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Unit |

Measure Theory

We need the following definitions and results
Definition :

A Collection 4of subsets of X is called an algebra of sets or a
boolien algebra if,

I. AUBE 6H#whenever A BE &
.  AC€isin & whenever A€ &

By Demorgan’s Law ANB is in & whenever A,BE 4.

Result 1:

Let 4be an algebra of subsets and {A;} a sequence of sets in 4. Then
there is a sequence {B;} of sets in &, such that BinB; = @ for i=j and U;Z; B;
=Uiz1 4;.

Definition:

An algebra & of sets is called a sigma algebra or a boral field, if
every union of a countable collection of sets in 4 is again in 4.

By Demorgan’s Law, the intersection of countable of sets in & IS
againin 4.

Result 2:

Given any collection  of subsets of X, there is a smallest sigma
algebra that contains C, (i.e) there is a sigma algebra & containing C such that if
3 is any sigma algebra containing ¢ such that 4 < 3.

Definition:
The collection 13 of borel sets is the smallest sigma algebra which
contains all of the open sets.



1.1 Lebesgue Measure

Definition:
The length [(1) of the interval | is defined to be the difference of
end points of the interval, if | is bounded and if oo | is unbounded.

Definition:

A set function m that assigned to each sets E in some collection M
of sets of real numbers a non-negative extended real numbers mE, called
measure of E.

Properties:
i. mE is defined for each set E of real numbers. (i.e) M = P(R)
ii. Foraninterval l =@ ,ml = I(I)
ii. If {E.} is a sequence of disjoint sets (for which m is defined)

m(Un=1 En) = Xn=1m(Ey)
Iv. m is translation invariant.

(i.e) If E is a set for which m is defined and if E+ y = {x+ y ; X€ E}
obtained by replacing each point x € E by the point x+y.

Then m (E+ y)= m(E).

Definition:

We say that m is a count ably additive measure. If it is a non-
negative extended real valued function whose domain of definition is a o-
algebra M of sets we have m (UE,) = ). m E,, for each {E,} of disjoint sets in
M.

Properties:

Let m be a count ably additive measure defined for all sets in M.
Then we have the following properties.

1) m(E) >0, for all E € M



i) IFABeMand ACB = m(A) <m(B)

Proof:

1) It follows from the definition .

i) m(AuB) = m(A) + m(B-A)

= m(B) = m(A) + m(B-A)

=>m(A)< m(B) [since m(B-A) > 0]

This property is called monotonicity.

Iii) Let the collection {E,} be any sequence of sets in M.

Then m(Un=1 E,) < Ym=1 m(E,). This property is called countably
subadditivity.

For,

Let {E,} be a sequence of sets in M. By Result 1, there exists a {E,} of disjoint
sets in M such that U%_, E,,= U%_, E,,, Where E,= E,- (E;UE,U __ UE,.4),
E,CE,

m(U En) = m(UE,;)
= Yn=1mEy
< Yn=1mEy
Observation:
If there is a set A € 4 such that mA <oo. Then m@ =0
For,anyset A=AU®
m(A) = m(AuU @) = m(A) + m(9)
=>m(@)=0 [m(A) <]
Example:

©o ,foraninfinte set E

LetmE = { |E| ,for a finite set E



n is countable additive set function and translation invariant. It is defined for all
sets of real numbers. This measure is called counting measure.

Solution:
Let {E.} be a sequence of disjoint sets in R. One of the sets, say, E,is
infinite.
Thenn (VE,) =|UE,| = ©
=izl Eil
= Yn=11(En)
If all the sets in {E,}are finite and E,N E,,, = @ if n#m.
Thenn(U Ey,) = |V Ey | = X4 Eil
=Xn=11(En)
= n is countably additive.
Also, n(E+y) = |E + y|
= |E|
=n(E)

= n is translation invariant.

1.2 Outer Measure
Definition:

For each set A of real numbers. Consider a countable collection {I,} of
open intervals that cover A. (i.e) Collections for which A c Ul, and for each
such collections, consider the sum of the length of the interval in the collection.
Then the outer measure m* A to be the infimum of all such sums.
ie)m*A= " Y1)

AcCUl,
Then the immediately the following is observed.
) m*A>0

i) m*A =mA ,AeM
(i.e) m*=m/M



iii) Since m@ =0 we have m*@ =0
iv) Let A € B, then m*A < m*B
For, let
a= {{I.}/A cul,}

B={{I.}/B c Ul.}

>BCca
= Inf ¥, I(Iy) < inf X g (1)
= inf}, cul, [(In) < infXpc Ul ()

= m*A< m*B

v) m*({x})=0

For, {x} ¢ (x- 5, x+5) =1
m*{x} < I(I) = ¢
= m*{x} =0 [since ¢ is arbitrary]
THEOREM :1
The outer measure of an interval is its length.
Proof:
First we consider the case of closed finite interval, say [a,b].
Now [a,b] c (a-¢ , b+¢)
m*[a,b] < l(a+ ¢,b + ¢€) =b-at2¢e
Since ¢ is arbitrary, m*[a,b] < b-a
To prove: m=x[a,b] >b-a
Let [a,b] c U1,

By Heine Borel theorem, there exists a finite sub collection Iy,1,,...... A
intervals such that | ¢ UT* I and since the sum of the length of the finite
collection is no greater than the sum of the length of the original collection and
hence it is enough toprove that }:}!_, [ I, = b-a for finite collections {l,} that
cover [a, b].

Since a is contained in Ul,, there must be one of the I, that contains a.

Let this be the interval (ai,b,).



Then we have a;<a<byIfb; <b, thenb; € (a,b)

Since b, € (ag,b,), there exists an interval (a,,b,) in the collection {I,} such
that b1 € (az,bg) (le) a, < b1 < b2

Continue in this fashion , we obtain a sequence (a;,b,),(az,by),...... ,(a,by) from
the collection {l.} such that a; < b, <h;.

Since {l,} is a finite collection, our process must terminate with some finite
interval (ay, by).

(i.e) b € (ax, by) (or) ax <b <.
Yi=1 L () = Xk=1 1 (ai,hy)
= (al,b1)+ ...... +1 (ak,bk)

= by - (ak-bi1) - (Ak1-bo) -........ - (ax-by) -a;
>b-a;  [since a; < bi4]
As a;<a and b <by
b-a; > b-a
YPU(1,)>b-a
By taking inf we have inf »°1(1,)>b-a
m*[a,b] = b-a

If 1is any finite interval then given € > 0 there is a closed interval J c | such
[(H>1()-¢

Now, I (1) - €< 1 (3) = m*(@J) < m*(1) < m*(D) =1 () =1(l).
L -e<m*(1) <L (N)

If I is an infinite interval, then given any real number A, there is a closed
interval Jc | with [ (J) = A.

Hence, m*(D=m*(J)=1(J)=A

Since m*(1) = A, for each A, we have m*(1) = co = (I). Hence proved.



THEOREM:2
Let {A,} be a countable collection of sets of real numbers. Then

m*(U A,) < ), m*(A,) [This proposition is called count ably sub additivity
of m*].

Proof:
If one of the sets A, has infinite outer measure then inequality holds trivially.

If m"A, is finite then given & > 0 there is a countable collection {I,, ;}; of
open intervals such that A,c U; I,,; and X I(1, i) < m A, + 2" ¢ (by definition
of m*).

Now the collection {l, i}n i = U;{ln i}i is countable, being that union of the
countable number of countable collection and covers union of A,,.

mM*(U An) < Xp,i (1, 1)
=2n2il(lni)
<Y (MA, +2")
=Y m A, +¢
Since ¢ is arbitrary, m*(U A,) <Y m'A,.
COROLLORY:3
If A is countable, then m A=0
Proof:
Given A is countable. Then A= Uy=1{Xn}
m'A=m (UnZ1{x:})
<Y m{x},asm {X,}=0
=0
mA=0 (asmA=0)

COROLLORY:4

The set [0,1] is not countable.



Proof: m*[0,1]1=1[0,1]=1+#0
Hence , [0,1] is not countable [by corollary :3]
Definition:
A set which is a countable union of closed sets is called F,.

We say that a set as Gy if it is the intersection of countable collection of
open sets. Note that Complement of G is F,; and vise versa.

Theorem:5

Given any set A and any € > 0 there is an open set O such that AcO and
MO<mA+e.ThereisaG € Gssuchthat AcGandmA=m'G.
Proof:

Given € > 0, by the definition of m’, there is a countable collection {1} of
open intervals Ac U, such that Y I(I,) <M A + € ------ (1)

Let O =uUl,= O s open

m'‘O=m"ul,
<y mil,
=2 1)
<MA+g —mmmr (2) (by (1)),
Let €= %

Then by (2), for all n there exists an open set G, such that A c G, and
m G, < m*A+% -------- (3)

Let G=NG,, then Gisa G5 set and AcG. = m A < m*G

Now Ac G, V n and G, is open. Also m G < m*G, < m A+ %V n (by(3))

= m G < m*A. Hence, m*A = m*G.
LEMMA:6
If mM"A=0 then m*(AUB)=m'B
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Proof:
B< AUB=mB<m (AUB) —(1)
By count ably sub additivity property, m*(AUB) < m'A +m'B
Given, m A=0. Therefore, m*(AUB) s m'B  —(2)
From (1) and (2), m*(AUB) = m'B

1.3 Measurable Sets and Lebesgue Measure

Definition:
A set E is said to be measurable if for each set A, we have

m*(A) =m*(ANE)+m*(AnE°)

Remark:

(i)  Since A= (ANE) U (ANE®)
= m (A) < m*(ANE) + m (ANE®)
We have the following definition
E is measurable if for each A we have, m"A = m*(ANE) + m (ANE®).
(ii)  Since the definition of measurability the symmetric in E and E®, we
have E® is measurable whenever E is measurable. Clearly, ¢ and R are
measurable.

LEMMA:7
If mE=0 then E is measurable.
Proof:
Let A be any set.
ANE cE = m'(ANE) < m'E =0
= m"(ANE) =0
Also, ANEC c A = m*(ANEC) < m*(A)
Therefore, m*(A) = m*(ANEC) + 0
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= m*(A) = m*(ANE®)+ m*(ANE) = E is measurable.

LEMMA:8
If E; and E, are measurable sets, then E;UE, is measurable.
Proof:

Let A be any set. Since, E, is measurable we have,
m(ANES)=m(AnNE“NE)+mANE‘NEY) —
Since A N (E;UE,)=(ANE;)U (A NE,NEY), we have

m*(A N (E,UE,))) <m"(ANE;)+m*(ANE,NEY)
= m*"(AN(ELUE,)) + m*(AN(Ef N ES)) <m*(ANE;)) +m"(ANE,NES)
+m*(A N (Ef N ES))
=m*(A N Ey) + m"(A N EY) (by (1))
<m*(A) [since E; is measurable]
Therefore, m*(A) = m*((A N (E,UE,)) + m*(A N (E; U E,)°)
= E,UE, is measurable.

LEMMA :9
A family m of measurable sets is an algebra of sets.
Proof:
LetE, ,E, Em
= E,UE, is measurable ( by lemma 8)
= E,UE, €

Also,EEm = E¢ € (by definition)
Therefore, m is an algebra.

LEMMA : 10
Let Abeanysetand E; ,E,, ....... ,E,, be a finite sequence of disjoint
measurable sets . Then m*(A N (U, Ey)) = Y, m"(ANE))
Proof:
We prove the lemma by induction on n.
The result is clearly true whenn =1
Assume that the result is true if we have n-1 sets E;
SinceE; N Ej=¢ ,i#jwehave, (AN (UL E))NE, =ANE,
(AN (UL E)) NE;=(AN (UL E)) NE;

11



Since E,,is measurable we have,

m* (A N (UiZ1 E)) =m (A N (UL, E) N E)+m*(A N (UiZ, Ey) N ER)
=m*(ANE)+m* (AN UL E)NES)
=m*'(ANE)+m (AN UXLE)
=m*(ANEy)+Y~'m*(AnE;) (by induction hyp)
=Xi=im (ANEY)

The theorem is true for all values of n .

THEOREM:11
The collection m of measurable sets is a ¢ — algebra, that is,
complement of a measurable set is measurable , union of a countable collection
of measurable sets is measurable. Moreover, every set with outer measure zero is
measurable.
Proof:
By lemma 9, m is an algebra of sets.

Claim: my is a o — algebra.
It is enough to prove, E=U;-, E, ,E, €Em = E€n
LetE=Up-1 E,  Ep Em
By aresult, we have E=U;2,E;and E; N E; =, i # j and
Uiz Ei= Uiz, E{
Let A be any set. Let F,= Uj-, E;
= F, is measurable (i.e) F, € m
Now, F, = Ui, E; c U2, E; =E
=>F, cE, foralln =>Ff>E°, foralln
Since F, is measurable ,
m*(A)=m*(ANE,)) +m"(ANE)
>m*"(ANE,) +m*(ANnE°)
m*'(ANE,) =m"(An UL, E)
=yr, m(AnE) (by lemma 10)
Therefore, m*(A) = Yo, m"(AnE)+m*"(AnE°)
This is true for every n and L.H.S is independent of n.
We have, m*(A) = Y2, m"(ANE)+m*(ANnE®)
>m'[U (AN E)]+m"(An E®) (bycountably
subadditive property)
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m* (A) >2m"(ANnE)+m"(ANE®)
= E is measurable
Therefore , m is o—algebra
For, Intersection of countable collection of sets is measurable.
LetE, €m =E;€m = Up-1E;€n
= (Unz B, €m = NE, €m
Also by lemma 7, every set with outer measure zero is measurable.

LEMMA: 12
Open interval (a,o) is measurable.
Proof:
Let A be any set
Let A, =(a,©), A, = AN (-00,3]
To prove (a, o) is measurable.
Claim: m*(A) = m*"(4,) + m"(4,)
If m*(A) = oo then there is nothing to prove
If m*(A) < oo ,then given €>0, there exists a countable collection of open
intervals { I,,} which covers A and for which > I(I,,) < m*(A) + € — (1)
by the definition of outer measure .
Let I, =1, n(a,©)and I; =1, N (-o0,a]
Then I}, and I, are intervals (or) empty.
Now , I(I)) = I(Ip) + I(Iy) =m*(Ip) + m"(Iy)) —(2)
Since A, C Ul ,
m*(4;) < m*(UL) < m*(Iy)
Similarly, A, c Ul ,
m*(4,) < m*(UL) < X m*(Iy))
Therefore, m*(4,) + m*"(4,) <Yy m*(Ip) + Y m*(I)
=X (m () + T m*(I))
=21(In) (by (2))
<m*(4) +e (by(1))
Since, ¢ is arbitrary , m*(4;) + m*(4,) <m*(4).

THEOREM:13
Every Borel set is measurable. In particular , each open set and each closed
set is measurable.
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Proof:
Let B be the family of Borel sets.
By definition ,B is the smallest o — algebra containing all the open sets —(1)
Also m, the collection of all measurable sets is ¢ — algebra.
Since (a,0) € m, = (a,0)°€m, foralla = (-0,a] € m, for all a

Now , (-o0,b) = UpZ, (_Oo’b - %]

= Un=1 (—00, b — %] €m [asmisao —algebra]

= (-0,b) €m
Now , (a, b) = (-o0,b) N (a,0)
Therefore , every open interval is measurable
Since each open set is the countable union of open intervals , every open set
belongs to my. Then every closed set is measurable. Therefore, m) is a o-algebra
containing all the open sets.Therefore, B c m [by 1]. Hence the result.

Remark:

If E is measurable set, we define the lebesgue measure mE be the outer
measure of E. (ie.) m=m*/ m. It is means that the domain of m is m and the
domain of m* is P(R). (ie.) If E is measurable set, mME= m*E.

THEOREM :14
Let {E;} be a sequence of measurable sets, then m(UE;) <> mE,;. If the sets
{E.} are pairwise disjoint then m(UE;) =Y mE; .

Proof:

If {E;} is a finite sequence of disjoint measurable sets, then by lemma 10
(by taking A = R) we have, m*(Uj, E;) = Xi-; m*E; .
= m(U~L,E) =Y, mE; and so m is finitely additive.

Let {E,} be an infinite sequence of pair wise disjoint measurable sets.

As U2, E; > UYL, E; vn
m(UZ, E) = m(UiZ, Ey)
=)=, mE; is true for every n.

Since Left hand side of inequality is independent of n, We have,
m(Uiz1 Ep) = Xz mE;.
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The reverse inequality follows from the countable sub additive property,
m(UiZ, E;) <X, mE;. Therefore, m(UiZ, E;) =X/, mE;

Theorem:15
Let {E.} be an infinite decreasing sequence of measurable sets, that is with
En+1C E,, for each n. Let mE; be finite and m (N%, Ej) =lim,,_,,, mE,,.
Proof:
Let E= N~ Ei.LetF, = E;~E; 4.
Then E; - E = UjL, F; and the set F; are pair wise disjoint.
Hence m(E;~ E) =m(U;Z, Fi) =X, mF; =72, m(Ei ~ Ej.1) 2 (1)
Since EcE;, E;=EU (E;~ E)and mE;=mE + m(E;~E) - (2)
Similarly, Since Ei;;c E; = E;j =E;;1 U (Ei ~ Ejs1) and
mE; = mEj,; + M(E; ~ Ei+1). Also mE < mE;<®
= m(E;-E) = mE;- mE [by (1)].
And m(E; ~ Ei+1) = mE;- mE;,; [since, Ej.1c Ejc E; and mEj;; < mE; <0 ]
Therefore, mE; - mE = m(E; ~ E)
=Y, m(E ~Ew)  [by (1)]
= Yiz1(mE; — mE;j,y)
= 7111_1}30 Y (mE; — mEiy)
= 7111_1}30 (ME; - mE,)

ME;- mE = mE;- lim mE,

Nn—oo

mE = lim mE, [since, ME;< «]

n—-oo

m(N;Z, Ej) =lim,_,, mE, .

THEOREM:16
Let E be the given set, then the following are equivalent
1) E is measurable.
1) given € > 0 there is an open set O contains E with m*(O-E) < ¢
i) given € > 0 there is a closed set F contained in E with m*(E-F) < ¢
Iv) there isa G in Gg with Ec G and m*(G-E)=0
v) thereisaFin F; with FcE such that m*(E-F) =0
m*E is finite ,then the above statements are equivalent to (vi).
vi) given € > 0 ,there is a finite union of open intervals such that m*(UAE) < ¢
Proof:
We prove the theorem as follows:
(i) => (i)=> (iv)=>(i)
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(i) => (iii)=> (v)=>(i) and (i) < (Vi)
step I:
(i) => (ii)
Given E is measurable.
Case (i):
Suppose M*E =mE <o with m(E-F,) < i
= Given € > 0, there exists a collection {l,} of open intervals such that
Ecul,and Y I(I,)<m*E + €.
Let O =uUl,.Then mO =m(ul,) < > ml, =) 1(1,)
mO< m*E+e - (1)
Now Ecul,=0
=>m*0 = m*E + m*(O-E)
=>m*(0O-E) = m*O - m*E [since mE is finite]
=>m*(0-E) < m*E + e - m*E
= g [since mO = m*O and O is measurable]
=> m*(0-E)<e
Case(ii):
Let m*E is infinite
Let Ec U=, I, where {I,} is a collection of intervals of finite length.
Define E.=Enl, => E=U;-,E,
As E, |, are measurable , EN I, is measurable. = E,is measurable for all n.
Now E,c |,=>m*E, < m*l, <o = m*E, is finite for all n.
By case(i), for given & > 0, there exists an open set G, such that
E,.c G, n=1,2.3,.... and m*(G,— E,,) < &/2"
Let O=Up=1 G, =>0Oisopen
Consider O-E = Uj-1 G- Un=1 En
C Un=1(Gp- En)
m*(0 - E) < m*(Up=1(Gn- En))
=< Zﬁ:l m*(Gn' En)
< Tioigy =€ = m0-E)<e
(i) => (iv):
Given € > 0, there exists an open set O with EcO such that m*(O-E) < ¢
For each n, taking e= 1/n we get an open set O, such that Ec O, with
m*(O,-E) < 1/n > (1)
Let G=n O, then G € G
Since EcO,,vn = G-EcO,E, vVn
=> m*(G-E) < m*(Op-E) < 1/n,¥n
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Therefore, m*(G-E) =0
(iv)=>(i):
Thereisa G in Gg with E € G and m*(G-E) =0
Since each open set is measurable, each G4 set is measurable.
Therefore, G is measurable.
Also m*(G-E)=0,then by lemma 7, G-E is measurable.
But E = G-(G-E) and hence E is measurable.

Step I:
(ii) =>(iii):
Now (i) => (ii) follows from step |
= E is measurable = E°is measurable.
Given £ > 0, there exist an open set O D E° such that m*(O - E9)< ¢
= O°cE
Since O is open, F = O° s closed.
Now Fc Eand m*(E-F) = m*(E-O%) = m*(O-E%) < ¢

gliee: (eV)> 0, there exists a closed set C such that Cc Eand m*(E- C) < ¢
For each n, there exists a closed set F,, such that F,c E with m*(E- F,) < %
Let F=UF,. FisaF, set
Now, F,c E foralln. Then Fc E
Since F,cF=>E-FcE-F,
M*(E-F) < m'(E- Fy) <=, foralln = m'(E-F) =0
(v) => (i) :
Given, there exists a F, - set FCE such that m (E-F)=0
Since F, set is measurable, F is measurable.
Also, m"(E-F)=0, by lemma7, E-F is measurable.
But, E = (E-F) U F. Since F is measurable, E is measurable
Step 111
(i) = (vi)
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To Prove (i) => (vi)
Suppose E is measurable.

Given & > 0 there exists an open set O o E such that m (O-E) < %———(1) (by (i)
As mE is finite ((i.e) mE < ) and m(O) = mE + m(O-E) < w0

As O is an open set, O is the disjoint union of open intervals I; (i.e) O=U;jZ i,
lin =@ (i#j). Therefore, m(O) =m(U;Z, 1) =X 2 mhi=X2,1(l)

Now, m(O) < o = There exists n such that };;—,,., L (I;) <e&/2
LetU=Uj [
EAU = (E-U) U (U-E)
EAU c (O-U) U (O-E) [ ECO & OcU ]
m (EA U) < m (0-U)+m’(O-E) [.EcO & OcU]
<57 g =€ [O-U=XZ, Ii- Zing [i=Xitnsq i
m (0-U)< Y., L(;) by definition]
Therefore, m"(EAU) < ¢
(vi) => (i):
Conversely, suppose given € > 0, there exists intervals {|i}z:1 such that
U=U%, I; and m"(EAU) < ¢

Let £ > 0 be given and also given mE < o

Therefore, there exists an open set O D E such that m'O < m'E + &/3-----(1)
[by Theorem 5]

Also given there exists intervals {|i}i21 such that m(EAU) < &/3 ---------- (2),
where U= UiL, [
LetJ=UnNO. ThenJis open
Also, JAE = (JUE) — (JNE)
Now, JNE=(UNO)NE=UN(ONE)=UNE [.EcO]
JUE c UUE = JAE c UAE.
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m (JAE) < m (UAE) < &/3 ---------- (3) (by (2))
OAE c (OAJ)U (JAE)  [as O-Ec (O-J)u(J-E)
and E-Oc (E-J)u(J-0)]
m (OAE) < m (OAJ) + m (JAE)
But 0AJ=0-J [~05J]
Therefore, m (O AJ)=m (O -J)
=m (0)-m'(J) [ O, Jopen =>0, J are measurable]

> (4)

ButEcJu (E-J) > EcJuU (EA))

ME <mJ+m(EAJ)) =>mE < mJ+ § (by 3)) — (5)

Now, m’(OAE) < m’ (OAJ) + m (JAE)
=m@©O)-m)+mE@AE)  (by®4))
<mE +§_ mJ+ g (by(1) & (3))
<mJ+ -—mJ+ = (by(5))
=&

m (OAE) < ¢
Since ECcO=>0AE=0-E
= m’ (O - E) < &. This proves (ii)
By step I, (i) => (i) (i.e.) E is measurable.

1.4 Measurable Functions
LEMMA:17

Let f be an extended real valued function whose domain is measurable. Then
the following statements are equivalent

(i)  For each real number a, the set {x/ f(x)>a} is measurable.
(i)  For each real number a, the set {x/ f(x)> a} is measurable.
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(i)  For each real number «a, the set {x/ f(x)< a} is measurable.

(iv) For each real number a, the set {x/ f(x)< a} is measurable.
These statements imply (v)

(v)  For each extended real number a, the set {x/f(x)=a} is
measurable.

Proof:

Let D = the domain of f. D is measurable (given)

(i) => (iv):
Given : {x/f(x)> a} is measurable for all

Now, {x/f(x) < a } =D - {x/f(x) > a}. Since, the difference between two
measurable sets is measurable we have {x/ f(x) < a} is measurable.

(iii) => (ii):
Suppose {x/f(x) < a} is measurable.
Now {x/f(x) = a} =D ~{x/f(x) < a}. Since D is measurable, we have
{x/f(x) =2 a}=D ~{x/f(x) < a} ismeasurable.
(ii) = (iii)
Suppose {x/f(x) = a} is measurable.
Now {x/f(x) <a}=D~{x/f(x) =2 a}
Since the difference of two measurable sets is measurable
Therefore {x / f (x) < a}is measurable.
Hence, we have proved (i) = (iv), (ii) & (iii)
Similarly, we can prove (iv) = (i).
(D) = (iD)
Since {x/f(x)=a}= Ny=1 {x/f(x) >« —%} and the
intersection of a sequence of measurable sets is measurable

Therefore, {x / f(x) = a} is measurable.

20



(iD) = ()
{x/f(x)>a} = Up{x/ f(x) =@+~ } andthe union ofa

sequence of measurable sets is measurable. Therefore, {x /f(x) > a} is
measurable.

Hence all the above four statements are equivalent.
(ii) = (v)
If aisreal, {x /f(x) =a}={x/f(x) 2a}N {x/ f(x) < a}

Therefore, (ii) and (iv) together implies (v)

Since {x /f(x) = o0} = M=y {x / f(x) = n}
By (ii), {x/f(x)=n} is measurable.
= N2, {x/ f(x) = n} is measurable.
(i) = (v) (fora = — )

By (iv), {x /f(x) < n} is measurable.
= N2, {x /f(x) <n}is measurable.

Hence (ii), (iv) = (v).

Definition:

An extended real valued function f is said to be Lebesgue measurable, if its
domain is measurable and it satisfies one of the first four statements of the
above proposition.

Note:
D) {x/f(x)<a}={x/x€f" (-0,a)}
ii) A continuous function on measurable set is measurable.
Foranyreal a, f~! (—o0, ) is open.
= f~1 (—o0, @) is measurable for all a.
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Therefore, {x /f(x) < a} is measurable. = f is measurable.
Recall areal valued function ¢ defined on an interval [ a, b]
is called a step function if there is a partition a = x;, < x; < <x,=b

such that for all i, the function ¢ assumes only one value in the interval

(i, Xi41) -

iii) If fis a step function, then f~1 (a, ) is an interval (or) union of
intervals.

