M.SC. PHYSICS - | YEAR

DKP11 : CLASSICAL AND STATISTICAL MECHANICS
SYLLABUS

Unit 1: Lagrangian and Hamiltonian formulations

Hamilton’s principle - Derivation of Lagrange’s equations from Hamilton’s principle -
Principle of Least Action and its applications, Canonical Transformation : The Hamiltonian
Formalism, Canonical formalism, Hamiltonian equations of motion, Cyclic coordinates,
Rauthian procedure and equations, Derivation of Generating functions, examples, properties,

Derivation of Hamiltonian equations from variational principle.

Unit 2: Poisson bracket and theory of small oscillations

Poisson bracket, Special cases of Poisson bracket , Poisson theorem, Poisson bracket and
canonical transformation, Jacobi identity and its derivation, Lagrange bracket and its
properties, the relationship between Poisson and Lagrange brackets and its derivation, the
angular momenta and Poisson bracket, Liouville’s theorem and its applications; Theory of
small oscillations:

Formulation of the problem, Eigenvalue equation and the principle axis transformation,
frequencies of free vibration and normal coordinates, free vibrations of a linear triatomic

molecule

Unit 3: Two - body central force problem and H - J theory

Two body central force problem: Reduction to the equivalent one body problem, the equation
of motion and first integrals, classification of orbits, the virial theorem, the differential
equation for the orbit, integral power law in time in the Kelper’s problem ,scattering in
central force field;

H-J Theory: H-J equation and their solutions, use of H-J method for the solution of harmonic
oscillator problem, Hamilton’s principle function, Hamilton’s characteristic function and
their properties, Action angle variable for completely separable systems, the Kelper’s

problem in action angle variables

Unit 4: Classical Statistical Mechanics

Foundation of Statistical Mechanics: The macroscopic and microscopic states, postulate of
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equal a priori probability, Contact between statistics and thermodynamics; Ensemble theory:
Concept of ensemble, phase space, Density function, Ensemble average, Liouville’s
theorem, Stationary ensemble; The microcanonical ensemble, Application to the classical
ideal gas; The canonical and grand canonical ensembles, Canonical and grand canonical
partition functions, Calculation of statistical quantities; Thermodynamics of a system of non-
interacting classical harmonic oscillators using canonical ensemble, and of classical ideal gas
using grand canonical ensemble, Energy and density fluctuations; Entropy of mixing and the

Gibb’s paradox, Sackur-Tetrode equation .

Unit 5: Quantum Statistical Mechanics

Quantum-mechanical ensemble theory: Density matrix, Equation of motion for density
matrix, Quantum- mechanical ensemble average; Statistics of indistinguishable particles,
Two types of quantum statistics- Fermi-Dirac and Bose-Einstein statistics, Fermi-Dirac and
Bose-Einstein distribution functions using microcanonical and grand canonical ensembles
(ideal gas only), Statistics of occupation numbers; Ideal Bose gas: Internal energy, Equation
state, Bose-Einstein Condensation and its critical conditions; Bose-Einstein condensation in
ultra-cold atomic gases: its detection and thermodynamic properties: Ideal Fermi gas:

Internal energy, Equation of state, Completely degenerate Fermi gas.
Books for Study and Reference

1.Classical Mechanics (3" ed.,2002) by H. Goldstein, C.Poole and J. Safko, Pearson Edition
2. Classical Mechanics - J. C. Upadhyaya- Second Edition-2005-Himalaya Publishing House
3.Classical Mechanics - G. Aruldhas-2008-PHI Learning Pvt.Ltd.

4.Classical Mechanics-A Text Book-Suresh Chandra-Narosa Publications

5.Statistical Mechanics by R. K. Pathira (2" edition)

6.Statistical Mechanics by R.K. Pathira and P.D. Beale (3" edition)

7.Statistical Mechanics by K.Huang

8.Statistical Mechanics by L.D.Landau and I.M.Lifshitz
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UNIT 1: LAGRANGIAN AND HAMILTONIAN FORMULATIONS

Hamilton’s principle - Derivation of Lagrange’s equations from Hamilton’s principle -
Principle of Least Action and its applications, Canonical Transformation : The Hamiltonian
Formalism, Canonical formalism, Hamiltonian equations of motion, Cyclic coordinates,
Rauthian  procedure and equations, Derivation of Generating functions, examples,

properties, Derivation of Hamiltonian equations from variational principle.

LAGRANGIAN AND HAMILTONIAN FORMULATIONS
Hamilton’s principle - Derivation of Lagrange’s equations from Hamilton’s principle -
Principle of Least Action and its applications, Canonical Transformation : The Hamiltonian
Formalism, Canonical formalism, Hamiltonian equations of motion, Cyclic coordinates,
Rauthian procedure and equations, Derivation of Generating functions, examples, properties,
Derivation of Hamiltonian equations from variational principle.
1.1 HAMILTON’S PRINCIPLE:
The motion of the system from time t; to time t; is such that the line integral
ty
1= [Ldt
t
Where L =T -V, is an extremum for the path of motion
ty
(or) 81=5 [Ldt=0
t
d is the variation symbol.

Deduction of Lagrange’s equations:

Consider a conservative system of particles. The integral can be written as
t;
I[‘r(qj,qj)—v(qj)]dt.
4

According to Hamilton’s variational principle, we have

5T|:T(qj,qj)_v(qj) dt=0

4

K oT oT oV
jjK@qj ’+8q'j "I o

Y i

t t
¢ or oV t_OT
5 P sy, dt+ [, dt=0
{ j(ﬁqi an J { rog;
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@ (T ov ©_ 0T d
2 %Y xd Z " (& )dt=0
g[@qj aqj]m‘ t+£Z q, )t

Integrating by parts the second term, we get

oT d

————— |, dt+2> — ;dt=
There is no coordinate variation at end points and hence
o

Now equation reduces to

" (T oV
I3 &G o3 g G Jmee

t,

jt1

t
=0.

J
IZ{GT _ﬂ_i( T H&qjdt -0
|99, dq; dt{aq,
each dgjare independent of each other, the coefficient of every dq; should be equated to

zero. And we get

Or _ov _dfal)i_g
oq; oq; dt|oq;

Vis not a function of ¢; and therefore
d 6(T.—V) 0 (T-V)=0
dt| oq; aq;

T -V =L = Lagrangian for a conservation system

L = Scalar function of q;,q;and t

ii—ﬂ :O J=l,2, ...... n.
dt{ aq; ) oq;

This set of equations is called Lagrange’s equations of motion and each is a second
order differential equation in terms of the time as independent variable.
1.2 DERIVATION OF LAGRANGE’S EQUATIONS FROM HAMILTON’S
PRINCIPLE:
The Lagrangian L is a function of generalized co-ordinates q j's and generalized

velocities ¢ j's and time t.
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Thatis L = L[q, (t),q;(t),t]

According to Hamilton’s variational principle, motion of a conservative system from finite

time t; to time t; is such that the line integral

1= | L, (0.4, (@) tldt

b
is zero. That is A = 5[ L[a; (1), g (), t]dt =

4

If the Lagrangian does not depend on time t explicitly, then the variation 6L can be written as

oL .
— &

o= Z—é‘q. +—
J aql

j=1 aqj

Integrating both sides fromt=t;tot =1t
ja_dt —jz a‘q dt + jz—a‘q dt =
But from Hamilton’s principle

fadco

4

Therefore j Z 5q dt + J'Z 5q dt=0

- _i
A = (45)

Integrating by parts the second term, we get

IZ 5q dt = {%‘5%} _f§i[5¢J5qjdt

i
There is no coordinate variation at end points and hence

o . I
oo |-

4

Now equation reduces to

t t

f< OL f<d| oL

—&, dt— |2 —|— |5, dt=0
fria a-frg

4

(on)

1. t

t.df| oL . oL
— | — &, dt—|>—&. dt =0

;[?dt(aqqu‘ igaqqu‘
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B ldfoL) oL
| = ==& dt=0
;[?{dt aq; | oq, A

For holonomic system the generalized co-ordinates 6q j are independent of each other.

Therefore the coefficients of each §q j must vanish. And we get

dpob) o)y J=1,2,n,
dt{ ag; ) oq;

This set of equations is called Lagrange’s equations of motion and each is a second
order differential equation in terms of the time as independent variable.
1.3 PRINCIPLE OF LEAST ACTION:
The time integral of twice the K.E is called the action. The principle of least action
states that
t
Af2T dt=0
4
But in systems for which H remains constant
2T = ; p;d;

t
.~.A£§qujdt=0

A represents variation of the path which allows time . T TS
as well the position coordinates to vary.
In A variation

1. time as well as the position coordinates are allowed to vary.

2. time tvaries even at the end points.

3. the position coordinates are held fixed at the end points. ie Aq;=0

Let APB be the actual path and AP'B be the varied path. The end points A and B after
time At take the positions A" and B’ such that A and B are fixed while time is not fixed.
A point P on the actual path gives P’ on the varied path.

qj—>0i=dj +Aq;

If o is the variational parameter, then in d process t is independent of a.. But in A process t is
a function of a even at the end points. ie t=t (a).

qj depends on tand a

dg.
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oa.
=&da+qjﬁda
oa oa

=&qj+qut
. aq; . ot .
Since 5qj=a—0;da and qjgdaijm
Any function f = f(q;,q;,t)

of of of
Af =Y —AqQ, +—Aq, +— At
gaq. N5 N T

j i

:ga_qj(g’qj' +0; At)+Z£(8qj +4q; At)JFEAt

]

=of +iAt
ot

A = 8+Até ...(1)
ot

Here A operation and time differentiation cannot be interchanged.

Proof:

A

1
—
-M
=]
o)
o
—

I(L+H)dt

4

t
= J.Ldt+ H(t, —t,) [since H is conserved] .(2)

|71

t
AA =A[Ldt+H A, -t)

4

t, t
= AJ.Ldt+HAt| ..(3)

t 4

t
To Solve AJ.Ldt :

4

ty
LetJ'Ldt =| sothat =L

4
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Now Al = 8+ I At

ie AJ'L dt= SILdt+ LAt| ..... 4)
Substituting equation (4) in equation (3) we get
Y t t
AA:SjL dt+ LAt +HAt (5)

t, 71 4

ty
6.[ L dt cannot be zero.

4

t t

f f<| OL oL
o|Ldt= —X; +—a; |dt

! {%(aq R &h]

i i
_ Rl d oL oL d
B {%{dt(@qj}&j aq; dt at )}
d

[Since from Lagrange’s equation of motion o = —[a—LJ ]

oq; dt{ oq;
% “ ld(aoL
J|Ldt = —|—&. | |dt
Jro=] %dt{aqj &J]}

J
Putting &9; = Aq; —q; At

oL oL
SIL dt = IZ{dt( qj—a—quAtﬂ dt
J

aq;

t

oL oL
= ]. At
Z[aq, 220, ]

J 4

At end points Aq j = 0. Therefore

t
2 oL t
o|Ldt=-2—q;At
;.1. iﬁqj qj |tl
3 tz
= _Zj:qujAtl
4

Now equation (5) becomes

t t t
AA = =2 p;q; At] +LAt] +HAt|
j t

4 |

(H +L- ij )At|
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=0.
Since H= ij,qj—L
J

ty
Thus AA :AJ'Z p;q;dt=0

4

Which proves the principle of least action.

b
Here J. 2. p,(; = Hamiltion’s characteristic function
4

(1) Principle of least action in terms of arc length of the particle trajectory.
Let a system contain only one particle of mass m

Kinetic energy T _L m [ﬁf
2 \dt

ds— element of arc traversed in time dt

dt =(ﬂ) ds
oT

The principle of least action

1

A]% oT dt:ATZT (%Tds: 0

4 4

t, .
ieA[(2mT)*ds =0

|7

t, .
Aj[zm(E —V)]*ds =0 Since T+V =E
4
t, .
AI[Zm(H -V)]?ds =0 SinceE=H
4
t, s
AJ'[H -V]2ds =0 Since m = Constant ....(6)

4

The above equation represents the principle of least action in term of arc length of the

particle trajectory.

(i)  Jacobi’s form of the principle of least action:

The K.E of the system
1 o
T = E%ajk d; i

2T = jzkajk qj o
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- [‘Z_sz (D)

Where (dp)’ =X a, d, dq, ,a differential
.k

From equation (7) T =£(%jz
2\ dt

dt =92

(2r)

The principle of least action

ATZT dt=0
t

t, dp
A j 2T—+_=0
L (2T)"

t, L
Af(@2T) dp =0

4

AT[z(E ~V)[dp =0

4

AT[Z(H ~V)J} dp=0

t
t
Af(H-V)dp=0 ..(8)
L
This equation gives the Jacobi’s form of principle of least action.
(ili)  Fermat's principle:
It states that the time taken by a light ray to travel between two points is extremum.
According to principle of least action

ATZTdt =0

4

AIJZ‘T dt=0

4

If T is conserved, then
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Alt,—t) =0
(t2 —t;) = extremum.
ie, the time taken by the light ray to travel between two points is extremum.
1.4 CANONICAL TRANSFORMATION:
Transformation is one to change one set of position and momentum coordinates into
another set of position and momentum coordinates.
We assume p j and q j are the old momentum and position coordinates and P j and Q ;
are new one related by
Pi=Pi(Pja;t)
Qj=Qj(Pajb) (1)
Then if there exists a new Hamiltonian H in the new coordinates such that

. OH . OH
P=——-andQ =—
' oQ i R oP;

.2
These equations are known as canonical (or) contact transformations.
Qj, P jare canonical coordinates.

By definitionwe have H=2>pq; - L

and H =Xp,Q, -K 0

Here the position and momenta coordinates are independent.

Canonical transformations are the transformations of phase space. They are
characterized by the property that they leave the form of Hamilton’s equations of motion.

example : Cartesian to polar coordinate is an example of co-ordinate transformation.

The transformation of one set of position coordinates to new set of coordinates is
called point transformation. They are the transformations of configuration space.
1.5 HAMILTONIAN FORMALISM:

Lagrangian equations of motion are invariant in form with respect to the set of any

generalized coordinates. In the new set Q j, Lagrange’s equations will be

dfo) o g
dt{ oQ, ) oQ,

ie, Lagrange’s equations are covariant with respect to point transformations. If we define P;

as
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oL :
P = a_Qj(Qj Q)
The Hamilton’s canonical equation will also be covariant. ie,
. oH
Q= a_Pj(Q“ Pj)
. oH
P :_8_Qj(Qj’ Pj)

Therefore, this transformation is extended to Hamiltonian formulation. In
Hamiltonian formulation, we admit the existence of one more independent variable called
momentum. Consequently the simultaneous transformation of the independent coordinates

and momenta g j, p j to a new set Q j, P j can be represented in the form

Q;=Q;(g p.t) (D)

P =P (q7 p,t)
For Q j, P j to be canonical, they should be able to be expressed in Hamiltonian form
of equations of motion.
ie Q, =2—§ P, = —5—:;
Where K is a function of (Q, P, t) and is a substitute for H of old set in new set of
coordinates. If Q j, P ; are to be canonical coordinates, they must satisfy the modified

Hamilton’s principle of the form

t, )
5[[ZP @, k(@ P.t)dt=0 (2)
't
The old coordinates p j, q j are already canonical.
Therefore
ty
8[[Zp,4; —H(a.p.t)dt=0 .(3)
t

The simultaneous validity of equations (2) and (3) does not mean that the integrands
of the two integrals are equal. We can therefore write

5;[(2 pqu_H)_(ZPij_K) dt=0 ...(4)

Equation (4) will not be affected if we add to or subtract from it a total time derivative of a
function F = F(q,p,t).Now we can write equation (4) as
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s {00, -0)-(£RQ,-K)- 2

is follows that

(Z P;d; _H)_<ZP1Q1_K):(Z—T ...(5)

1.6 CANONICAL FORMALISM
DERIVATION OF GENERATING FUNCTIONS:
The first term in equation (5) is regarded as a function of q j, p jand t and the
second term as a function of Q j, P jand t. F is in general as a function of (4n +1) variables q j;,
pj Qj Pjandt. The two sets of variables are connected by the 2n transformation equations
and besides t, only 2n are independent. Now F is a function of both old and new set of
coordinates and four forms of F are possible. F1(q, Q, t), F2(q, P, t) Fs(p, Q, t) and F4 (p, P, t)
and F is termed as the generating function.
(A)EIRST FORM F; (g, Q.1)
We can write equation (5) as
dF,

X Py, —H=2XPQ,-K+—2(0.Q1) (6)
Fl:Fl (q’ Q1 t)
dF, < OF . F oR
dt_gaqjq JaQQ+at
Now equation (6) becomes
Spd-H=3P3 -K+x g +xFg .
i <] o, it aQ 8t
oF, oF, oF,
D5 la P+—L]Q —-K+H+—-1=0 e (7
Z{aqj P; JQﬁZ( +6QJ]Q 5 (7)

Since g jand Q j are to be treated as independent variables, equation (7) can hold only

if 4, and Q; separately vanish.

. oF,

ie p, = 2 ~1(9,Q,t) ..(8)
oF,

P, = 2 i (g,Qt) ...(9)

and K= H+%(q,Q,t) ....(10)
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Solving equation (8), we get Qi=Q;@jpjt
Which when substituted in (9) gives P; =P;(q;, pj t)
(B) SECOND FORM F»(q,P.t)
F2(qj, Pj,t) =F1(q;, Qjt) +2P;Q;
Fi(9, Qut) =F2(qy, Py ) 2PjQ; (11)
putting equation (13) in equation (6), we get

ijqj—H:ZPij—K+%[F2(J, i ) ZPQ]

. oF oF, . OF, . -
-YPO -K+¥%2q +3%2p . L2 SPQ ~TPO.
1% aq J aPJ ] 8t 1<) 1<)

J

oF,
- P, K+ 2+ [P,
SPQ, - at z - ) o
OF, oF, OF,
—=— ] + P+H+—2-K=0 (12
Z[aqj p; Jq, Z(ap QJ o (12)
Since g jand P j are independent variable, equation (12) can be satisfied only when
oF,
p=22(q.Pt) (13)
J aqj i IN
8F
Q= (q,, R (14)
and K=H +%(qj, ) ..... (15)

Equation (13) can be solved to give Pj=P;(qj pj t)
which when substituted in (14) gives Qj=Q; (4, pj, t)
(C) THIRD FORM F;3 (p,Q, t)
F3 can be obtained from F; by replacing q; by p ;
Fs(pj, Q1) = F1 (05, Q) 1)-2p;jq;
F1(q,; Q1) = Fa(; Qjt)+2p;q;j -.-.(16)
putting equation (16) in equation (6), we get

ij qj -H :ZPJ' Qj _K+%[F3(pj!Qj1t)+z quj]

: oF
=2PQ-K+X=2p;+ 3Q+ +qu +2p;4;
1] apj ] aQ at j i

-H=Xp,Q,- K+ +Z( ] +Z[—+P]Q
p; Q

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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=0 (1)

oF,
Z{ap. +

]

Since p j, Q j are independent variables, equation (17) can be satisfied only when

ok,
q, =—a—m(pj,Qj,t) (18)
oF,
Pj=—a—Qj(Pij1t) ..(19)
K=H +%(pj,Qj,t) (20)

equation (18) gives Q;=Q;(@npt)
and equation (19) gives P ;=P (q, p,t)
(D) FOURTH FORM F4(p, P, 1)

F4 can be obtained from F3 by replacing Q;, by P;

Fa( pjPjt)=Fs(pj Qs ) +2P;Q;

=F1(q;,Qj,)-2pjd;-+XP;Q;

F1(9;, Q) =Fa(p; P ) +2p;q;-2P;Q; -(21)

putting equation (23) in equation (6) we get

Ypg;-H = XPQ-K +%[F4(pj,Pj,t)+Z P, ~ZPQ]

- oF oF, . OF . -
=>PQ -K+X—p +2—2P+—2+>p0g +2pd ->2PQ —>PQ.
1<) apj ] aPJ ] at 1] 1] 1] 17%]
T :_m(@mj]pﬁz[@_q,.} g OFe
P; op, o o (22)

Since p jand P j are independent variables, equation (22) can be satisfied only when

oF,
q, = —— p-,P-,t
J apj( J ) ) ....(23)
_9oF,
Q= apj (p;.Py.0) 24)
oF
K =H +E“(pj,F’pt) ....(25)

Equation (23) givesQ; =Qj(q, p, t)

and equation (24) givesP; =P ;(q, p,t)
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(i) Condition for a transformation to be canonical:

If the expression Z(PjdQj-p;dgj)
(or) 2 (pjdqg;-P;dQ))
be an exact differential then the transformation from (q j, p j) set to (Q j, P j) set is
canonical.
Proof:

We know that for a transformation to be canonical, equation
, : dF
Z(quj - H)—(Z PQ; - K):d_
t (1)

must be satisfied.

Suppose generating function F does not include time explicitly then

K=H +6—F= H
ot
Now equation (1) becomes
oF

(or)
Z(pj dg; —P, in): dF
Where dF is the exact differential of F.

Exercises:

1. Show that the transformation
Q= \/ﬁ e“ cos p
P=2qe™“sinp
is a canonical transformation.
Solution:
Q= \/ﬁ e“ cos p
dQ =(2q) % e” cos pdq—(2q)"* e” sin pdp

PdQ — pdg =(29)"* e *sin p(2q) '* e* cos pdg —(2q)"* e *sin p(2q)"'*e” sin pdp — pdq

PdQ — pdq =sin p cos pdqg—2qsin® pdp — pdq
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PdQ — pdq =(sin p cos p— p)dq—2qsin® pdp

_ @sian— p]dq—quin2 pdp

o1l . o1l .
—| =qgsin2p-— dg+—| =qgsin2p— d
:aq(Zq p DQJ q+8p(2q p DQ) p

oF oF
—dg+—d
= 0q a op P
=dF

Which shows that the RHS is an exact differential of the function

F=%qsin2 p—pq

and hence the transformation is canonical.

2. Show that the transformation
q=+/2psinQ p=+/2pcosQ
1/, 2 aq . .
P== + =tan" — is canconical
(o) 5 (p?+q?) Q ]

Solution:
dg =(2p)“?cosQdQ+(2p)*sinQdP
pdg = (2p)"?cosQ(2p)"? cosQdQ + (2p)? cos Q(2p) V*sinQdP
pdq = 2P cos? Q dQ + sin Q cosQ dP
pdq -PdQ = 2P cos? Q dQ + sin Q cosQ dP-PdQ
= (2P cos’ Q - P) dQ + %sin 2Q dP

o(1_. o(1_ .
=—| =Psin2Q (d —| =Psin2Q ([dP
8Q(2 sin Qj Q+6P(2 sin Qj
=a—FdQ+8—FdP

oQ oP

=dF where F :%P sin 2Q

3. Show that the transformation
P=gqgcotp
_ sinp | . . . . .
Q = log T is canonical. show that the generating function is

F=e0© (1—q2e2Q )“2 +qsin(qe?)
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Solution:

Q Q
—0q+—d
aq q op P

ool
s

q

dQ =

:—%q+cotpdp

pdq — PdQ = pdg — gcot p(—d?q +cot p dp]

=(p+cot p)dg—q cot® pdp
= - [gp+qcot pldg-+-—-[ap+qcot p] dp
oq op

oF oF
=— dq+—d
aq q op P

= dF = exact differential

F =qp +qcotp
and hence the transformation is canonical.

Letusput Q= Iog(Sln pj
q

sinp=ge°=p :sin‘l(qu)

cos p = ( quZQ)l/Z

2,2Q\)1/2
Cotp— gLL

ge®
Now the generating function F= qsin‘l(q eQ)+ e‘Q(l—qzel)”2
1.7 HAMILTONIAN:
The quantity (Z p,4; — L) is a constant of motion with the condition that L does not

involve time explicitly. This constant was designated by H.

ie H=Xpd,-L;q)
H as Hamiltonian H=H (g}, p;)

= 2p,q; - L(a;,9;)
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If H does not involve time, it is said to be a constant of motion.
(i) Hamilton’s canonical equations of motion:
Hamiltonian is in general as a function of the position coordinates q j, the momenta p j

and the time t.

H= H(qj!pj!t)
oH oH coH
dH =>—dg, +>—dp. +—dt (1
Zaqj q; Zapj P+ €]
H =2X2p;q-L
Sothat H =2.q;dp; + X p;dq; —dL ...(2)
But Lagrangian L :L(qj,qj,t)
oL oL oL
dL =>—dg; +>—dg, +—dt ..(3
o q; a a4+ ©)
Substituting equation (3) in equation (2) we get
, . oL oL . oL
dH =qudpj+2pjdqj—Z—dqj—Z—.dqj——dt
aq; aq; ot 4
(4
i— p and ﬂ— p
oq, oq,
Now equation (4) becomes
. . . . oL
dH =2>.¢,dp; + 2 p;dd; -2 p;dq; — 2 p;dd; _Edt
. , oL
dH=2>q;dp; - = pjdqj—gdt
...(5)
Comparing coefficients in equation (5) and equation (1), we arrive
g M
J a(bj
_ oH
(=
o, _ ...(6)
_oL_H
ot ot

Equations (6) are known as Hamilton’s canonical equations of motion and of a set of 2n first

order equations of motion.
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(ii) Physical Significance of H
Hamiltonian H also possesses the dimensions of energy but in all circumstances
H=E
E = H equality has some restrictions. That are
1. The system be conservative one. ie. Potential energy is coordinate dependent and not
velocity dependent.

2. Coordinate transformation equations be independent of time so that > p;q; =2T

Let us write H=H (py, p2,...... P 01 G2eeeeneen qi t)

dH oH . oH . oH
—=Y—0( +tX—p+—
dt z6q.q‘ z@p P ot

i i

From Hamilton’s equations of motion

oH oH

—=-p, —=(;
aqj ] apj ]

dH .- . . ,oH
Therefore E:-Z P, G +24; P +E

oH
= — (1
p (1)
_oL
ot
oH oL
S— == .2
p p (2)
) .. . . oL
If L is not an explicit function of time, E =0
.’.ﬁzo ie d—H:O
ot dt
H = constant ...(3)

Thus if L is not an explicit function of time, H is constant of motion.
For conservative systems, the Potential energy does not depend upon generalized
velocity, ie
ﬁ =0 ()
aq;
Weknow H =2pg,-L

oL .
:Z;qj—L

]
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iq,{i_(T—v)}-L SinceL=T-V

ZZQJ{E}—L sinceﬂzo

1
H = iji(—mqu—l_

=¥Ymq,"-L

=2T-L =2T—(T-V)

=T+V =K.E +P.E = Total energy.
= H represents the total energy of the system for conservative system.
1.8 CYCLIC (OR) IGNORABLE COORDINATE:

We know that the Lagrangian L is a function of generalized coordinate q j,
generalized velocity 4 ; and time t. If the Lagrangian of a system does not contain a
particular coordinate q , thenS—Lkzo. such a coordinate is referred to as an ignorable or
cyclic coordinate.

Q) Generalised momentum: [conjugate (or) canonical momentum]

Consider a system of mass points acted upon by forces derived from potentials

dependent on position only.

Now Lagrange’s equations of motion are

dfac)_a g
dt{ oq; | oq;

Suppose q j is cyclic.ie it does not occur in Lagrangian L, then for this coordinate Lagrange’s

equation reduces to

dia |,
dt | og,
oL
—— =constant

aq;

Generalized momentum = constant.

oL _oT ov ot

o % o

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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:§Z%ml (%2 +32+27)

|
=mX = P,
= x component of the linear momentum associated with the i"" particle.

Generalising the concept, a momentum associated with the coordinate q ; shall be

GT
= generalized momentum.
aq i q i

i~
Thus p; = constant

The generalized momentum conjugate to a cyclic coordinate is conserved.
. : , oL
If we put p;in Lagrange’s equation we get p; = a
i
1.9 ROUTHIAN PROCEDURE AND EQUATIONS :

In Kepler’s problem

L:;m( +r9) .

