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Unit - |
Ordinary Differential Equations

Linear differential equations of Second order
The general second order linear differential equation is

9 b0 10y =R
dx dx

Where P(x), Q(x), R(x) are functions of x or constants.

For convenience we write the equation is
y"+P(X)y' +Q(x) y = R(x)

The solution of the above equation has 2 parts namely one corresponding to R(x) =0 and the
other corresponding to R(x) as a function of x (or) constant.

The solution corresponding to R(x) =0

ie) the solution of y" + P(x) y'+ Q(x) y =0 is the general solution and it contains two
arbitrary constant.

The solution corresponding to the particular function R(X) is called the particular
integral of the equation.

The complete solution of the equation
y'+tPOY +Q(X)y=R(X) isy=ys+yp

Where yjy is the general solution of the equation y" + P(x) y' + Q(x) y = 0 and y, is the
particular integral corresponding to R(x).

Consider the Second order linear differential equation

y'+PX) Yy +Q(X) Yy =R(X) (D)
Equation (1) is said to be non-homogeneous and

y'+PX) Yy +QX) y=0 (2
Equation (2) is said to be homogeneous.

The general solution of equation (2) is taken as yy and the particular solution of
equation (1) is taken as yj.

Yy contains two arbitrary constants as it is the solution of the 2" order linear
differential equation in equation (1).

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
2



Theorem:

If yq is the general solution of y" + P(x) y' + Q(X) y = 0 and Yy, is any particular
solution of the equation y" + P(x) y' + Q(X) y = R(x). Then yg + Y, is the general solution of
y" +P(X) Y + Q(X) y = R(x).

Proof:

Lety"+PX)y' +Q(X)y=0 (D)
be the homogeneous equation.

andy" +PX)y' + Q(X) y = R(X) ()
be the non-homogeneous equation.

Given yy is the general solution of (1)

L Yg" +P) Yg + Q(X) Yg = 0 l3)

also yp is the particular solution of (2)

Y+ P() Y+ Q) Yp = R(¥) ()

@)+ (4

= (¥g" *+ ¥p") + P() [yg' + Yol + Q(X) [yg + ypo] =R(X)

= (Yg + ¥p)" + P() (Yg + Yp)" + Q(X) (¥g + ¥p) = R(X)

This shows that yq + Y, is the general solution of (2).

Theorem:

If y;1(X) and y,(x) are any two solutions of y" + P(X) y' + Q(X) y = 0. Then ¢; y; (X) + C2
Y2 (x) is also a solution for any constants c; and c,.

Proof:
Given y;(x) and y»(x) are the solution of y" + P(x) y' + Q(X) y = 0 (1)
Sy (%) + PX) yr'(x) + Q(x) yi(x) =0 (2)
y2"(x) + P(x) y2'(x) + Q(x) y2(x) = 0 SRNE)

T.P. ¢1 yi(X) + ¢z y2(X) is the solution of (1)
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ie) t.p c1 y1(X) + ¢z y2(x) satisfies equation (1)

Now, [c1 yi(X) + €2 Y2(X)]" + P(X) [C1 Y1(X) + €2 Y2(X)]' + Q(X) [c1 Y1(X) + €2 Y2(X)]
=1 Y1"(X) + C2 y2"(X) + P(X) €1 y1'(X) + P(X) €2 y2'(X) +Q(X) c1 Y1(X) + Q(X) C2 Y2(X)

= ¢ (Y1"(x) + P(x) y2'(¥) + Q(X) y1(x)) + ¢z (y2"(x) + P(x) y2'(x) + Q(X) y2(x))
=¢1(0) + ¢2(0) (using (2) + (3))
=0.
This shows that c; y1(X) + C y2(X) satisfies equation (1).
-, €1 Y1(x) + C2 y2(X) is the solution of equation (1).
Problem:

By inspection find the general solution of y" = &*

Solution:
Giveny" =¢*
yl - eX + Cl

y =€ +CiX + ¢y
Problem:

By eliminating the constants ¢;& c, find the differential equation of each of the
following families of curves.

1)y = cix + Cx

2)y = ¢, e ¢, e

3) y = ¢ sinkx + ¢, coskx
Solution:

1) y = ciX + CoXP

y'=c+ 2 CoX
y" =2¢;
y =CL+yX
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CL=Yy -yX

-'-yz(y'—y"><)><+y7x2

y:y'x—y"x2+y?x2

1,2 1,2

2y'X—=2y" X" +y"X
y= >

2y = 2y'X — y"X°

Y% — 2y'x + 2y = 0.

2)y=cye¥+ce™
y' = cp ek + ¢y e (-k)
y" = c1 ke (k) — o k e™ (-k)
y" =Koy e + K2 ¢, e
y" = K (c1e™ + 6™
y" =Ky

y" —k’y = 0.

3) y = ¢y sinkx + ¢, coskx
y' = ¢1 coskx (K) + ¢, (-sinkx) k.
y' = c1k coskx — ¢, k sinkx
y" = ¢1K (-sinkx) k — ¢, k coskx.k
y" = -c1 k% sinkx — ¢, k? coskx
y" = -k?(c1 sinkx + ¢, coskx)
y" =-K%y

y" + k% = 0.

Problem:
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Verify that y = cix™ + ¢ox™ is a solution of x? y* — 3xy' — 5y = 0 on any interval [a, b]
that does not contain zero. If xo= 0 and if y, and yp'are arbitrary. Show that ¢; and ¢, can be
chosen in one and only one way. So that y(Xo) = Yo and y'(xo) = Yo'

Solution:
Given x® y" —3xy' —5y = 0 (D)
Takey; =x%, yo, = X°
1
LY ==
X
When x = 0, We find y; is not continuous and so it is not differentiable.
.. In‘any [a,b] which does not contain zero.
If Xoz 0

yi is differentiable

Lety; =xt yo =X

1
Y1 :;

, 1
Yy = _F
. 2

Y1 :F
Y2 = x>
y2' = 5X4

yo" = 20x°

T.P y; and y; are the solution of (1)
Now X2 y;" — 3X y1' — 5y,

2 -1} (1
=x* 5 -3x| = |-5| =
(7))

2 3 5
=4 ———
X X X

X*y1" —3xy;'—5y; =0
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Also, X% y," — 3X Yo' — By,
=x%20x% - 3x . 5x* — 5x°

= 20x° — 15x° - 5X° =0.
.. y1 and y;, are the solution of (1)

.y = ciXt+ cx° s the general solution of (1)
Given y(Xo) = Yo, ¥' (Xo) = Yo
We’ve y= clx'l + C2X5
Y(Xo) = CiXo ™" + C2Xo”
y' (Xo) = ~CiXo ™ + 5C2%o"
Yo = C1Xo "+ CoXo®
Yo' = -C1Xo2+ 5Coxo*
T.P c¢; and c;, are chosen in one and only one way

-1 5
X X
-2 4

_ 5X03 n Xos
—X, 59X

= 6X° #0,
.. ¢; and ¢, can be chosen in an one and only one way.
The general solution of the homogeneous equation:

If two functions f(x) & g(x) are defined on an interval [a, b] and have a property that
one is the constant multiple of the other then they are said to be linearly dependent on [a, b].

Otherwise that is if neither is a constant multiple of the other they are called linearly
independent.

If f(x) is identically zero, then f(x) and g(x) are linearly dependent for every function
a(x), since f(x) = 0. g(x).

If y; and y, are the solutions on the [a,b]. Then the wronskian denoted by W (y1, Y»)
and defined by W (y1, y2) = y1 ¥2' — V1' Va.

Theorem:

Let y1(x) and y»(x) be linearly independent solution of the homogeneous equation
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y"+PXy+Qxy=0 1)

on the interval [a, b].

Then ¢; y1(X) + €2 y2(X) e(2)

is the general solution of equation (1) on the [a, b]. In the sense that every solution of
equation (1) on this interval can be obtained from equation (2) by a suitable choice of the
arbitrary constant c; and c;.
Proof:

The proof will be given in stages by means of several lemma’s and auxiliary ideas.

Let y(x) be any solution of equation (1) on the [a, b] we must show that the constant
c1 and ¢, can be found so that y(x) = ¢; y1(X) + ¢z y2(x) for all x in [a, b].

Lemma: 1

If y1(X) and y,(x) are any two solution of y" + P(x) y' + Q(x) y = 0 on [a, b]. Then their
Wronskian W = W (ya, Y») is either identically zero or never zero on [a, b].

Let y; and y, be the two solutions of

y'+P(X)y'+Q(x)y=0 (D)
A Yt HPX) YL+ Q(X) Y1 =0 (3
V2" + P(X) Vo' + Q(X) Y2 = 0 (4
(3) X yo—= y1" Y2 + P(X) y1'y2 + Q(X) y1y2 =0 E))
(4) X y1—= y1 Yo" + P(X) y1y2' + Q(X) y1y2 =0 -.-(6)
(6) = (5) = (2" y1—Y1"¥2) + P(X) (Y1 Yo'~ ¥1'Y2) =0 —e(7)
w.k.t.
W=y1y2' —y1'y2

W=y v+ Yo -y Y -yt Y

=yiy2" -y Y.

(7) > W +PX)W=0
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dx

dw

— =—-P(x)dx
Wy =P

Iing
dWW=—jP(x)dx

—>logW = log g P logc

—logW =log ce P

Y _Ce—jp(x)dx

Since the exponential factor is never zero the proof is complete.
Lemma: 2

If y1(X) and y, (x) are two solutions of y" + P(x) y' + Q(x) y = 0 on the [a, b] then they
are linearly dependent on this interval iff the wronskian W (y1, ¥2) = y1 Yo' — ¥1' Y2 IS
identically zero

Assume that y; and y; are linearly dependent.

TPW(yn y2) =y1¥2'—y1'y2=0

If either function is identically zero on [a, b]

Clearly the Wronskian is zero Now we assume w.l.g. that neither is identically zero.

Since y; and y, are linearly dependent each function in a constant multiple of the
other

S We'vey, =Ccyp for some constant c
y2| — C yll

SW(YLY2) =YY -V Y2
=yicy:i'—Yyi' cyr

=0.
. Wiis identically zero

Conversely,
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Assume that the wronskian is identically zero

T.P y1& vy, are linearly dependent. If y; is identically zero on the [a, b] then the
functions are linearly dependent.

..We may assume that (y;= 0) identically on the [a, b]
.. y1 does not vanish at all on some subinterval [c, d] of [a, b].

Since the wronskian is identically zero on the [a, b] we can divide it by y;*

Weget,ﬂzzo
Y1
YiYo Vi
1Yo 2y1 Y _g
Y1

—>d££}=0
Vi

fipes

Y2y
Y1
—Y,=ky,

for some constant k and all x in [c, d].
.. Since y, (X) and k y;(x) have equal values in [c, d]
2 Y2(X) =k yi(x) for all x in [a, b]
.. y1 and y, are linearly dependent on the [a, b]
Hence the lemma
Since ¢; y1(X) + ¢z Y2(x) and y(x) are both solutions of equation (1) on the [a, b]
It suffices to show that for some point X, in the [a, b] we can find ¢; and ¢, so that
C1 Y1(Xo) + €2 Y2(Xo) = Y(Xo) and €1 y1'(Xo) + C2 Y2'(Xo) = Y'(Xo)

For this system to be solved for ¢; and c;

V(%) Ya(%)
Vi (%) Y5 (%)

= yl(XO) yzl(xo) - yll(xo) yz(xo) £0.
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The above result showing that the Wronskian of any two linearly independent
solutions of equation (1) is not identically zero.

ie) y1 and y, are linearly independent solutions of equation (1) iff W = 0.

Problem:

Show that €* and e™are linearly independent solution of y" —y = 0 on any interval.

Solution:

First T.P ¢ and e™is a solution of y" —y =0

y1=¢€ , y,=¢€”
yll - eX y2| - _e-X
ylll - eX y2Il - e-X

Now vy;"-y;=¢"—¢

=0.
. y1 = e"is the solution of y" —y =0

Also y," —y, =e™*—¢™

=0
. Y2 = e”is the solution of y" —y =0
Next T.P y1& y, are Linearly Independent solution
ie) T.PW (y1, y2) %0
W (y1, ¥2) = Y1 Y2 = y1'Y2

=-ge*-e‘e”

-1-1
-2

# 0.

. y1& Y, are linearly independent solution.
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Problem:

Show that y = ¢; e* + ¢, e® is the general solution of y" — 3y' + 2y = 0 on any interval
and find a particular solution for which y (0) =-1and y' (0) = 1.

Solution:
Given:y"—-3y'+2y=0

T.P y; and y; are solution of y" —3y'+ 2y =0

yp = e Yo = e2x
y1'=€e* y,' = 2e*
yi" =¢* Yo" = 4e™

Now y;" — 3y;' + 2y; = e* — 3e* + 2¢*
=3¢" - 3¢*
=0
..y is the solution of y" —3y' + 2y =0
Also y," — 3y,' + 2y, = 4e® — 3 x 2e* + 2e*
= 4¢” — 6%+ 2™
= 6™ — 6™
= 0.
. Yo is the solution of y" —3y' + 2y =0

.. y1& Yy, are the solution of (1)

y er
Now, =% = P e“is not a constant

Y1

.. Y1 0r y, cannot be written as one is the constant multiple of the other.

. yr and y, are Linearly independent
Also W (y1,¥2) =y1Y2' = y1'y2

— ex 2e2x_ ex e2x

(D)
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. y1& Y, are linearly independent
. The general solution is y(X) = ¢, €* + ¢, e
Giveny(0)=-1and y'(0) =1
We’ve y(X) = ¢; € + ¢, e
y'(X) = ¢1 € + 2, e

y(0)=cp e’ +cye°
y' (0) =cy €%+ 2¢, €°

Ci1tcCy=-1 en(2)
c1t2c,=1 ....(3)

Solving (2) & (3)

c1+cy=-1
c1+2c;=1
-Cp=-2
C2=2
c1+cy=-1
c1=-1-¢;
c1=-1-2
c,=-3

. The particular solution is y = - 3¢* + 2e*.

Problem:
Consider the two functions f(x) x> and g(x) = x2|x| on the closed interval (-1, 1)
a) Show that their Wronskian W (f,g) vanishes identically.

b) Show that f and g are not linearly dependent.
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¢) Do Part (a) & (b) contradictors lemma 2 if not, why not
Solution:

a) On the interval -1 <x< 0

f() =x° : g0 =X (-x)
ie) f() =x° g(x) = -x°
f'(x) 3x* g'(x) = -3x°
W (f,0) = fg'- f'g

=x3 (-3%%) — 3% (-x%)

=-3%x° + 3
=0.

- W (fg) =0

Atx=0

Clearly W (f,g) =0

On0<x<1

f() =x° , g0 =x°(q) =x°
fi(x) = 3x° g'(x) = 3x?

W (tg) =fg'-fg

=x3(3x%) — (34 x*
=0.
S W (f,g)=0o0n[-1,1]

3

b)) =
g(x) X%

2
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=+1
Which is not a unique constant .-.f(x) and g(x) are not linearly dependent.
c) Part (a) & Part (b) are not a contradiction to lemma 2 for the following reasons.

g(x) = x* x| cannot be differentiable and f(x), g(x) cannot be the solutions of the
homogeneous equation.

Problem: 6

It is clear that, sinx, cosx and sinx, sinx — cosx are two distinct pairs of linearly
independent solutions of y" + y = 0. Thus if y; and y, are linearly independent solution of the
homogeneous equation y" + P(x) y' + Q(x) y = 0 we see that y; and y, are not uniquely
determine by the equation.

a) Show that —00Ye Y2 1) g Q(X)Mso that the equation is uniquely
WY, ¥2) W (Y1, )

determine by any given pair of linearly independent solutions.

b) Use part (a) to reconstruct the equation y" + y = 0 from each of the two pairs of linearly
independent solutions mentioned above.

c) Use part (a) to reconstruct the equation y" — 4y' + 4y = 0 from the pair of linearly

independent solutions e, xe**,

Solution:
y1 = sinx Y = COSX
y1' = COSX Yo' = - sinx
y1" = - sinx Yo" = - COSX
Now,

y1" +y1 = - sinx + sinx
=0
. y1 =sinx is the solution of y" + y =0
Yo" + Yo = - COSX + COSX
=0

.. Y2 = cosx is the solution of y* +y =0
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Y3 = sinx Y4 = SINX — COSX
Y3' = COSX Y4 = COSX + Sinx
y3'" = - sinx y4" = - sinxX + COSX
y3" + Y3 = - sinx + sinx
=0
.. y3 = sinx is the solution of y" +y =0
V4" + Y4 = - SinNX + COSX + SINX — COSX
=0
.. Y4 = sinx — cosx is the solution of y" +y =0
W (y1, ¥2) =y1¥2'=y1'y2
= sinx (- sinx) — cosx (cosx)
= -sin? — cos’x
= -(sin’x + cos?X)
=-1
#0.
W (Y3, Ya) = Y3 Ya' —Y3'Ya
= sinx (cosx + sinx) — cosx (Sinx — cosx)
= sinx cosx + sinx — sinx cosx + cos’X
= sin? + cos’x
=1
#0.
.~ Y1, Yo, Ya& Y, are Linearly independent
a) Let y1& Y, be the solutions of

y'+P) Y +Q(x)y=0
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SV P Y+ Q(X)yr =0 (D)

y2"' +P(X) y2'+ Q(X) y2=0 2)
(D) xy2—y2y1" +P(X) y1'y2+ Q(x) y1y2 =0 —(3)
() xy1—y2"y1+P(X) y2 y1+ Q(X) y1y2=0 (4
4)-(3)

—y1Y2" = Y1" Y2+ P(X) (Yy1¥2' = y1'Y2) =0
—y1Y2"=y1" Y2 + P(X) W (y1, y2) =0
POX) W (Y1, ¥2) =- (Y1 ¥2" = Y¥1" ¥2)

_(ylyzn_y1”y2)

T

(D - y1"+PX)y1"+Q(X) y1=0
Q(X) y1=-y1" —P(X) y1'

i (Y1 yzu_Y1” yz) y1'

:_yll \ \
YiYo=Y% Y
__ yln(yl Yo=Y yz) + (yl yzn_ylnyz) A
W (Y, Y,)

— Y Y Y Y Y Y H YV Yo Y Yo

Q(X)y1: Wy, Y,)

y1 yllyzn_yl y1“y2I
QM) Y, =
' W (Y, Y,)

_ yl(yll yz.._yl.. yzl)
Q= W ()

N Y,
Q= ()

Since y;1& y, are Linearly Independent

W (yl, yz) #0.
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b) y1 = Sinx Y2 = COSX
y1' = COSX Yo' = - sinx

y1'" = - sinx Yo" = - cosX

_(yl yzn_ylnyz)
W (Y., Y2)

P(x) =

_ —[sinx(=cos x) — (=sin x) (cos x)]
-1

_ —[-sinx cos x +sin x cos X)]
- -1

=0.

P(x) = 0.

_ yllyzu_yluyzI
Q= oy

_ —COS X CoS X — (—sin X) (—sin x)
-1

_ —cos® x—sin® x
-1

_ —(cos? x +sin’ x)

-1
Q(x) = 1.
Sy +HPX) Y +Q(X)y =0
y'+0y' +1y=0
y'+y=0.
y1 = sinx Y2 = SiNX — COSX

y1' = COSX Yo' = COSX + Sinx
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yi' =-sinx  yp" =-sinxX + cosx

_(yl yzn_yluyz)

P(x) =
W (Y1, Y2)
P(X) == [sin x (—sin x + cos x) — (=sin x) (sin X — cos x)]
1
= -[-sin®x + sinx cosx — (-sin®x + sinx cosx)]
= -[sin®x + sinx cosx + sin®x — sinx cosx]
=0.
Q(X) _ yllyzu_ylnyzl
WY1 Y2)
_C0S X(—sin X 4 C0s X) +sin X (COS X + Sin X)
1
= - sinX cosx + COS°X + SinX CosX + sin®x
= cos?X + sin®x
=1.
LY HP() Y +Q(X) Y =0
y'+0y + 1y =0
y'+y =0.
) yi=¢€* Y2 = xe*
yi'=2e%  y) = 2xe™ +e¥

yi' =46y = 2[2xe™+ P + 26
Yo" = 4xe™ + 4e*
W (Y1, ¥2) =y1y2' = y1'y2
= e¥ (2xe* + &™) — 26 . xe*

= 2xe¥ + ¥ _ 2xe™
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=e™

(V1 Y2"=%1"Y2)
W (Y, Y,)

P(x) =

_ —[e”* (4xe™ +4e”) — 4e” xe™]

e4x

_ —[4xe™ +4e™ — 4xe™]
- e4x

_ 4e4X
e4X

P(x) =

P(x) =-4
_ yllyzu_ylnyzl
ATORS

287 (4xe™ +4e”) — 4e¥ (2xe™ + %)

e4X

_ 8xe™ +8e™ —8xe™ —4 "
- 4x

4o
e4x

LY HPX)Y +QX)y=0

y'+(-4)y +4y=0

y"-4y' + 4y = 0.

The use of a known solution to find another:
Suppose y; is the known solution of the homogeneous equation
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y'+PX) Yy +Q(x)y=0 (D)
We’ve to find the other solution y; s.t y; and y;, are linearly independent

The general solutionisy =c; y1 + C2 V2
Let us assume that y, vy; be the required solution.

LY HPX) Y+ Q(X)y2=0 (2)

We’ve yo = vy
y2| - Vyll + Vlyl

Yo" = vyt VY VY VY

Y2" = vyt 2V + V)
Sub in equation (2)

vyr" + 2V'y1" + Vv'yg + P(X) [vyr' + V] + Q(X) vyr =0
V'y1 + V' [2y1 + P(X) y1] + V1" + P(X) y1' + Q(X) y1] =0
Divide by v'y;

—>V—I+2i+P(x)=0
v

Y1
—>V—'+2l =—-P(x)
Vioy

J ing
logv'+2log y, = —j P(x) dx
logv'=-2log y, —_[ P(x) dx

=—logy,’ —'[ P(x)dx

1 -
=log—5 + loge 1P
1
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. 1 _ipod
logv'=log — e 1P™
Y1
1
V.Z_Ze [P(x)dx
Y1
jing
1 _
v=| e PO%gx,
Y1

Let us prove that y;1& Yy, are Linearly independent
Wy, Y2) =Y1Y2' = Yi' Y2
=y (v + VY1) —yi' vy

=Vy1 Y+ VYie -yt vy

gy 2
=V'y;
1 -
= e jP(x)dx.yIZ
Y1
_ a-JP(X)dx
=€ # 0.

. y1& y; are linearly independent.
Problem:

Verify that y; = x? is one solution of x* y* + xy' — 4y = 0 and find the general solution.
Solution:

Given: X2y" + xy' —4y =0 D)

.1 4
—>Yy'+—y-—y=0
X~ X

TP yi=x%isthe solution of (1)

y1 =X y1' = 2X yi' = 2.
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Xy + Xy — dy; = X2.2 + x.2x — 4x°

= 4x% — 4%°

- y1 = X% is the solution of (1).
To find y,
ie) Y2 =Vvy;

Where v = j%e‘“’(x)dxdx
1

P(x) :%
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The general solution is

Yy=Ciy1tC¥>

y=c X’ +¢, (—iz)
4x

1. y; = x is a solution of x?y" + xy' — y = 0. Find the general solution.

Solution:
Given X2 y" +xy'—y =0 (D)
L1001
=>Yy'+—y-—y=0
X" X
Since P(x):l,
X
To find y,
ie) Y2 = vy

Where v = I%e‘“’(x)dxdx
1
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1 —logXx
= Xze'g dx
1 logt
=|—5e *dx
:J‘iz.idx
NG
:Jx’3dx
_ X—3+1
341
_x*
-2
ve_ 1
2x?
Y2 = VY1
__ 1
2x2
oL
2 2x

The general solution is

y=Cy1tC Yy

~oxrey( -]
=0X+ G| moy

1. 4
Y =CX =20, X
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2. Find y, and the general solution of each of the following equations from the given
solution y;

Q) y"+y=0,y; =sinx b)y'—y=0,y1=¢
Solution:
a) Given: y"+y =0

Since P(x) =0

To find y,

ie) y2 = vy,

Where v = J‘ize’fp‘x)dxdx
Yi

1 N
:J.#e fodx gy
sin‘ x
1
v=j — dx
sin® x
=_[coseczxdx
= - cotx
Y2 = VY1
= - cotx x sinx
—COSX .
=— X SIn X
sin x
Y2 = - COSX

The general solution is

y=Ciy1tCYy>

= C3SInX + C; (- cosX)

Y = C1SINX — C2COSX
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b)y'-y=0, y;=¢"

Given:y"-y=0
Since P(x) =0
To find y,

ie) y2 = vy

Where v = J‘%e‘”’(x’ dx
1

:j( })2 e/ dx
e

1
:.[ezx dx
= _fe‘zx dx
_e—2x
T
Y2 = VY1
_e—2x
= .e"
2
— B eix
2

The general solution is
y=Ciyi+Cy2
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X l =X
y=ce'~Jc,e

Problem:

Verify that y; = x is the solution of y"—il y'+i1 y = 0 Find the general
X— X—

Solution:
. X 1
Given: y'———y'+——y =0
y x—ly x—1y

T.P y; = x is the solution of equation (1)

Y1=X, yi'=1, yi"'=0
Now. v.'"—— 2~ uri _O_L(1)+L
N x—lyl x—1yl x—1 x—1
X X
=t —
X— x-1
=0.

.. y1 = X is the solution of equation (1)
To find y,

Y2 = VY1

Where v = J.ize‘jp(x)dX dx
Y1

1 1% )dx
.'.V=I—2e X1 dx
X

1 jidx
v:_|‘—2eX*1 dx
X

(D)
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X—1+1

BN

1 _
:I_Zex+log(x Ddx
X

NEV
=j%e*(x—1) dx
=j%xede_j%ex dx
ZI%eXdX—j%ex dx

='|.x‘1eX dx—_|'x‘2 e* dx

=xte* +_|.eX X2 dx—_|'eX X2 dx u=x2 du=-x?dx,v
=€ jdv = J.exdx

=—XX
X

Sy =€

.. The general solution is
y=Ciy1+tC2Yy,

Yy =CiX+Cp €

Problem:
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Verify that y; = x is the solution of the equation (1 - x?) y* - 2xy" + 2y = 0. Find the
general solution

Solution:
Given: (1-x%) y"-2xy' +2y =0 (D)
N 2X
=Y

S RO L
T.P y; = x is the solution of equation (1)
yi=Xy1"=1,y1"=0
(1-X%) y1" - 2xy1' + 2y
= (1-x%) (0) - 2x (1) + 2x
=-2X+2X
=0.
.. y1 = X is the solution of y; = x
To find y,

Y2 = VY1

Where v = jize‘“’(x)dx dx
Y1

2X

R

1 a2
=J‘_2e log(1-x*)
X
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L 1A, ®

. = +—
1-x? £ XA-x3) X 1-%°

1=A(-x?) +Bx?

:J‘xfzdx+.|’ 12dx Putx=1—-B=1
1-x
X1 1+x 1 1 1
= +- log| — [P N T e
-2+1 2 1-x X“(1—x°) x° 1-x
11 1+x 1
v=——+=log| —— dx
X 2 g(i—Xj Iaz—xz

.. The general solution is

y=cCiyi1tcC2¥y2

=cx+c —1+£Iog (H—Xj
Y o

The Method of Variation of Parameters.

To solve the Second order linear equations
y'+P(X) Yy Q(X) y =R(x) cn(D)
The solution corresponding to R(x) = 0 is called a Particular solution

For this we consider the homogeneous equation
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y'+PX) Yy +Q(X) y=0 n(2)
The general solution of equation (2) is

y=Cyi+Cy

Where c1& c; are arbitrary constant

The solution of equation (1) may be assume in the above form, where ¢, & c; are taken
as the unknown function vi& vs.

.. The Particular solution of equation (1) isy=viy1 + V2 ¥
The method applied is known as the variation of parameters.
We'vey=viy1+Va2 Y, ....(3)
YEViyr tViyi+Vva Yo' t Vo' Y,
=(Vayr' + V2 y2) + (Vi Y1+ V2' o)

Let us assume v4 and v, be such that

Vl' y1+V2I y2 :0 (a)
yl :Vl Y1' +V2 y2' (4)
VTV VYV Y 9

sub (3), (4), (5) in (1)
Viyl" VYl Vo Yot Ve e+ P(X) [V v+ V2 YT+ Q(X) [V yr + V2 Y2] = R(X)

Vi [y1" + P(X) y1' + Q(X) y1] + v2 [y2" + P(X) y2' + Q(X) y2] +
vi'yi' + Vo' Yo' = R(X) ..(6)

Since y1& Yy, are solution of (2)

LY P YL+ Q(X)yr =0

y2" +P(X) y2'+ Q(X) y2=0

.. Equation (6) becomes

v (0) + V2 (0) +vy' yi' + Vo' yo' = R(X)

Vi'yr' + Vo' o' = R(X) .....(b)
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Solving equation (a) & (b)
Vi'y1 + Vo' y, =0
Vi'yi' + V2 Yo' = R(X)
@y =Vi'y1Y2 +V2' Y2 ¥2' =0
(b) x y2= vi'y1' Y2 + V2 Y2 Yo' = R(X) V2
(M) -@)=Vvi'[y1y2' - y1'yo] =- R(X) ¥2
vi' W (y1, ¥2) = - R(X) Y2

vle_ R(X) Y,
. 1 -_
W (Y., Y,)

Iing

__ R(X) Y, dx
WL Y,)

@—>Vv)y2=-vi'yn

1 R(X)yZyl
vy, =— 221
WYL Y,)
_ ROy
'=
W (Y., Y,)

Iing

ROOY; o,
2wy, y,)

Since y1& Yy, are Linearly independent solutions of the homogeneous equation (2).

oW (v, ¥2) #0.

.. The expressions v;' and v,' are valid expressions.

_ J‘ R(X)yz dx and v, = J‘ R(X)yl dx
W(Yl’yz W(VpYz)

.. The Particular solution of equation (1) is

.(a)
...(b)
(7
.(8)
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y=Vviyi+tVvoy,
Note:

The complete solutioniny =cy y1 + C2 Y2 + Yy Where y, = vy y1 + Vo yo
Problem:

Find the particular solution of y" - 2y' + y = 2x. First by inspection and then by
variation of parameters.

Solution:
Given: y" - 2y' +y = 2X (D)
The homogeneous equation is y" - 2y'+y =0 ..(2)

The auxillary equation is
m*-2m+1=0
(m-1)%=0
m=11
.. The general solution is
y = (Cy + Cpx) €
ie) y = c1€* + coxe”

yr=¢* , yo = xe*

1 X X

yi'=¢e", Yo' =xe* +e
W (Y1, Y2) = y1¥2'- Y1' Y
=¢" (xe* + €") - e"xe”
= xe™ + &> - xe™
— e2x
#0.
To find the particular solution of (1)

The Particular solution is
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Yp=Viy1+Va Y2

R(x) = 2x
__ R(X) Y, dx
WL Y,)
=_.[ 2x(xex)dx
e2x

= —2J'x2 e e dx

__2J.X2 —X
= —2{—x2 e —2xe™* —2e*X} u=x _[dv = _[e‘x dx
vp =287 (%% + 2x + 2) u=2x v=-¢*
Uudv =uv—Uu'v,+U"v, —u"v, +...+ (-1)" u”an =2 vi=¢e*
J‘ R(x) y1 vy = - e
W(yl,yz
2xe*
:'[ e2x dX
= Zj xe* e dx u=x
du = dx
:Zj'xe‘X dx Idv:fe‘x dx
= - e'x

=2 {— xe™ + J.e‘X dx}
=2 (-xe™-¢”)
= - 2e™ (x+ 1).
.. The Particular solution is
Yp=Viy1+ V22
yp = 287 (x° + 2x + 2) e* - 2™ (x+ 1) xe*
=2 (6 +2x + 2) - 2% (x +1)

=2X° + 44X + 4 - 2x% - 2X
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Yp = 2X +4.
The complete solution is
Y=YgtY¥p

y =Cy €+ coxe” + 2x+ 4.
Problem

Find the Particular solution of y" + 4y = tan 2x

Solution:
Given: y" + 4y = tan 2x (D)
The homogeneous equation is y" + 4y =0 en(2)

The auxiliary equation is

m?+4=0

m? = i 2

m=x2i

The general solution is

Y = C1 COS2X + C, Sin2x

Y1 =C0S2X Yo =Sin2x

y1' =-2sin2x y,' =2 c0s2X

W (Y1, Y2) = y1¥2'- Y1' Y
= €0S2X (2c0S2x) + 2sin2x (sin2x)
= 2 cos?2x + 2 sin“2x
= 2 (cos®2x + sin?2x)
=2. =#0.

