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volume. Experimental determination, chemnical potential, Gibbs Duhem equatior - Thermodynamic

properties of real gases - Fugacity, determination of fugacity of real gases. The concept of activity for

condensed states. Thermodynamic equation of states- derivation and application. Maxwell’s thermody-
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-electron systems.
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UNIT -1
Partial Molar properties

Asthe thermodyramic properties E,H,S, A and G change with'the change in the mass of
system, they are extensive properties. When the various equations involving these thermody-
namic propcrties were derived, an important assumption was made that the system under con-
sideration was a closed system (ie) a system in which mass and composmon do not vary. In
order to extend results so obtained to open systems GN.Lewis introduced thermodynannc
property, say X, which was called Partial molar property. This property must be a function not

only of temperature and pressure but also of the number of moles of various components
present in the system.

Let us consider an extensive property such as volume, free energy, entropy, energy
content, etc be represented by X. Suppose there are ‘n’ constituents in the system having
n,n,...n,... moles of individual components. Then the property X is a function of tempera-
ture, pressure as well as of the amounts of different constituents. Thus

X=AT, P, nnm.) 4y

If there is a small change in the T, P and the amounts of constituents, then change in property
Xis given by

oxX X X o (ax)
a:[_) iT+ [..._) dpf(_..) i ,{_) gt
aT Py 0y 0y ar T.nyn,,n.... ani 01 anz T,p:0,0; m ( )

T.pmy.0y....

The first term on RH.S, gives the change in the value of X with temperature when pressure and
composition are kept constant. The second term on R.H.S. gives the change in the value of X
with pressurc when T and composition are kept constant. The remaining quantities give the
change in the value of X with a change in the amount of a constituent, when T, P and the
amounts of other constituents are kept constant. If T and P of the system are kept constant,
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then dT =0, dP = 0. So the . eq (2) becomes.

dXqp = (-?—)—(—) dn, +( X } dn,+....
51'11 T,p,n;,n,.... anz T,p,0y, A ...

First quantity on right hand side is partial molar quantity of component 1, the second quantity
for the component 2 and so on. A

These are representeda by putting a bar over the Symbol of that particular property (ie)
Xi, X,, for the 1# 2™ component etc., respectively Thus,

in general, for any component i
L@?ﬁ) _% (ﬁ] x| .?.E} -%
anl T,p/ny,n5.... an TP,y 50 .. &\ ani Tpn 0y

Chemical Potential (or) partial Molar free energy

Consider the extensive property, free energy. Let it be represented by ‘G’. Suppose A
that the system consists of ‘n’.constituents, the amounts of which present in the system are
n,n,n, ... moles. Then the property ‘G’ is a function not only of temperature and pressure but
of the amounts of the different constituents.as well, so that we can write. |

G=fT,P,n,nn,..) wi(3)

Now, if there is a small change in the temperature, pressure and tne-amounts of the constitu-
-ents, then the change in the property G is given by

- (3G 8G oG oG |
dG=(——-) dT + (——) : dp+(-——) dan -{———} dn,+....(4
or Pl 0 By op Tomy.0;,85... an! T .98,y ,0y... l Bn, T.0.8;.2;.... : ( )

On the right hand side, the first quantity gives the change in the value of G with temperature
‘when P and composition are kept constant; the second quantity gives the change inthe value of
G with P when temperature and composition are kept

constant; the remaining quantities give the change in the value of G with a change in the amount

4
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ofa cOnstituent, when T, P and the amounts of other constituents are kept constant.
If the temperatute and pressure of the systemkept constant, then
dT=0anddP=0
So, the equation (4) becomes
| 0 0 3
(dG), , = (——-G—] dn +( GJ dn,+....(5)
. on on ‘
1/ T,p.ny,n,.. 2 JT,p,0,n4....

