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UNIT – I 

CRYSTAL STRUCTURE AND DIFFRACTION  

 Recapitulation of  basic concepts – crystal systems – Bravais Lattice – Miller indices 

– symmertry elements – symmetry groups – simple crystal structures (sodium chloride, 

cesium chloride, diamond and zinc blende structures)  

 Bragg’s law – Laue equations – reciprocal lattice – Brillouine zones – atomic 

scattering factor – geometrical structure factor – experimental methods of structure analysis 

(the laue, rotating crystal and powder methods). 

 

Basic Concepts of Crystal 

Solid state physics is largely concerned with crystals and electrons in crystals. The 

structure of all crystals can be described in terms of a lattice, with a group of atoms attached 

to every lattice point. This group of atoms is called the basis. That is the atomic arrangement 

in a crystal is called crystal structure.  

A lattice is a regular periodic array of points in space. A space lattice is defined as an 

infinite array of points in three dimensions in which every point has surroundings identical to 

that of every other point in the array. 

Each lattice point associated a group of atoms or molecules identical in composition, 

called the basis or the pattern. When the basis repeated in space it forms the crystal structure. 

The crystal structure is formed when a basis of atoms is attached identically to every lattice 

point. 

             ie.,     Lattice + basis crystal structure  
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Figure 1: Lattice 
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 Let ‘a’ and ‘b’ are having equal magnitude and be unity. The angle between them is 

90 . Then a and b are called the fundamental translational vectors that generate the square 

array. 

 Let O be the origin and P be a lattice point with position vector r, then the 

translational vectors, aremandlmblar .


integers, in Figure 12  mandl   

In 3 dimensional lattice,   translational vectors .. ncmblar 


 

 A three dimensional space lattice is generated by repeated translation of three non 

coplanar vectors a, b and c. The lattice translation vectors a, b, c are said to be primitive if 

any two points rr ,  from which the atomic arrangements looks same as 

                                          cubuaurr 321   

 

 

 

 

 

 

 

 

 

 

The lattice translation operation is defined as cubuauT 321  , any two lattice points are 

connected by a vector of this form. 

 

Unit cell and Lattice parameter of an unit cell  

 

 A unit cell is defined as a parallelepiped formed by the three basis vectors a, b 

and  c along the three crystallographic axes x, y and z respectively. The unit cell is the 

smallest unit, which when repeated in space indefinitely, generates the space lattice. The 

square obtained by joining four neighbouring lattice points is a unit cell (fig.1). Each lattice 

point is common for four unit cells. The effective number of lattice points in the unit cell is 

)14x
4

1(  one only. (or) the unit cell can be visualized by taking one lattice point at the 

centre of the square. 

r 
r’ 

T 

Figure1. 2: Translation Vector 
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The volume of the cell is  V =   cba

  If this volume contains only one lattce point, 

it is termed as primitive unit cell.  

 

Crystallographic axes : 

 The lines drawn parallel to the lines of intersection of any three faces of the unit cell 

which do not lie in the same plane are called crystallographic axes.  

 

 

 

 

 

 

 

 

 

 

 

Primitives  

 The intercepts, a, b and c define the dimensions of a unit cell and are known as 

its primitives. 

 The Angles between the three crystallographic axes are known as interfacial 

angles  and, . 

 The intercepts (primitives) a, b, c and interfacial angels  and,  are the 

basic lattice parameters. This determines the form and size of the unit cell. 

 The unit cell formed by the primitives a, b and c are called primitive cell. 

(only one lattice point). 

 It is not necessary that the unit cell should be a primitives cell (unit cell of 

various crystals contain two or more lattice point) 

 

Wigner-Seitz Unit Cell: 

 

The wigner-Seitz unit cell about a lattice point is the region of space that is closer to 

that particular point than to any other lattice point. The space is completely filled. The 

 

Fig. 1. 3 Crystal axes 
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construction of wigner-Seitz unit cell is same for both two and three dimensional lattices. The 

following procedure is adopted. 

1. For a given lattice point, draw lines to connect this point to all nearby lattice points. 

2. Draw new lines or planes at the midpoint of each of the previous lines. 

The smallest area (in two dimensions) or volume(in three dimensions) enclosed in this way 

gives the the wigner-Seitz primitive unit cell. 

 

 

 

 

 

 

 

 

 

 

Bravais lattice 

 There are only 14 distinguishable ways of arranging points in three dimensional space 

and these 14 arrangements are known as Bravais lattice. And the Bravais lattices belong to 7 

crystal systems. They are tabulated as below 

 

Crystal type Bravais Lattice  Symbol  

Cubic  Simple P 

Body centred I 

Face centred F 

Tetragonal  Simple P 

Body centered I 

Orthorhombic  Simple P 

Base-centred C 

Body centred I 

Face centred F 

Monoclinic  Simple P 
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Base – centred C 

Triclinic  Simple P 

Trigonal Simple P 

Hexagonal  Simple P 

 

 

 

 

 

 

 

 

Crystal system Unit vector Angles 

Cubic  a = b = c  90  

Tetragonal a = b  c  90  

Orthorhombic  a   b  c  90  

Monoclinic  a   b  c   90  

Triclinic  a   b  c  90  

Trigonal a = b = c  90  

Hexagonal  a = b   c  120,90   
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Fig. 1.5 The fourteen Bravais or space lattices 
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Miller Indices: 

A crystal lattice may be considered as an assembly of a number of equidistant parallel 

planes passing through the lattice points and are called lattice planes. For a given lattice, 

these sets of planes can be selected in a number of ways. The inter-planar spacing for a set of 

parallel planes is fixed but for different sets of planes the inter-planar spacing varies as also 

the density of lattice points. 

 

 

 

 

 

 

 

 

 

 

The equation of plane in three dimensions having the intercepts a, b and c (Fig. 1.5) along the 

axes x, y, z respectively will be 

                                                1
c

z

b

y

a

x
  

Let 
c

land
b

k
a

h
1

,
1

,
1

  then the above equation becomes 

1 lzkyxh    This equation describes the first lattice plane, nearest to the origin, in a set 

of parallel, identical and equally spaced planes. The set of three integers h, k and l are 

expressed as (h,k,l) called Miller indices . 

Then the equation can be written as 1
111


l

z

k

y

h

x
 

Where arelandkh 11,1  intercepts along x, y and z axes respectively.  

To obtain Miller indices of a plane the following procedure will be adopted: 

1. Determine the intercepts of the plane along x, y, z axes in terms of lattice parameters. 

2. Divide these intercepts by the proper unit translations. 

3. Find their reciprocals. 

4. If Fraction results, multiply each of them by the smallest common divisor. 

a 

c 

a 

Fig. 1.6 Intercepts along x, y and z axes 

a 

b 

c 
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5. Put the final integers in parenthesis (hkl) to get the required Miller Indices. 

 

Example: In a crystal, a plane cuts intercepts of 2a, 3b and 6c along three crystallographic 

axes. Determine the miller indices 

Solution: 

1 Intercepts  2a 3b 6c 

2 Division by unit translations 
2

2


a

a
 3

3


b

b
 6

6


c

c
 

3 Reciprocals 

2

1
 

3

1
 

6

1
 

4 After clearing fraction 3 2 1 

5  The required Miller indices are (321) 

 

Crystal symmetry : 

 The definite ordered arrangement of the faces and edges of a crystal is known as 

crystal symmetry. It is a powerful tool for the study of the internal structure of crystals. 

 A symmetry operation is one that leaves the crystal and its environment invariant. It is 

an operation performed on an object or pattern which brings it to a position which is 

indistinguishable from the old position. The geometrical locus about which a group of finite 

operations act is known as ‘Symmetry element’. There are translation, rotation, reflection and 

inversion operations, called point operations. The combined translation and point operations 

are known as compound operation.  

 

 

 

 

 

 

 

 

 

 

A rotation about an axis that passes through a lattice point is a symmetry operation. 

Lattice can be found that one, two, three, four and six fold rotation axes carry the lattice into 

Fig. 1.7  Simple Symmetry Operations 
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itself corresponding to rotations by integral multiples of .
6

2
,

4

2
,

3

2
,

2

2
,2 radiansand


    

Mirror reflection ‘m’ about a plane through a lattice point. The inversion is composed of a 

rotation of π followed by reflection. 

There are three symmetry elements  

1. The centre of symmetry  

2. The planes of symmetry  

3. The axes of symmetry  

 

Centre of symmetry  

 In an unit cell of cubic lattice the point at the body centre represents the centre of 

symmetry (Fig.1.8). Any line passing through it meets the surface of the crystal at equal 

distance in both directions. Since the centre lies at equal distances from various symmetrical 

positions it is also named as centre of inversion. For every lattice point of position vector ‘r’ 

there will be a corresponding lattice point at the position ‘- r’. It is equivalent to reflection. 

 

 

 

 

 

 

 

 

Plane of symmetry : 

 An imaginary plane passing through a crystal, such that portions on the two sides of 

the plane are exactly alike, is known as plane of symmetry. 

 For cube, three planes of symmetry parallel to the faces and six diagonal planes of 

symmetry. Total planes of symmetry = 3+6=9. These planes divide the crystal into two 

halves. 

 

 

 

 

 

Fig. 1.8 Centre of Symmetry 

Fig. 1.9 Plane of Symmetry 
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Axis of symmetry  

 A body is said to possess rotational symmetry about an axis if after rotation of the 

body about this axis through some angle, it appears same as prior to rotation. 

 If a rotation through an angle 
n

360
about an axis brings the crystal into the congruent 

position, then the axis is called n-fold axis of symmetry. 

 If 


 360
1

360
,1n

   
ie.,  the crystal has to be rotated through an angle 360 about 

an axis to achieve self-coincidence. This axis is called identity axis.  

 


 180
2

360
,2n , This axis of rotation is called diad axis. 

 

 

 

 

 

 

 

 

                                                  Fig.1.10  Diad axis  




 120
3

360
,3n , This axis of rotation is called triad axis.  

 

 

 

 

 

 

 

 

 

 

Fig.1.11 Triad axis 

  

θ = 120ᴼ 

θ = 180ᴼ 
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


 90
4

360
,4n , This axis of rotation is tetrad axis.  

 

 

 

 

 

 

 

 

 

                                                                  Fig.1.12 Tetrad axis 

 


 60
2

360
,6n , axis of rotation is hexad axis.  

 

 

 

 

 

 

 

 

 

Fig.1.13 Hexad axis 

 

Crystallographic symmetry elements of the cube :- 

 

a)  centre of symmetry  - 1 

b)  plane of symmetry  - 9 

c)  Tetrad axes  - 3 

d)  Triad axes  - 4 

e)  Diad axes  - 6 

Total number of symmetry elements  23 

 

θ = 60ᴼ 
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Combination of symmetry elements:  

Different combinations of the basic symmetry elements give rise to different 

symmetry points in the crystal. There are 32 compatible combinations of these point group 

symmetry elements. These 32 combinations are called point groups. All the possible 

combinations of 32 point groups with 14 Bravais lattices are considered, 230 space groups. 

RotoInversion axis: 

Roto Inversion is a symmetry element. It is a hybrid operation of a proper rotation and 

an inversion. A crystal has a roto inversion axis if it is brought into self coincidence by 

rotation about that axis followed by inversion. It is found that when 90˚rotation followed by 

inversion is giving four times original position is obtained. This is an example of four fold 

rotoinversion (fig.1.13). 

 

 

 

 

 

 

 

 

Screw axis: 

This symmetry element screw axis has a hybrid operation of a proper rotation with a 

translation parallel to the rotation axis. Rotation through an angle θ from A to B about xy axis 

and translation from B to C by T is an example for screw axis (fig.) 

 

 

 

 

  

 

 

 

 

Fig. 1.14 Screw axis 

Fig. 1.13 Four fold Roto inversion symmetry 
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3
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Glide Plane: 

This symmetry element has a hybrid operation of a reflection with a translation 

parallel to the reflection plane. If the upper layer of atoms is moved through a distance a/2 

and then reflected in the plane mm΄ the lower plane of atoms is generated. 

 

 

         

 

 

Fig.1.15 Glide Plane 

 

Symmetry group:  

                  A symmetry group is a set of symmetry operators that are combined together 

according to a particular set of rules: 

1. The resulting action from the combination of two symmetry operators must always be 

equivalent to the action of a single symmetry operator that belongs to the same group. 

2. The group must always contain the identity symmetry operator. 

3. Each symmetry operator in the group must have an inverse operator belonging to the 

group. 

4. Beyond the scope of this course is the associative rule specifying the way in which 

symmetry operators are combined with each other. 

 

Simple  Crystal Structure: 

Sodium Chloride Structure: 

The Sodium Chloride Structure is shown in figure 1.16.  It consists of equal number 

of sodium and chlorine ions placed at alternate points of a simple cubic lattice. Each ion has 

six of the other kind of ions as nearest neighbours. The lattice is face centred cubic. The basis 

consists of one Sodium (Na) ion and one Chlorine ion (Cl) separated by one half the body 

diagonal of a unit cube. 

 There are four units of NaCl in each cube, with ions in the positions:  

 

 
Na: 0 0 0, ½ ½ 0 , ½ 0 ½ , 0 ½ ½  

Cl: ½ ½ ½ , 0 0 ½ , 0 ½ 0 , ½ 0 0  

2

a
 

a  

M’ M 
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In figure 1.16, the Sodium Chloride structure , Na
+
 and Cl

-
 are shown by small and big circles 

respectively. Big and small circles from interpenetrating fcc lattice. 

 

Cesium chloride Structure: 

 The Cesium chloride(CsCl) structure is shown in fig. 1.17. It consists of equal number 

of Cesium and Chlorine ions. This is described as simple cubic lattice with a basis consisting 

of a Cesium ion at the corners or origin (000) and a chlorine ion  at the body centred position 

(½ ½ ½ ). One type of  ions is situated at the body centred positions so that each ion has eight 

other type of ions as nearest neighbour. The value of a is 4.11Ǻ 

 

 

 

 

  

 

 

 

 

In figure 1.17 the Cesium Chloride structure  the filled circle ●   and the hollow circle  ○ 

represents two different ions which form interpenetrating simple cubic lattice 

Fig.1.17. The Cesium Chloride Structure  

x 

Fig.1.16 Sodium chloride Structure 

 

  
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Diamond Structure: 

The space lattice of Diamond is fcc. The primitive basis has two identical atoms at 

000, ¼ ¼ ¼ associated with each lattice point. It is characterised by a tetrahedral bond 

arrangement as shown in fig.1.18. Each atom has four nearest neighbours and twelve next 

nearest neighbours. The diamond structure is relatively empty, ie the proportion of available 

volume filled by hard spheres is 0.34 (the atomic packing factor) only. It has 46% of filling 

factor for closest structure of fcc or hcp 

Example: Carbon, Silicon, Germanium and Tin with lattice constant a = 3.56, 5.43, 

5.65 and 6.46 Ǻ 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 1.18, (a) denotes the crystal structure of diamond showing the tetrahedral bond 

arrangement and (b) shows the atomic positions in the cubic cell of diamond structure 

projected on a cube face. 

 

Zinc Blende Structure: 

  The Zinc Blende (ZnS) has equal number of Zinc and Sulphur ions distributed on a 

Diamond lattice so that each has four of the opposite kind as nearest neighbours. Zinc atoms 

are placed on one fcc lattice and S atoms on the other fcc lattice.  

The coordinates of Zn atoms are 000, 0 ½ ½, ½ 0 ½, ½ ½ 0 

The coordinates of S atoms are ¼ ¼ ¼, ¼ ¾ ¾, ¾ ¼ ¾, ¾ ¾ ¼  

The Diamond structure allows centre of inversion symmetry but the Zinc Blende structure 

does not have inversion symmetry. 

(a) (b) 

C Fig.1.18 Diamond Structure 
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Example: CuF, CuCl, AgI, GaAs with a = 4.26, 5.41, 6.47, 5.65 Ǻ 

 

Bragg’s law: 

Bragg's law is the fundamental law of x-ray crystallography. Bragg’s diffraction was 

first proposed by William Lawrence Bragg and William Henry Bragg, in the year 1913, during 

their experiments on crystalline solids. Bragg’s diffraction occurs when electromagnetic 

radiation, or subatomic particle, waves have wavelengths that are comparable to atomic 

spacing in a crystal lattice.  

The penetrating X-ray travels down the internal layer, gets reflected, and travels 

back through the same distance as the back of the surface. The distance traversed by the 

wave is dependent on the distance between the layers of the lattice and the angle of 

incidence of the X-ray 

  Bragg’s law describes the angles for the coherent and incoherent scattering from a 

crystal lattice. As per Bragg’s law, when X-rays are scattered from a crystal lattice, the peaks 

of scattered intensity correspond to the following conditions: 

1. Angle of incidence is equal to the angle of scattering 

2. Difference in path length is an integer value of the number of wavelengths 

Bragg’s law gives the condition for the maximum intensity, and the details about the 

crystal lattice. In conditions where the crystal structure is known, the wavelength of the X-

rays incident on the crystal can be calculated using Bragg’s law. 

.Bragg’s equation is given below: 

 nd sin2  

Fig.1.19 Crystal Structure of Cubic Zinc Sulphide 

y 
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where n  is an integer,   is the wavelength of a beam of x-rays incident on a crystal with 

lattice planes separated by distance d, and θ is the angle of scattering known as  Bragg 

angle. 

Derivation of Bragg’s Law: 

Consider a crystal in which atoms are arranged in a periodic manner with interatomic 

spacing ‘d’. A narrow beam of monochromatic X-Ray of wavelength λ is allowed to fall on a 

crystal at a glancing angle θ. The crystal acts as a diffracting grating with atoms as the 

opaque part and the spacing between them as the transparent part. 

 

 

 

 

 

 

 

 

 

Let AB and DE be the incident rays and BC and EF be the corresponding reflected rays the 

path difference between the rays ABC and DEF is (GE+EH) therefore the path difference is 

given by 





sin2

sinsin

d

dd

EHGE







 

Constructive interference takes place only when the path difference is equal to nλ that is 

when the following condition satisfied 

 nd sin2  
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Laue Equations: 

If an X-ray beam impinges on a row of atoms, each atom can serve as a source of 

scattered X-rays. The scattered X-rays will reinforce in certain directions to produce zero, 

first, and higher-order diffracted beams. Diffraction from a crystal can be obtained with the 

following assumptions: 

i. Let ‘S0’ be a unit vector in the direction of the incident wave, and ‘S‘ be a unit vector 

in the direction of the scattered wave.  

ii. let R1 and R2 be the position vectors of a pair of atoms in a Bravais lattice,                             

and let  r12 = R1 − R2.  

Let us consider the waves scattered by R1 and by R2 and traveling different path lengths 

as shown in Figure 1.18. The difference in path length is | R2A− BR1 |. But this is clearly equal 

to |r12 · S − r12 · S0|. We define S as S = S − S0; then the difference in path length for the two 

rays is given by  

∆ = |r12 · S|                       (1.11) 

For constructive interference, this must be equal to an integral number of wave length.  

ie.,                                                  r12 · S = m λ                     (1.12) 

where m is an integer and λ is the wave length.  

