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M.SC. PHYSICS – I YEAR 

DKP11 : CLASSICAL AND STATISTICAL MECHANICS 

SYLLABUS 

 

Unit 1: Lagrangian and Hamiltonian formulations 

Hamilton’s principle - Derivation of Lagrange’s equations from Hamilton’s principle - 

Principle  of Least Action and its applications, Canonical Transformation : The Hamiltonian 

Formalism, Canonical formalism, Hamiltonian equations of motion, Cyclic coordinates, 

Rauthian  procedure and equations, Derivation of Generating functions, examples, properties, 

Derivation of  Hamiltonian equations from variational principle.    

 

Unit 2: Poisson bracket and theory of small oscillations 

Poisson bracket, Special cases of Poisson bracket , Poisson theorem, Poisson bracket and 

canonical transformation, Jacobi identity and its derivation, Lagrange bracket and its 

properties, the relationship between Poisson and Lagrange brackets and its derivation, the 

angular momenta and Poisson bracket, Liouville’s theorem and its applications; Theory of 

small oscillations:   

Formulation of the problem, Eigenvalue equation and the principle axis transformation, 

frequencies of free vibration and normal coordinates, free vibrations of a linear triatomic 

molecule 

 

Unit 3: Two - body central force problem and H - J theory 

Two body central force problem: Reduction to the equivalent one body problem, the equation 

of motion and first integrals, classification of orbits, the virial theorem, the differential 

equation for the orbit, integral power law in time in the Kelper’s  problem ,scattering in 

central force field; 

H-J Theory: H-J equation and their solutions, use of H-J method for the solution of harmonic 

oscillator problem, Hamilton’s principle function, Hamilton’s characteristic function and 

their properties, Action angle variable for completely separable systems, the Kelper’s 

problem in action angle variables 

 

Unit 4: Classical Statistical Mechanics 

Foundation of Statistical Mechanics: The macroscopic and microscopic states, postulate of  
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equal a priori probability, Contact between statistics and thermodynamics; Ensemble theory: 

Concept of ensemble, phase space, Density function, Ensemble average,  Liouville’s 

theorem, Stationary ensemble; The microcanonical ensemble, Application to the classical 

ideal gas; The canonical and grand canonical ensembles, Canonical and grand canonical 

partition functions, Calculation of statistical quantities; Thermodynamics of a system of non-

interacting classical harmonic oscillators using canonical ensemble, and of classical ideal gas 

using grand canonical ensemble, Energy and density fluctuations; Entropy of mixing and the  

Gibb’s paradox, Sackur-Tetrode equation . 

 

Unit 5: Quantum Statistical Mechanics 

 Quantum-mechanical ensemble theory: Density matrix, Equation of motion for density 

matrix, Quantum- mechanical ensemble average; Statistics of indistinguishable particles, 

Two types of quantum statistics- Fermi-Dirac and Bose-Einstein statistics, Fermi-Dirac and 

Bose-Einstein distribution functions using microcanonical and grand canonical ensembles 

(ideal gas only), Statistics of occupation numbers; Ideal Bose gas: Internal energy, Equation 

state, Bose-Einstein Condensation and its critical conditions; Bose-Einstein condensation in 

ultra-cold atomic gases: its detection and thermodynamic properties: Ideal Fermi gas: 

Internal energy, Equation of state, Completely degenerate Fermi gas.     

 

Books for Study and Reference 

 

1.Classical Mechanics (3
rd

 ed.,2002) by H. Goldstein, C.Poole and J. Safko, Pearson Edition 

2. Classical Mechanics - J. C. Upadhyaya- Second Edition-2005-Himalaya Publishing House                                                   

3.Classical Mechanics - G. Aruldhas-2008-PHI Learning Pvt.Ltd. 

4.Classical Mechanics-A Text Book-Suresh Chandra-Narosa Publications 

5.Statistical Mechanics by R. K. Pathira (2
nd

 edition) 

6.Statistical Mechanics by R.K. Pathira and P.D. Beale (3
rd

 edition) 

7.Statistical Mechanics by K.Huang 

8.Statistical Mechanics by L.D.Landau and I.M.Lifshitz      
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UNIT 1: LAGRANGIAN AND HAMILTONIAN FORMULATIONS 

Hamilton’s principle - Derivation of Lagrange’s equations from Hamilton’s principle - 

Principle  of Least Action and its applications, Canonical Transformation : The Hamiltonian 

Formalism, Canonical formalism, Hamiltonian equations of motion, Cyclic coordinates, 

Rauthian  procedure and equations, Derivation of Generating functions, examples, 

properties, Derivation of  Hamiltonian equations from variational principle.  

 

LAGRANGIAN AND HAMILTONIAN FORMULATIONS 

Hamilton’s principle - Derivation of Lagrange’s equations from Hamilton’s principle - 

Principle  of Least Action and its applications, Canonical Transformation : The Hamiltonian 

Formalism, Canonical formalism, Hamiltonian equations of motion, Cyclic coordinates, 

Rauthian  procedure and equations, Derivation of Generating functions, examples, properties, 

Derivation of  Hamiltonian equations from variational principle.    

1.1 HAMILTON’S PRINCIPLE: 

The motion of the system from time t1 to time t2 is such that the line integral 

                                      I = 
2

1

t

t

Ldt  

Where L = T – V, is an extremum for the path of motion  

(or)                              I =  0Ldt
2

1

t

t


 

 is the variation symbol. 

Deduction of Lagrange’s equations: 

 Consider a conservative system of particles. The integral can be written as                

                                         
2

1

,

t

t

jjj qVqqT  dt. 

 According to Hamilton’s variational principle, we have 

      
2

1

,

t

t

jjj qVqqT  dt = 0 
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   0
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Integrating by parts the second term, we get  
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There is no coordinate variation at end points and hence 

0
2

1


t

tjq .  

Now equation reduces to 
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
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each δqj are independent of each other, the coefficient of every δqj  should be equated to 

zero. And we get 
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V is not a function of  jq  and therefore 
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
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
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

 

 T – V = L = Lagrangian for a conservation system 

  L = Scalar function of  tandqq jj
,  

            

0
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


              J = 1, 2,......n. 

 This set of equations is called Lagrange’s equations of motion and each is a second 

order differential equation in terms of the time as independent variable. 

1.2 DERIVATION OF LAGRANGE’S EQUATIONS FROM HAMILTON’S   

      PRINCIPLE: 

 The Lagrangian L is a function of generalized co-ordinates q j ′s and generalized 

velocities 𝑞  j ′s and time t.                   
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                             That is ]),(),([ ttqtqLL jj
   

 According to Hamilton’s variational principle, motion of a conservative system from finite 

time t1 to time t2 is such that the line integral  

                             I= dtttqtqL j

t

t

j ]),(),([
2

1

  

is zero. That is             0]),(),([
2

1

  dtttqtqLI j

t

t

j


 

If the Lagrangian does not depend on time t explicitly, then the variation δL can be written as  

                          j

j

j

j

n

j

q
q

L
q

q

L
L 







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
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Integrating both sides from t = t1 to t = t2 

                   0
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
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But from Hamilton’s principle  

                             
2

1

t

t

Ldt 0 

Therefore            



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)( jj q

dt

d
q    

Integrating by parts the second term, we get  

                        

dtq
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There is no coordinate variation at end points and hence 
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Now equation reduces to 
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(or) 
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For holonomic system the generalized co-ordinates δq j are independent of each other. 

Therefore  the coefficients of each δq j must vanish. And we get 

                 

0
q

L

q

L

dt

d

jj






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
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



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











              J = 1, 2,......n. 

 This set of equations is called Lagrange’s equations of motion and each is a second 

order differential equation in terms of the time as independent variable. 

1.3 PRINCIPLE OF LEAST ACTION: 

 The time integral of twice the K.E is called the action. The principle of least action 

states that 

                                  
 
2

1

02

t

t

dtT  

But in systems for which H remains constant 

                                  
jj

j

qpT 2  

                            

0
2

1

  dtqp jj

t

t
j

  

 represents variation of the path which allows time 

as well the position coordinates to vary. 

In   variation 

1. time as well as the position coordinates are allowed to vary. 

2. time t varies even at the end points. 

3. the position coordinates are held fixed at the end points.  ie q j = 0 

Let APB be the actual path and AP′B be the varied path. The end points A and B after 

time t take the positions A and B such that A and B are fixed while time is not fixed.  

A point  P on the actual path gives P on the varied path. 

  q jq j= q j  + q j 

If  is the variational parameter, then in δ process t is independent of . But in  process t is 

a function of  even at the end points.  ie  t = t (α). 

q j depends on t and  

          q j 


 d
d

dq j
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   




















 d

t

t

qq jj
 

   





d
t

qd
q

j

j









   

   tqq jj    

Since  tqd
t

qandd
q

q jj

j

j 







  





  

Any function f  = ),,( tqqf jj
  

 f   =


























 t

t

f
q

q

f
q

q

f
j

j

j

j
j




 

           t
t

f
tqq

q

f
tqq

q

f
jj

j

jj

j
j















 


   

            t
t

f
f 




  

  = 
t

t



         ....(1) 

 Here  operation and time differentiation cannot be interchanged. 

Proof: 

 A =  dtqp jj

t

t
j


2

1

 

  =  
2

1

)(

t

t

dtHL  

  = )( 12

2

1

ttHdtL

t

t

   [since H is conserved]            ....(2) 

 A  = )( 12

2

1

ttHdtL

t

t

   

 = 

2

1

2

1

t

t

t

t

tHdtL                  ....(3) 

To Solve  :
2

1


t

t

dtL  

 Let 
2

1

t

t

dtL   = I            so that LI   
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 Now   I =  δI + tI   

   ie  
2

1

2

1

2

1

t

t

t

t

t

t

tLdtLdtL        .....(4) 

Substituting equation (4) in equation (3) we get 
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t

t

tHtLdtLA         .......(5) 

               

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dtL

 

cannot be zero. 
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L
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L
dtL j
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


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
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
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
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                      = dtq
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L
q
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j
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
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
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[Since from Lagrange’s equation of motion  ]


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

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
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L
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L


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q

L
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d
dtL j

j
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
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
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
  
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 Putting  tqqq jjj    

           

dttq
q

L
q

q

L

dt

d
dtL j

j

j
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
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
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
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




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2
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t

t

j

j
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j
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L
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
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
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
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




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At end points q j = 0 . Therefore 

 
2

1

2

1

|
t

t
j

j

t

t
j

tq
q

L
dtL 




 


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          =  
2

1

|
t

t
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j

tqp    

Now equation (5) becomes 

      
2
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t

t

t
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j
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2

1
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t
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j

tqpLH 







   
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      = 0. 

  Since         H =  Lqp jj
j

 ,  

Thus         0
2

1

,   dtqpA

t

t

jj
  

Which proves the principle of least action.  

Here 
2

1

,

t

t

jqp  Hamiltion’s  characteristic function 

(i) Principle of least action in terms of arc length of the particle trajectory. 

 Let a system contain only one particle of mass m 

 Kinetic energy 

2

2

1










dt

ds
mT  

 ds element of arc traversed in time dt 

                        dt  = ds
T

m
1
2

2








 

The principle of least action 

                 0
2

22

1
2

2

1

2

1









  ds

T

m
TdtT

t

t

t

t

 

       ie   02
2

1

1
2  dsTm

t

t

 

 0)](2[ 2

12

1

  dsVEm

t

t

   Since T +V = E 

 0)](2[ 2

12

1

  dsVHm

t

t

   Since E = H 

 0][ 2

12

1

  dsVH

t

t

    Since m = Constant  ....(6)  

The above equation represents the principle of least action in term of arc length of the 

particle trajectory. 

(ii) Jacobi’s form of the principle of least action: 

 The K.E of the system 

                kjjk
kj

qqaT 
,2

1
  

               kjjk
kj

qqaT 
,

2   
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2

, dt

dqdq
a

kj

jk
kj

  

                     = 

2










dt

d
               ....(7) 

         Where     aldifferentiadqdad kqjjk
kj

,
,

2
  

  From equation (7) 

2

dt

dp

2

1
T 








  

         dt  =
 

1
22T

d
 

The principle of least action 

                02
2

1

  dtT

t

t  

              

0
)2(

2
2

1

2

1

 
T

d
T

t

t


 

     02
2

1

1
2   dT

t

t

 

    02
2

1

1
2   dVE

t

t

 

    02
2

1

1
2   dVH

t

t

 

       0
2

1

1
2   dVH

t

t

       ....(8) 

 This equation gives the Jacobi’s form of principle of least action. 

(iii) Fermat′s principle: 

 It states that the time taken by a light ray to travel between two points is extremum.  

According to principle of least action 

             
2

1

t

t

0dtT2  

              
2

1

0

t

t

dtT  

If T is conserved, then 
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                
2

1

t

t

0dt  

        (t2 – t1)   = 0 

           (t2 – t1)   = extremum. 

ie, the time taken by the light ray to travel between two points is extremum. 

1.4 CANONICAL TRANSFORMATION: 

 Transformation is one to change one set of position and momentum coordinates into 

another set of position and momentum coordinates. 

 We assume p j and q j are the old momentum and position coordinates and P j and Q j 

are new one related by 

  P j =P j (p j, q j,t) 

  Q j = Q j (p j,q j,t)                .…(1) 

Then if there exists a new Hamiltonian H  in the new coordinates such that 

  
j

j

j

j
P

H
Qand

Q

H
P









        ….(2) 

 These equations are known as canonical (or) contact transformations. 

 Q j, P j are canonical coordinates. 

By definition we have H = p jq j  - L 

 and                 KQpH jj  
                                             …(3)

 

Here the position and momenta coordinates are independent. 

 Canonical transformations are the transformations of phase space. They are 

characterized by the property that they leave the form of Hamilton’s equations of motion.  

  example : Cartesian to polar coordinate is an example of co-ordinate transformation. 

 The transformation of one set of position coordinates to new set of coordinates is 

called point transformation. They are the transformations of configuration space. 

1.5 HAMILTONIAN FORMALISM: 

 Lagrangian equations of motion are invariant in form with respect to the set of any 

generalized coordinates. In the new set Q j, Lagrange’s equations will be 

                0
Q

L

Q

L

dt

d

jj


























 

ie, Lagrange’s equations are covariant with respect to point transformations. If we define Pj 

as 
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 jj

j

j QQ
Q

L
P 

 ,





 

The Hamilton’s canonical equation will also be covariant. ie, 

                           

 
jj

j

j PQ
P

H
Q ,






 

                  jj

j

j PQ
Q

H
P ,




  

 Therefore, this transformation is extended to Hamiltonian formulation. In 

Hamiltonian formulation, we admit the existence of one more independent variable called 

momentum. Consequently the simultaneous transformation of the independent coordinates 

and momenta q j, p j to a new set Q j, P j can be represented in the form 

      tpqQQ jj ,,
                                                                             ….(1)

 

       tpqPP jj ,,  

 For Q j, P j to be canonical, they should be able to be expressed in Hamiltonian form 

of equations of motion. 

 ie                
j

j
P

K
Q






                     j

j
Q

K
P




  

Where K is a function of (Q, P, t) and is a substitute for H of old set in new set of 

coordinates. If Q j, P j are to be canonical coordinates, they must satisfy the modified 

Hamilton’s principle of the form 

    0,,
2

1

 dttPQkQP

t

t

jj
           ....(2) 

The old coordinates p j, q j are already canonical. 

Therefore 

    0dtt,p,qHqp
2

1

t

t

jj                                                                             . ...(3) 

 The simultaneous validity of equations (2) and (3) does not mean that the integrands 

of the two integrals are equal. We can therefore write 

      0
2

1

 dtKQPHqp

t

t

jjjj
         ....(4) 

Equation (4) will not be affected if we add to or subtract from it a total time derivative of a 

function F = F(q,p,t).Now we can write equation (4) as 
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     0
2

1










 dt
dt

dF
KQPkqp

t

t

jjjj
    

is follows that 

                     
dt

dF
KQPHqp jjjj       ....(5) 

1.6 CANONICAL FORMALISM  

       DERIVATION OF GENERATING FUNCTIONS:
                           

 

          The first term in equation (5) is regarded as a function of q j, p j and t and the 

second term as a function of Q j, P j and t. F is in general as a function of (4n +1) variables q j, 

p j, Q j, P j and t. The two sets of variables are connected by the 2n transformation equations 

and besides t, only 2n are independent. Now F is a function of both old and new set of 

coordinates and four forms of F are possible. F1(q, Q, t), F2(q, P, t) F3(p, Q, t) and F4 (p, P, t) 

and F is termed as the generating function. 

(A) FIRST FORM F1 (q, Q,t) 

We can write equation (5) as 

 tQq
dt

dF
KQPHqp jjjj ,,1       ....(6) 

                F1 = F1 (q, Q, t) 

              
t

F
Q

Q

F
q

q

F

dt

dF
j

j
j

j

j
j 












 1111   

Now equation (6) becomes 

t

F
Q

Q

F
q

q

F
KQPHqp j

j

j

j

jjjj













 111   

0111 












































t

F
HKQ

Q

F
Pqp

q

F
j

j

jjj

j

            .... (7) 

 Since q j and Q j are to be treated as independent variables, equation (7) can hold only 

if jq  and jQ  separately vanish. 

ie   tQq
q

F
p

j

j ,,1




             ....(8) 

   tQq
Q

F
P

j

j ,,1




         ....(9) 

 and        K =   t,Q,q
t

F
H 1




        ....(10) 
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Solving equation (8), we get              Q j = Q j (q j, p j, t)                      

Which when substituted in (9) gives  P j  = P j (q j, p j, t)      

(B) SECOND FORM F2(q,P,t) 

F2(q j, P j, t)  = F1 (q j, Q j, t)  + P j Q j 

F1(q j, Q j, t)  = F2 (q j, P j, t)  P j Q j                  .....(11) 

putting equation (13) in equation (6), we get 

   jjjjjjjj QPtPqF
dt

d
KQPHqp  ,,2

   

                     jjjjj

j

j

j

jj QPQP
t

F
P

P

F
q

q

F
KQP  














 222   

                          j

j

j

j

jj P
P

F
q

q

F

t

F
KQP 














 222    

 0222 











































 K

t

F
HPQ

P

F
qp

q

F
jj

j

jj

j

               ....(12) 

    Since q j and P j are independent variable, equation (12) can be satisfied only when 

   tPq
q

F
p jj

j

j ,,2




        .....(13) 

   tPq
P

F
Q jj

j

j ,,2




        .....(14) 

              and  tPq
t

F
HK jj ,,2




                       .....(15) 

Equation (13) can be solved to give  P j = P j (q j, p j, t) 

which when substituted in (14) gives Q j = Q j (q j, p j, t) 

(C) THIRD FORM F3 (p,Q, t) 

 F3 can be obtained from F1 by replacing q j by p j 

 F3 (p j, Q j, t)  = F1 (q j, Q j, t) - p j q j 

 F1 (q j, Q j, t) = F3 (p j, Q j, t) + p j q j     ....(16) 

putting equation (16) in equation (6), we get  

   jjjjjjjj qptQpF
dt

d
KQPHqp  ,,3

   

                   jjjjj

j

j

j

jj qpqp
t

F
Q

Q

F
p

p

F
KQP  














 333    

           jj

j

jj

j

jj QP
Q

F
pq

p

F

t

F
KQpH 












































 333  
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 0333 











































 K

t

F
HQP

Q

F
pq

p

F
jj

j

jj

j

    ....(17) 

Since p j, Q j are independent variables, equation (17) can be satisfied only when 

  tQp
p

F
q jj

j

j ,,3




                     ....(18) 

  tQp
Q

F
P jj

j

j ,,3




                   ....(19) 

  tQp
t

F
Hk jj ,,3




                        ....(20) 

equation (18) gives     Q j  =  Q j (q, p, t) 

and equation (19) gives   P j = P j (q, p, t) 

(D) FOURTH FORM F4(p, P, t) 

 F4 can be obtained from F3 by replacing Qj, by Pj 

  F4(  p j, P j, t ) = F3 (p j, Q j, t)  + P j Q j 

   = F1 (q j, Q j, t) -p j q j - +P j Q j    

             F1 (q j, Q j ,t) = F4(p j, P j, t) + p j q j - P j Q j                     ....(21) 

putting equation (23) in equation (6) we get 

   jjjjjjjjjj QPqptPpF
dt

d
KQPHqp  ,,4

  

 jjjjjjjjj

j

j

j

jj QPQPqpqp
t

F
P

P

F
p

p

F
KQP  














 444

 

t

F
PQ

P

F
pq

p

F
KH jj

j

jj

j 










































 444 

             .… (22) 

Since p j and P j are independent variables, equation (22) can be satisfied only when 

 

 tPp
p

F
q jj

j

j ,,4






                 .…(23) 

 

 ),,4 tPp
P

F
Q jj

j

j





                 ….(24) 

 

 tPp
t

F
HK jj ,,4






                                                                                 ….(25) 

       Equation (23) gives Q j  = Q j (q, p, t) 

and equation  (24) gives P j  = P j (q, p, t) 
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(i) Condition for a transformation to be canonical: 

 If the expression   (P j dQ j- p j dq j)    

                              (or)             (p j dq j- P j dQ j) 

 be an exact differential then the transformation from (q j, p j) set to (Q j, P j) set is 

canonical. 

Proof: 

 We know that for a transformation to be canonical, equation 

 

   
dt

dF
KQPHqp jjjj  

      ….(1) 

must be satisfied. 

 Suppose generating function F does not include time explicitly then    

                               

H
t

F
HK 






 

Now equation (1) becomes 

 
dt

F
QPqp jjjj


 

 

(or) 

          
  dFdQPdqp jjjj   

Where dF is the exact differential of  F. 

Exercises: 

1. Show that the transformation  

peqQ cos2 

 

 

peqP sin2 

 
is a canonical transformation. 

Solution: 

                  

peqQ cos2 

 

              
    pdpeqdqpeqdQ sin2cos2

2/12/1 


 

        pdqpdpeqpeqdqpeqpeqpdqPdQ   sin2sin2cos2sin2
2/12/12/12/1

 

pdqdppqdqpppdqPdQ  2sin2cossin  
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dppqdqppppdqPdQ 2sin2)cos(sin   

        = 
pdpqdqpp 2sin22sin

2

1











 

        =
dppqpq

p
dqpqpq

q



























2sin

2

1
2sin

2

1

 

        = 
dp

p

F
dq

q

F










 

        = dF 

Which shows that the RHS is an exact differential of the function             

            
pqpqF  2sin

2

1

 

 and hence the transformation is canonical. 

2. Show that the transformation 

 
Qpq sin2

                 
Qpp cos2

  

(or) 
 22

2

1
qpP 

     
canconicalis

p

q
Q 1tan

 

Solution: 

   dPQpdQQpdq sin2cos)2(
2/12/1 


 

          
  dPQpQpdQQpQppdq sin2cos)2(cos)2(cos)2(

2/12/12/12/1 


 

 pdq = 2P cos
2
 Q dQ + sin Q cosQ dP 

   pdq -PdQ = 2P cos
2
 Q dQ + sin Q cosQ dP-PdQ 

                   = (2P cos
2
 Q - P) dQ + 

1

2
sin 2Q dP 

 dPQP
P

dQQP
Q


























 2sin

2

1
2sin

2

1

 

                  = dP
P

F
dQ

Q

F









 

  = dF  where QPF 2sin
2

1
  

3. Show that the transformation 

 P = q cot p 

         Q = 








q

psin
log is canonical. show that the generating function is 

  )(sin1 12/122 QQQ qeqeqeF    
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Solution: 

 dp
p

Q
q

q

Q
dQ









  

dp
q

p

p
dq

q

p

q











































sin
log

sin
log

 

dp
q

p

q

p
dq

q

p

q

p






































cos

sin

1sin

sin

1
2

 

dpp
q

dq
cot  









 dpp

q

dq
pqpdqPdQpdq cotcot  

        dppqdqpp 2cotcot   

      =     dppqqp
p

dqpqqp
q

cotcot 








 

  

dp
p

F
dq

q

F









   

     dF  exact differential 

F  = qp  +q cot p 

 and hence the transformation is canonical. 

          Let us put   









q

p
Q

sin
log  

  QQ qepeqp 1sinsin   

         cos p =   2/1221 Qeq  

           cot p = 
 

Q

Q

qe

eq 2/1221
 

Now the generating function     2/1121 1sinF eqeeqq QQ    

1.7 HAMILTONIAN: 

 The quantity  Lqp jj    is a constant of motion with the condition that L does not 

involve time explicitly. This constant was designated by H. 

               jjjj qqLqpHie  ,  

H as Hamiltonian   H = H (q j, p j) 

            = ),( jjjj qqLqp    
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If H does not involve time, it is said to be a constant of motion. 

(i) Hamilton’s canonical equations of motion: 

 Hamiltonian is in general as a function of the position coordinates q j, the momenta p j 

and the time t. 

        H =   H (q j, p j, t) 

    dt
t

H
dp

p

H
dq

q

H
dH j

j

j

j 












      …(1) 

   H     = Lqp jj    

So that  dLqdpdpqH jjjj                   ….(2) 

But Lagrangian  t,q,qLL jj
  

 dt
t

L
qd

q

L
dq

q

L
dL j

j

j

j 












 


                                 ....(3) 

Substituting equation (3) in equation (2) we get 

            

dt
t

L
qd

q

L
dq

q

L
qdpdpqdH j

j

j

j

jjjj













 




                        ….(4)                      

              
j

j

j

j

p
q

L
andp

q

L














 

Now equation (4) becomes 

          

dt
t

L
qdpdqpqdpdpqdH jjjjjjjj




 

 

          

dt
t

L
dqpdpqdH jjjj




 

                              ….(5)

 

Comparing coefficients in equation (5) and equation (1), we arrive   

             
j

j

H
q




  

           
j

j
q

H
p






                                                                                      ….(6)

 

        
t

H

t

L









         

Equations (6) are known as Hamilton’s canonical equations of motion and of a set of 2n first 

order equations of motion. 
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(ii) Physical Significance of H 

 Hamiltonian H also possesses the dimensions of energy but in all circumstances  

H  E  

 E = H equality has some restrictions. That are 

1. The system be conservative one. ie. Potential energy  is coordinate dependent and not 

velocity dependent. 

2. Coordinate transformation equations  be independent of time so that Tqp jj 2   

Let us write H = H (p1, p2,……p j, q1, q2,……..q j, t) 

 
t

H
p

p

H
q

q

H

dt

dH
j

j

j

j 












 

 

           From Hamilton′s equations of motion 

 

                j

j

p
q

H






              
j

j

q
p

H






          

 

     Therefore    
t

H
pqqp

dt

dH
jjjj




   

                     = 
t

H




                ….(1) 

                     = 
t

L




  

                     
t

L

t

H









                                 .…(2) 

If L is not an explicit function of time, 0
t

L





 

          0





t

H

            
0

dt

dH
ie  

                         H  = constant                .…(3) 

Thus if L is not an explicit function of time, H is constant of motion. 

 For conservative systems, the Potential energy  does not depend upon generalized 

velocity, ie 

            0




jq

V


               .…(4) 

We know  LqpH jj    

  Lq
q

L
j

j





 


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   
















 VT

q
q

j

j 
 - L  Since L = T – V 

  L
q

V

q

T
q

jj

j 























  

            L
q

T
q

j

j 


















    since 0





jq

V


 

 H        Lqm
q

q j

j

j 













2

2

1



  

  Lqm
2

j    

  = 2T – L  = 2T – (T –V) 

  = T + V = K.E + P.E = Total energy. 

 H represents the total energy of the system for conservative system. 

1.8 CYCLIC (OR) IGNORABLE COORDINATE: 

 We know that the Lagrangian L is a function of generalized coordinate q j, 

generalized velocity 𝑞  j and time t.  If the Lagrangian of a system does not contain a 

particular coordinate q k, then .0




kq

L
 such a coordinate is referred to as an ignorable or 

cyclic coordinate. 

(i) Generalised momentum: [conjugate (or) canonical momentum] 

 Consider a system of mass points acted upon by forces derived from potentials 

dependent on position only. 

Now Lagrange’s equations of motion are 

                          

0























jj q

L

q

L

dt

d


 

Suppose q j is cyclic.ie it does not occur in Lagrangian L, then for this coordinate Lagrange’s 

equation reduces to 

                             

0


















jq

L

dt

d


 

                                   






jq

L


constant 

       Generalized momentum = constant.   

 

iiii x

T

x

V

x

T

x

L

 

















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             222

2

1
iii

i

zyxm
x








 l   

            ixii pxm    

             = x component of the linear momentum associated with the i
th

 particle. 

Generalising the concept, a momentum associated with the coordinate q j shall be 

        
jj

j
q

L

q

T
p

 







 = generalized momentum. 

    Thus jp  constant 

The generalized momentum conjugate to a cyclic coordinate is conserved. 

If we put jp in Lagrange’s equation we get 
j

j
q

L
p




  

1.9 ROUTHIAN PROCEDURE AND EQUATIONS : 

In Kepler’s problem 

                  
 

r

k
rrm

2

1
L 222    

 does not occur in L and is therefore an ignorable coordinate so that corresponding 

momentum 

                
almr

L
p 




 







2
constant 

 It appears from the expression L that we can solve Kepler problem without 

considering  which is ignorable.  But this is not so in Lagrangian formation because  which 

requires how  varies with t.  Thus we consider .  However Routhian procedure which 

eliminates this consideration. We want to find a function R called Routhian function such 

that it does not contain generalized velocities corresponding to ignorable   coordinates. 

                            t,q.....q,q,q,.....q,qLL n21n21
  

If coordinates k1 q......q are ignorable then 

                            t,q.....q,q......qLL n1n1k


  

                         

t
t

L
q

q

L
q

q

L
L

n

j

j

j

n

kj

j

j















 

 11




 

(or) t
t

L
q

q

L
q

q

L
q

q

L
L

n

kj

j

j

n

kj

j

j

k

j

j

j































 

 111







                                   . … (1) 

Routhian function R in which velocities k1 q......q  corresponding to ignorable coordinates 

k1 q......q  are eliminated, can be written as 
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 tqqqqRR nknk ,....,....... 11


  

so that               t
t

R
q

q

R
q

q

R
R j

j

n

1kJ

j

j

n

1kJ















 

 
    …(2) 

We can also define the Routhian  function as 

               j

k

1J

jpqLR 


   

              j

k

J

jj

k

J

j pqpqLR 



11

   

                j

k

J

j

k

J

jj pqqpL  



11

  

                 




















k

J

jj

k

J

j

j

pqq
q

L
L

11

 


 

               j

k

J

jj

j

n

kJ

n

kJ

j

j

pqt
t

L
q

q

L
q

q

L
 



















111




   ….(3) 

Comparing equations (2) and (3), we get 

                 
jj q

R

q

L










                                                                                           ….(4)

 

            
jj q

R

q

L

 







    J = k+1 …n 

putting equation (4) in Lagrange’s equations 

 0
1









































n

J jj q

L

q

L

dt

d


    

we get 

       0
1










































n

KJ jj q

R

q

R

dt

d


      ….(5) 

in which Routhian function has replaced Lagranian function. These are only (n-k) second 

order equations in the non-ignorable variables. Thus we can eliminate the ignorable 

coordinates through Routhian procedure. 

(i) Kepler’s problem: 

 we know that  
2rmp   

 so that  R  = 
pL   

   22rmL  
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     22222

2

1
  mr

r

k
rrm   

     =  
r

k
rrm

2

1 222    

  rm
r

R








 

  
2

2

r

k
mr

r

R





  

Now we get the equation of motion as 

   0
2

2 
r

k
mrrm

dt

d
      [from equation (5)] 

                   

0
2

2 
r

k
mrrm   

                           
2

2

r

k
mrrm    

                                 )r(f
r

mv2




 

Which is the equation of motion of a particle under central force. 

1.10  DERIVATION OF HAMILTON’S CANONICAL EQUATIONS FROM  

         VARIATIONAL PRINCIPLE: 

Hamilton’s principle is stated as 

  
2

1

0

t

t

LdtI   

 LqpH jj    

 HqpL jj    

 and hence    0
2

1

,,   dttpqHqpI

t

t

jjjj
      …(1) 

Eqn. (1) is termed as modified Hamilton’s principle. 

The   variation can be expressed as  



 d  

                                   








I
dI  

                                                    

   





2

1

0,,

t

t

jjjj dttpqHqpd 


  
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end point’s times are same for every path. Limits are independent of α and hence 



can be 

taken inside the integral. 

 dI  

















































2

1

0

t

t

j

j

j

j

j

jj

j
dt

t

t

Hp

p

Hq

q

Hq
pq

p




                    .…(2) 

But 0
t






 
since time of travel along every path is same.  Also 

             
 
















 2

1

2

1

t

t

j

j

t

t

j

j dt
q

dt

d
pdt

q
p




 

                   









2

1

2

1

|

t

t

j

j

t

t

j

j dt
q

p
q

p


  

                   




2

1

t

t

j

j dt
q

p


  

           

 jq
 vanishes at limits t1 and t2, 

Now equation (2) becomes 

                   dI  








































2

1

0

t

t

j

j

j

j

j

jj

j
dt

p

p

Hq

q

Hq
pq

p


  

Putting   j

j
qd

q





 

 j

j
pd

p








 

We get       I  






















2

1

0

t

t

j

j

j

j

jjjj dtp
p

H
q

q

H
qpqp    

             














































2

1

0

t

t j

jj

j

jj dt
q

H
pq

p

H
qp    

Since jp and jq  are independent variables, the above equation can be satisfied only if 

  
j

j

j

j
p

H
q

p

H
q









 0  

  
j

j

j

j
q

H
p

q

H
p









  0  

which are the desired canonical equations of motion. 
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1.11 APPLICATIONS OF HAMILTON’S EQUATIONS OF MOTION: 

1. Simple pendulum : 

 The kinetic energy of the bob 
22m

2

1
T  l  

            and the potential energy           r = mg l(1cos) 

                               Lagrangian  L = TV 

                                                                 = 
22

2

1
lm  mgl(1cos)                      …. (1) 

                                     p  =  




L

= ml
2 2                              …. (2) 

                                     Hamiltonian   H   = Lqp jj    

                                       = p L  

                                      = 







 )cos1(mgm

2

1
m 2222 lll   

                                                     = )cos1(
2

1 22  mgllm                       ….(3) 

                                     = T + V   

 Then the system is conservative.   

Putting equation (2) into equation (3), we get 

 )cos1(
2

1
2

2

2  







 mgl

ml

p
mlH

 

                   giving 

                                      








sin

2

mgl
H

ml

p

p

H











                                             ….(4) 

Thus Hamilton’s equations of motion for this system will be 

2ml

pH 


 




                    _....(5)   




 sinmgl
H

p 



                                                                                    ….(6) 

From equation (5), we have 

                   

 2mlp   

and hence equation (6) becomes 
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             sinmgm 2 ll   

                 singl  

             0sing l  

                 0g l  

                  
0

g


l
  

which represents the equation of motion of a simple pendulum with period gl /2  

2. Compound pendulum : 

        

2I
2

1
T    

           V = mglcos 

Now the Lagrangian L =  cos
2

2 mglI 
   

 Then           


 




L
p  

                          = I                                                                                        …. (1) 

          Hamiltonian    H = Lqp jj    

                           = Lp 


 

                                     
 cos

2

1 22 mglII    

            =  cos
2

1 2 mglI   

            = 






  cosmgl
I

p
I

2

1
2

 

             =  cos
2

2

mgl
I

p
                                                                ….(2) 

             = T + V 

Then the system is conservative. 

The Hamilton’s equations of motion for  and p are 

                         


















H
p

P

H





                                                                                       ….(3) 

From equation (2) we find 
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Now equation (3) becomes 
I

p                                                                              ….(4) 

and                                 sinmgp l                                                               ….(5) 

From equation  (4)              
 Ip  

Now equation (5) becomes 

                     











2

sin

sin







I

mgl

mglI

 

which is the equation of motion of compound pendulum with 
I

mgl
  

3. Linear Harmonic Oscillator : 

 The system is conservative and constraint is independent of time. Hamiltonian will 

represent the total energy of the system.  The Lagrangian 

                                   

m

p
x

xmp
x

T

x

L

kxxm

VTL






















 22

2

1

2

1

 

giving  Hamiltonian 

                               

2
2

2

2

2

1

2

2

1

2

1

kx
m

p

kx
m

p
m

VTH















  

Equations of motion are 









 



sinlmg
H

I

p

p

H



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
29 

 

                                  0
















kxxm

m

kx

m

p
x

m

p

p

H
x

kx
x

H
p










 

This relation shows that motion is simple harmonic and is the desired equation. 

4. Particle in a central field of force : 

 The system is conservative and hence the Hamiltonian represents the total energy. 

                        

 

)(

2

1 222

rVV

rrmT



 
 

Lagrangian VTL   

              )(
2

1 222 rVrrm  
 

                  





 rm

r

L
pr


 m

p
r r

        
 

       





 







2mr
L

p
2

θ

mr

p


 

Hamiltonian H= T + V 

             
  )(

2

1 222 rVrrm  
  

              
)(

22 2

22

rV
mr

p

m

pr  

 

                     r

V

mr

p

r

H
pr











3

2


  

                     
0

H
p 







                                                               …. (1) 

 

and 

                      
m

p

p

H
r r

r







 

          2mr

p

p

H 









                                                                …. (2) 

Which are the desired equations of motion. 

From equation (2) we can write 
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  r

V

mrm

p

m

p
r r






1
32

2





 

  r

V

mr

p
rm






3

2


                                         …. (3) 

We put          

                
andforceradialrF

r

V





 )(

 

                   
)]2([

][ 2

3

22

3

2

equationFrommr
mr

mr

mr

p


 



 

        r

rm 2][ 


 

   
forcelcentrifuga

r

m


2
v

 

From equation (3) 

  
)(

v
2

rF
r

m
rm  

 

gives an equation of motion involving the actual force F(r) and a centrifugal force  r

m
2

v . 

5. Hamiltonian for a charged particle in an electromagnetic field : 

Lagrangian 







 A

c
qTL


v

1
  

  









c

Av
qvm

2

1 jj2

j                                                                   …. (1) 

     
jj

j

L

q

L
p

v










 

  jj A
c

q
m  v  

Hamiltonian  LpqH jj     
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 

  































A
c

qTA
c

q
T

LA
c

q
m

LA
c

q
m

LA
c

q
m

jjj

jjj





v
1

v2

vv

vv

vv

2

2



 

       




qm

qT





2v
2

1  

such that H can be interpreted as the sum of kinetic and electrostatic potential energies of the 

particle. 

 

 

6. Particle moving hear the surface of earth : 

Let z axis be along upward vertical direction, then kinetic energy is 

                                222m
2

1
T zyx    

The applied force on the body is its weight acting in negative z direction.ie 

 

mgzV

z

V
mgFF z








 

Lagrangian  

                   
  mgzzyxm

VTL





222

2

1


 

  x
xx

x



mp

TL










 

               giving       
m

p xx   .  

             Similarly    
m

p
y

y
  and    

m

p
z z  

Hamiltonian for such a system is conserved.  ie 

   
  zmgzyxm

VTH





222

2

1

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      mgzppp
m2

1 2

z

2

y

2
 x  

giving equations of motion 

  0
H

p 





x
x

  

  0
y

H
py 




  

  mg
z

H
pz 




                                                                            …. (1) 

and                       
m

p

p

H x

x

x 



  

  
m

p

p

H
y

y

y





  

  
m

p

p

H
z z

z





                    ….(2) 

From equation (2) we get 

  0
m

p
 xx


  

  0
m

p
y

y



  

  g
m

p
z z 


  

which shows that the acceleration along z direction is the acceleration due to gravity and is 

true.  

 



CLASSICAL AND STATISTICAL MECHANICS

UNIT 2

POISSON BRACKET AND THEORY OF SMALL OSCILLATIONS

Poisson bracket, Special cases of Poisson bracket , Poisson theorem, Poisson bracket

and canonical transformation, Jacobi identity and its derivation, Lagrange bracket and its

properties, the relationship between Poisson and Lagrange brackets and its derivation, the

angular momenta and Poisson bracket, Liouville’s theorem and its applications; Theory of

small oscillations:

Formulation of the problem, Eigenvalue equation and the principle axis transformation,

frequencies of free vibration and normal coordinates, free vibrations of a linear triatomic

molecule

2.1 POISSON BRACKET : DEFINITION

Let F be any dynamical variable of a system.

Suppose F is function of conjugate variables qj,pj and t, then

dF

dt
=

dF

dt
(qj, pj, t) =

∑
j

∂F

∂qj
q̇j +

∂F

∂pj
ṗj +

∂F

∂t

=
∑
j

(
∂F

∂qj

∂H

∂pj
− ∂F

∂pj

∂H

∂qj

)
+
∂F

∂t

on using Hamiltonts canonical equations of motion.

The first bracketted term is called Poisson Bracket of F with H.

In general if X and Y are two dynamical variables then

[X, Y ]q,p =
∑
j

(
∂X

∂qj

∂Y

∂pj
− ∂X

∂pj

∂Y

∂qj

)
(1)

2.2 SPECIAL CASES OF POISSON BRACKET

(a) [X, Y ] = −[Y,X]

(b) [X,X] = 0

(c)[X, Y + Z] = [X, Y ] + [X,Z] (2)

(d) [X, Y Z] = Y [X,Z] + [X, Y ]Z
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Also

(e) [qi, qj]q,p = 0 = [pi, pj]q,p

(f) [qi, pj]q,p = δij = 0 if i 6= j (3)

= 1 if i = j

Equation (3) are known as fundamental Poisson brackets.