= f~1 (a,)isopen forallreal a. = f~! (a, ) is measurable.
= f is measurable.

iv) If fisameasurable function and E is the measurable subset of the
domain f. Then f/E is also measurable.

LEMMA:18

Let ¢ be a constant and let f and g be two measurable real valued
functions defined on the same domain. Then the function f +c,cf ,f + g,

f — g and f g are also measurable.
Proof:

[) Let a be any real number.
Now, {x /f(x)+c<a}l={x/f(x) <a-—c}

Since f is measurable, {x / f(x) < a — c}is measurable.
Therefore, Left hand side is measurable.
= f + ¢ is measurable.

ii) Claim: cf is measurable.

If c =0,thenclearly cf =0 = cf is measurable.
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Suppose ¢ # 0.
Then (x /f(x) <%/}, if ¢ >0

{x/cf <a} =«
{x/f(x)>%c},if c<O

Since f is measurable, R.H.S is measurable for all real a.
= Left hand side is measurable for all real @ = c¢f is measurable.
iii) Claim: f + g is measurable.
Suppose f(x) + g(x) < a. Then f(x) < a — g(x).
There exist a rational number r such that f(x) <r < a — g(x).
Therefore {x /f(x) + g(x) < a} = U {{x/f(x) <r}N{x/g(x) < a+r1}}

Since f and g are measurable functions we have, { x /f(x) < r} and
{x /g(x) < a + r}are measurable. Therefore, Right hand side is measurable.

Hence {x /f(x) + g(x) < a}is measurable. = f + g is measurable.
iv) Since -g = (—1) X g is measurable by (ii)
Therefore, f — g = f + (—g) is measurable.

v) Consider {x /f?(x) > a}={x/f(x) >Va}U{x /f(x) < —Va} forall

a >0

Since f is measurable, we have {x /f?(x) > a} is measurable, forall a > 0.
Therefore, {x /f%(x) > a} =D if a < 0. = f? is measurable.

Now f, g are measurable = f + g is measurable.

= (f+9)%, f?,g% are measurable. > (f + g)? — f? — g% is measurable.

= -[(f + 9)®> — f? — g?] is measurable.> fg is measurable.

N | =
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LEMMA :19
Let {f,} be asequence of measurable function (with the same domain
Of definition) then the functions sup {fi,f2, ..., fx}and inf {f1,f2, ..., fa},

Supf inf
n %

N f,, lim f, and limf, are all measurable.

Proof:

) Let h(x) = sup {£,(X), () , e, fu (2O}
Now {x /h(x) > a} = UL, {x /f,(x) > a}

Since each f; is measurable, R.H.S is measurable.

Therefore, {x% > a} is measurable. Therefore, his measurable.

ii) Define g(x) = Sl:lpfn(x).

Then {x /g(x) > a} = UiZ,{x /fi(x) > a}
Since f; is measurable, and m is a 0 — algebra . We have,
U2.{x /fi(x) > a} is measurable = {x /g(x) > a} is measurable.

= g is measurable.

Similarly, we can prove inf {f;,f,, ..., fn} and lT:lffn are measurable.

inf Ssup

n k>n fx » Therefore, lim f,, is measurable.

iii) Since lim f,, =
Similarly, lim f,, is also measurable.

Definition:

A property is said to hold almost everywhere. If the set of points where it
fails to hold is a set of measure zero.

LEMMA 20

If f is @ measurable function, and f = g is almost everywhere, then g is
measurable.
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Proof: Let E = {x/f(x) # g(x)}

Since f = g is almost everywhere, we have mE = 0

Now ,

x/g(x) >a}={x/f(x) >a}U{x €E/g(x) > a}~{x EE/g(x) < a}
Since f is measurable, {x/f(x) > a} is measurable.
Since the second and third sets are subsets of Eand mE = 0

= Both the sets have measure zero and hence they are measurable.

Since my is a 0 — algebra ,we have {x/g(x) > a} is measurable.

= g is measurable.

LEMMA :21

Let f be a measurable function defined on [a,b] and assume that f
takes the value £ oo only on a set of measure zero. Then given € > 0 we can
find a step function g and a continuous function h such thatlf — gl < ¢
andIf —hl<e¢

Proof:
To prove this we required following 4 lemmas.
Lemma:1

Given a measurable function f on [a, b] that takes the values + oo only
on a set of measure zero and given € > 0 there is an integer M such that
| f 1 < M except on a set of measure less than 5/3 :

Proof:
Suppose for all M such that {x /If(x)| > M} > 8/3 :
Let Ay, = {x/If(x)| >n} > mA, =¢/5,foralln.
Also, Ay D A, D A; D -and letA = Ny, 4,
= |l f(x)l=wonmA= mA=0
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By Theorem 15, 0 = mA = lim,,_,,, mA4, = 5/3 . This is a contradiction.
Therefore given € > 0, thereis M suchthat m{x /1 f(x) | > M} < 3/3.

Lemma:2

Let f be a measurable function on [a, b], given € > 0 and M, there is a
simple function ¢ such that| f(x) — @(x) | < € except where | f(x)I = M. If
m < f < M, then we may take ¢ sothat m < ¢ < M.

Proof:

. . . M
Given € > 0, there exists M with | f(x)| < M such that —<e for some n.

(k—-1)M
n

Let Ek = {X/

< flx) <=4

Define ¢(x) =kTM, XEE,Mm<k<n

M(K-1)
n

Thenon Ey, 1f(x) — ()| < %—
=%<e,forallk

Therefore, | f(x) —@(x) | < ¢, forall x € [a,b] except where
| f(x)l = M.

If —M < f(x) <M, (ie) | f(x)I < M.

Then by the above construction, there exists a simple function
@ suchthat — M < f(x) <M, (ie) | f(x)| < Mwithlf(x) —px)I<ce.

Hence the lemma.

Lemma :3

Given a simple function on [a, b], there is a step function g on [a, b]
such that g(x) = @(x) except on a set of measure less than 8/2 .

Proof:

Let ¢ be a simple function and it assumes finite number of values
C,,C,,C5,...,Cy. Let E; = {x/p(x) = C;}.
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Then by, theorem 16 (vi)

Since E; is measurable, (by definition of simple function) for every E;
there is a finite union of intervals U;; , Uy; , ..., U,; and

Vi=U; UUyU....... U U, suchthat m'(EiA V) <25n, 1<i<n.
Define g(x) =¢; ,V X €V,
If X € Ei NV, then g(x) = o(x). If g(X) # ¢(x), then x € E; A V;, for some i
Therefore, {x/g(x) # ¢(x)} € UjL;( Ei A Vi)}
m{x/g(x) # ¢x)} <YL, m= (EiAVi)

€ €
n —_
<limim T

Therefore, g(x) = ¢(x), except on a set of measure less than %
If mMm<e<M thenwetakegsothatm<g<M.

Definition:

The function y, is defined by y(x) = {3 igi Z E is called the characteristic

function of E.

A linear combination @(x) = XiL; a; g (X) is called a simple function if the
sets E; are measurable.

Lemma :4

Given a step function g on [a,b] there is a continuous function h such that
g(x) = h(x) except on a set of measurable < § If m < g <M, then we may take h
sothatm<h<M.

Proof:

Given a step function g on [a,b] such that g(x) = ¢;, X€[Xi.1, X;] for some
subdivision of [a, b] and a =Xy <x;<x,<....... <x,=h.
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Define

( C; if x E[xi_l,xi—%], 1<i<n
h(x)={ ‘o if X € [Xny 0]
k (1—/1)(xi—3(ne_1))+lxi if x € [xi—%,xi]. 0<A1<1

€

Then h(x) = g(x), if x & UM ([x; — sy <)

€
3(n-1)’

- €
xi]) < XS m([x — 5= %)

Now, m (UR([x; —

n-1__€
= &1=1 3(p-1)

_E
3

Therefore, h(x) = g(x) except on a set of measure less than S

Main proof:

Since f takes the value +oo only on a set of measure zero, we may assume
thatm<f< M.

Given €>0, Let f be a measurable function. Then by lemma 2, there exists a
simple function @ withm < ¢ <M such that |f(x) — @(x)] < E.

By lemma 3, there exists a step function g with m < g < M on [a,b] such that
l9(x) — ()] < 7.

= f() =g <If () = )] + o) —gx)|

By lemma 4, there exists a continuous function h with m < h < M such that
l9(x) —h(X)| <=

> |f() — R S If(X) — g@| + [g() —h@)] <+ = €
Observation:

X4 1S measurable iff A is measurable .
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Proof:

Let a be any real number .

Q ifa=>1
X/ y,X)>a}=5 A if0<a<l ... (1)
R ifa<O0

= {X/ y4(X) > a} is measurable for all «.
Conversely, y, is measurable. = {X/ y,(X) > a} is measurable.

= A is measurable. (by (1))

1.5 : Little Wood’s 3 principle

) Every (measurable) set is nearly a finite union of intervals.

i)  Every (measurable) function is nearly continuous.

i)  Every (measurable) convergence sequence of function is nearly
uniformly convergence.

The following proposition gives one version of the third principle.

PROPOSITION :22

Let E be a measurable set of finite measure and {f,} be a sequence of
measurable functions defined on E. Let f be a real valued function such that for
each x in E we have f,(x) converges to f(x). Then given € > 0 and & > 0, there
IS @ measurable set A subset of E with m(A) < § and integer N suchthat vV x ¢ A
andvn=N, |f,(x)—f(x)| <E.

Proof:

Let € > 0 be given. Let G, ={xe E/ |f,,(x) — f(x)| = €}

Let En = Up=n G = {X€ E/ |f,(x) — f(x)| = € for some n > N}
Since f,, is measurable and f, converges to f point wise.
We have, f is measurable.
Since f, , f are measurable we have, G, and hence Ey are measurable.
Also we have En:1E Ey
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Since E;c E and m(E) < o we have m(E,) < .
Then by Theorem 15, we have m(Ny=, Ey) = limy_,,, mEy.

By the definition of Ey, for all XxeE , there exists N such that x¢ Ey as
fu(x) = f(x). Thus Ny=1 Ex= 0.

= 0=mo = limy_,, mEy.

= Given § > 0, there exist N such that mE,, < §

=> m{xeE/If,(x)—f(x)I=¢e forn=N}<§

Take A = Ey thenmA < § and A is measurable.

Now, A°={x€E/If,(x)—f(x)I<éeforalln=>N}
| fn(x) = f(xX)I<eforalln=NandVx ¢gA.

PROPOSITION :23

Let E be a measurable set of finite measure and {f,,} be a sequence of
measurable functions that converge to a real valued function f almost
everywhere on E . Then given € > 0 there is a set A subset of E with mA < §
and an N such thatforall x ¢ A,and alln >N, |f,(x)—f(x)I< ¢

Proof:

Given f,, — f pointwise almost everywhere on E.
= There exists B c E such that f,(x) = f(x) asn — o for all
x €EE—B =E; &mB = 0and E; is measurable .

By proposition 22, Given & > 0 there exists § > 0 and asetA C E; with
mA < § and such thatevery x € E; —Aandn >N, | f,(x) — f(x)l < .

=> mA; <mA)+m(B) > mA; <6§+0=9§
=> mA; <dand | f,(x)—f(x)I<eforalln=>=N,x ¢ A.
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UNIT-II

Lebesgue Integral
2.1 The Riemann integral

Let f be a bounded real valued function defined on the interval [a, b]
and leta=¢, <& <--& =b be a subdivision of [a, b]. Then for each
subdivision we can define the sums S=Y7",(§—-&_1)M; and

SUP %) and

—yn (¥ _t ; | =
s =X — G mi, where My= "

inf

m; =
N E-T -

f(x) . Then we define upper Riemann integral of f by

b
R fa f(x)dx = infS , where the inf is taken over all possible sub divisions
of [a,b].

Similarly, we can define lower Riemann integral and R f‘f f(x)dx =sups

The upper integral is always at least as large as the lower integral and
if the two are equal, we say that f is Riemann integrable and call this
common value the Riemann integrable of f and we shall denote it by

R f:f(x)dx.

By a step function we mean a function W which has the form
Y(x) =C, &1 <x <§ forsome subdivision of [a,b] and for some set of

constant C; . Under this definition we have ff Yx)dx =YL, G(& —&i-q)

b
with this definition we have, R fa f(x)dx = inf f‘f Y(x)dx for all step
functions W(x) > f(x) .

Similarly, R fgb f(x)dx = 0 (X)S 12) f(x) f; ¢(x) dx
Example:
0 If xisirrational
Show thatif f(x) = 1 if x is rational
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Then f is not Riemann integrable.
Soln:
Let a=%¢, <& <&, =b
m; =inf f(x) =0 and M; =sup f(x)=1, on[§_,,&].
This is true for every subdivision of [a, b].
=21 — &M =X —§i—1)  [since M; = 1]

=G —8)+ G —8&)+ -+ (& —&n-1)
=& — &o

=b—a and s =YL (§ —§-1)m; =0

b
R fa f(x)dx =inf S =b — a and Rfff(x)dx =sups =0

b
>R fa f(x)dx # R f:f(x)dx = f is not Riemann integrable.

2.2: The Lebesgue Integral of a bounded function over a set of
finite measure.

The function xg defined by,

xg(x)= |1 ifx e E

0 if x¢&E

is called the characteristic function of E.

A linear combination ¢(x) = X3-1 a; x5, (x) is called a simple function
if the sets E; are measurable .

This representation for ¢ is not unique. However note that the function ¢
is simple iff it measurable and assumes only finite numbers of values.

32



If ¢ is asimple function and {a, ,a,, ....., a,} the set of non-zero values
of , then ¢ =X a; x4, Where 4; = {x/@(x) = a;} , this representation of ¢
is called the Canonical representation.

If ¢ vanishes outside a set of finite measure, we define the integral of ¢
by, [ @(x) dx = X", a; mA; where ¢ has the canonical representation

¢ =[Ya;xa,
Note:

Some times we denote it by [ ¢. If E is any measurable set then we define
Joo =[x

LEMMA :1

Let ¢ =X a;xg, WithE; NE; =@ for=j.
Suppose each set E; is a measurable set of finite measure , then
J o =3, a;mE;.
Proof:

Consider A, = {x/p(x) = a}

= Ug=a Ei
méig = Zai=a mE;

= ami, = aYg-qMmE;
= amly = Yg,=q 4 ME;

J o ()dx = ¥ a; mE;

PROPOSITION:2

Let Wand ¢ be two simple functions which vanish out side a set of
finite measure then fap + b¥ =a [ @+ b [ ¥ and if ¢ = ¥ almost
everywhere, then [¢ > [P

Proof:

Let {A;} and {B;} be the sets which occur in the canonical representation
of ¢ and ¥
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Let A, and B, be the sets where ¢ and Y are zero. Then the set E},
obtained by taking all the intersections A; N B; from a finite disjoint Collection
of measurable sets.

And we may write ¢ = YL, a; xg, and ¥ = XL, b; Xz, .
Thenby lemmal, [ =YY, amE; and [¥ =YY, b, mE;
Now ag + b¥ = Y. (aa; + bb)xg,

Thenby lemmal, [ ap+b¥ =YY, (aa; + bb;)mE;

[ ap+b¥Y =YY, aa,mE; + Y, bbmE;

=aYliamE +bYL; bmE;.

—ifor [0

Notethat [ — [¥=[(p—9)
If @ = ¥ almost everywhere, then ¢ —¥ > 0 almost everywhere.
=>¢p—¥Y=>00n Fand mF¢ =0
Now E, N F = Ej, N F° from a disjoint collection of measurable sets.
Now by definition,
Jl@—"¥) =¥ 1(a; —b; ) Xg,
=Y . cixg wherec; =a; —b;,i=1,2,..,N
Now E; =E;N(FUF°) =(E;NF) U(E;NF°)
And (E;NnF)and (E;NF°)are disjoint.
Since m is additive, mE; = m(E; N F) + m(E; N F°)
Now Jo—JY¥ =[(-9)
= YL cmE; =Y ¢ [m(E;nF) +m(E; N F)]
=YL cim(E; N F) + XL, c;m(E; N F©)
= YN . c;m(E;NnF)(@sE NFcFand mF°¢=0)
[o—[¥ =0(asp =¥, ¢, =a; —b; on E;)
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=>[o=[Y

PROPOSITION:3
Let f be defined and bounded on a measurable sets E with mE < o . In
j su
order that, f”;fzp va,b(x)dx = r 2p<,0 fE @ (x)dx for all simple function
@ and Y it is necessary and sufficient that f be measurable.
Proof:

Let f be bounded by M. Suppose f is measurable.

Let Ek—{x/—>f( )>(k DM}, —n<k<n

Then Ej are measurable and disjoint.
E=URenEx = mME =Y} _,mE; ---------memmmmmev (1)
Define the simple function
Y () == p__k Xg, ()
p(0) = 23R (k= 1) xg, (%)
= @,(x) < f(x) <YP,(x) forallx EE
sup

:(psffgodxzf(pndx

= YRk = 1)m By wremeeereeeee (2)

Similarly, 1/) > ffz,b dx < [P, dx = 7 n__ kmE, (3)

From (1) and (2),

= os¢>ff1/1dx (ps<ff<pdx

M

S —Xk=—nk mEy — =yn_ (k= DmE,
M

- ;cl=—nm Ey
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M
=2 mE [by (1)]
Since n is arbitrary and mE < oo, we have

Conversely,

in sup
Suppose ¥ fofEt,bdx = f> (pr<pdx

Given n, there exist a simple functions ¢,, and ,, such that

(i) on(x) < f(x) < Pp(x)

(i) [Pa() — [ @u(x) <+
Define yY* =inf Y,
@ =sup @,

Then ¢* and y* are measurable.

Also, ¢ (x) < f(x) < () Vn
= sup ¢p(x) < f(x) < inf Yy (x)
> 9" () <)<Y
Let A= {x/g"(x) < ¥ ()}

4y = {x/9"(0) < Y@}~
Cleary , 4,  {(x/¢(x) < Y (0} =~
Now Claim that  m{ x/@,(x) < P, (x)} — %} <t
let Ry = {x/9a(0) < ¥ (0} =}
= Pa(0) = 9a(x) > — on Ry
> Y (D)~ 9n (1) > = xr, (@)

> [Wn =02 > m R [f xr, =m (Rn)]
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=>fl/)n_f(pn>$m(Rn)
= %>fl/)n_f(pn>%m(Rn)
=> m(R,) <Ll

Since n is arbitrary,m (R,,)) =0 = m (Ay) =0

As A=U)°,°=1Ay => mA =0

=  @" =" excepton a set of measure zero.
=  @" =" almost everywhere.
= ¢ =f almosteverywhereonE, ¢* < f <y~*
= fis measurable.
Definition:

If £ is a bounded measurable function defined on a measurable set E with
mE < co. We define the (lebesgue) integral of f over E by,

j f(x)dx = inff W(x)dx, for all simple function ¥ = f
E E

Note:

(i)  We write the integral as [, f .
. . b .
(i) IfE=[ab]wewrite [ f instead of f[a,b]f.

(iii)  If fis a bounded measurable function which vanishes outside a set
E of finite measure, we write [ f for [_f.

(iv) [ fisthesameas [ f xg .

PROPOSITION :4

Let f be a bounded function defined on [a, b]. If f is Riemann integrable
on [a ,b], then it is measurable and R fff(x)dx = [P f(x)dx .

Proof:
Since the step function is also a simple function, we have
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b b . b
R] peoes S0 oo < T [ peoar

<R fff(x)dx

b
Since f is Riemann integerable we have, R fbf(x)dx =R [ f(x)dx
a

=y epftetdx= Y [ peodx

= T is measurable (By proposition 3)

Also from the above relation we have, R ff f(x)dx = lplT;f f ff Y(x)dx .

Therefore, R [ f(x)dx = [, f(x)dx.

PROPOSITION:5

If f and g are bounded measurable functions defined on a set E of finite
measure, then

L. fpaf +bg=af f+bf.g
ii. Iff=galmost everywherethen [_f=[.g

iii.  If f < galmost everywhere then [ f < [ g and hence |[ f| < [If]
iv. IfA<f(x)<BthenAmE < [f <BmE
v. If A & B are disjoint measurable sets of finite measure then

I EIN AN
Proof: Suppose a> 0
Joaf =infy.f [ a¥ [~ ¥ >foa¥ > af ]
=ainfy,, [ ¥
Jpaf =af.f —@)
Supposea <0

Joaf =infy<f [ ad [+ ¢p <fead=af, (a<0) ]
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=asupges [, P
=ainfy,; [ ¥ ( by proposition 3)
Jpaf =af,f —(@)
From (1) & 2), [paf =af,f —(@)
If ¥, and ¥, are simple functions such that ¥, >fand ¥, > g.
Then ¥,+¥, is a simple function and ¥, +¥, > f+g
s ftgs [P+ ¥,

= [t [ P2
Now by taking infimum on R.H.S over ¥; >fand ¥, > g.
Then we have [ f + g < infy > [ Wi+ infy,», [ ¥

=[.f+[,9 —®
On the other hand, if ¢, and ¢, are simple functions such that
¢, <f and ¢, <g.
Then &1+, is a simple function and ¢, +¢, < f+g
s f 9= it by = [t [ b2
Now by taking sup on R.H.S over ¢, <fand ¢, < g
Then [.f +g=supg,<f [ $1+ Supg,<g [ P2
=[;f+Jz9 —0)

From (4) & (5),we have [ f+g=[.f+[,g —I(6)
) Jpaf +bg=[.af +[.bg (by(6))

=af.f+b[,g (by(3)
i) Given f = g almost everywhere

= f - g = 0 almost everywhere

Y >f-g=Y¥ = 0almost everywhere
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= [,¥ =0 (by proposition 2)
Taking infimum we have, infy,r o [.¥ >0
= [;f—9=0

Similarly, we can prove fEf —9=<0

“Jf—g=0

= [ f-J;9=0 (by(i)
=>[.f=1.g
1) Suppose f < g almost everywhere
= f- g < 0 almost everywhere
¢ <f-g = ¢ <0almosteverywhere = [ ¢ <0
= SUPg<f_g Jp P <O
= [of—9<0 = [ f-[;9<0=>[f<[g

Since f< |f| and -f < |f]

= [, <[ Ifland f,~f < [If]

= [of < [plfland - f < [LIf]

= [ f < [If
Iv) Suppose A<f(x)<B

= [AS[.f<[.B

SAmME< [ f<BmE [+[ A=A[ 1=AmE]
v) Suppose A & B are disjoint measurable sets of finite measure

lifx€eAUB
NOW, XAUB(X):{O l;x&AU B

Since A & B are disjoint measurable sets, then we have

Xaup(X) = xa(x) + xp(x)
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Jag F =S xaos =1 fQa+xs) =[(fxa+fxs) =[fxat [ fxs
Therefore, [, f=[,f+[,f.

PROPOSITON:6 [ Bounded Convergence Theorem ]

Let {f,,} be a segence of measurable functions defined on a set E of finite
measure and Suppose that there is a real number M such that |f,(x)| < M for
all n, for all x and f(x) =1lim,,_,, f,, (x) for all Xx€E then fEf =lim,, e frr-

Proof :

Given € > 0, there exists N > 0 and a measurable set A c B with mA< ﬁ
such that for all n>N and X€E - A, |f,(x) = f(x)| < ﬁ —(1) (by

proposition 22 of unit 1) .
Now, |f; fo = Jp f1= 1S o = £
< [plfa = £l
= [l = fI* Jp_alfn — £

&

< fA 2M+ fE_A —

£
2mE

=2MmA+—m(E -A)<2M =+ = ¢
4M 2

UE fo— fEf| < ¢ foralln > N. Therefore, [.f=Ilim, . [ fp
Definition:

Let f be a non-negative measurable function defined on a
measurable set E, we define [ f = supn< [.h , where h is a bounded

measurable function such that m{x/h(x) # 0} is finite.
[ (ie) h vanishes outside a set of finite measure |
PROPOSITION:7

A bounded function f on [a,b] is Riemann integrable iff the set of
points at which f is discontinuous has measure zero.
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PROPOSITION:8
If f and g are non-negative measurable functions then
. [.cf=cf.f.c>0

i. [ f+g=[.f+].9
ii.  If f < g almost everywhere , then fEf < ng

Proof: i) Let f be a non-negative measurable function and ¢ >0. For every
bounded measurable functionh, h<f=ch<cfand h; <cf= % <f

h
Now [ cf =supp <f [, = supn __ ¢ 571
c

= Suppss € Joh =Csuppey [ph =cf f

i) Let h and k be bounded measurable functions vanishing outside the set of
finite measure.

h<fk<g=htk<f+tg = [ h+k<[ f+g

> [ h+[ k<[ f+g

Taking supremum on L.H.S over h < fand k < g then
= Supth fEh + Sukag fEk = fEf + g
= frLa<l;f+g —@O

Let [ be a bounded measurable functions which vanishes outside a set of finite
measure and [ < f+ g. Define h =min(f, 1) and k(x) = [(x) - h(x)

Therefore, k = [ - h is defined at all points of its domain. ( since | is bounded, h
Is bounded )

By definition, h(x) < f(x) and also, [(x) < f(x) + g(x)
= h(x) + k(x) = I(x) < f(x) +g(x)
Therefore, 0 < k(x) < g(x) [as h = min (f, D]

Moreover, h, k < | = h, k are bounded measurable functions and they vanish
outside the set of finite measure.

h<fandk<g
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=>fEl=fE(k+h)
=>fEl=fEk+fEh
=> gl g9+ IS
Taking supremumonl<f+g, = [ f+g<[f+[ g —(2
From (1) &(2)
Jof+g=J.f+/.9
1) Suppose f < g almost everywhere

Let h be a bounded measurable function which vanishes outside the set of finite
measureand h <f-g

= h < 0 almost everywhere [+f<gae =>h=f-g<0a.e]

= [,h<0
By taking supremum we have, supy<s_g [, h <0

= [, f-g=<0

Assume [ g < oo. [ suppose [, g = oo, then [ f< [ g]
Adding [, g on both sides,

= [ f—9+ ;959

> [f-g+9=<].9

= [.f<[.g

THEOREM:9. | Fatou’s Lemma]

If {f.} is a sequence of non-negative measurable functions and f,,(x) —=f(x)
almost everywhere on a set E, then [ f <lim [_f,.

Proof:

Without loss of generality we may assume that, the convergence is
everywhere, since the integrals over the sets of measure zero are zero.
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Let h be a bounded measurable function which is not greater than f and
which vanishes outside a set E’ of finite measure.

Define a function h, = min{h(x), f.(X)}
Then h, is bounded by the bound for h and vanishes outside E'.
And also h, (X)—h(x). Then by proposition 6 (Bounded convergence theorem),

we have [ h= [, h = lim [ hy
S l"ﬂfE fn

i sup . )
Now taking sup, we have , <ffEh <lm[.f, = [f<lm] f,.