Constructive interference will occur only if 

Rn · S = integer × λ               (1.13) 

for every lattice vector Rn in the crystal. in general there will be different integers for 

different Rn.  Therefore 

Rn = n1a1 + n2a2 + n3a3.     (1.14) 

Equation (1.13)  will be satisfied if             ai · S = p hi λ       (1.15) 
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Fig. 1.18. Scattering of X-rays by a pair of atoms in a crystal 

 

where hi is the smallest set of integers and p is a common multiplier. Then S  can be 

expressed as 

332211 )()()( baSbaSbaSS        (1.16) 

Therefore condition Equation (1.13) is satisfied and constructive interference from every 

lattice site occurs if 

S = p (h1b1 + h2b2 + h3b3) λ           (1.17) 

or 

 hGp
S



                       (1.18) 

where Gh is a vector of the reciprocal lattice. Equation (1.18) is called the Laue equation. 

 

 

 

 

 

     Fig. 1.19. Relation between the scattering vector 0ssS   and the Bragg angle   

 

Connection of Laue Equations and Bragg's Law 

From Equation (1.18)  S must be perpendicular to the planes with Miller indices (h1 h2 h3). 

The distance between two planes of this set is 

 

S
p

G
hhhd

h




2
)( 321              (1.19) 
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We know that S is normal to the reflection plane PP’ with Miller indices (h1h2h3). From 

Figure 1.19, it is apparent that sin2S . Therefore, Equation (1.19) can be written by 

 phhhd sin)(2 321  

where p is an integer. According to Laue's equation, associated with any reciprocal lattice vector, 

332211 bhbhbhGh   there is an X-ray reflection satisfying the equation  hGpS 1  where p 

is an integer 

Reciprocal Lattice: 

 The reciprocal lattice of a lattice (usually a Bravais lattice) is the lattice in which the 

Fourier transform of the spatial wave function of the original lattice (or direct lattice) is 

represented. 

If  a, b, c are primitive vectors of the crystal lattice, then a*, b* and c* are primitive vectors of 

the reciprocal lattice and defined as 

)(
2*

cba

cb
a




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)(
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cba

ac
b




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2*

cba

ba
c




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Fig. 1.20 Reciprocal basic vectors a∗, b∗, and c∗ and their relationship to the real-space basic 

vectors a, b, and c  

Where a·(b × c) is the volume V of a unit cell in real space( Fig. 1.20). The previous 

relationships can be rewritten as 

V

cb
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
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
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V
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Each vector is orthogonal to two axis vectors of the crystal lattice.  Vectors a, b, and c are 

related to a∗, b∗, and c∗ as 

                         a∗ · b = a∗ · c = b∗ · a = b∗ · c = c∗ · a = c∗ · b = 0 

and                            a∗ · a = b∗ · b = c∗ · c = 2π 

The magnitude of a∗ is inversely proportional to the magnitude of a. The same relationship is 

true for b∗ and c∗. This means the size of a reciprocal lattice unit cell is inversely proportional 

to the size of the real space unit cell. One can obtain the reciprocal unit vectors a∗, b∗, and c∗ 

from a, b, and c in the previous relationships. A reciprocal lattice can be generated by  

***)( clbkahlkhG   

where h, k, and l are integers. 

The relationship between the reciprocal unit vectors and the real space unit vectors in a two-

dimensional lattice shown in Fig. 1.21. 

 

 

 

 

 

 

 

Fig. 1.21 Relationship between real-space basic vectors a and b and reciprocal-space basic 

vectors a∗ and b∗ 

A two-dimensional real space unit mesh consists of unit vectors a and b that are 

parallel to the page. The a∗ is perpendicular to b, and the b∗ is perpendicular to a. Also, the 

length of a∗
 
projected on a is 2π/a and is the inverse of the length of a. Also, b∗ and b are 

related in a similar way. 

For example, if one has the (001) plane in real space, the reciprocal lattice direction 

in the reciprocal space can be determined asG(hkl)=G(001)=c∗ since h=0, k =0, and l =1. 

This meansG(001) is perpendicular to a and b (because of the cross product of a × b) and its 

magnitude is inversely proportional to the magnitude of c. 
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A Brillouin Zone: 

A Brillouin Zone is the unit cell of the reciprocal lattice. It is defined as the Wigner-

Seitz cell of the reciprocal lattice. Brillouin Zone formed by perpendicular bisectors of G 

vectors.  

It is constructed as the set of points enclosed by the Bragg planes, the planes 

perpendicular to a connection line from the origin to each lattice point and passing through 

the midpoint.  Alternatively, it is defined as the set of points closer to the origin than to any 

other reciprocal lattice point. The whole reciprocal space may be covered without overlap 

with copies of such a Brillouin Zone. 

The first Brillouin zone is the smallest volume entirely enclosed by planes that are the 

perpendicular bisectors of the reciprocal lattice vectors drawn from the origin. The concept of 

Brillouin zone is particularly important in the consideration of the electronic structure of 

solids. There are also second, third, etc., As a result, the first Brillouin zone is often called 

simply the Brillouin zone. (In general, the n-th Brillouin zone consist of the set of points that 

can be reached from the origin by crossing n − 1 Bragg planes.) 

The region in k-space (here an imaginary plane whose rectangular coordinates are kx 

and ky) that low-k electrons can occupy without being diffracted is called first Brillouin Zone, 

shown in Fig.1.22. The second Brillouin zone is also Shown; it contains electrons with k 

values from π/a to 2π/a for electrons moving in the ±x and ±y directions, with the possible 

range of k values narrowing as the diagonal directions are approached. 

 

  

 

 

 

 

 

 

 

 

Fig.1.22  The first and second Brillouin zones of a two-dimensional square lattice 
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The atomic form factor: 

The atomic form factor, or atomic scattering factor, is a measure of the scattering 

amplitude of a wave by an isolated atom. The atomic form factor depends on the type of 

scattering, which in turn depends on the nature of the incident radiation, typically X-ray, 

electron or neutron. The common feature of all form factors is that they involve a Fourier 

transform of a spatial density distribution of the scattering object from real space to 

momentum space (also known as reciprocal space). For an object that is spherically 

symmetric, the spatial density distribution can be expressed as a function of radius, )(r so 

that the form factor, )(Qf  is defined as 

rderQf rQi 3)()( 
   

where )(r is the spatial density of the scatterer about its center of mass )0( r and Q   is 

the momentum transfer. As a result of the nature of the Fourier transform, the broader the 

distribution of the scatterer  in real space r  , the narrower the distribution of f in Q ; i.e., 

the faster the decay of the form factor. 

For crystals, atomic form factors are used to calculate the structure factor for a given 

Bragg peak of a crystal. 

The structure factor: 

The structure factor is a mathematical function describing the amplitude and phase of 

a wave diffracted from crystal lattice planes characterised by Miller indices lkh . And the 

structure factor is defined as the ratio of the amplitude of radiation scattered by the entire unit 

cell to the amplitude of radiation scattered by a single point-electron at the origin for the same 

wavelength. 

The structure factor for a system with many atoms, each with its own form factor jf  

and sitting within the unit cell at a site with the crystallographic coordinates  jjj wvu ,,  is 

described by:  

 )(2exp
1

jjj

N

j

jlkh wlvkuhifF 


                                 (1) 

The square of the structure factor is an indication of the intensity of any spot/peak/intensity 

in the diffraction pattern corresponding to the Bragg conditions being satisfied for the 

particular lkh .  
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When the atoms are identical, all the jf  are equal and equal to f . Then  

SfF lkh                             (2) 

Where   )(2exp jjj wlvkuhiS     is called the geometrical structure factor. 

Equation (2) defines the structure factor S as the ratio of the total scattering amplitude F  

to the atomic structure factor f  

Since the intensity is proportional to the square of the amplitude, the intensity I of the 

diffracted beam is given by FFFI 
2

 where F  is the complex conjugate of F  

X-ray diffraction 

X-ray diffraction is a common technique for the study of crystal structures and 

atomic spacing. X-ray diffraction is based on constructive interference of monochromatic X-

rays and a crystalline sample. These X-rays are generated by a cathode ray tube, filtered to 

produce monochromatic radiation, collimated to concentrate, and directed toward the 

sample. The interaction of the incident rays with the sample produces constructive 

interference (and a diffracted ray) when conditions satisfy Bragg's Law   sin2dn  . This 

law relates the wavelength of electromagnetic radiation to the diffraction angle and the 

lattice spacing in a crystalline sample. These diffracted X-rays are then detected, processed 

and counted. Max von Laue, in 1912, discovered that crystalline substances act as three-

dimensional diffraction gratings for X-ray wavelengths similar to the spacing of planes in a 

crystal lattice. 

There are many types of X-ray camera to sort out reflections from different crystal planes. 

We will study only three types of X ray photograph that are widely used for the simple structures.  

1. Laue photograph  

2. Rotating crystal method  

3. Powder photograph 
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The Laue method  

The Laue method is mainly used to determine the orientation of large single crystals 

while radiation is reflected from, or transmitted through a fixed crystal. The diffracted 

beams form arrays of spots, which lie on curves on the film. 

The Bragg angle is fixed for every set of planes in the crystal. Each set of planes picks 

out and diffracts the particular wavelength from the white radiation that satisfies the Bragg 

law for the values of d and θ involved. 

 

 

 

 

Fig.1.23 Schematic representation of Laue Technique 

In the back-reflection method, the film is placed between the x-ray source and the 

crystal. The beams which are diffracted in a backward direction are recorded. One side of the 

cone of Laue reflections is defined by the transmitted beam. The film intersects the cone, with the 

diffraction spots generally lying on an hyperbola. 

In the transmission Laue method, the film is placed behind the crystal to record beams 

which are transmitted through the crystal. One side of the cone of Laue reflections is defined by the 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
27 

 

transmitted beam. The film intersects the cone, with the diffraction spots generally lying on an 

ellipse. 

The symmetry of the spot pattern reflects the symmetry of the crystal when viewed along 

the direction of the incident beam. Laue method is often used to determine the orientation of single 

crystals by means of illuminating the crystal with a continuous spectrum of X-rays; 

 

 

 

 

 

Therefore, the Laue method is mainly used to determine the crystal orientation.  Although 

the Laue method can also be used to determine the crystal structure, several wavelengths can 

reflect in different orders from the same set of planes, with the different order reflections 

superimposed on the same spot in the film. This makes crystal structure determination by spot 

intensity diffucult. Rotating crystal method overcomes this problem 

Rotating crystal method 

In the rotating crystal method, a single crystal is mounted with an axis normal to a 

monochromatic x-ray beam. A cylindrical film is placed around it and the crystal is rotated 

about the chosen axis. 

 

 

 

 

Fig.1.25 Schematic representation of Rotating Crystal Technique 

Fig. 

1.24. 
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As the crystal rotates, sets of lattice planes will at some point make the correct Bragg 

angle for the monochromatic incident beam, and at that point a diffracted beam will be 

formed. 

Lattice constant of the crystal can be determined by means of this method; for a 

given wavelength if the angle θ at which a lkhd  reflection  occurs is known, can be 

determined.  

222 lkh

a
d


  

The reflected beams are located on the surface of imaginary cones. By recording the 

diffraction patterns (both angles and intensities) for various crystal orientations, one can 

determine the shape and size of unit cell as well as arrangement of atoms inside the cell. 

THE POWDER METHOD 

If a powdered specimen is used, instead of a single crystal, then there is no need to rotate 

the specimen, because there will always be some crystals at an orientation for which diffraction is 

permitted. Here a monochromatic X-ray beam is incident on a powdered or polycrystalline sample. 

This method is useful for samples that are difficult to obtain in single crystal form. 

The powder method is used to determine the value of the lattice parameters accurately. 

Lattice parameters are the magnitudes of the unit vectors a, b and c which define the unit cell for 

the crystal. For every set of crystal planes, by chance, one or more crystals will be in the correct 

orientation to give the correct Bragg angle to satisfy Bragg's equation. Every crystal plane is thus 

capable of diffraction. Each diffraction line is made up of a large number of small spots, each from a 

separate crystal. Each spot is so small as to give the appearance of a continuous line. 
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Fig.1.26 Experimental arrangement in powder method 

A sample of some hundreds of crystals (i.e. a powdered sample) show that the diffracted 

beams form continuous cones. A circle of film is used to record the diffraction pattern as shown. 

Each cone intersects the film giving diffraction lines. The lines are seen as arcs on the film. 

A very small amount of powdered material is sealed into a fine capillary tube made from 

glass that does not diffract x-rays. The specimen is placed in the Debye Scherrer camera and is 

accurately aligned to be in the centre of the camera. X-rays enter the camera through a collimator. 

The powder diffracts the x-rays in accordance with Braggs law to produce cones of diffracted beams. 

These cones intersect a strip of photographic film located in the cylindrical camera to produce a 

characteristic set of arcs on the film. 

 

 

 

 

 

Fig.1.27 Cones of Diffracted Beams of X ray 
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When the film is removed from the camera, flattened and processed, it shows the diffraction 

lines and the holes for the incident and transmitted beams. 

Application of XRD 

 1. Differentiation between crystalline and amorphous materials;  

2. Determination of the structure of crystalline materials;  

3. Determination of electron distribution within the atoms, and throughout the unit cell; 

 4. Determination of the orientation of single crystals;  

5. Determination of the texture of polygrained materials; 

 6. Measurement of strain and small grain size…..etc 

Advantages  

 Powerful and rapid (< 20 min) technique for identification of an unknown mineral 

 In most cases, it provides an unambiguous mineral determination 

 Minimal sample preparation is required 

 XRD units are widely available 

 Data interpretation is relatively straight forward 

 X-ray is the cheapest, the most convenient and widely used method. 

 X-rays are not absorbed very much by air, so the specimen need not be in an evacuated 

chamber.  

Disadvantage  

 Homogeneous and single phase material is best for identification of an unknown 

 Must have access to a standard reference file of inorganic compounds (d-

spacings, hkl) 

 Requires tenths of a gram of material which must be ground into a powder 

 For mixed materials, detection limit is ~ 2% of sample 
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 For unit cell determinations, indexing of patterns for non-isometric crystal 

systems is complicated 

 Peak overlay may occur and worsens for high angle 'reflections  

 They do not interact very strongly with lighter elements. 
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Unit II 

CRYSTAL BINDINGS AND ELASTIC PROPERTIES OF SOLIDS 

Crystal bindings: Ionic bond – covalent bond – molecular bond – Hydrogen bond – metallic 

bond – Van der wall bond – Binding energy of crystals – Polarons 

Elastic Properties: Stress components – displacement and strain components – elastic 

compliances and stiffness constants – relation between elastic compliances and stiffness 

constants – elastic constants for cubic isotropic crystals – elastic waves – experimental 

determination of elastic constants 

Cohesive energy:  

The cohesive energy of a crystal is defined as the energy that must be added to the 

crystal to separate its components into neutral free atoms at rest, at infinite separation with 

the same electronic configuration. 

The term lattice energy is used in the discussion of ionic crystals and is defined as the 

energy that must be added to the crystal to separate its component ions into free ions at 

rest at infinite separation. 

The inert gas crystals are weakly bound. The alkali metal crystals have intermediate 

values of the cohesive energy. The transition element metals are strongly bound. 

The melting temperature and bulk modulii vary as the cohesive energies. 

Crystals of inert gases 

The inert gases form the simplest crystal. The crystals are transparent insulators, 

weakly bound with low melting temperatures. The atoms have very high ionization energies. 

In the crystal, the inert gas atoms pack together as closely as possible. The crystal structures 

are all cubic close packed (fcc) 

 As the cohesive energy of an atom in the crystal is less, the electron distribution in 

the crystal cannot be distorted. No much energy is available to distort free atom charge 

distributions. Part of this distortion gives the Van der waals interaction. 

Vander Waals London interaction 

                      Consider two identical inert gas atoms at a separation R large in comparison 

with the radii of the atoms. As the atoms are neutral, there is no interaction between 

atoms. Therefore the inert gas atoms have no cohesion and could not condense. But the 
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atom induce dipole moments in each other and the induced moments cause an attractive 

interaction between the atoms. 

 Consider two identical linear harmonic oscillator separated by R. Each oscillator 

bears charges ±e with separations x1 and x2 (fig.2.1). The particle oscillates along x axis. 

 

 

 

 

 

Let P1and P2be momenta, C be the force constant. Then the Hamiltonian of the unperturbed 

system is  
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where 2

0mC 
; 0  is the frequency of the strongest optical absorption line of the atom 

Let H1 be coulomb interaction energy of the two oscillators. The inter nuclear coordinate is 

R. 
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H1 can be digonalized by the normal mode transformation 

);(
2

1
21 xxxs  )(

2

1
21 xxxa   

On solving, 

)(
2

1
1 as xxx  ;                       )(

2

1
2 as xxx   

The subscripts s and a denote symmetric and antisymmetric modes of motion. 

Further, 

)(
2

1
1 as PPP  ;                  )(

2

1
2 as PPP   

∴ The total Hamiltonian H (H0+H1) after transformation is 

Figure 2.1 
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The two frequencies of the coupled oscillators are 
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The zero point energy of the system is  as  
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This attraction varies as the minus sixth power of eh separation of the two oscillators. This is 

known as Van der Waals interaction (or) London interaction (or) induced dipole-dipole 

interaction. The interaction is a quantum effect. An approximate value of A for identical 

atoms is given by 2

0 where 0  is the energy of the strongest optical absorption line 

and α is the electronic polarizability. 

 

Repulsive interaction 

As the two atoms approach close, their charge distributions gradually overlap. At 

sufficiently close separations, the overlap energy is repulsive; because of Pauli Exclusion 

Principle (Two electrons cannot have all their quantum numbers equal). 

 

 

 

 

 

 

 

 

 Figure 2.2 
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 When the charge distributions of two atoms overlap, there is a tendency for 

electrons from atom B to occupy in part states of atom A already occupied by electrons of 

atom A and vice versa. Thus  the electron overlap increases the total energy of system and 

gives a repulsive contribution to the interaction. The overlap energy depends on the radial 

distribution of charge about each atom. 

The empirical repulsive potential is 
12R

B
where B is a positive constant. When used 

together with a long range attractive potential, the total potential energy of two atoms at 

separation R as 


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where ∈ 𝑎𝑛𝑑 𝜎 are new parameters.  4 A 6 and B 124  . U(R) is Lennard-Jones 

potential.The force between the two atoms is –dU/dR. 

Equilibrium Lattice constant. 

The cohesive energy of an inert gas is summing the Lennard Jones potential over all 

pairs of atoms in the crystal. 

The total potential Energy is 


























































  

`
612

4
2

1

j j ijij

tot
RPRP

NU


----------(I) 

Where N  is the number of atoms in crystal,  PijR is the distance between reference atom i 

and any other atom j  and ½ to compensate for counting twice each pair of atoms. 

