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1. UNIT I

Basic Topology

Definition 1.1 Metric space: A set X(6= ∅) whose elements we shall
called points is said to be a metric space if with any two points p, q of X
there is associated a real number d(p, q), called the distance from p to q, such
that

1. d(p, q) > 0 if p 6= q,

2. d(p, q) = d(q, p) ∀p, q ∈ X,

3. d(p, q) ≤ d(p, r) + d(r, p) ∀p, q, r ∈ X (Triangle inequality),

4. d(p, q) = 0 if p = q.

Note 1.2 Any function with these three properties is called a distance func-
tion (or) metric.

Example 1.3 1. R1 with usual metric d(x, y) = |x − y| is a metric space.
2. The euclidean space Rk = {(x1, x2, ..., xk) = x̄|xi ∈ R1} with usual metric

d(x̄, ȳ) = |x̄ − ȳ| =

√

√

√

√

k
∑

i=1

(xi − yi)2, x̄, ȳ ∈ Rk

Note 1.4 Usually a non-empty set X with a metric d denoted by (X, d) is
called as metric space.

Remark 1.5 Every subset Y of a metric space X is a metric space (with the
same metric of) in its own right. For if conditions 1, to 4, of the Definition
1.1 hold for p, q, r ∈ X, then they also hold if you restrict p, q, r to lie in Y .

Definition 1.6 1. (a, b) = {x|a < x < b}− segment.

2. [a, b] = {x|a ≤ x ≤ b}- interval.

3. (a, b] = {x|a < x ≤ b}- Half open interval.

4. [a, b) = {x|a ≤ x < b}- Half open interval.

Definition 1.7 k-cell: If ai < bi i = 1, 2, ..., k then {x̄ = (x1, ..., x2)|a ≤
xi ≤ bi, i = 1, 2, ..., k} is called a k-cell.

Note 1.8 One-cell is a interval. Two cell is a rectangle. Three cell is
cuboid.
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Definition 1.9 Convex Set: A set E subset of Rk is convex if λx̄ + (1 −
λ)ȳ ∈ E whenever x̄, ȳ ∈ E and 0 < λ < 1.

Definition 1.10 Open ball: If x̄ ∈ Rk, r > 0, the open ball or (closed ball)
B with center at x̄ and radius r is defined to be the set {ȳ ∈ Rk| |x̄ − ȳ| < r}
or {ȳ ∈ Rk| |x̄ − ȳ| ≤ r}.

i.e., open ball B(x̄, r) = {ȳ ∈ Rk| |x̄ − ȳ| < r}
closed ball B[x̄, r] = {ȳ ∈ Rk| |x̄ − ȳ| ≤ r}

Lemma 1.11 Balls are convex.
Proof: Let B(x̄, r) be a open ball and let ȳ, z̄ lie in a open ball B.
⇒ |ȳ − x̄| < r and |z̄ − x̄| < r

0 ≤ λ ≤ 1 ⇒ 0 ≤ 1 − λ ⇒ |λȳ + (1 − λ)z̄ − x̄|
= |λȳ + (1 − λ)z̄ − (λx̄ + (1 − λ)x̄)|
= |λ(ȳ − x̄) + (1 − λ)(z̄ − x̄)|
≤ λ |ȳ − x̄| + (1 − λ) |z̄ − x̄|
< λr + (1 − λ)r = r

⇒ λ |ȳ + (1 − x)z̄ − x̄| < r

⇒ λȳ + (1 − λ)z̄ lies in the open ball B.

⇒ Every open ball is convex. Similarly every closed ball is convex.

Note 1.12 Every k-cell is convex.

Definition 1.13 Neighbourhood of a point: Let X be a metric space.
The neighbourhood a point p is ={q ∈ X|d(p, q) < r} and is denoted by
Nr(p).

Note 1.14 Nr(p) = (p − r, p + r) in R.

Definition 1.15 Limit point: Let p ∈ X and E ⊂ X. The point p is said
to be the limit point of E, if every neighbourhood of p contains a point q of
E other than p.

Note 1.16 p is a limit point of E. ⇒ Nr(p) ∩ E − {p} 6= ∅ ∀r > 0.

Example 1.17 A = {0, 1, 1/2, ...}; Nr(0) = (−r, r) ∀r > 0. By Archime-
dian principle ∀r > 0 there exists an +ve integer n such that n · r > 1

⇒ r > 1/n

⇒ r > 1/n

⇒ 0 < 1/n < r

⇒ 1/n ∈ (−r, r)

⇒ (A − {0}) ∩ (−r, r) 6= ∅
⇒ (A − {0}) ∩ Nr(0) 6= ∅ ∀r > 0

⇒ 0 is a limit point of A.
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Clam: 1 is not a limit point. Consider N1/4(1) = (1 − 1/4, 1 + 1/4) =
(3/4, 5/4). ∴ (3/4, 5/4) ∩ (A − {0}) = ∅ (i.e.), N1/4(1) ∩ (A − {1}) = ∅ ⇒ 1
is not a limit point of A. Similarly we can prove that 1/n is not a limit
point ∀n ∈ N . Hence 0 is the only limit point of A.

Definition 1.18 Isolated point: Let X be a metric space and E subset
of X. If a point p ∈ E is not a limit point of E. Then we say that p is
an isolated point of E. In the above example 1, 1/2, 1/3, ... are the isolated
point of A.

Definition 1.19 Closed set: Let X be a metric space and E ⊂ X, E is
said to be closed in X, if every limit point of E is a point of E. In the
previous example A is closed in R since {0} ⊂ A.

Definition 1.20 Interior point: Let X be a metric space and E ⊂ C. A
point p is an interior point of E. If there exists neighbourhood N(p) such
that N is contained in E (N ⊂ E).

Definition 1.21 Open set: Let X be a metric space and E ⊂ X. E is said
to be open in X if every point of E is an interior point of E.

Note 1.22 Let E′ denote the set of all limit points of E. Let E◦ denote the
set of all interior points of E.E◦ ⊆ E always. E is closed if E′ ⊂ E and E
is open if E = E◦.

Definition 1.23 Perfect set: Let X be a metric space and E ⊂ X.E is
said to be perfect in X if E is closed and if every point of E is a limit point
of E.

Note 1.24 E is perfect if E = E′.

Definition 1.25 Complement of a set: Complement of a set is defined
as Ec = {p ∈ X|p /∈ E}.

Definition 1.26 Bounded Set: Let X be a metric space and E ⊂ X. E is
said to be bounded in X if there exists a real number M and a point q ∈ X
such that d(p, q) < M ∀p ∈ E.

Definition 1.27 Dense Set: E is dense in X if every point of X is a limit
point of E or a point of E or both. If E is dense in X, then X = Ē = E∪E′.

Example 1.28 Q is dense in R.
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Theorem 1.29 Every neighbourhood is an open set.
Proof: Consider a neighbourhood Nr(p) (neighbourhood of p with radius
r > 0). To prove: Nr(p) open. Let q ∈ Nr(p). Enough to prove: q is an
interior point of Nr. Now q ∈ Nr(p) ⇒ d(p, q) < r. Let S = r − d(p, q).
Claim: NS(q) ⊂ Nr(p)

r ∈ NS(q)

⇒ d(r, q) < S = r − d(p, q)

⇒ d(p, q) + d(r, q) < r

⇒ d(p, r) < r

⇒ r ∈ Nr(p)

∴ NS ⊂ Nr(p)

Hence the claim. That is an interior pt of Nr(p). Since q is an arbitrary.
Every point of Nr(p) is an interior point. ⇒ Nr(p) is open. ∴ Every neigh-
bourhood is open.

Theorem 1.30 If p is a limit point of E. Then every neighbourhood of p
contains infinitely many points of E.
Proof: Suppose there exists a neighbourhood N of p contains only finitely
many points of E.
Let q1, q2, ..., qn be those points of E in N differ from p. {q1, q2, ..., qn ∈
(N ∩ E − {p}). Let r = min{d(p, qi)|i = 1...n}. Clearly, r > 0. Now the
neighbourhood Nr(p) contains no point q of E. such that q 6= p. Then p is
not a limit point of E which is a contradiction to p is a limit point of E. ∴

Every neighbourhood of p contains infinitely many points of E.

Corollary 1.31 Any finite set has no limit point.
Proof: Let X be a metric space and E ⊂ X be a finite set. To prove: E has
no limit points. If p is limit point of E. Then every neighbourhood of p con-
tains infinitely many points of E.(by above theorem) This is a contradiction
to E is a finite set. Hence a finite set has no limit point.

Theorem 1.32 Let {Eα} be a (finite or infinite) collection of set Eα. Then
(
⋃

Eα)c =
⋂

Ec
α.

Proof: Let x ∈ (
⋃

Eα)c.

⇔ x /∈
⋃

Eα

⇔ x /∈ Eα ∀α

⇔ x ∈ Ec
α ∀α

⇔ x ∈
⋂

Ec
α

∴ (
⋃

Eα)c =
⋂

Eα
c
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Theorem 1.33 A set E is an open iff its complement is closed.
Proof: Let E be an open set. To prove: Ec is closed. Let q be a limit
point of Ec ⇒ Every neighbourhood of q contains atleast one point p of
Ec such that p 6= q. ⇒ q is not an interior point of E. (∵ E is open)
(∵ Nr(q) ∩ Ec − {q} 6= ∅ ∀r > 0 (i.e.), Nr(q) * E ∀r > 0) ⇒ q /∈ E ⇒
q ∈ Ec. Since q is arbitrary. Ec contains all its limit point. ∴ Ec is closed.
Conversely, let Ec be closed. To prove: E is open. Let q ∈ E. To prove:
q is an interior point of E. Since q ∈ E ⇒ q /∈ Ec ⇒ q is not a limit
point of Ec. Which implies, there exists neighbourhood of N of q such that
N ∩ (Ec −{q}) = ∅ (i.e.) N ∩Ec = ∅(∵ q /∈ Ec) ⇒ N ⊂ E ⇒ q is an interior
point of E. Since q is arbitrary. Every point of E is an interior point of
E. ⇒ E is open.

Corollary 1.34 A set F is closed iff its complement is open.
Proof: F = (F c)c is closed. ⇔ F c is open. (by previous theorem)

Theorem 1.35 (a) For any collection {Gα} of open sets
⋃

α Gα is open
(or) Arbitrary union of open sets is open.
(b) For any collection {Fα} of closed sets

⋂

α Fα is closed (or) Arbitrary
intersection of closed sets is closed.
(c) For any finite collection {G1, G2, ..., Gn} of open sets

⋂n
i=1 is open (or)

Finite intersection of open sets is open.
(d) For any finite collection {F1, F2, ..., Fn} of closed sets

⋃n
i=1 Fi is closed

(or) Finite union of closed sets is closed.
Proof: (a) To prove:

⋃

α Gα is open where each Gα is open. Let p ∈
⋃

α Gα ⇒ p ∈ Gα for some α ⇒ there exists a neighbourhood N of p such
that N ⊂ Gα (∵ Gα is open) ⇒ N ⊂ Gα ⊂ ⋃

α Gα ⇒ N ⊂ ⋃

α Gα ⇒ p is
an interior point of

⋃

α Gα. Since p is arbitrary, every point of
⋃

α Gα is an
interior point. ⇒ ⋃

α Gα is open.
(b) To prove:

⋂

α Fα is closed where each Fα is closed ∀α. (i.e.) To prove
(
⋂

α Fα)c is open. (
⋂

α Fα)c =
⋃

α F c
α. Fα is closed ⇒ F c

α is open. By (a)
⋃

α F c
α is open. ⇒ (

⋂

α Fα)c is open. ⇒ ⋂

α Fα is closed.
(c) To prove:

⋂n
i=1 Gi is open when Gi is open ∀i = 1, ..., n. Let x ∈

⋂n
i=1 Gi ⇒ x ∈ Gi ∀i = 1 to n. For each i, there exists a neighbour-

hood Nri(x) such that Nri(x) ⊂ Gi ∀i = 1, 2, ..., n(∵ Gi is open). Let
r = min{r1, r2, ..., rn} ⇒ Nr(x) ⊂ Nri(x) ∀i ⇒ Nr(x) ⊂ Gi ∀i ⇒ Nr(x) ⊂
⋂n

i=1 Gi ⇒ x is an interior point of
⋂n

i=1 Gi. Since x is arbitrary, every point
of

⋂n
i=1 Gi is an interior point. ∴

⋂n
i=1 Gi is open.

(d) To prove:
⋃n

i=1 Fi is closed when Fi is closed ∀i. (i.e.) To prove
(
⋃n

i=1 Fi)
c is open. (

⋃n
i=1 Fi)

c =
⋃n

i=1 F c
i . Now, ∀iFi is closed ⇒ F c

i is
open. By (c),

⋂n
i=1 F c

i is open. ⇒ (
⋃n

i=1 Fi)
c is open. ⇒ ⋃n

i=1 Fi is closed.

Note 1.36 Arbitrary intersection of open sets need not be open.

Example 1.37 Consider Gn = (−1/n, 1/n) in R with usual metric. ⇒ Gn

is open ∀n. Now,
⋂∞

n=1 Gn =
⋂∞

n=1(−1/n, 1/n) = {0} is not open.
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Result 1.38 Arbitrary Union of closed sets need not be closed.
Proof: Consider Fn = (−α, −1/n)∪(1/n, α) ∀n. (i.e.) F c

n = (−1/n, 1/n) ∀n
⇒ F c

n is open ⇒ Fn is closed ∀n. Now, (
⋃∞

n=1 Fn)c =
⋂∞

n=1 F c
n =

⋂∞
n=1(−1/n, 1/n) = {0} is not open in R. ⇒ (

⋃

Fn)c is not open in R. ⇒
⋃

Fn is not closed in R.

Definition 1.39 If X is a metric space and E ⊂ X and if E′ denotes the
set of all limit points of E in X. Then the closure of E is the set Ē = E∪E′.

Theorem 1.40 If X is a metric space and E ⊂ X. Then

1. Ē is closed.

2. E = Ē iff E is closed.

3. Ē ⊂ Fα∀ closed set Fα ⊂ X such that E ⊂ Fα.

Proof: (1) To prove:Ē is closed. (i.e.) To prove Ēc is open. Let p ∈ Ēc

⇒ p ∈ Ec ∩ E′c ⇒ p ∈ Ec and p ∈ E′c (∵ Ē = E ∪ E′Ēc = Ec ∩ (E′)c)
⇒ p /∈ E and p /∈ E′ ⇒ p /∈ E and p is not a limit point of E
⇒ there exists a neighbourhood N of p such that N ∩ (E − {p}) = ∅ and
p /∈ E
⇒ N ∩ E = ∅ ......(1)
⇒ every point of N is not a limit point of E (∵ N is open) ⇒ N ⊂ E′c.
From (1), N ⊂ Ec ⇒ N ⊂ Ēc ∩ Ec = (E ∪ E′)c = Ēc ⇒ N ⊂ Ēc

⇒ p is an interior point of Ēc ⇒ Since p is an arbitrary. ∴ Every point of
Ēc is an interior point. ⇒ Ēc is open. ⇒ Ē is closed.
(2) E is closed. ⇒ E′ ⊂ E ⇒ E ∪ E′ ⊂ E ⇒ Ē ⊂ E. But E ⊂ Ē always.
∴ E = Ē. Conversely, E = Ē = E ∪ E′ ⇒ E′ ⊂ E ⇒ E is closed.
(3) Let p ∈ Ē ⇒ p ∈ E ∪ E′ ⇒ p ∈ E or p ∈ E′. If p ∈ E then p ∈ F [∵
E ⊂ F ] Let p ∈ E′ ⇒ p is a limit point of E ⇒ Every neighbourhood of p
contains atleast one point q ∈ E such that q 6= p ⇒ Every neighbourhood
of p contains atleast one point q ∈ F such that q 6= p[∵ E ⊂ F ] ⇒ p is a
limit point of F ⇒ p ∈ F (∵ F is closed) ⇒ Ē ⊂ F .

Theorem 1.41 Let E be a non-empty set of real numbers, which is bounded
above. Let y = sup E then y ∈ Ē. Hence y ∈ E if E is closed.
Proof: Let y = sup E. By the definition of sup ∀ real h > 0 there exists
X ∈ E such that y − h < x < y ⇒ y − h < x < y + h ∀ h > 0 and
x ∈ E ⇒ Nh(y) ∩ E − {y} 6= ∅ ∀h > 0 ⇒ y is a limit point of E ⇒ y ∈ E′ ⊂
Ē ⇒ y ∈ Ē. If E is closed then E = Ē. Hence y ∈ E if E is closed.

Note 1.42 Let X be a metric space and Y ⊂ X. Then Y itself is a metric
space under the same metric in X.

Definition 1.43 Open relative: Suppose E ⊂ Y ⊂ X and E is open
relative to Y if ∀p ∈ E there exists rp > 0 such that d(p, q) < rp, q ∈ Y ⇒
q ∈ E.
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Note 1.44 Nrp(p) ∩ Y ⊂ E.

Example 1.45 (a, b) ⊂ R ⊂ R × R. Here segment (a, b) is open in R but
not open in R × R.

Theorem 1.46 Suppose Y ⊂ X, a subset E of Y is open relative to Y iff
E = Y ∩ G for some open subset G of X.
Proof: Suppose E is open relative to Y . Then ∀p ∈ E there exists rp > 0
such that d(p, q) < rp, q ∈ Y ⇒ q ∈ E....... (1)
Let Vp = {q ∈ X|d(p, q) < rp} ⇒ Vp is neighbourhood in X ⇒ Vp is open in
X. Let G =

⋃

p∈E Vp ⇒ G is open in X {Arbitrarty
⋃

of open set is open}.
Claim: E = Y ∩ G. Let p ∈ E ⇒ p ∈ Vp (∵ Vp is neighbourhood of p) and
p ∈ V (∵ E ⊂ Y ) ⇒ p ∈ Vp ⊂ ⋃

V p = G and
p ∈ Y ⇒ p ∈ G ∩ Y ⇒ E ⊂ G ∩ Y ....... (2)
Let q ∈ Y ∩ G ⇒ q ∈ G and q ∈ Y ⇒ q ∈ ⋃

p∈E Vp and q ∈ Y ⇒ q ∈ Vp for
some p ∈ E and q ∈ Y ⇒ d(p, q) < rp and q ∈ Y for some p ⇒ q ∈ E (by
(1)) ⇒ Y ∩ G ⊂ E......(3)
By (2) and (3), E = y ∩ G. Conversely, suppose E = G ∩ Y for some open
set G in X. To prove: E ⊂ Y is open relative to Y . Let p ∈ Ē ⇒ p ∈ G ∩ Y
for some open set G in X. ⇒ p ∈ Y and p ∈ G ⇒ p ∈ Y and Vp ⊂ G where
Vp is a neighbourhood of p in X ⇒ Y ∩ Vp ⊂ Y ∩ G = E ⇒ E is open
relative to Y .

Compact Set:

Definition 1.47 Let X be a metric space. By an open cover of a set E in
X we mean a collection {Gα} of open sets in X such that

E ⊂
⋃

α

Gα.

Example 1.48 Consider the collection, I = {(−n, n)|n ∈ N} is a family
of open sets in R clearly I is an open cover for R.

Definition 1.49 A subset K of metric space X is said to be compact, if
every open cover of K contains a finite subcover (or) A set K is compact in
X and

K ⊂
⋃

α

Gα · Gα

is open in X, which implies, there exists α1, α2, ..., αn such that

K ⊂
n

⋃

i=1

Gαi .

Result 1.50 Let X be a metric space. Let A = {X1, X2, ..., Xn} be a finite
set in X. Clearly A is compact.
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Theorem 1.51 Suppose K ⊂ Y ⊂ X. Then, K is compact relative to X iff
K is compact relative to Y .
Proof: Suppose K is compact relative to X. To prove: K is compact
relative to Y . Let {Vα} be collection of open set in Y and K ⊂ ⋃

α Vα.
Now Vα is open in Y ⇒ there exists an open set Gα in X such that Vα =
Gα ∩ Y ∀α. Now K ⊂ ⋃

α Vα ⇒ K ⊂ ⋃

α(Gα ∩ Y ) ⇒ K ⊂ (
⋃

α Gα) ∩ Y ⇒
K ⊂ ⋃

α Gα. Gα is open in X. Since K is compact relation to X, there exists
α1, α2, ..., αn such that K ⊂ ⋃n

i=1 Gαi . Now K ∩Y ⊂ (
⋃n

i=1 Gαi)∩Y ⇒ K ⊂
⋃n

i=1(Gαi ∩ Y ) ⇒ K ⊂ ⋃n
i=1 Vαi ⇒ K is compact relative to Y . Conversely,

suppose K is compact relative to Y . To prove: K is compact relative to X.
Let {Gα} be collection of open set in X. Now, K ⊂ ⋃

α Gα ⇒ K ∩ Y ⊂
(
⋃

α Gα) ∩ Y ⇒ K ⊂ ⋃

α(Gα ∩ Y ) where Vα = Gα ∩ Y ⇒ K ⊂ ⋃

α Vα [Vα

is open in Y ]. Since K is compact relative to Y , there exists α1, α2, ..., αn

such that K ⊂ ⋃n
i=1 Vαi =

⋃n
i=1(Gαi ∩ Y ) (i.e.) K ⊂ ⋃n

i=1 Gαi ∩ Y ⇒ K ⊂
⋃n

i=1 Gαi ⇒ K is compact relative to X.

Theorem 1.52 Compact subsets of a metric are closed.
Proof: Let K be a compact subset of a metric X. To prove: K is closed, it is
enough to prove that Kc is open. If q ∈ K. Let Vq and Wq be neighbourhood
of p and q respectively of radius less than d(p, q)/2 ⇒ Vq ∩ Wq = ∅ ∀q ∈
K. {Wq|q ∈ K} is an open cover for K. Since K is compact there exist
q1, q2, ..., qn ∈ K such that K ⊂ ⋃n

i=1 Wqi . Let W =
⋃n

i=1 Wqi and V =
Vq1

∪ Vq2
... ∪ Vqn . Clearly, V is a neighbourhood of p. Also V ∩ W = ∅ ⇒

V ⊂ W c ⊂ Kc ⇒ V ⊂ Kc ⇒ p is an interior point of Kc ⇒ Kc is open {∵ p
is arbitrary} ⇒ K is closed.

Theorem 1.53 Closed subset of a compact sets are compact.
Proof: Suppose F ⊂ K ⊂ X, where F is closed with respect to X and K is
compact. To prove: F is compact. Let {Vα} be an open cover for F . Now
F is closed ⇒ F c is open. Let Ω = {Vα} ∪ {F c}. Now, Ω is an open cover
for K. As K is compact, there exists an finite subcover φ of Ω such that φ
covers K ⇒ φ covers F (∵ F ⊂ K). If F c ∈ φ then φ − {F c} covers F. ∴ F
is compact.

Corollary 1.54 F is closed and K is compact. Then F ∩ K is compact.
Proof: Since K is compact subset of a metric space ⇒ K is closed. [by
Theorem 1.52] ⇒ K ∩F is closed. [∵ F is closed] Now F ∩K ⊂ K ⇒ F ∩K
is compact, by Theorem 1.53

Theorem 1.55 If {Kα} is a collection of compact subset of a metric set X,
such that the intersection of every finite subcollection of Kα is non-empty ,
then

⋂

Kα is non-empty.
Proof: Fix a member K1 of {Kα} and put Gα = Kc

α. Assume that no
point of K1 belongs to every Kα (i.e.) K1 ∩(

⋂

α Kα) = ∅ ⇒ K1 ⊂ (
⋂

Kα)c =
⋃

α Kc
α =

⋃

α Gα ⇒ K1 ⊂ ⋃

α Gα. Since {Gα} is an open cover for K1 and K1
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is compact, there exists α1, ..., αn such that K1 ⊂ ⋃n
i=1 Gαi = (

⋃n
i=1 Kc

αi
) =

(
⋂n

i=1 Kαi)
c ⇒ K1 ∩ (

⋂n
i=1 Kαi) = ∅. This is a contradiction to the above

hypothesis. ∴ Our assumption is wrong. ∴ We have
⋂

α Kα 6= ∅.

Corollary 1.56 {Kn} is a sequences of non-empty compact set such that
Kn ⊃ Kn+1(n = 1, 2, ...) then

⋂∞
n=1 Kn is non-empty.

Proof: Since Kn ⊃ Kn+1 ∀n. We have every finite intersection of Kn is
non-empty. ∴ by above theorem

⋂∞
n=1 Kn is non-empty.

Theorem 1.57 Bolzono weistras theorem: If E is a finite subset of a
compact set k. Then E has a limit point in K.
Proof: Suppose no point of k is a limit point of E. Then for each q ∈ k
there exists a neighbourhood Vq of q such that Vq contains atmost one point
of E namely, q if q ∈ E. Let {Vq|q ∈ k} be an open cover for k. Clearly, no
finite subcollection of {Vq} covers E and same is true for k. [Since E ⊂ k]
This is a contradiction to the fact that k is compact. ∴ Our assumption is
wrong. ∴ E has a limit point in k.

Theorem 1.58 If {In} is a sequence of intervals in R such that In ⊃ In+1

n = 1, 2, ... Then
⋂∞

n=1 In is non-empty.
Proof: Let In = [an, bn] n = 1, 2, ... Let E = {an/n ∈ N} ⇒ E is bounded
above by b1 Let x be the least upper bound of E. (i.e.) x = sup E. If m and
n are positive integers, then an ≤ am+n ≤ x ≤ bm+n ≤ bm∀m ⇒ x ≤ bm ∀m
and am ≤ x ≤ m ⇒ am ≤ x ≤ bm ∀m ⇒ x ∈ [am, bm] ∀m ⇒ x ∈ Im ∀m ⇒
x ∈ ⋂∞

n=1 In ∴ x ∈ ⋂∞
n=1 is non-empty.

Theorem 1.59 Let k be a the integer {In} is a sequence of k cells such that
In ⊃ In+1 ⊃ In+2... Then x ∈ ⋂∞

n=1 In 6= φ.
Proof: Given In = {x̄ = (x1, x2, ..., xn) ∈ Rk|an,j ≤ xj ≤ bn,j , j = 1, 2, ..., k
and n = 1, 2, ...}. Given In ⊃ In+1 ⊃ In+2... Let In,j = [an,j , bn,j ] 1 ≤ j ≤ k
and n = 1, 2, ... For each j, {In,j} is a sequence of intervals such that In,j ⊃
In+1,j n = 1, 2, 3, 4... ⇒ ⋂∞

n=1 In,j 6= ∅ for each j (By Theorem 1.58). Let
xj ∈ ⋂∞

n=1 In,j for each j = 1 to k ⇒ for each j, xj ∈ In,j ∀n = 1, , 2, ... Let
x̄ = {x1, x2, ..., xk} ∈ In ∀n = 1, 2, ... ⇒ x̄ ∈ ⋂∞

n=1 In ⇒ ⋂∞
n=1 In 6= ∅.

Theorem 1.60 Every k-cell is compact.
Proof: I = {x̄ = {x1, x2, ..., xk ∈ Rk|ai ≤ xi ≤ bi}, put S = [

∑k
i=1(bi −

ai)
2]

1

2 . Now, for each x̄, ȳ ∈ I, |x̄ − ȳ| ≤ S. To prove: I is compact. Suppose
I is not compact. ⇒ There exists an open cover {Gα} of I such that it has

no finite subcover for I. Put cj =
aj+bj

2 . The intervals [aj , bj ] and [cj , bj ].

Then determine 2k ,k-cells Qi such that I =
⋃2k

i=1 Qi. Then atleast one of
these cells Qi, say I1 cannot be covered by any finite subcollection of Gα.
Proceeding like this we have
(a) I ⊃ I1 ⊃ I2 ⊃...
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(b) Each In is not covered by any finite subcollection of {Gα} and
(c) x̄, ȳ ∈ In, |x̄ − ȳ| ≤ δ

2n

by (a){In} is a sequence of k-cells such that In ⊃ In+1 ⊃ In+2..., n =
1, 2, ... ⇒ ⋂∞

n=1 In 6= ∅ for each j (By Theorem 1.58) ⇒ x̄ ∈ ⋂∞
n=1 In ⇒ x̄ ∈

In ∀n = 1, 2, ... ⇒ x̄ ∈ Gα for some α [∵ In ⊂ I ⊂ ⋃

α Gα] ⇒ There exists a
neighbourhood Nr(x̄) such that Nr(x̄) ⊂ Gα[∵ Gα is open] ⇒ {ȳ| |x̄ − ȳ| <
r} ⊂ Gα..... (1)
Since r > 0, δ > 0. There exists a positive integer n such that n · r > δ (by
Archimedian principle) ⇒ 2n · r > n · r > δ ⇒ 2n · r > δ ⇒ r > S · 2−n ⇒
r > δ

2n .... (2)

Let ȳ ∈ In ⇒ |x̄ − ȳ| < δ
2n [∵ x̄ ∈ In ∀n] ⇒ |x̄ − ȳ| < r ⇒ ȳ ∈ Nr(x̄) ⇒

In ⊂ Nr(x̄) ⊂ Gα ⇒⇐ (b). ∴ Our assumption is wrong. ∴ Every k-cell is
compact.

Theorem 1.61 A set in Rk has one of the following three properties then
it has the other two.
(a) E is closed and bounded.
(b) E is compact.
(c) Every infinite subset of E has a limit point in E.
Proof: (a) ⇒ (b) Assume that E is closed and bounded. To prove: E
is compact. Since E is bounded, E ⊂ I for some k-cell I. By the above
theorem I is compact. ∴ E is a closed subset of compact set I. ⇒ E is
compact.
(b) ⇒ (c) The proof is obvious from, Theorem 1.57.
(c) ⇒ (a) Suppose every infinite subset of E has a limit point in E. To prove
E is closed and bounded. Suppose E is not bounded. ⇒ There exists x̄n ∈ E
such that |x̄n| > n (n = 1, 2, ...). Let S = {x̄n| |x̄n| > n, n = 1, 2, ...}......(*)
Clearly, S is a infinite subset of E and S has no limit points in Rk. Which
implies, S has no limit points in E [∵ E ⊂ Rk] (Suppose x̄ is a limit point
of S. Then Nr(x̄) contains infinitely many points of S ∀ȳ ∈ S. Now,
||ȳ| − |x̄|| < |ȳ − x̄| < r ⇒ |ȳ| < |x̄| + r < m for some integer m ⇒ |ȳ| < m
for integer ȳ in S. There exists n > m such that ȳ = x̄n ∈ S and |x̄n| < m ⇒
|x̄n| < m < n ⇒ |x̄n| < n, x̄n ∈ S ⇒⇐ to (*)) ∴ E is bounded. Suppose E
is not closed. There exists a point x̄0 in Rk such that x̄0 a limit point of E,
but x̄0 /∈ E ⇒ Every neighbourhood of x̄0 contains a point ȳ of E such that
ȳ 6= x̄0 (i.e.) For n = 1, 2, ..., N 1

n
(x̄0) contains a point x̄n of E, x̄n 6= x̄0.

Let S = {x̄n||x̄n − x̄0| < 1
n n = 1, 2, ...}. ∴ S is infinite. [otherwise |x̄n − x̄0|

would have a constant positive value for infinitely many n] Also x̄0 is the
only limit point of S. Suppose there is a point ȳ ∈ Rk such that ȳ 6= x̄0 and
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ȳ is a limit point of S. Consider

|ȳ − x̄0| = |ȳ − x̄n + x̄n − x̄0|
≤ |ȳ − x̄n| + |x̄n − x̄0|

−|ȳ − x̄0| ≥ −|ȳ − x̄n| − |x̄n − x̄0|
⇒ |x̄n − ȳ| ≥ |ȳ − x̄0| − |xn − x0|

> |ȳ − x̄0| − 1

n
.......(1)

Now as |x̄0 − ȳ| > 0 and 2 ∈ Z+ such that there exists an positive integer m
such that m|x̄0 − ȳ| > 2 [By Archimedian principle]

⇒ n|x̄0 − ȳ| > 2 ∀n ≥ m

⇒ 1

2
|x̄0 − ȳ| >

1

n
∀n ≥ m

⇒ −1

2
|x̄0 − ȳ| < − 1

n

By (1) ⇒ |x̄n − ȳ| ≥ |x̄0 − ȳ| − 1

n

≥ |x̄0 − ȳ| − 1

2
|x̄0 − ȳ|

=
1

2
|x̄0 − ȳ| = r (say) ∀n ≥ m

∴ |x̄n − ȳ| ≥ r ∀n ≥ m.

(i.e.) There exists a neighbourhood ȳ such the neighbourhood contains only
finite number of points of S, it is a contradiction to the assumption that ȳ
is a limit point of S. ∴ Our assumption is wrong. Hence ȳ is not a limit
point of S. ∴ S has only one limit point x̄0 in Rk and x0 is not in E ⇒ S
has no limit points in E. (i.e.) S is an infinite subset of E and it has no
limit point in E. ⇒⇐ hypothesis (c). ∴ E is closed.

Theorem 1.62 Heine-Borel theorem: Any subset EofRk is closed and
bounded iff E is compact.

Remark 1.63 The Heine-Borel theorem need not be true for any general
metric space.

Example 1.64 Let X be an infinite set. Define a discrete metric d on X,

d(p, q) =

{

0 if p = q

1 if p 6= q

Let A be any infinite subset of X. To prove: A is closed and bounded.
Clearly, A is bounded in X[∵ d(p, q) ≤ 1 ∀p, q ∈ A]. Let {x} be a subset
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of X. Claim: {x} is open in X. Choose r = 1. Then, Nr(x) = {y ∈
X|d(x, y) < r} = {y ∈ X|d(x, y) < 1} = {x}. But every neighbourhood is
open. ∴ {x} is open. ∴ Every singleton set in the discrete metric set is
open. Now, A =

⋃

x∈A{x}. ∴ A is open in X. ∴ Every subset of X is open
in X ⇒ Ac subset of X is open in X ⇒ A is closed in X ∴ Every subset of a
discrete metric space X is both open and closed. A =

⋃

x∈A{x} ⇒ {{x}|x ∈
A} is a open cover for A but it has no finite subcover. ∴ A is not compact.
∴ Heine-Borel theorem need not be true for any general metric space.

Theorem 1.65 Weistras theorem: Every bounded infinite subset of Rk

has a limit point in Rk.
Proof: Let E be an infinite subset of Rk ⇒ E ⊂ I for some k-cell I ⊂ Rk.
But I is compact. By Bolzona Weistras property, E has a limit point in
I ⊂ Rk ⇒ E has a limit point in Rk.

Perfect Set:

Theorem 1.66 Let P be a non-empty perfect set in Rk. Then P is un-
countable.
Proof: Given P is a perfect set in Rk ⇒ P is closed and all the points
of P are the limit point of P ⇒ P is infinite ⇒ P is either countable or
uncountable. If P is countable then P = {x̄1, x̄2, ..., x̄n....}. We construct
the sequence of neighbourhood {Vn} by the method of induction on n. Let
V1 = {ȳ ∈ Rk| |ȳ − x̄1| < r}; V̄1 = {ȳ ∈ Rk| |ȳ − x̄1| ≤ r}. Obviously,
V1 ∩ P 6= ∅. ∴ Induction true for n = 1. Since every point of P are the
limit points, there exists a neighbourhood V2(x̄2) such that (i) V̄2 ⊂ V1, (ii)
x̄1 /∈ V2 and (iii) V2 ∩ P 6= ∅. Suppose Vn has been constructed so that (i)
V̄n ⊂ Vn−1, (ii) x̄n−1 /∈ V̄n and (iii) Vn ∩ P 6= ∅. Suppose every point of P
are the limit points there exists a neighbourhood Vn+1(x̄n+1) such that (i)
V̄n+1 ⊂ Vn, (ii) x̄n /∈ V̄n+1 and (iii) Vn+1 ∩ P 6= ∅. ∴ by proceeding we have
the {Vn} of neighbourhood. Put Kn = V̄n ∩ P ∀n.......*
x̄n /∈ V̄n+1 ∀n ⇒ x̄n /∈ Kn+1 [Kn+1 = V̄n+1 ∩ P ] ⇒ no points of P lies in
⋂∞

n=1 Kn...... (1)
Now, Kn = V̄n ∩ P ⇒ Kn ⊂ P ∀n ⇒ ⋂

Kn ⊂ Kn ⊂ P ...... (2)
From (1) and (2),

⋂

Kn = ∅...... (3)
As V̄n is a subset of Rk and V̄n is closed and bounded ⇒ V̄n is compact. Now,
P is closed ⇒ V̄n ∩ P is closed and V̄n ∩ P ⊂ V̄n. (i.e.) V̄n ∩Rk is compact[∗]
and also V̄n+1 ⊂ Vn ⊂ V̄n ⇒ V̄n+1 ∩ P ⊂ V̄n ∩ P ⇒ Kn+1 ⊂ Kn ∀n. ∴

We have a {Kn} of compact such that Kn ⊃ Kn+1. ∴ by Theorem 1.55,
⋂

Kn 6= ∅ ⇒⇐ to (3). ∴ Our assumption is wring. ∴ P is uncountable.