Each derivative on the right hand ‘side is caliea partial molar property and i 1s repre-

sented by putting a bar over the symbol of that particular property i'e. » Gu» G, forthe lst, 2nd
component ete., respectively. Thus

5. )
anl T.p.0,,0;.. ‘ anz T,p,n,,n,....i

In general, for any component1

| oG -
(55:1 - o
2Psliy Ry, 0y

This quantity is called partial molar free energy or chemical potentlal and is usually repre-
sented by the symbol 1 . Thus

W= L——] = G
on, ) |
’plnlan!nJ

Free energy (G), being an extensive property, depends’ not only upon the temperature and

pressure of the system but also upon the composition of the system. If the system consists of

anumber of constituents, the amounts of which are n, m,n,.... moles respectively, then we can
5
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write.
G=f(T,Bn,nm..) .. 3)

For small changes in T, P and the quantity of different constituents, the small change in free
energy can be obtained by the partial differentiation of equatic.. (3). This gives

| (
dG=(?-G—) dT+ (—Q-G-) dpJ{E) de, + ZG—] dn,+....(6)
ol Py, 1,05 op Toy,2;.05..o on, T.pn, By &12 T,pty Oy

If temperahue and pressure are kept constant then.dT =0, dP =0

Equation (6) becomes (dG )r,p = (.B:IT]T . dn, + [EH_JT . dn,+....

2

(dG )T,P = p,dn, +p,dn, +...... (7)

For a system of definite composition, represented by the number of moles n., n2, n3 etc,,
equation (7) on integration gives

Grpn=m 1, +0,1,+. ...

Differentiating this equation uinder conditions of constant T and P but varying , coniposition,
we get

Comparing equation (4) and (5), we get
n,dyp, +n,dp, +....... =0 e 9)

Equation (9) is known as Gibbs - Duhem equation and is valid at constant temperature and
pressure for any homogeneous system. '
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Concept of fugacity: Making use of the free enefg> function G, Lewis introduced the
concept of fugacity for representing the actual behaviour of real gases which is distinctly
different from the behaviour of ideal gases. A

Variation of free energy with pressure at constant ‘T” is given by the following

.I' |
3G
— | =V
(ap )T ................ (10)

This equation is applicable to all gases whether ideal or nonideal.

If one mole of a pure gas is under consideration, then V refers to molar volume.
For an ideal gas, the above equation may be put as

(dG), =RT. dP/P
and for ‘n” moles

(dG), =nRT. dp/P

(dG),=RT d(laP) .. (1
Integration of equation (11) yields

G='G‘*+nRT lap (12)‘

where G*, the integration constant, is the free energy of “n” moles of the ideal gas at tempera-
ture T when:the pressure ‘P’ is unity.

Equation (12), evidently gives the free energy of an ideal gas at temp ‘T’ and
pressure P.

Integration of equation (11) between P,land P, at constant ‘T’ yields

P dP P
AG = RT —=nRTIln %
fn P nRTIn P (13)

..................
Py LI

The corresponding equation for 1 mole of the gas would be

7
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AG=RTIaP/P, ... (14)

The equations (12) and (14) are not valid for real gases, Since V.is not exactly
equaltoRT/P

In order to make these simple equations applicable to real gases, Lewis mtro-
duced a new function ‘f called fugacity function. It takes the p'c ¢ of *P’ in equation (11}
which, for real gases, may be expressed as

(dG), =nRTd(ln f) covesuaes (15)
and equation (12) integrating may be represented as
| G=G*+nRTd(Inf) ceennieee {16)
where G¥ is the free energy of n moles of a real gas when its fugacity happens to be 1.

Thus fugacity is a sort of “fictitious pressure” which is used in order to retain
- for real gases-simple forms of equations which are applicable to ideal gases only.

The equation (16), evidently gives the free ercogy of a real gas at temperature
‘T’ and pressure P at which its fugacity can be taken as f.

The equation (15) on integration between fugacities f, and £, at constant tem-
perature, yields.