 For fcc structure, 13188.1212  

j

ijP 45392.146  

j

ijP ------------------(a) 

The nearest neighbours are 12 sites. Utotbe minimum with respect to R(nearest neigbour 

distance) 

i.e.      









7

6

13

12

)45.14(613.121220
RR

N
dR

dU tot 

 

whence


0R
=1.09 ---------(b) 

R0 is the equilibrium value. From measurement on the gas phase, we have predicted the 

lattice constant of the crystal. 

Cohesive energy :  substituting a and b in I we get 
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Utot(R)=



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At R=R0,   Utot(R0) = - (2.15)4N∈ 

This is same for all inert gases. This cohesive energy is calculated for atoms at rest. 

 

Ionic crystals 

Ionic crystals are made up of positive (+) and negative (-)ve ions. 

Example: Sodium chloride and Cesium chloride structure. 

The electronic configurations of all ions of a simple ionic crystal correspond to closed 

electronic shells as in the inert atoms 

Example: Lithium fluoride  

The configuration of neutral atom Li : 1s22s    ; F : 1s22s22p5 

The configuration of singly charged ions Li+: 1s2 ;   F-:1s22s22p6 as for Helium and 

Neon atoms. 

Inert gas atoms have closed shells and the charge distributions are spherically 

symmetric. The charge distribution on each ion in an ionic crystal is approximately spherical 

symmetry. 

The distance between a positive ion and nearest negative ion in crystalline sodium 

chloride is 2.81x10-8cm and the attractive potential energy of the two ions is 5.1ev. This 

energy is close When compared with the lattice energy of the crystalline NaCl (7.9 eV 

experimental values) 

      Na(gas)  +  5.14 ev(ionization energy)  -----------> Na+ (gas)+  e;     

e  +  Cl(gas) ------------>Cl-  (gas) + 3.61eV (Electron affinity) 

Na+  (gas) + Cl- (gas) ------------>Na+Cl-  (crystal) + 7.9 eV (cohesive energy) 

Electrostatic (or) madelung energy 

 The main  contribution to the binding energy of ionic crystals is electrostatic and is 

called the Madelung energy.. 

Let the energy of all interaction involving the ion i, Ui=
j

ijU

 

where UIJ is  the interaction energy between ions i and j. The summation includes all ions 

except j=i 
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Uijmay be written as the sum of repulsive potential(λexp(-r/ρ))and a coulomb potential 

±
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



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
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



                 +for like charges and - for unlike charges 

ρ is a measure of the range of the repulsive interaction when ρ = r .the repulsive interaction 

is reduced to e-1 of the value at r=0. 

The total lattice energy Utot of a crystal composed of N molecules or 2N ions as Utot 

=NUi   (N, not 2N because each pair of interaction only once) 

The total lattice energy is defined as the energy required separating the crystal into 

individual ions at infinite distances apart. 

Let rij  ≡ PijR , R is the nearest neighbor separation in the crystal 

Uij=  λ exp (-R/ρ)-
R

q 2

    (nearest neighbours) 

=  ±
R

q

Pij

21
                 (otherwise) 

Then Utot = N Ui=
R

q
ezN p

R
2

(  


  ) where Z is the number of nearest neighbours 

of any ion and 



j ijP

 ≡ 𝑀adelung constant. 

The value of Madelung constant is important in the theory of an ionic crystal. 

At equilibrium separation 0
dR

dU tot  

 i.e., 0exp
2

2











R

qNRNz

dR

dU
N i 




 








 




 RNz

R

qN
exp

2

2

 




 z

qRR
2

2

0 )exp(   

R0 can be determined if ρ, λ of the repulsive interaction are known 
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The 
0

2

R

qN
  is the Madelung energy 

Evaluation of the Madelung constant: 

The Madelung constant  
 





j ijP

  

If the reference ion is positive, + sign will apply; if the reference ion is negative,-ve 

sign will apply. 

    
 





j jrR


 

rjis distance of the jth ion from the reference ion . R is the nearest neighbor distance. 

To find the Madelung constant ,consider the infinite line of ions of alternate sign 

 

 

 

 Let –ve ion as the reference ion, R be the distance between the adjacent ions. 









 ........

4

1

3

1

2

11
2

RRRRR



 

2 represents rj for both sides of reference ion
 











4

1

3

1

2

1
12  

2 because there are two ions. 

............
432

)1ln(
432


xxx

xx  

∴   The Madelung constant for the one dimensional chain is  2ln2  

Example : Madelung constant for NaCl = 1.747565 
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 CaCl = 1.762675 

Zns  = 1.6381 

 

Covalent  crystals 

 The covalent bond is formed from two electrons, one from each atom participating 

in the bond. The electrons forming the bond tend to be partly localized in the region 

between the two atoms joined by the bond. The spins of the two electrons in the bond are 

anti parallele.g The binding of molecular Hydrogen(H2). 

The strongest binding occurs when the spins of the two electrons are anti parallel. The 

binding depends on the relative spin orientation. The spin dependent coulomb energy is 

called the exchange interaction. 

 The Pauli principle gives a strong repulsive interaction between atoms with filled 

shells. If the shells are not filled, electrons overlap can be accommodated without excitation 

of electrons to high energy states and the bond will be shorter. 

 The difference between Cl2 and Ar2 is that the Cl atom has five electrons in the 3p 

shell and the Ar atom has six electrons filling the shell so that the repulsive interaction is 

stronger in Ar than in Cl. 

The elements C, Si and Ge lack four electrons with respect to filled shells and thus 

these elements can have an attractive interaction associated with charge overlap. The 

electron configuration of carbon is 1s22s22p2.To form a tetrahedral system of covalent 

bonds, the carbon atom must first be promoted to the electronic configuration 

1s22s2p3.This promotion from the ground state requires 4 eV, an amount more than 

regained when the bonds are formed. 

     There is a continous range of crystals between the ionic and the covalent limit. 

Metals 

   Metals having high electrical conductivity with a large number of free electrons called 

conduction electrons. The valence electrons of the atom become the conduction electrons 

of the metal. 

        In some metals, the interaction of the ion cores with the conduction electrons makes a 

large contribution to the binding energy. But the metallic binding is the lowering of the 

energy of the valence electrons in the metal as compared with the free atom. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
40 

 

 The binding energy of an alkali metal crystal is less than that of an alkali halide 

crystal, the bond formed by a conduction electron is not very strong. The interatomic 

distances are relatively large in alkali metals, Because the K.E of the conduction electrons is 

lower at large interatomic distances. This leads to weak binding. 

 Metals tends to crystallize in closed packed structure hcp, fcc, bcc and not in loosely 

packed structure such as diamond. In transition metals, there is additional binding energy 

from inner electrons and are having high binding energy. 

Hydrogen bond 

 Neutral Hydrogen atom has only one electron , it can form a covalent bond with only 

one other atom. 

 Under certain conditions, an atom of Hydrogen is attracted by two atoms, thus 

forming hydrogen bond between them, with a bond energy of 0.1 eV. Hydrogen bond is 

largely ionic in character. It is formed only between the electro negative atoms like F, O and 

N. Hydrogen difluoride ion HF-
2 is stabilized by a hydrogen bond. 

In the extreme ionic form of the hydrogen bond the hydrogen atom loses its electron 

to another atom in the molecule. The bare proton forms the hydrogen bond. The hydrogen 

bond connects only two atoms 

 The hydrogen bond is an important part of the interaction between water molecules 

and is responsible together with the electrostatic attraction of the electric dipole moments 

for the striking physical properties of water and ice. It is important in certain ferroelectric 

crystals. 

Polaron 

A polaron is a quasi-particle used in condensed matter physics to understand the 

interactions between electrons and atoms in a solid material. The polaron concept was first 

proposed by Lev Landau in 1933 to describe an electron moving in a dielectric crystal where 

the atoms move from their equilibrium positions to effectively screen the charge of an 

electron, known as a phonon cloud. This lowers the electron mobility and increases the 

electron's effective mass. 

The general concept of a polaron has been extended to describe other interactions 

between the electrons and ions in metals that result in a bound state, or a lowering of 

energy compared to the non-interacting system. Major theoretical work has focused on 
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solving Froehlich and Holstein Hamiltonians. This is still an active field of research to find 

exact numerical solutions to the case of one or two electrons in a large crystal lattice, and to 

study the case of many interacting electrons. 

Experimentally, polarons are important to the understanding of a wide variety of 

materials. The electron mobility in semiconductors can be greatly decreased by the 

formation of polarons. Organic semiconductors are also sensitive to polaronic effects, which 

is particularly relevant in the design of organic solar cells that effectively transport charge. 

The electron phonon interaction that forms Cooper pairs in low-Tc superconductors (type-I 

superconductors) can also be modeled as a polaron, and two opposite spin electrons may 

form a bipolaron sharing a phonon cloud. This has been suggested as a mechanism 

for Cooper pair formation in high-Tcsuperconductors (type-II superconductors). Polarons are 

also important for interpreting the optical conductivity of these types of materials. 

The polaron, a fermionic quasiparticle, a bosonic quasiparticle analogous to a 

hybridized state between a photon and an optical phonon. 

Elastic Properties 

An elastic modulus is just the ratio of stress to the associated strain. The basic 

elastic equations and its physical meaning are as follows: 

For a stress, ς (hydrostatic, shear, axial...), resulting in an elastic deformation strain, 

ε : ς = Mε 

where M is an elastic modulus (bulk, shear, Young's...). 

For a hydrostatic stress (i.e., equally applied forces in all directions), which is often 

assumed within planetary interiors, the stress is the hydrostatic pressure: ς = ΔP 

and the strain is the relative change in volume of the system:   ε = -ΔV/V 

therefore:  ΔP = -M(ΔV/V) 

and the elastic modulus in this case is the incompressibility or bulk modulus: M = -V(ΔP/ΔV) 

= K 

Elastic strain 

According to Hooke’s law , the strain is directly proportional to the stress in an 

elastic solid. This law applies to small strain only. In nonlinear region, when the strain is 

large, Hooke’s law is no longer satisfied. 

We specify the strain in terms of components exx, eyy, ezz, exy, eyz, ezx 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
42 

 

The strain  components exx,eyy,ezzcan be defined by the relations 
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where  the displacement R of the position vector after deformation is  

zrwyrvxrurR ˆ)(ˆ)(ˆ)()(   

x

v

y

u
e xy











y

w

z

v
eyz











x

w

z

u
ezx









  

Dilation : The fractional increase of volume associated with a deformation is called the 

dilation. The dilation is negative for hydrostatic pressure. 

Volume of cube after deformation is V’ and original V 

∴  The dilation 
.zzyyxx eee

V

VV





 

Stress components :The force acting on a unit area in the solid is defined as the stress. 

There are nine stress components Xx, Xy, Xz, Yx, Yy, Yz, Zx, Zy, Zz. The capital letter indicates 

the direction of the force, and subscript indicates the normal to the plane to which the force 

is applied. 

 The stress components have the dimensions of force per unit area or energy per unit 

volume. The stress components are ratios of lengths and are dimensionless. 

Elastic Energy density: the elastic energy density U is a quadratic function of the strain  i.e., 


 


6

1

6

12

1







eeCU  

1=xx; 2=yy ; 3=zz; 4=yz;  5=zx; 6=xy  

C ‘s are called the elastic stiffness constants Or moduli of elasticity. 

The elastic stiffness constants are symmetrical 

   CCCC 
2

1
  

The elastic energy density of a cubic crystal is  
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Bulk Modulus and compressibility: 

Consider the uniform dilation exx= eyy= ezz=
1

 3
𝛿       
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∴ For deformation the energy density of a cubic crystal 

  2

1211 2
6

1
CCU 

 

There are a maximum of 21 elastic constants for a crystalline body, but for cubic crystals the 

elastic constants, Cij, may be reduced to just three independent elastic constants: 

C11= C22 = C33 → modulus for axial compression, i.e., a stress ς11 results in a strain ε11 along 

an axis; 

C44 = C55 = C66 → shear modulus, i.e., a shear stress ς23 results in a shear strain ε23 across a 

face; 

C12 = C13 = C23 → modulus for dilation on compression, i.e., an axial stress ς11 results in a 

strain ε22 along a perpendicular axis. 

All other Cij = 0. 

For single crystals, the elastic constants can be related to common elastic moduli such as: 

We define the bulk modulus B  by the relation 2

2

1
BU   

This is equivalent to the definition 
dv

d
V


  

 1211 2
3

1
CCB   

The compressibility K is defined as K≡
1

𝐵
 

Shear modulus: 

 121144
2

1
CCandC  

 

Elastic Stiffness  

The stiffness, k, of a body is a measure of the resistance offered by an elastic body to 

deformation. For an elastic body with a single degree of freedom (DOF) (for example, 

stretching or compression of a rod), the stiffness is defined as 



F
k   

where, 

F is the force applied on the body 
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   is the displacement produced by the force along the same degree of freedom (for 

instance, the change in length of a stretched spring) 

In SI units, stiffness is measured in newtons per meter.  

Generally, deflections (or motions) of an infinitesimal element (which is viewed as a 

point) in an elastic body can occur along multiple DOF (maximum of six DOF at a point).  

For example, a point on a horizontal beam can undergo both a 

vertical displacement and a rotation relative to its undeformed axis. When there are M 

degrees of freedom a M x M matrix must be used to describe the stiffness at the point. The 

diagonal terms in the matrix are the direct-related stiffnesses (or simply stiffnesses) along 

the same degree of freedom and the off-diagonal terms are the coupling stiffnesses 

between two different degrees of freedom (either at the same or different points) or the 

same degree of freedom at two different points.  

For a body with multiple DOF, the equation above generally does not apply since the 

applied force generates not only the deflection along its own direction (or degree of 

freedom), but also those along other directions. 

. The ratios between the reaction forces (or moments) and the produced deflection are the 

coupling stiffnesses. 

A description including all possible stretch and shear parameters is given by the elasticity 

tensor. 

A body may also have a rotational stiffness, k, given by


M
k   

where 

M is the applied moment 

θ is the rotation 

In the SI system, rotational stiffness is measured in newton-metres per radian. 

 shear stiffness - ratio of applied shear force to shear deformation 

 torsional stiffness - ratio of applied torsion moment to angle of twist 

Elastic Compliance 

The inverse of stiffness is flexibility or compliance, typically measured in units of 

metres per newton. It may be defined as the ratio of strain to stress, and so take the units of 

reciprocal stress, e.g. 1/Pa 
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Elastic compliance, s, is the strain produced in a piezoelectric material per unit of stress 

applied and, for the 11 and 33 directions, is the reciprocal of the modulus of elasticity 

(Young's modulus, Y). sD is the compliance under a constant electric displacement; sE is the 

compliance under a constant electric field. The first superscript indicates the direction of 

strain; the second is the direction of stress. 

sE
11 elastic compliance for stress in direction 1  and accompanying strain in direction 1, 

under constant electric field  

sD
33 elastic compliance for stress in direction 3  and accompanying strain in direction 3, 

under constant electric displacement  

Elastic wave 

Elastic wavemotion in a medium in which, when particles are displaced, a force 

proportional to the displacement acts on the particles to restore them to their original 

position. If a material has the property of elasticity and the particles in a certain region are 

set in vibratory motion, an elastic wave will be propagated. For example, a gas is an elastic 

medium (if it is compressed and the pressure is then released, it will regain its former 

volume), and sound is transmitted through a gas as an elastic wave. 

Sound waves are an example of such elastic waves. Only two types of elastic waves—

longitudinal and shear, or transverse, waves—can propagate in a homogeneous and 

isotropic solid medium of infinite extent. 

Elastic constants for isotropic solids 

Young’s modulus and Poisson’s ratio are the most common properties used to 

characterize elastic solids, but other measures are also used.  For example, we define 

the shear modulus,  bulk modulus and Lame modulus of an elastic solid as follows: 

 

 

  









211

12

213










E
ModulusLame

E
ModulusShear

E
KModulusBulk

 

It is important for the physical significance of the two elastic constants E and  

Young’s modulus E is the slope of the stress -strain curve in uniaxial tension.  It has 

dimensions of stress   2mN  and is usually large for steel  2910210 mNE  , that is E as 
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a measure of the stiffness of the solid. The larger the value of E, the stiffer the solid.  For a 

stable material, E > 0. 

Poisson’s ratio   is the ratio of lateral to longitudinal strain in uniaxial tensile stress. 

It is dimensionless and typically ranges from 0.2  to to  0.49, and is around 0.3 for most 

metals.  For a stable material, 5.01   It is a measure of the compressibility of the solid. 

 If 5.0 , the solid is incompressible its volume remains constant, no matter how it is 

deformed.  If  0 , then stretching a specimen causes no lateral contraction.  Some bizarre 

materials have 0    if you stretch a round bar of such a material, the bar increases in 

diameter. 

Thermal expansion coefficient quantifies the change in volume of a material if it is 

heated in the absence of stress.  It has dimensions of (degrees Kelvin)-1 and is usually very 

small.  For steel, 1610106  K  

The bulk modulus quantifies the resistance of the solid to volume changes.  It has a 

large value (usually bigger thanE). 

 The shear modulus quantifies its resistance to volume preserving shear 

deformations.  Its value is usually somewhat smaller than E 

Strain Energy Density for Isotropic Solids 

The strain energy density of a solid is defined as the work done per unit volume to 

deform a material from a stress free reference state to a loaded state.To write down an 

expression for the strain energy density, it is convenient to separate the strain into two 

parts 

T

ij

e

ijij    

where, for an isotropic solid, 

ij

T

ij T   

represents the strain due to thermal expansion (known as thermal strain), and 
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is the strain due to mechanical loading (known as elastic strain). 
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Work is done on the specimen only during mechanical loading.  It is straightforward to show 

that the strain energy density is 

e

ijijU 
2

1
  

Therefore it is re-written as 
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RELATION AMONG ELASTIC CONSTANTS 

Relation between E, G and u : 

Let us establish a relation among the elastic constants E,G and u. Consider a cube of 

material of side ‘a' subjected to the action of the shear and complementary shear stresses 

as shown in the figure and producing the strained shape as shown in the figure below. 

Assuming that the strains are small and the angle A C B may be taken as 450. 

 

Therefore strain on the diagonal OA= Change in length / original length 
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Since angle between OA and OB is very small hence OA OB therefore BC, is the change in 

the length of the diagonal OA 

Strain on diagonal OA = 
OA

BC
 

                                         = 
OA

AC 45cos
 

2
45sin

a
a

OA 


 

Hence                   
2

1

2a

AC
strain   

a

AC

2
  

But aAC  ,   where   is the shear strain 

Thus the strain on diagonal 
22




a

a
 

From the definition  
G

orG






  

Ie., the strain on diagonal 
G22


  

Now this shear stress system is equivalent or can be replaced by a system of direct stresses 

at 450 as shown below. One set will be compressive, the other tensile, and both will be 

equal in value to the applied shear strain. 

 

 

 

 

 

Thus, for the direct state of stress system which applies along the diagonals: 
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We have introduced a total of four elastic constants, i.e E, G, K and g. It turns out that not all 

of these are independent of the others. Infact given any two of then, the other two can be 

found. 

