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M.Sc. PHYSICS – I YEAR 

DKP12 : MATHEMATICAL PHYSICS 

SYLLABUS 

 

UNIT I : VECTOR SPACE AND MATRICES 

Linear independence of vectors – Dimension – Basis – Inner product of two vectors – 

Properties of inner product – Schmidt’s orthonormalization method – Linear transformations 

– Matrices – inverse of a matrix – orthogonal matrix – unitary matrix – eigen value and eigen 

vectors of a matrix – Diagonalisation – Cayley Hamilton Theorem. 

UNIT II : FUNCTIONS AND POLYNOMIALS 

Beta , Gamma functions – Dirac delta function and its properties – Green’s function – Bessel 

differential equation – Generating function for Jn(x) – Recurrence relation for Jn(x) – 

Legendre differential equation – Generating function for Pn(x) – Recurrence relation for 

Pn(x)- Hermite differential equation – Generating function for Hn(x) – Recurrence relation for 

Hn(x) 

UNIT III : FOURIER AND LAPLACE TRANSFORM 

Fourier transform-properties of Fourier transform-convolution – Fourier cosine and sine 

transform-Fourier transform of derivatives- Application of Fourier transform-vibrations in a 

string-Laplace transform-inverse Laplace transform- Application of Laplace transform-

Simple Harmonic motion 

UNIT IV : COMPLEX ANALYSIS 

Complex variables- complex conjugate and modulus of a complex number-algebraic 

operations of complex numbers-function of a complex variable-analytic function-Cauchy-

Riemann equation in polar form-line integral of a complex function-Cauchy integral theorem-

Cauchy integral formula-Derivatives of an analytic function 

UNIT V : GROUP THEORY 

Concept of a group-Group multiplication table of order 2, 3, 4 groups- Group symmetry of 

equilateral triangle- Group symmetry of a square-permutation group-conjugate elements- 

representation through similarity transformation-reducible and irreducible representation- 

SU(2) group-SO(2) group. 
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UNIT I : VECTOR SPACE AND MATRICES 

Linear independence of vectors – Dimension – Basis – Inner product of two vectors – 

Properties of inner product – Schmidt’s orthonormalization method – Linear transformations 

– Matrices – inverse of a matrix – orthogonal matrix – unitary matrix – eigen value and eigen 

vectors of a matrix – Diagonalisation – Cayley Hamilton Theorem. 

 

1.1 Vector Space: 

 Let (𝐹, +, ∙) be a field of real numbers and let 𝑉 be a set together with an operation 

of addition (+) and a scalar multiplication (∙). The operations of (+) and (∙) on elements of 𝑉 

by elements of 𝐹 yielding again elements of 𝑉 and satisfying the algebraic laws, then the set 

V will be called a  real“𝑉𝑒𝑐𝑡𝑜𝑟 𝑠𝑝𝑎𝑐𝑒 𝑜𝑟 𝑉𝑒𝑐𝑡𝑜𝑟 𝑠𝑝𝑎𝑐𝑒 𝑜𝑣𝑒𝑟 𝐹” 

ie.,𝑉𝑛(𝑅) is a vector space over 𝑅.  

If the components of n-dimensional vectors are rational numbers then 𝑉𝑛(𝑄) is a vector 

space over rational number. 

 𝑛 − 𝑡𝑢𝑝𝑙𝑒𝑠(𝐶1, 𝐶2, … …𝐶𝑛 )of complex numbers together with addition and scalar 

multiplication would form a vector space over complex numbers. 

1.2 Linear Independence of Vectors: 

 Let 𝑉 be a vector space over a field 𝐹 and let 𝑆 =  { 𝛼1, 𝛼2, … … … . 𝛼𝑘) be a finite 

sub set of 𝑉. Then 𝑆 is said to be linearly independent if and only if every equations of the 

form  

𝑎1𝛼1 +  𝑎 2𝛼2 + ⋯ …… . +𝑎𝑘𝛼𝑘  =  0, 𝑎 𝑖 ∈   𝐹  ⟹  𝑎 1 =  𝑎2  =  ⋯ 𝑎𝑘  = 0 

ie., an infinite set T is said to be linearly independent if and only if every finite sub set of T is 

linearly independent.  

(eg)  Any set which consists of a single non-zero vector is independent. 

 Any set of vectors which is not linearly independent is linearly dependent. Any vector 

which contains 0 is dependent.  Two vectors A and B are said to depend on each other when 

one of them can be expressed in term of the second.  

ie., 𝐴 =  𝑘 𝐵   where k is a non-zero scalar        or         𝑐 𝐴 +  𝑑 𝐵 =  0 

Where  𝑐   𝑎𝑛𝑑   𝑑  are non-zero scalar constants. 

The dependence is said to be linear when the vectors in the expression are of degree one.  
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Exercise: 

1. Show that the vectors (1,2,3),  (2,2,0) forms linearly independent. 

Solution:    Given       α1 = (1,2,3);     α2 = (2,2,0) 

a1(1,2,3) + a2(2,2,0) = 0 

                  (a1, 2a1, 3a1) + (2a2, 2a2, 0 ) = 0 

  a1 + 2a2 = 0 

  2a1 + 2a2 = 0 

     3a1 = 0;   a1 = 0     

Then  0 +2a2 =0 ;    a2 = 0 

Both  a1, and a2 are zero therefore the  given vectors are linearly independent. 

2. Show that the four vectors α 1 = (1,1,0,1), α 2 = (1,0,0,2), α 3 = (0,1,2,-3), and                 

α 4 = (1,1,1,1) are linearly independent. 

Solution: 

 c1α 1 + c2α 2 + c3 α 3 + c4 α 4 =0 

c1 (1,1,0,1)+ c2(1,0,0,2)+ c3 (0,1,2,-3) + c4 (1,1,1,1) =0 

c1 + c2 +c4 = 0;          c1 + c3 +c4 = 0;         2c3 +c4 = 0;        c1 + 2c2 -3c3 +c4 = 0 

On solving these equations we get c1 = c2 = c3 = c4 = 0. Therefore the vectors α1 , α 2 , α 3,  α 4 

are linearly independent. 

1.3 Basis: 

In three dimensional space, (a1, a2, a3) = a1(1,0,0) + a2(0, 1, 0) + a3(0, 0, 1) 

(a1, a2, a3) = a1 Є 1 + a2 Є2 + a3 Є3   where Єi , i = 1,2,3 represents the triple whose ith 

component is one and whose other components are zero. { Є1, Є2, Є3} spans the space and is 

linearly independent. These 3 vectors are unit vectors along 3 coordinate axes. This set is a 

maximal linearly independent sub set of the space. A second maximal linearly independent 

set in 3 dimensional space is β1 = (0,1,1);  β2 = (1,0,1);  β3 = (1,1,0). 

A maximal linearly independent sub set of a vector space V is called a basis of V. Since a 

basis for V, spans V, every vector  ξ  is a linear combination of vectors of V. 

ξ = C1 α 1 + C2 α2 + .................+ Ckαk 

The Scalars in this representation are Unique.  

ie., If                 ξ = b1 α1 + b2 α2 + .................+ bk αk  ,  

then           ξ  -  ξ = (C1 - b1 )α1 + (C2 - b2)α2 + .................+ (Ck - bk)αk 
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                     0     = (C1 - b1 )α1+ (C2 - b2)α2 + .................+ (Ck - bk)αk 

ie.,   (C1 - b1 ) = 0; (C2 – b2 ) = 0; …… (Ck – bk ) = 0,   

And  ∴   C1 = b1;   C2 = b2;⋯ ⋯ Ck = bk. 

This proves that the scalars in the representation are unique. 

If a given set of vectors  φ1 , φ2,  φ3, ⋯ ⋯ φn has the following two properties,  

1. The vectors φ1 , φ2,  φ3, ⋯ ⋯ φn are linearly independent  and 

2. Every vector φ in the space can be expressed as a linear combination of φ1 , φ2, … φn, 

then the set (φ1 , φ2,  φ3, ⋯ ⋯ φn) is a basis for the vector space. 

1.4 Dimensions: 

 A vector space is said to be 𝑛 dimensional if it has a finite basis consist of 𝑛 elements. 

A vector space with no finite basis is said to be infinite dimensional. The maximum number 

of linearly independent vectors cannot be more than that of the number of dimensions of 

the space. That is, dimensionality of a space is the maximum number of linearly 

independent vectors in the space. 

Example:  

In a three dimensional space α 1, α 2, α 3 are three linearly independent vectors, and then 

any other vector ψ in the space can be expressed as 

 ψ = c1 α 1 + c2α 2 + c3 α 3 

Where c1 , c2 , c3  are constants, and at least one of them is non-zero. 

1.5 Inner Product (Scalar Product):  

 In ordinary three dimensional space the scalar product achieves, 

1. The scalar product of a vector with itself helps to define the length of the vector. 

2. It is a measure of relative orientation of the vectors, when the lengths are known. 

In a linear vector space the inner product of two vectors  ψ  and φ  is denoted by (ψ, φ). The 

inner product has the following properties.  

1.6 Properties of Inner Product: 

1. (ψ,  φ + ξ) =  (ψ, φ) + (ψ, ξ) 

2. (ψ + φ,  ξ) =  (ψ, ξ)+(φ, ξ) 

3. (ψ,  ψ) > 0 unless ψ = 0 

4. (ψ, φ) = (φ, ψ)* 
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5. (ψ,  α φ + β ξ) = α (ψ, φ) + β(ψ, ξ)       Where α and β are arbitrary complex numbers. 

6. The norm (length) is denoted by || ψ||, and is defined as  || ψ|| = (ψ, ψ)1\2 

In an n- dimensional space, elements of basis are α 1,  α 2, ……. α n, (the magnitude of each 

element of the basis is unity then the elements are called unit vectors) then two vectors ψ 

and φ in the space can be expressed as 

 Ψ = c1α 1 + c2 α 2 + …………..+cn α n    and      φ = b1α 1 + b2 α 2 + …………..+bn α n 

Then the inner product of ψ and φ is 

(Ψ, φ) = i

n

i

i bc
1

*  = c1* b1 + c2* b2 + …………..+ cn* bn 

Example 

1. Calculate inner product of the two vectors A and B given by   

A = 5 α 1 - 3 α 2 - 4 α 3 - α 4 + 2 α 5     and   B = - α 1 + 2 α 2 - 3 α 3 + α 4 + α 5 

Solution: 

The inner product of A and B is 

(A, B) = (5)(-1) + (-3)(2) + (-4)(-3) + (-1)(1) + (2)(1)  

=  – 5 – 6 + 12 – 1  

           = 2 

2. Find the norm of a vector 3i + 4j + 5k 

Solution: 

Let the vector   ψ = 3i + 4j + 5k, 

Then          (ψ,  ψ) = (3i + 4j +5k)∙ (3i + 4j +5k) 

                                = 9 + 16 + 25 

        = 50 

|| ψ|| = (ψ, ψ)1\2 =(50)1\2 

1.7 Orthogonal Vector:  

 If the inner product of two vectors equal to zero, ie., (ψi,  ψk) =0  for {
...2,1,;

0,0

nkiki

ki



 
 

Then the vectors are said to form an orthogonal set. If the norm within the orthogonal set is 

unity then the set is called orthonormal set, ie.,|| ψi|| = 1  & || ψk|| = 1 
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1.8 Orthonormal basis: 

 The norm of vector φ in a linear vector space is defined to be a positive real number 

associated with  φ such that the following properties are satisfied 

1 || φ || ≥ 0 

2 || φ || = 0 only if φ = 0 

3 || α φ ||=| α| || φ ||  where α is an arbitrary complex numbers. 

4 || φ1 + φ2 ||≤|| φ1 || + || φ2 || 

To Prove, 

|| φ1 + φ2 ||     ≤  || φ1 || + || φ2 || 

The positive square root of scalar product of a vector with itself can be taken as the norm of 

the vector. 

ie., || φ || = (φ, φ)1/2    and   || φ ||2 = (φ, φ) 

|| φ1 + φ2 ||2 = (φ1 + φ2 , φ1 + φ2 ) 

            = ( φ1 + φ2 , , φ1) +( φ1 + φ2 , φ2) 

            = ( φ1 , φ1) + ( φ2 , φ1) + ( φ1 , φ2) + (φ2 , φ2) 

            = || φ1||2 + (φ1 , φ2)* + (φ1 , φ2) + || φ2||2 

            = || φ1||2 +|| φ2||2 + 2Re( φ1 , φ2) 

Since |( φ1 , φ2)|  ≥  Re( φ1 , φ2) 

|| φ1 + φ2 ||2≤  || φ1||2 +|| φ2||2 + 2|( φ1 , φ2)| 

Using  Schwartz  inequality,  || φ1 + φ2 ||2≤  || φ1||2 +|| φ2||2 + 2|| φ1|||| φ2|| 

     ≤   (|| φ1|| +|| φ2||)2 

Taking Square root on both sides we get || φ1 + φ2 ||≤|| φ1 || + || φ2 || , Hence proved. 

 The vector of unit norm is said to be normalized. If a vector φ is not normalized a 

normalized vector can be obtained by dividing φ by (φ ,φ)1/2. This process is known as 

normalization. 

Problem: 

1. Show that the following two vectors are orthogonal to each other  

A = 4 α 1 - 2 α 2 - α 3 + 2α 4 +  α 6  and     B = 2 α 1 + 2 α 3 - 3α 4 + 2 α 5 where α’s form a 

orthonormal set. 

Solution: 

The inner product of A and B is 
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 (A, B) =(4)(2) + (-2)(0) + (-1)(2) + (2)(-3) + (0)(2) + (1)(0) = 0 

Then  (A, A) = (4)(4) + (-2)(-2) + (-1)(-1) + (2)(2) + (1)(1) =26 ; 

 The norm of A is   (𝐴, 𝐴)  1/2 =  (26)1/2 

And  The norm of B is   (B, B) = (2)(2) + (2)(2) + (-3)(-3) + (2)(2) =21 ;  

The norm of B is (𝐵, 𝐵) 1/2  =  (21)1/2 

Therefore the vectors A and B are orthogonal. 

1.9 Gram Schmidt orthogonaliationProces: 

Let  ψ1, ψ2 , ψ3, …………., ψn be a set of n linearly independent vectors. By Gram Schmidt 

orthogonalization process we can construct n mutually orthogonal vectors φ1’,  φ2’, φ3’, 

…………., φn’ from the given linearly independent vectors. If the constructed vectors are then 

normalized we get an orthonormal set φ1,  φ2, φ3, …………., φn. 

Construct a set of orthogonal vectors φ1’,  φ2’, φ3’, …………., φn’ by choosing the following 

manner 

φ1’ = ψ1 

φ2’ = ψ2 + C21 φ1’ 

φ3’ = ψ3 + φ2’ + C31 φ1’ 

. 

. 

. 

φn’ = ψn + Cn,n-1 φn-1’ + Cn,n-2 φn-2’+ ………………+ φ1’ 

The coefficient C21 , C32 , C32 , C31 , ……….Cn,n-1 , Cn,1 are chosen such that φ1’,  φ2’, φ3’, 

…………., φn’ are mutually orthogonal to each other. 

(φ1’,  φ2’)  = 0 

(φ1’, ψ2 + C21 φ1’) = 0 

(φ1’, ψ2) + C21(φ1’,  φ1’) = 0 

C21(φ1’,  φ1’) = - (φ1’, ψ2) 

C21    = - (φ1’, ψ2) / (φ1’,  φ1’) 

And        (φ1’,  φ3’)  = 0 

(φ1’, ψ3 + C32 φ2’ + C31 φ1’) = 0 

(φ1’, ψ3) + C32 (φ1’,  φ2’) +  C31 (φ1’,  φ1’) = 0 

(φ1’, ψ3) + C31 (φ1’,  φ1’) = 0   
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since φ1’,  φ2’ are mutually orthogonal to each other (φ1’,  φ2’) =0 

C31 (φ1’,  φ1’) = - (φ1’, ψ3) 

C31     = - (φ1’, ψ3) / (φ1’,  φ1’) 

Similarly (φ2’,  φ3’)  = 0 

(φ2’, ψ3+ C32  φ2’+  C31 φ1’ )= 0 

(φ2’, ψ3) + C32 (φ2’,  φ2’) +  C31 (φ2’,  φ1’) = 0 

(φ2’, ψ3) + C32 (φ2’,  φ2’) =0   since (φ2’,  φ1’) = 0 

C32 = -(φ2’, ψ3) / (φ2’,  φ2’) 

In general           Cij = -(φj’, ψi) / (φj’,  φj’) 

Using the coefficients we get the orthogonal set φ1’,  φ2’, φ3’, …………., φn’ and then we 

divide each of the vectors by its magnitude then a set of orthonormal vectors is obtained. 

Problem: 

 Using Gram Schmidt orthogonal process, construct an orthogonal set from the 

linearly independent set of n-tuple 

Ψ1 =(1,0,0,……0); Ψ2 =(1,1,0,……0) ; Ψ3 =(1,1,1,……0) ;………………….Ψn=(1,1,1,……1)  

Solution:  

 Let     φ1’ = Ψ1 = (1,0,0,……0) 

            φ2’ = Ψ2 + C21 φ1’ 

C21    = - (φ1’, ψ2) / (φ1’,  φ1’) 

          = - (1,0,0,….0) / (1,0,0,….0) 

          = -1 

 φ2’ = (1,1,0,……0) – 1 (1,0,0,……0) 

       φ2’ = (1,1,0,……0) – (1,0,0,……0) 

φ2’ = (0,1,0,……0)  

then    φ3’= Ψ3 + C32 φ2’ + C31 φ1’ 

C31     = - (φ1’, ψ3) / (φ1’,  φ1’) 

           = - (1,0,0,……0) / (1,0,0,……0) 

           = - 1 

C32     = - (φ2’, ψ3) / (φ2’,  φ2’) 

          = - (0,1,0,……0) / (0,1,0,……0) 

          = - 1 
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  φ3’ = (1,1,1,0,….……0)  –  1 (0,1,0,……0)  – 1 (1,0,0,…..0) 

φ3’ =(0,0,1,0,……0) 

similarly  we can get      

                        φ4’ =(0,0,0,1,……0),  

                         ………………………  

φn’ =(0,0,0,0,……1) 

1.10 Linear Transformation: 

Let a set of orthonormal vectors α1 , α2 ……….αn   constitutes a basis in an                    n-

dimensional space. Then a vector in the space is expressed as 

φ = x1 α 1 + x2 α2 + .................+ xn αn 

where x1, x2,………xn are the components of vector φ along the axes of the coordinate 

system. 

    And consider another set of orthonormal vectors β1, β2,………, βn constitutes another basis 

in the space. The same vector is expressed as  

φ = y1 β1+ y2 β 2 + .................+ yn β n 

where y1, y2,……yn are the components of the vector φ along the axes of the another 

coordinate system. 

   To transform the component of the given vector in one coordinate system into another 

system, the following conditions will be considered. If the origin of the two coordinate 

systems is same, the transformation is homogeneous; whereas the origins are different the 

transformation is inhomogeneous. 

       When components of a vector in one coordinate system can be expressed as a linear 

combination of the other system, then the transformation is linear. For linear 

transformation, the components of second coordinate system y
s
 can be expressed in terms 

of the component of the first one x
s
 as 

Yi    =  Ci1 x 1 + Ci2 x2 + .................+ Cinxn   =               1 ≤ i ≤ n j

n

j

ij xc
1
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      =    

 

 

𝑖𝑒. , 𝒀  =   𝑪 𝑿 

  The transformation matrix  𝐶 depends on the two coordinate systems and does not 

depend on components of a vector in the two systems. 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦            𝑿 =  𝑫𝒀   𝑤𝑕𝑒𝑟𝑒 𝑫 =  𝑪−𝟏 

1.11 Matrices: 

 A matrix may be defined as a square or rectangular array of numbers or functions that obey 

certain laws. The individual numbers or functions of the array are called the elements of the 

matrix. And a matrix consists of certain rows (horizontal array) and certain columns (vertical 

array). 

Example 








61

32

,       















zyx

gfe

cba

 ,        






















ii

iyxi

ii

2342

24

21

 

 

and  the array function  








)()()(

)()()(

654

321

xfxfxf

xfxfxf

 

 

In the second example (a,b,c) is the first row, (e,f,g) and (x,y,z) are the second and third 

rows respectively. Similarly (a,e,x), (b,f,y),(c,g,z) are first, second, third columns respectively. 

 

A matrix consists  of ‘m’ rows and ‘n’ columns is said to be the matrix of order m × n.                           

 























ny

y

y

.

.

2

1























nnnn

n

n

ccc

ccc

ccc

21

22221

11211

.

.

..

..























nx

x

x

.

.

2

1
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ie.,























mnmm

n

n

aaa

aaa

aaa

21

22221

11211

.

.

..

..

 

  

  A =(aij)m×n means  A is a matrix of order (m×n) whose ijth element is aij, the letter i 

designates the row and j designates the column to which the element aij belongs. 

1.12 Properties of matrices: 

1.12.1 Equality: 

Two matrices A and B are equal if and only if they have the same order (m×n)  and each 

element of A is equal to the corresponding element of B. ie.,aij = bijfor all i and j 

1.12.2 Addition and Subtraction: 

Two matrices of same order of (m×n) can only be added or subtracted.  

A + B = C       means      aij + bij = cij    for all i and j 

A - B  = d       means      aij - bij = dij    for all i and j 

Commutative law      A + B = B + A 

Associative law          A +(B + C)= (A + B) + C 

Distributive law       λ(A + B)  = λ A + λ B 

1.12.3 Multiplication:  

Two matrices A and B can be multiplied in the order of AB only when the order of column of 

matrix A is same as the order of row of matrix B.     

ie., (A)m×h    ×    (B)h×n     =   (C)m×n 

Its elements are given by   Cij = kj

h

k

ikba
1

 

For h = 3,Cij = ai1 b1j + ai2 b2j + ai3 b3j 

Example : 

               A = 
















3231

2221

1211

aa

aa

aa

and  B = 








2221

1211

bb

bb

      Find   AB 
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(A)3×2    ×    (B)2×2     =   (C)3×2 = 
















3231

2221

1211

aa

aa

aa










2221

1211

bb

bb

  = 






















2232123121311131

2222122121221121

2212121121121111

babababa

babababa

babababa

 

 

1.12.4 Square matrix: 

A matrix having same number of rows and columns is called a square matrix. 

ie  (A)n×n=   























nnnn

n

n

aaa

aaa

aaa

21

22221

11211

.

.

..

..

 

a11, a22, a33, a44, …….ann are the diagonal elements of the square matrix A. The sum of the 

diagonal elements of a square matrix is called the Trace of that matrix (Tr = a11+a22+…..ann).  

 

1.12.5 Diagonal matrix  

If all the elements of a square matrix are zero except the diagonal elements the matrix is 

called as diagonal matrix.  























nna

a

a

00

.

.

0..0

0..0

22

11

is a diagonal matrix of order n. 

And if in a diagonal matrix in which each diagonal element is unity then it is called an 

identity or unit matrix. 























100

.

.

0..10

0..01

 

1.12.6 Row or Column matrix  

 A matrix containing only one row or one column is called a vector.  

A matrix of one row only of order 1 × n is called a row matrix. [x]1×n = [a11, a12, a13,…….. a11] 
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A matrix of one column only of order m × 1 is called a column matrix [x]m×1 =























1

21

11

.

.

ma

a

a

 

Problem: 

A= 






















012

123

111

and  B= 
















321

642

321

 compute AB and BA and Show that AB ≠ BA 

AB = 






















012

123

111

















321

642

321

     =      
















000

000

000

 

BA = 
















321

642

321























012

123

111

=     






















1611

21222

1611

 

Hence AB ≠ BA. 

1.12.7 Transpose of a matrix: 

A matrix of order (n × m) is obtained by interchanging rows and columns of a matrix A of 

order (m × n) is called transpose of matrix A. It is denoted by A’ or AT or Ã . 

And (AT)T = A. 

Example:          A  = 








654

321

              Then          AT  =  
















63

52

41

 

1.12.8 Conjugate of a matrix: 

If A is any matrix having complex numbers then the matrix obtained from A by replacing its 

each element by its conjugate complex number(ie., changing the sign of ‘i’ term) is called 

the conjugate of matrix A and is denoted by  Ā or A*. And (A*)* = A 

 

Example:          A  = 












ii

ii

3253

221

        Then            A*  =  












ii

ii

3253

221
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1.12.9 Conjugate Transpose or Transpose Conjugate of a matrix : 

Conjugate followed by Transpose or Transpose followed by conjugate is denoted by A†.     

ie., A†  =  (A*)T  = (AT)*. 

Example:   A = 






















i

ii

iii

7340

12

72521

   then           A†=  (A*)T =  (AT)* = 






















iii

i

ii

7372

415

0221

 

 

1.13 Determinant of a Matrix: 

  The determinant of a matrix is a special number that can be calculated from the 

elements of a square matrix. The determinant of a square matrix A is denoted by "det A" or 

| A |. The determinant helps us to find the inverse of a matrix. If the value of determinant of 

a matrix is zero ie.,| A | = 0, then the matrix is singular and if  | A | ≠ 0 then the matrix is 

nonsingular.  

The determinant value of a 2×2 matrix is | A | =
dc

ba

 

 = ad – bc 

 

The determinant value of a 3×3 matrix is | A | =

ihg

fed

cba

 

                                                                                   = a (e i – f h) – b (d i – f g) + c (d h – e g) 

Example:             

                     | A | = 

782

524

116

  

=  6 × (-2×7 – 5×8) – 1 × (4×7 – 5×2) + 1 × (4×8 – 2×2)  

=  6 × (-54) – 1 × (18) + 1 × (36)  

=  – 306 
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1.13.1 Minors: 

A minor is the determinant of the square matrix formed by deleting one row and one 

column from some larger square matrix. These minors are labeled according to the row and 

column we deleted. The notation Mij is used to stand for the minor of the element in row i 

and column j. So M21 would mean the minor for the element in row 2, column 1. 

Consider the 3×3 determinant  

333231

232221

131211

aaa

aaa

aaa

 

the minor a11 is obtained by deleting 1st row and 1st column of the determinant 
3332

2322

aa

aa
 

the minor a12 is obtained by deleting 1st row and 2nd  column of the determinant
3331

2321

aa

aa

the minor a13  is obtained by deleting 1st row and 3d  column of the determinant     
3231

2221

aa

aa
 

 
Similarly the minors of a21, a22, a23 and the minors of a31, a32, a33 are found as follows 

3332

1312

aa

aa
,    

3331

1311

aa

aa
,

3231

1311

aa

aa
   and   

2322

1312

aa

aa
,    

2321

1311

aa

aa
,    

2221

1211

aa

aa
 

Example: 

Find the determinant value and matrix of minors for the given determinant 

252

314

231

 

Solution:  

                       | A | = 

252

314

231

 

 
                                = 1 × (1×2 - 3×5) – 3 × (4×2 - 3×2) + 2 × (4×5 - 1×2)  

= 1 × (-13) – 3 × (2) + 2 × (18) 

                                = 17 

To find matrix of minor, 
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Let the general matrix of minors for a 3 × 3 determinant is given below. Where C’s 

represents the column number and R’s represents the row numbers, whereas M’s are the 

corresponding minors. 

 

 

 

 

 

 

Therefore the given determinant can be written in the general form 

 

 

 

 

 

 

To find each minor 

. 

 

 

 

 

 

 

 

 

 

 

Then the matrix of minors is  

 C1 C2 C3 

R1 M11 M12 M13 

R2 M21 M22 M23 

R3 M31 M32 M33 

 C1 C2 C3 

R1 1 3 2 

R2 4 1 3 

R3 2 5 2 

    C1    C2    C3 

R1 25

31
 

=2-15=-13 

22

34
 

  =8-6=2 

52

14
 

 =20-2=18 

R2 25

23
 

=6-10=-4 

22

21
 

   =2-4=-2 

52

31
 

  =5-6=-1 

R3 31

23
 

=9-2=7 

34

21
 

=3-8=-5 

14

31
 

=1-12=-11 

 C1 C2 C3 

R1 -13  2 18 
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 =     
−13 2 18
−4 −2 −1
7 −5 −11

  

1.13.2 Cofactors of a determinant: 

 A cofactor for any element is either the minor or the opposite of the minor, depending on 

where the element is in the original determinant. If the row and column of the element add 

up to be an even number, then the cofactor is the same as the minor. If the row and column 

of the element add up to be an odd number, then the cofactor is the opposite of the minor. 

The sign chart for a 3×3 determinant. 

 

 

 

 

 

The + does not mean positive and the - negative. The + means the same sign as the minor 

and the - means the opposite of the minor.  

The matrix of cofactors is the matrix found by replacing each element of a matrix by its 

cofactor. This is the matrix of minors with the signs changed on the elements in the - 

positions. 

 

 =    
−13 −2 18

4 −2 1
7 5 −11

  

 

 

1.13.3 Adjoint of a matrix: 

The adjoint of a matrix A is defined as the transpose of the matrix formed by the cofactors 

of elements of the determinant A. To transpose a matrix, interchange the rows and 

columns. That is, the rows become columns and the columns become rows. The adjoint of 

the above matrix of cofactors is given below. 

R2 -4 -2 -1 

R3 7 -5 -11 

 C1 C2 C3 

R1 + - + 

R2 - + - 

R3 + - + 

 C1 C2 C3 

R1 -13 -2 18 

R2 4 -2 1 

R3 7 5 -11 
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=  
−13 4 7
−2 −2 5
18 1 −11

  adj(A) =         

 

 

1.13.4 Inverse of a Matrix:  

 To find inverse of a matrix A, the matrix must be nonsingular square matrix ie.,  | A | ≠ 0. 

𝐴−1  =
A

adjA

det
 

Example:  

Find the inverse of the given matrix 

252

314

231

 

Solution:  

Given matrix is same as the above example; the same procedure is adapted to find 𝑎𝑑𝑗𝐴 

From the above example we get,   adj A = 























11118

522

7413

 

And the determinant value is    | A |   = 17 

 

                                            A-1   =  
17

11118

522

7413























 

 

A-1   = 

























17
11

17
1

17
18

17
5

17
2

17
2

17
7

17
4

17
13

 

 

 

 C1 C2  C3 

R1 -13  4   7 

R2 -2 -2   5 

R3  18  1 -11 
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1.14 Orthogonal matrix: 

A square matrix 𝐴 is said to be orthogonal when it satisfies the relations 𝐴𝑇𝐴 =  𝐴𝐴𝑇 =  𝐼. 

Where  𝐴𝑇   is the transpose of  𝐴 and  𝐼  is the unit matrix. 

Example:  

Show that the following matrix is orthogonal  






 





cossin

sincos

 

Solution:   

Let  𝐴  =  






 





cossin

sincos
 ,   Then  𝐴𝑇    =  









 



cossin

sincos
 

 Therefore   𝐴𝐴𝑇   =  






 





cossin

sincos









 



cossin

sincos
 

                               =    















22

22

sincos0

0sincos
=   









10

01
 

Hence the given matrix is Orthogonal. 

 

1.15 Unitary Matrices: 

A square matrix 𝐴 𝑖s said to be Unitary when it satisfies the relations 𝐴†𝐴 = 𝐴𝐴†= 𝐼. Where 

𝐴†  is the conjugate transpose of 𝐴 and 𝐼 is the unit matrix.  

Example: Show that the following matrix is unitary





















2

1

2

22

1

i

i

 

Let 𝐴 =





















2

1

2

22

1

i

i

,  Then𝐴†  = 





















2

1

2

22

1

i

i

 

Therefore 𝐴𝐴†  =   





















2

1

2

22

1

i

i





















2

1

2

22

1

i

i

 =     








10

01
 Hence the given matrix is Unitary. 
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1.16 Eigen Values and Eigen Vectors: 

For a square matrix 𝐴 of order 𝑛, the number  𝜆 is an eigenvalue if and only if there exists a 

non-zero vector 𝑋 such that  

𝐴 𝑋 =   𝜆 𝑋 

Using the matrix multiplication properties, we obtain (𝐴 −   𝜆 𝐼𝑛) 𝑋 =  0  This is a linear 

system for which the matrix coefficient is  𝐴 −   𝜆 𝐼𝑛 . We also know that this system has one 

solution if and only if the matrix coefficient is invertible, i.e.  𝑑𝑒𝑡(𝐴 −  𝜆 𝐼𝑛)  ≠  0. Since the 

zero-vector is a solution and 𝑋 is not the zero vector, then we have 𝑑𝑒𝑡(𝐴 −  𝜆 𝐼𝑛)  =  0. 

In general, for a square matrix 𝐴 of order 𝑛, the equation  

𝑑𝑒𝑡(𝐴 −  𝜆 𝐼𝑛)  =  0  𝑖𝑒. , |𝐴 −  𝜆 𝐼𝑛  |  =  0 

Will give the eigenvalues of  𝐴. This equation is called the characteristic 

equation or characteristic polynomial of  𝐴. It is a polynomial function in of degree 𝑛. So we 

know that this equation will not have more than n roots or solutions. So a square 

matrix 𝐴 of order n will not have more than n eigenvalues. 

