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DKP12 : MATHEMATICAL PHYSICS
SYLLABUS

UNIT I : VECTOR SPACE AND MATRICES

Linear independence of vectors — Dimension — Basis — Inner product of two vectors —
Properties of inner product — Schmidt’s orthonormalization method — Linear transformations
— Matrices — inverse of a matrix — orthogonal matrix — unitary matrix — eigen value and eigen
vectors of a matrix — Diagonalisation — Cayley Hamilton Theorem.

UNIT Il : FUNCTIONS AND POLYNOMIALS

Beta , Gamma functions — Dirac delta function and its properties — Green’s function — Bessel
differential equation — Generating function for J,(x) — Recurrence relation for J,(X) —
Legendre differential equation — Generating function for P,(x) — Recurrence relation for
Pn(X)- Hermite differential equation — Generating function for Hn(x) — Recurrence relation for
Hn(x)

UNIT 111 : FOURIER AND LAPLACE TRANSFORM

Fourier transform-properties of Fourier transform-convolution — Fourier cosine and sine
transform-Fourier transform of derivatives- Application of Fourier transform-vibrations in a
string-Laplace transform-inverse Laplace transform- Application of Laplace transform-
Simple Harmonic motion

UNIT IV : COMPLEX ANALYSIS

Complex variables- complex conjugate and modulus of a complex number-algebraic
operations of complex numbers-function of a complex variable-analytic function-Cauchy-
Riemann equation in polar form-line integral of a complex function-Cauchy integral theorem-
Cauchy integral formula-Derivatives of an analytic function

UNIT V : GROUP THEORY

Concept of a group-Group multiplication table of order 2, 3, 4 groups- Group symmetry of
equilateral triangle- Group symmetry of a square-permutation group-conjugate elements-
representation through similarity transformation-reducible and irreducible representation-
SU(2) group-SO(2) group.
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UNIT I : VECTOR SPACE AND MATRICES

Linear independence of vectors — Dimension — Basis — Inner product of two vectors —
Properties of inner product — Schmidt’s orthonormalization method — Linear transformations
— Matrices — inverse of a matrix — orthogonal matrix — unitary matrix — eigen value and eigen
vectors of a matrix — Diagonalisation — Cayley Hamilton Theorem.

1.1 Vector Space:

Let (F, +, *) be afield of real numbers and let IV be a set together with an operation
of addition (+) and a scalar multiplication (*). The operations of (+) and (-) on elements of V
by elements of F yielding again elements of I/ and satisfying the algebraic laws, then the set
V will be called a real“Vector space or Vector space over F”
ie.,V,(R) is a vector space over R.
If the components of n-dimensional vectors are rational numbers then 1,(Q) is a vector
space over rational number.

n — tuples(Cy, Cy, ... ... C,)of complex numbers together with addition and scalar

multiplication would form a vector space over complex numbers.

1.2 Linear Independence of Vectors:

Let V be a vector space over a field F and let S = {ay,ay, ..........a;) be a finite
sub set of V. Then § is said to be linearly independent if and only if every equations of the
form

a1+ aza; + - raga, = 0, a, € F = a;=a, = -aq, =0
ie., an infinite set T is said to be linearly independent if and only if every finite sub set of T is
linearly independent.
(eg) Any set which consists of a single non-zero vector is independent.

Any set of vectors which is not linearly independent is linearly dependent. Any vector
which contains 0 is dependent. Two vectors A and B are said to depend on each other when
one of them can be expressed in term of the second.
ie., A = kB where kis anon-zero scalar or cA+dB =0
Where ¢ and d are non-zero scalar constants.

The dependence is said to be linear when the vectors in the expression are of degree one.
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Exercise:
1. Show that the vectors (1,2,3), (2,2,0) forms linearly independent.
Solution: Given a:1=(1,2,3); a,=(2,2,0)
a1(1,2,3) +a»(2,2,0)=0
(a1, 2ay, 3a1) + (23, 2a3,,0)=0
a;+2a,=0
2a;+2a,=0
33;,=0; a;=0
Then 0+2a,=0; a2=0

Both aj, and a; are zero therefore the given vectors are linearly independent.

2. Show that the four vectors a; =(1,1,0,1), 2, =(1,0,0,2), a3 =(0,1,2,-3), and
a4=(1,1,1,1) are linearly independent.
Solution:
Ci0l1+ Coa+C3a3+Ccq04 =0
c1(1,1,0,1)+ c,(1,0,0,2)+ ¢35 (0,1,2,-3) + ¢4 (1,1,1,1) =0
C1+Cy+c=0; C1+C3+c4=0; 2c3+c4 =0; C1+2c;-3c3+c4 =0
On solving these equations we get ¢; = ¢; = ¢c3 = ¢4 = 0. Therefore the vectors a;, a,, a3, a4

are linearly independent.

1.3 Basis:

In three dimensional space, (ai, ay, as) = a1(1,0,0) + a»(0, 1, 0) + a5(0, 0, 1)

(@, @y, a3) = a; €1 + a, €, + a3 €3 where €, i = 1,2,3 represents the triple whose ith
component is one and whose other components are zero. { €, €,, €3} spans the space and is
linearly independent. These 3 vectors are unit vectors along 3 coordinate axes. This set is a
maximal linearly independent sub set of the space. A second maximal linearly independent
set in 3 dimensional space is f1 =(0,1,1); B>=1(1,0,1); B3=(1,1,0).

A maximal linearly independent sub set of a vector space V is called a basis of V. Since a

basis for V, spans V, every vector £ is a linear combination of vectors of V.

The Scalars in this representation are Unique.
ie., If E=biaj+byor+... + by ay ,

then €-8&=(Ci-by)ag+(Co-br)oy + e, + (Ck - by)ay
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0 =(Ci-by)ar+(Cr-br)on+ .nreeeennenn. + (Cy - by)a
ie., (C1-b1)=0;(C;—=by)=0; ... (Ck=bx) =0,
And ~ Ci=by; Cy=byer-e- C = by
This proves that the scalars in the representation are unique.
If a given set of vectors &1, ¢, &3, =+ o, has the following two properties,
1. Thevectors ¢1, ¢y, P3, =+- - ¢, are linearly independent and
2. Every vector ¢ in the space can be expressed as a linear combination of ¢, ¢, ... dn,

then the set (b1, &y, b3, -+ - ¢n) is a basis for the vector space.

1.4 Dimensions:

A vector space is said to be n dimensional if it has a finite basis consist of n elements.
A vector space with no finite basis is said to be infinite dimensional. The maximum number
of linearly independent vectors cannot be more than that of the number of dimensions of
the space. That is, dimensionality of a space is the maximum number of linearly
independent vectors in the space.
Example:
In a three dimensional space a 1, a ,, a 3 are three linearly independent vectors, and then
any other vector ¢ in the space can be expressed as
P=ciai+ca,+Cc303

Where ¢1, ¢, c3 are constants, and at least one of them is non-zero.

1.5 Inner Product (Scalar Product):

In ordinary three dimensional space the scalar product achieves,
1. The scalar product of a vector with itself helps to define the length of the vector.
2. Itis a measure of relative orientation of the vectors, when the lengths are known.
In a linear vector space the inner product of two vectors  and ¢ is denoted by (U, ¢). The

inner product has the following properties.

1.6 Properties of Inner Product:

(b, d+8)= (b, d)+ (U, §)
(b +d, &)= (b, &)+, €)
(b, W)>0unlessy =0
(b, §) = (&, Y)*

P w N oPE
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5. (¢, ad+BE&=a(P,d)+B(P,&  Where aand B are arbitrary complex numbers.
6. The norm (length) is denoted by || W||, and is defined as || W[ = (b, Y)™?
In an n- dimensional space, elements of basis are a1, oy, ....... a , (the magnitude of each
element of the basis is unity then the elements are called unit vectors) then two vectors |
and ¢ in the space can be expressed as
W=ca1+C o+ . +cha, and P=bjai+byar+........ +b, a,

Then the inner product of Y and ¢ is

(l.IJ, d)) = ch*bl = Cl* b1 + Cz* bz F o + Cn* bn
i=1

Example

1. Calculate inner product of the two vectors A and B given by
A=5a1-3a3-403-04+2as and B=-a;+20,-3az3+az+0ads
Solution:
The inner product of A and B is
(A, B) = (5)(-1) + (-3)(2) + (-4)(-3) + (-1)(1) + (2)(2)
=-5-6+12-1

=2

2. Find the norm of a vector 3i + 4j + 5k
Solution:
Let the vector  =3i+ 4j + 5k,
Then (b, ¥)=(3i+4j+5k)- (3i + 4j +5k)
=9+16+25
=50
Tl = (b, $)" =(50)™"

1.7 Orthogonal Vector:

+k;i,k=1,2...n

If the inner product of two vectors equal to zero, ie., ({;, Yi) =0 for {uiiO,c//kiO

Then the vectors are said to form an orthogonal set. If the norm within the orthogonal set is

unity then the set is called orthonormal set, ie.,| | Gi| | =1 & || Uk|| =1
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1.8 Orthonormal basis:

The norm of vector ¢ in a linear vector space is defined to be a positive real number
associated with ¢ such that the following properties are satisfied

1 |I¢ell=20
2 ||d||=0onlyifd=0

3 |lad]||=|lal || d || where aisan arbitrary complex numbers.
4 [l da+dba |l dall+1] 2]l
To Prove,

[ dr+dba |l < [l dal]+ ][] 2]l

The positive square root of scalar product of a vector with itself can be taken as the norm of

the vector.

e, 11 11=( )" and [1¢[1°=(d ¢)
|| b1+ |17 = (b1 + b2, b1+ d2)
=(1+d2,, d1) +H( b1+ b2, P2)
=(h1, d1) + (b2, d1) + (b1, §2) + (D2, o)
= |1 dal 1%+ (b1, d2)* + (b1, da) + || b2l |°
=11 &dal 17 +11 b2l |* + 2Re( b1, b2)
Since [( &1, d2)| = Re( 1, §)
[T bs+ b2 [1°< 11 dal1”+11 dal I” +21( 1, ¢2)|
Using Schwartz inequality, || &1+ [1°< || &1l 1”+11 dal I+ 211 dal 1] 2l
< (H all +11 ¢2l1)?
Taking Square root on both sideswe get || d1+ &, | ||| b1 || +|] d2 ||, Hence proved.
The vector of unit norm is said to be normalized. If a vector ¢ is not normalized a

1/2 . .
2 This process is known as

normalized vector can be obtained by dividing ¢ by (¢ ,d)
normalization.
Problem:

1. Show that the following two vectors are orthogonal to each other
A=401-20a,-a3+20,4+ ag and B=2oa;+2a3-3a,+2 as where a’s form a
orthonormal set.

Solution:

The inner product of A and B is
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(A, B) =(4)(2) + (-2)(0) + (-1)(2) + (2)(-3) + (0)(2) + (1)(0) = O

Then (A, A) = (4)(4) +(-2)(-2) + (-1)(-1) + (2)(2) + (1)(1) =26 ;

The normof Ais (4,4) Y% = (26)1/2

And The normof Bis (B, B) =(2)(2) + (2)(2) + (-3)(-3) + (2)(2) =21 ;
The normof Bis (B,B) /2 = (21)1/2

Therefore the vectors A and B are orthogonal.

1.9 Gram Schmidt orthogonaliationProces:

Let Yy, P2, U3, e , Y be a set of n linearly independent vectors. By Gram Schmidt
orthogonalization process we can construct n mutually orthogonal vectors ¢,’, &', ¢35/,

............. , &’ from the given linearly independent vectors. If the constructed vectors are then

normalized we get an orthonormal set ¢1, &5, P3, ovveeeeee. , On.

Construct a set of orthogonal vectors ¢1’, &5/, $3’, e, , ®n" by choosing the following
manner

¢ =Yy

&) =P+ Cy by
b3 =3+ P + G by’

&0 = Un+ Con1®nt’ + Conz Ond'+ ceeerevrireenns + ¢y
The coefficient Cy1 , C32, C32, Cs1, weweweeCn, Cna @re chosen such that ¢, &2, &3,
............. , &’ are mutually orthogonal to each other.
(¢, ¢,)) =0
(b1, Y2+ Co1d1")=0
(b1, Y2) + Caaldr’, $1')=0
Caald1’, d1') =- (b1, b2)
Ca =- (b1, b2) / (b1, $1')
And (¢4, ¢3') =0
(1", W3+ Caa " +C31 $1') =0
(b1, W3) + Caa (b1, §2') + Car(dd, ¢1')=0
(b1, b3) + Car (s, $1)=0
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since ¢1’, &,’ are mutually orthogonal to each other (¢, $,’) =0
Gy, d1') =- (1, ¥3)

G =- (b1, U3) / (b1, $1')
Similarly ($,’, ¢3’) =0
(d2', Y3+ Cso o'+ Carhy' )=0
(d2', Y3) + Caa (2, ) + Car (P2, $1)=0
(b2, Ws) + Caa (2", §2') =0 since (¢2', ¢1')=0

Ca2 =-(d2', Y3) / (¢, b))

In general Ci=-(d, bi) / (b, ¢)
Using the coefficients we get the orthogonal set ¢, &', ¢35/, e , d," and then we

divide each of the vectors by its magnitude then a set of orthonormal vectors is obtained.

Problem:

Using Gram Schmidt orthogonal process, construct an orthogonal set from the
linearly independent set of n-tuple
W, =(1,0,0,......0); W5 =(1,1,0,.....0) ; W3 =(1,1,1,......0) jueeerreerrrerrrreenee. W,=(1,1,1,.....1)
Solution:
Let &' =W;=(1,0,0,.....0)

¢’ =W+ Cu &y
Cau =-(d1, b2) / (D1, d1)

=-(1,0,0,...0) / (1,0,0,....0)

=-1
- ¢ =(1,1,0,....0)- 1 (1,0,0,......0)

by = (0,1,0,.....0)
then &3'= W3+ Csy d)' +C31 by’

G =-(dd, U3)/ (1, P1)
=-(1,0,0,......0) / (1,0,0,......0)

1
S
=
o

Ca  =-(d, b3)/ (P, $Y)
--(0,1,0,.....0) / (0,1,0,......0)
=1
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¢35’ =(1,1,1,0,.......... 0) - 1(0,1,0,......0) —1(1,0,0,.....0)
s’ =(0,0,1,0,......0)

similarly we can get

$4’ =(0,0,0,1,......0),

1.10 Linear Transformation:

Let a set of orthonormal vectors a;, o, .......... o, constitutes a basis in an n-

dimensional space. Then a vector in the space is expressed as

P=X 01+ XU+ e + X Ol
where X1, X2,.cccue... X, are the components of vector ¢ along the axes of the coordinate
system.
And consider another set of orthonormal vectors By, By,......... , Bn constitutes another basis

in the space. The same vector is expressed as

G=y1BitYaBat o +Vn B
where vyi, V,,.....yn are the components of the vector ¢ along the axes of the another
coordinate system.

To transform the component of the given vector in one coordinate system into another
system, the following conditions will be considered. If the origin of the two coordinate
systems is same, the transformation is homogeneous; whereas the origins are different the
transformation is inhomogeneous.

When components of a vector in one coordinate system can be expressed as a linear

combination of the other system, then the transformation is linear. For linear

. . S .
transformation, the components of second coordinate system y~ can be expressed in terms

of the component of the first one x° as

Yi = Ci1X1+C]2X2+ ................. +Cian = ZC”XJ 1<i<n
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yl Cll C12 * * Cln Xl
y2 CZl C22 ' ' C2n X2
_yn_ _Cnl Cn2 Cnn_ _X”_
ie.,Y = CX

The transformation matrix C depends on the two coordinate systems and does not
depend on components of a vector in the two systems.
Inversely X = DY whereD = C1
1.11 Matrices:
A matrix may be defined as a square or rectangular array of numbers or functions that obey

certain laws. The individual numbers or functions of the array are called the elements of the

matrix. And a matrix consists of certain rows (horizontal array) and certain columns (vertical

array).
> 3 a b c 1—i. 2+.i
Example | { ¢ e f g 4421 X+1iy
, X y z 2+41 3-2i

f.(x) f,00 f(x)
and the array function (f4(x) f5(x) fG(X)]

In the second example (a,b,c) is the first row, (e,f,g) and (x,y,z) are the second and third

rows respectively. Similarly (a,e,x), (b,f,y),(c,g,z) are first, second, third columns respectively.

A matrix consists of ‘m’ rows and ‘n’ columns is said to be the matrix of order m x n.
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&; 4, &

aZl a22 a‘2n
ie.,

aml am2 amn

A =(aj)mxn means A is a matrix of order (mxn) whose ijth element is aj, the letter i

designates the row and j designates the column to which the element a;; belongs.

1.12 Properties of matrices:

1.12.1 Equality:
Two matrices A and B are equal if and only if they have the same order (mxn) and each

element of A is equal to the corresponding element of B. ie.,aj; = bjfor all iand j
1.12.2 Addition and Subtraction:

Two matrices of same order of (mxn) can only be added or subtracted.
A+B=C means aj+bj=c; foralliand]j

A-B =d means  ajj-bj=d; foralliand]j

Commutativelaw A+B=B+A

Associative law A+(B+C)=(A+B)+C

Distributivelaw  A(A+B) =AA+AB

1.12.3 Multiplication:

Two matrices A and B can be multiplied in the order of AB only when the order of column of

matrix A is same as the order of row of matrix B.

ie., (A)mxh X (B)hxn = (C)an

h
Its elements are given by Cj; = kZl:aikbkj

Forh = 3,Cij = adj1 blj + ajpp sz + aj3 b3j

Example :
& &
o b, by
A=|“1 %22 |and B= b, b, Find AB
a‘31 a32
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a'.l.l a12 b b a11bll + a'.l.2b21 a11b12 + a12b22
11 12
A X B = (C = aZl a22 a21bll + a22bZl a21blZ + a22bZZ
(A)x2 (B)axz (Clsx b,, b,
a31 a32 a31bll + a'31b21 a31b12 + a32b22

1.12.4 Square matrix:

A matrix having same number of rows and columns is called a square matrix.