 

irrespective of the stresses i.e, the material is incompressible. 

When g = 0.5  Value of k is infinite, rather than a zero value of E and volumetric strain is 

zero, or in other words, the material is incompressible. 

Relation between E, K and u : 

Consider a cube subjected to three equal stresses s as shown in the figure below 
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The total strain in one direction or along one edge due to the application of hydrostatic 

stress or volumetric stress s is given as 

 

 

 

 

 

 

 

 

 

 

Relation between E, G and K : 

The relationship between E, G and K can be easily determained by eliminating u from the 

already derived relations 
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E = 2 G ( 1 + u ) and E = 3 K ( 1 - u ) 

Thus, the following relationship may be obtained 

 

Relation between E, K and g : 

From the already derived relations, E can be eliminated 
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UNIT III 

LATTICE DYNAMICS AND THERMAL PROPERTIES 

Lattice dynamics: Concepts of phonons – momentum of phonons – normal and Umklapp 

process – vibrations of one dimensional monoatomic and diatomic linear lattices – inelastic 

scattering of neutrons by phonons 

Thermal Properties: Theories of specific heat – Dulong and Petit’s law – Einstein theory and 

Debye’s theory – Widemann Franz law 

Concept of Phonons 

The concept of phonons was introduced in 1932 by Soviet physicist Igor Tamm. The 

name phonon comes from the Greek word "phone," which translates into "sound" or 

"voice."The long-wavelength phonons give rise to soundat higher energy levels. Shorter-

wavelength higher-frequency phonons are responsible for the majority of the thermal 

capacity of solids. 

Phonons are quanta of lattice vibrations. Phonon is used to draw an analogy 

between photon representing a quantum of electromagnetic radiation and quanta of lattice 

vibration. Theory of phonons explains most solid state phenomena which cannot be 

explained with static lattice theory.Phonons don't exist as independent particles, but rather 

as a state of behavior within a system that can be thought of as a particle in its own right. 

For this reason, phonons as a "quasiparticle" or a "collective excitation." 

Elastic waves in crystals are made up of phonons. The energy of an elastic mode of 

angular frequency ω is  









2

1
n . Where n is  quantum number and 

2

1
 is the zero 

point energy of  mode. An exact amount of energy ħω must be supplied to the harmonic 

oscillator lattice to push it to the next energy level. In comparison to the photon case when 

the electromagnetic field is quantized, the quantum of vibrational energy is called a phonon. 

Momentum of Phonon 

By analogy to photons and matter waves, phonons have been treated with 

wavevector k as though it has a momentum ħk, however, this is not strictly correct, because 

ħk is not actually a physical momentum; it is called the crystal momentum or 

pseudomomentum. This is because k is only determined up to addition of constant vectors. 
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This quantity is not unique as any quasi-momentum bk   , where b  is a 

reciprocal lattice vector, is physically equivalent to k . The velocity of a phonon is 

determined as the group velocity of the corresponding classical waves kv rg   and has 

the form:
 
p

p
v







 

The free wave motion is considered as the free motion of non-interacting phonons. 

Inclusion of the anharmonicity leads to scattering processes in the phonon gas. These 

scattering processes restore the thermal equilibrium of the phonon gas. The processes 

conserve the quasi-momentum. However, this is only valid within an addition of a reciprocal 

lattice vector b . 

ie., The momentum conservation law as k = k ′ + K + G where G is a reciprocial lattice vector 

and which, , corresponds to the  ℏG recoil momentum of the whole lattice as a 

resultofthecollision.  

Normal and Umklapp process 

Umklapp scattering (also U-process or Umklapp process) is the transformation, like a 

reflection or a translation, of a wave vector to another Brillouin zone as a result of a 

scattering process, for example an electron-lattice potential scattering or an 

anharmonicphonon-phonon (or electron-phonon) scattering process, reflecting an 

electronic state or creating a phonon with a momentum k-vector outside the first Brillouin 

zone. Umklapp scattering is one process limiting the thermal conductivity in crystalline 

materials, the others being phonon scattering on crystal defects and at the surface of the 

Figure 1.: Normal process (N-process) and Umklapp process (U-process). While the                 
N-process conserves total phonon momentum, the U-process changes phonon 
momentum. 
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sample. 

Figure 1 schematically shows the possible scattering processes of two incoming phonons 

with wave-vectors (k-vectors) k1 and k2 creating one outgoing phonon with a wave vector k3. 

As long as the sum of k1 and k2 stay inside the first Brillouin zone k3 is the sum of the former 

two conserving phonon momentum. This process is called normal scattering (N-process). 

With increasing phonon momentum and thus wave vector of k1 and k2 their sum might point 

outside the Brillouin zone (k'3). 

 

 As shown in Figure 2, k-vectors outside the first Brillouin zone are physically equivalent to 

vectors inside it and can be mathematically transformed into each other by the addition of a 

reciprocal lattice vector G. These processes are called Umklapp scattering and change the 

total phonon momentum. 

Umklapp scattering is the dominant process for thermal resistivity at high 

temperatures for low defect crystals. The thermal conductivity for an insulating crystal 

where the U-processes are dominant has 1/T dependence. 

The name derives from the German word umklappen (to turn over).  

Lattice Vibrations(Mono atomic basis) 

 A lattice is usually regarded as an array of atoms connected with each other by 

elastic springs. That is the motion of every atom would be shared by all the atoms in the 

crystal and the crystal would thus vibrate as a whole. 

Figure 2.: k-vectors exceeding the firstBrillouin zone do not carry more information than 

their counterparts in the first Brillouin zone. 
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 Consider the elastic vibrations of a crystal with one atom in the primitive cell. The 

frequency of an elastic wave in terms of the wave vector that describes the wave and in 

terms of the elastic constant can be found. 

 And let the propagation direction in cubic crystal are [100],[110],[111].These are the 

directions of the cubic edge, face diagonal and body diagonal. 

 When a wave propagates along one of these directions, entire planes of atoms move 

in phase with displacements either parallel or perpendicular to the direction of the wave 

vector. It is considered as one dimensional. 

 For each wave vector, there are three modes, one of longitudinal polarization and 

two of transverse polarization. 

 Assume that the elastic response of the crystal is a linear function of the forces. The 

elastic energy is a quadratic function of the relative displacement of any two points in the 

crystal. 

 The force on the plane S caused by the displacement of the plane S + p is 

proportional to the difference  Us+p-Usof their displacement. 

Consider only nearest –neighbour interaction Therefore p=±1 

Therefore, The total force on S comes from planes S±1 

∴ 𝐹𝑠 = 𝐶 𝑈𝑠+1 − 𝑈𝑠 + 𝐶 𝑈𝑠−1 − 𝑈𝑠 ---------(1) 

It is linear and the form of Hooke’s law. C is the force constant and is defined for one atom 

the plane, Fsis the force on one atom in the plane S. 

The equation of motion of the plane S is 

  UUU SSS

s C
dt

Ud
M 2

112

2




-------------(2)  

Where M is the mass of an atom. The displacement with time dependence exp(-iωt). 

Then   
s

S U
td

Ud 2

2

2

  

Therefore Equation 2 becomes      

)2(
11

2

UUU SSSs CUM 


 ----------(3) 

The travelling wave solutions of the form  

)exp()exp(1 ikaiskaUUS  -----------(4) 

Where a is the spacing between planes and k is wave vector. 

Using equation 4 in equation 3, we have 
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        iskakasikasiuCiskaMU exp21exp1exp)exp(2  ------(5) 

Cancelling )exp(iskau  on both sides 

     2expexp2  ikaikaCM ------(6) 

 2cos22  KaCM  

 Ka
M

C
cos1

22  ---------(7) 

The first Brillouin zone lies at k = ± π/a. 

The slope of ω versus k is zero at the zone boundary 

0
2

2

 Sinka
M

Ca

dk

d ------------------(8) 

At K =±π/a    Sin Ka =Sin ±π=0 

Equation 7 can be written as 

KaSin
M

C
2

14 22   

ka
M

C

2

1
sin

4 2

1









 ---------------(9) 

The ratio of the two successive planes is given by  

  
 

)exp(
exp

1exp1 iKa
iskaU

KasiU

US

SU



 ------------(10) 

The range –π to + π for the phase Ka covers all independent values of the exponential. 

The range of independent values of K is   −𝜋 < 𝐾𝑎 ≤ 𝜋  𝑜𝑟 − 𝜋
𝑎 < 𝐾 ≤

𝜋

𝑎
 

This range is the first Brillouin zone of the linear lattice. The extreme values are Kmax =±π/a 

In elastic continuum, 0aLt and   maxk  

At the boundaries, Kmax = ±
a

 of the Brillouin zone, the solution Us = U exp(iska) does not 

represent a travelling wave but a standing wave. 

At the zero boundaries, SKmaxa = ± sπ 

Whence    ss UisUU 1exp    

This is a standing wave , Us = ±1(for s is even or odd number) 

The wave moves neither to the right nor to the left. 

a
K max satisfies the Bragg condition   2d sin θ  = nλ 
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Group velocity 

The transmission velocity of a wave packet is the group velocity, the gradient of the 

frequency with respect to K 

 

.   

This is the velocity of energy propagation in the medium.Substituting the value of ω from 

equation 9, we get 

  That is    KaSin
M

C

dk

d
vg 2

14 2

1









  

Ka
M

Ca
vg

2

1
cos

2

1
2









  

This is zero at the edge of the zone K = π/a. That is the wave is standing wave. 

Long wavelength limit 

When Ka≪ 1,   Cos Ka =  2
2

1
1 Ka  

222 aK
M

C








  

That is frequency is directly proportional to the wave vector in the long wave length limit. It 

is equivalent to the velocity of sound. And it is independent of frequency in this limit  i.e.,  

kv / . 

 

Force constant 

 In metals, the effective forces may be long range. The dispersion to the p nearest 

planes 

     pKaC
M p cos122  

to solve the inter planar force constant Cp, multiplying both sides by )cos(rka and 

Integrating over a range of independent values of K.where r is aninteger 

  rkapKadKCrKadKM
a

a
p

p

a

a

k coscos12)cos(
0

2














  

a

Cr2
  

 kgrad
dk

d
v kg 



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Integral vanishes except for p = r 

pkadK
Ma

C
a

a

kp cos
2

2













 

This is the force constant at range pa for a structure with a monoatomic basis. 

Two atoms per primitive cells 

 The phonon dispersion relation shows new features in crystals with two or more 

atoms per primitive cell. 

Example:  NaCl or diamond structure (two atoms in the primitive cell ). 

The dispersion relation ω Versus K develops two branches known as the acoustical 

and the optical branches. 

We have longitudinal acoustical LA and transverse acoustical TA modes and 

longitudinal optical LO and transverse optical TO modes 

If there are p atoms in the primitive cell,there are 3p  branches to the dispersion 

relation:3 acoustical branches and 3p-3 optical branches  

Example:Ge and KBr with two atoms have six branches one LA,one LO, two TA and two T 

With P atoms in the primitive cell and for N primitive cells,there are PN atoms.Each atom 

has 3 degrees of freedom.Therefore in total there are 3PN degrees of freedom for the 

crystal.The number of allowed K values in a single branch is N for one brillouin zone. 

Therefore one LA and two TA branches have 3N modes,thereby they are 3N degrees 

of freedom. 

The remaining (3P-3)N degrees of freedom are accommodated by the optical branches. 

Consider a cubic crystal where atoms of mass M1 lie on one set of planes and atoms 

of M2 lie on planes interleaved between those of the first set.Let ‘a’ denote the repeat 

distance of the lattice in the direction normal to the lattice plane.The wave directions are 

[111]in the NaCl structure and [100]in the CsCl structure. 

Assume each plane interacts only with its nearest neighbour planes, and the force 

constants are identical in equation of motion. 

)2(

)2(

12

2

2

12

2

1

sss
s

sss
s

vuuC
dt

vd
M

uvvC
dt

ud
M









                             ---------------------- (a) 

Solution in the form of a traveling wave with different amplitude u and v 
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)exp()exp(

)exp()exp(

tiiskavv

tiiskauu

s

s








------------------------(b) 

Equation (b) in (a) 

CvikaCuvM

CuikaCvuM

2]1)[exp(

2)]exp(1[

2

2

1

2








         -------------------------(c) 

The homogeneous linear equations have solution only if determinant of the coefficient of 

u,v vanishes  

0
2)]exp(1[

)]exp(1[2
2

2

2

1 








MCikaC

ikaCMC
---------------------(d) 

i.e.,  0)cos1(2)(2 22

21

4

21  KaCMMCMM  --------------(e) 

solving  this equation for ω2,for Ka≪ 1 and Ka=±𝜋 

For small Ka, 22

2

1
1cos aKKa   











21

2 11
2

MM
C            Optical branch         ------------- (f) 

22

21

2
1

2 aK
MM

C


      Acoustical branch      ---------------(g) 

At Kmax= ±
𝜋

𝑎
,

1

2 2

M

C
 ;

2

2 2

M

C
    -----------------------(h) 

The dependence of ω on K is shown in fig.(i) 

The particle displacement in the transverse acoustical (TA) and transverse 

optical (TO) branches are shown in fig 5 

For optical branch at K=0,  equation(f) in (c) we get 

1

2

M

M

v

u
  

The atom vibrates against each other but their center of mass is fixed.If the 

two atoms carry opposite charges,a motion of this with the electric field forms a light 

wave. So this branch is called the optical branch. 

Another solution at small k is u=v ie (K=0).The atoms move together as long 

wavelength acoustical vibration.Therefore the term acoustical branch arises. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
60 

 

Between 
2

1

1

2









M

C
   and

2
1

2

2









M

C
,no solution for certain frequencies so that the wave 

is damped in space.         

Specific heats of solids 

Consider a simple solid containing N atoms Now, atoms in solids cannot translate 

(unlike those in gases), but are free to vibrate about their equilibrium positions. Such 

vibrations are called lattice vibrations, and can be thought of as sound waves propagating 

through the crystal lattice. Each atom is specified by three independent position 

coordinates, and three conjugate momentum coordinates. Let us only consider small 

amplitude vibrations. In this case, we can expand the potential energy of interaction 

between the atoms to give an expression which is quadratic in the atomic displacements 

from their equilibrium positions. It is always possible to perform a normal mode analysis of 

the oscillations. In effect, we can find 3N independent modes of oscillation of the solid. Each 

mode has its own particular oscillation frequency, and its own particular pattern of atomic 

displacements. Any general oscillation can be written as a linear combination of 

these normal modes. Let qi be the (appropriately normalized) amplitude of the ith normal 

mode, and pi the momentum conjugate to this coordinate. In normal mode coordinates, the 

total energy of the lattice vibrations takes the particularly simple form  

 

(11) 

 

where ωi is the (angular) oscillation frequency of the th normal mode. It is clear that in 

normal mode coordinates, the linearized lattice vibrations are equivalent to 3N independent 

harmonic oscillators (of course, each oscillator corresponds to a different normal mode). 

The typical value of  ωi is the (angular) frequency of a sound wave propagating through the 

lattice. Sound wave frequencies are far lower than the typical vibration frequencies of 

gaseous molecules. In the latter case, the mass involved in the vibration is simply that of the 

molecule, whereas in the former case the mass involved is that of very many atoms (since 

lattice vibrations are non-localized). The strength of interatomic bonds in gaseous molecules 
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is similar to those in solids, so we can use the estimate  mk (  is the force constant 

which measures the strength of interatomic bonds, and  is the mass involved in the 

oscillation) as proof that the typical frequencies of lattice vibrations are very much less than 

the vibration frequencies of simple molecules. It follows from  E that the quantum 

energy levels of lattice vibrations are far more closely spaced than the vibrational energy 

levels of gaseous molecules. Thus, it is likely (and is, indeed, the case) that lattice vibrations 

are not frozen out at room temperature, but, instead, make their full classical contribution 

to the molar specific heat of the solid. 

If the lattice vibrations behave classically then, according to the equi-partition theorem, 

each normal mode of oscillation has an associated mean energy Tk  in equilibrium at 

temperature T {   Tk21 resides in the kinetic energy of the oscillation, and    Tk21 resides 

in the potential energy}. Thus, the mean internal energy per mole of the solid is  

 

(12) 

 
It follows that the molar heat capacity at constant volume is  

 

(13) 

for solids. This gives a value of 24.9 joules/mole/degree. In fact, at room temperature most 

solids (in particular, metals) have heat capacities which lie remarkably close to this value.  

Dulong–Petit law 

The Dulong–Petit law, a thermodynamic rule proposed in 1819 by French 

physicists Pierre Louis Dulong and Alexis Thérèse Petit, states the classical expression for the 

molar specific heat capacity of certain chemical elements. Experimentally the two scientists 

had found that the heat capacity per weight (the mass-specific heat capacity) for a number 

of elements was close to a constant value, after it had been multiplied by a number 

representing the presumed relative atomic weight of the element. These atomic 

weights had shortly before been suggested by Dalton. 
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The specific heat capacity c of a solid element (measured in joule per kelvin per kilogram) is 

equal to MR3 , where R  is the gas constant (measured in joule per kelvin per mole) 

and M is the molar mass (measured in kilogram per mole). Thus, the heat capacity per mole 

of many elements is R3 . 

The initial form of the Dulong–Petit law was:    KMc   

where c  is the specific heat, M the atomic weights, and K is a new constant is about 3R. 

The mass m divided by atomic weight M gives the number of moles N. 

NMm   

Therefore, using uppercase C  for the total heat capacity, and lowercase c  for the specific 

heat capacity 

KMmC )(  

RNCorRKNCmMC 33)(   

Therefore the heat capacity of most solid crystalline substances is 3R per mole of substance. 

Dulong and Petit did not state their law in terms of the gas constant R (which was 

not then known). Instead, they measured the values of heat capacities (per weight) of 

substances and found them smaller for substances of greater atomic weight as inferred by 

Dalton and other early atomists. Dulong and Petit then found that when multiplied by these 

atomic weights, the value for the heat capacity (which would now be the heat 

capacity per mole in modern terms) was nearly constant, and equal to a value which was 

later recognized to be 3 R. 

The specific heat of copper is 0.093 cal/gm K (.389 J/gm K) and that of lead is only 

0.031 cal/gmK(.13 J/gm K). The difference is mainly because it is expressed as energy per 

unit mass; if it is expressedas energy per mole, they are very similar. It is in fact that 

similarity of the molar specific heats of metals which is the subject of the Law of Dulong and 

Petit. The similarity can be accounted for by applying equi-partition of energy to the atoms 

of the solids. 
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From just the translational degrees of freedom we get 3kT/2 of energy per atom. 

Energy added to solids takes the form of atomic vibrations and that contributes three 

additional degrees of freedom and a total energy per atom of 3kT. The specific heat at 

constant volume should be just the rate of change with temperature (temperature 

derivative) of that energy. 

