M.Sc. PHYSICS - | YEAR

DKP13 : DIGITAL ELECTRONICS
SYLLABUS

UNIT I Number systems

Binary coded decimal number system, Grey code, Grey code to Binary
conversion, Binary to Grey code, Excess 3 code, Decimal to excess 3 code, ASCII
code.

Universal logic gates: NAND and NOR gates as universal logic gates -
Simplification of logic circuits — De Morgan’s laws — Boolean laws — Karnaugh
maps — three variable and four variable maps — max and min terms.

UNIT Il Arithematic circuits

Half adder — Truth table and circuit — Full adder — Truth table and circuit — Four bit
adder — Half subtractor — Full subtractor — Multiplexer: Four input multiplexer —
Applications of Multiplexer — demultiplexer — Decoders 2 to 4 decoder — BCD to
seven segment decoder — encoders.

UNIT I Flipflops

Introduction — NAND LATCH, J K flipflop — J K Master — slave flipflop — D
flipflop and T flipflop — Registers and Counters: Shift registers — serial in —
parallelout, serial in— serial out, parallel in — serial out, parallel in — parallel
out shift registers — wave forms for the above — Counters — up counters, down
counters, decade counters, timing sequences, Mod — n counters.

UNIT IV MULTIVIBRATORS

Classification of multivibrators — Astable, monostable, bistable multivibrators
using operational amplifier.

D/A and A/D converters: Binary weighted register D/A converter using Op-Amp
— R-2R ladder D/A converter with Op-Amp — Analog to Digital converters (ADC) —
their characteristics.

UNITV SEMICONDUCTOR MEMORIES

Memory cell unit — ROM, RAM - Their classifications — ROM, PROM,
EPROM, EEPROM, RAM,Static RAM, dynamic RAM, Memory read and
memory write operations — Flash memory - Charge coupled Device (CCD).

Books for Study and Reference:

1. Digital Electronics principles and applications — Soumitra Kumar Mandal -
Tata MCGraw Hill publications — New Delhi.

2.Integrated Electronics — Digital and Analog — V.Vijayendran (S.Viswanathan
printers and publications) - 2005

3.Digital Electronics by Millman and Taub

4.Electronics Fundamentals and Applications- John D Ryder

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
1

MS UNIVERSITY M.Sc., Physics Correspondence Course

Paper Title : DIGITAL ELECTRONICS

UNIT 1 NUMBER SYSTEM Binary coded decimal number system, Grey code, Grey
code to Binary conversion, Binary to Grey code, Excess 3 code, Decimal to excess 3
code, ASCHl code. Universal logic gates: NAND and NOR gates as universal logic gates —
Simplification of logic circuits — De Morgan®s laws — Boolean laws — Karnaugh maps -
three variable and four variable maps — max and min terms.

Binary Coded number system

Binary codes are codes which are represented in binary system with modification from the original ones.
There are two types of binary codes: Weighted codes and Non-Weighted codes. BCD and the 2421

code are examples of weighted codes. In a weighted code, each bit position is assigned a weighting
factor in such a way that each digit ca n be evaluated by adding the weight of all the 1’s in the coded
combination.

. Weighted Binary Systems
v 8421 code/BCD code

The BCD (Binary Coded Decimal) is a straight assignment of the binary equivalent. It is possible to
assign weights to the binary bits according to their positions. The weights in the BCD code are 8,4,2,1.

Example: The bit assignment 1001, can be seen by its weights to represent the decimal 9 because
1x84+0x4+0x2+1x1 =9

Weighted Code

— 8421 code

* Most common

* Default

* The corresponding decimal digit is determined by adding the weights associated with the 1s in the
code group.

-62310=01100010 0011

- 2421, 5421,7536, etc... codes

* The weights associated with the bits in each code group are given by the name of the code

Nonweighted Codes

- 2-out-of-5
Non Weighted codes are codes that are not positionally weighted. That is, each position within the
binary number is not assigned a fixed value.
* Actually weighted 74210 except for the digit 0
* Used by the post office for scanning bar codes for zip codes
* Has error detection properties

v 2421 code

This is a weighted code; its weights are 2, 4, 2 and 1. A decimal number is represented in 4-bit
form and the total four bits weightis 2+ 4 +2 + 1 =9, Hence the 2421 code represents the decimal
numbers from 0 to 9.

v 5211 code

This is a weighted code; its weights are 5, 2, 1 and 1. A decimal number is represented in 4-bit form and
the total four bits weight is 5 +2 + 1 + 1 = 9. Hence the 5211 code represents the decimal numbers from
0toO.

v Reflective code

A code is said to be reflective when code for 9 is complement for the code for 0, and so is for 8 and 1
codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective, whereas the 8421 code is
not.

v Sequential code

A code is said to be sequential when two subsequent codes, seen as numbers in binary representation,
differ by one. This greatly aids mathematical manipulation of data. The 8421 and Excess-3 codes are
sequential, whereas the 2421 and 5211 codes are not.

4 Excess-3 code

Excess-3 is a non weighted code used to express decimal numbers. The code derives its name from the
fact that each binary code is the corresponding 8421 code plus 0011(3).

Example: 1000 of 8421 = 1011 in Excess-3

v Gray code

The gray code belongs to a class of codes called minimum change codes, in which only one bit in the
code changes when moving from one code to the next. The Gray code is non-weighted code, as the
position of bit does not contain any weight. In digital Gray code has got a special place.

Decimal Binary Code Gray Code
Number

0 0000 0000
1 0001 0001
2 0010 001t
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110

12 1100 1010

13 1101 1011
14 1110 1001
15 | 1111 1000

The gray code is a reflective digital code which has the special property that any two subsequent numbers
codes differ by only one bit. This is also called a unit-distance code.

Important when an analog quantity must be converted to a digital representation. Only one bit changes
between two successive integers which are being coded.

v Error Detecting and Correction Codes
. Error detecting codes

When data is transmitted from one point to another, like in wireless transmission, or it is just stored, like
in hard disks and memories, there are chances that data may get corrupted. To detect these data errors, we
use special codes, which are error detection codes.

. Error correcting code

Error-correcting codes not only detect errors, but also correct them. This is used normally in Satellite
communication, where turn-around delay is very high as is the probability of data getting corrupt.

. Hamming codes

Hamming code adds a minimum number of bits to the data transmitted in a noisy channel, to be able to
correct every possible one-bit error. It can detect (not correct) two-bit errors and cannot distinguish
between 1-bit and 2-bits inconsistencies. It can't - in general - detect 3(or more)-bits errors.

. Parity codes

A parity bit is an extra bit included with a message to make the total number of 1’s either even or
odd. In parity codes, every data byte, or nibble (according to how user wants to use it) is checked if they
have even number of ones or even number of zeros. Based on this information an additional bit is
appended to the original data. Thus if we consider 8-bit data, adding the parity bit will make it 9 bit long.

At the receiver side, once again parity is calculated and matched with the received parity (bit 9), and if
they match, data is ok, otherwise data is corrupt.

Two types of parity

-Even parity: Checks if there is an even number of ones; if so, parity bit is zero. When the number of
one’s is odd then parity bit is set to 1.

-0dd Parity: Checks if there is an odd number of ones; if so, parity bit is zero. When the number of
one’s is even then parity bit is set to 1.

v Alphanumeric codes

The binary codes that can be used to represent all the letters of the alphabet, numbers and mathematical
symbols, punctuation marks, are known as alphanumeric codes or character codes. These codes enable us
to interface the input-output devices like the keyboard, printers, video displays with the computer.

. ASCII codes

Codes to handle alphabetic and numeric information, special symbols, punctuation marks, and control
characters.

* ASCII (American Standard Code for Information Interchange) is the best known.

* Unicode — a 16-bit coding system provides for foreign languages, mathematical symbols, geometrical
shapes, dingbats, etc. It has become a world standard alphanumeric code for microcomputers and

computers. It is a 7-bit code representing 2 = 128 different characters. These characters represent 26

upper case letters (A to Z), 26 lowercase letters (a to z), 10 numbers (0 to 9), 33 special characters and
symbols and 33 control characters.

) EBCDIC codes

EBCDIC stands for Extended Binary Coded Decimal Interchange. It is mainly used with large computer
systems like mainframes. EBCDIC is an 8-bit code and thus accommodates up to 256 characters. An
EBCDIC code is divided into two portions: 4 zone bits (on the left) and 4 numeric bits (on the right).

Example 1: Give the binary, BCD, Excess-3, gray code representations of numbers: 5,8,14.

Decimal Number [Binary code BCD code Excess-3 code |Gray code
5 0101 0101 1000 D111

8 1000 1000 1011 1100

14 1110 0001 0100 0100 0111 1001

Example 2: Binary To Gray Code Conversion
1+ 0+ T&- 1+ ? (BINARY)
1 1 0 1 1 (CONVERTEDGRAY CODE)

Example 3: Gray Code To Binary Code Conversion

1.7 BOOLEAN ALGEBRA AND THEOREMS

Ref: 1) A.P Godse & D.A Godse ‘Digital Electronics”, Technical publications, Pune, Revised third
edition, 2008. Pg.No:2.1-2.10

2) Morris Mano M. and Michael D. Ciletti, “Digital Design”, IV Edition, Pearson Education,
2008.Pg.No:36-44.

In 1854, George Boole developed an algebraic system now called Boolean algebra. In 1938, C. E.
Shannon introduced a two-valued Boolean algebra called switching algebra that represented the
properties of bistable electrical switching circuits.

Boolean algebra is an algebraic structure defined by a set of elements B, together with two binary
operators. ‘+’ and ‘-¢, provided that the following (Huntington) postulates are satisfied;

Principle of Duality

It states that every algebraic expression is deducible from the postulates of Boolean algebra, and it
remains valid if the operators & identity elements are interchanged. If the inputs of a NOR gate are
inverted we get a AND equivalent circuit. Similarly when the inputs of a NAND gate are inverted, we
get a OR equivalent circuit.

1. Interchanging the OR and AND operations of the expression.

2. Interchanging the O and 1 elements of the expression.

3. Not changing the form of the variables.

Theorems of Boolean algebra:

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression and also to
transform the given expression into a more useful and meaningful equivalent expression. The theorems are
presented as pairs, with the two theorems in a given pair being the dual of each other. These theorems can be
very easily verified by the method of _perfect induction‘. According to this method, the validity of the
expression is tested for all possible combinations of values of the variables involved. Also, since the validity
of the theorem is based on its being true for all possible combinations of values of variables, there is no
reason why a variable cannot be replaced with its complement, or vice versa, without disturbing the validity.
Another important point is that, if a given expression is valid, its dual will also be valid.

T1: Commutative Law
(a) A+B=B+A
(b) AB=BA

T2: Associative Law
(A)(A+B)+C=A+(B+C)
b)(AB)C=A(BC)

T3: Distributive Law
())A(B+C)=AB+AC
MA+BC)=(A+B)(A+C)

T4: Identity Law
(a) A+A=A
(b) AA=A

TS: Negation Law.
. and

= () =
T6: Redundancy

(a) A+AB=A

(b) A(A+B)=A

T7: Operations with ‘0’ & ‘1’
(a) O0+A=A

(b) I1A=A

(©) I1+A=1

(@ 0A=0

T10: De Morgan's Theorem

e It States that —The complement of the sum of the variables is equal to the product of the complement of each

variable This theorem may4-beexpressed= by the following Boolean expression.
o It states that the —Complement of the product of variables is equal to the sum of complements of each individual

variable. Boolean expressiofifor =thistheorem- is

Order of Precedence

NOT operations have the highest precedence, followed by AND operations, followed by OR operations.
Brackets can be used as with other forms of algebra.

e.g. X.Y +Zand X(Y +Z) are not the same function.

Truth Tables

Truth tables are a means of representing the results of a logic function using a table. They are constructed
by defining all possible combinations of the inputs to a function, and then calculating the output for each
combination in turn.

X Y [FXY)
0 D
1
0
1

= OO

D
D
1

NOT

F(X)

OR

»—-A»—-OON
—|oi—]o]|-
o

Minterms and maxterms

A binary variable may appear either in its normal form (x) or in its complement form (x'). Now consider
two binary variables x and y combined with an AND operation. Since each variable may appear in either
form, there are four possible combinations: x’y’, x’y. xy ', and xy. Each of these four AND term s is called
a minterm, or a standard product.

In a similar fashion, n variables forming g an OR terrn with each variable being primed or Unprimed
provide 2" possible combinations called maxterm. or standard sums.

. A minterm is the product of N distinct literals where each literal occurs exactly once.
. A maxterm is the sum of N distinct literals where each literal occurs exactly once.

For a two-variable expression, the minterms and maxterms are as follows

X Y Minterm Maxterm
0 0 XY’ X +Y

0 1 X' Y X+Y'

1 0 X.Y' X'+Y

1 1 X.Y X'+Y'

For a three-variable expression, the minterms and maxterms are as follows

X Y Z Minterm Maxterm

0 0 0 XYz X+Y+Z

D D 1 Y'.Z X+Y+Z'
D 1 D X'.Y.Z' X+Y'+Z
D 1 1 X'\ Y.Z X+Y'+Z'
1 D D X.Y'.Z' X'+Y+7Z
1 D 1 X.Y'.Z X'+Y+7Z'
1 1 D X.Y.Z' X'+Y'+Z
1 1 1 X.Y.Z X'+Y'+Z'

This allows us to represent expressions in either Sum of Products or Product of Sums forms

Sum Of Products (SOP): F(X, Y, ...) = Sum (ak.mk), where ak is 0 or 1 and mk is a minterm.

To derive the Sum of Products form from a truth table, OR together all of the minterms which give a
value of 1.Consider the truth table as example,

X Y F Minterm
0 0 0 XY’

0 1 0 X'Y

1 0 1 X.Y'

1 1 1 X.Y

Here SOPis {(X.Y)=X.Y' + X.Y

Product Of Sum (POS): The Product of Sums form represents an expression as a product of

maxterms.F(X, Y,) = Product (bk + Mk), where bk is O or 1 and Mk is a maxterm. To derive
the Product of Sums form from a truth table, AND together all of the maxterms which give a value
of 0.Consider the truth table from the previous example

X Y F IMaxterm
0 0 1 X+Y
0 1 0 X+Y'
i 0 1 X'+Y
1 1 1 X'+Y'
Here POS is F(X,Y) = (X+Y")
¥ X

{a) Sam of Producs {b} Product of Sums

Conversion between POS and SOP: Conversion between the two forms is done by application
of DeMorgans Laws.

DIGITAL LOGIC GATES

A logic gate is an electronic circuit/device which makes the logical decisions. To arrive at this decisions,
the most common logic gates used are OR, AND, NOT, NAND, and NOR gates. The NAND and NOR
gates are called universal gates. The exclusive-OR gate is another logic gate which can be constructed
using AND, OR and NOT gate.

Logic gates have one or more inputs and only one output. The output is active only for certain input
combinations. Logic gates are the building blocks of any digital circuit. Logic gates are also called
switches. With the advent of integrated circuits, switches have been replaced by TTL (Transistor
Transistor Logic) circuits and CMOS circuits. Here I give example circuits on how to construct simples
gates.