&; Qp - - A,
a'21 a22 . . a2n
ie (A)xn=
an1 an2 ann
A11, 822, @33, A4dy eeens ann are the diagonal elements of the square matrix A. The sum of the

diagonal elements of a square matrix is called the Trace of that matrix (T, = a;1+az+.....ann).

1.12.5 Diagonal matrix

If all the elements of a square matrix are zero except the diagonal elements the matrix is

called as diagonal matrix.

a, O 0
0 a, 0

is a diagonal matrix of order n.
0 O a

nn

And if in a diagonal matrix in which each diagonal element is unity then it is called an

10 . .0

o1 . .0
identity or unit matrix.

0 0 1

1.12.6 Row or Column matrix

A matrix containing only one row or one column is called a vector.

A matrix of one row only of order 1 x n is called a row matrix. [X]1xn = [311, @12, 313,+0vee.. ai1]
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A matrix of one column only of order m x 1 is called a column matrix [X]mx1 =

_aml
Problem:
1 -1 1 1 2 3
A= -3 2 1 and B= 2 46 compute AB and BA and Show that AB # BA
-2 1 0 1 2 3
1 -1 11]]1 2 3] 000
AB = -3 2 -1||2 4 6 _ 0 0O
-2 1 0]|1 2 3] 0 00
1 2 3][1 -1 1] -11 6 -1
BA = 2 4 6(|-3 2 -1|_ |-22 12 -2
12 3j]|-2 1 O] -11 6 -1

Hence AB # BA.

1.12.7 Transpose of a matrix:

A matrix of order (n x m) is obtained by interchanging rows and columns of a matrix A of

order (m x n) is called transpose of matrix A. It is denoted by A’ or AT or A .

And (A")" = A.
1l 4
1 2 3
Example: A=l4 5 6 Then AT = 2.5
3 6

1.12.8 Conjugate of a matrix:

If A is any matrix having complex numbers then the matrix obtained from A by replacing its
each element by its conjugate complex number(ie., changing the sign of ‘i’ term) is called

the conjugate of matrix A and is denoted by A or A”. And (A*)* =A

1+21 2 i 1-21 2 =i
Example: A =| 3 5 2_3 Then A =1 3 _5 243
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1.12.9 Conjugate Transpose or Transpose Conjugate of a matrix :

Conjugate followed by Transpose or Transpose followed by conjugate is denoted by A,

ie., A" = (AT =(AT)".

1+2i 5i 2+7i 1-2i 2+i 0
Example: A=| 271 1 =1 | pen A= (A= (@a)=| 9 1 4
0 4 3-7i 2-7i i 3+7i

1.13 Determinant of a Matrix:

The determinant of a matrix is a special number that can be calculated from the

elements of a square matrix. The determinant of a square matrix A is denoted by "det A" or

| A |. The determinant helps us to find the inverse of a matrix. If the value of determinant of

a matrix is zero ie.,| A | = 0, then the matrix is singular and if | A | # 0 then the matrix is

nonsingular.

a b
The determinant value of a 2x2 matrixis | A | = q
=ad —-bc

a b c
The determinant value of a 3x3 matrixis | A | =|d e

g h i

=a(ei-fh)—-b(di-fg)+c(dh—-eg)

Example:
6 1 1
|A|=4 -2 5
2 8 7

6 x (-2x7 —5x8) — 1 x (4x7 —5x2) + 1 x (4x8 — 2x2)

6 x(-54)—1x(18) +1 x(36)
—306
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1.13.1 Minors:

A minor is the determinant of the square matrix formed by deleting one row and one
column from some larger square matrix. These minors are labeled according to the row and
column we deleted. The notation M is used to stand for the minor of the element in row i

and column j. So M,; would mean the minor for the element in row 2, column 1.

&, 9, Q4
Consider the 3x3 determinant |a,; a,, a,,
a3l a32 a33
. . . . st st . a22 a23
the minor a;; is obtained by deleting 1™ row and 17 column of the determinant
a‘32 a33
a
the minor aj, is obtained by deleting 1 row and 2™ column of the determinant| =  2°
31 33
. . . . st d . a‘21 a22
the minor a3 is obtained by deleting 1°" row and 3° column of the determinant
a31 a32

Similarly the minors of a21, a22, a23 and the minors of a31, a32, a33 are found as follows

& Q3| |An pf &y A3 and &y B3| Ay Bya| (& A
a32 a33 a31 a33 a31 a32 a22 a23 a'21 a23 a21 a'22
Example:
1 3 2
Find the determinant value and matrix of minors for the given determinant |4 1 3
2 5 2
Solution:
1 3 2
|A|=14 1 3
2 5 2

=1 x(1x2-3x5)—3 x (4x2 - 3x2) + 2 x (4x5 - 1x2)
=1x(-13)-3x(2)+2x(18)
=17

To find matrix of minor,
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Let the general matrix of minors for a 3 x 3 determinant is given below. Where C's

represents the column number and R’s represents the row numbers, whereas M'’s are the

corresponding minors.

] G
R1 Mui1 My
R: M1 My
Rs Mz Ms;

Cs
Mis
My3

Therefore the given determinant can be written in the general form

To find each minor

R1

Rz

Rs

Then the matrix of minors is

] ) G

R1 -13 2 18

Cs
1 3
5 2

=2-15=-13
3 2
5 2

=6-10=-4
3 2
1 3

=9-2=7

G

G
4 3
2 2
=8-6=2
1 2
2 2
=2-4=-2
1 2
4 3

=3-8=-5

G

Cs
4 1
2 5

=20-2=18
1 3
2 5

=5-6=-1
1 3
4 1

=1-12=-11
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Rz -4 -2 -1

Rs 7 -5 -11 -13 2 18
-4 -2 -1
7 -5 -11

1.13.2 Cofactors of a determinant:

A cofactor for any element is either the minor or the opposite of the minor, depending on
where the element is in the original determinant. If the row and column of the element add
up to be an even number, then the cofactor is the same as the minor. If the row and column
of the element add up to be an odd number, then the cofactor is the opposite of the minor.

The sign chart for a 3x3 determinant.

G G G

Rl + - +
R, - + -
R3 + - +

The + does not mean positive and the - negative. The + means the same sign as the minor
and the - means the opposite of the minor.
The matrix of cofactors is the matrix found by replacing each element of a matrix by its

cofactor. This is the matrix of minors with the signs changed on the elements in the -

positions.
C G Cs
R, |-13 -2 18 -13 -2 18
= 4 -2 1
R, 4 -2 1 7 5 -11
Rs3 7 5 -11

1.13.3 Adjoint of a matrix:

The adjoint of a matrix A is defined as the transpose of the matrix formed by the cofactors
of elements of the determinant A. To transpose a matrix, interchange the rows and
columns. That is, the rows become columns and the columns become rows. The adjoint of

the above matrix of cofactors is given below.
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1.13.4 Inverse of a Matrix:

To find inverse of a matrix A, the matrix must be nonsingular square matrixie., | A | #0.

A-1 = adjA
det A
Example:
1 3 2
Find the inverse of the given matrix |4 1 3
2 5 2
Solution:

Given matrix is same as the above example; the same procedure is adapted to find adjA

-13 4 7
From the above example we get, adjA=| -2 -2 5
18 1 -1
And the determinant valueis |A| =17
-13 4 7
-2 -2 5
Al - 18 1 -11
17

1 _1%7 v %7
At =72 0 Uy
1%7 %7 _1%7
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1.14 Orthogonal matrix:

A square matrix 4 is said to be orthogonal when it satisfies the relations ATA = AAT = 1.

Where AT is the transpose of A and [ is the unit matrix.

Example:
cos@ -sind
Show that the following matrix is orthogonal | .
sin@d coséd
Solution:
cos@ -sind cos@ sin@
let A = | . , Then AT = )
sin@ coséd —-sin@ cosd

Therefore AAT cos@ —sin@|| cosd sind
I =
eretore singd cos@ ||—-singd cos@

B cos? @ +sin% 6 0 1o
0 cos? @ +sin% @ 01

Hence the given matrix is Orthogonal.

1.15 Unitary Matrices:

A square matrix A is said to be Unitary when it satisfies the relations ATA = AAT=I. Where

At is the conjugate transpose of 4 and I is the unit matrix.

1 i
Example: Show that the following matrix is unitary \_/E \_/g
V2 2
N O
Let A = \/E \/g ThenAf = V2 \/g
—1i _ ’ —1i _
J2 2] J2 V2
1 I 1 i
NN 10
Therefore AA" = \_/EI \_/g \_/EI \_/g = [O J Hence the given matrix is Unitary.
V2 2]l\2 2
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1.16 Eigen Values and Eigen Vectors:

For a square matrix A of order n, the number A is an eigenvalue if and only if there exists a
non-zero vector X such that

AX = 1X
Using the matrix multiplication properties, we obtain (A— AI,) X = 0 This is a linear
system for which the matrix coefficientis A — A I,. We also know that this system has one
solution if and only if the matrix coefficient is invertible, i.e. det(A— A1,) # 0. Since the
zero-vector is a solution and X is not the zero vector, then we have det(A — AIn) = 0.

In general, for a square matrix A of order n, the equation
det(A— Al,)) = 0 ie.,|A— AL, =0

Will give the eigenvalues of A. This equation is called the characteristic
equation or characteristic polynomial of A. It is a polynomial function in of degree n. So we
know that this equation will not have more than n roots or solutions. So a square

matrix A of order n will not have more than n eigenvalues.

1 00
Example: Find the eigen values eigen vector of the matrix |0 1 1
011
1 00
Let A=|0 1 1|and the characteristic equationis |A- AI| = 0
011
1 00 1 00 1-24 0 0
ie,]JA-All =0 1 1{-A|0 1 0] = 0O 1-4 1 =0
011 0 01 0 1 1-2

(1-M{(1-N*-1} =0 =(1-N{1 + N*-2A-1}=0 =(1-\)(A=2)A=0
ie, 1 =0,1,2
The eigen values of the matrix Aare 0,1, 2

And the eigen value equationis (A — A1) X = 0
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1 0 0)\(x 0 X, =0
Case 1, A=0, the eigenvalue equationis |0 1 1||x,|=|0 weget X,+X;=0
0 1 1)(x 0 X, + X3 =0
X X, 0
Solving these equationswe get X, =0; X, =—X; X1 = X, [=| X, | = k
' X, - X, -k

To normalize the eigen vector it must be equated to unity [|X;| =1, ie,,

\/02 + k*+ (-k)? =1; V2k® =1 therefore k = ~.the normalized eigen vector of

sl

matrix A forA =0 is {0,

E
NERRG

0 0 0)(x 0 « =0
Case 2,4 =1, theeigenvalueequationis|0 0 1||x,|=1|0 we get : 0
X, =
01 0)(x 0 ?

SothatX, = {Xl, Xy, X3} = {l, 0, O}isthe suitable eigen vector and is normalized.

-1 0 0)(x 0
Case 3,1 =2, theeigenvalueequationis| 0 -1 1 ||X,
0 1 -1)ix 0

1]
o

we get

-x, =0
—X, + X, =0
X, X, 0
Solving these equationswe get X, =0; X, =XX3 =[ X, [=| X, | = | K
X, X, K

..the normalized the eigen vector is \/02 + k*+ k?=1; +2k? =1 therefore k =

Sl
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1 1
..the normalized eigen vector of matrix A for A =2 is {0,—, —

NP

1.17 Diagonalization:

To reduce a given square matrix A to diagonal form, evaluate the characteristic roots( or
eigen values) Ay, , Ay, ...... A, from the characteristic equation of the matrix A. Then the

required diagonal matrix D of A can be obtained as the following method.

4 0 . 0
5|0 4 0
.0

0 0 0 4

2 4 V2

3 3 FRE
Solution: Let A = and the Characteristic equationis |[A—=Al| = =0
2 s aton s AT 57

3 3 3 3

(5452

3 3 3°3
2 -31+2=0=(1-1)(1-2)= 0
A=1land A=2

10
Then the required diagonal matrixis D = {0 2}

cosd -sind O
Example2: Diagonalize the matrix |sin@ cos¢é O
0 0 1
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cosgd -sin@ O
Solution: LetA=|sind cos@ O
0 0 1

cosfd—-A —sind 0
and the characteristic equation |A— M| =| sin@ cos#-4A 0 |=0
0 0 1-1

(cos@—){(cos@—1)(1-A)—-0} + sin@ {sin@ (1-1)-0}=0
(1—1){(00549—/1)2+sin249} =0

(1-2){ cos? 60— 24cos 0+ 2 +sin’ O} =0
(1-A){#-24cos0+1} =0

+ 29_
The rootsare A=1and A = ZCOSQ—W

2
ie., A=1and A=cos@+sind; L=1and 1 =e*" then the eigen values
/11:1 Az :eiH /,13 :e—ig
1 0 0
and the diagonal matrixis |0 e 0
0 0 e

1.18 Cayley — Hamilton Theorem:

Every square matrix satisfies its own characteristics equation. For a square matrix A of order

n, the characteristic polynomial is |A—M| =a, +ad+alt+eeta A

Then the matrix equation a,1 +a,X +a,X? +--+---------+a X" =0 is satisfied by X = A.
Proof:

The characteristic polynomial is |A—il | =ay +aAt A s +a,A"

The characteristic equation of A is |A—/1I| =a, A+ AL e +a A" =

Then the matrix equation is ajl +a X +a,X*+--+--------+a X" =0

If the matrix equation is satisfied by A, then ayl +aA+a,A” +----eeeeee- +a,A" =
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Since each element of the characteristic matrix (A—/II )is an ordinary polynomial of degree
n then the cofactor of every element of (A—/il) is an ordinary polynomial of degree (n-1).
Therefore each element of B = adj(A—ZI ) is an ordinary polynomial of degree (n-1).

We can write B=adj(A-Al)=B,+BA+BA2 +-eeeeeeen- +B,_, A" where
By, B, By, eeeeeees B,, are all square matrices of the same order n whose elements are
polynomials in the elements of the square matrix A. We have,
(A-A1)adj(A-A1)=|A- Al
(A=A (By+ BiA + ByA? + -+ - + By A1) = (ag + g A + apA® + o + a, A1

Comparing the coefficient of like powers of 4 on both sides we get,

AB, = a,|
AB,—B, =a,l
AB, - B, =a,l

ABn—l - Bn—2 = a‘n—ll

-B,,=4a,l
Now pre multiplying these equations by |, A, A%,--------- A" and then adding we get
0 = al+aA+a,A"+- e +a,A" This proves the theorem.

Note: From This equation we can find the inverse of the square matrix A.

ie., _aOI :a1A+a2A2_|_............_|_anAn
I :_[iAJrﬁAer ............ +3AHJ
aO aO ao
Then pre multiplying the equation by A™ on both sides we get the inverse of the matrix A.
A71 =— a1|+&A+ ............ +$A”*1
a, & a,
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Example:

2 -1 1
Find the characteristic equation of the matrix A = |-1 2 —1| and verify that it is
1 -1 2

satisfied by A. Hence find the inverse of A.

Solution :
2-2 -1 1
A-Al|=|-1 2-2 -1| =0
1 -1 2-2
— X +6F -92+4=0; A —62+91-4=0

This is the required characteristic equation of A. If the characteristic equation is satisfied by

A, we must have, A>—6A% +9A—41 =0

2 -1 11[2 -1 1 6 -5 5
A= |1 2 -1||-1 2 -1 = |-5 6 -5
1 -1 2|1 -1 2 5 -5 6
6 -5 5][2 -1 1 22 -21 21
A=A A=-5 6 -5|[|-1 2 -1| = |-21 22 -21
5 -5 6|1 -1 2 21 -21 22

So that the equation A*>—6A*+9A—41 =0 becomes

22 -21 21 6 -5 5 2 -1 1 1 00
=|-21 22 -21|—-6|-5 6 -5(+9/-1 2 -1|—-4/0 1 O
|21 -21 22 5 -5 6 1 -1 2 0 01
0 0 0
=|0 0 O] This verifies the Cayley — Hamilton theorem.

0 0O
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Tofind A%, A°—6A>+9A—4l =0
41 = A~ 6A° +9A
41 = A(A’ —6A+91)

|1
K:Z(A2—6A+9|)

6 -5 5 2 -1 1
A‘1=%(A2—6A+9I)=% -5 6 -5 —% 1 2 -1+
5 -5 6 1 -1 2

N
o o -
o O
~ O o

1
|

|

NS ¥

N NN N
|

4>|o.>4>|r—w>||_\
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UNIT Il : FUNCTIONS AND POLYNOMIALS

Beta , Gamma functions — Dirac delta function and its properties — Green’s function — Bessel
differential equation — Generating function for J,(x) — Recurrence relation for J,(x) — Legendre
differential equation — Generating function for P,(x) — Recurrence relation for P,(x)- Hermite
differential equation — Generating function for H,(x) — Recurrence relation for H,(x)

2.1 Beta Function:

The beta function of m, n written S(m, n) is defined as
1

f(m,n) = f x™ 1 (1 —x)" 1 dx (2.1)

0

Which converges whenm and n positive integers, f(m,n) = B(n,m) .. B function is
symmetricalinm and n

ie., putx =1—1y and dx = —dy in equation (2.1) we get

1 0
Bmn) = — f (1 —y)mtyntdy = j Y1 —y)ym L dy = B(n,m)
0 1

Thus we prove that  S(m,n) = f(n,m) (2.2)
Another expression of f(m, n) can be obtained by substituting

x = sin’6 = dx = 2sinf cos6 d6

L(m,n) = jz(sinzé?)m_1 (cos?0)"~1 2sinf cosO dO
0

T

B(m,n) =2 fz sin®™~10 cos*™~ 10 do (2.3)
0

2.1.1 Other Form of Beta Function:

1

_ _ y

mmn)=| x™ (1 —x)""1dxLet us put x =

pamm = [ 21—y put x = 70—
1+y)—y 1 1

so that dx e y d+ ) dy and X ) then
ﬁ( ) 1 ym—l 1 1 p 0o ym—l p (2 4)

m,n) = X = —_— :

e R L (I Y S Ry L
Since f(m,n)= B(n, m), we have
(o] yn—l
(mn)=| ——————d 2.5

(2.5) is one more form of beta function.
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2.1.2 Evaluation of Beta Function

By definition,

1

L(m,n) = f x™ (1 —x)" dx

0

On integrating by parts and keeping (1 — x)"‘1 as the first function, we have

ﬁ(mn)—[(l—X)“ f(n—l)(l—x)" 22 gy

n—1

f (1—x)""2x™ dx
0

Integrating by parts again , we get

n—1n-2)
m(m+ 1)

1
p(m,n) = J (1—x)"3xm*Hdx
0

On continuing this process with n is positive integer, we get

p(m,n) =

m—1)(n—2) - 2.1 xmin—l

(n—1)!

