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1.1 BASIC CONCEPTS OF FUZZY SETS ; -

This section introduces some of the basic concepts and terminology of 1uzzy sets. To
illustrate some of the concepts, we consider the membership grades of the elements of a small
universal set in four different fuzzy sets as listed in Table 1.2 and graphically expressed in fig.

1.1 Here the crisp universal set X of ages that we have selected is table 1.2
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Table 1.2 Examples of Fuzzy Sets

Elements (ages) Infant Adult Young Old

5 0 0 1 0

10 0 0 1 0

20 ¢ 8 8 |

30 0 1 5 b

40 0 1 2 4

50 0 1 5 6

60 0 I 0 8 /
70 0 1 0 1

80 0 1 0 1

If the membership grade of each element of the universal set X in fuzzy set A is less than
or equal its membership grade in fuzzy set B. Thus, if
Ha(X)Sup(x),
for every xe X, then
AcB.
The fuzzy set old from Table 1.2 is a subset of the fuzzy set aduit since for each element in our
universal set

Hotd (X) S M adute(X).

Fuzzy sets A and B are called equal if pa(x)=up(x) for every element xeX, This is
denoted by

A=B.
Clearly, if A=B, then AcBand BcA.
If fuzzy sets A and B are not equal {(pa(x)=pa(x) for at leas. .ne xeX), we write
A=#B. '
None of the four fuzzy sets defined in Table 1.2 is equal to any of the others.
Fuzzy set A is called a proper subset of fuzzy set B when A is a subset of B and the two

sets are not equal; that is, pa(x) < pp(x) for every xeX and pa(x)<pp(x) for at least one xeX.
We can denote this by writing

AcB if and only if AcB and A=B.
It was mentioned that the fuzzy set old from Table 1.2 is a subset of the fuzzy set adult and th-t
these two fuzzy sets are not equal. Thzrefore, old can be said to be a proper subset of adult.
When membership grades rangs in the closed interval between 0 and 1, we denote the
complement of a fuzzy set wi'l.respect t) the universal set X by A an | define iby
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HA(X) =1-pa(x), '
for every xeX. Thus, if an element has a membership grade of .8 in a fuzzy set A, its
membership grade in the complement of A will be .2. For instance, taking the complement of the
fuzzy set old from Table 1.2 produces the fuzzy set not old defined as

not old = 1/5+1/10+.9/20+.8/30+.6/40+.4/50+.2/60.

X = {5,10,20,30,40,50,60,70,80},
and the fuzzy sets labeled as infant, adults young and old are four of the elements of the power
set containing all possible fuzzy subsets ¢ X, which is denoted by P(X).

The support of a fuzzy set A in the universal set X is the crisp set they contains all the
elements of X that have a nonzero membership grade in A. That is supports of fuzzy sets in X
are obtained by the function

Supp : P(X) ->P(X),
where
supp A = {x € X | pa(x)>0}

For istance, the support of the fuzzy set young from Table 1.2 is the crisp set

supp (young) = {5,10,20,30,40,50}
An empty fuzzy set had an empty support; that is, the membership function assigns 0 to all
elements of tue universal set. The fuzzy set infants as defined in Table 1.2 is one example of an
empty fuzzy set within the chosen universe.

- Let us introduce a special notation that is often used in the literature for defining fuzzy
sets with a finite support. Assume that x; is an element of the support of fuzzy set A and that
is its grade of membership in A. Then A is written as

A = /Xy Hu/ Xt /X,
where the slash is employed to link the elements of the support with their grades of membership
A and the plus sign indicates, rather than any sort of the algebraic addition, that the listed pairs of
elements and membership grades collectively form the definition of the set A. For the case in
which a fuzzy set A is defined on a universal set that is finite and coutable, we may write

A=_2" i
Similarly, when X is an interval of real numbers , a fuzzy set A is often written in the form
A=] o Ha(x)/x

The height of a fuzzy set is the largest membership grade attained by any element in that
set. A fuzzy set is called normalized when at least one of its elements attains the maximum
possible membership grade. If membership grades range in the closed interval between 0 and 1,
for instance, then at least one element must have a membership grade of 1 for the fuzzy set to be
considered normalized.
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1.2 MATHEMATICAL MODELING
The mathematical modeling of fuzzy concepts was presented by Zadeh in 1965. His
contention is that meaning in natural language is a matter of degree. If we have a proposition
such as “John is young”, then it is not always possible to assert that it is either true or false.
When we know that John’s age is x, then the “truth”, or more correctly, the “compatibility” of x
with “is young”, is a matter of degree. It depends on our understanding of the concept “young”.
If the proposition is “John is under 22 years old” and we know john’s age ,then we can give a
yes or no answer to whether the proposition is true or a bit by considering possible ages to be
© the interval (0,cc),letting A be the subset {x:xe(0,):x<20},and then determining whether or
not John’s age is in A. But “young” cannot be defined as an ordinary subset of(0,).zadel. was
lzd to the notion of a fuzzy subset. Clearly ,18 and 20 year olds are young, but with different
degrees: 18 is younger than 20. This suggests that membership in a fuzzy subset should not be
on a 0 or 1 basis, but rather on a 0 tol scale, that is, the membership should be an element of
the interval [0 ,1]. This is handled as follows. An ordinary subset A of a set U is determined by
its indicator function, or characteristic function x, defined by
xa(x) ={lifxeA
{0ifxgA

The indicator function of a subset A of a set U specifies whether or not an element is in
A. It either is or is not. There are only two possible values ths indicator function can take. This
notion is generalized by allowing images of elements to be in the interval [0,1]. rather than
being restricted to the two elements set {0,1}.

Definition : A fuzzy subset of a set U is a functions U—[0,<].

Those functions whose images are contained in the two element set {0,1} corfespond to
ordinary, or crisp subscts of U, so ordinary subsets are special cases of fuzzy subsets. A
specific function U—[0,1] representing this notion would be denoted pa. .

" For a fuzzy set A: U—[0,1],the function A is called the membership function, and the
value A(p) is called the degree of membership of p in the fuzzy set A. It is not meant to convey
the likelihood or probability that p has some particular attribute

Of course, for a fuzzy concept, different functions, A can be considered. The choice of
the function A is subjective and context dependent and can be a delicate one. But the flexibility
in the choice of A is useful applications, in fuzzy control. “ ‘

Here are two examples of how one might model the fuzzy concept “young”. Let the set of
all possible ages of people be the positive real numbers. One such model, decided upon by a
teenager might be
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| V() ={ 1ifx<25 7
) { 40-x/15 if 25<=x<= 40
£ 0if 40<x

1.3 SOME OPERATIONS ON FUZZY SETS

A subset A of a set U ocan be represented by a function
x aU ->{0,1}, and a fuzzy subset of U has been defined to be a function
A:U->{0,1}.. On the set p(U) of all subsets of U there are the familiar operations of union,

intercection, and complement. These are given by the rules

AUB= {x: x€A or x€B}
ANB= {x: x€A and XEB}
A’= {XEU;XEA}
Operations between fuzzy sets : Consider the two fuzzy sets A(x) and B(x) of the

nonnegative real numbers by the formulas

Ax)= {1 if x<20
{40-x/20 if 20< x<40
{0 if 40sx
and
B(x) ={ 1 if x<25
(1+(x-25)) ) if 25<x
B

Here are the plots of these two membership functions.

1.4 FUZZINESS AS UNCERTAINTY
Fuzzy setz deal with the type of uncertainty that arises when the boundaries of a class of

objects are not sharply defined. The modeling of fuzzy concepts by fuzzy sets leads to the
possibility of giving mathematical meaning to natural language statements. For example , when
modeling the concept “young” as a fuzzy subset of [0,c0] with a membership function A:
[0,20)—>[0,1], we described the meaning of “young” in a mathematical way. It is a function, and
can be mahipulated mathematiclly and combined with other functions. :
_ There is a more formal relation between randomness and fuzziness. Let

A :U—[0,1] be a fuzzy set. For ®€[0,1], let A,={u€U:A(u)>0}. The set A, is called the &-cut of
A. Now let us view o as a random variable uniformly distributed on [0,1]. That 1s, let (£,A,P)
be a probability space and & : Q—R a random variable with
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P{o :0(w)<a} = { 01f a<0
A if 0<a<l
1ifa>l
Then A, (@)is a random set.
Example :- Suppose that the illness under consideration is manifested as subsets of the set
Q= o @ .. ®, of possible symptoms. Let U be a set of humans, and let
S: - p(U) be given by S(®) ={u€Q :u has symptom o }. For u€U, we are interested in some
numerical measure of the set { ® €Q :u€S(w)}. This'is to be a measure of the seriousness of the
illness of u. Medical experts often can provide assessments which can be described
mathematically as a function u: P(Q)—[0,1], where u(B) is the degree of seriousness of the
illness of a person having all the symptoms in B. So a membership function can be taken to be
A (u)=p{ 0 €Q : uEs(w)}

Since p is subjective, there is no compelling reason to assume that it is
a measure.
1.5 SOME ALGEBRA OF FUZZY SETS
1.5.1 Boolean algebras and lattices
Definition : A relationon a set U is a subset R of the cartesian product U xU .

The notion of relation is very general one. For an element(x, y) EU x U either(x, y)ER or
it is not.
The relation C satisfies the following properties.
A < A(the relation reflexive)
IfA cBand B¢ C then AcC.(the relation is transitive)
If Ac B and B ¢ A, then A = B.(the relation is antisymmetric)

A partial order on a set is a relation on that set that is reflexive ,transitive and
antisymmetric.
Definition: A partially ordered set is a pair(U,<)where U is a set and < is a partial order on U.
Definition: A lattice is a partially ordered set (U,<)in which every pair of elements of U has a
sup and an infin U.
Chains are always lattices. The partially ordered set (P(U), < )is a lattice. The sup of two
elements in P(U) is°their union, and the inf is their intersection .The interval[0,1]is a lattice,
being a chain. '
Lemma: 1.5.2 If (U, <)is a lattice, then for all a, b, ce U,
1. aVa=aanda Aa=a(VandA are indempotent.
2. aVb=bVa and anb=b A a(V and A are commutative)
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3. (aVb)Ve=aV(bVc) and (a A b)Ac= aA(bAc). (V and are associative).
4. aV (a A b)=a and aA(aVb) =a. These are the absorption identities).

Theorem : .1.5.3 If ‘U is a set with binary operations V and A which satisfy the properties of
‘Lemma 1.5.2, then defining a = b if aab = a makes (U, <) into a lattice whose sup and in
operations are V andA. _

Proof. We first show that a A b =a if and only ifa V b=b. Thus defining a<b if aAb=a is
equivalent to defining a<b if a V b=b. Indeed, if aAb=a, then aVb=(aAb) V b=b by one of the
absorption laws. Similarly, if aVb=b, then anb=a.We show the existence of sups, and claim that
sup{a,b}=aVb.. Now a<aVb since an (aVb)=a by one of the absorption laws. Similarly
b<bVa=aVb, so that aVb is an upper bound of a and b. For any other upper bound x,a=arx and
b=bAx, whence x = aVx = bVx. Therefore, x=aVxAb a=(aVb)V x, and so aVb<x. Thus
aAb=sup{a,b}, Hence, the proof follows.

The lattice ([0,1],5) plays a fundamental role. 1t is a bounded distributive lattice.
It is not complemented. For x,ye[0.1], xVy = sup {x,y}= max{x,y}, and similarly x A y=inf{x,y}.
Distributivity is easy to check. This lattice has another important operation on it
[0,1]—[0,1]:x—1-x. We denote this operation by ‘ even though it is not a complement. The
operation has the following properties

x)=x

x<y implies that y'<x'

such an operation on a bounded lattice is called an involution, or a duality. It follows that

'is one-to-one and onto, and that 0'=1 and 1'=0. If is an involution, the equations

xVy)'=x'Ay
Ay =xVy
are called the De Morgan laws.
Theorem : 1.5.4
Let (V,V; A ,0,1) be a De Morgan algebra and let U be any set. Let f and
g be mappings from U and V. We define
L fV g)x)=f (x) Va(x)
2(fARX)=f(x) A g()
3. £ = f ()
T 4.0(x)=0
5.1(x)=1
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let V© be the set of all mappings from U inte V. Then

(VU A, ,0,1) 1s a De Morgan algebra. If V is a complete lattice, then so is VU
Proof':

The proof is routine in all respects. For example, the fact that V is an associative
operation on VU comes directly from the fact that V is associate on V. (the two Vs are different
of course) Using the definition of VU and that v is associate on vV ,we get

(fv{g vh))(x) = (x) v (g v h)x)
| = f(x) v (g(x) v h(x))
= (f(x) v g(x) ) v h(x)
=(fv &)X v h(x)
=((fv g vh)x).
Whence fv (g v h)=(fvg)vhandso V is associative on V ” and hence directly proof follows.
Corollary 1.5.5
flu),v,A ,',0,1)isa complete De Morgan algebra.
1.6 EQUIVALENCE RELATIONS AND PARTITIONS
Deﬁnitioh : A relation ~on a set U is an equivalence relation if for ali a, b and ¢ in U.
{1 a~a
(2) a~b implics b~a, and
(3) a~b,b~¢ imply that a~c.
The first and third conditions we recognize as reflexivity and transitivity. The
second is that of symmetry. Thus an equivalence relation is a relation that is
reflexive, symmertric and transitive.
Definition:  Let ~ be an equivalence relation on a set U and lei aeU.The
equivalence class of an element a is the set [a]={ueU:u~a}.
Definition:  Let U be a nonempty set. A partition of U is a set of nonempty

pairwise disjoint subsets of U whose union is U.
Theorem: 1.6.1

Let ~ be an equivalence relation on the set U.Then the set of equivalence classes of ~ is
a partition of U.This association of an equivalence relation ~ with the partition consisting of the
equivalenice classes of ~ is a one-to-one correspondence between the set of equivalence relations
on U and the set of partitions of U.
Proof : The union of the equivalence classes [u] is U since u 1[u].We need only that two
equivalence classes be cqualror disjoint. If x € [U] N[V] {v},then x~u,x~u and so u~x and
x~v.By transitivity that u ~ v. If y € [u], then y ~ v and so u~x and x~ v.It follows y~v.Thus y
€[v].This means that {u} < [V]. Similarly, [v]lc[u] and hence [u] = [v]. So if two equivalence
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classes are not disjoint they are equal. Therefore the equivalence classes from a partition. Notice
that two elements are equivalence are equivalent if and only if they are in the same member of
the partition, that 1s in the same equivalence class. So this map from equivalence relations to
partitions that one-to-one. Given a partition declaring two elements equivalent if they are in the
same member of the partition that is, in the same equivalence class. So the map from
equivalence relations to partitions is onto.
Theorem :  Let € (U) be the set of all equivalence relations on the set U. Then

(e(U), ) is a complete lattice.
Proof : There is a biggest and smallest element of €(U), namely U[JU and {(u,u): u €U},
respectively. We have to show that any nonempty family{Ei : 1 € I{of elements of €(U) has a
sup and inf. Now certainly A {Ei:i€l}= Q1 Eiif M E;Is an equvalence relation. Let (u.v) and
(v,w) € M Ei- Then (u,v) and (v,w) belong to each E ; and hence (u,w) belongs to each E,.
Therefore, (v w) € % B Thus M is a transitive relation on U. That r‘\ E1 1s reflexive and-
syminetric is similar. What we have shown is that the intersection of any famlly of equivalence
relations on a set is an equivalence relation on that set. This is clearly the inf of that family. Now
V {Ei:1 € I} of a fumily of equivalence relations on U is

(HEE€ (1):EgEBiforalli€

Note that UxU is an equivalence containing all the Ei. This intersection is an equivalence
relation on U and it is clearly the least equivalence relation containing all the Ei. Therefore it is
the desired sup.

1.7 COMPOSING MAPPING

Letf:U=> V,andg : V> W. Then g o f, or more simply gf , is the mapping U> W
defined by (gf) (u)=g(f(u)). This is called the composition of the mappings f and g. Any two
functions of a set into itself can be composed. The function f : U= U such that f(u)=u for all u is
denoted by IU and is cal!ed the identity function on U. The set of all functions from Uto V is
denoted map(U,V),or by e '

A mapping A: U->L induces a mapping A : p(u)>P(L). So with a sub set X of U. A(X)
is a subset of L. But since L is a complete lattice. We may take the sup of A(X). This sup is
denoted V(A(X). One should view V as a mapping p(L) = L. The composition V A is a
mapping P(U)-> L,namely the mapping given by

P(U) ASP(L) v 51
In particular, a fuzzy subset of U yields a fuzzy subset of P(U).

For sets U and V, a subset of UxV is called a relation in UxV. Now a relation R in UxV
induces a mapping R '\J-)P(U) given by

R (v)= {u: (u, v) €R}

10
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Thus with A: UL we have the mapping
vk PO PV L
=

Thus the relation R in UXV associates with a mapping A: UL a mapping V AR™: V->
L. This mapping is sometimes denoted R(A). When L=[0,1], we then have a mapping
F(U)->F(V) sending A to R(A)=VAR . IfR is actually a function from U to V, then R has been
extended to a function F(U)> F(V) sending A to VAR In fuzzy set theory, this is called
extension principle. '

1.8 ISOMORPHISMS AND HOMOMORPHISMS
The mapping f(x) = x+1 is an order isomorphism from [0,1]to {1,2]. A mapping g

U->V such that g(x)< g(y) whenever x<y is called homomorphism, or an order
homomorphism, cmphasizing that the order relation is being respected. The condition on g that
if x <y then g(x)<g(y) is expressed by saying that g preserves order or is order preserving.
A mapping f: UV is an isomorphism of two laltices if [ is one- to -one and onto, {(x V
y)=f(x) V f(y) and f{xay)= f(x)Af(y). That is, f must be one-to-one and onte and preserve both
lattice operations. If the one-to-one¢ and onto conditions are dropped. then f is a lattice
homemorphism. If U and V are complete lattices, then an isomorphism £: UV is a cemplete
lattice homomorphism if and only if f(VS) = V{f(s):S €S} and f{Asy=a{f(s):s €S} for every
subset S of U. An isomorphism of a lattice(or any algebraic structure) with itself is called an
automorphism.
Example :

Consider the lattice([0,1],V,A,}with involution, where V is sup, A is inf, and x'=1-x,and
the lattice{0,1/2,1} with the same operations, Then the mapping f:[0,1]={0,1/2,1} that sends
endpoints to endpoints and the interior points of[0,1]to % is a homomorphism. Note that one
requirement is that f{x")=f(x)',and that this does hold.

Suppose that f: U=V is a homomorphism from a lattice(U,V A} to a lattice(V,v.A}.Then
the relation ~ on U by a ~ b if f{a)=f(b) is an equivalence relation. But also if a ~ b and ¢ ~ d then
flaV c)=fa) V f(c)=f(b) V fild)=f(b V d), so a v ¢ and ¢ ~ d. Similarly anc ~ bad. So this
equivalence relation has these two additional properties :if a ~ b and aVc ~ bVd and asc ~ bad.
Such an equivalance relation on a lattice is called a congruence. And congruences on lattices
give rise to homomorphisms.

1.9 ALPHA-CUTS

Definition :- _

Let U be a set, let C be a partially orderded set and let A:- USC For
« €C, the a-cut of A, or the a-level set of 4, is A (Ta)=fu€U : A(u)> a}. This subset of U will
be denoted by A,
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Thus the a-cut of a function A: U>C is the subset Aqg=A" (Ta)of U, and we have one
such subset for each aeC. A fundamental fact about the «-cuts, A, is that they determine . It
-follows immediately from the equation
Al@)=Agn (UAE)]
Result : o
Let A and B be a mappings from a set U into a partially orderded set C. If A,=B., for ali
o €C, then A=K,
Theorem : 1.9.1 7
Let C be a complete laitice and U a set. Let F(U) be the set of all mappings from U into
C. and L(U) be the set of all mappings g: C-> P(U) such that the diagram given below commutes
or equivalently such that for all subsets D of C,

C vV

2

g

o

]c

'3

¢
v

n* 2

%
&
)

g(VD) =n g(d}
deD

Then the mapping ¢ : F(U)=>L(U) given by o(4 )=A"" Tis one-to-one and onto.
Proef.

We have already observed that ¢ maps F(U) into 1(u) and that this mapping is one-to-one.
Let g € [(U) We must show that g =A"  for some A€F ( 11},
For u €U, define

h(u) = {d €C: g(d)o M g(x)}={d € C:u €g(d)}

_ u€g(x)

Let A=Voh. Then
‘ A" T (e)={u€U: A{u)20}
Now if u€g(c), then g{c)o N
vegro  8(x) which implies that cth(u) _

and thus that is €A™(c)  y(c)c A" . Now suppose that wA™T(c). Now suppose that u1 A”'
T(c), so that A(u)>¢. Then u Enue(x) 2(x)zg(d) for all deh(u). :
Thus u€M g(d) = g(AUNce(c)

di1Au)

12
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It follows that g(c)=A"T(c),whence g=A"T=¢(A).
Corollary : The complete lattices F(U) andL(U) are isomorphic.