THEOREM : 10.[ Monotone Convergence Theorem]

Let {f.} be an increasing sequence of non-negative measurable functions and
let f = lim f, almost everywhere then [ f =lim [_f,.

Proof:
By Fatou’s Lemma we have, [.f <lim [ f, —— (1)

But for each m we have, f, < fandalso [ f, < [.f

> lim [, fo=J,f. — @)
From(1) & (), [.f <lim[ fu<lim [ fu <[ f
> Umf fo=Um[ f,=[f
= Uim [, fo = ,f.
COROLLARY : 11

Let {u,} be a sequence of non-negative measurable functions and let f=)>_; u,
Then ff = Z?lozlfun :

Proof:

f = Xn=1Un Let Sy = Yp_qux
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Since, u, = 0 for all k,{S,,} is an increasing sequence of non-negative
measurable functionsand S,, - f.

By Monotone Convergence theorem, [ f = limy,_o [Sy

= limy_, /Dk=1 Uk

= r111_r)£10 Dk=1JUk = Xgq Juk
PROPOSITION :12

Let f be a non-negative function and {E;} a disjoint sequence of
measurable sets. Let E = U E;. Then [ f=3 [ f

Proof:
Letu; = f xg,
Since, {E;} are disjoint sequence of measurable sets and E=U;Z, E; ,we have
Xg = Xie1Xg, = fxp =Xi21fxe, = Xie1 Ui
By corollary 11, [ fxg = Yo, [ w;
ffXE = Z?i1ff)(5i

fEf = Xiz1 fEif

Definition :

A non-negative measurable function f is called integrable over the
measurable set E if [ f < oo.

PROPOSITION:13.

Let f and g be two non-negative measurable functions. If f is integrable
over E and g(x) <f(x) on E. Then g is also integrable on E and

Jof—9=J.f-I.9
Proof:
Jof=lf-g+g
=[f-9+f,9 — Q) [asf-g=0]
Since fintegrable, [ f <o. = [ f—g+ [.g<o = [ g <o
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= g is integrable.

W=[F-9=[f-J.9 las[.g <]

PROSITION:14

Let f be a non-negative function which is integrable over a set E. Then
given € > 0, there exists a § > 0 such that for every set A subset of E with

MA< §wehave [, f < ¢
Proof:
Case (i):
Suppose f is bounded. Let e > 0 be given.
If AcEsuchthatmA<gthen | [, f1< [, |f]|
<[, M=M.mA)<M.5=¢
= | fAf | < ¢
Case(ii):
Given f, Define f,= min {f , n}
= f,< n= each f, is bounded and lim,,_,, f;, (x) = f(x)
Also {f,,} is an increasing sequence of measurable functions.
=.By Monotone Convergence Theorem, we have [ f = lim,_, [ f

Let &€ > 0 be given, there exists N such that [ f >/ f-%

Now, [(f = fi)=ff = [ fu <5 Letd=—.
IfmA<8then [, f=[,(f — fn) + fu
=[,f—fv+ [, S

=—+NmA [~ fy =min(f, N)]

T2

€ £ £ _
fAf < 5+N8-2+N —=¢
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z&f<s

Theorem: 15

Let {f,,} be a sequence of non-negative measurable functions which
converges to fand suppose f,, < f,forallnthen [ f=lim,_, [ f,

Proof:
Let lim,_, [ f,=f
By Fatou’s lemma, [ f < lim [ f,----------- (1)

Since f,, < f we have, [ f, < [f, foralln.

From (1) and (2), lim [f, < [f <lim [ f,
But ll_mffn S%J‘fn

= ll_mffn=ﬁffn=ff
=> lim[f,existsand lim[f,=[f

Example :

The Monotone Convergence theorem need not hold for decreasing sequence of

fa-
Soln: Consider the function £, (x) = X[n,001(X)

Then [ fo=J X[n,e)(x) =m [n,0) = oo, for all n.
Also f,, is decreasing to zero function and so f=0 =1lim,,_,, f,, (x)

= [ £=0. But [ f#lim [ f,.

2.3 General Lebesgue Integral
Definition:
By the positive part f* of a function f, we mean the function f*=fvo
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(ie) f* (x)= max {f(x), 0}
Similarly, we define the negative part f~ by f~=-fvo
(ie) f~(x)=max {-f(x), 0} or f~x = - min {f(x), 0}
If fis measurable and so f*and f ~are measurable.

Wehave f=f*—f~and|fI=f*+f".

Definition:

A measurable function f is said to be integrable over E if f* and f~
are both integrable over E and we define [ f = [ f*— [ f~.

PROPOSITION:16
Let f and g be integrable over E, then

(i)  the function cf is integrable over Eand [ cf =c [ f
(ii)  the function f+g is integrable over Eand [.f +g= [ f+ [, g

(i) If f<gisae,then [ f< [ g
(iv) If A and B are disjoint measurable sets contained in E, then

Jaug £ = I f +1sf
Proof:
(i) Supposec>0
Then,cf=c(f*—f")
=cft—cf”

and cf *and cf~ are non-negative integrable functions.

= cf is integrable, when ¢ >0
fECf = fECf+ _Cf_
= Jgcf* = J.cf~ [By Definition]

=cfpfT—cfpf”
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=clfp = I f7]

Jpef =clf
Suppose ¢<0, Letc=-d,d>0
Now, cf = (-d)f

cf=(-d)(f*—f7)=-df* +df” =df-df”*
and df * and df~ are non-negative integrable functions over E.

= cf is integrable, whenc <0
[yof = [ydf = —df*
= [,df ™ — [.df* (by definition)
=df fm-d[f*
=d[f, [~ = [ f7]
= —clfp 7= [ 7]
=clfpf" = ff7]

Jpef =cl,f
(i) Letf = f; — f, where f; and f, are non-negative integrable functions.
= fr—fT=hH-1

> fr+ A=A+
> [fr+h=[A+f
[ft+[fa=[fi+[f (byproposition 8)
=>[fr=Jf=A-[F
> [f=[A-[f - 1)

Now Suppose f and g are integrable, and
frg=f"—f"+9"—-g”
=(fT+gH-("+9)
Also f* + g*, f~ 4+ g~ are non-negative integrable functons over E.
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By (1), [,f+g=[(*+g")—[,(f"+g7)
U R AR A A
ol R S A T
L f+ra=1f+/;9
(iii) Let A ={x/ g(x) =0}, B = { x/ f(X) = o0}
= BcA (as f<g)
On E-A, g - fis well-defined, finite and g - f > 0 almost everywhere
[as fand g are integrable]
AlsomA=0, [(g=[g+[,_,9
= fpa9=J_,ft@—D
= fE—Af + fE—A‘g _f

By proposition8, [, g—f=0 [-g-f>0aeonE-A]

=[p9Z g f =g+, S [ mA=0]

=J.f
> J,9= [.f
iv) fAuBf =ffxas = f(xa+xs) =[fxatTxs

=[fxatffxs=[,f+[,f.
Dominated convergence theorem (or) Lebesgue convergence theorem

THEOREM:17

Let g be integrable over E and Let {f,,} be a sequence of measurable
functions such that |f,,] <g on E and for almost all x on E, we have

f(x) = lim,,_., f(X). Then [ f =lim,_, [ fn -

Proof:
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Since g is integrable, f, is measurable and |f,| < g.We have
each f, is integrable.

Therefore, m {x| f,,(x) = ©} =0,V n.
So ignoring set of measure zero, we can assume |f,,(x)| < « forall x € E.
Consider g —f,, Now £, < |f,| <g Yyn = g—f, =0
Also f=lim, . f,= lim, . (g—f,)=9—f
By Fatou’s lemma , [g—f <lim[(g— fu).
= [g-[f<[g-lm[f
= [fzm[f, >@© [+fg<=]
Also [filsg = -9=<fusyg
= g+f,=20,vn and lim,,g+f,=9g+f

By Fatow’s lemma , [g+f<lm[(g+ fp)
= Jg+[f<[g+lim][f,
=> [f<im[f>®@ [[g<x]
From (1) and (2),
[f<limff<lim[f,<[f
= lm[fy=lim[fi=[f.
= lim [ f, existsand lim [ f, = [ f.

PROPOSITION:18 [Generalization of Lebesgue convergenceTheorem]

Let {g,} be a sequence of integrable functions which converges
almost everwhere to an integrable function g. Let {f,,} be a sequence of
measurable functions such that |f,| < g, and {f,} —f almost everwhere if

[g=1lim [g, then [f=Ilim [f,.

Proof:
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Let g, — g almost everwhere.
Let D={x/g,(x) does not converges to g(x) }. Thenm D=0
= [,9,.=0,Vn and [ g=0
So we can assume that g,(x) —» g(x) ,forall x€eE.
Similarly, we can assume that f,,(x) = f(x), for all x€ E.
Since g,, is measurable, f,, is measurable and |f,,| < g,
= each f, is integrable as each g, is integrable.
Consider g, —fn», Gn—fn=0,Vn
and lim,,..(g, — f») =9—f, ignoring a set of measure zero.

By Fatou’s lemma, [g—f <lim [ g, — fa
= [g-[f < lim[gy—lim]f
= [g—[f=Jg-lm[f [:lim[gy=]g]
> [fzlim]f, [+] g <]
Similarly, we canprove [f<lm | f,. «~ [f=1lm [ f,.

PROPOSITION:19
A measurable f,, = f is integrable over E iff |f] is integrable.
Proof:
Suppose fis integrable over Eand f = f*— f~
= f* & f~ areintegrable (by definition) over E.
Jff<w and [f~ <o
Now , fl =f"—f~
= Jlifl=Jf"+[f <o
= [|fl <o = |f| is integrable.

Conversely ,
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Suppose |f]| is integrable over E.
To Prove: f isintegrable.
Given f is measurable. = f* are f~ are measurable
Also |fl=f"+f"
Now f*<|fl and [~ <|f]
= [f*<[Ifl <wand [f~ < [Ifl <o
= f* and f~ are integrable = fis integrable.
PROPOSITION:20
If f is integrable over E, then |[ f| < [|f] .
Proof:
Since f <|[f|] and —f < |f]|
= [f <[Ifl and = [f < [If]
= [f z - [lIfl
=>— [Ifl<ff<[Ifl
= 1[fI<[Ifl.
Example:

Prove that the function % is not lebesgue integrable over [0, ) .

Soln:

We know that the measurable function f is integrable iff If] is
integrable.

Now, consider the integral,

nmw |sinx | _ n T |sinx |
fo . dx = Y, R b dx

_ n J«Tr |sin(y+(r—1)7t) |
=1Jo ' (+(er-nm)

[putx =y + (@ —1Dn) ,dx = dy
x=—-1nm,y=0

53



X=1m,y =mn]

_ ;}_1 J-On |sin (y+r(77;—1)7't) |dy

[+ —-—Drn<rm, 0<y<nm]

n_ 2 fon |sin(y+(r—1)7r) |dy

r=1 o

vV

n ; fy |sin y |dy

n iﬂ fonsin ydy
m

ro1 — [-cosy]

n 1 n 2 2 on 1
= -4 — |-cosm + cosOf = - = E -1
r=1 o [ ] =1, T &r=1 .

. co | sinx
hmn_)oof0 | » |dx

2 1 2 1
> hm — Tl_ —==V®  _ =0
= n—-oo an—l r n_Zr—l r

nm | sinx
fo | |dx=00.
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UNIT I
COMPLEX ANALYSIS
3.1 Complex Numbers

Algebra of complex numbers:

Definition:
A complex number is an ordered pair of numbers C = {(a,b) / a,b e R}
Notation:

The complex number (a, b) is written as a + ib where | =v/—1
REMARK:

The set C= {(a,b) /a,b € R }is a field under the operation of
addition and multiplication defined by

i) (a,b) + (c,d) = (at+c, b+d)

i) (a,b) * (c,d) = (ac-bd ,ad+bc)
Conjugation and absolute value

The transformation states z = x+iy to z = x-ly is called complex
conjugation.
NOTE:

1) A number is real iff it is equal to its conjugate .

2) Conjugation is involuntary (i.e) z =z

3).R€(Z) =y = (x+iy);—(x—iy) _ z;—z‘

x+iy)—(x—i z—Z
4)Im(z) =—y= ( Y)Zi( y) — ~
5) 1) z1+2,=2; + 73
W) 212, =717,
6) zZ = (X+iy)(x-iy) = X° + y*
7)Vzz is called the modules or the absolute value of z and it is
denoted by | z | , | z | 2= 77= X*+y?
8) i) |zz:| = | &1 | ]|
i) |z]|= |z
9 |ztze| < |z | +] 2]
| 2142, | = (24 2) (714 22) = 2121 + 2423 + 207, + 2075
= |z || 22| * +2Re (213)
<|z|*| z|* 2|2z |
=z || z|* 2|z | z]
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|Z1+Zz|2S(|Zl+22|)2
|2+ 22| < |z | +] 2]
10) | 20422 |4 | 71— 22| 2= 2 | 21 | % | 2
|Z1+ Zz|2+|21-22|2=(21+ 25)(Z1+23)* (21— 22))(Z1 — Z3)
= |z || z|?+2Re (2123) + |z | +]| 2| *- 2Re (2123)
|t 2 |* | 2o|* =2 | 42| 7

NOTE:
By induction hypothesis
) |zl+zz+ ........ +zn|S|21|+|zgl+.....+|zn|

i) —|z|SRe(z) S|z|
i) -|z| < Im(2) < |z]

SQUARE ROOT

Let\/a+if =x+1iy (a,pf real numbers)
a + if = (x+iy)? = X°—y* + 2ixy

Equating real and imaginary parts

=Xy (1)

B =2xy
We have to solve forxandy
(X2+y2)2 =(X2_y2)2 +4 X2 y2

(1)+ (2) gives 2x*=a+/a? + B2 and 2y’=-a+/a? + B2

a++f a?+p> —a++] a?+p>
> x= /—”zw and y= /—”Z ALl

The signs of x and y are so chosen that 2xy = j is satisfied

Ja+if =x+iy

. /—Vzﬁ +i|:%| /—Vzﬁ  provided B0
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If § = 0 then square root is Va if o =0
Modulus — Amplitude form of a complex number:
P(r.0)

r y

Fig. 3.1

Any complex number can be written of the form z=r ( cos © + i sin O),
where © =amp z =arg z and r = |z|. Then we have x=r cos © and

y=rsin©and r=|z| and ©=tan™(y/X) .

PROBLEM : 1. Show that the area of the triangle with vertices z; z,, z3 is

: |211% (2,-23)
given by ) T

The area of the A ABC = %4> X1 (Y2-Ys)
X1 y1 1

1
> X, Yo 1
x3 y3 1

x,+iy, iy, 1
X, +iy, iy, 1
X3 +1iy; iy; 1

i(z1—-Z1
Zl ( 1 . 1) 1
21
1 i(z,—-Z,
:_. Zz ( 2 . 2) 1
21 21
Zs i(z3—Z3

2
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L zy (z1—21) 1
== Z, (2,—73) 1
zz3 (z3—273) 1

Zl Zl 1 Zl _Z_l 1
1 1 —
= - ZZ ZZ 1 + - Z2 _Zz 1
41 41 —
23 Zg 1 23 _23 1
Zl _Z_l 1 Z_1 Zl 1
— 1 —
=— Zy —Zy 1| = — Zy Zy 1
41 = 41 —
Z3 _Z3 1 Z3 Z3 1

-1y _
—4i221(22 Z3)

Problem 2: Show that the equation of the circle with centre o (complex) and
radius ris zz - oz -a_ z +af* r*=0.

Solution: Let C be the centre and P(z) be any point on a circle then
CP=r s|z-al=r =|z-af=r* = (z-a)z—a)=r

> 7Z-20-0Z+ 00 =P zZ-0z-az+|of-r’=0

Problem 3: Prove (i) |1a—_c_lbb| = 1 if either |a]=1 or |b|=1. when will be the
-b

equation true if |a|=|b|=1?. (ii) If |aj<1 and |b|<1 then prove that |1a_ﬁ| <1

Solution: (i) Consider laj=1 = aa=1
Let w =22
1-ab
w o= 22 -9 -log —in
aa—ab a(a—b) a
w = (lay(l/a= — = — =1
ww = () ()= - = s =
Wl = 1= jw = 1
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2« |22 = lifeither|a|=1or|b|=1
1-ab
Let |a=|b=1
Now 13521 = 125! = iy

Therefore, |%| = 1is true only if a%b

But we have |a] = 1 = |b] and hence the equation is true only when arg a # arg b
(if) Given |a] < 1 and |b| < 1.
To Prove [a-b|<|1-ab| (ie) T.P |a-b]* <| 1-ab|*(ie) T.P |a-bf’— |I-ab|*<0
Consider  |a-b]?— |1-ab[*= (a-b)(@-b) — (1-a b)(1-a b)
=aa— ab— ba+bb— 1+ ab+ab-aabb=[a*~1+|bf- [a]*b]?
= (la-1) - Ibl*(fal*-1) = (la*-1) (1- |b]*) <O
b

Hence |1a;7)| <1.

Cauchy’s Inequality:
Leta,bi(i=1,2,........... ,n) be complex numbers

X a bl < Qki(aD?) Ea(bD?)

Proof: Let A be any complex number and we assume that not all b;’s are zero
[If all by’s are zero, then the given in equation is clearly true.

Consider " (la; —Ab,|?) =0
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(i€) iy Jail “+f ity [bi]*- 2Re X T (aib) 20
This is true for any complex number A and for any A = Zg;#ﬁ)ibl?
i=11Yi

Hence we get

Titg aibil®
% Y™ (|b;])? - 2Re =L —
Zi:llbll

n |a.|2+
=117 (S, by]?)

n a4 S @O, IEEa@bd? o
=111 Z'{Lzllbilz Z?zllbilz =

ISE@bdl

i=1 |ai|2- TYE =
IS abl® < Xk layl® T, bl

Lagrange’s Identity

ISk i) = Ty lai)* Xy Ibil” - Ticjlasb; — a;b;)?

where aj, a... a, and by, b,.... b, are arbitrary complex numbers. Deduce the

Cauchy’s Inequality.
Proof:

2 2
?:1 |a;]| Z?:l |b; |

= a1§1b151 + ara, bng o,
aia; ann + aa, b363+ ara, b4B4 o
bb;a,a,+ .......... + b;b; aya, + byb, azas+........ + byb, 8yt
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We know that |a-b|* = |a]* + |b* -2 Re (ab)
Yisicjen l@iby — ajb |*= Yicilaib|? + Xicjla;b, |* — 2Re ¥ a; b, @b; ----(2)
(1)-(2)
i=1 |ai|2 Di=1 |bi|2 - Zi<j |aiB] - ajHJZ
=YL |aibi|2+ Yi<j |ai5]|2 +Yicj |aj51 |% - Yi<j |01i51|2 - Yi<j |aj51 |2
+2Re X< a;b, @b;

= | S0 ahi|® + ReXicjah; @by oo, (3)

Now, |X™,ab;|* = (aibi+ abot........+ anby) + (@bi+ Bbot oo +@yby)

= albl 5151 + azbz 5252‘*‘ ............ + anbn Ean+ a]_b]_ 5252"' a]_b]_

= | Xieq aibi|2+2i<j a;b;a;b; + Yi<ja;bja;b,
= | 3L, aph;|*+2Re X abagb ... (4)
From (3) and (4)
| Dl aibil*= Bty lail® Xy Ibil” - Zacicjen laibj_a;b;)?
Deduction:
Since ¥1<i<j<n la;ibj_a;b;|* =0
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Yasicjen laibj_ajb;]?> <0

ie) |Z,ab)’ < X%, &’ X%, |bs|%, which is the required Cauchy
inequality.

NOTE:

The equation of a straight line can be written as z = a+bt, where t is real.

Z—a —a Z—a

=0. If Im
> (0 then itis left half plane.

N =t=real =Im 2 < 0 then it is right half

plane and if Im =2

Spherical Representation
The system C of complex numbers can be extended by introducing the
symbol oo, Now its connection with finite numbers is given by

atoo=co+ta=ocoV finiteaand b.oco=o00.b =00V b=+ 0including b = co.

Further, oo + oo and 0. oo are not defined

%zoo‘v’a;to , —=0Vb = oo. We call o as the point at co.

(ee)

Extended complex plane

The points in the plane together with the point at co form the extended
complex plane.

1. Every straight line shall pass through the at oo (Ideal point)
2. No half plane shall contain the ideal point.
Stereographic projection
It is a geometric model in which all points of the extended plane we have

a concrete representation.
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Consider the unit sphere S whose equation is x;°+ X,*+ X5°=1 with every
point on S except (0, 0, 1) we can associate a complex number z = L% and

1—X3

this correspondence is 1-1.

FIG. 3.2 Stereographic projection.

2 2 2
2 _ X1°txy,  _ 1-Xx3 2 2 2 _

Now, |z|” = Ar? ~ (ox)? [as X" X"+ X3° =1]

_ 1+x3 z X _ |Z|2—1

1—x3 3 |z|2+1

.. Z+Z zZ—-2Z
imilarly, x; = n X, =
Similarly, 1Z|2+1 and 27 i(jz|2+1)

The correspondence can be completed by letting the point at oo
corresponds to (0, 0, 1).

=~ We can regard the sphere as a representation of the extended plane or of the
extended number system.
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Note that the hemisphere x5 < 0 corresponds to the disc |z| < 1 and the
hemisphere x3> 0 corresponds to its outside |z| < 1.

In function theory the sphere ‘S’ is referred as the Riemann sphere.

If the complex plane is identified with (X1, X,) plane with x; axis and X, axis
corresponding to real and Imaginary axis respectively then the transformation

X1+iX2 . . . . .
z=—— takes on a simple geometrical meaning. Now writing z = X + iy

. +i
We have x +iy =22
1—X3

Equating real and Imaginary part

X1 X2
X = =
1—X3 ! y 1—X3
x y 1
X = L = N X:y:-1=X;: X, X3-1
x1 . o (or) y 1:X2:X3

The points (X, y, 0), (X1, X2, x3) and (0, 0, 1) are in a straight line.

Hence the correspondence is a central projection from the center (0, 0, 1). It
iIs called a stereographic projection. It is geometrically evident that
stereographic projection transforms every straight line in the z-plane into the
circle on S which passes through the pole (0, 0,1) and the converse is also.

More generally, any circle on the sphere corresponds to circle or the straight
line z-plane. To prove this we observe that a circle on the sphere lies in a plane
o X1t 0oXot 03X3 = 0 and a12+ (122+ oc32 =land0<o0p<1

Z+Z z—Z |z|?-1,  _
* (|z|2+1) "o (i(|z|2+1)) o (|z|2+1) %o

w(z+Z)-iax( 2-Z) + ag(|z]* - 1) = oo(1 + |2)
12X -10p(2iy) + (05 — ag) |2 = 0o+ 0ta

(X2 + yz)((lg - (X,o) +2X+2 oy - ((X.o + 0.3) =0
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For ag # ag, this is the equation of the circle.

For o = a3 It represents as a straight line.

Conversely, the equation of any circle or straight line can be written in this form.
This correspondence is consequently one to one.

To calculate the distance d(z,z") between the stereographic projection of z and z'.

The points on the sphere are denoted by (X1, X», X3) and (X{', X5', X3")

d(z,2) = (x1 — x1)? + (X — x3)% + (X3 — X3)?

= /2 — 2(X1X] + XX} + X3X5)
Consider,

(z+2) (2 +7) - (z-2) (2’ -2+ (|z12-1) (|2’ - 1)
(1+]z|?) (1+12"1?)

X1 X1+Xs X ’+X3 X3' =

_ 22" +272' +72+77' - 27" +27' +72' -77' +(|z|*-1) (|Z'|?-1)
(1+]z12) (1+12'1?)

2
_ 2(zZ'+zz2")+|z|%|2' |2~ 1z|2-|Z' | +1
(1+]z|?) (1+12"1?)

Az +0)(1+ |2/ [*)-|2?|2'| 12>~ |2'|*~1+2 (22" +22" )+ [z |2 | ~ 2>~ 2’|+ 1

N (1+z]?) (1+]2'1%)

2 (|Z|2+|Z'|2—(ZZ’+ZZ'))
1+z12)(1+1z'12)

=1-

2|z—7'|?
(1+1z|?) (1+12"1?)
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. N _ _ 2 |z—2'|2 _ 4 |z-z'|2 _ 2|z-2'|
~d(z,z) \/2 2(1 (1+|z|2)(1+|z'|2)) \/(1+|z|2) (1+1Z'12)  JA+1zP)A+Z' %)

For z' = oo the corresponding formula is

d(z,®) = /(%1 — 0)% + (x — 0)2 + (x3 — 1)

=/ +x2+x2) +1—2x3=/2—2x5 =/2(1 —x3)

=7 |1 - =D \/—\/ (1+z[2-2)

(1+|z Iz) 1+z/?

-\/’\/1— (1-=%) =v2

2
1+|z|2 ./1+|z|2

1+|z|?

Problem 1 Show that zand z' corresponds to diametrically opposite points to
Riemann’s sphere iff zz’ = -1.

Solution: Let the diametrically opposite points be (o, 3,y) and (—a, —f3, —Y)

- o+if ; S = —a—ip
1-vy 1+y
—r _ atif (-atif)  _ -pP-a®  _yP-1 _ 2 1 Q2 L2 —
7z =T a1 =1z - 1 [asa”+B°+vy =1]
Conversely, zz'=-1
Let 2= Since zz=-1, (Bz--1
1-y 1-y
5l = -(1-vy) S = —(A-y) _ -y (atip) _ —(A=y)(a+iB)
atif) 7 a-if (a-iB) (atip) o?+ (2
— —=y)(a+if) _ ~(A-y)(a+ip)
1-y? 1-y)(1+y)
,=—O(—iB
1+vy
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Therefore, z = (a, B,y) then z’' = (-a, =, —Y)
Therefore , z and z' are diametrically opposite points.

3.2 Analytic Functions
Introduction to the concept of analytic function
There are four different types of functions

1. Real function of a complex variable

2. Complex function of a real variable

3. Real functions of a real variable

4. Complex functions of a complex variable

Notation:

W = f(z) is to denote complex function of a complex variable for the
remaining three functions, we use y = f(x), where x and y be real or complex. If
a variable is definitely restricted by real values, then we denote it by t. All
functions must be defined and consequently single valued.

Limit and Continuity:

Definition :

The function f(x) is said to have the limit A as x tends to a.

lim, _, , f(x) = A —(1) if and only if the following is true

For every € > 0 ,there exists a number &6 > 0 with the property that
[f(x)-A| < € for all values of x such that [x-a] < § and x # a.
Formegn (1), lim,., f(x) =4 - (2)

From (1) and (2), lim,._,, Re(f(x)) = Re(A)— (3a)
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Similarly,  lim,_,, Im(f(x)) =Im(A)— (3b)

Conversely, (1) is a consequence of equation (3a) and (3b).
Definition:

The function f(x) said to be continuous at x=a iff lim,_,, f(x)=f(a).

f is continuous iff f is continuous at all points where it is defined. The sum and

¢ f00
g

product of two continuous functions are continuous. The quotien ) is defined

and continuous at a, provided g(a) #O0.
If fis continuous, so are Re(f(x)), Im(f(x)) and [f(x)| is continuous.

