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Chapter 1

GRAPHS AND SUBGRAPHS

In recent years, graph theory has established itself as partent mathematical
tool in a wide variety of subjects, ranging from operatioredearch and chemistry to
genetics and linguistics, and from electrical engineeand geography to sociology and
architecture. At the same time it has also emerged as a woitthhwathematical disci-
pline in its own right.

The origin of graph theory can be traced to Leonhard Euler ddnosed in 1735
a problem that came to be known as the “Seven Bridges of Koeigsb In this prob-
lem, someone had to cross once all the bridges only once andontinuous sequence,
a problem the Euler proved to have no solution by represgiitias a set of nodes and
links. This led the the foundation of graph theory and itssegfuent improvements.

/
R«B—/ \{\\:\;\\

Figure 1.1. Geographic Map: The Konigsberg Bridges

B
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Many real-world situations can conveniently be describgdrieans of diagram
consisting of a set of points together with lines joiningtaer pairs of these points. For
example, the points could represent people, with linesngimpairs of friends; or the
points might be communication centres, with lines represgrcommunication links. In
sucg diagrams one is mainly interested in whether or not twengpoints are joined by
a line; the manner in which they are joined is immaterial. Atmeaatical abstraction of
situations of this type gives rise to the concept of graph.

1.1 Graphs and simple graphs

Definition 1.1.1. A graph G is an ordered triple(V (G), E(G), ) consisting of

(i) anonempty set/(G) of vertices

(17) aset E(G) disjoint from V(G), of edges
and (¢i7) an incidence function); that associates with each edge@f an unordered
pair of (not necessarily distinct) vertices 6f.

If e isan edge and: and v are vertices such thabg(e) = uv, then e is said
tojoin v and v. The verticesu and v are called thendsof e.

Example 1.1.2.Let V(G) = {v1,v9,v3,04,05}, E(G) = {e1,e2,€3,¢e4,€5,€6,e7} and
Ve be defined byyc(er) = viva, Ya(ez) = vavy,

Ya(es) = vovs, Yales) = vyvs,

wG(65) = U1Vs, ¢G(€6) = UsUs3,

Ya(er) = vsvy Then (V(G), E(G),v¢q) is agraph.

Example 1.1.3.Let V(H) = {u,v,w,z,y}, E(H) = {a,b,c,d,e,} and ¢y be de-

fined by ¢u(a) = wv, Yu) = vw, Yulc) = wr, Yu(d) = 2y, Yule) =
vy, Yg(f)=wvx Then (V(H),E(H),vy) is agraph.

Diagrammatic representation of a graph

Graphs are so named because they can be represented dgha@mdahus many
of its properties can be understood. Each vertex is indildayea point and each edge by
a line joining the points which represent its ends. Figuresl and 1.1.2 are diagram-
matic representations of the graphs in Examples 1.1.2 dn8 fiespectively.
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Figure 1.1.1 Figure 1.1.2

Remark 1.1.4. 1. There is no unique way of drawing a graph.

2. The relative position of points representing vertices anesl representing the
edges have no significance.

3. A digram of a graph merely depicts the incidence relatiorimgl between its
vertices and edges.

The graph shown in Figuré.1.2 can also be represented as in Figuré.3.

Figure 1.1.3

Definition 1.1.5. If e = wwv, is an edge, then: and v are said to béncidentwith the
edgee and vice versa. Alsa; and v are calledadjacent verticesTwo edges which are
incident with a common neighbour are calledjacent edges

For example,v3 and v, are adjacent vertices, since they are incident with the
common edgee,. And e, and e; are adjacent edges, since they are incident with the
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common vertexvs.

An edge with identical ends is callediamp. For example, the edge; in Figure1.1.3
is a loop.

An edge with distinct ends are called links.

Links that have the same pair of vertices are cathedtiple edgesr parallel edges
For example, the edges; and ez are parallel edges.

A graph issimpleif it has no loops or multiple edges. The gragh given in
Figurel.1.3 is not a simple graph. A simple graph is given in Figure .4.

Figure 1.1.4 Simple Graph

Definition 1.1.6. A graph isfinite if both its vertex set and edge set are finkdl.graphs
considered in this book are finite

A graph with just one vertex is calledtavial graph and all other graphs are called
asnontrivial graphs

Notation. The number of vertices in a graph is denoted b{-) or simply v. The
number of edges in a graph is denoteddfy-) or simply e. The vertex set and the edge
set of G are simply denoted by and £, respectively.

1.2 Isomorphism

Definition 1.2.1. Two graphsG and H areidenticalif
(1) V(G) = V(H)
(1) E(G) = E(H) and
(iii) Yo = ¥n

Then we writeG = H.

If two graphs are identical, then they can be clearly represkby identical dia-
grams. However, it is possible for graphs that not identicdiave essentially the same
diagram. For example, the diagrams in Figurke$.2 and 1.1.3 are same in structure
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but not in labels. Hence they are not identical but are isqimor

Definition 1.2.2. Let G and H be two graphs. Letd : V(G) — V(H) and N :
E(G) — E(H) be two bijections such that);(e) = wv if and only if ¢y (N(e)) =
f(u)f(v) . Then the pair(¢, N) is anisomorphisnbetweenG and H.

GraphsG and H areisomorphicif there is an isomorphism betweed and H;
in this case, we write = H.

Remark 1.2.3. Clearly G and H has the same structure and differs only in the names
of vertices and edges. Since we are interested in the staligitoperties of graphs, we
shall often omit labels while drawing graphs. An unlabeleapt can be thought of as

a representative of an equivalence class of isomorphichgrajgVe assign labels to the
vertices and edges in a graph mainly for the purpose of iafgto them.

The two graphs shown in Figuré.2.1 are isomorphic.

A

Figure 1.2.1 Isomorphic Graphs

Definition 1.2.4. Let G be a simple graph. Theomplemenobf G is the simple graph
with the same vertex se’ in which two vertices are adjacent if and only if they are not
adjacentinG. Itis denoted byG*.

For example, a graplé: and its complementz¢ are given in Figurel.2.2.

G G°
Figure 1.2.2
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Definition 1.2.5. A graph G is said to beself complementany G = G°.

For example, in Figure 1.2.3, the gragh is a self complementary graph of
vertices and the grapl/ is a self complementary graph dn vertices.

Figure 1.2.3

Remark 1.2.6.1f G is self complementary, then
V(G| = IV(G9)| and [E(G)| = [E(G7)|.

Some special classes of graphs

Definition 1.2.7. A simple graph in which every pair of distinct vertices isned by an
edge is called @omplete graph There is just one complete graph on vertices up to
iIsomorphism and is denoted hi,,.

For example, the complete graphs dn 2, 3, 4 and 5 vertices are given in

Figure 1.2.4.
K, K K, K

Ky

Figure 1.2.4

Definition 1.2.8. A graph whose vertex set can be partitioned into two subsgtand
V5 such that each edge has one endiin and another end ifl;, is called abipartite
graph Such a partitioriV;, ;) is called abipartition of G.

The two graphs given in Figuré.2.5 are bipartite graphs.
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)

Bipartite Graphs
Figure 1.2.5

Definition 1.2.9. A simple bipartite graph with partitior{V;, 3) in which every vertex
of V; is joined to every vertex ofl; is called acomplete bipartite graphlf |Vi| = m
and |V, = n|, then such a graph is denoted By, ,,.

For example,K, ; and K35 are given in Figurel.2.6.

K3 K3

Figure 1.2.6

Definition 1.2.10. A graph whose vertices are thle— tuples of 0’ s and 1’ s in which
two vertices are joined if and only if they differ in exactlye coordinate is called a
k— cubeand is denoted by,

For example,1— cube, 2— cube and3— cube are given in Figuré.2.7 .

1

Figure 1.2.7

Q1
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Solved Problems

Problem 1. Prove that the number of simple even graphs (degree of ditesris even)
with n vertices is2("2").
Solution. There is a bijection between simple graphs with— 1 vertices and even
simple graphs o vertices. Given a simple grapty with V(G) = {vy,va,...,0,}
we can construct a even simple graph of vertices. We know that no of vertices of
odd degree is even. Construct a new graph with V(G*) = V(G) U {v,} and
E(G*) = E(G) U{v, : v; € V(G), dege(v;) isoddr. Then G* is a even simple
graph.

Conversely, given an even simple gragft we will get back G by G* — v,.
Since in a simple graph of. — 1 vertices can have atmos{fl;l) edges thus no of even

n—1
2

simple graph ofn vertices is2("2"). m

v

Problem 2.1f G is simple, prove that < (}). Also prove thate = (;,

) if and only if
G is complete.
Solution. Since G is simple, every edge of7 is incident with two vertices. Hence the
number of edges cannot exceed the number of ways of seléatindjstinct vertices from
v vertices. Thus,

e < number of ways of choosing two vertices from vertices

= (3)

Also, ¢ = (;) < the edge set contains all pairs of distinct vertices

< any two distinct vertices are adjacent (#

< (G is complete. m

Problem 3.If G = H, prove thatv(G) = v(H) and ¢(G) = ¢(H). Give an ex-
ample to show that the converse is not true.

Solution. Since G is isomorphic to H, there exist bijections) : V(G) — V(H) and
¢: E(G)— E(H).

Hence |V (G)| = |V(H)| and |E(G)| = |E(H)].



1.2. ISOMORPHISM 13

Therefore, v(G) = v(H) and ¢(G) = ¢(H). To prove the converse part is not true,

consider the graphs; and H shown in Figurel.2.8.

Clearly v(G) = v(H) and ¢(G) = e(H); but G and H are not isomorphic because

the neighbours of the end vertices 6f are mutually distinct whereas the neighbours of

two end vertices ofH are same. ]

Two nonsiomorphic graphs of same order and size
Figure 1.2.8

Problem 4. Show thate( K, ,,) = mn.
Solution Since K,,,, is a bipartite graph, it has a bipartitiofi;, V2) with V3| = m
and |V;| = n. Since G is a complete bipartite graph, it contains all edges with eme
in V; and the other end iV,. Hence the number of edges &f,, ,, is equal to the sum
of the number of edges incident with the verticeslgf

€(Kmn) =n+n+...4+n,(mtimes (since|Vi| =m)

=mn |

1/2

Problem 5.1f G is simple and bipartite, prove that< T
Solution Let (V;,V32) be a bipartition of G with |[V3| = m and |V3] = n and
v(G) =m+n.
Each vertex inV] is adjacent to at mosfl,| = n vertices. Thus,
e < number of edges incident with vertices bf.
<n+n+...+n(mtimey
=mn

2
m—+n

<
- 2
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Problem 6. Prove that thek -cube has2* vertices, k2"~ edges and is bipartite.
Solution. Clearly, V(Qy) is the set of all ordered: -tuples of 0’ s and 1’ s. Number of
such tuples is2*

Therefore,v(Qy.) = 2*

Since two vertices are joined if and only if they differ in edg one coordinate, it follows

that each vertex is adjacent to exacttyvertices. Thus,

k+k+...+k (2" timey
e(Qr) = )

, since each edge is incident with two vertices.

2k
= k.—
2

_ kzk—l
Now, let X = {k-tuples with even number of O/s
Y = {k-tuples with odd number of O}s Now,
XUY =Qrand XNY =¢
Also, any two vertices ofX (or V) differ at least in two coordinates and hence they are
not adjacent. Thus any edge must have one endinand the other end inY. Thus

(X,Y) is a bipartition of ), which completes the proof. n

Problem 7.1f G is self complementary, prove that= 0 or 1(mod 4).
Solution Since G is self complementary;y = G¢. Therefore,
|E(G)| = |E(G)| and
E(G)UE(G*) = E(K),)
Thus, |[E(G)|+ |E(G°)| = (g)
| viv—1)

= 2|E(G) 5

viv—1)
== = |E(G)|, which is an integer
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= vorv—1 isamultiple of 4.

Thus, v = 0,1 (mod 4). ]
Exercises

1. List five situations from everyday life in which graphssarnaturally.

2. Draw all simple graphs o vertices.

3. Prove that there are eleven nonisomorphic simple graphs wertices.

4. Prove that two simple graph& and H are isomorphic if and only if there is a

bijection 6 : V(G) — V(H) such thatuv € E(G) if and only if 6(u)f(v) €
E(H).

1.3 Subgraphs

Definition 1.3.1. A graph H = (V(H), E(H),vy) is called asubgraphof the graph
G = (V(G), E(G),¢c) ff

(1) V(H) € V(G);

(17) E(H) C E(G); and
(7i1) vy is arestriction ofyy to E(H).
In this case, we writeH C G. If H C G but H # G, then H is called aproper
subgraphof G and we write H C G. If H is a subgraph ofG, then G is called a
super graphof H. A spanning subgrapfor spanning super graptof G is a subgraph
(or super graph)H with V(H) =V (G).

A graph G and its proper subgrapl/ are given in Figurel.3.1. Since V(G) =
V(H), H is also a spanning subgraph 6f.

zZ q v
b
w
C
T
A graph G A spanning subgraph ofz
Figure 1.3.1

Definition 1.3.2. A graph obtained from a graplty by deleting all its loops and all its
multiple edges except one, is called the underlying simpaply of G.
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The underlying graph of the above graph is shown in Figuse2.

20

Agraph G Underlying graph ofG
Figure 1.3.2

Definition 1.3.3. Let G be a graph and// be a nonempty subset df. The subgraph

of G whose vertex set i3’ and whose edge set is the set of those edges that have both
endsinV” is called the subgraph aff induced byV’ and is denoted by~[V’]. We say

that G[V'] is the induced subgraph af. The induced subgraplé:[V\V’] is denoted

by G — V. Itis the subgraph obtained fror¥ by deleting the vertices irl’’ together

with their incident edges. IV’ = {v}, we write G — v for G — {v}.

u VA v
\ v y
(]
X T
G[{U7U7x}] G — {u,w}
Figure 1.3.3

Figure 1.3.3 shows the induced subgraghi{u, v, 2}] and the vertex deleted sub-
graph G — {u,w} of the graphG in Figure 1.3.1.

Definition 1.3.4. Let G be a graph and?” be a nonempty subset af. The subgraph
of G whose vertex set is the set of ends of edgesiin and whose edge set I8’ is
called the subgraph of; induced by E’ and is denoted by>[F’| and is called the edge
induced subgraph of;. The spanning subgraph @ with edge sett — E’ is simply
written as G — E’. Itis the subgraph obtained fror¥ by deleting the edges ik’.
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Figure 1.3.4 shows the edge-induced subgrapfya, c, e, g}] and the edge deleted
subgraphG — {a,b, f,i} of the graphG Figure 1.3.1.

U U
a o
z g v P g v
(& e b
Yy w Yy w
c d c
T T
G[{G7C,6,g}] G_{avbuﬂi}
Figure 1.3.4

The graph obtained front? by adding a set of edge&”’ is denoted byG + E'.
If E'=e, thenwe writeG — e for G — {e} and G + e for G + {e}.

Operation on graphs

Let G; and Gy be subgraphs ofz. We say thatGG; and G5 are disjoint if
they have no vertices in common. We say that they are edgerdigjthey have no edges
in common.

The union of G; and G, is the subgraph with vertex sét(G,) U V(Gs) and
edge setE(G1) U E(Gs). If G and G, are disjoint, their union is also denoted by
G + Gs.

If G; and G, have at least one vertex in common then their intersectiohes
subgraph with vertex se¥' (G;) N V(Gy) and edge set(G1) N E(Gs).

The graphG and the union (intersection) of its subgrapfis and G, are given
in Figure 1.3.5.
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b d b b d
a a
C C C
f e ! e f e
G G1 GZ
b d b
a
c c
f e f e
Gl U GQ Gl N G2
Figure 1.3.5

Definition 1.3.5. The cartesian producbf two simple graphsG and H is the simple
graph G x H with vertex setV(G) x V(H) inwhich (u,v) is adjacent to(u',v") if
and only if eitheru = «' and vv’ € E(H), or v =v" and uu’ € E(G).

Graphs and their product are shown in Figure 1.3.6.

(5] U1 U9 (%) Wo
o0 o —Or (o]
G H
Uy, U2 U, V2 Ui, Wo
O— O
U1, U2 U1, U2 U1, W2
G x H
Figure 1.3.6

Definition 1.3.6. The compositionof two simple graphsG and H is the simple graph
with vertex setV (G) x V(H) inwhich (u,v) is adjacentto(u’,v") if and only if either
wu' € E(G) or w=1v and v’ € E(H). Itis denoted byG[H].

The composition of two graph&’ and H are given in Figurel.3.7.
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Uy 1 U9 (%) Wa
o———0 o —o o
G H
Uy, U2 Uz, Vg U1, Wo
U1, U2 V1, Vg V1, Wa
G[H]
Exercises Figure 1.3.7

1. Prove that every simple graph an vertices is isomorphic to a subgraph éf,.
Show that every induced subgraph of a complete graph is @epl

Show that every induced subgraph of a bipartite graph istiipa

Find a bipartite graph that is not isomorphic to a subgrapdmgfs— cube.

Is G[H] = H|[G]? Justify your assertion.

Ot N

1.4 Degree sequences and Matrices

Definition 1.4.1. The degree of a vertex ina graphG is the number of edges incident
with v, each loop counting as two. It is denoted by (v) or simply d(v). The mini-
mum degree of vertices ofr is denoted byd(G). The maximum degree of vertices of
G is denoted byA(G).

The following theorem is often called #&se fundamental theorem on graphs

Theorem 1.4.2.The sum of the degrees of the vertices in any graph is twiceuhwar
of edges. Thatis,> d(v) = 2e.

veV

Proof. Every edge ofG is incident with two vertices. Hence every edge contribtiies
to the sum of the degrees of the vertices.
Hence, Y  d(v) = 2e. O

veV

Corollary 1.4.3. In any graph, the number of vertices of odd degree is even.

Proof. Let 1, denote the set of vertices of even degree;igtdenote the set of vertices
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of odd degree. Then,)_ d(v) + > d(v) = > d(v) = 2¢, which is even.
Further, d(v) is evenv%lr allv € 11}/61‘,/22 d(v)vei‘s/ even.
Hence, >  d(v) is even. o
Since d(v) isvtneéi/ij for all v € V,, we have|V;]| is even. O

For the graph shown in Figuré.4.1, §(G) =3 and A(G) = 4.

U1 V9

€3

U3

Figure 1.4.1

Definition 1.4.4. A graph is said to bek -regularif d(v) = k£ forall v € V(G). A
regular graph is one that i -regular for somek. 3 -regular graphs are also known as

cubic graphs

1-regular 2 -regular 3 -regular
Figure 1.4.2

Remark 1.4.5. 1. The complete graph¥,, is regular of degree: — 1.
2. The complete bipartite graplk’, ,, is regular of degreex.
3. The k -cube @, is regular of degree: — 1.
4. Peterson graph i8 -regular and hence a cubic graph.
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The Petersen Graph
Figure 1.4.3

Definition 1.4.6. Let G be any graph withV (G) = vy, vy, - -+ ,v,. Then the sequence
d(v1),d(ve), -+ ,d(v,) is called thedegree sequencd G.

For example, the degree sequence of the graph in Figure is (3,3,4,4).

€1
U1 Vo
€3
U3
Figure 1.4.4
Theorem 1.4.7.A sequencel(v, ), d(vs), - -+ ,d(v,) of nonnegative integers is a degree
sequence of7 if and only if Y d(v;) is even.
i=1
Proof. Assume thatd(v,),d(vs), -+ ,d(v,) , whered; > 0,1 < i < v is the degree

sequence of a grapty. Then by Theorem 1.4.2> " d(v;) = 2¢, which is even.
i=1

Conversely, assume thdtv, ), d(v;), - - - ,d(v,) are nonnegative integers such that
> d(v;) is even. Itis enough to construct a graph with vertexseand d(v;) = d; for
=1

all 7. Since >_ d(v;) is even, the number of odd integers is even. First form arrarpi
=1

pairing of the vertices in{v; | d(v;) is even} and join each pair by an edge. Now the
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d
remaining degree needed at each vertex is even, which cabtamed by adding [5

loops at v;.
O

Definition 1.4.8. A sequenceD = (di,ds, - ,d,) is said to begraphicif there is a
simple graphG with degree sequenc®. Then G is called the realization ofD. For
example, the sequencel, 4,2,2,1,1) is graphic since it is the degree sequence of the
graph G given below.

c —0 —0

Figure 1.4.5

Theorem 1.4.9.1f d = (dy,ds,--- ,d,) isgraphicandd, > dy > ...d,, then > d(v;)

=1
n

isevenand)_ d(v;) < k(k—1)+ > d(v;)d; min{k,d;} for 1 <k <n.

=1 i=k+1
Proof. Since d is graphic, it has a realization grapfi. Let V(G) = {vy,vq, - ,v,}
and d(v;) = d;. Then by Theorem 1.4.2,

> d(v;) = 2¢, which is even.
=1

> d(v;) is the sum of the degrees of the vertices v, - - - ,v,,.
=1
It can be divided into two parts, the first part is the conttidauto this sum by edges

joining the verticesvy, vy, - - - , v, and the second part is the contribution to this sum by
edges joining one of the vertices., 1, vxi2, - , Uy.
Hence,> d(v;) < k(k—1)+ > d(v;) d; min{k,d;} for 1 <k <n. O
=1 i=k+1

Solved problems

Problem 1. Find a function f : N — N such that, for allk € N, every graph of average
degree at leasyf (k) has a bipartite subgraph of minimum degree at Idast

Solution. Defineamapf : N — N by f(k) = 4k; Yk € N. The idea behind to

consider this function is following: Every graph with an eage degree ofik have a
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subgraph H with minimum degrek, and we will lose another factor of 2 in moving H
to its bipartite subgraph. Lefl’ be the bipartite subgraph o with the maximal num-
ber of edges. My claim is that’ have minimum degree atleast If not, let v € H'
such thatd, (v) < k : This meansv lost more than half of its neighbours in the process
toform H to H'. This meansv is on the same partition with its looses neighbours. But
in that case if we consider in the other partition we can able to connect those prewousl
looses vertices tay and form a new bipartite subgraph éf with more edges theri’

have, a contradiction. Hence it proves of my claim. n

Problem 2. Determine the order and the size of the hypercdhe Prove also thatQ),
IS k -regular and bipartite.

Solution. Clearly, V' (Qy) is the set of all ordered: -tuples of 0’ s and 1’ s. Number of
such tuples is2®. Therefore,v(Q;,) = 2*.

Since two vertices are joined if and only if they differ in el one coordinate, it follows

that each vertex is adjacent to exactlyvertices. Thus,

k+Fk+...+k(2"timeg

€(Qr) = 5 , since each edge is incident with two vertices.

2k
= k.;
— ]{72k_1
Since two k -tuples form an edge if and only if they differ in exactly orasfion.
Thus each vertex has degréeand so ), is k -regular.
Now, let X = {k-tuples with even number of Ofs
Y = {k-tuples with odd number of O}s Now,
XUY=Q,and XNY =¢
Also, any two vertices ofX (or Y) differ at least in two coordinates and hence they are
not adjacent. Thus any edge must have one endinand the other end inY. Thus

(X,Y) is a bipartition of ), which completes the proof. n

Problem 3. Prove thaty < 2 f < A.

Solution. For any vertexv in any graphG, §(G) < d(v) < A(G).
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Taking the sum over all the vertices &f, we get
VI6(G) <2 ey d(v) < [VIA(G).
= 1) <2< Av

Dividing by v, wegetd <2 - <A. ]

v
Problem 4. If a k— regular bipartite graph withk > 0 has bi-partition (X, Y’), prove
that | X| = |Y].
SolutionLet G be a k— regular bipartite graph wittk > 0. Since G is bipartite, every
edge has one end iX and another end irY.

Hence the number of edges incident with the verticexofis equal to the number
of edges incident with the vertices of. Therefore,

k.| X| = k.|Y|, since each vertex is of degrde

= |X| =1Y], sincek > 0. ]

Problem 5. In any group of two or more people, prove that there are advayp with
the same number of friends.

Solution We construct a graplt: by taking the group ofn people as the set of vertices
and joining two of them if they are friends. Thef(v) = number of friends ofv and
hence we need only to prove that at least two vertice&ohave the same degree.

Let V(G) = {v1,v9,...,v,}. Clearly 0 < d(v;) <n—1 foreachi.

Suppose no two vertices @f have the same degree. Then the degreesafs, ..., v,
are the integer$),1,2,..., n — 1 in some order. However a vertex of degree- 1 is
joined to every other vertex of and hence no point can have degree 0, which is a con-
tradiction.

Hence there exist two vertices @f with equal degree. u

Problem 6. Prove that the sequend§, 6, 5, 4, 3, 3,2) is not graphic.
Solution. Let d = (7,6,5,4, 3,3, 2).
Supposed is graphic. LetG be a realization ofd.

Since there are 7 digits in the sequencg,has seven vertices and hence the maxi-
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mum degree inG cannot exceed 7-1=6.
This contradicts the first digit ini.

Hence the given sequence is not graphic. |

Problem 7. Prove that the sequendé, 6, 5, 4, 3,3, 1) is not graphic.

Solution. Let d = (6,6,5,4,3,3,1).

Supposed is graphic. LetG be a realization ofd.

Since there are 7 digits in the sequencg,has seven vertices.

The first two digits of d shows that there are two vertices which are adjacent toall th
remaining 6 vertices.

Thus every vertex is adjacent to these two vertices and hererg vertex is of degree at
least two.

This contradicts the last digit inl.

Hence the given sequence is not graphic. |

Matrices of a graph

We study about two representations of a graph in matrix foknmatrix is a con-
venient and useful way of representing a graph to a compurerther the algebra of
matrices can be used to identify certain properties of ggaph

Definition 1.4.10.Let G = (V(G), E(G)) be agraphwithV' (G) = {vy,vq,---v,} and
E(G) = {e1,eq,---e.}. Then theincidence matrbof G is the v x ¢ matrix defined
by M(G) = [m;;], where m;; is the number of time§), 1 or 2) that v; and e; are
incident.

U1 (%)

€3

U3

Figure 1.4.6
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The incidence matrix of the above graph is as follows:

€1 €2 €3 €4 €5 € E7

vl 1 0 0 1 0 1
M(G)= vl 1l 1 1 0 0 0 0
vs O O 1 1 1 0 O
u\0 0 0 0 1 2 1

Remark 1.4.11. 1. Since each edge is incident with exactly two vertices, eablnen

sumof M is 2.
2. Sum of thei th row of M is equal to the degree af;.
3. If G is simple, then the matrix\/ is a binary matrix with0’ s and 1’ s.

Definition 1.4.12.Let G = (V(G), E(G)) be agraphwithV' (G) = vy, vq,---v, . Then
the adjacency matrix of7 is the v x v matrix defined by
A(G) = [a;j], where a;; is the number of edges joining; and v,.

The incidence matrix of the grap&y shown in Figure 1.4.6 is as follows:

v [0 2 1 1
AGi 2|2 0 1o
(©)= vsl 11 0 1
w1l 0 1 0

Remark 1.4.13. 1. The adjacency matrixA(G) is symmetric.
2. If G is simple, then the entries along the principal diagonakare.
3. The sum of thei’* row (column) of A(G) is equal to the degree af;.

Exercises

1. Find the degrees of the vertices of the graphgiven in Figure 1.3.1.
2. Find the incidence matriX/ and adjacency matrixd of the graph given in Figure

1.3.1.
3. If G is simple, prove that the entries on the diagonals of bbfii/’ and A? are

the degrees of the vertices ¢f.
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1.5 Paths and Connection

Definition 1.5.1. A walk in G is a finite nonnull sequencéV = wvpejvies. .. epuy,
whose terms are alternately vertices and edges, suchdhnat, £ ¢ < £, the ends ofg;
are v,_; andv;.

We say thatlV is a walk from vy to v, or a (vg,vy) - walk. The verticesuy
and v, are called theorigin andterminusof W, respectively andv, vy, ..., v5_1 its
internal vertices The integerk is the length of I/

If W = wevies...epvp, and W = epvpiieryr ... eu, are walks, the walk
vRerVs—1 - - - €109, obtained by reversingV, is denoted bylV ~! and the walk
V€11 - - . exURER11 VK11 - - - €101 Obtained by concatenating” and W' at v, is denoted
by WW’.

Definition 1.5.2. A sectionof a walk W = vgejvies. .. e,v; IS a walk that is a subse-
quencev;e;11v;41 - . . €ju; Of consecutive terms ofV; we refer to this subsequence as
the (v;,v;) - section of IV.

Walk : uav fv fogyhwbv

Trail : wexdyhwbvgy

Path :zcwhyeuav

Figure 1.5.1

Remark 1.5.3.Ina simple graph, awalkge v es . . . e v, IS determined by the sequence
vy ... v Of its vertices; hence a walk in a simple graph can be spedfregly by its
vertex sequence.

Moreover, even in graphs that are simple, we shall sometrefes to a sequence
of vertices in which consecutive terms are adjacent as &«’'wal
In such cases, it should be understood that the discussuatidstor every walk with that
vertex sequence.

If the edgesey,e,,..., e, Of a walk W are distinct, W is called atrail. In
this case the length ofV is just ¢(17). If, in addition, the verticesvg, vy, ..., v, are
distinct, W is called a path.
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We shall also use the wophthto denote a graph or a subgraph whose vertices and
edges are the terms of a path.

Definition 1.5.4. Two verticesu and v of G are said to beonnectedf there is a
(u,v) - path in G. Connection is an equivalence relation on the vertex 8etThus,
there is a partition ofl/ into nonempty subsetd;, V5, ..., V,, such that two vertices
v and v are connected if and only if botlh and v belong to the same sét;. The
subgraphsG|Vi],G[Vz),...,G[V,| are called theomponent®f G. If G has exactly
one component(z is connected; otherwise;; is disconnected. We denote the number
of components ofG by w(G).