1.10 IMAGES OF ALPHA-LEVEL SETS

Let f: U= V and let A be a fuzzy subset of U. Then V Af' is a fuzzy subset of V by the

extension principle. It is the mapping that is the composition.

V£ PU) A" >w([0,1])Y - [0,1]

Theor-ss : 1.10.1

+ Let C be a complete lattice, U and V be sets, A: U>C, and f: U V. then

L. fAa)c(V Af Na forall o € C,

2, flAa)=(V Af ™), for o >0 if and only if for each member P of the partition induced by
fVAP)za implies A(u) 2 o for some u € P, .

3. f(As) = (V Af ™), forall a > 0 if and only if for each member P of the partition
induced by f, VA(P)=A(u) for some u € P.

Proof : The theorem follows immediately from the equalities below.
flA) = {flu): AQu)2a}
{vEV:A@)2q, flu=v}
{vEV:VAFf ' (v)2a)
= {vEV:V{AQ):fu)=v}>a}
One should notice that for some a, it may not be true that VA(P) = a for any P.
EXERCISES :
1. Let U be a set and P(U) be the set of all subsets of U. Verify in detail that
(P(U),c)is a Boolean algebra. Show that it is complete.

il

(VAf),

2. Show that a chain with more than two elements is not complemented.
Show that the De Morgan algebra (F(U),V,A,",0,1) satisfies AAA' <B V B’ for all
A,B € F(U), that is, is a Kleene algebra, Show that [0,1]is a Kleene algebra. Show that
10,119 is not a Kleene algebra.

4. - Let B be a Boolean algebra . Show that B is a Stone algebra but not a
Boolean algebra. | |
Show that if S is a Stone algebra, then so is S%
Show that every bounded chain is a stone algebra.

13
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UNIT - 11
FUZZY QUANTITIES -
LOGICAL ASPECTS OF FUZZY SETS
TABLE OF CONTENTS

2.1 Fuzzy Quantities
2.2 Fuzzy Numbers
2.3  Fuzzy Intervals
2.4 Logical Aspects of Fuzzy sets
2.5 A three vaiued Logic
2.6 Fuzzy Logic
2.7  Fuzzy and Lukasiewiez Logics
2.9  Interval valued fuzzy logic
2.9 Canonical Forms

EXERCISE
2.1 Fuzzy quantities

Let R denote the set of real numbers. The elements if F(R), that is, the fuzzy subsets of R,
are Fuzzy quanitities. A relation R in U x V. Which is simply a subset R of U x V. induces the
mapping R: f(U) — f{V) defined by R(A)= VAR-1. This is the mapping given by

R(A)(V) = V{A({uy,v)eR})}
are expressed by the extension principle at work. In particular, a mapping
f : R—R induces a mapping f: f(R) —» f(R). A binary operation o: Rx R—=»R gives a mapping
f(RxR) —f(R), and we have the mapping fiR) x f([R) - f(RxR) sending (A.B) to A(AxB).
Remember that A {AxB)(r,s) = A(r} A B(s). The composition
F(R) x F(R) — F(RxR) =»F(R)
of these two is the mapping that sends (A,B) to V(A(AXB))O". Where o™ (x) = {(a,b) : ach = x}.
We denote this binary operation by A o B.
This means that
(AoB)(x)

]

VA(AxB) 0" (x)
= Vax A(AXB}(b)
= Vi {A(@) A B(D)}
For example, for the ordinary arithmetic binary operations of addition and multiplication on R,
we then have corresponding operations A+B = VA(AxBy+' and AB =VA(AxB)." on F(R).
Thus
(A+B)(2) = V saymr {AG) A B3}
(AB)(2) = Vxy=s { AGK) A BY)}

14
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The mapping R — R : r— -r induces a mapping f{R) —> f(R) and the image of A is denoted -A
For xeR,
(-A)(X) = Ve {A(V)}=A(-X)
If we view - as a binary operation on R, we get
(A-B)(2) = Viy= {A(x) A B(y)}
It turns out that A+(-B) = A-B, as is the case for R itself.
Division deserves some special attention. It is not a binary operation on R since it is not
defined for pairs (x,0), but it is the relation
{((t;5),t) € (RXxR)x R : r=st}
By the extension principle, this relation induces the binary operation on f(R) given by the
formula

A/B(x) =V = (A(y) A B(2))

Proposition 1
For any fuzzy set A, A/x{0} is the constant function whose value is A(0).
Proof. The function A/x {0} is given by the formula
(Ax{o}) (u) = Vs-wu (A(s) A x{o} (1))
Vs=ou (A(s) A x{0}(0))
A(0)
Theorem 2 Let o be any binary opcration on a set U, and let S and T be subsets of U. Then
T T, =T{sot:se s, teT}
Proof. Foru e U, .
(Ts o T )W) = Voo =u (Tg (5) A () ‘
The sup is either 0 or 1 and is 1 exactly when there is an seS and a teT with

li

I

soi = u. The result follows.

Theorem : 3
Let A, B and C be fuzzy quantities. The following hold.
1. 0+A=A : 2 0.A=0
3 1.A=A 4. A+B=B+A
5. A+HB+C) = (A+B)+C 6. AB=BA
7. (AB)C=A(BC) 8. r(A+B) =TA+rB
9. A(B+C) < AB+AC 10.  (-nA=-(rA)
1. -(-A)=A 12. (-A)B=-(AB) = A(-B)
13, A/1=A 14, Ar=1rA
14 A/B=A1/B 16,  A+(-B)=A-B.

15
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Proof. We prove some of thesé. For the equations
Alx) = Virmx X1y (V) A AZ)

Viex X{1} (1) A A(x)
A(x)
show thai 1.A=A. If {A{B+C))(x) > (AB + AC) (x), then there exist u,v,y with y(u+v) = x and
such that '

A(y) A B{u) A C(v) > A(p) A B(@) A C(k)
for all p.a.hk with pg + hk = x. But this isnot so forp =h =1y, g=u, and n = k. Thus
(A{B+C(x) < (AB+ACYX) for all x, whence A(B+C) < AB+AC.

It

However,
r{A+B) = rA+rB since
(X{rH(A+B)(x) = V = (X {1} (0) A (A+B) (V)
= V e (X{r} (1) A (ATB) (v))
=V g e (A(S) AB()
= Ve (XIDOAE) A X{HOBO)
= (rA + 1B)(x)

Defirition A fuzzy quantity A is convex if its a-cuts are convex, that is, if its a-cuts are
intervals.
Theorem (4) A fuzzy quantity A is convex if and only if A(u) = A(x) A
A(z) whenever x Sy S z.
Proof ; Let A be convex, x <y < z, and a = A(x) A A{z). Then x and z are in A is an interval,
yis an Ac.. Therefore A(y) 2 A(x) A A(2).
Suppose that A(y) 2 A(x) A A(z) whenever x <y<z Let x<y<z wih
x,z € Ao. Then A(y) > A(x) A A(z) > a, whenever ye Aa and Ac is convex.
Definition ' |
A fuzzy quantity A is convex 1f its &-cuts are convex, that is , if its &-cuts are intervals.
Therorem (5)
& fuzzy quantity A is convex if and only if A(Y)2A(x) A A{z) vhenever
SES<Z

Proof .

Let A be convex, x<y<z, and &= A(x) A A(z). The x and z are in A,, and since A, 1S an
interval, y is in A,. Therefore A(y) > A(x) A A(z). W

Suppose that A(y) > A(x) A A(z) whenever XSysz. Let x<y<z with x,z €A,. Then A(y) 2
A(x), whence yEA, and A is convex. '
Theorem (6)

If A and B are convex, then so are A+ and -A.

16



M.S University D.D.CE. I M.Sc., Maths

Proof : -
We show that A+B is convex .. Let x<y<z. We need that (A+B)
(v) = (A+B)AX}A+B)z) . Let X>0. There are numbers X;Xp;Z; and Z7Z; with
Xi+ X=X and Z,+Z,=Z and satisfying
CA(X)) B(X2) 2 (A+B)(x)-€
A(Z1) B(Z) (A+B)Z) &
Now y = ax +(1-a) z for some ®€[0,1]. Let x!' = ax)+(1-00)z; and z'=ax,+(1-)z. then x'+z'=y, x'
lies between x; and z;, and z; lies between x; and z;. Thus we have
(A+B)(y) A(x') B(z)
A(x)AA(z)AB(x2)AB(z2)
[(A+B)(x)-e[(A+B)(z)-¢]
< [((A+B)(x)A (AtB)(z)]-€
It follows that A+B 1s convex.

v v v

A function f; R->R is upper semicontinous if {x:f{x)> &} is closed. The following definition is
consistent with this terminology.
Definition
A fuzzy quantity is upper semicontinous if its &t-cuis are <losed.
Theorem (7)
A fuzzy quantity semicontinous if and only whenever x € R and €>0 there is & >0 such
that |x-y] <& implies that A(y)<A(x)+€
Proof
Suppose that A, is closed for all , . Let x € R and ¢ >0. If A(x)+ g >1, then A(y)<A(X)+
€ for any y. If A(x) + £<1 then for G=A{x)+s, xEA, and so there is >0 such that ( X-0, Xx+0)
NA, = ¢. Thus A(y)<c = A(x)+ € for all y with x-y<.0
Conversely, take 6€[0,1], x € A, and £ = &-A(x). There is 5>0

2
such that x-y < & implics that A(Y)<A(x) + ®-A(x)< o and so (x-d, x+0)
nA, = 0. Thus Ay is closed. 2 .
| The following theorem is the crucial fact that enables us to use -cuts in computing with
fuzzy quantities. |
Theorem (8)

Let O : RxR->R be a continc 4 binary operation on R and let A and B be fuzzy quantities
with closed a-cuts and bounded supports. hen for each u€R, (AoB)(u)=A(x)AB(y) for some X

and y with u=xoy. :

17
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Proof : By definition,

(AoB)(u) =V (A(x) AB(y))

X0y=u

The equality certainly holds if (AoB)(u)=0. Suppose & = (AoB(u)>0, and A(X)AB(y)< « for all x
any y such that there is a sequence {A(x;) B(y;)} i=1 in the set {A(x) B(y) : xoy=u}having the
following properties.
{A(x;) B(yi)} converges to o
Either {A(x;) } or B(y;)} converges to a
Each x; is in the support of A and each yi is in the support of B

W oN

Suppose that it is {A(x,) that converges to o . Since the support of A is bounded, the set
ixi} has a limit point x and hence a subsequence converging to x. Since the support of B is
bounded, the correspondent subsequence of y; has a limit point y and hence a subsequence
converging to y. The corresponding subsequence of x, converges to x. Thus we have a
subsequence {{A(xi)AB(yi)}i-, satisfying the three properties above and with {.:.;} converging to
x and {y;} converging to y. If A(x) = A< ¢, then for &= ot and for sufficiently large i,
2 2

s

X ; € Aj, x is a hmit point of those x;, and  since all cuts are closed. XEA,;. But it is not, so A(x)
= o In a similar vein, B(y) >, o and we have (AoR)(uj=A(x) AB(y). Finally , u=xov since
u=x;0y; for all 1, and o is continuous.

Corollary (9)

If A and B are fuzzy quantities with bounded support, all a-cuts are closed, and o is a
continous binary operation on R, then (AoB), = A,0B,.
Proof :

Applying the theorem, for u €(AoB),. (AoB)(u) = A(c)AB(y) for some x and y with
u=xoy. Thus x€A, and y€B, and therefore (AoB), C _A,0B,. The other inclusion can be
calculated easily.

Corollary (10)
If A and B are fuzzy quantities with bounded support and all ot-cuts are closed, then
1. (A+B), = A, +B,
2.(AB), = A,B,
3.(A-B), = A,B,

2.2 FUZZY NUMBERS
Definition

A fuzzy number is a fuzzy quantity A that satisfies the Jfollowing conditions.
1. A(x) =1 for exactly one x.

2. The support {x: A(x)>0} of A is bounded.

18
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3. Thea cuts ofA'are closed intervals.
Proposition (1)

The following hold:

% Real numbers are fuzzy numbers.

2 A fuzzy number is a convex fuzzy quantity.

3 A fuzzy number is upper semicontinuous.

4, If A is z fuzzy number with A(r) =1, then A is non-decreasing on

(-0,1) and non-increasing on [r,0).
Proaf. It should be clear that real numbers are fuzzy numbers. A fuzzy number is convex since
ils «-cuts are intervals, and is upper semicontinuous since its a-cuts are closed. If A is fuzzy
number with A (r) = 1 and x < y<r, then since A is convex and A(y) < A(r), we have A(x) <

A(y),s0 A is monotone increasing on (-co,r]. Similary, A is monotone decreasing on [r,c0).

Theorem (2)

If A and B are fuzzy number then so are A+B,A.B, and —A.
Proof, '

That these fuzzy quantities have bounded support and assume the value 1 in exactly one
place is easy to show. The a-cuts of A+B and A.B are closed intervals by the last Corollary of
. 1. Since ~A=(-1). the remaining parts follows.

Definition
A triangular fuzzy number is a fuzzy quantity A whose values are given by the formula
A(x)={0,if x<a '
x-a ifagx<b
ba
¢ b=sx<c
c

b-
X-
bo
0 if e<x | for some a<h <c.
Theorem (3)
For triangular numbers,
{a.b, c) +(d, e, f) = (a+d, b+c, ¢ +f)

‘Proof. Using ((a, b, ¢) + (d, €, ) =(a, b, c)a +(d, e, f)a, it follows that the support of the
sum is the interval (at+d, ctf) and that 1 is assumed exactly at b+e. Suppose that o >0,'the left
endpoint of the a-cu of (a, b, c)is u and that of(d, e, f) isv. Thena<u< b, d< V <e, and

= u-a = u-d

b-a e-d
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Also, by alegbrical Principle,

o = utv-—(atd)
bte — {a+d)

which shows that u+tv is the left endpoint of the a-cut of(a+d, b+e,c+f).

But we know that the endpoint of the a-cut of{a,b,c)+(d,e,f) is u+v. Similarly for right endpoint
of cuts, and hence (a,b,c) +(d.e.f) and (a+d,b+e,c+f)have the same cuts and so equal.
2.3 FUZZY INTERVALS

A subset S of R 1s identified with x ,, and in particular, interval [a, b] are identified with

their characteristic functions, namely the fuzzy quantities X (5, v).
The use of intervals with their arithmetic is appropriate in some situations involving
impreciseness. When the intervals themselves are not sharply defined, we are driven to the
concept of fuzzy interval. Thus we want to generalize intervals to fuzzy intervals, and certainly a
fuzzy quantity generalizing the interval [a, b]. A fuzzy quantity that attains the value 1 is called
normal. The other defining properties of fuzzy irtervals should be like those of fuzzy numbers.
Thus a fuzzy interval should look something like the following picture.

This fuzzy interval has a trapezoidal form representing “‘approximately between 4 and 6.
Our definition 1s this: '

0.8
0.6
0.4
0.2

Definition
A fuzzy interval is a fuzzy quantity A satisfying the following.

I A is normal
2, The support {x :A(x)>0} of A is bounded.
1 The a-cuts of A are closed intervals.

2.4 LOGICAL ASPECTS OF FUZZY SETS .

Any function t :V—{0,1} we get a function ~t :F—{0,1] as follows: for each
variable a appearing in a formula, substitute t;(a) for it. Then we have an expression in the
symbols 0,1,V,A, and °, together with balanced sets of parentheses. The tables below define the
operations of V,A and * on the truth values {0,1}.
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Vv 0 1 A 0 1
0 0 1 0 0 0 0 1
1 1 1 1 0 1 0

Using these tables, which describe the two element Boolean algebra, we get an extension
to F. For example, if t(a)=0 and t(b)=t(c)=1, then

~t((a V b)ac)a(b’ V ¢)) = (((t(a) V t(b)at(c)AHD)'V K(c)))

= ((OVDADAI'VI)
= (1IADA(OV1)
=1al

=1

Such a mapping F—{0,1} is called a truth evaluation. We have exactly one for each
mapping V—{0,1}. Expressions that are assigned the value 1 by every t are called tautologies.
Suchas aVa’and bV b’.

There are two other common logical connectives.::;(imp]ies) and <>(implies and i1s
implied by, or if and only if), and we could write down the useful truth tables for them. However,
in classical two-valued logic, a=>b is taken to mean a’ V b, and ac>b to mean (a=>b)a(b=a).
Thus they can be defined in terms of three connectives we used. The formula a=b is called
material implication.

Now the set F/=(F “modulo”=) of all equivalence-classes of this equivalence relation. Let
[a] denote the equivalence class contains the formula a. Then setting

[a] V [b]=[a V b]

[a] A [b]=[a A D]

[a]'=[a']
makes F/= into a Boolean algebra. That these operations are well defined, and actually do that is
claimed takes some checking and we will not give the details. This Boolean algebra is the
classical propositional calculus. If the set V of variables, or atomic formulas, is finite, then F/=is
finite, even though F is infinite. It is a fact that if V has n elements. Then F/= has 2% elements. If
{v{,¥2,...,Va} is the set of variables, then the elements of the form.
WIAWA. AW

Where is either n or u are called elements, and every element of F is logically equivalent
to the join a unique set of monomials. (The element [0] is the join of the empty set of
monomials.) Elements written in this fashion are said to be in disjunctive normal form.

2.5 A THREE VALUED LOGIC
The construction carried out in the previous section can be generalized m many
ways.Perhaps the simplest is to let the set { 0,1} of truth values be larger. Thinking of 0 as

representing false and 1 as representing true , we add a third truth value u representing
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undecided. It is common to use % instead of 2, but a truth value should not be confused with a
number , so we prefer . Now proceed as before. Starting with a set of variables, or primitive
propositions ¥ build up formulas using this set and some logical connectives. Such logics are
called three-valued, for obvious reasons. The set F of formulas is the same as in classical two-
valued logic. However, the truth evaluations t will be different, thus leading to a different
equivalence relation =onF . There are a multitude of three-valued logics, and their differcnces
arise in the specification of truth tables and implication.

The extending a mapping V > { O,u,1} to a mapping F = {0u1 }, we need to specify
how the connectives operatc on the truth values. Here is that specification for a particularly

famous three-valued logic.

Vio u 1 A 0 u 1 '

oy 0 u 1 0 0 0 0 J i

u u u 1 u 0 u u uf u

1 1 1 1 1 0 u 1 1 0
i

Again, we have chosen the basic connectives to be V, A, and ',. These operations V and »
come simply from viewing { O,u,1) as the threec-element chain with the implied lattice

operations. The operation ' is the duality of this lattice. The connectives => and < are defined

as follows.
= 0 u 1 & 0 u 1
0 1 1 1 0 1 u G
u u 1 1 u u I u
1 0 u 1 | 0 u 1

For this logical system, we still have that a and b are logically equivalent, that is “t{a )= "1b)
for all truth valuations t:V = { 0,4,1 } if and only if a < b is a three-valued tautology.

2.6 FUzzyY LOGIC

Fuzzy propositional calculus generalizes classical propositional calculus by using the
truth set {0,1} . The construction parallel those in the last two sections. The set of building
blocks in both cases is a set V of symbols representing atomic or elementary propositions. The
set of formulas F is built up from V using the logical connectives A , V. ' ( and or , and not ,
respectively) in the usual way. As in the two-valued and three-valued, propositional calculi, a

truth evaluation is gotten by taking any function t: V = [0,1] and extending it to a function
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t: F = [0,1] by replacing each element a € V which appears in theformula by its value t(a),
which is an element in [ 0,1]. This gives an expression in element of [ 0,1] and the connectives
V, A, ". This expression is evaluated by letting

xVy = max {x,y}

xAy = min{xy}

X' = l-x

for elements x and y in [ 0,1]. We get an equivalence relation on F by letting two formulas be
equivalent if they have the same truth, evaluation for all t. A formula is a tautology if it
always has truth value 2. Two formulas u and v . are logically equivalent when “t(u) = "t(v) for
all truth valuations t. As in three valued logic, the law of the excluded middle fails. For an
element a € V and a t with t(a) = 0.3, t(a V @) = 0.3 V 0.7 = 0.7 = 1. The set of equivalence
classes of logically equivalent formulas forms a kleene algebra, just as in the previous case.

The association of formulas with fuzzy sets in this. With' each formula u, associate the
fuzzy subset [0,1] ¥ > [0,1] of [ 0,1] given by t> t(u), Thus we have a map from F to f{[0.1]").
This induces a one -to-one mapping from F/=into the set of mappings from [0,11" into {0,1],
that is into the set of fuzzy subsets of [0,1]". This one-to-one mapping associates fuzzy logical
equivalence with equality of fuzzy sets.