The derivative of a function:

N 1 f0)—-f(a)

f'(a) = limy,q = ———

The usual result for forming the derivative of a sum, a product or a quotient are
all valid. The derivative of a composite function is determined by the chain
rule.

There is a fundamental difference between the cases of a Real and Complex
Independent variable.

Result: The real function of a complex variable either has a derivative zero or
else the derivative does not exist.

Proof:  Let f(x) be real function of a complex variable whose derivative exists

at z=a . Then f(a) is on one side is real, for it is the limit of the quotient
f(a+h)—f(a)
h

of the quotient

as h— 0 through all real values, On the other side, it is also the limit

HarV@ and as such purely Imaginary.

Since f'(a) exists and is unique and it is both real and Imaginary = f'(a) =0

Example: W =1(z) = |z
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Aw = |z+Az) - |2 =(z+Az) (Z+Az) -2Z2 = zZ+zAz+ZAz+A777Z -7

Aw zZAz  _  —

— = —+Z+AZ . (1)

Az Az

: A : — d
When z =0, llmAZ_>(,A—VZv =limp, oAz =0 =>d_vzv =0

When z# 0, Let Az —0 through all real values

Take Az=h |, Ezh.Then,AA—VZ”=Z+z+h

dw Aw _
— =lim —=7z+7Z- (2
dz Az—>OAZ ()

Az— 0 through purely imaginary values, Az = ih and Az = -ih

When Az-> 0=>h-0

From (1), Z—V: S Z AT e (3)
From (2) and (3), i—vzv does not exist when z = 0, since the limit is unique.

Therefore, i—vzv exists only at the origin.

The case of a complex function of a real variable can be reduced to the real
case.

z(t) = x(t) +iy(t) = 2'(t) =x'(t) + y'(©)

The existence of Z'(t) is equivalent to the simultaneously existence of x'(t) and
y'©®-

Analytic Function:

The class of analytic function is formed by the complex functions of a complex
variable which posses a derivative whenever the function is defined.
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The sum and product of two analytic functions is again analytic. The same
Is true for the quotient % of two analytic functions, provided that g(z) also not

vanish. In general case, it is necessary to exclude the points at which g(z) =0.

The definition of the derivative can be written in the form

f'(z) = limp_ o2
As a first consequence, f(z) is necessarily continuous .

h[f(z+h) — f(2)]
h

For, f(z+h)-f(z) =

h(f(z+h)—f(z))

limy,_,o(f(z + h) — f(z) = limy_p = = 0f'(2) = 0.

Therefore, limy,_,, f(z + h) = f(z) . Therefore, in general the converse is not
true.

Example: f(z) = |z It is continuous at all the points.  But it is not
differentiable when z # 0.

If f(z) = u(z) + iv(z) is continuous then it implies u(z) and v(z) are both
continuous.

Theorem 1: Let w = f(z) = u(x,y)+iu(x,y) be differentiable at any point in a

region D . Then the partial derivatives uyu, and v,,v, exist and satisfy the

. . _ _ s you_ov  du_ 0dv
Cauchy Riemann equations uyx=Vy, Uy=-Vy (i.€) %y b oy ax

Proof:

Let f(z) = u(x,y) + iv(X,y) be analytic at any point z of the region D.
Therefore, f(z) = lim;,_ —f(”h})l_f(z)
of the path along which h = 0.

exists and is unique . (i.e) It is independent

u(x+Axy)—u(x,y) v(xX+AXy)-v(Xy)

Ax

If h = Ax then f'(Z) = limAX_>0 +i limAX_>0
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ou . o0v of
=t ] — = —
ox I ox ( ax)

Therefore, f'(z) = u,+ ivy, —(1)

Since f'(z) exists, the above limit exists which means that uyand v, exist.

Ifh=idy | (2)=limgy o 00 4 lim,, o WX

ou_ov _ of

ay ay oy

f'(z) = -1 uytvy— (2)

Since f'(z) exists, the above limit exists which means that uy and vy exist

Since the limit should be unique, from (1) and (2) Uy + 1Vy= -1 Uy + vy
Equating real and imaginary parts, we have u,= v, and uy = -V,

These are called C-R equations.

The following theorem is the sufficient condition for function is to be analytic.
Theorem 2: If u(x,y) and v(x,y) have continuous first order partial derivative
which satisfy the C-R equations , then f(z) = u(z) + i v(z) is analytic with
continuous derivative f'(z).

Proof:  Letf(z) = u(x,y) +iv(X,y) where uy,=vy, U, = -V

Now, f(z+h+ik) - f(z) = f(x+iy+h+ik) - f(x+iy) = f(x+h+i(y+k)) - f(x+iy)

= f(x+h+i(y+k)) - f(x+iy)

= u(x+h,y+k) + i v(x+h,y+k) - u(x,y) - i v(x,y)

= u(x+h,y+K) - u(x+h,y) + u(x+h,y) - u(x,y)
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+i [v(X+h,y+k) - v(x+h,y) + v(x+h,y) - v(x,y)]
Using mean value theorem we get,
u(x+h, y+k) - u(x+h,y) =ku,(x + h,y + 6,k) (0<6,<1) [+ u, exist]
= K(uy(x,y) + 4;) where A; - 0as h— 0, k— 0 [+ u, is continuous]
u(x+h,y) —u(x,y) = hu,(x+hé, ,y) (0<6,<1) [+ u, exist]

= hu, ((X,y)+4,] where 1, — 0 as h—=0, k=0 [+ u, is continuous]

a_u
ox

u(x+h , y+k) —u(x, y) =h 2 +k Z—;‘ + ha,+ ki,

) )
=h£+k£+€1 where €, =A,k+hi, &
where 4; 4, — 0 as h—0, k-0
Similarly,

v(x+h,y+k)—v(X,Y)=hg—Z+kg—;+€2 where €, = ki, +hi,

where A; - 0,4, » 0ash—-0, k-0

Taking limit h+ik -0

kA, hA, kA hA
L —L = * 50 [ash— 0,k= 0,and A, 1,15 A, — 0]
h+ik  h+ik  h+ik h+ik ) T4,
€1 =) .
n—— >0, — >0 ash+ik» 0
h+ik h+ik

~f(z+h+ik) — f(z) = u(x+h, y+k) —u(x, y) + i(v(x+h , y+k) — v(x , y))
_ . 0u Ju . ov ov
_h5+k5+81+|(h£+k5+82)

_ du . O0v ou . ov .
—h(a""a)"‘k(@""@)"'&""sz
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d ) -0 . 0 .
NG ) K G IS B & [ =y wy = 0]
_ ou  .0dv . 0u . dv .
=hG i) PIKG I )T EHIE,
_ . ou  .0dv .
—(h+|k)(a+|a)+€1+|€2

1+ g

fz+h+ik)-f(2) _ 6_u + Ia_v
B h+ik

+ limy, . ;
h+ik dx dx h+ik—0

Hence, limy k-0

ou .OJv
=4 | —
dx ox

Since u, and v, exist and are unique, f '(z) exists.
Hence f(z) is analytic at an arbitrary point z. - It is analytic in a region.

Hence the theorem is proved.

It is observed that as the C.R equations are necessary condition for
differentiability, if they are not satisfied at a point then the function is not
differentiable at that point.

Note that as f ‘(z) = u, + iv, then |f'(z) |? = |u, + iv,|?
= w2+ 0,2
= VU, + U (Uy) [V Uy=- Uy U =Dy ]
= Uy - Uy

We shall prove later, the derivative of an analytic function is itself
analytic.

= u and v will have continuous partial derivatives of all order and in particular
the mixed derivatives will be equal.

From the C-R equation, u, =v, and u,=- vy
D Uy = Vyy  ANA Uy, = - Vyy,
= Uyx = - uyy [ vxy = vyx]

= Upy + Uyy, =0
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%v _

. 9%u |, 9%u _— 9%v
=-— + = = 4+ — =
(ie) Au=—— ;= 0. Similarly, Av=-— 372 0

ay?

A function u satisfies the Laplace’s equation Au =0 is said to be
harmonic.

~The real and imaginary parts of an analytic functions are harmonic.

If two harmonic function u and v satisfies the C-R equations then v is said to
be harmonic conjugate to u.

If v is a harmonic conjugate of u then —u is the harmonic conjugate of
v and conversely.

It is also true that the harmonic conjugate is unique except for an additive
constant.

Observation: f(z) is analytic function on D if and only if v is harmonic
conjugate of wu.

If f(z) = u(x,y) + iv(X,y) is analytic.

= u and v satisfy the C-R equations.

= Vv is a harmonic conjugate of u.
Conversely

If v is a harmonic conjugate of u , by theorem 2, the function f(z) =
u(x,y) + iv(x,y) is analytic.[for this purpose, we make the explicitly that u and v
have continuous first order partial derivatives]

Example 1:
Find the harmonic conjugate of a harmonic function u(x,y)=x2 - y2.
Uy =2X ,  Uy=-2Y
Using C-Requations, v,=2Xx and -v,=-2y = v,=2y
Consider wv,=2y. Integrating w.r.to x keeping y as constant
VI2yX+ ply) =v,=2X+¢@(y)
=2X=2X+¢’(y) = ¢’ (y)=0

= ¢@(y) = c (a constant)
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LV=2xy+cC
f(z) =u+iv =x2 -y2 +i(2xy +c)
-yZ +i2xy +ic
=(x +iy?)+ic = z%+ic
Example 2:

Consider a complex function f(x,y) of two real variables. Let z = x + iy,
Z=X-lyand x = Y = -|(—) With the change of variables we can consider
f(x,y) asa function of z and z which will be treated as independent variables.

d of o0x of 0
Soln: _f:_f_+_f_y
dz O0x 0z O0dy 0z

Tt =5 GL-idl

_6x2
of _of ox , Oof 9y
9z 0x "9z dy 9z

_of1, _1 O L Of
_6x2 () 2 ‘0x Iay

. : of _ _.of
If f isanalytic then pl lay

of | .of
6x+ ay_o :>a- 0

=
= any analytic function is independent of z and a function z alone.

Corollary 3:
This formal reasoning supports that analytic functions are true functions of

a complex variable as opposed to functions which are more adequately described
as complex functions of two real variables.
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By similar formal arguments, we derive a simple method which allows to
compute without the use of integration.

The analytic function f(z) whose real part is given harmonic function u(x,y)

[given a harmonic function u without the use of integration we are now going to
determine the analytic function f(z)].

Note that Z—£ =0 = f(2) may be considered as a function of Zz , denote it

by £(2)

> u(xy) = > [f(2) +i ()]

;L@ +i f@)]

~ [ f(x+iy) + i f(x-iy)]

This is a formal identity. ..It is reasonable to expect that it holds even when x
and y are complex.

Letx=%/7 \¥Y=%/3i

U( %)y %)) =@+ FO coe (1)

Since f(2) is only determined upto a purely imaginary constant we may as well
assume that f(0) is real.

= f(0) =u(0,0)

~f@=2u( %/, %/y;) - u(©0,0) [By (1)]

A pure imaginary constant can be added at will.

NOTE: In this form,the method is definitely related to the function u(x,y) which

are rational in x and y for the function must have the meaning for the complex
values of the arguments.
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Example 3: Show that the harmonic function satisfies the formal differential

equation -
q 020z '
) . . . . 0%u  9%u
Soln:  Given, uisaharmonic function. = Au=0 == + 352 =0
0’u _ 9 duy, _ 0 du Ox  Ou Ody
Now, 020z 62[62] Y [ax "9z 9y 0z

Jd Ou Jdu , -1 10 Odu A .0du
= —|—.-+—(— =——|—+1—
6z[ax'2 ay(Zi)] Zaz[ax Iay]

1 .92 2 Y 2
_6_uax+au a_y+ J0“u  Ox aua_y

2 Yox2 "8z oxoy oz (axay'a_z 3y? " 9z

_10%u 1 v 1, . d%u 1, .0%u 1
29x2 "2  o9xdy " 2i oxdy " 2 oy? " 2i
_ 1 9%u . 0%u . 0%u 0%u

= - -1 +1 .
4 [sz dxdy 0xdy dy? ]

1 0%u  9%u

:——+—]: iO:O

4 “9x? dy?
. 02 0% 0%
Aliter: — +— =
0x2 dy? 0z0Z

Theorem 4:

If f(z) = u +iv be an analytic function in a region D,then prove that f(z) is
constant in D. If any one of the following conditions hold ,

(1) £°(2) vanishes identically in D.  (ii) R[f(z)] = u = constant.
(iii) Im(f(z)) = v = constant. (iv) [f (2)| = constant.
(v)arg f(z) = constant.

Proof: Now f(z) =u +iv
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v _ 0
f(z)——x |£ —é- —(ByCReqn)

(i) Now, f“2)=0 = u+ iv,=0 = v,—iu, =0
=>u,=0,v,=0,u,=0,v,=0

= U and v are constant on any line segments parallel to co-ordinate axis.
But any two points in D can be joined by such parallel lines.

= f(2) is constant.

i u=ai u_q du_
(i) u=aisconstant = aX—O, ay—O
Jou Lo _du jou
£ (Z) x 6x ox ! ady 0
By (i), f(z) is constant.
_ v _ w _
(ili) v=constant = Pl 0, 3y 0

ov _oOv  .O0v
fe z—— | —=—+i—=0
() 0x ox 6y dx

By (i), f(z) is constant.

(iv) |f(2)| = constant = u? + v? = constant

ou ov
=>2u5+ Zva—o .............. (1)

ou ov
2u5+ 2v 5—0 .............. (2)

uX()+v X(2)

u v u ov
s>u?—+uv—+uww—+v?—=0
0x dx ay ady
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= (u? + UZ)Z_Z:O [asZ—;=—%,Z—;=Z—Z]
=>u?+ v? =0 (or) 3—1;:0

Similarly,

=>u?+ v? =0 (or) Z—Z=O

If u?+ v2 = 0thenuand v are constant
Therefore, f (z) is constant.
If u? + v2 =0atapointand it is constantly zero and f(z) = 0.

(v) arg f(z) =c = constant
=>tan_1(§)=c =>§:tanc =>v=utanc = u= cotcv

=kv wherek=cotc 2 u—kv=0 = Re((1+ik)(u+iv))=0
= Re((1+ik)f(2))=0 = (1+ ik)f(z) = constant [By (ii)]
= f(z) = constant
Polynomials:
Every constant is a analytic function with derivative zero. The simple non
constant analytic function is z whose derivative is one. Since the sum and the

product of two analytic functions are again analytic = every polynomial
p(z) = ap+az+......... +a, s an analytic function and its derivative

f'2)=a;+.......... +nay -1 isanalytic. If a,, # 0 then deg p(z) =n.
For formal reason the constant zero is regarded as a polynomial and its
degree is —oo.  Therefore, the zero polynomial is excluded from our

consideration.
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By fundamental theorem of Algebra, P(z) = 0 has at least one root for n > 0.
If P(a;) = 0 = P(2) =(z- a,)P,(2) where P;(z) is the polynomial of degree
n-1. The repetition of this process leads to a complete factorization
P(2) = a,(z- ay)......... (z- a;,), Where aq,....... , &, are not necessarily distinct.
Moreover, the factorization is uniquely determined except the order of the
factors.

If exactly h of ; coincide, their common values called a zero of P(z) of
order h. Sum of the orders of the zeros of the polynomial is equal to its degree.

Determination of the order of zero :
Suppose «a is a zero of P(z) of order h.
= P(2) = (z — )" P,(z) and P,( @) # 0 and successive derivative yields,
Pla) =P (a)=............ =P 1(a)=0.
(i.e) the order of a zero equal to order of the first non-vanishing derivative.

NOTE: Zero of order one is called a single zero and characterized by the
condition, P(a) =0 and P’(a) # 0.

THEOREM 5: (LUCAS)

If all zeros of a polynomial P(z) lie in a half plane, then all zeros of a
derivative P’(z) lie in the same half plane.

Proof: If a;as0a;. ... a, are zeros of P(z). Then P(z) can be written as,
P(2)=an(z-a1)(z-ay)........ (z-ap),where a,#0

Taking log on both sides
log P(z) = loga,tlog(z — a;)+log(z — ay)+...... +log(z — a;,)
Differentiate with respect to z, we get
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Pl(zy 1 1 1
P(z) - z—oq Iz—otzI z—a,

Let the half plane H be defined as the part of the plane where Im (?) <0

If a isin Hand z is not in H

Then we have I'm (Z_b“") =Im (—Z_a+ba_“")

(5 m ()
—Im (zba)_lm(akb—a) >0

But the imaginary parts of a reciprocal number have opposite signs.

Therefore, under the same assumption Im( > ) <0

Z—Qay
If this is true for all k, therefore from (1)

P'(Z)
-,

Z—ay

tm (658 = Im (Sjoy ) =T im () <0

P’(z) # 0

All the zeros of a derivative P’(z) lie in the same half plane H.

RATIONAL FUNCTION

Let R(z) = % be the quotient of two polynomials. We can assume that P(z)

and Q(z) has no common factors and hence no common zero.
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R(z) will be given the value of oo at the zeros of Q(z). It must therefore must
be considered as the function with the values in the extended plane, and as such
it is continuous .

The zeros of Q(z) are called poles of R(Z). R’(z)= Q)P (Z)(;;(Z)Q @ only when

Q(2)# 0.R’(z) has the same poles as R(z),the order of each poles being increased
by 1.

Poles and zeros of a rational function at . [R(o0) = lim,_,,, R(2)]
. 1 .
Consider R, (z) = R (%) . (i.e) R(e0) = R(0)

If R,(0) =0 or oo, the order of the zero (or) the pole at o is
defined as the order of the zero (or) pole of R,(z) at the origin

ag+a,z+--+anpz"
b0+b12+“‘+bmzm

R(z) =

apz+az" 1+ tay,
boz™+byzM ™ 14-+bpy

We obtain, Ry(z) =z™™"

By the power z™~™ belongs either to the numerator or denominator.

Case(i) m>n
= R,(2) has a zero of order m-n at the origin.
= R(z) has a zero of order m-n at oo,

Case(ii) m<n
= R, (z)has a pole of order n-m at the origin
= R(z) has a pole of order n-m at co

Case(iii)
R(e0) = Ry (0) = 3= # 0,0

Since R(oo)is neither zero nor oo
=~ R(z) has neither zero nor a pole at oo
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Number of zeros Number of pole
In the finite In the finite
plane At oo Total plane At o Total
m>n n m-n m m - m
m<n n - n m n-m n
m=n n - n m - m

NOTE:

We can now count the total no of zeros and poles in the extended plane. The
count shows that the no of zeros including those at o is equal to bigger of m and
n.

This common number of zeros and poles is called order of the rational
function.

If a is any constant, the function R(z) - a has the same poles as R(z) and
consequently the same order .

The zeros of R(z) - a are roots of the equation R(z)=a .
Theorem 6

A rational function R(z) of order p has p zeros and p poles and every equation
R(z) = a has exactly p roots.

Proof:
P(z) . .
Let R(z)=—= be arational function.
Q)
. P(z) P(z)— aQ(z)
nsider R(z) —a=——~~ g = ———— 7 - 1
Consider R(z) —a D a 1% (1)
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The numerator and denominator can not have a common factor.

For, if so, it would be a factor of P(z) and Q(z) both and therefore R(z) would
not be in the lowest form. R(z) is not a rational function. This is a contradiction.
It follows that the order of R(z) — a = p = order of R(z). Therefore, R(z) — a has
exactly p roots.

Theorem 7: Every rational function has a representation by partial fraction:
Proof: First to derive this representation R(z) has a pole at o, we carryout the

division of P(z) by Q(z) until the degree of the remainder is atmost equal to that
of the denominator.

~ R(z) = G(z) + H(z) —(1) Where G(z) is a polynomial without constant term
and H(z) is finite at co.The degree of G(z) is the order of the pole at oo the

polynomial G(z) is called the singular part of R(z) at co.

Let the distinct finite poles R(z) be denoted by fi,0, ... B,. The function
R(ﬁj + %) be the rational function of & with a pole at ¢ is equal to co.

- From decomposition (1), R(ﬁj + %) = G;j(&) + H;(§)

o =G () +H (=2

Here G; (ﬁ) is a polynomial in # without constant term called the singular
—Bj —Bj

1

J

part of R(z) at z = g;.The function Hj< )is finite for z = p;.

Consider now the expression, R(z) - G(z) - 2;.’:1 G; (;3) .—(3)
z=Pj

This is a rational function which cannot have other poles than f;,5, ...
o. At z = B, we can find that the two terms with finite limits and the same is
true at oo,
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Therefore, (3) has neither any finite pole not a pole at co. A rational function
without poles must reduce to a constant .

If this constant is observed in G(z), We obtain R(z) = G(2)+ Z?zl Gj ( 1ﬁ )
z=B;j

3.3 POWER SERIES

A power series is of the form ay+a,z+a,z%+...... +a,z"+...... where the
coefficients a,, and the variable z are complex.

NOTE:

Yomeo an (z — 7)™ is a power series with respect to the center z,.consider the
geomentric  series  1+z+z%+........ +z™ L. Whose partial sum is

—zn .
Sy =14z+.. 4z 1 = =% Since z™ —0 for |z]| < 1and |z"| = 1 for |z| > 1,

1-z

=The geomentric series convergent to i for |z| < 1 and diverges for |z| > 1.

THEOREM 8 (ABEL)

For every power series Y.o_,a, z" there exists a number R, 0< R < o
called the radius of convergence with the following properties.

1. The series converges absolutely for every z with |z] < R. If0 <p <R the
convergence is uniform for |z| < R.

2. If |z| > R the terms of the series are unbounded and the series is consequently
divergent.

3. In |z| < R the sum of the series is an analytic function. The derivative can be
obtained by the term wise differentiation and the derivative series has the same
radius of convergence.
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Proof: The circle |z| = R is called the circle of convergence .We shall show

that the theorem holds if we choose R according to the formula
1 1
R limy,_,, sup|a,|» —(1)

This is known as Hadmard’s formula.

Let |z| < R. Then there exists p suchthat |z| <p <R = %> %

By the definition of limit superior and equation (1), there exists a positive

1 1
integer n, such that |a,,|» < % (i.e) |a,|» < %for alln>n, —(2)

|z]

n
= |la,z"| < (E) for large n

Since the power series ) a,, z" has a convergent geometric series as a majorant

and is consequently convergent.

To prove the uniform convergence for |z| < p < R, We choose p’ with p <

p' <R.

1

From (2), We get  |a,| < o

forall n > n,

n |z[\" P\"
= |a,z"| < (—) < (E) foralln>n, [as|z| < p]

pl

Since the major ant is convergent and has constant terms, we conclude
Weierstrass M-test that the power series is uniformly convergent.

If |z| > R, wechoosepsothatR <p <|z|] (i e)% <%

. 1 i 1 . LR |
Since - = lim,,_,, |a, [» = There are arbitrary large n such that |a,|» > .
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2|
p
the terms of the series is unbounded accordingly the series is divergent.

. 1
(i.e) |a,| > po and consequently |a,z"| > (

STEP:1
The derivative series Y.3° na,,z"~1 has the same radius of convergent

Proof:

n
) for infinetly many n. Hence

Let R and R’ be the radii of convergence of the series Y a, z™ and

Y na,z™! respectively.

1 1

Then == M, |aylr  and  — =Timy e |nay[s

1 @ — 1 1
= him,,_,,nn | a,|»

1
Therefore the theorem is over if we show that lim,,_,,, nn = 1

1
To prove this, Letnn =1+ h,, sothatn= (1 + h,)"

nn-1)

Dy 2 et by

=1+nh, +

Hence n > %n(n — 1Dh,” (or) h,*< ﬁ sothat h,, - 0 asn— o

1
Therefore,lim,_,,nn = 1 and so R”=R.

STEP 2:
For|z| <R We write f(2) = Yn-oanz"
= sp(2) + Ry (2)

where s,(z) = ag + a1z + -+ a1 2" ?
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R,(z2) = Y, arz® andalso f1(z) = ¥¥na,z" ! = lim,_ s, (2)

To prove: f,(z) = f'(2)

Consider the identity

ORI (sn(z)—sn<zo) _ Sn,(zo)> + 50/ C20) = fu() + (Fa2EaC))

zZ—2g Z—2Z, Z—2Zg

—(3) where we assume that z # zp and |zo| <p <R

Rn(2)—Rn(20) _ Yhen akz*—Yien axzo®
Z—ZO Z—ZO

=y ay(z¥-z,%)
k=n z—2z

= Yren ak(zk_1 + z, zk=2 4. 4 zok_l)

. |Rn(2)—Rn(zo)

< Z?=nk|ak| p[since |z|< p and |zo|<p]

Z—Z,
Now Y k| ay|p*" is the remainder term in a convergent series .

Rp(z2)—Rp(Zp)

o

Hence, we can find n, such that <€/3 ¥n=>ng,-------- (4)

lim,,_e, S ,(2) = fi(z) for |z|<Randsince |z, | <R ,limy,_ e S 1 (2,) = Fi(20)
=>There exists an n, such that | S,’(z,) - f1(2o) | < €/3 ---------- (5) vn=n,

Sn(2)—Sn(2,)
Z—Z,

Choose a fixed n = n,, n;. We know that Sy’(z,) = lim,_,,_

By the definition of derivative , we can find § > 0 such that 0< |z -z, | <§

= Sn(2)—Sn(2o) _ Sn,(Zo) < €/3 —mmmmme- (6)

Z—Z,
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Using (4),(5) and (6) and it follows by (3) that,

f(Z) f(zo) fl(Zo) < €when 0 < |Z-Zo|< o

= {7(z,) exists and f1(z,) = ’(z,).

Remark: Every analytic function has a Taylor development .The power series
development of f(z) is uniquely determined if it exists.

A power series with positive radius convergences has derivatives of all orders.

They are given explicitly by

f(z) =a,taiz+........... Fan 2

f(z)=at2az+......c.ceo .. +naZ"

£7(z) = 2ap+6az+............... +n(n-1)a,z"+......
k+1 k+2! 2

k
In particular, a, = ! k(o)

= The power series becomes f (z) = f (0) + —= L (0)

.......

This is the familiar Maclarian — Taylor development. But we have proved only
under the assumption that f(z) has a power series development.

The following theorem refers to the case where a power series converges at a

point on the circle of converges at a point on the circle of convergence and
note that R = 1.
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Theorem : 9 (Abel’s Limit theorem)

>a, convergences .Then f(z) = Y7, a,z" tends to f(1) as z approaches 1. In
|1-2]

remains bounded.
1- | Z|

such a way that

Proof.