AG=nRTInf,/f, o (17)
The corresponding equation for one mole of the gas would be
AG=RTInf,/f;, ... (18)

As discussed above, the equations (17) and (18) are applicable in the case of
real gases.
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Fugacity at low pressures

The ratio /P where P is the actual pressure, approaches unity when P approaches

zero since in that case a real gas approximates to ideal behaviour. The fugacity function,
therefore, may be defined as

Limit
f/p=1
p—>0

Evidently at low pressures; fugacity is equal to pressure. The two terms differ materially only
at high pressures.

Determination of Fugacity of a Gas
The well known equation, for one mole of a gas may be put as
G=G*+RTInf (19)

Differentiation of equation (19) with respect to pressure at constant
temperature and constant number of moles of the various constituents (i) in a closed system,

gives.
oG dinf
— | =RT
(5). (%),
It follows that
alnf) Vv | 3G’
— Eo—— e 20)] si —| =V
( op ), RT ( )(s"‘“( op ), )
~ Thus ata definite temperature, equation (20) may be written as
RTd(Inf) =vdP . .. 1)
"Since one mole is under consideration, v is the actual molar volume of the
gas.
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Knowing that for an ideal gas, V = RT/P the quantity a, defined as departure from ideal
behaviour at a given temperature is given by

o= B—'I-‘——-‘ v (22)
P
multiplying by dP throughout, we get
adp= RT -(-i-P—Pe-— Vdp ... (23)
combining equations (21) & (23)
dp :
RT d(ln f)= RT -;-—-a P, .. (24)
dP
d{in P)=d(ln P} -~ 25
(in P)=d(ln P) - o= (25)

Integrating equations (25) between pressures 0 and p, we have

P
: 1
In f=lnp-—ﬁ—f-!a(dp) ...... (26)
-G

Now ¢ as given” by equation (22), can be determined experimentaily, at di pressures. These
values of o arethen plotfcd aqainst‘oorro&cponding pressure, as shown in the above Figure.

Plot of x (=RT/P -V) versus P for the determination of a gas

10
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Now ¢ as given “ by equation (22), can be determined experimentally, at different pressures.

Theses values of ¢ are then plotted against corresponding pressure, as shown in the above
Figure. The area under the curve between pressure o =0 and-any given pressure P, yield the
P

value of the integral IQ dP a5 illustrated by the shaded portion in the above Figure.
. [
Incoporating this value in equation (26), the fugacity f can be evaluated at any given pressure
‘P’ of the gas,
Concept of Activity:
It may be pointed out that since the absolute value of free ¢nergy or chemical potential
is not known, it is not possible to evaluate W* of a substance. This difficulty has been
overcome by referring gll free enérgy or chemical potential measurements for any given

substance to a standard reference point. Lat 12 be the chentical potential of a substance i in
pure state’and lef , be its fugacity.

So, the well known equation p, = |+ RT 1n f, becomes
By =p,°+RTInf?
Let p " be the chemical potential of the same substance m some other state.
Bi=y; +RTInf,

The difference between chemical potential of a substance in any state and that
in the pure sate is given by

m-p =RTInfi /£

M, =0 +RTInf, /£ e (29)
We may introduce here a new term, activity, a and detine it as

a= f/ flo — (30)

for a substance i, as ;

11
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a=f/ff . (31)

Activity of a substancé in anv given stite is thus defined as the ratio of the fugacity of the

substance in that state to the fugacity of the same substance in the pure state.
So, the equation {29) becomes
g;=p;+RTlna, ... (32)

Activity coefficient: For an ideal gas, activity is numericaily equal to its pressure

(i.e.,) a=p, For real gases, however, activity is only proportional to its pressure
(i.e,)
aaP(or)a=yP
Where 7 is known as the activity coefficient.
Thermodynamic Equat;on sofstate

Entropy being a state function, for a pure substance, its value wiii depend on any
two of the three variables, T, P, and V. Variation of S with ‘T’ and ‘V’

S = £(T,V)
ds =(§_S.) dT.,.(S?_S;_) dv reenne (33)
ar ), ¢ T\av ).