2.7 Fuzzy and Lukasiewicz logics
The construction of F/=fur the three-valued Lukasiewicz propositional calculus and the
construction of the same except for the truth values used. In the first case the set of truth values
was {0,u,1} with the tables given, and in the second, the set of truth values was the interval
[0.17 with

vy = max{x,y}
XAY = min(x,y)
x" = 1-x

we remarked that in each case the resulting equivalence classes of formulas formed kleene
algebras.
Theorem 1
The propositional calculus for three-valued lukasiewicz logic and the propositional

calculus for fuzzy logic are the same
proof. we outline a proof . truth evaluations are mappings f form F. into the set of truth
values satisfying

FvVw) = fW)VFw)

foaw) = FEAfw)

) = f(y
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For all formulas v and w in F . Two formulas in F are equivalent 1f and only if they have
the same values for all truth-valuations. So we need that two formulas have the same value for
all truth valuations into [0,1] if and only if they have the same values for all truth valuations
into [ 0,u,1). First, let ][] be the Cartesian product [1 xeq0,1) { Ou,1} with V. A and ' defined
componentwise. If two truth valuations from F into [] differ on an element, then these functions
followed by the projection of [] into one of the copies of { O.u.1} differ on that element. If two
truth valuations from F to {0,u,1} differ on an element, then these two functions followed by
is a lattice embedding of [0,u,1} into [0,1] differ on that element. There is a lattice embedding
[0,1] =2 I1 given by y 2 {yx}x where y is O,u, or | depending on whether y is less than x.
equal to X or gréater than x. if two truth valuations from F into [0,1] differ on an element, then
these two functions followed by this embedding of [0,1] into [] will differ on that element. The
upshot of all this is that taking the truth values to be the lattices [O.u,1}, [0.1], and [T all induce

the same equivalence relation on F, and hence yield the same propositional calculus.

2.8 INTERVAL VALUED FUZZY LOGIC
A fuzzy subset of a set S is a mapping A ; U = [0,1]. The value a(u) for a particular u 1s
typically associated with a degree of belief of some expert. An increasingly prevalent view 1s
that this method of encoding information is inadequate. Assigning an exact number to an
expert's opinion is too restrictive. Assigning an interval of values is more realistic. This means
replacing the interval [0,1] of fuzzy values by the set [ (a,b) ; ab e [0,1], asb}. A standard
notation for this set is [0,1]" . An expert's degree of belief for a particular element u & U will
be associated with a pair (a,b) € [0,1] 2} Now we can construct the propositional calculus
whose truth values are the elements of [0,1]*]. But first we need the appropriate algebra of
these truth values, 1t is given by the formulas.
(a.b) V (c,d) = (aVe, bVd)
(a,b)Aa(cd)=(anc,bad)
(ab) =(b'a")
Where the operations V, A , and ' on elements of [0,1] are the usual ones, commonly referred to

in logic to in logic as the disjunction (V), conjunction (A) , and negation.

2.9 CANONICAL FORMS :-

As in classical two-valued propositional calculus, every formula that is, every Boolean
expression such as an(b V ¢) ~ d' has a canonical form, the well-known disjunctive normal
form. For example, the disjunctive normal form for (a V b) A ¢' in the logic on the variables”|
ab,c} is

(anbac)V(aab ac)V(@abach
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and that of (anc’) V (b A ¢') is the same form exactly. Of course, we could have just uscd the
distributive law and noted equality, but that is not the point here. In this classical case, two
formulas can be checked for logical equivaience by putting them in their canonical forms and
noting whether or not the two forms are identical. Alternately, one can check logical equivalence
by checking equality for all truth cvaluations of the two expressions. Since the set { 0,1} of truth
values is finite, this is a finitc procedure.

Now for Lukasiewicz's three-valued logic, which is equal to fuzzy propositional calculus.
two formulas may be similarly tested for logical equivalence, that is, by checking equality of all
truth evaluations. Two formulas in fuzzy propositional calculus are logically equivalent if any
only if they are logically equivalent in Lukasiewicz's three-valued propositional caleulus.

The normal form for De Morgan algebras stems from realizing that all conjunctions of
literals as well as I, are join irreducible. The normal form for Boolean algebras stems from
realizing that the only join irreducible elements in the Boolean case are the complete
conjunction of literals in which each varishle occurs exactly once. For example, if the variables
arc Xp,Xz,X; then Xy A Xp A X3 A and X) A X2 A X'5 arc complete disjunctions while X, A X5 aigd X»

~ X' are not. The empty disjunction is 0 and the disjunction of all the compicte conjunctions isi.

The join irreducibles in the kleene case are a little more subtle. R the variables are X., X-,
i Xn, then a conjunction of literals is join irreducible if any only if it is | . or it contains at
most one of the literals for each variable, or it contains at least one of the literals for each
variable, or it contains at least one of the literals for each variable. Suppose n = 3. Here are some

examples.
®

L. Xi A Xz A X318 join irreducible. It contains at least ore of the literals for each variable. (It also
contains at most one of the literals for each variable, so qualifies on two counts).

2. X1 A X2 A X'y 15 Join irreducible for the same reasons as above. '

3. Xi A Xz X' s join irreducible. 1t does not contain at least one of the literals for each variable,
and 1t contains two literals for the variable x,.

4 Xy A X' A Xz A X5 isjoin irreducible. It contains at least one of the literals for each variable.

3. X1 A X' A Xa A X' 1s not join irreducible. It does not contain at least one of the literals for each
variable, and it contains two literals for two variables.

6. X) A X3 1s join irreducible. It contains at most one of the literals for each variable.

7. Xais join irreducible. It contains at most one of the literals for cach variable.

Now the normal form for the Boolean algebra case, that is, for F,,is of course well-
known: every element is uniquely an disjunction of complete conjunctions of literals. Instead of
getting into this, we will describe the procedure for putting an arbitrary formula in Kleene
normal form. In the examples illustrating the steps, we assume that are three variables.x|,x2,X;.

25



M.S.University D.D.CE. I M.Sc., Maths

L Given an formula w, first use De Morgan’s laws to move all the negation in, so that the
formula is rewritten as an formula w1 which is just meets and joints of the literals, 0, and
1. For example, x,"(x"2"x3)’would be replaced by X;"(XzvX's).

2. Next use the distributive law to obtain an new formula w, from w; which 15 an
disjunction of conjunctions involving the literals, 0, and 1. For example, replace
x1"(xavx’3) by (x1"x’3). At this point , discard any conjunction in which 0 or a’ appears as
one of the conjunction, as well as 1 and 0’ from any conjunction in which they do not
appear alone(if an conjunction consists entirely of 1’s and 0’,s, then replace the wholc
thing by 1) This yield an formula ws

). Now discard all no-maximal conjuctions among the conjuctions that ws is an disjunction
of. The type of conjuctions we now are dealing with are either conjuctions of literals or 1
by itself. Of course 1 is above all the others and one conjuction of literals is belowanoher
if and only if the former contains all the literals contained in the latter. This process
yiclds an formula wy.

4. At this point, replace any conjuction of literals, calculate, which contains both literals for
at least one variable by the disjunction of all the conjuction of literals for cach vanable
not occurring in ¢. For example, if one of the conjuctions ids x,"x’"1"X;, replace it by
the disjunction(X;"x"1"x2"x3). (x3 is the only variable not occuring in x,"x"1"X;)

5. Finally, again discard all non-maximal conjuctions among the conjuctions that are lcft,
and if no conjuctions are left, then replace the formula by 0. The formula thus obtained is
now 1in the normal form described above.

We illustrate the Kleen normal form with the two equivalent expressions.

W = A® (A’AB)V(A’AB’)v(A’AC)

W'=AAA’
[n the variables, A,B and C
1 There 1s nothing to do in this step
2. Applications of the distributive law lead to disjuctions of conjuctions involving the
literals.
Wi = (AAA'AB)V(AAA'BYV(ALA(C)
¥2=AM
3. Neither of the expressions in # 2 contains any non maximal conjunctions, 50 wi=w: and
Wl:::le.
4. Replace

A*A'B by (A*A’DC) v (A*A' BT
AMAMB’ by (ACA’AB'AC) v (ACA'B!Ac!)
A*AAC by (AAe B) V (AA1°C*B’)
And
A*A' by (A*A*BAC)V(A*A'"B'~C)
V(ATA'BAC) 7 (A*A'ABAC)
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To get
Wi = (APAMBAC)V(ARAABACY
V(A*A™BC) V (A*A'"B'AC)
V(A*A'"C B) V (AA'ACB')
W, = (A*A'7C) V (A*AB'AC)
V(A*A'"BACY V (A*ABIAC)
5. Discarding all non-maximal conjunctions amoung the conjunctions that are left means in this
case, simply discarding repetitions, leading to the normal forms.

Wy = (A"-AB"C) V (A*-A*B~C'") V (A*-A”BY) V (A*B!ACY
ws = (A™ABC)V  (A-AB'C)V (A-ABC!) V (A-AB'C)
EXCERCISES
1. Show that there are fuzzy quantities A and B, such that
(@)  A-A=0
(b)  (A+B)-BzA
(c) A/A#]
(d)  A/BB=A

[ 8]

Show that for fuzzy quantities, multiplication does not distribute over addition. That is,
AB+C)#AB + AC.

3. Let S and T be closed and bounded subsets of R. Show that

(X /X r)(u)=Xs(u x)AX r(x) for some x.

4. Compute the a-cuts of the sum of two triangular numbers.

3. For f:R—R and Aef(R), write down the membership function of f{A) when
f(x)=-x, f(x)=x*
=<, feo=|x|

0. Define the fuzzy quantities A and B by
A (X)=1/2(1+e™?)
B (x)=1

Show that A and B are convex, A +B is convex, but (A + B)ys#Az4+ B,

Write down the tables for => and for classical two-valued propositional logic.

g, in two-valued propositional calculates, verify that two propositions a and a and b are
logically equivalent if and only a=>b is a tautology.

9, We write a=b for a <=>. Verify the following for two-valued propositional calculates.
(@ a"=a |
(b) aVa'=]
(c) a*a'=0
(d) a=aVa

(&) aVb=bVva
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10.

1.

12.

13.

14.

15.

16.

() a’b=b"a

(8 aVVe)=aVb)Ve

(h) a* (b c)=(a"b)"c

(i) a*(dVc)=(a”b)V(a*c)
() aV(p*c)=aVb)V(a'c)
k) (@Vb) =a'"b

@) (@ b'=avd'

In Bochvar'soni three valued logic, <=>is defined by
<=>- 0 u 1

0 1 u 0

u u u u

1 0 u 1

Verify that a and b being logically equivalent does not imply that a <=> b is a three
valued tautology.

Show that u V u = u is changed to uVu=1 in the table for V in Lukasiewicz'soni three-
valued logic, then the law of the exclued middle holds.

Let a be a formula in fuzzy logic. Show that if t(aVa') =1, then necessarily
t(a) € {0,1}.

Show that {0,u,1} with O0<u<1 is a Kleene algebra. For any set S, Show that {Ov,1} Sisa

Kleene algebra.

Show that in the algebra ([0.1], V, A,',0,1) the inequality X" X' <y V' 1 holds for all x
and v in [0,1]. Show that this inequality does not hold in ([0,1][2].V,,",0,1)
Show that

AN (A"B)VA'BYV(A'MC) = A A

[s false for fuzzy sets taking values in [0,1][2]
In the three variables A B,C find the disjuctive normal firm, the Kleene normal form, and
the De Morgan normal form for

(a) AV (A'A bAB")

(b) AA(B VC)1
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UNIT - III
DISTRIBUTIONS OF RANDOM VARIABLES
TABLE OF CONTENTS
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3.4  Random Variables

3.5 The probability Density Function

3.6 Distribution Function

3.7.  Probability Models

3.8 Mathematical Expectation

3.9  Some special mathematical Expectation

3.10  Chebyshev's Inequality
EXERCISE

INTRODUCTION :
Many kinds of investigations may be characterised in part by the fact that repeated
experimentation, under essentially the same conditions, is more or less standard procedure .

Each experiment terminates with an oufcome. But it is characteristic of these experiments that

the outcome cannot be predicted with certainty prior to the performance of the experiment. -
Suppose that we have such an experiment, the outcome of which cannot be predicted

with certainty, but the experiment is of such a nature that the collection of every possible

outcome can be described prior to its performance. If this kind of experiment can be repeated

under the same conditions, it is called a random experiment, and the collection of every

possible outcome is called the experimental space or the sample space.

Examplel.  In the toss of a coin, let the outcome tails be denoted by T and let the outcome

heads be denoted by H. If we assume that the coin may be repeatedly tossed under the same

conditions, then the toss of this coin is an example of a random experiment in which the outcome

1s one of the two symbols T and H; that is the sample space is the collection of these two

symbols.

3.1 ALGEBRA OF SETS

Definition 1. If each element of a set A is also an element of set A,, the set A, is called a subset

of the set A,. This is indicated by writing A| < A;. If Ay € A; and also A; — A, the two sets

have the same elements, and this is indicated by writing A;=A,.

D-.mition 2. If a set A has no elements, A is called the null set. This is indicated by writing

A=,
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Definition 3. The set of all elements that belong to at least one of the sets A, and A; 1s called the
union of A; and A,. The union of A; and A, is indicated by writing A; U Az,

Definition 4. The set of all elements that belong to each of the sets A, and A; is called the
intersection of A; and A,. The intersection of A, and A; is indicated by writing A; M A;.
Definition 5. In certain discussions or considerations the totality of all elements that pertain to
the discussion can be described. This set of all elements under consideration is given a special
name. It is called the space. We shall often denote spaces by capital script such as A, B, and C.
Definition 6, Let A denote a space and let A be a subset of the set A . The set that consists of
all elements of A that are not elements of A is called the complement of A . The complement of
A is denoted by A* (In particular. A * = ).

Example. Given A c A . Then AUA* = A ANA* =T, AUA=A [ ANA=A and (A%)* = A
3.2 SET FUNCTIONS:

In the caleulus, functions such as
f{x) =2x, - ¢ <X <00,
or

¥ 0 x <, 0<y<co, or possibly

glxy)=¢’
B X1, XXt ) =KX Xt 08 K= 115 Ll

= () elsewhere,

were of common occurrence. The value of f(x) at the “Point x =1 “is f{1) =2; the value of g(x.y)
at the “Point (-1,3)" is f{-1,3) = O

the value of h(x;,Xz....... Xa) at the “Point (1,1,.....1)" is 3. Functions such as these are called
functions of a point or, more simply, Point functions.

Notations :

The symbols | o f(x)dx

will mean the ordinary (Riemann) integral of f{x) over a prescribed one-dimensional set A: the
symbol

ful g(x,y) dxdy

will mean the Riemann integral of g(x,y) over a prescribed two-dimensional set A; and so on,
Example. Let A be a one-dimensional set and let

Q(A)=T4**dx

Thus, iIf A= {x;0 < x <o }, then

Q(A) = of "e™ dx =1;

ifA={x;1<x<2},then

Q(A) =T e dx=c" -¢%
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if Ay = {;0<x<1}and A, = {x;1 <x <3}, then
QA1 U Ag) =¢f ¢ dx
= ol 'eMdx +[31 e-x dx
= QA1) + Q(Ay);
IfA=A;UA,, where A = {x;0<x<2}and A, = {x; 1 <x <3}, then
QA) = QAL Ag) = of *** dx
= o exdx+ [ e*dx - | [ % dx
=Q (A1) + Q(A2) - QAN Ay).
Example . Let A be a set in n dimensional space and let
QA)=[...aldx; dxs .......dx,
HA={(uXo xn); 0< X <x3 <<%, <1}, then
QA = of' " ... of* dx; dxg ... dxy; dx,
=1/n!, where n! = n(n-1) ... 3.2.1.

3.3 THE PROBABILITY SET FUNCTION.

Let € denote the sst of every possible outcome of a random experiment; define a set functic,.
P(C’) such that if C is a subset of C, then P(C) 1is the probability that the outcome of the random
experiment  is an element of C.

Detiration : If P(C) is defined for a type of subset of the space C, and if
(a) P(C) >0, '

{(b) P(C, WC; WC; U ) = P(Cy) + P(C,) + P(Cs) + .... where the sets Ci, 1= 1,2,3, ... are such

that no two have a point in common, (that is, where CGnG=3,i=)).

(c) P(C) =1, ’

thex: P(C) is called the probability set function of the outcome of the randodm experiment.
Theorem 1.

Foreach C c C, P(C) =1 -P(C*).

Proof Wehave C=CuC*andC~C*= @ By definition, it follows that

i = P(C) + P(C*), Hence , P(c) = 1-p(c¥).

Theorem 2:

The probability of the null set is zero: that is P(QD) =0.

Proof. In Theorem 1, take C = & so that C* = C. Accordingly, we have

P(Z)=1-P(C)=1 -1 =0,

Theorem 3.

If C) and C; are subsets of C such that CicC,, thenP(C)) < P(C,).

Proof. Now C; = Ci w(C"y 1 Cy) and C, n (C; A Cy).=@. Hence,

from (b) of definition,
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P(Cy) = P(C1) + P(C"1 N C2)
However, from (a) of Denifition P(C‘u"\ C,)> 0; accordingly, P(C;) = P(Cy)
Theorem 4.
ForeachCc C,0<P((C) <1
Proof. Since 2 « C < C. we have by Theorem 3 that
P(@) < P(C)<P(Cyor 0< P(C)< | the desired result,
Theorem 5.
If C, and C; are subsets of C then P(Ci v Cy) = P(C;) + P(C3) - P(Ci nCy)
Proof . Each of the sets C, U C; and C, can be represented, respectively, as a union of
nonintersecting sets as follows
C, UG, =C1 U (CTy A Ca) and Gy = (CiUC) v (CT N Cy)
Thus, from (b) of Definition
P(C1uCa) = P(C1) + P(C1 N C)
And

P(C;) = P(C1n Cp) + P(C" N Ca).

If the second of these equations is solved for P(C") n Cy) and this result substituted in the first
equation, we obtain.

P(C] (& Cz) = P(C]) + P(C;) - P(C; M Cz)

Example : Two coins are to be tossed and the outcome is the ordered pair (face on the first coin.
face on the second coin). Thus the sample space may be represented as C = (c:c = (H.H), {H. T,
(T,H), (T.T)}. Let the probability set function assign a probability of Y to each element of C Let
C, = {c: ¢ H,H), (HT)} and C; = {c;c = (,H), (T.H). Then P(C\) = P(C2) = 2 P(C1,n C2) = %
and in accordance with Theorem 5, P(Cy w Cy) = Va+)s-Va=Y4.

3.4 RANDOM VARIABLES (r.V)

Let the random experiment be the toss of a coin and let the sample space associated with
the experiment be C = { ¢; where ¢ is T or ¢ is H} and T and H represent, respectively, tails and.
heads. Let X be a function such that X(¢) =0 if c is T and let X(c)=1if ¢ is H. Thus X 1s a real-
valued function defined on the sample space C which takes us from the sample space C to a
space of real number A = { x;x = 0,15.

Definition
Given a random experiment with a sample space C . A function X, which assigns to each

element ¢ € C one and only one real number X (¢) = X, is called a random variable. The space of
X is the set of real numbers A = {x;x = X(c),ce C }.