Corollary 1.67 Every [a, b](a < b) is uncountable. In particular, the set of
all real numbers is uncountable.
Proof: We know that, Every closed interval is perfect set in R1 ⇒ [a, b] is
uncountable ⇒ R1 is uncountable.
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Definition 1.68 The Cantor Set: Define the cantor set P and show that

1. P in non-empty.

2. P is closed and bounded.

3. P is compact.

4. P is perfect or dense in itself.

5. P contains no segment.

The construction of cantor set: The construction of cantor set shows
that there exists a perfect sets in R1 which contains no segment. Let
E0 = [0, 1]. Remove the segment (1

3 , 2
3) from [0, 1] and Let E1 = [0, 1

3 ]∪[2
3 , 1].

Remove the middle 3rd of these intervals [0, 1
3 ] and [2

3 , 1]. Let E2 = [0, 1
9 ] ∪

[2
9 , 3

9 ] ∪ [6
9 , 7

9 ] ∪ [8
9 , 1] and each interval is of length = 1

9 , continuing in this
way, we obtain a sequence of compact sets
(a) E0 ⊃ E1 ⊃ E2...
(b) En is the union of 2n intervals.
(i.e.) E = [0, 1

3n ] ∪ [ 2
3n , 3

3n ] ∪ ... ∪ [3n−3
3n , 3n−2

3n ] ∪ [3n−1
3n , 1] and each of length

3−n. Let P =
⋂∞

n=1 En. The set P is called the cantor set.
Step 1: To prove: P 6= ∅. Since each En is closed and bounded and also
En ⊂ R1 for each n. By Heine-Borel theorem each En is compact. ∴ We
have {En} of compact sets such that En ⊃ En+1 ∀n. By Theorem 1.55,
⋂∞

n=1 En 6= ∅ ⇒ P 6= ∅.
Step 2: To prove: P is closed and bounded. Since each En is closed and
bounded. ⇒ ⋂∞

n=1 En is closed and bounded. ⇒ P is closed and bounded.
Step 3: To prove: P is compact. Now, P ⊂ R1 and P is closed and
bounded. ∴ By Heine-borel theorem, P is compact.
Step 4: To prove: P is perfect. (i.e.) To prove P is closed and ever point
of P are the limit points of P . By step 2, P is closed. Take x ∈ P ⇒
x ∈ ⋂∞

n=1 En ⇒ X ∈ En ∀n. Let In be an interval of En which contains x.
[∵ En is the union of 2n closed intervals] Let S be any segment containing
x. Choose n large enough so that In ⊂ S. Let xn be an end point of In such
that xn 6= x ⇒ xnP . Since end point of In should be the points of P ⇒ x is
a limit point of P. [∵ S ∩ (P − {x}) 6= ∅] Since x is arbitrary, every point P
are the limit points. ∴ P is perfect.
Step 5: P is perfect ⇒ P is uncountable.
Step 6: P contains no segment from the construction of the cantor set. Ob-
viously P does not contain segment of the from (3k+1

3m , 3k+2
3m )........ (1) where

k, m ∈ Z+. Let (α, β) be any segment and if (α, β) contains a segment (1)
only if 3−m < β−α

6 . But P does not contains the segments (1). ∴ P does
not contains the segments (α, β). Since (α, β) is arbitrary. ∴ P contains no
segment.
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Connected Sets:

Definition 1.69 Separated Sets: Any two subsets A and B of a metric
space X are said to be separated if A ∩ B̄ = ∅ and Ā ∩ B = ∅.

Example 1.70 A = (2, 3), B = (3, 4) and C = (3, 4). Then A and B are
separated. Ā = [2, 3]; B̄ = [3, 4]; C̄ = [3, 4]. Now, Ā ∩ B = [2, 3] ∩ (3, 4) =
∅; A∩B̄ = [2, 3]∩[3, 4] = ∅. ∴ A and B are separated. Ā∩C = [2, 3]∩[3, 4] =
{3} 6= ∅ ⇒ A and C are not separated.

Remark 1.71 1. Separated Sets are disjoint.

2. Disjoint Sets need not be separated.

Definition 1.72 Connected Sets: A set E ⊂ X is said to be connected if
E is not a union of two non-empty separated sets.

Theorem 1.73 A subset E of the real line R1 is connected iff it has the
following property. If x ∈ E, y ∈ E and x < z < y then z ∈ E (or) Find all
the connected subsets of the real line.
Proof: Suppose E is connected. To prove: If x, y ∈ E, x < z < y then
x ∈ E[E is an interval] Suppose there exists x, y ∈ E and some z ∈ (x, y)
such that z /∈ E. Then E = Az ∪ Bz where Az = E ∩ (−α, z); Bz =
E ∩ (z, α); Az 6= ∅; Bz 6= ∅ [∵ x ∈ Az and x ∈ Bz]. Now, Āz ∩ Bz =
∅; Az ∩ B̄z = ∅. ∴ Azand Bz are non-empty separated sets. Az ∪ Bz =
(E∩(−α, z))∪(E∩(z, α)) = E∩[(−α, z)∪(z, α)] = E∩{R−{z}} = E [z /∈ E
and E ⊂ R − {z}]. ∴ E can be expressed as the union of two-non-empty
separated sets. ∴ E is not connected. This is a contradiction. Hence,
if ∀x ∈ E, y ∈ E and x < z < y then z ∈ E. Conversely, Suppose if
∀x ∈ E, y ∈ E and x < z < y. Then z ∈ E....... (1)
To prove:E is connected. Suppose E is not connected. ⇒ E can be expressed
as union of two non-empty separated sets. ∴ E = A ∪ B where A and B are
two non-empty separated sets. Choose x ∈ A, y ∈ B such that x < y. Now,
A ∩ [x, y] is a set of real numbers and it is bounded above by y and also has
a sup z. (i.e.) z = sup(A ∩ [x, y]) ⇒ z ∈ A ∩ [x, y] ⊂ Ā [by Theorem 7]
⇒ z ∈ Ā ⇒ z /∈ B [∵ A ∩ [x, y] ⊂ A] ∵ z = sup(A ∩ [x, y]) ⇒ z ≥ α ∀α ∈
A ∩ [x, y]. In particular x ≤ z, z ≤ y. But z /∈ B ∴ z < y ∴ x ≤ z < y.......
(2)
x ∈ A, x < y there exists z /∈ B x < z < y. Now, z ∈ Ā ⇒ z ∈ A ∪ A′ ⇒
z ∈ A or z ∈ A′

Case (i): If z ∈ A ⇒ z /∈ B̄ [∵ A ∩ B̄ = ∅] ⇒ There exists a point z such
that z < z1 < y and z1 /∈ B. Also z1 /∈ A[∵ z1 /∈ A, x < z1 < y and
z1 ∈ (x, y) ⊂ [x, y] ⇒ z1 ∈ A ∩ [x, y] ∴ z = sup(A ∩ [x, y]) and z1 > z ⇒⇐
] ∴ z1 /∈ A ∪ B ⇒ z1 /∈ E ⇒⇐ to (1)
Case (ii): If z is not in A and z ∈ A′

∴ z is a limit point of A. Also
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x < z < y and x, y ∈ E. Since z is a limit point of A, z ∈ Ā ⇒ z /∈ B[∵
Ā ∩ B = ∅] ∴ z /∈ A and z /∈ B ⇒ z /∈ A ∪ B = E. ∴ z /∈ E ⇒⇐ to (1) ∴

From case (i) and (ii) the contradiction shows that E is connected.

Problem 1.74 Let E′ be the set of all limit points of the set E. Prove that
E′ is closed and also prove that E and Ē have the same limit points, Do E
and E′ always have the same limit point?
Proof: To prove: E′ is closed. Let E′′ denoted the set of all limit points of
E′. It E′′ = ∅ then E′ is closed. Suppose E′′ 6= ∅. Let x ∈ E′′ ⇒ x is a limit
point of E′. There exists r > 0 such that Nr(x) contains a point Y of E′ such
that Y 6= E′ ⇒ Y ∈ E′ ⇒ Y is a limit point ofE. ⇒ Every neighbourhood
of Y contains infinitely many points of E. ⇒ Every neighbourhood of x
contains infinitely many points if E. ⇒ x is a limit point of E. ⇒ x ∈ E′

∴

E′′ ⊂ E′
∴ E′ contains all its limit points. E′ in closed. To prove: E and

E′ have same limit points. (i.e.) To prove E′ = Ē′. Let x ∈ E′ ⇒ x is a
limit points of E. There exists r > 0, Nr(x) contains points Y of E such
that y 6= x ⇒ ∀r > 0, Nr(x) contains Y of Ē such that y 6= x ⇒ x is a limit
point of Ē. ⇒ x ∈ Ē′

∴ E′ ⊆ Ē′.......(1)
Let x ∈ Ē′ ⇒ x is a limit point of Ē. ⇒ x ∈ Ē [∵ Ē is closed] ⇒ x is a
limit point of E ∪ E′ ⇒∴ x is a limit point of E (or) x is a limit point of
E′ ⇒ x ∈ E′ or x ∈ E′′ ⊂ E′[∵ E′ is closed] ⇒ x ∈ E′

∴ Ē′ ⊂ E′...... (2)
From (1) and (2), E′ = Ē′. To prove E and E′ need not have the same limit
point. Let E = {0, 1, 1

2 , ...}; E′ = {0}. Then E has limit point {0} only and
E′ have the no limit point. ∴ E and E′ need not have the same limit point.

Problem 1.75 Let K ⊂ R1 consists of numbers 0, 1
n , (n = 1, 2, ...). Prove

that K is compact without using Heine-Borel theorem.
Proof: Let {Gα} be an open cover for K. ⇒ Now 0 ∈ K ⇒ 0 ∈ Gα1

for
some α1. Since Gα1

is open there exists a neighbourhood Nǫ(0) ⊂ Gα1
,

(−ǫ, ǫ) ⊂ Gα1
. By Archimedian Principle, there exists m ∈ Z+ such that

m · ǫ > 1 ⇒ n · ǫ ≥ m · ǫ > 1 ∀n ≥ m ⇒ 1
n < ǫ ∀n ≥ m ⇒ 1

n ∈
(−ǫ, ǫ) ∀n ≥ m ⇒ 0 and 1

n ∈ Gα1
∀n ≥ m. There exists α2, ..., αm such that

1
i−1 ∈ Gαi , i = 1, 2, ..., m ⇒ K ⊂ ⋃n

i=1 Gαi . ∴ K is compact.

Problem 1.76 Given an example of an open cover of the segment (0, 1)
which has no finite subcover (or) prove that (0, 1) are not compact.
Proof: Consider the family of open intervals F = {( 1

1+n , n)|n = 1, 2, ...}.
Clearly F is an open cover for (0, 1). (i.e.) (0, 1) ⊂ ∪∞

n=1(1/1 + n, n). Also
we cannot find any subcollection from F covering (0, 1) ∴ The open cover
F has no finite subcover for (0, 1) ⇒ (0, 1) is not compact.

Note 1.77 In general (a, b) ⊆ R1 is not compact. Since {(a+ 1
n+1 , b)|n ∈ Y }

it is an open cover for (a, b) and it has no finite subcover covering (a, b).
∴ (a, b) is not compact.
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Example 1.78 Prove that: Set of all irrational is uncountable.
Proof: R is uncountable (by Corollary 1.67) and also Q is countable. If
{irrational} is countable. = Q ∪ {irrational} = countable ⇒⇐ to (1) ∴

irrational is uncountable.

Example 1.79 Construct a bounded set of real numbers with exactly 3 limit
points.
Proof: E = {1 + 1

n , 2 + 1
n , 3 + 1

n |n ∈ N} ⊆ R. It has exactly 3 limit points
namely 1, 2, 3. Since X < 5 for all x ∈ E ⇒ E is bounded.

Note 1.80 E = { 1
n} ∪ { 1

n + 1
m}|m, n ∈ Z+} ∪ {0} ⊆ R. It is closed and

bounded subset of R1. ∴ E is compact.

Example 1.81 Let E◦ denote the set of all interior points of a set E.
(a) Prove that E◦ is always open.
(b) Prove that E is open iff E = E◦.
(c) If G ⊂ E and G is open prove that G ⊂ E◦.
(d) Prove that the complement of E◦ is the closure of the complement of Ec.
(i.e.) E◦c

= Ēc. Do E and Ē always have the same interiors? Do E and
E◦ always have same closure?
Proof: (a) Prove that E◦ is open. Let x ∈ E◦ ⇒ x is an interior point of
E. ⇒ There exists r > 0 such that Nr(x) ⊂ E. Claim:Nr(x) ⊂ E◦. Let
y ∈ Nr(x) ⇒ There exists S > 0 such that NS(y) ⊂ Nr(x) ⊂ E.[∵ Nr(x)
is open] ⇒ y ∈ NS(y) ⊂ E ⇒ y is an interior point of E. ⇒ y ∈ E◦ ⇒
Nr(x) ⊂ E◦

∴ x is an interior point of E◦. Since x is arbitrary. Every point
of E◦ in an interior point. ∴ E◦ is open.
(b) Suppose E is open. To prove E = E◦ ⇒ E is open. Clearly, E◦ ⊂ E ∵

E is open, E ⊂ E◦. ∴ E = E◦. Conversely: E = E◦ ⇒ Every point of E is
an interior point of E. ⇒ E is open.

Convergent Sets
Numerical sequence and series:

Definition 1.82 Let X be a metric space. Let F : N → X be a function
defined by f(n) = pn. Then p1, p2, ..., pn is called sequence in X. Determined
by the function F and it is denoted by {pn}.

Definition 1.83 {pn} is said to converge to a point p in X if given ǫ > 0
there exists a positive integer N such that d(pn, p) < ǫ ∀n ≥ N and we write
pn → p as n → ∞ or

lim
n→∞ pn = p

If {pn} does not converge then {pn} diverges.

Definition 1.84 The set of all points {p1, p2, ..., pn} is called the range of
the sequence {pn}. The range set is either finite or infinite.
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Definition 1.85 A sequence is said to be bounded. If its range is bounded.

Example 1.86 .

1. Sn = { 1
n} n = 1, 2, ... Clearly, Sn → 0. ∴ {Sn} is a bounded sequences

and the range Sn is infinite.

2. {n} is not a convergent sequences. It is a divergent sequence. ∴ It is
a unbounded sequences. ∴ range is infinite.

3. Sn = in, n = 1, 2, ... . This is not a convergent sequence. ∴ It is
a divergent sequence. The range of Sn is finite. ∴ Sequence {Sn} is
bounded, range of Sn = {1, −1, i, −i}.

Theorem 1.87 Let {pn} be a sequence in a metric space X. Then,
(a) {pn} converges to p ∈ S. p iff every neighbourhood of p contains all but
finitely many of the terms of sequence {pn}.
(b) It p ∈ X, p′ ∈ X and {pn} converges to p and p′ then p = p′

(c) If {pn} converges then {pn} is bounded.
(d) E ⊂ X and if p is limit points of E. Then there is a sequence {pn} in
E such that

p = lim
n→∞ pn.

Proof: (a)Suppose {pn} converges to a point p. Let V be a neighbourhood
of p. Since V is open, there exists ǫ > 0, such that Nǫ(p) ⊂ V . Since
{pn} converges to p. Given ǫ > 0 there exists a positive integer N such
that d(pn, p) < ǫ ∀n ≥ N. ∴ pn ∈ Nǫ(p) ∀n ≥ N ⇒ pn ∈ Nǫ(p) ⊂ V
∀n ≥ N ⇒ pn ∈ V ∀n ≥ N ⇒ V contains all but finitely many terms of
the sequence {pn}. Conversely, every neighbourhood of p contains all but
finitely many points of sequences {pn}. Fix ǫ > 0, V = {q ∈ X|d(p, q) < ǫ}.
Then V is a neighbourhood of p. By assumption, there exists N such that
pn ∈ V ∀n ≥ N ⇒ d(p, pn) < ǫ ∀n ≥ N ⇒ pn → p as n → ∞.
(b) The limit of a convergent sequence is unique. Let ǫ > 0 be given let
p 6= p′ and pn → p and pn → p′. ∵ pn → p, there exists a positive integer
N1 such that d(pn, p) < ǫ/2 ∀n ≥ N1. As pn → p′ there exists a positive
integer N2 such that d(pn, p′) < ǫ/2 ∀n ≥ N2; N = ma × {N1, N2}. Now,
∀n ≥ N, d(p, p′) ≤ d(p, pn) + d(pn, p′) < ǫ/2 + ǫ/2 = ǫ. Since ǫ is arbitrary,
d(p, p′) = 0 ⇒ p = p′.
(c) Every convergent sequences is bounded sequences. Suppose sequence
{pn} converges to a point p. Then there exists a positive integer N such that
d(pn, p) < 1 ∀n ≥ N . Let r = max{d(p1, p), ..., d(pN , p), 1} ⇒ d(pn, p) < r
∀n ⇒ The range of sequence {pn} is bounded. ⇒ {pn} is bounded.
(d) Given that p is a limit point of the set E. ⇒ For each there exists
a neighbourhood N1/n(p) contains a point pn of E such that pn 6= p ∴

d(pn, p) < 1/n ∀n. Given ǫ > 0 choose N such that N ·ǫ > 1 . (i.e.) N > 1/ǫ.
It n > N, d(pn, p) < 1/n < 1/N < ǫ ∴ d(pn, p) < ǫ ∀n > N ⇒ pn → p as
n → ∞.
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Theorem 1.88 Suppose {Sn} and {tn} are complex sequences and

lim
n→∞ sn = s, lim

n→∞ tn = t.

Then,

1.

lim
n→∞(sn + tn) = s + t.

2.

lim
n→∞

(csn) = cs, lim
n→∞

(c + sn) = c + s for any number c.

3.

lim
n→∞

sntn = st.

4.

lim
n→∞

(
1

sn
) =

1

s
(sn 6= 0 ∀n, s 6= 0).

Proof: (1) Given {sn} converges to s. Given ǫ > 0 there exists a pos-
itive integer n1 such that |sn − s| < ǫ/2 ∀n ≥ n1. As {tn} converges
to t. Given ǫ there exists a positive integer n2 such that |tn − t| < ǫ/2
∀n ≥ n2. Let N = max{n1, n2} ⇒ |sn + tn − (s + t)| = |sn − s + tn − t| ≤
|sn − s| + |tn − t| < ǫ/2 + ǫ/2 = ǫ n ≥ N ∴ sn + tn → s + t as n → ∞.
(2) Given {sn} converges to s. Let ǫ > 0 be given. Then there exists a posi-
tive integer N such that |sn − s| < ǫ ∀n ≥ N. |c + sn − (s + c)| = |sn − s| <
ǫ ∀n ≥ N. ∴ c + sn → c + s as n → ∞. Now to prove csn → cs as n → ∞.
Case (i): c 6= 0. Given sn → s. Let ǫ > 0 be given. Then there ex-
ists a positive integer N such that |sn − s| < ǫ

|c| ∀n ≥ N, |cs − n − cs| =

|c| |sn − s| < |c| ǫ
|c| = ǫ ∀n ≥ N. ∴ csn → cs as n → ∞.

Case (ii): If c = 0 then clearly csn → cs.
(3) To prove: sntn → st. Let ǫ > 0 be given. Given sn → s ⇒ there
exists positive integer n1 such that |sn − s| <

√
ǫ ∀n ≥ n1. As tn → t ⇒

there exists positive integer n2 such that |tn − t| <
√

ǫ ∀n ≥ n2, N =
max{n1, n2}. ∴ |(sn − s)(tn − t)| = |sn − s| |tn − t| <

√
ǫ
√

ǫ = ǫ ∀n ≥
N. ∴ (sn − s)(tn − t) → 0 as n → ∞. Now,

sntn − st = (sn − s)(tn − t) + s(tn − t) + t(sn − s)

lim
n→∞

sntn − st = lim
n→∞

(sn − s)(tn − t) + lim
n→∞

s(tn − t) + lim
n→∞

t(sn − s)

= 0 [∵ sn − s → 0, tn − t → 0, (sn − s)(tn − t) → 0]

∴ lim
n→∞ sntn = st.
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(4) Given that {sn} converges to s. Let ǫ > 0 be given. There exists a
positive integer N1 such that

|sn − s| <
|s|
2

∀ n ≥ N1

Always |sn − s| ≥ |s| − |sn|

⇒ |s|
2

> |sn − s| ≥ |s| − |sn|

⇒ |s|
2

> |s| − |sn|

⇒ |s| − |sn| <
|s|
2

⇒ |s| − |s|
2

< |sn|

⇒ |s|
2

< |sn| ∀n ≥ N1

Now sn → s ⇒ There exists a positive integer N2 such that |sn − s| < ǫ |s|2
2

∀n ≥ N2. Let N = max{N1, N2}
∣

∣

∣

∣

1

sn
− 1

s

∣

∣

∣

∣

=
|sn − s|
|sn| |s|

< ǫ
|s|2
2

· 2

|s| |s| [∵
|s|
2

< |sn|]

= ǫ ∀n ≥ N

⇒ 1

sn
→ 1

s
as n → ∞.

Theorem 1.89 1. Suppose x̄n ∈ Rk, (n = 1, 2, ...) and x̄n = {α1,n, α2,n, ..., ak,n}.
Then {x̄n} converges to x̄ = (α1, α2, ..., αk) ⇔

lim
n→∞ αj,n = αj , 1 ≤ j ≤ k.

2. Suppose {x̄n}, {ȳn} are sequences in Rk, {βn} is a sequence of real
numbers and x̄n → x̄, ȳn → ȳ, βn → β. Then,

lim
n→∞(x̄n + ȳn) = x̄ + ȳ and lim

n→∞ βnx̄n = βx̄.

Proof: (1) Suppose x̄n → x̄. Given ǫ > 0 there exists a positive integer
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N such that |x̄n − x̄| < ǫ ∀n ≥ N

⇒

√

√

√

√

√

k
∑

j=1

(αj,n − αj)2 < ǫ ∀ n ≥ N

⇒
k

∑

j=1

(αj,n − αj)2 < ǫ2 ∀ n ≥ N

⇒ (αj,n − αj)2 <
k

∑

j=1

(αj,n − αj)2 < ǫ2 ∀ n ≥ N

⇒ |αj,n − αj | < ǫ ∀ n ≥ N, 1 ≤ j ≤ k

∴ lim
n→∞

αj,n = αj 1 ≤ j ≤ k

Conversely, Suppose

lim
n→∞

αj,n = αj , (1 ≤ j ≤ k)

Let ǫ > 0 be given, there exists a positive integer Nj such that |αj,n − αj | <
ǫ/

√
k ∀n ≥ Nj . Let N = max{N1, N2, ..., Nk}.

⇒ |xn − x̄| =

√

√

√

√

√

k
∑

j=1

(αj,n − αj)2

<

√

√

√

√

√

k
∑

j=1

(ǫ/
√

k)2 ∀ n ≥ N

<
√

kǫ2/k =
√

ǫ2

= ǫ ∀ n ≥ N

∴ |xn − x̄| < ǫ ∀ n ≥ N

∴ (x̄n) → x̄ as n → ∞.

(2) Given x̄n → x̄ and ȳn → ȳ as n → ∞ ⇒ αj,n → αj ; γj,n → γj as n →
∞, 1 ≤ j ≤ k where x̄n = (α1,n, α2,n, ..., αk,n); ȳn = (γ1,n, γ2,n, ..., γk,n); x̄ =
(α1, α2, ..., αk) and ȳ = (γ1, γ2, ..., γk). Now αj,n + γj,n → αj + γj as n →
∞, j = 1 to k ⇒ x̄n + ȳn → x̄+ ȳ as n → ∞ (by (1)). Given βn → β, x̄n → x̄
as n → ∞ ⇒ βn → β, αj,n → αj as n → ∞ ∀j ⇒ βnαj,n → βαj as
n → ∞ ∀j ⇒ βnx̄n → βx̄ as n → ∞. (by using (1))

Definition 1.90 Subsequences: Given a sequence {pn} consider a {nk}
of positive integers such that n1 < n2 < n3 · ··. Then the sequence {pni} is
called a subsequence of {pn}

Note 1.91 If {pni} converges, its limit is called subsequencial limit of {pn}.
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Theorem 1.92 .

1. If {pn} is a sequence in a compact metric space X. Then some subse-
quence of {pn} converges to a point of X.

2. Every bounded sequence in Rk contains converges subsequence.

Proof: (1)Let E=Range of {pn}.
Case (i): Suppose E is finite. Then there is a point p in E and a sequence
{ni} with n1 < n2 < n3 · ·· such that pn1

= pn2
= · · · = p. The subsequence

{pn} so obtained converges to p.
Case (ii): Suppose E is infinite. ⇒ E is an infinite subset of a compact
metric space X. ⇒ E has a limit point p in X. [Theorem 1.57] Choose
n1, d(p, pn1

) < 1. Choose n2 < n1, such that d(p, pn2
) < 1/2. Having chosen

n1, n2, ..., ni−1, there exists an integer ni > ni−1 such that d(p, pni < 1/i)(∵
every neighbourhood of p contains infinite many point of E). Choose ǫ > 0
such that there exists a positive integer N such that ǫN > 1 (Archimedean
principle) (i.e.) N > 1/ǫ. Then for every i > N, d(p, pni) < 1/i < 1/N <
ǫ ∀i > N ⇒ {pni} → p.
(b) Let {pn} be a bounded sequence in Rk. ⇒ Range of {pn} is bounded.
Range of {pn} is a subset of some K-cell I. As I is compact, by (a) since
I compact, {pn} contains a convergent subsequence in I ⊂ Rk. ⇒ Every
bounded sequence in Rk has a convergence subsequence.

Definition 1.93 Cauchy Sequence: A sequence {pn} in a metric space
X is said it to be a Cauchy sequences, if for every ǫ > 0 there is an integer
N such that d(pn, pm) < ǫ ∀n, m ≥ N .

Definition 1.94 Diameter: If E ⊂ X and S = {d(a, b)|a, b ∈ E} then the
diameter of E = sup S (i.e.) dia(E) = sup{d(a, b)|a, b ∈ E}.

Note 1.95 If {pn} is a sequence in X,and EN = {pN , pN+1, ...} and pn is
a Cauchy sequence in X iff

lim
N→∞

dia(EN ) = 0 or dia(EN ) → 0 as N → ∞.

Theorem 1.96 1. If Ē is the closure of the set E in a metric space X,
then dia(Ē) = dia(E).

2. If {kn} is a sequence of compact sets such that kn ⊃ kn+1, (n = 1, 2, ...)
and if

lim
n→∞

dia(kn) = 0, then
∞
⋂

n=1

kn

contains exactly one point.
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Proof: (1) Since E ⊂ Ē, diameter E ≤ diameter Ē. Fix ǫ > 0, p, q ∈ Ē
by the definition of Ē, these are points p′, q′ ∈ E such that d(p, p′) < ǫ and
d(q, q′) < ǫ. Now,

d(p, q) ≤ d(p, p′) + d(p′, q′) + d(q′, p)

≤ d(p′, q′) + ǫ + ǫ

= d(p′, q′) + 2ǫ

Since ǫ is arbitrary, d(p, q) < d(p′, q′) ⇒ d(p, q) < d(p′, q′) < sup d(p′, q′) =
dia(E) ⇒ d(p, q) < dia(E) ∀ p, q ∈ Ē. Taking sup, we get diaĒ < dia(E). ∴

dia(E) = dia(Ē).
(2)Let K =

⋂∞
n=1 Kn ⇒ K is non-empty. (by Theorem 1.58). To prove:

K contains exactly one point. Suppose K contains more than one point,
then dia(K) > 0. Also K ⊂ Kn ∀n ⇒ 0 < dia(K) < dia(Kn) ∀n ⇒ 0 <
dia(Kn) = 0 ⇒⇐

lim
n→∞

dia(Kn) = 0

∴ K contains exactly one point.

Theorem 1.97 A subsequential limit of {pn} in a metric space X form a
closed subset of X.
proof: Let E∗ be the set of all subsequential limits of {pn} and let q be
a limit point of E∗. To prove: q ∈ E∗ Choose n1 so pn1

6= q. (If no
such n1 exists, E∗ has only one point and there is nothing to prove) Put
S = d(pn1

, q). Choose n2 > n1 such that d(pn2
, q) < S

2 and pn2
6= q(∵ q is

a limit point). Suppose n1, n2, ..., ni−1 are chosen. Since q is a limit point,
there exists x ∈ E∗ such that d(x, q) < S

2i . Since x ∈ E∗ there exists an
ni > ni−1 with

d(pni , x) <
S

2i

d(pni , q) < d(pni , x) + d(x, q)

<
S

2i
+

S

2i
=

S

2i−1

(i.e.) d(pni , q) <
S

2i−1

⇒ (i.e.) we get a subsequence {pni} of {pn} such that pni converges to q ⇒ q
is a subsequential limit of {pn} ⇒ q ∈ E∗. Since q is arbitrary, E∗ contains
all its limit points. ∴ E∗ is closed.

Theorem 1.98 (a) In any metric space X, every convergent sequences is
a Cauchy sequence.
(b) If X is a compact metric space and if {pn} is a Cauchy sequence in X,
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then {pn} converges to some point of X.
(c) In Rk, every Cauchy sequence converges.
Proof: (a) Let {pn} be a sequence in X such that {pn} converges to p.
Given ǫ < 0 there exists a positive integer N such that (dpn , p) < ǫ/2 ∀n ≥
N . Now, ∀n, m ≥ N, d(pn, pm) ≤ d(pn, p)+d(p, pm) < ǫ/2+ǫ/2 = ǫ ∀n, m ≥
N. ∴ {pn} is Cauchy sequence in X.
(b) Let {pn} be a Cauchy sequence in a compact metric space X. For each
N = 1, 2, 3..., EN = {pN , pN+1, ...}. Also {pn} is Cauchy sequence ⇒ diam
EN → 0 as N → ∞ ⇒ diam ĒN → 0 as N → ∞[∵ diam EN =diam ĒN

by Theorem 1.96]. Now ĒN is a closed subset of a compact metric space
X ⇒ ĒN is compact and also ĒN+1 ⊂ ĒN for each N . By Theorem 1.96,
⋂∞

n=1 Ēn contains exactly one point, p (say) in X. p ∈ ĒN for each N . Since
diam ĒN → 0 as N → ∞. Given ǫ > 0 there exists an integer N0 such that
diam ĒN < ǫ ∀N ≥ N0 ⇒ d(p, q) < ǫ ∀q ∈ ĒN ∀N ≥ N0. In particular,
d(p, q) < ǫ ∀q ∈ ĒN0

⇒ d(p, pn) < ǫ ∀n ≥ N0. ∴ {pn} converges to a point
in X.
(c) Let {pn} be Cauchy sequence in Rk. Let EN = {pN , pN+1, ...}. Since
{pn} is a Cauchy sequence ⇒ diam EN → 0 as N → ∞ ⇒ diam EN < 1 for
some N . Let E be the range of the sequence {pn} ⇒ E = {p1, p2...pN1

}∪EN .
As EN is bounded and {p1, p2, ..., pN−1} is a finite set. ∴ E is bounded set
in Rk. ⇒ {pn} is bounded in Rk. By Heine-Borel theorem E has a compact
closure in Rk. (i.e.) Ē is compact in Rk. ⇒ {pn} is a Cauchy sequence in Ē
and Ē is compact. By (b), {pn} converges to a point in Ē ⊂ Rk ⇒ Every
Cauchy sequence in Rk converges.

Definition 1.99 Complete metric space: A metric space X is said to
be complete metric space if every Cauchy sequence in X converges to a point
in X.

Example 1.100 (i) Rk is complete.
(ii) Every compact metric space is complete.

Theorem 1.101 Every closed subset E of a complete metric space x is
complete.
Proof: Given that E is closed subset of a complete metric space x. To
prove: E is complete. Let {xn} be a Cauchy Sequence in E ⇒ {xn} is a
Cauchy Sequence in x. Given that x is complete. ⇒ {xn} converges to a
point x in x. ⇒ Every neighbourhood of x contains all but finitely many
terms of {xn}. ⇒ Every neighbourhood of x contains a point of {xn} other
than x. [∵ xn 6= x] ⇒ Nr(x) ∩ E − {x} 6= ∅ ∀r > 0 ⇒ x is a limit point
of E. ⇒ x ∈ E [∵ E is closed] ⇒ {xn} converges to x and x ∈ E. ∴ E is
complete.

Definition 1.102 A sequence {sn} of real numbers is said it to be mono-
tonic increasing if sn ≤ sn+1 (∀n = 1, 2, ...) and monotonic decreasing if
sn ≥ sn+1 (∀n = 1, 2, ...).
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Note 1.103 A {sn} is said it to be monotonic if it is monotonic increasing
or monotonic decreasing.

Theorem 1.104 Suppose {sn} is monotonic then the {sn} converges iff it
is bounded.
Proof: Suppose {sn} converges ⇒ {sn} is bounded.(by Theorem 1.87)
Conversely, suppose {sn} is bounded. Let E be the range of the sequence
{sn} and Let s is least upper bound of E. For every ǫ > 0, there exists an
integer N such that s − ǫ < sN ≤ s ⇒ s − ǫ < sn ≤ s (∀n ≥ N)(∵ sn is
monotonic) (If not s− ǫ would be an upper bound) ⇒ s− ǫ < sn ≤ s < s+ ǫ
∀n ≥ N ⇒ s − ǫ < sn ≤ s + ǫ ⇒ |sn − s| < ǫ ∀n ≥ N ⇒ sn → s as n → ∞

Upper and Lower bounds

Definition 1.105 Let {sn} be a sequence of real numbers with the following
properties

1. For ever real number M , there is an integer N such that sn ≥ M ∀n ≥
N then we write sn → ∞.

2. ∀M , there is an integer N such that sn ≤ M, ∀n ≥ N , then we write
sn → −∞.

Definition 1.106 Let sn be a sequence of real numbers, E be the set of
numbers x (in extended real number system such that snk

→ x for all sub
sequences {snk

}. The set E contains all subsequential limits defined above,
plus possible, the number α to −α. Let s∗ = sup E and s∗ = inf E.

Theorem 1.107 Let {sn} be a sequence of real numbers. E and s∗ as
defined above. Then s∗ has the following properties.
(a) s∗ ∈ E
(b) If x > s∗ then there is an integer N such that n > N ⇒ sn < x
Moreover s∗ is the only number with the properties (a) + (b). This result is
true for s∗ also.
Proof:(a) Case (i): Suppose s∗ = ∞. Since sup E = ∞, E is not bounded
above. Then {sn} is not bounded above and there is a subsequence {sNk

}
which converges to ∞. ∴ ∞ is a subsequential limit. Hence ∞ ∈ E. (i.e.)
s∗ ∈ E.
Case (ii): Suppose s∗ is real. Then E is bounded above. ∴ atleast one
subsequential limit exists say λ ∈ E. ⇒ E is non-empty. ∴ E is a non-
empty set of real numbers and bounded above also s∗ = sup E ⇒ s∗ ∈ Ē
[by Theorem 1.41] ⇒ s∗ ∈ E [since by Theorem 1.40 E is closed ⇔ E = Ē]
Case (iii): Suppose s∗ = −∞ ⇒ E contains only one element namely
(−∞) and there is no subsequential limits. ⇒ For any real numbers sn > m
for atmost finite number of values of n. ((i.e.) sn ≤ N ∀n ≥ N for some
integer N) so that sn → −∞. ∴ s∗ = −∞ ∈ E ∴ From all the three cases
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s∗ ∈ E.
(b) Suppose there is a number x > s∗ such that sn ≥ x for infinitely many
values of n. ⇒ There exists a number y ∈ E such that y ≥ x > s∗ ⇒⇐
to s∗ is the supremum of E ⇒ sn < x for all n ≥ N1 for some integer
N . Uniqueness: Suppose there are two numbers p and q satisfy both (a)
and (b) such that p 6= q. Without loss of generality p < q. Choose x such
that p < x < q. If x > p, then by (b) there exists a integer N such that
sn < x < q ∀n ≥ N ⇒ q is not in E ⇒ q cannot satisfy the property (a).
∴ s∗ is unique.