0 does not occur in L and is therefore an ignorable coordinate so that corresponding
momentum

b, :a_l‘_ =mr?0 =1 =a constant
00

It appears from the expression L that we can solve Kepler problem without
considering 6 which is ignorable. But this is not so in Lagrangian formation because 6 which
requires how O varies with t. Thus we consider 6. However Routhian procedure which

eliminates this consideration. We want to find a function R called Routhian function such

that it does not contain generalized velocities corresponding to ignorable coordinates.
L= I—(qpqz’ ----- qn1q11Q2 ----- qn’t)

If coordinates q;......q, are ignorable then

L= L(qk+l """ qn!ql """ qn’t)
: oL oL
-3 Lasy Layla

jo 00 7 04 ot
o a-Y L =3 Ly L (1)
j=1 aqj : j=k+1 6qj j=k+1 q o

Routhian function R in which velocities (;......q, corresponding to ignorable coordinates

q;......0, are eliminated, can be written as
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R= R(qk+1""qn ""Qk+1""qn’t)

5 OR " OoR oR
so that oR = —0Q; + —0Q; +—ot ...(2)
J;—l aqj : 3;1 6q,- oot

We can also define the Routhian function as
k -
R=L- qupj
J=1

k k
R=0->.4;P; - &;p,
J=1 J=1

K K
=5'——Z P _ZqJ D
R R
SOl | s
- &‘_Z_- oy _qu D,
321 04 311
5 oL oL oL K
REravyes : J:Zkﬂ aq; bt ; o

Comparing equations (2) and (3), we get

a _daR

aq; o @)
AL _R T=k+l ..n

aq; o9,

putting equation (4) in Lagrange’s equations

lafa) al,
7| dtl ad; ) oq;

n d(eR) ¢R
J;l{a[a_%}a_%}o ...(5)

in which Routhian function has replaced Lagranian function. These are only (n-k) second

we get

order equations in the non-ignorable variables. Thus we can eliminate the ignorable
coordinates through Routhian procedure.
(i) Kepler’s problem:
we know that  p, =mr?@
so that R=L-p,@

=L-mr26?
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= —m(rz—r262)+$
OR .
. =mr
or
R mr'9'2—£2
or r

Now we get the equation of motion as

d . k
—(mi)-mré* +—=-=0
dt(mr) mr 3

m'r'—mr9'2+£2=0
r

. L
mi = mro® ——
r

2
_Vo ¢

Which is the equation of motion of a particle under central force.

[from equation (5)]

1.10 DERIVATION OF HAMILTON’S CANONICAL EQUATIONS FROM

VARIATIONAL PRINCIPLE:

Hamilton’s principle is stated as

t
S = 5ILdt=0
b
H=>pqg-L
L=>p;q,-H

and hence ol :5T[Z P4 — H(qjypjyt)]dt:O
4

Eqn. (1) is termed as modified Hamilton’s principle.

The & variation can be expressed as & — doc@i
(04

b =daa—|
oo

(D)

o Fre .
:da£;[ [ijqj—H(qj, pj,t) dt=0
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. : - : 0
end point’s times are same for every path. Limits are independent of o and hence . can be
o

taken inside the integral.

t [op o4, oH &, oH p; oH ot
Sl =do [5| Zig +p, S0 i i
O‘! {aaq‘ Pi%a "oq, oo op, 0a & oa

dt=0 (2)

i

ot : . .
But — =0 since time of travel along every path is same. Also

oo,
%o, % d(oq.
—dt=|p, —|—>|dt
;[p’ oo ;':pj dt(@a}

aq; aq
_pjaj| —J-pJaO;dt
_[pj qjdt

oq. i .
% vanishes at limits t; and t,
o

Now equation (2) becomes

oq; oq; op.
8l = dajz ﬂq, P, G _oH 9 _oH P 4o
da 0q; da Op; O

]

oq.
Putting %da:qu
o

0.
&da=§pj

oa

t
( oH oH

Weget d=|Z|H;q-p——N—— 5p}dt:0
{[{ it 7 Gq i Gp j

i i

h . OH . oH ~
“fa{m 0G| ooy Jfaeo

Since p;andq; are independent variables, the above equation can be satisfied only if

oH . oH
ap,. apj
oH
j a;

which are the desired canonical equations of motion.
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1.11 APPLICATIONS OF HAMILTON’S EQUATIONS OF MOTION:

1. Simple pendulum :

The kinetic energy of the bob T = % ml?6?

and the potential energy r =mg I(1-cos6)
Lagrangian L=T-V
= %mlzéz— mgl(1-cos0) (D
oL _ 20
= —=ml0 ... (2
Po = —5 (2)

Hamiltonian H =Xp;q;-L

= Peo 0-L

= ml?6? —Bml2 6% —mgl(1—cos 6)}

= %m|202+mgl(1—0050) ....(3)

=T+V
Then the system is conservative.
Putting equation (2) into equation (3), we get

2
H =1mlz(&j +mgl(1—cos )
m

2 2
giving
H_p h
op, ml?
— (d)
% =mglsin &
Thus Hamilton’s equations of motion for this sy_s/tem will be
9:%:% .5
pH:%:—mglsinH ....(6)

From equation (5), we have
p, =ml%d

and hence equation (6) becomes
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ml?6 =-mglsin®
16 =—gsin®

16+9gsin0=0
16+9g6=0

é+%e=o

which represents the equation of motion of a simple pendulum with period 27./1/g

2. Compound pendulum :

T=1 1
2

V = -mglcos 6
Now the Lagrangian L = %Ié2 +mgl cos &

L
L)

- 16 (D)

Then P,

Hamiltonian H= Zp,q, -L
=p,f-L

=1 92—%I92—mglc039

= %I 6?> —mgl cos @

1 2
= —I(&j —mgl cos 0
2 U1

—mglcos @ (2
ol g (2)

=T+V

Then the system is conservative.
The Hamilton’s equations of motion for 0 and py are
g1

oP,
B, == oH

‘o0

From equation (2) we find

..03)
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op, |

a—H: mglsin©

00
Now equation (3) becomes 9:% ...(4)
and P, =—mgl sin6 ....(5
From equation (4) P, =10

Now equation (5) becomes

| §=-mglsino
é+ng|sin.9:0
—=0+0°0=0

which is the equation of motion of compound pendulum with o= ml_gl

3. Linear Harmonic Oscillator :
The system is conservative and constraint is independent of time. Hamiltonian will
represent the total energy of the system. The Lagrangian
L=T-V
1 .

:—mxz—lkx2
2 2

oL oT .
T Ay —P=MX
oX  oX
x =P

m

giving Hamiltonian
H=T+V

2
=lm(£) +Le
2 m 2

Equations of motion are
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p_—ﬁH 3
OX
g0 _p
op m
g P_—kx
m m
m¥X+kx=0

—kx

This relation shows that motion is simple harmonic and is the desired equation.
4. Particle in a central field of force :

The system is conservative and hence the Hamiltonian represents the total energy.
T :%m(r'2 +1267)
V =V(r)

Lagrangian L=T -V

:%m(r'2 +12%67)-V (r)

oL . . Py
p=—=mr=i=""
or m
oL 25 a_ Py
=—=mréd=0=—">%-
Po =56 mr?
Hamiltonian H=T + V
:%m[r'2 2V (r)
2 2
pr pH
=—+——=+V(r
2m  2mr? ")
__H_p v
' o mr® or
oH
F :——:O
Po ) (D
and
ot b, h
op, m
o= H _ Py
op, mr? B - (2)

Which are the desired equations of motion.

From equation (2) we can write
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2

i Py OV

mr—mr3 or )]
We put
N F(r) =radial force  and

or

2 2712
p93 _ [mr f] =mré® [Fromequation(2)]
mr mr

~ m[roF

r

2

mv .
=—2 =centrifugal force
r

From equation (3)

2
. mv
mi = —2

+F(r)

mv,’

gives an equation of motion involving the actual force F(r) and a centrifugal force

5. Hamiltonian for a charged particle in an electromagnetic field :

Lagrangian L =T — q((p—%v Aj

A.
:Zlmvjz—q(cp—ELj (D)
2 o
S
J aq;  ov;
:mvj+ﬂAj
c

Hamiltonian H=2Xq;p,-L
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=X vj(mvj +ﬂAjj—L
c

=2mvj2 +Zﬂvj A-L
c

such that H can be interpreted as the sum of kinetic and electrostatic potential energies of the

particle.

6. Particle moving hear the surface of earth :
Let z axis be along upward vertical direction, then kinetic energy is

T:%m&?+f+zﬁ

The applied force on the body is its weight acting in negative z direction.ie

FF—-mg—-Y
oz
=V =mgz
Lagrangian
L=T-V

:%m(x2 +yi+ 2'2)— mgz

a_or_

= =mx
oX OX P
.. . Py
ivin X=X
giving m
Similarly y:ﬁ and z:&
m m

Hamiltonian for such a system is conserved. ie
H=T+V

:%m(xz+y2+22)+mgz

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



=2 ep, p, ) mez

2m

giving equations of motion

. oH B
b= ™"
; oH
py:—E:O
p, = = —mg
‘ 0z B
and )'(:a_H:& )
op, m
,_OH _Py
y_apy m
_oH_p,
op, m |

which shows that the acceleration along z direction is the acceleration due to gravity and is

true.

(1)

(2)
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CLASSICAL AND STATISTICAL MECHANICS

UNIT 2
POISSON BRACKET AND THEORY OF SMALL OSCILLATIONS

Poisson bracket, Special cases of Poisson bracket , Poisson theorem, Poisson bracket
and canonical transformation, Jacobi identity and its derivation, Lagrange bracket and its
properties, the relationship between Poisson and Lagrange brackets and its derivation, the
angular momenta and Poisson bracket, Liouville’s theorem and its applications; Theory of
small oscillations:

Formulation of the problem, Eigenvalue equation and the principle axis transformation,
frequencies of free vibration and normal coordinates, free vibrations of a linear triatomic

molecule

2.1 POISSON BRACKET : DEFINITION

Let F' be any dynamical variable of a system.

Suppose [ is function of conjugate variables g;,p; and ¢, then
dF dF oF . OF oF

= = g . t) = 27 4. 2 .
7 = g (Gpit) j 90, T ap T

OF0H OF 0H OF
S

dq;j Opj  Op; Og;
on using Hamiltonts canonical equations of motion.
The first bracketted term is called Poisson Bracket of F with H.

In general if X and Y are two dynamical variables then

0X oY 0X9Y
[(X,Y]gp = Z (8_%8_})] B 8_]7]8_%> Y

2.2 SPECIAL CASES OF POISSON BRACKET

[(X,Y] = —[Y, X]

QXY +7] = [X,Y]+[X, 7] (2)
d) [X,YZ] = Y[X,Z]+[X,Y]Z
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CLASSICAL AND STATISTICAL MECHANICS

Also

() 4, 4lep = 0 = [Pi: ilgp
(f)  lapsly, = 0 =0if i1 #] (3)
=1ifi=j
Equation (3) are known as fundamental Poisson brackets.

Take the property
(OX,Y + 2] = X, Y]+ [X, Z]

Proof :
OX O(Y +7Z) OX A(Y + Z))
XY +7] = (—————
! | z]: dq;  Opj Op;  0gj
0X oY 0XoZ 0X oY 0XoZ
— \0q¢; 9p; ~ 0q;0p; ) = \9p; dg; ~ Ip; I,
(L ooy s (oxor_oxory
— \0q¢; 9p;  Op; 0q;) = \9q; Ip;  Ip; dg;
= [X,Y]+[X,Z]
Similarly
_ 0q; 0q;  Oq (‘9qj>
40 dilar = zk: (aC]k Opr  Opi Ogy
9 _ 94 _
Opr  Opx
and hence
[qw Qj]qyp =0= [pivpj]q,p
_ dq; Op;  Oq; 8pj)
i Pl Zk: (8% Op  Opi, Oy
=y a0
— Oqi, Opr
since
dq; 8pj
and — =0
Opx, oqy
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CLASSICAL AND STATISTICAL MECHANICS

Also
0q; op;
g an 9P _ 0
gy Opx,
sothat
[Qiap]’]q,p = Z 0ikOjk
— b,
=0 ifi#]j
=1ifi=
Excercises

L.If [p, 1] be the Poisson bracket of ¢ and ¢ prove that

@ ool = 0|+ 0.5

) lovl = |5w] + [0 %]

We have

- ¢ O Y B¢

B 0 [0p 0 O D
vl = ; ot {0% dp;  Oq; Op;

t

oo\ Oy Oy 0O ¢
q1<at)apz aqz Op; (6_)
96

TACINAtD
q; Op; \ Ot dq; \ Ot ) Op;

5

)

34



CLASSICAL AND STATISTICAL MECHANICS

2.If {p1, ¢}, {@, ¢;} are the Lagrange’s brackets and [p;, p;], (¢, p;] are the Poisson brackets,
then prove that

> {pasdlpws) + Y _{an g} lap)) = 0

We have
{r 4y = —{ai, m}
= —0y
and
{g. 03 =0
[P pi] =0
[, pj] = 6

Substituting these values we get

Z{pzvqi}[pupj] +{a@, gita, pi] = —0u X 0+ 0 x &y
i=1
=0
3.If {qi, ¢:}, {p, q;} are the Lagrange’s brackets and [q, ¢;], [p1, ¢;] are the Poisson brackets,
then prove that

Z{Qh gitla, ;] + Z{pz, aitpis q5] = 0y
i=1 =1
We know
{@, @i} =0
[1,4;] =0
Also
{paiy = —{ai, pi}
= —0i
[P, 451 = —laj, p]

—0ji
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CLASSICAL AND STATISTICAL MECHANICS

> Aa aitlan ) + Y v @i} oo ai) = 0 0+ =0y x —65]

=1 =1

= 6,
Hence proved.
2.3 POISSON’S THEOREM
For a dynamical variable F'(q,p,t)
dF OF

2 [FH + =
a ~ PHIT
If F is a constant of motion so that dF'/dt = 0, then by Poisson’s theorem

oF
[FH]—FE—O

Furthermore if F does not contain time explicitly, that is 0F' /0t = 0 then

[F,H] =0

This is the required condition for F to be a constant of motion.

2.4 POISSON BRACKET AND CANONICAL TRANSFORMATION :

Poisson brackets are invariant under a canonical transformation.That is
[X7 Y]%P = [X7 Y]Qyp

Proof :

0X oY 0X 9Y
(X, Y]gpr = Z (3@2. oP, 0P, 8@')

_Z 8Y(9q]+(9_Y@pj _5’X (9_Y@qj+8_Y6’pj
3@1, 8% oP; apj OF; OF; 3%’ 0Q; apj 0Q;

)}

0X 8pj

0X 0q; 0X 0q; 0X Op;
Z Z (aQi oP.  OF, a@i) Z Op; Z (8@» oP,

= Z{g;[){ jlo.p + g;/[X p]]QP}

J

OF; 0Q;

)
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Further

X, gl = —la; Xlo.r
_ aq]' 0X _ 6%‘ 0X
2= \9Qn P, 0P, 0Qnm

L { Jq; <8X oqy. N 0X apk) _ 0qg <8X O +8X Opr. )}
m,k

0Qm \Oqx OP,, ' Opp 0P, ) 0Py \0qy 0Qum = Opr 0Qm,

o 9X dq; Oqs  Oq; Ogy 0X dqj Opx  Og; Opk

m 7

= —Z 8_X[q QR]QP+8_X[Q' Prlo.p
- an 7 ) o 7 )

Pk

0X 0X
- _ S = — 4
2 o0 = oy, (4)

Similarly

oY 0X 0Y 0X
XYl =3 (<, * )

= [X, Y]q,p

Hence Poisson brackets are invariant under canonical transformation.

A canonical transformation can be generated from functions Fi(g;, Q;, 1),
Fy(q5, P, t), F3(pj, Q. 1) and Fi(p;, P;, t).

In the case of generating function Fj, we have obtained

, R
J aqj
and
OF,
P=———
J an

Using the above two relations we get
8pj . 82F1 _ 8R
0Qi  0Qi0g; 9q;

Similarly in the case of generating function F5, we have obtained

_0F
pJ_ aqj
and
OFy
Q=55
J af)]

37



CLASSICAL AND STATISTICAL MECHANICS

Using the above two relations we get

op;  OPF  0Q;

OP,  0Pdq;  Oqg;

Similarly in the case of Fj and F); we have seen that

oy OF, _ OR
0Q; 0Qi0p;  Op;

and

0q; _ O°Fy 9Q;

OP,  OPOp;  Op;

[Qu Pg]q,p - ; (an Opx Opk 8%)

Using eqns(5) and (7) we get

B 0Q; dqr | 0Qi Opy,
Qi Pilgp = ; (aqk 0Q; + Opk an)

0Q);
= agj = 0ij = [Qi, Pila.p

and similarly

[Qia@j]q,p = 0= [inQj]QJD
[Pivpj]q,p = 0= [Pi’Pj}Q,P

Thus we have proved the affirmation for the fundamental brackets.

Excercises

1.Using Poisson bracket show that the transformation defined by
qg = V2Psin@)
p = V2Pcos() is canonical.

q,p can be rewritten as
tan@) =

(¢* + p°)

N =T IR



CLASSICAL AND STATISTICAL MECHANICS

If the transfomation is canonical, it must satisfy the conditions

Q. Q=[PP =0

and

Q. Pl =1 (1)
Already we know

Q. Q=[P,P]=0

Hence we can show that

(@, P] =1 From eqn.(1)

Q) 1 Q) —q
sectQ—2> = ~ sectQ—2> = —
Qﬁq P Qﬁp p?
or _ or _
dq — 4 dp - P

Then

= c0sQ) (1 + tangQ)

= c0s°Q x sec*Q =1

Hence the transformation is canonical.

2.Using Poisson bracket show that the transformation defined by

Q — €—Q(1 _ erQq)l/Q
el —p2€2q)1/2

p

P =tan

i1s canonical.

Q and P can be rewritten as
Q=11 et
— (e7% — p?)1/2
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and

Now

So now the transformation is

Then

orP

P = tan_lg
p
tanP = Q
p
2
1 +tan*P =1+ Q—2
p
2 2
1+ tan’P = @ ptp
2 2
sec’P = @ j;p
p
woo p o V@A
p
cos P = P
V@ +p?
_ p
e~20 — p2  p2
__p
e
_ P
==
:p eq

0Q 1 (—e?)(-2) —e X
3_q ) (e=20 — p2)1/2 - (e=20 — p2)1/2
0Q 1 (=2p) —p
op 9 (e—Qq _ p2)1/2 - (6—2(] _ p2)1/2
or —pe? _ —P _ —p
Jq o (1 _p2e2q)1/2 o e~1(1 _p2€2q)1/2 o (e=24 —p2)1/2
—ef -1 -1

or

o (=P

e—q(l _ p262q)1/2

- (6—2(] _ p2)1/2
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Therefore

Q. P] = (8_Qa_P _ 6_@5_13)

6—2q p2
(e —p?) (e 20 —p?)
_ (=)

(e721 —p?)

Furthermore [Q.Q] =0 and [P, P] =0

Hence the transformation is canonical.

2.5 EQUATIONS OF MOTION IN POISSON’S BRACKET FORM :

The total time derivative of a dynamical variable F'(g;,p;,t) can be expressed as

. oF
F=|FH+—

If F does not involve time t explicitly then

F=[F H] (1)

If the Poisson bracket of F with H vanishes then F'=constant of motion. This requirement
does not however require that H should be a constant of motion. Suppose such dynamical

variables are ¢; and p;, then
G; = laj, H]
and
pi = [pj, H] (2)

The above equations are identical with Hamilton’s canonical equations of motion

A B 8%’ 0H . 8(]]' OH
(g5, H] =) [aH op;  Op; Og;

Since
dq;
Op;

=0
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we get
oOH
g, H] = a—pi%
0]—]
or i =
= o, ——(f 7)
Therefore
oOH [ ]
q9; = 7 — = 495,
J ap] J
Similarly
o0H
pj=—5—=1pj,H
J aq] [ J ]

Equations (2) can thus be known as equations of motion inpoisson bracket form.

If Poisson bracket [p;, H] vanishes, then
p; =0
p; = constant
That is the linear momentum is conserved and hence the corresponding co-ordinate is cyclic.

Thus all functions whose Poisson bracket with Hamiltonian vanish will be constants of

motion and conversely Poisson brackets of all constants of motion with H must vanish.

2.6 JACOBI'S IDENTITY AND ITS DERIVATION :

XY 2+ Y (2, X+ 12, X, Y] = 0

We have

d[X,Y] 0Z 0Z O[X,Y]
XY, 7)) =02 22 22 Tt
(X, [V, Z]] T P

) {axay 8Y8X} o7z 0Z 0 {axay oY 0X
dq; Op;  0q; Op;

dq; Op;  Oq; Op;

{(‘92X oYy L 9X 0X 0%Y 82Y 0X Y 0*’X 8Zi
0q;2 Op;  Oq; 0q;0p; 8qj Op;  0q; Oq;2 Op,
oz ( 0*°X aY oYy 0X ’Y 0X 0*°X09Y

-~ dg; {51%-3%- op; O g, Op0q,0p;  OFF @qg}

_ 0?X 2% (9_Z+82X 0X 0Z {82Y8X 07 82Y 8X 82}
g Op; Op;  Op? Dq; dg; | Oqz Ip; Ip; " Oy 045 90,

B 0?X {8Y82+8Y 82} W_Y{&X@Z 0X 07 }
Op;j0q; | Op; Oq;  Ogq; Og; Op;0q; | Oq; Op; (9pj fHog;
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Similarly

0?’Z 0X Y 0°Z 90X 0Y PX 07z oY 9?°X0Z Y

(z.x),y])= 929X O OZ OX O[O X0Z OF | 0 R07 Y

Jqj2 Op; Op;  Op; Ogq; Og; 0q;2 Op; Op;  Opj2 Oq; Og;
PEfOXOY 0K OV X foror oz v )

apjﬁqj 5’pj 6’qj (9qj apj 3pj8qj an 8pj 8pj fﬂ@qj

%Y 07 0X 0*Y 0Z 0X 0?Z oYy 90X 0*Z0oY 0X

izlx)= o0 92 9% IR o2 on JOZ O, 028 X

dq;2 Op; Op;  Op; Oq; Og; dqj2 Op; Op;  Opj2 Oq; Og;

—_ —

DY (0ROX 010X}, 04 (00X 0V 0K
apj(?qj 8pj an (9qj (9pj 8pj0qj 0qj 8pj 8pj fﬂaqj

Adding all we get
[X’ [Ya Z“ + D/a [ZaXH + [Zv [X’ Y“ =0

2.7 LAGRANGE’S BRACKETS AND ITS PROPERTIES:
Lagrange’s bracket u,v with respect to (¢;,p;) is defined as
fuvy,, =3 (200 _ 0006 (1)
Tooap ; Ou dv  Ou v
(a) Lagrange bracket is invariant under canonical transformation :

Poincare’s theorem states that the integral

Jp ://Squjdpj (2)

taken over an arbitrary two dimensional surface S of the 2n dimensional (q,p)phase space is

invariant under canonical transformation.

Position of a point on any two dimensional surface is expressed as
;= q;(u, v)

pj = pj(u,v)

Transforming the integral (2) in terms of (u,v), we write

3(q:, pi
dg;dp; = 0(?; ij)) dudv (4)
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with
9¢;  9pj
ou ou
(g p5)
o(u,v) (5)
9¢;  9pj
ov ov

as the Jacobian.

Further

[ [ [xom

where (@)}, P;) is another set of canonical co-ordinates to which the set(g;, p;)has been trans-
formed.

Now relation (6) becomes

//Z awj //Z ou e

S is arbitrary and area dudv is arbitrary. Therefore expressions on boyh the sides will be

equal only when

B RR

9¢; 9p; 0Q; or;
ou ou ou ou
70y op; 709, or;
ov ov ov v

or

3 9q; 9p; _ Op; 94; =S 0Q; 0P;  0P;0Q;
- ou Ov ou Ov ou Ov ou Ov

J

{U’?/U}(Lp = {u7U}Q,P (7)

Thus Lagrange’s bracket is invariant under canonical transformation.
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(b) Lagrange brackets do not obey the commutative law :

_ N~ (943905 Ops 9
fu v} = ; (8u dv  Ou v

-y 9p; 9q; _ 94; 9p;
- ou Ov ou Ov
-y 9q; Op; _ 9p; 04
- ov Ou ov Ou

= {v,u} (8)

(c) Proof: {gi,q;} =0 {pi,pj} =0 {qi,q;} =i :

{g,9;3 =0
{pi,pj} =0
{41, g5} = 63
Oqr Opr ~ Oqi 5]%)
9 qj5 = o T A 9
tao 45} g(aqi dq;  0q; i ®)
q’s and p’s are independent and hence
Opy, Opy
— =0 and =0
dq; dq;
Then
{g,9;} =0
Similarly we can prove
{pi,pj} =0 (10)

Now

B Oqx Opr. Oqr, Oqp
{q“pj} - zk: (8% apj 8pj an)

q’s and p’s are independent and hence

9ax _
8pj
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Then
0qy; Opy,
We have
gy Opx,
= Ok d = =0
dg " o Ip; &
Hence

{ai.pj} = Z Okily,
P

= 0 (12)

2.8 RELATIONSHIP BETWEEN LAGRANGE AND POISSON BRACKET

We can show that

2n
Z {ul7 ul} [ul7 uj} = 57,’3’
i=1
Here{u;, w;} is Lagrange bracket and [, u;] is Poisson bracket. Now

2n

;an:{ul,ui} ] = {; (%@pk - %aqk>}

—1 8ul 8uz 8ul 8ul

zn: Ou; Ou, B Ou; Ou,
= \Om Oy 0P Oy

The first four terms on R.H.S on multiplication is

Z Opx 8uj Z ol 8ul Z Opr Ou;  Oqy

L=, Oui Op, Oy O Ou; Opm  Ogim
- Z Opk Ou; 5
km 8“1 8pm "
But
Ipm
Okm = ——
* Opr;

The first four terms on R.H.S on multiplication is

Opy. 8u] oqs, 8ul Opr, Ou;  Opp,
. mZ:I" Ou; Opy, Z oy, 8q ; ou; Opm, Opr
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The last four terms will be

Opi Oty

o ou,; 3]%

0qi, Ou; Opr. Ouy oqy, 8u] Opx
. mzzln Au; A ZZ: uy Opm Z u; O, Opm
=y Ogr Ou; 5
P ou; 0qy,
-y Oy, Ou;  Om
— Ou; O Oy
O Oy
P Ou; Oqy,
(3)
The second term is
Opy. 8u] 8qk 8ul B
since
Z oqr, Oup % _0
0w Opm  Opm
Similarly the third term will be zero
Hence R.H.S of equation (1) is
Opy, Ou; g Ouj Ou; Opr, ~ Ouj Ogy
; Ou; Opy, * ; du; Oqy, B ; Opy, Ou; * gy Ou;
8uj
~ ou, (qr, pr)
an

Therefore

2n

i=1

> {uwi} fwug) =6,

Which gives the relation between Lagrange and Poisson brackets
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2.9 THE ANGULAR MOMENTUM AND POISSON BRACKETS :

The angular momentum 1 can be expressed in terms of linear momentum p and radius

vector r as
I=rxp
= (iz + jy + k2) x (ip, + jp, + kp.)
= i(yp: — 2py) +J(2ps — 2p.) + k(2py — Yp:) (1)
giving

lx:ypz_zpy ) ly:pr—SL’pZ ) lz:xpy_ypx

ol, 0 ol, _, ol, .
ops ops op. U
% = —2 % =0 ol —
Opy Opy Opy
ol, ol, ol
= = — =0
Ip- i Op: Ip
(2)
We know that
OF Op; OF 8p-)
F.p;] = it Nt}
Foj Zk: <5Qk Opr,  Op, Ogy,
oF
== — or g
9 (for j=k)
so that
ol, B B ol,, B B ol, B
ol, B B ol, B ol, B
[lxapy] a =Pz [lz,npy] ay =0 [lzapy] ay = Pz
ol, B B ol, B ol, B
[lzs p-] 5, = v [y, p-] 5, — P 12, p-] 5, =0

(3)
Equations (2) and (3) give Poisson brackets of angular and linear momentum components.

We know that
[pjupz] =0

Therefore

[px;py] = [Py;]%] = [Pz pz] =0 (4)
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Now we find out the Poisson bracket of components of 1

k

dqx Opx  Opr, Oq,

_ (9L ol, 9l I, N ol, ol, 0l 9l N ol, ol, 0Ol Ol
~ \ oz dp, Op, Oz oy Op, Op, Oy 0z Op, Op, 0z

Using equations (2) and (3), we get
e, 1)) =0 =04 0—=0+ (=py)(=2) = (4)(Pa)

= (xpa: - ypx) = lz

Similarly we can prove

and

2.10 LIOUVILLE’S THEOREM :

The theorem consists of two parts

(1) The first part states the conservation of density in phase space

d
i.e—pzo

dt

2) The second part states the conservation of extension in phase space

. d
i.e E@F) =0

(1) First Part :

Consider any fixed element of volume of phase space located between ¢; and ¢; +dq1, ...qy
and gy + 0qs,p1 and p; + 0py, ...py and py + Opy.
If p is the density of phase points, the number of phase points in this volume element at any
instant t is

OIN = p.oT' = p(d¢qy...0q¢6p;...0py)
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A
T . q’1
+ —L
a4 [‘h 6q1)6q1]
p
D C
ptép, L _ AT~
>
ép, —» >
P - __ v____ "7 >
A ; B
| |
K—>i
| |
I 84, I
| |
| | >
q: q,t6q,
q R

The number of phase points located in the volume (0¢;...0q;9p1...0ps) changes as the co-
ordinates and momenta vary. The change in the number of phase points within this volume

of phase space in time dt is

d(ON) d(p.oT) dp
= = —dt(dqy...0q40py...0
dt i qg1On-04s0ps--opy)
This change is due to the number of phase points entering and leaving this volume in time

dt.