Take the property

(c)[X, Y + Z] = [X, Y ] + [X,Z]

Proof :

[X, Y + Z] =
∑
j

(
∂X

∂qj

∂(Y + Z)

∂pj
− ∂X

∂pj

∂(Y + Z)

∂qj

)
=
∑
j

(
∂X

∂qj

∂Y

∂pj
+
∂X

∂qj

∂Z

∂pj

)
−
∑
j

(
∂X

∂pj

∂Y

∂qj
+
∂X

∂pj

∂Z

∂qj

)
=
∑
j

(
∂X

∂qj

∂Y

∂pj
− ∂X

∂pj

∂Y

∂qj

)
+
∑
j

(
∂X

∂qj

∂Z

∂pj
− ∂X

∂pj

∂Z

∂qj

)
= [X, Y ] + [X,Z]

Similarly

[qi, qj]q,p =
∑
k

(
∂qi
∂qk

∂qj
∂pk
− ∂qi
∂pk

∂qj
∂qk

)
∂qj
∂pk

=
∂qi
∂pk

= 0

and hence

[qi, qj]q,p = 0 = [pi, pj]q,p

[qi, pj]q,p =
∑
k

(
∂qi
∂qk

∂pj
∂pk
− ∂qi
∂pk

∂pj
∂qk

)
=
∑
k

∂qi
∂qk

∂pj
∂pk

since
∂qi
∂pk

and
∂pj
∂qk

= 0
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Also
∂qi
∂qk

and
∂pj
∂pk

= 0

sothat

[qi, pj]q,p =
∑

δikδjk

= δij

= 0 ifi 6= j

= 1 ifi = j

Excercises

1.If [φ, ψ] be the Poisson bracket of φ and ψ prove that

(a)
∂

∂t
[φ, ψ] =

[
∂φ

∂t
, ψ

]
+

[
φ,
∂ψ

∂t

]
(b)

d

dt
[φ, ψ] =

[
dφ

dt
, ψ

]
+

[
φ,
dψ

dt

]
We have

[φ, ψ] =
∑
i

(
∂φ

∂qi

∂ψ

∂pi
− ∂ψ

∂qi

∂φ

∂pi

)
∂

∂t
[φ, ψ] =

∑
i

∂

∂t

{
∂φ

∂qi

∂ψ

∂pi
− ∂ψ

∂qi

∂φ

∂pi

}

=
∑
i

∂

∂qi

(
∂φ

∂t

)
∂ψ

∂pi
+
∑
i

∂φ

∂qi

∂

∂pi

(
∂ψ

∂t

)
−
∑
i

∂

∂qi

(
∂ψ

∂t

)
∂φ

∂pi
−
∑
i

∂ψ

∂qi

∂

∂pi

(
∂φ

∂t

)
=
∑
i

{
∂

∂qi

(
∂φ

∂t

)
∂ψ

∂pi
− ∂ψ

∂qi

∂

∂pi

(
∂φ

∂t

)}
+
∑
i

{
∂φ

∂qi

∂

∂pi

(
∂ψ

∂t

)
− ∂

∂qi

(
∂ψ

∂t

)
∂φ

∂pi

}

=

[
dφ

dt
, ψ

]
+

[
φ,
dψ

dt

]
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2.If {pl, qi}, {ql, qi} are the Lagrange’s brackets and [pl, pj], [ql, pj] are the Poisson brackets,

then prove that

n∑
i=1

{pl, qi}[plpj] +
n∑
i=1

{ql, qi}[ql, pj] = 0

We have

{pl, qi} = −{qi, pl}

= −δil

and

{ql, qi} = 0

[pl, pj] = 0

[ql, pj] = δlj

Substituting these values we get

n∑
i=1

{pl, qi}[pl, pj] + {ql, qi}[ql, pj] = −δil × 0 + 0× δlj

= 0

3.If {ql, qi}, {pl, qi} are the Lagrange’s brackets and [ql, qj], [pl, qj] are the Poisson brackets,

then prove that

n∑
i=1

{ql, qi}[ql, qj] +
n∑
i=1

{pl, qi}[pl, qj] = δij

We know

{ql, qi} = 0

[ql, qj] = 0

Also

{pl, qi} = −{qi, pl}

= −δil

[pl, qj] = −[qj, pl]

= −δjl
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n∑
i=1

{ql, qi}[ql, qj] +
n∑
i=1

{pl, qi}[pl, qj] = 0× 0 + [−δil ×−δjl]

= δij

Hence proved.

2.3 POISSON’S THEOREM

For a dynamical variable F (q, p, t)

dF

dt
= [F,H] +

∂F

∂t

If F is a constant of motion so that dF/dt = 0, then by Poisson’s theorem

[F,H] +
∂F

∂t
= 0

Furthermore if F does not contain time explicitly, that is ∂F/∂t = 0 then

[F,H] = 0

This is the required condition for F to be a constant of motion.

2.4 POISSON BRACKET AND CANONICAL TRANSFORMATION :

Poisson brackets are invariant under a canonical transformation.That is

[X, Y ]q,p = [X, Y ]Q,P

Proof :

[X, Y ]Q,P =
∑
i

(
∂X

∂Qi

∂Y

∂Pi
− ∂X

∂Pi

∂Y

∂Qi

)
=
∑
i,j

{
∂X

∂Qi

(
∂Y

∂qj

∂qj
∂Pi

+
∂Y

∂pj

∂pj
∂Pi

)
− ∂X

∂Pi

(
∂Y

∂qj

∂qj
∂Qi

+
∂Y

∂pj

∂pj
∂Qi

)}
=
∑
j

∂Y

∂qj

∑
i

(
∂X

∂Qi

∂qj
∂Pi
− ∂X

∂Pi

∂qj
∂Qi

)
+
∑
j

∂Y

∂pj

∑
i

(
∂X

∂Qi

∂pj
∂Pi
− ∂X

∂Pi

∂pj
∂Qi

)
=
∑
j

{
∂Y

∂qj
[X, qj]Q,P +

∂Y

∂pj
[X, pj]Q,P

}

36



CLASSICAL AND STATISTICAL MECHANICS

Further

[X, qj]Q,P = −[qj, X]Q,P

= −
∑
m

(
∂qj
∂Qm

∂X

∂Pm
− ∂qj
∂Pm

∂X

∂Qm

)
= −

∑
m,k

{
∂qj
∂Qm

(
∂X

∂qk

∂qk
∂Pm

+
∂X

∂pk

∂pk
∂Pm

)
− ∂qj
∂Pm

(
∂X

∂qk

∂qk
∂Qm

+
∂X

∂pk

∂pk
∂Qm

)}
= −

∑
k

∂X

∂qk

∑
m

(
∂qj
∂Qm

∂qk
∂Pm

− ∂qj
∂Pm

∂qk
∂Qm

)
+
∑
m

∂X

∂pk

∑
i

(
∂qj
∂Qm

∂pk
∂Pm

− ∂qj
∂Pm

∂pk
∂Qm

)
= −

∑
k

{
∂X

∂qk
[qj, qk]Q,P +

∂X

∂pk
[qj, pk]Q,P

}
= −

∑
k

∂X

∂pk
δjk =

∂X

∂pj
(4)

Similarly

[X, Y ]Q,P =
∑
j

(
−∂Y
∂qj

∂X

∂pj
+
∂Y

∂pj

∂X

∂qj

)
= [X, Y ]q,p

Hence Poisson brackets are invariant under canonical transformation.

A canonical transformation can be generated from functions F1(qj, Qj, t),

F2(qj, Pj, t), F3(pj, Qj, t) and F4(pj, Pj, t).

In the case of generating function F1, we have obtained

pj =
∂F1

∂qj

and

Pj = − ∂F1

∂Qj

Using the above two relations we get

∂pj
∂Qi

=
∂2F1

∂Qi∂qj
= −∂Pi

∂qj
(5)

Similarly in the case of generating function F2, we have obtained

pj =
∂F2

∂qj

and

Qj =
∂F2

∂Pj
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Using the above two relations we get

∂pj
∂Pi

=
∂2F2

∂Pi∂qj
=
∂Qi

∂qj
(6)

Similarly in the case of F3 and F4 we have seen that

∂qj
∂Qi

= − ∂2F3

∂Qi∂pj
=
∂Pi
∂pj

(7)

and
∂qj
∂Pi

=
∂2F4

∂Pi∂pj
= −∂Qi

∂pj
(8)

[Qi, Pj]q,p =
∑
k

(
∂Qi

∂qk

∂Pj
∂pk
− ∂Qi

∂pk

∂Pj
∂qk

)
Using eqns(5) and (7) we get

[Qi, Pj]q,p =
∑
k

(
∂Qi

∂qk

∂qk
∂Qj

+
∂Qi

∂pk

∂pk
∂Qj

)
=

∂Qi

∂Qj

= δij = [Qi, Pj]Q,P

and similarly

[Qi, Qj]q,p = 0 = [Qi, Qj]Q,P

[Pi, Pj]q,p = 0 = [Pi, Pj]Q,P (9)

Thus we have proved the affirmation for the fundamental brackets.

Excercises

1.Using Poisson bracket show that the transformation defined by

q =
√

2PsinQ

p =
√

2PcosQ is canonical.

q,p can be rewritten as

tanQ =
q

p

P =
1

2
(q2 + p2)
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If the transfomation is canonical, it must satisfy the conditions

[Q,Q] = [P, P ] = 0

and

[Q,P ] = 1 (1)

Already we know

[Q,Q] = [P, P ] = 0

Hence we can show that

[Q,P ] = 1 From eqn.(1)

sec2Q
∂Q

∂q
=

1

p
sec2Q

∂Q

∂p
=
−q
p2

∂P

∂q
= q

∂P

∂p
= p

Then

[Q,P ] =

(
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

)
=

{(
1

p
cos2Q

)
p+

(
q

p2
cos2Q

)
q

}
= cos2Q

(
1 +

q2

fflp2

)
= cos2Q

(
1 + tan2Q

)
= cos2Q× sec2Q = 1

Hence the transformation is canonical.

2.Using Poisson bracket show that the transformation defined by

Q = e−q(1− p2e2q)1/2

P = tan−1
e−q(1− p2e2q)1/2

p

is canonical.

Q and P can be rewritten as

Q = e−q(1− p2e2q)1/2

= (e−2q − p2)1/2
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and

P = tan−1
Q

p

Now

tanP =
Q

p

1 + tan2P = 1 +
Q2

p2

1 + tan2P =
Q2 + p2

p2

sec2P =
Q2 + p2

p2

sec P =

√
Q2 + p2

p

cos P =
p√

Q2 + p2

=
p√

e−2q − p2 + p2

=
p√
e−2q

=
p

e−q

= p eq

P = cos−1(p eq)

So now the transformation is

Q = (e−2q − p2)1/2

P = cos−1(p eq)

Then

∂Q

∂q
=

1

2

(−e−2q)(−2)

(e−2q − p2)1/2
=

−e−2q

(e−2q − p2)1/2
∂Q

∂p
=

1

2

(−2p)

(e−2q − p2)1/2
=

−p
(e−2q − p2)1/2

∂P

∂q
=

−peq

(1− p2e2q)1/2
=

−p
e−q(1− p2e2q)1/2

=
−p

(e−2q − p2)1/2
∂P

∂p
=

−eq

(1− p2e2q)1/2
=

−1

e−q(1− p2e2q)1/2
=

−1

(e−2q − p2)1/2
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Therefore

[Q,P ] =

(
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

)
=

{
−e−2q

(e−2q − p2)1/2

}{
−1

(e−2q − p2)1/2

}
−
{

−p
(e−2q − p2)1/2

}{
−p

(e−2q − p2)1/2

}
=

e−2q

(e−2q − p2)
− p2

(e−2q − p2)

=
(e−2q − p2)
(e−2q − p2)

= 1

Furthermore [Q.Q] = 0 and [P, P ] = 0

Hence the transformation is canonical.

2.5 EQUATIONS OF MOTION IN POISSON’S BRACKET FORM :

The total time derivative of a dynamical variable F (qj, pj, t) can be expressed as

Ḟ = [F,H] +
∂F

∂t

If F does not involve time t explicitly then

Ḟ = [F,H] (1)

If the Poisson bracket of F with H vanishes then F=constant of motion. This requirement

does not however require that H should be a constant of motion. Suppose such dynamical

variables are qj and pj, then

q̇j = [qj, H]

and

ṗj = [pj, H] (2)

The above equations are identical with Hamilton’s canonical equations of motion

[qj, H] =
∑
i

[
∂qj
∂H

∂H

∂pi
− ∂qj
∂pi

∂H

∂qi

]
Since

∂qj
∂pi

= 0
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we get

[qj, H] =
∂H

∂pi
δij

=
∂H

∂pj
(for i = j)

Therefore

q̇j =
∂H

∂pj
= [qj, H]

Similarly

pj = −∂H
∂qj

= [pj, H]

Equations (2) can thus be known as equations of motion inpoisson bracket form.

If Poisson bracket [pj, H] vanishes, then

ṗj = 0

pj = constant

That is the linear momentum is conserved and hence the corresponding co-ordinate is cyclic.

Thus all functions whose Poisson bracket with Hamiltonian vanish will be constants of

motion and conversely Poisson brackets of all constants of motion with H must vanish.

2.6 JACOBI’S IDENTITY AND ITS DERIVATION :

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

We have

[X, [Y, Z]] =
∂[X, Y ]

∂qj

∂Z

∂pj
− ∂Z

∂qj

∂[X, Y ]

∂pj

=
∂

∂qj

{
∂X

∂qj

∂Y

∂pj
− ∂Y

∂qj

∂X

∂pj

}
∂Z

∂pj
− ∂Z

∂qj

∂

∂pj

{
∂X

∂qj

∂Y

∂pj
− ∂Y

∂qj

∂X

∂pj

}
=

{
∂2X

∂qj2

∂Y

∂pj
+
∂X

∂qj

∂2Y

∂qj∂pj
− ∂2Y

∂qj2

∂X

∂pj
− ∂Y

∂qj

∂2X

∂qj2

∂Z

∂pj

}
−∂Z
∂qj

{
∂2X

∂pj∂qj

∂Y

∂pj
+
∂Y

∂p2j

∂X

∂qj
− ∂2Y

∂pj∂qj

∂X

∂pj
− ∂2X

∂p2j

∂Y

∂qj

}
=
∂2X

∂qj2

∂Y

∂pj

∂Z

∂pj
+
∂2X

∂p2j

∂X

∂qj

∂Z

∂qj
−
{
∂2Y

∂qj2

∂X

∂pj

∂Z

∂pj
+
∂2Y

∂pj2

∂X

∂qj

∂Z

∂qj

}
− ∂2X

∂pj∂qj

{
∂Y

∂pj

∂Z

∂qj
+
∂Y

∂qj

∂Z

∂qj

}
+

∂2Y

∂pj∂qj

{
∂X

∂qj

∂Z

∂pj
+
∂X

∂pj

∂Z

ffl∂qj

}
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Similarly

[[Z,X], Y ] =
∂2Z

∂qj2

∂X

∂pj

∂Y

∂pj
+
∂2Z

∂p2j

∂X

∂qj

∂Y

∂qj
−
{
∂2X

∂qj2

∂Z

∂pj

∂Y

∂pj
+
∂2X

∂pj2

∂Z

∂qj

∂Y

∂qj

}
− ∂2Z

∂pj∂qj

{
∂X

∂pj

∂Y

∂qj
+
∂X

∂qj

∂Y

∂pj

}
+

∂2X

∂pj∂qj

{
∂Z

∂qj

∂Y

∂pj
+
∂Z

∂pj

∂Y

ffl∂qj

}

[[Y, Z], X] =
∂2Y

∂qj2

∂Z

∂pj

∂X

∂pj
+
∂2Y

∂p2j

∂Z

∂qj

∂X

∂qj
−
{
∂2Z

∂qj2

∂Y

∂pj

∂X

∂pj
+
∂2Z

∂pj2

∂Y

∂qj

∂X

∂qj

}
− ∂2Y

∂pj∂qj

{
∂Z

∂pj

∂X

∂qj
+
∂Z

∂qj

∂X

∂pj

}
+

∂2Z

∂pj∂qj

{
∂Y

∂qj

∂X

∂pj
+
∂Y

∂pj

∂X

ffl∂qj

}
Adding all we get

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

2.7 LAGRANGE’S BRACKETS AND ITS PROPERTIES:

Lagrange’s bracket u, v with respect to (qj, pj) is defined as

{u, v}q,p =
∑
j

(
∂qj
∂u

∂pj
∂v
− ∂pj
∂u

∂qj
∂v

)
(1)

(a) Lagrange bracket is invariant under canonical transformation :

Poincare’s theorem states that the integral

J1 =

∫ ∫
S

∑
j

dqjdpj (2)

taken over an arbitrary two dimensional surface S of the 2n dimensional (q,p)phase space is

invariant under canonical transformation.

Position of a point on any two dimensional surface is expressed as

qj = qj(u, v)

pj = pj(u, v)

(3)

Transforming the integral (2) in terms of (u,v), we write

dqjdpj =
∂(qj, pj)

∂(u, v)
dudv (4)
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with

∂(qj, pj)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂qj
∂u

∂pj
∂u

∂qj
∂v

∂pj
∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5)

as the Jacobian.

Further ∫ ∫
S

∑
j

dqjdpj =

∫ ∫
S

∑
j

dQjdPj (6)

where (Qj, Pj) is another set of canonical co-ordinates to which the set(qj, pj)has been trans-

formed.

Now relation (6) becomes ∫ ∫
S

∑
j

∂(qj, pj)

∂(u, v)
dudv =

∫ ∫
S

∑
j

∂(Qj, Pj)

∂(u, v)
dudv

S is arbitrary and area dudv is arbitrary. Therefore expressions on boyh the sides will be

equal only when ∑
j

∂(qj, pj)

∂(u, v)
=
∑
j

∂(Qj, Pj)

∂(u, v)

∑
j

∣∣∣∣∣∣∣∣∣
∂qj
∂u

∂pj
∂u

∂qj
∂v

∂pj
∂v

∣∣∣∣∣∣∣∣∣ =
∑
j

∣∣∣∣∣∣∣∣∣
∂Qj

∂u
∂Pj

∂u

∂Qj

∂v
∂Pj

∂v

∣∣∣∣∣∣∣∣∣
or ∑

j

(
∂qj
∂u

∂pj
∂v
− ∂pj
∂u

∂qj
∂v

)
=
∑
j

(
∂Qj

∂u

∂Pj
∂v
− ∂Pj

∂u

∂Qj

∂v

)

{u, v}q,p = {u, v}Q,P (7)

Thus Lagrange’s bracket is invariant under canonical transformation.
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(b) Lagrange brackets do not obey the commutative law :

{u, v} =
∑
j

(
∂qj
∂u

∂pj
∂v
− ∂pj
∂u

∂qj
∂v

)

= −
∑
j

(
∂pj
∂u

∂qj
∂v
− ∂qj
∂u

∂pj
∂v

)

= −
∑
j

(
∂qj
∂v

∂pj
∂u
− ∂pj

∂v

∂qj
∂u

)
= {v, u} (8)

(c) Proof : {qi, qj} = 0 {pi, pj} = 0 {qi, qj} = δij :

{qi, qj} = 0

{pi, pj} = 0

{qi, qj} = δij

{qi, qj} =
∑
k

(
∂qk
∂qi

∂pk
∂qj
− ∂qk
∂qj

∂pk
∂qi

)
(9)

q’s and p’s are independent and hence

∂pk
∂qj

= 0 and
∂pk
∂qi

= 0

Then

{qi, qj} = 0

Similarly we can prove

{pi, pj} = 0 (10)

Now

{qi, pj} =
∑
k

(
∂qk
∂qi

∂pk
∂pj
− ∂qk
∂pj

∂qk
∂qi

)
q’s and p’s are independent and hence

∂qk
∂pj

= 0
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Then

{qi, pj} =
∑
k

∂qk
∂qi

∂pk
∂pj

(11)

We have
∂qk
∂qi

= δki and
∂pk
∂pj

= δkj

Hence

{qi, pj} =
∑
k

δkiδkj

= δij (12)

2.8 RELATIONSHIP BETWEEN LAGRANGE AND POISSON BRACKET

We can show that
2n∑
i=1

{ul, ui} [ul, uj] = δ
ij

Here{ul, ui} is Lagrange bracket and [ul, uj] is Poisson bracket. Now

2n∑
l=1

{ul, ui} [ul, uj] =
2n∑
l=1

{
n∑
k=1

(
∂qk
∂ul

∂pk
∂ui
− ∂pk
∂ul

∂qk
∂ui

)}
{

n∑
m=1

(
∂ul
∂qm

∂uj
∂pm

− ∂ul
∂pm

∂uj
∂qm

)}

(1)

The first four terms on R.H.S on multiplication is

∑
k,m=1n

∂pk
∂ui

∂uj
∂pm

·
2n∑
l=1

∂qk
∂ul

∂ul
∂qm

=
∑
k,m

∂pk
∂ui

∂uj
∂pm

· ∂qk
∂qm

=
∑
k,m

∂pk
∂ui

∂uj
∂pm

· δkm

But

δkm =
∂pm
∂pk

The first four terms on R.H.S on multiplication is

∑
k,m=1n

∂pk
∂ui

∂uj
∂pm

·
2n∑
l=1

∂qk
∂ul

∂ul
∂qm

=
∑
k,m

∂pk
∂ui

∂uj
∂pm

· ∂pm
∂pk
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=
∑
k,m

∂pk
∂ui

∂uj
∂pk

(2)

The last four terms will be

∑
k,m=1n

∂qk
∂ui

∂uj
∂qm
·

2n∑
l=1

∂pk
∂ul

∂ul
∂pm

=
∑
k,m

∂qk
∂ui

∂uj
∂qm
· ∂pk
∂pm

=
∑
k,m

∂qk
∂ui

∂uj
∂qm
· δkm

=
∑
k,m

∂qk
∂ui

∂uj
∂qm
· ∂qm
∂qk

=
∑
k,m

∂qk
∂ui

∂uj
∂qk

(3)

The second term is

−
∑

k,m=1n

∂pk
∂ui

∂uj
∂qm
·

2n∑
l=1

∂qk
∂ul

∂ul
∂pm

= 0

since
2n∑
l=1

∂qk
∂ul

∂ul
∂pm

=
∂qk
∂pm

= 0

Similarly the third term will be zero.

Hence R.H.S of equation (1) is∑
k

∂pk
∂ui

∂uj
∂pk

+
∑
k

∂qk
∂ui

∂uj
∂qk

=
∑
k

(
∂uj
∂pk

∂pk
∂ui

+
∂uj
∂qk

∂qk
∂ui

)

=
∂uj
∂ui

(qk, pk)

=
∂uj
∂ui

= δij

(4)

Therefore
2n∑
i=1

{ul, ui} [ul, uj] = δ
ij

Which gives the relation between Lagrange and Poisson brackets.
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2.9 THE ANGULAR MOMENTUM AND POISSON BRACKETS :

The angular momentum l can be expressed in terms of linear momentum p and radius

vector r as

l = r× p

= (ix+ jy + kz)× (ipx + jpy + kpz)

= i(ypz − zpy) + j(zpx − xpz) + k(xpy − ypx) (1)

giving

lx = ypz − zpy ; ly = zpx − xpz ; lz = xpy − ypx

∂lx
∂px

= 0
∂ly
∂px

= z
∂lz
∂px

= −y

∂lx
∂py

= −z ∂ly
∂py

= 0
∂lz
∂py

= x

∂lx
∂pz

= y
∂ly
∂pz

= −x ∂lz
∂pz

= 0

(2)

We know that

[F, pj] =
∑
k

(
∂F

∂qk

∂pj
∂pk
− ∂F

∂pk

∂pj
∂qk

)
=
∂F

∂qj
(for j = k)

so that

[lx, px] =
∂lx
∂x

= 0 [ly, px] =
∂ly
∂x

= −pz [lz, px] =
∂lz
∂x

= py

[lx, py] =
∂lx
∂y

= pz [ly, py] =
∂ly
∂y

= 0 [lz, py] =
∂lz
∂y

= −px

[lx, pz] =
∂lx
∂z

= −py [ly, pz] =
∂ly
∂z

= px [lz, pz] =
∂lz
∂z

= 0

(3)

Equations (2) and (3) give Poisson brackets of angular and linear momentum components.

We know that

[pj, px] = 0

Therefore

[px, py] = [py, pz] = [pz, px] = 0 (4)
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Now we find out the Poisson bracket of components of l

[lx, ly] =
∑
k

(
∂lx
∂qk

∂ly
∂pk
− ∂lx
∂pk

∂ly
∂qk

)

=

(
∂lx
∂x

∂ly
∂px
− ∂lx
∂px

∂ly
∂x

)
+

(
∂lx
∂y

∂ly
∂py
− ∂lx
∂py

∂ly
∂y

)
+

(
∂lx
∂z

∂ly
∂pz
− ∂lx
∂pz

∂ly
∂z

)
Using equations (2) and (3), we get

[lx, ly] = 0− 0 + 0− 0 + (−py)(−x)− (y)(px)

= (xpx − ypx) = lz

Similarly we can prove

[ly, lz] = lx

and

[lz, lx] = ly

2.10 LIOUVILLE’S THEOREM :

The theorem consists of two parts

(1) The first part states the conservation of density in phase space

i.e
dρ

dt
= 0

2) The second part states the conservation of extension in phase space

i.e
d

dt
(δΓ) = 0

(1) First Part :

Consider any fixed element of volume of phase space located between q1 and q1 +δq1, ...qf

and qf + δqf , p1 and p1 + δp1, ...pf and pf + δpf .

If ρ is the density of phase points, the number of phase points in this volume element at any

instant t is

δN = ρ.δΓ = ρ(δq1...δqfδp1...δpf )
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p

q

[q́1+( q́1q
1
)δ q1]q́

1

δ q
1

δ p
1

p
1
+δ p

1

p
1

q
1
+δ q

1
q
1

A B

D C

The number of phase points located in the volume (δq1...δqfδp1...δpf ) changes as the co-

ordinates and momenta vary. The change in the number of phase points within this volume

of phase space in time dt is

d(δN)

dt
=
d(ρ.δΓ)

dt
=
dρ

dt
dt(δq1...δqfδp1...δpf )

This change is due to the number of phase points entering and leaving this volume in time

dt.

Consider two faces of hypervolume normal to the q-axis with coordinates q1 and q1 + δq1.

Number of phase points entering the first phase in time dt is

ρq̇1dtδq2...δqfδp1...δpf (1)

ρ and q̇1 are the density and velocity component at (q1...qf ; p1...pf )

Number of phase points entering the second phase in time dt is(
ρ+

∂ρ

∂q1
δq1

)(
q̇1 +

∂q̇1
∂q1

δq1

)
dtδq2...δqfδp1...δpf (2)

Neglecting higher order terms we have[
ρq̇1 +

(
ρ
∂q̇1
∂q1

+ q̇1
∂ρ

δq1

)
δq1

]
dtδq2...δqfδp1...δpf (3)

Eqn(1)-Eqn(3) gives

−
(
ρ
∂q̇1
∂q1

+ q̇1
∂ρ

δq1

)
dtδq1...δqfδp1...δpf (4)
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Similarly for p1 co-ordinate

−
(
ρ
∂ṗ1
∂p1

+ ṗ1
∂ρ

δp1

)
dtδp1...δqfδp1...δpf (5)

The net increase in the number of phase points in time dt is in this volume of phase space

is obtained by summing the net number of phase points entering the volume through all the

faces labelled by q1...qf and p1...pf . Hence

d

dt
(δN) = −

f∑
j=1

{
ρ

(
∂q̇j
∂qj

+
∂ṗj
∂pj

)
+

(
∂ρ

∂qj
q̇j +

∂ρ

∂pj
ṗj

)}
dtδq1...δqfδp1...δpf (6)

Already we have seen that

d

dt
(δN) =

∂ρ

∂t
dtδq1...δqfδp1...δpf

and hence
∂ρ

∂t
dtδq1...δqfδp1...δpf

= −
f∑
j=1

{
ρ

(
∂q̇j
∂qj

+
∂ṗj
∂pj

)
+

(
∂ρ

∂qj
q̇j +

∂ρ

∂pj
ṗj

)}
dtδq1...δqfδp1...δpf

∂ρ

∂t
= −

f∑
j=1

{
ρ

(
∂q̇j
∂qj

+
∂ṗj
∂pj

)
+

(
∂ρ

∂qj
q̇j +

∂ρ

∂pj
ṗj

)}
(7)

The equations of motion in canonical form are

q̇j =
∂H

∂pj
and ṗj = −∂H

∂qj

Now
∂q̇j
∂qj

=
∂2H

∂qj∂pj

∂ṗj
∂pj

= − ∂2H

∂pj∂qj

The order of differentian is immaterial and hence

f∑
j=1

(
∂q̇j
∂qj

+
∂ṗj
∂pj

)
= 0 (8)
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Now Eqn(7) becomes

(
∂ρ

∂t

)
q,p

= −
f∑
j=1

(
∂ρ

∂qj
q̇j +

∂ρ

∂pj
ṗj

)
(9)

(
∂ρ

∂t

)
q,p

+

f∑
j=1

(
∂ρ

∂qj
q̇j +

∂ρ

∂pj
ṗj

)
= 0 (10)

This result is known as Liouville’s theorem.This equation is identical with the equation of

continuity in hydrodynamics.

If ρ is a function of q, p and t and q, p are functions of t, then

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂q

dq

dt
+
∂ρ

∂p

dp

dt

On generalization we get

dρ

dt
=
∂ρ

∂t
+

f∑
j

∂ρ

∂qj

dqj
dt

+

f∑
j

∂ρ

∂pj

dpj
dt

(11)

Comparing eqns (10) and (11) we get

dρ

dt
= 0

This form is called the principle of the conservation of density in phase space.

(2) Second Part :

Here we have to prove that
d

dt
(δΓ) = 0

We know

δN = ρ δΓ

Now

d

dt
(δN) =

dρ

dt
δΓ + ρ

d

dt
(δΓ) (12)

The number of phase points δN in a given region must remain fixed.

d

dt
(δN) = 0
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dρ

dt
δΓ + ρ

d

dt
(δΓ) = 0 (13)

Already we have proved that
dρ

dt
= 0

It follows that

ρ
d

dt
(δΓ) = 0 (14)

But ρ 6= 0, we get

d

dt
(δΓ) = 0 (15)

This equation gives the principle of conservation of extension in phase space.

Excercises :

1.If the transformation eqations between two sets of co-ordinates are

P = 2(1 + q1/2cos p)q1/2sin p

Q = log (1 + q1/2cos p)

then show that (i) the transformation is canonical and (ii)the generating function of this

transformation is

F3 = −(eQ − 1)2tan p

Solution :

(i) For the trasformation to be canonical (pdq − PdQ) must be an exact differential.

pdq − PdQ = pdq − 2(1 + q1/2cos p)q1/2sin p ·
q1/2(−sin p dp) + cos p(1

2
q−1/2dq)

(1 + q1/2cos p)

pdq − PdQ = pdq − 2(1 + q1/2cos p)q1/2sin p ·
q(−sin p dp) + cos p(1

2
dq)

q1/2(1 + q1/2cos p)

= p dq + 2qsin2 p dp− sin p cos p dq

= p dq + q(1− cos 2p)dp− (
1

2
sin 2p dq)

= (p− 1

2
sin 2p) dq + q(1− cos 2p) dp
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=
∂

∂q
[q(p− 1

2
sin 2p)]dq +

∂

∂p
[q(p− 1

2
sin 2p)]dp

= d[q(p− 1

2
sin 2p)]

= an exact differential

(ii) We have

Q = log (1 + q1/2cos p)

eQ = (1 + q1/2cos p)

eQ − 1 = q1/2cos p

q1/2 =
eQ − 1

cos p

q =
(eQ − 1)2

(cos p)2
(1)

Now

P = 2(1 + q1/2cos p)q1/2sin p

= 2eQ
(eQ − 1)

cos p
sin p

= 2eQ (eQ − 1)tan p (2)

We know that

q = −∂F3

∂p

P = −∂F3

∂Q

Now
∂F3

∂p
= −(eQ − 1)2

cos2 p
= −(eQ − 1)2sec2 p (3)

∂F3

∂Q
= −2eQ (eQ − 1)tan p (4)

Integrating eqn(3) we get

F3 = −
∫

(eQ − 1)2sec2 p dp+ constant
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Taking the constant of integration to be zero we get

F3 = −(eQ − 1)2tan p (5)

Integrating eqn(4) we get

F3 = 2

∫
eQ (eQ − 1)tan p dQ

Again taking the constant of integration to be zero we get

F3 = −(eQ − 1)2tan p (6)

Since

Equation(5) = Equation(6)

means F3 is the generator of the given transformation.

2.Show that the generating function for the transformation

p =
1

Q
, p = PQ2

is

F =
q

Q

Solution :

p =
1

Q
, p = PQ2

We find

pdq =
1

Q
(2PQdQ+Q2dP )

= 2PdQ+QdP

Now

pdq − PdQ = 2PdQ+QdP − PdQ

= PdQ+QdP

=
∂

∂Q
(PQ)dQ+

∂

∂P
(PQ)dP

=
∂F

∂Q
dQ+

∂F

∂P
dP
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= dF

= an exact differential

The generating function is

F = PQ

But generating function involves both sets of co-ordinates. As

P =
q

Q2

we have

F =
q

Q2
Q

=
q

Q

Hence the result.

THEORY OF SMALL OSCILLATIONS :

2.11 FORMULATION OF THE PROBLEM :EIGEN VALUE EQUATION :

Consider a system with n degrees of freedom and whose total energy is conserved.Suppose

the system is in an equilibrium stste at the point having the co-ordinates q01, q02...q0n. Thus

the potential energy satisfies the condition(
∂V

∂qj

)
q=q0

= 0

Here q = q0 represents qj = q0j for all values of j. let ηj denotes a small displacement in the

corresponding co-ordinate qj from the equilibrim position. Sothat

qj = q0j + ηj

with j=1,2,...n

Now the potential energy becomes

V (q1, q2, ...qn) = V (q01 + η1, q02 + η2, ...q0n + ηn)

= V (q01, q02, ...q0n) +
n∑
j=1

ηj

(
∂V

∂qj

)
q=q0

+
1

2

n∑
j=1

n∑
k=1

ηjηk

(
∂2V

∂qj∂qk

)
q=q0

+ ... (1)
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The departure from the equilibrium position is small and we truncate the series after the

first non-vanishing term in ηj.

The first term on the R.H.S is constant, the second term is zero and we consider upto the

third term.

The first term gives the shift the reference of potential energy to the equilibrium point.

Thus the equation (1) becomes

V (q1, q2, ...qn) =
1

2

n∑
j=1

n∑
k=1

(
∂2V

∂qj∂qk

)
q=q0

ηjηk

=
1

2

n∑
j=1

n∑
k=1

Vjkηjηk (2)

Where

Vjk =

(
∂2V

∂qj∂qk

)
q=q0

Here Vjk = Vkj. For the stable equilibrium, the potential energy should be minimum at the

equilibrium position and hence Vjk must be positive. The kinetic energy of the system is

T =
1

2

n∑
j=1

n∑
k=1

cjkq̇j q̇k =
1

2

n∑
j=1

n∑
k=1

cjkη̇j η̇k

cjk be the functions of the co-ordinates qj’s and we can expand in Taylor series form about

the equilibrium position :

cjk(q1, q2, ...qn) = cjk(q01 + η1, q02 + η2, ...q0n + ηn)

= cjk(q01, q02, ...q0n) +
n∑
j=1

ηj

(
∂cjk
∂qj

)
q=q0

+ ...

T has the terms of second order in η’s and we retain only the zeroth order term. Thus we

have

cjk(q1, q2, ...qn) = cjk(q01, q02, ...q0n) = Tjk

and the kinetic energy is

T =
1

2

n∑
j=1

n∑
k=1

Tjkη̇j η̇k (3)

Here Tjk = Tkj.Using eqns (2) and (3) the Lagrangian of the system is

L =
1

2

n∑
j=1

n∑
k=1

Tjkη̇j η̇k −
1

2

n∑
j=1

n∑
k=1

Vjkηjηk
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The Lagrangian equations of mtion are

d

dt

(
∂L

∂η̇j

)
− ∂L

∂ηj
= 0

where j=1,2,...n.Therefore we have

n∑
k=1

(Tjkη̈k + Vjkηk) = 0 (4)

where j=1,2,...n.Equation (4) can be expressed in the matrix form
T11 T12 ... T1n

T12 T22 ... T2n

... ... ... ...

T1n T2n ... Tnn




η̈1

η̈2

...

η̈n

+


V11 V12 ... V1n

V12 V22 ... V2n

... ... ... ...

V1n V2n ... Vnn




η1

η2

...

ηn

 =


0

0

...

0


or

T η̈ + V η = 0

Here T and V represent the square matrices of order n × n.Both of these matrices are

real as well as symmetric.Each of the n equations (4) involves all the n variables and can

be simplified by transforming them into another set of n equations each of which involves

only one variable. This is possible with the help of the normal co-ordinates and normal

frequencies.Let us try the oscillatory solutions of the form

ηk = Ake
iωt (5)

here ω is the frequency of oscillations. The real part Akcos ωt corresponds to the actual

motion. Using eqn (5) in (4) we get

n∑
k=1

(Vjk − ω2Tjk)Ak = 0 (6)

where j=1,2,...n. Thus we have
V11 − ω2T11 V12 − ω2T12 ... V1n − ω2T1n

V21 − ω2T21 V22 − ω2T22 ... V2n − ω2T2n

... ... ... ...

Vn1 − ω2Tn1 Vn2 − ω2T22 ... Vnn − ω2T2n




A1

A2

...

An

 =


0

0

...

0


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This set of equations has anon-trivial solution when∣∣∣∣∣∣∣∣∣∣∣∣

V11 − ω2T11 V12 − ω2T12 ... V1n − ω2T1n

V21 − ω2T21 V22 − ω2T22 ... V2n − ω2T2n

... ... ... ...

Vn1 − ω2Tn1 Vn2 − ω2T22 ... Vnn − ω2T2n

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(7)

This equation is known as the secular or characteristic equation.

Equation (7) may also be wrtten as

(V A− ω2TA) = 0

called eigen value equation. Here A is a column matrix of n components:

A =


A1

A2

...

An


Expansion of this determinant of order n × n gives a polynomial of degree n in ω2.This

polynomial has roots ω2
1, ω

2
2, ...ω

2
n which are the characteristic or eigen frequencies of the

system. These frequencies are known as the normal frequencies of the system. The eigen

values are real as they correspond to a real symmetric matrix. For each of these frequencies

equation (6) can be solved to get the eigen function Ak

To distinguish between various modes,let us put the suffix l and then the eigen function

is Akl and the frequency eigen value isωl. Then a general solution for the displacement ηk

consists of a linear combination of all the modes ;

ηk = Ak1e
iω1t + Ak2e

iω2t + ...+ Akne
iωnt =

n∑
l=1

Akle
iωlt

Each mode associated with an eigen frequency is known as the principal or natural

mode.Each of the normal frequencies must be real.The eigen functions corresponding to

different eigen values must be orthogonal to each other. Thus we have

n∑
k=1

AklAkl′ = δll′
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2.12 PRINCIPAL AXES TRANSFORMATION ;

We can choose a certain system of body axes with respect to which the off-diagonal

elements should disappear and only the diagonal elements remain in the expression for I.

Such axes are called principal axes of transformation. The corresponding moments of inertia

are called principal moments of inertia.

if we denote this form of inertia tensor by I′ and I1, I2, I3 stand for the principal values,

I′ =


I1 0 0

0 I2 0

0 0 I3

 (1)

where we have denoted Ix′x′ = I1, Iy′y′ = I2, Iz′z′ = I3. If ωx, ωy, ωz are the components of

angular velocity and Lx, Ly, Lz are the angular momentum about the principal axes, then
Lx

Ly

Lz

 =


I1 0 0

0 I2 0

0 0 I3



ωx

ωy

ωz



=


I1ωx + 0 + 0

0 + I2ωy + 0

0 + 0 + I3ωz


or

Lx = I1ωx

Ly = I2ωy

Lz = I3ωx (2)

That is each of angular momentum component along a principal axis is a function of cor-

responding angular velocity component only related to it through the principal moment of

inertia about that direction.

Thus in general if a rigid body is rotating about a principal axis, the angular momentum L

and ω are directed along any of the principal axes and therefore

L = I ω
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where I is the scalar, the moment of inertia about this axis.The angular momentum L and

angular velocity ω are along the principal axes and hence

L = Lx̂i + Ly ĵ + Lzk̂ = I(ωx̂i + ωy ĵ + ωzk̂)

where î, ĵ, k̂ are unit vectors along X,Y,Z axes respectively.

Thus

Lx = Iωx, Ly = Iωy, Lz = Iωz (3)

using the symmetry property of inertia tensor we get

Lx = Ixxωx + Ixyωy + Ixzωz = Iωx

Ly = Iyxωx + Iyyωy + Iyzωz = Iωy

Lz = Izxωx + Izyωy + Izzωz = Iωz

or 
Ixx − I Ixy Ixz

Iyx Iyy − I Iyz

Izx Izy Izz − I



ωx

ωy

ωz

 = 0 (4)

For these equations to have non-trivial solutions, the determinant of the coefficients must

vanish. That is ∣∣∣∣∣∣∣∣∣
Ixx − I Ixy Ixz

Iyx Iyy − I Iyz

Izx Izy Izz − I

∣∣∣∣∣∣∣∣∣ = 0 (5)

This is called secular equation of inertia and its solutions the secular values

or eigenvalues. We solve the determinantal equation which will be cubic in I and therefore

will furnish three values for I through I1, I2, I3 which are desired principal moments of inertia

:

The direction of any one principal axis is determined by substituting for I = I1 and determine

the ratios for ωx : ωy : ωz as
ωy
ωx

= λ1,
ωz
ωx

= λ2

Thus

ω = ωx̂i + ωy ĵ + ωzk̂
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and

ω̂ = (̂i + λ1̂j + λ2k̂)/

√
1 + λ21 + λ

2

2

Hence we can determine the direction of ω or the direction of principal axis corresponding

to I1.Similarly we may find the direction of the corresponding pricipal axis if we substitute

I2 or I13.

Example:

If the symmetry axis of the body is taken as axis of rotation and the origin of body axes

lies on this then the principal axes are the symmetry axis and any two perpendicular axes

normal to the symmetry axis. In the case of a sphere, every axis through the centre is

symmetry axis and hence any three orthogoal axes through the centre are principal axes.

2.13 FREQUENCIES OF FREE VIBRATIONS AND NORMAL CO-

ORDINATES:

The co-ordinates in the solution of equations where only one single frequency is involved

in the solution are known as the normal co-ordinates.Thus the normal co-ordinates are

defined as the generalized co-ordinates wher each of them execute oscillations with a single

frequency.On transformation from the co-ordinates uj into the normal co-ordinates denotted

by ηk the lagrangian as well as equations of motion are changed.