 

Example:  Find the eigen values eigen vector of the matrix 

















110

110

001

 

Let  𝐴 = 

















110

110

001

and  the characteristic equation is  | 𝐴 –  𝜆 𝐼 |  =  0 

ie.,|𝐴 –  𝜆𝐼|  =  

















110

110

001

 -  λ 

















100

010

001

    =   





























110

110

001

  =  0 

 

(1 – λ) { (1 - λ)2 – 1}  = 0  ⟹(1 – λ) {1  +  λ2  - 2 λ – 1} = 0  ⟹(1 – λ)( λ – 2) λ = 0  

ie., 𝜆 =  0, 1, 2 

 The eigen values of the matrix  A are   0, 1, 2  

And the eigen value equation is (𝐴 −   𝜆 𝐼) 𝑋 =  0 
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Case 1,  λ =0,    the eigen value equation is 
















110

110

001

















3

2

1

x

x

x

 = 
















0

0

0

      we get   

0

0

0

32

32

1







xx

xx

x

 

 

Solving these equations we get 321 ;0 xxx 
, X1  =

















3

2

1

x

x

x

= 
















 2

2

1

x

x

x

 =    
















 k

k

0

 

 

To normalize the eigen vector it must be equated to unity |X1| =1, ie., 

1)(0 222  kk ; 12 2 k  therefore 
2

1
k .   the normalized eigen vector of 

matrix 𝐴 for𝜆 =0 is {0,
2

1
,

2

1
 } 

Case 2, 𝜆 = 1,    the eigen value equation is 
















010

100

000

















3

2

1

x

x

x

 = 
















0

0

0

      we get   
0

0

2

3





x

x

 

 

So that 𝑋2  =   321 ,, xxx  =   0,0,1 is the suitable eigen vector and is normalized. 

 

Case 3, 𝜆 = 2,    the eigen value equation is 






















110

110

001

















3

2

1

x

x

x

 = 
















0

0

0

      we get   

0

0

0

32

32

1







xx

xx

x

 

Solving these equations we get 321 ;0 xxx  X3  =
















3

2

1

x

x

x

= 
















2

2

1

x

x

x

 =    
















k

k

0

 

the normalized the eigen vector is 10 222  kk ;    12 2 k  therefore 
2

1
k .    
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the normalized eigen vector of matrix A for λ =2  is {0,
2

1
,

2

1
 } 

 

1.17 Diagonalization: 

To reduce a given square matrix 𝐴 to diagonal form, evaluate the characteristic roots( or 

eigen values) λ1, , λ2, …… λn from the characteristic equation of the matrix A. Then the 

required diagonal matrix D of A can be obtained as the following method.  

D  =



















n





000

0...

0.0

0.0

2

1

 

 

Example1:  Diagonalize the matrix 



















3

5

3

2

3

2

3

4

 

Solution: Let  A = 



















3

5

3

2

3

2

3

4

 and the Characteristic equation is |A – λI| = 









3

5

3

2

3

2

3

4

 = 0 









 

3

4








 

3

5
 - 

3

2
.

3

2
 = 0  

0232   ⟹  1  2 =  0 

 21   and  

Then the required diagonal matrix is   D =  








20

01

 

 

Example2:    Diagonalize  the  matrix   















 

100

0cossin

0sincos




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Solution: Let A = 















 

100

0cossin

0sincos





 

 

and the characteristic equation 0

100

0cossin

0sincos

































IA

 

 

 

     0sincos1 22
   

   0sincos2cos1 222    

   01cos21 2    

The roots are 
 
2

4cos4cos2
1

2 



 and  

ie.,  sincos1  and ;  ieand 1  then the eigen values

  ii ee  321 1  

and the diagonal matrix is 

















 



i

i

e

e

00

00

001

 

 

1.18 Cayley – Hamilton Theorem:  

Every square matrix satisfies its own characteristics equation. For a square matrix A of order 

n, the characteristic polynomial is  n

naaaaIA   2

210  

Then the matrix equation 02

210  n

n XaXaXaIa   is satisfied by AX  . 

Proof:  

The characteristic polynomial is n

naaaaIA   2

210  

The characteristic equation of A is 02

210  n

naaaaIA    

Then the matrix equation is 02

210  n

n XaXaXaIa   

If the matrix equation is satisfied by A, then 02

210  n

n AaAaAaIa   

          001sinsin01coscos  
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Since each element of the characteristic matrix  IA  is an ordinary polynomial of degree 

n then the cofactor of every element of  IA   is an ordinary polynomial of degree (n-1). 

Therefore each element of   IAadjB   is an ordinary polynomial of degree (n-1). 

 We can write  IAadjB  1

1

2

210



 n

nBBBB    where 

1210 ,,, nBBBB   are all square matrices of the same order n whose elements are 

polynomials in the elements of the square matrix A. We have,   

    IIAIAadjIA  
 

 𝐴 − 𝜆 𝐼  𝐵0 + 𝐵1𝜆 + 𝐵2𝜆2 + ⋯ ⋯ + 𝐵𝑛−1𝜆𝑛−1 =  𝑎0 + 𝑎1𝜆 + 𝑎2𝜆2 + ⋯ ⋯ + 𝑎𝑛𝜆𝑛 𝐼
 

Comparing the coefficient of like powers of   on both sides we get,  

IaAB 00   

IaBAB 101   

IaBAB 212   

  

IaBAB nnn 121    

IaB nn  1  

Now pre multiplying these equations by nAAAI ,,, 2  and then adding we get  

n

n AaAaAaIa  2

2100  This proves the theorem. 

Note: From This equation we can find the inverse of the square matrix A. 

ie.,      n

n AaAaAaIa  2

210
 









 nn A

a

a
A

a

a
A

a

a
I

0

2

0

2

0

1   

Then pre multiplying the equation by 1A  on both sides we get the inverse of the matrix A . 









  1

00

2

0

11 nn A
a

a
A

a

a
I

a

a
A   
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Example: 

Find the characteristic equation of the matrix A =  























211

121

112

 and verify that it is 

satisfied by A. Hence find the inverse of A. 

 

Solution : 

0

211

121

112

















IA  

0496 23   ;           0496 23    

This is the required characteristic equation of A. If the characteristic equation is satisfied by 

A , we must have, 0496 23  IAAA  

 

                   A2   =   























211

121

112























211

121

112

       =    























655

565

556

 

 

A3  =  A2 . A  =























655

565

556























211

121

112

   =   























222121

212221

212122

 

 

So that the equation 0496 23  IAAA  becomes 

 

= 























222121

212221

212122

− 6 























655

565

556

+  9























211

121

112

 −  4 

















100

010

001

 

= 

















000

000

000

  This verifies the Cayley – Hamilton theorem. 
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To find 1A ,    0496 23  IAAA  

AAAI 964 23   

 IAAAI 964 2   

 IAA
A

I
96

4

1 2   

 IAAA 96
4

1 21   = 
4

1























655

565

556

− 
4

6























211

121

112

+ 
4

9

















100

010

001

 

 

                                              =  



























4

3

4

1

4

1
4

1

4

3

4

1
4

1

4

1

4

3
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UNIT II :  FUNCTIONS AND POLYNOMIALS 

Beta , Gamma functions – Dirac delta function and its properties – Green’s function – Bessel 

differential equation – Generating function for Jn(x) – Recurrence relation for Jn(x) – Legendre 

differential equation – Generating function for Pn(x) – Recurrence relation for Pn(x)- Hermite 

differential equation – Generating function for Hn(x) – Recurrence relation for Hn(x) 

 

2.1 Beta Function:   

The beta function of 𝑚, 𝑛 written 𝛽 𝑚, 𝑛  is defined as 

𝛽 𝑚, 𝑛 =  𝑥𝑚−1
1

0

(1 − 𝑥)𝑛−1 𝑑𝑥                                                   (2.1) 

Which converges when𝑚 and 𝑛 positive integers, 𝛽 𝑚, 𝑛  = 𝛽 𝑛, 𝑚 ∴  𝛽 function is 

symmetrical in 𝑚 and 𝑛 

ie., put 𝑥 = 1 − 𝑦  and  𝑑𝑥 = −𝑑𝑦 in equation (2.1)  we get 

𝛽 𝑚, 𝑛 = −  (1 − 𝑦)𝑚−1
1

0

𝑦𝑛−1 𝑑𝑦 =  𝑦𝑛−1(1 − 𝑦)𝑚−1
0

1

 𝑑𝑦 = 𝛽 𝑛, 𝑚  

Thus we prove that      𝛽 𝑚, 𝑛  = 𝛽 𝑛, 𝑚                                                                 (2.2) 

Another expression of 𝛽 𝑚, 𝑛  can be obtained by substituting  

𝑥 =  𝑠𝑖𝑛2𝜃 ⟹ 𝑑𝑥 = 2𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 

𝛽 𝑚, 𝑛 =  (𝑠𝑖𝑛2𝜃)𝑚−1

𝜋

2

0

(𝑐𝑜𝑠2𝜃)𝑛−1 2𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 

𝛽 𝑚, 𝑛 = 2  𝑠𝑖𝑛2𝑚−1𝜃

𝜋

2

0

𝑐𝑜𝑠2𝑛−1𝜃  𝑑𝜃                                                                   (2.3) 

2.1.1 Other Form of Beta Function: 

𝛽 𝑚, 𝑛 =  𝑥𝑚−1
1

0

(1 − 𝑥)𝑛−1 𝑑𝑥𝐿𝑒𝑡 𝑢𝑠 𝑝𝑢𝑡 𝑥 =
𝑦

 1 + 𝑦 
 

𝑠𝑜 𝑡𝑕𝑎𝑡  𝑑𝑥 =  
 1 + 𝑦 − 𝑦

(1 + 𝑦)2
 ;     𝑑𝑦 =  

1

(1 + 𝑦)2
 𝑑𝑦   𝑎𝑛𝑑  1 − 𝑥 =

1

 1 + 𝑦 
 𝑡𝑕𝑒𝑛 

𝛽 𝑚, 𝑛 =  
𝑦𝑚−1

 1 + 𝑦 𝑚−1

1

0

1

(1 + 𝑦)𝑛−1

1

(1 + 𝑦)2
𝑑𝑥 =   

𝑦𝑚−1

(1 + 𝑦)𝑚+𝑛

∞

0

 𝑑𝑦             (2.4) 

Since 𝛽 𝑚, 𝑛 = 𝛽 𝑛, 𝑚 , we have 

 𝛽 𝑚, 𝑛 =   
𝑦𝑛−1

(1 + 𝑦)𝑚+𝑛

∞

0

 𝑑𝑦                                                                           (2.5) 

(2.5)  is one more form of beta function. 
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2.1.2 Evaluation of Beta Function 

By definition, 

𝛽 𝑚, 𝑛 =  𝑥𝑚−1
1

0

(1 − 𝑥)𝑛−1 𝑑𝑥 

On integrating by parts and keeping  1 − 𝑥 𝑛−1 as the first function, we have  

𝛽 𝑚, 𝑛 =  (1 − 𝑥)𝑛−1
𝑥𝑚

𝑚
 

0

1

+    𝑛 − 1 (1 − 𝑥)𝑛−2
1

0

𝑥𝑚

𝑚
  𝑑𝑥 

=  
𝑛 − 1

𝑚
 (1 − 𝑥)𝑛−2

1

0

𝑥𝑚  𝑑𝑥 

Integrating by parts again , we get  

𝛽 𝑚, 𝑛 =  
 𝑛 − 1 (𝑛 − 2)

𝑚(𝑚 + 1)
 (1 − 𝑥)𝑛−3

1

0

𝑥𝑚+1𝑑𝑥 

On continuing this process with 𝑛 is positive integer, we get 

𝛽 𝑚, 𝑛 =  
 𝑛 − 1 (𝑛 − 2) ⋯ ⋯ 2.1

𝑚 𝑚 + 1 ⋯ ⋯ (𝑚 + 𝑛 − 2)
 𝑥𝑚+𝑛−2

1

0

𝑑𝑥 

=  
 𝑛 − 1 (𝑛 − 2) ⋯ ⋯ 2.1

𝑚 𝑚 + 1 ⋯ ⋯ (𝑚 + 𝑛 − 2)
 

𝑥𝑚+𝑛−1

𝑚 + 𝑛 − 1
 

0

1

 

=  
 𝑛 − 1 !

𝑚 𝑚 + 1 ⋯ ⋯  𝑚 + 𝑛 − 2 (𝑚 + 𝑛 − 1)
 

Again if m is a positive integer, then 

𝛽 𝑚, 𝑛 =
 𝑛 − 1 !  𝑚 − 1 !

 𝑚 + 𝑛 − 1 !
                                                                             (2. 6) 

By the definition of Beta function using equation (2.1),  𝛽 1,1 = 1 

By the definition of Beta function using equation (2.3),  𝛽  
1

2
,

1

2
 = 𝜋 

Beta function is also known as ‘Euler’s integral of the first kind’. 

 

Problems: 

1. Find the values of  (i)  𝛽 𝑚, 𝑛 + 1     (ii) 𝛽 𝑚, 1   (iii) 𝛽 𝑚, 2  

We have 𝛽 𝑚, 𝑛 =  𝑥𝑚−11

0
(1 − 𝑥)𝑛−1 𝑑𝑥 

𝛽 𝑚, 𝑛 + 1 =   𝑥𝑚−1
1

0

(1 − 𝑥)𝑛  𝑑𝑥                  𝑚 > 0, 𝑛 > −1 
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If 𝑛 = 0, 𝛽 𝑚, 1 =   𝑥𝑚−11

0
(1 − 𝑥)0 𝑑𝑥   

=   𝑥𝑚−1
1

0

 𝑑𝑥 =    
𝑥𝑚

𝑚
 

0

1

 =  
1

𝑚
 

Tf𝑛 = 1, 𝛽 𝑚, 2 =   𝑥𝑚−11

0
(1 − 𝑥) 𝑑𝑥   

=   
𝑥𝑚

𝑚
 (1 − 𝑥) 

0

1

+
1

𝑚
 𝑥𝑚

1

0

 𝑑𝑥   

=  0 +  
1

𝑚

𝑥𝑚+1

𝑚 + 1
 

0

1

 

=    
1

𝑚(𝑚 + 1)
 

 Continuing Integration, we get 

𝛽 𝑚, 𝑛 + 1 =  
𝑛(𝑛 + 1) ⋯ ⋯ 1

𝑚 𝑚 + 1 ⋯ (𝑚 + 𝑛 − 1)
 𝑥𝑚+𝑛−1

1

0

 𝑑𝑥 

=  
1 ∙ 2 ∙ 3 ⋯ ⋯ 𝑛

𝑚 𝑚 + 1 ⋯ (𝑚 + 𝑛)
 

2.2 Gamma Function 

A Gamma function Γ(n) with 𝑛 > 0 is defined as 

Γ n =   𝑒−𝑥
∞

0

𝑥𝑛−1𝑑𝑥                                (2.7) 

Recurrence Relation: 

(i) By definition we have 

Γ n =   𝑒−𝑥
∞

0

𝑥𝑛−1𝑑𝑥 

Integrating by parts and keeping   𝑥𝑛−1  as the first function, we get 

Γ n =   −𝑥𝑚−1𝑒−𝑥 0
∞ +    𝑛 − 1 

∞

0

𝑥𝑛−2𝑒−𝑥  𝑑𝑥 

Γ n =  𝑛 − 1  𝑥𝑛−2
∞

0

𝑒−𝑥  𝑑𝑥      

= (𝑛 − 1)  𝑥𝑛−2
∞

0

𝑒−𝑥  𝑑𝑥 

Γ n           = (𝑛 − 1)Γ(n − 1)                                         (2.8) 

=  𝑛 − 1  𝑛 − 2 Γ n − 2 =  ⋯ ⋯ 

 =  𝑛 − 1  𝑛 − 2 ⋯ ⋯ 2 ∙ 1 =  n − 1 ! 
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∴ Γ n    =  n − 1 !                                                        (2.9) 

 

(ii) By definition we have 

Γ n + 1 =   𝑒−𝑥
∞

0

𝑥𝑛𝑑𝑥 

Integrating by parts, we get     =  −𝑥𝑛𝑒−𝑥 0
∞ + 𝑛  𝑒−𝑥∞

0
𝑥𝑛−1𝑑𝑥 

= 0 + 𝑛 Γ(n) 

∴ Γ n + 1 = 𝑛Γ(n)                                                  (2.10) 

Values of Γ(n) in terms of factorial 

Γ 1 + 1 = Γ 2 =   1  × Γ 1 = 1!  

Γ 2 + 1 = Γ 3 =   2  × Γ 2 = 2 × 1 = 2!  

Γ 3 + 1 = Γ 4 =   3  × Γ 3 = 3 × 2! = 3!  

⋯ ⋯ = ⋯ ⋯ 

Γ n + 1 = 𝑛!                                                                                                   (2.11) 

Therefore Gamma function is considered as factorial function. And also known as ‘Euler’s 

integral of second kind’. 

When  𝑛 = 0, the relation (2.10) defines 0! = Γ 0 + 1 = Γ 1 = 1     (2.12) 

 

Problems: 

1. Find the value of    Γ  
1

2
  

We have                                  Γ n =   𝑒−𝑥∞

0
𝑥𝑛−1𝑑𝑥 

Γ  
1

2
 =   𝑒−𝑥

∞

0

𝑥
1

2
−1𝑑𝑥 =   𝑒−𝑥

∞

0

𝑥−
1

2  𝑑𝑥  

Let  𝑥 = 𝑦2  and  𝑑𝑥 = 2𝑦 𝑑𝑦 

=   𝑒−𝑦2
∞

0

 𝑦2 −
1

2  2 𝑦𝑑𝑦         

Γ  
1

2
 =  2  𝑒−𝑦2

∞

0

𝑑𝑦 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒           𝛤  
1

2
 =  2  𝑒−𝑥2

∞

0

𝑑𝑥 

𝑇𝑕𝑒𝑛                                      𝛤  
1

2
  

2

= 4  𝑒−𝑦2
∞

0

𝑑𝑦  𝑒−𝑥2
∞

0

𝑑𝑥 
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=4  𝑒−(𝑥2+𝑦2)
∞

𝑦=0
𝑑𝑥 𝑑𝑦

∞

𝑥=0

 

𝑈𝑠𝑖𝑛𝑔 𝑝𝑜𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠  𝑟, 𝜃  𝑠𝑜 𝑡𝑕𝑎𝑡 𝑥2 + 𝑦2 =  𝑟;  𝑑𝑥 𝑑𝑦 = 𝑟 𝑑𝑟 𝑑𝜃 

  Γ  
1

2
  

2

=4  𝑒−𝑟2∞

𝑦=0
𝑟 𝑑𝑟 𝑑𝜃

𝜋

2

𝑥=0

 

=4
𝜋

2
 𝑒−𝑟2∞

0
𝑟 𝑑𝑟 

=2𝜋   −
1

2
 𝑒−𝑟2

 
0

∞

 =  𝜋 

 ∴  Γ  
1

2
  =   𝜋 

 

2.3 Relation between Beta and Gamma functions: 

From the definition we have  

Γ m =   𝑒−𝑡
∞

0

𝑥𝑚−1𝑑𝑡 

𝑃𝑢𝑡 𝑡 = 𝑥2 ⟹ 𝑑𝑡 = 2𝑥 𝑑𝑥 

Γ m =  2  𝑒−𝑥2
∞

0

𝑥2𝑚−1𝑑𝑥 

Similarly,  

Γ n =  2  𝑒−𝑦2
∞

0

𝑦2𝑛−1𝑑𝑦 

∴ Γ m Γ n = 4   𝑒− 𝑥2+𝑦2 
∞

0

∞

0

𝑥2𝑚−1𝑦2𝑛−1𝑑𝑥 𝑑𝑦 

𝐵𝑦 𝑃𝑜𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠  𝑟, 𝜃  𝑤𝑒 𝑕𝑎𝑣𝑒 𝑥 = 𝑟 𝑐𝑜𝑠 𝜃 , 𝑦 = 𝑟 𝑠𝑖𝑛 𝜃  𝑎𝑛𝑑 𝑑𝑥 𝑑𝑦 = 𝑟 𝑑𝜃 𝑑𝑟 

∴ Γ m Γ n = 4   𝑒−𝑟2

𝜋

2

0

∞

0

𝑟2(𝑚+𝑛)−1𝑐𝑜𝑠2𝑚−1𝜃 𝑠𝑖𝑛2𝑛−1𝜃 𝑑𝜃 𝑑𝑟 

= 2  𝑐𝑜𝑠2𝑚−1𝜃 𝑠𝑖𝑛2𝑛−1𝜃 𝑑𝜃

𝜋

2

0

× 2  𝑒−𝑟2
𝑟2 𝑚+𝑛 −1

∞

0

𝑑𝑟 

By definition first integral is 𝛽 𝑚, 𝑛  and the second integral is Γ m + n  

ie.,     Γ m Γ n   =  𝛽 𝑚, 𝑛 × Γ m + n  

∴     𝛽 𝑚, 𝑛 =  
Γ m Γ n 

Γ m + n 
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2.4 Dirac delta function : 

The Dirac delta function is an infinitely thin spike. In one dimensional, it is expressed as 

follow 

𝛿 𝑥 = 0  𝑤𝑕𝑒𝑛 𝑥 ≠ 0;  𝛿 𝑥 𝑑𝑥 = 1;  𝛿 𝑥  𝑓 𝑥 𝑑𝑥
∞

−∞

∞

−∞

= 𝑓(0) 

The function 𝑓 𝑥  is assumed to be continuous around  𝑥 = 0. 

2.4.1 Properties of Dirac delta function in  one dimension: 

(i) 𝛿 𝑥 = 𝛿 −𝑥  

(ii) 𝑥 𝛿 𝑥 = 0 

(iii)  𝑓 𝑥 𝛿 𝑥 − 𝑎  𝑑𝑥 = 𝑓(𝑎)
∞

−∞
 

(iv)  𝑓 𝑥 𝛿 𝑥 + 𝑎  𝑑𝑥
∞

−∞
= 𝑓(−𝑎) 

(v)  𝛿 𝑥 − 𝑎  𝛿 𝑥 − 𝑏 𝑑𝑥
∞

−∞
=  𝛿 𝑎 − 𝑏  

 

In three dimensional space, it is expressed as  

𝛿 𝑟   = 0 𝑤𝑕𝑒𝑛 𝑟 ≠ 0;  𝛿 𝑟   𝑑3𝑟 = 1;  𝛿 𝑟   𝑓 𝑟  𝑑3𝑟 
∞

−∞

∞

−∞

= 𝑓(0) 

2.4.2 Properties of Dirac delta function in three dimensions: 

(i) 𝛿 𝑟2    − 𝑟1     =  𝛿 𝑟1    − 𝑟2      

(ii) 𝛿 𝑟1    − 𝑟2     = 0  when 𝑟1     ≠  𝑟2     

(iii)  𝛿 𝑟 − 𝑟1     
∞

−∞
 𝛿 𝑟 − 𝑟2      𝑑3𝑟 =  𝛿 𝑟1    − 𝑟2      

 

2.5 Green Function: 

To understand the Green’s function, consider the differential equation,  

𝐿 𝑢 𝑥  𝑓  𝑥                                                                       (2.13) 

Where 𝐿 is an ordinary linear differential operator, 𝑓 (𝑥) is a known function while 𝑢(𝑥) is 

an unknown function. To solve above equation, one method is to find the inverse operator 

𝐿−1 in the form of an integral operator with a kernel 𝐺(𝑥,  )such that,  

𝑢 𝑥 =  𝐿 −1𝑓  𝑥 =  𝐺 𝑥,  𝑓   𝑑                       (2.14) 
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 The kernel of this integral operator is called Green’s function for the differential 

operator. Thus the solution to the non-homogeneous differential equation (1) can be 

written down, once the Green’s function for the problem is known. For this reason, the 

Green's function is also sometimes called the fundamental solution associated to the 

operator L. 

2.5.1 Green function method in electrostatics: 

For the continuous point charge distribution with charge density (𝑟 ) , then potential can be 

written as       

𝜓 0 =  
1

4𝜋𝜀0
 

𝜌(𝑟 )

𝑟  
𝑑3 𝑟   

The potential is measured at the origin of the coordinate system, the potential at 𝑟  = 𝑟1     due 

to charges at 𝑟  =  𝑟 2 is given as  

𝜓 𝑟 1 =  
1

4𝜋𝜀0
 

𝜌(𝑟 2)

 𝑟 2 − 𝑟 1 
𝑑3𝑟 2                                       (2.15)   

The potential using Green function is written as 

𝜓 𝑟 1 =  
1

𝜀0
 𝐺 𝑟 1, 𝑟 2 𝜌 𝑟 2 𝑑3𝑟 2                                        (2.16) 

Comparing equation (3) and (4) we get,  

𝐺 𝑟 1, 𝑟 2 =  
1

4𝜋 𝑟 2 − 𝑟 1 
 

 

2.6 Bessel Function 

Bessel differential equation is 

𝑥2
𝑑2𝑦

𝑑𝑥2
 + 𝑥 

𝑑𝑦

𝑑𝑥
+  𝑥2 − 𝑛2 𝑦 = 0                                       (2.17) 

Where 𝑛 is an integer or a half integer. Solution for this equation is known as Bessel 

function. 

To get singular points and solutions for the equation (2.17), modify the equation as  

𝑥2
𝑑2𝑦

𝑑𝑥2
 + 𝑥 

𝑑𝑦

𝑑𝑥
+ 𝑥2  1 − 

𝑛2

𝑥2
 𝑦 = 0 

Dividing by 𝑥2, we get  
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𝑑2𝑦

𝑑𝑥2
 +

1

𝑥

𝑑𝑦

𝑑𝑥
+  1 − 

𝑛2

𝑥2
 𝑦 = 0 

𝐿𝑒𝑡    𝑃 𝑥 =  
1

𝑥
   𝑎𝑛𝑑   𝑄 𝑥 =  1 − 

𝑛2

𝑥2
 

There is a singular point at 𝑥 = 0. The singular point is regular as 

 𝑥 − 0  𝑃 𝑥                    𝑎𝑛𝑑              𝑥 − 0 2 𝑄(𝑥) 

Both are  finite at the point 𝑥 = 0. ie., the singular point is irregular. By Fuchs theorem, 

Bessel equation has a series solution. They are given as, 

𝑦 =   𝑎𝑚

∞

𝑚=0

𝑥𝑚+𝑘𝑎0 ≠ 0                                                 (2.18) 

On differentiating with respect to 𝑥, we get 

𝑦′ =   𝑎𝑚

∞

𝑚=0

 𝑚 + 𝑘 𝑥𝑚+𝑘−1                                                        (2.19) 

and 

𝑦′′ =   𝑎𝑚

∞

𝑚=0

 𝑚 + 𝑘  𝑚 + 𝑘 − 1 𝑥𝑚+𝑘−2                               (2.20) 

Substituting equations (2.18), (2.19) 𝑎𝑛𝑑 (2.20) 𝑖𝑛 (2.17) we get 

 𝑎𝑚

∞

𝑚=0

 𝑚 + 𝑘  𝑚 + 𝑘 − 1 𝑥𝑚+𝑘 +   𝑎𝑚

∞

𝑚=0

 𝑚 + 𝑘 𝑥𝑚+𝑘 +  𝑥2 − 𝑛2  𝑎𝑚

∞

𝑚=0

𝑥𝑚+𝑘 = 0 

 𝑎𝑚

∞

𝑚=0

  𝑚 + 𝑘  𝑚 + 𝑘 − 1 +  𝑚 + 𝑘 − 𝑛2 𝑥𝑚+𝑘 +  𝑎𝑚

∞

𝑚=0

𝑥𝑚+𝑘+2 = 0 

 𝑎𝑚

∞

𝑚=0

  𝑚 + 𝑘 2 − 𝑛2 𝑥𝑚+𝑘 +  𝑎𝑚

∞

𝑚=0

𝑥𝑚+𝑘+2 = 0            (2.21) 

Equation (2.21) is a polynomial equation. Equating the coefficient of the lowest power of 𝑥 

to zero, we get              

𝑎0 (𝑘
2 − 𝑛2) = 0 ,     since 𝑎0  ≠ 0, ∴  𝑘2 − 𝑛2 = 0,   𝑘2 = 𝑛2    𝑎𝑛𝑑      𝑘 =  ±𝑛 

Equating the coefficient  𝑥𝑘+1 to zero, we get   𝑎1  (1 + 𝑘)2 − 𝑛2 = 0 

For 𝑘 =  ±𝑛, we have  (1 + 𝑘)2 − 𝑛2 ≠ 0 and ∴  𝑎1 = 0 
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Further equating the coefficient of  𝑥𝑘+𝑟  to zero, we get   𝑎𝑟  (𝑟 + 𝑘)2 − 𝑛2 + 𝑎𝑟−2 = 0 

∴  𝑎𝑟 =  −
𝑎𝑟−2

 𝑟 + 𝑘 + 𝑛  𝑟 + 𝑘 − 𝑛 
                                              (2.22) 

Since 𝑎1 = 0, equation (6) gives 𝑎3 = 𝑎5 = 𝑎7 = ⋯ = 0 

But 𝑎0 ≠ 0, we have non –zero values for 𝑎2 , 𝑎4 , 𝑎6 , ⋯ 

Case 1   when 𝑘 = 𝑛, 

𝑎𝑟 =  −
𝑎𝑟−2

 𝑟 + 2𝑛 𝑟
 

𝑎2 =  −
𝑎0

 2 + 2𝑛 2
=  −

𝑎0

2 ∙ 2 𝑛 + 1 
 

𝑎4 =  −
𝑎2

 4 + 2𝑛 4
= −

𝑎2

2 ∙ 4 𝑛 + 2 
=

𝑎0

2 ∙ 2 𝑛 + 1 2 ∙ 4 𝑛 + 2 
=  

𝑎0

24 ∙ 1 ∙ 2(𝑛 + 1)(𝑛 + 2)
 

𝑎6 =  −
𝑎4

 6 + 2𝑛 6
= −

𝑎4

2 ∙ 6 𝑛 + 3 
= −

𝑎0

26 ∙ 1 ∙ 2 ∙ 3 𝑛 + 1  𝑛 + 2  𝑛 + 3 
 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

𝑎2𝑟 =  −1 𝑟
𝑎0

22𝑟 ∙ 1 ∙ 2 ∙ 3 ∙∙∙∙ 𝑟 𝑛 + 1  𝑛 + 2 ⋯  𝑛 + 𝑟 
 2.23  

If we take                          𝑎0 =  
1

2𝑛Γ(𝑛 + 1)
                                                                 (2.24) 

Put (2.24) 𝑖𝑛 (2.23), we get 

                     𝑎2𝑟 = (−1)𝑟
1

2𝑛+2𝑟 ∙ 𝑟! Γ(𝑛 + 𝑟 + 1)
                                                      (2.25)  

Since 𝑎1 = 𝑎3 = 𝑎5 = 𝑎7 = ⋯ = 0 , equation (2) can be written as  

                            𝑦 =   𝑎2𝑟

∞

𝑟=0

𝑥2𝑟+𝑛𝑎0 ≠ 0                                                                   (2.26) 

Substitute (2.25) in (2.26) we get the Bessel function of first kind of order 𝑛, and is denoted 

by 𝐽𝑛 (𝑥) 

𝐽𝑛 𝑥 =   
(−1)𝑟𝑥𝑛+2𝑟

2𝑛+2𝑟𝑟! Γ(𝑛 + 𝑟 + 1)

∞

𝑟=0

=   
(−1)𝑟

𝑟! Γ(𝑛 + 𝑟 + 1)

∞

𝑟=0

 
𝑥

2
 

𝑛+2𝑟

                     (2.27)      

Case 2  when𝑘 =  −𝑛 , ie replacing 𝑛 𝑏𝑦 – 𝑛 in equation (2.27) 
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𝐽−𝑛 𝑥 =  
(−1)𝑟

𝑟! Γ(𝑟 − 𝑛 + 1)

∞

𝑟=0

 
𝑥

2
 

2𝑟−𝑛

 

Since the argument of Gamma function must be greater than zero, we have  

𝐽−𝑛 𝑥 =  
(−1)𝑟

𝑟! Γ(𝑟 − 𝑛 + 1)

∞

𝑟=𝑛

 
𝑥

2
 

2𝑟−𝑛

                                                                         (2.28) 

Put 𝑟 = 𝑠 + 𝑛 in equation (2.28), we get 

𝐽−𝑛 𝑥 =  
(−1)𝑠+𝑛

(𝑛 + 𝑠)! Γ(𝑠 + 1)

∞

𝑟=0

 
𝑥

2
 

2𝑠+𝑛

              = (−1)𝑛  
(−1)𝑠

Γ 𝑛 + 𝑠 + 1 𝑠!

∞

𝑟=0

 
𝑥

2
 

2𝑠+𝑛

   

=   (−1)𝑛𝐽𝑛(𝑥) 

Thus we have    𝐽−𝑛 𝑥  =   (−1)𝑛𝐽𝑛(𝑥) 

Therefore the linear combination of  𝐽𝑛 𝑥   𝑎𝑛𝑑 𝐽−𝑛 𝑥   is the solution of Bessel equation  

𝑦 = 𝐴 𝐽𝑛 𝑥 + 𝐵𝐽−𝑛 𝑥    =   𝐴 𝐽𝑛 𝑥 + 𝐵  −1 𝑛𝐽𝑛 𝑥  =    𝐴 + 𝐵(−1)𝑛 𝐽𝑛 𝑥 = 𝐶 𝐽𝑛(𝑥) 

C is a constant therefore 𝐽𝑛(𝑥) is the general solution of Bessel differential equation (2.17).  

2.6.1 Special cases for Bessel function𝐽𝑛 (𝑥) 

𝑊𝑒 𝑕𝑎𝑣𝑒              𝐽0 𝑥 =   
(−1)𝑟

𝑟! 𝑟!

∞

𝑟=0

 
𝑥

2
 

2𝑟

 

 

  = 1 −  
𝑥

2
 

2

+
1

 2! 2
 
𝑥

2
 

4

−
1

 3! 2
 
𝑥

2
 

6

+ ⋯ 

Then 𝐽0 0 =  1 ,  we have  

𝐽1 𝑥 =   
(−1)𝑟

𝑟! (𝑟 + 1)!

