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UNIT |
1.1 Matter Waves

According to Debroglie, the wavelength A associated with a moving particle having
momentum p is given by

h h )
A=—= o where h is Planck’s constant

p
This wave associated with a particle is called matter waves.
Consider a particle possessing wave length L. The value of y at any point X at time t is given
by
W =y,ySinwt
or w=yysin2zu
where v is the frequency of the particle. Let the particle moves with velocity v along positive

x-direction. Using Lorentz transformation theory, we can write

LY =y,sin (1.1)
V2
B
C2
But the standard equation of wave motion is
. |27 X'
= i I LT
v =y, Sln{ = ( + UJ} (1.1A)
where v, is the amplitude, T is the period and U' is the phase velocity
Comparing eqgns. (1.1) and (1.1A)
. c? 1 . 1%
U=— and L =V="T—>x (1.2)

According to Einstein’s mass-energy relation

E=myc®=hv or V= h

Substituting this in eqn. (1.2)



The wavelength of the particle

velocity u' c?/v

A== = 2
frequency V' mc / h
h
or A= P (1.3)

This is the expression for the de-Broglie wavelength for a particle of mass m moving with

velocity v

1.2 Schroedinger time-independent wave equation.
The classical wave equation is written as,

o'y

dt *

Wq':i- (1.4)
V2
where W is the displacement and v is the velocity of the wave. Let the wave amplitude is
periodic in time t as
¥ (r )=y (e it (1.5)
Substituting eq. (1.5) in eq. (1.4), we get

2
@
or V2w + 71//20

2

4 )
or VZLP+L2\11=0 since -2 = 2%
A 1% A

v and A being the frequency and wavelength of the de-Broglie waves. Rearranging the terms,
we get the wave equation in the form
Viy + (4n?/\)y = 0. (1.6)
h

From the expression for de-Broglie wavelength A = B:m_v’



4r*miv?
Viy o+ h—zl// =0.

1
Now, E-V = Emv2 where E is the total energy and V is the potential energy of the

system from which,

mv =/2m(E-V) and the wave equation becomes
%% ‘P+2—T(E—V)\P:O (1.7)

This equation is known as Schroedinger time-independent wave equation.
1.3 Schroedinger Time-dependent equation
Schrodinger time independent wave equation can be written as

2m
\Y Zy/+h—2(E—V)y/=O

—iot

Mulktiplying on the right by € and rearranging we get,

, 87m S 87m |
The right hand side can be written as
87 °m 8z'm E o
EW(r,t)= —— (¥ (r,t
g7 B == o o e )]
87 °mih ov(r,t)
= — ’ since E=Zw
h? 2z ot
_ 2m i 0¥(r,1)
n ot

Substituting this in eqgn. (1.8), we get
2
or [-veivleoin
2m ot

This is the required Schoedinger time — dependent wave equation

(a) Solution of the Time dependent Schroedinger equation

The Schroedinger Time-dependent wave equation is written as,



7O w1 YD (1.9)

m x° i ot

Now W(x,t) can be expressed as the product of two functions, one involving the time
coordinate alone and the other position coordinate alone. That is,

0 = w(x) ¢(t)
Substituting this in the egn. (1.9) and simplifying we get,

1 {_ 72 d?p(x) _h 1 dg()

w(X)| 2m dx? i g(t) dt

The left hand side is a function of x while the right hand side is a function of t only. But x and

+V () () } =

t are independent coordinates. This is possible only when they are separately equal to a

constant (E)

H 1 1 _ h? dZV/(X) _
ence _W(X){ o Y Xy (x) |=E
o1 dg(t)
i Y
and i 40 dt (1.9A)
From the first of equations (1.9A) ,
TV 20 e vy =, (1.10)

dx*  #n’
which is Schroedinger time independent wave equation whose solution is given by yA(x).

Considering the second of equations (1.9A), we have

do(t) _ 1
i~ ntU
or 2O Tpg
pt) &
Integrating, log ¢(t):—i%

or P(t)=exp {_ ihEnt}

—-iE t
or ingeneral for the n" state, @, (t)=€Xp { - - }

Hence the general solution is

Y= Ya, ¥ = Yap,ep [—'hEt} (1.11)



(b) Stationary State Solutions
Consider the probability distribution function WW* for a system in the state represented by

the wave function

X —IEt
\P (Xl y1 Z! t) = Z:lan ‘r//n (X’ y’ Z) exp|: h : j| (112)
n=
Taking the complex conjugate
* * IEmt
‘P* (Xl y1 Z 1t) :zam l//m (X' y' Z) exp h (113)

Multiplying egns. (1.12) and (1.13),

. i(E, —E )t
P = 38 8 1 (0 Y2 (0,2 22 0 5 (%Y, 2 * (X, Y, )00 {%}

Z- indicates M#N

If a, values are zero for all values except for one value of E, then WYW* will be independent
of time and the state represented by wave function ¥ would be stationary. In this case the

wave function is represented by

Y (X, y,z,t)=ay, (X Y, z)exp {_':"t} (1.14)

1.4 Physical significance of ¥

The wave function is large where the particle is most likely to be and small elsewhere. The
finite region in which the wave function y is appreciably different from zero is called a wave
packet. According to Max Born, the absolute square of y(r,t), that is | ¥ |? gives the
probability per unit volume of finding the particle at some position r at any time t. The
probability of finding the particle in a volume element dz is P(r,t) dz = |[y(r,t) |? dz. The
total probability of finding the particle in the whole region is unity.
ie. [If [w]?dr=1 (1.15)
v satisfying this condition is said to be a normalised wave function.
(a) Limitationson v :
a) y must be finite for all values of x, y, z of the region
b) w must be single valued

c) w must be continuous in all regions



d) w isanalytical i.e. it possesses continuous first order derivative

e) w vanishes at infinity space

1.5 Orthogonal, Normalised and Orthonormal wave functions

For any two wave function, v, (X) and v, (x) in the limit a to b, if the condition
a
Jv2 a9 dx=0.
b

is satisfied then, then ,(X) and w,(X) are said to be mutually orthogonal wave functions

We know that the probability of finding a particle in the volume element dt is given by

yy* dtor | \V |2 dr. The total probability of finding the particle in the entire space is unity.
ie., [lw(r,ofdr=1

where the integration extends over the entire space.

This can also be written as,

It//(r,t)w*(r,t)d r=1
Any wave function satisfying the above condition is said to be normalized to unity or simply
normalised. If  is not a normalised wave function, then it can be made normalised by

multiplying it with a constant called normalisation constant (A).
To find the normalisation constant,

(Ap)*Apdr = A [yy*dr=1 or NZZI 1*d (1.16)
yy dr

The functions which are orthogonal as well as normalised are called ortho-normal functions.
1.6 Pobability current density

If P(r) is the probability of finding a particle at a given point, then the probability of finding

the particle in a volume V bounded by the surface area A is
P=[P(rdr=[y*ydz
\% \%

. dP d dy* dy
e—=—|y* = ——+—y*|d
at dty” vdz J("’ dt dt ” j ’

(1.17)

From Time dependent Schrodinger egn.



o, . Oy
-—Vy+Vy=ih— 1.18
om Y Y VY =i (1.18)
The complex conjugate of the above eqn. is (1.19)
I Gy e vyr = —in Y
om VY ot

Multiplying equations (1.18) by y * and (1.19) by y and subtracting the two we get

dl//* dl// h 2 2
byt =— *y\/ _ *
i a” T (v *Vy —yVy*)

7%

Using this egn. (1.17) can be written as

dP n x2 2
L PR E Y.
dt 2im\-[(w v yr)dz
P h o,
e, 2im-[(l// w =V y*)dA (volume integral is changed into

A

surface integral)

If we define a new vector S such that,
S(r,t) = Z_L(y/*v v —wV y*), then we can write
im

dt

or OI—P+divS:O
dt

d—P——IS.dA:—div S
A (1.20)

This is analogous to the equation of continuity in hydrodynamics %Oeriv j=0.Here pis

the fluid density and j is the current density. Thus we can define S is the probability current

density

1.7 Expectation values of dynamical quantities
The average value or the expected value of any function f(x) is given by



<f>= j w f (X) px (1.21)
Thus the expectation value is the mathematical expectation for the result of a single

measurement or it is the average of the large number of measurements on independent

systems. The expectation value of position vector r is given by
<r> j w(n)ry(rt)de (1.22)
The expectation value of potential energy (V) is
<V> = Jw*(r,t)Vw(r,t)dr (1.23)

We can prove the classical equations are valid for the expectation values of the dynamical

quantities, For example, consider the classical equation,

2
E =p—+V
2m

Considering expectation values throughout we get,

p2
<E> =<—>+<V >
2m

Operating on a wave function y gives

2
<E>y :<g—m>l// +<V >y

Using the operator formalism

E —i h% P ——i%V , we can write the above eqn. as

2

VZsp+<V >y (1.24)
m

.. 0
<lh—>p=<
ot 4
Multiply egn. (1.24) on the left by y*,
. ., 0 R - .
w <ih—>y=y <——V°>y+y <V >y (1.25)
ot 2m
This means the expectation value is obtained by corresponding operator acting on ¥ and

multiplied on the left by 1//*. Therefore

<E> :jw*ih%"dr; <p>= [y (-inV)y dr (1.26)



1.8 Ehrenfest Theorem (Newton’s Law of motion)
Statement:

The average motion of a wave packet described by a wave function ¥ agrees with the

corresponding classical motion of the particle. That is,

dr_p
(a) atm
(b) %:—VV (1.27)

Proof:

The Schroedinger time dependent wave equation is written as

Ihaalilz Viy +Vy

8(// h 2 2m
or —=——|Vy-——V

p 2mi{ 4 2 l//} (1.28)

Taking its complex conjugate

ow* h | _, » 2m

=— |V - =V = 1.29
o 2m|{ TR "/} (1.29)

For a normalized wave function, the expectation value of x is given by

<X >= Il//*Xl/le’ (1.30)

. I d X
Differentiating w.r.t. t, <Xz I

Xl//dT+Il//* A Y dr

—00

(1.31)
since dx/dt=0.

Substituting the value of %and %—Vt/from equation (1.28) and (1.29) into equation (1.31),

we get,

d<x>

n 2
——V Xy dr— X Vey ——Vy |dr
= [ o (V-2 apare [yt (V-2

+00

:% (Vzl//* )Xl/ld‘[—% Iw*x(vzw )dr (1.32)

—00

The first integral on R.H.S. can be integrated by parts by taking u=xy and dv:VZ://*
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+00

j(Vzt// *)xx//dr: TV.[(X://)(VI// #)|dz — I(Vzw *)V(xy/)dr (1.33)

—00 —00 —00

+0o0

Using Gauss divergence theorem, the first term of the integral of R.H.S can be transformed to
an integral over a surface at infinity and since the wave function vanishes at infinity, we

have

+00

[Vl ) vy )ir = [(cw vy = )aa=0 (1.34)
Thus from equation (1.33), we get

+0o0 +00

I(Vzt// *)X ydr= I(Vzw *) V(xy)dz
S S (1.35)

Integrating again equation (1.35) by parts and again the surface integral vanishes at infinity,

we have

+00

J‘(Vzl//*)ledTZ TI/I*VZ(XI//)dT

—00

(1.36)
Using equation (1.36), equation (1.32) becomes

d<x>
dt

h +00 ) h +00 ,
=— *Ve(Xy)dr—— *X(Vy)d
2mi_J;V/ (xp)de—o _Lw (Viyp)dr
A +00
=5 IW*[VZ(XW) —xV2ylde

T2 am

Considering y and z components, we have

d<r>_1

i - <p> (1.38)

Differentiating once again the eqn. (1.37) and multiplying by m,

d<p,> nd ¢ o h Fowxo h't .0 (0
O PZ _nd W ovy, h fowroy B *_[_v'jd
dt idtI‘/’axTiLataxTiJw"’axatT
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+00 TO %
=?_IOO%(V2W*—2—2VW*J%dr—?_fool// %{gvzw—z—gg(\/w)}dr
=%tfj(v2w*)%”—wv2[‘Z—Z}W*;—Q%w} dr (139)
The first two terms cancel out and we get
% :_IW*[%deT:<_%> (1.40)
Considering all other components, we get
d <dtp 2 - _<VV>=F (force acting on the system) (1.41)

This egn. shows that the rate of change of momentum is equal to force, which is Newton’s

second law of motion.

1.9 Postulates of wave mechanics
Postulate:1

Quantum system is characterised by a wave function w(r,t). It is a complex function of

space and time and contains all possible informations about the system.
Postulate:2

The probability of observing a particle at time t within volume dt is
1 2
dP(r,t) =N|¢/(r,t)| dr (1.42)

Postulate:3

Any wave function w(r,t) can be expanded interms of complete set of orthonormal functions

as

p(r,t) =Y Ca)ea(r) (1.43)
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Postulate:4

Time evolution of a system described by the wave function w(r,t) is given by the Schrodinger

equation

el —n®_,
ih—— =—Vy +V
om YV (1.44)

1.10 Dirac’s ‘BRA’ and ‘KET’ vectors : Dual Space

The quatum matrix theory can be put into compact form by making use of notations invented
by Dirac. Accordingly each dynamical state may be represented by a certain type of vector

known as ket vector or simply ket represented by the symbol |>, In order to distinguish the
kets from each other, we complete each symbol by inserting a particular letter in the middle.
For example |a> denotes the ket vector corresponding to state a of the system
(v, inold notation)
The kets form a linear vector space and any linear combination of several ket vectors is also a
ket vector. For example let us consider two kets |a> and |b>and two arbitrary complex
numbers ¢, and c, the linear combination.

|v>=c, |a>+c, |[b> (1.45)
is also a vector of ket space.
Accordingly ket vectors may be multiplied by complex numbers and added together to give

other ket vectors. The vectors of dual space are called bra vectors or simply bras and denote

in general one of them by the symbol <], the mirror image of the symbol for a ket vector. If
one wants to specify a particular one of them by a label b, (say), it is written in the middle as
<b]|.

There exists one to one correspondence between the vectors of bra and ket spaces. Bra and

ket thus associated by this one to one correspondence are said to be conjugate of each other

and are labelled by the same indices. Thus the bra conjugate to ket |a> is represented by the
symbol <a|; subject to the conditions

|a>+|b>«—<al|+<Db|

and cla><«—c’<al
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The connection between dual spaces is given by defining the scalar product of a bra vector
and a ket vector such that

<allb>=(v,.p)=Iva" v, da)
We have the rules that any complete bracket expression denotes a number and any
incomplete bracket expression denotes a vector of the bra or ket space according to whether it
contains the first or second part of bracket. The first three (bra) and the last three (ket) letters
of bracket provide the names for the two kinds of state vectors (bra and ket). The bra vector

<|is analogous to the complex conjugate (or hermitian adjoint) of the wave function of the
system. Evidently we have
<alb>=<bla>"
<a| {b>+|b'>| }=<alb>+<alb'>
<al{c|b>}=c<alb>
where Cis any number.

The bra conjugate to ket  |v>=c,|a>+|c,|b> s

<v|=c¢<al+c,’| <b]
Thus the correspondence between the kets and bras is analogous to the correspondence
between the wave functions of wave mechanics and their complex conjugates. We further
note that if a ket vanishes, its conjugate bra also vanishes and vice — versa. A bra and a ket

vectors are said to be orthogonal if their scalar product is zero. The length of a bra vector

<al| or of its conjugate imaginary ket vector |a>is defined as the square root of the possible

number <ala>.

1.11 Hilbert Space

A set of n vectors g, is said to be linearly independent if there exists no relation between

them of the form
> ¢i3,=0
i=1

except for c, =C,=........ =C,=0. Otherwise such a relation will reduce the number of
independent terms. If @;and a; are mutually orthogonal i.e., their scalar product denoted by

(a;,a;)vanishes for i= j,then & and a;are linearly independent. In three dimensional space
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the maximum number of linearly independent vectors is obviously three. In general, any set
of N-linearly independent vectors spans an N -dimensional linear space denoted by R, . This
purely abstract concept of N-dimensional space (N a finite real positive integer) indeed
becomes essential in many problems in modern physics. A linear operator P of R_transforms

one vector u of R, into another vector v of R

ie., Pu=v.

A vector u; which is carried over by a given operator P . An operator of N-dimensional

space R, has in general N eigen values. If some of them coincide, the system is said to have

degeneracy. All these notions can be carried out into a (complex) space with (countable)

infinitely many dimensions (n—o0) . If one imposes restriction that the scalar product
2 ® 2
uf ~@ww=3u,
i=1

exists, where u=(us, u2...) is a sequence of real or complex scalars and is called a vector i.e.,

if all infinite series which occur and convergent, then the space is said to be Hilbert space.
In brief the vector space is said to be Hilbert space if it is complex and of countable infinite
dimensions such that all infinite series occurring in it are convergent. In Quantum Mechanics

we often deal with complex functions and the corresponding Hilbert space is that of
quadratically integrable (complex) function in i variables (,,qd,,....0;)
Let us now consider some properties of Hilbert space and some operations in it. The scalar

product of two functions viz., f(q;,d,,....q;) and g(0,0,,....q;)is defined by
(f (00, 9z---0) 90, G- G)

If*(ql’q27“"qi)g (0, ,----G;)d gy, da,,....dg,
The condition (1.69) then becomes

_[| f |°dg, dg, ....dg, =C exists

which is true for wave function

Now the wave function are orthogonal when

jf*(%v% --0;) 9 (9;.0, -...q;) dg, dg, ....dg; =0
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In Quantum Mechanics a state function y contains all the physically relevant information

about a physical system at a given instant of time and is represented by a vector along a

direction in the Hilbert space. If w represents a physical state, then y and a constant
multiple of y both represent this state. Therefore the arbitrary representative vector of the
ray is usually normalised to one.

The states specified by different functions, y, (forming complete basic set) and represented
by vectors along mutually perpendicular axes form a complete orthogonal system of
coordinates axes in the Hilbert space. The completeness of the system means that any wave

function associated with vector Qin the Hilbert space can be represented as the vector-sum

of its components along these axes i.e.,
Q:Zbi Vi
there being an axis for each ;. Thus each b, corresponds to the (complex) component of

arbitrary vector along i-axis.

The multiplication of two finite matrices is defined as
(AB)mn :Z A\ni Bin

where M denotes the row and i the column of matrix A. This law may be extended to the

matrices having infinite number of rows and columns in the Hilbert space. Then this

multiplication is same as that obeyed by two operators. Hence any operator Acan be

associated a matrix A whose matrix elements are defined as

Ay, => AL, =D v, A,

where A = Iwn *Ay, dq=(v,, Ay,)
with respect to a basic set of eigen functions . As each integral has a certain numerical

value, therefore

Am= Il//n * Ay, do=(y,, Ay,)
gives a doubly infinite array of number i.e. a matrix. Now a matrix operating on a wave
function (vectors) can be represented as a linear transformation in the Hilbert space .For
example in the equation.
Af =g.
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‘A’ transforms f into gwhere f andgare two wave functions (vectors) in the Hilbert

space. Unless specified we consider only those eigen functions which are located in the

Hilbert space. This imposes a restriction to discrete spectrum.
1.12 Hermitian operator

Operator A is said to be Hermitian if for two square integrable functions ® and W the

following condition is satisfied.
<O|AY >=< AD | V¥ >
Adjoint or Hermitian conjugate of an operator:

For an orbitrary operator A, we can define another operator A+ such that

<®| AW >=< AD| W >. Then A" is called the adjoint or Hermitian conjugate of A

(a) Properties of Hermitian operators:
Q) Product of two Hermitian operators is Hermitian, if and only if, they

commute

Consider two Hermitian operators A and B. If they commute then we will show AB is

hermitian. Let y(x) and ¢(x) are two functions. If A is hermitian, then we can write,

<y|AB|g>=[<Ay|B|g>
If B is also hermitian,
<Ay |B|¢g>=<BAy|g>
<w|AB|p>=<BAy|¢> (1.46)
IF C=AB is hermitian then,
<y |AB|p>=<y|C|p>=<Cy|¢p>=<ABy | o> (1.47)

From eqns.(1.46) and (1.47), AB=BA. Thus AB is hermitian only if they commute.
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(i) Eigen values of hermitian operator are real:

Let  Aly, >=a Iy, >
Now, <¥, | Aly, >=a, <y, |y, > (1.48)
Also <Ay, |y, >=a, <y, |y, > (1.49)

If A is hermitian then <, | Alw, >=<Aw, |y, > . Using (1.48) and (1.49), we get
an=an™ (1.50)
Hence the eigen values of hermitian operators are real

(iii)  Eigen functions of a hermitian operator corresponding to different eigen

values are orthogonal to each other.

Let P be any Hermitian operator and y;, and i, be any two eigen functions of P. If A and

B are the two distinct eigen values of P corresponding to ; and  ,, then we can write

Py,=A P*y*= A%y *= Ay, *
iz o *"[/1* *Wl . 1 . since A and B are real. (1.51)
Py, =By, P*y,*=B*y,* =By,

From the general characteristics of the Hermitian operator P,

IWZ*PwldTZJP*WZ*WldT (1.52)
Using eqgn. (1.51),

Iwz * Ay dr = I By, *y,dr  or Ajt,//2 Yy dr= BI v, *y,dr

or  (A-B)[y,y,dr=0

or .[WZ *w,dr =0 since A= B.Hence proved. (1.53)
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1.13 Proof of Uncertainty principle for one-dimension Wave packet
The uncertainty in position along X - axis, by analogy with the standard deviation of
statistics, may be defined as

Vx=y/<{x—<x> > (1.54)
where <x>is the expectation value of X. The probability of finding the particle between co-
ordinates X and x +dxis given by w *(x)y (x)dx, so that expectation of average value of

X, for normalised function y (x), is written as

<X>= _[yx*(x) Xy (X) dx, (1.55)
Similarly the uncertainty in momentum is represented as
Vp=y/<{p-<p>)> (1.56)

where < p > is the expectation value of momentum defined as
.. O
<p>=|w=*|—ih— |wdx
p>= [y ( ax]"”

. oy
—ih * Ty dx 1.57
[v 4 (1.57)

Let us choose <X>=<p>=0.