Definition

Given a random experiment with a sample space C. Consider two random variables X,
and X, which assign to each element ¢ of C one and only one ordered pair of numbers X;(c) =
x1,X2(c) = x;. The space of X; and X; is the set of ordered pairs A = { (X1,X2); =X (C),x; =
X,(C),CeC}.
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Definition

Given a random experiment with the sample space C. Let the random variable X; assign
to each element ¢ € C one and only one real number Xi(c) = xi, i =1,2,....,n. The space of these
random variables is the set of ordered n-tuplets A = {(X1.X3 woXn)y X7 Xile) siis . Xn = Xy(c),
ce C }. Further, let A be a subset of A. Then Pr [ Xi,......... X1) € Al =C), Where C= {cc
C and [X;(c), Xx(c),..... Xn(c) ] € A}
Example of a sample space C an interval.
Example. _
Let the outcome of a random experiment be a point on the interval (0,1). Thus,
C = {c;0 <c<l1}. Let the probability set function be given by
P(C) =), dz
For mnstance, if C = { ¢;%4 < ¢ < ¥}, then
P(C)= 4 " dz="%.
Define the random variable X to be X = X(c) = 3¢ +2. Accordingly, the space of X is A = {x;2 <
x <5}. We wish to determine the probability set function of X, namely P(A), A ¢ A. At this time,
let A be the set (x;2 <x<b}, where 2 <b <5. Now X(c) is between 2 and b when and only when ¢
€ C={c¢;0 <c<(b-2)/3}. Hence

P(A)=P(A)=P(C)=J®® dz
In the integral, make the change of variable x = 3z +2 and obtain

P(A)=P(A)= ,[°1/3 dx =[,1/3 dx.
Since A = { x;2 <x <b } . This kind of argument holds for every set A < A for which the
integral

P(A)=] A 1/3 dx

exists. Thus the probability set function of X is this integral.
Example
Let the probability set function P(A) of a randor variable X be
P(A)=], f(x) dx, where fx)=3x8 ,x e A ={x;0<x<2}.
Let A1={x;0<x<1/2} and A,={x;1<x<2} be two subsets of A. Then

P(A;)=pr(XeA )=l [ (x)dx = of ¥ 3x%5 dx=1,64
and

P(A;) =pr{XeA;) = Fis fx)dx = i 3.‘(2;3 dx=7/8.
To compute P(A;UA;), we note that AjnA; = ; then we have P(AjUA;) = P(A)+P(A,)
= 57 164
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Example
Let A ={(x,y);0<x<y<l1} be the space of two random variables X and Y. Let the probability set
function be
P(A)=] 4] 2 dx dy.
If A is taken to be A|={(x,y);lp<x<y<l}, then
P(A)=Pr(X,Y) e A= 2 dx dy=1/4
If A is taken to be A;={(x,y); x<y<l,0<x <1/2}, then A=A"|, and
P(A;) =Pr{X,Y] € A;] =P(A")) =1-P(A)) = 3/4
3.5 THE PROBABILITY DENISTY FUNCTION
Let X denote a random variable with space A and let A be a subset of A . If we know how
to compute P(C), C < C, then for each A under consideration we can compute P(A) = Pr (X ¢
A); that is, we know how the probability is distributed over the various subsets of A .
In this section, we discuss some random variables whose distributions can be described
very simply by what will be called the probability density function.
(3) THE DISCRETE TYPE OF RANDOM VARIABLE:
Let X denote a random variable with one-dimensional space A . Suppose that the space
A is a set of points such that there is at most a finite number of points of A in every finite
interval. Such a set A will be called a set of discrete points. Let a function f(x) be such that f{x) >
0,x € A , and that’
EA fix)=1.
Whenever a probability set function P(A) , A ¢ A, can be expressed in terms of such an
f(x) by
P(A)=Pr(X € A) =X {(x),
A
Then X is called a random variable of the discrete type, and X is said to have a distribution of the
discrete type. |
Example
Let X be a random variable of the discrete type with space A = {x;x=0,1,2,3,4} Let
P(A) = Z {(x),
A
Where
F(x)=_4! ( B)* xet

X! (4-x)!
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And as usual, 0! =1 Thenif A= { x:x =0, 1 } we have
PriXeA)_ 4! (M AL B s B
X! (4-x)! 113! 16

(b) THE CONTINUOUS TYPE OF RANDOM VARIABLE:
Let the one dimensional set A be such that the Riemann integral

| fix)dx =1,

A
where (1) f(x) > 0, x € A, and (2) f{x) has at most a finite number of discontinuities in every

finite interval that is a subset of A . if A is the space of the random variable X and if the

probability set function p(A), A A, can be expressed in terms of such an f(x) by
P(A)=pr(X € A) =§A f(x) dx,
Then X 1s said to be a random variable of the continuous type and to have a distribution of that
vpe.
Example : Let the Space A = { x;0 <x <0}, and let
fix)=¢™, xeA.
if X is arandom variable of the continucus type so that
Pr(Xe A)”—‘JAC-K dx,
We have, with A = {x;0 <x <1},

Pr(XeA)=q'e dx=1-¢"
X

Note that pr (X € A ) is the area under the graph of f{x) = ¢ which lies above the x-axis and

between the vertical lines x =0 and x=1.

If two probability density functions of random variables of the continuous type differ
‘only on a set having probability zero, the two corresponding probability set functions are exactly
the same. Unlike the continuous type, the P.d.f. of a discrete type of random variable may not
be changed at any point since a change in such a p.d.f. alters the‘distribution of probability. If a
p.d.f in one or more variables is explicitly defined, we can see by inspection whether the random
variables are of the continuous or discrete type. For example, it seems obvious that the p.d.f.
Fxy) = 9 , x=123..y=123,..,
dx+y

35



M.S. University D.D.CE. I M.Sc., Maths

= ) elsewhere
is clearly a p.d.f. of two continuous-type random variables X and Y.
Example : Let the random variable X have the p.d.f.
f(x)=2x, O<x<l,
=() elsewhere.
Find Pr(1/2<X<3/4) and Pr(-1/2<X1/2). First,
Pr(1/2<X<3/4)=34f " £x)dx = 34 * 2xdx=5/16.

Now,

A

Pr(-1/2<X<1/2) = I f(x) dx

-t
" %
| d, + [ 2xdy

) 0

0+1/4

il

= Y
Example : Let f(x,y)=6x2y, O=<x<1,0<y<l,

= () elsewhere,

be the p.d.f. of two randoi. variables X and Y. We have, for instance, pr(0<X<3/4,1/3<Y<2) =
sl o PP fix,y) dx dy

= 'J 13 GFM 6x2y dx dy + ;P gfm dx dy

=3/8+0=3/8.
Now that this probability is the volume under the surface f{x,y)=6x"y and above the rectangular
set{(x,y);0=x<3/4,1/3<y<1} in the xy-plane. .
3.6 THE DISTRIBUTION FUNTION

Let the randome variable X have the probability set function P(A), where A is a one-

dimensional set. For all such sets A we have P(A)=Pr(X e A)=Pr(X<x). This probability depends
on the point x; This point function is denoted by the symbol F(x)=Pr(X<x). The function F(x) is
called the distribution fiii' tion (sometimes, cummulative distribution function) of the random

variable X. Since
F(x) = Pr(X<x), then, with f{x) the p.d.f., we have
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Fx)=2% flw),
W
For the discrete type of random variable, and

F(x) = [ fiw)dw,
For the continuous type of ranciom variable.
Example 1:
Let the random variable X of the discrete type have the p.d.f. f(x)=x/6,x = 1,2,3,zero

clsewhere. The distribution function of X is
Fx)=0. x<I,

=1/6, 1<x<2,
= 3/6, 2<x<3,
=1, 3<x.

Here, F(x) is a step function that is constant in every interval not cantaining 1, 2,, or 3, but has
steps of heights, 1/6, 2/6 and 3/6 at those respective points. It is also seen that F(x) is everywhere

continuous to the right.

iixample :

Let the random variable X of the continous type have the p.d.f. f{x)=2/x3,1 < x<cw, zero
elsewhere. The distribution function of X is
F(x) = [0 dw =0, x<1,

=X 213 d‘u«frl-lfxz, 1<x.
The graph of this distribution function is depicted in Figure
F(x) &

X
Example : Let f(x)=1/2, -1 <x <1, zero elsewhere, be the p.d.f. of the random variable X. Define
the random variable Y by Y=X2. We wish to find the p.d.f. of Y. If y20, the probability Pr(Y<y)

is equivalent to
Pr(X’<y) =Pr(- Vy < X <y).

Accordingly, the distribution function of Y, G(y)= Pr(Y<y), is given by
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G(y)=0, y<0,

vy -
= [ %do=1y 0sy<l,

Ay
=1, 1<y

Since Y is a random variable of the continuous type, the p.d.f. of Y is g(y)=G'(y) at all points of
continuity of g(y). Thus w¢ 1ay write

1
Glyf=r—
2y

0 elsewhere.

Let the random variables X and Y have the probability set function P(A), where A is a
two -dimensional ser. If A is the unbounded set{{u,v); u<x, v<y}, where x and y are real

numbers, we have

P(A)Y=Pr{(X,Y)e Al= Pr(Xsx,Y<y).

This fanction of the poini(x, y) is called the distribution function of X and Y and is denoted by
F(x,y)=Pr(X £x,Y <y).

If X and Y are random variables of the continuous type that have p.d.f. f{x,y), then

Y X
I fu,vidu dv.

w0

3.7 PROBABILI[Y M DELS

The probability model described in the following:

Example

Let a card be drawn at random from a ordinary deck of 52 playing cards. The sample
space is the union of k=5" »utcomes, and it is reasonable to assume that each of these outcomes
has the same probability 1/52 . Accordingly, if E,, is the set of outcomes that are spades,
P(E1)=13/52=1/4 because there are r =13spades in the deck; that is , % is the probability of
drawing card that is a spade. If Eyis t}lle set of outcomes that are kings, P(E,)=4/52= 1/3 because .
there are r,=4 kings in the deck; that is , 1/13 is the probability of drawing a card that is king.

These computations ure very easy because there are no difficulty in the determination of the
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appropriate values of r and k. However, instead of drawing only o
pp 2

are taken, at random and without replacement, from this deck. V. ¢ iive card hand
as being outcome in a sample space. It is responsible to assurc {COMES as
the same probability. Now if E, is the set of outcomes in each cu: de P(E;)
1s equal to the number rl of all spade hands divided by the total » 1 hands.

It is shown in many books on algebra that
n="%=131 and k= Cs = 521.
518! 51471

In general, if n is a positive integer and if X is a

then the binomial coefficient
ney = n!/x!{n-x}!
is equal to the number of combinations of n things taken x at time

P(E:) 13Cs 13.12.11.10.9

52C5  52.51.50.49.48

= 0.0005

77777

approximately. Now, let E; be the set of outcomes in which atlex spade. Then

E;* is the set of outcomes in which no card is a spade.

There are r;* = *°Cs such out comes Hence
P(E;*) = ¥Cs and P(E,) =1-P(E;*).
s

Now suppose that E; is the set of outcomes in which exactly thres id exactly

two card are queens.

We can set the three kings in any one of the 4C; ways and (h  one of "Cy
ways by a well-known counting principle, the number of outcon s | 'C, Thus
BB =" "GP, Finally, let E, be the set of outcomes in whicl: 1] actly two kings,

two queens, and one jack. Then

B =0 WG
because the numerator of this fraction is the number of outcome
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3.8 MATHAMATICAL EXPECTATION

Let X be a random variable havi’ng a p.d.f. f{x) and let u(X) be a function of X such that

o)

Eful= | u() f(x)dx, existis

1f X 1s a continuous type of random variable,
And, E [u (x)]=Zx u (x) ")

exists, if X is a discrete type of random variable. The integral, or the sum, as case may be, is
called the mathematical expectation.

Remarks.
The usual definition of E[u(X)] requires that the integral(or sum) converge absolutely.

- We may observe that u(X) is a random variable Y with its own distribution of probability.
Suppoese the p.d.f. of Y is g (y). Then E (Y) is given by

) ya(y) dy or_‘Zy ye(y), according as Y is of the continuous type or of the discrete type.
{a) If k is a constant, then E (k) = k.
(b) If k is a constant and v is a function, then E(kV) = kE(v).
{c) If k, and ki, are constants and v, and v; are ﬁmctions, then
E (kivitkava)= ki E(v) )k E(va).
Examplel:
Let X have the p.d.f.
F (x) = 2(1-x), O0=x<1,
= () elsewhere,
Then
E (X)=.of xf(x) dx= j’l (x)2(1-x) dx = 1/3,
E(x*)=f” x* f(x) dx 0=0I ' (xH2(1-x) dx = 1/6,

And, of course,
E (6X+3X)=6(1/3)+3(1/6)=5/2.

Example 2:
Let X have the p.d.f.
f(x)=u6, x=1,2,3,

=() elsewhere.
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Then
E(X%) =Yx ) =x*1

x=1 6

= if6+16/6+81/6=98/6.

Example 3:

Let X and Y have a p.d.f.
F(x,y) =x+y, O<x<l,0<y<1,

= 0 elsewhere.

Then,
E (XY?)=uf" J° xy? f(x y) dx dy

=o' o I' xy’(x+y) dx dy

=}UTZ.

Example 4:

Let us divide, at random, a horizandal line segment of length 5 into two parts. If X is the
length of the left-hand part, it is reasonable to assume that X has the p.d.f.

F(x)=1/5, 0<x<5,

= () elsewhere.

The expected value of the length X is E(X)= 5/2 and the expected value of the length 5-X is

E(5-X)=5/2. But the expected value of the product of the two length is equal to

5
E[X(5-X)] = OI x(5-x)(1/5) dx=25/6 =(5/2)".

That is, in general, the expected value of the product is not equal to the product of the expected

values.
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3.9 SOME SPECIAL MATHEMATICAL EXPECTATIONS:
Let u(X)=X, where X is a random variable of the discrete type having a p.d.f. f{x). Then
E(X)=2x xf(x).
If the discrete points of the space of positive probability density are a;,a;,as,.....,then
B(X) = aifan)+axfa)+asf{as) ...

This sum of products is seen to be a "weighted average” of the values aj,asas,...., the "weight”
associated with each ai being f{ai). This suggest that we call E(X) the arithmetic mean of the

values of X, or , more simply, the mean value of X(or the mean value of the distribution).

The mean value p  of a random variable X 1is defined, when it exists, to be

1= E(X), where X is a random variable of the discrete or of the continuous type .

The variance of X will be demoted by o, and we define

o = E[(X-u)*],whether X is a discrete or a continuous type of random variable.
It is worthwhile to observe that

o* = E[(X-0)" =B 2uX40’);
and since E is a linear operator,

o® = B(X?)-2RE(X)+p?

= E(XH-2pP

Result :¢® =E(X)-1%.
Example 1. Let X have the p.d.f.

F(x)= 1
2(x+1),

~1<x<l1,

= () elsewhere

Then the mean value of X is
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p=_J"xfix)dx =,' x x+1dx=1/3
2

while the variance of X is
o?= 7 fde-p? = f '« x4+ dx-(1/3)* = 2/9.
2

Example 2. If X has the p.d.f.
F(x) = 1/x°, 1<x,00,
=0 elsewhere.

Then the mean value of X does not exists, since
" x1 dx= lim !

x* bsoo y1°% 8%

= lirs { log x} |

b

=lim (log b - log 1) does not exist.

b-s»

Example3. Given that the series
RV LISy T
converges to n°/6. Ther
flxy=5/n%%,  x=1,2.3,.....,

= { elsewhere,

1 the p.d.f. of a discrete type of random variable X.

distribution, if it exists, is given by

M(ty=E(e™)=¥x e™ f{x)
= 3 6e™/n’x>

X=]
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3.10 CHEBYSHEV'S INEQUALITY:

Theorem :

Let u(X) be a nonnegative function of the random variable X. If E[u(X)] exists, then, for
every positive constant c.

Pr{u(X) = ¢] £ E[u(X)]

o

Proof :

The proof is given when the random variable X is of the continuous type; but the proof
can be adapted to the discrete case if we replace integrals by sums. Let A={x;u(x) =c} and let
f(x) denote the p.d.f. of X. Then

E[u(X)] = .o u(x) f(x) dx =4 u(x) fix) dx + Ja* u(x) f(x) dx.

Since each of the integrals in the extreme right-hand member of the preceding equation is

nonnegative, the left-hand member is greater than or equal to either of them. In particular,
E[u(x)]= fa u(x) f(x) dx.

However, if xeA, then u(x) = c; accordingly, the right-hand member of the preceding inequality
is not increased if we replace u(x) by c.
Thus
E[u(X)] 2 cfa f(x) dx.
Since
Ja f(x) dx=Pr(XeA) = Pr[u(X) > c],
it follows that
E[u(X)] 2 ¢ Pr{u(X) = ¢],
Which is the desired result.
Theorem : CHEBYSHEV'S INEQUALITY.

Let the random variable X have a distribution of probability about which we assume that
there is a finite variance o*. This, of course, implics that there is a mean p. Then for every k>0,
Pr(IX - p| = ko) < 1/,
Or equivalently,
Pr(|X-p < ko) = 1-1/k*,
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Proof. In the above Theorem take u(X) = (X-p)* and c=k’c’. Then we have
Pr{(X-p)* > kK*o’] £ E[X-pw)*JKc?.

Since the numerator of the right-hand member of the preceding inequality is o?, the inequality

may be written
Pr(|X-p| > k) < 1/k?,
Which 1s the desired result. Naturally, we would take the positive number k to be greater than 1

to have an inequality of interest.

It is seen that the number 1/k° is an upper bound for the probability Pr(|X-u| > ko). In the
following example this upper bound and the exact value of the probability are compared in

special instances.
Example 1:
Let X have the p.d.f.
F(x) = 1/2V3, N3 < x <3,
=0 elsewhere.
Here p=0 and ¢” = 1. Ifk=3/2, we have the exact probability
Pr([X-u] 2ko) = Pr(X] 2 312) = 135" %43 dx = 1312

By chebyshev's inequality, the preceding probability has the upper bound
1&" = 49, Since 1-3/2=0.134, approximately, the exact probability in this case is considerably
less than upper bound 4/9. If we take k=2, we have the exact probability Pr(|X-p| 2 20) =
Pr{({X|22)=0. This again is considerably less than the upper bound 1/k’=1/4 provided by
Chebyshev's inequality.

In each instance in the preceding exazhple, the probability Pr(|X-u| 2 ko) and its upper bound
1/k2 differ considerably. This suggests that this inequality might be made sharper. However, if
we want an inequality that holds for every k>0 and holds for all random variables having finite

variance, such an improvement is impossible as is shown by the following example.
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Example 2.

Let the random variable X of the discrete type have probabilities 1/8,6/8,1/8 at the points
x = -1, 0, 1, respectively. Here p=0 and o’=1/4. If k=2. then 1/k*=1/4 and Pr(|X-p| = ko)= Pr(|X|
> 1) =1/4. That is, the probability Pr(|X-p| > ko) here attains the upper bound 1/k’=1/4. Hence

the inequality cannot be improved without further assumptions about the distribution of x°

Let X be a random variable with mean p and let E[(X-p)2k] exist. Show, with d>0, that
Pr(X-p| = d) < B[(X-1)2k]/d%k.

Let X be a random variable such that Pr(X<0)=0 and let u=E(X) exist. Show that
Pr(X22p) <1/2.

EXERCISE

1. A point is to be chosen in a haphazard fashion from the interior of a fixed circle. Assign a
probability p that the point will be inside another circle, which has aradius of one-half the
first circle and which lies entirely within the first circle.

2. An unbiased coin is to be tossed twice. Assign a probabifity P1 to the event that the first
toss will be held and that the second toss will be a tail. Assign a probability p, to the
event that there will be one head and one tail in the two tosses.

3. Find the union A, U A, and the intersection Aj A; ofthe twosets A;  and A,, where:

{a) A= {xx=0,1,2}, Ax = {x;x=2,3,4}

® Ar={x0<x<2} A= {x1 < x <3}
(@ Ar={xys0<x<2,0<y<2}, A ={(X,Y);1 <X<3, 1 <Y<3}.

4 Find the complement A* of the set A with respect of the space A if:
(a) A=0{x0<x<1},A={x;5/8 <x<1}.
(b) A= {{(xy,z): x2+y2 +22 <1}, A= {(x,y,2); x2+y2+zz =1}

©  A={@xy: x|l +lyl €23, A= {xy); PH<).
5. Ifthe sample space is C = C; U C; and if P(C;) = 0.8 and P(C2) = 0.5, find P(C; Cy)

6. Let the sample space be C ={ ¢ : 0 < c<  }; Let C = C be defined by
C = {c;4 <c <0 } and take P(C) = [c ** dx. Evaluate P(C).P(C*),and P(Cw C*).
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7.

8

(9).

(10).

(11)

(12)

(13).

(14)

(15).

(a)

Let a card be selected from an ordinary deck of playing cards. The outcome ¢ is one of
these 52 cards. Let X(c)=4 if c is an ace, let X(c)=3 if c is a king, let X(c)=2 ifc is a
queen, let X(c)=1 ifcisa jack, and let X(c) = O otherwise. Suppose that P(C) assigns
a probability of 1/52 to each outcome ¢ Describe the induced probability  Px(A)
on the space A = {x;x =0,1,2,3,4} of the random variable X.

Let the Space of the tandom variable X be A = {x;0 <x <1 } If A; = {x;0 <x <! )and
Ar = {x; Vo <x <1}, find P(As)} if P(A)) = %.

Let the space of the random variable X be A = {x;0 <x <10} and let P(A) = 3/8
where A;= { x;1 <x <5}.Show that P(A;)<5/8, where A= {x;5<x<10}.

Letthesubsets A; = {x; o <x <% }and A;={x;%2<x<1} ofthespace A={x;0<x,1} of
the random variable X be such that P(A;) = 15 and P(Az) = ‘4. Find P(A; U Ay), P(A')),
and P(A‘) M A*g)

Let Av={(xyhx <2, yA Ap = {(xy) x£ 2, 7= 1) As={(xyrx<0, y < 4}, and
As = {{x,y); X <0, y < 1} be subsets of the space A of two random variables X and Y,

“which is the entire two-dimensional plane. If P(A,) = 7/8, P(A;) = 4/8 P(A3) = 3/8 and

P(Ag) = 2/8, find P(As), where As = {(x,y); 0<x<2,1<y<4}.

Give | {1/ { 1+xz)} dx, where A c A = { x; <0 < x <0 } show that the integral could
A :

serve as a probability set function of a random variable X whose space is A

For each of the following, find the constant ¢ so that f(x) satisfies the conditions of being

a p.d.f. of one random variable X,
(a) fix)=c(2/3)x,x=1,2,3,.... , zerc elsewhere.
(b) f(x)=cxe‘x,0<x<oo,zero glsewhere.

Let f(x)=x/15, x=1,2,3,4,5, zero clsewhere, be the p.d.f. of X. Find pr (X= 1 or 2),
Pr(1/2<X<5/2), and Pr(1< X <2).

