UNIT-I
Survey of the Elementary Principles

1.1 Mechanics of a Particle
Let m be the mass of the given particle, o be the fixed origin and 7 be the radius
vector of m with respect to ‘O’ at any instant of time‘t’.

The velocity of m with respect to ‘O’ is the rate of change of displacement.

- - a_ﬂ =
(ie) velocuyv—dt =r
Acceleration is the rate of change of velocity.

ds  dr)

(ie) accelerationa=— = =7
dt dt

Linear momentum of a particle

The linear momentum of a particle of mass ‘m’ with velocity ‘v’ is mv and it is
denoted by § = m% = m7) .
By Newton’s second law of motion the rate of change of momentum of a body

is proportional to the impressed force.

If Fis the impressed force acting on a particle of mass ‘m’ then F is

proportional to the rate of change of momentum.
. =2 dp
(ie) F o -
F=k ‘;—’Z where k is a constant.

By choosing suitable mass and time we get the constant k=1.

. 2 dp

F=22

dt

d -

= —mv
dt
dv
:m—



Conservation Theorem for the linear momentum of a particle

Statement:

If the total force, F, is zero then,ﬁ IS conserved.
Proof:

We know that,

> dp
F=-=L
dt

fF=0, L=y
dt
(ie) P is constant.

(ie) The linear momentum is conserved.

Angular momentum of a particle

The Angular momentum of a particle of mass ‘m’ with respect to a fixed point

‘O’ is defined to be L = # x # where 7 is the linear momentum of the particle.

Moment of force (or) torque

> -

The moment of a force F with respect to a fixed origin is defined as N = # xF

Prove that moment of force is the rate of change of angular momentum.

(ie) To Prove N= Z—f.
Proof:

We have,

L=Fxp

di_ d

—= (" xp)

dF . o dp
= Ixptix=
dt dt

- - - =

=UXp+r X F

=UXMUv+7rXF



Conservation Theorem for the Angular Momentum of a Particle

Statement:

If the total torque, N, is zero then L = 0, and the angular momentum Lis

conserved.
Proof:

We Know that,

— dL
dt

If N=0.

dr
—==0
dt

L is constant

(ie) L is conserved.

Hence the angular momentum is conserved.

Work done

The work done by the external force F upon the particle in going from point 1

to point 2 is defined by Wy,=/ 12 F d3 where dscorresponds to an infinitesimal

displacement.



Prove that work done is equal to the change in the kinetic energy
Proof:
We Know that,

W12=f12 ﬁd§

= [7 ¥ g3
1 at

'fz d(mv) ds
1 dt dt

2 dv —
=m — vdt
1 dt

=m [ 12 dv.v
=mf; ~(av?)
=3I, @?)
= %mvz2 - %mvl2

= kinetic energy at 2- Kinetic energy at 1
Therefore P Dol R (1)

The scalar quantity%mv2 is called the kinetic energy of the particle and its

denoted by T.

A necessary and sufficient condition that W1, be independent of the physical

part taken by the particle is F= -Vv(7) where v is called the potential energy.
We know that,

The work done in displacing a particle from point 1 to point 2 is given by
Wi,= ff F.d# where r, and r; are the position vectors of the particle at the

point 1 and point 2.



Wio= f:lz F.d7 +f1:)2 F.d7

(0B 32 (T0 B 4=
—frlo F.dr—frz0 F.d7

For the conservative system T,-T1=Vi- V2

.. Ti+vi=Tr+ Vv,

Hence if the force acting on a particle are conservative, then the total energy of

the particle, T+V is conserved.

1.2 MECHANICS OF A SYSTEM OF PARTICLES
Consider a system of particles of masses m; m,_. m;  with position vectors
P72 T
Let us consider the forces acting on the particle of mass m;
Let 75,1 be the internal force on the i™" particle due to the j*" particle.
The total internal force acting on a particle of mass mjis Y.; ?ji,
Clearly Fii-0 and Fji= - Fj
This implies Fjj+ F;i=0

Let Fi be the external force acting on the particle of mass m;,
.".the total force acting on the particle of mass my is Y,; Fji+ F¢

We have assumed that Fjjobey Newton’s third law of motion, that the forces of
two particles exert on each other are equal and opposite. This assumption is

called as weak law of action and reaction.

The total force acting on the system of particles =};(X; T)ji +F?)
=2ij Fji+Ff
=2 Fe
—Fe



Center of mass
Let R be the average of the radii vectors of the particles, weighted in proportion

to their mass:

L mz

R= xm;

M

where M = ), m; is the total mass of the system.

The vector R defines a point known as the center of mass or center of gravity of

the system.

b

Differentiate with respect to ‘t

dR d#;
M — = ym;—
dt Z Ldt
=X m; Vi
=i
. . dR S
.M— =
dt p
d?R _dp _ 2
dt dt p

. d?R _—= 3
(ie) MF: Féwhere F€is a total external force.

Conservation Theorem for the linear momentum of a system of particles

Statement:
If the total external forces zero, the total linear momentum is conserved.

Proof:
We know that,

p = Fewhere F® is the total external force and p is the linear momentum.
If F¢ =0,thenp =0

Hence p is conserved.



Conservation Theorem for total angular momentum:
Statement:
If L is the angular momentum of the system of particles, the L is constant in

time if the applied torque is zero.
Proof:

The angular momentum of the system of particles is L= YT D

= Ziﬁ miT;i

dr d -
- =—(iTm Vi)
_ d - — - d —
—Ziarixmi Vit T; X g(mi Vi)
—. - d
= Y vixm; vit ZiTiXEPi
- . >
= Xi(vixvi) + X; 1ixp,
>
= i TiXDp,

=YX F;

@)

= Y.{X; Fii+ F®)}where ¥; Fjiis the internal force on the i particle and
"Fi¢is the external force on the particle of mass m;.

=2 7xY; ?ji}+ Zi(_T:iX T*ﬂ)ie)

-

dL > —
— =X nixFyt Xi(rix Fy)
Now,
_)l'XF]l = [_)lX ji + 17';X l]]
Lj Lj

=Zi,j[(Fi—?})Xﬁ}'i ]

= 21X F;; =0



If the internal forces between two particles in addition to being equal and
opposite also lie along the line joining the particles, then all these cross products

vanish, is known as the strong law of action and reaction.

There for,
dL —
- = Zilnx FY)
=i 1—V>ie
= ]_V)e

(ie) The time derivative of the total angular momentum is equal to the moment

of the external force about the given point.

If Ne =0, then £ =0
dt

.".L is constant.

That is the angular momentum of the system of particles is constant.

Problem

Prove that the total angular momentum about a point ‘0’ is the angular
momentum of the system concentrated at the center of mass plus the angular
momentum of the motion about the center of mass.

Solution:

Let G be the center of mass, ‘O’ be the fixed point and 7; be the position vector
of the particle mass m; with respect to ‘O’.

Let #; be the position vector of the particle of mass m;with respect to the center
of mass G and Rbe the position vector of G with respect to o.

We have,

7, = 77 +R

. dT_)l' d - =
..— =—(r; ¥R
dt dt(‘ )
_dwy +d§
dt dt



That is ¥; = ¥; +V where v;is the velocity of the i mass. ; is the velocity of
the i" mass with respect to G and V is the velocity of G with respect to ‘o’

If | denote the total angular momentum of the system of particles then

L =Y, % P; where 7 is the position vector and #; is the linear momentum of the
i" particle.

.

oL =X Tixm v
=Yi(# + R) xm(#;+V)
=Zim @ + R)x (#;+V)
=Y, m;(# x B + 7’ x v+ R X 3; +RxV)
=YimF xB) + Tim (7 xv) + Xymy (R x 3;7) + Xm (Rx V)

_ - - - - - =g
= Zimir‘i' X Ui’ + Zi miri, XV -+ RZL mivi’ + RXVZimi

dT'i

dt

=Y 7 x () + 37 )x v + RY;m; == + (RxV)M

where M = ), m;
> > ) - ) = d - -
=y x(mv;’) + Y (mr)x v + RXEZimi 7"+ (RxV)M
We Know That,

The radius vector of the center of mass with respect to the center of mass m=0.

. XMy P i = A
ST 0 this implies Y, m;z,=0 7’
T
L=Y,7" x(mv;’) + Rx MV ’
R
=27 x (@) + Rx p




The first term in the R.H.S is the angular momentum of the system about the
center of mass G, which is known as the angular momentum of the motion
about the center of mass. The second term in the R.H.S is the angular

momentum of the single mass m concentrated at the center of mass.

Find an expression for kinetic energy of the system of particles
(OR)

Prove that T= %mv2 +%Zi m, U;?

Solution:

Consider a particle of mass m; with position vector #; about ‘O’.

Let G be center of mass.

.".We have,
; = 1; +R
d; d, - =
" —=—(# +R)
dt dt
d#y’ R
= +d—R
dt  dt

(ie)v; = v; +V
Kinetic energy of m; with respect to ‘O’ = %miviz

.". kinetic energy of the system of particle = %Zi m, ;2

1 ) - >
=5 Xim; (U; +V)(U; +V)
= (B;72+3; V4V, +V?)

1 L, 1 g1
= Xim U 4 S Em 20, V+ 23 m V)

dary
dt

1 . 1
= Xim U 2 +V Lm——+ SMV?)
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We Know that,

The radius vector of the center of mass with respect to the center of mass =0

c XM
S =0
= Xmzy =0

-

. _ 1 2 1 - ,2 1 ,2 - - - -
.. T=omy +EZimi v;'“ where EZimi v;'“1s the kinetic energy of the motion

about the center of mass and %mv2 Is the Kinetic energy obtained all the mass

where concentrated at the center of mass.
Note

A force F is said to be conservative force if the work done by the force F in
displaying a particle from a position A to a position B is independent of the path

joining A and B. But dependent only on the position of A and B.

That is,
[ F.d# is independent of c.

We Know that,

A necessary and sufficient condition for a force F is said to be conservative
force if VxF=0

If VXF=0 then there exist a scalar potential ¢ such that F=-V ¢
This ¢ is nothing but v where v is the potential energy.

F=VV
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In mechanics if F is a force, then fff.’d? is the work done by the force F. In
displacing a particle fro, position A to position B.

If the above integral is independent of the path joining A and B, Then F is said
to be a conservative force.

If F is the conservative force, then we can find a function v such that

F =-V VV where v is the potential energy.

Energy Conservation theorem for a system of particles

Statement:

The total energy of a system of particles at configuration 1 is equal to the total
energy of a system of particles at configuration 2.

Proof:

We Know That,

The equation of motion for a system of particles is Fi=P,

.. The total force acting on the system is F = ¥}, F;

The work done by F; on the elementary mass m; is F; ds;
Now,
Work done by the forces acting on the system of particles in bringing the system

from configuration 1 to configuration 2 is given by

W12 =Zi J~12 F)a)Si

Zi Pl a)Si

2 dp,

= Zifl dtla)si

12



2dv,

=Zimi flz dVi Vi
21
= Zi mi 1 Ed Vi2
= Xim, ;v
1
= Zi [Eml Vi2]21
:[ Zi Ti ]21
Wi = To-Ty
Again ,
Wi = Zi F‘)i aSi
2 —_— —_— —
=2 [, [Z) Fii+ Ff]ds;
2 - — 2. —= —
=X J[ [ Filds; +%; [ Fi€] ds;
=Work done by all the internal forces in bringing the system from configuration
1 to configuration 2 + Work done by all the external forces in bringing the
system from configuration 1 to configuration 2.
Suppose,
The external forces acting on the system is conservative. Then Fe= -Vive

.".the work done by the external force =Y, ff[?ie] ds; =Y; f12 [-Vivie ]ds,

20 — pg H H — —
=- fl o viedr; [since for elementary displacement ds, = d7; ]
l

== X f (s B+ oo D4k o= B dxt dypbk dz)

ox; ay;
= zlff(a%au % ”'“a%?'e)
= Ziflzdae
=T
=-[v]4
= V51,0
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Suppose the internal force is acting on the system of particles are conservative

then they can be derived from a potential constant.

.".the internal force is ﬁij and ﬁjibetween the i and j* particles can be derived
from the same potential function v;;.
.".The work done by the (i.j) " pair = -{ [ Vi#; d5; + Vip;; ds; 1}
We Know That,
Viﬁij = V.Jﬁl]:-Vjﬁl]
- - . - 2 - — - —
.".The work done by the (i,j) " pair = -{f, [ Vii;; ds; - Vijv;; ds; 1}
2 —> — —
=-{J; Vi;; (ds; - ds;)}
2 - — —
=-[, Vivy; (dr} - d7})
2 - — —
=-[ Vv d@@ - 77)
2 - —_
=, Vij;dry,
.".the total work done by the internal force =-};; ; ff[v U007
The factor % occurs in the above expression, when we take the summation over
.