Let the new co-ordinates ηkbe related to the original co-ordinates as

uj =
∑
k

ajkηk

In the matrix form this relation can be expressed as

u = aη (1)

Here u and η are column matrices of order n× 1 and a is a square matrix of order n×n.We

shall express potential and kinetic energy in terms of η.The potential energy is

V =
1

2

∑
j,k

Vjkujuk

=
1

2

∑
j,k

ujVjkuk
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In the matrix form this relation can be expressed as

V =
1

2
uTV u

Using eqn(1) we get

V =
1

2
(aη)TV aη

=
1

2
ηTaTV aη

=
1

2
ηT ∧ η

Where

ATV A = ∧ = diagonal matrix

= diag(ω1
2, ω2

2...ωn
2)

Further the above eqn is quardratic in η so that

V =
1

2

∑
l

λl ηl
2

V =
1

2

∑
l

ωl
2 ηl

2 (2)

The kinetic energy is given by

T =
1

2

∑
j

∑
k

Tjku̇ju̇k

=
1

2

∑
j

∑
k

u̇jTjku̇k

=
1

2
u̇TT u̇

=
1

2
(aη̇)TT (aη̇)

=
1

2
η̇TaTTaη̇

=
1

2
η̇T η̇

Where

aTTa = 1

=
1

2

∑
η̇l

2 (3)
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The Lagrangian in new co-ordinates system will be

L =
1

2
ffl

n∑
i=1

η̇l
2 − 1

2

n∑
i=1

ωl
2 ηl

2

Giving
∂L

∂η̇l
=

n∑
i=1

η̇l and
∂L

∂ηl
= −

n∑
i=1

ωl
2η̇l

Now
d

dt

(
∂L

∂η̇l

)
− ∂L

∂ηl
= 0

gives
n∑
i=1

(η̈l + ωl
2η̇l) = 0

Therefore the equations of motion in new co-ordinates are

η̈1 + ω1
2η̇1 = 0

η̈2 + ω2
2η̇2 = 0

... ... ...

η̈l + ωl
2η̇l = 0

(4)

Thus each co-ordinate executes only one single frequency oscillation and therefore η1, η2 etc

are termed as normal co-ordinates.

The solution of equation

η̈l + ωl
2η̇l = 0

is

ηl = Alcos ωlt+Blsin ωlt if ωl
2 > 0

ηl = Alt+Blt if ωl
2 = 0

ηl = Ale
ωlt +Ble

ωlt if ωl
2 < 0

(5)

For ωl
2 > 0, all co-ordinates remain finite and the equilibrium is stable.

But for ωl
2 = 0 and ωl

2 < 0, the co-ordinates become infinite and the equilibrium is unstable.
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Normal modes of vibration :

Since

ω = 2πν

The solutions become

ηl = Alcos 2πν1t+Blsin 2πν1t

η2 = Alcos 2πν2t+Blsin 2πν2t

... ... ... ... ... ...

ηn = Alcos 2πνnt+Blsin 2πνnt

(6)

Here A’s and B’s are 2n arbitrary constants determined by the initial conditions.

Suppose all constants except A1 and B1 are zero. Then only η1 will vary periodically

with time. This situation corresponds to a normal mode of vibration. That is the system

is vibrating in a normal mode.Therefore there will be n normal modes of vibration and n

normal frequencies ν1, ν2, ν3...νn corresponding to each normal co-ordinate η1, η2, η3...ηn Now

eqn(6) will take the form

ηl = Alcos (ωlt+ δl)

Her δl is the phase factor.

Now the old co-ordinates are given by

uj =
∑
k

ajkAkcos (ωkt+ δk)

2.14 FREE VIBRATIONS OF A LINEAR TRIATOMIC MOLECULE :

We consider a linear triatomic molecule of the type Y X2 (e.g CO2). Y is a central

atom.There exists an elastic bond between the central atom and the end atoms with force

constant k. Let the mass of each end atom be m and that of cental atom be M.Let the

displacement of atoms from their equilibrium position be q1, q2, q3.

The kinetic energy of the system

T =
1

2
m(q̇1

2 + q̇3
2) +

1

2
Mq̇2

2
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Figure 1: LINEAR TRIATOMIC MOLECULE

2T =
[
q̇1 q̇2 q̇3

]
m 0 0

0 M 0

0 0 m



q̇1

q̇2

q̇3


giving

T = (Tij) =


m 0 0

0 M 0

0 0 m


The potential energy V of the system is

V =
1

2
k(q2 − q1)2 +

1

2
k(q3 − q2)2

V =
1

2
k(q1

2 + 2q2
2 + q3

2 − 2q1q2 − 2q2q3)

or

2V =
[
q1 q2 q3

]
k −k 0

−k 2 k −k

0 −k k



q1

q2

q3


giving the matrix V as

V = (Vij) =


k −k 0

−k 2 k −k

0 −k k


Then write secular equation

|V − ω2T | = 0
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That is ∣∣∣∣∣∣∣∣∣
k − ω2m −k 0

−k 2 k − ω2M −k

0 −k k − ω2m

∣∣∣∣∣∣∣∣∣ = 0

After expansion we get

(k − ω2m)[(2k − ω2M)(k − ω2m)− k2] + k[−k(k − ω2m)] = 0

(k − ω2m)[(2k − ω2M)(k − ω2m)− k2]− k2(k − ω2m) = 0

(k − ω2m)[(2k − ω2M)(k − ω2m)− 2k2] = 0

giving

ω1 = 0

ω2 =

√
k

m

ω3 =

√
k

(
1

m
+

2

M

)
Now we want to express η1, η2 and η3 in terms of the generalized co-ordinates q1, q2 and q3

as

qj =
∑
k

Ajkηk

giving 
q1

q2

q3

 =


A11 A12 A13

A21 A22 A23

A31 A32 A33



η1

η2

η3

 (1)

Our problem is to find the components of eigen vectors A1, A2 and A3. For this purpose we

apply the relation
3∑
j=1

(Vij − ω2Tij)Aij = 0 i = 1, 2, 3

First case :

ω = ω1 = 0 and calculation of the components A11, A21 and A31 of A1. We have
k −k 0

−k 2k −k

0 −k k



A11

A21

A31

 = 0
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giving

kA11 − kA21 = 0

−kA11 + 2kA21 − kA31 = 0

−kA21 − kA31 = 0

It gives

A11 = A21 = A31 = α

Second case :

ω = ω2 =
√

k
m

and calculation of the components A12, A22 and A32 of A2. We have
0 −k 0

−k 2k − kM
m −k

0 −k 0



A12

A22

A32

 = 0

giving

−kA22 = 0

−kA12 + (2k − kM

m
)A22 − kA32 = 0

−kA21 − kA31 = 0

It gives

A22 = 0 A12 = −A32 = β

Third case :

ω = ω3 =
√
k
(

1
m

+ 2
M

)
and calculation of the components A13, A23 and A33 of A3. Then

ω2 = ω3
2 = k

(
1

m
+

2

M

)
=

k

m
(1 +

2m

M
)

We have 
−2mk

M −km 0

−k −kM
m −k

0 −k −2mk
M



A13

A23

A33

 = 0
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giving

−2mk

M
A13 − kA23 = 0

−kA13 −
kM

m
A23 − kA33 = 0

−kA23 −
2mk

M
A33 = 0

It leads to
2mk

M
A13 = −kA23

2m

M
A13 = −A23 ⇒ A23 = −2m

M
A13

Take

A13 = γ

Then

A23 = −2m

M
γ

Similarly

−kA23 −
2mk

M
A33 = 0

That is

kA23 +
2mk

M
A33 = 0

Which leads to
2mk

M
A33 = −kA23 ⇒

2mk

M
A33 = −k(−2m

M
γ)

A33 = γ

It gives

A13 = A33 = γ A23 = −2m

M
γ

Thus the matrix A is

A = Aij =


α β γ

α 0 −2mγ
M

α −β γ


The components can be calculated by applying

ATTA = I
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
α α α

β 0 −β

γ −2mγ
M γ



m 0 0

0 M 0

0 0 m



α β γ

α 0 −2mγ
M

α −β γ

 =


1 0 0

0 1 0

0 0 1



α α α

β 0 −β

γ −2mγ
M γ



αm βm γm

αM 0 −2mγ

αm −βm γm

 =


1 0 0

0 1 0

0 0 1



α2(2m+M) 0 0

0 2β2m 0

0 0 2γ2m(1 + 2m/M)

 =


1 0 0

0 1 0

0 0 1


It gives

α2(2m+M) = 1⇒ α =
1√

2m+M

2β2m = 1⇒ β =
1√
2m

2γ2m(1 + 2m/M) = 1⇒ γ =
1√

2m(1 + 2m/M)

Thus the matrix A is

A = Aij =


1√

2m+M
1√
2m

1√
2m(1+2m/M)

1√
2m+M

0 1√
2m(1+2m/M)

1√
2m+M

1√
2m

1√
2m(1+2m/M)

 (2)

The normal co-ordinates can be obtained by using equation (2) in equation (1).
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Unit III - TWO - BODY CENTRAL FORCE PROBLEM AND H - J THEORY 

Two body central force problem: Reduction to the equivalent one body problem, the 

equation of motion and first integrals, classification of orbits, the virial theorem, the 

differential equation for the orbit, integral power law in time in the Kelper’s  problem, 

scattering in central force field; 

H-J Theory: H-J equation and their solutions, use of H-J method for the solution of 

harmonic oscillator problem, Hamilton’s principle function, Hamilton’s characteristic 

function and their properties, Action angle variable for completely separable systems, the 

Kelper’s problem in action angle variables 

TWO - BODY CENTRAL FORCE PROBLEM : 

3.1 REDUCTION TO THE EQUIVALENT ONE BODY PROBLEM: 

 Consider a conservative system of two mass 

points m1 and m2. Let their instantaneous position 

vectors in an inertial frame with origin O are 1r


 and 

2r


 respectively.  

Hence the vector distance of m2 relative to m1 is 

                              12 rrr


    

                        ....(1) 

The Lagrangian for the system is 

                             L =  T – V 

                      =  )r(Vrm
2

1
rm

2

1 2

22

2

11                                    ....(2) 

 Let us choose the three components of the position vector of the centre of mass R


and three components of the relative vector 12 rrr


  to describe the state of the system. 

 The position vector of the centre of mass is defined by 

                         )3....(
21

2211

mm

rmrm
R








 

                         

 

21

1211

mm

rrmrm
R









 

                               = 
21

12211

mm

rmrmrm





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                               = 
 

21

2121

mm

rmrmm






 

                                          
21

2
1

mm

rm
r







 

                                     21

2
1

mm

rm
Rr





      ….(4) 

                    Similarly  
 

21

2221

mm

rmrrm
R







 

                               
21

2212

mm

rmrmrm
1








 

                               = 
 

21

1221

mm

rmrmm






 

                                =  
21

1
2

mm

rm
r







 

                                 21

1
2

mm

rm
Rr





      ….(5) 

 Therefore                      
21

2
1

mm

rm
Rr




   and 

                            
21

1
2

mm

rm
Rr




                   ....(6) 

Hence                             L  = )r(V
mm

rm
Rm

2

1

mm

rm
Rm

2

1
2

21

1
2

2

21

2
1 
























 

                          = 
   




















21

2

2

21

22

22

1
mm

rmR2

mm

rm
Rm

2

1 
 

                             
   

)r(V
mm

rmR2

mm

rm
Rm

2

1

21

1

2

21

22

12

2 





















 

                         =  
 
 

)r(Vr
mm

mm
mm

2

1
Rmm

2

1 2

2

21

21
21

2

21 



 

 

                         =  
 

)r(Vr
mm

mm

2

1
Rmm

2

1 2

21

212

21 


             ….(7) 

                                 L       = )r(Vr
2

1
RM

2

1 22  
                       ....(8) 
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                  Where  
21

21
21

mm

mm
andmmM


  

Lagrangian equations of motion in terms of the two variables R


 and r


 will be 

               0



















R

L

R

L

dt

d


                 ….(9) 

                0
















r

L

r

L

dt

d


               ….(10) 

                  0
R

L
andRM

R

L













 

                   
r

V
r

r

L








 


 

Hence equations (9) and (10) become 

                  0RM
dt

d 
                      ....(11) 

            0
r

V
r

dt

d








       ....(12) 

Equation (11) giving RM


constant 

 (or)    R


constant 

 That is velocity with which the centre of mass moves is constant. 

Equation (12) giving   
r

V
r




   = f (r) 

 representing equation of motion for the system under consideration. Consequently 

we can ignore the first term in equation (8) and write  

                          L  = )r(Vr
2

1 2                   ....(13) 

 which is effective in describing the motion of the components of r. But L is the 

same as a single particle of mass µ moving at a distance r from a fixed centre of force 

which gives rise to the potential energy V(r). Thus two body problem can be reduced to 

the equivalent one body problem. 

3.2 EQUATIONS OF MOTION AND FIRST INTEGRALS: 

 Let us describe the position of the particle in the plane poloar co-ordinates r and  

                          T  =  222 rrm
2

1
   
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                          V  = V (r) 

The Lagrangian L   = T –V 

          =   )r(Vrrm
2

1 222    

 As  is cyclic coordinate so that its conjugate angular momentum Pθ given by 

                      P    =  lmr
L




 


2
 

                          02 











 







 mr
dt

dL

dt

d
P      .…(1) 

Integrating,   2rm constant   = l 

 l first integral and represents the magnitude of angular momentum. 

                    02 rm
dt

d
 

                        02 r
dt

d
 

                 0
2

1 2 







r

dt

d
 

                    2r
2

1
constant      .…(2) 

                 ie, Areal velocity     = constant 

 The rate at which the area swept out by the radius vector is constant which is 

Kepler‟s second law of planetory motion. 

 Suppose dA is the area swept out by the radius vector in time dt. 

 Then                     rdrdA
2

1
  

                          = dr 2

2

1
 

                              


 22

2

1

2

1
r

dt

d
r

dt

dA
 

Therefore from equation (2), we write 

                        2r
2

1
  = constant (or) 

                              
dt

dA
=  constant                 .…(3) 
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Here we have two Lagrangian equations of motion. ie, 

            0
















r

L

r

L

dt

d


       .…(4) 

and           0



















LL

dt

d
        .…(5) 

We have            
dr

dV
rm

r

L
andrm

r

L









 2


 

          0
L

andmr
L 2 








 


 

Now equations (4) and (5) become 

   02 









dr

dV
mrrm

dt

d
        .…(6) 

And                             02 mr
dt

d
                                                                             .…(7) 

Equations (6) and (7) are the equations of motion  

(i)  Expression for r(t) and  (t): 

 From equation (6) we write  

                
dr

dV
rmrm  2  

 putting                  getwe
mr

l
2

  

      
dr

dV

mr

l
mrrm 










2

2
  

                
dr

d

mr

l
rm

V
3

2

  

                          









2

2

2mr

l
V

dr

d
rm   

                       r
mr

l
V

dr

d
rrm 











22
 

(or)                
dt

dr

mr

l

dr

d
rm

dt

d

















2

2
2

2
V 

2

1
  

                    









2

2

2mr

l
V

dt

d
  



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
76 

 

 

So that  

                        








 )(

22

1
2

2
2 rV

mr

l
rm

dt

d
 = 0 

(or)                          )(
22

1
2

2
2 rV

mr

l
rm  = constant 
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E is a constant of motion. This is another first integral of motion. 
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On integration we get 
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 where .0 tatrr o  

This equation gives r as a function of time. ie r (t). 

 We have  
2mr

l
    
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      .…(10) 

 Thus integration of equations (9) and (10) provides us r (t) and  (t). Then we can 

locate the position of the particle on the path at any time t and the solution. 

3.3 CLASSIFICATION OF ORBITS: 

 We have already derived 
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                                     = Central force + Centrifugal force.  

Thus equation takes the form 
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 It is an equation of motion for a particle subjected to actual force f (r) and pseudo 
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2
)(
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l
rV   

 The second term is the potential energy related to the centrifugal force. 

(i) Orbits under inverse square law of force : 

 The effective potential energy  

                       
2

2

2 2
)(

mr

l
dr

r

k
rV    

                             = 
2

2

mr2r

k l
  

as a function of r has been plotted. 

(ii) Motion with different values of k:  

 

 

 

 

 

 

Case (i) : E > 0:                                                                                                           

There is a minimum radial distance r3 but no maximum. The motion is 

unbounded.  The particle comes in from r = to a turning point and travels out to 

infinity again; Thus the motion is not periodic and with a single turning point. 

Case (ii) : 0 > E > Vmin = E m : 

corresponds to energy E1 

The radial motion is confined to the values r = r1= rmin and  r = r2= rmax 

r1 and r2 are the turning points. 
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Though r =0 at these points 0  

 The particle will not be at rest at these points.  The motion is confined between the 

areas of two circles of radii r1 and r2. 

 A possible shape for an attractive inverse square law of force is an ellipse with the 

focus at the centre.  

 When r varies from r1 to r2 and back, the radius vector turns through an angle   obtained 

by  
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When 
n

m2
 , the path is a closed orbit. When  is not a rational fraction of 2π, the 

path has the shape of a rosette.  Such an orbital motion is processing motion.  

Case (iii) :  finite, and 0:min  rVEE m the particle moves in a circle. 

Energy Em corresponds to the minimum value of V(r) 

                       













2

2

2mr

l

r

k

dr

d

dr

Vd
  



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
80 

 

                          = 
3

2

2 mrr

k l
  

Putting r = ro for which V(r) is minimum.
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In this case two bounds coincide  

 r3  = r2  = ro 

 Orbit is a circle of radius .
l2

mk                                                  

Case (iv) : E< rV :min
 will be imaginary and therefore no physically meaningful motion is 

possible. 

 (iii)   Stability of orbits and conditions for closure:  

(a) Stability: 

 The condition of stability in radial motion is given by the existence of local 

minimum in V(r), the effective potential. That is we require that 
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 For any central force, the potential energy function is given by,  
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Which is positive if   n >3 

 Therefore any circular orbit with r = r0 under any central force can satisfy the 

stability condition if n >3. 

(b) Conditions for closure: 

(iii) All bound orbits are closed only if for the inverse square law of force of 

electrostatic attraction or gravitational type and for Hooke‟s type linear law of 

force. 

(iv) The condition for bound motion is that there is a bounded domain of r in 

which   V(r)  E. The condition for stability of circular orbits is n >3 where f 

(r)  r 
n
. That is for  n = 1  and n =  2 only closed orbits exist. 

3.4 VIRIAL THEROEM: 

         We consider a system of mass points with position vectors ir and applied forces .iF

 Fundamental equations of motion will be  

                  ii Fp 
             ….(1)

 

 Let us write a quantity  

                   G
ii rp .  

                   
dt

dG
iiii rprp ..  
                                           ….(2)
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But                      ii pr . im ii rr .  
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The time average over a time interval  will be 
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 If the motion is periodic and  is its period then G() = G(0) and hence the RHS of 

equation (3) is zero. If the motion is not periods but there is an upper bound to G and the 

co-ordinates and velocities remain finite, then  sufficiently large, RHS again be 

approximated to zero. Hence 

                T2 ii rF . 0  

                           T
2

1


ii rF .                     .…(4) 

 Equation (4) is known as the virial theorem and RHS is called virial of claussius. 

 This theorem is used in kinetic theory of gases to prove Boyle‟s law and to obtain 

equation of state for imperfect gases etc. 

 It the forces are derivable from a potential, then the theorem becomes. 
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If the potential energy is 
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For inverse square law n = 2,  hence 
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3.5 DIFFERENTIAL EQUATION OF THE ORBIT: 

 Here we wish the obtain an equation that may provide a relation between r and . 

   i.e )(rr   

 Such an equation will be the equation of the orbit. 

 It is convenient to introduce the new variable  
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We know that the equation of motion of a particle is 
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Which is the differential equation of the orbit. 

   In case l = 0, equation is absurd but from 

                           2mrl  

                              0rm 2   

                       0  

                          = constant 

giving a straight line through the origin. 

3.6 INTEGRABLE POWER LAW IN TIME IN KEPLER’S PROBLEM: 

 The inverse square law of force is most important of all the central force laws. It 

results the deduction of Kepler‟s laws. 

1. All the planets move in an elliptical orbit with sun at one of its foci. 

2. The radius vector connecting the sun and the planet sweeps at equal areas is equal 

intervals of time. ie, areal  velocity is constant. 

3. The square of the period of revolution of any planet about the sun is proportional 

to the cube of the semi major axis. 

(i) Deduction of first law: 

 The central force varies inversely as the square of the distance. That is  
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Equation of the orbit then becomes 
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The general solution of this equation is 
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Where u  and  are constants. 

 If we orient our co-ordinate system so that =0, then           
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 Thus  is a turning point. 

 We show that equation (2) represents a conic section, coincident with Kepler‟s 

first law of planetary motion. That is the orbits are conic sections with the centre at one of 

the foci. 

 We define the conic section as a curve for which the distance from a fixed point to 

that from a fixed line is a constant. That is 

                  
d

r
constant =  

                     = eccentricity 
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From figure, We see that 

                   P  =d + r cos θ 

             Let          p = P 



p

P  

                    



cosrd

p
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                     = 
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                             p = r  + r cos 

                                = r (1+ cos) 

                          r     = 
 cos1

p
       .…(3) 

 Which represents a conic section. 

Equation (2) is of the form of equation (3) orbit under an inverse square force is always a 

conic section.  

Comparing equations (2) and (3), we get 

             
km

lu
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km

l
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22 
  

 Further from 0mustwe,
d

r
  or r must be positive. 

(ii) To explore the shapes of orbit: 

 Equation (2) is the equation of the conic and consequently it should have been 

possible to explore the shape of orbits using this equation. Here  involves one unknown 

constant u. Hence we express  in terms of known constants. Then we put the value of  

in one equation of the conic which yield the desired information about the shape of the 

conic. 

 Already we have E = )(
22
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           Here V (r) = 
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 Suppose we take the turning point at which r is minimum say rmin. Then .0r 

Now equation (4) becomes. 
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now   is a known one. After putting the value of  and p in equation (3) we get 
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If E > 0 giving  > 1 – conic is hyperbola 

If E = 0 giving  = 1 – conic is parabola 

If E < 0 giving  < 1 – conic is ellipse 

If E = 
2

2

2

mk

l


 giving  = 0 – conic is circle. 

(iii) Case of elliptic orbits: 

 Relation between energy and semi major axis: 

 In the case of elliptic orbits, semi major axis is given by:- 

 when θ = 0,  r = r1  = perihelion 
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 Then           r1  = 
1

p
 

                 r = r2 = aphelion 

 Then          r2  = 
1

p
 

 a is the sum of one half of perihelion r1 and aphelion r2 

                                

2

rr
a 21   

                            = 











  1

1

1

1

2

p
 

                   = 











21

11

2

p
 

                   = 
 21 

p
 

But                        p   = 
km

2l
 

Hence                a     =  2

2

1 mk

l
       .…(8) 

(or)                  1 - 
2
  = 

mka

2l
 

Now                        1
2

mk
E 2

2

2


l

  becomes 

                       =  )8(
2

2

2

2

equationFrom
mka

l

l

mk







 
 

                              E  =
a2

k
 

which shows that all ellipses with the same major axis  have the same energy. 

(iv) Deduction of Kepler’s second law:  

We know              

  02 











 







 mr
dt

dL

dt

d
p  

          02 r
dt

d
 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
89 

 

             0
2

1 2 







r

dt

d
 

           2r
2

1
constant 

                  ie           Areal velocity = constant 

The area swept out by radius vector per unit time = constant. 

 If r describes an angle d in time dt, the area swept out by r in time dt is 

                 drrdrdA 2

2

1

2

1
  

                   
dt

d
r

dt

dA 2

2

1
  

                   
dt

d
r

2

2

1
  

                  = 2r
2

1
 = constant 

 which is Kepler‟s second law. 

(v) Deduction of third law : (period of elliptic motion )                                                

 is the ratio of the total area of the ellipse to the rate at which the area is 

swept out. Suppose dA is the area swept out by radius vector is time dt, then 

the rate will be ./ dtdA  

 Hence                 
dtdA

area

/
  

             Area of the ellipse  =  a b 

  And              
m

l
r

dt

dA

22

1 2    

                    
ll

mab2

m2/

ab 



  

        putting                       
1
221ab   

 Then                     
1
22

2

1
ma2





l

 

                     2

2

422
2 1

am4





l
 

                        = 
mka

am4 2

2

422 l

l


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                        = 3
2

a
k

m4







 
 

                       
2 
  a

3 

Which is Kepler‟s third law. It states that the square of period is proportional to cube of 

the semi-major axis. 

3.7 SCATTERING IN CENTRAL FORCE FIELD: 

(i)  Rutherford scattering: 

Assumptions: 

1. The heavy nucleus and the positively charged particle to be point nucleus so that their 

dimensions are not taken into account. 

2. The nucleus of the atom is so heavy that it is at rest during collision. 

3. The mass of the positively charged particle may be taken as constant because the 

velocity is very small compared with the velocity of light. 

 

 

 

 

 

 

 

 

 

 Let a positively charged particle of charge z′e approach a heavy nucleus N of 

charge ze.  There will be a force of repulsion between them. The force increases as the 

particle gets closer to the nucleus.  The positively charged particle of initial velocity vo is 

repelled by the heavy nucleus and changes from a straight line to a hyperbola PAQ 

having one focus at N.  The asymptotes PO and OQ give the initial and final directions of 

the particle.  As the initial and final directions are not the same, the particle is said to be 

scattered.  

The perpendicular distance of PO from N =MN = s. This is the shortest distance from the 

nucleus to the initial direction called impact parameter. 
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The equation of the orbit  

                                              )cos(1
11

 
pr

 

                           
mk

l
p

2

                 and          

2/1

2

22
1 










mk

El
  

                       In this case k=-zz′e
2
 and hence  

                                          
2

21

l

ezmz

p


  

                                          
 )cos(1

1
2

2

 



l

ezmz

r
 

If the initial line is set such that 0 , then 

                                          
  cos1

1
2

2





l

ezmz

r
 

                                        

2/1

2

22
1 









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  

                                           

2/1

22

2

)(

2
1 











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2/1

422

22
1 












ezmz

El
 

If the initial velocity is vo, then 

                                    s

l
mandsml

mEmandmE

oo

oo





vv

2vv
2

1 2

 

According to principle of conservation of angular momentum 

                                  s

l
m

lmrsm

o

o





v

v 2 
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mE2

s


l
 

                                     mEsl 2  

                                   

  2/1

422

222
1 












ezmz

mEsE
 

                                   

2/1
2

2

2
1



























ezz

Es
 

From this equation it is clear that 1 . 

                           
  cos1

1
2

2





l

ezmz

r                                                                           
represents a hyperbola. 

(ii)   Angle of scattering: 

 The angle between initial and final directions of the positively charged particle is 

called angle of scattering.  That is the angle between the asymptotes is called angle of 

scattering.  Here  is the angle of scattering.  

 The asymptotic directions are those for which r is infinite and ,  

                                    0cos1    

                                           


1
cos   

From figure                       2  

                                                  22





  

         


 1

22
cos 








  

                        


 1

2
sin   

                 





2
cos ec  
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22

2
cos 


ec  

              

2

2

22 2
1

2
cot1 












ezz

Es



 

                    
2

cot 2 
2

2

2












ezz

Es
 

                      













2ezz

Es2

2
cot  

                            










 

2

1

ezz

Es2
cot2  

This equation gives   in terms of impact parameter  s, energy E, the charge on the 

nucleus ze and the charge on the particle z e. 

(v) Rutherford scattering cross section: 

 The scattering cross section is defined as     

intensityincident

timeunitperdωanglesolidaintoscatteredparticlesofnumber
)(  d  

 dω is the element of solid angle 

)( is the differential scattering cross section. 

The incident intensity is defined as the number of particles crossing unit area normal to 

the incident beam in unit time. 

 The differential of solid angle dω in the plane whose azimuth lies between   and 

 + d  is     dd sin2  

The scattering cross section through angle   in any plane is 

               



2

sin)()(
o

ddd  dsin)(2  

The number of particles scattered into solid angle dω per unit time  dsin)(I2  

I is the incident intensity. 

The cross section for the particles having collision parameter between s and s+ds is the 

area of ring of radius s and width ds so that 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
94 

 

                      sdsdss  2),(   

The number of particles lying between s and s+ds dsIs2  

 Now  dsin)(I2dsIs2  

The negative sign is due to the decrease in d   as the increase in ds. 

                         

 
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2
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2

cos
24

1 4

2
2 







 
 ec

E

ezz
 

This is Rutherford scattering cross section. 

The scattering cross section must be proportional to i)
2

eccos 4 
,  ii) the square of (ze),   

iii) the square of (ze) and  iv) inversely proportional to square of kinetic energy (E). 

HAMILTON – JACOBI THEORY 

In canonical transformation, the method involves the transformation of old set of 

coordinates (
kq ) to new set of coordinates (

kQ ) which are all cyclic and hence all 

momenta are constants provided the Hamiltonian is conserved. 

In case the Hamiltonian involves time, an alternate approach is used to a canonical 

transformation which leads to the new Hamiltonian 0H so that the new coordinates 

and momenta  
kQ  and 

 kP  are constants. This procedure is due to Jacobi which is a 

transformation as well as a method itself and applied when Hamiltonian involves time.  
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3.8. HAMILTON – JACOBI EQUATION:  

If we make a canonical transformation from old set of variables (
kk pq , ) to a new 

net of variables (
kk PQ , ), then the new equation of motion are 

                                     
k

k
Q

H
P




   and 

k

k
P

H
Q




                                           …(1) 

If we require that the transformed Hamiltonian H′ =0, then equations of motion (1) 

assume the form  

                                              0kP  and   0kQ  

                                      kP constant and kQ constant                                 …(2) 

  Thus the coordinates and momenta are constants in time and they are cyclic.  

  The new Hamiltonian H   is related to old Hamiltonian H by  

                                                 
t

F
HH




  

       Which will be zero when F satisfies the relation  

                                                 
0),,( 






t

F
tpqH kk                                                ...(3)               

  Where ),,( tpqH kk
 is written for ),,...,,,...,( 2121 tpppqqqH nn

  

We take the generating function F as a function of the old coordinate 
kq , the new 

constant momenta 
kP and time t ie, ),,(2 tPqF kk

. Then  

                                                   
k

k
q

F
p




 2                                                                 …(4)         

Therefore                                       0),,( 22 









t

F
t

q

F
qH

k

k
                                      …(5) 

                                                                      
),,(22 tPqFF kk  
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The total time derivative of F2 is  

                                                      
t

F
P

P

F
q

q

F

dt

dF
k

k

n

k
k

k

n

k 
















22

1

2

1

2   

                                  Here H
t

F
Pk 




 2,0 and 

k

k

p
q

F




 2  

Therefore              LHqp
dt

dF
kk

n

k





1

2   

                               (or)   SLdtF2                                                                      …(6)      

                                                     =Hamilton‟s principal function  

Put SF 2  in equation (5), we get       0),,( 









t

S
t

q

S
qH

k

k
                                …(7) 

  This is known as Hamilton – Jacobi equation. It is a partial differential equation of first 

order in (n+1) variables .,,..., 21 tqqq n
 

Solution to Hamilton – Jacobi Equation : 

Let the solution of equation (7) be of the form  

                                        ),,...,,,...,( 2121 tqqqSS nn                            …(8) 

  Where 
n ,..., 21

 are n independent constants of integration. 

In equation (8), the solution S is a function of n co-ordinates  of 
kq ,time t and n 

independent constants. We can take these n constants of integration as the new constant 

momenta  

                                         ie      
kkP                                                                      …(9) 

Now the n transformation equation are  

                                              
k

nn
k

q

tqqqS
p






),,...,,,...,( 2121 
                              …(10) 
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  These are n equations at t = t0 give the n values of in terms of 
k in terms of 

kq and 
kp . 

The other n transformation equations are  

                                             k

k

k
P

s
Q 




    

      or                                   
k

nn
k

tqqqS






),,...,,,...,( 2121                                 …(11) 

  Similarly one can calculate the constants 
k  by using initial condition at t = t0, the 

known  initial values of 
kq . Thus  

k and
k  constants are known and equation (10) will 

give 
kq  in terms of 

kk  , and t. that is  

                                           𝑞𝑘 =  𝑞𝑘  (𝛼1, 𝛼2, … 𝛼𝑛,𝛽1,𝛽2 …𝛽𝑛 , 𝑡)                             …(12) 

   On differentiation of equation (10), equation (12) may be substituted for 𝑞𝑘  to obtain 

momenta 𝑝𝑘 . Thus 𝑝𝑘  will be obtained as function of constants 𝛼𝑘,𝛽𝑘  and t That is 

                                               𝑝𝑘 = 𝑝𝑘   (𝛼1, 𝛼2, … 𝛼𝑛,𝛽1,𝛽2 …𝛽𝑛 , 𝑡)                         …(13) 

  Thus we see that the Hamilton‟s principal function S is the generaor of a canonical 

transformation to constant coordinates (𝛽𝑘) and momenta (𝑞𝑘). Also in solving the 

Hamilton- Jacobi equation, we obtain simultaneously a solution to the mechanical 

problem.    

  3.9 SOLUTION OF HARMONIC OSCILLATOR PROBLEM BY HAMILTON –   

           JACOBI METHOD:- 

  Consider a one - dimensional Harmonic oscillator. For such a system forces are 

conservative. The force acting on the oscillator at a displacement q is  

                           𝑓 = −𝑘𝑞     

                                      k =Force constant. 

              Potential energy 2

2

1
kqkqdqV

q

o

    

                   Kinetic energy    𝑇 =  
1

2
 𝑚𝑣2  =  

𝑝2

2𝑚
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                      Hamiltonian       𝐻 = 𝑇 + 𝑉 

                                =  
𝑝2

2𝑚
 +  

1

2
 𝑘𝑞2 

         But 𝑃 =  
𝜕𝑆

𝜕𝑞
   and therefore                                                                                                                                                                           

                                𝐻 =  
1

2𝑚
  

𝜕𝑆

𝜕𝑞
 

2

+ 
1

2
 𝑘𝑞2  

  Hence the Hamilton – Jacobi equation corresponding to the Hamiltonian is  

                     𝐻 +  
𝜕𝑆

𝜕𝑡
= 0       

                     
1

 2𝑚
  

𝜕𝑆

𝜕𝑞
 

2

+ 
1

2
 𝑘𝑞2 + 

𝜕𝑆

𝜕𝑡
= 0                                                          …(1) 

Since we can separate the variables, solution will be of the form  

                                       𝑆  𝑞, 𝛼, 𝑡 =  𝑊  𝑞, 𝛼 −  𝛼𝑡                                             …(2) 

  α is a constant. 

                                            
𝜕𝑆

𝜕𝑞
=  

𝜕𝑊

𝜕𝑞
 𝑎𝑛𝑑 

𝜕𝑆

𝜕𝑡
=  −𝛼                                             

Now equation (1) takes the form  

                                           
1

2𝑚
 
𝜕𝑊

𝜕𝑞
 

2

+  
1

2
 𝑘𝑞2  =  𝛼                                            …(3) 

                                                          
1

2𝑚
  

𝜕𝑊

𝜕𝑞
 

2

= (𝛼 − 
1

2
𝑘𝑞2) 

                                                             
𝜕𝑊

𝜕𝑞
 

2

= 2𝑚 (𝛼 − 
1

2
𝑘𝑞2)  

                                                            
𝜕𝑊

𝜕𝑞
=   2𝑚 (𝛼 − 

1

2
 𝑘𝑞2) 

On integrating we get  

                                                           W = cdqkqm  )
2

1
(2 2   

                                                    c = constant of integration  
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                                                Then S = ctdqkqm   )
2

1
(2 2   

  c is an additive constant and will not affect the transformation. Because   to obtain the 

new positon coordinate 𝛽 =  
𝜕𝑆

𝜕𝛼
 only partial derivative of  S  w. r. to  α is required. Hence 

c is dropped. Thus 

                                          S =   2𝑚 (𝛼 − 
1

2
 𝑘𝑞2)  𝑑𝑞 −  𝛼𝑡                          …(4) 

Now                                 𝛼 = new momentum P. 

  The new constant co - ordinate is obtained by the transformation. 
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dqm
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 
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dq
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 
22
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                                       



22

kq
k

dq

k

m
t


  

                                                =   
𝑚

𝑘
 sin−1 𝑞  

𝑘

2𝛼
  

                                 sin−1  
𝑘

2𝛼
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𝑘

𝑚
 (𝑡 +  𝛽) 
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                                               𝜔 =   
𝑘

𝑚
                                                                                                                           

                                    sin−1 𝑞  
𝑘

2𝛼
   = 𝜔 (𝑡 +  𝛽) 

                                                   𝑞 =   
2𝛼

𝑘
 sin𝜔 (𝑡+ 𝛽)                                      …(5) 

                                                  =  𝑞0  sin𝜔 (𝑡 + 𝛽) 

  Which is the familiar solution for the harmonic oscillator. 

                                    𝑁𝑜𝑤 𝑝 =  
𝜕𝑆

𝜕𝑞
=  

𝜕𝑊

𝜕𝑞
 

                                                =   2𝑚(𝛼 − 
1

2
 𝑘𝑞2)    

                                                  =   2𝑚 𝛼 − 𝑚2 𝜔2 𝑞2                                       …(6)  

                                                𝑝 =  2 𝑚 𝛼 − 𝑚2 𝜔2  
2𝛼

𝑘
 sin2 𝜔 (𝑡 +  𝛽)  

                                                   =   2 𝑚 𝛼 −  2 𝑚 𝛼 sin2 𝜔 (𝑡 +  𝛽)  

                                                   =   2 𝑚 𝛼  cos𝜔  𝑡 +  𝛽                                   …(7)                                                                                                                       

                                                         = 𝑝0  cos𝜔  𝑡 +  𝛽  

   The constants 𝛼 and 𝛽 are to be known from initial conditions.  

   At t = 0   the particle is at rest  

     ie, p = 0 and it is at the displacement 𝑞 =  𝑞0 from the equilibrium position .  

  From (6)  2𝑚 𝛼 − 𝑚2𝜔2𝑞2 = 0                                                                                                            

                                          2 𝑚 𝛼 =  𝑚2𝜔2𝑞2                                                  

                            𝛼 =  
1

2
 𝑚𝜔2𝑞2  

                                                       =   
1

2
 𝑘 𝑞0

2                                                       …(8) 
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                                                       𝑞0 =   
2𝛼

𝑚𝜔2 =   
2𝛼

𝑘
             

  and hence the solution (5) takes the form  

                                          𝑞 =  𝑞0  sin 𝜔  (𝑡 +  𝛽)                                       …(9) 

 at 𝑡 = 0 𝑞 =  𝑞0 , cos𝜔 𝛽 = 0 𝑎𝑛𝑑 sin𝜔 𝛽 = 1 

                                   𝜔 𝛽 =
𝜋

2
  (𝑜𝑟) 𝛽 =

𝜋

2𝜔
 

  Thus the new constant canonical coordinate measures the initial phase angle and in the 

present initial conditions the initial phase  𝜔𝛽 =  
𝜋

2
 . 

    Now equation (9) become  

                                      𝑞 =  𝑞0  cos  𝜔𝑡.                                                  …(10) 

  Hamilton‟s characteristic function W (q,α) and principal function S are related by                                                                                                                                                                       

      𝑆 = 𝑊  𝑞, 𝛼 − 𝛼𝑡;  𝐴𝑙𝑠𝑜 𝐻′ = 𝐻 +
𝜕𝑠

𝜕𝑡
= 𝐻 − 𝛼 = 0 

    𝐻 = 𝛼 But the system is conservative. 

Hence 𝐻 = 𝐸 Thus the new canonical momentum (𝑃) is the total energy of the oscillator 

H.J method to Harmonic oscillator : 

Hamilton‟s principal function S can he obtained as 

                                      𝑆 =  𝑝𝑑𝑞 −  𝛼𝑡                                                                                                                                                                                        

                                            𝑃 =   2 𝑚 𝛼  cos𝜔 (𝑡 + 𝛽) 

                                      𝑞 =  𝑞0  sin𝜔 (𝑡 +  𝛽)                                                                                                  

                                        =   
2∝

𝑘
 sin𝜔  𝑡 +  𝛽  

                                    𝑑𝑞 =  𝜔 
2𝛼

𝑘
 cos𝜔  𝑡 +  𝛽  𝑑𝑡    

                             𝑆 =   2𝑚𝛼 cos𝜔  𝑡 + 𝛽  𝜔  
2𝛼

𝑘
  cos𝜔  𝑡 + 𝛽 𝑑𝑡 −  𝛼𝑡     
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                                       =    2𝑚𝛼  𝜔  
2𝛼

𝑘
    𝑐𝑜𝑠2 𝜔  𝑡 + 𝛽 𝑑𝑡 −  𝛼𝑡       

                                      =  +2𝛼  𝑐𝑜𝑠2  𝜔  𝑡 + 𝛽  𝑑𝑡 −  𝛼𝑡      

                                        =     2𝛼  [𝑐𝑜𝑠2 𝜔  𝑡 + 𝛽 − 
1

2
] 𝑑𝑡     

The Lagrangian L is given by                                                                                                                               

                                          𝐿 =  
𝑝2

2𝑚
− 

1

2
 𝑘𝑞2 

                                               =  𝛼𝑐𝑜𝑠2𝜔  𝑡 + 𝛽 − 
1

2
 𝑘 𝑞0

2𝑠𝑖𝑛2  𝜔  𝑡 + 𝛽  

                                               =  𝛼𝑐𝑜𝑠2𝜔  𝑡 + 𝛽 − 
1

2
 𝑘 

2𝛼

𝑘
𝑠𝑖𝑛2 𝜔  𝑡 + 𝛽  

                                              = 𝛼 𝑐𝑜𝑠2𝑤  𝑡 + 𝛽  −  𝛼 𝑠𝑖𝑛2 𝜔 𝑡 + 𝛽  

                                              = 𝛼[𝑐𝑜𝑠2𝜔 𝑡 + 𝛽 − 𝑠𝑖𝑛2  𝜔  𝑡 + 𝛽 ] 

                                              = 𝛼[𝑐𝑜𝑠2𝜔 𝑡 + 𝛽 − (1 − 𝑠𝑖𝑛2  𝜔  𝑡 + 𝛽 )] 

                                              = 𝛼[2𝑐𝑜𝑠2𝜔 𝑡 + 𝛽 −  1] 

                                              = 2𝛼[𝑐𝑜𝑠2𝜔  𝑡 + 𝛽 − 
1

2
 ] 

                   There fore        𝑆 =   𝐿𝑑𝑡 

  Thus for Harmonic oscillator we prove that the Hamilton‟s principal function is the time 

integral of Lagrangian.                             

3.10 HAMILTON’S PRINCIPAL FUNCTION :  

                    From the solution of Hamilton Jacobi equation, we recognize S, the 

Hamilton‟s principal function, as the generating function which gives rise to a canonical 

transformation involves constant momenta and constant co - ordinates.  