Connected and disconnected graphs are shown below:

(a) A connected graph

(b) A disconnectd graph with three components
Figure 1.5.2

Definition 1.5.5. If two vertices u and v are connected in a grapi, then thedistance
between them is defined to be the length of a shortest)— path in G. It is denoted
by d(u,v). If there is no path connecting and v, then d(u,v) is defined to be infinite.
For the graph given below,

d(u,w) =1 d(z,y) =1

d(u,z) =2 d(z,z) =3

d(u,y) =3 d(u,z) =4
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Distance between vertices
Figure 1.5.3

Definition 1.5.6. Thediameterof a graph G is defined to be the maximum distance be-
tween two vertices ofG. Itis denoted bydiam(G).
The diameter of the graph given in Figuie5.3 is max {1,2,3,4} = 4.

Definition 1.5.7. If v is a vertex of a graphG, then theeccentricity denoted bye(v),
is defined by
e(v) = maz{d(u,v) : u € V(G)}

Definition 1.5.8. Theradiusof G is the minimum eccentricity of7. It is denoted by
r(G).

Thatis, r(G) = min{e(v) : v € V(G)}
A vertex V is called acentral vertexf e(v) = r(G). The set of all central vertices of
G is called thecenterof G.

For the graph given in Figuré.5.3,

e(u) =4, e(r) =2, e(w) = 3, e(z) = 4,
e(y) = 3, e(v) =4, e(s) = 3.

r(G) = min {2,3,4} = 2.

Centre = {z}.

Definition 1.5.9. A walk is closedif it has positive length and its origin and terminus are
the same. A closed trail whose origin and internal verticegastinct is called a cycle. A
cycle of length k is called ak -cycle A cycle is odd or even according ds is odd or
even. A 3 -cycle is called asriangle. The length of the shortest cycle is called tigh

of the graph.
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A characterization of bipartite graphs

Theorem 1.5.10.A graph is bipartite if and only if it contains no odd cycle.

Proof. Let G be a bipartite graph with bipartitiot.X, V).
To prove thatG contains no odd cycle, it is enough to prove that every cyctlé&iis of
even length.

Let C' = vy ... vy be any cycle of lengthk + 1 in G. Without loss of gen-
erality, we may assume that € X. Since vyv; € E(G) and G is bipartite, we have
vy € Y. Similarly v, € X. Ingeneral,vy; € X and vy;,1 € Y. Sincevy € X, v, €Y.
Thus k£ = 2i + 1 for some and it follows thatk + 1 is even.

Conversely, letG be a connected graph with no odd cycle.

We choose an arbitrary vertex and define a partition X, Y") of V by setting

X ={z|d(u,x) is ever} and

Y ={y|d(u,y)is odd}.

Now let us show that( X, Y") is a bipartition of G.

It is enough to prove that no two vertices ii as well as inY” are adjacent inG.
Let v and w be two vertices ofX. Let P be the shortestu,v) -path, let ) be the
shortest (u, w) -path. Let«’ denote the last vertex common to both and Q. (See
Figure 1.5.4; where dark lines denotes the path and the thin line denotes the path)

Figure 1.5.4

Since P and @ are the shortest paths, the, «')— sections of bothP and Q) are the
shortest (u, u')— paths and hence, have the same length. Since the lengthshoffbo
and  are even, the lengths of the./, v)— section P, of P and the (v/,w)— section
Q. of Q must have the same parity. It follows that the, w)— path P, '@, is of even
length. If v were joined tow, P, 'Q,wv would be a cycle of odd length, contradiction
to the hypothesis. Therefore, no two verticesXn are adjacent. Similarly, we can prove
that no two vertices inY” are adjacent inz. Hence GG is a bipartite graph. n
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Solved Problems
Problem 1. Show thatrad(G) < diam(G) < 2 rad(G).
Solution. We know thatdiam/(G) = max, yev(e) da(z,y).
rad(G) = Miney () MaXev(e) da(e,y)
< MiNgey (@) MaXey (q) diam(Q)
= diam(G).
To show diam/(G) < 2 rad(G).
Let a,b,v € V(G) suchthatdg(a,b) = diam(G) and rad(G) = max,cy () da(v,y).
diam(G) = dg(a,b) < dg(a,v) + dg(v,b).
< rad(G) + rad(G) = 2 rad(G). ]

Problem 2. If there is a (u,v) -walk in G, prove that there is also &u,v) -path in
G.
Solution. We prove the result by induction on the length of the walk.
Any walk of length 0 or 1 is obviously a path. Therefore the result is true if the langt
of the given walk is O or 1.
Assume that the result is true for all walks of length at mbst 1.

Let W : u=wug,u,...,u =v bea(u,v)-walk of length k. If all the vertices
of W are distinct, then it is obviously a path. If not, there exisiand ; such that
0<i<j<k andu; =u;.

Then W' : u = wp,uy, ..., U Uj41,...,u, = v iS a (u,v) -walk of length at
most £ — 1 in G. So, by induction assumption, the walk” and hencel// contains a
(u,v) -path, ]

Problem 3. Show that the number ofv;, v;) -walks of length % in G is the (i, j) th
entry in A* where A is the adjacency matrix of;.
Solution. We prove the result by induction oh.
The adjacency matrix o5 is the v x v matrix
A = [a;;], where a;; is the number of edges joining; and v;.

The number of(v;, v;) -walks of length one =

1 if v; andv; are adjacent

0 otherwise
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Hence the result is true fok = 1.
We now assume that the result is true for 1.

Let A% ' = [a{*"V], where a{' " is the number of(v;, v;) -walks of lengthk — 1.
AFA = (o) (ay)

J

Hence, the(i, )" entry of A, = > a{F’

ir

)arj
r=1
Also every (v;, v;) -walk of length & in G consists of a(v;, v,) -walk of length

k — 1 followed by a vertexv; which is adjacent tov,. Hence if v; is adjacent tovy,

k—1)
.

then a§ a,; represents the number @b, v;) -walks of length% in G.

This completes the induction and the proof. |

Problem 4.1f G is simple andj < k, prove thatG has a path of lengtl.

Solution. Let P = vy, v1,...,v, be alongest path irG. Then the vertices adjacent to
v, In G can only be fromuvg, vy, ...,v,._1; as otherwise we would get a path of length
larger thanr, giving a contradiction.

Hencer > d(v,) > § > k. Thus P has length at least and henceGG has a path of
length £ (namely eitherP or its section). n

Problem 5.If G is disconnected, then prove th&t is connected.

Solution. Let « and v be two vertices ofG¢ (and therefore ofG ). If v and v belong

to different components of7, then obviouslyu and v are nonadjacent inG and so
they are adjacentirfz. Thus « and v are connected (by a path) i“. In caseu and

v belong to same component 6f, choose a vertexv of G' not belonging to this com-
ponent of G (this is possible becaus€& has at laest two components). Them and

vw are not edges ofy and hence they are edges 6f. Then u, w,v is a (u,v) -path

in G°. Thus G° is connected. u

Problem 6.1f e € F(G), prove thatw(G) < w(G —¢) < w(G) + 1.
Solution. Since the deletion of an edge does not affect the connedsdriether com-
ponents, it is enough if we prove the result for a connectaglgr
Let G be aconnected graph. Then(G) = 1.
We have to prove that < w(G —e) < 2.
ConsiderG — e where e = uv. Let w be any vertex ofG.
If w is adjacentto both, and v in G — e, then any two vertices are connected
in G —e and hencew(G —¢) = 1.
Otherwise, letV; denote the set of vertices which are connectedton G —e and 1,
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denote the set of vertices which are connected tin G — e. Then the induced sub-
graphsG[V;] and G[V5] are the two components @ — e and hencew(G —e) = 2. m

Problem 7. Prove that any two longest paths in a connected graph havetex\a
common.

Solution. SupposeP = uq, us, ..., u, and Q = vy, vq,...,v, are two longest paths in
G having no vertex in common. A&7 is connected, there exists@ — v, path P’ in
G. Certainly, there exist vertices, and v, of P, 1 <r <k,1 < s < k such that the
(u,, vs) -section P” of the path P’ has no internal vertex in common witR or Q).

Up P P Uy U,

P/

U1 Q@ Us (1 Uk
Figure 1.5.5

Now, of the two sections:; — u,, and u, — u; Of P, one must have length at Iea§t
Similarly, of the two sections); — v, and v, — v, of ), one must have length at least
g. Let these sections b&, and ), respectively. ThenP, UP”UQ);, is a path of length
at Ieastg + § + 1, contradictingk being the length of a longest path . n

Problem 8. If G is simple and connected but not complete, prove thathas three
verticesu,v and w such thatuv,vw € F(G) and uw ¢ E(G).

Solution. Since G is not complete, there are two nonadjacent vertices, gayand

v In G. Since G is connected, there exists a path joining and v, in G. Let

P = vy, vy,...,u be a shortest(vy, vx) -path in G. Since vyv, ¢ E(G), it follows
that £ > 2 and also we have, is not adjacenttav,_». Then u = v,_9,v = v,_; and
w = vy, are the three vetices such that, vw € E(G) but vw ¢ E(G). ]

Problem 9. If G is simple graph of ordem and § > ”T‘l, prove that G is con-

nected.

Solution. Assume, to the contrary, that’ has at least two components, s&y and

Gy. Let v be any vertex ofGy. As § > U q(v) > -1 Since v and all its

neighbours are confined into a single component, the conmpo@e contains at least

dlv)+1> ("2;1) +1= @ vertices. Similarly, G, contains at Ieasf"%l) vertices.
(n+1) (n+1)

Therefore,G has at IeastT + 5= =n+1 vertices, which is a contradiction. m
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Exercises

1. Prove thatG is connected if and only if, every partition df into nonempty sets

Vi and Vs, there is an edge with one end 4 and another end ifs5.
2. If G issimple ande > (“,"), showthatG is connected.

3. For v > 1, find a disconnected simple grapgh with ¢ = (”51).
4. If G issimple andé > [5] — 1, show thatG' is connected.
5. Find a disconnected[5]| — 1) -regular simple graph of even order.

6. If G is connected and each degreeéh is even, prove that(G — v) < ) for

2
any v ¢ V.
7. Prove that the distancé between two vertices is a metric dn
8. If G has diameter greater than three, prove thathas diameter less than three.

9. If G issimple with diameter two and\ = v — 2, prove thate < 2v — 4.

1.6 Trees

Definition 1.6.1. A graph containing no cycles is called anyclic graph A tree is a
connected acyclic graph.

All the nonisomorphic trees on six vertices are given in Fegl6.1.

LA LAY %

Figure 1.6.1 Nonisomorphic trees of order 6

Theorem 1.6.2.1n a tree, any two vertices are connected by a path.
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Proof. Assume, to the contrary, that there are two distifictv) -paths, sayP, and P.
Then there exists an edge= zy of P, thatis not an edge of?,. Clearly, the
graph (P, U P,) — e is connected. Therefore it contains &n, y) -path, say P.
Now, P + e forms a cycle inG, which is a contradiction to the hypothesis that
G isatree. O

Remark 1.6.3. The converse of the above theorem holds for graphs with nusloo

Proof. Let G be a connected graph with no loops such that any two vertieesan-
nected by an unique path.

We have to prove thaty is acyclic.
If possible, supposé&: contains a cycle, say' oflength k. Let e = uv € E(C). Then
the edgeuw itseltis a (u,v) -path of lengthl and C' — e is a (u,v) - path of length
k—1 in G. Thus, the vertices: and v are connected by two distinct paths, giving a
contradiction.

O

Remark 1.6.4. The number of edges for all the trees in Figuré.1 is 5. The following
theorem provides a proof for this.

Theorem 1.6.5.1f (G is atree, thene = v — 1.

Proof. We prove the result by induction on.
If v=1,thenG=Z K, ande=0=v — 1.
Assume that the theorem is true for all trees on fewer thavertices.
Let G be a tree onn > 2 vertices. Letuv € E. Then G — uv contains no
(u,v)— path, sinceuwv is the unique(u,v) pathin G. Thus G — uv is disconnected
and sow(G — uv) = 2.
Let G; and G5 be the two components off — uv. Since G; and GG, are subgraphs
of the tree G, both are acyclic and hence trees.
Moreover, each tre€r; has fewer thanv vertices. Therefore, by induction assumption,
e(G) =v(G;) —1 for i=1,2
Thus, €(G) =¢€(Gy) +€(Gy) +1
=v(Gy) —1+v(Gy) —1+1
=v(Gy) +v(Gy) — 1
=v(G) -1
Hence the proof. O

Corollary 1.6.6. Every nontrivial tree has at least two end vertices.
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Proof. Let G be a nontrivial tree. Ther(v) > 1, Vv e V.
We know that) " d(v) = 2¢
=2(r—1)
=2v—2 ... (Eq1)
If no vertex has degree 1, then> 2 and hence
> d(v) > 2v, which contradicts (Eq 1)
If G has only one vertex of degree 1, thé(w) > 2 for v — 1 vertices and hence
Ydv) >2(v—1)+1

2v—2+41
= 2v — 1, which again contradicts (Eq 1).
Therefore,d(v) = 1 for at least two vertices. O

Definition 1.6.7. An acyclic graph is called a forest. Each component of a fosestree.
Figure 1.6.2 illustrates a forest.

Figure 1.6.2. A forest

Remark 1.6.8.1f G is aforest, there = v —w, where w is the number of components
of G.

Solved Problems
Problem 1. Prove that every tree with exactly two vertices of degreeismepath.
Solution. Let 7' be a tree with exactly two vertices of degree 1. We have togtbat
T is a path.

SupposeT is not a path. Therl" has at least one vertex of degree 3. Let it be
u. Consider the maximal sub trees in whiechis a vertex of degree 1. Then we have at
least three maximal subtrees. Since each such subtree leasttivo vertices of degree
1, we have three subtrees each with at least one vertex oéeldgother thanu. These
vertices of degree 1 are also vertices of degree T.inThus 7' has at least three vertices
of degree 1, which is a contradiction.
Hence T is a path. n

Problem 2. If G is a graph withy — 1 vertices, prove that the following are equiv-
alent.
(a) G is connected
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(b) G is acyclic
(c) G isatree
Solution.
(a) = (b) Let G be connected. We have to prove that is acyclic. Suppos&~ has a
cycle, sayC. Let ¢ be anedge or”. Then C —e is connected. Delete all the edges on
the cycle successively such that the resulting graph resyainnected but has no cycles.
Thus we get a connected acyclic graph(tree) on v vertices. Hence
¢(G) > (number of edges of " )+1

=r-1)+1

=V
This is a contradiction and hendg@ has no cycles.
b) = ¢) Assume thatG is acyclic. We have to prove tha¥ is connected. Suppose not.
Then it hask(> 2) components sayG, Gs, ..., Gg. Since G is acyclic, each com-
ponent is acyclic and connected. Thus each component ig ame: hence by Theorem
1.6.5,

€(Gi)
Hence, ¢(G)

v(G;) — 1 foreachi =1,2,... k.
€(Gh) +€e(Ga) + ...+ E(Gk) -1
v(Gy) — 1+ I/(GQ) — 1+ ... +v(Gy)
v(Gy) + V(GQ) -+ V(Gk> —k
v(G) —

<v-—1, smcekz 2.
This is a contradiction. Hencé&' is connected and so it is a tree.
(c)= (a) is obvious. n

Problem 3.1f G isatree withA > k, prove thatG has at least: end vertices.
Solution. Let G be atree; letu be a vertex of degreé\ > k.

Consider the maximal subtrees in whieghoccurs as an endverex. Then we have at least
k such subtrees. Since each such subtree has at least onertexdotieer thanu and

the end vertex is also an end vertex@h it follows that G has at least: end verticem

Recall that the centre of7 is the set of all vertices of minimum eccentricity.
Problem 4. Prove that the centre of a tree consists of either one vertéxmadjacent
vertices.
solution The result is obvious for the trees; and K5; the vertices of K; and K, are
central vertices.

Now let 7' be a tree withv(7T") > 3. Then, by Corollary 1.6.6;]" has at least two end
vertices. Clearly, the end vertices @f cannot be the central vertices.
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Delete all the end vertices frorfd. This result in a subtred” of 7. Since any path of
maximum length in7" starting from any vertex of/” will end at an end vertex off’,
the eccentricity of each vertex af’ is one less than that ifi".

Hence, the vertices of minimum eccentricity i are same as those iit. In other
words, 7" and 7" have the same centre.

Similarly, if 7" is the tree obtained fronY” by deleting all its end vertices, theh”
and 7" have the same centre.

Repeat this process of deleting the end vertices from theesan® subtrees until these
results in aKk; or K,. This will always be the case &§ is finite.

Hence, the centre of " is either a single vertex or a pair of adjacent vertices. n

The process of determining the centre of a tree as describb@¢kds illustrated
in Figure 1.6.3.

T

T" - o o o o
T" . o—o

Figure 1.6.3. Process of determining the centre of

Problem 5. Prove that the sequencgl;, ds, ..., d,) of positive integers is the degree
sequence of atree ifandonly ¥_i = 1"d; = 2(v — 1).

Solution. The solution of the problem is trivial i = 1. So, we can assume that> 2.
Necessity:Assume that the sequendd;, ds, ..., d,) of positive integers is the degree
sequence of atree, sdy. SinceT" is connected and nontrivial, it has no isolated vetices.
Hence every term of the degree sequence is positive.

Therefore, by Theorems 1.4.2 and 1. 62} d(v;) =2 =2(rv —1).
Conversely, assume that the sequerEe: (dy,ds,...,d,) of positive integers,

where > " d; = 2(v — 1), is the degree sequence of a graph
To prove GG is a tree. We proceed by induction an(> 2).



1.6. TREES 39

If v =2, thenwe haved; +dy, =2(2—1)=2. Sinced; > 1,dy > 1, wegetd; =1
and d, = 1. Then the unique realization aff is K5, which is clearly a tree.
Assume that if the sequenc® = (di,d,...,d,) of positive integers, where

> d; = 2(n — 1), is the degree sequence of a graph then H is a tree, where
=1
2<n<v-—1.

Let the sequencd = (di,ds,...,d,) of positive integers, where_d; =2(v — 1), is
i=1
the degree sequence of agragh If d; > 2, foreveryi,1 <i <v,

then > d; > 2v > 2(v — 1), giving a contradiction.

Henczéldi < 2 for at least onei. For thisi, d; = 1 becaused; > 1V ¢. For definite-
ness, let us assume thdf = 1 and let v, be the corresponding vertex. Lef, be the
unique vertex adjacent to, in G with dg(vy) = dy.
Consider the subgrapt’ = G—v, andthe sequencél;, ..., dy_1,dp—1,dgi1,...,d,_1).
Let vy, v9,...,v,_1 be the respective vertices with these degrees in ord€¥’inNote
that d, cannot be equal td, since in that case the edgev, itself forms a separate
component ofG, a contradiction toG is connected and’ > 3. Thus, the degree se-
guence of G’ has positive terms.
Further,d, + ... 4+ dy 1+ dp — 1+ dps1 + ... +dp 1

=(d1+...+d,1)—1

= (X0 di) —dy, — 1

=2v—1)—1-1

=2((r—1)—-1).
By induction assumption(z’ is a tree. Now, to realiz&> from G’, attach the pendant
edgevyv, at v,. Therefore,G is atree. (]
Exercises

1. If G is aforestwith exactly2k vertices of odd degree, prove that there &redge
disjointpathsPy, P, ..., P, in G suchthatE(G) = E(P)UE(Py)U.. .UE(Fy).

2. Let T' be an arbitrary tree ot + 1 vertices. If G is simple andd > k, prove
that G has a subgraph isomorphic tB.
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1.7 Cut Edges and Cut Vertices

Cut edges and Bonds

Definition 1.7.1. A cut edge of G is an edgee such thatw(G — ¢€) > w(G).

The dark edges of the graph shown in Figur&.1 are cut edges.

-

Cut edges of a graph
Figure 1.7.1

Theorem 1.7.2.An edgee of G is a cut edge ofG if and only if e is contained in no
cycle of G.

Proof. Let ¢ be a cut edge ofz. We have to prove that is contained in no cycle of
G.

Sincew(G —e) > w(G), there exist vertices: and v of G that are connected in
G butnotin G — e. Therefore, there is soméu, v)— path P in G which necessarily
traversee. Let x and y be the ends ofe and assume that precedesy in P. In
G — e,u is connected tar by a section of P and y is connected tov by a section of
P.

Supposee were in a cycle, sayC. Then z and y would be connected il — e
by the pathC'—e. Thus v and v would be connected itz —e, which is a contradiction.

Conversely, assume that= zy is contained in no cycle ofz. We have to prove
that e is a cut edge ofG. Supposee is not a cut edge of5. Then w(G —e) = w(G).
Since there is ar(x, y)— path (namely the edgey ) in G, verticesz and y are in the
same component of;. It follows that x and y are in the same component 6f—e and
hence there is 4z, y)— path P in G —e. Butthen P + ¢ is acycle of G containing
the edgee, which is a contradiction. Hence is a cut edge ofG. O

Theorem 1.7.3.An edgee is a cut edge of a connected graph if and only if there
exist verticesu and v such thate belongs to everyu, v)— path.
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Proof. Let e = xy be a cut edge of7. Then G — e has two components, sa¥; and
Gs. Let u bein G; and v bein G,. Then clearly every(u,v)— path in G contains
e.

Conversely, assume that there exist two verticeand v such thate belongs to
every (u,v)— path in G. Then there exists ndu,v)— path in G — e. HenceG —e¢ is
disconnected and se is a cut edge ofG. ]

Theorem 1.7.4.A connected graph is a tree if and only if every edge is a cuéedg

Proof. Let G be atree anct be an edge ofGG.

Since GG is acyclic, the edge: is contained in no cycle of5.

Therefore, by Theorem 1.7.3, the edges a cut edge ofG.

Conversely, assume that every edge of a connected grajha cut edge.

Suppose thati7 is not a tree.

Then G contains a cycle.

Therefore, by Theorem 1.7.3, the edges in the cycleS adre not cut edges of7, which
IS a contradiction.

Therefore,G is atree. O

Definition 1.7.5. A spanning tree ofGG is a spanning subgraph d@f that is a tree.

For example, a spanning tree of the graphin Figure 1.7.2 is indicated by the dark
edges.

7
[

A spanning tree of a graph
Figure 1.7.2

Corollary 1.7.6. Every connected graph contains a spanning tree.

Proof. Let G be connected and I€f’ be a minimal connected spanning subgraplGof
(T exists becausé- is a connected spanning subgraph of itself).

By definition, w(T') =1 and w(T —¢) > 1 for each edgee of T.

Therefore each edge df is a cut edge. Thereforé' is a tree by Theorem 1.7.3. [

Corollary 1.7.7. If G is connected, ther > v — 1.
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Proof. By Corollary 1.7.6,G contains a spanning tree, sdy
Thereforee(G) > €(T).
=v(T) — 1, by Theorem 1.6.5
=v(G) -1
Thus, e > v — 1. O]

Theorem 1.7.8.Let T' be a spanning tree of a connected graghand let e be an edge
of G notin T. ThenT + e contains a unique cycle.

Proof. Since T' is acyclic, each cycle off + e containse.

Moreover, C' is a cycle of T+ e if and only if C' — e is a path inT connecting the
ends of e.

We know that, in a tree, every pair of vertices are connecyes imique path.
ThereforeT + e contains a unique cycle. ]

Bonds

Definition 1.7.9. For a subsetS ans S’ of V', we denote by[S, 5’|, the set of edges
with one end inS and the other end irt’. An edge cubf G is a subset ofF of the
form [S,S] where S is a nonempty proper subset &f and S =V — S.
A minimal nonempty edge cut is callecbandof G.

Figure 1.7.3 gives an edge cut and a bond of a graph.

= =D

An edge cut A bond
Figure 1.7.3

Remark 1.7.10.Each cut edgee, for instance, gives rise to a bongt}.

Remark 1.7.11.If G is connected, then a bond &f is a minimal subsett’ of F
such thatG — E’ is disconnected.

Definition 1.7.12.1f H is a subgraph ofG, thecomplement ofH in G, denoted by
H(G), isthe subgraphtG — E(H). If G is connected, a subgraph of the forfiy where
T is a spanning tree, is calleccatreeof G.
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Figure 1.7.4 represents a spanning tree and its corresponding cotree.

o o—m
o 0

Figure 1.7.4

Remark 1.7.13. A cotree need not be a tree.

Theorem 1.7.14.Let T' be a spanning tree of a connected graph and let e be any
edge of 7. Then

(i) the cotree T contains no bond of7;

(i) T + e contains a unique bond af;.

Proof. (i) Let B be a bond ofG.

Then G — B is disconnected and so cannot contain the spanningfresince 7' is a
connected subgraph df.

Therefore B is not contained inT".

(i) Let S denote the vertex set of one of the two component3'ef e.

The edge cutB = [S, 5] is clearly a bond ofG' and is contained ifil” + e.

Now, forany v € B, T' — e 4+ b is a spanning tree ofy. Therefore every bond ot~
contained inT + e must include every such elemet

It follows that B is the only bond of G contained inT + e. O

Remark 1.7.15.The relationship between bonds and cotrees is analogolattbatween
cycles and spanning trees.

Definition 1.7.16. A vertex v of G is acut vertexf E(G) can be partitioned into two
nonempty subsets’; and E, such thatG[FE,| and G|E,] have just the vertes in
common. If G is loopless and nontrivial, them is a cut vertex of G if and only if
w(Gy) > w(Q).

In Figure 1.7.5, all the dark vertices are the cut vertices.

‘T/’

(&

Cut vertices of a graph
Figure 1.7.5
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Theorem 1.7.17.A vertexv of atree G is a cut vertex ofG if and only if d(v) > 1.

Proof. If d(v) =0, G = K, and, clearly,v is not a cut vertex.
If d(v) =1, G —wv isan acyclic graph with
nu(G —v) — 1 edges and thus a tree by Problem 2 in Section 1.6. Her{cé— v) =
1 =w(G) and v is not a cut vertex ofG.

If d(v) > 1, Then there are two vertices and w adjacent tov. The pathuvw
isa (u,w)— pathin G. Since G is atree,uvw is the unique(u,w)— pathin G.
It follows that there is no(u, w)— path in G — v, and henceG — v is disconnected.
Therefore,w(G —v) > w(G) = 1.
Thus v is a cut vertex ofG. ]

Corollary 1.7.18. Every nontrivial connected graph without loops has at least ver-
tices that are not cut vertices.

Proof. Let G be a nontrivial loopless connected graph.

By Corollary 1.6.6, G contains a spanning tre2. By Corollary 1.7.6 and Therorem
1.7.17, T has at least two vertices that are not cut vertices (by abm@em); letv be
one of them. Thenv(T' —v) = 1.

Since T is a spanning subgraph @f, 7" — v is a spanning subgraph @ — v. Thus
w(G@—v) <w(T —v).

It follows that w(G — v) = 1 and hence thav is not a cut vertex ofG. Since There
are at least two such vertices the proof is complete. O

Solved Problems

Problem 1. A simple cubic connected graph has a cut vertex if and onliyhfs a cut
edge.

Solution. Let G have a cut vertex.

Let v, vy, w3 be the vertices ofG that are adjacentte in G.

Then G — v is disconnected with two or three componentsGlf- v has three compo-
nents, no two ofv;, v9, v3 can belong to the same component@f— v.

In this case, each of the edges;, vv, and vuvs is a cut edge ofG (see Figurel.7.6)
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Figure 1.7.6 ()

If G — v has two components, one of the vertices saybelongs to one component of
G — v, and the other vertices,, v3 belong to the other component ¢f — v. In this
case,vv; IS a cut edge.

Conversely, lete = uv be a cut edge of5.
Then G — wv is disconnected with two components, each of which conlitesast four
vertices, sinceGG is cubic. Therefore, the deletion af from G disconnectsG into
two or more components.
Hence v is a cut vertex ofG. |

Problem 2. Prove thatG is a forest if and only if every edge af is a cut edge.
Solution. Assume thatG is a forest.
Then each component a7 is a tree. Since every edge of a tree is a cut edge, it follows
that every edge ofG is a cut edge. Conversely, assume that every edgé aé a cut
edge.
Suppose that7 is not a forest.
Then G has a cycle, say”. By Theorem 1.6.5, every edge afi is not a cut edge of
G, which is a contradiction. Hencé' is a forest. |

Problem 3. If a graph with at least three vertices has a cut edge, pragitinas a
cut vertex. Is the converse true?
Solution. It suffices to prove the problem for a connected graph.

Let G be a connected graph with at least three vertices.
Let e = uv be a cut edge of-.
The G — e is disconnected.
Since the deletion of the vertex (or v ) includes the deletion of the edge
Since G has at least three vertices, it follows th@t— « or G — v is also disconnected.
Hence,u or v is a cut vertex ofG.

The converse of the problem is not true. That is, a graph witht aertex need not
have a cut edge.
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For example, the dark vertex in the graph in Figur&.7. is a cut vertex, but there is not
a cut edge.

A graph with a cut vertex but no cut edge
Figure 1.7.7

Excercises

1. If e is an edge of a connected gragh prove thate is in every spanning tree of
G ifand only if e is a cut edge ofG.

2. If G is a graph without loops but has exactly one spanning ffeeprove that
G=T.

3. Prove thatG has at least — v + w distinct cycles.
4. If each degree in7 is even, prove thatz has no cut edge.
5. If G isa k-regular graph withk > 1, prove thatG has no cut edge.

6. If G is a connected graph and is any nonempty proper subset &f prove

that the edge cu{sS, S] is a bond of G if and only if both G[S] and G[S] are
connected.

\‘

. Prove that every edge cut is a disjoint union of bonds.