*AND
*OR
NOT
*BUF
*NAND
*NOR
*XOR
*XNOR

AND Gate

The AND gate performs logical multiplication, commonly known as AND function. The AND gate has
two or more inputs and single output. The output of AND gate is HIGH only when all its inputs are
HIGH (i.e. even if one input is LOW, Output will be LOW).

If X and Y are two inputs, then output F can be represented mathematically as F = X.Y, Here dot (.)
denotes the AND operation. Truth table and symbol of the AND gate is shown in the figure below.

Symbol Truth Table
X ' X o X Y FXY)
F=X&Y A g (1) 8
Y Y 1 | 0 D
- L 1 1|

Two input AND gate using "diode-resistor" logic is shown in figure below, where X, Y are inputs and F
is the output.

Wac
R

A

8 —k] o Y=A-B

KX =0and Y =0, then both diodes D1 and D2 are forward biased and thus both diodes conduct
and pull F low.

If X=0and Y = 1, D2 is reverse biased, thus does not conduct. But D1 is forward biased, thus
conducts and thus pulls F low.

If X=1and Y =0, D1 is reverse biased, thus does not conduct. But D2 is forward biased, thus
conducts and thus pulls F low.

If X=1and Y = 1, then both diodes D1 and D2 are reverse biased and thus both the diodes are in
cut-off and thus there is no drop in voltage at F. Thus F is HIGH.

OR Gate

The OR gate performs logical addition, commonly known as OR function. The OR gate has two or more
inputs and single output. The output of OR gate is HIGH only when any one of its inputs are HIGH (i.e.
even if one input is HIGH, Output will be HIGH).

If Xand Y are two inputs, then output F can be represented mathematically as F = X+Y. Here plus sign
(+) denotes the OR operation. Truth table and symbol of the OR gate is shown in the figure below.

Symbol Truth Table
X T
S e X Y [FX)Y)
> 0 0D
21 0 T
Y 1 0 [t
"“| 1 1 [

Two input OR gate using "diode-resistor" logic is shown in figure below, where X, Y are inputs and F is
the output.

“1¥

7.
¥ H

If X=0and Y = 0, then both diodes D1 éﬁd D2 are reverse biased and thus both the diodes are in
cut-off and thus F is low.

IfX =0and Y =1, D1 is reverse biased, thus does not conduct. But D2 is forward biased, thus
conducts and thus pulling F to HIGH.

If X=1and Y =0, D2 is reverse biased, thus does not conduct. But D1 is forward biased, thus
conducts and thus pulling F to HIGH.

If X=1and Y =1, then both diodes D1 and D2 are forward biased and thus both the diodes
conduct and thus F is HIGH.

NOT Gate

The NOT gate performs the basic logical function called inversion or complementation. NOT gate is also
called inverter. The purpose of this gate is to convert one logic level into the opposite logic level. It has
one input and one output. When a HIGH level is applied to an inverter, a LOW level appears on its output
and vice versa.

Symbol Truth Table

. 0 |
L.Dcfﬁ X1 p---F 1 0

If X is the input, then output F can be represented mathematically as F = X', Here apostrophe (') denotes
the NOT (inversion) operation. There are a couple of other ways to represent inversion, F= 'X, here !
represents inversion. Truth table and NOT gate symbol is shown in the figure below.

NOT gate using "transistor-resistor" logic is shown in the figure below, where X is the input and F is the
output.

+VC

sy
"

When X = 1, The transistor input pin 1 is HIGH, this produces the forward bias across the emitter base
junction and so the transistor conducts. As the collector current flows, the voltage drop across RL
increases and hence F is LOW.

When X = 0, the transistor input pin 2 is LOW: this produces no bias voltage across the transistor base
emitter junction. Thus Voltage at F is HIGH.

BUF Gate

Buffer or BUF is also a gate with the exception that it does not perform any logical operation on its input.
Buffers just pass input to output. Buffers are used to increase the drive strength or sometime just to
introduce delay. We will look at this in detail later.

If X is the input, then output F can be represented mathematically as F = X. Truth table and symbol of
the Buffer gate is shown in the figure below.

Symbol
Truth Table
x N~ s=x x 1, LF X FX
L 0 D
1 1
NAND Gate

NAND gate is a cascade of AND gate and NOT gate, as shown in the figure below. It has two or more
inputs and only one output. The output of NAND gate is HIGH when any one of its input is LOW (i.e.
even if one input is LOW, Output will be HIGH).

If X and Y are two inputs, then output F can be represented mathematically as F = (X.Y)', Here dot (.)
denotes the AND operation and (') denotes inversion. Truth table and symbol of the N AND gate is
shown in the figure below.

Symbol Truth Table

X Y [FXY)
F 0 0 |l
& [0 0 1T 0
1 0 |l
1 1 P

NOR Gate

NOR gate is a cascade of OR gate and NOT gate, as shown in the figure below. It has two or more inputs
and only one output. The output of NOR gate is HIGH when any all its inputs are LOW (i.e. even if one
input is HIGH, output will be LOW).

Truth Table
Symbol
X Y [FKX)Y)
X 0 0 1
b F 0 1 D
=21 Pp— 1 0 D
v 1 1 D

XOR Gate

An Exclusive-OR (XOR) gate is gate with two or three or more inputs and one output. The output of a
two-input XOR gate assumes a HIGH state if one and only one input assumes a HIGH state. This is
equivalent to saying that the output is HIGH if either input X or input Y is HIGH exclusively, and LOW
when both are 1 or O simultaneously.

If X and Y are two inputs, then output F can be represented mathematically as F = X IRy, Here H
denotes the XOR operation. X IBY and is equivalent to X.Y' + X'.Y. Truth table and symbol of the XOR
gate is shown in the figure below.

Truth Table
Symbol
X Y F(X,Y)
, -_} . X 0 D 0
~ -1 F 0 1 1
S 1 D 1
Y 1 1 0

XNOR Gate

An Exclusive-NOR (XNOR) gate is gate with two or three or more inputs and one output. The output of
a two-input XNOR gate assumes a HIGH state if all the inputs assumes same state. This is equivalent to

saying that the output is HIGH if both input X and input Y is HIGH exclusively or same as input X and
input Y is LOW exclusively, and LOW when both are not same.

If X and Y are two inputs, then output F can be represented mathematically as F= X @'Y, Here ®

denotes the XNOR operation. X ® Y and is equivalent to X.Y + X'.Y". Truth table and symbol of the
XNOR gate is shown in the figure below.

Symbol Truth Table
X X Y FXY)
E— F 0 0 |t
2] [0 1 D
Y 1 0D
1 11

Universal Gates

Universal gates are the ones which can be used for implementing any gate like AND, OR and NOT, or
any combination of these basic gates; NAND and NOR gates are universal gates. But there are some
rules that need to be followed when implementing NAND or NOR based gates.

1.6 NAND and NOR implementation

Any logic function can be implemented using NAND gates. To achieve this, first the logic function has
to be written in Sum of Product (SOP) form. Once logic function is converted to SOP, then is very easy
to implement using NAND gate. In other words any logic circuit with AND gates in first level and OR
gates in second level can be converted into a NAND-NAND gate circuit.

Consider the following SOP expression
F=WXY+XYZ+YZW

The above expression can be implemented with three AND gates in first stage and one OR gate in
second stage as shown in figure.

AR L pwenl

If bubbles are introduced at AND gates output and OR gates inputs (the same for NOR gates), the above
circuit becomes as shown in figure.

W

ol

T Ay

AL Levsl

Now replace OR gate with input bubble with the NAND gate. Now we have circuit which is fully
implemented with just NAND gates.

ey

i

v Realization of logic gates using NAND gates

Implementing an inverter using NAND gate

Input

Qutput

Rule

(X.X)

=X

Idempotent

Implementing AND using NAND gates

Input Output Rule
(XY)'XY)) EGXY)) |Idempotent
= (XY) Involution

Implementing OR using NAND gates

lInput Output Rule

(XX)' (YY) EX'Y) |[dempotent
= X"+Y" DeMorgan
= X+Y [nvolution

Implementing NOR using NAND gates

Input Output Rule
(XX)(YY) EXY) [dempotent
=X"+Y" DeMorgan
=X+Y [nvolution
=(X+Y)' [dempotent
v Realization of logic function using NOR gates

. Xd .
a

F{XeYy Fex Y Xy y

Any logic function can be implemented using NOR gates. To achieve this, first the logic function has to
be written in Product of Sum (POS) form. Once it is converted to POS, then it's very easy to implement
using NOR gate. In other words any logic circuit with OR gates in first level and AND gates in second

level can be converted into a NOR-NOR gate circuit.

Consider the following POS expression

F=(X+Y) . (Y+Z)

The above expression can be implemented with three OR gates in first stage and one AND gate in
second stage as shown in figure.

If bubble are introduced at the output of the OR gates and the inputs of AND gate, the above circuit
becomes as shown in figure.

Now replace AND gate with input bubble with the NOR gate. Now we have circuit which is fully
implemented with just NOR gates.

X

et

Implementing an inverter using NOR gate

[Input Output Rule
(X+X)' =X Idempotent

Implementing AND using NOR gates

Input Output [Rule
(X+X)+(Y+Y) E(X+Y) [dempotent R
|)'
= X"Y" [DeMorgan FeX.
= (X.Y) [nvolution
’&(” ‘

Implementing OR using NOR gates

Input Output Rule
(X+Y)+(X+Y)) EX+Y)) Idempotent
= X+Y Involution

Implementing NAND using NOR gates

Input Output Rule
(X+Y)+X+Y)) E(X+Y)) [dempotent
= X+Y Involution
= (X+Y)' [dempotent

F=(X.Y)

Minimization Technique

The primary objective of all simplification procedures is to obtain an expression that has the minimum
number of terms. Obtaining an expression with the minimum number of literals is usually the secondary
objective. If there is more than one possible solution with the same number of terms, the one having the
minimum number of literals is the choice.

There are several methods for simplification of Boolean logic expressions. The process is usually called
logic minimization and the goal is to form a result which is efficient. Two methods we will discuss are
algebraic minimization and Karnaugh maps. For very complicated problems the former method can be
done using special software analysis programs. Karnaugh maps are also limited to problems with up to 4
binary inputs. The Quine-McCluskey tabular method is used for more than 4 binary inputs.

1.6 KARNAUGH MAPS

Maurice Karnaugh, a telecommunications engineer, developed the Karnaugh map at Bell Labs in 1953
while designing digital logic based telephone switching circuits. Karnaugh maps reduce logic functions
more quickly and easily compared to Boolean algebra.

A Karnaugh map provides a pictorial method of grouping together expressions with common factors and
therefore eliminating unwanted variables. The Karnaugh map can also be described as a special
arrangement of a truth table.

Construction of a Karnaugh Map

1. Each square containing a _1‘ must be considered at least once, although it can be considered as
often as desired.

2. The objective should be to account for all the marked squares in the minimum number of groups.

3. The number of squares in a group must always be a power of 2, i.e. groups can have 1, 2, 4_ 8, 16,
squares.

4. Each group should be as large as possible, which means that a square should not be accounted for by itself
if it can be accounted for by a group of two squares; a group of two squares should not be made if the
involved squares can be included in a group of four squares and so on.

5. _Don‘t care® entries can be used in accounting for all of 1-squares to make optimum groups. They are
marked _X* in the corresponding squares. It is, however, not necessary to account for all _don‘t care
entries. Only such entries that can be used to advantage should be used.

The diagram below illustrates the correspondence between the Karnaugh map and the truth table for the
general case of a two variable problem.

The values inside the squares are copied from the output column of the truth table, therefore there is one
square in the map for every row in the truth table. Around the edge of the Karnaugh map are the values of
the two input variable. A is along the top and B is down the left hand side. The diagram below explains
this:

A B & 1
4] B :
0 0 o] 0 1 e
0 1 1
1o b= 1 1
1 1 1
Tiuth Table. E.

The values around the edge of the map can be thought of as coordinates. So as an example, the square on
the top right hand corner of the map in the above diagram has coordinates A=1 and B=0. This square
corresponds to the row in the truth table where A=1 and B=0 and F=1. Note that the value in the F
column represents a particular function to which the Karnaugh map corresponds.

Two variable K-map

There are four minterms for two variables: hence, the map consists of four squares, one for each minterm.
In any K-Map, each square represents a minterm. Adjacent squares always differ by Jjust one literal (So
that the unifying theorem may apply: X + X' = 1). For the 2-variable case (e.g.: variables X, Y), the map
can be drawn as below. Two variable map is the one which has got only two variables as input.

¢ ’mm..m,,,‘

e

Example- Carry and Sum of a half adder

In this example we have the truth table as input, and we have two output functions. Generally we may
have n output functions for m input variables. Since we have two output functions, we need to draw two
k-maps (i.e. one for each function). Truth table of 1 bit adder is shown below. Draw the k-map for Carry
and Sum as shown below.

Carry=X’

{l@

Sum=XY"+ XY

ol [ol
!

Grouping/Circling K-maps

The power of K-maps is in minimizing the terms, K-maps can be minimized with the help of grouping
the terms to form single terms. When forming groups of squares, observe/consider the following:

* Every square containing 1 must be considered at least once.

* A square containing 1 can be included in as many groups as desired.

* A group must be as large as possible.

* If a square containing 1 cannot be placed in a group, then leave it out to include in final expression.

* The number of squares in a group must be equal to 2 .i.e. 2,4,8,.

* The map is considered to be folded or spherical, therefore squares at the end of a row or column are
treated as adjacent squares.

* The simplified logic expression obtained from a K-map is not always unique. Groupings can be made
in different ways.

* Before drawing a K-map the logic expression must be in canonical form.

e

\
(]
1
SOV S—
h——————;

{2

Example of invalid groups

E§

Py
Hle e

o)

Example (1)- X'Y+XY: In this example we have the equation as input, and we have one output function.
Draw the k-map for function F with marking 1 for X'Y and XY position. Now combine two 1's as shown
in figure to form the single term. As you can see X and X' get canceled and only Y remains

F=Y
y

@

Example (2)- X'Y+XY+XY" :In this example we have the equation as input, and we have one output
function. Draw the k-map for function F with marking 1 for X'Y, XY and XY position. Now combine
two 1's as shown in figure to form the two single terms.

F=X+Y

H|o]a

3-Variable K-Map

There are 8 minterms for 3 variables (X, Y, Z). Therefore, there are 8 cells in a 3-variable K-map. One
important thing to note is that K-maps follow the gray code sequence, not the binary one. Each cell in a

3-variable K-map has 3 adjacent neighbours. In general, each cell in an n-variable K-map has n adjacent
neighbours.