Again if mis a positive integer, then

(n—1!'(m-1)!
(m+n-1)! (2.6)

By the definition of Beta function using equation (2.1), f(1,1) =1

,B(mr Tl) =

By the definition of Beta function using equation (2.3), 8 G, %) =1

Beta function is also known as ‘Euler’s integral of the first kind’.

Problems:

1. Findthe values of (i) B(m,n+ 1) (i) B(m, 1) (iii) B(m,2)

We have f(m,n) = fol x™ 1 (1 —x)" 1 dx

1

fmn+1) = Jxm_l(l—x)"dx m>0, n>-1
0
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Ifn=0,B(m,1)

1 XM 1 1
= f xm_l dx = [—] = —

T =1, B(m, 2) fol x™ 1 (1 —x) dx

XM 1 1 1
1 xm+1 1
=0+ |—
mm+1 0
_ 1
m(m+1)
Continuing Integration, we get
n(n + 1) ...... 1 1
n+ 1) = m4n—1 d
Blmn+1) m(m+1)---(m+n—-1) Ox x
B 1 2 . 3 ...... n
" m(@m+1) - (m+n)
2.2 Gamma Function
A Gamma function I'(n) with n > 0 is defined as
I'(n) = J e ™ x" ldx 2.7)
0

Recurrence Relation:

(i) By definition we have
I'(n) = j e * x" ldx
0
Integrating by parts and keeping x"~! as the first function, we get

I'(n) = [—x™ e ™7 + foo(n —1)x"%e ™ dx
0
I'n)=mn-1) foox"_z e ™ dx
0

=(n-— 1)[ x" 2 e dx
0

() =(-DIfn-1) (2.8)
=(m-1)n-2)I(n—2) = -
=nm—-1DMn—2):-- 2:1=(n-1)!
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~T(m) =(m-1)! (2.9)

(ii) By definition we have

'h+1) = f e " x"dx
0
Integrating by parts, we get =[—x"e |7 +n fooo e ™ x" ldx
=0+nTl(n)
~T(n+1) =nl(n) (2.10)

Values of I'(n) in terms of factorial
rl+1)=r2)=1 xr@)=1
Fr2+1)=T@B)= 2 xI'2)=2x1=2!
FB+1)=TM4)= 3 xI')=3x21=3!

I'hn+1) =n! (2.11)
Therefore Gamma function is considered as factorial function. And also known as ‘Euler’s
integral of second kind'.

When n = 0, the relation (2.10) defines 0! =T(0+ 1) =T(1) =1 (2.12)

Problems:

1. Findthevalueof T G)

We have I'(n) = fooo e ™ x" ldx

1 ® 1 “ _L
F(—) = f e *x2 “dx = f e *x 2dx
2 0 0

Let x = y? and dx = 2ydy

© 1
- f e’ (y2) 22 ydy
0

1 R
F(—)z Zf e dy
2 0

1 o0
Similarly, we can write r (§> = ZJ e~ dx
0

1 2 00 5 Is) 5
Then [F(—)] = 4J e™” dyf e ™™ dx
2 0 0
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=4f foioe‘(xz*'yz) dx dy
x=0"Y~

Using polar coordinates (r,0) so that x*> + y?> = r; dx dy = r dr df

e <o [ e raras

=4§ fow e rdr
(-9 = n

-

2.3 Relation between Beta and Gamma functions:

From the definition we have

(e¢]

F(m)=f e tx™ldt
0

Putt = x*> = dt = 2x dx

I'(m) = Zf e** x2m=1gy
0
Similarly,
I'(n) = Zf ey’ y2n-lgy
0
~ T(m)l'(n) = 4[ f e~ (x*+y%) y2m=-1y2n-1gy gy
o Jo
By Polar coordinates (r,8) we have x = r cos 0, y=rsin@ and dx dy = r do dr

~ T(m)I'(n) = 4[ JZ e p2mim)—lpoe2m=-1g gin2n-1g g4g dr
o Jo

[00]

2
=2 f cos®™710 sin®"~16 do x 2[ e p2min)-1 gy
0 0
By definition first integral is §(m, n) and the second integral is '(m + n)
ie., T'(m)I'(n) = B(m,n) X '(m + n)

I'(m)I'(n)
Bm,n) = I['(m+ n)
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2.4 Dirac delta function :

The Dirac delta function is an infinitely thin spike. In one dimensional, it is expressed as

follow
6(x) =0 whenx # 0; f S(x)dx = 1; f §(x) f(x)dx = f(0)
The function f(x) is assumed to be continuous around x = 0.

2.4.1 Properties of Dirac delta function in one dimension:

(i)  6(x)=468(—x)
(ii) x6(x)=0

(i) [ f)8(x —a)dx = f(a)
(iv) [T f)8(x +a) dx = f(—a)
vy O 8(x—a)8(x—b)dx= &(a—Db)

In three dimensional space, it is expressed as
5(F) = 0 when # = 0; f 5(F) d3F = 1; f 5(F) FAAF = £(0)

2.4.2 Properties of Dirac delta function in three dimensions:

(i) 6(m—rm)=24601—7)
(ii) 6§(rf—1,) =0 whenr # 7,

i) [, 6GF— 1) 6GF—7)d’F = 6( —T77)

2.5 Green Function:

To understand the Green’s function, consider the differential equation,

Lu(x)=f (x) (2.13)
Where L is an ordinary linear differential operator, f (x) is a known function while u(x) is
an unknown function. To solve above equation, one method is to find the inverse operator

L' in the form of an integral operator with a kernel G (x, £)such that,

u(x) = L7 (1) = f GO, O f (Odé 2.14)
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The kernel of this integral operator is called Green’s function for the differential
operator. Thus the solution to the non-homogeneous differential equation (1) can be
written down, once the Green’s function for the problem is known. For this reason, the
Green's function is also sometimes called the fundamental solution associated to the

operator L.

2.5.1 Green function method in electrostatics:

For the continuous point charge distribution with charge density (7) , then potential can be

written as

Y(0) =

r

j@dw

4me
The potential is measured at the origin of the coordinate system, the potential at 7= 77 due

to charges at 7= 7, is given as

1 p(73)
) = —— = d37 2.15
Vi) = o [ e d, (2.15)
The potential using Green function is written as
- 1 > o - -
W) = — [ GG PG, (2.16)
0
Comparing equation (3) and (4) we get,
)= 4|ty — 7|
2.6 Bessel Function
Bessel differential equation is
d’y  dy
2 2 2Va, —
xm+xa+(x —n°)y=0 (2.17)

Where n is an integer or a half integer. Solution for this equation is known as Bessel
function.
To get singular points and solutions for the equation (2.17), modify the equation as
d’y dy n?
2 2
X=—+x—+x°|1—-=|y=0
dx? dx x2 )Y

Dividing by x?, we get

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
33



1 n
Let P(x) = o and Q(x)=1- v

There is a singular point at x = 0. The singular point is regular as
(x —0) P(x) and (x —0)2Q(x)

Both are finite at the point x = 0. ie., the singular point is irregular. By Fuchs theorem,

Bessel equation has a series solution. They are given as,

z a, X" ay # 0 (2.18)

m=0
On differentiating with respect to x, we get

[oe}

y = Z a, (m+ k)xm+tk=1 (2.19)
m=0
and
y' = Z a, (m+k)(m+k—1)xm+tk=2 (2.20)
m=0

Substituting equations (2.18), (2.19) and (2.20) in (2.17) we get

oo

Z a, (m+k)(m+k—Dx™tr + z @y (m+ k)x™* + (x? — n?) Z Ay x™tE =0

m=0 m=0 m=0

Za [(m+ k) (m+k —1) + (m + k) —n?]x m+k+za xmHkH2 Z

m=0 m=0

oo

Z a, [(m+k)? —n?]xm+k + Z a, xmt2 =0 (2.21)

m=0 m=0

Equation (2.21) is a polynomial equation. Equating the coefficient of the lowest power of x

to zero, we get
ag (k? —n®>)=0, sinceay #0, ~ (k*—=n?)=0, k?=n?> and k= +n
Equating the coefficient x**1 to zero, we get a; [(1 + k)? —n?] =0

Fork = +n,wehave [(1+ k)? —n?] #0and ~ a; =0
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Further equating the coefficient of x**7 to zero, we get a, [(r + k)? —n?] +a,_, =0

—_ ar—2
T T etk +k—n) (222)

Since a; = 0, equation (6) givesa; =as =a; =--=0
But ay # 0, we have non —zero values for a, , a4, aq,

Case1 whenk =n,

a. = G2
’ (r +2n)r
_ Ao _ Ao
2= T 2 22+ D)
_ a _ a _ Ao _ Qo
“= TGy 2:4n+2) 22+ 1D2-4(n+2) 24-1-2(n+1)(n+2)
_ ay _ Qy _ Qo
%= T6+2m6  2-6(n+3) 26:1-23m+Dn+2)(n+3)
Qo
= (1) 2.23
G =Y S T 3t D D ) 22
1
If we take ay = m (224)
Put (2.24) in (2.23), we get
- -1y - (2.25)
Gar = 2 T(n+ 71 + 1) '
Sincea; =az =as =a; = =0, equation (2) can be written as
y = Z Ay, X" ay # 0 (2.26)
r=0

Substitute (2.25) in (2.26) we get the Bessel function of first kind of order n, and is denoted
by Jn ()

had (_1)rxn+2r i (_1)r x n+2r
= = - 2.27
Jn () Z(:)Z"+2Tr!F(n+r+ 1) _Or!F(n+r+ 1) (2) ( )
Case 2 whenk = —n, ie replacing n by —n in equation (2.27)
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it (_1)7” x 2r—nm
Jon(x) = z rIT(r—n+1) (E)

r=0
Since the argument of Gamma function must be greater than zero, we have
2 (_1)r x 2r—nm
Jon(x) = z 3) (2.28)

riT(r—m+1)

r=n

Putr = s+ nin equation (2.28), we get

(_1)S+Tl 2s+n > (_1)5 2s4+n
) %)

Jon () = 2 =D L T(n+s+Ds!\2

Li(n+3)IT(s + 1)
= (D" (x)
Thuswe have J_,(x) = (=1)"/n(x)
Therefore the linear combination of J,(x) and J_, (x) is the solution of Bessel equation
y=ALh@)+B],(x) = A,(x)+B(=D"(x) = [A +B(-1)"Jn(x) =CJ,(x)

Cis a constant therefore J, (x) is the general solution of Bessel differential equation (2.17).

2.6.1 Special cases for Bessel function/,, (x)

- (-1)" (E)Zr

We have Jo(x) = el o

r=0

2 1 4 1 6
=1-G) * @yl —ErG)

Then J,(0) = 1, we have

(-1)" (x)2r+1

Ji(x) = LG+ 1D1\2

1, 1 51 7
=§—z(§) +ﬁ(§) —@G) o

Thus J;(0) = 0, similarly J,(0) =0 whenn = Oie.,J,,(0) = &y, where &, is Kronecker

delta function which has value one if n = 0 otherwise zeroifn # 0

- (-1)"  ,x 2r+7
]%(x) - Z riT'(r+ %) (E)

r=0
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1 /x\2 1 /x\2 1 X\2
=@(§) ‘@(E) +21r(§)(5) o

2 \2 X N
=(a) [ 3! 5_7*‘ l=<_
]_%(x) = i(;)zr—i

1
—riT(r+ 5)

3

1 /x —% 1 /x\2 1 X\2
=@(§) —@(z) +2!F(§)(§) T

1
_(2)51 x2+x4 x6+ _(2
 \mx 21 41 6! - \mx

2.6.2 Generating function for/, (x)

1
The function e*¢™2/2 is known as generating function for the Bessel function of first kind

because J,, (x) is coefficient of t™ in the expansion of this function. ie.,

1
e (/2 = Z]n(x)t" (2.29)
Proof:
Xt
We know thate*t/? = (2.30)
2"r!
r=0
and
3 s (_1)sxst—s
e = N e (2.31)
s=0 '

product of equation (2.30) and (2.31) is

ex(t—%)/Z _ had xrtr had (—1)stt_s _ i e (_1)sxr+str—s

2"r! 25s! 27tsyl sl
r=0 s=0 r=0s=0

(2.32)

Putr =n + s in equation (2.32) we get
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ex(t—%)/Z _ i i (_1)sxn+25tn
2n+25(n + s)!'s!

s=0n=-s

> > (_1)5 n+2s N
- @

n=-—s

= > L (233)

n=-—s

Putn 4+ r = s in equation (2.32) we get

ex(t—%)/Z _ Z (_1)n+rxn+2rt—n
22T (4 1)l r!

r=0n=-r
il . > (=1)" x|
- an(_l) [Z;rlf‘(n+ r+1) (E) ]t
= Y D@ = ) L@ (2.34)

Replacing —n by n in equation (2.34) we get
1
eXED/2 = Z 1. ()" (2.35)
n=r

1
This proves that in the expansion of the generating function e*/2 the coefficient of t"

is Jn (%)

2.6.3 Recurrence relations for/,, (x)

Relations among various orders of the Bessel function are known as recurrence relations.

We have
1 o0
e /2 = Z]n(x)t" (2.36)
n=r

(i) Differentiating (2.36) with respect to t, we get
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X2 E <1 + tiz)] = i]n (Ontnt (2.37)

Then (2.36) in (2.37) we get,

5+ tlz)]z Ju(0)E" = i JuCGOn 71 (2.38)

Equating the coefficient of t™ ! on both sides of (2.38) we get

“In1 () + 5 s (¥) = m ()

2m
Jm-1(x) + Jp1(x) = TIm(x) (2.39)

(ii) Differentiating equation (2.36) with respect to x, we get

ex(t—%)/z E (t _ %)] _ i]," () £ (2.40)

Then (2.36) in (2.40) we get,

-2 heor = anoc) " (241)

Equating the coefficient of t™ on both sides of (2.41) we get

1 1
E]m—l(x) + E]m+1(x) = ],m (x)

Jma1 () = Jna(0) = 2], (x) (2.42)

(iii) Adding Equations (2.39) and (2.42) we get

2m
2]m_1(X) = TJm(x) + 2],m(x)

x] () = x o1 () — m Jp () (2.43)
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e =S

(iv)  Subtracting equation (2.42) from (2.39), we get

2
U1 () = (@) = 2 (@)

x] () = mJp (%) = )i (x) (2.44)

(v)  Putm=0in (2.44) we get x]ro(x) = —xJ;(x) or ]IO(X) = J1(x)

(vi) Putm= % in equation (2.39), we get

1
]_%(x) + ]g(X) = ;]%(X)

1
]%(x) = ;]%(x) —]_%(X)

On using the values of Ji(x)and ] 1(x), we get
2 2

2 [sinx
J3(x) = —[ —cosx]
2 X
(vii) Put m= —% in equation (2.39) we get

1
]_%(x) + ]%(X) = —;]_%(x)

1
]_;(x) + ]%(X) = —;]_%(x) - ]%(X)

On using the values of Ji(x)and ] 1(x), we get
2 2

1 (2 2 2 rcosx _
J s(x)=—— |[—cosx— |—sinx = —[ +51nx]
2 X || Tx X nxl x
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2.7 Legendre Differential Equation

Legendre differential equation is

d*y dy
2 —
1-x*)—-5—-2x — +nn+1y=0 (2.45)

Where n is a positive integer. Solution for this equation is known as Legendre function.
Rewrite the equation as

d?y 2x dy nn+1)

— — 4+ — vy =0
A’ A-xDdx  (A-x2)"
_ 2x __n(n-1)
let P(x) = —7 and P(x) = -
The singular points are x = —1 and x = 1. The singular points are regular as (x + 1)P(x)

and (x + 1)2Q(x) both are finite at x = —1 and (x — 1)P(x) and (x — 1)2Q(x) both are

finite at x = 1. By Fluchs theorem, Legendre differential equation has a series solution. ie.,

y = Z ay, x¥™ag # 0 (2.46)

m=0

Differentiating (2.46) with respect to x, we get

[ee]

d
% = Z a,, (k —m)xk—m-1 (2.47)
m=0
d? c
d—xf - 2 a,, (k —m)(k —m — 1) xk—m~2 (2.48)
m=0

Using equations (2.46), (2.47) and (2.48) in (2.45) we get

[oe]

1-x% )Y a,(k—-m)(k—m—Dx*™2 — 2x Y a, (k—-—m)xk™1 +
2, 2

m=0
nn+1) Z a, xk¥m =0
m=0

[ee]

z a,, (k—m)(k —m — 1)xk—m2

m=0

[00]

— Z a, [(k—m)k—m+1)—nn+1D]xk™=0 (2.49)

m=0
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Equation (2.49) is polynomial equation and it can be satisfied only when coefficient of each

power of x is equal to zero. Equating higher powers of x to zero, we get
aplk(k+1) —n(n+1)]=0 or agk—m)(k+n+1)=0

Since ay # 0, thereforek =n or k = — (n + 1), then equating the coefficient of x*~ to

zero, we get

ailk(k—1)—n(n+1)]=0 or aj(k+n)(k—m—-1)=0

Forbothcases k=n andk= —(n+1),wehave (k+n)(k—n—1)#0,~ a; =0
Then equating the coefficient of X~ to zero, we get

a,_,(k—r+2)k—-r+1)—af(k—1r)(k—7+1)—n(n+1)]=0

So that
(k—r+1D)(k—7r+2)
= - _ 2.
T T M+ ) — k- k—r+ 1) Y2 (250)
a; = 0, equation (6) gives az =as =a;:--=0,

Case 1.When k = n, we have

nm—-r+1)n-r+2)

MMt D ——-D—-r+1) 2
_ (n—r+1Dn-r+2)
T r2n—r+1) 2
So that
_ nn-—1)
2= 3on-%
. (n=2)(n-3) _nn—1)(n—-2)(n—-3)
T T n—3) 2 T 2 aan-1n@2n-3) ®
. (=4 -5) o nn-1n-2)(n-3)(n—-4)(n—5)
%= T T en—5 “ T T 2:2-62n-D@2n-3)2n—5) °
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nn—1)(n-2)(n—-3)

G =) = D=3 (2.51)
Consider
(2n)!
%= ) (252)

Put (2.52) in (2.51) we get

nn—1n-2)(n—3) (n—2r+1)(2n)!
2-4-2r(2n—1)(2n —3) --- - (2n—2r 4+ 1)2™"n!n!

azr = (=1)"

nn—1)n—-2)(n—3) - (n—2r+1)(n-2r)(2n)!
2rtnrl2n—1)(2n —3) - -+ 2n—-2r+1)(n—-2r)In'n!