                   Consider the total time derivative of 

                                       𝐹2 =  𝐹2 (𝑞𝑘,𝑃𝑘,𝑡)    
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t

F
P

P

F
q

q

F

dt

dF
k

k

n

k
k

k

n

k 
















22

1

2

1

2 

 

                           Here H
t

F
Pk 




 2,0 and 

k

k

p
q

F




 2  

Therefore                         LHqp
dt

dF
kk

n

k





1

2   

                                          (or)   SLdtF2                                                             

S is known as the Hamilton‟s principal function in relation to the variational principle  

3.11 HAMILTON’S CHARACTERISTIC FUNCTION:  

Conservative systems:-                                                                                                      

In a particle moving under central force in which H does not depend on time t explicitly 

and hence H = constant = 𝛼1 = E. In such cases, it is Hamilton‟s characteristic function 

W. In Hamilton‟s principal function S, an explicit dependence on time is involved.  

Hamilton – Jacobi equation for Hamilton‟s principal function S (𝑞𝑘,𝛼𝑘,𝑡) becomes                                                                                                              

                                           𝐻  𝑞𝑘,
𝜕𝑆

𝜕𝑞 𝑘
 +  

𝜕𝑆

𝜕𝑡
= 0                                            …(1) 

We can assume the solution S in the form  

                                           𝑆  𝑞𝑘,𝛼𝑘,𝑡 = 𝑊(𝑞𝑘,𝛼𝑘) − 𝛼1𝑡                         …(2) 

                      There fore    
𝜕𝑆

𝜕𝑞 𝑘
=  

𝜕𝑊

𝜕𝑞 𝑘
 𝑎𝑛𝑑 

𝜕𝑆

𝜕𝑡
= −𝛼1 

and hence the Hamilton – Jacobi equation take the form                                                                                                         

                                                   𝐻  𝑞𝑘 ,
𝜕𝑊

𝜕𝑞 𝑘
 = 𝛼1                                             …(3) 

   (or)                               H [𝑞1,𝑞2,…𝑞𝑛 ,
𝜕𝑊

𝜕𝑞1
,
𝜕𝑊

𝜕𝑞2
, …

𝜕𝑊

𝜕𝑞𝑛
] = 𝛼1                        …(4) 

  This is time - independent Hamilton – Jacobi equation.  
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For conservative system H  = α1= E =total energy of the system. Now Hamilton – Jacobi 

equation is written as                                                              

                                                   𝐻  𝑞𝑘,
𝜕𝑊

𝜕𝑞 𝑘
 = 𝐸                                             …(5) 

               Equation (4) can also be obtained directly by taking W as the generating 

function  W (𝑞𝑘 , 𝑃𝑘 ) independent of time. The transformation equation are 

                                          𝑝𝑘 =  
𝜕𝑊

𝜕𝑞 𝑘
 𝑎𝑛𝑑 𝑄𝑘 =

𝜕𝑊

𝜕𝑃𝑘
                                   …(6) 

Now if the new momenta 𝑃𝑘are all constant of motion 𝛼𝑘 , where 𝛼1in particular is the 

constant of motion H, then 𝑄𝑘 =
𝜕𝑊

𝜕𝛼𝑘
  

The condition to determine W is that  

                                                𝐻  𝑞𝑘 , 𝑝𝑘 =  𝛼1 

   Using 𝑝𝑘 =  
𝜕𝑊

𝜕𝑞 𝑘
 , we obtain  

                                           𝐻  𝑞𝑘,  
𝜕𝑊

𝜕𝑞 𝑘
  =  𝛼1 

which is identical to equation (4).  

                                         Also 𝐻′ = 𝐻 + 
𝜕𝑊

𝜕𝑡
                        

But 𝑤(𝑞𝑘 , 𝑝𝑘) does not involve time and hence  

             𝐻′ = 𝐻 =  𝛼1(= 𝐸)                                                                       …(7) 

            𝑊 = Hamilton‟s characteristic function.  

It generates a canonical transformation where all new coordinates 𝑄𝑘  are cyclic because 

𝐻′ = 𝛼1,depending on one of the new momenta  𝑃1 = 𝛼1,and does not contain any 𝑄𝑘 . 

  Now                            𝑃 𝑘 = −
𝜕𝐻 ′

𝜕𝑄𝑘
= 0  𝑜𝑟 𝑃𝑘 = 𝛼𝑘  

    and                           𝑄 𝑘 =
𝜕𝐻 ′

𝜕𝛼𝑘
= 1 𝑓𝑜𝑟 𝑘 = 1                                         …(8) 
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                                    𝑄 𝑘 =
𝜕𝐻 ′

𝜕𝛼𝑘
= 0 𝑓𝑜𝑟 𝑘 ≠ 1 

Hence the solution are  

                                            𝑄1 = 𝑡 + 𝛽1 =
𝜕𝑊

𝜕𝛼1
 𝑓𝑜𝑟 𝑘 = 1 

     and                                𝑄𝑘 = 𝛽𝑘 =
𝜕𝑊

𝜕𝛼𝑘
  𝑓𝑜𝑟 𝑘 ≠ 1                                             …(9) 

Thus out of all the new coordinates 𝑄𝑘,   𝑄1 is the only coordinate which is not a constant 

of motion. Here we observe the conjugate relationship between the time as the new 

coordinate and Hamiltonian as the conjugate momentum.  

Physical significance of the Hamilton’s characteristic function W:- 

The function W has a physical significance similar to the Hamilton‟s principal function S. 

since W (𝑞𝑘,𝑃𝑘) does not involve time t explicitly, its total time derivative is  

                                       k

k

n

k
k

k

n

k

P
P

W
q

q

W

dt

dW 










 11
 

  Since                                 kkP  0 kP  and therefore 

                                          kk

n

k

qp
dt

dW


1

  

                                        k
k

kk
k

k dqpdtqpW   
                                           

…(10) 

Which is the action. 

                                  and  dtHqpLdtS kk
k

][       

                                              =  HdtW  

When H does not involve time t explicitly  

                                tHdt  1  

Now                        tWS 1                                                                                              
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                           tqWtqS kkkk 1),(),,(    

                          tqWtqS kk 1)(),(   …(11) 

Here                   kkp   are constants. 

                E1  = total energy. 

 When the Hamiltonian does not involve time explicitly, one can solve a 

mechanical problem by using either Hamilton‟s principal function (or) Hamilton‟s 

characteristic function. 

3.12 ACTION AND ANGLE VARIABLES: 

 In the motion of a system with many degrees of freedom  the Hamilton- Jacobi 

equation is completely separable in coordinate variables.  We consider conservative 

system in which the Hamiltonian does not involve time explicitly.  The Hamilton-Jacobi 

equation is given by  

                                     1

21

21 ,.........,;,........, 




















n

n
q

W

q

W

q

W
qqqH                    ….(1) 

The variables qk are separable, if a solution of the form  

                                                 nkk
k

qWW  ,.....,; 21

                                   
…(2) 

splits the equation into n equations: 

                                          
121 ,....,;; 













n

k

k
kk

q

W
qH

                                  

…(3) 

Each of equations (3) involves only one of the coordinates qk and the corresponding 
k

k

q

W




 

The equations of canonical transformation has the form  

                                          
 

k

nkk
k

q

qW
p






......,; 21

                                         

…(4) 

it gives                              ),.....,;( 21 nkk pp                                      …(5) 
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Equation (5) represents the orbit equation of the projection of the representative point of 

the system on the ( ,kq )kp  plane in the phase space.  Now action-angle variables can be 

defined if the orbit equations for all the ),( kk qp pairs describe either closed orbits or 

periodic functions of q k. 

 The action variables J k are defined as  kkk dqpJ
                                  

…(6) 

 Here the integration is to be carried out over a complete period. 

Suppose q k is cyclic coordinate, then kp =constant.   

If q k is angle coordinate, then integral for action variable is to be taken from 0 to 2 

giving.  

                               
kkkk pdqpJ 



2

2

0

        …(7) 

Since
         

k
k

kkk
k

dqpdtqpAaction     

Using equation (4), we obtain 

                         

  



 knk

k

k
k dqq

q

W
J ........,; ,21

                                    …(8) 

Since q k is a variable of integration and it will be out, when integration is over. Thus J k 

is a function of the n constants  α k. Thus 

                                  )......,,(JJ n21kk       …(9) 

(or)                           )......,,( 21 nkk JJJ                                                              …(10) 

Thus the Hamilton‟s characteristic function is 

                                 
 nn JJJqqqWW ,....,;,......., 2121  

                                    
).......;( ,,1 nkkk

k

JJJqW                            …(11)
 

                      
),.......,( 21111 nJJJandHH   

                            
),.......,( 21 nJJJHH        …(12) 

The generalized coordinate ωk conjugate to J k is defined as angle variable, given by 
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 
 









n

n

k

l

k

k JJJq
J

W

J

W

1l

211 ........,,;     (13) 

Now the equation of motions for the angle variables are 

                              

 n

k

k JJJ
J

H
.......,, 21




  

                                    
),.....,( 21 nk JJJ                           …(14) 

This gives solution of the form 

                                       kkk t                  …(15) 

sk  are constants and functions of action variables only and are frequencies  of the 

periodic motion.  Here the frequencies of the periodic motion can be obtained without 

complete solution of the problem. 

Suppose that the change in angle variable ω k with the completion of one cycle by q l is  

l ω k, then 

                                      
 


 l

l

k
kl dq

q
 

Using                                getwe
J

W

k

k



  

                                      
l

kl

k
k dq

Jq

W
 




2

l  

                                               
l

lk

dq
q

W

J  





  

                                               



 ll

k

dqp
J

 

                                               
kl

k

l

J

J





  

                             Thus    kk 1   k=l 

                                         =0  k≠l                                                                    …(16) 

η k is the period corresponding to q k then 
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using equation (15),       kkkkkk t                                       …(17) 

                                 But hencekk 1  

                               
k

k

kkk or 



1

)(1                …(18) 

Thus sk are identified to the frequencies of the periodic motion. 

2.13 KEPLER’S PROBLEM IN ACTION-ANGLE VARIABLES: 

 For a particle of mass m, moving in an inverse square force field ],)([
r

k
rV   the 

Hamiltonian of the system is given by 

                                 
r

k

r

p
p

m
H r 








 

2

2
2

2

1
 

Determine the frequency by the method of action-angle variables and discuss degeneracy.  

Show that the period of the orbit is given by  

                                               
32E

m
k   

Solution : 

The action variable Jk are given by 

                                                       kkk dqpJ  

In the case of Kepler‟s problem, the action variables are given by 

                                                      
  dpJ  

and                                                drpJ rr  

                                                     
2






W
p

             

and therefore 

                                               



 





2

0

222 2ddd
W

J  
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2

2

2
1

2
2

rr

mk
m

r

W
pr







  

Where we have replaced E by α1 

                                             
  


 dr

r

W
dpJ rrr  

                                                    
dr

rr

mk
m




2

2
2

1

2
2  

 The motion is bounded and is elliptical path for negative value of the total energy 

E. Further the limits are given by rmin and rmax values of r.  

These values are determined by the zero of the quadratic equation in 

                                     .
2

2

2

2

2

22

2 







rr

mk
Emr

dr
 

                        ie 0
2

2
2

2

2
1 




rr

mk
m  

                          022 2

2

2

1  mkrrm  

                               0
2 1

2

2

1

2 








m
r

k
r  

                       
m

k
k

r
2

212

11

2

2

1

2










  

                           = 












 


 2

2

21

1

2
11

2 mk

k
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In a complete cycle of the co-ordinate r, it varies from rmin to rmax and back to rmin. 

Now 

                      Jr  = 



max

min

2

2

2
1

2
22

r

r

dr
rr

mk
m  

                          = 





max

min

2

2

2
1

2

2

2
1

2
2

2
2

2

r

r

dr

rr

mk
m

rr

mk
m

 

                        = 






2

2

2

1

2

22

2

2

1

1

22
2

22

22
2

max

min
mkrrmr

dr
dr

mkrrm

mkrm
r

r

 

                     Jr = 
  2

1

2
m2

mk2





 

                         J + Jr  =
 
 2

2

1

1

2
2

2

2

rJJ

mk
m

m

mk










  

                                           
 2

22

1

2

rJJ

mk








 

                          But  H  = H = 1= E  

             Therefore     
 2

22

1

2

rJJ

mk
EH








 

Now the frequencies  and r are given by 

                
   3
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
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Thus                  
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r

r
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mk




  

 The two frequencies are equal and the motion of the system is said to be 

degenerated. 
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The period of the orbit: 
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 This formula agrees with Kepler‟s third law that the semi-major axis
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UNIT IV : CLASSICAL STATISTICAL MECHANICS 

Foundations of Statistical Mechanics: The macroscopic and microscopic states, postulate 

of equal a priori probability, Contact between statistics and thermodynamics; Ensemble 

theory: Concept of ensemble, phase space, Density function, Ensemble average,  

Liouville’s theorem, Stationary ensemble; The microcanonical ensemble, Application to 

the classical ideal gas; The canonical and grand canonical ensembles, Canonical and 

grand canonical partition functions, Calculation of statistical quantities; 

Thermodynamics of a system of non-interacting classical harmonic oscillators using 

canonical ensemble, and of classical ideal gas using grand canonical ensemble, Energy 

and density fluctuations; Entropy of mixing and the Gibb’s paradox, Sackur-Tetrode 

equation. 

4.1 FOUNDATIONS OF STATISTICAL MECHANICS: 

 Statistical mechanics is the branch of science which gives the interpretation of the 

macroscopic behavior of a system in terms of its microscopic properties. 

 Statistical mechanics is not concerned with the actual motion of individual particle 

but investigates average or most probable or statistical properties of the system. 

 The larger is the number of particles in the physical system considered, the more 

nearly correct are the statistical predictions. The smaller is the number of 

particles in the mechanical system, statistical mechanics cease to have meaning. 

 Statistical mechanics is applicable for a system consisting large number of 

particles. 

 There are two statistical methods known as classical statistics and Quantum 

statistics. 

 Classical statistics explained many observed physical phenomenon like 

temperature , pressure ,energy etc., but could not explain several experimentally 

observed phenomenon like black body radiation, specific heat at low temperature 

etc. 

 For explaining such phenomenon Bose-Einstein and Fermi-Dirac made new 

approach known as quantum statistics. 

 Quantum statistic can be classified as, 

i. Bose-Einstein statistics 

ii. Fermi-Dirac statistics 

 

4.2 MICROSTATE AND MACROSTATE: 

Microstate: 

 The specification of individual position of phase points for each system or 

molecule of the ensemble. 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
114 

 

Macrostate: 

 The specification of the number of phase points in each cell of phase space. Many 

different microstates may corresponds to same macrostate. 

 Consider a system consists of four particles a,b,c, and d  and two cells A and B. 

             The distribution of 4 particles in two cells can be illustrated here. 

    

                                                   

 

 

 

 

      

                    (2,2)-macrostate                                               (3,1 macrostate) 

 

 

  

  

 

 

                                                                      

 If we interchange any two phase points from different cells we have different 

microstates but the same macrostate. 

 If we interchange any two phase points in the same cell , we have same microstate 

and same macrostate. 

 The number of microstates corresponding to a given macrostate in called the 

thermodynamic probability of the macrostate. 

 The probability that the ensemble possessing energy E is proportional to Ω(E). 

                               𝑃 𝐸 = 𝑐 𝛺(𝐸) 

                                           c→proportionality constant 

                                           Ω(E)→thermodynamic probability 

 

 

 

Cell A Cell B 

4 0 

3 1 

2 2 

1 3 

0 4 

ab cd 

bc da 

cd ab 

da bc 

abc d 

bcd a 

cda b 

dab c 
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4.3 POSTULATE OF EQUAL A PRIORI PROBABILITY: 

Statement: 

 The probability of finding the phase point for a given system in any one region of 

phase space is identical with that for any other region of equal volume. 

 The necessity of this postulate arises due to incompleteness of our knowledge 

concerning the system of interest. 

 This postulate appears to be reasonable in character with the principles of 

statistical mechanics derived from Liouville‟s theorem. 

 According to the principle of conservation of density, the density of a group of 

phase points  remains constant. 

 At any time the phase points are distributed uniformly in the phase space. 

 There is no crowding of phase points in any particular region of phase space. 

 Any arbitrary element of volume in the phase space bounded by a moving surface 

and containing a definite number of phase points does not change with time. 

 The property of no crowding of phase points in any particular region of phase 

space and the constancy of volume element of phase space with time indicate the 

validity of the postulate. 

 That is the probability of finding a phase point in any particular region of phase 

space is directly proportional to the volume of that region. 

 The postulate replaces the postulate of equal priori probability when different 

volumes in the phase space are considered. 

4.4 CONTACT BETWEEN STATISTICS AND THERMODYNAMICS :       

      (BOLTZMANN RELATION BETWEEN ENTROPY AND PROBABILITY) 

 Boltzmann used the idea that the probability of the system in equilibrium state is 

maximum. 

 Thus in equilibrium state both the entropy and thermodynamical probability have 

their maximum values. 

 Boltzmann concluded that the entropy  „S‟ is a function of thermodynamic 

probability Ω.        

                             ie,                    𝑆 = 𝑓(𝛺)                                                               ….(1) 

 Consider two independent systems A and B having entropies S1 and S2 and 

thermodynamic probabilities Ω1 and Ω 2. 
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 Entropy is an additive quantity and hence the entropy of systems together must be 

equal to the sum of their individual entropies.      

                                         𝑆 = 𝑆1 + 𝑆2                                                                                           ….(2) 

 The probability Ω of finding both systems will be the product of the two 

probabilities Ω 1 and Ω 2.      

                                     ie               𝛺 =  𝛺1𝛺2                                                                             ….(3)

 Substituting  equations (2) and (3) in equation (1) we get, 

                          𝑆 = 𝑓(𝛺) = 𝑓(𝛺1𝛺2)                                                ….(4)  

                         𝑆 = 𝑆1 + 𝑆2  

                 𝑓 𝛺1𝛺2 = 𝑓 𝛺1  𝛺2                                                                …..(5) 

 Differentiating with respect to Ω1 we get, 

                      𝛺2𝑓 ′ 𝛺1𝛺2  𝑓 ′ 𝛺1                                                               ….(6) 

 Differentiating with respect to Ω2 we get, 

                          𝛺1𝑓 ′ 𝛺1𝛺2 =  𝑓 ′  𝛺2                                                         … . (7) 

 Divide equation (7)/(6), we get 

𝛺 1
𝛺2

=  𝑓 ′(𝛺2)/ 𝑓 ′(𝛺1) 

𝛺1  𝑓 ′(𝛺1) = 𝛺2 𝑓 ′(𝛺2) 

𝛺 𝑓 ′(𝛺) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑘 

 𝑓 ′(𝛺1) =
𝑘

𝛺
 

Integrating,                          𝑓(𝛺) = 𝑘 𝑙𝑜𝑔 𝛺 +  𝑐 

                                              𝑆 =  𝑘 𝑙𝑜𝑔 𝛺 + 𝑐                                .…(8)  

 For a thermo dynamical system at absolute zero Ω=1 and S=0 so that c=0. 

                                                𝑆 =  𝑘 𝑙𝑜𝑔 𝛺. 

 This gives the Boltzmann‟s relation between entropy and probability. 

(a) Identification of constant ‘k’: 

 Consider the expansion of one  mole of an ideal gas at pressure p1 and volume V1 

into an evacuated chamber of volume V2. 

 The find pressure is p2 and the final volume is V1+ V2. 

 The probability of finding one molecule in the first  container with volume V1 is,    

𝑉1

𝑉1 + 𝑉2
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 There are N molecules and hence the probability of finding one  mole of the gas in 

the first container with volume V1 is, 

                                     𝛺1 =  
𝑉1

𝑉1+𝑉2
 
𝑁

                                                       ….(10) 

 The probability of finding one mole of the gas in the container has volume V1+V2 

is 

                          𝛺2 =  
𝑉1+𝑉2

𝑉1+𝑉2
 
𝑁

=  1 𝑁                                              .…(11) 

From Boltzmann relation 

∆𝑆 = 𝑆2 – 𝑆1 

     = 𝑘 𝑙𝑜𝑔 𝛺2  –  𝑘 𝑙𝑜𝑔 𝛺1 

     = 𝑘 𝑙𝑜𝑔 (
𝛺2

𝛺1
) 

     = 𝑘 𝑙𝑜𝑔  
1
𝑉1

𝑉1+𝑉2

 

𝑁

 

 ∆𝑆 =  𝑘 𝑙𝑜𝑔  
𝑉1+𝑉2

𝑉1
 
𝑁

 

= 𝑙𝑜𝑔   
𝑉1+𝑉2

𝑉1
 
𝑁𝑘

                                                                                            ….(12) 

 The change in entropy when the gas changes from one state with volume V1 and 

temperature T1 to another state with volume V2 and temperature T2 is given by, 

∆𝑆 = 𝐶𝑣  𝑙𝑜𝑔 
𝑇2

𝑇1
+ 𝑅 𝑙𝑜𝑔 [

𝑉1 + 𝑉2

𝑉1
]   

For isothermal change 𝑇2 = 𝑇1 and hence 𝐶𝑣  𝑙𝑜𝑔
𝑇2

𝑇1
= 0 

∆𝑆 = 𝑅 𝑙𝑜𝑔 [
𝑉1 + 𝑉2

𝑉1
]    

                                 =  𝑙𝑜𝑔  
𝑉1+𝑉2

𝑉1
 
𝑅

                                                 .…(13) 

Comparing equation (12) and (13), we get 

                                                          𝑁𝑘 = 𝑅 

                                                             𝑘 = 𝑅/𝑁 

                                                                 = 1.03 × 10−23  𝐽/𝐾 = Boltzmann‟s constant 

4.5 ENSEMBLE THEORY: CONCEPT OF ENSEMBLES: 

 A system is defined as a collection of identical particles. 

 An ensemble is defined as a collection of macroscopically identical, but 

essentially independent systems. 
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 Macroscopically identical means each system satisfies the same macroscopic 

conditions ex: volume, energy, pressure etc. 

 Independent systems mean the systems are non interacting. 

 There are three most commonly used ensembles namely,       

(i) micro canonical ensemble  

(ii)  canonical ensemble          

(iii)  grand canonical ensemble. 

Micro canonical ensemble: 

 Collection of large number of 

essentially independent systems with same energy 

E, volume V, and the number of particles N. 

 All the particles are identical. 

 The individual systems are separated 

by rigid , impermeable and well insulated walls. 

 No exchange of heat energy as well 

as the number of particles between the systems                                                 

takes place. 

 

Canonical ensemble: 

 

 Collection of large number of 

essentially independent systems with same 

temperature T, volume V and the number of 

particles N. 

 All the particles are identical. 

 The individual systems are separated by       

rigid, impermeable but conducting walls. 

 Exchange of heat energy between the 

system takes place. But not the particles. 
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Grand canonical ensemble: 

 

 Collection of large number of 

essentially independent systems with same 

temperature T, volume V, and the chemical 

potential μ. 

 All the particles are identical. 

 The individual systems are separated 

by rigid, permeable and conducting walls. 

 Exchange of heat energy as well as the 

particles between the system takes place. 

 The state of any ensemble can be completely specified by a large number of phase 

points in the phase space called dust cloud. 

 Thus the behavior of an ensemble can be represented by a large number of 

trajectories (or) phase lines (or) streaming motion of the dust cloud. 

4.6  PHASE SPACE: 

 The instantaneous position of a single particle is described by three independent 

co-ordinates  𝑥, 𝑦 𝑎𝑛𝑑 𝑧. 

 The instantaneous motion of a particle is described by momentum co- ordinates 

𝑝𝑥  , 𝑝𝑦  , 𝑝𝑧 . 

 Thus the state of a single particle is completely specified by position co-ordinates 

𝑥, 𝑦, 𝑧 and momentum co-ordinates 𝑝𝑥  , 𝑝𝑦  , 𝑝𝑧  

 We may  imagine a six dimensional space with volume 𝑑𝑥  𝑑𝑦  𝑑𝑧  𝑑𝑝𝑥𝑑𝑝𝑦  𝑑𝑝𝑧 . 

 The position of a point particle in this space can be described by a set of 6 co-

ordinates 𝑥 𝑦 𝑧 𝑝𝑥  , 𝑝𝑦  , 𝑝𝑧 . 

 This 6 dimensional space for a single particle is damped as phase space.(µ=space) 

 If the system contains a large number of particles such that f independent position 

co-ordinates 𝑞1, 𝑞2, ……… . , 𝑞𝑓  and f momentum co-ordinates 𝑝1, 𝑝2, …… . , 𝑝𝑓  , 

then 2f combined position, momentum co-ordinates may be allowed to define 2f-

dimensional space called phase space(Γ-space) 

 The Γ-space is considered to be a conceptual  Euclidean space having 2f 

rectangular axes and an element of volume represented by  

𝑑𝑞1, 𝑑𝑞2, …… , 𝑑𝑞𝑓  𝑑𝑝1, 𝑑𝑝2, …… , 𝑑𝑝𝑓  
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 The instantaneous state of a particle in the phase-space is represented by a point 

known as phase point (or) representative point. 

 The number of phase points per unit volume is known as phase density. 

4.7 COUNTING THE NUMBER OF MICROSTATES IN THE ENERGY RANGE 

       ε  TO  ε+dε: 

 For a single particle we have six dimensional phase space. 

 Three position co-ordinates  (𝑥, 𝑦, 𝑧) and three momentum   

co-ordinates (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧) specify the microstate of a particle 

in the phase space. 

 An element of volume in phase space is,   

  𝛿𝑥𝛿𝑦𝛿𝑧𝛿𝑝𝑥𝛿𝑝𝑦𝛿𝑝𝑧 = 𝑕3 

 The total volume of phase space is   𝑑𝑥𝑑𝑦𝑑𝑧𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧  

 We have   𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑉 

 So the volume in phase space = 𝑉    𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧     

 Volume of momentum space containing momentum between p and 𝑝 +  𝑑𝑝 will 

be given by the volume of a spherical cell with radius p and thickness dp. 

 Therefore,                  

                                            𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧 = 4𝜋𝑝2𝑑𝑝                                      

𝜀 =
𝑝2

2𝑚
  → 𝑝2 = 2𝑚𝜀 

2𝑝𝑑𝑝 = 2𝑚𝑑𝜀 

𝑑𝑝 =
𝑚

𝜑
𝑑𝜀 

                                                              =
𝑚

 2𝑚𝜀
𝑑𝜀     =   

𝑚

2𝜀
𝑑𝜀 

 Now volume of phase space  

= 𝑉. 4𝜋𝑝2𝑑𝑝                            

= 𝑉 × 4𝜋(2𝑚𝜀)  
𝑚

2𝜀
𝑑𝜀 

= 4𝜋𝑉 2 𝑚3/2 𝜀1/2𝑑𝜀          

 The number of cells within the phase space. 

                         ie, 𝛺 𝜀 𝑑 𝜀 =
4𝜋𝑉 2

𝑕3
 𝑚3/2𝜀1/2𝑑𝜀 
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 For a single particle the number of accessible microstates will be equal to the 

number of cells in phase space. 

 Hence the number of microstates in this energy range ε to ε+dε is given by, 

                        𝛺 𝜀 𝑑 𝜀 =
4𝜋𝑉 2

𝑕3  𝑚3/2𝜀1/2𝑑𝜀 

4.8 TIME AND ENSEMBLE AVERAGE: 

 An ensemble consists of a large number of independent systems. 

 It may be represented by a particular point in phase space. 

 A gas containing a large number of molecules forming a system. 

 The gas molecules move constantly and hence they change the position and 

momentum with time. 

 The entire gas shows a time independent property (eg: temperature , energy etc.) 

which may be considered as the average of the specified property of the 

constituent gas molecules . 

 Here, we discuss this type of average property of the ensemble. 

 Let the state of the ensemble changes with time. 

 Let u be the property of the ensemble. 

 u takes values 𝑢1, 𝑢2 , …… . . , 𝑢𝑚      having probabilities 𝑃1, 𝑃2, …… . , 𝑃𝑚 . 

𝑢 =
𝑃1𝑢1 + 𝑃2𝑢2 + ⋯……+ 𝑃𝑖𝑢𝑖 + ⋯……𝑃𝑚𝑢𝑚

𝑃1 + 𝑃2 + ⋯……+ 𝑃𝑖 + ⋯………𝑃𝑚
 

                      =
 𝑃𝑖𝑢𝑖
𝑚
𝑖=1  

  𝑃𝑖
𝑚
𝑖=1  

                                                               ….(1) 

 The sum of the probabilities of the all possible state must be equal to one. 

            ie, 𝑃1 + 𝑃2 + ⋯… . . +𝑃𝑖 + ⋯…… . +𝑃𝑚   =  𝑃𝑖 = 1𝑚
𝑖=1                    ….(2) 

 This called normalization condition. 

 Now equation (1) becomes  

                                         𝑢 =  𝑃𝑖𝑢𝑖
𝑚
𝑖=1  

 If the ensemble consists of N systems, u can be expressed as the function of all 

position and momentum co-ordinates of the systems. 

 If the probability distribution function is continuous , then equation(1) can be 

expressed as, 

                            𝑢 =
 𝑢 𝑞,𝑝 𝑃 𝑞,𝑝 𝑑𝛤

 𝑃 𝑞,𝑝 𝑑𝛤
 

                           𝑑𝛤 = 𝑑𝑞1, 𝑑𝑞2, ……… , 𝑑𝑞𝑓   𝑑𝑝1, 𝑑𝑝2, … . , 𝑑𝑝𝑓  

 According to normalization condition 
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            𝑃 𝑞, 𝑝 𝑑𝛤 = 1  

 Hence                   𝑢 =  𝑢 𝑞, 𝑝 𝑃 𝑞, 𝑝 𝑑 𝛤 

 This gives the ensemble average. 

4.9 LIOUVILLE’S THEOREM: 

 Liouville‟s theorem gives information about the rate of change of phase density in 

the phase space. The theorem may be stated in two parts. 

 The rate of change of density of phase points in the neighborhood of a moving 

phase point in the Γ space is zero. This part represents the principle of 

conservation of density in the phase space. 

                               𝑑𝜌/𝑑𝑡 = 0                                                                   ….(1) 

 Any arbitrary element of volume or extension in phase in the Γ space bounded by 

a moving surface and containing a number of phase points does not change with 

time. This part represents the principle of conservation of extension in the phase 

space. 

𝑑

𝑑𝑡
 𝛿𝛤 =

𝑑

𝑑𝑡
  𝑑𝑞𝑖𝑑𝑝𝑖

𝑓
𝑖  = 0                                                                ….(2) 

(i) The principle of conservation of density in the phase space: 

 Consider any arbitrary hyper volume 

 𝛿𝛤 = 𝛿𝑞1 𝛿𝑞2 …… . . 𝛿𝑞𝑓   𝛿𝑝1 𝛿𝑝2 …… . . 𝛿𝑝𝑓  

in the phase space located between                 

𝑞1 and  𝑞1 + 𝛿𝑞1 ……… . . 𝑞𝑓   and   𝑞𝑓 + 𝛿𝑞𝑓  ,   

𝑝1 and 𝑝1 + 𝛿𝑝1, ……… . 𝑝𝑓  and 𝑝𝑓 + 𝛿𝑝𝑓 . The 

number of phase points in this volume element 

changes with time due to the motion of phase 

points.  

 If ρ is the density of phase points, the number 

of phase points in this volume element at any 

instant t is , 

             𝛿𝑁 = 𝜌. 𝛿𝛤 = 𝜌𝛿𝑞1 𝛿𝑞2  …… . 𝛿𝑞𝑓  𝛿𝑝1𝛿𝑝2  ………𝛿𝑝𝑓                                             ….(3) 

 The change in number of phase points in volume element per unit time, 
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𝑑 𝛿𝑁 

𝑑𝑡
=

𝑑

𝑑𝑡
(𝜌. 𝛿𝛤) = 𝜌 𝛿𝛤 = 𝜌  𝛿𝑞1 𝛿𝑞2  …… . 𝛿𝑞𝑓𝛿𝑝1𝛿𝑝2  ………𝛿𝑝𝑓        …(4) 

 This change in the number of phase points in the given hyper volume is due to the 

difference between the number of phase points entering the hyper volume through 

any face and the number of those leaving the opposite face per second. 

 Consider two faces of hyper volume with co-ordinates 𝑞1and  𝑞1 + 𝛿𝑞1. If 𝑞1  is 

the component of velocity of phase point at 𝑞1, 𝑞2, …… . 𝑞𝑓 , 𝑝1, 𝑝2, ………𝑝𝑓  ,then 

the number of phase points entering the first face AD per second 

                         = 𝜌𝑞1  𝛿𝑞2 …… . . 𝛿𝑞𝑓   𝛿𝑝1 …… . 𝛿𝑝𝑓                                     ….(5) 

 As density ρ changes with change in position and momentum co-ordinates and at 

the opposite face BC the co-ordinate q1 changes to 𝑞1 + 𝛿𝑞1and the density ρ 

changes to (𝜌 +
𝜕𝜌

𝜕𝑞1  
𝛿𝑞1) at the face BC. The velocity 𝑞 1 changes to (𝑞 1 +

𝜕𝑞 1

𝜕𝑞1
 𝛿𝑞1).  Therefore the number of phase points leaving the opposite face BC at 

q1+δq1 per second. 

                    = (𝜌 +
𝜕𝜌

𝜕𝑞1  
𝛿𝑞1) (𝑞 1 +

𝜕𝑞 1

𝜕𝑞1
 𝛿𝑞1) 𝛿𝑞2 ……𝛿𝑞𝑓  𝛿𝑝1, ………𝛿𝑝𝑓  

 Neglecting higher order differentials, we get 

             =  𝜌𝑞 1  + (𝜌 
𝜕𝑞 1

𝜕𝑞1
 + 𝑞 1

𝜕𝜌

𝜕𝑞1  
 )𝛿𝑞1  𝛿𝑞2 ……𝛿𝑞𝑓  𝛿𝑝1, ………𝛿𝑝𝑓             ....(6) 

 Subtracting (6) from (5) we get the expression for change in the number of phase 

points per second corresponding to q1. 

 = −(𝜌 
𝜕𝑞 1

𝜕𝑞1
 + 𝑞 1

𝜕𝜌

𝜕𝑞1  
)𝛿𝑞1𝛿𝑞2 ……𝛿𝑞𝑓  𝛿𝑝1, ………𝛿𝑝𝑓                             ….(7) 

 Similarly, the expression for the change into the number of phase points per 

second corresponding to p1 is 

           = −(𝜌 
𝜕𝑝 1

𝜕𝑝1
 + 𝑝 1

𝜕𝜌

𝜕𝑝1  
)𝛿𝑞1𝛿𝑞2 ……𝛿𝑞𝑓  𝛿𝑝1, ………𝛿𝑝𝑓                     ….(8) 

 Since the change in number of phase points per second corresponding to  all 

position and momentum coordinates are like equation (7) and (8), then they are 

summed up. 
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 The net increase in the number of phase points in the given hyper volume per 

second is given by, 

     
𝑑(𝛿𝑁)

𝑑𝑡
= −  𝜌  

𝜕𝑞 𝑖

𝜕𝑞𝑖
 +

𝜕𝑝 𝑖

𝜕𝑝𝑖
  + ( 𝑞 1

𝜕𝜌

𝜕𝑞𝑖
 + 𝑝𝑖  

𝜕𝜌

𝜕𝑝𝑖
) 

𝑓
𝑖=1  𝛿𝑞1 …𝛿𝑞𝑓  𝛿𝑝1, … 𝛿𝑝𝑓               .....(9) 

 using equation (4)we get, 

                           
𝜕𝜌

𝜕𝑡
= −  𝜌  

𝜕𝑞 𝑖

𝜕𝑞𝑖
 +

𝜕𝑝 𝑖

𝜕𝑝𝑖
  + ( 𝑞 1

𝜕𝜌

𝜕𝑞𝑖
 + 𝑝𝑖  

𝜕𝜌

𝜕𝑝𝑖
) 

𝑓
𝑖=1                    ….(10) 

 From canonical equation, 

𝜕𝑞 𝑖
𝜕𝑞𝑖

=
𝜕2𝐻

𝜕𝑞𝑖𝜕𝑝𝑖
 𝑎𝑛𝑑 

𝜕𝑝 𝑖
𝜕𝑝𝑖

=
−𝜕2𝐻

𝜕𝑝𝑖𝜕𝑞𝑖
 

 Since the order of differentiation is immaterial i.e, 

𝜕2𝐻

𝜕𝑞𝑖𝜕𝑝𝑖
=

𝜕2𝐻

𝜕𝑝𝑖𝜕𝑞𝑖
  

                                      We get                  
𝜕𝑞 𝑖

𝜕𝑞𝑖
= −

𝜕𝑝 𝑖

𝜕𝑝𝑖
 

                                                      
𝜕𝑞 𝑖

𝜕𝑞𝑖
+

𝜕𝑝 𝑖

𝜕𝑝𝑖
 

𝑓
𝑖=1 = 0                                          ….(11)                                 

 Now equation (10) becomes 

                                                       
𝜕𝜌

𝜕𝑡
 
𝑞,𝑝

= −   𝑞 1
𝜕𝜌

𝜕𝑞𝑖
 + 𝑝𝑖  

𝜕𝜌

𝜕𝑝𝑖
 

𝑓
𝑖=1                                    

                                             
𝜕𝜌

𝜕𝑡
 
𝑞,𝑝

+    
𝜕𝜌

𝜕𝑞𝑖
𝑞 1  +  

𝜕𝜌

𝜕𝑝𝑖
𝑝𝑖  

𝑓
𝑖=1 = 0                           ….(12) 

 This equation represents Liouville‟s theorem. 

𝑑𝜌

𝑑𝑡
(𝑞1, … . , 𝑞𝑓 , 𝑝1, …… . , 𝑝𝑓 , 𝑡) = 0 

                                         ie, 
𝑑𝜌

𝑑𝑡
= 0                                                                             .…(13) 

 This expression represents the principle of conservation of density in phase space. 

(ii) The principle of conservation of extension in phase space: 
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 Consider a very small region of hyper volume δΓ in the Γ space, so that the 

density of phase points ρ can be taken as uniform throughout the hyper volume. 

 The number of phase points in this hyper volume, 𝛿𝑁 = 𝜌. 𝛿𝛤 

𝑑

𝑑𝑡
(𝛿𝑁) =

𝑑

𝑑𝑡
(𝜌. 𝛿𝛤) 

                                              =
𝑑𝜌

𝑑𝑡
𝛿𝛤 + 𝜌 

𝑑(𝛿𝛤)

𝑑𝑡
                                       ....(14) 

 As each phase point represents a definite system and systems can neither be 

created nor destroyed, the number of phase points δN must remain fixed. 

i.e                                    
𝑑

𝑑𝑡
 𝛿𝑁 = 0 

                                       
𝑑𝜌

𝑑𝑡
𝛿𝛤 + 𝜌 

𝑑(𝛿𝛤)

𝑑𝑡
 = 0 

 from equation (14)                    
𝑑𝜌

𝑑𝑡
 = 0 

                                              𝜌
𝑑(𝛿𝛤)

𝑑𝑡
= 0 

                                                                  
𝑑(𝛿𝛤)

𝑑𝑡
= 0 

                                       𝛿𝛤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                ….(15) 

 This expression represents the principle of conservation of extension in the phase 

space. 

 

STATIONARY ENSEMBLE: 

4.10 MICRO CANONICAL ENSEMBLE (ISOLATED SYSTEM):   

 An ensemble in which each system has the same fixed energy as well as the same  

number of particles is called micro canonical ensemble.   

 In this ensemble, density ρ, for a closed isolated thermo dynamical system is a 

function of energy and we take  

          ρ(E) = constant       between  the  energy shells E and E+δE of phase space. 

                             = 0        outside the region of phase space. 
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 We call this region in which ρ(E) = constant as accessible region dΓ of phase 

space.   

 The above choice of ρ(E) being constant in dΓ and zero outside dΓ indicating 

accessibility can be justified as follows:    

 Suppose we consider a gas of volume V, separated into smaller volumes V1 and 

V2 by a thin perfectly conducting wall of negligible heat capacity through which 

the particles of the gas can diffuse very slowly, hut through which energy can be 

exchange freely.   

 Let at a particular instant, we determine the pressure in the two volumes, and let 

at this instant n out of total n
′
 particles be in volume V1.  The particles in volume 

V2 will be then (n
‟
-n). Now,  

 (i) For an experiment of short duration, it would not be appropriate to take all 

particles could be found with equal probability anywhere within the volume V 

and therefore accessible region is the region of phase space in which all the first n 

particles are in V1 and remaining   (n
‟
-n) are in V2. 

 (ii) For an experiment of long duration in which a considerable amount of 

diffusion could occur, the whole of phase space is accessible. 

 Thus for short duration experiments  dΓ is accessible and it is inappropriate to 

include in the ensemble, the assembly lying outside this region dΓ, which means 

ρ(E) = constant for dΓ while zero outside dΓ.   

 In general, all accessible regions of phase space are given equal weightage in 

averaging over a microcanonical ensemble.  This is known as the „Principle of 

equal a priori probabilities‟. 

 

        (i)    Partition Function: 

 Consider an assembly of ideal gas obeying classical statistics. 

 Let the distribution of gas molecules be such that 𝑛𝑖  molecules occupy the 𝑖𝑡𝑕  

state with energy between 𝜀𝑖  and 𝜀𝑖  + 𝑑𝜀𝑖  

 Let 𝑔𝑖  be the degeneracy of the 𝑖𝑡𝑕  
state. 

 According to M-B distribution law, 

𝑛𝑖 = 𝑔𝑖𝑒
−𝛼𝑒−𝛽𝜀𝑖  

                                                                        = 𝑔𝑖𝑒
−𝛼𝑒−𝜀𝑖/𝑘𝑇    [β=1/kT] 

                           𝑒−𝛼  = 𝐴 
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                                           Then          𝑛𝑖 = 𝐴𝑔𝑖𝑒
−𝜀𝑖/𝑘𝑇   

 Let the total number of gas molecules be N. 

                                 𝑁 =  𝑛𝑖𝑖 . 

                                      =   𝐴 𝑖 𝑔𝑖𝑒
−𝜀𝑖/𝑘𝑇  . 

                                      = 𝐴   𝑖 𝑔𝑖𝑒
−𝜀𝑖/𝑘𝑇  

                                                                                
𝑁

𝐴
   =   𝑖 𝑔𝑖𝑒

−𝜀𝑖/𝑘𝑇     

                                                    𝑍 =   𝑖 𝑔𝑖𝑒
−𝜀𝑖/𝑘𝑇      

 Z is known as partition function and Z indicates how the gas molecules of an 

assembly are distributed (or) partitioned among the various energy levels. 

 If the energy of the 𝑖𝑡𝑕  level is 𝜀𝑖   then the weight of an individual level is unity. 

                         ie, 𝑔𝑖 = 1 

                               𝑍 =   𝑖 𝑒−𝜀𝑖/𝑘𝑇      

 Here the energy term may contain the rotational, vibrational and electronic 

components in addition to translational component. 

 „Z‟ can be used for calculating the various thermodynamic properties of 

ensembles. 

 In classical treatment the energy distribution is continuous. 

 The number of energy levels of the momentum interval p and 𝑝 + 𝑑𝑝 is given by, 

𝑔(𝑝)𝑑𝑝 =   
𝑉 4𝜋𝑝2𝑑𝑝

𝑕3 
 

                                   𝑝2 = 2𝑚𝜀 

                               2𝑝𝑑𝑝 = 2𝑚𝑑𝜀. 

