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Unit 1

0.1 Topological Spaces

Definition 0.1.1. A topology on a set X is a collection J of subsets of X having

the following properties:

(i)∅ and X are in J .

(ii) The union of the elements of any subcollection of J is in J .

(iii) The intersection of the elements of any finite subcollection of J is in J .

A set X for which a topology J has been specified is called a topological space.

If X is a topological space with topology J , we say that a subset U of X is an

open set of X. If U belongs to the collection J .

If X is any set, the collection of all subsets of X is a topology on X, it is called

the discrete topology. The collection consisting of X and ∅ only is also a topology

on X, it is called the indiscrete topology or the trivial topology.

Let X be a set. Let Jf be a collection of all subsets U of X such that X−U either

is finite or is all of X. Then Jf is a topology on X, called the finite complement

topology.

Result 0.1.2. Jf is a finite complement topology.

Proof. Since X − X = ∅ and X − ∅ = X, either is finite or is all of X.

Both X and ∅ are in Jf .

To show that
⋃

Uα is in Jf .

X −
⋃

Uα =
⋂

(X − Uα).

Since X − Uα is finite then
⋂

(X − Uα) is finite.

Then (X −
⋃

Uα) is finite.
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Therefore,
⋃

Uα is in Jf .

If U1, U2, · · · , Un or non empty elements of Jf .

To show that
⋂

Ui is in Jf .

Now we know that X −
n
⋂

i=1

Ui =
n
⋃

i=1

(X − Ui).

since (X − Ui) is finite then
n
⋃

i=1

(X − Ui) is finite.

Then
⋂

Uα is in Jf .

Therefore, Jf is a finite complement topology. 2

Definition 0.1.3. Suppose that J and J
′

are two topologies on a given set X.

If J
′

⊃ J , we say that J
′

is finer than J ; if J
′

properly contains J , we say that

J
′

is strictly finer than J . We also say that J is coarser than J
′

, or strictly

coarser, in these two respective situations. We say J is comparable with J
′

if

either J
′

⊃ J or J ⊃ J
′

.

0.2 Basis for a Topology

Definition 0.2.1. If X is a set, a basis for a topology on X is a collection B of

subsets of X (called basis elements) such that

(i) For each x ∈ X, there is at least one basis element B containing x.

(ii) If x belongs to the intersection of two basis elements B1 and B2, then there

is a basis element B3 containing x such that B3 ⊂ B1 ∩ B2.

If B satisfies these two conditions, then we define the topology J generated by

B as follows: A subset U of X is said to be open in X (that is, to be an element

of J ) if for each x ∈ U , there is a basis element B ∈ B such that x ∈ B and

B ⊂ U . Note that each basis element is itself an element of J .
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Lemma 0.2.2. Let X be a set; let B be a basis for a topology J on X. Then J

equals the collection of all unions of elements of B.

Proof. Let X be a set and B be the basis for the topology J on X.

The collection of elements of B are also elements of J because J is a topology,

their union is in J .

Conversely, given U ∈ J , choose for each x ∈ U an element Bx of B such that

x ∈ Bx ⊂ U . Then U =
⋃

x∈U Bx, so U equals a union of elements of B. 2

Lemma 0.2.3. Let X be a topological space. Suppose that C is a collection of

open sets of X such that for each open set U of X and each x in U , there is an

element C of C such that x ∈ C ⊂ U . Then C is a basis for the topology of X.

Proof. First we prove that C is a basis.

Given x ∈ X, since X is an open set, by hypothesis an element C of C such that

x ∈ C ⊂ X.

Let x ∈ C1 ∩ C2 where C1 and C2 are the elements of C .

Since C1 and C2 are open, C1 ∩ C2 are open.

By hyphothesis, there exists an element C3 of C such that x ∈ C3 ⊂ C1 ∩ C2.

Therefore, C is a basis.

Let J be the topology on X.

Let J
′

denote the topology generated by C .

To prove that J
′

= J .

By 0.2.4, J
′

is finer than J .

Conversely, since each element of C is an element of J , the union of elements of

C is also in J .

By 0.2.2, J
′

contains J .
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Therefore, J
′

= J .

Therefore, C is a basis for the topology of X. 2

Lemma 0.2.4. Let B and B
′

be bases for the topologies J and J
′

, respectively,

on X. Then the following are equivalent:

(i) J
′

is finer than J .

(ii) For each x ∈ X and each basis element B ∈ B containing x, there is a basis

element B
′

∈ B
′

such that x ∈ B
′

⊂ B.

Proof. To prove (ii)⇒(i)

Given an element U ∈ J .

To show that U ∈ J
′

.

Let x ∈ U . Since B generates J , there is an element B ∈ B such that x ∈ B ⊂ U .

By (ii), there exists an element B
′

∈ B
′

such that x ∈ B
′

⊂ B, then x ∈ B
′

⊂ U .

By definition of basis for the topology, U ∈ J
′

.

To prove (i)⇒(ii)

Given x ∈ X and B ∈ B with x ∈ B.

Now B ∈ J , by definition and J ⊂ J
′

by (i); therefore B ∈ J
′

.

Since J
′

is generated by B
′

, there is an element B
′

∈ B
′

such that x ∈ B
′

⊂ B.

2

Definition 0.2.5. If B is the collection of all open intervals in the real line,

(a, b) = {x|a < x < b},

the topology generated by B is called the standard topology on the real line.
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If B
′

is the collection of all half-open intervals of the form

[a, b) = {x|a ≤ x < b},

where a < b, the topology generated by B
′

is called the lower limit topology on

R. When R is given the lower limit topology, we denote it by Rl. Finally let K

denote the set of all numbers of the form 1/n, for n ∈ Z+, and let B
′′

be the

collection of all open intervals (a, b), along with all sets of the form (a, b) − K.

The topology generated by B
′′

will be called the K-topology on R. When R is

given this topology, we denote it by Rk.

Lemma 0.2.6. The topologies of Rl and Rk are strictly finer than three standard

topology on R, but are not comparable with one another.

Proof. Let J ,J
′

,J
′′

be the topologies of R, Rl, Rk,respectively.

Given a basis element (a, b) for J and a point x of (a, b), the basis element [x, b)

for J
′

contains x and lies in (a, b). On the otherhand,given the basis element

[x, d) for J
′

, there is no open interval (a, b) that contains x and lies in [x, d).

Thus J
′

is strictly finer than J .

Given a basis element (a, b) for J and a point x of (a, b), this same interval is a

basis element for J
′′

that contains x. On the otherhand, given the basis element

B = (−1, 1) − K for J
′′

and the point O of B, there is no open interval that

contains O and lies in B.

By definition of comparable, J
′

and J
′′

are not comparable with one another. 2

Definition 0.2.7. A subbasis S for a topology on X is a collection of subsets of

X whose union equals X. The topology generated by the subbasis S is defined to
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be the collection J of all unions of finite intersections of elements of S.

0.3 The Order Topology

Definition 0.3.1. If X is a simply ordered set, there is a standard topology for

X, defined using the order relation. It is called the order topology.

Suppose that X is a set having a simple order relation <. Given elements a and

b of X such that a < b, there are four subsets of X that are called the intervals

determined by a and b. They are the following:

(a, b) = {x|a < x < b},

(a, b] = {x|a < x ≤ b},

[a, b) = {x|a ≤ x < b},

[a, b] = {x|a ≤ x ≤ b}.

A set of the first type is called an open interval in X, a set of the last type is

called a closed interval in X, and sets of the second and third types are called

half-open intervals.

Definition 0.3.2. Let X be a set with a simple order relation; assume X has

more than one element. Let B be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form [a0, b), where a0 is the smallest element(if any) of X.

(3) All intervals of the form (a, b0], where b0 is the largest element(if any) of X.

The collection B is a basis for a topology on X, which is called the order topology.
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Definition 0.3.3. If X is an ordered set, and a is an element of X, there are

four subsets of X that are called rays determined by a. They are the following:

(a, +∞) = {x|x > a},

(−∞, a) = {x|x < a},

[a, +∞) = {x|x ≥ a},

(−∞, a] = {x|x ≤ a}.

Sets of the first types are called open rays, and sets of the last two types are called

closed rays.

0.4 The product Topology on X × Y

Definition 0.4.1. Let X and Y be topological spaces. The product topology on

X × Y is the topology having as basis the collection B of all sets of the form

U × V , where U is an open subset of X and V is an open subset of Y .

Theorem 0.4.2. If B is a basis for the topology of X and C is a basis for the

topology of Y , then the collection

D = {B × C|B ∈ B and C ∈ C }

is a basis for the topology of X × Y .

Proof. We apply 0.2.3. Given an open set W of X ×Y and a point x× y of W ,

by definition of the product topology there is a basis element U × V such that
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x × y ∈ U × V ⊂ W .

Because B and C are bases for X and Y respectively, we can choose an element

B of B such that x ∈ B ⊂ U and an element C of C such that y ∈ C ⊂ V . Then

x × y ∈ B × C ⊂ W .

Therefore, D is a basis for X × Y . 2

Definition 0.4.3. Let π1 : X × Y → X be defined by the equation

π1(x, y) = x;

let π2 : X × Y → Y be defined by the equation

π2(x, y) = y.

The maps π1 and π2 are called the projections of X × Y onto its first and second

factors, respectively.

We use the word ”onto” because π1 and π2 are surjective.

Note If U is an open subset of X, then the set π−1
1 (U) is precisely the set

U × Y , which is open in X × Y . Similarly, if V is open in Y , then

π−1
2 (V ) = X × V ,

which is also open in X × Y . The intersection of these two sets is the set U × V .

Theorem 0.4.4. The collection
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S = {π−1
1 (U)|U open in X} ∪ {π−1

2 (V )|V open in Y }

is a subbasis for the product topology on X × Y .

Proof. Let J denote the product topology on X × Y .

Let J
′

be the topology generated by S. Because every element of S belongs to

J .

By definition of subbasis, arbitrary unions of finite intersections of elements of S.

Thus J
′

⊂ J .

On the otherhand,

U × V = π−1
1 (U) ∩ π−1

2 (V )

where π−1
1 (U) is open in X and π−1

2 (V ) is open in Y .

Since U × V ∈ J , we have U × V = π−1
1 (U) ∩ π−1

2 (V ). U × V ∈ J
′

. Therefore,

J ⊂ J
′

. 2

0.5 The Subspace Topology

Definition 0.5.1. Let X be a topological space with topology J . If Y is a subset

of X, the collection

JY = {Y ∩ U |U ∈ J }

is a topology on Y , called the subspace topology. With this topology, Y is called

a subspace of X; its open sets consist of all intersections of open sets of X with

Y .
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Lemma 0.5.2. If B is a basis for the topology of X then the collection

BY = {B ∩ Y |B ∈ B}

is a basis for the subspace topology on Y .

Proof. Consider U is open in X. Given B is a basis for the topology of X. We

can choose an element B of B such that y ∈ B ⊂ U .

Then y ∈ B ∩ Y ⊂ U ∩ Y , since BY = {B ∩ Y |B ∈ B}.

By 0.2.3 or definition of basis, BY is a basis for the subspace topology on Y . 2

Definition 0.5.3. If Y is a subspace of X, we say that a set U is open in Y (or

open relative to Y ) if it belongs to the topology of Y ; this implies in particular

that it is a subset of Y . We say that U is open in X if it belongs to the topology

of X.

Lemma 0.5.4. Let Y be a subspace of X. If U is open in Y and Y is open in

X, then U is open in X.

Proof. Given U is open in Y and Y is open in X.

Since U is open in Y and Y is a subspace of X then U = Y ∩ V where V is open

in X.

Since Y and V are both open in X, Y ∩ V is open in X.

Therefore, U is open in X. 2

Theorem 0.5.5. If A is a subspace of X and B is a subspace of Y , then the

product topology on A×B is the same as the topology A×B inherits as a subspace

of X × Y .
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Proof. The set U × V is the general basis element for X × Y , where U is open

in X and V is open in Y .

Then (U × V ) ∩ (A × B) is the general basis element for the subspace topology

on A × B. Now

(U × V ) ∩ (A × B) = (U ∩ A) × (V ∩ B).

Since U ∩ A and V ∩ B are the general open sets for the subspace topologies on

A andB respectively, the set (U ∩ A) × (V ∩ B) is the general basis element for

the product on A × B.

The bases for the subspace topology on A × B and for the product topology on

A × B are the same. Hence the topologies are the same. 2

Theorem 0.5.6. Let X be an ordered set in the order topology; let Y be a subset

of X that is convex in X. Then the order topology on Y is the same as the

topology Y inherits as a subspace of X.

Proof. Consider the ray (a, +∞) in X.

If a ∈ Y , then (a, +∞) ∩ Y = {x|x ∈ Y and x > a}; this is an open ray of the

ordered set Y .

If a /∈ Y , then a is either a lower bound on Y or an upper bound on Y , since Y

is convex.

If a ∈ Y , the set (a, +∞) ∩ Y equals all of Y . If a /∈ Y , it is empty.

Similarly the intersection of the ray (−∞, a) ∩ Y is either an open ray of Y , or

Y itself or empty.

Since the sets (a, +∞) ∩ Y and (−∞, a) ∩ Y form a subbasis for the subspace

topology on Y and since each is open in the order topology, the order topology
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contains the subspace topology.

Conversely, Y equals the intersection of X with Y , that is X ∩ Y = Y . So

it is open in the subspace topology on Y . The order topology is contained in

the subspace topology. Therefore, the order topology and subspace topology are

same. 2

0.6 Closed Sets and Limit Points

Definition 0.6.1. A subset A of a topological space X is said to be closed if the

set X − A is open.

Theorem 0.6.2. Let X be a topological space. Then the following conditions

hold:

(1) ∅ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed.

Proof. (1) ∅ and X are closed because they are the complements of the open

set X and ∅ respectively.

(2) Consider a collection of closed sets {Aα}α∈J , we apply De Morgan’s law,

X −
⋂

α∈J

Aα =
⋃

α∈J

(X − Aα)

Since the sets X −Aα are open. By definition of closed sets, the right side of this

equation represents an arbitrary union of open sets and is thus open. Therefore,
⋂

Aα is closed.
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(3) Similarly, if Ai is closed for i = 1, 2, · · · , n. Consider the equation

X −
n
⋃

i=1

Ai =
n
⋂

i=1

(X − Ai)

The set on the right side of this equation is a finte intersection of open sets and

is therefore open. Hence
⋃

Ai is closed. 2

Definition 0.6.3. If Y is a subspace of X, we say that a set A is closed in Y

if A is a subset of Y and if A is closed in the subspace topology of Y (that is, if

Y − A is open in Y ).

Theorem 0.6.4. Let Y be a subspace of X. Then a set A is closed in Y if and

only if it equals the intersection of a closed set of X with Y .

Proof. Assume that A = C∩Y , where C is closed in X. Then X−C is open in

X, so that (X −C)∩Y is open in Y . By the definition of the subspace topology,

but (X − C) ∩ Y = Y − A. Hence Y − A is open in Y , so that A is closed in Y .

Conversely, assume that A is closed in Y . Then Y −A is open in Y . By definition,

it equals the intersection of an open set U of X with Y . The set X −U is closed

in X and A = Y ∩ (X −U). Hence A equals the intersection of a closed set of X

with Y . 2

Theorem 0.6.5. Let Y be a subspace of X. If A is closed in Y and Y is closed

in X, then A is closed in X.

Proof. Given A is closed in Y and Y is closed in X. Since A is closed in Y and

Y is a subspace of X.

Let A = Y ∩ (X − B) where X − B is open in X. Then B is closed in X. Since
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Y and B are both closed in X. Then Y ∩ (X − B) is closed in X. Therefore, A

is closed in X. 2

Definition 0.6.6. Given a subset A of a topological space X, the interior of A

is defined as the union of all open sets contained in A, and the closure of A is

defined as the intersection of all closed sets containing A.

The interior of A is denoted by Int A and the closure of A is denoted by Cl A or

by A. Obviously Int A is an open set and A is a closed set; furthermore,

Int A ⊂ A ⊂ A.

If A is open, A=Int A; while if A is closed, A = A.

Theorem 0.6.7. Let Y be a subspace of X; let A be a subset of Y ; let A denote

the closure of A in X. Then the closure of A in Y equals A ∩ Y .

Proof. Let B denote the closure of A in Y . The set A is closed in X, so A∩Y is

closed in Y . By 0.6.4, since A∩Y contains A and since B is closed. By definition

B equals the intersection of all closed subsets of Y containing A, we must have

B ∩ (A ∩ Y ).

On the otherhand, we know that B is closed in Y . By 0.6.4, B = C ∩ Y for

some set C closed in X. Then C is a closed set of X containing A; because

A is the intersection of all such closed sets, we conclude that A ⊂ C. Then

(A ∩ Y ) ⊂ (C ∩ Y ) = B. Therefore, B = A ∩ Y . 2

Theorem 0.6.8. Let A be a subset of the topological space X.

(a) Then x ∈ A if and only if every open set U containing x intersects A.

14



(b) Supposing the topology of X is given by a basis, then x ∈ A if and only if

every basis element B containing x intersects A.

Proof. (a)We prove this theorem by contrapositive method.

If x is not in A, since A is closed, A = A. The set U = X − A is an open set

containing x that does not intersect A.

Conversely, if there exists an open set U containing x which does not intersect

A. Then X − U is a closed set containing A.

By definition of the closure A, the set X − U must contain A, since x ∈ U .

Therefore, x cannot be in A.

(b) Write the definition of topology generated by basis,if every open set x inter-

sects A, so does every basis element B containing x, because B is an open set.

Conversely, if every basis element containing x intersects A, so does every open

set U containing x, because U contains a basis element that contains x. 2

Definition 0.6.9. If A is a subset of the topological space X and if x is a point

of X, we say that x is a limit point(or ”cluster point” or ”point of accumulation”)

of A if every neighborhood of x intersects A in some point other than x itself.