∞

𝑟=0

 
𝑥

2
 

2𝑟+1

 

           =
𝑥

2
−

1

2!
 
𝑥

2
 

3

+
1

2! 3!
 
𝑥

2
 

5

−
1

 3! 2
 
𝑥

2
 

7

+ ⋯ 

Thus 𝐽1 0 = 0,   similarly  𝐽𝑛 0 = 0   when 𝑛 ≠ 0ie.,𝐽𝑛 0 = 𝛿0𝑛   where 𝛿0𝑛  is Kronecker 

delta function which has value one if 𝑛 = 0  otherwise zero if 𝑛 ≠ 0 

𝐽1

2

 𝑥 =   
(−1)𝑟

𝑟! Γ(𝑟 +
3

2
)

∞

𝑟=0

 
𝑥

2
 

2𝑟+
1

2
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                                                  =
1

Γ(
3

2
)
 
𝑥

2
 

1

2
−

1

Γ(
5

2
)
 
𝑥

2
 

5

2
+

1

2! Γ(
7

2
)
 
𝑥

2
 

9

2
− ⋯ 

                                                      =   
2

𝜋𝑥
 

1

2

 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯  =  

2

𝜋𝑥
 

1

2

sin 𝑥 

𝐽
−

1

2

 𝑥 =   
(−1)𝑟

𝑟! Γ(𝑟 +
1

2
)

∞

𝑟=0

 
𝑥

2
 

2𝑟−
1

2
 

                                                =
1

Γ(
1

2
)
 
𝑥

2
 

−
1

2
−

1

Γ(
3

2
)
 
𝑥

2
 

3

2
+

1

2! Γ(
5

2
)
 
𝑥

2
 

7

2
− ⋯ 

                                                =   
2

𝜋𝑥
 

1

2

 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯  =   

2

𝜋𝑥
 

1

2

cos 𝑥 

2.6.2 Generating function for𝐽𝑛 (𝑥) 

The function 𝑒𝑥(𝑡−
1

𝑡
)/2 is known as generating function for the Bessel function of first kind 

because 𝐽𝑛 (𝑥) is coefficient of 𝑡𝑛  in the expansion of this function. ie., 

𝑒𝑥(𝑡−
1

𝑡
)/2 =   𝐽𝑛 𝑥 𝑡𝑛                                    (2.29) 

Proof: 

𝑊𝑒 𝑘𝑛𝑜𝑤 𝑡𝑕𝑎𝑡𝑒𝑥𝑡/2 =   
𝑥𝑟𝑡𝑟

2𝑟𝑟!

∞

𝑟=0

                                               (2.30) 

and 

𝑒−𝑥/2𝑡 =   
(−1)𝑠𝑥𝑠𝑡−𝑠

2𝑠𝑠!

∞

𝑠=0

                                  (2.31) 

product of equation (2.30) and (2.31) is  

𝑒𝑥(𝑡−
1

𝑡
)/2 =   

𝑥𝑟𝑡𝑟

2𝑟𝑟!
 

(−1)𝑠𝑥𝑠𝑡−𝑠

2𝑠𝑠!

∞

𝑠=0

∞

𝑟=0

 =    
(−1)𝑠𝑥𝑟+𝑠𝑡𝑟−𝑠

2𝑟+𝑠𝑟! 𝑠!

∞

𝑠=0

∞

𝑟=0

          (2.32) 

Put 𝑟 = 𝑛 + 𝑠  in equation (2.32) we get 
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𝑒𝑥(𝑡−
1

𝑡
)/2 =    

(−1)𝑠𝑥𝑛+2𝑠𝑡𝑛

2𝑛+2𝑠(𝑛 + 𝑠)! 𝑠!

∞

𝑛=−𝑠

∞

𝑠=0

 

=     
(−1)𝑠

𝑠! Γ(n + s + 1)
 
𝑥

2
 

𝑛+2𝑠
∞

𝑠=0

 

∞

𝑛=−𝑠

𝑡𝑛  

=   𝐽𝑛 𝑥 𝑡𝑛                                                                                                           (2.33)

∞

𝑛=−𝑠

 

Put 𝑛 + 𝑟 = 𝑠  in equation (2.32) we get 

𝑒𝑥(𝑡−
1

𝑡
)/2 =    

(−1)𝑛+𝑟𝑥𝑛+2𝑟𝑡−𝑛

2𝑛+2𝑟(𝑛 + 𝑟)! 𝑟!

∞

𝑛=−𝑟

∞

𝑟=0

 

=   (−1)𝑛   
(−1)𝑟

𝑟! Γ(n + r + 1)
 
𝑥

2
 

𝑛+2𝑟
∞

𝑟=0

 

∞

𝑛=−𝑟

𝑡−𝑛  

=   (−1)𝑛𝐽𝑛 𝑥 𝑡−𝑛     =    𝐽−𝑛 𝑥 𝑡−𝑛

∞

𝑛=−𝑟

                                                        (2.34)

∞

𝑛=−𝑟

 

Replacing –n by n in equation (2.34) we get  

𝑒𝑥(𝑡−
1

𝑡
)/2 =   𝐽𝑛 𝑥 𝑡𝑛                                                                                                 (2.35)

∞

𝑛=𝑟

 

This proves that in the  expansion of the generating function 𝑒𝑥(𝑡−
1

𝑡
)/2 ,the coefficient of 𝑡𝑛  

is 𝐽𝑛(𝑥) 

 

2.6.3 Recurrence relations for𝐽𝑛(𝑥) 

Relations among various orders of the Bessel function are known as recurrence relations. 

We have  

𝑒𝑥(𝑡−
1

𝑡
)/2 =   𝐽𝑛 𝑥 𝑡𝑛                                                                      (2.36)

∞

𝑛=𝑟

 

(i) Differentiating (2.36) with respect to t, we get  
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𝑒𝑥(𝑡−
1

𝑡
)/2  

𝑥

2
 1 +

1

𝑡2
  =   𝐽𝑛 𝑥 𝑛 𝑡𝑛−1                                                            (2.37)

∞

𝑛=𝑟

 

Then (2.36) in (2.37) we get,  

 
𝑥

2
 1 +

1

𝑡2
   𝐽𝑛 (𝑥)𝑡𝑛 =   𝐽𝑛 𝑥 𝑛 𝑡𝑛−1                                                      (2.38)

∞

𝑛=𝑟

 

Equating the coefficient of 𝑡𝑚−1 on both sides of (2.38) we get 

𝑥

2
𝐽𝑚−1 𝑥 +

𝑥

2
 𝐽𝑚+1 𝑥 = 𝑚 𝐽𝑚 (𝑥) 

𝑱𝒎−𝟏 𝒙 +  𝑱𝒎+𝟏 𝒙 =  
𝟐𝒎

𝒙
𝑱𝒎 𝒙                                                                       (2.39) 

 

(ii) Differentiating equation (2.36) with respect to 𝑥, we get 

𝑒𝑥(𝑡−
1

𝑡
)/2  

1

2
 𝑡 −

1

𝑡
  =   𝐽′𝑛 𝑥  𝑡𝑛                                                              (2.40)

∞

𝑛=𝑟

 

Then (2.36)  in  (2.40)  we get,  

 
1

2
 1 −

1

𝑡
   𝐽𝑛 (𝑥)𝑡𝑛 =   𝐽𝑛 𝑥  𝑡𝑛                                                                 (2.41)

∞

𝑛=𝑟

 

 Equating the coefficient of 𝑡𝑚  on both sides of (2.41) we get 

1

2
𝐽𝑚−1 𝑥 +

1

2
𝐽𝑚+1 𝑥 =  𝐽′𝑚 (𝑥) 

𝐽𝑚−1 𝑥 − 𝐽𝑚+1 𝑥 =  2 𝐽′
𝑚

 𝑥                                                                                 (2.42) 

 

(iii) Adding Equations (2.39) and (2.42) we get 

2𝐽𝑚−1 𝑥 =  
2𝑚

𝑥
𝐽𝑚  𝑥 +  2𝐽′𝑚 (𝑥) 

𝑥𝐽′
𝑚

 𝑥 =  𝑥 𝐽𝑚−1 𝑥 −  𝑚 𝐽𝑚  𝑥                                                                         (2.43) 
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(iv) Subtracting equation (2.42) from (2.39), we get  

2𝐽𝑚+1 𝑥 =  
2𝑚

𝑥
𝐽𝑚  𝑥 −  2𝐽′𝑚 (𝑥) 

𝑥𝐽′
𝑚

 𝑥 =  𝑚 𝐽𝑚  𝑥 −  𝑥𝐽𝑚+1 𝑥                                                                               (2.44) 

 

(v) Put m=0 in (2.44) we get     𝑥𝐽′
0
 𝑥 =  −𝑥𝐽1 𝑥      𝑜𝑟      𝐽′

0
 𝑥 =  𝐽1 𝑥  

(vi) Put  𝑚 =
1

2
  in equation (2.39),  we get 

𝐽
−

1

2

 𝑥 +  𝐽3

2

 𝑥 =  
1

𝑥
𝐽1

2

 𝑥  

𝐽3

2

 𝑥 =  
1

𝑥
𝐽1

2

 𝑥  − 𝐽
−

1

2

 𝑥  

On using the values of  𝐽1

2

 𝑥 and   𝐽
−

1

2

 𝑥 , we get 

𝐽3

2

 𝑥 =  
1

𝑥
 

2

𝜋𝑥
sin 𝑥 −  

2

𝜋𝑥
cos 𝑥 =   

2

𝜋𝑥
 
sin 𝑥

𝑥
 – cos 𝑥  

𝐽3

2

 𝑥 =  
2

𝜋𝑥
 
sin 𝑥

𝑥
 – cos 𝑥  

 

(vii) Put         𝑚 =  −
1

2
   in equation (2.39) we get 

𝐽
−

3

2

 𝑥 +  𝐽1

2

 𝑥 =  −
1

𝑥
𝐽
−

1

2

 𝑥  

𝐽
−

3

2

 𝑥 +  𝐽1

2

 𝑥 =  −
1

𝑥
𝐽
−

1

2

 𝑥 − 𝐽1

2

 𝑥  

On using the values of  𝐽1

2

 𝑥 and   𝐽
−

1

2

 𝑥 , we get 

𝐽
−

3

2

 𝑥 = − 
1

𝑥
 

2

𝜋𝑥
cos 𝑥 −  

2

𝜋𝑥
sin 𝑥 =   

2

𝜋𝑥
 
cos 𝑥

𝑥
+ sin 𝑥  
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2.7 Legendre Differential Equation 

Legendre differential equation is 

 1 − 𝑥2 
𝑑2𝑦

𝑑𝑥2
− 2𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑛 𝑛 + 1 𝑦 = 0                                                  (2.45) 

Where 𝑛 is a positive integer. Solution for this equation is known as Legendre function. 

Rewrite the equation as 

𝑑2𝑦

𝑑𝑥2
−

2𝑥

 1 − 𝑥2 

𝑑𝑦

𝑑𝑥
 +

𝑛 𝑛 + 1 

 1 − 𝑥2 
𝑦 = 0   

Let      𝑃(𝑥)  = −
2𝑥

1−𝑥2
  and 𝑃(𝑥)  =

𝑛(𝑛−1)

1−𝑥2
 

The singular points are  𝑥 = −1 and 𝑥 = 1.  The singular points are regular as (𝑥 + 1)𝑃(𝑥) 

and  𝑥 + 1 2𝑄 𝑥  both are finite at 𝑥 = −1 and (𝑥 − 1)𝑃(𝑥) and  𝑥 − 1 2𝑄 𝑥  both are 

finite at 𝑥 = 1. By Fluchs theorem, Legendre differential equation has a series solution. ie., 

𝑦 =   𝑎𝑚

∞

𝑚=0

𝑥𝑘−𝑚𝑎0 ≠ 0                                                                                             (2.46) 

Differentiating (2.46) with respect to 𝑥, we get 

𝑑𝑦

𝑑𝑥
=   𝑎𝑚

∞

𝑚=0

 𝑘 − 𝑚 𝑥𝑘−𝑚−1                                                                                     (2.47) 

𝑑2𝑦

𝑑𝑥2
=   𝑎𝑚

∞

𝑚=0

 𝑘 − 𝑚 (𝑘 − 𝑚 − 1) 𝑥𝑘−𝑚−2                                                          (2.48) 

Using equations (2.46), (2.47) and (2.48) in (2.45) we get 

 1 − 𝑥2  𝑎𝑚

∞

𝑚=0

 𝑘 − 𝑚  𝑘 − 𝑚 − 1 𝑥𝑘−𝑚−2   −  2𝑥  𝑎𝑚

∞

𝑚=0

 𝑘 − 𝑚 𝑥𝑘−𝑚−1   +     

                                                                                                       𝑛 𝑛 + 1  𝑎𝑚

∞

𝑚=0

𝑥𝑘−𝑚 = 0 

 𝑎𝑚

∞

𝑚=0

 𝑘 − 𝑚  𝑘 − 𝑚 − 1 𝑥𝑘−𝑚−2 

−  𝑎𝑚

∞

𝑚=0

  𝑘 − 𝑚  𝑘 − 𝑚 + 1 − 𝑛 𝑛 + 1  𝑥𝑘−𝑚 = 0                     (2.49) 
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Equation (2.49) is polynomial equation and it can be satisfied only when coefficient of each 

power of 𝑥 is equal to zero. Equating higher powers of 𝑥 to zero , we get  

𝑎0 𝑘 𝑘 + 1 − 𝑛(𝑛 + 1) = 0          𝑜𝑟          𝑎0 𝑘 − 𝑛  𝑘 + 𝑛 + 1 = 0 

Since  𝑎0 ≠ 0, therefore 𝑘 = 𝑛  𝑜𝑟 𝑘 =  − (𝑛 + 1) , then equating the coefficient of 𝑥𝑘−1 to 

zero, we get 

𝑎1 𝑘 𝑘 − 1 − 𝑛(𝑛 + 1) = 0          𝑜𝑟          𝑎1 𝑘 + 𝑛  𝑘 − 𝑛 − 1 = 0 

For both cases   𝑘 = 𝑛  𝑎𝑛𝑑 𝑘 =  − (𝑛 + 1), we have (𝑘 + 𝑛)(𝑘 − 𝑛 − 1) ≠ 0, ∴  𝑎1 = 0 

Then equating the coefficient of 𝑥𝑘−𝑟  to zero, we get 

𝑎𝑟−2 𝑘 − 𝑟 + 2  𝑘 − 𝑟 + 1 − 𝑎𝑟  𝑘 − 𝑟  𝑘 − 𝑟 + 1 − 𝑛 𝑛 + 1  = 0 

So that 

𝑎𝑟 = −
 𝑘 − 𝑟 + 1  𝑘 − 𝑟 + 2 

𝑛 𝑛 + 1 −  𝑘 − 𝑟  𝑘 − 𝑟 + 1 
𝑎𝑟−2                                                     (2.50) 

 

𝑎1 = 0 , equation (6) gives    𝑎3 = 𝑎5 = 𝑎7 ⋯ = 0 , 

Case 1.When 𝑘 = 𝑛, we have  

𝑎𝑟 = −
 𝑛 − 𝑟 + 1 (𝑛 − 𝑟 + 2)

𝑛 𝑛 + 1 −  𝑛 − 𝑟 (𝑛 − 𝑟 + 1)
𝑎𝑟−2 

                                                   = −
 𝑛 − 𝑟 + 1 (𝑛 − 𝑟 + 2)

𝑟(2𝑛 − 𝑟 + 1)
𝑎𝑟−2 

So that 

𝑎2 = −
𝑛(𝑛 − 1)

2(2𝑛 − 1)
𝑎0 

𝑎4 = −
(𝑛 − 2)(𝑛 − 3)

4(2𝑛 − 3)
𝑎2   =  

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

2 ∙ 4(2𝑛 − 1)(2𝑛 − 3)
𝑎0 

𝑎6 = −
(𝑛 − 4)(𝑛 − 5)

6(2𝑛 − 5)
𝑎4   = − 

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)(𝑛 − 5)

2 ∙ 4 ∙ 6 2𝑛 − 1  2𝑛 − 3 (2𝑛 − 5)
𝑎0 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 
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𝑎2𝑟 = (−1)𝑟
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) ⋯ ⋯ (𝑛 − 2𝑟 + 1)

2 ∙ 4 ∙ 2𝑟 2𝑛 − 1  2𝑛 − 3 ⋯ ⋯ (2𝑛 − 2𝑟 + 1)
𝑎0                         (2.51) 

Consider 

𝑎0 =  
 2𝑛 !

2𝑛𝑛! 𝑛!
                                                                                                   (2.52) 

Put (2.52) in (2.51) we get 

𝑎2𝑟 = (−1)𝑟
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) ⋯ ⋯  𝑛 − 2𝑟 + 1  2𝑛 !

2 ∙ 4 ∙ 2𝑟 2𝑛 − 1  2𝑛 − 3 ⋯ ⋯  2𝑛 − 2𝑟 + 1 2𝑛𝑛! 𝑛!
 

= (−1)𝑟
𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) ⋯ ⋯  𝑛 − 2𝑟 + 1  𝑛 − 2𝑟 !  2𝑛 !

2𝑟+𝑛𝑟!  2𝑛 − 1  2𝑛 − 3 ⋯ ⋯  2𝑛 − 2𝑟 + 1  𝑛 − 2𝑟 ! 𝑛! 𝑛!
 

= (−1)𝑟
𝑛!  2𝑛 ! 2𝑛(2𝑛 − 2) ⋯ ⋯  2𝑛 − 2𝑟 + 2 

2𝑟+𝑛𝑟! 2𝑛 2𝑛 − 1 ⋯ ⋯  2𝑛 − 2𝑟 + 2  2𝑛 − 2𝑟 + 1  𝑛 − 2𝑟 ! 𝑛! 𝑛!
 

= (−1)𝑟
 2𝑛 ! 2𝑟𝑛(𝑛 − 1) ⋯ ⋯  𝑛 − 𝑟 + 1  2𝑛 − 2𝑟 !

2𝑟+𝑛𝑟! 𝑛!  2𝑛 !  𝑛 − 2𝑟 !
 

= (−1)𝑟
𝑛(𝑛 − 1) ⋯ ⋯  𝑛 − 𝑟 + 1  𝑛 − 𝑟 !  2𝑛 − 2𝑟 !

2𝑛𝑟! 𝑛!  𝑛 − 2𝑟 !  𝑛 − 𝑟 !
 

= (−1)𝑟
 2𝑛 − 2𝑟 !

2𝑛𝑟!  𝑛 − 2𝑟 !  𝑛 − 𝑟 !
                                                               (2.53) 

Since 𝑎1 = 𝑎3 = 𝑎5 = 𝑎7 = ⋯ ⋯ ⋯ = 0 then equation (2.46) can be written as  

𝑦 =   𝑎2𝑟

∞

𝑟=0

𝑥𝑛−2𝑟𝑎0 ≠ 0                                                                            (2.54) 

Substituting (2.53) in (2.54) we get solution of Legendre differential equation, denoted by 

𝑃𝑛 (𝑥),   ie., 

𝑦 =  𝑃𝑛 𝑥 =  (−1)𝑟

𝑁

𝑟=0

 2𝑛 − 2𝑟 !

2𝑛𝑟!  𝑛 − 2𝑟 !  𝑛 − 𝑟 !
𝑥𝑛−2𝑟                          (2.55) 

𝑃𝑛 𝑥 is known as Legendre polynomial of first kind. The factorial function cannot be a 

negative number, therefore the upper limit for 𝑟 is changed from infinity to 𝑁 

Case 2: when 𝑘 = − 𝑛 + 1 , equation (6) becomes  
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𝑎𝑟 =
 𝑛 + 𝑟  𝑛 + 𝑟 − 1 

𝑟 2𝑛 + 𝑟 + 1 
𝑎𝑟−2 

So that  

𝑎2 =
 𝑛 + 2  𝑛 + 1 

2 2𝑛 + 3 
𝑎0 

𝑎4 =
 𝑛 + 4  𝑛 + 3 

4 2𝑛 + 5 
𝑎2 =  

 𝑛 + 1  𝑛 + 2  𝑛 + 3  𝑛 + 4 

2 ∙ 4 2𝑛 + 3  2𝑛 + 5 
𝑎0 

𝑎6 =
 𝑛 + 6  𝑛 + 5 

6 2𝑛 + 7 
𝑎4 =

 𝑛 + 1  𝑛 + 2  𝑛 + 3  𝑛 + 4  𝑛 + 5  𝑛 + 6 

2 ∙ 4 ∙ 6 2𝑛 + 3  2𝑛 + 5  2𝑛 + 7 
𝑎0 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

𝑎2𝑟 =
 𝑛 + 1  𝑛 + 2 ⋯ ⋯  𝑛 + 2𝑟 

2 ∙ 4 ∙ 6 ⋯ 2𝑟 2𝑛 + 3  2𝑛 + 5 ⋯  2𝑛 + 2𝑟 + 1 
𝑎0                               (2.56) 

Consider 

𝑎0  =  
2𝑛𝑛! 𝑛!

 2𝑛 + 1 !
 2.57  

Put (2.57) in (2.56) we get 

𝑎2𝑟 =
 𝑛 + 1  𝑛 + 2 ⋯ ⋯  𝑛 + 2𝑟 2𝑛𝑛! 𝑛!

2 ∙ 4 ∙ 6 ⋯ 2𝑟 2𝑛 + 3  2𝑛 + 5 ⋯  2𝑛 + 2𝑟 + 1  2𝑛 + 1 !
 

=
 𝑛 + 2𝑟 ! 2𝑛𝑛!  2𝑛 + 2 (2𝑛 + 4) ⋯ ⋯  2𝑛 + 2𝑟 

2𝑟𝑟! (2𝑛 + 2) 2𝑛 + 3 ⋯  2𝑛 + 2𝑟  2𝑛 + 2𝑟 + 1  2𝑛 + 1 !
 

=
 𝑛 + 2𝑟 ! 2𝑛𝑛!  𝑛 + 1 (𝑛 + 2) ⋯ ⋯  𝑛 + 𝑟 2𝑟

2𝑟𝑟!  2𝑛 + 2𝑟 + 1 !
=

2𝑛 𝑛 + 2𝑟 !  𝑛 + 𝑟 !

𝑟!  2𝑛 + 2𝑟 + 1 !
    (2.58) 

Since 𝑎1 = 𝑎3 = 𝑎5 = 𝑎7 = ⋯ ⋯ ⋯ = 0 then equation (2) can be written as  

𝑦 =   𝑎2𝑟

∞

𝑟=0

𝑥−𝑛−1−2𝑟𝑎0 ≠ 0                                                                                       (2.59) 

Put (2.58) in (2.59) w get the solution of Legendre differential equation, denoted by 𝑄𝑛 𝑥  is 
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𝑦 =  𝑄𝑛 𝑥 =  
2𝑛 𝑛 + 2𝑟 !  𝑛 + 𝑟 !

𝑟!  2𝑛 + 2𝑟 + 1 !

∞

𝑟=0

𝑥−𝑛−1−2𝑟  

𝑄𝑛 𝑥 is known as Legendre polynomial of second kind. 

The linear combination of 𝑃𝑛 𝑥  and 𝑄𝑛 𝑥  is a solution of the Legendre differential 

equation. 

𝑦 = 𝐴𝑃𝑛 𝑥 + 𝐵𝑄𝑛 𝑥  

A and B are two arbitrary constants. 

 

2.7.1 Some specific cases for𝑃𝑛 (𝑥): 

(i) 𝑃0 𝑥 = 1 

(ii) 𝑃1 𝑥 = 𝑥 

(iii) 𝑃2 𝑥 =  
1

2
 (3𝑥2 − 1) 

(iv) 𝑃3 𝑥 =  
1

2
 (5𝑥3 − 3𝑥) 

(v) 𝑃4 𝑥 =  
1

8
 (35𝑥4 − 30𝑥2 + 3) 

(vi) 𝑃5 𝑥 =  
1

8
 (63𝑥5 − 70𝑥3 + 15𝑥) 

(vii) 𝑃6 𝑥 =  
1

16
 (231𝑥6 − 315𝑥4 + 105𝑥2 − 5) 

(viii) 𝑃𝑛 𝑥 =  −1 𝑛𝑃𝑛 −𝑥      𝑜𝑟    𝑃𝑛 −𝑥 =  −1 𝑛𝑃𝑛 𝑥  

(ix) 𝑃𝑛 1 =  1 

(x) 𝑃𝑛 −1 = (−1)𝑛  

(xi) 𝑃2𝑛 0 =  
 −1 𝑛  2𝑛 !

22𝑛 (𝑛!)2  

(xii) 𝑃2𝑛+1 0 = 0 

(xiii) 𝑃𝑛 =  𝑃𝑚  

 

2.7.2 Generating function of𝑃𝑛 (𝑥): 

The function (1 − 2𝑥𝑡 + 𝑡2)−1 2   is known as generating function for the Legendre function 

𝑃𝑛 (𝑥). 𝑃𝑛 (𝑥)is the coefficient of 𝑡𝑛 in the expansion of the function. ie., 

(1 − 2𝑥𝑡 + 𝑡2)−1 2 =   𝑃𝑛 (𝑥) 𝑡𝑛                                                   (2.60) 
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Proof:  (1 − 2𝑥𝑡 + 𝑡2)−1 2 =  1 −  2𝑥𝑡 − 𝑡2   

= 1 +  
1

2
 2𝑥𝑡 − 𝑡2 +

1 ∙ 3

232!
 2𝑥𝑡 − 𝑡2 2  +  

1 ∙ 3 ∙ 5

233!
 2𝑥𝑡 − 𝑡2 3 + ⋯ 

= 1 +  
1 ∙ 3 ∙ 5 ⋯ (2𝑟 − 1)

2𝑟  𝑟!
 2𝑥𝑡 − 𝑡2 𝑟                                   (2.61)

∞

𝑟=1

 

Then 

 2𝑥𝑡 − 𝑡2 𝑟 =   
𝑟!

𝑘!  𝑟 − 𝑘 !

𝑟

𝑘=0

(2𝑥𝑡)𝑟−𝑘(−𝑡2)𝑘  

                           =   
(−1)𝑘𝑟!

𝑘!  𝑟 − 𝑘 !

𝑟

𝑘=0

(2𝑥)𝑟−𝑘𝑡𝑟+𝑘                                                 (2.62) 

Put (2.62) in (2.61), we get 

(1 − 2𝑥𝑡 + 𝑡2)−1 2 = 1 +   
(−1)𝑘1 ∙ 3 ∙ 5 ⋯ (2𝑟 − 1)

2𝑟𝑘!  𝑟 − 𝑘 !

𝑟

𝑘=0

∞

𝑟=1

(2𝑥)𝑟−𝑘𝑡𝑟+𝑘  

=   
 −1 𝑘 2𝑟 !

22𝑟  𝑟! 𝑘!  𝑟 − 𝑘 !

𝑟

𝑘=0

∞

𝑟=0

(2𝑥)𝑟−𝑘𝑡𝑟+𝑘  

It shows that 0 ≤ 𝑘 ≤ 𝑟     𝑎𝑛𝑑      𝑟 ≥ 0     put 𝑟 → 𝑛 − 𝑘  then the conditions are 

0 ≤ 𝑘 ≤  𝑛 − 𝑘      𝑎𝑛𝑑       (𝑛 − 𝑘) ≥ 0 

The condition 0 ≤ 𝑘 ≤  𝑛 − 𝑘   is equivalent to 0 ≤ 𝑘 ≤ 𝑛 2  

For this condition 0 ≤ 𝑘 ≤ 𝑛 2  ,               when  𝑘 = 0,    𝑛 ≥ 0   

𝑎𝑛𝑑 𝑤𝑕𝑒𝑛   𝑘 = 𝑛 2 ,    𝑛 − 𝑛 2  ≥ 0  𝑜𝑟  𝑛 ≥ 0 

Let   𝑁 =  𝑛 2    𝑜𝑟  (𝑛 − 1) 2  𝑤𝑕𝑖𝑐𝑕𝑒𝑣𝑒𝑟 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟   

(1 − 2𝑥𝑡 + 𝑡2)−1 2 =    
 −1 𝑘 2𝑛 − 2𝑘 ! (2𝑥)𝑛−2𝑘

22𝑛−2𝑘 𝑛 − 𝑘 !  𝑘!  𝑛 − 2𝑘 !

𝑁

𝑘=0

∞

𝑛=0

𝑡𝑛  

                                     =    
 −1 𝑘 2𝑛 − 2𝑘 ! 𝑥𝑛−2𝑘

2𝑛 𝑛 − 𝑘 ! 𝑘!  𝑛 − 2𝑘 !

𝑁

𝑘=0

 

∞

𝑛=0

𝑡𝑛 =   𝑃𝑛 𝑥 𝑡𝑛               (2.63)

∞

𝑛=0

 

ie., the coefficient of 𝑡𝑛  in the expansion is 𝑃𝑛 (𝑥) 
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2.7.3 Recurrence relations for𝑃𝑛 (𝑥) 

Relations among various orders of Legendre function are known as recurrence relations. 

(1 − 2𝑥𝑡 + 𝑡2)−1 2 =  𝑃𝑛 𝑥 𝑡𝑛                                                                                  (2.64)

∞

𝑛=0

 

Differentiating with respect to 𝑡 we get  

−
1

2
 −2𝑥 + 2𝑡  1 − 2𝑥𝑡 + 𝑡2 −3 2 =   𝑃𝑛  𝑥 𝑛𝑡𝑛−1 

 𝑥 − 𝑡  1 − 2𝑥𝑡 + 𝑡2 −1 2 =  1 − 2𝑥𝑡 + 𝑡2  𝑃𝑛  𝑥 𝑛𝑡𝑛−1                          (2.65) 

Equation (2.64) in (2.65) ,we get  

 𝑥 − 𝑡  𝑃𝑛  𝑥 𝑡𝑛 =  1 − 2𝑥𝑡 + 𝑡2  𝑃𝑛  𝑥 𝑛𝑡𝑛−1                                       (2.66) 

Equating the coefficients of 𝑡𝑚  on both sides of (2.66) we get 

𝑥𝑃𝑚  𝑥 − 𝑃𝑚−1 𝑥 =  𝑚 + 1 𝑃𝑚+1 𝑥 − 2𝑥𝑚𝑃𝑚  𝑥 +  (𝑚 − 1)𝑃𝑚−1(𝑥) 

Re arranging the equation we get 

 2𝑚 + 1 𝑥𝑃𝑚  𝑥 =  𝑚 + 1 𝑃𝑚+1 𝑥 + 𝑚𝑃𝑚−1 𝑥                                         (2.67) 

(ii)     when𝑚 is replaced by 𝑚 − 1 in equation (2.67) we get  

 2𝑚 − 1 𝑥𝑃𝑚−1 𝑥 = 𝑚𝑃𝑚  𝑥 +  𝑚 − 1 𝑃𝑚−2 𝑥  

Then we get 

𝑚𝑃𝑚  𝑥 =  2𝑚 − 1 𝑥𝑃𝑚−1 𝑥 −  𝑚 − 1 𝑃𝑚−2 𝑥  

(iii)    Differentiating equation (2.64) with respect to  𝑥, we get 

−
1

2
 −2𝑡  1 − 2𝑥𝑡 + 𝑡2 −3 2 =   𝑃′𝑛  𝑥 𝑡𝑛  

𝑡 1 − 2𝑥𝑡 + 𝑡2 −3 2 =  𝑃′𝑛  𝑥 𝑡𝑛  

𝑡 1 − 2𝑥𝑡 + 𝑡2 −1 2 =  1 − 2𝑥𝑡 + 𝑡2  𝑃′
𝑛  𝑥 𝑡𝑛                                 (2.68) 
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𝑝𝑢𝑡  5 𝑖𝑛  9 𝑤𝑒 𝑔𝑒𝑡, 𝑡  𝑃𝑛 (𝑥) 𝑡𝑛 =  1 − 2𝑥𝑡 + 𝑡2  𝑃′
𝑛  𝑥 𝑡𝑛         (2.69) 

Equating the coefficients of 𝑡𝑚  in (2.69), we get 

𝑃𝑚−1 𝑥 = 𝑃𝑚
′  𝑥 − 2𝑥𝑃𝑚−1

′  𝑥 + 𝑃𝑚−2
′  𝑥                                                     (2.70) 

(iv)  Replacing  𝑚    𝑏𝑦   𝑚 + 1 in (2.70) we get 

𝑃𝑚  𝑥 = 𝑃𝑚+1
′  𝑥 − 2𝑥𝑃𝑚

′  𝑥 + 𝑃𝑚−1
′  𝑥  

Rearrange the equation as  

𝑃′
𝑚+1 𝑥 + 𝑃′

𝑚−1 𝑥  = 𝑃𝑚  𝑥 + 2𝑥𝑃𝑚
′  𝑥                                                             (2.71) 

(v)   Differentiating equation (2.67) with respect to 𝑥, we get 

 2𝑚 + 1 𝑥𝑃𝑚
′ +  2𝑚 + 1 𝑃𝑚

′ =  𝑚 + 1 𝑃𝑚+1
′  𝑥 + 𝑚𝑃𝑚−1

′  𝑥                           (2.72) 

Multiplying equation (2.72) 𝑏𝑦 2 , 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (2.71) 𝑏𝑦 (2𝑚 + 1) and then adding ,we get  

 2𝑚 + 1 𝑃𝑚  𝑥 +  𝑃𝑚−1
′  𝑥 = 𝑃𝑚+1

′  𝑥                                                                        (2.73) 

(vi)  Replacing 𝑚    𝑏𝑦   𝑚 − 1 𝑖𝑛 (2.73), we get 

 2𝑚 − 1 𝑃𝑚−1 𝑥 +  𝑃𝑚−2
′  𝑥 = 𝑃𝑚

′  𝑥                                                                        (2.74) 

2.8 Hermite Function 

Hermite differential equation is 

𝑑2𝑦

𝑑𝑥2
− 2𝑥 

𝑑𝑦

𝑑𝑥
+ 2𝑛𝑦 = 0                                                                                (2.75) 

Where n is positive integer. Solution for this equation is known as Hermite function. To find 

singular points and series solution of the equation, consider 𝑃 𝑥 = −2𝑥   𝑎𝑛𝑑   𝑄 𝑥 = 2𝑛 

There are no singular points. By Fuchs theorem, Hermite differential equation has a series 

solution 

𝑦 =  𝑎𝑚𝑥𝑘−𝑚𝑎0 ≠ 0                                                                                        (2.76)          

∞

𝑚=0

 

On differentiating equation (2.76) with respect to 𝑥, we get  

𝑑𝑦

𝑑𝑥
=  𝑎𝑚

∞

𝑚=0

 𝑘 − 𝑚 𝑥𝑘−𝑚−1                                                                        (2.77) 
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And 

𝑑2𝑦

𝑑𝑥2
=  𝑎𝑚

∞

𝑚=0

 𝑘 − 𝑚  𝑘 − 𝑚 − 1 𝑥𝑘−𝑚−2                                                 (2.78) 

Using (2.76), (2.77) and (2.78) in (2.75), we get 

 𝑎𝑚  𝑘 − 𝑚  𝑘 − 𝑚 − 1 𝑥𝑘−𝑚−2 +  𝑎𝑚 2 𝑛 − 𝑘 + 𝑚 𝑥𝑘−𝑚 = 0              (2.79) 

(2.79) is polynomial equation. Equating the coefficient of the highest power of 𝑥 to zero, ie., 

𝑎0 𝑛 − 𝑘 = 0since 𝑎0 ≠ 0, 𝑘 = 𝑛, then equating the coefficient of 𝑥𝑘−1 to zero,ie., 

𝑎1 𝑛 − 𝑘 + 1 = 0     For 𝑘 = 𝑛 we have (𝑛 − 𝑘 + 1) ≠ 0 and therefore, 𝑎1 = 0. Further 

equating the coefficient of 𝑥𝑘−𝑟 to zero, we get 

𝑎𝑟−2 𝑘 − 𝑟 + 2  𝑘 − 𝑟 + 1 + 2𝑎𝑟 𝑛 − 𝑘 + 𝑟 = 0 

𝑎𝑟 =  −
 𝑘 − 𝑟 + 2  𝑘 − 𝑟 + 1 

2 𝑛 − 𝑘 + 𝑟 
𝑎𝑟−2                                                             (2.80) 

Since 𝑎1 = 0 equation (6) gives 𝑎3 = 𝑎5 = 𝑎7 ⋯ ⋯ = 0 then for 𝑘 = 𝑛, we have 

𝑎𝑟 =  −
 𝑛 − 𝑟 + 2  𝑛 − 𝑟 + 1 

2𝑟
𝑎𝑟−2 

𝑎2 =  −
𝑛(𝑛 − 1)

2 ∙ 2
𝑎0 

𝑎4 =  −
 𝑛 − 2  𝑛 − 3 

2 ∙ 4
𝑎2 =

𝑛(𝑛 − 1) 𝑛 − 2  𝑛 − 3 

242!
𝑎0 

𝑎6 = −
 𝑛 − 4  𝑛 − 5 

2 ∙ 6
𝑎4 = −

𝑛(𝑛 − 1) ⋯  𝑛 − 5 

263!
𝑎0 

⋯ ⋯ ⋯ ⋯ ⋯ 

𝑎2𝑟 = (−1)𝑟
𝑛(𝑛 − 1) ⋯  𝑛 − 2𝑟 + 1 

22𝑟𝑟!
𝑎0 =  

(−1)𝑟𝑛!