We may assume that }._,a,=0, since this can be obtained by adding a
constant to a,. Now, f (1) =) ",a,=0.LetS;=a,ta;t............... +ap,

Consider the identity (summation by parts)

Sn(z) = agtagz+........... +anz2" =SeH(S1-S0)ZF i, +(Sn-Sn-1)Z"
=5o(1-2) + $4(Z-2°) +.on. +804(2" 2" +5,2"
= (1'2)(So+ S]_Z T +Sn_lzn-l) +S n Z :

Buts,z"—0asn— oo (since Ya,=0,5—~ 0,z" > 0)

=>1(2) = (1-2) Xy=o Sn2™

Since (t_é'l) remains bounded, there exists a positive constant k such that
|1—z| < k
1-|z|

Since S,— 0 as n - oo, given € > 0 choose m so large that |S,| <€ forn>m
Now |f(2)| = |1 —2) ZF snz™ |
< |1-2Zr sz | + [ -2 Tnspz™ | - (1)
and|(1—2) T sz | < [1-2z] T |sa| 2|7

<|1-z| exp|z|
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=|1—Z| €

(1

|z

|z

| m

| ) 1-|z]

Therefore, (1) becomes |f (2) | < | 1- z| | yols, z" | + k€

The first term on the right can be made arbitary small by choosing z sufficiently

close tol.

Therefore, f(z) - 0 = f(1),as z — 1 subject to the stated restriction.

PROBLEM 1:

1).Find the radius convergences of the following series.

i) SnPz" ii)zg i)Y n!z" iv)¥(1+1/n)"?z"

soln :
) a,=n" any= (n+1)°
1 an . nP
R=limy e An+1 Ylll—>r£10 (n+1)P

=> |lim ——=1
n—oo (1+E)p

11) Z;
an—= ! dn+1— !
n n! n+l n+1!
: (n+1)!
. oy . n+1)! .
R=lim —2— = lim —= =lim
n—oo m n—oo n. n-

1ii) For z = 0 the series is convergent.

a,=n!, ap.1= (n+1)!.

lim

n—oo

(n+1)n!

n!
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n+1

)P

=lim (n+1)=o00

n
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. a . n! . n! . 1
Then R= lim — = lim = lim =lim— =0
n—oo Ant1q n—-oo (n+1)! n-oo nl(n+1) n—ooo nt+1

iv) a, = (1+%)n
1_ . n _ q- 1\n _ _1
—=lim (a,)" = lim (1+=)" =e. Therefore, R=-.
R n-ow n—oo n e

Problem 2. If Y a,z" and Y b,z" have the radii of convergences R; and R, .Show
that the radius of convergences for Ya,,b,,z" is atleast RiR; .

Soln: —=Tm |a,|”" and —=Tm |b,|""

1 n—-oo 2 n—oo

Let R be the radius of convergence of >a,b,z"

R%z rlll_>_r£10 |an |1/n—11m|an|1/”|b |1/n _,{Lr{}o |an|1/n llm |b |1/n _Ril.Riz

=> R=RR,

Problem3. Find the radius of convergences of a power series f (z) =).¢° Znnl and

prove that (2-z2) f(z) -2—- 0asz - 2

) 1 a
Solution: a,-— ap1=-——— and R=1lim —
N=onyq @M= ont1, g n= g
1
2+l 2" (2+57) 240
R = lim = lim Z = =2
n—-oo 2M+1 n—oo 2”(1+2in) 1+0

f2) =¥%, < Yo —1+z/2+22/22 .........

2141

_ 1 _ 2 .
=> 1_2/2—2_Z[smce |z|<2Vz]

: . A2
£1_r}r21 (2-2) f(2) = £1_r}r21 (2-2) — 2
Therefore, 2 —2)f(z) —2 - 0asz - 2.

92



UNIT IV
COMPLEX INTEGRATION
4.1 The Line Integrals :

Definite integral of complex function over a real interval . If f (t) = u(t)+i v(t) is
a continuous function defined in an interval (a,b) .Then define,

b

fbf(t)dt = fu(t)dt + ifbv(t)dt

a

Properties of the integral

Property 1 : f; cf(t)dt =c¢ fff(t)dt

Proof: Let c=c +if and  f(t)=u(t)+i v(t).
b b
j cf(t)dt=j (o< +iB)(u(®) + i v(D)) dt

=[ (e u — Bv) + i (av + pu)] dt

=[7(cu— Bv)dt + i [, (av + Bu)dt.......... (1)  (by defn)
c [ F(t) dt= (o +iB) [, u(t) + iv(t) )dt

= [Tu()dt +ia [ v(t)dt +if [ u()dt — B [} v(t)dt

=[ocudt+if cvdt+if pudt—[ Bvdt

=[7(cu—Bv)dt+i [ (av+pu)dt ... )

From (1) and (2), [ ¢ f()dt = c [, f(£)dt
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Property 2: When a< b,|fff(t)dt| < fflf(t)l dt holds for arbitrary
complex function f(t).

Proof:
If [ f(©)dt = 0then [, f(t)dt >0 = [ f(t)dt

Clearly, | [} f®)de| < [} | F(©)] at

Therefore, the given statement is true .

Now assume that fff(t)dt + 0.

From (1), Re[ e f(t)dt] 2 Re[c N f(t)dt]

Since ‘¢’ is arbitrary, we may set ¢ = e~ where 8 is real but arbitrary.
Re[e—ié’ [ f(t)dt] = Re[ [P e-i6 f(t)dt]
a a

=[Re[e ™ ft)1dt <[] e f(&)]dt

since  is arbitrary we may set 8 = arg( [, f(t)) dt
Then [7f(t) dt = | [ f(£) dt|e®........... )
Re[e“'e N f(t)dt] = Re[e“'9| [7 f(tadt |e"9]

=Re | [ f(t)dt |

= [7 fydt ] .......... 3)
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From (1)and 3), Wehave| [” f(t)ae | <[] F(©)|dt.
Complex line integral of f(z) extended over the arc y

Suppose y is a smooth arc is given by z = z (t), a <t < b and f (z) is
continuous ony . Then f (z (t)) is continuous in t. We define

jf(z) dz = f:f(z(t))z'(t) dt.
%

If y is piecewise differentiable or if z'(t) is piecewise continuous the
interval can be subdivided in the obvious manner.

The integral is invariant under change of parameter. A change of
parameter is defined by increasing function t = t(z) which maps an interval
a < 7<p into a<t<b. we assume that t (z) is piecewise differentiable.

By change of variables,
)z @ dt= [ f (2(¢D)) 2 (t@)t' @)dr
But z'(£(2))t'(r) = = (z (t(x))-

2 I7 FE®)Z @ dt = [ F (2(t2)) 5 (2 (1) dz.
Hence the integral has the same value whether y is represented by z = z (t) or by

z=12(t(1)).

Note: We define the opposite are — y by the equation z=z (-t), -b < t<-a.
s f@) dz = [ f(2(=0) d(z(-1)
=— [ f(2(s))d(z(s)) by the change of variable, z = - t
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=— fyf(z) dz

Furtherify = y;+ vy, +........ 7y, then

j f(2)dz = fy1+y2+...+ynf(z)dz =
¥

=[ f@dz+ [ f@dz+.......... +], f(2)dz

Integration with respect to arc length
[f@)1dz1= [, f(z(0) 1 Z’@®)de | = [, f(z(£)) 12" () ld

f, f@dz| =1 [ f(z0) 2O dt1 < []1F@E0) 112/ @t
= [, 1f@11dz]

Note : Iff=1 thenlfydz| < fyldzlzlengthofy

[fds=[fldz|=[; f(z())12'(t) | dt (asds=dx’+dy’)
To find the length of the circle with radius p with centre at a:
The parametric equation of circle is z = z(t) = a+pe't, 0 <t < 2m. z'(t) = pie'.
[ds=[1dz|=[;"12'() |dtl =["pdt =p2m
RECTIFIABLE ARCS

The length of an arc can also be defined as the least upper bound of all sums.

1z (t1) =z (to) 1+1Z (t2)—2z(t1) leve e e e e FZ (t)—2(Ep1) |
wherea=t,<t; <....... <t,=b
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If the l.u.b is finite we say that the arc is rectifiable.
Note : Piecewise differentiable arcs are rectifiable arcs.

Observation: An are z = z (t) is rectifiable iff real and imaginary part of z (t) are
of bounded variation.

For, Since |x(ty)—x(tx-1) | <1z (tx)—2z(tx-1)l and
ly(t)—y (tk—1)| < 12(E)—2(tk-1)
| z(tx)—2z(tx—1)1=12(tx) + iy (ty) — (x(tr—1) + iy (tr-1)I
= (tr) = x (-] + i[y(te) — y(te—1)]l

< x(tr) — x(tr—)| + 1y (te)—y(tx-1)I

The sums |z(t;) — z(ty)1+lz(ty) — z(t))H+..o.n.n. .. +lz(t,) — z(t,,—1)| and
the sums [x(t;) — x(to)+Ix(ty) + x(t)I+.onenn...t. +x(t,) — x(t—1)I,
ly(t1) —y () Hy(t) —y(E)I+eennnn Hy(t,) — y(tn-1)| are

bounded at the same time.

When the later sums are bounded, one says that the functions x(t) and y(t) are of
bounded variation.

Therefore, a arc z = z (t) is rectifiable iff real and imaginary part of z (t) are of
bounded variation.

LINE INTEGRALS AS FUNCTION OF ARC:

General line integrals of the form fypdx+qdy are often studied as
function or functional of the arc y.

Assume that p and q are defined and continuous in aregion Q and y is
free to vary on Q.
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Class of integrals having the property that the integral over an arc
depends on its end points.

If y, and vy, have the same initial point and the same end points then
fyl pdx + qdy = fyz pdx + qdy.

Theorem 1:

Integrals depend only on the end points iff the integral over any
closed curve is zero.

Proof:

If y isa closed curve then y and - y have the same end points and if the

integrals depend only on the end points.

> [=],=-]

> 2[=0.[=0
Conversely, Suppose y, and y, have the same end points.
(i.e.) T.P_the integral depends only on the end points.

(i.e.) To Prove: fyl = fyz where y, and y, have the same end points.

By given hypothesis, y; — y, is a closed curve

Since the integral over any closed curve is zero.

= fh—yzz 0 => fh + f—]/z =0 => f]’1 B fyzz 0
= fh - sz

The following theorem gives the necessary and sufficient condition for a line
integral depends only on the end points
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THEOREM 2:

The line integral fy pdx + q dy defined in Q, depends only on the end

points of y iff there exists a function U(x,y) in Q with the partial

derivatives ou _ o _
ox b, dy q.

Proof:

Suppose there exists a function U(x,y) in Q such that Z—Z =Dp, Z—;] =q.

To Prove the integral depends only on the end points of y

Let a, b are the end points of y

FIG. 4.1

ou

Then fy pdx + qdy = fyg—z dx + P

dy

_ rbou
a ox

x'(t)dt + Z—zy’(t)dt

= 7S (U(x(®),y(®))) dt
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= [2d U(x®),y©®))
=[U(x, (8),y )]}
= U(x (b).y (b)) - U (x a), y (a))

=~ The line integral fy pdx + g dy depends only on the end points of y.

Conversely, Suppose the line integral fy pdx + q dy depends only on the end
points of y.

To Prove: There exists a function U(x,y) in Q such that :—Z =Dp, :—;] =q.

Choose a fixed point (x, yo) € {2 joint it to (X, y) by a polygon y contained in Q
whose sides are parallel to the co-ordinate axes.

Define a function U(x, y) = fy pdx + q dy

Since the line integral depends only on the end points of y, the function is well
defined. Choose the last segment of y horizontal, we can keep y constant and let
X vary without changing the other segment.

On the last segment we can choose x for parameter and obtained

Uxy) = [* P (x,y)dx + constant

The lower limit of the integral being irrelevant , then Z—Z = p.

In the same way, by choosing the last segment vertical by keeping x constant,

We have U(x,y) = [~ q (x,y)dx + constant

ou _
ay_q
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Note:

If pdx+qdy= Z—Z dx + Z—Z dy = dU, then pdx + qdy is an exact
differential.

Therefore, the above theorem can be stated as, An integral depends only on the
end points if and only if the integrand is an exact differential.

Consider f(z)dz=f(z) dx +if(z) dy

By the definition of an exact differential, there must exist a function F(z) in Q
such that =2 = £(2), aF(Z) i f(2).

. OF

o= g—i which is the complex form of C — R equations.

Further, f (z) by assumption is continuous. (Otherwise fy f(z)dz is not defined)

Hence F(z) is analytic.
~The above theorem can be restated as follows

The integral fy f (z)dz with continuous f depends only on the end points of y iff
f is the derivative of an analytical function in Q.

Lemma 3:

We find that fy(z —a)™ dz = 0 for all closed curve y provided that the
integer n > 0.

Proof:

For, since f (z) = (z-a) " is continuous and f is the derivative of an analytic
function

F @) =22

D in the whole plane.
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~.By the result above, fy f (z)dz depends only on the end points of y.

= the integral over any closed curve is zero.

fy(z — a)™ dz =0 for any closed curve y. ....... (1)

If n is negative but not equal to -1.

The same result hold for all closed curves which do not pass through a. In the
complementary region of the point a the indefinite integral is still analytic.

For n = -1, the equation (1) does not always hold.
Consider an example.

Consider a circle C with centre a represented by the equation z = a +p e",
0<t< 2m. Then dz =pie" dt.

2w pielt

dt= 2mi # 0

We obtain fyzd_—za= Js T

Example 1. Compute fyxdz where y the directed line segment from 0 to 1+ i.
Soln: Letz=x+ly ,z=0, >x=0,y=0 and z=1+i =>x=1,y=1
Therefore, y=x = dx=dy

dz = dx + idy =dx + idx =(1+i)dx

Therefore, fy xdz = folx(l +i)dx =(1+ i)(x;)é — %

Example 2: Compute f|z|=1 lz—11ldz|

Soln: Given |z|=1then z=|zle®'= e* =cost+isint 0 <t <27
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| z—1?>=| cost +isint—1]*>=2(1—cost) = 4Sin2§

Now, dz = ie'® dt implies |dz| = dt. Then,

t 2T
flzlzl lz—=11ldz| = fozn Zsing dt=2 [%] = -4(cos i - cos0) = 8.
2 Jo

4.2 Cauchy’s Theorem for a rectangle
Consider a rectangle R defined by the inequality a<x < band c <y <d.

This perimeter can be considered as a simple closed curve consisting of four line
segments whose direction we choose so that R lies to the left of the directed
segment. The order of the vertices is (a,c), (b,c), (b,d), (a,d). We refer to this
closed curve as the boundary curve (or) contour of arc and we denote it by dR.

R is chosen as a closed point set and hence it is a region. Further, a function
Is analytic on the rectangle R means that it is analytic on an open set which is
contained in R.

Theorem 4:

The function f(z) is analytic on R. Then faRf(z)dz =0.
Proof: Proof is based on the method of bisection. Define n(R) = | orf (z)dz ,

which we will use for any rectangle contained in the given one.

If R is divided into 4 congruent rectangles R, R®) R®), R™ py joining the
mid points of opposite sides.

We denote the boundaries of the rectangles R®as dR™ k=1, 2, 3, 4.

Therefore, We find that 0R = 0R™ + 9dR@ + dR®) + gR™), since the
common sides cancel each other.

NOW'faR f(z)dz = faRu)f(Z)dZ + faR(z)f(Z)dZ + faR(3) + faR(4)f(Z)dZ
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Denote [, .q, f(2)dz = n(RW)

Clearly for at least one R* (k =1, 2, 3, 4), we have | n(R®) | > % n (R).

(a,d) (b,d)
D S
— —
«— «—
— —
(a,c) (b,c)

FIG. 4-2. Bisection of rectangle.

We denote this rectangle by R, If several R* have this property that choice
shall be made according to the definite rule. This process can be repeated
indefinitely and be obtain the sequence of nested rectangle or R > R;D R,

With the properties, In (R,,) Iz% In(Ry—1) |
>+ GIRn) ) = 5 I N(Rn-) |
> 1 | n(R) |
z 1 (R)
Therefore, In (R,) | an In(R) | ——— (1)

The rectangle R, converges to a point z*eR in the sense that R, will be
contained in the prescribed neighborhood |z-z*| < § as soon as n sufficiently
large.
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First of all, we choose § so small that f (z) is defined and analytic in
|z-z*| < 6.

Secondly, if €> 0 is given, we choose § so that
|z-2*|1 < 6§ = | %— fl(z*) <€
=>1f2)—f@Z)-f'(z)z—-2z)I<€lz—2z"|for |z—2z"|I<§ —> (2)
We assume that § satisfies both conditions R, is contained in |z-z*| < §.

Also we have [, 1dz=0, [, zdz=0 [ 1 and z are the derivative

2
of analytic function z and Z?respectively]

> N(Ra) = [y, f(z)dz

= f(z)dz — f(z") dz — f'(z") zdz+ f'(z") Z*j dz

ORp ORp ORy, ORy,

=L (D) - £(29) - F'(z") (2 — 29)]dz

Therefore, [n(Ry)| < j If(2) = f(z") = (z=2z")f"(z")] |dz|

ORy,

< yg, € |2 =21 10z

If d,, denotes the length of the diagonal of R,thenzeR, andso|z-z*| < d,

If L, denotes the length of the perimeter of R, then
INR)| < € dn [y |dz| =€ dy Ly

If d and L denotes the length of the diagonal and the perimeter of R
respectively, then d, = 2" d and L, = 2" L. Therefore, In(R,)| < 4" dL€
- )
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From (1) and (3) , [n(R,)| > 41,1 | n(R) |
In(R) | < 4"In(Ry)| <4"4"dLe<dLE€
Since € is arbitrary, we have n(R) = 0. Hence faRf(z)dz =0.

Theorem 5

Let f(z) be analytic on the set R’ obtained from a rectangle R by omitting a
finite number of interior points &;. If it is true that lim,._.;, .z — &) f(2) = 0. for

all I, then [ f(z)dz

Proof: It is sufficient consider the case of a single exceptional point &. (For
evidently R can be divided into smaller rectangle which contains at most one ¢;)

We divided R into 9 rectangles as shown in the figure.

*¢

FIG. 4-3

Therefore, [, f(2)dz= ¥, Jor, [ ()dz.

Hence, by Cauchy theorem for rectangle applied to all rectangles except R
faR.f(Z)dZ =0,1=1,....,8.
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Therefore, [, f(2)dz= faRof(z)dz. Given, lim,..;(z — §)f(z) = 0.
If € > 0 we can choose the rectangle Ry so small that |z - & | [f(2)] <e.

Consider |f(2)] < ﬁ on dR,.

|for, @)z < [y IF @Iz <€ [, JZL )

| z

Let us assume Ry is a square with centre & and a be the side of the square Ry

L <
iz~ €|

Therefore, |z —¢&| > % =

SHEN

|dz| 2 _E _
Now, faRo|z— < ZfaRoldzl =-4a=8.

S

Therefore (1) becomes, | faRO f(z)dz| < €. Since € is arbitrary, the theorem
follows.

Note: The hypothesis of the theorem is fulfilled if f(z) is analytic and bounded
on R’.

Cauchy’s theorem in a disc

It is not proved that integral of an analytic function over a closed

: : d . . .
curve is always is zero. fC ﬁ = 2miwhere C is a circle.

In order to make sure that the integral vanishes, it is necessary to make a special
assumption concerning the region € in which f(z) is known to be analytic and to
which the curve v is restricted.

We must restrict to a special case we assume that Q is a open disc
|z — zo| < p to be denoted by A.
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Theorem 6:

If f(z) is analytic in a open disc A, then fy f(2)dz = 0 for every closed curve y
in A.

Proof: Let O be centre zq = X, +i Yo and P be any point z = x + iy inside A. We

define a function F(z) = fa f(2)dz........ (1) where o consists of the horizontal

line segment OA from the centre (Xo ,Yo) to (X ,Yo) and the vertical segment AP
from (X ,yo) to (X, y).

B(xO' y) P(le)

0(x0,Y0) A(x,¥0)

FIG. 4-4

F@2)=[,,,f@dz=[,, f(2)dz+ [, f(2)dz......(2)

= [, ft+iyo)dt + [ flx+it)de ...... 3)

From the figure, OAPBO is a rectangle. By Cauchy theorem of rectangle,
fOAPBO f(z)dz = 0.

Let o, be a curve consists of the vertical segment OB from (X ,Yo) to (Xo, y) and
the horizontal segment BP from (X, ,y) to (X, y).
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OAPBO = OAP + PBO =6 + (-01) = 6 - 61 Therefore, [ f(z)dz = 0.
= [, f@dz+ [_,f(2)dz=0= [ f(2)dz— [, f(z)dz=0
= [, f@dz = |, f(2)dz
Therefore, F(z2) = [ f(2)dz = [, f(2)dz + [, f(2)dz ........(4)

= [ fxo +i0)idt + [, f(t+iy)dt

= ifyyof(x0 + it)dt + f;:f(t +iy)dt....(5)
From (3), 3—5 = i f(x+iy) =i f(2)

o

From (5), 2= = f(x+iy) = f(z) = £+i3—5 = f(z) - f(z) = 0

If F(z) =u+iv then =0

d(u+iv) H d(u+iv)
d ady

ou .0v .0u O0v ou OJdv . 0V ou
SRR R o) (224 &+ =0
dx dy dy 0dy dx 0dy ox dy

ou Ov v ou
- — - = — 4+ —= = — = g

: UX = Vy and Uy = -VX
= u and v satisfy C.R equations.
oF OF _ . . )
Now, Pl f(2), rvi I f(z) and f(z) is continuous
= Uy, Uy, Vx, Vyare all continuous. Therefore, F(z) = u + 1v is analytic on A

= f(z) dz is exact differential
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= The integral depends only on the endpoints.

= The integral over any closed curve y in A is zero.
Therefore, fy f(2)dz = 0.

Theorem 7:

Let f(z) be defined in the region A’ obtained by omitting a finite
number of points ¢; from an open disc A. If f(z) satisfies the condition
lim,..;,cz— §)f(z) =0 forallithen fyf(z )dz holds for any closed curve y

mnA’.

Proof: Let O be the centre zy = Xo + i Yo and and P be any point inside A. We

define F(z) by F(z) = fd f(z)dz where we let the curve o not passing
exceptional points. Assuming first that no ¢; lies on the line x = xp and y =y, by
letting o consists of three line segments as in the figure with the last segment is
vertical and consider ¢’ with the last segment is horizontal ( F(z) is independent
of the choice of the middle segment)

0 ¢ |0
A B
C

0 (x0,%0)

FIG. 4-5
By Theorem 4 and Theorem 5, fOABPDCOf(z)dz = 0.
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= Jongp f(@Ddz = [, f(2)dz =0

= Joapp f(@Ddz = [, f(2)dz

= F(2)= |, f()dz= [, f(2)dz

It is easy to verify that %:if (2), Z—Zz f(z). Hence —= —i—

= Fis analytic = f(z)dz is exact differential
= fy f(z)dz =0 for any closed curve y.

4.3 Cauchy’s Integral Formula

It enables us to study the local property of an analytic function.

Lemma 8: (The index of a point with respect to a closed curve)

If the piecewise differentiable closed curve y does not pass through the
point a, then the value of the integral fyi—za Is a multiple of 2mi.
Proof

The equationofyisz =z(t),a <t <p

Let us consider the function h(t) = ftﬂ dt

a z(t)—a

It is defined and continuous on the closed interval [, £] and it has the derivative

h'(t) = thgt_)a (1) when ever z'(t) is continuous

Consider, % [e "D (z(t) — a)]
= e MOz (t) — (z(t) — a)e " Dn'(t)

= e MO 7'(t) = (2(t) — a)e "® % = 0 except perhaps at a finite

number of points , (using (1)).
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e " (z(t) — a) = a constant =k (say)....... (2)
When t = o, h(a) =0 .Therefore, e ¥ (z(a) —a) =k = (z(a) —a) = k.

E@-a) _, he) = EO-0

_h(a) =
Therefore, (2) becomes e 20— z(@-a)

— np) = EB-a) i —
Whent=f, e @) Since vy is a closed curve, z(a) = z(pB).
Therefore, e™®) = 1. = h(B) is a multiple of 2i.

Hence, h(B) = | bz ar _ multiple of 2.

a z(t)—a

Therefore, |, Zd_—za = h(B) = multiple of 2.

Definition: ( The index or winding number)

The index of the point a with respect to the curve y by the equation

Zim, , Z‘i—za. It is also called the winding number of y with respect to a.

n(y.a) =

Properties of winding number:
Property 1. Prove that n(-y,a) =- n(y,a)

Proof:

1 d 1 d
— [ Z=-—] Z=-7ya)

=Y z—a 2ni Y z—a

n(=y.a =

2T

Property 2. n(y,a) =0 for all closed curves y in a disc ( or circle ) and for all
points of a outside the disc.

Proof: i Is analytic inside the disc. ( as a lies out side the disc )

Therefore, fy Zd_—za = 0 for all closed curve v in the disc. ( by Theorem 6)

nra)= —[ ~==0.

2l Y'Y z—a

Remark: As a point set y is closed and bounded. Its complement is open. The
complement of the point set y can be represented as a union of disjoint region.
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If the complement regions are considered in the extended plane, there is exactly
one which contains the point at co. Consequently, y determines one and only
one unbounded region.

Property 3:

As a function of ‘a’ the index n(y,a) is constant in each of the region
determined by y, and zero in the unbounded region.

Proof:

Join a and b by a line segment not intersecting y outside the line segment

1

1
log (—) is analytic whose derivative is —

Therefore, fy (ﬁ— —)dz=0 =>fy r—a fy zd—zb

dz
> Z=—[ = = 8 =n@b).
If |a| is sufficiently large, y is contained inadisc |z| < p <|a|
Therefore by Property (2), n(y,a) =0

= n(y,a) = 0 in the unbounded region.

NOTE 1:
We know that, f — = 2mi where C is a circle about a.
= wheny=C, —f 2 -1 5 pya)=1

Y z—-a

Theorem 9: (The Integral Formula)

Suppose that f(z) is analytic in an open set A, and let y be a closed

curve in A for any point a not on y. n(y,a)f(a) = — f ! (Z)dz ........... >(A)

2T
where n(y, a) is the index a with respect to y.

Proof: Given f(z) is analytic in open set A. Also given that a closed curve y in
A and a point a € A which does not lie on y.

Define F(z) = L2~/@) (ZZ):Z; @)
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This function is analytic for z # a and for z = a, it is not defined.

But it satisfies the condition lim,,,(z—a)F(z) =lim,_,[f(2z) — f(a)]

=fla)—f(a) =0
Therefore, By theorem (7) fy F(z)dz = 0---------- >(1)

= [ [ [@dz_

=> [ 2= f(a) [, =

=> [ [9% = f(a)2ni (v, @)
Therefore, n(y,a)f(a) = Z—mf f(z)dz
Ifag A,thenn(y,a) =0

(z)dz

Since Z—IS analytic in A,then we have f [2)% _ o [by Cauchy’s

theorem for circular disc]

Therefore, L.H.S = 0 = R.H.S. Hence equation (A) is true for all a € A.