Said differently, x is a limit point of A if it belongs to the closure of A − {x}.

The point x may lie in A or not; for this definition it does not matter.

Theorem 0.6.10. Let A be a subset of the topological space X; let A
′

be the set

of all limit points of A. Then A = A ∪ A
′

.

Proof. Let A
′

be the set of all limit points of A.

If x ∈ A
′

, every neighborhood of x intersects of A in a point different from x. By

0.6.8, x ∈ A. Then A
′

⊂ A.

By definition of closure, A ⊂ A. Therefore, A ∪ A
′

⊂ A.
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Conversely, let x ∈ A

To show that A ⊂ A ∪ A
′

If x ∈ A then it is trivially true for x ∈ A ∪ A
′

.

Suppose x /∈ A. Since x ∈ A, by 0.6.8, we know that every neighborhood U of x

intersect A, because x /∈ A, the set U must intersect A in a point different from

x. Then x ∈ A
′

so that x ∈ A ∪ A
′

.

Then A ⊂ A ∪ A
′

.

Therefore, A = A ∪ A
′

. 2

Corollary 0.6.11. A subset of a topological space is closed if and only if it

contains all its limit points.

Proof. The set A is closed iff A = A. By 0.6.10, A
′

⊂ A. 2

Definition 0.6.12. A topological space X is called a Hausdroff space if for each

pair x1, x2 of distinct points of X, there exist neighborhoods U1 and U2 of x1 and

x2 respectively, that are disjoint.

Theorem 0.6.13. Every finite point set in a Hausdorff space X is closed.

Proof. It is enough to show that every one-point set {x0} is closed.

If x is a point of X different from x0, then x and x0 have disjoint neighborhoods

U and V respectively.

Since U does not intersect {x0}, the point x cannot belong to the closure of the

set {x0}.

As a result, the closure of the set {x0} is {x0} itself.

Therefore, {x0} is closed. 2
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Note: The condition that finite point sets be closed is in fact weaker than

the Hausdroff condition. For example, the real line R in the finite complement

topology is not a Hausdorff space, but it is a space in which finite point sets are

closed. The condition that finite point sets be closed has been given a name of

its own; it is called the T1 axiom.

Theorem 0.6.14. Let X be a space satisfying the T1 axiom; let A be a subset of

X. Then the point x is a limit point of A if and only if every neighborhood of x

contains infinitely many points of A.

Proof. If every neighborhood of x intersects A in infinitely many points, it cer-

tainly intersects A in some point other than x itself, so that x is a limit point of

A.

Conversely, suppose that x is a limit point of A and suppose some neighborhood

U of x intersects A in only finitely many points.

Let {x1, x2, · · · , xm} be the points of U ∩ (A − {x}).

The set X − {x1, x2, · · · , xm} is an open set of X, since the finite point set

{x1, x2, · · · , xm} is closed then

U ∩ (X − {x1, x2, · · · , xm})

is a neighborhood of x that does not intersects the set A−{x}. Since {x1, x2, · · · , xm}

be points of U ∩ (A − {x}).

This contradicts the assumption that x is a limit point of A. 2

Theorem 0.6.15. If X is a Hausdorff space, then a sequence of points of X

converges to at most one point of X.
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Proof. Suppose that xn is a sequence of points of X that converges to x.

If y 6= x, let U and V be disjoint neighborhoods of x and y respectively. Since U

contains xn for all but finitely many values of n, the set V cannot contains xn.

Therefore,xn cannot converge.

If the sequence xn of points of the Hausdorff space X converges to the point x of

X, we often write xn → x.

Therefore, x is the limit of the sequence xn. 2

Theorem 0.6.16. Every simply ordered set is a Hausdorff space in the order

topology. The product of two Hausdorff spaces is a Hausdorff space. A subspace

of a Hausdorff space is a Hausdorff space.

Proof. Let X and Y be two Hausdorff spaces.

To prove X × Y is Hausdorff.

Let x1 × y1 and x2 × y2 be two distinct points of X × Y . Then x1, x2 are distinct

points of X and X is a Hausdorff space, there exists neighborhood U1 and U2 of

x1 and x2 such that U1 ∩ U2 = ∅

Similarly, y1, y2 are distinct point of Y and Y is a Hausdorff space, there exists

neighborhood V1 and V2 of y1 and y2 such that V1 ∩ V2 = ∅.

Then clearly U1 × V1 and U2 × V2 are open sets in X × Y containing x1 × y1 and

x2 × y2 such that (U1 × V1) ∩ (U2 × V2) = ∅.

Therefore, X × Y is a Hausdorff space.

Let X be a Hausdorff space and let Y be a subspace.

To prove Y is a Hausdorff space.

Let y1, y2 be two distinct points of Y and Y containing X. Then y1 and y2 are

distinct points in X and X is Hausdorff there exists neighborhood U1 and U2 of y1

and y2 such that U1∩U2 = ∅. Then U1∩Y and U2∩Y are distinct neighborhoods
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of y1 and y2 in Y .

Therefore, Y is a Hausdorff space. 2
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Unit 2

0.7 Continuity of a Function

Definition 0.7.1. Let X and Y be topological spaces. A function f : X → Y is

said to be continuous if for each open subset V of Y , the set f−1(V ) is an open

subset of X.

f−1(V ) is the set of all points x of X for which f(x) ∈ V ; it is empty if V does

not intersect the image set f(X) of f .

Theorem 0.7.2. Let X and Y be the topological spaces.Let f : X → Y . Then

the following are equivalent:

(a) f is continuous.

(b) For every subset of X, one has f(A) ⊂ f(A).

(c) For every closed set B of Y , a set f−1(B) is closed in X.

(d) For each x ∈ X and each neighborhood V of f(x) there is a neighborhood U

of x such that f(U) ⊂ V .

If the condition in equation (d) holds for the point x of X such that f is continuous

at the point x.

Proof. To show that (a)⇒ (b) ⇒ (c) ⇒(a) and (a)⇒ (d), (d) ⇒ (a).

First we show that (a)⇒(b)

Assume f is continuous. Let A be a subset of X. We have to show that f(A) ⊂

f(A).

If x ∈ A then f(x) ∈ f(A). Since f is continuous, f−1(V ) is an open set of X

containing x, where V be a neighborhood of f(x).

Now f−1(V ) must intersect A in some point y. Then V intersects f(A) in the
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point f(y), f(x) ∈ f(A). Therefore, f(A) ⊂ f(A).

To show that (b)⇒(C)

Let B be closed in Y . Let A = f−1(B).

To prove that A is closed in X.

ie, To prove that A = A.

By elementary set theory, we have f(A) = f(f−1(B)) ⊂ B

If x ∈ A, then f(x) ∈ f(A) ⊂ f(A) ⊂ B = B.

Then x ∈ f−1(B) ⇒ x ∈ A. Therefore, A ⊂ A.

Since A ⊂ A, therefore, A = A.

To show that (c)⇒(a)

Let V be open in Y . The set B = Y − V .

Then f−1(B) = f−1(Y − V ) = f−1(Y ) − f−1(V ) = X − f−1(V )

Now B is a closed set of Y then f−1(B) is closed in X(By hypothesis).

Then f−1(V ) is open in X.

Therefore, f is continuous.

To show that (a)⇒(d)

Let x ∈ X. Let V be a neighborhood of f(x). Then the set U = f−1(V ) is a

neighborhood of x.

Therefore, f(U) ⊂ V .

To show that (d)⇒(a)

Let V be open in Y . Let x ∈ f−1(V ). Then f(x) ∈ V .

Then by hypothesis, there is a neighborhood Ux of x such that f(Ux) ⊂ V . Then

Ux ⊂ f−1(V ).

Now f−1(V ) can be written as the union of the open sets Ux.

Thus f−1(V ) is open.

Therefore, f is continuous. 2
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Definition 0.7.3. Let X and Y be topological spaces. Let f : X → Y be a

bijection. If both the function x and the inverse function f−1(V ) are continuous

then f is called homeomorphism.

Theorem 0.7.4. (Rules for constructing continuous functions). Let X,Y and Z

be topological spaces.

(a) (constant function) If f : X → Y maps all of X into the single point y0 of

Y , then f is continuous.

(b) (Inclusion) If A is a subspace of X, the inclusion function j : A → X is

continuous.

(c) (Composites) If f : X → Y and g : Y → Z are continuous, then the map

g ◦ f : X → Z is continuous.

(d) (Restricting the domain) If f : X → Y is a continuous. Let A is a subspace

of X. Then the restricted function f/A : A → Y is continuous.

(e) (Restricting or expanding the range) Let f : X → Y be a continuous. If Z

is a subspace of Y containing the image set f(X), then the function g : X → Z

obtained by restricting the range of f is continuous.

If Z is a space having Y as a subspace then the function h : X → Z obtained by

expanding the range of f is continuous.

(f) (Local formulation of continuity) The map f : X → Y is continuous, if X

can be written as the union of open set Uα such that f/Uα is continuous for each

α.

Proof. (a) Let f(x) = y0, x ∈ X, y0 ∈ Y .

Let V be open in Y .

If y0 ∈ Y , the set f−1(V ) = X.

The set f−1(V ) be open in X, y0 ⊂ V
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Therefore, f is continuous.

(b) Let A be a subspace of X. To prove j : A → X is continuous.

If U is open in X then j−1(U) = U ∩ A which is open in A by definition of

subspace topology.

Then j−1(U) is open in A.

Therefore, j is continuous.

(c) Since f and g be continuous. We have the following conditions:

If U is open in Z then g−1(U) is open in Y and f−1(g−1(U)) is open in X. But

f−1(g−1(U)) = (g ◦ f)−1(U).

Then (g ◦ f)−1(U) is open in X. Therefore, g ◦ f : X → Z is continuous.

(d)Let f : X → Y be continuous. Let A be a subspace of X.

To prove f/A : A → Y is continuous.

Since by (b), we have the inclusion map j : A → X is continuous. Also we have

f : X → Y is continuous.

Therefore, the restricted function f/A : A → Y is continuous by (c).

ie, f/A each equals the composite of the inclusion map j.

(e) Let f : X → Y is continuous.

Given Z is a subspace of Y containing the image set f(X). ie,f(X) ⊂ Z ⊂ Y

To prove the function g : X → Z obtained from f is continuous.

Let B be open in Z. Since Z is a subspace of Y,B = Z ∩ U for some open set U

of Y .

Since B is open in Z, g−1(B) is open in X and since U is open in Y , f−1(U) is

open in X

Then f−1(U) = g−1(B)

Therefore, g : X → Z obtained from f is continuous.

If Z is a space having Y as a subspace. To prove the function h : X → Z is
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continuous.

This is obtained by the composition of the map f : X → Y and the inclusion

map j : Y → Z.

Since Y is a subspace of Z, inclusion map j : Y → Z is continuous by (b).

Therefore, the function h : X → Z is continuous.

(f) Given X can be written as the union of open sets Uα such that f/Uα is

continuous for each α.

To prove f : X → Y is continuous.

Let V be open in Y .

Now f(x) ∈ V, x ∈ X. Since Uα is open in X containing x. Then f−1(V ) ∩ Uα is

open in X.

Since f/Uα is continuous; Uα is open in X, (f/Uα)−1(V ) is open in X.

Then f−1(V ) is open in X.

Therefore, f is continuous. 2

Theorem 0.7.5. (The Pasting Lemma) Let X = A ∪ B, where A and B are

closed in X. Let f : A → Y and g : B → Y,B is continuous. If f(x) = g(x) for

every x ∈ A∩B, then f and g combine to give a continuous function h : X → Y

defined by setting h(x) = f(x) if x ∈ A and h(x) = g(x) if x ∈ B.

Proof. Let X = A ∪ B where A and B are closed in X.

Since f : A → Y is continuous, f−1(C) is closed in A, where C is closed in Y .

Since g : B → Y is continuous, g−1(C) is closed in B where C is closed in Y .

If x ∈ A, h(x) = f(x) and if x ∈ B, h(x) = g(x).

If x ∈ A ∪ B, h(x) = f(x) ∪ g(x).

Now h−1(C) = f−1(C) ∪ g−1(C).

Then h−1(C) is closed in A ∪ B.
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Then h−1(C) is closed in X.

Therefore, h is continuous. 2

Theorem 0.7.6. (Maps into products) Let f : A → X × Y be given by the equa-

tion

f(a) = (f1(a), f2(a)).

Then f is continuous if and only if the functions

f1 : A → X and f2 : A → Y

are continuous.

The maps f1 and f2 are called the coordinate functions of f .

Proof. Let π1 : X × Y → X and π2 : X × Y → Y be projections onto its first

and second factors. These maps are continuous..

For, π−1
1 (U) = U × Y and π−1

2 (V ) = X × V .

If U and V are open, these sets are open.

Since f : A → X × Y, π1 : X × Y → X and π2 : X × Y → Y , for every a ∈ A.

Since f1 : A → X and f2 : A → Y

f1(a) = π1(f(a)) and f2(a) = π2(f(a))

If the function f is continuous, then f1 and f2 are composites of continuous func-

tions, f1 and f2 are continuous.
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Conversely, suppose f1 and f2 are continuous. Then f−1
1 (U) is open in A and

f−1
2 (V ) is open in A.

a ∈ f−1
1 (U) ∩ f−1

2 (V )

Also we have U × V be the basis element for the topology on X × Y then

f(a) ∈ U × V

⇒ a ∈ f−1(U × V )

⇒ f−1
1 (U) ∩ f−1

2 (V ) ⊂ f−1(U × V )

Also if a ∈ f−1(U × V ) ⇒ f(a) ∈ U × V

⇒ (f1(a), f2(a)) ∈ U × V

⇒ f1(a) ∈ U, f2(a) ∈ V

⇒ a ∈ f−1(U), a ∈ f−1
2 (V )

f−1(U × V ) ⊂ f−1
1 (U) ∩ f−1

2 (V )

f−1(U × V ) = f−1
1 (U) ∩ f−1

2 (V )

Since f−1
1 (U) and f−1

2 (V ) is open in A.

Then f−1
1 (U) ∩ f−1

2 (V ) is open in A.

Then f−1(U × V ) is open in A.

Therefore, f is continuous. 2
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0.8 The Product Topology

Definition 0.8.1. Let J be an index set. Given a set X, we define J-tuple of

elements of X to be a function x : J → X. If α is an element of J , we often

denote the value of x at α by xα rather than x(α); we call it the αth coordinate

of x. And we often denote the function x itself by the symbol

(xα)α ∈ J ,

which is as close as we can come to a tuple notation for an arbitrary index set J .

We denote the set of all J-tuples of elements of X by XJ .

Definition 0.8.2. Let {Aα}α∈J be an indexed family of sets; let X =
⋃

α∈J Aα.

The cartesian product of this indexed family, denoted by

∏

α∈J

Aα,

is defined to be the set of all J-tuples (xα)α∈J of elements of X such that xα ∈ Aα

for each α ∈ J . That is, it is the set of all functions

x : J →
⋃

α∈J

Aα

such that x(α) ∈ Aα for each α ∈ J .

Definition 0.8.3. Let {Xα}α∈J be an indexed family of topological spaces. Let

us take as a basis for a topology on the product space
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∏

α∈J

Xα,

the collection of all sets of the form

∏

α∈J

Uα,

where Uα is open in Xα, for each α ∈ J . The topology generated by this basis is

called the box topology.

Definition 0.8.4. Let

πβ :
∏

α∈J

Xα → Xβ

be mapping is defined by

πβ((xα)α∈J) = xβ;

is called the projection mapping associated with the index β.

Definition 0.8.5. Let Sβ denote the collection

Sβ = {π−1
β (Uβ)|Uβ open in Xβ},

and let S denote the union of these collections,

S =
⋃

β∈J

Sβ.

28



The topology generated by the subbasis S is called the product topology. In this

topology
∏

α∈J

Xα is called a product space.

Theorem 0.8.6. (Comparison of the box and product topologies). The box topol-

ogy on
∏

Xα has as basis all sets of the form
∏

Uα, where Uα is open in Xα for

each α. The product topology on
∏

Xα has as basis all sets of the form
∏

Uα,

where Uα is open in Xα for each α and Uα equals Xα except for finitely many

values of α.

Proof. By definition of box topology, the basis for box topology on
∏

Xα is

Bb = {
∏

Uα|Uα is open in Xα}.

By definition of product topology the basis for the topology on
∏

Xα is Bp then

Bp is the collection of all finite intersection of elements of S where S =
⋃

β∈J

Sβ

and S = {π−1
β (Uβ)|Uβ is open in Xβ}.

Case1:

We take finite intersection of elements of Sβ.

Let π−1
β (Uβ), π−1

β (Vβ), π−1
β (Wβ) ∈ Sβ.

Let B = π−1
β (Uβ) ∩ π−1

β (Vβ) ∩ π−1
β (Wβ)

=π−1
β (Uβ ∩ Vβ ∩ Wβ) ∈ Sβ ⊂ Bp

=π−1
β (U

′

β) where U
′

β = Uβ ∩ Vβ ∩ Wβ

B =
∏

α∈J

U
′

α where U
′

α is open in Xα, for α = α1, α2, · · · , αn and U
′

α = Xα for

α 6= α1, α2, · · · , αn.

Case 2:

We take intersection of elements from different Sβ’s.

