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1. UNIT I

Basic Topology

Definition 1.1 Metric space: A set X(# () whose elements we shall
called points is said to be a metric space if with any two points p,q of X
there is associated a real number d(p, q), called the distance from p to q, such
that

1.d(p,q) >0 ifp #q,
2. d(p,q) = d(q;p) Yp,q€ X,

(p,q) < d(p,r)+d(r,p) Vp,q,r € X (Triangle inequality),
4. d(p,q) =0ifp=gq.

Note 1.2 Any function with these three properties is called a distance func-
tion (or) metric.

Example 1.3 1. R with usual metric d(z,y) = |x — y| is a metric space.
2. The euclidean space R* = {(z1, 12, ..., 1) = Z|x; € R} with usual metric

d(z,9) = 12—y = | (i — )%, 7,5 € RF

Note 1.4 Usually a non-empty set X with a metric d denoted by (X,d) is
called as metric space.

Remark 1.5 FEvery subsetY of a metric space X is a metric space (with the
same metric of) in its own right. For if conditions 1, to 4, of the Definition
1.1 hold for p,q,r € X, then they also hold if you restrict p,q,r to lie in Y.

Definition 1.6 1. (a,b) = {z]|a < x < b}— segment.
2. a,b] = {z|a <z < b}- interval.
3. (a,b] = {x|a < x < b}- Half open interval.
4. [a,b) = {z|a <z < b}- Half open interval.

Definition 1.7 k-cell: If a; < b; i = 1,2,....k then {x = (x1,...,x2)|a <
x; <bj,i=1,2,...,k} is called a k-cell.

Note 1.8 One-cell is a interval. Two cell is a rectangle. Three cell is
cuboid.
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Definition 1.9 Conwvex Set: A set E subset of R* is convex if \x + (1 —
ANy € E whenever z,y € E and 0 < XA < 1.

Definition 1.10 Open ball: If z € R r > 0, the open ball or (closed ball)
B with center at T and radius r is defined to be the set {y € R¥||z — | < r}
or {y e RF||z — g < r}.
i.e., open ball B(Z,r) = {y € R¥||z — g| < r}
closed ball B[z,r] = {7 € R¥| |z — 5| < r}
Lemma 1.11 Balls are convex.

Proof: Let B(z,r) be a open ball and let ¥, z lie in a open ball B.
=ly—z|<rand|z—Z|<r

<A+ (1=XNr=r

= ANy+(1—-x)z—z|<7r

= Ay + (1 — )z lies in the open ball B.
= Every open ball is convex. Similarly every closed ball is convex.

Note 1.12 FEvery k-cell is convex.

Definition 1.13 Neighbourhood of a point: Let X be a metric space.
The neighbourhood a point p is ={q € X|d(p,q) < r} and is denoted by
Ny (p)-

Note 1.14 N,.(p)=(p—r,p+7r) in R.

Definition 1.15 Limit point: Let p € X and E C X. The point p is said

to be the limit point of E, if every neighbourhood of p contains a point q of
E other than p.

Note 1.16 p is a limit point of E. = N,.(p) N E — {p} # 0 Vr > 0.
Example 1.17 A = {0,1,1/2,...}; N,(0) = (=r,r) Vr > 0. By Archime-
dian principle Vr > 0 there exists an +ve integer n such that n-r > 1

=r>1/n

=r>1/n

=0<l1l/n<r

=1/ne€ (—rr)

= A-{0ph)N(=rr)#£0

= (A—-{0})NN,.(0) #£0 Vr >0

=0 is a limit point of A.



Clam: 1 is not a limit point. Consider Ny;u(1) = (1 —1/4,1 +1/4) =
(3/4,5/4). . (3/4,5/4)N(A—{0}) =0 (ie.), Nyyu()N(A={1}) =0 =1
is not a limit point of A. Similarly we can prove that 1/n is not a limit
point ¥n € N. Hence 0 is the only limit point of A.

Definition 1.18 Isolated point: Let X be a metric space and E subset
of X. If a point p € E is not a limit point of E. Then we say that p is
an isolated point of E. In the above example 1,1/2,1/3, ... are the isolated
point of A.

Definition 1.19 Closed set: Let X be a metric space and E C X, E is
said to be closed in X, if every limit point of E is a point of E. In the
previous example A is closed in R since {0} C A.

Definition 1.20 Interior point: Let X be a metric space and E C C. A
point p is an interior point of E. If there exists neighbourhood N(p) such
that N is contained in E (N C E).

Definition 1.21 Open set: Let X be a metric space and E C X. E is said
to be open in X if every point of E is an interior point of E.

Note 1.22 Let E' denote the set of all limit points of E. Let E° denote the
set of all interior points of E.E° C E always. E is closed if E' C E and E
is open if E = E°.

Definition 1.23 Perfect set: Let X be a metric space and E C X.FE is
said to be perfect in X if E is closed and if every point of E is a limit point
of E.

Note 1.24 FE is perfect if E = E'.

Definition 1.25 Complement of a set: Complement of a set is defined
as E°={pe X|p ¢ E}.

Definition 1.26 Bounded Set: Let X be a metric space and E C X. E is
said to be bounded in X if there exists a real number M and a point ¢ € X
such that d(p,q) < M Vp € E.

Definition 1.27 Dense Set: E is dense in X if every point of X is a limit
point of E or a point of E or both. If E is dense in X, then X = E = EUF'.

Example 1.28 @ is dense in R.



4 1. UNITI

Theorem 1.29 FEvery neighbourhood is an open set.

Proof: Consider a neighbourhood N, (p) (neighbourhood of p with radius
r > 0). To prove: N,(p) open. Let ¢ € N,(p). Enough to prove: ¢ is an
interior point of N,. Now ¢ € N,(p) = d(p,q) < r. Let S =r —d(p,q).
Claim: Ngs(q) C N,(p)

r € Ns(q)
=d(r,q) < S=r—d(p,q)
=d(p,q) +d(r,q) <r
=d(p,r)<r
=1 € N.(p)
. Ns C Ni(p)

Hence the claim. That is an interior pt of N,(p). Since ¢ is an arbitrary.
Every point of N,(p) is an interior point. = N, (p) is open. .". Every neigh-
bourhood is open.

Theorem 1.30 If p is a limit point of E. Then every neighbourhood of p
contains infinitely many points of E.

Proof: Suppose there exists a neighbourhood N of p contains only finitely
many points of F.

Let ¢1,q2,...,qn be those points of E in N differ from p. {q1,q2,....,qn €
(NNE —{p}). Let r = min{d(p,q;)|i = 1...n}. Clearly, r > 0. Now the
neighbourhood N, (p) contains no point ¢ of E. such that g # p. Then p is
not a limit point of F which is a contradiction to p is a limit point of E. ..
Every neighbourhood of p contains infinitely many points of F.

Corollary 1.31 Any finite set has no limit point.

Proof: Let X be a metric space and £ C X be a finite set. To prove: E has
no limit points. If p is limit point of E. Then every neighbourhood of p con-
tains infinitely many points of E.(by above theorem) This is a contradiction
to E is a finite set. Hence a finite set has no limit point.

Theorem 1.32 Let {E,} be a (finite or infinite) collection of set E,. Then
(UEa) = N EE.
Proof: Let z € (U Eq)°.

S UEa

<z ¢ By Va

&z e By Va

s ze()E;

A(UE =N ES



Theorem 1.33 A set E is an open iff its complement is closed.

Proof: Let E be an open set. To prove: FE€ is closed. Let ¢ be a limit
point of E¢ = Every neighbourhood of ¢ contains atleast one point p of
E€ such that p # ¢q. = ¢ is not an interior point of E. (.- E is open)
(o NA(g)NES—{q} #0Vr >0 (ie.), No(¢) L EVr >0) = q ¢ E =
q € E°. Since ¢ is arbitrary. E°¢ contains all its limit point. .. E¢ is closed.
Conversely, let E° be closed. To prove: E is open. Let ¢ € E. To prove:
g is an interior point of E. Since ¢ € F = ¢q ¢ E° = ¢ is not a limit
point of E¢. Which implies, there exists neighbourhood of N of ¢ such that
NN(E—{q}) =0 (ie.) NNE°=0(. q¢ E°) = N C E = ¢ is an interior
point of E. Since ¢ is arbitrary. Every point of F is an interior point of
FE. = F is open.

Corollary 1.34 A set F is closed iff its complement is open.
Proof: F' = (F°)¢ is closed. < F° is open. (by previous theorem)

Theorem 1.35 (a) For any collection {Gs} of open sets U, Ga is open

(or) Arbitrary union of open sets is open.

(b) For any collection {F,} of closed sets N\, Fa is closed (or) Arbitrary

intersection of closed sets is closed.

(c) For any finite collection {G1,Ga,...,Gp} of open sets (i, is open (or)

Finite intersection of open sets is open.

(d) For any finite collection {F1, Fs, ..., F,} of closed sets \J;—, F; is closed

(or) Finite union of closed sets is closed.

Proof: (a) To prove: |J,Ga is open where each G, is open. Let p €

Ua Ga = p € G, for some oo = there exists a neighbourhood N of p such

that N C G4 (" Gqisopen) = N C Go C U, Ga = N C U, Ga = p is

an interior point of J, Gn. Since p is arbitrary, every point of |J, G4 is an

interior point. = |J, G4 is open.

(b) To prove: N, Fu is closed where each F,, is closed Va. (i.e.) To prove

(Na Fa)© is open. (N, Fo)¢ = Uy FS. Fo is closed = Ff is open. By (a)

Uq FS is open. = (N, Fa) is open. = N, Fu is closed.

(c) To prove: Ni; G; is open when G; is open Vi = 1,...,n. Let z €
"G = xr € G; Vi =1 ton. For each ¢, there exists a neighbour-

hood N, (z) such that N, (x) C G; Vi = 1,2,...,n(." G; is open). Let

r = min{ry,ra,...,rn} = Ny(x) C Ny(z) Vi = N,.(x) C G; Vi = N,(x) C
", G = x is an interior point of (., G;. Since z is arbitrary, every point

of Ni~; G; is an interior point. .". (i_; G; is open.

(d) To prove: |J,F; is closed when F; is closed Vi. (i.e.) To prove

(UL, F;)¢ is open. (Uijz, Fi)¢ = Uiz, FF. Now, ViF; is closed = Ff is

open. By (c), Niz; FY is open. = (Ui~ F;)¢ is open. = Ui—; F; is closed.

Note 1.36 Arbitrary intersection of open sets need not be open.

Example 1.37 Consider Gy, = (—1/n,1/n) in R with usual metric. = G,
is open Vn. Now, (o2 Gn = Noey(—1/n,1/n) = {0} is not open.

n=1
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Result 1.38 Arbitrary Union of closed sets need not be closed.

Proof: Consider F,, = (—a,—1/n)U(1/n,a) ¥n. (i.e.) ES = (—1/n,1/n)Vn

= F¢ is open = F, is closed Vn. Now, (U2 Fn) = N, FS =
2 1(=1/n,1/n) = {0} is not open in R. = (U F,)¢ is not open in R. =

J F, is not closed in R.

Definition 1.39 If X is a metric space and E C X and if £’ denotes the
set of all limit points of E in X. Then the closure of E is the set E = EUE'.

Theorem 1.40 If X is a metric space and E C X. Then
1. E is closed.

2. E=FE iff E is closed.
3. E C F,V closed set F,, C X such that E C F,.

Proof: (1) To prove:E is closed. (i.e.) To prove E€ is open. Let p € E°
=pcE‘NE°=pcEandpc B (- E=EUFEE®=E°Nn(E))
=p¢ Eand pé¢ E' = p¢ E and p is not a limit point of E

= there exists a neighbourhood N of p such that NN (E — {p}) = 0 and
pEE

= NNE=0...(1)

= every point of N is not a limit point of F (" N is open) = N C E’°.
From (1), NC E°= NC E°NE°=(EUE')=E°= N C E°

= p is an interior point of E¢ = Since p is an arbitrary. .". Every point of
E° is an interior point. = E° is open. = F is closed.

(2) Fisclosed. = E'C E= EUE C E= ECE. But E C E always.
.E=E. Conversely, E=FE=FUFE' = E' C E= F is closed.

B)letpc E=pc EUE =pc Eorpc E' Ifpc E thenp¢c F[-
E C F] Let p € E' = p is a limit point of E = Every neighbourhood of p
contains atleast one point ¢ € E such that ¢ # p = Every neighbourhood
of p contains atleast one point ¢ € F such that ¢ # p['" E C F] = pis a
limit point of F = p € F(". F is closed) = E C F.

Theorem 1.41 Let E be a non-empty set of real numbers, which is bounded
above. Let y =sup E theny € E. Hencey € E if E is closed.

Proof: Let y = sup E. By the definition of supV real h > 0 there exists
XeFsuchthty—-h<z<y=y—h<z<y+hVh>0and
r€FE= Ny(y)NE—{y} #0Vh>0=yis alimit point of F =y € E' C
E=yecE. If Eis closed then F = E. Hence y € E if E is closed.

Note 1.42 Let X be a metric space and Y C X. Then Y itself is a metric
space under the same metric in X.

Definition 1.43 Open relative: Suppose E C Y C X and E is open
relative to Y if Vp € E there exists r, > 0 such that d(p,q) < rp,q € Y =
qe€ E.



Note 1.44 N, (p)NY C E.

Example 1.45 (a,b) C R C R x R. Here segment (a,b) is open in R but
not open in R X R.

Theorem 1.46 Suppose Y C X, a subset E of Y is open relative to Y iff
E =Y NG for some open subset G of X.

Proof: Suppose F is open relative to Y. Then Vp € E there exists r, > 0
such that d(p,q) <rp,q €Y =>qge€ E...... (1)

Let V, = {q € X|d(p,q) < rp} = V), is neighbourhood in X =V}, is open in
X. Let G = Upep Vp = G is open in X {Arbitrarty | of open set is open}.
Claim: E=Y NG. Let pe E = p eV, (. V, is neighbourhood of p) and
peV (- ECY)=peV,CcUV,=Gand
peY=peGNY=ECGNY.... (2)
LetgeYNG=qgeGandqgeY =qg€lUppVpandgeY = qeV, for
some p € Fand g € Y = d(p,q) < rp and ¢ € Y for some p = g € E (by
(1)) =YNGCE...[(3)

By (2) and (3), E = y N G. Conversely, suppose E = GNY for some open
set G in X. To prove: E C Y is open relativeto Y. Let p€ E = p e GNY
for some open set Gin X. = pcY andpe G=pcY and V, C G where
Vp is a neighbourhood of pin X = YNV, CY NG = F = FE is open
relative to Y.

Compact Set:

Definition 1.47 Let X be a metric space. By an open cover of a set E in
X we mean a collection {Gy} of open sets in X such that

Ec|JGa.

Example 1.48 Consider the collection, I = {(—n,n)|n € N} is a family
of open sets in R clearly I is an open cover for R.

Definition 1.49 A subset K of metric space X is said to be compact, if
every open cover of K contains a finite subcover (or) A set K is compact in
X and
K c|JGa Ga
«

is open in X, which implies, there exists oy, ao, ...,y such that
n
K c | Ga,.
i=1

Result 1.50 Let X be a metric space. Let A = {X1, Xo,..., X} be a finite
set in X. Clearly A is compact.
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Theorem 1.51 Suppose K CY C X. Then, K is compact relative to X iff
K is compact relative to Y.
Proof: Suppose K is compact relative to X. To prove: K is compact
relative to Y. Let {V,} be collection of open set in ¥ and K C U, Va-
Now V,, is open in Y = there exists an open set G, in X such that V, =
GoNY Va. Now K C U, Vo= K C U, (GaNY)= K C (U,Ga)NY =
K cU,Ga. Gy isopenin X. Since K is compact relation to X, there exists
a1, a2, ..., ay such that K C Ui Go,. Now KNY C (UL Go,)NY = K C
PGy, NY) = K C UL Vo, = K is compact relative to Y. Conversely,
suppose K is compact relative to Y. To prove: K is compact relative to X.
Let {G,} be collection of open set in X. Now, K C |J,Go = KNY C
(UaGa)NY = K C U, (GaNY) where V, =G, NY = K C U, Vo [Va
is open in Y]. Since K is compact relative to Y, there exists a1, ag, ..., ap
such that K € ULy Vo, = UL (Go, NY) (ie)) K CUL; Gy, NY = K C
Uiz Go, = K is compact relative to X.

Theorem 1.52 Compact subsets of a metric are closed.

Proof: Let K be a compact subset of a metric X. To prove: K is closed, it is
enough to prove that K¢ is open. If ¢ € K. Let V; and W, be neighbourhood
of p and ¢ respectively of radius less than d(p,q)/2 = V, N W, = 0 Vq €
K. {Wy|lg € K} is an open cover for K. Since K is compact there exist
q1,92,--,qn € K such that K C Uj—; Wy,. Let W = Ui W,, and V =
Vi UVg,... UV, . Clearly, V is a neighbourhood of p. Also VAW =0 =
VCcWeC K=V C K°= pis an interior point of K¢ = K¢ is open {." p
is arbitrary} = K is closed.

Theorem 1.53 Closed subset of a compact sets are compact.

Proof: Suppose F' C K C X, where F is closed with respect to X and K is
compact. To prove: F' is compact. Let {V,} be an open cover for F'. Now
F' is closed = F°is open. Let Q = {V,} U{F°}. Now, Q is an open cover
for K. As K is compact, there exists an finite subcover ¢ of Q such that ¢
covers K = ¢ covers F' (" FF C K). If F© € ¢ then ¢ — {F} covers F. . F
is compact.

Corollary 1.54 F' is closed and K is compact. Then F'N K is compact.
Proof: Since K is compact subset of a metric space = K is closed. [by
Theorem 1.52] = K NF is closed. [. F is closed] Now FNK C K = FNK
is compact, by Theorem 1.53

Theorem 1.55 If{K,} is a collection of compact subset of a metric set X,
such that the intersection of every finite subcollection of K, is non-empty ,
then (| Ko is non-empty.

Proof: Fix a member K; of {K,} and put G, = K. Assume that no
point of K7 belongs to every K, (i.e.) K1N(N, Ka) =0 = K1 C (NK,)¢ =
Ua K& = U, Ga = K1 C U, Ga. Since {G,} is an open cover for K and K



is compact, there exists a1, ..., ay, such that Ky C UL Go, = (Uizy K5,) =
(N Ka,)© = K1 N (N2 Ka;) = 0. This is a contradiction to the above
hypothesis. .. Our assumption is wrong. .. We have N, K, # 0.

Corollary 1.56 {K,} is a sequences of non-empty compact set such that
K, D Knyi1(n=1,2,...) then N2 K, is non-empty.

Proof: Since K,, D K,+1 Vn. We have every finite intersection of K, is
non-empty. .". by above theorem (72, K, is non-empty.

Theorem 1.57 Bolzono weistras theorem: If E is a finite subset of a
compact set k. Then E has a limit point in K.

Proof: Suppose no point of k is a limit point of £. Then for each ¢ € k
there exists a neighbourhood V; of ¢ such that V;, contains atmost one point
of E namely, q if ¢ € E. Let {V,|q € k} be an open cover for k. Clearly, no
finite subcollection of {V,} covers E and same is true for k. [Since E C k]
This is a contradiction to the fact that &k is compact. .. Our assumption is
wrong. ... F has a limit point in k.

Theorem 1.58 If {I,} is a sequence of intervals in R such that I, D I, 41
n=1,2,... Then o2, I, is non-empty.

Proof: Let I, = [an,by,] n =1,2,... Let E = {a,/n € N} = E is bounded
above by b1 Let = be the least upper bound of E. (i.e.) z = sup E. If m and
n are positive integers, then a, < amin < ¢ < bpyn < by, Vm = x < b, Ym
and a, < <m= ay, <z <by, VYm=1x€ lan, by Vm =2z € I, Ym =
x € Nnly In .. 2 € ;2 is non-empty.

Theorem 1.59 Let k be a the integer {1} is a sequence of k cells such that
In D Iny1 D Into... Thenx € (02, Iy # o.

Proof: Given I, = {Z = (21,72, ...,2) € RFla,; <zj <bpj,j=1,2,...,k
and n=1,2,...}. Given I, D Inyy1 D Inyo... Let I j = [an ;. bn ;] 1 <j<k
and n = 1,2, ... For each j,{I,;} is a sequence of intervals such that I, ; O
Iny1;n=1,234. = oL, I, # 0 for each j (By Theorem 1.58). Let
xj € Npzq In,; for each j =1 to k = for each j, z; € I, ; Vn=1,,2,... Let
T={r1,29, ., xxt €L, Vn=1,2,... =€ I, = N In #0.

Theorem 1.60 Every k-cell is compact.

Proof: I = {Z = {x1,29,...,2; € RF|a; < z; < b}, put S = [2F (b —
ai)Q]%. Now, for each z,y € I, |z — y| < S. To prove: I is compact. Suppose
I is not compact. = There exists an open cover {G,} of I such that it has

no finite subcover for I. Put ¢; = #

Then determine 2% k-cells Q; such that I = 12; Q;. Then atleast one of
these cells Q);, say I; cannot be covered by any finite subcollection of G,.
Proceeding like this we have

(a) I DI DIy D..

. The intervals [a;,b;] and [c;, b;].
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(b) Each I,, is not covered by any finite subcollection of {G,} and

(€) Z,g € In, |7 — 3| < 3

by (a){l,} is a sequence of k-cells such that I, D I,41 D Ipi2..., n =
1,2,... = N>, I, # 0 for each j (By Theorem 1.58) =z €2 [, =T €
I,Vn=1,2..=z¢€G, for some a ['." I, C I C |J, Ga] = There exists a
neighbourhood N, (Z) such that N, () C G4[." G4 is open] = {y| |z — y| <
r} C Gg..... (1)

Since r > 0,8 > 0. There exists a positive integer n such that n-r > § (by
Archimedian principle) = 2" -r >n-r>d=2"-r>0=r>5-2"" =
r> 2% (2)

Let yel, = z—yl < L[ 2e€l,Vn]=|2—y <r=7¢c N(z)=
I, C Ny (Z) C G4 =< (b). .. Our assumption is wrong. .. Every k-cell is
compact.

Theorem 1.61 A set in R* has one of the following three properties then
it has the other two.

(a) E is closed and bounded.

(b) E is compact.

(¢) Every infinite subset of E has a limit point in E.

Proof: (a) = (b) Assume that F is closed and bounded. To prove: E
is compact. Since F is bounded, E C I for some k-cell I. By the above
theorem I is compact. .. E is a closed subset of compact set I. = FE is
compact.

(b) = (c¢) The proof is obvious from, Theorem 1.57.

(¢) = (a) Suppose every infinite subset of £ has a limit point in E. To prove
FE is closed and bounded. Suppose FE is not bounded. = There exists z,, €
such that |z,| >n (n=1,2,...). Let S = {Z||Zn| >n, n=1,2,...}......(%)
Clearly, S is a infinite subset of E and S has no limit points in R¥. Which
implies, S has no limit points in E [.- E C Rk] (Suppose z is a limit point
of S. Then N,(z) contains infinitely many points of S Vy € S. Now,
lly| — |z|]| < |y —z| < r=|y| <|z|+r <m for some integer m = |y| < m
for integer y in S. There exists n > m such that y = z,, € S and |Z,,| < m =
|Zn| <m <n=|z,| <n,x, €S =< to(*¥)..FE is bounded. Suppose E
is not closed. There exists a point Zg in R¥ such that Zy a limit point of E,
but g ¢ E = Every neighbourhood of z( contains a point y of E such that
y # o (i.e.) For n = 1,2,...,N1(Zo) contains a point z, of E, Z, # Zo.
Let S = {Z,]|Z, —Zo| < L n=1,2,..}. . S is infinite. [otherwise |Z, — Zo|
would have a constant positive value for infinitely many n] Also Zg is the
only limit point of S. Suppose there is a point 4 € R¥ such that 4§ # Zo and
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y is a limit point of S. Consider
|y — Zo| = |§ — Tn + Tn, — Zo
< |g_£n’ + |fn - CEO‘
_‘g_i'0| > —’Zj - -fn| - ‘{En _{EO’

é‘jn_g’Z‘g_i'Oy_‘xn_xO‘

Now as |Tg —y| > 0 and 2 € ZT such that there exists an positive integer m
such that m|zg — y| > 2 [By Archimedian principle]
=n|To—y|>2Vn>m
1 _ _ 1
= —|Zo—y|>—Yn>m
2 n

= 1|* y| < 1
on y n

_ _ N N 1

By (1):>\$n—y12\900—y’—;
N 1 N
> \xo—y|—§!xo—y!

NEn — gyl =1 Vn>m.

(i.e.) There exists a neighbourhood ¥ such the neighbourhood contains only
finite number of points of S, it is a contradiction to the assumption that g
is a limit point of S. .. Our assumption is wrong. Hence ¢ is not a limit
point of S. . S has only one limit point Zy in R* and z( is not in F = S
has no limit points in E. (i.e.) S is an infinite subset of E and it has no
limit point in F. =< hypothesis (¢). .. F is closed.

Theorem 1.62 Heine-Borel theorem: Any subset EofR* is closed and
bounded iff E is compact.

Remark 1.63 The Heine-Borel theorem need not be true for any general
metric space.

Example 1.64 Let X be an infinite set. Define a discrete metric d on X,

0 ifp=gq

Let A be any infinite subset of X. To prove: A is closed and bounded.
Clearly, A is bounded in X[ . d(p,q) <1 Vp,q € A]. Let {x} be a subset
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of X. Claim: {z} is open in X. Choose r = 1. Then, N,(z) = {y €
Xld(z,y) < r} ={y € X|d(z,y) < 1} = {z}. But every neighbourhood is
open. .. {x} is open. .. Every singleton set in the discrete metric set is
open. Now, A =J,ca{x}. . Ais open in X. . FEvery subset of X is open
in X = A° subset of X is open in X = A is closed in X . Every subset of a
discrete metric space X is both open and closed. A =J c{z} = {{z}|z €
A} is a open cover for A but it has no finite subcover. . A is not compact.
.. Heine-Borel theorem need not be true for any general metric space.

Theorem 1.65 Weistras theorem: FEvery bounded infinite subset of R*
has a limit point in RF.

Proof: Let E be an infinite subset of R¥ = E C I for some k-cell I C R¥,
But I is compact. By Bolzona Weistras property, £ has a limit point in
I ¢ R*¥ = F has a limit point in R*.

Perfect Set:

Theorem 1.66 Let P be a non-empty perfect set in R¥. Then P is un-
countable.
Proof: Given P is a perfect set in R¥ = P is closed and all the points
of P are the limit point of P = P is infinite = P is either countable or
uncountable. If P is countable then P = {Z,Z2, ..., Zy....}. We construct
the sequence of neighbourhood {V,,} by the method of induction on n. Let
Vi={yeR|gy—7| <r}; Vi ={y € RF|g—2z1] < r}. Obviously,
ViN P # . . Induction true for n = 1. Since every point of P are the
limit points, there exists a neighbourhood V5(9) such that (i) Vo C Vi, (ii)
Z1 ¢ Vo and (iii) Vo N P # ). Suppose V,, has been constructed so that (i)
Vi, C Vo1, (i) #p_1 ¢ Vi, and (iii) V,, N P # (. Suppose every point of P
are the limit points there exists a neighbourhood Vj,41(Zn41) such that (i)
Vie1 C Vi, (ii) Zp, ¢ Viyq and (iii) Ve NP # 0. . by proceeding we have
the {V;,} of neighbourhood. Put K,, = V,, N P Vn....... *
Tp & Voy1r V0 = &, ¢ Kui1 [Kni1 = Va1 N P] = no points of P lies in
1 Koo (1)
Now, K, =V, NnP=K,CcPVn=NK,CK,CP... (2)
From (1) and (2), N K, = 0...... (3)
As Vj, is a subset of R¥ and Vj, is closed and bounded = V,, is compact. Now,
P is closed = V,,N P is closed and V,,N P C V,,. (i.e.) V;,NR¥ is compact[]
and also V,y1 C V, C V= VNP CV,NP = K, C K, Vn.
We have a {K,} of compact such that K,, D K,11. .. by Theorem 1.55,
N K, # 0 =<« to (3). ... Our assumption is wring. .. P is uncountable.

