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Unit 1

0.1 Topological Spaces

Definition 0.1.1. A topology on a set X is a collection J of subsets of X having
the following properties:

(1)) and X are in J.

(ii) The union of the elements of any subcollection of J is in J.

(iii) The intersection of the elements of any finite subcollection of J is in J.

A set X for which a topology J has been specified is called a topological space.
If X is a topological space with topology J, we say that a subset U of X is an
open set of X. If U belongs to the collection 7.

If X is any set, the collection of all subsets of X is a topology on X, it is called
the discrete topology. The collection consisting of X and @) only is also a topology
on X, it is called the indiscrete topology or the trivial topology.

Let X be aset. Let J; be a collection of all subsets U of X such that X —U either

is finite or is all of X. Then J; is a topology on X, called the finite complement

topology.

Result 0.1.2. J; is a finite complement topology.

Proof. Since X — X = () and X — () = X, either is finite or is all of X.
Both X and 0 are in J;.

To show that |J U, is in J;.

X-UU,=NX=0U,).

Since X — U, is finite then ((X — U,) is finite.

Then (X — (JU,) is finite.



Therefore, | J U, is in J.

If Uy,Us,--- ,U, or non empty elements of J.
To show that (| U; is in J.

Now we know that X — (1 U; = U (X — Uj).

=1 =1
n

since (X — U;) is finite then |J (X — U;) is finite.
i=1

Then (U, is in J;.

Therefore, J; is a finite complement topology. O

Definition 0.1.3. Suppose that J and J are two topologies on a given set X.
If 7' © J, we say that J is finer than J; if J properly contains J, we say that
J' is strictly finer than J. We also say that J is coarser than J ', or strictly
coarser, in these two respective situations. We say J is comparable with J if

either 7' DT or J D J .

0.2 Basis for a Topology

Definition 0.2.1. If X is a set, a basis for a topology on X is a collection £ of
subsets of X (called basis elements) such that

(i) For each x € X, there is at least one basis element B containing .

(ii) If = belongs to the intersection of two basis elements B; and Bs, then there
is a basis element Bj containing x such that Bs C B; N Bs.

If A satisfies these two conditions, then we define the topology J generated by
A as follows: A subset U of X is said to be open in X (that is, to be an element
of J) if for each x € U, there is a basis element B € % such that z € B and

B C U. Note that each basis element is itself an element of 7.



Lemma 0.2.2. Let X be a set; let B be a basis for a topology J on X. Then J

equals the collection of all unions of elements of A.

Proof. Let X be a set and 4 be the basis for the topology J on X.

The collection of elements of A are also elements of J because J is a topology,
their union is in 7.

Conversely, given U € J, choose for each x € U an element B, of % such that

v € B, CU. Then U = |J,; By, so U equals a union of elements of %. O

Lemma 0.2.3. Let X be a topological space. Suppose that € is a collection of
open sets of X such that for each open set U of X and each x in U, there is an
element C' of € such that x € C C U. Then € is a basis for the topology of X.

Proof. First we prove that € is a basis.

Given x € X, since X is an open set, by hypothesis an element C' of € such that
reCCX.

Let x € C; N Cy where C; and Cy are the elements of €.

Since C7 and C5 are open, C; N Cy are open.

By hyphothesis, there exists an element C3 of ¢ such that x € C3 C C; N Cs.
Therefore, € is a basis.

Let J be the topology on X.

Let 7' denote the topology generated by €.

To prove that J = J.

By 0.2.4, J' is finer than J.

Conversely, since each element of € is an element of 7, the union of elements of
% is also in J.

By 0.2.2, J contains J.



Therefore, J = J.

Therefore, € is a basis for the topology of X. a

Lemma 0.2.4. Let 2 and 9B be bases for the topologies J and J , respectively,
on X. Then the following are equivalent:

(i) T is finer than J .

(ii) For each x € X and each basis element B € A containing x, there is a basis

element B' € &' such that v € B' C B.

Proof. To prove (ii)=-(i)

Given an element U € J.

To show that U € J'.

Let x € U. Since 4 generates J, there is an element B € # suchthatx € B C U.
By (ii), there exists an element B’ € % such that z € B C B, thenx € B' C U.
By definition of basis for the topology, U € J .

To prove (i)=(ii)

Given z € X and B € # with x € B.

Now B € J, by definition and J € J by (i); therefore B € J'.

Since J ' is generated by #', there is an element B' € % such that + € B’ C B.

O

Definition 0.2.5. If £ is the collection of all open intervals in the real line,

(a,b) = {z|a < x < b},

the topology generated by £ is called the standard topology on the real line.
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If # is the collection of all half-open intervals of the form

[a,b) = {z]a < x < b},

where a < b, the topology generated by % is called the lower limit topology on
R. When R is given the lower limit topology, we denote it by R;. Finally let K
denote the set of all numbers of the form 1/n, for n € Z,, and let A" be the
collection of all open intervals (a,b), along with all sets of the form (a,b) — K.
The topology generated by %" will be called the K-topology on R. When R is

given this topology, we denote it by Ry.

Lemma 0.2.6. The topologies of R; and Ry, are strictly finer than three standard

topology on R, but are not comparable with one another.

Proof. Let J,J,J be the topologies of R, R;, R, respectively.

Given a basis element (a,b) for J and a point z of (a,b), the basis element [z, b)
for J' contains  and lies in (a,b). On the otherhand,given the basis element
[z,d) for J', there is no open interval (a,b) that contains z and lies in [z, d).
Thus J is strictly finer than 7.

Given a basis element (a,b) for J and a point x of (a,b), this same interval is a
basis element for J" that contains z. On the otherhand, given the basis element
B = (—1,1) — K for J" and the point O of B, there is no open interval that
contains O and lies in B.

By definition of comparable, J and J are not comparable with one another. O

Definition 0.2.7. A subbasis S for a topology on X is a collection of subsets of

X whose union equals X. The topology generated by the subbasis S is defined to



be the collection J of all unions of finite intersections of elements of S.

0.3 The Order Topology

Definition 0.3.1. If X is a simply ordered set, there is a standard topology for
X, defined using the order relation. It is called the order topology.

Suppose that X is a set having a simple order relation <. Given elements a and
b of X such that a < b, there are four subsets of X that are called the intervals

determined by a and b. They are the following:

a,b) = {za < x < b},
a,b] = {z|la <z < b},
la,b) = {z|a <z < b},

b
la,b] = {z|a < x < b}.

A set of the first type is called an open interval in X, a set of the last type is
called a closed interval in X, and sets of the second and third types are called

half-open intervals.

Definition 0.3.2. Let X be a set with a simple order relation; assume X has
more than one element. Let 2 be the collection of all sets of the following types:
(1) All open intervals (a,b) in X.

(2) All intervals of the form [ag, b), where ag is the smallest element(if any) of X.
(3) All intervals of the form (a, by|, where by is the largest element(if any) of X.

The collection 4 is a basis for a topology on X, which is called the order topology.



Definition 0.3.3. If X is an ordered set, and a is an element of X, there are

four subsets of X that are called rays determined by a. They are the following:

Sets of the first types are called open rays, and sets of the last two types are called

closed rays.

0.4 The product Topology on X x Y

Definition 0.4.1. Let X and Y be topological spaces. The product topology on
X x Y is the topology having as basis the collection A of all sets of the form

U x V, where U is an open subset of X and V is an open subset of Y.

Theorem 0.4.2. If B is a basis for the topology of X and € is a basis for the

topology of Y, then the collection

92 ={BxC|Be%B and C € ¢}

1s a basis for the topology of X x Y.

Proof. We apply 0.2.3. Given an open set W of X xY and a point x x y of W,

by definition of the product topology there is a basis element U x V such that

7



rxyelUxV CW.
Because # and € are bases for X and Y respectively, we can choose an element
B of # such that x € B C U and an element C' of € such that y € C' C V. Then
rxyeBxCcCW.
Therefore, & is a basis for X x Y. O

Definition 0.4.3. Let m; : X XY — X be defined by the equation

W1($7y) =T

let m3 : X XY — Y be defined by the equation

mo(z,y) =Y.

The maps m; and 7 are called the projections of X x Y onto its first and second
factors, respectively.

We use the word ”"onto” because m; and 7, are surjective.

Note If U is an open subset of X, then the set 7, '(U) is precisely the set

U x Y, which is open in X x Y. Similarly, if V' is open in Y, then

m(V)=X xV,

which is also open in X x Y. The intersection of these two sets is the set U x V.

Theorem 0.4.4. The collection



S = {x; Y U)|U open in X} U {my ' (V)|V open in Y}
18 a subbasis for the product topology on X X Y.

Proof. Let J denote the product topology on X x Y.

Let J be the topology generated by S. Because every element of S belongs to
J.

By definition of subbasis, arbitrary unions of finite intersections of elements of S.
Thus J C J.

On the otherhand,

UxV=nU)Nnm (V)

where 7, *(U) is open in X and 7, '(V) is open in Y.
Since U x V € J, we have U x V = 7, {(U)Nmy; Y(V). U x V € J'. Therefore,
JcJ. O

0.5 The Subspace Topology

Definition 0.5.1. Let X be a topological space with topology 7. If Y is a subset

of X, the collection

Jy ={Y nU|U € J}

is a topology on Y, called the subspace topology. With this topology, Y is called
a subspace of X; its open sets consist of all intersections of open sets of X with

Y.



Lemma 0.5.2. If & is a basis for the topology of X then the collection

«%Y:{BQY|BE=@}

15 a basis for the subspace topology on'Y .

Proof. Consider U is open in X. Given A is a basis for the topology of X. We
can choose an element B of & such that y € B C U.
Theny € BNY CUNY, since By ={BNY|B € #}.

By 0.2.3 or definition of basis, %y is a basis for the subspace topology on Y. O

Definition 0.5.3. If Y is a subspace of X, we say that a set U is open in Y (or
open relative to Y') if it belongs to the topology of Y; this implies in particular
that it is a subset of Y. We say that U is open in X if it belongs to the topology
of X.

Lemma 0.5.4. Let Y be a subspace of X. If U is open in'Y and Y 1is open in
X, then U is open in X.

Proof. Given U is open in Y and Y is open in X.

Since U is open in Y and Y is a subspace of X then U = Y NV where V is open
in X.

Since Y and V are both open in X, Y NV is open in X.

Therefore, U is open in X. O

Theorem 0.5.5. If A is a subspace of X and B is a subspace of Y, then the
product topology on A x B is the same as the topology A x B inherits as a subspace
of X xY.
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Proof. The set U x V is the general basis element for X x Y, where U is open
in X and V is open in Y.

Then (U x V)N (A x B) is the general basis element for the subspace topology
on A x B. Now

(UxV)N(Ax B)=(UnNA)x (VNB).

Since U N A and V N B are the general open sets for the subspace topologies on
A andB respectively, the set (U N A) x (V N B) is the general basis element for
the product on A x B.

The bases for the subspace topology on A x B and for the product topology on

A x B are the same. Hence the topologies are the same. O

Theorem 0.5.6. Let X be an ordered set in the order topology; let Y be a subset
of X that is conver in X. Then the order topology on Y is the same as the

topology Y inherits as a subspace of X .

Proof. Consider the ray (a,+o00) in X.

If a €Y, then (a,+00) NY = {z|x € Y and x > a}; this is an open ray of the
ordered set Y.

If a ¢ Y, then a is either a lower bound on Y or an upper bound on Y, since Y
is convex.

If a € Y, the set (a,+00) NY equals all of Y. If a ¢ Y it is empty.

Similarly the intersection of the ray (—oo,a) NY is either an open ray of Y, or
Y itself or empty.

Since the sets (a,+00) NY and (—oo0,a) NY form a subbasis for the subspace

topology on Y and since each is open in the order topology, the order topology
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contains the subspace topology.

Conversely, Y equals the intersection of X with Y, that is X NY =Y. So
it is open in the subspace topology on Y. The order topology is contained in
the subspace topology. Therefore, the order topology and subspace topology are

same. O

0.6 Closed Sets and Limit Points

Definition 0.6.1. A subset A of a topological space X is said to be closed if the

set X — A is open.

Theorem 0.6.2. Let X be a topological space. Then the following conditions
hold:

(1) O and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(8) Finite unions of closed sets are closed.

Proof. (1) () and X are closed because they are the complements of the open
set X and () respectively.

(2) Consider a collection of closed sets { Ay }aecs, we apply De Morgan’s law,

X_mAa: U(X_Aa)

acJ acJ

Since the sets X — A, are open. By definition of closed sets, the right side of this
equation represents an arbitrary union of open sets and is thus open. Therefore,

N A, is closed.
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(3) Similarly, if A; is closed for i = 1,2,--- ,n. Consider the equation

3

X U= N - A

=1

)

The set on the right side of this equation is a finte intersection of open sets and

is therefore open. Hence |J A; is closed. a

Definition 0.6.3. If Y is a subspace of X, we say that a set A is closed in Y
if A is a subset of Y and if A is closed in the subspace topology of Y (that is, if
Y — AisopeninY).

Theorem 0.6.4. Let Y be a subspace of X. Then a set A is closed in'Y if and

only if it equals the intersection of a closed set of X with Y.

Proof. Assume that A = C'NY, where C' is closed in X. Then X —C'is open in
X, so that (X —C)NY is open in Y. By the definition of the subspace topology,
but (X —C)NY =Y — A. Hence Y — A is open in Y, so that A is closed in Y.
Conversely, assume that A is closed in Y. Then Y — A is open in Y. By definition,
it equals the intersection of an open set U of X with Y. The set X — U is closed
in X and A=Y N(X —U). Hence A equals the intersection of a closed set of X
with Y. O

Theorem 0.6.5. Let Y be a subspace of X. If A is closed in'Y and Y 1is closed
m X, then A is closed in X.

Proof. Given A is closed in Y and Y is closed in X. Since A is closed in Y and
Y is a subspace of X.
Let A=Y N (X — B) where X — B is open in X. Then B is closed in X. Since
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Y and B are both closed in X. Then Y N (X — B) is closed in X. Therefore, A

is closed in X. O

Definition 0.6.6. Given a subset A of a topological space X, the interior of A
is defined as the union of all open sets contained in A, and the closure of A is
defined as the intersection of all closed sets containing A.

The interior of A is denoted by Int A and the closure of A is denoted by Cl A or

by A. Obviously Int A is an open set and A is a closed set; furthermore,

Int AcC AcC A.

If Ais open, A=Int A; while if A is closed, A = A.

Theorem 0.6.7. Let Y be a subspace of X ; let A be a subset of Y ; let A denote
the closure of A in X. Then the closure of A in'Y equals ANY.

Proof. Let B denote the closure of Ain Y. The set A is closed in X, so ANY is
closed in Y. By 0.6.4, since ANY contains A and since B is closed. By definition
B equals the intersection of all closed subsets of Y containing A, we must have
BN(ANY).