= (-1

n!(2n)!2n(2n — 2) -+« - (2n—2r+2)
2rtnpl2n(2n — 1) -« - 2n-2r+2)2n—-2r+1)(n—2r)!n'n!

= (-1

2n)!12"n(n—1) - n—r+1)(2n—-2r)!
2rtnyrin! (2n)! (n — 2r)!

= (-1

nmn—1)---- n-r+1)(n-r)2n-2r)!

=(—=1)"
1) 2nrinl(n—2r)!(n—1)!
(1Y (2n — 2r)! 253
=D 2nrl(n—2r)! (n —1)! (2.53)
Sincea; =az =asg =a; = - = (0 then equation (2.46) can be written as
y = Z Az X" ay # 0 (2.54)
r=0

Substituting (2.53) in (2.54) we get solution of Legendre differential equation, denoted by

P, (x), ie.,
N

y =BG = ) (-1

r=0

(2n — 2r)!
2l (n=2r)'(n—r)!

X2 (2.55)

P, (x)is known as Legendre polynomial of first kind. The factorial function cannot be a

negative number, therefore the upper limit for r is changed from infinity to N

Case 2: when k = —(n + 1), equation (6) becomes
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n+r)in+r-—-1)

o = r@2n+r+1) br-2
So that
(4 2m+1)
2=y 3) W
_(m+4+3) m+DM+2)(n+3)(n+4)
=T 2n+s) 2T T 2-a@2n+3)@2n+5) 0
_(n+6)(n+5) (m+Dn+2)(n+3)(n+4)(n+5)(n+6)
%= Ten+7) “T 2-4-6(2n+3)(2n+5)(2n+ 7) %

B m+1DMm+2)- - (n+2r)
Gr =4 6 2r2n+3)(2n+5) -~ 2n+ 2r + 1)

(2.56)

Consider

2"n!n!
= ——(2.57
% = Gry &)
Put (2.57) in (2.56) we get

B n+1DMn+2)- (n+ 2r)2"n!n!
Gr = 4 6 2r(2n+3)(2n+5) - (2n+ 2r + D2n + 1!

B (n+2r)'12"n!'2n+2)2n+4) - - (2n + 2r)
C2ri2n+2)2n+3) - 2n+ 2r)(2n + 2r + D)(2n + 1)!

_(m+2n)!2"nt(n+ D(n+2)- - (n+7r)2"  2"(n+2r)!(n+r)!
B 2! (2n + 2r + 1)! ol @n+2r+1)!

(2.58)

Sincea; =az =as =a; =+ = 0 then equation (2) can be written as

y = z Ay x 172 £ 0 (2.59)
r=0

Put (2.58) in (2.59) w get the solution of Legendre differential equation, denoted by Q,, (x) is
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e =S

[0e]

~ 2+t
Y—Qn(")‘z n+2r+ 10

r=0

Q,,(x)is known as Legendre polynomial of second kind.

The linear combination of B, (x) and Q,,(x) is a solution of the Legendre differential

equation.

y = AP, (x) + BQ, (x)

A and B are two arbitrary constants.

2.7.1 Some specific cases forP, (x):

(i) Py(x) =1
(i)  P(x)=x

(i) Py(x) = % (3x% — 1)

(iv)  Ps(x) =3 (5x° - 3x)

(v)  P(x) = 3 (35x* —30x% + 3)

(Vi)  Ps(x) = 3 (63x5 — 70x° + 15x)

(vii)  Po(x) = - (231x5 — 315x* + 105x% — 5)

Vil) P (0) = (=D"B(=x) or PBi(=x) = (~1)"P,(x)
0 P(D)=1
6 P(=1)=(=1)"

: _ (1)
(xi) P (0) = e
(xi))  P2p41(0) =0

(xiii) P, = P,

2.7.2 Generating function of P, (x):

The function (1 — 2xt + tz)_l/2 is known as generating function for the Legendre function

P, (x). B,(x)is the coefficient of t"in the expansion of the function. ie.,

(1= 2xt + £2)1/2 = Z P, (x) t" (2.60)
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Proof: (1 —2xt+t%)"V/2 =[1- (th —t3)]

1-
=1+ —(th —t2) + —— ET (th —t?)? + EET (th —t?)3 +
1-3:5--(2r—-1) .
-1+ Z - (2xt — t2) (2.61)
r=1
Then
2 X r! —k(_ 2Nk
(th— t ) = ZW(ZﬁCt) (—t )
k=0
= ZT: (_1—)kr| (Zx)r_ktHk (2.62)
k—Ok! (r—k)! '

Put (2.62) in (2.61), we get

S (—1)F1-3-5-(2r — 1)
Z 27k (r — k)!

(1—2xt +t?)"/2 = (2x)" gtk

(=1*(2r)!

r—k sr+k
L 27 71kl G = R (2x) ¢

Il
NgE

r=0k

ltshowsthat 0 <k <r and r =0 putr - n—k thenthe conditions are

0<k<(n—-k) and (n—-k)=0
The condition 0 < k < (n — k) is equivalentto0 < k <n/2
For this condition 0 < k <n/2, when k=0, n>0
and when k=n/2, (n—n/2)=0o0or n=0

let N= n/2 or (n—1)/2 whichever is an integer

2y-1/2 Y (—D*(2n — 2k)! (2x)" 2k .
(1 — 2xt + t?) = Zkzzzn —2k(n — k)! k'(n—Zk)lt

00 N o
(-D*@2n - 2k) x" 2| .
Z;LZ:O 2"(n—k)!k!(n—2k)!]t - ;P”(x)t

ie., the coefficient of t™ in the expansion is P, (x)

(2.63)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

46



2.7.3 Recurrence relations forP, (x)

Relations among various orders of Legendre function are known as recurrence relations.

(1-2xt+t?)"V2 = Z P, (x)t" (2.64)
n=0
Differentiating with respect to t we get
1 2\-3/2 -1
—3 (—2x +2t)(1 — 2xt + t*) = Z B, (x)nt"

(x—t)(1 —2xt +t2)"V2 = (1 — 2xt + t?) Z P, )nt™ 1 (2.65)
Equation (2.64) in (2.65) ,we get

(x—1t) Z P (Ot = (1 — 2xt + t2) Z P, (x)nt" (2.66)
Equating the coefficients of t™ on both sides of (2.66) we get
XPy (%) = Pp—1(x) = (m + 1Py 41 (x) — 2xmPBy (x) + (m — 1)Pp 1 (x)
Re arranging the equation we get

Cm+ 1DxP,(x) =(m+ 1P 1 (x) + mP,,_1(x) (2.67)

(ii) whenm s replaced by m — 1 in equation (2.67) we get
(2m — DxPp_1(x) = mB, (x) + (m — )P, (%)

Then we get

mPy, (x) = 2m — 1)xPp_1(x) — (m — )Py, _»(x)

(iii) Differentiating equation (2.64) with respect to x, we get
1 2\-3/2 '
S (2001 - 2xt + 1) 73/2 = an GOt
t(1—2xt +t>)73/2 = Z P, (x)t"

t(1—2xt +t2)" V2 = (1 - 2xt +t%) Z P, (O)t" (2.68)
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put (5)in (9)we get, tz P, (x)t" = (1 — 2xt + t?) z P, Ot (2.69)
Equating the coefficients of t in (2.69), we get
Pr1.(x) = Py (6) = 2Py 1 () + P (x) (2.70)
(iv) Replacing m by m+ 1in (2.70) we get
P (%) = Py () = 22Bp (x) + Py (%)

Rearrange the equation as

P i1 () + Py (x) = P (x) + 2xPy, (%) (2.71)
(v) Differentiating equation (2.67) with respect to x, we get

@Cm+ DxB, + @m + 1P, = (m + 1Py, .1 (x) + mP,,_ (x) (2.72)
Multiplying equation (2.72) by 2, equation (2.71) by (2m + 1) and then adding ,we get

(2m + P () + Py (%) = Py () (2.73)
(vi) Replacingm by m —1in (2.73), we get

(2m = DPp 1 (1) + Py (x) = Pp(x) (2.74)

2.8 Hermite Function

Hermite differential equation is

d’y e @ 4 ony =0 2.75
a2 K ax T T (2.75)

Where n is positive integer. Solution for this equation is known as Hermite function. To find

singular points and series solution of the equation, consider P(x) = —2x and Q(x) = 2n

There are no singular points. By Fuchs theorem, Hermite differential equation has a series

solution
y = Z anx*™ay # 0 (2.76)
m=0
On differentiating equation (2.76) with respect to x, we get
dy \ e
e a,, (k —m)xk—m-1 (2.77)

m=0

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

48



And
dZ
gy _ a,, (k—m)(k —m — 1)xk—m=2 (2.78
dx?

m=0

Using (2.76), (2.77) and (2.78) in (2.75), we get

Z a, (k—m)(k—m—1)xk""m2 4 Z a,2n—k+m)xk™ =0 (2.79)

(2.79) is polynomial equation. Equating the coefficient of the highest power of x to zero, ie.,
ag(n — k) = Osince ay # 0,k = n, then equating the coefficient of x*~! to zero,ie.,
ai(n—k+1)=0  For k =n we have (n —k + 1) # 0 and therefore, a; = 0. Further
equating the coefficient of x*~" to zero, we get
a,_,(k—r+2)(k—-r+1)+2a,(n—k+r)=0

_(k—r+2)(k—r+1)

= _ 2.80
aT Z(Tl _ k + T') a’T 2 ( )
Since a; = 0 equation (6) givesa; = as = ay - -+ = 0 then for k = n, we have
n—-r+2)(n—-r+1)
ar = — 2 r—2
nn—1)
a, = —Tao
n-2)(n—-3) nn—1)n—-2)(n—-3)
N P 2421 %o
n—-4)(n—-5) nn—1)--(n—75)
=TT 6 M7 263 %o
nn—1)Mm-2r+1) (=1D)n!
ar = (=1 2277 = oz (281
Let ap = 2" and substitute in (2.81) we get
B (-D'n!
Gar = Dar—np (= 2r)! (2.82)
Sincea; =az =as =a, - = 0 then equation (2.76) can be written as
y = Z Ay x" " ay # 0 (2.83)
r=0
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Substitute (8) in (9) we get solution of Hermite differential equation denoted by H,, (x)

N

- (D (-1)"n! .
y = Ha(x) = 22T_"r!(n—2r)' Zr'(n 2r)' 2x)"

r=0 r=0

2.8.1 Some Specific cases forH,, (x)

(i) H,(x) =1

(ii) Hy(x) = 2x

(i)  Hp(x) =4x%2 -2

(iv)  Hz(x) =8x3—12«x

(v)  Hi(x) = 16x* — 48x% + 12

(vi)  Hs(x) = 32x°> — 160x3 + 120x

(vii)  Hg(x) = 64x° — 480x* + 720x% — 120

(-1)"/2n)
(n/2)!

(ix)  H,(0) = 0 when nisodd integer
x)  Hp(=x) = (—1)"H,(x)

(viii)  H,(0) = when n is even integer

2.8.2 Generating function forH,, (x)

2xt—t?

The function e is known as generating function for Hermite function. The coefficient of

. .. H . 2 H.
t™ in the expansion |s% ie.,e?Xt=t" = Z%tn

Proof: we know that

2x)TtT

(2.84)

”MS

And

had -1 StZS
ot = S D (2.85)

s!
s=0
The product of (2.84) and (2.85) is
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p2xt p=t? _ i (2x)rtrz( 1)5¢2s

. ® = (_1)5(2x)rtr+25
eH T = Z str! (2.86)
r=0s=0
Put r=n—2s in(2.86)we get
ezxt—tz B Z (_1)5(2x)n—25tn
- 1 (1 — I
LSt (n — 2s)!
Z ( Dnt (o) t" = an(X) t" 2.87
n! sl (n—2s)! h n! (287)
s=0 n
Hy (x)

This shows that the coefficient of t" of the expansion of g2xt—t? jg fnlX)

2.8.3 Recurrence relations forH,, (x)

The relations among various orders of the Hermite function are known as recurrence
relations

(i) We know that

p2xt—t? _ ZH (x) (2.88)

n!
n

Differentiating equation (2.88) with respect to t, we get

H,(x
e2Xt~t (2x _ 2¢) = z % n gt (2.89)

n

Substitute (2.88) in (2.89) we get

2(x — t)ann—(!x)t“ = ZH”—(x) ntt! (2.90)

n!
n

Equating the coefficient of t™ on both sides of (2.90) we get

Hm (x) ) Hm—l(x) _ Hm+1(x)

2 =
Sl (m-1)! m!
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2xH,, (x) = Hpyq (x) + 2mH,, _1(x) (2.91)

(ii) Differentiating equation (2.88) with respect to x, we get

H' (x
e2xt-t’t = Z%t" (2.92)
Substitute equation (2.88) in (2.92) we get
H, (x H', (x
ZtZQt" - zﬁt" (2.93)
n! n!
n

Equating the coefficient of t™ on both of (2.93) we get

Hy1(x) _ Hp(x)
(m-1)! m!

or 2mH,_(x) = H,(x) (2.94)

(i)  Equating the coefficient t° we get H,, (x) = 0

(iv)  Substitute the value of 2mH,,_;(x) from equation (2.94) in (2.91) we get

2xHp, (x) = Hpiq (x) + Hr,n (x)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

52



UNIT IV : FOURIER AND LAPLACE TRANSFORM

Fourier transform-properties of Fourier transform-convolution — Fourier cosine and sine
transform-Fourier transform of derivatives- Application of Fourier transform-vibrations in a
string-Laplace transform-inverse Laplace transform- Application of Laplace transform-Simple
Harmonic motion

3.1 Fourier Transform:

The Fourier transform g(k)of a functionf (x) is defined by the equation

— L [ —ikx
g(k)—m_[of(x)e dx

It is denoted by g(k) = F{f(x)}

The equation which gives (x) , for a known value of g(k) is called the inverse of Fourier

Transform ie., f(x) = F1{g(k)} = \/%f_“’wg(k) ethx gy

Examplel: Find the Fourier transform of Gaussian function f(x) = e*’

Solution:

By definition of Fourier transform we have, g(k) = \/%_nf_ww f(x) e ™ dx

1 [ .,
-'-g(k) — T fe—x e—lkJCdx
VA
1 [ .
gk) = N fe"‘z_‘kx dx
s
1 [ .
g(k) — > j e—(x +ikx) dx
T
X KX = X ) > = X X > 4 4 = X LKX
ik\2  [ik\2
Then g(k) = \/%_”f_oooo e_{(x+7) _(7) }dx
00 i 2 i 2
= %j e_(x+7k) e(?k) dx
VAT J_o

2 &) i 2
= \/%e_kfj e_(x+7k) dx
T —o0
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Thus Fourier transform of a Gaussian function is another Gaussian function.

3.2 Properties of Fourier Transform:

3.2.1.Addition theorem or Linearity theorem:

Iff(t) =a fi(t) +arfo(t) + -+ + a, f,,(t) then the Fourier transform of f(t) is

given by g(w) = a;91(w) + ag,(£) + -+ + a,gn(w) where g;(w), g(w), -+ In(w)
are Fourier transform of f; (t), f,(¢t), -+ -+ fr(t) and a4, ay, -+ -+ , 4, are constants.

Proof:

The Fourier transform of f(t) is given by

() = if (©) ettt

1 [ .
s glw) = \/T_n_!o [a fi(®) + ayfo(t) + - +a,f, ()] e @t d¢

g(w) = ay— f il et dt + ay—— f fo(£) et dt 4 e oo

1 .
+a, \/T_T[_j fr(®) e tdt

ie,g(w) = a191(w) + azg,(w) + - + a, g, (w) Hence proved.

3.2.2. Similarity theorem or change of scale property:

If g(w) is the Fourier transform of f(t), then Fourier transform of f(at) is % g(w).

Proof:

1 [ |
We have, F.T{f(t)} = glw) = T Jf(t)e‘“"tdt

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
54



Then F.T {f(at)} = g(w) = \/% ff(at) ewtdt

and dt = —

y dy
a a

Put y=at, -~ t=

Therefore F.T {f (at)} = \/%— f f(at) e—ia)%%y
T

= %\/%_[o o) eV ay =%g(%)

3.2.3. Fourier transform of the complex conjugate:

If g(w) is the Fourier transform of f(t) then the Fourier transform of the complex
conjugate of f(t) will be given by g*(—w); where * indicates the complex conjugate of the

corresponding complex function.