L 4 .
i vyl faiac R
{ mid -] m7 sl
LW r

There is wrap-around in the K-map
. X'Y'Z' (m0) is adjacent to X'YZ' (m2)
. XY'Z' (m4) is adjacent to XYZ' (m6)

Example (4) F(X,Y,Z) =1K1,3,4,5,6,7)
Example (3) F = XYZ'+XYZ+X'YZ
F=X+7
F=XY+YZ

Y7
0
§$v»»» o, ;/“‘4(;w:&,\,‘ {/«‘"Yﬂ ;«%%% p
: §‘x § ' \12” g%} v ! #
- - - :

4-Variable K-Map: There are 16 cells in a 4-variable (W, X, Y, Z); K-map as shown in the figure below

g

— 00 017 11 10
g BERY 00 | me my | o |
4 Bl T8 O Ty | ome | my | 0
12113115114 | B AR RAUEY RACEN BT
B g1 1] 10 10 fmy | M fmy, | My

k_wmm._/ WWJ

Example (5) F(W,X,Y,Z) = (1,5,12,13)

o0 i1 1 10
00 1
01 1
i
b 1 1
i
'Y' J
Example (6) F(W.X,Y,Z) = (4,5, 10, 11, 14,15)
e
aa 41 11 10
W
g1]i 1 1

11

[1]
10 |y

S-Variable K-Map: There are 32 cells in a 5-variable (V, W, X, Y, Z); K-map as shown in the figure

below. /‘ .
y

cooo 00 0171 100 v 00 0111 10

oo | Me | T | My | M 0o |Me | M7 | My | Mg

01 [my|ms [y fmgf | OF [Ty | My f My | My

Lo T M MYy | g [Iy | P g | Mg | My | My,

10 | my | my [my, |y, 10 [myy | s | my, | My

S~ M

1.7 QUINE- MCCLUSKEY METHOD

The tabular method which is also known as the Quine-McCluskey method is particularly useful when
minimising functions having a large number of variables, e.g. The six-variable functions. Computer
programs have been developed employing this algorithm. The method reduces a function in standard sum
of products form to a set of prime implicants from which as many variables are eliminated as possible.
These prime implicants are then examined to see if some are redundant.

The tabular method makes repeated use of the law A + [ll= 1. Note that Binary notation is used for the
function, although decimal notation is also used for the functions. As usual a variable in true form is
denoted by 1, in inverted form by 0, and the abscence of a variable by a dash (-).

Rules of Tabular Method

1. The Boolean expression to be simplified is expanded if it is not in expanded form.

2. Different terms in the expression are divided into groups depending upon the number of 1s they
have.

3. The terms of the first group are successively matched with those in the next adjacent higher order

group to look for any possible matching and consequent reduction. The terms are considered
matched when all literals except for one match. The pairs of matched terms are replaced with a single term where the position of the unmatched

literals is replaced with a dash (—). These new termss formed as a result of the matching process find a place in the second table. The terms in the
first table that do not find a match are called the prime implicants and are marked with an asterisk (). The matched terms are ticked).

4. Terms in the second group are compared with those in the third group to look for a possible match.

Again, terms in the second group that do not find a match become the prime implicants.

5.

The process continues until we reach the last group. This completes the first round of matching.
The terms resulting from the matching in the first round are recorded in the second table.

The next step is to perform matching operations in the second table. While comparing the terms
for a match, it is important that a dash (—) is also treated like any other literal, that is, the dash
signs also need to match. The process continues on to the third table, the fourth tables and so on
until the terms become irreducible any further.

An optimum selection of prime implicants to account for all the original terms constitutes the
terms for the minimized expression. Although optional (also called _do ‘t care’) ter s are
considered for matching, they do not have to be accounted for once prime implicants have been
identified.

Example 1: Let us consider an example. Consider the following sum-of-products expression:

ABCH+ABD+ACD+BCD+ABCTC.D

In the first step, we write the expanded version of the given expression. It can be written us follows:

ABCD+ABCD+ABCDH+ABCD+ABCD+ABCD+ABTD
+ABCD+ABC.D

The formation of groups, the placement of terms in different groups and the first-round matching are
shown as follows:

A B L D A B { b A B o D
O it 0 i o f1) ¢ i v 1] 0 - 1 &
O f { H B i 4] <] - i 1 v
{ H { 0 o k) i} | i
O i 0 i 0 {¥ i i ¢ 4] i £ o v
G i f 0 o I Y i v o 1 - 0 <
{ H § f & i i 0 v - 1] £} v
§ O 0 i 3) { { v
1 H 0 0 f i]] v 4] - i i ¥
i 1 i} i 0 1 i t v & i - 1 ¥
i |)] i v - i) { v
] i 1 - ¥
1 e {} i e
| | i - e

The second round of matching begins with the table shown on the previous page. Each term in the first

group is compared with every term in the second group. For instance, the first term in the first group
00-1 matches with the second term in the second group 01-1 to yield 0— -1, which is recorded in
the table shown below. The process continues until all terms have been compared for a possible match.
Since this new table has only one group, the terms contained therein are all prime implicants.

In the present example, the terms in the first and second tables have all found a match. But that is not
always the case.

A B C D

0 - - I *
- - 0 ! *
0 1 - - *
- 1 0 - ¥

The next table is what is known as the prime implicant table. The prime implicant table contains all the
original terms in different columns and all the prime implicants recorded in different rows as shown below:

8001 13381 B8 4 110 i 101 1§ b [161

v v v ¢ O— ~1t P—=AD

¥ e ¢ v — {3} Qwi’f;f}
¥ < ¥ ¥ Ol — — R— AB
v v v v =} O S— BC

Each prime implicant is identified by a letter. Each prime implicant is then examined one by one and the
terms it can account for are ticked as shown. The next step is to write a product-of-sums expression
using the prime implicants to account for all the terms. In the present illustration, it is given as follows.

(P+Q)(P)R+S)(P+Q+ R+ S1(R)L(P+R)(Q)(D(Q+S)

Obvious simplification reduces this expression to PQRS which can be interpreted to mean that all
prime implicants, that is, P, Q, R and S, are needed to account for all the original terms.

Therefore, the minimized expression = AD+C.D+AB+RBRT.
Example 2: (A+B+C+D)V.(A+B+T+D)(A+B+C+D)(A+B+C+D).(A+B+C+D)

The procedure is similar to that described for the case of simplification of sum-of-products expressions.
The resulting tables leading to identification of prime implicants are as follows:

A B C D A B O D A B C b A B C D
o 1 a { LI | 0 } v O 1 - ! T 1 ¥
O 1 H t o O i o«
i 1 a i L | H i ¥
i 1 i 0 1 1 3 i W - 1 i i s
t i 1 t 1 i i L H - v
E &

1 i i L e

The prime implicant table is constructed after all prime implicants have been identified to look for the
optimum set of prime implicants needed to account for all the original terms. The prime implicant table
shows that both the prime implicants are the essential ones:

(101 Ol it L0} 1110 ISR Prime mmplicants
< v 11~
v v ¥ v —f—1

The minimized expression = (—5-{—? —{-E)A(Fﬁ-—ﬁ},

Example 3:Consider the function f(A, B, C, D) = IIK0,1,2.3.5.7,8.10,12,13.15), note that this is in
decimal form.

.(0000,0001,0010,001 1,0101,0111,1000,1010,1100,1101,1111) in binary form.
0,1,1,2,2,3,1,2,2,3,4) in the index form.

The prime implicants are: ~+ 4+~ + o i
The chart is used to remove redundant prime implicants. A grid is prepared having all the prime
implicants listed at the left and all the minterms of the function along the top. Each minterm covered by

a given prime implicant is marked in the appropriate position.

From the above chart, BD is an essential prime implicant. It is the only prime implicant that covers the
minterm decimal 15 and it also includes 5, 7 and 13. [llso an essential prime implicant. It is the

only prime implicant that covers the minterm denoted by decimal 10 and it also includes the terms 0, 2

and 8. The other minterms of the function are 1, 3 and 12. Minterm 1 is present in M. B
Similarly for minterm 3, We can therefore use either of these prime implicants for these minterms.
Minterm 12 is presentin =~ A and AB , so again either can be used.

= + + "+

Thus, one minimal solution is;

UNIT II Arithematic circuits Half adder - Truth table and circuit — Full adder —
Truth table and circuit — Four bit adder — Half subtractor — Full subtractor —
Multiplexer: Four input multiplexer — Applications of Multiplexer — demultiplexer —
Decoders 2 to 4 decoder — BCD to seven segment decoder — encoders.

Arithmetic circuits are the ones which perform arithmetic operations like addition, subtraction,
multiplication, division, parity calculation. Most of the time, designing these circuits is the same
as designing mux, encoders and decoders.

1. Adders

Adders are the basic building blocks of all arithmetic circuits; adders add two binary numbers
and give out sum and carry as output. Basically we have two types of adders.

. Half Adder.
. Full Adder.

v Half Adder

A half-adder is an arithmetic circuit block that can be used to add two bits. Such a circuit thus has two
inputs that represent the two bits to be added and two outputs, with one producing the SUM output and
the other producing the CARRY.

Adding two single-bit binary values X, Y produces a sum S bit and a carry out C-out bit. This
operation is called half addition and thus the circuit to realize it is called a half adder.

Symbol

Half
Adder

wﬁ§%§t%\§

The expression for the sum and carry are,

Sum = XY+XY

Carry = XY

v Full Adder

A full adder circuit is an arithmetic circuit block that can be used to add three bits to produce a SUM
and a CARRY output. Such a building block becomes a necessity when it comes to adding binary
numbers with a large number of bits. The full adder circuit overcomes the limitation of the half-adder,

<

which can be used to add two bits only.

Full adder takes a three-bits input. Adding two single-bit binary values X, Y with a carry input bit C-

in produces a sum bit S and a carry out C.

Circuit

Truth table

X |Y SUM CARRY
0 10 P D

0 1 D

1 0 D

1 1 P 1

CARRY

G B R A
S et £ 2

T —

Truth Table

X Y Z E«U CARRY
0 0 0 b D
0 0 T D
0 1 o |1 D
0 1 1 b 1
1 0 0 [D
1 0 1D 1
1 1 0 D 1
1 1 1 [1
z
N

Full Adder using AND-OR

The below implementation shows implementing the full adder with AND-OR gates, instead of
using XOR gates. The basis of the circuit below is from the above K-map

Circuit-SUM Circuit-CARRY

X X

R=sigy
T

Circuit-CARRY
Full Adder wing AND-OR X

Circuit-SUM b

AT - T\

YW ; x"iﬁ 5 g,
e e E B
Ll T 1 %; ‘ﬁ“% e
i
Z é

g i 1
Aw—-—-—al»——-—o‘) f - i
B———t1—1 ' D s
| ' .
§ i
i i
% ! ; ‘
Al]
: - DT %o : ; Cout
Cin
Cin Half - T'sum 3
‘ Adder
A] Sum [- [camy
B) D.«WW«.M,W c{jui
Carry

v" n-bi Carry Ripple Adder

An n-bit adder used to add two n-bit binary numbers can be built by connecting n full adders in
series. Each fall adder represents a bit position j (from 0 to n-1).

Each carry ou C-out from a full adder at position j is connected to the carry in C-in of the full adder
at higher posgion j+1. The output of a full adder at position j is given by:

Si=Xj Yj G

C+1=Xj.Yj+Xj.Cj+Y.Cj

In the expression of the sum Cj must be generated by the full adder at lower position j. The
propagation delay in each full adder to produce the carry is equal to two gate delays = 2 D Since the
generation of the sum requires the propagation of the carry from the lowest position to the highest
position , the total propagation delay of the adder is approximately:

Total Propagation delay = 2 nD
4-bit Carry Ripple Adder
Adds two 4-bit numbers:

X =X3 X2 X1 X0
Y=Y3Y2Y1YO

Producing the sum S = 83 S2 S1 SO, C-out = C4 from the most significant position
j=3 Total Propagation delay = 2 nD = 8D or § gate delays

KIXZXEXD Y3Y2Y1YD

Peby VY

)

Larger Adder

Example: 16-bit adder using 4 4-bit adders. Adds two 16-bit inputs X (bits X0 to X15), Y (bits YO to
Y15) producing a 16-bit Sum S (bits SO to S15) and a carry out C16 from the most significant position.
Propagation delay for 16-bit adder = 4 x propagation delay of 4-bit adder

=4 x2nD =4x 8D =32D or 32 gate delays

EIEP XY XOYIVEYL YD LD e M S E R VA S ¢ REKEEY EOYAYRYIYD ELXZRONDYIY2PI ¥R
: [N §
A 10 A A A
‘ I o ‘ . : ‘.‘,m . e ‘—aw-—« B iz *“"‘“’W
A4 Al

v Carry Look-Ahead Adder

The delay generated by an N-bit adder is proportional to the length N of the two numbers X and Y that
are added because the carry signals have to propagate from one full-adder to the next. For large values
of N, the delay becomes unacceptably large so that a special solution needs to be adopted to accelerate
the calculation of the carry bits. This solution involves a "look-ahead carry generator" which is a block
that simultaneously calculates all the carry bits involved. Once these bits are available to the rest of the
circuit, each individual three-bit addition (Xi+Yi+carry-ini) is implemented by a simple 3-input XOR
gate. The design of the look-ahead carry generator involves two Boolean functions named Generate and
Propagate. For each input bits pair these functions are defined as: Gi=Xi. Yi & Pi=Xi+ Yi

The carry bit c-out(i) generated when adding two bits Xi and Yi is '1" if the corresponding function Gi is
'1' or if the c-out(i-1)="1" and the function Pi = '1"' simultaneously. In the first case, the carry bit is
activated by the local conditions (the values of Xi and Yi). In the second, the carry bit is received from
the less significant elementary addition and is propagated further to the more significant elementary
addition. Therefore, the carry_out bit corresponding to a pair of bits Xi and Yi is calculated according
to the equation:

carry_out(i) = Gi + Pi.carry_in(i-1)

For a four-bit adder the carry-outs are calculated as follows
carry_outQ = GO + PO . carry_in0
carry_outl = GI +P1 . carry_outO = G1 + P1GO + P1PO . carry_in0

carry_out2 = G2 + P2G1 + P2P1GO + P2P1P0 . carry_in0
carry_out3 = G3 + P3G2 + P3P2G1 + P3P2P1GO + P3P2P1 . carry_inO

The set of equations above are implemented by the circuit below and a complete adder with a look-
ahead carry generator is next. The input signals need to propagate through a maximum of 4 logic gate in
such an adder as opposed to 8 and 12 logic gates in its counterparts illustrated earlier.

carry_out; carry_out, carry_out, carry_out,

aaanannans

mm Y 1 T carry_in,

AORRAGRE
XS YS

Xfé Y2 X% Y‘i XH\YQ

Sums can be calculated from the following equations, where carry_out is taken from the carry
calculated in the above circuit.

sum_out0 = X 0 YO

carry_outO sum_outl =X 1 Y1

carry_outl sum_out2 = X 2 Y2

carry_out2 sum_out3 = X 3 Y3

carry_out3

sum_out,
f”‘z?ﬁ rry_ing

} sum out

t:arry m,«-;

sum_out,
carw i
} sum_out,
gc:zm;“y ineg)

w

v BCD Adder

BCD addition is the same as binary addition with a bit of variation: whenever a sum is greater than
1001, it is not a valid BCD number, so we add 0110 to it, to do the correction. This will produce a carry,
which is added to the next BCD position.

. Add the two 4-bit BCD code inputs.

. Determine if the sum of this addition is greater than 1001; if yes, then add 0110 to this sum
and generate a carry to the next decimal position

2. Subtractor

Subtractor circuits take two binary numbers as input and subtract one binary number input from the
other

binary number input. Similar to adders, it gives out two outputs, difference and borrow (carry-in the
case of Adder). The BORROW output here specifies whether a _1¢ has been borrowed to perform
the

subtraction.

There are two types of subtractors,

v Half Subtractor

The half-subtractor is a combinational circuit which is used to perform subtraction of two bits. It has
two inputs, X (minuend) and Y (subtrahend) and two outputs D (difference) and B (borrow). The logic
symbol and truth table are shown below.