The total work done by the internal force = -1221-,]- flz a%jﬁijdﬁ

e o Bt 100 ok
=- %Zi,j flz d (Vi)

L[% Zi,j Vi

= -[vil:

Vv,

Wi =3 flz 2 Fjidsi+2; flz Fi® ds;

14



=(vi'-v2') + (V1%-V2°)
=(vi'+ Vi) — (V2 V7))
= V1-V, Where v=ve+v!
But we have already prove the work done by the forces in displacing the system
of particles from configuration 1 to configuration 2 is Wi, = To-Ty.
We get,
Vi1-Vo=To-Ty.
That is,
Ti+vy = To+vowhere T+V is called the total energy.
This shows that the total energy is conserved in shifting system from

configuration 1 to configuration 2.

1.3. Constraints.
The limitations or the geometrical restrictions on the motion of a particles or

system of particles are known as constraints.
The equation of motion for i"" mass is ¥;; Fj;+ Fi¢ = Pi
_d,
= E(mivi)
= Mt
Here we consider only the internal as well as the external forces but there are

constraints which limit the motion of the particle or system.

Examples of constraints

1. Consider a rigid body, which is a system involving constraints, where the
constraints on the motion of the particles keep the distance 7#;; between the i""and

j™ particle remains unchanged. Here the particles are not moving inside.

15



2. The beads of an abacus are constraint to one dimensional motion by the

supporting wires.

3. Gas molecules with in a container are constraint by the walls of the vessel to

move only inside the container.

4. The motion of a particle placed on the surface of the solid sphere is subject to

the constraint that it can move only on the surface or outside the surface.

Classification of constraints
1. Holonomic constraint and non holonomic constraint
Let 7, ,75...T;, be the position coordinates of the system of particles. If the
conditions of the constraints can be expressed as the equations connecting the
coordinates of the particle having the form f(r; ,7;...7,,t)=0, then the constraints
are said to be holonomic constraints.
If the conditions of the constraints are not expressed in the above form, then

they are called non holonomic constraints.

Examples of holonomic constraints

1.The constraints involved in the rigid body in which the distance between any
two particles is always fixed are holonomic. Since the condition of constraints
are expressed as (7i-7j)*=Cj*

2.The constraints involved when a particle is restricted to move along a curve
are holonomic, suppose a particle moves in a plane along the line (x+y) = 7, the

condition of constraints is xy-7=0.

Examples of non holonomic constraints
1.The constraints involved in the motion of the molecules in the gas container
are non holonomic. The condition of constraints in this case are expressed as

r’-a°<0.

16



2. The constraints involving in the motion of the particle placed on the surface
of the sphere is non holonomic. The condition of constraints in this case are
expressed as r2-a?>0 where a is the radius of the sphere and r is the distance of

the particle from the center of the sphere.

scleronomous constraints
If the equation of constraints is independent of time, then the constraint is

known as scleronomous constraints.

Example
A bead sliding on a rigid curve wire fixed in space is an example scleronomus

constraints.

Rheonomus constraints
Constraints which contains time explicitly is known as Rheonomus

constraints.

Example
In the above example if the wire itself is moving in some prescribed fashion

then the constraint is Rheonomus.

Generalized Coordinates
The minimum possible number of independent coordinates required to specify
the configurations of a system at any intent of time is known as the generalized
coordinates.

It is denoted by the letters, q1,02....qn.

Ifqs1,0....On are the generalized coordinates of the system then qi1.g...gn» are the
components of the velocities corresponding to the above coordinates. The

generalized coordinates must satisfy the following two conditions.

17



1. The values of the coordinates determine the configuration of the system.
2. They may be varied arbitrarily and independently of each other, without

violating the constraints of the system.

Examples
1. Consider a particle which moves in space, we can fixed in the position of the
particle by using the coordinates X,y,z. Hence we require 3 generalized

coordinates to fix the particles which moves in space.

2. When a particle moves in a plane it may be described by Cartesian
coordinates x and y or the polar coordinate r16. So the generalized coordinates

are two.

3. Consider a particle which is constraint to move only on a sphere of radius a.
Then the generalized coordinates required are 2 namely 8 and ¢(longitude and
latitude).

4. The beats of an abacus has the generalized coordinate x (the Cartesian

coordinate along the horizontal wire)

Degrees of freedom

The number of independent ways in which a mechanical system can move
without vialing any constraint is called the number of degrees of freedom of the
system. It is indicated by the least possible number of coordinates to describe

the system.

18



Example

1.The degrees of freedom for a particle which moves freely in the space is 3, if
It is constrained to move along a certain space curve is the degrees of freedom
is 1.

The degrees of freedom for a system containing n particles is 3N- k where k is

the number of constraints on the system.

Transformation equations
The old coordinatesr;,75,...7, are expressed as functions of the generalized
coordinates 01,0»....0n. and possibly functions of time. These equations are called

as the Transformation equations.

Example

1.If we consider a particle with the spherical polar coordinates as the
generalized coordinates, then the transformation equations are,

x=rsinfcos@ =X(r, 6, )

Y=rsinfsing =y(r, 6, @)

z=rcosf =z(r, 6, @)

In the same way if (Xi,yizi) are the cartition coordinates of the i"" particle of the
system whose generalized coordinates are (i,0,....Qn. then the transformation
equation are Xi=Xi (01,02, ..qn,t)

Yi=Yi (01,02, . -dn,1)

2i=Z; (41,032, . .qn,t) Where t denote the time.

If 7 = x; i+ yijj+ zik denote the position vector of the i particle then the

transformation equation can be defined as 7;=r; (q1,92. . ..qn,t).
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Unit 11
(1.4) D’Alemberts Principle and Lagranges Equations

Virtual displacement

A virtual displacement of a system refers to a change in the configuration of the
system as the result of any arbitrary infinitesimal change of the coordinates §7;
consistent with the forces and constraints imposed on the system at the given
instant t.

Virtual work done

The work done by the forces of the system during the virtual displacement is
known as Virtual work done.

Principle of Virtual work done

For a system which is in equilibrium the virtual work done of the applied force
IS zero.

Proof
Consider a mechanical system which is in equilibrium.

Hence the total force on each particle vanishes.
(ie) Fi=0 forall i.

Clearly the dot product of the force F;on the virtual displacement 67; must
vanishes.

(ie) Fi67=0

Y i STi=0 e (1)
If there are constraints then the force F; acting on the i particle can be
written as the sum of the constraint force fiand the applied force Fg.

Fi = Fe+f

Si(Fi.67)  =Xi(Ff+ 1) o

Y. (Fi.67) =X, Ffé#i+f67)=0

20



Zi(?ia + —fi -Ei). STi=0 o, (2)
From (1) and (2)
Zi(?ia 57—”’i + fi57_”’i) =0

Suppose we restrict ourselves to such mechanical system where the virtual work
done by the forces of constraint is zero.

(ie)X;(fi67i) =0

We get,

Si(From) =0

Hence this is known as principle of virtual work done.
D’Alemberts Principle

Statement:

The virtual work done by the applied force together with the reverse effective
force of the system vanishes.

Proof:

Equation of motion for the i particle of the system is Fi = P where P; is the
linear momentum of the i particle due to the force Fi acting on the i"" particle.

?. +(- E.) =0

This shows that the mechanical system can be considered to be at rest under the

force Fi +(- P;) where Fi is the total force and (- Py) is the reverse effective
force acting on the particle.

If §7; is the virtual displacement of the i particle , then (Fi - P;) 67 =

If forces of constraints are present, then F; = F@ + f; where Fiis the applied
force and 7i is the force of constraint on the i particle.
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Equation (1) implies 3;( F + fi -f’)i). 57i=0

(ie) Yi(F -B). 67 -Yi( Fio 67) =0 cvooeoeooe, @)

If we restrict our self to the cases where the forces of constraint have no work
then ¥;( fi . 67) =0.

Equation (2) becomes ¥;( F? -Ei). STi=0 ..o, 3)

This 1s called D’ Alemberts Principle.

We have restricted ourselves to the system where the virtual work done by the

forces of constraints disappeared. So that we can drop the superscript a in (3).

.".D’Alemberts Principle becomes Zi(?ia -P;). 67 =0.

Note

If the system is at rest, then X;( fi. 87i) =0

If the system is in motion, then ¥;( F -l_'D)i). Sri=0.

Derive Lagranges equation from D’Alemberts Principle

Consider a holonomic system with n generalized coordinates q1,0z....On.
Let # be the position vector of the i mass.

By using the transformation equation, we can write 7 =7i(q1,05....qn,t)

Let ¥; be the velocity of the i™ mass.

> a -
Vi =T
dt
= Ofiday | Ofy ddy | | O, day 0%,
dq, dt dq, dt dqn dt at
a7 . or; . 07
= iql-l‘..."‘_rl an +1
6q1 aCIn at
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R et Gt S e (1)

Similarly,

The virtual displacement 67;can be connected with the virtual displacementédg;.

N _ o7y 07
. .07 L5q - 5
i 6q1 dn
6.}_ Z a7 5 2
i == 134, Qi «vvemeeneen (2)

Now,

Consider the virtual work done by the forces acting on the system.

Virtual work done = ¥; Fi 67
_Zl Fl Z} 1 a
_ = aﬂ'
—Zi,j Fla_qj 84q;

o7

_Z][ZlFl ] 56[1

= Y;Qj6qj where the Q; are called the components of

generalized force defined as Q; = Y; F1ﬁ

The Virtual work done by the force acting on the system is equal to Zil_fi S87i=

The D’ Alemberts Principle is ¥;( F —l_'D)i). S7i=
3) :>Zj Qidq; = Zi(pi)- 8T
= 3(P).Zj[51 6
l 1) J Oqj

= zi<mi?i).zj[§—21 5
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.-.>6Fl-
=Y. i miti— 0q
Zl,] Ilaq]_ q]

(ie) X; Q; 6q; =22 (m. ]5qJ ......................
Now,
or d 2. or
i S, 0T i_)% i ar;
BUtdt( laq]') _dtrla j lat aq]')
d 207 _d o 07 d 07
dt( 9q; B dt(rl dq Iolt(aq )
: d 2 07 d ,07;
2 (mif® = Ll g (i) - mitics GOl
_i 7_6ﬂ- _ i o7
dt(Zlmuruaqj) X irl— (aq)
".Equation(l)
_ a7 > d a7
=2 Qi6q; —Z][ (Zlmlrl )Zlml 94
Claim:(i)
ofi _ or
aq]- aq]'

We Know That,

7 =7i(q1,02... On,t)

Similarly,

Qz2....0n,0).

Now
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ori

— T
S =3 )
a7
5 (ke oot i+ 51 [since (1)
=0 (9%idday , Ofiday | 0% dan 07
dqj ~0q, dt dq, dt dq, dt at
0 07 . oty . . 0T
=— +.. —g,+—=
d4; [aq1q1 9 an+7;
aT'l 6FL
( )aq, 9q;
Claim:(ii)
d 9 .
— and — are interchangeable.
dt 2q;
4 o7 :iﬁ)ﬂ+-._+_a (ﬁ)dﬂ+i(ﬁ
t ~0q; 0q,°0q;j” dt 0qn 0qj” dt 0t 0q;
_i aT'i q + d aT'i q +i aTi
0q1°0q;j 0qn 0q;j ot oq;
ot . d 07
= + =
(Zk 1aq )qk at aCIj ......................... (A)
Also,
0 dr; 0 a7 o7 .
20, ot aq]_[Z 1( )qk t](smce €5)

From (A) and (B) We get,

d ,07;
dt aq]'

8 am
aq]' at

d d .
Hence —and — are interchangeable.
dt 6qj

a7

(”) :ZjQJSQJ' _Z][ (Zlm|r| ) Zl

arl

—Z,[ Qimitg ) - 2im

25
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2 0 drl
miri— 0q;
Ti5q; at qi



a7i

= 3l it ) - St ] 8
=5l Gy Zimigv) 5. Lemivi] 8
=%l o) ~ 54194

(ie) X1 (aiqj ~ 541041 £, 184, =0

Z [dt (_ — o QJ] 6q;=0

Since the constraints are holonomic the generalized coordinates g;’s are all
independent of each other.

Hence the above equation will be true only if each coefficient of &gq;is zero.

da ,oT

(9) 5 G (G = Q)

These n equations are called as Lagranges equation from D’ Alemberts Principle
or Lagranges equation of motion for a holonomic system.

Note

The above equation is also known as the Lagranges equation of motion for a
holonomic non conservative system.

Derive Lagranges equation of motion for a holonomic conservative system
Proof:

We know the Lagranges equation of motion for a holonomic conservative

d oT

system with n generalized coordinates (q1,02,.0n) IS—==——=—=0Q;j, ] =
dt dq; aq]

1,2,3,...n where Q; = Ziﬁig—;l

Suppose the system is conservative,
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Fi=- V;v; for some potentialv;, where the suffix i of the V operator indicates
the differentiation must be done with respect to the components of 7.