1.8 Spanning trees

Definition 1.8.1. An edge e of agraphG is said to be contracted if it is deleted and its
ends are identified. The resulting graph is denoted-by

Figure 1.8.1 illustrates the effects of contracting theesdg
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U1 e1 (%)
ey (& €9
V4 €3 V3
Contraction of an edge
Figure 1.8.1

Remark 1.8.2. It is clear, from its definition, that
v(Ge)=v(G) -1

€(G.e) =¢(G)—1 and

w(G.e) = w(QG).

Therefore, if T' is a tree, so too is].e.

Notation. The number of distinct spanning trees 6f is denoted byr (G).

Figure 1.8.2. shows all the three distinct spanning treeS'pf

N NN

Distinct spanning trees of(;
Figure 1.8.2

Figure 1.8.3. shows all the four distinct spanning tree€'of

LD T

Distinct spanning trees of’;.
Figure 1.8.3

Thus, we see that(C5;) = 3 and 7(Cy) = 3. Ingeneral,7(C,,) = n.
The complete graph on four vertices has 16 distinct sparnnaes.
They are illustrated in Figure 1.8.4. ThugK,) = 16.
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X NI
N X ZLE
XL
NN

Sixteen distinct spanning trees &f,.
Figure 1.8.4

Theorem 1.8.3.(Cayley'srecursive formula) If e is alink of G, then 7(G) = 7(G —
e)+71(G.e).

Proof. Since every spanning tree @f that does not contaim is also a spanning tree of

G — e and conversely, it follows that (G, ) is the number of spanning trees 6f that
do not containe.

Now to each spanning tre& of G that containse, there corresponds a spanning tree
T.e of G.e.

This correspondence is clearly a bijection.

\V4 AV

G G.e
Figure 1.8.5

Therefore, 7(G.e) is precisely the number of spanning trees@fthat containe .
it follows that 7(G) = 7(G —e) + 7(G.e). O
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In the special case whe@' is complete, a simple formula of(G) was discovered
by Cayley in 1889.

Theorem 1.8.4. (Cayley) 7(K,)=n""2

Proof. Let the vertex set ofK,, be N = {1,2,...,n}.

We note thatn™ 2 is the number of sequences of length- 2 that can be formed
from N .

Thus to prove the theorem, it suffices to establish a one-onmespondence be-
tween the set of spanning trees &f, and the set of such sequences.

With each spanning tre& of K,,, we associate a unique sequenee, ta,...,t, 2}
as follows:

Regarding N as an ordered set, let be the first vertex of degree one ifi’; the
vertex adjacent tos is taken ast;. We now deletes; from 7', denote byS; the first
vertex of degree one il" — s and take the vertex adjacent to as t,. This operation
Is repeated untilt,,_, has been defined and the tree with just two vertices remaims. T
tree in Figure1.8.7, for instance, gives rise to the sequendds3, 5,3, 4,5). It can be
seten that different spanning trees &f, determine different sequences.

1
2}—%55@ % (4)315)314!5)
o
7 8

Figure 1.8.7

The reverse procedure is equally straightforward. Obsdingt that any vertexv of

T occurs d,.(v) — 1 times in (t1,ts,...,t,_2). Thus the vertices of degree one in
T are precisely those that do not appear in this sequence. cbmsguct 7' from
(t1,t2,...,th—o) We therefore proceed as follows:

Let s; be the first vertex ofN notin (¢q,ts,...,t,_2); join s; to t;. Next, let
sy bethefirstvertex ofN\{s;} notin (¢1,ts,...,t, 2); andjoin sy to t,. Continuein
this way until then —2 edgessity, sata, .. ., S,_ot,_o have been determined. is now

obtained by adding the edge joining the two remaining vestiof N\{s, s2,...,S—2}.
It is easily verified that different sequences give rise fedent spanning trees ofy,,.
We have thus established the desired one-to-one correspoad n
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Remark 1.8.5. Note that n"~2 is not the number of nonisomorphic spanning trees of
K,; but the number of distinct spanning trees &f,; there are just six nonisomorphic
spanning trees of<;, whereas there aré* = 1296 distinct spanning trees ofi.

Definition 1.8.6. A wheelis a graph obtained from a cycle by adding a new vertex and
joining it with all the vertices of the cycle. The new edges aalled thespokesof the
wheel. A wheel onn vertices is denoted byV,,.

Figure 1.8.8 shows W3, W5 and W5.

A X

W3 W5 W6
Figure 1.8.8

Exercises

1. Draw the distinct spanning trees &f;. How many of them are nonisomorphic?
2. Draw the distinct spanning trees @f,. How many of them are nonisomorphic?
3. Using Cayley’s recursive formula, evaluate the numbepahsing trees of(; 5.
4.1f e is an edge ofK,,, prove thatr(K,, —e¢) = (n — 2)n" 3,

5. Obtain an expression for the number of spanning treéd/pf



Chapter 2

CONNECTIVITY AND EULER
TOURS

2.1 Connectivity

Consider the four connected graphs in Figaré.1. G, is atree, a minimal con-
nected graph. Deletion of any of the four edges disconnecBut G, cannot be dis-
connected by the deletion of a single edge, but can be disctenh by the deletion of
one vertex, its cut vertex. There are no cut edges or cutcesrtn G5, but even soGjs
is not well connected a&r,, the complete graph od vertices. Thus, intuitively, each
successive graph is more strongly connected than the piewite. This leads to the con-
cept of connectivity and edge connectivity which measueeetktent to which the graph

iS connected.
G4 G Gs Gy

Figure 2.1.1

Definition 2.1.1. A vertex cutof G is a subsetl” of V' such thatG — V' is discon-
nected. Ak -vertex cuts a vertex cut ofk elements.

A complete graph has no vertex cut; in fact, the only grapasdb not have vertex
cuts are those that contain complete graphs as spanningaginsg

If G has at least one pair of distinct nonadjacent verticesctimaectivityof G,

51
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denoted byx(G), is the minimum £ for which G' has ak -vertex cut; otherwise, we
define x(G) tobe v — 1. Thus, x(G) = 0 if G is either trivial or disconnected. The
graph GG is said to bek -connectedf «(G) > k.

All nontrivial connected graph&: are 1 -connected, that isx(G) > 1.

Definition 2.1.2. A edge cubf G is a subset ofE(G) of the form [S, S], where S is
a nonempty proper subset &f(G). A k -edge cuis a edge cut ofc elements.

If G is nontrivial and E’ is an edge cut ofGG, then G — E’ is disconnected,
then we define thedge connectivitgf G, denoted byx'(G), to be the minimumk for
which G has ak -edge cut. IfG is trivial, we definex’(G) tobe 0. Thus, '(G) =0
if G is either trivial or disconnected, and(G) = 1 if G is a connected graph with a
cut edge. The grapld: is said to bek -edge-connectedl «'(G) > k.

All nontrivial connected graphg: are 1 -edge-connected, that is;(G) > 1.

Graphwithk =2, ¥» =3 and y =4
Figure 2.1.2

Theorem 2.1.3.For any graph G, x < r’ < 4.

Proof. First we prove the inequality,’ < 6. If G istrivial, then v’ = 0 < §. Otherwise,
the set of links incident with a vertex of degree constitute a -edge cut of G. It
follows that ' < 4.
We now prove thatx < x’ by induction onx’.

If " =0, then G must be either trivial or disconnected andse= 0. Therefore,
the inequalityx < k' is true if ' = 0.
Assume that the inequality < «’ is true for all graphs with edge connectivity less than
k.
Let G be a graph with<'(G) = k > 0; let e be an edge in & -edge cut ofG.
Consider the subgrap/ = G — e.
Clearly x'(H) = k — 1 and so by induction hypothesis,(H) < «'(H) = k — 1.

If H contains a complete graph as a spanning subgraph, then soGioand
k(G) = k(H) < k— 1. Otherwise, letS be a vertex cut ofH with x(H) elements.
Since H — S is disconnected, one of the following holds:

(i) G — S isdisconnected; and
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(i) G — S isconnected with a cut edge

If (i) holds, then k(G) < k(H) < k —1 < k = k' (G).

If (i) holds, then eitherv(G — S) =2 or G — S has a 1-vertex cut.
If v(G—-S)=2, thenk(G)<v(G)—1=kr(H)+1<k—-1+1=Fk=~r(G).
If G— S hasa l-vertex cut, sayv}, then S U {v} is a vertex cut ofG
and k(G) < k(H)+1 <k =~r(G).

Thus in each case, we havdG) < «/(G).

Therefore, the result follows by the principle of induction n

Remark 2.1.4. The graph in Figure 2.1.2 shows that strict inequality cald o the
above theorem.

Theorem 2.1.5.A set ' of edges inGG is an edge cut if and only i’ contains an even
number of edges from every cycle h

Proof. Necessity.A cycle must wind up on the same side of an edge cut that itsstawt
and thus it must cross the cut an even number of times.
Sufficiency. Given a setF' that satisfies the intersection condition with every cyule,
construct a setS C V(G) such thatF = [S,S]. Each component ofy — F' must be
allin G[S] orallin G[S], but we must group them appropriately. Define a gragh
whose vertices correspond to the component&oef F'; for eache € F, we put an edge
in H whose endpoints are the componentsdf- F' containing the endpoints of.

We claim that H is bipartite. From a cycle” in H, we can obtain a cycl€” in
G asfollows. Forv € V(C) let e, f be the edges o’ incidentto v (not necessarily
distinct), and letx, y be the endpoints o, f inthe component of7— F' corresponding
to v. We expandv into an (x,y) path in that component. Sinc€' visits each vertex
at most once, the resulting” is a cycle in G. The number of edges of' in C’ is the
length of C. Hence the length of” is even.

We conclude thatH is bipartite. Let S be the set of vertices in the components
of G — F corresponding to one partite set in a bipartition/éf Now F' is the edge cut
[S,S]. O

Lemma 2.1.6.1f G’ is obtained from a connected grapi by adding edges joining
pairs of vertices whose distance @ is 2, thenG’ is 2-connected.

Proof. Since GG’ is obtained by adding edges 1@, G’ is also connected. IfY has a
cutvertex v, then v is also a cutvertex inz, since G — v is a spanning subgraph of
G'—wv. By construction, neighbors of in G are adjacent inG’, and hence they cannot
be in different components o’ — v. Hence G’ — v has only one component. [
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Solved Problems

Problem 1. Let G be a 3-connected graph, and ley be an edge ofG. Show that
G — zy is 3-connected if and only if7 — {x,y} is 2-connected.

Solution. Given that G is 3-connected with an edgey € F(G). Let G — xy is 3-
connected. To showz — {z,y} is 2-connected. Suppose if possile— {z,y} is not
2-connected. Then there exist a vertexin G — {z,y} which separateG — {z,y}.
Then {z,v,,} becomes a separating setGf— zy, a contradiction. Hence&? — {z, y}
is 2-connected.

Conversely, supposé&’ —{x, y} is 2-connected. To showr —zy is 3-connected. If pos-
sible let G — xy is not 3-connected. Then there exist a separatingset} in G — zy
which separateG — zy . Now if u,v # v,, then {u,v} becomes a separating set of
G, a contradiction. Suppose = v,,. Then v separatest — {z,y}, a contradiction.
Hence G — zy is 3-connected. |

Problem 2. Every triangle-free simple graph with minimum degree asiéaand or-
der at most 11 is 3-edge-connected.
Solution. Let [S,S] be an edge cut of size less than 3, with| < |S]. Let k& = |S]|.
Since §(G) > 3 and [S, S] < 2, the fundamental theorem on graphs yields:[S]) >
(3k—2) o k2 k2 (3k—2)
. Since G[S] is triangle-free, there(G[S]) < ik Hence T > 5

For positive integerk, this inequality is valid only whert > 6. Since the smaller side
of the cut has at most five vertices, we obtain a contradictod there is no edge cut of
size at most 2.

The bound of 11 is sharp. The 3-regular triangle-free grdphraer 12 shown be-
low is not 3-edge-connected. |
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k
Problem 3. Show that if G is k -edge connected, then> 71/

Solution. We know that >~ d(v) = 2e.
veV(Q)
If the vertices arevy, vs, . .., v, then d(vy) + d(v2) + ... + d(v,) = 2e.

Since G is k -edge connecteds’(G) > k. We know thatx < ' < 4. Hence,x < 4.

vo < Zd(v) = 2¢

vk <vd <2

= vk < 2e

=€e> %yk.

|
Problem 4. Find a simple graph withf = v — 3 and s < .
Soluion.
/\A
Herev =5, § =2 =v — 3. Sinceu isvetex cut,x =1 <. |
1%
Problem 5. Find a simple graphz with § > [5 —1] and &’ < 6.
Solution.
u
124

Herev =8, 0=[-—1]=[4—-1]=3 and ' =1 < (= 3). ]

2
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Problem 6.If G is simple and3 -regular, prove thats = «'.
Solution. It suffices to consider only connected cubic grag@h Further sincex < ' <
0 = 3, we have to consider only the cases wheg- 1, 2, or 3.
By Problem 1 of Section 1.7, we have, for a simple cubic graphk; <’ if x = 1.
If =3, thenby Theorem 2.1.3x < v’ < = 3, and hencex’ = 3.
We shall now prove thak = 2 implies that s’ = 2.
Let x = 2 and {u,v} be a2 -vertex cut of G. The deletion of {u,v} results in a
disconnected subgrapfi’ of G. Since each ofu and v must be joined to a vertex of
each component o’ and sinceG is cubic, G’ can have at most three components.
If G’ has precisely three componengs;, G, and G3, and if ¢; and f;,i =
1,2, 3 join respectivelyu and v in G;, then each paife;, f;} is an edge cut ofG.

Figure 2.1.3

If G’ has only two components;; and G, then eachu and v is joined to one of
G, and G, by asingle edge: and f respectively so thafe, f} is an edge cut of.

G1 Gl

Figure 2.1.4

Thus in either case, there exists an edge cut consistingooétiges. Hence:’ < 2. But,
by Theorem 2.1.3x’ > x = 2. Hencer' = 2.
Thus k = K. |

Problem 7. Prove that the connectivity of thé -cube is k.
Solution. We know that thek -cube ), is k -regular. By deleting the neighbours of
any vertex we can get the resulting graph disconnected. ¢He(@;) < k.
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To prove thatx(Qy) > k, we have to prove that any vertex cut 6f, has at leastk
vertices. We prove this by induction ok

For k=1, Q= K, andsok(Q) = 1.

Now assume that > 1 and k(Qx_1) > k — 1.

Note that (), can be obtained from two copies, sdy, ' of Q,_;, by joining the
corresponding vertices id) and Q. Let S be any arbitrary vertex cut of);..

Q Q'
Figure 2.1.4

If both @ — S and @' — S are connected, thed), — S is also connected unlesS
deletes at least one end vertex of every edge newly addesl rddniires|S| > 2. But
2k=1 > k for k > 2. Thus, x(Qy) > k. Now, we may assume that one of them, say
() — S is disconnected. Thery has at leastt — 1 vertices from V(@) by induction
hypothesis. If S contains no vertices of)’, then )’ — S is connected. Since every
vertex of Q — S has a neighbour i)’ — S, itfollows that @Q — S is connected, giving
a contradiction. HenceS must also contain a vertex of)’ so that |S| > k. Hence
K(Qk) > k.

Thus, x(Qx) = k. ]

Problem 8. If G is k-connected, prove that > % Deduce that there is n@ -
connected simple graph witli edges.

Solution. Since GG is k -connected,x(G) > k. Further, x < ¢ by Theorem 2.1.3.
Thus, 6 > k > k. By the fundamental theorem on graphs, we have

2¢ =) d(v) > vé > vk.

vk
Therefore,e > —.

If possible, suppose there exists3aconnected simple grapty with 7 edges.
Since ¢(K,) = 6, it follows that v(G) > 5.

v 16 . L
Thereforee > 5= giving a contradiction. u

Exercises
1. Let G be a 2-connected graph with(G) > 3. Prove that there exist a vertex
v € V(G) suchthatG — v is also 2-connected.
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2.If G is k -edge connected witlk > 0 and if E’ is a set ofk edges ofG,
prove thatw(G — E') < 2.

3. For k > 0, find a k -connected grapl and a setV’ of vertices of G
such thatw(G — V') > 2.

4.1f G is k-edge connected, prove that< @
5.1f G issimple andd < v — 2, prove thatx = 6.
6. Find a simple graph withh = v — 3 and x < .
7.1f G issimple andd > v — 2, prove thatx’ = §.

1%
8. Find a simple grapiG with § > [5 — 1] and &’ < 6.

v+k—2
9.If G issimple andd > ————, then prove thatG is k -connected.
10.If [,m and n are integers such thdt < [ < m < n, then prove that

there exists a simple grapy with «x =1, K =m and § = n.

2.2 Blocks

Definition 2.2.1. A connected graph with no cut vertices is calledlack Every block

with at least three vertices i8 -connected. Ablock of a graphis a subgraph that is a

block and is maximal with respect to this property. Everyptre the union of its blocks.
Figure 2.2.1 shows a graph and its blocks.

VAN
= g nge

ix blocks of G
Figure 2.2.1

Definition 2.2.2. A family of paths in G is said to banternally-disjointif no vertex of
GG is an internal vertex of more than one path of the family.

Theorem 2.2.3.A graph G with » > 3 is 2 -connected if and only if any two vertices
of G are connected by at least two internally disjoint paths.
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Proof. If any two vertices of G are connected by at least two internally disjoint paths,
then clearly G is connected and has nb-vertex cut. Hencez is 2 -connected.

Conversely, letG' be a 2 -connected graph. We have to prove that any two vertices
v and v are connected by at least two internally disjoint paths. kél prove the result
by induction ond(u, v).

Supposed(u,v) = 1. Since G is 2 -connected, the edgev is not a cut edge
and therefore it is contained in a cycle. It follows thatand v are connected by two
internally disjoint in G.

Now assume that the converse part of the theorem holds fotvemyertices at
distance less thai and let d(u,v) = k > 2.

Consider a(u,v) -path of lengthk and let w be the vertex that precedas on
this path. Sinced(u,w) = k — 1, it follows from the induction hypothesis that there are
two internally disjoint (u, v) -paths, sayP and @ in G.

Also since G is 2 -connected,G —w is connected and so it containga, v) -path, say
P'. Let x be the last vertex of”’ thatis also inP U (). Sinceu isin P U(Q, there
is such anz; we do not exclude the possibility that = .

P/

Figure 2.2.2

We may assume, without loss of generality, thais in P. Then G has two internally
disjoint (u,v) -paths, one composed of the— = section of P together with thez — v
section of P’, and the other composed @) together with the pathov. n

Corollary 2.2.4. If G 2 -connected, then any two vertices@f lie on a common cycle.

Proof. This follows immediately from the above theorem, since tvestices lie on a
common cycle if and only if they are connected by two intdgndisjoint paths. O

Definition 2.2.5. An edge e is said to be subdivided when it is deleted and replaced by a
path of length two connecting its ends, the internal verfekis path being a new vertex.
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—>

Subdivision of an edge
Figure 2.2.3

Above theorem has a generalization to-connected graphs, known 8engers
theorem: a graph G with v > k + 1 is k -connected if and only if any two distinct
vertices of G are connected by at least internally disjoint paths.

There is also an edge analogue to this theorem: a g€aph k -edge-connected if
and only if any two distinct vertices of are connected by at least edge-disjoint paths.

Exercises
1. Prove that a graph i8 -connected if and only if any two vertices are connected
by at least two edge-disjoint paths.
2. Give an example to show that #? is a (u, v) -path in a2 -connected graplG,
then G does not necessarily contain(a, v) -path internally disjoint fromP.
3. Let G be a2— connected graph and leY and Y be disjoint subsets o¥/,
each containing at least two vertices. Show thatcontains disjoint paths?
and @) such that
(7) the origins of P and ) belong to X,
(77) the terminus of P and ) belongtoy, and
(¢7i) no internal vertex ofP or () belongstoX UY.
4. Show that a connected graph which is not a block has atti®agilocks that
contain exactly one cut vertex.
5. Show that the number of blocks i@ is equal tow + ) (b(v) — 1),

veV
where b(v) denotes the number of blocks ¢ containing v.

6. Show that if G has no even cycles, then each block®fis either K, or an
odd cycle.

2.3 Euler Tours

Leonhard Paul Euler (1707- 1783) was a pioneering Swiss enalician, who
spent most of his life in Russia and Germany. Euler (pronatiiaseOILER) solved the
first problem using graph theory and thereby led the foundaif very vast and important
field of graph theory. He created first graph to simulate atieed place and situation to
solve a problem which was then considered one of the tougiheistems.
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The Konigsberg Bridge Problem:

The Knigsberg bridge problem originated in the city of Kriigsg, formerly in
Germany but, now known as Kaliningrad and part of Russiatéatan the river Preger.
The city had seven bridges, which connected two islands thghmain-land via seven
bridges. People staying there always wondered whetherheas &ny way to walk over
all the bridges once and only once. The picture shown in Eidut is the geographic
map of Knigsberg during Euler’'s time showing the actual l#tyof the seven bridges,
highlighting the river Preger and the bridges.

In 1736, Euler came out with the solution in terms of graplotiie He proved
that it was not possible to walk through the seven bridgestixane time. In coming to
this conclusion, Euler formulated the problem in terms @fpir theory. He drew a pic-
ture consisting of dots (vertices) that represented the taasses and the line-segments
(edges) representing the bridges that connected thoseriasses. The resulting picture
might have looked somewhat similar to the graph shown inrdeigul. This simplifies
the problem to great extent. Now, the problem can be merely as the way of tracing
the graph with a pencil without actually lifting it. One caw it in all possible ways, but
you will soon figure out, it is not possible. But Euler not onhpyed that its not possible,
but also explained why it is not and what should be the charistic of the graphs, so
that its edge could be traversed exactly once. He then camaitbuthe new concept of
degree of vertices. The degree of a vertex can be defined asthiger of edges touching
the vertex. Euler proposed that any given graph can be saslavith each edge traversed
exactly once if and only if it had, zero or exactly two versceith odd degrees.

Definition 2.3.1. A trail that traverses every edge df is called areuler trail. A tour of
G is a closed walk that traverses each edg&-0ft least once. An euler tour (euler trail)
Is a tour which traverses each edge exactly once.

An example of a eulerian graph shown below:

Figure 2.3.3. Euler graph
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Theorem 2.3.2.A nonempty connected graph is eulerian if and only if it haventices
of odd degree.

Proof. Let G be eulerian and le” be an euler tour ofG with origin (and terminus)
u. Each time a vertexo occurs as an internal vertex @, two of the edges incident
with v are accounted for. Since an euler tour contains every edgg @f(v) is even for
all v # w. Similarly, since C' starts and ends at, d(u) is also even. Thugy has no
vertices of odd degree.

Now, assume, to the contrary, that the sufficiency part doesold. Then there
exists a nonempty noneulerian connected graph with nocesrtof odd degree; choose
such a graphZ with as few edges as possible. Since each vertex dias degree at least
two, G contains a closed trail. Lef’ be a closed trail of maximum possible lengthdh
By our assumption(' is not an euler tour of7 and soG — E(C) has some component
G’ with E(G’) > 0. Since C itself is eulerian, is has no vertices of odd degree; thus
the connected graplt’ also has no vertices of odd degree. Sin€é&’) < ¢(G), it
follows from the minimality of ¢(G) that G’ has an euler toulC’. Now, becauseG
is connected, there is a vertex in V(C) N V(C’") and we may assume, without loss
of generality, thatv is the origin and terminus of botlt’ and C’. But then C'C’ is
a closed trail of G with ¢(C'C") > ¢(C), contradiction to the choice of’, which
completes the proof. ]

Corollary 2.3.3. A connected graph has an euler trail if and only if it has at e
vertices of odd degree.

Proof. If G has an euler trail, then as in the proof of above theorem, eaitbx other
than the origin and terminus of this trail has even degreé/inHence G has at most
two vertices of odd degree.

Conversely, suppose thdt is a nontrivial connected graph with at most two ver-
tices of odd degree. If7 has no such vertices, then, by Theorem 2.3:2has a closed
euler trail. Otherwise,G has exactly two vertices; and v of odd degree. In this
case, letG + ¢ denote the graph obtained fro@ by the addition of a new edge
joining u and v. Clearly, each vertex ofG + ¢ has even degree and so by Theorem
2.3.2, G + e has an euler toulC' = vpeqv; ... e, 10,1 Where e; = e. Then the trail
v1eVs . .. 5110511 IS AN euler trail ofG. ]
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Solved Problems

Problem 1. If G has no vertices of odd degree, prove that there are edgendisye
cles Cy,Cy,...,C,, suchthatE(G) = E(Cy) U E(Cy)U...UE(C,).

Solution. It suffices to prove the problem for connected graphs. Gebe a nontrivial
connected graph. Sinc& has no vertex of odd degree, every vertex is of even degree
and henced(G) > 2. Then we know thatG' contains a cycle, say’;. Remove the
edges of C; from G. We get a spanning subgrapfi; in which again every vertex
has even degree, since only the vertices’gf have lost their degree by two itr;. If

(G1 has no edges, then all the edges@f form a cycle and the result is true. Other-
wise, (G; has a cycle, say’s. As before, remove the edges éf, from G;. We get

a spanning subgrapliz, in which every vertex has even degree. Continuing this pro-
cess, after some finite number of steps, we get a gr@ph with no edges. Thus, we
have got cyclesC, (s, ..., C,, whose edges form a partition of the edges(of Thus,
E(G) = E(C1)UE(Cy)U...UE(C,). ]

Problem 2. If a connected graph ha&: (> 0) vertices of odd degree, prove that there are
k edge disjoint trails@;, Qs, . .., Q. suchthatE(G) = E(Q1)UE(Q2)U...UE(Qx).
solution Let the 2k odd vertices bevy, vy, ..., vg, wy, ws, ..., w, IN any arbitrary or-
der. Construct a new graple’ by adding & edges (v, w:), (ve, wa), . .., (Vg, Wg).
Note that G’ may be a multi-graph. Now two of these edges are incidenteaséime
vertex. Further, every vertex ofs’ is of even degree. Hencé’” has a closed eu-
lerian trail (euler tour)T. Since no two of these edges are adjacent, it will split into
k open trails Q, Q-,...,Qr whose edges form a partition of the edges@f Thus,
B(G) = E(Q1) UE(Q) U...UE(Qy). .

Exercises
1. Does there exist an eulerian graph with
(a) an even number of vertices and an odd number of edges?
(b) an odd number of vertices and even number of edges?
Draw such a graph if exists.
2. Prove that a connected grah is eulerian if and only if each of its block is
eulerian.
3. Prove that a connected gragh is eulerian if and only if each of its edge cut has
an even number of edges.
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2.4 Hamiltonian Cycles

Hamiltonian graphs are named after Sir William Hamilton)rgh Mathematician
(1805-1865), who invented a puzzle, called the Icosian garhieh he sold for 25 guineas
to a game manufacturer in Dublin. The puzzle involved a dadedron on which each of
the 20 vertices was labelled by the name of some capitalrcitlyad world. The aim of the
game was to construct, using the edges of the dodecahedtosea evalk of all the cities
which traversed each city exactly once, beginning and gndirthe same city. In other
words, one had essentially to form a Hamiltonian cycle ingtegoh corresponding to the
dodecahedron. Figure 2.4.1 shows such a cycle.

In contrast with the case of eulerian graphs, no nontriveaessary and sufficient
for a graph to be hamiltonian is known; in fact the problem odlfing such a condition is
one of the main unsolved problems of graph theory. we willlgtmecessary conditions
and sufficient conditions. A multigraph graph is hamiltaniband only if its underlying
graph is hamiltonian, because & is hamiltonian, then any hamiltonian cycle i@
remains a hamiltonian cycle in the underlying graphtaf Conversely, if the underlying
graph of a graphG' is hamiltonian, thenGG is also hamiltonian.

The dodecahedron
Figure 2.4.1

Definition 2.4.1. A path that contains every vertex @f is called ahamiltonian pathof
G. A hamiltonian cycleof G is a cycle of that contains every vertex 6f. A graph is
hamiltonianif it contains a hamiltonian cycle.

The Harschel graph
Figure 2.4.2



2.4. HAMILTONIAN CYCLES 65

The dodecahedron is hamiltonian and the Herschel graphrsimowigure 2.4.2 is non-
hamiltonian.
We shall first present a simple necessary condition.

Theorem 2.4.2.I1f G is hamiltonian, then, for every nonempty proper subsetof
V, w(G—S8) <|S].

Proof. Let C' be a hamiltonian cycle ofy. Then, for every nonempty proper subsgt
of V, w(C—-S5)<|9].
Also, C'— S is a spanning subgraph @ — S and so
w(G—=295)<w(C-=25)
Thereforew(G — S) < |S|. O

We now discuss sufficient conditions for a graph to be hamiltonian. We start
with a result due to Dirac.

Theorem 2.4.3.1f G is asimple graph withv > 3 and § > %, then & is hamiltonian.

Proof. We prove by the method of contradiction.
Suppose that the theorem is false. L&t be a maximal nonhamiltonian simple graph
with v >3 and ¢ > ¢.
Since v > 3, G cannot be complete. Lei and v be nonadjacent vertices af.
Since 0 > %,
du) +d(v) > 5+ %
= d(u) +d(v) > v
By the choice of G, G + uv is hamiltonian. SinceZ is nonhamiltonian, each hamilton
cycle of G + uv must contain the edgev. Thus there is a hamilton pathy, vs, ..., v,
in G with origin v = v; and terminusv = v,. Set
S = {vijuviy, € E(G)} and T' = {v;|v;v € E(G)}
Since v, ¢ SUT, we have
SuTl|<v (2)
We claimthatSNT = ¢
SupposeS NT contained some vertex, say, then G would have a hamilton
cycle vyvy ... v;v,v,_1 ... V4107, Ccontradiction to our assumption.
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U1 (%) V3 Vi V; Vit1 v—1 Vy

Figure 2.4.3

Using (2) and (3), we obtain
d(u) +d(v) =|S|+ |T|
=|SUT|+|SNT|
<v
This contradicts (1). Hence the theorem. O

Lemma 2.4.4.Let G be a simple graph and let and v be nonadjacent vertices itw
such thatd(u)+d(v) > v. Then G is hamiltonian if and only ifG'+uv is hamiltonian.