Corollary 1.67 Ewvery [a,b](a < b) is uncountable. In particular, the set of
all real numbers is uncountable.

Proof: We know that, Every closed interval is perfect set in R! = [a, b] is
uncountable = R! is uncountable.
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Definition 1.68 The Cantor Set: Define the cantor set P and show that
1. P in non-empty.
2. P is closed and bounded.
3. P is compact.
4. P is perfect or dense in itself.

5. P contains no segment.

The construction of cantor set: The construction of cantor set shows
that there exists a perfect sets in R! which contains no segment. Let
Ey = [0, 1]. Remove the segment (%, %) from [0, 1] and Let Ey = [0, ]U[2, 1].
Remove the middle 3" of these intervals [0, 1] and [2,1]. Let E; = [0, §] U
(2,31 U (8,21 U [3,1] and each interval is of length = , continuing in this
way, we obtain a sequence of compact sets

(a) EyD E; D Es...

(b) E, is the union of 2" intervals.

(le) E=[0,5]U[&, Z]U..U [37;;3, 37;;2] U [3251, 1] and each of length
37". Let P =,2, En. The set P is called the cantor set.

Step 1: To prove: P # (). Since each FE,, is closed and bounded and also
E, C R! for each n. By Heine-Borel theorem each E,, is compact. ... We
have {E,} of compact sets such that E, D E,t; Vn. By Theorem 1.55,
My En #0= P #0.

Step 2: To prove: P is closed and bounded. Since each FE,, is closed and
bounded. = o2, E, is closed and bounded. = P is closed and bounded.

Step 3: To prove: P is compact. Now, P C R! and P is closed and
bounded. .. By Heine-borel theorem, P is compact.

Step 4: To prove: P is perfect. (i.e.) To prove P is closed and ever point
of P are the limit points of P. By step 2, P is closed. Take z € P =
x e Nory En = X € E, Vn. Let I,, be an interval of E,, which contains z.
[ E, is the union of 2™ closed intervals] Let S be any segment containing
x. Choose n large enough so that I,, C S. Let z,, be an end point of I,, such
that z,, # x = x, P. Since end point of I,, should be the points of P = x is
a limit point of P. [.- SN (P — {x}) # (] Since z is arbitrary, every point P
are the limit points. .". P is perfect.

Step 5: P is perfect = P is uncountable.

Step 6: P contains no segment from the construction of the cantor set. Ob-
viously P does not contain segment of the from (%, 3’;#) ........ (1) where
k,m € Z*. Let (a, ) be any segment and if (a, 8) contains a segment (1)
only if 37™ < 5_%. But P does not contains the segments (1). .. P does
not contains the segments (v, ). Since (a, 3) is arbitrary. ... P contains no

segment.
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Connected Sets:

Definition 1.69 Separated Sets: Any two subsets A and B of a melric
space X are said to be separated if ANB =0 and AN B = (.

Example 1.70 A = (2,3), B = (3,4) and C = (3,4). Then A and B are
separated. A =[2,3]; B =[3,4]; C =[3,4]. Now, ANB =[2,3]N(3,4) =
0;: ANB =[2,3]N[3,4] = 0. . A and B are separated. ANC = [2,3]N[3,4] =
{3} #0 = A and C are not separated.

Remark 1.71 1. Separated Sets are disjoint.

2. Disjoint Sets need not be separated.

Definition 1.72 Connected Sets: A set E C X is said to be connected if
E is not a union of two non-empty separated sets.

Theorem 1.73 A subset E of the real line R' is connected iff it has the
following property. If x € E,y € E and x < z < y then z € E (or) Find all
the connected subsets of the real line.

Proof: Suppose E is connected. To prove: If z,y € F,x < z < y then
x € E[E is an interval] Suppose there exists z,y € E and some z € (z,y)
such that z ¢ E. Then E = A, UB, where A, = EN (—«a,2); B, =
ENn(z,a); A, #0; B, #0 [-z € A, and z € B,]. Now, A, N B, =
0: A,NB, =0. . A,and B, are non-empty separated sets. A, UB, =
(EN(—a,2))U(EN(z,a)) = EN[(—a, 2)U(z,a)] = EN{R—{z2}} = FE [z ¢ E
and £ C R —{z}]. .. E can be expressed as the union of two-non-empty
separated sets. ... E is not connected. This is a contradiction. Hence,
if Ve € F,y € F and * < z < y then z € E. Conversely, Suppose if
Ve EF,ye Fandx <z<y. Thenze E....... (1)

To prove: E is connected. Suppose F is not connected. = E can be expressed
as union of two non-empty separated sets. .. £ = AU B where A and B are
two non-empty separated sets. Choose x € A,y € B such that z < y. Now,
AN[x,y] is a set of real numbers and it is bounded above by y and also has
asupz. (ie) z=sup(AN[r,y]) = 2 € AN[r,y] C A [by Theorem 7]
= 2€A=>2¢B [~AN[z,y] C Al s z=sup(AN[z,y]) = 2> aVa e
AN[z,y]. In particular 2 < z,2<y. But 2¢ B . z2<y .2 <z<Y......
(2)

r € Ax <ythereexists z¢ Br<z<vy. Now,z€ A=z2¢c AUA =
z€Aorze A

Case (i): f z€ A= 2¢ B[ AN B = ()] = There exists a point z such
that 2 < 21 < yand 29 ¢ B. Also 21 ¢ Al 21 ¢ A, © < 21 < y and
21 € (z,y) Clz,y]l = 21 € AN[z,y] .z =sup(AN[z,y]) and 23 > 2z =<«
] m21¢ AUB= 2z ¢ F =< to (1)

Case (ii): If z is not in A and z € A" . z is a limit point of A. Also



15

r <z <yandxy € E. Since z is a limit point of 4,z € A= z¢ B[~
ANB=0,.2¢ Aand 2¢ B=2¢ AUB=E. -.2¢ E =< to (1) ...
From case (i) and (ii) the contradiction shows that E is connected.

Problem 1.74 Let E' be the set of all limit points of the set E. Prove that
E' is closed and also prove that E and E have the same limit points, Do E
and E' always have the same limit point?

Proof: To prove: E’ is closed. Let E” denoted the set of all limit points of
E'. It E” = () then E’ is closed. Suppose E” # (). Let x € E” = x is a limit
point of E’. There exists r > 0 such that N, (z) contains a point Y of E’ such
that Y # E' =Y € E' = Y is a limit point of E. = Every neighbourhood
of Y contains infinitely many points of E. = Every neighbourhood of z
contains infinitely many points if E. = z is a limit point of E. = x € E' -,
E" Cc E' . E' contains all its limit points. E’ in closed. To prove: E and
E' have same limit points. (i.e.) To prove E' = E'. Let z € E' = r is a
limit points of E. There exists » > 0, N,(z) contains points Y of E such
that y # x = Vr > 0, N,(z) contains Y of E such that y # = = z is a limit
point of E. =z € E' - E' C E'....... (1)

Let € E' = z is a limit point of E. = x € E [ E is closed] = z is a
limit point of EU E’ =, x is a limit point of F (or) z is a limit point of
E'=zcFEorxzcE'CE[ Fisclosed =z€FE - E'CE... (2)
From (1) and (2), E' = E’. To prove E and E’ need not have the same limit
point. Let E = {0,1, 3,...}; E' = {0}. Then E has limit point {0} only and
E’ have the no limit point. . £ and E’ need not have the same limit point.

Problem 1.75 Let K C R! consists of numbers 0, %, (n=1,2,...). Prove
that K is compact without using Heine-Borel theorem.

Proof: Let {G,} be an open cover for K. = Now 0 € K = 0 € G,, for
some aj. Since Gy, is open there exists a neighbourhood N(0) C G,
(—€,6) C Gg,- By Archimedian Principle, there exists m € Z* such that
m-e>1:>n~62m-e>1Vn2m:>%<eVn2m:>%€
(—€,€) Vn>m = 0and 2 € Go, Vn > m. There exists ag, ..., oy, such that
% €Gyi=1,2,...m= K ClUL, Gy, .. K is compact.

Problem 1.76 Given an example of an open cover of the segment (0,1)
which has no finite subcover (or) prove that (0,1) are not compact.

Proof: Consider the family of open intervals F = {(H%n,n)\n =1,2,..}.
Clearly F is an open cover for (0,1). (i.e.) (0,1) C US2,(1/1+ n,n). Also
we cannot find any subcollection from F covering (0, 1) .. The open cover
F has no finite subcover for (0,1) = (0,1) is not compact.

Note 1.77 In general (a,b) C R is not compact. Since {(a+%+1, b)ln e Y}

it is an open cover for (a,b) and it has no finite subcover covering (a,b).
. (a,b) is not compact.
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Example 1.78 Prove that: Set of all irrational is uncountable.

Proof: R is uncountable (by Corollary 1.67) and also Q is countable. If
{irrational} is countable. = Q U {irrational} = countable =<« to (1) .".
irrational is uncountable.

Example 1.79 Construct a bounded set of real numbers with exactly 3 limit
points.

Proof: E={1+1 24134 1pec N} CR. It has exactly 3 limit points
namely 1,2,3. Since X < 5 for all z € F = FE is bounded.

Note 1.80 E = {2} U{L + L}m,n € Z*} U {0} C R. It is closed and
bounded subset of R'. . E is compact.

Example 1.81 Let E° denote the set of all interior points of a set E.

(a) Prove that E° is always open.

(b) Prove that E is open iff E = E°.

(c) If G C E and G is open prove that G C E°.

(d) Prove that the complement of E° is the closure of the complement of E°.
(i.e.) E°° = E°. Do E and E always have the same interiors? Do E and
E° always have same closure?

Proof: (a) Prove that E° is open. Let x € E° = x is an interior point of
E. = There exists r > 0 such that N,(z) C E. Claim:N,(z) C E°. Let
y € Ny(z) = There exists S > 0 such that Ng(y) C N,(x) C E.[." Ny (z)
is open] = y € Ng(y) C E = y is an interior point of E. = y € E° =
N,(z) C E° .z is an interior point of E°. Since z is arbitrary. Every point
of E° in an interior point. ', E° is open.

(b) Suppose FE is open. To prove E = E° = E is open. Clearly, E° C E -
Eisopen, E C E°. . E = E°. Conversely: £ = E° = Every point of F is
an interior point of K. = FE is open.

Convergent Sets
Numerical sequence and series:

Definition 1.82 Let X be a metric space. Let F': N — X be a function
defined by f(n) = pn. Then pi,pa, ..., Py is called sequence in X . Determined
by the function F and it is denoted by {p,}.

Definition 1.83 {p,} is said to converge to a point p in X if given € > 0
there exists a positive integer N such that d(py,p) < € Vn > N and we write
Dp —> P aAsS N — 00 Or

lim p, =p

n—0o0

If {pn} does not converge then {p,} diverges.

Definition 1.84 The set of all points {p1,p2,...,pn} is called the range of
the sequence {p,}. The range set is either finite or infinite.
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Definition 1.85 A sequence is said to be bounded. If its range is bounded.

Example 1.86 .

1. Sy ={1} n=1,2,.. Clearly, S, — 0. .. {S,} is a bounded sequences
and the range S, is infinite.

2. {n} is not a convergent sequences. It is a divergent sequence. .. It is

a unbounded sequences. .. range is infinite.
3.5, =1i" n=1,2,.... This is not a convergent sequence. .. It is
a divergent sequence. The range of S, is finite. .. Sequence {S,} is

bounded, range of S, = {1,—1,i, —i}.

Theorem 1.87 Let {p,} be a sequence in a metric space X. Then,

(a) {pn} converges to p € S. p iff every neighbourhood of p contains all but
finitely many of the terms of sequence {py}.

(b) Itpe X,p € X and {p,} converges to p and p’ then p =p/

(c) If {pn} converges then {p,} is bounded.

(d) E C X and if p is limit points of E. Then there is a sequence {p,} in
E such that

p= lim p,.

n—oo
Proof: (a)Suppose {p,} converges to a point p. Let V be a neighbourhood
of p. Since V is open, there exists € > 0, such that N¢(p) C V. Since
{pn} converges to p. Given e > 0 there exists a positive integer N such
that d(pn,p) < € VYn > N. . . p, € N(p) Yn > N = p, € N(p) CV
Yn >N =p, €V Vn >N = V contains all but finitely many terms of
the sequence {p,}. Conversely, every neighbourhood of p contains all but
finitely many points of sequences {p,}. Fix e > 0,V = {q € X|d(p, q) < €}.
Then V is a neighbourhood of p. By assumption, there exists IV such that
pn €V V>N =d(p,p,) <e¥n>N=p, —>p asn— oo.
(b) The limit of a convergent sequence is unique. Let ¢ > 0 be given let
p#p and p, — p and p, — p’. " pp — p, there exists a positive integer
Ni such that d(py,p) < €/2 Vn > Ni. As p, — p’ there exists a positive
integer N such that d(p,,p’) < €/2 Vn > Na; N = ma x {N1, No}. Now,
Vn > N,d(p,p') < d(p,pn) + d(pn,p’) < €/2+ €/2 = €. Since € is arbitrary,
d(p,p) =0=p=p".
(c) Every convergent sequences is bounded sequences. Suppose sequence
{pn} converges to a point p. Then there exists a positive integer N such that
d(pn,p) < 1V¥n > N. Let r = max{d(p1,p),....,d(pn,p),1} = d(pn,p) <7
Vn = The range of sequence {p,} is bounded. = {p,} is bounded.
(d) Given that p is a limit point of the set E. = For each there exists
a neighbourhood Nj/,(p) contains a point p, of E such that p, # p ..
d(ppn,p) < 1/n V¥n. Given e > 0 choose N such that N-e > 1. (i.e.) N > 1/e.
It n > N,d(pn,p) <1/n <1/N <e€.. d(ppp) <e¥Vn>N=p, = p as
n — oo.
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Theorem 1.88 Suppose {S,} and {t,} are complex sequences and

lim s, = s, lim ¢, =t.
n—oo n—o0

Then,
1.
nli_>ngo(sn +1t,) =s+t.
2.
Jgrgo(csn) = cs, nlgngo(c + sn) = ¢+ s for any number c.
3.
nh_}ngo Sptn = st.
4

lim (i) = %(sn #0Vn,s #0).

n—oo" g,

Proof: (1) Given {s,} converges to s. Given e > 0 there exists a pos-
itive integer ny such that |s, —s| < €¢/2 Vn > ny. As {t,} converges
to t. Given e there exists a positive integer ny such that [t, —t] < €/2
Vn > ng. Let N = mazx{ni,na} = |sp+tn —(s+1t)| = |sn—s+tn —t| <
lsn — 8|+ |th —t| <e€/2+€/2=€¢ n>N .. s, +t, > s+tasn— oco.

(2) Given {sy} converges to s. Let € > 0 be given. Then there exists a posi-
tive integer N such that |s, —s| < eVn > N. |[c+ s, — (s+¢)| = |sn — 5| <
e Yn>N. ".c+ s, — c+sasn — oco. Now to prove cs,, — ¢s as n — 0o.
Case (i): ¢ # 0. Given s, — s. Let € > 0 be given. Then there ex-
ists a positive integer N such that |s, —s| < |—Z| Vn > N, |es—n—cs| =
le| [sn — s] <\c[ﬁ:eVn2N. . CSp — €S as n — 00.

Case (ii): If ¢ = 0 then clearly cs,, — cs.

(3) To prove: sut, — st. Let e > 0 be given. Given s, — s = there
exists positive integer ny such that |s, —s| < /e Vn >ny. Ast, >t =
there exists positive integer ng such that |t, —t| < /e VYn > na, N =
max{ni,na}t. .. |(sn—8)(tn —t)] = |sn — 8| [tn —t] < VeSe =€ Vn >
N. . (sp—$8)(t, —t) — 0 as n — oo. Now,

Sptn — st = (sp — $)(tn —t) + s(ty, — t) + t(sp — )

lim spt, — st = lim (s, —s)(t, —t) + lim s(¢, —t) + lim t(s, — s)
n—00 n—00 n—00 n—00

=0 $p—5—0, t,—t—=0, (s, —8)(tn —t) = 0]

oo lim syt = st.
n—oo
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(4) Given that {s,} converges to s. Let ¢ > 0 be given. There exists a
positive integer N7 such that

|5n—s]<’;’Vn2N1

Always |s, — s| > |s| — |sn]

Is] _ _
= 21> Jsn — sl 2 [s] = Jsul

5]

= Bl g s
=[] — o] < 1
2
sl = 2 s,
2

é’;’<]sn\ Vn > N;

2
Now s, — s = There exists a positive integer Ny such that |s, — s| < e%

Vn > Na. Let N = max{Ny, Na}

1 _las
Sn S |sn| s
s 2 E
<e——- =<
Tl 2 <
—eVn>N
1 1
- — — — as n — oQ.
Sn s

Theorem 1.89 1. Supposez™ € R*, (n=1,2,...) and Tp, = {10, @2, -, Ak }-
Then {Z,} converges to & = (a1, g, ...,ax) <

nlgnoloaj’n =aj, 1 <j<k.
2. Suppose {T,},{yn} are sequences in R¥ {B,} is a sequence of real
numbers and T, = T, Y — Y, Bn — B. Then,
lim (Z, +yn) =T+ y and lim B,z, = BzT.
n—oo

n—o0

Proof: (1) Suppose Z,, — Z. Given € > 0 there exists a positive integer
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N such that |z, —Z| <eVn >N

k
= D (ajn—aj)?<eVn>N

= Z:(ozj,n—ozj)2 <éVn>N

k
= (ajn—;)* < Y (ajn—a;)’ <EVn=N

:]aj,n—aj]<eVn2N, 1<5<k
Solim oo, =0 1< <k

n—oo

Conversely, Suppose

lim o, =aj, (1<j<k)

n—o0

Let € > 0 be given, there exists a positive integer N; such that |a;,
¢/Vk ¥n> N;. Let N = maz{Ny, Na, ..., Ny }.

k
= |zn — 2 = | > (ajn — ;)
j=1
k
< z:(e/\/E)2 Vn>N
j=1

< ke /k =Ve
=eVn>N
ep—Z|<eVn>N

(2") — T as n — oo.

(2) Given z,, = z and ¥, = § as n — 00 = Qjn — Qj; Vjm — Vj

UNIT I

—Oéj|<

as n —

oo, 1 < j < k where z,, = (a17n7042,m -uyak,n); Yn = ('71,na’72,na '-‘a'Yk,n)§ x=
(a1, 2,...,01) and § = (1,72, s Vk).- NOW Qjp + Vi — Qj + 7y as n —
00, j=1tok = Zp+y, > T+yasn — oo (by (1)). Given B, — 5,2, =
asn — oo = 3, = f,aj, - oj asn — o0 Vj = Bha, — Baj as

n — oo Vj = Bnx, — BT as n — oco. (by using (1))

Definition 1.90 Subsequences: Given a sequence {p,} consider a {ny}
of positive integers such that ny < na < ng - --. Then the sequence {pn,} s

called a subsequence of {py}

Note 1.91 If {p,,} converges, its limit is called subsequencial limit of {py}.



21

Theorem 1.92 .

1. If {pn} is a sequence in a compact metric space X. Then some subse-
quence of {pn} converges to a point of X.

2. Ewvery bounded sequence in R¥ contains converges subsequence.

Proof: (1)Let E=Range of {p,}.

Case (i): Suppose FE is finite. Then there is a point p in E and a sequence
{n;} with ny < ng < mns--- such that p,, = pn, = --- = p. The subsequence
{pn} so obtained converges to p.

Case (ii): Suppose F is infinite. = FE is an infinite subset of a compact
metric space X. = FE has a limit point p in X. [Theorem 1.57] Choose
n1,d(p,pn,) < 1. Choose ny < nq, such that d(p, pn,) < 1/2. Having chosen
ni,ng, ..., Ni—1, there exists an integer n; > n;_; such that d(p,p,, < 1/7)(.
every neighbourhood of p contains infinite many point of E). Choose € > 0
such that there exists a positive integer N such that eN > 1 (Archimedean
principle) (i.e.) N > 1/e. Then for every ¢ > N, d(p,pn,) < 1/i < 1/N <
eVi>N = {pn,} = p.

(b) Let {p,} be a bounded sequence in R*. = Range of {p,} is bounded.
Range of {py,} is a subset of some K-cell I. As I is compact, by (a) since
I compact, {p,} contains a convergent subsequence in I C R¥. = Every
bounded sequence in R* has a convergence subsequence.

Definition 1.93 Cauchy Sequence: A sequence {p,} in a metric space
X is said it to be a Cauchy sequences, if for every e > 0 there is an integer
N such that d(pn,pm) < € Vn,m > N.

Definition 1.94 Diameter: If E C X and S = {d(a,b)|a,b € E} then the
diameter of E =sup S (i.e.) dia(E) = sup{d(a,b)la,b € E}.

Note 1.95 If {p,} is a sequence in X ,and Ex = {pN,PN+1,...} and py is
a Cauchy sequence in X iff

lim dia(Ex) =0 or dia(Enx) — 0 as N — 0.
N—o0

Theorem 1.96 1. If E is the closure of the set E in a metric space X,
then dia(F) = dia(E).

2. If{kyn} is a sequence of compact sets such that ky, D kpi1, (n=1,2,...)
and if

lim  dia(k,) =0, then n(lk;n

contains exactly one point.
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Proof: (1) Sincg E C E, diameter E < diameter E. Fixe > 0,p,q € E
by the definition of E, these are points p/, ¢’ € E such that d(p,p’) < € and
d(q,q) < e. Now,

d(p,p") +d(p',q') + d(q',p)
dp',q') +e+e
d(p',q') + 2¢

d(p, q)

VANVAN

Since € is arbitrary, d(p,q) < d(p',q') = d(p,q) < d(p',q¢) <sup d(p',q) =
dia(E) = d(p,q) < dia(E) ¥ p,q € E. Taking sup, we get diaE < dia(E). ..
dia(E) = dia(E).

(2)Let K =(,2; K, = K is non-empty. (by Theorem 1.58). To prove:
K contains exactly one point. Suppose K contains more than one point,
then dia(K) > 0. Also K C K,, Vn = 0 < dia(K) < dia(K,) Vn = 0 <
dia(Ky) =0=<«

lim dia(K,) =0

n—oo

.. K contains exactly one point.

Theorem 1.97 A subsequential limit of {p,} in a metric space X form a
closed subset of X.

proof: Let E* be the set of all subsequential limits of {p,} and let ¢ be
a limit point of E*. To prove: ¢ € E* Choose nj so p,, # ¢q. (If no
such ny exists, E* has only one point and there is nothing to prove) Put
S = d(pn,,q). Choose ny > ny such that d(pp,,q) < % and pp, # q(. q is
a limit point). Suppose ny,ne,...,n;—1 are chosen. Since ¢ is a limit point,
there exists & € F* such that d(z,q) < 2. Since € E* there exists an

2’L
n; > n;_1 with

S
d(pn,,z) < of

_8.5_ 5
21 91~ 9i-1
(i.e.) d(pn; ) < 55

= (i.e.) we get a subsequence {py, } of {p,} such that p,, converges to ¢ = ¢
is a subsequential limit of {p,} = ¢ € E*. Since ¢ is arbitrary, E* contains
all its limit points. .. E* is closed.

Theorem 1.98 (a) In any metric space X, every convergent sequences is
a Cauchy sequence.
(b) If X is a compact metric space and if {p,} is a Cauchy sequence in X,
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then {pn} converges to some point of X.

(c) In R¥, every Cauchy sequence converges.

Proof: (a) Let {p,} be a sequence in X such that {p,} converges to p.
Given € < 0 there exists a positive integer N such that (d,,p) < €/2 Vn >
N. Now,Vn,m > N, d(pn,pm) < d(pn,p)+d(p,pm) < €/2+€/2 = eVn,m >
N. . {pn} is Cauchy sequence in X.

(b) Let {pn} be a Cauchy sequence in a compact metric space X. For each
N =1,2,3..., Exn ={p~N,DPN+1,---}. Also {p,} is Cauchy sequence = diam
Ex — 0as N — oo = diam Ey — 0 as N — oo[." diam Ey=diam Ey
by Theorem 1.96]. Now Ey is a closed subset of a compact metric space
X = Ey is compact and also E'N+1 C Ey for each N. By Theorem 1.96,
N2, E, contains exactly one point, p (say) in X. p € Ey for each N. Since
diam Exy — 0 as N — co. Given € > 0 there exists an integer Ny such that
diam Ex < ¢ VN > Ny = d(p,q) < € Vg € Ex YN > Ny. In particular,
d(p,q) < € Yq € En, = d(p,pn) < € ¥n > Ny. .. {pn} converges to a point
in X.

(c) Let {p,} be Cauchy sequence in R¥. Let Exy = {pn,pN+1,...}. Since
{pn} is a Cauchy sequence = diam Exy — 0 as N — oo = diam Ex < 1 for
some N. Let E be the range of the sequence {p,} = E = {p1, p2...on, JUEN.
As Ey is bounded and {p1,p2,...,pn—1} is a finite set. . E' is bounded set
in R¥. = {p,} is bounded in R¥. By Heine-Borel theorem E has a compact
closure in R*. (i.e.) E is compact in R*. = {p,} is a Cauchy sequence in E
and E is compact. By (b), {p,} converges to a point in E C R¥ = Every
Cauchy sequence in R* converges.

Definition 1.99 Complete metric space: A metric space X is said to
be complete metric space if every Cauchy sequence in X converges to a point
in X.

Example 1.100 (i) R¥ is complete.
(ii) Every compact metric space is complete.

Theorem 1.101 FEwvery closed subset E of a complete metric space x is
complete.

Proof: Given that E is closed subset of a complete metric space z. To
prove: E is complete. Let {z,} be a Cauchy Sequence in E = {xz,} is a
Cauchy Sequence in x. Given that x is complete. = {x,} converges to a
point z in . = Every neighbourhood of x contains all but finitely many
terms of {z,}. = Every neighbourhood of x contains a point of {z, } other
than z. [ zp, # 2] = Ny(x) NE — {z} # 0 Vr > 0 = z is a limit point
of E.= x € FE [.FEisclosed] = {x,} converges to x and x € E. . FEis
complete.

Definition 1.102 A sequence {sn} of real numbers is said it to be mono-
tonic increasing if sp, < spy1 (Vn = 1,2,...) and monotonic decreasing if
Sp > Spy1 (Vn=1,2,...).
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Note 1.103 A {s,} is said it to be monotonic if it is monotonic increasing
or monotonic decreasing.

Theorem 1.104 Suppose {s,} is monotonic then the {s,} converges iff it
is bounded.