We have,
_y RO
O  =uF 94,
ori
=2i(= Vi )6_q]
_ 0 ori
Zi or; L aqj
ovi
- ZiaTj
_ 9
=g (i vy)
0 . -
Q; =- a—: where v= (3; v;) is the potential energy.
]
We have,
aor _or_ o
dtdq; 9q; aq;
. d oT a(T-v
(ie) LI 20N -

dt a.q]' 6q]'
We know that,

V depends upon (1,0....g.) and v does not depend upon ¢4, G,,...Gx-

There fore 22 = 0,j=1,2,...n.
aq]'

Lagranges equation can be written as
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Taking L = T-V, the Lagrangian for the conservative system, the Lagranges

. d oL oL :
equation becomes = (a'_q,-) ~ 20 =0, j=1,2,...n.

This equation is known as Lagranges equation of motion for a holonomic
conservative system.

(1.5) velocity —Dependent potentials and the dissipation functions

d ,0L

Lagranges equation can be put in the form E( ) — 2 =0, event if there is no

a'_q,- 0q;
potential function V, in the usual sense, providing the generalized forces are
du d ,ou

obtained from a function U(g;, q;) by the prescription Q; = - FPY +— (67-
] ]

Proof:
We know that,

The Lagranges equation is,

% :TT,. _:_;;. =0j

(9) 5 G — g =5+ 5 G
(©) 4 G = 52-) - g+ (5:) =0
(&) (751 =5-(T-U)=0.

Take L = T -U, where U is the generalized potential or velocity dependent
potential .

i(a_T _9T _ 9
dt a-q]' aq]'

This is of the same form as the Lagranges equation of motion for the
conservative holonomic system.

28



Application of velocity dependent potential in the electro magnetic forces on
moving charges

Proof:

The force experience by a particle of charge ‘q’ at rest in an electric field of
intensity E is given by F; =qE. But if the particle is in motion the particle of
charge g will experience and additional force which is linearly proportional to
the velocity of charge this additional force is called magnetic force and it is

given by F, = % (ﬁB_)) where V is the velocity of the particle of charge g and B is
the magnetic field of intensity.

.".the total force of a uniformly moving particle of charge gis F=F; + F;
=qE +1(9B)

1,572
= q[E+;(vB)] .......................... (1)

The above equation is called the Lorentz force equation or Lorentz formula.

In Gaussian units the Maxwell’s equations are curl E=VXE-=- %Z—Ij ..........
(a) —

H=vxH=-12
curIH—VxH—-Cat .......... (b)
. — — >_
divD=VXD=4np............... (©) | (2)
divB=VXBE=0......cccerr..... G

where p is the density of electric charge c is the velocity of light B.

From (2)(d) we have V x B =0 it follows that there is a magnetic vector potential
A such that B = curl A.

(i) B =VXA...ooeeeii, (3)
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= _ 1
(2)(@) = curlE =-——

_ 10 .
=- ;a(curl A) (since 3)

10 > - -
=-—-o curl A —curl grad ¢ where ¢ is a scalar function

=-1¢ rla—j—c rl grad
T oc u ot urt g ¢
_ 104
E =-—o curlgrad @ ..................... 4)
The Lorentz force in terms of the potential ¢ and A is,
F=q[-22— gradg + ~{V XVX A} ..ccoooornrnnne (5)

To find V x(V x A)

[ Ji k
; 2 2| 2
Vx4 =|ox ay| oz
x y z
94, aAy 6AZ aﬁx
= — +
- K -9
I Ji k
VX(VxA)= Ve i W i v
04, 0Ay A, 84, O0Ay 04,
ady 0z 0z dx ox ay
_ it 04y 0y T 04y 0y i 04y Ay o 04, aAy
= - — — X _ =X +
Iy 5 51 " VelG, —50) Al 50 =51 - Ve — 501 K
04y 04, o 94, aAy
[Vx 0z dx y ay ]
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.. 0Ay
{i(¥, %

x4, 2

aAz

J . 0 ) 0 > — > = — —
= (57 it5,Jt 5 k) A + 40, + AV, ) (Ve
0 - - -
v, E)(Axi+‘4yj +Azk)
VX(VXA)= VAV)= (VDA oo (6)

Also A =A(X,y,z,1)

d_A :6_Ax+6_Ay+a_AZ+6_A

dat 0x ay 0z Jat
_Z_QIZC +a—i]7;, +a—‘2]7; +‘2—‘:
=(Vi+ k)(— +"’_A-+‘;_fz1 +Z_f
—VX(VXAT)+— ................................ (7)
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(5) implies

GY ¥ A
F :q[-%a—f- Vo +1:{V X(VxA)}

1 94 dA A

_ 1 —
= q[- “ ot Vo +: {VA V- E-l-a}]

=q[-Vop + 1;{V AV - 2—?}] The x components of the force is given by,

1

0 —_— =
Fo =alodo——@V)}--2A]

=0lof ¢~ AV} - Lo oAV

c dt 0v,

Since the scalar product potential q ¢ is independent of the velocity % (gep) =0

. _ 0 q,? = q d 0 > = 0

— O -LA ) LEO 2y L0
- ax(q ¢ C(A V) cdt avx(A V) +dt 0vy 9¢

=2 ao-LA N+~ (a0 -LA.TV
=5:d e (A V) +oHa e —H{A.V))

ov d oU _ _ 9.7 v
+—tawhere U=qo C(A.V) ....................... (8)

(Ie) Fx :'a d
Here U is known as the generalized potential or velocity dependent 1 potential.

The Lagrangian for a charged particle in an electromagnetic field is L =T —-U
L=T—(qp-%A.V)

Derive Lagranges equation for the case when there are frictional forces.
Proof:

We know that,

The frictional force is proportional to the velocity of the particle.

The x component of the frictional forces can be written as Fg = -K«Vy

32



Where Ky is the constant.

Frictional forces of this type may be derived in 0 terms of a function F known
as Rayleigh’s dissipation function and defined as F = %Zi (kyVix? + kyVl-y2 +
k,V;z?) where the summation is over the particles of the system.

From this definition it is clear that Fg = -K,Vy

OF

0vy

In symbolically Fy =Fp,i + Frj +Fp i

OF . OF . OF

0vy vy v,

oF . OF .
Ly it 5,0 45, K

'VVF

_ Ty
QJ Zl FﬁaCIJ

OF; ., 0F; .  OF; | 0T
dVix 0OV;y vz }aq]'

=—=2i(

6:)—"1 6Vl
(’JVl an

2i( =

BTl

i 57

o0F

Q  =-35

aq]'

d oT 0T
We know the lagranges equation for a holonomic system are PTETHRET =Q;
]

Let Qj - Qp + Q;» where Q; corresponds to conservative forces and Q;»
corresponds to frictional forces.

Then,
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Q= -j—:j and Q;» = -;—; where V is the potential of the conservative forces and

F is the Rayleigh’s dissipation function.

.. The lagranges equation becomes,

d oT 9T _ vV OF
dtaq]' aq]' aq]' aq]

d,or ov, 0
_(___)__

F
dt*aqj aq;’ 9q; 1i

0
T-V)+—=
(T-V) + 520
a(T-V)
94,

6]

d
) 5

dt

oF _
) - (T'V)+a_qj_0

d, oL aL oF
—(=—) - — + — =0 where L=T-V
dt aq]' aq]' aq]'

(1.6) Simple application of the Lagranges formulation

Obtain the kinetic energy in terms of the generalized velocities.

Consider a mechanical system be the n generalized coordinates g1, 0z.... Qn.

Let m; be the mass of the i particle and r; be the position vector of the particle.
The position vector 7, can be expressed in terms of generalized coordinates.

(ie) 7; = (01, Q... On 1)

Let T denote the kinetic energy of the system.

T= %Zi miv;z

We know that,
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arl arl .
+_
2 (St g + 2

=iy miy &g
_ZZlml[Zjaqj

o7 arl a7 arl . 072

__Zlml[z:]kaq 9qr q]qk Zjaq at Zkaq ot ( ]
1 ot 1 d la i 0 la i
= Xl Zim s god i+ Bl Eem i ST Tm i 55 4
2 m iy
. . 1 . al —
(|e) T = Mo +3;Mjg; + %) di(My) where Mo = ;=m i(5H2 M; =
arlarl 97y

If the given system is independent of time, then Z—i" =0
Mo=M; =0

1 ..
T=-2jkq;dx

This shows that T is a homogenous quadratic form in these generalized
velocities.

Motion of a single particle in space using coordinates

(Derive Lagrange’s equation of motion for a single particle moving freely in
space).

Proof:
Let x,y,z be the cartition coordinates of the particle.

Let m be the mass and T be the kinetic energy of the particle.



oT _

omx o —

aT .

— ZIMY i e 2
5, = MY .. (2)
aT-mz'

9z _

We know that,

The Lagranges equation of motion for a non conservative system m is

d or. 9T _
E(aqu)—a—qj—QJ-

Let Fy, Fy, F, be the generalized force along the x,y,z axis respectively.

Then the Lagranges equation becomes,

d AT, T _

aGP " B

d T, oT _

5(@)—5—5/ T T T T T U 3)
d T, 0T _

ao) "= —

By using (1),(2).(3)

~(m3) = Fy

d .

—(my)=F,

d, .\ _

E(mz) =F;

(ie) mi = Fy
my=F e 4)
mzZ=F,

In vector form eqn (4) can be written as m(X; + y;+Z;) = Fxi + Fyj+ FK
m # =F.
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Motion of a single particle in space using plane polar coordinate
Proof:
Let r,0 be the plane polar coordinate of the particle.

If x,y be the Cartesion coordinates of the particle, then the transformation
equation is x=r cos@ and y=r sinf

T= %mv2
= %ma’c2+y2)

%= -I Sin@O+1" cosh

y=r cos@0+rsing

(x%+y2)  =(-r sin@O+7 cos@)? +( r cos@H+ising)?
= 72(c0s%8 +sin?0)+ r3(6? sin’6 + cos266?)
=2+ r202(sin%0 + cos20)
—24 1202

The kinetic energy T = %m(f2+ r262)

oT

— 42
— =Mmr
or o
o
7
oT
% =0
aT 2 >
— =mr<6
200

Let Qr and Qg be the generalized forces along the radial and transverse
directions.
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a7
Now,
r =X Ty
r =rcos@i+rsingi
o7 ) L
— = +
P cos@ i + sing j
a7 . )
% =-rsin@ i + r cos6j

=r(-sinf i + coséj)
=rm

Qr=F.7 =F

The Lagranges equation are

d 9T, T _
=G =5 =0

d T, T _
2 Gg) —25 = Vo

d 0T oT
G~ = Fr

%(mi‘) —mré®=F,
m# — mr@? = F,
m(# —r0?) =F,

d T, aT

ac (68) ~ag = Fo

2 (mr20)-0 =
dt(mr@)o For



A 24y —
m—(r°6) = Fpr

— 1042
Fg = -m—(r°0)

Derive Lagrange’s equation of motion for Atwood’s machine.

A string passes over a smooth fixed pulley and carries at the ends masses m;
and ms.

Let x be the depth of m; below the axis pulley. The depth of m, below AB is

| —x where 1 is the length of the string between the two weights.
The kinetic energy T = = my (= x)2 += ma(Z (1 — x))?
2 ! dt 2 2 dt
T= % (Mg+ my) x2

Let AB be the standard level of potential energy.

Potential energy of m; = -m;gx and /\

potential energy of m; =- m,g(I-x)

The Lagrangian L =T-V X

(ie) L= % (Mg+ my) %%+ mygx + mp g(I-x)

M;

We know that,

M,

The Lagrangian equation of motion for a holonomic conservative system is

i(a_L _ 9 g
dt aq]' aq]'

Since the pulley is assumed frictionless and mass less it is clear that there is
only one independent coordinate ‘x’
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The Lagrange’s equation becomes

d (E)L oL -0
dt “ox’  9x

Now,

oL .
—=(my+m
Pl ULRELRS

oL
™ =0 + myg + mg(0-1)

= myg - myg
=(my - my)g
There fore,

The Lagrange’s equation becomes,
d :

—((m1+mp)x) - (my - m2)g =0
(m1+my)X- (Mg - my)g =0

(my+my)¥= (my - my)g

.._(ml1l-m2)g
B (m1+m2)

Obtain the equation of motion of a bead sliding on a uniformly rotating wire
in a force free space.

Proof:
Consider a bead sliding on a uniformly rotating wire in a force free space.

The wire is straight and is rotated uniformly about some fixed axis
perpendicular to the wire.

Since the wire is rotating uniformly, the angular velocity w is constant.
Consider a bead as a point.