                                     𝑑𝑝 =
𝑚

𝑝
 𝑑𝜀. 

                                           =
𝑚

 2𝑚𝜀
𝑑𝜀     =   

𝑚

2𝜀
𝑑𝜀                                                  

 Now the number of energy levels in the energy range 𝜀 and 𝜀 + 𝑑𝜀 is obtained as, 

𝑔 𝜀 𝑑𝜀 =
𝑉

𝑕3
  4𝜋 2𝑚𝜀  

𝑚

2𝜀
𝑑𝜀  

                                =
2𝜋𝑉

𝑕3
  2𝑚 3/2 𝜀1/2𝑑𝜀 

                             𝑍 =   𝑖 𝑔𝑖𝑒
−𝜀𝑖/𝑘𝑇 . 

                                 =  𝑔(𝜀) 𝑒−𝜀/𝑘𝑇  𝑑𝜀
∞

0
 

                                  =  
2𝜋𝑉

𝑕3

∞

0
    2𝑚 3/2 𝜀1/2 𝑒−𝜀/𝑘𝑇𝑑𝜀 
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                                  =
2𝜋𝑉

𝑕3   2𝑚 3/2   𝜀1/2 𝑒−𝜀/𝑘𝑇𝑑𝜀
∞

0
   

                                 =
2𝜋𝑉

𝑕3   2𝑚 3/2  
1

2
  

𝜋

𝛽3 

                                 =
2𝜋𝑉

𝑕3
  2𝑚 3/2  

1

2
  𝜋(𝑘𝑇)3 

𝑍 =
𝑉

𝑕3
 (2𝜋𝑚𝐾𝑇)3/2 

 This is the translational partition function for a gas molecule.         

4.11 CLASSICAL IDEAL GAS USING MICRO CANONICAL ENSEMBLE: 

 Consider a micro canonical ensemble of a perfect gas. 

 Let there be n point particles with mass m confined in a volume V with total 

energy u within the energy range 𝛿𝑢. 

 The corresponding volume    

 ∆𝛤 =  𝑑 𝑞1 ……… . 𝑑𝑞3𝑛  𝑑 𝑝1 ……… . 𝑑𝑝3𝑛  

               𝑑 𝑞1 ………𝑑𝑞3𝑛 = 𝑉𝑛 . 

Hence          ∆𝛤 = 𝑉𝑛  𝑑 𝑞1 …………𝑑𝑞3𝑛  

 The momentum space integral is to be evaluated subject to the constraint of the 

ensemble 

                  𝑢 − 𝛿𝑢 ≤ 𝑢𝑟 ≤ 𝑢. 

                       𝑢𝑟 =  𝑝𝑖
2𝑛

𝑖=1 /2𝑚 . 

                   𝑢 − 𝛿𝑢 ≤
1

2𝑚
 𝑝𝑖

2 ≤ 𝑢𝑛
𝑖=1 . 

 The accessible volume in momentum space is the volume of a spherical shell of 

radius (2𝑚𝑢)1/2 and thickness  (
𝑚

2𝑢
)

1

2  𝛿𝑢. 

 The volume of three dimensional sphere of radius „R‟ is,                                

                           𝑉3(𝑅) =
4

3
𝜋𝑅3  =

𝜋3/2

𝛤(
3

2
+1)

𝑅3  =
𝜋3/2

 
3

2
 !

  𝑅3 = 𝐶3𝑅
3  

𝑉𝑓(𝑅) =
𝜋𝑓/2

 𝑓/2 !
   𝑅𝑓    = 𝑐𝑓𝑅

3 

where 𝐶𝑓 =
𝜋𝑓/2

 𝑓/2 !
  

 Therefore for 3n dimensional hyper-sphere of radius (2𝑚𝑢)1/2 , the volume is,          

                                 𝑉3𝑛 𝑅 =
𝜋3𝑛/2

 3𝑛/2 !
    2𝑚𝑢 3𝑛/2 
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 The volume coupled between hyper spheres of radii (2𝑚𝑢)1/2  to [2𝑚 𝑢 −

𝛿𝑢]1/2 is 

    𝑑𝑝1 …………𝑑𝑝3𝑛 =
𝜋3𝑛/2

 3𝑛/2 !
[(2𝑚𝑢)3𝑛/2 – {2𝑚(𝑢 − 𝛿𝑢)}3𝑛/2] 

                                               =
𝜋3𝑛/2

 3𝑛/2 !
 (2𝑚𝑢)3𝑛/2 [1 − (1 −

𝛿𝑢

𝑢
)3𝑛/2] 

                                                =
𝜋3𝑛/2

 3𝑛/2 !
(2𝑚𝑢)3𝑛/2 [1 −  𝑒𝑥𝑝(−

3𝑛

2
.
𝛿𝑢

𝑢
)] 

 For a macroscopic system 3n=10
23

 ;     
3𝑛

2

𝛿𝑢

𝑢
 >>u. 

 And hence we can drop the exponential term. 

          𝑑𝑝1 ………………𝑑𝑝𝑛 =
𝜋3𝑛/2

 3𝑛/2 !
 (2𝑚𝑢)3𝑛/2  

∆𝛤 = 𝑉𝑛   𝑑𝑝1 ……………… . . 𝑑𝑝3𝑛   

                                           = 𝑉𝑛 𝜋3𝑛/2

 3𝑛/2 !
 (2𝑚𝑢)3𝑛/2  

 According to classical statistical mechanics ,  the entropy ζ in statistical 

equilibrium is given by, 

                                       𝜍 = 𝑙𝑜𝑔 ∆𝛤 

  = 𝑙𝑜𝑔 [𝑉𝑛
𝜋3𝑛/2

 3𝑛/2 !
 (2𝑚𝑢)3𝑛/2 ] 

                                                 = 𝑛 𝑙𝑜𝑔[𝑉 𝜋3/2  2𝑚𝑢 3/2] − 𝑙𝑜𝑔 (3𝑛/2)! 

                           = 𝑛 𝑙𝑜𝑔[𝑉 𝜋3/2  2𝑚𝑢 3/2] − (3𝑛/2) 𝑙𝑜𝑔 (3𝑛/2)  + 3𝑛/2 

                                 =  𝑛 𝑙𝑜𝑔 [𝑉 𝜋3/2  2𝑚𝑢 3/2] − 𝑛 𝑙𝑜𝑔  3𝑛/2 3/2 + 3𝑛/2 

                                = 𝑛 𝑙𝑜𝑔  
𝑉 𝜋3/2 2𝑚𝑢  3/2

 3𝑛/2 3/2
 +  3𝑛/2 

                                𝜍 =  𝑛 𝑙𝑜𝑔 [𝑉  
4𝜋𝑚

3
 

3/2

  
𝑢

𝑛
 

3/2

] +
3𝑛

2
 

 We know that the entropy should not depend on the unit of hyper volume ∆Γ. To 

make it dimensionless we divide it by 𝑕3𝑛 . 

                                   𝜍 = 𝑙𝑜𝑔[∆𝛤/𝑕3𝑛 ] 

               = 𝑛 𝑙𝑜𝑔  𝑉
 

4𝜋𝑚

3
 

3/2
 
𝑢

𝑛
 

3/2

𝑕3
 +

3𝑛

2
 

 The above equation does not satisfy the additive property and hence to satisfy the 

additive property we must divide by n! 
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                                                  𝜍 =  𝑙𝑜𝑔  
∆𝛤

𝑕3𝑛  𝑛!
  

                          =  𝑛 𝑙𝑜𝑔  𝑉
 

4𝜋𝑚

3
 

3/2
 
𝑢

𝑛
 

3/2

𝑕3  +
3𝑛

2
− 𝑙𝑜𝑔𝑛! 

                          =  𝑛 𝑙𝑜𝑔  𝑉
 

4𝜋𝑚

3
 

3/2
 
𝑢

𝑛
 

3/2

𝑕3
 +

3𝑛

2
 – 𝑛 𝑙𝑜𝑔 𝑛 + 𝑛 

                                   𝜍 =  𝑛 𝑙𝑜𝑔  
 
𝑉

𝑛
  

4𝜋𝑚

3
 

3/2
 
𝑢

𝑛
 

3/2

𝑕3
 +

5

2
n 

 This expression satisfies the additive property because instead of V and u we have  

V/n and u/n. 

 We shall now establish the connection of statistical quantities with corresponding 

thermodynamic quantities. 

(a) Internal energy(U): 

 By the definition of statistical temperature 𝜏, 

             
1

𝜏
=   

𝜕𝜍

𝜕𝑢
 
𝑇,𝑛

 

                 =
𝜕

𝜕𝑢
 𝑛𝑙𝑜𝑔  

 
𝑉

𝑛
  

4𝜋𝑚

3
 

3/2
 
𝑢

𝑛
 

3/2

𝑕3  +
5

2
n 

𝑇,𝑛

 

    =  
𝜕

𝜕𝑢
 𝑛 𝑙𝑜𝑔 𝑣 – 𝑛 𝑙𝑜𝑔 𝑛 +  𝑛 𝑙𝑜𝑔  

4𝜋𝑚

3
 

3/2

+ 𝑛 𝑙𝑜𝑔  
𝑢

𝑛
 

3/2

− 𝑛𝑙𝑜𝑔 𝑕3  +
𝜕

𝜕𝑢
(

5

2
𝑛) 

    =  
𝜕

𝜕𝑢
[𝑛 𝑙𝑜𝑔 𝑣– 𝑛 𝑙𝑜𝑔 𝑛 +  𝑛 𝑙𝑜𝑔  

4𝜋𝑚

3
 

3/2

+
3

2
 𝑛 𝑙𝑜𝑔 𝑢 −

3

2
 𝑛 𝑙𝑜𝑔 𝑛 –  𝑛𝑙𝑜𝑔 𝑕3] +

𝜕

𝜕𝑢
(

5

2
𝑛) 

                      =  
𝜕

𝜕𝑢
(

3

2
 𝑛 𝑙𝑜𝑔 𝑢) 

                                       
1

𝜏
=

3

2
 𝑛 

1

𝑢
                

                   𝑢 =
3

2
𝑛𝜏        (or)             𝑢 =

3

2
𝑛 𝑘𝑇 
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 Which is the well known result for the internal energy of a perfect mono atomic 

gas. 

(b)  Relation between 𝝉 and T: 

 The statistical temperature  

  𝜏 = 𝑘 ×  𝑡𝑕𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. 

            𝜏 = 𝑘𝑇 

(c) Relation between 𝝉 and p: 

            We have                
𝑝

𝜏
 =  

𝜕𝜍

𝜕𝑉
 
𝑛.𝑢

 

       

                  =  
𝜕

𝜕𝑉
   𝑛 𝑙𝑜𝑔 𝑣 − 𝑛 𝑙𝑜𝑔 𝑛 + 𝑛 𝑙𝑜𝑔  

4𝜋𝑚

3
 

3

2
+

3

2
 𝑛 𝑙𝑜𝑔 𝑢 –

3

2
𝑛 𝑙𝑜𝑔 𝑛 −

                                                                          𝑛 𝑙𝑜𝑔 𝑕3+ 𝜕𝜕𝑉(52𝑛) 𝑛,𝑢 

                                  =  
𝜕

𝜕𝑉
  [ 𝑛 𝑙𝑜𝑔 𝑉] 

                          = 𝑛/𝑉 

                        𝑃𝑉 = 𝑛 𝜏    (or)    𝑃𝑉 = 𝑛𝑘𝑇 

 Which is well known ideal gas equation for a perfect mono atomic gas. 

 

(d) Thermodynamic entropy (S): (Sackur - Tetrode equation) 

 The relation between thermodynamic entropy and statistical entropy is given by, 

                                              𝑆 = 𝑘𝜍 

                                           = 𝑛𝑘 𝑙𝑜𝑔  
 
𝑉

𝑛
  

4𝜋𝑚

3
 

3/2
 
𝑢

𝑛
 

3/2

𝑕3  +
5

2
𝑛𝑘 

                                           = 𝑛𝑘 𝑙𝑜𝑔   
𝑉

𝑛𝑕3  
4𝜋𝑚

3
 

3/2

 (
3

2
𝑘𝑇)3/2 +

5

2
𝑛𝑘 
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                             Since 𝑢 =  
3

2
𝑛𝑘𝑇 

 =  𝑛𝑘 𝑙𝑜𝑔  
𝑉

𝑛𝑕3
 (2𝜋𝑚𝑘𝑇)3/2 +  

5

2
𝑛𝑘   

=  𝑛𝑘 𝑙𝑜𝑔  
𝑉

𝑛
  

2𝜋𝑚𝑘𝑇

𝑕2
 

3/2

 +  
5

2
𝑛𝑘      

                                                     =  𝑛𝑘 𝑙𝑜𝑔  
𝑉

𝑛
  

2𝜋𝑚𝑘𝑇

𝑕2  
3/2

𝑒5/2   

 This is the famous Sackur - Tetrode equation for the entropy of a perfect gas. 

This formula is valid for the mono atomic gas of atoms with zero total angular 

momentum. 

 The thermal de-broglie wavelength associated with a molecule may be defined as,  

                                𝜆 = 𝑕/𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑕𝑒𝑟𝑚𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑎 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒. 

                             𝜆 = 𝑕/(2𝜋𝑚𝑘𝑇)1/2 

                                      𝜆3 = 𝑕3/(2𝜋𝑚𝑘𝑇)3/2 

                                          
1

𝜆3 = (2𝜋𝑚𝑘𝑇/𝑕2)3/2  

Now                                     𝜍 =  𝑛 𝑙𝑜𝑔  
𝑉

𝑛

1

𝜆3 +
5

2
𝑛 

                                              𝑆 =  𝑛𝑘 𝑙𝑜𝑔  
𝑉

𝑛

1

𝜆3 +
5

2
𝑛𝑘 

 Thus the entropy of a perfect gas is determined essentially by the ratio of the 

volume per particle to the volume λ
3
 associated with de-Broglie wavelength. 

(e) Chemical potential of a perfect gas: 

 The chemical potential of a perfect gas is given by, 

                                                    
−𝜇

𝜏
=  

𝜕𝜍

𝜕𝑛
 
𝑢,𝑉

  

                                                     =
𝜕

𝜕𝑛
 𝑛 𝑙𝑜𝑔  

𝑉

𝑛

1

𝜆3
 + 

5

2
𝑛  𝑢,𝑉     

                                                    =
𝜕

𝜕𝑛
 [𝑛 𝑙𝑜𝑔 𝑉 −  𝑛 𝑙𝑜𝑔 𝑛 −  𝑛 𝑙𝑜𝑔 𝜆3]𝑢,𝑣  +

𝜕

𝜕𝑛
 

5

2
𝑛 

𝑢,𝑣
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                                                     = 𝑙𝑜𝑔 𝑉 − 1 − 𝑙𝑜𝑔𝑛 – 𝑙𝑜𝑔 𝜆3  +
5

2
 

                                                          = 𝑙𝑜𝑔  
𝑉

𝑛𝜆3 +
3

2
 

                                                      
𝜇

𝜏
 = 𝑙𝑜𝑔  

𝑛𝜆3

𝑉
 −

3

2
 

                                                       
𝑛

𝑉
=

𝑝

𝜏
  

                                               
𝜇

𝜏
 = 𝑙𝑜𝑔  

𝑝𝜆3

𝜏
 −

3

2
 

                                               µ =  𝜏 𝑙𝑜𝑔 𝑝 +  𝜏 𝑙𝑜𝑔(
𝜆3

𝜏
) −

3𝜏

2
. 

                                                   =  𝜏 𝑙𝑜𝑔 𝑝 + 𝑓(𝜏) 

 Where 𝑓(𝜏) is the function of the temperature alone. 

4.12 GIBB’S CANONICAL ENSEMBLE: 

              (i) System in contact with heat reservoir: 

 The micro canonical ensemble describes the systems which are perfectly insulated 

and have given energy.  

 In thermodynamics we do not know the exact value of energy as we usually deal 

with systems kept in thermal contact with a heat reservoir at a given temperature. 

Thus we know only its temperature i.e its average energy.  

 The energy varies from instant to instant but the time average is known.  

 On the other hand the canonical ensemble describes those systems which are not 

isolated, but are in thermal contact with a heat reservoir.  

 In this situation the system of interest together with a heat reservoir forms a large 

closed system and the system of interest is treated as a subsystem.  

 If the energy of the large closed system is constant, then it would represent a 

microcanonical system where as the subsystem which can exchange energy with a 

heat reservoir would represent canonical system.  

 Thus any part of sub system of an isolated system in thermal equilibrium can be 

represented by a canonical ensemble. 
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 Consider a micro canonical ensemble representing a very large isolated system. 

Imagine that each system of the ensemble is made up of large number of 

subsystems which are in mutual thermal contact and can exchange energy. 

 Choose a sub system s. The rest of the subsystem is denoted by r called heat 

reservoir. The total sub system is denoted by t. As the total system is a member of 

the microcanonical ensemble, it is isolated and Et is constant. 

 Let the energies of the sub system and heat 

reservoir be Es and Er  so  

                           𝐸𝑡 = 𝐸𝑟 + 𝐸𝑠  

 As s can exchange energy  but not the particles, 

it is a member of the canonical ensemble. s is 

comparatively small but usually macroscopic containing 10
24

 particles. In the 

case of a gas, the sub system may be a single molecule. 

(ii) Thermodynamical functions and partition function: 

 We shall calculate the entropy, energy, Helmholtz free energy and partition 

function of the canonical ensemble. 

 Consider an isolated system with total energy E0. This system is a part of a micro 

canonical ensemble.  

 The micro canonical ensemble minus system is heat reservoir. Our system is in 

thermal equilibrium with the heat reservoir in such a way that 𝐸 =E0. 

 Let our system in the microcanonical ensemble be defined in the energy range 

between E0 and E0+δE. But in microcanonical ensemble δE is unimportant.  

 Then we may choose δE to be equal to the range of reasonably probable values of 

the energy in the canonical ensemble.  

 Therefore we define the entropy of the canonical ensemble with the mean energy 

E to be equal to the entropy of a microcanonical ensemble with energy 𝐸 .  

 Consider the volume δΓ of the phase space  corresponding to the energies 

between  𝐸  and  𝐸 +δE 

                                           ∆Γ==  
𝜕𝛤 𝐸 

𝜕𝐸
 
𝐸
𝛿𝐸 

        To estimate δE: 
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 Let ω(E) dE represent the canonical ensemble probability for a system to have 

energy in the range E and E+dE.  

 ρ(E) is the probability density of unit volume of the phase space at energy E, then 

the probability of volume ∆Γ in the range E and E+dE will be ρ(E) ∆Γ(E). 

            So that, 

                          𝜔 𝐸 𝑑𝐸 = 𝜌 𝐸 ∆𝛤(𝐸)                                                               ….(1)

                                               = 𝜌(𝐸)  
𝜕𝛤 𝐸 

𝜕𝐸
 
𝐸
𝑑𝐸  

 Figure represents the variation ω(t) as a function of E.   

 The normalization condition is,   

                                    ω(E) dE=1           ….(2)                                                                 

 The simply means that the area under the curve  

ω= ω (E) is equal to unity.  

 Since the mean energy of the canonical ensemble is 

𝐸  the function ω(E) will have an extremely sharp 

maximum at E=𝐸  differing appreciably from zero only in the immediate 

neighbourhood of this point.  

 So on normalizing the plot we can introduce the width δE of the curve of ω= ω(E) 

defining it as the width of the rectangle whose height is equal to the value of the 

function ω(E) at its maximum and whose area is equal to unity.  

 Thus the width δE is determined by the normalization condition. 

                                                 ω(𝐸 ) δE = 1 

 Comparing equations (1) and (2) with E = 𝐸 , we get  

                                          Now, ρ(𝐸 )∆Γ = 1 

                                                          ∆Γ =  
1

𝜌(𝐸 )
 

 But we have,                        𝜌(𝐸 ) = 𝐴𝑒−𝐸 /𝜏  

                                                                ∆𝛤 = 𝐴−1𝑒𝐸  /𝜏  

                                                  = 𝐴−1𝑒𝑈/𝑘𝑇                                                           ….(3) 
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 where 𝐸 =U=energy of the system and η=kT 

 So that the statistical entropy ζ is given by, 

                                               𝜍 = 𝑙𝑜𝑔 ∆𝛤 

                                                = 𝑙𝑜𝑔[𝐴−1. 𝑒𝑈/𝑘𝑇 ]      

                                           = − 𝑙𝑜𝑔 𝐴 +
𝑈

𝑘𝑇
 

                                         𝑙𝑜𝑔 𝐴 =
𝑈

𝑘𝑇
− 𝜍 

                                                  =  
𝑈−𝑘𝜍𝑇

𝑘𝑇
 

                                                  = 
𝑈−𝑆𝑇

𝑘𝑇
                                                                ….(4) 

                         where 𝑆 = 𝑘𝜍 = thermodynamic entropy.      

 Helmholtz free energy: 

                  𝐹 = 𝑈 − 𝑇𝜍 = 𝑈 − 𝑆𝑇 

                                          𝑙𝑜𝑔 𝐴 =
𝐹

𝑘𝑇
 

                                                    𝐴 = 𝑒𝐹/𝑘𝑇  

 So that the canonical distribution function takes form, 

                           𝜌(𝐸) = 𝐴𝑒−𝐸/𝜏  

                                             = 𝑒𝐹/𝑘𝑇𝑒−𝐸/𝑘𝑇  

                                 = 𝑒(𝐹−𝐸)/𝑘𝑇  

 Now applying the normalization condition 

                  𝜌 𝐸 𝑑𝛤 = 1 

                       𝑒(𝐹−𝐸)/𝑘𝑇𝑑𝛤 = 1 

                                    𝑒−𝐹/𝑘𝑇 =  𝑒−𝐸(𝑝,𝑞)/𝑘𝑇𝑑𝛤 

 Now the partition function is defined as, 
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                                       𝑍 =  𝑒−𝐸(𝑝,𝑞)/𝑘𝑇𝑑𝛤 (classical) 

                                       𝑍 =  𝑒−𝐸𝑖/𝑘𝑇  𝑖 (quantum) 

                       So, 𝑒−𝐹/𝑘𝑇 = 𝑍 

                           −𝐹/𝑘𝑇 = 𝑙𝑜𝑔 𝑍 

                                     −𝐹 = 𝑘𝑇 𝑙𝑜𝑔 𝑍 

                               −𝐹 =  𝜏 𝑙𝑜𝑔 𝑍→ 𝐹 = −𝜏 𝑙𝑜𝑔 𝑍.                                     ….(5)     

 This equation represents the expression for the Helmholtz free energy in terms of 

Z.  

 Suppose N independent identical spinless particles, we must correct the classical 

partition function dimensionally and take into account the indistinguishability of 

the particles so that the correct expression is, 

                                𝑍 =
1

𝑁!𝑕3𝑁  𝑒−𝐸(𝑝,𝑞)/𝑘𝑇𝑑𝛤  (classical)              ….(6) 

       Entropy of a system: 

 The statistical entropy of a system in canonical ensemble is given by,                                                         

                                    𝜍 = − 
𝜕𝐹

𝜕𝜏
 
𝑉

  

                                            = 
𝜕

 𝜕𝜏
(𝜏 log 𝑍) 

                                           = log 𝑍 +  𝜏
𝜕

 𝜕𝜏
(log𝑍)                                         ….(7) 

 If E i is the i 
th

 energy eigen value of a system, we have 

                                            𝑍 =  𝑒−𝐸𝑖/𝜏
𝑖  

                                      log 𝑍 = log( 𝑒−𝐸𝑖/𝜏

𝑖

) 

                             
𝜕

𝜕𝜏
(log 𝑍) =

𝜕

𝜕𝜏
 log  𝑒−𝐸𝑖/𝜏

𝑖    

                                        =
 𝑒−𝐸𝑖/𝜏 

𝐸𝑖
𝜏2 )

 𝑒−𝐸𝑖/𝜏
𝑖
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                                       =
1

𝜏2

 𝐸𝑖𝑒
−𝐸𝑖/𝜏

 𝑒−𝐸𝑖/𝜏
 

                                       =
1

𝜏2
𝐸 =

𝑈

𝜏2
                                                     ….(8)       

 Now statistical entropy 𝜍 = log 𝑍 +
𝑈

𝜏
                                          ….(9) 

 The thermo dynamic entropy 𝑆 = 𝑘𝜍 = 𝑘  log 𝑧 +
𝑈

𝜏
   

                                𝑆 = 𝑘 log 𝑍 +
𝑈

𝑇
                                                                         ….(10) 

4.13    A SYSTEM OF NON-INTERACTING CLASSICAL HARMONIC     

           OSCILLATORS USING CANONICAL ENSEMBLE: 

 We now take up the quantum-mechanical situation, according to which the energy 

eigenvalues of a one-dimensional harmonic oscillator are given by 

  ,....2,1,0;
2

1









 nnn   .…(1) 

 Accordingly, we have for the single-oscillator partition function 
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

exp1

2

1
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1
exp

exp

0

0

1

n
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Q

     

        = 

1

2

1
sinh2



















                    …(2) 

 The N – oscillator partition function is then given by 

 

   
 

N

N

N QQ




































exp1

2

1
exp

1

    

                         
  

    NN

N
ee

N

 












 





1
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2
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2/  .…(3)  

 For the Helmholtz free energy of the system, we get 
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2
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                                              ….(4) 

 whereby 

 µ = A/N.        .… (5) 

 P = 0        .… (6) 
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 Then             
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Also 
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 Also             

              

















 

2

1
echcos

2

1
NkCC 2

2

vp

 

                 U = standard deviation in energy distribution 

             
VT

U
kTU 












 22

 

                       
 2

22

1











e

e
NkkT                         [From equation (9)] 

                             
 2

2

22

22

1

1













e

e

Tk
TNk  



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
141 

 

                              
 2

2

1











e

e
N  

 Now      
 1

2













e

e
NU                                .… (10) 

 Thus           NU   

 Formula (8) is especially significant, for it shows that 

the quantum-mechanical oscillators do not obey the 

equipartition theorem.  

 The mean energy per oscillator is different from the 

equipartition value kT; actually, it is always greater than 

kT; see curve 2 in figure.  

 Only in the limit of high temperatures, where the 

thermal energy kT is much larger than the energy quantum , does the mean 

energy per oscillator tend to the equipartition value.  

 It should be noted here that if the zero-point energy 21  were not present, the 

limiting value of the mean energy would be  ,21  kT  and not kT- we may 

call such an oscillator the Planck oscillator, see curve 1 in figure .  

 In passing, we observe that the specific heat which is the same for the Planck 

oscillator as for the Schrodinger oscillator, is temperature dependent; moreover, it 

is always less than, and at high temperatures tends to, the classical value. 

 Indeed, for ,kT    formulae (2) through (9) go over to their classical 

counterparts, respectively. 

4.14 Grand Canonical Ensemble: 

(i) System in contact with a particle reservoir:                                                       

 In microcanonical ensemble each system contains same fixed energy as well as 

same number of particles.  

 The microcanonical ensemble would not be applied to thermodynamics because 

we deal with systems kept in contact with heat reservoir. Then we know only the 

time average of energy.  

 In canonical ensemble we relaxed the condition of constant energy and allowed 

the subsystem to exchange energy with heat reservoir. But this model could not be 
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applied to processes where not of particle varies. e.g. chemical processes and 

quantum processes. 

 Therefore, we seek an ensemble which allows the subsystem to exchange energy 

as well as the particles with reservoir.  

 Such an ensemble which allows the subsystem to exchange energy as well as the 

number of particles with the heat reservoir is called grand Canonical Ensemble. 

 In grand canonical ensemble the independent variables are T,V and µ. Then we 

have the grand potential. 

                                 𝛺 = 𝑈 − 𝑇𝑆 − µ𝑛 

which is minimal when T,V and µ are held fixed. 

 Consider a microcanonical ensemble representing very large isolated system.  

 Each system is made up of large number of sub system which are in mutual 

thermal contact and can exchange energy as well as particles with each other.  

 Choose a sub system s, heat reservoir r and the total system t. 

  𝐸𝑠 and 𝐸𝑟  represent the energies of the sub system and the reservoir. 

  𝑛𝑠 and 𝑛𝑟  represent the number of particles in the sub system and the reservoir. 

 Then the subsystem and the reservoir  may exchange energy and particles subject 

to the conditions 

𝐸𝑠 + 𝐸𝑟 = 𝐸𝑡  and 𝑛𝑠 + 𝑛𝑟 = 𝑛𝑡  

 Now we find the probability 𝑑𝜔𝑠 𝑛𝑠  of finding the sub systems in a state in 

which sub system S contains 𝑛 particles and is found in the element 𝑑𝛤 𝑛𝑠  of its 

phase space.   

 𝑑𝛤 𝑛𝑠  indicates that the nature of the phase space of the subsystem changes with 

𝑛𝑠. 

 For grand canonical ensemble 

                                                      𝑑𝜔 𝑛 = 𝐴 exp  𝑛µ − 𝐸 /𝜏 𝑑𝛤 𝑛  

 Normalization constant             𝐴 = exp  
𝛺

𝜏
  

 Ω is called grand potential or thermodynamic potential.                
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                                                          𝑑𝜔 𝑛 = exp  𝛺 + 𝑛µ − 𝐸 /𝜏 𝑑𝛤 𝑛                                                                            

                                                                 𝑑𝜔 𝑛 = 1 

                        exp  𝛺 + 𝑛µ − 𝐸 /𝜏 𝑑𝛤 𝑛 = 1 

 From the normalization condition 𝜌 𝑛 𝑑𝛤 𝑛 = 1 

 𝜌(𝑛) is the density of distribution of phase points in the phase space. 

 Now we get                                  𝜌 𝑛 = exp  𝛺 + 𝑛µ − 𝐸 /𝜏  

 An ensemble characterized by the probability distribution 𝜌(𝑛) given by the 

above equation is called grand canonical ensemble.  

(ii) Partition function and thermodynamic function for grand canonical   

ensemble : 

 In grand canonical ensemble sub system is allowed to exchange  energy and the 

particles with the heat reservoir under the condition, 

                    𝐸𝑠 + 𝐸𝑟 = 𝐸𝑡  𝑎𝑛𝑑 𝑛𝑠 + 𝑛𝑟 = 𝑛𝑡                                                           .…(1) 

                      𝐸𝑠 , 𝑛𝑠→ the energy and the number of particles of the sub system. 

                      𝐸𝑟 , 𝑛𝑟→the energy and the number of particles of the heat reservoir. 

                     𝐸𝑡 , 𝑛𝑡→the energy and the number of particles of the total system. 

 The probability distribution 𝜌(𝑛) is given by, 

                                      𝜌 𝑛 = exp  𝛺 + 𝑛µ − 𝐸 /𝜏                                                       ….(2) 

                                                Ω→grand potential 

                                                 µ→chemical potential 

 The grand partition function is defined as, 

                                 𝒵 = exp −𝛺/𝜏                                                                                 ….(3) 

                                       =  𝑒µ𝑛/𝜏   𝑒𝐸/𝜏 𝑑𝛤(𝑛) (classical) 

                                               =   exp µ
𝑛
− 𝐸𝑛,𝑖 /𝜏𝑖𝑛    (quantum) 

𝒵 =  𝑒µ𝑛𝑍𝑛
𝑛
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                                                                𝑍𝑛 =  𝑒−𝐸/𝜏  𝑑𝛤 𝑛 𝑖   (classical) 

                                                          =  𝑒−𝐸𝑛 ,𝑖/𝜏(quantum) 

 is the canonical partition function . 

 i.e the grand partition function 𝒵 is the sum of canonical partition functions Z i  

for ensemble with different n′ s with weighing factor 𝑒−µ𝑛/𝜏 . 

 From equation (3) the partition function is given by, 

𝒵 = exp −𝛺/𝜏   

                                                         𝛺 = −𝜏 log𝒵                                                    ….(4) 

 The entropy ζ may be written as,  

                                                               𝜍 = log ∆𝛤 

= log  
1

𝜌 𝑛 , 𝐸  
  

                                                                  = − 𝛺 + 𝑛 µ − 𝐸  /𝜏 

                                                           = − 𝛺 + 𝑛 µ − 𝑈 /𝜏                                    ….(5) 

                                                            𝜏𝜍 = − 𝛺 + 𝑛 µ − 𝑈                                                   

                                                    𝑈 − 𝜏𝜍 = (𝛺 + 𝑛 µ)                                         

                 Helmholtz free energy 𝐹 = 𝑈 − 𝜏𝜍                                                               ….(6) 

                                                     = 𝛺 + 𝑛 µ                                                            ….(7) 

                          𝐺 = 𝐹 + 𝑝𝑉                                                             ….(8) 

                                                       = 𝑈 − 𝜏𝜍 + 𝑝𝑉                                                    ….(9) 

                                                         𝑑𝐺 = 𝑑𝑈 − 𝜏𝑑𝜍 − 𝜍𝑑𝜏 + 𝑝𝑑𝑉 + 𝑉𝑑𝑝 

                                                 But  𝑑𝑈 = 𝜏𝑑𝜍 − 𝑝𝑑𝑉 + µ𝑑𝑛 

                                         Hence 𝑑𝐺 = 𝜏𝑑𝜍 − 𝑝𝑑𝑉 + µ𝑑𝑛 − 𝜏𝑑𝜍 − 𝜍𝑑𝜏 + 𝑝𝑑𝑉 + 𝑉𝑑𝑝  

                                                               =  µ𝑑𝑛 − 𝜍𝑑𝜏 + 𝑉𝑑𝑝   
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𝑑𝐺

𝑑𝑛
 
𝜏,𝑝

= µ                                                                   ….(10) 

                                               Hence 𝐺 = µ𝑛 for fixed p and η.  

           In this case                             𝐺 = µ𝑛  

                                       𝛺 + 𝑛 µ + 𝑝𝑉 = 𝑛  µ 

                                                          𝛺 = −𝑝𝑉 

                                           𝐹 + 𝑝𝑉 = µ𝑛                                                              ….(11) 

                                         𝑈 − 𝜏𝜍 + 𝑝𝑉 = µ𝑛  

                                          𝑈 − 𝜏𝜍 − 𝛺 = µ𝑛  

                                        𝑈 − 𝜏𝜍 − µ𝑛 = 𝛺                                                          ….(12) 

                                                        𝑑𝛺 = 𝑑𝑈 − 𝜏𝑑𝜍 − 𝜍𝑑𝜏 − µ𝑑𝑛 − 𝑛 𝑑µ 

                                                              = 𝜏𝑑𝜍 − 𝑝𝑑𝑉 + µ𝑑𝑛 − 𝜏𝑑𝜍 − 𝜍𝑑𝜏 − µ𝑑𝑛 − 𝑛 𝑑µ 

                                                         = −𝑝𝑑𝑉 − 𝜍𝑑𝜏 − 𝑛 𝑑µ                                    ….(13) 

 Then                                                         𝑝 = − 
𝜕𝛺

𝜕𝑉
 
𝜏,µ

 

                                                           𝜍 = − 
𝜕𝛺

𝜕𝜏
 
𝑉,𝜇

 

                                            𝑛 = − 
𝜕𝛺

𝜕𝜇
 
𝑉,𝜏

 

 From the above three relations we can evaluate thermodynamic quantities for the 

grand canonical ensemble. 

4.15 CLASSICAL IDEAL GAS USING GRAND CANONICAL ENSEMBLE: 

 The grand partition function is given by, 

                                                   𝒵 =  𝑒𝜇𝑛 /𝜏
𝑛 𝑍𝑛                                                      ….(1) 

 Canonical partition function 
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                                                    𝑍𝑛 =
1

𝑛!𝑕3𝑛  𝑒−𝐸(𝑛)/𝜏𝑑𝛤(𝑛) =
𝑓𝑁

𝑛!
                           ….(2) 

                                               where 𝑓 =  
2𝜋𝑚𝑘𝑇

𝑕2
 

3/2

𝑉  =  
2𝜋𝑚𝜏

𝑕2
 

3/2

𝑉 

 ∴ The grand partition function 

                                                     𝒵 =  𝑒𝜇𝑛 /𝜏
𝑛

𝑓𝑛

𝑛!
 =  

 𝑒𝜇 /𝜏𝑓 
𝑛

𝑛!𝑛                        ....(3) 

 From the series expansion      
𝑥𝑛

𝑛!
= 𝑒𝑥𝑛  

                                                      𝒵 = exp 𝑒𝜇/𝜏𝑓                                                    ….(4) 

                                                        𝛺 = −𝜏 log𝒵 = −𝜏𝑒𝜇/𝜏𝑓 

                                                           𝛺 = 𝜏𝑒𝜇/𝜏  
2𝜋𝑚𝜏

𝑕2  
3/2

𝑉                                        ....(5) 

(a) Chemical potential per particle (𝝁): 

                                                    𝑛 = − 
𝜕𝛺

𝜕𝜇
 
𝑉,𝜏

 

                                                        = −
𝜕

𝜕𝜇
 −𝜏𝑒𝜇/𝜏  

2𝜋𝑚𝜏

𝑕2  
3/2

𝑉 
𝑉,𝜏

 

                                                       =
𝜕

𝜕𝜇
 𝜏𝑒𝜇/𝜏  

2𝜋𝑚𝜏

𝑕2  
3/2

𝑉 
𝑉,𝜏

 

                                                       = 𝜏  
2𝜋𝑚𝜏

𝑕2  
3/2

𝑉 𝑒𝜇/𝜏 1

𝜏
 

                                          𝑛 =  
2𝜋𝑚𝜏

𝑕2
 

3/2

𝑉𝑒𝜇/𝜏                                                              ….(6) 

                                            = −
𝛺

𝜏
 

                                          𝛺 = −𝜏𝑛                                                                                    ….(7) 

                                          𝛺 = − 𝜏  
2𝜋𝑚𝜏

𝑕2
 

3/2

𝑉𝑒𝜇/𝜏                                                ….(8) 

                                             −𝜏𝑛 = −𝜏  
2𝜋𝑚𝜏

𝑕2
 

3/2

𝑉𝑒𝜇/𝜏  
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                      This gives    𝑒−𝜇/𝜏 =  
2𝜋𝑚𝜏

𝑕2  
3/2 𝑉

𝑛 
=

𝑓

𝑛 
 

                                               −
𝜇

𝜏
= log  

𝑓

𝑛 
  

                                          𝜇 = −𝜏 log  
𝑓

𝑛 
                                                                         ….(9) 

(b) Entropy: (Sackur-Tetrode equation) 

 The statistical entropy ζ is given by, 

                                                 𝜍 = − 
𝜕𝛺

𝜕𝜏
 
𝑉,𝜇

 

                                                     =
𝜕

𝜕𝜏
 𝜏𝑒𝜇/𝜏  

2𝜋𝑚𝜏

𝑕2
 

3/2

 𝑉   

                                                     =  
2𝜋𝑚

𝑕2  
3/2

𝑉 
𝜕

𝜕𝜏
 𝜏5/2𝑒𝜇/𝜏  

                                                     =  
2𝜋𝑚

𝑕2  
3/2

𝑉  
5

2
𝜏3/2𝑒𝜇/𝜏 + 𝜏5/2𝑒𝜇/𝜏 −𝜇/𝜏2   

                                                     =  
2𝜋𝑚

𝑕2  
3/2

𝑉𝜏3/2𝑒𝜇/𝜏   
5

2
−

𝜇

𝜏
                                      

                                          𝜍 =  
2𝜋𝑚𝜏

𝑕2  
3/2

𝑉𝑒𝜇/𝜏  
5

2
−

𝜇

𝜏
                                               ….(10) 

                                          𝜍 = 𝑛  
5

2
−

𝜇

𝜏
                                                                 ….(11) 

 From equation (9) we have    
𝜇

𝜏
= − log  

𝑓

𝑛 
 → 𝜇 = −𝜏 log  

𝑓

𝑛 
       

 Now equation (10) becomes  𝜍 =  
2𝜋𝑚𝜏

𝑕2  
3/2

𝑉 𝑒
𝑙𝑜𝑔  

𝑛 

𝑓
 
 

5

2
+ log  

𝑓

𝑛 
    

                                                              =  
2𝜋𝑚𝜏

𝑕2  
3/2

𝑉  
𝑛 

𝑓
   

5

2
+ log  

𝑓

𝑛 
    

                                                               =  
2𝜋𝑚𝜏

𝑕2  
3/2

𝑉 𝑛  
2𝜋𝑚𝜏

𝑕2  
−3/2 1

𝑉
 

5

2
+ log  

𝑓

𝑛 
   

                                                              = 𝑛  
5

2
+ log  

𝑓

𝑛 
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                                                           𝜍 = 𝑛  
5

2
+

𝑙𝑜𝑔2𝜋𝑚𝜏𝑕23/2𝑉𝑛                                ….(12) 

 Thermodynamic entropy       S = 𝑘𝜍 

                                                              = 𝑛 𝑘  
5

2
+ 𝑙𝑜𝑔   

2𝜋𝑚𝜏

𝑕2
 

3/2 𝑉

𝑛 
                                      

                                                     = 𝑛 𝑘𝑙𝑜𝑔    
2𝜋𝑚𝜏

𝑕2
 

3/2 𝑉

𝑛 
 𝑒5/2                              ….(13) 

 This gives the famous Sackur-Tetrode equation for the entropy of a perfect gas 

and this is in agreement with the equation for microcanonical ensemble and 

canonical ensemble. 

(c) Internal energy: 

            We have          𝛺 = 𝑈 − 𝜏𝜍 − 𝜇𝑛  

                                                𝑈 = 𝛺 + 𝜏𝜍 + 𝜇𝑛  

                                                𝛺 = −𝑛 𝜏    [from equation (7)] 

                                                𝜍 = 𝑛  
5

2
−

𝜇

𝜏
    [from equation (11)] 

                                Now       𝑈 = −𝑛 𝜏  +𝜏 𝑛    
5

2
−

𝜇

𝜏
   + 𝜇𝑛   

                                                  = −𝑛 𝜏 +
5

2
𝑛 𝜏 − 𝜇𝑛  + 𝜇𝑛   

                                                  =
3

2
𝑛 𝜏. 

                                              𝑈 =
3

2
𝑛𝑘𝑇. 

 which is well known relation for the internal energy of a perfect gas. 

4.16 ENERGY AND DENSITY FLUCTUATIONS IN ENSEMBLES: 

(a) Canonical ensemble: 

 In canonical ensemble the systems are in thermal equilibrium with the heat 

reservoir and so energy fluctuations take place. 
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 For canonical ensemble partition function, 

                                     𝑍 =  𝑒−𝛽𝐸𝑖             𝑖                                                                    ….(1) 

                                  where  𝛽 =
1

𝑘𝑇
    

                                            
𝜕𝑍

𝜕𝛽
=  𝑒−𝛽𝐸𝑖

𝑖  −𝐸𝑖  

                                                 =  𝐸𝑖𝑒
−𝛽𝐸𝑖

𝑖  

                               𝐸𝑖𝑒
−𝛽𝐸𝑖

𝑖 = −
𝜕𝑧

𝜕𝛽
 . 