Proof:

1 .
We have, g(w) = T f f(t) e @tdt
T

1 |
Taking complex conjugate on both sides g*(w) = \/T_ f f*(t) etdt
T

1 .
Replacing wby - w,we get g*(—w) = T f Fr(0) e @t dt
V2m

Therefore g*(—w) = F.T.[f*(t)]

3.2.4. Shifting Property:

If g(w) is the Fourier transform of f(t) then the Fourier transform of f(t + a) will be given

by e*“?g(w) where ais any constant.
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Proof:
F.T.[f(t+a)] = L ff(t+a)e—iwtdt
t m_m s
Put(tta)=y; t=y+a ; and dt=dy

1 7 o
PIUC Q)= = f F(y) e 0OFOgy

_. 1 r .
— e+1wa\/7_n- ff(y)e—lwydy

— e?iwag(w)
ie., If a function be shifted in the positive or negative direction by an amount a, no Fourier

component changes in amplitude, but its Fourier transform suffers phase changes.

3.2.5. Modulation Theorem:

If g(w) is the Fourier transform of f(t) then the Fourier transform of f(t) cos at is given by

%g(a)—a)+ %g(a)+a).

F.T.[f(t)cosat] = \/% ff(t)cosat e wtqt
s

1 < eiat _l_e—iat
= —_—— - —iwt
mf FOE— et

Sy e | |
= —|— —i(w—a) —i(w+a)
| \/E{ j_oof (te dt + f(t)e dt }l

[ 1 @ . 1 @ .
— _ —i(w—a) _ —i(w+a)
2_\/%j_oof(t)e dt+mj_oof(t)e dtl

1
= E[g(w —a)+ g(w+a)]

Convolution: The convolution of two functions f(x) and g(x) is defined as

FG) * () = j FG)g(x — a)da

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
56



3.2.6. Convolution Theorem:

The Fourier transform of the convolution of f(x) and k(x) is the product of their
Fourier transforms. ie., F{f(x) * k(x)} = F{f(x)}- F{k(x)}

The convolution Theorem involving Fourier Transform: An integral, I(x) of the form

1 o0
1) = Ei - k(E) de

1 (o]
\/T_ j f(®k(x — &) dé is known as a convolution integral in the interval
I

(-Ooi +OO)
1 (® .
Taking the Fourier transform of 1(x), F{I(x)} = — | I1(x)e™** dx
V21 J oo
= — [ emrar— [ ot oa
21 J oo 21 J oo
As et e7ihx = o0 =1 multiply the RHS of the above equation by e~ e~ik*

R N R S T ik
= | kGx=9)e dr—— | e ag

In the 1st integral change to x = x — & ,we get

F{I(x)} = F{k(x)}  F{f(x)} Thisis the convolution theorem.

3.2.7. Pasevals Theorem:

The Fourier transform of a convolution integral is given by the product of transform of the

convolving functions. Let f(t) be given convolution integral

1 ¢ |
@) = EL A1) fo(t — et dt

The Fourier transform of f(t) is
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1 [ [

9@ = FT.IFO1 = o [ | A@ ) drde
1 ( N, —iwt g4/ * —iwt ,iwt’ /
=5 ffl(t)e dtf e et fH(t—t") dt
1 ( N —iwt ’ 00 —iwt iwt’ /
=5 ffl(t)e dtf e et fo(t—t") dt

1 ( ! ] ' ! * ] ' !
> ffl(t)e“‘*’t dtf e”w=t) £ (t—t') dt
1 [ ! —iwt g4
g1(w) = NiT Jfl(t)e dt
1 [ "N p—iw(t—t) 4’
g2(w) = \/T_T[ sz(t—t)e dt

1 r .
Put t =t-t gy(w)= —2 jfz(t)e"“"tdt
V2T

g(w) = g1(w) g,(w)

3.2.8. Derivative of Fourier Transform:

Ifg(w)is the Fourier transform of f(t) then g(w) = \/% f f(t) e @tdt
T

Differentiating on both sides with respect to w, we get

dg(w) 1 —iwt
do \/_dwf f(t)e dt
= = j Solfe™] at

= —z—j t f(t)e @t dt

= —iF.T.[tf(t)]
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n

dg n n
- = DRt f(D)]

If we dif ferentiate n times w.r.to w we get,

3.2.9. Fourier transform of a Derivative:

Let g1 (w) be the Fourier transform of the first derivative function f(t), then
1 (df
w) = — | —e 7t
g1(w) o _f dt
Integrating by parts f udv =uv — f vdu

et (O], + e | T F©e e = ——[0] + iw g(w)
*© \/ﬁ —o00

(w) = L[ L[
g1lw) = Nz Nz
91(@) = iw g(w)

d
ie., F.T.ofd—]; = iwF.T.of f(t)
df —iwt
dte dt

!

1 . df
=iw — t) e @t dtReplacin t) by — on both sides ,we get
= [r® placing f() by = g

y
o [ Sheaeni f Y i gy
vz ) a2t V21
= (iw)*g(w)
2f
ie., F.T. of = (iw)* F.T.of f(t)
n
Repeating these process n times we get, F.T.of P (iw)" F.T.of f(t)

3.2.10. Fourier sine and cosine Transform of Derivatives:

The Fourier sine and cosine Transform of a function f(t) are defined as
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gs(w) = \/%fooof(t)sinwt dt andg.(w)

d
= ff f(t)coswt dt Fourier sine transform of 1st derivative d_]: is gis(w)

ff —Sma)t dt
2 2 @
g1s(w) = \/;[f(t)sinwt]?f —\/; a)j; f(t)coswt dt

2 o0
g1s(w) =0—-w Ejo f(t)coswt dt

g1s(w) = —w g.(w)

d 2 (°d
Fourier cosine transform of 1st derivative d—]tcis J1c(w) = \/;f d—]tccosa)t dt
0

2 - 2 o0 .
gic(w) = E[f(t)coswt]o + - a)JO f(®)sinwt dt
2 2 2
91:@) = = |7 f@ 0 |~ | fOsinot de i (@) = 0 0.@) = |7 FO

Then Fourier cosine transform of 1st derivative
d*f . 2 (?d*f |
T g2s(w) = \EL Wsma)t dt

g2s(w) = f[— sma)t \/: a)f — coswtgys(w) =0 — w\/:f —coswt dt

ng(a)) = —w glc(w)

2
gas(w) = —w wgs(w)—f; f(0)
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2
ng(w) = _wzgs(w) + \/;wf(O)

Similarly , we can find

2
ch(w) = _wzgc(w) - \/;f,(o)

Problems:

1. Find the Fourier transform of e !t!

Solution:
9@ = — [ e ra
\/27t_oo
. _ 1 o _ —i
Giventhat f(t) = el = g(w) = Ef_ooe It g —iwt gt

0 )
1 . 1 )
= — fete_‘“’tdt+—f e te @l dt
21 \/2710

[00]

0
— 1 fet(l—iw) dt + 1 fe—t(1+iw) dt
VZnO

1 et(l—iw) 1 —t(l—iw) *®
- l l B V2| 1+ iw L

\V2m
_ 1( 1 1 )
_\/zn 1—lw 1+iw

2. Write the Fourier transform of the function f(t)and hence prove moment theorem,

9(w) = Zm—, (—iw)
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where m, = f t" f(t)dt and is known as moment of f(t).

Solution:

The F.T.of f(t) is, g(w) = \/% ff(t)e_i“’tdt

L=+ 3!

1 iwt (ia)t)z_(iwt)3
g(w)—mff(t)l + ldt

1 e (—iwt)n
_\/T_n_[of(t)r;—n! dt

1 e i) [
_ \/E,; - ft £(6) dt

—00

! ; (Ziw)" H d th t th
= m ence prove e momen eorem.
1 n
\/27‘[n=0 n:

3. Find the Fourier transform of the slit function f(x) defined as f(x) = {

Determine the limit of this transform as € — 0 and discuss the result.

Solution:

The F.T.of f(x) is, g(w) = \/%_n Jf(x)e‘i“”‘dx

1 1 e—iwx €
- \/27‘[2[ —iw I_E

1 1 leiwe _ e—iwel
 \2me i

0]

S lxl<e
0, |x| >¢€
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Multiply and divide by 2 we get,

1 2 eiwe _ e—iwe
- \/27‘[5[ 21 ]

sin we

wEe

. . 2sinwe., . . 0
lim., g(w) = ll_r)%\/;Tlt is in the o form

g(a))approaches\/% as € = 0, while the function itself approaches co as x — 0, then the

function and its Fourier Transform are plotted.

—ax

4. Find the Fourier sine transform of

Solution:

2 (0]
gs(w) = - jo f(x)sinwx dx

2 [(Pe ™™
= —J sinwx dx
T)y X

Differentiating w. r. to w, we get

dg.(w 2 [(Pe™™
M = —J X coswx dx
0

dw T X

dgs(w) |2 a
do ~ |ma?+ w?

Then integrating we get g.(w) = \Etan_1 (%) + A
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w=0 g,w) =g,0) =A and g;(w) =0forw =0 A=0

5. Find the cosine transform of a function of x which is unity for 0 < x < a and zero for

X = a.
Solution:
Given that f(x) = {(1) ° <xx><a0

E..T.of f(x)is g.(w) = \Efomf(x)coswx dx

= |- _jaf(x) coswx dx + foof(x) coswx dx]
/0 a

- a o
= [— j 1 coswx dx + f 0 coswx dx]
0 a

2 sinwa
T

3.3. Application of Fourier Transform: (Vibration in a string)

Consider an infinitely long freely vibrating string, let y be the displacement of vibration from

its mean position and satisfies the wave equation

d’y 1d%
axZ- viae G

Where x is the distance measured along the String;
vis the velocity of wave moving along the string: and y is a function x and t

The initial condition of the stringis y(x,0) = F(x)
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isx

Multiplying on both sides of equation (1) by and integrating over the limit (-0, ) we

\2m
get

(5]
<

2 1
eS*dx = )

2y
5 S eitdx (3.2)

N‘H
=
Y

gk

I

It is the Fourier Transform of second derivative

Let
1 isx
Y(s,t) = E ye“*dx (3.3)
’y
isx = (—is)?Y 4
—m j(’)xze dx = (—is)“Y(s,t) (3.4)
1 0°Y
Equation (3.2) becomes (—is)?Y(s,t) = U—Z% (3.5)
62
ie. 6—32}=-st (3.6)

at t=0, equation (3.3) becomes Y (s,0) = \/%fjom y(x,0) e"*dx

1 .
= E_-!; F(x)e"*dx = f(s) (3.7)
A general solution of equation (3.6) is Y(s,t) = f(s)eEst (3.8)

The inverse Fourier Transform of (3.3) is,

y(x,t)

= ‘/%_”_L Y(s,t) e %ds (3.9) Using (8) in (9),We get y(x,t)

— L ff(s)eiivst e—isxds
\V2m
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y(x,t) = \/%:[O f(s)e B5C6Fvt) gg (3.10)

1 .
At t = 0,we have y(x,0) = T ff(s)e‘”x ds = F(x)
T

F (x)is the inverse Fourier transform of f(s), therefore y(x,t) = F(x + vt). This

corresponds to the waves moving in + x and — x directions respectively.

3.4 Laplace Transform

If F(t) be a function of (t) defined for all values of (t), then Laplace transform of F(t) is
denoted by L{F(t)} or F(s) or f(s)isdefined as

[0e]

L{F(t)}= F(s) = f(s)=j F(t)e stdt

0

The parameter (s) is real positive number and the integral exists.

If the integral converges for some value of (), then only the Laplace transformation of F(t)
exists otherwise not. Lis Laplace transformation operator. The operation of multiplying
F(t) by e™*' and then integrating between the limits 0 to oo is known as Laplace

transformation.

3.4.1First Shifting Theorem:

If L{F@®} = f(s),then L{Ee"F(O)} = f(s—a)

ie., iff(s) is the Laplace transformation of the function F(t) and a is any real or complex

number then f (s — a) is Laplace transformation of e® F(t).

f&)= LF®} = f(s—a) = L{e"F(D}

Proof:

[oe] [oe]

F(t)e st dt.L{e“tF(t)}=J e e SLF(t)dt
0

LIF(D} = f(s) = j

0
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= f e~ C—ItE (1) dt
0
Put (s—a)u >0, = f e WF(t)dt.
0

=f(w

Replaceu by f(s—a), then L{e™ F(t)} = f(s — a) hence proved.

3.4.2 Second Shifting Theorem:

F(t—a), t>0

i LEF@) = ) and6(e) = fF 7 L0

then L{G(t)} =e % f(s)

Proof :

By definition, L{G(t)} =f G(t)e st dt.
0

a (o]
= f G(t)e st dt +f G(t)e™stdt, 0<a<ow
0

a

a [ole}
= f 0 e~ Stdt +f F(t—a)estdt
0

a
= f F(t—a)e stdt
a

Put(t—a) = u;t=u+a; dt=du when u=0 ,t=a andu=o ,t=o00

[oe] [oe]

F(w)es@+d) gy = g=sa j F(we*du
0

- LG} = jo

[o¢]

By properties of definite integrals we can write, L{G(t)} = e™¢ f F(t)e st du
0

=e2L{F(t)} = e f(s) hence proved

3.4.3 Laplace Transform of derivatives:

If L{F(t)}=f(s) then L{F'(t)}=sf(s)—F(0);if F(t)iscontinuousfor0 <t<N

and of exponential order for t > N while F'(t) is sectionaly continuous for 0 < t < N.
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Proof:

Casel

If F'(t) is continuous forallt = 0 then = J F'(t)e st dt
0

(o]

=[e ' F(O)]Y —J. F(t)(—se ) dt

0

- L]Lrg(e—“F(t))] —~F(0)+s fooF(t)e—Sf dt
0

= |lim (e~ F(£)] = F(0) + sL{F ()}
lim,_, (e **F(t)) =0, fors>a

LIF'(0)} = sL{F ()} — F(0)

Case2 (i) If F'(t) is merely piecewise continuous, then the integral can be broken
into sum of integrals in different ranges from 0 to oo such that in each of such parts F'(t) is
continuous

We have L{F'(t)} = sL{F(t)} - F(0) and  L{G'(t)} = sL{G(t)} - G(0)
Put G(t) = F'(t), {F'"(t)} = sL{F'(t)} — F'(0)
= s[sL{F(®)} — F(0)] - F'(0)

= s2L{F(t)} — sF(0) — F'(0) = L{F"(t)}

(ii) L{H"(t)} = s?L{H(t)} — sH(0) — H'(0)
Put H(t) = F'(t),  L{F"(t)} = s*L{F'(t)} — sF'(0) — F"'(0)
= s*[sL{F(t)} = F(0)] — sF'(0) — F"'(0)

L{F" ()} = s3L{F(t)} — s?F(0) — sF (0) — F"(0)

(iii) If F'(t) and its first (n-1) derivatives are continuous, then proceeding as above we

have the general case,

L{F"(t)} = s"L{F(t)} — Sn_lF(O) — s”_ZF’(()) o e e — Fn—l(o)
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3.4.4 Laplace Transform of Integral:

If LF(O)} = £(s) then = f(s) = L{f, F(w) du}
Proof: Let G(t) = [J F(w)du then G(0) = [ F(w)du =0
And G () = = |3 F(u) du| = F()
But we know that L{G (t)} = s£{G(t)} — G(0)
~ L{F()} = sL{G(®)} — (0)

1
SHFO} = LGED)]

1 t
—L{F(t)} =L {f F(u) du}
S 0

Problems:

1. Find L{F (1)} if Laplace Transform of the function F(t) = 1
We have L{F(t)} = [" e~s* F(D)dt

~L{F(1)} = Jwe‘“ 1dt
0
_ [e :Sst]:
1

= —le - &)
—S

=—[0-1] = -

N

2. Find L{t"} where n is positive integer if Laplace Transform of the function F(t) = t"

Wehave L{F(D)} = [ e~ F()dt

~ L{t") = f e Stt"dt
0

e —st1*® 0 1 e st
=t" [ ] — nt" dt
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S

1 )" «©
SEN LIy R
0

n [oe]
=0+ —f t" e Stdt
SJo

S S

_n l(n D) fwt”—z e‘“dtl
0

= E(TL — 1) (n _ 2) footn—3 e Stdt
s s s 0
Repeating for n times we get,
n! (%
Y e_St dt
$7Jo
_nle— st]°° _nl 1]°° B n!
T sn| —s 0 T gn slo - sn+l
3. FindL{e% }
L{e%} :f oSt pat Jt
0
e
0
le—@—a)f c 1 0y 1 1
= |— = e _——m—m = ==
—(s —a), —(s—a) (s—a) (s—a)
4. Find L{sin at}
L{sin at} =J e Stsinatdt
0
iat __ ,—iat 00 eiat _ e—iat
inat = ———— Then, L{sinat} = St dt
sina > en, L{sin at} J;) e 57

lj e—steiatdt _f e—ste—iatdt
2i{J 0 ]

— l fooe(ia—s)t dt — fooe—(ia+s)t dt
2i]Jo 0 |
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'e(ia—s)t e—(ia—s)t ®

Z_(ia—s)+(ia+s) 0

17 1 1
3+t
20l ia—s ia+s

_ 17 (ia+s+ia—5)]

2il —q? — s2
_ 17 ( 2ia )]
2l \—(a?2+s?
B a
~ (a? +s?