Let the coordinate of the bead be (r, 8)
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The transformation equation of the bead is x=r cos@ and y=rsinf
We can expressed the constraint by the relation 6 =wt

Here 6 is not independent and r is only independent object.
Generalized coordinate is r.

The transformation equation becomes X=r cos wt, y=rsin wt
T=-m(x? +y7)

Now,

X =r cos wt

X =-rsin wt. w + 7 cos wt

x%= w?r?sin? wt + 12c0s? wt-2r wrsin wt cos wt

y=r sin wt

y= rcos wt. w + 1 sin wt

2= w?r’cos? wt + 72sin? wt+2r wrsin wt cos wt

X% +y2= w4%in®> wt + 72c0s? wt-2r wrsin wt cos wt+ w?r’cos® wt +
72sin? wt+2r w7-sin wt cos wt

= w?r2+ 72

T= % m(w?r’+ 12)
We know that,

The Lagranges equation of motion is

d T, OT _
x G~ &

Since we consider the force free space Q,=0

oT_ 1 :
5— E m(27")
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=mr

oT_1 2
P m(0+2r w?)

1
=— M2r w?
2
= mr w?
d .
— m7 — mr w?=0
dt
m# — mr w?=0
m#= mr w?
=r w?

The bead moves out wise due to the contrapuntal acceleration.

Problem

1.Show that Lagranges equation in the form of equation % (%) — ;—: = (_fj can
] ]

. d 0T 0T _ = . i
also be written as FrETY -25 = Qj. These are sometimes known as the Nielsen
j j

form of the Lagranges equations.
Proof:
We know that,

T is a kinetic energy.

—

T=4T
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_d 6T) +d?
dq] q; qj dq;
_d T d?

pr ey )dq]] i Yag;

—>

;”; d[("”)
Given,
i[(jjj L -,
i[(”) =Qi*5,
=220+

oT A :
% 2— Q; forallj

This is Nielsen form of the Lagranges equation.
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Unit-111
Variational principles and Lagrange’s Equations
2.1 Hamilton Principle:

Configuration space and motion of the system:

Definition

Consider a system with n generalized coordinates gi1.0....0n. The instantaneous
configuration of a system can be specified by a particular point in a Cartesian
hyper triangle space of n dimensional with q’s form the n coordinate axes. This
n dimensional space is known as configuration space. As time goes in the state
of the system changes and the system point moves in configuration space
tracing out a curve described as “The path of the motion of the system’’.

Hence the path of motion of the system refers to a curve in the configuration
space along with the system point moves. The time t is consider as a parameter
of the curve, to each point on the path there is associated one are more values of
the time.

Hamilton’s Principle

For monogenic system Hamilton’s Principlestates that “The motion of the
system from time t; to time t, is such that the line integral | = fttz L dt where L
1

= T-V, has a stationary value for the correct path of themotion. We have
summarized Hamilton’s Principle that the motion is such that the variation of
the line integral | for fixed time t; and t, is zero.

(i€)81 = & [, L (1.0>...Gn.G1 G G, DAL =0

(2.2) Some techniques of the calculus of variations:

Find the path y=y(x) between two values x: and x. such that the line integral J
of some function f(y,y’,x) is an extremum.
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Solution:
We have to consider only the varied path for which y;=y(Xx;) and y,=y(X>)
(ie)We consider all paths passes through (x1,y1) and (X2.y2).

Now we label all possible paths we have fix under consideration with different
values of a parameter @. Such that a=0 the curve would coincide with the path
or the paths giving on extremum for the integral.

Then y would be a function of both x and a can be represented by
y(X, @)=y(x,0)+ an(x) which vanishes at x=x; and x=x.

Then J= f f (y, ~ X) dx is also a function of a.

We get,
J(a) = f f (y(x, a) > (x,@),X) dx ]
(ie) ) = [ * f (y.y.¥) dx .
Differentiate with respect to ‘a’ /
X1, Y1
2 L —
== 7% Z’; Pyix + [ *( %Z—Z)dx ..................... (*)

Now,

af'ay X3 af 6 dy
j‘ ayaa f ( ayaa )) X

Xy af dy
= (355 (dx So)dx
_ (X2, Of
=[.( 3y
Since all the varied paths passes through (x1,y1) and (X2,y2)
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(_ x1 =0 and( Py x2 =0
We have,

Xz, Of ay dy .d
fxl( dy aa f ( Jda (dx) ay
Sub *

X2 afay Xz, 0y . dof
_fx1(6y6a f ( (dx ay dx

Multiply both side by da and evaluating the derivative a = 0

af d of

oot =[7( 57 - NG a-otxda

( )a oda =81
0
(D) a=oda =8y

0y .
(D a=odax =5 y

83=[( 3L =25y oy dx

dy dxdy
Now the integral J will be an extremum only if §J =0
Here 6J =0

Here 8y represents some arbitrary variation of « its o value and it is arbitrary.

- o d4of_
Hence 6J =0 only if 3y ax 07
of d of
Thus J is an extremum only for these curve y=y(x) for which — 3y ax 3y =0
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Application of calculus of variation

Prove that the shortest distance between two points in a plane as well as in
space is a straight line.

Proof:
Case (i)

We know that,

An arc element of arc length in a plane is ds = \/dx? + dy?

- 2 ay*
—\/dx 1+

— / dy?
ds = (1 +E) dx

The total length of any curve between points 1 and 2 is S = [ 12 ds
_ (X dy?
= fxlz (1 + @) dx
_ X2 B
= fxl V14 y?

S= f;cff(y, y, x)dx where f(v,7,x) = /1 + y2

. .. df _d 0
From calculus of variation £ = £ —f )=0.
dy dx “0y

We find S will be least for the path joining x; and x, for which

af d ,of

L LYo, (1)

dy dx “dy

fO,3,0) =1+

af _
ay_o

of _ 1 2y
0y  2,/1+y2

Y

ez
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(1):>SO-—(

i) 0

By Squaring on both side
We get,

-2
y?=C*(1+57)
yZ - CZ + y2c2
yA(1-C?)= C?

S is least along the straight line joining the two points. So the shortest
distance between two points in a plane is a straight line.

The constants ‘a’ and ‘b’ can be found from the initial condition that the
curve passes through the two end points (x1,y1) and (X2,y2).

Case:(ii)
If there are two points in space ds = /dx2? + dy? + dz?2
2 -
\/dx (1 + + dx2
\/(1 +—= + — dx
S=[’ds

d d
= 7 Ja+ @2+ (@2 ox
=[N+ 5% + 2% dx
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S= f,ff f, 9,2,z x)dx where f(y,7,2,2,x) = /1 + y2 + 22

S is an extremum if f satisfies the condition

af d ,of

3y dx a_y):O ............................... (D)
of d of \_
5y 2x (5 V0 (2)
of _
6y_0
of _ 1 2y
0y 2\14y%+22
-y
V1452422
of _
62_0
of _ 1 2z
8z 2. /1+y2+z2
_ z
B 1+y2+z2
(1) Implies 0 - TH(-—=—) =0
v
Jiyzezz

By squaring we get,

y? - (.2
14+v2 .2 ¥l
ye+z

2 =C 1+ 9% +2?)
yZ — 612 + y2C12+ C12Z'2
Y210 %)= G+, 22

.o _ C1%(1+2?)

R o R IR (3)
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(= 0-(=—=) =0
ixJiry2iz2
__Z
Ny =G
By squaring we get,
Z'Z
1+y2+22 =G
2 -
Z = C,%(1 + y% + 2?)
2 — .
Z = C,% + y2C,%+ €222
y2C,% = 2%- C,%- C,% 2%
yz 22-C,° (1+2?)
(G e

Equating (3) and (4)

C,2(1+422) _ 22-C, (1+22)
(1-¢:?) (€2?)

0=2%(1-C,* —C;*)-C,*
22 (1-C,° = G *) = G,°

P
(1-C%-¢,?)
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Z = ax+b
Similarly,
y=cx+d

These two equations represents two planes, the line of intersection of the above
two planes will be the shortest path of two points in space.

The shortest distance between two points in space is a straight line.

Geodesics

Curves that give shortest distance between two points on a given surface are
called the Geodesics of the surface.

Show that the surface of revolution obtained by revolving a curve between two
fixed points about the y axis is minimum if the curve is a centenary.

Proof:
Let (X1,y1) and (X2 y2) be two points in a plane.
Take any curve joining these points and rotate the curve about the y axis.

Then we get a surface of revolution. Let ds be the length of the elementary arc
which is at distance x from the y axis.

Now,

The surface area of the strip of length ds is 2mx ds.

Let I be the total surface area | = f;lz 2mx ds

ds = \/Tyz dx
=f;12 21X \/Tyz dx
= [7 f (.3, x)dx where £ (3, x) =2mx,/T + 2
By calculus of variation it will be least if f satisfies the equation.

51



dy dx “dy
of
-2 = O
ay /\\j
B(%2;92)
of 1 .2 1A.
— = 2mx—=(1 =2
ay 2( + y )2 y _____ Q‘(%
ALY
_ 2mXxy (0]
1+y2
d 2mxy £
1)=0-= =
(1) dx [1+y2 Z
Xy _ C
J1+y2  2m

Xy = Cl(w/ 1+ yz)

Squaring on both sides

x%y? =C? (1 + y?)
nyZ — C12 +C12y2
(xz_clz)yz — C12

.2 G4

Y T @D

y o=
,/(xz—(hz)

S

ax /(xZ—clz)
C

dy =-—S8  dx
4’(352_512)
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Integrating on both sides,

[dy = [—2—adx
,/(XZ—QZ)
1

C, [ ———
' ,/(xz—clz)

Y = cl(cosh-l(ci) +b

Y = dx

y-b =Cl(cosh‘1(cﬁ))
yb cosh‘l(ci)

¢,

Cosh (22) = (D)

X = ¢,Cosh (=2
1

C

)

The values of b and c,can be determined by the condition that the curve passes
through (X1,y1) and (X2,y2)

The required curve is a centenary passing through two points.

Show that the surface of revolution obtained by revolving a curve between two
fixed points about the x axis is minimum if the curve is a centenary.

Proof:
Let (X1,y1) and (X2 y2) be two points in a plane.
Take any curve joining these points and rotate the curve about the x axis.

Then we get a surface of revolution . Let ds be the length of the elementary arc
which is at distance y from the x axis.

Now,

The surface area of the strip of length ds is 2y ds.
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Let | be the total surface area | = | ;’1 ?2my ds
ds =+vV1+x2Zdy
=, 2my V1 + %2 dy
= 1% f(x, &, y)dy where f(x, %, ) =2nyV1 + 22

By calculus of variation it will be least if f satisfies the equation.

of d f

Lo (L0, (1)

Ox dy “0x

of _
dx 0

O — omvi1 + #2)2 25
a;c—ZnyZ(l-Fx )22x

_ 2myx
V1+x2
. d 2myx
(1) Implies 0- —-—2-=0
ay \1+x2
yx _ _ ¢
V1+x2 2@

yx = Ci(V1 + x2)
Squaring on both sides
y2i? =Ci2 (1 + x2)
Y232 =C,2 +C,%%2
(y2-C12)%2= C;2

.o C12
(¥2-¢1?)

C1

‘/(YZ—QZ)

x =
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ax _ G
R (R
C
dx = —=2—dXx
‘/(3’2— €1%)

integrating on both sides,
C
J——dy
‘/(yz_ ¢1?)
=C, [ ——dy
‘/(3"2— ¢1%)

X = cl(cosh-l(cl) +b

[dx =

X

x-b = Cl(cosh‘l(cl))

x—b _ -1 l

ol cosh (Cl)
x=b\ _ ¥

Cosh ( . )—(C1

Y =c,Cosh (2)
1

The values of b and c,can be determined by the condition that the curve passes
through (x1,y1) and (X2,y2)

The required curve is a catenary passing through two points.
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State and prove Brachistohrone problem
Statement:

Show that the paths followed by a particle in sliding from one point to another

in the absence of friction, in the shortest time in a cycloid.
(OR)

Using the variational principle find the equation the curve joining two points
along, which a particle falling from rest under the influence of gravity travelling

from the higher to the lower point in the least time.
Solution:

Let V be the speed along the curve.

Then the time required to fall a distance ds is %

The time taking to travel from the point one to point 2 is ti, :ff% ...... energy

at point 2......... (1)

Suppose y is measured from initial point of release, now the total energy at

point 1 =Kinetic energy at point 1 +Potential energy at point 2
=0+0
=0
Total energy at point 2 = Kinetic energy at point 1 +Potential energy at point 2
1 2
= mv —mgh
1 2
=-mv< —-mgy

Where y is the vertical distance.
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By the principle of conservation of energy, the total energy at point 1 = Total

energy at point 2.