For a reversible Process “» which only Pdv work and heat are interchanged with the
surroundings

AE =q-W

dge =dE + Pdv

TdS = dE+PdV(or)dE=TdS -Pdv e (34)
dS=YyTdE+PfT4v ... (35)
Let us assume '

12



D.D.C.E M.S. University DCH 13

%

E = f(T,V)

JE OE .
dE =] — dT +{ — 1| dv . 36
(a'r)v (av)T Y e (36)

Eliminating dE between equations (34) and (36)

JE JE
——{ dT +}— | dv=Tds - P
(ar)v' (aVJT v v
« - N\ 3 .
_ds=-‘-(?-’?3-) aT - e (37)
T\ OT ), L\OV ] .

Edhating the coefficients of dT and dV in equations (37) and (33) -

oS 1 { BE Cy

== =—_—— ] === 38
(aT)v T \aT)v T ( )

3S 1[( 6E

i = ] ] — + P cessconse (37
(&) =55, G7)
FromEquatio,n(B'S)

(EB_E_.) -~ T [?_S;)
T Jy oT Jy

Differentiating with respect to “V’ at constant T

OB \_ . [_2
8V.aT ) 8V.aT

Similarly Equation (39) becomes

().~ [(Z),-+]

Differentiating with respect to “T’ at constant V

E_\_(_2s +(.,as_.) __(gg_)
av.oT ) 6v.oT ) \av ). \3aT ),

13
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E being a state function, the order of differentiation is immaterial and so equating the two

second differential Co-efficients.

(25) - (2
av : aT v e ’LO)

Equation (40) is one form of Maxwell’s Relation.
Substituting equation (38) and (40) in equation(33)

dr (op
ds=C, T +(3’F)v‘w ........ (41)

For constant volume process, dV = 0 and equation (41) reduces to

4T

ds =C, T ceeeenes (42)
For n moles of an ideal gas PV = nRT
(BP ) _ BR
aT A
So, equation {41) becomes
dS=nC, %L nx.%- ..... (@3)

oS
Substituting for ("5,‘) from (39) in equation (40)
T

)4
(o)
(%):[T[%)v"?} ........ (44)

Equation (44) is known as the thermodynamic equation of state and is applicable to all sys-
tems, ideal or real

14
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Variation of ‘S’ with Temperature and Pressuve

S =f(T,P)
. oS oS8
ds = | 22| 4T L2
(aT _)P + ( 5P )T arF (45)
H=E+PV

Complete differential gives
dH = dE+ PdV + VAP =TdS + VdP= (. TdS = dE+PdV)

TdS =dH - VdP ceeeeene (46)
H=f(T,P) |
6HY ... (8HY
dH= (22 SH |
H (BT),dT + (ap )TdP ........ @7
From (46) and (47)

Tds= (-‘25) dT + (_a___) dP — VdP
T J, ,

oP
1 (0H 1 OH b g eeeeeend (48)
.T(@T), | +T[(ap),. v]dp
Comparing equation 8.(45) and (48)
(?_S_) =_1_(?_H_) _Cp
oT ), T\oT ), T = e (49)
(a_s_) _1 (9&) v
8P ). T [P ). | (50)
From equation(50)

(BHJ _T(as)
8T J, oT J,

Differentiating with respect to ‘p’ at constant T
15
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H ) _ [ 2S_
\apor), = \@p.oT

From equation (50)

oH) _..(88)
GELET.

Differentiating with respect to “T" at constant P

(sroe) (7 &) ()

H being a state function, the second differential coefficients can be equated.
80,

(?_S_) __(é’_l). )
ap ). aT ), e {51)

Equation (51) is another form of Maxwell’s relations
Inserting equations (49) and (51) into equation (45)

dS=C, —;f-—('é?) .4 (52)
. »

For nmoles of an ideal gas

V=nRT/P and (?Y-) =R

ar), P
So, equation (52) becomes

ds=nC, %_E-' nR'.-c—ll-fi

Substituting equation (51) in to (A)

(&) -v-(5F)

Equation (54) is another thermodynamic equation of state

16
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Maxwell Relations

Maxwell used the two laws of thermodynarnics and deduce six funda-
mental differential relations among the basic thermodynamic coordinates. These relations

are known as Maxwell”: i =ermodynamical relations and are applicable to all thermodynamical
systems.