Symbol Truth table

X |Y|D B

0 j01o0 0

' 1 |01 0

Y Subtractor Bout ot

From the above table we can draw the K-map as shown below for "difference" and "borrow". The
Boolean expression for the difference and Borrow can be written.

Borrow=X"Y Difference=XY' + X'Y

From the equation we can draw the half-subtractor as shown in the figure below.

D
Y_D__—g};_

v" Full Subtractor

A full subtractor is a combinational circuit that performs subtraction involving three bits,
namely '

minuend, subtrahend, and borrow-in. There are two outputs, namely the DIFFERENCE output D and
the BORROW output Bo. The BORROW output bit tells whether the minuend bit needs to borrow a
=1‘

from the next possible higher minuend bit. The logic symbol and truth table are shown below.

Symbol

Truth table
X i - ' D X | Y Bin D [Bout
0 oD 0 D
Y Full 0 0 i 1 I
Bin | Subtractor] Bout 0 [1 L
" 0 1 0 |
1 0 D 1 D
1 0 i 0 Db
1 1 D 0 b
1 1|t 1 I
X . D
X Half D
Y Subtractor
X par D L ' Bout

i ~ Subtractor
Bin . B

YBin YBin
X 00 01 11 10 X 00

0 @ 0
1 o f ,

Difference=XY'Bin + X'YBIin' + XY'Bin' Borrow=XBin + XY + Yiin
+ XYBin

From the above expression, we can draw the circuit below. If you look carefully, you will see that a
full-subtractor circuit is more or less same as a full-adder with slight modification.

Parallel binary subtractor can be implemented by cascading several full-subtractors. Implementation
and associated problems are those of a parallel binary adder, seen before in parallel binary adder
section.

v Parallel Binary Subtractor

Below is the block level representation of a 4-bit parallel binary subtractor, which subtracts 4-bit
Y3Y2Y1YO from 4-bit X3X2X1XO0. It has 4-bit difference output D3D2D1D0 with borrow output
Bout.

XAy :?ﬁ 7
| u |
full fudt fuh
sub sub sub
L l i

023 pe 2R 20

v" Serial Binary Subtracter

A serial subtracter can be obtained by converting the serial adder using the 2's complement system. The
subtrahend is stored in the Y register and must be 2's complemented before it is added to the minuend
stored in the X register. The circuit for a 4-bit serial subtracter using full-adder is shown in the figure

below.

ClK

v Comparators

It is a combinational circuit that compares two numbers and determine their relative magnitude. The

CIH

SUM

full adaer

E RO W ———Do—-—— kY

cony

output of comparator is usually 3 binary variables indicating:

1-bit comparator: Let’s begin with 1 bit comparator and from the name we can easily make out that

A<B, A=B, A>B

this circuit would be used to compare 1 bit binary numbers.

03

D2

21

Do

A B |A>B A=B [A<B
0 0 p 1 D

1 (| D Y

0 1 p D 1

1 1 P 1 D

For a 2-bit comparator we have four inputs A1AO and B1B0 and three output E (is 1 if two
numbers are equal) G (is 1 when A > B) and L (is 1 when A < B) If we use truth table and K-map
the result is

B
A\] 1
¢lo g Equationis A>B= AR
141 a
B
A o A<B 1
¢! g i —_
EquationisA<B = AB
1 o o
A\< o (A=B} 4
o} ! o —
The equationisfii=B)= AB+AB
=AXNORB
Ll P 1

The comparison process of two positive numbers X and Y is performed in a bit-by-bit manner starting
with the most significant bit:

If the most significant bits are Xn="1" and Yn="0" then number X is larger than Y.

° If Xn="0" and Yn='1' then number X is smaller than Y.

. If Xn=Yn then no decision can be taken about X and Y based only on these two bits.

If the most significant bits are equal then the result of the comparison is determined by the less
significant bits Xn-1 and Yn-1. If these bits are equal as well, the process continues with the next pair
of bits. If all bits are equal then the two numbers are equal.

4-bit comparator:

AQ COMP
e B 1
Al
Al >
— A A=>R
A3
e
BO A=EB
—3 0
Bl
. A<B
B2 g °°
B3
g ¥)

2.5 CODE CONVERSION- Binary to Gray converter

Truth Table
S.NoB3 B2 B1 B0 63 G2 61 [Go
0 0 b b b b b b D
1 b b b I b b b 1
D b D 1 b b b 1 1
3 O b 1 1 D D 1 0
4 b |1 b b D 1 1 D
5 D | b i 0 1 1 1
6 0 |1 T p D 1 0 1
7 0 |1 1 1 0 1 Db D
8 1 b b Db 1 1 D D
0 1 b b I 1 1 D 1
10 1 D 1T b I 1 1 1
11 1 Db 1 1 1 1 1 D
12 1 b b 0 1 0
13 1|t D |1 1 0 1 1
14 1T N 1 b I D D 1
15 1 f 1 1 O b D

K-MAP FOR G3:

NB180 g 01 11 10
8382
00 n o] 0 0
|
1 1 1 1 1
10| | 1 1 1
G3=B3
K-MAP FOR G2:
\‘3‘50 00 01 1 10
83m2
m| o 0 0 0
o1 | 1 1 1 1 |
1n| o g 0 g
10 |1 1 1 1 l

G2=B3 B2 +B3B2’=B3 B2

K-MAP FOR G1:
\5150 0o a4 11 10
B3B2
00| o g 1 1
LR 1 o 0
11 |1 1 1] a
10 g] 1 1

G1=B1’B2 + B1 B2’=B1 [l B2

K-MAP FOR G0

B180 g 01 1 10
BIE2

| o 1 0 (1]

0t o 1 0 L

11] 0 L 0 1

10| 0 ! 0 1

G0=B1’B0 +B1B0’=B1 B0

G3 B3

2.6 DECODERS

A decoder circuit can be used to implement AND-OR circuit SOP Boolean expression when decoder
active state output is 1 and inactive O .

* Number of binary inputs = n
* Number of binary outputs = 2n = Maximum number of minterms, where n is the number of literals in F
* Its outputs reflect the Mini-terms with one term each at each of the output

Dy

Dy

Dy by

Ean i T B R o

T — T

e~

g —’i© oot

B

A

N et O e

Dt AT g s

e AT R

(b Truth able

{a} Logic diagram

Figure: 2-to-4 line decoder with enable input

Truth Tuble of a Three-to-Eight-Line Decoder

Outputs

Dy

Inputs

Dy

Dy

[e

Eo g e PR R R

foon i o e R v

LS LD e 0D

U e O TR

L e T OO

—e OF D D AR

o e o v R e S]

S S e S o

R - .

~ l){» P ¢‘.?y';‘x
P
A
P ”“"‘""} By = syt
| F :
¥
j = gtve
D 175 S 5
W Py = gyt
mmj 5 XYY
*’:}MMMMM’ Ly = xwp

Fig: Circuit for 3-to-8 line decoder
2.7 ENCODERS

An encoder is a circuit that converts the binary information from one form to another. Gives a unique
combination of outputs according to the information at a unique input at one-line (or at multiple lines).
Action of a one active line input encoder is opposite of that of a one active line output decoder. An
encoder, which has multi-lines as the active inputs, is also called ‘priority encoder’. Encoder can be
differentiated from decoder by greater number of inputs than outputs compared to the decoder. The
priority encoder includes a priority function.

4to3 Priority Encoder-The truth table of a 4-input priority encoder is as shown below. The input D3
has the highest priority, D2 has next highest priority, DO has the lowest priority. This means output Y2
and Y1 are O only when none of the inputs D1, D2, D3 are high and only DO is high. A 4 to 3 encoder
consists of four inputs and three outputs, truth table and symbols of which is shown below.

Truth Table

D3 D2 D1 Do [y2 [y1 [yo
b 0 DL b b b D

D 0 1 x P 4]
D X x P 1 1
1 X X x [l D 4]

oG
ODRDEN G O s

Y0=D3.02 + D3 D00 Y1=0302 + DT D yi=03

]

2.8 MULTIPLEXERS

Many tasks in communications, control, and computer systems can be performed by combinational
logic circuits. When a circuit has been designed to perform some task in one application, it often finds
use in a different application as well.

A multiplexer (MUX) is a digital switch which connects data from one of n sources to the output. A
number of select inputs determine which data source is connected to the output. The block diagram of
MUX with n data sources of b bits wide and s bits wide select line is shown in below figure.

s bi
Select —g‘p SEL

Multiplexer
b hits
% [8i1]

b bits
—-7‘-) 23 .
s Data ¥ _23*;5"} Data
Sources T Dutput

iy bits . i D1

Example - 2x1 MUX

A 2 to 1 line multiplexer is shown in figure below, each 2 input lines A to B is applied to one input of

an AND gate. Selection lines S are decoded to select a particular AND gate. The truth table for the 2:1
mux is given in the table below.

A \ Truth table
—

S Y
Y 0 A
P 1 B

I°

select l

Design of a I:1 Mux

To derive the gate level implementation of 2:1 mux we need to have truth table as shown in figure.
And once we have the truth table, we can draw the K-map as shown in figure for all the cases when Y
is equal to 'I'.

Combiningthe two 1' as shown in figure, we can drive the output y as shown below

Y=AS+B.S
Truth table K-map
B A S Y
0 0O p 0 ,
0 0 |1 0 (@ @)
0 1 P 1
0 1 11 0
1 0 p 0 - :
o 1 ORE®
1 1 1
Circuit
A

H1

Example : 4:1 MUX

A 4 to 1 line multiplexer is shown in figure below, each of 4 input lines 10 to I3 is applied to one input
of an AND gate. Selection lines SO and S1 are decoded to select a particular AND gate. The truth table

for the 4:1 mux is given in the table below.

I(} I
I —»1 o
Ly 1
Iz —»is

r_
dio4

Decoder

2.9 DEMULTIPLEXERS Y

They are digital switches which connect data from one input source to one of n outputs. Usually
implemented by using n-to-2n binary decoders where the decoder enable line is used for data input of

the de-multiplexer.

The figure below shows a de-multiplexer block diagram which has got s-bits-wide select input, one b-

bits-wide data input and n b-bits-wide outputs.

Truth table
Sairngd 2 i it
\.:‘a LAk 0 0 IO
, 5 1 I1
1 3 12
7 1 13
Circuit
“——
I

Select

el *’i’t SE:

Bata

Example: 1-to-4 De-multiplexer

bbits
Input M

S8,

De-

Multiplexer

b buts
F}ﬁ%m
bbits .

f}‘lmﬁ

-

s

M m M
N

L

Truth table

One of n
» Data
Outyuits

IFO

IF1 F2

D

D

D

D D

D

D

=TT

— =TT

=lo =<l

0

D

Mux- Demux: Application Example

This embles sharing a single communication line among a number of devices. At any time, only
one sowce and one destination can use the communication line.

Corraninication
MUX :

source

Example: Design a circuit to distinguish BCD digits > 5 from those < 5.

A i
B i Logic
C —pm] circuit 1
D et
ABCD Minterm f(A,B,C,D)
D000 0 D
D001 1 D
0010 2 D
0011 3 D
*100 4 D
0101 5 1
0110 6 1
D111 7 1
1000 8 1
1001 9 1
1010 10 d
1011 11 d
1100 12 d
1101 13 d
1110 14 d
1111 15 d
CD 00 01 " 11 10 CD 00 01 " 11 10
0 4 12 I8 G £ 12 i
00 T ol oy T | d
T 5 i3) b 1 5 13 F
01 (1 dh 1 01 0 d
S &) 7 i3 i1 B (B 7 15 11
1 T T T3 | 4 1| lo d | 4
Cy B 5 i i < Y4 B 3 P! o
10 MERCORE 10] o d | 4
L L .] \ - . :
B B
(@ MSOP ® MPOS

f(A,B,C,.D) = A + BD + BC; f(A,B,CD)=(A+B)YA+C+D)

UNIT II1I

Flipflops Introduction - NAND LATCH, J K flipflop — J K Master - slave flipflop —
D flipflop and T flipflop — Registers and Counters: Shift registers ~ serial in —
parallelout, serial in — serial out, parallel in - serial out, parallel in — parallel out
shift registers — wave forms for the above — Counters — up counters, down counters,
decade counters, timing sequences, Mod - n counters.

Digital electronics is classified into combinational logic and sequential logic. Combinational logic
output depends on the inputs levels, whereas sequential logic output depends on stored levels and also
the present inputs.

Inputs Oustputs

-

Memory Element

The memory elements are devices capable of storing binary info. The binary info stored in the memory
elements at any given time defines the state of the sequential circuit. The input and the present state of
the memory element determine the output. Memory elements next state is also a function of external
inputs and present state. A sequential circuit is specified by a time sequence of inputs, outputs, and
internal states.

There are two types of sequential circuits. Their classification depends on the timing of their signals:

* Synchronous sequential circuits
* Asynchronous sequential circuits

v ASYNCHRONOUS SEQUENTIAL CIRCUIT

This is a system whose outputs depend upon the order in which its input variables change and can be
affected at any instant of time. Gate-type asynchronous systems are basically combinational circuits with
feedback paths. Because of the feedback among logic gates, the system may, at times, become unstable.
Consequently they are not often used.

X —
2 -
B >

G

P

v SYNCHRONOUS SEQUENTIAL CIRCUITS

This type of system uses storage elements called flip-flops that are employed to change their binary
value only at discrete instants of time. Synchronous sequential circuits use logic gates and flip-flop
storage devices. Sequential circuits have a clock signal as one of their inputs. All state transitions in
such circuits occur only when the clock value is either O or 1 or happen at the rising or falling edges of
the clock depending on the type of memory elements used in the circuit. Synchronization is achieved
by a timing device called a clock pulse generator. Clock pulses are distributed throughout the system
in such a way that the flip-flops are affected only with the arrival of the synchronization pulse.
Synchronous sequential circuits that use clock pulses in the inputs are called clocked-sequential
circuits. They are stable and their timing can easily be broken down into independent discrete steps,
each of which is considered separately.

Clock
Cycle Time

A clock signal is a periodic square wave that indefinitely switches from O to 1 and from 1 to O at
fixed intervals. Clock cycle time or clock period: the time interval between two consecutive rising or

falling edges of the clock.

Clock Frequency = 1/ clock cycle time (measured in cycles per second or Hz)

Example: Clock cycle time = 10ns tlock frequency = 100M
3.1 CONCEPT OF SEQUENTIAL LOGIC
A sequential circuit is a combinatienal logic with some feedback to maintain its current value, like a
memory cell. To understand the basics let's consider the basic feedback logic circuit below, which is a
simple NOT gate whose output is mnnected to its input. The effect is that output oscillates between
HIGH and LOW (i.e. 1 and 0). Oscilation frequency depends on gate delay and wire delay. Assuming
a wire delay of 0 and a gate delay of 10ns, then oscillation frequency would be (on time + off time =
20ns) 50Mhz.
propagation delay
G {wire delay + gate delay)

i

_.Do_w, l

The basic idea of having the feedbadk is to store the value or hold the value, but in the above circuit,
output keeps toggling. We can overcome this problem with the circuit below, which is basically
cascading two inverters, so that the feedback is in-phase, thus avoids toggling. The equivalent circuit is
the same as having a buffer with its catput connected to its input.