0 =%mv2 -mgy

V2 2y ()
. 2 ds
(1) Implies t, \ Tooy 0] 1 > X
1+y2
V;/ 2
_ X2 . . _ 1+y
= [, f O3 0)dx where f(y,y, 2) ===
Now,
df =L dx +"’f dy +2 dy
Y 0L 0N Ay (08 9Y 3)

dx Ox 6y dx 0y 'dx

Since t;, is minimum by calculus of variation we have,

) ®
of _
> dx( ...................... (4)
_0f, ddfdy of ddy
+
(Z)Imp“es dx  9x dx dy dx ay dxdx
_9f, a29r
dx dxdy

. df daf) _of

dx dx‘0y
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V1+y? y
v2gy \[ 2gy\1+y?

y = constant

.2 .2
v 12+y I = constant
\/ gy \/2gy,/1+y2
V1492 1+y% -y _
N = constant
1+y2-y? _
N = constant
L = constant
N = constan
1 1 _
W\/_y = constant
L = constant
Jy(a+y%) -
1 + 2 - L
Vy(a+y2) NeT:
- 2\2 _ 1
y(1+y9) =70

y(1 + y?)? = 2a (since 2a =£) ...............................
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Now,

. d

y= é =tan ¢
(5) implies

Y (1 +tan?y) =2a

Y(sec?y) =2a

1
sec2 Y

Y = 2a

= 2a cos?
Y =a(1+C0S2Y) ooviiiiiiiii (6)
To find x

We have,

dy _
— =tan

__49y
dx = tan ¢

dx =cot ¢ dy

=S¥ [(a(L+cos 2v)]

" sin P

C

osy .
o (-asin2y 2dy)

C

_ osy .
=-2a preen 2cossin P

=-2a.2cos? i d ¢

dx =2a(l+cos 2y)d y

59



Integrating,

[dx=-2a[(1+ cos2y)dy

sin2y
2

X=-2a[y + ]+c

X=-ay +sin2y)+c..ooevvvviiinnn., (7)
X-C=-a(2y +sin2y)

Thus the required curve has a parametric equation x-c =-a (2y +sin2y) andy
=a(1 +cos 2y)

Hence the required curve is a cycloid.

(2.3)Derivation of Lagranges equation from Hamiltonian principle
(or)

Derive Euler Lagrangian differential equation

Solution:

The calculus of variation principle can be extended to many number of
independent variables.

Lety1Y2...yn be independent variables and x be any dependent variable.

Consider the integral,

J =f12f [Y1(X),y2(X),. . -,yn(X), 71 (X), 72 (X), ... ¥ (%), X]AX
Now,

Label all parts of yi(X),y2(x),...,yn(x) with different values of the parameter a.
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In this case we can write
yi(x,00) = y1(x,0) +a n1(X)

Y2(x,0) = y2(x,0) +a 72(X)

Yn(x,00) = yn(x,0) +a 1n(X)

Suppose, when a =0, these parts y1(X,0),y2(x,0),...ya(X,0) are the required parts
S0 as to give an extreme for J.

Also,
n1(X), n2(x),..., nn(X) vanishes at the end points.

Now, substituting the value of y Now, substituting the value of y;’s in terms of a.
in J we get,

J= ff £ (Y1(%,0),72(%,0), . .., Yn(X,00),71 (X,00), V2 (X, 00, .. 7 (X,00),X)dx
‘] = flz f( 371(Xaa),372 (Xaa)a oo ayn (X,(X),X)dx
The condition for J to be an extremum is (g—i)azo =0

ﬂ _J‘ (z af 6371 af ayl])dx

a i= 1 dy; da ay Jda
(2 n 6f aJ/l af 9y
=i (2l dy; oa Jax f (Zz 19y, a0
Consider,
af aJ/l
f (zl 1% 0y, aa dX

_r2 n af d dy;
=) ( Zi=1[a_yi'aa])dx
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= (Tl d 5

- Z af ayl f (% a of
i= 1 ay; 6a da’dx 0y;

But we know that y;(x,0) =y;(x,0) +ani(X)
0yi
Py =ni(X)
But we have assumed that 1 vanishes at [ ] Mi(x)]%
2 n of 0y; _ 2 n dy; d Of
FOEn I Sa=0- (T (2L 20)
a] _ r2 n af 0y; 2 n dy; d Of
—=J( Zi=1[a_yi'£ Ddx- [( Ziﬂ[%ﬂa_yi])
6yl d of
= [T — 2
Multiply both sides by da and evaluating the derivatives at o =0,

we get,

d of

GDeoda= [1( 21, [ 300 do H- — +-2FH)dx

dx 0y,

Denote (Z—Z)azo da =6

And[ ](, oda =46y;

8= [’ ONHE L 910y §ydx

dx 0y;

Now, the integral J will be an extremum only if 6/ = 0

(ie) only if [( ¥ [2L - j—xjf])(s dx =0

62



Since y;'s are independent §y;’s are also independent.

af d of 4 _
The above equation is true only if Z 5y iz ay_i] =0
.\ Of d of
(Ie) ay; dx 0y; B
d of of _
(o) dx dy; dy; 0

These equations are called as the Euler Lagrangian differential equation.

(2.4) Extension of Hamiltons principle to non-holonomic system:
Derive Lagranges equation of motion for a non holonomic system
Proof:

Let us consider a non holonomic system in which the constraints are expressed
by m equations of the form ¥, ajdgr + @ dt =0 ...l (1)

We know that,

The Lagranges equation for a non holonomic system is,

- (_) (_) Z Alalk ................................ (2)

0qx

If the system is holonomic, then the equation of the constraint can be written as
f(Q102.....0nt) = 0

By differentiation we get,

"’qu1+ - dg +.. +L dqn+fdt—

. 0 0
(i€) Yo, [ 500 + 5 df] = 0

This is of the (1) with its coefficients
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_ of _of
dik = 2ar’ it = Y

sub in (2)
We get the Lagranges equation for a holonomic system.

d , oL L\ _ wm of
2= G - G) = Liza A -

A hoop is rolling down an inclined plane without slipping. Discuss its motion,
using the undetermined multipliers.

Proof:

Let a be the inclination of the inclined plane and | be the length of the inclined
plane.

Let A be the fixed point on the hoop.
Let BP = x and APCA =6 then x and 6 are the two generalized coordinates.
Let ‘a’ be the radius of the hoop
The rolling constraint can be expressed as x = aé
(ie)dx=ad®@
adf —dx=0
ad0+ (—1)dx=0........evvviiiii. (1)

The Kinetic energy of T = Kinetic energy of motion of the center of mass +
Kinetic energy of motion about the center of mass

(ie) T:%m(velocity of the center of mass)? + %m(velocity of the particle at the
center of mass)?

= Imx? +Ima26?
2 2
Potential energy of the hoop is v=mgh

= mg(l -x)sina
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L=T-V

1 .5 .1 : :
=me2 +Ema262—mg(| -X)sinao.
dL : .
= (-mg)(-1)sina = mgsina
L _1_ . :
— = -m2x = mx
ox 2
oL _
- 0
aL _1 : :
— =-ma?26 = ma?0
08 2

Since there is one equation of the constraints, only one Lagranges multiplier A
IS need.

There fore,

Lagranges equation for x and  are = (a—L) - (aL) =\ (2)
agranges eq G -G =hax

d Ly L\ _

5 (@) - (£) =0 o (3)

The coefficient appearing in the constraint equation are ax =-1 and ay =a.

(2 =
d . .
— Mx —mg sino = -A
dt
MX—MQ SINAL =X ..ooiiiiiiiiiieiiieannns 4)
(3) implies

2 mazé-0 =,
dt

ma?6 -0 =M\,
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(4)implies
A-mg sina = -A
2\ = mg sina
_ mgsina

}\4 oooooooooooooooooooooooooooo (;)

By (6) and (7)

.. Img sina

M=
2

.. _gsina
2

The acceleration down the plane :g sina

We have,
X _z _ gsina
0 a  2a

Instead of rolling if the hoop slips down the plane then its equation of motion

IS,
(4)=implies M- mg sina =0
MX = mg sino

X =gsina
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This shows that the hoop rolls down the inclined plane with only one half the

acceleration it would have slipped down a friction less plane and the frictional
mg sina
2

force of constraint is given by A =

To find the velocity of the hoop at the bottom of the inclined plane.

We have,

. sina
X = &

2
. o_dg,
But i —dt(x)
_ axax

dx dt

_dv
dx ’

V dv = i dXx

sina
=5 dx

By integrating, We get,

UZ

_ gsinax +C

2 2

At the top x =0, dv =0

v? = g sinax

v =,/gsinax

At the bottom x=I

v =,/gl sina
Velocity of hoop at the bottom is v = /gl sina
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(2.6)Conservation theorem and symmetric properties
Definition

If the Lagrangian of a system does not contain a particular generalized
coordinate g

.\ . 0L _
(ie) |+£j—0

Then g;. is called a cyclic coordinate or ignorable coordinate.

Example

In the hoop rolling problem we have L = %m(rz — a?6?) — mg(l -x) sina where
x and @ are the generalized coordinates but L doe’s not contain 6.
(ie) == 0
6 is a cyclic coordinates or ignorable coordinate.
Conservation Theorem for generalized momentum
Statement:
The generalized momentum conjugate to cyclic coordinate is conserved.
Proof:

Let g; be the cyclic coordinate and P; be the generalized momentum conjugate

to q;.

We know that the Lagrangian equation of motion is
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Since g;is cyclic coordinates.

oL
_:O
aq]'

. . d JL _
(1) implies e 0

d —

—(P) =0

P; = constant

Hence the generalized momentum conjugate to cyclic coordinate is conserved.

State and prove Conservation theorem for linear momentum
Statement:

If a given component of the total applied force vanishes, the corresponding

component of the linear momentum is conserved.
Proof:
Consider a conservative system which is not a function of velocities.

Let g; be the generalized coordinates such that the change dq;represents a

translation of the system as a whole is some given direction.

Then T will be independent of position. % =0 and aa—;: (T (1)
J J

The Lagrangian relation for such a system becomes

wdq, g 0
d .. _ oL
— (Pj) =9
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If we show that the generalized force Q;represents the component of the total
force along the direction of g; and Pjis the component of the total linear

momentum along this direction.

Then equation (2) will be give the equation of motion of the total linear

momentum.

We know that,
_y g O
Q=2 F; 2,

If 71 is the unit vector along the direction of translation of the system along same

axis.

oF: . ri(aj+da;)-riq;
Then— = lim J

0q; dqj-o dq;

) Ti(Qj)+Ti(dq]')—Tiqj
= lim
dqj—»O dq]

ridqj

= lim
dqj-o dqj

d,.
. q
= lim —

70



Q =XiFn
=Fn
Where F is the total force acting on the system.

Thus Q; represents the component of the total force along the direction of

translation of q;.

We know that,

ri (g; + da;)

— 0y 2
- a‘qj(ZZlmlvl )

=9y m 2
_a'qj(ZZlml T )

=Xim; il

=AYy;m;t;

I
S
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There fore p; represents the component of the total linear momentum along 7.
Thus we have shows that,

p; = Qj

Suppose Q;=0

The p; will be a constant

Suppose the translation coordinate g; is cyclic.

oL

=0
6q]'

AT-V) _

0
6q]'

oT oV

dq; dgqj

P;j is conserved.

Thus if a given component of the total applied force vanishes then the
corresponding total linear momentum is conserved.

(ie) If a translation q; is cyclic.

Then Q;=0

.".Pj is conserved.
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Derive the energy function which is a function of independent variable q; and

the time derivative ¢; along with the time and show that the total time

JaL

derivative of h is given by —t =

Proof:
Consider a conservative medical system .
Let 01.0.....Qn be the n generalized coordinates.

We know the Lagrangian L=L(q,q,t)

L L dc L dg L dg L dg
dL_ 0L dgy | | 0L dan 0L ddy | 0L din
dt dq1l dt dgqn dt dqq dt dq, dt

aL dq]
daqj dt

oL dq, aL

#3242

ZJ dqj dt ot
oL da; oL
6q dt 6t

dt Z] Bq] ] Z]

The Lagrangian equation for this system is

dL,0L, OL
T G)s=0

dt*dq;’ 0qj

oL dL,oL

aqj E(aq j

d oL dq]
dtaq dt

oL dq] E)L
aq dt E)t

(D) =>==%,= +2(5

dL da dL . oL

dt _Zjdtaq 5% 3¢

. oL
E[Zj(ﬁq]')' LI+ 22=0 i,

L
L0

ot

The quantity Z,( q]) L] is called the energy function and it is denoted

by h.
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d oL _
(2)=>(h)+22=0

dh  OJL
—+ =

—=0
dat ot
dh_ oL
dt ot

Conservation theorem and Symmetry property

Let (x;Vizi) be the Cartesian coordinate of the i mass m;, then T =
~ Yy (2,249, 42,7

We know that,

L=T-V

AL _ a(T-V)
a'xi a'xi

_am aw)
B a'xi a'xl-

)

B axl-

1 . . .
_OGTimi( 4y 2 +47)

axi

1 .
= EZimi 2x,

=)im; X,

= p;X where p;x denote linear momentum of the i particle in the direction of

the x axis.