Theorem 1.108 If sn ≤ tn∀n ≥ N, N is fixed, then

lim
n→∞

inf sn ≤ lim
n→∞

inf tn and lim
n→∞

sup sn ≤ lim
n→∞

sup tn.

Proof: Given sn ≤ tn ∀n ≥ N ⇒ inf sn ≤ tn ∀n ≥ N . Therefore
inf sn ≤ tn ∀n ≥ N ⇒

lim
n→∞ inf sn ≤ lim

n→∞ inf tn

Similarly, sn ≤ tn ∀n ≥ N ⇒ sn ≤ sup tn ∀n ≥ N ⇒ sup sn ≤ sup tn ⇒

lim
n→∞

sup sn ≤ lim
n→∞

sup tn.

Remark 1.109 Sandwitch number: For 0 ≤ xn ≤ sn ∀n ≥ N and if
sn → 0 then xn → 0.

Theorem 1.110 Some Special Sequences:

(a) If p > 0 then

lim
n→∞

1

np
= 0.

(b) If p > 0 then
lim

n→∞
n
√

p = 1.

(c)
lim

n→∞
n
√

n = 1

(d) If p > 0, α is real then

lim
n→∞

nα

(1 + p)n
= 0.

(e) If |x| < 1 then
lim

n→∞ xn = 0.

Proof: (a) Given p > 0 there exists an integer N such that N > 1
ǫ1/p .

Now,
∣

∣

∣

1
np − 0

∣

∣

∣ =
∣

∣

∣

1
np

∣

∣

∣ ≤ 1
Np < ǫ[∵ p < 0].
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(b) Case (i): Suppose p > 1. Let xn = n
√

p − 1 ≥ 0[∵ p > 1]. ∴ n
√

p =
1 + xn ⇒ p = (1 + xn)n = 1 + nxn + nc2

x2
n + .. + xn

n ⇒ p ≥ 1 + nxn[∵ xn ≥
0] ⇒ p − 1 ≥ nxn ⇒ 0 ≤ xn ≤ p−1

n . Since p−1
n → 0 as n → ∞ ⇒ xn → 0

(by the above remark) ⇒
lim

n→∞
xn = 0

⇒ lim
n→∞

n
√

p = 0

⇒ lim
n→∞

n
√

p = 1

⇒ ( n
√

p) → 1 as n → ∞.

Case (ii): Suppose p = 1. Then n
√

p = 1 ⇒ ( n
√

p) = 1 → 1 as n → ∞.
Case (iii): Suppose 0 < p < 1. Now, p < 1 ⇒ 1/p > 1. By Case (i)
n
√

p → 1 as n → ∞. ⇒ 1
n
√

p → 1 as n → ∞. ⇒ n
√

p → 1 as n → ∞.

(c)
lim

n→∞
n
√

n =

Let xn = n
√

n − 1 ≥ 0(∵ n ≥ 1) ⇒ n
√

n = 1 + xn ⇒ n = (1 + xn)n =

1 + nxn + nc2
x2

n + ... + xn
n, n ≥ nc2

x2
n ⇒ n ≥ n(n−1)

2 x2
n ⇒ x2

n ≤ 2
n−1

∀n ≥ 2 ⇒ 0 ≤ xn ≤
√

2
n−1 ∀n ≥ 2. Now,

√

2
n−1 as n → ∞. By the above

remark xn → 0 as n → ∞. ∴
n
√

n → 1 as n → ∞.
(d) Let k be any positive integer such that k > α. Let n > 2k,

(1 + p)n = 1 + np +
n(n − 1)

2
p2 + ... + nck−1

pk−1 + ... + pn

≥ nck
pk

=
n(n − 1) · · · (n − (k − 1))

1 · 2 · · · k
pk

>
n
2

n
2 · · · n

2

k!
pk

=
nk

2kk!
pk

>
nk

2k

pk

k!
1

(1 + p)n
<

2k

nk

k!

pk

nα

(1 + p)n
<

2kk!

pk

1

nk−α

⇒ 0 ≤ nα

(1 + p)n
<

2kk!

pk

1

nk−α

Also 1
nk−α → 0 as n → ∞(∵ k − α > 0 by (a))

By the above remark,

lim
n→∞

nα

(1 + p)n
= 0
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(e) |x| < 1 ⇒ 1
|x| > 1 ⇒ 1

|x| = 1 + p, p > 0, put α = 0 in (d). We have
1

(1+p)n → 0 as n → ∞ ⇒ |x|n → 0 as n → ∞ ⇒ xn → 0 as n → ∞.
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2. UNIT II

Series:
Let ∞

∑

n=1

an

be a series and let

sn = a1 + a2 + .. + an =
∞

∑

n=1

ak

the nth partial sum of the series
∑

an. we can form a sequence {sn} and
this {sn} is called sequence of partial sum of the series.

Definition 2.1 If {sn} → s as n → ∞ then we write

∞
∑

n=1

an = s

and the series
∑

an converges to s. s is called sum of the series.

Note 2.2 1. If {sn} diverges then the series is said to diverge.

2. For convergence we shall consider the series of the form

∞
∑

n=0

αn.

Theorem 2.3 A series of non-negative term converges iff its partial sum
forms a bounded sequence.
Proof: Suppose

∑

an converges. ⇒ {sn} converges. ⇒ {sn} is bounded.
(Theorem 1.85(c)). Conversely: Suppose {sn} is bounded. Then {sn} is
monotonic increasing ⇒ {sn} converges. (Theorem 1.102) ⇒ ∑

an con-
verges.

Theorem 2.4 Cauchy’s Criterian:
∑

an converges iff ∀ǫ > 0, there
exists an integer N such that

∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

< ǫ if m ≥ n ≥ N.

Proof: Let
∑

an converges. Let sn = a1 + a2 + ... + an ⇒ {sn} converges.
⇒ {sn} is Cauchy sequence. Given ǫ > 0 there exists an integer N such
that |sm − sn| < ǫ ∀m ≥ n ≥ N ⇒

∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

< ǫ ∀m ≥ n ≥ N.
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Conversely, suppose

∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

< ǫ ∀m ≥ n ≥ N.....(1)

for all ǫ > 0 and for some integer N . To prove,
∑

an converges. (1)⇒
|sm − sn| < ǫ ∀m ≥ n ≥ N . Every Cauchy sequence converges. ⇒ {sn}
converges. ⇒ ∑

an converges.

Theorem 2.5 If
∑

an converges, then

lim
n→∞

an = 0.

Proof: Given
∑

an converges. By Cauchy’s criterian there exists N such
that

∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

< ǫ ∀m ≥ n ≥ N. Taking m = n,

|an| < ǫ ∀n ≥ N

⇒ an → 0 as n → ∞.

Note 2.6 Converse of the above theorem and need not be true. Consider
{1/n}, 1/n → 0 as n → ∞. But

∑

1/n diverges.

Theorem 2.7 Comparison test:

(a) If |an| < Cn for n ≥ N0 where N0 is some fixed integer and if
∑

Cn

converges then
∑

an converges.
(b) If an ≥ dn ≥ 0 ∀n ≥ N0 and if

∑

dn diverges then
∑

an also diverges.
Proof: (a) Given

∑

Cn converges. By Cauchy’s criterion. Given ǫ > 0
there exists +ve integer N ≥ N0 such that

∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

< ǫ ∀m ≥ n ≥ N.

Now

∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

≤
m

∑

k=n

|ak| ≤
m

∑

k=n

Ck < ǫ ∀m ≥ n ≥ N

∴

∣

∣

∣

∣

∣

m
∑

k=n

ak

∣

∣

∣

∣

∣

< ǫ ∀m ≥ n ≥ N.

∴

∑

an converges.
(b) Given 0 ≤ dn ≤ an n ≥ N0. Suppose

∑

an converges.
∑

dn converges
by (a) ⇒⇐ . ∴

∑

an diverges.

Series of non negative terms:
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Theorem 2.8 If 0 ≤ x < 1 then

∞
∑

n=0

xn =
1

1 − x
, x ≥ 1

then the series diverges.
Proof: Let {sn} be a sequence of partial sum of the series

∑

xn. Suppose
0 ≤ x ≤ 1
sn = 1+x+x2 + ...+xn = 1−xn

1−x . Since xn+1 → 0 as n → ∞ if 0 ≤ x < 1 (by

Theorem 1.108(e)) ⇒ sn → 1
1−x as n → ∞ if 0 ≤ x < 1 ⇒ ∑∞

n=0 xn = 1
1−x .

suppose x = 1, sn = n + 1 ⇒ {sn} diverges. ⇒ {sn} unbounded diverges.
∴

∑

xn diverges. Suppose x > 1 ⇒ xn > 1 ⇒ ∑

xn >
∑

1 (0 ≤ 1 < x). ∴
∑

1 is diverges. ∴ By comparison test.
∑

xn diverges.

Theorem 2.9 Cauchy’s condensation test: Suppose a1 ≥ a2 ≥ ... ≥ 0
then the series

∞
∑

n=1

an

converges iff
∞

∑

k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + ...

converges.
Proof: Let sn = a1 + a2 + ... + an; tk = a1 + 2a2 + ... + 2kak

2.
Case (i): n < 2k

sn ≤ a1 + (a2 + a3) + ... + (a2k + a2k+1 + ... + a2k+1−1)

≤ a1 + 2a2 + ... + 2ka2k

= tk

sn ≤ tk......(1)

Case (ii): n < 2k

sn ≥ a1 + a2 + (a3 + a4) + .. + (a2k−1+1 + ... + a2k)

≥ a1

2
+ a2 + 2a4 + ... + 2k−1a2k

2sn ≥ a1 + 2a2 + 22a4 + .. + 2ka2k = tk

2sn ≥ tk......(2)

From (1) and (2), {sn} and {tn} are either both bounded or both unbounded.
(i.e.) {sn} is bounded ⇔ {tk} is bounded. ⇒ ∑

an converges. ⇔ ∑

2ka2k

converges. (by Theorem 2.3)
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Theorem 2.10
∑ 1

np converges if p > 1 and
∑ 1

np converges if p ≤ 1.
Proof: { 1

n} is a decreasing sequence. ⇒ 1
n ≥ 1

n+1 ⇒ 1
np ≥ 1

(n+1)p ∀p > 0

Case (i): Suppose p > 0. Consider the series

∞
∑

k=0

2ka2k =
∞

∑

k=0

2k 1

2kp

=
∞

∑

k=0

2k−kp

=
∞

∑

k=0

2k(1−p)

By Theorem reft16,
∑

xk converges if 0 ≤ x < 1, diverges if x ≥ 1. Now,

∞
∑

k=0

2k(1−p) =
∞

∑

k=0

(21−p)kconverges if p > 1.

∞
∑

k=0

(21−p)k diverges if p ≤ 1.

Case (ii): If p ≤ 0 then { 1
np } is an unbounded sequence ⇒ { 1

np } diverges.
∴

∑

1/np diverges if p ≤ 0. ∴

∑ 1
np converges p > 1.

∑ 1
np diverges p ≤ 1.

Theorem 2.11 If p > 1,
∞

∑

k=0

1

n(log n)p

converges and if p ≤ 1 this series diverges.
Proof: {log n} is an increasing sequence. ⇒ 1

n(log n)p is a decreasing se-
quence. Consider

∞
∑

k=1

2k 1

2k(log 2k)p
=

∞
∑

k=1

1

(k log 2)p

=
1

(log 2)p

∞
∑

k=1

1

kp
.

converges if p > 1, diverges of p ≤ 1. [By Theorem 2.10] By Cauchy’s
condensation test,

∞
∑

n=2

1

n(log n)p

converges if p > 1, diverges of p ≤ 1.

Problem 2.12 Test the converges of the series

∞
∑

n=3

1

n(log n) · log(log n)
.
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Proof: {n log n log(log n)} is an increasing sequence. ⇒ { 1
n log n log(log n)}

is a decreasing sequence. Consider,

∞
∑

k=2

2ka2k =
∞

∑

k=2

2k 1

2k log 2k log(log 2k)

=
∞

∑

k=2

1

k log 2 log(k log 2)

=
1

log 2

∞
∑

k=2

1

k log(k log 2)

Now

log 2 < 1

⇒ k log 2 < k k > 0

⇒ log(k log 2) < log k

⇒ k log(k log 2) < k(log k)

⇒ 1

k log(k log 2)
>

1

k log k

⇒
∞

∑

k=2

1

k log(k log 2)
>

∞
∑

k=2

1

k log k

By previous problem put p = 1
∑ 1

k log k diverges. By comparison test
∑ 1

k log(k log 2) diverges ⇒ 1
log 2

∑ 1
k log(k log 2) . ∴ By condensation test, the

given sequence diverges.

Definition 2.13 e = 1 + 1
1! + 1

2! + 1
3! + ... =

∑ 1
n! .

Note 2.14 The above definition is well defined.
Proof: Now e =

∑

1/n!. Let

sn =
n

∑

k=0

1

k!
= 1 +

1

1!
+ ... +

1

n!

< 1 +
1

12
+

1

21
+

1

22
+ ... +

1

2n−1

< 1 +
1

12
+

1

21
+

1

22
+ ... +

1

2n
+ ...

= 1 +
1

1 − 1
2

= 1 +
1
1
2

= 1 + 2

= 3

∴ sn < 3 ∀n
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∴ {sn} is a bounded sequence. Since {sn} is monotonic increasing and
bounded, {sn} is converges. ⇒ ∑ 1

n! converges. ∴ e is well defined.

Theorem 2.15

lim
n→∞

(1 +
1

n
)n = e. Let sn = 1 +

1

1!
+

1

2!
+ ... +

1

n!
.

Proof: Let

tn = (1 +
1

n
)n

= 1 + n · 1

n
+

n(n − 1)

2

1

n2
+

n(n − 1)(n − 2)

1 · 2 · 3

1

n3
+ ...

+
n(n − 1) · · · 2 · 1

1, 2 · · · n

1

nn

= 1 + 1 +
1(1 − 1

n)

2
+

1(1 − 1
n)(1 − 2

n)

1 · 2 · 3
+ ...

+ (1 − 1

n
)(1 − 2

n
) · · · (1 − (n − 2)

n
)(1 − n − 1

n
)

1

n!
.....(a)

< 1 +
1

1!
+

1

2!
+

1

3!
+ ... +

1

n!
= sn

∴ tn < sn ∀n

⇒ lim
n→∞

sup tn < lim
n→∞

sup Sn = e.....(1)[∵ lim
n→∞

sn = e]

Consider m ≤ n, Using (a)

tn ≥ 1 + 1 + (1 − 1

n
)

1

2!
+ ... + (1 − 1

n
)(1 − 2

n
) · · · (1 − m − 1

n
)

1

m!

keeping m, fixed and letting n → ∞ we have

lim
n→∞ inf tn ≥ 1 +

1

1!
+

1

2!
+ ... +

1

m!
= sm

lim
n→∞

inf tn ≥ sm ∀m

Letting m → ∞ ⇒ lim
n→∞

inf tn ≥ e......(2)

From (1) and (2),

lim
n→∞

inf tn ≥ e ≥ lim
n→∞

sup tn.....(B)

lim
n→∞ inf tn ≥ lim

n→∞ sup tn

Always lim
n→∞

inf tn ≤ lim
n→∞

sup tn

⇒ lim
n→∞

inf tn = lim
n→∞

sup tn

⇒ lim
n→∞tn exists and lim

n→∞ tn = e

∴ lim
n→∞

(1 +
1

n
)n = e
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Lemma 2.16 Prove that 0 < e − sn < 1
n!n .

Proof: Clearly, e − sn > 0 ∀n

e − sn =
1

(n + 1)!
+

1

(n + 2)!
+ ...

=
1

(n + 1)!
[1 +

1

n + 2
+

1

(n + 2)(n + 3)
+ ...]

<
1

(n + 1)!
(1 +

1

n + 2
+

1

(n + 1)2
+ ...)

=
1

(n + 1)!
(

1

1 − 1
n+1

)

=
1

(n + 1)!
(

n + 1

n + 1 − 1
)

=
1

n!

1

n

∴ 0 < e − sn <
1

n!n

Lemma 2.17 Prove that e is irrational.
Proof: Suppose e is rational. e = p

q , q 6= 0; gcd(p, q) = 1; p, q are integer.

By the above lemma 0 < e − Sq < 1
q!q ⇒ 0 < (e − sq)q! < 1

q ........ (1)

Now, q!e is an integer. [∵ q!e = q!p
q = (q − 1)!p = an integer]

q!sq = q![1 +
1

1!
+

1

2!
+ ... +

1

q!
]

= q! + q! + 3 · 4 · · · q + ... + q + 1

= an integer

q ≥ 1 ⇒ 1

q
≤ 1

∴ (1) ⇒ 0 < q!(e − sq) <
1

q
≤ 1

0 < (e − sq)q! < 1

This means that q!(e − sq) is an integer lying between 0 and 1. ∴ e must be
irrational.

Root and Ratio test

Theorem 2.18 Root test: Given
∑

an and

α = lim
n→∞

sup n

√

|an|

(a) if α < 1,
∑

an converges.
(b) if α > 1,

∑

an diverges.
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(c) if α = 1 then the test gives no information.
Proof: (a) If α < 1 then there exists β with α < β < 1, and an integer N
such that n

√

|an| < β ∀n ≥ N (By Theorem 1.105(b)), |an| < βn ∀n ≥ N .
But

∑

βn converges (∵ β < 1) ∴ By comparison test,
∑

an converges.
(b) If α > 1, by Theorem 1.105(a); there is a sequence {nk} such that
nk

√

|ank
| → α as k → ∞[∵ α is a subsequence limit] ⇒ |an| > 1 for infinitely

many values of n. {an} does not convergers to 0. ∴

∑

an diverges [By
Theorem 2.5]
(c) Suppose α = 1. Consider the series

∑ 1
n and

∑ 1
n2 . Take an = 1

n . Then

a
1

n
n = (

1

n
)

1

n

=
1

n
1

n

lim
n→∞ sup a

1

n
n = lim

n→∞ sup
1

n
1

n

= 1 [∵ lim
n→∞ n

1

n = 1]

Then
∑

1/n diverges. an = 1/n2

lim
n→∞ sup a

1

n
n = lim

n→∞ sup(
1

n
1

n

)2 = 1

But
∑ 1

n2 converges. ∴ The root test fails.

Theorem 2.19 Ratio test: Consider the series
∑

an

(a) It converges if

lim
n→∞ sup

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1

(b) It diverges if
∣

∣

∣

an+1

an

∣

∣

∣ ≥ 1 ∀n ≥ N .

Proof: (a) Let

α = lim
n→∞

sup

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1 and α < 1.
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Then there exists β with α < β < 1 and an integer N such that
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< β ∀n ≥ N.

|an+1| < β |an| ∀n ≥ N.

|aN + 1| < β |aN |
|aN + 2| < β |aN+1| < β · β · |aN | = β2 |aN |

·
·
·

|aN + p| < βp |aN | ∀p ≥ 0.

Take n = N + p ∀p ≥ 0

|an| < βn−N |aN | ∀n ≥ N.

= β−N |aN | βn

(i.e.) |an| < (β−N |aN |)βn

Now
∑

βn converges (∵ β < 1) ∴
∑

αn converges, by comparison test.
(b)

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≥ 1 ∀n ≥ n0

⇒ |an+1| ≥ |aN | ∀n ≥ n0

⇒ (an) 9 0 as n → ∞[∵ |an| is an increasing sequence.

(i.e.)0 ≤ |a1| ≤ |a1| ≤ ...]

⇒
∑

an diverges.

Note 2.20

lim
n→∞

sup

∣

∣

∣

∣

an + 1

an

∣

∣

∣

∣

= 1 gives no information.

Proof: Consider

lim
n→∞

sup

∣

∣

∣

∣

an + 1

an

∣

∣

∣

∣

= 1

Consider the series
∑ 1

n

Now an =
1

n
and an+1 =

1

n + 1
an+1

an
=

n

n + 1
=

1

1 + 1
n

lim
n→∞ sup

∣

∣

∣

∣

an + 1

an

∣

∣

∣

∣

= lim
n→∞

1

1 + 1
n

= 1
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Observe,
∑ 1

n diverges. Consider
∑ 1

n2

an =
1

n2
; an+1 =

1

(n + 1)2

an+1

an
=

n2

(n + 1)2
=

1

(1 + 1/n)2

lim
n→∞

sup

∣

∣

∣

∣

an + 1

an

∣

∣

∣

∣

= lim
n→∞

1

(1 + 1
n)2

= 1

Note that
∑ 1

n2 converges. ∴ limn→∞ sup
∣

∣

∣

an+1
an

∣

∣

∣ = 1 gives no information.

Problem 2.21 Consider the series 1/2 + 1/3 + 1/22 + 1/32 + ....
Let

an =







1

2
n+1

2

if n is odd

1

3
n
2

if n is even

a1/n
n =







1

2
n+1

2n
if n is odd

1

3
n

2n
if n is even

=







1

2
1
2

+ 1
2n

if n is odd

1

3
1
2

if n is even

lim
n→∞

inf n

√

|an| =
1√
3

; lim
n→∞

sup n

√

|an| =
1√
2

< 1

∴

∑

an converges

Note 2.22

lim
n→∞

sup |an+1

an
| = lim

n→∞
(
3

2
)

n
2

1

2
= ∞

lim
n→∞ inf |an+1

an
| = lim

n→∞(
2

3
)

n
2

√
2 = 0

Here we observe that whenn is odd. |an+1

an
| = 2

n+1
2

3
n
2

= (2
3)

n
2

√
2 ≤ 1 ∀ odd

n ≥ n0. ∴ We need not apply ratio test.

Problem 2.23 Test the converges series 1
2 +1+ 1

8 + 1
4 + 1

32 + 1
16 + 1

128 + 2
64 +...

(i.e.)1
2 + 1 + 1

23 + 1
23 + 1

22 + 1
25 + 1

24 + 1
27 + 1

26 + ...
Solution:

an =

{

1
2n if n is odd

1
2n−2 if n is even

a
1

n
n =







1
2 if n is odd

1

21−

2
n

if n is even
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lim
n→∞

sup a
1

n
n =

1

2
< 1

∴

∑

an converges.

Note 2.24 Let n is even

an+1

an
=

2n−2

2n+1
(∵ an =

1

2n−2
)

=
2n2−2

2n21
=

1

23

= 1/8

When, n is odd

an+1

an
=

1

2n−1
· 2n (∵ an =

1

2n

=
1

2−1
= 2

∴ |an+1

an
| =

1

8
< 1 ∀n ≥ n0

There is no need to apply ratio test.

Remark 2.25

lim
n→∞ sup |an+1

an
| = 2; lim

n→∞ inf |an+1

an
| =

1

8
.

Theorem 2.26 For any sequence {cn} of +ve numbers,
(a)

lim
n→∞

sup n
√

cn ≤ lim
n→∞

sup
cn+1

cn

(b)

lim
n→∞

inf
cn+1

cn
≤ lim

n→∞
inf n

√
cn

Proof: Let

α = lim
n→∞ sup

cn+1

cn

Suppose α = ∞ then there is nothing to prove. If α is a real number, then
there exists β > α under integer N such that cn+1

cn
< β ∀n ≥ N [by Theorem
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1.105(b)]

cN+1

cN
< β

cN+2

cN+1
< β

cN+3

cN+2
< β

·
·
·

cN+p

cN+p−1
< β

multiplying all these inequalities

cN+p

cN
< βp ∀p ≥ 0

⇒ cN+p < βpcN ∀p ≥ 0

put n = N + p

cn < βn−N cN = (cN β−N )βn

⇒ c
1

n
n < (cN β−N )

1

n β

lim
n→∞

sup c
1

n
n < β[∵ lim

n→∞
(cN β−N )

1

n = 1]

This is true for every β > α

∴ lim
n→∞

sup c
1

n
n ≤ α = lim

n→∞
sup

cn+1

cn

∴ lim
n→∞

sup n
√

cn ≤ lim
n→∞

sup
cn+1

cn

(b) Let

α = lim
n→∞

inf
cn+1

cn
.

If α = −∞ there is nothing to prove. If α is finite then thee exists a +ve



40 2. UNIT II

real number β < α, and an integer N such that

cn+1

cn
> β ∀n ≥ N (by Theorem 1.105(b) for inf x < s∗ ⇒ sn ≥ x)

⇒ cN+1

cN
> β

⇒ cN+2

cN+1
> β

·
·
·

cN+p

cN+p−1
> β

multiplying all these inequalities,
cN+p

cN
< βp ∀p ≥ 0. put n = N + p

cn

cN
> βn−N

⇒ cn > cN βn−N

⇒ n
√

cn > n

√

cN β−N β

lim
n→∞ inf n

√
cn > β (∵ lim

n→∞
n

√

cN β−N = 1)

This is true for every β < α

∴ lim
n→∞

inf n
√

cn ≥ α

= lim
n→∞

inf
cn+1

cn

∴ lim
n→∞

inf
cn+1

cn
≤ lim

n→∞
inf n

√
cn.

Power Series

Definition 2.27 Given a{cn} of complex numbers, the series
∑∞

n=0 cnxn is
called a power series. The numbers cn are called coefficient of the series and
z is a complex number.

Note 2.28 1. The series will converge or diverge depending upon the
choice of z.

2. Every power series there is associated a circle of convergence such
that the given power series converge if z is the interior of the circle
and diverges if z is exterior of the circle.

Theorem 2.29 Given the power series

∞
∑

n=0

Cnzn and α = lim
n→∞

sup n

√

|Cn|
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and R = 1
α then

∑

Cnzn converges if |z| < R and diverges if |z| > R. (R is
called the radius of convergence of

∑

Cnzn)
Proof: Let

an = Cnzn

|an| = |Cn||z|n

lim
n→∞

sup n

√

|an| = lim
n→∞

sup n

√

|Cn||z|
= α|z|

=
|z|
R

(∵ α =
1

R
)

By root test
∑

Cnzn converges if |z|
R < 1 (i.e.)if |z| < R and

∑

Cnzn diverges

if |z|
R > 1 (i.e.) if |z| > R.

Problem 2.30 Find the radius of convergence of
∑

nnzn.
Solution: Let

cn =
∑

nnzn

1/R = lim
n→∞

sup n

√

|cn|

= lim
n→∞ sup n

√

|nn|
= lim

n→∞
n

1/R = ∞
R = 0

∴

∑

nnzn is digit on the whole plane.

Note 2.31

lim
n→∞

inf
cn+1

cn
≤ lim

n→∞
inf n

√
n

≤ lim
n→∞

sup n
√

cn

≤ lim
n→∞ sup

cn+1

cn

If lim
n→∞

cn+1

cn
exists. ⇒ lim

n→∞ inf
cn+1

cn
= lim

n→∞ sup
cn+1

cn

⇒ lim
n→∞ inf n

√
cn = lim

n→∞ sup n
√

cn

and ⇒ lim
n→∞

n
√

cn = lim
n→∞

cn+1

cn

Hence
1

R
= lim

n→∞ sup n
√

cn

= lim
n→∞

n
√

cn

1

R
= lim

n→∞
cn+1

cn
.
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Problem 2.32 Find the radius of convergence of
∑ zn

n!
Solution: Here, cn = 1

n! ; cn+1 = 1
(n+1)! . Now,

cn+1

cn
=

1

n + 1
1

R
= lim

n→∞
cn+1

cn

= lim
n→∞

1

n + 1
=

1

∞ = 0

R = ∞

∴

∑ zn

n! converges ∀z.

Problem 2.33 Find the radius of convergence of
∑

zn

Solution: Here, cn = 1; cn+1 = 1. Now, 1
R = limn→∞

cn+1

cn
= 1 ⇒ R =

1. ∴

∑

zn converges if |z| < 1 and
∑

zn diverges if |z| > 1.

Problem 2.34
∑ zn

n2 has radius of converges and prove that the power series
converges for all z within |z| ≤ 1.
Solution: Here, cn = 1

n2 ; cn+1 = 1
(n+1)2 . Now,

1

R
= lim

n→∞
cn+1

cn

= lim
n→∞

n2

(n + 1)2

= lim
n→∞

1

(1 + 1
n)2

1

R
= 1

R = 1

∴

∑ zn

n2 converges if |z| < 1. When |z| = 1, consider | zn

N2 | = |zn|
|n2| = 1

n2 .

Since
∑ 1

n2 converges , By comparison test.
∑ zn

n2 converges if |z| < 1 and
∑ zn

n2 converges within and on the circle |z| = 1. ∴

∑ zn

n2 converges ∀z with
|z| ≤ 1.

Summation by Parts Given two sequences {an} and {bn}. Put

An =
n

∑

k=0

ak if n ≥ 0.

Put A−1 = 0. Then for 0 ≤ p ≤ q

q
∑

n=p

anbn =
q−1
∑

n=p

An(bn − bn+1) + Aqbq − Ap−1bp.
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Proof:

An = a0 + a1 + ... + an−1 + an = An−1 + an

An − An−1 = an

q
∑

n=p

Anbn =
q−1
∑

n=p

(An − An−1)bn

=
q

∑

n=p

anbn −
q

∑

n=p

An−1bn

=
q

∑

n=p

Anbn − [Ap−1bp + Apbp+1 + ... + Aq−1bq]

=
q

∑

n=p

Anbn −
q−1
∑

n=p−1

Anbn+1

=
q−1
∑

n=p

Anbn + Aqbq − [
q−1
∑

n=p

Anbn+1 + Ap−1bp]

=
q−1
∑

n=p

An(bn − bn+1) + Aqbq − Ap−1bp.

Note 2.35 The above formula is called partial summation formula. It is
used to investigate the series of the form

∑

anbn.

Theorem 2.36 Dirichlet Test:

(a) Suppose the partial summation An of
∑

an form a bounded sequence.
(b) b0 ≥ b1 ≥ b2 ≥ ...
(c) If

lim
n→∞

bn = 0.

Then
∑

anbn converges.
Proof: Given that {An} is a sequence of partial sum of the series

∑

an.
Also given that {An} is bounded by (a) ⇒ There exists a real number M
such that |An| ≤ M ∀M . Also by (c) limn→∞ bn = 0 ⇒ Given ǫ = 0 there
exists a +ve integer N such that |bn −0| < ǫ/2M ∀n ≥ N (i.e.) |bn| < ǫ/2M
∀n ≥ N ....(1)
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For N ≤ p ≤ q,

|
q

∑

n=p

anbn| =
q−1
∑

n=p

An(bn − bn+1) + Aqbq − Ap−1bp

≤ M |
q−1
∑

n=p

(bn − bn+1) + bq + bp|

= M |(bp − bp+1) + (bp+1 − bp+2) + ... + (bq−1 − bq) + bq + bp|
= M |(bp − bq) + bq + bp|
= 2M |bp|

|
q

∑

n=p

anbn| ≤ 2M |bp| < 2M · ǫ

2M
= ǫ [∵ p ≥ N using (1)]

∴ |
q

∑

n=p

anbn| < ǫ ∀q ≥ p ≥ N

By cauchy’s criterian,
∞

∑

n=1

anbn

converges

Theorem 2.37 (Leibnitz Test)
(a) Suppose |c1| ≥ |c2| ≥ |c3| ≥ ...
(b) c2m−1 ≥ 0, c2m ≤ 0(m = 1, 2, 3, ..)
(c)

lim
n→∞

cn = 0.

Then
∑

cn converges.
Proof: By (b) cn = (−1)n+1|cn|. Take an = (−1)n+1, bn = |cn|. Let {An}
be a sequence of partial summation of the series

∑

an =
∑

(−1)n+1 ⇒ {An}
is a bounded sequence. Also by (a) |c1| ≥ |c2| ≥ |c3| ≥ .... Also using (c)

lim
n→∞ |cn| = 0

∴ By the Dirichlet’s Test,
∑

(−1)n+1|cn| =
∑

cn converges.

Note 2.38 The series for which condition (b) holds are called alternating
series.

Theorem 2.39 Suppose the radius of convergence of
∑

cnzn is 1. and sup-
pose c0 ≥ c1 ≥ c2.... and limn→∞ cn = 0. Then

∑

cnzn converges, at every
point of the circle |z| = 1 except possibly at z = 1.
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Proof: Consider the series
∑

cnzn. Let {An} be the sequence of partial
sums of the series

∑

zn

∴ |An| = |1 + z + z2 + ... + zn|

=

∣

∣

∣

∣

∣

1 − zn+1

1 − z

∣

∣

∣

∣

∣

=
|1 − zn+1|

|1 − z|

≤ 1 − |z|n+1

|1 − z|

=
2

|1 − z| if |z| = 1, z 6= 1

|An| ≤ 2

|1 − z|

⇒ {An} is bounded.
Also c0 ≥ c1 ≥ ... and

lim
n→∞ cn = 0

∴ By Dirichels test,
∑

cnzn converges if |z| = 1 and z 6= 1. Also given that
the radius convergence of

∑

cnzn is 1. ∴ The series
∑

cnzn converges at
every point in and on the circle |z| = 1 except at z = 1.

Definition 2.40 Absolute convergence: The series
∑

an is said to be
converge absolutely if

∑ |an| converges.

Theorem 2.41 If
∑

an converges absolutely then
∑ |an| converges.

Proof: Suppose
∑

an converges absolutely ⇒ ∑

an converges. Given ǫ > 0
there exists an integer N such that

n
∑

k=m

|ak| < ǫ ∀n ≥ m ≥ N.....(1)

Also

|
n

∑

k=m

ak| ≤
n

∑

k=m

|ak| < ǫ ∀n ≥ m ≥ N by(1)

⇒ |
n

∑

k=m

ak| < ǫ ∀n ≥ m ≥ N

⇒ ∑

an converges. The converse of the above theorem is not true.

Example 2.42 Consider the series
∑∞

n=1(−1)n−1 converges but it is not
absolutely convergent.
Proof: For cn = (−1)n−1; c2m−1 = (−1)2m−1−1 = 1 ≥ 0; c2m = (−1)2m−1 =
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−1 < 0; |cn| = 1∀n; |c1| ≥ |c2| ≥ .... Now, { 1
n} is a monotonic decreasing

sequence and

lim
n→∞

1

n
= 0

By Leibnitz test
∑

(−1)n−1 1
n converges.

∞
∑

n=1

∣

∣

∣

∣

(−1)n−1 1

n

∣

∣

∣

∣

=
∑ 1

n
diverges.

But it is not absolutely convergence. ∴ convergence ; absolutely conver-
gence.

Note 2.43 For series of +ve terms convergence and absolutely convergence
are the same.

Theorem 2.44 Addition and Multiplication of series:
∑

an = A;
∑

bn = B. Then
∑

(an + bn) = A+B;
∑

can = cA for any fixed
c.
Proof: Let {An} be a sequence of partial sums of the series

∑

an and {Bn}
be a sequence of partial sum of the series

∑

bn. Now
∑

an = A;
∑

bn =
B ⇒ An → A and Bn → B as n → ∞ ⇒ An + Bn → A + B as n → ∞

(i.e.) lim
n→∞

(An + Bn) = A + B

⇒ lim
n→∞

(
n

∑

k=1

ak +
n

∑

k=1

bk) = A + B

⇒ lim
n→∞

n
∑

k=1

(ak + bk) = A + B

∞
∑

k=1

(ak + bk) = A + B

clearly cAn → cA as n → ∞

(i.e.) lim
n→∞

c
n

∑

k=1

(ak = cA)

lim
n→∞

n
∑

k=1

(cak) = cA

∞
∑

k=1

cak = cA
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Cauchy’s Product:
Given

∑

an,
∑

bn we put

cn = bna0 + bn−1a1 + ... + b0an

=
n

∑

k=0

akbn − k

(
∑

an)(
∑

bn) = a0b0 + (a0b1 + a1b0) + ... + (a0bn + a1bn−1 + ... + anb0)

= c0 + c1 + c2 + ... + cn−1 + ...