Consider two faces of hypervolume normal to the g-axis with coordinates ¢; and ¢; + d¢q;.

Number of phase points entering the first phase in time dt is

PG1dtdgs...0qF0p;...0p; (1)

p and ¢; are the density and velocity component at (qi...qf; p1...py)
Number of phase points entering the second phase in time dt is

op . oq
— — dtdaq,... 2
(p+ aq15Q1> <Q1+ o 5q1) 0q3...0q0p1...0py (2)

Neglecting higher order terms we have

. Jq1 . 6,0> }
+ | p=— + Gi— | dq1| dtdgs...0qs0p1...0 3
{pql (p D, D5, ) 00| A0t 04s0p..Opy (3)
Eqn(1)-Eqn(3) gives
g, . (9/))
— | p== + Gi— ) dtdq:...0q;6p,...0 4
(Paql hl S q1---04f0P1...0Df (4)
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Similarly for p; co-ordinate

pa— Tt Pi—

_ Op1 dp
8 P1 op1

)dt6p1 0qpdpy...0py (5)

The net increase in the number of phase points in time dt is in this volume of phase space
is obtained by summing the net number of phase points entering the volume through all the

faces labelled by ¢;...qf and p;...pf. Hence

(W i %+% (224 4+ 9P 5\ drsgn...5qs0p...0 (6)

Already we have seen that

%(51\7) - % dtsqy...54;0p1...0p;
and hence
% dtdqr...0q0pr...0p;
_ _zf:{ (‘9% 8153‘) + <ap i+ app ) } dt5q,...5q;0p1...5p;
dq; ~ Op, dg; 7 Ip;?
f
o= 4o o)+ (g o) 2

The equations of motion in canonical form are

. OH ) 0OH
U= o and Pi= "%
Now
oq;  O0°H
dq;  0q;0p;
p; 0?
dp;  Op0y;
The order of differentian is immaterial and hence
' o4, op
> (Gt i) ©
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Now Eqn(7) becomes
(o) - 3 (24 23) ©
ot a.p = 8qj J 8pj J
f
3p> ( : )
- * ——d; + L) =0 (10)
(at q,p le ’ p] ’

This result is known as Liouville’s theorem.This equation is identical with the equation of
continuity in hydrodynamics.

If p is a function of ¢,p and ¢ and ¢, p are functions of ¢, then

dp _dp  Opdq  Opdp
dt 9t  9qdt  Opdt

On generalization we get

dp 9p dq; dp dp;
— 11
dt 8q dt Z Op; dt (11)

Comparing eqns (10) and (11) we get

dp
- =0

This form is called the principle of the conservation of density in phase space.

(2) Second Part :

Here we have to prove that

d
%(M’) =0
We know
ON = p ol
Now
d dp d
N r r 12
SN =504 2 o) (12)

The number of phase points /N in a given region must remain fixed.

d

@O =
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dp d
— o0 — (o) = 1
o 00 +p (1) =0 (13)
Already we have proved that
dp
— =0
dt
It follows that
i(éF) =0 (14)
Pt B
But p # 0, we get
d
— (o) = 1
Z(6r) =0 (15)

This equation gives the principle of conservation of extension in phase space.

Excercises :

1.If the transformation eqations between two sets of co-ordinates are
P =2(1 4 ¢"?cos p)q*/?sin p

Q = log (14 ¢%cos p)

then show that (i) the transformation is canonical and (ii)the generating function of this
transformation is

Fy = —(e9 —1)*tan p

Solution :

(i) For the trasformation to be canonical (pdg — Pd()) must be an exact differential.

q"/*(—sin p dp) + cos p(3q~/*dq)
(1 + ¢'/2cos p)

q(—sin p dp) + cos p(3dq)
q'?(1 + ¢'/>cos p)

= p dq+ 2gsin® p dp — sin p cos p dq

pdq — PdQ = pdq — 2(1 + ¢**cos p)q*/?sin p -

pdq — PdQ = pdq — 2(1 + ¢*?cos p)¢*/?sin p -

1
=pdq+ q(1 — cos 2p)dp — (§sm 2p dq)

1
=(p— ésin 2p) dq + q(1 — cos 2p) dp
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0

1 0 1
9 lq(p — 5 5in 2p)|dq + a—p[Q(p - 5sin 2p)]dp

= dlo(p ~ 5in %)

=an exact dif ferential

(ii) We have

Q =log (1+ ql/zcos p)
e? = (1+ ¢**cos p)

@ —1= q1/2005 P

1/2 GQ—]_

q
cos p

e? —1)2
B <(cos pl)>2 (1)

Now

P = 2(1 4 ¢*%cos p)q*/?sin p

(2)
We know that

=~20
Now

(4)
Integrating eqn(3) we get

F3=— /(eQ —1)%sec® p dp + constant
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Taking the constant of integration to be zero we get
Fy=—(e¥—1)tan p

Integrating eqn(4) we get
Fs = 2/6Q (e? — Dtan p dQ
Again taking the constant of integration to be zero we get

Fy = —(e? —1)*tan p

Since

Equation(5) = Equation(6)

means Fj is the generator of the given transformation.

2.Show that the generating function for the transformation

p=—, p=PQ
Q
1S
q
=2
Q
Solution :
1
p=—=, p=PQ
Q
We find
1
pdg = @(2PQdQ + Q*dP)
— 2PdQ + QdP
Now

pdq — PdQ = 2PdQ + QdP — PdQ
- PdQ +QdP

— oG (PQUQ+ (PP

OF OF
= 5090+ 7p4P
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=dF

=an exact dif ferential

The generating function is
F =PQ

But generating function involves both sets of co-ordinates. As

we have
r=21q
Q2
_a
Q

Hence the result.

THEORY OF SMALL OSCILLATIONS :

2.11 FORMULATION OF THE PROBLEM :EIGEN VALUE EQUATION :

Consider a system with n degrees of freedom and whose total energy is conserved.Suppose

the system is in an equilibrium stste at the point having the co-ordinates qg1, qo2...qo,. Thus
the potential energy satisfies the condition

(5),.=°
g a=qo

Here ¢ = qp represents g; = qo; for all values of j. let n; denotes a small displacement in the
corresponding co-ordinate ¢; from the equilibrim position. Sothat

q; = Qoj +1;j

with j=1,2,...n
Now the potential energy becomes

Vg1, 92, ---qn) = V(go1 +m,qo2 + 125 ---Qon + 1)
= oV
= V(qo1: o2, ---Gon) + Zm (8_%) B
7=1 9=q0

+12n:2n:- (82V) + (1)
5 0\ Ggaa )

=1 k=1
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The departure from the equilibrium position is small and we truncate the series after the
first non-vanishing term in 7;.

The first term on the R.H.S is constant, the second term is zero and we consider upto the
third term.

The first term gives the shift the reference of potential energy to the equilibrium point.

Thus the equation (1) becomes

Vg, g2, -qn) = —ZZ (8(] aqk) WL
J

7=1 k=1

= % DO Viknym (2)

j=1 k=1

9?V )
V, pr—
" ( 940 =

Here Vj, = Vj;. For the stable equilibrium, the potential energy should be minimum at the

Where

equilibrium position and hence Vj; must be positive. The kinetic energy of the system is

Z Z Cikide = Z Z CikM; Mk

]lkl ]1k1

c;r be the functions of the co-ordinates ¢;’s and we can expand in Taylor series form about

the equilibrium position :

cik(q1, 42, -Gn) = cir(qor + M1, Go2 + 125 ---Gon + 1)
86 ik
= ¢jk(qo1, g0z, ---Gon) + an ( - )
j=1 045
T has the terms of second order in n’s and we retain only the zeroth order term. Thus we

have

Cik(q1, 92, @) = ¢cik(Qo1, Qo2 ---qon) = Tk

and the kinetic energy is

n n

= % DD Tiwiie (3)
=1

=1 k=1

Here T}, = Ty;.Using eqns (2) and (3) the Lagrangian of the system is

n

= O3S T~ 5 303 Vi
k=1

=1 k= j=1 k=1
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The Lagrangian equations of mtion are

a oy on
dt \dij;)  On;

where j=1,2,...n.Therefore we have

n

> (Tjwtie + Vi) = 0

k=1

where j=1,2,...n.Equation (4) can be expressed in the matrix form

Ty Tig ... Tin| | Vit Vig .. Vin | |m
Tio T ... Ton | |12 N Vis Voo .. Vop | 12
_Tln TQn Tnn_ _ﬁ:n_ _‘fln V2n Vnn_ _nn_
or
y+Vn=0

Here T and V represent the square matrices of order n x n.Both of these matrices are

real as well as symmetric.Each of the n equations (4) involves all the n variables and can

be simplified by transforming them into another set of n equations each of which involves

only one variable. This is possible with the help of the normal co-ordinates and normal

frequencies.Let us try the oscillatory solutions of the form

77k — Akezwt

()

here w is the frequency of oscillations. The real part Aicos wt corresponds to the actual

motion. Using eqn (5) in (4) we get

n

> (Vie — w’Ti) A = 0

k=1

where j=1,2,...n. Thus we have

Vii —w?Tiy Vis —w?Tig .. Vi — T, | | As
Vo1 — w?Tyy Voo — w?Tog ... Vo — w?To, | | Az

an — WzTnl Vn2 — w2T22 Vnn — w2T2n An

(6)
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This set of equations has anon-trivial solution when

2 2 2
Vii —wT11 Vig —w?Tia ... Vip —w?Thy,

Vo1 — w?Toy Voo — w?Thy ... Vo — w?Thy,

2 2 2
Vil —wTn1 Vpo —wThy ... Vi — w?Thy,

This equation is known as the secular or characteristic equation.

Equation (7) may also be wrtten as
(VA—-w’TA) =0

called eigen value equation. Here A is a column matrix of n components:

Expansion of this determinant of order n x n gives a polynomial of degree n in w?. This
polynomial has roots w?, w?,...w? which are the characteristic or eigen frequencies of the
system. These frequencies are known as the normal frequencies of the system. The eigen
values are real as they correspond to a real symmetric matrix. For each of these frequencies
equation (6) can be solved to get the eigen function Ay

To distinguish between various modes,let us put the suffix 1 and then the eigen function

is Ay and the frequency eigen value isw;. Then a general solution for the displacement ny

consists of a linear combination of all the modes ;
n
nk‘ — Aklezwlt +Ak2€zw2t + +Akn€zwnt — E :Aklezwlt
=1

Each mode associated with an eigen frequency is known as the principal or natural
mode.Each of the normal frequencies must be real. The eigen functions corresponding to

different eigen values must be orthogonal to each other. Thus we have

> AwAwr = ow

k=1
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2.12 PRINCIPAL AXES TRANSFORMATION ;

We can choose a certain system of body axes with respect to which the off-diagonal
elements should disappear and only the diagonal elements remain in the expression for I.
Such axes are called principal axes of transformation. The corresponding moments of inertia
are called principal moments of inertia.

if we denote this form of inertia tensor by I’ and Iy, I5, I3 stand for the principal values,

I 00
I'=1015 o (1)

0 0 Is

where we have denoted I, = I, I,y = I, I, = I3. If w,,w,,w, are the components of

angular velocity and L, L,, L, are the angular momentum about the principal axes, then

I, 00 Wy

8

L - 0[20 Wy

<

0 0 I3 Wy

I}

Liw,; +04+0
= O—i-Iwa—i-O
0+0+Ing

or
Lx = Ilwx

Ly = ]wa

Lz = Igwx (2)
That is each of angular momentum component along a principal axis is a function of cor-
responding angular velocity component only related to it through the principal moment of
inertia about that direction.

Thus in general if a rigid body is rotating about a principal axis, the angular momentum L

and w are directed along any of the principal axes and therefore

L=Tw
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where [ is the scalar, the moment of inertia about this axis. The angular momentum L and

angular velocity w are along the principal axes and hence

L= Lyi+ Lyj+ L.k = I(w,i + wyj + w.k)

NN A~

where i, j, k are unit vectors along X,Y,7Z axes respectively.
Thus
L, =1wy;, Ly = 1w, L, =Iw, (3)

using the symmetry property of inertia tensor we get

Lx = Ixmwx + [zywy + Ixzwz = Iw:p
Ly = Lwy + Iywy + 1w, = lw,

Lz - szwx + Izywy + Izzwz - IWZ

or

I Iy,—1 I, | |w,| =0 (4)
Izw Izy Izz -1 Wz
For these equations to have non-trivial solutions, the determinant of the coefficients must

vanish. That is

Ie Iy—1I I, |=0 (5)
Iza: Izy Izz -1

This is called secular equation of inertia and its solutions the secular values
or eigenvalues. We solve the determinantal equation which will be cubic in I and therefore

will furnish three values for I through I, I5, I3 which are desired principal moments of inertia

The direction of any one principal axis is determined by substituting for I = I; and determine

the ratios for w, : wy : w, as

Wy W,

:)\17 _:AQ

Wy Wy

Thus

~

w= wx/i\—k wyj]'\%— w,k
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and

B =G+ M+ k)/y/1+ A2+ A

Hence we can determine the direction of w or the direction of principal axis corresponding
to I.Similarly we may find the direction of the corresponding pricipal axis if we substitute
Iy or Iis.

Example:

If the symmetry axis of the body is taken as axis of rotation and the origin of body axes
lies on this then the principal axes are the symmetry axis and any two perpendicular axes
normal to the symmetry axis. In the case of a sphere, every axis through the centre is

symmetry axis and hence any three orthogoal axes through the centre are principal axes.

2.13 FREQUENCIES OF FREE VIBRATIONS AND NORMAL CO-
ORDINATES:

The co-ordinates in the solution of equations where only one single frequency is involved
in the solution are known as the normal co-ordinates.Thus the normal co-ordinates are
defined as the generalized co-ordinates wher each of them execute oscillations with a single
frequency.On transformation from the co-ordinates u; into the normal co-ordinates denotted
by . the lagrangian as well as equations of motion are changed.

Let the new co-ordinates nibe related to the original co-ordinates as

Uj = E A5kTk
k

In the matrix form this relation can be expressed as
u = an (1)

Here v and n are column matrices of order n x 1 and a is a square matrix of order n x n.We

shall express potential and kinetic energy in terms of 7. The potential energy is

1
Js

1
=5 2wVt
j,k
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In the matrix form this relation can be expressed as

1
V = EUTVU

Using eqn(1) we get
1
V= §(GU)TVC”7

1
= EnTaTVan

1 T
=T A
5" A

Where
ATV A = A = diagonal matriz

= diag(w?, wy*...w,?)

Further the above eqn is quardratic in 7 so that
V=13 an
2 !

1
V= 5 ;wlz > (2)

The kinetic energy is given by

Where
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The Lagrangian in new co-ordinates system will be

L= %fﬂzmz - %Zwlz m?
i=1 i=1

Giving
L OL a
— = oand —— = —Y w’n
an, ;771 o ; Il
Now
4 (oY oL _
dt \ ony om
gives

n

Z(ﬁz +wi’n) =0

=1

Therefore the equations of motion in new co-ordinates are

m + w1277'1 =0
1y + warjp = 0
i+ wi*r = 0

(4)
Thus each co-ordinate executes only one single frequency oscillation and therefore ny, 7, etc

are termed as normal co-ordinates.

The solution of equation

i+ w’n =0
is
n = Ajcos wit + Bysin wit if w?>0
m = Ait + Bit if w?=0
m = A" + Bt if w?<0

(5)
For w;? > 0, all co-ordinates remain finite and the equilibrium is stable.

But for w;? = 0 and w;? < 0, the co-ordinates become infinite and the equilibrium is unstable.
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Normal modes of vibration :

Since

w = 2mv

The solutions become

m = Ajcos 2wt + Bysin 2wuqt

Mo = Ajcos 2wt + Bysin 2mwusat

N = Ajcos 2mv,t + Bisin 2mv,t

(6)
Here A’s and B’s are 2n arbitrary constants determined by the initial conditions.
Suppose all constants except A; and B; are zero. Then only 7, will vary periodically
with time. This situation corresponds to a normal mode of vibration. That is the system
is vibrating in a normal mode.Therefore there will be n normal modes of vibration and n
normal frequencies vy, s, 13...1, corresponding to each normal co-ordinate 1y, 12, n3...n, Now
eqn(6) will take the form

m = Ajcos (wit + ;)

Her ¢; is the phase factor.

Now the old co-ordinates are given by

uj = Z ajrAgcos (wit + 0y)
k

2.14 FREE VIBRATIONS OF A LINEAR TRIATOMIC MOLECULE :

We consider a linear triatomic molecule of the type Y X5 (e.g CO3). Y is a central
atom.There exists an elastic bond between the central atom and the end atoms with force
constant k. Let the mass of each end atom be m and that of cental atom be M.Let the
displacement of atoms from their equilibrium position be q1, g2, q3.

The kinetic energy of the system

1 . ) 1.
T= §m(Q12 +¢s%) + §MC]22
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Q1 L9 b Qs
m M m
— TV TV —e
X Y X
YX2molecule

Figure 1: LINEAR TRIATOMIC MOLECULE

m 0 0 q1
2T=[q'1 2 61'3} 0 M 0| |d
0 0 m| |gs3
giving
m 0 0
T=(T)= {0 M 0
0 0 m
The potential energy V of the system is

1 1
V= 3 k(go — q1)° + 5 k(gs — q2)*

V== k(g +2¢2° + ¢3° — 21¢2 — 2¢243)

DN | —

or
k -k O q1
2V = [fh q2 %] -k 2k —k| |

0 -k k q3
giving the matrix V as

k —k 0
V=0UVy)= |-k 2k —k
0 —k k
Then write secular equation
V —w*T| =0
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That is
kE—w?m —k 0
—k 2k —wM k =0
0 —k kE—w?m

After expansion we get
(k — w®m)[(2k — w*M)(k — w®m) — k*] + k[—k(k — w*m)] =0
(k — w*m)[(2k — M) (k — w?m) — k*] — k*(k — w*m) =0
(k —w*m)[(2k — W’ M) (k — w’m) — 2k*] =0

giving

w1:0

[k
2=\

1 2

w3 k(EJFM)

Now we want to express 7,72 and 13 in terms of the generalized co-ordinates ¢, ¢ and g3

as
q; = Z Aji
k
giving
q1 A A Ais| |m
Q2| = |A21 Az Aoxz| |12 (1)
q3 Az Azz Asz| |n3

Our problem is to find the components of eigen vectors Ay, Ay and Az. For this purpose we
apply the relation

(Vij —w’T;5)Aij = 0 i=1,2,3

3
=1

J
First case :

w = wy = 0 and calculation of the components A;1, Aoy and Asz; of A;. We have
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giving
k‘AH - kﬁAQl - O
_kAll + 2]€A21 - k’A51 = O
—kAgl - kAgl - 0
It gives

A=Ay = Az =«
Second case :
W= Wy = \/g and calculation of the components Ajs, Ay and A3y of Ay. We have

0 -k 0] |Aw
—k 2k —EM k| | Ap| =0

0 —k 0 Aso
giving
_kAQQ = 0
kM
—]{]A12 + (2]{ - W)AQQ - kAgg = O
—k’Agl - kAgl == 0
It gives
Az =0 A =—Azp =03
Third case :
w=w3=4/k (% + %) and calculation of the components A;3, Ay and Ass of A3. Then
1 2 k 2m
“ w3 m * M m( + M)
We have
—% —km 0 A13
—k —EM k| Ay =0
0 —k -2k | Ay
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giving

It leads to

Take

Then

Similarly

That is

Which leads to

It gives

Thus the matrix A is

2mk
L e — KAy =
a7 s kA =0

kM
—kAi3 — —— A3 — kAsz3 =0
m
2mk

—kAsz — i

A33:O

2mk
M

Az = —kAg

2m 2m
— A3 =—Ay3 = Ass = —A
s 23 23 Ao

2mk
—kAgs — 71433 =0

2mk
kAas + 71433 =0

A R VIt VLl
Asz =1y
2m
Ay = Az =1 Agg = —WV
a B v
A:A’L] a 0 —MTA/
a = v

The components can be calculated by applying

ATTA =1
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a o« « m 0 0 a B 0% 100
B0 —Bl|0MO||a 0 -2 =010
~2m 4 1o 0 m| |a -8 001
a o« « am [fm 100
6 0 =B |aM —2mry 010
vy —2"”‘77 v am —fm ym 001
2(2m+ M) 0 100
0 28%m 0 =1(010
0 0 2v*m(1+2m/M) 001
It gives
1

A2m+M)=1l=a= ——
( ) V2m 4+ M

252m:1:>6:\/%
m

1
V2m(1 +2m/M)

2v*m(1+2m/M) =1 = =

Thus the matrix A is

1 1
Vem+M  V2m \/Zm(1+2m/M)

oA 1 1
A=Ay = Vom+M 0 2m(1+2m/M)

1

1 1
Vem+M  V2m \/m

The normal co-ordinates can be obtained by using equation (2) in equation (1).
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Unit 1l - TWO - BODY CENTRAL FORCE PROBLEM AND H - J THEORY

Two body central force problem: Reduction to the equivalent one body problem, the
equation of motion and first integrals, classification of orbits, the virial theorem, the
differential equation for the orbit, integral power law in time in the Kelper’s problem,
scattering in central force field;

H-J Theory: H-J equation and their solutions, use of H-J method for the solution of
harmonic oscillator problem, Hamilton’s principle function, Hamilton’s characteristic
function and their properties, Action angle variable for completely separable systems, the

Kelper’s problem in action angle variables

TWO - BODY CENTRAL FORCE PROBLEM :

3.1 REDUCTION TO THE EQUIVALENT ONE BODY PROBLEM:
Consider a conservative system of two mass

points my and m,. Let their instantaneous position

vectors in an inertial frame with origin O are I; and ™y o

r, respectively.

1]

Hence the vector distance of m, relative to m; is

F=p- °
(1)
The Lagrangian for the system is
L=T-V

= %mlﬁ2+%m2@2—V(r) (2

Let us choose the three components of the position vector of the centre of mass R
and three components of the relative vector =T, —T, to describe the state of the system.
The position vector of the centre of mass is defined by
_ mE+m,
m, +m,

ﬁ — ml?;l.+m2(_r:+?;l.)

pull

-.(3)

m, +m,

_ ME+m,r+m,n
m, +m,

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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(4

Similarly R =

.(5)

=l
I
-
|

Therefore

— ...(6
m,+m, ©

- 72 . - 2
Hence L :Eml{ﬁ—i} +1m2{§ +L} —~V(r)
2 ) m, +m,

I
1F
3

+
3
=

+
3
3

1 mm,

1 -
= R24f—-__1 2
2(ml+m2) +2(m1+m2)

F2—V(r) .7

%M R? +%u?2 ~V(r) (8)

—
1
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m, m,

Where M=m,+m, and p=
m, +m,

Lagrangian equations of motion in terms of the two variables R and ¥ will be

dfa]_a .9)
dt{sr) ©R

i(i%j_izo ...(10)
dt\or ) or
%: MR and a—IZ:O
OR OR
L_ i NV
a o
Hence equations (9) and (10) become

%(M &)=0 (1)

St} X -0 (12)

Equation (11) giving M R=  constant
(or) R = constant
That is velocity with which the centre of mass moves is constant.
Equation (12) giving u;l’. :—aa—v =f(r)
r

representing equation of motion for the system under consideration. Consequently

we can ignore the first term in equation (8) and write
L =%M?Z—V(r) ...(13)

which is effective in describing the motion of the components of r. But L is the
same as a single particle of mass u moving at a distance r from a fixed centre of force
which gives rise to the potential energy V(r). Thus two body problem can be reduced to
the equivalent one body problem.
3.2 EQUATIONS OF MOTION AND FIRST INTEGRALS:

Let us describe the position of the particle in the plane poloar co-ordinates r and 6

:%m(r2 +1%0°)
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V =V (r)
The Lagrangian L =T-V

= %m (r2 + rzéz)—V(r)

As 0 is cyclic coordinate so that its conjugate angular momentum Py given by

Po = %=mr29=|
00
d(foL) d( .
¢ dt(aej dt( ) @

Integrating, mr®0 = constant = |
I— first integral and represents the magnitude of angular momentum.
d 2
—\mr<g)=0
d

a(rzé)z O

dt\ 2

1 ..
—r°0 =constant (2
ie, Areal velocity = constant

The rate at which the area swept out by the radius vector is constant which is

Kepler’s second law of planetory motion.

Suppose dA is the area swept out by the radius vector in time dt.

Then dA = %r (rde)
— 1 2
= rdo orbit
dA_1,d0_1 ., rdg
d 2 dt 2
Therefore from equation (2), we write d r

%rzé = constant (or)

d—A: constant ...(3)
dt
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R =S
Here we have two Lagrangian equations of motion. ie,

)t @
dt\or ) or

and i(a—l'.j—%=0 ...(5)
dt\o6) 006

We have % =mr and a =mre*> ——
or or dr

%=mr26 and %=O
00 00

Now equations (4) and (5) become
d -, dVv
—(mr)—=| mre*> —— |=0 .6
5 (mr) ( ; j (6)

r

d .
And a(mrze)):o (7

Equations (6) and (7) are the equations of motion
(i)  Expression for r(t) and 6 (t):

From equation (6) we write

m'r'—mrézz—d—v
dr
putting 0= Irz we get
( | )2 dv
mi-mrl — | =——
mr dr
I b dv
mf———s=——
mr dr

d(1_,, df 1> Jdr
—|=mr* |=——| V+ —
(on) dt(Z ] dr| 2mr2}dt
B 2
:—i V + ! 2}
dt|  2mr
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So that

—|=mr"+ +V(r) |=0
dt| 2 2mr? )
1, I
or —mr?+ +V(r) =constant
(on) 2 2mr? )
putting | =mr26,then
1, 2 1 ., mirte?
—mre + +V(r) =—mr-+ +V(r
2 2mr? ") 2 mr? ")
~Lre s Lmeze? +V(r)
2 2
:%m[r'2 + r292]+V(r)
=T+V=E
Thus we write
1, P
—mre + +V(r)=E
2 2mr? (")

E is a constant of motion. This is another first integral of motion.

) 5
fo| 2 gy - . _ar
m 2mr dt

dr

2]

On integration we get

dt=

r

to dr

I 2 12
m 2mr

where r=r, at t=0.

This equation gives r as a function of time. ie r (t).

Wehave 6 =

mr?

(8)

...(9)
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Lot
Ejrz—ﬂ)+e° ...(10)

Thus integration of equations (9) and (10) provides us r (t) and 6 (t). Then we can
locate the position of the particle on the path at any time t and the solution.
3.3 CLASSIFICATION OF ORBITS:

We have already derived

2
m'r':—i V + ! 5
dr 2mr

dV |?
+
dr mr?

|2

f(r)+

mr?

f ' = effective force.

Fr= f(n)+ (mrre)2

f(r)+mr6?

= f(n)+ (r9)2

f(r)+ Y

Central force + Centrifugal force.
Thus equation takes the form
mi = f’
It is an equation of motion for a particle subjected to actual force f (r) and pseudo
12 _ooav’
mre dr

V ' = effective potential energy

= —[fdr =—j{ }dr

centrifugal force

2
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The second term is the potential energy related to the centrifugal force.
(i) Orbits under inverse square law of force :
The effective potential energy

V'(r) = —J'Ldr +

as a function of r has been plotted.

(if) Motion with different values of k:

V'(r) \
Es E>0

=L

rs

E1

V’min=Em -k/r

Case (i) :E>0:
There is a minimum radial distance r; but no maximum. The motion is
unbounded. The particle comes in from r =oo to a turning point and travels out to
infinity again; Thus the motion is not periodic and with a single turning point.

Case(i):0>E>V'min=En:

corresponds to energy E;

The radial motion is confined to the values r = r{= rminand r = rs= rmax

r; and r, are the turning points.

2
Elzimr'2+ ! -
2 2mr

+V (r)
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=%mr'2 +V'(r)

El—V’(r)zémr'z =T

Though f =0 at these points 6 # 0

The particle will not be at rest at these points. The motion is confined between the

areas of two circles of radii ry and r.

A possible shape for an attractive inverse square law of force is an ellipse with the

focus at the centre.