To find the particular solution of equation (1)
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The particular solution is
Yp=Viy1+ V2 Y2

R(x) = tan 2x

_ J' R(X)yz dx
W (Y, Y,)

tan2xsin 2x
=— j fdx

B J-sm 2X
COS 2X

.sin 2x dx

_ __Ism 2x
coS 2x

_ __J-l cos? 2x
COS 2X

:—EI( 1 —costjdx
271\ cos2x

1
= —Ej(sec 2X — €0S 2Xx) dx

(sec2x +tan2x) sin2x
=—-—<log
2 2 2

(sec2x+tan2x) sin2x
v, =—log +
' 4 4

J R(X) Y1 dx
W (Y1, Y2)

tan2xcos 2x
v, = [LEnexcos2x

dx
2

:lj-sinZX

.C0S 2x dx
27 cos2x

EIsin 2x dx
2
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B 1{_ cos ZX}
2 2

_cos 2X
4

.. The Particular solution is

Yo=ViY1+V2y2

Y, = [— log (sec24x + tan 2x) L sin 2X:|C052X ~ Cos2x sin 2x
(sec2x + tan 2x) SiN2XC0S2x  CoS2Xsin 2x
=-I COS 2X + _
4
Y, = _log (sec2x + tan 2x) 0S 2X
Problem:

Find the general solution of (* +x) y" + (2- X3 y' - 2 +X) y = x (x + 1)?
Solution:

Given: (¢ +X) Y+ (2-X) Y - (2+X) y = X (x + 1)? D)

The homogeneous equation is (X + X) y" + (2-X3) y' - 2 +x) y =0

Take y; = ¢*

T.P y; = € is the solution of equation (2)

yi'=¢ yi" =€

LEEX) YR Y -RHX) Y= (C+x) e+ (2-x) - (2+X) €
=x% e+ xe* + 2" - X% " - 2e" - xe*
=0.

. y1 = " is the solution of equation (2)

To find y,

Y2 = VY1

(2)
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Where v:_[%e‘fp(x)“X dx
1

(1)»y"+(2[ Xz]y'—[ s jy= Xy

NG X2 + X

2-x?
X% + X

P(x) =

2

Now —jP(x)dx:—I iz_x

X
2
:I(Xz_szx
X2 + X

dx

:J'(l_ 2_ 1 ) dx X+2 :é+i
X(x+1) x x+1

= 1—E+L dx
B X x+1 X+2=A(x+1) + Bx
=x-2logx+log (x +1) X=0—>A=2

=x - log x* + log (x + 1) x=-1>B=-1
=x+ log (x + 1) - log x?

X+1

= X+log—;
X

1 -
V= I—ze IPCOAX gy
Y1
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e
= ix.xtldx
e’ X
= %(14_%)(1
e*\lx X
=Ie‘x—dx+ e = adx
X X
| X X 1 e _1_ -1
=x".(-e )+Ie (——Zjdx+j v dx u=-=X dv = e dx
-e* e e
= — | —-dx+ | —-dx
X Ixz -[xz du = - x? v=-¢*
v=—"¢e"
X
Y2=V\1
:__e—xex
X
yzz_;

.. The solution is y =ce” — c;2E
X

To find the particular solution.

The particular solution is y = viy; + viy»
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X (X +1)*

X(x+1)
R(X)=x+1
y1=¢" y,=—"=-x"
- 1
yi'=¢" Y, =X’ ==

1+x
W(yl’yz):e ( X )7&0

_ J' R(X) YZ
W(ylyyZ

(x+D)(- 1)
e X

e (l+)
X

dx

dx

_I(x+1) X2
- x+1

= J‘e‘X X dx u=x, dv=eXdx
du=dx,v=-e*

=-—xe* Jr.[e*X dx

=—xe ‘-

=—e *(x+1)

J‘ R(X) Y1 dx
W (Y1, Y,)
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¢ (x+1)e”
_J. X(1+ xj
€ 2
X

:Ixzdx

dx

The particular solution is

Yp = Viy1 + Vay2

=(—e " (x+1)e" + X—s(— i)
30 X

2

X
=—(x+1)—?

.. The complete solution is
y = Ciy1 + C2Yy2 + Viy1 + Voy2

X2

1
=ce —c,——(x+1 -
e’ ¢, —(x+D) -

_ 1
=ce* —C,X l—x—l—gx2

A Review of Power Series:

An infinite series of the form

D a, X" =a, +a,Xx+a,X> +... (1)
n=0

is called a power series in x

The series > a, (X—X,)" =8, +8,(X—X,) +8,(X—X,)* +.... e2)
n=0

IS a power series in (X - Xg)
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m
The series equation (1) is said to converge at the point x if the limit lim Zan x" is
=0

m—oo
n

exist and in this case the sum of the series is the value of this limit.

Let u =u,+u, +U, +U, +...be a series of non-zero constant.
n 0 1 2 3
n=0

Clearly at x = 0, the series equation (1) is convergent.

We are interested in other points at which the series is convergent.

. . . . U . .
For this we use the Ratio test. Which states that “ lim || = L exist then the series

n—oo un
Un converges if L <1 and diverges if L > 17
: : n_ . : un+1 a‘n+1 Xn+1
We may identify X a,Xx” with X up = .
u, | | a,x" |
un+l — a‘n+l |X|
un aﬂ
u a
- Lt 1 Lt n+l |X|
n—)oo‘ un n—)oo‘ al’] ‘

The converges depend upon the value of x.

Let R= Lt | -n
n—o an+1
We’ve L= Lt Uniz
n—w un
= Lt {2l 1y
n—o an
1
=§|X|

The series is convergent if L <1

=L
R
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—[x|<R
Also the series is diverges if L > 1
=L

R

—|X>R

Each power series in x has the radius of convergence where 0 < R < oo with the
property that the series converges if | x | < R and diverges if | x | > R.

Also if R =0, then no x satisfies | x | <R and if R = oo, then no x satisfies | x | > R.

If R is finite and non-zero then it determines an interval of convergence are
-R <x< R such that inside the interval the series converges and outside the interval it diverges.

. Power series may or may not converge at either n points of its interval of

convergence.
Using Power series to find the Taylor’s series.

Suppose that Zan X" =a, +a,X+a, x> +...Converges for | x| < RwithR >0
n=0

Denote its sum by f(x)
L f) =) a,x"
n=0

=g+ aX + ax + agC +axt +ag® + ...
Then f(x) is continuous and has derivatives for all orders for | x | < R.
The series can be differentiated term wise
- F(X) = ap + 2apx + 3agx® + dagx® + Sasx” + ...
' (X) = 2a, + 3.2a3X + 4.3.a,X° + 5.4.a5C + ...
7 (x) = 3.2.a3 + 4.3.2.a,X + 5.4.3.856° + ...
fV) (x) =4.3.2.a4 + 5.4.3.2.a5X + ...

Put x = 0 in the above
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f(0) = a

f(0)=a;
f'(0)=2a, >a, :%

£(0) = 6ag

f''(0

_ "

3l

fV(0) = 4.3.2. a4
B f v (O)
VY

~ f(n)(o)
~nl

The series f(X) = ag + aiX + axx® + agx° + azx* +

" " v
PO 10, O, 1O,
2! 3! 41
(n) (n+1)
+f © o, FO) s
n! (n+1)!

S F(X) = (0)+

This is known as the Taylors series for f(x)

O, 'O, 0. 10,
n!

w1 =10+ 1! 2! 3!

+R, (x)
Where Rp(x) is called the remainder after n-terms.

Also f(x) = f(x,) + ) '3‘0) (x=%) + ) "2(:‘0) (X—%,)? +

JRARICH

v (X=Xy)" +...

This is known as the Taylor’s series for f(x) at X = X
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Note:

Suppose f(X) = ag + aiX + axX° + ... + ... is convergent in - R <x< R (| x | < R) then
g(x) =bg + bix + box? + b + ... is also convergent in - R <x<R.

i) If f(x) = g(x), then ap = bp, a; = by, a2, = by, ...

i) f(X) £ g(x) = (a0 £ bo) + (a1 = b13x%) + (a2 £ by) X2 + ...

iii) f(x) . g(x) = X", where ¢, = aghy, + a3 by1 + ... +a, b

f(x) g(x) are also converges in the same interval - R <x<R.
Algebraic and Transcendental function:

An algebraic function is a polynomial, a rational function (or) more generally any
function y = f(x) that satisfies an equation of the form

P () Y+ Pra () Y A pi() Y+ po () =0
Where each pj(x) is a polynomial.

All other functions which do not satisfy a polynomial equation of the above form are
called Transcendental function.

Eg:

i) Polynomials are algebraic functions.
i) e*, logx are transcendental functions.

Definition: (Elementary Function)

A Combination of (a) addition, subtraction, multiplication, devition, logarithmic
function, or forming functions of functions) algebraic and transcendental function is called
the elementary function.

Eg:

1
xe* + tan (1 + x?)
sin xcos 2x — ,/log x

y = tan

Some standard series:

x? X3

1Ler =14 54X X
1 2 3

3 5

. X
2.85INX=X——+——...

3 5
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2 4

3. cosx:l—X—+X——...
21 4l
3 5
4, tanfl(x)=x—x—+x——...
3 5
2 3 4
X° X X
5. logl+XxX)=X——+——-——+...
gd-+x) 2 3 4
Problem:
. 2 n 1-x"*,
It is well known from elementary algebrathat 1 + x +x“+ ... + X" = if x= 1.
Use this to show that the expansions %=1+x+x2+x3+...and
—X

%zl—x+x2—x3+...are valid for | x | < 1. Applying the latter to show that
+X

2 3 4 3 5 7
log(1+ x) = x—X—+X——X—+...andtan‘1(x) = x—X—+X——X—+...for |x|<1.
2 3 4 3 5 7

Solution:

n+1

. 1—
Giventhat 1+ X+ X2 +...+ X" =

if x£1
1-x
For|x|<1
limx" = limx"™* =0
n+l
lim (1+ x + x* +...+x”):lim1 X
n—o n—o 1—X
1 Xb X 42—
1-x
.'.i:1+x+x2+...
I-x (1)
Sub -x for x
i=1—x+x2 —x3+xt x>
I+x )

Integrating equation (2)
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1

mdx = j(l—x+x2—x3+x4—x5...)dx
x> x* X
log(1+x) = A+x—?+?—7+
Putx=0
Log(1) = A
A = 0
. log (1+x) = X

Sub x? for x in equation (2)

N ! . = 1-x*+x* =x®+x°...
+X
Integrating
. (L—x*+x*=x®+x%—...)dx
1+x°
3 5 7
tan’l(x)=B+x+X—+——X—+
3 5 7
Putx=0
tan (0) =B
=B=0
3 5 7
.-.tan’l(x)=B+x+X—+——X—+
3 5 7
Problem:

2 4 6

Show that the series y=1—)2(—2+ 2;(42 - 22 Zz 62

+... converges for all x an verify that
it is a solution of xy"+y'+xy = 0.
Solution

2 4 6

. X X X
Given y=1—2—2+ 7 2425 +...
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(_1)X2n
u,=
2%.42.6%..(2n)>

(_1)n+lX2n+2
Uy =77,2 2 2
2°.4°.6°..(2n+2)

Upy (D™ 2%.4%6°..(2n)°
u, 224°6°.(2n+2)? (=1)" x>

n

© (2n+2)?

2

X
(2n+2)?

un+1
lu

n

2

Lt un+1 X
n»w‘ u, ‘ e (2N + 2)°

un+l

un

Lt

n—oo

—0 forall x

=2 Un IS convergent

(OR)

Ly
" T 22.426..(2n)>

. B (_1)n+l
" 224%6%..(2n+2)?

a, __ ()" 2°4%6%.(2n+1)
a,., 2°.4%.(2n) (-n"
= -(2n+2)°
R= Lt| 2 = Lt(@2n+2)? —
n—w an+1 n—w

=~ Radius of convergence R =

=~ The series of convergent for all x
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x2  x* x5

6x°
02 T pigr prgrgr v

(5+1)+...

|

O I P
C2x A% 6x°
Ymm o Ty T geg
, 2 43x* 65x°
T T T pigrgr T
,  2x 43x® 65X°
TTQT T giar pigrgr
- 2x 43x% 65x° 2x  4x3
Xy'+y= —?4‘ 2247 22aig? o |+ -
—2X 4x3 6x°
" 1 2 X5 X6
Xy +y =_X+?—22 42 +22 1262 +...
X2 X4 XG
) _X(l_2_2+ 28 Pae
= —Xy
~Xy"+y'+xy =0

Problem:

Use the expansion L 14 x+x+ X +..Tofind the Power Series for

(a) By squaring b) By differentiating

Solution:
- l 2 3
Given —— =1+ X+ X"+ X" +...

1-xX

a) By Squaring

1-x

(LJZ = (L X X2 XX )

1-x
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1
W=1+x+x2+x3+...+x+x2+x3+x4
1-x

+..X X XX X+

W:1+ 2X+3x2 +4x° + ...
—X

b) By differentiating

=1+ X+ X2+ x3+....
(1-x)

lef, (1_ X) (0) _1(_1)

- =1+ 2X+3x% +...
(1-x)

=T =1+ 2X+3x% +4x3 +...
—X

Series solutions of first order Equations:
Solvey' =y
Solution:

The series solution is

y:ianxn
n=0

(i.e) Y= agtai+a X’ +agc+asx +asx+. .
- 2 3 4
y' = a;t2ax+3asx +4asX +5asx +. ..
y=Yy
2 3 4 _ 2 3 4
ar+2aX+3asX +H4aX +hasxX +. ... = agtagX+taX +azx +asX +...

Equating the like coefficients

di1 = dg

2=q;
a
=22
2 2
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_d g
ag= —2=—0
"3 2
4a4 = a3

_ ﬁ: a,
a 4 234
Sas = a4
as = ﬂ: )

5 2345

y = agtagx+tai+agCraxrasc+. ...

= a, +a0x+ﬂx2 B0 yay B0y, B s
2 2.3 2.3.4 2.3.45

( x> x* x* x° J
= I+ X+ —+—+—+—+...
20 3 4 o

y = age*
Verification:

y' =y

dy

dx y

Y
y

X

Integrating

[~ fax
y
log y = x+logc
= log e*+logc

log y = log ce*
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y=ce
Problem
Solve y = (1+x)° where p is a arbitrary constant, and y(0) = 1.
Solution:
y = (1+x)°
Diff (1) w.r.t x
y =p(1)P

. p@+x)°
Y= Ty

(1+x)y" = p(1+x)°
(A+x)y' = py

y+xy'=py )
To find the solution of (2)

The series solution is
y=> ax"
n=0

y = agtaxtai+agCrax’+. .
y' = ar+2ax+3as+HaC+. .

Xy' = aix+2a,x°+3agc+ax’+. ..
Py = pap+paix+paxx’+pasx>+pasx’*+...

(2) =
(ar+2aox+3azX°+HaC+. .. H(arx+2ax2+3agx > +Hagx +...)
= pag+pax+pax’+pasx+pasc+pasx’+...

Equating the like coeff

a; = pag [~ y(0)=a =1]
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2a,+a; = pa;
2a, = pai-a;

\y= BP0
2

2y P(P=D)
2

3az+2a; = pay
3a3 = paz-2a;
33.3 = az(p-2)

- (p=2) p(p-1)
3 .
3 2

L= P(p-1)(p-2)
3
2.3

4a,+3a3 = pas
4ay = pasz-3a;

4a, = (p-3)as

o= (P=3) P(p-1(p-2)
4 — .
2 2.3

_ p(p-D(p-2)(p-3)
8= 234

y = agtaxta+agCrax’+. ..

y=1+px+ 3

p(p-D) o, P(P-D(P=2) s, P(P-D(P=2)(P=3) s,
2!

41
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(i.e)

@+x)? =1+ px+

p(p-1) . P(P-D(P-2) », P(R-D(P-(P-3) s,
2! 3 41

for [x|< 1

This expansion is called binomial series.

Problem

Express Sin"x in the form of power series Ta.x" by solving y* = (1-x%) 2 in two ways
use the result to obtain the formula
T 1 11 1.3 1 135 1

= =4+, +—=+ + :
6 2 232° 24 52° 246 7.2

Solution
y = (1"
Q 1
dx  1-x?
dy = dx
1-x?

Joy ==

y =sin'y+Cc (1)
y = (1)1
y = 1+X+%/() y1{3/()3

_ +—
2.4 2.4.6

ﬂ:1+lx2+13 x4 3D e
dx 2 24 2.4.6
13 o 1.35 j

dy = 1+Ex2 +F X0
2 24 2.4.6
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3 5 7
y :A+x+ix— N (2)
2 3 245 2467
Equating (1) & (2)
3 5 7
sin(x) + C = Arxsi X 18 X0 135 X0
23 245 2467
Putx=0
sin-1(0) + C=A
0+C=A
A=C
We get,
3 5 7
sin!(x) = x+1.x—+£.x—+£.x—+... ........ (3)
23 245 2467

Put x =% in equation (3)

3 5 7
stz - L LW 13 W2° 135 W)
22 3 24 5 246 7

T~ 1 1 1 13 1 135 1
= : += + : +
6 2 232° 2452° 246 72’

Problem

Given ordinary non-linear equation y' = 1+y?. The differential equations consider in
the text and proceeding problem are all linear. The equation y' = 1+ y? is non-linear and it is
easy to see directly that y = tanx is the particular solution for which y(0) = 0. Show that

tanx = x+%x3 +§x5 +... By assuming a solution for the above equation y' = 1 + y? in the

form of a power series Za,x" and finding the a,’s. By differentiating the equation y' = 1+y?
f(n)(o)

repeatedly to obtain y" = 2yy', y" = 2yy"+2(y')? and using the formula an = o

Solution
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Giveny =1+Vy?

[ing

d

—Z =1
dx Ty
dy2 = dx
1+y

tan*(y) =x + C

Putx=0andy(0)=0

tan?(0)=0+C

C=0
tan™(y) = x
=y = tanx

The series solution is

a+2a,x+3ax°+4aC+5asx” ...

yzianX”
n=0

y = agtrapxtax’+apCran’t...

y' = ap+2ax+3asx>+Hasc+. .

y = 1+y°

1+( agtarx+apx*+agx+asx*H...)?

Equating the like coefficient

a = 1+ag
aa =1

28, = 2393
a =0

1+ ag?+ay X +a X +ag?x8+. ..

+ 2802 X+2802X°+280AX+ ...

+ 2apaX 28X . . 23,890 + ...

(~ Y(0) =2 =0)

( do =0, ai; = 1)
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3a3
3a3
as

4ay
4ay
as

5as
5as

5as

y

a2 +2apa;

1+ 2(0)

1/3

23033 + 2a1a
2(0) +2(1) (0)
0

a + 22533
0+2 (1) (1/3)
2/3

2/15

ap+arX+ax +agC+a Hagx+. ..

0+1.x+0.x* +1x3 +0.x* +£x5 +...
3 15

3

From (1) & (2)

tanx = x+1x3 +£x5 +...
3 15

Giveny' = 1+ y?

Differentiating

2yy
2yy"+2y'y'
2yy"+2(y')’

2yy"+2y'y"+4y'y"
2yy"'+6y'y"

2yy™M+2y'y"+6y"y

x+1x3 +£X5 +...
15

+oy'y"

('-'ao = 0, do = 0)
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Let

(0)

y*(0)

dy

83

= 2yy™+6(y")*+8y'y"

f(x)

f(x)

'(x)

(%)

0

0

y'(0)
L++y2

1+ [y(0)]?
1+0

1

f(n)(o)

o

y'(0) = 2y(0)y'(0)
2(0)(1)
0

0

f7(0

3!

N
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(0) = y"(0)

= 2y0)y"(0)+2(y'(0))> = 2(0)(0) + 2(1)?

'(0) = 2
as = 3 = i

3! 2.3
a = L
3 3 |
a4 _ f(lv)(O)

41

) = y¥()

= 2y(0)y"(0)+6y'(0)y"(0) 2(0)(2) +6(1)(0)

fV0) = 0
0
ad = 4 =0
dg =0
(v)
a = f1°(0)
51
f20) = y“(0)

= 2y(0)y™(0)+6(y"(0))*+8y'(0)y"(0)

= 2(0)(0) + 6(0)*+ 8(1)(2)

f¥0) = 16
f0 16 2
ds = = = =
51 1.2.3.45 15
Ly = agraXtaXitapCraxttasxC+. ..
2 1.5 4 2 5
= 0+1x+0X " +=xX"4+0X"+—X +...
3 15
1 3 2 5
Yy = X+=X+—X+...
3 15
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UNIT 11

Second order linear Equations (Ordinary points)

Consider the homogenous linear equations of the second order y" + p(x)y'+q(x) = 0.
The solution of this equation depends upon the nature of functions p(x) and Q(x). If these
functions are analytic at x = Xo. Then the power series solution of the above point x = X, exist
and coverage at X = Xo. The points at which P(x) and Q(x) are analytic are called ordinary
points of the equations.

The point at which these functions are not analytic is called singular points.
Problem

Slovey"+y=0
Solution

Gn y'"+y=0
Here P(x) =0, Q(x) =1

P(x) and Q(x) are analytic at all points.

The series solution is

y = ianX“

n=0
. — 2 3 4 5 6
ie) y = aptapx+apxX +azX +asX +asx +agX +...
- 2 3 4 5

y' = apt2aox+3asX +4ax +5asX +6aeX +. ..

y" = 2a,+3.2.a3x+4.3.4,x°+5.4.a5x°+6.5.a6x +. ..

y' =-y

2 3 4 _ 2 3 4 5 6

2a,+3.2.a3X+4.3.a4X"+5.4.a5X"+6.5.95X +. .. = -ag-ayX-axX -azX -asX -asX -aeX -...

Equating the like coefficient

2, = -qg
—a —a,
a, = 0 _ 0
2 2!
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2.3.a3 = -a

a = & _ —&
K 2.3 3l
4.3.a4 = -d
—a
U= 73
_ Z1f-a
% = E(Tj
a,
a, = 4—?
5.4.a5 = -az
544, = —(;—?1)
> 3145 5!
6.5.85 = -
6.5a, = —(%)
_ & &
% = "us6 e

The series solution is

y = aptaX+axXitagCraxt+asxCragx+. ..
= g trax-oy2 By By Bys Thye
21 3 4 5l o!

1_X_2+X_4_X_6+ + X_X_3+X_5_
% 20 4 @ 4 3 5 v
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agCOSX + a;Sinx

y = @pCOSX + a;SinX
Where y;=cosx = 1—?2!+§;—%(;+... and y,= cosx = x—§+§—...
(OR)
Also, y = Zax"
y' = Znax"!
y" = Zn(n-1)ax"?
Subiny"+y=0
Tn(n-1)ax"? + Za,x" = 0
T(n+2)(n+2-1ansXx"??+3ax" = 0
T(n+2)(nt+1)ans X"+ Zapx" = 0
(n+2)(n+1)agsp+a") X" = 0
Equating the coeff of x" to zero
~(n+2)(n+1)an:2 = “on

a. = I
2 (n+1)(n+2)

Putn=0
=a, = —% _ ~%
12) 2!

Putn=1
Sa, = - T4
2.3 3

Putn=2
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Problem

Solve the Legendre’s eqn
An equation is of the form (1-x%)y"-2xy'+P(P+1)y = 0 is called the legendre’s equation,
Where P is a constant.

Solution

The legendre’s equation is

(1-P)y"-2xy+P(P+l)y =0 (1)
e P
. —2X _ P(P+1)
P(X) - 1—X2 ’ Q(X) - 1—X2

Clearly P(x) and Q(x) are analytic

-~ The series solution is

y = ZaX"

y' = Znax"?

y" = Zn(n-1)ax"?
Subin (1)
(1-x%) (En(n-1)ax"?) - 2xZnax"* + P(P+1)Za,x" = 0
Tn(n-1)ax"? -En(n-1)aX" - 2Znax"* + P(P+1)Za,x" = 0
(n+2)(n-1)anX" -Zn(n-1)aX" - 2Znapx" + P(P+1)Za,x" = 0
{(n+2)(n+1)an+2- N(n-1)ay- 2nan+ P(P+1)a,}x" = 0
Equating the coeff of x" to zero.

(n+2)(n+1)an+2- [n(n-1)+2n- P(P+1)]a, = 0
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(n+2)(n+1)ag+2- [n?-n+2n-P%-P]a, = 0
(n+2)(n+1)ans2- [n?+n-P%-P]a, = 0

(n+2)(n+1)an+2 [n%+n-P%-P]a,

[(n+p)(n-p)+(n-p)] an

a, = (n—P)(n+P+1)an
(n+1)(n+2)

Putn=20
1.2
Putn=1
a, = (1-P)(P+2)
2.3
Putn=2
a, = (Z_P)(P+3)a2
3.4
_(2-P)(P+3) (-P)(P+1)
- 3.4 C12
a, = —P(P+1)(i—P)(P+3).ao
Putn=3
a, = (3_P)(P+4)a3
45
_ (3-P)(P+4) (1-P)(P+2)
B 45 ' 2.3
a, = (1—P)(3—P)(P+2)(P+4)ai

oS!

The solution is
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y = ZaX

i)y = agtanxt+axtaprax +asx+agx’+...

P(P+1) o, A=PUP+2) o
| 0

= a,+ax— 3

B P(P+l)(2—-P)(P+3)a x4+(1_P)(3_P)(P+2)(P+4)alxs—

4! 5!

_ ao[l—P(P+1)X2—P(P+1)(2_P)(P+3)X4— ...... }
2! 41

_(P-1)(P+2) 5 (P-1)(P-3)(P+2)(P+4) s

" ai[x 3l 5|

~y=aoy' +ary’
Where y, = 1- i F;l) X% — P(P+1)(24_| PYP+3) e _ . and

y, = X—(P_1)3(IP+2)X3+(P_1)(P_3)5(IP+2)(P+4)X5+

Clearly y; and y, are linearly independent
Fromegn (1) & (2)

B (n—P)(n+P+1)a
"2 (n+1)(n+2)

n

~ (n+1)(n+2)
~ (n=P)(n-P+1)

a
a

n

n+2

a n2(1+%)(1+%)

a,, n*(1-Pya-P + 1)

‘ (1+ 1)+ 2)) ‘
@-Pa-Pi+1)

a,
a

= Lim

n—o0

Lim

N—o0

n+2
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Note:

i. The solution y; and y, are in the form of infinite series, but generally it is not an

elementary function. They are called Legendre’s functions are valid for [x| < 1.

ii. If P is a +ive even integer, the series for y; terminate at a particular stage and y;
becomes a polynomial, y; still remains an infinite series.

iii. If P is a +ive odd integer, the series for y, terminate at a particular stage and y,
becomes a polynomial and y; still remains an infinite series.

iv. The polynomial defined in Note (ii) & (iii) are called Legendre’s Polynomial.

v. For different values of P we get different Legendre’s equation.

Theorem
Let Xo be an ordinary point of the differential equation y"+P(x)y'+Q(X)y = 0 and let ag
and a; be arbitrary constants. Then there exist a unique function y(x) that is analytic at Xo, is a
solution of the given equation in a certain neighborhood of this point and satisfies the initial
conditions y(Xo) = ag and y'(Xo) = a;. Further more if the power series expansion of P(x) and
Q(x) are valid on an interval [x-Xo| < R, R >0. Then the power series expansion of this
solution is also valid on the same interval.
Proof
It is enough. if we prove the theorem for the point xo = 0
Given thaty" + P(xX)y' + Q(x)y=0 (1)
The functions P(x) and Q(x) are analytic at the point X = Xo.

We have assume that P(x) & Q(X) are analytic at the origin

=~ The power series expansion

[Ms

P(X) = D p()X" = po+ pX+Px° +...

I
o

Q) = D.a()X" = Gy + X +0X° +...
n=0

To find the solution for y" + P(X)y' + Q(X)y = 0 in the form of the power series
y =XZax"

ie)  y=agtaix+axitas+...
y= 8.1+28.2X+33.3X3+. ..

= y(0) = a
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y'(0)=a

Which corresponds to the given condition y(Xo) = ao, Y'(Xo) = a1

y = D ax
n=0

y' = Y nax"t= > (n+Da,x"
n=1 n=0

y' = in(n—l)anx”‘zz i(n+2)(n+1)an+2xn

n=2 n=0

Sub the above in (1)

i(n +2)(n+Da, ,x" +{i p(x)x”} [i(n +1)an+lx”}+[iq(x)x"} {ianx"} =0

Z(n + 2)(n +1)a'n+2xn + ZZ (pn—k (k +1)ak+l)xn + ZZ (qn—ka‘k)xn =0
n=0 n=0 k=0 n=0 k=0
i {(n + 2)(n +1)an+2 + Z pn—k (k +1)ak+l + Z qn—ka‘k }Xn =0
n=0 k=0 k=0
= (n + 2)(” +1)an+2 + Z pn—k (k +1)ak+1 + Z qn—kak =0
k=0 k=0
= (+2)(N+Day, + 3, [(K+D)Py @ +0hdy] =0
k=0
S+ +Da,, = [(K+)p @ +Uudd e 2)
k=0
Putn=0in(2)
n=0
n21la,=- [(k +D P8, t+ qn—kak]
k=0

2. a, = _[1- poa1+%ao]
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__ [1.po2;+0,2, ]
2

a,

Putn=1in (1)

n=1

n3.28; = —Z [(K+D)p, 8 + 08 ]
k=0

2.3. a; = _[1- Prodi+G o8y + (1+1) Prady, + ql—lai]

2.3.a, = p,a,+0,a, +2p,a, +gea, ]
—(m%+q@o]
2

2.3.a, = -[p,a,+q,a, + 2 po( + 0oy ]

= - [P11+q180-Po’a1-Pododo+Qodi]
=- plal'qlaO'p02a1+p0quO'qul

23a3= ao(plqo-ql)+al(p02'pl-q0)

_ 3,(Po% — %) +2,(Ps” — Py — o)

% 2.3

s We getay, as, ag, ...... interms of ag and a;

ie) All the coefficients of the series Zanxn in terms of ag and a;.
n=0

Hence the solution of the equation y"+P(x)y'+Q(x)y = 0 exist in the form of the series

y = > ax
n=0
Problem

The equation y"+(p+%—%x2)y =0, where p is constant. Certainly has a series

solution of the formy = Za,x".
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a) S.T. the coefficient an are relate by the three term recursion formula
(n+YH(n+2)a,,, + ( p +%jan —%anz =0.

b) If the independent variable is change from y to @ by means of y = mex2’4, Show that the
equation is transformed into ®'"-X®'+pw = 0.

c) Verify that the equation in (b) has a two term recursion formula and find its general soln.

Solution

a) Given y"+(p+%—%x2)y =0 (1)

Here P(x) =0, Q(X) = p+%—%x2.

=~ P(x) and Q(x) are analytic.
- we assume the power series solution
y =ZaxX"

y' =Znax"*

y" =Zn(n-1ax"?

sub in (1)

Zn(n+1)anx”2+(p+%—%x2)2anx" =0

Z(n + 2)(n +1)an+2Xn +(p +%)Zanxn _%ZaanJrz =0

(n+2)(n+Da,,,x" +(p+%janx” —1Zanxn+2 =0
1 1 N
((n+2)(n +Da, ., +(p+zjan —Zan_zjx =0
1 1
(n+2)(n +1)an+2+(p+—jan ——a,, =0
2 4
b) y= e
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-2 2 2 .
= oxe M re™ e

y' = —%m xexz"‘.(_fix) +oe 1) +xe ™ More 2% rgre g
_ L —%me‘xz"‘ Lwe it Lxwe L e
y" :%szexzm _%wexzm _ XO\)'67X2/4 +(Dlle7X2/4
sub in (1)

1 1,
"+H(p+=—=x)y =0
yH(p -+ = XY

l 2 1 2 Y oo —x2 l l 2
—XZ(De x/4__0\)e XM—X(De x/4+0) e X/4+(p+———X2)(De x“14
4 2 2 4
2 1 2 "2 I 2 1 2 1
_X2 e x4 COGX/4—X(1)€X/4+(D e ></4_|_p0)e ></4_+_§(/De ></4__X
2 2 2
:(Dne—x /4_X(D|e—x /4+p®e—x /4 :0
2
= e (0"-Xx0+po) =0
—x2/4
e #0
= 0"-X0'+po =0

c) Given o"—Xo+pw =0
P(x) =-xand Q(X) =p
= P(x) and Q(x) are analytic
=~ We assume power series solution
® =Zax"

® =Xnax"!

2

we

—x2/4 _
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®" =Zn(n-1)ax"?

sub in the given equation

Tn(n-1)ax"? - xZnax"* + pa,x" =0
T(n+2)(n-1)an2X" - TnapX" + pZaX" =0
(n+2)(n-1)an+2X" - napx" + papX" =0
(n+2)(n-1)ans2X" - (n-p)anX” =0
[(n+2)(n-1)an+2 - (n-p)an]x” =0
= (nt2)(n-1)an+2 - (n-p)an =0
= (n+2)(n-1)an+2 = (n-p)an
= a n-p

2 T T v av on
(n+2)(n+1)

Put n=0
-p
a = —a
2 12 0
Put n=1
1-p
a = —
3 3 a1
Put n=2
2-p
a, = a
! 34 °
_2ZP(=P),
34 (1.2
_—p@-p)
1234
-2
a, = p(r;! ) a,
Put n=3
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a5 :Tsas
p(i-p
- 5(23)al
-D(p-3
o = (P )5<!p )a,

~ The solution is
— 2 3 4 5
® = QagtraiXtaxX +agX +agX +asX +...

0] = ao+aix_§aox2+l_paix3+ p(p—Z) aOX4+(p_1)(p_3) alxs_'_

3 4 ol
_p-1 IO(IO—) (P-D(P-3) s
- a0+a1x— ao 3 R 4l Taix "
_ 1_pxz =2 e, 1,0 X_p—1X3+(p—1)(p—3)X5___
2 4 3 5

o = agyitazy?

p-1 5, (P-D(P-3) s _
3 ol

Where y1=1—§x2+ p(Flu_Z) x*+...and y,=x—

Regular Singular Points

Consider the homogeneous linear equation of second order y"'+P(X)y'+Q(x)y =0 .... (1).
The solution of the equation depends upon the nature of the functions P(x) and Q(x). If these
functions are analytic at the Point x = 0 then the points are called the ordinary points of the
equation.