22𝑟𝑟!  𝑛 − 2𝑟 !
𝑎0           (2.81) 

Let 𝑎0 = 2𝑛  and substitute in (2.81) we get 

𝑎2𝑟 =  
(−1)𝑟𝑛!

22𝑟−𝑛𝑟!  𝑛 − 2𝑟 !
                                                                                  (2.82) 

Since 𝑎1 = 𝑎3 = 𝑎5 = 𝑎7 ⋯ ⋯ = 0 then equation (2.76) can be written as  

𝑦 =  𝑎2𝑟𝑥
𝑛−2𝑟𝑎0 ≠ 0                                                                   (2.83)          

∞

𝑟=0
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Substitute (8) in (9) we get solution of Hermite differential equation denoted by 𝐻𝑛(𝑥) 

𝑦 =  𝐻𝑛 𝑥 =   
 −1 𝑟𝑛!

22𝑟−𝑛𝑟!  𝑛 − 2𝑟 !

∞

𝑟=0

𝑥𝑛−2𝑟 =   
 −1 𝑟𝑛!

𝑟!  𝑛 − 2𝑟 !

𝑁

𝑟=0

 2𝑥 𝑛−2𝑟  

 

2.8.1 Some Specific cases for𝐻𝑛(𝑥) 

(i) 𝐻𝑛 𝑥 = 1 

(ii) 𝐻1 𝑥 = 2𝑥 

(iii) 𝐻2 𝑥 = 4𝑥2 − 2 

(iv) 𝐻3 𝑥 = 8𝑥3 − 12𝑥 

(v) 𝐻4 𝑥 = 16𝑥4 − 48𝑥2 + 12 

(vi) 𝐻5 𝑥 = 32𝑥5 − 160𝑥3 + 120𝑥 

(vii) 𝐻6 𝑥 = 64𝑥6 − 480𝑥4 + 720𝑥2 − 120 

(viii) 𝐻𝑛 0 =
(−1)𝑛 2 𝑛!

 𝑛 2  !
  when   𝑛 is even integer  

(ix) 𝐻𝑛 0 = 0 when   𝑛 is odd integer 

(x) 𝐻𝑛 −𝑥 =  −1 𝑛𝐻𝑛 𝑥  

 

2.8.2 Generating function for𝐻𝑛(𝑥) 

The function 𝑒2𝑥𝑡−𝑡2
is known as generating function for Hermite function. The coefficient of 

𝑡𝑛  in the expansion is 
𝐻𝑛 (𝑥)

𝑛!
   ie.,𝑒2𝑥𝑡−𝑡2

=   
𝐻𝑛 (𝑥)

𝑛!
𝑡𝑛  

 

Proof:      we know that 

𝑒2𝑥𝑡 =   
 2𝑥 𝑟𝑡𝑟

𝑟!

∞

𝑟=0

                                                                (2.84) 

And  

𝑒−𝑡2
=   

 −1 𝑠𝑡2𝑠

𝑠!

∞

𝑠=0

                                                                (2.85) 

The product of (2.84) and (2.85) is 
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𝑒2𝑥𝑡𝑒−𝑡2
=   

 2𝑥 𝑟𝑡𝑟

𝑟!

∞

𝑟=0

 
 −1 𝑠𝑡2𝑠

𝑠!

∞

𝑠=0

 

𝑒2𝑥𝑡−𝑡2
=   

 −1 𝑠 2𝑥 𝑟𝑡𝑟+2𝑠

𝑠! 𝑟!

∞

𝑠=0

∞

𝑟=0

                                    (2.86) 

Put    𝑟 = 𝑛 − 2𝑠    in (2.86) we get 

𝑒2𝑥𝑡−𝑡2
=   

 −1 𝑠 2𝑥 𝑛−2𝑠𝑡𝑛

𝑠! (𝑛 − 2𝑠)!

∞

𝑠=0

∞

𝑛=2𝑠

 

=  
1

𝑛!
  

 −1 𝑠𝑛!  2𝑥 𝑛−2𝑠𝑡𝑛

𝑠! (𝑛 − 2𝑠)!

𝑛 2 

𝑠=0

 

𝑛

𝑡𝑛  =  
𝐻𝑛 (𝑥)

𝑛!
𝑛

𝑡𝑛           (2.87) 

This shows that the coefficient of 𝑡𝑛  of the expansion of 𝑒2𝑥𝑡−𝑡2
 is 

𝐻𝑛 (𝑥)

𝑛!
 

 

2.8.3 Recurrence relations for𝐻𝑛(𝑥) 

The relations among various orders of the Hermite function are known as recurrence 

relations 

(i) We know that 

𝑒2𝑥𝑡−𝑡2
=   

𝐻𝑛 (𝑥)

𝑛!
𝑡𝑛

𝑛

                                     (2.88) 

Differentiating equation (2.88) with respect to 𝑡, we get  

𝑒2𝑥𝑡−𝑡2
(2𝑥 − 2𝑡) =   

𝐻𝑛 𝑥 

𝑛!
 n 𝑡𝑛−1

𝑛

                             (2.89) 

Substitute (2.88) in (2.89) we get 

2(𝑥 − 𝑡)  
𝐻𝑛 𝑥 

𝑛!
tn

𝑛

=   
𝐻𝑛 𝑥 

𝑛!
 n 𝑡𝑛−1

𝑛

                             (2.90) 

Equating  the coefficient of 𝑡𝑚  on both sides of (2.90) we get  

2𝑥
𝐻𝑚 (𝑥)

𝑚!
−  2

𝐻𝑚−1(𝑥)

 𝑚 − 1 !
=  

𝐻𝑚+1(𝑥)

𝑚!
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2𝑥𝐻𝑚 𝑥 = 𝐻𝑚+1 𝑥 + 2𝑚𝐻𝑚−1 𝑥                                           (2.91) 

 

(ii) Differentiating equation (2.88) with respect to 𝑥, we get 

𝑒2𝑥𝑡−𝑡2
2𝑡 =   

𝐻′𝑛(𝑥)

𝑛!
𝑡𝑛                                                                  (2.92) 

Substitute equation (2.88) in (2.92) we get 

2𝑡  
𝐻𝑛(𝑥)

𝑛!
𝑡𝑛

𝑛

=   
𝐻′𝑛(𝑥)

𝑛!
𝑡𝑛                                                      (2.93) 

Equating the coefficient of 𝑡𝑚  on both of (2.93) we get 

2
𝐻𝑚−1(𝑥)

 𝑚 − 1 !
=

𝐻𝑚
′ (𝑥)

𝑚!
                     𝑜𝑟     2𝑚𝐻𝑚−1 𝑥 =  𝐻𝑚

′  𝑥                       (2.94) 

(iii) Equating the coefficient 𝑡0 we get 𝐻𝑚
′  𝑥 = 0 

(iv) Substitute the value of 2𝑚𝐻𝑚−1 𝑥   from equation (2.94) in (2.91)  we get  

2𝑥𝐻𝑚 𝑥 = 𝐻𝑚+1 𝑥 + 𝐻𝑚
′  𝑥  
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UNIT IV : FOURIER AND LAPLACE TRANSFORM 

 Fourier transform-properties of Fourier transform-convolution – Fourier cosine and sine 

transform-Fourier transform of derivatives- Application of Fourier transform-vibrations in a 

string-Laplace transform-inverse Laplace transform- Application of Laplace transform-Simple 

Harmonic motion 

 

3.1 Fourier Transform: 

 The Fourier transform 𝑔(𝑘)of a function𝑓 𝑥  is defined by the equation      

𝑔 𝑘 =  
1

 2𝜋
 𝑓 𝑥 

∞

−∞

𝑒−𝑖𝑘𝑥 𝑑𝑥 

It is denoted by 𝑔 𝑘  = 𝐹 𝑓 𝑥   

The equation which gives  𝑥  , for  a known value of 𝑔 𝑘  is called the inverse of Fourier 

Transform  ie., 𝑓 𝑥 = F−1 g k  =  
1

 2𝜋
 𝑔 𝑘 

∞

−∞
𝑒𝑖𝑘𝑥 𝑑𝑥. 

 

Example1:   Find the Fourier transform of Gaussian function 𝑓 𝑥 = 𝑒−𝑥2
 

Solution:   

By definition of Fourier transform we have,   𝑔 𝑘 =  
1

 2𝜋
 𝑓 𝑥 

∞

−∞
𝑒−𝑖𝑘𝑥 𝑑𝑥 

∴ 𝑔 𝑘 =  
1

 2𝜋
 𝑒−𝑥2

∞

−∞

𝑒−𝑖𝑘𝑥 𝑑𝑥 

𝑔 𝑘 =  
1

 2𝜋
 𝑒−𝑥2−𝑖𝑘𝑥

∞

−∞

𝑑𝑥 

𝑔 𝑘 =  
1

 2𝜋
 𝑒−(𝑥2+𝑖𝑘𝑥 )

∞

−∞

𝑑𝑥 

𝑥2 + 𝑖𝑘𝑥  =    𝑥 +  
𝑖𝑘

2
 

2

−  
𝑖𝑘

2
 

2

=  𝑥2 +  2𝑥
𝑖𝑘

2
+  

𝑖2𝑘2

4
−

𝑖2𝑘2

4
=  𝑥2 +  𝑖𝑘𝑥 

Then 𝑔 𝑘 =
1

 2𝜋
 𝑒

−  𝑥+
𝑖𝑘

2
 

2
− 

𝑖𝑘

2
 

2
 ∞

−∞
𝑑𝑥 

  =  
1

 2𝜋
 𝑒− 𝑥+

𝑖𝑘

2
 

2

𝑒 
𝑖𝑘

2
 

2∞

−∞

𝑑𝑥 

 =  
1

 2𝜋
𝑒−

𝑘2

4  𝑒− 𝑥+
𝑖𝑘

2
 

2∞

−∞

𝑑𝑥 
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=  
1

 2𝜋
𝑒−

𝑘2

4  𝜋 

=  
1

 2
𝑒−

𝑘2

4  

Thus  Fourier transform of a Gaussian function is another Gaussian function. 

3.2  Properties of Fourier Transform: 

3.2.1.Addition theorem or Linearity theorem:  

If 𝑓 𝑡 = 𝑎1𝑓1 𝑡 + 𝑎2𝑓2 𝑡 +  ⋯ ⋯ + 𝑎𝑛𝑓𝑛 𝑡   then the Fourier transform of 𝑓(𝑡) is  

given by 𝑔 𝜔 = 𝑎1𝑔1 𝜔 + 𝑎2𝑔2 𝑡 +  ⋯ ⋯ + 𝑎𝑛𝑔𝑛 𝜔   where 𝑔1 𝜔 , 𝑔2 𝜔 , ⋯ ⋯ 𝑔𝑛 𝜔  

are Fourier transform of 𝑓1 𝑡 , 𝑓2 𝑡 , ⋯ ⋯ 𝑓𝑛 𝑡  and 𝑎1, 𝑎2, ⋯ ⋯ , 𝑎𝑛  are constants. 

Proof: 

 The Fourier transform of 𝑓(𝑡) is given by 

𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

∴ 𝑔 𝜔 =  
1

 2𝜋
  𝑎1𝑓1 𝑡 + 𝑎2𝑓2 𝑡 +  ⋯ ⋯ + 𝑎𝑛𝑓𝑛 𝑡  

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

𝑔 𝜔 =  𝑎1

1

 2𝜋
 𝑓1 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 + 𝑎2

1

 2𝜋
 𝑓2 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 + ⋯ ⋯ 

+𝑎𝑛

1

 2𝜋
 𝑓𝑛 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

ie.,𝑔 𝜔 =  𝑎1𝑔1(𝜔) + 𝑎2𝑔2(𝜔) + ⋯ ⋯ + 𝑎𝑛𝑔𝑛(𝜔) Hence proved. 

 

3.2.2. Similarity theorem or change of scale property: 

If 𝑔(𝜔) is the Fourier transform of 𝑓 𝑡 , then Fourier transform of 𝑓 𝑎𝑡   is   
1

𝑎
 𝑔(𝜔). 

Proof: 

𝑊𝑒 𝑕𝑎𝑣𝑒, 𝐹. 𝑇  𝑓(𝑡)  =  𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 
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𝑇𝑕𝑒𝑛 𝐹. 𝑇  𝑓(𝑎𝑡)  =  𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑎𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

𝑃𝑢𝑡     𝑦 = 𝑎𝑡 ,     ∴      𝑡 =
𝑦

𝑎
        𝑎𝑛𝑑         𝑑𝑡 =

𝑑𝑦

𝑎
 

𝑇𝑕𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝐹. 𝑇  𝑓(𝑎𝑡)  =  
1

 2𝜋
 𝑓 𝑎𝑡 

∞

−∞

𝑒−𝑖𝜔
𝑦

𝑎
𝑑𝑦

𝑎
 

   =  
1

𝑎

1

 2𝜋
 𝑓 𝑦 

∞

−∞

𝑒−𝑖 
𝑤

𝑎
 𝑦  𝑑𝑦  =

1

𝑎
𝑔  

𝜔

𝑎
  

 

3.2.3. Fourier transform of the complex conjugate: 

If 𝑔(𝜔) is the Fourier transform of 𝑓 𝑡  then the Fourier transform of the complex 

conjugate of 𝑓 𝑡  will be given by 𝑔∗(−𝜔); where * indicates the complex conjugate of the 

corresponding complex function. 

Proof: 

𝑊𝑒 𝑕𝑎𝑣𝑒, 𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

𝑇𝑎𝑘𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 𝑜𝑛 𝑏𝑜𝑡𝑕 𝑠𝑖𝑑𝑒𝑠 𝑔∗ 𝜔 =  
1

 2𝜋
 𝑓∗ 𝑡 

∞

−∞

𝑒𝑖𝜔𝑡 𝑑𝑡 

𝑅𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔  𝜔𝑏𝑦 –𝜔, 𝑤𝑒 𝑔𝑒𝑡 𝑔∗ −𝜔 =  
1

 2𝜋
 𝑓∗ 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

Therefore   𝑔∗ −𝜔 =  𝐹. 𝑇.  𝑓∗(𝑡)  

3.2.4. Shifting Property: 

If 𝑔(𝜔) is the Fourier transform of 𝑓 𝑡  then the Fourier transform of 𝑓 𝑡 ± 𝑎  will be given 

by   𝑒±𝑖𝜔𝑎 𝑔(𝜔)  where a is any constant. 
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Proof:   

𝐹. 𝑇.  𝑓 𝑡 ± 𝑎  =  
1

 2𝜋
 𝑓 𝑡 ± 𝑎 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

Put  𝑡 ± 𝑎 = 𝑦;       𝑡 = 𝑦 ∓ 𝑎     ;   and   𝑑𝑡 = 𝑑𝑦 

𝐹. 𝑇.  𝑓 𝑡 ± 𝑎  =  
1

 2𝜋
 𝑓 𝑦 

∞

−∞

𝑒−𝑖𝜔(𝑦∓𝑎)𝑑𝑦 

=  𝑒∓𝑖𝜔𝑎
1

 2𝜋
 𝑓 𝑦 

∞

−∞

𝑒−𝑖𝜔𝑦 𝑑𝑦 

 =  𝑒∓𝑖𝜔𝑎 𝑔(𝜔) 

ie., If a function be shifted in the positive or negative direction by an amount a, no Fourier 

component changes in amplitude, but its Fourier transform suffers phase changes. 

3.2.5. Modulation Theorem: 

If 𝑔(𝜔) is the Fourier transform of 𝑓 𝑡  then the Fourier transform of 𝑓 𝑡 cos 𝑎𝑡 is given by   

1

2
𝑔 𝜔 − 𝑎 +  

1

2
 𝑔 𝜔 + 𝑎 . 

 𝐹. 𝑇.  𝑓 𝑡 𝑐𝑜𝑠𝑎𝑡 =  
1

 2𝜋
 𝑓 𝑡 𝑐𝑜𝑠𝑎𝑡

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

=  
1

 2𝜋
 𝑓 𝑡 (

𝑒𝑖𝑎𝑡 + 𝑒−𝑖𝑎𝑡

2

∞

−∞

 )𝑒−𝑖𝜔𝑡 𝑑𝑡 

=  
1

2
 

1

 2𝜋
{ 𝑓 𝑡 𝑒−𝑖 𝜔−𝑎 

∞

−∞

𝑑𝑡 + 𝑓 𝑡 𝑒−𝑖 𝜔+𝑎 𝑑𝑡 }  

=  
1

2
 

1

 2𝜋
 𝑓(𝑡)𝑒−𝑖(𝜔−𝑎)

∞

−∞

𝑑𝑡 +
1

 2𝜋
 𝑓(𝑡)

∞

−∞

𝑒−𝑖(𝜔+𝑎)𝑑𝑡   

=  
1

2
 𝑔(𝜔 − 𝑎) + 𝑔(𝜔 + 𝑎)  

Convolution:  The convolution of two functions 𝑓 𝑥   and 𝑔 𝑥  is defined as 

𝑓 𝑥 ∗ 𝑔 𝑥 =  𝑓 𝑥 𝑔 𝑥 − 𝑎 𝑑𝑎
∞

−∞
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3.2.6. Convolution Theorem: 

The Fourier transform of the convolution of 𝑓 𝑥   and 𝑘 𝑥  is the product of their  

Fourier transforms. ie.,  𝐹 𝑓(𝑥) ∗ 𝑘(𝑥) = 𝐹 𝑓(𝑥) ∙ 𝐹 𝑘(𝑥)  

The convolution Theorem involving Fourier Transform: An integral,  𝐼 𝑥    of the form 

𝐼 𝑥 =  
1

 2𝜋
 𝑓 𝑥 − 𝜉 𝑘 𝜉 

∞

−∞

𝑑𝜉 

∴
1

 2𝜋
 𝑓 𝜉 𝑘(𝑥 − 𝜉)

∞

−∞

𝑑𝜉 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑎 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑖𝑛 𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

(-∞, +∞) 

𝑇𝑎𝑘𝑖𝑛𝑔 𝑡𝑕𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝐼 𝑥 , 𝐹 𝐼(𝑥) =  
1

 2𝜋
 𝐼(𝑥)𝑒−𝑖𝑘𝑥

∞

−∞

𝑑𝑥 

 

=  
1

 2𝜋
 𝑒−𝑖𝑘𝑥

∞

−∞

𝑑𝑥
1

 2𝜋
 𝑓 𝜉 𝑘 𝑥 − 𝜉 𝑑𝜉

∞

−∞

 

 

𝐴𝑠    𝑒𝑖𝑘𝑥 𝑒−𝑖𝑘𝑥 = 𝑒0 = 1, 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑡𝑕𝑒 𝑅𝐻𝑆 𝑜𝑓 𝑡𝑕𝑒 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑏𝑦  𝑒𝑖𝑘𝑥 𝑒−𝑖𝑘𝑥  

=  
1

 2𝜋
 𝑘(𝑥 − 𝜉)𝑒−𝑖𝑘(𝑥−𝜉)

∞

−∞

𝑑𝑥
1

 2𝜋
 𝑓 𝜉 𝑒−𝑖𝑘𝑥 𝑑𝜉

∞

−∞

 

𝐼𝑛 𝑡𝑕𝑒 1𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐𝑕𝑎𝑛𝑔𝑒  𝑡𝑜 𝑥′ = 𝑥 − 𝜉 , 𝑤𝑒 𝑔𝑒𝑡 

𝐹 𝐼(𝑥) = 𝐹 𝑘(𝑥) ∙ 𝐹 𝑓(𝑥)     This is the convolution theorem. 

 

3.2.7. Pasevals Theorem: 

The Fourier transform of a convolution integral is given by the product of transform of the 

convolving functions. Let 𝑓 𝑡  be given convolution integral 

𝑓 𝑡 =  
1

 2𝜋
 𝑓1 𝑡′ 

∞

−∞

𝑓2 𝑡 − 𝑡′ 𝑒−𝑖𝜔𝑡 𝑑𝑡 

𝑇𝑕𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑓 𝑡  𝑖𝑠 
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 𝑔 𝜔 = 𝐹. 𝑇.  𝑓(𝑡) =  
1

2𝜋
  𝑓1 𝑡′ 

∞

−∞

𝑓2 𝑡 − 𝑡′ 

∞

−∞

 𝑑𝑡′𝑑𝑡 

=
1

2𝜋
 𝑓1 𝑡′ 𝑒−𝑖𝜔𝑡 𝑑𝑡′  𝑒−𝑖𝜔𝑡

∞

−∞

𝑒𝑖𝜔𝑡 ′𝑓2 𝑡 − 𝑡′ 

∞

−∞

 𝑑𝑡 

=
1

2𝜋
 𝑓1 𝑡′ 𝑒−𝑖𝜔𝑡 ′

 𝑑𝑡′  𝑒−𝑖𝜔𝑡
∞

−∞

𝑒𝑖𝜔𝑡 ′𝑓2 𝑡 − 𝑡′ 

∞

−∞

 𝑑𝑡 

1

2𝜋
 𝑓1 𝑡′ 𝑒−𝑖𝜔𝑡 ′

 𝑑𝑡′  𝑒−𝑖𝜔(𝑡−𝑡 ′ )
∞

−∞

𝑓2 𝑡 − 𝑡′ 

∞

−∞

 𝑑𝑡 

𝑔1 𝜔 =  
1

 2𝜋
 𝑓1 𝑡′ 

∞

−∞

𝑒−𝑖𝜔𝑡 ′
𝑑𝑡′  

𝑔2 𝜔 =  
1

 2𝜋
 𝑓2 𝑡 − 𝑡′ 

∞

−∞

𝑒−𝑖𝜔 (𝑡−𝑡 ′ )𝑑𝑡′  

𝑃𝑢𝑡   𝑡 =  𝑡 –  𝑡’      𝑔2 𝜔 =  
1

 2𝜋
 𝑓2 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

𝑔 𝜔 = 𝑔1 𝜔  𝑔2(𝜔) 

 

3.2.8. Derivative of Fourier Transform: 

𝐼𝑓𝑔 𝜔 𝑖𝑠 𝑡𝑕𝑒 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 𝑓 𝑡  𝑡𝑕𝑒𝑛 𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

Differentiating on both sides with respect to  𝜔, we get 

𝑑𝑔(𝜔)

𝑑𝜔
=  

1

 2𝜋

𝑑

𝑑𝜔
 𝑓(𝑡)𝑒−𝑖𝜔𝑡

∞

−∞

  𝑑𝑡 

=  
1

 2𝜋
 

𝜕

𝜕𝜔
 𝑓(𝑡)𝑒−𝑖𝜔𝑡  

∞

−∞

  𝑑𝑡 

=  −𝑖
1

 2𝜋
   𝑡 𝑓 𝑡 𝑒−𝑖𝜔𝑡

∞

−∞

  𝑑𝑡 

=  −𝑖 𝐹. 𝑇.  𝑡𝑓(𝑡)  



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

59 
 

 𝐼𝑓 𝑤𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒 𝑛 𝑡𝑖𝑚𝑒𝑠 𝑤. 𝑟. 𝑡𝑜  𝜔 𝑤𝑒 𝑔𝑒𝑡,    
𝑑𝑛𝑔

𝑑𝜔
= (−1)𝑛𝐹. 𝑇.  𝑡𝑛  𝑓(𝑡)  

3.2.9. Fourier transform of a Derivative: 

Let 𝑔1 𝜔  be the Fourier transform of the first derivative function 𝑓 𝑡 , then 

𝑔1 𝜔 =  
1

 2𝜋
 

𝑑𝑓

𝑑𝑡

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑏𝑦 𝑝𝑎𝑟𝑡𝑠  𝑢 𝑑𝑣 = 𝑢𝑣 −  𝑣𝑑𝑢 

𝑔1 𝜔 =  
1

 2𝜋
 𝑒−𝑖𝜔𝑡 𝑓(𝑡) 

−∞

∞
+

𝑖𝜔

 2𝜋
 𝑓(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡

∞

−∞

=  
1

 2𝜋
 0 + 𝑖𝜔  𝑔(𝜔) 

𝑔1 𝜔  =  𝑖𝜔 𝑔(𝜔)  

𝑖𝑒. ,   𝐹. 𝑇. 𝑜𝑓 
𝑑𝑓

𝑑𝑡
      =   𝑖𝜔 𝐹. 𝑇. 𝑜𝑓 𝑓(𝑡) 

1

 2𝜋
 

𝑑𝑓

𝑑𝑡

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡

= 𝑖𝜔 
1

 2𝜋
 𝑓 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡𝑅𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑓 𝑡   𝑏𝑦 
𝑑𝑓

𝑑𝑡
 𝑜𝑛 𝑏𝑜𝑡𝑕 𝑠𝑖𝑑𝑒𝑠 , 𝑤𝑒 𝑔𝑒𝑡  

1

 2𝜋
 

𝑑2𝑓

𝑑𝑡2

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 = 𝑖𝜔 
1

 2𝜋
 

𝑑𝑓

𝑑𝑡

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

=  𝑖𝜔 2𝑔(𝜔) 

𝑖𝑒. ,     𝐹. 𝑇. 𝑜𝑓 
𝑑2𝑓

𝑑𝑡2
       =    𝑖𝜔 2 𝐹. 𝑇. 𝑜𝑓 𝑓(𝑡) 

𝑅𝑒𝑝𝑒𝑎𝑡𝑖𝑛𝑔 𝑡𝑕𝑒𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑛 𝑡𝑖𝑚𝑒𝑠 𝑤𝑒 𝑔𝑒𝑡,         𝐹. 𝑇. 𝑜𝑓 
𝑑𝑛𝑓

𝑑𝑡𝑛
 =    𝑖𝜔 𝑛  𝐹. 𝑇. 𝑜𝑓 𝑓(𝑡) 

 

3.2.10. Fourier sine and cosine Transform of Derivatives: 

The Fourier sine and cosine Transform of a function 𝑓(𝑡) are defined as  
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𝑔𝑠 𝜔 =   
2

𝜋
 𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡 𝑑𝑡    and

∞

0

𝑔𝑐 𝜔 

=   
2

𝜋
 𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡 𝑑𝑡

∞

0

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑠𝑖𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 1𝑠𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 
𝑑𝑓

𝑑𝑡
 𝑖𝑠  𝑔1𝑠 𝜔 

=   
2

𝜋
 

𝑑𝑓

𝑑𝑡
𝑠𝑖𝑛𝜔𝑡 𝑑𝑡

∞

0

 

𝑔1𝑠 𝜔 =  
2

𝜋
 𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡 0

∞ −  
2

𝜋
  𝜔  𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡 𝑑𝑡

∞

0

 

𝑔1𝑠 𝜔 = 0 − 𝜔 
2

𝜋
 𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡 𝑑𝑡

∞

0

 

𝑔1𝑠 𝜔 = −𝜔 𝑔𝑐 𝜔  

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑐𝑜𝑠𝑖𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 1𝑠𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 
𝑑𝑓
𝑑𝑡

𝑖𝑠   𝑔1𝑐 𝜔 =   
2

𝜋
 

𝑑𝑓

𝑑𝑡
𝑐𝑜𝑠𝜔𝑡 𝑑𝑡

∞

0

 

𝑔1𝑐 𝜔 =  
2

𝜋
 𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡 0

∞ +  
2

𝜋
  𝜔  𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡 𝑑𝑡

∞

0

 

𝑔1𝑐 𝜔 = − 
2

𝜋
  𝑓 0 + 𝜔 

2

𝜋
 𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡 𝑑𝑡

∞

0

𝑔1𝑐 𝜔 = 𝜔 𝑔𝑠 𝜔 −  
2

𝜋
  𝑓 0  

𝑇𝑕𝑒𝑛 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑐𝑜𝑠𝑖𝑛𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑓 1𝑠𝑡 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒  

𝑑2𝑓

𝑑𝑡2
 𝑖𝑠  𝑔2𝑠 𝜔 =   

2

𝜋
 

𝑑2𝑓

𝑑𝑡2
𝑠𝑖𝑛𝜔𝑡 𝑑𝑡

∞

0

 

𝑔2𝑠 𝜔 =  
2

𝜋
 
𝑑𝑓

𝑑𝑡
 𝑠𝑖𝑛𝜔𝑡 

0

∞

−  
2

𝜋
 𝜔  

𝑑𝑓

𝑑𝑡

∞

0

 𝑐𝑜𝑠𝜔𝑡𝑔2𝑠 𝜔 = 0 − 𝜔 
2

𝜋
 

𝑑𝑓

𝑑𝑡
𝑐𝑜𝑠𝜔𝑡 𝑑𝑡

∞

0

 

𝑔2𝑠 𝜔 =  −𝜔 𝑔1𝑐 𝜔  

𝑔2𝑠 𝜔 =  −𝜔  𝜔 𝑔𝑠 𝜔 −  
2

𝜋
  𝑓(0)  
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𝑔2𝑠 𝜔 =  −𝜔2𝑔𝑠 𝜔 +   
2

𝜋
𝜔𝑓(0) 

Similarly ,  we can find  

𝑔2𝑐 𝜔 =  −𝜔2𝑔𝑐 𝜔 −  
2

𝜋
𝑓′(0) 

 

Problems: 

1. Find the Fourier transform of 𝑒− 𝑡  

Solution: 

𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 

Given that 𝑓 𝑡 =  𝑒− 𝑡      ∴ 𝑔 𝜔 =  
1

 2𝜋
 𝑒− 𝑡 ∞

−∞
𝑒−𝑖𝜔𝑡 𝑑𝑡 

=  
1

 2𝜋
 𝑒𝑡

0

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡 +
1

 2𝜋
 𝑒−𝑡

∞

0

𝑒−𝑖𝜔𝑡 𝑑𝑡 

=  
1

 2𝜋
 𝑒𝑡(1−𝑖𝜔)

0

−∞

𝑑𝑡 +
1

 2𝜋
 𝑒−𝑡(1+𝑖𝜔)

∞

0

𝑑𝑡 

=  
1

 2𝜋
 
𝑒𝑡(1−𝑖𝜔)

1 − 𝑖𝜔
 
−∞

0

−
1

 2𝜋
 
𝑒−𝑡(1−𝑖𝜔)

1 + 𝑖𝜔
 

0

∞

 

=  
1

 2𝜋
 

1

1 − 𝑖𝜔
+

1

1 + 𝑖𝜔
  

=  
1

 2𝜋
 

2

1 + 𝜔2
 =   

2

𝜋
 

1

1 + 𝜔2
  

 

2. Write the Fourier transform of the function 𝑓 𝑡 𝑎𝑛𝑑 𝑕𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑡𝑕𝑒𝑜𝑟𝑒𝑚,  

𝑔 𝜔 =  
1

 2𝜋
 

𝑚𝑛

𝑛!