On the otherhand, we know that B is closed in Y. By 0.6.4, B = CNY for
some set C' closed in X. Then C is a closed set of X containing A; because

A is the intersection of all such closed sets, we conclude that A ¢ C. Then

(ANY)C (CNY) = B. Therefore, B=ANY. O

Theorem 0.6.8. Let A be a subset of the topological space X .

(a) Then x € A if and only if every open set U containing x intersects A.
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(b) Supposing the topology of X is given by a basis, then x € A if and only if

every basis element B containing x intersects A.

Proof. (a)We prove this theorem by contrapositive method.

If z is not in A, since A is closed, A = A. The set U = X — A is an open set
containing = that does not intersect A.

Conversely, if there exists an open set U containing x which does not intersect
A. Then X — U is a closed set containing A.

By definition of the closure A, the set X — U must contain A, since x € U.
Therefore, z cannot be in A.

(b) Write the definition of topology generated by basis,if every open set z inter-
sects A, so does every basis element B containing x, because B is an open set.
Conversely, if every basis element containing x intersects A, so does every open

set U containing x, because U contains a basis element that contains x. O

Definition 0.6.9. If A is a subset of the topological space X and if z is a point
of X, we say that x is a limit point(or ” cluster point” or ”point of accumulation”)
of A if every neighborhood of z intersects A in some point other than z itself.
Said differently, = is a limit point of A if it belongs to the closure of A — {x}.

The point  may lie in A or not; for this definition it does not matter.

Theorem 0.6.10. Let A be a subset of the topological space X ; let A’ be the set
of all limit points of A. Then A= AUA".

Proof. Let A" be the set of all limit points of A.
If z € A", every neighborhood of z intersects of A in a point different from z. By
0.6.8, z € A. Then A" C A.

By definition of closure, A C A. Therefore, AUA C A.
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Conversely, let z € A

To show that A Cc AU A’

If € A then it is trivially true for z € AU A",

Suppose x ¢ A. Since x € A, by 0.6.8, we know that every neighborhood U of z
intersect A, because x ¢ A, the set U must intersect A in a point different from
2. Then 2 € A" so that x € AU A",

Then AcC AUA'

Therefore, A =AU A'. O

Corollary 0.6.11. A subset of a topological space is closed if and only if it

contains all its limit points.

Proof. The set A is closed iff A =A. By 0.6.10, A" C A. O

Definition 0.6.12. A topological space X is called a Hausdroff space if for each
pair x1, x5 of distinct points of X, there exist neighborhoods U; and U, of xy and

x5 respectively, that are disjoint.

Theorem 0.6.13. Fvery finite point set in a Hausdorff space X 1is closed.

Proof. It is enough to show that every one-point set {zo} is closed.

If z is a point of X different from x(, then x and zy have disjoint neighborhoods
U and V respectively.

Since U does not intersect {z(}, the point x cannot belong to the closure of the
set {zo}.

As a result, the closure of the set {x} is {zo} itself.

Therefore, {zo} is closed. O
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Note: The condition that finite point sets be closed is in fact weaker than
the Hausdroff condition. For example, the real line R in the finite complement
topology is not a Hausdorff space, but it is a space in which finite point sets are
closed. The condition that finite point sets be closed has been given a name of

its own; it is called the T7 axiom.

Theorem 0.6.14. Let X be a space satisfying the Ty axiom; let A be a subset of
X. Then the point x is a limit point of A if and only if every neighborhood of x

contains infinitely many points of A.

Proof. If every neighborhood of x intersects A in infinitely many points, it cer-
tainly intersects A in some point other than z itself, so that x is a limit point of
A.

Conversely, suppose that z is a limit point of A and suppose some neighborhood
U of x intersects A in only finitely many points.

Let {1, 2, -+, 2y} be the points of U N (A — {z}).

The set X — {z1,29, -+ ,x,,} is an open set of X, since the finite point set

{z1, 29, -+ , 2} is closed then

UN(X —{x1,22,- ,Tm})

is a neighborhood of = that does not intersects the set A—{x}. Since {x1,z2, -+ ,zp}
be points of U N (A — {z}).

This contradicts the assumption that z is a limit point of A. O

Theorem 0.6.15. If X is a Hausdorff space, then a sequence of points of X

converges to at most one point of X.
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Proof. Suppose that x, is a sequence of points of X that converges to x.

If y # x, let U and V' be disjoint neighborhoods of = and y respectively. Since U
contains x,, for all but finitely many values of n, the set V' cannot contains x,,.
Therefore,z,, cannot converge.

If the sequence x,, of points of the Hausdorff space X converges to the point x of
X, we often write z,, — x.

Therefore, x is the limit of the sequence x,,. O

Theorem 0.6.16. Fvery simply ordered set is a Hausdorff space in the order
topology. The product of two Hausdorff spaces is a Hausdorff space. A subspace

of a Hausdorff space is a Hausdorff space.

Proof. Let X and Y be two Hausdorff spaces.

To prove X x Y is Hausdorff.

Let 21 x y; and x5 X y9 be two distinct points of X x Y. Then x, x5 are distinct
points of X and X is a Hausdorff space, there exists neighborhood U; and U, of
21 and x5 such that Uy N Uy = ()

Similarly, y;,yo are distinct point of Y and Y is a Hausdorft space, there exists
neighborhood V; and V5 of y; and y, such that V, NV, = 0.

Then clearly U; x V; and Uy x V5 are open sets in X x Y containing z; X y; and
Ty X Yo such that (U; x V1) N (Uy x Vo) = 0.

Therefore, X x Y is a Hausdorff space.

Let X be a Hausdorff space and let Y be a subspace.

To prove Y is a Hausdorff space.

Let y1,y2 be two distinct points of Y and Y containing X. Then y; and gy, are
distinct points in X and X is Hausdorff there exists neighborhood U; and Us; of v,
and 9, such that U;NUy = (. Then U;NY and U,NY are distinct neighborhoods
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of y; and 35 in Y.

Therefore, Y is a Hausdorff space.
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Unit 2

0.7 Continuity of a Function

Definition 0.7.1. Let X and Y be topological spaces. A function f: X — Y is
said to be continuous if for each open subset V of Y, the set f~!(V) is an open
subset of X.

F7HV) is the set of all points x of X for which f(z) € V; it is empty if V does

not intersect the image set f(X) of f.

Theorem 0.7.2. Let X and Y be the topological spaces.Let f : X — Y. Then
the following are equivalent:

(a) f is continuous.

(b) For every subset of X, one has f(A) C f(A).

(c) For every closed set B of Y, a set f~'(B) is closed in X.

(d) For each x € X and each neighborhood V' of f(z) there is a neighborhood U
of x such that f(U) C V.

If the condition in equation (d) holds for the point x of X such that f is continuous

at the point x.

Proof. To show that (a)= (b) = (¢) =-(a) and (a)= (d), (d) = (a).

First we show that (a)=-(b)

Assume f is continuous. Let A be a subset of X. We have to show that f(A) C
A,

If z € A then f(z) € f(A). Since f is continuous, f~'(V) is an open set of X
containing x, where V' be a neighborhood of f(z).

Now f~}(V) must intersect A in some point y. Then V intersects f(A) in the
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point f(y), f(z) € f(A). Therefore, f(A) C f(A).
To show that (b)=(C)

Let B be closed in Y. Let A= f~'(B).

To prove that A is closed in X.

ie, To prove that A = A.

By elementary set theory, we have f(A) = f(f~'(B)) C B

If € A, then f(z) € f(A) c f(A) C B=B.

Then x € f~%(B) = x € A. Therefore, A C A.

Since A C A, therefore, A = A.

To show that (¢)=(a)

Let V beopenin Y. Theset B=Y — V.

Then f4(B) = [ (Y ~ V) = [ 1Y) — (V) = X — [ (V)

Now B is a closed set of Y then f~'(B) is closed in X (By hypothesis).
Then f~*(V) is open in X.

Therefore, f is continuous.

To show that (a)=-(d)

Let z € X. Let V be a neighborhood of f(z). Then the set U = f~1(V) is a
neighborhood of x.

Therefore, f(U) C V.

To show that (d)=-(a)

Let V be open in Y. Let x € f~1(V). Then f(z) € V

Then by hypothesis, there is a neighborhood U, of x such that f(U,) C V. Then
U, C f7HV).

Now f~1(V) can be written as the union of the open sets U,.

Thus f~1(V) is open.

Therefore, f is continuous. O
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Definition 0.7.3. Let X and Y be topological spaces. Let f : X — Y be a
bijection. If both the function z and the inverse function f~!(V) are continuous

then f is called homeomorphism.

Theorem 0.7.4. (Rules for constructing continuous functions). Let X,Y and Z
be topological spaces.

(a) (constant function) If f : X — Y maps all of X into the single point yo of
Y, then f is continuous.

(b) (Inclusion) If A is a subspace of X, the inclusion function j : A — X 1is
continuous.

(c) (Composites) If f : X — Y and g : Y — Z are continuous, then the map
go f: X — Z is continuous.

(d) (Restricting the domain) If f : X — Y is a continuous. Let A is a subspace
of X. Then the restricted function f/A: A —Y is continuous.

(e) (Restricting or expanding the range) Let f : X — Y be a continuous. If Z
is a subspace of Y containing the image set f(X), then the function g : X — Z
obtained by restricting the range of f is continuous.

If Z is a space having Y as a subspace then the function h : X — Z obtained by
expanding the range of f is continuous.

(f) (Local formulation of continuity) The map f : X — Y is continuous, if X
can be written as the union of open set U, such that f/U, is continuous for each

Q.

Proof. (a) Let f(z) =yo,x € X,y €Y.
Let V be open in Y.

If yo €Y, the set f~1(V) = X.

The set f~1(V) be open in X,yy C V
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Therefore, f is continuous.

(b) Let A be a subspace of X. To prove j: A — X is continuous.

If U is open in X then j7'(U) = U N A which is open in A by definition of
subspace topology.

Then j~!(U) is open in A.

Therefore, j is continuous.

(c) Since f and g be continuous. We have the following conditions:

If U is open in Z then ¢g7'(U) is open in Y and f~'(¢g~*(U)) is open in X. But
fH g HU)) = (g0 /)~ HU).

Then (go f)~(U) is open in X. Therefore, go f : X — Z is continuous.

(d)Let f: X — Y be continuous. Let A be a subspace of X.

To prove f/A: A — Y is continuous.

Since by (b), we have the inclusion map j : A — X is continuous. Also we have
f: X — Y is continuous.

Therefore, the restricted function f/A: A — Y is continuous by (c).

ie, f/A each equals the composite of the inclusion map j.

(e) Let f: X — Y is continuous.

Given Z is a subspace of Y containing the image set f(X). ie,f(X)C Z CY
To prove the function g : X — Z obtained from f is continuous.

Let B be open in Z. Since Z is a subspace of Y, B = Z N U for some open set U
of Y.

Since B is open in Z, g~'(B) is open in X and since U is open in Y, f~}(U) is
open in X

Then f~1(U) = g~(B)

Therefore, g : X — Z obtained from f is continuous.

If Z is a space having Y as a subspace. To prove the function h : X — 7 is
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continuous.

This is obtained by the composition of the map f : X — Y and the inclusion
map j:Y — Z.

Since Y is a subspace of Z, inclusion map j : Y — Z is continuous by (b).
Therefore, the function h : X — Z is continuous.

(f) Given X can be written as the union of open sets U, such that f/U, is
continuous for each «.

To prove f: X — Y is continuous.

Let V be open in Y.

Now f(x) € V,z € X. Since U, is open in X containing z. Then f~}(V)NU, is
open in X.

Since f /U, is continuous; U, is open in X, (f/U,) ' (V) is open in X.

Then f~'(V) is open in X.

Therefore, f is continuous. O

Theorem 0.7.5. (The Pasting Lemma) Let X = AU B, where A and B are
closed in X. Let f: A—Y and g: B — Y, B is continuous. If f(z) = g(x) for

every x € AN B, then f and g combine to give a continuous function h : X —'Y

defined by setting h(z) = f(z) if v € A and h(z) = g(x) if x € B.

Proof. Let X = AU B where A and B are closed in X.

Since f: A — Y is continuous, f~1(C) is closed in A, where C' is closed in Y.
Since g : B — Y is continuous, g~*(C) is closed in B where C'is closed in Y.
If v € A h(x) = f(z) and if x € B, h(x) = g(x).

If z € AUB,h(z) = f(x)Ug(x).

Now h=}(C) = fH(C) Ug™H(C).

Then h~1(C) is closed in AU B.
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Then h~1(C) is closed in X.

Therefore, h is continuous. O

Theorem 0.7.6. (Maps into products) Let f : A — X XY be given by the equa-

tion

fla) = (fi(a), fa(a)).

Then f is continuous if and only if the functions

fi:A=Xand fo: A=Y

are continuous.

The maps f1 and fo are called the coordinate functions of f.

Proof. Let m : X XY — X and m : X XY — Y be projections onto its first
and second factors. These maps are continuous..

For, ;' (U)=U x Y and m; "(V) = X x V.

If U and V are open, these sets are open.

Since f:A—>XxY m : XxY —=>Xandm: X xY =Y, for every a € A.
Since fi : A— X and fob: A—Y

fila) = mi(f(a)) and fa(a) = m(f(a))

If the function f is continuous, then f; and f; are composites of continuous func-

tions, fi and fy are continuous.
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Conversely, suppose f; and f, are continuous. Then f;'(U) is open in A and

f7 (V) is open in A.

ae fi(U)Nf1(V)

Also we have U x V' be the basis element for the topology on X x Y then

fla)eUxV
=a€ fTHUXV)
= fFHU)N (V) C fHU x V)

Alsoifae fFfH{UXV)= fla) eU xV

= (fi(a), fala)) €U x V
= fila) €U, fola) €V
S ac U ae S (V)
FAUxV)C iU N V)
FHU X V) = 7 U)n f (V)

Since f; *(U) and f,*(V) is open in A.
Then f;(U) N f;1(V) is open in A.
Then f~1(U x V) is open in A.

Therefore, f is continuous. a
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0.8 The Product Topology

Definition 0.8.1. Let J be an index set. Given a set X, we define J-tuple of
elements of X to be a function x : J — X. If « is an element of J, we often
denote the value of x at « by z,, rather than x(«); we call it the ath coordinate

of x. And we often denote the function x itself by the symbol

(Ta)a € J,

which is as close as we can come to a tuple notation for an arbitrary index set J.

We denote the set of all J-tuples of elements of X by X7.

Definition 0.8.2. Let {A,}acs be an indexed family of sets; let X = J, ., Aa-

The cartesian product of this indexed family, denoted by

[T Aa,

a€eJ

is defined to be the set of all J-tuples (z4)qcs of elements of X such that =, € A,

for each a € J. That is, it is the set of all functions

x:J— U Aa

aed

such that x(«a) € A, for each a € J.