Let B
′

= π−1
β (Uβ1

) ∩ π−1
β (Uβ2

) ∩ · · ·π−1
β (Uβn

)

B
′

= π−1
β (Uβ1

∩ Uβ2
∩ · · · ∩ Uβn

)

Let x = (xα)α∈J ∈ B
′
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Then x = (xα)α∈J ∈ B
′

⇔ (xα)α∈J ∈ π−1
β (Uβ1

) ∩ · · · ∩ π−1
β (Uβn

)

⇔ (xα)α∈J ∈ · · ·Uβ1
× · · · × Uβ2

× · · · × Uβn
× · · ·

⇔ xα ∈ Uα for α = β1, β2, · · · , βn and xα ∈ Xα for α 6= β1, β2, · · · , βn

⇔ (xα) ∈
∏

α∈J

Uα where Uα is open in Xα, for α = β1, β2, · · · , βn and Uα = Xα for

α 6= β1, β2, · · · , βn

B
′

=
∏

α∈J

Uα where Uα is open in Xα.

Hence in both cases we get every basis element of the product topology in
∏

Xα

is of the form
∏

Uα where Uα is open in Xα and Uα = Xα except for finitely

many values of α.

Clearly the basis Bp ⊂ Bb

Therefore, the box topology is finer than the product topology. 2

Theorem 0.8.7. Suppose the topology on each space Xα is given by a basis Bα.

The collection of all sets of the form

∏

α∈J

Bα,

where Bα ∈ Bα for each α, will serve as a basis for the box topology on
∏

α∈J

Xα.

The collection of all sets of the same form, where Bα ∈ Bα for finitely many

indices α and Bα = Xα for all the remaining indices, will serve as a basis for the

product topology
∏

α∈J

Xα.

Proof. Let l = {
∏

α∈J

Bα ∈ Bα,Bα is a basis for Xα} for each α.

Bα is a collection of open sets in Xα, for every α.
∏

α∈J

Uα is open in
∏

α∈J

Xα.

Therefore l is a collection of open sets in
∏

Xα.
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To prove l is a basis for the box topology in
∏

α∈J

Xα.

Now, x = (xα)α∈J ∈
∏

α∈J

Xα.

Let U be an open set in
∏

Xα containing x.

Now U is an open set in the box topology in
∏

Xα, x ∈ U , there exists a basis

element
∏

α∈J

Uα such that x ∈
∏

α∈J

Uα ⊂ U ⇒ xα ∈ Uα for each α.

Now xα ∈ Uα and Uα is open in Xα and Bα is a basis for Xα, there exists Bα ∈ Bα

such that xα ∈ Bα ⊂ Uα for each α.

Then (xα)α∈J ∈
∏

α∈J

Bα ⊂
∏

α∈J

Uα ⊂ U.

ie, x ∈
∏

α∈J

Bα ⊂ U

For every x ∈
∏

Xα and any open set U containing x, there exists
∏

α∈J

Bα in l

such that x ∈
∏

α∈J

Bα ⊂ U .

By 0.2.3, l is a basis for the box topology on the product space
∏

α∈J

Xα.

Let l
′

= {
∏

α∈J

Bα|Bα, for finitely many indices and Bα = Xα for the remaining

indices}

To prove that l
′

is a basis for the product topology on
∏

α∈J

Xα.

Let x = (xα) ∈
∏

α∈J

Xα.

Let V be an open set in
∏

α∈J

Xα containing x, there exists a basis element
∏

α∈J

Uα

for the product topology in
∏

α∈J

Xα such that x ∈
∏

α∈J

Uα ⊂ V , where Uα is open

in Xα for α = α1, α2, · · · , αn and Uα = Xα for α 6= α1, α2, · · · , αn.

Now Uαi
is open in Xαi and xαi

∈ Uαi
then there exists Bαi

∈ Bαi
such that

xαi
∈ Bαi

⊂ Uαi

Define
∏

α∈J

Bα where Bα ∈ Bα for α = α1, α2, · · · , αn.

Bα = Xα for α 6= α1, α2, · · · , αn

Then clearly
∏

α∈J

Bα ∈ l
′

and

x = (xα)α∈J ∈ Bα ⊂
∏

α∈J

Uα ⊂ V for all x ∈
∏

α∈J

Xα, there exists
∏

α∈J

Bα ∈ l
′

such
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that x ∈
∏

α∈J

Bα ⊂ V .

By 0.2.3, l
′

is a basis for the product topology in
∏

Xα. 2

Theorem 0.8.8. Let Aα be a subspace of Xα, for each α ∈ J . Then
∏

Aα is a

subspace of
∏

Xα if both products are given the box topology, or if both products

are given the product topology.

Proof. By 0.8.7,
∏

Bα is the basis for the subspace
∏

Aα(since Aα ⊂ Xα).

Therefore,
∏

Aα ⊂
∏

Xα.

2

Theorem 0.8.9. If each space Xα is a Hausdorff space, then
∏

Xα is a Hausdorff

space in both the box and product topologies.

Proof. Write 0.8.6.

Since Xα is Hausdorff, then there are distinct neighborhoods in Xα.

Their product also containing disjoint neighborhoods.

Therefore,
∏

Xα is Hausdorff. 2

Theorem 0.8.10. Let {Xα} be an indexed family of spaces; let Aα ⊂ Xα for

each α. If
∏

Xα is given either the product or the box topology, then

∏

Aα =
∏

Aα.

Proof. Let (xα) ∈
∏

Aα.

To show that (xα) ∈
∏

Aα.

Let U =
∏

Uα be a basis elements for box or product topology that contains x.
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Since x = (xα) ∈ Aα, we can choose a point yα ∈ Uα ∩ Aα.

Then y = (yα) ∈ U and
∏

Aα.

Since U is arbitrary, (xα) ∈
∏

Aα.

Therefore,
∏

Aα ⊆
∏

Aα.

Conversely, suppose (xα) ∈
∏

Aα.

To show that (xα) ∈
∏

Aα.

Let Vβ ∈ Xβ containing xβ.

By definition of product topology, since π−1
β (Vβ) is open in

∏

Xα in either topol-

ogy, xβ ∈ Vβ ⊂ Xβ.

Then π−1
β (Vβ) is open in

∏

Xα.

Since Aα ⊂ Xα, yα ∈
∏

Aα.

Now yβ ∈ Vβ ∩ Aβ

Then xβ ∈ Aβ

⇒ (xβ) ∈
∏

Aα

⇒
∏

Aα ⊆
∏

Aα

Therefore,
∏

Aα =
∏

Aα.

2

Theorem 0.8.11. Let f :
∏

α∈J

Xα be given by the equation

f(a) = (fα(a))α∈J ,

where fα : A → Xα for each α. Let
∏

Xα have the product topology. Then the

fnction f is continuous if and only if each function fα is continuous.

Proof. Let f : A →
∏

α∈J

Xα be given by f(a) = (fα(a))α∈J where fα : A → Xα.

Let
∏

Xα have the product topology.
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Now let πβ be the projection of the product onto its βth factor.

ie, πβ :
∏

α∈J

Xα → Xβ.

Therefore, the function πβ is continuous.

For, if Uβ is open in Xβ, the set π−1
β (Uβ) is a subbasis element for the product

topology on Xα.

Now suppose f : A →
∏

α∈J

Xα is continuous.

Since πβ and f are continuous, the composite of these two maps, πβ ◦ f is con-

tinuous.

πβ ◦ f = fβ where fβ : A → Xβ is continuous.

Therefore, fβ is continuous.

Conversely, suppose each function fα is continuous.

To prove f : A →
∏

Xα is continuous.

π−1
β (Uβ) is a subbasis element for the product topology on

∏

Xα, where Uβ is

open in Xβ.

f−1(π−1
β (Uβ)) = (πβ ◦ f)−1(Uβ) = f−1

β (Uβ)

Since fβ : A → Xβ is continuous, f−1
β (Uβ) is open in A.

f−1(π−1
β (Uβ)) is open in A.

Therefore, f is continuous. 2

0.9 The Quotient Topology

Definition 0.9.1. Let X and Y be topological spaces; let p : X → Y be a

surjective map. The map p is said to be a quotient map provided a subset U of

Y is open in Y if and only if p−1(U) is open in X.

Definition 0.9.2. A subset C of X is saturated (with respect to the surjective
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map p : X → Y ) if C contains every set p−1({y}) that it intersects. Thus C is

saturated if it equals the complete inverse image of a subset of Y .

Definition 0.9.3. A map f : X → Y is said to be an open map if for each open

set U of X, the set f(U) is open in Y . It is said to be a closed map if for each

closed set A of X, the set f(A) is closed in Y .

Definition 0.9.4. If X is a space and A is a set and if p : X → Y is a surjective

map,then there exists exactly one topology J on A relative to which p is a

quotient map; it is called the quotient topology induced by p.

Definition 0.9.5. Let X be a topological space, and let X∗ be a partition of X

into disjoint subsets whose union is X. Let p : X → X∗ be the surjective map

that carries each point of X to the element X∗ containing it. In the quotient

topology induced by p, the space X∗ is called a quotient space of X.

Note: The quotient space X∗ is often called an identification space, or a

decomposition space, of the space X.

Theorem 0.9.6. Let p : X → Y be a quotient map; let A be a subspace of X that

is saturated with respect to p; let q : A → p(A) be the map obtained by restricting

p.

(1) If A is either open or closed in X, then q is a quotient map.

(2) If p is either an open map or a closed map, then q is a quotient map.

Proof. Step 1:

First we have to prove the following two conditions:
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q−1(V ) = p−1(V ) if V ⊂ p(A);

p(U ∩ A) = p(U) ∩ p(A) if U ⊂ X.

Since V ⊂ p(A) and A is saturated, p−1(V ) is contained in A.

Since q : A → p(A) be the map obtained by restricting p, q−1(V ) ⊂ A.

If V ⊂ p(A) then q−1(V ) = p−1(V ).

If U ⊂ X also we have A be a subspace of X then we have the inclusion

p(U ∩ A) ⊂ p(U) ∩ p(A).

Now we have to show that p(U) ∩ p(A) ⊂ p(U ∩ A).

For, suppose y ∈ p(U) ∩ p(A). Then y = p(u) = p(a),for u ∈ U and a ∈ A.

Since A is saturated, A contains every set p−1(y) that it intersects.

Now A ⊃ p−1(p(a)) ⇒ A ⊃ a

Also A ⊃ p−1(p(u)) ⇒ A ⊃ u

Then A ⊃ a and u ⇒ A ⊃ A ∩ U .

Since A contains every set p−1(y) then we get y ∈ p(U ∩ A) implies that p(U) ∩

p(A) ⊂ p(U ∩ A). Therefore, p(U ∩ A) = p(U) ∩ p(A).

Step 2:

Suppose A is open or p is open. Given the subset V of p(A), we assume that

q−1(V ) is open in A. To prove that V is open in p(A).

Suppose A is open. Since q−1(V ) is open in A and A is open in X, the set q−1(V )

is open in X.

Since q−1(V ) = p−1(V ), the set p−1(V ) is open in X. Since p is a quotient map,

V is open in Y . In particular V is open in p(A).

Suppose p is open. Since q−1(V ) = p−1(V ) and q−1(V ) is open in A, we have

p−1(V ) = U ∩ A, for some set U is open in X.

Now p(p−1(V )) = V , since p is surjective; then
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V = p(p−1(V )) = p(U ∩ A) = p(U) ∩ p(A).

Since p is an open map,p(U) is open in Y . Hence V is open in p(A).

Step 3:

When A or p is closed map then instead of ”open” put ”closed” in step 2. 2

Theorem 0.9.7. Let p : X → Y be a quotient map. Let Z be a space and let

g : X → Z be a map that is constant on each set p−1({y}), for y ∈ Y . Then g

induces a map f : Y → Z such that f ◦ p = g. The induced map f is continuous

if and only if g is continuous; f is a quotient map if and only if g is a quotient

map.

X

p

Y Z

g

f

Proof. Suppose f is continuous. To prove g is continuous.

For each y ∈ Y, p−1(y) is open in X. Now the set g(p−1(y)) is a one point set in

Z, since g is constant on p−1(y).

For each x ∈ X define a map f : Y → Z such that f(p(x)) = g(x).

If f is continuous then the composite map g = f ◦ p is continuous. Therefore, g

is continuous.

Conversely, assume g is continuous. To prove f is continuous.

Let V be open in Z, g−1(V ) is open in X. But g−1(V ) = p−1(f−1(V )), since p is

a quotient map.
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p−1(f−1(V )) is open in X. Then f−1(V ) is open in Y . Therefore, f is continuous.

Suppose f is a quotient map. To prove g is a quotient map.

Since g is the composite of two quotient map, g is a quotient map.

Conversely, assume g is a quotient map. Since g is surjective and so f is surjective.

Let V be a subset of Z. Now f−1(V ) is open in Y .

Since p is continuous, p−1(f−1(V )) is open in X.

We have p−1(f−1(V )) = g−1(V ), g−1(V ) is open in X. Then V is open in Z.

Therefore, f is a quotient map. 2

Corollary 0.9.8. Let g : X → Z be a surjective continuous map. Let X∗ be the

following collection of subsets of X:

X∗ = {g−1({z})|z ∈ Z}.

Give X∗ the quotient topology.

(a) The map g induces a bijective continuous map f : X∗ → Z, which is a home-

omorphism if and only if g is a quotient map.

X

p

X∗ Z

g

f

(b) If Z is Hausdorff, so is X∗.

Proof. (a) The map g induces a bijective continuous map f : X∗ → Z, which is

a homeomorphism then both f and the projection map p : X → X∗ are quotient
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map. ie, g = f ◦ p is a quotient map.

Conversely, suppose g is a quotient map. By 0.9.7, f is a quotient map. since f

is bijective, f is a homeomorphism.

(b) Suppose Z is Hausdorff. Then U and V are disjoint neighborhood under f .

Since f : X∗ → Z is a homeomorphism. Then f−1(U) and f−1(V ) are the disjoint

neighborhood under X∗. Therefore, X∗ is a Hausdorff. 2
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Unit 3

0.10 Connected spaces

Definition 0.10.1. Let X be a topological space. A separation of X is a pair

(u, v) of disjoint non empty open subsets of X whose union is X.

Definition 0.10.2. The space X is said to be connected if there dose not exists

a separation of X.

Remark 0.10.3. If X is connected, then any space homomorphic to X is con-

nected.

Theorem 0.10.4. A space X is connected iff the only subsets of X that are both

open and closed are the empty set and X itself.

Proof. First assume X is connected.

Claim : The only subsets of X that are both open and closed are the empty set

and X itself.

For, suppose A is a nonempty proper subset of X. That is both open and closed

in X.

We have X − A is nonempty. If we take A is closed in X. Then X − A is open.

Therefore we have two nonempty disjoint open sets A and X −A such that their

union is X.

That is A and X − A forms a separation of X.

⇒ X is not conncted.

This contradication asserts our claim.
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Conversely, assume the only subsets of X that are both open and closed are

empty and X itself.

Claim : X is connected.

For, if X is not connected, there is a separation of X.

Let U and V forms the separation. Therefore U is nonempty.

U is open ⇒ X − U is closed in X.

⇒ V is closed in X.

Also, V is open ⇒ X − V is closed in X.

⇒ U is closed in X.

Thus we have U is a proper subset of X. That is both open and closed.

This is a contradication.

Therefore X is connected. 2

Lemma 0.10.5. If Y is a subspace of X, a separation of Y is a pair of disjoint

nonempty sets A and B whose union is Y , neither of which contains a limit point

of the other. The space Y connected if there exists no separation of Y .

Proof. Let Y be a subspace of X.

To prove separation of Y iff A and B are two nonempty disjoint sets such that

A ∪ B = Y, A ∩ B = A ∩ B = ∅.

First assume that there exists a separation of Y . Then there exists disjoint

nonempty open subsets A and B such that A ∪ B = Y .

It is enough to prove A ∩ B = ∅ and A ∩ B = ∅.

Then A is both open and closed in Y .

The closure of A in Y is A ∩ Y where A denote the closure of A in Y.

Since Anis closed in X. A = A ∩ Y where A is the closure of A in X. To say the

same thing A∩B = ∅. Since A is the union of A and its limit points, B contains
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no limit points of A.

Similarly, we can show that A conatins no limit points of B.

Conversely, assume A and B are two nonempty disjoint sets such that A∩B =

Y, A ∩ B = A ∩ B = ∅.

Claim :A ∩ Y = A.

We have A is contained A and A ⊂ Y .

That is A ⊂ A and A ⊂ Y .

Therefore A ⊂ A ⊂ Y ——————–(1)

Now, let x ∈ A ⊂ Y . Then x ∈ A and x ∈ Y .

Therefore, x /∈ B and x ∈ Y .

⇒ x ∈ A (since Y = A ∪ B).

Therefore, A ∩ Y ⊂ A ———————-(2).

From (1) and (2) we get, A = A ∩ Y .

Similarlly, we can prove B ∩ Y = B.

Now, A is closed in X.

⇒ A ∩ Y is closed in Y .

⇒ A is closed in Y .

Similarlly, B is closed in Y.

Now, B = Y − A is open in Y.

Therefore, B is open in Y.

Also A = Y − B.

Therefore, A is open in Y.

Thus A and B are two nonempty disjoint open sets in Y with Y = A ∪ B.

Thus there exists a separation of Y. 2

Lemma 0.10.6. If the sets C and D form a separation of X and if Y is connected
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subspace of X, then Y lies entirely with in either C or D.

Proof. Let sets C and D form a separation of X.

Therefore, X = C ∪ D where C and D are nonempty disjoint open sets in X.

Let Y be a connceted subspace of X.

To prove Y lies entirely with in either C or D.

Since C and D are open in X, the sets C ∩ Y and D ∩ Y are open in Y.

Also, Y = Y ∩ X

= Y ∩ (C ∪ D)

= (Y ∩ C) ∪ (Y ∩ D).

Now, (Y ∩ C) ∩ (Y ∩ D) = Y ∩ (C ∩ D)

= Y ∩ ∅

= ∅

Therefore, these two sets are disjoint and their union is Y.

If C ∩ Y and D ∩ Y are both nonempty.