∞

𝑛=0

 −𝑖𝜔 2  
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𝑤𝑕𝑒𝑟𝑒  𝑚𝑛 =  𝑡𝑛𝑓 𝑡 𝑑𝑡
∞

−∞

 𝑎𝑛𝑑 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑓 𝑡 . 

Solution:  

𝑇𝑕𝑒 𝐹. 𝑇. 𝑜𝑓 𝑓 𝑡    𝑖𝑠,   𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑡 

∞

−∞

𝑒−𝑖𝜔𝑡 𝑑𝑡  

𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑡 

∞

−∞

 1 −
𝑖𝜔𝑡

1!
+

(𝑖𝜔𝑡)2

2!
−

(𝑖𝜔𝑡)3

3!
+ ⋯  𝑑𝑡 

           =  
1

 2𝜋
 𝑓 𝑡 

∞

−∞

 
 −𝑖𝜔𝑡 𝑛

𝑛!

𝑛

𝑛=0

𝑑𝑡 

           =  
1

 2𝜋
 

 −𝑖𝜔 𝑛

𝑛!

𝑛

𝑛=0

 𝑡𝑛𝑓 𝑡 

∞

−∞

𝑑𝑡 

           =  
1

 2𝜋
 

 −𝑖𝜔 𝑛

𝑛!

𝑛

𝑛=0

𝑚𝑛                      𝐻𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑣𝑒𝑑 𝑡𝑕𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑡𝑕𝑒𝑜𝑟𝑒𝑚. 

 

3. Find the Fourier transform of the slit function  𝑓 𝑥   defined as 𝑓 𝑥 =  
1

𝜖
,  𝑥 ≤ 𝜖

0,  𝑥 > 𝜖
  

Determine the limit of this transform as 𝜖 → 0 and discuss the result. 

Solution: 

𝑇𝑕𝑒 𝐹. 𝑇. 𝑜𝑓 𝑓 𝑥    𝑖𝑠,   𝑔 𝜔 =  
1

 2𝜋
 𝑓 𝑥 

∞

−∞

𝑒−𝑖𝜔𝑥 𝑑𝑥  

=  
1

 2𝜋
 

1

𝜖

∞

−∞

𝑒−𝑖𝜔𝑥 𝑑𝑥 

=  
1

 2𝜋

1

𝜖
 
𝑒−𝑖𝜔𝑥

−𝑖𝜔
 
−𝜖

𝜖

 

           =  
1

 2𝜋

1

𝜖
 
𝑒𝑖𝜔𝜖 − 𝑒−𝑖𝜔𝜖

𝑖𝜔
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Multiply and divide by 2 we get,  

           =  
1

 2𝜋

2

𝜖𝜔
 
𝑒𝑖𝜔𝜖 − 𝑒−𝑖𝜔𝜖

2𝑖
  

                                                                   =   
sin 𝜔𝜖

𝜔𝜖
 

lim𝜖→0 𝑔 𝜔 = lim
𝜖→0

 
2

𝜋

sin 𝜔𝜖

𝜔𝜖
it is in the 

0

0
 form  

                                                         ∴      = lim
𝜖→0

 
2

𝜋

∂

∂ϵ
(sin 𝜔𝜖)

𝜕

𝜕𝜖
(𝜔𝜖)

 

= lim
𝜖→0

 
2

𝜋

𝜔 𝑐𝑜𝑠𝜔𝜖

𝜔
 =    

2

𝜋
 

𝑔 𝜔 approaches 
2

𝜋
   as 𝜖 → 0,   while the function itself approaches ∞  as 𝑥 → 0,   then the 

function and its Fourier Transform are plotted. 

 

4. Find the Fourier sine transform of    
𝑒−𝑎𝑥

𝑥
 

Solution: 

𝑔𝑠 𝜔 =   
2

𝜋
 𝑓 𝑥 𝑠𝑖𝑛𝜔𝑥 𝑑𝑥

∞

0

 

=   
2

𝜋
 

𝑒−𝑎𝑥

𝑥
 𝑠𝑖𝑛𝜔𝑥 𝑑𝑥

∞

0

 

Differentiating w. r. to 𝜔, we get                               

𝑑𝑔𝑠(𝜔)

𝑑𝜔
=   

2

𝜋
 

𝑒−𝑎𝑥

𝑥
 𝑥 𝑐𝑜𝑠𝜔𝑥 𝑑𝑥

∞

0

 

𝑑𝑔𝑠(𝜔)

𝑑𝜔
=   

2

𝜋

𝑎

𝑎2 + 𝜔2
 

Then integrating we get 𝑔𝑠 𝜔 =   
2

𝜋
tan−1  

𝜔

𝑎
 +  𝐴 
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𝜔 = 0,     𝑔𝑠 𝜔  =  𝑔𝑠 0   = 𝐴   𝑎𝑛𝑑 𝑔𝑠 𝜔  = 0 for 𝜔 = 0 ∴   𝐴 = 0 

 𝑔𝑠 𝜔 =   
2

𝜋
tan−1  

𝜔

𝑎
  

 

5. Find the cosine transform of a function of  𝑥 which is unity for 0 < 𝑥 < 𝑎 and zero for 

𝑥 ≥ 𝑎. 

Solution:  

Given that 𝑓 𝑥 =  
1          0 < 𝑥 < 0
0,               𝑥 ≥ 𝑎

  

𝐹𝑐  . 𝑇. 𝑜𝑓 𝑓 𝑥 𝑖𝑠  𝑔𝑐 𝜔 =   
2

𝜋
 𝑓 𝑥 𝑐𝑜𝑠𝜔𝑥 𝑑𝑥

∞

0

 

=   
2

𝜋
  𝑓 𝑥  𝑐𝑜𝑠𝜔𝑥 𝑑𝑥 +   𝑓 𝑥  𝑐𝑜𝑠𝜔𝑥 𝑑𝑥

∞

𝑎

𝑎

0

  

=   
2

𝜋
  1 𝑐𝑜𝑠𝜔𝑥 𝑑𝑥 +   0 𝑐𝑜𝑠𝜔𝑥 𝑑𝑥

∞

𝑎

𝑎

0

  

=  
2

𝜋

𝑠𝑖𝑛𝜔𝑎

𝜔
 

 

3.3. Application of Fourier Transform: (Vibration in a string) 

Consider an infinitely long freely vibrating string, let y be the displacement of vibration from 

its mean position and satisfies the wave equation 

𝑑2𝑦

𝑑𝑥2
=  

1

𝑣2

𝑑2𝑦

𝑑𝑡2
                                                          (3.1) 

 

Where 𝑥 is the distance measured along the String; 

𝑣is the velocity of wave moving along the string:    and 𝑦 is a function 𝑥 and 𝑡 

The initial condition of the string is    𝑦 𝑥, 0 =   𝐹(𝑥) 
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Multiplying on both sides of equation (1) by  
𝑒 𝑖𝑠𝑥

 2𝜋
  and integrating over the limit (-∞, ∞) we 

get 

1

 2𝜋
 

𝜕2𝑦

𝜕𝑥2

∞

−∞

𝑒𝑖𝑠𝑥𝑑𝑥 =
1

𝑣2

1

 2𝜋
 

𝜕2𝑦

𝜕𝑡2

∞

−∞

𝑒𝑖𝑠𝑥𝑑𝑥                                           (3.2) 

 

It is the Fourier Transform of second derivative  

Let  

𝑌 𝑠, 𝑡 =   
1

 2𝜋
 𝑦

∞

−∞

𝑒𝑖𝑠𝑥𝑑𝑥                         (3.3) 

 

∴
1

 2𝜋
 

𝜕2𝑦

𝜕𝑥2

∞

−∞

𝑒𝑖𝑠𝑥𝑑𝑥 =  −𝑖𝑠 2𝑌 𝑠, 𝑡                                                   (3.4) 

Equation (3.2) becomes    −𝑖𝑠 2𝑌 𝑠, 𝑡  = 
1

𝑣2

𝜕2𝑌(𝑠,𝑡)

𝜕𝑡2
                          (3.5) 

ie.,
𝜕2𝑦

𝜕𝑡2
 = - 𝑣2𝑠2𝑌                                (3.6) 

at t=0, equation (3.3) becomes 𝑌 𝑠, 0 =   
1

 2𝜋
 𝑦(𝑥, 𝑜)

∞

−∞
𝑒𝑖𝑠𝑥𝑑𝑥 

=   
1

 2𝜋
 𝐹(𝑥)

∞

−∞

𝑒𝑖𝑠𝑥𝑑𝑥 = 𝑓 𝑠        (3.7) 

A general solution of equation (3.6) is   𝑌 𝑠, 𝑡 = 𝑓 𝑠 𝑒±𝑖𝑣𝑠𝑡                (3.8) 

The inverse Fourier Transform of (3.3) is , 

𝑦 𝑥, 𝑡 

=  
1

 2𝜋
 𝑌(𝑠, 𝑡)

∞

−∞

𝑒−𝑖𝑠𝑥𝑑𝑠                                                                 (3.9) 𝑈𝑠𝑖𝑛𝑔 (8) 𝑖𝑛 (9), 𝑊𝑒 𝑔𝑒𝑡    𝑦 𝑥, 𝑡 

=  
1

 2𝜋
 𝑓(𝑠)𝑒±𝑖𝑣𝑠𝑡

∞

−∞

𝑒−𝑖𝑠𝑥𝑑𝑠 
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                                                𝑦 𝑥, 𝑡 =  
1

 2𝜋
 𝑓(𝑠)𝑒−𝑖𝑠(𝑥∓𝑣𝑡)

∞

−∞

𝑑𝑠               (3.10) 

 

𝐴𝑡 𝑡 = 0, 𝑤𝑒 𝑕𝑎𝑣𝑒   𝑦 𝑥, 0 =  
1

 2𝜋
 𝑓(𝑠)𝑒−𝑖𝑠𝑥

∞

−∞

𝑑𝑠  =  𝐹(𝑥) 

𝐹(𝑥)is the inverse Fourier transform of 𝑓(𝑠),  therefore  𝑦 𝑥, 𝑡  = 𝐹(𝑥 ∓ 𝑣𝑡). This 

corresponds to the waves moving in + 𝑥  and – 𝑥 directions respectively. 

 

3.4 Laplace Transform 

If 𝐹 𝑡  be a function of  𝑡  defined for all values of   𝑡  , then Laplace transform of 𝐹 𝑡  is 

denoted by ℒ 𝐹 𝑡     or   𝐹 𝑠    or  𝑓 𝑠  is defined as 

ℒ 𝐹 𝑡  =    𝐹 𝑠 =   𝑓 𝑠 =   𝐹 𝑡 𝑒−𝑠𝑡dt
∞

0

 

The parameter  𝑠  is real positive number and the integral exists. 

If the integral converges for some value of  𝑠 , then only the Laplace transformation of 𝐹 𝑡  

exists otherwise not. ℒ is Laplace transformation operator. The operation of multiplying 

𝐹 𝑡  by 𝑒−𝑠𝑡  and then integrating between the limits 0 to ∞ is known as Laplace 

transformation. 

3.4.1First Shifting Theorem: 

𝐼𝑓   ℒ 𝐹 𝑡    =  𝑓 𝑠  , 𝑡𝑕𝑒𝑛   ℒ 𝑒𝑎𝑡𝐹 𝑡    =  𝑓 𝑠 − 𝑎  

ie.,  if𝑓 𝑠  is the Laplace transformation of the function 𝐹 𝑡  and 𝑎 is any real or complex 

number then 𝑓 𝑠 − 𝑎  is Laplace transformation of 𝑒𝑎𝑡 𝐹 𝑡 .  

𝑓 𝑠 =   ℒ 𝐹 𝑡     ⟹  𝑓 𝑠 − 𝑎  =   ℒ 𝑒𝑎𝑡𝐹 𝑡   

 . 

Proof: 

 ℒ 𝐹 𝑡  =  𝑓 𝑠 =   𝐹 𝑡 𝑒−𝑠𝑡
∞

0

dt. ℒ 𝑒𝑎𝑡𝐹 𝑡  =  𝑒𝑎𝑡𝑒−𝑠𝑡𝐹 𝑡 dt
∞

0
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=  𝑒− 𝑠−𝑎 𝑡𝐹 𝑡 𝑑𝑡
∞

0

 

𝑃𝑢𝑡  𝑠 − 𝑎  𝑢 > 0,            =   𝑒−𝑢𝑡 𝐹 𝑡 
∞

0

𝑑𝑡. 

= 𝑓 𝑢  

𝑅𝑒𝑝𝑙𝑎𝑐𝑒 𝑢  𝑏𝑦  𝑓 𝑠 − 𝑎  , 𝑡𝑕𝑒𝑛  𝐿 𝑒𝑎𝑡𝐹 𝑡   = 𝑓 𝑠 − 𝑎   𝑕𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑣𝑒𝑑. 

 

3.4.2 Second Shifting Theorem: 

If   ℒ 𝐹 𝑡    = 𝑓 𝑠  and𝐺 𝑡 =  
𝐹(𝑡 − 𝑎), 𝑡 > 0
0,                𝑡 < 𝑎

         then   𝐿 𝐺 𝑡    = 𝑒−𝑎𝑠𝑓 𝑠  

Proof : 

𝐵𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛,      ℒ 𝐺 𝑡      =   𝐺 𝑡 𝑒−𝑠𝑡
∞

0

𝑑𝑡. 

 

=   𝐺 𝑡 𝑒−𝑠𝑡
𝑎

0

𝑑𝑡  +  𝐺 𝑡 𝑒−𝑠𝑡
∞

𝑎

𝑑𝑡,        0 < 𝑎 < ∞ 

  =   0  𝑒−𝑠𝑡
𝑎

0

𝑑𝑡  +  𝐹 𝑡 − 𝑎 𝑒−𝑠𝑡
∞

𝑎

𝑑𝑡 

=     𝐹 𝑡 − 𝑎 𝑒−𝑠𝑡
∞

𝑎

𝑑𝑡 

𝑃𝑢𝑡  𝑡 − 𝑎  =  𝑢 ; 𝑡 = 𝑢 + 𝑎;   𝑑𝑡 = 𝑑𝑢  𝑤𝑕𝑒𝑛  𝑢 = 0   , 𝑡 = 𝑎  𝑎𝑛𝑑 𝑢 = ∞   , 𝑡 = ∞ 

∴ ℒ 𝐺 𝑡  =  𝐹 𝑢 𝑒−𝑠(𝑢+𝑎)
∞

0

𝑑𝑢 = 𝑒−𝑠𝑎  𝐹 𝑢 𝑒−𝑠𝑢𝑑𝑢
∞

0

 

𝐵𝑦 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑜𝑓 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑠 𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒, ℒ 𝐺 𝑡    =  𝑒−𝑠𝑎  𝐹 𝑡 𝑒−𝑠𝑡
∞

0

𝑑𝑢 

          = 𝑒−𝑠𝑎𝐿 𝐹 𝑡      =   𝑒−𝑠𝑎  𝑓 𝑠  hence proved 

3.4.3 Laplace Transform of derivatives: 

If   ℒ 𝐹 𝑡  = 𝑓 𝑠       𝑡𝑕𝑒𝑛     ℒ 𝐹′ 𝑡  = 𝑠𝑓 𝑠 − 𝐹(0); if 𝐹 𝑡  is continuous for 0 ≤ 𝑡 ≤ 𝑁 

and of exponential order for 𝑡 > 𝑁 while 𝐹′ 𝑡  is sectionaly continuous for 0 ≤ 𝑡 ≤ 𝑁.  
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Proof: 

Case1 

  𝐼𝑓 𝐹′ 𝑡  𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0   𝑡𝑕𝑒𝑛   =  𝐹′ 𝑡 𝑒−𝑠𝑡
∞

0

𝑑𝑡 

=  𝑒−𝑠𝑡𝐹(𝑡) 0
∞ −  𝐹 𝑡 (−𝑠𝑒−𝑠𝑡)

∞

0

dt 

=  lim
𝑡→∞

 𝑒−𝑠𝑡𝐹(𝑡)  − 𝐹 0 + 𝑠  𝐹 𝑡 𝑒−𝑠𝑡
∞

0

dt 

=  lim
𝑡→∞

 𝑒−𝑠𝑡𝐹(𝑡)  − 𝐹 0 + 𝑠𝐿 𝐹 𝑡   

lim𝑡→∞ 𝑒−𝑠𝑡𝐹(𝑡)  =0 ,    for 𝑠 > 𝑎 

ℒ 𝐹′ 𝑡  =  𝑠𝐿 𝐹 𝑡  − 𝐹 0  

Case2         (i)      If  𝐹′ 𝑡  is merely piecewise continuous, then the integral can be broken 

into sum of integrals in different ranges from 0  𝑡𝑜 ∞ such that in each of such parts 𝐹′ 𝑡  is 

continuous 

We have    ℒ 𝐹′ 𝑡  =  𝑠𝐿 𝐹 𝑡  − 𝐹 0         and        ℒ 𝐺′ 𝑡  =  𝑠ℒ 𝐺 𝑡  − 𝐺 0  

Put   𝐺(𝑡) = 𝐹′(𝑡) ,          𝐹′′ 𝑡  =  𝑠ℒ 𝐹′ 𝑡  − 𝐹′ 0  

=  𝑠 𝑠 ℒ 𝐹 𝑡  −  𝐹 0   - 𝐹′ 0  

= 𝑠2ℒ 𝐹 𝑡  − 𝑠𝐹 0 − 𝐹′(0) = ℒ 𝐹′′ 𝑡   

(ii)             ℒ 𝐻′′ 𝑡  =  𝑠2ℒ 𝐻 𝑡  − 𝑠𝐻 0 − 𝐻′(0) 

Put  𝐻(𝑡) = 𝐹′(𝑡) ,         ℒ 𝐹′′′ 𝑡  =  𝑠2ℒ 𝐹′ 𝑡  − 𝑠𝐹′ 0 − 𝐹′′(0) 

=  𝑠2 𝑠 ℒ 𝐹 𝑡  −  𝐹 0  − 𝑠𝐹′ 0 − 𝐹′′(0) 

ℒ 𝐹′′′ 𝑡  =  𝑠3ℒ 𝐹 𝑡  − 𝑠2𝐹 0 − 𝑠𝐹′ 0 − 𝐹′′(0) 

 

(iii)        If 𝐹′(𝑡) and its first (n-1) derivatives are continuous, then proceeding as above we 

have the general case,              

 ℒ 𝐹𝑛 𝑡  =  𝑠𝑛ℒ 𝐹 𝑡  − 𝑠𝑛−1𝐹 0 − 𝑠𝑛−2𝐹′ 0 − ⋯ ⋯ ⋯ ⋯ − 𝐹𝑛−1(0) 
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3.4.4 Laplace Transform of Integral:  

If   ℒ 𝐹 𝑡  = 𝑓 𝑠    𝑡𝑕𝑒𝑛 
1

𝑠
 𝑓 𝑠 = ℒ   𝐹 𝑢 

𝑡

0
𝑑𝑢  

Proof:   Let 𝐺 𝑡 =   𝐹 𝑢 
𝑡

0
𝑑𝑢  then 𝐺 0 =   𝐹 𝑢 

𝑡

0
𝑑𝑢 = 0 

And 𝐺 ′ 𝑡 =  
𝑑

𝑑𝑡
  𝐹 𝑢 

𝑡

0
𝑑𝑢  = 𝐹(𝑡) 

But we know that ℒ 𝐺 ′(𝑡) = 𝑠ℒ 𝐺 𝑡  −  𝐺(0) 

∴ ℒ 𝐹(𝑡) = 𝑠ℒ 𝐺 𝑡  − (0) 

1

𝑠
ℒ 𝐹 𝑡  = ℒ{𝐺 𝑡 } 

1

𝑠
ℒ 𝐹 𝑡  = ℒ   𝐹 𝑢 

𝑡

0

𝑑𝑢  

Problems: 

1. Find ℒ 𝐹 1   if Laplace Transform of the function 𝐹(𝑡) = 1 

We have ℒ 𝐹 𝑡  =  𝑒−𝑠𝑡∞

0
𝐹 𝑡 𝑑𝑡 

∴ ℒ 𝐹 1        =  𝑒−𝑠𝑡
∞

0

1𝑑𝑡 

=  
𝑒 − 𝑠𝑡

−𝑠
 

0

∞

 

=  
1

−𝑠
 𝑒−∞ − 𝑒0  

  =  
1

−𝑠
 0 −  1     =    

1

𝑠
 

 

2. Find ℒ{𝑡𝑛 }  where 𝑛  is positive integer if Laplace Transform of the function 𝐹(𝑡) = 𝑡𝑛  

We have     ℒ 𝐹 𝑡   =   𝑒−𝑠𝑡∞

0
𝐹 𝑡 𝑑𝑡 

∴ ℒ 𝑡𝑛       =  𝑒−𝑠𝑡
∞

0

𝑡𝑛𝑑𝑡 

= 𝑡𝑛  
𝑒 − 𝑠𝑡

−𝑠
 

0

∞

−  𝑛 𝑡𝑛−1
∞

0

𝑒−𝑠𝑡

𝑠
𝑑𝑡 
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=  
1

−𝑠
lim
𝑡→∞

 
 𝑡 𝑛

𝑒𝑠𝑡
 +  

𝑛

𝑠
 𝑡𝑛−1

∞

0

𝑒−𝑠𝑡𝑑𝑡 

  =  0 +  
𝑛

𝑠
 𝑡𝑛−1

∞

0

𝑒−𝑠𝑡𝑑𝑡 

=   
𝑛

𝑠
 
(𝑛 − 1)

𝑠
 𝑡𝑛−2

∞

0

𝑒−𝑠𝑡𝑑𝑡  

=   
𝑛

𝑠

(𝑛 − 1)

𝑠
 
(𝑛 − 2)

𝑠
 𝑡𝑛−3

∞

0

𝑒−𝑠𝑡𝑑𝑡  

Repeating for n times we get,  

𝑛!

𝑠𝑛
 𝑒−𝑠𝑡  𝑑𝑡

∞

0

 

=
𝑛!

𝑠𝑛
 
𝑒 − 𝑠𝑡

−𝑠
 

0

∞

=     
𝑛!

𝑠𝑛
 0 − 

1

𝑠
 

0

∞

=       
𝑛!

𝑠𝑛+1
 

 

3. Findℒ{𝑒𝑎𝑡  } 

ℒ 𝑒𝑎𝑡  =  𝑒−𝑠𝑡
∞

0

𝑒𝑎𝑡 𝑑𝑡 

=  𝑒−(𝑠−𝑎)𝑡
∞

0

𝑑𝑡 

=  
𝑒− 𝑠−𝑎 𝑡

−(𝑠 − 𝑎)
 

0

∞

=  𝑒−∞ − 
1

−(𝑠 − 𝑎)
 =  0 +  

1

(𝑠 − 𝑎)
 =  

1

(𝑠 − 𝑎)
 

 

4. Find 𝐿{sin 𝑎𝑡} 

ℒ{sin 𝑎𝑡} =  𝑒−𝑠𝑡
∞

0

sin 𝑎𝑡 𝑑𝑡 

sin 𝑎𝑡 =
𝑒𝑖𝑎𝑡 − 𝑒−𝑖𝑎𝑡

2𝑖
Then, 𝐿{sin 𝑎𝑡} =  𝑒−𝑠𝑡

∞

0

𝑒𝑖𝑎𝑡 − 𝑒−𝑖𝑎𝑡

2𝑖
𝑑𝑡 

 
1

2𝑖
  𝑒−𝑠𝑡

∞

0

𝑒𝑖𝑎𝑡 𝑑𝑡 −  𝑒−𝑠𝑡
∞

0

𝑒−𝑖𝑎𝑡 𝑑𝑡  

 

=
1

2𝑖
  𝑒(𝑖𝑎−𝑠)𝑡

∞

0

𝑑𝑡 −  𝑒−(𝑖𝑎+𝑠)𝑡
∞

0

𝑑𝑡  
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=
1

2𝑖
 
𝑒 𝑖𝑎−𝑠 𝑡

(𝑖𝑎 − 𝑠)
+

𝑒− 𝑖𝑎−𝑠 𝑡

(𝑖𝑎 + 𝑠)
 

0

∞

 

=
1

2𝑖
 0 −  

1

𝑖𝑎 − 𝑠
+

1

𝑖𝑎 + 𝑠
   

=
1

2𝑖
 −  

𝑖𝑎 + 𝑠 + 𝑖𝑎 − 𝑠

−𝑎2 − 𝑠2
   

=
1

2𝑖
 −  

2𝑖𝑎

−(𝑎2 + 𝑠2)
   

=  𝑎

(𝑎2 + 𝑠2)
  

 

5. 𝐹𝑖𝑛𝑑 ℒ{𝑒−𝑡(3 𝑠𝑖𝑛𝑕 2𝑡 − 5 𝑐𝑜𝑠𝑕 2𝑡)} 

ℒ{𝐹 𝑡 } = 𝑓 𝑠     𝑡𝑕𝑒𝑛 ℒ{𝑒𝑎𝑡𝐹 𝑡 } = 𝑓 𝑠 − 𝑎  

ℒ sinh 2𝑡 =
2

𝑠2 − 22
𝑎𝑛𝑑  ℒ 𝑐𝑜𝑠𝑕 2𝑡 =

𝑠

𝑠2 − 22
 

 3ℒ{𝑒−𝑡 sinh 2𝑡} − 5ℒ{𝑒−𝑡 cosh 2𝑡} = 3 
2

 𝑠 + 1 2 − 22
− 5 

𝑠 + 1

 𝑠 + 1 2 − 22
 

=
6 − 5 𝑠 + 1 

 𝑠 + 1 2 − 22
 

=
1 − 5𝑠

𝑠2 + 2𝑠 − 3
 

 

Problems: (for Second Shifting Property) 

6. Find ℒ 𝐹 𝑡    if  𝐹 𝑡  =  
cos  𝑡 −

2𝜋

3
 , 𝑡 >

2𝜋

3

0, 𝑥 <
2𝜋

3

  

ℒ 𝐹 𝑡  =  𝑒−𝑠𝑡

2𝜋

3

0

𝐹 𝑡 𝑑𝑡 +  𝑒−𝑠𝑡
∞

2𝜋

3

𝐹 𝑡 𝑑𝑡  

=  𝑒−𝑠𝑡

2𝜋

3

0

0𝑑𝑡 +  𝑒−𝑠𝑡
∞

2𝜋

3

cos  𝑡 −
2𝜋

3
 𝑑𝑡  
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𝑃𝑢𝑡 𝑡 −
2𝜋

3
= 𝑢,   𝑓𝑜𝑟 𝑡 =

2𝜋

3
 , 𝑢 = 0; 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡 = ∞, 𝑢 = ∞ 𝑡𝑕𝑒𝑛  𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠  

𝑡 =  𝑢 −
2𝜋

3
 

∴ ℒ 𝐹 𝑡  =  𝑒−𝑠 𝑢+
2𝜋

3
 

∞

0

cos 𝑢 𝑑𝑢 

= 𝑒−
2𝜋𝑠

3  𝑒−𝑠𝑢
∞

0

cos 𝑢 𝑑𝑢 

= 𝑒−
2𝜋𝑠

3
𝑠

𝑠2 + 1
 

=
𝑠 𝑒−

2𝜋𝑠
3

𝑠2 +  1
 

7. Evaluate ℒ 𝐹 𝑡   where 𝐹 𝑡 =   
0,     0 < 𝑡 < 1 
𝑡,    1 < 𝑡 < 2

0,     𝑡 > 2         

  

ℒ 𝐹 𝑡  =  𝑒−𝑠𝑡
∞

0

𝐹 𝑡 𝑑𝑡 

=  𝑒−𝑠𝑡
1

0

0 𝑑𝑡 + +  𝑒−𝑠𝑡
∞

2

0 𝑑𝑡 

=  𝑒−𝑠𝑡
2

1

𝑡 𝑑𝑡 

=  𝑡 
𝑒−𝑠𝑡

−𝑠
 

1

2

−  
𝑒−𝑠𝑡

𝑠

2

1

𝑑𝑡 

= −
1

𝑠
 2𝑒−2𝑠 −  1. 𝑒−𝑠 −  

𝑒−𝑠𝑡

−𝑠
 

1

2

  

= −
1

𝑠
 2𝑒−2𝑠 − 𝑒−𝑠 +

1

𝑠
 𝑒−2𝑠 − 𝑒−𝑠   

= −
2

𝑠
+  

1

𝑠
𝑒−𝑠 −

1

𝑠2
𝑒−2𝑠 +

1

𝑠2
𝑒−𝑠 

=   
1

𝑠
+

1

𝑠2
 𝑒−𝑠 − 𝑒−2𝑠  

2

𝑠
+

1

𝑠2
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8. Derivative Problems:  Evaluate  (i)  ℒ 1 =
1

𝑠
     (ii) ℒ 𝑡 =

1

𝑠2
     and   (iii) ℒ 𝑒𝑎𝑡  =

1

𝑠−𝑎
     

using Laplace Transform of derivatives 

(i) ℒ 𝐹′ 𝑡  =  𝑠ℒ 𝐹 𝑡  − 𝐹 0  

Given that    𝐹 𝑡 = 1,   ∴ 𝐹′ 𝑡 = 0,   𝑎𝑛𝑑   𝐹 0 = 1  

Substituting we get,        𝐿 0 =  𝑠𝐿 1 − 1 

0 =  𝑠𝐿 1 − 1 ∴ 𝐿 1 =  
1

𝑠
 

(ii) Given that    𝐹 𝑡 = 𝑡,   ∴ 𝐹′ 𝑡 = 1,   𝑎𝑛𝑑   𝐹 0 = 0  

ℒ 1 =  𝑠ℒ 𝑡 − 0,    but  ℒ 1 =  
1

𝑠
 

∴     
1

𝑠
= 𝑠ℒ 𝑡   and  therefore  ℒ 𝑡 =

1

𝑠2
 

 

(iii) 𝐺𝑖𝑣𝑒𝑛 𝑡𝑕𝑎𝑡    𝐹 𝑡 = 𝑒𝑎𝑡 ,   ∴ 𝐹′ 𝑡 = 𝑎𝑒𝑎𝑡 ,   𝑎𝑛𝑑   𝐹 0 = 1  

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑤𝑒 𝑔𝑒𝑡,            ℒ 𝑎𝑒𝑎𝑡  =  𝑠ℒ 𝑒𝑎𝑡  − 1 

𝑎 ℒ 𝑒𝑎𝑡  =  𝑠ℒ 𝑒𝑎𝑡  − 1 

1 =  𝑠ℒ 𝑒𝑎𝑡  − 𝑎  ℒ 𝑒𝑎𝑡   

 𝑖𝑒. ,      ℒ 𝑒𝑎𝑡   𝑠 − 𝑎  = 1       

∴  ℒ 𝑒𝑎𝑡    =   
1

𝑠 − 𝑎
 

 

9.    Using the derivative equation  ℒ 𝐹′′ 𝑡  =  𝑠2ℒ 𝐹 𝑡  − 𝑠𝐹 0 − 𝐹′(0) show that 

ℒ sin 𝑎𝑡 =  
𝑎

𝑠2 + 𝑎2
 

Solution: 

Given that    𝐹 𝑡 = sin 𝑎𝑡 , ∴ 𝐹′ 𝑡 = 𝑎 cos 𝑎𝑡 , 𝐹′′  𝑡 = −𝑎 sin2 𝑎𝑡  ;   

𝐹 0 = 0,    𝐹′ 0 = 𝑎   

ℒ −𝑎2 sin 𝑎𝑡 =  𝑠2ℒ sin 𝑎𝑡 − 𝑠 0 − 𝑎 

−𝑎2ℒ sin 𝑎𝑡 =  𝑠2ℒ sin 𝑎𝑡 − 𝑎 

ℒ sin 𝑎𝑡 (𝑠2 + a 2) =  𝑎 
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ℒ sin 𝑎𝑡 =  
𝑎

𝑠2 + a 2
 

 

10. Problem of Transform of integrals: 

(i) Evaluate ℒ   sin 2𝑢 𝑑𝑢
𝑡

0
  

We have           

ℒ sin 2𝑡 =  
2

𝑠2 + 4
=  𝑓(𝑠) 

ℒ 𝐹 𝑢 𝑑𝑢 =  
𝑓(𝑠)

𝑠
 

∴ ℒ   sin 2𝑢 𝑑𝑢
𝑡

0

 =  
2

𝑠(𝑠2 + 4)
 

 

 

 𝑖𝑖     𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒     ℒ   
𝑠𝑖𝑛 𝑡 

𝑡

𝑡

0

 𝑑𝑡  

𝑊𝑒 𝑕𝑎𝑣𝑒   ℒ 𝐹(𝑡) =  𝑓(𝑠), 𝑎𝑛𝑑 ℒ  𝐹 𝑢 𝑑𝑢 =  
𝑓(𝑠)

𝑠
   𝑎𝑛𝑑  ℒ  

𝐹(𝑡)

𝑡
 𝑑𝑡  =   𝑓 𝑠 𝑑𝑠

∞

𝑠

 

𝐿 sin 𝑡 =  
1

𝑠2 + 1
= 𝑓 𝑠  

∴ ℒ   
sin 𝑡 

𝑡

𝑡

0

 𝑑𝑡 =   
1

𝑠2 + 1
𝑑𝑠

∞

𝑠

 

=  tan−1 𝑠 𝑠
∞ =

𝜋

2
− tan−1 𝑠 = cot−1 𝑠 

 

3.5 Inverse Laplace Transform 

Partial fraction method: 

Any rational function   
𝑃(𝑠)

𝑄(𝑠)
where 𝑃(𝑠) and 𝑄(𝑠)  are polynomials with the degree of 𝑃(𝑠) 

less than that of 𝑄(𝑠) can be written as the sum of rational functions (called partial fraction) 

having the form 
𝐴

 𝑎𝑠+𝑏 𝑟  , 
𝐴𝑠+𝐵

 𝑎𝑠2+𝑏𝑠+𝑐 𝑟    where r=1,2,3,……… By finding the inverse Laplace 

transform of each of the partial fractions we can find 𝐿−1  
𝑃(𝑠)

𝑄(𝑠)
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Example:   

1.     
2𝑠 − 5

 3𝑠 − 4  2𝑠 + 1 2
  =  

𝐴

3𝑠 − 4
 +

𝐵

 2𝑠 + 1 3
 +

𝐶

 2𝑠 + 1 2
+

𝐷

2𝑠 + 1
 

2.     
3𝑠2 − 4𝑠 + 2

 𝑠2 + 2𝑠 + 4 2(𝑠 − 5)
=

𝐴𝑠 + 𝐵

 𝑠2 + 2𝑠 + 4 2
 +

𝐶𝑠 + 𝐷

𝑠2 + 2𝑠 + 4
+

𝐸

𝑠 − 5
 

 

Inverse Laplace Transform definition: 

  If the Laplace transform of a function F(t) is f(s)   ie if 𝐿 𝐹(𝑡) = 𝑓(𝑠), then 𝐹(𝑡) is called an 

inverse Laplace transform of 𝑓 𝑠 .ie, 𝐹 𝑡 = 𝐿−1 𝑓(𝑠)  

Where 𝐿−1  is called the inverse Laplace transformation operator. 