Now consider the integral
. d
in|ys—(Xw)dx
[v L Ow)

Integrating by pars,

thl// *%(xw)dx = ihfyxy |- ih_&xw%dx

L dys . e
= O—IhJXV/—a;—dX since y vanishes at infinity.
But J.l//*l//dX =1 for normalised wave function.

. dy . dy .
S i ——Xydx=—ih|y*x ——xdx—ih
J dx v Il// dx

. dy = . dy .
or IHIFXI//dX+ |h_[1//* aXdX——Ih
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As the right hand side is imaginary, therefore it must be equal to the imaginary part of left

hand side i.e., 21 imaginary part of _[ih %xwdx =—ih (1.58)
X

Taking modulus of both sides and then squaring we get
2

4|Imaginary Partof Iih %xy/dx =h? (1.59)
X

But we have

“ Iz wadxzimaginary partof Iih wadx
dx dx

Equation (1.59) can now be written as

2
4|j in %X(//dx > ;2 (1.60)

According to Schwarz inequality, we have
2
Hf*godx‘ ij*fdquo(o*dx (1.61)

So that the left hand side of equation (1.59) (using f *=if(dy */dx)and ¢=xy can be

written as

. dy = ? . dy=( . dy
4|th wadx £4I|h T(—lha dx'[xy/xy/*dx.

Therefore equation (1.59) itself can be written as

. dy = _ dy 2 2
4| ih —/— | —ih—— |dx|w*xx"wdx>h".
I dx ( j IV/ 4

dx
. dy ? ) h’
or - — *X“wdx>—.
|I dx _[V/ v 4
hZ
or <p?> <x?> 27. (1.62)

Since <x®>=wy*x*pdx

2

. dy
d 2> =||-ih—— dx.
an <p > I‘ o

Applying conditions expressed by (1.58) to equations (1.54) and (1.56), we get
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(AX) 2 =<x°>
and

(Ap) * =<p*>,
Using (1.63), equation (1.62) becomes

2
&) t="
or AXAp > h
2

(a) Commutation Relation between Position and Momentum :

Q) Let us find the commutation relation between xand p,.

In operator formalism

. ~ h O
X—X and —>p="—=
P P75
Consider the operation of [x, px]on a function y(x,)
ie, (%8, ]y (0=(% p,— P,OW(X)
We have X pxl//:za_l//
I OX
and pxy="2 (xy)=" [wxa—‘”j
I OX I OX
.. Equation (1.65) gives
A h oy 0
X =X————— X——
(% pJy=xT—"—= ( ax)
h oy oy
i ( OX v X v

(1.63)

(1.64)

(1.65)

(1.66)
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UNIT 1

2.1 Linear Harmonic oscillator

In the case of a liner harmonic oscillator the force F = - K x can be represented by the
potential energy function V (x) =1/2Kx?

From the Schroedinger equation,

2
dy  2m (E —;sz) w =0.

dx* A’ (2.1)
Introducing a variable & = a x, where « is constant, we can write,
dy _dy df_dy
dx  dé dx  dé
2 2
dy _d (d_l/f_a}i,d_é (d_wa}az dy
and dx* dx \ d& dé dx ( d& dé
Therefore eq. (2.1) becomes
d°’y |omE mK &2
a? + — =0. (2.2)
de 2 {h S Zaz}/l
d’y | 2mE mK¢&?
azt | nta? ot |V Y
or (2.3)
mK 1 Q= 22mEZ
Let us choose « such that ~ 7”c” and hca
Therefore equation (2.3) assumes the dimensionless form
d2
- Y - +(1-&%)y =0.
s (2.4)
Let the solution is of the form
w(©=H(e"
(2.5)

where H(&) is a polynomial of finite order in &. If we consider the positive sign in the

exponent, then y will diverge as & — co. From eqn. (2.5)

g2 g2
d—"’zH'@)exp[ s }—H(f)fexp{ ¢ }

de 2 2
dzlz”_ " _é:z _ ’ _52
and d<§2_H (§)EXD{ > } H(e‘)fexl{ > }

—H(S)EXIO{_;Z }—sH'(é)exp[‘f }ézH(é)eXp{_f }
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=—H"((§)exp[‘f }—%H'(é)exp[‘f }+(§2—1)H(§)exp[_§ }

Substituting the value of y(£) and d’y in equation (2.4) we get
de?

eXp{_f }{H"(é)—ZéH’(éHéz H()~H(&)+(~E)H(©)}=0

H"(&)—28H'(E)+ (1 —DH (£)=0
or (2.6)

Energy Levels.
Using power series, we can solve equation (2.6)

Let
H)=¢"(ag +a,&+8,&" +...),
a#0,s>0
=&Y = ya
v=0 v=0
. . dH
On differentiation, el st
n differentiation E Zvlav(s+v)§
and C:;;z' :Z‘av(s+v)(s+v—1) g2

Substituting these values in equation (2.6), we get,
Ya, (s+V)(s+v-1) &M =28, (s+V)ET +(A-D)D a, £ =0

Ya,(s+v)(s+v-1) & T 23 a5+ v) E+0-DYa & =0 -

For H(E) to be a solution for all values of &, the coefficient of the individual powers of &
must vanish separately, i.e., equating to zero the coefficients of various powers of & we get
s(s-1) ap=0
(s+1)(s)a1=0
(s+2) (stl)a,—(2s+1-A)ap=0
(s+3)(st2)az—(2s+3-A)a1=0

(stv+2)(stvtl)ay+2—(2s+2v+1- A)a,=0 (2.8)
From these expressions we can write,

25+2v+1-1
(s+v+1)(s+v+2)

dy+2 =

(2.9)
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where v is an integer. Since ao cannot be equal to zero, from the first of equations (2.8),s =0
or 1. If ap is equal to zero, only odd powers appear. With a; equals to zero, the series
contains even powers only. If we examine the convergence of the power series solution
defined by equation (2.9), we find that as v — o, (ay+2)/ay,— 2/v, so that the series converges

for all finite values of &.

+ 2
Considering the series expansion of © : , we have
4 6 v V42
§—+§—+...+ ¢ + ¢ +
21 3 (v/2)! (v/2+1)!
=ho+by &+bs & + b, & +byy &+

ete? _1+¢ 2y

1
b, _(v/2+1)!__2  _ Lm b, 2
b, 1 2+v Voo b, v
(v/2)!

This shows that H(&) diverges approximately as e and the product H(&e ™" will behave

£212

like e in this region which tends to o

, 8S¢g—>o .So this is not an acceptable

solution. This situation can be avoided by coosing A in such a way that the power series for
H(&) cuts off at some term, making H (&) a polynomial.
From egn (2.9), by making
A=2s+2v+1.
we can make the series cut off. The index s can still be either 0 or 1, and corresponding to
these values, A is equal to 2v + 1 or 2v+3 where 2v is an even integer. Or,
A =(2n+1). n=0,1,2...

2B, M _ (2n+1)
Then 7 K

AE
1
E, :(n+—Jha)c.
2
or
9/2 h w.
n =01.2.. ..(2.9A)
K
where o = \ﬂis the classical 7/2 T w
angular  frequency of the 5/2 i w,
oscillator.
3/2 fi w.
Y2 h w,

Fig. 2.5
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Zero point energy. The energy levels given by equations (2.9A) are discrete and have equal
spacings. When n=0, the finite value of lowest energy or ground state energy is (1/2) hoe.
Hence zero point energy is given by,
1
EO :Eha)c
and all higher energy levels are separated by an amount equal to hw.. Zero point energy is

characteristic of quantum mechanics and is related to the uncertainty principle.

2.2 Infinitely deep potential well or particle in one-dimensional box

Consider a square potential well with infinitely high sides, as indicated in figure (2.1). The
particle is bounded by impenetrable rigid walls of width 2a as shown.The potential of the
well is represented by,

V(x)=0 for-a<x<a and

V(X) = = oo, for [x|>a

The boundary condition on the wavefunction is, it vanishes at the wall. That is

Wyca =Wyera = 0

The wave equation for Ix|<ais

d’y 2m i
+ Ey=0 -V =0 :
d’ 2mE i
Y raty=0, where o’ == :
dx hi :
-a 0 +a
The general solution of this eqn can be written as, Fig.2.1
vy = A cos aX+Bsinax. (2.10)
Applying the boundary conditions,
y=0atx=a and y=0atx=-a
Weget, Acosaa + Bsinaa =0. (2.11)

and Acos aa -Bsin aa =0. (2.12)
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Adding and subtracting equations (2.11) and (2.12), we get,
2Acosaxa =0 and 2Bsinaa =0.
There are two possible solutions namely,
Q) A=0 or cosaa = 0.

(i) B=0 or sinaa = 0.

For sinca =0, ca =m, 21, 37 .......... n ©/2 where n is even
And for cos aa =0, oa =n/2,3n/2,..=nn/2, where n is an odd integer.
232

We have, a’ = 2sz o g=9%" (2.13)
h 2m
2 232

) N°“z°h )
or in general, E, = a2 since, o =n = /2a. (2.14)

There are an infinite sequence of discrete energy levels that correspond to all positive

integral values of n.

Wave function. The general form of wave functions may be written as

Nz X

v, = Acos when n is odd (2.15)
2a

v, = Bsin nzﬂx when n is even (2.16)
a

To normalise the wave function v, :

From egn (2.15),

.| = _[AZ cos? %dx:l
Ta a

E4 i/\ UJ4
/ \u,

a 2

ji 1+cos 2n 7 X dx=1
2 2a

On simplifying the above integral we get, \/
A :i or  A=.@la) E; ; W,
Similarly we can show, B=.,(/a). i
E; | U]
Hence the normalized wavefunctions are, i
- +a
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v, = %cos% (N=1,3,5..). (2.17)
1 . nxx
= —SIN—— =
v, 7a 23 (n=2,4,6,.). (2.18)

The energy levels and wavefunctions are shown in fig. (2.2) The successive energy states
differ by half wavelength. The lowest energy level has only half wavelength. The points
between a < x < - a, where the wave function vanishes are called a node. For a
particular energy state, characterised by the quantum number n, the number of intermediate
nodes is (n-1). Wavefunctions y,(x) for odd n are even functions of x. Such functions are said
to have an even parity (symmetric). Similiary wyn(x) for even n are odd functions

(antisymmetric) and have an odd parity.

2.3 Energy levels for One — Dimensional Square Well Potential of finite depth (bound
states)

-Let us consider a simple one — dimensional well of finite depth. Let, the potential be equal
to zero within a distance a on either side of the

origin, and equal to +V elsewhere, a shown in

' Y
Fig. (2.3). ?X)
Y i \V,
0 for-a< x<a i
V= !
{V for|x >a } 1 [ 111
In the region where |x|< a, the Schrodinger -a 0 +a
wave equation is Fig. 2.3

d?y, 2m
%‘F? EV/l =0 (.V =0)
2
LE7} V;1+a21//1 =0
or dx
where o= (Zsz)
7]

The general solution of this equation is,

y1 = A €0S ax + B sin ax
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Similarly, the wave equation outside this region is

day, 2m
V2 £V -E)y, =0
dXZ A 2 (V )V/Z

d :
or d -p 2{//2 = 0. Where S {;—m(\/—E)}
2

This has the general solution
V.= Ce* + Del*

The boundary conditions at x = + oo requires that
for x>a, C=0
and for x<-a D=0

Thus we have wave functions in the three regions as,

¥ = AcCO0SaXx+Bsinax -a<x<a, (2.19)
v, = Cef* X<-a (2.20)
Y3 = De-#* X >a (2.21)

Considering the equations (2.19) and (2.21) and applying the boundary condition

(‘//1))(: a:(l//3) X=a
We have
A cosca+ B sinca=De-"? (2.22)

and applying the other boundary condition

dvy | _(dvs
ax )., X )y s
-A asin@a+ Bacosaa=-pDe’? (2.23)

Again atx =—aand by applying (y1) x=-a= (y2) x=-a We have
A cosza- B sinaa=Ce-"? (2.24)

And by applying (d%j :(d%j we have,
dx X=-a dx X=—a

Aasinca+Bacosaa=Cle * (2.24A)

Adding equations (2.22) and (2.24) we have,
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2A cosaa =(C+D)e-"?

(2.25)
And subtracting eqns. (2.22) and (2.24) we have
2B singa =(D-C)e-? (2.26)
Similarly from equation (2.23) and (2.24A) we have,
2B a cos aa = (C-D)pe-*? (2.27)
2 A asin ¢a =(C + D) pe-#2 (2.28)
Dividing eqn. (2.28) by (2.25) gives
atanaa=, (2.29)
and from eqgns. (2.27) and (2.26)
acotaa=-p, (2.30)

A solution of the equations (2.29) and (2.30) is obtained graphically.
Now consider equation (2.29) and let& = o a and n=£ a , then
Etang=n

2mVa?2
and & +n?=ofa’+p2a’=a’[o®+Pp]= "% = constant for a given system.

Fig. 2.4

Since & and n are positive values, the energy levels are found from the intersection in the

2

1/2
2mVaz}
/)

first quadrant of the curve of & tan & against m with the circle of known radius {
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Curves for three values of Va®are shown in figure (2.4).

The product Va? is a measure of the strength of the potential well — which binds the particle
to the well. In other words, the greater the depth (V) and breath (a) of a well, the greater the
number of bound states and greater the probability of retaining a particle in the well.
The first three increasing values of Va® give altogether one, two and three energy levels,
respectively. As a special case let \VV approaches infinity. For the first group of solutions,
tanaa= fla > »
aa=(2n+1)n/2

The characteristic energy values are

2n+1F 72n2
2
8ma withn=0,1,2 ... (2.31)

For the second group of solutions,

En:

tanoa=- < 0.
B
or oa=Nrx

The characteristic energy values are

£ _nf 722

n 2
8ma n=01,2. (2.31A)
2.4 Rectangular potential barrier

Let us consider the one-dimensional problem where the potential is defined as in fig.2.5.

V(X)=Vo
V(x)=0 for x<0O x
=V, for 0<x<a E
=0for x> a > ! >
N |
1 VOI
| |
' E 1
(2.31) | Yl i
| |
| |
Here we have a potential barrier Vix)=0 v v V(x)=0
X=0 X=a
between x=0 and Xx=a. If a
Fig. 2.5

particle having energy less than
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V,,i.e., E<V,, approaches this barrier from the left, i.e., from 1% region, classically the
particle will always be reflected and hence will not penetrate the barrier. However, wave
mechanics predicts that the particle has some probability of penetrating to region 3", the
probability of penetration being greater if E >\, classical mechanics predicts that the
particle will always be transmitted ; while according to wave-mechanics, the particle has a
finite probability of transmission and hence it is not certain that the particle will penetrate the

barrier.

The Schroedinger equation for region-1 is

o %y, 2m :
ax—"‘l+? Ew, =0 (since v =0). (2.32)
The Schroedinger equation for 1l region is

o? 2m
5)1522 + e (E-Vo)y, =0. (2.33)

The Schroedinger equation for 111 region is

%y, 2m
o Tz Ve =0 (34

Here v,y ,and w,are the wave-functions for I, Il and 111 regions respectively.

The general solutions of equations (2.32) (2.33) and (2.34) may be written as

Wl — AeiplX/h + Blefiplx/h (235)
v, =AeP" + Be P (2.36)
l//3 — Aseiplxlh + Bse—iplxlh (237)

where p,and p,,are the momenta of particle in the corresponding regions, which are given

by

{ P, =v2mE } (2.38)
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A,B,,A,,B,and B, are constants to be determined by boundary conditions.

In equation (2.35) the first term represents the wave travelling along +ve x-axis in the I
region, i.e., the incident wave and second term represents the wave travelling along negative

X -axis i.e., wave reflected at x= 0.

In equation (2.36), the first term represents the wave travelling along (+) ve X -axis in the Il

region, i.e., the wave transmitted at x= O and second term represents the wave travelling

along (-) ve X -axis in the Il region, i.e., the wave reflected at x=a.

In equation (2.37) the first term represents the wave travelling along (+)ve X -axis in the Ill

region, i.e., the wave transmitted Xx=aand the second term represents the wave travelling

along (-)ve X -axis in the Il region; but no wave travels back from infinity in Il region.

Consequently B, = O, so that the solution of equation (2.34), i.e., equation (2.37) can be

written as

yy =A™ (2.39)
For the evaluation the constants A, B,, A,, B, and A,we shall apply the conditions at the

two boundaries x=0 and Xx=a.

One conditions is that ¥ must be continuous at the boundaries, i.e.,

{'7[/1:'7”2 at x=0 ... (A )}

y/2: l//3 a.t X=a ... ( B (240)
The other condition is oy / 6x must be continuous at the boundaries i.e.,
o = aﬂat X=0 ... (A)
OX OX
Yo Vs gixea .. (B) (2.41)
OX OX
Applying boundary condition (2.40A) to equations (2.35) and (2.36), we have
A +B =A +B, (2.42)

Applying boundary condition (2.40B) to equations (2.36) and (2.39), we get
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Aze ipza/h+B e —ipza/h_A e ipalh
2 -3
Differentiating equations (2.35), (2.36) and (2.39), we get

oy, ip, ipyx/ 7 Zipx/ 7
_ = = - = e 1 + e 1
e L

oy, ip, ip,x/ 7 —ipyx/ 7
—2 =2 |Ae"" +Be "™

al/js Ipl ipyx/h
—_rs 3 e
oX h A

Applying boundary conditions (2.41) to these equations, we get

p.[A — B ]=p,[A —B,]

and p2 lAze ip,alh _ Bze -ipalh J: pl[Ag,Eipla/h]

or A-B=2(A-8)

1

[Azeipza/h _ Bze—ipza/h ]:& A3eip1a/h
P,

Solving (2.42) and (2.47) for A and B,, we get

A P | Bf P2
Al—2(1+ plj+2(l DJ

i
2 P.) 2 Py

Solving (2.43) and (2.48) for A, and B,, we get

B,

A :i(h_&}ei(pl—pz)a/h
2 P,

s

: (1_&} i(pp+py)alh

P,

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

Substituting values of A, and B, from these equations in (2.49) and (2.50), we get
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A=§eWh@+%lh§qymm{kgq@_g}mm (253A)
L 1 2 1 2 J

B, A3 gt (1—‘%)(“pl]eipza’u(lﬂz](l—pl]ePza'h (2.53B)
A P, P, P, ]

Equation (2.53A) may be written as

A3 4e —-imaln

A (1+F’2J£1+F’1Je _Ipza/h+(1—r’2](1—'°1je Ipgalh
P, P, P, P,

_ 4 p,p,e ™" _
(py+py)°e P — (p —p,)2e P2/"

4p,pe "

—ipgalh ippaln
+€

2 2 —ipoa ipoa
(P, + P et _e MMMy 1 2p,p, (e

2p, pe ™"

e—ipza/h _ e—ipga/h (e—ipza/h + e—ipza/h)

2 2
(P3P e

Dividing equation (2.53B) by (2.53A), we get,

(1_p2J(1+pljeipza/h +(1 p J(l_leeipza/h
B. P: P2 P P,

A1 [1+F)2j(1+mje—ip2a/h (l pzj[l_pljeima/h
P1 P2 P1 P

—ip,aln

(pi— pg) (e —e iPalh)

—ippaln

2 2 .
(p1+ pz) (e _(pl_ pz) e lpaaln

(pl pz)(e |p2a/h |p2a/h)

ipza/h |p2a/h

—ip,alh ip,alh
e )

C(p’+p)e )+2p.p, (e

Now we consider the following two cases :
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Case (i) E >V,;inthis case p,=./2mE, p,=,/2m(E -V,), both are real so

A 4p,pe ™"
a
A (Pl+ pz){ 2isin p}; }+2P1Pz(—2‘305p;lj

e-ipalh

2|01 Pz

|(p +p )sm f +2p1p2cos p;l

ip,a/n

A, * 2p1p2e

A —|(p +p )sm . +2plp2cos p;

_ Transmitted flux

.-. Transmission coefficient

Incident flux
AA p/m (A XA
41403
(pi+ pg)zsm2 P.a +4p1p2coszpi
4 2 2
p1p2

2 2. 2. pa 2 2 . p,a
+ sinz 2= +4 1-sin2 —2=
(P, +p,) sinzty p1p2( ’ h)

4pf+ pi

2 _2pza
Sin 7

2
(P;-p) +4p;p;
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Reflection Coefficient

2 2
5 (PP )[—Zisinphzaj

K_ 2 2 pz 2 2 p2
(p1+p2) —2isin—= 5 +2p,p,| 2Cc0S—— 5

o2 2\ i P22
| — SIN ——
(p3-p3sin >

.2 2 . pa
|(p1+p2)sm%—2plp2cos%

2 2 . pa
—i(p, —p_)sin—*
B, * (pl p2) h

Ai*

., 2 2. .
—|(p1+p2)sm ph —2p,p,cos p;Z

pl
Reflected flux BB+ B B, *

" Incident flux _AiAi*& AlA.l*
m

2 2 2 pP,a

(p -p )- e

or R:E(Bl*]: sin h
A

2 2.2 5, pa 2
(IO1+|02) sin 2+4p P, cos

2 P2
h

h
a
(p§+ pg)zsm2 p}; +4p1p§(l smzpzj

2_ 220 Pad
— SIn® ——
(P7-P5) .

2p2
5 +4p1p2

= (2.54)
(pl_ p2)23m

Case (ii), E<V,,then p,=./2mE, is real and p,=.,/2m(E-V,),is imaginary, therefore

ip, isreal.