Show that  of® xe™ dx = of* e*dx=1,
and, for k>1, that (by integrating by parts)
of® x*e*dx =k o* x K le™ dx.

What is the value of of* xne™ dx, where n is a nonnegative integer?
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(16)

(18)

(22)

(23).

Given the distribution function
F(x) = g, 01,

= x+2/4, -1< x<1,

= 1, 1£x.

Sketch the graph of F(x) and then compute: (a) Pr(-1/2 <X < "2); (b) Pr(X=0);, (c)

Pr(X=1); |
(d) Pr(2<X<3).

Let f{x)= (4-x)/16, -2 < x < 2, zero clsewhere, be the p.d.f. of X.

Sketch the distribution function and the p.d.f. of X on the same set of axes.
If Y = |X{, compute Pr(Y<I).

IfZ = X?, compute Pr{Z<1/4).

Let F(x) be the distribution function of the random variable X. If m is a number such that

F(m) = %, show that m is a median of the distribution.

Compute the probability of being dealt at random and without replacement a 13-card
bridge hand cohsisting of: (a) 6 spades,4 hearts, 2 diamonds, and 1 club ; (b) 13 cards

of the same suit.

Three distinet integers are chosen at random from the first 20 positive integers.

Compute the probability that; (a) their sum is even; (b) the product is even.

Let ¥ have the uniform distribution given by the p.df fx) =1/5,

x =-2.-1,0,1,2, zero elsewhere. (a) Find the p.d.f. of Y=X

Let X have the p.d.f. f(x)=(x+2)/18, -2<x<4, zero elsewhere. Find E(X),
E[(X+2)’], and B(6X-2(X+2)’].

Let the p.d.f of X and Y be f(xy) = ™Y (O<x<co, 0<y<owo, zero elsewhere. Let
W(X.Y) =X,v(X.Y) =Y and w(X,Y)=XY. Show that E[u(X,Y)]. E[V(X,Y)] = E[w(X.Y)]

Let X have a p.d.f. f(x) that is positive at x=-1,0,1 and is zero glsewhere.
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(24)

(25)

(26}

(27)

(@) i[R0)=1/2, find E(XY),

(b) If {0)=1/2 and if E(X)=1/6, determine f(-1) and f(1).

Find the mean and varience, if they exist, of each of the following distributions.
(a) f(x)=31/x!(3-x)! (1/2)°, x = 0,1,2,3, zero elsewhere.

(b} f(y=6x(1-x), 0<x<1, zero elsewhere.

(¢}  Ax)=2/x’, 1 <x <o, zero elsewhere.

Let f{x)=( 112)3, x=1, 2, 3, ..., zero elsewhere, be the p.d.f. ofthe random variable X.

Find the moment-generating function, the mean, and the variance of X.

For each of the following probability density functions, compute
Pr{p - 20 < X < +20).

(a) f(x)= 6x{1-x), 0 <x < 1, zero elsewhere.
(b) fix}=(1/2¥x,x=1, 2, 3, .., zero elsewhere.
Let the random variable X have the p.d.f.
Fx)=p, x=-1,1,

=] -2p, x=0,

= ( elsewhere,

where 0 < p< Y. Find the measure of kurtosis as a function of p. Determine its value when p=1/3,

p=1/5, p=1/10, and p=1/100. Note that the kurtosis increases as p decreases.
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UNIT IV
CONDITIONAL PROBABILITY AND STOCHASTIC
INDEPENDENCE

TABLE OF CONTENTS

4.1  Conditional Probability

42  Marginal and Conditional Distributions

4.3  The correlation Coeflicient

44  Stochastic Independence

4.5  The Bionomial, Trinomial and Multinomial Distnibution
4.6  The poisson Distribution

47  The Gamma and Chi-Square Distribution

4.8 The normal Distributions

4.9  The Bivariate normal Distribution

EXERCISE
4.1 CONDITIGNAL PROBABILITY .

Let the probability set function P(C) be defined on the sample space and iet C; be
suhset of such that P(C;)>0.The conditional probability of the event C;, relative to the event ("
or, more briefly, the conditional probability of C,, given C, is denoted hj p{ey/ci) and s defincd
hy

a4

P(C,/Cy)=1 and P(C,/C, )= P(CiC5/T1 )
Hence

P(C,/Cr )= P(CinC)/P(Cy)
Is a suitable definition of the conditional probability of the event s, given the event C;, provided
P(Cy)> 0.
Let P denote the probability set function of the induced probability on A. If Ay and A, urc
subsets of A, the conditional probability of the event Az, given the event Ay, is

P(AzA)) = P(A1 0 Ay)
P(A1)

Provided P(A,)>0.
Example. A hand of 5 cards is to be dealt at random and without replacement from an ordinary
deck of 52 playing cards. The conditional probability of an all-spade hand (Cy), relative to the
hypothesis that there are at least 4 spades in the hand (C;), is, since C; N Co=C;,

P(Co/C)=P(C)/P(C) = B3/ 52Cs
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Example

A bowl contains eight chips. Three of the chips are red and the remaining five are blue.
Two chips are to be drawn successively, at random and without replacement. We want to
compute the probability that the first draw results in a red chip (C;) and that the second draw
results in 2 blue chip(Cy). It is reasonable to assign the following probabilities:

P(C,) = 3/8 and P(Cy/C,y) =5/7.
Thus, under these assignments, we have P(CiNC2) =3Cgx 5C7=15
56

Example

From an ordinary deck of playing cards, cards to be dawn successively, at random and
without replacement. The probability that the third spade appears on the sixth draw is computed
as follows. Let C; be the event of two spades in the first five draws and let C, be the event of a
spade on the sixth draw. Thus the probability that we wish to compute is P(Cl n C2). It iz
reasonable to take

PIC= 130 x 30C,

32C; and P(Cy/C))=11/47.

The desired probability P{C;nC;) is then the product of these two numbers. More generally, if
~+3 1s the number of draws necessary to produce exactly three spades, a reasonable probability
model for the random variable X is given by the p.d.f.

Floy= 13C, ¢ 39C, 11, x=0,1.2,...39

32Chuy 50-x
= { elsewhere,
Then the particular probability which we computed is
P(CinC2) = Pr(X=3) = f(3).
4.2 MARGINAL AND CONDITIONAL DISTRIBUTIONS:

Let f(x1,x2) be the p.d.f. of two random variables X; and X,. F(x1,x2) is the joint p.d.f. of the
random variables X; and X,. Consider the event a<X,<b, a<b. This event can occur when and
only when the event a<X;<b, -e0<X,<w0 occurs: that is, the two events are equivalent, so that they

have the same probability. But the probability of the latter event has been defined and is given
by
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Pr(a<X<b,-00<Xp<0) = of " o [* flx1,%2)dx; dx;
for the continuous case, and by
Pr(a<X;<b,-c0<X,<a0)=2a<x1<bx22f(X1,X2)
for the discrete case.
Again, f2(x2) = -uf " f(x1,x2)dx; (continuous case),
= 2 f{x1,X2) (discreate case)

is called the marginal p.d.f. of X; Where f3(x3) is the p.d.f of x; alone

Example Let the joint p.d.f. of X; and X; be
Jxp,%2) = X txy, x1=1,2,3, X2=1.2
21

= 0 elsewhere
Then
Pr (X,=3)=F(3,1)+£(3,2)=3/7
and Pr(Xy=2)=F(1,2)+f(2,2)+f(3.2)=4/7.

On the other hand the marginal p.d.f of X is
2
)= T it = 2043 ,x=1,2,3
x=1 21 21

zero elsewhere, and the marginal p.d.fof x; is
fa(x2) = 2 x1tx = 643%p, xp=1,2
21 21

zero elsewhere. Thus the preceding probabilities may be computed as Pr(X;=3) = f,(3)=3/7 and
Pr{X,=2)=f2(2)=4/7

Example  Let X, and X have the joint p.d.f
f(xlsxz) 5 2, 0<X|<X2‘<1
= ( elsewhere

Then the marginal probability density functions are respectively,
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fitw) =, J 2dx; = 2(1=x), 0<xr<
= () elsewhere

and  fa(x2)o) ™ 2dx; = 2x, ,0<x,<1
= ( elsewhere

The conditional p.d.f of X; given X;=1x;, is

f(xi/x3) = 212X5 = 1/X3, 0<x;<x3,0<x,<1

= 0 elsewhere
Here the conditional mean and conditiohal variance of X;, given X, 5 X are, respectively,

E(Xi[x2) = ] % f(x1|x2)dx;

=gf b, & I/X?' dx;

and E[(X2-E(Xi[x2)] /Xa} = o (x1-x2/2)> (1/x2)dx,
= x,°/12, 0<x<1.

Finally, we shall compare the values of Pr (0<X,<1/2[X; = 3/4) and Pr(0<X;<1/2). We have

172 1/2
Pr(0<X,<1/2[X, = 3/4) = JO f(x,[3/4)dx; = IO (4/3)dx; = 2/3
but

172 1/2
Pr (0<X1<1/2 = Ioﬂ(x;)dx;= JO 2(1-x,)dx, = 3/4)
Let the random variables, X;,X2,Xs........ Xn have the joint p.d.f (X1,X2,X3.....Xp). If the

random variable are of the continuous type, then by an argument similar to the two - variable
case, we have foreverya<b, Pr(a<X;<b)= J" fr(x)dx,

Where fi(x,) is defined by the (n-1) fold integral
Fil Y= "o ™ s FUR1 K s vornenans xn) dx; ......dxn

Accordingly fi(x1) is the p.d.f of the one random vaiable X, and fi(x,) is called the marginal p.d.f
of X;. The marginal probability density functions, fy(xz), .... fa(xs) of Xa,.....x, respectively are

similar (n-1) fold integrals. Each marginal p.d.f has been a p.d.f of one random variable. It is
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convenient to extend this terminology to joint probability density functions. Let f{x1,x2,.....xn)
be the join p.d.f of the n random variables X, X, ..... X, ) Take any group of k <n of these
vandom variables and let us find the join p.d.f of them. This joint p.d.f. is called the marginal
p.d.f. of this particular group of k variables. The marginal p.d.f. of X3, X4, X is the joint p.d.f. of

this particular group of three variables, namely,
ST Faxexsxaxsxe) dx; dxs dxs

if the random variables are of the continuous type.
If fi(x;)> 0, the symbol f (Xz......,.xn ' xn ) = f(X1,X2 ..coc. Xn)
fi(x1)

and F (Xoios X ] x1) 1s called the joint conditional p.d.f. of X;..... X given X; = x,. The joint

conditional p.d.f. of any n-1 random variables, say X,,........ Kict s Kit] 5 veermrvvreemreres Xy given Xj
= x; is defined as the joint p.d.f. of X;,Xz, ccveneen. X, divided by marginal p.d.f. fi(x;), provided
fi(x;) > 0 More generally, the joint conditional p.d.f. of n-k of the random variables, for given
values of the remaining k variables, is defined as the joint p.d.f. of the n variables divided by the
mariginal p.d.f. of the particular group of k variables, provided the latter p.d.f is positive.

The conditional expectations of u(Xa,......,Xa) given X;=x,,is , for random variables of the
continuous type , given by E[u{X,,...,Xn)xi]
= _me ...._m,f u(xz,....Xn)f(X2,...Xp/X1) dxa....dx,

provided fi(x,)>0 and the integeral converges(absolutely).
4.3 THE CORRELATION COEFFICIENT

et X,Y ,and Z denote random variables that have joint p.d.f. f{x,y,z). The means of X,Y, and Z ,
sav i ,u» and U, are obtained by taking u(x,y,z) to be x,y, and z, respectively; and the variances
of X,Y and Z, say 0’12 5> and 0‘32, are obtained by setting the function u(x,y,z)equal to (x-
}i;)z,(f{'}iz)z_, and (z—p;}z, respectively.

E[(X-pi)(Y-p2) = E(XY-p2X-ph Y+ o)
= BIXY)- B B(Y )
= E(XY)-puipa.
This number is called the covariance of X and Y. The covariance of X an Z is given by E[(X-
1 Y{Z-13)], an the covariance of Y an Z is E[{Y-12)(Z-143)].
If each of o) and o is positive , the number
pr2= E[(X-p )}(Y-p2)]

[ ey
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is called the correlation coefficient of X and Y.
Example Let the random variable X and Y have the joint p.d.f,
F(x,yy=x+y, 0<x<1,0<y<1,
=0 elsewhere,

Compute the correlation coefficient of X and Y. When only two variables are under
consideration , we shall denote the correlation coefficient by p. Now

W=EX) = | 1 x(xty)dxdy=7/12
and

or=E(a)m’=]' | x(cty)dxdy-(7/12)=11/144
Similarly, 1,=E(y)=7/12 and o’<E(y,)-p,%=11/44
The covarience of X and Y is

eXY)-ipiz = of 'of ' xy(ety)dxdy(7/12)=-1/144.
Accordingly, the correlation coefficient of Xand Y is

p=-1/144

(11/144) (11/144) =-1/11.
Example ‘

Let the continuous type random variables X and Y have the joint p.d.f
F(x,y)=e”, D<x<y<oo
=() elsewhere
The moment generating function of this joint distribution is
M(t1,12 = ij xf 54 exp(tx+ty-y)dydx

= 1

(1-t1-t2)(1-ty)

provided t;+t,<1 and t,<1. For this distributiqn, Equations

o' =E() - =P M(0,0) - p?
B’
becomes =1, pp=2
o12=1 62°=2
EX-u)(Y-po)]=1
Further more, the moment-generating functions of the marginal distributions of X and Y are,

respectively,
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M(tl,O) =1 ,u<l
1-t

M@O2) = 1 <1
(1)

These moment-generating functions are, of course, respectively, those of the marginal
probability density functions,

fi(x)= J&~ e, Ok

zero elsewhere, and

f(y)=e? f ” dx=ye?, O<y<co

Zero elsewhere.

4.4 STOCHASTIC INDEPENDENCE

Let X; and X, denote random variables of either the continuoﬁs or the discrete type
which have the joint p.d.f. f(x1,X2) and marginal probability density functions fi(x)) and fa (x2),
respectively.

The joint p.d.f. f(x1,x2) as
foxixa) = flxz | x1) fix)-
Definition

Let the random variables X; and X, have the joint p.d.f. f(x1,x2) and the marginal
probability density functionsfi(x1) and fa(x2) respectively. The random variables X, and X, are
said to be stochastically independent if, and only if, Ff(x1,x2) = fi(x1) f2(x2). Random variables
that are not stochastically independent are said to be stochastically dependent.

Example : Let the joint p.d.f. of X and X; be
fxix) =x1+%2, 0 <x,<1,0<x,<1.

= ( elsewhere.
It will be shown that X, and X are stochastically dependent. Here the marginal probability
density functions are |
Ao = _I7F ) dea =) i) e =x + %, 0<xi<1,

= 0 elsewhere

fio) = ST fax)da =g () dx= Yt x2 , 0<x <1,

= () elsewhere
Since f(X1,X2) =/= f[i(X1)f2(Xz2), the random variable X, and X; are stochastically dependent.
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The iollowing theorem makes it possible to assert, without computing the marginal
probability density functions, that the random variables X, and X, of Example above are
stochastically dependent.

Theorem (1)

Let the random variables X, and X have the joint p.d.f f{x1,x2). Then X, and X, are
stochastically independent if and only if f{x),x;) can be written as a product of a non negative
function of x,, alone and a non negative function of x, alone. That is,

F(x1,x2) = g(x1)h{xy),

Where g(x;)>0. x,€A,, zero elsewhere, and h(x;)>0, x, €A;, zero elsewhere.
Proof.

If X; and X; are stochastically independent, then f‘(xl,xz)gf.(x,)fz(xz), where fi(x,) and
f2(xp) are the marginal probability density functions of X, and X3, respectively. Thus, the
condition fix1.x2)=g(x)h(x,) is fulfilled.

Conversely, if f{x1,%2)=g(x 1 )h(x;), then, for random variables of the continuous type, we
have

fita) = of” g(xi)h(x2)dx; = g(x;) wof® h(x2)dx, = c18(X1)
and
falxa) = ol g(xih(xa)dx: = h(xz) | * g(x))dx; = e3h(xo),

where ¢; and ¢; are constants, not functions of x, or x;. Moreover cic; =1 because
="l glxh(e)dxidxg = [[og(xi)dx,] [</"h(x2)dx3]) = cacy.
These results imply that
flx1,x2)=g(x 1 Jhix2)sc, g(x) Josh(x,)=f] (x1)f(x2).
Accordingly, x; and x; are stochastically independent.
From the above example we see that the joint p.d.f.
f{x1,%32) = x,+x5, 0<x)<1,0<x;<1,=0 elsewhere,

cannot be written as the product of a nonnegative function of x,; alone and a nonnegative function

of x alone. Accordingly, X, and X3 are stochastically dependent.

Theorem 2:- If X, and X, are stochastically independent random variables with marginal
probability density functions fi(x;) and fi(x,), respectively, then

.Pr(a<X;<b,c<xz<d)=Pt(a<X,<b) Pr(c<X;<d) for every a<b and c<d, where ab.c, and d arc
constants.
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Proof. From the stochastic independence of X, and X,, the joint p.d.f. of X, and X3 is

fi(x)fa(x2)- Accordingly, in the continuous case,

Pr(a<X; <b,c<Xp<d) = J* I filx))fa(xz)dx2 dxy
= fiG)dxald Bxa)dxa]
=Pr(a<X;<b)Pr(c<Xz<d);

or, in the discrete case,

Pr(a<X;<b,c<Xp<d) = X Y f(x)h(x)

a<x;<b c<xp<d

=1Z fix)] [ fBx2)]
a<x;<b c<x<d
= Pr(a<X;<b)Pr(c<Xp<d),
Example
In first Example X; and X were found to be stochastically dependent. There, in general,
Pr(a<X;<b,c<X3<d} # Pr(a<X;<b)Pr(c<X,<d).
For instance,
Pr(0<X,<1,2,0<Xo<112) = ol 7 of? (riFx2)d1dx2 = 178,
whereas
Pr(0<X1<l,2) = of ** (x1+12)dx1=3/8
and Pr(0<Xs<lp) = of* (1np+x2)dx,=3/8
Theorem 3. Let X; and X, denote random variables that have the joint p.d.f. f(x;,x2) and the
marginal probability density functions fi(x;)and f5(x2), respec;ively. Eurthermore, let M(t;,t2)
denote the moment-generating function of the distribution. Then X; and X, are stochastically
independent if and only if M(ty,t2) = M(t1,0)M(0,t2).

Proof. If X, and X; are stochastically independent, then
Mty ) = E(Cnxﬁ'tz)(z)
= E(etlxleQ‘IZ)
- E(ellxl)E(eaﬂ)
= M(t:,0)M(0,t2).

Thus the stochastic independence of X; and X: implies that the moment-generating
function of the joint distribution factors into the product of the moment-generating functions of

the two marginal distributions.
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" Suppece. that the moment-generating function of the joint distribution of X; and X, is
sivent by M{,ti,t;):‘-M(h,O)M((),tz). Now X, has the unique moment-generating function which, in
:‘he‘cuhtz.rm‘_di-js case, is given by

| M(1,0) = of €™ 6 )dxa).
Similarly, the unique moment-generating function of X3, in the continuous case, is given by
M{0.t2) = f - e f(x5)dxa.

Thus we have
M(tL,OM(O,t2)=] "™ fix1)dx1 1] * 2 ha(x2)dlx]
= 7 o ? ™ tyxafi(x ) fa(x2)dxy dxe.
We are given that M(t,t)=M(t;,0)M (0,t2):s0
Mty = I o 7 e+ txofi(x)f(x2)dx, dx,
But M(t,,t;) is the moment-generating furiction of X; and X,.” Thus also

Mit,ta) = _a—,.I i .ﬂ;m et x I+taxs fixy,x2)dx dxs.

The unigueness of the wioment generating function implies that the two distributions of
probability that are described by f1(x))f2(x2) and f(x,,X;) are the same. Thus

J(xix2) = filx)fixz2)

That is, 1f M(t;,t2)=M(1;,0)M(0,t2), then X; and X are stochastically independent.

Some Special Distributions

4.5 THE BINOMIAL, TRINOMIAL AND MULTINOMIAL DISTRIBUTION:

Consider the function defined by
f(x)=nCyp* A-p)'™, x=0,1,2c0,
= () elsewhere,

where i1 is a positve integer and 0<p<l,. Under these conditions it is clear that f(x)>0 and that
- ] n
Tfx)=Z nCy nCyp*(1-p)™™
X x=0

=[(1-py+p]" = L.
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That is f(x) satisfies the conditions of being a p.d.f of a random variable X of the discrete type.
A random variable X that has a p.d.f. of the form of f{x)is said to have a binomina! distribution,
and any such f(x)is called a binominal p.d.f. A binomial distribution will be denoted by the
symbol b(n,p).
If we say that X is b(5,1/3),we mean that X has the binomial p.d.f.
%) = 8C, 10 28G™% x0.b.0...5
= () elsewhere.