The points at which the functions are not analytic is called singular points.

A singular points X, of the equation (1) is said to be regular if the functions (x-Xo)P(X)
and (x-xo)°P(x) are analytic.

If these functions are not analytic then X, is called irregular singular point.

Problem
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Locate and classify its singular points on the x axis
a) x}(x-1)y"-2(x-1)y'+3xy = 0

b) X*(x*-1)%y"-x(1-X)y'+2y = 0

Solution

b) Gn : x*(x*-1)%y"-x(1-x)y'+2y = 0

" X(l—X) 1 _

=Yy- XZ(XZ _1)2 y+ X2(X2 _1)2 y=0
_ X(@A-x)

P(X) - X2 (XZ _1)2

3 @1—x)

CX(X+1)2(x—-1)?

1
PO = P D)
2

Q(x) = 017

_ 2
x?(x+1)%(x-1)*

Here P(x) and Q(x) are not analytic Atx =0

X.P(x) = X2
X(x+1)(x-1)
_ 1
T (x+1)3(x-1)
Q=5 2%

x*(x+1)%(x-1)*

_ 2
T (x+1)%(x—1)?
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~ X =0 is aregular singular point.
Atx=1

x—-1
X(x+1)%(x -1

(x=1).P(x) =

_
X(x+1)°

1
ox X(X+1)°

N

2(x—1)*

DR =Sy x 1)

B 2
X% (x +1)?

2
=t -0
1 X (X +1)

2_1
4 2

~ X =1isaregular singular point at pt x = -1

X+1
X(X+1)?(x=1)

(x+1).P(x) =

o
X(x+1)(x-1)

Pt
x>x X(X+1)(x-1)

I
-1(0)(-2)

= 0o

2(x+1)°

) Q= e P (x-1)?
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B 2
x*(x-1)°

k2
x1x°(x —1)

~ X =-1is airregular singular point.

Problem

Determine the nature of pt x = 0, for each of the following equation.

a) y"+(sinx).y =0
b) x%y"+(sinx)y =0

c) x*y'"+(sinx)y =0

Solution

a) Gn:y"+(sinx).y =0
= P(x) =0; Q(x) = sinx
Atptx=0

P(x) and Q(x) are analytic
~ X =0 is an ordinary pt.

b) Gn:x*y"+(sinx)y =0

sin x

P(x) =0,Q(x) = "4z

Atptx=0
P(x) and Q(x) are not analytic

X2 sin x
X3

x. P(x) =0, XZQ(X) =
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|%ﬁqm=LﬁmX::1

x—0 X2

xP(x) and x*Q(x) are analytic at pt x = 0
~ X =0 is aregular singular pt.
c) Gn:xly"+(sinx)y =0

., sinXx
X4

y=0

sin x
P(X) =0, Q(x) = "y*

Here P(x) and Q(x) are not analytic at x = 0
Atx=0
X.P(x)=0

X2 sin x
X4

X"Q(x) =

_sinx
X2
sin x
= Lt

x—0 X2

~ X =0 isirregular singular point.
Frobenius Method

Consider a differential equation y"+P(x)y'+Q(x)y = 0. If x = 0 is an ordinary point we can

get independent solutions in the form of the power series Zanx”
n=0

If x =0 is a regular singular point of the equation then a solution of the form Zanxn may
n=0
not be possible. In such a cases the series solution can be obtained by the method of
Frobenius series.

We can take the series solution as y = X”‘Zanxn where m is a constant to determined.
n=0
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Let y= x"‘ianxn

n=0

X" (ag+aix+a X +asrax as+......)

apX™ +arX™ ! +a,x™ 2 +ax ™ S rax ™ gk Mo+

1 m+1

magX™™* +(m+1)ax™ +(m+2)ax™ +(m+3)asx™ ...

y

y m(m-1)agx™? +m(m+1)a;x™* +(m-1)(m+2)ax™+(m+2)(m+3)asx™ +......

Sub these in the equation y"+P(X)y'+Q(X)y = 0 and equating the coefficient of varius
power to 0. Equating the lowest power of x to zero. We get, a quadratic equation in m.

This equation is called the indicial equation of the given differential equation. The roots
of this equation m;& m, (say) are called the exponents of the differential equation.

If m; and m;, are distinct, then there are two independent solutions.

If my = my, there is only one independent solution say y1.

The other solution may be obtained by y, = vy;, where v = I%e‘“’(x)dx dx
1

Problem
Solve : 2x%y"+x(2x+1)y'-y = 0
Solution
Gn:  2X°y"+x(2x+1)y'-y = 0 e (D)

X(2x+1) 1
= Y+ — =0
y e 2

x(2x+1) QW) = _i

P(X)= ——5— ™

=P = 0 =

Here P(x) and Q(x) are not analyticat x =0

X.(2x+1)

X. P(X)= oy
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X*Q(X)

3]
=0l 2

~ X =0 is a regular singular point.

~ The series soln is
Let y=x") a,x"
n=0

= x"(aptarx+ax*+agx+axH. )
= apx™ +a;x™? +ax™ 2 +ax M3 M

= mapx™* +(Mm+1)agx™ +(M+2)ax ™ +(m+3)asx™ >+ (m+4)ax™ 3+ .

y' = m(m-1agx™*+m(m+1)a;x™t +(m-1)(m+2)ax™+ (m+2)(m+3)azx™"*
+ (M+4)(m+3) amx™+ ...

Sub ineqgn (1)
2x°[m(m-1)apx™?+m(m+1)a;x™?* +(m-1)(m+2)ax™+ (m+2)(m+3)azx™"*

+ (M+4)(Mm+3) amx™ ™+ ... . ]+x(2x+1) [magx™* +(m+1)ax™

+(M+2)ax ™ +(m+3)asx™ A+ (m+4)ax™ 3+ ]
~[agx™ +arx™? +ax™ A +agx ™ +ax ™+ ] =0

Equating the coefficient of Lower power of x

ie) x™ to zero

2m(m-1)ag+magp-ag =0
(2m(m-1)+m-1)ag =0
= (2m?-2m+m-1)ag =0
= 2m*2m-1 =0 (a0

This is called the indicial equation
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2m?-2m-1 =0

2m?-2m+m-1 =0
2m(m-1)+1(m-1) =0
(m-1) 2m+1) =0

=m=12m=-1
= m=1my= -1/2

™1to zero

Equating the coefficient of x
2m(m+1)a;+2mag+(m+1)a;-a; = 0

[2m(m+1)+(m+1)-1]a; =-2mag

(2m*+2m+m+1-1)a; = -2may
=  (2m*3m)a, = -2may
= m(2m+3)a; = -2may
= a =— 2 a,

2m+3

™2 t0 zero

Equating the coefficient of x

2(m+1)(m+2)a+2(m+1)a;+(m+2)az - a,
[2(m+1)(m+2)+(m+2)-1]a,

[2(m+1)(m+2)+(m+1)] &,

(m+1) [2(m+2)+1]a;

= (2m+4+1)a,
= (2m+5)a,
(2m+5)a, =

a, = 8,
(2m+3)(2m +5)

-2(m+1)a1

-2(m+1)a1

-2(m+1)a1

=-2

=-2

—2( —2 .aoj
2m+3

22
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m+3

Equating the coefficient of X" to zero
2(m+2)(m+3)az+2(m+2)ay+(m+3)az-as =0
(2(m+2)(m+3)m+3-1)as = -2(m+2)a,
(2(m+2)(m+3)+(m+2))as =-2(m+2)a,
(m+2) [2(m+3)+1] a3 =-2(Mm+2),2
(2m+6+1)as =-2a,
22
(2m+7)as =-2 3,
(2m+3)(2m+5)
23
as = - a,
(2m+3)(2m+5)(2m +7)
Putm; =1
e, =——2% a = “2a
BPTIPE 5
2° 2°
a=————"H/-@a8 = ——@
2 (2+3)(2+5) % 5x7 °
22
=—a
35

a, = ~Z a,
(2+3)(2+5)(2+7)

_28
= aO
Ex7x9
Putm, =-1/2
a=——> a
- 0
2(_1] +3
2
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=—a
G 5 %
d; = -dp
22
a, =

22
%= g
a,==a
2_2 0
28
A ] 1 1
(BREGEIERE
2 2
_28
as:2><4><6ao
_ -1,
a; = 5 %

Y, = Xmlzanxn
n=0
= x!(agtax+ax+ag+ax’+. .
22 2%x3
= x| 8, — = ayX +—ayX
35 315
Putag=1
o2 22, 235
y1 =X[1-=X+—X"— + v
5 35 315
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n=0
= X2 (agtarx+a X +ag +ax'+......)
=yl a, —a0X+£aOX2 _1a0x3 S
2 6
-1/2 1. 3
= X a{l—x+—x ——X ... }

These two solutions are linearly independent.

=~ The general solution is y = c1y1+Coy»

2 3
~Ly= CxX 1-2x4 202 oy +C2x‘1’2{1—x+1x2—1x3+ ....... }
5 35 315 2 6

Bessel’s Equation

An equation is of the form x?y"'+xy'+(x*-P?)y = 0 where P is a constant is called the

Bessel’s equation.

Problem

When P = 0, the Bessel’s equation becomes x2y"+xy'+x2y = 0. Show that it indicial

equation has only one root, and deduce thaty =" (-1)
n=0

21 ()2 X?"is the corresponding Frobenius

series solution.
Solution
Gn:xAy'+xy'+x?y=0. (1)
n 1 1
= y'+—y+y = 0
X

PO) = =, QM) =1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
83



P(x) is not analytic and Q(x) is analytic

~ X =0 s not an ordinary pt.

At x=0
xP(x)=5 =1
X
X2Q(X) = X

At the pt x = 0, xP(x) and x*Q(x) are analytic
~ X =0 is aregular singular pt

-~ The Frobenius series solution is
Let y=x"> a,x"
n=0

= x"(aptax+ax*+ag+axt......)

= agx™ +apx™! +ax™ Hragx ™ S +ax ™+

= magX™ +(m+1)ax™ +(M+2)ax™ +(m+3)asx™ +(m+4)ax ™+

+ (M+4)(m+3) axx™ 2+ ...
Sub ineqgn (1)
x2[m(m-1)agx™2+m(m+1)a;x™* +(m-1)(m+2)ax™+ (m+2)(m+3)asx™**
+ (M+4)(m+3) apx™ %+ ... ]+x[magx™ ™" +(m+1)ax™
+(mM+2)ax ™ +(m+3)asx™ A+ (m+4)ax™ 3+, ]

+x[agX™ +aix™ ! +ax ™ P +agx M 3 rax™ A+ ] =0

Equating the coeff of x™ to zero

m(m-1)aptmay, =0
(m2-m+m)ag =0
m? ag =0

wag=0,m?=0
m =0

Equating the coeff of xX™* to zero

y' = m(m-1ax™2+m(m+1)ax™! +(m-1)(m+2)ax™+ (m+2)(m+3)azx™**
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m(m+1)a;+(m+1)a; =0

(m+1)a; (M+1) =0
a(m+1)° =0
=a,=0 (*m=0)

Equating the coeff of xX™*to zero

(m+1)(m+2)ax+(m+2)a+ag =0
(m+2)az[m+1+1]+ag =0
(Mm+2)°a; = -ap
— g o —
a, = = m = 0
2 (m+2)? 22 ( )
Equating the coeff of xX™*to zero

(m+2)(m+3)az+(m+3)az+a; =0

(m+3)az(m+2+1)+a; =0
(m+3)az(m+3) = -
as(M+3)> =0
a3 =0 (*\m=0

™4 to zero

Equating the coeff of x
(m+3) (m+4) ag+(m+4)as+a; =0
(m+4)ay(m+3+1) =-a
(m+4)%a, = -(-a0/29)

a, =2
Y 22(m+4)?

a

=30
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-~ The series solution is

y = x"(@p+arX+ax>+asc+ax . .)

8y

aoz+Ox+
22 22.4?

=X,(a, +0.x— X' +..)

3 ay dy
PR 22 42 X - 22 4262 X+

y=a,-

x2  x* x°
y= a{l_?+ 2247 2% 4262 +j
Take ag=1

x X x®

27 g

2 4 6

X . ox X N
221y’ 2°.(1.2)% 2°.(1.2.3)

x> x* X

- + - +
22()? " (22)%(2)?  22.(1.2.3)

6

_ 0 ( 1)n 2n
nZ:(;(Z )" (nt)?

0 ( 1)n 2n
P rag

Problem

Consider the diff equation ' + y—— y=0

a) Show that x =0 is an irregular singular pt.
b) Use a fact that y;= x is a solution to find the second independent solution ys.
c) Show that the 2" solution y, found in (b) cannot expressed as a Frobenisious series

Solution

Given : y+ y——y o (1)
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1

) PO =5, Q) =~

Here P(x) and Q(x) are not analytic at the pt x =0
~ X =0 is not an ordinary point

X.P(x) =X—X2 =

—x? 1
. 2

X X

x*Q(x) =
=~ xP(x) and x*Q(X) are not analytic at the point x = 0
~ X =0 is an irregular singular point.

b) T.P. y; =x is the solution of equation (1)

y1=XYy1=1, yp"

n 1 1 1 1 1
Y1 +7y1_Fy1 0+7(1 _F(X)

RN
G

=0
=~ y1= X is the solution of equation (1)

To find y,

Y1

= J'%eidx

:_Iezdz Put z = 1/x, dz:_—zldx
X

v=—e*
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Y2 = VY1
1

Y, = —8%.X

¢) Which cannot be expressed in ascending power of X. So it is to a Frobenisius series
Problem

The diff equation x?y"+(3x-1)y'+y = 0 has x = 0 is an irregular singular pt. If the
Frobenisius series is inserted into this eqgn. Show that m = 0 and the corresponding

Frobenisius series solution is the power series y = Zn!xn . Which converges only at x =0.
n=0

This demonstrate that even when a Frobenisius series formally satisfied such an equation it is

not necessarily a valid solution.

Solution
Given : x%y"+(3x-1)y+y=0 (1)
W 3x-1 1
= Y'+——Yy+—y=0
X X
3x-1 1
P(X) =———, QX)=—
X X

Here P(x) and Q(X) are not analyticat x =0
x P(x) is not analytic

~ X =0 is a irregular singular point
If y=x"> ax"
n=0

= x"(aptarx+ax*+agx+axH. )
— aOXm +alxm+1 +a2Xm+2+a3Xm+3+a4Xm+4+. .

= magx™? +(m+1)ax™ +(m+2)ax™ -+ (m+3)agx™ 2 +(m+4)ax™ 3+ .

y' = m(m-1ax™*+m(m+1)ax™* +(m-1)(m+2)ax™+ (m+2)(m+3)azx™*
+ (M+4)(m+3) axx™+ ...

Sub inegn (1)
X2 [m(m-1)agx™2+m(m+1)a;x™* +(m-1)(m+2)ax™

+ (M+2)(M+3)azx™ ™+ (M+4)(Mm+3) a;x™+ ...]
+(3x-1)[mapx™? +(m+1)ax™ +(m+2)ax™"*
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™21 (m+4)ax™ 3+, ]

M2 L agx™ 3 4a,x ™ =0

+(m+3)asx
+ax™ +a;x™ +apx

Equating the coefficient of x™* to zero
-ma; =0
wag #0 m=0
m(m-1)ap+3mag-(m+1)a;+a; = 0

(m(m-1)+3m+1)a, =(m+1)a;

(m+1) a; = (M*m+3m+1)a,
(m+1) a; = (m*+2m+1)ag
(m+1) a; = (m+1)%ag
ai = (m+1) ap
a = ap
Equating the coeeficient of x™** to zero
m(m+1)a;+3(m+1)a;-(m+2)a+a; =0
ai(m(m+1)+3(m+1)+1) = (m+2)a,
ai(m*+4m+4) = (M+2)a,
ai(m+2)° = ap
2a, =@ (m=0)
a = 2ag

Equating the coeff of xm+2 to zero

(M+1)(M+2)a+3(M+2)a, - (M+3)ad+a, =0
[(M+1)(m+2)+3(m+2)+1]a, = (Mm+3)ag
(M2+6m+9)ay = (Mm+3)ag
(M+3) (M+3) a, = (m+3)ag
3, = ay(m+3)
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The series solution is
— m 2 3 4
y = X" (agtapx+aox +azxX +asX +...)
= x° (ag*+agX+2apx*+6asx +asx*+...)
— 2 3
= ap(L+X+2X“+6X°+...... )
Putag=1
— 2 3
y = 1+X+2X7+6X7+...

= THx+23+303+IX )

y = in!xn
n=0

Let us discuss the convergence

Un=n! X", Upsr = (NH1)! XM
Upy _ (n+1)X™
u, nix"
= (n+1) x
u
— = (n+1)[X
n

For convergence
lim(n+1)[x | <1
nN—o0

X | < lim
e (N +1)

Hence the series is convergent only for the point x = 0, so that the above series cannot
be taken as a valid solution of the differentiable equation.

Problem
The equation x?y"-3xy'+(4x+4)y = 0 has only one Frobenius series solution find it.

Solution
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PO =, Q)=

Given : x%y"-3xy'+(4x+4)y = 0

4x +4
X2

At pointx =0

XP(x) = L -3
X

XZQ(X):X2(4X2+4) _

At the pointx =0

XP(x) =-3=F,

XQ(x)=4 =q,

The indicial equation is
m(m-1)+mpo+do =0
m(m-1)-3m+4 =0

m?-m-3m+4 =0

m2-4m+4 =0
(m-2)? =0
m =22

= apgX™ +ax™! +ax ™ +agx M B rax M

4X +

4

X" (ag+aix+a X +asrax . .)
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y' = magx™ +(m+1)ax™ +(m+2)ax ™+ (m+3)asx™ A +(m+4)ax™ 3+ .
y' = m(m-Dax™+m(m+1)a;x™! +(m-1)(m+2)ax™+ (m+2)(m+3)azx™"*
+ (M+4)(M+3) axx™%+ ...
Subin (1)

X2 [m(m-1)agx™2+m(m+1)a;x™* +(m-1)(m+2)ax™
+ (M+2)(M+3)azx™ ™+ (M+4)(Mm+3) a;x™+ ...]
-3x[magx™ ! +(m+1)ax™ +(m+2)ax™ H+(m+3)azx™ 2 +(m+4)ax™3+.. ]
+(Ax+4)[aox™ +arx™ +ax™ +agx ™ +aux ™ ] =0

m+2

x"[m(m-1)ag-3mag+4ao]+x™ [m(m+1)as-3(m+1)a; +4ag+4ai]

+X™2[(M+1)(M+2)az-3(Mm+2)ay+4a; +4a;]

+X™3[(M+2)(Mm+3)ag-3(m+3)ag+4a,+4as]+.... =0
Equating x™* to zero
m(m+1)a;-3(m+1l)a;+4ap+d4a; =0
m(m+1)-3(m+1)+a)a; +4a, =0
(m?+m-3m-3+4)a, = -da,
(m?-2m+1)a, = -da,
Putm=2

(2-1)2a; = -4a
ai = -4a,

Equating x™*? to zero

(m+1) (m+2)a, - 3(m+2)ay+4a;+4a; =0
((m+1) (m+2) - 3(m+2)+4)a, =-4a;
Putm=2

[(3 x 4)-3(4)+4]a; = -4(-4ap)
(12-12+4)a, = 16ag

4a, =16 ag

do = 4ag

™3 to zero

Equating x

(m+2) (m+3)az - 3(m+3)ag +4a, +4a3 =0
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[(m+2) (m+3)-3(m+3)+4a]as = -4a,
Putm=2
(4x5-3(5) +4)as  =-4(4ap)
(20 - 15 + 4)as = -16 a
9a; =-16a

as = (-16/9)ag

-~ The series solution is

= xzao(l—4x+4x2—%x3 —)
Put ag=1
y= x2(1—4x+4x2—%x3— ..... )

Problem

Find the indicial equation and its roots for each of the following differential equation

Q) x°y"+(cos2x-1)y'+2xy =0

Solution
Given : X*y"'+(cos2x-1)y'+2xy = 0

, Cos2x—-1 , 2
:>y+—3y+—2y =0
X X
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cos2x-1 2
P(X) = ———, QX)) = —
X X
Xcos2x—1 cos2x—-1
XP(x) = 3 = 2 —Po
X X
2x°

X*Q(x) = 7 27 %

GO ORI G J—l
2 a4 e

XP(x) = (

2

Lt xP(x) = —% =-2 =o

x—0

The indicial equation is

m(m-1) + mpo + do =0
m(m-1) - 2m + 2 =0
m2-m-2m+2 =0
m*-3m+2 =0

m (m-1) - 2(m-1) =0

(m-1)(m-2) =0
m =12
Problem

Find two independent Frobenius series solution for equation xy"+2y'+xy = 0.

Solution

Given: xy"+2y'+xy=0 (1)
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w, 2
= y+—y+y=0
X

PO = 2, QU =L

P(x) and Q(x) are not analytic at the pt x =0
XP(X) = 2, X°Q(X) = X

Atx=0
XP(X) =2 =Py, x2Q(x)=0=qo

=~ The indicial equation is

m(m-1)+mpe+ge =0

m2-m+2m+0 =0
m2+m =0
m(m+1) =0

my=0,m,=-1

The series solution is

y=x">"ax"
n=0

X" (ag+aix+ax2+agrax . .)

aoX™ +arx™? +a,x™ 2 rax ™ g, x ™M

Yy = magx™ +(m+1)ax™ +(m+2)ax ™ +(m+3)asx™ +(m+4)ax ™+ .
y' = m(m-1)agx™*+m(m+1)a;x™?t +(m-1)(m+2)ax™+ (m+2)(m+3)azx™"*
+ (M+4)(m+3) amx™ 2+ ...
Subin (1)

x[m(m-1)apx™2+m(m+1)ax™* +(m-1)(m+2)ax™
+ (M+2)(Mm+3)azx™ ™+ (m+4)(m+3) a;x™+ ...]
+2[magx™™* +(m+1)a;x™ +(m+2)ax™"*
+(m+3)asx™ 2 +(m+4)ax™ 3+, .. ]
+x[agx™ +axX™! +ax ™ A +agx ™ P +ax™ L] =0
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X" [m(m-1)ag+2mag] +X™[m(m+1)a;+2(m+1)a;]
+X™[(M+1)(M+2)ay+2(m+2)az+ag]
+X™2[(m+2)(m+3)ag+2(m+3)az+a]+... =0

Equating the coeff of x™ to zero

m(m+1)al+2(m+1)a; =0
(m+1)a;(m+2) =0
di =0

Equating coeff of x™ to zero

(m+1) (m+2)a+2(m+2)az+ao =0

(m+2)az[m+1+2]+a9 =0
— — &
ay =
(m+2)(m+3)
Equating coeff. of x™ to zero
(m+3) (m+4)as+2(m+4)az+a; = 0
(m+4)a, [ m+3+2] =-a,
a
m+4) (m+5 = —2
(M+4) (m+5) & (m+2)(M+3)
a = %
) (m+2)(m +3)(m + 4)(m +5)
Putm=0
;=0
— a‘O
=
27 23
az=0
as = a and so on
2.3.4.
Putm=-1
a=0
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a =
712
az=0
o)
= and so on
a4 1.2.34

= a, +0.x—=—2x*+0.x% + X+
3 2.34
— a2, G 4
=8 - XA X
2 4
= a{l—x—+x—+ ....... j
3 5
Putag =1
x> x*
Y1 = —g‘i‘g .......
=1 x—X—3+X—5 = x* sinx
y1= 3 Ty T =
Y, =x"> ax"
n=0

1
>
i
7\
H
+
o
>
|
N | £
>
N
+
o
>
w
+
> | S
>
~
+
N——

xl[a0 Gy Boye J
2! 41
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a4
Takeap=1
2 4
S X" X
y2 - (1 - E + E +oenn ]
Yo,  =x7cosx

~y1=x"sinx and y, = x* cosx

Legendre Polynomials

An equation is of the form (1-x%)y" — 2xy' + n(n + 1) y = 0 is called the Legendre
equation where n is a constant.

2X ,+n(n+1) _

>y — 0
y 1—x2y 1— x?

—2X n(n+1)
P(x)= X)=

()=1—"7 AN=""73

P(x) and Q(x) are analytic at pointx =0
=~ The series solution is

= Zaka

<
|

= Taxk!

<
I

y' = Zk(k-1) ax?
Subin (1)
(1 —%°) Tk(k-1) ax*? -2x3k ™t + n(n + 1) Zax® =0
= k(k-1) axd*? = x% k (k-1) 9k x*? — 2k ax* + n(n + 1) ax* =0
= (K +2) (K + 1) ageox' — k(k-1) ax® — 2k ax + n(n + 1) aex" =0
= {(k +2) (k + 1) ax+2 — k(k-1)ax — 2kax + n(n+1)ax} X =0

Equating the coeff of x* to zero
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o (K+2) (K + 1) awz — k(k -1)ay — 2kax + n(n+1)a =0
(k +2) (K + 1) sz — [K(k-1) +2k —n(n+1)]ax =0
(k+2) (k+1)aee =[k*—k+2k—n’-n]a

= [K?* + k — n® — n]ay
= [(k*=n%) + (k—n)]a
=[(k+n) (k—n) + (k-n)Ja

(K+2) (k+1) e = (k+n) (k+n+1)ac

_ (k=n)(k+n+1)

- Y2 = T T ke2)
putk =k -2
, :(k—2—n)(k—2+n+1)a
T k—2+41) (k—2+2)
N :(k—n—z)(k+n—1)ak72
(k —1)(k
- ~(n-k-2)(n+k-1)
‘ k(k-1) -2
—k(k-1
a, = (k-1)

(n—k+2) (n+k-1)

w.k.t P,(X) is a polynomial of degree n that contains only even or odd powers of x according
as nisevenornis odd.

-~ It can be written as

Pa(X) = aX" + anoX"? + an.ax™ + ... where the sum ends with ao if n is even and ayx if n is
odd.

Let us find a,-2, an-4, ane interms of a,,

—k(k -1) .
n—-k+2)(n+k-1)

we’ve Ak =
(

Putk=n
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. —n(n—l)a
"7 2(n-1) "
Putk=n-2
ay (n-2)(n-3)
" (h-(h-2)+2)(n+n-2+1) "?

n(n—1) (n—2)(n —3)a
.4(2n-1)(2n-3) "

—_

N

Putk=n-4

—(n—4) (n-5)

" -(n—4)+2) (n+n-4-1)""

_~(r-4) (-9

6 (2n-5) Aoes

_—n(n-1) (n-2) (n-3) (n-4) (n-5)

T T 246 n-1) n-9)an-5) "

etc....

2 Pa(X) = anX" + anoX™? + anax™ + anex™ + ..

) e 20D 02 (0-3)

2.4.(2n-1)(2n-3) "

_n(n-1)(n-2) (n-3) (—4) (-5) -6

2 .4 .6(2n-1) (2n-3) (2n-5) o

+...

n(n—1) N n(n-1) (n-2) (n-3) L

2(2n-1) 2.4.(2n-1) (2n-3)"
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(-0(-2)(1-3) (1-4) (1-5) .. +}

2 .4 .6(2n-1)(2n-3)(2n-5)
Where an = (22)!
(n1)?2"
Rodrigues formula

_ @)y [, n(n-1) ., nh-1)(n-2)(n-3) ..,
Pl ()2 {X T20en-1)” 2.4 (2n-1)(

(1) n(n-1)(n-2)... (n-(2k -1)) 12k

2%kt .(2n-1) (2n-3) ... (2n - (2k 1)) (D)
= The coeff of X in (1) is
(-1)n(n-1)(n-2)... (n—2k +1) o
2kl (2n-1)(2n-3) ... (2n -2k +1)
Now, n(n-1) (n-2) ... (n— 2k +1) = n(n-1) (n - 2)(n (_HZT()Z!k +1) (n—2kK)
n!
n(n-1) (n-2) ... (n—2k +1) = (n - 2k)! L)

(2n—2k +1) (2n—2k +2) (2n - 2k +3)....(2n — 2k +1)
(2n—-4)(2n-3)(2n-2)(2n-1) (2n)
2n(2n-2) (2n—4)..(2n—2k +2)

(2n-1) (2n-3) ... (2n— 2k +1) =

_(2n—2k) (2n—2k +1) (2n -2k +2)..(2n—1)(2n)
B (2n-2k) 2“n(n-1)\n-2)..(n—k +1)

_ (2n) (n—k)!

~(2n-2k) 2¢(n—k) (n—k+1) (n—k +2)...(n—1)n

_(2n) (n—k)

~ (2n—2k) 2¢n! )
Sub in equation (3) & (4) in (2)
The coeff of X in (1) is

- (1) n (2n—2k ) 2*n!

B (n—2k) = 2 ki (2n) (n—k)!
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(-2 (n1)* (2n—2k)

(2n)k! (n—2k) (n—k)!

=~ Equation (1) can be written as

Pn(x) = z (Zn)! (—1)k (n!)2 (2n - 2k)! "2k

S(ny2" k! (2n) (n—2k)(n—k)!

) [n/2] ( 1)" (2n 2k)! n—2k
) kZZ”k| (n—2k) (n—k)

where [n/2] is the usual symbol for the greatest integer < n/2

3

/2] )< (2n -2k ) -2k

Pr(x) :kﬂznln 2K (1—K)

n/2] 1)k dn (X2n—2k)
k:02”kl n— k 11 dx"

1 d" [”’Z]n!(xz)n_k
2"n! dx" & k! (n—k)

(-1

If we extend the range of sum by Iettlng%1 k vary from 0 to n. Which changes nothing.

Since the new terms are of degree < n and the n" degrees are zero.

1 dn : 2 \n-k k
- Pa(X) = i WZ(EJ 2] (1)

k=0

and the binomial formula yields

d" &7, Ly
n()_Znn'd & (X _1)

This expression for P,(x) is called Rodrigues formula.
Generating Functions of the Legendre Polynomial:

P.T 1 P (x) 4Pt + P 4 ot P (X"

N1—2xt +12
= SR (x)t"
n=0
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Proof

We’ve -t (1—2xt +t2)_1/2

V1-2xt +1?

= [1- t(2x-t)] M2

:1+1t(2x —t)+ Mt2(2x —t)f +
2 1.2

1/2'3/2'5/2t3(2x—t)3+ ...... +

1.2.3
1/2.3/2.5/ 2. (2”_5)/2t"-2(2x—t)“+
1.2..(n-2)
1/2.3/2.5/2 ...(2”_3}"1
2 —t n-1
1.2..(n-1) (2x—t)" +
1/2.3/2.5/2...(2”_1]
t"(2x—t)" +.....
1.2..(n-1) (@x-1)+
1/2.3/2.5/2 ...[2”_1j(2x)” 1/2.3/2.5/2 ...(2”_3 (n—1)C,(2x)"
coeff of t" = - 2
1.2.3..n 1.2.3..(n-1)
1/2.3/2 5/2 ...(Zn_sj(n—z)cz(m)”“
+ 2 +o
1.23..(n-2)
_135..(2n-1) pryn _ 1.35...(2n-3) (n-1) 2" 2x"2
2"n! ' 2" (n—1)
, 135, (2n-5) (n-2)(n-3) pragie
22 (n-2) 1.2

_135..(2n-1) o 1.35...(2n=3) n(n-1) x"?
n! 2.n!

2.4.n!

_ 1.35...(2n-1) {x” _n(h-2)x"* n(n-1) (n—Z)(n—3)Xn—4_._1

n! 2(2n-1)  2.4(2n-1)(2n-3)
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! 2'(1.2.3...n)

1.2.34..(2n —1)(2n){Xn _n(n-1) o2 n(n-1)(n-2)(n-3) e }

n!2.4.6..(2n) 22n-1)" 24(2n-1)(2n-3) =

(2n) {Xn _(0-1) e, n(n-1)(n-2)(n-3) .. }

2(2n-1) 2.4(2n-1)(2n-3)

e

2"(n! )2 2(2n-1) 2.4(2n-1)(2n-3)
= Po(x)
Lt P (x)t"
Vi—ax+tr "
Problem
Prove that P,(1) = 1, Pn(-1) = (-1)"
Proof
We’ve ﬁ = Z:Pn(x)tn
ie) S RO = -2xt +t2)?
Putx=1

-1/ 2

> Pt = (1—2t+t2)

_ [(1—t)2 ]»1/2
>Rt =(1-t)*

=1+t+2+C+ . "+

Equating the coeff of t", weget

Putx=-1

Pn(1) =1

an(x)t“ _ (1_ 2(—1)t+t2)_1/2

=(1+2t+t)*
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SO0 = (1—2(-1+t2)
=1t -+ D+
Equating coeff of t" weget

Pn(-1) = (-1)".
Note :

Pn(-1) = (-1)" and Pp(1) = 1
= Po(-1) = 1(-1)"

=Py(1) (-1’
i Po(-1) = (-1)" Po(1)

Prove that Pn(-X) = (-1)" Pn(X)
Soln
Weve TR0 = - 2x + )
PUt X = - X
PO = (- 2(x)+t7) 7
= (1 + 2xt + t3) 12
= [1—2x(—t)+(_t)2}1/2
= > P.(x)(-t)"
= > R (x)(-1)"t"
SR = (1) TR (x)

Pn(_x) = (_1)” Pn(X)

Using Rodrigues formula prove that Po(x) = 1, Pi(x) = 1, Py(x) = % (3 -1)
P3(x) = ¥ (5x° — 3x)
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Solution:

The Rodrigues formula is

P.(x) = 2n1n! jxnn (x2-af

1 d® 3
P~ g Y
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Prove that Pan.q (0) = 0 and P,,(0) = = 12n3n$2n =

Proof:

We know,

> P(x)" = (1—2xt +t2)71/2

Putx=0

> 00 - )"

2
— oy Y2302 _1/2.3/122.:/2& J
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(-1)1/2.3/2.5/2 (

1.2.3...n

We find P,(0) is the coeff of t" in the expansion of (1 + t?)2. This expansion, contains only

even powers of t, so the coeff of odd powers.
(ie) ™" is zero
~ P (0)=0

Equating the coeff of t*"

(—1)”1/2.3/2.5/2....(2”2_1j

1.2....n

F)Zn (0) =

(-1)'1.35..(2n-1)
2".n!

