

ta
t

mnmn

n

nm 





 

             or     dttiHta
i

ta mnmn

n

n

t

m 







 



)exp()()( )1()0()1( 


 

         dttiH
i

mlmn

n

nl

t







 



)exp()1( 


 

       dttiH
i

mlml

t

)exp()1( 





 

Let the perturbation is turned on at time t=0 and turned off at time t=t. Now we can write 

     
t

mlmlm dttiH
i

ta
0

)1()1( )exp()( 


 
















ml

tmli
e

mlH
i




1)1(


                                          (3.60) 

Probability of finding a particle in m
th

 state: 

 P=

22

2
2

)1(

2

2
)1(

2

2

2

2
)1(

2

2

2
)1(

2

*)1()1(

)2/(sin4
)2/(sin

4

)cos1(2
1

)1)(1(
11

)()(yProbabilit

ml

mlmlml

ml

ml

ml

ml

ml

tmlitmli

ml

mlmm

tHH
t

H
t

eeHtataP

























 

              (3.61) 

The fig.(3.6) shows the plot of 2

2 )2/(sin

ml

mlt




 against 

ml  

Physical interpretation of the curve: 

The maximum value of 2

2 )2/(sin

ml

mlt




 occurs when 0ml . Let xml   
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4

2

1

...
2.3

)(

2

1)2/(sin

2

2

2

2

3

3

22

2

t

xt

x

xtxt

xx

xt
































 

 

This is the highest value on the y-axis of the graph. The value of  
2

2 )2/(sin

x

xt
 is zero when 

n
xt


2

  or  
t

n
x ml




2
  

.lyrespective.3,2,1.
6

,
4

,
2

etcnforetc
ttt

ml 


  

From the figure the main peak is proportional to 
2t and the breadth is inversely proportional 

to t . Therefore the area under the curve is proportional to t. This indicates that the transition 

probability per unit time is proportional to the ‘ON’  time of perturbation. 

Fermi Golden Rule(Transition to continuum): 

The probability of transition l
th

 state to m
th

 state is given by 

2

2 2/
sin

ml

ml t




 

t2/4 

0 2π/t 4π/t 6π/t -2π/t -4π/t -6π/t 
ωml 

Fig. 3.6 
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 2

2
2

)1(

2

2
2 )2/(sin41

)(
ml

ml
mlm

t
HtaW






                 (3.62) 

Since 
ml appears in the denominator, transition probability is maximum when 

ml  is 

small or 
mE and 

lE are closer. If the energy levels are closer, they form a cluster or 

continuum states. 

Now, the total probability of transition 2
)( tam

. If )(m  is the density of final states 

then dEm)(  will be the number of such states in the energy interval mE  and  dEmE   

The total probability of transition to these states  dEmtata mm )()()(
22
   

The main contribution for transition comes from the peak  

Therefore transition probability 




 dE
t

mHT
ml

ml
ml 2

2
2

)1(

2

)2/(sin4
)(

1







 

But ddE   since E  

  




 



 d

t
mHT

ml

ml
ml 2

2
2

)1( )2/sin4
)(

1


 

The integral value is t2 . Therefore  tmHT ml 2)(
1 2

)1(


  

or transition probability per unit time is )(
2 2

)1( mHT ml 



           

               (3.63) 

This is Fermi Golden Rule. It states that,  

The transition probability per unit time to states of continuum is  

i. Non-zero between continuum states 

ii. Proportional to  
2

)1(

mlH perturbation 

iii. Proportional to density of final states 



                                                                                                                                                                                   
80 
 

3.8 Harmonic perturbation   

Let us consider a perturbation is harmonic of frequency  as 

or          





















ttfor

ttfortmHk

tfor

tH

mtHk

km

'0

'0'sin||2

0'0

)'('

|)'('|

'
0 

           (3.64) 

where  mHk |'| 0 is independent of time. 

The first order amplitude )'()1( ta k at   t’ is 

  '
|'|

'
2

|'|2

''sin|'|2)(

'|'|)()'(

0

')(')(0

0

'
''

0

0

'
0

1

0

'1)1(

dtee
mHk

dte
i

ee

i

mHk

dtetmHki

dtemHkitta

t
titi

t
ti

titi

t
ti

t
ti

k

kmkm

km

km

km
















































 




























km

km

km

km
k

titi

i

mHk
ta

1)(exp(1)(exp(|'|
)'( 0)1(


 

This reveals the amplitude depends on perturbation duration interval t and independent of 

instantaneous time t’.The amplitude is appreciable when one of the terms in the denominator 

is zero.Thus the effect of harmonic perturbation is either transfer or receive energy from the 

system. 

The probability of finding the system in kth state is given by 

 

22

22

0
2

)1(

)(

2

)(
sin|'|4

)'(










km

km

k

t
mHk

tta


               (3.65) 
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3.9 Adiabatic approximation:   

This method is used to find approximate solutions to time dependent Schrodinger eqn for the 

systems where the Hamiltonian changes slowly in comparison eith the internal frequency of 

wave functions. 

Consider the schrodinger eqn 



)(tH

t
i .     (3.65A) 

Here )(tH  varies slowly such that a good approximation is obtained by solving sch eqn at 

each instant of time.We assume H is constant and equal to instantaneous value )( 'tH  where 

t
’  

is the value of t at which we calculate H.Then the stationary state wave functionobtained by 

setting t=t’=const would satisfy 

 )',()'()',()'( txtEtxtH nnn    

Since H is a slowly varying fn of time t’,the approximate soln can be written as 














 

t

nnn dttE
i

tx
0

')'(exp),(


             (3.66) 

When this wave functionis known at zero time then at later times we can write 














 

t

nn

n

n dttE
i

txta
0

')'(exp),()(


   (3.66A) 

Substituting  (3.66A)  in (3.65A) 





























































t

nnn

n

n

t

nnn

n

n

t

n

n

n
nnn

dttE
i
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dttE
i
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i

t
aai

0
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')'(exp)(

')'(exp')'(exp












 

Here we have used 
nnn EtH  )(  

or  

























 

t

n

n

n
nnn dttE

i

t
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0

')'(exp





 =0 



                                                                                                                                                                                   
82 
 

Multiplying the above eqn by 













t

mm dttE
i

0

')'(exp*


  and integrating over all space we get 

0')(exp*')'(exp')'(exp*
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
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
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
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



















  
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 ddtEE
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t
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i
dttE

i
a

t
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n

m

n

n

t

m

t

nmnn




 

Using orthonormal conditions 

 


 ddtEE
i

d
t

aa
t

mn

n

m

n

nm






















 

0

')(exp*


              (3.67) 

To solve the integral of the above expression we know )()()()( ttEttH nnn    

Differentiating  w.r.t. t,           
t

E
t

E

t
H

t

H n
nn

nn
n


















 



  

Multiply this equation  by *m   and  integrating, 







 d
t

Ed
t

E
d

t
Hd

t

H n
mnnm
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mnm





















*

0

***


 (3.67A) 

        or              








 d
t

Ed
t

Hd
t

H n
mm

n
m

n
m
















**
*  since, H is Hermitian. 

Substituting  in (3.67A) and simplifying,  

  nm
EE

d
t

H

d
t nm

nm

n
m 













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


 
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*

*





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Substituting  in  (3.67) 

 0

')(exp
0

*


























nm mn

t

mnnm

m
EE

dtEE
i

d
t

H

a






          (3.68) 

Now, let us suppose that the system starts with  snfornaandsa  01 . 

By successive approximation we can solve for am. 
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0')(exp
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
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
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
=  d

t

H
sm






*  

Neglecting the slow variation of 
mst

H

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








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



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
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


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
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02

tEE
i
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t
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EEi
a msms
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


              (3.69) 

 where we have neglected the slow change of 
mst

H











   and the exponential factor is of the 

order of unity. 

Total probability of transmission to m
th

 state is  

  

2

4

2
2
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4
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m
t

H

EE
a 














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
            (3.70) 

 

3.10 Sudden Approximation  

The sudden approximation occurs when the Hamiltonian changes appreciably during a very 

short but finite interval of time .0t  The sudden approximation consists of the change in 

Hamiltonian discontinuous on different times. Let 0t to be duration and to consider sudden 

approximations, we consider the equation  

   









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In sudden approximation the variation of 
t

H




can not be neglected ; so  
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
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   (3.72) 
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The condition of sudden approximation, by the help of uncertainly relation , tE is 

expressed (since 0tt  is very small) as  

     
0t

E





     (3.73) 

The physical interpretation of this condition is that of the energy of the system changes by an 

amount E . In a time 0t which is much less than the characteristic time associated with this 

energy change, then the state of the system remains unaltered (i.e. there is no transition) and 

so ;0|)(|  ktHf so equation (3.72) becomes 

   dttEE
i

ktHf
i

a fk

t
f









  )(exp|)(|'
0

0


  (3.74) 

If fk is the angular frequency of the transition from initial state k to a final state ,f then  

;


kf

fk

EE 
 so that we may write  

    dtektHf
i

a
tjkit

f


  |)(|

0

0
   (3.75)  

When perturbation is switched on suddenly, )(tH changes instantaneously in time t which 

is small compared to period 1)( 

jk so that the factor 
ti jke


in the above integral changes a 

little and hence can be taken outside the integral, then we get  

dtktHfe
i

a
ttjki

f   |)(|
0

0




 

          
00 |)0()(| tkHtHfe

i ti fk 



 

                   kHfe
it ti jk ||0 


       (3.76) 

where  )0()( 0 HtHH   and may be taken as the maximum value of interaction during its 

sudden switch on. 