Proof. If G is hamiltonian, then triviallyG + uv is hamiltonian. Conversely, suppose
that G + wv is hamiltonian butG is not hamiltonian. Then as in the proof of the above
theorem, we obtaini(u) + d(v) < v, which contradicts the hypothesis. Therefo(e,is
hamiltonian. O

Definition 2.4.5. The closure ofG is the graph obtained frond: by recursively joining
the pairs nonadjacent vertices whose degree sum is atldeasitil no such pair remains.
We denote the closure aff by ¢(G).

Construction of the closure of a graph on six vertices is shioviigure 2.4.4.

G (@)
Figure 2.4.4. The closure of a graph

Lemma 2.4.6. ¢(G) is well defined.

Proof. Let G; and G, be two graphs obtained frore’ by recursively joining pairs of
nonadjacent vertices whose degree sum is at leasntil no such pair remains.
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Denote byey, e, ..., e, and fi, fo, ..., f, the sequence of edges addedioin order
to obtain G; and G, respectively.

We shall show that each; is an edge ofG; as well as eacly; is an edge ofG;.

If possible, lete,,; = uv be the first edge in the sequenege,, ..., e, thatis notan
edge of Gs.

Set H = G+{ey, e, ..., ¢e}. Itfollows form the definition of G, that dy (u)+dy(v) >

V.

By the choice ofe 1, H is a subgraph ofGs.

Therefore,dg, (u) + dg,(v) > v.

This is a contradiction, since and v are nonadjacent irf7,. Therefore, eacte; is an
edge of GGy, and similarly, eachf; is an edge ofG;.

Hence, G; = Gy. Thus ¢(G) is well defined. O

Theorem 2.4.7.A simple graph is hamiltonian if and only if its closure is hamian.

Proof. Apply Lemma 2.4.4 each time an edge is added in the formatfitreclosure. []

Corollary 2.4.8. Let G be a simple graph withy > 3. If ¢(G) is complete, therG is
hamiltonian.

Proof. Since complete graphs on at least three vertices are hamittoc(G) is complete
and hence it is hamiltonian.
Hence G is hamiltonian by Theorem 2.4.7. O]

Remark 2.4.9. Since ¢(G) is clearly complete whers > #, Dirac’s theorem is an
immediate corollary.

Theorem 2.4.10. (Chvatal) Let G be a simple graph with degree sequence
(dy,ds,...,d,) whered; <d, <...<d, and v > 3. Suppose that there is no value

1%
of m less than§ for which d,,, <m and d,_,, < v —m. Then G is hamiltonian.

Proof. Let G satisfy the hypothesis. We shall show that its closu{€’) is complete,
and the conclusion will then follow from Corollary 2.4.8.
We denote the degree of vertexin ¢(G) by d'(v).

Suppose that:(G) is not complete. Letu and v be two nonadjacent vertices in
c(G) with

d'(u) < d(v
and d'(u) + d'(v) is as large as possible.

(D)

~—
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Since no two nonadjacent vertices iiGG) can have degree sum or more, we have
d(u)+dw) <v ..(2)
Now denote the set of vertices ilr\{v} which are nonadjacentte in ¢(G) by S
and he set of vertices i\ {«} which are nonadjacentte in ¢(G) by T.
Clearly, |S|=v—1—-d'(v) and

VIi=v—1-d(u) ...(3)
Furthermore, by the choices af and v, each vertex inS has degree at most'(u)
and each vertex irf’ U v has degree at most'(v).

Seting d'(u) = m and using (2) and (3), we find thatG) has atleastn vertices
of degree at mostn and at leastv — m vertices of degree less than— m. Because
G is a spanning subgraph e{ ), the same is also true fof.

Therefore,d,,, <m and d,_,, < v —m.

But this contradicts the hypothesis, since by (1) andi(2y .

Therefore,c(G) is complete.

Hence, G is hamiltonian by Corollary 2.4.8. ]

Definition 2.4.11. A sequence of real numbel®,, p, . .., p,) is said to benajorisedby
another such sequende, ¢, . .., q,) if p; > ¢; for 1 <i <n. Agraph G is degree
majorised by a graph if v(G) = v(H) and the nondecreasing degree sequenag of
Is majorised by that ofH.

For instance, the 5-cycle is degree majorised/y; because the degree sequence
(2,2,2,2,2) of the 5-cycle is majorised by the degree seque(&e, 2, 3,3) of K.

Definition 2.4.12. Let G and H be two disjoint graphs. Then thgoin G Vv H is the
graph obtained from7 + H by joining each vertex of¢ to each vertex ofH.

The joinof G and H
Figure 2.4.5
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Notation
For 1 <m < %, let C,,, denote the graph,, vV (K}, + K,_2m).
It is illustrated in Figure2.4.6.

K¢ Km Kn—2n

Figure 2.4.6

Ci5 and Cy5 are illustrated in Figure2.4.7.

>

01’5 02,5
Figure 2.4.7

Theorem 2.4.13. (), ,, is nonhamiltonian.

Proof. Let S denote the set ofn vertices of degreer — 1 in C,y, .
Then we havew(C,,,, — S) =m+1>|S|.
By Theorem 2.4.2(C,, ,, is nonhamiltonian. O

Theorem 2.4.14.1f G is a nonhamiltonian simple graph with > 3, then G is degree
majorised by some”,,, ,,.

Proof. Let G be a nonhamiltonian simple graph with degree sequédegds, ..., d,),
whered; < d, < ... <d, and v > 3. Then by Chvatal Theorem, there exisis < ¢
such thatd,, <m and d,_,, < v —m. Therefore,(d;,ds, ...,d,) is majorised by the
sequence

(m,.... mv—m-—1,....v—m—-—1v—1,...,v—1)
with m terms equal tom, v — 2m terms equal tor — m — 1 and m terms equal to
v — 1 and this latter sequence is the degree sequencg,of. n

Corollary 2.4.15. If G is a simple graph withv > 3 and ¢ > (*') + 1, then G

is hamiltonian. Moreover, the only nonhamiltonian simptegh with v vertices and
(”51) +1 edges arecl,u and, for v = D, 0275.
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Proof. Let G be a nonhamiltonian simple graph with> 3. By Theorem 2.4.14(7 is
degree majorised by’,,, for some positive integern < 7. Therefore, by the funda-
mental theorem on graphs,
€(G) < €(Chny) ..(1)
=1[m?*+ (v —-2m)(v —m—1)+m(v —1)]
= () +1=4m=1)(m—=2) - (m-1)(r—2m - 1)

< () +1L e
The degree sequence 6f,,, is
(m,....myv—m-—1,....v—m—-1Lv—1,...,v—1) ..(3)

with m terms equal tom, v — 2m terms equal tor — m — 1 and m terms equal

to v — 1. Itis clear that the degree sequence (3) is unique, that idvemgraphs with
degree sequence (3) are isomorphic. Thus, equality candmiydin (1) if G has the
same degree sequence@s,, and equality can hold in (2) if eithem =2 and v =5

or m = 1. Hence,¢(G) can equal (”;1) + 1 onlyif G hasthe same degree sequence
as (', or Cy5. Thisimplies thatG = C,, or G = Cyp. ]

Definition 2.4.16. A graph G is hamilton-connectedf every two vertices of G are
connected by a hamilton path. An example of a hamilton-coteakgraph is as follows:

Figure 2.4.8

Definition 2.4.17. A graph G is hypo-hamiltonian ifG' is not hamiltonian butG — v
is hamiltonian for everyv € V. The Petersen graph is hypo-hamiltonian.

Solved Problems

Problem 1.If G is not 2-connected, prove th&t is nonhamiltonian.

Solution. If possible, supposé&- is hamiltonian, thenG contains a spanning cyclé'.
Hence every pair of vertices off are connected by two internally disjoint paths along
the cycle C. Further, sinceG is simple, v > 3. Therefore, by Theorem 2.2.3; is
2-connected, giving a contradiction. |
Exercise

1. If G is bipartite with bipartition (X,Y’), where |X| # |Y|, prove thatG is
nonhamiltonian.
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2. A mouse eats his way through3ax 3 cube of cheese by tunneling through all of
the 271 x 1 x 1 sub cubes. If he starts at one corner and always moves on to an
uneaten sub cube, can he finish at the center of the cube?

3. If G has an Hamilton path, then prove thatG — S) < |S| + 1.

4. Let G be a nontrivial simple graph with degree sequende, ds, ...d,) where
dy <dy <...<d, and v > 3. If there is no value ofm less thanv + 1/2 for
which d,, <m and d,_,,.1 < v —m, prove thatG has a Hamilton path.
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Chapter 3

MATCHINGS AND EDGE
COLOURINGS

3.1 Matchings

Definition 3.1.1. Le G be a graph. A subsed/ of FE is called amatchingin G if
its elements are links and no two are adjacenéin The two ends of an edge in/ are
said to be matched undel/. A matching M saturates a vertex, and v is said to
be M -unsaturatedif some edge ofM is incident with v; otherwise v is said to be
M -unsaturated

If each vertex of G is M -saturated, the matching/ is called goerfect matching

A matching M is called amaximum matching G has no matchingM’ with
|M'| > |M]|.

Clearly every perfect matching is a maximum matching.

Definition 3.1.2. Let M be a matching inG. An M -alternating pathin G is a path
whose edges are alternatively i\ A/ an M.

An M -augmenting patlis an M -alternating path whose origin and terminus avé-
unsaturated.

For example, the pathsvsviv7v6 In the graph shown in Figurg8.1.1, isan M -
alternating path.

73
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The set of dark edges of the graphs in Figaré.1 are a maximum matching and
a perfect matching.

U7
Ug u1
Vs, ()
V4 U3
A maximum matching A perfect matching

Figure 3.1.1

Theorem 3.1.3.A matching M in G is maximum if and only ifG contains no M -
augmenting path.

Proof. Necessity. Let M be a maximum matching inG. We have to prove thatz
contains noM -augmenting path. Suppose that contains anM -augmenting path; let
it be vovivavs ... vo, 1. Define M’ C E by

M = (M\{v1v9v304 . . . Vop 1V }) U {vgv1v203 . . . Vi1 }

Then M’ is a matching inG and |M'| = |M|+ 1. Thus M is nota maximum
matching, which is a contradiction. Therefor@, contains noM -augmenting path.
Sufficiency. Assume thatG contains no M -augmenting path. We have to prove that
M is a maximum matching. Suppose thaf is not a maximum matching. Led/’ be
a maximum matching irnG.

Then |M'| > | M| .. (1)

Let H = G[MAM'’] be the subgraph induced by/ AM’', where MAM’ is the
symmetric difference of\/ and M’.

G with M heavy andM’ broken G[MAM']
Figure 3.1.2

Each vertex of H has degree either 1 or 2 iH, since it can be incident with at most one
edge of M and one edge ofM/’. Thus each component off is either an even cycle
with edges alternately in\/ and M’, or else a path with edges alternately i and
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M.

By (1), H contains more edges o/’ than of M and therefore, some path
componentP” of H must start and end with edges 8f’. The origin and terminus of
P, being M’ -saturated inH, are M -unsaturated iiz. Thus P isan M -augmenting
path in G, which is a contradiction. Thereforéy/ is a maximum matching. O]

Definition 3.1.4. A k -factorof G is a k -regular spanning subgraph @f.

Agraph GG is said to bek -factorable if there are edge disjoiht-factors H,, H,, ..., H,
such thatG = H, U H, U ... U H,. For example,C, is 1 -factorable andK; is 2 -
factorable as shown in Figura.1.3.

o O

Figure 3.1.3

Matchings and Coverings in Bipartite Graphs
Assignment Problem

Suppose there are jobs 7, js, ..., 7, inafactory ands workers
wi,ws, ..., ws . AlSO suppose that each jofy can be performed by a certain number of
workers and that each workep; has been trained to do a certain number of jobs. Is it
possible to assign each of the jobs to a worker who can do that job so that no two jobs
are assigned to the same worker?

We convert this problem into a graph problem as follows: faripartite graph
with bipartition (J, W) where J = {j1,j2,...,jn} @and W = {wy,wy, ..., ws} and
make j; adjacent tow, if and only if worker w, can do the jobj;. Then our assign-
ment problem translate into the following graph problemit possible to find a matching
in G that saturates all the vertices of? A solution to this problem was given by Theo-
rem 3.1.6 due to Hall.

Definition 3.1.5. For any setS of vertices in G, we define theneighbour sebf S in
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G to be the set of all vertices adjacent to verticesSin This set is denoted by (.5).

Theorem 3.1.6. (Hall) Let G be a bipartite graph with bipartition(X,Y"). Then G
contains a matching that saturates every vertexiinif and only if
IN(S)| > |S|, forevery S C X.

Proof. Assume thatG contains a matchingl/ which saturates every vertex ix. Let
S be asubsetofX. Since the verticesirt' are matched undei/ with distinct vertices
in N(S), we clearly have|N(S)| > |5].

Conversely, letG be a a bipartite graph with bipartitioQX,Y) and |N(S)| >
|S], forall S C X. SupposeG contains no matching saturating all the verticesXn

Figure 3.1.4

Let M’ be a maximum matching. By our assumptiall, does not saturate all vertices
in X. Let v be an M’ -unsaturated vertex itk and let Z denote the set of all vertices
connected tou by M’ -alternating paths. Sincé/’ is a maximum matching, it follows
from Theorem 3.1.3 that: is the only M’ -unsaturated vertex ir¥.

SetS=7ZnNnX andT=272nNnY.
Clearly, the vertices inS\{u} are matched undep’ with the vertices inT".

Therefore,|T| = |S| — 1 .. (1)
N(S)CT.

Since every vertex inV(S) is connected tou by an M’ -alternating path,
N(S)=T ..(2

(1) and (2) imply that
IN(S)| = |S| — 1 < |S|, which is a contradiction.
Hence G contains a matching that saturates every verteXin O

Corollary 3.1.7. If G isa k -regular bipartite graph withk > 0, then G has a perfect
matching.
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Proof. Let G be a k -regular bipartite graph with bipartitiot.X,Y).
Since G is k -regular, k| X| = |E| = k|Y]|,
| X| =1Y], since k > 0.
Now let S be a subset ofX and denote byE; and E, the set of edges incident with
vertices S and N(S), respectively.
By definition of N(.5), £y C E> and therefore
KIN(S)| = |Bs| > |Ei| = KIS
Therefore, | N(S)| > |S].
Hence, by Hall's theorem(7 has a matchingM saturating every vertex inX.
Since | X| = |Y'|, M is a perfect matching. N

Definition 3.1.8. A coveringof a graph G is a subsetK’ of V' such that every edge of
G has atleastone iri{. A covering K is aminimimum covering G has no covering
K' with |K'| < |K]|.

A covering and a minimum covering of the whe®l; are given in Figure 3.1.5.

A covering A minimum covering
Figure 3.1.5

Remark 3.1.9.1f K is acovering ofG and M is a matching ofG, then K contains
at least one end of each of the edgeslih Thus, for any matchingl/ and any covering
K, |M| <|K]|. Indeed, if M’ is a maximum matching and&” is a minimum covering,
then [M'| < |K'|.

Lemma 3.1.10.Let M/ be a matching and< be a covering such thafi/| = |K|. Then
M is a maximum matching and&” is a minimum covering.

Proof. If M’ is a maximum matching and<’ is a minimum covering, thenqM| <
|M'| < |K7] < | K.

Since | M| = | K|, it follows that

|M| =|M'| and |K|=|K'|. O
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Theorem 3.1.11. (Konig'stheorem) In a bipartite graph, the number of edges in a
maximum matching is equal to the number of vertices in a mimiroovering.

Proof. Let G be a bipartite graph with bipartitioX,Y) and let A/’ be a maximum
matching of G.

Denote by U the set of M’ -unsaturated vertices itk and denote byZ the set
of all vertices connected by/’ -alternating paths to vertices df.
SetS=7ZnNnX andT=2nNY.

Then as in proof of Hall's theorem, we have that every vemeXiis M’ -saturated
and N(S) =T.

> N

=N@)
Figure 3.1.6
Define K = (X\S)UT.
Every end of G must have at least one of its ends /. For, otherwise, there
would be an edge with one end ifi and one end inY” \ 7', contradicting N(S) =T

Thus K is a covering of G and clearly|M'| = | K]|.
By Lemma 3.1.10,K is a minimum covering and hence the theorem. n

Solved Problems

Problem 1. Find the number of perfect matchings i, .

Solution. Let V(K5,) = {v1,vq,...,v2,}. The vertexv; can be saturated i2n — 1
ways by choosing any edge incident with v;.

Consider another vertex,, saturated by2n — 3 ways by choosing any edge, other
than e;, incident with v,. Continuing this process, the number of perfect matchings in
Ky, is

1.35.---.(2n — 1)
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1.2.3.-+- (2n — 1)(2n)

24.6.--- .2n
_ (2!
~onp!
. _(2n)!
Hence the number of perfect matchingsi,, is Sl (]
nn!

Problem 2. Prove that a tree5 has a perfect matching if and only #(G — v) = 1
forall v e V.

Solution. Assume thatG' has a perfect matching, say/.

Let u be the vertex matched undéw/ with v. Let G; be the component of7 — v
containing the vertexu. Then, sinceM is a perfect matching, every other component
of G — v are paired under’/ and so has even order. Sineeis paired underd/ with
v, it follows that G; has odd order.

Henceo(G —v) = 1.

Conversely, assume thalG —v) =1 forall v € V.

We prove by induction on/(G).

If v(G)=2, then G = K, and the result is proved.

From our assumption, no two end vertices have the same basa: be an end vertex
such that its base vertex has degree two.

Consider H = G — {u,v}. Then H is atree of order/(G) — 2.

Claim: o(H —w) =1 forall w eV —{u,v}

Let w € V —{u,v}. Let Hy, Hs,--- , H; be the components o/ — w. Let = be
another neighbour of: and =z € V(H;) for some j. Thenin G —w, v and v must
be confined to a single component namély. Since o(G — w) = 1, it follows that the
parity in the component off — w remains unchanged when we add the vertiaeand
v to H—w.

Henceo(H —w) =1 forall w € V — {u,v}.

By induction hypothesisH has a perfect matching, say/*. Then M*U{uv} consti-
tutes a perfect matching . ]

Exercises

1. Prove that every: -cube has a perfect matching.

2. Find the number of different perfect matchingsh,,, and K,.
3. Prove that a tree has at most one perfect matching.
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4. For eachk > 1, find an example ofk -regular simple graph that has no perfect
matching.

5. Two people play a game on a gragh alternately selecting different vertices
vg, U1, U2, . .. SUCh that the first player has a winning strategy if and only if
G has no perfect matching.

6. Prove thatk,,, and K,, are 1 -factorable.

Prove that Petersen graph is riotfactorable.

8. Prove that a bipartite graph has a perfect matching if agib |V (S5)| > |S]
forall S C V.

9. For k > 0, prove that everyk -regular graph isl -factorable.

10. For k > 0, prove that every2k -regular graph is2 -factorable.

~

3.2 Tutte’s Perfect Matching Theorem

Definition 3.2.1. A component of a graph isdd or evenaccording as it has an odd or
even number of vertices. We denote byG) the number of odd components 6f. For
the graph shown belowy(G) = 2.

Figure 3.2.1. The graphG

Tutte’s Perfect Matching Theorem

Theorem 3.2.2.A graph G has a perfect matching if and only (G — S) < |S|, for
all SCV.

Proof. Let G have a perfect matching/. Let S be a proper subset of/ and let
G1,Go, ..., G, bethe odd components aff — S.

Since (G; is odd, some vertexi;; of GG; must be matched undev/ with a vertex
vy of S. Therefore, since{vy,vs,...,v,} C S

o(G—95)=n={v,va,...,0.} <5
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odd components of G — S even components of G — S

R Q- OO

Figure 3.2.2

Conversely, leto(G — S) < |S], forall S C V. We have to prove thalG has a perfect
matching. Suppose that has no perfect matching. Thefd is a spanning subgraph of
a maximal graphG* having no perfect matching. Sing@ — S is a spanning subgraph
of G* — S, we have

o(G* = 8) <o(G-19)
and hence by hypothesis,

o(G*—8) <|S], forall S cC V(G .. (D)
In particular, settingS = ¢, we see thato(G*) = 0 and sov(G*) is even.

Denote by U the set of vertices of degree — 1 in G*. Since G* clearly has a
perfect matching ifU = V.
So we assume that/ # V.

We shall show thatz* — U is a disjoint union of complete graphs.

Suppose that some component@f—U is not complete. Then, in this component,
there are three vetices,y and z such thatzy € E(G*),yz € E(G*) and zz ¢
E(G*). Sincey ¢ U, thereis avertexw in G* —u such thatyw ¢ E(G*).

Figure 3.2.3

Since G* is a maximal graph containing no perfect matchin@; + ¢ has a perfect
matching for alle ¢ E(G*). Let M; and M, be perfect matchings iG* + xz and
G* + yw respectively and denote byl the subgraph ofG* U {zz,yw} induced by
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M;AM,. Since each vertex off has degree two/{ is a disjoint union of cycles. Also
all of these cycles are even, since the edged/&f alternate with edges of/,. We dis-
tinguish two cases:

T\o—
| Y
1 S~
o~ E t =0 w
T 4
\ \
\ \
o—o0
T
M, heavy

(@) M, broken (b)
Figure 3.2.4

Case 1.zz and yw are in different components off (Figure 3.2.4(a)) Then, ifyw is
inthe cycle C' of H, the edges ofM; in C, together with the edges af/, notin C,
constitute a perfect matching i&*, contradicting the definition of7*.

Case 2. zz and yw are in the same components &f. By symmetry ofz and z, we
may assume that the verticesy, w and z occur in that order o' (Figure 3.2.4(b)).
Then the edges of\/; in the sectionyw ...z of C, together with the edge/z and
the edges ofM, not in the sectionyw ...z of C, constitute a perfect matching i,
contradicting the definition of7*.

Since both the cases lead to contradictions, it follows tat— U is indeed a
disjoint union of complete graphs.

Now, by (1), o(G* — U) < |U|. Thus at most|U| of the components of7* — u
are odd. ButG* clearly has a perfect matching: one vertex in each odd coprgauf
G* — U is matched with a vertex ot/; the remaining vertices i/ and in components
of G* — u, are then matched as shown in Figwe.5 .



3.2. TUTTE'S PERFECT MATCHING THEOREM 83

odd components of G* — even components of G* — U

Figure 3.2.5

Since G* was assumed to have no perfect matching, we have obtainet¢ired con-
tradiction.
Thus G does indeed have a perfect matching. O

Corollary 3.2.3. Every 3 -regular graph without cut edges has a perfect matching.
Proof. Let G be a 3 -regular graph without cut edges and &t be a proper subset of

V. Denote by Gy, G, ... G, the odd components off — S and let m; be the number
of edges with one end iiz; and one endS; 1 < i <n. Since G is 3 -regular,

> dv)=3v(G;) for 1<i<mn...... (1)
’UGU(GZ')
and > d(v) =3|S|...... (2)
ves
By (1), m;= > d(v)—2¢(G;) isodd. Now,m; # 1, since G has no cut edges.
vev(Gy)
Therefore,m; > 3, for 1 <i<n...... (3)

It follows from (2) and (3) that

w(G—s)=n i:

<32 d(v) =19

vES
Hence by Tutte’s theorem(; has a perfect matching.

ooIH
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Remark 3.2.4. A 3-regular graph with cut edges need not have a perfect nmatckor
instance, the graph shown in Figure 3.2.6 has no perfecthingtdy Tutte’s theorem,
since o(G — v) = 3.

v

Figure 3.2.6

Exercises
1. Prove that a tree has a perfect matching if and only(@& — v) = 1 forall v € V.

3.3 Edge Colouring

Definition 3.3.1. Let G be aloopless graph. A -edge colouring? of G is an assign-
ment of k£ colours, sayl,2,...,k tothe edges ofG. The colouring? is proper if no
two adjacent edges have the same colour.

A k -edge colouringcan be thought of as a partitioQ\Z,, Es, ..., Ey;) of E,
where E; denotes the (possibly empty) subset of edges that haverceloA proper
k -edge colourings then ak -edge colouring(E}, Es, .. ., E)) inwhich each subset;
is a matching.

The graph given below has the propéredge colouring({a, g}, {b, e}, {c, f},{d}).

Figure 3.3.1

Definition 3.3.2. A graph G is said to bek -edge-colourabléf it has a properk -edge
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colouring. Clearly, every loopless graph is-edge-colourable and if7 is k& -edge-
colourable, thenGG is also [ -edge colourable for every > k.

Definition 3.3.3. Theedge chromatic numbex’(G), of aloopless graph is the minimum
number k£ for which G is k -edge-colourable.
G is k -edge-chromatic ify’(G) = k.

Note that the graph in Figurd.3.1 has no prope3 -edge colouring and hence the
graph is4 -edge-chromatic.

Clearly, in any proper colouring, the edges incident with ang vertex must be
assigned different colours. Therefore,

X > A. .. (D)

In the graph shown in Figur8.3.1 , we have x'(G) = 4 and A(G) = 3. Hence
we observe that the inequality in (1) may be strict. But in cafd@ipartite graphs,y’ =
A.
We say that colour: is said to beepresented at vertex if some edge incident withy
has coloursi.

Lemma 3.3.4.Let G be a connected graph that is not an odd cycle. Thgnhas a
2 -edge colouring in which both colours are represented at aastex of degree at least
two.

Proof. We may clearly assume that is nontrivial.
Case 1 G is eulerian.

If G isaneven cycle, the proper-edge colouring ofG has the required property.
Otherwise, G has a vertexv, of degree at least four. Letye v es...e.v9 be an euler
tour of GG, and set

Ey = {e;] iisodd} and Ey = {¢;| i is ever} ... (1)
Then the 2-edge colouring®, E,) of G has the required property, since each vertex
of G is an internal vertex ofvgevies . . . e.vp.

Case 2 G is not eulerian.

In this case, we construct a new graphi by adding a new vertex, and joining
it to each vertex of odd degree i&. Clearly G* is eulerian. Letvgejvies...evy be
an euler tour ofG* and setF; and E; asin (1).

It can be easily verified thatE, N E, E; N E) has the required property. n

Given a k -edge colouring? of G, we denote byc(v) the number of distinct
colours represented at Clearly,
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c(v) < d(v). ...(2)
Moreover, ¢ is a proper k -edge colouring if and only if equality holds in (2) for all
verticesv of G.

Definition 3.3.5. A k -edge colouring?’ is an improvement ort if

Z;/c’(v) > Z;/c(v), ...(3)
vE ve
where ¢(v) is the number of distinct colours representedain the colouring ¢'.

Definition 3.3.6. An optimal k -edge colourings one which cannot be improved.

Lemma 3.3.7.Let ¢ = (F4, Es, ..., Ex) be an optimalk -edge colouring. If there is a
vertex v in G and coloursi and j such that: is not represented at: and j is not
represented at least twice at, then the component of7[E; U E;] that containsu is
an odd cycle.

Proof. Let u be a vertex that satisfies the hypothesis of the lemma, dAndenote the
component of G[E; U Ej;| containing u. Suppose thatd is not an odd cycle. Then,
by Lemma 3.3.4,H has a 2-edge colouring in which both the colours are reptedext
each vertex of degree at least two . When we recolour the edges éf with colours

i and j in this way, we obtain a new edge colourify= (E1, E), ..., E}) of G. Let
d(v) denote the number of distinct colours atin the colouring?’. We have

d(u) =c(u) +1
since, now, bothi and ; are represented at, and also
d(v) > c(v), for v # u.

Therefore, > ¢(v) > > ¢(v), contradicting the choice of.
veV veV

Hence, H is indeed an odd cycle. n

Theorem 3.3.8.I1f G is bipartite, theny’ = A.

Proof. Since, y/ > A, itis enough to prove thag’ is not strictly greater than\.
Supposey’ > A. Let ¢ = (Ey, Es, ..., EA) be an optimal A -edge colouring ofG,
and let v be a vertex such that(u) < d(u). Clearly, v satisfies the hypothesis of
Lemma 3.3.7. Therefore(z contains an odd cycle and so is not bipartite, which is a
contradiction. Hencey’ = A. n
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Theorem 3.3.9. (Vizing'sTheorem) If G is simple, then eithery’ = A or \' =
A+ 1.

Proof. Let G be a simple graph. Since,’ > A, itis enough to prove thaf’ < A+1.
Supposey’ > A + 1.
Let ¢ = (F4, Es, ..., Eayq) be anoptimal(A-+1) -edge colouring ofGG, and let
u be a vertex such that(u) < d(u). Then there exist colourg, and i; such thati,
is not represented at and ¢; is represented at least twice at Let wv; have colour
i1 asin Figure3.3.2.

Figure 3.3.2

Since, d(v;) < A 4 1, some colour, sayi, is not represented at;. Now i, must
be represented at since otherwise, by recolouringv; with i, we would obtain an
improvement of . Thus, some edgew, has colouri,. Again, sinced(vy) < A + 1,
some colouris is not represented at, and i3 must be represented at since oth-
erwise, by recolouringuv, with i,, and uv, with 73, we would obtain an improved
(A + 1) -edge colouring. Continuing this procedure, we construgcuenceuv;, vs, . . .
of vertices and a sequencg, i,, . .. of colours such that

(¢) wv; has colouri; and

(ii) 141 is not represented at;.
Since the degree of, is finite, there exists a smallest integérsuch that, for some
k<l,

(9)ip = ik
The situation is depicted in Figura.3.2.
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Figure 3.3.3

We now recolourG as follows. Forl < j < k — 1, recolour uv; with colour i;,,
yielding a new (A + 1) -edge colouring?’ = (E1, Es, ..., Ey ;) (Figure 3.3.3).
Clearly,

d(v) > c(v) forall veV.
Hence, ¢ is also an optimal(A + 1) -edge colouring of G. By Lemma 3.3.7, the
componentH’ of G[E; U E] | that containsu is an odd cycle.
Now, in addition, recolouruv,; with colour 7;,,, for £ < j <1 —1 and uy; with

colour i, to obtain a(A + 1) -edge colouring!” = (EY,Ey, ..., Ex, ) (see Figure
3.3.4).