The transmittance or the transmission coefficient is given by
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-4 pzpzsech 2(ip2a/h)
T = 12

2 2 2 2 2 2 (2.55)
+ tanh (ip,a/h)-4
(Pl PZ) (IO2 ) Plpz

Incident wave /\ /k\

Vo

N
\/ V \/ Transmitted wave

X=0 X=a

Fig. 2.7

And reflection coefficient is given by,

(p?-p?)tanh 2(ip,a/h)
R= L2 (2.56)

2
(pX+p?) “tanh (ipa/h)-4p’p?

2.5 The Rigid rotatOr with free axis

The system, consisting of two spherical particles attached together, separated by finite fixed
distance and capable of rotating about an axis passing through the centre of mass and normal
to the plane containing the two particles, constitutes, a rigid rotator. If these two particles are
constrained, to remain in one plane, then the direction of the axis of rotation is fixed and so
the system is called the rigid rotator with fixed axis. If the plane of these two particles can
move, then the axis of rotation is free to take any position in space and so the system is called
the rigid rotator with free axis. In a diatomic molecule the atoms vibrate with respect to each
other and so the distance between atoms will not be always constant ; while the distance apart
of the equilibrium position is constant. Thus the system of diatomic molecules is not really
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Axis of rotation

- —-m - - ’:4— ————— >
| |
|
| | I
| : |
| |
|m1 f | M2
| | I
| | |
|
| | I
| | I
| I I
<+~ - >
| o | |
[ | [
Fig. 2.7

rigid; how ever; it may be treated, at least as a first approximation, as a rigid rotator with free

axis.
Energy for the rotator
The Kinetic energy of a particle of mass M can be expressed as
T:%m(x2+y2+z‘2) (2.57)
where x,y,z are the components of the velocity of a particle along X,y and ; axes

respectively. The transformation between Cartesian co-ordinates (x, y, z) and spherical co-
ordinates (r,0, ) are given by

X =rsinfcos¢
y=rsindsin¢g (2.58)
zZ=rcoséd

so that the kinetic energy in spherical co-ordinates is expressed as
T=%m(r‘2+ r2 62 4 2 sin2¢9¢52) (2.59)

If the distance r of the particle from the origin is fixed, its derivative  will be zero ; then

from equation (2.59) the kinetic energy would be

T:%mr2(92+sin26’¢52) (2.60)
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Taking O, the centre of mass of the rotator, as origin, the K.E. of the particle of mass m, is
given by

legmlri(@'2 +sin? 0¢?)
Similarly the K.E of the particle of mass m, IS
T, _1 m,r 2(6"2 +sin? 0¢?)
2 2
Hence the total kinetic energy of the rotator will be
T=T,+T, :%mlr%(é?2 +sin? 6’¢52)+%m2r§(92 +sin® 04%)
1 2 1 2 )2 in2 )42
=| =mr?+=m,r? |(8°+sin°60¢*) (2.61)
2 1 2 2
As there is no potential energy of the rotator, total energy is given by

E=T+V=T (since v =0)

- (%mlrf +%m2r§ j(é2 +sin20¢4%) (2.62)

But m,r? +%m2r =1, the moment of interia of the system about the axis passing through the

centre of mass and perpendicular to the line joining the two masses.
E:T:% | (62 +sin” 04°) (2.63)

The moment of inertia of the rotator may be expressed in a more convenient form as follows :

. . mr + m,r,
According to definition of centre of mass, ;= —————, we have
m, +m,
-mr, + m,r.
0=—"—2% je. mr, =m,r (2.64)
' 171 272 :
m, +m,
But L =n+r or L =1nr-n

Substituting this in eqn. (2.64) we get
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mp =m,(r,-r)

m
= : Il (265)
m, +m,
m
Similarl f=—"r—r 2.66
y 2" M +m. ° (2.66)
1 2

2
2 1 2 m,
[ =mr, +§m2r2 =m,| ———r +m,

_ MM 2 since, | = ur (2.67)
m1+m2
where ,,— M2 (2.68)

m, +m,

is called the reduced mass of the system.

From equations (2.60) and (2.63) it is evident that the rigid rotator behaves like a single

particle of mass g given by egn. (2.68) placed at a fixed distance, equal to unity (since

r =1) from the origin, which in this case is the centre of mass of the system.

Wave equation for the rotator : The Schroedinger wave equation in three dimensions in
spherical co-ordinates is given by

2
(P i s 2 e S B e vy =0 (2.69)
reor or resing o6 00 ) r°sin“@ o¢g° h

For a rigid rotator we have seen that potential energy is zero. r=1 and the mass M may be
replaced by the moment of inertia |. Therefore the Schroedinger wave equation for a rigid

rotator becomes

2
e Ll e S L (2.70)

sind 06 00) sing o7

This equation consists of two variables § and ¢ which represent the precessional motion of

the rotator’s free axis and the rotation of the system respectively.
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Solution of wave equation : Eigen function for the Rotator

Equation (2.70) may be solved by the method of separation of variables, i.e., the wave-

function (6, ) may be represented by

(0, 9)=0(0) P (P) (2.71)

Where o () is function ¢ alone and @ (¢)is the function of ¢ alone.

Substituting in equation (2.70) and dividing throughout by e @ , we get

2
L a(sm@@} 100 2 , (2.72)
Osing 60 00) ¢sin*6 o> h

Multiplying this equation by sin?® @ we get

2
sinea(. a®j 1 9% 2IE g2

sing— |+———+—->"" 6=0
© 06 00) D gg2 ;2
. 2
or S'”“[sine%}”fsin%:—lmf (2.73)
® 06 o0 © o

In this equation L.H.S is a function of # alone, while R.H.S is a function of 4 alone.
Therefore if this equation is to be satisfied, both sides must be equal to the same constant, m?

(say) i.e.,

S'nea[sin 196(5)j+2“£sin20=—m2 (2.74)
® 00 00) h?
and 1o0_ .

® 0g?

Equation (2.74) may be rewritten as

2
Sy M@ =0 (2.75)

The solution of above equation may be written as

(I):Aeim ® where  m=0,+1,+2,+3etc. (2.76)
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A is any arbitrary constant which may be chosen in such a way that the function is
normalised,

ie., _L2”®md>m *dg=1 or '[)2” Ae™ Ae™™ dg=1,
27
ie. A’ jo dg=1,  or A% 27 =1 (2.77)
1
ie. A=
(27)

Thus the normalised function is
im®d
e
O -1
mJ@2x)

Multiplying equation (2.74) by _©  we get
sin? @

L (sinQ@)+(2|E—m—2j®=O. (2.78)

sin @ n®  sin’@

Let us introduce a new variable X suchthat x= cos@

so that sin@=+/(1— x?) (2.79)
Then ® _90 X _ . inp9® (2.80)
o0 ox 06 OX
and in general, 9 _ —siné@ 9 (2.81)
o6 OX
sin0 22 —sin29.22 —__(1-x2)® (2.82)
oo OX OX

Using equation (2.80) and (2.81) and (2.82), equation (2.78) can be written in terms of X as

O g @l (5 M No_ 2.83
= {(1 x)ax}+(,3 T J@ 0. (2.83)

where f= Zh' E (2.84)

Equation (2.83) is known as Legendre’s equation. It has physical significance only for values
of X between the limits of -1 and +1 since X is equal to cos & .
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0(0)=(1-x*) " X (x) (2.85)
Where X (x) is the function of X only.

Equation (2.85) yields

_ m/2
aa—(j —mx @—x2) M/2)=1, a-x2) (m/2) (:j_i (2.86)
2 m/2
° (1—x2)a—® _9 _mx =) X+(1—x2)(m/2)+1 +d_X
oX ox ] oOX dx
_ {_m(l_xz) "2 L mex3(1-x?) (m/2)—1}X
—{2x(m +1)(1-x%)™? }X'+(1—x2) (/2 X (2.86a)
2
where we have assumed x’:% and X,,:d_>2< (2.87)
dx
Using equations (2.85) and (2.86a), equation (2.83) can be written as
) M2 22 4 y2) (MD-1y oy mina-xd) mlz}x'
+(1—X2) (m/2)—l xﬂ_l_[ﬂ_ m2 ](l—Xz) m/2 X =0,
1—x2
Dividing throughout by (1—x*) ™2, we get
1-x%) X"=2m+1)xX"+{B-m(m+1)}X =0
or (1-x%) X"=2axX '+ AX =0 (2.88)
where a=m
2.89
ald  A=-m(m+1) (2:89)
Now let us assume that X (x) may be expressed as a power series, as,
X =ay+ aX=a,X* +8,X> +.orrrrreerennn. (2.90)

2
or X'=a+ 28,X+38:X  Fooerrrins cerrrene
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and X"=2a, +6a;x+12a,x* +....... (2.91)
substituting these values in equation (2.88) and simplifying, we get
2 3
(2a, +7a,) +{6a3+(/1—2a)a 4}><+{l2a4(/1—4a—2)a2}x +{20a5+(/1—4a—6)a3}x .
+{(n+D)(n+2)a,,, +{A-2na—n(n-Da, x"+...=0

In order that the series may be zero for all possible values of X, the coefficients of individual

powers of X must vanish separately, i.e., in general
(n+)(n+2)a,,, +{A-2na-n(n-1)la, =0
Where n=0,1,2,3,...

a _2na+n(n—1)—/1a
2 (n+D(n+2) "

Substituting values of @ and A in above equation, we get

A,  (M+m(n+m+1)-p
a  (n+D)(n+2) (2:92)

This is called recursion formula for the coefficients in power series for X (x).

In order to obain a satisfactory wave function y , it is necessary that X (x)should be a

polynomial breaking off after a finite number of terms, as in the case of harmonic oscillator.

The series will break after n™ term if the numerator of equation (2.92) is zero
le. (n+m)(n+m+1)— =0
L=(M+m)(n+m-+1) (2.93)
Therefore, the sum (n+m) may be replaced by |, wherel is also zero or an integer.
L=10+1), I=m+n=0,12,3,... (2.94)

Substituting this value of s in equation (2.83), we get

— 2

3{(1—x2)@}+{|(|+1)— m* }@:0. (2.95)
OX OX 1-x

The solution of above equation contains the factor called the associated Legendre function
P™ (x) which may be defined as
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m/2 d mI:)I (X)
dx™

R™ (x)=@1—-x%)
where P, (X) is Legendre polynomial of degree I.
The solution of equation (2.95) is written as
®=BR" (x)=BP" (cos6) (2.96)
[since x=cos d]

Where B is normalizing constant.

From orthogonal properties of associated Legendre’s Polynomials,

+1
Pm(x)R™(x)dx=0
o I‘fl " (X)R™(X) . for k=1 297
J' Pm(x)Pm (x)dx = : fork =1
-1 21+1) (1-m)!
According to normalizing condition,
[0n® *dO=1
. +1 m m
ie., B*[ R"(x)R"dx =1
;2 (Il+m)_
21 +1 (1 —m)!
—m)!
or B 21+1) (I—m)! (2.98)
2 (I+m)!
Substituting the value of B in (2.96) the normalized wave function © is given by
@+ d-m" _ .
00) = P™ (cosd 2.99
()(2(I+m)!'( ) (2.99)

The complete wave-function or eigen-function for the rigid rotator is given by

(21 +12) (I —m)!
2 (I+m)

Y=0(0)0(4) = \/( ] pr (cose)-ie""ﬂ’

N
(2.100)
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— | .
or Y =(0,9) = L (21+1) (1= m): R™ (cos@)e™
N @) 2 (I+m)!
(2.101)
Eigen values or energy levels of the rigid rotator.
From equations (2.84) and (2.94), we have
21E
2 =I(1+2)
2
or E:E.:% 1=0,1,2,3.... (2.102)

This equation gives allowed values for the energy (i.e. eigen values) of a rigid rotator with

free axis.
2.6 Rigid Rotator in a Fixed Plane

If we consider the rotator to be only in XY plane, then &=90°and hence the

Schroedinger’s equation, in this case may be written as

2
v 2B o (2.103)
0% n?

In this case =, (¢), so that,

2
1070 2B onstant=—m?2
So that we have
®a¢2
1.e —azq) +m2®d=0
042
(2.104)
where 2'_2E —m?2 (2.105)
h

Eigen functions: The solution of equation (2.104) can be written as
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D =A™ (2.106)

where A is arbitrary constantand m=0,+1,+2,....

According to normalisation condition

[ ®,0,«dp=1

or [ Ae™ Ae™™ dg=1,
or A227 =1 or Aot
J@r)
The eigen functions are given by
w=0_(4)=~e™ (2.107)
1 ms

T m:O,il,iz,
A\ £TT

Eigen values : From equation (2.105), we have

232
m<h
E=E =
" 21
2.7 The Hydrogen atom
The Schroedinger wave equation is P
written as
/o
2 1
v2w+—‘2‘[E—v]y/=o. 6 2
h |
In spherical polar coordinates (fig 2.8) ¢‘ !
X =rsin 0 cos ¢ o
y=rsin0sin ¢ A
y
zZ=rcos0
X Fig. 2.8

The expression for V2 in spherical
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polar coordinates is expressed as,

:_ 10(,0 1 of(. ,0 1 &
V= r’ t (SN0 — [t~
rPoar ar ) r’sing a0 060) r°sin“@ o¢

Hence the Schroedinger wave equation in a spherically symmetric potential may be written in

the spherical coordinates as

2
1Za(rzay/) 21 a(smeay/) iz 1 0 y/ 2;2,[E vy =
o\ o) r%sing 00 00) 2 sin29 0¢%

The solution of the above equation can be separated in different variables of r, & and ¢ by
writing.

w (r.6,4) =R(r) © (6) ® (¢)
and differentiating, dividing throughout by y = R ® ® and multiplying by r® sin 20 we get,

sinzei(rzd_Rj+ld2®+5|n0d( ed_G)) 2ur?sin?6
R dr\ dr ) ®d¢* © do h?

0 {E-V(n}=0

(2.107A)
The second term of this equation depends only on ¢ and the rest is independent of ¢. Hence

the second term should be equal to a constant . Let the constant is equal to -m?

That is le(D— m?
! O dg?
d’d )
07 =+m-® =0. (2.108)

With this value for the second term, equation (2.107a) now can be written as,

2
1 i(rzd_RJ_F_i li(sm Qd_G) J_ .mz Zluzr {E V(r)}
R dr dr ) singd ©do do sin“"d # (2.109)

The | and IV terms of this equation depend only on r and the Il and 11l terms only on 6;

therefore each part must be equal to a constant, (say) A.

2
ii(rzd—R} 2ur E-v)= M1 d( ed—®j=/1.
Rdr{ dr 72 sin2g ©sing do do

so that we have

2
_ii(sinad—e)jz(/l— _m2 j®:0.
sin@ d@ de sin‘ @ (2.110)
1d drR 2 A
and rear r r (2.111)
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Equation (2.108), (2.110) and (2.111) are known as ¢, 6 and r equations respectively.

(b) Solution of ¢ equation :

2
The ¢ equation is d’o —+m2® =0
d¢®
This is a second order differential equation whose solution is given by
O=Aet M (2.112)

where A is an arbitrary constant. The constant may be evaluated by normalizing @, i.e.,

LZ”q)*q) dg=1

27

Adg =1

1
or A=— 2.113
o ( )
therefore the solution becomes
1 .
D= eilmgﬁ
\/ﬂ (2.114)

The single valuedness of the function ® indicates that it should have the same value at ¢ = 0
and ¢ = 2m; hence
+27im
=cos2zmzisin2 zm=1
or (2.115)
This is true only when m is zero or an integer (positive or negative). Thus we write
1 .
(I):—elm¢,
V2z m=0,+1+2, ... (2.116)

The quantity m is called the magnetic quantum number .

Solution for 6 equation :

1 d{. dO® m®
- i ———|sinfd— |+ | A— ®=0.
In the 6-equation sing dé’( j ( sin? 6’}

Let X =C0Ss 0,

we have

d® dx doe . dO
—=——==5inf—
doé d@ dx dx
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d . d
EZ —Slnea
or (2.117)
sined—®=—sin29d—®
d dx
sinez—(zz— (1—x2)?j—®
or X (2.118)
0
Using equations (2.117) and (2.118), the equation becomes
d do m?
_{(1_x2 )_}+ A- ®=0.
dx dx 1 x? (2.119)
IfA =1 (I +1), then
2
i{(l—xz)d—®}+ 11 +1)— 2 5 [©=0.
dx dx 1-x (2.120)

Comparing this with associated Legendre equation

d N m? moon
&{(1—X )&Pl (X)}J{'(Hl)—l_sz P (x)=0.

gives the solution of equation (20) as

®@=B P (x) =B P (cos0) |m]|<l. (2.121)
B is normalization constant which is evaluated by normalising @ in the following way.

L”@*@sin 0do=1

4 (21 +1) (1 —m)!
B2R™ (R" ()dx =1 H H
-Il Hence B= \/ 2 (=mY ] (2129

Thus the solution is

@+ 0-m!|] o
O0) - 2 (I+m)! ' !

(2.123)
"(x) =L x2)mz- 3" p (%)
with P X) =R Xejmre o P
/1 dl
1
and P.(X):2 _(X2_1)I
dx'

where X = cos 0

Solution of r-equation (radial equation )



50

. Z¢’ : : : :
In this problem V(r) = i where Z is the atomic number. Consider this problem to one —
r

electron or hydrogen — like atom.

Equation for radial part can be written as

2 2
%i(rzd—R]+i A L)
redr dr ) h? r 2ur

Let
p=oar orr = pla;
Then r-equation becomes

2 2 2 2
21 d {,0 dR} 2 {E+Ze o I+ ]R:O.

a — a
p2 o g2 dp| 52 P 2up? (2.124)
For bound states, ie. E <0,
2 2 2
L8[ R 2u [ g Zéa al+0" o o
pido dp] h P 2p°u
1d dr 2u|E| 2uze® 1(1+1
2|:p2:|+ |:_ luzl 2| + él e _ ( t ):|R:O
or pdp| dp Wa'  Kap p (2.125)
Choosing « such that
2ulE| 1 and 1=t %eza
ath? 4’ ah?
The equation (2.125) can be written as
L8[ 2%R], [i_% « ;D}R:o.
p= P ploLr P (2.126)
where the particular choice of the number (1/4) for the eigen value term 22‘|E2| is arbitrary .
a“h
For large p, the equation (2.126) has the form
1d drR) 1
A G SR
p-ap P (2.127)

The solutions of equation (2.127) are
R=e*"? and R=e "? (2.128)
Only the second solution is satisfactory (vanishing for p — ). The exact solution of

equation (2.126) is of the form
R(p) = F(p)e "
Substituting this value in equation (2.127), we have
o F"(p)+(2—p)pF'(p)+{1p2—p—%zwp—l(l +1}F<p>}ep’2 -0

4 (2.129)
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As e is not zero, the expression within the square brackets is zero :

lpz F ' (p)+2—p)pF (p)+[(A-D p—10+D] F(p) JZO-

(2.130)
Let F(p) = p° L(p)
F(p)=sp™ L+p°L’
F'(p) =5 (s-1) p™*L+2sp™ L' + p°L"
Substituting these values in equation (2.130),
PP L +(2sp+2p+ p?) L'+{s(s—D)+25s—s p+((A'-1) p—1(1+1)} L=0.
(2.131)
Let Lp) =  Dap
r=0
ie., Fp) = Dap (2.132)
r=0
Substituting the values of F(p), F'(p), and F"(p) in eq. (2.130) we have
P2 a (s+r)(s+r-0p> " ?+(2-p)pYa (s+r)p"*
H(A-Dp-10%D] Y a pr =0
r=0
or).a (s+r)(s+r-10p* +2> a(s+r)p™"
r=0 r=0
0 0 0 S+r
- % a(s+r)p*? r+lyo-1y 3 arp5+r+1 -I0+) ¥ ap =0
r=0 r=0 r=0
© S+r
S{s+r)(s+r-1)+2(s+r)-1(1+1)} ap
or r= O o0 21323.
~fs+n-@-n] T ap ST = 04152
=0

r
Equating the coefficients of p®in eq. (2.132a), we have

{s(s—1)+2s-1(1 +1)}ay=0

{s(s+1)-1(01+1}=0 since,a;#0
It means that either s = | or s = -(I+1); the value s=-(I+1) does not satisfy the condition of
well — behaved function and so, the only accepted value of s is I. Comparing now the

s**1 \we can write,

coefficients of p
[s+r+D(s+N+2(s+r+D)—I0+Da, ., =(s+r+1—2a)a,
Aryg S+r+1-A4'

a, (S+r+(s+r+2)-1(1+1)

or (2.133)
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The series (2.132) represented by coefficients (2.133) behaves like €” for large p and

therefore R = e F(p) will diverge as e*”* which is not an acceptable solution.. Therefore

the series must break off after certain number of terms. From eq (2.133) let,

I+n+1-1'=0 (putting s =I)
or A'=n+1+1 (2.134)
Replacing A by integern, n=n,+1+1. (2.135)

It is seen that n is a positive integer and is identified as total quantum number. Eq. (2.131)
may now be written as (putting s = | and replacing A" by n):

oL +H{2I+D) +1+ oL +(n—1-1)L =0 (2.136)
Comparing it with the associated Laguerre equation
P+ (p+1+p) L'y +(@— P L, =0,
We obtain, p = 2l + 1, g = n+l and so we get the solution of r-equation as

R(r)=Ce"p' LT (p);

Here, C is the normalisation constant given by,
C= 3 (n—1-1D!
J[(a) Zn{(n+ I)!}?’}

(e) Energy of atomic levels and degeneracy.