 

Problems: 

1. 𝐹𝑖𝑛𝑑  𝐿−1  
3𝑠 + 7

𝑠2 − 2𝑠 − 3
  

3𝑠 + 7

𝑠2 − 2𝑠 + 3
 =

3𝑠 + 7

 𝑠 − 3 (𝑠 + 1)
=  

𝐴

𝑠 − 3
+

𝐵

𝑠 + 1
 

3𝑠 + 7 =  𝐴  𝑠 + 1 +  𝐵 (𝑠 − 3) 

  =  𝐴 + 𝐵 𝑠 + 𝐴 − 3𝐵 

Equating the coefficient of 𝑠 and constant terms we get  

𝐴 + 𝐵 = 3;         𝑎𝑛𝑑   𝐴 − 3𝐵 = 7 

Solving these equations we get,  𝐴 = 4 𝑎𝑛𝑑 𝐵 = −1 

3𝑠 + 7

 𝑠 − 3 (𝑠 + 1)
=

4

𝑠 − 3
− 

1

𝑠 + 1
𝐿−1  

3𝑠 + 7

 𝑠 − 3 (𝑠 + 1)
 = 4 𝐿−1  

1

𝑠 − 3
 − 𝐿−1  

1

𝑠 + 1
  

                                       = 4𝑒3𝑡 − 𝑒−𝑡    𝐵𝑒𝑐𝑎𝑢𝑠𝑒   𝐿−1  
1

𝑠 − 𝑎
 = 𝑒𝑎𝑡  𝑎𝑛𝑑  𝐿 𝑒𝑎𝑡  =

1

𝑠 − 𝑎
 

 

2. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝐿−1  
2𝑠2 − 4

 𝑠 + 1  𝑠 − 2 (𝑠 − 3)
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2𝑠2 − 4

 𝑠 + 1  𝑠 − 2 (𝑠 − 3)
 =  

𝐴

𝑠 + 1
+

𝐵

𝑠 − 2
+

𝐶

𝑠 − 3
 

Another method to find the values A, B and C 

Multiply both sides by  (𝑠 + 1), and substitute  𝑆 →  −1
 

𝐿𝑡
𝑠 → −1

2𝑠2 − 4

 𝑠 − 2 (𝑠 − 3)
=  𝐴 +   

𝐵(𝑠 + 1)

𝑠 − 2
 +  

𝐶(𝑠 + 1)

𝑠 − 3
 

2(−1)2 − 4

(−1 − 2)(−1 − 3)
= 𝐴 + 0 + 0                                   ∴

−2

12
 =   

−1

6
 =  𝐴 

Multiply both sides by  (𝑠 −  2), and substitute  𝑆 →  2 

𝐿𝑡
𝑠 → 2

2𝑠2 − 4

 𝑠 + 1 (𝑠 − 3)
=  

𝐴(𝑠 − 2)

𝑠 + 1
 + 𝐵 +  

𝐶(𝑠 − 2)

𝑠 − 3
 

2(2)2 − 4

(2 + 1)(2 − 3)
= 0 + 𝐵 + 0 ∴

−4

3
= 𝐵 

Multiply both sides by  (𝑠 −  3), and substitute  𝑆 →  3 

𝐿𝑡
𝑠 → 3

2𝑠2 − 4

(𝑠 + 1) 𝑠 − 2 
=

𝐴(𝑠 − 3)

𝑠 + 1
+   

𝐵(𝑠 − 3)

𝑠 − 2
 + 𝐶  

2(3)2 − 4

(3 + 1)(3 − 2)
= 0 + 0 + 𝐶 

∴
7

2
= 𝐶 

∴ 𝐿−1  
2𝑠2 − 4

 𝑠 + 1  𝑠 − 2  𝑠 − 3 
  = 𝐿−1  

−1

6

𝑠 + 1
+

−1

3

𝑠 − 2
+

7

2

𝑠 − 3
 =  −

1

6
𝑒−𝑡 −

4

3
𝑒2𝑡 +

7

2
𝑒3𝑡  

3.  𝐹𝑖𝑛𝑑  𝐿−1  
5𝑠2 − 15𝑠 − 11

 𝑠 + 1  𝑠 − 2 3
  

5𝑠2 − 15𝑠 − 11

 𝑠 + 1  𝑠 − 2 3
=  

𝐴

𝑠 + 1
+

𝐵

(𝑠 − 2)3
+

𝐶

 𝑠 − 2 2
+

𝐷

𝑠 − 2
 

By using the above procedure,  the values     𝐴 =  
−1

3
 and  𝐵 = −7 are obtained. This 

method fails to find C and D values. ∴ Substitute any two values for S.  Let us Consider that 

S=0 and S=1  

𝐹𝑜𝑟 𝑆 = 0, 𝑤𝑒 𝑔𝑒𝑡,      
11

8
 = − 

1

3
+ 

7

8
+

𝐶

4
−

𝐷

2
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𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔,         
20

24
 =

𝐶

4
−

𝐷

2
             𝑖𝑒. ,     3𝐶 − 6𝐷 = 10 

 𝐴𝑛𝑑 𝐹𝑜𝑟 𝑆 = 1, 𝑤𝑒 𝑔𝑒𝑡,      
21

2
 = − 

1

6
+  7 + 𝐶 − 𝐷 

𝑂𝑛 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔,                  
22

6
 = 𝐶 − 𝐷  ⟹     3𝐶 − 3𝐷 = 11 

 𝑂𝑛 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝑡𝑕𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑒 𝑔𝑒𝑡 𝑡𝑕𝑒 𝑣𝑎𝑙𝑢𝑒𝑠    𝐶 =  4  𝑎𝑛𝑑  𝐷 =
1

3
 

𝐿−1  
5𝑠2 − 15𝑠 − 11

 𝑠 + 1  𝑠 − 2 3
 = 𝐿−1  

−1

3

𝑠 + 1
+

−7

(𝑠 − 2)3
+

4

 𝑠 − 3 2
+

1

3

𝑠 − 2
  

 

= −
1

3
𝑒−𝑡 −

7

2
𝑡2𝑒2𝑡 + 4𝑡 𝑒2𝑡 +

1

3
𝑒2𝑡  

 
 

4.   𝐹𝑖𝑛𝑑  𝐿−1  
3𝑠 + 1

 𝑠 − 1  𝑠2 + 1 
  

3𝑠 + 1

 𝑠 − 1  𝑠2 + 1 
=

𝐴

𝑠 − 1
+

𝐵𝑠 + 𝐶

𝑠2 + 1
 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦 𝑏𝑜𝑡𝑕 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦  (𝑠 − 1), 𝑎𝑛𝑑 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒  𝑆 →  1  𝑤𝑒 𝑔𝑒𝑡, 𝐴 = 2 

𝑃𝑢𝑡 𝑆 = 0, 𝑡𝑕𝑒𝑛 𝑡𝑕𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶 = 1 

𝑃𝑢𝑡 𝑆 = 2, 𝑎𝑛𝑑 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑡𝑕𝑒𝑛 𝑤𝑒 𝑔𝑒𝑡 𝑡𝑕𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵 = −2 

∴ 𝐿−1  
3𝑠 + 1

 𝑠 − 1  𝑠2 + 1 
 = 𝐿−1  

2

 𝑠 − 1 
+

−2𝑠 + 1

 𝑠2 + 1 
  

= 2 𝐿−1  
1

 𝑠 − 1 
 − 2 𝐿−1  

𝑠

 𝑠2 + 1 
 +  𝐿−1  

1

 𝑠2 + 1 
  

= 2𝑒𝑡 − 2 cos 𝑡 + sin 𝑡 

 

5. 𝐹𝑖𝑛𝑑 𝐿−1  
𝑠2 + 2𝑠 + 3

 𝑠2 + 2𝑠 + 2  𝑠2 + 2𝑠 + 5 
  

𝑠2 + 2𝑠 + 3

 𝑠2 + 2𝑠 + 2  𝑠2 + 2𝑠 + 5 
=

𝐴𝑠 + 𝐵

𝑠2 + 2𝑠 + 2
+

𝐶𝑠 + 𝐷

𝑠2 + 2𝑠 + 5
 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑜𝑛 𝑏𝑜𝑡𝑕 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦   𝑠2 + 2𝑠 + 2  𝑠2 + 2𝑠 + 5   𝑤𝑒 𝑔𝑒𝑡 

𝑠2 + 2𝑠 + 3  = (𝐴𝑠 + 𝐵) 𝑠2 + 2𝑠 + 5  + (𝐶𝑠 + 𝐷)(𝑠2 + 2𝑠 + 2) 
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𝑠2 + 2𝑠 + 3 = 𝐴 + 𝐶 𝑠3 +  2𝐴 + 𝐵 + 2𝐶 + 𝐷 𝑠2 +  5𝐴 + 2𝐵 + 2𝐶 + 2𝐷 𝑠 + 5𝐵 + 2𝐷 

Comparing the coefficient of powers of s on both sides we get, 

𝐴 + 𝐶 = 0 ;   2𝐴 + 𝐵 + 2𝐶 + 𝐷 = 1;    5𝐴 + 2𝐵 + 2𝐶 + 2𝐷 =2;   5𝐵 + 2𝐷 = 3 

Solving these equations we get 𝐴 = 0,   𝐵 =
1

3
,   𝐶 = 0,    𝐷 =

2

3
 

∴ 𝐿−1  
𝑠2 + 2𝑠 + 3

 𝑠2 + 2𝑠 + 2  𝑠2 + 2𝑠 + 5 
  

= 𝐿−1  

1

3

 𝑠2 + 2𝑠 + 2 
+  

2

3

 𝑠2 + 2𝑠 + 5 
  

=  
1

3
𝐿−1  

1

 𝑠 + 1 2 + 1
 +

2

3
𝐿−1  

1

 𝑠 + 1 2 + 4
  

=
1

3
𝑒−𝑡 sin 𝑡 +

2

3

1

2
𝑒−𝑡 sin 2𝑡 

=
1

3
𝑒−𝑡(sin 𝑡  +  sin 2𝑡) 

 

3.6 Application of Laplace Transform: (Simple Harmonic Motion) 

The equation of simple harmonic motion is  

 
𝑑2𝑦

𝑑𝑡2
+ 𝜔2𝑥 = 0                                                         

 

𝑥is the distance displaced the body from its mean position;   𝜔 is a constant 

If  𝑥 = 𝑥0 (maximum distance displaced) then the initial conditions are  

𝐴𝑡 𝑡 = 0, 𝑥 = 𝑥0  𝑎𝑛𝑑 
𝑑𝑥

𝑑𝑡
 = 0 

𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1) 𝑤𝑒 𝑔𝑒𝑡  𝐿  
𝑑2𝑥

𝑑𝑡2
  +  𝜔2𝐿 𝑥 = 0  

𝑠2 𝐿 𝑥  − 𝑆 𝑥 𝑡=0 +  𝜔2 𝐿 𝑥 = 0 

𝐵𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑠2𝑓 𝑠 − 𝑠𝑥0 +  𝜔2𝑓(𝑠)  =  0 
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𝑓 𝑠  𝑠2 +  𝜔2 =  𝑠𝑥0 

𝑓 𝑠 =
𝑠𝑥0

𝑠2 +  𝜔2
 

Taking inverse Laplace Transform 

𝑥 =  𝐿−1 𝑓(𝑠) = 𝐿−1  
𝑠𝑥0

𝑠2 +  𝜔2
 = 𝑥0𝐿−1  

𝑠

𝑠2 +  𝜔2
 =  𝑥0 cos 𝜔𝑡 

ie.,   The equation 𝑥 =  𝑥0 cos 𝜔𝑡  describes simple harmonic motion. 
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UNIT IV: COMPLEX ANALYSIS 

Complex variables- complex conjugate and modulus of a complex number-algebraic 

operations of complex numbers-function of a complex variable-analytic function-Cauchy-

Riemann equation in polar form-line integral of a complex function-Cauchy integral theorem-

Cauchy integral formula-Derivatives of an analytic function 

 

4.1 Complex Number:    

A complex number is defined as a number of the form 𝑧 = 𝑎 + 𝑖𝑏, where 𝑖 =  −1, 𝑎 and 𝑏 

are real numbers. 𝑎 is real part of 𝑧 𝑖𝑒. ,  𝑅𝑒(𝑧)  and 𝑏 is imaginary part of 𝑧 𝑖𝑒. ,  𝐼𝑚(𝑧)  

(i) The complex number is Zero when and only when 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0. 

(ii)  Two complex numbers 𝑧1 and 𝑧2 will be equal if the real and imaginary parts of 

each are equal. 

(iii) If 𝑎 = 0, 𝑡𝑕𝑒𝑛 𝑧 = 𝑖𝑏 𝑎𝑛𝑑 𝑡𝑕𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑠 𝑝𝑢𝑟𝑒𝑙𝑦 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦  

(iv) If 𝑏 = 0, 𝑡𝑕𝑒𝑛 𝑧 = 𝑎 𝑎𝑛𝑑 𝑡𝑕𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑠 𝑟𝑒𝑎𝑙 

(v) The sum, difference, product and ratio of two complex numbers is always a 

complex number 

(vi) Complex conjugate: The complex number 𝑧 = 𝑎 − 𝑖𝑏 is called the complex 

conjugate of 𝑧 it is denoted by 𝑧∗. The sum and product of a complex number 

and its conjugate are both real. 

(𝑧∗)∗ = 𝑧,     𝑧𝑧∗ =  𝑎 + 𝑖𝑏  𝑎 − 𝑖𝑏 =  𝑎2 + 𝑏2 𝑟𝑒𝑎𝑙  𝑎𝑛𝑑  𝑧 =   𝑎2 + 𝑏2 

(vii) Polar form:  Let   𝑎 = 𝑟 cos 𝜃    𝑎𝑛𝑑    𝑏 = 𝑟 sin 𝜃 

 ∴ 𝑧 = 𝑟𝑐𝑜𝑠𝜃 + 𝑖 𝑟𝑠𝑖𝑛𝜃  𝑡𝑕𝑒𝑛 𝑧 = 𝑟  𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 = 𝑟 𝑒𝑖𝜃   This the polar form of complex 

number. Where  𝑟 =   𝑎2 + 𝑏2.  

4.2 Properties of Modulus: 

1. The modulus of the sum of two complex numbers 𝑧1 and 𝑧2 can never exceed the 

sum of their individual moduli. ie.,  𝑧1 + 𝑧2  ≤ ( 𝑧1 +  𝑧1 ) 

Example: 

𝑧1 = 5 + 4𝑖and 𝑧2 = 3 + 2𝑖 ∴ 𝑧1 + 𝑧2 = 8 + 6𝑖, then  𝑧1 + 𝑧2  =  82 + 62 =10 

 𝑧1  = 52 + 42 = 6.403 and  𝑧2  = 32 + 22 = 3.605,  ∴  𝑧1 +  𝑧1  =10.008                    

ie      𝑧1 + 𝑧2 < ( 𝑧1 +  𝑧1 ) 
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2. The modulus of the difference of two complex numbers 𝑧1 and 𝑧2 can never be less 

than the difference of their individual moduli. ie.,  𝑧1 − 𝑧2  ≥ ( 𝑧1 +  𝑧1 ) 

Example: 

𝑧1 = 5 + 4𝑖and 𝑧2 = 3 + 2𝑖 ∴ 𝑧1 − 𝑧2 = 2 + 2𝑖, then  

 𝑧1 − 𝑧2  =  22 − 22 =2.828;    𝑧1  = 52 + 42 = 6.403& 𝑧2  = 32 + 22 = 3.605,  

∴  𝑧1 −  𝑧1  =2.798        ie., 𝑧1 + 𝑧2 > ( 𝑧1 −  𝑧1 ) 

 

3. The modulus of the product of two complex numbers 𝑧1 and 𝑧2 is the product of 

their individual moduli. ie.,  𝑧1𝑧2 = ( 𝑧1  𝑧1 ) 

Example: 

𝑧1 = 5 + 4𝑖and 𝑧2 = 3 + 2𝑖 ∴ 𝑧1𝑧2 = 7 + 22𝑖, then  

 𝑧1𝑧2  =  72 − 222 =23.08 ; 𝑧1  = 52 + 42 = 6.403& 𝑧2  = 32 + 22 = 3.605,  ∴  𝑧1  𝑧1  

=23.08             ie.,  𝑧1𝑧2 =  𝑧1  𝑧1  

 

4. The modulus of the quotient (division) of two complex numbers 𝑧1 and 𝑧2 is the 

quotient (division) of their individual moduli. ie.,  
𝑧1

𝑧2
 =

 𝑧1 

 𝑧1 
 

Example: 

𝑧1 = 5 + 4𝑖  𝑎𝑛𝑑  𝑧2 = 3 + 2𝑖 ∴
𝑧1

𝑧2
=  

23

13
 + 𝑖  

2

13
  

 𝑡𝑕𝑒𝑛  
𝑧1

𝑧2
 =    

23

13
 

2

+  
2

13
 

2

= 1.78 

 𝑧1  = 52 + 42 = 6.403& 𝑧2  = 32 + 22 = 3.605 

∴
 𝑧1 

 𝑧2 
=

6.403

3.605
= 1.78𝑖𝑒. ,  

𝑧1

𝑧2
 =

 𝑧1 

 𝑧2 
 

4.3 Algebraic Operations of Complex numbers 

1. Addition:  

Addition of two complex numbers 𝑧1 = (𝑥1, 𝑦1) and 𝑧2 = (𝑥2, 𝑦2) is defined as 𝑧1 + 𝑧2 =

(𝑥1 + 𝑖𝑦1) + (𝑥2 + 𝑖𝑦2) =  (𝑥1 + 𝑥2)  +  𝑖(𝑦1 + 𝑦2) 

=  (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) 
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2. Subtraction:  

Subtraction of a complex numbers 𝑧2 = (𝑥2, 𝑦2) from 𝑧1 = (𝑥1, 𝑦1) is defined as  𝑧1 − 𝑧2 =

(𝑥1 + 𝑖𝑦1) − (𝑥2 + 𝑖𝑦2) =  (𝑥1 − 𝑥2)  +  𝑖(𝑦1 − 𝑦2) 

=  (𝑥1 − 𝑥2, 𝑦1 − 𝑦2) 

3. Multiplication:  

Multiplication of two complex numbers 𝑧1 = (𝑥1, 𝑦1) &𝑧2 = (𝑥2, 𝑦2) is defined as 

𝑧1𝑧2 = (𝑥1 + 𝑖𝑦1)(𝑥2 + 𝑖𝑦2) = (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑥2𝑦1) 

                                 = (𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑥2𝑦1) 

4. Division:  

Division of a complex numbers  𝑧1 = (𝑥1, 𝑦1)  by  𝑧2 = (𝑥2, 𝑦2) and is defined as 

𝑧1

𝑧2
=  

𝑥1 + 𝑖𝑦1

𝑥2 + 𝑖𝑦2
=  

 𝑥1 + 𝑖𝑦1  𝑥2 − 𝑖𝑦2 

 𝑥2 + 𝑖𝑦2  𝑥2 − 𝑖𝑦2 
=  

 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑖 𝑥2𝑦1 − 𝑥1𝑦2 

𝑥2
2 + 𝑦2

2  

=    
𝑥1𝑥2 + 𝑦1𝑦2

𝑥2
2 + 𝑦2

2  ,
𝑥2𝑦1 − 𝑥1𝑦2

𝑥2
2 + 𝑦2

2   

4.4 Variable and functions:  

 
A symbol 𝑧, which can stand for any one of a set of complex numbers is called a complex 

variable. If for each value of the complex variable (𝑧 = 𝑥 + 𝑖𝑦) in a certain region 𝑅, we 

have one or more values of (𝜔 = 𝑢 + 𝑖𝑣), then 𝜔 is known as a complexfunction of  𝑧  

 𝑖𝑒., 𝜔 = 𝑓(𝑧). The variable 𝑧 is called an independent variable, 𝜔 is a dependent variable. 

The value of a function at 𝑧 = 𝑎is  𝑓(𝑎). 

∴ 𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣 𝑥, 𝑦  

where𝑢 𝑥, 𝑦  is real part and 𝑣(𝑥, 𝑦) is imaginary part. 

Example:  

(i) 𝑍 = 2𝑖, 𝑡𝑕𝑒𝑛 𝑓 𝑧 =  𝑧2 will be 𝑓 2𝑖 =  (2𝑖)2 =  −4 

(ii)  if 𝑧 = 𝑥 + 𝑖𝑦, 𝑡𝑕𝑒𝑛 𝑓 𝑧 = 𝑧2 will be 𝑓 𝑥 + 𝑖𝑦 = (𝑥 + 𝑖𝑦)2 = 𝑥2 − 𝑦2 + 𝑖2𝑥𝑦 

Ie.,𝑓 𝑧 = 𝑢 𝑥, 𝑦 +  𝑖𝑣(𝑥, 𝑦)  where 𝑢 𝑥, 𝑦 = 𝑥2 − 𝑦2 is real part and 

𝑣 𝑥, 𝑦 = 2𝑥𝑦 is imaginary part. 

(iii) 𝐹 𝑧 =  𝑧 2,      𝑍 = 𝑥 + 𝑖𝑦,     ∴  𝑍 =   𝑥2 + 𝑦2   𝑖𝑒., 𝑓 𝑧 = 𝑥2 + 𝑦2 

∴ 𝑢 = 𝑥2 + 𝑦2and  𝑣 = 0, the function is real. 
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4.5 Single and Multi-valued function:  

If for each 𝑧  value, there is only one value of 𝜔, then 𝜔 is said to be a single valued function 

of 𝑧. Otherwise, 𝜔 is a Multi-valued function of 𝑧. 

Example: 

 𝜔 =
1

𝑧
and𝜔 = 𝑧2   are single valued functions of 𝑧. But 𝜔 =  𝑧  is a milti-valued function 

of 𝑧, it possesses two values  (±𝑧)  for each 𝑧 except at 𝑧 = 0. 

 

4.6 Analytic function:   

A function 𝑓(𝑧) which is single valued and differentiable with respect to 𝑧 at all points of a 

region 𝑅 is said to be an analytic function or regular function of 𝑧 in that region.  

The point at which an analytic function is not differentiable is known as a singular point of 

the function. 

4.7 Cauchy-Riemann Conditions:  

The necessary condition that 𝜔 = 𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦) be analytic in a region is that 

𝑢 𝑥, 𝑦  and 𝑣(𝑥, 𝑦) satisfy the Cauchy-Riemann equations  

𝜕𝑢

𝜕𝑥
=  

𝜕𝑣

𝜕𝑦
;  

𝜕𝑢

𝜕𝑦
= − 

𝜕𝑣

𝜕𝑥
 

 
If the partial derivatives are continuous in the region then Cauchy-Riemann equations are 

sufficient condition that 𝑓(𝑧) is analytic in the region. 

 The real 𝑢 𝑥, 𝑦  and imaginary  𝑣(𝑥, 𝑦)  parts of an analytic function 𝑓(𝑧) are also known as 

conjugate functions. If one is given then other can be found so that  𝑓 𝑧 =  𝑢 + 𝑖𝑣  is 

analytic. 

Proof:  

 If 𝜔 = 𝑓 𝑧  be single valued function of the variable 𝑧 = 𝑥 + 𝑖𝑦, then the derivative of 

𝜔 = 𝑓 𝑧  is defined as   

𝑑𝜔

𝑑𝑧
= 𝑓 ′ 𝑧 =  

𝐿𝑡

𝛿𝑧 → 0

𝑓 𝑧 + 𝛿𝑧 − 𝑓(𝑧)

𝛿𝑧
 

provided that the limit exists and is the same for all the different paths along which 𝛿𝑧 → 0. 
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(i) Necessary condition:  Let 𝛿𝑢 and 𝛿𝑣 be increments of 𝑢 and 𝑣 respectively 

corresponding to increments 𝛿𝑥 and 𝛿𝑦 of 𝑥 and 𝑦 

∴ 𝑓 𝑧 + 𝛿𝑧 =  𝑢 + 𝛿𝑢 + 𝑖(𝑣 + 𝛿𝑣) 

Now,    

𝑓 𝑧 + 𝛿𝑧 − 𝑓(𝑧)

𝛿𝑧
=

 𝑢 + 𝛿𝑢 + 𝑖 𝑣 + 𝛿𝑣 −  𝑢 + 𝑖𝑣 

𝛿𝑧
 =  

𝛿𝑢 + 𝑖𝛿𝑣

𝛿𝑧
  =   

𝛿𝑢

𝛿𝑧
+ 𝑖

𝛿𝑣

𝛿𝑧
 

𝑓 ′ 𝑧 =
𝐿𝑡

𝛿𝑧 → 0

𝑓 𝑧 + 𝛿𝑧 − 𝑓(𝑧)

𝛿𝑧
=

𝐿𝑡

𝛿𝑧 → 0
 
𝛿𝑢

𝛿𝑧
+ 𝑖

𝛿𝑣

𝛿𝑧
  

Since 𝛿𝑧 approaches zero , first assume 𝛿𝑧 to be wholly real and then wholly imaginary. 

Case 1     When 𝛿𝑧 is wholly real, then 𝛿𝑦 = 0;  𝛿𝑧 = 𝛿𝑥 

∴ 𝑓 ′ 𝑧 =
𝐿𝑡

𝛿𝑥 → 0
 
𝛿𝑢

𝛿𝑥
+ 𝑖

𝛿𝑣

𝛿𝑥
 =  

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
 

Case 2     When 𝛿𝑧 is wholly imaginary, then 𝛿𝑥 = 0;  𝛿𝑧 = 𝑖𝛿𝑦 

∴ 𝑓 ′ 𝑧 =
𝐿𝑡

𝛿𝑦 → 0
 
𝛿𝑢

𝑖𝛿𝑦
+ 𝑖

𝛿𝑣

𝑖𝛿𝑦
 =  −𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
 

𝑓′(𝑧)exists only if both cases are equal, then  we have   

𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
=  −𝑖

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
 

Equating the real and imaginary parts from both sides we get 

𝜕𝑢

𝜕𝑥
=  

𝜕𝑣

𝜕𝑦
 ;          

𝜕𝑣

𝜕𝑥
=  −

𝜕𝑢

𝜕𝑦
 

So the necessary condition for the existence of 𝑓′(𝑧) is that the CR-equations are to be 

satisfied. 

(i) Sufficient Condition: Let 𝑓(𝑧) be a single valued function having partial 

derivatives        
𝜕𝑢

𝜕𝑥
,   

𝜕𝑢

𝜕𝑦
   ,    

𝜕𝑣

𝜕𝑥
 ,

𝜕𝑣

𝜕𝑦
at each point of 𝑅 and the CR-equations be 

also satisfied. 

By Taylor’s theorem for function of two variables, we have 

𝑓 𝑧 + 𝛿𝑧 = 𝑢 𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦 + 𝑖𝑣(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦) 

                   = 𝑢 𝑥, 𝑦 +  
𝜕𝑢

𝜕𝑥
𝛿𝑥 +

𝜕𝑢

𝜕𝑦
𝛿𝑦 + ⋯ + 𝑖 𝑣  𝑥, 𝑦 + (

𝜕𝑣

𝜕𝑥
𝛿𝑥 +

𝜕𝑣

𝜕𝑦
𝛿𝑦) + ⋯ ] 
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                  = 𝑓(𝑧) + (
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
)𝛿𝑥 + (

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
)𝛿𝑦 

Disregarding the terms beyond the first power of 𝛿𝑥, 𝛿𝑦 

𝑓 𝑧 + 𝛿𝑧 −  𝑓 𝑧 =  (
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
)𝛿𝑥 + (

𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
)𝛿𝑦 

Using CR- equation rewrite the above equation as 

𝑓 𝑧 + 𝛿𝑧 −  𝑓 𝑧 =  (
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
)𝛿𝑥 + (−

𝜕𝑣

𝜕𝑥
+ 𝑖

𝜕𝑢

𝜕𝑥
)𝛿𝑦 

Therefore 𝑓 ′ (𝑧) the derivative exists and 𝑓(𝑧) is analytic in the region 

 

4.8 Polar form of CR - equations: 

𝜕𝑢

𝜕𝑟
=  

1

𝑟

𝜕𝑣

𝜕𝜃
  𝑎𝑛𝑑 

𝜕𝑢

𝜕𝜃
 =  −𝑟  

𝜕𝑣

𝜕𝑟
  

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟 𝑐𝑜𝑠𝜃 + 𝑖 𝑠𝑖𝑛𝜃 = 𝑟𝑒𝑖𝜃  

𝑓 𝑧 = 𝑢 + 𝑖𝑣 = 𝑓(𝑟𝑒𝑖𝜃 ) 

Harmonic: To prove 𝑢 and 𝑣 are harmonic, Differentiate both side of CR equations 

𝜕𝑢

𝜕𝑥
=  

𝜕𝑣

𝜕𝑦
                                                                                    (4.1) 

 
𝜕𝑣

𝜕𝑥
=  −

𝜕𝑢

𝜕𝑦
                                                                                (4.2) 

 

Differentiating on both sides of (1) with respect to 𝑥 we get, 

𝜕2𝑢

𝜕𝑥2
=  

𝜕2𝑣

𝜕𝑥𝜕𝑦
                                                                               (4.3) 

 
Differentiating on both sides of (2) with respect to 𝑦 we get, 

−
𝜕2𝑢

𝜕𝑦2
=  

𝜕2𝑣

𝜕𝑥𝜕𝑦
                                                                            (4.4) 

 

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 (3) 𝑎𝑛𝑑 (4) 𝑤𝑒 𝑔𝑒𝑡,    
𝜕

2
𝑢

𝜕𝑥2
= −

𝜕
2
𝑢

𝜕𝑦2
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𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0                                                                               (4.5) 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑤𝑒 𝑐𝑎𝑛 𝑔𝑒𝑡                      
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
= 0                  (4.6) 

 
The second partial derivatives of 𝑢  and 𝑣 are continuous and harmonic. The equations (4.5) 

and (4.6) are called as Laplace equations. 

 
4.9 Line integral of a complex Function:  

Let 𝐶 be a sooth curve with end points 𝑧0and 𝑧𝑛 . And  let  𝑧1, 𝑧2, ⋯ 𝑧𝑟 ⋯ 𝑧𝑛−1 are 

intermediate points which divide the curve 𝐶 into 𝑛 arcs  𝑧0𝑧1 , 𝑧1𝑧2, ⋯ ⋯ 𝑧𝑟−1𝑧𝑟 , 

⋯ ⋯ 𝑧𝑛−1𝑧𝑛  as shown in figure 

𝜉1,   𝜉2, ⋯ ⋯ 𝜉𝑟 ,  ⋯ ⋯ 𝜉𝑛  are the points lies on the 

corresponding arcs . Then we make the summation  

𝑆𝑛  =   𝜉𝑟

𝑛

𝑟=1

Δ𝑧𝑟  

Where  Δ𝑧𝑟 =  𝑧𝑟 − 𝑧𝑟−1 

when the curve divided into smaller and smaller 

𝑛 →  ∞ then  ∆𝑧𝑟  → 0 Then the summation 𝑆𝑛  is known as the line integral of complex 

function 𝑓(𝑧) and is expressed as  

lim
𝑛→∞

𝑆𝑛 =   𝑓 𝑧 𝑑𝑧
𝐶

 

 

4.10 Cauchy’s  integral theorem:   

Statement:    

If a function 𝑓(𝑧) is analytic and 𝑓′(𝑧) is continuous at every point inside and on a simple 

closed curve 𝐶, then      𝑓 𝑧 𝑑𝑧
𝐶

  = 0. 