Figure 3.3.4

As above ¢’(v) > ¢(v) forall v € V' and the component!” of G[E] U E}] that
containsu is an odd cycle. But sincey,, has degree two ind’, v, clearly has degree
one in H”. This contradiction establishes the theorem. O
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Remark 3.3.10. Vizing proved a more general theorem than that given aboweilmat is
valid for all graphs without loops. The maximum number of @slgining two vertices in
G is called the multiplicity of G denoted byu(g).

Vizing’s General Theorem: If G is a loopless graph, thetx < v/ < A + p.

This theorem is best possible in the sense that, for anyhere exists a grapli such
that v = A + u. For example, in the graplé given in Figure3.3.5, A = 2u and
since any two edges are adjaceft,= ¢ = 3u.

Figure 3.3.5

Definition 3.3.11. A graph G is calleduniquely & -edge colourablef any two proper
k -edge colourings ofG induce the same partition oA'. For example, the graph given
below is uniquely2 -edge colourable.

Figure 3.3.6

Exercises

1. If G is a nonempty regular simple graph with odd number of vestipeove that
X =A+1.

2. If G isasimple graph withv =2n + 1 and € > nA, prove thaty’ = A 4 1.

3. If G is obtained from a simple regular graph with even number dfces by sub-
dividing one edge, prove that’ = A + 1.

4. If G is obtained from a simple regular graph with odd number ofiees by delet-
ing fewer than edges, prove thaf’ = A + 1.

5. Prove that every uniquelg -edge colourable3 -regular graph is hamiltonian.



90

CHAPTER 3. MATCHINGS AND EDGE COLOURINGS



Chapter 4

INDEPENDENT SETS AND CLIQUES

4.1 Independent Sets

Definition 4.1.1. A subset.S of V is called arindependent seif G if no two vertices
of S are adjacent inG. An independent set imiaximumf G has no independent set
S" with |S"| > |S].

In the graph given in Figure 4.1.1{u,z} is an independent set of, while
{u,w,y} is a maximum independent set ¢f.

Figure 4.1.1

Definition 4.1.2. The number of vertices in a maximum independent set-ofs called
theindependence numbef G and is denoted byy(G). Similarly, the number of ver-
tices in a minimum covering of7 is called thecovering numbeof G and is denoted

by B(G).
Theorem 4.1.3.A set S C V is an independent set off if and only if V\S is a

91
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covering of GG.

Proof. The setS is an independent set af
< no edge ofG has both ends in5
< each edge has at least one endiS
< V\S is a covering ofG O

Corollary 4.1.4. a+ (3 =v.
Proof. Let S be a maximum independent set 6f and let X' be a minimum covering

of G. Then, by Theorem 4.1.3,V\ K is an independent set and\S is a covering.
Therefore,

v—p=|V\K| <« .. (D)
and v—a=|V\S|<g ..(2)
From (1) and (2),a + 3 = v. [

Definition 4.1.5. The edge analogu®f an independent set is a set of links no two of
which are adjacent, that is a matching. The edge analoguemfaing is called aedge
covering An edge covering@f G is a subsetl, of E such that each vertex aff is an
end of some edge irl..

Matchings and edge coverings are related to one anothematysas are indepen-
dent sets and coverings; the complement of a matching nddxtram edge covering, nor
is the complement of an edge covering necessarily a matchiogvever, it so happens
that the parametera’ and (' are related precisely the same manner ascarand 5.

Theorem 4.1.6. (Gallai) If 6 > 0, then o/ + ' = v.

Proof. Let M be a maximum matching iz and let U be the set of M -unsaturated
vertices. Sinced > 0 and M is maximum, there exists a séi’ of |U| edges, one
incident with each vertex ir/. Clearly, M U E’ is an edge covering of7, and so
< |MUE
=o + (v —2d)

=v—ao

Now, let L be a minimum edge covering af, set H = G[L] and let M be a maxi-
mum matching inH. Let U denote the set of\/ -unsaturated vertices ifi. Since M
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is maximum, H[U] has no links and therefore,
L] = |M] = |L M|

> |U]
=v—2|M|
Because,H is a subgraph ofz, M is a matchinginG and so
o/ + 0> M| +|L] > v @)
From (1) and (2),a/ + 3 = v. O

Theorem 4.1.7.In a bipartite graph G with 6 > 0, the number of vertices in a maxi-
mum independent set is equal to the number of edges in a nmmedge covering.

Proof. Let G be a bipartite graph withy > 0.
Then a + 3 =o' + (3 by Theorem 4.1.6 and Corollary 4.1.4
Since G is bipartite, it follows from Theorem 3.1.1%/ = S.
Therefore,a = ['. O

Exercises

1. Show thatG is bipartite if and only if o( H) > “(,f) for every subgraphH of G.

2. Show thatG is bipartite if and only if «(H) = 5'(H) for every subgraphH of
G suchthatd(H) > 0.

3. Agraphisa -critical if (G —e) > a(G) forall e € E. Show that a connected
« -critical graph has no cut vertices.

4. A graphis g -critical if 5(G —e) < B(G) forall e € E. Show that a connected
[ -critical graph has no cut vertices.

4.2 Ramsey Number

Definition 4.2.1. A clique of a simple graphGG is a subsetS of V' such thatG[S] is
complete.

For the graphG in Figure 4.1.3,5, = {a, b, ¢} is aclique since it inducess,
but Sy = {a, b, ¢, d} is not a clique since its induced subgraph is #6t. Some other
cliques areS; = {a, b, ¢, e} and Sy ={aq, e, f}.
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Figure 4.1.3 The graphG

Remark 4.2.2.Clearly, S isaclique of G ifand only if S is anindependent set @
and so the two concepts are complementary.

Definition 4.2.3. Given any positive integerg and [, there exists a smallest integer
r(k,l) such that every graph on(k,[) vertices contain either a clique @f vertices or
an independent set df vertices. The number(k,[) is known as thd&kamsey number

Remark 4.2.4. r(1,1) =r(k,1) =1 and r(2,k) = r(k,2) = k

Theorem 4.2.5.For any two integersk > 2 and [ > 2,

r(k,l) <r(k,l—1)+rk—1,0).

Furthermore, if bothr(k,l — 1) and r(k — 1,1) are both even, then strict inequality
holds.

Proof. Let G be a graph onv(k,l — 1)+ r(k —1,1) verticesand letv € V.
We distinguish two cases:

(i) v isnonadjacentto a sef of atleastr(k,l — 1) vertices, or

(i) v is adjacentto a sef’ of at leastr(k — 1,1) vertices.
Clearly either case (i) or case (ii) must hold because the eumbvertices nonadjacent
to v together with the number of vertices adjacenttds equal tor(k,l — 1) + r(k —
L)+ 1.

In case (i), G[S] contains either a clique o vertices or an independent set of
[ — 1 vertices, and therefor&:[S U {v}] contains either a clique of vertices or an
independent set of vertices. Similarly, in case (ii)G[T"U{v}| contains either a clique
of k vertices or an independent set biverrtices. Since one of the cases (i)and (ii) must
hold, it follows that G contains either a clique ok vertices or an independent set bf
vertices.

Hence,r(k,l) < r(k,l —1)+r(k—1,1).
Now suppose that(k,l — 1) and r(k — 1,1) are both even, and let: be a graph on
r(k,l —1)+r(k—1,1) — 1 vertices. Then the order of' is odd and so not all vertices
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have odd degree. Hence some vertex G is of even degree. In particulat; cannot
be adjacent to precisely(k — 1,1) — 1 vertices. Consequently, either case (i) or case (ii)
must hold, it follows thatG contains either a clique of vertices or an independent set
of [ vertices.

Thus, r(k, ) <r(k,l—1)+r(k—1,1) — 1. O

In general, the determination of Ramsey number is a very diffimsolved prob-
lem. Lower bounds can be obtained from the construction itdisle graphs.

Problem 1. r(k,l) = r(l, k).
Solution. Let r(k,1) = m. Let G be any graph onn vertices. ThenG*® also hasm
vertices. Sincer(k,l) = m, G° has eitherK, or K; as an induced subgraph. Hence
G has eitherK; or K, as aninduced subgraph. Thus every grapmenvertices con-
tains K; or K, as aninduced subgraph.

Hence,r(l, k) < m.

e r(l, k) <r(kl) ... (1)
Interchanging! and k, we get

r(k,l) <r(l, k) ... (2)
From (1) and (2), we get(k, 1) = r(l, k). n

Problem 2. r(3,3) = 6.
Solution. From Theorem 4.2.5,
r(3,3) <1r(3,2) +r(2,3)
=3+ 3 by remark.
= 0.
Therefore, we get(3,3) < 6 .. (1)
But the cycle C; contains no clique of 3 vertices and no independent set oftRgs.

Figure 4.2.1

Thus, (3,3) > 6 ... (2)
From (1) and (2),7(3,3) = 6. m
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Problem 3. »(3,4) =9.
Solution. From Theorem 4.2.5,
r(3,4) < r(3,3) +r(2,4)

=6+1(2,4), by Problem 2.

= 6 + 4, by the above remark.

=10
Thus, 7(3,4) < 10 i.e r(3,4) <9 ... (1)
But the graph on 8 vertices shown in Figu#e2.2 has no clique of 3 vertices and no
independent set of 4 vertices.

Figure 4.2.2

Thus, r(3,4) > 9 ..(2
From (1) and (2),r(3,4) = 9. u

Problem 4. »(3,5) = 14.
Solution. From Theorem 4.2.5,
r(3,5) <r(3,4) +7(2,5)

=9+ 5, by the above remark

= 14. Thus, r(3,5) < 14 ..(1)
But the graph on 13 vertices shown in Figute.3 has no clique of 3 vertices and no
independent set of 5 vertices.
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Figure 4.2.3

Thus, r(3,5) > 14 ..(2)
From (1) and (2),r(3,5) = 14.

Problem 5. r(4,4)=18.
Solution. From Theorem 4.2.5,
r(4,4) <r(3,4) +r(4,3)
=9+9, by Problems 1 and 3.
= 18. Thus, r(4,4) < 18.
But the graph on 17 vertices shown in Figut€2.4 has no clique of 4 vertices and no
independent set of 4 vertices.
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o SN

"“ «"';";) N\ X

,t‘*/ ‘;‘3“‘(\‘&1«

KR 7\ N5
BN
Nl

\]
O

/
AW

N

\ S
9 8
Figure 4.2.4

Thus, r(4,4) > 18 ... (2)
From (1) and (2),r(4,4) = 18.
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The following table shows all Ramsey number@:, /) known to date.

k1|1 2 3 4 5 6 7
1 /1711 1 1 1 1
211 2 3 4 5 6 7
3|1 3 6 9 14 18 23
4 |1 4 9 18

Definition 4.2.6. A (k,[) -Ramsey graplis a graph onr(k,[) vertices that contains
neither a clique oft vertices nor an independent set bivertices.

By definition of r(k,[), such graphs existforalk > 2 and [ > 2. The graph in
Figures4.2.1 to 4.2.4 are Ramsey graphs.

The next theorem provides an upper bound 7ok, [).
Theorem 4.2.7. r(k,1) < (*/177).

Proof. We prove by induction ork + [ (> 2).

If k+1=2, thenk =1=1 andsincer(1,1) =1 = (J). If k+1= 3, thenone

of k and I, say k = 2 and hencer(2,1) = r(2,1) =1 = (}). If k+1 =4, then

r(1,3) =1= () andr(2,2) =2 = (). If k+1 =5, thenr(1,4) =1 = (),

r(2,3) =3 = () and r(2,2) = 2 = (%). Thus, we see that the theorem holds when
E+1<5.

Let m and n be positive integers. Assume that the theorem holds forositipe
integersk and ! suchthat5 < k+ 11 <m+n. Then by Theorem 4.2.5, we have

r(m,n) <r(m,n—1)+r(m—1,n)

< (™) (™2?) by induction assumption.

m—2
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Therefore, the theorem holds for all values/ofand |. ]

In 1947, Erdos has given a lower bound fofk, {).
Theorem 4.2.8. r(k, k) > 25.

Proof. Since r(2,2) = 2, we may assume that > 3. Let G, denote the set of all
simple graphs with vertex sefv;, v, ...,v,} and G& denote those graphs i, that
have a clique ofk vertices. Clearly,
G| = 2(3) (1)
Since each subset of th@) possible edges;v; determines a graph ig,,. Sim-

ilarly, the number of graphs irg, having a particular set ok vertices as a clique is

2(3)=(3). Since there are(;‘) distinct & -element subsets ofvy, v, ..., v,}, we have
g5 < (1)26)-() ..(2)
From (1) and (2),
G o 2
< (Mo \2 —
AR ()2 < (3)

Suppose, now that < 25.

From (3), it follows that
gkl 2% 23 9
< = —<
Gnl = K '

Therefore, fewer than half of the graphs ¢, contain a clique ofk vertices. Also, be-

k
2

N =

causeg, = {G | G° € G, }, fewer than half of the graphs ig,, contain an independent
set of k£ vertices. Hence some graph @), contains neither a clique nor an independent

set of k vertices. Because this holds for amy< 22, we haver(k, k) > 25 ]

m
2

Corollary 4.2.9. If m = min{k,l}, thenr(k,1) > 2
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r(k,l) can be thought of as the smallest integersuch that every 2-edge colour-
ing (E1, F2) of K, contains either a complete subgraph knvertices, all of whose
edges are in colour 1 or a complete subgraphl/owertices, all of whose edges are in
colour 2. Expressed in this form, the Ramsey number have aatateneralisation. We
define r(ky, ko, ..., k,,) to be the smallest integer such that every-edge colouring
(B, Es, ..., E,) of K, contains for some, a complete subgraph o&’; vertices, all
of whose edges are in colour

The following theorem and corollary generalise Ramsey #@oand the upper
bound theorem.

Theorem 4.2.10. T’(k?l,kig,. . ,km) < T(lﬁ — 1, ko, .. ,I{?m) + 7’(]{31,]62 —1,.. ,km) +
+r(/{;1,k2,,km—1)—m+2

(k1 + ko4 ...+ kp)!
Eilko! .. ky!

Corollary 4.2.11. r(ky+ 1, ko +1,...,k, +1) <

Exercises

1.1f G and H are two simple graphs, prove tha{ G[H]) < o(G)a(H).

2. Prove thatr(kl + 1,kl+1)— 1> (r(k+1,k+1)—1) x (r(l+ 1,1 +1) = 1).

3. Prove thatr(2" + 1,2 +1) > 5"+ 1 forall n > 0.

4. Prove that the join of a 3-cycle and a 5-cycle containg©ip but that every
2-edge colouring yields a monochromatic triangle.

4.3 Turan’'s Theorem

In this section, we prove a well-known theorem due to Tur&@# (), which deter-
mines the maximum number of edges that a simple graph arrtices and not contain-
ing a clique of sizem+1 can have. Turan’s theorem has become the basis of a significan
branch theory known as extremal graph theory. We deriveihfthe following theorem
of Erdos (1970).

Theorem 4.3.1. (Erdos) If a simple graphG contains no K,,,;1, then G is degree
majorised by some complete -partite graph H. Moreover, if G has the same degree
sequence ad{, then G = H.

Proof. By induction onm. The theorem is trivial form = 1. Assume that it holds for
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all m < n andletG be a simple graph which contains ¢, ;. Choose a vertex, of
degreeA in G and setG; = G[N(u)]. Since G contains noK,;, G; contains no
K,, and therefore, by induction hypothesi&;; is degree majorised by some complete
(n — 1) -partite graph H.
Now, setV; = N(u) and V, = V\V; and denote byG, the graph whose vertex
setis V5, and whose edge set is empty. Consider the Ginv G, of G; and G,. Since
Ng(v) € Ngyva,(v) forall ve V... (1)
Since each vertex of; has degree) in GV G,, G is degree majorised by, Vv Gs.
Therefore,G is also degree majorised by the completepartite graphH = H; V Gs.

W
Another diagram ofG
with G; = G[N(u)] indicated

H, G1V Go(5,5,5,5,5,5,5,5)H :5Hl V G2{55, 5,5,5, 55,5, 6,6)
Figure 4.3.1

Suppose now that; has the same degree sequencedasthen G has the same degree
sequence ass; VG, and hence equality must hold in (1). Thus,Gh every vertex ofV;
must be joined to every vertex df;. It follows that G = G,V G,. Since G = GV Gs
has the same degree sequencéias: H,V GGy, the graphsGG; and H; must have same
degree sequence and therefore, by induction hypothesisnthist be isomorphic.

Thus, G 2 H. [

Definition 4.3.2. A k -partite graphis one whose vertex set can be partitioned ifto
subsets so that no edge has both ends in any one subset. Aeterhppartite graph is
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one that is simple and in which each vertex is joined to everyex that is not in the same
subset. The complete: -partite graph onn vertices is one in which each part has either
[%] or {~} vertices and is denoted b, ,,. Thatis, 7T, ,, is the completem -partite

graph onn vertices in which all parts are as equal in size as possible graph H
shown in Figure 4.3.1 g5 5.

Theorem 4.3.3. (Turan) If G is asimple graph and contains nf,, 1, then ¢(G) <
€(Tyn,). Moreover, e(G) = €(T,,,,) onlyif G=1T,,,.

Proof. Let G be a simple graph that contains 116,, ;. Therefore, by Theore®?, G
is degree majorised by some complete-partite graphH.
Obviously, ¢(G) < €(H) ...(1)
But e(H) < €(T},,) ..(2)
From (1) and (2),c(G) < €(T,..), proving the first part.
Supposee(G) = €(T,,.,,), then equality must hold in (1) and (2). SineéG) =
¢(H) and G is degree majorised by/, G must have the same degree sequencé&/as
Therefore, by Theorem 4.3.17 = H.
Also, sincee(H) = €(T,,,,), itfollows that H = T,,, .
We conclude thatz = T, .. O

Solved Problems

Problem 1. Prove that in any set of six people, there will always be eitdighree who
are mutually acquainted or three who are mutually strangers

Solution. Consider a graphG' on six vertices in which the vertices represent the 6 peo-
ple and two vertices are adjacent if the corresponding perace acquainted. Then it is
enough to prove thaty has three vertices which are adjacent to each other or hees thr
vertices which are not adjacent to each other. In other wavddave to prove tha: or

G contains a triangle.

Let v be a vertex of G. Since G contains 5 vertices other than, it must be
either adjacent to three vertices @ or nonadjacent to three vertices 6. Hence, v
must be adjacent to three vertices@h or G°. Without loss of generality, let us assume
that v is adjacent to three vertices i&. If two of these vertices are adjacent, théh
contains a triangle. If not, then those three vertices fartigangle in G¢.

Hence G or G° contains a triangle.
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Exercises

1. In a group of nine people, one person knows two of the others people knows
four others, four each knows five others and the remaininge@at know six others.
Show that there are three people who know one another.

2. A certain bridge has a special rule to the effect that foemtoers may play together
only if no two of them have previously partnered one anotAéone meeting four-
teen members, each of whom has previously partnered fivespttuen up. Three
games are played and then proceedings come to a halt beddhsectub rule. Just
as the members are preparing to leave, a new member, unkmoamytof them
arrives. Show that at least one more game can now be played.

3. If G issimple, ande > ”{, prove thatG contains a triangle.

4.4 \ertex Colourings

In the previous chapter, we have studied edge colouring ajflgs. We now turn
our attention to the analogous concept, namely vertex ciolgu

Definition 4.4.1. A k -vertex colouringof G is an assignment ok colours1,2,...,k
to the vertices ofG. The colouring is said to be proper if no two distinct adjacemtices
have the same colour. Thus a propervertex colouring of a loopless grapty is a
partition of V' into k£ independent (possibly empty) set¥;, Vs, ..., Vi). G is k-
vertex colourable ifG has a properk -vertex colouring.

Terminology.For convenience, we shall abbreviate "proper vertex colagtias
simply a "colouring” and "proper k -vertex colouring” as simply a %k -colouring” and
" k -vertex colourable” as "k -colourable”.

Remark 4.4.2.(i) G is k -colourable if and only if its underlying graph ¥ -colourable.
Hence,in discussing colourings, we shall restrict ouselves to sipte graphs.

(i) G is 1 -colourable if and only if it is empty.

(i) G is 2 -colourable if and only if it is bipartite.

Definition 4.4.3. The chromatic numbery(G) of a graph G is the minimum & for
which G is k -colourable. If x(G) = k, G is said to bek -chromatic. A 3 -chromatic
graph is shown in Figuret.4.1.
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3-chromatic graph
Figure 4.4.1

Definition 4.4.4. A graph G iscritical if y(H) < x(G) for every proper subgrapli/
of G. A k -critical graph is one that ig -chromatic and critical. A4 -critical graph is
shown in Figure4.4.1.

Grotzsch graph - a 4-critical graph
Figure 4.4.2.

Remark 4.4.5. (i) Every k -chromatic graph has & -critical subgraph.
(i) Every critical graph is connected.

Theorem 4.4.6.1f GG is k -critical, then § > k — 1.

Proof. We prove by the method of contradiction.
If possible, letG' be a k -critical graph withd < & — 1. Let v be a vertex of degreé
in G.

Since GG is k -critical, G — v is (k — 1) -colourable. Let(Vy, V5, ..., Vi_1) be
a (k —1) -colouring of G — .

By definition, v is adjacentinG to § < k—1 vertices and therefore; must be
adjacent inG to every vertex of somé/;. But then, (Vi,V,,...,V; U{v}, ..., Vi)
isa (k — 1) -colouring of G, a contradiction toG' is k -critical.

Thus, § > k — 1. O

Corollary 4.4.7. Every k -chromatic graph has at least vertices of degree at least
k—1.



4.4. VERTEX COLOURINGS 105

Proof. Let G be a k -chromatic graph and lef{ be a k -critical subgraph ofGG. By
Theorem 4.4.6, each vertex df has degree atleagt— 1 in H and hence, also irt.
Being a k£ -chromatic graph(G has at least: vertices of degree at leagt— 1. O

Corollary 4.4.8. For any graph G, x < A + 1.

Proof. Supposey > A + 2. Then, by Corollary 4.4.7,G has at leasty vertices of
degree at leasfy — 1 > A + 1, which is impossible. ]

Definition 4.4.9. Let S be a vertex cut of a connected graph and let the components
of G—S have vertexsetd), Vs, ..., V,. Then the subgrapltz; = G[V;US] are called
the S -componentsf G. For S = {u,v}, the S -components are given in Figure 4.4.3.
We say that the colourings:,, G, ..., G, agree on S if, for every v € S, vertex v

Is assigned the same colour in each of the colourings.

voow 1@
G {u,v} -componenets of+

Figure 4.4.3

Theorem 4.4.10.In a critical graph, no vertex cut is a clique.

Proof. By contradiction. LetG be a k -critical graph and suppose thé&t has a vertex
cut S thatis aclique. Denote th& -components ofG by Gy, G, ..., G,. SinceG is
k -critical, eachG; is (k— 1) colourable. Furthermore, sing@ is a clique, the vertices
in .S must receive distinct colours in anyt: — 1) -colouring of G;. It follows that there

are (k — 1) -colourings of Gy, Gs,...,G, which agree onS. But these colourings
together yield a(k — 1) -colouring of GG, a contradiction.
Hence, in a critical graph, no vertex cut is a clique. n

Corollary 4.4.11. Every critical graph is a block.

Proof. If v is a cut vertex, then{v} is a vertex cut, which is also, trivially a clique. It
follows from Theorem4.4.10 that no critical graph has a @rntex; equivalently, every
critical graph is a block. n
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Definition 4.4.12. If a critical graph G’ has a 2-vertex cu{u, v}, then v and v cannot
be adjacent. We say that fu, v} -componentG; of G is of type lifevery (k —1) -
colouring of GG; assigns the same colour to and v, and oftype 2if every (k — 1) -
colouring of GG; assigns different colours ta and v.

u u u
v v v
A graph G Type 1 Type 2
Figure 4.4.4

Theorem 4.4.13.Let G be a k -critical graph with a 2 -vertex cut{u,v}. Then

() G =G, UG, where G, isa {u,v} -component ofG of typei (i = 1,2), and

(ii) both G + uv and G,.uv are k -critical graphs (whereG,.uv denotes the graph
obtained fromG, by identifyingu and v ).

Proof. (i) Since G is critical, each{u, v} -component ofG is (k—1) -colourable. Now
there cannot existk — 1) -colourings of these{u, v} -components all of which agree on
{u,v}, since such colourings would together yield/a—1) -colouring of G. Therefore,
there are two{u, v} -componentsG; and G» such that no(k — 1) -colouring of G
agrees with any(k — 1) -colouring of G,. Clearly, one, sayG;, must be of type 1
and the other,GG5, of type 2. SinceG; and G, are of different types, the subgraph
G1 UG, of G isnot (k— 1) -colourable. Therefore, because is critical, we must
have G = G, U Gs.

(i) Set H; = G1 + wv. Since G, is of type 1, H; is k -chromatic. We shall
prove that H, is critical by showing that, for every edge of H;, H; —e is (k—1) -
colourable. This is clearly so it = uv, since thenH; — e = G;. Let e be some other
edge of H;. Inany (k — 1) -colouring of G — e, the verticesu and v must receive
different colours, sinc&z, is a subgraph ofG — e. The restriction of such a colouring
to the vertices ofGG; is a (k — 1) -colouring of H; — e. Thus G + wv is k -critical.
An analogous argument shows th@s.uv is k -critical. O

Corollary 4.4.14. Let G be a k -critical graph with a 2-vertex cuf{u,v}. Then
d(u) +d(v) > 3k — 5.

Proof. Let G; be a {u,v} -component of type 1 ands, be a {u,v} -component of
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type 2. SetH;, = G; +wv and Hy = Gs.uv. By Theorem 4.4.13 and the fact that
0>k —1, we have
dy,(u) > k—1 and dg,(v) > k—1, sinced > k — 1.
Therefore,dy, (u) + dp, (v) > 2k — 2, and
d,(w) > k —1,

where, w is the new vertex obtained by identifying and v.
It follows that

de, (u) +dg,(v) > 2k —2—2

= dg, (u) +dg, (’U) >2k—4...... (1) and
dGQ (U) + dGQ (U) > dHQ (w)
= ey () +da () S k=1 ... (2)

Inequalities in (1) and (2) yields
do(u) +dg(v) >2k—4+k—1
> 3k — 5. [

Definition 4.4.15. A graph G is uniquely k -colourable if any twok -colourings of G
induce the same partition of. The cycle C} is uniquely 2-colourable as shown in Fig-
ure 4.4.5.

Figure 4.4.5

Solved Problems
Problem 1.Prove that for any grapldZ, the following are equivalent

(@) G is 2-colourable.

(b) G is bipatrtite.

(c) Every cycle of G has even length.
Solution. (a) = (b): Assume thatG is 2-colourable. Thenl/(G) can be partitioned
into two independent sets (colour classes). Hence they &dipartition of G.

(b) = (c): Assume thatGG is bipartite. ThenG contains no odd cycle. That is,
every cycle of G has even length.
(c)= (a): Assume that every cycle aff has even length. They is bipartite. Hence
V(G) can be partitioned into two setg; and V, such that both are independent sets
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in G. Then the vertices ofl, can be coloured with one colour and the vertices\gf
can be coloured with another colour. Thud/, V%) is a 2-colouring of G. Hence, G
is 2-colourable. ]

Problem 2.1f G is uniquely & -colourable, prove thad(G) > k — 1.

Solution. Let v be any vertex ofG. In any k -colouring of G, v must be adjacent
with at least one vertex of every colour, different from tmeaohat is assigned to. Oth-
erwise, by re-colouringy with a colour which none of its neighbour is having, we get a
different & -colouring. Henced(v) > k — 1 and hencej(G) > k — 1. ]

Problem 31If G is uniquely £ -colourable, prove that in any: -colouring of G, the
subgraph induced by the union of any two colour classes isexied.

Solution. Let (C,Cy,...,Cy) be any k -colouring of G. Consider two classes, say
C, and (5. SupposeC; U Cs is disconnected. Lef! be a component of the subgraph
induced by C; UC,. Obviously, no vertex ofH is adjacentto a vertex oV (G) —V (H)
that is coloured eithelC; or C,. Hence, interchanging the colour of the verticeshh
and retaining the original colours for all other verticeg, get a differentt -colouring of
G, which is a contradiction ta& is uniquely £ -colourable.

Hence C; U (5 is connected. ]

Problem 4 Prove that every uniquely: -colourable graph igk — 1) -connected.
Solution. Let G be a uniquely k -colourable graph. Supposé&' is not (kK — 1) -
connected. Then there exists a setof at most £ — 2 vertices such thatG; — S is
either trivial or disconnected. I& — S is trivial, then G has at mostn — 1 vertices so
that G is not uniquely k& -colourable. HenceZ — S has at least two components and
there are at least two colouks and ¢, that are assigned to any vertices 8f

If every vertex in a component aff—S has colour different from:; and ¢, then
by assigning colourc; to a vertex of this component, we get a differéntcolouring of
. Otherwise, by interchanging the colours and ¢, in a component ofG — S, a
different k -colouring of G is obtained. In any case&; is not uniquely & -colourable,
which is a contradiction. Hencé& is (k — 1) -connected. ]

Problem 5 Let G be a uniquelyk -colourable graph. Prove that for any, where
2 < m < k, the subgraph induced by the union of any colour classes igm — 1) -
connected in anyk -colouring of G.