) 1/2
We have assumed that P
n | 2|E|
Z%" u
or A'P= Y=
n® 2|E|
Replacing A’ by n
Z%*
E,=—|E,|=- Zﬂhzﬁ (2.137)

Equation (2.137) is the expression for energy of an atomic state of a hydrogen — like atom
defined by the principal quantum number n.
Now consider the equation

n=n+1+1
can be satisfied for a given n for several combinations of n, and I. This implies that there are
several possible wave functions for a given energy value (n fixed). When this happens the

state is said to be degenerate. This holds good for every value of n > 1.
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To determine the degeneracy

From equation (2.137) it is clear that energy eigen —values depend upon n and so are
degenerate with respect to both | and m. Thus for each value of n, | can vary fromQOton—1
and for each of these | values, m can vary from — | to +l. So, the total degeneracy is

u= 2(n)(n-1
Z(2|+1)=L+ n=n? (2.138)
m 2
: Non Coulomb fieIIcI Non central
: : m=+2
| cenfralfield | m=+1
| |=2 | m=0
I - I m=-1
| | m=-2
| |
I : m=+1
Coufomb fretd =1 y\
| | m=0
n=3 ' '
| | m=-1
| |
| |
| |
| =0 |
| |
| |
| | m=+1
: =1 :\ m=0
| |
n= ! : m=-1
| |
: =0 : m=0
| |
| |
n=1 : =0 : m=0

Fia. 2.9

In particular
m=0,+1,£2,...%I

1=0,12 ... (n-1)
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so that for n=2, we have 1=0, m=0, and I=1, m=0,+1,-1 giving four wave functions or
quantum states etc. Fig. (2.10) shows the different eigen — states in case of hydrogen — like
atom.

The solution for radial wave function is found as

(22 _o-t-wr | (o Y2z 22
R(r)_\/ﬁnao] 2n{(n+|)!}3]eXp( naoJ(naJ L”*'[naoJ

The complete solution for the problem of hydrogen atom is obtained by multiplying the

solutions R(r), ®(@) and D(¢)

2.8 Normal or Ground state of Hydrogen Atom
For the ground state of the atom,

n =1, 1I=0, m=0, and hence the wave-function is

1 .
Wioo= (Fj e”'? where ag is the radius of Bohr’s first orbit (2.139)
0

2
But —ar=22" _2" | pecausen=1,Z =1and a,="" .
na, a, 7S

Hence ( 1 j —r (2.140)

' Wico = 3 | Pl — '
71do a,
and V’looWloo* = %eXp|:_ 2I’:| (2.141)
7, a,

since this expression for probability density is independent of 6 and ¢, the normal hydrogen
atom is spherically symmetric. Consider a small value dV = r® sin 6 dr do d¢, then the

probability of finding the electron in this volume is given by

3
0

Wiod/100 F2Ar sin &g = ﬂ; exp{%}rzdrsin aadg (2.142)

For a spherical shell between radii r and r + dr, this value becomes

-1 -2r | , 7 . 2z 4 =2r |,
7za03 exp{ a }r ersdeHL d¢—a—o3exp{?}r dr

Thus the probability of finding the electron between the distance r and r + dr from the

nucleus is p(r)dr:éem{_zr}rzdr
a, a,

The radial distribution function P(r) is given by
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P(r)= igexp [—Zr}z
a, a,

The probability is maximum when dP/dr = 0.

or d—Pzi{rz(_—z]exp (_—‘zr)ﬁrexp (—_Zr) }:0
dr a;"| 3 CH CH
2
or iaexp(__zrjlzr_[ij }ZO
a, a, a,
or or _ (ZrZJ
aO

or =
r ao

0

(2.143)

Thus in the normal state, the maximum probability of finding the electron is at a distance

equal to the radius of the first Bohr’s orbit.

UNIT 11
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31 Perturbation theory
Perturbation theory is of two types.

1. Time independent perturbation theory

2. Time dependent perturbation theory

In time independent or stationary perturbation theory, the Hamiltonian is separated into two
parts, one represents the characteristics of the system which can be solved exactly and the

other due to perturbation.

Perturbed Hamiltonian H = H©® +H" where H® represents the unperturbed part and H the

perturbed part.
Time independent perturbation theory for nondegenerate case

The schrodinger eqgn. is written as

Hy =Eyw

2
The Hamiltonian H :[_h_vz +Vj
2m

Expanding H interms of some parameter A as,
H=H® £ AH® + PH® 1. (3.1)

Let the energy eigen values are E®,E{”...E® and the eigen functions are w”,w”..w© . It

is possible to expand the eigen functions and eigen values as power series in A as

E =EQ +EY + 2E? +...
v, =y + AP+ 2y 1 (3.2)

Substituting these E,and y, values in the schrodinger eqn.  Hy, = Eqyy We get

(HO+ HN@ O + 2y + Py? +..) = (EP + 2EP + PEP + )W + Ap P + Py + )

n

Collecting the like coefficients of A,
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H %O+ 2H “p® +H @)+ 2(H “p@ +H “p® 4+ ) +..

2
(G @ (© 0. (2 2. (0 @ 0. (©
+AE, Y +ET )+ A4 (B +E Ty + By )+ =, Ty

For this eqn. to be valid for all values of A, the coefficient of equal powers of A on both sides
must be equal.

Comparing the coefficient of 2

0, (0 _ = 0 (0)
H n En l//n

Comparing the coefficient of A',

H @y +H Oy =E Oy + E Oy (33)
Comparison of coefficient of A? gives

HOW®@ {0y, O — g @@ 4 E @0 | F ©,0) etc, (3.3A)

These eqns. represent unperturbed, first order, second order etc. perturbation equations.

First order perturbation theory:
To find the first order correction to energy En®

Consider the first order eqn H @y® + H Py @ = E, Py ® 4+ E Py @

w" can be expanded as a series by using expansion theorem as

- ©
v =>Cop (3.3B)
m=0
Substituting this eqn in (3.3) we get,

Y CHOY Y +HO® =CE, "y +E,"w® byusing HOp® =€,y
m

or C,(E? —E® ¥ + HOy® = EWy© (3.4A)

n n

Multiply the above on the left by " and integrating we get,
[ZwCalEY —ECW® dr+[piH Oy dr=[ EPp @y Odr  (348)

Here we have used the kronecker delta function
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Jr@yPdr=5;=0 if i=]
=1 ifi=]j

(3.4C)

Therefore,

EP = [P HPyOdr =<n|H'|n>=H],
To find the first order correction to wave function
Multiplying eqn (3.4A) by ¥" and integrating,

[ > ClEY —EOW Py Pdr+ [y H Py Odr = EPy "y Pdz

Applying the condition (3.4C),

IV’ 1) (o
EO E<°

,m;tn

Substituting this value of Cp, in eqn (3.3B) we get the first order correction for the wave
function.

To find the second order correction to energy E,®

The second order correction to wave function 2 can be expressed as
y® = zgmv,&m (3.5)

Substituting (3.5) and (3.3B) in (3.3A), we get

Zg How @ +C, H (1)1//(0) g,.E, (0 (0)+ZC E (1)W(0) HE@y ©
0 07,,© @ 17,,,(0
or 2 GulEn’ —EX Iy’ = 2 CulE," —HP Ty + E@y (36)
m

Here we have used H @y @ = E©,©®

m

Multiplying this eqn with (" and integrating over the space variables and applying the
kronecker delta function we get,

= 37, [y H Yy e

Substituting the value of ¢, we have,
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[y HOYOde [y @ H Oy O dr

E® =-) m#n
0 0 !
m EO _EO
(<m|H®|n>)?
or E§2)=zn( E|(°) E|(°’) M=n if H®is Hermitian.
n — LEm

To find the second order correction to wave function y®:

Multiplying the eqn (3.6) by (" and integrating,

m

[Z 0. JIEY -ECW O ydr

= Co[W i IE, —HO Ty Pdr + [EXy Oy Ode

c *
or :ZWmE«»(Eﬁ”— [y HOyOdz) mn

m
Substituting this value of g, in egn. (3.5) we get the second order perturbed wave function.
3.2 Zeeman Effect (without electron spin)

The change in the energy levels of an atom when it is placed in uniform external magnetic
field, is called the Zeeman effect. Let us consider that the field strength B is applied on a

hydrogen atom, so that an electron of reduced mass x carrying the charge '—e'is moving in a

field whose vector potential is A. The magnetic induction B in terms of vector potential A

can be written as
B=curl A=V xA

Then the constant magnetic potential A in terms of magnetic induction B can be expressed as
1
A==(B xr).
2 (B xr)

[since BXr = VxAXr(forB =VxA)

= (V. 1) A-(AV)r=3A-A=2A

1
A = =(Bxr
2( )
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The classical Hamiltonian of a particle of mass g carrying charge —€ and moving in field of

vector potential A may be expressed as

H(P,r) = i(p+eA)2+V(r)

_ p° e e’ .,

= —+V(IN)+—@P-A+A-p)+—A
21 21 2u

= H°+H'+H"

P2
where H= o + V(r), is the unperturbed Hamiltonian
U

H = — (p- A+ A-p)
2

eZ
and H//:_AZ
24

Ist Order Zeeman effect :

For weak fields and second order perturbation term H” containing A* may be neglected and

hence the perturbed Hamiltonian takes the form

2
H=H+H'= P vin+2(p A+ A )
2u 2u

P_s ;:’Szﬁv and keeping in mind the vector identity
|
div (Ay)=wdiv A+A- Vi
or V-Ay)=(V-Ayv+A- Vy

h h
We note (p A+ A- p)Z(T V-A-l—A-Tij/

Iviam + Eavy
| I

= ? {(V-A)l,// + A-Vt//}+?A-V 74
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=?[(V-A)y/+2A-vl,/] (3.7)

V-A=V. [% (er)]:%v-(er)

Using the vector identity

div (AxB)=B- curl A—A- curl B, weget

V xB =0 and V xr =0 (3.8)

and A-V\u:% (BXr) -Vy :% B - (rxV)y (3.9)
using (3.8) and (3.9) equation (3.7) gives

(p-A+A- p)w=?|:0+2-%5-(I’XV)l//i|

B-(rx?VJW:B- (rxp)y

B-L y. (3.10)

or p-A+A-p=B.L (3.11)

The energy eigen functions of the unperturbed H -atom are usually chosen to be eigen state
of L, with eigen values m#, m being magnetic quantum number. It is customary for

convenience to choose magnetic field along Z —axis then B-L=BL,

First order energy correction
’ ’ e
E'=<n|H'|n>=<n|— BL:|n>
2u

2£Bmh<n|n>=m%8 (3.12)

Yz 24
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can take for (2l +1)values

since m varies form —1to +I m=+2

. . . m=+1
with a difference of unity

=2 m=0
The selection rule permits only (g tate) m=-1
those transitions in  which m=-2
magnetic quantum number m
changes by 0 or +1.This
selection rule coupled with v v v
expression (3.12) is sufficient to 11 v v v m=+1
explain the spectrum of normal v v v m=0
(p-state]) _
Zeeman effect. For an example AM=0 AM=-1 Am=+1 m=-1
we consider the transitions _
Fig. 3.1

between two states with =2
and |=1, (i.e. between d and

p —states). The transitions are shown in the fig. 3.1

3.3 First Order stark effect in Hydrogen atom

The effect of change in energy levels of an atom in the presence of an electric field is called
stark effect. The unperturbed Hamiltonian of Hydrogen is given by,
n° 1 ¢

HO=_—_v2_ —— where r is the distance between the nucleus and the electron of an
2u g, T

hydrogen atom and p-the reduced mass

Due to an external electric field of strength E, the perturbed Hamiltonian term is given as

H' = —Ee r cos@, where e is the charge of the electron (3.13)

For the ground state of the atom, n=1, 1=0, m=0

The non-degenerate wave function is
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Woim = Wigo = Rio(NYo0 (0, ) = RlO(r)%

for the ground state of hydrogen, the first order energy correction due to perturbation is
H 100100 = J-‘//fooH w57 =0 since H’ is having odd parity

Thus there is no first order stark effect in hydrogen atom

First Excited State

Consider the first excited state of hydrogen. Here n=2, 1=0, 1 and m=1, 0, -1. The

corresponding wave functions are,
1 .
W00 = Rao(N)Yp0(6, #) = Ry (1) ﬁ even  parity
3 .
W10 = Ro1(1)Y10(0, ) = Ryy(r) ﬁ cos 6 odd parity

3 . (3.14)
Vo= Ru(Yos(0.6) =Ray(r) Z=sine *  odd  parity

f 3 . i .
Wor1= RZl(r)Yl,—l(9!¢) =Ry () g sine " odd parity

Out of the four wave functions v, is of even parity and all other wave functions are of odd

parity. The secular determinant is given as

Hs00200— E ® Hs00211 H 00210 H00214
Hénzoo H'211211_ E® Hé11210 o Hé112171 ~0 (3.15)
H 10200 Hy10011 Hyi0010— E H10014
Hél—l,ZOO H'2L71,211 H'2L71,210 Hél—l,Zl—l -g®

If the integrand value is of odd parity, then the integral value is zero. Hence,
H 00200 = J' W0oH PW,00d7 =0 since y,.,- even parity and H® is odd parity and the net
integrand is odd parity. In the same manner we can show

) ) @ ) ) 1) ) ) )
H211,211’ H210,2101 H2171,2171’ H211210v H2112171! H210,211’ H210,2171’ H2171,2111 H2171,210 are all zeros
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Consider

H o201 = m«/_ 20(r)rcosé?\/ism6!5"¢R21(r)r2drsm6!16!1;15

27
But, Iei¢d¢=o.Hence H{0211=0
0

m &) &) W
On the same ground, HJ?, 00, H5do211, Hta 200 ar€ ZEI0

m m 0
So we are left with two elements namely H{,,,and HS) 0,

First, let us evaluate H{),,

1) _ * @)
H 00210 = J“//zooH WaidT

v ; ( 1 T/Z(Z Je ( : J
200 — o
Var\ 2 2
% % % where @, is the Bohr’s first orbit radius

= iCOSQ i 3/2Le _L
'//210—1{472_ 2a, J3a, Xp 2a,

Using these values and H W — _rcos @ and assuming " _ n» We get the r-integral value as,

Here,

a0

L J.n edn - j e7dn

8 \/—ao

% )

=0 [2I5-Te]=-3/3

/5205~ Tol=-3/3a,
The ®-integral gives the value as 2/3  and
@-integral gives 2n unperturbed ‘Sean

0,0
Therefore, ek
1 / 3 2 Fig.3.2

Hé%))o,zm = _E E(_s\/gao) ng 27 =34, &

Similarly we get H{),,,, =3a,€E

Substituting these values the secular determinant becomes
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—Eo 0 3a, 0

0 —-Ew 0 0 _0
3a, ~Ew 0 |
0 0 0 —-Ew

There are four roots for this determinant as E®' =0, 0, 3a,, -3,
The corresponding perturbed energy values are
E(l) =0,0,3ekEa,,—3eEa, (3.16)

Thus for the first excited state of hydrogen atom, one energy level is raised by 3eEa,, and

one is decreased by the same amount. The other two levels remain unchanged.
3.4 The Variation Method

The expectation value of energy in normalized state YV is given by
< E>:IT*der (3.17)

If we choose the wave function W as variable function, then the integral (3.17) is known as
variation integral and gives an upper limit to the energy E, of the lowest state of the system.
The function ¥ is the variation function and its choice may be quite arbitrary, but more
wisely, it is chosen such that E approaches more closely to Eo. If the variation function W

equals the function ¥, of the lowest state, then energy E will be equal to Ey, i.e.

<E>={y, Hy,dr=E, (3.18)

If w # yo, they by expansion theorem y may be expanded in terms of a complete set of

orthonormal functions ¢, ¢1, ¢2...obtaining
Yy = Zan ¢n with Zanan* =1and H¢n = En¢n (319)

Substituting this in equation (3.17), we get

<E>=)a,*a, [, *Hg,dr (3.20)

But Hom =Emdm
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we have

<E>=Ya,*a,[¢*E ¢,dr
=Y a,%a,E, [ 4, *4,dr

= zan *am Em 5nm
n

Since §,,, =1 form=n
=0 form=n

Therefore < E>=)a, *a, E,

2
= la,|°E,
n
Substracting the ground state energy E, from both sides, we get

<E>-E,=>a,|° (E,-E,) (3.21)

n

As |aq* is positive and E, > Eq (always) for all values of n; therefore right hand side is

positive or zero. Thus we have proved that < E > is always an upper limit to E, i.e.
<E> > Ep (3.22)

This theorem is the basis of the variation method for the calculation of the approximate eigen
value of the system. If we choose a number of wave-functions ¥, ¥,,¥s... and calculate
the Ej, E,, Es... coresponding to them, then each of these values of E is greater than the
energy Eo, So that the lowest one is the nearest to E,. Often the functions Wi, W, Ws...are
only distinguished by having different values of some parameter A the process of minimising
E with respect to this parameter may then be carried out in order to obtain the best

approximation to Eo. Which from the trial function ¥ will follow.
3.5 Physical applications of Variation method

Ground State of Helium : We use the variation method with a simple trial function to obtain
an upper limit for the energy of the ground state of the helium atom. The helium atom
consists of a nucleus of charge + 2e and two electrons each of charge ‘- e’ If we consider the

nucleus at rest, the Hamiltonian will be
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2
H :——(Vf +V§)—2e2[1+£]+e— (3.23)
m

where VZandV; and Laplacian operators

for the first and second electrons

at a distance r; and r, from the nucleus,

r=|r,—n|is the distance between two
eZ

electrons. If the interaction energy —
12

between two electrons were not present,

Fig. 3.3

the ground state eigenfunction of He would

be product of two normalized hydrogen like wavefunctions U, (I;) U, (r,) given by

3
7°  —z/ag)(n+n)
4 (rl ) ): Uyoo (rl)uloo (n)=—3e
g
with  z=2 and aozh—;

We shall use (ry, r2) as a trial function and treat z to be the variation parameter, so that it is not
necessarily equal to 2. The expectation value of Hamiltonian H is the sum of expectation

values of kinetic energy and potential energy individually.

H=K.E. +P.E.

2

. . e
=T + V + interaction energy (—J of electrons.
12

2
then <H>S=<T>+<V>+<—>
r‘12

Now the expectation values of hydrogen-like atoms (having one electron) with z atomic
number in general are

z7%e 27e 1 z
<T >= <V >=— . Since —=—.

23, a, n a

But helium atom in ground state has two electrons, so it will be twice of hydrogen-like atom,

2 2 2 2 2
ie. <T>= 28 _Z°€ (3.24)
2a, 24,
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and <V>=-2x = (3.25)
aO a0
2 2 2 2
Z'e 4ze e
Hence <H>= - +<—> (3.26)
2a0 a0 r12

Electron Interaction Energy : The expectation value of the interaction energy between the

electron is

2 2

<—=>= ﬂ (4 r2)$_“](rl r,)d’nd’r,

r.12 12
3 2
:(Z_Sj o [ Lottt gay gy,

Substituting,

27 27 27
a—rlzplanda—rz :p2’a_r12=p12
o 0 0
ez ze e_(lo.l.+p2)
we get <—>=_—— H d*pd®p,
EP! 3272, P12

Solving the spherically symmetric integral by knowledge of electrostatics as in perturbation

theory, we get

2 2
<S5 2 o0’
n, 32n°a,
5z¢’
= (3.27)
8a,

The expectation value of Hamiltonian (3.26) for the trial function is
e?z? 4de’z 5e’z ez( , 27 j
— + = 7°——1

a, a, 8a, a, 8

<H >=

Differentiating with respect to z and for minimum <H>, equating the differential to zero,

O<H> 0 ez(z 27)
=—<q—|2°=——12|; =0,
0z 0z | a, 8

This gives z :%:1.69. Thus the lowest upper limit for the ground state energy of helium

atom obtained with trial function
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2 2 2 2 2
_& {ﬂ} _2rer :_{Z} € _ 285" (3.28)
a,| (16 8 16 16) a, a,

By the help of perturbation method, the ground state energy of helium atom comes out

e2 2
—2.85— , where @, =
a, m,e

2 -

The hydrogenetic wavefunctions give the best energy value when z = i—; rather than 2. It

indicates that each electron screens the nucleus from the other electron, therefore the effective

nuclear charge being reduced (i.e. ) 27 _ ij by of an electronic charge.

16
Hence "effective charge™ in the nucleus is less than 2.
3.6 Connection formulas for penetration of a barrier

Figure (3.4) represents potential function V(x) as a function of x. Let a particle has energy E.

Then the whole region is divided into three regions
Region | where V> E
Region Il where E >V
Region 11l where V > E

There are two types of turning
points, specified by points x; and ~ V(X)
X2. When we pass from region |
to 1, then at the turning point x,
the barrier is to the left. But if

pass from region Il to region I, E

the barrier is to the right. Region Il

Region | Region Il

In region I, the wave-function

decreases exponentially, for

X — —ooand p, =+/2m(V — E), then v X1 X2

is approximated as Fig. 3.4
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v, =—exp( pl:XJ (3.28a)

In region 11, the wave function v is oscillatory given by
B Tt paox C ( (X pdxj
Y, =——6exp|i| — |+ —exp| —I| — (3.29)
= ool 1 en
In region 111, the wave-function decreases exponentially for X — —o0

vy =3exp(— Py dxj (3:30)

Uk

The regions of validity of these wave-forms of wave-functions are separated by the classical

turning points near which W.K.B. approximation fails. As w1, i, w3 are all the
approximations of the same function v, therefore the constants A, B, C and D cannot all be

arbitrary.