Note: In the special case n(y,a) =1, we have f(a) = z—mf and this

gives a representation formula to compute f(a) as soon as the value of f(z) on y
is given, together with the fact that f(z) is analytic in A. This is called Cauchy
representation formula. By the change of notation, we write f(z) =

f (z) dz
-a

f TO% This is referred to as Cauchy’s integral formula.

27 -z
Example 1 Computef| - 1Td = 2mi
Solution: flzl:1¥ = 2min(c,0) £(0)
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=2mix1x1 =2mi[since f(z) =e?,f(0) =e’=1,1(c,0) =1]

Example 2 Compute | by decomposition of integral into partial

|z|=2 2+1
fraction.
_— 1 1
Solution: il ey
1 _ 4. B
(z+0)(z—0)  z+i z—i
1=A(z—-i)+B(z+1i). Putz=i,B ——and Z=-i A__Z
dz 1 1 1
bz = o= T m i T Z dz

1 dz dz
~ 2 = fIZI=2; + flzI:Z ;]
= %[_Zﬂin(a —i)f(—i) + 2min(C, i) f ()], where C is the circle, |z| =

27Tl
2i [

1+1]=0.

Example 3. Computef| = PI |

under the condition |a| # p.

Solution: Given |z| =p =z =pe® = dz=peids
= dz = —pe~9idf. Then |dz|?> = dz dz = p*(dh)?

_ __ —ipdz
|dZ| pdg p lpelg - 7z
ldz| . dz

f|Z|=,0 lz—al2 tp f|Z|=p z(z—a)(Z—-a)
. d
= —lpfl z

z|=p z(zZ—-az-azZ+aa)

. d
__lpfl— _Z

z|=p z(|z|2-az—az+aa)
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_—l f dz
=P |z|=p [zp2-az2-zZa+aaz]

las |z]? = p?]

_ —i f dz
P |z|=p (zp2-az2-ap?+aaz)

— 1 f dz
= TP iz1=p p2(z—a)-az(z-a)

— 3 f dZ
= "W i=p Gma)(pr-an)

_ip dz
—alzl=p (,_ _£>
(z a)(z =

1 _ A 4 B
(z—a)(z—‘%z) (z = a) (z—%)

1=A<Z—§>+B(z—a)

_ _ _P — alia12 _ A2 —_2a
Putz = a, 1=4 ((1 d) - Ad(lal P ) and A = la|2—p?

_P o _p(PP_ )\ _ p(P-la? __a
Putz—d,l—B(d a)_B( ) )and B=—"0

= ip%m' _A n(C,a)f(a) + Bn (C,%)f <pT)l

= -An(C, a) + By (C,p—z)] —— (1) whereCis |z| = p

a
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Since,lal#p =la|l<p (or) |a| >p
Case (i) If |a] < p = alies with in the circle C.

p* _ p* 58T - .
=—> =P Therefore,g lies outside the circle C.

p?
a lal

2
Therefore, n(C,a) =1, n (C, pT) =0

a

dz —27 —2m
Therefore, (1) becomes lel_ c|1|2 _pA (C,a)= pA
|z|=p
—2
s [ lal =]
_ _2mp
- p?-lal?

Case (ii) If |a] > p = alies outside the circle C.

2

p_
a

2 2

p: p
=< — =

jal 7 °

P . . . p?
== lies inside the circle C. = n(C,a) =0, n (C'E) =1.

Therefore, fl 1dzl _—2mp n (C, %)

z|=p |z—al| a

_ —2mp a __ 2mp

a p?-lalz " |a|2-p?
HIGHER DERIVATIVES:

The Cauchy integral formula gives us an ideal tool for the study of the local
properties of an analytic function.
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Lemma 10: Suppose that ¢ (&) is continuous on the arc y. Then the function ,

E,(z) = fy ‘("f)di is analytic in each of the region determined by y, and its

derivative is F, (z) = nF,,1(2).

Proof: We first prove that F; () is continuous.

Let z, be a point not on y and choose the neighborhood |z — z,| < § so that it
does not meet y. Choose the restricted neighborhood |z — z,| < g. Then for all

ey, 1€—z|=[8—zy+2zy—z| =1 —2) — (z— 2p)l

> |§—zol |z — 20| > § —8/,=6/,

Therefore, [§—2z| >0/, VE€Y o, (1)

d(&)ds $(§)ds
Fl(Z) - Fl(ZO) f'y (E Z) f]/ (E ZO)

=[ PO -20)-(E-2)]d
14 (§=2)(§—20)

_ [ 2@z
v E-2DE-20)

B | ¢&E-z)d¢
|F1(z) — Fi(2o) | |fy (E-2)(§—20)

|p()N|z—zo|ldE|
< fy 0

1§ =2zl1§ =zl
|f 1o1ds1
ZolJy 1§=2z1§ =20l

Iz Z°' =M [ 1d§l where [$()] <M
~ |Fi(z) — Fi(zy) | < |Z—ZO| L where L= f |dé|
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As z- z,, |F1(z)— Fl(zo)| -0

= F,(z) is continuous at z,. Since z, is arbitrary , F; (z) is continuous for all
znotony.

To Prove: F;(z) is analytic.

Fi(z) — Fi(zp) =(z — z) fy (Ed)(&

—-z)(§—2p)
— (@) -FRG) _ ¢(&) d&
(z-2p) Y (§-2)(§-2)
. Fy(z) — F1(2o) . ¢(&) d&

= _— = —_—

limg oz = = A

. Fy(z) — F1(z9) _ $(&) dé ) _

lim,_,, T ez Yy ez = F;’(20) = F2(2o)

=~ The derivative of F;(z) exists at z, and since z, is arbitrary, F;(z) is analytic
for all z.

The general case is proved by induction.

Suppose F,,_;(z) is analyticand F,,_;'(z) = (n-1) E,(2)

_ 3 P(&)dé d(§)dé
Consider Fn(Z) - Fn(ZO) - fy (E—z)n Y (E—zp)™

— (§—2z0)p($)ds 'f $(§)as
Y E-z)@E-2" Y (§-2z0)(§-zo)" !

= (e-z+z-29)9p(§)dS ) $(§)as
Y o -zo)E-2)" v (§-2z0)(§-2z0)"

= ¢p(§)as + (z—z9)P(§)dS [ $(§)as
Y (§-29)(E-2)"1 Y (-zo)E-" Y (§-20)(§-2zo)" T

_ p(§)dé p(§)dé
=J 1

(z=z9)$(§)ds
Y (§-z9)(§-2)" 1 ¥ o ()

(€-20)(§-2z0)"t ¥ (§-z9)(§-2)"
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¢()

== (2 m
Take G(¢) T2} (2) becomes,
_ G(§)ds G(§)dg G(§)dé
Fn(Z) - Fn(ZO) - fy (5__2),1_1 - fy —(f—zo)n—l + (Z — Zo) fy @ ....... (3)
— G(§)ds
Let G,(2) = fy —

Therefore, (3) becomes

_ (z-20)G(§)d§
Fa(z) — Fi(20) = Gp1(2) - Ga(zo) + fy - (Z;_Z)n

By induction hypothesis applied to G(¢),

Gp-1(2) = G,_1(29) @ z — z, and the factor of z -z, is bounded in a
neighborhood of z,. [as G,_;(z) is continuous]

Therefore, E,(z) — FE,(zo) 2 0asz - z,.
= F,(z) = E,(z,) = E,(z) is continuous at a point z,.

To Prove: E,(z) is analytic

Fn(z)—Fn(zo) — Gn-1(z)— Gn-1(Zo) +f G(§)d¢
Y (¢-2)"

Z— Zg Z— Zg

— Gn-1(2)— Gn-1(2Zo) + fy = ¢(§():f)

Z— Zg

o D)0
When z-z, , E,’(z0) = Gn_1'(20) + fy E—zg)t+i

E,'(2) = Gn-1'(20) + Fr11(20)
= (n-1) G (20) + Fr11(20)....(4) [as Gp_1'(2) = (n-1) Gr(2))]

_ G(dE  _ p(E)dE  _ AL
Gn(20) = fv (E-zo)™ "fy (E-20)(E—2o)" ¥ (§-zp)"H1 Fra(2)
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Therefore, (4) becomes, F,'(zq) = (n — 1)F,11(20) + Fp11(20) = nF,11(20)

Since z, is arbitrary, E,(z) is analytic and E,'(z) = nF,,(2).

Lemma: 11  Prove in detail an analytic function has derivatives of all orders
(or) An analytic function defined in a region Q has derivatives of all orders
and these are analytic in Q.

Proof: Let a€ Q and f(z) be analytic in Q. Consider a §-neighbourhood A
about a and in A, for all z inside C, n(C, z) =n(C,a) =1

f(§) as

Hence by Cauchy’s Integral Formula, f(z) = pn fy “-2)

By the above Lemma 10, the integral on the R.H.S is analytic function where

f('f) 'f f(¢)dsg
derivative is |, . Therefore, f'(z) = — fc G2

By the same lemma, the integral on the R.H.S is analytic function. Therefore,
whenever f(z) is analytic in Q then f'(z) is also analytic in Q.

" f(§)dé
Therefore, f"(2) = — fC o
M (z) = —f SO dE ore all analytic functions.

2miJC (§—z)nt1

Theorem 12 (Morera’s Theorem)

If f(z) is defined and continuous in a region Q, and if fy f(z)dz = 0 for
all closed curve y in Q, then f(z) is analytic in Q.
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Proof: Given fy f(z)dz = 0 for all closed curve y in Q.

=> fy f(z)dz, with continuous f, depends only on the end pts of y.

=>f is the derivative of the analytic function in Q.

=>f is analytic in Q. [by lemma 11]

Theorem 13 (Liouvilles’s theorem)

A function which is analytic and bounded in the whole plane must reduce
to a constant.

Proof: Leta€ Q and C is any circle of radius r with centre a [n(C,z) = 1 for
all z inside of C]

f(z)dz
(z—a)

Now, f(a) = — |,

fl(@) =—[ 222 [pylemma3]

2ni v C (z—a)?

/ 1 If (z)| |dz|
Therefore, |f' ()| < — [ ————

|z—al?

1 M

< —= I |dz| where |z-a] = r and [f(z)| < M for all zeQ
< M 27r = M
272 r

This is true for all circle with centre a. Lettingr —» oo =>|f'(a)| =0

=> f'(a) = 0 for all a. =>1f(z) is a constant.
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Theorem 14 ( Fundamental theorem of Algebra)
Every polynomial of degree > 1 has atleast one root.
Proof: Let us assume that the polynomial P(z) is of degree n > 1 has no root.

Therefore, P(z) never vanishes in the complex plane.

1 . . 1
== — = —0o> — o0
P Is analytic everywhere P2 Oasz

=> For every ¢ >0 there existsa 6 > 0 such that |$| <efor|z|>§

Since % is continuous in the bounded closed domains |z| < §.

Therefore, there exists a number K such that |$| <Kfor|z| < 6

Let M = max(e, K) => | < Mforallze Q

|;
P(z)
Therefore, by Leouvilles theorem, P(z) is constant.
This is a contradiction.[since P(z) is not a constant]

P(z) must be zero for at least one value of z.

=>The equation P(z) must have at least one root.

Theorem 15 (Cauchy’s Estimate)

Let f(z) be analytic in a region Q and consider a circle C , |z-a]=p
contained in Q. If |f(z)] <M on C then |f"(a)| < 7;!_nM
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n! J- f(z)dz

2mivc (z—a)nt1

Proof: We know that f"(a) =

n! f |f (2)|]dz|

2m7c |(z—a)™ 1|

=>|f"(a)| <
Given [f(z)] < M on C and |z-a| =

=>|f™(a)| < =

21 c

21 pn+1

This is known as Cauchy’s Estimate.
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UNIT V
LOCAL PROPERTIES OF ANALYTIC FUNCTION
5.1 Removable singularities, Taylor’s Theorem:

Cauchy’s integral formula remains valid in the presece of a finite
number of exceptional points, all satisfying the fundamental condition of
theorem 5, provided that none of them coincides with a.

Cauchy’s formula provides us with a representation of f(z) through an
integral which in its dependence on z as the same character at the exceptional
points as everywhere else. Points with this character are called removable
singularities.

Theorem 1:

Suppose that f(z) is analytic in the region Q" obtained by omitting
point a from a region Q. A necessary and sufficient condition that there exists
an analytic function in Q which coincides with f(z) in Q" is that
lim,_,(z — a)f(z) = 0. The extended function is uniquely determined.

Proof: Suppose f(z) is analytic in Q" and suppose there exists an analytic
function F(z) in Q such that F(z) = f(z) in Q’.

To prove: lim,,(z—a)f(z) =0
Now, F(z) is analytic in Q  => F(z) is continuous on €.

=> F(z) is continuous at a in Q => given & > 0 there exists § > 0 such that
IF(z) - F(a) | < & whenever |z -a| < §-------- >(1)

Now, F(z) =f(z) in Q[i.e. z#a]
Therefore, (1) becomes |f(z) - A | < & whenever |z - a| < § where A = F(a)
lim,_, f(z) =A [since F(a) =lim,_, F(z)and A = lim,_, f(2)]

And lim,_,(z—a)f(z) =lim,,,(z — a)lim,_,, f(2)
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=0.A=0
Let F; (z)and F,(z) be the extended function in Q where z # a
Fi(z) =f(2), F,(z) = f(2) (ie.in Q") (i.e. whenz #a, F;(z) = F,(2))
Moreover, lim,_, f(z) = F; (a) and lim,_,, f(z) = F, (a)

Therefore, F; (a) = lim,_,, f(z) = F,(a). Then F;(z) = F,(2) for all z in Q.
Therefore, the extended function is unique.

Conversely, Let a be an exceptional points and lim,_,,(z —a)f(z) =0

We draw a circle C about a so that C and its inside are contained in Q.
s _ 1 f(&)dé
Therefore, by Cauchy’s Integral Formula, f(z) = py ) ¢ Ttz for all z#a.

But the integral on the R.H.S represents an analytic function of z throughout the
inside of C.

Consequently, the function which is equal to f(z) for z # a and which has the
value — p— f [ (";)d(’z for z = g, is analytic in Q and denote it by f(a).

f(z) forze Q'

Therefore, the extended function is F(z) = { f(a) forz=a

Theorem 2: Taylor’s Theorem(Finite development)

If f(z) is analytic in a region €2, containing a, it is possible to write
! 144 n-—1
F@=f@+E 20— +52@ -+ + =2 -t
[n(2)(z — a)™, where f,,(2) is analytic in Q.

Proof: Define F(z) = % forz+a
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lim,,,(z — @)F (2) = lim,,,(f(2) — f(a))

= f(a) — f(a) [~ fis analytic in Q = f continuous in Q]
=0

f(2)—f(a) — f’(a)

lim,_, F(z) =lim,_,, —

F(z)forz#a
f'(a)forz=a

Hence there exists an analytic function f,(z) = {

Repeating this process we can define an analytic function

[1(2)-fi1(a)

f2(z) = { f{Ea) /27 @ and so on.
1(a), z=a

The recursive scheme by which f,,(z) is defined and can be written in the form
f@)=f(a)+ f1(2)(z - a)
f1(2) = f1(a) + f2(2)(z — a)

fn-1(2) = fn1(@) + fo(2)(z — a)
From these equations which are trivially valid for z = a and we obtain

f@=f@+z-afi(@+z-a)?fi(a) ++ (2 - )" f1(a) + (2 - ) fu(2)

Differentiating n times and setting z = a we get,
n _ _ (e
f*(a) =n!f,(a) = f,(a) = Tfor all n,

f* ()
(n—-1)

~f(2) = f(a) + (z—a)? +-+ (z-a)"' + fu(D(z - )"
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Note:

This finite development which is the most useful for the study of the local
properties of f(z).

Since f,(z) is analytic in Q , therefore by Cauchy Integral Formula, we
have

1 fa(§)as
fa(2) =, o T >(1)

where C is the circle about a so that C and its inside are contained in Q.

Using Taylor’s theorem,

O f@  f@ Y@ 1
G- E-a LUE-a! (n-D! € -a)

fn(g) =

Therefore, (1) becomes,

1 O f@ f'(@ ..
fo(2) = o fc [(g_a)n(f—z) E-a)"(¢-2z) 1UE-a)"1(-2)
_ " 1dé
""" n-D!(§-a)(§-2)

(n-1)
_ 1f f©dg n (@ 1f . S >(2)

T omide ma)(-z) LT (n-r) 2mide (e—a)(e-z)

_ ds
set F(a) ‘fe CE-arG-2

3 de 1 (z—a)de
Fl(a) - fc (f_a)(f—z) o Z—Qa fc (f—a)(f—z)

_ 1 [G-—a)-(—2)]de _ 1 11
" z-a fC (t—a)(¢t—2) " z-a fC ( -z f—a)df
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= — (2mi — 2mi) =0 identically for all z inside of C.

By lemma 10, E,'(a) = nF,;,(a)
Whenn =1, F,'(a) = F,(a). Therefore, F,(a) =0
Similarly, we get E.(a) = 0 forallr> 1

1 f(©de
—J

Therefore, from (2) fn(Z) = pyrll 8 m
This representation is valid inside of C.
Zeroes and poles

Theorem 3:

Let f(z) be defined and analytic in the region Q. Suppose for some point
a € Q, f(a) and the derivative f”(a) all vanish. Then f(z) =0 on Q.

Proof:
Let C be a circle with centre a and radius R in the region Q.

By Taylor’s theorem,

f@=f@+L2@-a) + L2 @ - a)? + -+ f(D)(z - a)" foralin

where f,,(z) is analytic in Q.
By hypothesis, we have f(z) = f,(z)(z —a)*—— (1) and

! F(©)de
f”(z)‘zmjc C— "G —2)

(i.e.) the circumference C has to be contained in Q in which f(z) is defined and
analytic.
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f(¢) is continuous on C and C is compact. = f is bounded on C

(i,e) |f(¢&)] <M onC.

f |f (OIlds]

1
Therefore, |f,,(2)| < 2ndc |G—a)| |-z

M f |ds] [as, | — a| = R]--------------- >(2)

— 2mR"Yc |&-z|

§—z|l=|¢—a+a—z|=|(¢—a)—(z—a)l
>|¢—al—-|z—al =R—|z—-aq

1 1
le=z| — R-—|z—al

Therefore, (2) becomes,

M
O e

M
"~ 2mR"(R—|z-a|)’ 2mR

_ M
" R"1(R-|z-al|)

Therefore, (1) = |f(2)| = |fn(2)(z — )"

If ()| = (@Dl|z - al

<—1
= RPL(R-z-al)

_(|z—a|)” MR
“ U R R-|z—a|

22l < q :(lZI_Tal)”ﬁO asn — o

R

1z —al"

Therefore, 0 <
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= f(z) = 0 inside of C ---------- >(3)
TP f(z) =00nQ

Let E; be the set on which f(z) and all its derivatives vanish and E, be the set
on which the function (or) one of the derivatives different from zero.

E, 1S open, E, is open because the functions and all its derivatives are
continuous.

Now, Q= E;UE,. But Qis connected = either E; =0 orE, =0

Suppose E; = @, then the function and all its derivatives can never vanish at any
point. Thisis a contradiction. ~E; = 0@ = Q= E; -~f(z)= 0on Q.

DEFINITION:

Let f(z) = 0. If f(a) = O then there exists a least positive integer h such that
f™ (@) = 0. Then ais the zero of order h.

NOTE: By the previous result, there are no zeros of infinite order.

Lemma 4 If a is a zero of order h then f(z)= (z— a)"f,(z) where f,(2) is
analytic and f;, (a)=0.

Proof: Given: f(z) is analytic in Q. By Taylor’s theorem,

() = @) + LL200) +...+ L0z — )" 4 fo @)z — @)

(h)
_ (.Z . {I)h[f (a)

fr(a) = U]

o, +Hz - a)" ", (2)]. [+fa=f@)=.....=
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F®(a)
h!

f(z) = (z — @) frn(z) where fr(2) = SN + (z— )" (@) is

analytic.
T.P: fr(@#0

FP(a)
h!

fu(a) = # 0.

ISOLATED POINTS:
THEOREM 5:

The zeros of an analytic function which does not vanish identically are isolated
(or) The zeros are isolated.

Proof: Let f(z) be analytic function and let f(z) = 0. Let z = a be a zero of order
h. = f(z) = (z — a)"f, (z) where f,(2) is analytic and f,(a) = 0.

Since f;(z) is continuous, f;(z) # 0 in a neighborhood of a and z = a is the only
zero of f(z) in this neighborhood.

COROLLARY 6:

If f(z) vanish on a set with an accumulation point in Q then f(z) =0

Proof: Let S = {zeQ/f(z) = 0} and S has an accumulation point a in Q.
= There exists a sequence (a,,) in S such that a,, =+ aas n— o

= f(a,)— f(a) asn - oo. Since (a,) € § = f(a,)=0v n= f(a)=0.
Claim: f(z)=0

Suppose f(z) # 0. But then zeros are isolated
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(ie) not isolated = not zeros and accumulation point = not isolated
a iIs an accumulation point = a is not a zero of f(z)
= f(a) # 0.This is a contradiction to f(a) = 0.Therefore f(z) = 0 on 1.

THEOREM 7 (UNIQUENESS THEOREM )

If f(z) and g(z) are analytic in Q and if f(z) = g(z) on a set which has an
accumulation point in €, then f(z) = g(z) on Q.

Proof: Given that f(z) = g(z) on a set which has an accumulation point in Q

= f(z) - 9(z) = 0 (ie) (f-g)(z) = 0 on a set which has an accumulation point in Q
By previous corollary, (f-g)(z) = 0on Q = f(z) = g(z) on Q.
NOTE:

1. If f(z2)=0 in a sub-region of Q, then f(z) = 0 on 0
2. Iff(z)=0 on arc = f(2)=0 on Q

3. An analytic function is uniquely determined by its values on any set with
its accumulation point in the region of analyticity [refer unigueness
theorem]

DEFINITION ( Isolated Singularity)

Consider a function f(z) which is analytic in neighborhood of a except perhaps at
a itself then the point a is called an isolated singularity.

In other words, f(z) shall be analytic in a region o < |z-a|] < & then the point a
is called an isolated singularity of f(z).

DEFINITION: (Removable singularity)

If the function is not analytic at ‘a’ but can be made analytic by merely assigning
a suitable value to the function at a point a in region Q.

133



DEFINITION: (Regular)

If a is the removable singularity and if f(z) is analytic in some(deleted)
neighborhood a then f(z) is said to be regular at a.

NOTE: 1. Regular is sometimes used as a synonym for analytic.

1. If ais taken as a Removable singular point then we can define f(a), so that
f(z) becomes analytic in the disc |z-a|] < &.

DEFINITION: (Pole)

If f(z) has an isolated singularity at z=a and f(z)— o« at z—a. Then f(z) is said to
have a pole at z=a

NOTE:

1. If ais a pole of f(z), we said f(a)= oo there exists §' < § such that f(z) = 0
for 0 < |z-a| < " [Since f(z) is analytic in region 0 < |z-a] < &]. In this

region the function g(z) = é Is defined and analytic.

But the singularity of g(z) at a is removable and g(z) has an analytic
extension with g(a) = 0.

Since g(z) does not vanish identically zero and so a is a zero of g(z) of
finite order. We write g(z) = (z — a)"g, (2) with g, (a)=0.

The number ‘h’ is called the order of the Pole and

1 _ 1
g(z)  (z-a)lgn(2)
and different from zero in a neighborhood of a.

f(z) = = (z — a)™"f,(2) where f,(z) = $ is analytic

DEFINITION: If f(z) has a pole at z = a and f(z) = (z — a)"f, (z) where f;,

(z) i1s analytic and different from zero in a neighborhood of a. Then h is the
order of the pole of f(z) atz = a.
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DEFINITION:

A function f(z) which is analytic in a region €, except for poles, is
said to be meromorphic in Q.

NOTE:

1. More precisely, to every a € Q there exists a neighborhood |z-a|<§
contained in Q, such that f(z) is analytic for 0 < |z-a |< & and the isolated
singularity is a pole.

2. By definition, the poles of a meromorphic function are isolated.

3. The quotient % of two analytic function in € is a meromorphic function

in €, provided that g(z) is not identically zero. The only possible poles
are the zero of g(z). But a common zero of f(z) and g(z) can also be a
removable singularity. In this case the values of the quotient is
determined by continuity. The sum, the product, the quotient of the two
meormorphic functions are meromorphic.

Detailed discussions of Isolated Singularity:

Consider the condition, (i) lim,_, |z — a|*|f(z)| =0

(i) lim,_, |z — a|*|f(z)| = oo for real values of ‘a’.

If (i) holds for certain «, it holds for all larger « and hence for some integer m.
Then (z — a)™f(z) has a removable singularity and vanish for z = a.

Either f(z) = 0, in which case (i) holds for all @ or (z — a)™f(z) has a zero of
finite order k. In the later case it follows at once that

(i) holdsforalla >h=m-k
(i) holds for all « <h.

The discussion shows that there are 3 possibilities:

1) Condition (i) holds for all « and f(z) vanishes identically.
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2) There exists an integer h such that (i) holds for all @ > h and (ii) for « < h
3) Neither (i) nor (ii) holds for any «.

CASE 1: Trivial
CASE 2: h may be called the algebraic order of f(z) at a. It is positive in the
case of a pole and negative in the case of a zero and zero if f(z) is analytic but

f(z) not equal to zero at a. The order is always an integer. In the case of a pole
of order h, apply Taylor’s theorem to an analytic for (z — a)"f(z). We have,

[3 - a}hf(z) = Bh_ + Bh__]_ (Z‘a) + Bh__z (3 - ﬁi)z F + Bl [3 — &:}h_l +
¢(z) (z — a)", where @(z) is analytic at z = a.

For z # a, we have
f(z) = By(z — a:}_h+Bh_1 (z — &:}_h+1+ ............. +B; (z — a}_l t ¢(2)

The part of this development which proceeds ¢(z) is called the singular part of
f(z) at z = a.

Therefore, A pole has not only an order but also a well defined singular part.
In the case (3) the point a is an essential singularity. In the neighborhood of an
essential singularity f(z) is at the same time unbounded and comes arbitrary

close to zero.

Note: The difference of two functions with the same singular part is analytic
at a.

CHARACTERIZATION OF THE BEHAVIOUR OF A FUNCTION IN
THE NEIGHBORHOOD OF AN ESSENTIAL SINGULARITY:

Theorem 8 ( WEIERSTRASS THEOREM)

An analytic function comes arbitrarily closed to any complex value in every
neighborhood of an essential singularity.
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Proof: If the assertion were not true, we could find a complex number A and a
& > 0 such that |f(z)-A| > & in a neighborhood of a (except for z = a)

For any a <0, we have then lim,_ |z — a|*|f(z) — A| = . Hence a would
not be an essential singularity of f(z) — A.