PZn (0) =

Prove that the occurrence relation. (n + 1) Pp+1(X) = (2n + 1) X Py(X) — nPp.1(X)
Proof:

We know

> POt =(1—2xt +t2)7l/2

Diff w.r.t ‘t’

> nP, ()" =_?1(1—2xt +12 )% (- 2x+2t)
:_71(1— oxt +12) % (- 2)(x—t)

SR, (OOt = [L—2xt +12 )% (x—t)
Multiplying both sides (1 — 2xt + t%)
STHR, (Ot L—2xt +12) = (L—2x+ 12 ) (x ~t)

NP, ()" —2xnP, ()" +nP, (x t™* =D P, (x)t"(x —t)
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(N+1)P,(x)t" —2xnP, (X t" +(n=1)P _, (x)t" =xP (X t" =P, (x)t"*
=xP,(x)t" =P _,(x)t"

{n+2)P

n+1

(X)=2%,P,(x)+(n=1)P, ,(x) = xP,(x)+ P, ,(x)}t" =0

Equating the coeff of t" to zero

(N+2)P,,. (x)=2%,P, (x)+(n=1)P,(X) = XP,(X) + P, ,(x) = 0
(n+2)P, ., (x)-xP, (x)2n+1]+ P, (xn-1+1] =0
(n+1P,.,(x)-xP,(x)2n+1)+nP,_,(x)=0

(n+ 1) Ppsea(X) = (2n + 1) XPp(X) — NPp1(X).
Hence Proved

Orthogonal Property of Legendre Polynomial

1 0 if m=n
[P )R (x)dx =4 2
- 2n+1

if m=n

Proof:

Let f(x) be any f, with atleast n continuous derivatives on the interval -1 <x<'1

Consider the integral

1 A,
2" .n!{f(xjdx”‘1 (X _1) }
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1 _
dnl

™ (x2 —1)f"(x)dx

-1
The expression in bracket vanishes at both the limits.

1

- n-1 ) N _
'{f(x)dx"‘l (x? -1) L =0

1t o d™ n
== !_jlf (x)dxnl(xz—l) dx

2"n! dx"?
ol famad™m N
= (1) .n!;[f( )(X)dx“’" (x2 —1) ax (D)

If £,(X) = Pm(X) withm < n
then f(x) = 0

~1=0

1
IPm(x)Pn(x)dx:Oifm;tn
-1

Second part:

Put f(x) = Pn(X)

Wee R)= 0 ¥
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1= = (1.2t an(")(x)(xz—l)“dx

27" (nt)’®
_ (en)y 7 \n
a Zzn(n!)z 2,([(1_)( )dX i (2)

If we change the variable by putting x = sin6

X=0=0=0 dx=cosO. db

x=1=0="2
2
1 2
I dx Il sin 0) cos & do
0 0
g n
I (cos 0) cos 6 do
0
2
:J‘ 2n+19 de
0
2 1 n3 n- 2 _
jcos"HdG_n 1.n 3.” 5..3 1 Ism 0d0_—1 n-s E.E
5 n n-2 n-4 3 ¢ n n-2 2 2

1
JQ-xtya= 2N 202 204 2,
5 2n+1 2n-1 2n-3 3

_ 24.6..(2n—4)(2n-2)(2n)
 1.35...(2n-3)(2n-1)(2n+1)
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_ 2" .n! 2.4.6...(2n - 2)(2n)
©1.23.456....(2n-3)(2n-2)(2n-1)(2n)(2n +1)

Py 2 22t 2" (Y
l(l Jo (@n) (2n+1)  (2n) (2n+1)

Equation (2) =

| (2n) ) 22" (1)
22 () (2n) (2n+1)

I = 2 ifm=n
2n+1
Problem
Prove that any function can be expressed as a series of Legendre Polynomial:
Proof:

Let f(x) be any function defined in -1 <x<1
Let  f(x) = Za, Pn(X)

f(X) Pm(X) = Za, Pn(X) Pm(X)

_j £ (XP. () = zan_jpn (x)P. (x)dx

1 1
= a, j P,(x)P, (x)dx + a, I P(x)P, (x)dx + ...+ a, I P.(x)P,,,(x)dx +....
] a e
— 2
= a,(0)+a,(0)+...+a, TV a,.,(0)+ ...

1

j f(x)P, (x)dx = a

° "2n+1

a, =208 (0P, (i

-1

Giving different values for n, we get all the coefficient ap, a1, a2, as, .....
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Hence any function can be expressed as a series of Legendre Polynomial.

Problem:

Find first three terms of the Legendre’s series of a) f(x)

0 if —1<x<0
X if 0<xx<1

0 if ~1<x<0
b) f(x) =e*¢c) f(x)=
)09 =€) f(x) {1 if 0<x<1

Proof

Where a,=(n+1/2)| f(x)P,(x)dx

2
Putn=0
1
a, _1/2J' P, (x)dx
’ 1
:1/2j1.dx
0
=1/ 2[x];
1
= =(1-0
La-0)
=1/2
Putn=1
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I

w
~~
N
1
r\J|><
L 1
=

I

N | w
N |-

I
Alw

Putn=2

|
ol
~~
N
—
N~
W
<
N
|
|_\
=
=

1
|
=
|
'_\
|
o
e

"
Nlon
—
o
 —

o (X):ao P (X)+ a1Pl(X)+ a,P, (X)

= 1/ 2P,(x)+3/ 4P,(x)+0.P,(x)

= 1/2.1+§.x+0
4

3 1
F(X) = x4 =
(x) 4x+2

Orthogonal function

If a sequence of functions @i(x), @2(X) ....., @a(X), .... defined on the interval a <x< b
¢ 0 if m=n
has the properly that X X)dx = then the are said to be

Orthogonal functions on this interval.
Prove that any function f(x) can be expanded as a series of Orthogonal functions.

Proof:
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Consider the Orthogonal function {p, (x)}

n=12,.....

J 2 (X, (x)ebx=

a

¢ 0 if m=n
a,#=0 if m=n

Let f(x) be a function defined ina <x<b

- f(x)= gangon (x)

(0, ()= 2,010 0,1

b

1000, () =3a, [, () 0 () + 3, [, (), (XY

n= a
b

a
b

an+!j(Pn (X) q)ml(X)dX—F...

= a,(0)+a,(0)+...+a,a, +a,,(0)+...
f (), (x)dx =2,

1
a

D ey T

Ja, =

n

f(x) g, (x)dx

n

D — T

Hence, we get the series for f(x) interms of Orthogonal function
Least squares approximation:

Let f(x) be a function defined on the interval -1 <x<'1

~£(x)=S"a P (x) where a_=
(x) HZ:;‘an ' (x) where a, ]

Let f(x) be approximated as a polynomial of degree n.
Let the polynomial be P(x)

= We can take P(x) = boPo(x) + b1P1(X) + boP2(X) + ... + bpPn(X)

defined on the interval a <x< b

= al_[(Pn(X)- o, (x)dx +a2.k|1(pn(x)(p2(x)dx +....+anj)-(pn(x).(pn(x)dx+

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

115



we claim that ay = by, k=0, 1, 2, ..., n so that P(x) is a Legendre series
1
Let | :j[f (x)—P(x)["dx

-1

By principle of Least square this integral must be minimum
j{ Zb P, ( } dx
-1

= [[f(xf -2 ()b, P, (x)+ X bZP2(x)]ox

_ _j[ T dX—ZZbkj £ (P, (x) + bej T

:j[f X)Fdx—23b, . Zak Zk'2k+1

= [[f(x)] dx+m{2b2 25 a.b, |

{Zak 3 b2-2%a, b, -3 a?}

we observe that | is minimum.
When, 2(a-bi)? = 0 k.

= dx = ka K.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
116



Unit 11

Bessel’s Functions

The differential equation x%y" + xy' +(x* — p%) y = 0 where p is a constant is called
Bessel’s equation and its solution are known as Bessel’s functions.

Given equation is

Xy"+ xy' + (> —p?)y=0 e (D)

2 2
= y"+3y’+[x zy Jyzo
X X

2 2

—p
X2

p(x)% and Q(x)=>

Here p(x) and Q(x) are not analytic at the put x=0
“XP(x) = 1, X°Q(x) = X% — p?
Po=1, Go=-p°
p(X), X>Q(x) are analytic at the put x = 0
The indicial egn is

mm-1)+mpo+qo=0

m’—m+m-p°=0
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mi=p, My=-p

The Frobenius series solution is

yzzanxmp

y'=2(n+pa,x""*

y"=>(n+p)(n+p-1)a,x""?

Subin (1)

x2> (n+p)(n+p-1a, x"*2+x> (n+p)a,x"** ( Z—pZ)Zanx””’

(n+P) (n+p -L)ax"? + (n + p) anx"? + a X" — p%ax™P = 0
>M+p)(N+p-1)ax"+ (n+p)ax™ +a,x"P—p?ax"?=0
[(n+p)(n+p-1)a"+(n+p)artaz—p a]xX""=0
Equating the coeff of x™P to zero
(n+p) (N +p-L)ag + (N +p)an +an2 — pa, = 0
[(n+p) (N+p—1)+(n+p)-p’]an=-ans
[(n+p) [N+ p -1 +1] - p°] & = -an2
[(n+p) (0+p) —p*] & = -2
(0 +p)* — p?) an = -an

—a, _ T%2

T T py -t

=0
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Putn=1

Since the assumed series does not contains negative powers, so a.;= 0.

Putn=2
Putn=3
Putn=4
Putn=5
Putn=6

oo al

dy

dg

ds

~ The solution is

a. =
" n?+p?+2np-p?
-a
an: - n-2
n°+2np
—a,,
a =——"~
" n(n+2p)
_a71
a, =
Yo1(1+2p)

_a2

2o+

a

2.4(2p+2)2p+4)

_a3

52p+5)

_a4

6(2p+6)

_aO

2.4.6(2p+2)2p+4) (2p+6)
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= XP(ap + arx + a + agx + ax* + ...

a a
- p 0_ 0 2 O 3 0
X [a“ 2(2p+2)x o +2.4(2p+2)(2p+4))
5 a

0x® — 0
it 2.4.6(2p+2)(2p+4)(2p+6)+

_ s _ a, x> . a x*
° 2(2P+2) 2.4(2p+2)2p+4)

~ a,x° .
2.4.6(2p+2)2p+4)2p+6)

=x"|a, - 8, X" + a,x* B a,x° N
" 2(2P+2) 24(2p+2)2p+4) 2.46(2p+2)2p+4)2p+6) -

I x? x* x°
= xPa,|1- — .. :
Y X a°_ 2(2P+2)+2.4(2p+2)(2p+4) 2.4.6(2p+2)(2p+4)(2p+6)+ }
I x? x* x°
= xPa,|1- — 4. .
" a°_ 1!22(p+1)+2!24(p+1)(p+2) 3!26(p+1)(p+2)(p+3)+ }
Take a, = L
2° . p!

<
1

N X’ N x* ~ NG )
2P.p! 1!22(p+1) 2!24(p+1)(p+2) 3!25(p+1)(p+2)(p+3) ...... .

= p 1 N (_l)n X"
X : > "

27 pti=n 22 (p+1)(p+2)....(p+n)
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This is called the Bessel’s functions of the first kind of order p, and it is denoted by
Jp(X)

230 = i (—1I)n Ex/ P i

~ nl (n+p)

To find the solution corresponding to m = -p
We’ve y = XP> ax

Proceeding as above, we get

1 = z(‘;?ﬁﬁ’fg).

This is called the Bessel’s function of the second kind of order p, and it is denoted by
J-p(X)

= The complete solution is
y = C1dp(x) + C2 Jp(x)

The Bessel’s equation X2y" +xy' + (x* — pY)y = 0 has two independent solutions Jp(x)
& J.p(x) only when p is not an integer

Particular cases:
putp=20
-~ Bessel’s equation is X2y" +xy +x7y=0

The solution is

Jo(x) — i(_l)n()(/ 2)2n

s n! n!

Putp=1
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=~ Bessel’s equation is X2y” +xy' +(x*=1)y=0

m = =1
m; = 1, m2=-1
m—m, = 1+ 1=2is a+ive integer

=~ The equation has only on frobenius series solution (corresponding to m; = 1).

ie) J1(x) is the only Frobenius series solution. But J.;(x) cannot be taken as the solution
of the differential equation. Further we can prove J.1(x) is indepent of J;(x).

In this case we find the second solution using y, = vy

v o= P LSLY
A

- J’ 1 e—J.llxdde
J

voo= ) g

This is denoted by Y
~The complete solution isy = C1J;(X) + C, Y1(X)
In general consider the Bessel’s equation X2y" + xy'+ (= pYy =0.
The roots of the indicial equation are m; =p, my = -p
the corresponding solution are Ju(X) & J-p(X)

If pis a+ive integer thenm; —my=p+p=2p
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=~ 3 only one Frobenius series solution and it corresponds to m; = p
ie) The Frobenius series solution is Jp(X). Here we cannot take J.,(x) as the other solution

In this case we take y, = vy;

1
= J (X) | —— dx
Y2 p( )J.XJPZ(X)
This is denoted by Y/,
= The complete solution is y = C1J,(X) + Cz Yp(X)

Problem

Find the first three terms of the Legendre’s series of

) f(X):{())( Iif -1<x<0

if  0<x<1
b) f(x) = &*
Proof:
i) f(x) = iam p,(x) where
a = (n+1/2) j' f(x)p,(x) dx
8, = (n+1/ Z)U f(x)p, (x)dx + j' f(x)p, (x)dx}
= (n+1/ Z)ﬁOpn(x)dx + j'xpn(x)dx}
8, = (n+1/ 2)} xp,, (x)dx
Putn=0 0
8 = (0+1/ 2)j Xp, (x)dx

1
= 1/2jx.1dx
0

2 1
1/2{X—}
2 0
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Putn=1

Putn=2

do

ai

ai

ai

ay

f(x)

S|

1

(L+1/2)] xp,(x)dx

Nw NDw Nw N w

(2+1/ 2)} xp,(x) dx

5/2 Jl.x .%(?,x2 —l)dx
0

Slo plo Mo Mo bo
1
w b~lw
|
N |-
L 1

ao Po(X)+ a1pa(x) + azp2(x)

TR0 +2 B0+ Pa(x)

16
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f(x)

i) f(x)

f(x)

an

an

Putn=0

do

Putn=1

di

D a,x" where
n=0
1

(n+1/ 2)] f(x)p, (x) dx

-1
1

(n+1/ 2)_|.eX p, (x)dx

(0+1/2) jex P, (x) dx

1
1/2 je* 1 dx
=

% :eg rel_ [ex]l_l]
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Putn=2

ai

ay

(2+1/2) [e*p, (x) dx
1

5

EJ; -5 3x —1)dx

Ej’( X 2 _exbx

4 -1

Jl'3x2exdx Ie dx

4>|o-|

S acer], - yexe o - ], }

Nl

-1

i
|
e
|

% ' -3 - [xe]1 j.exdx}—el+e‘l}

{Be1 e - G[e +e™ [ex]l,l]—e“re*l}

NGNS,

%{3e1—3el —6e' —6e” +6(e' —et)—e' + e}

%{Bel—Se‘l —6e' —6e + 6" —6et —et+ et
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= %(5el —~35¢ )

f(x)

aoPo(X) + azp1(x) + azp2(x)

T RN

= %(el —et)+3xe +% % (5e* —35¢ ) (3x2 —1)

Gamma function:

Gamma function is defined by [p = fooo e~ ttP~1dt, (p > 0)

Now, t.p
p+1 = plp
I'l = 1
I'p+1 = p!
Proof:
Tp = je-‘ tP* dt
0
Ip+1 = fet tPdt
0
= '[e“tpdt u=t", du=pt"*dt
0
b
_ . —t4p _ —t - -t
= tlam e tPdt Idv—je =-e
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T.p

w.k.t

T.p

w.k.t

~Ip+1

~T1
I'p+1

I'p+1

I'1

I'1

lim {[—tpet P+ _Te‘ pt pldt}
0

b—oo

b
H —t p-1
I!)m{0+p_([e At dt}

b—o0

b
lim pje’tt Pdt
0

b
P I e 't dt
0

pl'p

pIp

1
j et tPdt
0

Te“ t* dt
0

p!
plp

p(p—D[p—-1)
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~Ip+1

Problem

Prove that T 1/2

Proof:

w.k.t

Putp=7%

T 1/2

T 1/2

p(@— D@ -2)p-2

p(p-1) (p—-2)...3

p!

p!

Te“t Pt
0

Te—ttl/ 2—1dt
0

Te“t‘”zdt
0

[7o

ZTe‘SZ ds
0

put t = s?, dt = 2sds
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We’ve

Also

Put

T 1/2

T 1/2

F1/zrl/z

OX
or

X“+y

dx dy

= dxdy

0<r <o, 0<0<n/2

- (T 1/2)2

ZTeyz dy
0

4ﬁe(xz*yz)dxdy
00

rcoso y
-rsin® ¥
00

(r? cos®® + r? sin0)

x X
or 20 dr dg
Yy
or o0

cosd -—rsing
sind rcosd

drdg

(r cos®® + r sin0) dr do
r(cos?0 + sin0) dr do
rdr.do

rdrdo

worxl2
4J' Ie‘rz rdr do

00

. /2
4] [e*rz rdr 9]”
0

0

r sind

r coso
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(r 1/2)2

L (1)

T 1/2

Prove that

Proof

We know,

Jp(X)

Jo(X)

ni“)” [X)

n (n+p)
:zo(‘li.@"

i( ﬂ2n

o 27
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1
H

|
+

|
+

Jo(X)

J1(X)

I

=}
L[

=
=

>

+
—=

_ 0 (_1)n X2n+1
2, 22"l (n +1)!

X x° X°

S + — +
2 22120 222131

d _ d G x* x°
&(JO(X)) - &(]‘_ 22(1!)2 + 24(2!)2 - 26(3!)2 +j

-2x 4 6x° N
22(my 22 2°(31)

-x x* x°

2 i gpa
B (x X3 . x5
- 2 2221 25213177

= -J1 (X)

x? x* x®

2 2n 2 o3

di(le(x)) - d(xz X, X J

| = + —
X dx| 2 231121 2°213

x
(&)
flry
~
>
[ 2
I

2x 4x3 . 6x°
2 281121 252131

X3

o X X
(21 2°21

d X 1- s + ’
2060,(x) (1 @Y @y 2“<2!>2J
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= XJo(X)

Properties of Bessel’s function

Prove that di(x P3(X)=x"3,,(x)

X
Solution
We know,
2n+p
(3]
J = N7
() nzz(; n'(n+p)
_ 0 (_1)n X2n+p
HZ:;‘ 22Pnl(n+ p)

8

Z(_ 1)n X2n+2p

A ) n=0"
X3, (x) 2Pl (n+ p)!

d _ = (-1)"(2n+2p)x2et
—J(x?J
dx (X p(x)) nzz(; 22"Pnl (n+ p)

= 3 2Ane ph

= 2P qnl(n+ p)

=}

(1) (1 phers?
22 nl(n+ p)

M

=]
Il
o

(_1)ﬂ X2n+2p—1(n+ p)
22"P 2l (n+ p)(n+ p—1)

[Ms

1l
o

n

_ " S (_1)n X2n+p—l
X ;22"”"1 n'(n+ p—1)

o (_ 1)n (X/ 2)2n+ p-1

= Xy

~ nl(n+p-1)

X? Jp-1(X)
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%J (x”J . (x)) = X Jp-1(X)

Prove that J, (x)+2J,(x)=3,,(x)

X
Proof:
w.k.t
%(x P3 (%)) = X Jp-1(X)
x"J p’(x)+ pxPJ(x)= P Jp-1(X)

Dividing through by x°

3, 00+23,60 = 3.()

Prove that 3, (x)—23, (x)=—J,,(x)
Proof:
We’ve

Ghene) = Al

X3, (x)+3, (U= )P = XP Jpua(X)

Dividing through by x®
3, 00-23,00 = -3,
p X p\X p+l
Prove that 2J,'(X) = Jp-1(X) — Jp+1(X) and 2_Xp J,(x)=3,,5(x)+3,,(x)

We know

jp’(x)"'ﬁ‘]p(x) = ‘Jp—l(x) e (D)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
134



Note:

Q)

Jp-1(X) — Jp+a(X)

Jp-1(X) +Jp+1(X)

The above formula helps to find any Bessel function interms of other Bessel’s

function

Solution

We’ve

Putp=1

Putp=2

Putp=3

Jp-1(X) +Jp+1(X)
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Prove that J.XPJ o2 (X)dx= xPJ

Proof
We’ve
d
&(x PJ, (x))
ie) xPJ . (x)dx

jing

xPJ,(x)dx

Also, we’ve

jing

_[ xPJ . (x)dx

»(x)+c and Ix‘p\]

(x)dx=—x""J

p+l

-x"J p+1(X)

i(x"’\]p(x))

dx

—xPJ (x)+c
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Prove that when p is a positive integer J5(X) = (-1)° Jp(X)

Proof

We know that

Jp(X)

Forn=0,1,2,...... p-1

(n— 1)1 is oo

i 15(x)

J-p(X)

= Jp(X)

Note :

$ U2

= nt(n-p)

(_ 1)m+p (x / 2)2(m+p%p
= (m+pym

= i(—l)m(X/ 2

~ m!(m+p)
(-1)° Jp(x)

(-1)" 3p(x)

(putn—p=m)

From the above we observe that Jy(x) and J.,(x) are not linearly independent and so
the solution of the Bessel’s equation when p is an integer cannot be taken in the form

y =Cudp(¥) + C2 s (%)

In this case we can take J,(X) as one solution and the other solution

Yp(X)

Jp(x)j; dx

xJ,”(x)

= The complete solution is y = C1J,(X) + C2 Yy (X).
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. 2 . [2 .
Assuming J,,,(x) = \/% sinx and J_,,,(x)= — cosX. Find Jaa(X), Js/2(X), J-a/2(X), J-s/2(X)

Solution
We know
2p
7 J p (X)
‘J p+l (X)
Putp=1/2
Jar(X)
Jar(X)
Putp =3/2
J52(X)

Jp(x)
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Putp=-1/2

Jar2(X)

Jai2(X)

Putp =-3/2
J-512(X)

-1
7‘-]71/2()()_ ‘Jl/2(x)

-112 2 .
—1/—cosx—‘/—3|nx
X V7zX X

2 (—cosx ) j
= —sinx
X X

- i(cosx + sinx)
X

2x(-31/2)

X \]_3/2(X)_‘]—3/2+1(X)

—3{ 2 : } [2
—| —.|=(cos x + sin x) |-..|— cos x
X X X
32 . 2
= = (cos x+sinx)—[-=cos x
XV 7zX X

2 [3 3 . }
= | Zcos x +=sinx —cos x
X | X X

— || —=-1|cosx+—sinXx

ax |\ x X

Proceeding like this we get J7; (X), J-772(X), Jor2(X), J-9/2(X),.........

In general we can find Jy+12(X) all this functions are combinations of elementary
functions sinx and cos x and so for all integrals value of m, the Bessel’s function Jn.1/2 are

elementary function

Problem
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Prove that di(x"’J p(x)): —Xx"J,,4(x)

X
Solution
Jp(X)
XY by xP
pJp(X)
pJp(X)

xV&-+ by -1

xY&= by xP

_1)n X2n+px—p

- (
2, 22" Pnl(n+ p)

e
2Pl (n+ p)l

M

>
1l
o

(-1)"2nx>*
22" Pnl(n+ p)

M

>
I
o

(1) x>
22 nl(n+ p)!

M

1l
o

n

(-1
2P (n—1)(n+ p)

M

I
o

n

© 1)“*1X2n—1
;22"”’ *(n=1(n+ p)!

( 1)“ -1 X2n+ p-1

—X p222n+p—1(n 1) (n+ p)!

(—l) —1X2n+p —1-1+1

_y-P
X Z22"“’““(n 1) (n+p-1+1)

o (_1)n 1X2n 2+ p+1
X Z 522 (n ) (n+ p—1+1)
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o © (_ 1)n—lX2(n—1)+ p+1
X Z; 222~ (n+ p—1+1)

e (T (xr2pe
2. 575 (0 1) (-0 (p+ )

Putn—1=m

a0 P e
dx (X ‘]p(x)) X ;22n—2+p+lm!(m+(p+1))!

XPIpa1(X)
Zero’s of Bessel function

Consider the Bessel function Jy(x) for p > 0. We know Jy(x) is an infinite series. So
Jp(X) has infinite number of five zero’s to the equation Jp(X) = O has infinite no of +ive roots.
For any given p > 0 we take the +ive roots as Ay, Az, As, ...

Clearly Jp(An) =0V Nn2>0

Orthogonal property of the Bessel function

1 1
Prove that JXJ o (Amx)J ,(2,x)dx =0 if m =n and IXJ o2 (4, x)dx :%J (4,)ifm=n
0 0

p+l

Proof:

Consider the Bessel equation

x2y”+xy'+(x2—p2)y:0 e (D)
2 L2
= y”+1y’+My:o
X X

For this equation y = Jy(X) is the solution
put ux) = y(ax)

u' = y'a

uH = y"a2

~suby = u_, y' = u_z and (ax) for x in equation (1)
a a
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= X" = xu’ +(a?x? — p? Ju

0 e (2)

Since Jy(x) in the solution of the given equation we get Jy(X) is the solution of equation

(2) ™ J,(bx) will the solution of

v"+1v’+(b2 _p_ij

X X

2) xv-(3) xu
:f(u”v—v"u)+%(u’v—v’u)+(a2 —b? v
= x(uv—v"u)+(uv—v'u)+(aZ —b? Jxuv
We’ve

i[(u’v—v’u)x]

dx

@= S fuv-vul+(a -b v

Integrate between 0 and 1

[(u'v—vu)x] +(a? b’ )j xuv dx
[w@N@)-v(Au@)]-0+ (a2 -b* ).1[ Xuvdx

We’ve,

u(x)
v(X)

Jp(ax)

Jp(bx)

0 e 3)
0
0 e (B)

(UV=vUulL+xu"v+uVv' —v'u—-uV]

(Uv—v'u)+x(u"v-v"u)

0 e (5)

Jp(AmX)

Jp(AnX)
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u(l)

v(1)

Jp(Am) =

Jp(An)

- (B)=

0+(a’ —bz).lf Xuv dx
0

(2.2 -2,2 )j X3, (A X3, (2,%)3 , (4,X)dx

0

If m # n, the positive zeros A, and A, are distinct

L 7\4m2 - 7\4’]2 ?ﬁ 0

1
o 39, (2,%)3, (2,)dx =0 if m #n

0

i) Ifm=n
We’ve
i 2
u+ Ly (az —p—zJu
X X
Multiply by 2x* u’

2
2x2u"u’+2xu’ +2a’x’u’'u—2p*u'u

X

9 e o & ft) - ()
%(xzu’2 +a’xu® - pzuz)

Integrate between 0 and 1

2
[qu; +axiu?— pzuzﬁ

[qufz +(a2x2 _ pz)JZL

d 2
W x2u’" )+ 2a%x?u’u + 2a’u®x —2a’u’x—2p°u'u

0

[.. aand b are distinct positive zeros
of Am and An of Jp(X)]

2a%u’x

2a%u°x

1
2azju2xdx
0

1
2azju2xdx
0
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(L) +(a® - p?b?@) = 2a2ju2xdx
0

u) = Jp(rnx)
ul) = J()=0
u'ix)y = Jp'(AnX)An
U'(l) = Jp'O\-n) An
WM = B A
1 2
.'.2a2Iu2xdx = VA
0
! 2
22,2 [uPxdx = 30" () (hn)?
0
1 ,2
J.uzxdx = EJp (2,)
0
1 , 1
[ 3,2 (2, x)px = 5% (2,) .. (6)
0
We know,
3. (x)-P3 (%) = -Jp+1(X)
p X p p
Put x = A,
31.0)-P3 (1) = 3o
p n j«n p\"m p n
3, (3)-0 =l
3y () = ~Jp+1(An)
J, (%) = Jp+1°(hn)
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(6) :>j.XJpZ(/1nX)ZIX = =35

Bessel’s series

Let f(x) be a real value function defined in 0 <x< 1. Let A1, A, .... be the +ive Zero’s

of the Bessel’s function Jy(X) for any p > 0 then we can write f(x)=>a,J (4,x)
n=1

n+1

f(x)=a,d,(hx)+a,d,(4,x)+...+ 8, , (4, X)+a,, 3, (A,1%)+ ...
This series is called the Bessel’s series of f(X)

To find the coefficient of the Bessel’s series f(X)

The Bessel series for f(x) given by f(x) = Zw:an\] o (4,x)
n=1

S (%) = ad (X)) + 3,3 ) (%) + oot 3,3 ) (A X)+ 2,03 (A g X) + oo e (1)
Where A1, Ay, ..., are the +ive zero’s of Jp(X) for p > 0.
we know,
1
IxJp(lnx)Jp(imx)dx = 0ifm=n
0
i 1
and ij o (2, x)dx = 59 oo (4,)ifm=n
0
1) = xf(X)Jp(AnX) = axd , (4x)J (2, %)+ axd , (4,x)3 (A, %) + ..ot
a,xJ % (1, %)+ a,,,x3 (A, X)) (A0 %)+ ...
1 1 1
f xf(x)J,(2,x)dx = aij xJ, (4.x)3, (2, X)X + a, J. X3, (2,%)3, (2, X)dX + ...+
0 0 0

1 1
anj xJ % (2, x)dx + amlj. X35 (2 X)3 5 (A X)X + ...
0 0

n+1

= a1><0+a2><O+...+an%Jp+12(/1n)+a x0+...

n+1
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Compute the Bessel series of function f(x) = 1 for the interval 0 <x< 1 interms of the function
Jo(AnX) where the A,’s are the +ive zero’s of Jo(X).

Proof

Where

Here f(x) =1,p=0

The series is

f(x)

an

an

f(x)

L)L A

2 3(%)
le(/ln) in

2
/ln‘Jl(j'n)

S a,3,(x)
n=1
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Problem

If

Solution:

We've f(x)

Where

Herep=0

an

f(x)

a

1 if 0<x<1/2
defined by  f(x)=41/2 if x=1/2 then show that
0 if 1/2<x<1

Jo(4,x)where the A,’s are the +ive zero’s of Jo(X)

|

jo}]
5

(&)
k=]
—

NS
>

>
—

1/2 1/2
{'[xf /lxdx+'fxf J, (4, x)jx+jxf 5 (4,x )l
p+l n

1/2 1/2

2 1/2 1/2
{J.le Axdx+jx =2 J(/lx)jx+jx 0. J,(4,x)dx

1/2 1/2

2 1
=34, 12
i) 2

n
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1)

If f(x) = xP for the interval 0 <x< 1, show that its Bessel series in the functions Jp(AnX), where

the %, are the positive zeros of Jp(x), isx” = Z

Proof:

Where

We’ve

f(x)

an

an

~f(x)

< 2
J

n=l “n¥ p+1

Z U e

J,(4,x)
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Boundary value problem and methods of successive approximation

Consider the differential equation of the first order y' = f(x,y)with the initial condition
when X=Xo, Y = Yo.

The problem of finding a solution to the diff equation satisfying the initial condition
[boundary values] is called a Boundary value Problem [B.V.P].

Now, consider B.V.P.

y' =f(x,y), y(Xo)=Yo (1)

The solution of this equation is not always possible, by the methods of solving first
order diff equation. So the approximation solution is obtained by the method successive
approximation.

We have,

y' =f(xy)
Suppose f(x,y) is continuous in some interval containing Xo.

Integrating between x and xq
oL, = [fOxy).dx

Xo

X

YOO-y(x) = [ f(xy).dx
y(x) = y(x,)+ j f (x, y).dx
yoO = ye+ [y 2)

This integral equation is equivalent to the given equation with the boundary condition.

So the solution of the B.V.P (1) is same as the solution of the integral equation.
Now, for solving the integral equ (2) we apply methods of successive approximation.
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Picard’s Method
P(Xo, Yo)
The approximate soln of B.V.P.

y' = f(x,y), Y(Xo) = Yo. is given by the integral equation.

Y=Y, + [ f(xy).dx

The solutions must be a continuous curve y = y(x) passing through (Xo, Yo).
As a first approximation take y = yj.
This is a straight line through (X, Yo) parallel to x-axis.

By successive approximation what we active is the improvement of this straight line
into a curve which is very closed to the solution of the B.V.P.

The method is given below the integral equation is y=y0+jf(x, y).dx For

Xo

convenience we use dummy variable ‘t” in the place of x, with in the integral equ
wy=y, + [ f[ty(®ldt.

First approximation is y, = y, + [ f(t, y, (t))dt

Xo

Second approximation y, =y, + I f(t,y,(t))dt.