To connect the wave-functions at the turning points we assume that the potential energy
function is approximately linear in the neighbourhood of turning points x; and x,. Thus at x;

and X, we write

E-V(X)=C(x-x)| . E-V()=Ci(x-x) (3.31)
V(x)-E=C,(x-x,) E-V(x)=-C,(x-X,) '

The schroedinger wave-equation

2
dy | 2m
dx*  An®

(E-V())y =0

In the neighbourhood of x = x; and x = X,, this eqn. takes the form

2
?jxf + Zgzcl (X=x)y =0 (near xy) (3.32)
2
and ‘;X‘i’ — 2252 (Xx—%,)w=0 (near x) (3.33)

Now we change the variable in equation (3.32) by substituting

Z= —( Zr;llzclJ (x=x) (3.34)

dy _dy dz
dx dz dx
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_ _d_w(zmcljll?:l
dz \ #°

dy d (dy d (dy\dz
and —d = = = o |
dx dx \ dx dz \ dx /dx

1/3 1/3
_d | dy(2mC, _[2mC,
Cdz| dz\ m? ?

~ [zmcljzm dz_w

St

n° dz?
Making these substitutions in (3.32), we get

d2
dz‘g — 72y =0 (3.35)

1
Similarly by substituting 7 = [chzr (x—x,)
hz

equation (3.33) becomes ‘::"’ —z2y =0 (3.36)

Z2

Equation (3.35) and (3.36) are Airy functions. We require a function which vanishes

asymptotically for large positive z (z > 0) corresponds to x <x; and x>x;) such a function is

_ 17 |s?
Ai(z) = p ! cos{? + sz} ds (3.37)

For Large (z) it has asytnptotic form

Ai(z) - 2\/;12 ; exp[—gz %} (z>0) (3.38)
Ai(2) -msin[z(- 2)? +ﬂ (z>0) (3.39)

If the energy E is sufficiently large, the de-Broglie wavelength associated with the particle is
extremely small so the regions of validity of linear approximations contain many
wavelengths. The function Ai(z) which passes smoothly through the turning point provides

the required connections among the approximate forms equations (3.28a), (3.29) and (3.30).
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In the neighbourhood of x;, we have

D = 2mCy(x — X, ) = —(2mC.7)3 2

and J~pldX {chl} I\fdx
h 71 Y

1
O N
|
N
o
N
I
‘ I
N
—~~
N
~—
N

(3.40)

Similarly'xfpzhd {chl} j\/_dz—j\/_dz_—( 2)? (3.41)

Comparison of (3.40) and (3.41) with equations (3.38) and (3.39) shows that the functions
approximated to the left of x; by

1 t p,dx
Wl:\/_exp{f }; X < X, (3.42)
pl Xq h
has on the right the approximation
W= \/2_ sin ( Xl p;dx+%j; X > X (3.43)
P "

A similar analysis in the neighbourhood of points x, shows that the function approximated to
the right of x, by

Wy = exp( pldxj, (X > X,) (3.44)

Jp h

is approximated in region Il by

2 (e p.dx 72')
W= sm( —+—|; (X< Xy) (3.45)
NI
1 exp ( pldx)’ X > X,
_JJp L
———sin = X < X,
Jp2 “ h 4

Again the solution of equation (3.33) is the Airy function
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Bi(2)= [ efsz*% wsin[S vz || ds (3.46)
I 7T 0 3 '
This has asymptotic forms
Bi(z) -1 exp (Z z”j (z>0) (3.47)
! \/EZM 3 .
Bi(2) L cos F (—2)*? +E} (z<0) (3.48)
\/E(_Z)IM 3 4

A similar argument leads to the connection formulae

e T

WKE T xpdx ).
cos le - +Z ; (X > X))

Jp.

(3.49)

Hence, the connection formulae at turning point x = a may be expressed in terms of Barrier to

the right and Barrier to the left as follows.
Barrier to the Right : Let VV > E to the right of x = a.

For decreasing exponential

V>E V(x)
1 xpldxj -2 ( p,dx nj
exp (— ~—— C0S ——
B U el
(3.50)
E
V<E
X=a
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For increasing exponential

1 xpldx)_ 1 ( x p,dx n)
— e ( =—— COS +=
VP J.a h VP, J.a h 4
1 x pldxj 1 ( xp,dx nj
—exp ( =———sin -= 3.51
N L h N[ L ho 4 (50

Barrier to the left: Let V > E to the left of x = a.

For decreasing exponential

1 a pldx) 2 . ( x p,dx nj
— exp (— = |=——s5in += (3.52)
Py x h P, L hoo 4
1 a pldxj 2 ( x ,dx nj
or —— eXp (— r—CO0S|| — —— (3.53)
A L h P, I ho 4
For increasing exponential
1 a pldxj 1 ( x p,dx n]
—e ~ —— COS +— 3.54
VP, ® U h P ! heoo 4 (359

1 2 pldxj 1 . ( x p,dx nj
or — exp ——— |®——=SIn —-— 3.54A
VP U h VP, } R4 (5548

It may be noted that the connection formulae enable us only to obtain the relation between the
solutions in a region at some distance to the right of the turning point x = a, with those in a
region some distance to the left. In order to obtain the form of the wave-function in the

intermediate region, we should consider the exact, solution, which involves Bessel functions

of order 1 )
3

For applying W.K.B. approximation, the following requirements must be satisfied.
1. On either side of the turning point, there exist regions when the potential function
changes slowly so that W.K.B. approximation is applicable.
2. In the region near the turning point x = a, where W.K.B. method becomes
inapplicable, the kinetic energy can be represented approximately by a straight line (E
— V) = C (x — a). In other words the potential should not undergo a large fractional
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change in slope within this region. Inside the barrier W.K.B. approximation begins to

hold after

[ Jlam(v-E)] %X

becomes appreciably greater than unity.

3.7 Time Dependent Perturbation Theory

Consider the wave eqn,

Howo i 7
ot

The general solution of the above eqgn is
w mITON

7En
PO =Y a0 O

n=0

Consider the Hamiltonian H =[H ©) +.aH (1))

(3.55)

H@is the unperturbed Hamiltonian and H @ s a small perturbation varying very slowly

w.r.t. time
Substituting H in the perturbed eqgn  HY = E we get

(H(°)+2H(l’)‘I’:ih%P

The general solution of this egn is

w(rt)=>a,[t)w(r,t)

ovl

Substituting (3.56) and using H”¥\ =i we get

éa, (1)

Ay a,t)HOP® =ind

Multiply by %" and integrating

(3.56)



76

* . oa, (t «
23 [a, PO HOPOdr =iny. J.%\{;é]m YO

or 8agt(t) =4 (t)= %gzan (t)J' \Pn(qo)*H (l)lPrEO)dT, m=012..
I n

i
multiplying and dividing by €Xp (% E, (t)) and using o, - En — E. we get

8,0 = 2% 8, (OH', &0, (3.57)
I n
where. H = [ ©"H O Odz

the perturbation is so small such that a_ (t) does not vary very much with time.to find the

value of an(t)
Let a_(t) =a® + Aal(t) + 2@ (t) +... (3.58)

Substituting (3.58) in (3.57) we get
a, (t) = —éZZ(an“’) 428l + %82 + .. )H® exp(imt) (3.58a)

Zereo Order Calculation:

Equating the coefficient of 1° we get the zero order calculation as

02 (t)

m

ot

=0 or a®(t) =constantt (3.59)

This gives the initial state of the system. Let us assume the system is in particular state ‘I’ at

t=0. Thatis a?(0)=0 or al® =g,
First order calculation:

Equating the coefficients of A in eqn (3.58a),
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Zal()=-, Tal OHI o0,

or a®(t) = —% j {z a®MtHY exp(la)mnt)}dt

ml—-

j [Z SuHS exp(ia)mt)}dt

:__I [H ® exp(la)m,t)]dt

Let the perturbation is turned on at time t=0 and turned off at time t=t. Now we can write

a®(t) = H<1> j exp (iw,, t)dt
. iom |t 3
—_'H rﬁ{e 1} (3.60)
h a)m|

Probability of finding a particle in m" state:

Probability P = a<1>(t)a<1>*(t)— ‘Hﬁﬁ) 12(eiwmlt_1)(e—iwm|t_l)
ml

2
)
H

= iz 2(1—coswyt)
P= @m (361)
- _2 ml 5 ==

2 2
a)ml h a)ml

sin®(aw,,t/2
The fig.(3.6) shows the plot of sin“(@nt/2) against ¢, ,

2
ml

Physical interpretation of the curve:

. sin (a) t/2)
The maximum value of ————— occurs when @, =0. Let @, = X
wml
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sin®(xt/2) :iﬁx_tj_@+ T

X x?|\2) 323

_imz
A

t2

"

sin 2 C()m|t/2
o} 8/4\
6n/t -4m/t -2/t 0 2n/t A/t 6m/t Wl

Fig. 3.6

a2
This is the highest value on the y-axis of the graph. The value of w is zero when
X
ﬁztnﬂ' or xX=awm,, :iz—ﬂn
2 t

27  4rxr 6rxr

Om SETECE T

etc. for n=21,23etc.respectively.

From the figure the main peak is proportional to t* and the breadth is inversely proportional
to t. Therefore the area under the curve is proportional to t. This indicates that the transition

probability per unit time is proportional to the ‘ON’ time of perturbation.

Fermi Golden Rule(Transition to continuum):

Ith

The probability of transition 1™ state to m" state is given by
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W= 2 4sin2(a2)m|t/2)

)

ml

(0] =5 e

(3.62)

Since v, appears in the denominator, transition probability is maximum when ¢, IS
small or E and E,are closer. If the energy levels are closer, they form a cluster or

continuum states.

Now, the total probability of transition=>"|a_(t)]°- If (M) is the density of final states

then o (m)deE Wwill be the number of such states in the energy interval g, and E., +dE

The total probability of transition to these states = [a, (t)|2 = “am (t)|2 p(m)dE

The main contribution for transition comes from the peak

. - 1 T 4sin?(w,t/2
Therefore transition probability T = F‘anl,) * p(m) j% dE

ml

But dE = Adw since E =hw

ml

o L wr o Fasin fa,tl2)
..T_%‘Hm, p(m)jw—zdw
The integral value is 2tz. Therefore T = hi‘H,f},)‘zp(m)Ztﬁ

or transition probability per unit timeis T = ;—”‘Hrﬁ]ﬁ) ® p(m)

(3.63)
This is Fermi Golden Rule. It states that,
The transition probability per unit time to states of continuum is

i.  Non-zero between continuum states

2
ii.  Proportional to |H"| perturbation

ili.  Proportional to density of final states
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3.8 Harmonic perturbation
Let us consider a perturbation is harmonic of frequency €O as

<k|H'(t")|m>

> 0 for —o<t'<0
or : o , (3.64)
H'w({t)=:2<k|Ho; |m>sinet' for 0<t'<t
0 for t'>t

where <k | Hg'| m>is independent of time.

The first order amplitude @@, (t') at t’is

t . .
ad (t'<t)=(in) | <k|H'|m>e'“"dt
0

t . .
:(ih)‘lj 2 <k|Hy'|m> sinat'e @t gt
0
_ 2<k|Hg'Im >J‘tei“’t' _giet
ih 0 2i

_ <klHg[m> J‘t{ei(wkm st _ (O —a))t'}jt-
h 0

eia)kmt'dtl

a® (') = <Kk H'0| m>| exp(i(a, to)t-1 exp(i(e, —o)t-1
Iz O + @ Oy — O

This reveals the amplitude depends on perturbation duration interval t and independent of
instantaneous time ¢”. The amplitude is appreciable when one of the terms in the denominator
is zero.Thus the effect of harmonic perturbation is either transfer or receive energy from the

system.

The probability of finding the system in kth state is given by

4<k|H'y|m>|"sin * (O — )t

a® (=t)[ = (3.65)

h 2(a)km _a))Z
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3.9 Adiabatic approximation:

This method is used to find approximate solutions to time dependent Schrodinger egn for the
systems where the Hamiltonian changes slowly in comparison eith the internal frequency of

wave functions.

Consider the schrodinger eqn iz %P =H{)WVY. (3.65A)

Here H (t) varies slowly such that a good approximation is obtained by solving sch eqn at

each instant of time.We assume H is constant and equal to instantaneous value H (t) where

t"is the value of t at which we calculate H.Then the stationary state wave functionobtained by

setting t=t’=const would satisfy
H )y, (x.t) = E,(()y, (X,T)
Since H is a slowly varying fn of time t’,the approximate soln can be written as
i t
Y. =y, (x,t)exp[—%IEn(t')dt'J (3.66)
0
When this wave functionis known at zero time then at later times we can write
i t
¥ =>a,(tw, (xt)exp (—% j E, (t')dt'J (3.66A)
n 0

Substituting (3.66A) in (3.65A)

ihZ[a +a, a;”jexp[——IE (t' )dtJ+Zanz//nEnexp[——_[E (t' )dtJ
-H (t)Zany/nEn exp[——j E,(t )dt]

Here we have used H (t)y,, = E v,

or mz( +a W"]exp(——jE(t)dtJ
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-t

j E, (t'")dt' | and integrating over all space we get
0

Multiplying the above eqn by v, *exp[

S| -

fzan'//nl//m *exp(—%i E, (t')dt'jexp{

t =t
[E. )t [dr+Y 8, [w, *%exp(—lj(En - Em)dt'}jr -0
0 n at hO

| =

Using orthonormal conditions
. « O i : 67
o ==Y [y, Lrde {exp(—hg(En —Em)dtj}dr (367)

To solve the integral of the above expression we know H (t)y,, (t) = E,, (D), (1)

oH H Vs

Differentiating w.r.t. t, = + _ %, .+ E, o

a  a ” at

Multiply this equation by y» and integrating,

L OH sy OV, OB ¢ & « Oy,
jl//m El//ndf-l_jl//m H?df— ot JWmWndT+EnIWm ot dT (367A)
0

or [yn*H _5§n dr=[(H wm)*%dr —E,[v, %df since, H is Hermitian.

Substituting in (3.67A) and simplifying,

oH
* | —w.d
Il// *%dfz_jlﬂ m(a,[l//n rj
"ot

Substituting in (3.67)

oH i ¢ ,
[ i vadrew (—h | (En—Em)dtJ_o

- 0 3.68
&, + ), EE (3.68)

m=n

Now, let us suppose that the system starts with ag =1 and an=0 forn=s.

By successive approximation we can solve for an,
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(aHj
, Ot e i | . M) o L om
ams+mem[—£!(Es‘Em)dt}o’ where (at jms— vy dr

oH
Neglecting the slow variation of (Ej ,

a. = Xp E —E — Xp ——(E_ -E 369
ms I(ES Em) 2 ( at jm5|:e ( 7 ( S m)t) € ( / ( N m)to):| ( )

where we have neglected the slow change of [5"‘) and the exponential factor is of the
ot )

order of unity.

Total probability of transmission to m™ state is

.

2

|2 4h 2

) (Em o Es) ) (370)

a,

3.10 Sudden Approximation
The sudden approximation occurs when the Hamiltonian changes appreciably during a very

short but finite interval of time t,. The sudden approximation consists of the change in
Hamiltonian discontinuous on different times. Let t,to be duration and to consider sudden
approximations, we consider the equation

lal k>

L3 NS O D 3,
ARG 371)

< f

ar=—

In sudden approximation the variation of 88:1 can not be neglected ; so

<fa|_I k>

afZJ‘;O o e
(Ek_Ef)

< fIH@®)[k> e t0
_{ (E.—E) exp( n Ef)tj}o

_J':)U{<f|H(t)|k>exp (_;_Z(Ek—Ef)tj.(_;(gk_gf)tj}dt (3.72)

i
xp{—%(Ek—Ef)t}dt

(Ex—Ey)



84

The condition of sudden approximation, by the help of uncertainly relation AE At=#, is

expressed (since At=t,is very small) as
h
—>>1 3.73
g (3.73)

The physical interpretation of this condition is that of the energy of the system changes by an

amount AE. In a time t, which is much less than the characteristic time associated with this

energy change, then the state of the system remains unaltered (i.e. there is no transition) and

S0 < f|H (t)|k >=0; so equation (3.72) becomes

af:%jg°<f'|H (t)|k>-exp{—%(Ek—Ef)t}dt (3.74)

If w, is the angular frequency of the transition from initial state k to a final state f, then

B —E : S0 that we may write

Wy =

a, =é [ ¢ <fIH@®Ik>e “*dt (3.75)

When perturbation is switched on suddenly, H (t) changes instantaneously in time At which

1ot »

is small compared to period (e, ) "so that the factor e“*in the above integral changes a

little and hence can be taken outside the integral, then we get

ar=— e[ 7 < fIH(t)|k>dt

1
n

e “* < f|H (t,)—H (0) |k>t,

i
7
='%0 e“r < f[H' k> (3.76)

where H'={H(t,)-H(0)} and may be taken as the maximum value of interaction during its

sudden switch on.

Therefore sudden probability of transition from state k to state f will be given by

< |H'|k>|?

R
o K

2
| a |2=;li2|<f|H'|k S (3.77)

This is used to calculate the transition probability under the influence of sudden perturbation.
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UNIT IV

4.1 Addition of angular momenta

Consider two non interacting systems (1) and (2) with angular momenta J; and J;
respectively. Now, the total angular momentum J=J;1+J,. The components as well as the total

angular momenta satisfy the fundamental commutation relations
b=l I, =1y Jxj=ij (4.1)

Let w,(j;,m,) is the simultaneous eigen vectorof j2  and J,, and J, has no effect on

them. Similarly v, (j,,m,)is the simultaneous eigen vector of j2 and J,, and J has

no effect on them. Hence we can write,

Iy (e my) = Jy iy + Dy (3ymy)
v (3 my) = My, (Jy, M)
J2v2 (1o Mp) = J, (o + Dy, (Jmy)
322 (1o My) = Moy, (J,,m,)

(4.2)

And the products  w(j j,mm,)=w,(j,m)w,(j,,m,) form a complete set of simultaneous

eigen vectors of mutually commuting set of operators J2,J,,,J2 and J,,. Using unitary

transformation, vector form of (j,, j,,m;,m,)can be transformed into (j, j,,j,m). Let

j. > J.and  w(j,, j,,m;,m,)be the eigen vector of J, belonging to eigen value

(ml + m2)
I (o Joy My M, ) = (Jy, + 32, )w (M), (1,m)
= (M, +m,)w; (:m)y;, (1,m,) (4.3)
= (M, +m,)w (i, Jo, My, M,)
Since |m|< j,,|m,|< j, then ‘m ‘g Ji+ J,. That is the largest value of mis (j, + j,) =]

because j, and ], are the largest valuesof m, and m, respectively.

For a given value of j, and j, let us find the possible values of j. Let

. . 1
=1and ==
h ) >
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There will be three possible values for m and two possible values for m,. Thus there will be

six possible ¥ values. They are of the form v (j,, j,,m,;,m,) as

1,1 : 1
1,=1=| correspondingtom, =1m, ==
l// 2 2) p g 1 2 2

1 1 ] 1
1,=1-=1| correspondingtom, =1,m, =—=
l// 2 2) p g 1 2 2

1 1 . 1
1,=,0,=| correspondingtom, =0,m, ==
l// 2 Zj p g 1 2 2

4.4
W 1,%,0,—3 corresponding tom, =0,m, = —% (4.4)

1 1 ) 1
1,=,-1,=| correspondingtom, =-1m, ==
l// 2 2) p g 1 2 2

1 1 . 1
w|1,=,-1,—=| correspondingtom, =-1m, =—=
2 2 2
The corresponding Mm=m, + M, values are §,1,1,—1 —1,_§
222 2 2 2
. 31 1 3 .
We can say that there are four states with mZE'E’_E'_E corresponding to the total

angular momentum j =g and two states with m= %,—%corresponding to j= % . Thus there

are two possible values for j as 3/2 and Y. It is possible to define six angular momentum

vectors of the form &#(j,, J,, J,M) as
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133 .3 3
1,—,—,= |correspondingto j=—,m=—
N2z 2) ponding o J=>.m=>
131 .3 1
1,—,—,= |correspondingto j=—,m==
22 2) POREING T 1= =7
¢ 1%% %Jcorrespondmg to j:;m:_%
(4.5)
13 3 .3
1,=,~,—=|correspondingto j==,m=-=
2153 2} ponding to = >
111 1 1
1,=,=,= |correspondingto j==,m==
L1550 2) pondingto  j=2,m=2>
11 1 1 1
1,=,= —=|correspondingto j==,m=—=
2155 2) ponding to  j =2 ;
Jjpand j, are the largest values of m andm,. Hence the largest value of

m=m,+m,=J,+J,

For this value of m we can write one function as

¢(j1’ j2’ jl + j2’ jl + j2)

=w (i Jo» J1v 12)

(4.6)

The next value of m is J, + J, —1 which has two possible values for m; and m, as

m=j and m,=j,-1

m=j,-1 and m,=j,.Thatis w(J;, Jo» by J>

Correspondingly we have two ¢-values as,
0,60 o b+ ),

P Jor i+ o i+ 12
Extending the discussion for m= j, + J,

to Y -vectors as

=D, v Jor i1 1)

_1’ j1 + j2 _1)

— N, we get a set of vectors for ¢ corresponding

4G P 1 PO $hys Jor i+ 020 o+, =)
(i by i —n+1j, -1) and Hhy Jor b+ 1oL Jy+ 1, —n) )
l//(jl,jz,jl,jz_n) ¢(j1,j2,j1+j2—n, j1+j2_n)

The smallest value of j will occur corresponding to
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J,—n=—j, or n=2j,. So the smallest value of m is j, — j,. So, the total
number of eigen states are given by,
hitis

Z(Zj +1)=(2j,+1(2],+1). It is very clear to express the vector ¢(j,, j,, j,m)as a linear

=l

combination of the vector y(j,, J,, M, M,)

B Jor §2m) = 2D Ciby (s ooy, ) (4.8)

my my

The coefficient ijfr’;f‘ml,mz represents the unitary transformation between two angular
momentum representations known as Clebsch-Gordon coefficients. In Dirac notation it is

represented as C,-jf,.{iml,mz <Jp oMM, | jy J, Jm >
Problem: Find the C.G. coefficient for the coupling of two angular momenta

] ) 1
=land j, ==
N IR 5

Solution:
For simplicity let us use the notations

P2 0m) = Giwiw (i iomm,) = v,
The six independent vectors are

Wity Wi120 Vo2 Wo1i2 Woaar2v W12 and

¢3/2,3/2; ¢3/2,1/2; ¢3/2,71/2; ¢3/2,73/2; ¢1/2,1/2; ¢1/2,—1/2

7 =y
Obviously, 3/2,3/2 11/2 (4.9)

¢3/2,—3/2 =W_112

Similarly, for the remaining vectors we have
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Bar202 = &1 1y T QWo12
Ba12, 112 = 8Wo 172+ AW 111
G212 =8V 1/ + W01
Ba12, 112 = 8Wo 12+ W 1112

The coefficients a gives the unitary transformation matrix.