Definition 0.8.3. Let {X,}.cs be an indexed family of topological spaces. Let

us take as a basis for a topology on the product space
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J R

aeJ

the collection of all sets of the form

I1 Ua,

acJ

where U, is open in X, for each o € J. The topology generated by this basis is

called the boz topology.

Definition 0.8.4. Let

5 [ Xa — X5

acJ

be mapping is defined by

Trﬁ((‘ra)aeJ) = Tp;
is called the projection mapping associated with the index (.

Definition 0.8.5. Let Sg denote the collection

Ss = {m5"'(Up)|Us open in Xg},

and let S denote the union of these collections,

S=1U 8

BeJ
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The topology generated by the subbasis S is called the product topology. In this

topology [] X, is called a product space.
acJ

Theorem 0.8.6. (Comparison of the box and product topologies). The box topol-
ogy on [[ Xo has as basis all sets of the form [[ Uy, where U, is open in X, for
each «. The product topology on [ X has as basis all sets of the form [[U.,,
where U, 1s open in X, for each o and U, equals X, except for finitely many

values of a.

Proof. By definition of box topology, the basis for box topology on [] X, is
By = {[[Ua|U, is open in X, }.

By definition of product topology the basis for the topology on [[ X, is %, then
2B, is the collection of all finite intersection of elements of S where S = (J Sj
and § = {Wﬁ_l(Uﬁ)Wg is open in Xg}. ﬁEJ
Casel:

We take finite intersection of elements of Sg.

Let w3 (Ug), w5 (Vs), 75" (Wp) € S.

Let B =m;'(Ug) Ny (Vg) Nyt (W)

=75 (UsNVsNWp) € S5 C B,

:ﬂgl(Ué) where Ué =UsNVgNWps

B = 1] U(; where U(; is open in X,, for a = ay, a9, -+, , and U; = X, for
a # Ozof,éég, Cee Q.

Case 2:

We take intersection of elements from different Sg’s.

Let B' = 73" (Ug,) Ny ' (Ug,) N -+ - 75" (Ug,)

’

B =5 (Us, NUs N---NUp,)

Let © = (4)acs € B
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Then 2 = (2a)acs € B < (Ta)acs ewgl(Ugl)ﬂ~-ﬂﬁgl(Ugn)
@(xa)aEJG'“U,@l X oo xUg, X+ xUg, X

& x4 €U, for a= 01,8, - ,0, and z, € X, for a # 31,52, , Bn

& (24) € [] Uy where U, is open in X, for a = 3y, Ba,- -+, 3, and U, = X, for

aed

a# B, Bay -, B

B = [] U, where U, is open in X,.

Henceaier{ both cases we get every basis element of the product topology in [[ X,
is of the form [] U, where U, is open in X, and U, = X, except for finitely
many values of a.

Clearly the basis %, C %,

Therefore, the box topology is finer than the product topology. a

Theorem 0.8.7. Suppose the topology on each space X, is given by a basis AB,.

The collection of all sets of the form

H BO[?

acJ

where B, € B, for each o, will serve as a basis for the box topology on [ Xa.
acJ

The collection of all sets of the same form, where B, € B, for finitely many
indices a and B, = X, for all the remaining indices, will serve as a basis for the

product topology [] Xa-
acJ

Proof. Let | = {]] Ba € Ba, B, is a basis for X, } for each a.

acJ
B, is a collection of open sets in X, for every .

[[ Usisopenin [] X,.
acd aelJ
Therefore [ is a collection of open sets in [ X,.
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To prove [ is a basis for the box topology in [] X,.

acl
Now, = = (24)acs € [] Xa-
acJ
Let U be an open set in [[ X, containing x.
Now U is an open set in the box topology in [[ X,,z € U, there exists a basis

element [] U, such that x € [[ U, C U = z, € U, for each a.

aed aeJ
Now z, € U, and U, is open in X, and A, is a basis for X, there exists B, € %4,
such that z, € B, C U, for each «.

Then (24)acs € [ Ba C [] Ua C U.

acJ acJ
ie,z€ [[ B,CU
acJ
For every = € [[ X, and any open set U containing x, there exists [[ B, in [
acJ
such that z € [[ B, C U.
aclJ
By 0.2.3, [ is a basis for the box topology on the product space [ Xa-
acJ
Let I' = {]] Ba|%., for finitely many indices and B, = X, for the remaining
acJ
indices}
To prove that ' is a basis for the product topology on [T Xa-
acd
Let z = (z4) € [] Xa-
acJ
Let V be an open set in [[ X, containing z, there exists a basis element [] U,
acJ acJ
for the product topology in [] X, such that z € [[ U, C V, where U, is open
acJ acJ
in X, for a =ay,as, -+ ,a, and U, = X, for a # ay,as, -+, .

Now U,, is open in Xa; and z,, € U,, then there exists B,, € %,, such that
To; € Ba, C Uy,

Define [[ B, where B, € %, for a = ay, a9, , ay.
aed
B, = X, for a # aj,ay,- -, ay,

Then clearly [] B, €1 and

aeJ

T = (2o)acs € Bo C [[ Uy CV for all € [] Xa, there exists [[ B, € I such

acd acJ acJ

31



that z € [[ Bo C V.

acJ
By 0.2.3, " is a basis for the product topology in [] X,. a

Theorem 0.8.8. Let A, be a subspace of X, for each o € J. Then [[ As is a
subspace of [ X if both products are given the boz topology, or if both products

are given the product topology.

Proof. By 0.8.7, [[ B, is the basis for the subspace [[ A, (since 4, C X,).
Therefore, [[ Ao C [ Xa-

Theorem 0.8.9. If each space X, is a Hausdorff space, then [ [ X, is a Hausdorff

space in both the box and product topologies.

Proof. Write 0.8.6.
Since X, is Hausdorff, then there are distinct neighborhoods in X,,.

Their product also containing disjoint neighborhoods.

Therefore, [ X, is Hausdorft. O

Theorem 0.8.10. Let {X,} be an indezed family of spaces; let A, C X, for

each o. If [] X4 is given either the product or the box topology, then

—]
I

—]
5=

Proof. Let (7,) € [ Aa.
To show that (z,) € [ Aa-

Let U = [J U, be a basis elements for box or product topology that contains z.
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Since x = (z,) € A, we can choose a point y, € U, N A,.

Then y = (y,) € U and [] A,.

Since U is arbitrary, (z,) € [] Aa-
Therefore, [] Aq C ] Aa.

Conversely, suppose () € [ Aa-
To show that (7,) € [] Aa.

Let V3 € Xj containing zg.

By definition of product topology, since ﬂﬁ_l(vﬁ) is open in [ X, in either topol-
ogy, vg € Vg C Xpg.

Then ng(Vﬁ) is open in [ [ X,.
Since A, C Xo, Yo € [] Aa-

Now yg € V3N Ag

Then z5 € Ay

= (z5) € [T Aa

= T4, CI14a

Therefore, [] Aq = [] Aa-

Theorem 0.8.11. Let f: [[ X, be given by the equation
acJ

fla) = (fala))acs,

where f, : A — X, for each «. Let [[ X, have the product topology. Then the

fnction [ is continuous if and only if each function f, is continuous.

Proof. Let f: A— [] X, be given by f(a) = (fa(a))acs where f, : A — X,.

acJ
Let [] X have the product topology.
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Now let m3 be the projection of the product onto its Sth factor.
ie, 5 : [[ Xo — X5
acJ
Therefore, the function 73 is continuous.
For, if Ug is open in X3z, the set ng(Uﬁ> is a subbasis element for the product
topology on X,.
Now suppose f: A — [[ X, is continuous.
Since 7z and f are cor?tiiuous, the composite of these two maps, mg o f is con-
tinuous.
ngo f = fz where fz: A — Xp is continuous.
Therefore, fz is continuous.
Conversely, suppose each function f, is continuous.
To prove f: A — [[ X, is continuous.
ng(Ug) is a subbasis element for the product topology on [][X,, where Up is
open in Xjg.
M5 (Up)) = (w50 f) 71 (Us) = f5" (Up)
Since fz: A — Xp is continuous, fﬁ_l(Uﬁ) is open in A.
f‘l(ﬂgl(Ug)) is open in A.

Therefore, f is continuous. a

0.9 The Quotient Topology

Definition 0.9.1. Let X and Y be topological spaces; let p : X — Y be a
surjective map. The map p is said to be a quotient map provided a subset U of

Y is open in Y if and only if p~'(U) is open in X.

Definition 0.9.2. A subset C' of X is saturated (with respect to the surjective
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map p : X — Y) if C contains every set p~!({y}) that it intersects. Thus C is

saturated if it equals the complete inverse image of a subset of Y.

Definition 0.9.3. A map f: X — Y is said to be an open map if for each open
set U of X, the set f(U) is open in Y. It is said to be a closed map if for each
closed set A of X, the set f(A) is closed in Y.

Definition 0.9.4. If X is a space and A is a set and if p : X — Y is a surjective
map,then there exists exactly one topology J on A relative to which p is a

quotient map; it is called the quotient topology induced by p.

Definition 0.9.5. Let X be a topological space, and let X* be a partition of X
into disjoint subsets whose union is X. Let p : X — X* be the surjective map
that carries each point of X to the element X* containing it. In the quotient

topology induced by p, the space X* is called a quotient space of X.

Note: The quotient space X* is often called an identification space, or a

decomposition space, of the space X.

Theorem 0.9.6. Let p: X — Y be a quotient map; let A be a subspace of X that

is saturated with respect to p; let q : A — p(A) be the map obtained by restricting

p.
(1) If A is either open or closed in X, then q is a quotient map.

(2) If p is either an open map or a closed map, then q is a quotient map.

Proof. Step 1:

First we have to prove the following two conditions:
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g (V)=p Y(V)if V C p(A);
p(UNA)=pU)Nnp(A)ifU C X.

Since V' C p(A) and A is saturated, p~!(V) is contained in A.

Since ¢ : A — p(A) be the map obtained by restricting p,q (V) C A.

If V C p(A) then ¢ (V) = p~}(V).

If U ¢ X also we have A be a subspace of X then we have the inclusion
p(UNA) CpU)Np(A).

Now we have to show that p(U) N p(A) C p(UN A).

For, suppose y € p(U) Np(A). Then y = p(u) = p(a),for u € U and a € A.

Since A is saturated, A contains every set p~!(y) that it intersects.

Now A D pt(pla)) = ADa

Also AD pHp(u)) = ADu

Then ADaandu=ADANU.

Since A contains every set p~!(y) then we get y € p(U N A) implies that p(U) N
p(A) C p(UN A). Therefore, p(UN A) = p(U) N p(A).

Step 2:

Suppose A is open or p is open. Given the subset V' of p(A), we assume that
q (V) is open in A. To prove that V is open in p(A).

Suppose A is open. Since ¢7'(V) is open in A and A is open in X, the set g7 (V)
is open in X.

Since ¢~ (V) = p~1(V), the set p~1(V) is open in X. Since p is a quotient map,
V is open in Y. In particular V is open in p(A).

Suppose p is open. Since ¢~1(V) = p~1(V) and ¢ (V) is open in A, we have
p Y (V) =UnN A, for some set U is open in X.

Now p(p~'(V)) = V, since p is surjective; then
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V=pp (V) =p(UNA) =pU)NpA).

Since p is an open map,p(U) is open in Y. Hence V is open in p(A).
Step 3:

When A or p is closed map then instead of "open” put ”closed” in step 2. a

Theorem 0.9.7. Let p : X — Y be a quotient map. Let Z be a space and let
g: X — Z be a map that is constant on each set p~'({y}), fory € Y. Then g
induces a map Y — Z such that f op = g. The induced map f is continuous
if and only if g 1s continuous; f is a quotient map if and only if g is a quotient

map.

i
S

g

—_—> 7

f
Proof. Suppose f is continuous. To prove g is continuous.
For each y € Y,p~!(y) is open in X. Now the set g(p~'(y)) is a one point set in
Z, since g is constant on p~1(y).
For each € X define a map f:Y — Z such that f(p(x)) = g(x).
If f is continuous then the composite map g = f o p is continuous. Therefore, g
is continuous.
Conversely, assume ¢ is continuous. To prove f is continuous.

Let V be open in Z, g~ (V) is open in X. But g~ '(V) = p~'(f~1(V)), since p is

a quotient map.
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p~Y(f~1(V))is open in X. Then f~1(V)is open in Y. Therefore, f is continuous.
Suppose [ is a quotient map. To prove g is a quotient map.

Since ¢ is the composite of two quotient map, ¢ is a quotient map.

Conversely, assume g is a quotient map. Since g is surjective and so f is surjective.
Let V be a subset of Z. Now f~!(V) is open in Y.

Since p is continuous, p~(f~*(V)) is open in X.

We have p~1(f~1(V)) = g7 }(V),g (V) is open in X. Then V is open in Z.

Therefore, f is a quotient map. O

Corollary 0.9.8. Let g: X — Z be a surjective continuous map. Let X* be the

following collection of subsets of X :

X*={g7'({z})|z € Z}.

Give X* the quotient topology.
(a) The map g induces a bijective continuous map f : X* — Z, which is a home-

omorphism if and only if g is a quotient map.

<

(b) If Z is Hausdorff, so is X*.

Proof. (a) The map g induces a bijective continuous map f : X* — Z, which is

a homeomorphism then both f and the projection map p : X — X* are quotient
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map. ie, g = f op is a quotient map.

Conversely, suppose g is a quotient map. By 0.9.7, f is a quotient map. since f
is bijective, f is a homeomorphism.

(b) Suppose Z is Hausdorff. Then U and V' are disjoint neighborhood under f.
Since f : X* — Z is a homeomorphism. Then f~!(U) and f~!(V') are the disjoint
neighborhood under X*. Therefore, X* is a Hausdorff. O
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Unit 3

0.10 Connected spaces

Definition 0.10.1. Let X be a topological space. A separation of X is a pair

(u,v) of disjoint non empty open subsets of X whose union is X.

Definition 0.10.2. The space X is said to be connected if there dose not exists

a separation of X.

Remark 0.10.3. If X is connected, then any space homomorphic to X is con-

nected.

Theorem 0.10.4. A space X is connected iff the only subsets of X that are both

open and closed are the empty set and X itself.

Proof. First assume X is connected.

Claim : The only subsets of X that are both open and closed are the empty set
and X itself.

For, suppose A is a nonempty proper subset of X. That is both open and closed
in X.

We have X — A is nonempty. If we take A is closed in X. Then X — A is open.
Therefore we have two nonempty disjoint open sets A and X — A such that their
union is X.

That is A and X — A forms a separation of X.

= X is not conncted.

This contradication asserts our claim.
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Conversely, assume the only subsets of X that are both open and closed are
empty and X itself.
Claim : X is connected.
For, if X is not connected, there is a separation of X.
Let U and V forms the separation. Therefore U is nonempty.
U is open = X — U is closed in X.
= V is closed in X.
Also, V' is open = X — V is closed in X.