The circuit below is the same as the inverters connected back to back with provision to set the state
of each gate (NOR is gate with botk inputs shorted like a inverter). I am not going to explain the
operation, as it is clear from the truthtable. S is called set and R is called Reset.

S R Q_ Q+
0 0 0o D
Q ' 0 0 1 1
S e S B Q” 5 . X b
1 1 X D

There still seems to be some problem with the above configuration, we cannot control when the input
should be sampled, in other words #ere is no enable signal to control when the input is sampled.

Normally input enalle signals can be of two types.
v Level Sensitive & (LATCH)
v Edge Sensitive & (Flip-Flop)

v Level Sensitive: The circuit below is a modification ofthe above one to have level sensitive enable
input. Enable, vhen LOW, masks the input S and R. When HIGH, presents S and R to the
sequential logic input (the above circuit two NOR Gates). Thus Enable, when HIGH, transfers
input S and R © the sequential cell transparently, se this kind of sequential circuits are called
transparent Lach. The memory element we get is anRS Latch with active high Enable.

00

v’ Edge Sensifive: The circuit below is a cascade of wo level sensitive memory elements, with a
phase shift i the enable input between first memory element and second memory element. The
first RS latck (i.e. the first memory element) will be enabled when CLK input is HIGH and the
second RS hitch will be enabled when CLK is LOW. The net effect is input RS is moved to Q
and

Q' when (LK changes state from HIGH to LOW, this HIGH to LOW transition is called
falling edge. So the Edge Sensitive element we get is called negative edge RS flip-flop.

Hmed R Q R Q MQ

E
5

Q*
CLK >c

s oY

3.2 LATCHES AND FLIP-FLOPS

There are two types of sequential circuits.
¢ Asynchronous Circuits.
e Synchronous Circuits.

Latches and Flip-flops are one and the same with a slight variation: Latches have level sensitive control
signal input and Flip-flops have edge sensitive control signal input. Flip-flops and latches which use
this control signals are called synchronous circuits. So if they don't use clock inputs, then they are
called asynchronous circuits.

v RS Latch

RS latch have two inputs, S and R. S is called set and R is called reset. The S input is used to produce

HIGH on Q (i.e. store binary 1 in flip-flop). The R input is used to produce LOW on Q (i.e. store
binary O in flip-flop). Q' is Q complementary output, so it always holds the opposite value of Q. The
output of the S-R latch depends on current as well as previous inputs or state, and its state (value
stored) can change as soon as its inputs change. The circuit and the truth table of RS latch is shown
below.

R
b SR S R 0 0+
0 0 0 D
0 0 1 1
0 1 X D
1 0 X 1
S 1 1 X D

The operation has to be analyzed with the 4 inputs combinations together with the 2 possible previous
states.
e WhenS =0 andR = 0: If we assume Q = 1 and Q' = 0 as initial condition, then output Q after
input is applied wouldbe Q=R+ Q) =1and Q'= (S + Q)' = 0. Assuming Q =0 and Q' = 1 as
initial condition, then output Q after the input applied wouldbe Q= (R + Q") =0and Q' = (S +
Q)
= 1. So it is clear that when both S and R inputs are LOW, the output is retained as before the
application of inputs. (i.e. there is no state change).
e WhenS =1andR = 0: If we assume Q =1 and Q' = 0 as initial condition, then output Q after
input is applied wouldbe Q=(R+ Q) =1and Q'=(S+ Q)'=0. Assuming Q =0 and Q' =1 as
initial condition, then output Q after the input applied wouldbe Q= (R + Q') =1and Q' =(S +
Q)

= 0. So in simple words when S is HIGH and R is LOW, ouput Q is HIGH.

When S =0 and R = 1: If we assume Q = 1 and Q' = 0 as initial condition, then output Q after
input is applied would be Q= (R+ Q") =0and Q'=(S+ Q)= 1. Assuming Q=0and Q' = 1 as
initial condition, then output Q after the input applied wodd be Q = (R + Q') =0and Q' =(S +
Q'

= 1. So in simple words when S is LOW and R is HIGH, ostput Q is LOW.

When S =1 and R =1 : No matter what state Q and Q' ar in, application of 1 at input of NOR
gate always results in O at output of NOR gate, which resuls in both Q and Q' set to LOW (i.e. Q
= Q'). LOW in both the outputs basically is wrong, so this cse is invalid.

The waveform below shows the operation of NOR gates based RS Latch.

T
PSSO AR

R
Q_
Qi

It is possible to construct the RS latch using NAND gates. The drcuit and Truth table of RS latch

using NAND is shown below.
T L S R Q [+
1 1 0 D
1 1 1 1
0 1 X D
1 0 X 1
0 0 X 1

RS Latda with Clock

We have seen this circuit earlier with two possible input configurations: one with level sensitive input
and one with edge sensitive input. The circuitbelow shows the level sensitive RS latch. Control signal
"Enable” E is used to gate the input S and R te the RS Latch. When Enable E is HIGH, both the AND
gates act as buffers and thus R and S appears at the RS latch input and it functions like a normal RS
latch. When Enable E is LOW, it drives LOW to both inputs of RS latch. As we saw in previous page,
when beth inputs of a NOR latch are low, values are retained (i.e. the output does not change).

R ”‘””"""‘“\j
L] Q@

Setup aad Hold Time -For synchronous flipflops, we have special requirements for the inputs with
respect ® clock signal input. They are,

o fetup Time: Minimum time period dwing which data must be stable before the clock makes a
valid transition. For example, for a posdge triggered flip-flop, with a setup time of 2 ns, Input
Data (i.e. R and S in the case of RS #lip-flop) should be stable for at least 2 ns before clock
makes transition from O to 1.

¢ Fold Time: Minimum time period duing which data must be stable after the clock has made a
walid transition. For example, for a posedge triggered flip-flop, with a hold time of 1 ns. Input
Data (i.e. R and S in the case of RS fip-flop) should be stable for at least 1 ns after clock has
made transition from O to 1.

If data makes transition within this setup window and before the hold window, then the flip-flop output
is not prdictable, and flip-flop enters what is known as meta stable state. In this state flip-flop output
oscillates between O and 1. It takes some time for the flip-flop to settle down. The whole process is
called netastability.

The waveform below shows isput S (R is not shown), and CLK and output Q (Q' is not shown) for a SR
posedge flip-flop.

le
setup time -H H..' hold time

/RN

I/
!

F
!

v" D Latch

The RS latch seen earlier contiins ambiguous state; to eliminate this condition we can ensure that S and
R are never equal. This is dom by connecting S and R together with an inverter. Thus we have D Latch:
the same as the RS latch, withthe only difference that there is only one input, instead of two (R and S).
This input is called D or Daa input. D latch is called D transparent latch for the reasons explained
earlier. Delay flip-flop or dely latch is another name used. Below is the truth table and circuit of D
latch. In real world designs (ASIC/FPGA Designs) only D latches/Flip-Flops are used.

ERRI—

{

Ol

Below is the D latch waveformxy, which is similar to the RS latch one, but with R removed.

:

ﬁ?‘.“n &_]

v JK Latch

The ambiguois state output in the RS latch was eliminated in the D latch by joining the inputs with an
inverter. But the D latch has a single input. JK latch is similar to RS latch in that it has 2 inputs J and K
as shown figare below. The ambiguous state has been eliminated here: when both inputs are high,
output toggles. The only difference we see here is output feedback to inputs, which is not there in the RS
latch

K
1 1 0
E 1 1 1
1 0 1
0 1 0
v T Lach

When the twa inputs of JK latch are shorted, a T Latch is formed. It is called T latch as, when input is

held HIGH, eutput toggles.

1 i |

(o) [l PN BN]

O'—"—‘OO
O*—‘O'—‘o

v' JK Master Slave Flip-Flop

All sequential circuits that we have seen in the last few pages have a problem (All level sensitive
sequential circuits have this problem). Before the enable input changes state from HIGH to LOW
(assuming HIGH is ON and LOW is OFF state), if inputs changes, then another state transition occurs
for the same enable pulse. This sort of multiple transition problem is called racing.

If we make the sequential element sensitive to edges, instead of levels, we can overcome this problem,
as input is evaluated only during enable/clock edges.

Q

CLK

v

In the figure above there are two latches, the first latch on the left is called master latch and the one on
the right is called slave latch. Master latch is positively clocked and slave latch is negatively clocked.

3.3 SEQUENTIAL CIRCUITS DESIGN

We saw in the combinational circuits section how to design a combinational circuit from the given
problem. We comwert the problem into a truth table, then draw K-map for the truth table, and then
finally draw the gae level circuit for the problem. Similaly we have a flow for the sequential circuit
design. The steps ae given below. '

Draw state fiagram.

Draw the stite table (excitation table) for each outpt.
Draw the K-map for each output.

Draw the crcuit.

o State Diagram -The state diagram is constructed asing all the states of the sequential circuit in
question. Itbuilds up the relationship between varisus states and also shows how inputs affect
the states.

Let’s consiler designing the 2 bit up counter Binary counter is one which counts a binary
sequence) wing the T flip-flop.

DESIGN

o State Tabk - The state table is the same as the excitation table of a flip-flop, i.e. what inputs
need to beapplied to get the required output. In cther words this table gives the inputs required
to producethe specific outputs.

01 o Q1+ Q0+ T1 TO
0 1] 0 1 D 1
0 fi 1 D 1 1
1 k 1 1 D 1
1 1] D D 1 1

e K-map -The K-map is the same a the combinational circuits K-map. Only difference: we draw
K-map for the inputs i.e. T1 and TO in the above table. From the table we deduct that we don't
need to draw K-map for TO, as it 5 high for all the state combinations. But for T1 we need to
draw the K-map as shown below, asing SOP.

W1

S

=
T1=Q0

e Circuit- There is nothing special in drawing the circuit, it is the same as any circuit drawing
from K-map output. Below is thecircuit of 2-bit up counter using the T flip-flop.

g

HIGH] |
TFF TFF |
W 25
fas .4 ! l

34 SHIFT REGISTER

Register:
A set of n flip-flops.
£ach flip-flop stores one bit.

Two basic functions: data storage and dats movement

Shift Register:
A register that allows each of the flip-flogs to pass the stored information to its adjacent neighbor.

A shift register is a cascade of Flip flops, sharing the same clock, which has the output of any one but
tte last flip-flop connected to the "data" input of the next one in the chain, resulting in a circuit that
skifts by one position the one- dimensiona "bit array" stored in it, shifting in the data present at its input
aad shifting out the last bit in the array, when enabled to do so by a transition of the clock input. More
gnerally, a shift register may be multidimensional, such that its "data in" input and stage outputs are
thlemselves bit arrays: this is implemented simply by running several shift registers of the same bit-
length in parallel.

Types of shift register

Shift registers can have a combination of serial and parallel inputs and outputs, including serial-in,
parallel-out (SIPO) and parallel-in, serial-out (PISO) types. There are also types that have both serial
and parallel input and types with serial and parallel output. Tere are also bi-directional shift registers
which allow you to vary the direction of the shift register. Theserial input and outputs of a register can
also be connected together to create a circular shift register. One could also create multi-dimensional
shift registers, which can perform more complex computation.

v Serial-in, serial-out

Destructive readout- These are the simplest kind of shift regiter. The data string is presented at 'Data

“In', and is shifted right one stage each time 'Data Advance' is drought high. At each advance, the bit on
the far left (i.e. 'Data In') is shifted into the first flip-flop's outpat. The bit on the far right (i.e. 'Data Out')
is shifted out and lost.The data are stored after each flip-flop en the 'Q" output, so there are four storage
‘slots’ available in this arrangement, hence it is a 4-Bit Regista. To give an idea of the shifting pattern,
imagine that the register holds 0000 (so all storage slots are enpty).

As 'Data In' presents 1,1,0,1,0,0,0,0 (in that order, with a puse at 'Data Advance' each time. This is
called clocking or strobing) to the register, this is the result. The left hand column corresponds to the
left-most flip-flop's output pin, and so on.So the serial output of the entire register is 11010000 (). As
you can see if we were to continue to input data, we would gt exactly what was put in, but offset by
four 'Data Advance' cycles. This arrangement is the hardware equivalent of a queue. Also, at any time,
the whole register can be set to zero by bringing the reset ®) pins high. This arrangement performs
destructive readout -each datum is lost once it been shifted outof the right-most bit.

Non-destructive readout- Non-destructive readout can be achieved using the configuration shown

below. Another input line is added - the Read/Write Control. When this is high (i.e. write) then the shift
register behaves as normal, advancing the input data one plae for every clock cycle, and data can be
lost from the end of the register. However, when the R/W comrol is set low (i.e. read), any data shifted
out of the register at the right becomes the next input at the let, and is kept in the system. Therefore, as
long as the R/W control is set low, no data can be lost from thesystem.

Example: Basic four-bit shift register

o FFO FF1 FF FF3 Dt
Datainpul 3¢ 0 MD 3 0 """""’“D S 0 ""'""""'"""“D £ 0 ata output

CLK-— CLEAR

The opeation of the circuit is as follows,

e The register is first cleared, forcing all four outputs to zero.
e The input data is then applied sequentially to the D input of the first flip-flop on the left (FFO).

¢ During each clock pulse, one bit is transmitted from left to right. Assume a data word to be 1001.
¢ The least significant bit of the data has to be shifted through the register from FFO to FF3.

In order to get the data out of the register, they must be shifted out serially. This can be done
destrucively or non-destructively. For destructive readout, the original data is lost and at the end of the
read cyele, all flip-flops are reset to zero.

FFO

FF1

2

FF3

P

D

D

D

1001

The da is loaded to the register when the control line is HIGH (ie WRITE). The data can be shifted out

of the egister when the control line is LOW (ie READ).

Clear FFO FF1 2 FF3

1001 0 D D 0
Write

FFO FF1 FE2 FE3

] D D 1 000
Read

¥FO FF1 FF2 FF3

] D D 1 1001

¥ Serial-in, parallel-out

This canfiguration allows conversion from serial to parallel format. Data are input secrially, as described
in the SISO section above. Once the data has been input, it may be either read off at each output
simultameously, or it can be shifted out and replaced.

Qﬁé Qi Qﬁ @fg
rout da | FFO [FF1 l FF2 l FF3]
§ i RET (iﬁ JEY "
wios gb—+—p" gt—t—D" g——1D" ¢

LLK

CLEAR

In the table below, we can see how the four-bit binary number 1001 is shifted to the Q outputs of the
register.

Clear FFO 1 FE2 FE3
1001 D D D D
- 1 U D D
- D 1 D D
- D D 1 D
- 1 D D 1

v" Parallel-in, serial-out
This configuration has the data input on lines D1 through D4 in parallel format. To write the data to the
register, the Write/Shift control line must be held LOW. To shift the data, the W/S control line is
brought HIGH and the registers are clocked. The arrangement now acts as a SISO shift register, with D1
as the Data Input. However, as long as the number of clock cycles is not more than the length of the
data-string, the Data Output, Q, will be the parallel data read off in order.