Proof: Suppose {s,} converges = {s,} is bounded.(by Theorem 1.87)
Conversely, suppose {s,} is bounded. Let E be the range of the sequence
{sn} and Let s is least upper bound of E. For every € > 0, there exists an
integer N such that s —e < sy <s=s—€e<s, <s (Yn>N)(. s, is
monotonic) (If not s — e would be an upper bound) = s—e < s, < s < s+e¢
Vn>N=s—ec<s,<s+e=|s,—s|<eVn>N=s,—sasn— oo

Upper and Lower bounds

Definition 1.105 Let {s,} be a sequence of real numbers with the following
properties

1. For ever real number M, there is an integer N such that s, > M ¥Yn >
N then we write s, — 0.

2. YM, there is an integer N such that s,, < M,¥n > N, then we write
Sp — —0Q.

Definition 1.106 Let s, be a sequence of real numbers, E be the set of
numbers x (in extended real number system such that s,, — x for all sub
sequences {sn, }. The set E contains all subsequential limits defined above,
plus possible, the number o to —a.. Let s* = sup F and s, = inf E.

Theorem 1.107 Let {s,} be a sequence of real numbers. E and s* as
defined above. Then s* has the following properties.

(a) s* € E

(b) If x > s* then there is an integer N such that n > N = s, <z
Moreover s* is the only number with the properties (a) + (b). This result is
true for s, also.

Proof:(a) Case (i): Suppose s* = co. Since sup E = oo, E' is not bounded
above. Then {s,} is not bounded above and there is a subsequence {sy, }
which converges to co. .. 0o is a subsequential limit. Hence oo € E. (i.e.)
s* e B

Case (ii): Suppose s* is real. Then FE is bounded above. .'. atleast one
subsequential limit exists say A\ € E. = F is non-empty. .. £ is a non-
empty set of real numbers and bounded above also s* = sup F = s* € E
[by Theorem 1.41] = s* € E [since by Theorem 1.40 E is closed < E = E|
Case (iii): Suppose s* = —oo = FE contains only one element namely
(—o0) and there is no subsequential limits. = For any real numbers s,, > m
for atmost finite number of values of n. ((i.e.) s, < N Vn > N for some

integer N) so that s, — —o0. .. s* = —oo0 € E -, From all the three cases
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st e k.

(b) Suppose there is a number x > s* such that s,, > = for infinitely many
values of n. = There exists a number y € E such that y > = > s* =<«
to s* is the supremum of £ = s, < z for all n > N; for some integer
N. Uniqueness: Suppose there are two numbers p and ¢ satisfy both (a)
and (b) such that p # ¢q. Without loss of generality p < ¢q. Choose x such
that p < x < ¢. If > p, then by (b) there exists a integer N such that
Sp <x < qV¥n >N = qisnotin E = ¢ cannot satisfy the property (a).

', §* is unique.

Theorem 1.108 If s, <t,Yn > N, N is fized, then

lim inf s, < lim inf ¢, and lim sup s, < lim sup t,.
n—00 n—00 n—o0 n—r00

Proof: Given s, < t, Vn > N = inf s, < t, Vn > N. Therefore
inf s, <t, ¥Yn> N =

lim inf s, < lim inf ¢,
n—oo n—oo

Similarly, s, <t, ¥Yn> N = s, <sup t, Vn> N = sup s, <sup t, =
nh_}rgo sup s, < nh_}ngo sup tp.

Remark 1.109 Sandwitch number: For 0 < z, < s, VYn > N and if

sp — 0 then x, — 0.

Theorem 1.110 Some Special Sequences:
(a) If p > 0 then

(b) If p > 0 then

(¢)

(d) If p > 0, is real then

A Ay 0

(e) If |z| < 1 then

lim z" = 0.
n—oo

1
El/P N

Proof: (a) Given p > 0 there exists an integer N such that N >
i—o\ — | L] <& <efop<o).

nP np

Now,



26 1. UNITI

(b) Case (i): Suppose p > 1. Let z, = ¢/p—1>0[p > 1. .. ¢/p =
lt+a,=p=(14+2,)" =140z, +ne@2 + ..+ 20 =p>1+nz,[. z, >
0]:>p—12nxn:>0§wn§%. Since%—)Oasn—H)oéxn%O
(by the above remark) =

lim z, =0

n—oo
= g, Y =0
= V=1

= (¢/p) = 1 asn — oo.

Case (ii): Suppose p=1. Then ¢/p=1= (¢/p) =1 — 1 asn — oo.
Case (iii): Suppose 0 < p < 1. Now, p < 1 = 1/p > 1. By Case (i)
{L/]?—>1asn—>oo.:%ﬁ—>lasn—>oo.:>{l/i)—>1asn—>oo.
(c)

lim ¥Yn =

n—o0

Let 2, = ¢/n—1>00:n>1)= ¢Yn=14x, =>n=14a,)" =

-1
1+ nxy + nepw2 + .o+ 2% n > neal = n > %x% = 12 < %

Vn>2=0<uz,< ,/% Vn > 2. Now, ,/% as n — oco. By the above
remark x, — 0asn —oo. . ¥/n—1asn — cc.
(d) Let k be any positive integer such that k > «. Let n > 2k,

nin —1
I+p)"=1+np+ (2)192 ot ng PP D"
chkpk
:n(n—l)m(n—(k—l))pk
1.2..-k
nn ., ,..n %
22 2
Z TR P
_ nt oy
= okp?
k .k
N
2k k!
1 <2’sz!
(1+p)n ~nkph
n® <2’%! 1
(1+pn = pk nk-o
n® 2kl 1

=0<

<
() = pF ko

Also nk%—)Oasn—M)o('.'k—oa>0by (a))
By the above remark,
na
lim —— =0
n—00 (1 +p)”
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i>1:>i:1+p,p>0,puta:Oin(d). We have

[] []
—0asn—o0=|z|" >0asn—o0=2"—0asn— .

(e) |z| < 1=

1
(1+p)™
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2. UNIT 1I

Series:
Let

o0
> an
n=1

be a series and let

oo
sn:al—l—ag—f—..—i—an:Zak

n=1

the nth partial sum of the series > a,. we can form a sequence {s,} and
this {sy} is called sequence of partial sum of the series.

Definition 2.1 If {s,} — s as n — oo then we write

S
> an=s
n=1

and the series > a, converges to s. s is called sum of the series.

Note 2.2 1. If {sn} diverges then the series is said to diverge.

2. For convergence we shall consider the series of the form
o
> an
n=0

Theorem 2.3 A series of non-negative term converges iff its partial sum
forms a bounded sequence.

Proof: Suppose Y a, converges. = {s,} converges. = {s,} is bounded.
(Theorem 1.85(c)). Conversely: Suppose {s,} is bounded. Then {s,} is
monotonic increasing = {s,} converges. (Theorem 1.102) = 3 a, con-
verges.

Theorem 2.4 Cauchy’s Criterian: Y a, converges iff Ve > 0, there
exists an integer N such that

m
D ax

k=n

<€ ifm>n>N.

Proof: Let )" a, converges. Let s, = a1 + a2 + ... + a, = {s,} converges.
= {s,} is Cauchy sequence. Given € > 0 there exists an integer N such
that |sy, —sp| <€ Ym>n> N =

m
D a

k=n

<eVm>n> N.
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Conversely, suppose

m
>

k=n

<eV¥Ym>n> N..(1)

for all € > 0 and for some integer N. To prove, > a, converges. (1)=
|$m — sn| < € ¥Ym > mn > N. Every Cauchy sequence converges. = {s,}
converges. = »_ @, CONVerges.

Theorem 2.5 If > a, converges, then

lim a, = 0.
n—0o0

Proof: Given ) a, converges. By Cauchy’s criterian there exists N such
that

m

D ak

k=n
lan| < eVn >N

= a, — 0asn — oo.

< eVm >n > N. Taking m = n,

Note 2.6 Conwverse of the above theorem and need not be true. Consider
{1/n}, 1/n — 0 as n — co. But Y. 1/n diverges.

Theorem 2.7 Comparison test:

(a) If |an| < C, for n > Ny where Ny is some fized integer and if Y. Cy,
converges then Y a, converges.

(b) If ap, > d, >0 ¥Yn > Ny and if Y d, diverges then y a, also diverges.
Proof: (a) Given ) C,, converges. By Cauchy’s criterion. Given ¢ > 0
there exists +ve integer N > Ny such that

m
Zak <eVm>n> N.
k=n

m m m
Now Zak SZ\ak\SZCk<eVm2n2N
k=n k=n k=n

m
. Zak <eVm>n> N.
k=n

.. Y ay, converges.
(b) Given 0 < d,, < a, n > Np. Suppose Y. a, converges. »_ d, converges
by (a) =<« . ..} ay diverges.

Series of non negative terms:
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Theorem 2.8 If0 < x <1 then

> 1
anzl ,le
n=0 -z

then the series diverges.

Proof: Let {s,} be a sequence of partial sum of the series > ™. Suppose
0<x<1

sp=14z+2?+. . . +a" = 11:‘”:. Since "t - 0asn — 0 if 0 <z < 1 (by
Theorem 1.108(e)) = s, — == asn — o0 if 0 <z < 1= Y00 2" = 11
suppose x = 1, s, =n+ 1= {s,} diverges. = {s,} unbounded diverges.
oo™ diverges. Suppose z > 1=2">1=>z">>1 (0<1<zx). ..
>~ 1 is diverges. .. By comparison test. > x™ diverges.

Theorem 2.9 Cauchy’s condensation test: Suppose a1 > as > ... > 0

then the series
o0
> a"
n=1

converges iff
oo
Z QkGQk = a1 + 2a2 + 4a4 + 8ag + ...
k=0

converges.

Proof: Let s, = a1+ a2+ ... + an; tpx = a1 +2a2 + ... + Qka’g.
Case (i): n < 2*

Sn S al + (CLQ + CL3) + ...+ (CLQk + a2k+1 + ...+ a2k+1_1)
<ay +2ag + ... + 2Fan

Case (ii): n < 2F
Sp > a1 +az + (a3 + as) + .. + (age—1,1 + ... + age)
a
> 51 +ag + 2a4 4 ... + 2" Lay

2s, > a1 + 2a9 + 22a4 + ..+ Qka2k =1

From (1) and (2), {s,} and {¢,} are either both bounded or both unbounded.
(i.e.) {sp} is bounded < {t;} is bounded. = 3 a,, converges. < 3 2Fay
converges. (by Theorem 2.3)
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Theorem 2.10 Z = converges if p > 1 and Z P converges z'fp <1.

Proof: {1} isa decreasmg sequence. = + = Vp >0

n = n+1 np 2 (n+1)

Case (i): Suppose p > 0. Consider the series

o [ee] 1
> 2Fay =2k — W
k=0 k=0 2

o

- S
k=0
o

=) ok0-w)
k=0

By Theorem reft16, 3" z* converges if 0 < z < 1, diverges if z > 1. Now,

Z ok(1-p) _ Z(Qlfp)kconverges if p> 1.

k=0
oo
2(21*2’)’“ diverges if p < 1.
k=0

Case (ii): If p < 0 then {1} is an unbounded sequence = {1} diverges.

. >_1/nP diverges if p < 0. .30 5 L converges p > 1. Z diverges p < 1.

Theorem 2.11 Ifp > 1,
> 1

];) n(logn)P

converges and if p < 1 this series diverges.

Proof: {logn} is an increasing sequence. = n(loién)p is a decreasing se-
quence. Consider

S g = L (e

— log 2k (log 2F)P (klog 2)P

1 i 1
(log 2)P = kP

converges if p > 1, diverges of p < 1. [By Theorem 2.10] By Cauchy’s

condensation test,
>

“= n(logn)?
converges if p > 1, diverges of p < 1.

Problem 2.12 Test the converges of the series
> 1

D,

=, n(logn) - log(logn)”
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Proof: {nlogn log(logn)} is an increasing sequence. = {

}
TLlOgTL 10g(10g’l’b)

(0.9} o 1
> 2ap =" 2"
k k k
= = 2Flog2¥log(log2¥)
_ f: 1
= klog2log(klog2)
- 1

- log 2 kz:% klog(klog2)

Now

log2 <1
= klog2<kk>0
= log(klog2) < logk
= klog(klog2) < k(log k)
1
~ Tlog(klog2) ~ klogh

> 1 =1
= D Y ——
kz:; klog(klog2) kz:; klogk
By previous problem put p = 12@ diverges. By comparison test
1 . 1 1 . :
> Flog(kTog2) diverges = oz > Flogklogd)" - - By condensation test, the
given sequence diverges.

Definition 2.13 e =1+ §;+ 5+ 3 + ... = > .

Note 2.14 The above definition is well defined.
Proof: Now e =Y 1/n!l. Let

"l 1 1
sn=’;ﬁ:1+ﬂ+...+a

1 1 1 1
<1+§+§+§+...+F

1 1 1 1
<1+§+§+?+...+27n+...
=1+ L
- 1

l=3

1
:1+T:1+2

2
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. {sn} is a bounded sequence. Since {s,} is monotonic increasing and
bounded, {s,} is converges. = > % converges. .'. e is well defined.

Theorem 2.15

. 1., 1 1 1
dim (L4 =) = e Let sy =14 534 57+ 4 .
Proof: Let
1
1 nn-1)1 nnh-1)n-2)1
:1 . —_— PR
B e I N
nn—1)---2-11
172n nn
(1-4) 1(1-5H(1-2)
=141 n n n B
T 2 + 1-2-3 +
1 2 (n—2) n—1.1
1) (1=2)(1- -t hlo
e L B e R B ()
1 1
<1+ﬂ+a+§+ +*‘
:STL
St < sp Vn

= JE&SUP ty < nli_)rrolosup Sp=e..(). lim s, =¢€]

Consider m < n, Using (a)

1.1 1
b 2141+ (1= =)+ (1= —)(1 -

keeping m, fixed and letting n — oo we have

. . 1 1 1
lim 1nftn21+——|———|—...+—':sm
m!

n—00 1 2!
lim inft, > s, Vm
n—oo
Letting m — oo = lim inft¢, >e......(2)
n—oo
From (1) and (2),
lim inf¢, >e> lim supt,.....B)
n—o0o n—oo
nh_)ngo inft, > nh_{)go supt,
L < 1
Always nh_)rgo inft, < nh_)ngo sup ty,
= nh_)ngo inf ¢, = nh_)ngo sup ty,

= lim ¢, exists and lim ¢, = e
n—0o0 n—oo

1
im ( +n) e

n—oo
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Lemma 2.16 Prove that 0 < e — s, < ﬁ
Proof: Clearly, e — s, > 0 Vn

1 1
D)l e T
1 1+ L 1
N ! n+2 (n+2)(n+3)

e— S, =

=S 4]

<2 (1+ Loy )

(n+1)! n+2 (n+1)2 7
1 1

= ( )
(n+1)! l—n%i_l

_ 1 ( n+1

i+ D)'n+1-1
11

nln

)

1
SL0<e—s, < —
nln

Lemma 2.17 Prove that e is irrational.

Proof: Suppose e is rational. e = %, q # 0; ged(p,q) = 1; p,q are integer.
By the above lemma 0 < e — 5, < i =0<(e—sg)ql < % ........ (1)

Now, ¢le is an integer. [ gle = q!g = (¢ — 1)!p = an integer]

ls — ol 1 1 1
q.sq—q.[ +ﬂ+g+...+a]

=q'+q¢'+3-4---q+...+q+1
= an integer

1
gzl=-<1
q
1
(1) :>O<q!(e—sq)<§§1

0<(e—sg)gl <1

This means that g!(e — s4) is an integer lying between 0 and 1. .. e must be
irrational.

Root and Ratio test

Theorem 2.18 Root test: Given > a, and
o= nh_{lgo sup {/|an|

(a) if « < 1, Y a, converges.
(b) if « > 1, > ay diverges.
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(c) if a« =1 then the test gives no information.

Proof: (a) If @ < 1 then there exists § with a < § < 1, and an integer N
such that /]a,| < 8 Vn > N (By Theorem 1.105(b)), |an| < 8" ¥n > N.
But Y 8" converges (".- 8 < 1) .. By comparison test, Y a,, converges.

(b) If @ > 1, by Theorem 1.105(a); there is a sequence {n;} such that
"t/ |an, | = a as k — oo['." a is a subsequence limit] = |a,| > 1 for infinitely
many values of n. {a,} does not convergers to 0. .. Y a, diverges [By
Theorem 2.5]

(c) Suppose a = 1. Consider the series Z% and % Take a,, = % Then

S
33|
I
—
e
S~—
3=

3=

n
1

. L . 1 .1
A supait = limg sup -y =1[ limg no = 1]

Then Y 1/n diverges. a, = 1/n?

1 1
. no_ . 2 _
nhm sup aj; = nhm sup(—% ) =1

But > # converges. .". The root test fails.

Theorem 2.19 Ratio test: Consider the series > an,
(a) It converges if

. Gp+1
lim sup 1
n—00 an
(b) It diverges zf’aZ—:l >1Vn>N.
Proof: (a) Let
An+1

a = lim sup <1 and a < 1.
n—oo

an
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Then there exists § with @ < § < 1 and an integer N such that

an+1
an

lan+1| < Blan| ¥n > N.

lan + 1 < Blan]

lay +2| < Blant1| < BB |an] = 57 |an]

<pBVn>N.

lan + p| < B”|an| Vp = 0.
Taken=N+pVp >0
lan| < g lan| ¥Yn > N.
=6~ |an| 8"

(i.e.) an| < (87 |an])B"

Now Y 8™ converges (" B < 1) .. 3" «a,, converges, by comparison test.
(b)

Ap41
anp,

= lant1| = lan| Yn = ng

= (an) - 0 asn — oo[." |a,| is an increasing sequence.

>1Vn>ng

(7,6)0 < ]al\ < ‘CL1’ < ]

= Z an diverges.

Note 2.20
1
lim sup O + ‘ =1 gives no information.
n—00 A,
Proof: Consider
. a, +1
lim sup =
n—00 A,

1
Consider the series Z —
n

1 1
N = — and = —
OW G, - and a1 "
any1 om0 1
an n+1 1+ %
o n 1 . 1
lim sup = lim T =
n—00 A, n—oo 1 + -
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Observe, > % diverges. Consider > #

1 1
an = —5; @ =—
n 7'L2’ n+1 (n + 1)2

an41 n? o 1
IR (At 1/n)

. n+1 . 1

lim sup = lim —— 5 =1

n—00 an n—00 (1 + 5)2

an+1
Qn

) = 1 gives no information.

Note that > # converges. .. lim, . sup

Problem 2.21 Consider the series 1/2+1/3+1/2% +1/3% + ...

Let
%ﬂ if n is odd
anp =1 2.2
1 . .
- if n is even
3%
n1+1 if n is odd
1/n _ ) 9=5m
Ay = 1 . .
—=  if n is even
327

A if n is even

{ L ifnis odd

1 1
lim inf {/|a,| = —=; lim sup {/|a,| = —Fx= <1
n=300 V2

n—oo - \/g’

> an converges

Note 2.22
. an+1 T §21_
A sup = =l ()25 = o
2
lim inf |2 = lim (2)3v2 =0
n—00 an n—oo 3

LH n
Here we observe that whenn s odd. |aZ—:1| = 23; = (%)5\/5 <1V odd

n > ng. .. We need not apply ratio test.

Problem 2.23 Test the converges series %+1+%+%+3i2+1—16+%+é+m

(le)l+1+h+ 5 +h+E+h+d+s+..

Solution:
if n is odd

if n is even

S

Il
——
3 [\:3"—‘

—2

if n is odd

if n is even

[T )
—

S
S3|=
I
——
N
|
BlS
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1

nh_}rgosupan =3 <1

o> ap converges.

Note 2.24 Let n is even

aner 272 1
ar ~ on+l (' an = 2n—2)
2272 1
T onal T 23
=1/8
When, n is odd
an+1__ 1 B 1
ar ~ 9on—1 2" ( an = 55
1
Ap+1 1
" Z” \:§<1Vn2no
There is no need to apply ratio test.
Remark 2.25
1
lim sup\anH] =2; lim inf\anH] =-.
n—o00 am n—oo am 8

Theorem 2.26 For any sequence {c,} of +ve numbers,

(a)

Cn+1

Wl S Ve < g sup =
(b)

c
lim inf -2 < lim inf /¢,

n—00 Cn, n—00

Proof: Let
Cn+1
Cn

a = lim sup
n—oo

Suppose a = oo then there is nothing to prove. If « is a real number, then
there exists § > « under integer N such that % < BVn > N [by Theorem
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1.105(b)]

CN+1
+ <8

CN

CN+2
<p

CN+1

CN+3

CN+2

CN+p <IB
CN+p-1

multiplying all these inequalities

CN

= cNip < BPen Yp >0
put n=N+p

en < B Ney = (enf™N)B"
= cﬁ < (cNﬁ_N)%ﬁ

lim supcé < BJ. (CNB_N)% = 1]

© lim
n—oo n—oo
This is true for every 8 > «

1

. = . Cn+1
o lim supey < a= lim sup
n—oo n—oo

n
Cn+1

. lim sup ¥¢, < lim su
n—o00 p n/_'n—ﬂn b n

(b) Let

. . »Cn+1
o = lim inf .
n—00 Cn

If @« = —oo there is nothing to prove. If « is finite then thee exists a +ve
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real number § < «, and an integer N such that

ntl B ¥n > N (by Theorem 1.105(b) forinfx < sx = s, > x)
Cn

C
CN
C

CN+1

CN+p > 8
CN+p-1

multiplying all these inequalities, c];’% <BPVp>0.putn=N+p

Ci > /8an
CN
= Cp > CNﬁn_N
= Ve, > A CNﬁfNﬁ
P, L m -N _
nhﬁnololnf Ve > B (. nhﬁnolo VenB=N =1)
This is true for every 5 < «

. lim inf ¥, > o
oo lim e, >

. . 0 Cn+1

= lim inf =%

n—oo Cn
. . 0 Cnt1 . .

- lim inf 2 < lim inf ey,
n—00 Cn n—00

Power Series

Definition 2.27 Given a{c,} of complex numbers, the series > o>y cnTp is
called a power series. The numbers ¢, are called coefficient of the series and
z 18 a complex number.

Note 2.28 1. The series will converge or diverge depending upon the
choice of z.

2. Every power series there is associated a circle of convergence such
that the given power series converge if z is the interior of the circle
and diverges if z is exterior of the circle.

Theorem 2.29 Given the power series

oo
E:O Crnz" and a = nh_)ngo sup {/|Chn|
n=
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and R = % then 3 Cn2™ converges if |z| < R and diverges if |z| > R. (R is
called the radius of convergence of Y Cpz™)

Proof: Let
a, = Cp2"
|an| = |Cnll2]"
. n _ . n
Jim_sup lan| = Jim_sup {/ |Cnl|2]
= alz|

REP
“RUOTR

By root test Y C), 2" converges if % < 1 (i.e.)if |z| < Rand ) C, 2" diverges

if 251 (ie) if 2] > R.

Problem 2.30 Find the radius of convergence of > n"z".
Solution: Let
Cn = Z n"z"

1/R = lim sup {/|cy|

j— 3 n
= lim sup {/[nn|

= lim n
n—oo
1/R =0
R=0

. >on™z" is digit on the whole plane.

Note 2.31
. 1 n
lim inf == < lim inf /n
n—o00 Cn n—00
< lim sup ¥c,
n
. Cn+1
< lim sup nt
n—oo n
. Cn+1 . . . Cn+1 1
If lim = erists. = lim inf 27 = lim sup ——
n—o00 ¢, n—00 Cn n—00

mn
= lim inf /¢, = lim sup ¥c
n—oo n n—oo p n

. . Cn+41
and = lim /¢, = lim +
n—00 n—oo ¢y,

1 .
Hence 7= nlg%o sup ¥cp,

= lim Yc,
n—oo
! lim Cnt1

R n—o0o0 ¢,
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Problem 2.32 Find the radius of convergence of > Zn—T,L
Solution: Here, ¢, = %; Cnt+l = m Now,

Cn+1 _ 1
Cn n+1
1 _ 1 Cn+1
— = 11m
R n—oo ¢,
1 1
= lim =—=0
n—oon 4+ 1 00
R=x

n
"> %y converges Vz.

Problem 2.33 Find the radius of convergence of > 2"
Solution: Here, ¢, = 1; ¢py1 = 1. Now, % = lim, oo &t =1 = R =

Cn
1. .3 2" converges if |z| < 1 and Y 2™ diverges if |z| > 1.

Problem 2.34 Z—Z has radius of converges and prove that the power series
converges for all z within |z| < 1.

Solution: Here, ¢, = 7712; Cngp1 = —

SR Now,

1 . Cn+1
— = lim
n—oo ¢,

2

lim —
= lim ———
n—00 (n + 1)2
T oo (1+ %)2

1

— =1

R

R=1
ZZ—Z converges if |z| < 1. When |z| = 1, consider |]ZV—HQ\ = % = #
Since Y # converges , By comparison test. Z—Z converges if |z| < 1 and
> Z—; converges within and on the circle |z| = 1. .Y ;—Z converges Vz with
|z| < 1.

Summation by Parts Given two sequences {a,} and {b,}. Put

An:Zak if n>0.
k=0

Put A_; =0. Then for 0 <p <gq

q q—1
> anbn = > An(bn — bpg1) + Agbg — Ap_1by.
n=p n=p
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Proof:

A, =as+a1+...+ap_1+a, =Ap_1+ay,
Ay, — Ay =ay

q q—1
Z Anbn = Z(An - Anfl)bn
n=p n=p

q q
= Z anby, — Z Ap_1by
n=p n=p

q
=Y Anbn — [Ap_1bp + Apbpr1 + ... + Ag_1b]
=p

q g—1
= Z Anbn - Z Anbn+1
n=p

n=p—1
q—1 q—1
= Apby + Agbg — D Apbny1 + Ap_1by]
n=p n=p

q—1
= Z An(bn - bn+1) + Aqbq - Apflbp‘
n=p

Note 2.35 The above formula is called partial summation formula. It is
used to investigate the series of the form > apby.

Theorem 2.36 Dirichlet Test:

(a) Suppose the partial summation Ay, of > an form a bounded sequence.
(b) bg > b1 > by > ...

(c) If

lim b, = 0.
n— 00

Then > apb, converges.

Proof: Given that {A4,} is a sequence of partial sum of the series Y a,.
Also given that {A4,} is bounded by (a) = There exists a real number M
such that |A,| < M VM. Also by (c) lim,—cc b, = 0 = Given € = 0 there
exists a +ve integer NV such that |b, —0| < €/2M Vn > N (i.e.) |by| < €/2M
Vn > N...(1)
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For N <p <gq,

q q—1
[> " anbnl =D An(bn — bug1) + Aghg — Ap_1bp
n=p n=p

q—1
< M| (bp = bpg1) + by + byl

n=p
= M|(bp — bpt1) + (bp+1 — bpt2) + .. 4 (bg—1 — by) + bg + by|
= M|(by — bg) + by + bp|
= 2M |by|
<

— .. > ]
5 =€ ["p> N using (1)]

q
| > anbn| < 2M|by| < 2M -

n=p

q
.‘.\Zanbn\<qu2p2N
n=p

By cauchy’s criterian,
o0
D anba
n=1

converges

Theorem 2.37 (Leibnitz Test)

(a) Suppose |c1| > |ca] > |es] > ...

(b) Com—1 = O)CQm < O(m = 1)2)37 )
(c)

lim ¢, = 0.
n—oo

Then > ¢, converges.

Proof: By (b) ¢, = (=1)"|c,|. Take a, = (—1)""1, b, = |cn|. Let {A,}
be a sequence of partial summation of the series " a,, = > (—1)""! = {4,}
is a bounded sequence. Also by (a) |c1| > |c2| > |es| > ... Also using (c)

lim |c,| =0
n—oo

.. By the Dirichlet’s Test, > (—1)"*!|e,| = 3 ¢, converges.