Therefore sudden probability of transition from state k to state f will be given by  

2
2

2

2

2

2
02 ||'||

||'||||

fk

kHf
kHf

t
af




            (3.77) 

 

This is used to calculate the transition probability under the influence of sudden perturbation. 
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                                                                UNIT IV 

4.1 Addition of angular momenta 

Consider two non interacting systems (1) and (2) with angular momenta J1 and J2 

respectively. Now, the total angular momentum  J=J1+J2. The components as well as the total 

angular momenta satisfy the fundamental commutation relations  

  ijjjijjjijjj  ;; 222111       (4.1) 

Let    ),( 111 mj  is the simultaneous eigen vector of   
zJJ 1

2
1 and  and 

2J has no effect on 

them. Similarly ),( 222 mj is the simultaneous eigen vector of 
zJJ 2

2
2 and   and 

1J has 

no effect on them. Hence we can write, 

    

),(),(

)()1(),(

),(),(

)()1(),(

22222222

22222222

2

2

11111111

11111111

2

1

mjmmjJ

mjjjmjJ

mjmmjJ

mjjjmjJ

z

z

















       (4.2) 

And  the  products   ),(),()( 2221112121 mjmjmmjj    form a complete set of simultaneous 

eigen vectors of mutually commuting set of operators 
zz JandJJJ 2

2
21

2
1 ,, . Using unitary 

transformation, vector form of ),,,( 2121 mmjj can be transformed into ),,
2

,
1

( mjjj . Let 

21 jj  and ),,,( 2121 mmjj be the eigen vector of 
zJ  belonging to eigen value 

)( 21 mm   

                            

),,,()(

)()()(

)()()(),,,(

212121

22211121

222111212121

mmjjmm

mjmjmm

mjmjJJmmjjJ zzz













      (4.3) 

Since 
2211 , jmjm  then 21 jjm  . That is the largest value of m is jjj  )( 21

because 21 jandj  are the largest values of 21 mandm  respectively. 

For a given value of 21 jandj  let us find the possible values of j. Let 

2

1
1 21  jandj  
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There will be three possible values for 
1m and two possible values for 

2m . Thus there will be 

six possible   values. They are of the form ),,,( 2121 mmjj as 

                                   

2

1
,1toingcorrespond

2

1
,1,

2

1
,1

2

1
,1toingcorrespond

2

1
,1,

2

1
,1

2

1
,0toingcorrespond

2

1
,0,

2

1
,1

2

1
,0toingcorrespond

2

1
,0,

2

1
,1

2

1
,1toingcorrespond

2

1
,1,

2

1
,1

2

1
,1toingcorrespond

2

1
,1,

2

1
,1

21

21

21

21

21

21



























































mm

mm

mm

mm

mm

mm













   (4.4) 

The corresponding 21 mmm     values are  ,
2

3
,

2

1
,

2

1
,

2

1
,

2

1
,

2

3
  

We can say that there are four states with 
2

3
,

2

1
,

2

1
,

2

3
m  corresponding to the total 

angular momentum 
2

3
j  and two states with  

2

1
,

2

1
m corresponding to 

2

1
j . Thus there 

are two possible values for j as 3/2 and ½. It is possible to define six angular momentum 

vectors of the form ),,,( 21 mjjj  as 
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2

1
,

2

1

2

1
,

2

1
,

2

1
,1

2

1
,

2

1

2

1
,

2

1
,

2

1
,1

2

3
,

2

3

2

3
,

2

3
,

2

1
,1

2

1
,

2

3

2

1
,

2

3
,

2

1
,1

2

1
,

2

3

2

1
,

2

3
,

2

1
,1

2

3
,

2

3

2

3
,

2

3
,

2

1
,1


























































mjtoingcorrespond

mjtoingcorrespond

mjtoingcorrespond

mjtoingcorrespond

mjtoingcorrespond

mjtoingcorrespond













       (4.5) 

21 jandj  are the largest values of 21 mandm . Hence the largest value of 

2121 jjmmm   

For this value of m we can write one function as 

),,,(),,,( 2121212121 jjjjjjjjjj       (4.6) 

The next value of m is 121  jj  which has two possible values for m1 and m2 as 

2211

2211

1

1

jmandjm

jmandjm





. That is ),1,,(),1,,,( 21212121 jjjjjjjj     

Correspondingly  we  have  two   -values  as, 

)1,1,,(),1,,,( 212121212121  jjjjjjjjjjjj   

Extending the discussion for njjm  21 , we get a set of  vectors for   corresponding 

to   -vectors as 

),,,(

.................................

)1,1,,(

),,,,(

2121

2121

2121

njjjj

jnjjj

jnjjj













    and    

),,,(

......................................................

),1,,(

),,,(

212121

212121

212121

njjnjjjj

njjjjjj

njjjjjj













           (4.7) 

The smallest value of j will occur corresponding to 
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222 2 jnorjnj  . So the smallest value of m is 21 jj  . So, the total 

number of eigen states are given by, 

)12)(12()12( 21

21

21






jjj
jj

jj

. It is very clear to express the vector ),,,( 21 mjjj as a linear 

combination of the vector ),,,( 2121 mmjj  

),,,(),,,( 212121

1 2

21

2
,

1
,, mmjjCmjjj

m m

jj

mmmj              (4.8) 

The coefficient 21

21 ,,,

jj

mmmjC  represents the unitary transformation between two angular 

momentum representations known as Clebsch-Gordon coefficients. In Dirac notation it is 

represented as  jmjjmmjjC
jj

mmmj 212121,,, |21

21
 

Problem: Find the C.G. coefficient for the coupling of two angular momenta 

2

1
1 21  jandj  

Solution: 

For simplicity let us use the notations  

 
21

)(;)( 212121 mmjm mmjjjmjj    

The six independent vectors are 

 
2/1,2/12/1,2/12/3,2/32/1,2/32/1,2/32/3,2/3

2/1,12/1,12/1,02/1,02/1,12/1,1

;;;;;

;;;;;







 and
 

Obviously,                            
2/1,12/3,2/3

2/1,12/3,2/3

 






     (4.9) 

Similarly, for the remaining vectors we have 
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2/1,182/1,072/1,2/3

2/1,062/1,152/1,2/1

2/1,142/1,032/1,2/3

2/1,022/1,112/1,2/3

























aa

aa

aa

aa

  

The coefficients a gives the unitary transformation matrix. 

We know, 

1,)1)((   mjjm mjmjJ    where    )()( 21 JJiJJJ yx  

Also,  

































22

2212,22

2,12

11

112,1111

2,11

10

1)2/3)(2/1(
)(

10

1)2)(1(
)(

1

jmf

jmifmm
J

jmif

jmifmm
J

mm

mm

mm

mm







   (4.10) 

Thus 
2/1,2/3

1
2

3

2

3

2

3

2

3
2/3,2/3  

















J by using eqn4 

2/1,12/1,2/3
3

1
  J  by using eq(4.70a) 

  2/1,12/1,0 )2/12/3)(2/12/1()12)(11(
3

1
   by using (4.70b) 

2/1,02/1,1
3

2

3

1
   .which gives 

3

2
;

3

1
21  aa  

Applying the lowering operator again on 2/1,2/3  
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 

     

2/1,12/3,2/32/1,12/1,02/1,2/3

2/1,02/1,12/1,0

2/1,02/1,1212/1,2/3

2/1,2/32/1,2/3

3/13/2

)2/12/3)(2/12/1()]02)(01[(
3

2
0)]12)(11[(

3

1

2

1

3

2

3

1
)()(

2

1

22









































and

or

JJor

J

2/1,2/1  is a linear combination of 2/1,1   and 2/1,0 which is orthogonal to 2/1,2/3 . This 

demands 

 

From the condition for normalisation 

 2/1,02/1,12/1,2/1 2
3

1
    

If the lowering operator J-  is applied we get 

]2[
3

1
2/1,12/1,02/1,2/1     

Thus we have 

                              



































































































2/1,1

2/1,1

2/1,0

2/1,0

2/1,1

2/1,1

..