Accordingly, there exists a 8 with lim,_,|z — a|?|f(z) — A| = 0 and we are
free to choose S > 0.

since lim, |z — alf|4] = 0 = lim,_, |f (2) ||z — al® =0 [ [f{@)-|A]l > [f(2)-Al ]
= a would not be an essential singularity of f(z).

This is a contradiction [ as a is an essential singularity of f(z2)].

Theorem 9 (LOCAL MAPPING)

Let Z; be the zeros of a function f(z) which 1s analytic in a disc A and does not

vanish identically, each zero being counted as many as its order indicates. For
every closed curve y in A which does not pass through a zero X; n(r,z;) =

1 "= ..
ﬁf}, %dz where the sum has only a finite number terms not equal to zero.

Proof: Given that f(z) is analytic and not identically zero in an open disc A and
also given that y is a closed curve in A such that f(z) # 0 on y.

Case 1:
If f(z) has only a finite number of zeros in A,

Let them be zq, z4, z,,...... Where each zero is repeated as many times as its
order indicates.

By the repeated application of Taylor’s theorem we have,
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f(2) = (z-21) (Z-23) .o, (z-2,)9(z) where g(z) is analytic and g(z) # 0
in A

Taking log on both sides,
log f(z) = log(z-z,) + log(z-z;) +............ + log(z-z,,) + log g(2).

Differentiate with respect to z,

r r
G + e, - 'FQII:E}I

flz)  z-z; z-z, z—zn g(z)

! (z} _ 1 dz 1 dz
EHL‘[F’ f(z} B EHL‘[ Z—Zq * EHL'J:}’ zZ—Z4 Tt 21?1"[&’ Z—2Zy *
g (z}
EHL"[}’ g(z}
_ g (z}
=02+ N Z2) e enlyza)t g, S5

1 g'(2)
i Nz + o), T odzo )

Since g(z) # 0 and g(z) is analytic = g'(z) is analytic.

g' (@
" g(z)

Now is analytic in A and y is a closed curve in A.

g’ @
g(z)

By Cauchy’s theorem on a disc, fy dz=0

1 (@)
- (1) becomes — f? o

dz =27, n(v.%)
CASE 2: Suppose f(z) has infinitely many zeros in A.

It is clear that y is contained in a concentric disc A’ smaller than A.
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If f(z) £0, it has only a finite number of zeros in A’.

For, If there were infinitely many zeros they would have an accumulation point
in the closure of A" [By Balzano — Weierstrass theorem]. This is impossible.

The zeros outside of A’ satisfies n(yv.z;) = 0 and hence do not contribute to the
sumin (1). Hence the theorem.

Observation 1: X; n(r, z;) = i , dff((z)) yields a formula for which the total

number of zero enclosed by y.

For, Applying the transformation w = f(z). Let I" be image of y under this
transformation.

1 dw 1f df(z)

2midt w T 2midy f(@

1 '@ _
= . fa}, f(; dz :EJ.- ?i'(?",zj). Thatis, n(I',0) :EJ_ TI(T,Z;)-

If each n(y, z;) must be either be 0 or 1 then the formula in Theorem 9
Z; n(rz) = zimfy ‘;f((z)) yields a formula for which the total number of zero
enclosed by y. This is evidently the case y is the circle.

Observation 2: Let a be an arbitrary complex value. Apply Theorem 9 to

f(z) - a. The zeros of f(z) - a are the roots of the equation f(z) = a and we denote
them by z;(a).

_ f@
Therefore, by Theorem 9, X; n(r, z;(a)) = ﬁ , Fooa
1 d(f(z2)-a) _ 1 dw-a) _ 1 aw  _
21 fY f(z)-a T omi fl" w—a T oni T w-a 77(['13-)

n(r.a) =%; n(r,z(a)) . Itis necessary to assume that f(z) #a on y.
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Observation 3: If a and b are in the same region determined by I then
nra=nrb) = % n(rz@)=X; n(rz®). Ifyisacircle, It follows
that f(z) takes the values a and b equally many times inside of y.

THEOREM 10

Suppose that f(z) is analytic at z,, f(z,) = w, and that f(z) - w, has a zero of order
natzy. If € > 0 is sufficiently small, there exists a corresponding 6 > 0 such that
for all a with |a - wy| < & the equation f(z) = a has exactly n roots in the disc
|z - 29| < e.

Proof: We can choose € so that f(z) is defined and analytic for |z-z,| < € and so
that z; is the only zero of f(z) - wy in this disc. Let y be a circle |z-z;| = € and I
its image under the mapping w = f(z). Since wy;€ Complement of the closed set
I', there exists a neighborhood |w - w,| < & which does not intersect I". It

follows immediately that all values a in this neighborhood are taken in the same
number of times inside y. The equation f(z) = w, has exactly n coinciding roots

inside of y, and hence every value a is taken n times. It is understood that
multiple roots are counted according to their multiplicity. But if € is sufficient
small, we can assert that all roots of the equation f(z) = a are simple for a # w;.

Indeed, it is sufficient to choose € so that f'(z) does not vanish for 0 < |z-z;| < €.

- ®)

z- plane w- plane

FIG. 5.1 Local correspondence.
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Corollary 11
A non constant analytic function maps open sets onto open sets.

Proof: Since the image of every sufficiently small disc |z-z,| < € contains a
neighborhood |w - w,| <& (By Theorem 10 above)

Therefore, f maps open sets onto open sets. Therefore, f is open map.
Corollary 12

If f(z) is analytic at z, with f'(zy) # 0. It maps a neighborhood of z,
conformally and topologically onto a region.

Proof: Given f ‘(zp) # 0. Hence n=1, in this case there is a 1-1 correspondence
between the disc | w - W | < § and an open subset A of | Z -7 | < g&. Since the
open sets in the z-plane corresponds to open sets in the w - plane. The inverse
function of f(z) is continuous . Then the mapping is topological. But the
mapping can be restricted to neighborhood of z, contained in A.

.. T4(zo) #0 => fis conformal.

5.2 Maximum Principle
Theorem 13 (The maximum principle)

If f(z) is analytic and non constant in a region Q, then its absolutely value
| f(z) | has no maximum in Q.

Proof: If wy = f(zy) is any value taken in Q then by Corollary 11, there exists a
neighborhood | w-wq | < & contained in the image of Q. In this neighborhood
there are points of modulus > | wo | .

Hence | f(zo) | is not the maximum of | f(z) | :

Alternative Proof for Maximum Principle:
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Let zobe any pt in Q. Consider a circle y with centre z, at radius r.
=>&=zo+re”, 0<0<2n => dé=ire” dony

f(&as _if2nf(zo+rei9)irei9d9
-z  2mi’0 ret®

By Cauchy Integral formula, f(zo) = # fy

:ifoznf(zo +7re®)do .......... (1)

21l

This formula shows that the value of an analytic function at the centre of a
circle is equal to arithmetic mean of its values on the circle subject to the
condition that the closed disc | Z-2 | <ris contained in this region of analyticity.

1 (2 i
(1) = [fzo)|< 5 J;" f(z0 +1e")dO ---nnmmmv (2)
Suppose that | f(zo) | were a maximum => | f(zo+re®) | < | f(z0) |

If the strict inequality hold for a single value of 6 it would hold, by continuity
on a whole arc. Then the mean value of | f(zo) + re”)| would be strictly less
than |f(zo) |. Therefore, (2)=> |f(zo)|<|f(z0)|
This is a contradiction. Therefore, f(z) must be constantly equal to |f(zp) | on
all sufficiently small circles |z-zo|=r and hence in a neighborhood of z, =>
f(z) must reduce to a constant.

Theorem 13’

If f(z) is defined and continuous on a closed and bounded set E and analytic on
the interior of E, then the maximum | f(z) | on E is assumed on the boundary of
E.

Proof: Since E is compact, | f(z) | has a maximum on E .

Assume | f(z) | has a maximum at z.

Case (i): If zy is on the boundary, there is nothing to prove.
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Case (ii): Assume zq is an interior point of E.
Then | f(zo) | is also a maximum of | f(z) | in a disc | Z-Zo | < 0 contained in E.

This is not possible, unless f(z) is constant in the component of the interior of E
which contains z,.

=> By the continuity that | f(z) | = the maximum on the whole boundary of
that component.

This boundary is non-empty and it is contained in the boundary of E.
Therefore, the maximum is always assumed at boundary points.
Schwarz’s Lemma:
Theorem 14 : If f(z) is analytic for |z|< 1 and satisfies the conditions
|f(z)|< 1, f(0) = 0, then |f(z)|<|z| and |£°(0)|< 1. If [f(z)|=|z]| for
some z # 0, or if | £*(0) |= 1, then f(z) = cz and with a constant c of absolute

value 1.

Proof: Since f(z) is analytic in the disc | z | <1, Taylor’s expansion about the
origin gives f(z) = Co+ €1z + CuZ° +......... +CnZ e,

By hypothesis, f(0) =0 so that c,=0

(@) =zt Gz e, O A P ——— 1)
Consider the function, f,(z) = @ =Ci+CZ Fennnn, in the unit disc |z | <1,

f1(z) is analytic.  Ifwe set f;(0) =c,= £°(0)

@ifzio

(8) @) = 1 £1(0)if z = 0
Let z = a be an arbitrary point of the unit disc.
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We choose ‘r’ such that | a | <r<l

Since | f(z) | <1, on the circle | z | =r, we have | fi(z) | - o) S% --------- (2)
By the maximum principle , the inequality (2) also holds in this disc |z |<r

|f1(a)| = |%|S% Ifwelet r — 1 we see that |f1(a)|§1

(o) [E2] <1 (o) |f@)|< |a
Since a is arbitrary ,we have |f(z) | < |z | VZ oo (3) for which |z | <1

[ In particular, |f,(0)] = |f'(0)] < 1 (given)]

If the equality in (3) holds at a single point it means that f;(z) attains its
maximum and hence that f;(z) must reduce to a constant [by maximum
modulus principle]

Therefore, |f,(a)| = 1 can hold only when f;(z) = 22 = ei* (i) f(2) =

ze'® where « is a real constant or f(z) = cz where |c| = |e'®| = 1. Hence the
theorem.

Cycles and chains

Definition : Chains
Consider the formal sums y; + y, + ¥3 + ¥4 ... + ¥, Which need not be an arc
and we can define the corresponding integral fV1+V2---+Vn fdz = fyl fdz +

fyz fdz + ---fy fdz such formal sums y; + v, +¥3 + ¥4 ...+ ¥, of arcs are
called chains.

Definition : Cycles

A chain is a cycle if it can be represented as a sum of closed arcs (or) a
chain is cycle if and only if in any representation the initial and end pts of the
individual arcs are identical in pairs.
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Definition :

A region is simply connected if its complement with the extended plane is
connected

Definition: (Homology)
A cycle y in an open set Q is said to be homologues to zero with respect to Q if
n(y,a) = 0 for all points a in the complement of Q.

The General statement of Cauchy’s Theorem

If f(z) 1s analytic in Q then fy f(z)dz = 0 for every cycle y which is
homologues to zero.

5.3 The calculus of Residues

Now the determination of line integrals of analytic functions over a closed
curve can be reduced to the determination of a period. We are thus possessing
of a method which in many cases permits to evaluate integrals without resorting
to explicit calculus.

In order to make this method more systematic a simple formulation known as
the calculus of residues was introduced by Cauchy.

Residue Theorem:

All the results which were derived as consequences of Cauchy’s
theorem for a disc remains valid in arbitrary region for all cycles which are
homologues to zero.

Cauchy’s Integral formula can be expressed in the form, if f(z) is analytic in a
region Q.

n (y,a) f(a) = 2%71 fy i(TZ(i dz for every cycle y which is homologus to zero in Q.

We now turn to the discussion of a function f(z) which is analytic in a region €
except for isolated singularities.
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Let us assume that there are only finite number singular points denoted by
a; ,a,....... ap. The region obtained by excluding the points a; will be denoted

by Q. To each aj, there exists a §; > 0 such that the doubly connected region is
contained in Q'. Draw a circle C; about a; of radius less than §; .

Let P; =fc, f(z)dz be the corresponding period of f(z).
J

The particular function i has the period 2.
—a;

Therefore, Set R; = ZP—I;i --------- 1)

Now, f(2) - % has a vanishing period. The constant R; which produces this
—a;

result is called the residue at the point a;.

Definition:  The residue of f(z) at an isolated singularity a is the unique
complex number R which makes f(z) - % the derivative of a single valued
analytic function in an annulus 0 < | z-a | <.

Note: Notation R = k¢5f(z). Since Rjzzim_ J.. f(z)dz where C; is the circle
]
. . . 1
about the isolated singular point &, ,£%f (2) = o fcj f(z)dz
Theorem 15: (Residue Theorem):

Let f(z) be analytic except for isolated singularities a; in a region € then

Ziﬂi fy f(2)dz =¥ ;n(y, a)) Z’:?fl?f () for any cycle y which is homologus to

zero in Q and does not pass through any points a;
Proof:

Case(i): Suppose there exists only finite number of isolated singularities (say)
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Define Q =Q - U™ ,{a;}. Therefore, f(z) is analytic in the region Q.

Let v be a cycle homologues to zero in Q and does not pass through any one of
the &’s.

Let C; be a circle with centre a; and radius > 0. Then ﬁ fc- f(z)dz is defined
J

as the residue of f(z) atasingularity a;. Consideracycle I' =y - ¥.;n(y, a;)C;,
Now, n(T,a) =n(y-X; n(¥, a;)Cj a) =n(y, a) - n( X; 1, a;)Cj a)
= N, a)- X1, a; ) n(Cj,an) = n(y,ax) - n(y,ax) N(Cy, a)
=n(y,aq) - n(y,a) =0
Thus, n(T,a) =0
Let a does not belongs to Q. n (I',a) =n(y-X;n(y, a;)C;, a)
=n(v.a) - 121, a)Cj .a=n(y,a) - Xjn(y, a;) n(C;,a) =0-0=0

Therefore, I' is a cycle homologues to zero which does not pass through the a;’s.
(i. e) T is a cycle homologues with respect to Q"

Therefore, by Cauchy general theorem,

. f(2)dz=0 => fy f(z)dz =0

=2jn.a;)Cj

=[, f(@2)dz = L. a)) [ f(2)dz

1

=>ify f(@)dz = Xin(y, q) - fcj f(2)dz

20

=X, ) L&f (2)
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Case (ii): Suppose there exists infinitely many isolated singularities to Q. The
set of points a such that n(y, @) = 0 is open . Since y is compact there is a large

circular disc D such thaty c D and for ae ~D, n(y,a) = 0.

Then the set of points b such that n(y,b) #0 equal to D-A =D n A€ where
A={aeD/n(y,a) =0}

Therefore, D - A is a closed and bounded set and hence D - A is compact.

Hence, there exists only a finite number of a; such that n(y,a;) #0 and for this
aj case(i) applies.

1
Therefore, — fy f@dz=X;n(v, @) L&f (2)

Notel: In the applications, it is frequently the case that each n(y,a;) is either 0
or 1. we have }; Z’jgjf(z) ,where the sum is extended over all singularities

enclosed by .
2) The residue of f(z) at a simple pole z = a is /"™ (z — a)f(z) = 0.
Problem 1:

Find the poles and the residues at their poles of the following

(z-a)(z-b)’

Solution:  Letf(z) = 2D

Poles of f(z) is given by (z-a)(z-b)=0 (i.e)z=aorz=Db

function

eZ

(i.e)) z=aand z = b are the poles of f(z).

Residue of f(z) at the simple pole z = a

ea

e —
(z—a)(z-b) " a-b

=lim,,(z —a)

Residue of f(z) at the simple pole z=b
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= lirnz—>b (Z - b)f(Z)

b

. e? __ e
= lim,_,(z — )(z a)(z-b)  b-a’

e?
(z—a)?

Whenb=a, f(z)=

=> z = a is a pole of order 2.

We know that if z = a is a pole of order h and if
f@)=z,z—a)™ "+ +2z(z—a) "+ @(2) then Resf(2),-4 = 7,

By Taylor’s theorem for g(z) = e?
_ g ( ) 2
9(z) =g(@)+=~(z-a)+g:(2)(z-a)
e? =e%+ el—cll (z—a) + g,(2)(z — a)? where g,(z) is analytic

Divide by (z — a)?

a a

e? e e

G-~ Gz oy T 92(2)

z

f,, (Zfa)zdz = fy (Zia)z z +f dz +f g2(z)dz where C is the

circle with centre a.

:eafy 4z , where y ~0

= e% 2mi

Res,- am = —f f(z)dz

2T

1 )
=—e%2m =c¢e
2711

a
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The Argument principle:
Theorem 16:

If f(z) is meromorphic in Q with zeros a; and poles by. Then

%fy ];((ZZ))dz=Zjn(y,aj)—2kn(y,bk) for every cycle y which is

homologues to zeros in © which does not pass through any of the zeros or poles.

Proof: Let a; be the zero of f(z) of order h.
Therefore, f(z) = (z — a)"f,,(z), where fh(a]-) # 0 and f;,(z) is analytic.
Taking log and differentiate with respect to z.

f@__h | W@
f@  (z-ap  fr@

Therefore, z = q; is a simple pole of ’%with residue h.

Let b, be the pole of f(z) of order [.
=> f(z) =(z— bk)‘la(z) where o(b;) + 0 and o(z) is analytic.
Taking log and differentiate with respect to z

f@_ L d®
f@ ~  z-b | 0@

Therefore, z = by, is a simple pole of the function f7with residue — [ .

By Residue theorem, we have Ly LW

2wy T T %in(v,a) = Zin(, by
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Corollary 17 (Rouche’s theorem )

Let y be a cycle homologous to zero in € and such that n(y, z) is either zero
or one for any point z not on y. Suppose that f(z) and g(z) are analytic in Q and
satisfy the inequality |f(z) — g(2)| < |f(2)| ony. Then f(z) and g(z) have the
same number of zeros enclosed by y.

Proof: Given that fand g are analytic in Q.

Further, f and g do not have a zero on y.

For,f hasazeroaony => f(a) =0 fora €y

By hypothesis, |f(a) — g(a)| < |f(a)] => |g(a)| < 0.This is a contradiction.

Therefore, f has no zero on y. Similarly, g has no zero on y.

g(z)
f(2)

~ fand g cannothaveazeroony. Let F(z) =

=> F(z) is meromorphic in Q.

Let N = number of zeros of F(z) enclosed by y.
= number of zeros of g(z) inside of y.

Let P = number of poles of F(z) enclosed by y.

= number of zeros of f(z) inside of y.

.. _ 1 F'(2)
Therefore, By the Argument principle, N — P = — fy D dz

= 7n(T,0) where I' = F(y)

Given |[f(z2) —g()| <If(2)l, zey
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=>[1-22

o) <1l ze€y

=>|1-F@z)|<1,zey

=> ['= f(y) which is contained in the open unit circular disc of centre one
and radius 1.

=>n{l,0)=0 =>N-P=0=>N=P
=> Number of zeros of g (z) inside of y = Number of zeros of f (z) inside of y
Therefore, fand g have the same number of zeros enclosed by y.

REMARK: f(z) and g(z) are interchangeable. Therefore, we have the condition
| f(z) -~ 2(2) | < |g(z) | => f and g have the same number of zeros.

Take @ (2) = f(2) —g(2) => @(2) +g(2) = f(2)
Therefore, | ? (2) | < |g (z) |
Therefore, g(z) and g(z)+ @(z) have the same number of zeros
Therefore, if | ? (2) | < |g (z) |
then g(z) and g(z)+ @(z) have the same number of zeros.
Problem 1:
How many roots does the equation z'-2z°+6z%-z+1=0 have in the disc |z |<1
Solution:

Of the coefficients 1,-2,6,-1,1,the coefficients 6 has the maximum absolute
value.

To use Rouche’s theorem ,
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Letf(z) =62° andg(z) =z'-22°-z + 1
On |z|=1, |f(z)|=62°=6
lg@ |=| z'-22°-z+1 |
<|z[™2|z|>[z]+1=5
=>|g(2) |< |f(z) |.Butf(z)=62 has3rootsz=0
By Rouche’s theorem,
=> g + f and f have the same number of zeros inside the circle |z|=1
=> g+f = 2'-27°+62°-z+1 = 0 has 3 roots inside of the circle | z | <l1

Problem 2. How many roots of the equation z* - 6z + 3 = 0 have their modulus
between 1 and 2.

Solution: Consider the circle |z|= 1. Of the coefficients 1,-6,3

6 has the maximum absolute value.

To use the Rouche’s theorem, take f(z)= -6z and g(z)= z*+3

On |z|=1, [f(z)|=6]|z|=6and |g@@)|= | 2*+3|<]| 2'|+3 =4
Therefore, |g(2)| < |f(2)]

But f(z) = 6z has one root z =0 inside of |z|=1

By Rouche’s theorem

=> g+f and f have the same number of zeros inside the circle |z| = 1

=> g+f = z%-6z+3=0 has one root inside the circle |z| = 1
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Consider the circle |z| = 2

Letf(z) =z' and g(z) =-6z+3. On|z| =2,

f@]=12I"=16 and |g(») |< 6]z|+3<15

Therefore, |g(z) |< |f(z) |. Butf(z) =z*

Therefore, f(z) has 4 roots z = 0 inside the circle |z| = 2

Hence by Rouche’s theorem ,

f+g and f have the same number of zeros inside of |z| = 2

Therefore, f(z) + g(z) = z*- 6z + 3 = 0 has 4 roots inside of |z| < 2
Therefore, the number roots lying between |z| = 1and |z]| =2is4-1=3
5.4 Evaluation of definite integrals:

Type 1:

foan(cos 6 ,sin6 ) df where the integrand R(cos 8 ,sinf ) d@ is a rational
function of cos 6 and sin6

i . dz dz
Putz=e.=dz=ie do = df =—=—
iet iz
004 p—if _ elf_p—if

cosf = , sinf = :

2 21

zZ+1/z . z—1/z

cosf = 2/ , sinf = 2i/

Also | z | =1 (i.e) C is the unit circle | z | =1

21 . _ z+1/z z—-1/z\dz _
Jy R(cos,sin6)do = |, R( =, — )i—z = [, f(2)dz

=2mi (sum of residues of f(z)at the poles with in C)

154



Problem 1

ae

T
>
CompUte fO a+cos@ '’ a>1
. =1
Solution: | tcoso s a+cos

since cos 6 takes the same values in the interval (0,7) and (m, 2m)

. . d d
Put z= e® = dz=ie®do=>do=—r= —
e ¥4
2 d az/i . ..
[F=— = % where C is the unitcircle [z] <1
0 a+cose c a+(z+)
dz

C . 2az+z2%+1
)
. dz
=iof %2
C z2+2az+1

1
z2+2az+1

=-2if. f(z)dz where f(z) =
The poles of f(z) are given by z% + 2az+ 1 =0

-2a +V(4a%-4)
2

Z =

_2(-a+Va?2-1)
2

a=-a+va?—landBf=-a-va?—-1

ap=a?—(a®—1) =1.But|ofp=] =>|0|=—

1B

Now, | |>1 => %<1 => |o< 1

a lies inside the circle C, |z] = 1.
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Res, o f(2) == Bz — Of (1) = Joh—22

1 1 _ 1

T 4B —arari-(-a—J@-1n  2V(a*-1)

2

I =?fc f(2)dz

=§.2ni [sum of the residue of the poles with in C]

1

=4n (220 (2)) =47

de _ 2w
a+cose V(a?-1)

Therefore, [,

m de  _ 2w de _ 2w _ T
fO a+cose =1/2 fO a+cose 2 V(a?2-1) _\/(az—l)
. 2m de  _ 21
Deduction: fo ro0se - V2D
. 2 d 2
Diff. wrtoa, -[ " ———=-1/2—— .2a
(a+cose) (a2-1)z
J-Zn de _ 2am
0 (a+cose)? (a2—1)%
Problem 2
T ax
2 >
Evaluate [ ——— Ja>1
Solution:
T Vs
= dx = dx
= 2 = |2 —
Take | = [2———-= [ P

Pute:2x.whenx:0,e:Oandwhenng,eznthende=2dx

156



Let | =J~n de — 1 f27r de

0 2a+1-cose 0 2a+1-cose
dz
i

Putz=e® dz=ie®de and de = -

Let C be the unitcircle z| =1

=% [ i

dz
sa+2—(z+3)
iz<72 Z )

=-1/if 4z

C z2-2(2a+1)z+1

=112,

_|f dz
C z2—(4a+2)z+1

1
z2—(4a+2)z+1

=if. f(z)dz where f(z) =

=i 2mi (sum of the residues of f(z) at the poles with in C).

The poles of f(z) is given by z2 — (4a+ 2)z+1=0

7 = (4a+2)+/((4a+2)2-4) _ (4a+2)t/(16a%+4+16a—4
2 2

= dar2E4J(@H0)  _9a41 42 (a2 + a)
. +

Let a=2a+1+2/(a®?+a) and B = 2at+l-2,/(a’+a)
o = [2a+1+2V(a? + a)| > 1. Now, af =1 = |o/|p| =1

=> |B| =ﬁ< 1, |B| <1. Therefore, B lies with in the circle C: |z| = 1
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opf (2) = lim,_p(z — B)f (2)

= limz—>ﬁ (Z ﬁ)

(z— 0—’)(2 B)
__1 _ 1 _ 1
N (2a+1)—2\/a2+a—((2a+1)+2\/a2+a)  —a/a?+a

I=if f(z)dz

= i X 2mi (sum of the residue at the poles with in C)

T

() =

= —2m,55f (2)

Note:

If z = aisapole of order m then k&£ (2) = (m 1), — —{(z - )™ (2))

For,

Since ais apole order m, f(z) = ap + a;(z —a) + -+ —+ - +

{(-a)"f@D}=az-)"+a,z—a)™' + -+ b (z—a)™ ' + -+ by,

m-—1

lim
z—adzMm™ 1

(2= Q" F(D)} = (m—1)(m—2) -+ 1.by = by(m — 1)

1

= (- ()

Therefore, b,

1 am1?
Therefore, Ref(z) = ey {z—a)"f(2)}

Problem 3.  Apply the Cauchy’s residue theorem and prove that

fozn 059 cos(sin @ — nf) do = =

n!
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Solution: [ = fozn e°59 cos(sin 8 — nh) do

= Real part of fozn eC0st pi(sind-nb) 49

= Real part Offozn gCosb+isind ,—inb o

21 e“9 g—inb
= Real part of |, de
i dz . .