Note 2.38 The series for which condition (b) holds are called alternating
series.

Theorem 2.39 Suppose the radius of convergence of > cp,2™ is 1. and sup-
pose ¢y > ¢1 > C3.... and limy,, oo ¢, = 0. Then > cpz™ converges, at every
point of the circle |z| = 1 except possibly at z = 1.
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Proof: Consider the series ) ¢, 2".

sums of the series > 2™

Let {A,} be the sequence of partial

SAn =142+ 224+ 2

1— Z'n+1 |1 _ ZnJrl’
Sl l—2z | |1—g
1 |z’n+1
1 —z|
2
= if =1 1
|1 —Z| 1 |Z| )y % 75
2
A, <
ST
= {4, } is bounded.
Also cg > ¢1 > ... and
lim ¢, =0
n—0o0

.. By Dirichels test, > ¢,2" converges if |z| = 1 and z # 1. Also given that
the radius convergence of > ¢,z is 1. .. The series > ¢,2"™ converges at
every point in and on the circle |z| = 1 except at z = 1.

Definition 2.40 Absolute convergence: The series > a, is said to be
converge absolutely if Y |a,| converges.

Theorem 2.41 If " a,, converges absolutely then Yy |a,| converges.
Proof: Suppose Y a, converges absolutely = > a,, converges. Given € > (
there exists an integer N such that

Z|ak]<eVn2m2N ..... (1)

k=m

Also

\Zak\g Z|ak|<eVn2m2N by(1)

k=m k=m

n
:>|Zak|<6Vn2m2N

k=m
= Y a, converges. The converse of the above theorem is not true.

Example 2.42 Consider the series o0 (—1)""1 converges but it is not

absolutely convergent.
Proof: Forc, = (—1)" % cgpp1 = (1> 171 =1 > 0; cop, = (—1)2™ ! =
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—1 < 0; |en| = 1Vn; Je1| > |ez| > ... Now, {1} is a monotonic decreasing
sequence and
1
lim — =0
n—oo n,

By Leibnitz test Z(—l)”_I% converges.

> 1 1
—)nio) = — diverges.
ngl (=)™ =D - diverg
But it is not absolutely convergence. ... convergence # absolutely conver-

gence.

Note 2.43 For series of +ve terms convergence and absolutely convergence
are the same.

Theorem 2.44 Addition and Multiplication of series:

Yan=A; Y b, =DB. Then Y (an+b,) = A+ B; Y ca, = cA for any fized
c.
Proof: Let {A,} be a sequence of partial sums of the series Y a,, and {B,,}
be a sequence of partial sum of the series > b,. Now > a, = A; > b, =
B=A,—>Aand B, V> Basn—>cx=A4,+B, A+ Basn— o0

(A, +B,)=A+1B

(i.e.) T}Lngo

:>nli_>ngo(]§_:1ak+’;bk):A+B

:nlglgo;(ak—i_bk) =A+B

=1
Z(ak+bk) =A+B
k=1

clearly cA, — cA asn — oo

(i.e.) nh_)rgocl;(ak =cA)

Jim kz_:l(cak) =cA

o0
Z cay, = cA
k=1
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Cauchy’s Product:
Given Y ayn, > b, we put

Cnp = bpag + bp_1a1 + ... + boa,
n
=> apb, — k
k=0

(Z an)(z bn) = agpby + (a0b1 + albo) 4+ ...+ (aobn +arbp—1+ ... + anbo)
=c+crtce+...+cp1+ ...

Y e

Example 2.45 Cauchy’s product of two convergent series need not be con-
vergent.
Proof: Consider the series

— (-1)
TLZ::O vn+1

Here {\/nlﬁ} to a decreasing sequence and \/nlﬁ — 0 asn — oco. .. By
Leibnitz test,

n

o~ (=1
nz::o\/ 1

n

CONVETGES.

Consider the product of two series

S (DE )t
Z\/k‘—i-l\/n—k—i-l

Z\/k+1\/n—k+1
Now (k+1)(n+1—k)=nk+k—k*+n+1—k

=nk—k*+n+1
= (n+1) — (k* — nk)

2 n2
Z(Z—Fn—I—l)—(kzz—i—Z—nk)
= (G+1? - (k-3
< (5 +1)?

2
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n

Sk D+ T=R) < (5 +1)7
S JEF TR < (1/24 D)
1 1
MRV T R A
n S 1
|Cn’_‘(_) ’;)\/(k+1)(n+1—k‘)'
n 1
- kz:%]\/(k;—i-l)(n—i-l—k)
n 1 n 1
Sl AT A
1 & n4l 2n1)
_g+1,§) S 5tl (n+2)
21+ d)
T 1+2
1
|Cn’22(11_:_2n)

= ¢, does not converges to 0 as n — oo = Y ¢, diverges.

Note 2.46 The product of two convergent series converges if atleast one of
the two series converges absolutely.

Theorem 2.47 Merten’s Theorem:
(a) Suppose > a,, converges absolutely.
(b) Suppose Y a, = A

(¢) Suppose Y a, = B

(d) Cp = ZZ:O akbn_k(n = 0, 1, 2)

Then -

Z ¢, = AB.

n=0
Proof:

n n n
An =Y ax; By=) by cn =Y
k=0 k=0 k=0

Let

Bn = B, — BYVn
=cyp+c1+...+cy
= agbg + (apby + a1by) + ... + (apbp—1 + ... + anbo)
=ao((bo+ b1+ ... +bn) +a1(bo+b1+ ..+ bp—1) + anbo)
=ayB,+a1Bp_1+ ...+ a,By
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= aO(B + 571) + al(B + anl) + ...+ an(B + 50) ( ﬁn = Bn - B)
= B(ao + a1+ ... + an) + (aofn + a18n—1 + .. + anfBo)
= BAy + yn where v, = aofn + a18n-1 + ... + anfBo

Claim ¢,, > AB asn —o00; A, > Aasn — oo = BA, > AB as n — oo.
If enough to prove 7, — 0 as n — oco. Given > a, converges absolutely.
= > |an| converges.

o
(i.e.) Z lan| = «
0
Now Jia bn = 133, (Bn = B)
—B-B
=0

Given € > 0 there exists an integer N such that

B — 0| <eVn>N
= |fn| <eVn>N...(~1)
[yl = laoBn + a1Bp—1 + ... + anfo
= [Bnao + Bn-1a1 + ... + BNAn—N + BN-1Gn—N+1 + .. + Boas]
< |Bnag + Bn-1a1 + ... + BNGn—N| + |BN—1Gn-N+1 + ... + Boan|
< e(laol + [a1] + - + lan_n1) + |8 1041 + - + foan| By (1)
< BN-1Gpn—N+1 + ... + Boan| + €(Jao] + |ar| + ... + |an])
= BN-1Gn—N+1 F .. + Boan| + e
Sl < |BN—1@n—N41 F .o+ Poan| + ea

keeping N fixed and letting n — oo we have
nlgrolo sup |yn| < ea

Since € is arbitrary, we have,

Jim || =0
=c, > AB asn — o
oo
éch:AB.

n=0
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3. UNIT III

Continuity and Differentiation
Let X,Y be the metric spaces. Suppose £ C X, f maps E into Y and p is
a limit point of F we write f(z) — g as © — p or

lim f(z) = q.

T—p

If there is a point ¢ € Y with the following property, for every € > 0 there
exists S > 0 such that dy(f(z),q) < eVz € E for which 0 < dx(z,p) < S.

(i.e.)
lim f(z) = q.

T—p

if given € > 0 there exists S > 0 such that 0 < dx(z,p) < S = dy(f(x),q) <
€.

Definition 3.1 Let X and Y be any two metric spaces and E C X. Let f
and g be any complex functions defined on E then we define f+ g as follows.

(f +9)(x) = fz) + g(x)

Theorem 3.2 Let X and Y be any two metric spaces and E C X. p is a
limit point of E. Then
lim f(z) = q iff lim f(pn) =q

T—p

for every sequence {p,} in E such that p, # p and

Jim, o =
Proof: Suppose
lim f(z) =q

= Given € > 0, there exists S > 0 such that 0 < dx(z,p) < S =
dy (f(z),q) <eVr e E...(1)

{pn} is a sequence of points in F such that {p,} — pasn — co(p, # p) (This
is possible " p is a limit point of F) = there exists N depending on S such
that dx (pn,p) < S Vn > N. Now By (1) we have, dy (f(pn),q) < e Vn> N
(i.e.)

Jim f(pn) = g-
Conversely, Suppose
lim f(pn) =q

n—o0

for every {p,} in E such that p, # p and

lim p, =p

n—oo
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To Prove

lim f(z) =

T—p

Suppose this result is false, for some € > 0 and for every S > 0 such that
dx(z,p) < S = dy(f(x),q) > e. Let S, = %, n =123. For S >0
without loss of generality choose a point p € E such that dx(p1,p) < Si(=
1) = dy(f(p1),q) > e. Similarly, for Sy > 0 choose a point py € E such that
dx(p2,p) < S1 = (1/2) = dy(f(p2),q) > €. Proceeding for S,, > 0, choose
a point p, € E such that dx(pn,p) < Si(= 1/n) = dy(f(pn),q) > €.

we have a sequence {p,} in E such that dx (pn,p) < 2 = dy(f(pn),q) > €.
Now {p,} = pasn — oo [ 1/n — 0 as n — oo]. But f(p,) does not

converge to g ... our assumption is wrong. Hence for every ¢ > 0 there
exists S > 0 such that dx(z,p) < S = dy(f(x),q) <e Vx € E.
* lim f(z) = g.

Corollary 3.3 If f has a limit at p then this limit is unique.
Proof: Suppose ¢ is a limit of f at p. (i.e.)

lim f(z) =

T—p
*. By the previous theorem, we have
Jim f(pn) = q

for every {p,} in E such that p, # p and p,, — p. But we know that, Every
convergence sequence converges to a unique limit. . f has a unique limit at

p.

Definition 3.4 Suppose we have two complex f and g then f + g, fg,\f,
i(g #0) are defined on a set E as follows.

f+9)(@) = f(z)+g(z).
9)(x) = f(z) - g(x)
A ) (@) = Af(x)
4o (L) (x) = f(f g(x) # 0.
Similarly we define f,g map E into R*. Then we can define f + g, fg, \f,
(g #0).

Definition 3.5 Continuous at a point: Suppose X,Y are metric spaces
and E C X,p € E and f maps E into Y. Then f is said to be continuous
at p if for every € > 0, there exists a S > 0 = 0 < dx(z,p) < S =

dy (f(z), f(p)) < eVx € E.

1. (
2. (f-
3. (
(

Qs
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Remark 3.6 Suppose f is continuous at p = for every ¢ > 0 there exists
S > 0 such that 0 < dx(z,p) < S = dy(f(x),f(p)) < eVr € E =z €

Ns(p) = f(x) € Ne(f(p)) Vo € E = f(Ns(p)) € Ne(f(p))-
Theorem 3.7 Let X,Y be metric space and E C X. p is a limit point of B
and f: E—Y. Then f is continuous at p iff

lim f(z) = f(p)

T—p

Proof: Suppose f is continuous at p. < for every € > 0 there exists S > 0
such that 0 < dx(z,p) < S = dy(f(x), f(p)) <e Vx € E &

lim f(z) = f(7)

Theorem 3.8 Suppose X, Y, Z are metric space and E C E. f maps E into
Y, g maps the range of f into Z and h is a mapping of E into Z defined by
h(z) = g(f(z)). If [ is continuous at p € E and if g is continuous at f(p)
then h is continuous at p. (The function h is called composite of f and g
and we write as h=go f)

Proof: Let € > 0 be given and ¢ is continuous at f(p). .. n > 0 such that
dy (y, f(p)) <n=dz(9(y),9(f(p))) <€, y € f(E)..... (1)

Since f is continuous at p for this n > 0, there exists S > 0 such that
dx(z,p) < S=dy(f(z), f(p)) <n Vz,ye FE

(i.e.)dy (f(z), f(p)) <n, f(X) € f(E)

)
= dz(g(f(x)), (g(f (p))<6by()
= dz(go f(z),(go f)(p)) <
= dz(h(z), h(p)) < ( =gof).
)

. we have, dx(z,p) < S = dz(h(z),h(p)) < € V& € E = h is continuous at
p.

Theorem 3.9 A mapping f of a metric space X into a metric space Y is
continuous on X iff f~1(E) is open in X for every open get E inY .
Proof: Suppose f is continuous on X. Let V be a open get in Y. To Prove:
fH(V)isopenin X. Let pe f~1(V); pe f~1(V) = f(p) C V. Since V is
open, there exists € > 0 such that N.(f(p)) C V....... (1)

Since f is continuous at p, for € > 0 there exists S > 0 such that f(Ng(p)) C
Ne(F () (2)

From (1) and (2), = f(Ns(p)) C V = Ng(p) C f~'V = p is an interior
point of f~1(V). Since p is arbitrary, f~!(V) is open in X. Conversely:
Suppose f~1(V) is open in X for every open set V in Y. To Prove: f is
continuous at p,p € X. Let €> 0 be given. Consider an open set N.(f(p))
inY, f~Y(N(f(p))) is open in X. Now, = p € f~H(N(f(p))) = p is an
interior point of f~Y(N.(f(p))) = there exists S > 0 such that Ng(p) C

F Y N(f(p)) = f(Ns(p)) € N(f(p)) = f is continuous at p.
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Corollary 3.10 A mapping f of a metric space X into a metric space Y
is continuous iff f~1(C) is closed in X for every closed set C inY .
Proof: Let C be a closed set in Y.C¢ is open in Y = f~}(C°) is open in
X. (by Theorem 3.9) = [f~1(C)]¢is open in X = f~1(C) is closed in X.
Conversely: Suppose f~1(C) is closed in X for every closed set C' in Y. To
Prove: f is continuous on X. Let A be an open set in Y = A€ is closed in
Y = f71(A°) is closed in X. (by our assumption) = [f~1(A)]¢ is closed
in X = f7!(A) is open in X. = f is continuous on X. (by the previous
theorem)

Theorem 3.11 Let f and g be complex continuous function in a metric
space X, then f+g,f -9, g(g # 0) are continuous on X .
Proof: At isolated point of X there is nothing prove. Fix a point p € X
and suppose p is a limit point of X. Since f and g are continuous at p.

lim f(z) = f(p); lim g(z) = g(p)

T—p T—p

Now,
lim (f + ¢)(z) = lim (f + 9)pn

T—p

where p, — p as n — oo and p, # p

lim(f +g)() = lim (f(pn) + 9(pn))

= lim f(pn) + lim g(pn)
= f(p) +9(p)

similarly the other results follow.

Theorem 3.12 Let f1, fo, ..., f be real functions in a metric space X. Let f
be the mapping X into R*. defined by f(z) = (fi(x), f2(2), ..., fu(z))z € X.
Then

(a) f is continuous iff each of the functions fi, fa, ..., fx is continuous.

(b) f and g are continuous mapping of X into RF then f + g,f - g are
continuous on X (f1, fa, ..., fr are called components of f_)

Proof: Suppose f is continuous at every p € X. Then given € > 0 there

exists S > 0 such that

1f(z) — f(p)| <€ if 0 < dx(z,p) < S
k 1/2
= (Z(ﬁ(w) - fz-(p»?) <eif 0 <dx(z,p) < S
Zzl 1/2
= |fi(z) — filp)| < (Z(ﬁ-(m) — fz(p))2> <eVi=1,2,...k
=1

= |fi(z) — filp)| <eVi=1,2,.,kif 0 <dx(z,p) < S
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= each f; is continuous at p, (1 <i <k, p € X) = each f; is continuous
on X, (1 < i < k). Conversely, Suppose f; is continuous on X for each
i =1,....,k = f; is continuous at every p € X = Given € > 0 there exists
S; > 0 such that 0 < dx(z,p) < S; = |fi(x) — fi(p)| < T Vi=1,2,.k
Let S = min(S1, Se, ..., Sk). Now,

o<dx<a:,p><s@-:»|f¢<as>—f@-<p>|<ﬁw=1,2, k
2
() — Fi(p)|2 €
= i) = 1) < 7

:ser; ~ fip)? < %kz
2

JZIﬁ — filp)? < e

= [f(z) — f(p)| <e
(i.e)0 < dx(z,p) < S = |f(x) = f(p)| < e

= f is continuous at every p € X = f is continuous on X
(b) Let f - (f17f27‘ )[k) a‘nd g - (91792)‘ )gk) NOW f+g - (fl +

g, fo+ g2 S+ ar); F-G = (fi- 91, f2- g2, fx - g). Given f and g
are continuous. by (a), each f;, g; are continuous (i < i < k) (by Theorem

3.11) = fi + gi, fi - g; are continuous. (by (a))

Theorem 3.13 Let & = (1,72, ...,x;) € RF define ¢; : R¥ — R by ¢;(2) =
xi, (i =1,2,...,k). ¢; is called the coordinate function, then ¢; is continuous.
Proof: Let z,7 € R*. Given € > 0 choose S = € such that
|z —y| < S
= [¢i(2) — ¢i (V)| = |zi — yil

()’

= |z -y
< €

= ¢; is continuous on R”

Theorem 3.14 FEvery polynomial in R¥ is continuous.
Proof: By the above theorem ¢; : R¥ — R is continuous for every i. Now,

$2(z) = ¢i(%) - ¢4(T) = x; - ; = 22 Vi. In general ¢ (T) = z Vi. By
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Theorem 3.11, ¢ is continuous. Now,
ny no ng\ =
( 1Thepy? ¢k )x
My | Am2 (= nk (=
= @11 (Z) - 95 (Z) - -+ " (T)
_ 1 ng
— :U1 . 332 P ij
Now ¢! - 5% -+ qbZ’“ is a monomial function, where nq,no, ..., nj are positive
integers. Every monomial function is continuous C,; n,,..n, is & complex
constant = Ch, ny, . ny 27" 2522 is continuous on RF. = 3 Cpyng.m
n1 . n2 e e Tk
xyt - xy )
Rk

.
is continuous on R*. = Every polynomial is continuous on

Continuity and Compact: A mapping f on a set E into X is said to be
bounded, if there is a real number m such that |f(z)| < m Vz € X.

Theorem 3.15 Suppose f is continuous function on a compact metric space
X into a metric space Y. Then f(X) is compact. (i.e., continuous image
of a compact metric space is compact)

Proof: Given that X is compact. To Prove: f(X) is compact. Let {V,,} be
an open cover for f(X) = each V,, is open in Y. Now, Given f is continuous
= f~1(V,) is open in X for each a = {f~1(V,)} is open cover for X. Since
X is compact, there exists finitely may indices a1, ag, ..., o, such that

X C f_l(vm) Uf_l(vaz) U--- Uf_l(van)

U v
=1

S fx) e U € U Ve
=1 3

= {V,} = has a finite sub cover. .. f(X) is compact.

Theorem 3.16 If f is continuous mapping of a compact metric space X
into R*. Then f(X) is closed and bounded. .. f is bounded.

Proof: Given f is continuous and X is compact. = f(x) is a compact
subset of RF. = f(z) is closed and bounded. (by Heine Borel theorem)
Now, in particular = f(z) is bounded = f is bounded.

Theorem 3.17 Suppose f is a continuous real function on a compact met-
ric space X and M = sup,cx f(p) and let m = infyecx f(p). Then, there
exists a points p,q € X such that f(p) = m1, f(q) = ma (i.e., f altains
mazximum M at p and minimum m at q)

Proof: We know that, If £ is bounded and y = sup F and X = inf £
then z,y € E. Since f is continuous and X is compact = f(X) is closed
and bounded [By the above Theorem 3.16] and since f(X) is bounded.
m, M € f(X) = f(X) (. f(X)is closed) = m, M € f(X) = there exists
p,q € X such that M = f(p), m = f(q).
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Theorem 3.18 Suppose f is continuous 1 —1 mapping of a compact metric
space X into a metric space Y. Then the inverse mapping = defined on
Y by f7U(f(X)) = X is a continuous mapping of Y onto X.

Proof: Suppose f is a continuous 1 — 1 mapping of a compact metric space
X into a metric space Y and also f~1(f(X)) = X. To Prove: f~!is
continuous on Y, it is enough to prove that (f~!)(V) is open in Y for every
open set V in X. Let V be a open set in X = V¢ is closed in X. Since X
is compact, V¢ is compact in X. Since f is continuous, f(V¢) is compact
inY = f(V° is closed in Y = (f(V°))¢ is closed in Y = f(V) is open in
Y. (. fis1—1and onto) = (f~1(V))~!is open in Y = f~! is continuous
onY.

Definition 3.19 (Uniformly Continuous) Let X andY be any two met-
ric space then the f : X — 'Y is said it to be uniformly continuous on X if for
every € > 0 there exists a S > 0 such that dx(p,q) < S = dy(f(p), f(q)) <€
Vp,q € X.

Theorem 3.20 Let f be a continuous mapping of a compact metric space
X into a metric space Y then f is uniformly continuous. (i.e.) Continuous
function defined on a compact metric space is uniformly continuous.

Proof: Let ¢ > 0 be given let f is continuous on X = f is continuous at
every point p € X. Now, f is continuous at p = there exists a positive real

¢(p) such that dx(p,q) < ¢(p) = dy (f(p), f(q)) <eVge X....... (1)
Let J(p) = Now {p} = J(p) is a closed in X = J(p) is a open in X.

{J(p)lp € X} is an open cover for X. Since X is compact, there ex-
ists finitely may p € S. p1,p2,...,pn such that X C U, J(p;). Let S =
mm{(@,,@)} Clearly, S > 0. Let p,q be points in X such that
dx(p,q) < S. Now,

peXclJJm)
=1

= p € J(pm) for some m,1 <m <n

= dx(ppm) < 222 < )
= dy (f(p), [(pm)) < €/2.......(2) (by(1))
Now dx(q,pm) < dx(q,p) + d(p, pm)

<S4 ¢(1;m)

- cb(gm) n cb(gm)

= ¢(m)
(i.e.) dx(q, pm) < &(pm)
= dy (f(q), f(pm)) < €/2 by(1)........ (3)




o7

= dy (f(p), f(a)) < dy(f(a), f(pm)) + dv (f(pm)f(q))
=¢/2+¢/2 (by (2) and ( )
-.-dX(p7 )<S:>dY( (p)vf( ))

= f is uniformly continuous on X.

Theorem 3.21 Let E be a non-compact set in RY. Then

(a) there exists a continuous function on E which is not bounded,

(b) there exists continuous and bounded function on which has no maximum
if in addition E is bounded,

(c) there exists a continuous function on E which is not uniformly continu-
ous.

Proof: Case(i): Suppose E is bounded.

(a) To Prove: f is continuous but not bounded. Since E is bounded, there
exists a limit point of g of E such that zo ¢ E. [." E is not closed]. Define
amap f: E — R! by f(z) = a:—lxo’ x € E. . f is continuous on F. To
Prove: f is unbounded on E. Since zg is a limit point of E. N,.(xg) N E # ()
Vr > 0 = there exists x; such that z; € Ny(z9) N E = x1 € N;(x9) and
T, € F

= |r1 —x9| <rand z; € E

1 1
= — > and r1 €F
\361—330|

1
j]f(a:l)]>;andx1€EVT>0

Vr > 0 there exists € E such that |f(z)| > 1 = f is unbounded on E.
(b) Define g : E — R by g(z) = m, x € E. Clearly, g is continuous.
Now, 0 < g(z) < 1 = g(z) is a bounded function. Clearly, sup,cp g(z) = 1.
But g(z) <1 Vz € E. . g has no maximum on E.

(c) Let f : E — R be defined by f(z) = ﬁ, x € E, where zg is a limit
point of E. Clearly, f is continuous on E. Let ¢ > 0 be given. Let S > 0
be arbitrary choose a point x € E such that |z — z¢| < S and taking ¢ very

close to xg so as to satisfy |t — x| < S. Then,

1 1
t) — = -
£0 - f@] = | -
|z —x0—1T+ 20
(t = zo)(z — x0)
o~ 1
[t — @ol|z — o

>

> €
t —xo

(If we choose x € (z¢g — S,20),t € (zo,2z0+S) and |z —t] < Sort €
(xo — S,x0),x € (xg, 20+ S) and |x —t| < S = |t — x| > | — x0]) So we
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have taken t very close to zp and we made the difference |f(t) — f(z)| > €
although [t — x| < S. Since this is true for every S > 0 = f is not uniformly
continuous.

Case(ii): Suppose E is not bounded.

(a) Define f : E — R by f(z) = z. Clearly, f is continuous on E and f is
not bounded on E. . there exists function on E which is not bounded.
(b) Define g : E — R by g(z) = % = ¢ is continuous. Now, as 2% <
1+ 22 = g(x) = 11% <1l - 0<g(x)<1l VzeE. . gisa bounded.
.. g is a continuous and bounded function. sup,cp g(z) = 1. But g has no
maximum on F.

(c) If the boundedness is omitted then the result fails. Let E be the set of all
integers. Then every function defined on F is uniformly continuous on F =
for every € > 0 choose S < 1 such that | X —Y| < S=|f(z)— f(y)|=0<e¢

Continuity and Connectedness:

Theorem 3.22 If f is a continuous mapping on a metric space X into a
metric space Y and E is a connected subset of X. Then f(E) is connected.
i.e., continuous itmage of a connected subset of a metric space is connected.
Proof: Given E is connected subset of X. To Prove: f(FE) is a connected
subset of Y. Suppose f(F) is not connected. = f(F) = AUB where A and
B are non-empty separated sets. Put G = ENf~!1(A) and H = ENf~1(B)

Clearly G #0 H #0 (- A#0,B# (). Claim: G and H are separated
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sets. i.e., To Prove GNH =(,GN H = (). Now

G=Enf 14
=G C fi(A) cfHA)
“H(A) [ A is closed and

A
=GCfYA)=["4A
f is continuous = f~1(A)]

= f(H)C B

= f(GYNf(H)c ANB =10 (. Aand B are separated sets)
= f(G)Nf(H) =0
= f(GNH)=1
=GNH=1
similarly, GNH =0

.. G and H are separated sets. = FE can be expressed as a union of two
non-empty separated sets. = FE is not connected. =< to E is connected.
. f(E) is connected.

Theorem 3.23 Intermediate Value Theorem: Let f be a continuous
real valued function on [a,b]. If f(a) < f(b) and c is the number such that
fla) < c< f(b) then there exists a point x € (a,b) such that f(z) = c.
Proof: Every interval in R is connected and f is continuous. By the previous
theorem, fla,b] is connected in R. = fla, b is interval in R. Let f(a), f(b) €
fla,b] = [f(a), f(b)] C fla,b]. Now, f(a) < c < f(b) = ¢ € fla,b] = ¢ =
f(z) for some z € [a,b].

Remark 3.24 Converse not true.

Proof: If any two points 21 and x5 and for any member ¢ between f(x;)
and f(xz9) there is a point x in [z1,z2] such that f(x) = ¢ then f may be
discontinuous. For example:

B sin% x#0
R

Choose z1 € (—3,0),z2 € (0,%). Clearly 1 < w2; f(r1) =negative
f(xg)=positive. .". f(0) = 0. f is continuous all the points except at 0.

Differentiation:
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Definition 3.25 Let f be real value function defined on [a,b], for any x €
[a,b] form the quotient ¢(t) = M, a<t<bt#z, and defined

t—x

provided the limit exists.