=
∑

cn

Example 2.45 Cauchy’s product of two convergent series need not be con-
vergent.
Proof: Consider the series

∞
∑

n=0

(−1)n

√
n + 1

.

Here
{

1√
n+1

}

to a decreasing sequence and 1√
n+1

→ 0 as n → ∞. ∴ By

Leibnitz test,
∞

∑

n=0

(−1)n

√
n + 1

converges.

Consider the product of two series

∑

an =
∑ (−1)n

√
n + 1

=
∑

bn

Now cn =
n

∑

k=0

akbn−k

=
n

∑

k=0

(−1)k

√
k + 1

(−1)n−k

√
n − k + 1

= (−1)
n

∑

k=0

1√
k + 1

√
n − k + 1

Now (k + 1)(n + 1 − k) = nk + k − k2 + n + 1 − k

= nk − k2 + n + 1

= (n + 1) − (k2 − nk)

= (
n2

4
+ n + 1) − (k2 +

n2

4
− nk)

= (
n

2
+ 1)2 − (k − n

2
)2

≤ (
n

2
+ 1)2
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∴ (k + 1)(n + 1 − k) ≤ (
n

2
+ 1)2

⇒
√

(k + 1)(n + 1 − k) ≤ (n/2 + 1)

⇒ 1
√

(k + 1)(n + 1 − k)
≥ 1

n
2 + 1

|cn| =

∣

∣

∣

∣

∣

(−1)n
n

∑

k=0

1
√

(k + 1)(n + 1 − k)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

k=0

1
√

(k + 1)(n + 1 − k)

∣

∣

∣

∣

∣

=
n

∑

k=0

1
√

(k + 1)(n + 1 − k)
≥

n
∑

k=0

1
n
2 + 1

=
1

n
2 + 1

n
∑

k=0

1 =
n + 1
n
2 + 1

=
2(n + 1)

(n + 2)

=
2(1 + 1

n)

1 + 2
n

|cn| ≥ 2(1 + 1
n)

1 + 2
n

⇒ cn does not converges to 0 as n → ∞ ⇒ ∑

cn diverges.

Note 2.46 The product of two convergent series converges if atleast one of
the two series converges absolutely.

Theorem 2.47 Merten’s Theorem:

(a) Suppose
∑

an converges absolutely.
(b) Suppose

∑

an = A
(c) Suppose

∑

an = B
(d) cn =

∑n
k=0 akbn−k(n = 0, 1, 2...).

Then ∞
∑

n=0

cn = AB.

Proof:

An =
n

∑

k=0

ak; Bn =
n

∑

k=0

bk; cn =
n

∑

k=0

ck.

Let

βn = Bn − B ∀n

= c0 + c1 + ... + cn

= a0b0 + (a0b1 + a1b0) + ... + (a0bn−1 + ... + anb0)

= a0((b0 + b1 + ... + bn) + a1(b0 + b1 + .. + bn−1) + anb0)

= a0Bn + a1Bn−1 + ... + anB0
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= a0(B + βn) + a1(B + βn−1) + ... + an(B + β0) (∵ βn = Bn − B)

= B(a0 + a1 + ... + an) + (a0βn + a1βn−1 + .. + anβ0)

= BAn + γn where γn = a0βn + a1βn−1 + ... + anβ0

Claim cn → AB as n → ∞; An → A as n → ∞ ⇒ BAn → AB as n → ∞.
If enough to prove γn → 0 as n → ∞. Given

∑

an converges absolutely.
⇒ ∑ |an| converges.

(i.e.)
∞

∑

0

|an| = α

Now lim
n→∞

βn = lim
n→∞

(Bn − B)

= B − B

= 0

Given ǫ > 0 there exists an integer N such that

|βn − 0| < ǫ ∀ n ≥ N

⇒ |βn| < ǫ ∀ n ≥ N......(1)

|γn| = |a0βn + a1βn−1 + ... + anβ0|
= |βna0 + βn−1a1 + ... + βN an−N + βN−1an−N+1 + ... + β0an|
≤ |βna0 + βn−1a1 + ... + βN an−N | + |βN−1an−N+1 + ... + β0an|
< ǫ(|a0| + |a1| + ... + |an−N |) + |βN−1an−N+1 + ... + β0an| By (1)

< βN−1an−N+1 + ... + β0an| + ǫ(|a0| + |a1| + ... + |an|)
= βN−1an−N+1 + ... + β0an| + ǫα

∴ |γn| < |βN−1an−N+1 + ... + β0an| + ǫα

keeping N fixed and letting n → ∞ we have

lim
n→∞

sup |γn| ≤ ǫα

Since ǫ is arbitrary, we have,

lim
n→∞

|γn| = 0

⇒ cn → AB as n → ∞

⇒
∞

∑

n=0

cn = AB.
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3. UNIT III

Continuity and Differentiation
Let X, Y be the metric spaces. Suppose E ⊂ X, f maps E into Y and p is
a limit point of E we write f(x) → q as x → p or

lim
x→p

f(x) = q.

If there is a point q ∈ Y with the following property, for every ǫ > 0 there
exists S > 0 such that dy(f(x), q) < ǫ∀x ∈ E for which 0 < dX(x, p) < S.
(i.e.)

lim
x→p

f(x) = q.

if given ǫ > 0 there exists S > 0 such that 0 < dX(x, p) < S ⇒ dY (f(x), q) <
ǫ.

Definition 3.1 Let X and Y be any two metric spaces and E ⊂ X. Let f
and g be any complex functions defined on E then we define f +g as follows.
(f + g)(x) = f(x) + g(x)

Theorem 3.2 Let X and Y be any two metric spaces and E ⊂ X. p is a
limit point of E. Then

lim
x→p

f(x) = q iff lim
n→∞

f(pn) = q

for every sequence {pn} in E such that pn 6= p and

lim
n→∞

pn = p.

Proof: Suppose
lim
x→p

f(x) = q

⇒ Given ǫ > 0, there exists S > 0 such that 0 < dX(x, p) < S ⇒
dY (f(x), q) < ǫ ∀x ∈ E.....(1)
{pn} is a sequence of points in E such that {pn} → p as n → ∞(pn 6= p) (This
is possible ∵ p is a limit point of E) ⇒ there exists N depending on S such
that dX(pn, p) < S ∀n ≥ N . Now By (1) we have, dY (f(pn), q) < ǫ ∀n ≥ N
(i.e.)

lim
n→∞

f(pn) = q.

Conversely, Suppose
lim

n→∞
f(pn) = q

for every {pn} in E such that pn 6= p and

lim
n→∞

pn = p
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To Prove
lim
x→p

f(x) = q

Suppose this result is false, for some ǫ > 0 and for every S > 0 such that
dX(x, p) < S ⇒ dY (f(x), q) ≥ ǫ. Let Sn = 1

n , n = 1, 2, 3... For S > 0
without loss of generality choose a point p ∈ E such that dX(p1, p) < S1(=
1) ⇒ dY (f(p1), q) ≥ ǫ. Similarly, for S2 > 0 choose a point p2 ∈ E such that
dX(p2, p) < S1 = (1/2) ⇒ dY (f(p2), q) ≥ ǫ. Proceeding for Sn > 0, choose
a point pn ∈ E such that dX(pn, p) < S1(= 1/n) ⇒ dY (f(pn), q) ≥ ǫ. ∴

we have a sequence {pn} in E such that dX(pn, p) < 1
n ⇒ dY (f(pn), q) ≥ ǫ.

Now {pn} → p as n → ∞ [∵ 1/n → 0 as n → ∞]. But f(pn) does not
converge to q ∴ our assumption is wrong. Hence for every ǫ > 0 there
exists S > 0 such that dX(x, p) < S ⇒ dY (f(x), q) < ǫ ∀x ∈ E.

∴ lim
x→p

f(x) = q.

Corollary 3.3 If f has a limit at p then this limit is unique.
Proof: Suppose q is a limit of f at p. (i.e.)

lim
x→p

f(x) = q.

∴ By the previous theorem, we have

lim
n→∞

f(pn) = q

for every {pn} in E such that pn 6= p and pn → p. But we know that, Every
convergence sequence converges to a unique limit. ∴ f has a unique limit at
p.

Definition 3.4 Suppose we have two complex f and g then f ± g, fg, λf ,
f
g (g 6= 0) are defined on a set E as follows.

1. (f + g)(x) = f(x) + g(x).

2. (f · g)(x) = f(x) · g(x)

3. (λf)(x) = λf(x)

4. (f
g )(x) = f(x)

g(x) , g(x) 6= 0.

Similarly we define f̄ , ḡ map E into R
k. Then we can define f̄ ± ḡ, f̄ ḡ, λf̄ ,

f̄
ḡ , (ḡ 6= 0).

Definition 3.5 Continuous at a point: Suppose X, Y are metric spaces
and E ⊂ X, p ∈ E and f maps E into Y . Then f is said to be continuous
at p if for every ǫ > 0, there exists a S > 0 ⇒ 0 < dX(x, p) < S ⇒
dY (f(x), f(p)) < ǫ ∀x ∈ E.
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Remark 3.6 Suppose f is continuous at p ⇒ for every ǫ > 0 there exists
S > 0 such that 0 < dX(x, p) < S ⇒ dY (f(x), f(p)) < ǫ ∀x ∈ E ⇒ x ∈
NS(p) ⇒ f(x) ∈ Nǫ(f(p)) ∀x ∈ E ⇒ f(NS(p)) ⊂ Nǫ(f(p)).

Theorem 3.7 Let X, Y be metric space and E ⊂ X. p is a limit point of E
and f : E → Y . Then f is continuous at p iff

lim
x→p

f(x) = f(p)

Proof: Suppose f is continuous at p. ⇔ for every ǫ > 0 there exists S > 0
such that 0 < dX(x, p) < S ⇒ dY (f(x), f(p)) < ǫ ∀x ∈ E ⇔

lim
x→p

f(x) = f(p)

Theorem 3.8 Suppose X, Y, Z are metric space and E ⊂ E. f maps E into
Y, g maps the range of f into Z and h is a mapping of E into Z defined by
h(x) = g(f(x)). If f is continuous at p ∈ E and if g is continuous at f(p)
then h is continuous at p. (The function h is called composite of f and g
and we write as h = g ◦ f)
Proof: Let ǫ > 0 be given and g is continuous at f(p). ∴ η > 0 such that
dY (y, f(p)) < η ⇒ dZ(g(y), g(f(p))) < ǫ, y ∈ f(E)...... (1)
Since f is continuous at p for this η > 0, there exists S > 0 such that
dX(x, p) < S ⇒ dY (f(x), f(p)) < η ∀x, y ∈ E

(i.e.)dY (f(x), f(p)) < η, f(X) ∈ f(E)

⇒ dZ(g(f(x)), (g(f(p)) < ǫ by (1)

⇒ dZ(g ◦ f(x), (g ◦ f)(p)) < ǫ

⇒ dZ(h(x), h(p)) < ǫ (h = g ◦ f).

∴ we have, dX(x, p) < S ⇒ dZ(h(x), h(p)) < ǫ ∀x ∈ E ⇒ h is continuous at
p.

Theorem 3.9 A mapping f of a metric space X into a metric space Y is
continuous on X iff f−1(E) is open in X for every open get E in Y .
Proof: Suppose f is continuous on X. Let V be a open get in Y . To Prove:
f−1(V ) is open in X. Let p ∈ f−1(V ); p ∈ f−1(V ) ⇒ f(p) ⊂ V . Since V is
open, there exists ǫ > 0 such that Nǫ(f(p)) ⊂ V ....... (1)
Since f is continuous at p, for ǫ > 0 there exists S > 0 such that f(NS(p)) ⊂
Nǫ(f(p))...... (2)
From (1) and (2), ⇒ f(NS(p)) ⊂ V ⇒ NS(p) ⊂ f−1V ⇒ p is an interior
point of f−1(V ). Since p is arbitrary, f−1(V ) is open in X. Conversely:
Suppose f−1(V ) is open in X for every open set V in Y . To Prove: f is
continuous at p, p ∈ X. Let ∈> 0 be given. Consider an open set Nǫ(f(p))
in Y, f−1(Nǫ(f(p))) is open in X. Now, ⇒ p ∈ f−1(Nǫ(f(p))) ⇒ p is an
interior point of f−1(Nǫ(f(p))) ⇒ there exists S > 0 such that NS(p) ⊂
f−1(Nǫ(f(p))) ⇒ f(NS(p)) ⊂ Nǫ(f(p)) ⇒ f is continuous at p.
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Corollary 3.10 A mapping f of a metric space X into a metric space Y
is continuous iff f−1(C) is closed in X for every closed set C in Y .
Proof: Let C be a closed set in Y.Cc is open in Y ⇒ f−1(Cc) is open in
X. (by Theorem 3.9) ⇒ [f−1(C)]c is open in X ⇒ f−1(C) is closed in X.
Conversely: Suppose f−1(C) is closed in X for every closed set C in Y . To
Prove: f is continuous on X. Let A be an open set in Y ⇒ Ac is closed in
Y ⇒ f−1(Ac) is closed in X. (by our assumption) ⇒ [f−1(A)]c is closed
in X ⇒ f−1(A) is open in X. ⇒ f is continuous on X. (by the previous
theorem)

Theorem 3.11 Let f and g be complex continuous function in a metric
space X, then f + g, f · g, f

g (g 6= 0) are continuous on X.
Proof: At isolated point of X there is nothing prove. Fix a point p ∈ X
and suppose p is a limit point of X. Since f and g are continuous at p.

lim
x→p

f(x) = f(p); lim
x→p

g(x) = g(p)

Now,
lim
x→p

(f + g)(x) = lim
n→∞

(f + g)pn

where pn → p as n → ∞ and pn 6= p

lim
x→p

(f + g)(x) = lim
n→∞

(f(pn) + g(pn))

= lim
n→∞

f(pn) + lim
n→∞

g(pn)

= f(p) + g(p)

similarly the other results follow.

Theorem 3.12 Let f1, f2, ..., fk be real functions in a metric space X. Let f̄
be the mapping X into R

k. defined by f̄(x) = (f1(x), f2(x), ..., fk(x))x ∈ X.
Then
(a) f̄ is continuous iff each of the functions f1, f2, ..., fk is continuous.
(b) f̄ and ḡ are continuous mapping of X into R

k then f̄ + ḡ, f̄ · ḡ are
continuous on X(f1, f2, ..., fk are called components of f̄).
Proof: Suppose f̄ is continuous at every p ∈ X. Then given ǫ > 0 there
exists S > 0 such that

|f̄(x) − f̄(p)| < ǫ if 0 < dX(x, p) < S

⇒
(

k
∑

i=1

(fi(x) − fi(p))2

)1/2

< ǫ if 0 < dX(x, p) < S

⇒ |fi(x) − fi(p)| <

(

k
∑

i=1

(fi(x) − fi(p))2

)1/2

< ǫ ∀i = 1, 2, ..., k

⇒ |fi(x) − fi(p)| < ǫ ∀i = 1, 2, ..., k if 0 < dX(x, p) < S
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⇒ each fi is continuous at p, (1 ≤ i ≤ k, p ∈ X) ⇒ each fi is continuous
on X, (1 ≤ i ≤ k). Conversely, Suppose fi is continuous on X for each
i = 1, ..., k ⇒ fi is continuous at every p ∈ X ⇒ Given ǫ > 0 there exists
Si > 0 such that 0 < dX(x, p) < Si ⇒ |fi(x) − fi(p)| < ǫ√

k
∀i = 1, 2, ..., k.

Let S = min(S1, S2, ..., Sk). Now,

0 < dX(x, p) < Si ⇒ |fi(x) − fi(p)| <
ǫ√
k

∀i = 1, 2, ..., k

⇒ |fi(x) − fi(p)|2 <
ǫ2

(
√

k)2

⇒
k
∑

i=1

|fi(x) − fi(p)|2 <
ǫ2

k
· k

= ǫ2

⇒

√

√

√

√

k
∑

i=1

|fi(x) − fi(p)|2 < ǫ

⇒ |f̄(x) − f̄(p)| < ǫ

(i.e.)0 < dX(x, p) < S ⇒ |f̄(x) − f̄(p)| < ǫ

⇒ f̄ is continuous at every p ∈ X ⇒ f̄ is continuous on X
(b) Let f̄ = (f1, f2, ..., fk) and ḡ = (g1, g2, ..., gk). Now, f̄ + ḡ = (f1 +
g1, f2 + g2, ..., fk + gk); f̄ · ḡ = (f1 · g1, f2 · g2, ..., fk · gk). Given f̄ and ḡ
are continuous. by (a), each fi, gi are continuous (i ≤ i ≤ k) (by Theorem
3.11) ⇒ fi + gi, fi · gi are continuous. (by (a))

Theorem 3.13 Let x̄ = (x1, x2, ..., xk) ∈ R
k define φi : Rk → R by φi(x̄) =

xi, (i = 1, 2, ..., k). φi is called the coordinate function, then φi is continuous.
Proof: Let x̄, ȳ ∈ R

k. Given ǫ > 0 choose S = ǫ such that

|x̄ − ȳ| < S

⇒ |φi(x̄) − φi(ȳ)| = |xi − yi|

<

(

k
∑

i=1

|xi − yi|2
)1/2

= |x̄ − ȳ|
< ǫ

⇒ φi is continuous on R
k

Theorem 3.14 Every polynomial in R
k is continuous.

Proof: By the above theorem φi : Rk → R is continuous for every i. Now,
φ2

i (x̄) = φi(x̄) · φi(x̄) = xi · xi = x2
i ∀i. In general φni

i (x̄) = xni

i ∀i. By
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Theorem 3.11, φni

i is continuous. Now,

(φn1
1 · φn2

2 · · · φnk

k )x̄

= φn1
1 (x̄) · φn2

2 (x̄) · · · φnk

k (x̄)

= xn1
1 · xn2

2 · · · xnk

k

Now φn1
1 ·φn2

2 · · ·φnk

k is a monomial function, where n1, n2, ..., nk are positive
integers. Every monomial function is continuous Cn1,n2,...,nk

is a complex
constant ⇒ Cn1,n2,...,nk

·xn1
1 ·xn2

2 ····xnk

k is continuous on R
k. ⇒ ∑

Cn1,n2,...,nk
·

xn1
1 · xn2

2 · · · ·xnk

k is continuous on R
k. ⇒ Every polynomial is continuous on

R
k.

Continuity and Compact: A mapping f̄ on a set E into X is said to be
bounded, if there is a real number m such that |f̄(x)| < m ∀x ∈ X.

Theorem 3.15 Suppose f is continuous function on a compact metric space
X into a metric space Y . Then f(X) is compact. (i.e., continuous image
of a compact metric space is compact)
Proof: Given that X is compact. To Prove: f(X) is compact. Let {Vα} be
an open cover for f(X) ⇒ each Vα is open in Y . Now, Given f is continuous
⇒ f−1(Vα) is open in X for each α ⇒ {f−1(Vα)} is open cover for X. Since
X is compact, there exists finitely may indices α1, α2, ..., αn such that

X ⊂ f−1(Vα1) ∪ f−1(Vα2) ∪ · · · ∪ f−1(Vαn)

=
n
⋃

i=1

f−1(Vαi
)

⇒ f(X) ⊂
n
⋃

i=1

ff−1(Vαi
) ⊂

n
⋃

i=1

Vαi

⇒ {Vα} ⇒ has a finite sub cover. ∴ f(X) is compact.

Theorem 3.16 If f̄ is continuous mapping of a compact metric space X
into R

k. Then f̄(X) is closed and bounded. ∴ f̄ is bounded.
Proof: Given f̄ is continuous and X is compact. ⇒ f̄(x) is a compact
subset of R

k. ⇒ f̄(x) is closed and bounded. (by Heine Borel theorem)
Now, in particular ⇒ f̄(x) is bounded ⇒ f̄ is bounded.

Theorem 3.17 Suppose f is a continuous real function on a compact met-
ric space X and M = supp∈X f(p) and let m = infp∈X f(p). Then, there
exists a points p, q ∈ X such that f(p) = m1, f(q) = m2 (i.e., f attains
maximum M at p and minimum m at q)
Proof: We know that, If E is bounded and y = sup E and X = inf E
then x, y ∈ Ē. Since f is continuous and X is compact ⇒ f(X) is closed
and bounded [By the above Theorem 3.16] and since f(X) is bounded.
m, M ∈ f(X) = f(X) (∵ f(X) is closed) ⇒ m, M ∈ f(X) ⇒ there exists
p, q ∈ X such that M = f(p), m = f(q).
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Theorem 3.18 Suppose f is continuous 1−1 mapping of a compact metric
space X into a metric space Y . Then the inverse mapping f−1 defined on
Y by f−1(f(X)) = X is a continuous mapping of Y onto X.
Proof: Suppose f is a continuous 1 − 1 mapping of a compact metric space
X into a metric space Y and also f−1(f(X)) = X. To Prove: f−1 is
continuous on Y , it is enough to prove that (f−1)(V ) is open in Y for every
open set V in X. Let V be a open set in X ⇒ V c is closed in X. Since X
is compact, V c is compact in X. Since f is continuous, f(V c) is compact
in Y ⇒ f(V c) is closed in Y ⇒ (f(V c))c is closed in Y ⇒ f(V ) is open in
Y . (∵ f is 1 − 1 and onto) ⇒ (f−1(V ))−1 is open in Y ⇒ f−1 is continuous
on Y .

Definition 3.19 (Uniformly Continuous) Let X and Y be any two met-
ric space then the f : X → Y is said it to be uniformly continuous on X if for
every ǫ > 0 there exists a S > 0 such that dX(p, q) < S ⇒ dY (f(p), f(q)) < ǫ
∀p, q ∈ X.

Theorem 3.20 Let f be a continuous mapping of a compact metric space
X into a metric space Y then f is uniformly continuous. (i.e.) Continuous
function defined on a compact metric space is uniformly continuous.
Proof: Let ǫ > 0 be given let f is continuous on X ⇒ f is continuous at
every point p ∈ X. Now, f is continuous at p ⇒ there exists a positive real
φ(p) such that dX(p, q) < φ(p) ⇒ dY (f(p), f(q)) < ǫ ∀q ∈ X....... (1)
Let J(p) = N φ(p)

2

{p} ⇒ J(p) is a closed in X ⇒ J(p) is a open in X. ∴

{J(p)|p ∈ X} is an open cover for X. Since X is compact, there ex-
ists finitely may p ∈ S. p1, p2, ..., pn such that X ⊂ ⋃n

i=1 J(pi). Let S =

min{(φ(p)
2 , ..., φ(p)

2 )}. Clearly, S > 0. Let p, q be points in X such that
dX(p, q) < S. Now,

p ∈ X ⊂
n
⋃

i=1

J(pi)

⇒ p ∈ J(pm) for some m, 1 ≤ m ≤ n

⇒ dX(p, pm) <
φ(pm)

2
< φ(pm)

⇒ dY (f(p), f(pm)) < ǫ/2.......(2) (by(1))

Now dX(q, pm) < dX(q, p) + d(p, pm)

< S +
φ(pm)

2

<
φ(pm)

2
+

φ(pm)

2
= φ(m)

(i.e.) dX(q, pm) < φ(pm)

⇒ dY (f(q), f(pm)) < ǫ/2 by(1)........(3)
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⇒ dY (f(p), f(q)) < dY (f(q), f(pm)) + dY (f(pm)f(q))

= ǫ/2 + ǫ/2 (by (2) and (3))

∴ dX(p, q) < S ⇒ dY (f(p), f(q)) < ǫ

⇒ f is uniformly continuous on X.

Theorem 3.21 Let E be a non-compact set in R
1. Then

(a) there exists a continuous function on E which is not bounded,
(b) there exists continuous and bounded function on which has no maximum
if in addition E is bounded,
(c) there exists a continuous function on E which is not uniformly continu-
ous.
Proof: Case(i): Suppose E is bounded.
(a) To Prove: f is continuous but not bounded. Since E is bounded, there
exists a limit point of x0 of E such that x0 /∈ E. [∵ E is not closed]. Define
a map f : E → R

1 by f(x) = 1
x−x0

, x ∈ E. ∴ f is continuous on E. To
Prove: f is unbounded on E. Since x0 is a limit point of E. Nr(x0) ∩ E 6= ∅
∀r > 0 ⇒ there exists x1 such that x1 ∈ Nr(x0) ∩ E ⇒ x1 ∈ Nr(x0) and
x1 ∈ E

⇒ |x1 − x0| < r and x1 ∈ E

⇒ 1

|x1 − x0| >
1

r
and x1 ∈ E

⇒ |f(x1)| >
1

r
and x1 ∈ E ∀r > 0

∀r > 0 there exists x ∈ E such that |f(x)| > 1
r ⇒ f is unbounded on E.

(b) Define g : E → R by g(x) = 1
1+(x−x0)2 , x ∈ E. Clearly, g is continuous.

Now, 0 < g(x) < 1 ⇒ g(x) is a bounded function. Clearly, supx∈E g(x) = 1.
But g(x) < 1 ∀x ∈ E. ∴ g has no maximum on E.
(c) Let f : E → R be defined by f(x) = 1

x−x0
, x ∈ E, where x0 is a limit

point of E. Clearly, f is continuous on E. Let ǫ > 0 be given. Let S > 0
be arbitrary choose a point x ∈ E such that |x − x0| < S and taking t very
close to x0 so as to satisfy |t − x| < S. Then,

|f(t) − f(x)| =

∣

∣

∣

∣

1

t − x0
− 1

x − x0

∣

∣

∣

∣

=

∣

∣

∣

∣

x − x0 − t + x0

(t − x0)(x − x0)

∣

∣

∣

∣

=
|x − t|

|t − x0||x − x0|
>

1

t − x0
> ǫ

(If we choose x ∈ (x0 − S, x0), t ∈ (x0, x0 + S) and |x − t| < S or t ∈
(x0 − S, x0), x ∈ (x0, x0 + S) and |x − t| < S ⇒ |t − x| > |x − x0|) So we
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have taken t very close to x0 and we made the difference |f(t) − f(x)| > ǫ
although |t − x| < S. Since this is true for every S > 0 ⇒ f is not uniformly
continuous.
Case(ii): Suppose E is not bounded.
(a) Define f : E → R by f(x) = x. Clearly, f is continuous on E and f is
not bounded on E. ∴ there exists function on E which is not bounded.
(b) Define g : E → R by g(x) = x2

1+x2 ⇒ g is continuous. Now, as x2 <

1 + x2 ⇒ g(x) = x2

1+x2 < 1. ∴ 0 < g(x) < 1 ∀x ∈ E. ∴ g is a bounded.
∴ g is a continuous and bounded function. supx∈E g(x) = 1. But g has no
maximum on E.
(c) If the boundedness is omitted then the result fails. Let E be the set of all
integers. Then every function defined on E is uniformly continuous on E ⇒
for every ǫ > 0 choose S < 1 such that |X − Y | < S ⇒ |f(x) − f(y)| = 0 < ǫ

Continuity and Connectedness:

Theorem 3.22 If f is a continuous mapping on a metric space X into a
metric space Y and E is a connected subset of X. Then f(E) is connected.
i.e., continuous image of a connected subset of a metric space is connected.
Proof: Given E is connected subset of X. To Prove: f(E) is a connected
subset of Y . Suppose f(E) is not connected. ⇒ f(E) = A ∪ B where A and
B are non-empty separated sets. Put G = E ∩ f−1(A) and H = E ∩ f−1(B)

G ∪ H = (E ∩ f−1(A)) ∪ (E ∩ f−1(B))

= E ∩ (f−1(A) ∪ f−1(B))

= E ∩ (f−1(A ∪ B))

= E ∩ E

G ∪ H = E

Clearly G 6= ∅ H 6= ∅ (∵ A 6= ∅, B 6= ∅). Claim: G and H are separated
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sets. i.e., To Prove Ḡ ∩ H = ∅, G ∩ H̄ = ∅. Now

G = E ∩ f−1(A)

⇒ G ⊂ f−1(A) ⊂ f−1(Ā)

⇒ Ḡ ⊂ f−1(Ā) = f−1(Ā) [∵ Ā is closed and

f is continuous ⇒ f−1(Ā)]

⇒ f(Ḡ) ⊂ ff−1(Ā) ⊂ Ā

⇒ f(Ḡ) ⊂ Ā

H = E ∩ f−1(B)

⇒ H ⊂ f−1(B) ⇒ f(H) ⊂ ff−1(B) = B

⇒ f(H) ⊂ B

⇒ f(Ḡ) ∩ f(H) ⊂ Ā ∩ B = ∅ (∵ A and B are separated sets)

⇒ f(Ḡ) ∩ f(H) = ∅
⇒ f(Ḡ ∩ H) = ∅

⇒ Ḡ ∩ H = ∅
similarly, G ∩ H̄ = ∅

∴ G and H are separated sets. ⇒ E can be expressed as a union of two
non-empty separated sets. ⇒ E is not connected. ⇒⇐ to E is connected.
∴ f(E) is connected.

Theorem 3.23 Intermediate Value Theorem: Let f be a continuous
real valued function on [a, b]. If f(a) < f(b) and c is the number such that
f(a) < c < f(b) then there exists a point x ∈ (a, b) such that f(x) = c.
Proof: Every interval in R is connected and f is continuous. By the previous
theorem, f [a, b] is connected in R. ⇒ f [a, b] is interval in R. Let f(a), f(b) ∈
f [a, b] ⇒ [f(a), f(b)] ⊂ f [a, b]. Now, f(a) < c < f(b) ⇒ c ∈ f [a, b] ⇒ c =
f(x) for some x ∈ [a, b].

Remark 3.24 Converse not true.
Proof: If any two points x1 and x2 and for any member c between f(x1)
and f(x2) there is a point x in [x1, x2] such that f(x) = c then f may be
discontinuous. For example:

f(x) =

{

sin 1
x x 6= 0

0 x = 0

Choose x1 ∈ (−π
2 , 0), x2 ∈ (0, π

2 ). Clearly x1 < x2; f(x1) =negative
f(x2)=positive. ∴ f(0) = 0. f is continuous all the points except at 0.

Differentiation:
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Definition 3.25 Let f be real value function defined on [a, b], for any x ∈
[a, b] form the quotient φ(t) = f(t)−f(x)

t−x , a < t < b, t 6= x, and defined

f ′(x) = lim
t→x

f(t) − f(x)

t − x

provided the limit exists.

Remark 3.26 1. If f ′ is defined at a point, we say that f is differentiable
at x.
2. If f ′ is defined at every point of a set E ⊂ [a, b], we say that f is
differentiable on E.

Theorem 3.27 Let f be defined on [a, b]. If f is differentiable at a point x
in [a, b], then f is continuous at x.
Proof: Given f is differentiable at x. (i.e.)

f ′(x) = lim
t→x

f(t) − f(x)

t − x
exists.

To Prove: f is continuous at x (i.e.)To Prove

lim
t→x

f(t) = f(x)

Now

f(t) − f(x) =
f(t) − f(x)

t − x
(t − x)

lim
t→x

(f(t) − f(x)) = lim
t→x

[

f(t) − f(x)

t − x
(t − x)

]

= lim
t→x

f(t) − f(x)

t − x
· lim

t→x
(t − x)

= f ′(x) · 0

= 0

lim
t→x

(f(t) − f(x)) = 0

(or) lim
t→x

f(t) = f(x)

∴ f is continuous at x.

Remark 3.28 Converse of above theorem is not true. For example f(x) =
|x| is continuous but not differentiable at origin.

Theorem 3.29 Suppose f and g are defined on [a, b] and are differentiable
at at point x in [a, b] then f + g, fg, f

g are differentiable at x.

(a) (f + g)′(x) = f ′(x) + g′(x)
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(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x)

(c) (f
g )′(x) = g(x)f ′(x)−g′(x)f(x)

g2(x)
, g(x) 6= 0.

Proof: Given f and g are differentiable at x.

(i.e.)f ′(x) = lim
t→x

f(t) − f(x)

t − x
and g′(x) = lim

t→x

g(t) − g(x)

t − x
exists.

(a)

φ(t) =
(f + g)(t) − (f + g)(x)

t − x

=
f(t) + g(t) − (f(x) + g(x))

t − x

φ(t) =
f(t) − f(x)

t − x
+

g(t) − g(x)

t − x

Taking limits as t → x

lim
t→x

φ(t) = lim
t→x

{

f(t) − f(x)

t − x
+

g(t) − g(x)

t − x

}

= lim
t→x

f(t) − f(x)

t − x
+ lim

t→x

g(t) − g(x)

t − x

(i.e.)(f + g)′(x) = f ′(x) + g′(x)

(i.e.) (f + g) is differentiable at x.
(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x). Let h = fg. Now,

(h(t) − h(x)) = (fg)(t) − (fg)(x)

= f(t)g(t) − f(x)g(x)

= f(t)g(t) − f(t)g(x) + f(t)g(x) − f(x)g(x)

= f(t)(g(t) − g(x)) + g(x)(f(t) − f(x))

h(t) − h(x)

t − x
= f(t)

(g(t) − g(x))

t − x
+ g(x)

(f(t) − f(x))

t − x

lim
t→x

h(t) − h(x)

t − x
= lim

t→x

{

f(t)
g(t) − g(x)

t − x
+ g(x)

f(t) − f(x)

t − x

}

= lim
t→x

f(t) lim
t→x

g(t) − g(x)

t − x
+ lim

t→x
g(x) lim

t→x

f(t) − f(x)

t − x

h′(x) = f(x)g′(x) + g(x)f ′(x)

(fg)′(x) = f(x)g′(x) + g(x)f ′(x)

fg is differentiable at x.
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(c)
(

f
g

)′
(x) = g(x)f ′(x)−g′(x)f(x)

g2(x)
. Let h = f

g .

(h(t) − h(x)) =
f

g
(t) − f

g
(x)

=
f(t)

g(t)
− f(x)

g(x)

=
f(t)g(x) − f(x)g(x) + f(x)g(x) − f(x)g(t)

g(t)g(x)

=
g(x)(f(t) − f(x)) − f(x)(g(t) − g(x))

g(t)g(x)

h(t) − h(x)

t − x
=

g(x)(f(t) − f(x)) − f(x)(g(t) − g(x))

g(t)g(x)(t − x)

lim
t→x

h(t) − h(x)

t − x
= lim

t→x

g(x)

g(t)g(x)

(

f(t) − f(x)

t − x

)

− lim
t→x

f(x)

g(t)g(x)

(

g(t) − g(x)

t − x

)

=
g(x)

g2(x)
lim
t→x

f(t) − f(x)

t − x
− f(x)

g2(x)
lim
t→x

g(t) − g(x)

t − x

h′(x) =
g(x)f ′(x) − g′(x)f(x)

g2(x)
(

f

g

)′

(x) =
g(x)f ′(x) − g′(x)f(x)

g2(x)

Since f ′(x), g′(x) exists and g(x) 6= 0,
(

f
g

)′
(x) exists.

Example 3.30 (1) The derivative of any constant is zero.
(2) f(x) = x ⇒ f ′(x) = 1
(3) f(x) = n ⇒ f ′(x) = nxn−1

Theorem 3.31 Chain Rule: Suppose f is continuous on [a, b], f ′(x) exists
at some point x in [a, b] , g is defined on an interval I which contains the
range of f , and g is differentiable at the point f(x). If h(t) = g(f(t)), a ≤
t ≤ b then h is differentiable at x, and h′(x) = g′(f(x))f ′(x).
Proof: Given

f ′(x) = lim
t→x

f(t) − f(x)

t − x
exists, t ∈ [a, b].

Let h(t) = g(f(t)). To Prove: h′(x) = g′(f(x))f ′(x). Since f is differentiable
at x ∈ [a, b]

f ′(x) = lim
t→x

f(t) − f(x)

t − x
exists, t ∈ [a, b] exists.