2/1,2/1

2/1,2/1

2/1,2/3

2/1,2/3

2/3,2/3

2/3,2/3

03/23/1000

0003/13/20

03/13/2000

0003/23/10

100000

000001

























  
tcoefficienGC

 

 















 2/1,02/1,152/1,2/1

*

2

*

1

5

6

6

*

25

*

1

2

1
,

2

1

3/2

3/1

0

 ahence

a

a

a

a
or

aaaa
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Problem: Find the C.G. coefficient for the coupling of 
2

1

2

1
21  jandj . 

For the given problem, the four independent  -states are: 

2/1,2/12/1,2/12/1,2/12/1,2/1, ;;;
21   mm   and the possible values of j are 1 and 0. 

Hence the possible  -states are     

 1,1001011 ;;;   jm  

Obviously     
2/1,2/11,1

2/1,2/111

 






 

The remaining states can be written as 

 2/1,2/122/1,2/1110    aa  

 

2/1,2/12110

0,11,1

])()[(
2

1
,hence

2













JJ

J
 

Since 
00 is orthogonal to 

10 we have 

 ][
2

1
2/1,2/12/1,2/100     

The matrix transformation is 

 






































































 2/1,2/1

2/1,2/1

2/1,2/1

2/1,2/1

..

1,1

00

10

11

1000

02/12/10

02/12/10

0001

















  
tcoefficienGC

 

4.2 Commutation rules for angular momentum: 

 

The commutation rules can be combined symbolically as,  

     .LiLL       (4.11) 
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Two different components of the angular momentum do not commute. It will not be possible, 

in general, to measure zyx LLL and,, simultaneously, because product of the uncertainties of 

two quantities is proportional to the mean value of their commutator. It is of interest to obtain 

the commutation relations of L with the components, zyx LLL ,, . Let us consider, for 

example,  

     zzyxz LLLLLL ,,
2222   

   =   )()
222222

zzzzxzzyxzzx LLLLLLLLLLLL   

                 as   ,0
22
 zzzz LLLL  

hence    ).()(,2

yyzzyyxxzzxxz LLLLLLLLLLLLLL   

Adding and subtracting yzyxzx LLLLLL and on R.H.S, we get  

 = )()( yyzyzyyzyzyyxxzxzxxzxzxx LLLLLLLLLLLLLLLLLLLLLLLL   

 = yyzzyyzzyyxxzzxxzzxx LLLLLLLLLLLLLLLLLLLL )()()()(   

             = .0 yxxyxyyx LLiLLiLLiLLi                      (4.12) 

Thus we conclude that 2L commute  with 
zL . By symmetry, we conclude that it also 

commutes with .and yx LL In other words it is possible to measure simultaneously 2L and any 

single component of .L  

 

Eigenvalues of 
ZL  

We now try to find the eigenfunctions of 
ZL that is, we want to satisfy the equation,  

     . cLZ       (4.13) 

or                     .



c

i





    

The solution of eq. (4.13) is  

    ),/(exp),(  cirf     (4.14) 

                               where ),( rf is an arbitrary function of andr . 

Now  must be a single valued function of .,, zyx In this case increase in the angle  by 2

should not change the wavefunction, so that  

  /)2(exp),()/(exp),(   cirfcirf  

or 

1)/2(exp ci  
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


m
c

2
2




 

,mc  

where m is an integer. Thus eigenvalues of 
zL are  

     mLz      (4.15) 

The eigenfunction are  

     ).,(   rfe mi    (4.16) 

4.3 Angular momentum in General   

The total angular momentum can be written as a sum of the orbital and spin angular 

momenta:  

     SLJ       (4.17) 

where J has the components  

    zzzyyyxxx SLJSLJSLJ     

J follows the same commutation rules as orbital angular momentum does, i.e.,  

        yxzxzyzyx JiJJJiJJJiJJ   ,,,    (4.18) 

or equivalently  

JiJJ   

and        

         .0,,,  zzyyxx JJJJJJ     (4.19) 

Further                              2222 ,, zyxxx JJJJJJ   

                           =        yxzzzxyxyyyx JJJJJJJJJJJJ  ,,,  

=   .0 yzzyzyyz JJJJJJJJi  

Thus the operator  

2222

zyx JJJJ  commutes with zyx JJJ and, . 

 

Commutation relation of 
zJ with ladder operators ).()( yxyx JiJJandJiJJ    

  )()()(, yzzyzxxzzyxyxzzzz JJJJiJJJJJiJJiJJJJJJJJJ    

=      JiJJJJiJiiJiJJiJJ yxxyxyzyxz  )()( ,,,,  

Similarly      JJJ z ,  

Commutation relation of J and J   
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   )()()()(, yxyxyxyx JiJJiJJiJJiJJJJJJJ    

  = )()()()( yxyyxxyxyyxx JiJJiJiJJJiJJiJiJJ   

On simplification, we get  

=   zzxyyxxy JJiiJJiJJJJi  2)(2,2)(2   

Commutation of 2J with  JJ and  

     JJJJJJ zyx ,,,
2222

 

Now      )(
22

xyyxyx JJJJiJJJJ   

and      )(
22

xJyJyJxJiyJxJJJ   

     
22

)
(

2

1
yJxJJJJJ 


 

or    
2

)(
2

1222
zJJJJJzJyJxJ   

So,       ],
2

)(
2

1
,2

 














JzJJJJJJJ  

       JJJ,J,J
2

1
J,JJ

2

1 2

z
 

We known that          .,,,, bcacbacba    

Applying this we get  

              zJJzJJzJzJJJJJJJJJJJJJJJ  ,,,
2

1
,

2

1
,

2

1
,

2

1
,2

= .0)()2(
2

1
00)2(

2

1
  zzzz JJJJJJJJ   

Similarly   .0,2 JJ  

 

Allowed values of Total angular momentum : J 

Since 2and JJ z
commute, they will have a set of simultaneous eigen vectors and therefore 

can be simultaneously diagonalized. Let the basic vectors in the representation in which 

zJJ and2 are simultaneously diagonal be ).( m  This will satisfy  

        )()( 22 mmJ                         (4.20A) 

and      )()( mmmJ z           (4.20B) 

where mand are real numbers .hermitian)areand( 2

zJJ . We will use commutation 

relations to determine the eigenvalue  and m . Let,  

    yx iJJJ        (4.21) 
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    yx iJJJ        (4.22) 

    )†(   JJ       (4.23) 

which satisfy the commutation rules :  

        JJJ z ,       (4.24) 

   

Similarly              JJJ z ,              

and             zJJJ 2,            (4.25) 

and the identities    zzyxyxyxyx JJJJJiJJiJJiJJJJ 

2222
,,)()(          

and     zz JJJJJ 

22           (4.26) 

 

Now consider the scalar product  

),(),(),(),(),(),(),(
2222  zzyyxxzyx JJJJJJJJJJ 

 

       (because zyx JandJJ , are hermitian)  

 ),(  zz JJ     0),(, XXXvectoranyforbecause  

Substituting ),( m  we have  

     .)(),()(),( 2 mJmJmJm zz        

Using equations  (4.20A) and (4.20B)  We have  

   .)(),()(),( 2 mmmmmm     

or    
2m                (4.27) 

Now from equation (4.24) 

    JJJJJJJ zzz ),,(,  

Operating on the function )( m , we have  

    )()(,)(, mJmJJmJJ zz      

or    )()()( mJmJJmJJ zz      

                            = )()1()()( mJmmJmmJ              (4.27A) 

or    )()()( mJmJJmJJ zz        

Since   0,  zJJ  

    )()()( 222 mJmJJmJJ         

or    )()( 22 mJmJJ          

It is clear that the vector )( mJ  is an eigenvector of zJ belonging to the eigenvalue 

2ofand)1( Jm  belonging to the same eigenvalue 22 of J . Similarly, )( mJJ  is an 
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eigenvector of eigenvalue )2( m and belonging to the same eigenvalue 
22 of J . This 

process cannot continue indentfinitely otherwise it will contradict equation (4.27). Let  be 

the greatest eigenvalue of zJ  for the given eigenvalue 
22 of J , and )(  be the 

corresponding eigenvector. Now from equation (4.27A) 

 ()1()(   JJJ z   

hence     ,0)(  J  

Since )1(   cannot be an eigenvalue of .xJ Thus 

,0)(  JJ  

or     0)()(
22  zz JJJ   

or     0)()( 22     

But )(  is not identically zero, hence  is the root of a quadratic equation. The larger root 

of this equation is 

    )41(
2

1

2

1
        

In a similar way  

    )(()1()()()( mJmmJmJJmJJ zz             (4.28)  

and hence     0,2 JJ  

     mJmJJmJJ  ()()( 222

      (4.29) 

       

It is clear from equations (4.28) and (4.29), that the vector )( mJ   is an eigenvector of zJ

belonging to the eigenvalue 
2)1( Jm  belonging to the same eigenvalues 

22 Jof , unless, 

of course, if .0)(  mJ   Repeated application shows that )( mJJ  is an eigenvector of 

zJ belonging to the eigenvalue )2( m . This cannot continue indefinitely otherwise it will 

again contradict equation (4.27). If 1 is the least eigenvalue of zJ then 

0)( 1  JJ  

or      0)()( 1

22  zz JJJ   

or      0)()( 1

2

1

2

1     

or      01

2

1    

The smaller root of the above equation would be  
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)41(