 Mean energy          𝐸 =
 𝐸𝑖𝑒

−𝛽𝐸𝑖𝑖

 𝑒−𝛽𝐸𝑖𝑖
. 

                                                =
 𝐸𝑖𝑒

−𝛽𝐸𝑖𝑖

𝑍
. 

                                     𝐸 = −
1

𝑧

𝜕𝑧

𝜕𝛽
                                                                          ….(2)              

                                                
𝜕2𝑧

𝜕𝛽 2 =  𝐸𝑖
2𝑒−𝛽𝐸𝑖

𝑖  

                                𝐸𝑖
2𝑒−𝛽𝐸𝑖 =

𝜕2𝑧

𝜕𝛽 2 

                                            𝐸 2 =
 𝐸𝑖

2𝑒−𝛽𝐸𝑖𝑖

 𝑒−𝛽𝐸𝑖𝑖
 

                                                  =
 𝐸𝑖

2𝑒−𝛽𝐸𝑖𝑖

𝑍
. 

                                  𝐸 2 =
1

𝑧
 
𝜕2𝑧

𝜕𝛽 2                                                                                        ….(3) 

 Using equation (2)         
𝜕𝐸 

 𝜕𝛽
=

𝜕

𝜕𝛽
  −

1

𝑧

𝜕𝑧

𝜕𝛽
  

                                                   = −
𝜕

𝜕𝛽
  

1

𝑧

𝜕𝑧

𝜕𝛽
 = −  

1

𝑧
 
𝜕2𝑧

𝜕𝛽2 −
1

𝑧2  
𝜕𝑧

𝜕𝛽
 

2

  

                                                   = − 𝐸 2 −  𝐸  2  

                                            = − 𝛿𝐸     
2

                                                                                ….(4) 

 The molar heat at constant volume 
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                                            𝐶𝑉 =  
𝜕𝐸 

𝜕𝑇
 
𝑉

 

                                                  =  
𝜕𝐸  

𝜕𝛽
  

𝜕𝛽

𝜕𝑇
  

                                                  = − 𝛿𝐸     
2
 −

1

𝑘𝑇2  

                                                𝐶𝑉 =  
1

𝑘𝑇2  𝛿𝐸
     

2
                                                          ….(5) 

                                                          𝛿𝐸     
2

= 𝑘𝑇2𝐶𝑉  

                                           𝛿𝐸     
2

= 𝑇 𝑘𝐶𝑉 
1/2                                                            .…(6) 

 The energy fluctuation is measured by the ratio 

                                                         
∆𝐸

𝐸
=

  𝛿𝐸     
2

𝐸 
 

                                                       =
𝑇 𝑘𝐶𝑉  

1/2

𝐸 
                                                    ….(7) 

 For large values of T, C v and 𝐸  are proportional to the number of molecules N 

and hence fluctuation is proportional to 𝑁−1/2. 

 For an ideal gas                   𝐸 = 𝑁𝑘𝑇 and 𝐶𝑉 = 𝑁𝑘 

                                              
∆𝐸

𝐸
=

𝑇

𝑁𝑘𝑇
 𝑘𝑁𝑘 1/2 

                                               =
𝑁1/2

𝑁
= 𝑁−1/2                                              ….(8) 

 For a macroscopic system N=10
22

. 

 So the fluctuations are very small in the order 10
-11

. 

 Therefore in canonical ensemble the distribution of energies is so peaked about 

the ensemble average energy that in practice regarded as a microcanonical 

ensemble. 

 

(b) Grand canonical ensemble: 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
151 

 

 In ground canonical ensemble the fluctuations take place in concentration as well 

as energy. 

 The energy fluctuation can be calculated as for canonical ensemble. 

 For Grand canonical ensemble the partition function, 

                                              𝒵 =  𝑒(𝑛𝜇−𝐸𝑛 ,𝑖)/𝜏
𝑛,𝑖                                                            ….(9) 

                                                   
 𝜕𝒵

𝜕𝜇
=  𝑒(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏  𝑛,𝑖

𝑛

𝜏
 

                                                        =
1

𝜏
  𝑛 𝑒(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏

𝑛,𝑖  

                              𝑛𝑒(𝜇𝑛−𝐸𝑛 ,𝑖)/𝜏 = 𝜏 
𝜕𝒵

𝜕𝜇
 

 Mean concentration      𝑛 =
 𝑛𝑒

(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏
 𝑛 ,𝑖  

 𝑒
(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏

  𝑛 ,𝑖

 

                                                =
 𝑒

(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏
 𝑛 ,𝑖

𝒵
 

                                              𝑛 =
𝜏

𝒵

𝜕𝒵

𝜕𝜇
                                                                               … . (10) 

                                                 
 𝜕2𝒵

𝜕𝜇2 =
1

𝜏2   𝑛2𝑒(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏
𝑛,𝑖  

                            𝑛2𝑒(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏
𝑛,𝑖 = 𝜏2 𝜕2𝒵

𝜕𝜇2 

                                                          𝑛 2  =
 𝑛2𝑒(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏

𝑛,𝑖

 𝑒(𝑛𝜇−𝐸𝑛 ,𝑖)/𝜏
𝑛,𝑖

 

                                                          =
 𝑛2𝑒

(𝑛𝜇 −𝐸𝑛 ,𝑖)/𝜏
𝑛 ,𝑖

𝑍
 

                                                      𝑛 2 =
𝜏2

𝑧

𝜕2𝒵

𝜕𝜇2
                                                                . … (11) 

                                                          
 𝜕𝑛 

𝜕𝜇
=

𝜕

𝜕𝜇
  

𝜏

𝒵

𝜕𝒵

𝜕𝜇
  

                                                         =
𝜏

𝒵

𝜕2𝒵

𝜕𝜇2 −
𝜏

𝒵2   
𝜕𝒵

𝜕𝜇
 

2
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                                                 𝜏
𝜕𝑛 

𝜕𝜇
=

𝜏2

𝒵

𝜕2𝒵

𝜕𝜇2
−

𝜏2

𝒵2
 
𝜕𝒵

𝜕𝜇
 

2

                                                       

                                                𝜏
𝜕𝑛 

𝜕𝜇
=  𝛿𝑛     

2
                                                                       … . (12) 

 For an ideal classical gas  𝑛 = 𝑒𝜇/𝜏𝑉  
2𝜋𝑚𝜏

𝑕2  
3/2

 

                                                   
𝜕𝑛 

𝜕𝜇
=

1

𝜏
𝑒𝜇/𝜏𝑉  

2𝜋𝑚𝜏

𝑕2  
3/2

 

                                                        
 𝜕𝑛 

𝜕𝜇
=

1

𝜏
 𝑛                                                                                         

                                                      𝜏
𝜕𝑛 

𝜕𝜇
= 𝑛                                                                                                              

                                                   𝛿𝑛     
2

= 𝑛                                                                                   

                                                 𝛿𝑛     
2

=  𝑛  

 The concentration fluctuation is measured by the ratio 

                                                   
∆𝑛

𝑛
=

  𝛿𝑛     
2

𝑛 
=

 𝑛 

𝑛 
=

1

 𝑛 
 

                                                   𝑝𝑉 = 𝑛  𝑘𝑇 

                                                      𝑛 =
𝑝𝑉

𝑘𝑇
                                                                                                        

                                                           
 ∆𝑛

𝑛
=  

𝑘𝑇

𝑝𝑉
  1/2 

 Smaller of the volume greater is the fractional fluctuation. 

 

4.17 ENTROPY OF MIXING AND THE GIBB’S PARADOX: 

 The partition function of a perfect gas is given by,                                                                    

          𝑍 =
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2                                                                       ….(1) 

 The entropy of a perfect gas is given by,      

        𝑆 = 𝑁𝑘 log 𝑍 +
3

2
𝑁𝑘                                                                              ….(2) 

      = 𝑁𝑘 𝑙𝑜𝑔  
𝑉

𝑕3  (2𝜋𝑚𝐾𝑇)3/2 +
3

2
𝑁𝑘     
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                     = 𝑁𝑘   𝑙𝑜𝑔 𝑉 +
3

2
𝑙𝑜𝑔 𝑚 +

3

2
𝑙𝑜𝑔𝑇 + 𝐶                                          ….(3)

 C is a constant term including h,k 

 The entropy given by equation (3) does not satisfy the 

additive property and giving paradoxial results. 

Explanation: 

 Consider two systems a and b at the same 

temperature Ta=Tb=T   

 a and b are partitioned by a barrier as shown in figure. 

 The particles of the two system are identical and distinguishable. 

 The entropies of a and b are given by,     

 𝑆𝑎 = 𝑁𝑎𝑘[𝑙𝑜𝑔 𝑉𝑎 +  
3

2
 𝑙𝑜𝑔 𝑚𝑎 +  

3

2
 𝑙𝑜𝑔𝑇 + 𝐶]             

                         𝑆𝑏 = 𝑁𝑏𝑘[𝑙𝑜𝑔 𝑉𝑏  + 
3

2
 𝑙𝑜𝑔 𝑚𝑏 +  

3

2
 𝑙𝑜𝑔𝑇 + 𝐶]                                  ….(4)                           

                                     

 Here Na , ma and Va represent the number of particles, the mass of each particle 

and volume of system  a.             

 Here Nb , mb and Vb represent the number of particles, the mass of each particle 

and volume of system b.  

 Entropy is an extensive quantity and satisfy the additive property. 

 If the entropy given by equation (3) had satisfied  the additive property , then by 

removing partition and allowing the gas molecules to mix  freely, the entropy 

 of the joint system would be                              

           𝑆𝑎𝑏 = 𝑆𝑎 + 𝑆𝑏          

                

 = 𝑁𝑎𝑘[𝑙𝑜𝑔 𝑉𝑎 +  
3

2
 𝑙𝑜𝑔 𝑚𝑎 +  

3

2
 𝑙𝑜𝑔𝑇 + 𝐶]  + 𝑁𝑏𝑘[𝑙𝑜𝑔 𝑉𝑏  +  

3

2
 𝑙𝑜𝑔 𝑚𝑏 +

                                                                                                   
3

2
 𝑙𝑜𝑔𝑇 + 𝐶]               ….(5) 

 If the particles of the two system are the same and for convenience we take 

 𝑉𝑎 = 𝑉𝑏 = 𝑉, 𝑁𝑎  = 𝑁𝑏 = 𝑁 and  𝑚𝑎 = 𝑚𝑏 = 𝑚 ,then the entropy of the 

individual system be,  

           𝑆𝑎  = 𝑆𝑏            

                    = 𝑁𝑘  𝑙𝑜𝑔 𝑉 +  
3

2
 𝑙𝑜𝑔 𝑚 +  

3

2
 𝑙𝑜𝑔𝑇 + 𝐶                                            ….(6) 

 Now the entropy of the combined system be,    
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𝑆𝑎𝑏 =  2𝑁𝑘  𝑙𝑜𝑔 𝑉 +  
3

2
 𝑙𝑜𝑔 𝑚 +  

3

2
 𝑙𝑜𝑔𝑇 + 𝐶                                              ….(7) 

 Now we shall find actual entropy.  Let the partition is removed. 

 Allow the molecules of the gas to mix freely. 

 Now we have a system with 2N particles and volume 2V. 

 Then the entropy of the joint system ab is given by,     

           𝑆𝑎𝑏 = 2𝑁𝑘[𝑙𝑜𝑔 2𝑉 +  
3

2
 𝑙𝑜𝑔 𝑚 + 

3

2
 𝑙𝑜𝑔𝑇 + 𝐶]        

                    = 2𝑁𝑘[𝑙𝑜𝑔 𝑉 +  
3

2
 𝑙𝑜𝑔 𝑚 + 

3

2
 𝑙𝑜𝑔𝑇 + 𝐶]    + 2𝑁𝐾 𝑙𝑜𝑔 2       

                    = 𝑆𝑎 + 𝑆𝑏 + 2𝑁𝐾 𝑙𝑜𝑔 2                                                                       ….(8) 

 Equation (8) is not  equal to equation (7), but has an additional factor 2Nk log 2. 

 Thus by mixing of two gases with each containing N molecules and  by removing 

a partition between them , then  the entropy of the joint system increases by 2Nk 

log 2. 

 This additional entropy is called entropy of mixing. 

 Thus if we use equation (3) for entropy we got the paradoxial results. 

 This peculiar behavior of the entropy is called Gibb’s paradox. 

To resolve Gibb’s paradox: 

 Gibb‟s solved this paradox by considering the two systems with the molecules are 

identical and distinguishable. 

 If two systems containing same number N are mixed by removing the partition 

then the diffusion takes place unnoticeably. 

 In this situation N molecules of each system cannot be distinguished in N! ways. 

 Hence the weight of the configuration 𝑊 = 𝑁! 
𝑔𝑖
𝑛𝑖

𝑛𝑖 !
 

            can be replaced by                                𝑊 =  
𝑔𝑖
𝑛𝑖

𝑛𝑖 !
 

 𝑙𝑜𝑔 𝑊 =  𝛴𝑛𝑖  𝑙𝑜𝑔 𝑔𝑖 − 𝛴 𝑙𝑜𝑔 𝑛𝑖 ! 

                                            =  𝛴𝑛𝑖  𝑙𝑜𝑔𝑔𝑖 − 𝛴 𝑛𝑖 𝑙𝑜𝑔𝑛𝑖 + 𝛴𝑛𝑖  

                                          =   𝛴𝑛𝑖 𝑙𝑜𝑔 𝑔𝑖 − 𝛴 𝑛𝑖  𝑙𝑜𝑔 𝑛𝑖 + 𝑁 

 From Maxwell- Boltzmann law, 

              𝑛𝑖 = 𝑔𝑖𝑒
−𝛼𝑒−𝛽𝜀𝑖  

                        𝑙𝑜𝑔 𝑊𝑚𝑎𝑥 =  𝛴𝑛𝑖  𝑙𝑜𝑔𝑔𝑖 − 𝛴 𝑛𝑖 𝑙𝑜𝑔[𝑔𝑖𝑒
−𝛼𝑒−𝛽𝜀𝑖 ]  + 𝑁 

                              =  𝛴𝑛𝑖  𝑙𝑜𝑔 𝑔𝑖  −  𝛴𝑛𝑖 𝑙𝑜𝑔𝑔𝑖 +  𝛴 𝑛𝑖  𝛼 +  𝛴𝑛𝑖  𝛽𝜀𝑖 + 𝑁 

                      𝑙𝑜𝑔 𝑊 𝑚𝑎𝑥 = 𝛼𝑁 + 𝛽𝐸 + 𝑁 
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            Let us substitute 𝐴 = 𝑒−𝛼 ;  𝑖𝑒, 𝛼 = − 𝑙𝑜𝑔 𝐴 

𝑙𝑜𝑔 𝑊𝑚𝑎𝑥 = −𝑁 𝑙𝑜𝑔 𝐴 + 𝛽𝐸 + 𝑁 

                                                     = 𝑁 − 𝑁 𝑙𝑜𝑔 𝐴 + 𝛽𝐸 

                                                    = 𝑁[1 − 𝑙𝑜𝑔𝐴] + 𝛽𝐸 

                                                𝑆 = 𝑘 𝑙𝑜𝑔 𝑊𝑚𝑎𝑥  

                                                   = 𝑁𝑘[1 − 𝑙𝑜𝑔 𝐴] + 𝛽𝐸𝑘 

                                                   =  𝑁𝑘 1 − 𝑙𝑜𝑔 𝐴 +  
1

𝑘𝑇
 
3

2
 𝑁𝑘𝑇 𝑘 

                                                   =  𝑁𝑘[1 − 𝑙𝑜𝑔 𝐴] +  
3

2
 𝑁𝑘 . 

                                                    = 𝑁𝑘 − 𝑁𝑘 𝑙𝑜𝑔𝐴 +
3

2
 𝑁𝑘 . 

                                                   = −𝑁𝑘 𝑙𝑜𝑔𝐴 +
5

2
 𝑁𝑘  

                                                   = −𝑁𝑘 𝑙𝑜𝑔
𝑁

𝑍
+

5

2
 𝑁𝑘  

                                                   = 𝑁𝑘 𝑙𝑜𝑔
𝑍

𝑁
+

5

2
 𝑁𝑘  

                                                𝑆 = 𝑁𝑘 𝑙𝑜𝑔  
𝑉

𝑕3

(2𝜋𝑚𝐾𝑇 )3/2

𝑁
 +  

5

2
 𝑁𝑘 

                                            = 𝑁𝑘 𝑙𝑜𝑔   
𝑉

𝑁
  

2𝜋𝑚𝐾𝑇

𝑕2  
3/2

 +  
5

2
 𝑁𝑘.                 ....(9) 

 The entropy given by this equation satisfies the additive property since here in the 

argument of logarithm we have V/N in place of V.  

 In equation (9) replacing N by 2N and V by 2V , the entropy of the combined 

system be given by, 

                                            𝑆𝑎𝑏 =  2𝑁𝑘 𝑙𝑜𝑔   
2𝑉

2𝑁
  

2𝜋𝑚𝐾𝑇

𝑕2
 

3/2

 +  
5

2
2𝑁𝑘 . 

                                          =  2  𝑁𝑘 𝑙𝑜𝑔   
𝑉

𝑁
  

2𝜋𝑚𝐾𝑇

𝑕2
 

3/2

 +
5

2
 𝑁𝑘  

                                          = 2𝑆 = 𝑆𝑎 + 𝑆𝑏                                                  ….(10) 

 Thus Gibb‟s paradox is resolved .The resolution of Gibb‟s paradox is an example 

of the success of the quantum theory. 
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UNIT V : QUANTUM STATISTICAL MECHANICS 

Quantum-mechanical ensemble theory: Density matrix, Equation of motion for density 

matrix, Quantum- mechanical ensemble average; Statistics of indistinguishable particles, 

Two types of quantum statistics- Fermi-Dirac and Bose-Einstein statistics, Fermi-Dirac 

and Bose-Einstein distribution functions using microcanonical and grand canonical 

ensembles (ideal gas only), Statistics of occupation numbers; Ideal Bose gas: Internal 

energy, Equation state, Bose-Einstein Condensation and its critical conditions; Bose-

Einstein condensation in ultra-cold atomic gases: its detection and thermodynamic 

properties: Ideal Fermi gas: Internal energy, Equation of state, Completely degenerate 

Fermi gas.     

QUANTUM MECHANICAL ENSEMBLE THEORY 

5.1 THE DENSITY MATRIX :  

 A pure quantum state of a system is represented by a single eigenvector  .  

 When the system is described by non-negative probabilities ,.......,  pp for being 

in states .........,   ,  a statistical approach is necessary.  

 A pure classical state is represented by a single moving point in phase space, that 

have definite value of coordinates f21 q..,.........q,q and canonical momenta

fppp ,......., 21
at each instant of time. 

 The statistical state can be described by a non-negative density function  

f (q1,…qf, p1…..pf,t) 

 The probability that the system is found in the interval dq1,,...dqf... dp1...dpf  at 

time t is      

                   
ff dpdpdqdq .....,.... 11  

 The quantum analogue of the classical density function is known as density 

operator.  

 We know that operators can be expressed by matrices and hence the density 

operator expressed as matrix is known as density matrix.  

 The density matrix expresses the result of taking quantum mechanical matrix 

elements and ensemble averages in the same operation. 

 Consider an ensemble consisting of N systems in the normalized states

.N.....3,2,1i,i  Let i be the probability that an assembly will be in the state i .  

 We then define the density matrix in the }{ i representation as 

                              
ijiij                                      …(1) 
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 Suppose now we wish to calculate the probability that if a measurement is made 

on an observable whose operator is 


A  having Eigen functions ,i the result will 

be the Eigen value an corresponding to the Eigen function
n .  

 If the assembly is in the state 
i and we express 

i as a linear combination of the 

i  we obtain 

                                 
j

jiji c

                                                           

…(2)                  

 The probability that a measurement of 


A  will give an is then simply cin*cin. 

  But the probability that the assembly is in the state 
i is i . Therefore the 

probability that the measurement of A will yield an is just 

                                         
i j

ininijiinini cccc **  

                                              
i j

ininij *cc  

                                                
i j

j

^

iinin dq**cc  

                                                                    

 dqcc jin

i

in 







  



**  

                                 = 




dq* nn      …(3) 

 Therefore the probability that the measurement on 


A will give an is just 

           





nnnn dq*                            …(4) 

 Now suppose we wish to calculate the average value of A. This will be simply 

                          








nnnaA  

                        =  


n

nnn dqa*

 

                   
 



dpA* nnn

 

                   
.ATrace 








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average. mechanical lstatistica 

 a and average mechanical quantum average, double a isaverage  that thenote We


A

  

5.2 EQUATION OF MOTION FOR DENSITY MATRIX  

      (A QUANTUM MECHANICAL VERSION OF THE LIOUVILLE’S  

THEOREM ): 

 From the definition of ρ in {θk} representation, we write 

                               𝜌𝑚𝑛 =
1

𝑁
 𝑐𝑖𝑛

∗𝑁
𝑖=1 𝑐𝑖𝑚                                                                 ….(1) 

 Again           
𝜕𝜌𝑚𝑛

𝜕𝑡
=

1

𝑁
  

𝜕𝑐𝑖𝑛
∗

𝜕𝑡
𝑐𝑖𝑚 + 𝑐𝑖𝑚

∗ 𝜕𝑐𝑖𝑚

𝜕𝑡
 𝑁

𝑖=1                                        ….(2) 

 The schroedinger time dependent wave equation is 

                  𝑖
ħ

2𝜋

𝜕

𝜕𝑡
𝛹𝑖 = 𝐻 𝛹𝑖  

                   𝑖
ħ

2𝜋
 

𝜕

𝜕𝑡
𝑐𝑖𝑘𝜙𝑘 =  𝑐𝑖𝑘𝐻 𝜙𝑘𝑘𝑘                                                             ….(3) 

 Multiplying equation (3) by θj
*
 and integration over q. 

              𝑖
ħ

2𝜋
 

𝜕

𝜕𝑡
 𝑐𝑖𝑗𝜙𝑗 ∗ 𝜙𝑘𝑑𝑞 =  𝑐𝑖𝑘  𝜙𝑗 ∗𝐻 𝜙𝑘𝑑𝑞𝑘𝑘    

                      𝑖
ħ

2𝜋

𝜕

𝜕𝑡
𝑐𝑖𝑗 =  𝑐𝑖𝑘𝐻𝑗𝑘𝑘          [𝐻𝑗𝑘 =  𝜙𝑗 ∗𝐻 𝜙𝑘𝑑𝑞]                          ….(4) 

 Taking complex conjugate we have 

             −𝑖
ħ

2𝜋

𝜕

𝜕𝑡
𝑐𝑖𝑗 ∗ =  𝑐𝑖𝑘 ∗𝑘 𝐻𝑗𝑘 ∗                                                           ….(5) 

 Substituting equations (4) and (5) in equation (2) and taking  Hij=Hji
*
 

                          𝑖
ħ

2𝜋

𝜕𝜌𝑚𝑛

𝜕𝑡
= 𝑖

ħ

2𝜋

1

𝑁
  

𝜕𝑐𝑖𝑛 ∗

𝜕𝑡
𝑐𝑖𝑚 + 𝑐𝑖𝑛 ∗

𝜕𝑐𝑖𝑚

𝜕𝑡
 𝑁

𝑖=1  

                                                    = −
1

𝑁
 𝑐𝑖𝑘 ∗𝑘 𝐻𝑛𝑘 ∗  𝑐𝑖𝑚 +

1

𝑁
 𝑐𝑖𝑛 ∗𝑘 𝑐𝑖𝑘𝐻𝑚𝑘  

                              = − 𝜌𝑚𝑘𝐻𝑛𝑘 ∗ −𝜌𝑘𝑛𝐻𝑚𝑘   

                               = −(𝜌𝑚𝑘𝐻𝑘𝑛 − 𝐻𝑚𝑘𝜌𝑘𝑛 ) 

                                                     = − 𝜌,𝐻 𝑚𝑛  
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    Thus the time development of density matrix is given by 

                           𝑖
ħ

2𝜋

𝜕𝜌

𝜕𝑡
= − 𝜌 , 𝐻   

    This equation is analogous to the Liouville‟s theorem in classical  mechanics. 

5.3 QUANTUM MECHANICAL ENSEMBLE AVERAGE : 

 An ensemble in quantum statistical mechanics is assumed to be a collection of a 

very large number of perfectly isolated (conservative) and hence independent 

systems in a variety of quantum mechanical state(q, t).  

 Now the quantum mechanical version of Liouville's theorem is 

mn
mn H
t

i 









 

  

 and for the element mn to be independent of time, 
t

mn




= 0, so that [H,] = 0, this 

means 


  and 


H commute.  

 Therefore,  is a matrix associated with some constant of the motion of the 

system.   

 


 is some function of H,  


  = 


  (


H ) where (


H ) can be expanded in a power 

series in


H .  

 Taking k‟s as the basic set of eigenvectors, the matrix element of  can be written 

as 

                    
 












dqH* nnmn
                                           …(1) 

 In the special case that the energy eigenfunctions n's are chosen as basic vectors, 

equation (1) becomes 

                    
  dqH* mnmn                                                      …(2) 

 If we consider ρ(


H )as a power series in


H ,then 

                                          
  ........2

210  HaHaaH  

                                         
........

2

210  mnmmnmmnmn EaEaa

  mnmmn EHas   

                                                 
  mnmm EaEaa  .....

2

210  
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                                                   mnmE   

 and                    mmm EH                                        …(3)  

 Thus any ρ (


H )  is a diagonal matrix. Also, ρ(En) is the probability of observing 

the eigenvalue En : 

                               (En) =n     ...(4) 

 From this equation it follows that in case of degenerate level, all the basic states 

m have the same probability n i.e. 

                         m1 =m2 = m3... = (Em1).      ...(5) 

 Now the state of a system known to have the energy E, within a range E very 

small compared to L, must be represented by a superposition of basic states m 

belonging to eigen values Em in the range E ≤ Em≤ E +E.  

 Let  be the number of basic states m belonging to eigen values Em in the range  

E ≤ Em ≤ E + E, then from equation (5), we have 

                                
 E.......... 1m2m1mm 1111

 
                ... (6) 

 Thus the probability of observing the eigen value En in the range E and E+E is 

proportional to /1  . 

(a) MICRO-CANONICAL ENSEMBLE 

 For a closed, isolated thermodynamic system i.e. a system with assigned values 

for the independent variables E; n1, n2 ... nr ; x1, x2 ... xs, using energy eigen 

functions as basic vectors, we write 

                                                   ,nmnmn                       …(7) 

 Where                              EEEEfor
1

nn 


                   ...(8) 

                                                          = 0 otherwise, 

 where E is a very small range in E, and  is the number of basic states n 

belonging to eigen values En in the range  E≤ En≤ E + E. The constant /1  

result from the normalization 

                                                
 

n

n 1         ...(9) 

 From equation (8) it is clear that for a system known to have an energy between E 

and     E + E, all basic states n belonging to an eigen value En in this range have 



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
161 

 

the same probability n. This is usually called the postulate of “equal a priori 

probabilities”. 

(b) CANONICAL ENSEMBLE: 

 For a closed, isothermal thermodynamic system i.e., a system with assigned 

values for independents variables T, ... n1 … nr,  x1… xs using arbitrary basic 

vectors k 

                                                   



 Hconstantρ e                                    ...(10) 

 Where  = constant = .
T

1

k
 From equation (1) we can write 

                                                


 dqm

H

mn e*constant n                     
....(11) 

 In general, mn= n is the probability of observing an eigen value an.  

 Hence we can write  

                   
  





n n

m

H

n dqe*constant1nk
 

 or  constant = 

 




n

m

H

n dqe*

1
 

                =  




n

m

H

n dqwhere e*Z
Z

1
  …(12) 

 and   
Z

e





H

     …(13) 

 where Z (, x1,… xs, n1…nr ) is called the partition function.  

 The classical partition function is   dqdpH




 p,qe        …(14) 

 Comparing equations (12) and (14), the integration over  in classical mechanics 

is replaced by a summation over quantum states. 

  Z may be written in alternative ways  

                        


 









n

H

nn

H etraceeZ  

                             


 Heofvalueseignofsum  

 Z is obviously invariant under a change of basic vectors. 

 The most invariant special choice of basic vectors is the set of energy eigen 

function n.  
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 Therefore we can write 

     
dqe

1
m

H*

nmn  




Z
 

                                      




 )15...(
1 *

dqe
Z

mE

mn

   
 

 Because                            
2

)(
!2

1
1


 



HHe H  

and                                 mmm EH 


 

 Now we obtain 

                                       
  dqedqe mE

mnm

H

n

**
  

                                        = nE

mne
Z




1
 

                                        = 
nmn  

 Where n is the probability that a system, chosen at random from canonical 

ensemble, will be found in the energy state En 

 The partition function is written as 

                                  dqeZ n

H

n  


*
 

                                     dqe nE2

n

n



  

                                    

)16....(



n

Ene  

(c) GRAND CANONICAL ENSEMBLE: 

 Now we consider the case of an ensemble composed of members which can differ 

not only in the state but also in the amounts of material of various kinds which 

they contain. Such an ensemble is called the grand canonical ensemble. 

 Let us suppose that a system is composed of r independent kinds of components 

and n1, n2...nr be the number of molecules in any member system of grand 

ensemble. 

 For an open, isothermal thermodynamic system i.e, a system with assigned values 

for the independent variables T; (µ1-µr; x1-xs) we can define the grand canonical 

ensemble corresponding to such a system by the formula, 
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ne  



H-e constant                                   …(1) 

 where      
rrnnnn  ....2211
 

                       dqe m

H

nmn  


 *n-e constant 
         …(2) 

 The total probability of finding a system in one or another state N will be taken as 

normalized to unity. Thus we can write, 

               
nN

nn

,

1

                                                                 
…(3) 

 Now from equation (2), we have 

                   

 

 

 dqee

1
Constant

m

H*

n

n

                                                        

 

                       = 
Z

1

                                                
…(4) 

 where Z is called the „grand partition function‟. Therefore 

                  
Z

ee nH 



                                                     

…(5) 

 From equation (5), we get 

                       dqe
Z

e
n

H*

n

n

nn 





  

                               )n(Z
Z

e n

  

                               =  (n) say.                                                         …(6) 

 Combining equations (5) and (6), we get 

                        
)(

)( )(

nZ

en nH





                                                       
…(7) 

 If the basis vectors are a set of energy eigen functions, then, the probability of 

observing the state n (N, x) is 

                              
nn

nn

E

E

nnn
ee

ee
N








                                    
…(8) 

(d) CONDITION FOR STATISTICL EQUILIBRIUM: 

 When a system is in equilibrium, its corresponding ensemble must be 

stationary.i.e 
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            0mn  .This is possible, when 

i. the density matrix is constant, or 

ii. the density matrix is a function of a constant of motion 

(i) If the density matrix is constant, its element will be given by 

                                               mn0mn 
                                                              …(1) 

 i.e., all the non-diagonal elements of the matrix will be zero and all the diagonal 

elements will be equal to a constant 0  

 In the energy representation, the basic function n are the eigen functions of the 

Hamiltonian 


H .So, the matrices H and  are diagonal. Thus 

                          
mnnmn                                                                 …(2) 

 In the representation, the density operator 


may be written as 

                          








n

nn

*

n ,Hdq

                                         
…(3) 

 To verify this, consider an element kl . Now 

             dqdqdq lnn

n

nll 




   


**

kkk  

                  lnln
n

kkkn 
                                                  

…(4) 

 This agrees with equation (2) 

 Therefore

                
 








l

,Hi mn
  

                                   
l

nlmlnlml HH  

                         
l

nlmlnlml HH 00  

                          mnmn0 HH  =0                                            …(5) 

 The distribution does not change with time. So, the system under consideration is 

in equilibrium. 

(ii) From eq. (5), it is obvious that 


 commutes with 


H . Therefore,  must be a 

function of        

      a constant of motion. 

5.4 INDISTINGUISHABILITY AND QUANTUM STATISTICS: 
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 By indistinguishable particles we mean that if the position and spin coordinates of 

two of them are interchanged, there is no physical way of measuring that a change 

has been made.  

 In classical mechanics identical particles do not lose their individuality despite the 

identity of their physical properties.  

 If a pair of particles is completely equivalent even then it is possible to identify 

them by the continuity of their trajectories because this property enables an 

observer to follow each particle.  

 This is due to the fact that their wave packets do not overlap, and the particles 

move in separate, distinguishable continuous orbits.  

 As an example, consider the molecules in a gas at N.T.P.  

Molecular density = 10
19

 mole./cm.
2
 

Volume available to each molecule = 10
-19

 cm.
3  

Molecular radius = 10
-8

 cm. 

Molecular volume = 10
-24

 cm.
3
 

 Because the molecule is smaller than the volume available, we can identify every 

molecule of the gas. The molecules are thus distinguishable. 

 The situation is quite different in quantum mechanics as follows at once from the 

uncertainty principle.  

 Due to the uncertainty principle, the concept of the path ceases to have any 

meaning. If the path of an electron is exactly known at a given instant, its 

coordinates have no definite values even at an infinitely close subsequent instant.  

 By localising and numbering the identical particles at some instant, at some other 

instant we cannot say which of particle arrived at that point.  

 In quantum mechanics there is no way of keeping track of each particle separately 

when the wave functions of two identical particles overlap.  

 Thus in quantum mechanics there is, in principle, no possibility of separately 

following each of a number of similar particles and thereby distinguishing them.  

 As an example, we consider the conduction electrons of a metal: 

Density of electrons   = 10
22

 per cm
3
 

Volume available to each electron  = 10
-22

 cm
3
 

Momentum px = (2mE)
l/2

 for 1 eV.  = 0.5 x 10
-19

 erg-sec cm
-1

 

Uncertainty in position x = h/px = 13 x 10
-8

 cm. 
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Volume of conduction electron = (13 x 10
-8

)
3
 cm

3
 

=2 x 10
-21

 cm
3
. 

 Comparing the volume of conduction electron to the volume available, we 

conclude that the electron wave functions overlap considerably and hence they are 

indistinguishable. 

 Thus we have two categories of particles: 

(i) Classical, which are identical but distinguishable. 

(ii) Quantum, which are identical and indistinguishable. 

 When quantum particle density is low, i.e., uncertainty is small in comparison to 

the volume available, the particles obey classical statistics otherwise we use 

quantum statistics.  

5.5 ILLUSTRATION OF CLASSICAL AND QUANTUM STATISTICS 

 Consider a gas consists of only two particles a and b. 

 Assume that each particle can be in one of the possible quantum states S = 1,2,3. 

 Let us calculate the possible states of the whole gas. 

Maxwell –Boltzmann statistics: 

 The particles are considered distinguishable and any number of particle can be any 

one state. 

1 2 3 

ab - - 

- ab - 

- - ab 

a b - 

b a - 

a - b 

b - a 

- a b 

- b a 

 Total states 32 = 9 possible states for the whole gas. 

Bose-Einstein statistics: 

 Particles are indistinguishable , i.e b=a 

1 2 3 

aa - - 
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- aa - 

- - aa 

a a - 

a - a 

- a a 

 3+3=6 possible states for the whole gas. 

Fermi-Dirac statistics: 

 Particles are indistinguishable and no more than one particle can be in any one 

state. 

1 2 3 

a a - 

a - a 

- a a 

 

 3 possible states for the whole gas. 

                               Let 𝜀 =
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑡𝑕𝑎𝑡  𝑡𝑕𝑒 𝑡𝑤𝑜  𝑝𝑎𝑟𝑡𝑐𝑙𝑒𝑠  𝑎𝑟𝑒  𝑓𝑜𝑢𝑛𝑑  𝑖𝑛  𝑡𝑕𝑒 𝑠𝑎𝑚𝑒  𝑠𝑡𝑎𝑡𝑒

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑡𝑕𝑎𝑡  𝑡𝑕𝑒 𝑡𝑤𝑜  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  𝑎𝑟𝑒  𝑓𝑜𝑢𝑛𝑑  𝑖𝑛  𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡  𝑠𝑡𝑎𝑡𝑒𝑠
 

 Thus for the three cases, 

                    𝜀𝑀−𝐵 =
3

6
= 1/2 

                     𝜀𝐵−𝐸 =
3

3
= 1 

                     𝜀𝐹−𝐷 =
0

3
= 0 

 Thus in B-E statistics, there is a greater tendency for the particles to bunch 

together in the same states in comparison to M-B statistics.  

 On the other hand, in the F-D statistics, there is a greater relative tendency to 

particles to remain apart in different states than there is in classical statistics. 

5.6 BOSE-EINSTEIN STATISTICS: 

 Consider a system having n identical and indistinguishable particles. 

 These particles be divided into quantum groups such that there are 𝑛1,𝑛2, … , 𝑛𝑖 , … 
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 number of particles with energies 𝜀1, 𝜀2, … , 𝜀𝑖 , … respectively. 

 𝑔𝑖  be the number of eigen states in the i 
th 

level. 

             Conditions: 

 Particles are identical and indistinguishable. 

 Particles do not obey Pauli‟s exclusion principle. 

 The total number of particles in the system is constant.    

 𝑁 =  𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 The total energy of the system is constant.     

            𝐸 =  𝑛𝑖𝜀𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡         

                Bose-Einstein distribution function: 

 Consider the i 
th  

level 

 𝑔𝑖  cells and 𝑛𝑖  particles.  Here we have to find out how 𝑛𝑖  particles can be divided 

into 𝑔𝑖  cells. 

 First the choice that which cell will head the sequence can be found as 𝑔𝑖  ways. 

 Then the total number of permutations among 𝑛𝑖  particles and the remaining               

(𝑔𝑖 − 1) cells is   𝑛𝑖 + 𝑔𝑖 − 1 ! 

 Now the total number of possible ways in which 𝑛𝑖  particles can be distributed in 

𝑔𝑖   cells is   

𝑔𝑖 𝑛𝑖 + 𝑔𝑖1 !                                                                                                                ....(1) 

 Since the particles are indistinguishable the permutations of the particles among 

themselves will not give rise to different arrangements. Hence equation (1) must 

be divided by 𝑛𝑖! 

𝑔𝑖 𝑛𝑖 + 𝑔𝑖 − 1 !

𝑛𝑖 !
 

 Similarly the permutations of cells among themselves will not give rise to 

different arrangements. Hence equation (1) must also be divided by 𝑔𝑖! 

𝑔𝑖 𝑛𝑖 + 𝑔𝑖 − 1 !

𝑛𝑖 ! 𝑔𝑖 !
=

 𝑛𝑖 + 𝑔𝑖 − 1 !

𝑛𝑖!   𝑔𝑖 − 1 !
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 Considering all the available groups such that n1 particles with energy 𝜀1, n2 

particles with energy 𝜀2 and so on. Then the total number of possible 

arrangements is given by,  

                                                      𝐺

=  
 𝑛𝑖 + 𝑔𝑖 − 1 !

𝑛𝑖 !   𝑔𝑖 − 1 !
                                                  . … (2) 

            𝑛𝑖  and 𝑔𝑖 >> 1, hence one may be neglected. 

𝐺 =  
 𝑛𝑖 + 𝑔𝑖 !

𝑛𝑖 ! 𝑔𝑖!
 

 The probability Ω of the system is proportional to the total number of eigen states. 

𝛺 = 𝐺 × 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                                                        

𝛺 =  
 𝑛𝑖+𝑔𝑖 !

𝑛𝑖 !𝑔𝑖 !
× 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                . … (3) 

log𝛺 =   log 𝑛𝑖 + 𝑔𝑖 ! − log 𝑛! − log 𝑔𝑖! + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 Using stirling′s approximation, we get 

log 𝛺 =    𝑛𝑖 + 𝑔𝑖 log 𝑛𝑖 + 𝑔𝑖 −  𝑛𝑖 + 𝑔𝑖 − 𝑛𝑖 log 𝑛𝑖 + 𝑛𝑖 − 𝑔𝑖 log 𝑔𝑖 + 𝑔𝑖 

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                

=    𝑛𝑖 + 𝑔𝑖 log 𝑛𝑖 + 𝑔𝑖 − 𝑛𝑖 log 𝑛𝑖 − 𝑔𝑖 log 𝑔𝑖 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡              . . . . (4) 

              𝛿 log𝛺 =    𝑛𝑖 + 𝑔𝑖 
1

 𝑛𝑖+𝑔𝑖 
𝛿𝑛𝑖 + log 𝑛𝑖 + 𝑔𝑖 𝛿𝑛𝑖 − 𝑛𝑖  

1

𝑛𝑖
𝛿𝑛𝑖 −

log𝑛𝑖 𝛿𝑛𝑖+0 

                 =   𝛿𝑛𝑖 + log 𝑛𝑖 + 𝑔𝑖 𝛿𝑛𝑖 − 𝛿𝑛𝑖 − log 𝑛𝑖𝛿𝑛𝑖  

                  =   𝑙𝑜𝑔 𝑛𝑖 + 𝑔𝑖 − log 𝑛𝑖 𝛿𝑛𝑖  
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                 =   𝑙𝑜𝑔  
𝑛𝑖+𝑔𝑖

𝑛𝑖
  𝛿𝑛𝑖                   

              =

−  𝑙𝑜𝑔  
𝑛𝑖

𝑛𝑖+𝑔𝑖 
  𝛿𝑛𝑖                                                                                          . … (5) 

𝛿(log𝛺) = 0. 

 −  𝑙𝑜𝑔  
𝑛𝑖

𝑛𝑖+𝑔𝑖 
  𝛿𝑛𝑖 = 0                    

  𝑙𝑜𝑔  
𝑛𝑖

𝑛𝑖+𝑔𝑖 
  𝛿𝑛𝑖 = 0                                                                                      … . (6) 

                                      𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                                    𝛿𝑛𝑖 = 0                                                                                         ….(7) 

                                   𝜀𝑖𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                                   𝜀𝑖𝛿𝑛𝑖 = 0                                                                                    . … (8) 

 Multiply the equation (7) by 𝛼 and  (8) by β and then adding to equation (6),we 

get, 

   log  
𝑛𝑖

𝑛𝑖+𝑔𝑖
 + 𝛼 + 𝛽𝜀𝑖 𝛿𝑛𝑖 = 0                                                                          ….(9) 

                                         𝛿𝑛𝑖 ≠ 0 

 ∴   log  
𝑛𝑖

𝑛𝑖+𝑔𝑖
 + 𝛼 + 𝛽𝜀𝑖 = 0 

         log  
𝑛𝑖

𝑛𝑖+𝑔𝑖
 + 𝛼 + 𝛽𝜀𝑖 = 0 

                           log  
𝑛𝑖

𝑛𝑖+𝑔𝑖
 = −(𝛼 + 𝛽𝜀𝑖) 

                                   
𝑛𝑖

𝑛𝑖+𝑔𝑖
= 𝑒− 𝛼+𝛽𝜀𝑖  

                               
𝑛𝑖+𝑔𝑖

𝑛𝑖
= 𝑒𝛼+𝛽𝜀𝑖  

                             1 +
𝑔𝑖

𝑛𝑖
= 𝑒𝛼+𝛽𝜀𝑖  
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𝑔𝑖

𝑛𝑖
= 𝑒𝛼+𝛽𝜀𝑖 − 1 

                                   𝑛𝑖 =
𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖−1
                                                         ….(10) 

 This equation represents the most probable distribution for a system obeying Bose 

- Einstein statistics and known as Bose - Einstein distribution law. 