(i.e.) f ′(x) + u(t) =
f(t) − f(x)

t − x
, t ∈ [a, b] where lim

t→x
u(t) = 0

⇒ (f ′(x) + u(t))(t − x) = f(t) − f(x)......(1)
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Let y = f(x). Now g is differentiable at y(= f(x))

g′(y) = lim
s→y

g(s) − g(y)

s − y
, s ∈ I

(i.e.) g′(y) + v(s) =
g(s) − g(y)

s − y
, s ∈ I where lim

s→y
v(s) = 0

(g′(y) + v(s))(s − y) = g(s) − g(y).......(2)

Let s = f(t). Now,

h(t) − h(x) = g(f(t)) − g(f(x))

= (g′(f(x)) + v(s))(s − y) (by(2))

h(t) − h(x) = g′(f(x) + v(s))(f(t) − f(x))

= g′(f(x) + v(s))(f ′(x) + u(t))(t − x) (by(1))

h(t) − h(x)

t − x
= g′(f(x) + v(s))(f ′(x) + u(t))

lim
t→x

h(t) − h(x)

t − x
= lim

t→x
{g′(f(x) + v(s))(f ′(x) + u(t))}

h′(x) = lim
t→x

g′(f(x) + v(s)) lim
t→x

(f ′(x) + u(t))

= lim
s→y

(g′(f(x)) + v(s))f ′(x)

= g′(f(x))f ′(x)

∴ h′(x) = g′(f(x))f ′(x)

Example 3.32 Let

f(x) =

{

x sin 1
x x 6= 0

0 x = 0

Find f ′(x)(x 6= 0), and show that f ′(0) does not exist.
Solution:

f(x) = x sin
1

x

f ′(x) = x cos

(

1

x

)

(
−1

x2
) + sin

(

1

x

)

= − 1

x
cos

(

1

x

)

+ sin

(

1

x

)

= sin

(

1

x

)

−
(

1

x

)

cos

(

1

x

)

, x 6= 0.
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since x 6= 0f ′(x) exists. To Prove: f ′(0) does not exists.

f ′(0) = lim
t→0

f(t) − f(0)

t − 0

= lim
t→0

t sin 1
t − 0

t − 0

= lim
t→0

sin
1

t
which does not exists.

∴ f ′(0) does not exists.

Example 3.33 Let

f(x) =

{

x2 sin 1
x x 6= 0

0 x = 0

Find f ′(x)(x 6= 0), show that f ′(0) = 0
Solution: Let

f(x) = x2 sin
1

x

f ′(x) = x2(cos

(

1

x

)

)

(−1

x2

)

+ 2x · sin
1

x

= 2x · sin
1

x
− cos

1

x
, x 6= 0

f ′(0) = lim
t→0

f(t) − f(0)

t − 0

= lim
t→0

x2 sin 1
t − 0

t − 0

= lim
t→0

t sin
1

t

= 0 (∵

∣

∣

∣

∣

t sin
1

t

∣

∣

∣

∣

≤ 1)

∴ f ′(0) = 0

Mean Value Theorems:

Definition 3.34 Local Maximum, Local Minimum: Let f be a real
function defined on a metrics space X. We say that f has local maximum
at a point p in X if there exists δ > 0 such that f(q) ≤ f(p) ∀q ∈ X with
d(p, q) < δ. f has a local minimum at p in X, if f(p) ≤ f(q) ∀q ∈ X such
that d(p, q) < δ.

Theorem 3.35 Let f be defined on [a, b]; if f has a local maximum at a
point x ∈ (a, b) and if f ′ exists, then f ′(x)=0. The analogous statement for
local minimum is also true.
Proof: Case(i) Assume that f has local maximum at x. To Prove: f ′(x) =
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0. Since f has local maximum at x, there exists δ > 0 such that (q, x) <
δ ⇒ f(q) ≤ f(x)

If x − δ < t < x then
f(t) − f(x)

t − x
≥ 0

⇒ lim
t→x

h(t) − h(x)

t − x
≥ 0

(i.e.) f ′(x) ≥ 0 .......(1)

If tx < xt < x + δ then
f(t) − f(x)

t − x
≤ 0

⇒ lim
t→x

h(t) − h(x)

t − x
≤ 0

⇒ f ′(x) ≤ 0 .......(2)

Since f ′(x) exists, (1),(2) ⇒ f ′(x) = 0.
Case(ii) Assume that f has a local minimum at x. We show that f ′(x)=0.
Then there exists δ > 0 such that d(q, x) < δ ⇒ f(q) ≥ f(x)

If x − δ < t < x then
f(t) − f(x)

t − x
≤ 0

⇒ lim
t→x

f(t) − f(x)

t − x
≤ 0

(i.e.) f ′(x) ≤ 0 ........(3)

If x < t < x + δ then
f(t) − f(x)

t − x
≥ 0

⇒ lim
t→x

f(t) − f(x)

t − x
≥ 0

⇒ f ′(x) ≥ 0 .......(4)

Since f ′(x) exists, and from (3) and (4) we get f ′(x)=0.

Theorem 3.36 Generalised Mean Value Theorem: If f and g are
continuous real functions on [a, b], which are differentiable in (a, b), then
there is a point x ∈ (a, b) at which [f(b) − f(a)]g′(x) = [g(b) − g(a)]f ′(x).
proof: Let h(t) = [f(b) − f(a)]g(t) − [g(b) − g(a)]f(t), t ∈ [a, b]. Since f
and g are differentiable in (a, b), h(t) is also differentiable in (a, b). Now,

h(a) = [f(b) − f(a)]g(a) − [g(b) − g(a)]f(a)

= f(b)g(a) − f(a)g(a) − g(b)f(a) + g(a)f(a)

= f(b)g(a) − g(b)f(a)

h(b) = [f(b) − f(a)]g(b) − [g(b) − g(a)]f(b)

= f(b)g(b) − f(a)g(b) − g(b)f(b) + g(a)f(b)

= g(a)f(b) − f(a)g(b)
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Claim: h′(x) = 0 for some x ∈ (a, b). If h(t) is a constant then h′(x) =
0 ∀x ∈ (a, b). If h(t) < h(a), a < t < b, then by Intermediate value theorem,
there exists x in (a, b) at which h is minimum. ∴ h′(x) = 0 (by Theorem
3.35). If h(t) > h(a) then h attains its maximum at some point x ∈ (a, b). ∴

h′(x) = 0 (by Theorem 3.35) (i.e.)

(f(b) − f(a))g′(x) − (g(b) − g(a))f ′(x) = 0

(f(b) − f(a))g′(x) = (g(b) − g(a))f ′(x)

Theorem 3.37 Mean Value Theorem: If f is a real continuous function
on [a, b] which is differentiable at (a, b) then there is a point x ∈ (a, b) at
which f(b) − f(a) = (b − a)f ′(x).
Proof: Put g(x) = x in theorem 3.36. ∴ g′(x) = 1 ⇒ (f(b) − f(a)) =
(b − a)f ′(x).

Theorem 3.38 Suppose f is differentiable in (a, b).
(a) If f ′(x) ≥ 0 ∀x ∈ (a, b), then f is monotonically increasing.
(b) If f ′(x) = 0 ∀x ∈ (a, b), then f is a constant.
(c) If f ′(x) ≤ 0 ∀x ∈ (a, b), then f is monotonically decreasing.
Proof: (a)By theorem 3.37, If x1 < x2, then there exists x1 < x < x2 such
that f(x2) − f(x1) = (x2 − x1)f ′(x)...... (1)
If f ′(x) ≥ 0 then (1) ⇒ f(x2)−f(x1) ≥ 0 (∵ (x2 −x1)f ′(x) ≥ 0) ⇒ f(x1) ≤
f(x2) (i.e.) f is an increasing function
(b) If f ′(x)=0 then (1) ⇒ f(x2) − f(x1) = 0 ⇒ f(x2) = f(x1). ∴ f is
constant.
(c) If f ′(x) ≤ 0 then (1)⇒ f(x2) − f(x1) ≤ 0 ⇒ f(x1) ≥ f(x2). ∴ f is an
decreasing function.

The Continuity Of Derivatives

Theorem 3.39 Suppose f is a real differentiable function on [a, b] and sup-
pose f ′(a) < λ < f ′(b), then there is a point x ∈ (a, b) such that f ′(x) = λ.
A similar result holds if f ′(a) > λ > f ′(b).
Proof: Let g(t) = f(t) − λt, t ∈ [a, b] then, g′(t) = f ′(t) − λ; g′(a) =
f ′(a) − λ < 0. ∴ there exists a < t1 < b such that g(t1) < g(a). Also,
g′(b) = f ′(b) − λ > 0. ∴ there exists a < t2 < b such that g(t2) < g(b). ∴ g
attains minimum at x ∈ (a, b). ∴ g′(x)=0 (by Theorem 3.35) (i.e.)
f ′(x) − λ = 0 ⇒ f ′(x) = λ.

Corollary 3.40 If f is differentiable on [a, b], then f ′ is cannot have any
simple discontinuity on [a, b]. But f ′ may have discontinuity of second kind.
Proof: f ′ takes every value between f(a) and f(b). Let a < x < b. If f ′ is
not continuous at x, then

1. f ′(x+), f ′(x−) exists,
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2. f ′(x+) 6= f ′(x−),

3. f ′(x−) = f ′(x+) 6= f ′(x) ⇒⇐

∴ f ′ cannot have any simple discontinuity. In Example 3.33 f ′ has a
discontinuity of second kind at x ∈ [a, b].

Theorem 3.41 L’Hospital’s Rule: Suppose f and g are differentiable in

(a, b) and g′(x) 6= 0 ∀x ∈ (a, b) where −∞ ≤ a < b ≤ ∞. Suppose f ′(x)
g′(x) → A

as x → a........ (1).
If f(x) → 0 and g(x) → 0 as x → a........ (2) (or) if g(x) → ∞ as

x → a....... (3), then f(x)
g(x) → A as x → a....... (4). (The analogous

statement is true if x → b (or) if g(x) → −∞ in (3)).
Proof: Case(i): Let −∞ ≤ A < ∞. We choose r and q such that A < r <
q. Given

lim
x→a

f ′(x)

g′(x)
= A

Then there exists c ∈ (a, b) such that a < x < c ⇒ f ′(x)
g′(x) < r....... (i)

Now if a < x < y < c then by generalised mean value theorem, there exists

t ∈ (a, b) such that f(x)−f(y)
g(x)−g(y) = f ′(t)

g′(t) < r........ (ii)

Suppose f(x) → 0 and g(x) → 0 as x → a. Then by taking limits as x → a,

then (ii) we get f(y)
g(y) ≤ r < q........ (iii)

Suppose g(x) → ∞ as x → a, then by keeping y fixed in (ii) we can find
c1 ∈ (a, y) such that g(x) > g(y) and g(x) > 0 ∀x ∈ (a, c1). Multiply (ii) by
g(x)−g(y)

g(x) , we get

f(x) − f(y)

g(x)
< r

(

g(x) − g(y)

g(x)

)

⇒ f(x)

g(x)
− f(y)

g(x)
< r

(

1 − g(y)

g(x)

)

⇒ f(x)

g(x)
< r − r

g(y)

g(x)
+

f(y)

g(x)

Since g(x) → ∞ as x → a, there exists c2 ∈ (a, c1) such that f(x)
g(x) < r ∀x ∈

(a, c2) (or) f(x)
g(x) < q ∀x ∈ (a, c2).......(iv)

suppose −∞ < A ≤ ∞. By choosing p < A as above, we can show that
there exists c3 ∈ (a, b) such that p < f(x)

g(x) ∀a < x < c3.....(v)

Thus in all cases f(x)
g(x) → A as x → a. Hence

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

.
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Derivatives Of Higher Order

Definition 3.42 If f has a derivative f ′ on an interval and if f ′ is dif-
ferentiable, we see the second derivative f ′′ exists. Similarly if fn−1(x) is
differentiable we say f (n) exists.

Theorem 3.43 Taylor’s Theorem: Suppose f is a real function on [a, b], n
is a positive integer, f (n−1) is continuous on [a, b], f (n)(t) exists ∀t ∈ (a, b).
Let α, β be distinct points of [a, b] and define

p(t) =
n−1
∑

n=0

f (k)(α)

k!
(t − α)k,

then there exists a point x ∈ (α, β) such that f(β) = p(β) + f (n)(x)
n! (β − α)n.

Proof: If n=1, then f(β) = f(α) + f ′(x)(β − α); f(β)−f(α)
β−α = f ′(x). This

is just the mean value theorem. Suppose n > 1. Define a number M such
that f(β) = p(β) + M(β − α)n........(1)
Let g(t) = f(t) − p(t) − M(t − α)n........ (2)
Now,

g(α) = f(α) − p(α) − M(α − α)n

= f(α) − p(α)

g(α) = f(α) − f(α) (∵ p(α) = f(α))

= 0

g(β) = f(β) − p(β) − M(β − α)n

= 0 (by (1)).......(4)

Also g(n)(t) = f (n)(t) − 0 − Mn!.......(5)

g(k)(α) = f (k)(α) − p(k)(α)

= f (k)(α) − f (k)(α)

= 0......(6)

(i.e.) g(α) = g′(α) = · · · = gn−1(α) = 0. Since g(α) = 0 and g(β) = 0, there
exists x1 ∈ (α, β), by mean value theorem, such that g′(x1)=0. Now since
g′(α) = 0; g′(x1) = 0 again by mean value theorem there exists x2 ∈ (α, x1)
such that g”(x2) = 0. Proceeding this way we get α < xn < xn−1, such that

g(n)(xn) = 0 (i.e.) f (n)(xn) − Mn! = 0 (by (5)). ∴ M = fn(xn)
n! , sub M in

(1) ⇒ f(β) = p(β) + f (n)(xn)
n! (β − α)n, ∀x ∈ (α, xn−1)
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4. UNIT IV

The Riemann-Steiltjes integral and Sequences and series of func-
tions

Definition 4.1 Let [a, b] be an interval. By a partition P of [a, b] we mean
a finite set of points x0, x1, ..., xn, where a = x0 ≤ x1 ≤, ..., ≤ xi−1 ≤ xi ≤
, ..., ≤ xn = b.

Remark 4.2 1. ∆xi = xi − xi−1 ∀i = 1, 2, ..., n.

2. Let f be a bounded real function on [a, b] then mi = inf f(x), Mi =
sup f(x) ∀xi−1 ≤ x ≤ xi.

3.

L(P, f) =
n
∑

i=1

mi∆xi

U(P, f) =
n
∑

i=1

mi∆xi

L(P, f) ≤

∫ b

a
f(x)dx ≤ U(P, f)

L(P, f) ≤ U(P, f).

4.
∫ b

a f(x)dx = sup L(P, f)

5.
∫ b̄

a f(x)dx = inf U(P, f) (The inf and sup are taken over all partition
P of [a, b]).

6. If the upper and lower reimann interval over is same then f is said to
be Reimann integrable over [a, b].f ∈ R(R is the set of all Reimann
integrable functions)

7.
∫ b

a
f(x)dx =

∫ b̄

a
f(x)dx =

∫ b

a
f(x)dx

Result 4.3 For every partition P of [a, b] and every bounded function f
there exists 2 real numbers m, M such that m(b − a) ≤ L(P, f) ≤ U(P, f) ≤
M(b − a).
Solution: Let m = inf f(x) and M = sup f(x), a ≤ x ≤ b. Let P =
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{x0, x1, ..., xn} be the given partition of [a, b],

m ≤ mi ≤ Mi ≤ M

m∆xi ≤ mi∆xi ≤ Mi∆xi ≤ M∆xi (∆xi ≥ 0)
n
∑

i=1

m∆xi ≤
n
∑

i=1

mi∆xi ≤
n
∑

i=1

Mi∆xi ≤
n
∑

i=1

M∆xi

m(
n
∑

i=1

∆xi) ≤ L(P, f) ≤ U(P, f) ≤ M
n
∑

i=1

∆xi........(1)

Now,
n
∑

i=1

∆xi = ∆x1 + ∆x2 + ... + ∆xn

= (x1 − x0) + (x2 − x1) + ... + (xn − xn−1)

= xn − x0

= b − a........(2)

sub (2) in (1) we get, m(b − a) ≤ L(P, f) ≤ U(P, f) ≤ M(b − a).

Definition 4.4 Let α be a monotonically increasing function on [a, b]. Cor-
responding to each partition P of [a, b]
we define ∆αi = α(xi) − α(xi−1). Clearly, ∆αi ≥ 0

L(P, f, α) =
n
∑

i=1

mi∆αi

U(P, f, α) =
n
∑

i=1

Mi∆αi

sup L(P, f, α) =

∫ b

a
fdα

U(P, f, α) =

∫ b̄

a
fdα

where infimum and suprimum are taken over all partitions. If

∫ b

a
fdα =

∫ b̄

a
fdα,

then f is Reimann Stieljes integrable with respect to,

∫ b

a
fdα =

∫ b

a
fdα =

∫ b̄

a
fdα,

we also write f ∈ R(α).

Note 4.5 By taking α(x) = x, we see that the Reimann integral is the
special case of Riemann’s Stieltjes integral.
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Definition 4.6 The partition P ∗ of [a, b] is called a refinement of P if P ⊂
P ∗. Given two partition P1 and P2, we say that P = P1 ∪ P2 is the common
refinement of P1 and P2.

Theorem 4.7 If P ∗ is an refinement of P , then L(P, f, α) ≤ L(P ∗, f, α)
and U(P ∗, f, α) ≤ U(P, f, α).
Proof: Let P = {x0, x1, ..., xi−1, xi, ..., xn} be a partition of [a, b] and let
P ∗ = {x0, x1, x2, ..., xi−1, x∗, xi, ..., xn} be an refinement of P . Let

mi = inf f(x), xi−1 ≤ x ≤ xi

w1 = inf f(x), xi−1 ≤ x ≤ x∗

w2 = inf f(x), x∗ ≤ x ≤ xi

∴ w1 ≥ mi and w2 ≥ mi. Now,

L(P ∗, f, α) = m1∆α1 + m2∆α2 + ... + mi−1∆αi−1 + w1(α(x∗) − α(xi−1))

+ w2(α(xi) − α(x∗)) + mi+1∆αi+1... + mn∆αn......(1)

L(P, f, α) = m1∆α1 + m2∆α2 + ... + mi−1∆αi−1 + mi∆αi

+ mi+1(∆αi+1) + ... + mn∆αn......(2)

(1)-(2) ⇒

L(P ∗, f, α) − L(P, f, α) = w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗)) − mi∆αi

= w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗))

− mi(α(xi) − α(xi−1))

= w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗))

− mi(α(xi) − α(x∗)) − mi(α(x∗) − α(xi−1))

= (w1 − mi)(α(x∗) − α(xi−1))

+ (w2 − mi)(α(xi) − α(x∗))

≥ 0(∵ w1 and w2 ≥ mi)

L(P ∗, f, α) − L(P, f, α) ≥ 0

⇒ L(P, f, α) ≤ L(P ∗, f, α)

∴ L(P, f, α) ≤ L(P ∗, f, α)

Let P ∗ = {x0, x1, ..., xi−1, x∗, xi, ..., xn} be refinement of P . Let

Mi = sup f(x), xi−1 ≤ x ≤ xi

w1 = sup f(x), xi−1 ≤ x ≤ x∗

w2 = sup f(x), x∗ ≤ x ≤ xi

∴ w1 ≥ Mi and w2 ≥ Mi
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Now

U(P ∗, f, α) = M1∆α1 + M2∆α2 + ... + Mi−1∆αi−1 + w1(α(x∗) − α(xi−1))

+ w2(α(xi) − α(x∗)) + Mi+1∆αi+1 + ... + Mn∆αn.......(1)

U(P, f, α) = M1∆α1 + M2∆α2 + ... + Mi−1∆αi−1 + Mi∆αi

+ Mi+1(∆αi+1) + ... + Mn∆αn......(2)

(1)-(2) ⇒

U(P ∗, f, α) − U(P, f, α) = w1(α(x∗) − α(xi−1)) + w2(α(xi)

− α(x∗)) − Mi∆αi

= w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗))

− Mi(α(xi) − α(xi−1))

= w1(α(x∗) − α(xi−1)) + w2(α(xi) − α(x∗))

− Mi(α(xi) − α(x∗)) − Mi(α(x∗) − α(xi−1))

= (w1 − Mi)(α(x∗) − α(xi−1))

+ (w2 − Mi)(α(xi − α(x∗)))

≤ 0(∵ w1 and w2 ≤ M)

(i.e.) U(P ∗, f, α) − U(P, f, α) ≤ 0

⇒ U(P ∗, f, α) ≤ U(P, f, α)

∴ U(P ∗, f, α) ≤ U(P, f, α)

If P ∗ contains k-points more than P , we repeat this reasoning k-times and
get the result.

Theorem 4.8
∫ b

a
fdα ≤

∫ b̄

a
fdα.

Proof: Let P1 and P2 be two partition of [a, b] and let P ∗ = P1UP2.
(i.e.) P ∗ is a common refinement of P1 and P2. L(P1, f, α) ≤ L(P ∗, f, α) ≤
U(P ∗, f, α) ≤ U(P2, f, α) ⇒ L(P1, f, α) ≤ U(P2, f, α). Keeping P1 fixed
and taking infimum over all partition P2, we get

L(P, f, α) ≤

∫ b̄

a
fdα.

Now, by taking suprimum over all partition P1 we get

∫ b

a
fdα ≤

∫ b̄

a
fdα.

Theorem 4.9 Criterion for Riemann Integrability: Let f ∈ R(α)
iff ∀ ∈> 0, there exists a partition P such that U(P, f, α) − L(P, f, α) <∈.
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Proof: Let ∈> 0, there exists a partition P such that U(P, f, α)−L(P, f, α) <∈
Claim: f ∈ R(α). We know that

U(P, f, α) ≥

∫ b̄

a
fdα.....(1)

L(P, f, α) ≤

∫ b

a
fdα.....(2)

(2) × −1 ⇒ −L(P, f, α) ≥ −

∫ b

a
fdα.....(3)

(1) + (3) U(P, f, α) − L(P, f, α) ≥

∫ b̄

a
fdα −

∫ b

a
fdα

(or)

∫ b̄

a
fdα −

∫ b

a
fdα ≤ U(P, f, α) − L(P, f, α)

< ǫ

Since ǫ is arbitrary,

∫ b

a
fdα =

∫ b̄

a
fdα.(i.e.) f ∈ R(α).

Conversely: Assume f ∈ R(α). To Prove: let ǫ > 0, there exists a partition
P such that U(P, f, α) − L(P, f, α) < ǫ
let ǫ > 0 be given
Then there exists two partition P1 and P2 such that
U(P1, f, α) <

∫ b
a fdα + ǫ

2 .....(4) and
∫ b

a fdα − ǫ
2 < L(P2, f, α).......(5)

Let P = P1UP2 (i.e.) P is the common refinement of P1 and P2

Now

U(P, f, α) ≤ U(P1, f, α)

≤

∫ b

a
fdα +

ǫ

2
(by (4))

< L(P2, f, α) +
ǫ

2
+

ǫ

2
(by (5))

= L(P2, f, α) + ǫ

≤ L(P, f, α) + ǫ

∴ U(P, f, α) − L(P, f, α) < ǫ

Theorem 4.10 Let P be a partition ∈: U(P, f, α) − L(P, f, α) < ǫ...(1)
(a) if (1) holds for some P and ǫ then (1) holds for every refinement of P .
(b) if (1) holds for P = {x0, x1, ..., xn} and si, ti are arbitrary points in
[xi−1, xi] then

n
∑

i=1

|f(si) − f(ti)|∆αi < ǫ



74 4. UNIT IV

(c) if f ∈ R(α) and the hypothesis of (b) holds then

∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆αi −

∫ b

a
fdα

∣

∣

∣

∣

∣

< ǫ.

Proof: (a) Let P ∗ be a refinement of P . We know that

U(P ∗, f, α) ≤ U(P, f, α)......(2)

L(P ∗, f, α) ≤ L(P, f, α) (by Theorem 4.7)

−L(P ∗, f, α) ≤ −L(P, f, α)......(3)

(2)+(3) gives

U(P ∗, f, α) − L(P ∗, f, α) ≤ U(P, f, α) − L(P, f, α)

< ǫ (by (1))

(i.e.)U(P ∗, f, α) − L(P ∗, f, α) < ǫ

(b) si, ti ∈ [xi−1, xi]; f(si), f(ti) ∈ f [xi−1, xi]; mi ≤ f(si), f(ti) ≤ Mi

∴ |f(si) − f(ti)| ≤ Mi − mi (∵ Mi − mi ≥ 0)

⇒ |f(si) − f(ti)|∆αi ≤ (Mi − mi)∆αi

⇒
n
∑

i=1

|f(si) − f(ti)|∆αi =
n
∑

i=1

(Mi − mi)∆αi

=
n
∑

i=1

Mi∆αi −
n
∑

i=1

mi∆αi

= U(P, f, α) − L(P, f, α) (by (1))

∴

n
∑

i=1

|f(si) − f(ti)|∆αi < ǫ.

(c) We have

mi ≤ f(ti) ≤ Mi

⇒ mi∆αi ≤ f(ti)∆αi ≤ Mi∆αi

⇒
n
∑

i=1

mi∆αi ≤
n
∑

i=1

f(ti)∆αi ≤
n
∑

i=1

Mi∆αi

⇒ L(P, f, α) ≤
n
∑

i=1

f(ti)∆αi ≤ U(P, f, α)......(4)

L(P, f, α) ≤

∫ b

a
fdα ≤ U(P, f, α)......(5)
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(4) and (5) ⇒

∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆αi −

∫ b

a
fdα

∣

∣

∣

∣

∣

≤ U(P, f, α) − L(P, f, α)

= ǫ (by (1))
∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆αi −

∫ b

a
fdα

∣

∣

∣

∣

∣

< ǫ.

Theorem 4.11 If f is continuous on [a, b] then f ∈ R(α).
Proof: Let ǫ > 0 be given. Choose η > 0 such that [α(b) − α(a)]η < ǫ...(1)
Since f is continuous on [a, b] and [a, b] is compact, f is uniformly continuous.
Then there exists δ > 0 such that |x − ǫ| < δ ⇒ |f(x) − f(ǫ)| < η..... (2)
Let P = {x0, x1, ..., xn} be a partition of [a, b] such that ∆xi < δ ∴ (2)
guarantees that |Mi − mi| < η (i.e.) Mi − mi < η......(3)
Now,

U(P, f, α) − L(P, f, α) =
n
∑

i=1

Mi∆αi −
n
∑

i=1

mi∆αi

=
n
∑

i=1

(Mi − mi)∆αi

< η(
n
∑

i=1

∆αi) (by (3))

= η[∆α1 + ∆α2 + ... + ∆αn]

= η[(α(x1) − α(x0)) + (α(x2) − α(x1)) + ... + (α(xn) − α(xn−1))]

= η(α(xn) − α(x0))

= η[α(b) − α(a)]

< ǫ

∴ U(P, f, α) − L(P, f, α) < ǫ (by Theorem 4.9)

By Theorem 4.9, f ∈ R(α).

Theorem 4.12 If f is monotonic on [a, b] and if α is continuous in [a, b],
then f ∈ R(α).
Proof: Let
epsilon > 0 be given. For every positive integer n, we choose a partition P
such that ∆αi = α(b)−α(a)

n . This is possible since α is continuous.
Case(i): f is monotonic increasing. ∴ Mi = f(xi); mi = f(xi−1) ∀i =
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1, 2, ..., n. Now,

U(P,f, α) − L(P, f, α)

=
n
∑

i=1

Mi∆αi −
n
∑

i=1

mi∆αi

=
n
∑

i=1

(Mi∆αi − mi∆αi)

=
n
∑

i=1

(Mi − mi)∆αi

=
n
∑

i=1

(f(xi) − f(xi−1))(
α(b) − α(a)

n
)

=
α(b) − α(a)

n

n
∑

i=1

[f(xi) − f(xi−1)]

=
α(b) − α(a)

n
{(f(x1) − f(x0)) + (f(x2) − f(x1)) + ...

+ (f(xn) − f(xn−1))}

=
α(b) − α(a)

n
[f(xn) − f(x0)]

=
α(b) − α(a)

n
(f(b) − f(a))

< ǫ as n → ∞.

∴ f ∈ R(α).

Case(ii): f is monotonic decreasing. ∴ Mi = f(xi); mi = f(xi−1) ∀i =
1, 2, ..., n. Now,

U(P,f, α) − L(P, f, α)

=
n
∑

i=1

(Mi∆αi −
n
∑

i=1

mi)∆αi

=
n
∑

i=1

(Mi∆αi − mi∆αi)

=
n
∑

i=1

(Mi − mi)∆αi

=
n
∑

i=1

(f(xi−1) − f(xi))(
α(b) − α(a)

n
)

=
α(b) − α(a)

n

n
∑

i=1

[f(xi−1) − f(xi)]
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=
α(b) − α(a)

n
{(f(x0) − f(x1)) + (f(x1) − f(x2)) + ...

+ (f(xn−1) − f(xn))}

=
α(b) − α(a)

n
[f(x0) − f(xn)]

=
α(b) − α(a)

n
(f(a) − f(b))

< ǫ as n → ∞.

∴ f ∈ R(α).

Hence the proof.

Theorem 4.13 Suppose f is bounded on [a, b], f has only finitely many
point of discontinuity on [a, b] and α is continuous at every point at which
f is discontinuous, then f ∈ R(α).
Proof: Let ǫ > 0 be given. Put M = sup|f(x)|. Let E be the set of points
at which f is discontinuous. Since E is finite and α is continuous at every
point of E, we can cover E by finitely many disjoint [uj , vj ] ⊂ [a, b] such
that the sum of the corresponding differences

∑

j

[α(vj) − α(uj)] < ǫ.

Also we place these intervals in such a way that every point of E ∩ (a, b)
lies in the interval of some [uj , vj ]. Remove the segments (uj , vj) from [a, b].
The remaining set K is compact. hence f is uniformly continuous on K. ∴

there exists δ > 0 such that |s − t| < δ ⇒ |f(s) − f(t)| < ǫ ∀s, t ∈ K. We
form a partition P = {x0, x1, ..., xn} of [a, b] as follows. Each uj occurs in
P , each vj occurs in P . No point of any segment (uj , vj) occurs in P . If
xi−1 is not one of the uj ’s then ∆xi < δ. we observe that Mi − mi ≤ 2µ, ∀i
and Mi − mi ≤ ǫ unless xi−1 is one of the uj ’s. ∴ U(P, f, α) − L(P, f, α) ≤
[α(b) − α(a)]ǫ + 2Mǫ. (By Theorem 4.11) Since ǫ is arbitrary, Theorem 4.9
guarantees that f ∈ R(α).

Theorem 4.14 Suppose f ∈ R(α) on [a, b], m ≤ f ≤ M, φ is continuous
on [m, M ] and h(x) = φ(f(x)) on [a, b], then h ∈ R(α) on [a, b].
Proof: Let ǫ > 0 be given. Since φ : [m, M ] → R is continuous and [m, M ]
is compact, φ is uniformly continuous. ∴ There exists δ > 0 such that
δ < ǫ, |s − t| < δ ⇒ |φ(s) − φ(t)| < ǫ for s, t ∈ [m, M ]...... (1)
Since f ∈ R(α), there exists a partition P = {x0, x1, ..., xn} of [a, b] such
that U(P, f, α) − L(P, f, α) < δ2...... (2)
To Prove: h ∈ R(α). Let M∗

i = sup h(x), xi−1 ≤ x ≤ xi and m∗
i =

inf h(x), xi−1 ≤ x ≤ xi. Let A = {i|1 ≤ i ≤ n, Mi − mi < δ}; B =
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{i|1 ≤ i ≤ n, Mi − mi ≥ δ}

for i ∈ A, |Mi − mi| < δ ⇒ |φ(Mi) − φ(mi)| < ǫ (by (1))

⇒ |M∗
i − m∗

i | < ǫ......(3)

For i ∈ B, |M∗
i − m∗

i | ≤ |M∗
i | + |m∗

i |

≤ k + k where k = sup|φ(t)|, t ∈ [m, M ]

|M∗
i − m∗

i | ≤ 2k.....(4)

Also δ
∑

i∈B

∆αi ≤
∑

i∈B

(Mi − mi)∆αi

≤
n
∑

i=1

(Mi − mi)∆αi

=
n
∑

i=1

Mi∆αi −
n
∑

i=1

mi∆αi

= U(P, f, α) − L(P, f, α)

< δ2 (by (2))

(i.e.) δ
∑

i∈B

∆αi < δ2

⇒
∑

i∈B

∆αi < δ.....(5)

Now U(P, h, α) − L(P, h, α) =
n
∑

i=1

M∗
i ∆αi −

n
∑

i=1

m∗
i ∆αi

=
n
∑

i=1

(M∗
i − m∗

i )∆αi

=
∑

i∈A

(M∗
i − m∗

i )∆αi +
∑

i∈B

(M∗
i − m∗

i )∆αi

< ǫ
∑

i∈A

∆αi + 2k
∑

i∈B

∆αi (by (3) and (4))

< ǫ
n
∑

i=1

∆αi + 2k
∑

i∈B

∆αi

< ǫ[α(b) − α(a)] + 2kδ

< ǫ[α(b) − α(a)] + 2kǫ (∵ δ < ǫ)

= ǫ[α(b) − α(a) + 2k]

(i.e.) U(P, h, α) − L(P, h, α) < ǫ[α(b) − α(a) + 2k]
since ǫ is arbitrary, Theorem 4.9, implies that h ∈ R(α).

Lemma 4.15 If f ∈ R(α) and f ≥ 0 on [a, b] then
∫ b

a fdα ≥ 0.
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Proof: Since f ≥ 0, Mi ≥ 0∀i.

∴

n
∑

i=1

Mi∆αi ≥ 0

⇒ U(P, h, α) ≥ 0

⇒ inf U(P, h, α) ≥ 0

⇒

∫ b

a
fdα ≥ 0.

Properties of Integral

Theorem 4.16 (a) If f1, f2 ∈ R(α) on [a, b] then f1 + f2 ∈ R(α), cf1 ∈
R(α) for every constant c and

∫ b
a (f1 +f2)dα =

∫ b
a f1dα+

∫ b
a f2dα,

∫ b
a cf1dα =

c
∫ b

a f1dα.

(b) If f1(x) ≤ f2(x) on [a, b] then
∫ b

a f1dα ≤
∫ b

a f2dα.
(c) If f ∈ R(α) on [a, b] and a < c < b, then f ∈ R(α) on [a, c] and on
[a, b] and

∫ b
a fdα =

∫ c
a fdα +

∫ b
c fdα

(d) If f ∈ R(α) on [a, b] and if |f(x)| ≤ M then |
∫ b

a fdα| ≤ [α(b) − α(a)].

(e) If f ∈ R(α1) and f ∈ R(α2) then f ∈ R(α1 +α2) and
∫ b

a fd(α1 +α2) =
∫ b

a fdα1 +
∫ b

a fdα2. If f ∈ R(α) and c is positive constant then f ∈ R(α)

and
∫ b

a fdα = c
∫ b

a fdα.
Proof: (a) Let ǫ > 0 be given. Since f1 ∈ R(α) and f2 ∈ [a, b], there exists
two partitions P1 and P2 of [a, b] such that U(P1, f1, α)−L(P1, f1, α) < ǫ.....
(1) and U(P2, f2, α) − L(P2, f2, α) < ǫ.....(2)
Let P = P1 ∪ P2 be the common refinement of [a, b].