2

1

2

1
1         

Thus    1

 
and the eigenvalues of zJ are 

  ,)1(,...)1(,   

It follows that 2 must be an integer, i.e., 

or    ).41(
2

1

2

1

2

1
n       

Rearranging, we obtain  









 1

22

nn
  

Thus     )1(  jj   with ....,
2

1
,1,

2

1
,0j  

We may therefore infer that the eigenvalues of the operator 
2J are the number 

2)1( jj                                               

where  ....,
2

1
,1,

2

1
,0j  

and each of these is )12( j  fold degenerate, the eigenvalues of zJ for a given value of j

being  

 jjjjm ),1(.............,)1(,   

 

4.4 Angular momentum matrices 

 The matrices of zJJ and2
are given  

mJ z   

and       
22 )1(  jjJ  

 We know that m (magnetic quantum number) varies from jtj  o i.e., it has )12( j

values. Hence the dimensions of these diagonal matrices will be )12(.,.)12(  jeij rows and 

)12( j columns. The explicit forms of angular momentum matrices are shown below :  

     

j

j
j

zJ






...
...
0
0

...

...

...

...

...

...

...

...

...

...

0

...

...

1
0

0

...

...
0

    (4.30) 
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)1(

...
...
0
0

...

...

...

...

...

...

...

...

...

...

...

...

...

)1(
...

0

...

...
0

)1(

22








jj

jj
jj

J       (4.31) 

Examples : Here we shall consider the following examples :  

(i) For 
2,0 Jj and zJ are represented by null matrices of unit rank: (0)  

(ii) .
2

1
J  In this case 

2

1
,

2

1
m  

Dimension of 
2J matrix =   21)2/1(2)12(  Xj  

i.e., there will be two rows and two columns. 

Now    2222 )4/3(1
2

1

2

1
)1(  








 jjJ  

                







4/30

04/322 J      

Further 
2

1
for

2

1
and

2

1
for

2

1
 mmmJ z   

               







2/10

02/12zJ        

Also      )1()(  mjmjJ   

Only upper diagonal appears and rest of elements are zero.  

2

1
and

2

1
for1

2

1

2

1

2

1

2

1

2

1
and

2

1
for01

2

1

2

1

2

1

2

1

























































mjJ

mjJ





 

  






 00
10J           

   )1()(  mjmjJ   

Only lower diagonal appears and rest of elements are zero.  

For   Jmj ,
2

1
and,

2

1
 

and for 0,
2

1
and,

2

1
 Jmj  

  






 01
00J           

(iii) .1j In this case 1,,1  m  

Dimension of 
2J matrix =   312 j  

i.e., there will be three rows and three columns.  

Now     
2222 2)11(1)1(   jjJ   
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














200
020
002

22 J       (4.32) 

Further  ,0,mJ z according to the values of m as .1,0,1   

   

















100
000
001

zJ       (4.33) 

Now      )1)((  mjmjJ   

1and1for0  mj  

0and1for2  mj  

1and1for2  mj  

4.5 Physical meaning of Identity   

The word identical in quantum mechanics is to describe the particles that can be substituted 

for each other under the most general possible circumstances with no change in physical 

situation of the system.  

Symmetrical and anti symmetric wave functions 

i) Symmetric wave function  s  : A wave function is symmetric if the interchange of any 

pair of particles among its arguments leave the wave function unchanged. 

ii) Antisymmetric wave function A :  wave function is antisymmetric if the interchange 

of any pair of particles among its arguments changes the sign of the wave function. 

If P is an exchange operator, then we must have 

   Ps (1,2) = s (2, 1) 

PA (1,2) = A (2, 1) 

This symmetry property of the wave function has relationship with the spin of the particle. 

This relationship is listed here in the following postulates. 

1. The identical particles having an integral spin quantum number are described by 

symmetric wave function, i.e., 

Ps (1,2,3,..r,…s..n) = +s (1,2,3,...s,...r,...n) 
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 This class of particles, i.e. the particles described by symmetric wave functions are 

known as Bosons and obey Bose-Einstein Statistics. The examples of Bosons are photons 

(spin 1), netural helium atoms in normal state (s = 0) etc. 

2. The identical particles having half odd integral spin quantum number are described by 

antisymmetric wave functions, i.e. 

PA (1,2,3,..r,…s..n) = -A (1,2,3,...s,...r,...n) 

This class of particles i.e. the particles described by antisymmetric wave function obey 

Fermi-Dirac statistics and the particles are known as Fermi-particles or Fermions. The 

examples of Fermions are electrons, protons, neutrons, muons (all spin )
2

1
 

4.6 Construction of Symmetric and antisymmetric wave functions 

An antisymmetric unnormalised wave function can be constructed by adding togather all the 

perumated wave functions that arise from the original solution by means of an even number 

of interchanges of pairs of particles and subtracting the sum of all the permuted wave 

functions that arise by means of an odd number of interchanges of pairs of particles in the 

original solution. 

In the case where the Hamiltonian does not depend upon time, stationary state solutions 

       /
,...2,1,..2,1

tniEenn      (4.34) 

can be found and the time independent Schroedinger’s eqn. can be written as 

   H (1,2,......n)  (1,2..n) = E (1,2,..n)    (4.35) 

There are n ! solutions of the eqn. (eigen functions) derived from  (1,2..n) by means of 

permutations of its arguments belonging to the same eigen value E. Any linear combination 

of these eigen functions is also an eigen function belonging to eigen value E. Hence the 

system is degenerate and this type of degeneracy is called exchange degeneracy. 

    H (1,2)  (1,2) = E  (1,2)     

The 2 ! = 2 solutions of this equation are  (1, 2) and  (2,1). The solutions correspond to a 

single energy state E. 

The symmetric wave function can be written as 
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   s = (1,2) +  (2,1)      (4.36) 

and the antisymmetric wave functions is written as 

   A = (1,2) -  (2,1)      (4.37) 

 Similarly for a system of 3 particles, the Schroedinger’s equation is 

  H (1,2,3)  (1,2,3) = E  (1,2,3)      (4.38) 

This equation has 3! = 6 solutions corresponding to the same eigen values E. The six possible 

functions obtained by exchanging the indices of the particles are  

  (1,2,3), (2,3,1), (3,2,1), (1,3,2), (2,1,3),  (3,1,2)    Out 

of these six functions, those arising by an even number of interchanges of the pairs of 

particles in original wave function  (1,2,3), are 

   (1,2,3), (2,3,1),  (3,1,2)   

and the functions arising by an odd number of interchanges of pairs of particles in original 

function  (1,2,3) are 

  (1,3,2), (2,1,3),  (3,2,1) 

So the symmetric wave function can be written as 

s =  (1,2,3) + (2,3,1) + (3,1,2) + (1,3,2) + (2,1,3) +  (3,2,1)  (4.39) 

and the antisymmetric wave function is 

A =  (1,2,3) + (2,3,1) + (3,1,2) – { (1,3,2) + (2,1,3) +  (3,2,1)}    (4.40) 

Here s and A are unnormalised wave functions. 

4.7 Distinguishability of identical particles 

The two identical particles can be distinguishable from each other if the sum of the 

probabilities of the individual wave functions in two states is equal to the probability derived 

by the symmetrised wave function i.e, if 

         222 |1,22,1||1,2||2,1|   

                   1,22,1Re2|1,2||2,1| *22      (4.41) 
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where Re denotes the real part of     1,22,1 *  

It is possible only when overlap of wave-functions  (1,2) and  (2,1) is zero or                     

2 Re     1,22,1 *  = 0. Thus when the co-ordinates (space and spin) of two particles are not 

the same between exchange degenerate functions, the interference term,                                

i.e. 2 Re  (1,2) 
*
 (2,1) becomes zero and particle co-ordinates do not overlap. 

4.8 The Palui’s Exclusion principle: 

A particle, during its motion in space reflects the properties of the statistics which it obeys. 

Consider two particle system which contains electrons in indistinguishable positions. 

Electrons are 
2

1
spin particles and obey Fermi Dirac statistics. If they occupy the same 

position in space and have the same z-component of spin, it can be seen that the eigen 

function of exchange operator for a case will be 

 P12 A(r1,s1; r2,s2) = A(r2,s2, r1,s1) 

          = A(r1,s1; r2,s2)       (4.42) 

         










21

21
0

ss

rr
if        (4.43) 

The non existence of the wave-function under these conditions implies that there is zero 

probability that the particle will occupy the same point in space and have identical spin 

orientations. Pauli exculsion principle which states that no two particles obeying Fermi 

Statistics can exist in the same quantum state. 