Then they would constitute a separation of Y. Since Y is connceted, the only

posibility is Y ∩ C = ∅ or Y ∩ D = ∅. Therefore, Y ⊂ C or Y ⊂ D. Thatis, Y is

entirely either in C or in D. 2

Example 0.10.7. Let X denote a two points space in the indiscrete topology.

Obviously there is no separation of X, so X is connected.

Example 0.10.8. Let Y denote the subspace [−1, 0)∪(0, 1] of the real line R each

of the sets [−1, 0) and (0, 1] is nonempty and open in Y. They form a separation

of Y.

Example 0.10.9. Let X be the subspace [−1, 1] of the real line. The sets [−1, 0)

and (0, 1] are disjoint and nonempty, but they does not form the separation of X.
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Because the first set is not open in X.

Example 0.10.10. The rationals Q are not connected.

Lemma 0.10.11. The union of a collection of connected subspaces of X that have

a point in common is connected.

Proof. Let {Aα}α∈J be a collection of connected subspaces of X that have a

common point. Let p ∈ Aα for each α be the common point. To prove
⋃

Aα is

connected. Let Y =
⋃

Aα.

Suppose Y is not connected. Then there is a separation of Y. That is there exixt

C and D are two nonempty disjoint open sets in Y such that C ∪ D = Y .

We have p ∈ Y , therefore p ∈ C or p ∈ D.

For, definteness let p ∈ C

Therefore, we have p ∈ Aα

⇒ Aα ⊂ C for each α

⇒
⋃

Aα ⊂ C

That is Y ⊂ C

⇒ D is empty.

This is a contradication to D is nonempty. Therefore, Y is connceted. Thae is
⋃

Aα is connected. 2

Theorem 0.10.12. Let A be a connected subspace of X and if A ⊂ B ⊂ A. Then

B is also connected.

Proof. Let A be a connected subspace of X and let A ⊂ B ⊂ A.

To prove B is connceted.

Suppose B is not connected. Then we can write, B = C ∪ D where C and D are
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nonempty set with C ∩ D = C ∩ D = ∅.

We have, A ⊂ B

⇒ A ⊂ C ∪ D.

Since A is connceted, By a theorem, A ⊂ C or A ⊂ D.

Assume that, A ⊂ C

⇒ A ⊂ C

⇒ B ⊂ C

⇒ B ∩ D = ∅.

But B = C ∪ D. Therefore, D = ∅.

Which is a contradication to D is a nonempty set. Therefore, our assumtion is

wrong. Therefore, B is connected. 2

Theorem 0.10.13. The image of a connected space under a continuous map is

connected.

Proof. Let f : X → Y be a continuous map. Given X is connected.

To prove f(X) is connected.

Suppose f(X) is not connected. Then we can write, f(X) = A ∪ B where A and

B are nonempty disjoint open set in f(x).

Let g : X → f(X) with g(x) = f(x), ∀x ∈ X. Then g is onto and continuous.

Now, X = g−1(f(x))

= g−1(A ∪ B)

= g−1(A) ∪ g−1(B).

Since g is continuous and A and B are nonempty open set in g−1(A) and g−1(B)

are open. Therefore,g−1(A) and g−1(B) are open in X.

Thus X = g−1(A) ∪ g−1(B) where g−1(A) and g−1(B) are nonempty open set

with g−1(A) ∩ g−1(B) = ∅.
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Therefore, X is not connected.

Which is a contradication to X is connected. Therefore, our assumption is wrong.

Therefore, f(x) is connceted. 2

Theorem 0.10.14. A finite cartesian product of connected space is connected.

Proof. Let X1, X2, . . . , Xn be connected spaces.

To prove X1 × X2 × . . . × Xn is connected.

First we prove product of two connected spaces X is connected.

Choose a base point a × b in the product X × Y . Note that, the horizontal slice

X × b is connected being homeomorphic with X and each vertical slice X × Y is

connected being homeomorphic with Y.

For each x ∈ X, define T-shaped space, Tx = (X × b) ∪ (x × Y ).

We have x × b ∈ X × b and x × b ∈ x × Y .

Therefore, x × b ∈ (x × b) ∩ (x × Y ).

⇒ (x × b) ∩ (x × Y ) 6= ∅.

By a theorem, x × b ∪ x × Y is connected. Therefore, Tx is connected for every

x ∈ X.

Claim : X × Y =
⋃

x Tx

Clearly, Tx ⊆ X × Y for every x ∈ X.

Therefore,
⋃

x∈X Tx ⊆ X × Y —————–(1).

Now, To prove X × Y ⊆
⋃

x∈X Tx.

We have, x × y ∈ X × Y

x × Y ∈ x × Y ⊂ Tx

x × y ∈ Tx ⊆
⋃

Tx

X × Y ⊆
⋃

x∈X Tx —————-(2).

From equations (1) and (2) we get, X × Y =
⋃

x∈X Tx.
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We have (a, b) ∈ X × b

Therefore, (a, b) ∈ Tx ∀ x ∈ X.

Therefore,
⋂

x∈X Tx 6= ∅.

Thus X × Y =
⋃

x∈X Tx where
⋂

x∈X Tx 6= ∅.

By a lemma, X × Y is connected as each Tx is connected.

Now, we prove that cross product of finite number of connected spaces is con-

nected.

Let X1, X2, . . . , Xn be n-connected spaces.

To prove X1 × X2 × . . . × Xn is connected.

By the observation, we say that X1 × X2 is connected. Therefore, the result is

true for n = 2.

Assume that the result is true for n-1.

That is X1 × X2 × . . . × Xn−1 is connected.

To prove the result is true for n.

We have, X1×X2× . . .×Xn is homeomorphic with (X1×X2× . . .×Xn−1)×Xn.

By our assumption, (X1 ×X2 × . . .×Xn−1) is connected. Therefore,(X1 ×X2 ×

. . . × Xn−1) × Xn is connected.

⇒ (X1 × X2 × . . . × Xn−1) × Xn is connected. 2

0.11 Compact spaces

Definition 0.11.1. A collection A of subsets of X is said to be cover X or to be

a covering of X if the union of elements of A is equal to X.

Definition 0.11.2. A collection A of open subsets of X is said to be a open

covering of X if its union of elements of A is equal to X.
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Definition 0.11.3. A space X is said to be compact if every open covering A of

X contains a subcollection that also covers X.

Example 0.11.4. The real line R is not connected.

Let A = {(n, n + 2)/n ∈ Z} be a collection of open subsets of R whose union is

R. But this collection does not have a finite subcollection that covers R.

Example 0.11.5. Let X = {0} ∪ { 1
n
/n ∈ Z+} be a subspace of R. Then X is

compact. Let {Uα} be an open covering of X. Therefore, X =
⋃

α Uα.

0 ∈ X ⇒ 0 ∈
⋃

α Uα

⇒ 0 ∈ Uα for some α.

Uα is an open set containing zero. Therefore, Uα is a neighbourhood of zero.

Since 1
n
→ 0, there exists a positive integer N such that 1

n
∈ Uα ∀ n ≥ N .

⇒ 1
N

, 1
N+1

, . . . , 0 ∈ Uα.

Now, 1, 1
2
, . . . , 1

N−1
are in

⋃

Uα.

Let 1 ∈ Uα1
, 1

2
∈ Uα2

, . . . , 1
N−1

∈ UαN−1.

Therefore, {1, 1
2
, . . . , 1

N−1
, 1

N
, 1

N+1
, . . . , 0} ⊂ Uα1

∪ Uα2
∪ . . . ∪ UαN−1 ∪ Uα

⇒ X ⊂ Uα1
∪ Uα2

∪ . . . ∪ UαN−1 ∪ Uα

⇒ {Uα1
, Uα2

, . . . , UαN−1, Uα} is a finite subcollection which covers X. Therefore,

X is compact.

Example 0.11.6. (0, 1] is not compact. Since the open covering A = {( 1
n
, 1)/n ∈

Z+} contains no finite subcollection covering (0, 1]

Example 0.11.7. (0, 1] is not compact and [0, 1] is compact.

Definition 0.11.8. If Y is the subspace of X, a collection A of subset of X is

said to cover Y if the union of this element contains Y.

Lemma 0.11.9. Let Y be a subspace of X. Then Y is compact if and only if

every covering of Y bysets open in X contains a finite subcollection covering Y.
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Proof. First assume Y is compact and let A = {Aα}α∈J is a covering of Y

bysets open in X.

Now, consider the collection {Aα ∩ Y }α∈J this is the covering of Y bysets open

in Y.

Since Aα ∩ Y is open in Y for each α. Therefore, by compactness of Y, this

collection has a finite subcollection {Aα1
∩Y,Aα2

∩Y,Aα3
∩Y, . . . , Aαn

∩Y } that

covers Y.

Then {Aα1
, Aα2

, . . . , Aαn
} is the finite subcollection of A that covers Y.

Conversely, assume every covering of Y bysets open in X contains a finite

subcollection covering Y.

To prove Y is compact.

Let A
′

= {A
′

α} be a covering of Y bysets open in X.

For, each α choose a set Aα open in X such that A
′

α = Aα ∩ Y .

Y = A
′

α1
∪ A

′

α2
∪ . . . ∪ A

′

αi
∪ . . .

Y = (Aα1
∩ Y ) ∪ (Aα2

∩ Y ) ∪ . . . ∪ (Aαi
∩ Y ) . . .

= Y ∩ (Aα1
∪ Aα2

∪ . . .)

Y ⊂ Aα1
∪ Aα2

∪ . . . ∪ Aαi
∪ . . ..

The collection {Aα} is the covering of Y bysets open in X. Therefore, by

hypothesis, some finite subcollection {Aα1
, Aα2

, . . . , Aαn
} covers Y.

Then {A
′

α1
, A

′

α2
, . . . , A

′

αn
} is the subcollection of A

′

that covers A. Therefore, Y

is compact. 2

Theorem 0.11.10. Every closed subsets of a cmpact space is compact.

Proof. Given X is compact. Let Y be a closed subset of a compact set X.

To prove Y is compact.
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Let A = {Aα}α∈J be a covering of Y bysetsopen in X.

Let us form an open covering β of Y by adjoining to A, single open set X-Y.

Since X is compact, there exists a finite subcollection {Aα1
∪Aα2

∪. . .∪Aαn
∪X−Y }

of β that covers X. Therefore, X = {Aα1
∪ Aα2

∪ . . . ∪ Aαn
∪ X − Y }.

Then Y ⊂ Aα1
∪ Aα2

∪ . . . ∪ Aαn
.

⇒ There exists a finite subcollection of A which covers Y. Therefore, by previous

lemma, Y is compact. 2

Theorem 0.11.11. Every compact subset of a hausdorff space is closed.

Proof. Let X be a hausdorff space. Let Y be a compact space of X.

To prove Y is closed in X.

That is to prove X-Y is open in X.

Let x0 ∈ X − Y

⇒ x0 /∈ Y

Then x0 6= y ∀ y ∈ Y .

Now, x0 and y are two distinct points of Hausdorff space X.

For, each point y of Y, there exists a disjoint neighbourhood Uy and Vy of x0 and

y respectively.

Now, the collection {Vy/y ∈ Y } is the collection of open in X and Y ⊂
⋃

y∈Y Vy.

Therefore, {Vy/y ∈ Y } is the covering of Y bysets open in X.

By lemma, there exists a finite subcollection {Vy1
, Vy2

, . . . , Vyn
} that covers Y.

That is Y ⊂ Vy1
∪ Vy2

∪ . . . ∪ Vyn
.

Let V = Vy1
∪ Vy2

∪ . . . ∪ Vyn
. Then Y ⊂ V and V is open in X.

Let U = Uy1
∩ Uy2

∩ . . . ∩ Uyn
.

Therefore, U is the finite intersection of open sets containing x0.

Therefore, U is an open sets containing x0.
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Claim: U ∩ V = ∅.

Suppose U ∩ V 6= ∅. Then z ∈ U ∩ V

⇒ z ∈ U and z ∈ V .

Now, z ∈ U ⇒ z ∈ Uyi
∀ i = 1, 2, . . . , n.

Also z ∈ V ⇒ z ∈ Vyi
for some i.

z ∈ Uyi
∩ Vyi

.

Which is a contradication to Uyi
∩ Vyi

= ∅.

Therefore, U ∩ V = ∅. Also Y ⊂ U .

⇒ U ∩ Y = ∅

⇒ U ⊂ X − Y

⇒ X − Y is open in X.

⇒ Y is closed in X. 2

Theorem 0.11.12. The image of a compact space under a continuous map is

compact.

Proof. Let f : X → Y be a continuous map, where X is a compact space and

Y be a topological space.

To prove f(X) is compact.

Let A be a cover of f(X) bysets open in Y. Then f(X) ⊂
⋃

A∈A
A. Since f is

continuous and A is open in Y.

⇒ f−1(A) is open in X for every A ∈ A .

Also, X =
⋃

A∈A
f−1(A).

Therefore, {f−1(A)/A ∈ A } is an open covering for X.

Since X is compact, there exists a finite subcollection, {f−1(A1), f
−1(A2), . . . , f

−1(An)}

that covers X.

That is X = f−1(A1) ∪ f−1(A2) ∪ . . . ∪ f−1(An)
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⇒ f(X) ⊂ A1 ∪ A2 ∪ . . . ∪ An.

{A1, A2, . . . , An} is a finite subcollection of A that covers f(X).

By a lemma, f(X) is compact. 2

Theorem 0.11.13. Let f : X → Y be a bijective continuous function, if X is

compact and Y is hausdorff, then f is a homeomorphim.

Proof. Let f : X → Y be a bijective continuous function. Given X is compact

and Y is hausdorff.

To prove f is a homeomorphic.

It is enough to prove f−1 is continuous.

That is to prove that (f−1)−1(A) is closed in Y, for every closed set A in X.

Thatis, to prove f(A) is closed in Y for every closed set A in X.

Let A ⊂ X be closed in X.

Now, A being closed subset of the compact set X, A is compact.

Now, f(A) being a continuous image of a compact set A, f(A) is compact.

Again, f(A) being a compact subset of a hausdorff space Y.

Therefore, f(A) is closed.

Therefore, f−1 is continuous.

Therefore, f is a homeomorphism. 2

Theorem 0.11.14. The product of finitely many compact space is compact.

Proof. Let X1, X2, . . . , Xn be compact spaces.

To prove X1 × X2 × . . . × Xn is compact.

First we shall prove that the product of two compact space is compact.

Then the theorem follows by induction for any finite product.

Before proving this theorem, let us prove the Tube lemma. Consider the product
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space X × Y where Y is compact. If N is an open set of X × Y containing the

slice x0 × Y of X × Y , then N contains some tube W × Y about x0 × y where W

is a neigbourhood of x0in X.

We prove the following, there is a neighbourhood W of x0 in X such that

W × Y ⊂ N .

W × Y is often called a tube about x0 × Y .

First let us cover x0 × Y by basis elements U × V (for the topology of X × Y

lieing in N).

The space x0 × Y is compact being homeomorphic to Y.

We can cover x0×Y by finitely many such basis element U1×V1, U2×V2, . . . , Un×

Vn.

We assume that each basis element Ui × Vi intersects x0 × Y .

Since otherwise the basis element would be super fluous we can discard it forms

the finite collection and still the covering of x0 × Y .

Define W = U1 ∩ U2 ∩ . . . ∩ Un.

Then the set W is open and it contains x0 because each Ui ×Vi intersects x0 ×Y .

we assume that the sets Ui ×Vi which were choose to cover x0 ×Y actually cover

the tube W × Y .

For, let X × y ∈ W × Y .

Consider the point x0 × y of the slice x0 × Y , having the same y-coordinate at

this point.

Now, x0 × y ∈ Ui × Vi for some i.

So that y ∈ Vi.

But x ∈ Uj for all j.

We have x × y ∈ Ui × Vi. Therefore, W × Y ⊂ N . Hence the lemma.
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Proof of the main theorem:

Let X and Y be compact space.

To prove X × Y is compact.

Let A be an open covering of X × Y .

Given x0 ∈ X, the slice x0 × Y is compact and therefore it can be covered by

finitely many elements A1, A2, . . . , Am of A .

Their union N = A1 ∪ A2 ∪ . . . ∪ Am is an open set containing x0 × Y .

By above tube lemma, the open set N contains a tube W × Y about x0 × Y ,

where W is open in X.

Then W × Y is covered by finitely many elements A1, A2, . . . , Am of A .

Thus for each x ∈ X, we can choose a neigbourhood Wx of X such that the tube

Wx × Y can be covered by finitely many elements of A .

Since X is compact. There exists a finite subcollection {W1,W2, . . . ,Wk} which

covers X.

Therefore, theunion of the tubes W1×Y,W2×Y, . . . ,Wk ×Y covers all of X ×Y .

Since each may be covered by finitely many elements of A .

Hence X × Y has a finite subcover. Thus X × Y is compact.

By induction, it follows that X1, X2, . . . , Xn are compact spaces then their prod-

uct X1 × X2 × . . . × Xn is compact.

Definition 0.11.15. A collection C of subsets of X is said to satisfy the finite

intersection properly if for every finite subclooection {C1, C2, . . . , Cn} of C , the

intersection C1 ∩ C2 ∩ . . . ∩ Cn is nonempty.

Theorem 0.11.16. Let X be a tropological space. Then X is compact if and only

if for every collection C of closed sets in X having the finite intersection property,

the intersection
⋂

c∈C
C of all the elements of C is nonempty.
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Proof. Suppose X is compact.

Let C be a collection of closed sets in X satisfiying the finite intersection condi-

tion.

To prove
⋂

C∈C
C 6= ∅.

If not assume,
⋂

c∈C
C = ∅.

Then X −
⋂

c∈C
C = X − ∅.