When r varies from r; to r, and back, the radius vector turns through an angle 6 obtained

by

|
e:jmr2 dt+0,

dr

dt =

:I (rz)dr —+0

{Zm(E—V)—:zT

When GZZnTm’ the path is a closed orbit. When 6 is not a rational fraction of 2x, the

path has the shape of a rosette. Such an orbital motion is processing motion.

Case (iii): E=E, =V : =0 and 6 =finite, the particle moves in a circle.

Energy E, corresponds to the minimum value of V'(r)

dv’ d |-k |2
=— | —+
dr dr| r 2mr?

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
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kK P kP
r? mr’ r? mr’
|2
r=—
mk
E4 = V’(r) |min
k |2
= ——+4 7
r, 2mr,
mk? imk2 1 mk?

- _MKT _ 1 mkY
|2 2 1° 2 |2
In this case two bounds coincide
fl3 =r2 =T
2

Orbit is a circle of radius I—.
mk

Case (iv) : E<V,. : rwill be imaginary and therefore no physically meaningful motion is
possible.
(iif) Stability of orbits and conditions for closure:
(a) Stability:
The condition of stability in radial motion is given by the existence of local

minimum in V'(r), the effective potential. That is we require that

62V§r)>0 atr=r,
or
given by M =0
or

For any central force, the potential energy function is given by,

V (r)=—kr""* (for bounded motion)

2
V'(r)=—-kr"™ +—2r|nr2

' 2
N _ ey -
or mr

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
80



r-0
1°r,
k(n+1) =-
' 2
VO eyt 2
or o, 5

> a 317
—N—-r (3+n)rn 1+ ro 4
m

12 a4
=—(n+3)r,
m
Which is positive if n>-3
Therefore any circular orbit with r = ro under any central force can satisfy the

stability condition if n >-3.

(b) Conditions for closure:

(iii)  All bound orbits are closed only if for the inverse square law of force of

electrostatic attraction or gravitational type and for Hooke’s type linear law of

force.
(iv)  The condition for bound motion is that there is a bounded domain of r in
which V/(r) < E. The condition for stability of circular orbits is n >-3 where f

() or". Thatis for n=-1 and n = - 2 only closed orbits exist.
3.4 VIRIAL THEROEM:

We consider a system of mass points with position vectors r; and applied forces F,.
Fundamental equations of motion will be

pi :Fi

(1)
Let us write a quantity
G =X PN
dG , .
ar =2 P+ 2 Pk Q)
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But 2P =XmrLr,

= Zmi Vi2
=2T
and 2 p.r=2F.r,
So that %—?ZZT +2F.r,

The time average over a time interval T will be

1t dG = e
=| —dt=2T T
1:-([ at +2F.r,
(or) 2T + +2F.r, :d—G
dt
1
-—~[6()-c()] ..(3)

If the motion is periodic and t is its period then G(t) = G(0) and hence the RHS of
equation (3) is zero. If the motion is not periods but there is an upper bound to G and the
co-ordinates and velocities remain finite, then t sufficiently large, RHS again be

approximated to zero. Hence

E+2Fi.ri =0
T =—% SF.r, (4

Equation (4) is known as the virial theorem and RHS is called virial of claussius.
This theorem is used in kinetic theory of gases to prove Boyle’s law and to obtain
equation of state for imperfect gases etc.

It the forces are derivable from a potential, then the theorem becomes.

T :EZViV r
2
1| oV |,
=——|——|F.r
2| or |
_lov
2 or
If the potential energy is
V=kr"
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g:(nﬂ)kr”
r
= 1 n 1 n+1 1 \/
Then T:E(n+1)kr r =E(n+1)kr =§(n+1)v

For inverse square law n = -2, hence
f:—%\7:>2f+\7=o
3.5 DIFFERENTIAL EQUATION OF THE ORBIT:
Here we wish the obtain an equation that may provide a relation between r and 6.
i.e r=r(0)
Such an equation will be the equation of the orbit.

It is convenient to introduce the new variable

u:1 (or) r=l
r u

so that r.:_id_u_ 1 du dob

wdt  u?de dt

And f =_Li[d_“j
m dt \ do

We know that the equation of motion of a particle is

mf =mréz—d—v

dr
|2

=+ 1(0)
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_ _u_if(ij
12u? (u

Which is the differential equation of the orbit.

In case | = 0, equation is absurd but from

| =mr?0
mr’0=0
0 =0
0 = constant

giving a straight line through the origin.
3.6 INTEGRABLE POWER LAW IN TIME IN KEPLER’S PROBLEM:
The inverse square law of force is most important of all the central force laws. It
results the deduction of Kepler’s laws.
1. All the planets move in an elliptical orbit with sun at one of its foci.
2. The radius vector connecting the sun and the planet sweeps at equal areas is equal
intervals of time. ie, areal velocity is constant.
3. The square of the period of revolution of any planet about the sun is proportional
to the cube of the semi major axis.
(i) Deduction of first law:
The central force varies inversely as the square of the distance. That is
f(r)= _r—i( k is a constant
The corresponding potential energy will be

V(r):_—rk

2
Equation of the orbit is d_u2+ u =—2_n; f (1}
do I“u u

putting f (r) = f(lj:r—zkz—ku2 we get
u
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VAT (1)

Letusput y=u _r|n_2k so that

d’y  d’u
do> d&’
Equation of the orbit then becomes
d?u
—+Yy=0
oz Y
The general solution of this equation is
y=u'cos(6—6)
mk ,
(or) u="7+U cos(6-9)
u:lzT—zk+u’cos(6?—49’)

r
Where u’ and 0’ are constants.

If we orient our co-ordinate system so that 6'=0, then

l=r:]—2k+u’cos 0

r
ry2
:m_zk 1+UI cos 0
| mk

|2

(or) r= mk

" ...(2)
{1+ cose}
k

m

Thus 0’ is a turning point.

We show that equation (2) represents a conic section, coincident with Kepler’s
first law of planetary motion. That is the orbits are conic sections with the centre at one of
the foci.

We define the conic section as a curve for which the distance from a fixed point to
that from a fixed line is a constant. That is

r
E =constant = ¢

€ = eccentricity
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From figure, We see that

P =d+rcos0 \
P
€

Let p=¢eP = P=

=d +rcoséd 1]

Focus
r DY S P
= —+rcoso

€

P
&

p=r +r¢gcosO

Directrix — -
=r (1+ ecos0)

p
r = ——— ....(3
1+&cos@ ®)

Which represents a conic section.
Equation (2) is of the form of equation (3) orbit under an inverse square force is always a
conic section.
Comparing equations (2) and (3), we get
|2

n?2
p:—amdsszi
mk mk

r .
Further from ¢ = a,we muste >0 or r must be positive.

(if) To explore the shapes of orbit:
Equation (2) is the equation of the conic and consequently it should have been
possible to explore the shape of orbits using this equation. Here & involves one unknown
constant u’. Hence we express ¢ in terms of known constants. Then we put the value of ¢

in one equation of the conic which yield the desired information about the shape of the

conic.
1 2
Already we have E = =m1? + ——+V (r)
2 2mr
-k
Here V (r) = —
r
1 12k
E =-mi*+ - ...(4
2 2mr? r @

Suppose we take the turning point at which r is minimum say rmi,. Then [ =0.

Now equation (4) becomes.
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|2

__P _
" 1+e  mk(l+g)

From equation (3) I,

Now equation (5) becomes

WAL L

Tom| 12 E
mk? mk?
= ?(14‘8)2 —I—2(1+8)
2
= "21:‘2 (L+e)Lre—2]
_ mk®
T (1+g)(g—l)
mk?
= 2|2 (82 _1)
.. 2I°E 2EI?
giving e -l=——=¢e" =1+ o
5%
such that € = {1+ 2EI2}
mk

now ¢ is a known one. After putting the value of ¢ and p in equation (3) we get
|2
mk

2E|2 1/2
1+{1+ o } cos @

r =

If E > 0 giving € > 1 — conic is hyperbola
If E =0 giving € = 1 — conic is parabola

If E <0 giving € <1 - conic is ellipse

2
IfE= % giving € = 0 — conic is circle.
(i) Case of elliptic orbits:
Relation between energy and semi major axis:
In the case of elliptic orbits, semi major axis is given by:-

when 6 =0, r=r; = perihelion

.(5)

...(6)

(7
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Then r, = P

1+¢
r = r, = aphelion

Then r, = P

l+¢

a is the sum of one half of perihelion r, and aphelion r,

But p =—
Hence a = ...(8)

(or) 1-¢ =

2
Now E= r121:<2 (82 —1) becomes

2 2
= %{—L} [Fromequation (8)]
mka
_—k
2a

which shows that all ellipses with the same major axis have the same energy.

E

(iv)  Deduction of Kepler’s second law:

Weknow )
. d{oL d . .
Dy =—| — =—(mr29)=0 orbit
dt\o@) dt
d p
—(rzé): 0
dt o
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al
dt

1 ..
=r%0 = constant

ie Areal velocity = constant

The area swept out by radius vector per unit time = constant.
If r describes an angle dO in time dt, the area swept out by r in time dt is

dA:Er(rdH):lﬂdH
2 2

dA

t

1,.d0
2 dt
_1.d0
2 dt

1 ..
= =r%0 = constant

which is Kepler’s second law.

(v) Deduction of third law : (period of elliptic motion t)
T is the ratio of the total area of the ellipse to the rate at which the area is

swept out. Suppose dA is the area swept out by radius vector is time dt, then

the rate will be dA/dt.

area
Hence T=
dA/dt
Area of the ellipse = ab
And A _Lap 1
da 2 2m
e mab  2mmab
" 1/2m I
putting b =a(1—532)é
2 1
Then T = anlna 1—82)2

2 = —4n2|r?2a4 (1— 82)

|2

_ 4r’m?a’
12 mka
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“o a’
Which is Kepler’s third law. It states that the square of period is proportional to cube of
the semi-major axis.
3.7 SCATTERING IN CENTRAL FORCE FIELD:

(i) Rutherford scattering:
Assumptions:

1. The heavy nucleus and the positively charged particle to be point nucleus so that their
dimensions are not taken into account.

2. The nucleus of the atom is so heavy that it is at rest during collision.

3. The mass of the positively charged particle may be taken as constant because the

velocity is very small compared with the velocity of light.

 —
 —

L Y

ds Scattering centre

Let a positively charged particle of charge z'e approach a heavy nucleus N of
charge ze. There will be a force of repulsion between them. The force increases as the
particle gets closer to the nucleus. The positively charged particle of initial velocity v, is
repelled by the heavy nucleus and changes from a straight line to a hyperbola PAQ
having one focus at N. The asymptotes PO and OQ give the initial and final directions of
the particle. As the initial and final directions are not the same, the particle is said to be

scattered.

The perpendicular distance of PO from N =MN = s. This is the shortest distance from the

nucleus to the initial direction called impact parameter.
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The equation of the orbit

2 2 1/2
p:l— and g:{1+ 2El }
mk

In this case k=-zz'e? and hence

1 mze
p 12

IA2
1——mzl#2e[l+gcos(0—9’)]
"

If the initial line is set such that 8 =0, then

2
_ mzlzz'e [1+ £cos 6]

1
;

c=1+

2E|2 1/2
mkz}

=1+

m(—zz'e?)?

2E|2 1/2
=1+ ———
|: m222r264:|

If the initial velocity is v,, then

2E|2 :|1/2

E:%mvo2 and mv,=~/2mE

I
l=mv,s and mv,=—
S

According to principle of conservation of angular momentum

mv,s=mr’0=I

I
mv,=—

° s
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| =s+/2mE

mZZ Zr 2 e4

2E 2 1/2
[1+[ ,SZJ ]
72z'e

From this equation it is clear that £ >1.

8_{“ 2E(sv2mE !ZTZ

A2
.-.%:— mzlzze [1+&cos o]

represents a hyperbola.

(it) Angle of scattering:

The angle between initial and final directions of the positively charged particle is
called angle of scattering. That is the angle between the asymptotes is called angle of
scattering. Here ¢ is the angle of scattering.

The asymptotic directions are those for which r is infinite and € — «,

1+ecosa =0
COSo = ——
&
From figure 0+20=m
TU
a=2_0
2 2
Q
( Vs ¢j 1
SLCOS| ——— | =—— P=positively charged nucleus [Z'e)
2 2 & N=heavy nucleus {Ze)
¢=angle of scattering
sm£=——
2 £
cosec g ==&
2
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2 2z'e
cot =[ 2',552}
2 zZ'e

b= 2cot‘1[ 2'?52}
ze
This equation gives ¢ in terms of impact parameter s, energy E, the charge on the
nucleus ze and the charge on the particle z'e.
(v) Rutherford scattering cross section:
The scattering cross section is defined as

number of particles scattered into a solid angle dw per unit time
incident intensity

o(w)dw =

dw is the element of solid angle

o(w) is the differential scattering cross section.

The incident intensity is defined as the number of particles crossing unit area normal to

the incident beam in unit time.

The differential of solid angle dw in the plane whose azimuth lies between 6 and
0+dois do=2rsinpdd

The scattering cross section through angle ¢ in any plane is
2z R .
o(w)dow= j o(4)sin pdpdo =21 o(d)sin ddd
The number of particles scattered into solid angle dw per unit time =27r1c(¢)sin ¢dd

| is the incident intensity.

The cross section for the particles having collision parameter between s and s+ds is the

area of ring of radius s and width ds so that
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o (s, ds) =2zsds
The number of particles lying between s and s+ds = 2r1sds
Now 2mnlisds =—2nlo(dp)sinddd

The negative sign is due to the decrease in d ¢ as the increase in ds.

sds
ol0)= sin ¢dd
ot & = 268
2 z77'e
A2
gives s = zze cot9
2E 2
A2
Then ds:—ﬂcose&Q%
2E 2 2

—(Z;EZ jcoti(_;zE’ez )coseczgogb
so(d) =

25in9c059d¢
2 2

1~2 2
_1|ze cosec49
4\ 2E 2

This is Rutherford scattering cross section.

¢

The scattering cross section must be proportional to i) cos EC4E’ ii) the square of (ze),
iii) the square of (z'e) and iv) inversely proportional to square of kinetic energy (E).

HAMILTON - JACOBI THEORY

In canonical transformation, the method involves the transformation of old set of

coordinates (q, ) to new set of coordinates (Q,) which are all cyclic and hence all

momenta are constants provided the Hamiltonian is conserved.

In case the Hamiltonian involves time, an alternate approach is used to a canonical
transformation which leads to the new Hamiltonian H' =0so that the new coordinates

and momenta Q, and P, are constants. This procedure is due to Jacobi which is a

transformation as well as a method itself and applied when Hamiltonian involves time.
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3.8. HAMILTON - JACOBI EQUATION:

If we make a canonical transformation from old set of variables (q, , p, ) to a new
net of variables (Q,, R, ), then the new equation of motion are
_oH’

) : oH’
P = and =
T Q, R oP,

(D)

If we require that the transformed Hamiltonian H’ =0, then equations of motion (1)
assume the form

P=0and Q =0
P, =constant and Q, =constant ..(2)
Thus the coordinates and momenta are constants in time and they are cyclic.
The new Hamiltonian H' is related to old Hamiltonian H by

o
ot

H'=H+
Which will be zero when F satisfies the relation
oF
H(qk’pk:t)‘FE:O ..(3)

Where H(q,, p..t) is written for H(q,,d,,...d,,, P, P5,---P,, 1)

We take the generating function F as a function of the old coordinate q, , the new

constant momenta P, and time tie, F,(q,,P,,t). Then

oF,
=2 ...(4
Px aq, @
oF oF
Therefore H(g ,—%,t)+—2=0 ..(5
@ o, ) ot )

Fz = Fz (Qk’ Pk!t)
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The total time derivative of F, is

dt «10q, k=1 OP, ot

Here P, :O,%:—H and 2 _

k

O
Therefore 9 _ 2 pG, —H=L
dt k=
(or) F, =det=s ...(6)
=Hamilton’s principal function
Put F, =S inequation (5), we get H (qk,ﬁ,t) +§ -0 .7
oq, ot

This is known as Hamilton — Jacobi equation. It is a partial differential equation of first

order in (n+1) variables q,,q,,...q,,t.
Solution to Hamilton — Jacobi Equation :
Let the solution of equation (7) be of the form
S =S5(q,,Qy,-..0,, %, %y, 1) ...(8)
Where «,«,,..., are nindependent constants of integration.

In equation (8), the solution S is a function of n co-ordinates of g, ,time tand n

independent constants. We can take these n constants of integration as the new constant

momenta
e P =g -9
Now the n transformation equation are

_ 05(y, Uz U Xy, gy 1) ...(10)
o9,

P
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These are n equations at t = t give the n values of in terms of «, in terms of g, and p, .

The other n transformation equations are

0S
Q= ) =By
OI’ Bk — aS(ql’QZ""CIH’O(‘ZL’(X’2""O(’n!t) (11)

oo,

Similarly one can calculate the constants B, by using initial condition at t = to, the
known initial values of q, . Thus «, and g, constants are known and equation (10) will

give g, intermsof ¢, B andt. that is

Ak = qi (aq,az, .. ay 1,82 .. By, t) ...(12)

On differentiation of equation (10), equation (12) may be substituted for g, to obtain

momenta p,. Thus p, will be obtained as function of constants «;, §, and t That is

Pk = Pk (1,Qz, ... &y f1 P2 - P, t) ...(13)

Thus we see that the Hamilton’s principal function S is the generaor of a canonical
transformation to constant coordinates (f;) and momenta (q,). Also in solving the
Hamilton- Jacobi equation, we obtain simultaneously a solution to the mechanical
problem.

3.9 SOLUTION OF HARMONIC OSCILLATOR PROBLEM BY HAMILTON -

JACOBI METHOD:-

Consider a one - dimensional Harmonic oscillator. For such a system forces are

conservative. The force acting on the oscillator at a displacement q is

f=-kq

k =Force constant.
“ 1
Potential energy V = j— kgdg = Equ

2
Kineticenergy T = %mUZ = P

2m
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Hamiltonian H=T+V

But P = Z—z and therefore

IO

Hence the Hamilton — Jacobi equation corresponding to the Hamiltonian is

H+Z=0

ot
1 (0s\> , 1, 5 , 085S _
ﬁ(a)+qu+5—°

Since we can separate the variables, solution will be of the form
S(qa,t)=W(q,a) — at

o 1s a constant.

s ow s
aq

— an =
dq at

Now equation (1) takes the form

1 (w\? | 1, 5 _
i (Ge) t3ka =a

() - @ - )

2m

(Z—zv)z =2m (a — %qu)

w _ _ 1,2
6q—\/2m(a qu)

On integrating we get

W:J"/Zm(a—%qu) dg+c

¢ = constant of integration

(1)

.2

..03)
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=]
£3

e

=
Then S :I‘/Zm(a—%qu)dq—auc

c is an additive constant and will not affect the transformation. Because

to obtain the

new positon coordinate = g—z only partial derivative of S w. r. to «a is required. Hence

c is dropped. Thus

SZfJZm(a — % kq?) dg — at
Now a = new momentum P.

The new constant co - ordinate is obtained by the transformation.

ﬂ_é_mj‘ dg _t
oa 2 \/a—lqu
2
) da
2 [ L
2

(4
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sin_lq\/g =w(+ p)

q= \/% sinw (t+ ) ...(%)

= qo Sinw (t+p)
Which is the familiar solution for the harmonic oscillator.

a5 _ aw

Nowp = =
p aq aq

= JZm(a — % kq?)

= J2ma — m? w? g2 ...(6)

p=J2ma - m? w? 2Tasinzw(t+ B)

= \/Zma — 2ma sinfw (t+ B)

=+V2ma cosw (t+ B) (7
=py cosw (t+ B)

The constants a and § are to be known from initial conditions.
Att=0 the particle is at rest

ie, p=0and it is at the displacement g = q, from the equilibrium position .

From (6) \/2m a — m2w2q? =0
2ma = m*w?q?

1
a =3 mw?q?

1
= - kat .(8)
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and hence the solution (5) takes the form

q= qo sinw (t+ B) ...(9)

att=0qg = qp,coswf =0and sinwf =1

T

wp=7 (or)B=5-

2w

Thus the new constant canonical coordinate measures the initial phase angle and in the

T

present initial conditions the initial phase wf = I
Now equation (9) become
q = qo cos wt. ...(10)
Hamilton’s characteristic function W (q,a) and principal function S are related by
S=W(qa)—at; AlsoH'=H+>=H-a =0
H = a But the system is conservative.
Hence H = E Thus the new canonical momentum (P) is the total energy of the oscillator
H.J method to Harmonic oscillator :

Hamilton’s principal function S can he obtained as

S=[pdq— at
P=+V2Zma cosw (t+ )

q= qo sinw (t+ B)

= \/%sinw (t+ B)

dq = w\/%cosw (t+ p)dt

S = [V2ma cos w (t+ﬁ)<w\/%>cosw(t+,8)dt— at
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= \2ma (w\/%) [cos?w (t+ B)dt — at

= +2a [cos? w(t+p)dt— at
= 2a [[cos?w (t+ ) — %] dt
The Lagrangian L is given by
2 1

L=p——5kq2

2m

= acos’w (t +B) — % k qo%sin® w (t + B)

acos’w (t+ B) — % k 2Tasin2 w (t+f)

= a cos*w (t+ B) — asin® w(t+p)

= afcos?w(t + B) — sin®* w (t + B)]

= afcos?w(t+ B) — (1 —sin? w (t + B))]
= a[2cosw(t + ) — 1]

= 2a[cos?w (t + ) — ;]

There fore S = [Ldt

Thus for Harmonic oscillator we prove that the Hamilton’s principal function is the time

integral of Lagrangian.

3.10 HAMILTON’S PRINCIPAL FUNCTION :

From the solution of Hamilton Jacobi equation, we recognize S, the

Hamilton’s principal function, as the generating function which gives rise to a canonical

transformation involves constant momenta and constant co - ordinates.

Consider the total time derivative of

Fy, = F, (qi,Pyt)
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Therefore

S is known as the Hamilton’s principal function in relation to the variational principle

dt  «100q, k=1 OB, ot

Here P, =O,%=—H and ZFZ = p,
Ok
aF, o
F—gpqu H=L

(or) F,=[Ldt=s

3.11 HAMILTON’S CHARACTERISTIC FUNCTION:

Conservative systems:-

In a particle moving under central force in which H does not depend on time t explicitly

and hence H = constant = a; = E. In such cases, it is Hamilton’s characteristic function

W. In Hamilton’s principal function S, an explicit dependence on time is involved.

Hamilton — Jacobi equation for Hamilton’s principal function S (g, ay t) becomes

H [qk_%]+ g—f=0

We can assume the solution S in the form

S (qran t) = W(qrar) — ast

ow oS

as
There fore 3. = 2as and — = —a;
k

aq i at

and hence the Hamilton — Jacobi equation take the form

(or)

H [Qk,;—Wk] =a

ow  ow d

H [q1.9z,. .m0 =, 2, .2 =
) yran ‘l’llaqllaqzi aqn

This is time - independent Hamilton — Jacobi equation.

(D)

o)

..(3)

(4
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For conservative system H = a,= E =total energy of the system. Now Hamilton — Jacobi

equation is written as

=F ..(5)

Equation (4) can also be obtained directly by taking W as the generating

function W (g4, P;) independent of time. The transformation equation are

ow

ow
Pk = aanko—m ...(6)

Now if the new momenta Pjare all constant of motion «;, where a;in particular is the

ow

constant of motion H, then @), = ——
k

The condition to determine W is that
H (qr,pr) = o

Using p;, = quk , We obtain

H (Qk, ;_Wk) = m
which is identical to equation (4).
AlsoH =H+ &
at
But w(qy, pi) does not involve time and hence
H =H= a,(=E) (D)
W = Hamilton’s characteristic function.

It generates a canonical transformation where all new coordinates Q, are cyclic because

H' = a; depending on one of the new momenta P; = a7 and does not contain any Q.

Now Pk = —2% =0 (OT')Pk = ay
k

and O =2 =1fork=1 ..(8)

- 6ak
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Qk=ZL=0fork 1

Qg

Hence the solution are

aw
Q1:t+,81:EfOT'k:1
aw
and Qx = By :a fOT'k:Fl ...9)

Thus out of all the new coordinates Q,, Q; is the only coordinate which is not a constant
of motion. Here we observe the conjugate relationship between the time as the new

coordinate and Hamiltonian as the conjugate momentum.
Physical significance of the Hamilton’s characteristic function W:-

The function W has a physical significance similar to the Hamilton’s principal function S.
since W (qx, Py ) does not involve time t explicitly, its total time derivative is
dW oW . 2 0W

—=>—0q,+>—~R
dt  k2oq, h c1oP, "

Since P, = a, =P, =0 and therefore
daw o
——=2 P Ay
t k=1
W =Izkpqu dt=Ikakqu ...(10)

Which is the action.
=|Ldt= J, —H]dt
and S = [Ldt=[¥[p,q, ~H]d
= W — [ Hdt
When H does not involve time t explicitly

[ Hdt =t

Now S=W -t
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S(Q o 1) =W(q,, ) —at

S(qy, ) =W(q,) —ayt (1)

Here p, =0, are constants.
a, = E= total energy.

When the Hamiltonian does not involve time explicitly, one can solve a
mechanical problem by using either Hamilton’s principal function (or) Hamilton’s

characteristic function.

3.12 ACTION AND ANGLE VARIABLES:

In the motion of a system with many degrees of freedom the Hamilton- Jacobi
equation is completely separable in coordinate variables. We consider conservative
system in which the Hamiltonian does not involve time explicitly. The Hamilton-Jacobi

equation is given by

H 0,9 q aﬂ aﬂ aﬂ =q (1)
AL PR “oe o, X "
The variables g are separable, if a solution of the form
W =%W, (qk;ocl,ocz, ..... a,) ..(2)
k
splits the equation into n equations:
oW,
Hk(qk;a:;al’azf""anj:al ...(3)
AW,

Each of equations (3) involves only one of the coordinates gx and the corresponding

(o1

The equations of canonical transformation has the form

P, = OW, (Gl 0y, 00ty (4
oq,
it gives P =(Pyiy, 0y, t)) ...(5)
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Equation (5) represents the orbit equation of the projection of the representative point of

the system on the (q,, p,) plane in the phase space. Now action-angle variables can be
defined if the orbit equations for all the (p,,q,) pairs describe either closed orbits or

periodic functions of q .

The action variables J i are defined as J, = § p, dg, ...(6)

Here the integration is to be carried out over a complete period.

Suppose q k is cyclic coordinate, then p, =constant.

If q « is angle coordinate, then integral for action variable is to be taken from 0 to 2n
giving.

2z
Je =Py _[qu = 27D, ..(7)
0

Since action A =ij p, g, dt= Ikz p, dg,

Using equation (4), we obtain

J, :§8Wk (qk; Oy, Oy e an)qu ...(8)

Since g k is a variable of integration and it will be out, when integration is over. Thus J g

is a function of the n constants o «. Thus

J. =3, (0,0,,....0,) ..(9)
(or) a, =a,3,,3,,.....3,) ...(10)
Thus the Hamilton’s characteristic function is

W =W (0, 0prervennCys 0 dpsennn )

=%Wk (o PV N J.) ..(11)
H=H'=qa, and oy =0y (J,d,,0d))
~H'=H'J,,J,.....J,) ...(12)

The generalized coordinate wg conjugate to J i is defined as angle variable, given by
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W AW,
=——=> —0,;J,,J,, ... J
Oy 2 ;a\]k (qu 192 n)

k

Now the equation of motions for the angle variables are

This gives solution of the form

o, =V, t+B,

(13)

.(14)

...(15)

v, s are constants and functions of action variables only and are frequencies of the

periodic motion. Here the frequencies of the periodic motion can be obtained without

complete solution of the problem.

Suppose that the change in angle variable o « with the completion of one cycle by q | is

A.wk,then
om
Aoy = ffaqlk dq,
) oW
Usin =—— we get
J CPTA
§ o aJ %
_0 gawy
&, Y oq
0
=_§p|dQ|
K
ad,
=—=9
a3, K

Thus A, o, =1 k=l
=0k

T ¢ IS the period corresponding to q k then

...(16)
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using equation (15), A, o, =V, At, =V, T, ~..(17)

But A, ®, =1 hence

v, T, =1 (0r) v, =%=ook ...(18)
k

Thus v, s are identified to the frequencies of the periodic motion.

2.13 KEPLER’S PROBLEM IN ACTION-ANGLE VARIABLES:

For a particle of mass m, moving in an inverse square force field [V (r) = —%], the

Hamiltonian of the system is given by

Determine the frequency by the method of action-angle variables and discuss degeneracy.