We know,

I 4 =(+m(j-m+Dg,,, where J =] -iJ =(J) +(J,)

Also,

Mm@ M)y 1 i 12—,

0 ifm-1<—j

\/(1/2+ m)BI2—M )y ey I M —12-],
0 fm,-1<-j,

(Jl)fl//ml,mZ = {
(4.10)

(JZ)—‘//ml,mZ = {

3 3Y3 3 ;
Thus I Brroars = \/(§+Ej(§_§+lj¢3/2-1/2by using eqn4

1 -
By12112 = ﬁ J_W11/2 by using eq(4.70a)

= \/1§{/(1+1)(2 ~Dyou, +/U12+1/2)(312-1/2) }1;/1,,1,2 by using (4.70b)

1 /2 1 2
=— + .= .which give =—a, =,|—
\/5‘//1,—1/2 3‘//0,1/2 which gives & \/g 2 3

Applying the lowering operator again on @, 4,
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J By01 =+ 2x2 3/2,-1/2

1 1 2
or @y 1/p= E{(JJ- + (Jz)_){ﬁ‘/ﬁ,-uz + \/;'//0,1/2}

e R CR ) R I (R R A I TR T T T

or
¢3/2,71/2 = 2/3‘//0,71/2 + V1/3‘//71,1/2 and ¢3/2,3/2 =W 1 a2

¢1,2,1,2 is a linear combination of v, ,,, and w,,,, which is orthogonal to ¢3,2,1,2. This

demands

a,a, +a,a, =0
op B & _ U3 _ 1
a;, a, 213 2

1
hence, ¢,,,,, = as| ¥y 15 _ﬁ‘//o,uz

From the condition for normalisation

1
¢1/2,1/2 = ﬁ[\/z‘/ﬁ,uz _‘//0,1/2]

If the lowering operator J. is applied we get

1
¢1/2,71/2 = ﬁ[l/lo,—l/Z - \/E‘//—l,llz]

Thus we have

Bs12312 1 0 0 0 0 0)( Y112
Ps12-312 0 0 0 0 0 1| Wi
Bs12112 0 V13 V23 0 0 0| Youo
PP |0 0 0 J2/3 173 0 ¥o,-112
G212 0 V2/3 -J1/3 0 0 0| Wi
G212 0 0 0 1/3 —~N2I3 0)\¥W.i 1

C.G.coefficient
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Problem: Find the C.G. coefficient for the coupling of j, = % and j, = %

For the given problem, the four independent ¥ -states are:
Vi, = Va2 Vaia 2V a2 Wain vz and the possible values of j are 1 and 0.
Hence the possible ¢-states are

Pin = has Bos oo i1

Obviously P =V2u2
Ga=Y 112102
The remaining states can be written as

¢y = W12 TRV 41012
J7¢1,1 = \/E¢1,o

hence, ¢, = %[(Jl) +(32) v

Since ¢, is orthogonal to ¢, we have

1
Poo = ﬁ[Wl/Z,—l/Z - ‘//71/2,1/2]

The matrix transformation is

P 1 0 0 0\ Vi212

o 10 1UJ2 1N2 0 V2,412
Poo |0 1/\/5 —1/\/5 Ol| Waroar
¢ 0 0 0 1)\Wiioa02

C.G.coefficient

4.2 Commutation rules for angular momentum:

The commutation rules can be combined symbolically as,
LxL=ixL. (4.11)
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Two different components of the angular momentum do not commute. It will not be possible,
in general, to measure L,,L,,and L, simultaneously, because product of the uncertainties of

two quantities is proportional to the mean value of their commutator. It is of interest to obtain

the commutation relations of L with the components, L,,L , L,. Let us consider, for

oLy,
example,
S (A
= (L2L, -L L 2L 2L, -, LA+ (L 2L, L, L)
as  |L%L -L, L% o,
hence [L2,L, (L L,L,—L, L, L)+(L,L L, —L,L,L).

Adding and subtracting L,L,L andL,L,L, onR.H.S, we get

(L,L,L, -L, LL+L Ll —LLL)+(LLL,~L L +LLL ~LLL)

L (LL, - LL)+(L L, L L)L, +L,(L,L,-LL)+(L,L, —LL)L,

= —inLL,—inL L +inL L, +inL,L, =0. (4.12)
Thus we conclude that L*commute with L, . By symmetry, we conclude that it also
commutes with L, and L, . In other words it is possible to measure simultaneously L?and any

single component of L.

Eigenvalues of L,

We now try to find the eigenfunctions of L, that is, we want to satisfy the equation,

L, w=cy. (4.13)
or Ea—v/ =Cy
I O¢p
The solution of eq. (4.13) is
w="1(r,0)exp (ico/h), (4.14)

where f(r,8) is an arbitrary function of rand 4.
Now ¥ must be a single valued function of X, Y,Z.In this case increase in the angle ¢ by 27
should not change the wavefunction, so that
f(r,0)exp (icg/n)=f(r,0)explic(p+27)/h]
or
exp (ic2z/h)=1
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2—ﬂc:2m7r
fi

c=m~,
where M is an integer. Thus eigenvalues of L are
L, =mn (4.15)
The eigenfunction are
w=e" f(r,0). (4.16)
4.3 Angular momentum in General
The total angular momentum can be written as a sum of the orbital and spin angular
momenta:
J=L+S (4.17)
where J has the components
J. =L, +S, J,=L,+S, J,=L,+S,

J follows the same commutation rules as orbital angular momentum does, i.e.,

9,,9,|=ind, [3,,9,]Fin3,  [3,,3,]=in3, (4.18)
or equivalently
IxJ=ihl
and
[9,,3,)=19,.3, [[9,,3,]=0. (4.19)
Further b,,92]3,,0.2+3,2 492

= 3,,9,19,+3,19,,9,]+[9,,9,19,+3,]3,9,
=in)3,3,+3,3,-3,3,-3,3,]=0.
Thus the operator

J2=37+3,°+J," commutes with J,,J, andJ,.

Commutation relation of J,with ladder operators J, =(J, +iJ,) and J_=(J,—iJ)).
9,9, ]59,3,-3.3,=3,(3,+13,)-(3,+13,)J, =3, 3, -3, 3, -i(3,3,-3,3,)
=13, 3, |-i[3, 3, Find, —i(n3,)=ind, +13, =n(3, +id,)=hd,
Similarly |3, 3 —|=-nJ_

Commutation relation of J +and J —
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[9,,9.]=3,3.-3_3,=(3,+13,)(3,—13,)—(I,—i3,) (I, +iJ,)
=3, (3,13 +id,(3,—id,) =3, (I, +i3,)+id, (I, +id,)

On simplification, we get
= 2i(J, 3,3, 3,)=2i]3, 3, |=2i(-ind,)=2nJ,

Commutation of J2with J_ and J_

29, 2,200

Now J, 1. =37+3,"-i(3,3,-3,3,)
and I_3, =352 43y +ixdy —Iydx)
1 2 .2
SO I3 34y
or JX2+Jy2+J22=%(J+J_+ I_3)+35°
SO, [JZ ,J+ :[{%(J_FJ_+J_J+)+J22}:|,J+]

Ty J+]+%[J_,J+,J+]+[Jz2 J,]

2- 77
We known that [a,b,c]=alb,c]+[a,ch.
Applying this we get
1 1 1 1
[32,J+]=EJ+[J—1J+]+E[J+1J+ ]‘]—+EJ—[\]+’J+]+E[\]—’J+]J++JZ[JZ’J+]+[JZ’J+]JZ

= %\L (—2hJZ)+O+O+%(—ZhJZ)J+ +J,(nd,)+nI J,=0.

Similarly [32,_|=0.

Allowed values of Total angular momentum : J

Since J, and J*commute, they will have a set of simultaneous eigen vectors and therefore
can be simultaneously diagonalized. Let the basic vectors in the representation in which
J%and J, are simultaneously diagonal be w(Am). This will satisfy

J2w(Am)=Any (Am) (4.20A)
and J, w(Am)=mhy(Am) (4.20B)
where Aand mare real numbers (Jand J, are hermitian).. We will use commutation

relations to determine the eigenvalue A4 and M. Let,
J,=J, +iJ, (4.21)
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J_=J, +iJ, (4.22)
(J,T=J)) (4.23)
which satisfy the commutation rules :
9.3, |=-n3J, (4.24)
Similarly 9,3, |=+n3_
and 9,,3 |=—-2n3, (4.25)
. . - - 2 2 - 2
and the identities J,J =(J,+iJ,) (J,-1,)=3,2+3,2=i[3,,3, =32 =32+,
and J J,=3%-37-nd, (4.26)

Now consider the scalar product
. 2 ¥)=(w. 3,/ W)+ W3, )+, 3, )=, v. 3, W)+, v, 3, ¥)+(J,v.J,v)
(because J,,J, and J,are hermitian)
> (J,w,J,p) [because for any vector X, (X, X)>0]
Substituting w = (Am), we have
{p (Am), 3% (2m) [2{3,p (), 3, (m) }
Using equations (4.20A) and (4.20B) We have
fw (Am), AnZy (Am) | {mhy (Am), miy (Am) }
or A>m? (4.27)

Now from equation (4.24)

[‘]+1JZ]:(‘]+’JZ _‘]Z1J+):_h‘]+
Operating on the function yw (Am), we have
Jody (Am)=J,, I w (Am) =—1 I,y (Am)

or J,J.w(Am) =3, I, (Am) + 7 J .y (Am)
= J.may (Am) +7d,w (Am) =(Mm+D)Ad, y(Am) (4.27A)
or J,J .y (Am) =3 i (Am) + A J y (Am)

Since [J,,J,]=0

J2J w (Am) =3, J%w (Am) + Ak *J .y (Am)
or J%2J. (Am) = Ak *J,w (Am)
It is clear that the vector J,w (Am)is an eigenvector of J,belonging to the eigenvalue

(m+1)7# and of JZbelonging to the same eigenvalue An%of J2. Similarly, J, J,w(Am)is an
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eigenvector of eigenvalue (M+2)7 and belonging to the same eigenvalue A4°of J°. This

process cannot continue indentfinitely otherwise it will contradict equation (4.27). Let u be

the greatest eigenvalue of J, for the given eigenvalue AA°of J?, and w(Au) be the
corresponding eigenvector. Now from equation (4.27A)

3,0 () =(u+D)nd, w(Au
hence J.w(Au) =0,

Since (u+1) cannot be an eigenvalue of J,.Thus

J_J.w(Au) =0,
or (I2-37-nd,)w (Au) =0
or (A—p* = )Py (Au) =0

But w(Au) is not identically zero, hence s is the root of a quadratic equation. The larger root

of this equation is

11
=——+—(1+44
p==o+5A+44)

In a similar way
39—y (Am)}=3 3,y (Am) =3 _y(am)=(m-D) 7 {(J_y(Am)} (4.28)
and hence |32, |=0

I2{J —w (Am)}=J_J 2w (Am)=Ah* {J_w(im} (4.29)

It is clear from equations (4.28) and (4.29), that the vector J w(Am) is an eigenvector of J,
belonging to the eigenvalue (m—1)7J?belonging to the same eigenvalues A4° of J?, unless,
of course, if J_w(Am)=0. Repeated application shows that J_J_w(Am)is an eigenvector of
J,belonging to the eigenvalue (M—2)7% . This cannot continue indefinitely otherwise it will

again contradict equation (4.27). If g, is the least eigenvalue of J,then

3, w(Auy)=0

or (3%=3,7+1J, )y (Au)=0
or (A= p” + 1) WPy (A1) =0
or ,Ulz —#—A=0

The smaller root of the above equation would be
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11
=——+—(1+41
H 2 2( )

Thus =—Uu
and the eigenvalues of J,are
_/'lhl(_/'l-'_l)h’(/'l_l)hnuh

It follows that 24 must be an integer, i.e.,

or 1n:—1+1(1+4ﬂp).
2 2 2
Rearranging, we obtain
z:ﬂ(ﬂﬂj
2\ 2
. : oo 1.1
Thus A=](j+)) with ij,E,l,—,....

We may therefore infer that the eigenvalues of the operator J * are the number j(j +1)%?

where j=0,3,1,1,....
2 2

and each of these is (2 j+1) fold degenerate, the eigenvalues of J,for a given value of j
being
M=— ji,(= ] +D A,eeceernee, (J-D,ajh

4.4 Angular momentum matrices
The matrices of J*and J, are given
J,=mn
and I =j(j+)n’
We know that m (magnetic quantum number) varies from — jto+ ji.e., ithas (2j+1)
values. Hence the dimensions of these diagonal matrices will be (2j+1)i.e.,(2j+1) rows and

(2]+1) columns. The explicit forms of angular momentum matrices are shown below :

Jg =hlpe e e (4.30)
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NP 0
3252 .. R (4.31)
0 o i(+1)

Examples : Here we shall consider the following examples :

(i)  For j=0,J%and J,are represented by null matrices of unit rank: (0)
)  J=1. inthiscase m=1, -1
2 2

Dimension of J?matrix =(2j+1)={2 X (1/2)+1}=2

i.e., there will be two rows and two columns.

Now Jzzhzj(j+1):h2%(%+1j:(3/4)h2

2 .2(3/4 0
) ‘h(o 3/4)

Further Jzzmhzlhformzl and —lhformz—1
2 2 2 2

(12 0
Jz‘h(o 1/2)

Also J, =r{(j-m)(j+m+1)}
Only upper diagonal appears and rest of elements are zero.
J, =h 11 1+£+1 =0 forjzlandm:l
2 2)\2 2 2 2
J, . =h E+l E—Ltl =h forjzlandm:—1
2 2)\2 2 2 2
_+(0 1
I, —h(o oj

3 =h{(j+m)(j-m+1)}
Only lower diagonal appears and rest of elements are zero.

For j:%, andm:%, J =h

and for j:l, andm:—l, J =0
2 2

(iii) J=1.In this case m=1,0,-1
Dimension of J? matrix =(2j+1)=3
i.e., there will be three rows and three columns.
Now J2=n*j(j+D=h" 1-(1+1) 2K
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2 00
J?=n*|0 2 0 (4.32)
0 0 2
Further J,=m#=h,0,— according to the values of mas 1,0,—1.
100
J,=n10 0 O (4.33)
0 0 -
Now J, =r{(j-m)(j+m+1)}
=0 for j=land m=1
21 for j=1and m=0
=21 for j=land m=-1

4.5 Physical meaning of Identity

The word identical in quantum mechanics is to describe the particles that can be substituted
for each other under the most general possible circumstances with no change in physical

situation of the system.
Symmetrical and anti symmetric wave functions

i) Symmetric wave function s : A wave function is symmetric if the interchange of any

pair of particles among its arguments leave the wave function unchanged.

ii) Antisymmetric wave function W : A wave function is antisymmetric if the interchange

of any pair of particles among its arguments changes the sign of the wave function.
If P is an exchange operator, then we must have
PW, (1,2) = ¥ (2, 1)
PWA(L,2) = WA (2, 1)

This symmetry property of the wave function has relationship with the spin of the particle.
This relationship is listed here in the following postulates.
1. The identical particles having an integral spin quantum number are described by

symmetric wave function, i.e.,

PW(1,2,3,..1,...s..n) = +¥ (1,2,3,...S,...I,...n)
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This class of particles, i.e. the particles described by symmetric wave functions are
known as Bosons and obey Bose-Einstein Statistics. The examples of Bosons are photons

(spin 1), netural helium atoms in normal state (s = 0) etc.

2. The identical particles having half odd integral spin quantum number are described by
antisymmetric wave functions, i.e.
PWa(1,2,3,..1,...s.n) = -Wx (1,2,3,...S,...1,...n)

This class of particles i.e. the particles described by antisymmetric wave function obey

Fermi-Dirac statistics and the particles are known as Fermi-particles or Fermions. The

. .1
examples of Fermions are electrons, protons, neutrons, muons (all spin E)

4.6 Construction of Symmetric and antisymmetric wave functions

An antisymmetric unnormalised wave function can be constructed by adding togather all the
perumated wave functions that arise from the original solution by means of an even number
of interchanges of pairs of particles and subtracting the sum of all the permuted wave
functions that arise by means of an odd number of interchanges of pairs of particles in the

original solution.
In the case where the Hamiltonian does not depend upon time, stationary state solutions
w(12,.n)=¢(1,2,..n) e =t/ (4.34)

can be found and the time independent Schroedinger’s eqn. can be written as

H(1,2,....n) ¢ (1,2.n) = Ed (1,2,..n) (4.35)

There are n ! solutions of the eqn. (eigen functions) derived from ¢ (1,2..n) by means of
permutations of its arguments belonging to the same eigen value E. Any linear combination
of these eigen functions is also an eigen function belonging to eigen value E. Hence the

system is degenerate and this type of degeneracy is called exchange degeneracy.

H(1,2) ¥ (1,2) =E ¥ (1,2)

The 2 ! = 2 solutions of this equation are ¥ (1, 2) and ¥ (2,1). The solutions correspond to a
single energy state E.

The symmetric wave function can be written as
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W= P(1,2) + ¥ (2,1) (4.36)
and the antisymmetric wave functions is written as

Wa=Y(1,2)- ¥ (2,1) (4.37)

Similarly for a system of 3 particles, the Schroedinger’s equation is
H(123)Y(1,23)=EY (1,2,3) (4.38)

This equation has 3! = 6 solutions corresponding to the same eigen values E. The six possible

functions obtained by exchanging the indices of the particles are

Y (1,2,3), ¥(2,3,1), ¥(3,2,1), ¥(1,3,2), ¥(2,1,3), ¥ (3,1,2) Out
of these six functions, those arising by an even number of interchanges of the pairs of

particles in original wave function ¥ (1,2,3), are

Y(1,2,3), ¥(2,31), ¥ (3,1,2)

and the functions arising by an odd number of interchanges of pairs of particles in original
function ¥ (1,2,3) are

¥(1,3,2), ¥(2,1,3), ¥ (3,2,1)
So the symmetric wave function can be written as
Wo=W(1,2,3) + P(2,3,1) + ¥(3,1,2) + ¥(1,3,2) + ¥(2,1,3) + ¥ (3,2,1)  (4.39)
and the antisymmetric wave function is

Ya=W¥(1,2,3) + ¥(2,3,1) + ¥(3,1,2) - { ¥(1,3,2) + ¥(2,1,3) + ¥ (3,2,1)} (4.40)
Here ¥ and W 4 are unnormalised wave functions.
4.7 Distinguishability of identical particles

The two identical particles can be distinguishable from each other if the sum of the
probabilities of the individual wave functions in two states is equal to the probability derived

by the symmetrised wave function i.e, if

[ wL2)P + w2 P=|{w(1.2)+ (2D}

=1 y(L2)F +w(21)F +2Rey|L.2)y"(21) (4.41)
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where Re denotes the real part of {y(1,2)y" (2.)}

It is possible only when overlap of wave-functions ¥ (1,2) and ¥ (2,1) is zero or
2Re {\V(l, 2y (2,1)} = 0. Thus when the co-ordinates (space and spin) of two particles are not
the same between exchange degenerate functions, the interference term,

i.e.2Re ¥ (1,2) ¥ (2,1) becomes zero and particle co-ordinates do not overlap.
4.8 The Palui’s Exclusion principle:

A particle, during its motion in space reflects the properties of the statistics which it obeys.
Consider two particle system which contains electrons in indistinguishable positions.

Electrons are %spin particles and obey Fermi Dirac statistics. If they occupy the same

position in space and have the same z-component of spin, it can be seen that the eigen

function of exchange operator for a case will be

P12 Wa(r1,81; 12,52) = —Pa(r2,S2, r1,51)

= LI’A(I"l,Sl; I’z,Sz) (442)
—0if {“ —h (4.43)
S]_ == Sz

The non existence of the wave-function under these conditions implies that there is zero
probability that the particle will occupy the same point in space and have identical spin
orientations. Pauli exculsion principle which states that no two particles obeying Fermi

Statistics can exist in the same quantum state.
4.9 Pauli Spin Matrices for electron

Like orbital angular momentum operators Ly, Ly, L, the spin operators, Sy, Sy and S, to be

associated with the components of spin angular momentum satisfy the commutation relations.

S, S,1=5,S,-S,S, =inS,
[S,S,1=S,S,-8S,S, =iAS, (4.44)
[Sz, Sx] = Ssz - stz =ih Sz
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If we consider the case with spin =% i.e. electron, then according the Unlenbeck and
Goudsmit hypothesis each of operators Sy, Sy and S, must have just two eigen values %h and

—%h . Now we introduce new auxiliary operators oy, oy and o, such that

1 (4.45)

The following properties of 6’s may be noted:

Since the eigen values of each S are to be just %h and —%h, the eigen values of each ¢ must

be +1 and —1. Each of the operators 2,052,062 must therefore have only the eigen value 1

and such operator is only unit operator, therefore.