∴ U(P1, f1, α) ≤ U(P1, f1, α)

L(P1, f1, α) ≤ L(P1, f1, α)

⇒ U(P, f1, α) + L(P1, f1, α) ≤ U(P1, f1, α) + L(P, f1, α)

⇒ U(P, f1, α) − L(P1, f1, α) ≤ U(P1, f1, α) − L(P1, f1, α)

U(P, f1, α) − L(P, f1, α) < ǫ (by (1)).......(3)

Similarly U(P, f2, α) − L(P, f2, α) < ǫ (by (2)).......(4)

(3)+(4)⇒

U(P, f1, α) + U(P, f2, α) − (L(P, f1, α)) + L(P, f2, α)

< 2ǫ......(5)

Now L(P, f1, α) + L(P, f2, α) ≤ L(P, f1 + f2, α)

≤ U(P, f1 + f2, α)

≤ U(P, f1, α) + U(P, f2, α)......(6)

(5),(6)⇒ U(P, f1 + f2, α) − L(P, f1 + f2, α) < 2ǫ. ∴ f1 + f2 ∈ R(α) on [a, b].
To prove:

∫ b

a
(f1 + f2)dα =

∫ b

a
f1dα +

∫ b

a
f2dα
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Since f1, f2 ∈ R(α), there exists partition P1 and P2 of [a, b]

U(P1, f1, α) <

∫ b

a
f1dα + ǫ (by Theorem 4.9).......(1∗)

U(P2, f2, α) <

∫ b

a
f2dα + ǫ........(2∗)

(1)+(2)⇒

U(P1, f1, α) + U(P2, f2, α) <

∫ b

a
f1dα +

∫ b

a
f2dα + 2ǫ......(3∗)

Let P = P1 ∪ P2

U(P, f1, α) ≤ U(P1, f1, α).......(4∗)

U(P, f2, α) ≤ U(P2, f2, α).......(5∗)

(4*)+(5*)⇒

U(P, f1, α) + U(P, f2, α) ≤ U(P1, f1, α)+ ≤ U(P2, f2, α)

<

∫ b

a
f1dα +

∫ b

a
f2dα + 2ǫ......(6∗) (by (3*))

U(P, f1 + f2, α) ≤ U(P, f1, α) + U(P, f2, α)

<

∫ b

a
f1dα +

∫ b

a
f2dα + 2ǫ (by (6*))

Taking infimum over all partition P ,

∫ b

a
(f1 + f2)dα <

∫ b

a
f1dα +

∫ b

a
f2dα + 2ǫ

Since ǫ is arbitrary,

∫ b

a
(f1 + f2)dα ≤

∫ b

a
f1dα +

∫ b

a
f2dα.....(7∗)

Replacing f1 and f2 in (7*) by −f1 and −f2 respectively we get,

∫ b

a
(−f1 − f2)dα ≤

∫ b

a
(−f1)dα +

∫ b

a
(−f2)dα

⇒

∫ b

a
(f1 + f2)dα ≥

∫ b

a
f1dα +

∫ b

a
f2dα.....(8∗)

From (7*)and(8*) we get,

∫ b

a
(f1 + f2)dα =

∫ b

a
f1dα +

∫ b

a
f2dα
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To Prove: cf1 ∈ R(α) where c is a constant.
For any partition P , of [a, b]

U(P, cf1, α) =

{

cU(P, f1, α) c ≥ 0

cL(P, f1, α) c ≤ 0

and

L(P, cf1, α) =

{

cL(P, f1, α) c ≥ 0

cU(P, f1, α) c ≤ 0

U(P, cf1, α) − L(P, cf1, α) =

{

c(U(P, f1, α) − L(P, f1, α)) c ≥ 0

−c(U(P, f1, α) − L(P, f1, α)) c ≤ 0

U(P, cf1, α) − L(P, cf1, α) = |c|(U(P, f1, α) − L(P, f1, α)).....(1A)

Since f1 ∈ R(α) there exists a partition P of [a, b] such that

U(P, f1, α) − L(P, cf1, α) <
ǫ

|c|
......(2A)

Sub (2A) in (1A), we get

U(P, cf1, α) − L(P, cf1, α) < |c|
ǫ

|c|

U(P, cf1, α) − L(P, cf1, α) < ǫ

∴ cf1 ∈ R(α).

To Prove:
∫ b

a
cf1dα =

∫ b

a
cf1dα

If c ≥ 0, then U(P, cf1, α) = cU(P, f1, α)

⇒ inf U(P, cf1, α) = inf(cU(P, f1, α))

⇒ inf U(P, cf1, α) = c inf U(P, cf1, α)

⇒

∫ b

a
cf1dα =

∫ b

a
cf1dα

If c ≤ 0, then L(P, cf1, α) = cU(P, f1, α)

= −|c|U(P, f1, α) (∵ c ≤ 0)

⇒ sup L(P, cf1, α) = sup(−|c|U(P, f1, α))

= |c| sup(−U(P, f1, α))

= −|c| inf(U(P, f1, α))

⇒

∫ b

a
cf1dα = −|c|

∫ b

a
f1dα

= c

∫ b

a
f1dα

When c = 0,

∫ b

a
cf1dα =

∫ b

a
f1dα (= 0)
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To Prove:

f1 ≤ f2 ⇒

∫ b

a
f1dα ≤

∫ b

a
f2dα

Proof of b: Given f1 ≤ f2 ⇒ f2 − f1 ≥ 0

⇒

∫ b

a
(f2 − f1)dα ≥ 0

⇒

∫ b

a
f2 +

∫ b

a
(−f1)dα ≥ 0

⇒

∫ b

a
f2dα +

∫ b

a
(−f1)dα ≥ 0 (by (a))

⇒

∫ b

a
f2dα −

∫ b

a
f1dα ≥ 0

⇒

∫ b

a
f1dα ≤

∫ b

a
f2dα

Proof of (c): Given f ∈ R(α) on [a, b] and a < c < b for ǫ < 0, there exists
a partition P of [a, b] such that

U(P, f, α) − L(P, f, α) < ǫ......(1B)

Let P ∗ = P ∪ {c}. Now P ∗ is a refinement of P and induces two partitions
P1 and P2 of [a, c] and [c, b] respectively. Now,

U(P, f, α) ≥ U(P ∗, f, α)

= U(P1, f, α) + U(P2, f, α).....(2B)

⇒ U(P1, f, α) ≤ U(P, f, α)......(3B)

and U(P2, f, α) ≤ U(P, f, α).......(4B)

L(P, f, α) ≤ L(P ∗, f, α)

= L(P1, f, α) + L(P2, f, α).......(5B)

−L(P, f, α) ≥ −L(P1, f, α) − L(P2, f, α)

−L(P1, f, α) ≤ −L(P, f, α)......(6B)

and − L(P2, f, α) ≤ −L(P, f, α).......(7B)

(3B) + (6B) ⇒ U(P1, f, α) − L(P1, f, α) ≤ U(P, f, α) − L(P, f, α) (by (1B))

< ǫ

∴ f ∈ R(α) on [a, c].

(4B) + (7B) ⇒ U(P2, f, α) − L(P2, f, α) ≤ U(P, f, α) − L(P, f, α) (by (1B))

< ǫ

∴ f ∈ R(α) on [c, b].

To Prove:
∫ b

a
fdα =

∫ c

a
fdα +

∫ b

c
fdα
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(2B) ⇒ U(P, f, α) ≥ U(P1, f, α) + U(P2, f, α)

≥

∫ c

a
fdα +

∫ b

c
fdα

⇒ inf U(P, f, α) ≥

∫ c

a
fdα +

∫ b

c
fdα

∫ b

a
fdα ≥

∫ c

a
fdα +

∫ b

c
fdα......(8B)

(5B) ⇒ L(P, f, α) ≤ L(P1, f, α) + L(P2, f, α)

≤

∫ c

a
fdα +

∫ b

c
fdα

⇒ sup U(P, f, α) ≤

∫ c

a
fdα +

∫ b

c
fdα

∫ b

a
fdα ≤

∫ c

a
fdα +

∫ b

c
fdα.......(9B)

∴ (8B) and (9B), we get

∫ b

a
fdα =

∫ c

a
fdα +

∫ b

c
fdα

Proof of (d): Given f ∈ R(α) and |f(x)| ≤ M
To Prove: |

∫ b
a fdα| ≤ [α(b) − α(a)]

we have, for any partition P of [a, b],

∫ b

a
fdα ≤ U(P, f, α)

∣

∣

∣

∣

∣

∫ b

a
fdα

∣

∣

∣

∣

∣

≤ |U(P, f, α)|

=

∣

∣

∣

∣

∣

n
∑

i=1

Mi∆αi

∣

∣

∣

∣

∣

<
n
∑

i=1

|Mi∆αi|

=
n
∑

i=1

|Mi|∆αi (∵ ∆αi ≥ 0)

≤
n
∑

i=1

M∆αi (∵ |f(x)| ≤ M)

= M
n
∑

i=1

∆αi

∣

∣

∣

∣

∣

∫ b

a
fdα

∣

∣

∣

∣

∣

≤ M [α(b) − α(a)]

Proof of (e): Given f ∈ R(α1) and f ∈ R(α2). To Prove: f ∈ R(α1 +α2).
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Let α = α1 + α2. For any partition p of [a, b],

U(P, f, α) =
n
∑

i=1

Mi∆αi

=
n
∑

i=1

Mi(α(xi) − α(xi−1))

=
n
∑

i=1

Mi[(α1 + α2)(xi) − (α1 + α2)(xi−1)]

=
n
∑

i=1

Mi[α1(xi) + α2(xi)] − [α1(xi−1) + α2(xi−1)]

=
n
∑

i=1

Mi[α1(xi) − α1(xi−1)] +
n
∑

i=1

Mi[α2(xi) − α2(xi−1)]

U(P, f, α) = U(P, f, α1) + U(P, f, α2).......(1C)

Similarly L(P, f, α) = L(P, f, α1) + L(P, f, α2).......(2C)

since f ∈ R(α1) and f ∈ R(α2), there exists partitions P1 and P2 of [a, b]
such that

U(P1, f, α1) − L(P1, f, α1) < ǫ

and U(P2, f, α2) − L(P2, f, α2) < ǫ

Let P ∗ be the common refinement of P1 and P2 of [a, b]. P ∗ = P1 ∪ P2

U(P ∗, f, α1) − L(P ∗, f, α1) < ǫ........(3C)

U(P ∗, f, α2) − L(P ∗, f, α2) < ǫ........(4C) (by Theorem 4.10)

Now,

U(P ∗, f, α) − L(P ∗, f, α) = U(P ∗, f, α1) + U(P ∗, f, α2)

− [L(P ∗, f, α1) + L(P ∗, f, α2)] (by (1C) and (2C))

= [U(P ∗, f, α1) − L(P ∗, f, α1)]

+ [U(P ∗, f, α2) − L(P ∗, f, α2)]

< ǫ + ǫ (by (3C) and (4C))

U(P ∗, f, α) − L(P ∗, f, α) < 2ǫ.

Since ǫ arbitrary, we get f ∈ R(α) (i.e.) f ∈ R(α1 + α2).
To Prove:

∫ b

a
d(α1 + α2) =

∫ b

a
fdα1 +

∫ b

a
fdα2
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(1C) ⇒ U(P, f, α) = U(P, f, α1) + U(P, f, α2)

≥

∫ b

a
fdα1 +

∫ b

a
fdα2

⇒ inf U(P, f, α) ≥

∫ b

a
fdα1 +

∫ b

a
fdα2

∫ b

a
fdα ≥

∫ b

a
fdα1 +

∫ b

a
fdα2......(5C)

(2C) ⇒ L(P, f, α) = L(P, f, α1) + L(P, f, α2)

≤

∫ b

a
fdα1 +

∫ b

a
fdα2

sup U(P, f, α) ≤

∫ b

a
fdα1 +

∫ b

a
fdα2

∫ b

a
fdα ≤

∫ b

a
fdα1 +

∫ b

a
fdα2......(6C)

from (5C) and (6C) we get,

∫ b

a
fdα =

∫ b

a
fdα1 +

∫ b

a
fdα2

(i.e.)

∫ b

a
d(α1 + α2) =

∫ b

a
fdα1 +

∫ b

a
fdα2.

To Prove: Given f ∈ R(α) and c > 0
To Prove: f ∈ R(α), for any partition P,

U(P, f, cα) =
n
∑

i=1

Mi∆(cαi)

=
n
∑

i=1

Mi(cα(xi) − cα(xi−1))

=
n
∑

i=1

Mic[α(xi) − α(xi−1)]

=
n
∑

i=1

cMi∆αi

= cU(P, f, α).......(7C)

Similarly L(P, f, cα) = cL(P, f, α)

U(P, f, cα) − L(P, f, cα) = cU(P, f, α) − cL(P, f, α)

= c[U(P, f, α) − L(P, f, α)]......(8C)

Since f ∈ R(α), given ǫ > 0, there exists partition P of [a, b] such that

U(P, f, α) − L(P, f, α) <
ǫ

c
.......(9C)
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sub (9C)in (8C) we get

U(P, f, cα) − L(P, f, cα) < c ·
ǫ

c
= ǫ

∴ f ∈ R(cα). To Prove:

∫ b

a
fd(cα) = c

∫ b

a
fdα

(7C) ⇒ U(P, f, cα) = cU(P, f, α)

⇒ inf U(P, f, cα) = inf cU(P, f, α)

= c inf U(P, f, α)

⇒

∫ b

a
fd(cα) = c

∫ b

a
fdα

Theorem 4.17 If f, g ∈ R(α) on [a, b],then
(a) f · g ∈ R(α)
(b) |f | ∈ R(α) and

∣

∣

∣

∣

∣

∫ b

a
fdα

∣

∣

∣

∣

∣

≤

∫ b

a
|f |dα.

Proof: (a) Let φ(t) = t2, clearly φ is continuous

h(x) = φ(f(x)) (by Theorem 4.14)

= f(x)2

= f2(x)

∴ f2 ∈ R(α).......(1) (∵ f ∈ R(α))

Now,f, g ∈ R(α)

⇒ f + g, f − g ∈ R(α) (by Theorem 4.16)

⇒ (f + g)2, (f − g)2 ∈ R(α)

⇒ (f + g)2 − (f − g)2 ∈ R(α)

⇒ 4fg ∈ R(α)

⇒ fg ∈ R(α) (by Theorem 4.16)

(b) |f | ∈ R(α) and |
∫ b

a fdα| ≤
∫ b

a |f |dα.
To Prove: |f | ∈ R(α). Let φ(t) = |t|; h(x) = φ(f(x)) = |f(x)|. ∴ By
Theorem 4.14, |f | ∈ R(α)
To prove:

∣

∣

∣

∣

∣

∫ b

a
fdα

∣

∣

∣

∣

∣

≤

∫ b

a
|f |dα.
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Choose c = ±1 so that c
∫ b

a fdα ≥ 0

∴ |

∫ b

a
fdα| = c

∫ b

a
fdα

=

∫ b

a
cfdα (by Theorem 4.16(a))

≤

∫ b

a
|f |dα (∵ cf ≤ |f |) by Theorem 4.16(b)

Hence the proof.

Definition 4.18 Unit Step Function:

I(x) =

{

0 if x ≤ 0

1 if x > o

Theorem 4.19 If a < s < b, f is bounded on [a, b], f is continuous at s
and α(x) = I(x − s), then

∫ b

a
fdα = f(s).

Proof: Consider partitions P = {x0, x1, x2, xb} of [a, b] where x0x1 = s, s <
x2 < b, x2 = b. Now,

U(P, f, α) =
3
∑

i=1

Mi∆αi

= Mi∆α1 + M2∆α2 + M3∆α3

= M1[α(x1) − α(x0)] + M2[α(x2) − α(x1)] + M3[α(x3) − α(x2)]

= M1[I(x1 − s) − I(x0 − s)] + M2[I(x2 − s) − I(x1 − s)]

+ M3[I(x3 − s) − I(x2 − s)]

= M1[I(s − s) − I(a − s)] + M2[I(x2 − s) − I(s − s)]

+ M3[I(b − s) − I(x2 − s)]

= M1[I(0) − I(a − s)] + M2[I(x2 − s) − I(0)]

+ M3[I(b − s) − I(x2 − s)]

= M1[0 − 0] + M2[1 − 0] + M3[1 − 1] (by definition of i)

= M2

In a similar fashion we can get L(P, f, α) = m2.

∫ b

a
fdα = inf U(P, f, α) = sup L(P, f, α)

= inf M2 = sup m2

= f(s) (∵ x2 → s, f(x2) → f(x) as f is continuous at s)
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Theorem 4.20 Suppose cn ≥ 0 for 1, 2, 3...,
∑

cn converges, {sn} is a
sequence of distinct point in (a, b) and α(x) =

∑∞
n=1 cnI(x − sn). Let f be

continuous on [a, b], then

∫ b

a
fdα =

∞
∑

n=1

cnf(sn).

Proof: We have |I(x − sn)| ≤ 1. ∴ |cnI(x − sn)| ≤ cn. Since

∞
∑

n=1

cn

is convergent, by comparison test,

∞
∑

n=1

cnI(x − sn)

also converges. Now,

α(a) =
∞
∑

n=1

cnI(a − sn)

= 0.......(1) (∵ I(a − sn) = 0)

and α(b) =
∞
∑

n=1

cnI(b − sn)

=
∞
∑

n=1

cn.....(2) (∵ I(b − sn) = 0)

Claim: α is monotonically increasing. Let x < y and let x < sk < y

α(x) =
∞
∑

n=1

cnI(x − sn)

= c1 + c2 + ... + ck−1

α(y) =
∞
∑

n=1

cnI(y − sn)

= c1 + c2 + ... + ck−1 + ck

∴ α(x) ≤ α(y)

Hence the claim. Since
∞
∑

n=1

cn

is convergent, given ǫ > 0, there exists N > such that

∞
∑

n=N+1

cn < ǫ......(3)
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Let

α1(x) =
N
∑

n=1

cnI(x − sn)

α2(x) =
∞
∑

n=N+1

cnI(x − sn)

Clearly α(x) = α1(x) + α2(x). Let α1i = I(x − si), i = 1, 2, ..., N.

∴ α1(x) =
N
∑

n=1

cnα1n(x)

= (c1α11 + c2α12 + ... + cN α1N )x

(or) α1 = c1α11 + c2α12 + ... + cN α1N

Now,

∫ b

a
fdα1 =

∫ b

a
fd(c1α11 + c2α12 + .... + cN α1N )

= c1

∫ b

a
fdα11 + c2

∫ b

a
fdα12 + ...cN

∫ b

a
fdα1N (by Theorem 4.16(e))

= c1f(s1) + c2f(s2) + ... + cN f(sN ) (by Theorem 4.19)

=
N
∑

n=1

cnf(sn).......(4)

Now,

α2(a) =
∞
∑

n=N+1

cnI(a − sn)

= 0........(5)

α2(b) =
∞
∑

n=N+1

cnI(b − sn)

=
∞
∑

n=N+1

cn

< ǫ (by (3))......(6)
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Let M = |f(x)|, x ∈ [a, b]. By Theorem 4.16(d),

∣

∣

∣

∣

∣

∫ b

a
fdα2

∣

∣

∣

∣

∣

≤ [α2(b) − α2(a)]

≤ Mǫ (by (5)and(6)),

(i.e.)

∣

∣

∣

∣

∣

∫ b

a
fdα2

∣

∣

∣

∣

∣

≤ Mǫ

⇒

∣

∣

∣

∣

∣

∫ b

a
fdα1 +

∫ b

a
fdα2 −

∫ b

a
fdα1

∣

∣

∣

∣

∣

≤ Mǫ

⇒

∣

∣

∣

∣

∣

∫ b

a
fd(α1 + α2) −

∫ b

a
fdα1

∣

∣

∣

∣

∣

≤ Mǫ (by theorem 4.16(d))

⇒

∣

∣

∣

∣

∣

∫ b

a
fdα −

N
∑

n=1

cnf(sn)

∣

∣

∣

∣

∣

≤ Mǫ (by (4))

Taking limits as N → ∞,

∣

∣

∣

∣

∣

∫ b

a
fdα −

∞
∑

n=1

cnf(sn)

∣

∣

∣

∣

∣

≤ Mǫ

∴

∣

∣

∣

∣

∣

∫ b

a
fdαǫ

∣

∣

∣

∣

∣

=
∞
∑

n=1

cnf(sn)

Theorem 4.21 Assume α increases monotonically and α′ ∈ R on [a, b],
Let f be a bounded real function on [a, b], then f ∈ R(α) iff fα′ ∈ R. In
that case

∫ b
a fdα =

∫ b
a f(x)α′(x)dx.

Proof: Let ǫ > 0 be given. Since α′ ∈ R, there exists a partition P =
{x1, x2, ..., xn} of [a, b] such that U(P, α′) − L(P, α′) < ǫ........ (1)
By mean value theorem , there exists t :∈ [xi−1, xi] such that α(xi) −
α(xi−1) = α′(ti)(xi − xi−1) (i.e.) ∆αi = α′(ti)∆xi..... (2)
By Theorem 4.10(b), ∀si, ti ∈ [xi−1, xi]

n
∑

i=1

|α′(si) − α′(ti)|∆xi < ǫ......(3)
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Now,
∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

f(si)α
′(si)∆xi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

f(si)α
′(ti)∆xi −

n
∑

i=1

f(si)α
′(si)∆xi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

f(si)[α
′(ti) − α′(si)]∆xi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

f(si)α
′(si)∆xi

∣

∣

∣

∣

∣

≤
n
∑

i=1

|f(si)||α
′(ti) − α′(si)|∆xi

≤
n
∑

i=1

M |α′(ti) − α′(si)|∆xi where M = sup |f(x)|

= M
n
∑

i=1

|α′(ti) − α′(si)|∆xi

≤ Mǫ (by (3))

(i.e.)

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

f(si)α
′(si)∆xi

∣

∣

∣

∣

∣

≤ Mǫ

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

f(α′)(si)∆xi

∣

∣

∣

∣

∣

≤ Mǫ.....(4)

Since inequality (4) is true for any si in [xi−1, xi], we can replace (fα′)(si)
by M ′

i and m′
i, where m′

i = inf(fα′)si, M ′
i = sup(fα′)(si), si ∈ [xi−1, xi]

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

M ′
i∆xi

∣

∣

∣

∣

∣

≤ Mǫ.......(5)

and

∣

∣

∣

∣

∣

n
∑

i=1

f(si)∆αi −
n
∑

i=1

m′
i∆xi

∣

∣

∣

∣

∣

≤ Mǫ......(6)

Again by replacing f(si) by Mi in (5) and by mi in (6)
we get

∣

∣

∣

∣

∣

n
∑

i=1

M ′
i∆αi −

n
∑

i=1

M ′
i∆xi

∣

∣

∣

∣

∣

≤ Mǫ and

∣

∣

∣

∣

∣

n
∑

i=1

m′
i∆αi −

n
∑

i=1

m′
i∆xi

∣

∣

∣

∣

∣

≤ Mǫ

⇒ |U(P, f, α) − U(P, f, α′)| ≤ Mǫ......(7) and

|L(P, f, α) − L(P, f, α′)| ≤ Mǫ.......(8)



92 4. UNIT IV

Since ǫ is arbitrary, (7) and (8)

⇒ U(P, f, α) = U(P, f, α′) and

L(P, f, α) = L(P, f, α′)

⇒ inf U(P, f, α) = inf U(P, f, α′) and

sup L(P, f, α) = sup L(P, f, α′)

⇒

∫ b̄

a
fdα =

∫ b̄

a
(fα′)dα.......(9) and

∫ b

a
fdα =

∫ b

a
(fα′)dα.......(10)

∴ f ∈ R(α) ⇔

∫ b

a
fdα =

∫ b̄

a
fdα

⇔

∫ b

a
(fα′)dα =

∫ b̄

a
(fα′)dα (by (9) and (10))

⇔ f(α′) ∈ R.

Now,

∫ b

a
fdα =

∫ b̄

a
fdα

=

∫ b̄

a
(fα′)dx (by(9))

=

∫ b

a
(fα′)dx

=

∫ b

a
f(x)α′(x)dx

∴

∫ b

a
fdα =

∫ b

a
f(x)α′(x)dx

Remark 4.22 The above theorem gives the relation of R integral and R(α)
integral.

Theorem 4.23 Change of Variable: Suppose φ is a strictly increasing
function that maps an interval [A, B] onto [a, b]. Suppose α is monotoni-
cally increasing on [a, b] and f ∈ R(α) on [a, b]. Define β and g on [A, B]
by β(y) = α(φ(y)), g(y) = f(φ(y)), then g ∈ R(β) and

∫ B
A gd(β) =

∫ b
a fdα.

Proof: g(y) = (f · φ)x = f(φ(y)) = f(x)

[A, B]
φ
−→ [a, b]

f
−→ R

[A, B]
φ
−→ [a, b]

α
−→ R

β(y) = (α · φ)y

= α(φ(y))

= α(x)
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Let P = {x0, x1, x2, ..., xn} be any partition of [a, b]. Since φ is onto for
each i, there exists yi ∈ [A, B] such that φ(yi) = xi, i = 0, 1, 2, ..., n. ∴

{y0, y1, y2, ..., yn} is a partition of [A, B] every partition of [A, B] can be
obtained in this way (since φ is monotonically increasing)

For y ∈ [yi−1, yi]

g(y) = (f · φ)y

g(y) = f(φ(y))

= f(x) where x = φ(y), x ∈ [xi−1, xi]

⇒ sup g(y) = sup f(x)

⇒ Mi′ = Mi.......(1)

Similarly inf g(y) = inf f(x)

mi′ = mi.......(2)

Now ∆βi = β(yi) − β(yi−1)

= (α ◦ φ)yi − (α ◦ φ)yi−1

= α(φ(yi)) − α(φ(yi−1))

= α(xi) − α(xi−1)

= ∆αi......(3)

∴ U(Q, g, β) =
n
∑

i=1

M ′
i∆βi

=
n
∑

i=1

Mi∆αi (by (1) and (3))

= U(P, f, α)......(4)

Similarly L(Q, g, β) = L(P, f, α)......(5)

Since f ∈ R(α), given ǫ > 0, there exists a partition P of [a, b] such that

U(P, f, α) − L(P, f, α) < ǫ

⇒ U(Q, g, β) − L(Q, g, β) < ǫ (by (4) and (5))

∴ g ∈ R(β)

Also

∫ B

A
gdβ = inf U(Q, g, β)

= inf U(P, f, α) (by (4))

=

∫ b

a
fdα.
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Note 4.24 Let α(x) = x and φ′ ∈ R on [A, B].

∴ β(y) = (α ◦ φ)y,

= α(φ(y))

= φ(y) ∀y ∈ [A, B]

∴ β = φ
∫ B

A
gdβ =

∫ b

a
fdα (by previous theorem)

∫ b

a
f(x)dx =

∫ B

A
gdβ

=

∫ B

A
gdφ

=

∫ B

A
g(y)φ′(y)dy (by theorem 4.21)

Integrations and Differentiations:

Theorem 4.25 Let f ∈ R on [a, b], for a ≤ x ≤ b, put F (x) =
∫ x

a f(t)dt,
then F is continuous on [a, b], further more if f is continuous at some point
x0 of [a, b], then F is differentiable at x0 and F ′(x0) = f(x0).
Proof: Given F (x) =

∫ x
a f(t)dt. To Prove: F (x) is continuous on [a, b]. Let

a ≤ x ≤ y ≤ b. Now,

F (y) − F (x) =

∫ y

a
f(t)dt −

∫ x

a
f(t)dt

=

∫ x

a
f(t)dt +

∫ y

x
f(t)dt −

∫ x

a
f(t)dt

=

∫ y

x
f(t)dt

⇒ |F (y) − F (x)| = |

∫ y

x
f(t)dt|

≤

∫ y

x
|f(t)|dt

≤

∫ y

x
Mdt where M = sup |f(t)|, t ∈ [a, b]

= M(y − x)

(i.e.) |F (y) − F (x)| ≤ M |y − x| (∵ (y − x) = 0)

Given ǫ > 0, there exists δ = ǫ
M such that |y − x| < δ ⇒ |F (y) − F (x)| < ǫ

(i.e.) F is continuous on [a, b]. (infact F is uniformly continuous on [a, b]).
Suppose f is continuous at x0 ∈ [a, b]. To Prove: F ′(x0) = f(x0). Given
ǫ > 0, there exists δ > 0 such that |t − x0| < δ ⇒ |f(t) − f(x0)| < ǫ for
t ∈ [a, b]...... (1)
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Let x0 − δ < s ≤ x0 ≤ t ≤ x0 + δ. Now,

F (t) − F (s) =

∫ t

a
f(t)dt −

∫ s

a
f(t)dt

=

∫ s

a
f(t)dt +

∫ t

s
f(t)dt −

∫ s

a
f(t)dt

F (t) − F (s) =

∫ t

s
f(t)dt

⇒
F (t) − F (s)

t − s
=

1

t − s

∫ t

s
f(t)dt

⇒
F (t) − F (s)

t − s
− f(x0) =

1

t − s

∫ t

s
f(t)dt − f(x0)

F (t) − F (s)

t − s
− f(x0) =

1

t − s
{

∫ t

s
f(t)dt − (t − s)f(x0)}

=
1

t − s
{

∫ t

s
f(t)dt −

∫ t

s
f(x0)dt}

=
1

t − s

∫ t

s
(f(t) − f(x0))dt

∣

∣

∣

∣

F (t) − F (s)

t − s
− f(x0)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

t − s

∫ t

s
(f(t) − f(x0))dt

∣

∣

∣

∣

≤
1

t − s

∫ t

s
|f(t) − f(x0)|dt

<
∈

t − s

∫ t

s
dt (by (1))

∣

∣

∣

∣

F (t) − F (s)

t − s
− f(x0)

∣

∣

∣

∣

< ǫ

It follows that F ′(x0) = f(x0).

Theorem 4.26 The Fundamental Theorem of Calculus: If f ∈ R
on [a, b] and if there is a differentiable function F such that F ′ = f , then
∫ b

a f(x)dx = F (b) − F (a).
Proof: Since f ∈ R on [a, b], given ∈ 0, there exists a partition P =
{x0, x1, x2, ..., xn} of [a, b] such that U(P, f) − L(P, f) < ǫ...... (1)
Since F is differentiable we can apply the mean value theorem to it on
[xi−1, xi]. There exists ti ∈ [xi−1, xi] such that

F (xi) − F (xi−1) = (xi−1 − xi)F
′(ti)

= ∆xif(ti) (∵ F ′ = f)

Summing over i, we get,
n
∑

i=1

[F (xi) − F (xi−1)] =
n
∑

i=1

∆xif(ti)

F (b) − F (a) =
n
∑

i=1

f(ti)∆xi.......(2)
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By Theorem 4.10(c), (1) implies that
∣

∣

∣

∣

∣

n
∑

i=1

f(ti)∆xi −

∫ b

a
f(x)dx

∣

∣

∣

∣

∣

< ǫ.......(3)

Using (2) and (3) we get, |(F (b)−F (a))−
∫ b

a f(x)dx| < ǫ. Since ǫ is arbitrary,
∫ b

a f(x)dx = F (b) − F (a). Hence the proof.

Theorem 4.27 Integration by parts: Suppose F and G are differentiable
functions on [a, b], F ′ = f ∈ R, G′ = g ∈ R, then

∫ b

a
f(x)g(x)dx = F (b)G(b) − F (a)G(a) −

∫ b

a
f(x)G(x)dx.

Proof: Let H(x) = F (x)G(x). ∴ H ′(x) = F (x)G′(x) + F ′(x)G(x) =
F (x)g(x) + f(x)G(x)....... (1)
Given f and g ∈ R. Since F and G are differentiable, they are continuous.
∴ By Theorem 4.11, F and G are integrable (∈ R). ∴ By Theorem 4.16
F (x)g(x) + f(x)G(x) ∈ R (i.e.) H ′(x) ∈ R. By fundamental theorem of
calculus,

∫ b

a
H ′(x)dx = H(b) − H(a)

(i.e.)

∫ b

a
(F (x)g(x) + f(x)G(x))dx = F (b)G(b) − F (a)G(a)

⇒

∫ b

a
F (x)g(x)dx +

∫ b

a
f(x)G(x)dx = F (b)G(b) − F (a)G(a)

⇒

∫ b

a
F (x)g(x)dx = F (b)G(b) − F (a)G(a) −

∫ b

a
f(x)G(x)dx

Hence the proof.

Definition 4.28 Integration of vector valued functions: Let f1, f2, ..., fk

be real functions on [a, b] and let f̄ = (f1, f2, ..., fk) be a mapping of [a, b] →
R

k. Suppose α increases monotonically on [a, b], then f̄ ∈ R(α) ⇔ for each
fi ∈ R(α), and in this case

∫ b

a
f̄dα = (

∫ b

a
f1dα,

∫ b

a
f2dα, ...,

∫ b

a
fkdα)

Theorem 4.29 Fundamental Theorem of calculus for vector valued
functions: If F̄ , f̄ map [a, b] into R

k and if f̄ ∈ R on [a, b] and if F̄ ′ = f̄
then

∫ b
a f̄(t)dt = F̄ (b) − F̄ (a).

Proof: Let

f̄ = (f1, f2, ..., fk)

F̄ = (F1, F2, ..., Fk)

F̄ ′ = (F ′
1, F ′

2, ..., F ′
k)
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Given F̄ ′ = f̄ . ∴ (F ′
1, F ′

2, ..., F ′
k) = (f1, f2, ..., fk) ⇒ F ′

i = fi ∀i = 1, 2, ..., k.
Since f̄ ∈ R, each fi ∈ R. ∴ By fundamental theorem of calculus, for any
i.

∫ b

a
F ′

i (t)dt = Fi(b) − Fi(a)

(i.e.)

∫ b

a
fi(t)dt = Fi(b) − Fi(a)........(1)

Now,

∫ b

a
f̄(t)dt =

(

∫ b

a
f1(t)dt,

∫ b

a
f2(t)dt, ...,

∫ b

a
fk(t)dt

)

(by definition)

(1) ⇒ = (F1(b) − F1(a), F2(b) − F2(a), ..., Fk(b) − Fk(a))

= (F1(b), F2(b), ..., Fk(b)) − (F1(a), F2(a), ..., Fk(a))

= F̄ (b) − F̄ (a)

∴

∫ b

a
f̄(t)dt = F̄ (b) − F̄ (a)

Note 4.30 Schwartz inequality:

∣

∣

∣

∣

∣

∣

n
∑

j=1

aj b̄j

∣

∣

∣

∣

∣

∣

2

≤





n
∑

j=1

|aj |2









n
∑

j=1

|bj |2



 (or)

∣

∣

∣

∣

∣

∣

n
∑

j=1

aj b̄j

∣

∣

∣

∣

∣

∣

≤





n
∑

j=1

|aj |2





1

2





n
∑

j=1

|bj |2





1

2

Theorem 4.31 If f̄ maps [a, b] into R
k and if f̄ ∈ R(α) for some monotoni-

cally increasing function [a, b], then |f̄ | ∈ R(α) and |
∫ b

a f̄(t)dα| ≤
∫ b

a |f̄(t)|dα.
Proof:

f̄ = (f1, f2, ..., fk)

|f̄ | = (f2
1 + f2

2 + f2
3 + ... + f2

k )1/2

Since f̄ ∈ R(α)

⇒ fi ∈ R(α) ∀i = 1, 2, ..., k

⇒ f2
i ∈ R(α)

⇒ (f2
1 + f2

2 + f2
3 + ... + f2

k ) ∈ R(α)

⇒ (f2
1 + f2

2 + f2
3 + ... + f2

k )2 ∈ R(α)(by Theorem 4.17, φ(t) = t1/2)

⇒ |f̄ | ∈ R(α)

To Prove:
∣

∣

∣

∣

∣

∫ b

a
f̄(t)dα

∣

∣

∣

∣

∣

≤

∫ b

a
|f̄(t)|dα
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Let ȳ =
∫ b

a f̄(t)dα. If ȳ = 0, then the inequality is trivial (for, ȳ = 0 ⇒

L.H.S=0 and |f̄ | ≥ 0 ⇒
∫ b

a |f̄(t)|dα ≥ 0 (i.e.) R.H.S ≥ 0)
Let ȳ 6= 0

∴ ȳ =

∫ b

a
f̄dα =

(

∫ b

a
f1dα,

∫ b

a
f2dα, ...,

∫ b

a
fkdα

)

= (y1, y2, ..., yk) where yi =

∫ b

a
fidα

Now |ȳ|2 = y2
1 + y2

2 + ... + y2
k

(i.e.) |ȳ|2 =
k
∑

i=1

y2
i

=
k
∑

i=1

yiyi

=
k
∑

i=1

yi(

∫ b

a
fidα)

=
k
∑

i=1

∫ b

a
(yifi)dα

=

∫ b

a
(

k
∑

i=1

yifi)dα

≤

∫ b

a

(

k
∑

i=1

|yi|
2

)1/2( k
∑

i=1

|fi|
2

)1/2

dα (by schwartz inequality)

(i.e.) |ȳ|2 ≤

∫ b

a

(

k
∑

i=1

y2
i

)1/2( k
∑

i=1

f2
i

)1/2

dα

=

∫ b

a
|ȳ||f̄ |dα

= |ȳ|

∫ b

a
|f̄ |dα

(i.e.) |ȳ|2 ≤ |ȳ|

∫ b

a
|f̄ |dα

⇒ |ȳ| ≤

∫ b

a
|f̄ |dα

∣

∣

∣

∣

∣

∫ b

a
f̄dα

∣

∣

∣

∣

∣

≤

∫ b

a
|f̄ |dα

Uniform Convergence:

Definition 4.32 Uniform Convergence: We say that {fn} of function
n = 1, 2, ... converges uniformly on E to a function f is every ǫ > 0 there is
an integer N such that n ≥ N ⇒ |fn(x) − f(x)| < ǫ.
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Note 4.33 If {fn} converges pointwise on E, then there exists a function
f such that for every ǫ > 0 and for every x in E there is an integer N
depending on ǫ and x such that |fn(x) − f(x)| < ǫ ∀n ≥ N . If {fn}
converges uniformly on E, it is possible for each ǫ > 0, to find one integer
N which will do for all x in E. We say that the series

∑∞
n=1 fn(x) converges

uniformly on E if the {sn} of partial sums defined by sn(x) =
∑n

i=1 fi(x)
converges uniformly on E.