Show that the period of the orbit is given by
T =nk1/—i3
2E

The action variable Ji are given by

Solution :

i =§pk qu

In the case of Kepler’s problem, the action variables are given by

3, =§ p, d0
and J, =§ p, dr
oW
Pe :%:0‘2

and therefore

J, =§%d 0=fo,d 0= Taz d0=2n0,
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Where we have replaced E by oy

oW

- 3,=§ |orc|,=§W dr

2
=§\/2mal+2_mk_oc22 dr
r r

The motion is bounded and is elliptical path for negative value of the total energy

E. Further the limits are given by ryin and ryax values of r.
These values are determined by the zero of the quadratic equation in

o, dr

Irz\/ZmE+2rm<—a§
rorl

:e_Bz-

2
ie\/Zmoc1 +_2mk —%

2maoyr? +2mkr—o; =0

k o)
r’+—r———2
o, 2mo,

=0

201,00
+ + 172
20, 204 m

2
o[y, [rr2aed
20, mk
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In a complete cycle of the co-ordinate r, it varies from ryin t0 rmax and back to rmyin,

Now

rmax 2
3 =2I\/2mal+2—nﬂ(—a—22dr
r r

T'min

2mk o’
max 2m(11+7—722

=2_[ r r__dr

. 2mk o’
r r

dr
r\/2moclr2 +2mkr— o

™ 2mayr +2mk
e \/2mocll’2 +2mkr — o

dr—20c§'[

But H=H=a=E

B 21°mk?

Therefore H'=E=q,= m

Now the frequencies vg and v; are given by

CoH @ {—anmkz}_ 4?mk?

N TSR 2 O
and v :8H': o | —2n°mk? _ 4m*mk?
Al 0 [+, )] (Qe+3)
4m’mk?
Thus Vy =Vr=m
0 r

The two frequencies are equal and the motion of the system is said to be

degenerated.
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The period of the orbit:

3
2

__ 27°mk?®

Il
3
2

|
N
m|3
w
| |

This formula agrees with Kepler’s third law that the semi-major axisa = —% .

T
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UNIT IV : CLASSICAL STATISTICAL MECHANICS

Foundations of Statistical Mechanics: The macroscopic and microscopic states, postulate
of equal a priori probability, Contact between statistics and thermodynamics; Ensemble
theory: Concept of ensemble, phase space, Density function, Ensemble average,
Liouville’s theorem, Stationary ensemble; The microcanonical ensemble, Application to
the classical ideal gas; The canonical and grand canonical ensembles, Canonical and
grand canonical partition functions, Calculation of statistical quantities;
Thermodynamics of a system of non-interacting classical harmonic oscillators using
canonical ensemble, and of classical ideal gas using grand canonical ensemble, Energy
and density fluctuations; Entropy of mixing and the Gibb’s paradox, Sackur-Tetrode
equation.

4.1 FOUNDATIONS OF STATISTICAL MECHANICS:

+ Statistical mechanics is the branch of science which gives the interpretation of the
macroscopic behavior of a system in terms of its microscopic properties.

+ Statistical mechanics is not concerned with the actual motion of individual particle
but investigates average or most probable or statistical properties of the system.

+ The larger is the number of particles in the physical system considered, the more
nearly correct are the statistical predictions. The smaller is the number of
particles in the mechanical system, statistical mechanics cease to have meaning.

+ Statistical mechanics is applicable for a system consisting large number of
particles.

+ There are two statistical methods known as classical statistics and Quantum
statistics.

+ Classical statistics explained many observed physical phenomenon like
temperature , pressure ,energy etc., but could not explain several experimentally
observed phenomenon like black body radiation, specific heat at low temperature
etc.

+ For explaining such phenomenon Bose-Einstein and Fermi-Dirac made new
approach known as quantum statistics.

+ Quantum statistic can be classified as,

i.  Bose-Einstein statistics

ii. Fermi-Dirac statistics

4.2 MICROSTATE AND MACROSTATE:
Microstate:
= The specification of individual position of phase points for each system or

molecule of the ensemble.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
113



Macrostate:

+ The specification of the number of phase points in each cell of phase space. Many

different microstates may corresponds to same macrostate.
+ Consider a system consists of four particles a,b,c, and d and two cells A and B.

The distribution of 4 particles in two cells can be illustrated here.

(2,2)-macrostate

Cell A CellB
4 0
3 1
2 2
1 3
0 4

ab cd
bc da
cd ab
da bc

= |f we interchange any two phase points from different cells we have different

microstates but the same macrostate.

(3,1 macrostate)

abc

bcd

cda

dab

= If we interchange any two phase points in the same cell , we have same microstate

and same macrostate.

= The number of microstates corresponding to a given macrostate in called the

thermodynamic probability of the macrostate.

= The probability that the ensemble possessing energy E is proportional to Q(E).
P(E) = c N(E)

c—proportionality constant

Q(E)—thermodynamic probability
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4.3 POSTULATE OF EQUAL A PRIORI PROBABILITY:

Statement:

*

The probability of finding the phase point for a given system in any one region of
phase space is identical with that for any other region of equal volume.

The necessity of this postulate arises due to incompleteness of our knowledge
concerning the system of interest.

This postulate appears to be reasonable in character with the principles of
statistical mechanics derived from Liouville’s theorem.

According to the principle of conservation of density, the density of a group of
phase points remains constant.

At any time the phase points are distributed uniformly in the phase space.

There is no crowding of phase points in any particular region of phase space.
Any arbitrary element of volume in the phase space bounded by a moving surface
and containing a definite number of phase points does not change with time.

The property of no crowding of phase points in any particular region of phase
space and the constancy of volume element of phase space with time indicate the
validity of the postulate.

That is the probability of finding a phase point in any particular region of phase
space is directly proportional to the volume of that region.

The postulate replaces the postulate of equal priori probability when different

volumes in the phase space are considered.

4.4 CONTACT BETWEEN STATISTICS AND THERMODYNAMICS :
(BOLTZMANN RELATION BETWEEN ENTROPY AND PROBABILITY)

Boltzmann used the idea that the probability of the system in equilibrium state is
maximum.
Thus in equilibrium state both the entropy and thermodynamical probability have
their maximum values.
Boltzmann concluded that the entropy S’ is a function of thermodynamic
probability Q.

ie, S=f) (D)
Consider two independent systems A and B having entropies S; and S, and

thermodynamic probabilities Q; and Q ».

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

115



Entropy is an additive quantity and hence the entropy of systems together must be
equal to the sum of their individual entropies.

S=5+S5, (2)
The probability Q of finding both systems will be the product of the two

probabilities Q 1 and Q 5.
ie N=0,0 ....(3)
Substituting equations (2) and (3) in equation (1) we get,
§=f2)=fh) ....(4)
S=85+S5;
f ) =f@)) ®)
Differentiating with respect to Q1 we get,
Qof "(2102,) f'(021) ....(6)
Differentiating with respect to Q, we get,
D f'(2) = f1(2) e (7)

Divide equation (7)/(6), we get
2,4
o = [/ 1)
2

1 () =0, f'(22)
0 f'() = constant =k

! .Q — k
frem =y
Integrating, f2)=klogn + c
S=klog+c ....(8)

For a thermo dynamical system at absolute zero Q=1 and S=0 so that c=0.
S = klog 0.

This gives the Boltzmann’s relation between entropy and probability.

(a) Identification of constant ‘k’:

Consider the expansion of one mole of an ideal gas at pressure p; and volume V;
into an evacuated chamber of volume V..
The find pressure is p, and the final volume is V1+ V..
The probability of finding one molecule in the first container with volume V1 is,
41
Vi+1s,
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= There are N molecules and hence the probability of finding one mole of the gas in

the first container with volume V1 is,

0, = [VlfVZ]N ..(10)
= The probability of finding one mole of the gas in the container has volume V1+V,
is
0, = [Z:Z]N = [1]¥ (1)

From Boltzmann relation
AS = 52 _Sl
=k log 2, - k log (4

0
=k log (ﬂ_i)

N
=k log [%l

Vi+V2

AS = klog [Vlv—tVZ]N
= log [VlV—tVZ]Nk ..(12)
= The change in entropy when the gas changes from one state with volume V; and
temperature T, to another state with volume V, and temperature T, is given by,
v, + Vz]
Vi

T;
AS =C,log —+ R log |
(41

For isothermal change T, = T; and hence C,, log? =0
1

Vi+ 1,
Vi

= log [VIVL;/Z]R ...(13)

AS =R log [

]

Comparing equation (12) and (13), we get
Nk =R
k =R/N
= 1.03 x 10723 J /K = Boltzmann’s constant

4.5 ENSEMBLE THEORY: CONCEPT OF ENSEMBLES:

= A system is defined as a collection of identical particles.

= Anensemble is defined as a collection of macroscopically identical, but

essentially independent systems.
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= Macroscopically identical means each system satisfies the same macroscopic
conditions ex: volume, energy, pressure etc.
= |Independent systems mean the systems are non interacting.
= There are three most commonly used ensembles namely,
Q) micro canonical ensemble
(i) canonical ensemble
(i) grand canonical ensemble.

Micro canonical ensemble:

= Collection of large number of

essentially independent systems with same energy
% EV.N EV.N EV.N % E, volume V, and the number of particles N.
= = = All the particles are identical.
= = » The individual systems are separated
= EV.N EV,N EVN =
= = byrigid, impermeable and well insulated walls.
= — . No exchange of heat energy as well
= EV,N EV.N EVN = .
= = asthe number of particles between the systems
takes place.
Canonical ensemble:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ N . Collection of large number of
§ \ essentially independent systems with same
\ T,V,N T,V,N T,V,N \
§ % temperature T, volume V and the number of
§ § particles N.
§ TLV.N TLv.N LV.N § = All the particles are identical
\ \ p |
§ \ = The individual systems are separated by
X TV,N TV,N T,V,N \
\ § rigid, impermeable but conducting walls.

N

7

A TR

= Exchange of heat energy between the

system takes place. But not the particles.
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Grand canonical ensemble:

o

AT I TIH itk

W\\\\\\\\ N = Collection of large number of
\ \ essentially independent systems with same
N\ X
\ e TVen | LYn \ temperature T, volume V, and the chemical
§ § p , ,
N potential p.
§ LV,u LVu | TV.p § = All the particles are identical.
§ § = The individual systems are separated
Nikds Lv.u Lv.u \ by rigid, permeable and conducting walls.
\ \ y rigid, p g

\

= Exchange of heat energy as well as the

particles between the system takes place.
The state of any ensemble can be completely specified by a large number of phase
points in the phase space called dust cloud.
Thus the behavior of an ensemble can be represented by a large number of

trajectories (or) phase lines (or) streaming motion of the dust cloud.

4.6 PHASE SPACE:

The instantaneous position of a single particle is described by three independent
co-ordinates x,y and z.

The instantaneous motion of a particle is described by momentum co- ordinates
Px » Py »Pz-

Thus the state of a single particle is completely specified by position co-ordinates
x,y, z and momentum co-ordinates p, , p, ,p,

We may imagine a six dimensional space with volume d,, d,, d, dp,dp, dp,.
The position of a point particle in this space can be described by a set of 6 co-
ordinates x y z py , py , Ds-

This 6 dimensional space for a single particle is damped as phase space.(u=space)
If the system contains a large number of particles such that f independent position
co-ordinates qy, gz, .. ... ...., ¢ and f momentum co-ordinates py, py, ... ...., Pr ,
then 2f combined position, momentum co-ordinates may be allowed to define 2f-
dimensional space called phase space(I'-space)

The I"-space is considered to be a conceptual Euclidean space having 2f

rectangular axes and an element of volume represented by

dq,,dqy, ... ... ,dqr dpq,dpy, ... ... ,dpy
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The instantaneous state of a particle in the phase-space is represented by a point
known as phase point (or) representative point.

The number of phase points per unit volume is known as phase density.

4.7 COUNTING THE NUMBER OF MICROSTATES IN THE ENERGY RANGE
g TO g+ds:

For a single particle we have six dimensional phase space.

Three position co-ordinates (x,y, z) and three momentum

co-ordinates (p,, py,p,) specify the microstate of a particle !

in the phase space. E o );J

An element of volume in phase space is, \ pl —7
6x6y6,6,,6y,6p, = h3

The total volume of phase space is [ff [[f d.d, d.d, d, d,,
We have [[f [f d,d,d, =V
So the volume in phase space =V [ [ [ d, d, d,,

Volume of momentum space containing momentum between p and p + dp will
be given by the volume of a spherical cell with radius p and thickness dp.

Therefore,
fffdpxdpydpz = 4mp’dp

Now volume of phase space
= V.4np?dp

m
=V X 41 (2me) \/;de

= 4V~\2 m3/2 1/2d¢

The number of cells within the phase space.

ie, 2(e)d e = 4”:—3ﬁ m3/2gl/2de
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For a single particle the number of accessible microstates will be equal to the
number of cells in phase space.

Hence the number of microstates in this energy range € to e+de is given by,

N(e)de = 4”:—3\/7 m3/2g1/2de

4.8 TIME AND ENSEMBLE AVERAGE:

An ensemble consists of a large number of independent systems.

It may be represented by a particular point in phase space.

A gas containing a large number of molecules forming a system.

The gas molecules move constantly and hence they change the position and
momentum with time.

The entire gas shows a time independent property (eg: temperature , energy etc.)
which may be considered as the average of the specified property of the
constituent gas molecules .

Here, we discuss this type of average property of the ensemble.

Let the state of the ensemble changes with time.

Let u be the property of the ensemble.

u takes values uq, uy, ........,u,, having probabilities Py, P,, ... ...., B,.
_ P1u1 +P2u2 + o +Piui + e Pmum
u =
P1+P2+"' ...... +Pi+"‘ ......... Pm
= oo (1)
Xz, P
The sum of the probabilities of the all possible state must be equal to one.
ie, P+Py+- .. +P 4+ +BP, =YX, P =1 ....(2)

This called normalization condition.
Now equation (1) becomes

u = )il Py
If the ensemble consists of N systems, u can be expressed as the function of all
position and momentum co-ordinates of the systems.
If the probability distribution function is continuous , then equation(1) can be
expressed as,

Ju(q.p)P(q,p)dr
[ P(q,p)dr

dI' =dqq,dqy, ... ... ... ,dqr dpy,dpy, ..., dps

u=

According to normalization condition
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fP(q,p)dF =1

= Hence u= [u(q,p)P(q,p)dT
= This gives the ensemble average.
4.9 LIOUVILLE’S THEOREM:

+ Liouville’s theorem gives information about the rate of change of phase density in
the phase space. The theorem may be stated in two parts.

+ The rate of change of density of phase points in the neighborhood of a moving
phase point in the I space is zero. This part represents the principle of

conservation of density in the phase space.
dp/dt =0 (D)

+ Any arbitrary element of volume or extension in phase in the I" space bounded by
a moving surface and containing a number of phase points does not change with
time. This part represents the principle of conservation of extension in the phase

space.

d d
& @r) == (1] dgidp;) = 0 -(2)

Q) The principle of conservation of density in the phase space:
¢ Consider any arbitrary hyper volume

0 = 6q, 6q ... .....8qf 8py 6Py ... ... Opf
in the phase space located between T .
q; and qq +6qq oo .. qp and qp + 8qy P @ [‘fﬁ(g%)&fl]
piand py + 8pq, e e ... Py aNd pr + 6ps. The Predp [ ﬁpl]jn C:
number of phase points in this volume element Lo :A B:
changes with time due to the motion of phase %
points. B

¢ If p is the density of phase points, the number * e iql
of phase points in this volume element at any
instant t is ,
ON = p.o6I' = pbq, 8q; .......6q5 6p16D2 . ... ... Opy ....(3)

+ The change in number of phase points in volume element per unit time,
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d(6N) _ d . .
o = E(p.&“) =p6l'=pbq,6q, .......6q76p16p7 v ooe ... opr  ...(4)

+ This change in the number of phase points in the given hyper volume is due to the
difference between the number of phase points entering the hyper volume through
any face and the number of those leaving the opposite face per second.

+ Consider two faces of hyper volume with co-ordinates g;and q; + 6q4. If g1 is
the component of velocity of phase point at gy, qz, ... ... q¢, D1, D2, «or vor oo ps ,then

the number of phase points entering the first face AD per second

=pq16qy .. .....8q5 Opq ... ....ODf ....(%)
¢ As density p changes with change in position and momentum co-ordinates and at

the opposite face BC the co-ordinate g; changes to g; + §qand the density p

changesto (p + ;Tp &q4) at the face BC. The velocity g1 changes to (q; +
1

% &q1). Therefore the number of phase points leaving the opposite face BC at
1

g1 +6q1 per second.
_ ap .8
= (p + (3(1_16(]1) (C[l + ﬁ 6q1) 6(]2 ...... SQf (Spl, ......... 6pf
+ Neglecting higher order differentials, we get
. aq .
= |pdr + (o o +q1$)5q1] 8Gs oo 8Gf OP1s e o Sp;  ...(6)

+ Subtracting (6) from (5) we get the expression for change in the number of phase
points per second corresponding to Q.
— _(p L 4 5 0P
=—(p 20, + g4 aq1)6q16q2 ...... 8qs 6P1) vve e o Sps ...(7)

+ Similarly, the expression for the change into the number of phase points per
second corresponding to p; is

p .0
=—(p % + Py ﬁ)&h&lz ...... 8qF 6P, wve vee oo Ops ....(8)

+ Since the change in number of phase points per second corresponding to all
position and momentum coordinates are like equation (7) and (8), then they are

summed up.
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+ The net increase in the number of phase points in the given hyper volume per

second is given by,
d(6N aq;
( 1= —yf [ (azi +ap) + (qlaq + P, —)] 8qy ..8q5 8py, .. OpF e (9)
¢ using equation (4)we get,

~2 [P (G +32) + (ause +91 50| ..(10)

aq;

+ From canonical equation,

aq; 0°H ap; —0%H
— = and — =
dq; 0q;0p; dop; 0p;0q;

+ Since the order of differentiation is immaterial i.e,

0°H _ 0°H
dq;0p; 0p;0q;

aq; ap;
We get —=-—
g 9q; ap;

aql
>, 2t ] (1)

+ Now equation (10) becomes
W\ __vf [, 0 . O
(6t)q,p - Zi=1[q1 20, + ;i P
% f o[ . P 7 _
( 6t)q,p + Zi:l [6qi a + 6pipl] =0 ....(12)

¢ This equation represents Liouville’s theorem.

dp t)=0
T (G1s oo Qs D1y oee e Dfs E) =

. dp
IE,E =0 ...(13)

+ This expression represents the principle of conservation of density in phase space.

(i)  The principle of conservation of extension in phase space:
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¢ Consider a very small region of hyper volume oI in the I" space, so that the

density of phase points p can be taken as uniform throughout the hyper volume.

The number of phase points in this hyper volume, 6N = p.éI"

d ON —d or
a( )—E(P- )

_dp d(8r)
= 6r +p — ...(14)

+ As each phase point represents a definite system and systems can neither be

created nor destroyed, the number of phase points N must remain fixed.

ie = (6N) =0
dp d(8T)
—4or =
P~ =0
¢ from equation (14) ‘;—’; =0
d@ry
dt =0
d(8T)
a 0
6I' = constant ....(15)

+ This expression represents the principle of conservation of extension in the phase

space.

STATIONARY ENSEMBLE:
4.10 MICRO CANONICAL ENSEMBLE (ISOLATED SYSTEM):
e An ensemble in which each system has the same fixed energy as well as the same
number of particles is called micro canonical ensemble.
e In this ensemble, density p, for a closed isolated thermo dynamical system is a

function of energy and we take
p(E) = constant  between the energy shells E and E+6E of phase space.

=0 outside the region of phase space.
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We call this region in which p(E) = constant as accessible region dI" of phase
space.

The above choice of p(E) being constant in dI" and zero outside dI' indicating
accessibility can be justified as follows:

Suppose we consider a gas of volume V, separated into smaller volumes V; and
V; by a thin perfectly conducting wall of negligible heat capacity through which
the particles of the gas can diffuse very slowly, hut through which energy can be
exchange freely.

Let at a particular instant, we determine the pressure in the two volumes, and let
at this instant n out of total n’ particles be in volume V1. The particles in volume
V. will be then (n'-n). Now,

(i) For an experiment of short duration, it would not be appropriate to take all
particles could be found with equal probability anywhere within the volume V
and therefore accessible region is the region of phase space in which all the first n
particles are in V4 and remaining (n'-n) are in V.

(if) For an experiment of long duration in which a considerable amount of
diffusion could occur, the whole of phase space is accessible.

Thus for short duration experiments dI" is accessible and it is inappropriate to
include in the ensemble, the assembly lying outside this region dI", which means
p(E) = constant for dI" while zero outside dI".

In general, all accessible regions of phase space are given equal weightage in
averaging over a microcanonical ensemble. This is known as the ‘Principle of

equal a priori probabilities’.

(i) Partition Function:
Consider an assembly of ideal gas obeying classical statistics.
Let the distribution of gas molecules be such that n; molecules occupy the i"
state with energy between ¢; and ¢; + dg;
Let g; be the degeneracy of the it" state.
According to M-B distribution law,

n; = gie “e P4

= gie e E/k [B=1/KT]

e =A
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Then n; = Ag;e ikl
= Let the total number of gas molecules be N.
N =), n,.
=X A gie™s/F
=AY gie o/

N —e,
7 =Y gie /M

Z=3; gie /"

= Zis known as partition function and Z indicates how the gas molecules of an
assembly are distributed (or) partitioned among the various energy levels.

= |f the energy of the i*" level is ; then the weight of an individual level is unity.

ie,g; =1
Z=Y, ee/k

= Here the energy term may contain the rotational, vibrational and electronic
components in addition to translational component.

= ‘7’ can be used for calculating the various thermodynamic properties of
ensembles.

= In classical treatment the energy distribution is continuous.

= The number of energy levels of the momentum interval p and p + dp is given by,

V 4np?dp
gwydp = — =
p? = 2me
2pdp = 2mde.

m
dp = > de.

m m
= de = |—de
2me 2¢e

= Now the number of energy levels in the energy range € and € + de is obtained as,

vV m
g(e)de = s 4n(2m£)\/;de

_2nv
= _h3

Z=73; gie /",
= [y g(e) e/ de

(2m)3/2 e1/2de

= 0°°2:_3" (2m)3/2 £1/2 g=¢/kT g¢
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*

_ 2V Y (2m )3/2 f°°g1/2 —¢/kT ¢

2V 1
T @m)*? 2 |

=22 (2m)*/? S \[n(kT)?
Z = K (2nmKT)3/?
h3

This is the translational partition function for a gas molecule.

4.11 CLASSICAL IDEAL GAS USING MICRO CANONICAL ENSEMBLE:

L 4

*

Consider a micro canonical ensemble of a perfect gas.
Let there be n point particles with mass m confined in a volume V with total
energy u within the energy range du.

The corresponding volume

qul ......... dCI3n =pyn",
Hence AT =V" [dqq o ndqsy

The momentum space integral is to be evaluated subject to the constraint of the
ensemble
u—déu<su, <u.
U, = Z?—1 pi/2m.
u—du <YL, p?
The accessible volume in momentum space is the volume of a spherical shell of
radius (2mu)'/2 and thickness (%)% Su.

The volume of three dimensional sphere of radius ‘R’ is,

3/2 3/2
+—R3 =5+ R®=C3RS

_ 4 _p3 _
ST R O]

wf/r2 Fo_ 3

af/2

/2!
Therefore for 3n dimensional hyper-sphere of radius (2mu)'/? , the volume is,

where Cf =

(Zmu)3n/2

/
VBn( ) (3 /2)!
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*

*

L 4

*

*

*

The volume coupled between hyper spheres of radii (2mu)'/? to [2m(u —
Sul1/2is

3n/2
[dpy oo dpsy, = (Znﬁ [(2mu)3"/% - (2m(u — su)}P"/?]
n3n/2 3n/2 SuN3n /2
= Gy @ma)?e 1= (1 =577
3n/2 3 5
= (:n/Z)! mu)3/? [1 — exp(—%.ju)]
For a macroscopic system 3n=10% ; 3—“%“ >>U.

And hence we can drop the exponential term.

7.[311/2

[dpy v ndp, = G2 (2mu)3n/?

n n3n/2

(Bn/2)!
According to classical statistical mechanics, the entropy o in statistical

(Zmu)3n/2

equilibrium is given by,
o =log AT
7.".3n/2

(3n/2)!
=nlog[V n3/? 2mu)3/?] — log (3n/2)!
=nlog[V n3/? 2mu)3/?] — (3n/2) log (3n/2) + 3n/2
= nlog [V n3/? 2mu)3/?] —nlog (3n/2)3/? + 3n/2

= log [V" (2mu)3/? ]

_ V n3/22mu)3/?
=n lOg [W] + 371/2

o= nioaty () ("1

We know that the entropy should not depend on the unit of hyper volume AI'. To

make it dimensionless we divide it by h3",
o = log[AT' /h3"]

47.[_m)3/2(£)3/2

V( 3 n 3n

+_

=nlog >

h3

The above equation does not satisfy the additive property and hence to satisfy the

additive property we must divide by n!
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4mm \3/2 (u\3/2

= nlog V( 2 )h3(") +37n—logn!
4mm \3/2 (u\3/2

= nlog V% +37n—nlogn+n
v (4 \3/2 3/

0'=nl0g (n)(323 (n) +;n

+ This expression satisfies the additive property because instead of V and u we have

V/n and u/n.

+ We shall now establish the connection of statistical quantities with corresponding

thermodynamic quantities.

(a) Internal energy(U):

By the definition of statistical temperature ,

1 _ (60)
T - ou Tn

{nlo g [(%)(%”’”)3/2 &

h3

_ 0

du

5
-n
Tn
a

B amm\3/2 u\3/2 5 0 s
= — nlogv-nlogn + nlog(T) +nlog(;) —nlogh] +£(En)

4mm 3

/2
= ;—u[nlogv—nlogn + nlog(T) +%nlogu—%nlogn—nlogh3]+

2 ,5
7 GM)

uzgnr (or) uz%nkT
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Which is the well known result for the internal energy of a perfect mono atomic
gas.

(b) Relation between T and T:

The statistical temperature
T =k X thermodynamic temperature.
T = kT

(c) Relation between t and p:

P o_ 6_0)
We have . _(av .

3
:(%)l{nlogv—nlogn +nlog (MTm)2+§nlogu—§nlogn—

nlog h3+ AoV (52n) nu

)
= (W) [nlog V]
=n/V
PV =nt (or) PV =nkT

Which is well known ideal gas equation for a perfect mono atomic gas.

(d) Thermodynamic entropy (S): (Sackur - Tetrode equation)

The relation between thermodynamic entropy and statistical entropy is given by,

S =ko

BESNES

h3

= nk log +;nk

nh3 3

= nk log ( Y )(‘*”—’")3/2 (%kT)?’/Z] +2nk
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Since u = %nkT

4 5
= nk log e (2nka)3/2] + Enk

V 2mmkT\**] 5
=nklog5< % ) +§nk

3/2
= nk log [5 (znzlsz) 85/2]

+ This is the famous Sackur - Tetrode equation for the entropy of a perfect gas.
This formula is valid for the mono atomic gas of atoms with zero total angular

momentum.
+ The thermal de-broglie wavelength associated with a molecule may be defined as,

A = h/average thermal momentum of a molecule.
A = h/(Q2mmkT)'/?

23 = h3/(2nmkT)3/?

1

— = (2mmkT /h?)3/?

Now o= nlog [5,113] +;n
S = nklog [g%] +;nk

+ Thus the entropy of a perfect gas is determined essentially by the ratio of the
volume per particle to the volume A* associated with de-Broglie wavelength.

(e) Chemical potential of a perfect gas:

The chemical potential of a perfect gas is given by,

Y
—=Ga),,
= [mtog [55] + 5] o

_9 _ _ 3 92
== [nlogV — nlogn— nlog A2°],, + - (zn)uv
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=logV —1—logn-log A3 +§
v 3
=log (5) +3
uo_ na3 3
t =log (%) -3

n
4

I=
I
o~
Q
Q
Vamay
|~3
s (s
w
N——
I
N | W

A3 3t
M= tlogp+ TZOQ(T)_T'

tlogp + f(7)

¢ Where f(7) is the function of the temperature alone.
4.12 GIBB’S CANONICAL ENSEMBLE:

(i) System in contact with heat reservoir:

+ The micro canonical ensemble describes the systems which are perfectly insulated
and have given energy.

+ In thermodynamics we do not know the exact value of energy as we usually deal
with systems kept in thermal contact with a heat reservoir at a given temperature.
Thus we know only its temperature i.e its average energy.

+ The energy varies from instant to instant but the time average is known.

+ On the other hand the canonical ensemble describes those systems which are not
isolated, but are in thermal contact with a heat reservoir.

+ In this situation the system of interest together with a heat reservoir forms a large
closed system and the system of interest is treated as a subsystem.