Example 1. The binomial distribution with p.d.f. '

f(x) = 7Cx 1C5* (1-1) ™
2 XLl snanh
= () else where
has the moment generating function
M(t)=(1/2+1/2%,

has mean p = np = 7/2, and has variance o® = np(1-p)=7/4. Furthermore, if X is the random
vaiable wil_h this distribution, we have

Pr(0<1) = T f(x)= 1/128+7/128=8/128 and

Pr(X=5)=£(5)

= (7V/5121)(1/2)°(1/2)* = 21/128
Example 2.  If the moment generating function of a random variable X is

M(t)=(2/3+1/3 *°,
then X has a binomial distribution with n=5 and p=1/3; that is the p.d.fod X is
f(x) = 5C,1C3*2C" x=0,1,2.....5
= ( elsewhere

Here u=np = 5/3 and o’ = np(1-p) =10/9
Example 3

Consider a sequence of independent repetition of a random experiment with constant
probability p of success. Let the random variable Y denote the total number of failures in the
sequence before the rth success that is, Y+r is equal to the number of trials necessary to produce
exactly r success. here r is a fixed positive integer. To determine the pdfof Y, Let y be an

element of {y;y=0,1,2,.....}. Then, by the multiplication rule of probabilities, Pr (Y=y)
= g(y) is equal to the product of the probability

(y+r-1) C oy p™'(1-p)

of obtaining exactly r-1 success in the first y+r-1 trials and the probability p of a success on the
(y+r) " trial. Thus the p.d.f g(y) of Y is given by
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gy)=y+r-1Cop'(1-py, y=0,1,2.....
= 0 elsewhere
A distribution with a p.d.f. of the form g(y) is called a negative binomial distribution: and

any such g(y) is called a negative binomial p.d.f. The distribution derives its name from the fact
that g(y) is a general term in the expansion of pr{1-(1-p)]”. It is left as an exercise to show that
the moment generating function of this distribution is M(t) = p" [1-(1-(1-p)e")" for t<-In (1-p). If
r=1, then Y has the p.d.f.

gy)=p(l-p),y=0,1,2.....
zero elsewhere, and the moment generation function M(t)= p[1-(1-p)“]-1 In this special case, r
=1, we say that Y has a geometric distribution

4.6 THE POISSION DISTRIBUTION

The series I+m+m%21+m?/314...... = £* m*/x!
n=0
converge, for all values of m, io €™, Consider the function f(x) defined by
fx)=me™x! x=0,1,2.....
= 0 elsewhere,

where m>0. Since m>(, then f(x) 20 and
that 1s f(x) satisfics the conditions of being a p.d.f of a discrete type of random variable. A
random variable that has a p.d.f of the form f(x) is said to have a poisson distribution, and any
such f(x) is called a poisson p.d.f.
Example 1. Suppose that X has a poisson distribution with p=2. Then the p.d.fod X is

Fx) =2xe-2/x!, x =0,1,2....

=0 clsewhere

The vanance of this distribution is 022;,1:2. If we wish to compute Pr(1<X), we have
Pr(1<X} = 1-Pr(X=0) |
= |-f{0)=1-e%=0.865
approximately.
Example

If the moment generating function of a random vriable X is
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M(t) s e"(ﬂ-‘)

then X.has a poisson distribution with p=4. Accordingly, by way of example,
Pr (X=3) = 4¢*?1=32¢™*
3

(or) PrX=3)=Pr(X<3)-Pr(X<2)=0.433-0238=0.195

4.7. THE GAMMA AND CHI-SQUARE DISTRIBUTIONS

The Gamma function of X is
[(o)= of ® y*'e?dy
If a =1, Clearly
PO [ &Y dy =1
If a > 1, an integration by parts shows that
F(@=(-1)d® y?e¥dy=(a-1)T(al)
Accordingly, if a is a positive integer greater than 1,
I (a)=(a-1)(@2)...3) QK1) (1) =(a-1)!
sincel (1)=1
In the integral that defines I'(a), let us introduce a new variable x by writing y = x/, where p >
0 Then.
o) =o " (x )" ™ () dx
B B
or, equivalently,
1= of® IM@p® x*'e™® dx,

Since a>0, p>0, and ['(a)>0, we see that

fix) = T {a)p* x*! e P p<x <o,
= () else where

is a p.d.f. of a random variable of the continuous type.

Example
Let X be a random variable such that

E(X™=(m+3)! 3", m=1,2,3 ......
3!
Then the moment generating function of X is given by the series

62



M. 8. University D.D.C.E. I M.Sc., Maths

M) = 1+ 413t + 5!13°¢ + 613° ¢ +..
3 312! 313!
This, however is the Maclaurin's series for (1-3t)™ provided that -1<3t<1. Accordingly, X has a
gamma distribution with «=4 and =3
Example
If X has the moment generating function M(t)= 1-2t)*, t<1/2 then X is x2 (16)

If the random variable X is xz(r), then with ¢ < ¢y, we have
Pr{c;<X<cz) = Pr(X< ¢2)- Pr(X<c,),
since Pr(X=c,)=0 . To compute such a probability , we need the value of an integral like
PriXsx)= [ UT@2)2™ o™ e ™ dw
Example

Let X have a gamma distribution with a=r/2 , where r is a positive integer , and B>0 .
define the random variables Y = 2X/B. We seek the p.d.f of Y. Now the distribution function of
Yis

G(y) = Pr(Y<y) =Pr(X< By/2)

If y <0, then G(y)=0; but if y>0 then
By
G(y) = UJ UTBr2 By/2 /2-1 e -y/2
=1MT(/2)21/2yr/2-1 e-y/2
if y>0 . That is Y is x2(r)

4.8 THE NORMAL DISTRIBUTION

Consider the integral
I=_f“ exp (-y"/2)dy.

This integral exits because the integrand is a positive continuous function which is
bounded by an integrable function; that is,

O<exp(-y"/2)<exp(-ly|+1), -co<y<eo, and
= P exp (-lyl+1)dy =2¢

To evaluate the integral I, we note that I>0 and that I* may be written
P=_" . exp (-v’+2%) dydz
2
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Example 1
If X has the moment generating function
M(t) = 6214-32&

then X has a normal distribution with u=2,0). Thus, if we say hat the random variable X is
n(0,1), we mean that X has a normal distribution with mean p=0 and variance o’=1, so that the
pdfofXis

f(x) =12 me**?, -0 <x o

If we say that X is n(5,4), we mean that X has a normal distribution with mean p=5 and variance
5°=4, so that the p.d.f of X is

flx) = exp [ (x-5)°] -a<x<o

2,
227 2(4)
Moreover, if

M(t) = e

then X 13 n(0,1)

The graph of

fx)y= 1 exp - ()(-;,L)2 , -o<x<q,

o V2r A

is seen (1) to be symmetric about a vertical axis through s=p and (3) to have the x-axis as a

horizontal asymptote. It should be verified that (4) there are points of inflection at x = 1 £ ©.
Theorem 1.

If the random variable X is n(u, o), o > 0, then the random variable
W=(X-pn )/ o isn(0,1). .

Proof. :- The distribution function G( ) of w is, since o >0,
Gw)=Pr(X-p/n<e)=PrX< oo +u)
This 1s,

G(w) = "™ 1/o 21 exp [-(x-p)*/26%]dx.

If we change the variable integration by writing y =(x-p)/c, then
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G(w) =I° ... 1/21 Y22 gy,
Accordingly, the p.d.f. g(w)= G‘(cﬁ)'of the continuous- type random variable W is
g(w) =12z ™42, -0 <@<oco, Thus W is n{0,1),

Theorem 2. If the random variable X is n(u,o’), o°>0, then the random variable
V= (X-p)*/e? is X2 (1).

Proof. Because V=W?*, where W=(X-p)/c is n (0,1), the distribution function G(v) of V is,

forv =0,

G (v) =Pr(W?<v) = Pr(- Yo< W < Vo).
Thatis, '
G(v) =2 f o /o ¢ W22 do,0 < v,

And  G(v)=0, L<0.
If we change the variable of integration by writing o=y, then
G(v) =of* INE}' e dy, 0<v.
Hence the p. d. f. g(u) = G'(v) of the continuous-type random variable V is,
G) =(1/ \/;:—2) vt e, g<u <,
=0 elsewhere.
Since g(v) is p. d. f. and hence

of* g(v) dv =1,
it must be that ['(1/2) = y7 and thus V is X2 (1).

4.9 THE BIVARIATE NORMAL DISTRIBUTICN
Let us investigate the function
flxy) = i

2no107 '\H-pz ! , ~00<X <00, -0<y<w,
Where, with 6,>0,0,>0,and -1<p<1,

P 2
q = 1 [(xp) 2px-p1) (y-p2) + (y-p2)

1-p2 T Lo g c2 02
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At this point we do not know that the constant j.l{,j.lz,O']z,G'gz,and p represent parameters of a
distribution .As a matter of fact, We do not know that f(x,y) has the properties of a joint p.d.f. It

will now be shown that;
(a) f(x,y) i1s a joint p.d.f
(b) X isn(py,5y%) and Y is n{ua,627)
(c) p is the correlation coefficientof X and Y

A joint p.d.f of this form is called a bivariate normal p.d.f,,and the random variables X and Y are

said to have a bivariate normal distribution

Example: Let us assume that in a certain population of married couples the height X, of a
husband and the height x; of the wife have a bivariate normal distribution with parameters
11=5.8 feet, 11,=5.3 feet, 0y=0,;=0.2 foot, and p=0.6.The conditional p.d.f. of X;, given x,=6.3, 1s
normal with mean 5.3+(C.)(6.3-5.8)=5.6 and standard deviation{0.2) 1-0.36=0.16.Accordingly,
given that the height of the husband is 6.3 feet , the probability that his wife has a height between
5.28 and 5.92 feet is '

Pr(5.28 < X, <5.92/x, = 6.3) =N(2) - N(-2) =0.955.

The moment- generating function of a bivariate normal distribution can be determined as

follows. We have
M(ti,t) = e Y f(x,y)dx dy
= " A0 7 f(y/x) dy] dx
for all real values of t; and t;. The integral within the brackets is the moment-generating function

of the conditional p.d.f. f(y/x).Since
f(y/x) is a normal p.d.f. with mean y; + p(o2/c)(x-1t1) and variance
a,(1 -pz), then

7€'y f(y/x) dy = exp{ta[patp(or/o1)(x-p)] = ty0%(1-p*)/2}
Accordingly ,M(t;,t;) can be written in the form
exp {topr-tp(0/0 ) a0 (1-p2W2) [P expl(ti+tp(ca/o)x} f1(x) dx.

But E(e™) = exp[utHo’t’)2] for all real values of tAccordingly,if we set
t = t+zp(o2/oy),we see that M(t,,t;) 1s given by

exp {tapla-top(02/61 ) H22072 (1 P2V 2) i (tHap(o2/6 1 o (1 Hap(oa/e)/2)
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or, equivalently,

M(ty,12) = exp(p I1+}l2t2+(021 l21+2p0;0‘211t2+0’zzlzg)/2).

It is interesting to note that if, in this moment- generating function M(t,,t5),the correlation

coefficieni p is set equal to zero, then

Thus

hr’i(tl,fz) = M(t!,O) M(O,Iz).

X and Y are stochastically independent when p=0, If] conversely,

gLt

M(t1,t2) = M(t;,0)M(0,12), we have €”?,%,"'; =1.Since each of 5, and o is positive, then p=0.

EXERCISES

(1)

(2)

(3)

(4)

(3)

(6)

(7N

(8)

If P(C)>0 and if CpC;Cs, .. are mutually disjoint sets, show that
P(C, UCyu.../Cy) = P(Co/C)+P(C3/Cy)+....

Prove that
P(C]f‘!CzﬁCy’\C.ﬂ = P(C])P(Czl‘C])P(C;/C;ﬁcl)P(CdC;ﬂCQQCJ)
A hand of 13 cards is to be dealt at random and without replacement from an ordinary

deck of playing cards. Find the conditional probability that there are at least three kings

in the hand relative to the hypothesis that the hand contains at least two kings.

A bowl contains 10 chips. Four of the chips are red, 5 are white, and 1 is blue. If 3 chips
are taken at random and without replacement, compute the conditional probability that
there is 1 chip of each color relative to the hypothesis that there is exactly 1 red chip
among the 3.

Let X, and X; have the joint p.d.f. f{x,,x2)=x,+x;, 0<x;< 1, 0<x,<1,zero else where . Find
the conditional mean and vanance of X; given X;=x,,0<x,<1.

Let f(x,,x2)=21 x,*x-", 0<x;<x,<l, zero else where, be the joint p.d.f . of X, and X,. Find
the conditional mean and varience of X, given X;=x;,0<x,<1.

If X; and X; are random variables of the discrete type having p.d.f. f{x;,x;) = (x;+2x3) /
18.(x1,x2 = (1,1),(1,2),(2,1),(2,2), zero elsewhere, determine the conditional mean and

vanience of X3, given X, = x;, x;=l or 2

Let X, and X have the joint p.d.f. f{(x;,x;) described as follows:
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&)

(10)

(i1)

(15}

(14)

(15)

(16)

xix2)  (0,0) (0,1) (1,0) (1,1 (2,0 (21

f(x1,x2) 1/18 3718 4/18 3/18 6/18 1/18

and f(x),x2) is equal to zero elsewhere. Find the two marginal probability, density
functions and the twoe conditional means.

Let the random varibales X and Y have the joint p.d.f

(@) fixy) =1, (x,y) = (0,0), (1,1), (2,2), Zero elsewhere

3

(). f(x,y) =1, (x,y) = (0,2), (1,1), (2,0), Zero elsewhere
3

(c) f{x.,y) =_1_“, (x,y) = (0,0), (1,1}, {2,0), Zero elsewhere
3

In each case compute the correlation coefficient of X and Y
Let X and Y have the jeint p.d.f described as follows.
Ly (L) (12 (LG 2D 22 @3)
fxy @ 2 4 3 1 I 4

—

1 1 % es 5 5

and f (x,y) is equal to zero elsewhere, Find the corrciation coefficient p

Let f(x,y) = 2,0 <x<y. U <y < 1,zeru elsewhere, be the joint p.d.f. of X and Y. Show that

the conditional means are, respectively, (1+x)/2, 0<x<1, and y/2, 0 <y < 1. Show that the

correlation coefficient of X and Y is p =%.

Show that the random vaiables X, and X, with join p.d.f f(x,x2)=12xx;
{1-x2),0<x,;<1,0<x;<1, zevn zisewhere are stochastically independent.

Sxfed ]
S 0<x1,%2,0<x,<00, zero

If the random variables X,,X; have the join p.d.f f(x;,X;)=2e
elsewhere, show X; and X are stochastically dependent.
Find Pr (0<X;<1/3, 0<X;<1/3) if the random variable X and X; have the joint p.d.f
f(x1,x2) = 4x,(1-x3),0<x,<1,0<x,<1, zero elsewhere,

If the moment -generating function of a random variable X is (1/3+2/3%)°, find Pr(X =

20r3)
The moment generating function of a random variable X is (2/3+1/3et)9. Show that

Pr(p-20<X<p+20) = = 2(9/x)(1/3)x(2/3)°™
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(17)

(18)

(19)
(20)

@1

(22)

(23)

(24)

(25)

(26)

Q7).

(28)

If X is b(n,p), show that
E(X/n)=p and E[(X/n-p)’] = p(1-p)/n

Let Y be the number of success in n independent repetitions of a random experiment
having the probability of success p=2/3. If n=3, computer Pr (2<Y); if n=5, compute
Pr(3<Y)

Let X be b(2,p) and let Y be b(4,p). If Pr(X=1)5/9, find Pr (Yz1).

Show that the moment generation function of the negative binomial distribution is
M(t) = pr{1-(1-p)et]”,. Find the mean and variance of this distribution. Hint. In the
summation respesenting M(t) , make use of the MacLzurin,s series for (1-w)”

If a fair coin is tossed at random five independent times, find the conditional probability
of five heads relative to the hypothesis that there are at least four heads.

If the random variable X has a poisson distribution such that
Pr (X =1) = Pr(X=2), find Pr(X=4).

The moment generating function of a random variable X is ¢* D Show thet
Pr{p -20<X <p+20)=0.931

Compute the measures of skewness and kurtosis of the poisson distribution with mean p

Let X and Y have the joint p.d.f. f (x,y) = ¢ 2/ [x! (y-x) ]
y=012,.:x=0.1.... y, Zero elsewhere

(a) Find the moment-generating function M (t1,12) of this joint distribution.

(b) Compute the means, the variances, and the correlation coefficient of X and Y.
(¢} Determine the conditional mean E(X > y). Hint,

If (1-2t)®, t<1/2 is the moment -generating function of the random variable X,  find
Pr (X<5.23).

If X is x2(5), determine the constants ¢ and d so that Pr{C<X<d)
=0.95 and Pr(X<c)=0.025

Let X have a gamma distribution with pd.f f(x)=1/2 xe-x/P,0<x<w, zero elsewhere. If
x=2 is the unique mode of the distribution, find the parameter 8 and Pr (X<9.49).
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(29). Compute the measures of skew ness and kurtosis of a gamma distribution with
parameters & and 3.
(30) Let X have the uniform distribution with p.d.f. f(x)=0,1<x<l, zero elséwhere. Find the
distnibution function of Y=-2in X. What is the p.d.fof Y?
3. I N = o 1/ V2n e do,
show that N(-x)=1-N{x).
32, IfXisn (75, 100), find Pr (X-60) and Pr (70<X<100).
33.  IfXisn(u, o), find b so that Pr [-b<(X - p)/o<b] = 0.90.
34.  If Xisn{p, 6%), show that E (JX-p))=c"/n.
35.  Let the random variable X have the p. d. f.
f(x)=2/2ne 22 O<x<: , zero elsewhere.
Find the mean and variance of Y. Hint. Tomgu‘c E (X) directly and £ (X%) by comparing
that integral with the intcgral representing the van.ace of a variable that is n (8,
).
36.  Let X ben (5, 10). Find Pr [0.04<(X-5)*< 38.4].
37. Let X and Y have a bivariate normal distribution with parameters
Hi=3 =1, a%) =16, ;> = 25, and p = 3/5. Determine the following probabilities :
(a) Pr{3<Y<8).
{b) Pr{3< Y <8/x=7).
() Pr(-3< X <3).
(d) Pr(-3< X<3/y=4).
38.  Let X and Y have a bivariate normal distribution with parameters

=35, pp= 10,67, =1,0% =25, and p>0.
If Pr(4 < Y<16/x=5)=0.954 determine p.
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UNIT V

DISTRIBUTIONS OF FUNCTIONS OF
RANDOM VARIABLES

TABLE OF CONTENTS

3.1 Sampling Theory
5.2 Transformation of variables of the discrete type
5.3 Transformation of variables of the continuous type.
5.4 Thetand F Distributions
5.5 Extension of change of variable technique
5.6 The moment generating function technique.
5.7 The Distributions of X and ns2/o’
5.8 Exceptions of functions of random: vuriables
2.9 Limiting distribution
5.1G  Stochastic Convergence
>.11  Limiting moment- Generating functions
5.12 The central limit Theorem
EXERCISE

5.1 SAMPLING THEORY
Definition :

A function of one or more random variables that does not depend upon any unknown

parameter is called a statistic.

Definition :

Let X,.X;..., X, denote n mutually stochastically independent random variables, each of
which has the same but possibly unknown p.d.f. f{x); that is, the probability density functions of
X1.Xs,..... X, are , respectively, fi(x;) = f{x;),f(x2) = flx2), .... ,fa(Xa) = fXy), so that the joint p.d.f.
is f(x1)f(x2)...f{x,). The random variables X1,X2,...,Xa are then said to constitute a random sample
from a distribution that has p.d.f. f{x). '

Definition :

Let X; ,X;,....Xn denote a random sample of size n from a given distribution . The
statistic
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is called the mean of the random sample, and the statistic

n

=% XX~ = IR X

=1 n w1 I

is called the variance of the random sample.
Example :

Let the random variable Y be distributed uniformly over the unit interval 0<y<l1 ; that is

the distribution function of Y is
G(y) = 0,y<0
= %.0<y<l,

=1,1<y

Suppose that F(x) is a distribution function of the continuous type which is strictly increasing
when 0 < F(x)<1. If we define the random variable X by the relationship Y = F(X), we now show
that X has a distribution which corresponds to F(x). If 0<F(x)<1 , the inequalities X< x and F(X)
<F(x) are equivalent. Thus , with 0 <F(X)<l, the distribution function of X is

Pr(X<x)= Pr(F(x)< F(x)]=Pr{ Y<F(x)]

because Y =F(X). However ,Pr(Y<y)= G(y), so we have
Pr(Xzx)= G[F(x)]=F(x). 0<F(x)<l

That is the distribution function of X 1 F(x).

This resuli permits us to simulate random varnables of different types.