Xo

Third approximation y, =y, + j f(t,y,())dt.etc....... Y, =Y, + j f(t,y,.,(t))dt

Solvethe BV.P.y' =y, y(0) =1

Solution:

The corresponding integral equ.

y

yo+jyﬂ)m

Xo

Yo = 1
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Y1

Y2

Ys

Ys

Yn

Continuing this process infinite values of times, (i. e) takes n—oo,

We get,

Note:

Yo + [ Yo (1).dt
0

1+ Jx‘l.dt
0

1+X.

Yo+ [y, (t).dt
0

1+ j(1+t).dt
0

2 X
1+ {t +t—}
2 0

2
1+ x+X—
2

Yo+ [ ¥, (t).dt
0

X 2
1+J'1+t+t— dt
0 2

2 3 *
1+ t+t—+t—
2 23],

x: X8

1+ X+—+—
2 6

2 3

X X° X
+—+—+
n 20 3

X XZ X3 Xn—l

ottt
123 (n-1)!
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The solution of B.V.P. obtained by applying the methods of solving diff equ is called
the exact solution.

By successive approximation we by to get a soln., which is approximate to the exact
solution.

In some cases the solution obtained by successive approximation coincides with the
exact solution.

For example:

Consider the above B.V.P., y' =y, y(0) = 1.

[ing
logy =x+A.
x=0,y=1
=A=0.
~logy=x
y=¢
Which is the exact solution, we find this is same as the solution, obtained by

successive approximation.

2) Solve the B.V.P y' = x +y, y(0) = 1, by Picard’s method, compare the solution with the
exact value.

y = Yo+ flty®ldt

Yo = 1

Y1 = Yo+ j[t *+ Yo (t)] dt
0
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= 1+ j (t+1)dt
0

2
= 1+X—+x
2

Yo o= Yo+ [lt+y.®]dt

X 2
= l+_|‘{t+1+t+%}dt

0

2 2 3 ¥
= 1+ t—+t+t—+t—
2 2 23|,

3
1o x4+ X%+
2.3

o = Yoty 0]t

X 3
= 1+I t+1+t+t2+%}dt

oL

= 1+

O e <

t3
1+2t+t2+—Jdt
6
2 3 4 \X
= 1+ t+2L+t—+t—
2 3 4.6O
4

= lex+x?+ 4 b
3 46

Ya = Yo +j[t+y3(t)1dt

X t3 t4
1+I t+l+t -+t +—+—— [dt
) 3 24
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_ 2 t° t*  t° |
= I+ t+—+—+—+
2 3 12 24x5

0

X xt X
= I+ X+ X+ e ——
3 12 120
Taking n—o0
3 X4 X5 XG
Y, =  l+x+x 4+t + Furrens
3 34 345 3456
X2 X x x°
= 1+ X+2) —+—+ + +.....
| 2 23 234 2345
2 3 4 5
= 1+x+2 X—+X—+X—+X—+ ..... }
20 31 4 5
= 1+x+2e —1-x)
y = 2e*-x-1
To find exact solution:
y' = x+y, y(0) = 1.
o _ X+Y
d
dx y=X. Hence P(x) =-1
dy
Q(x) =x
Solution is
J‘de J'de X X
ye :er .dx+c u=x,du=dx,dv=e”,v=-e

ye 17— [xe™dx+c
ye ' = J.x.e‘X dx+c

=—xe " —'[— e "l.dx+c
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ye ' =—xe " —-e*+cC

Whenx=0,y=1

1.e% = 0-1+c.
c =2
ye*  =-xe¥-e7+2
y = -x-1+2€” is the exact solution.

Find the exact solution of initial value problem y' = 2x(1+y), y(0) = 0 starting with
Yo(X) = 0. Calculate y;(x), y2(x), y3(X) and compare with exact solution

Solution:

Given equation is

y = 2x(1+y)

y(0) =

o

S yo = O

y, = Yo + j 2t(1+0).dt
0

= 0+j'2t.dt
0

= X2

y, = 0+JX'2t(1+t2)dt
0

= j2t.dt+j2t3.dt.

0 0

{2#}* [Zt“}x
= J— + —_
2 0 4 0
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X 4
Y3 = 0+.|'2t(1+t2 +%}dt
0

X 5
= J.2t+2t3+ZL dt
0 2
_ 2t 2t* t° ]
2 4 6|
4 6
= 24X X
6
Proceeding like this
x* x®
y = X2 — ...
2 6
X4 6
1+y = I+ X2+t
vy = ex

To find the exact value
o =2x(1+Y)
dy

i:2x.dx
1+y

2

log (1+ y):%+c

Initially, we havey =0, x = 0.
logl=0+¢c =c=0.
log (1+y) = x*
1+y = e~

Picard’s Theorem

Let f(x, y) and % be continuous for of x and y in a closed rectangle R with sides

parallel to the axes. If (xo,Yo) is any interior point of Ry then f a number h>0, with in the
property that the initial value problem y' = f(X, y), y(Xo) = Yo has one and only one solution

y=y(x) on the interval |x-xo|<h.
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Proof:
We know that, every solution of the initial value problem. X

y=fxy),yx)=yo . 1)

is also a continuous solution of the integrate equation.

y(x) = y0+ff(t,y(t)).dt ......... )

Xo

So that equ (1) has a unique soln on the interval |x-xo|<h iff (2) has a unique
continuous solution on the same interval.

By successive approximation, we get a sequence of function yn(x) defined by

Yo(X) = Yo
y,(x) = Yo + [ £t yo (t))dt

V00 = yo+ [ f(ty, ()t > A)

v (%) = y0+jof(t,yn1(t)).dt )

and this sequence {yn(x)} converges to a solution of the integral equation (2)

Now, we can write

Ya(X) = Yo(X) + [y1(X) - Yo(X)] + [ya(X) - y1(3)] + ... + [Yn(X) - Yn2(X)]
S0, yn(x) is a partial sum of the series

o0

Vo(¥) = v 00+ X[y, 00—y, 3)

n=1

So convergence of the sequence (A) is equivalent to the convergence of the series (3)
Now we shall find out the positive number h>0 which defines on the interval |x-Xo|<h
and we S.T.

I.  The series (3) converges to a function y(x)
ii.  y(x) is a continuous solution of (2)
iii.  y(x) is the only continuous solution of (2)
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We have assumed that f(x, y) and 2—; are continuous function on the rectangle R.

But R is closed and bounded.

~ F constants M and K
STIf(x, y)I<M

and

%f(x,y)

for all points (x, y) in R.

<K (5)

Now, if (x, y1) and (X, y») are district points in R, with the same x-coordinate. Then,

By Mean value theorem,

fxy)-f(xy,) 0
= —(f(x,y%).
Yi— Y, ay( (X d )
Where y;< y* <y,
LFoy) = Foey,)| ‘gf ‘
Yi—Y, ‘ ay (X’y*)
S =ty o e
Yi—Y; ‘
“FGy) - f(xy,)| < 7 R — (6)

For any points (X, y1) and (X, y2) in R, that lie on the same vertical line.
Let us choose h to be any positive number such that Kh < 1

and the rectangle R’ defined by the inequalities |x-xo|< h and |y-yo|< Mh is contained in

= (Xo, Yo) is an interior point of R.

Now T.P. (i) the series (3) converges to a function y(x)
The series (3) is

Yo(X) + [y1(X) - Yo()] + [Y2(X) - y1(})] + ...+ [Ya(X) - Yn1()]+...
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It is enough to prove.

YOI + [Iy1(3) - Yo()II + [[y203) - yi(I[ + ...+ [[ya() = yna(OI[+o (8)

Converges

Let us estimate the term |y,(x)-yn-1(X)|. Each of the function y,(x) has a graph that lies

in R"and hence in R.
Now Yo(X) = Yo S0 the points (t, yo(t)) are in R.

Equation (4) =

[f(t.yo(t))|< M and
We have,
B = Y +j F(t,yo ()t
) -y, = j f(t, Y, (t))dt
AR AR jf(t,yo(t)dt
< j| f(t, y, (1)) dt
= M I|dt|
A0 -y < M [x = X,|

-'-|y1(X)_y0| = Mh

iy y,()—y,] < Mh
|y3(x)—yo| < Mh
|yn(X)_y0| < Mh

y1(X) is continuous
Since a continuous function on a closed interval has a maximum.

Define a constant ‘a’ by

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

159



a = max |y1(X)-Yol

and [y1(x)-yo(x)I< a

Now, the points (t,y1(t)) and (t,yo(t)) lie in R’

So, (6) =

[ty (0) = F(ty, @) < Ky, (t) -y, (1) <ka

Again from (A)

y1(X)
Y, (X) =

Y200 =y, (0] =

IN

IA

|y2 (X) - yl(X)| <

Yo+ [ £t yo ()t
yO + '[ f (t’ yl (t))'dt

[ £y, )dt—] f(t, yo ()t

X

IHGACEIBAGIL

Xo

IHSACEAMBACL

[ Kald|

Xo

Ka [ [at

Xo
Ka|x — |

Kah

llirly | f(t,y, @) — f(t,y, @) < kly, () -y, ()] <K.Kah

= K? ah.
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X

7y, ()~ T &y, )t

Xo

So .. |Y3 (X) -, (X)|

X

< IRy ) - f Ly, @) |dt
< K?ah |dt

< K2ah|x —x,|

= K? ah?

AY00-v,00 € a(kh)?
ity [y, () —y,(x)| < a(Kh)®
Vs () -y,(¥)| <  a(kh)*
Yo () =y, (0] < a(kh)™

etc
Now the series (8) is
Yo(X)] + 1y2(X) - Yo()I + Iy2(X) - ya()| + ...+ [¥a(X) - Yna ()| + ...

Yo()| +a+a(Kh) + a(Kh)*+....+ a(Kh)™ +..
[Yo(X)! +

IA

IA

-« Kh<1. the series is cgt
T Kn [ ot]

The series (8) is convergent.

=~ The series (3) is converges to a sum y(x) and yn(x) — y(x).
(i) To prove y(x) is a continuous solution of (2)

[The above argument shows not only that y,(x) converges to y(x) in the interval, but
also this convergence is uniform. This means that by choosing n to be sufficiently large, we
can make y,(x) as close as we please to y(x) for all x in the interval].

Given Y =0 a positive integer no s.t n > no.

We have, |y(x)-yn(X) |<Y; for all x in the interval.
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Since each yn(x) is clearly continuous.
The uniform convergence implies that the limit function y(x) is also continuous.

T.P y(x) is actually a solution of (2)

We must S.T. x
Y-y, - | f(t,®)dt =0
We have, (2) 0
y(x) = Yo + [ F(t y(r))dt
M -Yo- [ fhy®)d=0 9)
Also, we have,0
y(x) = Yo+ [ 1t y(®))dt
Yo (X) = Yo + [ £t y, . (0)dt
y(x) - ¥, (X) = [t y@®)dt— [ fty, ©)dt

Y() =¥, () = [l y®) -t y, )]
y(x)-y, (x)—j ft,y®)-f¢y,,t)dad =0 .. (10)

Xo

From (9) and (10)

YOO Yo - [ FRYOM = Y0 -y,(0— [ FE YD)~ F Ly, 0).dt

YOO =¥, 00+ [ £t Yoa () = F & y(0). 0l

Xo

Y-y, — | £t vt

< Y=y, O]+ [ F (Yo @) - y®)dt
< ly(x) =y, ()| + Kh.max |y, ; (X) = Y(X)| crem. (11)
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The uniform convergence of yn(x) to y(x) now implies that, the R.H.S (11) can be

made as small as, we please,
By taking n, sufficiently large,

R.H.Sof (11) — 0

=0

y() =y, - [ f(ty(t)ct

Xo

Sy = Yo+ [f(ty)dt

=~ y(x) is a continuous soln of equ (2)

iii) T.P. y(x) is the only continuous soln of (2)

Let us assume that y(x) is also a continuous solution of (2) on the interval |x-xo|< h.

We shall prove that 7(x) = y(x)
We know that the graph of y(x) lies in R" and hence in R.

Let us suppose that the graph of y(x) leaves R'
= F an x; such that

[X1-Xo[< h.

[¥(x1)-yol = Mh

Now, [y (X)-Yo|< Mh if [X-Xo|<|X1-Xo|

:.‘y(xl—yo‘: Mh _Mh_ .,
X =%| [ —%| h

Po-wl
“—|Xl —X0| >

By mean value theorem F a number x~ between x; and x; such that

MEAEIA

1%, = X,| - W(X*)‘

= \ f (x*,y(x*))\g M
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Since the pt (x*,y(x*)) lies in R’
Equ (12) and (13) gives the contradiction.

Which shows that no point with the property of x; can exists, so the graph of y(x) lies
inR’

Now y(x) and y(x) are both solutions of (2),
We write

[ fty® - f(t yat

Xo

yoo-y)| =

Since the graphs of y(x) and y(x) both lie in R'

Equ (6) gives.
V00 = y0)| < Khmax|y() - y(x)
So max \y(x) - y(x)‘ < Khmax \y(x) - y(x)‘

= max ‘?/(x)— y(x)‘ = 0

Sy-yx| = 0

=y(X) = y(x) for every x in the interval |x-xo|< h
=~ y(x) is the soln of (2)

Hence the proof.

Lipschitz condition

Let f(x, y) be any function define in a region R. If F a five number K s.t.
[F (6 y,) = £y <Ky, = Y, V(% y,). (X, y,) in the region, them f is said to satisfy
Lipschitz condition. The number k is called Lipschitz constant.

Note:
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Picard’s theorem is also known as local existence and uniqueness theorem.
Theorem:

Let f(x, y) be a continuous function that satisfies a Lipschitz condition.
[f (% y,) = F(X,¥,)| < K|y, — y,|on a strip defined by a<x<b and -co<y<co. If (xo,y0) is any

point of the strip, then the initial value problem y' = (X, y), y(Xo) = Yo has one and only one
solution y = y(x) on the interval a <x< b.

Proof:
We know that every solution of the initial value problem

y=fxy),yx)=yo (1)

is also a continuous solution of the integral equation
y(x) = Yo+ [ flLy®)dt )

and conversely.

By successive approximation

We have the sequence of function y
y=y(x
oy = ¥ 6. o)
'y
y, () = Yo + [ £t yo(t))dt ) !
Xo a X C
Y. (X) = Yot I f (t’ yl(t))'dt >’ e (A)
H0) = Yot [Ty, @)

We observe that y,(x) is the n™ partial sum of the series

Yo(X)+(y1(x)-Yo())+(y2(x)-y100)+. ... +(¥n(X)-Yna 0O+ o e )

So the convergence of {y,(x)} is equivalent to the convergence of series (3)
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Also,
We know that the series (3) is cgt only if the series.

IYo(X)| + [y1(X) - Yo(X)| + ...... +Ya(X) - Va1 ()| + ....iscgt . (4)
First we define

Mo, M; and M by

Mo = Yol
M, = max |y1(x)|
M = Mo+M;

We find |yo(x)|< M and

Y1 ()] - Yo(X)| < Y1 ()] +[yo(X)|
< M1+Mg

lya(X) - Yo(x)| < M

If Xo<x<b

V200 -y, 00]= | JIF (6.0 - F(t, yo ©]el

< ) - FE Y, ) dt
< K-yt
< K JX. M dt
< KM Jx‘dt

Xo

“Y2(0) - Yi0)I< KM (%0)

Also,
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X

AOEAGE [ @y, () - @y, (0)]dt

Xo

< j| (6 Y, (0)— £y, )]
< K Xﬁyz (®) -y, )t
< KJX.KM (t—x,)dt
< KX:M (x=x,)
2!
In general
Y () = Yo (X)) < K"M % ......... (5)

The same argument is also valid for a <x<x, provided that (x-Xo) is replaced by |x-X| is
replaced by [x-Xo|.

|yn (X) - yn—l(x)| < K nilM % ......... (6)

Combining (5) and (6) we find that the result holds in the interval a <x< b, we get

|yn (X) - yn—l(x)| < K nilM %

n-1
K"™M MVX ina<x<b

(n-1)

IA

Using the series (4)

1Yo OO +]Y1(X) = Yo O]+ ]2 (X) = Y, 09+ oo+ ]Y, () = Yoy ()| + ...+
<M +M +KM (b-a)+K?M @Jr

KM (b-a)’ Fot K"M(b—a)"” +
3! (n—21y

The series in the R.H.S.is cgt

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
167



=~ The series in the L.H.S is cgt.

=~ The series (3) convergent uniformly on the interval a <x <b to a limit function y(x)

Let us assume that y(x) is also a soln on the same interval.

So y(x) is a continuous solution of the integral equation x

00 = e [y

If A = max [y(x)-Yol

Then for xo<x < b we see that

V00 -v00 = |l yo -t y,o]
< ko v
< K jAdt
< KA(X—X,)
Also,
Yoo-v.00 = |flFeyo- e o
< KO- o]
= KIKA(t—XO).dt
< KZAM ... etc.
2!
In general
Y-y, (0] < K"A %
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The similar result holds for a <x<x, for any x in the interval.

~ We have,

|x—x0|

Y-y, < KA

~ The similar result holds for a <x< b.

‘y(x)_ yn(x)‘ < K" A%

KZA (b_a)n
n!

R.H.S.—0 as n—w
~|7(X)-Yn(X) —0 as n—oo
~J(X)-Yn(x)—0
~y(X)  =yn(x)
But we have, yn(X) = y(x)
~y(x) = y(x) for every x in the interval.
Hence the proof.
Problem

1. Let (XoYo) be an arbitrary paint in the plane and consider the initial value problem y' = el
y(Xo) = Yo

Explain why Picard’s thm guarantees that this problem has a unique solution on some

. of . . - .
interval [x-xo|<h f(X, y) = y? and 5 =2y are continuous on the entire plane, it is tempting to

conclude that this soln is valied for all x. By considering the solution through the points (0,0)
and (0,1). S.T. this conclusion is sometimes true and sometimes false, and that therefore the
inference is not legitimate.

Solution

Given initial value problem,
Y =Y, y(Xo) = Yo
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y =f(x, ¥), y(X0) = Yo

of
Here f(x, y) = y?, — =2y.
oy

Clearly f(x, y) and Z—f are continuous for all y in the plane for [x-Xo|< h
y

=~ By Picard’s theorem, the problem has a unique solutionn in [x-Xo|< h.

Since f(x, y) and a are continuous for all values of y and f(x, y) and 8_y are free

from x are tempted to conclude that, the initial value problem has a unique solotionn for all
values of x and y (i. e) in the entire plane.

Now, consider the equation.

1 2

y=y

and examine its soln at (0,0) and (0,1) we have,

y =y

—1:x+A
y

At (0, 0) we cannot find the constants A

=~ At the point (0, 0) the soln does not exists At (0, 1)
At (0, 1)
-1
(1) =>T = 0+A

> A= -1
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=Xy-y+1=0

Which is a unique soln.
=~ The solution exists at this point.

Hence our conclusion that, the problem has a unigue soln is sometimes true and

sometimes false.

So our inference that initial value problem has a unique soln in the entire plane is not

legitimate.

2. Show that f(x, y) = y*2

a) does not satisfy a Lipschitz condition on the rectangle [x|<1land 0 <y <1,
b) does satisfy a Lipschitz condition on the rectangle [x|< 1 and ¢ < y<d where 0 < c <d.

Solution:

Let f(x, y) = y*°

fxy)-f(x0  y* -0
y-0 y

Which is not bounded neary =0

= There does not exists K>0

s.t. [f(x, y)-f(x, 0)|< K |y-0)|.

=~ Lipschitz condition is not satisfied.

b) f(x,y) =y |x<1, y<dand0<c<d

1
2

N[

f(x,y)-f(xc)  y*-c
y—cC y—cC
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= - =Ksay
2c?

L Txy)-f(xc)
|y1_y2|

K Vyinc<y<d.

A F 6 yn) = T Y)| <Ky =Yyl
= Lipschitz condition is satisfied.

3. Show that. f(x, y) = x?ly| satisfies a Lipschitz condition on the rectangle |x|< 1 and |y|< 1

but that % fails to exist at many paints of this rectangle.

Solution:

Let f(x, y) = x%y|

f (X’ yl) — f (X, yz) — X2y1 B Xzyz
yl_ yz yl_yZ
— Xz(yl — yz)
Yi— Y,
= X2

NLCSARRICSA N
Yi—Y,

X< 1

“[f yr) -yl < Kly1-ya|.
= Lipschitz condition is satisfied.
Again,

o  _ L J6Y) = 1(x0)

oy y-0 y-0
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= Lt
y—0 y
2
STl
y—0 y
. v
= X“(+1) —=1ify>0
- +x2 M:—1if y<0
y
Which is not unique.
For, y>0, ﬂ:x2
oy
y <0, L
oy

y =0, ﬂ does not exists.
oy

4. Show that f(x, y) = xy?
a) satisfies a Lipschitz condition on any rectangle a <x<band c <y <d.
b) does not satisfy a Lipschitz condition on any strip a <x< b and -co< y <o

Solution:

Let f(x, y) = xy2

foxy)-f(xy,) XY© — XY

Yi— Y2 Yi =Y,

_ X(y1+y2)(y1_y2)

Yi =Y,

< b(d+d)

< 2bd = K
A ya) - (X, y2) < K lys-yal.

= Lipschitz condition is satisfied.
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fOxy) = (% Y,)
yl_yZ

= X(y1+Y2)

= not bounded for large values of y.

-~ There does not exists K s.t.

IA

~[f(x, y1) - f(x, y2)| K ly1-Y2).

~ Lipschitz condition is not satisfied.

5. S.T.f(x,y) =xy
a) satisfies a Lipschtiz condition on any rectangle c <y <d
b) satisfies a Lipschtiz condition on any strip a <x< b and -oo< y <oo.
c) does not satisfy a Lipschitz condition on the entire plane.

Solution:

a) Let f(x, y) =xy

f(x,yl)—f(x,yz) _ Xy, — Xy,
Yi— Y2 Yi— Y,

— X(yl_yz)
Yi— Y,

< b = K (say)

~f(x, y1) - f(x, y2)] < Ky1-yo|

=~ Lipschitz condition is satisfied.

b) f(xy,)-f(xy,) _ Xy, — Xy,
Yi— Y2 Yi— Y,

- X(y1 B yz)
yl - yz

< b say (K)

=~ Lipschitz condition is satisfied.
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. Foay)—flxy,) X

Yi— Y2

Which is unbounded for all values of x.
= There does not exists K s.t.
~ [ y1) - f(x, y2)l - < Kly1-y2| -00<X <00, -00< Y <00
=~ Lipschitz condition is not satisfied in the entire plane.
6. Consider the initial value problem.

y' =1y, Y(Xo) = Yo.

a) For what points (Xo, Yo) does Picard theorem imply that this problem has unique
solution on some interval |x-Xg|< h.

b) For what points (X, Yo) does this prob actually have a unique solution in some
interval. [X-Xo|< h.

Solution:

Lety' =y, y(Xo) = Yo.

Clearly f(x, y) = |y| is continuous in the plane.

of | fxy-fx0)
oy y—0 y-0
= Lt -0
y—0 y

Which is not unique.

ﬂ does not exists aty = 0.

Hence by Picard’s thm, a unique soln exists for all points (Xo, Yo) except those with
Yo= 0.

Let us examine the solution at points where y, = 0, using Lipschitz condition.

We have,
f,y)-f(x0 _  |y-0
y-0 y

= +1
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foy-fx0 _
ly-0

1

A
—~
w

Q
=

= We get,
#[f(x, y) - f(x, 0)|< K |y-0]
=~ Lipschitz condition is satisfied.
Even at points where y, = 0, there is a unique solution for the problem.
Hence this has unique soln actually at all points (Xo, Yo).
Linear Systems:

Equations of the form

X _E %, y)
dy

dy
—=0G(t, X,
pm (t,x,y)

are said to be a system of simultaneous equation of first order:
System of linear equations

The equation of the form,

dx

E=al(t)x +b (t)y + f.(t)
dy
i (Ox+b, )y + f, (1)
Where a3, by, f1, a2, by, T, are continuous functions in any closed interval [a, b]

(ile)a<x<hb

The equ (2) are said to be a system of linear equations

If f1(t) and f,(t) are identically zero, then the equation reduces to

dx
EZal(t)Hbl(t)y

d
d—{=a2(t>x+b2(t>y
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System of equ (3) is called homogeneous equation and system of equation (2) is
called non-homogeneous equation.

Verify that the linear system of equation

ﬂ:4x—y

dt

&,

X_
dt Y

has both x=¢e and x = et
y= et y :?[ezt

are solutions in any closed interval.

Solution:

Letx=e* y=¢*

@ 3™, LI 3e*

dt dt

ax-y = 4™ 2x+y = 23 +e™
= 3e3t = 3e3t

j—§ = 4x—-y % = 2X+Yy

y=e
Let X = e*, y = e*
% — 2e2t ﬂ — 4e2t
dt dt
dxy = 4e”-2¢” 2x+y = 2e”'+2e*
= 2e2t - 4eZt
LU 4x—y Yy 4e*
dy dy
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X=e
: { is a solution of the given equation

y = 2¢”

Theorem:

If the homogeneous system.

=x(t)
and { on [a, b], then {
y = yalt)

constants ¢4 and c;.

Proof:

Hoa,0x+b, 0y X = xeft)
has two solutions

d

d—{=a2(t)x+b2<t)y y= yA()

X = X (t)+Cox2(t)
is also a soln. on [a, b] forany

y = caya(t)+caya(t)

= x1(t)
Given j}z is a solution of
= ya(t)

dx
E=al(t)X+ b, (t)y

d
d—{=a2(t)x+b2(t)y

dx
d—tl=aa(t)X+b1(t)y1

d
g, Ox+b, Oy,

llIrly since  x =x4(t) is a soln, we get

y=yi(t)
P _a )%, +b(®)
dt _al 2 y2
dy,

Ezaz (t)X2 + bz (t) Y,

Take X = c1xp(t)+CoXo(t)

dx dx,
— = C,—=+C,
dt dt

dx,

dt
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Cafaa(D)x1+ba(t)ys] + ¢z [as(t)x+ba(t)y2]

au(t) [caxatCoxz] + bi(t) [Cryrtcay,]

dx
dt

a()x+bs()y . (N

lllrly Take y = cyya(t) + Caya(t)

Wegetﬂ = c%+c2d£

dt "t dt
= cafaz(t)xa+ba(t)y1] + C2 [az(t)x2+ba(t)ye]

= az(t) [C1X1+C2X2] + bz(t) [cly1+czy2]

?j_i’ = atx+bdy e (1)

Equations I and 11 together gives the system of equations, which are satisfied by
X = CXp(t)+Cox2(t)
y = c1y1(t)+cay2(t) be the solution of the equation.

Hence the proof.

Theorem:
dx _ _
S =aOx+b Ry = x(t) X = Xo(t)
If the system of equation has, and as
d
d—¥= a,()x+b,()y y=yalt y=ya(t)
X 1X1(t)+C2X2(t)
a solution of the interval [a, b], then is the general solution, if the
Y& Cayi(t)+Caya(t)

Wronskian of the solution, does not Vanish on the interval [a, b].

Proof:

X =XT t) = Xz(t)
If and%j< are the solutions of the given system of equation then
by

y = yi(t) y = Ya(t)
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the previous theorem,
X = CyxXq(t)+CoxXa(t)
y = cryi1(t)+Caya(t)
Where c; and c; are constants is also a solution of the system on the interval [a, b].
If (1) is the general solution, them the constants c; and ¢, are unique.
Let us assume the initial condition,
When t =1y, X =Xo, Y = Yo
C1X1(to)+Co2X2(to) = Xo
} ......... 2
Cay1(to)+C2Ya(to) = Yo
The equation (2) have unique solution, if the coefficient determinant does not vanish.

X () %, (t)
AR,
Since ty is arbitrary, we find

(1) X, (t)
i) Y, (0)
Wronskian, W # o

#0

%

Hence the proof.
Problem:
The system of equation

dx

—_ — 4X _

dt y

dy

— = 2X +

dt d
X, = et , = e

We have two solutions. { and {K , We get.

y = % v, = 26
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Wronskian, W =

e3’[ 2e2t

25t _ ot
™= 0.

=~ For the given equation.
X = cre*+coe?
— 3t 2t - :
y = ce”+2c2e” is a general solution.

Note:

In the general solution if the constants c; and c; are evaluated using initial condition
we get a particular solution.

Note:
X = X (t)
Wronskian of the solution {
y = ya(t)
X = Xo(t)
y = Ya(t)
X () x,(t
(l,e) W — 1( ) 2( )
yi(®) Y, (b)
_ X X,
Yi Y
~W = X1Y2 - Y1X2
Theorem:
X = Xa(t) = Xa(t)
If W(t) is the Wronskian of the two solutions ? and {K of the
y = ya(t) y = ya(t)
dx
-a:%ﬁﬂ+mﬂw
system of equation. on [a, b], then W(t) is either identically zero or
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d
d—{=a2(t)x+b2(t)y

nowhere zero on [a,b].

Proof:
d
X = (1) =00y
Given that is the soln of the equ
d
Y =yi) =a,Ox-+D, (1)
~ We get
dx
d—lzal(t)xl +b1(t)y1
t
i _a, t)x, +b, 1)y,
dt
X = Xo(t)
|[|rly since { is a soln, we get.
y =yi(t)
dx
d_zzal(t)xz +b1(t)y2
t
Y2 _a,(t)x, +b, 1)y,
dt
Now,
dx, dx,
E yz - W y1 = [a1 (t)x1 + bl (t) Y1 ]yz - [a'l (t) Xz + bl (t) yz ]yl
= ar(t)X1y2 + b1(t)y1y2 - ai(t)xay1 - bi(H)y1y2
= ai(t) [xay2-x2y1] Q)
llirly
d d
= %A, 0% +b,0y]-x[a, 0 +b,0,]
= az(t)X1X2+ bz(t)lez - az(t)X1X2- bz(t)y1X2
= bz(t) [X1y2 - y1X2] ......... (2)
1+
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[ dx dx, | [d d
_d_tl Y, _d_tz yl_ +l:% Xy _ixz:l = [a1(t) +b2(t)](xly2 - Xzyl)

[ dx d 1 [dx d
_d_tl Y, +§X1_ _[d_tz Yy +%X2j| = [al(t) + bz (t)](xlyZ - Xzyl)
d d
=00y =06y = @O+b )y, %)
d
:>a(x1 Vo= %) = (@®)+b,0))X Y, = XY,) e ©))
.. X X
Wronskian is W =
Yi Y,
= X1Y2 -Y1X2
~(3)=
dw
s a, (t) +b, (HW
t
L [a, (t) + b, (t)]dt
W
fing
logW = [[a1(t)+b,()]dt + log C
logW = logce J[au )+b (1) Jat
~W = ceI [ty ) for some constant c.

We observe that, the exponential factor in the above is never zero.
Therefore the Wronskian W can be zero only if it is identically zero. Otherwise it is
never zero on the interval [a, b].

Hence the proof.

Dependent and Independent solutions.
Consider the system
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— = X+b
dy X+0y
d

d_)t/ = a,Xx+h,y

X = Xq(t) = X2(t)
Let { and {( be two solutions of the system of equation
y =yai(®) y = ya(t)

The two solutions are said to be linearly dependent if one is a constant multiple of the
other.

(i.€) if xo(t) = Kx(t)

yo(t) = Kyy(t). Where K is a constant.

= x(t) X £ Kxa(t)
=~ Two dependent solns will be of the form {( and J[
y = yi(t) y = Kyi(t)

If one solution is not a constant multiple of the other, then the solutions are said to be
linearly independent.

Further consider the equation
CiXp+ CoX2 =0
Ciy1+Cy2=0
The solns are independent iff c; =0,and ¢, =0

If one or both of ¢; and c, are non zero, then the solutions are linearly dependent.

Theorem:
dx
— = X+
i ax+by

For the homogeneous system of equ , the two solutions

dy
prili a,x+b,y

X E X1(t) =Xo(t) = C1Xp+C2X2

{ and{ are L.l on [a, b] Then{ will be the general
YE Y1 () y =lya(t) y = Ciy1tCay2

solution of the system.
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Proof:

X =xa(t) X = Xo(t)
If {L and { are tow solutions of the system of equ.

y =y (t) y =Ya(t)
dx
P a,()x+b(t)y
dy _
i a, (t)x+b,(t)y

then X = CiXp+CoXo }

Yy = C1y1t+Cay2
Will be a general solution if the wronskian of the solution W = 0.
Suppose the given solution are L.D. then

X2(t) = Kxy(t)

y2(t) = Kyi(t) where k is a constant.

W - X X
Yi Y,
B X, KX
y: Ky,
= Klel - Kle]_
W = 0

~ Equation (2) is not a general solution of the system of equation (1).

Suppose the Wronskian

(ieyW=0

C1X1+CoX2 = 0
C1y1t+C2y2 = 0
5 CoXp = -C1X1
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X2 = —Lx
c,
X2 = K Xxq
_ G,
Y2 - -——Y
C,
Y1 = Ky1

=~ The solutions are linearly dependent.
Thus we find (2) is not a general solution if the solutions are dependent.

=~ Equation (2) will be a general solution the solutions are L.1.
4. Problem:

Let the second order linear equation

d?x dx
FJF p(t)E+Q(t)x_0 ......... (1)

be reduced to the system
= y
dt
dy
E=—Q(t)x— p)y L 2

= x(t) X = Xo(t)
If x1(t) and x,(t) are the solutions of equation (1) and if {< and{ are the
y=yi() Ly =ya)
corresponding solution of (2). S.T. the Wronskian of (1) is same as the Wronskian of the
solution (2).