= U is closed in X.

Thus we have U is a proper subset of X. That is both open and closed.
This is a contradication.

Therefore X is connected. O

Lemma 0.10.5. IfY is a subspace of X, a separation of Y is a pair of disjoint
nonempty sets A and B whose union is Y, neither of which contains a limit point

of the other. The space Y connected if there exists no separation of Y.

Proof. Let Y be a subspace of X.

To prove separation of Y iff A and B are two nonempty disjoint sets such that
AUB=Y, ANB=ANB=1.

First assume that there exists a separation of Y . Then there exists disjoint
nonempty open subsets A and B such that AUB =Y.

It is enough to prove AN B =0 and AN B = 0.

Then A is both open and closed in Y.

The closure of A in Y is ANY where A denote the closure of A in Y.

Since Anis closed in X. A = ANY where A is the closure of A in X. To say the

same thing AN B = . Since A is the union of A and its limit points, B contains
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no limit points of A.

Similarly, we can show that A conatins no limit points of B.

Conversely, assume A and B are two nonempty disjoint sets such that ANB =
Y, ANB=ANB=1.
Claim :ANY = A.
We have A is contained A and A C Y.
Thatis AC Aand ACY.
Therefore AC ACY (1)
Now,let t€ ACY. Thenz € Aand z €Y.

Therefore, ¢ B and x € Y.
=z € A (sinceY = AU B).
Therefore, ANY C A -(2).

From (1) and (2) we get, A= ANY.
Similarlly, we can prove BNY = B.
Now, A is closed in X.

= ANY is closed in Y.

= Ais closed in Y.

Similarlly, B is closed in Y.

Now, B=Y — Aisopenin Y.
Therefore, B is open in Y.

Also A=Y — B.

Therefore, A is open in Y.

Thus A and B are two nonempty disjoint open sets in Y with Y = AU B.

Thus there exists a separation of Y. O

Lemma 0.10.6. If the sets C' and D form a separation of X and if Y is connected
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subspace of X, then Y lies entirely with in either C' or D.

Proof. Let sets C' and D form a separation of X.
Therefore, X = C'U D where C' and D are nonempty disjoint open sets in X.
Let Y be a connceted subspace of X.
To prove Y lies entirely with in either C' or D.
Since C and D are open in X, the sets CNY and DNY are open in Y.
Also, Y =Y NX
=YN(CUD)
=Y nC)u(YnD).
Now, (Y NC)N(YND)=YN(CND)
=Yno
=0
Therefore, these two sets are disjoint and their union is Y.
fCNY and DNY are both nonempty.
Then they would constitute a separation of Y. Since Y is connceted, the only
posibility is Y NC' =0 or Y N D = (). Therefore, Y C C or Y C D. Thatis, Y is

entirely either in C or in D. a

Example 0.10.7. Let X denote a two points space in the indiscrete topology.

Obuiously there is no separation of X, so X is connected.

Example 0.10.8. Let Y denote the subspace [—1,0)U(0, 1] of the real line R each
of the sets [—1,0) and (0, 1] is nonempty and open in Y. They form a separation
of Y.

Example 0.10.9. Let X be the subspace [—1,1] of the real line. The sets [—1,0)

and (0, 1] are disjoint and nonempty, but they does not form the separation of X.
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Because the first set is not open in X.
Example 0.10.10. The rationals () are not connected.

Lemma 0.10.11. The union of a collection of connected subspaces of X that have

a point 1 common is connected.

Proof. Let {A,}acs be a collection of connected subspaces of X that have a
common point. Let p € A, for each a be the common point. To prove | J A, is
connected. Let Y = J A,.

Suppose Y is not connected. Then there is a separation of Y. That is there exixt
C and D are two nonempty disjoint open sets in Y such that CUD =Y.

We have p € Y, therefore p € C' or p € D.

For, definteness let p € C'

Therefore, we have p € A,

= A, C C for each «

=JA, CC

That is Y C C

= D is empty.

This is a contradication to D is nonempty. Therefore, Y is connceted. Thae is

J A, is connected. O

Theorem 0.10.12. Let A be a connected subspace of X and if A C B C A. Then

B s also connected.

Proof. Let A be a connected subspace of X and let A ¢ B C A.
To prove B is connceted.

Suppose B is not connected. Then we can write, B = C' U D where C and D are
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nonempty set with CND =CnND = .

We have, A C B

=ACCUD.

Since A is connceted, By a theorem, A C C' or A C D.

Assume that, A C C

=AcC

= BcC

= BND=10.

But B = C U D. Therefore, D = ().

Which is a contradication to D is a nonempty set. Therefore, our assumtion is

wrong. Therefore, B is connected. O

Theorem 0.10.13. The image of a connected space under a continuous map is

connected.

Proof. Let f: X — Y be a continuous map. Given X is connected.

To prove f(X) is connected.

Suppose f(X) is not connected. Then we can write, f(X)= AU B where A and
B are nonempty disjoint open set in f(x).

Let g : X — f(X) with g(x) = f(x), Vx € X. Then g is onto and continuous.
Now, X = g7'(f(2))

=g '(AUB)

=g (A Uug ' (B)

Since g is continuous and A and B are nonempty open set in g~!(A) and g~ (B)
are open. Therefore,g~'(A) and g~'(B) are open in X.

Thus X = g 1(A)

U g '(B) where g7'(A) and ¢~ !(B) are nonempty open set
with g7 (A)Ng~Y(B) = 0.
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Therefore, X is not connected.
Which is a contradication to X is connected. Therefore, our assumption is wrong.

Therefore, f(x) is connceted. O

Theorem 0.10.14. A finite cartesian product of connected space is connected.

Proof. Let X, X,,..., X, be connected spaces.

To prove X; x X5 x ... x X, is connected.

First we prove product of two connected spaces X is connected.

Choose a base point a x b in the product X x Y. Note that, the horizontal slice
X x b is connected being homeomorphic with X and each vertical slice X x Y is
connected being homeomorphic with Y.

For each = € X, define T-shaped space, T, = (X x b) U (z x Y').

We have x xbe X xbandx xbex xY.

Therefore, z x b€ (z x b) N (z xY).

= (xxb)N(zxY)#0.

By a theorem, z x bUx x Y is connected. Therefore, T, is connected for every

r e X.

Claim: X xY =, T,
Clearly, T, C X x Y for every x € X.
Therefore, (J,cyv 7, € X xY ———(1).
Now, To prove X x Y C J,cy To-
We have, z x y € X XY
rxYexxY CT,
rxyeT, CUT,
XXV CUpx T -(2)
From equations (1) and (2) we get, X x Y = J,cx T
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We have (a,b) € X x b

Therefore, (a,b) € T, V z € X.

Therefore, (,cx Tw # 0.

Thus X XY = J,cy T» where (), o Ty # 0.

By a lemma, X x Y is connected as each T, is connected.

Now, we prove that cross product of finite number of connected spaces is con-
nected.

Let X1, X5, ..., X, be n-connected spaces.

To prove X7 x X5 X ... x X, is connected.

By the observation, we say that X; x X5 is connected. Therefore, the result is
true for n = 2.

Assume that the result is true for n-1.

That is X; x X5 x ... x X,,_1 is connected.

To prove the result is true for n.

We have, X x X5 X ...x X, is homeomorphic with (X7 x Xo x ... x X, 1) X X,,.
By our assumption, (X; x X X ... x X,,_1) is connected. Therefore,(X; x Xy x
... X X,—1) x X, is connected.

= (X7 x Xy X ... x X,_1) x X, is connected. O

0.11 Compact spaces

Definition 0.11.1. A collection <7 of subsets of X is said to be cover X or to be

a covering of X if the union of elements of < is equal to X.

Definition 0.11.2. A collection o/ of open subsets of X is said to be a open

covering of X if its union of elements of &7 is equal to X.
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Definition 0.11.3. A space X is said to be compact if every open covering <7 of

X contains a subcollection that also covers X.

Example 0.11.4. The real line R is not connected.
Let o7 = {(n,n+2)/n € Z} be a collection of open subsets of R whose union is

R. But this collection does not have a finite subcollection that covers R.

Example 0.11.5. Let X = {0} U{L/n € Z,} be a subspace of R. Then X is
compact. Let {U,} be an open covering of X. Therefore, X =, U,.
0eX=0el,U,

= 0e€ U, for some a.

U, is an open set containing zero. Therefore, U, is a neighbourhood of zero.

Since % — 0, there exists a positive integer N such that }1 eU,Vn>N.

= % w0 € U

Now, 1,%,...,ﬁ are in |JU,.

Let 1 € Upyy 3 € Unys oo oy o5 € Uyt

Therefore, {1,%,...,%,%,@,...,0}CUQIUUO,QU...UUQN,lLJUa

=XcU,uU,,U...UU,,-1UU,
= {Uay, Uy - s Uan—1,Uqs} is a finite subcollection which covers X. Therefore,

X is compact.

Example 0.11.6. (0, 1] is not compact. Since the open covering o = {(=,1)/n €

Z,} contains no finite subcollection covering (0, 1]
Example 0.11.7. (0,1] is not compact and [0, 1] is compact.

Definition 0.11.8. If Y is the subspace of X, a collection < of subset of X is

said to cover Y if the union of this element contains Y.

Lemma 0.11.9. Let Y be a subspace of X. Then Y is compact if and only if

every covering of Y bysets open in X contains a finite subcollection covering Y.
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Proof. First assume Y is compact and let & = {A,}aes is a covering of Y
bysets open in X.

Now, consider the collection {A, NY },cs this is the covering of Y bysets open
inY.

Since A, NY is open in Y for each a. Therefore, by compactness of Y, this
collection has a finite subcollection {A,, NY, A,, NY, Ap, NY, ..., A, NY} that
covers Y.

Then {Aq,, Aoy, - - - Aq, } 1 the finite subcollection of A that covers Y.

Conversely, assume every covering of Y bysets open in X contains a finite
subcollection covering Y.
To prove Y is compact.
Let A" = {A_} be a covering of Y bysets open in X.
For, each o choose a set A, open in X such that A’a =A,NY.
Y=A, UA, U...UA U...
Y =(As, NY)U (A, NY)U...U(As,NY) ...

=Y N (Ay, UAy, U..))

Y C Ay UA, U...UA, U. ...

The collection {A,} is the covering of Y bysets open in X. Therefore, by
hypothesis, some finite subcollection {A,,, Aa,, .- ., Aq, } covers Y.
Then {A, ,A, ..., A, }is the subcollection of A" that covers A. Therefore, Y

is compact. O

Theorem 0.11.10. Every closed subsets of a cmpact space is compact.

Proof. Given X is compact. Let Y be a closed subset of a compact set X.

To prove Y is compact.
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Let A = {A,}aes be a covering of Y bysetsopen in X.

Let us form an open covering 3 of Y by adjoining to A, single open set X-Y.
Since X is compact, there exists a finite subcollection { Ay, UA4,U. . .UA,, UX =Y}
of 3 that covers X. Therefore, X = {A,, UA,, U...UA,, UX —-Y}.

Then Y C Ay, UA,, U...UA,,.

= There exists a finite subcollection of A which covers Y. Therefore, by previous

lemma, Y is compact. O

Theorem 0.11.11. Every compact subset of a hausdorff space is closed.

Proof. Let X be a hausdorff space. Let Y be a compact space of X.

To prove Y is closed in X.

That is to prove X-Y is open in X.

Let 2o e X - Y

=190¢Y

Then zg #yVyeVY.

Now, zy and y are two distinct points of Hausdorff space X.

For, each point y of Y, there exists a disjoint neighbourhood U, and V), of z, and
y respectively.

Now, the collection {V,/y € Y} is the collection of open in X and V' C U, ey Vj-
Therefore, {V,/y € Y} is the covering of Y bysets open in X.

By lemma, there exists a finite subcollection {V},,V,,,..., V), } that covers Y.
ThatisY CV,, UV, U...UV,,.

Let V=V, UV,U...UV,,. Then Y C V and V is open in X.

Let U=U,, NU, N...NU,,.

Therefore, U is the finite intersection of open sets containing x;.

Therefore, U is an open sets containing x.
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Claim: UNV = (.

Suppose UNV # (. Then z € UNV
=zeUand z V.
Now,zeU=2€U, Vi=12,...,n.
Also z € V = z € V,, for some i.

z e Uy, NV,,.

Which is a contradication to Uy, NV, = 0.
Therefore, UNV ={. Also Y C U.
=UNY =90

=UCX-Y

= X — Y is open in X.

= Y is closed in X. O

Theorem 0.11.12. The image of a compact space under a continuous map is

compact.

Proof. Let f: X — Y be a continuous map, where X is a compact space and

Y be a topological space.

To prove f(X) is compact.

Let o/ be a cover of f(X) bysets open in Y. Then f(X) C Uye,, A Since fis
continuous and A is open in Y.

= f71(A) is open in X for every A € .

Also, X = Uue, [71(A).

Therefore, {f~'(A)/A € &/} is an open covering for X.

Since X is compact, there exists a finite subcollection, { f 71 (A1), f71(As), ..., f1(A,)}
that covers X.

That is X = f1(A) U fH(A)U...Uf1(A,)
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:>f<X) CAUAU...UA,.
{A1, Ay, ..., A,} is a finite subcollection of &7 that covers f(X).

By a lemma, f(X) is compact. a

Theorem 0.11.13. Let f : X — Y be a bijective continuous function, if X is

compact and Y is hausdorff, then f is a homeomorphim.

Proof. Let f: X — Y be a bijective continuous function. Given X is compact
and Y is hausdorff.

To prove f is a homeomorphic.

It is enough to prove f~! is continuous.

That is to prove that (f~1)7!(A) is closed in Y, for every closed set A in X.
Thatis, to prove f(A) is closed in Y for every closed set A in X.

Let A C X be closed in X.

Now, A being closed subset of the compact set X, A is compact.

Now, f(A) being a continuous image of a compact set A, f(A) is compact.
Again, f(A) being a compact subset of a hausdorff space Y.

Therefore, f(A) is closed.

Therefore, f~! is continuous.

Therefore, f is a homeomorphism. O

Theorem 0.11.14. The product of finitely many compact space is compact.

Proof. Let X, Xs,..., X, be compact spaces.

To prove X; x X5 x ... x X, is compact.

First we shall prove that the product of two compact space is compact.
Then the theorem follows by induction for any finite product.

Before proving this theorem, let us prove the Tube lemma. Consider the product
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space X X Y where Y is compact. If N is an open set of X X Y containing the
slice zg X Y of X x Y, then N contains some tube W x Y about xq x y where W

is a neigbourhood of zyin X.

We prove the following, there is a neighbourhood W of zy in X such that
W xY CN.
W x Y is often called a tube about xy x Y.
First let us cover zy x Y by basis elements U x V (for the topology of X x Y
lieing in N).
The space xy X Y is compact being homeomorphic to Y.
We can cover zg x Y by finitely many such basis element Uy x Vi, Uy x V5, ..., U, X
V.
We assume that each basis element U; x V; intersects xg X Y.
Since otherwise the basis element would be super fluous we can discard it forms

the finite collection and still the covering of zy x Y.