Since C is closed for all C ∈ C , X- C is open for all C ∈ C . Therefore,{X−C/c ∈

C } is a collection of open subsets of X and X =
⋂

C∈C
(X − C).

Therefore, {X −C/C ∈ } is an open cover for X. Since X is compact, there exists

a finite subcollection, {X − C1, X − C2, . . . , X − Cn} which covers X.

Therefore, X = (X − C1) ∪ (X − C2) ∪ . . . ∪ (X − Cn)

⇒ X = X − (C1 ∩ C2 ∩ . . . ∩ Cn)

⇒ C1 ∩ C2 ∩ . . . ∩ Cn = ∅.

Which is a contradication to C satisfies the finite intersection condition,
⋂

C∈C
C 6=

∅.

Conversely, suppose that for every collection C of closed sets in X having

the finite intersection property, the intersection
⋂

C∈C
C of all elements of C is

nonempty.

To prove X is compact.

Suppose X is not compact.

Then there exists an open covering A for X which contains no finite subcovering.

Since A is an open covering for X.

X =
⋃

A∈A
A. Then X − X = X −

⋃

A∈A
A.

That is ∅ =
⋂

A∈A
(X − A) ————-(1)

Now, {X − A/A ∈ A } is a collection of closed sets in X.
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Let {X − A1, X − A2, . . . , X − An} be a subcollection of {X − A/A ∈ A }.

Then (X − A1) ∩ (X − A2) ∩ . . . ∩ (X − An) = X − (A1 ∪ A2 ∪ . . . ∪ An) 6= ∅.

Therefore, {X − A/A ∈ A } is a collection of closed subsets of X satisfying the

finite intersection condition and by (1)
⋂

A∈A
(X − A) = ∅.

Which is a contradication.

Therefore, our assumption is wrong.

Hence X is compact. 2
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Unit 4

0.12 The countability Axioms

Definition 0.12.1. A space X is said to have a countable basis at x if there is

a countable collection B of neighbourhood of x such that each neihbourhood of x

contains at least one of the elements of B.

Definition 0.12.2. A space that has a countable basis at each of its points is

said to satisfy the first countability axiom or to be first countable.

Theorem 0.12.3. Let X be a topological space. (a) Let A be a subset of X. If

there is a sequence of points of A coverging to x then x ∈ A; the converse holds

if X is first countable. (b) Let f : X → Y . If f is continuous, then for every

convergent sequence xn → x in X, the sequence f(xn) → f(x) the converse holds

if X is first countable.

Proof. (a) Suppose x ∈ A. Since X is first countable, there exists a countable

basis say Un at x.

Let An = U1 ∩ U2 ∩ . . . ∩ Un for n = 1, 2, . . .

Then {An} is a countable collection of neighbourhood of x and A1 ⊃ A2 ⊃ . . . ⊃

An ⊃ An+1 ⊃ . . .

Claim : {An} is a countable basis at x.

Let U be a neihbourhood of x. Since Un is a countable basis at x, there exists Uk

in {Un} such that Uk ⊂ U .

Also, Ak ⊂ Uk. Therefore, we have Ak ⊂ Uk ⊂ U .

That is x ∈ Ak ⊂ U .
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Therefore, {An} is a countable basis at x.

Now, for any n, An ∩ A 6= ∅.

Choose xn ∈ An ∩ A for n = 1, 2, . . .

Now, we have a sequence (xn) in A such that xn ∈ An for n = 1, 2, . . ..

Claim : (xn) → x.

Let V be a neigbourhood of x.

Since {An} is a countable basis at x, there exists x such that AN ⊂ V .

Also, An ⊂ AN ∀ n ≥ N .

Therefore, xn ∈ An ⊂ V

⇒ xn ∈ V ∀ n ≥ N .

Therefore, (xn) → x.

Conversely, suppose there exists a sequence (xn) in A such that (xn) → x.

To prove x ∈ A

Suppose there exists a sequence of points in A converging to x.

Let W be a neighbourhood of x.

Since (xn) → x and W is a neighbourhood of x, there exists a positive integer N

such that xn ∈ W , ∀ n ≥ N

⇒ W ∩ A 6= ∅.

Therefore, x ∈ A.

Suppose f : X → Y is continuous.

To prove (f(xn)) → f(x) where (xn) → x.

Let (xn) → x. Let V be the neigbourhood of f(x).

⇒ f−1(V ) is the neigbourhood of x.

Since (xn) → x, there exists a positive integer N such that xn ∈ f−1(V ), ∀ n ≥ N

⇒ f(xn) ∈ V ∀ n ≥ N .
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Therefore, (f(xn)) → f(x).

Conversely, suppose that (f(xn)) → f(x) whenever (xn) → x.

To prove f is continuous.

It is enough to prove f(A) ⊂ f(A) for any subset A of X.

Let y ∈ f(A). Then y = f(x) for some x ∈ A.

Now, x ∈ A. By (a), there exists a sequence (xn) in A such that (xn) → x.

By hypothesis, (f(xn)) → f(x).

Then by (a), f(x) ∈ f(A)

⇒ y ∈ f(A).

Therefore, f(A) ⊂ f(A).

Hence f is continuous. 2

Example 0.12.4. 1. R has a countable basis. It is the collection of all open

intervals (a, b) with rational end points.

2. R
n has a countable basis. It is the collection of all products of intervals

having rational end points.

3. R
w has a countable basis. It is the collection of all product Πn∈Z+

Un where

Un is an open interval with rational end points for finitely many values of n and

Un = R for all values of n.

Definition 0.12.5. If a space X has a countable basis for its topology, then X is

said to satisfy the second countability axiom or to be second countable.

Theorem 0.12.6. (i) A subspace of a first countable space is first countable and

a countable product of first countable spaces is first countable. (ii) A subspace of

a second countable space is second countable and a countable product of second

countable space is second countable.
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Proof. (i) Let A be a subspace of a first countable space X.

Let x ∈ X.

Let B be a countable basis for X.

Let C = {B ∩ A/B ∈ B}.

Then C is a countable basis for the subspace A of X. Therefore, A is first count-

able.

Let (Xi) be a sequence of first countable spaces.

To prove ΠXi is first countable.

Let Bi be a countable basis for the space Xi.

Then the collection of all products ΠUi where Ui ∈ Bi for finitely many values

of i is a countable basis for ΠXi. Therefore, ΠXi is first countable.

(ii) Consider the second countability axiom. Let X be a second countable

space.

Let A be a subspace of X.

Let B be a countable basis for X.

Let C = {B ∩ A/B ∈ B}.

Then C is a countable basis for the subspace A of X. Therefore, A is second

countable.

Therefore, any subspace of a second countable space is second countable.

Let (Xi) be a sequence of second countable spaces.

To prove ΠXi is second countable.

Let Bi be a countable basis for the space Xi.

Then the collection of all products ΠUi where Ui ∈ Bi for finitely many values

of i is a countable basis for ΠXi. Therefore, ΠXi is second countable. 2

Definition 0.12.7. A space A of a space X is said to be dense in X if A = X
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Theorem 0.12.8. Suppose that X has a countable basis. Then (a) Every open

covering of X contains a countable subcollection covering X.

(b) There exists a countable subset of X. That is, dense in X.

Proof. Given X as a countable basis.

Let {Bn} be a countable basis for the topology on X.

(a) Let A be an open covering for X.

For each positive integer n for which it is possible to choose an element An of A

containing the basis element Bn.

That is Bn ⊂ An

Let A
′

= {An}, then clearly A
′

is the countable collection of open subsets of X.

To prove X =
⋃

An. Trivially,
⋃

An ⊂ X ————-(1)

Let x ∈ X

⇒ x ∈ A for some A ∈ A .

There exists Bn ∈ {Bn} such that x ∈ Bn ⊂ A.

Since Bn ⊂ An

⇒ x ∈
⋃

An.

Therefore, X ⊂
⋃

An ————-(2).

From (1) and (2) we get, X =
⋃

An.

Therefore, A
′

is a countable subcollection covering X.

(b) For each nonempty basis element Bn, choose a point xn ∈ Bn.

Let D be the set consisting of the point xn.

Clearly, D is the countable subset of X.

Claim : D = X

Clearly, D ⊂ X.

To prove X ⊂ D.
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Let x ∈ X.

Let U be a neihbourhood of x.

Then there exists Bn such that x ∈ Bn ⊂ U .

Now, xn ∈ Bn, xn ∈ D

⇒ xn ∈ Bn ∩ D

⇒ Bn ∩ D 6= ∅

⇒ x ∈ D.

Therefore, x ⊂ D. Hence D = X.

Therefore, D is dense in X. 2

Definition 0.12.9. A space for which every open covering contains a countable

subcovering is called a Lindelof space.

Definition 0.12.10. A space having a countable dense subset often said to be

separable.

Example 0.12.11. The space Rl satisfies all the countability axioms but the

seconds or Rl topology is first countable but not second countable.

Proof. Let x ∈ Rl, the set of all elements of the form [x, x + 1
n
) is a countable

basis at x and it is easy to see that the rational number of dense in Rl. Hence it

is first countable.

To show Rl is not second countable.

Let B be a basis for Rl.

Choose for each x, an element Bi of B such that x ∈ Bx ⊂ [x, x + 1).

If x 6= y, then Bx 6= By.

Since x = inf Bx and y = inf By.

Therefore, B must be countable.

Therefore, it does not satisfy the second countability axiom. 2

62



Example 0.12.12. The product of two Lindelof spaces need not be Lindelof.

(or)

Rl is Lindelof but the product Rl × Rl is not Lindelof.

Proof. The space R
2
l has basis of all sets of the form [a, b) × [c, d).

We show that it is not Lindelof.

Consider a subspace L = {x × (−x)/x ∈ Rl} and L is closed in R
2
l .

Let us cover R
2
l by the open set R

2
l − L and by all elements of the form [a, b) ×

[−a, d).

Each of these open sets intersects L in atmost one point.

Since L is uncountable, no countable subcollection covers R
2
l .

Therefore, R
2
l is not Lindelof.

The subspace of a Lindelof space need not be Lindelof.

The ordered square, I2
0 is compact.

Therefore, it has a countable subcover.

Therefore, it is Lindelof trivially.

Now, consider the subspace A = I × (0, 1) of I2
0 .

It is not Lindelof.

For, A is the union of disjoint sets, Ux = {x}× (0, 1), x ∈ I each of which is open

in A.

This collection of sets is uncountable and no proper subcollection covers A.

It is not Lindelof. 2

Note: R
2
l is called sorgenfrey plane.

Definition 0.12.13. Suppose that one point sets are closed in X. Then X is said

to be regular if for each pair consisting of a point x and a closed set B disjoint

from x, there exists disjoint open sets containing x and B respectively.
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Definition 0.12.14. Suppose that the one point sets are closed in X. Then X is

said to be normal if for each pair (A, B) of disjoint closed sets of X, there exists

disjoint open sets containing A and B respectively.

Note: A regular space is hausdroff and normal space is regular.

Lemma 0.12.15. Let X be a topological space. Let one point in X be closed.

(a) X is regular if and only if given a point x of X and a neigbourhood U of x,

there is a neihbourhood V of x such that V ⊂ U .

(b) X is normal if and only if given a closed set A of an open set U containing

A, there is an open set V containing A such that V ⊂ U .

Proof. (a) First assume X is regular.

Given a point x and a neigbourhood U of x.

To prove there exists a neigbourhood V of x such that V ⊂ U .

Let B = X − U .

Then B is closed in X.

Also x /∈ B.

Therefore, by hypothesis, there exists disjoint open sets V and W containing x

and B respectively.

Therefore, the set V is disjoint from B.

Since if y ∈ B the set W is a neigbourhood of x such that V ⊂ U .

To prove X is regular.

Suppose the closed set B not containing x be given. Then x ∈ U .

By hypothesis, there is a neighbourhood V of x such that V ⊂ U .

Therefore, the open sets V and X − V are disjoint open set containing x and B

respectively.

Hence X is regular.

64



(b) Suppose that X is normal.

Given a closed set A and an open set U containing A.

Let B = X − U .

Since U is open, B is closed in X.

Also we have A is closed in X.

Since X is normal, there exist disjoint open sets V and W containing A and b

respectively.

V is disjoint from W.

Therefore, V is disjoint from V.

Therefore, V ⊂ U .

Conversely, suppose given a closed set A and an open set U containing A, there

is an open set V containing A such that V ⊂ A.

To prove that X is normal.

Let U = X − B is an open set containing A.

By hypothesis, there exists an open set V containing A such that V ⊂ U .

Therefore, the open set V and X − V are disjoint open set containing A and B

respectively.

Also, given that the one point sets are closed in X.

Therefore, X is normal. 2

Theorem 0.12.16. (a) A subspace of a Hausdroff space is Hausdroff. A product

of Hausdroff space is Hausdroff.

(b) A subspace of a regular space is regular. A product of a regular space is regular.

Proof. (a) First let us prove the product of two hausdroff space is hausdroff.

Let X1 and X2 be two hausdroff spaces.

To prove X1 × X2 is hausdroff space.
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That is to prove ∀x = (x1, x2) and y = (y1, y2) of X1 × X2, x 6= y, there exists a

neighbourhood U and V of (x1, x2) and (y1, y2) such that U ∩ V = ∅.

Here x1 ∈ X1, x2 ∈ X2, y1 ∈ X1, y2 ∈ X2.

x 6= y ⇒ (x1, x2) 6= (y1, y2)

⇒ x1 6= y1 or x2 6= y2.

We take x1 6= y1.

Since X1 is a hausdroff space, two point x1 6= y1 of X1, there exists a neighbour-

hood U1 and U2 of x1 and y1 such that U1 ∩ U2 = ∅.

Consider U1 × X2 and U2 × X2.

Since U1, U2, X2 are open, U1 × X2 and U2 × X2 are open.

Also, (x1, x2) ∈ U1 × X2 and (y1, y2) ∈ U2 × X2.

Since U1 ∩ U2 = ∅, (U1 × X2) ∩ (U2 × X2) = ∅.

Thus U1 × X2 is a neighbourhood of x1, x2 and U2 × X2 is a neighbourhood of

y1, y2 with (U1 × X2) ∩ (U2 × X2) = ∅.

Next to prove subspace of a hausdroff space is hausdroff.

Let X be a hausdroff space.

Let Y be a subspace of X.

To prove Y is hausdroff.

Let y1 6= y2 be two points of Y. Then y1, y2 ∈ X.

Since X is hausdroff, there exists a neighbourhood Uy1
and Uy2

of y1 and y2 in X

such that Uy1
∩ Uy2

= ∅.

Let Vy1
= Uy1

∩ Y and Vy2
= Uy2

∩ Y .

Clearly, Vy1
and Vy2

are neighbourhood of y1 and y2 in Y.

Also, Vy1
∩ Vy2

= (Uy1
∩ Y ) ∩ (Uy2

∩ Y )

= (Uy1
∩ Uy2

) ∩ Y

66



= ∅ ∩ Y

= ∅.

Therefore, Y is hausdroff.

(b) Let X be a regular space.

Let Y be a subspace of a regular space X.

Then one point sets are closed in Y.

Let x be a point of Y.

Let B be a closed set in Y not containing the point x.

Now, B ∩ Y = B where B denotes the closure of B in X.

Therefore, x /∈ B.

So using regularity of X we can choose disjoint open sets U and V of X containing

x and B respectively.

Then U ∩ Y and V ∩ Y are disjiont open sets containing X and B respectively.

Therefore, Y is regular.

That is the subspace of X is regular.

That is the subspace of X is regular.

Now, to prove product of a regular space is regular.

let {Xα} be a family of regular spaces.

Let X = ΠXα.

By (a) part, X is hausdroff. So that one point sets are closed in X.

Let x = (Xα) ∈ X.

Let U be a neighbourhood of x in X.

Choose a basis element ΠUx about x contained in U.

Then Uα is a neighbourhood of xα in Xα and each Xα is regular.

Choose for each α, the neighbourhood Vα of xα such that Vα ⊂ Uα. If it happens
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that Uα = Xα, choose Vα = Xα.

Then V = ΠVα is a neighbourhood of x in X.

Since V ΠVα.

By a theorem, it follows that, V ⊂ ΠUα ⊂ U .

That is V ⊂ U .

Hence by lemma, X is regular.

That is ΠXα is regular. 2

0.13 Normal spaces

Theorem 0.13.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B.

To prove X is normal.

Let A and B be disjoint closed subsets of X. Each point x of A has a neighbourhood

U not intersection B.

Using regularity choose a neigbourhood V of x whose closure lies in U .

Finally, choose an element of B contained in V.

By choosing such a basis element for each x ∈ A, we construct a countable

covering of A by open sets whose closures do not intersect B.

Since this covering of A is countable, we can index it with the positive integers.

Let us denote it by {Un}.

Similarly, we can choose a countable collection {Vn} of open sets covers B such

that each Vn does not intersect A.

The sets U =
⋃

n∈z+
Un and

V =
⋃

n∈z+
Vn.
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Thus U and V are open sets containing A and B respectively but they need not

be disjoint.

Now, we construct two disjoint open sets containing A and B respectively.

Define, U
′

n = Un −
⋃n

i=1 Vi and

V
′

n = Vn −
⋃n

i=1 Ui.

Each U
′

n is the difference of a open set Un and a closed set
⋃n

i=1 Vi.

Therefore, each U
′

n is open.

Similarly, each V
′

n is open.

Also, each Vi is disjoint from k.

{U
′

n/n ∈ Z+} is an open covering for A.

Simiolarly, {V
′

n/n ∈ Z+} is an open covering for B.

Let U
′

=
⋃

n∈Z+
U

′

n and

V
′

=
⋃

n∈Z+
V

′

n.

Then U
′

and V
′

are open sets containing A and B.

Claim : U
′

∩ V
′

= ∅.