Proof:

Consider the second order equation

d?x dx
FJF p(t)EJFQ(t)X_O ......... Q)

If X, and x, are two solutions of the equation (1). Then the Wronskian
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woo=
1 2
= o -t (3)
dx
Put —=

a7

d®x dy

T dt? dt

~ Equ (1) reduces to

B pt)y+Qx=0

dt
dx
ca - POY-QMx
~ We get, the system of equation
dx _
a Y
......... )
dx
— =—p(t)y—Q(t)x
m p(t)y —Q(t)
X =(X1(t) X = Xo(t)
If and { are two solutions.
y =ya(t) y =Ya(t)
. X, X,
Then Wronskian, W, =
Yi Y
= X1Y2 - XoYy1
We have, ax =y
dt
dx, dx,
at Y1 qt Y,
ayio= X! Y2 o= Xy
Sub in W,
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X1X2l - X2X1l
w

o Wl

-~ The two wronskian are the same.

x=ef x=e*
5. (a) S.T.ji\ and{ are solutions of the homogeneous system,
— A4t - 2t
y= y=-¢
dx

dy
—=X+3y, —=3X+V.
dt ar Y

(b) Show in two ways that the given solution of the system in (a) are L.l on every closed
interval and write the general solution of this system.

(c) Find the particular solution x = x(t), y = y(t) of this system for which x(0) = 5 and
y(0) = 1.

Solution:
X = At
Consider {e
y — e4t
AN % = 4.e4t
dt
Y _pen
dt
x+3y = e"+3.e™
= 4e"
dx
L— = X+3
dt y
3X+y = 3e e
- ae™
dy
L= = 3X+
dt y
X = e4t

y = e* is a solution of the given system of equation

Now consider,

X — o2t y - o2t
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dt - dt
x+3y = e+ 3(-e?)
_ et
% — _ Ze—Zt
dt
3ty = 3™
= 2e™
dy
L= = 3X +
dt Y

-2t

X=e
{y = - s the solution of the given system of equation.

X %X

b) Wronskian W =
Yi Y2

4t 2t At,-2t

= €€ ee

_ o2t g2
= 20740

=~ The solutions are linearly independent.
Again consider the equation.

C1X1+CoX2 = 0
C1y1+CaY> = 0
(i.e) cie™+ce® = 0
cie®-ce® = 0

This may be written as,
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cie®+ ¢, = 0
cie®- ¢, = 0
2¢C; = 0

=C, = 0
ce®+0 = 0
=C¢ = 0

=~ The solutions are linearly independent.
x=ge" x =g

Since{ and { are L.I.
y = it y = o2t

=~ The general solution can be taken as.
x = cre™+ g™
y = cie™- ce®

c) To find the particular solution corresponding to x(0) =5, y(0) = 1

(i.,e) Whent=0,x=5y=1

We get, 5= c,e+c,e”
1=c1e°- coe’
ci1+cCy = 5
Ci-C; = 1
2¢; = 6
c = 3
2Co = 4
Co = 2

~ The Particular solution as

X = C1X1 + CoXo
y =Ciy1 + C2y2
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7. Obtain the solution of the homogenous system

dx
—=X+2
dt y
dy

— =3X+2
dt y

a) By differentiating the first equation w.r.to. ‘t’ and eliminating y.

b) By differentiating the second equation w.r.to. ‘t’ and eliminating X.

Solution:

Given equation is

%:x+2y
dy
— =3X+2
dt y
Diff (1)
2
dx b,
dt dt dt
dx
= —+2(3x+2
o +20x+2y)
dx
= —+(6x+4
o (Ex+4y)
= %+6x+2{%—x}
dt dt
= 3%+4x
dt
2
P LA S,
dt dt

Auxillary equation is
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m?-3m-4 = 0
(m-4) (m+1) = 0
“mo = 4,-1.

=~ Solution of (3) is

X = cre® + ey
% = 4ce” —ce”
From (1)
dx
2 = ——X
y dt
= (4cie™ - coe™) - (cre™+coe™)
= 3cie™ - 2c2e™
Ly = gcle4t —c,e”
Theorem:

X = X(t) = Xo(t)
If the two solutions { and {X of the homogeneous system

y = yi(t) y = ya(t)
dx -
o = aOxby X730
are L.1. on [a, b] and if is any particular solution of
d
o = a0y Y = Ypf0)

the nonhomogeneous system.

dx

E = a, (H)x+b, 1)y + f,(t) X =C1X1(t)+Cax2(t)+Xp(t)
% a,(t)x+b,(t)y+ f,(t) onthisinterval, then y=ciyi(t)+Coy2(t)+yp(t) is the

general solution of the non-homogeneous system on [a, b].

Proof:

= Xa(t) = X2(1)
Given { and Jt are independent solutions of
y=yi(t) y = Ya(t)
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dx

- = a (t)x+b (t)y
......... (A)
d
d_)t/ _ a,(t)x+h,(t)y
= The general solution of the homogenous system (A) can be taken as.
X = caxa(t)+Coxa(t)
y o= ay®rey()
X = X(t)
Let { be the solutions of the non-homogeneous equation.
y =y(®)
dx
& - aOx+bOy+fi)
......... (B)
dy
o - a,(t)x+b, 1)y + f,(t)
= We get,
dx(t
% _ a, ()x(t) + b, () y(t) + f,(t)
dy(t
% _ a, (H)x(t) + b, (©) y(t) + f,(t)
X = Xp(t)
Also,{ is given to be a particular solution of the non-homogeneous system
Y =Yp(t)
(B).
dx, (t)
i A A a, ()X, () +b,(t)y, ) + f,(t)
dt
dy, (t)
# - a, (t)x, () +b, (1) y, (1) + f,(t)
Take x = X(t) - Xp(t)
y = y(t) - yp(t)

We get,
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dx d
= = E(x(t)—xp(o)

dt
ax(t)  d, (1)
dt dt

= ay(t) x(t) + ba(t) y(t) + i (t) - [as(t) Xp(t) + bo(t) yp(t) +F2(1)]

% [X(O-%p(0)] ay(t) [x(t) - xp(0)] + (1) [y(®) - yp(D)]

......... ()
% [y®-ye®] = a2(t) [x(1) - p(8)] + ba(t) [¥(t) - yp(V)]
From (C) we find
X = X() - %p(t)
{ y = yO-y(t)isasolnof (A)
XU -Xt) = caxa ke
y@®) -y = Ciy1+ CaY2
= xt) = C1X1 + CoXo + Xp(1)
y®) = Cay1+ Caya + Yp(t)

is a general solution of the non-homosystem.

4t —at

X=2e X=e
6. (a) S.T. { and { are solutions of homo-system.
y = 34t y = ot
% =X+2y
% =3X+2y

(b) Show in two ways that the given solution of the system in (a) are L.I. in every closed
interval and write the general solution of the system.

X = 3t-2
(c) S.T. { is a particular solution of the non-homogeneous system.
y =-2t+3
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dx

—=X+2y+t-1
dt d
% =3x+ 2y —5t —2 and write the general solution of the system.
Solution:
The given homo system is
% =X+2y
......... (A)
% =3X+2y
Take x=2e"
y =3e"
% = 8e™
X+2y = 26"+ 2.3e™
= ge™
% = X+2y
Also, y = 3e™
Z—i’ = 12"
3x+2y = 3.2.e"+2.3¢"
= 12 e*
((jj_)t/ = 3X+2y
~x = 2e™

y = 3e* is a solution of (A)

x=¢"

Again take {
y=-e'
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dx S

i —e

X+2y = et-2e"
= et

dx

E = X+2y

y = -

ﬂ = et

dt

3x+2y = 3et+2(-e")

= e-t

I
y = -e"is a solution of (A)
(b) Consider the Wronskina.

X X,
Yi Y

W =

2" et
" —e

1
1
N
(0]
S
1
w
D
S

~W = 0.

Again consider the equation

C1X1 + CoXo = 0
Ciy1+Cy, = 0
ci2e™+cet = 0
ci3e™-cet = 0
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Which is same as,

2ce+c, = 0

3cie-c, = 0

5ce” = 0

=C¢ = 0

Also C2 = 0
c1=¢=0

X =2e =)
= The solns { and {( are L.1.
y = 3" y=-¢e"

So the general solution of the system (A) can be taken as.

X = C1X1 + C2X2
y = Ciy1+ C2y2
X = 2c.e™+ coe™
y = 3ce™- coe
(c) We have to prove { is a particular solution of.
yp = '2t+3

%=x+2y+t—1
dt

......... (B)
ﬂ:3x+2y—5t—2
dt
Xp(t) = 3t-2 Yo(t) = -2t+3
10 w0 _
dt dt
Xpt2yptt-1 = 3t-2+2(-2t+3)+t-1
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= 3t-2-4t+6+t-1

= At-4t+6-3
= 3
dx, (t
(;t( ) = Xpr2yp+t-1 (1)

3Xp+2yp-5t-2
= 3(3t-2) + 2 (-2t+3)-5t-2

= Ot-6-41+6-5t-2

= 9t-9t-2
= 2
dy,(t
oo —y(;)t( ) = 3Xp+2yp'5t'2 --------- (2)

~ From (1) and (2) we find

Xp = 3t'2
{ yp = -2t+3 is a particular solution of the non-homogeneous system (B).

Hence the general solution of (B) is

X = C1X1+CoXo+Xp

y = C1y1tCayotyp

(ie) x = 2c.eM+coe*+c e +3t-2
y = 3ce™ - cet-2t+3

Problem
Find the general solution of the system

dx dy

@ g a Y

(b) S.T. any second order equation obtained from the system in (a) is not, equivalent
to this system in the sense that it has solution that are not part of any solution of
the system Thus although higher order equations are equivalent to systems, the

reverse is not true, and system are more general.

Solution:
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dy
a7
L
dx
— = dt
9 J
logx = t+log cy
logx = log c; €'
X = cye'
y oy
jd—y = [dt
y
logy = t+ log ¢,
y = co €
X = cie'
y = coe' is the soln of the system.
Again, consider,
X
d?x dx
dt? dt
(D*-D)x = 0
m’>-m = 0
m(m-1) = 0
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m=0, m=1
Solution x = ¢yt + ¢,€°

X = Cie'+ ¢y
. _ . dx
We find x = 1 not a solution of E= X

=~ The solution of the second order equation contains a solution which is not a solution
of the system.

But the solutions of the system are in the solution of second order equation.

So we conclude, although the second order equation is equivalent to the system. The
system is not equivalent to the second order equation in the above sense.

Solutions of Homogeneous equation with constant coefficients
To solve the system of the equation

dx

— =aX+
g - X by
......... (1)
d
d—¥=a2x+b2y

Let us assume,
X = Ae™

Be™ as a soln.

y

Substituting in the equation

We get,
Am e™= a1Aem; + b;Be™

Bme™= a, Ae™ + b, Be™
Cancelling e™

Am = aA+bB
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Bm = aA + h,B

Thus we get, two equations in A and B.

(a;-m) A+b;B = 0
......... 2
aA+(b,-m)B = 0

Clearly A =0, B = 0, are solution of the equation (2)
These are trivial solution

We know the equation (2) will have non-trivial solution if

-m b
& W _ 0
a, b,-m
(@aim) (bp-m) - ash; = 0
aiby- mby- mag + m?-azhy = 0
m2-m(a+b?)+(aibr-azby) = o (3)

This equation (3) is called auxiliary equation of the system.
Solving this equation we get two values of m (say m; and m,)
Sub m = m;y in equation (2) we get a set of values for A and B.
Let them be A; and B;.

The corresponding solution of the system is

X, = Ae™
yl — Bl e myt

[[[rly sub m = mj in the equation (2)
We get a set of values A,, B, of A and B.
The corresponding solution is

X, = Ae™

Y, = Bzem2t

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
201



Hence the system is solved.
The roots of the auxilliary equation.
m?-(as+b,)m+(a1bz-az2b;) = 0 may be
(1) real and distinct
(if) real and equal
(iii) complex
Case (i)
Roots of auxillary equation are real and district.
Let them be m; and m,.
The solutionn of the system are.

X, = Ae™ X, = Ae™

Y1 = Blemlt and Y> = Bzemzt

Case (ii)
Roots of auxillary equations are real and equal.
One solution of the system is
X, = Ae™
= Be™
Now we have to find another independent soln.
Let us assume that, the solution be
X, = (A+At)e™
Y, = (B +B,t)e™
We have to find Ay, B; and A, B..

= X(t)
We know, {x is a solution of the system
y = ya(t)
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dx,

i ax, +by,
......... 4)
% = ax, +b,y,
Now,
X, = (A+At)e
% = (A +At)me™ + Ae™
Y, = (B, +B,t)e™
dstz = (B, +B,t)me™ +B,e™
Sub in (4)
(A +At)me™ + Ae™ = a, (A +Ate™ +b (B, +B,t)e™
(B, +B,t)me™ +B,e™ = a,(A +At)e™ +b,(B, +B,t)e™
Cancelling €™ " in both sides
(A+ADmM +A = a (A +Al)+b (B +By)
(B,+B,t)m +B, = a,(A +At)+b,(B, +B,t)
Equating the constant term and the coefficient of t,
Aimi+A, = atA1 + B Y
Aom; = a1A+hiB;
. (5)
B,m;+B, = aA1+b2B1
B,m; = aA+thB,

Solving the equation (5) we get

A1, Ay, By, B,, and hence the second solution is.

X, = (Ai + Azt)em1t
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Y, = (Bl + th)emlt
Hence the general solution is

C1X1+CoXo

X

Yy Ciy1t+Coy»
Case (iii)

Roots of auxillary equations are complex.

If my and m, are distinct complex numbers, then they can be written in the form azib,

where ‘a’ and ‘b’ are real numbers, and b = 0.

X = Al* e(a+ib)t X = AZ* e(a—ib)t
{ and

(a+ib)t y = B* @™ These are complex valued solns.

y=Bi*e
If we express the numbers A;* and B1* in the standard form
A;* = Aj+iA, and B;* = B1+iB,

The solutions can be written as,

X = (Ar+iAz)e (cosbt + isinbt)
y = (B+iB5)e™ (cosbt + isinbt)
(or)

X = e (Ascosbt - Azsinbt)+i(Asinbt+A,cosbt)}

y = e®{(B;cosbt - B,sinbt)+i(B;sinbt+B,cosbt)}
= X = e®(A,cosbt-A,sinbt)

y = e®(B;cosht-B,sinbt)
and

X = e®(Assinbt+A,cosbt)

y = e®(Bysinbt+B,cosbt)

These solutions are L.1I.

e®fc1(Ascosbt-A,sinbt) + co(Assinbt+Ascosbt)}

>
1
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y = e®{c1(B1cosbt-B,sinbt) + c,(Bssinbt+B,cosbt)}
Solve:
dx
1) — = -3x+4
) ot y
dy
— = —2X+3
dt y
Solution:

Let x = Ae™ y = Be™

Sub in the equation.

mAe™ = -3Ae™+4Be™
mBe™ = -2Ae™+3Be™
= mA = -3A+4B
mB = -2A+3B
A(m+3)-4B = 0
} ......... )
B(m-3)+2A = 0
m+3 -4
2 m—3‘ = 0
(m+3)(m-3)+8= 0
m*-9+8 = 0
m>-1 = 0
m? = 1
m = *1
putm=1in (1)
4A-4B = 0
2A-2B = 0
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~A4A = 4B

= A

1
(o8]

= A

]
w

I
[EEN

~ The solution x, = Ae™, y, = Be™

= The solution is X, = €'

yi=¢e
putm=-1in (1)

2A-4B = 0

2A-4B = 0

Which reduces to A-2B =0
TakeB=1 A=2,
= The corresponding solution is

X, = Ae™, y, =Be™

oXg = 2eT
{yz =¢’,

The general solution is
X = C1X1+CoXo
y = C1y1tCay2
H - t -t
(i.e) Xx=cie+2ce

y = cie'+ce’

2. Solve:
dx
— = 3x+4
dt y
dy
7 — X —
dt y
Solution:
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Let the solution be x = Ae™, y = Be™

Sub in the equation.
Ame™ = 3Ae™ - 4Be™
Bme™ = Ae™- Be™

Which reduces to

(m-3)A+4B = 0
} ......... Q)
-A+(m+1)B = 0
m-3 4 JJ
= 0
-1 m+
(m-3)(m+1)+4 = 0
m?-3m+m-3+4= 0
m?-2m+1 = 0
s~ (m-1) (m-1) = 0
~mo = 1,1
put m=1in (1) we get
-2A+4B = 0
-A+2B = 0
= -A+2B = 0
>A = 2B

TakeB=1,. A=2.
= The corresponding soln is

x; = Ae™, y = Be™

X;]_:Zet
{yﬁet
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Let us assume that, the second soln is

X2 = (Ar+Ast)e"

Y2 = (Bl+th)et

dX2 t t
i (A +A)e +Ae
dy’ LR ot
W = (Bl + th)e + Bze

Sub in the given equation

3x—4y

o X—y
(Ar+Ast)e+A" = 3(A1+Ast)e' - 4(B1+B;t)e’
(B1+Bst)e'+Bae’ = (Ar+Ast)e' - (B1+Bst)e'

Which is same as,

A+At+A, = 3(A+Ast)- 4(By+Bot)
B1+Bt+B; = (ArtAct)- (B1+Bot)

Equating the constant term

A+A, = 3A:-4B;
......... @)
B;+B> = A1-B;

Equating the coeff of ‘t’

A2 = 3A2-4Bz
......... 3)
Bz = Az- Bz

Take B,=1, ~A,=2.

(3) = Ax-2B, =0
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Sub in (2)

A+2 = 3A:-4B;
B:+1 = A1-B1
= 2A1-4Bl = 2
A1-2B; = 1
Take Bi=0.A;=1
The second solution is
X2 = (Ar+Ast)e"
= (1+2t)e"
Yo = (Bl+th)et
= (0+t)e"
= te'
Hence the solutions are,
X1 = 2€ Xz = (3+2t)€"
{ and
yi=€ Yo = (1+)ef

The general solution is
X = C1X1 + CoXo
Yy =Ciy1 + C2Y2
X = c12e' + cp(1+2t)e'

y = cie'+ cote!

3. Solve:
dx
— = X—2
dt y
dy
— = 4X+5
dt Y
Solution:

Let the solution be assumed as,
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x = Ae™
y = Be™
Sub in the given equation.
Ame™ = Ae™ - 2Be™
Bme™ = 4Ae™ + 5Be™

Which reduce to

Am = A-2B
Bm = 4A+5B
(M-DA+2B = 0
AA+(B-mB = 0
m-1 2
= 0
4 5-m
(Mm-1) 5-m)8= 0
5m-m2-5+m-8 = 0
m>-6m+13 = 0
. 6%436-52
2
_ 6+-16
2
_ 6=+i4
2
= 3+2i
m 3+2i, 3-2i

Roots are complex.

3+2i

m
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Let the solution be x = A*e™

y = B*e™
A* = A+iA,
B* = B1+iB; Where A* and B* are complex no.

The soln becomes

X o= (ArHAR)S !
- (Al+iA2)e3teZit
y - (Bl+iBz)e(3+2i)t

= (Bi#iBye®e™

(i.e) X = e (A1+iA,) (cos2t+isin2t)
y = e*(B1+iB,) (cos2t+isin2t)

(i.e) x = e*{[A1c052t-A,5in2t] + i[A2c052t+A,sin2t]}
y = e*{[B1c0s2t-B,sin2t] + i[B,cos2t+B;sin2t]}

We can take the solution is

X1 = e® (A1C0S2t-A,sin2t)
yi = e* (B1cos2t-B;sin2t)
X2 = e® (A,c0s2t-Asin2t)
Y. = e* (B,cos2t-B;sin2t)

Sub in the system

dx
— = X—2
dt y
dx
d_tl - X, — 2y1
We have,
X1 = % (A1c052t-A,sin2t)
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dx
dt

3e (A1C052t-Agsin2t + e*'(-2A,5in2t-2A,c052t)

e® {(3A1-2A,)c0s2t-(38A+2A1)sin2t}

Sub in the equation% = X -2y,

e {(3A1-2A,)c052t-(38A+2A)sin2t} = e*(A1c0os2t-A,sin2t)-2e(B,cos2t-B,sin2t)
(BA1-2A;)c0os2t-(3A+2A,)sin2t = Ajcos2t-Azsin2t-2B;cos2t+2B,sin2t

Equating the coeff. of cos2t

3A1-2A2 = Al-ZBl
2A1+2B1-2A, = 0
= A;+B-A, = o (l)
Equating the coeff of sin2t
-3A,-2A, = -A1+2B,
3A+2A, = Ar-2B;
o 2A+2A1+2B, = 0
= A+A+B, = o (2)
. d
Again % = 4x,5Yy,
yi = e* [B1c0os2t-B,sin2t]
% = 3e™ (B1cos2t-Bssin2t) + e*'[-2B;sin2t-2B,c0s2t]
= e* [(3B1-2B;)cos2t-(3B,+2B3)sin2t]
Sub in the equation
d
% = 4x5y,
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e* {(3B1-2B,)c0s2t-(3B,+2B1)sin2t} = 4{e*(Ac0os2t-A,sin2t) }+5{e*(B;cos2t-B,sin2t)}

Equating coefficient of cos2t

3B1-2B; = 4A;1+5B;
4A1+2B1+2B; = 0
2A+B1+B, = o (3)
Equating the coefficient of sin2t
-(3B,#2B;) = -4A,-5B,
3B,+2B; = 4A,+5B;
4A,+2B,-2B; = 0
2A+B,-B; = o (4)
Ai-Bi-A, = o (1)
A+A+B, = o 2
Take B1 =0
1) =AA; = 0
(2) = A+A+B; = 0
3) =2A+B, = 0
(4) =2A+B, = 0
Since A;-A; =0
>A=A=1
(2) =1+1+B, = 0
2+B, = 0
B, = -2
Bi1 = 0

~ Thesolnis x; e%(cos2t-sin2t)
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yi = e*(0cos2t-(-2)sin2t)

yi = e*(2sin2t)
X2 = e*(cos2t+sin2t)
Y = e*'(-2cos2t)

The general soln is

X = C1X1+CoXo

y = C1y1tCay2

X = c1e%(cos2t-sin2t)+c,e®(cos2t+sin2t)
y = c1e(2sin2t)-2c,e*'cos2t

Problem

S.T. the condition a;b;>0 is sufficient but not necessary for the system.

dx
e ax+by
% = a,x+h,y to have two real value L.I solutions of the form x = Ae™, y = Be™.
Proof:
x = Ae™
Two solutions of the form { will be real and independent iff the values of
y = Be™
m; must be real and distinct.
The roots of the auxillary equation
m?-(ar+b)m+(a;b-asb;) = 0

must be real and distinct.
A>0

(i.e) b’-4ac >0
(a1+02)*-4(asby-azb;) > 0

a12+b22+2a1b2-4a1b2+4a2b1 >0
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« ar’+h,?-2a;b,+4a.b, > 0

(as-by)*+4ap>0 L (1)
Suppose azb1> 0, the above inequality is satisfied.
Again even when a,h;<0, the inequality is satisfied if (a1-b2)*> -4azbs.

So azb1>0 is only a sufficient condition for (1) to be satisfied and not a necessary
condition.

Problem

S.T the Wronskian of the two solns, x; = e*{A;cosbt - Assinbt}, y; = e*{B;cosht-
B,sinbt} and x, = e®{A;sinbt - Aycosbt}, y; = e*(Bssinbt+B,cosbt) is given by W(t) = (A1B,-
AzBs)e? and P.T. AiB,-AzB;# 0.

Proof:

X X

W(t)
Y. Y2

e* (A cosbt — A sinbt) e* (A sinbt+ A, cosbt)
e (B, cosbt — B, sinbt) e* (B, sinbt + B, cosht)

A cosbt— A,sinbt A sinbt + A, cosbt
B, cosbt — B, sinbt B, sinbt + B, cosbt

— 2at

= e?® [A.Bysinbt cosbt+A;B,cos’bt-A,B;sin’bt-A,B,sinbt cosbt-
A;Basinbtcosbt+A; B,sinbt-A,B;cos’bt+A,Basinbtcosbt]
= e®f A, B,(cos®bt+sin’bt) - A,B;(sin*bt+cos’bt)}
= e”(A1B,-A,B))
~W() = e**(A1B,-A;B))
Since the solutions are linearly independent
e?(A1B,-AzB;) % 0.
£ 0,
= A1By- AB1# 0

Consider the non-homogenous linear system.
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dx
o = aOx+b Y+ f,.0)

......... 1)
dy
Pl (t)x+b, (O)y + f,(t)
and the corresponding homo system
dx
e a ()x+b, (t)y
......... (2
d
o =2 Ox+b,0)y
X = X(t) = Xo(t) X = X (t)+Cox2(t)
@ If { and ji are L.1 of (2), so that is its
y =y y = ya(t) y = Caya(t)+Caya(t)

general solution.
S.T. x = va(t)xa(t)+va(t)x2(t)

y = Vo(t)y1(t)+va(t)y2(t) will be a particular soln of (1), if the functions, v4(t) and
V,(t) satisfy the system.

fy

ViiX Vo X

1 1
V11V Yo fo

This technique for finding particular solutions of non-homogeneous linear system is
called the method of variation of parameter.

(b) Apply the method out lined in (a) to find a particular soln of the non-homo system
dx

—=X+Yy-5t+2
dt y

ﬂ:4x—2y—8t—8
dt

Solution:

Let us find the general soln of the homo system.

%—x+y
dt

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
216



Let x = Ae™
y = Be™ be a soln.

Sub inequ (1)

Ame™ = Ae™ + Be™
Bme™ = 4Ae™ - 2Be™
Am = A+B
Bm = 4A-2B
(m-1)A-B = 0
AA-M+2b = 0 } """"" (2)
m-1 -1 _ 0
4 —(Mm+2)
-(m-1) (m+2) + 4 = 0
-(m?-m+2m-2)+4 = 0
-m?-m+2+4 = 0
m?+m-6 = 0
(m+3) (m-2) = 0
m = -3,2
putm=-3in (2)
-4A-A = 0
AA+B = 0

TakeA=1,B=-4
~ The soln is

X, = Ae™
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Y = Be™!
= -4e™
putm=2in(2)
A-B = 0
4A-4B = 0
= A-B= 0
=>A = B = 1
~ The soln is
X2 = Ae™
- o2t
Vo - Be™
- e2t

X = C1X1+CoX2

y = C1y1t+C2y2
(i.e) x = cre ¥ +cpe®

y = -4, +c e

The given non-homo system,

%=x+y—5t+2
dt

ﬂ=4x—2y—8t—8
dt

fi(t) = -5t+2, fo(t) = -8t-8.

Let us find the particular solution by variation of parameters.
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Let us assume
X = V1X1+VoXo
y = Vv1y1+Vays, is a particular solution, where vy, v, are functions of ‘t’.

X =(VyX) +V,X5) + (Vi X, +V3X%)

yh=(VY; +V,Y5) + (V1Y +V3y?)
To find vy and v,

Take, vilxtvo'x, = . (4)
vilyitvy, = R (5)

Solving (4) and (5)

@)x Yo vy oy, = iy,
(5)><X2 = V11y1X2+V21X2y2 = foxo
V1l (X1Y2-Y1X2) = f1ys - foxo
Vll - f1y2 — f2X2
XY, = YiX,
From (4)
V21X2 = fl - V11X1
- f _[flﬁ_ fzxz}(
1 1
XY, =YX,
- flxlyz — f1Y1X2 — f1X1Y2 + f2X1X2
XY, =YX,
— f2X2X1 — leZ Y1
XY, = ¥1X;
X, (f x, — f
V21X2 - 2( 2™ 1Y1)
X Y, = Y1X,
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Vzl =

For the given equation

f, = -5t+2, f, = -8t-8

-3t 2t

X=e€ XoF e
{ and {
y=- 4e73 Vo = 2

“X1Y2-YiX - a3t g2 4 g3t g2t
= et+4e™
= 5e’
Vll — fl Yo — fzxz
X Y, = YiX,
_ (-5t + 2)e* — (-8t —8)e*
5e™
e3t
= ?(—5t+8t+2+8)
e3t
V= ?(3t +10)
vi = %jeSt (3t +10)dt

1 e3t e3’[
= =3t +10)—— | —3.dt
Haao S - [ sl

3t 3t
= 1((3t +10)% - e—J
5 3 3

e3t

= —((3t+10-1
15( )

e3t
= —(3t+9
15( )
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e
= —3(t+3
1 (t+3)
e3t
% = —(t+3
1 15( )
Vgl - f2xl_fly1
XY, = XY
3 (-8t —8)e™* — (-5t +2)(—4e ™)
5e™
e—2t
= ~——(~8t-8-20t+8)
5
-2t
= e?(—z&)
— —28 -2t
Vo = ?jte dt
_ -2t -2t
_ 28 |te” Ie dt
5 | -2 -2
_ ~28|te™ e™®
= +
5 |-2 -4
. Bafl
5x-2 2
_ 28 af2t+1
5x2 2
vy = %e‘zt (2t +1)

=~ The particular solution is

X = ViX1+VoXo
e 7
X = ~——(t+3)e* +—e ¥ (2t +1)e*
5 5
1 7
= —(t+3)+=(2t+1
5( ) 5( )
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= %(t+3)+14t+7)

1
= —(15t+10
~(15t+10)
1
= =5(3t+2
= ( )
X = 3t+2.
y = V1y1+VoYo
e3t

= ?(t +3)(—4e™™) +%e2t (2t +1)e*

-4 7

= —({t+3)+=(2t+1
g 3+l
1

= g(—4t—12+14t+7
1

= —(10t-5
= )

1
= ~5(2t-1
°(2t-1)

y = 2t-1.

=~ The required particular solution is

X = 3t+2
y = 2t-1.
Unit -1V
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Partial Differential Equations of the first order

We obtain a relation between the derivatives of the kind

2 2
F[aﬁ ..... 0 .20 . J -~ o

06
Such an equation relating partial derivatives are called a partial differential Equation.

The order of a partial differential equation to be the order of the derivatives of highest

order occurring in the equation. If for example, we take 0 to be the dependent variable and X,
2

y and t to be independent variables, then the equation g—? = % is a second order equation
X

in two variables.

. 00Y 00 . . o .
The equation, M +E=0IS a first order equation in two variables, and
x(2—9+ y%+aat—9 =0 is a first order equation in three variables.
X

The are two independent variables x and y and z is the dependent variables, then we

) 0z 0z
write p=—, q=—.

OX oy
This equation can be written in the form
f(x,y,z,p,q) = 0
Formation of partial differential equation by eliminating arbitrary constant
Problem

Find the partial differential equation by eliminating the constants a and ¢ from the
equation x*+y*(z-c)? = a°.

Solution:
X2+y2(Z_C)2 - a2
Diff w.r.to x
2x+2(z-c) 2 _ 0
OX
X+(z-c)p = o (1)
Diff w.rtoy
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2y+2(z-c) a = 0
oy

y+(z-c)q = o )
From (1) z—c= —X
p
From@2) z—c= Y
q
—x_ Y
q
Xy
p q
gx-py = 0

Problem

Form the partial differential equation by eliminating the constants a and ¢ from the
equation x*+y*=(z-c)*tano..
Solution:

Given equation is

XC+y? = (z-¢)’tan’a.
Diff w.r.to x
2x = 2(z-c) 2 tane
OX
=X = (z-c) p tan’a
2 X
= (z-O)tan“ac = — (1)
p
Diff w.rtoy
2y = 2(z-C) 22 e
oy
y = (z-c)g+tan’o.
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(z-c)tana.

I
o <
—
®)
N

From (1) and (2)

|
o |<

= gX-py = 0.

Problem
Find the partial differential equation of f(x*+y?) = z.

Solution:
Given f(x*+y?) = z
Diff w.r.to x
Feeydax = &
OX
fO+y9)2x = P (1)
Diffw.rtoy
ey = 2
foe+y2y = 9 L Q)
1 X
0=y
= gx-py =0
Problem

Eliminate the arbitrary function f from z = xy+f(x*+y?)
Solution:

Given z = xy+f(x*+y?)
Diff w.r.to x

2 Y+ (+y?).2x
OX
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p =

Py =

i FOCHY)

Diff w.rtoy

oz
oy

q =

FOC+y)

From (1) and (2)

P-y

2X

y(p-y) =

Problem

Eliminate the arbitrary function from the equation z = f[ﬁj

Solution:

z

Givenz = f[ﬁ

Para. Diff w.r.t x.

@
OX

p =

|[[rly Diff w.r.toy

oz
oy

Y+ (x°+y?).2x
f(x°+y?).2x

p-y
2X

X+ (x°+y?)2y

X+ (x2+y?)2y

X(g-x).

z

ey
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q =

©_ o

2 ¢
E =

q
B =

q
X(z-ya)p =
Xzp-Xypq =
=Xzp =
=Xp =
=Xp-yq =

Problem

y(z—Xp)
X(z-yq)

y(z-xp)q
yzq - xypq
yzp

yq

0

Eliminate arbitrary function from f(x*+y?+z%, z2-2xy) = 0.

Solution:

Given equation f(x*+y*+z°, z2-2xy) = 0.