Remark 3.26 1. If [’ is defined at a point, we say that f is differentiable
at x.

2. If f' is defined at every point of a set E C [a,b], we say that f is
differentiable on E.

Theorem 3.27 Let f be defined on [a,b]. If f is differentiable at a point x
in [a,b], then f is continuous at x.
Proof: Given f is differentiable at z. (i.e.)

o) — i L = 1)

t—zx t—2x

exists.

To Prove: f is continuous at z (i.e.)To Prove

lim f(t) = f(x)

Now -
70) ~ 7y = PO T
tim(£(t) ~ f(a)) = im [0 =TE
pin =L i)
— f'()-0
lim (/(6) — /(@) =
(or) Tim £(t) = £()

t—x
.. f is continuous at x.

Remark 3.28 Converse of above theorem is not true. For example f(x) =
|x| is continuous but not differentiable at origin.

Theorem 3.29 Suppose f and g are defined on [a,b] and are differentiable
at at point x in |a,b] then f + g, fg,g are differentiable at x.

(o) (f+9)(z)=f(z)+d(x)



(b) (f9)'(x) = ['(z)g(x) + f()g'(x)
(C) (g)/(‘r) — g(l‘)f’(:(:)—g'(x)f(x)’ g(a:) £0.

9*(z)
Proof: Given f and g are differentiable at .

f(t) = f(x) 9(t) — g9(x)

(i-e) (@) = lim 20T and g/ () = him DO et
@)
o(t) = (f + g)(ti - :(Uf +9)()
_ 0 +9(0) ~ (@) + 9(2)
aw:f%:§@5132:§”

Taking limits as ¢t — =

i 0) = iy { L0190 =g}

t—x t—x t—x t—=x
i SO = @) 90— o)
t—x t—ax t—x t—ax

(i.e)(f+9) (@) = f'(2) + 4 (2)

(i.e.) (f + g) is differentiable at .
(b) (f9)'(x) = f'(x)g(z) + f(2)g'(x). Let h = fg. Now,

(h(t) — h(=)) = (f9)(6) ~ (f9)(x)
= F(Hg(t) — f(@)g(x)
= F(H9(t) — F(g(w) + FDg(x) — f@)g(x)
= FO(9(0) — g(x)) + 9@)(f (1) — f())
MO =) _ 1 (00~ | (1) S12)
iy MR _ g €90 ote) ) S0 = )
i 1) i 2090 |y ) 7O~ 1)

W(x) = f(z)g (x) +g(x)f'(x)
(f9)(x) = f(x)g'(x) + g(x)f'(x)

fg is differentiable at x.

61
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/ f
(h(t) — h(z)) = p (t) p (2)
_ SO f@)
gt)  g(z)
_ fWg(x) — f(@)g(x) + f(x)g(x) — f(z)g(t)
g9(t)g(x)
_9@)(f(t) — f(=)) — f(2)(9(t) — g(x))
g(t)g(x
h(t) — h(z) _ g(x)(f(t) — f(x)) — f(=)(g(t) — g(x))
t—x g(t)g(z)(t —x)
. h(t) —h(z) z) (f(t) = flz) . flx) [g(t) —g(z)
}gr:lc t—x —}gr:lc g(t)g(x) ( t—x ) %grglc g(t)g(zx) ( t—x )
o) S~ f@) fla) (D) - ala)
g2 (aj) t—x t—x g2 (x t—x t—x
) 9(@)f'(z) — g'(z)f(x)
i) 9*(z)
) —g'(z)f(z)

(£) ) = sl

g )

Since f'(x),q'(x) exists and g(z) # 0, (£>/ (z) exists.

Example 3.30 (1) The derivative of any constant is zero.
(2) fla)=z= f(z)=1
(3) f(z)=n= f(z)=na"""

Theorem 3.31 Chain Rule: Suppose f is continuous on [a,b], f'(x) exists
at some point x in [a,b] , g is defined on an interval I which contains the
range of f, and g is differentiable at the point f(x). If h(t) = g(f(t)),a <
t < b then h is differentiable at x, and h'(z) = ¢'(f(z))f'(x).

Proof: Given

fl(z)= }1&1}3 f(ti : i(x) exists, t € [a, b].

Let h(t) = g(f(t)). To Prove: h'(x) = ¢'(f(x))f'(x). Since f is differentiable
at x € [a, D]

f(z) = }lgal; f(ti : i(z) exists, ¢ € [a, b] exists.
(i.e.) f'(z) +u(t) = M, t € [a,b] where limu(t) =0

t—=x t—z
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Let y = f(z). Now g is differentiable at y(= f(x))

) 9(s) —g(y)

g) = lim =——

g(s) —g(y)
y

,s €1

,s € I where lim v(s) =0
s—Y

(i.e.) g'(y) +v(s) =

(9'(y) +v(s)(s —y) = g(s) = g(y).......(2)

h(t) - h(z) = g(7(1) — a(f(x))
= (9'(f(x)) +v(s))(s —y) (by(2))
h(t) — h(x) = o (F(2) + o(s) (F(B) — (@)
= §/(F() + () @) + ult)(t — ) (by(1)
MO M) g (#(a) + o) (/@) + u(e)
tim MO i (1) - 0(6)) (7 (@) + 1)

Example 3.32 Let

xsin% x#0
0 =0

-

Find f'(z)(x #0), and show that f'(0) does not exist.
Solution:

o1
f(z) = wsin —

f'(z) = z cos <;) (;—21) + sin <31:>
= —é czs (i) :—sin (i?
= sin (m) — (:c) cos (x) ,x # 0.
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since x # 0f'(z) exists. To Prove: f’(0) does not exists.

/ - f(t)_f<0)
F10) =l ==—4
:hmtsin%—o
t—=0 t—0

1
= lim sin — which does not exists.
t—0 t

. f(0) does not exists.

Example 3.33 Let

Find f'(z)(x #0), show that f'(0) =
Solution: Let

f(x) = z? sin%
F(z) = 22 (cos (;) (;;) + 205

1
=2z -sin— —cos—,x #0

x x

oy _ e 1) = £(0)
F10) =l ==—5
z?sind — 0
_ ¢
=0

. .1
= lim ¢sin —
t—0

~ f'(0)=0

1
tsint’ <1)

Mean Value Theorems:

Definition 3.34 Local Maximum, Local Minimum: Let f be a real
function defined on a metrics space X. We say that f has local mazimum
at a point p in X if there exists § > 0 such that f(q) < f(p) Vq € X with
d(p,q) < 6. f has a local minimum at p in X, if f(p) < f(q) Vg € X such
that d(p,q) < 9.

Theorem 3.35 Let f be defined on [a,b]; if f has a local mazimum at a
point x € (a,b) and if ' exists, then f'(x)=0. The analogous statement for
local minimum s also true.

Proof: Case(i) Assume that f has local maximum at 2. To Prove: f'(x) =
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0. Since f has local maximum at z, there exists § > 0 such that (¢,z) <

6= f(q) < f(x)

Ifx—5<t<xthenw_0
h(t) — h(z)

= lim
t—zx t—2x

(i) f1(z) >0 (1)

Iftx<xt<x+5thenf(ti_f($)§0
—x
:>1imh()_h(x)§0

Since f’(x) exists, (1),(2) = f/'(z) = 0.
Case(ii) Assume that f has a local minimum at x. We show that f’(z)=0.
Then there exists 0 > 0 such that d(q,z) < = f(q) > f(x)

Iffn—5<t<xthenw_0
f(t) = f(z)

= lim
t—x t—ax

Ifz <t<ax+6 then >0
—x
i T @)

Since f’(x) exists, and from (3) and (4) we get f'(x)=0.

Theorem 3.36 Generalised Mean Value Theorem: If f and g are
continuous real functions on |a,b], which are differentiable in (a,b), then
there is a point x € (a,b) at which [f(b) — f(a)]g' (x) = [g(b) —g(a)]f'(z).

proof: Let A(t) = [f(5) — f(a)lg(t) — [9(8) — g(a)lf (), € [a,b]. Since f
and g are differentiable in (a,b), h(t) is also differentiable in (a,b). Now,

h(a) = [f(b) = f(a)lg(a) — [9(b) — g(a)lf(a)
= f(b)g(a) — f(a)g(a) — g(b) f(a) + g(a) f(a)
= f(b)g(a) —g(b)f(a)
h(b) = [f(b) — f(a)lg(b) —[9(b) — g(a)]f (D)
= [(b)g(b) — f(a)g(b) — g(b)f () + g(a) f (D)
=9(a)f(b) — f(a)g(b
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Claim: h/(z) = 0 for some x € (a,b). If h(t) is a constant then h'(z) =
0Vz € (a,b). If h(t) < h(a),a <t < b, then by Intermediate value theorem,
there exists x in (a,b) at which h is minimum. .. A'(z) =0 (by Theorem
3.35). If h(t) > h(a) then h attains its maximum at some point x € (a,b). .".
K(x) =0 (by Theorem 3.35) (i.e.)

—
~
~—~
<
~—
|
=
—~
S
~—~
S~—
Q\
—
]
~—~"
|
~~
<
—~
<
|
<

(@) f'(x) =0
(a))g'(z) = (9(b) — g(a)) f'(x)

Theorem 3.37 Mean Value Theorem: If f is a real continuous function
on [a,b] which is differentiable at (a,b) then there is a point x € (a,b) at
which f(b) — f(a) = (b—a)f'(x).

Proof: Put g(z) = x in theorem 3.36. . ¢'(z) = 1 = (f(b) — f(a)) =
(b —a)f'(x).

Theorem 3.38 Suppose f is differentiable in (a,b).

(a) If f'(x) >0 Va € (a,b), then f is monotonically increasing.

(b) 1If f'(x) = 0 Vz € (a,b), then f is a constant.

(¢c) 1If f'(z) <0 Vz € (a,b), then f is monotonically decreasing.

Proof: (a)By theorem 3.37, If x1 < x9, then there exists 21 < z < x5 such
that f(ze) — f(x1) = (z2 — 1) f'(x)...... (1)

If f/(z) > 0then (1) = f(z2)— f(z1) >0 (. (z2—21)f () > 0) = f(x1) <
f(x2) (i-e.) f is an increasing function

(b) If f'(z)=0 then (1) = f(x2) — f(z1) = 0 = f(x2) = f(z1). ... fis
constant.

(c) If f/(x) <0 then (1)= f(z2) — f(z1) < 0= f(x1) > f(xe). .. fisan
decreasing function.

—~
-
—~
S
S~— ~—
|
~

The Continuity Of Derivatives

Theorem 3.39 Suppose f is a real differentiable function on [a,b] and sup-
pose f'(a) < X < f'(b), then there is a point x € (a,b) such that f'(z) = A.
A similar result holds if f'(a) > X > f'(b).

Proof: Let g(t) = f(t) — M\, t € [a,b] then, ¢'(t) = f'(t) — X; ¢'(a) =
f'(a) — X < 0. .. there exists a < t; < b such that g(t1) < g(a). Also,
g (b) = f'(b) = X\ > 0. .. there exists a < ta < b such that g(t2) < g(b). .. g
attains minimum at = € (a,b). .. ¢'(x)=0 (by Theorem 3.35) (i.e.)
fllx)=A=0= f'(x) =\

Corollary 3.40 If f is differentiable on [a,b], then f’ is cannot have any
simple discontinuity on [a,b]. But f' may have discontinuity of second kind.
Proof: f’ takes every value between f(a) and f(b). Let a < z < b. If f"is
not continuous at x, then

1. f'(z+), f'(x—) exists,
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2. f'(z+) # ['(z—),
3. fla=) = f'(a+) # ['(x) =<

. f' cannot have any simple discontinuity. In Example 3.33 f’ has a
discontinuity of second kind at = € [a, b].

Theorem 3.41 L’Hospital’s Rule: Suppose f and g are differentiable in
(a,b) and ¢'(z) # 0 Va € (a,b) where —oo < a < b < co. Suppose g,g; — A
as T — Q........ (1).

If f(x) — 0 and g(x) — 0 as ¢ — a........ (2) (or) if g(z) — oo as
T = d....... (3), then % — Aasz — a..... (4). (The analogous

statement is true if x — b (or) if g(x) — —o0 in (3)).
Proof: Case(i): Let —oo < A < co. We choose r and ¢ such that A < r <

q. Given
/
lim f/(w) =A
z—a g ($)
Then there exists ¢ € (a,b) such that a < z < ¢ = g:é;’g < T (i)
Now if a < © < y < ¢ then by generalised mean value theorem, there exists
t € (a,b) such that LT — LH < (i)

Suppose f(xz) — 0 and g(x) — 0 as x — a. Then by taking limits as x — a,

then (i) we get {4 <7< q..... (iii)
Suppose g(x) — oo as * — a, then by keeping y fixed in (ii) we can find
c1 € (a,y) such that g(z) > g(y) and g(z) > 0 Vx € (a,c1). Multiply (ii) by
9(z)=g(y)

9@ , we get
f(x) — f(y) . g(z) —g(y)
9(@) << g(@) >
@) ) _ ()9
MO COR ( g(sc))
@) 90, fW)
i@ S ) T )

Since g(x) — 0o as * — a, there exists c3 € (a,c1) such that % <rVze
(a,c2) (or) @) « gV e (@, c2)...... (iv)

g(a)
suppose —oo < A < oo. By choosing p < A as above, we can show that

there exists c¢3 € (a,b) such that p < % Va <z < c3.....(v)
f(z)

Thus in all cases ﬁ — A as x — a. Hence

@) @
M g(e) ~H M g(a)
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Derivatives Of Higher Order

Definition 3.42 If f has a derivative f' on an interval and if [’ is dif-
ferentiable, we see the second derivative f" exists. Similarly if f"1(x) is
differentiable we say f™ exists.

Theorem 3.43 Taylor’s Theorem: Suppose f is a real function on [a,b],n
is a positive integer, f"~1Y) is continuous on [a,b], fU(t) exists Vt € (a,b).
Let o, B be distinct points of [a,b] and define

(SPAMG)

plt) = 3 )t

n=0

then there exists a point x € («a, ) such that f(5) = p(8) + i )( )(ﬁ —a)™.

Proof: If n=1, then f(8) = f(a) + f'(x)(f — «a); f(ﬁﬂia f’( ). This
is just the mean value theorem. Suppose n > 1. Define a number M such

that f(8) =p(B) + M(B — a)™........ (1)

Let g(t) = f(t) —p(t) — M(t —a)™........ (2)
Now,
9(a) = f(a) = p(e) = M(a — a)"
= fla) = pla
g9(a) = f(a) = f(e) (. p(e) = f(a))
=0
9(8) = f(B) —p(B) = M (B — )"
=0 (by (1))....... (4)
Also g™ (t) = f™M(t) =0 — Mnl....... (5)
9M(a) = fP () - pM (o)
= () = fP(a)
=0......(6)
(i.e.) g(a) =g (a) =+ = ¢g" }(a) = 0. Since g(a) = 0 and g(B) = 0, there

exists =1 € (o, 3), by mean value theorem, such that ¢'(z1)=0. Now since
¢ () =0; ¢'(z1) = 0 again by mean value theorem there exists x5 € («, 1)
such that ¢g”(x2) = 0. Proceeding this way we get o < z, < Zp,—1, such that
9™ (z,) = 0 (ie) f™(z,) — Mnl =0 (by (5)). .. M = LG sy M in

(1) = £(8) = p(B) + LX) (8 — a)", Var € (a, 1)
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4. UNIT IV

The Riemann-Steiltjes integral and Sequences and series of func-
tions

Definition 4.1 Let [a,b] be an interval. By a partition P of [a,b] we mean

a finite set of points xg,x1,...,2n, wherea = x9 < z1 <,...,< w1 < x; <
sy < Ty = .

Remark 4.2 1. Ay =ax;, — ;1 Vi=1,2,....n.

2. Let f be a bounded real function on |a,b] then m; = inf f(z), M; =
sup f(z) Vzi_1 <z <.

3.
=1
L(P,f) < / f(@)dz < U(P, f)
L(P, f) <U(P, f).
4. [2 f(x)dz = sup L(P, f)

5. ff f(z)dz =inf U(P, f) (The inf and sup are taken over all partition
P of [a,b]).

6. If the upper and lower reimann interval over is same then f is said to
be Reimann integrable over [a,b].f € R(R is the set of all Reimann
integrable functions)

/abf(x)da: = /abf(x)da: = /abf(x)da:

Result 4.3 For every partition P of [a,b] and every bounded function f
there exists 2 real numbers m, M such that m(b—a) < L(P, f) <U(P, f) <
M(b—a).

Solution: Let m = inf f(z) and M = sup f(x),a < z < b. Let P =
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{0, x1, ..., 25} be the given partition of [a, b],
m<m; < M; <M
mAx; < m;Axr; < M;Az; < MAz; (ASL‘Z' >0)

<Z:mZAacZ <Z:MA9UZ < X:MA:L“Z

=1 =1

MS;M:

I
—

2

m(

Ax;)) < L(P,f) <U(P, f) < MZA@ ........ (1)

% =1

Now, Z Az; = Axq + Azg + ... + Az,
i=1
= (x1 —x0) + (x2 — 1) + ... + (Tp — Tp—1)

= Tn — X0

sub (2) in (1) we get, m(b—a) < L(P,f) <U(P, f) < M(b— a).

Definition 4.4 Let a be a monotonically increasing function on [a,b]. Cor-
responding to each partition P of |a,b]
we define Aoy = o(x;) — axi—1). Clearly, Aa; > 0

L(P, f,« Zm,Aal

UP, f,a) = ZM,-A@,-

i=1

sup L(P, f,a) = /b fda

U(P, f, o / fda

where infimum and suprimum are taken over all partitions. If

/abfda:/abfda,

then f is Reimann Stieljes integrable with respect to,

/abfda:/abfda:/al;fda,

we also write f € R(a).

Note 4.5 By taking a(z) = z, we see that the Reimann integral is the
special case of Riemann’s Stieltjes integral.
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Definition 4.6 The partition P* of [a,b] is called a refinement of P if P C
P*. Given two partition Py and Py, we say that P = P, U Py is the common
refinement of Py and Ps.

Theorem 4.7 If P* is an refinement of P, then L(P, f,a) < L(P*, f,«)
and U(P*, f,a) <U(P, f,«a).

Proof: Let P = {x9,x1,...,2i—1,%;,...,Tn} be a partition of [a,b] and let
P* = {x9,x1,x2, ..., Ti—1,2*, T, ..., xp } be an refinement of P. Let

mi = lnff(x)v Ti—1 < v <@y

wy = inf f(z), z;_y <z <2*
wy = inf f(z), 2" <z <

sowi > my and wg > m;. Now,

L(P*, f,a) = miAas + moAas + ... + mi_1Ac;_1 +wi(a(z”) — a(z;_1))
+ wo(a(z;) — a(x™)) + mip1Aaitq... + mpAay,......(1)
L(P, f,a) = miAas + moAas + ... + mi—1Ac;—1 + miAqy
+ mit1(Acit1) + ... + mpAag......(2)

L(P*, f,a) — L(P, f,a) = wy(a(z¥) — a(zi-1)) + wa(a(z;) — a(z")) — miAq;
=wi(a(z”) — afzi-1)) + wa(a(zi) — a(z"))
—my(a(z;) — a(wi-1))
=wi(a(z”) — a(xi-1)) + wala(x;) — a(z”))
—mi(a(z;) — a(z®)) — mi(a(z®) — a(zi-1))
= (w1 — my)(e(z”) — a(xi-1))
+ (w2 —mg)(a(z;) — a(z™))

> 0(. wy and wg > my)
L(P*, f,a) — L(P, f,a) > 0
= L(P, f,a) < L(P*, f,a)
L(P, f,a) < L(P*, f,«)

Let P* = {xo, 21, ..., Xi—1, %, X4, ..., T} be refinement of P. Let

M; =sup f(x),x;-1 <z <z

wi = sup f(z),zi1 <w <o’

wy =sup f(z),2" <z <z
cowp > M; and we > M;
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Now

U(P*, f,a) = MiAay + MaAag + ... + M;_1Aa;—1 + wy(a(z) — a(xi—1))
+ wo(a(z;) — a(z™)) + Miv1Aaitq + ... + MpAay,....... (1)
U(P, f,a) = M1Aay + MaAag + ... + M1 A1 + M;Ac;
+ Mit1(Aip1) + ... + MpAay,......(2)

(1)-(2) =

<0(.w; and we < M)
(i.e.) UP*, f,a) = U(P, f,a)) <0
= U(P", f,a) <

S UP fa) <

(P, f,a)
(P, f,a)

If P* contains k-points more than P, we repeat this reasoning k-times and
get the result.

U
U

Theorem 4.8

/abfdag/:fda.

Proof: Let P, and P, be two partition of [a,b] and let P* = PUP;.
(i.e.) P* is a common refinement of P; and Py. L(P, f,a) < L(P*, f,a) <
UP* f,a) < U(Py fya) = L(P1, f,a) < U(Py, f,a). Keeping P; fixed
and taking infimum over all partition P, we get

L(P.f.0) < [ ' fdo.

Now, by taking suprimum over all partition P; we get

/abfdag/abfda.

Theorem 4.9 Criterion for Riemann Integrability: Let f € R(«)
iff V. €> 0, there exists a partition P such that U(P, f,a) — L(P, f,a) <€.
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Proof: Let €> 0, there exists a partition P such that U(P, f,«)—L(P, f,a) <€
Claim: f € R(a). We know that

(1) + (3) U(P, f,0) — L(P, f,a) > / " tda— [ fda

(o) [ fdo— [ fda <U(P,f,0) - L(P. f.0)
<e

Since € is arbitrary,

/ab fda = /j fda.(ie.) f € R(a).

Conversely: Assume f € R(a). To Prove: let € > 0, there exists a partition
P such that U(P, f,a) — L(P, f,a) < €

let € > 0 be given

Then there exists two partition P, and P» such that

U(Pi, f,a) < [P fda + §.....(4) and [P fda — § < L(Pa, f,@)...c...(5)

Let P = PiUP; (i.e.) P is the common refinement of P, and P»

Now

U(P, f,a) <U(P, f,a)

b €
< [ gda+5 oy ()

< L(Py, f,0) + % + g (by (5))
= L(Pg,f, a) +e€
L(P, f,a)+¢€

<
L U(P, f,a) — L(P, f,a) < e

Theorem 4.10 Let P be a partition €: U(P, f,a) — L(P, f,a) <e€...(1)
(a) if (1) holds for some P and € then (1) holds for every refinement of P.
(b) if (1) holds for P = {xg,x1,...,xn} and s;,t; are arbitrary points in
[Ti_1, 2] then

n

ST (si) = Flt)|Aq; < e

i=1
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(¢c) if f € R() and the hypothesis of (b) holds then

n

S f(t)Aa; — /ab fda

i=1

< €.

Proof: (a) Let P* be a refinement of P. We know that

UP*, f,a) <U(P, f,a)....(2)
L(P*, f,a) < L(P, f,c) (by Theorem 4.7)
—L(P*, f,a) < =L(P, f,)......(3)

(2)+(3) gives

U(P*, f,a) — L(P*, f,a) <U(P, f,a) — L(P, f, )
< e (by (1))
(i.e)U(P*, f,a) — L(P*, f,a) < €

(b)  si ti € (w1, zil; f(s:), f(t) € flwim1, @i]; mi < f(sq), f(t:) < M;

S f(ss) = f(ta)] < My —my (0 My —my; > 0)
= |f(si) = f(ti)|Aa; < (M; —m;)Acy

n

= Z | f(s:) ti)|Aa; = Z(Ml —my;)Aaq;

i=1

= ZM Aoy — ZmiAai
=1

=1

=U(P, f,a) = L(P, f,a) (by (1))
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(4) and (5) =

> #(t)80i — [ fdo| < U(P,f,0) - L(P, f.0)
i=1 a
= e (by (1))
S f(t)Aa; — /b fdal < e.
i=1 a

Theorem 4.11 If f is continuous on [a,b] then f € R(«a).

Proof: Let € > 0 be given. Choose 1 > 0 such that [a(b) — a(a)]n < e...(1)
Since f is continuous on [a, b] and [a, b] is compact, f is uniformly continuous.
Then there exists 0 > 0 such that |z —¢| < = |f(x) — f(€)| < n..... (2)
Let P = {zo,x1,...,2n} be a partition of [a,b] such that Ax; < ¢ .. (2)
guarantees that |M; —m;| <n (i.e.) M; —m; < n......(3)

Now,

U(Pvfaa) - L(P)faa) = ZMZAQZ - ZmzAaz
i=1 i=1

n

= Z(MZ — mz)AaZ

=1

<03 Ba) (by (3)

(1) = awo)) + ((w2) — (1)) + o + ((@n) — a(zn-1))]

<
SU(P, f,a) = L(P, f,a) < e (by Theorem 4.9)

By Theorem 4.9, f € R(«).

Theorem 4.12 If f is monotonic on [a,b] and if « is continuous in [a,b),
then f € R(a).

Proof: Let

epstlon > 0 be given. For every positive integer n, we choose a partition P
such that Aa; = alb)=ala) ;g i possible since « is continuous.

n
Case(i): f is monotonic increasing. .. M; = f(x;); m; = f(xi—1) Vi =
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1,2 n. Now
U(P,f,a) = L(P, f,«a)
= i M;Ao; — ZmlAaz
i=1
= zn:(M Aa; — miAa;)
i=1
= > (M; —mj)Aq
i=1
= > (fi) - f@“))(aaﬂ;a(@)
i=1
_« b) — Z o
_ a(b) A0 = ) ) — fla)) + (Fw2) — Fon)) +
(o) S )
= a(b) ;a(a) [f () — f(z0)]
_ a(b) ;Ox(a) () — F(a)
<€ asn — o0.
S fER().
Case(ii): f is monotonic decreasing. .. M; = f(x;); my = f(xi_1) Vi =
1,2,...,n. Now,
U(P,f, ) L(P f’ )
i MAozl—Zml ) Aoy
i=1
- i(MiAOéi — miAq;)
i=1
= (M; — m;) Aoy
=1
— Z(f(xz—1> _ f(xz))(a(b) ; a(a))
i=1

:ab Z - "

=1
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= 2O D 40 — (e
= 2O =@ ) — i)
<e€easn — oo.

S f € R(a).

Hence the proof.

Theorem 4.13 Suppose f is bounded on [a,b], f has only finitely many
point of discontinuity on [a,b] and « is continuous at every point at which
f is discontinuous, then f € R(«).

Proof: Let € > 0 be given. Put M = sup|f(x)|. Let E be the set of points
at which f is discontinuous. Since FE is finite and « is continuous at every
point of E, we can cover E by finitely many disjoint [uj,v;] C [a,b] such
that the sum of the corresponding differences

S la(wy) — afuy)] < e

J

Also we place these intervals in such a way that every point of E N (a,b)
lies in the interval of some [u;, v;]. Remove the segments (uj,v;) from [a, b].
The remaining set K is compact. hence f is uniformly continuous on K. ",
there exists 0 > 0 such that |s —t| < J = |f(s) — f(t)] <€ Vs,t € K. We
form a partition P = {xo,x1,...,2n} of [a,b] as follows. Each u; occurs in
P, each v; occurs in P. No point of any segment (uj,v;) occurs in P. If
x;—1 is not one of the u;’s then Az; < . we observe that M; —m; < 2pu, Vi
and M; —m; < e unless ;1 is one of the u;’s. .. U(P, f,a) — L(P, f,a) <
[a(b) —a(a)le+2Me. (By Theorem 4.11) Since € is arbitrary, Theorem 4.9
guarantees that f € R(«).