5.7 FERMI-DIRAC STATISTICS: 

 Consider a system having n identical and indistinguishable particles. 

 These particles be divided into quantum groups such that there are 𝑛1,𝑛2,…,𝑛𝑖 ,… 

number of particles with energies  𝜀1,𝜀2,…,𝜀𝑖 ,… respectively. 

 𝑔𝑖  be the number of eigen states in the 𝑖𝑡𝑕 level. 

            Conditions: 

 Particles are identical and indistinguishable  

 Particles obey Pauli‟s exclusion principle. Hence each cell contains 0 (or) 1 

particle. Obviously𝑔𝑖 ≥ 𝑛𝑖 . 

 The total number of particles in the system is constant. 

                             𝑁 =  𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 The total energy of the system is constant. 

                           𝐸 =  𝑛𝑖𝜀𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

             Fermi-Dirac distribution function: 

 Consider the i 
th 

level. 

 There are 𝑔𝑖cells and 𝑛𝑖  particles. 

 Each cell must be occupied by zero or one particle. 

 Among 𝑔𝑖  cells, only 𝑛𝑖cells are occupied by one particle and the remaining 

 𝑔𝑖 − 𝑛𝑖  cells are empty. 

 The possible number of such a distribution is given by 𝑔𝑖!                     ....(1) 

 Since the particles are indistinguishable the permutation of the particles among 

themselves will not give rise to different arrangements. Hence equation (1) must 

be divided by 𝑛𝑖 ! 
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𝑔𝑖!

𝑛𝑖 !
 

  𝑔𝑖 − 𝑛𝑖 !  permutations of empty cells among themselves will not give rise to 

different arrangements. Hence equation(1) must  also be divided by   𝑔𝑖 − 𝑛𝑖 ! 

𝑔𝑖!

𝑛𝑖!  𝑔𝑖 − 𝑛𝑖 !
 

 Considering all the available groups such that 𝑛1 particles with energy 𝜀1, 𝑛2 

particles with energy 𝜀2 and so on. Then the total number of possible 

arrangements is given by                                                            

                        𝐺 =  
𝑔𝑖!

𝑛𝑖 ! 𝑔𝑖−𝑛 𝑖 !
                                             . … (2) 

 The probability Ω of the system is proportional to the total number of eigen 

states. 

𝛺 = 𝐺 × 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                                                        

𝛺 =  
𝑔𝑖 !

𝑛𝑖 ! 𝑔𝑖−𝑛𝑖 !
 × 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                . … (3) 

𝑙𝑜𝑔𝛺 =   log𝑔𝑖 ! − log 𝑛𝑖! − log 𝑔𝑖 − 𝑛𝑖 ! + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 Using stirling′ approximation, we get 

       𝑙𝑜𝑔𝛺 =   𝑔𝑖 log 𝑔𝑖 − 𝑔𝑖 − 𝑛𝑖 log 𝑛𝑖 + 𝑛𝑖 −  𝑔𝑖 − 𝑛𝑖 log 𝑔𝑖 − 𝑛𝑖 +  𝑔𝑖 − 𝑛𝑖      

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

=   𝑔𝑖 log 𝑔𝑖 − 𝑛𝑖 log 𝑛𝑖 −  𝑔𝑖 − 𝑛𝑖 log( 𝑔𝑖 − 𝑛𝑖) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝛿(log𝛺) =   −𝑛𝑖

1

𝑛𝑖
𝛿𝑛𝑖 − log 𝑛𝑖𝛿𝑛𝑖 −

 𝑔𝑖 − 𝑛𝑖 

 𝑔𝑖 − 𝑛𝑖 
 −𝛿𝑛𝑖 −  log 𝑔𝑖 − 𝑛𝑖 (−𝛿𝑛𝑖)  

                                =   −𝛿𝑛𝑖 − 𝑙𝑜𝑔𝑛𝑖𝛿𝑛𝑖 + 𝛿𝑛𝑖 + log⁡(𝑔𝑖 − 𝑛𝑖)𝛿𝑛𝑖 . 

                                =   𝑙𝑜𝑔𝑛𝑖𝛿𝑛𝑖 + log⁡(𝑔𝑖 − 𝑛𝑖)𝛿𝑛𝑖 . 
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                                 =   log  
𝑔𝑖−𝑛𝑖

𝑛𝑖
 𝛿𝑛𝑖 . 

                                 

= −  log  
𝑛𝑖

𝑔𝑖−𝑛𝑖
 𝛿𝑛𝑖                                                                      . … (5) 

                  𝛿(log𝛺) = 0 

−  log  
𝑛𝑖

𝑔𝑖−𝑛𝑖
 𝛿𝑛𝑖 = 0. 

      log  
𝑛𝑖

𝑔𝑖−𝑛𝑖
 𝛿𝑛𝑖 = 0                                                                       . … (6) 

                            𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

                         

 𝛿𝑛𝑖 = 0                                                                                                    . … (7) 

                          𝜀𝑛𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

                        

 𝜀𝛿𝑛𝑖 = 0                                                                                                     . … (8) 

 Multiplying equation (7) by 𝛼 and  (8) by 𝛽 and then adding to equation (6), we 

get 

            log  
𝑛𝑖

𝑔𝑖−𝑛𝑖
 + 𝛼 + 𝛽𝜀𝑖 𝛿𝑛𝑖 = 0 

                   log  
𝑛𝑖

𝑔𝑖−𝑛𝑖
 + 𝛼 + 𝛽𝜀𝑖 = 0 

                         log  
𝑛𝑖

𝑔𝑖−𝑛𝑖
 + 𝛼 + 𝛽𝜀𝑖 = 0 

                                            log  
𝑛𝑖

𝑔𝑖−𝑛𝑖
 = − 𝛼 + 𝛽𝜀𝑖  

                                                 
𝑛𝑖

𝑔𝑖−𝑛𝑖
= 𝑒− 𝛼+𝛽𝜀𝑖   

                                                
 𝑔𝑖−𝑛𝑖

𝑛𝑖
= 𝑒𝛼+𝛽𝜀𝑖  

                                                  
 𝑔𝑖

𝑛𝑖
− 1 = 𝑒𝛼+𝛽𝜀𝑖  
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𝑔𝑖

𝑛𝑖
= 𝑒𝛼+𝛽𝜀𝑖 + 1 

𝑛𝑖 =
𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖 + 1
 

 This equation represents the most probable distribution for a system obeying 

Fermi-Dirac statistics and known as Fermi-Dirac distribution law. 

5.8 AN IDEAL GAS IN A QUANTUM MECHANICAL MICRO CANONICAL 

ENSEMBLE: 

 We consider a gaseous system of N non-interacting, indistinguishable particles 

confined to a space of volume V and energy E.  

 Let 𝛺(𝑁, 𝑉, 𝐸) be the number of distinct microstates accessible to the system 

under the macro state 𝛺(𝑁, 𝑉, 𝐸). 

 Let 𝜀𝑖  denote the average energy of a level and 𝑔𝑖  be the number of levels in the 

𝑖𝑡𝑕  cell.𝑔𝑖 ≫ 1.  

 We have 1n  particles in the first cell, 2n particles in the second cell and so on. The 

distribution set 𝑛𝑖  must confirm to the conditions,                 

                                        𝑛𝑖𝑖 = 𝑁                                                                   ….(1) 

                           𝑛𝑖𝜀𝑖 = 𝐸𝑖                                                                    ….(2) 

 Then           𝛺 𝑁, 𝑉, 𝐸 = 𝛴′𝑊{𝑛𝑖}                                                         ….(3) 

 𝑊{𝑛𝑖} is the number of distinct microstates associated with the distribution 

set{𝑛𝑖}.  The primed summation goes over all distribution sets that confirm to 

conditions (1) and (2), 

                           𝑊{𝑛𝑖} =  𝑤(𝑖)𝑖                                                            ….(4) 

 𝑤(𝑖)is the number of distinct ways in which the in  identical and indistinguishable 

particles can be distributed among the ig levels of the 
thi cell. 

 In B-E case     𝑤𝐵𝐸 𝑖 =
 𝑛𝑖+𝑔𝑖−1 !

𝑛𝑖 ! 𝑔𝑖−1 !
  

and hence     𝑊𝐵𝐸 𝑛𝑖 =  
 𝑛𝑖+𝑔𝑖−1 !

𝑛𝑖 ! 𝑔𝑖−1 !
                                                        ….(5)  

 In the F-D case, no single level can accommodate more than one particle. 

                        𝑤𝐹𝐷 𝑖 =
𝑔𝑖 !

𝑛𝑖 ! 𝑔𝑖−1 !
  

and hence       𝑊𝐹𝐷 𝑛𝑖 =
𝑔𝑖 !

𝑛𝑖 ! 𝑔𝑖−1 !
                                                               ....(6) 
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 In M-B case the particle are distinguishable. 

                       𝑊𝑀𝐵 𝑛𝑖 =  
 𝑔𝑖 

𝑛𝑖

𝑛𝑖 !
                                                       ….(7) 

 Now the entropy of the system would be given by, 

                                      𝑆 𝑁, 𝑉, 𝐸 = 𝑘 ln𝛺(𝑁, 𝑉, 𝐸)  

                                                          = 𝑘 ln  𝑊(𝑛𝑖)
′
𝑛𝑖

   

                                                          ≈ 𝑘 ln𝑊(𝑛𝑖
∗)                                      ….(8) 

 )(
*

in  is the distribution set that maximizes the number 𝑊 𝑛𝑖  . 𝑛𝑖
∗ is the most 

probable value of the distribution number in . 

 Our condition for determining the most probable distribution set  𝑛𝑖
∗   now turns 

out to be, 

𝛿𝑙𝑛𝑊 𝑛𝑖 −  𝛼  𝛿𝑛𝑖 + 𝛽 𝜀𝑖𝛿𝑛𝑖𝑖𝑖  = 0                                                ….(9)  

                                             𝑙𝑛𝑊 𝑛𝑖 =  ln𝑤(𝑖)𝑖   

 In B-E case,  

                                             𝑊𝐵𝐸 𝑛𝑖 =  
(𝑛𝑖+𝑔𝑖−1)!

𝑛𝑖 ! 𝑔𝑖−1 !
  

                                                              ≈  
 𝑛𝑖+𝑔𝑖 !

𝑛𝑖 !𝑔𝑖  !
  

                                         ln𝑊𝐵𝐸 𝑛𝑖 =   ln 𝑛𝑖 + 𝑔𝑖 ! − ln 𝑛𝑖 ! − ln 𝑔𝑖!   

                             =    𝑛𝑖 + 𝑔𝑖 𝑙𝑛 𝑛𝑖 + 𝑔𝑖 −  𝑛𝑖 + 𝑔𝑖 − 𝑛𝑖 ln 𝑛𝑖 + 𝑛𝑖 −

𝑔𝑖ln𝑔𝑖+𝑔𝑖  

                                                 =    𝑛𝑖 + 𝑔𝑖 𝑙𝑛 𝑛𝑖 + 𝑔𝑖 − 𝑛𝑖 𝑙𝑛 𝑛𝑖 −

𝑔𝑖ln𝑔𝑖 

                              =   𝑛𝑖 ln 𝑛𝑖 + 𝑔𝑖 − 𝑛𝑖 ln 𝑛𝑖 + 𝑔𝑖 ln 𝑛𝑖 + 𝑔𝑖 − 𝑔𝑖 ln 𝑔𝑖    

                                                                =   𝑛𝑖 ln  
𝑛𝑖+𝑔𝑖

𝑛𝑖
 + 𝑔𝑖 ln  

𝑛𝑖+𝑔𝑖

𝑔𝑖
        

                                                   =   𝑛𝑖 ln  
𝑔𝑖

𝑛𝑖
+ 1 + 𝑔𝑖 ln  1 − 𝑎 

𝑛𝑖

𝑔𝑖
   

 In general,  

                         ln𝑊 𝑛𝑖 =   𝑛𝑖 ln  
𝑔𝑖

𝑛𝑖
− 𝑎 −

𝑔𝑖

𝑎
ln  1 − 𝑎 

𝑛𝑖

𝑔𝑖
          ….(10) 

                                              a= -1  BE case 

                                               a=+1  FD case 

                                              a=0  MB case 
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              𝛿 ln𝑊𝐵𝐸 𝑛𝑖 =    𝑛𝑖 + 𝑔𝑖 
𝛿𝑛𝑖

 𝑛𝑖+𝑔𝑖 
+ ln 𝑛𝑖 + 𝑔𝑖 𝛿𝑛𝑖 − 𝑛𝑖

𝛿𝑛𝑖

𝑛𝑖
−

ln𝑛𝑖𝛿𝑛𝑖 

                                        =   ln 𝑛𝑖 + 𝑔𝑖 − ln 𝑛𝑖 𝛿𝑛𝑖   

                                       =   ln  
𝑛𝑖+𝑔𝑖

𝑛𝑖
 𝛿𝑛𝑖  

                                    =   ln  
𝑔𝑖

𝑛𝑖
+ 1 𝛿𝑛𝑖  

 In F-D case, 

                            𝑊𝐹𝐷 =  
𝑔𝑖 !

𝑛𝑖 ! 𝑔𝑖−𝑛𝑖 !
  

                        ln𝑊𝐹𝐷 =   ln 𝑔𝑖! − ln 𝑛𝑖 ! − ln   𝑔𝑖 − 𝑛𝑖 !  

                        =   𝑔𝑖 ln 𝑔𝑖 − 𝑔𝑖 −𝑛𝑖 𝑙𝑛 𝑛𝑖 + 𝑛𝑖 −  𝑔𝑖 − 𝑛𝑖 ln 𝑔𝑖 − 𝑛𝑖 +

𝑔𝑖−𝑛𝑖 

                                      =   𝑔𝑖 ln 𝑛𝑖 − 𝑛𝑖 ln 𝑛𝑖 −  𝑔𝑖 − 𝑛𝑖 ln(𝑔𝑖 − 𝑛𝑖)  

                     𝛿 ln𝑊𝐹𝐷 =   −𝑛𝑖
𝛿𝑛𝑖

𝑛𝑖
− ln 𝑛𝑖𝛿𝑛𝑖 −  𝑔𝑖 − 𝑛𝑖 

 −𝛿𝑛𝑖 

𝑔𝑖−𝑛𝑖
− ln 𝑔𝑖 −

𝑛𝑖−𝛿𝑛𝑖  

                                     =    −𝛿𝑛𝑖 − ln 𝑛𝑖𝛿𝑛𝑖 + 𝛿𝑛𝑖 + ln 𝑔𝑖 − 𝑛𝑖 𝛿𝑛𝑖     

                                    =   ln  
𝑔𝑖−𝑛𝑖

𝑛𝑖
 𝛿𝑛𝑖 =   ln  

𝑔𝑖

𝑛𝑖
− 1 𝛿𝑛𝑖   

 In M-B case 

                     𝑊𝑀𝐵 𝑛𝑖 =  
 𝑔𝑖 

𝑛𝑖

𝑛𝑖 !
  

                        ln𝑊𝑀𝐵 =   𝑛𝑖 ln 𝑔𝑖 − ln𝑛𝑖 !  

                                      =   𝑛𝑖 ln 𝑔𝑖 −𝑛𝑖 𝑙𝑛 𝑛𝑖 + 𝑛𝑖  

                      𝛿 ln𝑊𝑀𝐵 =   𝑛𝑖 . 0 +ln 𝑔𝑖𝛿𝑛𝑖 − 𝑛𝑖
𝛿𝑛𝑖

𝑛𝑖
− ln 𝑛𝑖𝛿𝑛𝑖 + 𝛿𝑛𝑖   

                                     =   ln 𝑔𝑖𝛿𝑛𝑖 − 𝛿𝑛𝑖 − ln 𝑛𝑖𝛿𝑛𝑖 + 𝛿𝑛𝑖     

                                    =   ln  
𝑔𝑖

𝑛𝑖
 𝛿𝑛𝑖 =   ln  

𝑔𝑖

𝑛𝑖
− 𝑎 𝛿𝑛𝑖   

 Now equation (9) becomes, 

                ln  
𝑔𝑖

𝑛𝑖
− 𝑎 − 𝛼 − 𝛽𝜀𝑖 

𝑛=𝑛∗
𝛿𝑛𝑖 = 0𝑖   

                              ln  
𝑔𝑖

𝑛𝑖
∗ − 𝑎 − 𝛼 − 𝛽𝜀𝑖 = 0  

                                          ln  
𝑔𝑖

𝑛𝑖
∗ − 𝑎 = 𝛼 + 𝛽𝜀𝑖  

                                                 
𝑔𝑖

𝑛𝑖
∗
− 𝑎 = 𝑒𝛼+𝛽𝜀𝑖  
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𝑔𝑖

𝑛𝑖
∗ = 𝑒𝛼+𝛽𝜀𝑖 + 𝑎 

                                             
𝑛𝑖

∗

𝑔𝑖
=

1

𝑒𝛼+𝛽𝜀𝑖+𝑎
                                                    ….(11) 

                                              𝑛𝑖
∗ =

𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖+𝑎
                                               ….(12) 

                                      
 𝑠

  𝑘
≈ ln𝑊 𝑛𝑖

∗ =   𝑛𝑖
∗ ln  

𝑔𝑖

𝑛𝑖
∗ − 𝑎 −

𝑔𝑖

𝑎
ln  1 − 𝑎

𝑛𝑖
∗

𝑔𝑖
  𝑖   

                                                           =   𝑛𝑖
∗ 𝛼 + 𝛽𝜀𝑖 −

𝑔𝑖

𝑎
ln  1 −

𝑎

𝑒𝛼+𝛽𝜀𝑖+𝑎
  𝑖    

                                                          =   𝑛𝑖
∗ 𝛼 + 𝛽𝜀𝑖 −

𝑔𝑖

𝑎
ln  

𝑒𝛼+𝛽𝜀𝑖

𝑒𝛼+𝛽𝜀𝑖+𝑎
   𝑖  

                                                      =   𝑛𝑖
∗ 𝛼 + 𝛽𝜀𝑖 −

𝑔𝑖

𝑎
ln  

1

1+𝑎𝑒− 𝛼+𝛽𝜀𝑖 
  𝑖  

                                             =   𝑛𝑖
∗ 𝛼 + 𝛽𝜀𝑖 +

𝑔𝑖

𝑎
ln 1 + 𝑎𝑒−𝛼−𝛽𝜀𝑖           ….(13) 

 The first sum on RHS of (13)  is αN while the second sum is βE. For the third 

sum, we have 

              
  1

   𝑎
 𝑔𝑖 ln 1 + 𝑎𝑒𝛼+𝛽𝜀𝑖 =

𝑆

𝑘
− 𝛼𝑁 − 𝛽𝐸                                       ….(14) 

                                             𝛼 = −
𝜇

𝑘𝑇
 and 𝛽 =

1

𝑘𝑇
 

 The RHS of equation (14) is equal to,  

        
𝑆

𝑘
+

𝜇𝑁

𝑘𝑇
−

𝐸

𝑘𝑇
=

𝐺−(𝐸−𝑇𝑆)

𝑘𝑇
=

𝑃𝑉

𝑘𝑇
  

 The thermodynamic pressure of the system is given by 

                            𝑃𝑉 =
𝑘𝑇

𝑎
   𝑔𝑖 ln 1 + 𝑎𝑒−𝛼−𝛽𝜀𝑖  𝑖                                    ….(15) 

                             
𝑃𝑉

𝑘𝑇
= 𝑎−1    𝑔𝑖 ln 1 + 𝑎𝑒−𝛼−𝛽𝜀𝑖  𝑖                                  ….(16) 

 In M-B case  (a→0), equation (15) takes the form 

                                       𝑃𝑉 = 𝑘𝑇  𝑔𝑖𝑒
−𝛼−𝛽𝜀𝑖   

                                              = 𝑘𝑇 𝑛𝑖
∗

𝑖   

                                   = 𝑁𝑘𝑇                                                                          ….(17) 

 Which is the familiar equation of state of the classical ideal gas. Equation (17)  

for the M-B case holds irrespective of εi. The RHS of equation (16) is to be 

identical to the q-potential of the ideal gas. 

5.9 AN IDEAL GAS IN A QUANTUM MECHANICAL GRAND CANONICAL 

ENSEMBLE: 

 In canonical ensemble, the thermodynamics of a given system is derived from its 

partition function 
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                       𝑄𝑁 𝑉, 𝑇 =  𝑒−𝛽𝐸𝐸                                                                        ….(1) 

                                               E → energy eigen values of the system. 

                                           and 𝛽 = 1/𝑘𝑇 

 E can be expressed in terms of the single-particle energies ε. For instance 

                                 𝐸 =  𝑛𝜀𝜀𝜀                                                                          ….(2) 

                                                𝑛𝜀= number of particles in the single-particle energy 

state ε. 

                     Also  𝑛𝜀 = 𝑁𝜀                                                                                 ….(3) 

 Now equation (1) can be written as, 

                            𝑄𝑁 𝑉, 𝑇 =  𝑔{𝑛𝜀}𝑒−𝛽  𝑛𝜀𝜀𝜀′
{𝑛𝜀}                                                        ….(4) 

      𝑔{𝑛𝜀} = statistical weight factor appropriate to the distribution set {𝑛𝜀} 

           ′→goes over all distribution sets that conform to the restrictive condition(3). 

 The statistical weight factor is given by 

                             𝑔𝐵−𝐸{𝑛𝜀} = 1                                                                                ….(5) 

                          𝑔𝐹−𝐷{𝑛𝜀} =   1       if all 𝑛𝜀=0  (or)  1. 

                                           =   0      otherwise                                                        ….(6) 

                            and 

                        𝑔𝑀−𝐵{𝑛𝜀} =  
1

𝑛𝜀 !𝜀                                                                         ….(7) 

 Here we are dealing with single-particle states as individual states without 

requiring them to be grouped into cells. 

 Take M-B case and substituting equation (7) into (4) we get 

                          𝑄𝑁 𝑉, 𝑇 =     
1

𝑛𝜀 !𝜀    𝑒−𝛽𝜀  
𝑛𝜀

𝜀  ′
{𝑛𝜀}  

                                  =
1

𝑁!
  

𝑁!

 𝑛𝜀 !𝜀
  𝑒−𝛽𝜀  

𝑛𝜀

𝜀  ′
{𝑛𝜀}                                        ….(8)    

 Evaluated with the help of the multinomial theorem 

                                    𝑄𝑁 𝑉, 𝑇   =
1

𝑁!
  𝑒−𝛽𝜀𝜀  

𝑁
                              

                                          =
1

𝑁!
 𝑄1 𝑉, 𝑇  𝑁                                                                   ….(9) 

 The number of single particle states with energies lying between ε and ε+dε is, 

                                     𝑄1 𝑉, 𝑇 =  𝑒−𝛽𝜀𝜀   

                                         ≈
2𝜋𝑉

𝑕3
 2𝑚 3/2  𝑒−𝛽𝜀 𝜀1/2𝑑𝜀

∞

0
                                    ….(10)                           

                                                           =
2𝜋𝑉

𝑕3
 2𝑚 3/2 1

2
 

𝜋

𝛽3 
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                                                       = 𝑉 
 2𝜋𝑚𝑘𝑇  3/2

𝑕3 =
𝑉

𝜆3  

                                        where 𝜆 = 𝑕/ 2𝜋𝑚𝑘𝑇 1/2 

                                                      = mean thermal wavelength of the particles. 

 Hence,        𝑄𝑁 𝑉, 𝑇 =
𝑉𝑁

𝑁!𝜆3𝑁                                                                         ….(11) 

 From which complete thermodynamics of this system can be derived. 

 We obtain for the grand partition function of this system, 

                                   Q  𝑧,𝑉,𝑇 =  𝑍𝑁𝑄𝑁 𝑉,𝑇 ∞
𝑁=0   

                                                       =  𝑧𝑁  
1

𝑁!
 
𝑉𝑁

𝜆3𝑁
=

1

𝑁!
  

𝑍𝑉

𝜆3
 
𝑁

∞
𝑁=0

∞
𝑁=0   

                                             = exp 𝑧𝑉/𝜆3                                                            ….(12) 

 B-E and F-D cases: 

                          𝑄𝑁 𝑉, 𝑇 =   𝑒−𝛽  𝑛𝜀𝜀𝜀  ′
{𝑛𝜀}                                                     ….(13) 

 Now complete thermodynamics of this system can be derived.  

 The Grand partition function Q turns out to be 

                                   𝐐 𝑧, 𝑉, 𝑇 =   𝑧𝑁   𝑒−𝛽  𝑛𝜀𝜀𝜀  ′
{𝑛𝜀 }  ∞

𝑁=𝑜   

                                            =      𝑧𝑒−𝛽𝜀  
𝑛𝜀

𝜀
′
{𝑛𝜀 }  ∞

𝑁=0                                      ….(14) 

 The double summation in (14) over the number 𝑛𝜀  constrained by a fixed value of 

the total number N and then over all possible values of N, which is equivalent to a 

summation over all possible values of 𝑛𝜀  independently of one another. 

 Hence, 

                                   𝐐 𝑧, 𝑉, 𝑇 =    𝑧𝑒−𝛽𝜀0 
𝑛0
 𝑧𝑒−𝛽𝜀1 

𝑛1
…  𝑛0 ,𝑛1 ,……   

                                            =    𝑧𝑒−𝛽𝜀0 
𝑛0

𝑛0
    𝑧𝑒−𝛽𝜀1 

𝑛1

𝑛1
                         ….(15) 

 In B-E case 𝑛𝜀  can be either 0 or 1 or 2 or ……  

 In F-D case 𝑛𝜀  can be only 0 or 1. 

                                      𝐐 𝑧, 𝑉, 𝑇 =    
1

(1−𝑧𝑒−𝛽𝜀 )𝜀           in B-E case with 𝑧𝑒−𝛽𝜀<1. 

                                                          (1 + 𝑧𝑒−𝛽𝜀 )𝜀     in F-D case                     ….(16) 

The q potential of the system is thus given by, 

                                 𝑞 𝑧, 𝑉, 𝑇 =
𝑃𝑉

𝑘𝑇
= 𝑙𝑛𝑄 𝑧, 𝑉, 𝑇   

                                                    = ∓ ln⁡(1 ∓ 𝑧𝑒−𝛽𝜀 )𝜀                                       ….(17) 

                                     with 𝑔𝑖 = 1 
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 The identification of the fugacity z with the quantity 𝑒−𝛼  is quite natural. 𝛼 =

−
𝜇

𝑘𝑇
 

 The upper sign in equation (17) corresponds to Bose case. 

 The lower sign in equation (17) corresponds to Fermi case. 

 Now in general, 

                                 𝑞 𝑧, 𝑉, 𝑇 =
𝑃𝑉

𝑘𝑇
=

1

𝑎
 ln⁡(1 + 𝑎𝑧𝑒−𝛽𝜀 )𝜀                                 ….(18) 

 Where  𝑎 = −1, +1 𝑜𝑟 0 depending on the statistics governing the system. 

 In classical case  a → 0 gives, 

                                            𝑞𝑀−𝐵 = 𝑧  𝑒−𝛽𝜀𝜀 = 𝑧𝑄1                                            ….(19) 

                                               𝑁 ≡ 𝑧  
𝜕𝑞

𝜕𝑧
 
𝑉,𝑇

  

                                                    = 𝑧
1

𝑎
  

𝑎𝑒−𝛽𝜀

1+𝑎𝑧𝑒−𝛽𝜀   

                                                    =  
𝑧

𝑒𝛽𝜀 +𝑎𝑧
  

                                                    =  
1

𝑧−1𝑒𝛽𝜀 +𝑎
                                                    ….(20) 

                                                𝐸 ≡ − 
𝜕𝑞

𝜕𝛽
 
𝑧,𝑉

  

                                                      = −
1

𝑎
  

 𝑎𝑧𝑒−𝛽𝜀  (−𝜀)

1+𝑎𝑧𝑒−𝛽𝜀
  

                                                =  
𝜀

𝑧−1𝑒𝛽𝜀 +𝑎
                                                        ….(21) 

 At the same time, the mean occupation number  𝑛𝜀  of level ε turns out to be, 

                                               𝑛𝜀 =
1

𝐐
  −

1

𝛽
 
𝜕𝐐

𝜕𝜀
 
𝑧,𝑇,𝑎𝑙𝑙  𝑜𝑡𝑕𝑒𝑟  𝜀

   

                                                     = −
1

𝛽
  

𝜕𝑞

𝜕𝜀
 
𝑧,𝑇,𝑎𝑙𝑙  𝑜𝑡𝑕𝑒𝑟  𝜀

  

                                                     = −
1

𝛽

1

𝑎
 
𝑎𝑧𝑒−𝛽𝜀 (−𝛽)

1+𝑎𝑧𝑒−𝛽𝜀
  

                                                     =
𝑧𝑒−𝛽𝜀

1+𝑎𝑧𝑒−𝛽𝜀   

                                                    =
1

𝑧−1𝑒𝛽𝜀 +𝑎
                         ….(22)  

Thus the mean value <n> and the most probable value n
*
 of the occupation number n 

of a single particle state are identical. 
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5.10 STATISTICS OF THE OCCUPATION NUMBERS : 

 The mean occupation number of a single particle with energy ε as an explicit 

function of the quantity kT)(  : 

                                               ae
n

kT 


 )(

1
                                                       ….(1) 

 The functional behaviour of this number is shown in  figure. 

 

  In the Fermi-Dirac case  (a= +1), the mean 

occupation number never exceeds unity, for the 

variable nε, itself cannot have a value other than 0 

or 1.  

 

 Moreover ε < μ and kT , the mean 

occupation number tends to its maximum possible 

value 1.  

 In the Bose-Einstein case (a= -1) we must have μ < all ε. When μ becomes equal 

to the lowest value of ε (εo), the occupancy level becomes high which leads to 

Bose-Einstein condensation.  

 For μ < εo all )(  are positive and the behaviour of all n is nonsingular. 

Finally in Maxwell-Boltzmann case (a= 0), the mean occupation number takes the 

form 

                                         )exp()(exp kTkTn
BM

                               ….(2) 

 We note here that the distinction between the quantum statistics and the classical 

statistics becomes imperceptible when for all values of ε , 

                                             kT)(exp  >>1.         ….(3) 

 Now equation (1) reduces to (2) and we may write .1n                        ….(4) 

 Condition (4) implies that the probability of any of the nε being greater than unity 

is quite negligible. 

 The distinction between the classical treatment and the quantum-mechanical 

treatment then becomes rather insignificant.  

 Correspondingly for large values of kT)(   the quantum curves 1 and 2 

essentially merge into the classical curve 3.  
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 Condition (3) also implies that μ, the chemical potential of the system must be 

negative and large in magnitude. This means that the fugacity )exp( kTz  of 

the system must be much smaller than unity. 

 This is further equivalent to 1
3




V

N
                                                   ….(5) 

 Now we examine statistical fluctuations in the variable nε. We have 

                                                



































otherallTz

Q
Q

n

,,

2

2 11
                       ….(6) 

 It follows that  

                                   



































otherallTz

Qnn

,,

2

22 ln
1

  

                                                     

Tz

n

,

1






















   ….(7) 

 For the relative mean-square fluctuation we obtain 

                                 






























ez

nn

nn
1

2

22
11

 ….(8) 

 The actual value of this quantity will depend on the statistics of the particles 

because for a given particle density (N/V) and a given temperature T, the value of 

z will be different for different statistics. 

 Equation (8) can be written in the form 

                           a
nn

nn






 1
2

22

                                                                   ….(9) 

 In the classical case (a= 0), the relative fluctuation is normal. 

 In the Fermi-Dirac case it is given by 11 n , which is below normal and tends 

to vanish as .1n  

 In the Bose-Einstein case , the fluctuation  is above normal . 

 This result would apply to a gas of photons and hence to the oscillators states in 

the black-body radiation. 

 To understand the statistics of the occupation numbers, we evaluate the quantity 

)(np , the probability that there are exactly n particles in a state of energy ε.  
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 We know that .)()( nzenp 

   On normalization, it becomes in the Bose-

Einstein case 

                          
 

  zezenp n

EB
1)()(

.  

                                       
  1

1

)(

1

1

1






























n

n
n

n

n

nn

n
     ….(10) 

 In the Fermi-Dirac case, we get 

                            1

.
1)()(



  zezenp n

DF  

 

 = 01   nforn  

                                   1 nforn                           ….(11) 

 In the Maxwell-Boltzmann case, we have !/)()( nzenp n

   

 On normalization we get  

                        





 
n

nn

BM
e

n

n

ze

nze
np

!

)(

)exp(

!/)(
)(

.
                                           ….(12) 

 Equation (12) is clearly a Poisson distribution for which the mean square 

deviation of the variable is equal to the mean value itself.  

 It also resembles the distribution of the total particle number N in a grand 

canonical ensemble consisting of ideal, classical systems.  

 Here we seen that the ratio )1()(  npnp varies inversely with n, which is  a 

“normal” statistical behaviour of uncorrelated events. 

 The distribution in the Bose-Einstein case is geometric with a common ratio 

 1 nn .  

 This means that the probability of a state ε acquiring one more particle for itself is 

independent of the number of particles already occupying the state.  

 In comparison with “normal” statistical behaviour, bosons exhibit a special 

tendency of “bunching” together. That is a positive  statistical correlation among 

them. Fermions exhibit negative  statistical correlation. 

5.11 IDEAL BOSE-EINSTEIN GAS: 

 Consider a perfect Bose-Einstein gas of n bosons. 
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 These particles be divided into quantum groups such that there are 𝑛1, 𝑛2 , … , 𝑛𝑖 , …   

number of particles with energies 𝜀1, 𝜀2, … , 𝜀𝑖 , … respectively. 

 𝑔𝑖  be the number of eigen states in the  i 
th 

 level. 

 For the most probable distribution 

                    𝑛𝑖 =
𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖−1
   here 𝛼 =

−𝜇

𝑘𝑇
 and 𝛽 =

1

𝑘𝑇
   

                         =
𝑔𝑖

1

𝐴
𝑒𝛽𝜀𝑖−1

   where, 𝐴 = 𝑒−𝛼  

 Since the number of particles cannot be negative, we must always have 

        𝑛𝑖 ≥ 0       
1

𝐴
𝑒𝛽𝜀𝑖 ≥ 0. 

 The constant α can be determined by the condition 

                                       𝑛 =  𝑛𝑖 =  
𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖−1
 

                                      =  
𝑔𝑖

1

𝐴
𝑒𝛽𝜀𝑖−1

                                                                       . … (1) 

 Since the particles in a box are normal size and the translational levels are closely 

spaced and hence now the summation is replaced by integration. 

 The number of particles states 𝑔 𝑝 𝑑𝑝 between momentum p and p+dp is given 

by 

                                          = 𝑔𝑠
4𝜋𝑝2𝑑𝑝

𝑕3/𝑉
= 𝑔𝑠

4𝜋𝑉𝑝2𝑑𝑝

𝑕3  

 𝑔𝑠 = degenaracy factor = 1 

               Now 𝑔 𝑝 𝑑𝑝 =
4𝜋𝑉𝑝2𝑑𝑝

𝑕3
                                                                            ….(2) 

 Then equation (1) can be rewritten as 

                      𝑛 𝑝 𝑑𝑝 =
𝑔 𝑝 𝑑𝑝

𝑒𝛼+𝛽𝜀𝑖−1
 

                                    =
4𝜋𝑉𝑝2𝑑𝑝

𝑕3  
1

𝑒𝛼+𝛽𝜀𝑖−1
                                                           . … (3) 

                                 𝜀 = 𝜀𝑖 =
𝑝2

2𝑚
 

                               𝑝2 = 2𝑚𝜀 

                           2𝑝𝑑𝑝 = 2𝑚𝑑𝜀 
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                                𝑑𝑝 =
𝑚

𝑝
𝑑𝜀 

                                      =
𝑚

 2𝑚𝜀
𝑑𝜀 

                                      =  
𝑚

2𝜀
 

1/2

 𝑑𝜀 

 Now equation (3) becomes 

                          𝑛 𝜀 𝑑𝜀 =
4𝜋𝑉

𝑕3
(2𝑚𝜀)  

𝑚

2𝜀
 

1/2

𝑑𝜀
1

𝑒𝛼+𝜀/𝑘𝑇−1
 

                                         =
4𝜋𝑚𝑉

𝑕3
 2𝑚𝜀 1/2 𝑑𝜀

𝑒𝛼+𝜀/𝑘𝑇−1
                                        . … (4) 

                                    
𝜀

𝑘𝑇
= 𝑥 

                                     𝜀 = 𝑘𝑇𝑥 

                                  𝑑𝜀 = 𝑘𝑇𝑑𝑥 

                           𝑛 𝜀 𝑑𝜀 =
4𝜋𝑚𝑉

𝑕3
 2𝑚𝑘𝑇𝑥 1/2 𝑘𝑇𝑑𝑥

𝑒𝛼+𝑥−1
 

                                        =
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
 
𝑥1/2𝑑𝑥

𝑒𝛼+𝑥−1
                                     . … (5) 

 The total number of particles is given by  

                                               𝑛 =  
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
 
𝑥1/2𝑑𝑥

𝑒𝛼+𝑥−1

∞

0
 

                                                   =
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
 

𝑥1/2𝑑𝑥

𝑒𝛼+𝑥−1
 

∞

0
 

                                   𝑛 =
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 𝑓1 𝛼                                             . … (6) 

                             where 𝑓1 𝛼 =
2

 𝜋
 

𝑥1/2𝑑𝑥

𝑒𝛼+𝑥−1
                                                              . … (7)

∞

0
 

 The total energy is given by  

                                𝐸 =  𝜀 𝑛 𝜀 𝑑𝜀
∞

0
 

                                                  =  𝑘𝑇𝑥 
∞

0

𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
 
𝑥1/2𝑑𝑥

𝑒𝛼+𝑥−1
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                                                 =
𝑉

𝑕3 𝑘𝑇  2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
  

𝑥3/2𝑑𝑥

𝑒𝛼+𝑥−1
 

∞

0
 

                                                =
3

2

𝑉

𝑕3 𝑘𝑇  2𝜋𝑚𝑘𝑇 3/2 4

3 𝜋
 

𝑥3/2𝑑𝑥

𝑒𝛼+𝑥−1
 

∞

0
 

                                                =
3

2

𝑉

𝑕3
 𝑘𝑇  2𝜋𝑚𝑘𝑇 3/2 𝑓2 𝛼                                           . … (8) 

                                       𝑓2 𝛼 =
4

3 𝜋
  

𝑥3/2𝑑𝑥

𝑒𝛼+𝑥−1
 

∞

0
                                                             . … (9) 

 For 𝐴 < 1, 𝑓1 𝛼 𝑎𝑛𝑑 𝑓2 𝛼  may be evaluated as follows: 

                                      𝑓1 𝛼 =
2

 𝜋
 

𝑥1/2𝑑𝑥

𝑒𝛼+𝑥−1

∞

0
 

                                                 =
2

 𝜋
 

𝑥1/2𝑑𝑥

 
𝑒𝑥

𝐴
−1 

∞

0
  

                                                 =
2

 𝜋
 𝑥1/2  

𝑒𝑥

𝐴
− 1 

−1

𝑑𝑥
∞

0
 

                                                 =
2

 𝜋
 𝑥1/2𝐴𝑒−𝑥 1 − 𝐴𝑒−𝑥 −1𝑑𝑥

∞

0
 

                                                =
2

 𝜋
 𝑥1/2𝐴𝑒−𝑥 1 + 𝐴𝑒−𝑥 + 𝐴2𝑒−2𝑥 + ⋯  𝑑𝑥

∞

0
 

                                                =
2

 𝜋
  𝑥1/2𝐴𝑒−𝑥𝑑𝑥 +  𝑥1/2𝐴2𝑒−2𝑥𝑑𝑥 + ⋯

∞

0

∞

𝑜
  

                                                =
2

 𝜋
  

𝜋

2
  𝐴 +

𝐴2

23/2 +
𝐴3

33/2 + ⋯ . .    

                                                 = 𝐴 +
𝐴2

23/2 +
𝐴3

33/2 + ⋯……… 

                                        𝑓1 𝛼 =  
𝐴𝑟

𝑟3/2
∞
𝑟=1                                                              . … (10) 

 Similarly          𝑓2 𝛼 =
4

3 𝜋
 

𝑥3/2𝑑𝑥

 𝑒−(𝛼+𝑥)−1 

∞

0
 

                                                = 𝐴 +
𝐴2

25/2 +
𝐴3

35/2 + ⋯ 

                                      𝑓2 𝛼 =  
𝐴𝑟

𝑟5/2
                                                                . … (11)∞

𝑟=1  



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
187 

 

                                   Now 𝑛 =
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2𝑓1(𝛼) 

                                               =
𝑉

𝑕3   2𝜋𝑚𝑘𝑇 3/2  𝐴 +
𝐴2

23/2 +
𝐴3

33/2 + ⋯                 . … (12) 

                                           𝐸 =
3

2
𝑘𝑇 

𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2𝑓2(𝛼). 

                                           𝐸 =
3

2
𝑘𝑇 

𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2  𝐴 +

𝐴2

25/2
+

𝐴3

35/2
+ ⋯            . …  13                                                           

                                           
 𝐸

𝑛
=

3

2
𝑘𝑇  𝐴 +

𝐴2

25/2 +
𝐴3

35/2 + ⋯  𝐴 +
𝐴2

23/2 +
𝐴3

33/2 + ⋯ 
−1

 

                                               =
3

2
𝑘𝑇  1 +

𝐴

25/2
+

𝐴2

35/2
+ ⋯  1 +

𝐴

23/2
+

𝐴2

33/2
+ ⋯ 

−1

   

                                               =
3

2
𝑘𝑇  1 −

𝐴

25/2 +
𝐴2

35/2 + ⋯  

                                            𝐸 =
3

2
𝑛𝑘𝑇  1 −

𝐴

25/2 +
𝐴2

35/2 + ⋯                                 . … (14) 

 The value of α (or) A can be determined by equation (6) as 

                                            𝑛 =
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2𝑓1(𝛼) 

                                      𝑓1 𝛼 =
𝑛

𝑉

𝑕3

 2𝜋𝑚𝑘𝑇  3/2 

 Here 𝑓1(𝛼) is directly proportional to particle density  n/v and inversely 

proportional to temperature as 𝑇3/2.   