The state functions E, H, P, V, T, A, G and S are related by means of four
fundamental equations [ to I'V.

dE=Tds-PdV ... 1))

dH=TdS+Vvdp ... I
dA=-PdV=SdT ... (I
dG=VdP-SdT .. W)

These equations () to (IV) is in the form of dx =Mdy+ NdZ, where ‘X’
is a singlc valued function of the variables Y and Z (ie) a thermodynamic property of a closed
system and dx is an exact differential. M and N are also functions of Y and Z such that

| (22‘.) =M(§£) -N
aY ), oz ),

0*X _ ( oM ) ....... .(55)
ayoz \ oz J,
rx (@)
aY aZ aY vy (56)
It follows Euler’s criterion that

52),-(5)
oz ), \ &Y J,

17
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The same above procedure were applied and considering the Euler’s criterion

for the above four equations, we get the four different forms of Maxwell’s Relations.

Example
dE=TdS-PdV .. (57)

Equation (57) differentiated with respectto ‘S at constant V

OE
= | =T
[as)v ........ (58)

Equation (57) differentiated with respect to ‘V’ at constant S

OE. |
(5'\7)8 =-P e {59)

Equation (58) differentiated with respect to *V” at constant S

9B {_@!‘L)
ves) T\ (60)

Equation (59) differentiated with respect to ‘S’ at constant V

vas = (3s)
av .aS aS v (61)

Comparing equation (60) to (61) with Euler’s criterion then we get

18
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aT) _ (op |
5—\;— . = “a”‘s" . - Maxwell’s Relation -

Similarly when same procedure were applied to equations (I1), (I1) and (IV), we get the re-
maining forms of Maxwell’s relations

oT ov
5; S - 5_§~ b Maxwell’s Relation - I
op oS
6 T \ 5_\-/_'. T Maxwell’s Relation - IT[

8S oV
3P “aT[‘- Maxwell’s Relation - [V
P

ENTROPY PRODUCTION

The branch ot science dealing with the study of thermodynamic properties of
the systems which are not in equilibrium and involve transport processes which are
1rrevers1blc is termed ‘as Non-equxhbnum or Irreversxble thermodynamics or

Thermodynamics for Irreversible processes.

Thc entropy of an isolated system in equilibrium is maximuin. Henceifsucha
system is not in equdibnum the entropy will increase but may not decrease i.e., equilibrium
lies in the direction of i increasing entropy. This is termed as “entropy production.”

The concept of entropy production in an irreversible process may be
understood in a simple manner as follows. It is known that

dSZ—d—Q-
T

or which can be rearranged in the form
19
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s -Rs>o
T
The quantity on the left is greater than or equal to zero.So we may write

dS—-g-Q—:dc {62)

where do will be either zero or positive.

If it is assumed that the system is'in contact with a reservoir at T, and a quantity
ofheat dQ flows into the system, then a quantity, -dQ, flows in the reservoir. If the quantity,
-dQ, is transferred reversibly to the reservoir, then the entropy change of the reservoir is

so that the Eq. (62) can be written as

dS+dS_=ds e (64)

The quantity do refers to the entropy increase of the system plus that of the
surroundings (the reservoir). The do is called the entropy production of the process. For an
irreversible process, the entropy prbducﬁon is positive while for a reversible process, the
entropy production is zero,

Onsager Reciprocal Relations

These are also relations in which thermodynamics of irreversible processes is
based. Onsager gave the followmg fundamental theorem pertaining to such irreversible

processes:

20
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If one makes a “proper choice’ of the flux~s J, and X, the matrix of phenom-

- enological coefficients L, would be symmetric, i.e.,
L,=L,(i,k=12,.n) .. (65)

These identities are termed as Onsager reciprocal relations. The notion of proper
choice of fluxes and forces may be explained as follows.