Theorem 4.34 Cauchy’s Criterian for Uniform Convergence: The
sequence of functions {fn}, defined on E, converges uniformly on E iff for
every ǫ > 0 there exists an integer N such that n, m ≥ N, x ∈ E ⇒ |fn(x) −
fm(x)| < ǫ.
Proof: For the ’only if’ part we assume that {fn} → f uniformly. To Prove:
There exists N such that x ∈ E n, m ≥ N ⇒ |fn(x)−fm(x)| < ǫ. Let ǫ > 0
such that |fn(x) − f(x)| ≤ ǫ/2...... (1) ∀n ≥ N ∀x ∈ E
Now, for n, m ≥ N

|fn(x) − fm(x)| = |fn(x) − f(x) + f(x) − fm(x)|

≤ |fn(x) − f(x)| + |f(x) − fm(x)|

≤ ǫ/2 + ǫ/2 (by (1))

(i.e.) |fn(x) − fm(x)| ≤ ǫ

For the ′if ′ part we assume that there exists N > 0 such that n, m ≥ N, x ∈
E ⇒ |fn(x) − fm(x)| ≤ ǫ........ (2)
For fixed x, (2) implies that {fn(x)} is a cauchy sequence ∴ {fn(x)} →
f(x)(|fn(x) − f(x)| → 0). To Prove: {fn} → f uniformly. In (2), keeping
n fixed and taking limit as m → ∞ we get |fn(x) − f(x)| ≤ ǫ ∀n ≥ N
∀x ∈ E. ∴ {fn} → f uniformly.

Theorem 4.35 Suppose

lim
n→∞

fn = f(x), (x ∈ E).

Put Mn = supx∈E |fn(x)−f(x)|, then {fn} → f uniformly on E iff Mn → 0
as n → ∞.
Proof: For the ’only if’ part, we assume that {fn} → f . To Prove: Mn → 0
as n → ∞. By hypothesis, given ǫ > 0, there exists N > 0 such that
|fn(x) − f(x)| ≤ ǫ ∀n ≥ N ∀x ∈ E ⇒ sup x ∈ E|fn(x) − f(x)| ≤ ǫ
∀n ≥ N ⇒ Mn ≤ ǫ ∀n ≥ N (i.e.) Mn → 0 as n → ∞. For the ’if’
part, let Mn → 0 as n → ∞. Then there exists N > 0 such that Mn ≤ ǫ
∀n ≥ N ⇒ supx∈E |fn(x) − f(x)| ≤ ǫ ∀n ≥ N ⇒ |fn(x) − f(x)| ≤ ǫ
∀n ≥ N, x ∈ E ⇒ {fn} → f uniformly.

Theorem 4.36 Weristress M test for uniform convergence: Suppose
{fn} is a sequence of function defined on E and suppose that |f1(x)| ≤ Mn
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(x ∈ E, n = 1, 2...) then
∑

fn converges uniformly on E its
∑

Mn converges.
Proof: Assume that

∑

Mn converges. To Prove:
∑

fn converges uniformly.
Let ǫ > 0 be given. Let {sn} and {tn} be the sequences of partial sums of
∑

fn and
∑

Mn respectively. Since
∑

Mn converges, {tn} also converges.
Since any convergence sequence is a Cauchy sequence {tn} is also a Cauchy
sequence. Then there exists N > 0 such that |tn − tm| ≤ ǫ ∀n, m ≥ N . Let
m > n(≥ N)

|tn − tm| =

∣

∣

∣

∣

∣

m
∑

n+1

Mk

∣

∣

∣

∣

∣

≤ ǫ.......(1)

Now, for x ∈ E,

|sn(x) − sm(x)| =

∣

∣

∣

∣

∣

m
∑

n+1

fk(x)

∣

∣

∣

∣

∣

≤
m
∑

n+1

|fk(x)|

≤
m
∑

n+1

Mk ≤ ǫ (by (1))

∴ |sn(x) − sm(x)| < ǫ

∴ By Cauchy’s criteria 4.34 the {sn} converges uniformly on E. ∴

∑

fn

converges uniformly.

Theorem 4.37 [Uniform Convergence and Continuity] Suppose {fn}
converges to f uniformly on a set E, in a metric space. Let x be a limit
point of E and suppose that limt→x fn(t) = An(n = 1, 2, 3...), then {An}
converges limt→x f(t) = limn→∞ An. In other words limt→x limn→∞ fn(t) =
limn→∞ limt→x fn(t).
Proof: Let ǫ > 0 be given. Since {fn} converges to f uniformly on E, by
Theorem 4.34, there exists an integer N > 0 such that |fn(t) − fm(t)| ≤ ǫ
∀n, m ≥ N, t ∈ E...... (1)
Letting t → x in (1) we get |An − Am| ≤ ǫ ∀n, m ≥ N(∵ limt→x = An)
(i.e.) {An} is a Cauchy sequence of real numbers. Since R is complete, {An}
converges to some A( in R) (i.e.) {An} → A. ∴ there exists N1 > 0 such
that |An − A| ≤ ǫ/3, ∀n ≥ N1...... (2)
Now,

|f(t) − A| = |f(t) − fn(t)| + (fn(t) − An) + |(An − A)|

≤ |f(t) − fn(t)| + |fn(t) − An| + (An − A)|.......(3)

Since {fn} → f uniformly, there exists N2 > 0 such that |fn(t)−f(t)| ≤ ǫ/3
∀n ≥ N2, t ∈ E....... (4)
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Since x is a limit point of E and ∵ limt→x fn(t) = An, there exists a neigh-
bourhood V of x such that |fn(t) − An| ≤ ǫ/3 ∀t ∈ V ∩ E....... (5)
Let N3 = max{N1, N2}. Now using (2),(4) and (5) in (3) we get

|f(t) − A| ≤ ǫ/3 + ǫ/3 + ǫ/3 ∀n ≥ N3 ∀t ∈ V ∩ E.

(i.e.) |f(t) − A| ≤ ǫ

(i.e.) lim
t→x

f(t) = A (or)

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

An

= lim
n→∞

lim
t→x

fn(t))

∴ lim
t→x

f(t) = lim
n→∞

An

Theorem 4.38 If {fn} is a sequence of continuous functions on E, and if
{fn} converges to f uniformly on E then f is continuous on E.
Proof: Enough To Prove: limt→x f(t) = f(x)

lim
t→x

f(t) = lim
t→x

lim
n→∞

fn(t)) (∵ fn → f uniformly)

lim
t→x

f(t) = lim
n→∞

(lim
t→x

fn(t)) (by Theorem 4.37)

= lim
n→∞

fn(x) (∵ fn is continuous)

= f(x) (∵ fn → f uniformly)

Remark 4.39 The converse of the above theorem need not be true. (i.e.)
a sequence of continuous function may converse to a continuous function,
although the convergence is not uniform.

Example 4.40 fn(x) = n2x(1 − x2)n, 0 ≤ x ≤ 1, n = 1, 2, 3, ... Clearly,
each fn is continuous. Also f is continuous. But the convergence is not
uniform. By Theorem 4.35, for let

Mn = sup
x∈[0,1]

|fn(x) − f(x)|

= sup
x∈[0,1]

|n2x(1 − x2)n − 0|

= n2 sup
x∈[0,1]

{x(1 − x2)n}

9 0 as n → ∞.

By Theorem 4.35, the convergence is not uniform.

Theorem 4.41 [Dini’s Theorem] Suppose K is compact and
(a) {fn} is a sequence of continuous functions on K.
(b) {fn} converges pointwise to a continuous functions f on K.
(c) fn(x) ≥ fn+1(x) ∀x ∈ K, n = 1, 2, 3...
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then fn → f uniformly on K.
Proof: Given K is compact. Let gn = fn − f . Since each fn is con-
tinuous and f is continuous, gn is continuous for all n. Since {fn} con-
verges pointwise to f, {gn} converges pointwise to 0. Since fn(x) ≥ fn+1(x)
∀x ∈ K, n = 1, 2... fn(x) − f(x) ≥ fn+1(x) − f(x). (i.e.) gn(x) ≥ gn+1(x)
∀x, n = 1, 2... (i.e.) {gn} is also a monotonic decreasing sequence. To prove
that {fn} converges to f uniformly. It is enough to prove that {gn} converges
to 0 uniformly. Let ǫ > 0 be given. For each n, let Kn = {x ∈ K|gn(x) ≥ ǫ}.
Now,

Kn = {x ∈ K|gn(x) ≥∈ [ǫ, ∞)}

= {x ∈ K|x ∈ g−1
n [ǫ, ∞)}

= g−1
n [ǫ, ∞).

Since [ǫ, ∞) is closed in R and gn is continuous, g−1
n [ǫ, ∞) is closed in K.

(i.e.) Kn is a closed subspace of the compact space K. ∴ Kn is compact
(∵ every closed subspace of a compact space is compact). Claim: Kn ⊃
Kn+1, n = 1, 2, 3... Let x ∈ Kn+1 ⇒ gn+1(x) ≥ ǫ. But gn(x) ≥ gn+1(x) (by
(1)). ∴ gn(x) ≥ gn+1(x) ≥ ǫ ⇒ gn(x) ≥ ǫ ⇒ x ∈ Kn ∴ Kn+1 ⊂ Kn. Fix
x ∈ K. Since {gn} converges pointwise to 0. {gn(x)} → 0. Then there exists
N(x) > 0 such that |gn(x) − 0| < ǫ ∀n ≥ N(x) ⇒ gn(x) < ǫ ∀n ≥ N(x) ⇒
x /∈ Kn ∀n ≥ N(x) ⇒ x /∈

⋂∞
n=1 Kn. Since x is arbitrary,

⋂∞
n=1 Kn = φ ⇒

KN = φ for some N. ∴ gN (x) < ǫ ∀x ∈ K. But

0 ≤ gn(x) ≤ gN (x) < ǫ ∀x ∈ K, ∀n ≥ N

gn(x) < ǫ ∀x ∈ K, ∀n ≥ N

(i.e.) |gn(x) − 0| < ǫ ∀x ∈ K, ∀n ≥ N

Hence {gn} → 0 uniformly.

Note 4.42 Compactness is really needed in the above theorem.

Example 4.43 fn(x) = 1
nx+1 , 0 < x < 1, n = 1, 2, 3... {fn} → f pointwise

where f(x) = 0∀x ∈ (0, 1) and (0, 1) is not compact. Clearly, each fn is
continuous. Also f is continuous. Now,

n + 1 > n

⇒ (n + 1)x > nx

⇒ (n + 1)x + 1 > nx + 1

⇒
1

(n + 1)x + 1
<

1

nx + 1

⇒ fn+1(x) < fn(x)
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⇒ {fn} is a decreasing sequence. But {fn} → f uniformly. For, if {fn} → f
uniformly then, given ǫ > 0, there exists N > 0 such that

|fn(x) − f(x)| ≤ ǫ ∀n ≥ N, ∀x ∈ (0, 1)

(i.e.)

∣

∣

∣

∣

1

nx + 1
− 0

∣

∣

∣

∣

≤ ǫ ∀x ∈ (0, 1)
∣

∣

∣

∣

1

nx + 1

∣

∣

∣

∣

≤ ǫ ∀x ∈ (0, 1)

Put x =
1

n
. Then

1

2
≤ ǫ

⇒⇐

∴ The convergence is not uniform.

Definition 4.44 If X is a metric space C (x) denotes the set of all complex
valued continuous bounded functions with domain X. C (X) = {f/f : X →
c, f is continuous and bounded}. If X is compact, C (X) = {f/f : X → c, f
is continuous} (∵ any continuous function on a compact space is bounded).
For any f in C (f), sup ‖f‖ = supx∈X |f(x)|, since f is bounded ‖f‖ < ∞.

Result 4.45 C (X) is a metric space. Given f, g ∈ C (X) define

(i) d(f, g) = ‖f − g‖

= sup
x∈E

|f(x) − g(x)|

≥ 0

∴ d(f, g) ≥ 0

(ii) d(f, g) = sup
x∈E

|f(x) − g(x)|

= sup
x∈E

|g(x) − f(x)|

= ‖g − f‖

= d(f, g)

(iii) d(f, g) = 0 ⇔ ‖f − g‖ = 0

⇔ sup
x∈E

|f(x) − g(x)|

⇔ |f(x) − g(x)| = 0∀x ∈ E

⇔ f(x) = g(x)

⇔ f = g
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(iv) d(f, g) = ‖f − g‖

= sup
x∈E

|f(x) − g(x)|

= sup
x∈E

|(f(x) − h(x)) + (h(x) − g(x))|

≤ sup
x∈E

{|(f(x) − h(x))| + |(h(x) − g(x))|}

≤ sup
x∈E

|(f(x) − h(x))| + sup
x∈E

|(f(x) − g(x))|

= ‖f − h‖ + ‖h − g‖

= d(f, h) + d(h, g)

(i.e.) d(f, g) ≤ d(f, h) + d(h, g)

∴ (C (X), d) is a metric space.

Result 4.46 (Analogue of Theorem 4.35) A sequence {fn} → f with
respect to the metric space C (X) iff {fn} → f uniformly on X.
Proof: ’only if’ part:
Assume that {fn} → f in C (X). ‖fn − f‖ → 0 as n → ∞ (i.e.) supx∈E |fn(x)−
f(x)| → 0 as n → ∞ (i.e.) Mn → 0 as n → ∞ (Theorem 4.35). {fn} → f
uniformly (by Theorem 4.35)
’if’ part:
Suppose {fn} → f uniformly. Then Mn → 0 as n → ∞ (Theorem 4.35)
(i.e.) sup x ∈ E|fn(x) − f(x)| → 0 as n → ∞ (i.e.)‖fn − f‖ → 0 as
n → ∞. ∴ {fn} → f in C (X)

Note 4.47 (i) Closed subsets of C (X) are called uniformly closed subsets.
(ii) If A ⊂ C (X) then the closure of A is called the uniform closure of A.

Theorem 4.48 C (X) is a complete metric space.
Proof: Let {fn} be a Cauchy sequence in C (X). Let ǫ > 0 be given. Then
there exists N > 0 such that ‖fn − fm‖ < ǫ ∀n, m ≥ N ...... (1)
(i.e.) supx∈E |fn(x) − fm(x)| ≤ ǫ ∀n, m ≥ N. ⇒ |fn(x) − fm(x)| ≤ ǫ
∀n, m ≥ N, x ∈ X. By Theorem 4.34, guarantees that {fn} converges uni-
formly, say f . (i.e.) limn→∞ fn(x) = f(x), x ∈ X. Claim: f ∈ C (X). Since
each fn is continuous and {fn} → f uniformly (Theorem 4.38). Theorem
4.38 demands that f is also continuous. Again, since {fn} → f uniformly,
there exists N1 > 0 such that |fn(x) − f(x)| < 1 ∀n ≥ N1, x ∈ X. In partic-
ular, |fN1

(x) − f(x)| < 1....... (2) ∀x ∈ X
Since fN1

(x) ∈ C (X), |fN1
(x)| ≤ K......... (3) ∀x ∈ X

Now,

|f(x)| = |(f(x) − fN1
(x)) + fN1

(x)|

|f(x)| ≤ |f(x) − fN1
(x)| + |fN1

(x)|

< 1 + K (by (2) and (3)) ∀x ∈ X

(i.e.) |f(x)| < 1 + K ∀x ∈ K.
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∴ f is bounded. Hence f ∈ C (X). It remains to prove that {fn} → f in
C (X). For, {fn} → f uniformly ⇒ Mn → 0 ⇒ supx∈X |fn(x) − f(x)| → 0
as n → ∞ (by Theorem 4.35) ⇒ ‖fn − f‖ → 0 as n → ∞. So {fn} → f
in the metric space C (X). ∴ C (X) is a complete metric space.

Uniform Convergence and Integration

Theorem 4.49 Let α be monotonically increasing on [a, b]. Suppose fn ∈
R(α) on [a, b] for n = 1, 2, 3.... and suppose fn → f uniformly on [a, b] then
fn ∈ R(α) on [a, b] and

∫ b
a fdα = limn→∞

∫ b
a fdα.

Proof: Let ǫn = supa≤x≤b |f(x) − fn(x)|....... (1) (Theorem 4.35)

∴ |f − fn| ≤ ǫn ∀n = 1, 2, 3...

−ǫ ≤ f − fn ≤ ǫn

⇒ fn − ǫn ≤ f ≤ fn + ǫn

⇒

∫ b

a
(fn − ǫn)dα ≤

∫ b

a
fdα ≤

∫ b̄

a
fdα ≤

∫ b

a
(fn + ǫn)dα........(2)

⇒

∫ b

a
fndα −

∫ b

a
ǫndα ≤

∫ b

a
fdα ≤

∫ b̄

a
fdα ≤

∫ b

a
fndα +

∫ b

a
ǫndα

⇒

∫ b̄

a
fdα −

∫ b

a
fdα ≤ (

∫ b

a
fndα +

∫ b

a
ǫndα) − (

∫ b

a
fndα −

∫ b

a
ǫndα)

= 2

∫ b

a
ǫndα

= 2ǫn

∫ b

a
dα

= 2ǫn[α(b) − α(a)]

(i.e.)

∫ b̄

a
fdα −

∫ b

a
fdα ≤ 2ǫn(α(b) − α(a))

→ 0 (∵ ǫn → 0 as fn → f uniformly by theorem 4.35)

∴

∫ b̄

a
fdα =

∫ b

a
fdα

Hence f ∈ R(α). II part: To prove:

∫ b

a
fdα = lim

n→∞

∫ b

a
fndα
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Now, (2)⇒

∫ b

a
(fn − ǫn)dα ≤

∫ b

a
fdα ≤

∫ b

a
(fn + ǫn)dα

∫ b

a
fndα −

∫ b

a
ǫndα ≤

∫ b

a
fdα ≤

∫ b

a
fndα +

∫ b

a
ǫndα

⇒

∫ b

a
fndα − ǫn

∫ b

a
dα ≤

∫ b

a
fdα ≤

∫ b

a
fndα + ǫn

∫ b

a
dα

⇒ −ǫn

∫ b

a
dα ≤

∫ b

a
fdα −

∫ b

a
fndα ≤ ǫn

∫ b

a
dα

⇒

∣

∣

∣

∣

∣

∫ b

a
fdα −

∫ b

a
fndα

∣

∣

∣

∣

∣

≤ ǫn

∫ b

a
dα

= ǫn(α(b) − α(a))

→ 0 as n → ∞ (∵ ǫn → 0)

lim
n→∞

∫ b

a
fndα =

∫ b

a
fdα.

Corollary 4.50 If fn ∈ R(α) on [a, b] and if f(x) =
∑∞

n=1 fn(x)(a ≤ x ≤
b), the series converges uniformly on [a, b], then

∫ b
a fdα =

∑∞
n=1

∫ b
a fndα.(the

series may be integrated term by term)
Proof: Given

∑

fn = f (uniformly). Let sn =
∑n

k=1 fk. By hypothesis
{sn} → f uniformly. By Theorem 4.49,

∫ b

a
fdα = lim

n→∞

∫ b

a
sndα

= lim
n→∞

∫ b

a

(

n
∑

k=1

fk

)

dα

= lim
n→∞

n
∑

k=1

(

∫ b

a
fkdα

)

=
∞
∑

k=1

∫ b

a
fkdα
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5. UNIT V

Uniform Convergence and Differentiation

Theorem 5.1 Suppose {fn} is a sequence of functions, differentiable on
[a, b] such that {fn(x0)} converges for some point x0 in [a, b]. If {f ′

n} con-
verges uniformly on [a, b], then {fn} converges uniformly on [a, b] to a func-
tion f and f ′(x) = limn→∞ f ′

n(x), a ≤ x ≤ b.
Proof: Since {fn(x0)} is convergent, it is a Cauchy sequence. Also {f ′

n}
converges uniformly. Therefore, there exists an integer N > 0 such that

|fn(x0) − fm(x0)| ≤ ǫ/2.......(1) ∀n, m ≥ N

|f ′

n(x) − f ′

m(x)| ≤ ǫ

2(b − a)
......(2) ∀n, m ≥ N, ∀x ∈ [a, b]

By applying mean value theorem to fn − fm in [t, x],

(fn − fm)(x) − (fn − fm)(t) = (x − t)(f ′

n − f ′

m)(y)

where y ∈ (a, b), for t, x ∈ [a, b]

fn(x) − fm(x) − fn(t) + fm(t) = (x − t)(f ′

n(y) − f ′

m(y))

|fn(x) − fm(x) − fn(t) + fm(t)| = |(x − t)(f ′

n(y) − f ′

m(y))|
= |(x − t)||f ′

n(y) − f ′

m(y)|

≤ |x − t|ǫ
2(b − a)

......(3) (by(2))

≤ (b − a)ǫ

2(b − a)
(∵ |x − t| ≤ b − a)

= ǫ/2

|fn(x) − fm(x) − fn(t) + fm(t)| ≤ ǫ/2......(4) ∀x, t ∈ [a, b], ∀n, m ≥ N.

Now,

|fn(x) − fm(x)| = |(fn(x) − fm(x)) − (fn(x0) − fn(x0)) + (fm(x0) − fm(x0))|
≤ |fn(x) − fm(x) − fn(x0) + fm(x0)| + |(fn(x0) − fm(x0))|
≤ ǫ/2 + ǫ/2 (by (4) and (1))

|fn(x) − fm(x)| ≤ ǫ ∀n, m ≥ N, ∀x ∈ [a, b]

Cauchy’s criteria guarantees that {fn} converges uniformly, say f . (i.e.)
limn→∞ fn = f. To Prove: f ′(x) = limn→∞ f ′

n(x). Fix x ∈ [a, b], define
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φn(t) = fn(t)−fn(x)
t−x and φ(t) = f(t)−f(x)

t−x . Now,

lim
t→x

φn(t) = lim
t→x

fn(t) − fn(x)

t − x

= f ′

n(x)......(5)

lim
t→x

φ(t) = lim
t→x

f(t) − f(x)

t − x

= f ′(x)......(6)

Also, |φn(t) − φm(t)| =

∣

∣

∣

∣

fn(t) − fn(x)

t − x
− fm(t) − fm(x)

t − x

∣

∣

∣

∣

≤ 1

|t − x| |fn(t) − fn(x) − fm(t) + fm(x)|

≤ 1

|t − x| · |t − x|ǫ
2(b − a)

(by (3))

=
ǫ

2(b − a)

|φn(t) − φm(t)| ≤ ǫ

2(b − a)

Cauchy’s criteria for uniform convergence demands that {φn} converges uni-
formly. Now,

lim
n→∞

φn(t) = lim
n→∞

fn(t) − fn(x)

t − x

=
f(t) − f(x)

t − x

= φ(t)

(i.e.)φ(t) = lim
n→∞

φn(t)......(7)

Finally, f ′(x) = lim
t→x

φ(t) (by (6))

= lim
t→x

( lim
n→∞

φn(t)) (by (7))

= lim
n→∞

lim
t→x

φn(t) (∵ {φn} → φ uniformly and by Theorem 4.37)

= lim
n→∞

f ′

n(x) (by (5))

Therefore f ′(x) = limn→∞ f ′

n(x).

Theorem 5.2 There exists a real continuous function on the real line which
is no where differentiable.
Proof: Let φ(x) = |x|, −1 ≤ x ≤ 1 and φ(x + 2) = φ(x) ∀x ∈ R. Define
f(x) =

∑

∞

n=0(3/4)nφ(4nx), x ∈ R. We observe that,

|φ(s) − φ(t)| ≤ |s − t|......(1) ∀s, t ∈ R

|(3/4)nφ(4nx)| ≤ (3/4)n,
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∑

∞

n=0(3/4)n is a geometric series with common ratio 3
4 < 1 and hence it

converges to 1
1−3/4 = 4. Now, Weierstrass M test for uniform conver-

gence demands that
∑

(3/4)nφ(4nx) converges uniformly to f . Clearly
f(x) is continuous. Fix a real number x and a positive integer m define
δm = ±1

2(4 − m) where the sign is chosen such that no integer lies be-
tween 4m(x) and 4m(x + δm). This is possible since |4mδm| = 1/2. Let

γn = φ(4m(x+δm))−φ(4mx)
δm

. Now,

4nδm = ±1

2
4n−m =

{

an integer n ≥ m

not an integer 0 ≤ n ≤ m

when n > m,

γn =
φ(4n(x + δm)) − φ(4nx)

δm

γn =
φ(4mx + 4nδm) − φ(4nx)

δm

γn =
φ(4nx) − φ(4nx)

δm
(∵ 4nδm is even)

= 0

(i.e.)γn = 0 ∀n ≥ m.......(2)

when n < m,

|γn| =

∣

∣

∣

∣

φ(4n(x + δm)) − φ(4nx)

δm

∣

∣

∣

∣

≤ |4n(x + δm) − 4nx|
|δm|

|γn| ≤
∣

∣

∣

∣

4nδm

δm

∣

∣

∣

∣

(or)|γn| ≤ 4n, ∀n < m.......(3)

when n = m

|γn| = φ|γm|

=

∣

∣

∣

∣

φ(4m(x + δm)) − φ(4mx)

δm

∣

∣

∣

∣

=

∣

∣

∣

∣

4mδm

δm

∣

∣

∣

∣

|γn| = 4m n = m........(4)
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Now,

∣

∣

∣

∣

f(x + δm) − f(x)

δm

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

∞

n=0(3/4)nφ(4n(x + δm)) −∑

∞

n=0(3/4)nφ(4nx)

δm

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=0

(3/4)n {φ(4m(x + δm)) − φ(4mx)}
δm

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=0

(3/4)nγn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

n=0

(3/4)nγn

∣

∣

∣

∣

∣

(by (2))

≥ |(3/4)mγm| −
∣

∣

∣

∣

∣

m−1
∑

n=0

(3/4)nγn

∣

∣

∣

∣

∣

≥ (3/4)m|γm| −
m−1
∑

n=0

(3/4)n|γn|

≥ (3/4)m4m −
m−1
∑

n=0

(3/4)n4n (by (4) and (3))

= 3m −
m−1
∑

n=0

3n

= 3m − 3m − 1

3 − 1

=
3m + 1

2
∣

∣

∣

∣

f(x + δm) − f(x)

δm

∣

∣

∣

∣

≥ 3m + 1

2

As m → ∞, δm → 0 and 3m+1
2 → ∞. It follows that f ′(x) does not exists.

Equicontinuous family of functions:

Definition 5.3 Pointwise bounded: Let fn be a sequence of functions
defined on E. We say {fn} is pointwise bounded if {fn(x)} is bounded for
every x ∈ E. (i.e.) there exists a finite valued function φ defined on E such
that |fn(x)| ≤ φ(x), ∀x ∈ E, n = 1, 2, 3, ...

Definition 5.4 Uniform boundedness: {fn} is said to be uniformly bounded
on E if there exists a number M such that |fn(x)| ≤ M , ∀x ∈ E, n =
1, 2, 3, ...

Example 5.5 Even if {fn} is a uniformly bounded sequence of continuous
function on a compact set E, there need not exists a subsequence which
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converges pointwise on E.
Solution:

fn(x) = sin nx, 0 ≤ x ≤ 2π, n = 1, 2, 3....

|fn(x)| = | sin nx| ≤ 1

∴ fn is uniformly bounded. To Prove: [0, 2π] is compact. Claim: This
does not have any convergent subsequence. Suppose it has any convergent
subsequence {sin nkx},

lim
k→∞

sin nkx = A

lim
k→∞

(sin nkx − sin nk+1x) = 0

lim
n→∞

(sin nkx − sin nk+1x)2 = 0
∫ 2π

0
lim

k→∞

(sin nkx − sin nk+1x)2dx =

∫ 2π

0
0dx

∫ 2π

0
lim

k→∞

(sin nkx − sin nk+1x)2dx = 0.......(1)

But,
∫ 2π

0
lim

k→∞

(sin nkx − sin nk+1x)2dx

= lim
k→∞

∫ 2π

0
(sin nkx − sin nk+1x)2dx

= lim
k→∞

∫ 2π

0
(sin2 nkx + sin2 nk+1x − 2 sin nkx sin nk+1x)dx

= lim
k→∞

[∫ 2π

0
sin2 nkxdx +

∫ 2π

0
sin2 nk+1xdx

]

− lim
k→∞

[

2

∫ 2π

0
sin nkx sin nk+1xdx

]

= lim
k→∞

[∫ 2π

0

1 − cos 2nkx

2
dx +

∫ 2π

0

1 − cos 2nk+1x

2
dx

]

+ lim
k→∞

[∫ 2π

0
(cos(nk + nk+1)x − cos(nk − nk+1)x)dx

]

= lim
k→∞

[

[

x

2
− sin 2nkx

4nk

]2π

0
+

[

x

2
− sin 2nk+1x

4nk+1

]2π

0

]

+ lim
k→∞

[

[

sin(nk + nk+1)x

(nk + nk+1)
− sin(nk − nk+1)x

(nk − nk+1)

]2π

0

]

= lim
k→∞

[[

2π

2
− 0

]

+

[

2π

2
− 0

]

− [0] + [0 − 0]

]

= lim
k→∞

2π

= 2π.......(2)

⇒⇐ to(1)
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∴ There does not exists a subsequence which converges pointwise on E.

Example 5.6 A uniformly bounded convergent sequence of a function, even
if defined on a compact set, need not contain a uniformly convergent subse-
quence,

fn(x) =
x2

x2 + (1 − nx)2
, 0 ≤ x ≤ 1, n = 1, 2, 3....

Solution: Clearly [0, 1] is compact.

|fn(x)| =

∣

∣

∣

∣

∣

x2

x2 + (1 − nx)2

∣

∣

∣

∣

∣

≤ 1

lim
n→∞

fn(x) = lim
n→∞

x2

x2 + (1 − nx)2
, 0 ≤ x ≤ 1

= 0.........(1)

But, fn

(

1

n

)

=
1

n2

1
n2 + (1 − n 1

n)2

=
1

n2

1
n2 + 0

= 1......(2)

Therefore fnk
has no subsequence of {fn} which converges uniformly, if there

is a subsequence {fnk
} converging uniformly. Then,

|fnk
(x) − 0| < ǫ, ∀nk ≥ N.

⇒
∣

∣

∣

∣

fnk

(

1

nk

)

− 0

∣

∣

∣

∣

< ǫ when x =
1

nk

⇒ |1 − 0| < ǫ

⇒ 1 < ǫ

⇒⇐ .

Definition 5.7 Equicontinuity: A family F of complex functions f de-
fined on a set E in a metric space X is said to be equicontinuous on E if
for every ǫ > 0, there exists δ > 0 such that |f(x) − f(y)| < ǫ whenever
d(x, y) < δ, ‘x, y ∈ E, f ∈ F .

Note 5.8 (i) Every member of an equicontinuous family is uniformly con-
tinuous.
(ii) Example 5.6 is not equicontinuous.
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Proof: Let x = 1
n and y = 1

n+1 .

d(x, y) =

∣

∣

∣

∣

1

n
− 1

n + 1

∣

∣

∣

∣

=

∣

∣

∣

∣

n + 1 − n

n(n + 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

n(n + 1)

∣

∣

∣

∣

< δ

But |fn(x) − fn(y)| =

∣

∣

∣

∣

∣

∣

1
n2

1
n2

+ (1 − n
1

n
)2 −

1
(n+1)2

1
(n+1)2

+ (1 − n
1

n + 1
)2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 −
1

(n+1)2

1
(n+1)2

+ (1 − n

n + 1
)2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 −
1

(n+1)2

1
(n+1)2 + (n+1−n

n+1 )2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 −
1

(n+1)2

1
(n+1)2

+ (
1

n + 1
)2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 −
1

(n+1)2

2
(n+1)2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 − 1

2

∣

∣

∣

∣

=
1

2

|fn(x) − fn(y)| < ǫ ⇒ 1

2
< ǫ

⇒⇐ (∵ ǫ is arbitrarily small)

∴ The family is not equicontinuous.

Theorem 5.9 If {fn} is a pointwise bounded sequence of complex functions
on a countable set E, then {fn} has a subsequence {fnk

} such that {fnk
(x)}

converges for every x in E.
Proof: Since E is countable, we can arrange the elements of E in a sequence
{xi}, i = 1, 2, ..., ∞. As {fn} is pointwise bounded {fnk

(x1)} is also a
bounded sequence. ∴ This sequence has a convergent subsequence. (i.e.)
There exists a subsequence {f1k} of {fn} such that {f1k(x1)} converges as
k → ∞. Let S1 : f11 f12 f13..... Now, {f1k(x1)} is bounded. ∴ There exists
a subsequence {f2k} of {f1k} such that {f2k(x2)} converges. Let S2 : f21

f22 f23..... Similarly we get S3, S3 : f31 f32 f33..... The sequences Sn’s have
the following properties.
(a) Sn is a subsequence of Sn−1
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(b) {fnk(xn)} converges as k → ∞
(c) The functions fn’s appear in the same order in all the subsequences.
Consider the diagonal sequence, S : f11 f22 f33....., by condition (a) S is a
subsequence of Sn for n = 1, 2, 3... except possibly its first n − 1 terms and
(b)⇒ {fnn(xi)} converges as n → ∞ for every xi in E.

Theorem 5.10 If K is a compact metric space and fn ∈ C (K), n = 1, 2...
and if {fn} converges uniformly on K, then {fn} is equicontinuous on K.
Proof: Let ǫ > 0 be given. Since {fn} converges uniformly on K, {fn}
converges to some f in C (K). (i.e.) There exists N > 0 such that

‖fn − f‖ < ǫ/2 ∀n ≥ N

Now, ‖fn − fN ‖ = ‖(fn − f) + (f − fN )‖
≤ ‖(fn − f)‖ + ‖(f − fN )‖
< ǫ/2 + ǫ/2

< ǫ ∀n ≥ N

(i.e.) ‖(fn − fN )‖ < ǫ ∀n ≥ N

(i.e.) sup
x∈k

|(fn(x) − fN (x))| < ǫ ∀n ≥ N

⇒ |(fn(x) − fN (x))| < ǫ........(1) ∀n ≥ N ∀x ∈ K.

Since all continuous functions are uniformly continuous on the compact set
K, there exists δi >0 such that d(x, y) < δi ⇒ |fi(x) − fi(y)| < ǫ.......
(2) for x, y ∈ K, i = 1, 2, ..., N . Let δ = min{δ1, δ2, ..., δN }. Therefore
d(x, y) < δ ⇒ |fn(x) − fn(y)| < ǫ.......... (3) for x, y ∈ K, n = 1, 2, ..., N .
For n > N ,

d(x, y) < δ

⇒ |fn(x) − fn(y)| = |(fn(x) − fN (x)) + (fN (x) − fN (y)) + fN (y) − fn(y)|
≤ |(fn(x) − fN (x))| + |fN (x) − fN (y)| + |fN (y) − fn(y)|
< ǫ + ǫ + ǫ (by (1) and(2))

⇒ |(fn(x) − fn(y))| < 3ǫ........(4)

Combination (3) and (4) proves the result.

Theorem 5.11 If K is compact and if fn ∈ C (K) for n = 1, 2, 3... and if
{fn} is pointwise bounded and equicontinuous on K, then
(a) {fn} is uniformly bounded on K
(b) {fn} contains a uniformly convergent subsequence.
Proof:(a) Let ǫ >0 be given. By hypothesis {fn} is equicontinuous. Ac-
cordingly, there exists δ > 0 such that d(x, y) < δ ⇒ |fn(x) − fn(y)| <
ǫ......(1) for x, y ∈ K, n = 1, 2, ... Clearly, K ⊂ ⋃

x∈K Nδ(x) where Nδ(x)
is an neighbourhood of radius δ with center x. Since K is compact, there
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are finitely many points p1, p2, ..., pr in K such that K ⊂ ⋃N
i=1 Nδ(pi)......(2).