Which may be taken as,

z%-2xy =
Diff w.r.to x

0z
22— -2
OX y

2zp-y)

Diff w.rtoy

gOC+y*+2%)

0z
= "X2+y?+2%) 2x+2z2—
g ( y )( 6xj

= g'(x2+y2+zz)2(x+zp)
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oz oz
21—-2X = g'(x® +y?+2z° [2y+22—]
oy ( ) oy
220 2x = g'(x2+y2+22)2(y+zq)
29— X = g’(x2+y2+zz)(y+zq) ...... )
Q: p-y _ X+1zp
(2 z9-x y+129q
(zp-y) (y+zp) = (x+zp) (29-X)

Cauchy’s Problem for First - order equations

(@) Xo(w), Yo(n) and zo(u) are functions, which together with their first derivatives, are
continuous in the interval M defined by p; <u<ps.

(b) And if F(x, y, z, p, Q) is a continuous function of x, y, z, p and q in a certain region U of
the xyzpq space, then it is required to establish the existence of a function o(x, y) with
the following properties.

(1) o(x, y) and its partial derivatives with respect to x and y are continuous functions of
x and y in a region R of the xy space.

(2) Forall values of x and lying in Ry the point {X, y, o(X, ¥), ox(X, ¥), ¢y(X, y)} lies in U
and F [X, Y, (X, ¥), 9x(X, ¥), ¢y(x, ¥)] =0

(3) For all p belonging to the interval M the point {Xo(1), Yo(u)} belonging to the region
and ¢ (Xo(), Yo(w) = Zo

Linear Equations of the First order
A first order linear partial differential equation of the form.
Pp + Qq = R
Where P, Q, R are functions of X, y, z is called Lagrange’s equation,
Theorem:
The general solution of the linear partial differential equation Pp+Qq = R is

F(u,v) = 0, where F is an arbitrary function and u(x, y, z) = ¢; and v(X, y, z) = ¢, form a

solution of the equation d—; = ] = a

Q R
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Proof:

Given u(x, y, z) = ¢, V(X, Y, z) = C; is a solution of L = a = a
P Q R
From, u(x, Yy, z) = c; we get,
a—udx+a—udy+a—udz =0
OX oy 0z
From (1) and (2) we find
Pa—u+Qa—u+ Ra—u= 0
OX oy oz
|[[rly, consider v(x, Y, z) = ¢, and equ (1) we get,
P@+Q@+ R@= 0
OX oy oz
From (3) and (4)
0 .  __ _ ___R_
N _udT v _udv T wN_aud
oy oz oz oy 0L OX OX 0z OX 0y 0Oy OX
. P Q R
(i-e) o(u,v) o(u,v) o(u,v)
a(y,2) a(z,%) a(x,y)

We know, F(u, v) = 0 is the general soln of partial differential equation,

o(u,v) N o(u,v) 3 o(u,v)

o(y.2) " 0(z,x) a(x,y)

From (5) and (6)

Pp+Qq = R

Hence u(x, y, z) = c; and v(X, Y, z) = ¢ is a solution of d—PX = ﬂ = %

Q R
Thus F(u, v) =0 is a general soln of

PP*Qy = R
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The result in the above theorem can be extended to any number of variables.
The general soln of

0z 0z 0z

P—+P,—+...+P —= Ris F(ug, Up,....,u =
1 8Xl 2 8X2 n 8Xn ( 1, U2 n)
Where uy(X1, Xa,....,Xn) = C1, U2(X1,X2,...,Xn) = Ca... Un(X1,X2,....,Xn) = Cp i a solution of
oy _dx,__dx,_dz
P P P R
Problem
. . ) . . ,0Z ,0z
Find the general solution of the differential equation, X 6_+ y 5 =(X+Y)z
X
Solution:
Given x’p+y’q = (x+y)z

P=x% Q =V R=(x+y)z

The auxillary equ is

x o 0 d
P Q R
o«
x° y? (X+Y)z
Take,d—)z( = d—z
X y
dx dy
X2 - J.yz
-1 -1
— — ——C
X y
1 1
= - = —+cC
X y
= —— = C]_
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dx —dy dz

Take NER =
y (x+y)z
dx —dy B dz
X—y
log(x-y) = logz +log ¢,
log(x-y) = logzc,
=X-y = ZC
X2y = c,

Z

The general soln of the given equ is F(u, v) =0

~F 1. 1 x-y = 0
X y oz

ie) XY - f(E—EJ
z Xy

Problem
Find the general soln of the equ z(xp-yq) = y?-x°

Solution:

7

VX

Givenequis z(xp - yq)

ZXp - zyq
Pp+Qq = R

~P=2zx, Q=-zy,R=y*-¥°

Auxillary equ is & dy a
P Q R
@x _  dy _ dz
X —zy y? —x?
Take ax = Ay
X -2y
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[ing

logx

logx+logy

= log xy

Xy =

Again
dx +dy
ZX—yz

dx + dy
z(x-y)
dx + dy

s =
z

(x+y) (dx+dy) =
(x+y)d(x+y) =
f ing

(x+y)*
2

(+y)*+2* =

-logy + log ¢,
log c;
log c;

C1

—dz
(X=y)(x+Y)

dz
X+Yy

-zdz

-zdz

—z* ¢?
+_
2 2

C2

The general soln is given bu F(u, v) =0

(i.e) F(xy, (x+y)*+z%)

(x+y)*+2°

Problem

If u is a function of x, y and z which satisfies the partial differential equation.

Solution:

0 orv="f(u)

f(xy).
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Show that u contains x, y and z only in combinations x+y+z and x*+y*+z°
The auxillary equ is

dx dy dz du

y—z_z—x:x—y_F

-~ Weget,du=0 ~U=Cy
dx +dy +dz 3 0
Yy—Z+Z—-X+X-Y
= dx+dy+dz = 0
—X+y+z = C2
Again xdx + ydy + zdz _ du
X(y=2)+y(z-x)+z(x-y)
xdx + ydy + zdz B du
Xy — ZX+YZ — Xy + ZX— 2y 0
—=xdx+ydy+zdz = 0
2 2 2
> y,z - &
2 2 2
x2+y2+22 - cd
If u is the soln, u(cy,Cz,C3) = 0
(i.e)u(Ccy, x+y+z, X°+y?+z%) = 0
u = f (xty+z, X2+y*+79).

Nonlinear Partial Differential Equation of the first order.

The solutions of the partial differential equation of the first order will contain two
constants and may be in the form, F(x,y,z,a,b) = 0. In this case the solution is said to be the
complete solution or complete integral.
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A solution of the partial differential equation will be in terms of two arbitrary
functions in the form F(u, v) = 0, In this case the solution is called general solution or general
integral.

The complete solution of the partial differential equation of the first order is of the
form F(x,y,z,a,b) = 0, where a and b are arbitrary constants.

Consider, this solution as a function of a, b

(i.e) o b)= o (1)
Take % = o (2)
oa
99 _
o o L 3)

The equation obtained by eliminating a and b from (1), (2), (3) is known as the
general singular solution of the differential Equation.
Envelope

Consider the complete solution of partial differential equation of the form o(a, b) =0,
If we can express one the constants in terms of the other say b = f(a) then

o(a,f(a)) = 0 (1)

op
= = o 2
A 2)

Eliminating ‘a’ from (1) and (2) we get the envelope of the family of surfaces which
are solution of the given differential equation.

Problem

Verify that z = ax+by+a+b-ab is a complete integral of the partial differential equation
z = px+qy+p+g-pq, where a and b are constants. Show that the envelope of all planes
corresponding to complete integrals provides a singular solution of the differential equation,
and determine a general solution by finding the envelope of those planes that pass through the
origin.

Solution:
Given z = ax+by+atb-ab (1)

0z

— = a a=
OX P
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Eliminating a and b
We get, z = px+qy+p+q-pq
= (1) is a complete solution of (2)

Let P(a, b) = ax+by+a+b-ab-z

% _ X+1-b
oa
op
— = +1-a
ob y
% _ 9 = xlb= 0
oa
b = x+1
% _ 0= y+l-a = 0
ob
a = y+1
¢(a b)=0
nz = ax+by+a+b-ab

= a(l+x)+b(y+1)-ab
= (y+1)(x+1)+(x+1)(y+1)-(x+1)(y+1)
= (x+D)(y+l)
- The general singular solution is
z = (xL)(y+D)

The given plane passes through the origin

z ax+by+a+b-ab

0+0+a+b-ab

=0
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a+b-ab = 0
b(1-a) = -a
1-a
- _a
a-1
We have,
;= ax{ijy
a-1
a
f(x,y,z,a,0(a)) = ax+(—jy— Z
a-1

Eliminating ‘a’ from (3) and ? =0, we get the required solution.
a

Problem
Verify that the equations

(@) z= ~2x+a+,2y+b
(b) Z%+u = 2(1+17Y) (x+1Ay) are both complete integrals of the partial differential equation

Solution:
z = —4+=
q
Wehave, z =  +2x+a+.2y+b
0z 1
n— = —2+0
OX 24/2X+a
.P — —1
24/2X+a
sa/2X4+a= l
p
a _ 1,
oy 2,2y +b
1

| B J2y+b
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1

A2y +b

Wehave z =  V2x+a+.2y+b
1
7 = —4+=
P q
Again Z%+p = 2(1+171) (x+1ry)
2% _ 242
OX
zp = @a+y (1)
Also, 22@ = 2L+ a2
OX
zq = Ay )
Q_p_1
2 a 4
- P
q
_ Y
H=zp = 1+ =
q
z = =+ P
P Qqp
1 1
z = 4=
P q
nz = ~2x+a+.2y+b and Z%+p = 2(1+1Y) (x+Ly) are both complete of the
partial differential equation z = %+ %

Problem
Compatible system of first order equation

Consider the first order Partial differential equation is

f(x,y,z,p,q) = 0
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g(x,y,z,p,q) = o )

If every solution of (1) is a solution of (2) and every solution of (2) is a solution of
(1). Then (1) and (2) are called compatible.

Definition:

Two equations are said to compatible if every solution of one is a solution of the
another.

To find the condition that two P.D.E of first order are compatible.

Let the given equation be

f(x, y,z,p, q) o (1)
and  9g(x,y,z,p,q) = o 2)

The equation can be solved for p and q if

o(f.9) _
o(p.q)

If the equations are compatible we must be able to solve for p and g.
~J#0

Letp=0 (X, y, z) and q = y(X, Y, 2)

The solution of the diff. equation can be obtained for dz = pdx+qdy which is
integrable

= pdx+qdy-dx = o . 3)
=edx+ydy-dz = 0
Take x = (oD
ik
- 0 o0 0
curl X = — = —
OX oy oz
» Yy -
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curl x = —Ta—W+T%+§ i S o
oz oz ox oy

-

= _iw2+T¢z+E(l//x_¢y)

x curl x =0
(@.v.-1) (W.02yz-9y) = 0
“PY YO ity = 0
Py Ve, = vy, (4)
fxyzpaq) = 0
Diff. w.r.to x

—t—t - = 0 P=¢,q=vy

xwataa P

[lIrly diff w.r.to z
~ We get,

ftfooutfqux = o . (%)

fAfp Ay, = o (6)
(6) xo of+ofpptofqy, = o (7)
(5) + (7) = f+of Hp[oxteo) H(wxtow,) = o . (8)
|[|rly for the equation

g(xy.zpa) = 0
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We get

Ot @Y+ Gp[Pxt 0]+ q(wxtov2) = o . 9)
Take (8) x gp
9o+ of 0o+ ool oxt @@ ] +oGp(witoy2) = o (10)
(9) x f,
(i.) 9ufp+og o+ gl @xt el +ogq(witoy,) = o (11)
(10) - (11)
[fx9p-0xFo] +0[f9p-Fo021+0(fo9p-Tp0q) (Wxtoy2) = 0
o(f.g) ad(f.,g) a(f.g)
+ - + = 0
o p) P a@a) apa Y
o(f,9) o(f,g) a(f,9)
+ = +
a(pg) VT o p)  a(z,0)
a(f,g) o(f,9)
J(y, +ov, = +
(v, +ov,) (. p) (pa(z’q)
. _1ljo(f,9)  o(f,9)
S oY, = J{@(X,p)—i_ 8(z,q)} ...... D
I diff (1) and (2) w.r.to y and z
We get
-1l o(f,g9)  d(f,9)
R e L i
Vitve: J La(y,q)+ a(z,q)} W
But by (4)
Yxt oy, = Gy Ty,

Using this in I and 11 we get

g{a(f,g)+

o(f,9) _
J [ o(x,p)

o(z,q)

-1
J

a(f.9) ,

|

o(y, p)

a(tg)}
o(z,q)
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or.9), af.0), af.g), a(1.0)
oxp) L o@p) Ay o)

Sincep=p,y=q

. ofg) 6(f,g)+8(f,g)+q6(f,g) _
ox,p) ~ d(z,p) o(y,.q) d(z,9)

This is the required condition for the equation to be compatible.

We can write as [f, g] = 0.

Problem
Show that the equation xp-yq = 0, z(xp+yq) = 2xy are compatible and solve theorem.
Solution:
Given f = Xp-yq g
fx = p g
fy = - Ox
f, = 0 Oy
fp = X gZ
fq = -y Op
Oq
o o
o(f,9) _ ox op
o(x, p) aq a9
oxX op
- fX fp
9 Yo
_ p X
- Ip-2y X

pzX-X(zp-2y)

PZX-PzZX+2yx

= 2yX

z(xp+yq)-2xy
ZXp+zyQg-2xy
zp-2y

20-2x

Xp+yq

ZX

zy
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M — fZ fp

o(z, p) g, g,
_ 0 X
) Xp+Vyq zX
= Xpyg

o(f,9) _ f, f,

a(y’ q) gy gq
= —q -y

zq-2x zy

= -zyq+y(zg-2x)
= -Zyq+yzq-2xy
= -2xy

M — fZ fq

0(z,q) 9, 9,
_ Y

Xq—-yq zy
= 0+y(xp+yq)
= xyp+y’q
We have,
[f,g] = 209, oo of.g) a0

o(x, p) o(z,p) a(y,q) o(z,9)
= 2xy+p(-X°p-xyq)-2xy+q(xyp+y’q)

= 2xy-Xp?-xypa-2xy+xypa+y*q’

_ V22D’

— p5-x2p? s pX-qy =0
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~[f, g]=0.

=~ The two equations are compatible.

Let us find p and g. From the given equation.

Xp-yq
z(xp+yq)
(1) =xp=yq
= (2) = z(ya+ya)
z2yq

=29

Xp =

Solution is given by

dz =

N

o

N
1

—
N
o
N
I

0

2xy

2xy

N[ x X

N <

pdx+q.dy

ldx+£dy
z z

ydx+xdy
d(xy)

[ d(xy)

X+
2

= PX=qy
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Problem

Such that the equation xp+yq = x and x?p+q = xz are compatible and find the solution.

Solution:

Let f =

><—h
|

—h
o
I

o(f,9)
o(z, p)

a(f,g)
o(y,q)

2Xy+cC

Xp-ug-x, g
p-1 Ox
-q Oy
0 0:
X Op
-y Jq
i foof,

g9, 9,
_ p-1 X
- 2xp—z X°

= (p-1)X*-x(2xp-z)

= pX2-x2-2x%p+xz

= X2-x2p+xz
LA

g z g p
_ 0 x
- -x x°
= 0+x° = X
— fy fq

9, 9

X*p+g-xz

2Xp-z
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_ -q -y )
S
o(f,q) _ f, fq
o(z,q) f, g,
0 -y
= = =X
- X 1‘ y
We have,

o(f,9)  a(f.g) a(f,9) af.g)
o p) " azp) Ay o)

= XXpHxzHpX-aH(xy)

= X2 XepHXZ+PXP-0-Xy(

= -X*+XZ-0-Xyq

= X*+X2p+0-g-gxy [from (2)]
- X*H2p-Xyq X% = X%p+q
= XXp+xyg

= X[x-xp+qy]

= x(0)

~[fgl= O [from (1)]

=~ The equations are compatible.
Let us find p and g from the gn equ.
Xp-yq = o (1)
Xp+q = Xz )
From (2) g = Xz-x°p
Subin (1)

Xp-y(xz-x’p) = X

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
245



Xp-Xyz+x2yp
POx+X°y)

PX(1+xy)

1+vyz

1+xy

xz—x{“—yz}
1+ xy

xz(L+Xy) — x> —x?yz
1+xy

Xz +Xx*yz —x* —xyz
1+ xy

X2 —X°

1+xy

X(z—x)

1+ xy

The soln is obtained from the equation

dz

dz

~ dz-dx

dz — dx
=
Z—X

dz —dx
I Z—X

pdx+qdy

2
1+y dx+X(Z_X) dy
1+xy 1+xy

Ly) + (2 =%) g, X(2=%)

1+ xy 1+xy

dx+ 2= g X=X g
1+xy 1+xy

y(z- x)dx+x(z x)dy
1+ xy 1+xy

(z—x){ y dx + X dy}
1+ xy 1+ yx

ydx + xdy
1+xy

J-ydx+xdy
1+xy
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= log(z-x) = log(1+xy)+logc
= z-Xx = c(1+xy)
=z = x+c(1+xy)

Problem
Show that The -equation f(x,y,p,q) = 0, g(xy,p,q) = o0 are compatible if

a(1,9)_ (f,9)
o(x,p) ~ 2(y,0)

=0 verify that the equation p = P(x,y), q = Q(x,y) are compatible if

P _RQ
oy ox
Solution:
f(X’y1p’q) = 07 and g(X’y7p’q) = O
~f, = 0 g9; = 0
o(f.9) _ PR
o(z,p) 9. 9,
0 f
= P = 0
0 g,
o(f.9) _ PR P
o(z,q) 9, g,
_ 0 f, _ 0
0 g,
The given equation are compatible if [f,g] =0
of.g), jatfg) afg) afe) _
ox,p) oz, p) ady,q) 0(z0)
6(f,g)+0+_8(f,g)+0 = 0

o(x, p) a(y,q)
o(f,9) , o(f,9)
o(x,p) a(y,q)

Hence

Consider, p = P(x, y), q = Q(X, Y)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.
247



f = p_P(Xv Y)

f. = -P,
f, = -P,
f, = 0
f, = 1
f, = 0

Ox

Ox
0z

9p

Jq

Since both f and g are free from z, we have as in the above the equ are compatible if

a(1,9)_ a(f,9)
3(x,p)  o(y.0)

f, f
now 219 R
a(x, p) 9 9,
_ -P, 1
= 0 0

= QX
af.g)  _|fy
6(y!q) gy gq
_ -P, 1
—Qy 0

= 'Py

(1) = Qx-Py=0

= Py = Qx

i . Rx

(i.e) = Pk

Problem
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Show that the equation z = px+qy is compatible with any equation f(x,y,z,p,q) = that is
homogeneous in x,y and z. Solve completely that simultaneous equations z = px+qy,
2xy(p™+0°) = Z (yp+xq).

If f is a homogeneous function in X,y,z of degree n, then by Euler’s theorem,

of of _of

X—+y—+z—=nf].

ox "oy

Solution:

f(x,y,z,p,q) = 0, where f is a homo. function of x,y,z of degree n.

of of of
AX—F+Y—+2— = nf
OX oy oz
Heren=o0
of of of
.’-X—+y—+z— = 0
ox “oy oz
xfx+yfy+zfz = o . (1)

The other equation g = px+qy-z

gX = p gp = X
Jy = q U = y
0z = -1

[f,] = o(f.g), a(f.g) af.g) , o(f.g)

ox,p) ~dzp) o(y.a) a(z0)
= x0p-gxfo+p(f29p-fo92) +(fyq-fogy) +a(f-gq-0:fq)
= Xb-pfotp(fx-fo(-1)) +(yfy-afe) +a(fy-fo(-1))
= xbepf+pfx+pfotyfy-afe+fqy+afy
= xf+pxf+yfy+f,qy
= xFctyfy+(px+ay)f,
= xf+yfy+zf,

= 0 [using (1)]

[f, d] 0
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~The equations are compatible.

Given

z

2xy(p*+q?)

2xy(p*+q?)

2xy(p*+q?)

2xy(p*+q°)
2xy(p*+°)-xy(p*+q°)

xy(p*+q°)

Xy
X% +y?

pX
p =

oof (152) o) -

pxtqy ..
z(yp+xq)

(px+ay) (ya+xa)

P Xy+X’pa+y’pa+g’xy

xy(p2+q2)+p2q(><§+y2)
PO(X“+y”)

P(*+y’)
pq

p? +q?

z-qy

Z—-qy
X

z [—Z_qijrxq
X

2 +q°y? —2zqy + 9*x°
2xy[ Y2y

2yz°+20°y3-4zqy*+20°

2yz2>-yz2*+q [2y°+2x°y]+q [-4zy*+qzy’]-2x%q

yz*+gPy[2y*+2x°]-32y°q-2x°q

X%y

_ [ yz-ayt+xg
X

yz*-qzy*+zx°q

0

= 0.

Derive the equation of the Characteristic strip

Proof

Let p(x,y,z) be a point on the curve c. Let (x+dx,y+dy,z+dz) lies on the tangent plane

to the elementary cone at p, if

dz

pdx+qdy

Where p,q, satisfies the relation.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

250



F(xy,z,p,q) =0

Diff. (1) w.r.to p we get,

0 = P dx + da dy
dp dp
0 = dx+d—qdy
d
dq
—ady = —dx
dp d
4 —dx
dp dy

Diff. (2) w.r.top

oF oFdg _
op 04qdp
oF OF [ —dx .
=>—+t—|—F = 0 using (3
op 8q[:dy J [using (3)]
:FﬁF{%%j: 0
dx
=>F, = q,@
= Fpdy = Fq dx
j%:ﬂ _ pdx + qdy
» F pF, + pF,
dx dy dz
- —=— =
o F pF, + gk,

This shows that x'(t), y'(t) and z'(t) are proportional to Fp, Fq and pFp+qF,

, opdx opd
Now, p't) = a—sa+5pd—i/
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ap ' ap ]
= X(O+—y'(1)
oy’
' ap p
P'(®) F+—F, . @)
ay q
Diff. (2) para. w.r.to x, we get,
oF oF oz Lok oF ap oF a9 _
OX 0L OXx Op dx aq X
=>F+Fp+F, ap+Fq 4 _ 0
P Ox OX
&P, P
F,—+F = —(F+pF
= p ax q 8X ( X + p Z)
=F, 6p+F » = —(F,+pF) Lo _aq
Tox Ty oy OX
p'(t) = '[Fx+sz] [by (4)]
|[[rly We can prove, that
q®) = -(Fy+qF)

=~ The required equation for the determination of the characteristic strip are

x@) = Fq

y(t) = Fq

z(t) = PFo*+aFq
P = -[FetpF]
qe = -[FytaF]

These equations are known as characteristic equation of the diff equation F(x,y,z,p,q) =0
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Charpit’s method

Charpit’s method is the most general method of solving a P.D.E of the first order. Let
f(x,y,z,p,q) =0 ...... (1) be the given equation.

If we know an equation of the form. g(x,y,z,p,q) =0 ...... (2). Which is compatible
with (1), then solving (1) and (2) for p and g, we get,

p=oxya), q=vXy.z2)

dz = pdx+qdy
We can get the soln of the given diff equ (1).
Charpit’s method aims at getting an equation of the form (2) with a constant a.
(ile) gixy.zpaa) = o (3)
So that (1) and (3) are compatible
Since (1) and (3) are compatible. We get

[f.a]l = 0

a(.9), af,g) af.9)  a(f g

= 0
o(x, p) o(z,p) o(y,q) o(z,q)
(fx9p-fo0) +p(f29p-Fo02) + (fy9q-fo0y) +a(F04-T4-02) = 0
fo0x-Tqy-(pFo+afe) g+ (f+pf) 9o+ (fy+af,) gq = o ... 4)

For the determination of g

We know that the soln of (4) is same as the soln of Lagrange’s auxillary equation.

dx dy dz dp dq

- - = (5)
f, o f,  pf,+df, —(f,+pf,) —(f, +df,)

Solving the equation (5) we get p and q in the form p = ¢(X,,y,z,a), ¢ = y(X,y,z,a) use
the value of pand g in

dz = pdx+qdy

Integrating we get soln of given equation as,
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F(x,y,z,ab) = 0

The solution involves two constants a and b, it is a complete solution of the given
equation.

Note:

The equation (5) given above are known as Charpit’s equation. We need not solve all
the equation in (5).

We may choose those equation which convent give the values of p and g.
1. Find the complete integral of the equation (p*+g%)y = qz by Charpit’s method.

Solution:

Let f = (p°+q°)y-qz

f, = pq f, = 2qyz
fZ = _q1

We have, the Charpit’s equation as

dx dy dz dp dq

f, f, pf, +af, —(f, +pf,) - (f, +df,)

dx  dy dz 3 dp _ dq
2py  2qy-z  2p’y+q(2qgy-z) —[0+p(-a)] -[p*+d®+a(-q)]

dx dy dz _dp dg

2py  2qy-z -2p’y+2q’y-qz pq -p?-q’+q’

d _ dq
P -p’
pdp = -q.dq
fpdp = -fq. dp
2 2
_p 4 .a
2 2 2
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Sub in the given equation

Py = qz
ay = 0z
a
q = ay
z
p4q° = a
P = g+
a2 2
pPo= a- Zﬁ’
) _ azZ _a2y2
p - 22
/azzazyz
p = T
dz = p dx+ q. dy
2~2,,2
= az—?)/dx+ﬂdy
z z
zdz = Jaz® —a’y?dx +ay.dy
zdz —aydy = az’ —a’y?dx
zdz—aydy _ dx
/azz _a?y?
2a zdz-aydy _ dx
2a /azz —a’y?
942
2azdz —2a“ydy _ 2. dx

2\Jaz® —a’y?
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_ 2
J.Zazdz 2a“ydy _ a J- dx
2\Jaz* —a’y?

(i.e)J‘dqlazz—azy2 = a.jdx
= Jaz’ -a’y® = ax+b

= az?-a’%y? = (ax+b)?

=X az®? = a’y*+(ax+b)?

2. Find the complete integral of the equation p>x+q% = z by Charpit’s method.

Solution:
f=  pxyz
fy = p’
fy - o’
f, = -1
fo = 2px
fq = 2py

The auxillary equations are

dx dy dz dp dg

f, f, pf, +af, —(f, +pf,) - (f, +df,)

(i) dx _ dy _ dz _ dp _ dq
2px  2py  p2px+02qy —(p*+p(-1)) -(a*+q(-D)
dx _ dy _ dz _ dp _ dq
2px  2qy  2(p*x+q’y) p-p° g-¢°
p2dx + 2 pxdp B q°dy + 2qy.dg
p?(2px) +2px(p—p?) q(2qy) +2qy(q-9°)
pZdx + 2 pxdp B q°dy + 2qy.dq
2p°x+2p°x—2p°x 29°y +29%y —29°y
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p2dx + 2 pxdp
2p°x

I pZdx + 2 pxdp
p’x
log (p*x)
log (p*x)
= pX
Given equ is p’x+g°y
o’ya+ g’y

q’y(1+a)

pX

Sub in the equation

dz

q°dy + 2qy.dq
29%y

qudy+2qy dq

log(g”y) + log a
log (q%y)a
2
Z
Z

z

y(l+a)

1
Ji+a

q’ya

y0:+a)y

az
(1+a)

az
X(l+a)

L\ﬁ
a+1\x

p dx +qdy

g°ya, where ais constant.
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Re= =S

dz = ‘/i\/zdx+ ! \/zdy
1+a\x vi+a\y

dz a .o 1 =
— = —(X) 2 dx+ 2d
7 1+a() ra(y) y
;1 a 1 -1
z)2dz = — | (X)2dx + 2d
[@ ,/1+aj() J_j(y) y
_—l+1 _—1+l _—1+l
z? 3 / a x? 1 y? b
-+ 1+a_21 g Vlvazl
1 1 1
z? a x? 1 y?
— = ,/——+ —+b
1 l+al Ji+a 1
2 2 2
Jio= Jax + \N +b
Ja+l +a+1
Ja+)vz = Vax +.fy +b

Which is the complete integral.
Special types of First order Equations.

Consider some special types of first-order para. diff. equation whose solutions may be
obtained easily by Charpit’s method.

Type I.

Equations involving only p and q

(i.e) The equations of the type f(p, 9g=0 ... (1)
Charpit’s equations reduces to
dx_dy_d _dp_dq
f,f, pf, +qf, O 0
The solution of this equation is
p=a 2)
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The corresponding value of g being obtained from (1) in the form

fa,q) = o (1)
So that g = Q(a) a constant
=~ The solution of the equation is

z = ax+op(a)y+b

Problem:

1. Find the complete integral of the equ pg =1

Solution:
Givenpg=1
putp=a
1
q = -
p
- 1
a
1
q = -
a

= The complete soln is

1
z = ax+—y+b
a
, _ a’x+y+ab
a
az = a’x+y+ab Where a and be are constant.

2. Find the complete integral of the equ p+q = pqg.

Solution:
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Given p+q =pq

This is of the form f(p, ) =0

putp=a
atq = aq
a = aq-q
q(a-1) = a
- e
1 a-1
= ¢(a)
The complete soln is
a
z = ax+——y+b
a-1
Type Il
Equation not involving the independent variables
(ie)f(zpa) = 0
The Charpit’s equation take the forms.
dx _ dy _ dz  dp  dg
f, f, pf, +af, —pf, —qf,
dp _ dg
- pfz - qu
[
p q
logp = log g+log a
= Y = aq
Solving (1) and (2) we get p and q.
Problem:

1. Find the complete integral of the equation p°z*+q* =1
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Solution:
Given p?Z%+g?=1 (1)

This is of the form f(z,p,q) =0

. putp=ga
2 (1) = P+ = 1
?(1+a’z®) = 1
1
2
= =
f 1+a%z®
I
VJi1+a?z?
1
7% + = 1
P 1+a%z?
1
2.2
Z = 1-
P 1+a?z?
_ 1+a’z’ -1
1+a%z?
p222 ~ aZZZ
1+a%z?
p? = a’
h 1+a?z?

1

p = -
Vi1+a?z?
We have
dz = pdx+qdy

= a dx + !

dy
VJ1+a?z? VJ1+a?z?
=+1+a’z°dz=  adx+dy
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2. Solve z = p*-¢°
Solution:
Given z = p*-¢°

This is of the form f(z,p,q) =0

putp =aq
7 - azqz_qz
= (@1
2 _ VA
d - a’-1
Jz
q = -
a -1
p = aq
= aﬁ
a®-1
We have dz = pdx+qdy
av'z Jz
dz = dx + dy
va® -1 a’-1
dz 1
— = adx +dy
Jz a’ —1[ ]
: {
z2dz= adx + dy
J e
-1
2

= ! [ax +y +b]

T Ja?-1
2

2Na? -1z = (ax+y+b)

4z7(a’-1) = (ax+y+b)?
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3. Solve zpg =pq

Solution:

Given zpq = p+q

This is of the form f(z,p,q) =0

putp=ga

We have

[ing

4. Solve Z2(1+p*+q?) = 1

Solution:

qa+q
qa+q

q(a+1)

(a+1)
za

a.q

(a+1)
za

a.

a+1

z
p.dx+g.dy

a+1dx+a+1dy
V4 az

(@a+1) {dx+1dy}
a

(a+1){x+i}+b
ay

2(a+1)[x+lj+b
a
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This is of the form f(z,p,q) =0

put p = ga

2°(1+q'a™+q?) =

1+g%a’+q° =

q2a? + g _

q°(1+a®)

We have,

dz =

z
1-22

dz =

-2z

—2\1-17°

dz=

pdx+q.dy

aVl-z2° 1-272
— dx + dy
Z\l+a? zA/1+a?
1
1+a’

[adx + dy]

+

1

— [adx + dy]
+

QD

[adx + dy]

1
vJ1+a?
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—J1-27%41+a% =

(1-2%) (1+a%) =

Type 11

Separable Equations

A first order partial differential equation is said to be separable, if it can be written in

the form

f(x.,p) = a(y, q)

=~ The Charpit’s equation becomes

%_ dy dz _dp _ dg
f, -9, pf,-ag, -f, -9,
dx dp

f, - f,

% = L = 0

dx f

We have an ordinary diff. equ in x and p
Writing this equation in the form

fidptfhde = 0
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d[f(x,p)] = 0
~Itissolnis f(x,p) =a
Hence we determine p, g from the relation
fx,p)=a,9(y.q)=a
1. Find the complete integral of the equation p%y(1+x?) = qx*
Solution:

Given p?y(1+x%) = qx*

_pa+x) g

XZ

<

put f(x, p) = g(y, q) = a

2 2
‘-‘L-:X) — a2 ﬂ = a2
X y
2 a’x’ _ 2
= p = 1t X2 = q = ya
ax
= p =

The soln is gn by the equation

dz = pdx+qdy

dz = X dx +a’y.dy

V1+x?
ax
dz = a.————a’y.dy
2V1+ x?

dz = a(d\/1+ x? )+ a’y.dy

[ing

Idz = a_[d\/l+ x? +a2Iy.dy
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z = avl+x? +a2%+b

2. Solve p?q(x*+y?) = p°+q

Solution:

Given pig(x*+y’) = p’+q
pPox’+piay’ = pi+g
=>x*+y* = E+—2

(i.e) xz—i2 = 1—y2

q

This is of the form f(x, p) = g(y, q)

X2 _iz _ a2, iz_yz _ %
p q
= X2 —a2 = i, i = y2 + a2
p’ q’
2 _ 1 2 _ 1
P - x?—a?’ a y? +a?
p = L q = L
x2_a? y? +a?
dz = pdx+qdy
G - LIV

[ing

3. p2q2+x2y2 - XZaZ(X2+yZ)

Solution:
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Given p’g+x%y’ = X°q* (X +Y’)

+ by X*q?
2 2
%+Z—2 = X2 +y?
2 2
= %—xz = yz—(:/—z

p2 y2
- %2 _ az, yz_q_2 _ a2
2 2
:>p—2 = a?+x2, y—2 = y?-a’
X q
2 2,2 y?
> P = XE). ¢ =
y-—a
= p = xwa’+x*, q - y
yz_az
Consider the relation
dz = pdx+qdy
dz = xva’ +x? dx+¢.dy
2 2
y“—a
[ing
1 > - 1 2y
Idz = EIZX\/& + X +E.|.ﬁdy
Jy:—a
1 -1
Z = l( +X ) _<y2_a2)2 +b
2 3 2 1
2 2
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4. p2+q2 - X2+y2
Solution:
Given p%-x? = y*-g°

This is of the form f(x, p) = g(y, q)

PP = & y-f = @

PP = ad ¢ =y

p = a’ —x’ qa = y*-a*
dz = pdx+q.dy
dz = \/a2+x2dx+\/y2+a2dy

jdz = J'\/a2+x2dx+jw/y2+a2dy
= %x\/az + X2 +%azsin hl[ﬁ)jtéy y? +a’ +%azsinh1(lj+b
a

a

5. Solve px=qy
Solution:
Given px = qy
pX = a, qy = a
p = - q = -
X
dz = pdx+qdy
dz = 2 ax + Edy
X y
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z = a logx + alogy + logb
z = a(logx + logy)+b
z = a(logxy)+b

Type IV

Clairaut Equations

A given diff. equation of the form z

equation
fx = p fo = x+fp
fy = q fq = y+fq
f, = -1.