Energy per mole = 3kTNA 

Where k= Boltzmann’s constant; T= Temperature in Kelvins; and NA= Avagadro’s number 

The law of Dulong and Petit   KmoleJmoleNkNTk
T

C AAV /94.24/33 



  

When looked at on a molar basis, the specific heats of copper and lead are quite similar: 

KmoleJmolegmKgmJCopper /6.24/6.63/386.0   

KmoleJmolegmKgmJLead /5.26/207/128.0   

Einstein Theory 

Dulong and Petite's law is essentially a high temperature limit. The molar heat 

capacity cannot remain a constant as the temperature approaches absolute zero, since, by 

Equation dT
T

VTcT
V

0
),(

  this would imply S , which violates the third law of 

thermodynamics. We can make a crude model of the behaviour of cV at low temperatures 

by assuming that all the normal modes oscillate at the same frequency, , say.. According 

to Equation     



N

i

iii qpE
3

1

222

2

1
 the solid acts like a set of 3N independent oscillators 

which, making use of Einstein's approximation, all vibrate at the same frequency. We can 

use the quantum mechanical result  











1)exp(

1

2

1





E for a single oscillator to 

write the mean energy of the solid in the form  













1)exp(

1

2

1
3





NE  (14) 
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The molar heat capacity is defined  

 

(15) 

 
giving  

 

(16) 

 
which reduces to  

 

(17) 

 
 

Here,  

 

(18) 

 
 

is called the Einstein temperature. If the temperature is sufficiently high that  ET  then

kT  , and the above expression reduces to RcV 3  , after expansion of the 

exponential functions. Thus, the law of Dulong and Petite is recovered for temperatures 

significantly in excess of the Einstein temperature. On the other hand, if the temperature is 

sufficiently low that ET    then the exponential factors in Equation

 
  2

2

1exp

exp
3












T

T

T
Rc

E

EE
V




become very much larger than unity, giving  

 

(19) 

 
So, in this simple model the specific heat approaches zero exponentially as 0T  . 

The specific heats of solids do not approach zero quite as quickly as suggested by 

Einstein's model when 0T  . The experimentally observed low temperature behaviour is 

more like 3TcV   . The reason for this discrepancy is the crude approximation that all 

normal modes have the same frequency. In fact, long wavelength modes have lower 
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frequencies than short wavelength modes, so the former are much harder to freeze out 

than the latter (because the spacing between quantum energy levels, , is smaller in the 

former case). The molar heat capacity does not decrease with temperature as rapidly as 

suggested by Einstein's model because these long wavelength modes are able to make a 

significant contribution to the heat capacity even at very low temperatures. 

Debye Theory 

A more realistic model of lattice vibrations was developed by the Dutch physicist 

Peter Debye in 1912. In the Debye model, the frequencies of the normal modes of vibration 

are estimated by treating the solid as an isotropic continuous medium. This approach is 

reasonable because the only modes which really matter at low temperatures are the long 

wavelength modes: i.e., those whose wavelengths greatly exceed the interatomic spacing. It 

is reasonable that these modes are not particularly sensitive to the discrete nature of the 

solid: i.e., the fact that it is made up of atoms rather than being continuous. 

Consider a sound wave propagating through an isotropic continuous medium. The 

disturbance varies with position vector  and time like )](exp[ trki   , where the 

wave vector  and the frequency of oscillation  satisfy the dispersion relation for sound 

waves in an isotropic medium:  

 

(20) 

 

Here,  sc is the speed of sound in the medium. Suppose, for the sake of argument, 

that the medium is periodic in the zandyx,  directions with periodicity lengths

zyx LandLL ,,   respectively. In order to maintain periodicity we need  

 

(21) 

 

where  xn is an integer. There are analogous constraints on yk   and zk  . It follows 

that in a periodic medium the components of the wave-vector are quantized, and can only 

take the values  

 

 

 

(22) 
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(23) 

 

 

 

(24) 

Where xn , yn , and  zn ,  are all integers. It is assumed that zyx LandLL ,,  are macroscopic 

lengths, so the allowed values of the components of the wave-vector are very closely 

spaced. For given values of yk   and zk  , the number of allowed values of xk  which lie in the 

range xk   to xx dkk   is given by  

 

(25) 

It follows that the number of allowed values of  (i.e., the number of allowed modes) 

when xk   lies in the range xk   to xx dkk   , yk    lies in the range yk   to yy dkk    , and zk

  lies in the range zk   to zz dkk    is  

 

(26) 

 

Where  zyx LLLV    is the periodicity volume, and  zyx dkdkdkkd 3  . The quantity ρ  is 

called the density of modes. Note that this density is independent of k , and proportional to 

the periodicity volume. Thus, the density of modes per unit volume is a constant 

independent of the magnitude or shape of the periodicity volume. The density of modes per 

unit volume, when the magnitude of k  lies in the range dkktok   , is given by multiplying 

the density of modes per unit volume by the ``volume'' in k -space of the spherical shell 

lying between the radii dkkandk   . Thus,  

 

(27) 

 
Consider an isotropic continuous medium of volume V . According to the above 

relation, the number of normal modes whose frequencies lie between   and   d  

(which is equivalent to the number of modes whose values lie in the range  to  is  
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(28) 

 
The factor of 3  comes from the three possible polarizations of sound waves in solids. 

For every allowed wave number (or frequency) there are two independent torsional modes, 

where the displacement is perpendicular to the direction of propagation, and one 

longitudinal mode, where the displacement is parallel to the direction of propagation. 

Torsion waves are vaguely analogous to electromagnetic waves (these also have two 

independent polarizations). The longitudinal mode is very similar to the compressional 

sound wave in gases. Of course, torsion waves can not propagate in gases because gases 

have no resistance to deformation without change of volume. 

The Debye approach consists in approximating the actual density of normal 

modes )(  by the density in a continuous medium )( c  , not only at low frequencies 

(long wavelengths) where these should be nearly the same, but also at higher frequencies 

where they may differ substantially. Suppose that we are dealing with a solid consisting 

of N  atoms. We know that there are only N3  independent normal modes. It follows that 

we must cut off the density of states above some critical frequency, D  say, otherwise we 

will have too many modes. Thus, in the Debye approximation the density of normal modes 

takes the form  

  
 

  

 

 

 

(29) 

 

Here, D  is the Debye frequency. This critical frequency is chosen such that the total 

number of normal modes is N3 , so  

 

(30) 

Substituting Equation 


 d
c

V
dk

Vk
d

s

c

2

322

2

2
3

2
3)(   into the previous formula 

yields  

 

(31) 
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This implies that  

 

(32) 

 
Thus, the Debye frequency depends only on the sound velocity in the solid and the 

number of atoms per unit volume. The wavelength corresponding to the Debye frequency 

is  Dsc 2 , which is clearly on the order of the inter atomic spacing   31
NVa  . It follows 

that the cut-off of normal modes whose frequencies exceed the Debye frequency is 

equivalent to a cut-off of normal modes whose wavelengths are less than the inter atomic 

spacing. 

For example, when compare the curves of the actual density of normal modes in 

diamond with the density predicted by Debye theory, both curves exhibit sharp cut-offs at 

high frequencies, and coincide at low frequencies. Furthermore, the areas under both 

curves are the same. This is sufficient to allow Debye theory to correctly account for the 

temperature variation of the specific heat of solids at low temperatures. 

The quantum mechanical expression can be used for the mean energy of a single 

oscillator, Equation 











1)exp(

1

2

1





E to calculate the mean energy of lattice 

vibrations in the Debye approximation. We obtain  

 

(33) 

 

According to Equation  
VVV

V

E

TkT

E

T

E
c 
















































 2

111
the molar heat 

capacity takes the form  

 

(34) 

 
Substituting in Equation , 
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we find that  

 

(35) 

 
giving  

 

(36) 

 

in terms of the dimensionless variable    x  According to Equation
31

26 









V

N
csD  , 

the volume can be written  

 

(37) 

 
so the heat capacity reduces to  

 

(38) 

 
where the Debye function is defined  

 

(39) 

We have also defined the Debye temperature  D as  

 

(40) 

Consider the asymptotic limit in which DT  . For small y  , we can approximate xexp

  as x1  in the integrand of Equation,  
 

dxx
x

x

y
yf

y

D

4

0 23
1exp

exp3



    so that  

 

(41) 

 
Thus, if the temperature greatly exceeds the Debye temperature we recover the law of 

Dulong and Petite that RcV 3 . Consider, now, the asymptotic limit in which DT  . For 

large y ,  

 

(42) 

 
The latter integration is standard (if rather obscure), and can be looked up in any (large) 
reference book on integration. Thus, in the low temperature limit  
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(43) 

 
This yields  

 

(44) 

 
 

in the limit DT  : i.e., Vc  varies with temperature like 3T . 

The fact that Vc  goes like 3T  at low temperatures is quite well verified 

experimentally, although it is sometimes necessary to go to temperatures as low as D02.0

 to obtain this asymptotic behaviour. Theoretically, D  should be calculable from Equation

312 )6(
V

N
csD    in terms of the sound speed in the solid and the molar volume. It can be 

seen that there is fairly good agreement between the theoretical and empirical Debye 

temperatures. This suggests that the Debye theory affords a good, representation of the 

behaviour of Vc  in solids over the entire temperature range 

Thermal conductivity of metals  

 The expression for thermal conductivity lvck
3

1
  

Where v velocity of free electrons,  c heat capacity per unit vol.  

 l - mean free path.  
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   m

TNK
k B 

22

3


 

Widemann-Franz Law: 

The Widemann- Franz states that the ratio of the thermal conductivity ‘K’ to the 

electrical conductivity ‘ς’ is directly proportional to temperature and independent of the 

particular metal. 

Thermal Conductivity ,    K = )(
3

22

f
B E

m

TKN



 

Where )( fE is the collision time or relaxation time and N is electron concentration. 

Electrical Conductivity ,    ς  =  enE
m

en
f )(

2

 

Μ is mobility and is defined as 
0E

vz



  

m

EeN

m

ENTK
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f

fB

)(

3

)(

2

22


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
  

T
e
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22

3


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


 

Where L  is Lorentz number and is defined as  
T

K

e

K
L B















22

3
 

The relaxation times are same for electrical and thermal process.  

At low temperature   DT   the value of Lorentz number tends to decrease. 
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UNIT IV 

ELECTRONIC PROPERTIES OF SOLIDS 

 Free electron gas model in three dimensions : Density of states – Fermi energy – 

Effect of temperature – heat capacity of electrons – experimental heat capacity of metals – 

thermal effective mass – electrical conductivity and ohm’s law – Hall effect – failure of the 

free electron gas Band theory of solids – periodic potential and Bloch’s theorem – Kronig – 

Penny model – wave equation of electron in a periodic potential – periodic, extended and 

reduced zone schemes of energy representation – number of orbitals in an energy band – 

classification of metals, semi conductors and insulators – tight binding method and its 

applications of FC and BCC structures.  

 

Free electron gas model in three dimensions 

Consider an electron of mass m confined to a length L by 

infinite barriers. (Fig.4.1) 

The wave function )(xn of the electron is a solution of the 

Schrodinger equation.  

 EH   

Where ;EnergyPotenialEnergyKineticH   E is a set of 

allowed energies (or) eigenvalues of the electron in the orbital. 

 Since the total energy is Kinetic, 
m

p
H

2

2

     where p is moment, 
dx

d
i

  
is its 

operator.  

nn
n

n E
dx

d

m
H 


 

2

22

2


 

The boundary conditions are 0)0( n and 0)( Ln  by infinite potential barriers.  

  The general solution is ikxikx

n BeAe )x(  

A and B are arbitrary constants .
2

2

2

nE
m

K 










 

By its first boundary condition BAn gives)0(  

By 2nd boundary condition,  0sin kl  

0 

V
(x

) 

x= L x= 0 


 

=0 


 

=0 

Figure 4.1 
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L

n
Kn


 with n = 1, 2, 3, ... 

and the allowed energy eigen values nE  are, 
22

2










L

n

m
En


 

and the corresponding wave functions are 









L

xn
An


 sin  

n is Quantum number.  The plot of energy nE
 Vs  n  is in Figure 4.2. 

 

The energy spectrum consists of discrete energy levels, with their separation depending on 









2

2

L

n
. 

 If  L in large, the energy levels are spaced very closely together. (eg) if L = 1cm, 

.10x5.3 19

1 evEE nn



    ‘A’ can be chosen by the unit probability of finding the electron.  

.1)()(
0

*  dxxx n

L

n   

1sin
0

22  L

xn
A

L


 

L
Aie

L
A 222   

The normalized wave functions are  

L

xn

L
xn


 sin

2
)( 

 

The first  few lower energy state wave functions 

are in Figure 4.3. 

 

To accommodate N electrons : 

 By Pauli’s exclusion principle, no two electrons can have all their Quantum numbers 

identical, ie each orbital can be occupied by one electron. 

 In a solid the Quantum numbers of an electron in conduction electron orbital are n 

and ,sm where n is  positive integer in equation  
22

2










L

n

m
E


and 

2

1
sm Each 

En 

Figure 4.3 

E n
 

n 

Figure 4.2 
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energy level with Quantum number n can accommodate 2 electrons in which one electron 

with spin up, another with spin down. 

 Let fn be the top most filled energy level, filling from bottom )1( n to higher levels, 

N electrons can be accommodated. 
 

Nn f 2   

  fn
 
is the value of n of the uppermost filled level, Fermi level at 0oK (ground State) 

2

N
n f   

 The  Fermi energy fE is defined as the energy of the top-most filled level at 0K.  

2
2

2
2

222 


















L

n

mL

n

m
E

f

f

 
 

 Energy of the top electron depends on the number of elections in the box and on the 

size of the box just as an atom the ground state depends on the number of electrons and on 

the size of the central coulomb filed strength (ie., number of Protons in nucleus). The 

ground state is the state of the system at absolute zero. 

 For N electrons in the lowest energy state of the system, the total energy 0E  is 

obtained by summing the individual energies nE between .
2

1
and1 Nnn f 

 
The factor 2 

due to spin. 
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ie in one dimension, the average K.E. in ground state is one third of Fermi Energy.  
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Density of states  

 The no. of orbitals per unit energy is called the density of states. 

22
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
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ndE

dn
denotes the energy level per unit energy corresponding to two spin states, there are 

two quantum states.  

 Density of states of free electron gas 
ndE
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ED 2)(   

                                           = 
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Density of States in 3D. 

 The Density of state D(E) defined that all the energy state below )0(fE are occupied 

and is equal to the total no. of electrons  

 
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For infinitive integral,  
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 It is also written as, 
)()(

)(
2

3
)(

ofof

of
E

N

E

dN
ED   

 The no. of orbital per unit energy range at the Fermi energy is the total no. of 

conduction electrons divided by Fermi energy.  

 

Free electron gas in three Dimension: 

Schrodinger equation in three dimensions is  

)()(
2 2

2

2

2

2
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rEr
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



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kE - total energy of the electron Kin state. 

If the electrons are confined to a cube of edge L, the wave function at a particular 

pointx, y, z are so chosen sothat it is periodic with L to satisfy the periodic boundary 

condition. ie., the wave function to be periodic with L,  ),,(),,( zyxzyLx   ; 

),,(),,( zyxzLyx   ; ),,(),,( zyxLzyx    

The wave function which satisfies the boundary condition and the free electron Schrodinger 

equation is of the form  

)(.),,(
zKyKxKirik zyx

eAeAzyx

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provided that the wave vector  satisfy 
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 4
,

2
,0   similarly zy KandK  
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zyx nnn ,, are positive  integer 







3

8

L
is normalising constant.  

 The energy spectrum consists of discrete levels which lie usually very close together 

ev1510  (  a part) and may be taken as continuous. Such energy levels are quasi continuous.  
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 The separation between the energy levels depends on the size of the box. 

 Using normalizing considition .1)()(   drrx  

.1,.

0 0 0

.2   
 dzdydxeeA rik

L L L
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 The normalized wave function is rik

k e
V

r .
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1
)( 


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



  

 At absolute zero all the levels below a certain level will be filled with  electrons and 

all the levels above it will be empty. The level which divides the filled and vacant level is 

called the Fermi level )( )(ofE . 

 At non zero temperature, Fermi shown that the probability that a particulars 

Quantum state at energy E is filled is given by  

  1/)(exp

1
)(




BTf kEE
Ef  

At absolute zero,  

)0(0

)0(1)(

f

f

EEfor

EEforEf




 

 Fermi Distribution function becomes step function. Temperature increases 

distribution function loses its step like character and varies much slowly with energy.  

2

1
)(

2

1
)(  ff EfisEEatEf  

ie fE is a level lying half way between filled and empty states.  

 

Fermi Energy 

Fermi sphere  

 In the ground state of a system of N free electrons, the occupied orbitals may be 

represented as points inside a sphere in K space. It allows maximum values of K vectors. At 

absolute zero Fermi sphere separates filled and unfilled orbits. The energy at the surface of 
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the sphere is Fermi energy. The wave vector at the Fermi surface is .fK fK is independent 

of mass, but depends upon 








V

N
electron concentration. 

 Let the linear momentum  iPP,  

 For the energy state )()()( rkrirP kkk     

 k is eigen function of linear moment with eigen value k . 

The particle velocity is 
m

k
V


  

m

k
E

f

f
2

22

)0(


  

 The volume of Fermi sphere is ,
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4 3
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The total number of orbitals in k space is 
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This depends only on particle concentration 
V

N
 and not on the mass. 

 The Fermi energy            
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 The electron velocity  
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Heat capacity of the electron gas: 








dT

dE
 

 The energy absorbed by a unit mass when its temperature is raised by one degree is 

specific heat capacity. According to classical theory, heat capacity of free particle is BK
2

3
. If 

there are N atoms, each give one valance electron to the electron gas, electronic 

contribution to heat capacity is BNK
2

3
. 
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 But the observed value of Specific heat capacity at room temperature is 
100

1 of the 

clinical value. This discrepancy is explained by using Pauli Exclusion Principle and Fermi 

distribution function. Fermi found the specific heat vanishes at absolute zero, and at low 

temperature, it is proportional to absolute temperature.  

Qualitative expression for specific heat capacity  

 When the temp increases from absolute zero, the electron in orbitals within an 

energy range TKB of the Fermi level are excited thermally. These electrons gain an energy 

with an order of TKB .  

 For N electrons, only a fraction of 
FT

T
can be excited thermally at temperature T, 

because only these lie within the energy range TKB . 

 
FT

TN
 electron as thermally excited  

  Thermal energy TK
T

TN
E B

F

  

 The electronic specific heat capacity 
T

E
Cele




  

            =    B

F

K
T

TN
 

      
F

Bel
T

T
NKC   

 ie    TCelec   

Quantitative expression for electronic Heat capacity  

 This is valid at low temp. in FB ETK   

For a system of N electrons, the increases in the total energy E for a raise of temp from O 

to T is  

  )()()(
00

  

 FE

DdfDdE     ....(1) 

The total no. of particles,  )()(
0

 DfdN 


      ....(2) 
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Fbyequationmultiply )2( , )()(
0

 DfdN FF 


                  ...(3) 

Differentiate equation (1) with respect to T,  
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 Ie.,  
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      ...(4) 

Differentiate equation (3) with respect to T,  
dT

df
Dd F )(0

0




                           ..(5) 

Subtracting equation (4) from (5) 
dT

df
DdC Felec )()(

0




              ...(6) 

At low temp.
T

FTK
ie

F

B




 ),01.0(


is large only at energy near F . 