Put z=¢'" ,d0 = ;and Cis aunitcircle |z| =1
1 dz

I = Real part offoznez—

z" iz

= Real part of - f

n+1

1
= Real part of 7 fcf(z)dz where f(z) = ——
= Real part of% X 2mi X Sum of residues at the poles within C

Poles of f(z)

z = 0 isapole of order n + 1 lies within C.

e’ 1

1 1
25 f(2) =limg, _,ﬁ (z"*H(2)) = limz_ —,ﬁ( A zn+1) ==

| =R.P.of %fc f(z)dz= R.P.of %.Zm'(Sum of residues at the poles within C)

= RP2mL=E
n!

n!
Lemma 18:

If hm(z a)f(z) = Aandif Cisthearc 8; < 0 < 6, of the circle |z — a| =r then

lim;, fC f(z)dz = 1A(6,-6,)
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Proof:

ler}l (z-a)f(z) = A = given ¢ >0 ,there exists a 6 > 0 depending on & such that
|(z—a)f(z) —Al<efor|z—al|< 6§ .But |z—al|=r

Therefore, if r< § then |(z — a)f(z) — Al <eonthearc C.

Therefore, (z-a)f(z) = A + n where |n| < e = f(2) = A+n

Therefore, [, f(2)dz = [ dz (A+m) fC

zZ—a

ld9

= (A+n) [T reia0 \here |z = 1.
1

=i(A+n)( 6 - 6,)

=i A8, - 8,) +in(6; - 6))
|f, f2)dz—1A(8, — 6| = (6, — 6:)| = [nll6; — 6,1 < (B, - )

Since e » 0 = r > 0. Therefore, lim,_, [. f(2)dz=iA (6, — 6;)

NOTE:
1) Inparticular, if A=0then lim,_, J. f(2)dz =0
2) lirr%) (z-a)f(z) = Res,—,f(2)

Lemma 19:

If Cisthearc8; < 8 < 6, of the circle |z| =R then limg_,, zf (z)=A then
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Rli_r)r(l)0 . f@)dz=iA6, — 6,)
Proof:

lim zf(z) = A.Therefore we choose R so large that |zf(z) — Al < ¢

R— 0
OnthearcC, (i.e) zf(z) =A+n where|n|<e

Therefore [, f(z)dz= [ %.Rieiede

=i(A+n) (6; — 61)

=Ai(0, — 0,)+ni (6, — 0,)

j F(@dz— iA@©, — 6| = |in@; — 6]
C

=nl(6, - 6,) <e(6,-6,) > 0ase — 0
Since ¢ — 0 and consequently R — oo
Therefore, we getlimg_,o, [, f(2)dz=iA (6, - 6,)
NOTE:
1) In particular, if A = 0 then ngrgo J, f(z)dz=0.
2) Res f(z) = Zli_)ngo -2 1(2)

Jordan’s lemma 20:

If f(z) is analytic except at finite number of singularities and if f(z) = 0as

z — oo, Then limg_q, [ €™ f(z)dz = 0 (m > 0) where p denotes the semi
circle |[z| =R, Im(z)> 0.

161



Proof:

Choose R so large that all the singularities of f(z) lie with in I" and none on its
boundary. Since f(z) — 0 uniformly as |z| — oo. Therefore, there exists € > 0
such that |f(2)| < € forevery z on T.

Now, |[.e™?f(2)dz| < [ |e™||f(2)|ldz]|
Put z = Re*

| imRel®
</, |e

e|Rei®i db)

- gfoﬂleimR(cose+isine)|R do

—¢R foﬂleichose ||e=mRsind| dg

— R foﬂ e MRSING g [ |gimeost| = 1]

260
< eR fone_(mRF) e [~ % < sinf < 6]

T
ERT - 28
= — [e mR T

—mR2 0

_ TRe _ ,—2mR
o 2mR (1 € )

- 0asR—>ooande > 0
limg_,e [ €™ f(2)dz = 0
Result:
1. Iflim,e zf (2) = 0, then limg_., [.f(2)dz = 0.
2. Iflimp_ zf(z) = 0, then limg_,, freimzf(z)dz = 0.
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3. If C is the arc of the circle |z —a| <r such that 8; <6 <6, and
lim,q(z —a)f(2) = A thenlim,_, [.f(z)dz = i A(6, — 6;)

4. If C is the arc of the circle |z| =R such that 6, <6 <6, and
limg, . zf (z) = Athenlimgz_, fcf(z)dz =1A(6, —6;)

TYPE II:

Evaluation of integrals of the form ffooo f(x)dx,where f(z) is analytic in
the upper half plane except at a finite number of points and have no poles on the
real axis.

Above type of integrals are evaluated by integrating f(z) around C
consisting of a semi circle T of radius R large enough to include all the poles of
f(2) and the part of the real axis from —R to R.

Therefore, by Cauchy’s Residue theorem

j f(z)dz = 2mi X (Sum of the residue of the poles of f(z)within C)
c

= [ f(0dx + [ f(2)dz = 2mi ¥ R*
where ), R* denotes the sum of the residue of the poles in the upper half.
It can be shown that, if lim, . zdz =0 = limg_ frf(z)dz =0

Also, limp_, [© f()dx = [7 f(x)dx and [* f(x)dx = 2mi ¥ R*.

dx

Problem 1: Evaluate [~ RO

Solution:
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Consider fcf(z)dz, where C is the contour consisting of a large semi circle
1
(142z2)2

' of radius R along with the part of the real axisfrom-R to R, f(z) =

Jf(z)dz = 2niZR+,
C

where z R* = Sum of the residue of the poles in the upper half plane
R
jf(x)dx + jf(z)dz - 2’“2 R*
-R T

- - ) Z — ) —
le_)n(}ozf(z) = le_}tg) ETOr 0.and }%1_r)r010 f(2)dz =0
T

Also, limg_, o f_RRf(x)dx = ffooof(x)dx and ffooof(x)dx =2mi Y Rt

r dx _ N
fm=2”‘ZR

To find the pole of f(z),

f(2) = (1;2)2' Now, 1+2z2=0 =z=+i

Therefore, f(z) has only one pole z =i of order 2 lies in the upper half of the
plane.

Res . 1.d N2
Bf(2) = lim— — (2= D*f(2))

T e
= lim,; 22 (z = 1) (z+0)2(z—1)?
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1

A e il oo, cTp
o (z+10)3

-2 -2 -1 1
(203 8i3  —4i  4i

f dx —Z'ZR+—2'><1—7T
. (1+x2)2_ Tl = 27 532

. foo dx _1 jo dx T
T A4x2)2 2 ) (1+x2)?2 4
0 — 00

[0.] 2 -
Problem 2. Evaluate f_oo( *2* _ (aisreal and a> 0)

x2+q2)3

3
and lim,_,o, zf(2) = lim,_ m =0...(1)

42
(z2+a?)3

Solution: Here f(z) =

Consider fcf(z)dz where C is the contour consisting of a large semi circle

' of radius R along with the part of the real axis from - R to R.

Jf(z)dz = 2ni2R+
c

ff(x)dx+ jf(z)dz — 2m’ZR+
-R r

R

x2dx z%dz , N
_[ (x%2 4+ a?)3 T J (z% + a?)3 - ZmzR
—R p
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From (1), We have  limp_, [.f(z)dz =0

. z%dz _ 0o .
=l | Gy - .
r

Also,  limp [* fO)dx = [ f(x)dx
R oo
. j x*dx j‘ x2dx
Rovoo (x2+a?)3 ) (x2+a?)?
—R -0

. C x%dx _ .
o J m = ZﬂlZR
To find the pole of f(z)
2
f(z)z(zzi—az)3 >z’+a*°=0 =2z=+ai
Poles of f(z) are z = tai

Therefore, z = ai is the only pole of order 3 lies in the upper half plane.

2

2
@ = g (- a0 Gt )

z—ai2! dz (z%2 + a?)3

. 1 d? z?
~ N2 dz? (z + ai)?

. 1 d [2azi— z*
~ 062 dz (z + ai)*
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1 (—8aiz +2z%2 -2 a2>

= lim =
g 2 (z + ai)®

1 (—8ai(ai) + 2(—a?) — 2 a?
2 (2ai)®

1 4a®? 1

2 32a5i  16a3i

2Tl = —

oo x2dx .1 T
Therefore,  |_., orrams = 2™ ot = aad

2_x+2
Problem 3. Evaluate ffwm

z%2—742

Solution: Here (z) = ————

Consider fcf(z)dz where C is the contour consisting of a large semi circle I' of
radius R along with the part of the real axis from - R to R,

Jf(z)dz = 2ni2R+
c

where z R* = sum of the residue of the poles in the upper half plane

ff(x)dx + jf(z)dz = 2m‘ZR+
R ’

_ _ z2—z+2
Jmzf(z) = mz{ e q0259) =0

Therefore, ;%im j f(z2)dz=0
r
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Also, limpg_, o f_RRf(x)dx = ff:of(x)dx

j.of(x)dx = ZRiZ R*

j‘ x2—x+2 5 _ZR+
x*+10x2+9 ™

— 00

z%2—742
z*+10z2+9

To find the poles of f(z) =

z¥4+102z°4+9=0

,_ —10+£v100-4Xx9
z" = >

_ -10+v64 -10+8

2 2
z?=-1,-9
z=1,3i

z =1 is apole of order 1 lies with in the upper half plane.
55 (@) = lim(z - ) ()

2
z%2—z+2
= lim,,;(z—1i)————
z-i( ) z44+102249
z%2-742
(z—1)(z3+9z+i(z2%+9))

= lim,;(z — {)

—1-i+2 1-i
—i+9i—i+9i 16i

z = 3iis apole of order 1 lies with in the upper half plane
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z2 —z+2
(z—-30)[z3+2z+i(32% + 3)]

5:f (2) = lim (z — 3i)
z—-31

— lim —9-3i+2
223l 57043240

_ —=7-=3i 7+3i
T —48i  48i
f x2—x+2 i 1—i+7+3i]
X +10x2+9 7|10 T ass
. 3—-3i+7+3i . 10 51
—me[—48i ]—ZELXE =5

0

f x2—x+2 _5m
x¥+10x2+4+9 12

— 00

dx
x*+a*

Problem 4. Evaluate |~ (a > 0)

Solution:

Consider fcf(z)dz, where C is the contour consisting of a large semi circle I' of
radius R. along with the part of the real axis from - R to R,

Therefore, j f(z)dz = ZHiZ R
C

where z R* = sum of the residue of the poles in the upper half plane

ff(x)dx + ff(z)dz = 2m’ZR+
R ’
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R

j dx +j‘ dz —Z'ZR+
x*+a* zitat

-R r

zZ
lim, o 2f (2) = lim, oo —— = 0 = limg o, frm =

(00]

Also, limg_, e me= N OOx4+ - . Therefore, [~ Y
To find the pole of f(z) = 4+a4
zt+at* =0 = z'=-a* = Z=(—1)ia

zZ= a(cosw+ Lsm(zn—) wheren = 0,1,2,3

i i3 i5m i7m
Therefore, the poles are ae /4, ae" "4, ae""s, ae'" "

Therefore, ae'™/4 and ae™™/4 are the only poles with in C.

i

Let x =aez = at=qgei™=—_qg*

_ Iim 1 _ lim 1
Resz= a'f(Z) - (Z_ a) 4, 4 )
Z-o z%+a* 7 - 4z
. i in
Ilm 1 _ a _ « _ aesr _ ea
Z - aq4a®  4at 4q* 4qa* 4a3

i3n:

Similarly, Resz L3/, f(z) =——

4a3
i i31'L'
f_"°00x4+ =27y Rt = 2’”(e4 +es)
in —in =M. . T
2a3(€4 —e 4 ) —g(ZISll’lz)
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T

_m,. T _
—;(smz) =

V2a3

oo dx +oo dx
fO x*+a* _f o x*4at
in i
" 2+2a3 "~ 443
Type Il :

Evaluation of the integrals of the form f © ox ()smmx dx
f+oo gExi cosmx dx (m > 0) where (i) P(x) and Q(x) are polynomials (ii).

Degree of Q(x) exceeds that of P(x) (iii). Q(x) has no real roots.

Above type of the integrals are evaluated by integrating fce"mz f(z) dz
where f(z) = % around a contour C consisting of a semicircle I" of radius R
large enough to include all the poles of the integrand in the upper half plane

and also part of the real axis from —-R to +R

By Cauchy’s residue theorem, fceimzf(z) dz =2miy R*

f_+ ¥ eimrf(x) dx + J.e™*f(z) dz= 2miy, R*

By Jordan’s lemma, lim J.e™*f(z) dz =0 (m > 0)

R — o

. . _ P2
[as z = oo implies f(z) = T 0]

‘ him R imx — [(T® pimx
Also R o Oof_R e f(x)dx = [_ f(x) dx
[= em*f(x) dx = 2mi Y, R*

ffooo(cos mx + i sinmx)f(x) dx = 2mi Y, R*
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ffooocos mx f(x) dx + i f_oooo sinmx f(x) dx = 2mi Y, Rt

Equating the real and imaginary roots, we get the values of the given integral.

COos X x sinx

dx a real

Problem 1 f — dx, areal and f

Solution:

f e'™Z f(z) dz where C is the contour consisting of a

semicircle of radlus R large enough to include all the poles of f(z) in the
upper half plane and also the part of the real axis from —R to +R .

Therefore, By Cauchy’s residue theorem,

[, e™f(z) dz = 2i ¥ R*

f_RR e f(x) dx + [ e"™* f(z) dz = 2mi ¥ R*

R eimx

dx + fr - Uz =2ni L R”

|

e mz

: lim _lim 1 _ lim _
Since o @)= = 0. By Jordan lemma, R o oo J: dz=0

Z — 00 z%+a? z2+a?

imx

Lim +R elmx +o0 e
Also [ dx ="
— 00 Y—R x2+a? 0 x +a2

Therefore, f

To find the poles of f(z)

Z = +ai are the poles of f(z) and Z = ai is the only pole lies within C.

Res ;. \_ Lm :
5 = alf(z) =5 al(z - ai) f(2)
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llhl . eimz e—ma
(z-al) ————

Z = al (z—ai)(z+ai) 2ai
+00 eimx . _e—ma _—
I dx =2mi} Rt =2ni—— =-e¢™™¢
—® x%2+a? 2ai a

foo cosmxd + .foo sinmx dx = ne_ma
—0 x24q2 —00 x24q2 a

cosmx —
Equating real and imaginary parts, f o e” ™ (1)
co sinmx
f —— dx =0
-0 x<+qa
When m=1, [ == dx=Ze™®
— x<+a
00 cosx 1 cosx _1mt _a_T ,-a
fO x2+0L2 fOO 2+a2 2ae Zae
: . oo —sinm
Differentiate (1) w.rtom, [~ xdx
—0  x“4+a
T _—may_
" e7Ma(-a)
= —me M4
_ o xsinx ; —a
Putm=1, — f_mx2+a2 X= —Tre
ooxsinx_l o xsinx _1 —a
fO x2+a? Zf—oo x2+a? —ome

OOSII'Ide T

Problem 2. [/

Solution:

Considerfcf(z)dz , Where f(z) = 67 . It has a singularity at z = 0 on the real
axis . Let the contour C consists of large semicircle |z| = R indented at z = 0
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and € be the radius of this small semicircle of identation. Now there is no

singularities within C.

Fig.5.2

By Cauchy’s residue theorem, fc f(z)dz=2miY,R*=0
[ nf@dz+ [ f(2)dz+ [ f(2)dz + [ f(2)dz =0

lim
R — o

lim 1.0

' . Iim '
m - fr—
fpel Zg(z)=0, since ; g(z) = . -

(i.e)Rllm fr¥ = 0 [By Jordan lemma]

— 00

Consider fyf(z)dz, where y is the circle |z]| =€

Iim _ im ez _
Z—>OZf(Z)_Z—>OZ - =1

Eli,m() fy'f(z)dz =—iA(6, — 0,) =—i(m—0) =—in

The negative sign is taken because the orientation is clockwise

Taking R— o and €- 0,
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f_ooof(Z)dZ —im + fooof(z)dz +0=0 = f_oooof(z)dz =im

— foo elmz dz = imT = f+oo (cosmz+isinmz) dz = i
—00 z — 0o Z
. . . +00 cosmz _ +00 sinmz _
Equating real and imaginary parts, [___ —dz =0and S, —dz=m
Therefore,2 [ ~——dz= = [, ——dz= =
0 VA 0 Z

Type IV :

Evaluation of the integrals of the type f0°° x* f(x)dx

o x0—1 o 2 3
Problem 1: [ X— dx and hence deduce that [~ %82 gx = = and
0 1+x2 0 1+x? 8
®xa~1 — xb-1 gy tan%
j log x 1+x2 log b
0 & tan—-

Za—l

5:0<a<2z=0isa

Solution: Consider [.f(z)dz , where f(z) =
singularity of f(z) for0 <a< 1.

The poles of f(z) are givenby z= +i [z2+ 1 = 0]
The contour C consists of the large semicircle |z| = R in the upper half plane
and the real axis from —R to +R intented at z = 0 and by a small circle y of

radius €, the only pole lying within Cis z = 1.

Res f(2) = lim(z — Df (2)

a—-1 Za—l
=lim(z—1i =1
z—>i( ) (z+D)(z—-1i) z-i(z+1)
a—1 _iia—-1 _ _ i
e [as |—ezl]
2i 2 2 2




Fig.5.3

By Cauchy’s Residue Theorem, [. f(z)dz = 2miXR*
€ R
f@dz+ | f(2)dz+ | f(z)dz+ | f(2)dz
o o o

= 2mi (_71) enTia = —m’enTia ...(1)

z.7z%71

i/ 2) =l =

= lime_,ofy f(z2)dz=—-ix0x(m—0)=0

. ) za-1 .
Alsolim,_,. zf (z) = lim,_,4 I 5= lim,_,

Za

1+2z2

1

=lim —
7% e (14 )

=0 J[as,2—a>0]

s limpe [ f(2)dz =0

Taking Limit e = 0 and R— oo in (1), We have
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mwia

0 0o
ff(Z)dZ +0+ J f(2)dz+ 0 = —mie 2
—oo 0

a-1 a-1 mia

f—Ooo i:.xz dx + fooo > dx = —mie 2 ....(2)

1+x2

a—1

. 0
Consider [~ *—

dx

Putx=-y;Xx=-00;y=00;x=0;y=0

0]

a—1 —1 a—-1,,a-1
Therefore, I = ( Y) —— (—dy) = D) 3; dy
1+y 1+y
_ 00(—1)aya_1 _ ria ooya_l a1 i
==l S =" [-1=e™]
. oo xa-1 o a1 mia
Substitute in (2), —e™® ["T—dx + [" T—dx = —mie 2

: x! mia
ema) - dx = —mrie 2
1+x
0

- x1 4
—2isin— X = -l
2 ) 1+ x2
0
oo xa-1 T Ta
dx = —cosec—......(3
fO 1+x2 2 2 ( )
mwa
oo x4~ 1logx —-m? —m% COS—-

Diff. w.r.t. a, f

dx = —cosec—cot— =
4 4 sinz%a
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_ 2ma
[o0) xa 1 (logx)z 7-[3 1+cos T

Diff. again w.rit. a Jo =z —dx =7 oL
_ o (log x)2 _ n_31+coszg _ 7-[_3
Puta=1, fO 1+x2 8 sinzg -
Integrating (3) w.r.t. a,
o x4l _(m logtan? _ na
fO de = (E)W = logtanT (4)
o0 xb-1 b
Also fO mdx = logtanT ...(5)
Now, (4) - (5)
g X = Jogtan™ - log tan ™2
0  (logx)(1+x2) - 9 4 9 4
tan >
= log (—=5)
tanT

fo%e) 2
Problem2. [ log(l(:;+)a(dx)

., 0<ax<1
Solution:

2
Consider fc f(z)dz where f(z) = m“g—ffa) where C is the semi-circle

given by |z| =R where R is every large intended at z = 0 by a small semi-circle
y of radius € and the real axis from -R to R.

Therefore, f(z) is analytic with C.

Therefore, By Cauchy residue theorem, fc f(z)dz =0
[ 5 f@dz + [ fdz + [Lf(2)dz + [, f()dz =0 ......(1)
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. 1 log(1+2z2)
lim, o 2f(2) = lim,02z — o

r

)

R —€ 0 € R
Fig.5.4

4
o (z2=E g ) .
:Im% — [Since, |z|<1]
VA

= lim fy f(2)dz =0

(Sd0]

log(1+z2)

lim,, . zf(2) = lim,_ 2z —ra

im 2 1
lim g log z (1+22)

Z—>00

1
2log z+log ( 1+Z—2)

= lim
Z—00 z%
. _g logz 1 1
= lim [2z77% ==+ —log(1+=
Z—00 [ z + z% 9 ( + Zz)]
. _ log z . 1 1 1
= 21lim z'"* 222 4+ lim —(=——+ ...
Z—00 Z z—oo zZ% 72 274
log z

=0 [Since, lim

Z—00 z

:O]
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lim [. f(z)dz =0 [bylemma (2)]
Taking limitR - o and € -0 in (1)

[° F@dx +0+ [T f(x)dx +0=0

0 log(1+x?) dx o log(1+x?) dx _
j;aa——7;5313——— + Jg -——z;;;:a——- =0 ... (2)

. 0 log(1+x2%) d
Consider 1= | log(1+x7) dx

— 00 x1+0(

Putx =-y When x=-00, y= cocand x=0, y=0

2y (=
= [Olostty®) (-dy)

Therefore, et

o log(1+y?) dy . .
= — - 7 ince -1 =e™
fo == [since e™ ]

foo log(1+y?) dy
0 (—D(-D)*(y)ttx

_ o log(1+y?) dy
- f eima y1+a

, - 2
Tia f log(1+x“) dx (3)

- - e 0 x1+(x ooooooooooooooo

Sub (3) in (2)

e~ foolog(l‘HCZ) dx + fwlog(1+x2) dx
0 x1+a

x1lta

Therefore, (1- e™%) f"°10g(1;—ico£)ClX -0

. 2
Thereforef w =0
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Problem 3. Evaluate f w and f“(lof’i)xzdx

Solution:

Consider [ f(z)dz , where f(z) = (logzz) z = 0 the branch point of f(z)

2 1

and poles of f (z) isgivenby z=+iand z = -i.

Let C be the large semi-circle, |z| = R indented at z = 0 and € the radius of
small semi-circle of indentation. The pole z =i lies within C.

. . (log z)?

Res,_f(z) = lim,,;(z—1) e
_ (ogd? _ P m . on
= = TG [Sincelogi = |2]

Therefore, By Cauchy Residue Theorem,
Therefore, [. f(z)dz =2mi Y R*

— H TEZ —
= 2mi(— E) = ——

[ fdz + J, f(2)dz + fERf(z)dz + . f@dz =0 ... (1)

. . z(log z)? . z(log z)?
lim, oz f(z) = lim,_ e = lim,_ 2a+)
2
= lim {92
Z—00 z z—oo  (1+3)
2 (o]
- lim (log z) ( _) - lim 2log z
Z—00 z %] Z—00 V4
=2(0)  [Since, lim 2% 0]
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Therefore, I%I_ILIO Jo f(2)dz =0

2
limzf(z) = lim Z(logzz)
z—-0 7z—0 1+2z
Putz = 1
t
log Hz _ 5
Therefore, lim zf(z) = lim (log i) = |im £90
z—0 t—oo t(1+t—2) t—oo t(1+t_2)

2
= lim t(log t)

lim =" =0 (as above)

Therefore, QL% fy f(2)dz =0
Applying lim € - 0andR — oo we get

W= [0 fOdx + [Zf)dx = -nl4

0 (logx)*dx o (logx)?dx -3
f—oo 1+x2 fO 1+x2 4 e (2)

2
| = J-O (logx)~dx

Consider -
— 00 1+x

Putx=-y when x=-c0 , y=ocoand x=0,y=0

| = fO (log(-¥))*(=dy)
— oo 14+y2

foo (log(-1)+ logy)?dy
0 1+y?

| = j-OO(m'+ log y)?dy
—Jo 1+y?

[Since, log (-1) = mi ]
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_ foo -2+ (1ogy)2+2mlogyd
0 1+y? y

o d o (lo d o logy d
P y_l_f(gy)y o f gy dy

0 1+y? 0 1+y?2 1+y2
_ 2 —1 .00 (logY) dy o logy dy
= - n + — = 42w [ —=—
A (ta y)O f yZ f 1+ 2
-3 o (log y)3d o logy d
— [ (ogy)7dy 4 o f 8y Y ..3)
2 0 1+y2 1+y2
From (2)and (3)
_ 73 2 _3
T +f (logy) dy + o J‘oologydy +foo (logy)“dy - 3
2 0 1+y?2 1+y2 0 1+y2 4

Equating Real and Imaginary Part

-3 oo (log y)?d -7
w2 (ogy)™dy  _
2 0 1+y2 4

log y)2d -
2f ( gy)2 y _ _
1+y 4 2 4

fw(logy)zdy - and foologydy _
8

0 1+y? 1+y2

TYPE: V Integrals involving many valued function:

Problem 1:
Evaluate fon log sin x dx

Solution:

Consider fC f(2)dz, where f (z) = log (1- e?%%) and choose the contour C

as follows , within the contour C, f(z) is regular.
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in T+ in

.

Fig.5.5

By Cauchy Residue Theorem, [. f(z)dz =0, where f (z) = log (1- ¢*)
fenl—e2 f@dz+ [, f(2)dz + SO, f e+ iy)idy + f;’ £(x + in)dx

+ fflf(iy)idy +fy1f(z)dz =0
= I+ L+ I3+ I+ 15+ 15=0
Consider 5= [T f(m + iy)idy
= fenz log (1 — e?i™+))jdy
= fenz log (1 —e ?Y)idy
5= [, f(y)idy

= anl log (1 — e%))idy

= ffl log (1 — e 2)idy
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Asn - o ,€,6, -0
I; - fooo log (1 —e ?")idy
I5 - fo(o) log (1 —e 2Y)idy =- fooo log (1 —e 2Y)idy
l;+1; -0
Therefore, le_)Igl zf(2) = Li_r)r(l) z log (1 — e%%)

; log (1-el2?
= lim log-e™) - )
z—0 Z

e
T 1_ei22(_el Z)Zl
=lim,.,q T

Z2

. 2iz2el2z
lim

z—0 1—ei2z

(By L’Hopital rule)

. 2ize'?74 2iz? 2ie'?% _
lim =0

z—-0 —2iet2z

limg, fyl f(z)dz = 0.
Similarly, lim., f)’z f(z)dz =0
Consider 1, = [ log (1 — e?{+im)dx
= fon log (1—e** e ?")dx —»0asn— o
Asn - o ,€;,E, >0 we get fonf(x)dx = 0.
Jy log (1 —e**)dx =0

1 — e2iX = gl* (g7 _ lx) = oIX (L 2j sjnX)
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fon log e (— 2isinx) dx =0
= fon log2 dx + fonlog(—i) dx + fon loge™ dx + fon logsinx dx =0
= mlog2 + log(-i) ™ +f0” ix dx + fon logsinx dx =0

= nlogZ-n—zi + (ﬁ)n+ [Flogsinx dx =0
2 2/0 0 9

2 m2i

= mlog2 - ET + ot fon logsinx dx =0

s
j logsinx dx = —mlog?2.
0
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