Define W =U;,NU;N...NU,.
Then the set W is open and it contains xg because each U; x V; intersects xg X Y.
we assume that the sets U; x V; which were choose to cover zy x Y actually cover
the tube W x Y.
For, let X xy e W x Y.
Consider the point z¢ x y of the slice g x Y, having the same y-coordinate at
this point.
Now, x¢ x y € U; x V; for some i.
So that y € V;.
But z € U; for all j.
We have x x y € U; x V;. Therefore, W x Y C N. Hence the lemma.
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Proof of the main theorem:

Let X and Y be compact space.
To prove X X Y is compact.
Let &7 be an open covering of X x Y.
Given zy € X, the slice g X Y is compact and therefore it can be covered by
finitely many elements Aq, As, ..., A, of <.
Their union N = A; U Ay U ... U A,, is an open set containing zy x Y.
By above tube lemma, the open set N contains a tube W x Y about xy X Y,
where W is open in X.
Then W x Y is covered by finitely many elements A;, A, ..., A,, of <.
Thus for each = € X, we can choose a neigbourhood W, of X such that the tube
W, x Y can be covered by finitely many elements of .o7.
Since X is compact. There exists a finite subcollection {Wy, Wy, ... Wy} which
covers X.
Therefore, theunion of the tubes W1 x Y, Wy x Y, ..., W, xY covers all of X xY.
Since each may be covered by finitely many elements of <.
Hence X x Y has a finite subcover. Thus X x Y is compact.
By induction, it follows that X, Xs, ..., X,, are compact spaces then their prod-

uct X7 x Xy X ... x X, is compact.

Definition 0.11.15. A collection € of subsets of X is said to satisfy the finite
intersection properly if for every finite subclooection {Cy,Cy,...,Cy} of €, the

intersection Cy N CyN ... N C, is nonempty.

Theorem 0.11.16. Let X be a tropological space. Then X is compact if and only
if for every collection € of closed sets in X having the finite intersection property,

the intersection ().cu C of all the elements of € is nonempty.
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Proof. Suppose X is compact.

Let % be a collection of closed sets in X satisfiying the finite intersection condi-
tion.

To prove (\oey C # 0.

If not assume,(,., C = 0.

Then X — (.., C =X - 0.

Since C is closed for all C' € €, X- Cis open for all C' € €. Therefore {X —C/c €
%'} is a collection of open subsets of X and X = (., (X — C).

Therefore, {X —C/C € } is an open cover for X. Since X is compact, there exists
a finite subcollection, {X — C}, X — Cy, ..., X — C,} which covers X.
Therefore, X = (X —C1) U(X —Cy)U...U (X —C,)

= X=X-(CnCyn...NCY)

=C0iNnCN...NnC, =0.

Which is a contradication to ¢ satisfies the finite intersection condition, ey C' #

0.

Conversely, suppose that for every collection % of closed sets in X having
the finite intersection property, the intersection ()., C of all elements of € is
nonempty.

To prove X is compact.

Suppose X is not compact.

Then there exists an open covering o/ for X which contains no finite subcovering.
Since 7 is an open covering for X.

X =Ugey A Then X — X =X —J e A

That is 0 = 4y (X —A) ———(1)

Now, {X — A/A € &/} is a collection of closed sets in X.
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Let {X — A1, X — A,,..., X — A,} be a subcollection of {X — A/A € &/'}.
Then (X —A)N(X —-A)N..N(X—A4,)=X— (A4 UAU...UA,) #0.
Therefore, {X — A/A € o/} is a collection of closed subsets of X satisfying the
finite intersection condition and by (1) (4., (X — A) = 0.

Which is a contradication.

Therefore, our assumption is wrong.

Hence X is compact. O
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Unit 4

0.12 The countability Axioms

Definition 0.12.1. A space X is said to have a countable basis at x if there is
a countable collection B of neighbourhood of x such that each nethbourhood of x

contains at least one of the elements of A.

Definition 0.12.2. A space that has a countable basis at each of its points is

said to satisfy the first countability axiom or to be first countable.

Theorem 0.12.3. Let X be a topological space. (a) Let A be a subset of X. If
there is a sequence of points of A coverging to © then x € A; the converse holds
if X is first countable. (b) Let f : X — Y. If fis continuous, then for every
convergent sequence x, — x in X, the sequence f(x,) — f(x) the converse holds

if X is first countable.

Proof. (a) Suppose € A. Since X is first countable, there exists a countable
basis say U, at x.

Let A, =UNnU;N...NU, forn=1,2,...

Then {A,} is a countable collection of neighbourhood of x and 41 D Ay D ... D
A, DA 1D ...

Claim : {A,} is a countable basis at x.

Let U be a neihbourhood of x. Since U,, is a countable basis at x, there exists U,
in {U,} such that U, C U.

Also, Ay, C U. Therefore, we have A, C U, C U.

That isx € A, C U.
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Therefore, {A,} is a countable basis at x.

Now, for any n, A, N A # (.

Choose z, € A,NAforn=1,2,...

Now, we have a sequence (z,) in A such that x, € A, forn=1,2,....
Claim : (z,) — =.

Let V be a neighourhood of x.

Since {A,} is a countable basis at x, there exists x such that Ay C V.
Also, A, C Ay Vn>N.

Therefore, x, € A, CV

=z, €VVYn>N.

Therefore, (z,) — x.

Conversely, suppose there exists a sequence (x,,) in A such that (z,) — =.
To prove z € A
Suppose there exists a sequence of points in A converging to x.
Let W be a neighbourhood of x.
Since (z,,) — = and W is a neighbourhood of x, there exists a positive integer N
such that x, e W, Vn >N
=WnNA#D.
Therefore, z € A.
Suppose f: X — Y is continuous.
To prove (f(z,)) — f(x) where (z,) — x.
Let (z,) — x. Let V be the neigbourhood of f(x).
= f~Y(V) is the neighourhood of x.
Since (,,) — x, there exists a positive integer N such that z,, € f~(V), Vn > N
= f(xz,) €V Vn>N.
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Therefore, (f(x,)) — f(z).

Conversely, suppose that (f(z,)) — f(x) whenever (z,) — x.
To prove f is continuous.
It is enough to prove f(A) C f(A) for any subset A of X.
Let y € f(A). Then y = f(z) for some x € A.
Now, x € A. By (a), there exists a sequence (z,,) in A such that (z,) — =.
By hypothesis, (f(x,)) — f(z).
Then by (a), f(z) € f(A)
=y € f(A).
Therefore, f(A) C f(A).

Hence f is continuous. O

Example 0.12.4. 1. R has a countable basis. It is the collection of all open

intervals (a,b) with rational end points.

2. R™ has a countable basis. It is the collection of all products of intervals

having rational end points.

3. RY has a countable basis. It is the collection of all product I1,c,, U, where

U, is an open interval with rational end points for finitely many values of n and

U, =R for all values of n.

Definition 0.12.5. If a space X has a countable basis for its topology, then X is

said to satisfy the second countability axiom or to be second countable.

Theorem 0.12.6. (i) A subspace of a first countable space is first countable and
a countable product of first countable spaces is first countable. (ii) A subspace of
a second countable space is second countable and a countable product of second

countable space is second countable.
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Proof. (i) Let A be a subspace of a first countable space X.

Let z € X.

Let # be a countable basis for X.

Let € ={BNA/B € A}.

Then % is a countable basis for the subspace A of X. Therefore, A is first count-

able.

Let (X;) be a sequence of first countable spaces.
To prove I1.X; is first countable.
Let %; be a countable basis for the space X;.
Then the collection of all products 1IU; where U; € %; for finitely many values

of 1 is a countable basis for I1.X;. Therefore, I1.X; is first countable.

(ii) Consider the second countability axiom. Let X be a second countable
space.
Let A be a subspace of X.
Let & be a countable basis for X.
Let ¢ ={BNA/B € #}.
Then % is a countable basis for the subspace A of X. Therefore, A is second
countable.

Therefore, any subspace of a second countable space is second countable.

Let (X;) be a sequence of second countable spaces.
To prove I1.X; is second countable.
Let %; be a countable basis for the space X;.
Then the collection of all products 1IU; where U; € %; for finitely many values

of i is a countable basis for I1.X;. Therefore, I1.X; is second countable. O

Definition 0.12.7. A space A of a space X is said to be dense in X if A =X
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Theorem 0.12.8. Suppose that X has a countable basis. Then (a) Every open
covering of X contains a countable subcollection covering X.

(b) There exists a countable subset of X. That is, dense in X.

Proof. Given X as a countable basis.

Let {B,} be a countable basis for the topology on X.

(a) Let o/ be an open covering for X.
For each positive integer n for which it is possible to choose an element A,, of o7
containing the basis element B,.
That is B, C A,
Let @/ = {A,}, then clearly <7 is the countable collection of open subsets of X.
To prove X = |JA,. Trivially, JA, C X ——(1)
Let x € X
= x € A for some A € &/.
There exists B, € {B,} such that = € B,, C A.
Since B,, C A,
=z e JAn.
Therefore, X C [JA, ———(2).
From (1) and (2) we get, X = |J A4,.

Therefore, 7" is a countable subcollection covering X.

(b) For each nonempty basis element B,,, choose a point z,, € B,,.
Let D be the set consisting of the point x,,.
Clearly, D is the countable subset of X.
Claim : D =X
Clearly, D C X.

To prove X C D.
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Let z € X.

Let U be a neihbourhood of x.

Then there exists B,, such that x € B,, C U.
Now, z, € B,,, ©, € D

=x,€B,ND

= B,ND#{

= x € D.

Therefore, z C D. Hence D = X.

Therefore, D is dense in X. O

Definition 0.12.9. A space for which every open covering contains a countable

subcovering is called a Lindelof space.

Definition 0.12.10. A space having a countable dense subset often said to be

separable.

Example 0.12.11. The space R; satisfies all the countability axioms but the

seconds or R; topology is first countable but not second countable.

Proof. Let z € R;, the set of all elements of the form [z, 2 4 1) is a countable
basis at x and it is easy to see that the rational number of dense in R;. Hence it
is first countable.

To show R; is not second countable.

Let % be a basis for R;.

Choose for each x, an element B; of & such that x € B, C [z,z + 1).

If x # y, then B, # B,

Since x = inf B, and y = inf B,

Therefore, % must be countable.

Therefore, it does not satisfy the second countability axiom. O
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Example 0.12.12. The product of two Lindelof spaces need not be Lindelof.

(or)
R; is Lindelof but the product R, x R, is not Lindelof.

Proof. The space R? has basis of all sets of the form [a,b) X [c, d).

We show that it is not Lindelof.

Consider a subspace L = {z X (—z)/x € R;} and L is closed in R?.

Let us cover R? by the open set R? — L and by all elements of the form [a,b) x
[—a,d).

Each of these open sets intersects L in atmost one point.

Since L is uncountable, no countable subcollection covers R?.

Therefore, R? is not Lindelof.

The subspace of a Lindelof space need not be Lindelof.

The ordered square, I is compact.

Therefore, it has a countable subcover.

Therefore, it is Lindelof trivially.

Now, consider the subspace A = I x (0,1) of I3.

It is not Lindelof.

For, A is the union of disjoint sets, U, = {z} x (0,1), = € I each of which is open
in A.

This collection of sets is uncountable and no proper subcollection covers A.

It is not Lindelof. O

Note: R? is called sorgenfrey plane.

Definition 0.12.13. Suppose that one point sets are closed in X. Then X is said
to be regular if for each pair consisting of a point x and a closed set B disjoint

from x, there exists disjoint open sets containing x and B respectively.
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Definition 0.12.14. Suppose that the one point sets are closed in X. Then X is
said to be normal if for each pair (A, B) of disjoint closed sets of X, there exists

disjoint open sets containing A and B respectively.

Note: A regular space is hausdroff and normal space is regular.

Lemma 0.12.15. Let X be a topological space. Let one point in X be closed.
(a) X is regular if and only if given a point x of X and a neigbourhood U of z,
there is a neihbourhood V of x such that V C U.

(b) X is normal if and only if given a closed set A of an open set U containing

A, there is an open set V containing A such that V C U.

Proof. (a) First assume X is regular.

Given a point x and a neighourhood U of x.

To prove there exists a neigbourhood V of x such that V' C U.

Let B=X—-U.

Then B is closed in X.

Also = ¢ B.

Therefore, by hypothesis, there exists disjoint open sets V and W containing x
and B respectively.

Therefore, the set V is disjoint from B.

Since if y € B the set W is a neigbourhood of x such that V c U.

To prove X is regular.

Suppose the closed set B not containing x be given. Then x € U.

By hypothesis, there is a neighbourhood V of x such that V C U.

Therefore, the open sets V and X — V are disjoint open set containing x and B
respectively.

Hence X is regular.
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(b) Suppose that X is normal.
Given a closed set A and an open set U containing A.
Let B=X—U.
Since U is open, B is closed in X.
Also we have A is closed in X.
Since X is normal, there exist disjoint open sets V and W containing A and b
respectively.
V is disjoint from W.
Therefore, V is disjoint from V.
Therefore, V C U.
Conversely, suppose given a closed set A and an open set U containing A, there
is an open set V containing A such that V C A.
To prove that X is normal.
Let U = X — B is an open set containing A.
By hypothesis, there exists an open set V containing A such that V C U.
Therefore, the open set V and X — V are disjoint open set containing A and B
respectively.
Also, given that the one point sets are closed in X.

Therefore, X is normal. O

Theorem 0.12.16. (a) A subspace of a Hausdroff space is Hausdroff. A product
of Hausdroff space is Hausdroff.

(b) A subspace of a regular space is reqular. A product of a reqular space is reqular.

Proof. (a) First let us prove the product of two hausdroff space is hausdroff.
Let X; and X5 be two hausdroff spaces.

To prove X; x X5 is hausdroff space.
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That is to prove Vo = (z1,22) and y = (y1,y2) of X7 X Xs, x # vy, there exists a
neighbourhood U and V of (21, z2) and (y1,y2) such that U NV = .

Here 1 € X1, 29 € X5, y1 € X1, yo € Xo.

r#y = (21, 22) # (41, 92)

= T # Y1 OF Ty # Yo.
We take z1 # ;.

Since X is a hausdroff space, two point x; # y; of Xy, there exists a neighbour-
hood U; and U, of x; and ; such that U, N Uy = 0.

Consider U; x X5 and Us X Xs.

Since Uy, Uy, X5 are open, U; x X5 and Uy x X, are open.

Also, (x1,25) € Uy x X5 and (y1,y2) € Us X Xs.

Since Uy NUy =0, (U x X3) N (Us x X3) = 0.