Example: A four-bit parallel in - serial out shift register is shown below. The circuit uses D flip -flops
and NAND gates for entering data (ie writing) to the register.

b 1 iR wy
WEI~E/
SHET
il —

—y

=

»
=]

P Dutpud dals

CLEAR

DO, D1, D2 and D3 are the parallel inputs, where DO is the most significant bit and D3 is the least
significant bit. To write data in, the mode control line is taken to LOW and the data is clocked in. The
data

can be shifted when the mode control line is HIGH as SHIFT is active high. The register performs right
shift operation on the application of a clock pulse, as shown in the table below.

v Pardlel-in, parallel-out

This configwation allows conversion from parallel to parallel format. Data input are in parallel, as
described in the PISO section above. Once the data has been input, it may be either read off at each
output simukaneously, or it can be shifted out and replaced.

Q0 Q1 Q2 Q3
Clear D D D D
Wrie 1 D D 1
Shik 1 D D 1
- 1 1 D) 1
- 1 1 1 D D1
1 1 1 1 001
1 1 1 1 1001
Dg B} 82 91':
HEF g SEF aer
—DT @ HPT 2 YD g YD o
—> —> —> —>

CLEAR T

CLK

Uy £ Ciy By

The D's are e parallel inputs and the Q's are the parallel outputs. Once the register is clocked, all the
data at the Dinputs appear at the corresponding Q outputs simultaneously

v Universal shift register

A register capable of shifting in one direction only is a unidirectional shift register .One that can shift

in both directions is a bidirectional shift register. If the register has both shifts and parallel-loads, it is
referred as wmiversal shift register. The circuit consists of four D flip-flops and four multiplexers. The

four multiplexers have two common selection inputs s1 and so.

Figure: Block diagram of 4-bit universal shift register.

Paralicl owputs
Az A
Clewr e
G f2
CLE
ey
|
; %tis;l Sevial
nput for et for
shlt-eight mr:;:«ieﬂ
Iy 2 73 tu
Parallel inputs

Mode control IRegister
js1 50 Operation
0 D [No change
0 1 Shift right
0 D Shift left
1 1 Parallel load

Applications of shift registers

Shift registers can be found in many applications. Here is a list of a
few. 1. To produce time delay

The serial in -serial out shift register can be used as a time delay device. The amount of delay can be
controlled by:

1. The number of stages in the register

2. The clock frequency

3. To convert serial data to parallel data
4. To simplify combinational logic.

3.5 COUNTERS

In digital logic and computing, a counter is a device which stores (and sometimes displays) the
number of times a particular event or process has occurred, often in relationship to a clock signal. In
practice, there are two types of counters:

¢ up counters which increase (increment) in value
o down counters which decrease (decrement) in value

Counters Types

In electronics, counters can be implemented quite easily using register-type circuits such as the flip-
flop, and a wide variety of designs exist,

Asynchronous (ripple) counters

Synchronous counters

Johnson counters

Decade counters

Up-Down counters

Ring counters

YA NN NN

Each is useful for different applications. Usually, counter circuits are digital in nature, and count in
binary, or sometimes binary coded decimal. Many types of counter circuit are available as digital
building blocks, for example a number of chips in the 4000 series implement different counters.

v Asynchronous (ripple) counters

The simplest counter circuit is a single D-type flip flop, with its D (data) input fed from its own
inverted output. This circuit can store one bit, and hence can count from zero to one before it overflows
(starts over from 0). This counter will increment once for every clock cycle and takes two clock cycles
to overflow, so every cycle it will alternate between a transition from O to 1 and a transition from 1 to 0.
Notice that this creates a new clock with a 50% duty cycle at exactly half the frequency of the input
clock. If this output is then used as the clock signal for a similarly arranged D flip flop (remembering to
invert the output to the input), you will get another 1 bit counter that counts half as fast. Putting them
together yields a two bit counter:

¥" Synchronous counters

Where a stable count value is important across several bits, which is the case in most counter systems,
synchronous counters are used. These also use flip-flops, either the D-type or the more complex J-K
type, but here, each stage is clocked simultaneously by a common clock signal. Logic gates between
each stage of the circuit control data flow from stage to stage so that the desired count behavior is
realized. Synchronous counters can be designed to count up or down, or both according to a direction
input, and may be presetable via a set of parallel "jam" inputs. Most types of hardware-based counter
are of this type.

A simple way of implementing the logic for each bit of an ascending counter (which is what is shown in
the image to the right) is for each bit to toggle when all of the less significant bits are at a logic high
state. For example, bit 1 toggles when bit O is logic high; bit 2 toggles when both bit 1 and bit O are logic
high; bit 3 toggles when bit 2, bit 1 and bit O are all high; and so on.

v Johnson counters

A Jahnson counter is a special case of shift register, where the output from the last stage is inverted and
fedback as input to the first stage. A pattern of bits equal in length to the shift register thus circulates

indefinitely. These counters are sometimes called "walking ring" counters, and find specialist
apgications, including those similar to the decade counter, digital to analogue conversion, etc.

FFD FF1 FF: FF’3
Gy e Gy P ¢ o
> >
r e @ @
] CLEAR
Clock Pulse | 03 [Q2 [Q1] Q8

0 010101014
1 0101011
2 DJo 111
3 'BERREEN;
4 IR
5 Jilililo
b 11110180
7 T10707T0]

The apparent disadvantage of this counter is that the maximum available states are not fully utilized.
Only eight of the sixteen states are being used.

v Decade counters

Detade counters are a kind of counter that counts in tens rather than having a binary representation.
Each output will go high in turn, starting over after ten outputs have occurred. This type of circuit finds
apglications in multiplexers and demultiplexers, or wherever a scanning type of behaviour is useful.
Similar counters with different numbers of outputs are also common.

v' Up-Down Counters

It isa combination of up counter and down counter, counting in straight binary sequence. There is an up-
down selector. If this value is kept high, counter increments binary value and if the value is low, then

counter starts decrementing the count. The Down counters ar made by using the complemented
output to act as the clock for the next flip-flop in the case of Asynchronous counters. An Up counter
is constructed by linking the Q out of the J-K Flip flop and puttng it into a Negative Edge Triggered
Clock input. A Down Counter is constructed by taking the Q output and putting it into a Positive
Edge Triggered input

v" Ring Counters

A ring counter is basically a circulating shift register in whid the output of the most significant
stage is fed back to the input of the least significant stage. The following is a 4-bit ring counter
constructed from D flip-flops. The output of each stage is shified into the next stage on the positive
edge of a clock pulse. If the CLEAR signal is high, all the flp -flops except the first one FFO are
reset to 0. FFO is preset to 1 instead.

FED” |G I 2l L8
> >
w2 @
CLK
] CLEAR

Since the count sequence has 4 distinct states, the counter ca be considered as a mod-4 counter.
Only 4 of the maximum 16 states are used, making ring courters very inefficient in terms of state
usage. But the major advantage of a ring counter over a binary eounter is that it is self-decoding. No
extra decoding circuit is needed to determine what state the counter is in.

[Clock Pulse | 03

€I} P o] 00
—=f T 0 OO0

Applications of counters:

* Watches
* Clocks
* Alarms

* Web browser refresh

UNIT IV

Multivibrators Classification of multisibrators — Astable, monostable, bistable
multivibrators using operational amgplifier. D/A and A/D converters: Binary
weighted register D/A converter using Op-Amp - R-2R ladder D/A converter
with Op-Amp - Analog to Digital converters (ADC) — their characteristics.

Introduction

Systems for generating and processing pulses make extensive use of multivibrators; these are
circuits which have two states. There are thge types of multivibrator: astable (free-running),
monostable (one-shot), and bistable (flip-flop). There are many ways of implementing each type,
and many variants.

Note: All the circuits in this document operate ¥y using positive feedback to drive the op-amp into
saturation, it is therefore not the case that the two inputs of the op-amp can be assumed to be at the
same potential. See the comments on Worksheet 10 regarding op-amps vs comparators.

Astable Multivibrator

The two states of circuit are only stable for a kmited time and the circuit switches between them
with the output (node 6) alternating between paitive and negative saturation values £VS. Analysis
of this circuit starts with the assumption that at time ¢ = O the output has just switched to state 1 (V6

=+VS), and the transition would have occurred ¥hen

R2
R1+R2

V2 = V6 (state 0) where V6 (state 0)= VS.

In state 1, the voltage across the capacitor increases as a result of current flowing through R3 from

C1

i

1

3

R1,210K

R1,R2 1KO

R3 2K2 R2 R3 2K2 R2
R4 1KO

C1 Oul Cl Oul
C2 10n

Astable Multivibrator Monostable Multivibrator

its initial value V2(t=0) =- Vs R2/(R1+R2)

until V2(t=0)=V3(state 1) = Vs R2/(R1+R2)

when the outpat from the op-amp switches back tostate 0. Then the capacitor discharges until, at

time = 0 , the output switches from state O back te state 1, and the whole sequence restarts. t is
straightforward to show that

to= CiR3In(142R,/R})

Monostable Multivibrator

A diode conmcted in parallel with the timing capacitor of the astable circuit will prevent the
inverting input of the amplifier from going positive. The (permanently) stable state of

this circutt has
V6=Vs with node 2 clamped to 4.6 V by diode D 1, and node 3 at

Vi(state 1) =66 V +

Vs Rao/(Rs + Ry)

A sufficiently large pulse at
node 3, generaed by a negative-going edge at the trigger input (node 1), will switch the circuit into
its temporary date (6= S) and, after a delay

0=CIR3In 1+ Bg—

Rl

Circuit; Bistable Multivibrator

while C1 charges through R3, the circuit switches dack to its stable state.

Bistable Multivibrator

The above circuit shows an op-amp configured as a bistable multivibrator. The two stable states

are V6 = £VSS and the circuit is switched betweenthese by a pulse of appropriate polarity applied
to the inverting terminal (node 2) of the op-amp.

D/A and A/D Converters

Introduction

The outputs from sensors and communiations receivers are analogue signals that have
continuously varying amplitudes. In many systens it is convenient to record and/or process these
signals within a digital circuit, which may be within a programmable device such as a
microcontroller, microprocessor or a computer. h a digital circuit the signal will be represented
as a list of binary numbers, with each number representing the amplitude of the signal at a

specific time.

Decimal and Binary Numbers

Possibly because we have ten fingers we have developed the decimal number system
based upon 10 and powers of 10. Although it is suitable for use by people the decimal number
system isn’t particularly suitable for use by other physical systems. In particular the digital logic
circuits are based upon devices that either condua or don’t conduct. This means that digital logic
circuits naturally have two states. This means that in digital logic circuits numbers have to be
represented using only two symbols, usually writen as O and 1. This means that digital circuits

use binary numbers.

A good starting point for understanding binary numbers is the decimal numbers that we

use everyday. We have all used this decimal number system for so long and so often that we

probably don’t think about what numbers

this decimal sysem actually represent. In this number system each position represents the
multiples of the power of 10 associated with that position that form part of the number. To
represent these mmbers we need 10 symbols (0,1,2,3,4,5,6,7,8,9) to represent the number of
multiples. The dezimal 1206 then represents 1x10*+2x10%+0x10'+6x10° (which is one thousand,

two hundred and six).

The digitd circuits used in programmable devices have only two states and by convention
these two states e denoted using the symbols 0 and 1. With only two states/symbols available
numbers have to be represented as powers of 2 rather than powers of 10. As in the decimal system
counting in binary starts with O and this is followed by 1. In the decimal system the next number
is representing by the symbol 2. However in binary there are only two symbols and so the next
number has to be represented by increasing the power of 2 and so when counting in binary 1 is
followed by 10 {following the example of decimal this is equivalent to the decimal number
1x2'4+0x2°%). Mor generally as in decimal numbers any binary number can be understood using

the associated powers of 2. For example
1010 =1 x 2°+0 x 2*+1 x 2'+0 x 2°

Converting each of the powers of 2 to its decimal equivalent means that

Decimal equivaleat of 1010 =1 x 2°+0 x 2241 x 2'+0x 2°= 1 x 8+0 x
4+1x240x 1 =10

Ezh symbol in a binary number is known as a bit and a binary number is therefore a list or string
of bits. The first bit in a string is known as the most-significant bit and the last one is known as
the least significant bit. One convention is to label each bit with a subscript corresponding to the
eqivalent power of 2, so that for example the least significant bit (which represents the multiple
of2° within a binary number) is by. In this convention a four bit number is therefore bs by by by

and the equivalent number is

Decimal = b3 x 23+ by x 2%+ b; x 2l bo x 2°

Oase limitation of this simple representation is that an n-bit binary number can only represent 2 "

diferent values.

Data Converters

Canversion from an analegue signal to a digital number is performed by an analogue-to-
digital converter (ADC). There are several different types of ADCs, some of which contain a
digital-to-analogue converter (DAC) that converts a digital number to the equivalent
amlogue signal. When taken together with their independent role in creating analogue output
signals to drive parts such as heaters and motors, this makes DACs a critical part of many

systems.

Itis therefore important to understand the operation of both DACs and ADCs.

Specification of D/A converters (DACs)
FS .
TFS/8 v\
3FS/4 s

SES/8 i

PR O ~m R b

FS8/72 g
3FS/8 Az

FS/4 e

~Ew e

ES/8 A

000 001 010 011 100 161 110 111
Digital Inputs
The ideal response of a 3-bit DAC, showing the analogue output voltage as a fraction
of the full scale output FS. Each bar represents the output for a particular input and the

dashed line shows the line connecting the ideal outputs.

A digital to analogue converter (DAC) converters a digital input represented as a binary
number to an analogue voltage (or current) that is proportional to the value of this input.
The ideal relationship between the analogue output and digital input for a 3-bit converter is

shown in Figure (34)".

" In this diagram 3 bits have been shown for clarity. However, in real instrumentation systems
DACs with 8, 10, 12 and 14 bits are often used.

D/A Gonverter Architectures (DAC Architectures)

The Samming Amplifier

The bsis operation required to create a DAC is the ability to add inputs that will eventually
correspond to the contributions of the various bits of the digital input. In the voltage domain,
that is if the input signals are voltages, addition can be achieved using the inverting summing

amplifer shown in Figure (35).

R,

v

v

An inverting summing amplifier

To understand how this circuit operates assume that the op-amp is ideal. Since the op-amp is

. P :) N 0 .. .
ideal ¥~ = V+, but, in this circuit V™ =0 and so the current flowing into this node

from the two inputs is

Vi W
[= — 3 2
in R, + R,

Since o current flows into the inverting input of the ideal op-amp all this current must

flow amund the feedback loop through resistor Rf b

This will only happen when tke op-amp output voltage is

i;ut = —Iin Rf b

which becomes

4 —
out —

_VI Ry B Va Ry
R, R»

Now if we assume that

Rpy = Ry = 2R,
then

it = —(2Vi + V2)

This weighted combination of inputs is the principle behind the operation of

many digital-to-analogue cenverters.

D/A Converfers

The simplest way of convert a digital input word into a corresponding analogue voltage is to use

an op-amp asa summing amplifier with a weighted resistor ~“ladder”, as shown in Figure (36).