5. Find L{e~*(3 sinh 2t — 5 cosh 2t)}
LIF(©)} = f(s) then L{e"F(t)}=f(s—a)

L{sinh 2t} =

and L{cosh2t} =

52_22 52_22

2 s+1

—t o _ —t — _
3L{e " sinh 2t} — 5L{e" " cosh 2t} = 3 GrDI-22 5 GrDI-22

_6-5(s+1)
T (s+1)2-22

B 1—-5s
 s242s—3

Problems: (for Second Shifting Property)

cos(t—z—ﬂ), t>2_n
6. Find L{F(t)} if F(t) = 3 5
0, x< EY

LEF(D)} = j P et F(t)dt + L :Oe_“ F(t)dt
0 3

Z?H *© 21
= j e st 0dt + J e St cos (t — ?> dt
0

2
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21 21
Putt——=u, fort= 3 ,u=0;and for t = oo,u = oo then t can be written as

3
‘= 21
* —s(u+2—”)
~ L{F(t)} =f e 3/ cosudu
0
_ams
=e 3 e % cosudu
0
s s
= 3
¢ s2+1
_2ms
_ se 3
s+ 1
0,
7. Evaluate L{F(t)} where F(t) = { t,
0,

(o]

L{F(t)}=J e SLF(t)dt

0

[o¢]

1
=]e‘“0dt++J e Stodt
0

2
2
=] e Sttdt
1

e—st2 Ze—st
- [

1. 1, B
= — ze S e S+—(€ S e S)]
SL S
2 1 1 ) 1
=——+ ;es— e S +—=e

0<t<l1
1<t<?2
t>2
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8. Derivative Problems: Evaluate (i) £{1} = % (i) L{t} = L and (iii) L{e*} = S%

52 a

using Laplace Transform of derivatives
(i)  L{F(®}= sL{F(O)} - F(0)

Giventhat F(t)=1, ~F'(t)=0, and F(0)=1

Substituting we get, L{0} = sL{1} -1

0= sL{1}—1 -~ L{1} = %

(i)  Giventhat F(t)=t, ~F'(t)=1, and F(0) =0
£{1} = sL{t} -0, but L{1} = -

1 1
== sL{t} and therefore L{t} = 52

(ili) Giventhat F(t) =e%, ~F'(t) =ae*, and F(0) =1
Substituting we get, L{ae®} = sL{e®} -1
aLl{e®}= sL{e®}—-1
1 = sL{e®}—a L{e%}
ie., L{e*}(s—a) =1

1

S L{eat} = s —a

9. Using the derivative equation L{F"(t)} = s?L{F(t)} — sF(0) — F'(0) show that
L{sinat} = o
Solution:

Giventhat F(t) =sinat, ~ F (t) = acosat, F (t) = —asin?at ;
F(0)=0, F'(0)=a

L{—a?sinat} = s®L{sinat} —s(0) —a

—a’L{sinat} = s’L{sinat} —a

L{sinat}(s’+a?) = a
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L{sinat} =

s?2+a?
10. Problem of Transform of integrals:
(i) Evaluate £ {fot sin 2u du}
We have
in2t} = =
Lisin2t) = 57— = f(s)
s
L{F(u)du} = g

t
. 2
s L {J;) sm2udu}— m

tsint
(ii) Ewvaluate L{f . dt}
0

We have L{F(t)} = f(s),and L {F(u)du} = @ and L {%t) dt} = f f(s)ds

1
L{sint} = T f(s)

Lj‘tsint it _j‘o 1 4
0o T
S

] == —tan~
s]$ == —tan
$ 2

1 1

= [tan~ s=cot™ls

3.5 Inverse Laplace Transform

Partial fraction method:

Any rational function %where P(s) and Q(s) are polynomials with the degree of P(s)

less than that of Q(s) can be written as the sum of rational functions (called partial fraction)

As+B
(as+b)" ' (as?+bs+c)"

having the form where r=1,2,3,......... By finding the inverse Laplace

transform of each of the partial fractions we can find L™1 {%}
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Example:

25— 5 __A , B C D
Bs—H@2s+1? 35—4  @s+D3  @s+1)? 2s+1

1.

352 —4s+2 _ As+B N Cs+D N E
(s2+25+4)2(s—5) (s2+2s+4)2 s2+2s+4 s—5

Inverse Laplace Transform definition:

If the Laplace transform of a function F(t) is f(s) ie if L{F(t)} = f(s), then F(t) is called an
inverse Laplace transform of f(s).ie, F(t) = L {f(s)}

Where L1 is called the inverse Laplace transformation operator.

Problems:
3s+7 }
s2—2s—13

3s+7 3s+7 A 4 B
s2—25s+3 (s—=3)(s+1) s—-3 s+1

1.Find L1 {

3s+7=A(G+1)+ B(s—3)

=(A+B)s+A—-3B
Equating the coefficient of s and constant terms we get
A+B =3 and A—3B=7

Solving these equations we get, A =4and B = —1

(s —33?)-;37+ 1) ~ s f 3 s -Il- 1 L {(s —3;)ts7+ 1)} =417 {S i 3} - {s -Il- 1}

= 4¢3t — e~ Because L_l{ } = e and L{e®} =
s—a s—a

2 _
2. Evaluate L1 { 25" —4 }
(s+1D(s=2)(s—=3)
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25% — 4 __A B ¢
(s+1D(s—2)(s—3) s+1 s—2 s-3

Another method to find the values A, B and C

Multiply both sides by (s + 1), and substitute § - —1

Lt 252 —4 +B(s+1)+C(s+1)
s> -1(s—2)(s—3) s—2 s—3

20077 4040 S
(-1-2)(-1-3) 12 6

Multiply both sides by (s — 2), and substitute S — 2

Lt 252 —4  A(s—2) N C(s—2)
s>2(s+1)(s—-3) s+1 s—3
2(2)2 -4 —4

= B —=RB
Z+—3 0tBt0.3

Multiply both sides by (s — 3), and substitute S — 3

Lt 2s°—4  A(s—3)  B(s—3)
s->3@G+1D(s—-2) s+1 s—2
207 =% o i04c
B+1)(3-2)
. 7_C
S h

-1 -1 7
2 L7 25”4 S R (T B
(s+1D(s—2)(s—3) s+1 s—2 s-—

552 —15s — 11
(s+1)(s— 2)3}

3. Find L7} {

552 — 155 — 11 A B C D
(s+1D(s—-2)2 s+1 (s—2)3 (s—2)* s-2

By using the above procedure, the values A = _?1 and B = —7 are obtained. This

method fails to find C and D values. . Substitute any two values for S. Let us Consider that
S=0and S=1

11 1 7 C
For S = 0,we get, _=__+§+Z_

D
8 3 2
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On simplifying,
And For S = 1,we get,

On simplifying,

On solving the equations we get the values C = 4 and D =

)

-1 1
,(5s*=15s—-11) | 7 -7 g
= +
(s+1D(s—2)3 s+1 (s—2)3 (5—3)2 —
1 7 1
— et — 202t 4 gt o2t 4 _ o2t
3e 2te + 4t e +3e
4 Fi dL‘l{ 3s+1 }
o G-DG2+ 1D
3s+1 A Bs+C

(s—1)(sz+1)=s—1+52+1
Multiply both sides by (s — 1),and substitute S - 1 we get,A =2
Put S = 0,then the value of C =1

Put S = 2,and simplify then we get the value of B = =2

L {(s —315)(221+ 1)} =L {(s E D ;225:5}

=211 {(S i 1)} -2 {ﬁ} + L {ﬁ}

= 2et — 2 cost + sint

N s2+2s+3
5.Find L

(s24+25s+2)(s2+2s+05)

s?+2s+3 _ As+B N Cs+D
(s2+254+2)(s2+25+5) s2+25s+2 s2+42s+5

Multiplying on both sides by (s? + 2s + 2)(s?> + 2s + 5) we get
s2+25+3 =(As+B)(s?+ 25+ 5)+(Cs + D)(s*> + 25 + 2)
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s2+25s+3=(A+C)s>+ (2A+B+2C+D)s*+ (5A+2B +2C+2D)s+ 5B+ 2D
Comparing the coefficient of powers of s on both sides we get,

A+C=0; 2A+B+2C+D=1; 5A+2B+2C+2D=2; 5B+ 2D=3

Solving these equationswe get A =0, B = g, c=0, D =§

1 s2+2s+3
(s2+25+2)(s2+2s+05)

1 2

-1 3 + 3
(s2+2s+2) (s?2+2s+5)

- 31 {m} 17 {ﬁ}

. t+21 ~tsin 2t
—36 Sin 326 Sin

1
= ge‘t(sin t + sin2t)

3.6 Application of Laplace Transform: (Simple Harmonic Motion)

The equation of simple harmonic motion is

d’y
2 —
P+wx =0

xis the distance displaced the body from its mean position; w is a constant

If x = xg (maximum distance displaced) then the initial conditions are

Att=0 = ddx—O
=0, X =Xy an i

2

d*x
Laplace transform on equation (1) we get L {W} + w?L{x}=0

s?L{x} —S{x};—0 + W?L{x} =0

By initial condition s®f(s) — sxo + w?f(s) = 0

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
78



f($)(s* + w?) = sx

SXg
s+ w?

f(s) =

Taking inverse Laplace Transform

s
s2 + w?

ie., The equation x = x( cos wt describes simple harmonic motion.

x= I} =17 o) = xol 7

} = XgCcos wt
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UNIT IV: COMPLEX ANALYSIS

Complex variables- complex conjugate and modulus of a complex number-algebraic
operations of complex numbers-function of a complex variable-analytic function-Cauchy-
Riemann equation in polar form-line integral of a complex function-Cauchy integral theorem-
Cauchy integral formula-Derivatives of an analytic function

4.1 Complex Number:

A complex number is defined as a number of the form z = a + ib, where i = vV—=1,aand b
are real numbers. a is real part of z ie., [Re(z)] and b is imaginary part of z ie., [Im(2)]
(i) The complex number is Zero when and only when x = 0 and y = 0.
(ii) Two complex numbers z; and z, will be equal if the real and imaginary parts of
each are equal.
(iii)  Ifa =0,then z = ib and the complex number is purely imaginary
(iv) If b = 0,then z = a and the complex number is real
(v) The sum, difference, product and ratio of two complex numbers is always a
complex number
(vi) Complex conjugate: The complex number z = a — ib is called the complex
conjugate of z it is denoted by z*. The sum and product of a complex number
and its conjugate are both real.
(z)' =z zz" = (a+ib)(a—ib) = a? + b*(real) and |z| = /a? + b?
(vii)  Polarform: Let a=1r cos@ and b =rsinf

~z=1cosO +irsinf thenz =1 (cosf + isind) = r e® This the polar form of complex

number. Where r = Va? + b2.

4.2 Properties of Modulus:

1. The modulus of the sum of two complex numbers z; and z, can never exceed the
sum of their individual moduli. ie., |z + z3| < (|z1] + |211)
Example:
7, =5+ 4iand z, = 3 + 2i -~ z; + z, = 8 4 6i, then |z, + z,| = V82 + 62 =10
|z,| =V/52 + 42 = 6.403 and |z,| =V32 + 22 = 3.605, ~|zy| + |z;] =10.008
ie |z +z3] < (lz1] + 211)
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2. The modulus of the difference of two complex numbers z; and z, can never be less
than the difference of their individual moduli. ie., |z; — z3| = (|z1]| + |z1])
Example:
z1 =5+ 4iand z, = 3 + 2i ~ zy — z, = 2 + 2i, then
|21 — 25| = V2222 =2.828; |z;| =V52 + 42 = 6.403&|z,| =V3Z + 22 = 3.605,

o |zy| = |z1] =2.798 ie.,|zy + 23| > (|z1] — |z11)

3. The modulus of the product of two complex numbers z; and z; is the product of
their individual moduli. ie., |z12;| = (1z11|21])
Example:
zy =5+ 4iand z, = 3 + 2i . 21z, = 7 + 22i, then
|212,| = V72 — 222 =23.08 ;|z;| =V52 + 42 = 6.403&|z,| =V32% + 22 = 3.605, - |z;]||z]

=23.08 ie., |Z122| = |Z1||Z1|

4. The modulus of the quotient (division) of two complex numbers z; and z, is the

quotient (division) of their individual moduli. ie., j—l = %
2 1
Example:
) oz 23 (2
Z1 =5+ 4i and Z, =3+ 21 -'-Z=(E)+l (E)
then |2 = |(Z) +(Z) =178
Tl = J\13 13)

21| =V5Z + 4% = 6.403&|z,| =V3Z + 22 = 3.605
lz] 6403

. 2
L 78ie., |+
1z,] _ 3.605 e

_ |1

|z, |

Z

4.3 Algebraic Operations of Complex numbers

1. Addition:
Addition of two complex numbers z; = (xq,y1) and z; = (x3,¥,) is defined as z; + z, =
(x1 +iy1) + (2 +iyz) = (1 +x2) + i1 +y2)
= (1 +x2, Y1+Yy2)
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2. Subtraction:
Subtraction of a complex numbers z, = (x;, y,) from z; = (xy,y;) is defined as z; — z; =
(x1 +iy1) = (2 +iy2) = (01 —x2) + i1 —¥2)

= (%1 —x, Y1 —Y2)

3. Multiplication:
Multiplication of two complex numbers z; = (x,y1) &2z, = (x3,y;) is defined as
2123 = (X1 +iy1) (xz + iy2) = (12 — y1¥2) +i(x1Y2 + X2)1)

= (X1X2 = Y1¥V2, X1Y2 + X2)1)

4. Division:

Division of a complex numbers z; = (x1,y1) by z; = (x3,¥,) and is defined as

zi _ xitiyn (o +iy)Ge —iyr) - (X +y1ye) + Gy — x1y2)

Z; X t+iy; (o +iy)Gg—iyy) X5+ y7
_ <x1x2 T VY2 X2Y1 — x1y2>
x3+y; 1 xg+ys

4.4 Variable and functions:

A symbol z, which can stand for any one of a set of complex numbers is called a complex
variable. If for each value of the complex variable (z = x + iy) in a certain region R, we
have one or more values of (w = u + iv), then w is known as a complexfunction of z
ie.,, w = f(z). The variable z is called an independent variable, w is a dependent variable.
The value of a function at z = ais f(a).

~f(2) = ulx,y) +iv(x,y)

whereu(x, y) is real part and v(x, y) is imaginary part.

Example:

(i) Z = 2i,then f(z) = z% willbe f(2i) = (2i)> = —4
(ii) if z=x + iy, then f(z) = z? willbe f(x + iy) = (x + iy)? = x? —y? + i2xy
le.,f(z) = u(x,y) + iv(x,y) whereu(x,y) = x? — y? is real part and

v(x,y) = 2xy is imaginary part.

(i) F@2)=|zI?> Z=x+iy, ~|Z|= Jx2+y? ie, f(2)=x?+ y?

~u =x%+y?and v = 0, the function is real.
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4.5 Single and Multi-valued function:

If for each z value, there is only one value of w, then w is said to be a single valued function

of z. Otherwise, w is a Multi-valued function of z.
Example:

2

1 . . . - .
w = -andw = z“ are single valued functions of z. But w = vz is a milti-valued function
VA

of z, it possesses two values (+z) for each z except at z = 0.

4.6 Analytic function:

A function f(z) which is single valued and differentiable with respect to z at all points of a
region R is said to be an analytic function or regular function of z in that region.
The point at which an analytic function is not differentiable is known as a singular point of

the function.

4.7 Cauchy-Riemann Conditions:

The necessary condition that w = f(z) = u(x,y) + iv(x,y) be analytic in a region is that

u(x,y) and v(x, y) satisfy the Cauchy-Riemann equations
du _ dv Jdu _ v

ax  dy’ dy  ox
If the partial derivatives are continuous in the region then Cauchy-Riemann equations are
sufficient condition that f(z) is analytic in the region.
The real u(x, y) and imaginary v(x,y) parts of an analytic function f(z) are also known as
conjugate functions. If one is given then other can be found so that f(z) = u+iv is

analytic.

Proof:

If w = f(z) be single valued function of the variable z = x + iy, then the derivative of
w = f(z)is defined as

do ., Lt f(z+62) - f(2)
dz f(z)_62—>0 6z

dz

provided that the limit exists and is the same for all the different paths along which 6z — 0.
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(i) Necessary condition: Let du and dv be increments of u and v respectively
corresponding to increments §x and 8y of x and y

~f(z4+82) = (u+ 6w +i(v+6v)

Now,
f(z+82)—f(z) (u+dow)+i(v+dv)—(u+iv) du + idv ou v
0z 0z 0z 0z 0z
. Lt f(z+62)-f(z) Lt (bu  bv
f(Z)_6z—>0 5z _6z—>0(§+lg)

Since 6z approaches zero , first assume 8z to be wholly real and then wholly imaginary.
Case 1l When 6z is wholly real, then §y = 0; 6z = 6x

Lt (6u _Sv)_au 0v
ox » 0 \6x l&x T Ox Lax

S f'(2) =

Case 2 When 6z is wholly imaginary, then §x = 0; 6z = idy

.'.f'(z)= Lt (6u _6v>= Ou 0dv

sy »0\isy " 'isy) = "oy "oy

f'(z)exists only if both cases are equal, then we have
du dv oJu Jdv

—1—

—+i—= +—
dx  Ox dy OJy
Equating the real and imaginary parts from both sides we get

Ju 0Jv Jv _ du
ox dy’ ox  dy
So the necessary condition for the existence of f'(z) is that the CR-equations are to be

satisfied.

(i) Sufficient Condition: Let f(z) be a single valued function having partial

Ju Jdu Jv 0v

derivatives —, — , — ,—ateach point of R and the CR-equations be
dx” dy dx "0y

also satisfied.

By Taylor’s theorem for function of two variables, we have
f(z+8z) =ulx+dx,y + dy) +iv(x + dx,y + 8y)

= u( )+(au6 +au6)+ +i[v(x,y) + av& +av6 +
=y + (50 g,y ilvCay) + (5 0x ayy) ]
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B +6u+_6v6 +0u+_0v6
Disregarding the terms beyond the first power of §x, &y
(z+62) () = 6u+_6v6+6u+_6v6
Using CR- equation rewrite the above equation as
(2 + 62) () = 6u+,6v6+ 6v+_6u6
flz+ 6z fz_(ax lax)x (ax lax)y

Therefore f' (2) the derivative exists and f(z) is analytic in the region

4.8 Polar form of CR - equations:

ou 10v ou (617)

- rag Mag T o

z=x+iy =r(cosd + i sinf) = re®

f(2) =u+iv=f(re?)