 For 𝐴 << 1, 𝑓1 𝛼 = 𝐴 

                                             𝐴 =
𝑛

𝑉
 

𝑕3

 2𝜋𝑚𝑘𝑇  3/2
                                                          . … (15) 

 Obviously A would be small for high temperatures (low density). 

             M-B distribution as a limiting case of B-E distribution: 

 For 𝐴 << 1, 𝑒𝛼+𝛽𝜀𝑖  becomes very large compared to 1. 

 Now B-E distribution 𝑛𝑖 =
𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖−1
 becomes 𝑛𝑖 =

𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖
  which is well known M-

B distribution. 

 For 𝐴 << 1, 𝑓1 𝛼 = 𝑓2 𝛼 = 𝐴 
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 Equation (12) becomes         𝑛 =
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 × 𝐴 

 Equation (13) becomes        𝐸 =
3

2
𝑘𝑇 

𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 × 𝐴 

                                                         
𝐸

𝑛
=

3

2
𝑘𝑇 ⇒ 𝐸 =

3

2
𝑛𝑘𝑇 

 Which is well known expression for energy in M-B statistics. 

5.12 BOSE-EINSTEIN CONDENSATION AND ITS CRITICAL CONDITIONS: 

 The degeneracy parameter A is given by, 

𝐴 = 𝑒−𝛼 =
𝑛

𝑉
 
 2𝜋𝑚𝑘𝑇  3/2

𝑕3                                                                           .…(1) 

 And    𝑛 =
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2𝑓1 𝛼                                                                       .…(2) 

 If the particle density is increased or the temperature is decreased then A 

increases. 

 Now the behaviour of perfect gas departs from the classical perfect gas. 

 This is due to the fact that the velocities of the particles are subjected to quantum 

statistics. 

 The gas under this condition is said to be degenerate gas and A is called the 

degeneracy parameter. 

 ′A′  contains three variables n/V - the particle density , m - mass of each boson 

and  

T -temperature of the gas. 

 The degeneracy criterion will be based on the magnitude 
𝑛/𝑉

 𝑚𝑇 1/2
 

 Thus the degree of degeneracy will be large when T is low, n/V is large and m is 

small. 

 For low energy values A=1 and α=0. 

 Then  𝑓1(𝛼) 𝑚𝑎𝑥 = 𝑓1 0 = 1 +
1

23/2 +
1

33/2 + ⋯    

                                       = 2.612 

 Now        
𝑛

𝑉
 
𝑚𝑎𝑥

=
 2𝜋𝜋𝑚𝑘𝑇  3/2

𝑕3
  2.612                                                         . … (4) 

 Equation (4) corresponds to the limiting case of Bose-Einstein degeneration. 

 The solution of equation (2) can exist for  

                       
𝑛

𝑉
>

 2𝜋𝑚𝑘𝑇  3/2

𝑕3
 2.612                                                          . … (5) 
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 n/v can be alternatively expressed in terms of critical temperature 𝑇𝑜  defined as  

                          
 𝑛

𝑉
=

 2𝜋𝑚𝑘 𝑇0 
3/2

𝑕3
 2.612                                                           . … (6) 

               2𝜋𝑚𝑘𝑇0 
3/2 = 𝑕3  

𝑛

𝑉
 

1

2.612
 

                      2𝜋𝑚𝑘𝑇0 = 𝑕2  
𝑛

𝑉
 

1

2.612
 

2/3

 

                 𝑇0 =
𝑕2

2𝜋𝑚𝑘
  
𝑛

𝑉
 

1

2.612
 

2/3

 

 T0 is the lower temperature for which a solution of equation (2) is possible. 

 There is no solution for 𝑇 < 𝑇0    

 i.e. the degeneracy starts at T0. 

 A graph is drawn between the energy E and temperature 

T of the gas. 

 Why there is no solution 𝑇 < 𝑇0 

 Because we have assumed continuous distribution and 

replaced the summation by integration. 

 But at low temperature, the number of particles begin to 

crowd into lower energy levels. 

 Hence a large number of particles may occupy the 

ground state 𝜀0 = 0. 

 The number of particles between the energy range 𝜀 and 𝜀 + 𝑑𝜀 is given by, 

                       𝑛 𝜀 𝑑𝜀 =
𝑔 𝜀 𝑑𝜀

𝑒𝛼+𝜀/𝑘𝑇−1
                                                                . … (8) 

And                𝑔 𝜀 𝑑𝜀 =
4𝜋𝑚𝑣

𝑕3
  2𝑚𝜀 1/2𝑑𝜀                                                . … (9) 

 For ground state actually 𝜀0 = 0 𝑎𝑛𝑑𝑔 𝜀 = 1 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑔 𝜀 = 0 

 For 𝜀 ≠ 0 and 𝑔(𝜀) ≠ 0, the distribution given by equation (8) is correct. 

 But for 𝜀 = 0, 𝑔 𝜀 = 0 the law gives incorrect result. 

 For a single state ,      𝑛𝑖 =
𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖−1
 

                               𝜀𝑖 = 𝜀0 = 0 

                               𝑔𝑖 = 𝑔 𝜀𝑖 = 1 
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                               𝑛 = 𝑛0 =
1

𝑒𝛼−1
                                                            . … (10) 

 This gives the number of particles in the ground state. 

 Now the total number of particles for the degenerate gas, 

                  𝑛 = 𝑛0 +  𝑛 𝜀 𝑑𝜀 

                      = 𝑛0 +  
4𝜋𝑚𝑉

𝑕3   2𝑚 1/2 𝜀1/2𝑑𝜀

𝑒𝛼+𝜀/𝑘𝑇−1

∞

0
 

                                                  = 𝑛0 + 𝑛′                                                                     . … (11) 

                  𝑛′ =
4𝜋𝑚𝑉

𝑕3
 2𝑚 1/2   

𝜀1/2𝑑𝜀

𝑒𝛼+𝜀/𝑘𝑇−1

∞

0
                                 ….(12) 

                                               𝑛′ =
𝑉

𝑕3
  2𝜋𝑚𝑘𝑇 3/2 𝑓1 𝛼                                          . . . . (13) 

 From equation (6)     
𝑛

𝑉
=

 2𝜋𝑚𝑘 𝑇0 
3/2

𝑕3
 2.612   

                      
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇0 

3/2 = 𝑛 
1

2.612
 

 Now                          𝑛′ = 𝑛  
𝑇

𝑇0
 

3/2 𝑓1(𝛼)

2.612
                                                         .…(14) 

 As 𝑓1 𝛼 < 𝑓1 0  , 𝑛′  acquires its maximum value when  𝛼 = 0.    

 Hence  𝑓1 𝛼 = 2.612 for maximum value. 

                𝑛′ = 𝑛  
𝑇

𝑇0
 

3/2

                          𝑓𝑜𝑟 𝑇 < 𝑇0        

                 𝑛 = 𝑛0 + 𝑛′  

                𝑛 = 𝑛0 + 𝑛  
𝑇

𝑇0
 

3/2

 

              𝑛𝑜 = 𝑛 − 𝑛  
𝑇

𝑇0
 

3/2

 

              𝑛0 = 𝑛  1 −  
𝑇

𝑇0
 

3/2

                  𝑓𝑜𝑟 𝑇 < 𝑇0                      . … (15) 

 𝑛0 gives the number of particles condensed in the ground state.  

 When the temperature is lowered below T0, the number of particles in the ground 

state rapidly increases. 

 This rapid increase in the population of the ground state 

below the critical temperature 𝑇0 for a Bose - Einstein gas is 

called Bose – Einstein condensation. 
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 Obviously T0 depends on the particle density n/V. 

 Equation (15) is plotted in figure which represents the fraction of 

particles condensed in the ground state 𝑓𝑜𝑟 𝑇 < 𝑇0 . 

 At the ground state  𝜀 = 0, the particles condensed in the ground state do not 

contribute to the energy. 

 For above To,  𝛼 ≠ 0  there is negligible number of particles in the ground state 

and the gas is said to be classical or non - degenerate gas. 

 Example:  For Helium T0 can be calculated  to have the value 3.12 K. 

 Therefore the degeneration and condensation of Helium must start at 3.12 K. 

 But experimental observation shows that the condensation of Helium starts at 2.19 

K.  

 i.e. the  lambda point transition observed in liquid helium at 2.19 K is essentially a  

Bose-Einstein condensation. 

5.13 BOSE – EINSTEIN CONDENSATION IN ULTRACOLD ATOMIC GASES : 

 The first demonstration of Bose- Einstein condensation in ultracold atomic gases 

came in 1995.  

 Since 1995, many isotopes have been Bose condensed including 
7
Li,

 23
Na, 

41
K, 

52
Cr, 

84
Sr, 

85
Rb, 

87
Rb,

 133
Cs and 

174
Yb.  

 The first molecular Bose –Einstein condensates were created in 2003 by the 

research groups of  Rudoif Grimm at the University of Innsbruck.  

 The first step of the cooling of the atomic vapour uses three sets of counter-

propagating laser beams oriented along cartesian axes that are tuned just below the 

resonant frequency of the atoms in the trap.  

 Atoms that are stationary are just off resonance and so rarely absorb a photon.  

 Moving atoms are Doppler shifted on resonance to the laser beam that is 

propagating opposite to the velocity vector of the atom.  

 Those atoms preferentially absorb photons from that direction and then reemit in 

random directions, resulting in a net momentum kick opposite to the direction of 

motion.  

 This results in an "optical molasses" that slows the atoms.  

 This cooling method is constrained by the "recoil limit" in which the atoms have a 

minimum momentum of the order of the momentum of the photons used to cool 

the gas.  
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 This gives a limiting temperature of (hf)
2
/2mc

2
k  lµK, where  is the frequency of 

the spectral line used for cooling and m is the mass of an atom. 

 In the next step of the cooling process, the lasers are turned off and a spatially 

varying magnetic field creates an attractive anisotropic harmonic oscillator 

potential near the center of the magnetic trap 

            22

3

22

2

22

1 x
2

1
)( zymrV   ….(1) 

 The frequencies of the trap  are controlled by the applied magnetic field. One 

can then lower the trap barrier using a resonant transition to remove the highest 

energy atoms in the trap. If the atoms in the vapor are sufficiently coupled to one 

other, then the remaining atoms in the trap are cooled by evaporation. 

 If the interactions between the atoms in the gas can be neglected, the energy of 

each atom in the harmonic oscillator potential is 

                  
 321332211,,

2

1
321

  llllll          .…(2) 

 where l (= 0,1,2,.. .∞) are the quantum numbers of the harmonic oscillator. If the 

three frequencies are all the same, then the quantum degeneracy of a level with 

energy      2/2l1l2/3l  is  

 For the general anisotropic case, the smoothed density of states as a function of 

energy (suppressing the zero point energy and assuming   ) is given by 

                    

   
 30

2

321

0 0 0

332211
2 


   

  


 dldldlllla    … (3) 

 where   ;
3/1

3210  this assumes a single spin state per atom. The 

thermodynamic potential  for bosons in the trap is then given by 

                         
 
 

   
 

 zg
kT

dee
kT

T 43

0

4

0

x2

3

0

4

x1lnx
2

,





 





    … (4) 

 where z = exp () is the fugacity. Volume is not a parameter in the 

thermodynamic potential since the atoms are confined by the harmonic trap. The 

average number of atoms in the excited states in the trap is 

    zg
kT

TN
T

3

0




























       .… (5) 
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 For fixed N, the chemical potential monotonically increases as temperature is 

lowered until Bose-Einstein condensation occurs when = 0 (z = 1). The critical 

temperature for N trapped atoms is then given by 

                                        
 

3/1

0 3 













NkTc


                                                          .… (6)  

 where (3) = g3(1)  1.202. While the spacing of the energy levels is of order 0 , 

the critical temperature for condensation is much larger than the energy spacing of 

the lowest levels for  N>> 1. 

 For T <Tc the number of atoms in the excited states is 

                          

33

0

)3(























c

excited

T

TkT

NN

N


                                                  .… (7) 

 so the fraction of atoms that condense into the ground state of the harmonic 

oscillator is 

                            ;1

3

0











cT

T

N

N
               .… (8) 

(a) Detection of the Bose-Einstein condensate: 

 The linear size of the ground state wave function in Cartesian direction  is 

   ,






m

a


                       .…(9) 

 while the linear size of the thermal distribution of the noncondensed atoms in that 

direction is  

 

                 .…(10) 

 

 At trap frequency  f= 100 Hz and temperature T =100 nK, these sizes are about 1 

m and 5m, respectively.  

 Instead of measuring the atoms directly in the trapping potential, experimenters 

usually measure the momentum distribution of the ultracold gas by a time-of-

flight experiment.  

 At time t = 0, the magnetic field is turned off suddenly, eliminating the trapping 

potential.  





 







kT
a

m

kT
athermal 2



 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 
194 

 

 The atomic cloud then expands according to the momentum distribution the atoms 

had in the harmonic trap. The cloud is allowed to expand for about 100 

milliseconds.  

 The speed of the atoms at this temperature is a few millimeters per second, so the 

cloud expands to a few hundred microns in this period of time.  

 The cloud is then illuminated with a laser pulse on resonance with the atoms, 

leaving a shadow on a CCD in the image plane of the optics.  

 The size and shape of the light intensity pattern directly measures the momentum 

distribution the atoms had in the trap at t = 0.  

 The expanding cloud can be divided into two components, the No atoms that had 

been Bose-condensed into the ground state and the remaining N -No atoms that 

were in the excited states of the harmonic oscillator potential.  

 The Bose-condensed atoms have smaller momenta than the atoms that were in the 

excited states.  

 After time t, the quantum evolution of the ground state has a spatial number 

density 

                
 

 


































3

1
222

2

222/3

02

00
1

exp
1

1
,,

ta

r

ta

N
trNtrn o   .…(11) 

 The atoms that are not condensed into the ground state can be treated semi 

classically, that is, the position-momentum distribution function is treated 

classically while the density follows the Bose-Einstein distribution function: 

)0,,( prf   

  1x
22

exp

1

22

3

22

2

22

1

2

















uzy
m

m

p
                  ….(12) 

 After the potential is turned off at t = 0, the distribution evolves ballistically: 

              







 0,,)0,,( p

m

pt
rfprf                                                           ….(13) 

 The spatial number density of atoms in the excited states is 

    dptp
m

pt
r

h
trnexcited 








  ,,f

1
,

3
                                        ….(14) 

 which can be integrated to give 
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        
  





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
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


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





















 

 









 3

1
22

22

22
1

2/33 12
exp

1

11
,

t

rjm

tj

e
trn

j

j

excited            ….(15) 

 where = mkTh 2/ is the thermal deBroglie wavelength. The integrals over the 

condensed state and the excited states correctly count all the atoms: 

                   ,,0 drtrnN o                                                    ….(16a) 

            .),( excitedexcitedo NdrtrnNN                                 ….(16b) 

 Note that at early times 1t both the condensed and the excited distributions 

are anisotropic due to the anisotropic trapping potential.  

 However, at late times 1t , the atoms from the excited states form a 

spherically symmetric cloud because of the isotropic momentum dependence of 

the t = 0 distribution function.  

 By contrast, the atoms that were condensed into the ground state expand 

anisotropically due to the different spatial extents of the ground state 

wavefunction at t = 0.  

 The direction that has the largest 0 is quantum mechanically squeezed the most at 

t = 0; so, according to the uncertainty principle, it expands the fastest.  

 This is an important feature of the experimental data that confirms the onset of 

Bose-Einstein condensation.  

(b) Thermodynamic properties of the Bose-Einstein condensate : 

 The temperature, condensate fraction, and internal energy can all be observed 

using time- of-flight measurements. The internal energy can also be written in 

terms of the function gv(z): 

  
   

 
 

 zg
kT

d
e

TU 43

0

4

0

3

0
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3
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1

2
,













 
                   ….(17) 

 The heat capacity at constant number can be written as 

  

 
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 Equations (5) and (6) can be used to determine the fugacity z numerically, as 

shown in Figure (a). The fugacity can then be used in equation (17) to obtain the 

scaled internal energy. [Figure (b)] 
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 The scaled specific heat is given by 
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             and shown in figure (c).  

 

 

 

 

 

 

 Unlike the case of Bose-Einstein condensation of free particles in a box the 

specific heat of a condensate in a harmonic trap displays a discontinuity at the 

critical temperature. 
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 
 
 
 

 
 





























c

c
N

TTas

TTas

Nk

C

228.4
2

39

3

412

805.10
3

412

 ..(21)

 

 Equation (15) is called the Virial equation of state.  

 This equation can also be written in terms of the pair correlation function and is 

also used in computer simulations to determine the pressure of the system. 

5.14 IDEAL FERMI-DIRAC GAS: 

 Consider a perfect Fermi-Dirac gas of n Fermions. 

 These particles be divided into quantum groups such that there are 

𝑛1 , 𝑛2, … , 𝑛𝑖 , …   number of particles with energy is 𝜀1, 𝜀2, … , 𝜀𝑖 , . .. respectively. 

 𝑔𝑖  be the number of eigen states in the  i 
th 

 level. 

 For the most probable distribution 

                    𝑛𝑖 =
𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖+1
   here 𝛼 =

−𝜇

𝑘𝑇
 and 𝛽 =

1

𝑘𝑇
   

                         =
𝑔𝑖

1

𝐴
𝑒𝛽𝜀𝑖+1

   where, 𝐴 = 𝑒−𝛼  

       𝛼 may be positive or negative. 

 The constant α can be determined by the condition 

                                       𝑛 =  𝑛𝑖 =  
𝑔𝑖

𝑒𝛼+𝛽𝜀𝑖+1
 

                                          =  
𝑔𝑖

1

𝐴
𝑒𝛽𝜀𝑖+1

                                                          . … (1) 

 Since the particles in a box are normal size and the translational levels are closely 

spaced and hence now the summation is replaced by integration. 

 The number of particle states 𝑔 𝑝 𝑑𝑝 between momentum p and p+dp is given by 

                                          = 𝑔𝑠
4𝜋𝑝2𝑑𝑝

𝑕3/𝑉
= 𝑔𝑠

4𝜋𝑉𝑝2𝑑𝑝

𝑕3  

  𝑔𝑠 = degenaracy factor = (2𝑠 + 1) 

                Now 𝑔 𝑝 𝑑𝑝 = 𝑔𝑠
4𝜋𝑉𝑝2𝑑𝑝

𝑕3
                                                            ….(2) 

 Then equation (1) can be rewritten as 

                      𝑛 𝑝 𝑑𝑝 =
𝑔 𝑝 𝑑𝑝

𝑒𝛼+𝛽𝜀𝑖+1
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                                    = 𝑔𝑠
4𝜋𝑉𝑝2𝑑𝑝

𝑕3
 

1

𝑒𝛼+𝛽𝜀𝑖+1
                                               . … (3) 

                                 𝜀 = 𝜀𝑖 =
𝑝2

2𝑚
 

                               𝑝2 = 2𝑚𝜀 

                           2𝑝𝑑𝑝 = 2𝑚𝑑𝜀 

                                𝑑𝑝 =
𝑚

𝑝
𝑑𝜀 

                                      =
𝑚

 2𝑚𝜀
𝑑𝜀 

                                      =  
𝑚

2𝜀
 

1/2

 𝑑𝜀 

 Now equation (3) becomes 

                          𝑛 𝜀 𝑑𝜀 = 𝑔𝑠
4𝜋𝑉

𝑕3 (2𝑚𝜀)  
𝑚

2𝜀
 

1/2

𝑑𝜀
1

𝑒𝛼+𝜀/𝑘𝑇 +1
 

                                         = 𝑔𝑠
4𝜋𝑚𝑉

𝑕3
 2𝑚𝜀 1/2 𝑑𝜀

𝑒𝛼+𝜀/𝑘𝑇 +1
                            . … (4) 

                                    
𝜀

𝑘𝑇
= 𝑥 

                                     𝜀 = 𝑘𝑇𝑥 

                                  𝑑𝜀 = 𝑘𝑇𝑑𝑥 

                           𝑛 𝜀 𝑑𝜀 = 𝑔𝑠
4𝜋𝑚𝑉

𝑕3
 2𝑚𝑘𝑇𝑥 1/2 𝑘𝑇𝑑𝑥

𝑒𝛼+𝑥+1
 

                                        = 𝑔𝑠
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
 
𝑥1/2𝑑𝑥

𝑒𝛼+𝑥+1
                            . … (5) 

 The total number of particles is given by  

                                               𝑛 =  𝑔𝑠
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
 
𝑥1/2𝑑𝑥

𝑒𝛼+𝑥+1

∞

0
 

                                                   = 𝑔𝑠
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
 

𝑥1/2𝑑𝑥

𝑒𝛼+𝑥+1
 

∞

0
 

                                   𝑛 = 𝑔𝑠
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 𝑓1 𝛼                                      . … (6) 
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                             where 𝑓1 𝛼 =
2

 𝜋
 

𝑥1/2𝑑𝑥

𝑒𝛼+𝑥+1
                                                            . … (7)

∞

0
 

 The total energy is given by  

                                𝐸 =  𝜀 𝑛 𝜀 𝑑𝜀
∞

0
 

                                                  =  𝑘𝑇𝑥 𝑔𝑠
∞

0

𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
 
𝑥1/2𝑑𝑥

𝑒𝛼+𝑥+1
 

                                                 = 𝑔𝑠
𝑉

𝑕3
𝑘𝑇  2𝜋𝑚𝑘𝑇 3/2 2

 𝜋
  

𝑥3/2𝑑𝑥

𝑒𝛼+𝑥+1
 

∞

0
 

                                                =
3

2
𝑔𝑠

𝑉

𝑕3 𝑘𝑇  2𝜋𝑚𝑘𝑇 3/2 4

3 𝜋
 

𝑥3/2𝑑𝑥

𝑒𝛼+𝑥+1
 

∞

0
 

                                                =
3

2
𝑔𝑠

𝑉

𝑕3
 𝑘𝑇  2𝜋𝑚𝑘𝑇 3/2 𝑓2 𝛼                                . … (8) 

                                       𝑓2 𝛼 =
4

3 𝜋
  

𝑥3/2𝑑𝑥

𝑒𝛼+𝑥+1
 

∞

0
                                                         . … (9) 

 𝑓1 𝛼  and 𝑓2 𝛼  must be evaluated for both positive and negative values of α. 

 Now we  introduce  the Fermi-Dirac distribution function 𝑓(𝜀) defined by, 

                            𝑓 𝜀 =
𝑛 𝜀 

𝑔 𝜀 
 

                                    =
1

𝑒𝛼+𝜀/𝑘𝑇 +1
                                                      

                                     =
1

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1
                                                       . … (10) 

 Where 𝛼 = −
𝜇

𝑘𝑇
= −

𝜀𝐹

𝑘𝑇
 

 At T=0 K,  𝑓 𝜀 = 1 𝑓𝑜𝑟 𝜀 < 𝜀𝐹 0  

                              = 0 𝑓𝑜𝑟 𝜀 > 𝜀𝐹 0                   

                          =
1

2
 𝑓𝑜𝑟 𝜀 = 𝜀𝐹                       

 This is shown in the figure. 

 𝜀𝐹  is determined by the condition that the total 

number of particles is constant at a given 

temperature T. 

 The number of fermions in the energy range between 𝜀 and 𝜀 + 𝑑𝜀  is given by, 

                                       𝑛 𝜀 𝑑𝜀 =  𝑓 𝜀 𝑔 𝜀 𝑑𝜀 
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                                             = 𝑔𝑠  
4𝜋𝑚𝑉

𝑕3   2𝑚 1/2  
𝜀1/2𝑑𝜀

𝑒
(𝜀−𝜀𝐹)/𝑘𝑇 +1

                          . . . . (11) 

 At absolute zero, all states with 0 < 𝜀 < 𝜀𝐹(0) are completely filled and all states 

with 𝜀 > 𝜀𝐹(0) are empty. 

 𝜀𝐹  at T=0 K i.e. 𝜀𝐹(0) is determined by, 

                                                𝑛 =  𝑛 𝜀 𝑑𝜀
𝜀𝐹(0)

0
 

                                                   =  𝑓(𝜀)𝑔 𝜀 𝑑𝜀
𝜀𝐹(0)

0
  

                                                   =  𝑔 𝜀 𝑑𝜀
𝜀𝐹(0)

0
 

                                                   =  𝑔𝑠  
4𝜋𝑚𝑉

𝑕3
  2𝑚 1/2𝜀1/2𝑑𝜀

𝜀𝐹(0)

0
 

                                                  = 𝑔𝑠  
4𝜋𝑚𝑉

𝑕3   2𝑚 1/2  𝜀1/2𝑑𝜀 
𝜀𝐹(0)

0
  

                                              𝑛 = 𝑔𝑠  
4𝜋𝑚𝑉

𝑕3   2𝑚 1/2   
2

3
 𝜀𝐹 0 3/2  

                                 𝜀𝐹 0   3/2 =
3𝑛

4𝜋𝑉𝑔𝑠
 

𝑕3

 2𝑚 3/2 

                            𝜀𝐹 0 =
𝑕2

2𝑚
 

3𝑛

4𝜋𝑉𝑔𝑠
  2/3                                                      … . (12)         

 This gives the Fermi-energy at T=0K.  

 For particles with spin equal to 1/2,  𝑔𝑠=2 ie, one particle with spin up and another 

with spin down. 

 Now we define Fermi temperature 𝑇𝐹  as, 

                                             𝑇𝐹 =
𝜀𝐹(0)

𝑘
 

                                                  =
𝑕2

2𝑚𝑘
  

3𝑛

4𝜋𝑉𝑔𝑠
 

2/3

 

                                              𝜌 =
𝑚𝑛

𝑉
⇒

𝑛

𝑉
=

𝜌

𝑚
 

                                             𝑇𝐹 =
𝑕2

2𝑚𝑘
  

3𝜌

4𝜋𝑚𝑔𝑠
 

2/3

 

                                            𝑇𝐹 =
𝑕2

2𝑚5/3𝑘
  

3𝜌

4𝜋𝑔𝑠
 

2/3

                                               … . (13)     
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 𝑇 << 𝑇𝐹            strong degeneracy          α is negative 

 𝑇 > 𝑇𝐹              weak degeneracy            α is positive 

 𝑇 >> 𝑇𝐹            non degeneracy              α  is positive 

(A) Degeneracy: 

i. Weak degeneracy: (High temperature and low density) 

𝑇 > 𝑇𝐹  ; 𝜀𝐹  is negative ; α is positive and hence 𝐴 < 1. 

For 𝐴 < 1, we can write 

                              
1

1

𝐴
 𝑒𝑥+1

=  
1

𝐴
 𝑒𝑥 + 1 

−1

  

                                        = 𝐴𝑒−𝑥 1 + 𝐴𝑒−𝑥 −1 

                                        = 𝐴𝑒−𝑥 1 − 𝐴𝑒−𝑥 + 𝐴2𝑒−2𝑥 + ⋯   

                               𝑓1 𝛼 =
2

 𝜋
 

𝑥1/2𝑑𝑥

𝑒𝛼+𝑥+1

∞

0
 

                                        =
2

 𝜋
 

𝑥1/2𝑑𝑥

 
1

𝐴
𝑒𝑥+1 

∞

0
 

                                        =
2

 𝜋
 𝑥1/2𝑑𝑥 𝐴𝑒−𝑥

∞

0
 1 − 𝐴𝑒−𝑥 + 𝐴2𝑒−2𝑥 + ⋯    

                            

=
2

 𝜋
 𝐴  𝑥1/2𝑒−𝑥𝑑𝑥 − 𝐴2  𝑥1/2 𝑒−2𝑥𝑑𝑥 + 𝐴3  𝑥1/2𝑒−3𝑥𝑑𝑥 + ⋯

∞

0

∞

0

∞

0
  

                                        = 𝐴 −
𝐴2

23/2 +
𝐴3

33/2 + ⋯                                                 . … (1) 

 Similarly              𝑓2 𝛼 =
4

3 𝜋
 

𝑥3/2𝑑𝑥

 
1

𝐴
 𝑒𝑥+1 

∞

0
 

                                       = 𝐴 −
𝐴2

25/2
+

𝐴3

35/2
+ ⋯                                              . … (2) 

 Now                            𝑛 = 𝑔𝑠
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2𝑓1 𝛼  

                                       = 𝑔𝑠
𝑉

𝑕3
 2𝜋𝑚𝑘𝑇 3/2  𝐴 −

𝐴2

23/2 +
𝐴3

33/2 + ⋯              … . (3) 

                                    𝐸 =
3

2
𝑔𝑠

𝑣

𝑕3
 2𝜋𝑚𝑘𝑇 3/2 𝑘𝑇 𝑓2 𝛼                                                       

                                             =
3

2
𝑔𝑠

𝑣

𝑕3
 2𝜋𝑚𝑘𝑇 3/2  𝐴 −

𝐴2

25/2 +
𝐴3

35/2 + ⋯           … . (4) 

                                     
 𝐸

𝑛
=

3

2
𝑘𝑇  𝐴 −

𝐴2

25/2 +
𝐴3

35/2 + ⋯  𝐴 −
𝐴2

23/2 +
𝐴3

33/2 + ⋯  −1 

                                         =
3

2
𝑘𝑇  1 +

𝐴

25/2 −
𝐴2

35/2 + ⋯                                  … . (5) 

 To find first approximation we can get, 

                                      
 𝐸

𝑛
=

3

2
𝑘𝑇 
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                                       𝐸 =
3

2
𝑛𝑘𝑇                                                                   … . (6) 

 which is well known relation for E in classical statistics. 

 Comparison of equations (5) and (6) shows that the ideal Fermi-Dirac gas deviates 

from a classical perfect gas and this deviation is known as degeneracy. 

 A is the degeneracy function and greater the value of A, more will be the 

degeneracy. 

ii. Strong degeneracy: (low temperature and high density) 

 Here we discuss the degeneracy case in two temperature ranges. 

 (a) At  absolute zero(T=0 K) 

 (b) Above  absolute zero 

(a) At absolute zero(T=0 K): 

 In this case the Fermi-dirac gas is completely degenerate. 

 At T=0 K,               𝑓 𝜀 =
1

1

𝐴
𝑒𝜀/𝑘𝑇 +1

 

                                                    =
1

1

𝐴
𝑒 𝜀−𝜀𝐹 /𝑘𝑇 +1

 

                                                   = 1      𝑓𝑜𝑟           0 ≤ 𝜀 ≤ 𝜀𝐹(0) 

                                                    = 0      𝑓𝑜𝑟                  𝜀 > 𝜀𝐹 

 So that              𝑛 𝜀 𝑑𝜀 = 𝑔𝑠  
4𝜋𝑚𝑉

𝑕3   2𝑚 1/2𝜀1/2𝑑𝜀       𝑓𝑜𝑟 0 ≤ 𝜀 ≤ 𝜀𝐹(0) 

                                                   = 0                                                     𝑓𝑜𝑟 𝜀 > 𝜀𝐹(0) 

 The total internal energy of Fermi-Dirac gas at T=0 K gives zero point energy. 

                                            𝐸0 =  𝜀 𝑛 𝜀 𝑑𝜀
𝜀𝐹(0)

0
 

                                                =  𝑔𝑠  
4𝜋𝑚𝑉

𝑕3  
𝜀𝐹(0)

0
 2𝑚 1/2𝜀1/2𝑑𝜀 

                                   = 𝑔𝑠  
4𝜋𝑚𝑉

𝑕3   2𝑚 1/2  𝜀3/2𝑑𝜀
𝜀𝐹(0)

0
 

                                   = 𝑔𝑠  
4𝜋𝑚𝑉

𝑕3   2𝑚 1/2  
 𝜀𝐹(0) 5/2

5/2
  

                                   =
2

5
 𝑔𝑠  

4𝜋𝑚𝑉

𝑕3    2𝑚 1/2  𝜀𝐹(0) 5/2 
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                                   =
2

5
𝑔𝑠  

4𝜋𝑚𝑉

𝑕3    2𝑚 1/2   
𝑕2

2𝑚
  

3𝑛

4𝜋𝑣𝑔𝑠
 

2/3

 
5/2

 

                                   =
3𝑛

5
  

4𝜋𝑉𝑔𝑠

3𝑛
  

2𝑚

𝑕2  
3/2 𝑕5

 2𝑚 5/2   
3𝑛

4𝜋𝑣𝑔𝑠
 

5/3

 

                                   =
3𝑛

5
 
𝑕2

2𝑚
  

3𝑛

4𝜋𝑉𝑔𝑠
 

2/3

 

                               𝐸0 =
3𝑛

5
 𝜀𝐹 0                                                                   … . (7) 

 Zero point pressure 𝑝0 =
2

3
 
𝐸0

𝑉
 

                                                 =
2

3
 

1

𝑉
 
 3𝑛

5
 𝜀𝐹(0) 

                                            𝑝0 =
2

5
 
𝑛

𝑉
 𝜀𝐹 0                                                                  … . (8) 

 Thus a strongly degenerate  Fermi-Dirac gas possesses  energy and pressure even 

at absolute zero. 

(b) Above absolute zero: 𝑨 >> 1 𝑎𝑛𝑑 𝑇 << 𝑻𝑭 

 The  Fermi gas is strongly degenerate and 𝜀 is still positive. 

 The number of particles in the energy range between 𝜀 and 𝜀 + 𝑑𝜀 is given by, 

                                    𝑛 𝜀 𝑑𝜀 = 𝑔𝑠  
4𝜋𝑚𝑉

𝑕3   2𝑚 
1

2
𝜀

1
2𝑑𝜀

𝑒 𝜀−𝜀𝐹 /𝑘𝑇 +1
                                 … . (9) 

                                                = 3𝑛  
4𝜋𝑉𝑔𝑠

3𝑛
  

2𝑚3

𝑕6
 

1/2
𝜀1/2𝑑𝜀

𝑒 𝜀−𝜀𝐹 /𝑘𝑇 +1
    

 We have Fermi energy 

                                      𝜀𝐹 0 =
𝑕2

2𝑚
  

3𝑛

4𝜋𝑣𝑔𝑠
 

2/3

 

                                
3𝑛

4𝜋𝑣𝑔𝑠
 

2/3

=  
2𝑚𝜀𝐹(0)

𝑕2
  

                                     
3𝑛

4𝜋𝑣𝑔𝑠
 =  

2𝑚𝜀𝐹(0)

𝑕2  
3/2

 

                                     
4𝜋𝑣𝑔𝑠

3𝑛
 =  

2𝑚𝜀𝐹(0)

𝑕2  
−3/2
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                                                 =  
𝑕2

2𝑚𝜀𝐹(0)
 

3/2

 

                                     𝑛 𝜀 𝑑𝜀 = 3𝑛  
𝑕2

2𝑚𝜀𝐹(0)
 

3/2

 
2𝑚3

𝑕6  
1/2

𝜀1/2𝑑𝜀

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1
 

                                                 =
3 

2
 

𝑛

 𝜀𝐹(0) 3/2  
 𝜀1/2𝑑𝜀

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1
                                        … . (10) 

                                              𝑛 =  𝑛 𝜀 𝑑𝜀
∞

0
 

                                                 =
3

2
 

𝑛

 𝜀𝐹(0) 3/2  
𝜀1/2𝑑𝜀

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1
                                      … . (11)

∞

0
  

                                             𝐸 =  𝜀 𝑛 𝜀 𝑑𝜀
∞

0
 

                                                 =
 3

2

𝑛

 𝜀𝐹(0) 3/2   
𝜀1/2𝑑𝜀

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1
                                        … . (12)

∞

0
 

 To solve the integrals in equation (11) and (12), we consider the general integral  

                                             𝐼 =  
𝜑 𝜀 𝑑𝜀

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1
                                                             … . (13)

∞

0
 

 Here, 𝜑(𝜀) is a function of 𝜀 such that 𝜑 𝜀 = 0 𝑎𝑡 𝜀 = 0. 

 By Taylor series expansion, 

                        
𝜑 𝜀 𝑑𝜀

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1
=  𝜑 𝜀 𝑑𝜀 +

 𝜋𝑘𝑇  2

6
 𝜑′ 𝜀=𝜀𝐹 +

7

360
  𝜋𝑘𝑇 4 𝜑′′′ 𝜀=𝜀𝐹 + ⋯

𝜀𝐹

0

∞

0
 

                          Take    𝜑 𝜀 = 𝜀1/2 

                                   𝜑′ 
𝜀=𝜀𝐹

=
1

2
 𝜀𝐹

−1/2 

                                      𝜑′′ 
𝜀=𝜀𝐹

= −
1

4
𝜀𝐹

−3/2  

                                   𝜑′′′ 
𝜀=𝜀𝐹

=
3

8
𝜀𝐹

−5/2 

                                           𝑛 =
3

2
 

𝑛

 𝜀𝐹(0) 3/2  
𝜀1/2𝑑𝜀

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1

∞

0
 

                                          

=
3

2
 

𝑛

 𝜀𝐹(0) 3/2   
2

3
 𝜀𝐹

3/2 +
 𝜋𝑘𝑇  2

6

1

2
 𝜀𝐹

−1/2 +
7

360
  𝜋𝑘𝑇 4 3

8
 𝜀𝐹

−5/2 + ⋯  
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                                           𝑛 = 𝑛  
𝜀𝐹

𝜀𝐹(0)
 

3/2

 1 +
1

8
  

𝜋𝑘𝑇

𝜀𝐹
 

2

+
7

640
  

𝜋𝑘𝑇

𝜀𝐹
 

4

+ ⋯……  

                                 
𝜀𝐹

𝜀𝐹(0)
 

3/2

=  1 +
1

8
  

𝜋𝑘𝑇

𝜀𝐹
 

2

+
7

640
  

𝜋𝑘𝑇

𝜀𝐹
 

4

+ ⋯……   

 To the first approximation we get ,                       

                
𝜀𝐹

𝜀𝐹(0)
 
−3/2

=  1 +
1

8
  

𝜋𝑘𝑇

𝜀𝐹
 

2

                                                                       

                         
𝜀𝐹

𝜀𝐹(0)
 =  1 +

1

8
  

𝜋𝑘𝑇

𝜀𝐹
 

2

 
−2/3

 

                                             =  1 −
1

12
  

𝜋𝑘𝑇

𝜀𝐹
 

2

                                                             … . (14) 

                                       𝜀𝐹 = 𝜀𝐹 0  1 −
1

12
  

𝜋𝑘𝑇

𝜀𝐹
 

2

                                                    … . (15) 

 By applying Crude approximation we get, 

                                      𝜀𝐹 = 𝜀𝐹 0  1 −
1

12
  

𝜋𝑘𝑇

𝜀𝐹 0 
 

2

                                                   … . (16) 

                  Take        𝜑 𝜀 = 𝜀3/2 

                          𝜀3/2𝑑𝜀 =
2

5
  𝜀𝐹 

5/2𝜀𝐹

0
 

                          𝜑′(𝜀) 
𝜀=𝜀𝐹

=
3

2
 𝜀𝐹

1/2 

                          𝜑′′(𝜀) 
𝜀=𝜀𝐹

=
3

4
𝜀𝐹

−1/2 

                          𝜑′′′(𝜀) 
𝜀=𝜀𝐹

= −
3

8
𝜀𝐹

−3/2 

                                       𝐸 =
3

2

𝑛

 𝜀𝐹(0) 3/2  
𝜀3/2𝑑𝜀

𝑒 (𝜀−𝜀𝐹)/𝑘𝑇 +1

∞

0
 

                                           

=
3

2
 

𝑛

 𝜀𝐹(0) 3/2   
2

5
 𝜀𝐹

5/2 +
 𝜋𝑘𝑇  2

6

3

2
 𝜀𝐹

1/2 −
7

360
  𝜋𝑘𝑇 4 3

8
 𝜀𝐹

−3/2 + ⋯   

                                              =
3

5
 𝑛 

𝜀𝐹
5/2

 𝜀𝐹(0) 3/2  1 +
5

8
  

𝜋𝑘𝑇

𝜀𝐹
 

2

−
7

384
  

𝜋𝑘𝑇

𝜀𝐹
 

4

+ ⋯  
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                                              =
3

5
 𝑛𝜀𝐹 0  

𝜀𝐹

𝜀𝐹(0)
 

5/2

 1 +
5

8
  

𝜋𝑘𝑇

𝜀𝐹
 

2

−
7

384
  

𝜋𝑘𝑇

𝜀𝐹
 

4

+ ⋯  

 To the first approximation we get, 

                                         𝐸 =
3

5
𝑛𝜀𝐹 0  

𝜀𝐹

𝜀𝐹(0)
 

5/2

 1 +
5

8
  

𝜋𝑘𝑇

𝜀𝐹
 

2

                          … . (17)   

 By applying Crude approximation we get, 

                                        𝐸 =
3

5
𝑛𝜀𝐹 0  

𝜀𝐹

𝜀𝐹(0)
 

5/2

 1 +
5

8
  

𝜋𝑘𝑇

𝜀𝐹 0 
 

2

                           … . (18)   

 Using equation (16) we get, 

                                           =
3

5
𝑛𝜀𝐹 0   1 −

1

12
   

𝜋𝑘𝑇

𝜀𝐹(0)
 

2

 
5/2

 1 +
5

8
  

𝜋𝑘𝑇

𝜀𝐹(0)
 

2

  

                                           =
3

5
𝑛𝜀𝐹 0   1 −

5

24
 

𝜋𝑘𝑇

𝜀𝐹(0)
 

2

   1 +
5

8
  

𝜋𝑘𝑇

𝜀𝐹(0)
 

2

  

                                            =
3

5
𝑛𝜀𝐹 0   1 −

5

24
 

𝜋𝑘𝑇

𝜀𝐹(0)
 

2

+
5

8
  

𝜋𝑘𝑇

𝜀𝐹(0)
 

2

  

                                         𝐸 =
3

5
 𝑛𝜀𝐹 0   1 +

5

12
  

𝜋𝑘𝑇

𝜀𝐹 0 
 

2

                                        … .  19  

 The corresponding pressure is  

                                          𝑝 =
2 

3
 
𝐸

𝑉
 

                                             =
2

5
 
𝑛𝜀𝐹 0 

𝑉
  1 +

5

12
  

𝜋𝑘𝑇

𝜀𝐹 0 
 

2

                                               (20) 

 Equations (19) and (20) give the approximate energy and pressure of a strongly 

degenerate Fermi gas and also known as equation of state of an ideal Fermi gas. 
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