Theorem 4.14 Suppose f € R(«) on [a,b],m < f < M, ¢ is continuous
on [m, M| and h(z) = ¢(f(z)) on [a,b], then h € R(a) on [a,b].

Proof: Let € > 0 be given. Since ¢ : [m, M| — R is continuous and [m, M]
is compact, ¢ is uniformly continuous. ... There exists § > 0 such that
d<el|s—t] <d=|p(s) —o(t)]| <efors,te[m,M... (1)

Since f € R(«), there exists a partition P = {zg, z1,...,2,} of [a,b] such
that U(P, f,a) — L(P, f,a) < 6%...... (2)

To Prove: h € R(a). Let M = suph(z),zi-1 < x < z; and m] =

infh(z),mi1 < o < 2. Let A = {i]l < i < n,M; —m; < 6}; B =
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{z]lgzgn,Ml—mzzﬁ

for i € A, |M; —mi| <0 = |¢(M;) — ¢(my)| < e (by (1))

For i € B,|M; —m}| < |M]|+ |m]
< k+k where k = sup|o(t)],t € [m, M]
M —m}| < 2k.....(4)
Also 6 Z Aq; < Z(Ml —my;)Aq;

1€EB 1€EB
n
< Z(MZ — mz)AaZ
=1
n n
= Z MZAOQ — Z mzAaz
i=1 i=1

< 6% (by (2))
(i.e) 0 Aa; <6

i€EB
= Z Aa; < 0..... (5)
i€EB
Now U(P,h,o) — L(P,h, o) = > M;Ac; — Y _m;Ac;
=1 =1
= > (M} —mf)Aa;
i=1
— Z(MZ* —m;)Aq; + Z(Ml* —m;)Aq;
€A i€EB
<€y Aa;+2k> Aaq; (by (3) and (4))
€A i€EB

< ezn:Aozi +2kZAai
i=1

1€B
< €la(b) — ala)] + 2k
< ela(b) — a(a)] + 2ke ("6 < ¢)
= ela(b) — a(a) + 2k]

(i.e.) U(P,h,a) = L(P, h, ) < e[a(b) — a(a) + 2K]
since € is arbitrary, Theorem 4.9, implies that h € R(«).

Lemma 4.15 If f € R(«) and f >0 on [a,b] then ff fda > 0.
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Proof: Since f > 0, M; > 0V,.

i=1
= U(P, h,a)
= infU(P, h, )

b
:>/ fda >0
a
Properties of Integral

Theorem 4.16 (a) If fi1, fo € R(«) on [a,b] then fi + fo € R(«),cfi €
R () for every constant ¢ and ff(f1+f2)da = ff flda—i—f; fada, ff cfida =
cf: fido.

(b) If fi(z) < fo(x) on [a,b] then [} frdo < [) fodor.

(c) If f € R(a) on [a,b] and a < ¢ < b, then f € R(a) on [a,c] and on
[a,b] and [° fda = [© fda + [P fda

(d) If f € R(a) on [a,b] and if |f(z )|<Mthen\f fda|<[ (b) — a(a)].
(e) Iff e R(oq) and f € R(az) then f € R(a1 +ag) andf fd(on +az) =
f fdag + f fdao. If f € R(a) and c is positive constant then f € R(a)
and f; fda = cf(f fda.

Proof: (a) Let € > 0 be given. Since fi € R(«) and fa € [a, b], there exists
two partitions Py and P» of [a, b] such that U(Py, f1,a) — L(Py, fi1,a) < e.....
(1) and U(Py, f2, ) — L( P, fa, ) < €.....(2)

Let P = P; U P, be the common refinement of [a, b].

>0
>0

U(P, f1,0) <U(Py f1,0)
L(Py, f1,0) < L(Py, f1,)
= U(P, f1,0) + L(P1, fi,a) SU(Py, f1,0) + L(P, f1, @)
= U(P, f1,0) — L(P1, fi,a) S U(Py, fi,0) = L(Py, fi, «)
U(P, f1,a) — L(P, f1,a) < € (by (1))....... (3)
Similarly U(P, fa, ) — L(P, fa, ) < € (by (2))....... (4)

(3)+(4)=
U(P, fi,a) + U(P, f2,0) — (L(P, f1,@)) + L(P, f2, @)

Now L(P, fi,a) + L(P, fa, ) < L(P, f1 + f2, )
SU(P, f1+ f2, )
<U(P, fr,a) + U(P, fa,)......(6)
(5).(6)= U(P.fi + fora) — L(P.fy + fona) < 26. - i + fo € R() on [a, ]

To prove:

/ab(fl + f2)da = /abflda+ /: fada
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Since f1, f2 € R(«), there exists partition P; and P, of [a, b]

b
U(Py, f1,0) < / fida + € (by Theorem 4.9)....... (1x)

b
U(Py, f2,0) < foda +e........ (2%)

M+(2)=

Let P=PUP

U(P, fl,Oé)
U(P7 f27a)

U(Pr, f1,q)....... (4%)

<
S U(Py, fo,q)....... (5%)

(4%)+(5%)=
U(P, fi,a) + U(P, fo,a) < U(P1, f1,0)+ < U(P, fa, @)

b b
</ fida+ [ fadoo+ 2e......(6%) (by (3%))
U(P, f1 + fo, ) SU(P, fr,0) + U(P, fo, @)

< [ pudat [ e+ 26 oy (%)

Taking infimum over all partition P,

/ab(f1+f2)da< /abfldaJr/abfgdaJrZe

Since € is arbitrary,

Replacing f1 and fo in (7*) by —f1 and — fo respectively we get,

[h- o< [(pyda+ [ (o

From (7*)and(8*) we get,

/ab(fl + fa)da = /abf1d04 + /abfzda



To Prove: cfi € R(a) where c is a constant.
For any partition P, of [a, b

U(P,Cfl,oz)z{CU(P’fl’O‘) c>0

cL(P, fi,a) ¢<0
and

— CL(P7f17a) CZO

L(P,cfi,a) = {CU(P, ) o

c(U(P, fr,a) = L(P, f1,))

—c(U(P, fi,a) — L(P, f1,a))
U(P,cfi,a) — L(P,cfi1,a) = |c|(U(P, f1,a) — L(P, f1,@)).....

Since f1 € R(«) there exists a partition P of [a, b] such that

U(P, CflaOé) - L(P, Cfl,a) = {

U(P, f1,a) — L(P,cfi,a) < —.....(24)

Sub (2A) in (1A), we get
U(P,cfi,a) — L(P,cfi,a) < \c%

U(Pvcflva) —L(P,Cfl,Od) <€
Cf1 GR(O&).

b b
/ cfrda :/ cfrda
If ¢ >0, then U(P,cfy,a) = cU(P, f1, )

= inf U(P, cf1,a) = inf(cU(P, f1,a))
= infU(P,cf1,a) = cinf U(P,cf1, @)

b b
:>/ cfldoz:/ cfida
If ¢ <0, then L(P,cf1,a) = cU(P, f1,)

= —|c|U(P, fi,@) (.- c<0)
= sup L(P, cfy,a) = sup(—|c|U(P, f1,a))
= |e|sup(=U(P, f1,))
= —[c[inf(U(P, f1,))

b b
:>/ cflda:—|c\/ frda

b
:c/ fida

b b
When ¢ = 0,/ cfida = / fida (=0)

To Prove:

c>0
c<O0
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To Prove:

b b
fi<h= [ fda< [ pda
Proof of b: Given f1 < fo= fo— f1 >0

:ﬁéaﬁ—ﬁMazo
= /ab fa+ /ab(—fl)da >0
_ /ab Fodar + /ab(—fl)da >0 (by (a))
=>/abf2da—/abf1d0420
= /abflda < /abfzdoz

Proof of (c): Given f € R(«) on [a,b] and a < ¢ < b for € < 0, there exists
a partition P of [a,b] such that

U(P, f,a) — L(P, f,a) <e.....(1B)

Let P* = P U {c}. Now P* is a refinement of P and induces two partitions
Py and P, of [a,c] and [c, b] respectively. Now,

U(P.f.0) > U(P*, f.0)
=U(Py, f,a) + U(Ps, f,).....2B)
=U(P, f,a) <U(P, f,a)......3B)
and U(P, f,a) <U(P, f,q)....... (4B)
L(P.f.0) < L(P". f.0)
=L(P1, f,a) + L(Pa, f,@)....... (5B)
—L(P, f,a) > =L(P, f,a) — L(P, f, @)
—L(Py, f,a) < —L(P, f,q)......(6B)
and — L(Py, f,a) < —L(P, f,q)....... (7B)
(3B) + (6B) = U(P, f.a) — L(Py, f,a) < U(P f,0) — L(P, f,a) (by (IB))
<€

. f € R(a) on a,c].
(4B) + (1B) = U(Ps, f,) — L(Ps, f,0) < U(P, f,) — L(P, f, ) (by (IB))
<€
. f € R(a) on [e,b).

/abfda:/:fda—l—/cbfda

To Prove:



(QB)jU(P,f,O{) ZU(Plafva)+U(P23faa)

2LLCfda+.Abfda

(6B) = L(P, f,a) < L(Py, f,a) + L(Pa, f, @)

/fda+/fda

:>supU(P,f,0z)§/ fda+/ fda

.. (8B) and (9B), we get

LU@:L%@+LU@

Proof of (d): Given f € R(«) and |f(z)| < M
To Prove: |f: fda| < [a(b) — a(a)]
we have, for any partition P of [a, b],

/ ' fda < U(P, f,0)

/:fda

<|U(P, f, )|

n
< Z |M1Aaz|
=1

= Z |M1|Aa2 ( AO&Z' > 0)

<Y MAag (2 [f(@)] < M)

=1

:MZAC!Z‘

=1

< M[a(b) — a(a)]

/abfda

Proof of (e): Given f € R(aq) and f € R(az). To Prove: f € R(a1+ az).
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Let o = a1 + . For any partition p of [a, ],

UP, f,a) = iMiAai
_ éMi(a(%) — a(zi)
:éMmm+@m»4m+wmum
ziMmmm+mmnwmmqﬂam»m
= f: Moy (z;) — ay(@im1)] + Enj Mi[az(zi) — ag(wi-1)]
U(P, f,a) = ;;(IP, foa1) + U(P, f,a2)...... ?10)

Similarly L(P, f, @)

L(P, f,a1) + L(P, f, a3).......(2C)

since f € R(a1) and f € R(az), there exists partitions P, and P of [a, b]
such that

U(Pl,f,O[l)*L(Pl,f,Oél) <€
and U(Pg, 1, 012) — L(Pg,f, 042) <€

Let P* be the common refinement of P and P» of [a,b]. P* = P, U P,

U(P*, f,a1) — L(P*, f,a1) < €........ (3C)
U(P*, f,a2) — L(P*, f,a2) < €........ (4C) (by Theorem 4.10)

Now,

U(P*, f,0) = L(P*, f,0) = U(P*, f,en) + U(P*, f,a2)
— [L(P", f,a1) + L(P*, [,02)] (by (IC) and (2C))
= [U(P", f,01) — L(P*, f,n)]
+ [U(P", f,a2) = L(P*, f, a2)]
< e+e€ (by (3C) and (4C))
U(P*, f,a) — L(P*, f,a) < 2e.

Since € arbitrary, we get f € R(a) (i.e.) f € R(a1 + ).

To Prove:
b b b
/ d(Oq +C¥2) :/ fdaq —1—/ fdao



(10):>U(P,f,a):U(P,f,a1)+U(P,f,a2)

b b
> / fday + / fdas

(2C) = L(P, f,a) = L(P, f,a1) + L(P, f, as)

/fda1+/ fdas

supU(P, f,a) S/ fda1+/ fdag

from (5C) and (6C) we get,

/abfdaz/abfda1+/;fda2
(i.e.) /ab d(ar + ag) = /ab fdoy + /ab fdas.

To Prove: Given f € R(«) and ¢ > 0
To Prove: f € R(«), for any partition P,

U(P, f,ca) = ZMz‘A(COéz‘)

Similarly L(P, f,ca) = c¢L(P, f, @)
U(P, f,ca) — L(P, f, car) U(P, f,a) — cL(P, f,«)
=c[U(P, f,a) — L(P, f,a)]......(8C)

Il
Q

Since f € R(«a), given € > 0, there exists partition P of [a,b] such that

U(P, f,a) — L(P, f,a) < g ....... (90)
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sub (9C)in (8C) we get
U(P, f,ca) — L(P, f,ca) < c- -
c

. f € R(ca). To Prove:

/abfd(ca) —c/abfda

(7C) = U(P, f,ca) = cU(P, f, )
= infU(P, f,ca) = inf cU(P, f, )
=cinfU(P, f,«a)

:>/abfd(ca):c/abfdoz

Theorem 4.17 If f,g € R(«) on [a,b],then

(a) f-g€R(a)
/abfda g/ab|f|da.

(b) 11 € R(a) and
Proof: (a) Let ¢(t) = 2, clearly ¢ is continuous

(z)) (by Theorem 4.14)
)

(b) |f] € R(e) and | [} fda| < [7|f|da.
To Prove: |f| € R(a). Let ¢(t) = |t]; h(z) = ¢(f(x)) = |f(x)]. .. By

Theorem 4.14, |f] € R(«)
To prove:
b b
/fda g/ 1f|da.
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Choose ¢ = £1 so that cf; fda >0

'.\/abfda|—c/abfdo¢

:/bcfda (by Theorem 4.16(a))
</b\f|da (v ¢f <|f]) by Theorem 4.16(b)

Hence the proof.

Definition 4.18 Unit Step Function:

I(x):{o if <0

1 i xz>o0

Theorem 4.19 Ifa < s < b, f is bounded on [a,b], f is continuous at s
and a(x) = I(x — s), then

[ da= 106)

Proof: Consider partitions P = {xg,x1, z2, zp} of [a,b] where zoz; = 5,5 <
T9 < b,xo = b. Now,

U(P, f,« ZMA%

= MiAal + MoAay + MsAag
= Mi[a(z1) — afzo)] + Ma[a(zz) — afz1)] + Ms[a(zs) — a(2)]
= M[I(z1—s) — I(xg — s)] + Ma[I(zg — s) — I(x1 — s)]
+ Ms[I(x3 — s) — I(z2 — s)]
=M[I(s—s)—I(a—s)]+ Ma[I(xg —s)— I(s—s)]
+ M3[I(b—s) — I(xzg — s)]
= ML[T(0) = I(a — )] + My[I(w5 — 5) — T(0)]
MA[I(b— 5) — I(wa — )]
= M;[0 — 0] + Ma[1 — 0] + M3[1 — 1] (by definition of i)
= M,

In a similar fashion we can get L(P, f,a) = ma.

/b fdao=infU(P, f,a) = sup L(P, f, @)

= inf My = supmy
= f(s) (. xe = s, f(xe) = f(x) as f is continuous at s)
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Theorem 4.20 Suppose ¢, > 0 for 1,2,3...; > ¢, converges, {s,} is a
sequence of distinct point in (a,b) and a(x) = Y oo cpd(x — sp). Let f be
continuous on |a,b], then

o

/ab fda = Z cnf(sn).

n=1

Proof: We have |I(z — s,)| < 1. . |epd(z — sp)| < ¢p. Since
(o9}
> e
n=1

is convergent, by comparison test,

Z enl(z — sp)
n=1

also converges. Now,

ala) = Z cnd(a — sp)
n=1
=0......(1) (" I(a—sp) =0)

and a(b) = Z cnd(b—sp)
n=1

n=1

Claim: « is monotonically increasing. Let x < y and let z < s <y

a(r) = Z enl(x — sn)
n=1
=ctcet ...t
O‘(y) = Z CnI(y - Sn)
n=1

=c1+cC+ ... +Ck—1+Ck
La(z) < oy)
Hence the claim. Since -
> e
n=1

is convergent, given € > (, there exists NV > such that
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Let

Clearly a(x) = ag(x) + az(z). Let aq; = I(x — 8;),i =1,2,..., N.

N
coon(z) = Z Cn1n ()
n=1

= (610411 + o012 + ... + ey N) T

(01“) a1 = Q1] + Q12 + ... + CNON

Now,

b b
/ fday = / fd(cran1 + caa12 + ... + eyoan)
a a

b b b
= 01/ fdaqy +02/ fdaio + ...CN/ fdaan (by Theorem 4.16(e))
=ci1f(s1)+caf(s2) + ...+ enf(sy) (by Theorem 4.19)

Now,
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Let M = |f(x)|,« € [a,b]. By Theorem 4.16(d),

[ fias] < [ax5) ~ )

< Me (by (5)and(6)),

(e | [ o < M

=

b b b
/ fda + / Fdas — / fdas| < Me

= < Me (by theorem 4.16(d))

/ab fd(oq + ag) — /ab fday

/abfda — icnf(sn)

= < Me (by (4))
n=1
Taking limits as N — oo,
b 00
/ fda — Z enf(sn)| < Me
a n=1
b 00
/ fdae| = 3" cnf(sn)
@ n=1

Theorem 4.21 Assume « increases monotonically and o' € R on [a,b],
Let f be a bounded real function on [a,b], then f € R(a) iff fo/ € R. In
that case f; fda = f;f(:r)a’@)dm.

Proof: Let € > 0 be given. Since o/ € R, there exists a partition P =
{z1,22,...,xn} of [a,b] such that U(P,a’) — L(P,d/) < e........ (1)

By mean value theorem , there exists ¢ :€ [z;_1,2;] such that o(z;) —
oz(:ci_l) = O/(ti)(ﬂji — xi—l) (1e) AO[Z' = Oé/(ti)Al‘i ..... (2)

By Theorem 4.10(b), Vsi,ti S [xi_l,:m]
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Now,

Zn: f(s)Aay — Zf ;) (s;) Az,

&
_ 2: F(si)al(t) A; — if(si)a’(si)Al‘i
- i:zlﬂsi)[o/(ti) ~ o/(s)

Zn: f(s)Aq; — Zf s;)a (s;) Az

&
< 3" Fsolla(t) — o' (s9)] A,

s
Il
—

IN

@
Il
—

Mo/ (t;) — o (s;)|Az; where M = sup | f(z)]

'Msi =

Z ) — o (s;)|Ax;
e (by

< (3))
(i.e.) si)Aa; — Zf '(s;)Ax;| < Me
1:1
2”: f(si)Aay — Zf )(si)Az;| < Me.....(4)
i=1

Since inequality (4) is true for any s; in [z;_1,z;], we can replace (fa')(s;)
by M/ and m}, where m} = inf(fo/)s;, M} =sup(fa’)(si),si € [zi—1, 2]

( DA — Y M{Ax;| < Me.......(5)
i=1
and Zm;Axl < Me......(6)
i=1
Again by replacing f(sz) by M; in (5) and by m; in (6)
we get
> M{Aa; — > M{Az;| < Me and
i=1 i=1

n n

/ /
E m; Aoy — E m; Ax;
i=1 i=1

= |U(P, f,a) —U(P, f,a)] < Me......(7T) and
|L(P, f,a) — L(P, f,a)| < Me.......(8)
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Since € is arbitrary, (7) and (8)

= U(P, f,a) =U(P, f,d) and
L(P, f,a) = L(P, f,d)
= infU(P, f,a) =inf U(P, f,a’) and
sup L(P, f,a) = sup L(P, f, ')

b

a

e ' (fol)do = / ' (fa')da (by (9) and (10))
o f(a) eR.
Now, /abfdoz:/jfda
-/ '(fal)z (by(9))
_ /a " fol)da
_ / " Fw)a (x)da

.‘./abfda:/abf(x)a’(x)dx

Remark 4.22 The above theorem gives the relation of R integral and R(«)
integral.

Theorem 4.23 Change of Variable: Suppose ¢ is a strictly increasing
function that maps an interval [A, B] onto [a,b]. Suppose o is monotoni-
cally increasing on [a,b] and f € R(a) on [a,b]. Define 5 and g on [A, B]
by B(y) = a(é(v)), 9(y) = f(#(v)), then g € R(B) and [ gd(B) = [, fdo
Proof: g(y) = (f- )z = f(o(y)) = f(=)
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Let P = {x0,x1,%2,...,xy} be any partition of [a,b]. Since ¢ is onto for
each i, there exists y; € [A, B] such that ¢(y;) = x;, i = 0,1,2,...,n.
{v0,Y1, Y2, ..., yn} is a partition of [A, B] every partition of [A, B] can be
obtained in this way (since ¢ is monotonically increasing)

For y € [yi-1, yil
9(y) = (f o)y
9(y) = f(6(y))
= f(x) where z = ¢(y), = € [zj—1, 2]
= sup g(y) = sup f(z)

Mt = M. (2)
Now AB; = B(yi) — B(yi-1)
= (a0 d)y; — (o P)yi—1
= a(d(yi)) — a((yi-1))

= a(x;) — a(zi-1)

~UQ,9,8) = M{AB;

=1

3" MiAar (by (1) and (3))
=1

=U(P, f,a)....(4)
Similarly L(Q, g, 5) = L(P, f, )......(5)

Since f € R(«a), given € > 0, there exists a partition P of [a, b] such that

U(P, f,a) — L(P, f,a) <e€
= U(Q,9,8) — L(Q,g,5) < € (by (4) and (5))
g €R(B)
B
Also / gdp =infU(Q, g, )
A
= inf U(P, f, ) (by (4))

—/abfda.



94 4. UNIT IV

Note 4.24 Let a(xz) =z and ¢' € R on [A, B].

B b
/ gdf = / fda (by previous theorem)
A a

[ stz = [ ga

=/ABgd¢>

B
= /A 9(y)¢' (y)dy (by theorem 4.21)

Integrations and Differentiations:

Theorem 4.25 Let f € R on [a,b], for a < x < b, put F(z) = [ f(t)dt,
then F is continuous on [a,b], further more if f is continuous at some point
xo of [a,b], then F is differentiable at xo and F'(xo) = f(xo).

Proof: Given F(z) = [ f(t)dt. To Prove: F(z) is continuous on [a,b]. Let
a<x<y<b Now,

Fly)~Fla) = [ st~ [ rwae
:/;f(t)dtJr/jf(t)dt—/:f(t)dt
:/:f(t)dt
= |Fw) - F@)| = | [
< [(ia

y
§/ Mdt where M = sup |f(t)|, t € [a,b]

=M(y — =)
(ie.) [F(y) = F(z)| < Mly — 2| (- (y — 2) = 0)

Given € > 0, there exists 6 = ;7 such that |y — 2| < d = [F(y) — F(z)| <€
(i.e.) F'is continuous on [a,b]. (infact F' is uniformly continuous on [a, b]).
Suppose f is continuous at xg € [a,b]. To Prove: F'(xzg) = f(xzo). Given
€ > 0, there exists 6 > 0 such that [t — xo| < 0 = |f(t) — f(xo)| < € for
t € la,bl.... (1)
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Let g —0 < s <xg <t <zxzp+9d. Now,

s :/atf(t)dt—/asf(t)dt
:/asf(t)dt+/stf(t)dt_/:f(t)dt

P~ F(s) = [

LEOZFS L
= HOZEE gy = [ pwar-
F(?:f(«?) ~ Fmg) = 1{/tf t)dt — (t — 5) f (w0)}
{/ dt—/ f (xo)dt}
= [0 - reona
0Py - \tis / t(f(t) ~ fan))at]
F(xo)|dt
< E/ dt (by (1
U2 )| <

It follows that F'(zg) = f(xo).

Theorem 4.26 The Fundamental Theorem of Calculus: If f € R
on [a,b] and if there is a differentiable function F such that F' = f, then
J? f(x)dz = F(b) — F(a).

Proof: Since f € R on [a,b], given € 0, there exists a partition P =
{0, x1,x2,...,2n} of [a,b] such that U(P, f) — L(P, f) < €...... (1)

Since F' is differentiable we can apply the mean value theorem to it on
[€i—1,x;]. There exists t; € [x;_1, z;] such that

F(z;) — F(xi—1) = (21 — 2) F'(t;)
= Ax;if(t;) (- F = f)

Summing over i, we get,

n n

D [F(zi) = F(zia)] =Y Azif(t:)

i=1 i=1
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By Theorem 4.10(c), (1) implies that

Using (2) and (3) we get, \(F(b)—F(a))—f; f(z)dz| < e. Since € is arbitrary,
f; f(z)dz = F(b) — F(a). Hence the proof.

Theorem 4.27 Integration by parts: Suppose F and G are differentiable
functions on [a,b],F' = f € R,G' = g € R, then

b b
/a f(@)g(z)dr = F(b)G(b) — F(a)G(a) —/a f(2)G(z)de.

Proof: Let H(x) = F(z)G(x). ... H'(z) = F(2)G'(x) + F'(2)G(z) =
F(z)g(z) + f(z)G(x)....... (1)

Given f and g € R. Since F' and G are differentiable, they are continuous.
.. By Theorem 4.11, F and G are integrable (¢ R). .. By Theorem 4.16
F(z)g(z) + f(x)G(z) € R (i.e.) H'(z) € R. By fundamental theorem of
calculus,

/a " (@)di = H(b) — H(a)
b
(i.e.) /a (F(2)g(z) + f(2)G(x))dr = F(b)G(b) — F(a)G(a)
b b
= /a F(z)g(z)dz —i—/a f(z)G(x)dx = F(b)G(b) — F(a)G(a)

b b
- / F(a)g(x)dz = F(b)G(b) — F(a)G(a) — / F(2)G(z)dx

Hence the proof.

Definition 4.28 Integration of vector valued functions: Let f1, fo, ..., f
be real functions on [a,b] and let f = (f1, f2, ..., fx) be a mapping of [a,b] —
RF. Suppose a increases monotonically on [a,b], then f € R(a) < for each
fi € R(«), and in this case

/:fda = (/abflda,/abfzda,...,/abfkda)

Theorem 4.29 Fundamental Theorem of calculus for vector valued
functions: If F, f map [a,b] into R¥ and if f € R on [a,b] and if F' = f
then [° f(t)dt = F(b) — F(a).

Proof: Let

f = (f17f27 7fk)
F=(F,F,..F)
F' = (F|,F},....F})
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Given F' = f. - (F{,F},... F) = (f1, for-s J&) = F/ = f; Vi=1,2,.. k.
Since f € R, each f; € R. .. By fundamental theorem of calculus, for any
i.

/ab f(t)dt = (/ab f1(t)dt, / f2(t) / Jr(t) t) (by definition)

a), F5(b) — Fa(a), ..., Fi(b) — Fi(a))
oo Fu(0)) — (Fi(a), Fa(a), ..., Fy(a))

(5) - F(a)
b
o [ it = Fo) — Fa)

Note 4.30 Schwartz inequality:

b < (ZH) (iw) (or)

1
n
> agb;
j=1

() (0]

Theorem 4.31 If f maps [a,b] into RF and if f € R( ) or some monotoni-
cally increasing function [a,b], then |f| € R(c) and | f (t)da| < f |f(t)|dae.
Proof:

f=(f1 far o i)
=R+ B+ i+ )Y
Since f € R(«)
= fi € R(a) V ok
= f2 € R(a)
= (fT+RB+H+. +fk)€R(a)
= (f2+ 24 2+ ... 4 /)% e R(a)(by Theorem 4.17,4(t) = t'/?)
= |f| € R(a)

To Prove:
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Let y = f(f f(t)da. Tf § = 0, then the inequality is trivial (for, § = 0 =
LH.S=0and |f| > 0= [*|f(t)|da >0 (i.e.) R.HS > 0)
Let y #0

.'.gj:/abfda: (/abflda,/abfgda,...,/abfkda>

b
= (y17y27 7yk) where Yi = / flda
a

Now |g]> = y% +y2 4.4y

) gl = Zyz
:Zyiyi
i=1
k b
= 4 Z'dOé
;y(/af )
E b
:;A@mm
p k
:/ O wifi)da
@ =1
b/ k 1/2
S/a (2’%’2)

/2 , 1/2
(i-e.) [y < /(Z%) (fo) do

k 1/2
(Z | fz|2> da (by schwartz inequality)
i—1

b _
(i.e) 13 < 13 / |flda
b _
$MS/WM

[ 7ao] < [ |7lda

Uniform Convergence:

Definition 4.32 Uniform Convergence: We say that {f,} of function
n=1,2,... converges uniformly on E to a function f is every e > 0 there is

an integer N such that n > N = |f,(x) — f(x)] <e.
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Note 4.33 If {f,} converges pointwise on E, then there exists a function
f such that for every ¢ > 0 and for every x in E there is an integer N
depending on € and x such that |f,(z) — f(x)] < € ¥Yn > N. If {f.}
converges uniformly on E, it is possible for each € > 0, to find one integer
N which will do for all x in E. We say that the series Y o fn(z) converges
uniformly on E if the {sp} of partial sums defined by sp(z) = > iy fi(z)
converges uniformly on E.