Proof : 

Let the region enclosed by the curve 𝑅 and 

𝑓 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣(𝑥, 𝑦)with𝑧 = 𝑥 + 𝑖𝑦 ⟹   𝑑𝑧 = 𝑑𝑥 + 𝑖𝑑𝑦 
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 𝑓 𝑧 𝑑𝑧
𝐶

=   𝑢 + 𝑖𝑣 (𝑑𝑥 + 𝑖𝑑𝑦)
𝐶

 

 
 

  𝑢𝑑𝑥 − 𝑣𝑑𝑦 + 𝑖  (𝑣
𝐶

𝑑𝑥 + 𝑢𝑑𝑦)
𝐶

                                                                   (4.7) 

 

𝑆𝑖𝑛𝑐𝑒 𝑓 ′(𝑧) 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ,
𝜕𝑢

𝜕𝑥
  ,   

𝜕𝑢

𝜕𝑦
   ,    

𝜕𝑣

𝜕𝑥
  ,   

𝜕𝑣

𝜕𝑦
   𝑎𝑟𝑒 𝑎𝑙𝑠𝑜 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑖𝑛 𝑅 

By applying Green’s theorem,  

 (𝑃 𝑑𝑥 + 𝑄 𝑑𝑦
𝐶

) =   (
𝜕𝑄

𝜕𝑥𝑅

−
𝜕𝑃

𝜕𝑦
)  𝑑𝑥 𝑑𝑦    𝑖𝑛 𝑒𝑎𝑐𝑕 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙  

𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛           𝑢𝑑𝑥 − 𝑣𝑑𝑦 =   (−
𝜕𝑣

𝜕𝑥𝑅

−
𝜕𝑢

𝜕𝑦
)

𝐶

 𝑑𝑥 𝑑𝑦                              (4.8) 

  𝑣𝑑𝑥 + 𝑢𝑑𝑦 =   (
𝑅

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
)

𝐶

 𝑑𝑥  𝑑𝑦                                                             (4.9) 

Substituting (4.8) and (4.9) in (4.7) we get, 

 𝑓 𝑧 𝑑𝑧 =  (
𝑅

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 + i  (

𝑅

𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
) 𝑑𝑥 𝑑𝑦

𝐶

                           (4.10) 

Since 𝑓(𝑧) is analytic, 𝑢 and 𝑣 satisfy CR- equations so the integrands of the two integral in 

right hand side of equation (4.10) vanishes and we get,  

 𝑓 𝑧 𝑑𝑧
𝐶

= 0 

Hence, proved the theorem. 

 

4.11 Properties of Line integral: 

1.   𝑓1 𝑧 + 𝑓2 𝑧  
𝐶

𝑑𝑧 =  𝑓1 𝑧 𝑑𝑧 +  𝑓
𝐶 2

 𝑧 
𝐶

𝑑𝑧  

2.  𝑓(𝑧)𝑑𝑧
𝐶

  =  𝑓 𝑧 𝑑𝑧 
𝐶1

+   𝑓 𝑧 𝑑𝑧 
𝐶2

 

3.  𝑓(𝑧)𝑑𝑧
𝐶

 = −  𝑓(𝑧)𝑑𝑧
−𝐶

 

4.  𝑘 𝑓(𝑧)𝑑𝑧
𝐶

 = 𝑘  𝑓(𝑧)𝑑𝑧
𝐶
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5.  𝑓 𝑧 𝑑𝑧 =   𝐹(𝑧) 𝑧1

𝑧2𝑧2

𝑧1
= 𝐹 𝑧2 −  𝐹(𝑧1) 

 

4.12 Cauchys Integral Formula:   

Statement:     

If a function 𝑓(𝑧) is analytic within and on a closed curve 𝐶 and if 𝑎 is any point inside 𝑐 then 

𝑓 𝑎 =  
1

2𝜋𝑖
 

𝑓(𝑧)

𝑧 − 𝑎𝐶

 𝑑𝑧 

Proof : 

Let us consider the function 
𝑓(𝑧)

𝑧−𝑎
  which is analytic at all points inside 𝐶, except at 𝑧 = 𝑎. 

With point 𝑎 as center and radius  𝑟, draw a small circle 𝐶1 lying 

completely within 𝐶. (Figure) 

Since 
𝑓(𝑧)

𝑧−𝑎
 is analytic in the region between 𝐶and 𝐶1, we have by 

Cauchy’s theorem 

Since for any point 𝐶1  , 𝑧 − 𝑎 = 𝑟𝑒𝑖𝜃 ⟹ 𝑑𝑧 = 𝑖𝑟𝑒𝑖𝜃 𝑑𝜃 

 

 
𝑓(𝑧)

𝑧 − 𝑎𝐶

 𝑑𝑧 =  
𝑓(𝑧)

𝑧 − 𝑎𝐶1

 𝑑𝑧 =  
𝑓(𝑎 + 𝑟𝑒𝑖𝜃 )

𝑟𝑒𝑖𝜃
𝐶1

 𝑖𝑟𝑒𝑖𝜃𝑑𝜃 = 𝑖  𝑓(𝑎 + 𝑟𝑒𝑖𝜃 )
𝐶1

𝑑𝜃 

 

In the limit 𝐶1 shrinks to point 𝑎  ie.,  as𝑟 → 0 𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑎𝑝𝑝𝑟𝑜𝑎𝑐𝑕𝑒𝑠 

 

𝑖  𝑓(𝑎)
𝐶1

𝑑𝜃 = 𝑖 𝑓(𝑎)  𝑑𝜃 = 2𝜋𝑖 𝑓(𝑎)
2𝜋

0

 

 𝑓 𝑎 =  
1

2𝜋𝑖
 

𝑓(𝑧)

𝑧 − 𝑎𝐶

 𝑑𝑧 

This is Cauchy’s integral formula. 
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4.13  Derivatives of an analytic function: 

When 𝑓 𝑧 is an analytic function in a domain𝐷, then its derivatives of all ordes exist and 

they also analytic function in 𝐷. The values of derivatives at any point 𝑧0 in 𝐷 are as the 

following 

𝑓 ′ 𝑧0 =  
1

2𝜋𝑖
 

𝑓(𝑧)

 𝑧 − 𝑧0 2
𝐶

 𝑑𝑧 

𝑓 ′′  𝑧0 =  
2!

2𝜋𝑖
 

𝑓(𝑧)

 𝑧 − 𝑧0 3
𝐶

 𝑑𝑧 

And in general the nth  derivative is 

 

𝑓𝑛 𝑧0 =  
𝑛!

2𝜋𝑖
 

𝑓(𝑧)

 𝑧 − 𝑧0 𝑛+1
𝐶

 𝑑𝑧 

Where 𝐶 is a closed contour traversed in the anti-clockwise in D surrounding the point  

𝑧 = 𝑧0. 

 

Problems: 

1. Determine the  modulus and the principal argument of the complex number 
1+2𝑖

1− 1−𝑖 2
 

Solution:  

1 + 2𝑖

1 −  1 − 𝑖 2
=

1 + 2𝑖

1 −  1 − 1 − 2𝑖 
=

1 + 2𝑖

1 + 2𝑖
= 1 

 1 +  𝑖. 0 =  𝑥 + 𝑖𝑦 =  𝑥 + 𝑖𝑦  =  𝑥2 + 𝑦2   =  12 + 02 = 1 

∴ 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 =  
1 + 2𝑖

1 −  1 − 𝑖 2
 = 1 

Principal argument is 

𝜃 =  tan−1  
𝑦

𝑥
 = tan−1  

0

1
 = tan−1 0 = 0 
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2. Convert   12∠ − 60° to rectangular form  

Solution:  

Given 𝑟 = 12and  𝜃 = −60.  Let  12∠ − 60° = +𝑖𝑦  , but  𝑥 + 𝑖𝑦 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

ie., 𝑥 = 𝑟𝑐𝑜𝑠𝜃 = 12 cos −60 = 12 ∗
1

2
= 6 

𝑦 = 𝑟𝑠𝑖𝑛𝜃 = 12 sin −60 = −12 ∗
 3

2
= −6 3 

∴ 12∠ − 60 = 6 − 𝑖6 3 

3.  𝐸𝑥𝑝𝑟𝑒𝑠𝑠 𝑡𝑕𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛  𝑟 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃  𝑓𝑜𝑟𝑚  
(1 + 2𝑖)

(1 − 3𝑖)
 

Solution: 

 1 + 2𝑖 

 1 − 3𝑖 
=

 1 + 2𝑖  1 + 3𝑖 

 1 − 3𝑖  1 + 3𝑖 
=

1 − 6 + 5𝑖

1 + 9
 =

−5 + 5𝑖

10
 = −

1

2
+  

𝑖

2
 

𝑖𝑒., 𝑟 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 = −
1

2
+  

𝑖

2
⟹ 𝑟𝑐𝑜𝑠𝜃 = −

1

2
 ;  𝑟𝑠𝑖𝑛𝜃 =

1

2
 

𝑆𝑞𝑢𝑎𝑟𝑖𝑛𝑔 𝑎𝑛𝑑 𝑎𝑑𝑑𝑖𝑛𝑔 𝑤𝑒 𝑔𝑒𝑡, 𝑟2 =
1

2
⟹ 𝑟 =

1

 2
 

1

 2
𝑐𝑜𝑠𝜃 = −

1

2
⟹ 𝐶𝑜𝑠𝜃 =  −

1

 2
 

1

 2
𝑠𝑖𝑛𝜃 =

1

2
⟹ 𝑠𝑖𝑛𝜃 =  

1

 2
     ∴  𝜃 =  

3𝜋

4
 

(1 + 2𝑖)

(1 − 3𝑖)
=

1

 2
 (𝑐𝑜𝑠

3𝜋

4
+ 𝑖 𝑠𝑖𝑛

3𝜋

4
) 

 

4.      𝐼𝑓  𝑥 +
1

𝑥
= 2𝑐𝑜𝑠𝜃,    𝑝𝑟𝑜𝑣𝑒 𝑡𝑕𝑎𝑡  2 𝑐𝑜𝑠 𝑟𝜃 =  𝑥𝑟 +

1

𝑥𝑟
 

Solution: 

𝑥 +
1

𝑥
= 2𝑐𝑜𝑠𝜃 ⟹ 𝑥2 − 2𝑥𝑐𝑜𝑠𝜃 + 1 = 0 

∴ 𝑥 =
2𝑐𝑜𝑠𝜃 ±  4𝑐𝑜𝑠2𝜃 − 4

2
= 𝑐𝑜𝑠𝜃 ± 𝑖𝑠𝑖𝑛𝜃  

𝑥𝑟 =   𝑐𝑜𝑠𝜃 ± 𝑖𝑠𝑖𝑛𝜃 𝑟 = 𝑐𝑜𝑠𝑟𝜃 ± 𝑖𝑠𝑖𝑛𝑟𝜃 

𝑥−𝑟 =   𝑐𝑜𝑠𝜃 ± 𝑖𝑠𝑖𝑛𝜃 −𝑟   = 𝑐𝑜𝑠𝑟𝜃 ∓ 𝑖𝑠𝑖𝑛𝑟𝜃 

𝑥𝑟 +
1

𝑥𝑟  =  𝑐𝑜𝑠𝑟𝜃 ± 𝑖𝑠𝑖𝑛𝑟𝜃 +  𝑐𝑜𝑠𝑟𝜃 ∓ 𝑖𝑠𝑖𝑛𝑟𝜃  = 2𝑐𝑜𝑠𝑟𝜃 
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5.  𝐹𝑜𝑟 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑧, 𝑟𝑒𝑠𝑜𝑙𝑣𝑒 𝑙𝑛 𝑧  𝑖𝑛𝑡𝑜 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡𝑠. 

Solution:  

𝑤𝑒 𝑕𝑎𝑣𝑒  𝑧 = 𝑥 + 𝑖𝑦 , 𝑢𝑠𝑖𝑛𝑔 𝑥 = 𝑟𝑐𝑜𝑠𝜃 𝑎𝑛𝑑 𝑦 = 𝑟 𝑠𝑖𝑛𝜃 

𝑧 = 𝑟𝑐𝑜𝑠𝜃 + 𝑟𝑠𝑖𝑛𝜃 ⟹ 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) ⟹ 𝑟𝑒𝑖𝜃  

Where    𝑟 =  𝑥2 + 𝑦2     and    𝜃 = tan−1  
𝑦

𝑥
  

∴ ln 𝑧 = ln 𝑟𝑒𝑖𝜃 =  ln 𝑟 + ln 𝑒𝑖𝜃 =  ln  𝑥2 + 𝑦2 + i 𝜃 

=
1

2
 ln 𝑥2 + 𝑦2 +  𝑖 tan−1  

𝑦

𝑥
  

Real part is  
1

2
ln 𝑥2 + 𝑦2 and  the imaginary part is tan−1  

𝑦

𝑥
  

 

6.  𝐸𝑥𝑝𝑟𝑒𝑠𝑠 𝑡𝑕𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑖𝑛𝑡𝑜 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡𝑠.      (𝑖)  5 + 4𝑖           (𝑖𝑖)  𝑖 

(i) Let  5 + 4𝑖    = 𝑎 + 𝑖𝑏 

Squaring on both sides, 5 + 4𝑖 =  𝑎 + 𝑖𝑏 2 = 𝑎2 − 𝑏2 + 𝑖 2𝑎𝑏 

Thus,  𝑎2 − 𝑏2= 5 ;       2𝑎𝑏 = 4   ⟹ 𝑎𝑏 = 2  ⟹ 𝑎 =
2

𝑏
 

∴   
2

𝑏
 

2

− 𝑏2 = 5 ⟹ 𝑏4 + 5𝑏2 − 4 = 0 

𝑏2 =  
−5 ±  52 − 4.1.  −4 

2
=

−5 +  41

2
= 0.702 

∴ 𝑏 =   0.702 = 0.837    𝑎𝑛𝑑    𝑎 =
2

0.837
= 2.389 

Therefore we get  5 + 4𝑖 = 2.389 + 𝑖 0.839 

 

(ii) Let  𝑖    = 𝑎 + 𝑖𝑏 

𝑆𝑞𝑢𝑎𝑟𝑖𝑛𝑔 𝑜𝑛 𝑏𝑜𝑡𝑕 𝑠𝑖𝑑𝑒𝑠, 𝑤𝑒 𝑔𝑒𝑡,   𝑖 =   𝑎 + 𝑖𝑏 2  =  𝑎2 − 𝑏2 + 𝑖 2𝑎𝑏 

𝑇𝑕𝑢𝑠, 𝑎2 − 𝑏2  =  0 ⟹ 𝑎2 = 𝑏2  ;     2𝑎𝑏 =  1   ⟹ 𝑎𝑏 =  
1

2
⟹ 𝑎 =

1

2𝑏
 

∴   
1

2𝑏
 

2

− 𝑏2 = 0 ⟹  
1

2𝑏
 

2

=  𝑏2 
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𝑆𝑞𝑢𝑎𝑟𝑒 𝑟𝑜𝑜𝑡 𝑜𝑛 𝑏𝑜𝑡𝑕 𝑠𝑖𝑑𝑒𝑠 𝑤𝑒 𝑔𝑒𝑡, 

1

2𝑏
 =  𝑏 ⟹ 𝑏2 =

1

2
   𝑇𝑕𝑒𝑛 𝑏 = ±

1

 2
∴ 𝑎 = ±

1

 2
 

𝑖𝑒 . ,  𝑖   =  ±
1

 2
 (𝑖 + 𝑖) 

 

7. Determine the analytic function 𝑓 𝑧 = 𝑢 + 𝑖 𝑣 whose imaginary part is 

𝑣 = 6𝑥𝑦 − 5𝑥 + 3 

Solution:           

 Given   𝑣 = 6𝑥𝑦 − 5𝑥 + 3 

𝜕𝑣

𝜕𝑥
= 6𝑦 − 5;   and    

𝜕𝑣

𝜕𝑦
= 6𝑥 

𝐹𝑜𝑟 𝑢 = 𝑢(𝑥, 𝑦),   𝑤𝑒 𝑕𝑎𝑣𝑒   𝑑𝑢 =  
𝜕𝑢

𝜕𝑥
 𝑑𝑥 +  

𝜕𝑢

𝜕𝑦
 𝑑𝑦 

Using CR equations, we get,   

𝑑𝑢 =  
𝜕𝑣

𝜕𝑦
 𝑑𝑥 − 

𝜕𝑣

𝜕𝑥
 𝑑𝑦 = 6𝑥 𝑑𝑥 −  6𝑦 − 5 𝑑𝑦 

On integrating, we get 

𝑢 =   6𝑥 𝑑𝑥 −   6𝑦 − 5  𝑑𝑦 + 𝐶 

= 6 
𝑥2

2
 − 6

𝑦2

2
+ 5𝑦 + 𝐶 

𝑢 = 3𝑥2 − 3𝑦2 + 5𝑦 + 𝐶 

∴ 𝑓 𝑧 = 𝑢 + 𝑖 𝑣 =  3𝑥2 − 3𝑦2 + 5𝑦 + 𝐶 + 𝑖 (6𝑥𝑦 − 5𝑥 + 3) 

 

8. Show that𝑒𝑥 𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦  is an analytic function, Find its derivative 

Solution:  

𝐿𝑒𝑡 𝑓 𝑧 = 𝑒𝑥 𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦 = 𝑢 + 𝑖𝑣 ⟹ 𝑒𝑥𝑐𝑜𝑠𝑦 = 𝑢; 𝑒𝑥𝑠𝑖𝑛𝑦 = 𝑣 

∴
𝜕𝑢

𝜕𝑥
= 𝑒𝑥𝑐𝑜𝑠𝑦 ;    

𝜕𝑣

𝜕𝑥
= 𝑒𝑥𝑠𝑖𝑛𝑦  𝑎𝑛𝑑 

𝜕𝑢

𝜕𝑦
= −𝑒𝑥𝑠𝑖𝑛𝑦 ;    

𝜕𝑣

𝜕𝑦
= 𝑒𝑥𝑐𝑜𝑠𝑦  
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𝑖𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝐶𝑅 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠  
𝜕𝑢

𝜕𝑥
=  

𝜕𝑣

𝜕𝑦
     𝑎𝑛𝑑    

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

∴ The given function   𝑓 𝑧 = 𝑒𝑥 𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦    is analytic. 

The derivative 

𝑓 ′ 𝑧 =
𝜕𝑢

𝜕𝑥
+  𝑖 

𝜕𝑣

𝜕𝑥
 

= 𝑒𝑥𝑐𝑜𝑠𝑦 + 𝑖 𝑒𝑥𝑠𝑖𝑛𝑦 = 𝑒𝑥 𝑐𝑜𝑠𝑦 + 𝑖𝑠𝑖𝑛𝑦 =  𝑒𝑥𝑒𝑖𝑦 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑧  

9.  Using Cauchy-Riemann condition show that  𝑊 = 𝑠𝑖𝑛𝑧  is analytic  

𝑊 = 𝑠𝑖𝑛𝑧 ⟹ sin 𝑥 + 𝑖𝑦 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑕𝑦 + 𝑖 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦 

𝑖𝑒. , 𝑢 = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑕𝑦 ⟹
𝜕𝑢

𝜕𝑥
= 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑕𝑦  𝑎𝑛𝑑  

𝜕𝑢

𝜕𝑦
= 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑕𝑦 

𝑣 = 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦 ⟹
𝜕𝑣

𝜕𝑦
= 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑕𝑦     𝑎𝑛𝑑   

𝜕𝑣

𝜕𝑥
= −𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑕𝑦 

𝑖𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝐶𝑅 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠  
𝜕𝑢

𝜕𝑥
=  

𝜕𝑣

𝜕𝑦
     𝑎𝑛𝑑    

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 

∴ 𝑊 = 𝑠𝑖𝑛𝑧  𝑖𝑠 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐. 

 

10.  Which of the following are analytic functions of complex variable,𝑧 = 𝑥 + 𝑖𝑦 

(i)  𝑧               (ii) 𝑧−1            (iii)  𝑒𝑠𝑖𝑛𝑧  

Solution:  

 (i)   𝑤𝑒 𝑕𝑎𝑣𝑒  𝑧  =   𝑥 + 𝑖𝑦 =  𝑥2 + 𝑦2 

𝐹𝑜𝑟 𝑓 𝑧 =  𝑧  , 𝑡𝑕𝑒𝑛    𝑧  =  𝑢 + 𝑖𝑣 =  𝑥2 + 𝑦2 

𝑖𝑒. , 𝑢 =  𝑥2 + 𝑦2   𝑎𝑛𝑑 𝑣 = 0 ∴
𝜕𝑣

𝜕𝑥
 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
   𝑑𝑜 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡𝑠. 

And the function 𝑓 𝑧 =  𝑧   is not analytic. 

(ii) 

𝑓 𝑧 =  𝑧−1 =
1

𝑧
=  

1

𝑥 + 𝑖𝑦 
=  

(𝑥 − 𝑖𝑦)

 𝑥 + 𝑖𝑦 (𝑥 − 𝑖𝑦)
  =  

(𝑥 − 𝑖𝑦)

𝑥2 + 𝑦2
=

𝑥

𝑥2 + 𝑦2
−  𝑖

𝑦

𝑥2 + 𝑦2
 

𝑖𝑒 ., 𝑢 =
𝑥

𝑥2 + 𝑦2
  𝑎𝑛𝑑 𝑣 =

𝑦

𝑥2 + 𝑦2
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Taking derivatives we get, 𝑢 = 𝑥  𝑥2 + 𝑦2 −1 

∴  
𝜕𝑢

𝜕𝑥
= 𝑥.  −1  𝑥2 + 𝑦2 −22𝑥 +  (𝑥2 + 𝑦2)−1. 1 

=.
−2𝑥2

 𝑥2 + 𝑦2 2
+  

1

(𝑥2 + 𝑦2)
=

−2𝑥2 + 𝑥2 + 𝑦2

 𝑥2 + 𝑦2 2
=

−𝑥2 + 𝑦2

 𝑥2 + 𝑦2 2
 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝑤𝑒 𝑔𝑒𝑡,   
𝜕𝑢

𝜕𝑦
= −

2𝑥𝑦

 𝑥2 + 𝑦2 2
  ;   

𝜕𝑣

𝜕𝑥
=

2𝑥𝑦

 𝑥2 + 𝑦2 2
 ; 𝑎𝑛𝑑 

𝜕𝑣

𝜕𝑦
=

−𝑥2 + 𝑦2

 𝑥2 + 𝑦2 2
 

CR-equation satisfied, therefore  𝑓 𝑧 =
1

𝑧−1
   is analytic. 

 𝑖𝑖𝑖      𝑓 𝑧 =  𝑒𝑠𝑖𝑛𝑧 ⟹ 𝑒sin  𝑥+𝑖𝑦 = 𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠 𝑖𝑦  +𝑐𝑜𝑠𝑥  sin ⁡(𝑖𝑦) = 𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦+𝑖 𝑐𝑜𝑠𝑥  𝑠𝑖𝑛𝑕𝑦  

        =  𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦𝑒𝑖 𝑐𝑜𝑠𝑥  𝑠𝑖𝑛𝑕𝑦      =   𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦  𝑐𝑜𝑠 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦 + 𝑖 𝑠𝑖𝑛⁡(𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦)  

For 𝑓 𝑧 = 𝑢 + 𝑖 𝑣 =   𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦 cos 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦 + 𝑖  𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦 sin⁡(𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦) 

ie.,𝑢 =   𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦 cos 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦     and  𝑣 =   𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦 sin⁡(𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦) 

Taking derivatives we get 

𝜕𝑢

𝜕𝑥
=  𝑒𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑕𝑦  𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑕𝑦 cos 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦 +  𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑕𝑦 cos⁡(𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦)  

𝜕𝑢

𝜕𝑦
=  𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦  𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑕𝑦 cos 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦 −  𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑕𝑦 sin⁡(𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦)  

𝜕𝑣

𝜕𝑥
= − 𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦  𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑕𝑦 cos 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦 −  𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑕𝑦 sin⁡(𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦)  

𝜕𝑣

𝜕𝑦
=  𝑒𝑠𝑖𝑛𝑥  𝑐𝑜𝑠𝑕𝑦  𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑕𝑦 cos 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦 +  𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑕𝑦 cos⁡(𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑕𝑦)  

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
    𝑎𝑛𝑑   

𝜕𝑣

𝜕𝑥
= −

𝜕𝑢

𝜕𝑦
 

CR equations satisfied and the given function 𝑓 𝑧 =  𝑒𝑠𝑖𝑛  𝑧  is analytic. 

 

11. For a simple closed curve 𝐶, evaluate the following integral with the help of Cauchy 
integral theorem 

 
𝑑𝑧

𝑧𝐶

 

. 
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Solution:  

Given that 𝑓 𝑧 =  
1

𝑧
  is analytic for all values of 𝑧 except for = 0 , and 𝐶 is closed encloses 

the origin. Draw an arc 𝐶1 of radius 𝑟 with origin as Center. 

 
𝑑𝑧

𝑧𝐶

=   
𝑑𝑧

𝑧𝐶1

 

On 𝐶1 we have, 𝑧 =  𝑟 𝑒 𝑖𝜃    so that 𝑑𝑧 = 𝑖 𝑟 𝑒 𝑖𝜃   then 

𝑑𝑧

𝑧
=  

𝑖 𝑟 𝑒 𝑖𝜃

𝑟 𝑒 𝑖𝜃
 =  𝑖𝜃 

∴  
𝑑𝑧

𝑧𝐶1

 =   𝑖𝜃
2𝜋

0

= 2𝜋𝑖      ∴     
𝑑𝑧

𝑧𝐶

=  2𝜋𝑖 

If C does not enclose the origin then 𝑓 𝑧 =  
1

𝑧
   is analytic for all values of 𝑧 

𝑖𝑒. ,  
𝑑𝑧

𝑧𝐶

= 0 

∴   
𝑑𝑧

𝑧𝐶

=  
0,   𝑊𝑕𝑒𝑛 𝐶 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑛𝑐𝑙𝑜𝑠𝑒 𝑡𝑕𝑒 𝑜𝑟𝑖𝑔𝑖𝑛  

2𝜋𝑖,  𝑤𝑕𝑒𝑛 𝐶 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑠 𝑡𝑕𝑒 𝑜𝑟𝑖𝑔𝑖𝑛              
  

 

12. Evaluate the following integrals   

(𝑖)   𝑧 − 1 2
3

1

 𝑑𝑧       (𝑖𝑖)  𝑧 𝑐𝑜𝑠2𝑧
𝜋𝑖

0

 𝑑𝑧 

 
Solution:  

 𝑖   𝑧 − 1 2
3

𝑖

 𝑑𝑧 =   
 𝑧 − 1 3

3
 
𝑖

3

 =  
23

3
− 

 𝑖 − 1 3

3
=

8 −  𝑖3 − 1 − 3𝑖   𝑖 − 1  

3
=  

6 − 2𝑖

3
 

 

(𝑖𝑖) 𝐿𝑒𝑡      𝐼 =   𝑧 𝑐𝑜𝑠2𝑧
𝜋𝑖

0

 𝑑𝑧 

𝑃𝑢𝑡 𝑧2 = 𝑡,    𝑡𝑕𝑒𝑛  2𝑧 𝑑𝑧 = 𝑑𝑡 ;  

 𝑡𝑕𝑒 𝑙𝑖𝑚𝑖𝑡𝑠   𝑤𝑕𝑒𝑛   𝑧 = 0, 𝑡 = 0     𝑎𝑛𝑑     𝑧 = 𝜋𝑖,    𝑡 = (𝜋𝑖)2 = −𝜋2  

 ∴ 𝐼 =   
1

2

−𝜋2

0

cos 𝑡 𝑑𝑡  =  
1

2
 sin 𝑡 0

−𝜋2
 = −

1

2
sin 𝜋2 

 

y 

x 

C 

C1 
r 
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13. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡𝑕𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙   
𝑑𝑧

𝑧2 +  𝑧𝐶

 

𝑤𝑕𝑒𝑟𝑒 𝐶 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑐𝑖𝑟𝑐𝑙𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑅 =   𝑧 > 1 

Solution:      

 The poles of the integrand obtained by putting denominator equal to Zero  

𝑖𝑒. , 𝑧2 +  𝑧 = 0  ; 𝑧(𝑧 + 1) = 0 

𝐼𝑡 𝑔𝑖𝑣𝑒𝑠 𝑡𝑤𝑜 𝑝𝑜𝑙𝑒𝑠, 𝑧 = 0    𝑎𝑛𝑑  𝑧 = −1.   𝑎𝑠  𝑅 =   𝑧 > 1 

 Both poles lie within the contour. On eliminating these poles by drawing circles 𝐶1 and 𝐶2 of 

small radii and making cross-cuts to form simply connected region, we get 

 
𝑑𝑧

𝑧2 +  𝑧𝐶

=   
𝑑𝑧

𝑧2 +  𝑧𝐶1

+  
𝑑𝑧

𝑧2 +  𝑧𝐶2

 

=   
𝑑𝑧 (𝑧 + 1) 

𝑧𝐶1

+  
(𝑑𝑧 𝑧 )

𝑧 + 1𝐶2

 

Using Cauchys  integral formula, we get        

 
𝑑𝑧

𝑧2 +  𝑧𝐶

= 2𝜋𝑖  
1

𝑧 + 1
 
𝑧=0

+ 2𝜋𝑖  
1

𝑧
 
𝑧=−1

= 2𝜋𝑖 − 2𝜋𝑖 = 0 

 

14. Evaluate the integrals     

    (𝑖)   
𝑠𝑖𝑛 𝑧

𝑧2
𝐶

 𝑑𝑧            (𝑖𝑖)  
𝑒𝑎𝑧

(𝑧 − 𝑧0)3 
𝐶

 𝑑𝑧     

where𝐶 represents a circle defined by 𝑅 =   𝑧 > 𝑧0 

 

(i) There is a pole of degree two at 𝑧 = 0, we have  

 
𝑓(𝑧)

(𝑧 − 𝑧0)𝑛+1
𝐶

𝑑𝑧 =  
2𝜋𝑖

𝑛!
𝑓𝑛(𝑧0) 

Given 𝑓(𝑧) = sin 𝑧 , 𝑛 = 1 𝑎𝑛𝑑 𝑧0  = 0 𝑎𝑛𝑑 𝑓′(𝑧) = cos 𝑧  𝑎𝑛𝑑 𝑓′(0) = 1 

∴  
sin 𝑧

𝑧2
𝐶

𝑑𝑧  =   2𝜋𝑖 
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(ii) There is a pole of degree three at 𝑧 = 𝑧0, we have  

 
𝑓(𝑧)

(𝑧 − 𝑧0)𝑛+1
𝐶

𝑑𝑧 =  
2𝜋𝑖

𝑛!
𝑓𝑛(𝑧0) 

Given 𝑓 𝑧 = 𝑒𝑎𝑧 , 𝑛 = 2  

𝑇𝑕𝑒𝑛  𝑓 ′ 𝑧 = 𝑎𝑒𝑎𝑧  𝑎𝑛𝑑 𝑓 ′′  𝑧 = 𝑎2𝑒𝑎𝑧   𝑤𝑕𝑒𝑛 𝑧 → 𝑧0 , 𝑓 ′′  𝑧0 = 𝑎2𝑒𝑎𝑧0  

Substituting these values we get 

 
𝑒𝑎𝑧

(𝑧 − 𝑧0)3
𝐶

𝑑𝑧 =  
2𝜋𝑖

2!
𝑓2 𝑧0 =  𝜋𝑖𝑎2𝑒𝑎𝑧0  

 

15. Let  𝑓(𝑧)  = 𝑢 + 𝑖𝑣  be an analytic function. If 𝑢 =  𝑥3 + 3𝑥2𝑦 − 3𝑥𝑦2 − 𝑦3, find out 𝑣. 

Solution:  

𝑢 =  𝑥3 + 3𝑥2𝑦 − 3𝑥𝑦2 − 𝑦3 

𝜕𝑢

𝜕𝑥
= 3𝑥2 + 6𝑥𝑦 − 3𝑦2;         

𝜕2𝑢

𝜕𝑥2
= 6𝑥 + 6𝑦 

𝜕𝑢

𝜕𝑦
= 3𝑥2 − 6𝑥𝑦 − 3𝑦2;         

𝜕2𝑢

𝜕𝑦2
= −6𝑥 − 6𝑦 

𝜕2𝑢

𝜕𝑥2
+  

𝜕2𝑢

𝜕𝑦2
=  6𝑥 + 6𝑦 − 6𝑥 − 6𝑦 = 0    

therefore𝑢 can be a part of analytic function 𝑓(𝑧)  =  𝑢 +  𝑖𝑣 

𝐹𝑜𝑟 𝑣 =  𝑣(𝑥, 𝑦), 𝑤𝑒 𝑕𝑎𝑣𝑒  𝑑𝑣 =  
𝜕𝑣

𝜕𝑥
 𝑑𝑥 +  

𝜕𝑣

𝜕𝑦
 𝑑𝑦 

The using CR-equation, we get 

𝑑𝑣 =  −
𝜕𝑢

𝜕𝑦
 𝑑𝑥 + 

𝜕𝑢

𝜕𝑥
 𝑑𝑦 =  −(3𝑥2 − 6𝑥𝑦 − 3𝑦2)𝑑𝑥 +  ( 3𝑥2 + 6𝑥𝑦 − 3𝑦2)𝑑𝑦 

𝑣 =    (6𝑥𝑦 + 3 𝑦2 − 3𝑥2)𝑑𝑥 +   ( 3𝑥2 + 6𝑥𝑦 − 3𝑦2)𝑑𝑦 + 𝐶 

where𝐶 is constant of integration 

𝑣 =   3𝑥2𝑦 + 3𝑦2𝑥 − 𝑥3 − 𝑦3 + 𝑐 

Hence the function is  

𝑓 𝑧 = 𝑥3 + 3𝑥2𝑦 − 3𝑥𝑦2 − 𝑦3) + 𝑖 (3𝑥2𝑦 + 3𝑦2𝑥 − 𝑥3 − 𝑦3 + 𝑐)  
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16. 𝐿𝑒𝑡  𝑓(𝑧)  = 𝑢 + 𝑖𝑣  𝑏𝑒 𝑎𝑛 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 𝐼𝑓 𝑣

=  𝑥3 − 3𝑥𝑦2 + 3𝑥2 − 3𝑦2, 𝑓𝑖𝑛𝑑 𝑢. 