(i.e) F = px+qy+f(p,q)-z

= The corresponding Charpit’s equations are
Codx o dy dz dp B dq
f, -9, pf,+ag, -[f,+pf]  [f, +of.]

p

dx dy dz dp

dq

Cx+f, oy f, px+f)ra(y+f)  —{p+p(D}  —[a+q(-D)]

% _  d
0 0
=dp = 0 dq = 0
=p = a =0q = b

Where a and b are constants
Sub p = a, g = b in the Clairaut equation (1)
We get,

Z = ax+by+f(a,b)

px+qy+f(p,q) is called the clariaut

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



1. Find the complete integral of the equation (p+q) (z-px-qy) = 1
Solution:

Given (p+q) (z-px-qy) = 1

=Z-pX—qy =
P+q
z = pX + qy +
P+q
=~ The complete integral is
z = ax+by+ 1
a+b
2. Solve pgz = p?(xq+p?)+9(yp+q°)
Solution:
Given pqz = p(xa+p’)+q*(yp+’)
+ by pg
= 7z = Pigrp)+diyp+q?)
g P
3 3
z = pX Py qy+ a
q P
3 3
- z = pX + qy + L I
qa p
4 4
(ie) z - pxegyr 24
Pq
This is of z = px+qy+f(p,q) Clairaut’s type
=~ The complete soln is
a‘+b*

z = ax+by+
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Solutions Satisfying Given Conditions
Consider the determination of surfaces which satisfy the partial differential equation

Fxyzpa) = o (1)

and which satisfy some other condition such as passing through a given curve or
circumscribing a given surface.

The solution of (1) which passes through a given curve ¢ which has parametric
equations,

x=x@).yt),z=2z¢) (2)
t being a parameter.
If there is an integral surface of the equation (1) through the curve c, then it is
a) A particular case of the complete integral
f(x,y,z,ab) = o 3)
obtained by giving a or be particular values.
(or)

b) A particular case of the general integral corresponding to (3) ie, the envelope of a
one-parameter subsystem of (3) or.

c) The envelope of the two parameter system (3)

The points of intersection of the surface (3) and the curve ¢ are determined in terms of
the parameter t, by the equation.

f{x(®).y().z().ab} = o (4)
and the condition that the curve c should touch the surface (3) is that the equation (4) must
have two equal roots or the equation (4) and the equation

% fix®), y@).z(t),ab} = o (5)

should have a common root.

The condition for this to be so is the eliminant of t from (4) and (5)

v (a,b) = o (6)
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Which is a relation between a and b alone
The equation (6) may be factoried into a set of equaions,

b =o1(a), b=0oya),..... (7)

each of which defines a sub system of one parameter. The envelope of each of these one-
parameter subsystem is a solution of the problem.

Jacobi’s method

Solving the partial differential equation F(x,y,z,p,q) =0 .....(1) depends on the
fact that, if u (x,y,z) = 0 ..... (2) is a relation between X,y and z, then p:_ul y e (3)
u3

q=—"2  where ui denotes a—u(i =12,3).
U, OX

If we substitute from equations (3) into the equation (1) we obtain a partial differential
equation of the type

f {X,y,z,u1,Uz,Us} = 0 “4)

in which the new dependent variable u does not appear.

izZXUI, i—zyuga _:_ZZUS
ou, ) U,
of
of _ 02, a2 i:usz
OX oy 0z

The auxillary equations are,

dx dy dz du, du, du,

fu, fu, fu, —-fx —fy —1f

dx dy dz du, du, du,
= = = = > > >
2ux 22U,y —2u;z —u”  —u,”  —U,

Taking ax_ _ du12
2u, X —u,
dx du,
j— _ =
2% —u,
[ing
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dx J- du1

2x "
= logx = -2log u;tlog a
= log x+2logu; = loga
= logx+logu,’® = loga
= logxu,”® = loga
xu,” = a
1
a2
Ul = ;
Taking dy du22
2u,y u,
N dy _ du,
2y —-u,
[ing
J‘ﬂ _ _ ZJ' dU2
y —u,
logy +logu,’ = logh
log yu,” = logbh
2
= yu,” = b

1

.

The fundamental idea of Jacobi’s is the introduction of two further partial differential

equations of the first order.

g(x,y,z,us,uz,uz,a) =0, h (X,y,z,us,uz,us,b) =0

involving two arbitrary constants a and b such that,
a) Equations (4) and (5) can be solved for uy,up,us
b) The equation du = u;dx+u,dy+usdz

obtained from these values of uj,u,,us is integrable.

The linear partial differential equation
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9, Y, B Ny N N (7)
OX oy oz ou, au, Ou,
Which has subsidiary equations,
9_%9 _9 _ 9 _9_®d@ o )
fu, fu, fu, -f&x -fy -1
The procedure is the same as charpit’s method.
Solve p?x+g?y = z, using Jocobi method.
Given pXx+q’y = z (1)
—u -u
p = 1 , q = 2
u3 u3
2 U12 2 _ U22
p = — q = —
u3 u3
2 2
Q= u—12x+uizy = z
u3 u3
= U X+U,’y—zu,’ = 0
zu,’ = xu,” + yu,’
2 a+b
u — [
: 2
! B (a+bj2
’ 2
du = updx+u,dy+usdz

1 1 1
du = (ijzdx+[RJ2dy+(a—+dez
X y z

Idu =

«/EI% dx+«/6j% dy+1/a+bj% dz
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u = Va 2Jx++/b 2|y +a+b 2Jz+c
2\Jax + 2,/by +2,/(a+b)z +c

Partial Differential equations of the second order

u

1. The origin of second-order Equations
Suppose that the function z is given by an expression of the type
z = f(w+gv)+w (1)

Where f and g are arbitrary functions of u and v respectively and u,v,w are the
functions of x and y.

2 2 2
Then p=%,q - %,r N A A 2)
X

Differential equations (1) parameter w.r.to. x and y.

Z U IOy W,

OX

@ f'(uu, +g'(V)v, +w,
ie) p = Fruu, +9'(Vv, +w,
and ¢ = f'wu, +g'(V)v, +w,

Again Different these equations w.r.to. x and y

2
% = fru’ + f'u)u, +9"(V)Vv,” + 9 V)V, +W,
X
822 " ’ " ’
Xy = f (Wuu, + f'Uu,, +9"(V)v,v, + 9" (V)V,, + W,
822 " 2 ' " 2 '
W = f'(uu,” + f'(wu, +9"(V)v,” +g'(V)v,, +w,
(ie) r = fru)u’ +g'(V)v,” + f'(u)u, +g'(V)v, +Ww,
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S = f'uu,u, +g"V)v,v, + f'U)u, +9'(V)v, +w,,
ro = fru,” +g'W)v,” + ')y, + ' (v)v,, +Ww,
Now we have five equations involving the four arbitrary quantities f',f",g",g".

If we eliminate these four quantities from the five equations,

We obtain the relation.

p-w, u v, O 0
q-w, u, v, 0 0
2 2
r-w, u, VvV, U vV, = o 3)
S—W,, U, VvV, Uuu VvV
2 2
t-w, u, v, u v,

Which involves only the derivatives p,q,r,s,t and known functions of x and y.
=~ It is a partial differential equation of the second order.

If we expand the determinant on the L.H.S of equation (3) in terms of the elements of
the first column, we obtain an equation of the form.

Ri+Ss+Ti+Pp+Qq = w 4)
=~ The relation (1) is a solution of the second - order linear partial differential equation
(4).
Solve z = f(x+ay)+g(x-ay), where f and g are arbitrary functions and a is a constant.
Solution:
Given z = f(x+ay)+g(x-ay) . (1)

Differential (1) par. w.r.to. x

@ = f'(x+ay)+g'(x—ay)

OX

aZ 12 ’

— = f'(x+ay)a+g'(x—ay)(-a)
oy

822 ” 14

— = f"(x+ay)+g"(x—ay)

OX
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Yl f"(x+ay)a’ +g"(x—ay)(-a)(-a)

a?[f"(x+ay)+g"(x—ay)]

. 0°z , 0°1
i.e = a’—
(i.e) v
t = a’r

Similar methods apply in the case of higher - order equations. It is shown that any
relation of the type.

;= YW

Where the functions f, are arbitrary and the functions v are known leads to a linear
partial differential equations of the n™ order.

Linear partial differential Equations with constant coefficients

Consider the solution of linear partial differential equations with constant coefficients.
An equation can be written in the form.

F(D,D") = fxyy (1)
Where F(D,D") denotes the differential operator of the type.

F(D,D") = >>c,pos )
. . . 0 , O
in which the quantities C,s are constants and D=—, D'=—

OX oy
The general solution corresponding to the homogeneous linear P.D.E
F(D,D")z = o 3)

is called the complementary function of the equation (1)

|[[rly any solution of the (1) is called a particular solution of (1).

Theorem:
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If u is the complementary function and z;, a particular integral of a linear partial
differential equation then u+z; is a general solution of the equation

Proof
Consider the P.D.E.
F(D,D")z = fxy) (1)

Let u is the complementary function of the given equation.
~FODWu = 0

Also, given z; is a particular integral of (1).
~FDDY)YZ = f(x,y)

=~ The general solution is

F(D,D")u+F(D,D"z, 0+f(x,y)

f(xy)

= U+z; satisfies the equation (1)

(i.e) F(D,D’) (utzy)

= u+z; is the general solution of (1).
Theorem:

If ug,Uy,....,u , are solutions of the homogeneous linear P.D.E F(D,D')z = 0 then

n
Zcrur Is also a solution where the c;'s are arbitrary constants.
r=1

Proof
The given homogeneous linear partial differential equation is
F(D,D')z = o L (1)

Given that ug,uy,...,u, are the solution of (1).

F(D,D") u; 0

F(D,D’) u 0
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F(D.DYu, = 0
Also, F(D,D") ciur = ¢..F(D,D")v,. For any set of functions v,.

Now,

F(D, D')icrur _ Zn:F(D, D')c,u,
=1 =1

= icr F(D,D')u,
r=1

= c1iF(D,D") us+c, F(D,D)uzt....+¢, F(D,D)u,
= 0
Zn:cr u, is the solution of (1)
=}
Note:
The linear differential operator F(D,D") classify into two main types.

(a) F(D,D") is reducible if it can be written as the product of linear factors of the form
D+aD'+b, where a and b are constants.

(b) F(D,D") is irreducible if it cannot be (written as above) decomposed into linear
factors.

Theorem: 3

If the operator F(D,D’) is reducible the order in which the linear factors occur is
unimportant.

Proof

For proving this theorem, First we S.T

(oyD+BD'+y;) (asD+PsD'+ys) = (0sD+BsD'+ys) (o D+BD'+yr)
Now,
(o,D+B,D'+y;) (0sD+PsD'+ys) = o,0sD? +ouBsDD'+0,ysD+B D' D+, B, D+
BrYsD""YrOCsD"'YrBsD""YrYs-
= o 0D+ (0ust+Bros) DD'+B B, D>+
(orystyros) D+(BrystyPs)D'+yeys: eennnn. (1)
Also,
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(0sD+BsD'+ys) (o D+PD'+yr) = o(rOLrDZ +(0(rBs+(XrYS)DDI+BrBsD‘2+
(orystyros) D+(BrystyePs)D'+yreys .eennen. (2)

From (1) and (2) we get
(ouD+B(D'+yr) (0sD+BsD'+ys) = (0sD+BsD'+ys) (owD+BD'+y)

=~ For any reducible operator can be written in the form.
F(D,D) = [[(@D+5.D+7,)

Theorem: 4

If o,D+B,D'+y, is a factor of F(D,D") and (&) is an arbitrary function of the single
variable &, then if o= 0.

u —exp( J(p,(,B X —a,Y) is a solution of the equation F(D,D")z =
Proof
We have,
—7.X
u = exp( 07{4 j(pr(ﬂ X-ay) . (1)

Differential equation (1) w.r.to x

o+ oo (222

oy

r

—-7.X)\, -7,
Du, B, exp (%](0 (Bx—a,y) 06—7/ur ........ 2)

Differential equation (1) w.r.toy

oo, = oo L ay)ea) e (hx- ey
D'u, = exp(_;/rxjgo'(ﬂrx—ary)(—a,) ........ 3)
(2)xa
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abu, =  afen LB x-ay)-ru, e @)
(3) xBr

ADU = —ap exp(l:xjgp'(ﬂrx—ary) ........ 5)
@+0G)=

arﬂr exp(%rwal(ﬂrx_ary)_yrur -

r

’
a.Du, + 5,D'u,

a.pB, exp(‘y 'X}o’(ﬁrx—ary)

al‘
:arDUr'I'BrDIUr = ‘YrUr
=oDu+pD'ut+y Uy = 0
—(D+BD+y)u; = o (6)

From the above theorem, we have

F(D,D) =  [[@D+BD+)
F(D,D)) = {ll[(arD+ﬁrD’+7r)}(arD+ﬂ,D’+}/r)ur ........ %

Combining equations (6) and (7)
FD, D), = 0
=~ Ur is a solution of F(D,D")z =0
Theorem: 5

If B;D'+y; is a factor of F(D,D") and o((&), the if =0,

—7y
B,

u = exp ( j(pr (8. x) is a solution of the equation F(D,D") = 0.

Solution:
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In the decomposition of F(D,D") into linear factors, we get multiple factors of the type
(0uD+BD*+yy)"

(i.e) TP (aD+pD+y)'z = 0

If n = 2, then (o,D+B,D'+y,)’z= o (1)
Let Z = (o, D+BD+y,)z

then (o,D+pD'+y,) z = 0

By the above theorem, it has the solutions,

- exp( z j(or(ﬂx @)

If o= 0

To find the corresponding function z, we have to solve the first order linear partial
differential equations

—7eX

+ﬂray Z_earwr(ﬂrx a)

This is of the form
PptQq = R

_Vr

P=y. Q=B R=-yzte “ ¢, (ﬂrX—ary)

The auxillary equations are

o Ay &
P Q R
- . @ 2)
a, i T
—-7.2+e” o (BX-a.y)
Now, o = dy
al’ ﬂl’
= Bdx = o dy
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= ﬂrIdx: arJ.dy

=BX y+C1

=BX-ony C1

Sub this in the auxillary equation

dx dz

a ’7rx

r _7rz+ear (or(cl)

1 Z+ e?“ier (c,) = g
C(r yr (Dr 1 dX
dz ;%'X
ar& = -y Lt+e ¢r(C1)
—r
dz -7 e « X
— = —rz+— C
dX ar ar ¢r( 1)
dz y 1 dy
—+Lz = —e* c —+P=
dX ar OCr (pr( 1) dX Q
The solutions is yeI P _ .[er P¥dx + ¢
[ pax [ pdx
ze = IQe +C,
J.pdx J.ﬁdx ﬁjdx Try
e = e = en = e”
Ty 1 Try
ze* = Ia—e “ @ (c)e’ dx+c,

r

7y
C

ze% = .[de+c2
o

r
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Yr

267 ijQr (c,)dx+c,
al’
1
= _{¢r (Cl)X+C2}
al’
Try Try 1 “rry
e e” = —{xp,(c,)+c,Je ™
al’
1 TEx
z = —ee)ref”
al"
From (1) and (2) we get
iy
z = Xgpr(ﬂrx_ary)-i_l//r(ﬂrx_ary)ear
Given u, = exp (lry](ﬂr (8.x)
B,
ey Tr
D'ur — ¢r (ﬂr X)e B Br
Ty
ﬁrD’ur = —e” (or(ﬁrx)yr
= =Uryr
~BD'urturyr = 0
BD+y)ur = 0
F(D,D) = [1.D+7)
r=1
F(D,D)u, = [1(B.D +r)(B.D" +7,)y,
r=1
= 0

= Uy Is the solutions of F(D,D") =0

Theorem: 7
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If (B;D'+y,)™ is a factor of F(D,D") and if the functions @1, @r2, ...., om are arbitrary,

r=1

then exp(l'yjz X, (B.X) is a solution of F(D,D")z = 0.

r

F(D,D)=[](a,D+5,D'+7,)"

r=1

The corresponding complementary any function is

o-Sen ox|Sx 0, (5x- )
r=1 r s=1

Theorem: 6

If (ouD+B:D'+yy)" (0w 0) is a factor of F(D,D') and if the functions ¢, .... @n are
arbitrary, then,

exp[_—yr sz X, (B.X—a,y is asolution of F(D,D") and if the functions
ar s=1

Or1,- ..., are arbitrary, then,

exp(_ Ve ij X (B, x—a,y isasolution of F(D,D') = 0.
(24

r s=1
Problem:

Solve the equation

o'z 0%z o'z
it T 2 2~ 2
ox' oy ox-oy

Solutions:

_ o'z 0%z o'z
Given —4+—4 = 2?
x oy ox2dy
0* 0* 0*
= f+ f -2 2 : 2 =0
ox" oy oX oy
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oz 2Y
)
This can be written as,
(D-D%2 = 0
[(D+D) (D-DY]%z = 0
= (D+D"? (D-D")%z = 0
.. The solution is
z = XP1(X-Y)+@2(X-y) +Xy1(X+y) +ya(X+y)

Where the functions @1, @2, 1, W, are arbitrary.

Find the solution of the equation

0%z 0°z
Ty
Solution:
2 2
Given %—% = X—Yy
X

This may be written as

(D*-D?)z = X-y
(i.e) (D-D") (D+D")z = X-y
Xy
The solutionis € 7 > X", (B, X—a,y
r=1
(D-D') (D+D")z = 0

.. The complementary functions is
e’ [o10c+y)+p2(x-Y)]
(i.e)  @u(x+y)+pz(x-y)

Where @1, ¢, are arbitrary
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To find the particular integral

(D-D") (D+D")z = X-y
Take z; = (D+D")z
- (2) = (D-D)z1 = x-y

Which is the first order linear equation

oz, oL,
-+ 1 — X —
oXx 0 Y
Which is of the from P,+Qq = R
The auxillary equations are
*o_ o _ &
P Q R
L, X & dz
1 -1 X—
Take L d
1 -1
[dx = -[ dy
=X = -y+C;
=Xty = C1
u = C1
Also dx—dy _ dz,
1-(-1) X=y
dx—dy dz,
1-(-1) X—y
1
S (X=y)(dx-dy) = dz,
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~fo-nex-a) -

1(x—y)’
2o - w
1
2z, -=(X-yY¥’= ¢ . (5)
4
\Y = Co
Form (4) and (5)
f(uyv) = 0
1 2
:>f(x+y),zl—z(x—y) = 0
1 2
n-(x=y)y = T(x+y)
1 2
z, = Z(x—y) +f(x+y) (6)
Where f is arbitrary,
We may take f =0,
1
Z = Z(X_Y)Z
Sub the value of z; in equation (3)
(D+D")z = Z1
0o 0 1 )
—+—z = —(x-
(6x ayj A
oz oz 1 )
_—— — —(x—
(53] A

This is of the form

Pp+Qq = R.
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Take

dx = dy
[dx = [ dy
SX = y+C3
Xy = C3 (7)
dx dz
1 B 1 2
. X_
4( y)
dx - dz
1,
4"
1
Zc32dx = jdz
Le2fx = d
o Jox [z
C,+-C, X = z
1 2
Z-—(X-y)'x = C, (8)
4
The solution is
f(uv) = 0
1 2
f(x+y,z—z(x—y) xj = 0
1 2
2, -y = f(x-y)
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(i) z = %(x—y)2x+f(x—y)

Takingf=0

The particular integral is
1 2
z =  =Xx(x-
2 (x=-y)

Hence the general solution is

B (ot RS SR RTACER)
Theorem: 8
F(D,D)e™" = F(a,b)e™*?
Proof
We have,
F(D,D) = CD'D*
F(D,D"e™ = CrsD'DS(e™™) (1)
D'(e™"™) = a (e
De™™) = bE™™)
Now,
2CsDD'SE™™) = Ceab(e™™)

F(D,D)(e™*")

F(a,b) ()
Using (1)
Hence the theorem.

Theorem: 9
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FD.D) (€™ ™p(xy) = e”™F(D+aD'+b) g(xy)
Proof
Find a particular integral of the equation.

(D%-D")z

I
N

5
>

To find the P.1 of (D?-D")z = 2y-x?

z = Dzl_D,(Zy—X2
1
= 5oy @y =x7)
DI
2 -1
- Ze-of)
_1 D2 4
= E{ F+7+...1(2y—x2)
-1 -1
= Sy 502
2 2
- _ 2 y _XZy_2 y
2 2
= YRy
= X2y
Note:
When f(x,y) is of the form e®*®¥ . We obtain a particular integral is of the form
————e™" except if it happens that F(a,b) = 0.
F(a.b) p pp (a,b)

Find a P.1 of the equation (D*D")z = e**
Given (D*-D")z = &>

D2-D'

In this case F(D,D’)

a = 2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



F(ab) = 3
~ The P.1 z = %ez“y
F(D,D) = D*-D'
F(ab) = 221
= 3

Find the particular integral of the equation (D*D")z = Acos (Ix+my), where A,Im are
constants

Solution:
Given (D?-D')z = Acos (Ix+my)
To find the particular integral
Let z = €1€0s (Ix+my)+cysin (Ix+my)
Substitute in the given equation
(D%-D") c;cos (Ix+my)+czsin(lx+my) = A cos(Ix+my)-cicos (Ix+my)l> | = Acos(Ix+my)
-cosin(Ix+my)I?+cisin(Ix+my)m

-C2cos(Ix+my)m

Equating the sine term to zero and the cosine term to A

-Col*+eim = o (1)
-c1l?-c,m = A )
To find c; and ¢, by solving (1) and (2)
D) xP=  -cl*+cimlP? = 0
2)xm= -com?*cml* = Am
Co(m?+lh) = Am
o, = —Am
e m? +1*
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Aml?

(1) = ——+Ccm= 0
m2+1*
me, - — Aml?
m? +1*
o - — Al?
! m? +1*
z = cicos(Ix+my)+cosin(Ix+my)

2

- Al Am .
= T cos(lx+my)—wsm(lx+my)

= > A|4 [12 cos(1x + my) |+ msin(ix + my)
m?* +

Equations with variable coefficient
Consider the equation of the type
Rr+Ss+Tt+f(X,y,z,p,q) = o . (1)
Which may be written in the form
L(z)+f(x,y,z,p,q) = o . (2)
Where L is the differential operator defined by the equation.

2 2 2
R62+S 0 +T82
OX Oxoy oy

in which R,S,T, are continuous functions of x and y possessing continuous partial
derivatives of higher order. By a suitable change of the independent variables we S.T any
equation of the type (2) can be reduced to (1) of three canonical forms.

Suppose we change the independent variables from x,y to &, n where & = (x,y) and
n =n(x,y) and we write z(x,y) as &(&,n) then (1) takes the form.

o2& o2& *E
A&, &) T 2B(&x, &, 1%, 1) seon A(SK, &) ot FENSKE) o (4)
Where A(u,v) = Ru?+Suv+Tv L (5)
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and B(u,vy,uz,Vv2 Ru1u2+% S(upvo,Up,v1)+TViVve. (6)

The function F is derived from the given function f. The problem is to determine &and
n so that (4) takes the simplest form when the discriminant S-4RT of the quadratic form (5)
is everywhere either positive, negative or zero we shall discuss these 3 cases.
Case (i)
S?-4RT >0
When this condition is satisfied the roots A, A, of the equations are

Ro+So+T = o (7)

are real and distinct

0°%s 0%s
> and >
on

And the coefficient of in (4) will varnish.

If we choose & and 3 such that,

dk_j 0 an_; on
OX oy OX oy

Let us take & = f1(Xx,y), n=fbkxy) .. (8)

Where f; = ¢; and f, = ¢, are the solutions of the first order ordinary differential
equation.

dy _ dy _

&J,_ ﬂl(x' y)=0, ™ + 4, x,y)=0, .. 9)
In general
AEXEY) Axny)-B*Ex.Eynxmy) =  (4RT-S%) (Bxmy-Eynx) ... (10)

When the A's are zero

B> = (S*-4RT) (Exny-Eynx)
Since S-4RT >0

= B> 0

Equation (1) is reduced to the form,
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o°¢
oén

=p(&,1m,¢,¢X,6Y)

2 2
. z z :
Reduce the equation a—:x2 oz to canonical form.

aXZ ayZ

0%z 0%z
leen —?_:X2 W
X

(i.e)r=x*

(i.e) r-x* = 0
R=1,$=0,T=-x

S%-4RT>0

0-4(1)(-x) = 4x*> 0.

To find the roots

Ro*+So+T = 0
a2 +0-x> = 0
a’-x? = 0
OLZ - X2
o = +X
oL =X, 0 =-X
dy dy
— ,y)=0, ——+A,(X,y)=0
W+Auw m+2uw
= d—y+x:0 ﬂ—x:o
dx dy
= ﬂ:— ﬂ:x
dx dx
dy = -x dx dy = x dx
Idy: —dex Idy: —dex
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=X
Y 2
2
y+—=0C
. X
(ie) S=y+—,
o _2x
oxXx 2
% _y
OX
o
oy
A(uv) =

y=—+¢C,
X2
y_7:C2
X2
and =y-——
n=y 2
on__2x_
OX 2
o _y
oy

RU%+Siv+TV?

R=1,5=0,T=-X

~ A (&x.8y)

B(ug,V1; Uz,V2)

B(Ex.8y:nx.ny)=

Sub in (4)

1.EX2+0-X2Ey?

EX2-X2

0

Ru1u2+% +S(UgVvatuvy)+TViva
1Exnx+0-x"Eyny

X(-x)-x?1.1
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A(nx,
(7 775/)6772

0% e
A &) — (&, &, mx,my) amon
0+—b@&)§2;+0:0
0&on
= — 4x? 0°¢ =0
o&on
:>4x2£f£;:0
o&on
. N0
(o) ale-n)2-=0
z(xy) = &(&m)
4 05 95, o on
X & ox an OX

QR

8_§X+8_§(1_X)
o0&  On

% 4.0

ag o5 ox on

% TEx %y
o ogt

9 2 0°¢ g

of T a2 on
oc o0& ¢ on
o0& oy anew

%.1+%.1
o5 On

2 2
0 24_8 4
0% on?

0%

2

X X
§:y+7,77:y_715_77:—

on
2 ox
82
4( X)
2 0%
8772

2

=F(&n.¢. Q)

2x2
2
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0z 2072 0, .0°¢ 00 0%

x> oy? o& 02 on on?

_ 96 9

- o0& on
PRI S @)
o =Y e

Combining (1) and (2)

o' _ ;(6_4_6_4}

0&on A&-m\o& on
Case (i)

S%-4RT = 0

Here the roots of the equation (7) are equal

Pulting A(&x,&y) and B = 0 and dividing by A(nx,ny) the canonical form of (1) is.

¢
ot o(&n.¢.¢:¢,)

0%z 0%z 0%z

Reduce the equation —-+2 +— =0 to canonical form.
OX oxoy oy

Solution:

. 0’z 0%z 0%z
Given, — +2 +— =
OX oxoy oy
(i.e) r+2s+t = 0

R=1 S=2 T=1

The equation is Ro*+Sa+T = 0
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1.0%42.a0+1 = 0

o’ +20+1 = 0
(a+1)? = 0
o = -1, -1.
dy
—+A4(XYy)= 0
o TR
Yo o
dx
dy 1
dx
dy = dx
fay = [ox
=X = y+C1 HIrly x+y = c;
=Xy = C1
Let ¢& = X-y n = X+y
Ex = 1 nx = 1
&y = -1 ny = L
A(u,v) = RU%+Suv+Tv?
A(EX,EY) = B1.1+2(-1)+1.1

B(up,v1; U, V) =

B(EX,Eymx,my)=

1-2+1

0

Ruju,+ % S(U1V2+U2+V1)+TV1V2

1
1.Exnx+ A 2(Exmy+nx&y)+1gyny

1+1(1-1)+1.(-1)(1)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.

300



= 0.

Amxmy) = Lnx*+2nxny+1.nmy?
= 1.1%42.1.1+1.1
= 1+2+1
= 4.

0°¢ _
(4) = 0+0+4 ot F(EM.C.Ce.8Y)
2
0 g _ 0
on
2
= 0 é; = 0
on
Case (iii)
S2-4RT <0

The roots of equation (7) are complex. To get a real canonical form, we have the
transformation

a = %(ém)

poo- Si-9

and it is shown that

824' ~ l 32§+62§
oson 4\ 0a?  0p?
-~ The canonical form is
o0’¢ 0%¢
7 +8ﬁ2 = w(a B.¢.6q:¢,)

Reduce the equation
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0%1 Ly 0%1

5+ X —2:0 to a canonical form
OX oy
Solution:
2 2
072
Given — + x?2 —=0
X oy
r+x? = 0

R=1,S=0, T=%
The equation is Ro’+So+T

1.02+0+%

We have

dy _
S A(0) =0

dy
ax -
ﬂ:—ix
dx
dy = - ix dx
Idyz—ijxdx
y:—ixg+
5 C
y+ixg:
5 C
xply by-i

1
o

1
o

dy _
DA (0y) =0

dy

dx &
ﬂ=ix
dx

dy = ix dx
Idyzijxdx
y—ixg+c
=Xz,
y—ixz—c

2_ 2
xplybyi
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2 2

X X
—|y+|(—|)7=cl |y—(|)|?:c2
X X
—|y+|(—|)?=cl |y—(|)|?:c2
G G
Take &=1y +— =—ly+—
ake &=1y + > n=-y+ 5
Given that,
1 1.
a—§(§+77) /3—5'(77—5)
g+n=x n-g=-2iy

We have
A (U, v) = Ru? + suv + Tv?
AEX EY) =12+ 0+ X2 i
=32 2

=0.
1
B (u1, v1; Uz, V2) = Ru, up + >

S (U1 Vo + U Vl) + TV Vo

B(EX, Ey; nX, nY) = 1.x.X + 0 + X3(i%) (-i)

=% + 2 (-i2)

AMx, ny) = Lnx* + x*ny?
=2+ (-i)?
— 2oy

=0.
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Sub. in (4)

2
85_0

0+0+2.2x%. =
oéon

2
85_0

4x?, =
oéon

o°s
oéon

ie) 4(£ +7) =0 (1)

z(x,y) =S (o, B)

gzﬁa_a_l_é% 1a=£x2,ﬁ=y
X da ox 0B ox 2

0%z 0°s da  0s
xSy
OX oa“ oX O«

, 0’ 0Os

=X
oa® Oa

& _os da s op

:§.0+§.1
oa op
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0= x2 ds 0% ) o5
oa® 0B°) Oa
,( &%s 0% 0s
X ot — = ——
oa” Opf ox

[x* =2a]

Show how to find a solution containing two arbitrary functions of the equation
s =f (x,y). Hence solve the equation s = 4xy + 1.

Solution:

Givens=1(x,y)

0’1

oy f(xy)
0oz
S5 e
Iing .y

% _['1(x,y).dx+ ()

— = f(x,y).dx+ f(x

3 1
Again integrating

=

O T <

f f(xy) dxdy+j f(x)dy + 1,(9)
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z=[d& [ £(&mdn)+[L0VE+ F(¥)

O ) <

d& [ f(&n)dn+x )+ f,(y)

f(&mdn+a max+ f,(y)

Il
O e <

de

O e <

:jdg f(&n)dn+ f,(x)+ f,(y)

O e <

Givens=4xy +1

fEn)=4&n+1
z:jd §jf(§,n)df7+ f,(x) + f,(y)

(4Sn+1)dn+ f,(x)+ f,(y)

de

O L <
O e <

y

:Idg{fg%m} + 1,00+ f,(y)

0

d&[28y? +yl+ f,(0) + f,(y)

O e <

=[2&y de+[yd &+ .00+ f,(y)

oy {%} LT+ 1,00+ £,09)
=2 y2 + xy + f1(x) = fa(y)

=xy (xy+1) + fa(x) + fa(y).
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