Solution. Let H be the subgraph induced by the union of amy colour classes. We
claimthat H is uniquely m -colourable. Supposé/ has differentm -colourings. Then
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these m -colourings of H induce differentk -colourings in G, which is a contradic-
tion. Thus A is uniquely m -colourable. Hence by Problem 4/ (m — 1) -connected.

Exercises
2

1. If G issimple, prove thaty > o

2. If any two odd cycles ofG have a vertex in common, prove thgt< 5.

3. Show thaty(G) < 1+ max 6(H), where the maximum is taken over all induced
subgraphsH of G.

4. Show that the onlyl -critical graph is K; and the only2 -critical graph is K.

. Show that the only3 -critical graphs are the odd cycles.

6. Show that no vertex cut of & -critical graph induces a uniquelgk — 1) -
colourable subgraph.

7. Show that ifu and v are vertices of a critical graph, theN (u) is not a subset
of N(v).

8. Prove that nok -critical graph has exactly: + 1 vertices.(Hint: use Exer.7.)

9. Show thaty (G V G3) = x(G1) + x(Ga).

10. Prove thatGG; v G, is critical if and only if both G; and G, are critical.

11. Forn =4 and all n > 6, construct a 4-critical graph on vertices.

(62

4.5 Brooks’ Theorem and Hajos’ Conjecture

The following theorem due to Brooks (1941) shows that thezeaty two types of
graphs for whichy = A + 1.

Theorem 4.5.1.1f G is a connected simple graph and is neither an odd cycle nor a
complete graph, theny < A.

Proof. Let G be a connected simple graph and is neither an odd cycle namplete
graph. Letx(G) = k.
Since everyk - chromatic graph containg -critical subgraph, without loss of generality,
we may assume thafr is k -critical. By Corollary 4.4.11,G is a block. Sincel -
critical and 2 -critical graphs are complete argl-critical graphs are odd cycles, we have
k> 4.

If G has a connectivity 2, then there is a 2-vertex §utv} in G. Then
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2A > d(u) +d(v) >3k —-5=02k—1)+ (k—4) > 2k —1.
Since 2A iseven,y = k < A.

Now assume thatz is 3-connected. Sincé& is not complete, there exist vertices
u,v and w in G such thatuv,vw € £ and vw ¢ E. Setu = v, and w = v, and
let v3,vy,...,v, = v be any ordering of the vertices a@F — {u,w} such that eachy;
is adjacent to some; with j > 4. (This can be achieved by arranging the vertices of
G —{u,w} innonincreasing order of their distance from) We can now describe & -
colouring of G by assigning colour 1 ta; =« and v, = w; then successively colour
v3, U4, ...,v, = v, each with the first available colour in the lidgt 2,..., A. By the
construction of the sequenag, v, ..., v,, eachvertexv;, 1 <i < v —1, isadjacentto
some vertexv; with j > ¢ and therefore to at mosh — 1 verticesv; with j <. It
follows that, when its turn comes to be coloured, is adjacent to at most\ — 1 colours
and thus one of the colours, 2, ..., A will be available. Finally, sincev, is adjacent
to two vertices of colour 1 (namely; and v, ), it is adjacent to at mostA — 2 other
colours and can be assigned one of the colauik . . ., A. O

Definition 4.5.2. A subdivisionof a graphG is a graph that can be obtained frofh by
a sequence of edge subdivision. Figuré.1 shows the subdivision of{}.

A subdivision of K,
Figure 4.5.1

If G is k-chromatic, thenG contains a subdivision of<;. This is known as
Hajos’ conjectureNote that, a 4-cycle is a subdivision df;, but is not 3-chromatic.

For k=1 and k = 2, the validity of Hajos’ conjecture is obvious. It can also be
verified for £ = 3, because a 3-chromatic graph necessarily contains an otkl ayd
every odd cycle is a subdivision ak';. Dirac settled the case fak = 4.

Theorem 4.5.3.1f G is 4 -chromatic, thenG contains a subdivision of{,.

Proof. Let G be a 4-chromatic graph. Since eveky- chromatic graph containg -



4.5. BROOKS’ THEOREM AND HAJOS’ CONJECTURE 111

critical subgraph and if some subgraph 6f contains a subdivision of<,, then does

G, without loss of generality, we may assume tliatis & -critical. By Corollary 4.4.11,

G isablockwithd > 3 and sov > 4.

We proceed by induction ow. If v =4, then G is K, and the theorem holds obvi-
ously. Assume that the theorem holds for all graphs with feivan »n vertices and let

v(G) =n>4.

Suppose G is 2-connected and{u,v} is a 2-vertex cut ofG. By Theorem
4.4.13, G has two componentgy; and G,, where G; + uv is 4-critical. Since
v(Gy + uv) < v(G), we can apply the induction hypothesis and deduct that+ uv
contains a subdivision of(,. It follows that, if P isa (u,v) -pathin G5, then G;U P
contains a subdivision of<,. Since G; UG, C G, G contains a subdivision of{}.

SupposeG is 3-connected. Sincé > 3, G has acycleC of length at least four.
Let » and v be nonconsecutive vertices dil. Since G — {u,v} is connected, there
isapathP in G —{u,v} connecting the two components 6f — {u,v}. We assume
that the originxz and the terminug, are the only vertices of? on C. Similarly, there
isapath@ in G —{z,y}.

Figure 4.5.2

If P and () have no vertex in common, thed U P U (Q is a subdivision of K,.
Otherwise, letw be the first vertex ofP on @ and let P’ denote the(x, w) -section
of P. Then C'U P U (@ is a subdivision of K,. Hence in both cases’ contains a
subdivision of K. O

Hajos’ conjecture has not yet been settled in general. Tisexeelated conjecture
due to Hadwiger (1943): ifG is k -chromatic, thenG is ‘contractible’ to a subgraph
which contains K.
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4.6 Chromatic Polynomials

We denote the number of distinét-colourings of G by 74 (G); thus mx(G) > 0
if and only if G is k -colourable. Two colourings are said to be regarded asdisfi
some vertex is assigned different colours in the two cotmsi
If ¢(G) =0, then each vertex can be independently assigned any one &f thailable
colours. Therefore,(G) = k¥. If G is complete, then there arg choices for the
first vertex, k — 1 choices for the second; — 2 choices for the third, and so on. Thus,
in this case,m,(G) = k(k —1)(k—2)...(k—v+1).
A triangle has six distinct 3-colourings.

AVAVAVAVAYAN

Figure 4.6.1

Note that even though there is exactly one vertex of eachucatoeach colouring, we
still regard these six colourings as distinct.

Theorem 4.6.1.1f GG is simple, thenm,(G) = m(G — e) — m(G.e) for any edgee of
G.

Proof. Let « and v be the ends of. To eachk -colouring of G — e that assigns the
same colour tou and v, there corresponds & -colouring of G.e in which the vertex
of G.e formed by identifyingu and v is assigned the common colour af and v.
This correspondence is clearly a bijection. Therefarg(G.e) is precisely the number
of k -colourings of G — e in which v and v are assigned the same colour.

Also, since eachk -colouring of G — e that assigns different colour ta and v
is a k -colouring of G and converselyyr, (G) is the number ofk -colourings of G — e
in which « and v are assigned different colours. Hence it follows tha{G — ¢) =
(G) + m(G.e) O

Corollary 4.6.2. For any graph G, m(G) is a polynomial in% of degreev, with in-
teger coefficients, leading ter’ and constant term zero. Furthermore, the coefficients
of m,(G) alternate in sign.

Proof. By induction one. We may assume, without loss of generality tliatis simple.
If ¢ = 0 then m(G) = k¥, which trivially satisfies the conditions of the corollary.
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Suppose, now, that the corollary holds for all graphs witheiethan m edges and let7
be a graph withm edges, wheren > 1. Let ¢ be any edge ofz. Then bothG — e
and G.e have m — 1 edges and it follows from the induction hypothesis thatelere

nonnegative integers;, as, ...,a,_1 and by, bs,...,b,_o such that
@ y
Figure 4.6.2
v—1 ) )
(G —e) = > (—=1)""a;k" + k¥ and
i=1
v—2

e(Goe) = 3 (—1)7 " a4 k!
=1
By the above theorem,

Wk(G)

Wk(G — 6) — Wk(G.e)

v

(=1)""(a; + b))k — (ay_1 + 1)K + k.

@
I
—_

Thus, G too satisfies the conditions of the corollary. Hence theltésllows by induc-
tion hypothesis. n

Corollary 4.6.3. If G is simple, then the coefficient @' in m.(G) is —e.

Proof. We shall prove the result by induction an

If ¢ =0, then mx(G) = k. Hence the coefficient of”~! = (0 = —e.

Now assume the result for all graphs with less thamrdges. Lete be an edge ofG.
Then, by Theorem 4.6.17,(G) = 7(G — e) — m(G.e) . (1)

Since G—e hase—1 edges (less thaa edges), by induction hypothesis, the coefficient

of k71 in m(G —e) is —e.
Hence the coefficient of:” ! in 74(G) = —(e — 1) — 1, using (1)
= —E€. D
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We can refer to the functiom,(G) as thechromatic polynomiabf G. Chromatic
polynomial can be calculated in either of the two ways.

(i) by repeatedly applying the recursion,(G) = m(G—e) —m(G.e) and thereby
expressingr,(G) as a linear combination of chromatic polynomials of empspins, or

(i) by repeatedly applying the recursian,(G—e) = m(G)+7(G.e) and thereby
expressingr,(G) as alinear combination of chromatic polynomials of comptgtaphs.

Method (i) is more suited for graphs with few edges whereid<én be applied
more efficiently to graphs with many edges.

Solved Problems

Problem 1.1f G,,G,,...,G, are components ofs, prove thatzm(G)

= mp(G1)me(Ga) . .. (GL).

Solution. Number of ways of colouring=; with k& coloursism(G;). Since any choice
of k -colourings for GGy, Go, ..., G, can be combined to give & -colouring, we have
m(G) = m1(G)m(G2) ... m(Gy,). n

Problem 2A simple graphG on n vertices is atree if and only ifr, (G) = k(k—1)"".
Solution. Let G be a tree. We prove that,(G) = k(k — 1)"~! by induction onn.

If n =1, then the resultis trivial. So we assume that the result Holdall trees with at
most n — 1 vertices,n > 2.

Let G be atree omn vertices ande be a pendant edge a¥. By Theorem 4.6.1,
(G) = (G — e) — m(G.e). Now G — e is a forest with two components of order
(n —1) and 1. Hencem (G —€) = (k(k — 1)~ ')k, by Problem 1.

Since G.e is a forest with (n — 1) vertices, m,(G.e) = k(k — 1)"2
Thus, m,(G —e) = (k(k — D)"Yk — k(k — 1)"2

= k(k — 1)1
Conversely, assume thdt is a simple graph withr,(G) = k(k — 1) !

=k"—(n—DE" 4. 4 ()" k.

Hence, by Corollaries 4.6.2 and 4.6.38, has n vertices and(n — 1) edges. Further,
the last term,(—1)""'k ensures that7 is connected. Hence/ is a tree. m

Problem 3 Prove thatk* — 3k® + 3k* cannot be the chromatic polynomial of any graph.
Solution. Suppose that there exists a graghsuch thatr,(G) = k* — 3k* + 3k%. Then
the number of vertices ir; is 4 and the number of edges is 3 (by Problem 2).
Case 1.SupposeG is connected. Since =3 =p—1, G is atree.
Hence, by Problem 27,(G) = k(k — 1)®

= k* — 3K3 + 3k%* — k, which is a contradiction.
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Case 2.SupposeG is not connected.
Then G = K3 U K,
Therefore, 7 (G) = n(K3)n(K;)
=k(k—1)(k—2)k
= k* — 3K3 4 3k%, which is again a contradiction.
Hence the result is proved.

Remark 4.6.4. Chromatic polynomial of a graph does not fix the graph uniquepiyto
isomorphism. For examplek(k — 1) is the chromatic polynomial of both the noniso-
morphic graphsk; ;3 and P;.

Exercises
1. Calculate the chromatic polynomials of the following twajghs:

<> <>

2.1f G is acycle of lengthn, prove thatm,(G) = (k — 1)" + (—=1)"(k — 1).

3. Show thatr (G V K1) = kmi—1(G).

4.1f G is awheel withn spokes, then prove thaty,(G) = k(k —2)*+ (—1)"k(k—1).
(Hint: Use Exercises 1 and 2)

5.1f G is complete, prove that, (G U H)m, (G N H) = 7 (G)mp(H).

6. Prove that a grapld- is connected if and only if the coefficient &f in 7 (G)
IS not zero.

4.7 Girth and Chromatic Number

In any colouring of a graph, the vertices in clique must allassigned different
colours. Thus a graph with large clique neccessarily hagladtiromatic number.

Theorem 4.7.1.For any positive integelk, there exists ak -chromatic graph containing
no triangle.
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Proof. For £k = 1 and k£ = 2, the graphsK; and K, have the required property.
We proceed by induction oa. Suppose that we have already constructed a triangle-free
graph G, with chromatic numberk > 2. Let the vertices ofG, be vy, vs,...,v,.
Form a new graphz,,; from G, by addingn + 1 new verticesu,, us, ..., u,,v and
then, for 1 < i < n, join u; to the neighbours oy, and to v. For example, ifG, is
K, then G5 is the 5-cycle and&, the Grotzsch graph(see Figu#et.3 ).

The graph Gy, clearly has no triangles. For, sinde:y, us, ..., u,} is aninde-
pendent set inG41, no triangles can have more than omg and if w;vv,u; were a
triangle in Gy11, then w;v;v,u; would be atriangle inG,, contrary to assumption.

We now show thatGy,; is (k + 1) -chromatic. Note thatGy,, is certainly
(k+1) -colourable, since any -colouring of G, can be extended to g +1) -colouring
of Gy1 by colouring u; with the same colour as;, 1 < ¢ < n, and then assigning a
new colour tov. Therefore it remains to show thdt,,; is not k -colourable. If possi-
ble, consider ak -colouring of GG;,; in which, without loss of generalityy is assigned
colour k. Now recolour each vertex; of colour k& with the colour assigned ta;.

(1 /\ V2

V1 Vg
o O
Uy U2
(%1
Vs 1)
V4 U3

Figure 4.6.3. Mycielski’ construction

This results in a(k — 1) -colouring of k£ -chromatic graphG). Therefore, Gy, is
indeed (k + 1) -chromatic. Hence the theorem follows from the principlénafuction.
O
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By starting with 2-chromatic graphk,, the above construction yields, for all
k > 2, atriangle freek -chromatic graph of ordeB.2*~2 — 1.

Using the probablistyic method, Erdos(1961) has shown the¢n two integers
k> 2 and [ > 2, there is a graph with girthk and chromatic numbet.

Exercises

1. Let G3,Gy, ... be the graphs obtained frof¥; = K, using Mycielski’'s
construction, show that eacfi;, is k -critical.

2.If G issimple with v > 4 and e = 2v — 2 that contains no subdivision
of K.

3. For v > 4, find a simple graphG with ¢ = 2rv — 3 that contains no subdivision
of Kj.

4.1f G is a graph without loops and\ = 3, prove thaty < 4.

5.1f G is simple and has at most one vertex of degree less than grmee that
G contains a subdivision of{,.
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Chapter 5

COMBINATORICS

What is Combinatorics?

Combinatorics is a young field of mathematics, starting torhi@@ependent branch
only in the 20th century. However, combinatorial methodd @noblems have been
around ever since. Many combinatorial problems look eaiteirig or aesthetically pleas-
ing and indeed one can say that roots of combinatorics lieathnematical recreations and
games. Nonetheless, this field has grown to be of great impogtin todays world, not
only because of its use for other fields like physical scisnsecial sciences, biological
sciences, information theory and computer science.

Combinatorics is concerned with:

(i) Arrangements of elements in a set into patterns satigfgpecific rules, generally re-
ferred to as discrete structures. Here discrete (as opposashtinuous) typically also
means finite, although we will consider some infinite streesuas well.

(i) The existence, enumeration, analysis and optimipatibdiscrete structures.

(i) Interconnections, generalizations- and specidgimarelations between several dis-
crete structures.

Existence: We want to arrange elements in a set into patterns satistgrgin rules. Is
this possible? Under which conditions is it possible? Whatrecessary, what sufficient
conditions? How do we find such an arrangement?

Enumeration: Assume certain arrangements are possible. How many swaigaments
exist? Can we say there are at least this many, at most this oraxactly this many?
How do we generate all arrangements efficiently?

Classification: Assume there are many arrangements. Do some of these ananige
differ from others in a particular way? Is there a naturatipan of all arrangements into
specific classes?

119
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Meta-Structure: Do the arrangements even carry a natural underlying steictug.,
some ordering? When are two arrangements closer to eachastingore similar than
some other pair of arrangements? Are different classesrahgements in a particular
relation?

Optimization: Assume some arrangements differ from others accordingre soea-
surement. Can we find or characterize the arrangements wiimmuae or minimum
measure, i.e. the best or worst arrangements?

5.1 Permutations and Combinations

The words selection and arrangement will be used in the argsense. Thus, there
should be no ambiguity in the meanings of statements suctoaelect two representa-
tives from five candidates”, "there aré) possible outcomes when two representatives
are sekcted from five candidates”, “the books are arrangetieshelf”, and “there are
120 ways to arrange five different books on the shelf”. The worthibmation has the
same meaning as the word “selection”, and the word pernoutditas the same meaning
as the word “arrangement”.

Definition 5.1.1. An r-combinationof n objects is defined as an unordered selection of
r of these objects. Anr— permutationpermutation of. objects is defined as an ordered
arrangement of- of these objects.

For example, to form a committee ¢f0 senators from100 senators. It is an
unordered selection 020 senators from thel00 senators and is therefore2d combi-
nation of the100 senators. On the other hand, the outcome of a horse race vaawszl
as an ordered arrangement of thehorses in the race and is therefore-a permutation
of the ¢ horses.

We are interested here in enumerating the number of conidirsadr permutations
of a given set of objects. Let the notati@rn(n, ) denote the number of— combinations
of n distinct objects, and the notatioR(n,r) denote the number of -permutations of
n distinct objects.

Since there is just one way to selegt objects fromn objects, C'(n,n) = 1.
Since there are: ways to select one object out of objects,C'(n,1) = n.

For three objectsA, B and C, the selections of two objects ara B, AC, and
BC. Hence, C(3,2) = 3 and for three objectsd, B, and C, the arrangements of two
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objects areAB, BA, AC,CA, BC and C'B. Hence, P(3,2) = 6.

Rule of product: If one event can occur inn ways and another event can occur in
n ways, there aren x n ways in which these two events can occur.

Rule of sum: If one event can occur inn ways and another event can occur in
ways, there aren, m + n ways in which one of these two events can occur.

Problem 5.1.2. There are five Roman letters, b, ¢, d, and e¢ and three Greek letters
a, [/ and 7.

How many ways are there to select two letters, one from egudtabkt?

How many ways are there to select one letter, that is eitherdRan Greek?

Solutions (a) By rule of product, there aré x 3 = 15 ways to select two letters, one
from each alphabet.

(b) Since there are five ways to select a Roman letter and thage t@ select a Greek
letter, by rule of sum, there arg+ 3 = 8 ways to select one letter that is either a Roman
or a Greek letter.

Remark 5.1.3. Clearly, the occurrence of an event can mean either the selemt the
arrangement of a certain number of objects.

Problem 5.1.4. There are five books in Latin, seven books in Greek, and tekson
French. How many ways are there to choose just two books?

Solution (a) By rule of product,5x7 ways to choose a book in Latin and a book in Greek,
5 x 10 ways to choose a book in Latin and a book in French, @and10 ways to choose

a book in Greek. Hence by the rule of sum, and therefaxe7 + 5 x 10+ 7 x 10 = 155
ways to choose two books of different languages.

(b) There are22 x 21 =462 ways to choose two books from the twenty-two books.

Result 5.1.5.Using a combinatorial argument, prove that
P(n,r) = P(r,r) x C(n,r).

Proof. By the rule of product, one can make an ordered arrangementaff n distinct
objects by first selecting objects from then objects and then arranging theseobjects
in order. Hence,P(n,r) = P(r,r) x C(n,r). O
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Result 5.1.6.Using a combinatorial argument, prove that
C(n,r)=C(n—1,r=1)+C(n—1,r).

Proof. Suppose that one of the distinct objects is marked as a special object. The
number of ways to select objects from thesen objects is equal to the sum of the
number of ways to select r objects so that the special olgeadtvays included (there are
C(n—1,r —1) such ways] and the number of ways to select r objects so taaftbcial
object is always excluded [there afé(n — 1,7) such ways). Hence, by the rule of sum
Cn,r)=C(n—1,r—1)+C(n—1,r). O

Permutations

Let us now derive an expression fdt(n,r), the number of ways of arranging
of n distinct objects. Observe that arrangingof n objects into some order is the same
as puttingr of the n objects intor distinct (marked) positions. There are ways to
fill the first position (to choose one out of the objects),n — 1 ways to fill the second
position (to choose one out of the — 1 remaining objects),..., and —r + 1 ways to
fill the last position (to choose one out of the— » + 1 remaining objects).
Thus, according to the rule of product, we have

Pn,ry=n(n—1)...(n—7r+1)
Using the notation
nl=nn—-1)(n—-2)...3x2x1

for n >1

nn—1mn-2)...(n—r+1)(n—-r)...3x2x1
(n—r)...3x2x1

P(n,r) =

ol
(n—r)!

Result 5.1.7.Derive an expression foP(n,r), the number of ways of arranging of
n distinct objects.

Proof. Observe that arranging of n objects in some order is same as puttingf the

n objects intor distinct positions. There are ways to fill the first position (to choose
one out of then objects); — 1 ways to fill the second position (to choose one out of then
n — 1 remaining objects),.. and n —r + 1 ways to fill the last position (to choose one



5.1. PERMUTATIONS AND COMBINATIONS 123

out of thenn — r + 1 remaining objects).
Thus, according to the rule of product, we have
P(n,r) = P(r,r) x C(n,r).

Using the notation

nl=nn—-1)(n—-2)...3x2x1, forn>1, weget

nn—1)n-2)...(n—r+1)(n—r)...3x2x1
mn—1)n—2)...3x2x1

P(n,r) =

Problem 5.1.8.1n how many ways cam people stand to form a ring?

Solution. If we pick a particular person and let him occupy a fixed positthe remaining
n—1 people will be arranged using this fixed position as refezéna ring. Again, there
are (n — 1)! ways of arranging these — 1 people. n

Result 5.1.9.Derive an expression for the number of ways of arrangingbjects in
which all of them are not distinct.

Proof. Let there ben objects that are not all distinct. Specifically, let thereheobjects
of the first kind, ¢, objects of the second kind,. and ¢ objects of thet'" kind.

Imagine that then objects are marked so that objects of the same kind become
distinguishable from one another. There are, of courdeways in which thesen “dis-
tinct” objects can be permuted. However, two permutatioisb& the same when the
marks are erased if they differ only in the arrangement ofkethrobjects that are of
the same kind. Therefore, each permutation of the unmarkgtts will correspond to
¢1'qe! ... q;! permutations of the marked objects. Then the numben-efpermutations
of thesen objects is given by

n!
qlg! ... q!

Problem 5.1.10.In how many ways can 5 dashes and 8 dots can be arranged?

Solution. Out of 13 symbols, 5 dashes are of one kina and 8 dots are diemanhd and
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hence by previos result, the number of ways of differentrageanents is

13!

Remark 5.1.11. If we use only seven of the thirteen dashes and dots, there are

7! 7! 7! 7! o

s Tam 3w o T a1

distinct representations.

Problem 5.1.12.Show that (%!)! is divisible by (k!)*~Y* for any integerk.

Solution. We consider a collection of! objects among which there are of the first
kind, £ of the second kind,. .., ané of the (k — 1)! th kind. The total number of ways
of permuting these objects is given by

(1)! (k!)!

EDIEDT (k1Y (k)61

Since the total number of permutations must be an integtaéydk!)! is divisible
by (k!)t—1! m

Result 5.1.13.The number of ways to arrange objects when they are selected out of
n distinct objects with unlimited repetitions is".

Proof. Since there aren ways to choose an object to fill the first position, ways to
choose an object to fill the second position,.. ., andvays to choose an object to fill the
r th position, by rule of product, the number of ways. O

Problem 5.1.14. Among 10 billion numbers betweenl and 10,000, 000,000, how
many of them contain the digit ? How many of them do not?

Solution. Among the 10 billion numbers betweerd and 9,999, 999,999, there are
9% numbers that do not contain the digit Therefore, among thé@0 billion numbers
between1 and 10,000, 000,000, there are9'® — 1 numbers that do not contain the
digit 1 and 10'° — (9'° — 1) numbers that contain digit 1. n

Definition 5.1.15. A binary sequence is a sequence®@fs and 1’ s.
A ternarysequence is a sequence®@fs, 1’ sand 2’ s.
A guaternarysequence is a sequence®fs,1’s,2’ sand 3’ s.
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Problem 5.1.16.What is the number of n-digit binary sequences that contaiavam
number of 0 's (zero is considered as an even number)?

Solution. The problem is immediately solved if we observe that becafisymmetry
half of the 2™ n-digit binary sequences contain an even numbei’ &f and the other half
of the sequences contain an odd numbeb/’cs.

Another way to look at the problem is to consider thg~! (n — 1) digit binary
sequences. If ar{n — 1)— digit binary sequence contains an even numbef'cf, we
can append to it a 1 as the— th digit to yield an n-digit binary sequence that contains
an even number of)’ s. If an (n — 1)— digit binary sequence contains an odd number
of 0’s, we can append to it & as the n-th digit to yield an n-digit binary sequence that
contains an even number d@f s. Therefore, there aré”~! n-digit binary sequences
which contain an even number of s. m

Remark 5.1.17.Consider the n-digit quaternary sequences. Again, becdsygenmetry,
there are421 sequences in each of which the total numbeno$ and 1’ s is even.

Problem 5.1.18.Find the number of quaternary sequences that contain anneneher
of 0's.

Solution. We divide the 4" sequences into two groups: tt#¥ sequences that contain
only 2's and 3’ s and the4™ — 2" sequences that contain one or mares or 1’s.
The sequences in the first group are, of course, sequenddsatfeaan even number of
0’ s. The sequences in the second group can be subdivided tefgodas according to
the patterns of2’ s and 3’ s in the sequences. (For instance, sequences of the pattern
23zxx2x3xxx Will be in one category where the’ s are 0’ s and 1’ s.) Since half of the
sequences in each category have an even numbeétfthe total number of sequences
that have an even number of s in the second group is4" — 2™)/2. Therefore, among
the 4™ n-digit quaternary sequences, there aret+ (4" — 2")/2 sequences that have an
even umber of0’ s. n
Combinations

According to the resulb.1.5, the number of r-combinations ot objects is

P(n,r) n!
r rlln—r)!

C(n,r) =
It is immediately obvious from this formula that

C(n,r)=C(n,n—r).

This indeed is what one would expect since selectingpbjects out of n objects is
equivalent to picking the: — r objects that are not to be selected.
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Problem 5.1.19.1f no three diagonals of a convex decagon meet at the sameipsite
the decagon, into how many line segments are the diagowadediby their intersections?

Solution. First of all, the number of diagonals is equal €410, 2) — 10 = 45 — 10 = 35
as there are”'(10, 2) straight lines joining the”'(10, 2) pairs of vertices butl0 of these
45 lines are the sides of the decagon. Since for every fourcesrtive can count exactly
one intersection between the diagonals as Figuidel shows (the decagon is convex),
there is a total ofC'(10,4) = 210 intersections between the diagonals.

Figure 5.1.1

Since a diagonal is divided int& + 1 straight-line segments when there akein-
tersecting points lying along it and since each intersgcgiaint lies along two diago-
nals, the total number of straight-line segments into whighdiagonals are divided is
35+ 2 x 210 = 455. m

Problem 5.1.20.Eleven scientists are working on a secret project. They waisbck up
the documents in a cabinet such that the cabinet can be ogearetionly if six or more
of the scientists are present. What is the smallest numberc&sIneeded? What is the
smallest number of keys to the locks each scientist musg2arr

Solution. (a) To answer the first question, observe that for any grouprefscientists,
there must be at least one lock they cannot open. Moreovemjoiwo different groups of
five scientists, there must be two different locks they caopen, because if both groups
cannot open the same lock, there is a group of six scientistéig these two groups who
will not be able to open the cabinet. Thus, at le@§tl1,5) = 462 locks are needed.

(b) As to the number of keys each scientist must carry, let Areof the scien-
tists. Whenever A is associated with a group of five other $isisn A should have the
key to the lock(s) that these five scientists were not ablggemoThus, A carries at least
C(10,5) = 252 keys. ]
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Problem 5.1.21.In how many ways can three numbers be selected from the nsmber
1,2,...,300 such that their sum is divisible by 3?
Solution. The 300 numbers1,2,...,300 can be divided into three groups: those that
are divisible by 3, those that yield the remainddr when divided by 3, and those that
yield the remainder2 when divided by3. Clearly, there arel00 numbers in each of
these groups. If three numbers from the first group are ssleot if three numbers from
the second group are selected, or if three numbers from ittegioup are selected, or if
three numbers, one from each of the three groups, are s#léoder sum will be divisible
by 3. Thus, the total number of ways to select three desired nusnber

C(100, 3) + C(100, 3) + C (100, 3) + (100)* = 1, 485,100 m

Result 5.1.22.When repetitions in the selection of the objects are allowleel number
of ways of selectingr objects fromn distinct objects is
Cn+r—1,7)

Proof. Let the n objects be identified by the integeis2,...,n and let a specific se-
lection of r objects be identified by a list of the corresponding integgrg, &, ..., m}
arranged in increasing order. For example, the selectiavhich the first object is se-
lected thrice, the second object is not selected, the tHajdob is selected once, the
fourth object is selected once, the fifth object is selectadd, etc., is represented as
{1,1,1,3,4,5,5,...}. To the r integers in such a list we add to the first integer,1
to the second integer,...and— 1 to the r th integer. Thus{i,j,k,...,m} becomes
{i,j+Lk+2,....m+ (r—1)}.