Analogue switches
ele T+
§; Ry=R
Rf
Sle~—t+——1—1 —
5; B=R

VREF

A 4-bit DAC based upon summisg the current through weighted

resistors.
At the start o the conversion process, a 4-bit inpat code, BG _B3 is applied to control the
corresponding switches ‘50 - 33 .Each switck Sn connects the resistor R, to the voltage

7
source v REF when the corresponding

bit By is high. In contrast when B, is low the resistor R, is grounded. The other end of
each resistor is connected to the ssmming junction of the op-amp. For a four bit converter in
which the resistors are in the ratio
8:4:2:1, as shown in Figure (36), the total current flowing onto the inverting input of the op-
amp is
E'RFF(B By + B + Bﬁ)
QR 4R 8R

this current then flows through Ry to generate the output voltage and hence

By, By, B
= —— Vger 33+——+—+———
? R (4 8"
The output voltage Vo therefore ®presents a weighted sum of the input bits. If R =2Rp then
the following relationship betweea digital inputs and the

analogue output voltage will be obtained:

Digital input v, I
0000 0
0001 ~1/16 Vrer
0010 ~2/16 Vaer |
1110 —14/16 Vggr
1111 —15/16 Vger

The circuit therdore achieves the desired functions. However, there are two main

problems with thi circuit:

(i) the output voltage from the reference voltage source must stay constant even

when its ostput current is changing, i.e. its source resistance must be zero.

(ii) the resistor values must be very accurate and in the correct ratio to one another.
Although this requirement can be achieved in an integrated circuit, the range of
values reqaired for, say, a 12-bit D/A converter (for example, 10 kQ to 20.48 MQ)

makes it impractical.

For these reasons, a different type of resistor network is normally used, the “R-2R ladder”,
which can be consgructed, as its name indicates, out of two values of resistors. This network,
shown at the top of Figure (38), therefore avoids the need to create different resistance

values.

US| 1 I tIhe t»;.rf)qparallel tesistors share the current I
Q Q =iia

— I
Ea D
X K R R

2Rm parallel with 2R is equivalent to R I=1 =21,

The analysis of an R2R ladder network

The trick to analysing the R-2R ladder network is to start from its right-hand end: As
thown in Figure (37) at this end of fie system there are two 2R resistors acting in parallel
which combine to form an effectiveresistance R. This effective resistance then appears in
gries with another resistance R o form a resistance of 2R. However, this effective
resistance of 2R is in parallel wih another resistance 2R. Thus at each stage of the

malysis of the ladder network, all ekments to the right of a particular node are equivalent

® a resistance of 2R,

A S

Ax R-2R ladder 4-bit D/A converter.

The analysis of the ladder network means that for the network in Figure (38) the

incoming current splts into two at each node and thus

Iy = 2L} = 41,

and
13 — ‘/}:gEF/QR = 2[2 — 4[1 - 8[(3
As with the previous cicuit, each bit B, of the digital code controls a switch

Sﬂ. When Bn = 1, the switch Sn directs current 1 n towards the summing junction;
otherwise the current flows straight down to ground. The DAC output voltage is therefore

determined by a current that is proportional to the weighted sum of the input bits as required.

The other advantage of this architecture is that the inverting input of the op-amp is a
virtual earth and henee one end of each the 2R resistors is always connected to ‘earth’. This

means that the curreat flowing through each branch of the ladder network is independent

of the switch

conditiens and hence the digital input. The significance of this is that it means that the
total current supplied by the voltage source is constant and the circuit performance is

indeperdent of the output impedance of thevoltage source.

One potentially useful modification to this basic architecture is to use a variable voltage source,
possibly formed by a second DAC, to createa variable reference voltage. The analogue output
signal # then proportional to the product of &ie variable reference voltage and the input binary

number; this type of device is usually known & a multiplying DAC or MDAC.

A/D converters (ADCs)

Analogue to Digital (A/D) conversion is the process whereby an analogue signal is
converted into a corresponding binary number, the digital output. The ideal relationship
between the analogue input and the digital output for a 3-bit A/D converter is shown in Figure

(39). The input analogue values are quantised by dividing the continuous analogue input

range into 8 discrete steps or code ranges.

M§wm-mhnu

“~ g e o

111

110

101

160

011

G610

00l

000

1 i 1 i ¥ i 1

¢ 18 14 %33 12 58 34 78

Input Veltage {fraction of maximum input]

The ideal response of a 3-bit ADC.

Since the ADC is unable to distinguish among different values in the same code range the

output can have an error as large as 1/2LSB. This quantisation error is an intrinsic

limitation of representing a continuous input by finite set of output numbers. The first approach
to minimising the effects of quantisation errors is to ensure that the maximum expected
amplitude of the input signal matches the inpet range of the ADC. This usually means that
amplifiers are needed between the signal source and the ADC. By using an active low-pass filter

this amplification function can be performed by the anti-aliasing filter.

The other method of reducing quantisation errce is to increase the number of output bits. For
example 2'2 4096 and hence a 12-bit A/D converter can resolve a signal to 1 part in 4096, or

0.024% of the maximum input.

The two types of A/D converter that we will discuss are: Parallel
converters
Successive-Approximation converters

The choice between the types of converter is made on the grounds of the cost, resolution and

speed required for a particular application.

Parallel ADCs

L 4-bit
Binary
L Outpuf

= Comparators

A schematic diagram of a flash A/D converter.

Parallel encoding (sometimes known as ““flash'' encoding) is the fastest (but also the most

expensive) method of A/D conversion. In this architecture, shown in Figure (40) an n-bit
conversion is achieved by simultaneously comparing the analogue input with 2" — 1

reference levels. These reference levels are usually generated by a chain of identical resistors

connected in series. Each of these references is compared to the input by

a circuit known 1s a comparator. This is a circuit with a very high differential gain so
that the output smturates to a maximum value whea the voltage on the non-inverting
input is higher than the voltage on the inverting input. Otherwise the comparator output

saturates to a mizimum value.

A comparator army can therefore be designed so that the outputs from all comparators whose
reference voltage is below the common input saturate te a maximum output value. The output of
all the other comparators will saturate at the minimum value whilst all those with references

above the input have the minimum output voltage.

The maximum ostput voltage can then be interpreted as a logical 1, whilst any low output
is interpreted aslogical 0 so that the 2" — 1 outpus represent the analogue input value
by the position « the transition between ones and zeros. The position of the transition
between the ones and the zeros moves as the amilogue input voltage changes. This
representation istherefore often referred to as a thermometer code. The final stage of the
conversion process is to use a digital circuit, known & an encoder, to convert this unusual

representation of fie input to a more conventional binarynumber.

One advantage o the flash converter is that it is cenceptually simple. However, its main
advantage is the speed at which conversion can be achitved. Since the input is compared to all
the reference vales simultaneously the time required to perform a conversion, a parameter

known as the consersion time, is simply the response time for the comparators and

the encoder. This time is significantly shorter than the fastest alternative architectures. The flash
converter is therefore the fastest type of converter, the disadvantage of the flash converter
is the large number of comparators and resistors required. This means that these
converters will be expensive. Furthermore, as the number of comparators increases the voltage
difference between the reference inputs of two adjacent comparators reduces and the errors
between reference levels caused by variations between the values of individual resistors must
therefore be reduced. Since these variations are caused by slight differences in the sizes of
different resistors any reduction in errors will only be achieved by using larger area resistors.

Unfortunately, this simply further increases the cost of the final component.

Overall, flash converters are therefore fast, but, expensive.

Successive-Approximation ADCs

The successive-appratimation converter shown in Figure (41) operates by approximating
the analogue input signal with a binary code. This binary code is successively revising by
changing each bit in the code until the best approximation is achieved. At each step in the
approximation, the pmsent estimate of the binary value corresponding to the analogue input
signal is saved in the successive approximation register. The contents of this register are
converted to an analogae signal by a DAC so that a single comparator can determine whether the

approximation is larger or smaller than the input signal.

As shown at the bottom of Figure (41) the first approximation sets the most significant bit, the
MSB, of the successive approximation register and resets all the other bits (i.e. makes them zero).
If the DAC output (which is therefore equal, at this point, to half full-scale) is smaller than the
analogue input, the M$B is left on; if the DAC output is too large, then the MSB is turned off. In
the next clock cycle, the next most significant bit is set (i.e."at the DAC output is now equal to
either 3/4 or 1/4 of full-scale, depending on whether the most significant bit was left on or not)
and this new approximation is compared with the analogue input. Each successive bit is similarly
tested. After the least significant bit has been tested, the conversion is complete and the output

register contains the biaary code.

DA Comerter Reference
Regiser
Tnput Prograpmes Clock
Comparator
Input |-~ - "Tfeommoooo oo

Cutput fom D/A

Bit Time

A schematic diagram of the architectmre of a successive-approximation ADC and the

nternally generated analogue signal (sdid line) which is compared to the input (dashed

ne).

If the accuracy of conversion is to equal the resolution of the converter, the input signal must

remain constant within the analogue valut of 1/2 LSB during the conversion time

To quantify the limitation this places on the mput signals that can be converted accurately assume

that the input signal is a sinusoidal wave of frequency f and peak-to-peak amplitude VrEF i.e.

Vin = iVrer sin 27 ft

For an n-bit converter, 1/2 LSB (a simple estimate of the quantisation error) is equivalent to a
voltage of

3 Vrer /2"
The rate of change of the input signal is:

dVin
—C%— = 7 f Vpgr cos 27 ft

The maximum rate of change occurs when the input is zero and is given by:

[dV;n/dt }Ww = 7 f Veaer
If the conversion time is tc, then we must have:

Vrer

1
‘/E e . . » tc < -
i d ﬂ/ dt Lmz: - 2 273,

this can be re-written as:

| VrEF
Wf")}?EF .t < gn+l

which is equivalent to a maximum input frequency of

. 1
fmaw - W
For an 8-bit ADC with conversion time of 10 ps, this gives a maximum frequency of 62 Hz! This
is obviously much too low for most applications. The problem that limits the maximum frequency
that can be converted arises from the changes in the input signal during the conversion process.
These changes can be avoided by using a sample-and-hold circuit just before the ADC input. As
its name suggests this type of circuit samples the signal and then holds the sampled value until

the conversion process is completed and a new sample is acquired.

H

- \) +/""‘"‘ Yout
-~ Analogue :|: L

A sample-and-hold circuit.

The basic sample-and-hold circuit consists of an analogue switch and a storage capacitor, as
in the centre of Figure (42). The analogue switch is controlled by a signal, labelled Hold, which
allows the input signal to pass through to the capacitor during the aperture time and disconnects

it during the hold time. The value of the input signal Yin is therefore stored on the capacitor
during the hold time. The choice of a value for this capacitor is a compromise between the need
to minimise voltage changes caused by leakage currents during the hold interval (i.e. make C as
large as possible) and the need to follow high-frequency input signals without them being low-
pass filtered by the combination of the capacitor and the finite on-resistance of the switch (i.e.
make C as small as possible). In order to reduce leakage currents during the hold time, to
prevent voltage changes, the voltage on the capacitor is sensed using an op-amp configured
as a voltage follower. Similarly, the speed of the circuit is increased by detecting the input

signal via a second op-amp acting as unity gain buffer that

reduces the source impedance driving the capacitor during the aperture time.

With a sample-and-hold circuit on the input to a successive-approximation A/D converter the

maximum operating frequency of the converter is now given by

1/7t, 2"

where ta is the aperture time which can be just a few tens of ns; hence input signals whose
frequency is several tens of kHz can now be converted to binary format with this type of A/D

converter.

Summary

The outputs from sensors and communications receivers are analogue signals that have
continuously varying amplitudes. In many systems it is convenient to record and/or process these
signals within a digital circuit, which may be a microcontroller, microprocessor or a computer. In
a digital circuit the signal will be represented as a list of binary numbers, with each number

representing the amplitude of the signal at a specific time.

In the digital ciruits used in microcontrollers, microprocessors and computers numbers are
represented as a series of bits. Each bit can only have a value of either zero or one which means

that the number isin base 2.

Conversion from an analogue signal to a digital number is performed by an analogue-to-
digital converter {/ADC). A digital to analogue converter (DAC) converters a digital input
represented as a binary number to an analogue voltage (or current) that is proportional to the

value of this input

A DAC can be created using an R-2R ladder and an op-amp.

Analogue to Digial (A/D) conversion (ADC) is the process whereby an analogue signal is
converted into a corresponding binary number, the digital output. The input analogue
values are quantited by dividing the continuous analogue input range into 2~ discrete steps or
code ranges. Thisrounding error gives rise to quantisation noise, which can be estimated using

its maximum value V., /2N

In a fash ADC the input voltage is compared in parallel with many different reference

voltages. The resulting system is conceptually simple, fast but expensive.

A suceessive-approximation converter operates by approximating the analogue input signal with
a binary code. This binary code is successively revising by changing each bit in the code until the
best gproximation is achieved. The result is only valid if the input remains approximately
constaat during the conversion time. This means that the maximum input frequency has to be

very small or a sample and hold circuit is used to sample the input voltage before it is converted.

UNIT V

Semiconductor Memories memory cell unit - ROM, RAM - Their classifications - ROM,
PROM, EPROM, EEPROM, RAM,Static RAM, dynamic RAM, Memory read and

memory write operations — Flash memory - Charge coupled Device (CCD).

Read only memory devices are a special case of memory where, in norma system operation, the memory
is read but not changed. Read only memories are non-volatile, that is, stored informa-tion is retained

when the power is removed. The main read only memory devices are listed below:

ROM (Mask Programmable ROM—also called “MROMs”)

EPROM (UV Erasable Programmable ROM)

OTP {One Time Programmable EPROM)

EEPROM (Electrically Erasable and Programmable ROM)

Flash Memory - This device is covered in Section 10.

HOW THE DEVICE WORKS

The rzad only memory cell usually
consigs of a single transistor (ROM
and FPROM cells consist of one
transitor, EEPROM cells consist of
one, wne-and-a-half, or two transis-
tors). The threshold voltage of the
transigor determines whether it is a
“1” ar “0.” During the read cycle, a
voltage is placed on the gate of the
cell. Bepending on the programmed
threskold voltage, the transistor will or
will mot drive a current. The sense
amplier will transform this current, or
lack dfcurrent, into a “1” or “0.” Figure
9-1 skows the basic principle of how a
ReadTnly Memory works.

Column

Row

a [H

7

Selected

Sense Amplifier

Current Delector

To Output Buffer

Figure Read Only Memory Schematic

MASK PROGRAMMABLE ROMs

Mask programmable read-only memories (ROMs) are the least expensive type of solid state memory.
They are primarily used for storirg video game software and fixed data for electronic equipment, such as
fonts for laser printers, dictiorary data in word processors, and sound data in electronic musical

instruments.

ROM programming is performedduring IC fabrication. Several process methods can be used to program a
ROM. These include

e Metal contact to connec a transistor to the bit line.

¢ Channel implant to creae either an enhancement-mode transistor or a depletion-mode
transistor.

e Thin or thick gate oxide,which creates either a standard transistor or a high threshold

transistor, respectively.

The choice of these is a trade-offbetween process complexity, chip size, and manufacturing cycle time. A
ROM programmed at the metd contact level will have the shortest manufacturing cycle time, as

metallization is one of the last precess steps. However, the size of the cell will be larger.

Figure 2 shows a ROM array progemmed by channel implant. The transistor cell will have either a normal

threshold (enhancement-mode device) or a very high threshold (higher than VCC to assure the transistor

will always be off). The cell arrag architecture is NOR. The different types of ROM architectures (NOR,
NAND, etc.) are detailed in the flah memory section (Section 10) as they use the same principle.

Figure 3 shews an array of storage cells (NAND architeiture). This array consists of single tran-sistors
noted as davices 1 through 8 and 11 through 18 that § programmed with either a normal threshold

{enhancemmt-mode device) or a negative threshold (dedetion-mode device).