4.9 Pauli Spin Matrices for electron  

Like orbital angular momentum operators Lx, Ly, Lz, the spin operators, Sx, Sy and Sz to be 

associated with the components of spin angular momentum satisfy the commutation relations. 















zzxxzxz

xyzzyzy

zxyyxyx

SiSSSSSS

SiSSSSSS

SiSSSSSS







][

][

][

,

,

,

           (4.44) 
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If we consider the case with spin 
2

1
  i.e. electron, then according the Unlenbeck and 

Goudsmit hypothesis each of operators Sx, Sy and Sz must have just two eigen values 
2

1
 and  

 
2

1
. Now we introduce new auxiliary operators x, y and z such that 

    


















zz

yy

xx

S

S

S













2

1
2

1
2

1

      (4.45) 

The following properties of ’s may be noted: 

Since the eigen values of each S are to be just 
2

1
 and  

2

1
, the eigen values of each  must 

be +1 and 1. Each of the operators  222 ,, zyx   must therefore have only the eigen value 1 

and such operator is only unit operator, therefore. 

222
zyx    = 1.      (4.46) 

According to (4.45) and (4.46), the commutation rules satisfied by  s must be 

   















yzxxzxz

xyzzyzy

zxyyxyx

i2],[

i2],[

i2],[

    (4.47) 

Now      xyyxxyyx iii  222   

    
yzzyyyyzzy    

Hence ,xyyx   so that x and y anticommute. 

Similarly any two of the ’s anticommute in pairs 

   














0

0

0

zxxz

yzzy

xyyx







      (4.48) 
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Finally from (4.47) and (4.48) we have 

   















yxz

xzy

zyx

i

i

i







 

Since each  has two eigen values, so (2 x 2) matrix may be expected to fulfil the purpose 

and we begin by associating with z, the simplest (2 x 2) matrix having the eigen values 1 

and 1. 

   











10

01
z

       (4.49) 

Now we have 

  
































dc

ba

dc

ba
zx

10

01
      (4.50) 

and        
































dc

ba

dc

ba
xz

10

01
      (4.51) 

But x and z anticommute, we must have 

 0
























dc

ba

dc

ba
xzzx   

   0
20

02










 d

a
 

This yields a = d = 0 

So that every matrix that anticommutes with (4.49) as x and y do, accordingly x must have 

the form 

  









0

0

c

b
x         (4.52) 

The eigen values of (4.52) are ± (bc) so that if they are to be 1 and 1, we must set bc = 1. 

And simple possibility is to take b =c =1, so 









01

10
x  
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It then follows form (4.48) that the matrix to be associated with y is 






 

0i

i0
 and hence 

complete list of ’s becomes 

  

















 











10

01
,

0

0
,

01

10
zyx

i

i
     (4.53) 

These matrices x, y and z are called Pauli spin matrices associated with the components of 

spin angular momentum. 

  

















 











10

01

2

1
S,

0i

i0

2

1
S,

01

10

2

1
S zy x

            (4.54) 

These are same as Jx, Jy and Jz in total angular momenta (Angular Momentum chapter) when 

2

1
j   

Thus we have 32222
 zyx   

and  2222

zyx SSSS   

    2222

4

3

4

2




 zyx   

 

4.10 Electron spin hypothesis : Stern -Gerlach experiment  

The spin phenomenon has no classical analogue and approaching its theory we shall begin the 

recounting an empirical clue. In 1925, Uhlenbeck and Goudsmit proposed that each electron 

spins while revolving about nucleus and has a quantized spin angular momentum and being 

an electrically charged body possesses a spin magnetic moment. This proposal was successful 

in correlating spectral data for both unpertubed and perturbed complex atoms and in 

interpreting the results of the Stern-Gerlackh experiment concerned with the deflection of 

atoms projected into an inhomogeneous magnetic field. 
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A beam of neutral atoms or molecules, collimated by slits 1S and 2S is allowed to pass 

through a non-uniform magnetic field B. The atoms or molecules are defected by a force 

which according to classical physics, is given by  

B)(m.F           (4.55) 

Where m is magnetic moment vector.  

The arrangement is such that in the region through which the beam of atoms passes, the 

direction of B varies slowly, but the magnitude of B is strongly dependent on position, thus if 

thus if the projection of m along the direction of B is denoted by 
Bm , then we have 

approximately.  

BmF B   

By measuring the deflection on the screen, the force F and hence the magnetic moment  

along B may be determined. Classically Bm  can have any value ranging from m to m i.e. 

we would expect a single continuous trace on the screen; but experimentally, instead of a 

continuous trace, discrete equidistant traces were observed, giving clear proof of quantisation 

(discrete values) of the magnetic moment. Since the magnetic moment vector m appeared to 

assume certain discrete directions in space, it is said to have undergone space quantisation.  

Stem and Gerlach also measured allowed values of Bm  to moderate accuracy and found that 

the values of Bm  appeared in the range from minimum m  to maximum m . The value of 

Atomic beam 

slit 

N 

S 
z 

Spin up 

Spin down Fig. 4.1 
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maximum projection of m (i.e.m) is conventionally regarded as the magnetic moment of the 

particle. Now the magnetic moment of charged particle m is related to angular momentum L 

by the classical relation.  

      L-m
02m

e
     (4.56) 

Where 
0m = mass of electron, e   its charge. This relation, being a simple proportionality 

between m and L is expected to be true in quantum mechanics also. Since any component of 

L has )12( l eigen values, we may expect the projection of m in a fixed direction, such as on 

B, to possess also )12( l distinct eigen values and to be expressible as  

    mm
m

e
mB B

02

     

 (4.57) 

where     TeslaJ
m

e
B /10x2032.9

2

20

0




  

is called Bohr magneton and m  can assume the values from l to l with steps of unity, i.e., 

)12( l  values. Since l is an integer, )12( l  is an odd number, therefore we expect an old 

number of traces )12( l  in Stern Gerlach experiment. But a beam of silver atom yielded two 

traces in this experiment; which is an even number and a value of m equal of  

    Bm
m

e
m 

02

      (4.58) 

The extra-ordinary implications of this experiment could not be explained immediately. Later 

Goudsmit and Uhlenbeck hypothesis of existence of electron spin and intrinsic magnetic 

moment provided an explanation for this. On the basis of this theory the silver atom in an S-

state has two projections possible in space, namely. 

    
Bm

m

e
m 

02

      (4.59) 

The positive and negative signs signify the orientations of the magnetic moment in space, i.e., 

up or down.  Goudsmit and Uhlenbeck also assumed that the electron has an intrinsic (or 

spin) angular momentum, but this is not easy to measure directly as the magnetic moment. 
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The existence of intrinsic angular momentum of electron seems correct by the following 

arguments : 

(i) Electron has a magnetic moment which may be assumed to be due to some 

internal circulating currents of charged matter, then the appearance of an intrinsic angular 

momentum is expected together with a magnetic moment. 

(ii) Conservation of angular momentum for an isolated system such as an atom 

can not be maintained unless the electron moving in an electric field of nucleus consists of an 

intrinsic momentum.  

Dirac’s relativistic theory given a deeper understanding of intrinsic angular momentum and 

magnetic moment of the electron. It is conventional to associate spin S  with the magnetic 

moment as  

     
















0

0

2
,

2

2
,

2

m

e
mS

m

e
mS





    (4.60) 

Theory of Stern Gerlach Experiment : The separation of beam of silver atoms into two 

components in Stern-Gerlach experiment may be explained as follows : Let an atom of 

magnetic moment m enter a non-uniform slowly varying magnetic field B.  Then the force 

acting on the atom, according to classical physics, is given by  

B)(m.F   

If magnetic field B is assumed along Z-direction and  is the angle between m and B, then the 

force on atom,  

     
z

B
mF




 cos     (4.61)  

Classically   can have all possible values ; but quantum mechanically, according to property 

of space quantization, it can have only two discrete values. When atom enters the non-

uniforms field, it experiences an acceleration along z - direction given by  

0M

F
a z   
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where
0M is the mass of atom. If L the length of magnetic field and  v  the velocity of atom 

along the directions of beam, then time taken by atom in magnetic field.  

v

L
t   

If we assume the acceleration along z - direction to be constant, then displacement of atom 

along z - direction is given by  

2

0

2

2

1

2

1










v

L

M

F
taz z  
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


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
















































z

B
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L
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v

L

M

z

B
m

o

2

2
2

0

cos
2

1
cos

2

1




    (4.62) 

This is classical expression for the displacement of atom in an non-uniform field. Quantum 

mechanically, due to space quantization cos ,1 therefore for spin half particles, we have  

     
z

B

vM

mL
z






2

0

2

2

1
    (4.63) 

This expression gives two directions for spin half particles, which is actually observed in 

Stern – Gerlach experiment. Thus Stern – Gerlach experiment provides a satisfactory 

experimental evidence of the Goudsmit and Uhlenbeck hypothesis of space quantization. 