The generalized momentum p; associated with the generalized coordinate g; is

defined as p;= %
J
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If the transformation equation defining the generalized coordinates do not
involve the time explicitly and if the potential does not depend on the

generalized velocities then show that h = E. Also prove that % = -2F where
2Fis the rate of energy dissipation.

Proof:
We know that,

The total kinetic energy of a system can be written as T =To+T1+T>

................. (1) where Ty is a function of generalized coordinates.

T1(g,q) is a linear in the generalized velocities and T»(qg,q) is a quadratic

function of the g’s.

Then the Lagrangian can be decomposed as L(q,q, t) =Lo(q,t)
+L1(0,q, £)FL2(0,G, ) o (2)

Here L, is a homogeneous function of the second degree in gwhile L; is

homogeneous of the first degree in g.
Now,
By Euler’s theorem iff is a homogeneous function of degree n in the variable X,
then Y; x; g—; =nf
We have,
h=3;4 ;’—i L
using equation (2) in above we get,

h =2L,+L;-L

=2L,—Lo-L>

= L2 —Lo
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In the transformation equation defining the generalized coordinate do not

involve the time explicitly the T =T,.
If further,

The potential does not depend on the generalized velocities then L, =T and L,
=V

So that h=T +V

h = E where E is the total energy.

We have,
d, oL, L , ,0F | _
E(aT,-)'a_qj +(£j) =0
. d . 0L oL _
Then the equation - X4 70, —L] S 0

Can be written as

dh 9L . ,OF
—_ 3= . q:(—
dt at Zf qj (6qj)

By definition of F it is a homogeneous function of the q’s of degree 2.

If L is not an explicit function of time and the system is such that h is the same

as the energy that is h =E.

Then equation becomes,

&= oF
dt
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Unit -1V
The Two Body central force problem
Reduction to the equivalent one body
Show that the central force motion of the two bodies about the center of mass
Can always be reduced to an equivalent one body problem.
Solution:
Consider a monogenic system of two mass points m; andm, where the only

force are those due to an interaction potential ‘U’.

Let 7;,and 7, be the position vector of m; andm, with respect to the fixed point

0. Let G be the center of mass and it’s position vector be R.
Denote AB by 7 from the figure 7 = 7, -7,
Suppose V =U(7)

Now, the system of two mass points has sixth degrees of freedom and hence
sixth generalized coordinates. We can take the 6 generalized coordinates to the

3 components of 7.

The Lagrangian L = T(E,F) - U@
Now,

T =T + T where Tg denote the kinetic energy of the motion of the center of

mass and T’ denote the kinetic energy of motion about the center of mass.

Let the position vector of m; with respect to G is E’) and the position vector of

my with respect to G is E’)

. 1 5o 1 1 - : > L, =
S T= > (m, + mZ)R2 + Emlrlz' +Em2r22’ fromthe figure R =1, - r;’
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But we know that,

R _Xmri
xm;
=~ m1771+m2?2
R - - s <
mqi+m,

_; _ o m1F1+m27_22
W
1TMme

m17:)1+m2?2 —mlfl—mzfz

mi+m,

_ mz(ﬂ—fz)

mq+m,

_ —mz(fz—ﬂ)

mi+m,
_ ‘mz(?)
mi+m,
—, ‘mz(?)
-
mi+m,
Similarly,
L M)
ry =——
m1+m2
T=-(my+myR? +-my(——)r2+-my———1r?
2 2 m1+m2 2 m1+m2
T=-(my + myR? +-—2(—2—)r2+-—=2 L2
2 2 m1+m2 m1+m2 2 m1+m2 m1+m2

m .
Take u =m1ﬁ Is called the reduced mass.
1 2
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—_— . —

1 . 1 .

T = E(ml + mz)RZ +E ‘u’rz
_ 1 '2 1 _°2) -
L= E(ml + myR +Sour —U(7r)

The above expression for L shows that the 3 coordinates of R are cyclic.

The Lagranges equation of motion corresponding to Ris < (Z—; )— 5 =0

d 1 ¢
E [E (ml + mZ)ZR] -0=0
(my + myR = constant

R = a constant

The center of mass is either at rest or moving uniformly.

The Lagranges equation of motion corresponding to 7 is i (a—L — Z_]; =0

—-aur

—(-MZ)( —) =

—-our

= () =t

Thus non of the equation of motion for 7 will contained terms involving R or

-

R].
Since R is cyclic we can ignore Rin the expression of L.

Dropping the first term in the above value of Lagrangian, we get
L =(Zuf) - U(r)

This is the Lagrangian for the motion of the single particle with a fixed center of

mass, where 7 is the position vector of the particle from the center of force.
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Thus, the two body force is equivalent to one body problem with mass u =

m e - - -
—2_and position vector 7 =7, -7.
m1+m2

Show that the central force motion of a particle is always planer and that in

such a motion the time derivative of the Arial velocity vanishes.
Proof:

Central force is that force which is always directed away or towards a fixed
center and magnitude of which is a function of the distance from the fixed

center.

Let 7be the position vector of the particle.
7 is also a vector.

Consider the product 7 x f it is a vector perpendicular to both rand 7.

d .- 2_drf 2 5 _dr
—(FXr)=—Xr+rx—
dt dt dt
o2
= rX¥

For a central force motion the force is always a function of # and it is acting in

the direction away or towards the center of force.
The acceleration is # is taken as a function of # in the direction of # = f(r) #
Where f(r) represents the magnitude of central force.
= (F x7) =F x () 7
dt
=f(r) ¥ x7

=0
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(7 X 7 is constant.
# and 7 should always perpendicular to the constant vector (7 x F)

Hence 7 and 7 should lie in a plane for which 7 x7 is normal.
The central force motion is always motion in a plane.

Since the part of motion of central force is in a plane, we take (r,6) be the

position of the particle.
X=rcosf@andy=rsiné

% = -rsinfé +i cos @

y = rcos86 +r sin @

()2 = r %sin? 6(0)? +72c0s2 -2ri-0cosHsing
(¥)? = r 2c0s? 8(0)2 +7%sin%0 +2r1-0cosOsind
()2 +(y)? = r %in? §(0)? +72c0s% -2r7-0cosHsing + r 2cos? 6(0)2 +12sin20
+2r7-0cos6sind

(X)2+()? = 72 + 1 (6)?

T =2 M)’ +(7))

:%mf2+r2(9)2

V =V(r)

L=T-V

1

= 3 M) - V()
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oL _

25 -0
OL _ mr (€
o5 = mr (8)

The Lagranges equation of motion corresponding to 8 is

d (aL) oL ~0
dt \ao 90

= (mr3(6)) -0 =0
= (mr2(6)) =0
S Gra@)=0

This shows that the time derivative of the Arial velocity is vanishes.

For two body central force problem obtains the equation of motion and the

first integral

(OR)
2
For two body central force problem show that %m T2+ %# +v constant.

Solution:
Let P be the position of the particle.

Since the path of motion of a central force is in a plane , consider the coordinate

of p as (r,0).
We have,

X=rcosfandy=rsiné
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X  =-rsinfé +i cos @

y  =rcoshf +7sin @

()2 = r %sin? 6(0)? +72c0s2 -2ri-0cosHsing

(¥)? = r 2c0s? 8(0)2 +72sin%0 +2r7-Ocos@sind

()2 +(y)? = r %in? 9(0)? +72c0s%0 -2r70cosHsing + r 2cos? 6(0)2 +12sin%0
+2r7-0cos@sing

()2 +(7)? = 72 + 1 %(6)?

T=-m((4)?+()?)

T= % m 72 + 1 2(9)?

V =V(r)

L=T-V

== m((X)2+()?) - V(1)

oL
2-0
06

OL _r 2(¢
o5 ~mr (6)

aL_ 2'_6_17
ar_mr (9) or

L —my
ar

The Lagranges equation of motion corresponding to 8 is
d (0L oL _

2 (58) — 3 =0
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A (mr 2(0)) -0 =
—(mr<(6))-0=0
= (mr2(6)) =0

dt

mr 2(9) = constant
mr 2(6) = | (say)
r2(9) = constant
%rz(é) = constant

Hence for a central of motion the Arial velocity of the moving particle is

conserved.

The conservation of the angular momentum is equivalent to saying the Arial

velocity is constant.

The Lagranges equation of motion corresponding to r is,

4(2) 2y
dt \ar ar

d . 2 > Bv_
—m7 - mr 6) -~ =0

mi#- mr 2(9)- g—: =0

12 v
+ — =
mr3 Or 0

mi*-

This is a second order differential equationinr,

By solving this we get the value of r in terms of v.

mi= 1> ov
mr3 or
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or 2mr? or
o1 I2

= ——+vy

or “2mr? }

Multiply both sides by %

(ie) mr— = [- Sl }]E
LEmi]= LGt v
LAEM? ]+ m s+ VI

dat - "2

{ [- mi?]+ {—— + v}]} = constant.

2 4-9'2
= +v = constant

(i) [ m 2]+
(ie) [% m 72 ] +% mr26 +v = constant.

(ie) T +V is constant

(3.3)The equivalent one dimensional problem and classification of orbits
Find the magnitude and direction of the velocity of the central orbit
Proof:

Let v be the velocity of the particle at p its components along the radius vector

is 7 and perpendicular to the radius velocity is ré

Let r, be the unit vector along the radius vector and 6,, be the unit vector in the

transverse direction
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SV = f.rn + réen
~ magnitude of v is given by,
V2 = 72 +(rf)>

We have,

l

- (2, 12
B_mrz and T—\/;[E 4 2mr2]

Ve =2l —v - s

2mr? m2r4

2mr2] m2r2

1

m2r2

[2mr2E — 2mr?V + [?

. — [2mr2(E — V)]

m2r

2 — 21
V2 = 2(E-V)

V = /%[E—V]

— 12]

If the direction of the velocity v makes an angle.

_ 90
Then tan ¢ =r—

ae
_ pdt

dar
aoe

l

= L is the direction of the velocity.

2
T
m 2mr
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The virial theorem

Statement:

—

Suppose the motion of the system is periodic or not periodic, then T = -%Zlﬁlﬁ
where ﬁi Is the applied force including the force of constraint and — denote the

—

time average over the interval o to 7. The equation T = -%Zlﬁlﬁ is known as the

Virial theorem and the right hand side is called the virial of Claudius.
Proof:

Consider a general system of mass points with position vector #; and applied

force F;
Then the fundamental equation of motion are ﬁ = ﬁi .......................... (1)
Consider the quantity G =X ;7 o vvvvieieiie e ()

Where the summation is over all particles in the system.

6 _y 5 &y 5 9B
dt LEL gt LU at

= YDt XiTi D,
rierd >
= Xim it X Fy
-
= Ximu+ Y1 F

aac
dat
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Where T is the kinetic energy of the system take the time average of the above
equation (3) over a time interval T, which is obtained by integration both sides

with respect to t from o to 7 and dividing by .

We get,
foSdt =< [T¥2T + XiF Fdt
== [T Xi2Tdt + = [ X7 Fdt
.'.%G; =y F7 + 2T
(ie) 2T +3, R = (T €100 PO )
Case (i)

If the motion is periodic
(ie) all coordinate repeat after a certain time.

If T is chosen to be the period of time, then G(t) = G(0)

_—

(4)=2T +3%, E# =0

Case(ii)
If the motion is non-periodic

Let us consider the coordinates and velocities for all particles remain finite. So

that there is an upper bound to G. By choosing tsufficiently long, the R.H.S

Of equation (4) can be made as small as derived.
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For a proper choice of T R.H.S

Of equation (4) reduces to zero.

_—

(4)=2T +3, E7, =0

—

—>_ 1 =N
T_-EZLE.TL

Thus when the motion is finite or if the coordinates and velocities of all the

—_—

particle remains finite, then T = - %Zlﬁlﬁ , Where F; is the applied force

including the force of constraints. The above equation as the virial theorem and

R.H.S is called the virial of clausius.

(3.5) The Differential equation for the orbit and integral power law

potentials:
Find the differential equation of the orbits for a central force motion
Proof:

Let m be the mass of the particle which moves under central force. Let P(r,0)

be the position of the particle at time t.