Ifthe state of the system (local temperature, pressure etc.) may be described by
anumber of parameters A , A,,"A_ with their equilibrium values & Ay A, thendeviation

of state parameters from their equilibrium values is termed as state variable o . Hence.
a,=A, - Al(i= 1,2, ..n)

Now we will define the proper choice of fluxes and forces as the time
dertvative of the state variable a . :

and the following combination of the state variables Q :

) L
X, &T(AS)(WLL;WH) ..... (67)

where AS represents the deviation of the eneropy from the equilibrium value.

As entropy gets increased in irreversible process, this change in entropy AS
from the equilibrium value can be put as a function of the state variables, ie.,

21
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= 2: J.X, . (68)

In order to illustrate the above derived quantities e.g, fluxes and forces, we will
consider a system which is composed of two parts, both enc osed within the same rigid
adiabatic enclosure. Suppose the: two paris-are at uniform temperatures T, and T, if dQ
represents. the amount of heat flow from part at temperature T, to thatat T then increase in
entropy ot the system would be given as follows:

I T,-T,
dS=dQ | ——-—1=d ot s
Q[T, Tz] ¢,

AT

Where T,-T,= ATandT = JIT).

Hence rate of entropy production would be as follows :
AT
S=Q T e (69)

As heat flow, called flux, dehoted by Q occurs due to temperature gradient,
called force, denoted by AT , we can put

AT
Q=1J,and T—,——-X ..... (70
so that eq. (69) would becomes as follows :
$=Q )4:i
This is thus as eq. (68)
On Putting relations (70) in the following equation
J,=Y Ly X, (i=1,2....n)

ksl

22
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we get

AT
TZ

Q=1

THREE COMPONENT SYSTEMS C=3
(a) General. Phase Rule; F=3 -P + 2 =5 -P

IfF =0, P is maximum, thus for invariant system five phases must be present
together. The invariant system will exist at a quintuple point. Out of five phases for three
component system, the maximum number of liquid phase would be only three, vapour phase
only one (since vapours are miscible completely) and solid phase only 1.

Thus at quintuple point 3 liquid, one vapour and one solid phase may be present
or 3 solid, 1 liquid, and 1 vapour phase or any other combinatior

As the number of phase diminishes the variance of the system increases.
Maximum number of degree of freedom (variance) is 5 - 1 =4. Thus for the complete
description of the phase diagram of a ternary system four variables viz. . the temperature,
pressure and the mole fractions of any two components must be known. The phase diggram
needed will be four dimensional, which in not easy to draw. This problem can be solved by
keeping the temperature and the pressure constant. In considering a three-component system,
the vapour phase is considered to be absent and such a system is called a condensed systemn.

(b) Graphical Representation: For a three - component system having a single
homogeneous phase, the degree of freedom is given by.

F=C +2-P=3+2-1=4

The four variables are pressure, temperature and concentrations of any two of
the three components. The graphical representation of a system having four coordinates is not
possible. However, if pressure and temperature are kept constant then the degree of freedom
reduces to two and the system can be represented on a two-dimensional plane. Several schemes
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have been.in use for representing the equilibria in three component systems, but the
equilateral triangle method suggested by Gibbs and Roozeboom 1s extensively used.

The Triangular Diagram

The composition of a three-component system is shown in a triangular diagre
using the Gibbs-Roozeboom triangle (Fig. 3.43).

The various propertics of equilateral triangle are then used to discuss the phase
digram of a three component system.

(i) The vertices A, B, C of the equilateral triangle represent the three pure
components.