 )()( FDD   . 

 
dT

df
dDC FFelec 




0

)()(   

 Where 
1

1
)(

/)(



 TKBFe

Ef


 

 
 

 2/)(2
1













TK

Tk

B

F

BF

BF

e

e

TKT

f




 

 
 

 2/)(

/)(

0

2

2

1
)(










 TK

TK

B

F

Felec
BF

BF

e

e
d

TK
DC








  

 Let .x
TKB

F 


 dxTKdTxKTKx BBFBF   )(,)( 2222
 

If  xiand
TK

x
B

F ,f;,0 


  

 
22

222

)1(
)(


 





x

x

B

TK
B

B
Felec

e

e
dxTK

TK

xTK
DC

B

F

  
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Since T is very small the lower limit 


TKB

F  

 dx
e

e
xTKDC

x

x

BFelec 2

22

)1(
)(


 





  

 dx
e

e
xTKD

x

x

BF 2

22

)1(
)(


 





  

The integral  
3)1(

2

2

2 







dx
e

e
x

x

x

 

 )(
3

2
2

FBelec DTKC 


  

But )..(..........
2

3

2

3
)( FBF

FBF

F TK
TK

NN
D  


  

 
FB

Belec
TK

N
TKC

2

3

3

2
2

  

 
F

Belec
T

T
NKC

2

2
  

This is in agreement with the qualitative result.  

Experimental heat capacity of metals: 

 At temperature much below the Debye temperature and very much below the Fermi 

temperature the heat capacity of metals at constant volume consists of two parts namely  

latticeeletronic CC and  

  latticeelet CCC   

This is given as   

  
3ATTC    

Where Aand  are constants. 

 2AT
T

C
   
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A graph is drawn taking 
T

C

 
along y  axis and 2T along x axis. We get a straight line. The 

intercept gives the value of and the slope gives the value of .A  

For potassium,  the values of 58.2;08.2  A   from graph 

 The value of  corresponding to electronic contribution agrees with the value with 

2% error.  

Reasons for 2% error 

 The following interactions were neglected.  The interaction of negative ion core. The 

interaction of conduction electrons with the periodic potential of the crystal lattice.The 

interaction of conduction electrons with phonons. The interaction of conduction electrons 

with themselves. These  causes the small variations. 

Fermi liquid : 

 A Fermi gas is a system of non-interacting identical particles subject to the Pauli 

exclusion principle. The same system with interaction is called a Fermi liquid. 

 (eg)  i) conduction electrons in a metal 

  (ii)  liquid Helium 3He  

Effective mass concept in Band theory : 

 The effective mass is a new concept and arises due to the interaction of the electron 

wave packet with the periodic lattice. If the binding force between the electron and lattice is 

strong, the electron acquires a large effective mass.  

 the energy of the free electron in terms of k is given as, 2

2

2

8
K

m

h
E




 

where m is the mass of the electron. 

Differentiate the expression we get, 

m

h

dk

Ed
and

m

kh

dk

dE
2

2

2

2

2

2

44 


 

So that  

1

2

2

2

2

4













dk

Edh
m

  
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For a free electron model E versus k has a parabolic relation. The mass and 22 dkEd

are taken as constant.  

When the electron move in a periodic potential of the crystal lattice, the parabolic 

relation no longer exists, there is a break up in the curve at various zone boundaries leading 

to the origin of allowed and forbidden bands. Near the forbidden band the curvature of 

curve changes, since as k approaches the zone boundary 22 dkEd first reduces to zero and 

then becomes negative. The mass and 22 dkEd are not constant and both of them are a 

function of k. Thus under periodic potential, the mass of electron

1

2

2

2

2

4













dk

Edh
m


 is 

known as effective mass and is represented as *m and is represented as 

22

2
1

2

2

2

2
*

4 dkEddk

Edh
m
















 

The effective mass is positive in the lower part of the band (lower k value) and 

negative close to the boundary (near k 
a

k


 ). 

For example, considering the energy of the electron,  orbital of the bottom of 2nd zone. 

mv
EE

2
)

2
1(

22

1

1

1

 
  








 





v

m
m

m
E





21
where

2

22
1 

 

mm   

 If we consider the position of the electron in the crystal, for away from the Brillouin 

zone boundary,  the effective mass is very nearly equal to electron mass. But very near to 

the Brillouin zone boundary the mass of free electron is some time negative also. The 

negative nature of effective mass can be explained as follows. Due to electric or magnetic 

field, the momentum associated with the electron, increases. Momentum is considered as 

forward momentum when it approaches the boundary whereas the lattice gives the 

momentum in the backward direction. The backward momentum is greater than the 

forward momentum possessed by the electrons. Hence mass of the election is considered to 

be negative in this region.  



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
84 

 

Electrical conductivity and ohm’s law :- 

The momentum of a free electron .kmvp   

The force acting of a particle (Newtons 2d law) 
dt

dv
mF   

     









m

k

dt

d
m


 

     
dt

dk
F   

In an electric and magnetic field, the force on an electron is  

    







 Bv

C
EeF x

1
 

 ie  







 Bv

C
Ee

dt

dk
x

1
  

 if eE
dt

dk
B  ,0  

   dt
eE

dk


  

  



 

tt

dt
eE

dk
00


 

  



 t

eE
ktk


)0()(  

At ,0t  centre of the Fermi sphere at the origin of k space after t time the centre of the 

sphere displaced to a new centre at  



eEt
k


  

 Because of the collisions of electrons with impurities, lattice imperfections and 

phonons, the displaced sphere may be maintained in a steady state in an electric field.  

 If the collision time is   the displacement of Fermi sphere in the steady state is  



eE
k


  
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The change in velocity of a free electron due to electric field is 
m

dk
dv   



 eE

m
  

m

eE
dv


  

If there are n free electrons in unit volume of specimen then the current density nqdvj  

 Where q   is the charge of electron = e  








 


m

eE
enj


)(  











m

Ene
j

2

 

This is in the form of ohm’s law Ej   

 Compaing these two equs. We get 
m

ne 


2

  

 Where  is the electrical conductivity 

  The electrical conductivity 
m

ne 


2

  

The electrical resistivity )( is the reciprocal of the conductivity 

  



2ne

m
  

)( conductivity is proportional to the charge density )(ne  

  
m

e  

     the free time during which the filed acts on the carrier.  

 The mean free path of a conduction electron is defined as Fvl   
   

Where FV  is the 

velocity at Fermi surface.  

Matthiessen’srule :- 

 The resistivity of a metal consists two parts.  
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(i) resistivity caused by the thermal motion of the lattice L  

(ii) resistivity caused by the scattering of the electron waves by impurity atoms i  

iL    

This statement is known as Matthiessen’s rule.  

If the concentration of impurity atoms is small, i  is independent of temperature.  

A graph is drawn between  the relative resistance and temperature. The extrapolated 

resistivity at KO is residual resistivity. It is i  because L vanishes as .0T  

The resistivity ratio is defined as the ratio of its resistivity at room temperature to its 

resistivity at liquid helium temperature. 

Hall effect  

 When a piece of conductor (metal or Semiconductor) carrying a current is placed in a 

transverse magnetic field, an electric field is produced inside the conductor in a direction 

normal to both the current and magnetic field. This phenomenon is known as the Hall effect 

and the generated voltage is known as Hall Voltage.  

 

 

 

 

 

 

 

 

Consider a P-type semiconductor specimen (fig. b). Electric and magnetic fields are 

applied at right angle to each other. Holes of the semiconductor experiences a mutually 

perpendicular force from right to left and they accumulated near the face1 of the slab and 

measures  a voltage between the two faces known as Hall voltage. In case of N-type 

semiconductor, electrons accumulated on face 1 (fig. 4.4a).  

Figure 4.4 
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Let B be the transverse magnetic field and E be the longitudinal electric field applied 

on a slab of N type semiconductor, and  v  be the velocity of electrons. Then the electrons 

experiences a force veB . A potential difference is established across the faces 1 and 2 of 

the slab causing a field HE . This field generates a force HEe  on electrons in the opposite 

direction. 

At equilibrium,   veB  = HEe  

ie.,                       HE   =  vB  

The current density venJ      where n  is the concentration of current carriers  

Therefore    
ne

J
v   , 

Then  
en

JB
EH    

Now the Hall coefficient 
en

RH

1
 ,     Hence   HH JRBE   

Ie.,   
enJB

E
R H

H

1
  

Since all the three quantities HE , B , and J  are measurable, the Hall coefficient 

HR and hence the carrier density n  can be found out.  

For P-type semiconductor, negative sign is used to denote HR  

ie., 
enJB

E
R H

H

1
  

and the current is developed by holes concentration p , p is used instead of n  

Therefore 
epJB

E
R H

H

1


 

   m

TNK
k B 

22

2

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Wave equation of electron in a periodic potential :(General theory of band theory of a 

crystal)  

Consider a crystal of length ‘L’  with lattice constant a; Let )(xU be the Potential 

Energy of an electron in a linear lattice. It is invariant under a crystal lattice translation. 

ie.,                                                      )()( axUxU   

 When any function in a crystal is invariant, it may be represented as a Fourier series 

in the reciprocal lattice vectors G.  

ie.,                                                    
G

iGx

G eUxU )(  

 GG Uie
G

U .,,
1

2


   
coefficient of crystal potential decreases with the increasing 

the reciprocal lattice vector G, and )(xU is real and even function. Then the wave equation 

of an electron in the crystal is 

 EH    

Where    H  – Hamiltonian;   E  – Energy eigen value;  and  - eigen function (or) orbital  

 the wave function may be expressed as a Fourier series.  

                                              


k

ikxekcx )()(
           

where   k is real 
L

n2
 

The wave equation, 

)()()(
2

2

xExxU
m

P
 








  

xki

k

xki

k

xGi

G

G ekcEekceU
m

P
 








 )()(

2

2

 

2

2
22,

x
p

x
ipwhere









   

xki

k

xki

k

xGi

G

G ekcEekceU
xm

 












 )()(

2 2

22
 

  ikx

k

xGki

k

G

G

xki ekcEekcUekck
m

   )()()(
2

)(2
2

 . 

 ...(A) 
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Using orthogonality properly of different Fourier components 


 xki

L

xki eedx
0

1
 
















kkifL

kkife
kki

Lkki

1

1)(

1
01

)(

1 1

 

egersarenn
L

n
k

L
n

k int,
2

,
2 1

1
1 
  

    .1)(2exp)(exp 11  nniLkki   

Multiply equation (A) by xkie
1  and integrate over dx , 

)()()(
2

1111
2

2

kcEGkcUkck
m G

G 


 

Ie.,   GKKKGK  11  

For our convenience, in the above equation 1K is replaced by K  and  put kk
m

2
2

2



 

Then the equation becomes 

 
G

Gk KCEGKCUKC )()()(  

)(0)()()( IGKCUKCE
G

Gk    

This is the most important equation in the band theory of solids.  

E

GKCU

KC
k

G

G










)(

)(  

2
2

2

)(

)(

K
m

E

GKCU

KC G

G









 

The wave function xGKi

G

K eGKCx )()()(    

The equation (I) is for a given Fourier coefficient ).(KC  For the infinite number of the other 

Fourier coefficients, the wave vector differs from K by a reciprocal lattice vector .1G  

 To form an infinite set of independent equations by subtracting successive reciprocal 

lattice vector from K we get,  
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  .0)()( 11
1  

GGKCUGKCE
G

GGK
  

.0

)(
2

)(
)(

21
2

1
1 




 

GK
m

E

GGKCU
GKC G

G 
 

)( 1GK  in the place of K.    221)( KGK   

 Both exp )(ikx and   xGKi )(exp 1 are important components of the orbital )(xk . 

(i)  Wave function on the zone boundary :- 

At the Brillouin zone boundary the wave vector .
2

1
GK   

 .
2

1

2

1
)( GGGGK 








  

The equation I contains  both coefficients )
2

1
( GC and )

2

1
( GC   

Then the equ (I) becomes,    111 ; andUUU GG  

 0
2

1

2

1
)( 1 

















 GCUGCE       ...(i)  

 0
2

1

2

1
)( 1 

















 GCUGCE       ...(ii)  

These two equations have nontrivial solutions  for the two coefficients 


















GCGC

2

1
and

2

1
if the energy E satisfies 

0
1

1






EU

UE




 

 0)( 2

1

2  UE  

2

1

2)( UE   

1UE   

1UE   

ie 1211 and UEUE    
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At the first Brillouin zone boundary we have two energies with a differences  

  11121 2UUUEE    

12U   is called band gap.  

From equation (ii), we get  

 
   







E

U

E

U

GC

GC
11

2

2  

but 1UE   

 
 
 

1

2

2 



GC

GC
 

 The Fourier expansion of )(x has the two solution. 

xixi GG

eex 22)(


  

These orbitals are identical to standing waves. One solution gives the wave function at the 

bottom of the energy gap, and the other gives the wave function at the top of the energy 

gap. 

(iii) Wave function near the Brillouin zone Boundary : 

 Consider the wave k very near to Brillouin Zone boundary, 
2

G
k

  
where   is 

very small.  

The general expression is  

0)()()( 1  GKCUKCEk  

Put GKK   

0)()()( 1  KCUGKCEGk  

These equations have a solution if the energy E  satisfies  

0
1

1






 EU

UE

GK

K





 

0)()( 2

1   UGKK   
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0)( 2

1
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On the zone boundary we get, 

1
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2
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m
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
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From this     1
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The equation (X) can be written as  


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They we may write as, 
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 These are the roots for the energy when the wave vector is very close to the zone 

boundary at .
2

1
G  For )(,)(1  KveU corresponds to the upper band and  )(K

corresponds to the lower band. 
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Block theorem  

 Block theorem is a mathematical form of one electron wave function for a perfectly 

periodic potential. The wave function ikx

KK exUx )()(  is the statement of Block theorem. 

Orbital of this form is Block function. 

Block theorem states that the eigen function of the wave equation for a periodic 

potential are of the form of the product of a plane wave rike  times a function )(rU K which 

is periodic in the crystal lattice.  

Proof 

Let the P.E of an electron satisfy the equation )()( axVxV   (where a is period)  

The Schrodinger wave equation is 

  0)(
2

2








xVE

m

x 
 

 Block theorem states that the solutions are plane waves modulated by the function 

)(xU k which has the same periodicity as the lattice. 

Let us consider the wave function associated with electron in a periodic potential 

and of the form,  

xGKi

G

K eGKCx )()()(    

xki

G

xGi

K eeGKCx 







  )()(  

xki

KK exUx )()(   

Where  
G

xGi

K eGKCxU )()(  

 )(xUK is a Fourier series over the reciprocal lattice vector, it is invariant under a 

crystal translation. 

 ie   )()( axUxU KK   

 ie    
G

axGi

K eGKCaxU )()()(  
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a
Gee

a
a

i
aGi 


2

Since

2




  

12sin2cos2   ie i  

 
G

xGi

K eGKCaxU )()(  

= )(xUK  

 )(xUK is periodic with crystal lattice.  

Properties :- 

(i) In the crystal lattice translation,  ie., Trr to  

 )()( TrUeeTr K

rKiTKi

K    

 )()(since)( TrUrUre KKk

TKi    

iKTe is the phase factor.  

(ii) If the lattice potential = 0, the general equation  becomes  

,0)()(  KCK so that )( GKC  are zero except )(KC and )(rU k is constant. 

rik

K er .)(   

(iii)     k is crystal momentum. When an electron of wave vector K collided with a 

phonon of wave vector K , it scattered. 

GkKk  1     (Selection rule)  

k is scattered wave vector, G is reciprocal lattice vector.  

Extended, Reduced and Periodic zone scheme: 

The wave vector representation of a plane wave eigen state is simple and definite while the 

representation of Bloch states are not so because the Bloch functions is not a simple plane 

wave but a modulated plane wave. To represent these states three different schemes are 

commonly used. They are called the extended zone scheme (or the Brillouin zone scheme), 

the Reduced zone scheme and Periodic zone scheme. All the three schemes represent the 

identical physical behavior. 

 
G

aGiiGx eeGKC )(
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Periodic zone scheme :- 

 A Brillouin zone can be periodically repeated in wave vector space by a reciprocal 

lattice vector. If translation of a band form other zones into the first zone is possible the 

translation of a band in the first zone to any or every other zone also possible. This 

construction is periodic or repeated zone scheme. 

The energy K of a band is periodic function with the reciprocal lattice ie., GKK  .. 

 Let the energy band of Simple Cubic lattice.  

 )coscos(cos20 aKaKaKE zyxK    

  ,,0E are constants.  

 Reciprocal lattice vector of Simple Cubic is x
a

G ˆ
2

  

 )(cos akx only changes 

 akaka
a

kak xxxx cos)2(cos)
2

(cos)(cos  


 

 There is no change in energy  

 In the periodic zone scheme energy is periodic function and in which every band is 

drawn in every zone. 

Extended Zone Sheme: 

Consider one dimensional lattice in which the energy of electron increases slowly with 

increase of k value. When k becomes large the wavelength becomes small (


2
k ), the 

electron will suffer a Bragg reflection . The Bragg reflections occur at 

,2,1  nwhere
n

k



 and energy gaps are developed as shown in fig. This 

representation of energy as a function of k is known as extended zone scheme. The 

extended zone scheme represents various Brillouin zones in k space, that is in which 

different bands are drawn in differ zones in wavevector space.. 
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Reduced Zone Scheme :- 

 The process to bring a wave vector of Block function from outside the Ist Brillouin 

zone to inside the zone using a suitable reciprocal lattice vector  G is known as reduced zone 

scheme. 

 )()( 1

1

rUer
K

rKi

K


    ...(1) 

 1K  lies outside the Ist Brillouin zone  

 GKK  1

 lies within the zone.  

Equation (1) becomes )()( ).( rUer GK

rGKi

GK 



   

   rUee Gk

rGiriK



 .  

We know that )()(. rUrUe KGK

riG   

)()( .
1 rUer K

riK

K
  

Both riGe . and )(rUK are periodic in the crystal lattice.  

In reduced zone scheme all bands are drawn in the first Brillouin zone. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Thre energy bands of a linear lattice 

plotted in the extended, reduced and periodic zone 

schemes 
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Kronig Penny model  

 Consider a simple crystal in one 

dimension with periodic potential. The period 

of the potential is (a+b). 