Limitations of Stern-Gerlach Experiment  

1. The experiment can be carried out only for neutral atoms or molecules ; it can not be 

carried out for changed particles.  

2. The Stern-Gerlach experiment can not be performed even for those neutral atoms or 

molecules which remain in the field for a duration shorter than 
zmB

 . 

4.11  Scattering Cross – Section   

The effective area presented by the target to the incident beam of particles in the process of 

scattering is called scattering cross section. Let a beam of particular of flux N is incident on a 

scattering centre; particles are scattered in all directions. If dN is the number of particles 
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scattered per unit time into the solid angle d located in the direction  and  with respect to 

the bombarding direction , then dN will be proportional to the incident flux and the solid 

angle taken. Thus we can write, 

                     dN = (,) N d (4.63A) 

where (,) is the proportionality constant. (,) has the dimensions of an area. This can 

be regarded as the cross – section of the incident beam scattered into the solid angle d about 

 and . The proportionality constant is known as the differential scattering cross – section.  

The total scattering cross section (σt) is  obtained by integrating  eqn. (4.63A) over the entire 

solid angle. 

Nscatt  =     dNNddN ),(),(  

= N t   since, t =   d),(  

Thus          
N

Nscatt
t   

The cross – sections are usually measured in barns (1barn = 10
-24 

cm
2
) or millibrans  

 

 

                                                  

4.12 Quantum mechanical discription of scattering process: 

a scattering experiment, a beam of particles impinges on a target which scatters them in a 

sphere  around the scattering centre. Figure (4.2) explains the general behaviour of the 

particles scattering. In the quantum mechanical description of scattering, the total 

dω 

dA 

r 
eikz 

scatterer 

Fig. 4.2 
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wavefunction can be regarded as consisting, of two parts, one representing the incoming part 

and the other, representing the scattered part. 

 The complete wavefunction is given by  

                                                      
r

e
e

ikr

ikz f ),(        (4.64) 

The first term represents a particle moving in the positive z-direction. The second term 

represents a particle moving radially outward; its amplitude depends upon  and  and is 

inversely proportional to r.  

 The magnitude of the incident flux density along z-axis is  

22 ikz

inc evv   where v is the velocity.    (4.65) 

= v  

the magnitude of scattered flux is  

2

2

2

2
)()(  f

r

v

r

e
fvv

ikr

scat        (4.66) 

Let the scattered particles are intercepted by a detector of area dA which is placed at a 

distance r from the scatterer.  The solid angle subtended by the detector at the scattering 

centre is  

2

2
or rddA

r

dA
d         (4.67) 

Therefore,  the number of particles crossing the area dA per sec. is 




df
r

dA
fdAf

r

2

2

22

2
|)(||)(||)(|       (4.68) 

Now the differential scattering cross – section () is defined by  

() d = (no. of particles scattered into d  per unit time) / (no. of particles incident per           

                   unit time) 

   
v

dfv 
2

)(
    

or                      ()  
2)(f               

 (4.69) 

This is the expression for differential scattering cross – section.  
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The Born approximation  

 

When the kinetic energy of colliding particles is large compared to the interaction energy, 

then Born approximation is best applied. 

 

4.13 Perturbation approximation  We wish to solve the wave equation for a relative 

motion, i.e.,  

      ,)(
2

2
2




ErV 


          where   = 
21

21

mm

mm


   (4.70) 

Its solution in  asymptotic form is given by  

r

e
fer

rki
zki

),(),,(  

       (4.71) 

Where eikz  represents the part of the  particles moving in the   z- direction and the second 

term represents the part which is moving radially outward after scattering. 

Equation (4.70) can be written as  

,)(22  rUk   

where      
22

2
)(2

 U(r)and
2



rVE
k




       

Substituting )(rveikz   where )(rv represents scattered wave part which is a small 

perturbation . We have, 

  

     )()()()( 22
rrrr   zkizkizki eUeke

 
or       )()()()()(

22
rrrrr  UUke ee

ikzikzikz
     

since  (r) is small in comparison with e 
i k z

 we can neglect the term  U(r) (r)  

Hence , 

zkizkizki eUkeke )()()( 2222 rrr             

    

or 
zkieUk )()()( 22

rrr   since   
zkizki eke 22   (4.72) 

 

Therefore we have to solve the inhomogeneous wave equation the right hand side is known. 

Sufficient criterion for the validity of our solution is  
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|(r) | « | e 
i k z

| = 1,   for all r.       (4.73) 

Scattering cross – section : 

 The solution of inhomogeneous equations (4.72) can be expressed as 

                          r' )r'r'r,r d()()(
'

FG
k  

                                                        where 'kG  is the Green’s function. 

For a free particle, Green’s function is expressed as, 
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     (4.74) 

We assume that U(r) falls off rapidly for large r so that there is an asymptotic region in 

which r is large in comparison with those values of r’ For r  , 

    



















































'

2/1
'

'

,
2

2

,

2

'
2

''2

''22'

2
1)(

2
1

2
1

cos2

cos2)(

2

2

2

rr
r

r
rrr

or

ras
r

r
r

r

rr

r

r
r

whererrrr

rrrrrr

r

 

Similarly, 

Now eqn (4.74) becomes 
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Comparing this with ),()(  f
r

e
er

ikr
ikz  ,we have 

'
'

)'(
)(

4

1
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Denoting the incoming wave by the vector K0 and the scattered wave by K, we can write 

'0'0' .. rKrKnKz   

Therefore, 
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Let us define a vector     Ƙ  as      Ƙ=K0-K            

Now,  
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The scattering cross section  
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(4.75) 

This gives the total scattering cross section. 

 

4.14 Scattering by Spherically Symmetric potentials : Partial wave analysis  

   

Consider a particle of energy E which moves in a central, spherically symmetric force field . 

Let the  wave function   is the solution of the Schroedinger equation  

  ,0)(
2

2

2   rVE
h

m
      . (4.76) 

We have assumed that V is a function of r only. In a special  case of symmetric problem, let 

the wave function is independent of the angle . Therefore the general solution of eq.(4.37) is 

   

      = Rl(r) Pl(cos),       (4.77) 
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where  R1(r) =
r

rl )(
and Pl (cos ) is the Legendre polynomial of order l.  l  satisfies the 

equation  

0
)1(
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where               k = 

2/1

2

2

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

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

mE
    and     U(r) = 

2

)(2



rmV
 

To study the nature of  asymptotic behaviour, we consider r to be so large that the U and l 

terms in equation (4.78) can be neglected. Then the solution of equation (4.78) is of the form 

e
i k r

. Hence the solution is  

 = 
r

e
p

r
p

ikr

l

l
l

l
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  )(cos)(cos 


                         (4.79) 

Therefore, the general solution is  

 = 
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l )(cos            (4.80) 

Here Cl and Dl are constants.  

From the quantum mechanical description of scattering, 

r

e
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zki )(         (4.81) 

From eqns. (4.80) and (4.81) we have  
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where l/2 has been written for convenience in place of /2. Other constants have been 

generalised into the new constant bl. The quantity l is the phase shift of the l
th

 partial wave. It 

measures the amount by which the regular function sin ( - (1/2) l +l)  is displaced in , 

relative to the free particle function  fl(). Thus the effect of the scattering potential is to shift 

the phase of each outgoing partial wave.  

 

To evaluate the constant bl: 

From Bauer’s formula, substituting the value of e 
i k r

 in eq. (4.82) we get, 
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)(cos)12(                   (4.83) 
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Since e
+i  

and e
-i  

 are linearly independent, each of the quantities in square brackets must 

vanish. Therefore from the coefficient of e
+i

, we have 
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Using eqn. (4.85) into equation (4.84) and equating the coefficients of ie  to zero. 
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The differential cross –section is then   () =| f() |
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The total scattering cross – section is the integral of the above eqn.  
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from the orthogonality relation  
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The eqn. (4.90) shows that different partial waves contribute independently to the total cross 

– section.  Thus the phase shifts completely determine the scattering, and scattering cross – 

section vanishes when each of the l is 0 or 180. Cross section is maximum when                  

1 =  /2,   3/2,... 

Phase shifts are related to the potential energy function by the relation  

Sin l =     -  dfF
E
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Where fl() and Fl() are the functions in the differential equations  
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To find the Phase shifts (l ): 

Multiplying equation (4.93) by fl and equation (4.92) by Fl and subtracting, we get  

  0''  llllll fF
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V
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    (4.94) 

When    
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Hence from equation (4.94), we get  
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or                 dfF
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V
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when the phase shifts are small, i.e., Fl()    fl(). 
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o
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2|)(|       (4.95) 

where a is the range of potential energy function. 

At low energies approaching zero, only phase shift for l=0 partial waves are important and 

scattering becomes isotropic.  