{(11) The sides of the triangle x'eprcscnt the cemipositions of different binary
systems. Side AB represents the composition of the binary system (A +B). On'line AB, the
concentration of the component C is zero. Line AT represents the composition of the binary
system (A +C) and the composition of component B will be zero. Similarly side .BC
corresponds te the composition of the binary system (B +C), the component A being absent
on this line and on any line drawn parallel ic AB the concentration of C is constant; on lines
parallel to AC, the concentration of component B is constant, and on lines parallel to BC, the
concentration of A is constant.

(iii) Any point within the equilateral triangle will represent the composition of
a mixture of three components. The composition of each component can be determined as
follows;

Calculation of the concentration of each component

In a mixture, the composition of each component is given by the distance of the
point (within the triangle) from the sides of the riangle opposiie to the respective veritices A,
B, C. This distance is measured along the line parallel to the sides of triangle. The mole
fraction of component C inthe mixture (P) is the distance of P from line AB measured paral- ,
leltoACorBCi.e,
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Fig.2 Graphical representation of the composition of a ternary
systcm at constant ‘T’ and ‘P’

Location of the point within the triangle when the composition of each
component is known separately. Let X, =a, X,;=b and X_=c, be the mole fractions of the three
components A, Band C respectively. The point representing the gross composition of the
ternary mixture can be located within the triangle as shown in Fig.2.

The sides of the triangle are equally divided into 100 or 10, or 5 parts. A portion
BX, = a is measured off on the AB which will give fhe concentration of A ; a portion AX, =b
‘measured off on the line AB will be concentration of component B. The remainder length
X X, =c will be equal to the concentration of the- third component C. The lines parallel to the
sides of the triangle are drawn from' points X, and X,. The point of intersection of the two
pai'allel lines will represent the gross composition of the ternary mixture as shown in Fig.3.
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Composition of S—>»
Fig.3. Location of a point within the triangular diagram

We have already indicated that unless the equilibrium system of a three-com-
ponent system is considerably simplified by imposing a number of restrictions, it is not
possible to study the equilibrium by constructing phase diagrams. The vapour phase is consid-
ered to be absent and now it is also assumed that o solid phase is involved in the equilibrium,
i.e., the system consists of three liquid phases only.

THREE - COMPONENT LIQUID SYSTEMS

Systems consisting of three liquids can be divided into three main categories
depending on the nature of the substance, and the experimental temperature.
1. Two liquids A -G, and B-C are completely miscible, and A-B only partially
miscible. Example: (i) Water -Chlomform—Acetic Acid, (ii) Acetone - Water-Phenol. -

2. One pair B-C is completely miscible. The pairs A - C, and A-B are only partially
miscible. Example. Water-Phenol-Aniline.
3. All are oaly partially miscible.
4. Al are completely miscible into each other.

Ore Pair of Partially Miscible Liquids. Of the three components A,B and C, one is
completely miscible with the other two separately and the other two are ohly partially
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rmscible between themselves, e.g., A is completely miscible with either B or C, but B is only
partially miscible with C, Examples of such systems are CH,COOH +CHCL+H,0,

ROH + CH, +H,0 and C,H,OH + CH,COOC,H, + H,0.

, Suppose a mixture of Band C is taken at a constant temperature. As the two
liquids are mutually partially miscible, the mixture will form two conjugate solutions given by
the points b and c (Fig. 4). As some A is added to the system, A will distribute itself between
the two layers (A is completely miscible with Band C) and the layers become conjugate ter-
nary solutions. The compositions of these two solutions are gwcnbythe pointsb’ and ¢’. The
tie line b’c’ will not be parallel to BC because the distribution of A among the two layers is

unequal,

A

Fig.4. Properties of a three component liquid
system of one pair of partially miscible liquids
Atany point x on this tie-line, the relative amounts of the conjugate solutions b’
and ¢’ are given by ¢’ x / b’ x. As the amount of A is increased the miscibility of Band C
increases until at the point P, the liquids become completely miscible. This is called the
critical point or plait point. The curve obtained by joining different points indicating
compositions of the two layersi.e. b P ¢, is . called a binodal curve. The binodal curve passes
through a maximurm at M. M generally does not coincide with the plait point P.