(4.46)

<N
1
9
N
I
-

According to (4.45) and (4.46), the commutation rules satisfied by o s must be
[c,,0,]=0,0, 0,0, =2ic,
[c,,0,]=0,0, 0,0, =2ic, (4.47)
[c,,0,]=0,0,—-0,0,= 2icsy

Now 2i (O'XO'y + ayax): (2i O'X)O'y +0, (2ic,)

= (O'yO'Z - O'ZO'y)O'y +o, (O'yGZ - O'ZGy)

Hence o,0, =-0,0,, so that oxand oy anticommute.

Similarly any two of the ¢’s anticommute in pairs

o0, +0,0,=0
o,0,+0,0,=0 (4.48)

c,0,—0,0,=0
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Finally from (4.47) and (4.48) we have

o0, =10,
o,0, =10,

0,0,=l0,

Since each o has two eigen values, so (2 x 2) matrix may be expected to fulfil the purpose
and we begin by associating with o,, the simplest (2 x 2) matrix having the eigen values 1
and —1.

1 0
= 4.49
% {o —J (449)
Now we have

0,.0,= a byl 0 _|2 ~b (4.50)

lc dj|0 1] |c -d
and o=t Of2 Pj_f2a P (4.51)

“* 10 -1jjc d| |-c —d

But o, and o, anticommute, we must have

a -b a b
0,0,+0,0,= + =0
ey
2a O
=0
{O —Zd}
Thisyieldsa=d=0

So that every matrix that anticommutes with (4.49) as oy and oy do, accordingly o, must have

the form

—Ob 4.52
O-X_CO ()

The eigen values of (4.52) are + V(bc) so that if they are to be 1 and —1, we must set bc = 1.

01
And simple possibility is to take b =c =1, so o, =L 0}



105

0 —i
It then follows form (4.48) that the matrix to be associated with oy is L 0} and hence

complete list of 6’s becomes

01 0 —i 1 0
oy o

These matrices oy, oy and o, are called Pauli spin matrices associated with the components of

spin angular momentum.

01 0 —i 1 0
szlh S :17, ) ' ,szzlh (4.54)
2110 21]i O 2 |0 -

These are same as Jy, Jy and J; in total angular momenta (Angular Momentum chapter) when

=3

2
Thus we have o “ =0} +0; +07 =3

and S °=S2+52+8?

2

=hT(0'X2 +0o} +a§)=§h ?

4.10 Electron spin hypothesis : Stern -Gerlach experiment

The spin phenomenon has no classical analogue and approaching its theory we shall begin the
recounting an empirical clue. In 1925, Uhlenbeck and Goudsmit proposed that each electron
spins while revolving about nucleus and has a quantized spin angular momentum and being
an electrically charged body possesses a spin magnetic moment. This proposal was successful
in correlating spectral data for both unpertubed and perturbed complex atoms and in
interpreting the results of the Stern-Gerlackh experiment concerned with the deflection of

atoms projected into an inhomogeneous magnetic field.
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‘Spin up

[s |
Atomic beam —»

.m\

Fig. 4.1 Spin down

A beam of neutral atoms or molecules, collimated by slits S;and S, is allowed to pass

through a non-uniform magnetic field B. The atoms or molecules are defected by a force

which according to classical physics, is given by

F=vV(m.B) (4.55)
Where m is magnetic moment vector.

The arrangement is such that in the region through which the beam of atoms passes, the
direction of B varies slowly, but the magnitude of B is strongly dependent on position, thus if

thus if the projection of m along the direction of B is denoted by m,, then we have

approximately.
F=mg; VB

By measuring the deflection on the screen, the force F and hence the magnetic moment
along B may be determined. Classically mg can have any value ranging from —Mto +Mi.e.

we would expect a single continuous trace on the screen; but experimentally, instead of a
continuous trace, discrete equidistant traces were observed, giving clear proof of quantisation
(discrete values) of the magnetic moment. Since the magnetic moment vector m appeared to

assume certain discrete directions in space, it is said to have undergone space quantisation.

Stem and Gerlach also measured allowed values of Mg to moderate accuracy and found that

the values of Mg appeared in the range from minimum —M to maximum + M. The value of



107

maximum projection of m (i.e.m) is conventionally regarded as the magnetic moment of the
particle. Now the magnetic moment of charged particle m is related to angular momentum L

by the classical relation.

m=-_° L (4.56)
2m,

Where m = mass of electron, € its charge. This relation, being a simple proportionality

between m and L is expected to be true in quantum mechanics also. Since any component of

L has (21 +1)eigen values, we may expect the projection of m in a fixed direction, such as on

B, to possess also (21 +1) distinct eigen values and to be expressible as

eh

MB=———m=—um
2m,
(4.57)
where sty = 29203210 J [ Tesla
2m,

is called Bohr magneton and M can assume the values from —1to + 1 with steps of unity, i.e.,
(21 +1) values. Since lis an integer, (21+1) is an odd number, therefore we expect an old
number of traces (21 +1) in Stern Gerlach experiment. But a beam of silver atom yielded two

traces in this experiment; which is an even number and a value of M equal of

m=—""m—,m8 (4.58)
2m,

The extra-ordinary implications of this experiment could not be explained immediately. Later
Goudsmit and Uhlenbeck hypothesis of existence of electron spin and intrinsic magnetic
moment provided an explanation for this. On the basis of this theory the silver atom in an S-

state has two projections possible in space, namely.

2m,
The positive and negative signs signify the orientations of the magnetic moment in space, i.e.,
up or down. Goudsmit and Uhlenbeck also assumed that the electron has an intrinsic (or

spin) angular momentum, but this is not easy to measure directly as the magnetic moment.
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The existence of intrinsic angular momentum of electron seems correct by the following
arguments :

Q) Electron has a magnetic moment which may be assumed to be due to some
internal circulating currents of charged matter, then the appearance of an intrinsic angular
momentum is expected together with a magnetic moment.

(i) Conservation of angular momentum for an isolated system such as an atom
can not be maintained unless the electron moving in an electric field of nucleus consists of an

intrinsic momentum.

Dirac’s relativistic theory given a deeper understanding of intrinsic angular momentum and

magnetic moment of the electron. It is conventional to associate spin S with the magnetic

moment as
SN
2 2m, (460)
h eh
S=——, m=+
2 2m,

Theory of Stern Gerlach Experiment : The separation of beam of silver atoms into two
components in Stern-Gerlach experiment may be explained as follows : Let an atom of
magnetic moment M enter a non-uniform slowly varying magnetic field B. Then the force

acting on the atom, according to classical physics, is given by

F=V(m.B)

If magnetic field B is assumed along Z-direction and @is the angle between m and B, then the

force on atom,

F =m cos H—B (4.61)

z
Classically 6 can have all possible values ; but quantum mechanically, according to property
of space quantization, it can have only two discrete values. When atom enters the non-

uniforms field, it experiences an acceleration along - direction given by
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where M, is the mass of atom. If L the length of magnetic field and V the velocity of atom

along the directions of beam, then time taken by atom in magnetic field.
t==
Y

If we assume the acceleration along :- direction to be constant, then displacement of atom

along ;- direction is given by

( m cos 9(8Bjj
:1_62@ gmme[ L ](@) (4.62)
2 M, v) 2 MV “ )\ oz

This is classical expression for the displacement of atom in an non-uniform field. Quantum

mechanically, due to space quantization cos @==1, therefore for spin half particles, we have

2
Z=+E mL" 0B

T2My oz

(4.63)

This expression gives two directions for spin half particles, which is actually observed in
Stern — Gerlach experiment. Thus Stern — Gerlach experiment provides a satisfactory

experimental evidence of the Goudsmit and Uhlenbeck hypothesis of space quantization.

Limitations of Stern-Gerlach Experiment

1. The experiment can be carried out only for neutral atoms or molecules ; it can not be
carried out for changed particles.

2. The Stern-Gerlach experiment can not be performed even for those neutral atoms or

h
mB

z

molecules which remain in the field for a duration shorter than

4.11 Scattering Cross — Section

The effective area presented by the target to the incident beam of particles in the process of
scattering is called scattering cross section. Let a beam of particular of flux N is incident on a
scattering centre; particles are scattered in all directions. If dN is the number of particles
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scattered per unit time into the solid angle dw located in the direction 6 and ¢ with respect to
the bombarding direction , then dN will be proportional to the incident flux and the solid
angle taken. Thus we can write,

dN = o(6,¢) N dw (4.63A)
where o(6,¢) is the proportionality constant. o(6,¢) has the dimensions of an area. This can
be regarded as the cross — section of the incident beam scattered into the solid angle dw about
@and ¢. The proportionality constant is known as the differential scattering cross — section.

The total scattering cross section (c¢) IS obtained by integrating eqgn. (4.63A) over the entire

solid angle.
Nscar = de :ja(a,¢)Nda)= Nja(9,¢)dw
=N o since, oi- j0(0,¢)dw
Thus o, = Ncay
N

The cross — sections are usually measured in barns (1barn = 10** cm?) or millibrans

scatterer

Fig. 4.2

4.12 Quantum mechanical discription of scattering process:
a scattering experiment, a beam of particles impinges on a target which scatters them in a
sphere around the scattering centre. Figure (4.2) explains the general behaviour of the

particles scattering. In the quantum mechanical description of scattering, the total
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wavefunction can be regarded as consisting, of two parts, one representing the incoming part
and the other, representing the scattered part.
The complete wavefunction is given by
ikr

v=e% 1t f(e,¢)eT (4.69)
The first term represents a particle moving in the positive z-direction. The second term
represents a particle moving radially outward; its amplitude depends upon 6 and ¢ and is
inversely proportional to r.

The magnitude of the incident flux density along z-axis is

12
Vwind = v‘e "¢” where v is the velocity. (4.65)

=V
the magnitude of scattered flux is

ikr |2

Wl =V (e)eT - r—V2| £ (o) (4.66)

Let the scattered particles are intercepted by a detector of area dA which is placed at a
distance r from the scatterer. The solid angle subtended by the detector at the scattering
centre is

da):d—A or dA =dwr? (4.67)

r2
Therefore, the number of particles crossing the area dA per sec. is
, dA

r—”2| FOF dA=v| F(O)f 3= vl 1 (O)f do (4.68)

Now the differential scattering cross — section o(0) is defined by

o(0) dw = (no. of particles scattered into de per unit time) / (no. of particles incident per

unit time)
V(@) do
v
or a(6) =|f(9)?
(4.69)

This is the expression for differential scattering cross — section.
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The Born approximation

When the kinetic energy of colliding particles is large compared to the interaction energy,
then Born approximation is best applied.

4.13 Perturbation approximation We wish to solve the wave equation for a relative

motion, i.e.,
_ﬁv ‘w+V (r)y =E where p = — L2 (4.70)
211 v =R M7 m+m, '
Its solution in asymptotic form is given by
) e ikr
w(r,0,4) —e"“*+1(6,9)
' 4.71)

Where €™ represents the part of the particles moving in the z- direction and the second
term represents the part which is moving radially outward after scattering.
Equation (4.70) can be written as

Vip+kty=U(r)y,

where kz:zﬂE and  U(r) _2WV (1)

hi2 hi2

Substituting =€ +v(r) where Vv(r) represents scattered wave part which is a small

perturbation . We have,

Ve ™ 1 (n) [+k2le ™ +v(n)|zU(r)e ™ +v(r)]
or v e+ ())tk g v (0] UM g+ u v )

since v(r) is small in comparison with e ' “* we can neglect the term U(r) v(r)

Hence
Ve + Viu(r)+ ke +k?v(r) = U(r) e'**
or Vu(r)+k*v(r)=U(r) e™  since Vi =—kZe™ (4.72)

Therefore we have to solve the inhomogeneous wave equation the right hand side is known.
Sufficient criterion for the validity of our solution is
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v(r) | «|e'*y =1, forallr. (4.73)
Scattering cross — section :

The solution of inhomogeneous equations (4.72) can be expressed as

o(n)=[G,_ (rr) F(r)dr

where G,. is the Green’s function.

For a free particle, Green’s function is expressed as,

je (r,F) = e

K Ar|r-r'|
eik|(r—r')| - ,

u(r):j—er_r, F(r')dr

e ik|(r=r")|

u(r):-jm u(r)e™ dr (4.74)

We assume that U(r’) falls off rapidly for large r’ so that there is an asymptotic region in

which r is large in comparison with those values of »’ For r — oo,
' 2 '
(r=r) =r’+r —2rrcos®

2 '
=r’+r —2rre@ where w =cos®

2
r 2rro
= I’2 1+—2——2
r r

[ 2r a)j
= 1-—— asr — oo
r

or

(

1/2
2ro .
=rl-—— =r-row
r—o r

Similarly,

Now eqn (4.74) becomes

v(r) = __f (1 ° }ikre_wu (re*dr

V(r) |rﬁw=_$eikr‘[ U(r')eik(z‘—wr‘)dr'

NOW, l//(r) — eikz +V(r) — eikz N 1 |kr U (r )elk(z —ar )dr
47zr



114

ikr
Comparing this with y(r) = + £ £ (9,¢) ,we have
r

f(0,¢) :—ij. U(r-)e ik(z_a,r')dr.

Denoting the incoming wave by the vector Ko and the scattered wave by K, we can write

Kz =Kn,.r =K,.r

Therefore, f(0,¢)= ij. U (r")elito-rdr
47
Let us define a vector K as K=Ky-K
Now, f(0,¢)= _ij" U (r')e[iK.r']dr,
A
The scattering cross section

1
1672

(b

a(0,9)=|f(0,9) =

L2
j U (r)el™"1dr

(4.75)

This gives the total scattering cross section.

4.14 Scattering by Spherically Symmetric potentials : Partial wave analysis

Consider a particle of energy E which moves in a central, spherically symmetric force field .
Let the wave function v is the solution of the Schroedinger equation

Vzt//+zﬁ—T[E -V (r)]l// =0, : (4.76)

We have assumed that V is a function of r only. In a special case of symmetric problem, let

the wave function is independent of the angle ¢. Therefore the general solution of eq.(4.37) is

v = Ry(r) Pi(cosb), (4.77)
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where Ry(r) :Z'—(r)and P\ (cos 0) is the Legendre polynomial of order |. y, satisfies the
r

equation
d? I(1+1
o {kz UG- )}z.—o (4.78)
2me 1" 2mV
where k:{ Y } and U(r) = mhz(r)

To study the nature of asymptotic behaviour, we consider r to be so large that the U and |
terms in equation (4.78) can be neglected. Then the solution of equation (4.78) is of the form

e kT Hence the solution is

+|kr

y= Z p, (cos 9) 24 Z p, (cos 0) (4.79)
Therefore, the general solution is
e +ikr e —ikr
y = p,(cosb) {C, — D, - } (4.80)
|
Here C,and D, are constants.
From the quantum mechanical description of scattering,
) ikz
p=e""+f 6)=- (4.81)
From eqns. (4.80) and (4.81) we have
e ikr e +ikr e —ikr
eikz + f () =ZP|(COSQ){C| ; +D, : }
|
e sin[¢ —17/2+6,]
or eikz + f (0) _Z P (cos6)[b, ] ; . (4.82)

where In/2 has been written for convenience in place of w/2. Other constants have been
generalised into the new constant by. The quantity & is the phase shift of the I partial wave. It
measures the amount by which the regular function sin (€ - (1/2) | n+8;) is displaced in C,
relative to the free particle function fi(C). Thus the effect of the scattering potential is to shift

the phase of each outgoing partial wave.

To evaluate the constant b;:

ikr s

From Bauer’s formula, substituting the value of e **" in eq. (4.82) we get,

sin[g“—l;rlz]

>i (21 +1)R, (cos 0) ;
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ZI (2 +1) P (cos O) sin(¢ — (1/ 2)I ) + kf (Q)e* = Zb P.(cos&)sin(¢ — (1/ 2)lz) + 6,

i(¢-1712) —i(¢712)

or i (2+1)R (cos) ;IE +kf(0)e'”

i (-(112)Ix+d) _e -i(¢-(1/2 )I7r+&)

2i

= 2.0 A (coso)

or ei{{Zi'(Zl +1) p, (cosa)e-“”’z}—{zb. p, (cos ) e ¢/211a }+2ikf (6’)}

:e“?HZi'(ZI +1)e""'? p, (cos@}—&lbﬂ(cos@) gt/2lz=ia }} (4.84)

Since e’ and €™ are linearly independent, each of the quantities in square brackets must
vanish. Therefore from the coefficient of e, we have

S {i") @2 +)-be R (cosH)e™? =0

or b =i' (21 +1)e" (4.85)

Using egn. (4.85) into equation (4.84) and equating the coefficients of e’ to zero.

2ikf (6)=i' (21 +De

2i6, 7|I7r/2

R (cosd)— > i' (21 +1)R (cos O)e """
|
_Z (21 +1)R (cos O)[e? 1] e =it (4.86)

=—> (21 +1)P(cos )’ [e“s' —e™ J

f(@z%fle +1)R (cos e {ed‘z—?ﬁ

or f(@):%i(m +1)P(cosO)e  sing, (4.87)

The differential cross —section is then o(0) =| f(6) |2

kiz [21 +1)P (cos O)eis: sin 5, ] 2
2

o(0) i (21 +1)*P? (cos@)sm o) (4.88)

1=0
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The total scattering cross — section is the integral of the above eqn.

e. o= | a(e)dwzzﬂj_j £ (0)/2d (cos 6).

@

o= 21 jj (6)|d(cosd).
- %Zﬂl(m +1)2P?(cos @) sin? 5,d (cos )
|

- i’; (21 +1)? sin? (Slfllﬂz(cos 6)d (cos )
|

27 . 2
= 22% 21 +Dsin?s —=—
k2 2@+ ' 2l+1

from the orthogonality relation

_|.+l P?(cos®) d (cos 9)=L
-1 21 +1

Hence, o; = 1—7; > (2 +1)sin’ 5
|

(4.89)

(4.90)

The eqgn. (4.90) shows that different partial waves contribute independently to the total cross

— section. Thus the phase shifts completely determine the scattering, and scattering cross —

section vanishes when each of the §, is 0° or 180°. Cross section is maximum when

01 =xm/2, +3n/2,...

Phase shifts are related to the potential energy function by the relation

Sin o= - J.a\i

SRS

Where fi(€) and F,(£) are the functions in the differential equations
2
d*f, +{1—|(I+1)}f. 0

dg” ¢
and d ZFZI +{1_V_ I +21)}F| 0
d¢g E ¢

To find the Phase shifts (3 ):

Multiplying equation (4.93) by f; and equation (4.92) by F,and subtracting, we get

d ., 1V
E[f' F-fF ]+EF,f|=O

When £ — o

(4.91)

(4.92)

(4.93)

(4.94)
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[f'F-fF' ]:cos[g—;lﬂjsin(g“—élﬁﬂﬂj

-sin [;—1I7rj cos (;—1Iﬁ+5,j =sin g,
2 2
Hence from equation (4.94), we get

d—sina‘|+\iFI f,=0
dg E

. V
or S|n5,:—IEF, f,dd
when the phase shifts are small, i.e., Fi(g) - fi(<).

5=-[ IO d¢ (4.95)

where a is the range of potential energy function.
At low energies approaching zero, only phase shift for I=0 partial waves are important and

scattering becomes isotropic.

4.15 Optical theorem. The optical theorem relates the total scattering cross — section to the
scattering amplitude in the forward direction (the scattering amplitude for 6 = 0). Substituting
0 =0 ineqgN. (4.87) we get,

f(O):% " (21 +1)P (cos(@))e “, sin g,

1=0

But P(cos 0)=R (1) =1
f(0):%§(2l +1)(cos S, +isinG,)sing,
The imaginary part of f(0) i.e., Im f(0) is given by
Im £(0) = Z(ZI +1)sin 25, (4.96)
According to eq. (4.90), we have

o, = :ﬂ (21 +1)sin 5_{

1=0

> (@ +Dsin * 5,

-0

z—\l—\

o o =47”. Im f(0) (4.97)

Thus the imaginary part of fprward scattering amplitude measures the suffering in intensity of

incident beam due to scattering.
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UNIT V

5.1 Schrodinger relativistic equation (K.G.Equation)

Classical Hamiltonian function is given by
H= 1 2 2 2
(px + Py +p;)+V
2m

Schrodinger equation in Hamiltonian form is

ih@l/l(r,t) __n?
ot 2m

Vay(r,t) +Vy(r,t)

Let the particle of rest mass mg is moving in free space (V=0)

Now, the velocity of the particle is given by,
V=X +y+17

Energy E=mc?= __MoC”_ where 5- "
J@-p? ¢

me(x*+y2+2)°>  mv: mipicd

p2+ P2+ p’=
o -5

2

2 2
D, + P2+ p? + my%c?- EX =0
X c2

Using the operators,

E—inl p =" 2 etc., we get
ot’ " 27 ox

o o8 & 4xt ,, 1 ¢

—+—+—-——mC ——
S G S | R el &

-5 @-pH

BY using eqn.(5.4)

m cz(

(5.1)

(5.2)

(5.3)

(5.4)

1 _1j
1- B2

(5.5)
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N R R 1 8
or o 0O A e L O
[8x2 EY P e

1 o7 mzc?
d (Vz_??}”: Y
, _ Mgc” 2_ 10
o'y = 52 Y where O (vz __at_j is called D’ Alembertian operator
C

The above equation is called Klein-Gordan equation for free particle.
5.2 K.G.equation in the presence of electromagnetic field
Consider a particle of charge ‘e’ with rest mass mg in an e.m. field.

The equation of motion is written as

d m,v e
—| —=—=|=-eE-—(vxH
dt{ ’—(1V2/CZ)J e C(V )

(5.6)

(5.7)

(5.8)

where v-velocity of the particle, c-velocity of light, E-electric field intensity, H-magnetic

field. E and H can be expressed as

E——V¢—1% and H=VxA.
c ot

Here, A and 4 are the vector and scalar potentials.