For example, the selectiofil, 1,1, 3,4, 5,5, ...} becomes{1,2,3,6,8,10,11,...}. Since
each selection will then be identified uniquely as a selaabior distinct integers from
the integersl1,2,...,n+ (r — 1), we get

Cln+r—1,7).

]

Problem 5.1.23.0ut of a large number of pennies, nickels, dimes, and qu&itehow
many ways can six coins be selected?

Solution. The answer isC(4 +6 — 1,6) = C(9,6) = 84, because this is the same as
selecting six coins from a penny, a nickle, a dime, and a quaiith unlimited repetitions.

Problem 5.1.24.What is the the number of outcomes when three distinct diceodissl,
(a) when they are distinct
(b) when they are indistinguishable?
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Solution. (a) When three distinct dice are rolled, and they are distifibts can be seen
by considering the selection of three numbers from the smbyers 1,2, 3,4,5,6 when
repetitions are allowed. Hence the number of outcomeéss6 x 6 = 216,

(b) If the three dice are indistinguishable, the number a€omes isC (6 + 3 —
1,3) = 56. m

Result 5.1.25.When the objects are not all distinct, the number of ways tect@ne or
more objects from themis equal t@; + 1)(g2 + 1) ... (¢ +1) — 1

where there are;; objects of the first kind,g, objects of the second kind,.., and ¢,
objects of thet'" kind.

Proof. This result follows directly from the rule of product. Theaee ¢; + 1 ways
of choosing the object of the first kind, i.e., choosing noh¢hem, one of them, two
of them,..., or ¢; of them. Similarly, there are,, + 1 ways of choosing objects of
the second kind,.., and ¢ + 1 ways of choosing objects of thé” kind. The term
—1 corresponds to the “selection” in which no object at all i®s#n and should be
discounted.

O

Problem 5.1.26.How many divisors does the numbeéd00 have?

solution Since 1400 = 23 x 5% x 7, the number of its divisors is
B+D2+1H)(1+1)=24
which is equal to the number of ways to select the prime faabri400. (Both 1
and 1400 are considered to be divisors of the numieno. ) ]

Exercises

1. a. Usetherelatio”(n,r) = C(n—1,7)+C(n—1,r —1) to prove the identity
C(n+1,m)=C(n,m)+C(n—1,m—1)+C(n—2,m—2)+...+C(n—m,0)
for m <n.

b. Prove this identity using combinatorial arguments.
2. a. Prove the identity
IxU4+2x214+3x3l+...+nxnl=Mn+1) -1

b. Discuss the combinatorial significance of this identity.

c. Show that any integerm can be expressed uniquely in the following form
(factorial representation):
m=a;l!+a2'+a33'+...+a;i!+... where0 <a;, <i fori=1,2,...
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3.

10.

11.

Give a combinatorial argument to prove that

a. P(n,n) = P(n,n—1)
b. P(n,n) # P(n,n—2)

. Use a combinatorial argument to prove the identity

a. C(n,0)+C(n,1)+C(n,2) +...+C(n,n) =2"
b. nxCn—1,r)=(r+1)xC(n,r+1)

. Give a combinatorial argument to prove th@tn, 1) +2 x C(n,2) +3 x C(n, 3) +

.+nxCn,n)=nx2"—1
a. Use a combinatorial argument to prove tft)! /2" and (3n)!/(2" x 3") are
integers.

b. Prove that(n?)!/(n!)"*! is an integer.

. Three integers are selected from the integers, . .. 1000. In how many ways can

these integers be selected such that their sum is divisybl&’b
a. Among2n objects,n of them are identical. Find the number of ways to select

n objects out of thes@n objects.

b. Among 3n + 1 objects,n of them are identical. Find the number of ways to
selectn objects out of thes&n + 1 objects.

. From ndistinct integers, two groups of integers are to be selewtttd k; integers

in the first group andk, integers in the second group, wheke and k, are fixed

and k1 +k < n. Inhow many ways can the selection be made such that the stnalle
integer in the first group is larger than the largest integehé second group?
Suppose that no three of the diagonals of a convexgon meet at the same point
inside of then— gon. Find the number of different triangles the sides of Wwtace
made up of the sides of the— gon, the diagonals, and segments of the diagonals.
Show that the number ai— digit quaternary sequences that have an even number
of 0’ s and an even number df siis (4"/4) + (2"/2).

5.2 Distribution of Distinct and Non-distinct objects

In the previous section about the permutation of objectsintveduced the notion

of placing distinct objects into distinct cells. Two casessinbe considered. First, for
n > r, there are P(n,r) ways to placer distinct objects inton distinct cells, where
each cell can hold only one object. As was shown before, thiedinject can be placed in
one of then cells, the second object can be placed in one ofithe 1 remaining cells,

etc.

On the other hand, for > n, there are P(r,n) ways to placen of r distinct
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objects inton distinct cells, where each cell can hold only one object. dilggiment is
similar to the one above; that is, there areways to select an object to be placed in the
first cell, » — 1 ways to select an object to be placed in the second cell, etc.

The distribution of » distinct objects inn distinct cells where each cell can hold any
number of objects is equivalent to the arrangement a#f the »n cells when repetitions
are allowed. In terms of the distribution of distinct obgett distinct cells, since the first
object can be placed in one of the cells, the second object can again be placed in one
of the n cells, etc., there arewr ways of distributing the objects.

Notice that in the above case, when more than one object eeghlan the same cell,
the objects are not ordered inside the cell. When the ordebjeicts in a cell is also
considered, the number of ways of distribution is

(n+r—1)!

o - mEr-Dear=2). s+ ln

To prove this result, we imagine such a distribution as aem@d arrangement of the
(distinct) objects and the: — 1 (nondistinct) intercell partitions. Using the previously
derived formula for the permutation of + n — 1 objects wheren — 1 of them are of
the same kind, we obtain the resiit +r — 1)!/(n — 1)!.

There is an alternative way to derive this formula. There argvays to distribute
the first object. After the first object is placed in a cell,aincbe considered as an added
partition that divides the cell into two cells. Therefolgette aren + 1 ways to distribute
the second object. Similarly, there aret 2 ways to distribute the third object,., and
n +r — 1 ways to distribute the- th object.

Example 5.2.1.Find the number of ways of arranging seven flags on five masts\ah
the flags must be displayed but not all the masts have to be used

Solution If there is a single flag on a mast, we assume that it is raisdioetéop of the
mast; however, if there is more than one flag on a mast, the ofdee flags on the mast
Is important. Henc the total number of waysfis< 6 x 7 x 8 x 9 x 10 x 11.

Similarly, seven cars can go through five toll boothssitx 6 x 7 x 8 x 9 x 10 x 11
ways.

The distribution ofn objects (¢; of them are of one kindg, of them are of an-
other kind,..., andg of them are of thet'* kind) into »n distinct cells (each of which
can hold only one object) is equivalent to the permutatiotheke objects. Thus, the
number of ways of distribution is
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n!
qle! ... q!
Among then distinct cells, we hav€'(n, ¢;) ways to pick ¢, cells for the objects of the
first kind, C'(n — ¢1,¢2) ways to pick ¢» cells for the objects of the second kind, etc.
The number of ways of distribution is, therefore,

C(n7q1)0<n - Q17Q2)C(n —q1 — Q2,Q3) . ..C’(n —q—q2...— qtfla(Jt)

Pln—q—q...—qun—q —q2...— )
_ ol (n— q)! (n— g1~ @)!
a!(n—q)! @!(n—a — @) al(n—q — ¢ —g)
(n—91—QQ~--—Qt—1)!
—q1—q2...—q)!
Qt!(n_QI_Q2--~_Qt>!( ' ’ %
ThefactorP(n—q¢1—q2...—q,n—q1—q2 . .. — q;) is the number of ways of permuting

those objects that are one of a kind. It follows that the nunatbevays of distributingr
objects (r < n), with ¢; of them of one kind,q> of them of another kind, etc., inta
distinct cells is

Cn,g1)C(n—q1,2)C(n—aq1 —q2,q3) . ..Cn—q1 —qa- .. — Q—1, @)

P(”_%—Q2-‘-—Qt;T—Q1—Q2---—qt)
n! 1

- qliga! ... q)! (n —1)!

Distribution of Non-distinct objects

In terms of the distribution of objects into cells, there &rén,r) ways of placing
r nondistinct objects inta: distinct cells with at most one object in each céll > r);
this follows because the distribution can be visualizedhaselection ofr cells from the
n cells for the » nondistinct objects.
The number of ways to place nondistinct objects inta: distinct cells where a cell can
hold more than one object i§'(n + » — 1,r). This result comes from the observation
that distributing ther nondistinct objects is equivalent to selectimgof the n cells
for the r objects with repeated selections of cells allowed. A défgrargument can be
used to derive the result. Imagine the distribution of theobjects inton cells as an
arrangement of the- objects and then — 1 intercell partitions. Since both the objects
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and the partitions are nondistinct, the number of ways @reygement is

(n—14+r)!

o1 - Cntr=Ln

This result can be derived by using another argument. We cstrsélectr cells from
the n cells and then distribute the objects into these: cells; that is,

7! B n! 1
’T)qlgqgl g qlhg! . ! (n—1)!
If none of the n cells can be left empty (that means must be larger than or equal to
n ), the number of ways of distribution is
C(r—1,n—1)
Since we can first distribute one object in each of thecells and then distribute the
remaining r — n_objects arbitrarily, the number of ways of distribution is

C(n

Cllr—=n)4n—-1,r—n)=C(r—1,r—n)=C(r—1,n-1)

A direct extension of this result is the calculation of thenmer of ways of distributing
r nondistinct objects inton distinct cells with each cell containing at leagtobjects.
After placing ¢ objects in each of the: cells, we have

C((r—nq)+n—1r—ng)=C(n—ng+r—1,n-—1)

Problem 5.2.2.Five distinct letters are to be transmitted through a comoations chan-
nel. A total of 15 blanks are to be inserted between the kettéth at least three blanks
between every two letters. In how many ways can the letteddanks be arranged?

Solution. There are5! ways of arranging the letters. For each arrangement of ttexde
we can consider the insertion of the blanks as placihgnondistinct objects into four
distinct interletter positions with at least three objanteach interletter position. There-
fore, the total number of ways of arranging the letters andks is5! x C'(4 — 12+ 15 —
1,4—1)=5!x C(6,3) = 2,400 m

Problem 5.2.3.1n how many ways car2n + 1 seats in a congress be divided among
three parties so that the coalition of any two parties wiume them of a majority?

Solution. This is a problem of distributingn + 1 nondistinct objects into three distinct
cells. Without any restriction on the number of seats eacty gan have, there are

CB3+(2n+1)—-12n+1)=C(2n+3,2n+1)=C(2n+3,2)
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ways of distributing the seats. However, among these bigtans, there are some in
which a party getsn + 1 or more seats. For a particular party to have- 1 or more
seats, there ar€'(3 +n — 1,n) = C(n +2,n) = C(n + 2,2) ways of distributing
the seats. The ways of distribution are enumerated by giviagarticular partyn + 1
seats first and then dividing the remaining seats among the three parties arbitrarily.
Therefore, the total number of ways to divide the seats sonth@arty alone will have a
majority is

C2n+3,2) =3 x Cn+2,2)
_ %(271—!— 3)(2n +2) - g(n—i- N(n+1)= 5 n+1)

When there ar&n seats, the total number of ways of dividing the seats becai@s +
2,2) =3xC(n+22)+3=1(n—1)(n—2)

The termC(2n+2,2) is the total number of ways of distributing ti seats. Similarly,
C(n+2,2) isthe number of ways of distributing th#: seats such that a particular party
gets n or more seats. The term3 is due to the fact that each of the three distributions
(n,n,0), (n,0,n), (0,n,n) isaccounted for twice in the terraC'(n + 2, 2). ]
Exercises

1. Five teaching machines are to be used by a group cftudents. If the same number
of students should be assigned to use the first and the se@widmas, in how many
ways can the assignment be made?

2. Among the set ofl0" n— digit integers, two integers are considered to be equivalen
if one can be obtained by a permutation of the digits of theoth

a. How many nonequivalent integers are there?

b. If the digits 0 and 9 can appear at most once, how many nonequivalent inte-
gers are there, fon > 27

3. Inhow many ways can the lettetsa, a, a, a, b, ¢, d, e be permuted such that no two
a’ s are adjacent?
4. Consider the set of words of length generated from the alphabg0, 1, 2}.

a. Show that the number of words in each of which the digiappears an even
number of times is(3™ + 1)/2.

b. Prove the identity

n n n 3" +1
2" 2" 2" =
A E

where ¢ = n when n is even, andg = n — 1 when n is odd.
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5. An alphabet ofm letters can be transmitted through a communication chafired
the number of different messages ofletters, if

a. The letters can be used repeatedly in a message.

b. [ ofthe m letters can be used only as the first and the last letters irsaage;
the other letters can appear anywhere with unrestrictestiteyms in a message.

c. [ ofthe m letters can be used only as the first and the last letters irsaage;
the other letters can appear anywhere, except the two erntffsumrestricted
repetitions in a message.

5.3 Generating Functions

From three distinct objects, b, and ¢, there are three ways to choose one object,
namely, to choose eithei or b or c. Let us represent these possible choices symbol-
ically as a + b + ¢. Similarly, from these three objects, there are three wayhtwse
two objects, namely, to choose eitherand b, or b and ¢, or ¢ and a, which can be
represented symbolically ag + bc + ca. There is only one way to choose three objects,
which can be represented symbolically @:. Examining the polynomial

(1+az)(1+bzx)(1 +cx) =1+ (a+ b+ c)x + (ab+ be + ca)x® + (abc)z®

we discover that all these possible ways of selection aréb#el as the coefficients of
the powers ofz. In particular, the coefficient ofr’ is the representation of the ways
of selectingi objects from the three objects. This, of course, is not sbeiercidence.
We have an interpretation of the polynomial according tortiie of sum and the rule of
product. Symbolically, the factot + ax means that for the objeci, the two ways of
selection are “not to seleat ” or “to select a. " The variable = is a formal variable and
is used simply as an indicator. The coefficient:df shows the ways no object is selected,
and the coefficient ofx! shows the ways one object is selected. Similar interpoetati
can be given to the factors+bx and 1+4-cx. Thus, the produc{1+az)(1+bx)(1+cz)
indicates that for the objects, b, and ¢, the ways of selection are “to select or not to
select ¢ ” and “to select or not to seleck ” and “to select or not to select c.” It is clear
that the powers ofr in the polynomial indicate the number of objects that arected,
and the corresponding coefficients show all the possibleswégelection. This example
motivates the formal definition of the generating functidm sequence.
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Definition 5.3.1. Let (a,, a4, a2, ...,a,,...) be the symbolic representation of a se-
qguence of events, or let it simply be a sequence of number® fditction F(z) =
Aopbo(x) +ar i1 (z) +aspa(x) +. . . +arp,(z) +. .. is called theordinary generating func-
tion of the sequencga,, ai, as, ..., a.,...), where u,(x), u1(x), pa(x), ..., (), ...

is a sequence of functions aof that are used as indicators.

The indicator functions the, u(z)’s, are usually chosen in such a way that no
two distinct sequences will yield the same generating fonctClearly, the generating
function of a sequence is just an alternative representafithe sequence. For example,
using 1, cos =, cos 2x, ..., cos rx, ... asthe indicator functions, we see that the ordinary
generating function of the sequen¢ew, w?, ..., w",...) is

F(x) =1+ wecos v +wcos 2z + ... +w'cosrx + . ..

On the other hand, using, 1 + 2,1 — 2,1 + 22,1 —2%,...,1+2",1 — 2",... asthe
indicator functions, the ordinary generating functionlo# sequencé3, 2,6,0,0) is

3+2(1+2)+6(1 —z)=11—4x

However, the sequences, 3,7,0,0) and (1,2,6,1,1) will also yield the same ordinary
generating function; that is,
1+3(14+2)+7(1—2)=11—4z and
1+2(14+2)+6(1—2)+ (1 +2%) + (1 —2%) =11 — 4a.
Hence, we see that the functionsl +z,1 —z, 1+ 22,1 — 22, ... should not be used as
indicator functions. The most usual and useful formefz) is z”. In that case, for the
sequence(ag, ai, ds, - . ., a,, ...), We have F(z) = a, + a1z + asx® + ...+ a,2" + ... .
We shall limit our discussion to indicator functions of thism. From now on, when we
talk about the generating functions of a sequence, we sleghrthe generating function
of the sequence with the powers af as indicator functions. Notice that the sequence
(ao,a1,as,...,a.,...) can be an infinite sequence, arfd(x) will then be an infinite
series. However, because is just a formal variable, there is no need to question whiethe
the series converges.

Generating Functions for Combinations

We have seen that the polynomi@él + az)(1 + bx)(1 + cx) is the ordinary generating
function of the different ways to select the objecetsh, and c. Instead of the different
ways of selection, we may only be interested in the numberayfswof selection. By
settinga = b =c =1, we have
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1+2)1+2)1+2z)=(1+2)3 =143z +32° + 23
Clearly, we see that there is one way to select no objects fnerthree objects('(3, 0),
three ways to select one object out of threg(3, 1), etc. Usually, a generating func-
tion that gives the number of combinations or permutatignsailed arenumerator In
particular, an ordinary generating function that givesrtbenber of combinations or per-
mutations is called aardinary enumerator.
This notion can be extended immediately. To find the numbesonfbinations ofn
distinct objects, we have the ordinary enumerator

(n—1) , nn—1)...(n—r+1)

n
(1+x)”:1+n;c+T:c +...+ . A i

=C(n,0)+C(n, 1)z +C(n,2)2* + ...+ C(n,7)a" + ...+ C(n,n)z"

An alternative point of view can also be taken. Except fordase ay = oo, F'(x) con-
verges atz = 0. Therefore, with the understanding that the valuerois set to be0,
we can carry the expression fdf(x) along in our computation without concerning our-
selves further with the convergence problem.

In the expansion of(1 + z)", the coefficient of the termx” is the number of ways the
term 2" can be formed by taking 2’ s andn — r 1’ s among then factors 1 + z. It

is for this reason that the”(n,r)’ s are called théinomial coefficientsIn a binomial
expansion, (") is a common alternative notation fa¥ (n, ).

Example 5.3.2.From

(g) ; (T)H (2)++ (ﬁ)xr+...+ (g)xnz (1t o)

we have the identity

() () + () e (1) e (1) =2

by setting z equal to 1. The combinatorial significance of this identity is that bsities
give the number of ways of selecting none, or one, or twoor.p objects out ofn
distinct objects. We also have the identity

()= () + () o (0) i (0) =0
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by setting z equal to —1. Writing this as

)+ ) () =0+ 6) ()

we see that the number of ways of selecting an even numberjeétebs equal to the
number of ways of selecting an odd number of objects frendistinct objects.

Problem 5.3.3. Prove the identity

Y0 () o () e () =)

Solution. Method 1We observe that the expression on the left-hand side is thetaot
termin (1+z)"(1+ 2 ')". Since

14+2)"1+z )" =1 +2)"(1+z)"z " =27 (1 +2)™

and the constant term in—"(1 + z)?" is (25), we have proved the identity.
Method 2We rewrite the identity to be proved as

B (GGG ()
e ()0 = )

and use a combinatorial argument. To selecbbjects out of2n objects, we shall first
divide them (in any arbitrary manner) into two piles with objects in each pile. There
are (") ways to selecti objects from the first pile and, " ) ways to selectn — i
objects from the second pile to make up a selectiom obbjects. Therefore, the number

n

of ways to make the selection é} (")(,",) whichis also equal to(*").

To see an application of this régult,let us consider thelprolof finding the number of
2n— digit binary sequences which are such that the numbé¥ efin the firstn digits of

a sequence is equal to the number0dk in the lastn digits of the sequence. Since the
number of n— digit binary sequences containingd’ s is (’;), the number of2n— digit
binary sequences containing(’ s in the first n digits as well as in the last: digits

is (’1})2 Therefore, the number o2n— digit binary sequences which are such that the
number of 0’ s in the firstn digits of a sequence is equal to the numbeno$ in the last
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n digits of the sequence is

(Y0 () o () e () =)

m
Problem 5.3.4. Prove the identity
n n n n n\ a1
(1) +2(2> +3(3> +...+T(T) ~|—...—|—n(n) =n2
Solution. Differentiating both sides of the identity
NV (M) (D)2 () () =)
0 ) 5 . . o =
we have
n n Y 2 Y r—1 Y n-1_ n—1
(1> +2(2>x+3<2)x ...—i—r(r)x —|—...—|—n(n)x =n(l+x)
The given identity is obtained by setting equal to 1. |

Problem 5.3.5.What is the coefficient of the term® in (1 + 2° + 22)109?

Solution. Since z°2%2° = 2% is the only way the termz* can be made up in the
expansion of (1 + z° + 22)!% and there areC(100,2) ways to choose the two fac-
tors z° and then C'(98,1) ways to choose the factor®, the coefficient of 2?3 is
C(100,2) x C(98,1) = 10099 » 98 — 485 100. n

Problem 5.3.6. Show that the ordinary generating function of the sequence

() ) 0) ()

Solution. According to the binomial theorem, we have

) i —1/2)(=1/2 = 1) ... (=1/2 — 1 + 1)(—da)"

(1—4337: o

4(1/2)(3/2)(5/2) ... [(2r = 1)/2] ,

rl

r=1
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. i 2"(1.3.5.....(2r — 1))xr

rl

> oryl -
_ 1+22 rI(1.3.5.....(2r 1))$r

rir

i (2.4.6...2r)(1.3.5....(2r — 1)) ,

rirl .

b 4
Problem 5.3.7. Evaluate the}" (*) (*~*) for a given ¢.
=0

24
%

) is the coefficient of the term’ in (1 —4z)= and (*~%) is the

Solution. Since ( L

b .
coefficient of the termz~* in (1 —4x)7, > (*)(*-%) is the coefficient of the term
=0

zhin (1 — 4x)%1(1 — 4@%1 =(1-— 4$)—1

=1 +4o+ (4o)* + (4o + ... 4+ 4o)" + ...,

we have,
t . .
—\1 t—1

Selection with repetitions

When repetitions are allowed in the selections (or equitBlewhen there is more than
one object of the same kind), the extension is immediateekample, the polynomial

(1+ar +a*2®)(1 +bx)(1+cx) =1+ (a + b+ ) + (ab+ be + ac + a*)a?

+(abe + a*b + a*c)z® + (a®be)x?.

is the ordinary generating function for the combinationthefobjectsa, b, and e, where
a can be selected twice. Notice the difference between théi@torial significance of
this polynomial and that of the polynomidll + az)(1 + a®z?)(1 + bz)(1 + cz), which
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can be written ag1 + ax + a®z* + a®2®)(1 + bx)(1 + cx).
As another example, let us consider the generating function

(14 az)(1 +a*r)(1+bx)(1+cx) =1+ (a+b+c+a)z

+(ab + be + ac + a® + a®b + a*c)z® + (abe + a®b + a’be + a’c)z® + (a*be)x

We can imagine that there are four boxes, one containingpne containing twoa’ s,
one containingb, and one containing:. The generating function gives the outcomes of
the selection of the boxes.

Similarly, the ordinary enumerator for the combinationghefobjectsa, b, and ¢, where

a can be selected twice, is

(1+z+ 21+ 2)? =1+ 30 + 422 + 32% + 2%,

The significance of the factor + z + 22 is that for the objecta, there is one way not to
select it, one way to select it once, and also one way to skledte.

Example 5.3.8.Given two each ofp kinds of objects and one each gfadditional kinds
of objects, in how many ways can objects be selected?

Solution. The ordinary enumerator for the combinations is
(1+xz+2%)P(1+ 2)1
The coefficient ofz” in the enumerator is

(5] .
P\ (ptq—1
— v r—2

where [r/2] denotes the integral part of/2 (thatis, [r/2] = r/2if r is even, and
[r/2] = (r —1)/2if r is odd), because among the factors of the form(1 + = + 22),
we can selecti z? 's, and among they — i remaining factors of the form{1 + x + ?)
and theq factors of the form1 + = we can selectr — 2i = ’s. n

N3

Example 5.3.9.The ordinary enumerator for the selectioniofobjects out ofn objects
with unlimited repetitions is(1 + = + 2% + ... + 2 +...)"

1
l1—=x

= (="

=(1—-z)™"
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Example 5.3.10.The ordinary enumerator for the selection ofobjects out ofn ob-
jects (r > n), with unlimited repetitions but with each object includedeich selection,
is (x4+a22+.. . +2F+. )= ()"

1—x

=z"(1—2)™

=0
=2 (n o >x”“
- 1
=0
— (r—1 :
= (T )xT(let r=n+i)
—\r—n

Problem 5.3.11.Show that the number of ways in which nondistinct objects can be
distributed inton distinct cells, with the condition that no cell containsdéisan ¢ nor
more thang+2z—1 objects, is the coefficient af"~7* in the expansion of(1—2*)/(1—

Solution. Since the ordinary enumerator for the ways a particularazgilbe filled is
ol 4 4 gt
the ordinary enumerator for the distributions is

(27 + 2 Y = (L b L )

1—2xzz

— ()

1—2z
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Problem 5.3.12.Find the number of ways in which four persons, are rollinggls die
once, can have a total score of.

Solution. Taking »r = 17, n = 4, ¢ = 1, and z = 6, the ordinary enumerator is

r4(1—2%/(1 — )]~
Since, (1 — 2%)* = 1 — 42 + 6212 — 4218 4 22
4 4x5 , 4X5%x6 4

4 =
(1—2) —1+1!x+ 5 i

The coefficient ofz!3 in (1 — 2%)*(1 —z)~* is

4x5x6x...x16 44X5X6X"'X10+64
13! 7! 1!

14x15%x16 8x9x10 4
= 2 — A+ 6y = 104

Enumerators for Permutations

It is natural now for us to turn to the generating functions germutations. However,
there is an obvious difficulty when we try to extend our pregioesults. Since multipli-
cation in the ordinary algebra in the field of real numbergi{wihich we are so familiar)
is commutative (that isqb = ba ), we cannot quite handle the case of permutations using
ordinary algebra.
The situation can be illustrated by an example of the periomis of the two objectsu
and b. What we want to have as a generating function for the pernamsis

1+ (a+b)x + (ab + ba)z?
However, this polynomial is equivalent to

1+ (a+b)z + (2ab)z?
in which the two distinct permutationgb and ba can no longer be recognized. Instead
of introducing a new algebra that is noncommutative for thsecof permutations, we
shall limit ourselves to the discussion of the enumeratmrgérmutations which can still
be handled by the ordinary algebra in the field of real numbers

A direct extension of the notion of the enumerators for carabons indicates that
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an enumerator for the permutations of distinct objects would have the form
F(z) = P(n,0)2° + P(n, )z + P(n,2)2* + P(n,3)z* + ...

+ P(n,m)z" + ...+ P(n,n)z"
n! n!
R R T T R ey
n!
MR
Unfortunately, there is no simple closed-form expressmm ¥ (x), and to carry along
the polynomial in our manipulations certainly defeats thgopse of using the generating
function representation. However, when we recall the biabaxpansion

"+ ...+ nla”

(14+2)"=1+C(n, )z +C(n,2)2* + C(n,3)z* + ...
+C(n,r)a" +...+C(n,n)z"
P(n,1) P(n,2) , P(n,3) 4

=1+ T T+ o x° 4+ al x° +
P(n,r) . P(n,
+ (’)x7+...+ ()

rl n!

we see the key to defining another kind of generating functi@exponential generating
function.

Definition 5.3.13. Let (ag, a1, a9,...,a,,...) be the symbolic representations of a se-
guence of events or simply be a sequence of numbers. Theuartbidn

aq a9 a

Fla) = Giuo(e) + Trn(e) + Sra(@) + o+ “opag(a) + .

0

is called theexponential generating functiaf the sequencéay, ay, as, . . ., a,,...) with
po(x), ur(x), po(z), ..., pu-(z), ... asthendicator functions.

Thus,(1 + )™ is the exponential generating function of th&(n, r) 's with the
powers of x as the indicator functions.

Definition 5.3.14. An exponential generating function that gives the numbeoafbina-
tions or permutations is called axponential enumerator.

Example 5.3.15.We know that,
(1+2z2)"=C(n,0)+C(n, )z + C(n,2)2*> + ...+ C(n,r)a" + ...+ C(n,n)z"
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Using the relationP(n,r) = C(n,r) x r!, we get

P(n,1 P(n,2 P(n,3 P
-1 + (n’ ) + (77,, )(ﬂ2 + (77,, ){E3 4+t (TL, T)
1! 2! 3! d

r

Thus (1 + x)™ is the exponential generating function of ti&n, ) 's with the powers
of = as the indicator functions.

Further Examples

1. The exponential generating function of the sequeficé x 3,1 x 3 x 5,...,1 x 3 x
5x...x(2r+1)),x is (1 —2x)73/2

2. The exponential generating function of the sequeficé, 1...,1,...) is e*.

Clearly, the exponential enumerator for the permutatiorsshgle object with no
repetitions is1 + x. We also see in the above that the exponential enumeratonhéor t
permutations ofn distinct objects with no repetitions i§1 + z)". (The definition of
the exponential enumerator is actually chosen in such a atythe result will come out
correctly.)