Thus U; x X5 is a neighbourhood of z1, x5 and U x X5 is a neighbourhood of
Y1, Yo with (U; x Xo) N (Uy x X3) = 0.

Next to prove subspace of a hausdroff space is hausdroff.
Let X be a hausdroff space.
Let Y be a subspace of X.
To prove Y is hausdroff.
Let y; # y2 be two points of Y. Then y;,y, € X.
Since X is hausdroff, there exists a neighbourhood U,, and U,, of y; and y, in X
such that U, N U, = 0.
Let V,, =U,, NY and V, =U,, NY.
Clearly, V,,, and V,, are neighbourhood of y; and y, in Y.
Also, V,, NV, = (U, NY)N (U, NY)

= (U, NU,)NY

66



Ny
0.
Therefore, Y is hausdroff.

(b) Let X be a regular space.
Let Y be a subspace of a regular space X.
Then one point sets are closed in Y.
Let x be a point of Y.
Let B be a closed set in Y not containing the point x.
Now, BNY = B where B denotes the closure of B in X.
Therefore, z ¢ B.
So using regularity of X we can choose disjoint open sets U and V of X containing
x and B respectively.
Then UNY and V NY are disjiont open sets containing X and B respectively.
Therefore, Y is regular.
That is the subspace of X is regular.
That is the subspace of X is regular.
Now, to prove product of a regular space is regular.
let {X,} be a family of regular spaces.
Let X =I1X,.
By (a) part, X is hausdroff. So that one point sets are closed in X.
Let x = (X,) € X.
Let U be a neighbourhood of x in X.
Choose a basis element IIU, about x contained in U.
Then U, is a neighbourhood of z, in X, and each X, is regular.

Choose for each «, the neighbourhood V,, of z, such that V,, C U,. If it happens
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that U, = X, choose V,, = X,,.

Then V =11V, is a neighbourhood of x in X.
Since VIIV,,.

By a theorem, it follows that, V C IIU, C U.
That is V C U.

Hence by lemma, X is regular.

That is I1X,, is regular. O

0.13 Normal spaces
Theorem 0.13.1. Fvery reqular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis .

To prove X is normal.

Let A and B be disjoint closed subsets of X. Each point x of A has a neighbourhood
U not intersection B.

Using regularity choose a neighourhood V of x whose closure lies in U.

Finally, choose an element of % contained in V.

By choosing such a basis element for each x € A, we construct a countable
covering of A by open sets whose closures do not intersect B.

Since this covering of A is countable, we can index it with the positive integers.
Let us denote it by {U,}.

Similarly, we can choose a countable collection {V},} of open sets covers B such
that each V,, does not intersect A.

The sets U = |J U, and

V= Un€z+ Vn

necz4
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Thus U and V are open sets containing A and B respectively but they need not
be disjoint.

Now, we construct two disjoint open sets containing A and B respectively.
Define, U, = U, — |JI_, V; and

Vrlb =Vn — U?:1 Uz

Each U, is the difference of a open set U,, and a closed set | JI_, Vi.
Therefore, each U, is open.

Similarly, each Vé is open.

Also, each V; is disjoint from k.

{U, /n € Z,} is an open covering for A.

Simiolarly, {V../n € Z,} is an open covering for B.

Let U' = U, and

nez,
V= Un€Z+ Vé-
Then U and V' are open sets containing A and B.

Claim : U' NV’ = 0.

Suppose U NV" # (.

Letz e U NV’

=T € U]'-ﬁVk' for some j and k.

Suppose j < k.

Now,xEU;:erj.

Also,z eV, =z¢ U, T,

Now, suppose that j > k.

Then we get x € V, and z ¢ Vi. Which is a contradication.

Therefore, U' N V' = (. This proves the claim.

Therefore, U and V' are disjoint open sets containing A and B.
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Therefore, X is normal. O

Theorem 0.13.2. Fvery metricable space is normal.

Proof. Let X be a metricable space with metric d.
Let A and B be two disjoint closed subsets of X.
For each a € A, choose ¢, > 0 so that the open ball B(a,¢,) does not intersect A.

Define, U = (J,c4 B(a,es) and V' = (J,c5 B(b, e%), U and V are open sets con-

acA
taining A and B respectively.

Claim: UNV = 0.

For, if U NV # (.

Let z € UNV. Therefore, 2 € B(a,ea) N B(b, eg) for some a € A and b € B.
We know that d(a,b) < d(a,z) + d(z,b)

< €a + €
2 2

€at€p
< -5

Now, if €, < €, then d(a,b) < €,

= a € B(b, ).

Also, if €, < €, then d(a,b) < ¢,

= b€ B(a,€,).

In both cases, we have a contradication.
Hence UNV = ().

Hence X is normal. O

Theorem 0.13.3. Fvery compact Hausdroff space is normal.

Proof. Let X be a compact hausdroff space.
To prove X is normal.

First let as prove X is regular.
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For, if x € X and B is closed subset of X not containing x then, B is compact.
So that by a lemma, there exists disjoint open sets about x and B respectively.
Now we prove X is normal.

Let A and B be two disjoint closed subsets of X.

For each a € A, choose disjoint open sets U, and V, containing A and B respec-
tively.

This is possible, since X is regular. The collection {U,} covers A.

Since A is compact, it can be covered by finitily many collection of sets {U,,, U,,, . . .

Define, U = U,, UU,,U...UU,, and V=V, NV,,N...NV,, .
Then U and V are disjoint open sets containing A and B respectively.

Hence X is normal. O

Theorem 0.13.4. Fvery well ordered set X is normal in the order topology.

Proof. Let X be well ordered set.

We assert that every interval of the form (z,y] is open in X.

If X has a largest element and y is that element.

Then (x,y] is just a basis element about y.

If y is not the largest element of X.

Then (x,y] equals the open set (x,7') where 3/ is the immediate successor of y.

Now, let A and B be two disjoint closed sets in X.

Case (i) Assume for the moment neither A nor B contains the smallest element
ap of X.
For a € A, there exists a basis element about a disjoint from B.
It contains some interval of the form (z, a).
Therefore, choose each a € A such an interval (z,, a| disjoint from B.

Choose an interval (yp, b] disjoint from A.
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Define, U = |J,c4(%a,a] and V' = {J,c 5 (v, b].
Then A C U and B C V and U and V are open.
We assert that U NV = 0.

For, if UNV #.

Then ze UNV

= 2 € (T4, a] N (s, b] for some a € A and b € B.
Assume a < b.

If a < .

Then the two intervals are disjoint while if a > yp.
We have a € (yp, b].

Contrary to the (3, 0] is disjoint from A, similar contradication occurs if b < a.

Case (ii) Now, assume A contains the smallest element ag of X.
The set {ag} is both open and closed in X.
The set A — {ap} and B are closed in X.
Therefore, by case (i), there exists disjoint open sets U and V containing A —{ao}
and B respectively.
Therefore, UU{ag} and V are disjoint open sets containing A and B respectively.

Thus X is normal. O

Lemma 0.13.5. (Urysohn Lemma)
Let X be a normal space; let A and B be disjoint closed subsets of X. Let |a,b] be a
closed interval in the real line. Then there exists a continuous map f : X — [a,b]

such that f(x)a, for every x € A and f(x) = b, for every x € B.

Proof. We will consider the only case of interval [0, 1].
The general case follows from that one.

The first step of the proof is to construct.
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Using normality a certain family U, of open sets of X, indened by the rational
numbers.

Then we use these sets to define the continuous function f.

Step 1: Let P = {p € [0,1]/p is rational}.
Define for each p € P, an open set U, of X such that whenever p < q.
We have Vp c U,.
Since P is countable, we can use induction to define the set U,.
Arrange the element of P in an infinite sequence in some way.
For convienience, let us suppose that the numbers 1 and 0 are the first two
elements of the sequence.
First define U; = X — B where A and B are closed subsets of X.
Second, because A is a closed set contain the open set Uy, by normality of X we
can choose an open set U such that A C Uy and U, C U;.
In general, P, denote the set consisting of the first n- rational numbers in the
sequence.
Suppose that U, is defined for all rational numbers p belonging to P, satisfing
-(%)

Let r denote the next rational number in the sequence.

the condition p < ¢ = U, C U,

We wish to define U,..

Consider the set, P, = P, U{r}.

It is a finite subset of the interval [0, 1] and its satisfies the simple order relation
<.

We know that the finite simply order set, every element other than the smaller
and the largest has a immediate predecessor and an immediate successor.

The number 0 is the smallest element and 1 is the largest element of P, ;.
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Therefore, r has an immediate predecessor p in P,,; and an immediate successor
qin Pn+ 1.

The sets U, and U, are already define and U, C U,,.

Using normality of X, we can find an open set U, of X such that U, C U, and

U,clU,— (1)

Claim : (*) holds for every pair of elements of P, ;.
For, if both elements lieing P,, (*) holds by induction hypothesis.
If one of them is r and other is an element s of P,, then either s < p or s > q.
If s <p, then s <.
Since s,p € P, by induction hypothesis U, C Up,.
That isECUpCVPCUT.
That is U C U,.
Ifs>q,r<s.
Since ¢, s € P,.
Then by induction hypothesis, Fq C Us.
That is U, C U, C U,.
That is U, C U, C U, C U,
= U, C U,.
Therefore, eqation (*) ias true for every pair of elemevts in P, ;.
Therefore, by induction for every p € P an open set U, of X is defined such that
whenever p < ¢, U, C U,.
Step 2 : Now we define U, for all rational in the interval [0, 1] entened this
definition to all rational numbers p in R by defining, U, = 0 if p < 0, U, = X if
p> 1.

Then we have to prove for any rational numbers p and q in R whenever p < ¢ =
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U, Cc U,.
Case(i) If p and q are two rational with p < ¢, then by step 1, U, C U,

Case (ii) If p and q are two rationals with p € [0,1] and ¢ > p.
Then U, is defind by step 1 and U, = X.
Therefore, ﬁp c U,

Case(iii) If p and q are two rationals with p < 0 and ¢ € [0, 1].
Then U, = () and U, is defined by step 1,
=U,=0=0cU,
THerefore, Fp c U,.

Csae(iv) If p and q are two rational numbers with p < 0 and ¢ > 1.
Then U, =0, U, = X.
Therefore, U, C U,,.

It is still prove that for any pair of rational numbers p and q, p < ¢ = Fp c U,.

Step 3:
Given a point x € X.
Let us define Q(z) to be the set of all rational numbers p such that the corre-
sponding open sets U, contains x.
That is Q(z) = {p/x € U, }.
This sets cointains no numbers j 0.
Since no x is in Up for p > 1.
Therefore, Q(x) is bounded below and its greatest lower bound is a point of a
interval [0, 1].
Define f(z) = inf Q(z) = inf{p/z € U,}.

Step 4:
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Claim 1: f(z) =0Vz € Aand f(z)=1, V2 € B.
freA=axcACU,CU.
Now, 0§pz>70CUp.
Therefore, A C U,.
Hence z € A=z € U,.
Therefore, x € U, if p > 0.
That is Q(x) contains all the rationals > 0. Therefore, g.1.b of Q(x) = 0.
Therefore, f(x) =0, V z € A.
lfreB=x¢U
=z ¢ 0,

=z ¢U,ifp <L

Therefore, Q(x) contains no rationals < 1. Therefore, g.l.b of Q(z) = 1.

That is f(z) =1, V2 € B.
Claim:2

Now, we show that f is continuous.

For this purpose we first prove the following elementary facts.
(1). x€U.= f(z)<r
(2). 2 ¢ U, = f(x) >r

To prove (1), Let = € U,.
Then x € U, for every s > r.
Therefore, Q(x) contains all rational numbers > r.
So that by definition, we have f(z) = inf Q(z) <.
To prove (2)
Let x ¢ U,.

Then = ¢ Us for every s < 7.
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Therefore, Q(x) contains no rational numbers < r

So that by definition, we have f(z) = inf Q(z) > r.

Now, we prove the continuity of f, f: X — R.

Given a point z, of X and an open interval (c, d) in R containing the point f(zo).
We wish to find a neigbourhood U of x4 such that f(U) C (c,d).

Choose rational numbers p and q such that ¢ < p < f(x¢) < ¢ < d.

We saaert that the open set, U = U, — ﬁp is the desired neighbourhood of xy.
First we note that zy € Uy, for the fact that f(x¢) < ¢ = by condition (ii) that
xo € U, while the fact that f(zy) > p = by the condition (i) that zy ¢ U,,.
Second we show that f(U) C (¢, d).

Let z € U, then x € U, C U, so that f(z) < ¢ (by (1)) and x ¢ U, so that
f(z) = p (by (2)).

Thus f(z) € [p,q] C (¢, d).

Therefore, f(U) C (c,d).

Hence f is continuous.
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Unit 5

Banach spaces

0.14 The definition and some examples

Definition 0.14.1. A linear space N is said to be a normed linear space if each
vertex x € N there corresponds a real number, denoted by ||x| and called the

norm of x, such that
(1) ||z|]| >0, and ||z]|=0<2=0
(2) llz+yll < llzll + llyll;
(3) llaz| = |af [l].

A non-negative real number ||z|| is a length of a vertex . We can easily verify

that the normed linear space N is a metric space with respect to the metric d

defind by d(z,y) = ||z — y].
Definition 0.14.2. A Banach space is a complete normed linear space.

Result 0.14.3. A function |||| : N — R is continuous.

Proof. First we prove that |||z|| — ||lyll] < ||z — |-

We have ||z]| = [|(z —y) + y|| < ||l — y|| + [Jy]|-

Therefore ||z]| — ||y|| < ||z — y]| (1)
Interchanging = and y we get, ||y|| — ||z ||y — z||.
That is —([|lz[| = [ly]) < [lz =yl (2)

From (1) and (2) we get, |[|z]| — [ly[l] < [z —yl|.

By the definition of continuvity, it is clear that ||| is continuous. O
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Result 0.14.4. Addition and scalar multiplication are jointly continuous.

Proof. Suppose z, — x and y, — y.

Now, |[(zn +yn) = (@ +9)|| = (@0 — ) + (o — W) < llzn — 2l + llyn — yll
since x,, — .

since z,, — x and y, — vy, the RHS converges to 0 and hence the LHS converges
to 0. That is (z,, + yn) — (v +v).

Suppose «,, — a and z, — x

Now, ||anx, — az|| = ||anz, — anx + oz — ax|
= [lan(zn — ) + (0 — )z
< len(zn — 2)[| + [[(an — a)z|]

=[] lzn = 2]l + |an — ol [|l]

Since a,, — « and x,, — x, the RHS converges to 0 and hence LHS converges

to 0. That is a,,x,, — ax. O

Theorem 0.14.5. Let M be a closed linear subspace of a normed linear space N .
If the norm of a coset x + M in the quotient space N/M denoted by ||z + M| =
inf{llxt +m| ;m € M} then N/M is a normed linear space. Further, if N is

Banach space, then so in N/M.