+ |f the energy of the large closed system is constant, then it would represent a
microcanonical system where as the subsystem which can exchange energy with a
heat reservoir would represent canonical system.

¢ Thus any part of sub system of an isolated system in thermal equilibrium can be
represented by a canonical ensemble.
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*

Consider a micro canonical ensemble representing a very large isolated system.
Imagine that each system of the ensemble is made up of large number of
subsystems which are in mutual thermal contact and can exchange energy.

Choose a sub system s. The rest of the subsystem is denoted by r called heat
reservoir. The total sub system is denoted by t. As the total system is a member of
the microcanonical ensemble, it is isolated and E; is constant.

Let the energies of the sub system and heat

reservoir be Es and E; so r heat reservoir

E = E +E S|  subsystem

+ As s can exchange energy but not the particles,

it is a member of the canonical ensemble. s is
comparatively small but usually macroscopic containing 10%* particles. In the
case of a gas, the sub system may be a single molecule.

(i)  Thermodynamical functions and partition function:
We shall calculate the entropy, energy, Helmholtz free energy and partition
function of the canonical ensemble.
Consider an isolated system with total energy E,. This system is a part of a micro
canonical ensemble.
The micro canonical ensemble minus system is heat reservoir. Our system is in
thermal equilibrium with the heat reservoir in such a way that E=Eq.
Let our system in the microcanonical ensemble be defined in the energy range
between Ey and Eo+dE. But in microcanonical ensemble SE is unimportant.
Then we may choose JE to be equal to the range of reasonably probable values of
the energy in the canonical ensemble.
Therefore we define the entropy of the canonical ensemble with the mean energy
E to be equal to the entropy of a microcanonical ensemble with energy E.
Consider the volume oI' of the phase space corresponding to the energies
between E and E+SE

or(e)

]ESE

To estimate oE:
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¢+ Let o(E) dE represent the canonical ensemble probability for a system to have
energy in the range E and E+dE.

¢ p(E) is the probability density of unit volume of the phase space at energy E, then
the probability of volume AT in the range E and E+dE will be p(E) AI'(E).

So that,
w(E)dE = p(E)AT(E) (1)
_ ar (g)
=p® |57, dE
+ Figure represents the variation w(t) as a function of E. T
¢ The normalization condition is,
o (E)
[ o(E) dE=1 .2
¢ The simply means that the area under the curve
o= o (E) is equal to unity.
+ Since the mean energy of the canonical ensemble is >
oE E —

E the function o(E) will have an extremely sharp
maximum at E=E differing appreciably from zero only in the immediate
neighbourhood of this point.

¢ So on normalizing the plot we can introduce the width 6E of the curve of o= o(E)
defining it as the width of the rectangle whose height is equal to the value of the
function o(E) at its maximum and whose area is equal to unity.

¢ Thus the width 3E is determined by the normalization condition.
[o(E)SE=1
+ Comparing equations (1) and (2) with E = E, we get

Now, p(E)Al =1

1

Al = —
p(E)
+ But we have, p(E) = Ae E/"
Al = AteE /T
— AleU/KT .0
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R =S

+ where E=U=energy of the system and 1=kT

+ So that the statistical entropy ¢ is given by,
o = log AT

= log[A~1.eV/FT]

U
=—log A+ o
U
log A = T 0
_ U—=koT
kT
_U-ST
T kT
. where S = ko = thermodynamic entropy.

Helmholtz free energy:

F=U—-To=U-ST

F
log A = e
A= eF/kT

+ So that the canonical distribution function takes form,

p(E) = Ae™F/

_ oF/KT o—E/kT
— o(F-E)/kT

+ Now applying the normalization condition
Jp(E)dr =1

fe(F_E)/deF =1
e F/KT — fe—E(p,q)/der

+ Now the partition function is defined as,

(4
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Z = [ e E®D/KT g (classical)
Z =Y, e FU/KT (quantum)

So, e F/KT = 7

—F/kT =log Z
—F =kT log Z
—F=r1tlogZ—F =-1logZ. ....(5

+ This equation represents the expression for the Helmholtz free energy in terms of
Z.

+ Suppose N independent identical spinless particles, we must correct the classical
partition function dimensionally and take into account the indistinguishability of
the particles so that the correct expression is,

1

Z= N!n3N

[ e E@D/Tqr (classical) ...(6)
Entropy of a system:

+ The statistical entropy of a system in canonical ensemble is given by,
o=-(5),
= % (tlogZ2)
=logZ + T%(logZ) ...(7

+ IfE;isthei™ energy eigen value of a system, we have

Z=Ye il

logZ = log(z e Ei/7)
i

;—T (logZ) = :—T [log(X; e £i/7)]

—E;/ E;
_ZeT(H)
Zie_Ei/T
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15 U
+ Now statistical entropy ¢ = logZ + g ....09)

¢ The thermo dynamic entropy S = ko = k [logz + g]

S=klogZ += ....(10)

4.13 A SYSTEM OF NON-INTERACTING CLASSICAL HARMONIC
OSCILLATORS USING CANONICAL ENSEMBLE:
+ We now take up the quantum-mechanical situation, according to which the energy

eigenvalues of a one-dimensional harmonic oscillator are given by
1
€, :(n+EJ ho; n=012,.... ...(1)

+ Accordingly, we have for the single-oscillator partition function

= {Zsinh (%Bhoo)} ...(2)

+ The N — oscillator partition function is then given by

N

- exp (—;maj
| 1-ep (-Bho)

exp(—NBhoaj
- 2 ) _gtummef_gme]"
[1—exp (~pro)]"

+ For the Helmholtz free energy of the system, we get

Qu (B): |Q1(B)|
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A=—-KTInQ,

A = —kT In %_(le)ﬁhm[l_ e—ﬁhmIN }
= NKT In[e¥2"]+ NKT In[1—e ]

= NEhm kT |n(1—e-B"'°))} o (8)
¢ Wwhereby
n=AN. .. (5)
P=0 ... (6)
S =BkU +kInQ,,
S= BkN_Ehco+h—(D_ +k In{e‘(N’Z)ﬁ”“’h—e‘Bh‘”}N }
20 (™)
S ZBkN_EhaHh—(D_ +kiIn(e ™20 )k InfL—e P
2 (-]
ho ho N
S= kN— KN—2 — _BKN = +KIn[L—e "
p +B @ 1) B o [ T
’ h
S=kN|-PR® oy ge]
(" ~1)
¢ Then
Bho o
S=kNI—"2 __|nfi-e (7
{(eﬁh‘”—l) : ] (7)
Also
1 1 (1
S = Nk| =Bhmcoth| =Bhw |- In{ 2sinh| =Brie
2 2 2
U =_—B|n QN
0 N
= — Y Ine (N2profy  o-Bho
S e
a N
—— (N/2)Bho “nh= —Bho
op nfe )3 B nft-e ]
~ e(N/Zﬁhm( N/Zh(o) N(l—efﬁhm)iNile’Bh‘”(_h@)
= — e —(N/2)Bho (1—9_[37"“)_’\‘
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_ th+ N7w
2 eMefl-e)

N7o N7o
= +
2 (e” —1)
U=Ntro+r— "2 |- Lo coth[lﬁhmj ... (8)
2 e -1 2 2
and C,=C, _u
dT
=iN lho\)+:—l—m
ar |2 (e” —1)
_dy hZ—Tw
dr | (e™" -1
it
KT
= N7 _( Rk _ )2
ho)  ef
—m@_j e
kT (e ]_)
¢ Then
eﬁhw
Cp = Cv = Nk(ma)Z(ma—z .. (9)
e¥ _1]
+ Also

2
C,=C, = Nk(%ﬁhcoj oS ech{%ﬁhmj
<AU>: standard deviation in energy distribution
(AU)” = kTZ(Qj
aT )y

ema

(e -1f

[§70)

= KT2NK (Bro) [From equation (9)]

1 e
= Nk*T? ho)
kZT 2 ( 0‘)) (eBhU’ _1)2
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+ Now <Au>zmhmm ... (10)

¢ Thus (AU) oc VN

+ Formula (8) is especially significant, for it shows that I 2
the quantum-mechanical oscillators do not obey the ()
equipartition theorem. o 1

¢+ The mean energy per oscillator is different from the

equipartition value KT; actually, it is always greater than

KT; see curve 2 in figure.

kT

—_—

+ Only in the limit of high temperatures, where the o
thermal energy KT is much larger than the energy quantum 7w, does the mean
energy per oscillator tend to the equipartition value.

+ It should be noted here that if the zero-point energy 1/2%w were not present, the
limiting value of the mean energy would be (kT —1/2%w®), and not kT- we may

call such an oscillator the Planck oscillator, see curve 1 in figure .

+ In passing, we observe that the specific heat which is the same for the Planck
oscillator as for the Schrodinger oscillator, is temperature dependent; moreover, it
is always less than, and at high temperatures tends to, the classical value.

¢ Indeed, for KT>>hw, formulae (2) through (9) go over to their classical
counterparts, respectively.

4.14 Grand Canonical Ensemble:

(i) System in contact with a particle reservoir:

+ In microcanonical ensemble each system contains same fixed energy as well as
same number of particles.

+ The microcanonical ensemble would not be applied to thermodynamics because
we deal with systems kept in contact with heat reservoir. Then we know only the
time average of energy.

+ In canonical ensemble we relaxed the condition of constant energy and allowed

the subsystem to exchange energy with heat reservoir. But this model could not be
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applied to processes where not of particle varies. e.g. chemical processes and
quantum processes.

+ Therefore, we seek an ensemble which allows the subsystem to exchange energy
as well as the particles with reservoir.

+ Such an ensemble which allows the subsystem to exchange energy as well as the
number of particles with the heat reservoir is called grand Canonical Ensemble.

+ In grand canonical ensemble the independent variables are T,V and p. Then we
have the grand potential.

N=U—-TS—pun

which is minimal when T,V and p are held fixed.

+ Consider a microcanonical ensemble representing very large isolated system.

+ Each system is made up of large number of sub system which are in mutual
thermal contact and can exchange energy as well as particles with each other.

+ Choose a sub system s, heat reservoir r and the total system t.

+ E.and E, represent the energies of the sub system and the reservoir.

+ n, and n, represent the number of particles in the sub system and the reservoir.

+ Then the subsystem and the reservoir may exchange energy and particles subject
to the conditions

E;+E. =E;, andng, +n, =n;

+ Now we find the probability dw,(n,) of finding the sub systems in a state in
which sub system S contains n particles and is found in the element dI'(n,) of its
phase space.

* dI'(ny) indicates that the nature of the phase space of the subsystem changes with
Ng.

+ For grand canonical ensemble

dw(n) = Aexp[(nu— E)/t]dI'(n)

+ Normalization constant A = exp (!T—Z)

+ Qs called grand potential or thermodynamic potential.
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dw(n) = exp[(Q + nu — E) /7] dI'(n)
[don) =1

[exp[(R + nu—E)/t]dlI'(n) =1

+ From the normalization condition [ p(n)dI'(n) = 1

+ p(n) is the density of distribution of phase points in the phase space.

+ Now we get p(n) = exp[(2 + nu — E) /7]

+ An ensemble characterized by the probability distribution p(n) given by the
above equation is called grand canonical ensemble.

(i) Partition function and thermodynamic function for grand canonical
ensemble :
+ In grand canonical ensemble sub system is allowed to exchange energy and the

particles with the heat reservoir under the condition,
E;+E. =E, andng +n, =n, .. (D)
E¢, ns— the energy and the number of particles of the sub system.
E,,n,.—the energy and the number of particles of the heat reservoir.
E;,n,—the energy and the number of particles of the total system.
+ The probability distribution p(n) is given by,
p(n) = exp[(2 + np — E) /7] ...(2)
Q—grand potential
p—chemical potential
¢ The grand partition function is defined as,
Z = exp(—02/7) ....(3)

=Y eM/T [eE/T dr(n) (classical)

=Y 2i eXp(Hn - En,i)/T (quantum)

Z = Z ez,
n
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Z, =Y, e E/mdr(n) (classical)

= Y e Eni/T(quantum)

is the canonical partition function .

+ i.e the grand partition function Z is the sum of canonical partition functions Z ;

for ensemble with different n' s with weighing factor e =+n/7,

+ From equation (3) the partition function is given by,
Z = exp(—02/71)
N =-tlogZ

¢ The entropy 6 may be written as,

o = logAT

i ros
=—Q+nau—E)/t

=—(Q+7ap-U)/t

0 =—-2+nu—-U)
U—10=(2+nW)
Helmholtz free energy F = U — 10
=N +np
G=F+pV

=U-—1t0+pV

dG = dU —1do — adt + pdV + Vdp

But dU = tdo — pdV + pdn

(4

.05

..(6)
(7
.(8)
..9)

Hence dG = tdo — pdV + pdn — tdo — odt + pdV + Vdp

= pdn —odt +Vdp
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....(10)

Hence G = pn for fixed p and .

In this case G =pun
D+np+pV =nu
N =-pV
F+pV =pun ~(11)
U—710+pV =pyn
U—t0—-0=un
U—t0—pn =1 ....(12)
d) = dU — tdo — agdt — pdn — ndu

= 1do — pdV + pdn — 1do — adt — pdn — ndp

= —pdV — odr — Adp --(13)
Then p==().,
o==(%),,
--(®),

+ From the above three relations we can evaluate thermodynamic quantities for the

grand canonical ensemble.

4.15 CLASSICAL IDEAL GAS USING GRAND CANONICAL ENSEMBLE:

+ The grand partition function is given by,

Z=Y,em7 7 (1)

+ Canonical partition function
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1
n T pip3n

[ e E™/igrm) =L

N
n!

Zn'hmsz )3/2 vV = (27‘}[17;11')3/2

where f = (

¢ . The grand partition function

n w/T e\
Z = Zneﬂn/ff_ = Zn¥

nt !
. . x™ - X
¢ From the series expansion an =e€

Z = exp(e*/7f)

N =—-1logZ = —1e!/*f

(a) Chemical potential per particle (u):

=)
op vVt
S — (2’””’)3/2 V]
T ou h2
V,t
N w/t (2nmr)3/ ]
ou h? VT
= (271-7;11—)3/2 V ell/T l
h
_ 2mmt 3/2
— u/t
= () v
—_2
- T
A =—-1n
2mmt 3/
_Q = — ( % ) Ve.u/T

h2

3/2
—Tn =—71 (anr) Veklt

.2

(3

(4)

..(5)

..(6)

(7)

.(8)
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u = —tlog (g) ....(9)

(b) Entropy: (Sackur-Tetrode equation)

+ The statistical entropy o is given by,

o=-(%),,
- ;_T[Teu/f (2%)3/2 V]

COMERT

= (27;—;”)3/2 /4 [§T3/28“/T + T5/2€“/T(—,LL/TZ)]

= (2”_’")3/ 2 Vo3t [E _ &]

w2 27 *
= () e 1] (10)
o=n[;-1] )
+ From equation (9) we have = —log(£) - u = —7log (L)
/
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log2mmth23/2Vn ....(12)

¢ Thermodynamic entropy S = ko

= 7k E + log {(ZZT )3/2 %}]

= fiklog [{(Z’ZT)W ?}eS/Z] ...(13)

n

+ This gives the famous Sackur-Tetrode equation for the entropy of a perfect gas
and this is in agreement with the equation for microcanonical ensemble and
canonical ensemble.

(c) Internal energy:
We have N=U-10—un
U=0+710+un
N = —nt [from equation (7)]
o=1 E — %] [from equation (11)]

Now U=-nt +Tﬁ[§—%]+/ﬂ_l

_ 5_ _ _
=—nT+EnT—un+un

—37_11
= -fr.

3
U= EnkT

+ which is well known relation for the internal energy of a perfect gas.
4.16 ENERGY AND DENSITY FLUCTUATIONS IN ENSEMBLES:

(a) Canonical ensemble:
+ In canonical ensemble the systems are in thermal equilibrium with the heat

reservoir and so energy fluctuations take place.
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+ For canonical ensemble partition function,
Z=YeFh
where = L
TkT

oz _8E,
% Yie PE(—E)

=Y Ee Fhi

—BE: 0z
YiEe Pl = T

YiEie PEi

+ Mean energy E = W

_ YiEePEi

+ Using equation (2) a_[; = % (_52_;)

- -(3F)’

+ The molar heat at constant volume

1 &_1(6_2)2
z 3%  z2\ap

e

Q)

.3)

e
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=)&)
== (- )
¢y = () (BE)’ .(5)
(3E)” = kT?Cy
(E)" = T(kCy)"/2 .(6)

+ The energy fluctuation is measured by the ratio

s _ |GE)
E E
_ T(kCy)V/?
=——— .(7)

+ For large values of T, C , and E are proportional to the number of molecules N
and hence fluctuation is proportional to N~1/2,
+ For an ideal gas E = NkT and C, = Nk

AE T 1/2
E  NkT [kNk]

=%/2= N1/2 ....(8)
+ For a macroscopic system N=10%.
+ So the fluctuations are very small in the order 10
+ Therefore in canonical ensemble the distribution of energies is so peaked about
the ensemble average energy that in practice regarded as a microcanonical

ensemble.

(b) Grand canonical ensemble:
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as energy.
+ The energy fluctuation can be calculated as for canonical ensemble.

+ For Grand canonical ensemble the partition function,
Z = Zn ; e(n/l_En,i)/T

0z = Z .e(n.u_En,i)/T n
n,i

T

ou

1
— nu—E, )/t
E i n e( 123 n,L)/

T

Y ne@n—En)/t = ¢ 2
ou

oy e En )/
¢ Mean concentration n= - 5.
S e M En /T

5w —En /T

’

Z
102
n=——=
Z ou
%z 1 _E. .
w = T—Z Zn,i nze(nﬂ En,z)/T

2 %z

Zn,i nze(n# _En,i)/T =T auz

2 ,(nu—E, )/t
B Zn,in e( U n,l)/

2
Ty tuE
S n2e (M ~En, /T
o z
— 292z
le = T——z

T 022 T (62)2
ou

In ground canonical ensemble the fluctuations take place in concentration as well

.(9)

.. (10)

o (1D)
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an 1292z 12 (62)2
0T =2
ra = (Sn)

3/2
- - g _2
+ For an ideal classical gas 71 = e*/*V ( TZZT)

= 3/2
0 _ 1 gu/ry (2m) /
u T

7
on _ 1 _
ETRE
on _ _
a—n
()’ =7
()" = V&

+ The concentration fluctuation is measured by the ratio

kT
An [k_T] 1/2
n pV

+ Smaller of the volume greater is the fractional fluctuation.

4.17 ENTROPY OF MIXING AND THE GIBB’S PARADOX:

+ The partition function of a perfect gas is given by,
7 = :—3 (2mmkT)3/?
+ The entropy of a perfect gas is given by,

S = NklogZ + >Nk

= Nk log |5 (2mmKT)*2| + Nk

. (12)

(D)

2
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= Nk|logV +3logm +3logT + | .3
C is a constant term including h,k

+ The entropy given by equation (3) does not satisfy the

additive property and giving paradoxial results.

a b
Explanation: Na,Va,T,ma | Nb,Vb, T, mb
Sa Shb

¢ Consider two systems a and b at the same

temperature T,=Tp,=T
+ aand b are partitioned by a barrier as shown in figure.
¢ The particles of the two system are identical and distinguishable.
+ The entropies of a and b are given by,

S, = N, k[log V, + % logm, + % logT + C]

Sy = Nyk[log V, + % log my, + % logT + C] ....(4)

+ Here N,, m, and V, represent the number of particles, the mass of each particle
and volume of system a.

+ Here Ny, mp and V,, represent the number of particles, the mass of each particle
and volume of system b.

+ Entropy is an extensive quantity and satisfy the additive property.

+ |f the entropy given by equation (3) had satisfied the additive property , then by
removing partition and allowing the gas molecules to mix freely, the entropy
of the joint system would be

Sap =S+ 5

= N,k[log V, + % logm, + % logT + C] + Nyk[log V, + % log my, +
%logT+C] ..(5)
+ |f the particles of the two system are the same and for convenience we take
V,=V,=V,N, =N, =N and m, = m;, = m then the entropy of the
individual system be,
Sa = Sb
3 3
=Nk[logV + Elogm+ ElogT+C] ....(6)

+ Now the entropy of the combined system be,
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Sy = 2Nk [log V + % logm + % logT + C] .7
+ Now we shall find actual entropy. Let the partition is removed.
+ Allow the molecules of the gas to mix freely.
+ Now we have a system with 2N particles and volume 2V.
¢ Then the entropy of the joint system ab is given by,
Sap = 2Nk[log 2V + g logm + ; logT + C]
= 2Nk[logV + % logm + % logT +C] +2NKlog?2
=S, +S, +2NK log 2 ...(8)
+ Equation (8) is not equal to equation (7), but has an additional factor 2Nk log 2.
+ Thus by mixing of two gases with each containing N molecules and by removing
a partition between them , then the entropy of the joint system increases by 2Nk
log 2.
+ This additional entropy is called entropy of mixing.
+ Thus if we use equation (3) for entropy we got the paradoxial results.
+ This peculiar behavior of the entropy is called Gibb’s paradox.
To resolve Gibb’s paradox:
* Gibb’s solved this paradox by considering the two systems with the molecules are
identical and distinguishable.
+ If two systems containing same number N are mixed by removing the partition
then the diffusion takes place unnoticeably.

+ In this situation N molecules of each system cannot be distinguished in N! ways.

+ Hence the weight of the configuration W = N! H%

can be replaced by W= l_[%

logW = Xn;log g; — 2 log n;!

= Xn; logg; — X n;logn; + Xn;

= 2Znilog g; — ¥ n;logn; + N
+  From Maxwell- Boltzmann law,
n; = gie_“e_ﬁgi

log Wyey = En;logg; — £ njlog[gie e Pe] + N
= In;log g; — Enlogg; + X n;a+ En; Be; + N
logW pmax =aN + BE + N
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Let us substitute A = e™%; ie,a = —log A
log Wyax = —NlogA+ BE+ N
=N-—-Nlog A+ pE
= N[1 —logA] + BE
S =klog W,
= Nk[1 —log A] + BEk
= Nk[1-log Al + — > NkT k

kT 2
= Nk[1-log A]+ > Nk.
= Nk — Nk logA +> Nk .
= —Nk logA +3 Nk
- _ NS
= NklogZ+2 Nk

= Nk log= +2 Nk

S = Nk log [ & 4 3 e
= Nk log [(%) (2”;’:#)3/2] + 2 Nk. (9)

+ The entropy given by this equation satisfies the additive property since here in the
argument of logarithm we have V/N in place of V.
+ In equation (9) replacing N by 2N and V by 2V , the entropy of the combined

system be given by,

S. = 2Nk log [GTV,) (2”;"#)3/2] + 22Nk .

-2 {Nk log [(%) (2”;"#)3/2] T Nk}

=25=5,+5, ....(10)
¢ Thus Gibb’s paradox is resolved .The resolution of Gibb’s paradox is an example

of the success of the quantum theory.
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UNIT V : QUANTUM STATISTICAL MECHANICS

Quantum-mechanical ensemble theory: Density matrix, Equation of motion for density
matrix, Quantum- mechanical ensemble average; Statistics of indistinguishable particles,
Two types of quantum statistics- Fermi-Dirac and Bose-Einstein statistics, Fermi-Dirac
and Bose-Einstein distribution functions using microcanonical and grand canonical
ensembles (ideal gas only), Statistics of occupation numbers; Ideal Bose gas: Internal
energy, Equation state, Bose-Einstein Condensation and its critical conditions; Bose-
Einstein condensation in ultra-cold atomic gases: its detection and thermodynamic
properties: Ideal Fermi gas: Internal energy, Equation of state, Completely degenerate
Fermi gas.

QUANTUM MECHANICAL ENSEMBLE THEORY

5.1 THE DENSITY MATRIX:

+ A pure quantum state of a system is represented by a single eigenvector v .
* When the system is described by non-negative probabilities p,, p;,.......for being
in states v, g .vene , a statistical approach is necessary.

+ A pure classical state is represented by a single moving point in phase space, that

have definite value of coordinates q;,q,,.......... g;and canonical momenta

P,y Pyy----.. P t €ach instant of time.

+ The statistical state can be described by a non-negative density function
f(91,...9f P1.....pst)

¢ The probability that the system is found in the interval dqa,,...dg... dp;...dps at

timetis
p(dql....dqf,dpl ..... dpf)

¢+ The quantum analogue of the classical density function is known as density
operator.

+ We know that operators can be expressed by matrices and hence the density
operator expressed as matrix is known as density matrix.

¢ The density matrix expresses the result of taking quantum mechanical matrix
elements and ensemble averages in the same operation.

¢ Consider an ensemble consisting of N systems in the normalized states

v,,1=123....N. Let o, be the probability that an assembly will be in the state v, .
+ We then define the density matrix in the{w,} representation as

P = o, Sij (1)
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+ Suppose now we wish to calculate the probability that if a measurement is made

on an observable whose operator is A having Eigen functions ¢, the result will
be the Eigen value a, corresponding to the Eigen function¢, .

+ If the assembly is in the state y,and we express y,as a linear combination of the

¢, we obtain

Vi =Zcij¢j --(2)
j

¢ The probability that a measurement of A will give a, is then simply cin*Cin.
+ But the probability that the assembly is in the state y,is @,. Therefore the

probability that the measurement of A will yield a, is just

T, €y *Cy = 2, D 08,Cn *Cg
i
=YX cnC * [y, *py, dy
= j(iZcmw*jrg(ZCm *y; Mg
:Iwn *py,dg ..(3)

¢ Therefore the probability that the measurement on Awill give a, is just

[, *pd.da = pn ()

+ Now suppose we wish to calculate the average value of A. This will be simply

<A> =Zan pnn’

=3 [6,*pa0, dg
= ZJ.(I)n *fgl&n (I)n dp

= Trace[fn&}
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AN

We note that theaverage <A> is a double average, quantum mechanical average and a

statistical mechanical average.

5.2 EQUATION OF MOTION FOR DENSITY MATRIX

(A QUANTUM MECHANICAL VERSION OF THE LIOUVILLE’S
THEOREM ):

e From the definition of p in {@x} representation, we write

1

— N *
Pmn = NZizl Cin Cim (1)
. ap 1wy (9 dc;
¢ Again -§ﬂ=ﬁgﬂ(ﬁ%m+q%7%) 2)

e The schroedinger time dependent wave equation is

ih a
21 dt

Y, = HY,
i%Zk;—tCikﬁbk =Xk caHy, --(3)
e Multiplying equation (3) by (Pj* and integration over q.
i%Zk;_tf cijd; * drdq =Xy ci [ ¢; x Hprdg
.h o0

i——Cij = L Cur Hii [Hi = [ ¢; * Hprdq] (4

e Taking complex conjugate we have

.h 0
_LZECU k = Zk Cik *I_Ijk k (5)

e Substituting equations (4) and (5) in equation (2) and taking Hij:Hji*

i h 0pmn _ i h 1N (acin*

2 ot 2 N&iE1\Uge

dc;
Cim + Cin * lm)
1 1
= =~ Xk Cike * Huke * Cim + 7 Xk Cin * Cite Hie
= —(Pmk Hn * —Pin Hinic )

= _(pmk Hkn - Hmkpkn)

= _[p’H]mn
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This equation is analogous to the Liouville’s theorem in classical mechanics.

5.3 QUANTUM MECHANICAL ENSEMBLE AVERAGE :

*

An ensemble in quantum statistical mechanics is assumed to be a collection of a
very large number of perfectly isolated (conservative) and hence independent
systems in a variety of quantum mechanical state ‘Y'(q, t).

Now the quantum mechanical version of Liouville's theorem is
i ap A A
ih—"=H
P .o
and for the element py, to be independent of time, a’i%: 0, so that [H,p] = 0, this

means p and H commute.
Therefore, p is a matrix associated with some constant of the motion of the

system.

f)is some function of H, f) = ;3 (If|) where p(ﬁ) can be expanded in a power

series inH .
Taking ¢x’s as the basic set of eigenvectors, the matrix element of p can be written

as
P = [, 0{ 11,0 ()

In the special case that the energy eigenfunctions ,'s are chosen as basic vectors,

equation (1) becomes
Pen = [ W *p(H)w . dg -2)
If we consider p( H )as a power series in H ,then
p(H)=a,+a, H+a, H* +.......
P =0, +aE 8 +a,E 8 +....

(asH,, =E,3,,)

m ~mn
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=p(Er Jorm

* and p(H)v,, =p(E v, (3

¢ Thus any p (If|) is a diagonal matrix. Also, p(E,) is the probability of observing

the eigenvalue E,:
p(En) =0, ...(4)

+ From this equation it follows that in case of degenerate level, all the basic states

wm have the same probability o, i.e.
®Om1 =0Om2 = Omz... = p(Em1).  ...(B)

+ Now the state of a system known to have the energy E, within a range 6E very
small compared to L, must be represented by a superposition of basic states ym
belonging to eigen values Er, in the range E < E,< E +6E.