When repetitions are allowed in the permutations, the ekdans immediate. The expo-
nential enumerator for the permutations of allof p identical objects isz* /p! since
there is only one way of doing so. Thus, the exponential ematoefor the permutations
of none, one, two,...p of p identical objects is

1+%x+%x2—|—...+$xp
Similarly, the exponential enumerator for the permutatball p + ¢ of p + ¢ objects,
with p of them of one kind and; of them of another kind, is

P rPta
g pl

which agrees with the known result that the number of pertiuis is % It follows

that the exponential enumerator for the permutations oénone, two,...p+q of p+q
objects, withp of them of one kind and; of them of another kind, is

1 1 9 1 » 1 1 9 1 q
(1+ﬂ$+5l’ +...+17!l’)(1+ﬂ23+51’ +...+ax>

For instance, the exponential enumerator for the pernmmsinf two objects of one kind
and three objects of another kind is

2 T iI}2 $3

xXr xr
(1+ﬂ+§)+(1+ﬁ+§+§):
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Ll 1 1 1 1 1 1 1,
_HU+IQ*%FF+w+w)'HF§+55+3) +Hw+mmm_ﬂ

Result 5.3.16.The exponential enumerator for the numberof permutations ofn
distinct objects with unlimited repetitions is givest*.

Proof. The number ofr— permutations ofn. distinct objects with unlimited repetitions
Is given by the exponential enumerator

1 x2 3 nl’_oon’,"]"

(+x+§+§+ Jt=e —Zoﬁ:z:.
=
0

Problem 5.3.17.Find the number of-— digit quaternary sequences in which each of the
digits 1,2, and 3 appears at least once.

Solution. This problem is the same as that of permuting four distingéab with the
restriction that three of the four objects must be includethe permutations. The expo-
nential enumerator for the permutations of the digiis
e N
Aot gptgrt..)=e
The exponential enumerator for the permutations of the digir 2, or 3) is

2 LEB

T x
(x+§+§+ J=e" -1

It follows that the exponential enumerator for the permiatet of the four digits is
e“(e” —1)(e® —1)(e" — 1) = (™ — 3e* + 3e” — 1)

= 1% — 363 4 321 — €7

A" —3x3"+3x2"-1) ,
-y e ;

Therefore, the number of— digit quaternary sequences in which each of the digit3,
and 3 appears atleastonc€ —3 x 3" +3 x 2" — 1. n
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Problem 5.3.18.Find the number ofr— digit quaternary sequences that contain an even
number of 0’ s.

Solution. The exponential enumerator for the permutations of the digis

20 gt b 1

(1+$+§+I+a+...)=§(6 —|~e_)

The exponential enumerator for the permutations of eacheofligits 1,2, and 3 is

T 132 ZIJS

(1+ﬂ+§+§—l—...):€

It follows that the exponential enumerator for the numbequéternary sequences con-
taining an even number di s is

1 1
5(61‘ + e—x)exe:cex _ 5(eétac + 62:(:)

1442

Therefore, the number of— digit quaternary sequences that contain an even number of
0’sis

(47 +27) /2.

Similarly, to find the number of-— digit quaternary sequences that contain an even num-
ber of 0 ’s and an even number of 's, we have the exponential enumerator

1 1 1
5(6x+6—x)§<6x+6—x)€xe:c — 1(62x+2+e—2x)62x

1
= Z(e"‘x + 2e* 4+ 1)

14" +2x2)
:H;ET"T

Example 5.3.19.Find the exponential enumerator for the number of ways toséo or
less objects from- distinct objects and distribute them into distinct cells, with objects
in the same cell ordered.

Solution. Notice that there are”(r, m) ways to selectn objects out ofr objects and
n(n+1)...(n+m — 1) ways to arrange them in the distinct cells. Since the value
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of m ranges from0 to r, the total number of ways is

C(r,0) +C(r,1) x n+C(r,2) x n(n+ 1)+ C(r,3) x n(n + 1)(n + 2)

1 1

— = rl[— —_—
o F O xn(n 1) ntr = 1) =il S+ e
1

X — X
S P TTT

n(n+1)+ xn(n+1)(n+2)

(r —3)!3!
+...%n(n+1)...(n+r—1)]

The expression in the square brackets is the coefficienteofethm =" in the product of
the two series

r_ 147 z? x"
e’ = +ﬁ+§+.”+ﬁ+'”
and
n n(n+1 nn+1l)(n+r—1

Therefore,e”/(1 — )™ is the exponential enumerator for the distributionsrobr less
objects inton distinct cells, with objects in the same cell ordered. ]

Exercises

1. Among the three representatives from each ofihestates, either none, or one, or
two of them will be selected to form a special committee.
a. In how many ways can the selection be made?

b. If the committee has exactly0 members, in how many ways can the selection
be made?
(The answer may be expressed as a summation.)

2. Find the value ofus, in the following expansion:

Tz —3

—— =qg+ a1 T+ a x2+...—|—a w50+...
22 _ 3719 0 1 2 50

3. In how many ways car200 identical chairs be divided among four conference
rooms such that each room will hav&) or 40 or 60 or 80 or 100 chairs?

4. In how many ways carmn letters be selected frordn A’s,2n B’s, and 2n C’s?
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10.

11.

12.

13.

CHAPTER 5. COMBINATORICS

. In how many ways cam letters be selected from an unlimited supply 4fs, B’s,
and (C’s if each selection must include an even number4$?

a. Let a, denote the number of ways in which the sumwill show when two
distinct dice are rolled. Find the ordinary generating tiorc of the sequence
(agp,ay,as,...).

b. Let a, denote the number of ways in which the sumcan be obtained by
rolling a die any number of times. Show that the ordinary gatmeg function
of the sequencéag, ay, as,...) is (1 —x — 2% — 23 — 2% — 2% — 25)7L.

a. Find the ordinary generating function of the sequefgga, as,...) where
a, is the number of ways of selecting objects from a set of six distinct ob-
jects, where each object can be selected not more than.thrice

b. From the generating function found in part (a), deterntireenumber of out-
comes when three indistinguishable dice are rolled.

. Find the ordinary generating function of the sequefgg a,, as, ...) where a, is
the number of partitions of the integer into distinct primes.

. Find the ordinary generating function of the sequeteg ay, as,...) where a, is

the number of ways in which- letters can be selected from the alphaket1,2}

with unlimited repetitions except that the lettérmust be selected an even number

of times.

Find the exponential generating function of the segaéncl x4, 1x4x7,...,1x

AXTx...x3r+1),...).

Let a,, denote the number of ways of permutimgof the 10 letters A, A, A, A, B,

C,C, D, E, E. Find the exponential generating function of the sequefagea, as, . . .)

Find the number of.— digit words generated from the alphabgt, 1,2, 3,4} in
each of which the total number @f’s and [ ’s is even.

Find the number of.— digit words generated from the alphabgl, 1,2} in each
of which none of the digits appears exactly three times.

5.4 Distribution of Distinct Objects into Nondistinct Cells

As examples on the use of exponential generating functisashall derive some

results on the distribution of distinct objects into nonidist cells. First we shall derive

the

number of ways of distributing distinct objects into n distinct cells so that no cell is

empty and the order of objects within a cell is not importartis problem can be viewed
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as finding the number of the— permutations of then distinct cells with each cell in-
cluded at least once in a permutation. The exponential eratorefor the permutations
IS

2 (1]’3

( +§+§+ ) (e‘”—l)"

Zj—’"i <?><n—f>’“

Thus, the number of ways of placing distinct objects inton. distinct cells with no cell

i(—w‘ (7;) (n—i)" = nlS(r,n)

1=0

where S(r,n) is defined as; i(—l)"(ﬁ)(n —1)

)

and is called thé&tirling number of the second kind

Stirling numbers of the second kind, S(r,n)

r 1 2 3 4 5 6 7 8 9 10
1 1

2 1 1

31 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8§ 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 1
10 1 511 9330 34105 42525 22827 5880 750 45 1
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The above table shows some of the Stirling numbers of secor Kt follows that
the number of ways of placing distinct objects inton nondistinct cells with no cell
left empty is equal toS(r,n). Previously we proved that there aré ways of placing

r distinct objects inton distinct cells, when empty cells are allowed. When the cells
become nondistinct, the number of ways is not equahktgn!. As a matter of fact, the
number of ways of distributing- distinct objects inton nondistinct cells with empty
cells allowed is

S(r,1)+S(r,2)+...+S(r,n) forr>n
andis
S(r,1)+S(r,2)+...+S(r,r) forr>n...... (1)

These come directly from the argument that the number of whgstributing » distinct
objects inton nondistinct cells with empty cells allowed is equal to thenoer of ways
of distributing theser objects so that one cell is not empty, or two cells are not gmpt
etc.

For the case ofr < n (i.e., there are at least as many cells as objects), there is a
closed-form expression for the ordinary generating fumctf the numbers of ways of
distributing the objects. Sinc&(i,5) = 0 for ¢ < j, the count in the expression in (1)
does not change if we add to it an infinite number of terms dsvist

S(r, 1)+ S(r,2)+...+Sr,r)+S(rr+1)+S(rr+2)+...... (2)
Observe that
e“l—! L S(0,1) + 5(1;1)93%— S%;l)xz +.. 1+ %zr + ..
—(ex;1)2 = 5(0,2) + 5(1;2)3:4— 5(3;2)x2 +...+ S(:;2> "
—(ex];”k _S(0.k) + S(;Ma:—l— S(;k>x2—|—...—|— S(;’!“xr
—(6$;1)T = S(0,r) + S(hr)$+ S(;T)x2+... % r
—(lelll))T!Jrl =S5(0,r+1)+ S(l’;+ 1)3:+ S<2’;+ 1)$2+.“+—S<7“,:!+ 1)357"...

Therefore, the coefficient ot” /r!, which is the number of ways of distributing dis-
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tinct objects intor or more nondistinct cells, in

et —1 (e:v o 1)2 (ea: o 1)k (ecc . 1)7’ (e:v o 1)7"-{-1
TR Rt e v P PR e S ]

is equal to the expression in (2). However, the generatingtfan in (3) can be written as

T __
e 1_1

Partition of Integers
As another illustration of the use of generating functiams shall discuss the distribution
of nondistinct objects into nondistinct cells.

Definition 5.4.1. A partition of an integeiis a division of the integer into positive integral
parts, in which the order of these parts is not important.

For example, 4,3+ 1,2+2,24+1+1, and 1+ 1+ 1+ 1 are the five different
partitions of the integed.
It is clear that a partition of the integer is equivalent to a way of distributing nondis-
tinct objects inton nondistinct cells with empty cells allowed. We shall conduar dis-
cussion in the context of the partitions of integers mairdgdwuse it is also an important
topic in number theory. Observe that in the polynomial = + 22 + 23 + 2* + ... + 2",
the coefficient ofz* is the number of ways of having 1 's in a partition of the integer
n.

Clearly, there is one way fof) < k£ < n and no way fork > n because in a
partition of n there can be from nd ’s to at mostn 1's. It follows that in the infinite
sum

l+ae+22+23+2'+ . +2"+... = ,

the coefficient ofz* is the number of ways of having 1 ’s in a partition of any integer
larger than or equal td&. Similarly, in the polynomial

1+t a8 28+ 423

the coefficient of2?% is the number of ways of having 2 ’s in a partition of the integer
n. Also, in the infinite sum

1
1+ + 22 +25+28+. . . +27+... =
1— 22

the coefficient ofz2* is the number of ways of having 2 ’s in a partition of any integer
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larger than or equal t®k. Notice that a2 in a partition will be accounted for by the
term 22, two 2 s in a partition will be accounted for by the ternt, etc. It follows then
that

Fl)=(Q4+a+2>+2°+...+2"+..))

A4+ +2* 25+, 427 +..)
(4242 + 2%+ 2% +..)
(A+at+2®+22 . 42 +..)

(It T ™ L)
1
(1—z)(1—-a)(1—23)(1—2%)...(1 —2an)
is the ordinary generating function of the sequerip€0), p(1),...,p(n)), where p(i)
denotes the number of partitions of the integerHowever, notice thatF'(z) does not
enumerate thep(j) 's for j > n; rather, it enumerates the number of partitions of the
integer j that have no part exceeding For example, from

1
(1—2)(1 —2a2)(1 —23)

=14+ao+22+322 +42* + 525 + 725 + ...

we observe that there are three ways to partition the intégand there are seven ways
to partition the integer6 such that the parts do not exce8d The ordinary generating
function of the infinite sequencép(0),p(1),...,p(n),...), is

1
(I—2)(1—22)(1—2a3)...

F(z) =

Remark 5.4.2. It is immediately clear that in

1
(1—2)(1—a®)(1 —a5)...(1 — z2tl)’

the coefficient ofz* for & < 2n + 1 is the number of partitions of the integér into
odd parts, and the coefficient of* for k& > 2n + 1 is the number of partitions of the
integer k£ into odd parts not exceedingn + 1.

Similarly, in

1
(1—2)(1—a®)(1 —a5)...]
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the coefficient ofz* is the number of partitions of the integér into odd parts.
Remark 5.4.3. Also in

1
(1—22)(1—at)(1 —ab)...(1 —a?)’

and the coefficient oft* for & < 2n is the number of partitions of the integér into
even parts, and the coefficient of for k£ > 2n is the number of partitions of the integer
k into even parts not exceedirign. Again, in

1
(1—a2?)(1—a*)(1—ab)...]

the coefficient ofz* is the number of partitions of the integér into even parts.

Remark 5.4.4. Also, the polynomial
(14 2)(1+2)(1+2%) ... (1 +2m)

enumerates the partitions of integers no larger thamto distinct(unequal) parts and the
partitions of integers larger than into distinct parts not exceeding, and

(I+z)1+2*)(1+2%) ... (1+2")...

enumerates the partitions of the integers into distindispar

Problem 5.4.5. Prove that the number of partitions of an integer into dattarts is
equal to the number of partitions of the integer into oddgart

Solution. Since (1 + 2)(1 + z?)(1+2?%)... (1 +2")...

1—221—2*1—2%1—28 1— 2%
Tl 21221 -—Bl—at 1
1

T A-w) -1 -ab)
we conclude that the number of partitions of an integer instirttt parts is equal to the
number of partitions of the integer into odd parts.
For instance, the intege can be partitioned into distinct parts in four different way
namely,

6,54+1,4+23+2+1

There are also exactly four different ways in which 6 can beifgned into odd parts.
Theyare5+1,3+3,3+1+14+1,1+1+14+14+1+1. |
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Problem 5.4.6. Prove that any integer can be expressed as the sum of a celetti
integers1,2,4,8,...,2", ... (without repetition) in exactly one way. (This is the well-
known fact htat a decimal number cn be represented unigsedybenary number).

Solution. Since

(1—2)(1+2) 1+ +2H(1+2%) ... (1+2%)...

1—22) 1+ 2H1+2H (1 +2%) ... (1 +27). ..

(
(1—a2H(1+ 2" (1 + 2% .. (L+27) ...
1

We have the identity

=)+ )L a1+ (L)

Recalling that
1
— =1l4a+22+ 3+
1—=x

we conclude that any integer can be expressed as the sum legiciae of the integers
1,2,4,8,...,2", ... (without repetition) in exactly one way. ]

Problem 5.4.7.In a partition of any integem larger than1 into parts that the powers
of 2, namely 1,2,4,8,...,2", ..., prove that the number of partitions that have an even
number of parts is equal to the number of partitions that lsavedd number of parts.

Solution. Consider

1

e A ) et v R Sy PP T RS

=(l—o+2®>—2*+2*—..)
(1—a?+2* =28 +2%—-..)
(1—at+a® -2 42— ). .
(1= a2 4 2% 32 g2

we conclude that to partition any integer larger than1 into parts that are powers of
2, namely, 1,2,4,8,...,2", ..., the number of partitions that have an even number of
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parts is equal to the number of partitions that have an oddoeuf parts. The series
l—z+a2®>—23+21— ...

enumerates the number af's in a partition, with terms corresponding to an even number
of 1’sin the partition having+1 as the coefficients and terms corresponding to an odd
number of 1 ’s in the partition having—1 as the coefficients. Similarly, the series

1—a? 4+t —a+2%— ..
enumerates the number @f's in a partition, and the series
1—at + a8+ 22421 — .

enumerates the number df's in a partition, with terms corresponding to an even number
of 2’ s (or 4’ s) having positive coefficients and terms correspondinghtodd number
of 2’ s (or 4’ s) having negative coefficients. Therefore, in the expansfdahe product

l—z+a? -2 +2* - )1 -2 +a2* —ab +2%— )

(1—at+2% 2242 ). ..
(1 — 2 4 222 — 32 4 %2 — ),

aterm +z™ corresponds to a partition of the integerinto an even number of parts, and
aterm —x™ corresponds to a partition of the integerinto an odd number of parts.m

lllustration. We seethatd + 1,2 +1+1+1,2+2+4+1, and 1 +1+1+1+1
are the four partitions of the integer into parts that are powers af. Two of these
partitions have an even number of parts, and the other twe &iawdd number of parts.

Exercises

1. Prove theidentity— = (1 +z +2? +... +2%)(1 + 2! + 22 + ... 4+ 2)
(1 + 2100 4 2200 1 4 2900)

2. Show that the number of partitions of the integer+ £ into exactly » + k£ parts
is the same for any nonnegative integer

3. Prove that the number of partitions of the integernnto m distinct parts is equal
to the number of partitions of the integer— [m(m + 1)/2] into at mostm parts
(n>m(m+1)/2).

4. Show that the number of partitions of the inte@er into three parts which are such
that the sum of any two parts is greater than the third is etpu#the number of
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partitions of n into exactly three parts.

5.5 Principle of Inclusion and Exclusion

Let us motivate the subject of this section with a simplestitative example. In a
group of ten girls, six have blond hair, five have blue eyed,tAree have blond hair and
blue eyes. How many girls are there in the group who have ereliftond hair nor blue
eyes? Clearly the answer is

10-6—-5+3=2
Since the three blondes with blue eyes are included in thataauthe six blondes and
are again included in the count of the five with blue eyes, treysubtracted twice in the
expressionl0 — 6 — 5. Therefore,3 should be added to the expressioh— 6 — 5 to
give the correct count of girls who have neither blond hairlrloe eyes.

The graphical representation in Figuseb.1 shows very clearly the same argument. The
area inside the large circle represents the total numbeirlsf §he areas inside the two
small circles represent, respectively, the number of guth® have blond hair and the
number of girls who have

Figure 5.5.1

blue eyes. The crosshatched area represents the numbds digi have both blond hair
and blue eyes. This area is subtracted twice when the ardghs blo small circles are
subtracted from the area of the large circle. To find the aragked with vertical lines
which represents the number of girls who neither are blomdeshave blue eyes, we
should, therefore, compensate the oversubtraction bygduick the cross hatched area.
The extension of the logical reasoning in this example l¢éadsvery important counting
theorem that is studied in this section. To count the numbaragrtain class of objects,
we exclude those that should not be included in the countiantdyn, compensate the
count by including those that have been excluded incogredthe counting theorem is
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called theprinciple of inclusion and exclusion.

Principle of Inclusion and Exclusion

Consider a set ofV objects. Letay,as,...,a, be a set of properties that these
objects may have. In general, these properties are not itygxalusive; that is, an object
can have one or more of these properti (The case in which fireperties are mutually
exclusive proves to be uninteresting special case, as wilden.) LetN(a;) denote
the number of objects that have the propedty let N(a;) denote the number objects
that have the propertyi,, ..., and let N(a,) denote the number of objects that have the
property a,.. Notice that an object having property a; is included in the countV(a;)
regardless of the other propties it may have. Thus, if anablbjgs both the properties;
and a; it will contribute a countinN(a;) as well as a count inV(a;).
Let N(a}) denote the number of objects that do not have the propertylet N(a})
denote the number of objects that do not have the property. ., andlet N(a!) denote
the number of objects that do not have the propesty Let N(a;a;) denote the number
of objects that have both the properties and a;, let N(aja;) denote the number of
objects that have neither the propery nor the propertya;, and let N(aa;) denote
the number of objects that have the propetity but not the propertya;. Logically, we
see that

N(a) = N — N(a;)

because each of th&/ objects either has the property [accounted for inN(a;) ] or
does not have the property; [accounted for inN(a}) ]. Also,

N(aza;) = N — N(aa;)

because for each of thé/(a;) objects that have the property;, it either has the prop-
erty a; [accounted for inN(a;a;) ] or does not have the property; [accounted for in
N(aja;)]. Using a similar argument, we have

N(aja;) = N — N(a;a;) — N(a;a;) — N(aa;)
which can be rewritten as
N(a;a;) = N — [N(a;a}) + N(aia;)] — [N(aja;) + [N(aia;)] + N(aa;)

= N — N(a;) — N(a;) + N(aia;)
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We now prove the following extension of Eqgs. (4-1) and (4-2):
N(ayay...a.) =N — N(a;) — N(ag) — ... — N(a,)
+ N(ayaz2) + N(aia3) + ...+ N(a,—1a,)
— N(ajasas) — N(ajasay) — ... — N(ay—2a,_1a;)
+ ...
+ (—=1)"N(a1as...a,)
=N — ZN(aZ—) + Z N(a;a;) — Z N(a;ajar)

ZJ”L#] Z»]vkvl#j7ék
+ ...+ (=1)"N(aqas...a,)

This identity, known as thprinciple of inclusion and exclusiomvill be proved by induc-
tion on the total number of properties the objects may hagetha basis of induction, we
have already shown that

N(a}) = N = N(a)

As the induction hypothesis, we assume that the identitsuis for objects having up to
r — 1 properties; that is

N(aydy...a. 1) =N — N(a;) — N(ag) —...— N(a,_1)
+ N(ajaz) + N(ajaz) + ...+ N(ay_2a,_1)
— N(ajagaz) — N(ajasay) — ... — N(ay—2a,_1a,)
+ ...
+ (=1)"'N(aray...a,_1)

Now, for a set of N objects having up to- properties,a;, a2, ...a, we consider the
set of N(a,) objects that have the property,.. Since this set of objects may have any
of the » — 1 propertiesay, as, ..., a,—1, according to the induction hypothesis,

N(aydy...a._ya.) = N(a,) — N(aya,) — N(aga,) — ... — N(a,_1a,)

+ N(ajasa,) + N(ayasza,) + ...+ N(a,_sa,_1a,)
— N(ajagas) — N(ajasay) — ... — N(a,—2a,_1a,)

+ ...
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+ (=1)"'N(aras .. .a,_1a,)

Now,

N(aydy...a. ) — N(ajay...a._qa,)

=N —N(a;) — N(ag) — ... — N(a,_1) — N(a,)

+ N(a1a2> + N(al&g) + ...+ N(alar)

+ (N(ar-1a,)

+ (=1)"'N(a1as . ..a,_1a,)

Thus, N(ajay...a,_ ;) — N(a\d,...al_ja,) = N(ajd,...a._jal)

Example 5.5.1. Twelve balls are painted in the following way: Two are unpaih Two
are painted red, one is painted blue, and one is painted white are painted red and
blue, and one is painted red and white. Three are paintedbhael,and white.
Let ay,as, and a3 denote the properties that a ball is painted red, blue, antewh
respectively; then
N(a;) =8 N(az) =6  N(asz) =5
N(aaz) =5 N(ajaz) =4 N(agaz) =3 Itfollows that
N(ajazas) =3

N(apasas) =12 -8 —6—5+5+4+3 -3 =2,

Example 5.5.2.Find the number of integers betwednand 250 that are not divisible
by any of the integer2, 3,5, and 7.

Solution Let a4, aq, a3, and ay; denote the properties that a number is divisible iy
divisibl by 3, divisible by 5, and divisible by 7, respectively. Among the integers
through 250 there arel125 integers that are divisible by 2, because every other iniege
a multiple of 2. Similarly, there are83 integers that are multiples of and 50 integers
that are multiples ofs and so on.
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Letting [z] denote the integral part of the number

N(ar) = [2) = 125 N(as) = [2] - 83

N(as) = [%] =50 N(as) = [@] =35
N(ajaz) = [223] =41 N(ajas) = [222] = 25
N(aay) = [22] =17 N(agas) = [222] = 16
N(agay) = [22] =11 N(azay) = [22] =7
N(arazaz) = [529%] =8 N(arazaq) = [529%=] =5
N(aasas) = [5255] = 3 N(azasas) = [5255] = 2
N(arazaz04) = [3535557] = 1

Therefore, the number of integers that are not divisibleryydd the integers2, 3, 5,
and 7 is

N(ajayasal) = 250 — (125 + 83 + 50 + 35)

+(414+25+17+164+114+7)—(8+5+3+2)+1=57

Similarly, the number of integers that are not divisible bynor by 7 but are divisible
by 5 is

N(ajasa)) = N(a3) — N(aiaz) — N(azas) + N(ajasas)
=50—-25—-7+3
=21

Problem 5.5.3. Find the number ofr— digit quaternary sequences in which each of the
three digits 1,2, and 3 appears at least once.

Solution. Let aq, a2, and a3 be the properties that the digitis 2, and 3 do not appear
in a sequence, respectively. Because

N(ay) = N(az) = N(az) = 3"

N(ajas) = N(ayaz) = N(agaz) = 2"
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N(a1a2a3) =1

we have
N(djahay) =4"—3x 3" +3x2" —1

As a matter of fact, using the generating function technigque derived a formula for
the number of ways of distributing r distinct objects into distinct cells with no cell
left empty. This formula can also be derived by the use of tirecjple of inclusion and
exclusion as follows:

Let aq,as,...,a, be the properties that the 1st,2nd,...,nth cell is left gnpthe dis-

tributions of ther objects, respectively. Then,

N(d\d,...d.) =n" — (Z”)(n—nw (Z)(n—?)r—...

Example 5.5.4.Consider a single ball that is painted with colours. Letay, ao, ..., a,
denote the properties that a ball is painted with ike, 2nd, . . . , nth colour, respectively.
Since

N(a;) = N(az) =...=N(a,) =1

N(ayaz) = N(ajaz) = ... = N(a,_1a,) =1

N(aas...a,) =1

we have

N(diah...al) =1 (T) ; (g) . <—1>”<Z)

However, N(aid)...al,) =0
because there is no unpainted ball. Therefore, we have ¢ty

(1) () ()=
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Example 5.5.5.Find the number of permutations of the letters o, o, 3, 5, 5, v, 7,
and v which are such that no identical letters are adjacent.

Solution Let a1, as, a3 be the properties that, 3,y are adjacent.

!
N= 2
31313!
7!
N(ar) = N(az) = N(as) = 5,5
5!
N(a1a2> = N(CLQCL:;) = N(alag) = 5

N(ajasasz) = 3!

By principle of inclusion and exclusion,

N(ajahay) = N — Z N(a;) + Z N(a;a;) — N(ajazas)

0! 5l
- - 9 —_ _ 2l
=33 o3 03 Y
— 1680 — 420 + 60 — 6

= 1314

Example 5.5.6.Find the number of permutations of the letteisb, c,d,e and f in
which neither the pattermce nor the patternfd appears.

Solution Let a; be the property that the patterre appears in a permutation, and let
a, be the property that the patterfi appears in a permutation.
By the principle of inclusion and exclusion,

N(ay) = 4! N(ay) = 5!

N(ajaz) = 3! N = 6!

N(ayay) = N — N(ay) — N(az) + N(ajas)
_ 6 — 4l — 51 43!
= 582

Example 5.5.7.In how many ways can the letters, o, o, o, 3, 3, 3,7 and v be ar-
ranged so that all the letters of the same kind are not in desbigck?
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Solution For the permutations of these letters, et be the property that the fout’ s
are in one block, leta; be the property that the thre€ s are in one block, and leis
be the property that the twe’ s are in one block.

¥~ o

N(ay) = 3?—;' N(ayaz) = ;l—:
N(ay) = 4?—;' N(asaz) = i—:
N(a3) = 4?—;' N(ayaz) = 2—:

N(CLlCLQCL3) =3

By principle of inclusion and exclusion,

N(djayay) = N — Z N(a;) + Z N(a;a;) — N(arazas)
|

! 6! 7! 8L 4 6 B
S a3l 3ol a4 T taty o

=871

Exercises

1.

2.

In how many ways can three’s, three 1’s, and three2 ’s be arranged so that no
three adjacent digits are the same in an arrangement?

A man has six friends. He has met each of them at dirirRetimes, every two of
them six times, every three of them four times, every fouhefi three times, every
five twice, and all six only once. He has dined out eight tim@bout meeting any
of them. How many times has he dined out altogether?

. A symmetric expression in three variablesy, and z contains nine terms. Four

terms contain the variable. Two terms contain the variables, y, and z. One
term is a constant. How many terms contain the variablesnd y?

. Find the number of binary sequences of lengthn which every 1 is adjacent to

another1.

. With three differently colored paints, in how many wayas tize walls of a rectangu-

lar room be painted so that color changes occur at (and opaah corner? With
two colors?

. Among the numberg, 2, ...,500, how many of them are not divisible by but

are divisible by3 or 57
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closure, 66
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complement of a graph, 9
complete bipartite graph, 11
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connectivity, 51
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cotree, 42
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degree sequence, 21
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disconnected graph, 28
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edge connectivity, 52

edge covering, 92
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enumerator, 136

exponential generating function, 143

finite graph, 8
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fundamental theorem on graphs, 19

Gallai theorem, 92
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combination, 135

girth, 29
graph, 6
graphic sequence, 22
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quaternary sequence, 124
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regular graph, 20

self complementary, 10
simple graph, 8

spanning subgraph, 15
spanning tree, 41
subdivision, 110

subdivision of edge, 59
subgraph, 15

ternary sequence, 124
tour, 61
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trail, 27
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tree, 34

trivial graph, 8
Tutte's Theorem, 80
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