Proof. Part 1: Given N is a normed linear space and M is a closed linear
space of N. To prove (N/M,||||) is a normed linear space.
(1) Clearly ||z + M]|| > 0 for every z € N.
Suppose x + M is a zero element of N/M. That is, z + M = M
=zecM.
Now, [lz + M|| = inf{||lz +m;m € M|}
= inf{[|2]/;2 € M}
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=0.

Hence x + M = M = ||z + M| = 0.

Clearly, Suppose ||z + M| = 0. That is inf{||x +m;m € M|} = 0.

Then there exists a sequence(my) in M such that ||z + my|| — 0

= my — —x

=-—-xzeM

=zeM

= x4+ M = M, the zero element of N/M.

Therefore ||z + M| =0= 2+ M = M.

2) [[(z + M) + (y + M)|| = [[(z +y) + M|
=inf{llx +y+m|;me M}
:inf{Ha:—l—qum—km/H;m,m/GM}
:inf{]](:c+m)+(y+m/)|| :m,m’ € M}
gz'nf{||x+m||—|—Hy—|—m'||;m,m' € M}

= inf{|lz+m|;me M} +inf{|ly +m'||; m" € M}

= llz + M| + lly + M].
3) lalz +M)| = llax + M|
= inf{|lax+ml|; me M}
= inf{lla(z+m)|; m e M}
=inf{lal |z +m|;m e M}
= lalinf{l[z +ml|; m € M}
= laf [lz+ M.

Hence N/M is a normed linear space.

Part 2: Given N is a Banach space. To prove N/M is complete.

That is, To prove any cauchy sequence in N/M has a convergent subsequence.
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Clearly, it is possible to find a subsequence {x, + M} of the given cauchy sequence
such that

[(z1 + M) — (z2 + M| <
[(z2 + M) = (25 + M)|| <

Bl N

H(xn“‘M) - (xn-i-l ‘l'M)” < QL"

To prove the sequence {z,, + M} is convergent in N/M.
Choose any vector y; in x; + M and choose any vector y, in x5 + M such that
Iy — v2ll < 3
Again choose a vertor y3 in z3 + M such that ||y — ys3|| < 71;-

Continuing in this way, we obtain a sequence (y,) in N such that ||y, — yni1] <

1

2n”

If m <n,

Hym - yn“ = H(ym - ym+1) + (ym+1 - ym+2> +...t (ynfl - yn)H
< “ym - ym+1|| + Hym—f—l - ym+2|| +..+ Hyn—l - y'n”

1 1 1
<gm tommt. t o

1
2m—1"

<
Therefore (y,) is a cauchy sequence in N.
Since N is complete, there exists a vector y in IV such that y, — y.
Now, |[(zn + M) = (y+ M)|| = [[(z0 — y) + M|
= inf{ll=y+unll; yn € 20+ M}
< 1yn = yll-
Since (y,) — v, it follows that =, + M converges to y + M.
Therefore N/M is complete.
Hence N/M is Banach space. a
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Example 0.14.6. The space R and C- the real numbers and the complex numbers
are normed linear spaces. The norm of a number x defind by ||z|| = |z|. Also R

and C are Banach spaces.

Example 0.14.7. R" and C™ of all n-tuples v = (x1,22,...,2,) of real and
complex numbers can be made into normed linear space under the norm is || x| =

1
>, |x2|2} ?. Also R™ and C™ are Banach spaces.

Example 0.14.8. let p be a real number such that 1 < p < oco. We denote by
Iy, the space of all n-tuples x = (x1,Za, ..., Ty), ¥; are scalars. Show that I} is a

normed linear space under the norm defined by ||z||, = [> i, \xl|p]%

Proof. Let x = (z1,29,...,2,) and y = (y1,¥2, ..., yn) and « be any scalar.
(1) Clearly, ||a:||p > 0 (since each |z;| > 0)
lall, =0 & [y feil?]7 = 0
& [T fal) = 0
& |z|" =0 for each i
& |z =0 for each i
& each x; =0
& x=(x1,29,...,2,) = 0.
(2) llaz], =[S, lai[")?
= [Ty [l i)
= |o| [T, i)
— Jo llz].
Ifp=1
1z +ylly = 225 [ + wil
< i il + lwil]

= i |l + 220 [wil
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= llzlly + llylly

Therefore ||z +y||; < ||z]|, + ||yl

Thus the inequality holds when p = 1.

Consider 1 < p < cc.

Letp>1and%+§:1andq>1.

Now, |l + yll, =[S0, |e: + wil"]?

Iz +ylly = > |2+ il”

= 30w+l |+l
< S (el + i) s + !
=30 Jwil |z + ylP T+ [yl !-7311' +ylP 1
< [0 i) [ bl T [l |y o+ il
= lall, (I52s foi + 17 ) + Dl (100 s+ wil?1 )
—llzll, =+ ylié + Iy, 1=+ vl
= o+ wli (el + 1, )

S e+l < 2, + Iy,

= llz+yll, < llzll, + [yl

Thus when 1 < p < oo, ||z +yl, < |lz|, + [lyl,-

Therefore [} is a normed linear space. O
Example 0.14.9. The space l,, consider a real number p with the property that
1 <p < oo and we denote by l,,, the space of all sequences v = {1, T2, ... %y, ...}

of scalars such thaty >, |z,|" < 0o. Show that I, is a normed linear space under

1
the norm ||x||p = [0 lzal]7.

Proof. Letp=1
() lllly = 2252, il
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Cleary, ||z||, > 0, each |z;|.
[z1]] =0 & > 72, 2| =0
& each |z;| =0

& each x; =0

s x={r1,29,...2pn,...} =0.

(2) llowlly = 225 o]
=[] 3252 |l
= lal |zl
() Nl +ylly = 2272 i + il
= > i (il + lwil)
= limn—co 321 (73] + [3il)
= liMyoo Dy |z + limp_so Dy Ui
= > il + 225 |wil
= llzlly + llyll,

Let 1 <p< oo

(D) Nlzll, = D22 |il”]
- 1
=], =0& D22, |zl’]? =0
&Yy " =0

LA

> 0 (since each |z|, > 0)

& |z =0 for each i
& each x; =0

S ao=0
That is ||z[|, =0 & 2 =0

(2) [lazl|, = X, aw:[?]7
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[un

= 221 ol [l
1
= laf D25 il

= la] |,
3) llz +yll, = [ |2 + w7

= Lo [0 i + 3l

< iy (1 [l)7 + (0 luil)7 |

= limoe (X0 [27)? + limoe (S0 3il?)
(52 Jaal™)7 + (5wl

= [l=ll, + llll,

D=

That is [l +yll, < [lz][, + |lvll,

(I
Example 0.14.10. Consider the linear space of all n-tuples v = (x1, o, ..., x,)
of scalars. Define the norm by ||z|| = max{|z1|,|x2|,...,|xal}. This space is

commonly denoted by I and the symbol ||z|| is used for the norm. Show that I,

1s a normed linear space.

Proof. (1) ||z|, = max{|z|,|z2|,...,|2zal}

Clearly, [|z||,, >0

2]l o = 0 mazf{|zy|, |zo] ..., |2a|} =0
& x| =0,|z2] =0,..., ]z, =0
Sr1=02,=0,...,2,=0

& (r1,29,...,2,) =0

Srx=0
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(2) ||ax|,, = max{|ax:|, |azs|,. .., |az,|}

= maxz{|al |z, |e|[z2], ... |af |za|}
= |a| max{|z1],|zal,. .., |za|}
= lallzl
B) lz+ 9l = maz{les +ul w2 + vl Jon + yal}
< maz{|za] + gl 22| + y2l - [2n] + |ynl}
< maz{|zi], |zaf, .. |zal} + maz{lyl gl - lual}
= [zl + llyll O

Example 0.14.11. Consider the linear space of all bounded sequences v = (x1,xa, . . .

of all scalars. We define the norm ||z|| = sup|x|, and we denote the normed lin-

ear space 18 ls.

Proof. (1) ||z]| = sup|z]
Clearly, ||z|| > 0
|z|| =0 < supl|z;| =0
< |:L’,L’ :O’Z: 1,27...
<:>IZ:07Z:]_72,
s zx=0
@) llasll = suplaai|
= sup(|al|z;])
= |a| sup|z;]

= |af ||z

3) [l +yll = sup(|z: + i)

= sup(|zi| + [uil)
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< sup x|+ sup |y

]l + 11yl

Hence [, is a normed linear space. a

0.15 Continuous linear transformations

Theorem 0.15.1. Let N and N’ be normed linear space and T a linear trans-

formation of N into N' then the following conditions are equivalent
(i) T is continuous;
(11) T is continuous at the origin, in the sense that x, — 0= T(x,) — 0;

(111) there exists a real number K > 0 with the property that ||T'(x)| < K ||z||

for every x € N;

() if S ={z:||z|| < 1} is the closed unit sphere in N, then its image T(S)

is a bounded set in N'.

Proof. (i) = (i7)

It is obvious that (i) = (i)

Suppose that 7' is continuous at the origin.
Let z, —

=x,—r—0

= T(x, —x) = T(0)=0
=T(x,—x)—0

= T(z,) —T(x) =0

= T(z,) — T(z).

Therefore T is continuous.
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(i) = (i)
Hence (i) < (ii)

To prove (iii) = (i7)

Suppose there exists a real number K > 0 such that | T(x)| < |K]|||z]|Vx € N.
Let z,, — 0

Now [Tzl < K] [zl

Since x, — 0, T'(z,) — 0

= T is continuous at the origin

Hence (i1i) = (i7)

To prove (ii) = (i)

Let us assume that there is no K such that ||T(z)|| < K ||z||Vz € N.

Then for any positive integer n, we can find a vector z,, such that ||T(x,)| >
nl||z,||Ve e N

That is HT

Al H
Let y, =

Alleal

Clearly, y, — 0 (since as n — oo, % —0)

But [[T'(yn)[l - 0

Therefore T is not continuous at the origin.

Hence (ii) < (i17)

To prove (iii) < (iv)

Since S = {z : ||z|| < 1},

T(S) = {T(2) : |T(@)]| < 1}

Now [l2]| < 1= |T(@)] < K

Therefore T'(S) contained in the closed sphere center on the origin of radius K.

Therefore T'(S) is a bounded set in N.
Thus (7i7) = (iv)
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Assume that T'(S) is bounded set in N, where S = {z : ||z|| < 1}.

Therefore T'(S) contained in the closed sphere center on the origin of radius K.
Ilfx=0,T(x)=T(0)=0

Cleatly |[T(2)] < K |z

Tl €9

Tor) € T(S)

Therefore HT e H <K

Ifz+#0
T

= [|T(2)] < K ||z
Therefore (iv) = (i)

Hence (iii) < (iv). 0

Result 0.15.2. |T(z)|| < ||T| |2

Proof. If x =0, then T'(z) = 0 and hence | T(z)|| < ||T|| ||=]|-

If x #0 € N, then % ENandH”;—Huzl

Now, ||T'(z HT<||IH> I H

= ([l T

< ||| HTH-
That is [|T(z)|| < |7 [|=

Hence for all x € N, || T(z)|| < ||T|| ||z]]. 0

Notation:

%B(N,N') is the set of all bounded (or continuous) linear transformations of

N and N'.
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Theorem 0.15.3. If N and N’ are normed linear spaces, then the set B(N,N')
of all continuous linear transformations of N and N is itself a normed linear
space with respect to the pointwise linear operations and the norm defind by ||T|| =
sup{||T(x)| : ||| < 1}. Purther if N' is a Banach space, then (N, N') is also

a Banach space.

Proof. We know that L, the set of all linear maps from N into N is a linear

space.
Now we will prove Z(N, N') is a subspace of L.
For, let T\, T, € (N,N’)

Then [[(anTh + a2T) (@) = [[(crT1)(z) + (a2 T2)(2)]]
= llaaTh(z) + axTo(x)|
< aaTh(@) | + llaaTa(2) ||
= |oa| [[Ta(@)|| + || | T2(2)]]

Since Ty, T, € B(N,N'), there exist K, Ky > 0 such that ||T}(z)|| < K, ||z]|
and || Ty(z)|| < Kq||z]| Yz € N

Therefore ||(a1T) + aoT3) (z)]] < |oa| K1 ||z]| + |aeo| Ko ||2]]
= (Ja1] K1 + || Ka) |||
= K ||z

That is ||(a1 11 + a2Th) (2)|| < K ||z||
Thus a, Ty + Ty € B(N, N').
That is (N, N') is a subspace of L and hence (N, N') is a linear space.

Now we prove ZA(N, N /) is a normed linear space with the norm given by

1T = sup{IT(@)[] - fl=]] < 1}.
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Let T € (N,N')
Since || T[] = sup{||T'(z)| : |z <1} and |T(x)|| =0, ||T]| =0

Now [|T']| = 0 < sup{||T'(z)| : [[z]| <1} =0
< [[T()] =05 lzf| <1
& T(x)=0,zcN,|z|| <1
T =0

Let T}, T, € Z(N,N)

1Ty + Tof| < 1Tl + (172l

If o is a scalar and T € %(N,N')
laT]| = [ |7

Therefore (N, N') is a normed linear space.
Let N’ be a Banach space and {T,} be a cauchy sequence in Z(N,N').

If z is an arbitrary vector in N, then ||T,,(x) — T.(2)|| = [|(Tm — Tn)(2)]] <
1T — Tall N1l

Since {T,,} is a cauchy sequence, the RHS — 0 as n, m — oo. Hence LHS — 0
as n, m — oo.
Hence {7, ()} is a cauchy sequence in N'.
Since N’ is a Banach space, {T},(z)} converges in N'.
Now define T'(z) = lim,,_oo 1), ().
Claim : T € B(N,N").

For, let x,y € N and «, 3 are scalars.
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= oT(x) + BT (y).
Therefore 7' is linear.
[T )] Vim0 T () | = Timp o || T (2) ]
< iy [Tl ]|
< sup{|[ T[] [|[}
= (sup || To[]) || -(1)

Now, ||| 7] = | Tl < |17 — 15| which converges to 0 as n,m — oo.
Therefore {||T,,||} is a cauchy sequence of real numbers and hence convergent and
bounded.

Hence there exists K > 0 such that sup || 7,,]| < K———(2)
From (1) and (2) we get, ||T(z)|| < K ||z|| Vx € N.
Thus 7' € Z(N,N').

Claim: T,, —» T.

Let ¢ > 0 be given and let ny be a positive integer such that n,m > ny =
| T — Thl] < e
It |lz| <1 and m,n = no, |Tn(z) = Toll = [[(Tr — To)(2)|

< | T — Tl ||
< ||Tm - Tn”
<€ (3)

Fix m and n — oo.

1T () = Ta(@)[| = [T (2) = T(2)].

Now lim,, .o ||Tn(x) — T (2)]| <e.

That is || T (x) — T(2)|| <€, |z|| <1and for all m > ny.