Since {fn} is pointwise bounded, {fn(pi)} is bounded for i = 1, 2, ..., r. ∴

There exists Mi < ∞, i = 1, 2, ..., r such that |fn(pi)| < Mi.
Let M = max{M1, M2, ..., Mr}. Then |fn(pi)| < M......(3) ∀i = 1, 2, ..., r
and ∀n.
Let x ∈ K. Then (2) implies x ∈ Nδ(pi) for some i, 1 ≤ i ≤ r. Therefore,

d(x, pi) < δ ⇒ |fn(x) − fn(pi)| < ǫ......(4) (by (1))

Now,

|fn(x)| = |fn(x) − fn(pi) + fn(pi)|
≤ |fn(x) − fn(pi)| + |fn(pi)|
< ǫ + M. (by (3) and (4))

Hence {fn} is uniformly bounded on K.
(b)Given K is compact and {fn} is pointwise bounded, equicontinuous on
K. To Prove: {fn} contains a uniformly convergent subsequence. Since K
is compact, there exists a countable dense subset E ⊆ K (i.e.) Ē ⊂ K.
Theorem 5.9 shows that {fni

(x)} converges for all x ∈ E. Let gi = fni
. We

shall show that {gi} converges uniformly on K. Let ǫ > 0 be given. Since
{fn} is equicontinuous on K, there exists δ > 0 such that

d(x, y) < δ ⇒ |fn(x) − fn(y)| < ǫ......(1)for x, y ∈ K.

Let V (x, δ) = {y ∈ K|d(x, y) < δ}(= Nδ(x)). Clearly, K ⊆ ⋃

x∈K V (x, δ).
Since K is compact and E is dense in K, there exists x1, x2, ..., xm in E such
that

K ⊆ V (x1, δ) ∪ V (x2, δ) ∪ ... ∪ V (xm, δ)......(2)

. For 1 ≤ s ≤ m, {gi(xs)} converges. Then there exists N >0 such that

|gi(xs) − gj(xs)| < ǫ......(3) ∀i, j ≥ N.

Let x ∈ K, then (2) ⇒ x ∈ V (xs, δ) for some 1 ≤ s ≤ m.

d(x, xs) < δ ⇒ |gi(x) − gi(xs)| < ǫ......(4)∀i

(by (1)∵ gi = fn for some n)
Now,

|gi(x) − gj(x)| = |gi(x) − gi(xs) + gi(xs) − gj(xs) + gj(xs) − gj(x)|
≤ |gi(x) − gi(xs)| + |gi(xs) − gj(xs)| + |gj(xs) − gj(x)|
< ǫ + ǫ + ǫ (by (3) and (4)) ∀i, j ≥ N

(i.e.)|gi(x) − gi(x)| < 3ǫ ∀i, j ≥ N.

Since x is arbitrary, the Cauchy’s criteria guarantees that {gi} converges
uniformly on K.
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Theorem 5.12 Stone Weierstrass Theorem- the original form of

Weierstrass theorem: If f is a continuous complex function on [a, b],
then there exists a sequence of polynomials pn such that

lim
n→∞

pn(x) = f(x)

uniformly on [a, b]. If f is real, pn may be taken real.
Proof: Without loss of generality, we assume that [a, b] = [0, 1], f(x) = 0
outside [0,1], f(0) = 0 and f(1) = 0.
For, suppose the result is true for this case, let

g(x) = f(x) − f(0) − x[f(1) − f(0)]

g(1) = f(1) − f(0) − 1[f(1) − f(0)]

= 0

g(0) = f(0) − f(0)

= 0

But f(x) − g(x) = f(0) + x[f(1) − f(0)].

Since g(x) is the uniform limit of a sequence of polynomials, f(x) can also
be obtained as the uniform limit of a sequence of polynomials.
Let

Qn(x) = cn(1 − x2)n, n = 1, 2, 3...

where we choose cn such that

∫ 1

−1
Qn(x)dx = 1......(1)

Now

∫ 1

−1
(1 − x2)ndx = 2

∫ 1

0
(1 − x2)ndx

2 ≥
∫ 1

√

n

−1
(1 − x2)ndx (∵ [0,

1√
n

] ⊆ [0, 1])

2 ≥
∫ 1

√

n

−1
(1 − nx2)dx (by binomial theorem)

= 2

[

x − nx3

3

]
1

√

n

0
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= 2

[

1√
n

− n

3n3/2

]

= 2

[

1√
n

− 1

3
√

n

]

= 2

(

2

3
√

n

)

=
4

3
√

n

>
1√
n

......(2) (∵ 4/3 > 1)

(1) ⇒
∫ 1

−1
Qn(x)dx = 1

⇒
∫ 1

−1
Cn(1 − x2)ndx = 1

⇒ Cn

∫ 1

−1
(1 − x2)ndx = 1

⇒
∫ 1

−1
(1 − x2)ndx =

1

Cn

⇒ 1

Cn
=

∫ 1

−1
(1 − x2)ndx

⇒ 1

Cn
>

1√
n

(by (2))

⇒ Cn >
√

n......(3)

Now, δ ≤ |x| ≤ 1 ⇒ δ2 ≤ x2

⇒ −δ2 ≥ −x2

⇒ 1 − δ2 ≥ 1 − x2

⇒ (1 − δ2)n ≥ (1 − x2)n

⇒ Cn(1 − δ2)n ≥ Cn(1 − x2)n

⇒ Cn(1 − x2)n ≤ Cn(1 − δ2)n

⇒ Cn(1 − x2)n ≤
√

n(1 − δ2)n (by (3))

⇒ Qn(x) ≤
√

n(1 − δ2)n......(4)

→ 0 as n → ∞

Let pn(x) =

∫ 1

−1
f(x + t)Qn(t)dt

pn(x) =

∫

−x

−1
f(x + t)Qn(t)dt +

∫ 1−x

−x
f(x + t)Qn(t)dt

+

∫ 1

1−x
f(x + t)Qn(t)dt

= 0 +

∫ 1−x

−x
f(x + t)Qn(t)dt + 0
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∴ pn(x) =

∫ 1−x

−x
f(x + t)Qn(t)dt

=

∫ 1

0
f(T )Qn(T − x)dT......(5)

Obviously pn(x) is a polynomial in x. Moreover pn(x) is real when f is
real. Claim: pn(x) → f(x) uniformly. Since f(x) is continuous on [0,1] it is
uniformly continuous also. Let ǫ > 0 be given, then there exists δ > 0 such
that

|x − y| < δ ⇒ |f(x) − f(y)| < ǫ/2 ...... (6)for x, y ∈ [0, 1].

Let M = sup |f(x)| for any x ∈ [0,1].

|pn(x) − f(x)| =

∣

∣

∣

∣

∫ 1

−1
f(x + t)Qn(t)dt − f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

−1
f(x + t)Qn(t)dt − f(x)

∫ 1

−1
Qn(t)dt

∣

∣

∣

∣

(

∵

∫ 1

−1
Qn(x)dx = 1

)

=

∣

∣

∣

∣

∫ 1

−1
f(x + t)Qn(t)dt −

∫ 1

−1
f(x)Qn(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

−1
[f(x + t) − f(x)]Qn(t)dt

∣

∣

∣

∣

≤
∫ 1

−1
|f(x + t) − f(x)|Qn(t)dt

=

∫

−δ

−1
|f(x + t) − f(x)|Qn(t)dt +

∫ δ

−δ
|f(x + t) − f(x)|Qn(t)dt

+

∫ 1

δ
|f(x + t) − f(x)|Qn(t)dt

≤ 2M

∫

−δ

−1
Qn(t)dt + ǫ/2

∫ δ

−δ
Qn(t)dt + 2M

∫ 1

0
Qn(t)dt

≤ 2M
√

n(1 − δ2)n
∫

−δ

−1
dt + ǫ/2

∫ 1

−1
Qn(t)dt

+ 2M
√

n(1 − δ2)n
∫ 1

0
dt (by (4))

≤ 2M
√

n(1 − δ2)n · 1 + ǫ/2 · 1 + 2M
√

n(1 − δ2)n · 1)
(

∵

∫ δ

−1
dt = 1 − δ < 1,

∫ 1

δ
dt = 1 − δ < 1

)

≤ 4M
√

n(1 − δ2)n + ǫ/2 → 0 as n → ∞

∴ pn(x) → f(x) uniformly.

Some Special Functions
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Definition 5.13 Power Series: A function of the form

f(x) =
∞
∑

n=0

Cnxn (or) f(x) =
∞
∑

n=0

Cn(x − a)n

is called a power series.

Theorem 5.14 Suppose the series
∑

∞

n=0 Cnxn......(1) converges for |x| <
R and define f(x) =

∑

∞

n=0 Cnxn...... (2) (|x| < R), then (1) converges
uniformly on [−R+ǫ, R−ǫ] no matter which ǫ > 0 is choosen. The function
f is continuous and differentiable in (−R, R) and
f ′(x) =

∑

∞

n=0 nCnxn−1...... (3) (|x| < R).
Proof: Let ǫ >0 be given. For |x| ≤ R − ǫ; |Cnxn| ≤ |Cn(R − ǫ)n|....... (4).
We know, by Cauchy’s root test , any power series

∑

∞

n=0 CnZn converges in
|x| < R, where R is the radius of convergence and is given by

R =
1

limn→∞
n
√

|Cn|
∴ The power series

∑

∞

0 Cn(R − ǫ)n also converges.
∑

∞

n=0 Cnxn converges
uniformly (by Weierstrass M test for uniform convergence), for x ∈ [−R +
ǫ, R − ǫ]. Since limn→∞ sup n

√

|Cn| = limn→∞
n
√

|Cn|, (1),(3) have the same
radius of convergence. (i.e.) By applying Theorem 5.1 for series we see
that (3) holds for x ∈ [−R + ǫ, R − ǫ]. But when |x| < R, we can find ǫ >0
such that |x| ≤ R − ǫ. Hence (3) holds for |x| < R. Since f ′ exists, f is
continuous.

Corollary 5.15 Under the hypothesis of Theorem 5.14, f has derivatives
of all orders in (−R,R) which are given by

fk(x) =
∞
∑

n=k

n(n − 1)(n − 2) · · · (n − k + 1)Cnxn−k.

In particular fk(0) = k!Ck for k = 0, 1, 2, ...
Proof: Let f(x) =

∑

∞

n=0 Cnxn = C0 + C1x + C2x2 + ... + Cnxn + ...

f ′(x) = C1 + 2C2x + 3C3x2 + ... + nCnxn−1

f ′(0) = 1!C1

f ′′(x) = 2C2 + 3 · 2C3x + ... + n(n − 1)Cnxn−2 + ....

f ′′(0) = 2!c2

f ′′′(x) = 3 · 2 · 1 · C3 + ... + n(n − 1)(n − 2)Cnxn−3 + ...

f ′′′(0) = 3!C3

fk(x) =
∞
∑

n=k

n(n − 1)(n − 2) · · · (n − k + 1)Cnxn−k

∴ fk(0) = Ckk(k − 1)(k − 2) · · · 1 = k!Ck.
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Theorem 5.16 Abel’s theorem: Suppose
∑

Cn converges. Put f(x) =
∑

∞

n=0 Cnxn (−1 < x < 1), then

lim
x→1

f(x) =
∞
∑

n=0

Cn.

Proof: Let Sn = C0 + C1 + C2 + ... + Cn−1 + Cn, S−1 = 0
Now,

m
∑

n=0

Cnxn =
m
∑

n=0

(Sn − Sn−1)xn (∵ Sn − Sn−1 = Cn)

=
m
∑

n=0

Snxn −
m
∑

n=0

Sn−1xn

=
m
∑

n=0

Snxn −
m
∑

n=1

Sn−1xn (S−1 = 0)

=
m−1
∑

n=0

Snxn −
m
∑

n=1

Sn−1xn + Smxm

=
m−1
∑

n=0

Snxn −
(

m
∑

n=1

Sn−1xn−1

)

x + Smxm

=
m−1
∑

n=0

Snxn −
(

m−1
∑

n=0

Snxn

)

x + Smxm

m
∑

n=0

Cnxn = (1 − x)

(

m−1
∑

n=0

Snxn

)

x + Smxm

Taking limits as m → ∞ we get

∞
∑

n=0

Cnxn = (1 − x)

(

∞
∑

n=0

Snxn

)

x + 0 (|x| < 1 ⇒ xm → 0asm → ∞)

(i.e.)f(x) = (1 − x)
∞
∑

n=0

Snxn......(1)

Since
∑

Cn converges, {Sn} also converges, say to s.∴ for ǫ > 0, there exists
N > 0 such that

|Sn − S| < ǫ/2 ......(2) ∀n ≥ N

Now, since |x| <1,

∞
∑

n=0

xn =
1

1 − x
⇒ (1 − x)

(

∞
∑

n=0

xn

)

= 1 ......(3)
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Now,

|f(x) − S| =

∣

∣

∣

∣

∣

(1 − x)
∞
∑

n=0

Snxn − S

∣

∣

∣

∣

∣

(by (1))

=

∣

∣

∣

∣

∣

(1 − x)
∞
∑

n=0

Snxn − S(1 − x)
∞
∑

n=0

xn

∣

∣

∣

∣

∣

(by (3))

=

∣

∣

∣

∣

∣

(1 − x)

(

∞
∑

n=0

(Snxn − Sxn)

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(1 − x)

(

∞
∑

n=0

(Sn − S)xn

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(1 − x)





N
∑

n=0

(Sn − S)xn +
∞
∑

n=N+1

(Sn − S)xn





∣

∣

∣

∣

∣

∣

≤ |(1 − x)|




N
∑

n=0

|Sn − S||x|n +
∞
∑

n=N+1

|Sn − S||x|n




= |(1 − x)|k + |(1 − x)|
∞
∑

n=N+1

|Sn − S||x|n where k =
N
∑

n=0

|Sn − S||x|n

< |(1 − x)|k + |(1 − x)|ǫ/2
∞
∑

n=N+1

|x|n (by (2))

< |(1 − x)|k + |(1 − x)|ǫ/2
∞
∑

n=0

|x|n

= |(1 − x)|k + |(1 − x)|ǫ/2
1

1 − |x| ......(4)

we choose δ = ǫ/2k,∴ |x − 1| < δ ⇒ |x − 1| < ǫ/2k.
when x → 1, 1 − |x| = |1 − x|

∴ |f(x) − S| <
ǫ

2k
k + |1 − x|ǫ/2 · 1

|1 − x|
= ǫ, |x − 1| < δ

(i.e.) lim
x→1

f(x) = S (or) lim
x→1

f(x) =
∞
∑

n=0

Cn

Corollary 5.17 If
∑

an,
∑

bn,
∑

cn converge to A, B, C and if cn = a0bn +
a1bn−1 + ... + anb0 then C = AB.
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Proof:

Let f(x) =
∞
∑

n=0

anxn

g(x) =
∞
∑

n=0

bnxn

h(x) =
∞
∑

n=0

cnxn, where 0 ≤ x ≤ 1.

For x < 1, all these series converge (by Theorem 5.14). Hence the series
can be multiplied. (i.e.) f(x)g(x) = h(x)

⇒ lim
x→1

{f(x)g(x)} = lim
x→1

h(x)

⇒ lim
x→1

f(x) lim
x→1

g(x) = lim
x→1

h(x)

⇒ (
∞
∑

n=0

an)(
∞
∑

n=0

bn) = (
∞
∑

n=0

an) (by Abel’s theorem)

⇒ AB = C. (∵
∑

an = A,
∑

bn = B,
∑

cn = C).

∴ C = AB.

Theorem 5.18 Given a double sequence {aij}, i=1,2,3..., j=1,2,3... Sup-
pose that

∑

∞

j=1 |aij | = bi (i=1,2,3, ...) and
∑

bi converges, then

∞
∑

i=1

∞
∑

j=1

aij =
∞
∑

j=1

∞
∑

i=1

aij .

(Inversion in the order of summation).
Proof: Let E = {x0, x1, x2, ...} be a countable set such that xn → x0.
Define

fi(x0) =
∞
∑

j=1

aij (i = 1, 2, 3, ...)

fi(xn) =
n
∑

j=1

aij (n, i = 1, 2, 3, ...) and

g(x) =
∞
∑

i=1

fi(x) (x ∈ E).
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Clearly then,

lim
n→∞

fi(xn) = lim
n→∞

n
∑

j=1

aij

=
∞
∑

j=1

aij

= fi(x0)

∴ lim
xn→x0

fi(xn) = fi(x0).

∴ Each fi is continuous at x0. (∵
∑

∞

j=1 aij converges to bi ⇒ ∑

aij converges,
fi(x0) exists ∀i)
Now,

|fi(xn)| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

aij

∣

∣

∣

∣

∣

∣

≤
n
∑

j=1

|aij |

≤
∞
∑

j=1

|aij |

= bi (by hypothesis)

(i.e.)|fi(xn)| ≤ bi (∀n, hence ∀xn ∈ E)

(or)|fi(x)| ≤ bi......(1) ∀x ∈ E.

Since
∑

bi converges, (1) and weierstrass test guarantees that
∑

∞

i=1 fi(x)
converges uniformly ((i.e.) g(x)).
Now,

lim
xn→x0

g(xn) = lim
xn→x0

(

∞
∑

i=1

fi(xn)

)

=
∞
∑

i=1

(

lim
xn→x0

fi(x)

)

=
∞
∑

i=1

fi(x0) (by uniform convergence and continuity theorem)

= g(x0)
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(i.e.) g(x) is continuous at x0

g(x0) = lim
n→∞

g(xn)

⇒
∞
∑

i=1

fi(x0) = lim
n→∞

∞
∑

i=1

fi(xn)

⇒
∞
∑

i=1





∞
∑

j=1

aij



 = lim
n→∞

∞
∑

i=1





n
∑

j=1

aij





∞
∑

i=1





∞
∑

j=1

aij



 = lim
n→∞

n
∑

j=1

(

∞
∑

i=1

aij

)

∞
∑

i=1





∞
∑

j=1

aij



 =
∞
∑

j=1

∞
∑

i=1

aij

∴

∞
∑

i=1





∞
∑

j=1

aij



 =
∞
∑

j=1

(

∞
∑

i=1

aij

)

Theorem 5.19 Taylor’s theorem: Suppose f(x) =
∑

∞

n=0 Cnxn, the se-
ries converging in |x| < R. If −R < a < R then f can be expanded in a
power series about the point x = a which converges in |x − a| < R − |a| and

f(x) =
∞
∑

n=0

fn(a)

n!
(x − a)n (|x − a| < R − |a|).

Proof:

Let f(x) =
∞
∑

n=0

Cnxn

=
∞
∑

n=0

Cn((x − a) + a)n

=
∞
∑

n=0

Cn

[

n
∑

m=0

(

n

m

)

(x − a)man−m

]

=
∞
∑

n=0

n
∑

m=0

Cn

(

n

m

)

((x − a)man−m)

=
∞
∑

n=0

n
∑

m=0

Cn

(

n

m

)

((x − a)man−m)......(1)

(

∵

(

n

m

)

= 0 if m ≥ n

)

Consider the series,

∞
∑

n=0

n
∑

m=0

|Cn

(

n

m

)

((x − a)man−m)|.
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The series,

∞
∑

n=0

|Cn|
n
∑

m=0

(

n

m

)

|x − a|m|a|n−m =
∞
∑

n=0

|Cn|(|x − a| + |a|)n,

this being the power series converges in |x − a| + |a| < R (by Theorem
5.14).
(i.e.) in |x − a| < R − |a|. (i.e.) the series (1) converge absolutely in
|x − a| < R − |a|. Hence by Theorem 5.18, order of summation in (1) can
be changed.

f(x) =
∞
∑

n=0

n
∑

m=0

Cn

(

n

m

)

(x − a)man−m

=
∞
∑

n=0

n
∑

n=m

Cn

(

n

m

)

(x − a)man−m(∵

(

n

m

)

= 0 if n < m)

=
∞
∑

n=0

n
∑

n=m

Cn
n(n − 1)...(n − m + 1)

m!
(x − a)man−m

=
∞
∑

n=0

1

m!

(

n
∑

n=m

Cnn(n − 1)...(n − m + 1)an−m

)

(x − a)m

∴ f(x) =
∞
∑

m=0

fm(a)

m!
(x − a)m (by Corollary 5.15)

Theorem 5.20 Suppose the series
∑

anxn and
∑

bnxn converge in the seg-
ment S = (−R, R). Let E be the set of all x in S at which

∞
∑

n=0

anxn =
∞
∑

n=0

bnxn......(1).

If E has a limit point in S, then an = bn, n = 0, 1, 2, .... hence (1) holds for
all x ∈ S.
Proof: Put Cn = an − bn, ∀n = 0, 1, 2, ... Define

f(x) =
∞
∑

n=0

Cnxn

Now, f(x) =
∞
∑

n=0

(an − bn)xn

=
∞
∑

n=0

anxn −
∞
∑

n=0

bnxn.

Therefore E = {x ∈ S|f(x) = 0}...... (2) (∵
∑

anxn =
∑

bnxn∀x ∈ E). Let
A be the set of all limit points of E in S and let B = S − A. Obviously, B
is open in S. Also S = A ∪ B...... (3)
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We first show that A is open. Let x0 ∈ A ((i.e.) x0 is a limit point of E
in S). Since −R < x0 < R, f(x) can be expanded by Taylor’s theorem as a
power series about x0, |x − x0| < R − |x0|.

(i.e.) f(x) =
∞
∑

n=0

dn(x − x0)n......(4), |x − x0| < R − |x0|.

Claim: All dn’s are zero. Otherwise, let k be the smallest non-negative
integer such that dk 6= 0. ((i.e.) d1 = d2 = ... = dk−1 = 0).

∴ f(x) =
∞
∑

n=k

dn(x − x0)n

= dk(x − x0)k + dk+1(x − x0)k+1 + ... + dk+2(x − x0)k+2 + ...

= (x − x0)k(dk + dk+1(x − x0) + ... + dk+2(x − x0)2 + ...)

f(x) = (x − x0)kg(x)......(5) where g(x) = dk + dk+1(x − x0) + ...

=
∞
∑

m=0

dm+k(x − x0)m

Since g(x) is continuous and g(x0) 6= 0, there exists δ > 0 such that g(x) 6=
0 for all |x − x0| < δ. It follows from (5) that f(x) 6= 0, ∀ 0 < |x − x0| < δ.
But this contradicts that x0 is a limit point of E. ∴ All d′

ns are zero. (i.e.)
f(x) = 0, ∀|x − x0| < R − |x0| (by (4)). Hence (|x − x0| < R − |x0|) ⊂ A
and A is open. Since S is connected, it cannot be expressed as a disjoint
union of open sets. ∴ (3) ⇒ A = φ (or) B = φ (∵ A ∩ B = φ). Since E has
limit points, by hypothesis in S, A 6= φ. ∴ B = φ. Hence S = A (by (3)).
Claim: A ⊂ E. Let y ∈ A (i.e.) y is a limit point of E(in S) (i.e.) there
exists a sequence {xn} in E such that xn → y ∴ f(xn) → f(y) ∴ f(y) = 0
(∵ xn ∈ E ⇒ f(xn) = 0 ∀n) ⇒ y ∈ E. ∴ A ⊂ E. So,A ⊂ E ⊂ S = A ⇒
E = S(= A). Now, by the definition of E, f(x) = 0 ∀x ∈ E

⇒ f(x) = 0 ∀x ∈ S (∵ E = S)

⇒
∞
∑

0

anxn −
∞
∑

n=0

bnxn = 0 ∀x ∈ S

⇒
∞
∑

0

anxn =
∞
∑

n=0

bnxn ∀x ∈ S

(i.e.) (1) holds for ∀x ∈ S. Again, f(x) = 0∀x ∈ S ⇒ Cn = 0 ∀n (by
Corollary 5.15) ⇒ an = bn ∀n. Hence the proof.

The Exponential and logarithmic functions:

Definition 5.21 E(z) =
∑

∞

n=0
zn

n! . This series is called the exponential se-
ries. The ratio test shows that the series converges for every complex number
z.
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Definition 5.22 We define E(x) = ex for all real x. E is called the expo-
nential function.

Note 5.23 E(1) =
∑

∞

n=0
1
n! (= e).

Result 5.24 (1) E(z)E(w) = E(z + w).
Proof:

E(z)E(w) =

(

∞
∑

n=0

zn

n!

)(

∞
∑

n=0

wn

n!

)

=
∞
∑

n=0

(

n
∑

k=0

(

zk

k!

)(

wn−k

(n − k)!

))

=
∞
∑

n=0

1

n!

(

n
∑

k=0

n!zkwn−k

k!(n − k)!

)

=
∞
∑

n=0

1

n!

n
∑

k=0

(

n

k

)

zkwn−k

=
∞
∑

n=0

1

n!
(z + w)n

=
∞
∑

n=0

(z + w)n

n!

= E(z + w).

(2) E(z) 6= 0 for any z.
Proof:

E(z)E(−z) = E(z − z) (by result (1))

= E(0)

= 1 (∵ E(0) = 1)

⇒ E(z) 6= 0

also E(−z) =
1

E(z)

(3) E(x) > 0 for all real x.
Proof: Case(i): Let x > 0.

E(x) =
∞
∑

n=0

xn

n!

= 1 +
x

1!
+

x2

2!
+

x3

3!
+ ...

> 0 (∵ x > 0 ⇒ xi

i!
> 0 ∀i)
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Case(ii): Let x < 0. Then x = −y where y is positive.

∴ E(x) = E(−y)

=
1

E(y)
(by result (2))

> 0 (∵ y > 0 ⇒ E(y) > 0 (by Case (i))

∴ E(x) > 0

Case(iii): x = 0.

E(x) = E(0)

= 1 > 0

hence E(x) > 0 for all real x.

(4) E(x) → ∞ as x → ∞ and E(x) → 0 as x → −∞.
Proof:

(i)E(x) =
∞
∑

n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ ....

> ∞ (as x → ∞)

(ii) Let x = −y.

x → −∞ ⇒ −y → −∞
⇒ y → ∞
⇒ E(y) → ∞ (by (i))

E(x) = E(−y) =
1

E(y)
→ 0

(i.e.) E(x) → 0 as x → −∞.

(5) E(x) is strictly increasing on the whole real line.
Proof: (i) Let x < y. Then xn < yn.

⇒ xn

n!
<

yn

n!

⇒
∞
∑

n=0

xn

n!
<

∞
∑

n=0

yn

n!

⇒ E(x) < E(y).

(ii) Let x, y < 0 and x < y.
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∴ x = −x1, y = −y1 where x1 and y1 are positive.

x < y ⇒ −x1 < −y1

⇒ x1 > y1

⇒ E(x1) > E(y1) (by (i))

⇒ 1

E(x1)
<

1

E(y1)

⇒ E(−x1) < E(−y1) (by result (2))

⇒ E(x) < E(y).

(6) E′(z) = E(z).
Proof:

E′(z) = lim
h→0

E(z + h) − E(z)

n

= lim
h→0

E(z)E(h) − E(z)

h
(by (1))

= lim
h→0

E(z)

(

E(h) − 1

h

)

= E(z) lim
h→0

(

E(h) − 1

h

)

= E(z) lim
h→0

(

∑

∞

0
hn

n! − 1

h

)

= E(z) lim
h→0

(

1 +
∑

∞

0
hn

n! − 1

h

)

= E(z) lim
h→0

∑

∞

0
hn

n!

h

= E(z) lim
h→0

(

∞
∑

n=1

hn−1

n!

)

= E(z) lim
h→0

(

1 +
h

2!
+

h3

3!
+ ...

)

= E(z) · 1

= E(z).

(7) E(n) = en for all n.
Proof: Case(i): n > 0. we have E(z1 +z2 + ...+zn) = E(z1)E(z2) · · ·E(zn)
(by result 1). Put zi = 1 ∀i, we have

E(1 + 1 + 1 + ... + 1) = E(1)E(1) · · · E(1)

E(n) = ee · · · e (∵ E(1) = e).

= en
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Case(ii): n < 0.
Let n = −m where m is a positive integer.

E(n) = E(−m) =
1

E(m)

=
1

em
(by Case(i) as m is a positive integer)

= e−m

= en

Case(iii): p = n
m , n and m are integers and m 6= 0.

Now,

(E(p))m = E(p)E(p) · · · E(p)

= E(p + p + ... + p)

= E(mp)

= E(n) (∵ p =
n

m
)

(E(p))m = en (by Case (i) and (ii))

E(p) = (en)1/m

= en/m

= ep

(8) limx→∞ xne−x = 0 for every n.
Proof:

ex =
∞
∑

n=0

xn

n!

>
xn+1

(n + 1)!

⇒ ex >
xn+1

(n + 1)!

⇒ ex >
xn · x

(n + 1)!

⇒ (n + 1)!

x
>

xn

ex

xne−x <
(n + 1)!

x
→ 0 as x → ∞

(i.e.) lim
x→∞

xne−x = 0.

Theorem 5.25 Let ex be defined on R. Then
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1. ex is continuous and differentiable for all x.

2. (ex)′ = ex.

3. ex is strictly increasing function of x and ex > 0.

4. ex+y = exey.

5. ex → ∞ as x → ∞ and ex → 0 as x → −∞.

6. limx→∞ xne−x = 0 for every n. (i.e.) ex → ∞ faster than any power
of x

Logarithmic function:

Definition 5.26 Inverse of E is L. E(L(y)) = y, (y > 0); L(E(x)) = x, (x
real).

Result 5.27 (1) L(1) = 0 (i.e.) log 1 = 0.
Proof: L(E(x)) = x. Put x = 0, we have

E(x) = E(0)

L(1) = L(E(0))

= 0

(2)
∫ x

1
1
xdx = L(x)

Proof:

E(L(y)) = y

Differentiate w.r.t y, we get E′(L(y))L′(y) = 1

yL′(y) = 1

L′(y) =
1

y

L(y) =

∫ y

1

1

y
dy

(or) L(x) =

∫ x

1

1

x
dx.

(3) L(uv) − L(u) + L(v)
Proof: Put u = E(x); v = E(y)

L(E(x)E(y)) = L(uv)

= L(E(x + y))

= x + y

= L(E(x)) + L(E(y))

= L(u) + L(v)
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(4) L(u
v ) = L(u) − L(v)

Proof: Put u = E(x); v = E(y)

L

(

u

v

)

= L

(

E(x)

E(y)

)

= L(E(x)E(−y))

= x − y

= L(E(x)) − L(E(y))

= L(u) − L(v)

(5) log x → ∞ as x → ∞ and log x → −∞ as x → 0
Proof: L(E(y)) = y. Put E(y) = x. y → ∞, x → ∞; y → −∞, x →
0. log x = y; log x → ∞ as x → ∞ and log x → −∞ as x → 0
(6) L(xn) = nL(x)
Proof: Case(i): n is a positive integer.

L(xn) = L(x · x · · · x)

= L(x) + L(x) + ... + L(x) (by (3))

= nL(x)

Case(ii): n is a negative integer. n = −m, where m is a positive integer.

L(xn) = L(x−m)

= L(
1

xm
)

= L(1) − L(xm) (by result (4))

= 0 − L(xm) (by result (1))

= −mL(x) (by Case(i))

= nL(x)

Case(iii): n = 1
m . Let x1/m = y. (i.e.) ym = x.

L(x) = L(ym)

= mL(y) (by Case (i) and (ii))

⇒ 1

m
L(x) = L(y)

⇒ L(y) =
1

m
L(x)

⇒ L(x1/m) =
1

m
L(x)

⇒ L(xn) = nL(x)
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Case(iv): n = p/q.

L(xn) = L(xp/q)

= L(x1/q)p

= pL(x1/q) (by Case (i) and (ii))

= p
1

q
L(x) (by Case (iii))

L(xn) = nL(x)

(7) xn = E(nL(x)).
Proof: E(nL(x)) = E(L(xn)) (by (6)) =xn

(8) (xα)′ = αxα−1.
Proof: xα = E(αL(x))
Differentiate w.r.t x, we get

(xα)′ = E′(αL(x)) · αL′(x)

= E(αL(x)) · α
1

x
= αxα−1

(xα)′ = αxα−1

(9) limx→∞ x−α log x = 0.
Proof: Let 0 < E < α.

x−α log x = x−α
∫ x

1

1

t
dt

= x−α
∫ x

1
t−1dt

< x−α
∫ x

1
tǫ−1dt (∵ ǫ − 1 > −1)

= x−α(
tǫ

ǫ
)x
1

= x−α(
xǫ

ǫ
− 1

ǫ
)

<
xαǫ−α

ǫ
→ 0asx → ∞

∴ lim
x→∞

x−α log x = 0.

The Trignometric functions

Definition 5.28

C(x) =
E(ix) + E(−ix)

2

S(x) =
E(ix) − E(−ix)

2i
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Result 5.29 (1) C(x) and S(x) are real if x is real.
Proof:

E(ix) = 1 +
(ix)

1!
+

(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+ ....

= 1 +
ix

1!
− x2

2!
− i

x3

3!
+

x4

4!
+ ... ......(1)

E(−ix) = 1 +
(−ix)

1!
+

(−ix)2

2!
+

(−ix)3

3!
+

(−ix)4

4!
+ ....

= 1 − ix

1!
− x2

2!
+

ix3

3!
+

x4

4!
+ ... ......(2)

(1)+(2)

⇒ E(ix) + E(−ix) = 2

{

1 − x2

2!
+

x4

4!
+ ...

}

E(ix) + E(−ix)

2
= 1 − x2

2!
+

x4

4!
+ ...

C(x) =
E(ix) + E(−ix)

2

∴ C(x) is real if x is real.
(1)-(2)

⇒ E(ix) − E(−ix) = 2

{

ix

1!
− x2

2!
− ix3

3!
+ ...

}

⇒ E(ix) − E(−ix)

2
=

{

x − x3

3!
+

x5

5!
+ ...

}

⇒ S(x) =
E(ix) − E(−ix)

2
= x − x3

3!
+

x5

5!
+ ...

∴ S(x) is real when x is real.
(2) E(ix) = C(x) + iS(x).
Proof:

C(x) + iS(x) =
E(ix) + E(−ix)

2
+ i

E(ix) − E(−ix)

2i

=
2E(ix)

2
= E(ix).

(3) E(z) = E(z̄).
(4) |E(ix)| = 1.
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Proof:

|E(ix)|2 = E(ix)E(ix)

= E(ix)E(−ix)

= E(ix − ix)

= E(0)

|E(ix)|2 = 1

|E(ix)| = 1

(5) C(0) = 1, S(0) = 0 and C ′(x) = −S(x), S′(x) = C(x).
Proof:

C(x) =
E(ix) + E(−ix)

2

C(0) =
E(0) + E(0)

2

=
1 + 1

2
= 1

S(x) =
E(ix) − E(−ix)

2

S(0) =
E(0) + E(0)

2i

=
1 − 1

2i
= 0.

C(x) =
E(ix) + E(−ix)

2

C ′(x) =
E′(ix)i + E′(−ix)(−i)

2

=
i(E(ix) − E(−ix))

2

=
i2

i

(E(ix) − E(−ix))

2

=
−(E(ix) − E(−ix))

2i
= −S(x)

S(x) =
E(ix) − E(−ix)

2i

S′(x) =
E′(ix)i + E′(−ix)(−i)

2i
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=
i(E(ix) − E(−ix))

2i

=
E(ix) + E(−ix)

2
S′(x) = C(x)

(6) There exists positive numbers x such that C(x) = 0.
Proof: Suppose there is no such real number x. Since C(0) = 1, we get
C(x) > 0 ∀x. (i.e.) S′(x) > 0, ∀x ⇒ S(x) is an increasing function.
∴ 0 < x ⇒ S(0) < S(x) (or) S(x) > 0 ∀x > 0. Let 0 < x < t < y.

⇒ S(x) < S(t)

⇒
∫ y

x
S(x)dt <

∫ y

x
S(t)dt

⇒ S(x)(y − x) < (−C(t))y
x

< C(x) − C(y)

≤ |C(x) − C(y)| ≤ |C(x)| − |C(y)|
≤ 1 + 1

S(x)(y − x) ≤ 2......(1)

Since S(x) > 0, inequality (1) does not hold for larger value of y. This
contradiction proves the assertion. ∴ There exist positive numbers x such
that C(x) = 0.
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