The potential 0V for the region ax0  

 The potential 0VV  for 0 xb  

The wave equations for these regions are 

    0
2

22

2








E

m

x 
     ..(1) 

    0)(
2

22

2








VE

m

x 
    ..(2) 

 Let    2

2

2

2
)(

22
  EV

m
andE

m


   

equation (1) and (2) becomes, 

     02

2

2









x
    ..(3) 

     02

2

2









x
    ..(4) 

Using Block theorem,  

)()( xUex K

iKx  

x

U
exUeik

x

iKx

K

iKx









 )(


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2
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x

U
e
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U
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eikxUek

x

iKxiKxikx

K

iKx


















 
 



















 UK

x

U
ik

x

U
e iKx 2

2

2

2  

equation (3) becomes  

Figure 4.5 
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
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U
e ikxiKx   

0)(2 22

2

2



















UK

x

U
ik

x

U
e iKx   

   0)(2 22

2

2










UK

x

U
ik

x

U
     ..(5) 

Similarly equation  (4) becomes 0)(2 22

2

2










UK

x

U
ik

x

U
   

 ..(6) 

The solution of the periodic function is of the form mxeU   

mxmx em
x

U
em

x

U 2

2

2

, 








  

  0)(2)5( 222  kikmmebecomesequ mx   

2

)(42 222 kkik
m





 

)(

)(

,

kiiki

kiiki

iikm












 

  xkixki eBeAU )()(

1

        ..(7) 

From equation  (6),    0)(2 222  kikmmemx   

2

)(442 222 kkik
m





 







 ik
ik

2

42 2

 

ie    )(),( ikik    

Therefore    
xkixki eDeCU )()(

2

  
 

Boundary conditions are, 
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(i) )0()0( 21 UU   

(ii) 
0

2

0

1




xx dx

dU

dx

dU
 

(iii) )()( 21 bxUaxU   

(iv) 
bxax dx

dU

dx

dU



 21  

By  (i), ).......(aDCA   

xkixkixkixki eikDeikCekieAki )()()()( )()()()(      

,0xat  

)......()()()()( bikDikCkiAki    

)......()()()()( ceDCeeeA bikbikakiaki      

 ,, bxaxat   

)......()()()()( )()()()( deikDeikCekieAki bikbikakiaki      

For nontrivial solution the determinate of equation a, b, c & d must vanishes  

0

)()()()(

)()()(

11|11

)()()()(

)()()()(










ikbikakiaki

bikbikakiaki

eikeikekek

eeee

ikikikki








 

 On expanding the determinant we get, 

 )(coscoscossinsin
2

22

bakabhabh 
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 
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22 2
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Let 1cossin,0  bhbbhb   

 )1(coscossin.
2

1
.

2
2

 akaabV
m


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Since 00 toncomparisioininneglecting, VEV   

2
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abmVab
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mab
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aka
a

a
Pbecomesequationthe coscos

sin
 




 

The Quantity P is scattering power. 

aVsa
a

a
Paf 














 cos
sin

)( Graph is shown in figure  

 

 

 

 

 

 

 

,1)( af  for k to be real. The value of E for which ,1)( af  will be forbidden.  

These are represented  by shaded portions.  ,1)( af  will correspond to allowed values 

of 

energy.  

 

Number of orbitals in a band 

Consider a linear crystal constructed of an even number N of primitive cells of lattice 

constant a. To count the states, apply periodic boundary conditions to the wave functions 

over the length of the crystal. 

The allowed values of the electron wave vector k in the first Brillouin zone are  

Figure 4.6 
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L
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LL
k


 ;;

4
;

2
;0   

The zone boundary is aLN   . And the point aLN   is not counted as 

an independent point because it is connected by a reciprocal lattice vector with a . The 

total number of points is N, the number of primitive cells. 

Each primitive cell contributes one independent value of k to each energy band. 

With two independent orientation of spin, there are 2N independent orbitals in each energy 

band. If there is a single atom of valence one in each primitive cell, the band can be half 

filled with electrons. If each atom contributes two valence electrons to the band, the band 

can be exactly filled. Two atoms of valance one in each primitive cell, the band can be 

exactly filled. 

Metals and Insulators 

If the valance electrons exactly fill one or more bands, leaving others empty, the 

crystal will be an insulator. An external electric field will not cause current flow in an 

insulator, provided that a filled band is separated by an energy gap from the next higher 

band. A crystal can be an insulator only if the number of valence electrons in a primitive cell 

of the crystal is an even integer. If the bands overlap in energy, then two partly filled bands 

giving a metal (fig.) 

The alkali metals and the nobel metals have one valence electron per primitive cell. 

The alkaline earth metals have two valence electrons per primitive cell; they could 

be insulators, but the bands overlap in energy to give metals. 
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Diamond, Silicon and Germanium each have two atoms of valence four, so that there 

are eight valence electrons per primitive cell; the bands do not overlap, and the pure 

crystals are insulators at absolute zero.  

Tight Binding Method  

The tight-binding model (or TB model) is an approach to the calculation of electronic 

band structure using an approximate set of wave functions based upon superposition of 

wave functions for isolated atoms located at each atomic site. The method is closely related 

to the LCAO method (linear combination of atomic orbitals method). Though the tight-

binding model is a one-electron model, the model also provides a basis for more advanced 

calculations like the calculation of surface states and application to various kinds of many-

body problem and quasi-particle calculations. 

The name "tight binding" of this electronic band structure model describes the 

properties of tightly bound electrons in solids. The electrons in this model should be tightly 

bound to the atom to which they belong and they should have limited interaction with 

states and potentials on surrounding atoms of the solid. As a result the wave function of the 

electron will be rather similar to the atomic orbital of the free atom to which it belongs. The 

energy of the electron will also be rather close to the ionization energy of the electron in the 

free atom or ion. 

The most important element in the model is the interatomic matrix element, which 

would simply be called the bond energy. There are a number of atomic energy levels and 

atomic orbitals involved in the model. 

Consider a solid which is composed of identical atoms which are characterized by an 

atomic orbitals )(r . Here index   denotes the orbital state of the atom.  Assume that 

one atom per unit cell. Then the solution of the Schrodinger wave equation 

       )()( rErH   .           (1) 

it terms of linear combination of the atomic orbitals, so that the Bloch wave function has a 

form of 

  )()( m

Tki

m

k TrkCer
m

 



                   (2) 
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where  The index m describing the lattice vector Tm  

The orbital located at site m is  )( mTr  . 

 And  )(kC   is the coefficients.  

Equation (2) is the Bloch function which satisfies the requirement   )(reTr k

Tki

k     

 

                                             

                          

 

 

      (3) 

Now we denote )( mTr   by, m . substitute (2) in (1) to have 

    (4) 

 

Now multiply this equation by  
*

m
 and take an integral over the entire volume of a solid 

and denote in terms of the Dirac ket and bra vectors, so that 

   mm

m

ikT

mm

Tki

m

kCeEHkCe mm









 |)(||)(          (5) 

We assume that the basis set is orthogonal, i.e. 

    mmmm |                          (6) 

This leads to the following equation for the coefficients 

)()()( kCEkCkH aa 



                          (7) 

Where   

 



  

m

m

ikT

mm

m

TTik

aa HeHekH mmm

  ||||)( 0

)(
        (8) 
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ikT
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m

k
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m
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
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
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
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The last equation came from the fact that the sum does not depend on index m’. 

Eq.(7) represents  a set  of linear equations with respect  to coefficients )(kC . The number 

of equations is equal to the number of orbitals in an atom, Norb. Therefore we obtain Norb 

solutions. The eigenvalues and the eigen functions will be the functions of the wavevector k. 

Therefore, the solution will represent Norb bands. In general these bands will represent 

mixed atomic states and cannot be characterized by a particular angular momentum. 

The matrix elements of the Hamiltonian is used to solve the equation (8) . In some 

cases matrix elements are calculated from atomic wave functions. In many cases these 

matrix elements are considered as fitting parameters.  These parameters can be fitted to 

obtain accurate electronic band structure.  Now we consider two simple examples. 

Example 1: linear chain of single-orbital atoms of lattice constant a with nearest-neighbor 

interactions. In this case we have just one equation (8) 

  )()(|||||| 101000 kECkCeHeHH ikaika  

           (9) 

and obtain for the energies: 

                   kaEkE cos2)( 0                                                 (10) 

where  000 ||  HE  is the on-site atomic energy and  

  1010 ||||  HH   is the hopping or bond integral which depends on the 

overlap of the wave functions of the two nearest neighbor atoms 

 

 

 

 

 

 Fig.4. 8 The dispersion curve in the tight-binding model 
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The tight-binding band is shown in Fig.4.8. The bandwidth, 4, is proportional to the overlap 

integral. This is reasonable, because the greater the overlap the stronger the interaction, 

and consequently the wider the band. 

When the electron is near the bottom of the band, where k is small, we find that 

   22

0 )2()( akEkE      (11) 

which has the same form as the dispersion relation of a free electron. An electron in that 

region of k-space behaves like a free electron with an effective mass 

2

2
*

2 a
m




                                             (12) 

It is seen that the effective mass is inversely proportional to the bond integral. This is 

intuitively reasonable, since the greater the overlap the easier it is for the electron to hop 

from one atomic site to another, and hence the smaller is the inertia (or mass) of the 

electron. Conversely, a small overlap leads to a large mass, and vice versa. 

Example 2: The above treatment can be extended to three dimensions in a straightforward 

manner. Thus for a sc lattice, the band energy is given by 

       ]coscos[cos2)( 0 akakakEkE zyx                                                              (13) 

The energy contours for this band, in the kx - ky plane, are shown in Fig.4.9a, and the 

dispersion curves along the [100] and [111] directions are shown in Fig.4.9b. The bottom of 

the band is at the origin k = 0, and the electron there behaves as a free particle with an 

effective mass given by Eq.(12). The top of the band is located at the corner of the zone 

along the [111] direction, that is, at  ],, aaa   . The width of the band is equal to 12

. 

 

 

 

 

 

 

Fig. 4.9 (a) Energy contours for an sc lattice in the tight-binding model, 

(b) Dispersion curves along the [100] and [111] directions for an sc 

lattice in the TB model. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
107 

 

UNIT – V    SUPER CONDUCTIVITY  

 Experimental survey : Superconductivity and its occurrence – destruction of 

Superconductivity by magnetic field – Meissner effect – Type I and II super conductors – 

entropy – free energy – heat capacity – energy gap – isotope effect  

 Theoretical survey : Thermodynamics of the superconducting transition – London 

equation – coherence length – salient features of the BCS theory of super conductivity – flux 

quantization in a superconductivity ring – DC and AC Josephson effects. 

 

Introduction   

 Certain Metals and alloys exhibit almost Zero electric resistivity when they are cooled 

to sufficiently low temperature. This phenomenon is called Superconductivity and the 

material in this state is called superconductor.  

 This Phenomenon was first observed by H. K. Onnes in 1911. He found that when 

pure mercury was cooled down to below the temperature of 4 degree Kelvin (at 4.2K) a 

sudden decrease in the resistivity (dropped to zero Fig.5.1). This property is also observed in 

the metals such as  Pb, Sn etc.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1  Resistance versus absolute temperature curve  
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Critical Temperature:  

 The temperature at which the transition from normal state to superconducting state 

takes place on cooling in the absence of magnetic field is called the critical temperature (Tc) 

or the transition temperature.  

 

General features of Super Conductors  

1) The transition temperature is different for different materials. Materials having 

high normal resistivity exhibit superconductivity.  

2) For chemically pure and structurally perfect specimen, the superconducting 

transition is very sharp. For impure and structurally imperfect the transition range 

is broad.  

3) Superconductivity is found in metallic elements of valence electron lies between 2 

and 8. ie., Superconducting elements lie in the inner columns of the periodic table 

4) For elements in a given row in the periodic table Tc versus Z
2
 gives straight line.  

5) Metals having odd number of valence electrons are exhibiting superconductivity. 

But metals having even number of valence electrons are unfavourable.  

6) Materials for which Z ρ > 10
6
 show superconductivity. Where Z is number of 

valence electrons and ρ is resistivity of the material.  

7) Superconductivity is favoured by small atomic volume, accompanied by a small 

atomic mass.  

8) Ferromagnetic and antiferromagnetic materials are not superconductors.   

9) When transition to Super conduction,  

i. Magnetic flux lines are rejected out of the superconductor.  

ii. There is a discontinuous change in specific heat.  

iii. Small changes in thermal conductivity and the volume of the material.  
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Effect of Magnetic field  

 Superconducting state of a metal depends on temperature and strength of the magnetic 

field in which the metal is placed. The magnetic field and the superconductivity are found to 

be mutually exclusive. 

 Superconductivity disappears if the temperature of the specimen raised above Tc or a 

strong enough magnetic field is applied. 

 At temperature below Tc, in the absence of magnetic field, the material is in 

superconducting state. When the strength of the magnetic field applied is gradually increased 

to reach a critical value Hc the superconductivity disappears.  

  The dependence of the critical field upon the temperature is given by  



























2

1)0()(
C

cc
T

T
HTH  

 Where )0(cH is the critical field at  T = 0K    and   ccc TTatTH 0)(  

 )0(cH and  Tc, are constants and characteristics of the material. 

 

Meissner effect : 

 When a weak magnetic field is applied to a superconducting specimen at a 

temperature below the transition temperature Tc, the magnetic flux lines are expelled out of 

the specimen as shown in figure 5.2. Now the specimen acts as an ideal diamagnetic material. 

This effect is called Meissner effect. This effect is reversible. 

 

 

 

 

 

 

 

  

 
Fig. 5.2 Meissner effect 

Normal Superconducting 
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When the temperature is raised to Tc, ie., at T =Tc the flux lines penetrating and the specimen 

returns back to the normal state. Under this conduction, the magnetic induction inside the 

specimen is  

)(0 MHB   

 H – is the external applied magnetic field  

 M – is the magnetisation produced inside the specimen.  

According to Messiner effect, inside the superconductor  

0)(,0 0  MHB   

HM   

 ie.,  the magnetic Susceptibility will be 1
H

M
  

For superconducting material under normal state, By ohm’s law JE   

 J – Current density panning through the material.  

  – resistivity.  

On cooling to its transition temperature   tends to 0, 0 E  

 From maxwell’s equation 

t

B
E




 x  

 As  B
t

B
E 




 0,0 is  a constant.  

 This means that the magnetic flux passing through the specimen should not change on 

cooling to the transition temperature. The Meissner effect contradicts this result and suggests 

that 

perfect diamagnetism is an essential property of defining the superconducting state.  

 There are two independent properties require to define the superconducting state. 

They are         

 a) Zero resistivity , 0 E = 0  and  

 b) Perfect diamagnetism,  B = 0 (from Meissner effect). 
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Effect of Current : 

 The critical field which destroys superconductivity , need not be an external magnetic 

field. An electric current flowing through a super conducting material itself may give rise to 

the necessary magnetic field to disappear superconductivity (Critical field Hc). 

Example:  

When a current flows through a superconducting ring, it gives rise to its own 

magnetic field. As the current is increased to a critical value Ic, the associated magnetic field 

also increases and become the critical field Hc, and the superconductivity disappears. 

cc HrI 2  

Where r is radius of the superconducting ring. 

 This limits the maximum possible current that flows through a superconductor.  

It is not possible to produce a high field superconducting magnets.  

 

Type I and Type II Superconductors  

 Based on diamagnetic response, superconductors are classified as type I and type II 

superconductors. The identifying characteristics are zero electrical resistivity below a critical 

temperature, zero internal magnetic field (Meissner effect), and a critical magnetic field 

above which superconductivity ceases 

Type –I  

  There are thirty pure metals which exhibit zero resistivity at low temperatures and 

have the property of excluding magnetic fields from the interior of the superconductor 

(Meissner effect). They are called Type I superconductors  (soft Super conductors).  The 

superconductivity exists only below their critical temperatures and below a critical magnetic 

field strength. The superconductivity in Type I superconductors is modelled well by the BCS 

theory which relies upon electron pairs coupled by lattice vibration interactions.  

Remarkably, the best conductors at room temperature (gold, silver, and copper) do not 

become superconducting at all. They have the smallest lattice vibrations, so their behaviour 

correlates well with the BCS Theory. The Type I superconductors have been of limited 

practical usefulness because the critical magnetic fields are so small and the superconducting 

state disappears suddenly at that temperature. 

. 
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Example:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

At Hc, the diamagnetic property disappears and the transition from superconducting state to 

normal state is sharp.  

 

Type – II 

Starting in 1930 with lead-bismuth alloys, a number of alloys were found which 

exhibited superconductivity. Superconductors made from alloys are called Type II 

superconductors. Besides being mechanically harder than Type I superconductors, they 

exhibit much higher critical magnetic fields and therefore could carry much higher current 

Mat. Tc (K) 

Rh 0 

W 0.015 

Be** 0.026 

Ir 0.1 

Lu 0.1 

Hf 0.1 

Ru 0.5 

Os 0.7 

Mo 0.92 

Zr 0.546 

Cd 0.56 

U 0.2 

Ti 0.39 

Zn 0.85 

Ga 1.083 

Mat. Tc (K) 

 Gd* 1.1 

Al 1.2 

Pa 1.4 

Th 1.4 

Re 1.4 

Tl 2.39 

In 3.408 

Sn 3.722 

Hg 4.153 

Ta 4.47 

La 6.00 

Pb 7.193 

Fig. 5.3 Magnetization Curve for Type I Semiconductor 
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densities while remaining in the superconducting state. Type II superconductors such as 

niobium-titanium (NbTi) are used in the construction of high field superconducting magnets. 

 

Type-II superconductors usually exist in a mixed state of normal and superconducting 

regions. This is sometimes called a vortex state, because vortices of superconducting currents 

surround filaments or cores of normal material.  

Example:        

 

 

 

 

 

 

 

 

 

  

 

In Figure up to Hc1, field the specimen is pure superconducting state the magnetic flux 

lines are rejected. When the field is increased beyond Hc1, the magnetic flux lines start 

penetrating. The specimen is in a mixed state between Hc1, and Hc2 and above Hc2, the 

specimen is in a normal state. This means that the Meissner effect is incomplete in the region 

bet Hc1, and Hc2. This region is vortex – region.  

Type – II superconductors are hard superconductors. Type II superconductors are of 

great practical interest because of the high current densities that they can carry.  

Thermal properties  

 In Superconducting state, the thermal properties such as entropy and electronic 

specific heat change abruptly. 

Entropy :- 

 Entropy is a measure of the disorder of a system. In normal metals with decrease of 

temperature, entropy decreases linearly as shown in figure 5.5.  In superconducting metal like 

Aluminium, the entropy decreases linearly upto critical temperature Tc, below this 

temperature the entropy decreases markedly. ie., the superconducting state is more ordered 

Fig. 5.4  Magnetization Curve ForType II Semiconductor 
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than the normal state. This means that the electrons thermally excited are more ordered in 

superconducting state.  

 

 

 

 

 

 

  

 

 

 

In type I superconductors there is a special order which extends over a distance of the 

order of 10
-6

m. This range is called coherence length.  

Entropy is related to q, the heat flowing into the system from its surroundings, and to 

T, the absolute temperature of the system. The important properties for this discussion are: 

1.  dS > q/T for a natural change. 

     dS = q/T for a reversible change. 

2. The entropy of the system S is made up of the sum of all the parts of the system. 

The entropy of  a solid is in terms of Gibbs free energy G is 
HT

G
S 












  

dT

dH
HSS C

CSN   

Where dTdHC  is always negative so that SN SS  . This means that the superconducting 

state is a more orderly state than the normal state. 