Suppose U
′

∩ V
′

6= ∅.

Let x ∈ U
′

∩ V
′

⇒ x ∈ U
′

j ∩ V
′

k for some j and k.

Suppose j ≤ k.

Now, x ∈ U
′

j ⇒ x ∈ Uj.

Also, x ∈ V
′

k ⇒ x /∈
⋃k

i=1 Ui

⇒ x /∈ Uj.

Now, suppose that j ≥ k.

Then we get x ∈ Vk and x /∈ Vk. Which is a contradication.

Therefore, U
′

∩ V
′

= ∅. This proves the claim.

Therefore, U
′

and V
′

are disjoint open sets containing A and B.
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Therefore, X is normal. 2

Theorem 0.13.2. Every metricable space is normal.

Proof. Let X be a metricable space with metric d.

Let A and B be two disjoint closed subsets of X.

For each a ∈ A, choose ǫa > 0 so that the open ball B(a, ǫa) does not intersect A.

Define, U =
⋃

a∈A B(a, ǫa
2
) and V =

⋃

b∈B B(b, ǫ b
2

), U and V are open sets con-

taining A and B respectively.

Claim: U ∩ V = ∅.

For, if U ∩ V 6= ∅.

Let z ∈ U ∩ V . Therefore, z ∈ B(a, ǫa
2
) ∩ B(b, ǫ b

2

) for some a ∈ A and b ∈ B.

We know that d(a, b) ≤ d(a, z) + d(z, b)

< ǫa
2

+ ǫ b
2

< ǫa+ǫb

2
.

Now, if ǫa ≤ ǫb, then d(a, b) < ǫb

⇒ a ∈ B(b, ǫb).

Also, if ǫb ≤ ǫa, then d(a, b) < ǫa

⇒ b ∈ B(a, ǫa).

In both cases, we have a contradication.

Hence U ∩ V = ∅.

Hence X is normal. 2

Theorem 0.13.3. Every compact Hausdroff space is normal.

Proof. Let X be a compact hausdroff space.

To prove X is normal.

First let as prove X is regular.
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For, if x ∈ X and B is closed subset of X not containing x then, B is compact.

So that by a lemma, there exists disjoint open sets about x and B respectively.

Now we prove X is normal.

Let A and B be two disjoint closed subsets of X.

For each a ∈ A, choose disjoint open sets Ua and Va containing A and B respec-

tively.

This is possible, since X is regular. The collection {Ua} covers A.

Since A is compact, it can be covered by finitily many collection of sets {Ua1
, Ua2

, . . . , Uam
}.

Define, U = Ua1
∪ Ua2

∪ . . . ∪ Uam
and V = Va1

∩ Va2
∩ . . . ∩ Vam

.

Then U and V are disjoint open sets containing A and B respectively.

Hence X is normal. 2

Theorem 0.13.4. Every well ordered set X is normal in the order topology.

Proof. Let X be well ordered set.

We assert that every interval of the form (x, y] is open in X.

If X has a largest element and y is that element.

Then (x, y] is just a basis element about y.

If y is not the largest element of X.

Then (x, y] equals the open set (x, y
′

) where y
′

is the immediate successor of y.

Now, let A and B be two disjoint closed sets in X.

Case (i) Assume for the moment neither A nor B contains the smallest element

a0 of X.

For a ∈ A, there exists a basis element about a disjoint from B.

It contains some interval of the form (x, a].

Therefore, choose each a ∈ A such an interval (xa, a] disjoint from B.

Choose an interval (yb, b] disjoint from A.
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Define, U =
⋃

a∈A(xa, a] and V =
⋃

b∈B(yb, b].

Then A ⊂ U and B ⊂ V and U and V are open.

We assert that U ∩ V = ∅.

For, if U ∩ V 6= ∅.

Then z ∈ U ∩ V

⇒ z ∈ (xa, a] ∩ (yb, b] for some a ∈ A and b ∈ B.

Assume a < b.

If a ≤ yb.

Then the two intervals are disjoint while if a > yb.

We have a ∈ (yb, b].

Contrary to the (yb, b] is disjoint from A, similar contradication occurs if b < a.

Case (ii) Now, assume A contains the smallest element a0 of X.

The set {a0} is both open and closed in X.

The set A − {a0} and B are closed in X.

Therefore, by case (i), there exists disjoint open sets U and V containing A−{a0}

and B respectively.

Therefore, U ∪{a0} and V are disjoint open sets containing A and B respectively.

Thus X is normal. 2

Lemma 0.13.5. (Urysohn Lemma)

Let X be a normal space; let A and B be disjoint closed subsets of X. Let [a, b] be a

closed interval in the real line. Then there exists a continuous map f : X → [a, b]

such that f(x)a, for every x ∈ A and f(x) = b, for every x ∈ B.

Proof. We will consider the only case of interval [0, 1].

The general case follows from that one.

The first step of the proof is to construct.
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Using normality a certain family Up of open sets of X, indened by the rational

numbers.

Then we use these sets to define the continuous function f .

Step 1: Let P = {p ∈ [0, 1]/p is rational}.

Define for each p ∈ P , an open set Up of X such that whenever p < q.

We have Up ⊂ Uq.

Since P is countable, we can use induction to define the set Up.

Arrange the element of P in an infinite sequence in some way.

For convienience, let us suppose that the numbers 1 and 0 are the first two

elements of the sequence.

First define U1 = X − B where A and B are closed subsets of X.

Second, because A is a closed set contain the open set U1, by normality of X we

can choose an open set U0 such that A ⊂ U0 and U0 ⊂ U1.

In general, Pn denote the set consisting of the first n- rational numbers in the

sequence.

Suppose that Up is defined for all rational numbers p belonging to Pn satisfing

the condition p < q ⇒ Up ⊂ Uq ——-(*)

Let r denote the next rational number in the sequence.

We wish to define Ur.

Consider the set, Pn+1 = Pn ∪ {r}.

It is a finite subset of the interval [0, 1] and its satisfies the simple order relation

<.

We know that the finite simply order set, every element other than the smaller

and the largest has a immediate predecessor and an immediate successor.

The number 0 is the smallest element and 1 is the largest element of Pn+1.
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Therefore, r has an immediate predecessor p in Pn+1 and an immediate successor

q in Pn + 1.

The sets Up and Uq are already define and Up ⊂ Uq.

Using normality of X, we can find an open set Ur of X such that Up ⊂ Ur and

Ur ⊂ Uq ————— (1)

Claim : (*) holds for every pair of elements of Pn+1.

For, if both elements lieing Pn, (*) holds by induction hypothesis.

If one of them is r and other is an element s of Pn, then either s ≤ p or s ≥ q.

If s ≤ p, then s < r.

Since s, p ∈ Pn by induction hypothesis Us ⊂ Up.

That is Us ⊂ Up ⊂ Up ⊂ Ur.

That is Us ⊂ Ur.

If s ≥ q, r < s.

Since q, s ∈ Pn.

Then by induction hypothesis, Uq ⊂ Us.

That is Uq ⊂ Uq ⊂ Us.

That is Ur ⊂ Uq ⊂ Uq ⊂ Us

⇒ Ur ⊂ Us.

Therefore, eqation (*) ias true for every pair of elemevts in Pn+1.

Therefore, by induction for every p ∈ P an open set Up of X is defined such that

whenever p < q, Up ⊂ Uq.

Step 2 : Now we define Up for all rational in the interval [0, 1] entened this

definition to all rational numbers p in R by defining, Up = ∅ if p < 0, Up = X if

p > 1.

Then we have to prove for any rational numbers p and q in R whenever p < q ⇒
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Up ⊂ Uq.

Case(i) If p and q are two rational with p < q, then by step 1, Up ⊂ Uq.

Case (ii) If p and q are two rationals with p ∈ [0, 1] and q > p.

Then Up is defind by step 1 and Uq = X.

Therefore, Up ⊂ Uq.

Case(iii) If p and q are two rationals with p < 0 and q ∈ [0, 1].

Then Up = ∅ and Uq is defined by step 1,

⇒ Up = ∅ = ∅ ⊂ Uq.

THerefore, Up ⊂ Uq.

Csae(iv) If p and q are two rational numbers with p < 0 and q > 1.

Then Up = ∅, Uq = X.

Therefore, Up ⊂ Uq.

It is still prove that for any pair of rational numbers p and q, p < q ⇒ Up ⊂ Uq.

Step 3:

Given a point x ∈ X.

Let us define Q(x) to be the set of all rational numbers p such that the corre-

sponding open sets Up contains x.

That is Q(x) = {p/x ∈ Up}.

This sets cointains no numbers ¡ 0.

Since no x is in UP for p > 1.

Therefore, Q(x) is bounded below and its greatest lower bound is a point of a

interval [0, 1].

Define f(x) = inf Q(x) = inf{p/x ∈ Up}.

Step 4:
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Claim 1: f(x) = 0 ∀ x ∈ A and f(x) = 1, ∀ x ∈ B.

If x ∈ A ⇒ x ∈ A ⊂ U0 ⊂ U1.

Now, 0 ≤ p ⇒ U0 ⊂ Up.

Therefore, A ⊂ Up.

Hence x ∈ A ⇒ x ∈ Up.

Therefore, x ∈ Up if p ≥ 0.

That is Q(x) contains all the rationals ≥ 0. Therefore, g.l.b of Q(x) = 0.

Therefore, f(x) = 0, ∀ x ∈ A.

If x ∈ B ⇒ x /∈ U1

⇒ x /∈ Up

⇒ x /∈ Up, if p ≤ 1.

Therefore, Q(x) contains no rationals ≤ 1. Therefore, g.l.b of Q(x) = 1.

That is f(x) = 1, ∀ x ∈ B.

Claim:2

Now, we show that f is continuous.

For this purpose we first prove the following elementary facts.

(1). x ∈ Ur ⇒ f(x) ≤ r

(2). x /∈ Ur ⇒ f(x) ≥ r

To prove (1), Let x ∈ Ur.

Then x ∈ Us for every s > r.

Therefore, Q(x) contains all rational numbers > r.

So that by definition, we have f(x) = inf Q(x) ≤ r.

To prove (2)

Let x /∈ Ur.

Then x /∈ Us for every s < r.
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Therefore, Q(x) contains no rational numbers < r

So that by definition, we have f(x) = inf Q(x) ≥ r.

Now, we prove the continuity of f, f : X → R.

Given a point x0 of X and an open interval (c, d) in R containing the point f(x0).

We wish to find a neigbourhood U of x0 such that f(U) ⊂ (c, d).

Choose rational numbers p and q such that c < p < f(x0) < q < d.

We saaert that the open set, U = Uq − Up is the desired neighbourhood of x0.

First we note that x0 ∈ Uq, for the fact that f(x0) < q ⇒ by condition (ii) that

x0 ∈ Uq while the fact that f(x0) > p ⇒ by the condition (i) that x0 /∈ Up.

Second we show that f(U) ⊂ (c, d).

Let x ∈ U , then x ∈ Uq ⊂ Uq, so that f(x) ≤ q (by (1)) and x /∈ Up so that

f(x) ≥ p (by (2)).

Thus f(x) ∈ [p, q] ⊂ (c, d).

Therefore, f(U) ⊂ (c, d).

Hence f is continuous.

2
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Unit 5

Banach spaces

0.14 The definition and some examples

Definition 0.14.1. A linear space N is said to be a normed linear space if each

vertex x ∈ N there corresponds a real number, denoted by ‖x‖ and called the

norm of x, such that

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0

(2) ‖x + y‖ ≤ ‖x‖ + ‖y‖;

(3) ‖αx‖ = |α| ‖x‖.

A non-negative real number ‖x‖ is a length of a vertex x. We can easily verify

that the normed linear space N is a metric space with respect to the metric d

defind by d(x, y) = ‖x − y‖.

Definition 0.14.2. A Banach space is a complete normed linear space.

Result 0.14.3. A function ‖‖ : N → R is continuous.

Proof. First we prove that |‖x‖ − ‖y‖| ≤ ‖x − y‖.

We have ‖x‖ = ‖(x − y) + y‖ ≤ ‖x − y‖ + ‖y‖.

Therefore ‖x‖ − ‖y‖ ≤ ‖x − y‖ —————————–(1)

Interchanging x and y we get, ‖y‖ − ‖x‖ ‖y − x‖.

That is −(‖x‖ − ‖y‖) ≤ ‖x − y‖ ——————–(2)

From (1) and (2) we get, |‖x‖ − ‖y‖| ≤ ‖x − y‖.

By the definition of continuvity, it is clear that ‖‖ is continuous. 2
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Result 0.14.4. Addition and scalar multiplication are jointly continuous.

Proof. Suppose xn → x and yn → y.

Now, ‖(xn + yn) − (x + y)‖ = ‖(xn − x) + (yn − y)‖ ≤ ‖xn − x‖ + ‖yn − y‖.

since xn → x.

since xn → x and yn → y, the RHS converges to 0 and hence the LHS converges

to 0. That is (xn + yn) → (x + y).

Suppose αn → α and xn → x

Now, ‖αnxn − αx‖ = ‖αnxn − αnx + αnx − αx‖

= ‖αn(xn − x) + (αn − α)x‖

≤ ‖αn(xn − x)‖ + ‖(αn − α)x‖

= |αn| ‖xn − x‖ + |αn − α| ‖x‖

Since αn → α and xn → x, the RHS converges to 0 and hence LHS converges

to 0. That is αnxn → αx. 2

Theorem 0.14.5. Let M be a closed linear subspace of a normed linear space N .

If the norm of a coset x + M in the quotient space N/M denoted by ‖x + M‖ =

inf{‖x + m‖ ; m ∈ M} then N/M is a normed linear space. Further, if N is

Banach space, then so in N/M .

Proof. Part 1: Given N is a normed linear space and M is a closed linear

space of N . To prove (N/M, ‖‖) is a normed linear space.

(1) Clearly ‖x + M‖ ≥ 0 for every x ∈ N .

Suppose x + M is a zero element of N/M . That is, x + M = M

⇒ x ∈ M .

Now, ‖x + M‖ = inf{‖x + m; m ∈ M‖}

= inf{‖2‖ ; 2 ∈ M}
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= 0.

Hence x + M = M ⇒ ‖x + M‖ = 0.

Clearly, Suppose ‖x + M‖ = 0. That is inf{‖x + m; m ∈ M‖} = 0.

Then there exists a sequence(mk) in M such that ‖x + mk‖ → 0

⇒ mk → −x

⇒ −x ∈ M

⇒ x ∈ M

⇒ x + M = M, the zero element of N/M .

Therefore ‖x + M‖ = 0 ⇒ x + M = M .

(2) ‖(x + M) + (y + M)‖ = ‖(x + y) + M‖

= inf{‖x + y + m‖ ; m ∈ M}

= inf{
∥

∥x + y + m + m
′
∥

∥ ; m,m
′

∈ M}

= inf{
∥

∥(x + m) + (y + m
′

)
∥

∥ ; m,m
′

∈ M}

≤ inf{‖x + m‖ +
∥

∥y + m
′
∥

∥ ; m,m
′

∈ M}

= inf{‖x + m‖ ; m ∈ M}+ inf{
∥

∥y + m
′
∥

∥ ; m
′

∈ M}

= ‖x + M‖ + ‖y + M‖.

(3) ‖α(x + M)‖ = ‖αx + M‖

= inf{‖αx + m‖ ; m ∈ M}

= inf{‖α(x + m)‖ ; m ∈ M}

= inf{|α| ‖x + m‖ ; m ∈ M}

= |α| inf{‖x + m‖ ; m ∈ M}

= |α| ‖x + M‖.

Hence N/M is a normed linear space.

Part 2: Given N is a Banach space. To prove N/M is complete.

That is, To prove any cauchy sequence in N/M has a convergent subsequence.
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Clearly, it is possible to find a subsequence {xn+M} of the given cauchy sequence

such that

‖(x1 + M) − (x2 + M)‖ < 1
2

‖(x2 + M) − (x3 + M)‖ < 1
4

...

‖(xn + M) − (xn+1 + M)‖ < 1
2n .

To prove the sequence {xn + M} is convergent in N/M .

Choose any vector y1 in x1 + M and choose any vector y2 in x2 + M such that

‖y1 − y2‖ < 1
2
.

Again choose a vertor y3 in x3 + M such that ‖y2 − y3‖ < 1
4
.

Continuing in this way, we obtain a sequence (yn) in N such that ‖yn − yn+1‖ <

1
2n .

If m < n,

‖ym − yn‖ = ‖(ym − ym+1) + (ym+1 − ym+2) + . . . + (yn−1 − yn)‖

≤ ‖ym − ym+1‖ + ‖ym+1 − ym+2‖ + . . . + ‖yn−1 − yn‖

< 1
2m + 1

2m+1 + . . . + 1
2n−1

< 1
2m−1

.

Therefore (yn) is a cauchy sequence in N .

Since N is complete, there exists a vector y in N such that yn → y.

Now, ‖(xn + M) − (y + M)‖ = ‖(xn − y) + M‖

= inf{‖−y + yn‖ ; yn ∈ xn + M}

≤ ‖yn − y‖.

Since (yn) → y, it follows that xn + M converges to y + M .

Therefore N/M is complete.

Hence N/M is Banach space. 2

81



Example 0.14.6. The space R and C- the real numbers and the complex numbers

are normed linear spaces. The norm of a number x defind by ‖x‖ = |x|. Also R

and C are Banach spaces.

Example 0.14.7. Rn and Cn of all n-tuples x = (x1, x2, . . . , xn) of real and

complex numbers can be made into normed linear space under the norm is ‖x‖ =
[
∑n

i=1 |xi|
2]

1

2 . Also Rn and Cn are Banach spaces.