 

4.15 Optical theorem. The optical theorem relates the total scattering cross – section to the 

scattering amplitude in the forward direction (the scattering amplitude for  = 0). Substituting 

 = 0 in eqN. (4.87) we get,  
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The imaginary part of f(0) i.e., Im f(0) is given by  
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According to eq. (4.90), we have  
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Thus the imaginary part of fprward scattering amplitude measures the suffering in intensity of 

incident beam due to scattering. 
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UNIT  V 

5.1 Schrodinger relativistic equation (K.G.Equation)   

Classical Hamiltonian function is given by 

H= Vppp
m

zyx  )(
2

1 222       (5.1) 

Schrodinger equation in Hamiltonian form is 

),(),(
2
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2

trVtr
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




 
       (5.2) 

Let the particle of rest mass m0 is moving in free space (V=0) 

Now, the velocity of the particle is given by, 

2222 zyxv            (5.3) 

Energy E=mc
2
=

2

2

0

1( 

cm ,  where 
c

v
         (5.4) 

 





















 1

1

1

)1()1()1(

)(
2

22

02

222

0

2

22

0

2

2222

022
2






cm

cmvmzyxm
pp zy

x
p


 

      = 22

02

2

cm
c

E
   BY using eqn.(5.4) 

22
2

zy
x

ppp  22

0 cm -
2

2

c

E =0                             (5.5) 

Using the operators, 
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tc
is called D’Alembertian operator    (5.7) 

The above equation is called Klein-Gordan equation for free particle.  

5.2 K.G.equation in the presence of electromagnetic field 

Consider a particle of charge ‘-e’ with rest mass m0 in an e.m. field. 

The equation of motion is written as 
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where, v-velocity of the particle, c-velocity of light, E-electric field intensity, H-magnetic 

field. E and H can be expressed as 
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1
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Here, A and   are the vector and scalar potentials. 

Substituting in eqn. (5.8) we have 
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Consider the x-component value, 
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This eqn. can also be written as 












































).(1().(1( 222

0

222

0 vA
c

e
ecvcm

x
vA

c

e
ecvcm

vdt

d

x

   (5.11) 

This is the Lagrangean equation 
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From eqn. (5.12) 
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5.3 Dirac’s relativistic equation for a free electron  

Dirac modified the Hamiltonian which is linear in momentum and mass as 

 2

0. cmpcH                (5.15) 

We know  the eigen value eqn.   EH   which can be written as 

 0).( 2

0   cmpcE        (5.16) 

Using operators for E and p 

 0).( 2

0 



 cmci

t
i   



                                                                                                                                                                                   
123 
 

Any solution of the above eqn. must be the solution of Schrodinger relativistic eqn   

 0)( 42

0

222  cmcpE         (5.17) 

Multiplying eqn (5.16) by ).( 2

0cmpcE    (keeping  zyx pandpp , commute; 

 and  commute with  pandE , while  and do not commute ), we 

can show that this agrees with schrodinger relativistic eqn (5.17) if  and  satisfy the 

following relations 

 

0

1

0

1

2

222









zzyyxx

zxxzyzzyxyyx

zyx









               (5.18) 

 and  can be represented as 













10

01
 ;











0

0




  with 











0

0

x

x

x



  etc.                      (5.19) 

Here 


















 











10

01
;

0

0
;

01

10
zyx

i

i
                  (5.20) 

All   and  matrices called Dirac operators are  of 4X4 dimension 

5.4 Dirac’s Free particle solution or plane wave solution  

From the equation 

 
t

iH






                               (5.20a) 

Hamiltonian 2

0)( cmpppcH zzyyxx    

and 
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





















000

000

000

000

x

x

x

x

xx

p

p

p

p

p  etc. Substituting these xx p ; yy p  ; zpz values in eq.(5.20a) 

we get 

  

t
ipcmcpippc

t
icmippccp

t
icpippccm

t
iippccpcm

zzyx

yxz

zyx

yxz





















4
4

2

021

3
3

2

021

2
432

2

0

1
431

2

0

0)(

0)(

)(0

)(0





















            (5.21) 

Using the operator forms, the above eqn becomes 

0)()(

0)()(

0)()(

0)()(

314

2

0

213

2

0

432

2

0

431

2

0

















zyx

yxz

zyx

yxz

cpippccmE

ippccpcmE

cpippccmE

ippccpcmE

         (5.22) 

The above set of eqns have solutions if the determinant of the coefficients of  is zero. 

 

0

0)(

0)(

)(0

)(0

2

0

2

0

2

0

2

0











cmEcpippc

cmEippccp

cpippccmE

ippccpcmE

zyx

yxz

zyx

yxz

               (5.23) 

The determinant value gives 

42

0

22

22242

0

2

(

0)(

cmcpEor

pccmE




                (5.24) 
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Taking 1 =1, 2 =0 we get, 3 2

0cmE

cpz






, 
4 2

0

)(

cmE

ippc yx








             (5.25) 

Taking 
1 =0, 

2 =1 we get, 3
2

0

)(

cmE

ippc yx








, 
4 2

0cmE

cpz






.                 (5.26)  

If we consider the negative roots 
E ,we get two more solutions as 

1  2

0cmE

cpz






      2   2

0

)(

cmE

ippc yx








                3  =1           4 =0   (5.27) 

1    2

0

)(

cmE

ippc yx








            2  2

0cmE

cpz






    3 =0              4 =1  (5.28) 

If  we write ).(),( trki

jj eutr    with j=1,2,3... where ju are numbers, we can rewrite the 

solution as 


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





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
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
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
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
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













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


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
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             (5.29) 

u’s and v’s are called Dirac spinors. u represents positive energy spinors with spin up and v 

represents negative energy spinors with spin down. Solution for Dirac equation for a free 

particle is thus obtained as the product of Dirac spinors multiplied by 
trkie ).(
. 
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5.5 Charge and current densities:  

 ,0),(),( 



 t

t

P
t rrS           (5.30)  

Which is well known equation of continuity. The current density expression ),( trS has the 

same form as in non-relativistic case, but the inspection of expression ),(P tr indicates that it 

can not be interoperated as position probability density in analogy with non-relativistic case 

in which  ),(P tr due to following reason, : 

 The expression ),(P tr may be expressed as 





















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




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),(P


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    




































t
i

t
i

mc







22

1
  (5.31) 

 Now using Schroedinger equation in operator form and keeping in mind that the 

Hamiltonian operator associated with dynamic observable energy E is Hermitian, we have 




 E
t

iei
t

iH 







  .,.  

and  




 








 


 E

t
iei

t
iH  .,.  

So equation (5.31) may be expressed as 

    E
mc

t
2

2

1
),(P r  

   E
mc

2
2

1
2  

i.e.,      .),(P
2

 
mc

E
tr                         (5.32) 

From the expression )( 4222 cmcpE  , e note that the energy of a particle can be either 

positive or negative. Thus it follows that the expression for ),(P tr is not definitely positive an 

hence it can not be regarded as conventional position probability density. Thus it is necessary 

to reinterpret    if Klein-Gordan equation is to be used. This was done by Pauli and 

Wesskopf in 1934. According to them P multiplied by  )( Pe can be interpreted as charge 

density which may be positive and negative since charge can have either sign ; then Se will 

be corresponding current density.  
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5.6 Matrics for α and    

The squares of all the four matrics are unity; so that their eigen-values are +1 and 1. Let us 

arbitratily choose  as the matrix that is to be diagonal and we rearrange its rows and 

columns so that all the +1 eigen values are grouped together in the matrix of rank n and all 

the 1 eigen values are grouped together in a matrix of rank m. 

The matrix  can be expressed as 

 = 








11

01
       (5.33) 

which is an abbreviation of 

    = 























1000

0100

0010

0001

      (5.34) 

All the four matrices x, y, z and  are such that their squares are unity and they 

anticommute with one another in pairs. We already have three well known 2×2 matrices x, 

y and z called Pauli spin matrices; which satisfy the above properties, given by 

  

















 











10

01
,

0i

i0
,

01

10
zyx                (5.35) 

Since a 2 × 2 matrix has four elements, there are four and only four, independent 2 × 2 

matrices, three of these x, y, z. The only other matrix linearly independent of these three 

is 

    I = 








10

01
       

which is a unit matrix and therefore commutes rather than anticommutes with every . Hence 

we can not have fourth 2 × 2 matrix which satisfies both properties of Dirac Matrices. Now 

we show that the Dirac Matrices must be even-dimensional. 
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Let us choose a representation in which  is diagonal N × N matrix i.e. 