At T = Tc , Hc = 0, 0 SN SS .  

At T = 0k , 00  SN
C SShenceand

dT

dH
. 

Thus between the temperature T = 0k and T = Tc the value of SN – SS is positive, ie., SN > SS 

These are explained in figure 5.5 

Fig. 5.5 Entropy S versus Temperature of Aluminium  
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The latent heat of the system is related to the entropy difference as 

 
dT

dH
HTSSTQ C

CSN   

At T = Tc , Hc = 0, and 0 SN SS . This implies that Q = 0. ie., when the transition occurs at 

Tc (Hc = 0), the latent heat is absent. At HC ≠ 0 ie., in the presence of a magnetic field, the 

transition occurs at some lower temperature T < Tc . Between the temperatures 0k and Tc , the 

entropy     SN > SS and Q provides the amount of latent heat to occur transition at a constant 

temperature. 

 

Free Energy: 

The Transition between the normal and superconducting state is thermodynamically 

reversible. The meissner effect also suggests the same. Thus we may apply thermodynamics 

to this phase change and thereby get expression for the difference in entropy and specific heat 

between normal and superconducting states near absolute zero in terms of the critical field 

curve cH  versus T .  For type I superconductor, 0B  inside the superconductor the critical 

field cH  is a quantitative measure of the free energy difference between the superconducting 

and normal states at constant temperature and cH  refers to a bulk specimen only. For type II 

superconductor, cH  is related to the stabilization free energy. 

The stabilization free energy is obtained from the value of applied magnetic field that 

will destroy the superconducting state at constant temperature. 

The work done on a superconductor when it is brought reversibly at constant 

temperature from a position at infinity (zero field) to a position r  in the field of a permanent 

magnet 

 
aB

adBMW
0

 

Where M is the magnetization, and we have MBB a 0 , But 0B ,   
0
aB

M   

 
aB

a
a dB

B
W

0
0

 

0

2

2
aB

W   

From second law of  thermodynamics,  dvPdudQ   
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dvPdQdu   

0

2

2
,


aB

wdvPanddsTdQwhere   

0

2

2
aB

dsTdu   

At absolute zero , 0dsT ,   then 
0

2

2
aB

du   

ie.,  The increase in the energy density of the superconductor    
0

2

2
0


a

SaS

B
UBUdu    

   
0

2

2
0.,


a

SaS

B
UBUie   

For normal nonmagnetic metal, the susceptibility is small, 0M , the energy of normal 

metal is independent of field. 

At critical field,    0NacN UBU  where  acB is applied critical field. At  acB the 

energies are equalin the normal and superconducting states. 

     
0

2

2
0


ac

SacSacN

B
UBUBU   

The critical field 
0
ac

c

B
H   

The specimen is stable in either state when the applied field is equal to the critical field. 

   
0

2

2
00


a

SN

B
UUU   

Where U  is the stabilization free energy density of the superconducting state 

Example: for aluminium, acB  at absolute zero is 105 gauss, )(430 3 unitCGScmergU   

 

Specific heat : 

 The Specific Heat of a  solid is given as 

dT

dH
TCN   

 The special heat differences between the normal and superconducting state is  
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




















2

2

2

dT

dH
T

dT

Hd
HTCC CC

CSN  

At 0,  cc HTT  

ev
dT

dH
TCC C

cSN 









2

 

ie., near SNc CCT ,  

 

 

 

 

 

 

 

 

 

 

 

 

At low temperature, SN CC  as shown in figure 5.6. 

At ,eldmagneticfiofabsencetheinandTc there is discontinuity in the specific heat curve. 

 But we know that both lattice and electron sources contribute the total specific heat  

Total specific heat is elelattice CCC   

Specific heat in the normal and super conducting states are 

NeleNlatticeN CCC )()(   

SeleSlatticeS CCC )()(   

 When a material becomes superconductor, there is no change in the properties of 

lattice structure. 

SlatticeNlattice CC )()(   

SeleNeleSN CCCC )()(   

From figure, well below Tc, the electronic specific heat of a metal in the Superconducting 

state varies with temperature in an exponential manner  

Fig.5.6 Electric contribution of specific heat of a conductor 

verses temperature in the normal and superconducting state 

(k) 
c 
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ie. )(exp)(
KT

aC Sele


  

Where a is a constant and  is the energy gap.  

Energy gap : 

 The exponential behaviour of the electronic specific heat in the superconducting state 

implies the presence of an energy gap in the energy spectrum of the electrons ( Fig 5.7) or in 

the distribution of density of states (Fig. 5.8). The energy gap is situated at the Fermi level. In 

an insulator, the gap is associated with the lattice while in the superconductors the gap is 

associated with the Fermi gas or super electrons. 

 

 

 

 

 

 

In normal metal at T = 0K, all the energy states below Fermi energy level EF are 

completely filled and above are completely empty. 

 But in super conductor, above TC, super electrons behave like normal electrons and 

get excited. Below TC these electrons are paired and their total energy is less than 2EF. Hence 

an energy gap is created at the Fermi level in the superconducting state.  

The width of the gap 2∆ is of the order of kTc. Figure 5.7 shows the presence of an 

energy gap in the energy spectrum of electron.  

 

 

 

 

 

 

 

 

 

Fig. 5.8 Density of states as a function of energy (a) normal state  (b) superconducting state 

Fig. 5.7  (a) Conduction band in the normal state  (b) energy gap at the Fermi level in 

the superconducting state  
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Figure 5.8 shows gap in the distribution of density of states. This energy gap is very small as 

compared to the gaps in Semiconductors and insulators. The variation of energy gap with 

temperature is shown in Figure 5.9. 

 

 

 

 

 

 

 

 

BCS explains the existence and temperature dependence of the energy gap in 

superconductors. According to this theory the ratio of the energy gap 2∆, to the thermal 

energy at Tc (kTc) is same for all superconductors and is equal to 3.53. 

Isotope Effect  

 In superconducting materials, the transition temperature varies with the average 

isotopic mass, M of their constituents and is given as  

 MTc  

constantcTM   

Where   is called isotope effect coefficient and is defined as  

   2
001.015.0

ln

ln 





 VN

M

Tc  

where N(0) is the density of single particle states for one spin at the Fermi level and V is the 

potential between the electrons. 

Since the Debye temperature  θD and the velocity of sound v is proportional to 
21M  , the 

transition temperature of superconducting material is closely related to the corresponding Debye 

temperature as DcT     or  
D

cT


constant

 

Example: Mercury, isotopic mass varies from 199.5 to 203.4  atomic mass unit and its 

TC varies from 4.185 K to 4.146K.  

 

 

Fig. 5.9 Energy gap as a function of temperature 
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London Equations  

 London Brothers (F.London and H.Londan) proposed addition of two more equations 

to Maxwell’s equation to explain Meissner effect. 

 Super conductor is composed of two distinct types of electrons, normal electrons and 

super electrons. Normal electrons behave in usual manner, Super electrons behave in 

different way, they experience, No Scattering  

 Above TC, all the electrons are normal. 

 Below TC, with decrease of temperature increasing electrons become super electrons.  

At T = 0K, all are super electrons. 

The conduction electron density n,  

sn nnn   

 nn density of normal electrons. 

 sn density of super electrons.  

The Normal current and the super current are assumed to flow parallel. 

 As the super current flows with no resistance, it carries the entire current induced by 

any small transitory electric field E. While current due to normal electrons is negligible.  

 If Vs is average velocity of super electrons, m is its mass, and e is its charge, then the 

equation of motion. 

   
eE

dt

dv
m s 

    
ie., 

m

eE

dt

dvs   

Current density of super electrons in  

 








 


m

eE
en

dt

dv
ne

dt

dJ
s

s
s

s .  

     .
2

E
m

en

dt

dJ ss    ..(5.1) 

 This is called First London equation, 

 For o
dt

dJ
oE s  ,

  
ie., sJ

 
is constant  or vice – versa.  

 The corresponding normal current density is    

0E , leads to another important result when combined with 

the maxwell’s equation, 

sss neJ 

EJ n 
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    









dt

dB
Ex    ..(2) 

ie constBoro
dt

dB
  

Since this contradicts with the Meissner effect, London proposed some modification to 

remove this discrepancy  

Taking curl on equation (1) we get  

)(
2

E
m

en

dt

dJ ss   

Substituting equation (2) we get 

dt

dB

m

en

dt

dJ ss .
2

  

Integrating   w. r. to time and put zero for constant of integration, we get 

    .
2

B
m

en
J s

s    ....(3) 

This is called Second London equation. This is in agreement with the experiment.  

Penetration Depth 

 According to London equation the magnetic flux decreases exponentially (ie., the flux 

does not drops to zero at the surface of Type I superconductors). 

To calculate to what depth the flux penetrates.  

Mexwell’s equation,    sJB 0  

Taking curl on both sides,  )(0 sJB    

    )()( 0

2

sJBB    

)(,0 0

2

sJBB    

We have   B
m

en
J s

s .
2

  

B
m

en
B s .

2

0

2   

 
2

2



B
B       ..(4) 

Where 

2/1

2

0












en

m

s
 is called London Penetration depth.  
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The solution of the equation (4) is  








 




x
HH exp)0(    ...(5) 

 Graphical representation of  equation (5) is shown in Figure 

 Ie., The flux density decreases exponentially inside the Superconductor. 

 To define penetration depth ,  

 Let  
1

)0(
,  e

H

H
x   

1

)0(



e

H
H     ...(6) 

 The penetration depth  can be defined as the depth from the surface at which the 

magnetic flux density falls to 
e

1
of its initial value at the surface.  

 The penetration depth is about 500 


  

With respect to temperature 

2
1

4

4

1)0()(












cT

T
T   

)0( is the penetration depth at T  = 0K. 

  increases with temperature T and at  ,cTT
 

BCS Theory  

 BCS theory of Superconductivity was introduced by Bardeen, cooper and Schrieffer 

in 1957. This theory helps to explain zero resistivity, Meissner effect, isotope effect etc., 

(i) Electron – Electron interaction via lattice Deformation: 

 When an electron passing through the packing of positive ions, the electron is 

attracted by the neighbouring positive ions, form a positive ion core as shown in Figure 5.10 

and get screened by them. This screening reduces the effective charge of this electron and the 

ion core may produce a net positive charge on this assembly. Due to the attraction between 

the electron and the ion core the lattice gets deformed. This deformation is greater for smaller 

mass of positive ion core.  
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If another electron passes by the side of the assembly of the electron and the ion core, 

it gets attracted towards the assembly (Fig. 5.10). By this way the second electron interacts 

with the first electron via lattice deformation. This interaction is due to the exchange of a 

virtual phonon q, between the two electrons. This interaction process can be written in terms 

of wave vector K, 

'

22

'

11 KqKandKqK               ie., 
'

2

'

121 KKKK   

 

 

 

 

 

 

 

 

The net wave vector of the pair is conserved. The momentum is transferred between the 

electrons. These two electrons together form a cooper pair and is known as cooper electron. 

This process leaves the lattice invariant. 

Cooper pair: 

To study the mechanism of cooper pair formation, consider the Fermi – Dirac distribution 

function of electrons in metals at absolute zero 

1exp

1
)(








 


kT

EE
EF

F

 

At T = 0k all the quantum states below the Fermi level EF are completely filled and all 

the quantum states above EF are completely empty (fig.) 

Fig. 5.10 

Phonon 
     q 
 

Fig. 5.11 Exchange of virtual Phonon between the two electrons 
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Since all the quantum states with energies 
FEE are filled, by Pauli’s exclusion 

principle they are forced to occupy states having energies
FEE  . Cooper showed that if 

there is an attraction between the two electrons, they are able to form a bound state so that 

their total energy is less than 
FE2 . 

These electrons are paired to form a single system and their motions are correlated. These 

two electrons together form a cooper pair and is known as cooper electron. 

The binding is strongest when the electrons forming the pair have opposite momenta 

and opposite spins,  KK , . 

If there is an attraction between any two electrons lying in the neighbourhood of the 

Fermi surface then all other electrons lying in that region will form cooper pairs. These pairs 

of electrons are superelectrons which are responsible for the superconductivity.  

 

BCS Ground State: 

In normal metals, the excited states lie just, above the Fermi surface. Small excitation 

energy is sufficient to excite an electron from Fermi surface to excited state. 

In super conducting materials, when a pair of electron lying just below the Fermi 

surface is taken just above it, they form a cooper pair. This continues until the system can 

gain no additional energy by pair formation and hence the total energy is reduced. 

Important features of BCS ground state:    

1. Even At absolute zero, the energy distribution of electrons does not show any 

abrupt discontinuity as in normal metals  

2. The states are occupied in pairs, ie., A cooper pair is imagined to be an electron 

pair in which the two electrons always occupy states and so on with opposite k- vectors and 

spins.  

 

Flux Quantization : 

Ginburg and Landua developed a macroscopic theory for superconducting phase 

transition based on thermodynamics in 1950. 

To describe superconducting state, Ginzburg and Landau introduced a complex wave 

function  . It is an order parameter, and is a function of position in the material, ie., it is not 

constant and vanishes above Tc 

 The density of the superconducting electrons 2||sn  
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  can be written in terms of magnitude and phase as  ).(exp||  i  

Then the current density 2
2

||
2











m

e
A

cm

e
J


 

A  is vector potential. 

Consider a ring shaped super conducting material and take a closed path (Fig. 5.12) 

  

 

 

 

 

 

 

 

 

 

0.
2

||.
2

2 







  dl

m

e
A

mc

e
dlJ 


    ...(1) 

According to stokes theorem 

 


  dsBdsAdlJ ..x.   ..(2) 

  -is the flux enclosed by the ring. 

 Since the order parameter is single valued, the phase change around the closed path 

must be zero or integral multiple of 2 . 

  ie   ,2. ndl    n = 0,1,2,....                              (3) 

 Substituting (2) & (3) in (1)  and solving for   

We get  

0
2

 n
e

chn
  

Where  5

0 10x07.2
2


e

hc
 weber is known as fluxoid or flux quantum. Thus the magnetic 

flux enclosed by the ring is quantized. 

 The flux through the ring is the sum of the flux due to the external source and the flux 

due to the super current flowing through the ring. 

Fig. 5.12  A ring shaped superconducting material showing the 

path of integration C through its interior 
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scextie    

The flux  is quantized. As ext is not quantized, sc adjusts itself such that  assumes a  

quantised value     

 

Josephson Effect : 

 When a thin insulating layer is sandwiched between two metals, it acts as a potential 

barrier for the flow of electrons from one metal to another. Quantum mechanically electrons 

can tunnel across a thin potential barrier and in thermal equilibrium this continues until the 

chemical potential of electrons in both metals become equal. 

 When a potential difference is applied across the metals, more electrons tunnel 

through the insulating layer. The current-voltage relation across the junction is observed. 

(fig).  

 If one of the metals is a superconductor (Figure),  no current flows across the junction 

until the potential reaches a threshold value. Threshold potential is half the energy gap in the 

superconducting state. Threshold potential helps to calculate the energy gap of 

superconductor.  

 

As the temperature increases to Tc, more excited electrons are generated. Since they required 

less energy to tunnel, the threshold voltage decreases. the energy gap decreases.  

The current voltage relation is shown in Figure. 

 If both the metals are superconductors in addition to normal electrons, the super 

electrons (cooper pair) not only can tunnel through the insulating layer from one to another 

without dissociation, even at zero potential difference across the junction, also  their wave 

functions on both sides are highly correlated. This is known as Josephson Effect. 

 The current voltage relation is shown in Figure. The tunnelling current across the 

junction is very less.  

 

D.C. Josephson Effect : 

 The effect of the insulating layer is introduce a phase different  between the two 

parts of the wave function on opposite sides of the junction. 

 The tunnelling current is 

)(sin 00 II   
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Where 0I  is the maximum Current that can flow through the junction without any potential 

difference across it. And it depends on the temperature and the structure of the junction.  

 With no applied voltage, a dc current flows across the junction with the magnitude 

between 0I and 0I . And the phase different )( 120   . This is called d.c. Josephson 

effect.  

 

A.C. Josephson effect : 

 If a state potential 0V  is applied across the junction, an additional phase different 

is introduced by the cooper pair during tunnelling across the junction. 

 ie 


Et
  

Where E is total energy of the system, 0)2( VeE   

    


tVe o2
  

    )(sin 00   II  

    )
2

(sin 00


teV
I o   

                                                 
)(sin 00 tI    

  


oeV2
   

 This represent an alternating current with angular frequency . This is called a.c. 

Josephson effect. 

 When an electron pair crosses the junction a photon of energy oeVh 2 is emitted or 

absorbed. By measuring the voltage and frequency, the fundamental constant 
h

e
 can be 

obtained. 

(i) When ,0oV a constant  d.c. current  ic flows through the junction. This 

current is superconducting current and the effect is the d.c Josephson effect. 

(ii) So long co VV  a constant d.c current ic flows.  
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(iii) When co VV  , the junction has a finite resistance and the current oscillates 

with a frequency 


02eV
 . This is a.c Josephson effect.  

Applications of Josephson effect : 

(i) Josephson effect is used to generate microwaves with frequency 


02eV
  

(ii) A.C Josephson effect is used to define standard Volt. 

(iii) A.C. Josephson effect is used to measure very low temperature based on the 

variation of frequency of the emitted radiation with temperature. 

(iv) A Josephson junction is used for switching of signals from one circuit to 

another.  

 

Application of Superconductors :- 

1. Electric generator : 

 Using Superconducting coil, Motors with high powers could be constructed at very 

low voltage. 

2. Low loss transmission lines and transformers : 

Since the resistance of superconducting phase is zero, the power loss during 

transmission is negligible. If super conductors are used for winding of a transformer 

the power loss will be small. 

3. Magnetic levitation 

 The rejection of magnetic flux property of Superconductor is used for high speed 

transportation. 

4. Generation of high magnetic fields  

 Super conducting materials are used for producing very high magnetic fields of the 

order of 50 Tesla. 
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5. Fast Electrical switching  

 Application of magnetic field changes Superconducting to normal and removal of 

field reverses the process. This principle is used to develop switching element cryotron.  

6. Logic and storage function in computers  

 Current Voltage characteristic of Josephson Junction are suitable for memory 

elements. Superconductors are used to perform logic and storage function in computers. 

7. SQUIDS (Superconducting Quantum Interference Devices)  

 SQUIDS is a double junction quantum interferometer. It is based on flux quantization 

in Superconducting ring. Very minute magnetic signals are detected by SQUIDS sensors. 

 It is used to study tiny magnetic signals from the brain and heart.  SQUIDS 

magnetometers are used to detect paramagnetic response in the liver. It gives the amount of 

iron content of liver accurately.  

New oxide superconductors like thallium cuprates exhibit, Superconductivity with 

transition temperature about 125 K or above. These high temperature Superconductivity 

devices have very widespread commercial applications, such as energy technology, 

telecommunication, computing, super-fast transportation, medicine etc. 
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