Theorem 4.34 Cauchy’s Criterian for Uniform Convergence: The
sequence of functions {f,}, defined on E, converges uniformly on E iff for
every € > 0 there exists an integer N such thatn,m > N,x € E = |f,(x) —
fm(@)| < c.

Proof: For the ’only if’ part we assume that {f,,} — f uniformly. To Prove:
There exists N such that z € E n,m > N = |f,(z) — fm(x)] <e. Let e >0
such that |f,(z) — f(z)] < €/2...... (1) Y/n>N VzxeFE

Now, for n,m > N

[fn(@) = fm ()] = | fn(2) = f(2) + f(2) = fn(2)]
< fa(@) = f@)| +1f (@) = fm(2)]
<e/2+¢/2 (by (1))
(i-e.) [ fn(x) = fm(2)] < €

For the 'i f’ part we assume that there exists N > 0 such that n,m > N,z €
E=|fo(z) — f(z)] < e (2)

For fixed z, (2) implies that {f,(z)} is a cauchy sequence .. {f,(x)} —
f(@)(|fulx) = f(z)] = 0). To Prove: {f,} — f uniformly. In (2), keeping
n fixed and taking limit as m — oo we get |fn(z) — f(z)] < e Vn > N
Ve € E. . {fn} — f uniformly.

Theorem 4.35 Suppose

Jm fa = (@), (z € B),

Put M, = sup,cp | fn(x)— f(2)|, then {fn} — f uniformly on E iff M,, — 0
as n — oo.

Proof: For the ’only if’ part, we assume that {f,} — f. To Prove: M,, — 0
as n — oo0. By hypothesis, given ¢ > 0, there exists N > 0 such that
|fu(x) — f(z)] <€ Vn >N Vo € E = supz € E|f,(z) — f(x)] < €
Vn >N = M, <eVn > N (ie.) M, — 0asn — oco. For the ’if’
part, let M,, — 0 as n — oco. Then there exists N > 0 such that M,, < ¢
Vi > N = supeplfa(@) — f@)] <€ Vi > N S |falz) - f@)] < e
VYn > N,z € E = {f,} — f uniformly.

Theorem 4.36 Weristress M test for uniform convergence: Suppose
{fn} is a sequence of function defined on E and suppose that |fi(x)] < M,
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(x € E;n=1,2..) then " f, converges uniformly on E its Y M, converges.
Proof: Assume that > M, converges. To Prove: Y f,, converges uniformly.
Let € > 0 be given. Let {s,} and {¢,} be the sequences of partial sums of
> fn and Y M, respectively. Since Y. M, converges, {t,} also converges.
Since any convergence sequence is a Cauchy sequence {t,} is also a Cauchy
sequence. Then there exists N > 0 such that |t, —t,| <€ Vn,m > N. Let
m > n(> N)

—tm| = Z M| < e....... (1)
n+1
Now, for x € E,
|sn(x) — sm(z)| = Z fr(z
n+1
<> | frl(=)
n+1

<3 My < e (by (1)

n+1

“sn(x) — sm(x)] < €

. By Cauchy’s criteria 4.34 the {s,} converges uniformly on E. . )" f,
converges uniformly.

Theorem 4.37 [Uniform Convergence and Continuity] Suppose { f,}
converges to f uniformly on a set E, in a metric space. Let x be a limit
point of E and suppose that limy_,, fn(t) = Ap(n = 1,2,3...), then {A,}
converges limy_,, f(t) = limy, 00 Ap. In other words lim;_,, lim, o f(t) =
hmn—mo hmt—m fn(t) .

Proof: Let € > 0 be given. Since {f,} converges to f uniformly on F, by
Theorem 4.34, there exists an integer N > 0 such that |f,(t) — fi(t)] <€
Vn,m > N,t € E...... (1)

Letting ¢t — x in (1) we get |4, — Ap| < e VYn,m > N(. limy,, = A,)
(i.e.) {A,} is a Cauchy sequence of real numbers. Since R is complete, {4, }
converges to some A( in R) (i.e.) {A,} — A. .. there exists N1 > 0 such
that |4, — A| <¢€/3, Vn > Nj...... (2)

Now,

[f(@) = Al = [f() = fa(D)] + (fn(t) = An) + [(An — A)]
SUf@) = fu(®)] 4 [fa(t) = An| + (An = A)].......(3)

Since {f,} — f uniformly, there exists No > 0 such that | f,(t) — f(t)| < €/3
Vn > Noyt€ E...... (4)
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Since z is a limit point of F and "." limy_,, f,(t) = A, there exists a neigh-
bourhood V of x such that |f,(t) — A, <€/3 Vte VNE... (5)
Let N3 = max{Ny, Na}. Now using (2),(4) and (5) in (3) we get

If(t) — Al <€/3+¢/3+¢€/3¥n>N3VteVNE.
(i.e) [f(t) — Al <e
(i.e.) lim f(t) = A (or)

i Jim fo(6) =l 4,

= lim lim f,(t))

n—oo t—x

s lim f(¢) = lim A,

t—x n—oo

Theorem 4.38 If {f,} is a sequence of continuous functions on E, and if
{fn} converges to f uniformly on E then f is continuous on E.
Proof: Enough To Prove: lim;_,, f(t) = f(x)

lim f(¢t) = lim lim f,(¢)) (. fn = f uniformly)

t—x t—x n—o0
%1_1}316 f(t) = nlggo(}gg fn(t)) (by Theorem 4.37)

= 7}1_%0 fn(z) (. frn is continuous)
= f(x) (. fn — f uniformly)

Remark 4.39 The converse of the above theorem need not be true. (i.e.)
a sequence of continuous function may converse to a continuous function,
although the convergence is not uniform.

Example 4.40 f,(z) = n?z(1 —22)", 0 <2 <1, n =1,2,3,... Clearly,
each fn is continuous. Also f is continuous. But the convergence is not
uniform. By Theorem 4.35, for let

My = sup |[fn(z) = f(2)|
z€]0,1]
= sup |n%z(l —2%)" -0
z€0,1]
=n? sup {z(1 —2»)"}
z€[0,1]

-+ 0 as n — oco.

By Theorem 4.35, the convergence is not uniform.

Theorem 4.41 [Dini’s Theorem] Suppose K is compact and
(a) {fn} is a sequence of continuous functions on K.

(b) {fn} converges pointwise to a continuous functions f on K.
(c) fn(x) > fryi(x) Ve e K, n=1,2,3...
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then fn, — f uniformly on K.

Proof: Given K is compact. Let g, = f, — f. Since each f,, is con-
tinuous and f is continuous, g, is continuous for all n. Since {f,} con-
verges pointwise to f, {g,} converges pointwise to 0. Since f,,(z) > fni1(z)
Vo € K, n=1,2... fu(z) — £(z) > far1(2) — £(2). (ie) gn(z) > gnir(a)
Vz, n=1,2.. (i.e.) {gn} is also a monotonic decreasing sequence. To prove
that { f,,} converges to f uniformly. It is enough to prove that {g,} converges
to 0 uniformly. Let € > 0 be given. For each n, let K,, = {z € K|gn(x) > €}.
Now,

K, = {IE S K|gn(9€) >€ [6700)}
={z € K|z € g, '[e,00)}

= gn '[€,00).

Since [e,0) is closed in R and g, is continuous, g, ![e,00) is closed in K.
(i.e.) K, is a closed subspace of the compact space K. ... K, is compact
(". every closed subspace of a compact space is compact). Claim: K, D
Kpy1, n=1,2,3... Let x € K41 = gnt1(z) > €. But gp(x) > gpt1(x) (by
(1)). . gn(z) > gnyi(z) > e = gp(z) > e=> 2 € K, -. Kpp1 C K. Fix
x € K. Since {g,} converges pointwise to 0. {g,(z)} — 0. Then there exists
N(x) > 0 such that |g,(z) — 0| <€ ¥Yn > N(z) = gn(z) <€ Vn> N(z) =
x ¢ K, VYn> N(z)=x ¢ (oo Kp. Since z is arbitrary, 7, K, = ¢ =
Ky = ¢ for some N. . gn(z) <e Vze K. But

0<gn(z) <gn(z)<eVzxe K, Vn>N
gn(z) <eVre K, Vn> N
(i.e.) |gn(x) — 0| < eVr € K, Vn > N

Hence {g,,} — 0 uniformly.
Note 4.42 Compactness is really needed in the above theorem.

Example 4.43 f,(z) = #ﬂ’ 0<zxz<l1, n=1,23.{f.} — f pointwise

where f(z) = OVz € (0,1) and (0,1) is not compact. Clearly, each f, is
continuous. Also f is continuous. Now,

n+1>n
= (n+ 1)z >nx
=nm+Dz+1>nzr+1
N 1 < 1
(n+Dzx+1 nx+1

= fn+1($) < fn(l')
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= {fn} is a decreasing sequence. But {f,} — f uniformly. For, if {f,} — f
uniformly then, given € > 0, there exists N > 0 such that

|fn(z) — f(2)] <eVn >N, Vx € (0,1)
(i.e.)

— 0| <eV 0,1
nx+1 ‘6 v €(0,1)

<eV 0,1
nx—i—l‘_e z€(0,1)

1 1
Put z = —. Then§<e

" <
=

.. The convergence is not uniform.

Definition 4.44 If X is a metric space € (x) denotes the set of all complex
valued continuous bounded functions with domain X. €(X) ={f/f: X —
¢, f is continuous and bounded}. If X is compact, €(X)={f/f: X = ¢, f
is continuous} (. any continuous function on a compact space is bounded).
For any f in €(f), sup|| f|| = sup,ex |f(z)|, since f is bounded || f|| < oco.

Result 4.45 € (X) is a metric space. Given f,g € €(X) define

(@) d(f,g) = |lf —gll

= sup [f(x) — g(x)]
el

>0
s.d(f,g9) >0
(i) d(f,g) = sup|f(x) — g(z)|

zeFE

= sup [g(z) — f(2)]

)
= [lg— f|
=d(f,9)
(iii) d(f,g) =0 || f —gll =0
& sup | f(z) — g(z)]
)
< |f(z) —g(z)| =0Vz € E

& fz) =g(z)
& f=g
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(i) d(f,9) = If — 4l
= sup | f(z) — g(z)]

el
= sup |(f(z) = h(z)) + (h(z) = g(2))]
< sup{|(f(z) = h(@))[ + [(A(z) — 9(2))}
< sup |(f(x) — h(x))[ + sup [(f(z) — g(z))]
zel zeE
= |If =Rl + 1P =gl

=d(f,h) +d(h,g)
(i-e.) d(f,9) < d(f,h) +d(h,g)
S (F(X),d) is a metric space.

Result 4.46 (Analogue of Theorem 4.35) A sequence {f,} — f with
respect to the metric space € (X) iff {fn} — [ uniformly on X.

Proof: ’only if’ part:

Assume that {f,,} — fin € (X). || fn — f|]| = 0asn — oo (i.e.) sup,cp | fn(z)—
f(z)] > 0asn — oo (ie.) M, — 0asn — oo (Theorem 4.35). {fpn} — f
uniformly (by Theorem 4.35)

’if” part:

Suppose {f,} — f uniformly. Then M, — 0 as n — oo (Theorem 4.35)
(i.e.) supz € El|fp(xz) — f(z)] — 0 as n — oo (ie)||fn—f]] — 0 as
n—o0. . {fn} = fin €(X)

Note 4.47 (i) Closed subsets of €(X) are called uniformly closed subsets.
(ii) If A C €(X) then the closure of A is called the uniform closure of A.

Theorem 4.48 % (X) is a complete metric space.

Proof: Let {f,} be a Cauchy sequence in ¢’ (X). Let ¢ > 0 be given. Then
there exists N > 0 such that || f, — fm]| <€ Vn,m > N..... (1)

(ie) supep |[fu(®) = fm(2)] < € Vn,m > N. = |fu(z) = fm(2)] < €
Vn,m > N,z € X. By Theorem 4.34, guarantees that {f,} converges uni-
formly, say f. (i.e.) lim, o0 fn(z) = f(z),z € X. Claim: f € €(X). Since
each f, is continuous and {f,} — f uniformly (Theorem 4.38). Theorem
4.38 demands that f is also continuous. Again, since {f,} — f uniformly,
there exists N1 > 0 such that |f,(z) — f(z)| <1Vn > Nj,z € X. In partic-
ular, |fn, () — f(z)] < 1...... (2) Vx € X

Since fn, (z) € €(X),|fn, ()] < K......... (3) Ve e X

Now,

[f (@) = [(f (@) = fn, () + fv, ()]
[f (@) < |f(2) = fv (@) + | fov, ()]
<1+ K (by (2) and (3)) Vx € X
(i.e.) |[f(x)]| <1+ K Vz € K.
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*. f is bounded. Hence f € % (X). It remains to prove that {f,} — f in
¢(X). For, {fn} — f uniformly = M,, — 0 = sup,cx |fn(z) — f(z)] = 0
asn — oo (by Theorem 4.35) = ||fn — f|| @ 0asn — oco. So {fn} — f
in the metric space €(X). ... €(X) is a complete metric space.

Uniform Convergence and Integration

Theorem 4.49 Let a be monotonically increasing on [a,b]. Suppose f, €
R(«) on [a,b] forn =1,2,3.... and suppose fn, — [ uniformly on [a,b] then
fn € R(a) on [a,b] and f(f fda = lim;, o ff fda.

Proof: Let €, = sup,<,<p |f(7) — fu(z)]....... (1) (Theorem 4.35)

Nf = ful <enVn=1,2,3...
_ng_fngen
:>fn_6n§f§fn+6n

:/ab(fn—en)dag/abfdozg/al;fdag/ab(fn+en)da ........ (2)

b b b b b b
:>/ fnda—/ endag/ fdag/ fdag/ fnda—i—/ enda
b b 7b b b b
:>/ fda—/fdag(/ fnda—i-/enda)—(/ fnda—/ enda)
- b
:2/ endo
—26n/ do

= 2en[a(b) — a(a)]

(i.e.) /ab fdo — /b fda < 2en(a(b) — ala))

0(C.€,—0 as f, — f uniformly by theorem 4.35)
/fda—/ fda

Hence f € R(a). IT part: To prove:

b ' b
/afda:nh_{rolo/a frnda
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Now, (2)=

/ab(fn —ep)da < /bfda < /b(fn + €p)da

b b ab ab b
/fnda—/ endag/ fdag/ fnda—l—/ endo
ab ¢ b ab ab ¢ b
:>/ fnda—en/ dag/ fdag/ fndoz—}—en/ do
a ab ab ab ab
:>—6n/ dag/ fda—/ fndozgen/ do
b b b
/fda—/ frnda Sen/ da

= en(a(b) — a(a))
—0asn— oo (. €, = 0)

] b b
1}1_)1130/(1 fnda:/a fda.

Corollary 4.50 If f, € R(a) on [a,b] and if f(z) = > 02 fa(x)(a <z <
b), the series converges uniformly on [a,b], then ff fda=3"0", f; fnda.(the
series may be integrated term by term,)

Proof: Given ) f, = f (uniformly). Let s, = > p_; fx. By hypothesis
{sn} — f uniformly. By Theorem 4.49,

b b
/ fda = lim / Spda
a n—oo a

= lim ' (Zn: fk> da
n—oo a 1
-t 3 ([ o)

k=1

o h
=> [ frdo

k=179

=
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5. UNIT V

Uniform Convergence and Differentiation

Theorem 5.1 Suppose {fn} is a sequence of functions, differentiable on
[a,b] such that {f,(x0)} converges for some point xo in [a,b]. If {f}} con-
verges uniformly on [a,b], then {f,} converges uniformly on [a,b] to a func-
tion f and f'(z) = limy, oo f(2),a <z <.

Proof: Since {fn(x0)} is convergent, it is a Cauchy sequence. Also {f/}
converges uniformly. Therefore, there exists an integer N > 0 such that

| fu(m0) = fn(z0)| < €/200(1) ¥R,m > N
(@) = f(@)] < 5 (D) Ymm 2 N, Vi € [a, ]

By applying mean value theorem to f,, — f, in [¢, x],

(fn = fm)(@) = (fa = f) (@) = (x = ) (fn = ) (V)
where y €

(a,b), for t,z € [a, b]
fn( ) fm( ) fn( )+fm() (l‘—t)( ( ) (y))
[fn(@) = fm (@) = fu(t) + fn ()] = [z = ) (f1(¥) = Fn(®))]
= |z = Dllf2 () = )]
|z — tle
S0 —a) (3) (by(2))
(b—a)e
=€/2

| fr(x) = f(x) — fu(t) + [ (t)] < €/2......(4) Yz, t € [a,b], Yn,m > N.

Now,

|fn(@) = fm (@) = [(fu(@) = fi(2)) — (fa(z0) — fal20)) + (fim(m0) — fim(20))]
< |fal®) = fm(z) = ful®0) + fm(0)| + |(fn(z0) = fin(0))]
<e€/2+¢/2 (by (4) and (1))

|fn(x) — f(z)| <€ VYn,m > N, Vx € [a, ]

Cauchy’s criteria guarantees that {f,} converges uniformly, say f. (i.e.)
lim, 00 fn = f. To Prove: f'(z) = limyoo f,(2). Fix 2 € [a,b], define
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= £ (2)ernrnn(5)
im0 = i 1=
= f(z)......(6)
Also, 6n(t) = (0] = [£-O=D208) _ fml) = Jnl)
< ) = l) = fu(0) + fun(a)
1 |t —x|e

<l o @)

- 2(b—a)

|¢n(t) - ¢m(t)’ < 2([) — a)

Cauchy’s criteria for uniform convergence demands that {¢,,} converges uni-
formly. Now,

_f) - f(@)
t—x
= ¢(t)

(i.e.)p(t) = T}Lngo O (b)) (7)
Finally, f'(z) = lim ¢(t) (by (6))
= Jim( Jim 60(0)) (by (7)
= lim lim ¢, (¢t) (. {¢n} — ¢ uniformly and by Theorem 4.37)

n—oo t—x

~ lim_f1(z) (by (5)
Therefore f/(x) = limy, o0 f1, ().

Theorem 5.2 There exists a real continuous function on the real line which
is no where differentiable.

Proof: Let ¢(z) = |z|,—1 <2 <1 and ¢(z +2) = ¢(z) Vz € R. Define
flz)=30"0(3/4)"¢(4"x),z € R. We observe that,

lo(s) — (b)) < |s —t|......(1) Vs, t € R
[(3/4)"¢(4"x)| < (3/4)",

—~
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2 0(3/4)™ is a geometric series with common ratio 2 < 1 and hence it

converges to ﬁ = 4. Now, Weierstrass M test for uniform conver-
gence demands that Y (3/4)"¢(4"x) converges uniformly to f. Clearly
f(x) is continuous. Fix a real number x and a positive integer m define
Om = i%(él — m) where the sign is chosen such that no integer lies be-
tween 4™ (x) and 4™(x + 6,,). This is possible since |4™6,,] = 1/2. Let
T = ¢(4m(1’+5gz))—¢(4mx)

m

. Now,

g — j:14”_m _ Jan integer n>m
i 2 not an integer 0<n<m

when n > m,

P(4"(z + 6m)) — ¢(4"x)

Tn = 6m
94w +475,,) — p(47x)

Tn = 5

Tn = ¢(4”x)6— ¢(4'2) (" 4"6,, is even)
=0

(t.e)ymn =0Vn >m....... (2)

when n < m,

ol = 07 B o)

|4 (z + 0py) — 47|
- |0rm]
4"5,,
<
il < |52

when n =m

"Yn| = ¢h/m|
_[#" et bu = otans
Om
ama,
O
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Now,
Fa 60) = (o) _ | SEal8/4)" 68" o+ 80)) = T3/ 10"
. _ 2 3y P @+ 6?} — ¢(4"a)} ‘

- ;§2(3/4>“q%

- 2%;(3/4)n7h (by (2)
zmwammw—éi@mw%
>><3/4>”w7@n|—-j§f§<3/4>"\vn|

o

> (3/4)™4™ — > (3/4)"4" (by (4) and (3))

n=0

n=0
3m —1
:3m—
3—1
_3’”—1—1
2
f(@+8m) = f(2)] 3" +1
Om - 2

As m — 00,6, — 0 and 25 — oco. It follows that f/(z) does not exists.

Equicontinuous family of functions:

Definition 5.3 Pointwise bounded: Let f, be a sequence of functions
defined on E. We say {fn} is pointwise bounded if {fn(x)} is bounded for
every x € E. (i.e.) there exists a finite valued function ¢ defined on E such
that | fn(x)] < ¢(z), Ve € E,n=1,2,3,...

Definition 5.4 Uniform boundedness: {f,} is said to be uniformly bounded
on E if there exists a number M such that |fn(z)] < M, Ve € E,n =
1,23, ...

Example 5.5 Even if {f,} is a uniformly bounded sequence of continuous
function on a compact set E, there need not exists a subsequence which
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converges pointwise on L.
Solution:
fu(x) =sinnz,0 <z <2m,n=1,23...
fa(@)] = |sinna| <1

. fn is uniformly bounded. To Prove: [0,27] is compact. Claim: This
does not have any convergent subsequence. Suppose it has any convergent
subsequence {sinnyx},

lim sin npz = A

k—o0

lim (sin ngx —sinngr1z) =0
k—o0

lim (sin niz — sin nk+1x)2 =0

n—oo
2 9 2
/ lim (sin ngx — sin ngz)°de = Odz
0 k—oo 0
2 9
/ lim (sin ngx — sinng12)“dr = 0....... (1)
0 k—oo
But,
2w
/ lim (sin ngx — sin nyyz)%de
0o k—oo
2m 9
= lim (sin ngx — sin ng12)“de
k—o0 Jo
2 9 9
= lim (sin® ngx + sin” ng1x — 2sin ngr sinngx)dx
k—o0 Jo
21 9 27 9
= lim / sin® npxdx +/ sin” ngy1zde
k—oo |J0o 0

2
— lim [2/ sinnkxsinnkﬂxdaj}
0

k—o0
— lim {/2” 1 — cos anxdx N /27r 1 — cos 2nk+1xdm}
k—oo |Jo 2 0 2

27
+ lim [/ (cos(ng + ng41)T — cos(ng — nkH)x)dx}
0

k—o0

. [m sin anxr” [az sin 2ng 12 2m
= 1im P . — —_ —
k—oo 2 4nk 0 2 4nk+1 0
+ fim {sin(nk + 1)z sin(ng — ngg1)z 2m
k—ro0 (g + 1) (nk —nks1) 1o
2T 2w
=1 — =0 — =0l —[0 0-0
o |5 -0+ [F -0 -0+ 0]
= lim 27
k—o0
=27....... (2)
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.". There does not exists a subsequence which converges pointwise on F.

Example 5.6 A uniformly bounded convergent sequence of a function, even
if defined on a compact set, need not contain a uniformly convergent subse-
quence,

562

n = 5 S S]_, :1,2,
fn(z) 2+ (1= na)? 0<z n 3

Solution: Clearly [0, 1] is compact.

2

X
v <1
@) = | e | <
. . 2
i (@) = i g e VS TS
= 0vceennn(1)
1 =
A
In n L+ (1—ni)?
1
_ n?
5 +0
=1.....(2)

Therefore f,, has no subsequence of { f,, } which converges uniformly, if there
is a subsequence {f,, } converging uniformly. Then,

| fo.(2) — 0] <€, Vny > N.

1 1
fru <>—0‘<ewhenl‘:

Nk N

=

=1-0|<e
=1<e
=<

Definition 5.7 Equicontinuity: A family % of complex functions f de-
fined on a set E in a metric space X is said to be equicontinuous on E if
for every € > 0, there exists 6 > 0 such that |f(z) — f(y)| < € whenever
d(z,y) <d,‘z,y e E, feZF.

Note 5.8 (i) Every member of an equicontinuous family is uniformly con-
tinuous.
(ii) Example 5.6 is not equicontinuous.
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Proof: Let x = % and y= —=

n+1°
1 1
d — | _
(z,y) = |~ n+1’
_ n+1n‘
| nn+1)
_ 1 ’
Cn(n+1)
<6
But [fu(z) = fulo)] = |22+ (1 nbyp - T L L
u n\ZT) — 'I’Ly = | = —n— _ —n
- n' o n+1
1
=11 — + _
1
=1 = (n+1)2
(nil)Q + (n-r‘;JlrIn)2
1
(n+1) L
I ("+1)
( 1)2
n+1
(n+1)2
1 1
—1-Z|==
2 2
1
’fn($)_fn(y)|<€:>§<€

=< ("’ € is arbitrarily small)
.. The family is not equicontinuous.

Theorem 5.9 If{f,} is a pointwise bounded sequence of complex functions
on a countable set E, then {fn} has a subsequence { fn, } such that { f,, (z)}
converges for every x in F.

Proof: Since F is countable, we can arrange the elements of E in a sequence
{z;}, i =1,2,...,00. As {fp} is pointwise bounded {f,,(x1)} is also a
bounded sequence. .. This sequence has a convergent subsequence. (i.e.)
There exists a subsequence { f1x} of {fn} such that {fix(x1)} converges as
k — oo. Let St: fi1 fiz fis..... Now, { f1x(z1)} is bounded. .". There exists
a subsequence {for} of {fix} such that {for(z2)} converges. Let Sy : fo;
foo fos..... Similarly we get Ss3, S3: f31 f3s2 f3s..... The sequences S,,’s have
the following properties.

(a) S, is a subsequence of S,_1
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(b) {fux(xn)} converges as k — oo

(c) The functions f,’s appear in the same order in all the subsequences.
Consider the diagonal sequence, S : fi1 f22 fs3....., by condition (a) S is a
subsequence of S, for n = 1,2, 3... except possibly its first n — 1 terms and
(b)= {fun(zi)} converges as n — oo for every x; in E.

Theorem 5.10 If K is a compact metric space and f, € €(K), n=1,2...
and if {fn} converges uniformly on K, then {f,} is equicontinuous on K.
Proof: Let ¢ > 0 be given. Since {f,} converges uniformly on K,{f,}
converges to some f in ¢ (K). (i.e.) There exists N > 0 such that

[fn—=fl <e/2¥n=>N
Now, [[fn = fnll = I(fn = F) + (f = I
<N = O+ = SN
<€/2+€/2
<eVYn>N
(i.e) |(fn — )l <eVn = N

(i.e.) sup [(fu(2) = fn(2))] <eVn =N

= |(fa() = fn(2))] < €eovnnnnn(1) ¥n > N Va € K.