 = 








N

i

1

b

O
b

O

b
      (5.36) 

As 2 = 1, 1b2

i  and bi =  1 (I = 1, 2, . . . N) 

Since  anticommutes with each component of 


, we have 

k + k = 0 (k = x, y, z) 

This relation may be expressed as 

   k =  k 

    

k

1

kk

1

k  

or                                 

k

1

k ,  as 1k

1

k 
; we have 

Taking trace of both sides, we get 

  Trace ( )k

1

k 
 =  Trace  

or  Trace ( )1

kk  
=  Trace  [Since Trace (ABC) = Trace (CAB)] 

  Trace () =  Trace ()  (Since )I1

kk  
             (5.37) 

This gives 2(Trace ) = or Trace () = 0 

Similarly Trace (k) = 0 

Thus  Trace () = Trace (k) = 0      (5.38) 

This equation shows that the trace of each of matrices k and  must be zero : 

In matrix (13) let r of the bi’s are + 1 and the rest s of bi’s are 1 i.e. 

b1 = b2 = br = 1    and 
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  br+1 = br+2 = . . . = b3 =  1 

so that r + s = N         (5.39) 

But the condition that Trace () = 0 requires that 





N

i

i 0srb
l

 i.e., r = s 

In view of this equation (16) shows 

N = 2r        (540) 

Thus Dirac matrices 


 and  must be even dimensional. Therefore we can not use 3 × 3 

matrices. The next simplest choice is 4 × 4 matrices. As eigen values of all the four matrices 

are +1 and 1. Let us arbitrarily choose  as the matrix which is to be diagonal and we 

arrange its rows and columns so that all the +1 eigen values are grouped together and all the 

1 eigen values are grouped together in a matrix as 

 = 








 I0

0I
  or             = 























1000

0100

0010

0001

 

Therefore the matrix for k may be expressed as 

k = 












0

0

2x

1x
            (5.41) 

where x1 has n rows and columns and x2 has m rows and columns. Since the square of 

(5.41) is a unit matrix, we note that 

x1 x2 = (1) n × n           (5.42) 

 x2 x1 = (1) m × m                                  (5.42A) 

The unit matrix appearing on R.H.S of (5.42) has n rows and n columns while the unit matrix 

on R.H.S. of (5.42A) has m rows and m columns. But no two matrices exist that satisfy (5.42) 
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and (5.742A) simultaneously if m  n. Therefore we must have m = n = 2 for    4 × 4 

matrices. It is apparent that y and z can be put in a form similar to (5.41). 

Using Pauli spin matrices x, y and z and choosing 

x1= x2= σx; then 

x = 














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
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
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
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x
 

Similarly 

y = 


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
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
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
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





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
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






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0

z

z
     (5.43) 

We already have 

   = 























1000

0100

0010

0001

       

These 4 × 4 matrices are evidently Hermitian and in abbreviated form may be expressed as 

 = 





















 0

0
;

10

01





     (5.44) 

where each element is a matrix with two rows and two columns. 
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Negative Energy states 

Now it is evident that there are two continuous energy spectrum 2242

0 pccmE 
and 

2242

0 pccmE 
.When the Dirac electrons are at rest (p=0) then 

E and 
E are separated by 

an amount of 2

02 cm . Dirac suggested that all negative energy states are completely filled. 

When electron from negative energy state picks up some energy and goes to positive state, a 

vacancy called Dirac hole is created in negative energy states. This Dirac hole has all 

similarities with an ordinary electron except a charge of ‘+e’. This is the antiparticle of 

electron called positron. 

5.7 Zitterbewegung Method 

Consider the motion of an electron according to Dirac equation in Heisenberg representation. 

TheHamiltonian is time dependent.  The relativistic Hamiltonian in electromagnetic field 

described by scalar potentials   and  vector potential A is 

    eφβmc)e(cH
2
 Ap    (5.45) 

Now according to Heisenberg representation, the equation of motion for operator x  

     eφβmc)e(c,
1

,
1 2  Apx

i
Hx

i
x


    (5.46) 

Omitting the terms which commute with ,x we get  

      xxxxxx ci
i

c
px

i

c
cpx

i
x   


 ,,

1    (5.47) 

But the velocity operator vr is given by  

    cv       (5.48) 

The probability density function according to Dirac equation is  † ; thereby given 

momentum density for Dirac particle as  p† and he velocity density for Dirac particle 

appears to be  

  †c)(c††v    (5.49) 
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The eigen-values of each  are 1 therefore the observed value of any component of velocity 

is c  this is peculiar result, since according to relativistic mechanics speed of light is the 

upper limit for the speed of material particle. To find the significance of the this result let us 

investigate the motion of an electron under no field (i.e. A = 0 and ).0 the Hamiltonian 

then is expressed as  

    
2βmcH  pc      (5.50) 

Writing the equation of motion for operator x , we have  

   ),(
i

1
],[

i

1
xxxx HHH  


       (5.51) 

  

But      xxxx mccmccHH  )()( 22  pp  

= xxzzzyxxzzzyxxx cpmcpppcmcpppc 2)()(    

    .2 HHcpH xxx        (5.52) 

In view of this equation (5.51) gives  

    )22(
i

1
xxx cpH  


      (5.53) 

As for a free particle the energy and momentum are conserved, we have  

0H][H,Hiand0H][ppi xx       (5.54) 

Therefore H and xp are independent of time. Keeping this in mind, the differential of equation 

(5.53) with respect to time gives  

    )2(
1

H
i

xx  


       (5.55) 

which may be expressed as  

H
i

x

x



 2
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
      (5.56) 
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Integrating w.r. t. time t , we get,  

    KHt
i

x 



2

)(log      (5.57) 

                                                                       K being a constant of integration. 

If at ;)(,0 0 txxt   we have  

0)(log  txK        (5.58) 

 Equation (5.57) gives   

0)(log
2

)(log  txx Ht
i

 


  

i.e.      Ht
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

 2
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log

0
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






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  

or     

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











  Ht

i
txx




2
exp)( 0              (5.59) 

Substituting this in (5.53), we get  

   )22(
12

exp)( 0 xxtx cpH
i
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







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
       (5.59A)

   

We have ,242222 EcmcpH  therefore  

14222 )(  HcmcpH  

This implies that H is the reciprocal of 1H with eigen value 1E  

From equation (5.59A), we have  

  1

0
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exp)(
2

1 









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Integrating, 

  0

2

0
212 2

exp)(
4

1
xHHt

i
ctHpcx txx 














   (5.60A)

  

where 0x is constant of integration  

Since   
xxxx HHH  
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1
],[

i

1
†],[

i

1
†  

Also xp and H are Hermitian, therefore right hand side of (5.60A) is Hermitian if we ignore 

the constant of integration which would obviously represent the initial position of particle. 

Then x would be an observable quantity and its expectation value is given by  

 






  Et
i

E

c

E

tpc
x tx

x




 2
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4

1
02

22

     (5.61) 

Where  0)( tx is the eigen value of x at 0t . 

Now we have 

22/1422 )( 2 mccmcpE   

and writing ,
2




E equation (5.61) may be expressed as 
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1 


   (5.62) 

In this equation the first term represents usual term 

t
m
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mc
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







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




2

22

   (5.63) 

of classical mechanics and the second term because of the exponential factor represents the 

motion of particle, oscillating with angular frequency .  This trembling motion of the 

electron was first observed by Schroedinger and is called the Zitterbewgung and it imparts 
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the value to the velocity of electron. That is the electron’s motion is something like the 

superposition of classical motion and electromagnetic wave motion  

However the frequency  


222 mcE
  

is so high that the departure from the classical mechanics term tx is undetectable. The 

Zitterbewgung did not appear in out no relativistic theory, the reason that this phenomenon is 

due to the rest energy of the electron which remains unaccounted in classical mechanics.  

 5.8 SPIN-ORBIT ENERGY   

The spin orbit coupling energy follows as a result to Dirac equation in a central field. The 

term is however of order 
22 / cv and in order to obtain a consistent approximation we proceed 

by two – component reduction of Dirac equation in the central field ).(rV  

.)]([ 2  ErVmcpc         (5.64) 
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This equation is equivalent to following two equations  

    
111

2

1  EVmcc p  

and     
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2
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cmcVE

cmcVE
    (5.65) 

Assuming the 
1  and 2 together constitute a non-relativistic energy eigen –function, which 

means that  
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2
mcEE   

is regarded as a number rather than an operator, the non-relativistic energy E and V are 

assumed to be smaller in comparison with 
2mc . 

 The wave equations (5.65) then become  

   
 
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    (5.66) 

From (5.66b), we have  

)(2 22
rVmcE
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 ψ1 

Substituting this value of 2 in (5.66b), we get  
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    (5.67) 

Using the identity 

CBCBC)B) x((   i  

we have 
2

px((   ppppp)p)  i     (5.67A) 

For any  any function u, 
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             =     u
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                                                                                                   using eqn. (5.68) 
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Using (5.67A) and (5.69), equation (5.67) gives  
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Now if V is spherically symmetric, we have  
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The first and second terms on right hand side of above equation give the non-relativistic 

Schroedinger equation. The third term is the classical relativistic mass correction term which 

can be obtained by the expression.  
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The fourth term is a similar relativistic correction to the potential energy, which does not 

have a classical analogue and the last term is the spin orbit coupling energy which appears as 

an automatic consequence of the Dirac equation.  

Thus the spin-orbit coupling energy is 
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     (5.73) 

 