ROM Cell Ske and Die Size

The cell sim for the ROM is potentially the smallest & any type oEmemory device, as it is a single

transistor. £typical 8Mbit ROM would have a cell size ofabout 4.5um for a 0.7um feature size process,
and a chip.xeéa of about 76mm2. An announced 64MbitROM, manufactured with a 0.6um feature size,

hasa1.23m cellona200mm die.

The ROM pocess is the simplest of all memory processss, usually requiring only one layer of polysilicon
and one laer of metal. There are no special film demsition or etch requirements, so yields are the

highest among all the equivalent-density memory chips

Ground Diffusion
Selective
implant
To Raise
vT

ROW 1 (Polysilicon) ROW 1

Drain

T4 - T3

Contacts:

Shared By
rel

2 Bits

Drain Diffusion

ROW 2

ROW 2 (Polysilic?'nl’/_,._—v

i

Metal Columns

Figure #OM Programmed by Channel Implant

1
2

WORD 2112 |L I[12
3

WORD 313 "- l[3
4

WORD a4 I |["
5

WORD 815 “- | [®

[|
WORD 6/16 “- | lw
7
'WORD 7/17 17
L«
>
8 .
> I
WORD &/18 18
> L |
>
|r k: a
CONTROL LINE> | 18
> L .
> 10 |
SELECT LINE >>»—— 20
> by
~, BIT LINE
Sourc®: ICE, Memory 1997 ® b > 19050

Figure . Memory Cell Schematic

Hultimedia Card

i 1996, Siemens announced the introductionof a new solid-state memory chip technology that enables
he creation of a multimedia card that is sized37mm x 45mm x 1.4mm, or roughly 40 per-cent the size of
zcredit card. It is offered with either 16Mbit @ 64Mbit of ROM.

PROM

EPROM (UV Erasable Programmable Read Ody Memory) is a special type of ROM that is pro-grammed
#lectrically and yet is erasable under UV light.

Fhe EPROM device is programmed by forcingan electrical charge on a small piece of polysilicon material
fcalled the floating gate) located in the memary cell. When this charge is present on this gate, the cell is
“programmed,” usually a logic “0,” and whenthis charge is not present, it is a logic “1.” Figure 9-4 shows

the cell used in a typical EPROM. The floatinggate is where the electrical charge is stored.

First-Level
Polysiticon +VG gecond-Level
{Floating) Polysilicon

Gate Oxide
._.’
Field Oxide
P- Substrate
ource: Intel/ICE, *"Memory 1997° 1847

Figure . Double-Poly Sructure {EPROM/Flash Memory Cell)

Prior to being programmed, an EPROM has to be erased. To erase the EPROM, it is exposed to an
ultraviolet light for appraximately 20 minutes through a quartz window in its ceramic package. After
erasure, new informatior can be programmed to the EPROM. After writing the data to the EPROM, an

opaque label has to be plxced over the quartz window to prevent accidental erasure.

Programming is accompished through a phenomenon called hot electron injection. High voltages are
applied to the select gateand drain connections of the cell transistor. The select gate of the transistor is
pulsed “on” causing a lagge drain current to flow. The large bias voltage on the gate connection attracts

electrons that penetrate fie thin gate oxide and are stored on the fioating gate.

EPROM#Hoating Gate Transistor Characteristic Theory

The follawing explanation of EPROM floating gate transistor characteristic theory also applies to EEPROM
and flask devices. Figures 9-5 (a) and {b) show the cross section of a conventional MOS transistor and a
floating gate transistor, respectively. The upper gate in Figure 9-5 (b) is the con-trol gate and the fower
gate, completely isolated within the gate oxide, is the floating gate.

Control

Gate Floating

Control T
\ Gate

Gate G

(a) Conventional MOS (b) Floating-Gate MOS

Figure 9-5. Cross Section of a Conventional MOS Transistor and a Floating-Gate MOS Transistor

CFG and CFS are the capacitances between the floating gate and the control gate and substrate,

respectively. VG and VF are the voltages of the control gate and the floating gate, respectively. -QF is the
charge in the floating gate. {As electrons have a negative charge, a negative sign was added). In an

equilibrium state, the sum of the charges equals zero.

(Vo= Vi) Cro+(0— Ve) Crs— Qe =0

C Q

FG £S

\CFG + Cpsj

VT is the threshold voltage of the conventional transistor, and VTG is the threshold voltage of the

floating gate transistor.

V =
TG N
| M1 C
\ Ceg + Cpsj ot Crs
Q
F
V =V -
€6 0 -
Co
C
(%
Where V1o =| I and Cg

\CFG + C|:5)

=Cre + Crs

The threshold voltage of the floating gate transistor (VTCG) will be VTQ (around 1V) plus a term
depending on the charge trapped in the floating gate. If no electrons are in the floating gate, then VTCG

= VTQ (around 1V). If electrons have been trapped in the floating gate, then VTCG = VTO -QF/Cq

{around 8V for a 5V part). This voltage is process and design dependent. Figure 9-6 shows the threshold
voltage shift of an EPROM cell before and after programming.

Programmed State

-QF Select Gate

To Sense To CcG Voltage

Threshold

Source: ICE, "Memory 1997* 17548A

Figure; Electrical Characteristics of an EPROM

The programming (write cycle) of an EPROM takes several humdred milliseconds. Usually a byte—eight
bits—is addressed with each write cycle. The read time is comgarable to that of fast ROMs and DRAMs
(i.e., several tens of nanoseconds). In those applications where grograms are stored in EPROMs, the CPU

can run at normal speeds.

Field programmability is the EPROM’s main advantage over the ROM. It allows the user to buy mass-
produced devices and program each device for a specific need. Fhis characteristic also makes the EPROM
ideal for small-volume applications, as the devices are usually pogrammed in very small quantities. Also,
the systems supplier can program any last minute upgrades to tte program just before shipment. EPROM
cells may be configured in the NAND structure shown prevbusly, or, more commonly, in the NOR

configuration shown in Figure 9-7.

WORD WORD WORD WORD

L HD L
a‘[: ~uq L =

<BIT2

Select Gate

\

"

Floating Gate

Figure . NOR EPROM Configur#tion

BROMs were created in the 1970s and have long been the cornerstone of the non-volatile memory
narket. But the development of flash memory devices (see Section 10) will lead to a loss of EPROM
marketshare. EPROM uses a mature technology and design and is on the decline part of its lifecycle. For
fiis reason there is not a lot of R&D expenditure made for EPROM devices. Figure 9-8 shows a cross
sction of a 1Mbit EPROM cell from two different manufacturers. The main difference between the

pocesses is the polysilicon gate. One manufacturer uses a polycide to improve the speed.

EPROM Cell Size and Die Size

The cell size of the EPROM is also relatively small. The EPROM requires one additional polysili-con layer,
ad will usually have slightly lower yields due to the requirement for nearly perfect (and thin) gate

xides.

Figure; Typical 1Mbit EPROM Cells

These factors, plus the fact that an EPROM is encased in a ceramic package with a quartz window, make
the EPROM average selling price three to five times the price of the mask ROM. Figure 9-9 shows the
main feature sizes of 1Mbit EPROM analyzed by ICEQs laboratory.

Cell Size | Die Sze | Min. Gate
Manufacturer | Density | Date Code
2
(=m’) (m mz) Length (-m)
Atmel 1Mbit 9428 440 14.6 0.6
AMD 1Mbit 9634 5.52 15.% 0.7
ST 1Mbit 9514 3.60 115 0.5
1SSt 1Mbit 94/95 6.80 18.¢ 0.7
Source: ICE, "Memory 1997° 22453

Figure; EPROM Feature Sizes

OTP{One Time Programmable) EPROM

In mast applications, EPROMs are programmed ore time and will never have to be erased. To reduce the
costfor these applications, EPROMs may be manufctured in opaque plastic packages since the standard
ceramic package of an EPROM is expensive. EPRGMSs that are programmed one time for a specific use
andzannot be erased are referred to as One Time frogrammable (OTP) devices.

EEPIOM

EEPPOM (Electrically Erasable Programmable ROM) offer users excellent capabilities and per-formance.
Only one external power supply is required sirce the high voltage for program/erase is internally

geneaated. Write and erase operations are performed on a byte per byte basis.

The EPROM uses the same principle as the UV-EFROM. Electrons trapped in a floating gate will modify

the diaracteristics of the cell, and so a logic “0” or zlogic “1” will be stored.

The fEPROM is the memory device that implements the fewest standards in cell design. The more
common cell is composed of two transistors. Thestorage transistor has a floating gate {sim-ilar to the
EPR@GM storage transistor) that will trap electrors In addition, there is an access tran-sistor, which is
requred for operations. Figure 9-10 shows the vokages applied on the memory cell to program/erase a
cell. ¥ote that an EPROM cell is erased when eleckons are removed from the floating gate and that the
EEPRDM cell is erased when the electrons are traged in the float-ing cell. To have products electrically
comgatible, the logic path of both types of profuct will give a “1” for erase state and a “0” for a
progmmmed state. Figure 9-11 shows the electricaldifferences between EPROM and EEPROM celis.

Parallel EEPROM

There are two distinct EEPROM families: serial and parallel access. The serial access represents 90
percent of the overall EEPROM market, and parallel EEPROMs about 10 percent. Parallel devices are
available in higher densities {2256Kkbit}, are generally faster, offer high endurance and reliability, and are
found mostly in the military market. They are pin compatible with EPROMs and flash memory devices.
Figure 9-12 shows feature sizes of three 1Mbit parallel EEPROM from different manufacturers, analyzed
by ICE’s laboratory. Figures 9-13 to 9-15 show photographs and schematics of the respective cells. It is
interesting to see the wide differences in these cells.

Serial EEPROM

Serial EEPROMs are less dense (typically from 256 bit to 256Kbit) and are slower than paraliel devices.

They are much cheaper and used in more “commodity” applications.

cL 0 V CL ov

O O O)
l[”: . I
- sG o—_1 20vO
- gn °°;>| ;3
T E - L
J &) S
S S
Erase Program
cL
SG <:L cG s
sG= =Erase v 0o vV = 0 =
PP PP
Program \ \'J 0 0
PP PP
I Read Yee 1+ | CC L o
Unselécted) X 0 0

Source: ICE, *Memory 1997*

17554A

Figure ;. EEPROM Cell Program/Erase

EPROM programming: Hot electron

* High VPP Current

* High ISUB

* VPP must be an external supply
* No VBB generator

EEPROM programming: Tunneling

* VPP is generated by an internal pump.

Source: ICE, "Memory 1997" 17556

Figure ;. Vpp EPROM Versus Vpp EEPROM

Cell Size Die Size Min Gate
Mandacturer Density Date Code
(xmz) (mmz) Length (><m)
Wirbond 1Mbit 9432 7.8 22.6 0.9
Xicar 1Mbit 9443 21.0 51.0 13
Hitchi 1Mbit 94/95 22.5 51.0 0.6
Source: ICE Memory 1997" 22463

Figure ; 1Mbit Parallel EEPROM Featare Sizes

Figure ; Winbond 1Mbit EEPROM Cell

Serial access EEPROMs feature low pin count.Typically they are packaged in an 8-pin package. As
illustrated in Figure 9-16, XicorOs 128Kbit seral EEPROM uses the 8 pins in the following manner:

¥ VC and Vggs for supply voltage
¥ SCL (Serial Clock) to clock the data

¥ SDA (Serial Data) is a bi-directional pinused to transfer data into and out of the device
¥ SO, S1, S2 are select inputs used to setthe first three bits of the 8-bit slave address

¥ WP (Write Protection) controls Write Protection features.

Serial EEPROMs use data transferzinterface potocols for embedded control applications. These protocols

include the Microwave bus, the | C bus, theX! C (Extended ! C) or the SPI (Serial Peripheral Interface)
bus interfaces.

There continues to be an ongoing effort to reduce the size of serial EEPROMs. Microchip Technology, for
example, introduced a 128bit serial EEPROM n a five-lead SOT-23 package.

POLY 1

e PROGRAM LINE

)

BE

METALZ

Figure . Xicor 1Mbit EEPROM Cell

Silicon Nitride

Source: ICE, “Mernory 19977 22467

Figure . HitachilMbit EEPROM Cell

Figure 9-17 shows feature sizes of three serial EEP¥OMs from different manufacturers that were analyzed
by HEOs laboratory. Note that larger cell sizes acompany low-density EEPROM devices. When building
an EPROM chip that contains sense amplifiers, cantrollers, and other peripheral circuitry, cell size is not
as geat a factor at low (1Kbit, 2Kbit) densities. &t larger den-sities, the size of the cell array is more
critiral. It becomes a larger portion of the chip. Therefore, greater consideration must be given to the size
of the cell.

WP

H.V. Generation
gart Cycle

Timing and

Control

v
cc
Ss
Write Protect
SDA Start
Register and
Stop
Logic
Logic
Control
Logic
Slave Address
Register
EEPROM
SCL +Comparator Load Inc XDEC
Array
_ Word
Sz l Address
Counter ™
. l
S0 i
7 YDEC
Y
8
- CK Y
L
Data Register
out
ACUN

Source: Xicor/E—lE, ‘Memdoy 1997% |

22589

Figure. Xicor 128Kbit Serial EEPROM Functional Diagram

Cell Size Die Size Min Gate
Manufacturer Density Date Code
2
(°<m2) (mm”) Length (<m)
Microchip 16K 9540 60.5 6.0 2.0
Xicor 2K 9432 100.0 4.0 2.0
ST 1K 9618 286.0 26 1.2
Source: ICE, "Memoty 1997* 22464

Figure . EEPROM Serial Configuration Feature Sizes

This size impact is illustrated in Figure using a 1Kbit serial EEPROM example from SGS-Thomson. The cell

array represents only 11 percent of thetotal surface of the chip.

Figures show additional EEPROM cells. As noted, there is no design standard for this type of cell. in laying
out the EEPROM cell, the designer must take into consideration the ele-ments of size, performance, and

process complexity.

CEL ARRAY

PIN 1

Figure . SGS-Thamson 1Kbit Serial EEPROM

__PASSIVATION

Fgure; Microchip 16Kbit Serial EEPBOM Cell

Multi-Level Analog Storage EEPROM

The goal of multi-level cell (MLC) is to store more than one bit of information in a
single cell. Much work has already beex done regarding MLC as applied to flash
memory devices. The typ-ical development for digital flash memories is to store four
different levels in the same cell, and thus divide the number of cells by two (four data are
given by two bits : 00, 01, 10, and 11).

However, for several years now, Informaton Storage Devices (ISD), a San Jose based
company, has proposed multi-level analog storage EEPROMs for analog storage. ISD
presented a 480Kbit EEPROM at the 199 ISSCC conference. The multi-level storage
cell is able to store 256 different levels of charge between OV and 2V. This means the
cell needs to have a 7.5mV resolution. The 256 different levels in one cell corresponds to
eight bits of information. A comparable digital implementation requires 3.84Mbit
memory elements to store the same amount of information. The information stored will
not be 100 percent accurate but is good enough for audio applications, which allows

Some Crrors.

Course Material Prepared by

Dr. S. MEENAKSHI SUNDARAM

HOD of Physics, Sri Paramakalyani College
Alwarkurichi - 627 412.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