Solution: 

𝑣 =  𝑥3 − 3𝑥𝑦2 + 3𝑥2 − 3𝑦2 

𝜕𝑣

𝜕𝑥
= 3𝑥2 − 3𝑦2 + 6𝑥;        

𝜕2𝑢

𝜕𝑥2
= 6𝑥 + 6 

𝜕𝑣

𝜕𝑦
= −6𝑥𝑦 − 6𝑦;        

𝜕2𝑣

𝜕𝑦2
= −6𝑥 − 6 

𝜕2𝑣

𝜕𝑥2
+  

𝜕2𝑣

𝜕𝑦2
=  6𝑥 + 6 − 6𝑥 − 6 = 0    

therefore𝑣 can be a part of analytic function 𝑓(𝑧)  =  𝑢 +  𝑖𝑣 

𝐹𝑜𝑟 𝑢 =  𝑢(𝑥, 𝑦), 𝑤𝑒 𝑕𝑎𝑣𝑒  𝑑𝑢 =  
𝜕𝑢

𝜕𝑥
 𝑑𝑥 +  

𝜕𝑢

𝜕𝑦
 𝑑𝑦 

The using CR-equation, we get 

𝑑𝑢 =  
𝜕𝑣

𝜕𝑦
 𝑑𝑥 − 

𝜕𝑣

𝜕𝑥
 𝑑𝑦 =  (−6𝑥𝑦 − 6𝑦)𝑑𝑥 + ( 3𝑥2 + 6𝑥 − 3𝑦2)𝑑𝑦 

𝑢 =    (−6𝑥𝑦 − 6𝑦)𝑑𝑥 +   ( 3𝑥2 + 6𝑥 − 3𝑦2)𝑑𝑦 + 𝐶 

where𝐶 is constant of integration 

𝑢 =  −3𝑥2𝑦 − 6𝑥𝑦 + 𝑦3 + 𝑐 

Hence the function is  

𝑓 𝑧 =  (𝑦3 − 3𝑥2𝑦 − 6𝑥𝑦 + 𝑐) + 𝑖 (𝑥3 − 3𝑥𝑦2 + 3𝑥2 − 3𝑦2) 
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UNIT V: GROUP THEORY 

Concept of a group-Group multiplication table of order 2, 3, 4 groups- Group symmetry of 

equilateral triangle- Group symmetry of a square-permutation group-conjugate elements- 

representation through similarity transformation-reducible and irreducible representation- 

SU(2) group-SO(2) group. 

5.1 Introduction: 

Group theory is a branch of mathematics which can be applied to any set of elements which 

can be applied to any set of elements which obey the necessary conditions to be called a 

group. The symmetry operation can be considered as elements. 

Group is a set of elements A, B, C, …..and satisfies the following conditions 

(i) Closure property:  The product of any two elements in the group and the square 

of each element must be an element in the group. ie., if 𝐴, 𝐵 ∈ 𝐺;  then𝐴 ∙ 𝐵, 𝐵 ∙

𝐴 ∈ 𝐺; 𝐴2, 𝐵2  ∈ 𝐺 

(ii) The associative law:  Theassociative law of multiplication must hold. ie., if  

𝐴, 𝐵, 𝐶 ∈ 𝐺 ;    then  𝐴 ∙ 𝐵 ∙ 𝐶 = 𝐴 ∙ (𝐵 ∙ 𝐶) 

(iii) Existence of Identity: One element in the group must commute with all others 

and leave them unchanged. This element is unit element or identity element 𝐸.    

ie., 𝐴, 𝐸 ∈ 𝐺    Then 𝐴 ∙ 𝐸 = 𝐸 ∙ 𝐴 = 𝐴 

(iv) Existence of Identity:   Every element must have a reciprocal, which is also an 

element of the group.𝐴−1 = 𝐵 ∈ 𝐺then 𝐴 ∙ 𝐴−1 = 𝐴−1 ∙ 𝐴 = 𝐸 

5.2 Finite group:   

The finite group contains a finite number of group elements. The number of elements in a 

group is called its order and is represented as 𝑕. A set of covering operations of a 

symmetrical object is an example of a finite group. Covering operation means a rotation, 

reflection or inversion which would bring the object into a form indistinguishable from the 

original one. 

 

 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

100 
 

5.3 Abelian group:   

If the multiplication of two elements in a group is commutative then the group is abelian. 

ie., 𝐴𝐵 = 𝐵𝐴 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 𝑎𝑛𝑑 𝐵 𝑖𝑛 𝑡𝑕𝑒 𝑔𝑟𝑜𝑢𝑝. Abelian group of infinite order is set of all 

positive and negative integers including Zero.Ordinary addition serves as the group 

multiplication operation. Zero serves as the unit element and – 𝑛 is the inverse of 𝑛. The set 

is closed and the associated law is obeyed. 

 

5.4 Non-Obelian group:   

Finite order of this group is the set of all 𝑛 × 𝑛 matrices with non vanishing determinants. 

Group multiplication operation is the matrix multiplication. Unit element is  𝑛 × 𝑛  unit 

matrix. The inverse matrix of each matrix element is inverse element. 

5.5 Cyclic group:   

If A is an element of a group G all integral powers of A such as A2, A3, … must also be in G. If 

G is a finite group Ah = E where h is the order of the group G. In general the cyclic group of 

order h is defined as an element A and all of its powers up to Ah = E. All cyclic groups must 

be abelian. Example of standard triangle, the sequence period of D is  D, D2 = F, D3 = DF = E. 

Therefore order of D=3, and D, F, E form a cyclic subgroup of our entire group of order 6. Ie., 

all the elements of a group can be generated from one group. 

5.6 Group Multiplication Table:   

Multiplication Table consists of 𝑕 rows and 

𝑕columns. Each column is labeled with a 

group element and so in row. Each entry is the 

product of the element labeling the row 

times the element labeling the column 

ie𝐴𝐵 = 𝐷 ≠ 𝐵𝐴 Example with 6 elements 

  

 

 

 E A B C D F 

E E A B C D F 

A A E D F B C 

B B F E D C A 

C C D F E A B 

D D C A B F E 

F F B C A E D 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 

101 
 

If we take the elements to be the following 6 matrices and if ordinary multiplication is used 

as the group multiplication operation 

𝐸 =   
1 0
0 1

              𝐵 =  
−1 2  3 2 

 3 2 1 2 
                   𝐷 =  

−1 2  3 2 

− 3 2 −1 2 
  

𝐴 =   
1    0
0 −1

           𝐶 =  
−1 2 − 3 2 

− 3 2        1 2 
            𝐹 =  

−1 2 − 3 2 

 3 2 −1 2 
  

 The same multiplication table can be 

obtained by group symmetry of equilateral 

triangle.The symmetry operations of an equilateral 

triangle with corresponding symbols are as follow. 

The elements A, B and C are getting by rotation of an 

angle 𝜋 or reflection about the axes shown. D is 

obtained by a clockwise rotation of 
2𝜋

3
𝑜𝑟 120° angle 

in the plane of the triangle and F is attained by a counter clockwise rotation through an 

angle of  
2𝜋

3
 𝑜𝑟 120° . The product AB means the operations obtained by performing B first 

and then A. 

 

 

 

 

 

 

 

 

   

C 

C 

1 2 

3 

3 

1 

2 

  

3 

2 1 1 

2 

3 

Clockwise  

Rotation1200  

D 

  

Anticlockwise 

Rotation1200  

F 

3 

2 1 

1 

3 2 

1 2 

3 

A 

3 

1 2 

A 

3 

2 1 1 

2 

3 

B 
B Reflection Reflection 

Reflection 

1 

3 

2 

A 

C B 

F D 
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Groups of order 1:  The group contains only the identity element E. 

Groups of order 2: The group consists the elements A, A2 = E. This is is an obelian group. 

A might represent reflection , inversion or interchange of two identical particles.  

 

 

 

Groups of order 3: The elements are A,B,  andE. Here A2  = B ≠ 𝐸 

 

 

 

 

A,  A2 = B,  A3 = A A2 = AB = E forms a cyclic group. 

Groups of order 4:  Two possibilities of group multiplication.  

(i) the cyclic group → four fold rotation about an axis. A, A2, A3, A4 = E. 

(ii) Vierergruppe(A,B,C,E) → rotational symmetry group of a rectangular solid if A, B, 

C are taken to be rotation by 𝜋 angle about the 3 orthogonal axes. 

 

 

 

 

 

Both are abelian groups we can get subgroups of order 2. 

 

 E A 

E E A 

A A E 

 E A B 

E E A B 

A A B E 

B B E A 

1 

C 
A 

A 

B 

B 

C 

1 

2 3 

4 

A 

B 

C 

3 

4 

1 4 

3 2 

2 

4 

3 

1 

2 
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The group multiplication table for four elements is  

 

 

 

 

 

5.7 Groups of prime order: 

These are cyclic abelian groups. The period of some element would have to appear as a 

subgroup whose order was a divisor of a prime number. There can be only single group of 

order 1, 2, 3, 5, 7, 11, 13, etc. 

5.8 Group Symmetry of a square:  

Consider a square ABCD with M, N, O, P as mid points of sides as shown in the figure. The 

covering operations of a square form D4 containing eight elements. They are  𝐸, 𝐶4, 𝐶4
2,

  𝐶43,  𝑚𝑥, 𝑚𝑦, 𝜍𝑥, 𝜍𝑦. The transformations are given below. 

 

 

 

 

1. E→their no Transformation  

2. 𝐶4 → anti-clockwise rotation through 
𝜋

2
 radian or 90o angle about anaxis normal to 

the square 

 

 

 

 

 E A B C 

E E A B C 

A A E C B 

B B C E A 

C C B A E 

1 2 

3 4 

6 

8 

7 5 

  Anticlockwise rotation through 
𝜋

2
radian about an 

axis normal to the square 

 
C4 

1 6 2 

4 
8 3 

5 7 

2 7 3 

1 
5 4 

6 8 
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3. 𝐶4
2 → anti-clockwise rotation through 𝜋 radian or 180o angle about anaxis normal to 

the square 

 

 

 

4. 𝐶4
3 → anti-clockwise rotation through 

3𝜋

2
 radian or 180o angle about anaxis normal to 

the square 

 

 

 

 

 

5. 𝑚𝑥 → reflection about the line 5-7 

 

 

 

 

6. 𝑚𝑦 → reflection about the line 6-8 

 

 

 

 

 

 

  Anticlockwise rotation through 𝜋 radian 

about an axis normal to the square 

 
𝐶4

2 

1 6 2 

5 7 

4 8 3 

3 8 4 

2 
6 1 

7 5 

  Anticlockwise rotation through
3𝜋 

2
radian 

about an axis normal to the square 

 
𝐶4

3 

1 6 2 

5 7 

4 3 
8 

4 5 1 

3 
7 2 

8 6 

  

Reflection about the line 5-7 

 
𝑚𝑥  

1 6 

5 

2 

7 

8 3 4 

4 8 3 

1 6 2 

5 7 

 

 

 

Reflection about the line 6-8 

 
𝑚𝑦  

1 6 

3 4 8 

7 

2 

5 

2 6 

4 3 8 

5 

1 

7 
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7. 𝜍𝑢 → reflection about the line 1-3 

 

 

 

 

8. 𝜍𝑣 → reflection about the line 2-4 

 

 

 

 

The combination of any two operations is equivalent to one of these operations. The group 

multiplication table is as  follows 

 

 E 𝐶4 𝐶4
2 𝐶4

3  𝑚𝑥  𝑚𝑦  𝜍𝑢  𝜍𝑣  

E E 𝐶4 𝐶4
2 𝐶4

3  𝑚𝑥  𝑚𝑦  𝜍𝑢  𝜍𝑣  

𝐶4 𝐶4 𝐶4
2 𝐶4

3 E 𝜍𝑢  𝜍𝑣  𝑚𝑦  𝑚𝑥  

𝐶4
2 𝐶4

2 𝐶4
3 E 𝐶4 𝑚𝑦  𝑚𝑥  𝜍𝑣  𝜍𝑢  

𝐶4
3 𝐶4

3 E 𝐶4 𝐶4
2  𝜍𝑣  𝜍𝑢  𝑚𝑥  𝑚𝑦  

𝑚𝑥  𝑚𝑥  𝜍𝑣  𝑚𝑦  𝜍𝑢  E 𝐶4
2 𝐶4

3 𝐶4 

𝑚𝑦  𝑚𝑦  𝜍𝑢  𝑚𝑥  𝜍𝑣  𝐶4
2 E 𝐶4 𝐶4

3 

𝜍𝑢  𝜍𝑢  𝑚𝑥  𝜍𝑣  𝑚𝑦  𝐶4 𝐶4
3 E 𝐶4

2 

𝜍𝑣  𝜍𝑣  𝑚𝑦  𝜍𝑢  𝑚𝑥  𝐶4
3 𝐶4 𝐶4

2 E 

 

 

 

 

 

 

Reflection about the line 1-3 

 
𝜍𝑢  

1 6 

3 4 
8 

7 

2 

5 

1 5 

3 2 
7 

8 

4 

6 

 

 

 

Reflection about the line 2-4 

 
𝜍𝑣  

1 6 

3 4 
8 

7 

2 

5 

3 7 

1 4 5 

6 

2 

8 
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5.9 Permutation groups: (of factorial order)   

The permutation of a set is defined as one-to-one mapping of a finite set onto itself. if 

𝛼1,𝛼2,……..𝛼𝑛be an arrangement of the set of integers 1, 2,……n, then A permutation can be 

specified by a symbol of one-to-one mapping of the finite set {1,2,3,…,n} onto itself such as  

𝑝 =   
1 2 3
𝛼1 𝛼2 𝛼3

⋯ ⋯ ⋯ 𝑛
⋯ ⋯ ⋯ 𝛼𝑛

  

In the above symbol, the order of a column is normally immaterial so long the 

corresponding elements above and below in the column remain the same. ie., 
𝑎 𝑏 𝑐
𝑏 𝑐 𝑎

 ,

 
𝑏 𝑐 𝑎
𝑐 𝑎 𝑏

   and   
𝑐 𝑎 𝑏
𝑎 𝑏 𝑐

   represent the same permutation 

The number of elements of a finite set is the degree of the permutation. The permutation 𝑝 

of the set 𝑆 =  {1,2,3, … , 𝑛} means that by mapping 𝑝, the (𝛼1,𝛼2,……..𝛼𝑛)are the images of 

(1,2,3, … … 𝑛) and may be expressed as   

𝑝 1 = 𝛼1,    𝑝 2 = 𝛼2,    𝑝 3 = 𝛼3,……………, 𝑝 𝑛 = 𝛼𝑛  

Example: 

If S is not too large, it is feasible to describe a permutation by listing the elements 𝑥 ∈  𝑆  

and the corresponding values 𝑝(𝑥).  

For example, if 𝑆 =  {1,2,3,4,5}, then  
1 2 3 4 5
3 5 4 1 2

   is the permutation such that 

𝑝 1 =  3,   𝑝 2 =  5,   𝑝 3 =  4,   𝑝 4 =  1,   𝑝 5 = 2. 

If we start with any element 𝑥 ∈  𝑆 and apply 𝑝 repeatedly to obtain 𝑝 𝑥 ,   𝑝 𝑝 𝑥  ,

𝑝(𝑝(𝑝(𝑥))), and so on, eventually we must return to 𝑥, and there are no repetitions along 

the way because 𝑝 is one-to-one.  

For the above example, we obtain  1 →  3 →  4 →  1,          2 →  5 →  2 

We express this result by writing       𝑝 =  (1, 3, 4)(2, 5)  

where the cycle (1, 3, 4) is the permutation of S that maps 1 to 3, 3 to 4 and 4 to 1, leaving 

the remaining elements 2 and 5 fixed. Similarly, (2, 5) maps 2 to 5, 5 to 2, 1 to 1, 3 to 3 and 4 

to 4. The product of (1, 3, 4) and (2, 5) is interpreted as a composition,with the right factor 
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(2, 5) applied first, as with composition of functions.In this case, the cycles are disjoint, so it 

makes no difference which mapping is applied first. The above analysis illustrates the fact 

that any permutation can be expressed as a product of disjoint cycles, and the cycle 

decomposition is unique. 

If the set contains 𝑛elements , the set of permutations 𝑝 will have 𝑛! elements, for 𝑛 distinct 

objects can be arranged or permuted in 𝑛! ways. If 𝑛 = 3, the number of permutations are 

3! or 6. 

The permutation in which the item in position ‘i’ is shifted to the position indicated in the 

lower line. Successive permutation forms the group multiplication operation. If by 

permutation, there is no change in the elements, the permutation is known as identity 

permutation 𝐸. On combining any two permutations by multiplication we get another 

permutation  

𝐸 =  
1 2 3
1 2 3

    𝐴 =  
1 2 3
2 1 3

    𝐵 =  
1 2 3
1 3 2

  

𝐶 =  
1 2 3
3 2 1

 𝐷 =  
1 2 3
3 1 2

    𝐹 =  
1 2 3
2 3 1

  

   𝐴𝐵 =  
1 2 3
2 1 3

  
1 2 3
1 3 2

 =  
1 2 3
2 1 3

  
2 1 3
3 1 2

  =  
1 2 3
3 1 2

 =  𝐷 

To obtain𝐴𝐵, rearrange the order of column in B such that the first row of B becomes (2 1 3) 

identical with the second row of A (2 1 3)  to get there by cancelled. 

𝐴𝐶 =  
1 2 3
2 1 3

  
1 2 3
3 2 1

 =  
1 2 3
2 1 3

  
2 1 3
2 3 1

  =  
1 2 3
2 3 1

 =  𝐹 

𝐴2 = 𝐴𝐴 =  
1 2 3
2 1 3

  
1 2 3
2 1 3

 =  
1 2 3
2 1 3

  
2 1 3
1 2 3

  =  
1 2 3
1 2 3

 =  𝐸 

Permutation multiplication is not commutative. But the Permutation multiplication is 

associative. 

5.10 Conjugate element:   

An element B is conjugate to A if   𝐵 =  𝑋 𝐴 𝑋−1 or 𝐴 =  𝑋 𝐵 𝑋−1 where X is some member 

of the group. If B and C conjugate to A, then they are conjugate to each other. 
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Proof:       Let 𝐵 =  𝑋 𝐴 𝑋−1, and   𝐶 =  𝑌 𝐴 𝑌−1 

From C we get, 𝐴 =  𝑌−1 𝐶 𝑌,  substitute this  in B,   we get      𝐵 =  𝑋 𝑌−1 𝐶 𝑌 𝑋−1;                      

 𝐵 =  𝑋 𝑌−1 𝐶  𝑋 𝑌−1 −1   ie  𝐵 =  𝑍 𝐶 𝑍−1 ∴ B and C conjugate  

5.11 Representation of a group:   

 Let 𝐺 =  𝐸, 𝐴, 𝐵, ⋯ ⋯   be a finite group of order g with E as the identity element. And let 

𝑇 =  𝑇(𝐸), 𝑇(𝐴), 𝑇(𝐵), ⋯ ⋯   be a collection of nonsingular square matrices all of them 

are having the same order with the property 𝑇 𝐴 𝑇 𝐵 = 𝑇(𝐴𝐵)ie., if 𝐴𝐵 = 𝐶, in the group 

G, then 𝑇 𝐴 𝑇 𝐵 = 𝑇(𝐶). The collection T of matrices is said to be a representation of the 

group G. The order of the matrices of T is called the dimension of the representation. 

If the matrices of the set T are all distinct there will be one-to-one correspondence between 

the elements of the group G and the set T ie., the two groups G and T are isomorphic to 

each other and such a representation is true. 

If the matrices of the set T are not all distinct then the groups G and T are homomorphic or 

isomorphic to each other and such a representation is an unfaithful representation of G. 

The 2 × 2 matrices represented for elements E, A, B, C, D, F of group of order 6 is a faithful 

matrix representation. Another representation of the same group can be obtained by taking 

the determinant of each matrix   𝑇(𝐴) ∙  𝑇 𝐵  =   𝑇(𝐴𝐵)  . This operation reduces the 

matrix to ordinary numbers ±1. Thus this representation consists of only two distinct 

matrices for six group elements and hence is unfaithful representation. 𝑇(𝐸) ∙  𝑇 𝐴  =

  𝑇 𝐴  ∙  𝑇 𝐸  =  𝑇 𝐴  Such that  𝑇 𝐴  ≠ 0.   This matrix equation is satisfied only if 

𝑇 𝐸 = 𝐸, the unit matrix. Thus in any representation the identity element of the group 

must be represented by the unit matrix of appropriate order. 

Similarity transformations leave the multiplication properties of matrices unchanged. 

ie if we define 𝑇 ′ 𝐴 = 𝑆−1𝑇 𝐴 𝑆 

𝑇′ 𝐴 𝑇 ′ 𝐵 =  𝑆−1𝑇 𝐴 𝑆 𝑆−1𝑇 𝐵 𝑆 =  𝑆−1𝑇 𝐴 𝑇 𝐵 𝑆 =  𝑆−1𝑇 𝐴𝐵 𝑆 =  𝑇′ 𝐴𝐵  

And the transformed matrices 𝑇 ′  provide the new representation of the same group. The 

original representation and various representations obtained by similarity transformations 
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choosing  various matrices S differ only in that they are stated with respect to different 

frames and hence all such representation are said to be equivalent. 

5.12 Reducible and irreducible representation:  

A group of finite order may have two or more representations.From these two 

representations a single new representation may be formed ie., by combining the two 

matrices into one larger matrix. 

From a representation  𝑇1 𝐸 , 𝑇1 𝐴 , ⋯   and a second representation  𝑇2 𝐸 , 𝑇2 𝐴 , ⋯   

we can obtain a new representation consisting of larger matrices,  

𝑇 𝐸 =   
T1(E) 0

0 T2(E)
   ,        𝑇 𝐴 =   

T1(A) 0

0 T2(A)
 , ⋯ ⋯ ⋯ ⋯ 

The matrix representation of the above form is said to be reducible ie., reducible 

representation can be expressed in terms of two or more representations. 

The representation which cannot be expressed in terms other two or more representations 

is said to be irreducible. The irreducible representations of a group cannot be further 

reduced. 

It is customary to indicate the structure of reducible representation by block form, the 

blocks representing the irreducible representations. 

𝑇1(A),   𝑇2(A) further reduced , this process can be carried on until we can find no unitary 

transformation which reduces all the matrices of a representation further. Thus the final 

form with all the matrices of 𝑇 having the same reduced structure 

𝑇 A    =    

 
 
 
 
 
𝑇1(A)

𝑇2(A)

⋱
⋱

𝑇𝑠(A) 
 
 
 
 

 

where 𝑇1(A), 𝑇2(A), ⋯ ⋯ 𝑇𝑠(A) are called the irreducible representations. This cannot be 

further reduced. 
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5.13 Special Unitary Group: 

A matrix 𝐴 of order 𝑚 × 𝑛  is said to be unitary when it satisfies the relations  𝐴 𝐴† = 𝐼𝑚    

and   𝐴†𝐴 = 𝐼𝑛  where 𝐼𝑚  and 𝐼𝑛  are unit matrices of order 𝑚 × 𝑚  and 𝑛 × 𝑛 respectively, 

𝐴†  is transpose conjugate of 𝐴. A set of square unitary matrices of order  𝑛 × 𝑛 forms a 

group, denoted by 𝑈(𝑛), under matrix multiplication. It is known as a unitary group. A 

subgroup  

𝑆𝑈(𝑛) , of  𝑈(𝑛), is a set of special unitary matrices with determinant +1. 

 

5.13.1 𝑆𝑈(2) Group:  

The 𝑆𝑈(2) Group is a group of 2 × 2 special unitary matrices under matrix multiplication 

with determinant +1.  

Let 𝑢 be a unitary matrix of order 2 × 2 , ie., 𝑢 = 
𝑎 𝑏
𝑐 𝑑

     Then   𝑢†  =  
𝑎∗ 𝑐∗

𝑏∗ 𝑑∗  

∴   𝑢𝑢†  =  
𝑎 𝑏
𝑐 𝑑

  
𝑎∗ 𝑐∗

𝑏∗ 𝑑∗ =  
𝑎𝑎∗ + 𝑏𝑏∗ 𝑎𝑐∗ + 𝑏𝑑∗

𝑐𝑎∗ + 𝑑𝑏∗ 𝑐𝑐∗ + 𝑑𝑑∗   =   
1 0
0 1

   = I 

𝑎𝑎∗ + 𝑏𝑏∗=  1                            (5.1)                 

 𝑐𝑐∗ + 𝑑𝑑∗=  1                              (5.2) 

 𝑎𝑐∗ + 𝑏𝑑∗ =   0                            (5.3) 

 𝑐𝑎∗ + 𝑑𝑏∗ =   0                            (5.4) 

As 𝑢 belongs to 𝑆𝑈(2), the determinant of 𝑢 must be equal to 5.1.  

 𝑢  =  
𝑎 𝑏
𝑐 𝑑

 = 𝑎𝑑 − 𝑏𝑐 = 1                            (5.5) 

From equation 4, we get  𝑑 =  −
𝑎∗

𝑏∗
 𝑐                        (5.6) 

Substitute (6) in (5) we get 𝑎(−
𝑎∗

𝑏∗  𝑐) − 𝑏𝑐 = 1 

− 𝑎𝑎∗
𝑐

𝑏∗
− 𝑏𝑐 = 1 

− 𝑎𝑎∗ + 𝑏𝑏∗ 
𝑐

𝑏∗ = 1                                                         (5.7) 

Put (5.1) in (5.7) we get                            𝑐 = − 𝑏∗         (5.8) 
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(5.8) in (5.6) we get                                  𝑑 =  𝑎∗              (5.9) 

Then the unitary matrix  𝑢 with   𝑢 = 1can be written as   𝑢 = 
𝑎 𝑏

−𝑏∗ 𝑎∗  

 𝑢 = 𝑎𝑎∗ + 𝑏𝑏∗ = 1 .  𝑆𝑈(2)group may have the elements  

𝑢1 = 
0 𝑖
𝑖 0

 ,      𝑢2 = 
0 −1
1 0

 ,       𝑢3 = 
𝑖 0
0 −𝑖

 ,       𝑢4 = 
1 0
0 1

  

These elements form a group under matrix multiplication. 

Problem:    

  Show that in general 𝑆𝑈 2  is not an abelian group. 

Solution:   

 Let two elements of 𝑆𝑈 2   group are    𝑢1 = 
𝑎 𝑏

−𝑏∗ 𝑎∗     and   𝑢2 = 
𝑐 𝑑

−𝑑∗ 𝑐∗  

𝑢1𝑢2 = 
𝑎 𝑏

−𝑏∗ 𝑎∗  
𝑐 𝑑

−𝑑∗ 𝑐∗  =  
𝑎𝑐 − 𝑏𝑑∗ 𝑎𝑑 + 𝑏𝑐∗

−𝑏∗𝑐 − 𝑎∗𝑑∗ −𝑏∗𝑑 + 𝑎∗𝑐∗  

𝑢2𝑢1 =   
𝑐 𝑑

−𝑑∗ 𝑐∗  
𝑎 𝑏

−𝑏∗ 𝑎∗  =  
𝑎𝑐 − 𝑏∗𝑑 𝑏𝑐 + 𝑑𝑎∗

−𝑎𝑑∗ − 𝑏∗𝑐∗ −𝑏𝑑∗ + 𝑎∗𝑐∗  

𝑢1𝑢2 ≠ 𝑢2𝑢1 Hence in general 𝑆𝑈 2  is not an abelian group. 

5.14 Special Orthogonal Group:  

A matrix 𝐴 of order 𝑚 × 𝑛  is said to be orthogonal when it satisfies the relations  𝐴 𝐴𝑇 = 𝐼𝑚    

and   𝐴𝑇𝐴 = 𝐼𝑛  where 𝐼𝑚  and 𝐼𝑛  are unit matrices of order 𝑚 × 𝑚  and 𝑛 × 𝑛 respectively, 

𝐴𝑇  is transpose of 𝐴. A set of square orthogonal matrices of order  𝑛 × 𝑛 forms a group, 

denoted by 𝑂(𝑛), under matrix multiplication. It is known as an orthogonal group. A 

subgroup (𝑛) , of  𝑂(𝑛), is a set of special orthogonal matrices with determinant +1. 

5.14.1 𝑆𝑂(2) Group:  

The 𝑆𝑂(2) Group is a group of 2 × 2 special orthogonal matrices under matrix 

multiplication with determinant +1.  
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Let 𝑢 be a Orthogonal matrix of order 2 × 2 , ie., 𝑢 = 
𝑎 𝑏
𝑐 𝑑

     Then   𝑢𝑇  =  
𝑎 𝑐
𝑏 𝑑

  

∴   𝑢𝑢𝑇  =  
𝑎 𝑏
𝑐 𝑑

  
𝑎 𝑐
𝑏 𝑑

  =  
𝑎𝑎 + 𝑏𝑏 𝑎𝑐 + 𝑏𝑑
𝑐𝑎 + 𝑑𝑏 𝑐𝑐 + 𝑑𝑑

   =   
1 0
0 1

   = I 

𝑎𝑎 + 𝑏𝑏=  1                                      (5.10)                 

 𝑐𝑐 + 𝑑𝑑=  1                                      (5.11) 

 𝑎𝑐 + 𝑏𝑑 =   0                                    (5.12) 

 𝑐𝑎 + 𝑑𝑏 =   0                                     (5.13) 

As 𝑢 belongs to 𝑆𝑂(2), the determinant of 𝑢 must be equal to 1.  

 𝑢  =  
𝑎 𝑏
𝑐 𝑑

 = 𝑎𝑑 − 𝑏𝑐 = 1                            (5.14) 

From equation 4, we get  𝑑 =  −
𝑎

𝑏
 𝑐                          (5.15) 

Substitute (6) in (5) we get 𝑎(−
𝑎

𝑏
 𝑐) − 𝑏𝑐 = 1 

− 𝑎𝑎∗
𝑐

𝑏∗
− 𝑏𝑐 = 1 

− 𝑎𝑎 + 𝑏𝑏 
𝑐

𝑏
= 1                                                               (5.16) 

Put (5.10) in (5.16) we get                            𝑐 = − 𝑏        (5.17) 

(5.17) in (5.15) we get                                  𝑑 =  𝑎            (5.18) 

Then the unitary matrix  𝑢  with   𝑢 = 1 can be written as   

𝑢 = 
𝑎 𝑏

−𝑏 𝑎
                   with   𝑢 = 𝑎𝑎 + 𝑏𝑏 = 1 .   

When elements of 𝑆𝑈(2) matrices are real, 𝑆𝑂(2) and 𝑆𝑈(2) are the same. 

Example:  

Anticlockwise rotation about an axis (z-axis) is an example for 𝑆𝑂(2) group. 

 
𝑥′
𝑦′

 =   
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

  
𝑥
𝑦  
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The angle 𝜃 is independent parameter and can assume various values and  

𝑅 𝜃 =   
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

 form a group under matrix multiplication. And    𝑅(𝜃) = 1 

The Identity element (unit Matrix) is obtained when 𝜃 = 0.   

𝑅 𝜃1 𝑅 𝜃2  = 𝑅 𝜃1 + 𝜃2  it is the closure property of group  

 
cos 𝜃1 − sin 𝜃1

sin 𝜃1 cos 𝜃1
  

cos 𝜃2 − sin 𝜃2

sin 𝜃2 cos 𝜃2
 =  

cos(𝜃1 + 𝜃2) −sin(𝜃1 + 𝜃2)
sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)

  

The inverse of 𝑅 𝜃  is 𝑅 −𝜃  =  
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

  

𝑅 𝜃1 𝑅 𝜃2  = 𝑅 𝜃2 𝑅 𝜃1 ie., the group is abelian. 

 𝑅 𝜃1 𝑅 𝜃2  𝑅 𝜃3  = 𝑅 𝜃1  𝑅 𝜃2 𝑅 𝜃3  ie., associative law exists. 

Problem:      

Show that 𝑆𝑂 2  is always an abelian group. 

Solution:    

Let two elements of 𝑆𝑈 2  group are 

𝑢1 = 
cos 𝜃1 sin 𝜃1

− sin 𝜃1 cos 𝜃1
 &𝑢2 = 

cos 𝜃2 sin 𝜃2

− sin 𝜃2 cos 𝜃2
  

𝑢1𝑢2 = 
cos 𝜃1 sin 𝜃1

− sin 𝜃1 cos 𝜃1
  

cos 𝜃2 sin 𝜃2

− sin 𝜃2 cos 𝜃2
 =  

cos(𝜃1 + 𝜃2) sin(𝜃1 + 𝜃2)
−sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)

  

𝑢2𝑢1 =  
cos 𝜃2 sin 𝜃2

− sin 𝜃2 cos 𝜃2
  

cos 𝜃1 sin 𝜃1

− sin 𝜃1 cos 𝜃1
 =  

cos(𝜃1 + 𝜃2) sin(𝜃1 + 𝜃2)
−sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)

  

𝑢1𝑢2 = 𝑢2𝑢1  Hence  𝑆𝑂 2  is always an abelian group. 
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