Since all continuous functions are uniformly continuous on the compact set
K, there exists ; >0 such that d(z,y) < & = |fi(z) — fi(y)] < €....
(2) for z,y € K, i = 1,2,..,N. Let § = min{dy,d2,...,0n}. Therefore
d(z,y) < 0 = |fn(x) — fuly)] < €ceeenne. (3) for x,y € K, n =1,2,...,N.
For n> N,

d(z,y) <0
= |fu(x) = )] = |(fn(@) = fn(2) + (fn(2) = In () + [ (y) = fu()]
< |(fulx) = fn (@) + [fn(x) = v+ [N (y) — fu(y)]
<e+e+e(by (1) and(2))
= [(fo(x) — fu(y))] < 3e........ (4)

Combination (3) and (4) proves the result.

Theorem 5.11 If K is compact and if f, € €(K) for n = 1,2,3... and if
{fn} is pointwise bounded and equicontinuous on K, then

(a) {fn} is uniformly bounded on K

(b) {fn} contains a uniformly convergent subsequence.

Proof:(a) Let € >0 be given. By hypothesis {f,} is equicontinuous. Ac-
cordingly, there exists § > 0 such that d(z,y) < 0 = |fu(z) — fu(y)| <
€...(1) for z,y € K, n =1,2,... Clearly, K C U,cx Ns(z) where Ns(x)
is an neighbourhood of radius § with center . Since K is compact, there



are finitely many points p1, po, ..., p in K such that K C Uf\il Ns(pi)...... (2).
Since {f,} is pointwise bounded, {f,(p;)} is bounded for i = 1,2,....,r. ..
There exists M; < oo,i =1,2,...,r such that |f,(p;)| < M;.

Let M = max{M;, Ms,...,M,}. Then |fn(pi)] < M.....(3) Vi = 1,2,...,r
and Vn.

Let x € K. Then (2) implies z € Ns(p;) for some 7,1 < i < r. Therefore,

d(z,p;) < d=|fn(x) = fu(pi)] <e.....(4) (by (1))

Now,

< ‘fn(x) - fn(pz)’ + |fn(pz)‘

< e+ M. (by (3) and (4))
Hence {f,} is uniformly bounded on K.
(b)Given K is compact and {f,} is pointwise bounded, equicontinuous on
K. To Prove: {f,} contains a uniformly convergent subsequence. Since K
is compact, there exists a countable dense subset £ C K (i.e.) E C K.
Theorem 5.9 shows that {f,, ()} converges for all x € E. Let g; = fn,. We

shall show that {g;} converges uniformly on K. Let € > 0 be given. Since
{fn} is equicontinuous on K, there exists 6 > 0 such that

d(z,y) <0 =|fn(z) = ()] < €ccc.(1) for z,y € K.

Let V(z,6) = {y € K|d(z,y) < 0}(= Ns(x)). Clearly, K C U,ecx V(2,9).
Since K is compact and FE is dense in K, there exists x1, x2, ..., T, in E such
that

K C V(xl,é)UV(:UQ,5)U...UV(xm,5) ...... (2)

. For 1 < s <m,{gi(zs)} converges. Then there exists N >0 such that
lgi(xs) — gj(zs)| < €......(3) Vi,j > N.
Let x € K, then (2) = z € V(xs,0) for some 1 < s < m.
d(z,zs) < = |gi(x) — gi(xs)]| < €......(4)Vi

(by (1) gi = fn for some n)
Now,

9i(%) — gj(z)| = |gi(x) — gi(ws) + gi(zs) — gj(xs) + gj(zs5) — g5()]
<1gi(x) — gi(ws)| + gi(xs) — gj(ws)| + |gs(ws) — g;(2)]
<e+e+e(by(3)and (4)) Vi,j > N
(i.e.)|gi(z) — gi(z)| < 3e Vi,j > N.

Since z is arbitrary, the Cauchy’s criteria guarantees that {g;} converges
uniformly on K.
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Theorem 5.12 Stone Weierstrass Theorem- the original form of
Weierstrass theorem: If f is a continuous complezx function on [a,b],
then there exists a sequence of polynomials p, such that

lim p,(z) = f(z)

n—oo

uniformly on [a,b]. If f is real, p, may be taken real.

Proof: Without loss of generality, we assume that [a,b] = [0,1], f(z) =0
outside [0,1], f(0) =0 and f(1) = 0.

For, suppose the result is true for this case, let

But f(z) - g(x) = £(0) + 2[f(1) — £(0)].

Since g(x) is the uniform limit of a sequence of polynomials, f(x) can also
be obtained as the uniform limit of a sequence of polynomials.
Let

Qu(z) = (1 — 2" n=1,2,3...

where we choose ¢, such that

Now

1 1

/_1(1—x2) d:c:2/0 (1 —a*)"dx
7 no L

22 [V (1t da (- 0. 0.1)

1
2> /ﬁ(l — naz?)dz (by binomial theorem)
-1
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=2(57)

_ 4

END

>\/17L ...... (2) (- 4/3 > 1)

Now,d < |z| <1 = 6% < 2?
= —0% > —z?
=>1-62>1-22
= (1-6)">(1-2a%)"
= C,(1—=6H)">C,(1 — 2"

= Cn(l _ $2)n < Cn(l _ 62)n
= Co(1 —a?)" < V(1= 6%)" (by (3))
= Qu(z) < Vn(l—6H)"......(4)
—0asn— o0
1
Let p,(z) = /_1 flz+1)Qu(t)dt

(@) = L f F(z+6)Qn(t)dt + L 1; £z + £)Qn(t)dt

+ 1 flz+t)Qn(t)dt

11—z

11—z
:0+/_ F(@+8)Qn(t)dt + 0
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Obviously p,(z) is a polynomial in x. Moreover p,(z) is real when f is
real. Claim: p,(z) — f(x) uniformly. Since f(z) is continuous on [0,1] it is
uniformly continuous also. Let ¢ > 0 be given, then there exists § > 0 such
that

e —y| <d=|f(z)— fly)| <e/2 ... (6)for z, y € [0,1].

Let M = sup |f(z)| for any z € [0,1].

[po(@) = f@)] = || flz+1)Qu(t)dt — f(2)

:/ Fa 4 DQu(Od — f / Onlt dt‘ <._./11Qn($)dx:1)

:/_1f$+thtdt—/_lf:ant)dt‘

-/ 11[f(w+t) e >1Qn<t>dt\
< [ 1+ - @IQutar
_/ Fla+1) — f(@)|Qn(t dt+/ (@ + 1) — f(2)|Qn(t)dt
+ [ Vst +0) - f@)@u(o
§2M/ Qn(t) dt+e/2/ Qn(t) dt+2M/1Qn(t)dt
<2M+/n(1 / dt+e/2/ Qn(t)

+2M+/n(1 / dt (by (4
<2My/n(1 = 63" 14 ¢/2- 1+2M\F(1—52)"-1)

5 1
(/ dt:1—5<1,/ dt—1—6<1>
-1 )

<AM~n(1—63)"+€/2 =0 asn — oo
2. pn(x) = f(x) uniformly.

Some Special Functions
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Definition 5.13 Power Series: A function of the form
fla) =3 Cpa"™ (or) f(x) = Cup(z —a)"
n=0 n=0

is called a power series.

Theorem 5.14 Suppose the series > o>y Cpz™...... (1) converges for |z| <
R and define f(z) = > 02, Cra™...... (2) (x| < R), then (1) converges
uniformly on [—R+¢€, R— €] no matter which € > 0 is choosen. The function
f is continuous and differentiable in (—R, R) and

fl(x) =300 gnCra™ 1t ... (3) (Jz| < R).

Proof: Let € >0 be given. For |z| < R — ¢; |Cpa"| < |Cr(R —€)"™]....... (4).
We know, by Cauchy’s root test , any power series >.>> ; Cp, Z,, converges in
|z| < R, where R is the radius of convergence and is given by

1

limy, o0 |Cn’

.. The power series Y ° C, (R — €)™ also converges. > -2, Cpx, converges
uniformly (by Weierstrass M test for uniform convergence), for x € [-R +
€, R — ¢€]. Since lim;,,_ oo sup {/|Cy| = limy—oo ¥/|Chl, (1),(3) have the same
radius of convergence. (i.e.) By applying Theorem 5.1 for series we see
that (3) holds for x € [-R + ¢, R — €]. But when |z| < R, we can find € >0
such that x| < R — e. Hence (3) holds for |z| < R. Since f’ exists, f is
continuous.

Corollary 5.15 Under the hypothesis of Theorem 5.14, f has derivatives
of all orders in (—R,R) which are given by

frz) = Z n(n—1)(n—-2)---(n—k+1)Cpaz™ "~
n=k
In particular f*(0) = k!Cy, for k=0,1,2, ...
Proof: Let f(z) =322, Cha™ = Cy + Crz + Coz? + ... + Cpz™ + ...

f(z) = C1 + 2057 + 3C32% + ... + nCrz™ !

f(0) =11y

f(x) =2Cy +3-2C3x + ... + n(n — 1)Crz™ 2 4 ...
1"(0) = 2!y

f"(z)=3-2-1-C3+ ... +n(n—1)(n —2)Cpz" 3 + ...
f///(o) _ 3!C3

fk(:L‘) = i n(n — 1)(n — 2) . (n —k+ 1)Cnxn—k
n=~k
S FE(0) = Crk(k — 1) (E—2) -+ 1 = Iy,
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Theorem 5.16 Abel’s theorem: Suppose > C, converges. Put f(x) =
Yol Cna™ (=1 <z < 1), then

lim f(x Zc

r—1

Proof: Let S, =Cy+C1 +Co+ ...+ Cp_1 +Cp, S_1 =0

Now,
> Cur" = (Sn— Sn—1)a” (7 Sn — Sp1 = Cy)
n=0 n=0
= Z Spax™ — Z Sn_1T
n=0 n=0
= Z Snx" - Z Sp—1x (S_l = 0)
n=0 n=1
m—1 m
= Sy — Sp—1x2™ + Spx™
n=0 n=1
m—1 m
— Spx" — (Z Sn_lxn_1> T+ Spa™
n=0 n=1
m—1 m—1
= S — ( Sn:c”> x+ Spa™
n=0 n=0
m m—1
Z Cpz" = (1—1x) ( S,ﬂ:") A
n=0 n=0
Taking limits as m — co we get
> Cpa” = (1-u2) <ZSn:c )x—i—O (lz] < 1= 2™ — 0asm — o)
n=0
(t.e)f(z) = (1 —x) Z Spx"......(1)
n=0

Since Y C), converges, {S,} also converges, say to s..". for € > 0, there exists
N > 0 such that

|Sp — S| <€/2 ... (2) Vn > N

Now, since |z| <1,

)
> o=
n=0

n=0



121

Now,
[f(x) =S| =|(1—2) ) Spa" - S‘ (by (1))
n=0
=|(1-=x) i Spa" — S(1 —xz) io: z"| (by (3))
n=0 n=0
=|(1—x) (i(snx” - Sx”))
n=0
=|(1-x) (i(é‘n — S)x")
n=0
N o]
=|(1—=x) (Z(Sn - S+ > (Sn-— S)x") |
n=0 n=N+1

N 00
<|(t =) [ D[S = Slal"+ > \Sn—SHx!”)

n=0 n=N+1
[e's) N
=[(1—-2)|k+|(1-x) Z |Sp — S||z|™ where k = Z |Sp — S||=|"
n=N+1 n=0
<A —z)k+|(1-a)e/2 Y |z|" (by (2))
n=N+1
o0
<A —=2)|k+|(1—2)e/2) |2|"
n=0
1

=0 - 2)lk+[(1 - 2)le/27——

we choose 0 = €/2k,. . |z — 1| < d = |z — 1] < €/2k.
when z — 1,1 — |z| = |1 — z|

1

=e€lr—1/<0

(ze)igml f(z)=S (or) hm f(z Z Ch

Corollary 5.17 IfY an,>. by, Y. cn converge to A, B,C and if ¢, = agby, +
a1bp—1 + ... + apbg then C' = AB.
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Proof:
Let f(x Z anx"”

x) = Z bpz™
n=0

o
= Z cpx”, where 0 < x < 1.

For x < 1, all these series converge (by Theorem 5.14). Hence the series
can be multiplied. (i.e.) f(z)g(z) = h(x)

= lim {f(z)g(2)} = lim h(z)

z—1 z—1
= hm f(zx) hm g(x) = hm h(z)

Z an) Z by) Z ) (by Abel’s theorem)
n=0 n=0
= AB =C. ( Zan_Aan_Bch:C’

-.C=AB.

Theorem 5.18 Given a double sequence {a;;}, i=1,2,3..., j=1,2,3... Sup-
pose that 3772, |a;;| = b; (i=1,2,3, ...) and 37 b; converges, then

IR B

i=1j=1 j=1i=1

(Inversion in the order of summation).
Proof: Let E = {xg,x1,x2,...} be a countable set such that z, — x.
Define

Tp) = Zaij (i=1,2,3,...)
=1
(7)) = Zaij (n,i=1,2,3,...) and

Z (r € E).

=1
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Clearly then,

j=1
~Y
j=1
= fi(xo)
L fi(aa) = fi(zo).

.. Each f; is continuous at zg. (*.* Z;’;l a;; converges to b; = ) a;j converges,
fi(zo) exists Vi)
Now,

by hypothesis)
Vn, hence Yz, € F)
ieeens (1) Vx € F.

&7
—_— o~ =

(i.e.)| fi(zn)
(or)lfi(x)

Since > b; converges, (1) and weierstrass test guarantees that Y 7o, fi(x)
converges uniformly ((i.e.) g(x)).
Now,

xylLllEco g(xn) = ac,lbl—>rnxo (Z fz(mn>>

= Z fi(xo) (by uniform convergence and continuity theorem)
i=1

= g(wo)
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(i.e.) g(z) is continuous at xg

g(xo) = lim g(xy)

=Y filwo) = Jim > filan)
=1 =1

U
Nvgk

s
|
_

i=1 \j=

oo o n

a;; | = lim ;i
> aij | = lim > i
Jj=1 1

I

s
Il
—

o0 n [e.9]
> | = 3 (Y0 )
j=1 i=1

Jj=1

I

s
Il
—

|
Q
S

oo
D aij
J=1

M8

s
Il
—

oo oo oo

> ) =3 (L)

=1 i=

Theorem 5.19 Taylor’s theorem: Suppose f(x) = Y o2, Cpa™, the se-

ries converging in |z| < R. If —R < a < R then f can be expanded in a
power series about the point x = a which converges in |r —a| < R — |a| and

f@) =3 Ty (e al < B ).

Proof:

Consider the series,

i zn: |Cn (;) ((.I — a)manfm”'

n=0m=0
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The series,
o n n (0.)
Do 1Cal Y ( )\x —al™a["™™ =Y [Cul(lz — al + [a])",
n=0 m=0 m n=0

this being the power series converges in |x — a| + |a|] < R (by Theorem
5.14).

(i.e.) in |xr —a|l < R — |a|. (i.e.) the series (1) converge absolutely in
|z —a| < R — |a|]. Hence by Theorem 5.18, order of summation in (1) can
be changed.

fz) =

M]3
M:
N2
N
3
N———
]
|
2
3
s
i
3

3
Il
=)
3
Il
=)

Il
(e
[+
3
PR
S
-
)
|
S
3
Q
i
3
PR
S
-
Il
)
=
S
A
g

3
i
o
3
Il
3

Il
(e
(1=
2
=
S
|
=
£
|
3
+
=
!
S
3
IS
7
3

3
o
3
Il
3

M
|-

3
g
E

Z Cpn(n—1)...(n —m+ 1)a”m> (x —a)™

F\h
&
I
hE
\H
3
=

el

(x —a)™ (by Corollary 5.15)

3
I
=)

Theorem 5.20 Suppose the series Y anx™ and > byx™ converge in the seg-
ment S = (—R, R). Let E be the set of all x in S at which

Z apr" = Z bpz™......(1)
n=0 n=0

If E has a limit point in S, then a, = b,,n =0,1,2,.... hence (1) holds for
all x € §.
Proof: Put C,, = a, — b,,Vn =0,1,2,... Define

f(z) = Z Cpx"
n=0

Now, f(z) = > (an — bp)a"

n=0
o o0

= Z anx"™ — Z bpx™.
n=0 n=0

Therefore E = {x € S|f(z) = 0}...... (2) (Y apx™ => bpx™Vr € E). Let
A be the set of all limit points of E in S and let B =S — A. Obviously, B
isopenin S. Also S =AU B...... (3)
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We first show that A is open. Let xp € A ((i.e.) x¢ is a limit point of E
in §). Since —R < 29 < R, f(z) can be expanded by Taylor’s theorem as a
power series about zg, |z — zo| < R — |xo].

(i.e.) f(x) = Zdn(aj—xg)” ...... (4), |z — zo| < R — |xo].

Claim: All d,’s are zero. Otherwise, let k be the smallest non-negative
integer such that di # 0. ((i.e.) dy =de = ... =di_1 =0).

x) = i dp(x — 20)"
n=k

= dk(x — )k + dk—}—l(l' — xo)k—H + ...+ dk+2($ — xo)k+2 + ...
(w—l‘o) (dk+dk+1(l‘—xo) + .. —I—korQ(x—xo)Q —I—)
f(z) = (z — 20)*g(x)......(5) where g(x) = dj + dps1(z — 20) + ...

= Z Atk (2 — 20)™
m=0

Since g(x) is continuous and g(zg) # 0, there exists § > 0 such that g(z) #
0 for all |x — zg| < J. It follows from (5) that f(x) #0, V0 < |z — o] < 0.
But this contradicts that x¢ is a limit point of E. . All d/ s are zero. (i.e.)
flx) =0, VY|x — x| < R — |xg| (by (4)). Hence (|Jx — x| < R — |xg|]) C A
and A is open. Since S is connected, it cannot be expressed as a disjoint
union of open sets. .. (3) = A=¢ (or) B=¢ (" AN B = ¢). Since E has
limit points, by hypothesis in S, A # ¢. ... B = ¢. Hence S = A (by (3)).
Claim: A C E. Let y € A (i.e.) y is a limit point of E(in S) (i.e.) there
exists a sequence {z,} in F such that z, =y ... f(zn) = f(y) .. f(y) =0
(faxpn€E= flvy,) =0 Vn)=yeE. - ACE. So,ACECS=A=
E = S(= A). Now, by the definition of F, f(z) =0 Vx € E

= f(z)=0Vz e S (-E=Y5)

:>Zana:n—2bna:n20Vx€S
0 nO

= Zanmn = Z bpxy, Vz € S
n=0
(i.e.) (1) holds for Vx € S. Again, f(z) = O0Vz € S = C, =0 Vn (by
Corollary 5.15) = a,, = b, ¥n. Hence the proof.

The Exponential and logarithmic functions:

Definition 5.21 E(z) = Y.°%, 2. This series is called the exponential se-

n=0 n'
ries. The ratio test shows that the series converges for every complex number

zZ.
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Definition 5.22 We define E(x) = €* for all real x. E is called the expo-

nential function.

Note 5.23 E(1) =YX, 1 (=e).

n=0 nl

Result 5.24 (1) E(z)E(w) = E(z + w).
Proof:

Il
3
\gE:
»aw/ —~ ©
INgE
VR
‘l\z
RO -
=~
R
3 g )
| 3
=~ &
=
~_
~_

(2) E(z) # 0 for any z.
Proof:

E(z)E(—z) = E(z — z) (by result (1))

= E(0)
=1(-E0)=1)
= FE(2) #0
1
Iso B(—2) =
also E(—z) B(2)
(8) E(x) > 0 for all real x.
Proof: Case(i): Let x > 0.
oo xn
Baz)=Y &
() ngo -
42 2?23

)

>0('.'93>0:>%>0W)
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Case(ii): Let # < 0. Then = —y where y is positive.

(by result (2))

(
(y>0= E(y) >0 (by Case (i))

Case(iii): =z =0.

E(x) = E(0)
=1>0
hence E(x) > 0 for all real x.

(4) E(x) — 00 as x — o0 and E(z) — 0 as x — —o0.
Proof:

oo " 2 3

. _ T
(1)E(x)_;)ﬁ_1+1!+2!+3!+....

> 00 (as & — 00)

(ii) Let x = —y.

r— —00 = —Yy — —00
=y — 00
= E(y) — oo (by (i)
E(z) = B(—y) = Ezy) 0
(i.e.) E(x) — 0 as z — —o0.

(5) E(x) is strictly increasing on the whole real line.
Proof: (i) Let # < y. Then 2" < y™.

:L,n n
i
n! n!

;‘ZE<ZE
n=0 n=0
= E(z) < E(y).

(ii) Let z,y < 0 and x < y.

5. UNIT V
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J.x=—x1,y = —y1 where x1 and y; are positive.

rT<yYy=—-—x1<—-UY1

= T1 >y
= E(z1) > E(y1) (by (i))
N 1 1

(1) ~ E(p)
= E(—x1) < E(—y1) (by result (2))

(7) E(n) = e€" for all n.
Proof: Case(i): n > 0. we have E(z1+22+...+2n) = E(z1)E(22) - E(zy)
(by result 1). Put z; =1 Vi, we have

EQ+1414..41)=EQLEQ)-- E1)
En)=ee---e (" E(1)=e).
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Case(ii): n < 0.

Let n = —m where m is a positive integer.
B(n) = B(-m) = -
n)=LE(-m)=———
E(m)

1
= — (by Case(i) as m is a positive integer)
—m

:e’I’L

Case(iii): p = 2, n and m are integers and m # 0.

m
Now,

__enﬂn
=P
(8) limy 00 " e™* = 0 for every n.
Proof:
S
T _ -
L
xn+1
>
(n+1)!
= e’ > o
e
(n+1)!
= e’ > v
(n+1)!
(n4+1)! _ a”
= >
T er
e (1)
x

—0asz — o

(i.e.)xlingox e’ =0.

Theorem 5.25 Let €* be defined on R. Then
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1. €% is continuous and differentiable for all x.
(") =e”.

T

e® is strictly increasing function of xr and e* > 0.

XY = eel.

e w00 asxr — oo and e* — 0 as x — —o0.

S =B e e

3 n,—x
lim, o x"e

of ©

=0 for every n. (i.e.) e* — oo faster than any power

Logarithmic function:

Definition 5.26 Inverse of E is L. E(L(y)) =y, (y > 0); L(E(x)) =z, (x
real).

Result 5.27 (1) L(1) =0 (i.e.) log1 = 0.
Proof: L(E(z)) = z. Put z = 0, we have

E(z) = E(0)
L(1) = L(E(0))
=0
(2) J{ ydz = L(x)
Proof:
E(L(y)) =y
Differentiate w.r.t y, we get E'(L(y))L' (y) =1
yL'(y) =1
) = X
Dy =~
y
L(y) = /1 ;dy
(or) L(z) = /1 ‘ %dx.
(3) L(uwv) — L(u) + L(v)
Proof: Put u = E(z); v = E(y)
L(E(z)E(y)) = L(uv)
= L(E(z +y))

= L(E(z)) + L(E(y))
= L(u) + L(v)
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(4) L(3) = L(u) — L(v)
Proof: Put u = E(z); v= E(y)

=x—y
= L(E(x)) — L(E(y))
= L(u) — L(v)

(5) logx — 00 as x — 0o and logx — —o0 as x — 0

Proof: L(E(y)) =y. Put E(y) = z. y — oo,z — 00; y — —00,T —
0. logz =vy; logz — o0 as * — oo and logx - —coas x — 0

(6) L(z") =nL(z)

Proof: Case(i): n is a positive integer.

Liz")=L(zx-x---x)
= L(z) + L(x) + ... + L(x) (by (3))

=nL(x)
Case(ii): n is a negative integer. n = —m, where m is a positive integer.
L(z")=L(z™™)

L
= L(1) — L(z™) (by result (4))
0 — L(z™) (by result (1))
= —mL(z) (by Case(i))
=nL(x)

m

Case(iii): n = 1. Let /M=y (ie) y™ = .

L(z) = L(y™)
= mL(y) (by Case (i) and (ii))

= %L(m) = L(y
= L(y) = L)
1
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Case(iv): n =p/q.
L(z") = L(zP/)
= L(xl/q)p
— pL(z'/7) (by Case (i) and (ii))
_ p;L(x) (by Case (iii))

(7) 2™ = E(nL(x)).
Proof: E(nL(z)) = E(L(z")) (by (6)) =z"
(8) (z) = axr®~L.
Proof: z“ = E(aL(x))
Differentiate w.r.t x, we get

— B(aL(z)) -o%
_ a—1
(xoz)l _ Oé.’L‘a_l

(9) lim, 00 x~*logz = 0.
Proof: Let 0 < F < .

1
x “logx =2~ —dt
1t

X
:m—“/ tdt
1
X
< m*“/ tldt (ce—1> 1)
1
tE
)i

€
€
a

= 1-704(

= x_a(

)

a | =

TatT

< — Oasz — oo
oo lim 27 %logx = 0.
T—r00
The Trignometric functions

Definition 5.28
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Result 5.29 (1) C(z) and S(z) are real if x is real.

Proof:
Eliz) =1+ (’ﬁ) N (2‘;)2 (Z’;)?’ . (@Z!)4
_1+f—§—i§+j+ ...... (1)
E(—iz) =1+ (_fl:ﬁ) + (_;T)z (_;'x)s (—:'Iz‘)4 n
2 3 4
- % %+%+%+... ...... (2)
(1)+(2)

x2 $4
:>E(iw)+E(—ix)—2{1—++ }

2! 4!

E(iz) + E(—iz) . 2*  a*
5 =l-grt gt
E(ir) + E(—ix
o) = i)+ B-ie)

.. C(x) is real if x is real.

.. S(z) is real when z is real.

(2) Eliz) = C(z) +iS(x).

Proof:
Cla) +i8(z) = 200 +2E(—m> . Blz) —2iE(—ix)
_ 2B(ix)
2
= E(ix)
(3) E(z)= E(%).

(4) |E(iz)| = 1.



Proof:

= E(iz)E(—ix)
= E(iz —ix)
= E(0)
|B(iz)[* =1
|E(iz)] =1

2
1+1
T2
—1
S(a) = E(iz) —2E(—zx)
s(0) = EQ+EO
1-1
2
=0.
Cla) = E(iz) +2E(—w:)
() = E'(ix)i + EZ’(—i:U)(—z')
_ i(E(ix) — E(—iz))
2
_ i (E(iz) — B(—iz))
? 2
_ —(E(iz) — E(—ix))
27
~ -5()
S(z) = E(iz) —QZE(—zx)
S'(z) = E'(iz)i + E'(—ix)(—1)

2¢
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27
E(iz) + E(—ix)
2

S'(z) = C(x)

(6) There exists positive numbers x such that C(z) = 0.

Proof: Suppose there is no such real number x. Since C'(0) = 1, we get
C(z) > 0 Vz. (ie.) S'(z) > 0, Vx = S(x) is an increasing function.
S0<z=5(0)<S(x) (or) S(z) >0 Ve >0.Let 0 <z <t <y.

= S(x) <

:»/5 dt</S #dt

= S5(x)(y —x) < (=C@);

< C(x) = Cly)
<|C(z) = Cy)| < |C(2)] = |C(y)|
<1+1

Since S(z) > 0, inequality (1) does not hold for larger value of y. This
contradiction proves the assertion. .. There exist positive numbers x such
that C(z) =
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