+ Let Q be the number of basic states yny, belonging to eigen values E,, in the range
E <En <E + 8E, then from equation (5), we have

('Oml :(’Omlﬂ =0 m;+2 SaTVIPIVIND Q)m1+Q—1 :p(E) (6)

¢ Thus the probability of observing the eigen value E, in the range E and E+0E is
proportional to 1/ .

(a) MICRO-CANONICAL ENSEMBLE

+ For a closed, isolated thermodynamic system i.e. a system with assigned values
for the independent variables E; n; n, ... ny; Xg, X2 ... Xs, USING energy eigen

functions as basic vectors, we write

P =Om Oy, ..(7)
*+  Where mnzéforEsEnSEH‘)E ..(8)
= 0 otherwise,

+ where OE is a very small range in E, and Q is the number of basic states w,
belonging to eigen values E, in the range E< E,< E + 6E. The constant 1/Q

result from the normalization
Z(Dn =1 ..(9)
n

+ From equation (8) it is clear that for a system known to have an energy between E

and E + JE, all basic states y, belonging to an eigen value E, in this range have
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the same probability ®,. This is usually called the postulate of “equal a priori

probabilities”.

(b) CANONICAL ENSEMBLE:

*

For a closed, isothermal thermodynamic system i.e., a system with assigned
values for independents variables T, ... ny ... n, Xi... x5 USINg arbitrary basic

vectors ¢

p=constantx e " ...(10)
Where 3 = constant = % From equation (1) we can write

Pon = constantxJ‘q)n *g A d,, dq ...(11)

In general, pmn= , is the probability of observing an eigen value a.

Hence we can write

p.. =1=constantx > [ ¢ *eﬁ'qfi) dq
z nk ZJ‘ n m

1
or constant = -
> [axe ™ ¢, dg
:% where Z:ZIq)n*e H b, dg ...(12)
A g BH
and = ...(13
P=— (13)
where Z (B, X1,... Xs, N1...1;) is called the partition function.
The classical partition function is je BH () dpdq ...(14)

Comparing equations (12) and (14), the integration over p in classical mechanics
is replaced by a summation over quantum states.

Z may be written in alternative ways
Z= Z(e‘“* ) =trace e *"
n nn

=sum of eign values of e "
Z is obviously invariant under a change of basic vectors.
The most invariant special choice of basic vectors is the set of energy eigen

function ¥,.
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¢ Therefore we can write

Ly, reeh
Prmn _2.[Wn € Vi dq

Lo e,
_ZIWn Wme dq (15)
N A 1 A 2
+ Because e PH :1—BH+5(BH)
and Hy, = Enyn

+ Now we obtain

Jw.e™y,da= v, v.e"dg
=15 et
Z mn

= Smnwn
¢+ Where o, is the probability that a system, chosen at random from canonical

ensemble, will be found in the energy state E,

¢ The partition function is written as
Z=[y, e™y,dg

= Z|\|;n|2e‘BE"dq

=Ze—BEn ....(16)

(c) GRAND CANONICAL ENSEMBLE:

+ Now we consider the case of an ensemble composed of members which can differ
not only in the state but also in the amounts of material of various kinds which
they contain. Such an ensemble is called the grand canonical ensemble.

+ Let us suppose that a system is composed of r independent kinds of components
and np, ny...n; be the number of molecules in any member system of grand
ensemble.

+ For an open, isothermal thermodynamic system i.e, a system with assigned values
for the independent variables T; (pi-U; X1-Xs) we can define the grand canonical
ensemble corresponding to such a system by the formula,
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*

*

L 4

L 4

*

*

*

_ constant x e™" x g "
P (1)
where pn =N, + pw,N, + ...+ 1, N,
_ Bun [ *a-BH
P, =Constantxe J.\pn e"’"¢,,dq (2

The total probability of finding a system in one or another state N will be taken as

normalized to unity. Thus we can write,

Pan =1
NZ; .0
Now from equation (2), we have
Constant = 1 -
e " [¢,'¢ ™", dg
_1
iy (4

where Z is called the ‘grand partition function’. Therefore

e_B }qe_ﬁun

p=—">" ..(5)

From equation (5), we get

e*BH” )
——J oo, da

e_BHn

2P =

Z(n)

=7v (n) say. ...(6)
Combining equations (5) and (6), we get

B Y(n)e—BH?n)

Tz (7
If the basis vectors are a set of energy eigen functions, then, the probability of
observing the state y, (N, x) is

efﬁun efﬁEn

mn(N):pnn:W (8)

(d) CONDITION FOR STATISTICL EQUILIBRIUM:

*

When a system is in equilibrium, its corresponding ensemble must be

stationary.i.e
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P =0.This is possible, when

I.  the density matrix is constant, or
ii.  the density matrix is a function of a constant of motion

If the density matrix is constant, its element will be given by
Prm :pOSmn (1)
i.e., all the non-diagonal elements of the matrix will be zero and all the diagonal

elements will be equal to a constant p,

In the energy representation, the basic function ¢, are the eigen functions of the
Hamiltonian H .So, the matrices H and p are diagonal. Thus

Pm = PnOm (2)
In the representation, the density operator ;;may be written as
ED:anj.d)n*Pn(i)ndq:[':',B} .3
To verify this, consider an element p,, . Now
pu= [Pt dg =Zn‘,[fwk*wnd<1)pn (v, w,da)

= Zn:Skn pnsnl = pk8k| .. (4)

A,S}

[
=3 [Hu Pio =P Hin

=2 [poHd 11 PoB i

This agrees with equation (2)

Therefore NP, =
|

=p0[Hmn_Hmn]:0 (5)
The distribution does not change with time. So, the system under consideration is

in equilibrium.

(i) From eqg. (5), it is obvious that ;A)commutes with H. Therefore, p must be a

function of

a constant of motion.

5.4 INDISTINGUISHABILITY AND QUANTUM STATISTICS:
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+ By indistinguishable particles we mean that if the position and spin coordinates of
two of them are interchanged, there is no physical way of measuring that a change
has been made.

+ In classical mechanics identical particles do not lose their individuality despite the
identity of their physical properties.

+ If a pair of particles is completely equivalent even then it is possible to identify
them by the continuity of their trajectories because this property enables an
observer to follow each particle.

+ This is due to the fact that their wave packets do not overlap, and the particles
move in separate, distinguishable continuous orbits.

+ As an example, consider the molecules in a gas at N.T.P.

Molecular density = 10*° mole./cm.?
Volume available to each molecule = 10 cm.?
Molecular radius =10%cm.

Molecular volume  =10%*cm.?

+ Because the molecule is smaller than the volume available, we can identify every
molecule of the gas. The molecules are thus distinguishable.

+ The situation is quite different in quantum mechanics as follows at once from the
uncertainty principle.

¢ Due to the uncertainty principle, the concept of the path ceases to have any
meaning. If the path of an electron is exactly known at a given instant, its
coordinates have no definite values even at an infinitely close subsequent instant.

+ By localising and numbering the identical particles at some instant, at some other
instant we cannot say which of particle arrived at that point.

+ In quantum mechanics there is no way of keeping track of each particle separately
when the wave functions of two identical particles overlap.

¢ Thus in quantum mechanics there is, in principle, no possibility of separately
following each of a number of similar particles and thereby distinguishing them.

+ As an example, we consider the conduction electrons of a metal:

Density of electrons = 10% per cm®
Volume available to each electron =10 cm®
Momentum py = (2mE)"? for 1eV. =0.5x 10" erg-sec cm™

Uncertainty in position Ax =h/p, =13 x 10®cm.
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Volume of conduction electron = (13x 10®%%cm?®
=2 x 10% cm®,

¢ Comparing the volume of conduction electron to the volume available, we
conclude that the electron wave functions overlap considerably and hence they are
indistinguishable.

+ Thus we have two categories of particles:

Q) Classical, which are identical but distinguishable.
(i) Quantum, which are identical and indistinguishable.

+ When quantum particle density is low, i.e., uncertainty is small in comparison to
the volume available, the particles obey classical statistics otherwise we use
quantum statistics.

55 ILLUSTRATION OF CLASSICAL AND QUANTUM STATISTICS

+ Consider a gas consists of only two particles a and b.

+ Assume that each particle can be in one of the possible quantum states S = 1,2,3.

¢ Letus calculate the possible states of the whole gas.

Maxwell —Boltzmann statistics:

+ The particles are considered distinguishable and any number of particle can be any

one state.

1 2 3
ab - -
- ab -
- - ab
a b -
b a -
a - b
b - a
- a b
- b a

+ Total states 32 = 9 possible states for the whole gas.
Bose-Einstein statistics:
+ Particles are indistinguishable , i.e b=a

1 2 3

aa - -
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- aa -
- - aa
a a -
a - a
- a a

+ 3+3=6 possible states for the whole gas.
Fermi-Dirac statistics:

+ Particles are indistinguishable and no more than one particle can be in any one

state.
1 2 3
a a -
a - a
- a a

+ 3 possible states for the whole gas.

Lete = probability that the two partcles are found in the same state

- probability that the two particle are found in dif ferent states

¢ Thus for the three cases,
3

SM—B_gzl/Z
3

SB_E—g—].
0

SF_D—g—O

+ Thus in B-E statistics, there is a greater tendency for the particles to bunch
together in the same states in comparison to M-B statistics.
+ On the other hand, in the F-D statistics, there is a greater relative tendency to
particles to remain apart in different states than there is in classical statistics.
5.6 BOSE-EINSTEIN STATISTICS:

+ Consider a system having n identical and indistinguishable particles.

* These particles be divided into quantum groups such that there are ny n, ..., n;;, ...
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number of particles with energies &1, &, ..., &, ... respectively.

¢ g, be the number of eigen states in the i Mlevel.
Conditions:

+ Particles are identical and indistinguishable.
¢ Particles do not obey Pauli’s exclusion principle.
+ The total number of particles in the system is constant.
N = Y n; = constant
+ The total energy of the system is constant.

E =) n;&; = constant
Bose-Einstein distribution function:

+ Consider the i ™ level

+ g, cellsand n; particles. Here we have to find out how n; particles can be divided
into g; cells.

+ First the choice that which cell will head the sequence can be found as g; ways.

¢ Then the total number of permutations among n; particles and the remaining
(g — Dcellsis (n; + g; — D!

+ Now the total number of possible ways in which n; particles can be distributed in
g; cellsis
gi(n; + g;1)! (1)

+ Since the particles are indistinguishable the permutations of the particles among
themselves will not give rise to different arrangements. Hence equation (1) must
be divided by n;!

gi(n; + g, — 1)!
ni!

+ Similarly the permutations of cells among themselves will not give rise to

different arrangements. Hence equation (1) must also be divided by g;!

gi(n; +g; — 1)! _ (n; + g, — 1!
n;!g;! n! (g — D!
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+ Considering all the available groups such that n; particles with energy &1, n;
particles with energy &, and so on. Then the total number of possible

arrangements is given by,

G

_ (n; +g; — 1)!

n! (g; — ! @

n; and g; >> 1, hence one may be neglected.

C= (n; + go)!
nl‘! 91'

¢ The probability Q of the system is proportional to the total number of eigen states.

) = G X constant

N = 1_[M X constant (3)

nl'gl'
log = Z[log(ni + g;)! —logn! —log g;!] + constant

+ Using stirling’s approximation, we get

log2 = Z[(ni + g:)log(n; + g,) — (n; + g;) —n; logn; +n; — g;logg; + gil

+ constant

= Y[(n; + g;) log(n; + g;) — n; logn; — g;log g;] + constant e ()

1 1
SlogR] =X [(ni + gi)mfsni +log(n; + g;)én; — n; n—i5ni -

logni oni+0

= Y[én; + log(n; + g;)én; — n; —logn;é6n;]

= Xllog(n; + g;) — logn;|6n;
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-y [log (nlilgl)] on; .. (5)

6(log) = 0.

5[0 (2] 6m, = 0

ni+g;
Y, [log (n;l:gl)] dn; =0 ..(6)
Y 'n; = constant
Yén; =0 (7)
Y. gn; = constant
Yeon =0 ..(8)
¢ Multiply the equation (7) by a and (8) by B and then adding to equation (6),we
get,
3 [log (#) +a+ pe|on =0 .9

én; # 0
) [log (ﬁ) +a+ ﬁsi] =0

log(#)+a+ﬁei =0

log (n:gi) = —(a+ P¢)

ni+g;
nit+g; — ea+/)’ei
ni

1 +% = e®thei

[
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gi
€a+ﬁ6i—1

+ This equation represents the most probable distribution for a system obeying Bose

- Einstein statistics and known as Bose - Einstein distribution law.
5.7 FERMI-DIRAC STATISTICS:

+ Consider a system having n identical and indistinguishable particles.
+ These particles be divided into quantum groups such that there are ny,n,,...,n;,...
number of particles with energies &;,¢5,...,&;,... respectively.

+ g, be the number of eigen states in the i*" level.
Conditions:

+ Particles are identical and indistinguishable
+ Particles obey Pauli’s exclusion principle. Hence each cell contains 0 (or) 1
particle. Obviouslyg; = n;.
+ The total number of particles in the system is constant.
N = Y. n; = constant
+ The total energy of the system is constant.

E = Y n;&; = constant
Fermi-Dirac distribution function:

+ Consider the i "level.

¢ There are g;cells and n; particles.

+ Each cell must be occupied by zero or one patrticle.

+ Among g; cells, only n;cells are occupied by one particle and the remaining
(g; —n;) cells are empty.

+ The possible number of such a distribution is given by g;! (1)

+ Since the particles are indistinguishable the permutation of the particles among
themselves will not give rise to different arrangements. Hence equation (1) must
be divided by n;!
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* (g; —n;)! permutations of empty cells among themselves will not give rise to

different arrangements. Hence equation(1) must also be divided by (g; — n;)!

9!
n;! (gi —ny)!

¢ Considering all the available groups such that n; particles with energy &;, n,
particles with energy &, and so on. Then the total number of possible

arrangements is given by
G=[—— . (2)

¢ The probability Q of the system is proportional to the total number of eigen

nl'(gl_nl)'

states.

) = G X constant

N=1— '(g — X constant ... (3)

logN = Z[loggi! —logn;! —log(g; — n;)!] + constant
¢ Using stirling’ approximation, we get

logn) = Z[gi logg; — g; —n;logn; +n; — (g; —ny) log(g; —ny) + (g; — ny)]

+ constant
= Z[gi log g; — n;logn; — (g9; — n;) log(g; — n;)] + constant

(gi —n)

(g; — )( én;) — log(g; —ny) (—6mn;)

1
6(logN) = z I—ni n—dni —logn;én; —

= Y [=6n; — logn;6n; + 6n; + logifg; — n;)on;].

= Xllogn;én; + logitg; — n;)on;].
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R =S

=y [log (gin—ini) 6ni].

- 3[o(;2)on]

6(log) =0

~2fog (2 )an] =

3 [os ;2 )om ] =0

Y 'n; = constant

Z(Snl' =0

Y. en; = constant.

Yebn; =0

.. (5)

.. (6)

(7

.. (8)

+ Multiplying equation (7) by a and (8) by £ and then adding to equation (6), we

Z[log( )+a+ﬁs]6n—0
2[log( )+a+ﬁ£]
[log( )+a+ﬁe]

log( ):—(a+ﬁe)

ni — e_(a-l'ﬁsi)
gi—ni

gi—mi _ ea+ﬁsi
nj

&_ 1 — ea+B£i
nj
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_ 9i
eatBei 41

n;

+ This equation represents the most probable distribution for a system obeying
Fermi-Dirac statistics and known as Fermi-Dirac distribution law.

5.8 AN IDEAL GAS IN A QUANTUM MECHANICAL MICRO CANONICAL
ENSEMBLE:

+ We consider a gaseous system of N non-interacting, indistinguishable particles
confined to a space of volume V and energy E.

¢ Let(N,V,E) be the number of distinct microstates accessible to the system
under the macro state 2(N,V, E).

¢ Let ¢ denote the average energy of a level and g; be the number of levels in the
ith cell.g; > 1.

+ We have n, particles in the first cell, n, particles in the second cell and so on. The

distribution set n; must confirm to the conditions,

Xin =N (D)
yYineg=E -(2)
¢ Then Q(N,V,E) = Z'W{n;} ....(3)

¢ W{n;} is the number of distinct microstates associated with the distribution
set{n;}. The primed summation goes over all distribution sets that confirm to
conditions (1) and (2),

. wWi{n;} =[L;iw() ....(4)

* w(i)is the number of distinct ways in which the n, identical and indistinguishable

particles can be distributed among the g; levels of the i™ cell.

*nBEwse we() =T
(nj+g;—1)!
andbence - Wag () = 150 e

+ Inthe F-D case, no single level can accommodate more than one particle.

N gi!
wrp (i) = n;!(g;—1)!
!
and hence  Wpp(n,) = n‘!(“Z‘_l)! ...(6)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
174



+ In M-B case the particle are distinguishable.

ni

¢ Wyp () = l_[(gni—?, (7

+ Now the entropy of the system would be given by,
S(N,V,E) =kInQ(N,V,E)
= kIn[X, W(n,)|
~ kInW(n)) ..(8)
+ (n) is the distribution set that maximizes the number W{n;} .n; is the most

probable value of the distribution number n. .

¢ Our condition for determining the most probable distribution set {n;} now turns
out to be,
SInW(n,) — [a i 6n; + B &6n;] =0 ....(9)
ImWm;) = Y;Inw(i)
+ InB-E case,

(nit+gi—1)!
Wie () =TT —5r

ni!gi!

In WBE(nl') = Z[ln(nl + gl)' —1In Tll'! —1In gl']
=Yl + g)in(n; + g) —(n; + g;) —n;Inn; +n; —

gingi+gr
=X[(n; + g)in(n; + g;) —nylnn; —
gings
= X[n;In(n; + g;) —n;Inn; + g; In(n; + g;) — g;In g;]
_ n;+g; n;+g;
= % {nuIn [74] + g n [}
_ gi ng
—Z{niln(n—i+ 1) +gi1n(1 —a E)}
+ In general,

InW(n;) =Z{nl~ ln(%—a)—%ln(l—a ?)} ....(10)

L L

a=-1 BE case
a=+1 FD case
a=0 MB case
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+ In(n; + g;)on; — %—

oln WBE(ni) = Z [(ni + gl)( 491 n;

In770727

= Y[In(n; + g;) — Inn;]6n,

i (%) omi

>
y [1n (ﬁ—+ 1) Sni]

+ |n F-D case,

gi!
Wep = || —————
Fb Hni!(gi_ni)!

InWpp = Y[Ing! —Inn;! —In (g; —ny)!]
=2lgilng; — gi —nylnn; +n; — (g; —n) In(g; —ny) +
gi—ni
= 2(giInn; —n;Inn; — (g; —ny) In(g; — ny))
6anFD—Z[ n‘snl Inn;6n; — (g; n)(6n?—1(gl—

ni—oni

= Y[(=dn;) —Inn;én; + én; +In(g; —n;) on; |

—Z[ln(g‘ Yon| = Z[ln(‘g‘—l)&ii]

+ |n M-B case

(g™
Wyp(n;) = Hg—

ni!
InWyp = XY[nilng; —Inn;!]
= X[nlng; —nilnn; +ny]

6In WMB = Z [nl’. 0+In gi5ni - n; % —1In ni(Sni + 6nl:|

L

= Y[Ing;6n; — én; —Inn;6n; + én; |

=) [ln (i—z) 6ni] =) [ln (i—i — a) 6ni]
+ Now equation (9) becomes,

2 [ln(i—;—a)—a—ﬁei] on; =0

*

n=n
ln(f—;—a)—a—ﬁei =0
ln(l )—a+ﬁe
9i — patpfe;

n*
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L (11)

...(12)
~a’)]
= % [ne* (@ + Be) = Zn (1 - )]
=X [ni*(“ +Be) - %ln <%>]
= %[t @+ Be) = Lin (———)]

1+ae ~(a+Be;)

=) [ni*(a + fe;) + %ln[l + ae‘“‘ﬁgi]] ....(13)
The first sum on RHS of (13) is aN while the second sum is BE. For the third
sum, we have
—iZgi In[1 + ae®*Fé] =%—aN—/3E (14)
@=—-—andp = kiT

The RHS of equation (14) is equal to,

S  uN _E _ G—(E-TS) _ PV

k ' kT kT kT kT
The thermodynamic pressure of the system is given by

PV = %T Zi[gi ln[l + ae‘“‘ﬁgi]] ....(15)
PV —a—Be,
T =a 1 ¥:[g:In[1 + ae~eFe]] ....(16)

In M-B case (a—0), equation (15) takes the form
PV = kT ¥ g;e %P
= kT Y;n/
= NkT .(17)
Which is the familiar equation of state of the classical ideal gas. Equation (17)
for the M-B case holds irrespective of &. The RHS of equation (16) is to be

identical to the g-potential of the ideal gas.

5.9 AN IDEAL GAS IN A QUANTUM MECHANICAL GRAND CANONICAL

ENSEMBLE:
In canonical ensemble, the thermodynamics of a given system is derived from its

partition function
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Qv(V,T) =YgeFE (D

E — energy eigen values of the system.

and 8 = 1/kT
¢ E can be expressed in terms of the single-particle energies €. For instance
E=Y,ne¢ (2
n.= number of particles in the single-particle energy

state e.

Also . n, =N ....(3)
+ Now equation (1) can be written as,

Qu(V.T) = X,y glnee F Zeres )

g{n,} = statistical weight factor appropriate to the distribution set {n,}
Y. '—goes over all distribution sets that conform to the restrictive condition(3).

+ The statistical weight factor is given by

gp-e{n:} =1 .5
gr-pfn.} = 1 |ifalln,=0 (or) 1.
= 0 [ptherwise ....(6)
and
gu-pin} =Tl (D)

+ Here we are dealing with single-particle states as individual states without
requiring them to be grouped into cells.
+ Take M-B case and substituting equation (7) into (4) we get

QN (V, T) = Z;fng} [(l_[g nLE') Hg(e_ﬁg )ng]
= S —niv,ie!ﬂs(e‘ﬁg)ng] ..(8)
e Evaluated with the help of the multinomial theorem
W, ) =—[g.e ]

= [, D 9)
The number of single particle states with energies lying between € and e+de is,
Q(V,T) =X, e
~ 2;:—31/(2m)3/2 fowe_ﬁgel/zde ....(10)

— iV 3/21 [
= (2m) 2\/;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
178



_v (mmkT)3/2 v
- h3 23

where A = h/(2mmkT)'/?

= mean thermal wavelength of the particles.

VN
Hence, Qv(V,T) = e (11

From which complete thermodynamics of this system can be derived.
We obtain for the grand partition function of this system,
QzV,T)=3%_02"Q,(V,T)

e N1V 1o )V
= LN=0Z" 3 7w = man-o\G

= exp(zV/23) ...(12)
B-E and F-D cases:
Qn(V,T) = X y(e7F Zeme) ..(13)
Now complete thermodynamics of this system can be derived.

The Grand partition function Q turns out to be
Q(zV,T) = TR, [2" Tpn,y(e7F Zemet)]

= ¥5o[Sny [Te(ze772)™] (14)
The double summation in (14) over the number n, constrained by a fixed value of
the total number N and then over all possible values of N, which is equivalent to a
summation over all possible values of n, independently of one another.

Hence,
QzV,T) = Xugny... [(ze‘ﬁs‘))no (ze‘ﬁsl)n1 ]
=[Sy (ze#0) [, (zeFe1)"] (15)

In B-E case n, can be either O or 1 or 2 or ......

In F-D case n, can be only 0 or 1.

Q(z,V,T) = Hgm in B-E case with ze #¢<1.

[1.(1+ze #¢) inF-D case ....(16)

The q potential of the system is thus given by,

q(zV,T) = = nQ(z,V,T)

= T, Il F ze ) .17
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+ The identification of the fugacity z with the quantity e~ is quite natural. « =

_ £
kT

¢ The upper sign in equation (17) corresponds to Bose case.
+ The lower sign in equation (17) corresponds to Fermi case.
+ Now in general,

q(z,V,T) = % = %Zs Iniil + aze=5¢) ....(18)

¢+ Where a = —1,+1 or 0 depending on the statistics governing the system.

¢ In classical case a — 0 gives,

Gu-p =z Y. P = zQ ..(19)

v=z(3),,

1

=z= %

aePe
1+aze—he

=Y — ...(20)

efe+a

__1 ¥ (azeP*)(-e)
- a 1+aze—Be

=y—— ...2D)

+ At the same time, the mean occupation number (n,) of level ¢ turns out to be,

ne) =3 |3 (%2

B \oe )Z,T,all other s]

__1 (f’_q)
B \oe z,T,all other ¢

11 aze PE(—p)
Ba 1+aze Pe

= ..(22)

Thus the mean value <n> and the most probable value n” of the occupation number n

of a single particle state are identical.
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5.10 STATISTICS OF THE OCCUPATION NUMBERS :

The mean occupation number of a single particle with energy € as an explicit

function of the quantity (¢ — u)/KT :

1
<”s>=m (1)

The functional behaviour of this number is shown in figure.

In the Fermi-Dirac case (a= +1), the mean

occupation number never exceeds unity, for the !

variable n,, itself cannot have a value other than 0, 3

or 1. \

Moreover & < p and [e—p[>>kT, the mean °; . o 1

. . . . e—n
occupation number tends to its maximum possible () —
value 1.

In the Bose-Einstein case (a= -1) we must have p < all &. When p becomes equal
to the lowest value of € (g,), the occupancy level becomes high which leads to

Bose-Einstein condensation.
For pu < g, all (e—p)are positive and the behaviour of all <ng>is nonsingular.

Finally in Maxwell-Boltzmann case (a= 0), the mean occupation number takes the

form
(n.), 5 =P {(—2)/KT ocexp(—/KT) .. 2)

We note here that the distinction between the quantum statistics and the classical

statistics becomes imperceptible when for all values of €,

exp {(u—e)/KT }>>1. ..(3)

Now equation (1) reduces to (2) and we may write (n, ) <<1. (4

Condition (4) implies that the probability of any of the n, being greater than unity
is quite negligible.

The distinction between the classical treatment and the quantum-mechanical
treatment then becomes rather insignificant.

Correspondingly for large values of (¢—u)/kT the quantum curves 1 and 2

essentially merge into the classical curve 3.
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e Condition (3) also implies that p, the chemical potential of the system must be

negative and large in magnitude. This means that the fugacity z| =exp(u/kT) of

the system must be much smaller than unity.

3

e This is further equivalent to N2 <<1 ....(5)

e Now we examine statistical fluctuations in the variable n.. We have

W)—%K—%%TQ] ..(6)

z,T ,all other ¢

e |t follows that

-0 |52 o)

:[(_%§J<nS>L A7)

e For the relative mean-square fluctuation we obtain

e The actual value of this quantity will depend on the statistics of the particles
because for a given particle density (N/V) and a given temperature T, the value of
z will be different for different statistics.
e Equation (8) can be written in the form
(nZ)=(n,)" 1
()" (n)

¢ Inthe classical case (a= 0), the relative fluctuation is normal.

—-a ....(9)

e In the Fermi-Dirac case it is given by ]/<n£>—1, which is below normal and tends
to vanish as (n,) —1.

e In the Bose-Einstein case , the fluctuation is above normal .

e This result would apply to a gas of photons and hence to the oscillators states in
the black-body radiation.

e To understand the statistics of the occupation numbers, we evaluate the quantity

p, (n), the probability that there are exactly n particles in a state of energy .
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We know that p,(n)oc(ze™)". On normalization, it becomes in the Bose-

Einstein case

p, (M), . =(ze™)" [1—ze™*"]

=(<<”8> ]n<n81 _ (<>”8>)n .(10)

n,)+1
In the Fermi-Dirac case, we get

p,(n)|_, =(ze™)" [1+ zefﬁg]_l

(n,) for n=1 ...(11)
In the Maxwell-Boltzmann case, we have p_(n) oc (ze **)"/n!

On normalization we get

_ @™yt ()" )
exp(ze ™) n!

p. (M), & ...(12)

Equation (12) is clearly a Poisson distribution for which the mean square
deviation of the variable is equal to the mean value itself.
It also resembles the distribution of the total particle number N in a grand
canonical ensemble consisting of ideal, classical systems.

Here we seen that the ratio p,(n)/p, (n—1)varies inversely with n, which is a

“normal” statistical behaviour of uncorrelated events.