5.2 TRANSFORMATIONS OF VARIABLES OF THE DISCRETE TYPE

An alternative method of finding the distribution of a function of one or more random

variables is called the change of variable technique.
Let X have the poisson p.d.f
fix)=pe", x=012,....

x!
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= 0 elsewhere.

Let A denote the space A = {x;x = 0,1,2,3.....}, so that A is the set where f(x)>0. Define a new
random vanable Y by Y = 4X. We wish to find the p.d.f. of Y by the change-of—variable
technique. Let y = 4x. We call y = 4x a transformation from x to y, and we say that the
transformation maps the space A on to the space B ={y;y=0,4,8,12.....}. The space B is obtained
by transforming each point in a in accordanceiwith ¥y =4x.
The p.d.f. g(y) of the discrete type
g(y) = Pr(Y=y) =Pr(X=y/4) = c¢®  y=04_8...

(v/4)!

0 = elsewhere.

Example . Let X have the binomial p.d.f.

fx)= 3 271, x=01.23
x'(3-x)t 37 3B
= { elsewhere,

We seek the p.d.f. g(y) of the random variable Y=X°. The transformation y = u(x)=x’
maps A = {x;x=0,1,2,3} on to B={y;y=0,1.4,9}. In general, y=x’ does not define a one-to-one
transformation; here, how evcr, it does, for there are no negative values of x in A={x; x=0,1,2,3}.
That is, we have the single -valued in verse function x = w(y) = V y  (not- vVy), and so
gy = fivy) = 3! 297, y =0,1,4,9,

(W) ey Wy 3By

= (} elsewhere.
Example

Let X, and X; be two stochastically independent random variables that have Poisson
distnbutions with means y; and p,, respectively.
The joint p.d.fof X, and X3 is

Xt

2 . -t
cpl w2

Pl“l—lz
X[!Xg! X|=0,1,2,3,...., x;$0,1,2,3,..,
and is zero elsewhere. Thus the space A is the set of points (x;,x2), where each of xand x; is a

nonnegative integer. We wish to find the p.d.f of Y,=X;+X; If we use the change of variable
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technique , we need to define a second random variable Y. Let us choose Y; in such-amway that a
simple
one-to-one transformation .For example, take Y»=X;. Then y;=x,+x; and y,=X; represent one-
to-one transformation that maps A on to

B ={(yi,y2)iy2 = 0,1,....y1 and y1=0,1,2,..}.
Note that, if{y,y2)¢ B, then 0< y; < y.The inverse functions are given by
X| = Y1-Yz and xz = yz. Thus the joint p.d.f. of Y, and Y3 is

gy = ! e

-ydy! (h.y2)eB,
and is zero elsewhere . Consequently , the marginal p.d.fof Y, is given by

yi
gin) = YME g(y1.y2)

e e ! w2

e

= i (yi-y2)'y:!

= ()

i yi=0,1,2.......,

and is zero elsewhere. That is , Y, = X; + X, has a Poisson distribution with parameter p,+pa.

5. 3 TRANSFORMATIONS OF VAF

Example.

Let X be the random variable of the continuous type, having p.d.f.
fx) = 2x, 0<x<1, f{x)=0 elsewhere

Here A is the space (x;0<x<1jwhere f(x)>0. Define the random variable y by y=8x’, and
consider the transformation y=8x’. Under the transformation y=8x’, the set A is mapped on to
the set B={y:0<y<8}, and moreover the transformation is 1 to 1. for every 0<a<b<3, the event
a<y<b will occur when and only when the event %2 *y a<x<1/2 b occurs because there is a one

to one correspondence between the points of a and b.
Thus
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Pr(a<y<b) = Pr (1/2 3Va<X< % NB)-
[2N02 axan
N2
By changing the variable of integration from x to y by writing y = 8% or
x=1/2 *Vy . dx = Nk
d_; 6y 23

and accordingly, we have

Pr(a<y<b) = ./*2(Vy) (1 )y
2

2/3

6y

Sin. 7 this is wue for every 0< a<b<§, the p.d.fg(y) of Y is the integrand; that is,

gy) = 1 O<y<g,

;3 ) = ( elsewhere
g(y} = 0 otherwise
Hxample: Let X have the p.d.f.
fx) =1, O<x<I,
= () elsewhere.
We lave to show that the randozﬂ variable Y= -2 In X has a chi

degreas of freedom. Here the transformation y=p(x)=
A ={x;0<x<1}

-square distribution with 2

-2 In x so that o(y) = e-y/2..The space A is
whith $§g ene to one transformation Yy =-2 in x maps onto B={y,0<y<co}. The
Jacobian of the transformation is

J=dx = oly)=1e"
dy 2

Actording, the p.d.fg(y) of Y =-2 In X is
B = Ale™ ] =1/2 " 0<Y<o,
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= 0 elsewhere, a p.d.f that is chi-square with 2 degrees of freedom. This method of finding the
p.d.f of a function of one random variable of the continuous type will now be extended to
function of two random variables of this type. Again, only functions that define a one-to-one
transformation will be considered at this time. Let y;=p1(x1,X2) and y2=pa(x1,%;) define a one-to-
one transformation that maps a (two-dimensional) set A in the x3,X; plane onto a {two -
dimensional) set A in the y;,y2- plane. If we express each of x; and X, in terms of y: and y;, we

can write X;=m,(y1,y2), X2=02(y1,¥2). The determinant of order 2,

Xy 0x
n  op
9%y Oz
m o

is catled the jacobian of the transformatica and will be deroted by the symbol J
Exampie _
Let the random variable X have the p.d.f
f(x)=1, 0<x<l,
= 0 elsewhere
and let X,,X; denoted a random sample from this distribution. The joint p.d.f of X, and X; 18
then

Q(x1.X2)=f(x1 )(x2)=1, 0<x1<1<,0,x2<1,

= () elsewhere
Consider the two random variables Y=X;+X; and Y,=X;-X3, we wish to find the join p.d.f of
Y, and Y,. Here the iwo dimensional space A in the x1.X2 plaﬁc is that of Example 3 of this
section. The one-two-one transformation y;=x;+Xa, ¥2=Xi-X, maps A onto the space B of that
example. Moreover, the Jacobian of that transformation has been shown to be J =-1/2. Thus

g(yiy2) = 9[1/2(n+y2),1/2 (n-y2)li|

= fT120+y)If112(n-y2)Ji=1/2 (y1,y=2=B)
= () elsewhere

Because B is not a product space, the random variable Y, and Y, are stochastically dependent.

The Marginal p.d.f of Y, is given below
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il

yZ
gi(y1) -,II 122dy; =yi< 1

2y

il

tjﬂ_z 2 dy, =2-y, 1<y,<2,

1

0 elsewhere
In a similar manner , the marginal p.d.f gx(y,) is given by
gy2) = -2 [ 122 dy; = y1, 0<yl<1
= 2-y2 =L
{yI-Z)I /2 le 1 ¥z, 1<}’l<2;

= ( elsewhere

Example

Let y;=(x,-x;) where x, and X2 are stochastically independent random variables,
each being X3(2). The join p.d.f of X,and Xy is
S Xx2) = 1/4 exp(-x,_x), O0<x1<co, 0<x2<c0.

= () elsewhere
Let X;=X, so that y¥1=1/2(x,-x;),y2=xa, or X1=2y1ty2, X2=y; define a one-to-one

transformation from A={ (x1,x2); 0<xl<oo, 0<x2<w} onto B={(y1,y2);-2y, <y2 and O<y,, -
w<yz<w)}, The jacobian of the transformation is

21

Hence the join p.d.fof Y, and Y, is

g(yny2) =2 Y12 (yuy:)eB

=0 elsewhere

Thus the p.d.f of Y, is given by

gi(y)) = 29[ v, Yy dyy =l exy, -a0<y]<0
=12 yiydy: =172 oy, 0<yl<e,
or

gy =12¢e", o<y <c0

This p.d.fis called the double exponential p.d.f
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5.4 THEt AND F DISTRIBUTIONS

Let W denote a random variable that is n(0,1); Let V denote a random variable that is

1°(¢); and let W and V be stochastically independent. Then the joint p.d.f of W and that of V or
o(o,v) = ]f\"l—-r;-wZ/Z 1/r(r/2)2e/2 vr/2-1 €™, -20< <00, (<v<co,
= () elsewhere

Define a new random var.able T by writing

T=Wrlvi
The change-of-variable technique will be used to obtain the p.d.f g(t) of Y. The
cquations.

t =w/Yv/r and u=v

define  a  one-to-one  transformation  that maps A ={(W,v);-0<w0)}. Since

v = tvu/ Vr. veu, the absoulte value of the Jacobian of the transformation is

31 =Yu/ Vi, Accordingly the joint p.d.f of T and U =V is given by

glta) = et vur, u) [

ri2-1

= exp {~u (1) Ju_

2nVri22 ™ 2 Vr
= 1/ N2m(r/2)2°" ur/2-1 exp [-w2 (1+2/r) ]
= () elsewhere -oo<t<en, (<u<as
The marginal p.d.f of T 1s then
ghit)=-..! g(tu) du
=oJTu(r+1) 2-1  exp -y/2 (1+t%r) dx
2Vnr “\-’ﬁf’?
In this integral let
x =u [1+t7/r)/2 and then
gi() =" 2z/1+t%r) ¢* 2
e S
V2nr Vr2 27 1+ur dx -00,<t<wo
Thus if Ws n(0,1) 1s n(0,1), if V is xz(r), and 1f W and V are stochastical independent,

then
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T=WNV/r

5.5 Extensions of the change-of-variable Technique
Consider an integral of the form
JoooaJo(xi xa, % o) dxy dxs_dx,

taken over a subset A of an n- dimensional space A. Let

¥n = Un(X1,..,Xn),
together with the inverse functions.
X = WiYLY20 30 X, = WaY1,Y200m¥0) o
Xo = Wn(Y1,¥2,.,Yn)

Define a one to one transformation that maps A and B in the yi,y;...y;, space (and hence
maps the subset A of A and on to a subset B of B). Let the first partial derivatives of the inverse

functions be continuous and let the n by n determinant (called the J acobian)

6x, 6){] an
Oy1 oy, OYn

Ox2 % ... 0x3

—_—

F = aYI 57‘yz ayn

Oy 0%
yi Oy, Oyn

not vanish identically in B . Then

B

[s... f(p(xl,XZ,....xn)de,dxz ..... dx,

= [p... fcp[w](yl,-..,yn),Wz(yl..--,yn)....wn(y:....,yn)] x |J|dy dy;.... dy,
The joint p.d.f. of the random variables Yi=u(X,X,,... X,),
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Y= ua(X1, X2, Xo)yooo. . Y0 = ua(X1,Xo.... Xn0)- where the joint p.d.f of X;,Xa,...Xn is ¢(x1,.....Xn)
is given by

8Y1Y2-¥n) = B @[W1(Y1ees Y2y Wr(Y1s- oY) s
when (y1,¥2,...,¥n) € B, and 1s zero elsewhere.
Example 1:

Let X; ,X3,.., Xy« be mutually stochastically independent random variables, each having a
gamma distribution with B=1. The joint p.d.f of these variables may be written as

QXX 2o Xio1) = i IT 1T (a)x; & €7, O0<xi< o0,

1l

0 else where
Let

Y. == Xi

Xit Xt X , 1=1,2,...k,
and Y. =X;+X;+...+Xy 4y denote k+l new random variables The associated
transformation maps A={(X1,....x+1); 0<x;<eo, i=1,... . k+1} onto the space.
B={y . nyct1)0<y i =10k
yit...+y<l,0<ype <o}
The single-valued inverse functions are x| = y;Yeet,. Xk = YiYk+1,

Avet = Yeer{1-y1-...~¥k), so that the Jacobian is

1= wer O 0 O i
0 v ... 0 Y2
= Y%
0 0 ... Y Y«
Yist Yoot vt (B¥im¥i)

Hence the joint p. d. f. of Y}, ..., Yy, Y x+1 18 given by
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a +.%a Ioa T a -1
| k+1 1 k -y

Y N Yk Qyloyba sikn

I“(a;)... r (Ctk) r ((lkﬂ)

provided that (y, ..., y\, Yr+1)€B and is equai to zero elsewhere.
Thejointp.d. f of Yy, ..., Y k IS

YL ) = T (ot ogey) yy & ! k7 (1-Y1memy )% =1
U (ay... T (aes) When

O<y, 1 =1, ..., K, yit...+y <1, while the function g is equal to zero elsewhere. Random variables

Y1, ..., Yi that have a joint p.d.f of this form are said to have a Dirichlet distribution with
parameters q, ...., G, G+, and any such g(¥1,.-.,y «) is called a Dirichlet p.d.f. It is seen, in the
special case of k=1, that the Dirichlet p.d.f. becomes a beta p.d.f. Moreovm_', it is also clear from
the joint p.df. of Y,.,Y i, Yi that Yis1 has a gamma distribution with parameters
Gttt and  B=l1  and that Yy, is stochastically  independent  of
Yi. Y2, ...Ye

Now, let X have the Cauchy p.d.f.

fix) =1/n(14x?),  —o<x<wo,
and let Y=X> We seek the p.df g(y) of Y. Consider the transformation y=x*. This
transformation maps the space of X, A={x; -co<x<oo}, onto B={y;0<y<w}. However, the
transformation is not one-to-one. To each yeB, with the exception of y=0, there correspond two
points xe A, for example, if y=4, we may have either x = 2 or x = -2. In such an instance, we
represent A as the union of two disjoim sets Ay and A; such that y=x? defines a one-to-one
transformation that maps cach of A; and A, onto B. If we take A, to be {x;-00<x<0} and A, to be
{x;0<x<cc}, we see that A, is mapped onto {y;0<y<w}, where as A, is mapped onto {y,0<y<oo}
and these sets are not the same.

Take Al={x;-c0<x<0} and A2={x;0<x<o}. Thus y = x°, with the inverse x = -y, maps

Ay onto B ={y;0<y<w} and the transformation is one-to-one. Moreover, the transformation y =
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x?, with inverse x =-\y, maps A, onto B ={y;0<y<eo} and the transformation is one-to-one.
Consider the probability Pr(Y e B), where BcB. Let A; = {x; x = -Vy, yeB}cA, and
let Ay={x;,x= ‘E’» ye Ay. Thus we have
Pr=(YeB)=Pr(XeA;3)+Pr(XeAy)
= [a3 f1x) + Jaa f(x)dx.
In the first of these integrals, let x = -Vy. Thus the Jacobian, say J is -1/ 2¥y moreover, the set Ay
is mapped onto B. In the second integral let x = Yy. Thus the Jacobian, say J,, is 1/2Vy;
moreover, the-set Ay is also mapped onto B. Finally,
Pr(YeB) = [ f-¥y) | 172Vy | dy+ [RENy) 1724y dy
=f [N} RAY)1/2Vy dy.
Hence the p.d.f. of Y is given by
g) = L2V f-V)+Ny)],  yeB.
With f{x) the Cauchy p.d.f. we have
8(y) = Un(1+y)Vy,  O<y<eo,
= 0 elsewhere.
Let @lxi,x3; s , Xn), be the joint p.d.f. of X;, X3, ...., X, which are random variables of the
continuous type. Let A be the n-dimensional space where ©(X1,X2,......Xn)s --,¥n = Hn(X1,X2,--1Xn),
which maps A onto B on the yi,y,,....y» space. To each point of A there will correspond, of
course, but one point in B; but to a point in B there may correspond more than one point in A.
That 1s, the transformation may not be one-to-one. Suppose, however, that we can represent A as
the union of a finite number, say k, of mutually disjoint sets A}, A,,.... Ay so that.
Yi= (XX X000y, YR = UN(X),X 25000090 X0)
Define a one-to-one transformation of each A, onto B. Thus, to each point in B there will
correspond exactly one point in each of Ay, A,.... Ag.
Let  x1= @1i(Y1.Y200,¥0),
X2 = 0a(YL,Y2....yn), i=1,2,....., k,

Xn = Oni(Y1,¥2,--s¥n)s
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denote the k groups of n inverse functions, one group for each of these k transformations. Let the

first partial derivatives be continuous and let each

owy; 80y ... dwli

dy) Yy, OYn

J, = Cws, oWy ... Oy
L:}_V] 5}’2 ay,, i "—"1,2, ewiuivy k

—_—

cdoni &n,.. ...... 5(1)";
a}’l 5}’2 aYn

not identically equal to zero in B . From a consideration of the probability of the union of k
mutually exclusive events and by applying the change of variable technique to the probability of
cach of these events, it can be seen that the joint p.d.f of Y= u (X, X, X, Y, =
(X1, X2,.0., X ). Y.= Un(X,.Xs,...,X,) is given by

B(Y1.Y20\Ya) = ng:: [ Ji | (p[wl,-(y,,...,yﬂ)....w,.,,(yl,....y,,)], provided that (Y1,Y2,.0Yn)e B
and equals zero eisewhere. The p.d.f ofany Y;, say Y,, is then

81Y) = "o ... s 831, 21.....yn)dys..dy.
Example 2-

To illustrate the result just obtained , take n =2 and Jet X1, X3 denote a random sample of
size 2 from z distribution that is n(0,1), The joint p.d.f, of Xy and X; is |

flx1,%2) = 1/2m exp [(-x1%+x5%)72), ~00<X | <00, -00<X <00,
Let Y denote the mean and let Y, denote twice the vanance of the random sample. The
associated transformation is

Y= xitxp/2,

B (X1-x7)*/2

The transformation maps A={(x,,x,); -00<X | <00,-00<X <00} onto B ={(v1-y2); -0<y,<eo,-

0<y,<0}. But the transformation is not one-to-one because, to each point in B | exclusive of
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points when y;=0, there correspond two points in A. In fact the two groups of inverse functions

are
X|=Y1-‘v‘Y2/2 X2=y1+Vy2/2,
and

Xi=yi+Vy2  x= yz-\fgz.

Moreover the set A cannot be represented as the union of disjoint sets each of which
under our transformation maps onto B. Our difficulty is caused by those points of A that lie on
the line whose equation is x; = x; . At each of these points we have y; = 0 . However , we can
define f(x;,x;) to be zero at each point where x; = Xa. We can do this without altering the
distribution of probability , because the probability measure of this set is zerc;. Thus we have a
new A={(Xy,X;); -00<x<00,-00<xp<0} X1 # Xz} . This space is the union of the two disjoint sets
Ar={(x1,%2); X2>x1} and Ax={(x2<x1); x2<x1}/ Moreover our transformation now defines a one —
to-one transformation of each Ai,i=1,2, onto the new B ={(y1,y2); -00<y;<e0,-00<y;<co}. We can
now find the joint p.d.f. say g(y;,y;,),& of the mean Y, and twice the variance Y, of our random
sample.

| = 2] = 1/¥2y. Thus
8(y2) =L/2m exp [- (V22 - (vt ¥ y2/2)2 1 12y

+ Y mexp [y1- ¥ y2/2)22- (y1-Ny2/2)] 142y,

= 2/2n e 1
¥%-1e—y2/Z

v2I'(1/2) , ~00<y} <00,-00<y,<c0}

The mean Y of our random sample is n(0,1/2); Y2, which is twice the variance of our sample ,
is ,x*(1) ; and the two are stochastically independent. Thus the mean and the variance of our

sample are stochastically independent.

5.6 THE MOMENT- GENERATING- FUNCTION TECHNIQUE

Let ¢(X1,X2,X3.......Xn) denote the join p.d.f of the n random variables Xi, X;.....Xq. These
random variables any or may not be the items of a random sample from some distribution that
has a given p.d.f fx)_. Let Yi=u1(X1,X2,Xs......Xa). We seek g(y1), the p.d.f of the random

variable Y;. Consider the moment-generation function of Y1. if it exists, it is given by
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M{)=E( et\,’;})=-u["°e‘“g(y;)dy1 in the continuous case.

Exampie 1
Let the stochastically independent random variables X, and X; have the same p.d.f
F)=x/6,x =123
"= eisewhers
that is the p.d.f of X is f(x;) and that of X; is f(x2) ; and so the joint p.d.f of X; and X, is
OO f(xa) = x,x/36 x;=1,2.3, x:=1,23
= 0 elsewhere
A probability, such as Pr(X;=2, X;=3) can be seen immediately to be (2)(3)/36=1/6.
Consider a probability such as Pr(X;+X,=3). the computation can be-made by first observing that
the event X,+X; =3 is the union exclusive of the events with probability zero of the non mutually
exclusive events (X;=1, X;=2 ) and (X,=2, X,). The |
Pr(Xi+Xp=3) = Pr(X;=1,X=2)+ Pr(X,=2,X>=1)
= (1)X2)/36+ (2)(1)/36 = 4/36.
More generally |, iet y represent any of the number 2,3,4,5,6. The probability of each of the

events Xy+X, = Y,y = 2.3,4,5,6 can be computed. Let g(y) = Pr(X1+X2=yj. Then the table

(ydl 1736 4/36 10/36 12/36 9/36

gives the values of g(y) for y 2,3,4,5,6, . For all the values of y, g(y), = 0 . Now, define a new
random variable Y by Y = X,+X;, and the we have to calculate the p.d.f .g(y) of this random
variable Y. We shall now solve the same problem and by the moment generating function
iechnique.