Harmonic: To prove u and v are harmonic, Differentiate both side of CR equations

du Ov 41
dx  dy (4-1)
dv _ du 42
ox  dy (4:2)

Differentiating on both sides of (1) with respect to x we get,

0°u  9%v

oxZ 0x0dy

(4.3)

Differentiating on both sides of (2) with respect to y we get,

d%u B d%v "
dy?  0xdy 44)
c ing (3) and (4) t Ou__ou
omparin an we get, = —
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0°u  0%*u B

ﬁ'Fa—yz—O (4.5)

0%v  9%v B

W+6_yz_0 (4.6)

Similarly we can get

The second partial derivatives of u and v are continuous and harmonic. The equations (4.5)

and (4.6) are called as Laplace equations.

4.9 Line integral of a complex Function:

Let C be a sooth curve with end points zgand z,. And let 2z, zp, -z, - z,_1 are
intermediate points which divide the curve C into n arcs Zzyz; , z1zy, - - Zy_1Zy,
------ Z,_12, as shown in figure vt
&, &, e [ SRR &, are the points lies on the

corresponding arcs . Then we make the summation

n
Se = ) &0z,
r=1

Where Az, = z, — z,_4

when the curve divided into smaller and smaller
n — oo then |Az,.| = 0 Then the summation S,, is known as the line integral of complex

function f(z) and is expressed as

lim S, = ff(z)dz
n—-oo c

4.10 Cauchy’s integral theorem:

Statement:

If a function f(2) is analytic and f'(z) is continuous at every point inside and on a simple
closed curve C, then fcf(z)dz =0.

Proof :
Let the region enclosed by the curve R and

f(2) =ulx,y) +iv(x,y)withz =x + iy = dz =dx + idy
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ff(z)dz = f(u + iv)(dx + idy)
c c

f (udx — vdy) + if (vdx + udy) (4.7)
c c

du Jdu dv dv
"dx ' dy ' odx ' dy
By applying Green’s theorem,

Since f (2) is continuous are also continuous in R

f(Pd +Qd)—ff(aQ ap)dd in each integral
c X V)= A ax ay xay lneacnlintegra

we obtain ](udx —vdy) = ﬂ (— a_v — —) dx dy (4.8)

j(vdx + udy) = ﬂ (—u - —) dx dy (4.9)

Substituting (4.8) and (4.9) in (4.7) we get,

jf(z)dz—ﬂ(———) dxdy+1ff(—u——) dx dy (4.10)

Since f(z) is analytic, u and v satisfy CR- equations so the integrands of the two integral in

right hand side of equation (4.10) vanishes and we get,
Jf(z)dz =0
c

Hence, proved the theorem.

4.11 Properties of Line integral:

L. [IA@) + LDz = [ fi(Ddz + [, f, (2) dz
2. [,f(2)dz = J, f(2)dz+ |, f(2)dz

3. [ f(@dz=—]  f(2)dz

4. [ kf(2)dz=k [ f(z)dz
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5. [ f(2)dz = [F(D)];} = F(2,) — F(z1)

4.12 Cauchys Integral Formula:

Statement:

If a function f(z) is analytic within and on a closed curve C and if a is any point inside ¢ then

1 [ f@

_ dz
2ni Joz—a

fla) =

Proof :

A
Let us consider the function [@ which is analytic at all points inside C, except at z = a.

With point a as center and radius 7, draw a small circle C; lying
completely within C. (Figure)
f(z)

zZ—a

Since is analytic in the region between Cand C;, we have by

Cauchy’s theorem

Since for any point C; ,z—a =re' = dz = ire®do

z z a+re' . .
@ dz = @ dz = f(—l.e) ire®do =i | f(a+re)do
CZ—a C1Z—a Cl re Cl

In the limit Cy shrinks to point a ie., asr — 0 the integral approaches

2m
i| fl@do=if(a)| do=2mif(a)
Cq 0

1 f@

, dz
2ni Joz—a

fla) =

This is Cauchy’s integral formula.
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4.13 Derivatives of an analytic function:

When f(z)is an analytic function in a domainD, then its derivatives of all ordes exist and

they also analytic function in D. The values of derivatives at any point z, in D are as the

following
N f(2)
Fo) = 509 G 4
" 2 f(2)
frz) = 2ni£(2—20)3 dz

And in general the n™ derivative is

n! f(2)

d
2mi J (z — zo)"*! z

f"(2z0) =

Where C is a closed contour traversed in the anti-clockwise in D surrounding the point

Z = Zy.
Problems:
. L. 1+2i
1. Determine the modulus and the principal argument of the complex number m
Solution:
14+ 2i 14 2i 14+ 2i

1-(1-02 1-(1—-1-20) 1+2i

14i0=x+iy =|x+iyl =/x2+y2 =yJ12402=1
1+ 2i
1—(1-1i)?

Principal argument is

~ Modulus =

0
0 = tan! (%) = tan~ ! (I) =tan"1(0) = 0
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2. Convert 124 — 60° to rectangular form

Solution:

Givenr = 12and 6 = —60. Let 122 — 60° = +iy , but x + iy =r(cos6 + isinf)

ie., x =rcosf = 12 cos(—60) = 12 *% =6

V3
y =rsinf = 12sin(—60) = —12 * - = —6V3

#1224 —60 =6 —i6V3

(1 + 20)
(1—30)

3. Express the following complex number in r(cosf + isinf) form ——=
Solution:
1+2) (A+20)(1+30)) 1-6+5 —5+5i 1+ i
1-3) (1-301+3) 149 10 2 2
s (cosB + isind) 1+ i 0 ! ind !

. = —— - [ —
ie., r(cosf + isin 5+ 5 = rcos > 5 Tsin >
S J d addi t,r? ! = !

uaring and adding we get,r“* = - =1r = —

q g gweg > N

! 0 ! Cosf !
—c0sf = —== Cosf = ——
V2 V2

1 . 0 1 ind 1 p 3n
—sin =-=sinf=— 0 =—
V2 2 V2 4
1+2i) 1 37T+. . 3m
(1_31,)—\/5(0054 Esin—

1 1
4. If x+ i 2cos@, provethat 2cosrf = x" + g

Solution:

1
x+;=26059:>x2—2x6059+1=0

_ 2cosf V4cos?0 — 4
B 2

x" = (cosO +isinf)" = cosrf =+ isinrd

X = cosO + isin®

x7" = (cos@ *isin@)™" =cosrf + isinrf

x" + xir = (cosrf +isinrf) + (cosrd F isinrf) = 2cosré
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5. For a complex variable z,resolve In(z) into real and imaginary parts.
Solution:

we have z = x + iy ,using x = rcosf and y = r sinf

Z = 1rcosf + rsinf = r(cosh + isind) = re

= — tan—1(7
Where r=.x2+y2 and 6 =tan! (;)
]n(z) = ]n(rel'e) — ln(r) + lneie = In /xz i yz 1ie

R I

)

1
=3 In(x? + y?) + i tan™? (

N——

Real part is %ln(x2 + y?)and the imaginary part is tan™! (3;/

6. Express the following into real and imaginary parts. (i) V5 + 4i (i) Vi

(i) Letv5+4i =a+ib

Squaring on both sides, 5 + 4i = (a + ib)? = a® — b + i 2ab

Thus, a?2 —b%=5; 2ab=4 =>ab=2=>a=%

22
. (3) P2 =5=b*+5p2—4=0

_ —5+,/52-41.(—4) -5+41

b2
2 2

= 0.702

2
~b=+0.702=0.837 and a= 0837 2.389

Therefore we get v5 + 4i =2.389 + i 0.839
(i) Let\i =a+ib
Squaring on both sides, we get, i = (a+ib)*> = a?> —b? +i2ab

Thus, a?—b%? =0=a%2=0b%; 2ab =1 =>ab=§=>a:—

1\2 1\°
A Sl R —\ — 52
. (Zb) b O:<2b> b
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Square root on both sides we get,

! b = b? . Then b 2 2

— = == enb=t—sa=+—

2b 2 NG NG
1

ie ,\/IZi—z(l+L)

7. Determine the analytic function f(z) = u + i v whose imaginary part is
v==6xy—5x+3

Solution:

Given v =6xy —5x+3

a—v=6y—5; and a—v=6x
0x dy
Foru =u(x,y), we have du = 0_u dx + 0_u dy
0x dy
Using CR equations, we get,
du = 6_17 dx — 6_17 dy = 6x dx — (6y — 5)dy
dy 0x

On integrating, we get

u= ]6xdx— J(6y—5) dy + C

2 yz
=6— —6—+5 C
> 2+ v+

u=3x%-3y?+5y+C

cf(@)=u+iv=_0CBx2-3y?+5y+C)+i(6xy—>5x+3)

8. Show thate* (cosy + isiny) is an analytic function, Find its derivative
Solution:

Let f(z) = e*(cosy + isiny) = u + iv = e*cosy = u; e*siny = v

.au_x _av_x, dau_ . _av_x
--ax—e cosy ; ax—e siny an ay_ e*siny ; ay—e cosy
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e =S

¢ satisfies CR y Ju Ov p du  0v
it satisfies CR equations x " ay an 3y~ ox

~ The given function f(z) = e*(cosy + isiny) is analytic.
The derivative

F© = ou, o

l —
0x 0x
= e*cosy + i e*siny = e*(cosy + isiny) = e*e? = e TV = ¢?
9. Using Cauchy-Riemann condition show that W = sinz is analytic

W = sinz = sin(x + iy) = sinx coshy + i cosx sinhy

) ) Ju Ju ) )

ie.,u = sinx coshy = i cosx coshy and @ = sinx sinhy
. Jdv v ) )

vV = cosx sinhy = @ = cosx coshy and Fie —sinx sinhy

] o ) du OJv ou dav

it satisfies CR equations Fle @ and @ =%

~ W = sinz is analytic.

10. Which of the following are analytic functions of complex variable,z = x + iy

(i) |z| (i) z71 (iii) eSinz

Solution:
(i) wehave |z| = |x + iy| = x2% + y?

For f(z) = |z|, then |z| = u +iv =/x%2 +y?

v v
ie.,u=+x24+vy% andv=0 - EP and @ do not exists.

And the function f(z) = |z| is not analytic.

(i)

1 1 (x — iy) (x — iy) x .y
f(Z): Z = —= - = - - = = — i
z x+iy (x+iy)(x—iy) x2+y2  x?24+y? x% + y?
. _x Gy Y
ie ., u_x2+y2 an v_x2+y2
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Taking derivatives we get, u = x (x? + y?)~!

ou
et (D2 +yH)22x+ (x> +y?) 11
o —2x? N 1 2P xt +yt x4 y?
P4y (kP 4yh) o (P +yDE T (k2 +y?)?
ou 2xy v 2xy ov  —x*+y?

imi —_———_— . — = d —=——
Stmilarly we get, dy (x2 +y2)2 7 0x  (x2 +y?2)2 an dy  (x2 +y?2)2

. - 1. .
CR-equation satisfied, therefore f(z) = — is analytic.
Z
(lll) f(Z) — esinz — esin (x+iy) — esinx cos (iy)+cosx sinifiy) — esinx coshy+i cosx sinhy
= gSinx coshygicosx sinhy = gsinx coshy[cogs(cosx sinhy) + i sinffcosx sinhy)]
Forf(z) =u+iv= e%m*coshy cos(cosx sinhy) +i eS™ S sinifrosx sinhy)
ie., u = e5m¥ coshy cos(cosx sinhy) and v = e’™* ©ShYsinirosx sinhy)

Taking derivatives we get

ou .

i esinx coshy [sinx sinhy cos(cosx sinhy) + cosx coshy cosifcosx sinhy)]
du it COSAY [ oot s . - .

@ = S oS [sinx sinhy cos(cosx sinhy) — cosx coshy sinifcosx sinhy)]
dv i COSAY [t s . o .
Fini estx coshY [sinx sinhy cos(cosx sinhy) — cosx coshy sinifcosx sinhy)]
dv . o ] . )

@ = S oS [sinx sinhy cos(cosx sinhy) + cosx coshy cosi{cosx sinhy)]
du dv v Odu

ox oy " 9x ay

CR equations satisfied and the given function f(z) = e*" 7 is analytic.

11. For a simple closed curve C, evaluate the following integral with the help of Cauchy
integral theorem
dz

CZ
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Solution:
. 1, . .
Given that f(z) = ~ s analytic for all values of z except for = 0, and C is closed encloses

the origin. Draw an arc C; of radius r with origin as Center.

dz dz
c Z ¢ Z
OnC;wehave,z=re® sothatdz=ire® then
dz ire®
— = 5 = io
A ret
dz n ) dz )
— = i0 = 2mi — = 2mi
¢ Z 0 cZ

1
If C does not enclose the origin then f(Z) = — s analytic for all values of Z
Z

. dz
ie., p —=0
C Z

. [dz _ { 0, When C does not enclose the origin
a - Z | 2mi, when C encloses the origin

12. Evaluate the following integrals

3 i
0 fl (z—1)% dz (ii)j(-) z cos?’z dz

Solution:
3 2= 28 ((-1)° 8-{i’-1-3i (i—-1} 6—2i
(i)J(z—1)2d2= z-1° =__( )= { ( )}=
i 3 |, 3 3 3 3
i
(i) Let I=] zcos’z dz
0
Putz® =t, then 2zdz = dt;
the limits when z=0,t =0 and z=mi, t= (mi)?=—n?

2

-I—f_ﬂl tdt = Llsintlg™ = —2sinn?
“h= 5 COs = lsint]™ = —5sinz

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
95



dz
Z

13. Evaluate the integral jg 5
cZ°+

where C represents a circle defined by R = |z| > 1

Solution:

The poles of the integrand obtained by putting denominator equal to Zero

ie.,z2+z=0;z(z+1)=0

It gives two poles, z=0 and z=-1. as R = |z| > 1

Both poles lie within the contour. On eliminating these poles by drawing circles C; and C, of

small radii and making cross-cuts to form simply connected region, we get

dz dz dz
2 = 2 + 2
cZt z c, Z + z c, Z + z

_ % dz/(z+1)+¢ (dz/2)
c c

z 2Z+1

1

Using Cauchys integral formula, we get

dz I 1 1 . .
fﬁ 5 =2m[ ] +2m[—] =2nmi—2mi =0
cZ:+ z z+ 11, zl,—_4

14. Evaluate the integrals

. sinz N e
() i ) dz (i0) fcm dz

whereC represents a circle definedby R = |z| > z,
(i) There is a pole of degree two at z = 0, we have
f(2) 2mi
(o T )

Given f(z) =sinz, n=1and zy, = 0and f'(z) = cosz and f'(0) = 1

sin z )
s—dz = 2mi
C Z
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(ii) Thereis a pole of degree three at z = z;;, we have

f(2)

(Z — Zo)n+1

Given f(z) =e*, n=2

f"( 0)

Then f (z) = ae® and f (z) = a’e% whenz - zy,f (zy) = a?e%%
Substituting these values we get

e 2mi )
e = g 20 = e
c 0 '

15. Let f(z) = u + iv be an analytic function. If u = x3 + 3x%y — 3xy? — y3, find out v.

Solution:
u= x3+3x%y — 3xy? —y3
ou , " 0%u
a=3x + 6xy — 3y*; ﬁ=6x+6y
M s exy—3yn O ey 6
3y = X xy — 3y%; 37 = x — 6y
62u+62u_6 + 6 6 6y =0
0x% = 0y? XTOYy ==Y =

thereforeu can be a part of analytic function f(z) = u + iv

dv ov
F = = — _
orv = v(x,y),we have dv = F dx + 3y dy
The using CR-equation, we get
ou ou
dv = ~% dx + Ep dy = —(3x% — 6xy — 3y?)dx + (3x% + 6xy — 3y?)dy

j(6xy + 3y?% — 3x%)dx + f (3x2 + 6xy —3y®)dy + C

whereC is constant of integration
v= 3x’y+3y’x—x3—y3+c
Hence the function is

f(2)=x34+3x%y —3xy? —y3) +iBx*y+3y’x —x3—y3 +0)
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=S50
16.Let f(z) = u+iv be an analytic function.If v
= x3 — 3xy? + 3x% — 3y?, find u.

Solution:

v = x3—3xy?+ 3x? — 3y?

g _3yiaer x4
ax ¥ y X axz ¥
v . . 6217_ r
3y~ xy — 6y; a7 = X

0%y  d%v

mi‘a—yz: 6x+6—-6x—6 =0

thereforev can be a part of analytic function f(z) = u + iv

Foru = have du= 2% ax+ g
oru = u(x,y),we have du = o X 3y y
The using CR-equation, we get
dav dav 5 5
du = @ dx — ady= (—6xy — 6y)dx + (3x° + 6x — 3y°)dy

u= f(—6xy — 6y)dx + f (3x2 4+ 6x —3yY)dy +C

whereC is constant of integration
u= —3x’y—6xy+y3+c
Hence the function is

f(z) = (y3 —3x%y —6xy +¢) + i (x> — 3xy? + 3x% — 3y?)
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UNIT V: GROUP THEORY

Concept of a group-Group multiplication table of order 2, 3, 4 groups- Group symmetry of
equilateral triangle- Group symmetry of a square-permutation group-conjugate elements-
representation through similarity transformation-reducible and irreducible representation-

SU(2) group-SO(2) group.