The distribution in the Bose-Einstein case is geometric with a common ratio

(n)/((n.)+1).

This means that the probability of a state € acquiring one more particle for itself is
independent of the number of particles already occupying the state.

In comparison with “normal” statistical behaviour, bosons exhibit a special

tendency of “bunching” together. That is a positive statistical correlation among

them. Fermions exhibit negative statistical correlation.

5.11 IDEAL BOSE-EINSTEIN GAS:

+ Consider a perfect Bose-Einstein gas of n bosons.
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¢ These particles be divided into quantum groups such that there are nq, n,, ..., n;, ...
number of particles with energies &1, &, ..., &, ... respectively.
¢ g, be the number of eigen states in the i " Jevel.

+ For the most probable distribution

_ g _-n 1
ni—m herea—ﬁandﬁ—ﬁ
=1L — where, A=e"®
Tefei-1

+ Since the number of particles cannot be negative, we must always have
1
n 20 —effi=0.
¢ The constant a can be determined by the condition
_ —y__ 9
n= Zni - Zea+ﬁsi_1

=21 l}g;_l (D)

Ze

+ Since the particles in a box are normal size and the translational levels are closely
spaced and hence now the summation is replaced by integration.

¢ The number of particles states g(p)dp between momentum p and p+dp is given

by
_4mp?dp _  4nVpldp
=JYs h3/V — Ys 3 —
¢ g, =degenaracy factor =1
4nV p?d
Now g(p)dp = 5+ 2

+ Then equation (1) can be rewritten as

(p)d
n(p)dp = S22

4V pldp 1
=3 e . (3)
2
E=& = P
2m
p? = 2me
2pdp = 2mde
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m
—\/ﬁdfi

- ()"

+ Now equation (3) becomes

4nv m\1/2 1
n(s)de = 5 (st) (Z) d&'m

de e (B

41rmV 1/2
(2 E) ea+e/kT _q

P
e =kTx
des = kTdx

n(e)de = T3 (2mkTx)"/?

2 x1/2d
= —(27'[ka)3/2 = "+—"1 ... (5)
+ The total number of particles is given by

1/2
n=f; L (2mmkT)? T

o x1/2dx

4

n= :—3 (2mmkT)3/? f,(a) .. (6)

0 X 172 X
where fi(a) = \/_f ea+xd_1 e (7)

+ The total energy is given by
E = fo en(e)de

2 xY%dx
—f kTx —(27‘[ka)3/2 m
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foo x3/2dx
0 ea+x 1

= :—3 kT (2nka)3/2

3 2 o x3/2dx
2h3 Y kT (2rmkT)3/ fo e
2h3 kT (2nmkT)3/? f,(a)
o x3/2dx
fa(a) = fo prr—

¢ For A <1, fi(a)and f,(a) may be evaluated as follows:

o x1/2gx

fl(a) - _fo e +x _1

= %foooxl/er_"(l — Ae ™) dx

= \/—Efowxl/er_"[l + Ae™* + A%e ™%X + .. ]dx

=\/i_[f x1/2 e "dx+foO 1V2p2e=2%gx + -
2 A

== \ﬁ [4+ 7+ ]

A2
—A+237+337+ .........

AT

fila) = X7 7372

w  x3/2qx

. S|m|Iar|y fz(a) 3\/—.[0 (e—(a+x)—1)

A? A3
=AtgEtErt

fa(@) = X7 r%

..(8)

(9

..(10)

~(11)
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Now n = :—3 (2rmkT)3/2f, (a)

A3

= = (2mmkT)¥/? [A + ot ant ] . (12)

23/2

= —kT — (2nka)3/2f2 (a).

E =2kT - (2nmkT)3/2 [A + 257 + 357 +- ] ... (13)

E 3 A2 a3 Az g3 -1
;_EkT [A+257+357+'“][A+237+337+‘“]

A2 -1
=—kT [1+25/2+35/z+ ][1+23/2+337+”']

=2kT|1- 25/2+;;%+---]

A2

+ 35/2

=—nkT [1 +] (14)

25/2
¢ The value of a (or) A can be determined by equation (6) as
n = (2mmkT)*2f, ()

n h3
fi(@) = 5 Gz

+ Here f;(a) is directly proportional to particle density n/v and inversely
proportional to temperature as T3/2.
¢ ForA<<1, fila) =4

n h3
v (2mmkT )3/2 - (15)

A=
+ Obviously A would be small for high temperatures (low density).

M-B distribution as a limiting case of B-E distribution:

= For A << 1, e**F¢ pecomes very large compared to 1.

= Now B-E distribution n; = a+ﬁ£ becomes n; = awg which is well known M-

B distribution.
= ForAd << ]q_fi(CX) ==_fé(CZ) =4
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. %4
= Equation (12) becomes n= (2mmkT)3/? x A

= Equation (13) becomes  E = %kT :—3(271ka)3/2 X A

E_3kr=>E =3nkr
n 2 2

= Which is well known expression for energy in M-B statistics.
5.12 BOSE-EINSTEIN CONDENSATION AND ITS CRITICAL CONDITIONS:

= The degeneracy parameter A is given by,

_ n (2mmkT )3/2
A=e“=;h—3 (1)

= And n=:—3(27tka)3/2f1(a) . 2)

= If the particle density is increased or the temperature is decreased then A
increases.

= Now the behaviour of perfect gas departs from the classical perfect gas.

= This is due to the fact that the velocities of the particles are subjected to quantum
statistics.

= The gas under this condition is said to be degenerate gas and A is called the
degeneracy parameter.

= ‘A’ contains three variables n/V - the particle density , m - mass of each boson
and
T -temperature of the gas.

= The degeneracy criterion will be based on the magnitude —(m"T/)Vl VP
= Thus the degree of degeneracy will be large when T is low, n/V is large and m is
small.

= For low energy values A=1 and 0=0.

= Then [A(@mar = A0) =1+ 555+ + -

=2.612

. n _ QmmmkT )3/2
Now (V)max = (2612) o (4)

= Equation (4) corresponds to the limiting case of Bose-Einstein degeneration.
= The solution of equation (2) can exist for

3/2
L & (2.612) .. (5)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
188



= n/v can be alternatively expressed in terms of critical temperature T, defined as

3/2
2= G (2.612) . (6)

3/2 _p3n _1
(2mmkT,) h ” Tel2

n ;]2/3

2mmkTy = h* [V 2.612

hZ [n 1 2/3

0= 2mmk v 2612

= Ty is the lower temperature for which a solution of equation (2) is possible.
®  There is no solution for T < T,
= i.e.the degeneracy starts at Ty.
= A graph is drawn between the energy E and temperature
T of the gas. E
= Why there is no solution T < Ty g
= Because we have assumed continuous distribution and
replaced the summation by integration.

= But at low temperature, the number of particles begin to Ee

!
degenenacy
4 |

crowd into lower energy levels. S

0
= Hence a large number of particles may occupy the o

ground state g, = 0.

= The number of particles between the energy range € and € + de is given by,

d
n(e)de = % ....(8)
And g(&)de = 47;—7;“7 (2me)'/%de e (9)

= For ground state actually e, = 0 andg(e) = 1 but not g(e) =0
= Fore # 0and g(e) # 0, the distribution given by equation (8) is correct.

= Butfore =0, g(e) = 0 the law gives incorrect result.

. Ji

= Forasinglestate, n; = —55—
& =¢=20
gi=9(e) =1
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n=ngyg= -

= This gives the number of particles in the ground state.
= Now the total number of particles for the degenerate gas,

n=ny+ [ n(e)de

_ o 4TmV 1/2 el/2ge
=ng+ [, 5 @M~

=n0+n

v AmmV 1/2 (® el/2ge
n = h3 (Zm) f() ea+e/kT _1

n = :—3 (2rmkT)3/? f,(a)

n _ Qmumk To)3/2

= From equation (6) Y (2.612)
v 3/2 _ 1
3 (2mmkTy)*/“ =n 1
r (TN @
Now n= n(T_o) 2.612

= Asfi(a) < f,(0), n acquires its maximum value when a = 0.

= Hence fi(a) = 2.612 for maximum value.

n'=n (TLO)B/Z forT <T,
n=ny-+ n
n=ny+n(2)"

n,=n-—-n (%)3/2

ng=n [1 - (%)3/2] forT <T,

= n, gives the number of particles condensed in the ground state.

. (10)

. (11)

.(12)

...(13)

.(14)

...(15

)

= When the temperature is lowered below Ty, the number of particles in the ground

state rapidly increases.
= This rapid increase in the population of the ground state
below the critical temperature T, for a Bose - Einstein gas is

called Bose — Einstein condensation.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Edu

0.5



Obviously T, depends on the particle density n/V.

Equation (15) is plotted in figure which represents the fraction of

particles condensed in the ground state for T < Ty .

At the ground state & = 0, the particles condensed in the ground state do not
contribute to the energy.

For above T,, (@ # 0) there is negligible number of particles in the ground state
and the gas is said to be classical or non - degenerate gas.

Example: For Helium T, can be calculated to have the value 3.12 K.

Therefore the degeneration and condensation of Helium must start at 3.12 K.

But experimental observation shows that the condensation of Helium starts at 2.19
K.

i.e. the lambda point transition observed in liquid helium at 2.19 K is essentially a

Bose-Einstein condensation.

5.13 BOSE - EINSTEIN CONDENSATION IN ULTRACOLD ATOMIC GASES :

The first demonstration of Bose- Einstein condensation in ultracold atomic gases
came in 1995.

Since 1995, many isotopes have been Bose condensed including "Li, Na, K,
>2Cr, #sr, ®Rb, ¥Rb, ™*Cs and " Yb.

The first molecular Bose —Einstein condensates were created in 2003 by the
research groups of Rudoif Grimm at the University of Innsbruck.

The first step of the cooling of the atomic vapour uses three sets of counter-
propagating laser beams oriented along cartesian axes that are tuned just below the
resonant frequency of the atoms in the trap.

Atoms that are stationary are just off resonance and so rarely absorb a photon.
Moving atoms are Doppler shifted on resonance to the laser beam that is
propagating opposite to the velocity vector of the atom.

Those atoms preferentially absorb photons from that direction and then reemit in
random directions, resulting in a net momentum kick opposite to the direction of
motion.

This results in an "optical molasses” that slows the atoms.

This cooling method is constrained by the "recoil limit" in which the atoms have a
minimum momentum of the order of the momentum of the photons used to cool

the gas.
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This gives a limiting temperature of (hf)2mc’k =~ IuK, where f is the frequency of
the spectral line used for cooling and m is the mass of an atom.

In the next step of the cooling process, the lasers are turned off and a spatially
varying magnetic field creates an attractive anisotropic harmonic oscillator

potential near the center of the magnetic trap

V(r)=%m(mfx2+oo§y2+co§zz) (D)
The frequencies of the trap o, are controlled by the applied magnetic field. One
can then lower the trap barrier using a resonant transition to remove the highest
energy atoms in the trap. If the atoms in the vapor are sufficiently coupled to one
other, then the remaining atoms in the trap are cooled by evaporation.

If the interactions between the atoms in the gas can be neglected, the energy of
each atom in the harmonic oscillator potential is

&,1,1, = hoyl; +ho,l, +ho,l, +%h(m1 +, +033) ...(2)

where I, (= 0,1,2,.. .c0) are the quantum numbers of the harmonic oscillator. If the
three frequencies are all the same, then the quantum degeneracy of a level with
energy e =ho(l+3/2)is(1+1)(1+2)/2

For the general anisotropic case, the smoothed density of states as a function of
energy (suppressing the zero point energy and assuming e >>%a®,, ) is given by

2
4

2(hev, )

where  ®, = (0,0,0,)'°;this assumes a single spin state per atom. The

£)= [ [ [8(e—honl, — ho,l, —hely) dl,dl,dl, = . (3)
000

thermodynamic potential IT for bosons in the trap is then given by

16 T) =50 [ nf—e o) ox 00 g, e

where z = exp (Bu) is the fugacity. Volume is not a parameter in the
thermodynamic potential since the atoms are confined by the harmonic trap. The
average number of atoms in the excited states in the trap is

N(uT){@j {k—TJ 0,(2) )

on ), \ hwy
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e For fixed N, the chemical potential monotonically increases as temperature is
lowered until Bose-Einstein condensation occurs when pu= 0 (z = 1). The critical

temperature for N trapped atoms is then given by

kTC ~ l 1/3
h_wo‘(g@)j - ©

o where ¢(3) = g3(1) = 1.202. While the spacing of the energy levels is of order zim,,

the critical temperature for condensation is much larger than the energy spacing of
the lowest levels for N>> 1.

e For T <T. the number of atoms in the excited states is

Nelx\clited — g’(\lB) [hkT ] — [l} (7)
®, T,

c

e so the fraction of atoms that condense into the ground state of the harmonic

N, . (T
by (1) e

oscillator is

(a) Detection of the Bose-Einstein condensate:

e The linear size of the ground state wave function in Cartesian direction o is

/ h
a, = m—ma ....(9)

e while the linear size of the thermal distribution of the noncondensed atoms in that

kT kT
Shermal = m—mi_a‘* E ....(10)

e At trap frequency f= 100 Hz and temperature T =100 nK, these sizes are about 1

direction is

um and 5um, respectively.

e Instead of measuring the atoms directly in the trapping potential, experimenters
usually measure the momentum distribution of the ultracold gas by a time-of-
flight experiment.

e At time t =0, the magnetic field is turned off suddenly, eliminating the trapping
potential.
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e The atomic cloud then expands according to the momentum distribution the atoms
had in the harmonic trap. The cloud is allowed to expand for about 100
milliseconds.

e The speed of the atoms at this temperature is a few millimeters per second, so the
cloud expands to a few hundred microns in this period of time.

e The cloud is then illuminated with a laser pulse on resonance with the atoms,
leaving a shadow on a CCD in the image plane of the optics.

e The size and shape of the light intensity pattern directly measures the momentum
distribution the atoms had in the trap at t = 0.

e The expanding cloud can be divided into two components, the N, atoms that had
been Bose-condensed into the ground state and the remaining N -N, atoms that
were in the excited states of the harmonic oscillator potential.

e The Bose-condensed atoms have smaller momenta than the atoms that were in the
excited states.

e After time t, the quantum evolution of the ground state has a spatial number

density

_p?
()= Novolr t)| n'? HL \/1+c0 t2 Xp(a§(1+mit2)j] - (11)

e The atoms that are not condensed into the ground state can be treated semi

classically, that is, the position-momentum distribution function is treated
classically while the density follows the Bose-Einstein distribution function:
1

..(12)

f(r,p0) =
exp(im+B (oalx + 03y + iz ) Bu]—

e After the potential is turned off at t = 0, the distribution evolves ballistically:
pt
f(r, p,O)zf[HE,p,oJ ....(13)
e The spatial number density of atoms in the excited states is
nexcited( If(r+ p tjdp (14)

e which can be integrated to give
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1 & el |2 1 —Bjmmzer
nexcie r’t =3 . exp ~ (15)
w(rt) 2° JZJ; i IH[W (2(1+coit2)
e where A= h/~+/2mmKT is the thermal deBroglie wavelength. The integrals over the

condensed state and the excited states correctly count all the atoms:

N, ='|.n0(r,t)dr, ....(16a)
N — No =J'nexcited (r!t)dr = Nexcited. . (16b)

e Note that at early times o t <<lboth the condensed and the excited distributions

are anisotropic due to the anisotropic trapping potential.

e However, at late timeso,t>>1, the atoms from the excited states form a

spherically symmetric cloud because of the isotropic momentum dependence of
the t = 0 distribution function.

e By contrast, the atoms that were condensed into the ground state expand
anisotropically due to the different spatial extents of the ground state
wavefunction at t = 0.

e The direction that has the largest o, is quantum mechanically squeezed the most at

t = 0; so, according to the uncertainty principle, it expands the fastest.

e This is an important feature of the experimental data that confirms the onset of
Bose-Einstein condensation.

(b) Thermodynamic properties of the Bose-Einstein condensate :

e The temperature, condensate fraction, and internal energy can all be observed
using time- of-flight measurements. The internal energy can also be written in

terms of the function g,(z):

7€ 1 o kT)
U(H’T)_v([z(hmof eﬁ(sfu) _1d8_3(h0)0)3 g4(z) - (17)

e The heat capacity at constant number can be written as
ci-(2) (%) (2)(@
or )y \ar ), on ) \dT )y
=)&)
(auj or )\ aT ),
RGPS

)
O )y ..(18)
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e Equations (5) and (6) can be used to determine the fugacity z numerically, as
shown in Figure (a). The fugacity can then be used in equation (17) to obtain the

scaled internal energy. [Figure (b)]

15 ( T T 6 T T T
~ al (b)
= 10 ] 4 | i
£ S
(] o
| 05f | § 2 | -
N
0.0 I I I 0 | |
00 05 1.0 15 20 00 05 10 15
T/T, T/T,
4
3(1J st4) for T<T,
U _ T ‘5(3)
NKT, *
i 3(%] 94(22)) for T >T,
) S ....(19)
e The scaled specific heat is given by
3
12‘5(4)(1] for T <T,
Cv_) BT |
Nk 2
i[l](12g4(z)— 993 (Z)J for T>T,

and shown in figure (c).

e Unlike the case of Bose-Einstein condensation of free particles in a box the

specific heat of a condensate in a harmonic trap displays a discontinuity at the

critical temperature.
12 T T T
10 - {c) _
w87 i
F|=6 -
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12¢(4)

~10.805 asT T,
Cw , )4
Nk |1254) 95B) ,ong asT 7o
9(3) ‘-3(2) i .(21)

e Equation (15) is called the Virial equation of state.
e This equation can also be written in terms of the pair correlation function and is
also used in computer simulations to determine the pressure of the system.
5.14 IDEAL FERMI-DIRAC GAS:

+ Consider a perfect Fermi-Dirac gas of n Fermions.
¢ These particles be divided into quantum groups such that there are

ny, Ny, ..., N;, ... NUmMber of particles with energy is &4, €, ..., &, . .. respectively.
+ g, be the number of eigen states in the i ™ level.

+ For the most probable distribution

__ G _-u 1
ni—m herea—k—Tandﬁ—E

= — where, A=e™®
Ze i+1

a may be positive or negative.

¢ The constant a can be determined by the condition
_ o gi
n= an Zea+ﬁ£i+1

=y (1)

cePeiv1

+ Since the particles in a box are normal size and the translational levels are closely
spaced and hence now the summation is replaced by integration.

+ The number of particle states g(p)dp between momentum p and p+dp is given by

4mp?dp 4nVp2dp

= IsThay T 95T

L 4

gs = degenaracy factor = (2s + 1)

4V p2d
Now g(p)dp = g, — hp3 P (2

+ Then equation (1) can be rewritten as

(p)d
n(p)dp = L2
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E=& = L
2m
p‘ = 2me
2pdp = 2mde
m
=—d
dp e
m
2me de

m\1/2
=(3) @
+ Now equation (3) becomes

1

1/2
n(e)de—gs (2 e)( ) dem

de
eate/kT 41

4an (2 8)1 /2

o X
e =kTx
des = kTdx

n(e)de = gs—— 4an (2mkTx)1/? Iii;

_ 3/2 2 x 1/2 dx
=053 (2nka) NI

+ The total number of particles is given by

2 x1/2d
n=["g: e . (2nmkT)3/2 = = :a+x+x1

J-oox 1/2 gy

_ .V 3/2 2
= gs 3 (2mmkT) 0 ariil

%4
n = g, % 2umkT)*? f, (@)

- (3)

(d)

.(5)

. (6)
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where f; (a) = \/_f (7
¢ The total energy is given by
E= foooen(e)de
x1/2dx
= f kTx gs (27'[ka)3/2\/_ =
2 w x3/2d
= gs—3kT @mmkT)*? = [y
o x3/2dx
_gs h_3kT (27'[ka)3/2 3T fo e@+x 41
== gs kT (2mmkT)3/? £, () .. (8)
o x3/24
fo(a) = fo —:a+X+x1 ..(9)

¢ fi(a)and f,(a) must be evaluated for both positive and negative values of a.

+ Now we introduce the Fermi-Dirac distribution function f (&) defined by,

fe) =25

g(e)

_ 1
- ea+£/kT +1

1

__ K _ _er
¢ Wherea = Pl
¢ AtT=0K, f(e) =1 fore < e (0)
=0 for e > €r(0)
1
:Eforg:gF T 1.0 \
¢ This is shown in the figure. f() f(g)=l
T2
= &g is determined by the condition that the total
. . . 0 g (0)
number of particles is constant at a given e —

temperature T.

= The number of fermions in the energy range between € and € + de is given by,

n(e)de = [ f(e)g(e)de
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e1/24e
e ETER) /KT 11

47rmV (2 )1/2

.. (11)

= At absolute zero, all states with 0 < &€ < ;(0) are completely filled and all states

with € > ££(0) are empty.
¢ ¢grat T=0 K i.e. gx(0) is determined by,

n= fOSF(O) n(e)de
= ;" f(e)g(e)de
= [7" g(e)de
_ ngF(O) 4an (2m)1 /2172 g
s 47;—?/ (2m)/2 fOSF(O)el/Zde

4an

(Zm)1/2 [ € (0)3/2]

3/2 _ __11_ _h

er(0) = w [JTng] 2/3

+ This gives the Fermi-energy at T=0K.

..(12)

= For particles with spin equal to 1/2, g,=2 ie, one particle with spin up and another

with spin down.

= Now we define Fermi temperature T as,

er(0)
Ty = —=
F k
_ R ( 3n )2/3
T 2mk 4nV gg
mn n p
= — - = —
P %4 %4 m
F = omk 4mmg,
F_2m5/3k 4mg,

..(13)
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s T<<Tg strong degeneracy a is negative
* T >Tr weak degeneracy a is positive
¢ T>>Tk non degeneracy o is positive
(A) Degeneracy:

i.  Weak degeneracy: (High temperature and low density)
T > T ; € 1s negative ; a is positive and hence A < 1.

For A < 1, we can write

-1
o)

= Ae™*[1+ Ae™™] !
=Ae™[1—Ae ™ + A%e 2" + -]

o x1/2gx

fl(a) - \/_f ea+x+1

w x4y

==l o)

= \/%foooxl/zdx Ae ™ [1—Ae™ + A?e 2% + -]

= A e dn = 4 [T e dx 4 A [ x 2o ]

—A— Zgjz +£%+... ce (1)
+ Similarly fl@) = 5= I (" fi’;)

:A_;;%JF%JF... . (2)
+ Now n= gS:—S(ankT)szl(a)

:gS:—3(2nka)3/2 [,4—23%+33/2 +] . (3)

E = ; 9s = (2mmkT)3/? kT f(a)

3 A2
= = g5 25 (2mmkT)3/2 [A — At ] e (4)
E 3 A2 A2 )
n EkT [A 25/2 35/2 +- ][A 23/2 33/2 +- ]
3 A2
- EkT [1 + 5z 25/2 352 + ] w..(5)

+ To find first approximation we can get,

E_3kr
2

n
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L 4

L 4

*

E = nkT e (6)

which is well known relation for E in classical statistics.

Comparison of equations (5) and (6) shows that the ideal Fermi-Dirac gas deviates
from a classical perfect gas and this deviation is known as degeneracy.

A is the degeneracy function and greater the value of A, more will be the
degeneracy.

Strong degeneracy: (low temperature and high density)

Here we discuss the degeneracy case in two temperature ranges.

(a) At absolute zero(T=0 K)

(b) Above absolute zero

(a) At absolute zero(T=0 K):

*

*

In this case the Fermi-dirac gas is completely degenerate.

At T=0 K, f(e) = EMH
_ 1
- %Q(S_EF)/kT +1
=1 for 0<e<e&(0)
=0 for &> ¢€p
4mtmV 1/2 1/2
So that n(e)de = g, ( ) (2m) de for0<e<¢r(0)

=0 for e > ¢r(0)

The total internal energy of Fermi-Dirac gas at T=0 K gives zero point energy.
Ey = fO‘SF(O)sn(e)de

— fOSF(O)g (4”mv)(2m)1/2 1/2d€

= gs (47;:;”) (2m)1/? fO‘EF(O) e3/2de

4mmy 0)1°/
=gs(nm )(2 )12 EFg/)z

2 4mmV
- g Is

) (@m)V2 [er (0))%
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5/2

_ %gs (41:;311/) (2m)t/? [% (%1:;5)2/3]

_ 3n (4anS) (2m)3/2 hS ( 3n )5/3
T 5 3n h2 (2m)5/2 \4nvg,

_>n - n
_3 h2(3 )2/3

5 2m \4nVg;
3
By =5 &r(0) e (7)
- 2 E,
¢ Zero pOlnt pressure pg = 37
21 3
=375 &©
2n
po =75y & (0) e (8)

¢ Thus a strongly degenerate Fermi-Dirac gas possesses energy and pressure even
at absolute zero.

(b) Above absolute zero: A >> 1and T << Tf

= The Fermi gas is strongly degenerate and ¢ is still positive.

= The number of particles in the energy range between ¢ and € + de is given by,

1
4mmV

1 2d
_ 4nV gs (2m3
=30 (5) (57)
¢ We have Fermi energy

o) = 2 ()"

2m \4nvgg

172 124,

e(a—EF)/kT +1

( 3n )2/3 [2mep(0)]

4V g h?2
( 3n )_ [2mep(0)
4nv g, L A2
(4m;gs) __[2mer(0)
3n L o2

13/2

1-3/2
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= [Zm}si (0)]

n(e)de = 3n [ | (2m) e

2mep(0) e(e—€F)/kT 41

— 3_ n el/2de 10
T 2 [er (/2 eGep/RT 41 ...(10)

n= fooo n(e)de

— i n 0 el/2qs »
T 2 ler@372 Jo eGem/iT 1 .. (11)

E= fooos n(e)de

_3 n w  el/2g¢ -
T 2 [ep (01372 J0 eCER/RT 4 .. (12)

+ To solve the integrals in equation (11) and (12), we consider the general integral

_ (*__o(ede
I'= fo o G—p)/RT 11 ...(13)

+ Here, ¢(¢) is a function of € such that ¢(¢) = 0 at € = 0.

+ By Taylor series expansion,

®© (P(S)de 3 (nkT)z r 7 "
f() eG—ep)/KT 11 = fOF (p(s)de + 6 [(P ]g=£p + 360 (ﬂkT)4((p )£=£F + -
Take ¢(g) = gl/?
’ 1 —
(p |E=SF = E SF 1/2
” 1 _
(p |g=EF = —ZSF 3/2
" 3 _
(p |S=SF - ESF 5/2
n= 3 n o0 el/2qe

T 2 [ep(0)3/2 )0 Cmen/RT 41

_3 n 2 3/2 (TTkT)Zl —1/2 7 43 —5/2
_EW[ESF/ +TESF /+%(T[kT) gSF /+]
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3/2 1 (nkT\% | 7 (mkT\*
EF = - (= 2 (L
[sF(O)] _[1+8(£F) +64—0(8F) T ]
+ To the first approximation we get ,

[l = )]

-2/3
o] = 1+ 3 (2]
=|1-2 (%)2] . (14)
er = £5(0) [1 - (’Z‘—FT)Z] ... (15)

+ By applying Crude approximation we get,

&r = £7(0) [1 L ”’Z))Z] . (16)

Take  ¢@(e) = £3/2

2
fy" €¥2de = 2 ()

0
o @, =3 e
0|, =le
0" (e )l _ggF_3/2
_3_n e Sl
2 [er (0372 J0 eG—em/AT {1

_3_n 252, @3 15 7 4_ -3/2
T2 [er(0)]3/2 [5 et Ty EF 360 (nkT) Er + ]

_3 g, e 5 (mkr\* _ 7 (mkr)®
_5n[€F(0)]3/2[1+8(£p) _384(SF) +
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+ To the first approximation we get,
5/2 5 (mwkT\?
E = 2nep(0) (- (0)) [1 2 (;) ] . (17)
+ By applying Crude approximation we get,
5/2 5 (kT \2
E = 2nep(0) ( (0)) [1 +2 (SF(O)) ] .. (18)

+ Using equation (16) we get,

nkT 215/2 5 ( wkT \2
= —Tlé‘p(o) [1 _E sF(O)) ] [1 +§ (SF(O)) ]

nkT nkT
= 2ne; (0) [1 T sF(O) ] [ EF(O) ]
rrkT 2 5 ( mkT
= —TLSF(O) [1 Y ep(o)) +§ (SF(O)) ]
E=2 nsp(O) [1 T nk(g)) ] -9

¢ The corresponding pressure is

<lm

2
pP=3

_2 neF(O) (nkT) ] (20)

5 er(0)

+ Equations (19) and (20) give the approximate energy and pressure of a strongly

degenerate Fermi gas and also known as equation of state of an ideal Fermi gas.
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