We know that,

In the case of motion under the action of central force L = [% m 72 ] +% mr26

+v(r)

The Lagranges equation for r and 6 are
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SN '2 ' a_U:
I\/I(T ro ) T or 0
Mr?6 = | (say)

From equation (2)

ov _
—— =1(r)

o i : Mr2 do Mr2 do
equatIOn (1) m M7r2 dO Mr2 de

1 d 1 dr 12

)

do
Mr?— =
ot
ldt  =Mr?dg
Mr2
e o 1d
dt Mr2 d@
£ -4
dt2 dtdt
_d 1 d
T dt Mr2 do
1 d( 1 d
" Mr2 dt ‘Mr2 d6
_ 1 ﬁ(#i
M72 dt \Mr2 do
Also,
rg? = r(_l i
Mr?2
2
=r —a and

1

d 1 dr 1?

(ie)rz dao (MTZ aée mr3 = f(r)
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ldr

(i) ()L = M) e 3)

Which is the equation of the central orbit.

1
Putu =-
r
1
r =-
u
dr dr du
ao du do
1 du
uz do
24r _ du
ao ao
d du M1,1
=2 %% =2
@) =% Ve Q)

This is the differential equation for the orbit if the force law f is known.

We know that,

dv _ dvdr
du drdu

This is the differential equation for the orbit if the potential v is known.
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Prove that the central orbit is symmetrical about the apsidal vectors.
Proof:

We know that,

d2
+u="2E
62 2\ u2

@ U )]

Let A be an apse
So the radius vector of A is an extreme.
Hence ar =0

de

dr du

- =0
du dé

du

= =0
aé

This gives a turning point for the central orbit.
Hence an apse is a turning point for the central orbit.
Now,

Choose the initial line along the apsidal vector.

To prove the central orbit is symmetrical about the apsidal vector or apsidal
line, it is enough if we prove the equation is invariant by putting (-8) in the

place of 6
Clearly the equation (I) and (I1) is unchanged by putting -6 in the place of 6.

The central orbit is symmetrical about the apsidal vectors.
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Discuss the nature of the central orbit for a specific force laws which are

power law function of r.
Proof:

Let m be the mass of the particle and (r, 8) be the coordinates.
T= % m 72 +r 2(6)2 and v = v(r)

~m72+r (92 +V =E

%mfﬂ2+ r2(6)2 =E-V

m 2 +12(8)? ==(E-V)

——(E—V)
#=2(E V)
i ]
- J [p-v -5
N L
do =mr2 i[E—vr—z,frz]
de = @

2 [2ZmE _2mV 1
‘r' —— e
12 12 r2

0 varies from 8, to @ and r variesfromrptor
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r dr
0—6p= |
To_, [2mE 2mV 1
L
r dr
6 =6,+
To_ o, [2mE 2mV 1
T' A —
12 12 72
1
Putu=-
r
1
du = -—zdl'
r
dr =-r? du
u —du
0=6,+
Up 2 ’ZmE 2mvV
T l—z—l—z—du
u du
6=0,-

Consider the force law, which are power law functions of r.

V =ar"*!

1
r=-—

u

_ 1
v _aun+1
d
()=>6=0,-f, =
Uo ., |2mE 2maunt1
T 7z z u
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If the quantity in the radical is at most quadratic then the denominator has the

form \/ au? + Bu + y and the integration can be directly obtained in terms of

circular functions.
The required conditionis—n-1 =0,1,2

n+l =0,-1,-2
n =-1,-2,-3

Excluding the case n = -1 we get, n=a -2,-3 corresponding to the inverse square

r inverse cube force laws.

For n =1 the solution can be obtained in terms of simple functions.

u du
0=0o-
Uo _, [2mE_2mau2
L 7 A
Put u®>=x
2u du = dx
dx 1
du =— =———
2u  2vx
1
x
6=0,-f 2
X0 2 2mE_2ma1_
LN R
1
x
0=06,- 2
Xo 1 |2mE 2ma__,
ﬁ\/l—z_l—z_x

1 rx dx
0= 90 __f -
2YXo [2mE 2ma 2
=z X

Thus we find the terms is the radical is quadratic in x
The above integral can be integrated by using the circular functions.

Thus if n =1,-2,-3 the solution will be of circular functions.
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Elliptic Integrals
Definition

An elliptic integral is [ R(x, w)dx where R is any rational function of x and w,

w is defined as w =\/ax* + Bx3 + yx2 + dx +n. Ifaand B

Are not simultaneously zero, then the integral will be evaluated in terms of

circular functions.

Find when the solutions for the orbit can be obtained in terms of elliptic

functions.
Solution:
The solution of the problem depends on the integral f\/z — du_n_l

The solution could be reduced to elliptic integrals if the term in the radical is of
the form ax* + px3 + yx? + 8x + n, where a and Bare not simultaneously

zero.
The required condition will be

-n-1=3,4

Put u? =x

2u du = dx

du _dx _ 1
2u  2vx
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-n-—1
2mE 2max 2
ez oz x
. 1 dx
1e) -
( )2‘[\/ -n—1
2mEx 2max 2 2
X
12 12

The solution could be reduced to elliptic integrals if %ﬂ =3,4

-n+1 =6,8
-n=5,7

multiply both denominator and numerator by x

we get,

Hence the solution reduces to the elliptic integrals if =0,1,2,3,4

-n+5
2

—n+5=0,2,4,6,8

—n =-5-3,-1,1,3

n =5,3,1,-1.-3

For n = —3,1 leads to the solution interms of circular functions.

The case n =-1 is not possible.

Thus the new possibilities for obtaining elliptic integral is n =3,5

multiply both numerator and denominator of equation (I)
By uP where p is some undetermined exponent
ufdu

f \/ZmE 2mEu—n-1+2p
urP

— — 92
12 12 u

97



The expression in the radical will be a polynomial of higher order then

the quadratic except6 if p = 1

-n-1+2 =0,1,2,3,4
-n+1=0,1,2,3,4
-n=-1,0,1,2,3
n=1,0,-1,-2,-3

For n=-1,-2,-3 the solution reduced to circular functions

The case n = -1 has already being eliminated so that the procedure leads to

elliptics functions only for n =0

Hence the integral is exponents which result in eliptics functions are 5,3,0,-4,-
5,-7.
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Unit -V
(3.6)Conditions for closed orbits:
Statement:

State and prove Bertsans’s theorem closed orbits for all bound particles are
the inverse square law and the hoop’s law.

Proof:
We know that,

For any given I, if the potential V’(r) has a minimum or maximum at some
distance ry and if the energy E = V’(1p), then the orbit is a circle about the
central of force.

Since V’(r) has an extremum at rp .
dv’
Then ( d_r)T:rO

(ie) £(rp) =0

lZ
e (1)

m

But £(r) = £(r) +

For extremum at r, we get,

lZ
f’(ro) = f(ro) + mTO3 ................................. (2)

lZ
O:f(T”o)‘l"mTO3

lZ

(ie) f(ry) = TS e (3)
The energy of the particle
E =V(ro) +2nllr02 ..................................... ()

If the energy is raised to a little above that required for a circular orbit, then the
path is also bounded and not circular.

But when V’ is maximum if the energy E is raised to a little above that for a
circular motion, the orbit is unbounded.
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Hence in the first case we say that the circular orbit is stable and is the second
case the circular orbit is unstable.

-of 312
=~ The circular orbit occurs when ( )T =r,= (& - )T=0+F04> 0

_272
(6f S 31

)r =19 W

CDre< )—

mry3

=D =, < (=f () [ using (3)]

S@D)ry < 3L )

( <-3

ory” f (7’0)

if’(‘r'O)T'O< _3
f(ro

1
——f1(ro)
fr
O)f< -3

To

d (lo
N ( gf(’”o)<_
dlog(ro)

Consider the power law of force

-k
f= Fn+1
of _ k(n+1)
ar _ pntz
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Then the stability condition equation (5) becomes

k(n+1)
(

= <o (< (1))

k(n+1) k

_3 —
( ron 2 )<_ (r0"+1)

To

(n+1) 3
(<)

=>n+1<3

=>n<?2

. . . 1 .
Thus the power law attractive potential varying more slowly than 1S capable

of stable circular orbit for all value of .

The orbit equation can be written as

d%u -m

EEAFU=I(U) e (7) where J(u) = o f()

The condition for circular orbit of radius ry= (ui)
0

8)=3uo) =71(2)
2U(ue) = g (7o)

m

=)o) = f(—

)L using (3]

lZ
3
mry

=J(up) = "

SJ(U) ZUg weeereeeeereeeeeeeeee, (9)
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If the energy is slightly greater than the needed for a circular orbit and if the
potential is such that the motion is a stable, then u will be remained bounded

any vary slightly from the circular orbit. In this case the Taylor’s Series is

JU) = o) + Mo AL (LUl B

duO 2! duOZ

Neglect the higher power of dd—]

Ug
u—1ug dj
= + —_—
J(u) = J(uy) T dug e (10)
Put u - uy=x
de?  de?

(|e)d€2 x(l- ) =0
(|e) = +B2x =0 where 2 = 1-—=

By a suitable choice of origin, the solution of the above equation can be
written as
X =acos [6

u— uy =acos po

U= Uy+aCOSLO .o, (11)

which is the equation of simple Harmonic motion about w,.
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(8):,~J=l

%C)
2ug \u
dj _ 2m f( (1)
du  12u? u l2u du

=2 - a3

For circular orbit the condition is

aj _ Yo af
duo fo duO

Herep?=(1- ddT] )
0

— +u0 df
=1-12 fo duo]

U df
fo dug
Ty df

=3+

When r, sweeps around the plane once 6 varies from 0 to 2t and these are 8

Cycles for simple Harmonic motion given by equation (11)

If 8 is arational number g then the q revolution of the radius vector would

begin to retrace itself.

(ie) the orbit would be closed.

For an initial energy the angular momentum is given by f(r,) (— i ) and

mry3

E= V(TO) + Zmroz

It is possible to establish the stable circular orbit at each r satlsfymg /r =

f(ro

To

7o< -3

103



Then we have

2_q,T4
(12) 27 =3+

2 _o-T4
= [“-3 Far

2 o —ddogf)
= ﬁ 3= d(logr)

= d(log f) = (8% - 3) d(logr)
Integrating both sides,

log f = (B2 - 3) logr + log k
= log f =logr®* ™ + logk
= logf =logr® ™ .k

= f(r) = kr#* 7

. -k
The force law is f(r) = pemrE)

Any force law of this form where g is rational number will have a closed
stable orbits.

When £ =1, suppose the initial condition deviate more than slightly from
the requirement for the circular orbit.

Considering one more form in the Taylor’s series for J(u) we can say that

the orbit are closed only for 2 =1 and 52 = 4. When 2 = 1 we get the
inverse square law f(r) = ;—f and B2 =4 we get the hoop’s law f(r) = -kr

Hence the proof.
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Obtain the equation of orbit in the form % = T—Zk[l+\/1 + % cos(0 — 0).

Also discuss the nature of the conic for varies value of e and E.
(Or)

Derive the equation of the central orbit under inverse square law and classify

the nature of conic in terms of total energy E .
(Or)

Discuss the inverse square law of force.

Solution:

We know that,

The differential equation of the central orbit

d%u -m 1

E*‘U:ﬁf(—) .......................... (1)

u

In the inverse square law of force

f(r) = ;—f and V(r) = TR

Putr=l
u

k
fQ) = o=kl

1) 22 + U= ™ (ku?)

do? 12u?
:>d2u +uy = mk
do? 12
:>d2u +u mk _ 0 2)
o7 70
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k
Takey:u-r'lﬂl—2

dy _ du
de de

2)=

d%u

do2 Y= 0

This equation gives the solution y = B cos(6 — 6)
=>u=T—Zk+Bcos(9—9')

1 _ mk ., BI? :
=-=— [1+ﬂ cos(6 — 6)]

1 _ mk : _ BI?
=-=—[1+ecos(8 — 6)] Where e = —

2

This is the orbit equation with eccentricity %

We know that,

du

2mE 2mV
Z oz ¢

6=0-]

In this case the inverse square law of force V = —

du

~n0=0-]

2mE 2m, -k
2
1_2_1_2( )u

=6- e, 3)

2mE 2mk
J 7t (W

Where 6 is a constant of integration determined by the initial condition. The

indefinite integral is of the standard form [

dx
Jat+pBx+yx?
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f ax -1 cos_l(—-EiEZE) ...............

Ja+Bx+yx?z -y
q=p*4ay
To apply this to equation (3) we get,

2mE 2mk
12 ’ﬂ: 12 ’]/: _1

a =

0= G5 2 -4GD ()

2mk

= YY1 +4CRE) X ]

2E1?