Substituting in eqgn. (5.8) we have

L L =—eVg + _%__[VX(VXA)]
dt (1—V2/C2) cot ¢

Consider the x-component value,

E(Lj_ea¢ [v (curl A), —v,(curl A),]

t /(l—vxz/cz) X c ot

(5.9)
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=e%+g(d&—ap‘*vx—ap“v —anv]—E[v (% %}rv(a&—a&ja&}
ox c\ dt  ox oy 7 oz ° Y z

e%+EdA‘—E aA‘vx+a'%v aAZvZ
ox c¢ dt  cl| ox ox Y ox

_ed? BOA O]

T ox ¢ dt caxA‘VX+A/Vy+AZVZ]

d Mm,V, e 0

e

This egn. can also be written as

%[ ol moczm+e¢_g(A.v)H:§H— N TP +e¢—§<A.v>H (5.11)

OV,

This is the Lagrangean equation

ie. di(aa\'/- j = % , where we have assumed L= _m c?,/@1-v?/c? +e¢_E(AV)
t . X c

. 2
Canonical momentum p — oL _1 mgc 2v, € A

o, 2. Ja-v?/c?) ¢ ¢

or in general,
meyV e
p=——"——-—-A (5.12)
Ja-vife?) e
Total energy E=) pd,-L=pv-L

2

:%—%(Av) +myc?/@—Vv?/c? —e¢+%(A.v)
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= ——(1111\‘/’2/(:2) [v2 + cz(l—vz/cz)]— ed

E= My (5.13)

Ja—viey !

From eqn. (5.12)

e myV
p+—A=——
c (L-v?/c?)
2.2
e 2 2 m, v
or +—A) ‘+mic’=—T5
P+ 0 @-v?’/c?

2
— 2 — -1
—(p+gA)2+7m0C _12{ m0C2 } _—2(E+e¢)21
c c Cc

@1-v?/c?) Ja-v?i/c?

. 2
sinceE=__Mo

Ja—vien !
cz(ij%A)2 +méc* —(E+eg)* =0

or (cp +eA)’ +mic* — (E +eg)’ =0 (5.14)

5.3 Dirac’s relativistic equation for a free electron

Dirac modified the Hamiltonian which is linear in momentum and mass as
H =ca.p+ fmc’ (5.15)
We know the eigen value eqn. Hy = Ey Which can be written as
(E—-ca.p—pAm,c*)y =0 (5.16)
Using operators for E and p

(ihg +ihca.V — pm,c?)y =0
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Any solution of the above egn. must be the solution of Schrodinger relativistic egn
(E* — p’c® —mich )y =0 (5.17)

Multiplying egn (5.16) by (E+ca.p+pmc’)  (keeping p, p,and p,commute;
a and S commute with E and p, while « and £ do not commute ), we
can show that this agrees with schrodinger relativistic eqn (5.17) if o and g satisfy the

following relations

2 _ 2 _ 2
ay=a,=a; =1

ao, taa =aq,+a,a,=a,a +aa, =0

(5.18)
p*=1
ap+pa,=a,p+pa,=a,f+pa, =0
o and g can be represented as
5:(1 Oj;a:(o 0] with :(0 UXJ etc. (5.19)
0 -1 c 0 “lo, O
Here , (O 1} o (O -1} , _(1 O (5.20)
{120/ Y i o) * o -1
All o and g matrices called Dirac operators are of 4X4 dimension
5.4 Dirac’s Free particle solution or plane wave solution
From the equation
Hy —in ¥ (5.20a)
ot

Hamiltonian H =c(e, p, +a, p, +a, p,) + AM,C’

and
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0 0 0 p,
0O 0 p . .
a,p, = 0 OX etc. Substituting these o, p,; a,p, ; a7 p Values in eq.(5.20a)
Py
p, 0 0 O
we get
. . 0
moCy, +0+Cp,w; +c(p, —ip, )y, =in %
: . 0
0 + mOCZl//Z + C( px + Ipy)l//B - szl//4 = Ih l//2
ot
5 (5.21)
op,y; + (P, — P, Y, —MCyy +0= ih%
. .. 0
C( Py + Ipy)!rlll —Cpy, + 0- m0C2 Py, = g §4
Using the operator forms, the above egn becomes
(E- mocz)l/fl —Cp,ys —C(p, — ipy)‘//4 =0
2 -
(E—myc)y, —c(p, + 'py)V/s +epy, =0 (5.22)

(E + mocz)l//B —Cp,y; _C(px - Ipy)l/IZ =0
(E+ mocz)‘//4 —c(p,+ ipy)‘//l +Cp,yy =0

The above set of eqns have solutions if the determinant of the coefficients of y is zero.

E_mO(‘:2 0 _sz _C(px _ipy)
0 E-mc® —c(p, +i c
0. (px Fz)y) pz -0 (523)
—-cp, —c(p, —|py) E+myc 0
—c(p, +ip,) cp, 0 E +m,c’

The determinant value gives

(E2 _ mjc“ _ 2 pz)z ~0

5.24
or E==/(p°c*+mc (.24
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: cp, c(p, +ip,)
Takin =1, v, =0 we get, e T L —
g Wl l//2 g Vs E+ + mOCZ W, E+ N mOCZ
: c(p,—ip,) cp,
Takin =0, y,=lweget,y,=—— , y, =" — 3.
ing v, v, We get, E+ + mOCZ Y, E+ + mOCZ

If we consider the negative roots E_,we get two more solutions as

__ ¢, _c(pytipy) _ "
¥, E — mOCZ Vo E —myc? Vs ¥,
:M ___ -0 -1
41 E - mOCZ v, E - mOCZ Vs WVa

If we write y,(r,t)=u,e'™ " with j=1,2,3... where u,are numbers, we

solution as
1 0
0 1
sz C(p _Ip )
1 _| — . 2 _ X y .
u'(p) = E, +m_0c2 : u(p) = E, +m,c® |’
C(px + Ipy) —Cp,
E, +m,c? E, +m,C°
Cp, C(px _ipy)
E -myc’ E_—m,c?
1 cp,
vi(p)=| E(P*P)) |. V(p)=| TE_ —myc?
E_—m,? 0
1 1
0

(5.25)

(5.26)

(5.27)

(5.28)

can rewrite the

(5.29)

u’s and v’s are called Dirac spinors. u represents positive energy spinors with spin up and v

represents negative energy spinors with spin down. Solution for Dirac equation for a free

particle is thus obtained as the product of Dirac spinors multiplied by €

i(k.r)-at
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5.5 Charge and current densities:
V-S(r,t)+%(r,t):0, (5.30)

Which is well known equation of continuity. The current density expression S(r,t) has the
same form as in non-relativistic case, but the inspection of expression P(r,t) indicates that it
can not be interoperated as position probability density in analogy with non-relativistic case
in which P(r,t)=y *w due to following reason, :

The expression P(r,t) may be expressed as

h oy” 0
P00 | v e

1 L oy” o 0¥
_ZmCZK—m p ]l//+l// (Ihgj} (5.31)

Now using Schroedinger equation in operator form and keeping in mind that the

Hamiltonian operator associated with dynamic observable energy E is Hermitian, we have
Oy . . Oy
Hy=—1h—Ile,ihi—=E
4 ot ot 4
and

o ow L OY _ oy’ .
Hy =—in——ie,—ih—=E
4 ot P 4

So equation (5.31) may be expressed as

P(rt)=——= [Ey-J+y- |
2mc
1
= 2Ew«
p— [2Ey.y ]
ie., P(r)=— [y v | (5.32)
mcC

From the expression E=+./(p*c®+m?c*), e note that the energy of a particle can be either

positive or negative. Thus it follows that the expression for P(r,t) is not definitely positive an

hence it can not be regarded as conventional position probability density. Thus it is necessary

to reinterpret v if Klein-Gordan equation is to be used. This was done by Pauli and
Wesskopf in 1934. According to them P multiplied by (eP)can be interpreted as charge
density which may be positive and negative since charge can have either sign ; then €S will

be corresponding current density.
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5.6 Matrics for o and

The squares of all the four matrics are unity; so that their eigen-values are +1 and —1. Let us
arbitratily choose B as the matrix that is to be diagonal and we rearrange its rows and
columns so that all the +1 eigen values are grouped together in the matrix of rank n and all

the —1 eigen values are grouped together in a matrix of rank m.

The matrix 3 can be expressed as

1o
B=l, (5.33)

which is an abbreviation of

10 0
01 0
= 5.34
P 0 0 -1 0 (5:34)
00 0 -1

All the four matrices oy, oy, o, and B are such that their squares are unity and they
anticommute with one another in pairs. We already have three well known 2x2 matrices oy,

oy and o, called Pauli spin matrices; which satisfy the above properties, given by

101 |0 i |1 0
Gx—l O,Gy—i 0 ,GZ—O ~ (5.35)

Since a 2 x 2 matrix has four elements, there are four and only four, independent 2 x 2

matrices, three of these oy, oy, 6. The only other matrix linearly independent of these three

G

which is a unit matrix and therefore commutes rather than anticommutes with every c. Hence

is

we can not have fourth 2 x 2 matrix which satisfies both properties of Dirac Matrices. Now

we show that the Dirac Matrices must be even-dimensional.
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Let us choose a representation in which 3 is diagonal N x N matrix i.e.

—blbO 5.36
B—OibN (5.36)

AsPBy=1, b’=landbj=+1(1=1,2,...N)
Since B anticommutes with each component of o, we have

o +Pak=0(k=x,Y,2)
This relation may be expressed as

Pow = — axp

oy Py = -0y o P
or o Ba, =P, asa,’ o, =1; we have
Taking trace of both sides, we get

Trace (o Bo, ) =— Trace B

or Trace (o, o' B) = — Trace B [Since Trace (ABC) = Trace (CAB)]

Trace (B) = — Trace (B) (Since a, o' =1) (5.37)

This gives 2(Trace ) = or Trace () =0

Similarly Trace (o) =0

Thus Trace () = Trace (o) =0 (5.38)
This equation shows that the trace of each of matrices ax and f must be zero :

In matrix (13) let r of the bi’s are + 1 and the rest s of bi’s are —1 i.e.

b1:b2=br=1 and
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br+1:br+2:...:b3:—1
sothatr+s=N (5.39)

But the condition that Trace () = 0 requires that

N
dYb=r-s=0ie,r=s

i=|
In view of this equation (16) shows
N=2r (540)

Thus Dirac matrices o and B must be even dimensional. Therefore we can not use 3 x 3
matrices. The next simplest choice is 4 x 4 matrices. As eigen values of all the four matrices
are +1 and —1. Let us arbitrarily choose B as the matrix which is to be diagonal and we
arrange its rows and columns so that all the +1 eigen values are grouped together and all the

—1 eigen values are grouped together in a matrix as

10 0 O

b= 0 o - 01 0 0

10 I oo -1 0

00 0 -1

Therefore the matrix for o may be expressed as
0 oy
Ok = (5.41)

o, 0

where ax; has n rows and columns and oy, has m rows and columns. Since the square of

(5.41) is a unit matrix, we note that

Olx1 Olx2 = (1) nxn (542)
ax2 Oxt = (1) mxm (5.42A)

The unit matrix appearing on R.H.S of (5.42) has n rows and n columns while the unit matrix

on R.H.S. of (5.42A) has m rows and m columns. But no two matrices exist that satisfy (5.42)
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and (5.742A) simultaneously if m = n. Therefore we must have m =n =2 for 4 x 4

matrices. It is apparent that oy, and o, can be put in a form similar to (5.41).
Using Pauli spin matrices oy, oy and o, and choosing

(x,xl: Olx2= GX; then

[ 0
Olx = -
Similarly
0
Oy = o
y
[ 0
oz =
GZ

We already have

o O o B+

O O +— O

R O O O
o B O O

O O O
o

o

O O O
o

o O+ O

o

o o -

o O O -

o O O

(5.43)

These 4 x 4 matrices are evidently Hermitian and in abbreviated form may be expressed as

g

1 0

ol

where each element is a matrix with two rows and two columns.

;

(5.44)
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Negative Energy states

Now it is evident that there are two continuous energy spectrum g = /m2c*+c?p? and
E_=./mZc* +c2p? .When the Dirac electrons are at rest (p=0) then g and g_are separated by

an amount of 2m,c®. Dirac suggested that all negative energy states are completely filled.

When electron from negative energy state picks up some energy and goes to positive state, a
vacancy called Dirac hole is created in negative energy states. This Dirac hole has all
similarities with an ordinary electron except a charge of ‘+e’. This is the antiparticle of

electron called positron.
5.7 Zitterbewegung Method

Consider the motion of an electron according to Dirac equation in Heisenberg representation.

TheHamiltonian is time dependent. The relativistic Hamiltonian in electromagnetic field

described by scalar potentials ¢ and vector potential A is
H=qa - (cp —eA)+Bme > +ep (5.45)

Now according to Heisenberg representation, the equation of motion for operator X

x:%[x, H]= % X, o - (cp — eA) +pme? +eq) (5.46)

Omitting the terms which commute with X, we get

1 c c .
X el = —_— == — = 5.47
X = [x,ozX cp, ] 7 o, [x, px] i a, h=ca, ( )

But the velocity operator i=v is given by
V=C « (5.48)

The probability density function according to Dirac equation is 1y ; thereby given
momentum density for Dirac particle as  +py and he velocity density for Dirac particle

appears to be

wivy=ytca)y=cyt ay (5.49)
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The eigen-values of each « are +1therefore the observed value of any component of velocity
is £C this is peculiar result, since according to relativistic mechanics speed of light is the

upper limit for the speed of material particle. To find the significance of the this result let us

investigate the motion of an electron under no field (i.e. A = 0 and ¢=0).the Hamiltonian

then is expressed as
H= C& ‘P +Bm02 (5.50)

Writing the equation of motion for operator «,, we have

.1 1
aX:E[aX’H]ZE(aX,H _Hax) (5'51)

BUt o, H+Ha, =a, (ca-p+Bmc?)+(ca-p+Amc?)a,
- Ca,(a,p,+a,p, +a,p,+pmc)+c (e, p,+a,p, +a,p,+pMc) a, =2¢p,
Hea,=2cp, H-a, H. (5.52)
In view of this equation (5.51) gives
= 2a,H - 20p,) (5.53)
As for a free particle the energy and momentum are conserved, we have
inp, = [p,H =0 and irH = [HH] = 0 (5.54)

Therefore H and p, are independent of time. Keeping this in mind, the differential of equation
(5.53) with respect to time gives

G =< (2a.H) (5.55)
1A

which may be expressed as

&__Z_i 5.56
a h (5:56)
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Integrating w.r. t. time t, we get,
: 2i
log (¢,) = — Ht+ K (5.57)
K being a constant of integration.
Ifat t=0,c, =(ct, )t = 0; we have

K=log (¢,):- (5.58)

. Equation (5.57) gives

l0g (d,) =~ 2" Hit+10g (),

e. log{ & }z—z—i Ht
(ax)t:O h
: . 2i
or o, =(dy) o P {(—;) Ht} (5.59)
Substituting this in (5.53), we get
. 2i 1
(@,) &P (_h Ht] :E(ZaXH —2cp,) (5.59A)

We have H’=p’c*+m’c’=E? therefore
H=(p’c?+m’c)H
This implies that H is the reciprocal of Hwith eigen value E™*

From equation (5.59A), we have

a,=cp, H ‘1+;ih (&) (o EXP (—2‘ Htj H™ (5.60)

Therefore

X=Ca, = C?p, H‘1+;ihc(dx)t_oexp (—;'Ht)H +
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Integrating,

x=c?p, H —%Ch2 (a,) o EXp (—% Htj H 2 +x, (5.60A)

where X, is constant of integration
Since | L, M1}t = L [H. )= [ Hl=d,

Also p,andH are Hermitian, therefore right hand side of (5.60A) is Hermitian if we ignore

the constant of integration which would obviously represent the initial position of particle.

Then Xwould be an observable quantity and its expectation value is given by
c’pt 1ch’

<X>= - 5
E 4E

<(a,) o>exp (—% Et) (5.61)

Where <(a,) _,>Is the eigen value of «, at t=0.

Now we have

U2 _ 2

E=(p’c®*+m:c")*=mc

and writing %zw, equation (5.61) may be expressed as

c’pt 1ch’

S o (@) o> (5.62)

< X>=

In this equation the first term represents usual term

E mc 2 m X

2 2
c'pt c'pt mot
{ Pl & P “XJ:M (5.63)
of classical mechanics and the second term because of the exponential factor represents the
motion of particle, oscillating with angular frequency @. This trembling motion of the

electron was first observed by Schroedinger and is called the Zitterbewgung and it imparts
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the value to the velocity of electron. That is the electron’s motion is something like the

superposition of classical motion and electromagnetic wave motion

2
However the frequency a):27E2 ZEC

is so high that the departure from the classical mechanics term o,tis undetectable. The

Zitterbewgung did not appear in out no relativistic theory, the reason that this phenomenon is

due to the rest energy of the electron which remains unaccounted in classical mechanics.
5.8 SPIN-ORBIT ENERGY

The spin orbit coupling energy follows as a result to Dirac equation in a central field. The
term is however of order v*/c*and in order to obtain a consistent approximation we proceed

by two — component reduction of Dirac equation in the central field v (r).

[ca-p+Amc®+V (r)]y =Ew. (5.64)

Writing W{‘/’l}which represent the first and the last two components of i respectively.
Vo,

e 2ot o meweold lfe]-el]

: o ] mc 2 % Ey, |
. C o PY +[ 2%}{ l/fl}:{ 2
Co Py | —mc v, Vi, Ev, ]

This equation is equivalent to following two equations

c g‘p‘//l"'mczl//l"'v‘//l: Ew,
and co-py,-mc?y,+Vy,=Ey,

(E-V-mc’) y;~c o-py,=0

) ~ (5.65)
(E-V+mc) yy,—Co-py,=0

Assuming the y, and y, together constitute a non-relativistic energy eigen —function, which

means that
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E=E'+mc?

is regarded as a number rather than an operator, the non-relativistic energy e’and V are

assumed to be smaller in comparison with mc?.

The wave equations (5.65) then become

' {EZ,_V (I’)} w,—C E'py/zz 0 (a) (5.66)
{E +2mc —V(r)}y/z—c o-py,=0 ..(b)

From (5.66b), we have

_ co-p
E'+2mc® -V (r) v

¥V,

Substituting this value of y, in (5.66b), we get

[E-V D]y, = ¢ (G-p[E+2mc* -V (N] o-py,

- Gp[1+ E —Vz(r) il_lg.p Wl

2m 2mc

op[, E-V |-
- 1- .
2m { 2mc? }G PY:

= LRGP -Gt Doy, (5.67)
m 4m-c

Using the identity
(6-B)(c-C)=B-C+ic-BXC
we have (o-p)(c-p) =p-p+ic-pxp=p > (5.67A)
For any any function u,
[p. Vlu=(pV-Vp)u=pVu-Vpu

= ZV(\/U)—V ZVU
i i
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= ?[\/Vu +uVV]—V?Vu

= ZUVV :(ZVV)U
[ [
i.e. (pV—-Vp)u = (-1AVV)u
or (pV-Vpu =—iavVv

pV =Vp-iavVV

(c-pV =V(o-p) - c-ihVV (5.68)
~ (E'-V) — E - — 1, - —
(e op - E o (cp(eP s (5P (5P
T (P (e V(G (5P - oYV )(o P
using eqn. (5.68)
_ E 1 in - — :
= 2_ 2 ) .p) using egn.(5.67a
amec? P T amee? VP +4m202(a V) (o-p) g eqn.( )
E'-V )\, in {V - }
= |—— |pP+—=\VV-p+to-VV X
(4m2c2jp 4m°c? P g
(5.69)
Using (5.67A) and (5.69), equation (5.67) gives
' 1 2 E,—V 2 |h Fand
E'-V)y,=— - ——=|p"+—=(VV:-p+ic-VV X .
(E'-V)y, om PV { i jp 4ch:2( P p}l/fl
E'%:{[l— E=V jp2+v }%_hz VWV, + —t 5.V xpy, (5.70)
2mc? )2m 4m?c? 4m?c?

Now if V is spherically symmetric, we have

1dv
==—r
r dr

\AY

and v 9V
(VV)-V 5
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1dv ldv
VVXxp=| —— ==
P (rdrrjXp rdr(rXp)

2
and noting that E'—v zzp— equation (5.70) gives
m

, (p?/2m) ) p? o dVv oy, ho— 1dv
Ely,=1|1- P2 Py, ooy, 28y
Vi {( o Jom [V amic? dr o 4mic2 C rdr PV

Using %hE:Sand rxp=L, We have

, p? pt  m dvao 1 1adv
E'v,= +V — -~ — 4+ -—SL (5.71)
€ ( 2m 8m°c® 4m’c® dr or 2m*c®r dr €

The first and second terms on right hand side of above equation give the non-relativistic
Schroedinger equation. The third term is the classical relativistic mass correction term which

can be obtained by the expression.

E' =E-mc*=(p’c®+m?c’)?—mc?

2C2 1/2 2 1/2
= mc? (1+p—4j —ch:mcz(lJrIO J —mc’

mc m?c?
2 4
mc2 1+p22—p44+ ......... —mc ?
2m “c 8m 'c
SO - - 5.72
2m  8m3c? (.72)

The fourth term is a similar relativistic correction to the potential energy, which does not
have a classical analogue and the last term is the spin orbit coupling energy which appears as

an automatic consequence of the Dirac equation.
Thus the spin-orbit coupling energy is

1 1dVv

- =%g, 5.73
2m?c? r dr (5.73)

Usfo