Taking supremum on both sides, sup ||T,,,(x) — T'(z)|| < € ¥V m > ng

=T, —T| <e¥Vm>ng

92



=1,—T
=T, —T¢c%N,N).
%B(N,N') is a Banach space. 0

Definition 0.15.4. Let N be a normed linear space. A continuous linear trans-

formation of N into itself is an operator on N. We denote the normed linear

space of all operators on N by B(N) instead of B(N, N).

Definition 0.15.5. Let N and N be normed linear space. The linear transfor-
mation T : N — N’ is said to be an isometric isomorphism if T is one-one and
|T(z)|| = ||z|| V2 € N. We say that N is isometrically isomorphic to N' if there

. . . . . ’
exists an isometric isomorphism of N onto N .

0.16 The Hahn - Banach Theorem

Definition 0.16.1. Let N be a normed linear space. Now form the set of all
continuous linear transformation of N into R or C accarding as N 1is real or
complez. This set B(N, R) or (N, C) it is denoted by N* and is called conjugate

space on N.

The element of N* are called continuous linear functionals or simply function-

als.

If the norm of the functional f € N* is defined by ||f|| = sup{|f(x)| : ||z] <
1} =inf{K : K >0and |f(x)] < K|z| ¥z} then N* is a Banach space.

Lemma 0.16.2. Let M be a linear subspace of a normed linear space N, and let

f be a functional defined on M. If xq is a vector not in M and if My = M + [x]
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1s the linear subspace spanned by M and xqo, then f can be extented to a functional

fo defined on My such that || fol| = || f]|

Proof. Case :1

Let N be a real normed linear space without loss of generality we may assume
IfIF = 1.
Since xg ¢ M, each vector y € M is uniquely expressed in the form y = = +
axy, v € M.
Define fo(y) = fo(x + axo)
= fo(z) + a.fo(zo)
= f(z) + arg where ro = fo(xg) is a real number.
Clearly, fy is linear.
For, Let y1,y, € My and 3,7 € R.
Then y; = x1 + a1xg and yo = 19 + axg, 1,29 € M.
Now, By1 +vy2 = B(x1 + a1zo) + (22 + Q2p)
= (Bz1 + yx2) + (Bar + ya2) zo.
Now, fo(Byr +7Y2) = fo[(Br1 +v22) + (B + yaz) o]
= fo(Br1 + yx2) + (Bou + yaz) fo(z)
= f(Br1 + yw2) + (Bou + yaz)ro
= Bf(z1) +vf(22) + Bairg + yaarg
= Bf(x1) + Baarg + v f(22) + yaarg
= B(f(@1) + onro) + 7(f(22) + azro)
= Bfo(x1) + a fo(wo)] + 7 [fo(@2) + a2 fo(zo)]
= B [fo(z1 + a1z0)] + 7 [fo(z2 + aaxo)]
= Bfo(y1) +7So(y2).

Therefore, fj is linear and hence fj is a linear extension of f.
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Claim: || foll = [£]-

1 foll = sup{lfo(2)] : = € Mo, |lzf| <1}
> {[fo(@)] : 2 € My, =[] <1}
=sup{[f(2)| : x € M, |[z[] <1}

— 1/l
Therefore, [[foll > If]. — (1)

For any two vectors x1, xo in M.
We have f(z2) — f(x1) = f(xo — 1)
< |f(z2 — 1)
< [ fIHlz2 = ]

= ||zy — 2|

[(z2 + 20) — (21 + 20))|
(72 + 0) + (= (21 + 20))||

< [[(w2 + o) | + (21 + o).
That is, f(xz2) — f(z1) < |[(w2 + 2o)[| + || (z1 + o) |-
= —f(z1) = llz1 + 2ol| < —f(22) + |22 + 2ol|-
Since, this inequality holds for arbitrary zq, xs,...,x, € M.
Now, sup,en [=f(2) = ||z + oll] < infaenr [=f(x) + [l + zo][].
Choose ry to be any real number such that
supgenr [—f(2) = [l + zoll] < o < infaens [ (2) + [+ 20] Vo e M ——(2).
With the choice of g, we will prove || fol| < || f]].
Let y = z + axy be an arbitrary vector in Mj.
Replacing x by Z in (2) we get,
—f(&) = |2+l <mo < —fE) + 2+l — ()
If o > 0, then 1o < —f(£) + || £ + o]
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=10 < =3 f(2) + |3 2 + azo

«

=19 < —

Sf (@) + 3 Ml + awol|

= arg < —f(z) + ||z + azo|

= f(z) + arg < ||z + ax|

= fo(z + am) < |z + azol|

= foly) <yl

If o <0, then 1o > —f(£) — ||£ + x|

= 1o > —2f(2) — 2] |« + az|

S o> —Lf(2) + (=1) & + o]

= arg < —f(z) + ||z + axo|

= [(z) + arg < ||z + axo

= fo(x + axo) < ||z + axo]

= foly) <yl

When a # 0, fo(y) < |yl Vye M.

Replace y by -y we get,

fol=y) < lyll

= —foly) < llyll

= [fow)| < llyll ————().

Now, [ foll = sup{|fo(y)| : y € Mo, [ly|l <1}
< sup{[lyll : y € Mo, [ly| <1}
=1
=)

From (2) and (4) we get, [|foll = [ /]

When o =0, f = f, and hence || f]| = || fol|-

Case ii
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Let N be a complex normed linear space.
Hence f is complex valued functional defined on M such that ||f]| = 1.
Note that the complex linear space can be regarded as a real linear space by
simply restricting the scalars to a real number.
Let f(z) = g(x) + ih(x) where g and h are real for all z € M.
Clearly, g and h real valued functionals defind on the real space.
Further, [g(z)| < |f(z)|
< {LfIH]

Since f is bounded, g is bounded.
Similarly, h is also bounded.
Thus g and h are real valued functionals.
Now, f(ix) =if(x)
= g(iz) + ih(ix) = i [g(z) + ih(z)]
= g(iz) + ih(ix) = ig(x) — h(x)
= h(z) = —g(ix).
Therefore, we can write f(z) = g(z) — ig(ix).
By case (i), we can extend g to a real valud functional gy on the real space M,
such that [lgoll = [lg]l-
Now, we define fo(x) = go(z) — igo(iz) Vo € M,.
Clearly, fy is a linear extension of f from M to M.
Thus fj is linear as a complex valued function defined on the complex space M.
Since fy is linear extension of f, we have ||fol| < ||f]| ——(5)
If fo(x) is real, then fo(z) = go(z).
Therefore, |[foll = |90l

= llgl

= sup{|g(z)| : [|lz]| <1}
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< sup{[f(z)[ : [lz]| < 1}.
That is || fol| < [[f]] ———(6)
If fo(z) is complex, then we can write fo(x) = re? where r > 0 and x € M, is
arbitrary.
Now, |fo(z)| =r
— iy i
= e fy(z)
= fole™"x)
= go(e™"x)
< |go(e )|
= llgoll [|go(e~)]]
= llgoll [e=] ll|
= llgoll ll=]-
Therefore, |fo(x)| < [lgoll [|=]]
= llgll ||
< A1 el
Taking supremum, we get sup{|fo(x)| : x € My, |lz| < 1} < || f]l-
That is || foll < [l ——(7).
From (5), (6) and (7) we get, |[foll = [l/] O

Theorem 0.16.3. (The Hahn Banach Theorem,)

Let M be a linear subspace of a normed linear space N and let f be a functional
defined on M. Then f can be extended to a functional fo defined on the whole
space N such that || fol| = || f]|-

Proof. By Lemma, If My = N then there is nothing to prove.

Otherwise, let P denotes the set of all ordered pairs (gy, M) where g, is a exten-
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sion of f to the subspace My D M and ||gx| = || f]|-
Now, define the relation < in P as follows:

(gx, My) < (9, M,,) where My C M, and gy C g, on M,.
Clearly, the relation < is partially ordered on P.

That is (P, <) is a partially ordered set.

Clearly, P is nonempty, since (f, M) € P.
Let @ = {(gi;, M;)} be a chain in P.
Define ¢(x) = g;(x) V x € M.
Now, |J M; is a subspace of N and ¢ is well defined.
For, let z,y € | M; and « and 3 be any scalars.
= x € M; and y € M, for some i and j.
Then either M; C M; or M; C M;.
Without loss of generality, we assume M; C M;.
Then x,y € M;. Since M; is a subspace of N, ax + fy € M; C |J M;.
= az + By € U M,.
Therefore, | J M; is a subspace of N.

Let x € [J M, be the element such that z € M; and x € M;.
Since x € M;, ¢(x) = g;(x) and x € M;, ¢(x) = g;(x).
Since () is a chain, either g; extends g; or g; extends g;.
Hence g¢;(z) = g;(x).
Therefore, ¢ is well defined.
Now, (Q,|J M;) is an upper bound for P.
By Zorn’s Lemma, 3 (fy, H) in P.
Claim: N = H.
Suppose H # N.
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Then 3 an eiement zyp € N — H and by the lemma, f, can be extended to a
functional g on Hy = H + [xo] which contains H properly.
But this contradicts the maximality of (fo, H) and hence we must have H = N

and fy is the required extension. O

Theorem 0.16.4. If N is a normed linear space and xo is a nonzero vector in N

then 3 a functional fy in N* such that fo(xo) = ||xo|| and || fol| = 1.

Proof. Let M = {axy} be the linear subspace of N spanned by z.
Define f on M by f(axg) = a||xo]|-

We show that f is a functional on M such that || f]| = 1.

f is linear:
Let y1,y2 € M and «, 8 are scalars.
Then y; = yxo and yo = dxp.

ayy + By = ayzy + Boxg

= (ay + B6)xo.
Now, f(ays + Bya) = fl(ay + B6)w]
= ay + (6 [|xo

= a ||lzoll + B3 ||zol|
= af(yzo) + Bf (o)
=af(y) + Bf(v2).

Therefore, f is linear.

f is bounded:
Let y € M. Therefore, y = az( for some scalars.
Now, [[y]| = [lozo]|

= |af |zl
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[F ()l = [f(awo)|

= Jov ol
= |af [|zoll
= [lyll

Hence f is bounded.

It follows that f is functional on M.

Further, [|f[| = sup{[f(y)| : y € M, ly[| <1}

=sup{|lyll : y € M, |lyll <1}

=1.
Also f(xo) = f(1.70)

= [[oll-

Hence by Hahn Banach Theorem, f can be extended to a functional fy in N* such
that [ foll = [Lf]-
Therefore, fo(xo) = f(zo) and || fol| = 1.
That is fo(zo) = [|lzol| and || fol| = 1. =

Theorem 0.16.5. If M is a closed linear subspace of a normed linear space N
and xg is a vector not in M then 3 a functional fy in N* such that fo(M) =0
and fo(zo) # 0.

Proof. Consider the natural map 7': N — £ Defined by T'(z) = = + M.
Then T is a continuous linear transformation.
For, z,y € N and «, § be scalars.
Then T(az + By) = (az + By) + M
= (ax+ M)+ (By + M)
=oafz+ M)+ py+ M)
= oT(x) + BT (y).
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Therefore, T is linear.
Now, |T(@)] = llo + M|
=inf{||lz+m:m e M|}
<|lx+m| Ve M.
In particular for m = 0, we have ||T'(z)| < ||z|| V = € N.
Therefore, T is continuous.

Hence T is a continuous linear transformation.

If me M, then T(m) =m + M

=MVmeM
=0.
Therefore, T'(M) = 0.
Since zg ¢ M, we have T'(zg) = g + M # 0 ——(*).

Since by the theorem, 3 a functional f € (££)* such that f(zg+M) = |lzo + M|| #
0.
That is f(zo+ M) # 0.
Now we define fo(z) = f(T'(z)) when fy is a linear functional with the required
properties.
For, fo(ax + fy) = f(T(ax + PBy)) where z,y € N and «, 3 are scalars,

= [laT(x) + BT (y)]

= af(T(z)) + 8f(T(x))

= afo(x) + Bfo(y)-

Therefore, fj is linear.

Now, |fo(x)| = [f(T(2))|
< AN Gl
< 1A 1l
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Therefore, fy is continuous.
Therefore, fo € N*.
Further, if m € M, fo(m) = f(T'(z0))
= f(zo+m)
# 0.
Thus fo(M) =0 and fy(zo) # 0. O

0.17 The Natural imbedding on N in N**

Let N be a normed linear space. We know that the conjugate space N* of N is

also a normed linear space.

It is possible to form a conjugate space (N*)* and we call it the second conju-

gate space of N.

Theorem 0.17.1. Let N be a arbitrary normed linear space. Then each vector x
in N induces a functional F, on N* defined by F,(f) = f(x) Vf € N* such that
\E:|l = ||z||. Further, the mapping J : N — N** defined by J(z) = F, ¥V x € N

define an isometric isomorphism of N into N**.

Proof. First we show that F), is a functional on N*.
F, is linear:
Let f,g € N* and «, 8 be any scalars.
Now, Fy(af + Bg)(x) = (af + Bg)(x)
= af(x) + Bg(x)
= alFy(f) + BF:(g).

Therefore, F), is linear.
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F, is bounded:
For any f € N*, we have
| E= ()] = [f ()]

< 1A k1l
That is |F:(f)] < [[f] ][]

Hence F), is a functional on N*.

Claim : || F,| = ||z]|-

12|l = sup{|Fo(f)] « [I ]| <1}
= sup{[f ()] - [[f]] <1}

< sup{[[f[[l=[l - [ F]l < 1}
<zl ———(1)

To prove the reverse inequality, first we consider x = 0.

From (1) = |F,|| =0
Also ||z|| = 0.
Therefore, ||F,| = ||z|.
Let x be any non zero vector. Then by theorem, there exists a functional fy € N*
such that fo(z) = ||z|| and || fo|| = 1.
But [|F|| = sup{|Fa(f)] : I/l = 1}

= sup{[f(z)| : [If[| = 1}.
Also [lzf| = [fo(z)| < sup{|f(z)| : [lf]| = 1}

= || F2|

= o] < [[Fel| —————(2).

Now, we prove that J is a isometric.
That is to prove, J is a linear transformation as well as an isometric isomorphism.

J is linear:
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Let z,y € N and «, 8 be any scalars.

Now, Foy(f) = f(z +y)
= f(x) + [(y)
= F.(f) + F,(f)
= (Fo+ F))(f)
and Foo(f) = f(ax)
= af(z)
=aF,(f)V f e N*
Now, J(z+y) = Fryy
— F, +F,
= J(x) + J(y)
and J(ar) = F,,
= oF},
= al(z).

Therefore, J is linear.

J is an isometric:

Since || Fy|| = |[z[], we have |[.J(z)] = |||

For, z,y € N, [[J(x) = J(W)|| = [[Fa — F||

= ||F$—y||

= [l =yl

Therefore, J is isomorphic.
Also J, = J,=0=2—-y=0
=>JL=Jy=x=y

Therefore, J is one to one.
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