[L+ () ]

2mk

EFr2(-1x)

1 -1/,
)=/ Ja+ﬁx+yx2 = oo cos [Egr

me]

2mk

. - _i -1 _ ( 12 +2 ( )
“(3)=6=6 Vi< ( 2mk 2E12)
=z [ o!]
. (ka+2( )
=0 -cos™1(— —Elz)
2k [1 fnkZ]
ul?
=6 - cos™ (= +(ﬂ))
2E12
[1+ 7]
20 -0=cos(—z (_))
2E12
[1+mk2]
. 2E1? ul?
= cos(f -0) [[1+ k]"'1+ﬁ
2E12 42
[1 +— ] cos(6 - 6) +1 ==—
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% = T—f[l + /[1 + f::\fz] cos(6 - 0)]
= 21+ € cOS(0 - 0)] .oooooie (5)

This is the equation of conic at one focus % = c[1 +e cos(6 - 0)]

2E12
mkz]

=~ Equation (5) represents a conic with eccentricitye = [[1 +

Discuss the nature of orbit % = c[1 +e cos(@ - 8)] and prove that the axidal

. K 1-e?
distance are the roots are r2+ = r - ad-e’)

——————— Also derive the elliptic
E 1+ecos(6 - 0)

equation r = a(i-e?)
[1 +ecos (6 - 6) |
Proof:
Given % =c[1+ecoS(0-0)] oeveieiaii, (1)

Where e is the eccentricity of the conic section by comparison with % = ’7—2"[1

2E12
mk?

+ [[1 +==] cos(6 - 6)]

It follows that the orbit is always a conic section, with eccentricity e =

2E12
mk?

[1+

The nature of orbit depends on the magnitude e according to the following,
For a hyperbola e >1 =E>0
For a parabolae <1 =E =0

Foranellipsee<1=E>0
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2E1%2, _
mkz] B

Foracirclee=0= [[1+

2E1?
=-1
mk?

mk?
=>E =
212

For a circular orbit T and V are constant in time and from the Viral theorem
E=T+V

_—k
Zro

The statement of equilibrium between the central force and effective force

lZ

can be written as f(ro) =

mry3
12 4
DI0="= i
ro_km 4)
. -k k
The equation (4) = E =7[—72n
-mk? . .- . .
= E =—;— Is the condition for circular motion.

In the case of elliptic orbits it can be shown the major axis depends on the

energy.
The semi major axis is one half the sum of two apsidal distance ryand r».
Let SA=riand SA’ =,

Let AA’ =2a and BB’ =2b
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AA’ =2a be the major axis and BB’ =2b is the minor axis.

Clearly A and A’ are apses, where r attains maximum values say riand r,

We have one equation %m(r'2+r29'2) +V =E
Ln(+2Y +im(+2092 _

Em(T' ) +Em(7" 0 ) +V =E

Ln(+2) = E Im(r202

Em(T' ) =E -Em(r 7] )— V

T2 __(E V- m(r 62 )

)

m(r@)

= —((E -V)- )

2m(r6)

)

=2(E-V)-

= —((E-V)-r6?)

=Z((E
= 2((E-V) —
T —\/ ((E-V) _m2r2

m2r2

Herer— —Othen\/ ((E-V) — -0
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Divided by =

k 12
=>E +- — =0
r 2mr?

(7) divided by E

2 2k 12
1) =>—+ — =
( ) m tmE  EmZ2r?
Multiply by 72
2 2k 12
=12 4 r— =0
m TmE Em?

2k o
—J +Er_Em2 =U . (9)
Mh+r=-—
k
2a =-=
E
k
N (10)
k
>E =—
2a

Substituting this value in equation (2)

—k
_/ 26"
eIt e

lZ
e= [1-—
amk
lZ
e2=1-—
amk
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12

=1 -e%7
amk

- 12
=a(l - ez)—ﬁ

Substituting in equation (1)

1 k .
> =T—2[1 +ecos (6 - 6)]

12 1

F= e [1 +ecos (6 — 8)]

a(1-e?)

- [1 +ecos (6 — 8)]

wheng — =0
(= a(1-e?)
1= [1 +ecos 0]
_a(1-¢?)
=——-—
1+e

_a(1+e)(1-e)
L e

=a(l -e)

whend — =1

(= a(1-e?)
2= [1 +ecos 7]
[ = a(1-e?)
27 Tre(-1)

_a(1+e)(1-e)
)= 2

1-e

r,=a(l +e)
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Explain the motion in time in the Kepler problem
Proof:

The motion of the particle in time as the orbit is the relation between the radial
dar

JEE)

distance of the particle r and the time is given by t= f;

_vym fr dr
- 2 To 12
JEV) 2
. -k _—0v
In the inverse square law force f(r) = e
w_k
or r2
k
>V =—--
T
d
L (1)
2 71 k12
T 2mr?
we have,
mr26 = |
de
>mr?2—-=|
dt
mr?
dt = o e (2)

which complain with the orbit equation,

1 k .
- :’?—2[1 +ecos (6 - 0)]

5 _ Ut 1
m2k2 [1 +ecos (6 — 6))]2
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l4-

m[mzkz[ 1+ecos (6 - 9)]2]
l

do

(2)=dt =
Let us suppose that when the time t =0, 8 = 6pand 6 =0,t=t

Integrating the above limit we get,

13 fe de

t= mk2 8o [ 1+ecos (8 — 9)]2

Let us consider the parabolic motion e =1. To measure the plane polar angle
from the radius vector at the point of closes approach. A point most usually

designated as perihelion.

This convention corresponds to setting 8’ in the orbit equation = 0

_ 13 .6 de
(3) =>1t= mk? J‘0 [ 1+cosB]?

3 fe do

mk? 70 [ZCOSZE]Z

= f secide

4-mk2

20 0
= f sec’~ sec’~-do
4mk2 2

= sz (1+tan—)sec—d9

3
=2;sz (1 + tan® )Sec LT

Put X = tan 23
dx =2+ sec?Zap
2 2

l3
"~ 2mk?2

ft""“z (1 + x2).dx
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(2]
_ 13 x3 tanz—
B kaz[x 3_]0

3

_ 0 1 3 0
—kaz[tan > +3 tan 2]

For elliptic motion equation (1)

Through an auxiliary variable i denoted as the eccentric anomaly and

different from the relation r = a(1-ecosy)

We have,
2E12
e= |1+ —
2E1?
e? =1+ —
1 g2 2E12
_ 2EP
T mk?
B 2K 2
m Y (1—e)
—K?2
=-—(1—¢?
2(2—5)( )
=ka (1 —e?)
(l):t—@ " ar

\ffr\/ +———2ka(1 e?)

T 2r

_ ’mfr rdr
2k “To [—r2
0\/L+r—§(1—e2)

2a
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We have r =a(1-e cosy)

dr =aesinydy

t= Eflll a(1-ecosy)aesiny diy
A2k 1/10\/ a2 L a(1-d

a(l1—ecosy) —z(l—ecosw) —

_ ﬂ@ftp (1—ecosy)siny dy
T2k Va e?)

2
\/(1 ecosgb) (1- ecostp) (12

\/7 \/—a (1—ecosy)siny dy

\/2(1 ecosyp)—(1—ecosyp)2—(1—e?)
a efl,b (1—ecosy)siny dy
Je2—eZcosy
\/7(1 efll) (1—ecosy)siny dy
e/ 1—cos?y
fzp (1—ecosy)siny dy
siny

=\/2£k iz fl;ﬁ)(l — ecosy) diy

If it starts from perihelion we have,

t= \/@f;’b(l —ecosy) dy
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3 |m
Derive T = Znaz\ﬁ and prove that t =

le

. Hence deduce Kepler’s third

7

law.
Proof:
From the conservation of angular momentum the Arial velocity is constant.
Given 2 =172¢
dat 2

dA _ 1

dt 2m

Integrating over a complete

T T

jA Jl
d 2m

0 0

—_ 1T
= A= 2m[ Io
It
v P RRRRPR (1)
Now the area of an ellipseisA=mab ................ (2)

By the definition of eccentricity the semi minor axis b is related to a is given by

—avl — e?

=afi-(1-5)
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1,

(2) CA=m a.\/ﬁ
21
_Ta
AT 3)

we get — = T&
g 2 - Vvmk
3
- * _ ra
2m - Vvmk
™Wmk 3
= = TTQz
2m

= 7=2 na?%

Let m; and m; be the masses of the planet and the sun respectively.

Since the motion of the planet about the sun is a two body problem the reduce

1M

mass is given by u =

The gravitational law of attraction is f(r) = w

The inverse square law of force is f(r) = i

r2

Equation (5) and (6)

We get,
—Gm1m2 _ -k
oz T2

= Gmym, =K

3
The period t of the elliptic motion is T = 2 maz

=3
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mim, 1

3
If m is replaced by the reduce mass 7 = 2 na?\/
mi4m; Gm1m2

3 1
T=2maz |——
G(myymy)

Since the mass of the planet m, is very small compared to the mass of the sun

m, we can neglect the mass of the planet.

3
_ 2ma2

JG(my)

Squaring on both sides,

3

72 = ( 2maz )2 __4n?ad
1IG(Tnz) sz
2 _ 3 _ 47'[2
7° = Ka” where k =
sz

= 12043

This shows that the square of the period is propositional to the cube of the

mean distance from the sun.

This prove the Keplers third law of the planetary motion.
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Derive the Kepler’s equation and define mean anomaly Also define true

anomaly and eccentric anomaly.
Proof:

We have,

r dr

t=
e -

_ —k _-d
In the inverse square law force f(r) = — = z

r2  or

We have,

2E12
mk?

e= 1+

2EI1?

mk?

e? =1+
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2E12
1—e

There fore t = ?fr rdr

To [—kr2 1 2
\/7'{'](7' —Eka(l—e )

=
—+r——(1 e?)

We have r =a(1-e cosy)

dr =aesinydy
t= m J-lli a(1—ecosy)aesiny diy
T A2k 1/’0 (1 —e2)

a(l ecosd))——(l ecosy)?— 2

ﬁa eflp (1—ecosy)siny dy
J(l—ecosgb) (1-ecosp)2 (1-e?)

2 2

\/2(1 ecosyp)—(1—ecosy)2—(1—e?2)
:\Fﬂ qze [V Umecosplsiny dy
2k o Jer-eZcosy

— _a e P (1—ecosy)siny dy
- Yo e\ 1—cos?y

\/7 \/—a fll) (1—ecosy)siny dy
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_ |m 3 (1—ecosy)siny dy
_\/%azf 0 siny

=\/g az flzjo(l — ecosy) dy

If it starts from perihelion we have,

t= /mT(ﬁfolp(l —ecosy) d ... (I)
and the frequency of revaluation force w = 27” .......................... (A)
ToFindt

Let 7 be the period of the particle in which the particle complete one full

revolution.
Hence 7 varies from 0 to 2.

We have,

T= mT‘ﬁfozn(l — ecosYP)dy

r= [ (p — esimp)3”

= [2Z0n)
3
‘[227'[612_@
k
(D=0 =—7F—
ZnaZW
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(1 =t :\/%(fow(l — ecosy) dy
=2 (J, (1 — ecosy) dp

t = i(tp — esim,l))g’

=S¥ — esiny)

>wt = Y —esiny

This equation is known as Kepler’s equation.

Anomaly

The quantity wt goes through the range 0 to 2 along with ¥ and 8 in the

course of a complete orbital revaluation and is also denoted as anomaly

specifically the mean anomaly.

True Anomaly

Let p present the position of the earth at any instant in is elliptic orbit. PL is

drawn perpendicular to the axe line AA’ and produced to meet that auxiliary

circle of the elliptic at p.
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The angle PSL(6) is called the true anomaly.

(ie) tan2 = flitan2
2 1-e 2

. 7}
Derive tanz = |—tan—

Proof:
We know that,

The eccentric anomaly v is defined by r =a (1 — ecosy)

a(1-e?)
1+ecos(0-6")

The equation of the elliptical orbitis r =
. _a(1-e?) _a_p
(ie)r= Tromoos where the polar angle 8 = 6 — 6’

From equation (1) and (3) we get,

_ __a@-e’)
a (1 €COSl[)) a 1+ecos(60-0")
_a(1-e?)
a (1 o ecosz/;) " 1+ecos@
B _ (1-e?)
1 eCOSIIJ " 1+ecosb
_ (1-e?
1+ ecosf =
1—ecosy
_ (1-e?
1+ ecosf—1= -
1—ecosy
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_ (1—e?-1+ecosy)

ecosf = r— -1
cosB = M
1—ecosy
1 +cosf = M +1
1—ecosy
1 +cos@ = (1—ecosy+cosy—e)
1—ecosy
_ (1-e)[1+cosy]
B 1—ecosy
Now,
1-cosh =1 —2¥¢
1—ecosy
__ 1—ecosyp—cosyp—e
B 1—ecosy
__cosyp(1l+e)+(1+e)
- 1—ecosy
1—-cosf _ (1=cosy)(1+e)
1+cos6 B 1—ecosy
_ (1—=cosy)(1+e)
B 1—-e(1+cosy)
Zsinzg 3 ZsinZ%(1+e)
Zcoszg - 1—62C0$2%
1+
tan?? = |[Zan2¥
1-e 2
6 1+
tan22 = [Htan¥
1-e
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