5.1 Introduction:

Group theory is a branch of mathematics which can be applied to any set of elements which
can be applied to any set of elements which obey the necessary conditions to be called a

group. The symmetry operation can be considered as elements.
Group is a set of elements A, B, C, .....and satisfies the following conditions

(i) Closure property: The product of any two elements in the group and the square
of each element must be an element in the group. ie., if A,B € G; thenA-B, B -
A €G;A%B* €G

(ii) The associative law: Theassociative law of multiplication must hold. ie., if
AB,C €G; then(A-B)-C=A-(B-C)

(iii) Existence of Identity: One element in the group must commute with all others
and leave them unchanged. This element is unit element or identity element E.
ie, AJE €G ThenA-E=E-A=A

(iv) Existence of Identity: Every element must have a reciprocal, which is also an
element of the group.A™' =B € GthenA-A ' =A"1-A=E

5.2 Finite group:

The finite group contains a finite number of group elements. The number of elements in a
group is called its order and is represented as h. A set of covering operations of a
symmetrical object is an example of a finite group. Covering operation means a rotation,
reflection or inversion which would bring the object into a form indistinguishable from the

original one.
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5.3 Abelian group:

If the multiplication of two elements in a group is commutative then the group is abelian.
ie., AB = BA for all A and B in the group. Abelian group of infinite order is set of all
positive and negative integers including Zero.Ordinary addition serves as the group
multiplication operation. Zero serves as the unit element and —n is the inverse of n. The set

is closed and the associated law is obeyed.

5.4 Non-Obelian group:

Finite order of this group is the set of all n X n matrices with non vanishing determinants.
Group multiplication operation is the matrix multiplication. Unit element is n Xn unit

matrix. The inverse matrix of each matrix element is inverse element.

5.5 Cyclic group:

If A is an element of a group G all integral powers of A such as A%, A®, ... must also be in G. If
G is a finite group A" = E where h is the order of the group G. In general the cyclic group of
order h is defined as an element A and all of its powers up to A" = E. All cyclic groups must
be abelian. Example of standard triangle, the sequence period of Dis D, D’ = F, D* = DF = E.
Therefore order of D=3, and D, F, E form a cyclic subgroup of our entire group of order 6. le.,

all the elements of a group can be generated from one group.

5.6 Group Multiplication Table:

Multiplication Table consists of h rows and E A B C D F
hcolumns. Each column is labeled with a ==~ e A g ¢ D F
group element and so in row. Each entry is A |a E D F B C the
product of the element labeling the row 5 |5 ¢ ¢ p ¢ A
times the element labeling the column . . 5 ¢ E A B
ieAB = D # BA Example with 6 elements D lb ¢ A B F E

F IF B C A E D
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If we take the elements to be the following 6 matrices and if ordinary multiplication is used

as the group multiplication operation

[ =172 V3/2]

1o _
E= [0 1 b —V3/2 —1/2]

(—1/2 \/§/2]
V3/2  1/2

A=[1 0] co| 172 —\/§/2] po |12 =372
0 -1 —V3/2 1/2 V3/2 —1/2 ]

The same multiplication table can be
obtained by group symmetry of equilateral
triangle.The symmetry operations of an equilateral

triangle with corresponding symbols are as follow.

The elements A, B and C are getting by rotation of an

angle m or reflection about the axes shown. D is

. . . 2
obtained by a clockwise rotation of ?nor 120° angle
in the plane of the triangle and F is attained by a counter clockwise rotation through an

angle of 2?” or 120° . The product AB means the operations obtained by performing B first

and then A.
3 3 3 2
. B-. Reflectign
Reflectign g
AA /\ B
1 1. 2 2 1 3
A
2
1 Clockwise
~C Rotation120°
-~ Reflection D >
C
2 3 2 1 1 3
3 Anticlockwise 1
Rotation120°
F
2 1 3 2
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Groups of order 1:  The group contains only the identity element E.

Groups of order 2:  The group consists the elements A, A’ = E. This is is an obelian group.

A might represent reflection , inversion or interchange of two identical particles.

Groups of order 3:  The elements are A,B, andE. Here A’=B#E

E A B
E E A B
A A B E
B B E A

A, A’=B, A®=AA”=AB=E forms a cyclic group.
Groups of order 4:  Two possibilities of group multiplication.

(i) the cyclic group — four fold rotation about an axis. A, A% A3 A% =E.
(ii) Vierergruppe(A,B,C,E) = rotational symmetry group of a rectangular solid if A, B,

C are taken to be rotation by  angle about the 3 orthogonal axes.

1 4
B %
2 3
2
3 B 3 2
< e
/ A 4 1
1 A
4 4 C 4 1
C _—
C 3 2
B

Both are abelian groups we can get subgroups of order 2.
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The group multiplication table for four elements is

E A B C
E E A B C
A A E C B
B B C E A
C c B A E

5.7 Groups of prime order:

These are cyclic abelian groups. The period of some element would have to appear as a
subgroup whose order was a divisor of a prime number. There can be only single group of

order1,2,3,5,7,11, 13, etc.

5.8 Group Symmetry of a square:

Consider a square ABCD with M, N, O, P as mid points of sides as shown in the figure. The
covering operations of a square form D, containing eight elements. They are {E, Cs, CZ,

43, mx, my, ox, oy. The transformations are given below.

1 6 2
5 e p 7
4 5 3

1. E—their no Transformation

2. (4 — anti-clockwise rotation through % radian or 90° angle about anaxis normal to

the square
7
1. 6 2 2 3
Anticlockwise rotation through %radian about an
axis normal to the square
5 7 > 6 8
Cs
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3. C# - anti-clockwise rotation through 7 radian or 180° angle about anaxis normal to

the square

1. 6

4+ 8

5

Anticlockwise rotation through m radian
about an axis normal to the square

Ci

v

6

. . . 3 . .
4, C43 — anti-clockwise rotation through 7” radian or 180° angle about anaxis normal to

the square
1 6 2 3
Anticlockwise rotation througthradian
about an axis normal to the square
5 7 >
Ci
8
5. m, - reflection about the line 5-7
1, ° s
Reflection about the line 5-7
5 7 >
mx
4 3 3
6. m, — reflection about the line 6-8
Reflection about the line 6-8
5 7 >
my
4% 5 . 3
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7. o, — reflection about the line 1-3

5
L B2 ' ;
Reflection about the line 1-3
O-u
2 i i
4 5 3 3
8. o, — reflection about the line 2-4
1, 6 2 3 / 2
Reflection about the line 2-4
O-v
4 5 3 4 5 1

The combination of any two operations is equivalent to one of these operations. The group

multiplication table is as follows

E ¢ ¢ ¢ m, my o, o,
E E ¢ ¢ ¢ m, my o, o,
C4 C4 C42, sz E oy Oy my my
2 2 3
C4 C4 C4 E C4 my m, oy oy,
3 3 E C CZ
Cy | Ci 4 i Oy Oy My My
me|my o m o, E C; C; C
m,| m, o, m o C;¢@ E C C}
oy, | o0w my o m ¢ €3 E C?
op | o, m o m ¢ C C; E
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5.9 Permutation groups: (of factorial order)

The permutation of a set is defined as one-to-one mapping of a finite set onto itself. if
A1,07, e a,be an arrangement of the set of integers 1, 2,......n, then A permutation can be

specified by a symbol of one-to-one mapping of the finite set {1,2,3,...,n} onto itself such as
_ ( 1 2 3 ......... n )
p= ap @y Qg a,

In the above symbol, the order of a column is normally immaterial so long the

abc)’

corresponding elements above and below in the column remain the same. ie.,(b ¢ a

b ¢ a c a b .
(C a b) and (a b C) represent the same permutation

The number of elements of a finite set is the degree of the permutation. The permutation p

ofthesetS = {1,2,3,...,n} means that by mapping p, the (aq,a3,........a; ) are the images of

(1,2,3, ... ... n) and may be expressed as
p(D)=a;, p(2)=a,, p3) =az,vceene. ,p(n) = a,
Example:

If S is not too large, it is feasible to describe a permutation by listing the elements x € §
and the corresponding values p(x).

1 2 3 45
35 4 1 2
r(1)=3 p2)=5 pB) =4 p@ =1 pi) =2

For example, if S = {1,2,3,4,5}, then [ is the permutation such that

If we start with any element x € S and apply p repeatedly to obtain p(x), p(p(x)),
p(p(p(x))), and so on, eventually we must return to x, and there are no repetitions along

the way because p is one-to-one.
For the above example, we obtain 1 - 3 —- 4 — 1, 2-55-52
We express this result by writing  p = (1,3,4)(2,5)

where the cycle (1, 3, 4) is the permutation of S that maps 1 to 3, 3 to 4 and 4 to 1, leaving
the remaining elements 2 and 5 fixed. Similarly, (2, 5) maps2to 5,5t02,1to1,3to3and 4

to 4. The product of (1, 3, 4) and (2, 5) is interpreted as a composition,with the right factor

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
106



(2, 5) applied first, as with composition of functions.In this case, the cycles are disjoint, so it
makes no difference which mapping is applied first. The above analysis illustrates the fact
that any permutation can be expressed as a product of disjoint cycles, and the cycle

decomposition is unique.

If the set contains nelements , the set of permutations p will have n! elements, for n distinct
objects can be arranged or permuted in n! ways. If n = 3, the number of permutations are

3! or 6.

The permutation in which the item in position ‘i’ is shifted to the position indicated in the
lower line. Successive permutation forms the group multiplication operation. If by
permutation, there is no change in the elements, the permutation is known as identity
permutation E. On combining any two permutations by multiplication we get another

permutation

E=(t 2 3 4zt 2 3 po(t 23

1 2 3 2 1 3 13 2
=G 92=G 12 7=G3 )

(1 2 31 2 3\ _ (1 2 3H(2 1 3\ (1 2 3 _
AB = (2 1 3) (1 3 2> - (2 1 3) (3 1 2) - (3 1 2) =D
To obtainAB, rearrange the order of column in B such that the first row of B becomes (2 1 3)

identical with the second row of A (2 1 3) to get there by cancelled.

1= 1 3G 2 D=6 1 )G V=G5 )=rF

w=a=( 190G 1 39=6 1 IG 2 D=0 3 3=k

Permutation multiplication is not commutative. But the Permutation multiplication is

associative.

5.10 Conjugate element:

An element B is conjugateto Aif B = XAX 'orA = X B X! where X is some member

of the group. If B and C conjugate to A, then they are conjugate to each other.
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Proof: LetB = XAX Y,and C=YAY!

From C we get, A= Y~1 CY, substitute this in B, we get B=XY1lcyx?1
B=XY'1Cc(XY Y™ ieB=ZCZ' . BandC_conjugate

5.11 Representation of a group:

let G ={E,A, B, } be a finite group of order g with E as the identity element. And let
T ={T(E), T(A), T(B), - } be a collection of nonsingular square matrices all of them
are having the same order with the property T(A)T(B) = T(AB)ie., if AB = C, in the group
G, then T(A)T(B) = T(C). The collection T of matrices is said to be a representation of the

group G. The order of the matrices of T is called the dimension of the representation.

If the matrices of the set T are all distinct there will be one-to-one correspondence between
the elements of the group G and the set T ie., the two groups G and T are isomorphic to

each other and such a representation is true.

If the matrices of the set T are not all distinct then the groups G and T are homomorphic or

isomorphic to each other and such a representation is an unfaithful representation of G.

The 2 X 2 matrices represented for elements E, A, B, C, D, F of group of order 6 is a faithful
matrix representation. Another representation of the same group can be obtained by taking
the determinant of each matrix |T(A4)|-|T(B)| = |T(AB)| . This operation reduces the
matrix to ordinary numbers +1. Thus this representation consists of only two distinct
matrices for six group elements and hence is unfaithful representation.|T(E)| - |T(A)| =
IT(A)| - |T(E)| = |T(A)|Such that |T(A)| # 0. This matrix equation is satisfied only if
T(E) = E, the unit matrix. Thus in any representation the identity element of the group

must be represented by the unit matrix of appropriate order.

Similarity transformations leave the multiplication properties of matrices unchanged.
ie if we define T (4) = ST1T(4)S
T (AT (B) = S7IT(A)SS™IT(B)S = ST(A)T(B)S = S~'T(AB)S = T'(AB)

And the transformed matrices T provide the new representation of the same group. The

original representation and various representations obtained by similarity transformations
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choosing various matrices S differ only in that they are stated with respect to different

frames and hence all such representation are said to be equivalent.

5.12 Reducible and irreducible representation:

A group of finite order may have two or more representations.From these two
representations a single new representation may be formed ie., by combining the two

matrices into one larger matrix.
From a representation {T1(E), T1(4), -} and a second representation {T?(E),T?(A), -}
we can obtain a new representation consisting of larger matrices,

T(E) = (TléE) TZ(ZE))' T(A) = (TléA) TZ(()A))""""""'

The matrix representation of the above form is said to be reducible ie., reducible

representation can be expressed in terms of two or more representations.

The representation which cannot be expressed in terms other two or more representations
is said to be irreducible. The irreducible representations of a group cannot be further

reduced.

It is customary to indicate the structure of reducible representation by block form, the

blocks representing the irreducible representations.

T1(A), T?(A) further reduced , this process can be carried on until we can find no unitary

transformation which reduces all the matrices of a representation further. Thus the final
form with all the matrices of T having the same reduced structure

T'(A)

T?(A)

l
T(A) = | . I
’ TS(A)J

where T1(A), T2(A), --- - T#*(A) are called the irreducible representations. This cannot be

further reduced.
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5.13 Special Unitary Group:

A matrix A of order m X n is said to be unitary when it satisfies the relations A AT =1,

and ATA =1, where I, and I, are unit matrices of order m x m and n X n respectively,

A% is transpose conjugate of A. A set of square unitary matrices of order n X n forms a

group, denoted by U(n), under matrix multiplication. It is known as a unitary group. A

subgroup

SU(n), of U(n), is a set of special unitary matrices with determinant +1.

5.13.1 SU(2) Group:

The SU(2) Group is a group of 2 X 2 special unitary matrices under matrix multiplication

with determinant +1.

a” c*]

Let u be a unitary matrix of order 2 X 2, ie., u =[? Z] Then uf = [b* i

Sl P [ PR P e v R P I
aa* + bb*= 1 (5.1)

cc’+dd*=1 (5.2)

ac*+bd*= 0 (5.3)

ca*+db*= 0 (5.4)

As u belongs to SU(2), the determinant of u must be equal to 5.1.

a b

|u|=|c d=ad—bc=1 (5.5)

*

From equation 4, we get d = —% c (5.6)

Substitute (6) in (5) we get a(—z—: c)—bc=1

c
—aa*——bc=1

b*
—(aa* + bb*) ﬁ =1 (5.7)
Put (5.1) in (5.7) we get c=-b" (5.8)
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(5.8) in (5.6) we get d=a" (5.9)

Then the unitary matrix u with |u| = 1can be writtenas u =[_Cll)* f*]

|lu| = aa™ + bb* = 1. SU(2)group may have the elements

all G O

These elements form a group under matrix multiplication.
Problem:
Show that in general SU(2) is not an abelian group.

Solution:

Let two elements of SU(2) group are uy =[_CZ* cl:*] and u, =[—d* )

S 2L G-l )

A [ B L A

U U, # Upuq Hence in general SU(2) is not an abelian group.

5.14 Special Orthogonal Group:

A matrix A of order m X n is said to be orthogonal when it satisfies the relations 4 A" = I,,
and ATA =1, where I, and I, are unit matrices of order m X m and n X n respectively,
AT is transpose of A. A set of square orthogonal matrices of order n X n forms a group,
denoted by O(n), under matrix multiplication. It is known as an orthogonal group. A

subgroup (n) , of 0(n), is a set of special orthogonal matrices with determinant +1.

5.14.1 SO(2) Group:

The SO(2) Group is a group of 2 X 2 special orthogonal matrices under matrix

multiplication with determinant +1.
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Let u be a Orthogonal matrix of order 2 X 2, ie., u =[? Z] Then ul = [Z 2]

.uuT=[Z Z”Z CCZ] [aa+bb ac + bd _[1 0

cat+db cc+dd 0 1
aa + bb= 1 (5.10)
cc+dd=1 (5.11)
ac+bd= 0 (5.12)
ca+db= 0 (5.13)

As u belongs to SO(2), the determinant of u must be equal to 1.

a b

|u|=|c J|Fad—bc=1 (5.14)

From equation 4, we get d = —% c (5.15)
Substitute (6) in (5) we get a(—% c)—bc=1

c
—aa*——bc=1

b
—(aa + bb)% =1 (5.16)
Put (5.10) in (5.16) we get c=-—0>b (5.17)
(5.17) in (5.15) we get d=a (5.18)

Then the unitary matrix u with |u| = 1 can be written as
u=[a b] with |[u| =aa+bb=1.
-b a

When elements of SU(2) matrices are real, SO(2) and SU(2) are the same.
Example:

Anticlockwise rotation about an axis (z-axis) is an example for SO(2) group.

b= e o 1B
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The angle 6 is independent parameter and can assume various values and

R() = [cos@ —sin@

sind  cosd ]form a group under matrix multiplication. And |R(8)| =1

The Identity element (unit Matrix) is obtained when 8 = 0.
R(6,)R(6,) = R(0; + 0,) it is the closure property of group

cosf; —sin 91] [cos 6, —sin 92]_ [cos(01 +6,) —sin(6; +06,)
sinf; cosf; ||sinf, cosB, | [sin(; +6,) cos(B; +6,)

cosf siné@
—sin@ cos@

The inverse of R(8) is R(—0) = [
R(61)R(0,) = R(6,)R(6,)ie., the group is abelian.
[R(6;)R(6,)]R(63) = R(6,)[R(B,)R(6O3)]ie., associative law exists.
Problem:

Show that SO(2) is always an abelian group.

Solution:

Let two elements of SU(2) group are

[ cosB;  sinb; [ cosB;  sin 92]
th _[— sinf; cos 91]&u2 _[— sinf, cos6,
_[ cosf; sin 91] [ cosf, sin 92]_ [ cos(6; +6,) sin(6; + 6,)
“¥2 % _sing, cosO;]|—sin@, cos@,|” |—sin(;, +6,) cos(8; +6,)
cosf, sin 92] [ cosf; sin 91]_ [ cos(6; +6,) sin(6; + 6,)

thth = [— sinf, cosB,[|l—sinB; cosb;] [—sin(6 +6;) cos(6; +6;)

u U, = Uu; Hence SO(2) is always an abelian group.
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