Example 0.14.8. let p be a real number such that 1 ≤ p < ∞. We denote by

lnp , the space of all n-tuples x = (x1, x2, . . . , xn), xi are scalars. Show that lnp is a

normed linear space under rhe norm defined by ‖x‖p = [
∑n

i=1 |xi|
p]

1

p .

Proof. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) and α be any scalar.

(1) Clearly, ‖x‖p ≥ 0 (since each |xi| ≥ 0)

‖x‖p = 0 ⇔ [
∑n

i=1 |xi|
p]

1

p = 0

⇔ [
∑n

i=1 |xi|
p] = 0

⇔ |xi|
p = 0 for each i

⇔ |xi| = 0 for each i

⇔ each xi = 0

⇔ x = (x1, x2, . . . , xn) = 0.

(2) ‖αx‖p = [
∑n

i=1 |αxi|
p]

1

p

= [
∑n

i=1 |α|
p |xi|

p]
1

p

= |α| [
∑n

i=1 |xi|
p]

1

p

= |α| ‖xp‖.

If p = 1

‖x + y‖1 =
∑n

i=1 |xi + yi|

≤
∑n

i=1 [|xi| + |yi|]

=
∑n

i=1 |xi| +
∑n

i=1 |yi|
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= ‖x‖1 + ‖y‖1

Therefore ‖x + y‖1 ≤ ‖x‖1 + ‖y‖1.

Thus the inequality holds when p = 1.

Consider 1 < p < ∞.

Let p > 1 and 1
p

+ 1
q

= 1 and q > 1.

Now, ‖x + y‖p = [
∑n

i=1 |xi + yi|
p]

1

p

‖x + y‖p

p =
∑n

i=1 |xi + yi|
p

=
∑n

i=1 |xi + yi| |xi + yi|
p−1

≤
∑n

i=1 (|xi| + |yi|) |xi + yi|
p−1

=
∑n

i=1 |xi| |xi + yi|
p−1 +

∑n

i=1 |yi| |xi + yi|
p−1

≤ [
∑n

i=1 |xi|
p]

1

p

[

∑n

i=1 |xi + yi|
q(p−1)

]
1

q

+[
∑n

i=1 |yi|
p]

1

p

[

∑n

i=1 |xi + yi|
q(p−1)

]
1

q

= ‖x‖p

(

[
∑n

i=1 |xi + yi|
p]

1

q

)

+ ‖y‖p

(

[
∑n

i=1 |xi + yi|
p]

1

q

)

= ‖x‖p ‖x + y‖
p

q
p + ‖y‖p ‖x + y‖

p

q
p

= ‖x + y‖
p

q
p

(

‖x‖p + ‖y‖p

)

⇒ ‖x + y‖
(p− p

q
)

p ≤ ‖x‖p + ‖y‖p

⇒ ‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Thus when 1 ≤ p < ∞, ‖x + y‖p ≤ ‖x‖p + ‖y‖p.

Therefore lnp is a normed linear space. 2

Example 0.14.9. The space lp, consider a real number p with the property that

1 ≤ p < ∞ and we denote by lp, the space of all sequences x = {x1, x2, . . . xn, . . .}

of scalars such that
∑∞

n=1 |xp|
p < ∞. Show that lp is a normed linear space under

the norm ‖x‖p = [
∑∞

n=1 |xn|
p]

1

p .

Proof. Let p = 1

(1) ‖x‖1 =
∑∞

i=1 |xi|
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Cleary, ‖x‖1 ≥ 0, each |xi|.

‖x1‖ = 0 ⇔
∑∞

i=1 |xi| = 0

⇔ each |xi| = 0

⇔ each xi = 0

⇔ x = {x1, x2, . . . xn, . . .} = 0.

(2) ‖αx‖1 =
∑∞

i=1 |αxi|

= |α|
∑∞

i=1 |xi|

= |α| ‖x‖1

(3) ‖x + y‖1 =
∑∞

i=1 |xi + yi|

=
∑∞

i=1 (|xi| + |yi|)

= limn→∞

∑n

i=1 (|xi| + |yi|)

= limn→∞

∑n

i=1 |xi| + limn→∞

∑n

i=1 |yi|

=
∑∞

i=1 |xi| +
∑∞

i=1 |yi|

= ‖x‖1 + ‖y‖1

Let 1 < p < ∞

(1) ‖x‖p = [
∑∞

i=1 |xi|
p]

1

p ≥ 0 (since each |x|i ≥ 0)

‖x‖p = 0 ⇔ [
∑∞

i=1 |xi|
p]

1

p = 0

⇔
∑∞

i=1 |xi|
p = 0

⇔ |xi|
p = 0

⇔ |xi| = 0 for each i

⇔ each xi = 0

⇔ x = 0

That is ‖x‖p = 0 ⇔ x = 0

(2) ‖αx‖p = [
∑∞

i=1 |αxi|
p]

1

p

84



= [
∑∞

i=1 |α|
p |xi|

p]
1

p

= |α| [
∑∞

i=1 |xi|
p]

1

p

= |α| ‖x‖p

(3) ‖x + y‖p = [
∑∞

i=1 |xi + yi|
p]

1

p

= limn→∞ [
∑n

i=1 |xi + yi|
p]

1

p

≤ limn→∞

[

(
∑n

i=1 |xi|
p)

1

p + (
∑n

i=1 |yi|
p)

1

p

]

= limn→∞ (
∑n

i=1 |xi|
p)

1

p + limn→∞ (
∑n

i=1 |yi|
p)

1

p

= (
∑∞

i=1 |xi|
p)

1

p + (
∑∞

i=1 |yi|
p)

1

p

= ‖x‖p + ‖y‖p

That is ‖x + y‖p ≤ ‖x‖p + ‖y‖p

2

Example 0.14.10. Consider the linear space of all n-tuples x = (x1, x2, . . . , xn)

of scalars. Define the norm by ‖x‖ = max{|x1| , |x2| , . . . , |xn|}. This space is

commonly denoted by ln∞ and the symbol ‖x‖∞is used for the norm. Show that ln∞

is a normed linear space.

Proof. (1) ‖x‖∞ = max{|x1| , |x2| , . . . , |xn|}

Clearly, ‖x‖∞ ≥ 0

‖x‖∞ = 0 ⇔ max{|x1| , |x2| , . . . , |xn|} = 0

⇔ |x1| = 0, |x2| = 0, . . . , |xn| = 0

⇔ x1 = 0, x2 = 0, . . . , xn = 0

⇔ (x1, x2, . . . , xn) = 0

⇔ x = 0
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(2) ‖αx‖∞ = max{|αx1| , |αx2| , . . . , |αxn|}

= max{|α| |x1| , |α| |x2| , . . . , |α| |xn|}

= |α| max{|x1| , |x2| , . . . , |xn|}

= |α| ‖x‖∞

(3) ‖x + y‖∞ = max{|x1 + y1| , |x2 + y2| , . . . , |xn + yn|}

≤ max{|x1| + |y1| , |x2| + |y2| , . . . , |xn| + |yn|}

≤ max{|x1| , |x2| , . . . , |xn|} + max{|y1| , |y2| , . . . , |yn|}

= ‖x‖∞ + ‖y‖∞ 2

Example 0.14.11. Consider the linear space of all bounded sequences x = (x1, x2, . . . , xn, . . .)

of all scalars. We define the norm ‖x‖ = sup |x|, and we denote the normed lin-

ear space is l∞.

Proof. (1) ‖x‖ = sup |xi|

Clearly, ‖x‖ > 0

‖x‖ = 0 ⇔ sup |xi| = 0

⇔ |xi| = 0, i = 1, 2, . . .

⇔ xi = 0, i = 1, 2, . . .

⇔ x = 0

(2) ‖αx‖ = sup |αxi|

= sup(|α| |xi|)

= |α| sup |xi|

= |α| ‖x‖

(3) ‖x + y‖ = sup(|xi + yi|)

= sup(|xi| + |yi|)
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≤ sup |xi| + sup |yi|

= ‖x‖ + ‖y‖

Hence l∞ is a normed linear space. 2

0.15 Continuous linear transformations

Theorem 0.15.1. Let N and N
′

be normed linear space and T a linear trans-

formation of N into N
′

then the following conditions are equivalent

(i) T is continuous;

(ii) T is continuous at the origin, in the sense that xn → 0 ⇒ T (xn) → 0;

(iii) there exists a real number K ≥ 0 with the property that ‖T (x)‖ ≤ K ‖x‖

for every x ∈ N ;

(iv) if S = {x : ‖x‖ ≤ 1} is the closed unit sphere in N , then its image T (S)

is a bounded set in N
′

.

Proof. (i) ⇒ (ii)

It is obvious that (i) ⇒ (ii)

Suppose that T is continuous at the origin.

Let xn → x

⇒ xn − x → 0

⇒ T (xn − x) → T (0) = 0

⇒ T (xn − x) → 0

⇒ T (xn) − T (x) → 0

⇒ T (xn) → T (x).

Therefore T is continuous.

87



(ii) ⇒ (i)

Hence (i) ⇔ (ii)

To prove (iii) ⇒ (ii)

Suppose there exists a real number K ≥ 0 such that ‖T (x)‖ ≤ |K| ‖x‖ ∀x ∈ N .

Let xn → 0

Now ‖T (xn)‖ ≤ |K| ‖xn‖

Since xn → 0, T (xn) → 0

⇒ T is continuous at the origin

Hence (iii) ⇒ (ii)

To prove (ii) ⇒ (iii)

Let us assume that there is no K such that ‖T (x)‖ ≤ K ‖x‖ ∀x ∈ N .

Then for any positive integer n, we can find a vector xn such that ‖T (xn)‖ >

n ‖xn‖ ∀x ∈ N

That is
∥

∥

∥
T ( xn

n‖xn‖
)
∥

∥

∥
> 1

Let yn = xn

n‖xn‖

Clearly, yn → 0 (since as n → ∞, 1
n
→ 0)

But ‖T (yn)‖ 9 0

Therefore T is not continuous at the origin.

Hence (ii) ⇔ (iii)

To prove (iii) ⇔ (iv)

Since S = {x : ‖x‖ ≤ 1},

T (S) = {T (x) : ‖T (x)‖ ≤ 1}

Now ‖x‖ ≤ 1 ⇒ ‖T (x)‖ ≤ K

Therefore T (S) contained in the closed sphere center on the origin of radius K.

Therefore T (S) is a bounded set in N .

Thus (iii) ⇒ (iv)
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Assume that T (S) is bounded set in N , where S = {x : ‖x‖ ≤ 1}.

Therefore T (S) contained in the closed sphere center on the origin of radius K.

If x = 0, T (x) = T (0) = 0

Clearly ‖T (x)‖ ≤ K ‖x‖

If x 6= 0, x
‖x‖

∈ S

T ( x
‖x‖

) ∈ T (S)

Therefore
∥

∥

∥
T ( x

‖x‖
)
∥

∥

∥
≤ K

⇒ ‖T (x)‖ ≤ K ‖x‖

Therefore (iv) ⇒ (iii)

Hence (iii) ⇔ (iv). 2

Result 0.15.2. ‖T (x)‖ ≤ ‖T‖ ‖x‖

Proof. If x = 0, then T (x) = 0 and hence ‖T (x)‖ ≤ ‖T‖ ‖x‖.

If x 6= 0 ∈ N , then x
‖x‖

∈ N and
∥

∥

∥

x
‖x‖

∥

∥

∥
= 1

Now, ‖T (x)‖ =
∥

∥

∥
T

(

x
‖x‖

)

‖x‖
∥

∥

∥

= |‖x‖|
∥

∥

∥
T

(

x
‖x‖

)∥

∥

∥

= ‖x‖
∥

∥

∥
T

(

x
‖x‖

)∥

∥

∥

≤ ‖x‖ ‖T‖.

That is ‖T (x)‖ ≤ ‖T‖ ‖x‖

Hence for all x ∈ N , ‖T (x)‖ ≤ ‖T‖ ‖x‖. 2

Notation:

B(N,N
′

) is the set of all bounded (or continuous) linear transformations of

N and N
′

.
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Theorem 0.15.3. If N and N
′

are normed linear spaces, then the set B(N,N
′

)

of all continuous linear transformations of N and N
′

is itself a normed linear

space with respect to the pointwise linear operations and the norm defind by ‖T‖ =

sup{‖T (x)‖ : ‖x‖ ≤ 1}. Further if N
′

is a Banach space, then B(N,N
′

) is also

a Banach space.

Proof. We know that L, the set of all linear maps from N into N
′

is a linear

space.

Now we will prove B(N,N
′

) is a subspace of L.

For, let T1, T2 ∈ B(N,N
′

)

Then ‖(α1T1 + α2T2) (x)‖ = ‖(α1T1)(x) + (α2T2)(x)‖

= ‖α1T1(x) + α2T2(x)‖

≤ ‖α1T1(x)‖ + ‖α2T2(x)‖

= |α1| ‖T1(x)‖ + |α2| ‖T2(x)‖

Since T1, T2 ∈ B(N,N
′

), there exist K1, K2 ≥ 0 such that ‖T1(x)‖ ≤ K1 ‖x‖

and ‖T2(x)‖ ≤ K2 ‖x‖ ∀x ∈ N

Therefore ‖(α1T1 + α2T2) (x)‖ ≤ |α1|K1 ‖x‖ + |α2|K2 ‖x‖

= (|α1|K1 + |α2|K2) ‖x‖

= K ‖x‖

That is ‖(α1T1 + α2T2) (x)‖ ≤ K ‖x‖

Thus α1T1 + α2T2 ∈ B(N,N
′

).

That is B(N,N
′

) is a subspace of L and hence B(N,N
′

) is a linear space.

Now we prove B(N,N
′

) is a normed linear space with the norm given by

‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}.
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Let T ∈ B(N,N
′

)

Since ‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1} and ‖T (x)‖ ≥ 0, ‖T‖ ≥ 0

Now ‖T‖ = 0 ⇔ sup{‖T (x)‖ : ‖x‖ ≤ 1} = 0

⇔ ‖T (x)‖ = 0; ‖x‖ ≤ 1

⇔ T (x) = 0, x ∈ N, ‖x‖ ≤ 1

⇔ T = 0

Let T1, T2 ∈ B(N,N
′

)

‖T1 + T2‖ ≤ ‖T1‖ + ‖T2‖

If α is a scalar and T ∈ B(N,N
′

)

‖αT‖ = |α| ‖T‖

Therefore B(N,N
′

) is a normed linear space.

Let N
′

be a Banach space and {Tn} be a cauchy sequence in B(N,N
′

).

If x is an arbitrary vector in N , then ‖Tm(x) − Tn(x)‖ = ‖(Tm − Tn)(x)‖ ≤

‖Tm − Tn‖ ‖x‖

Since {Tn} is a cauchy sequence, the RHS → 0 as n,m → ∞. Hence LHS → 0

as n,m → ∞.

Hence {Tn(x)} is a cauchy sequence in N
′

.

Since N
′

is a Banach space, {Tn(x)} converges in N
′

.

Now define T (x) = limn→∞ Tn(x).

Claim : T ∈ B(N,N
′

).

For, let x, y ∈ N and α, β are scalars.

Now, T (αx + βy) = limn→∞ Tn(αx + βy)

= limn→∞ αTn(x) + limn→∞ βTn(y)
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= αT (x) + βT (y).

Therefore T is linear.

‖T (x)‖ ‖limn→∞ Tn(x)‖ = limn→∞ ‖Tn(x)‖

≤ limn→∞ ‖Tn‖ ‖x‖

≤ sup{‖Tn‖ ‖x‖}

= (sup ‖Tn‖) ‖x‖—————————-(1)

Now, |‖Tn‖ − ‖Tm‖| ≤ ‖Tn − Tm‖ which converges to 0 as n,m → ∞.

Therefore {‖Tn‖} is a cauchy sequence of real numbers and hence convergent and

bounded.

Hence there exists K ≥ 0 such that sup ‖Tn‖ ≤ K——————(2)

From (1) and (2) we get, ‖T (x)‖ ≤ K ‖x‖ ∀ x ∈ N .

Thus T ∈ B(N,N
′

).

Claim: Tn → T .

Let ǫ > 0 be given and let n0 be a positive integer such that n,m ≥ n0 ⇒

‖Tm − Tn‖ < ǫ.

If ‖x‖ ≤ 1 and m,n ≥ n0, ‖Tm(x) − Tn‖ = ‖(Tm − Tn)(x)‖

≤ ‖Tm − Tn‖ ‖x‖

≤ ‖Tm − Tn‖

< ǫ ————————(3)

Fix m and n → ∞.

‖Tm(x) − Tn(x)‖ → ‖Tm(x) − T (x)‖.

Now limn→∞ ‖Tm(x) − Tn(x)‖ ≤ ǫ.

That is ‖Tm(x) − T (x)‖ ≤ ǫ, ‖x‖ ≤ 1 and for all m ≥ n0.

Taking supremum on both sides, sup ‖Tm(x) − T (x)‖ ≤ ǫ ∀ m ≥ n0

⇒ ‖Tm − T‖ ≤ ǫ ∀ m ≥ n0
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⇒ Tm → T

⇒ Tm → T ∈ B(N,N
′

).

B(N,N
′

) is a Banach space. 2

Definition 0.15.4. Let N be a normed linear space. A continuous linear trans-

formation of N into itself is an operator on N . We denote the normed linear

space of all operators on N by B(N) instead of B(N,N).

Definition 0.15.5. Let N and N
′

be normed linear space. The linear transfor-

mation T : N → N
′

is said to be an isometric isomorphism if T is one-one and

‖T (x)‖ = ‖x‖ ∀ x ∈ N . We say that N is isometrically isomorphic to N
′

if there

exists an isometric isomorphism of N onto N
′

.

0.16 The Hahn - Banach Theorem

Definition 0.16.1. Let N be a normed linear space. Now form the set of all

continuous linear transformation of N into R or C accarding as N is real or

complex. This set B(N,R) or B(N,C) it is denoted by N∗ and is called conjugate

space on N .