Now the moment generating function of Y is

M) =  E('® ™)

— E(elxl . ctxz

Il

E(e‘x')Ee(“l), Since X, and X are stochastically independent.
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Theoram 1:

Let X, Xz, ..., X, be mutually stochasicated independent random variables having ,
respectively, the normal distributions n(p;.o.z),n(pgczz), .. and n{,,0,7). The random variable
Y= ki Xatkaxat ...+ kq, k2., K, are real constants, is normally distributed with mean Kipy + oo
+Knltn and variance k%07 +...+k*no’n.

Proof :

Since Because X;,X3, ..., Xn re mutually stochastically independent the moment
generating function of Y is given by
M(t) = E{exp[t(ki X+ k2 X; +...+knXn)]}

= E(e*X1)E(e"2X?) . E(ek¥n)
Now

E(e"™) = exp(pt+a’t’/2)
for all real t,1 <1,2 .....n Hence we have

E(e™™) = exp[p(kit)+ oi’kit® /2],

That is, the moment generating function of Y is
M(t) =TT _, explGapt + Kio )2)

= exp [({,Z Ky +E", kioit)2/2)

But this is the moment generating function of a distribution that is
ng " Z, ki, k L k’ 0,5). Hence the proof.
Theorem 2:

Let X, Xz,... X, be mutually stochasicated independent variables that have respectively
the chi-square distribution X*(r,), X*(r2) ..., and X*(m). then the random variable Y=X,+X;+...+
Xn, has a chi-square distribution with r;+ ...+ m degrees of freedom that is, Y is X°(r;+..+...m)
Proof.

The moment generating func n(action of Y is

M(1) = E{exp[t((Xi+Xat+...+ X)) }is

= E(e"")E(c"?)...E(e™)
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Because X;, Xj .., X, are mutually stochastically independent since
B>y = (10072 =gl win

We have, M(t) = (1-2t) T2~ 12 <1/2

But this is the moment generating function of a distribution that is xz(r1+r2+/...+rn).
Accordingly Y has this ch-square distribution .
Also, let X,,X;,...,Xn be a random sample of size n from a distribution that is n(u,cz) Thus, each
of the randomk variable (Xi-;f /62, i=1,2,...nis xz(l), More over these n random variables are
mutually stochastically independent . By date, the random variable Y= z [x(Xi-p)/o?, i=1,2.n
is X*(n).

2, 2

5.7 THE DISTRIBUTION OF X AND NS*/o

Let X, , X,,....X, denote a random sample of size n 22 from a distribution that is
n( p,o° ). Here we discus about mean and the variance of this random sample that is the
distribution of the two statistics

{="%; Xi/n and $* ="%; (X;i-X)?/n

The problem of the distribution of X. the mean of the sample is solved by the use of Theorem
1 if section 5.5. We have here , in the notation of the statement of that theorem
M= =), 0 = 02 = o%y=0” and ki=k; =...=k, =l/n . Accordingly Y = X has a
normal distribution with mean and variance given by
"1y =p, 1 Z"(1/n)’ o’ ] =o’/n
respectively that is X is n(p,o%/n)
Example : Let X be the mean of a random sample of size 25 from a distribution that is
n(75,100). Thus X is n(75,4) Then for instance,

Pr(71<X <79) = N(79-75) - N(71-75)

2 2

= N(2)-N(-2) = 0.954
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We now take up the problem of the distribution of S? the variance of the random sample
Xi,...X32..X; from a distribution that is n(p.,cr2 . Consider the joint distribution Y;=X;, Y,=X; ,
Yo=Xg,.

The corresponding transformation

X\1=ny-y2.......yn
X2=Y2
Xn = ¥n

has Jacobian n Since

"E o) =" e XX = 2% + 0 )
because 2(x-1t) " %, (x-x) = 0 the join p.d.f of X;,X3,Xs... X,
can be written

(127" exp [ D) 2~ nxp)]

262 26°

where x represents '(xl+x2+ ....... xn)/n and -co<xl<w, i =1, 2, .... n. Accordingly, with y; =
x, we find that the join p.d.f Y1,Y2 .......Yn 18
n(1\270)" exp [ -(ny1=yz-ooo-Ya1)’

20 2
2% (i-y1)’- n(y1-p)*

20? 26*

| -0<y; < i=1,2,3......n. The quotient of this join p.d.f and the p.d.{
Vi / (V2n0)™" exp [-n(y1-p)’]
of Y;=X is the conditional p.d.f of Y3, Y3 .... Yn given Y=y,
where g=(ny;-ys-...... va-y1)+2(yi-y1)’. Since this is a join conditional p.d.f it must be, for all o
>0, that .
- 2 (1A276)™! exp (-q/260)dys.....dya=1
Now consider

nS; = T(Xt-X)*
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=(nY-Ys-.....Yn)-yi)* + 2(Yi-Y,) = Q
The conditional moment generaing function of nS%c* = Q/c®, given Y=y, is
EE? /6*y)= of . of Vi (1276)" exp [«(1-26)q] dya...dy,

26°

= Lol po R G BO TRy aep [0 dyr L 8]

1-2t 2 o’ 2q 2

Where 0<I-2t, or t<}%2 . However, this integral is exactly the same that of the conditional p.d.f of
Y., Y3.....Y,. given Y =y, with o’ replaced by cz/(l-Zt)>O and thus must equal 1. Hence the
conditional moment generating function of nS%o?, given Y, =y, or equivalency X =X, is

E(e™%/6%/x) = (1-2t)-(n-1) /2, t<1/2

That the conditional distribution of nS$*/c?, given X=x, is Xz(n-i ). Moreover, since it is clear that
this conditional distribution does not depend, upon x, X and S% are stochachatically independent.
To summarize we have established, in this section, three important properties of X and S? when
the sample arises from a distribution which is n(p,oz):

(a) X is n(p,o%/n}

(b)  nS%c’is X*(n-1)

(c) X and S? are stochastically independent.

Expectation of Functions of Random Variables

5.8 EXPECATIONS OF KFUNCTIONS OF RANDOM VARIABLES

Theorem

Let X,Xz.....X, denote random variables that have means u{ ...... u, and variances 021
ooy L pi; i#j denote the correlation coefficient of Xi and Xj and let k;.....K,, denote real

constants. The mean and the variance of the linear function
Y="Y kX
are respectively

=" 2 kipi
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and o° y= ’ 3 ]k,-z 0;2+2E ~ _E kik;oio;
Corollary Let X;,X;...... X, denote the items of a random sample of the variance of Y= Z ki X;
are respectively o, = ( Z K% pand ¢°
Example 3
Let X=" Z X/n denote the mean of a random sample size from a dislribution that has
mean p and variance o2, In accordance with the corollary, we have px = Z ( Im)y=p and o x
Z (1/11) = ¢*/n. We have seen, in section 4.8 that if our sample is form a distribution that

is n (u,0%), then X is n(p,o/n). it is interesting that px = p and ¢ = o whether the sample is or

not from a normal distribution.

5.9 LIMITING DISTRIBUTIONS

If X is the mean of a random sample X;,X......X, from a distribution that has the p.d.f
J() =1, 0<x<1,
= 0 elsewhere
the moment generating function of X is given by [M(t/n)]n, where
M(t) = of €% dx = g1, 10
t
=},1=0
B(e™) = (¢"-1), 0,
(tn)
=1, t==(}
)=l 1 ™4y
VUmi2n.
for the distribution function of the mean X, of the random sample of the size n from a normal
distribution with mean zero and variance 1 - |
Definition
Let the distribution function F, (y) of the random variable Y, depend upon n, a positive
integer. If F(y) is a distribution function and if lim Fo(y) = F(y) for every point y at which E(y) is
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n—» co

continuous, then the random variable Y, is said to have a limiting distribution with distribution
function F(y)

Example
Let Y, denote the nth order statistic of a random sample X,,X;.....X, from a distribution
having p.d.f
H(x) = 1/8, 0<B<eo,
= (0 elsewhere
The pd.fofY,is
g(Y) =ny"'/8",  o<y<d,
=0 elsewhere,

and the distribution function of Y,is
Fn(y)=0, y<0
= "™ dz = (y/0)", 0<y<o,

o

=1,  B=y<w
Then
im F(y) =0, -co<y<0,
N-—00

=], 9<y<':oo
Now F(y) =0 -co<y<@

=1 Osy<w
15 a distribution function
Example

Let X, have the distribution function

Fng=_[7 1 emagy

Vim \2n

[f the change of variable v = Vnw is made we have
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Fax) =™ 12T (@) dv
Clearly,

’1m . Fn(x) = 0x<0
n—> - 1270
=1, x>0
F(x)=0,%<0
=1,X>0

is a distribution function and lim Fn (x) = F(X) at every point of continuity of F(x).

¥ —»o0

Accordingly the random variable X;, has a limiting distribution with distribution function
F(X). Again this limiting distribution is degenerate and has all the probability at the one point
x=0
Example
The fact that limiting distributions, if they exist cannot general be determined by taking
the himit of p.d.f will now be illustrated let Xn have the p.d.f
f(x) =1,x=2+1/n
= () elsewhere
Clearly, lim fru=o for @ll values of x. This may suggest that X n s
n-> o
Fn{x) =0 x<2+1/n,]
=1, x=22+ln
and
lim fn(x)=0,x<2
n-> oo
=],x=2

Since

92



M.S.University D.D.CEE. I M.Sc., Maths

F(x) =0, x<2, '

=1, x=2,

is a distribution function, and since lim Jn(x) =F(x) at all points of continuity of F(x), there is a
limiing distribution of X, with distribution function F(x)
5.10 STOCHASTIC CONVERGENCE
Theorem

Let Fi(y) denote the distribution function of a random variable Y. whose distribution
depends upon the positive integer n . Let ¢ denote a constant which does not depend on n . The
random variable Y, converges stochastically to the constant ¢ if and only if, for ever €>0, , the
lim Pr(|Yn-cl<e) =1.
n->q
BroofFirst-assume-that the— >0 the
Proof : Let

lim Pr([Yn-c|<e)=1. for every
n->o,

We have to prove that the random variable Y, converges stochastically to the constant c. That
is we have to prove that
imFy(y) =0, y<c,
n->a =1, y>c.

If the limit of Fy(y) is indicated, then Y, has a limiting distribution with distribution

function
F(y) =0, y<c,
= Ly g
Now
Pr( | yn-c|<€) = F, [(c+e&-]-F(c-€),
where F, [(ct+e}-] is the left-hand limit of Fn(y) at y=c+e. Thus we have
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1= lim Pr (Y,-c<e) = lim £ F, [(ct+€)-]-lim Fn(c-€)

n->o. n->o n->o
Because 0 < Fn(y)< 1 for all values of y and for every positive integer n, it must be that
lim Fy(c-€) =0, im En[{cte)-]=1
n->q n-->0
Since this is true for every €>0, we have
lim  Fy(y) =0, y<c,
n->a. =1, y>c,
Nov?, we assume that
lim Fp(y) = 0 y<e,

n->o.
1 =y=>¢.

We are to prove that lim Pr(JYn - ¢| <e)=1 for every €>0.

Because 11—

Pr([Yn-c|<e)=F,[(c+e)-]~-F,(c-€),
and because it is given that lim F,[(c+<)-]=1,
n->u

lim F,(c-€)=0),
n->o
for every € >0, we have the desired result. This completes the proof of the ﬂléorem.

That is this last limit is also a necessary and sufficient condtion for the stochastic
Convergence of the random variable yn to the constant ¢
Example

Let X, denote the mean of a random sample of size n from a distribution that has a mean
pand positive variance o°. Then the mean and variance of X; are p and o*/n. Consider for

every fixed >0, the probability
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Pr (Xo-p>€) = Pr{{Xn-pjzko /Vn),where k = eVi/o.In accordance with the inequality of
Chebyshev, this Probability is <K =¢’n €. So for every

fixed e>o, we have
lim Pr (Xu-p2e) < limo’/ne®=0
n—o0

Hence X, converges stochastically to u if o? is finite

5.11 LIMITING MOMENT —GENERATING FUNCTIONS
Result:

Let the random variable Y, have the distribution function F.{vy) and th4e moment
generating function M(t;n) that exists for ~h <t<h for all n. If there exists a distribution

functions F(y), with corresponding moment generating function M(t), defined for |t| <hl,<h,
such the

lim M(t;n) = M(t), then Y,

n->>00

has a limiting distribution with distribution function F(y)
Example 1

Let Y, have a distribution that is b(n,p). Suppose that the mean = ap is the same for
every n; that is p=p/n where p is a constant. We shall find the limiting distribution of the

binomial distribution, when p=wn, by finding the limit of M{t;n). Now

M(tn) = E(e") =[(1-p)+pe']" = [1+p(e-1)] "

n

for all real values of t. Hence we have
lim M(t;n) = "
N—o0

for all real values of t. Since there exists a distribution, namely the poisson distribution with

mcan W, that has this moment generating function e{u"
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then in accordance with the theorem and under the conditions stated, it is seen that Y, has a
limiting poisson distribution with mean p
Example 2

Let Z, be %*n). Then the moment generating function of Z, is
(1-21;))’"”‘, t<1/2. The mean and the variance of Z, are respectively n and 2n The limiting

distribution of the random variable Y,=(Z,-n)/¥2n will be investigated. Now the moment

generating function of Y, is

M(t;n) = E {exp[t(Z,-1)]}

V2n
= E—h\f%(c&h/'\aw

= exp[-(tV2/n) (/2)](1-2t/¥2n) ™7, t<\2n/2

This may be written in the {orm M(t;nF(eﬁm"-t‘\fZEl)) e t<V472.

In accordance with Taylor’s formula, there exists a number £(n), between 0 and +V2/n, such that
T2 1 2in+1/2(tV2In) e (n)/6 (tV2/n)3

@-n in the last expression for M(t;n), it is seen that

If this sum is substituted for ¢'
M(t:n) = (1-t2/n+y(n)/n) —x/2
where

y(n) = fem P - 2tte

— S

3vn vn In

Since &(n) —0 as n —» o, then lim y(n)=0 for every fixed value of t.

Also lim M(t;n) = e**

n-—oo

for all real values of t. That is the random variable Y, =(Z“-n)/\5_n- h’as- a limiting normal

distribution with mean zero and variance 1.
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5.12 THE CENTRAL LIMIT THEOREM

Statement : Let X1,X3......Xn denote the items of random sample from a distribution that has
mean  and positive variance o°. Then the random variable Y, =( 1ZRX1tknu) ANno = Jr?(f’(n-p)/cs

has a limiting distribution that is normal with mean zero and variance |

Proof : We assume the existence of the moment  generating  function
M(t) = E(e™), -h<t<h, of the distribution.

The function
m(t)=E[e'* ) = g#MO

also exists for —h<t<h, Since, m(t) is the moment generating function for X-p, it must follow that
m(0)=1, m'(0) =E(X-p)=0 and m" (0=E[(X-p)* ] = &*

By Taylor's formula, there exists a number § between 0 and t such that

m(ty=m(0) +M1(0)t+m"c)e/2

= 1+m" (&)

If 6**/2 is added and subtracted, then

m(t) = 14+0*¢/2+[m"(e)-0?]t/2

Now consider M(t;n), where

M(tn) = E[exp(tIXi-ny)]

oVn

= E[exp(tX-p) exp(tXp-p) .......exp (tXq-p)]
ovn ovn ovn

= E[exp (tX1-p)]...... E[exp(tXn-p)]

ovn o¥n
= {E[exp(tX-1)]}n
oVvn
= [m(Vov¥n}n, -h<t/ovn<h

In m(t) replace t by t/oVn to obtain
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m(t/cVn)=1+t*/2n+[m"(e)-0*]t*/2nc’
where now ¢ is between o and t/o¥n with -hoVn<t<hovn

Accordingly
M(t;n) ={1+22n+[m"(e)-c*]t*}n
2no’

Since m"(t) is continuous at t=0 and since e—>0 as n—»o0, we have
lim [m"(g)-0*]=0
Thus, lim M(t;n) = et?/2
for all real values of t. This proves that the random variable Y,=Vn(X,-1)/c has a limiting normal
distribution with mean zero and variance 1.
Result

Let Fn(u) denote the distribution function of a random variable U, whose distribution
depends upon the positive integer n. let U, converge stochastically to the constant ¢#0. The

random variable Uy/c converges stochastically to 1.

Theorem

Let Fp(u) denote the distnbution function of 2 random variable U, whose distribution
depends upon the positive integer n. Further, let U, converge stochastically to the positive
constant ¢ and let Pr (Un<0) = O for every n. The random varicable VU, converges

stochasticcally to Ve.

Proof. We are given that the lim Pr | VU,- \7:?1‘25) = 0 for every €>0. We have to prove that the
lim Pr (| un - ¢| 2 €1)=0 for every €'>0. Now the probability, |

Pr(|Uy-cl2e) = Pr[NUp-ve)WU, +vo) 2]

=Pr(Un-ve[ze / VUn+Ve)

>Pr([VUn-Ve[2eV ¢)20.

if welete’ = SNE,_and if we take the limit, as n becomes infinite, we have
0=lim Pr(JUn-ci>g)> lim Pr(NUn-Vc[ze')=0

n—w
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for every £'>0. This completes the proof.

Hence the proof.

EXERCISES

(1) Show that

(2).

(3).

4)
(5).

(6)

).
(8).

(9).
(10).

(.

(12).

(13).

§'=1.12" (X-X)'=12", X4,
n n
Where X = |Zn Xi/n.

Find the probability that exactly four items of a random sample of size 5 from the

distribution having p.d.f. f(x)=(x+1)/2, -1<x<1, zero else where exceed zero.

Let X,,X; be a random sample from the distribution having p.d.f. fix)=2x, 0<x<1, zero
elsewhere. Find Pr(X,/X,<1/2).

If the sample size is n=2, find the constant ¢ so that s’%(X.-Xz)z.
Ifx; =i, i=1,2,....,n,, compute the values of x =Yxi/n and
s2=2.(x1-x)2/n.

Let yi=a+bxi, i=1,2,...,n, where a and b are constants. Find y=Yyu/n and s?y=¥ (yi-y)2/n

in terms of a, b, x =Y xi/n and %, =¥ (x;i-x)*/n.

Let X have a p.d.f. f(x)=1/3,x=1,2,3, zero elsewhere. Find the p.d.f, of Y=2X+1,

If f(x1,x2)=(2/3)x 115 (1/3) -x1-%2,(x1-%2)=(0,0),(0,1),(1 ,00,(1,1)

zero elsewhere, is the joint p.d.f x;=x; find the joint p.d.f. og y1=x1-X; and y,=x;+x;
Let X have the p.d.f f(ix) = (% )x, x=1,2,3.... zero elsewhere. Find the p.d.fof Y=xs.
Let X have the p.d.f f(x) = x*/9, 0<x<3, zero elsewhere. Find the p.d.f of y=X’
Ifthe p.d.fof Xis f(x)=2x €™, Q«x<oo, zero elsewhere determine the p.d.fof Y= X?.

Let X', X* be a random sample from the normal distributes n(0,1). Show that the
marginal p.d.f of Y'= Xy/X; is the Cauchy p.d.f. gi(y;)=1/n(1+y2), ~00<y) <00

Let the stochastically independent random variables X; and X, have the same p.d.f f{x)
=1/6, x = 1,2,3,4,5,6 zero elsewhere . Find the p-d.f of Y=X,+X>. Note under appropriate
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assumptions 11that Y may be interpreted as the sum of the spots that appear when two

dice are cast.

(14). Let X, and X, be stochastically independent with normal distribution n(6,1) and n(7,1),
respectively. Find Pr(X,>X;). Hint. Write Pr(X;>X;) = Pr(X,-X;>0) and determine the
distribution of X;-X,.

{15). Let X;,X;,..X, denote n mutually stochastically independent random variables with the

moment generating functions M (t),Ma(t),....Mx(t), respectively.

(a) Show that Y=k;X +k,Xo+....+k, X, , where k| k;,...k, are real constants, has the moment
generating function M(t)IT Mi(kit).

(b) If each ki =1 and if Xi is poission with mean p,i =1,2,....n prove that Y is poisson with

mean pl+..+un.

(16). Let X, denote the mean of a random sample of size n from distribution that is n(,0%)

Find the limiting the distribution of Xn,

(17). Let X, have a gamma distribution with parameter o=n and  and J is not a function of n.

LetY, = Xn/n. Find the limiting distribution of Yn.

(18). Let Z, be y2(n) and let Wn=Zn/n2./ Find the limiting distribution of Wn.

(19). Let X be x2(50). Approximate Pr(40<X<60).

QUESTION PAPER PATTERN
PART - A (5x 5= 25 marks)
Answer FIVE Question out of EIGHT Question
PART - B (5 x 15 =75 marks)
Answer FIVE Question out of EIGHT Question
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