The element of N∗ are called continuous linear functionals or simply function-

als.

If the norm of the functional f ∈ N∗ is defined by ‖f‖ = sup{|f(x)| : ‖x‖ ≤

1} = inf{K : K ≥ 0 and |f(x)| ≤ K ‖x‖ ∀ x} then N∗ is a Banach space.

Lemma 0.16.2. Let M be a linear subspace of a normed linear space N , and let

f be a functional defined on M . If x0 is a vector not in M and if M0 = M + [x0]
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is the linear subspace spanned by M and x0, then f can be extented to a functional

f0 defined on M0 such that ‖f0‖ = ‖f‖

Proof. Case :1

Let N be a real normed linear space without loss of generality we may assume

‖f‖ = 1.

Since x0 /∈ M , each vector y ∈ M0 is uniquely expressed in the form y = x +

αx0, x ∈ M .

Define f0(y) = f0(x + αx0)

= f0(x) + αf0(x0)

= f(x) + αr0 where r0 = f0(x0) is a real number.

Clearly, f0 is linear.

For, Let y1, y2 ∈ M0 and β, γ ∈ R.

Then y1 = x1 + α1x0 and y2 = x2 + α2x0, x1, x2 ∈ M .

Now, βy1 + γy2 = β(x1 + α1x0) + γ(x2 + α2x0)

= (βx1 + γx2) + (βα1 + γα2) x0.

Now, f0(βy1 + γY2) = f0 [(βx1 + γx2) + (βα1 + γα2)x0]

= f0(βx1 + γx2) + (βα1 + γα2)f0(x)

= f(βx1 + γx2) + (βα1 + γα2)r0

= βf(x1) + γf(x2) + βα1r0 + γα2r0

= βf(x1) + βα1r0 + γf(x2) + γα2r0

= β(f(x1) + α1r0) + γ(f(x2) + α2r0)

= β [f0(x1) + α1f0(x0)] + γ [f0(x2) + α2f0(x0)]

= β [f0(x1 + α1x0)] + γ [f0(x2 + α2x0)]

= βf0(y1) + γf0(y2).

Therefore, f0 is linear and hence f0 is a linear extension of f.
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Claim: ‖f0‖ = ‖f‖.

‖f0‖ = sup{|f0(x)| : x ∈ M0, ‖x‖ ≤ 1}

≥ {|f0(x)| : x ∈ M0, ‖x‖ ≤ 1}

= sup{|f(x)| : x ∈ M, ‖x‖ ≤ 1}

= ‖f‖.

Therefore, ‖f0‖ ≥ ‖f‖. ——————(1)

For any two vectors x1, x2 in M.

We have f(x2) − f(x1) = f(x2 − x1)

≤ |f(x2 − x1)|

≤ ‖f‖ ‖x2 − x1‖

= ‖x2 − x1‖

= ‖(x2 + x0) − (x1 + x0))‖

= ‖(x2 + x0) + (−(x1 + x0))‖

≤ ‖(x2 + x0)‖ + ‖(x1 + x0)‖.

That is, f(x2) − f(x1) ≤ ‖(x2 + x0)‖ + ‖(x1 + x0)‖.

⇒ −f(x1) − ‖x1 + x0‖ ≤ −f(x2) + ‖x2 + x0‖.

Since, this inequality holds for arbitrary x1, x2, . . . , xn ∈ M .

Now, supx∈M [−f(x) − ‖x + x0‖] ≤ infx∈M [−f(x) + ‖x + x0‖].

Choose r0 to be any real number such that

supx∈M [−f(x) − ‖x + x0‖] ≤ r0 ≤ infx∈M [−f(x) + ‖x + x0‖] ∀ x ∈ M ——(2).

With the choice of r0, we will prove ‖f0‖ ≤ ‖f‖.

Let y = x + αx0 be an arbitrary vector in M0.

Replacing x by x
α

in (2) we get,

−f( x
α
) −

∥

∥

x
α

+ x0

∥

∥ ≤ r0 ≤ −f( x
α
) +

∥

∥

x
α

+ x0

∥

∥ ————— (3).

If α > 0, then r0 ≤ −f( x
α
) +

∥

∥

x
α

+ x0

∥

∥
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⇒ r0 ≤ − 1
α
f(x) +

∣

∣

1
α

∣

∣ ‖x + αx0‖

⇒ r0 ≤ − 1
α
f(x) + 1

α
‖x + αx0‖

⇒ αr0 ≤ −f(x) + ‖x + αx0‖

⇒ f(x) + αr0 ≤ ‖x + αx0‖

⇒ f0(x + αx0) ≤ ‖x + αx0‖

⇒ f0(y) ≤ ‖y‖.

If α < 0, then r0 ≥ −f( x
α
) −

∥

∥

x
α

+ x0

∥

∥

⇒ r0 ≥ − 1
α
f(x) −

∣

∣

1
α

∣

∣ ‖x + αx0‖

⇒ r0 ≥ − 1
α
f(x) + (− 1

α
) ‖x + αx0‖

⇒ αr0 ≤ −f(x) + ‖x + αx0‖

⇒ f(x) + αr0 ≤ ‖x + αx0‖

⇒ f0(x + αx0) ≤ ‖x + αx0‖

⇒ f0(y) ≤ ‖y‖.

When α 6= 0, f0(y) ≤ ‖y‖ ∀ y ∈ M .

Replace y by -y we get,

f0(−y) ≤ ‖y‖

⇒ −f0(y) ≤ ‖y‖

⇒ |f0(y)| ≤ ‖y‖ ————-(*).

Now, ‖f0‖ = sup{|f0(y)| : y ∈ M0, ‖y‖ ≤ 1}

≤ sup{‖y‖ : y ∈ M0, ‖y‖ ≤ 1}

= 1

= ‖f‖ ————-(4).

From (2) and (4) we get, ‖f0‖ = ‖f‖.

When α = 0, f = f0 and hence ‖f‖ = ‖f0‖.

Case ii
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Let N be a complex normed linear space.

Hence f is complex valued functional defined on M such that ‖f‖ = 1.

Note that the complex linear space can be regarded as a real linear space by

simply restricting the scalars to a real number.

Let f(x) = g(x) + ih(x) where g and h are real for all x ∈ M .

Clearly, g and h real valued functionals defind on the real space.

Further, |g(x)| ≤ |f(x)|

≤ ‖f‖ ‖x‖.

Since f is bounded, g is bounded.

Similarly, h is also bounded.

Thus g and h are real valued functionals.

Now, f(ix) = if(x)

⇒ g(ix) + ih(ix) = i [g(x) + ih(x)]

⇒ g(ix) + ih(ix) = ig(x) − h(x)

⇒ h(x) = −g(ix).

Therefore, we can write f(x) = g(x) − ig(ix).

By case (i), we can extend g to a real valud functional g0 on the real space M0

such that ‖g0‖ = ‖g‖.

Now, we define f0(x) = g0(x) − ig0(ix) ∀x ∈ M0.

Clearly, f0 is a linear extension of f from M to M0.

Thus f0 is linear as a complex valued function defined on the complex space M0.

Since f0 is linear extension of f , we have ‖f0‖ ≤ ‖f‖ ————-(5)

If f0(x) is real, then f0(x) = g0(x).

Therefore, ‖f0‖ = ‖g0‖

= ‖g‖

= sup{|g(x)| : ‖x‖ ≤ 1}
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≤ sup{|f(x)| : ‖x‖ ≤ 1}.

That is ‖f0‖ ≤ ‖f‖ ————–(6)

If f0(x) is complex, then we can write f0(x) = reiθ where r > 0 and x ∈ M0 is

arbitrary.

Now, |f0(x)| = r

= e−iθreiθ

= e−iθf0(x)

= f0(e
−iθx)

= g0(e
−iθx)

≤
∣

∣g0(e
−iθx)

∣

∣

= ‖g0‖
∥

∥g0(e
−iθx)

∥

∥

= ‖g0‖
∣

∣e−iθ
∣

∣ ‖x‖

= ‖g0‖ ‖x‖.

Therefore, |f0(x)| ≤ ‖g0‖ ‖x‖

= ‖g‖ ‖x‖

≤ ‖f‖ ‖x‖.

Taking supremum, we get sup{|f0(x)| : x ∈ M0, ‖x‖ ≤ 1} ≤ ‖f‖.

That is ‖f0‖ ≤ ‖f‖ ————–(7).

From (5), (6) and (7) we get, ‖f0‖ = ‖f‖. 2

Theorem 0.16.3. (The Hahn Banach Theorem)

Let M be a linear subspace of a normed linear space N and let f be a functional

defined on M . Then f can be extended to a functional f0 defined on the whole

space N such that ‖f0‖ = ‖f‖.

Proof. By Lemma, If M0 = N then there is nothing to prove.

Otherwise, let P denotes the set of all ordered pairs (gλ,Mλ) where gλ is a exten-
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sion of f to the subspace Mλ ⊃ M and ‖gλ‖ = ‖f‖.

Now, define the relation ≤ in P as follows:

(gλ,Mλ) ≤ (gµ,Mµ) where Mλ ⊂ Mµ and gλ ⊂ gµ on Mλ.

Clearly, the relation ≤ is partially ordered on P.

That is (P,≤) is a partially ordered set.

Clearly, P is nonempty, since (f,M) ∈ P .

Let Q = {(gi,Mi)} be a chain in P.

Define φ(x) = gi(x) ∀ x ∈ M .

Now,
⋃

Mi is a subspace of N and φ is well defined.

For, let x, y ∈
⋃

Mi and α and β be any scalars.

⇒ x ∈ Mi and y ∈ Mj for some i and j.

Then either Mi ⊂ Mj or Mj ⊂ Mi.

Without loss of generality, we assume Mi ⊂ Mj.

Then x, y ∈ Mj. Since Mj is a subspace of N, αx + βy ∈ Mj ⊂
⋃

Mi.

⇒ αx + βy ∈
⋃

Mi.

Therefore,
⋃

Mi is a subspace of N.

Let x ∈
⋃

Mi be the element such that x ∈ Mi and x ∈ Mj.

Since x ∈ Mi, φ(x) = gi(x) and x ∈ Mj, φ(x) = gj(x).

Since Q is a chain, either gi extends gj or gi extends gj.

Hence gi(x) = gj(x).

Therefore, φ is well defined.

Now, (Q,
⋃

Mi) is an upper bound for P.

By Zorn’s Lemma, ∃ (f0, H) in P.

Claim: N = H.

Suppose H 6= N .
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Then ∃ an eiement x0 ∈ N − H and by the lemma, f0 can be extended to a

functional g on H0 = H + [x0] which contains H properly.

But this contradicts the maximality of (f0, H) and hence we must have H = N

and f0 is the required extension. 2

Theorem 0.16.4. If N is a normed linear space and x0 is a nonzero vector in N

then ∃ a functional f0 in N∗ such that f0(x0) = ‖x0‖ and ‖f0‖ = 1.

Proof. Let M = {αx0} be the linear subspace of N spanned by x0.

Define f on M by f(αx0) = α ‖x0‖.

We show that f is a functional on M such that ‖f‖ = 1.

f is linear:

Let y1, y2 ∈ M and α, β are scalars.

Then y1 = γx0 and y2 = δx0.

αy1 + βy2 = αγx0 + βδx0

= (αγ + βδ)x0.

Now, f(αy1 + βy2) = f [(αγ + βδ)x0]

= αγ + βδ ‖x0‖

= αγ ‖x0‖ + βδ ‖x0‖

= αf(γx0) + βf(δx0)

= αf(y1) + βf(y2).

Therefore, f is linear.

f is bounded:

Let y ∈ M . Therefore, y = αx0 for some scalars.

Now, ‖y‖ = ‖αx0‖

= |α| ‖x0‖
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|f(y)| = |f(αx0)|

= |α ‖x0‖|

= |α| ‖x0‖

= ‖y‖.

Hence f is bounded.

It follows that f is functional on M.

Further, ‖f‖ = sup{|f(y)| : y ∈ M, ‖y‖ ≤ 1}

= sup{‖y‖ : y ∈ M, ‖y‖ ≤ 1}

= 1.

Also f(x0) = f(1.x0)

= ‖x0‖.

Hence by Hahn Banach Theorem, f can be extended to a functional f0 in N∗ such

that ‖f0‖ = ‖f‖.

Therefore, f0(x0) = f(x0) and ‖f0‖ = 1.

That is f0(x0) = ‖x0‖ and ‖f0‖ = 1. 2

Theorem 0.16.5. If M is a closed linear subspace of a normed linear space N

and x0 is a vector not in M then ∃ a functional f0 in N∗ such that f0(M) = 0

and f0(x0) 6= 0.

Proof. Consider the natural map T : N → N
M

. Defined by T (x) = x + M .

Then T is a continuous linear transformation.

For, x, y ∈ N and α, β be scalars.

Then T (αx + βy) = (αx + βy) + M

= (αx + M) + (βy + M)

= α(x + M) + β(y + M)

= αT (x) + βT (y).
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Therefore, T is linear.

Now, ‖T (x)‖ = ‖x + M‖

= inf{‖x + m : m ∈ M‖}

≤ ‖x + m‖ ∀ x ∈ M .

In particular for m = 0, we have ‖T (x)‖ ≤ ‖x‖ ∀ x ∈ N .

Therefore, T is continuous.

Hence T is a continuous linear transformation.

If m ∈ M , then T (m) = m + M

= M ∀m ∈ M

= 0.

Therefore, T (M) = 0.

Since x0 /∈ M , we have T (x0) = x0 + M 6= 0 ————-(*).

Since by the theorem, ∃ a functional f ∈ ( N
M

)∗ such that f(x0+M) = ‖x0 + M‖ 6=

0.

That is f(x0 + M) 6= 0.

Now we define f0(x) = f(T (x)) when f0 is a linear functional with the required

properties.

For, f0(αx + βy) = f(T (αx + βy)) where x, y ∈ N and α, β are scalars,

= f [αT (x) + βT (y)]

= αf(T (x)) + βf(T (x))

= αf0(x) + βf0(y).

Therefore, f0 is linear.

Now, |f0(x)| = |f(T (x))|

≤ ‖f‖ ‖T (x)‖

≤ ‖f‖ ‖x‖.
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Therefore, f0 is continuous.

Therefore, f0 ∈ N∗.

Further, if m ∈ M , f0(m) = f(T (x0))

= f(x0 + m)

6= 0.

Thus f0(M) = 0 and f0(x0) 6= 0. 2

0.17 The Natural imbedding on N in N ∗∗

Let N be a normed linear space. We know that the conjugate space N∗ of N is

also a normed linear space.

It is possible to form a conjugate space (N∗)∗ and we call it the second conju-

gate space of N.

Theorem 0.17.1. Let N be a arbitrary normed linear space. Then each vector x

in N induces a functional Fx on N∗ defined by Fx(f) = f(x) ∀f ∈ N∗ such that

‖Fx‖ = ‖x‖. Further, the mapping J : N → N∗∗ defined by J(x) = Fx ∀ x ∈ N

define an isometric isomorphism of N into N∗∗.

Proof. First we show that Fx is a functional on N∗.

Fx is linear:

Let f, g ∈ N∗ and α, β be any scalars.

Now, Fx(αf + βg)(x) = (αf + βg)(x)

= αf(x) + βg(x)

= αFx(f) + βFx(g).

Therefore, Fx is linear.
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Fx is bounded:

For any f ∈ N∗, we have

|Fx(f)| = |f(x)|

≤ ‖f‖ ‖x‖.

That is |Fx(f)| ≤ ‖f‖ ‖x‖.

Hence Fx is a functional on N∗.

Claim : ‖Fx‖ = ‖x‖.

‖Fx‖ = sup{|Fx(f)| : ‖f‖ ≤ 1}

= sup{|f(x)| : ‖f‖ ≤ 1}

≤ sup{‖f‖ ‖x‖ : ‖f‖ ≤ 1}

≤ ‖x‖ ————–(1)

To prove the reverse inequality, first we consider x = 0.

From (1) ⇒ ‖Fx‖ = 0

Also ‖x‖ = 0.

Therefore, ‖Fx‖ = ‖x‖.

Let x be any non zero vector. Then by theorem, there exists a functional f0 ∈ N∗

such that f0(x) = ‖x‖ and ‖f0‖ = 1.

But ‖Fx‖ = sup{|Fx(f)| : ‖f‖ = 1}

= sup{|f(x)| : ‖f‖ = 1}.

Also ‖x‖ = |f0(x)| ≤ sup{|f(x)| : ‖f‖ = 1}

= ‖Fx‖

⇒ ‖x‖ ≤ ‖Fx‖ —————-(2).

Now, we prove that J is a isometric.

That is to prove, J is a linear transformation as well as an isometric isomorphism.

J is linear:
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Let x, y ∈ N and α, β be any scalars.

Now, Fx+y(f) = f(x + y)

= f(x) + f(y)

= Fx(f) + Fy(f)

= (Fx + Fy)(f)

and Fαx(f) = f(αx)

= αf(x)

= αFx(f) ∀ f ∈ N∗.

Now, J(x + y) = Fx+y

= Fx + Fy

= J(x) + J(y)

and J(αx) = Fαx

= αFx

= αJ(x).

Therefore, J is linear.

J is an isometric:

Since ‖Fx‖ = ‖x‖, we have ‖J(x)‖ = ‖x‖.

For, x, y ∈ N , ‖J(x) − J(y)‖ = ‖Fx − Fy‖

= ‖Fx−y‖

= ‖x − y‖.

Therefore, J is isomorphic.

Also Jx − Jy = 0 ⇒ x − y = 0

⇒ Jx = Jy ⇒ x = y

Therefore, J is one to one. 2
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