Any point outside the curve bPMc represents a one phase system, all the’ three liquids
being completely miscible among themselves. As pressure, and temperature are fixed, the
degree of freedom of this region must be 2. Inside the binodal curve the system is a two-phase
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and consequently F = 1. An example of the system described is B= CHCL,.C = #,0 and
A =CH,COOH. If the initiai commositicn of the mixture of Bend C is 1, then 35 incregsing
amounts of A are added, the composition of the whole system changes along rA. It may be
seen from the points of intersection of rA and the tiz lines that as A is increased, the
proportion of the left hand layer decreases uatil at the puint 8,55 two layers eoincide to forn
a single phase. Thus between S and A, the system is homogenaous and one phase, Thesameis
obsetved for any line rA except whenthe line passes throughthe plait point P, e g, iPA, along
P A, instead of one layer disappearing steadily, two layers remain, but their ¢oimposition
approach each other and becomesidenticat at P.

When the proportion of A is kept constant und Band C are varied, the systera
changes along the line YZ. Thus at'Y, the system is one-phase andas Cisadded mems and more
another phase appears as the binodal curve is reached. Within the binodal curve the system .
remains two-phase and then again becomes one-phase when the proportion of C increases
‘beyond the binoda! curve. This change, however, is obsarved only with systems conteining
lesser amount of A than that corresponds to the maximum point M. When the original compo-
sition lies between P and M, then the conversion of one liquid layer to two takes place fora,
system which always contains mare-of the component A than that at the plait point P. Such
solutions are said to show retrograde solubility.

A

Fig 5 Binary and ternary sojution temperatures.for. three-component
liquid systems consisting of one partially miscible liquid pair.
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The influence of temperature on the mutual solubilities may be studied by drawing
a rumber of isothermal binodal curves in a triangular diagram. Two types ot behaviour are
fqund. Solubility generally increases with temperature and hence the area enclosed by the
binodal curves beqom&s smaller and smaller until the curve coincides with the line BC (Fig.
5a). At this temperéame, Band C becomes completely miscﬂ31¢ and hence the temperature is
the critical solution temperature of Band C. The plait points lie on PP’ and P’ gives the critical
solution temperature. This type of behaviour is shown by the system water -ax'xiline»phcncl at
'50°C.

For sysiems like water-acetone-phenol, the influence of temperature is givexi
by Fig.5(b). Here, the plait points lie on PKP’ and K represents the ternary critical solution
temperature above which the three liquids are freely miscible. The binodal curves are of closed
type and hence such a system has two plait points for each binodal curve.

Two Pairs of Partially Miscible Liquids.

Out of three liquids A, Band C, when two liquids A and B & well as Band C are
partially miscible, there may be two binodal curves, as in Fig. 6(a) , with their tie-lines and
plait points. One example of such a system is water-ethanol-succinic nitrile between 13° and
31°C. Atlower temperatures, the partial miscibility zone increases and the two curves may
coalesoe to-form a band as in. Fig.6(b). The band diagram may also be obtained from a system
forming only one partially miscible liquid pair. Thus it is not possible to say whether a band
diagram will split up into a diagram containing ‘to binodal curves on increasing the tempera-
ture. Binodal bands are given by systems like ethyl acetate- water-butanol or 2- methyl-pro-
-panol: orﬁvmeﬂuyl-pmpan-z-ol etc., at 0 and 20°C. Points inside the band denote two-phase
and outsidethe band one phase systems
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m
Fig 6. Figures showing (s) two bimodal curves and (b) binodal band

Three Pairs of Partially Miscible Liguids. Three separate binodal curves are possible for
three pairs of partially miscible liquids. Points inside the binodal curves represent a pair of
conjugate ternary liquids in equilibrium [fig.6)]. If the miscibility is very poor and the tem-
perature is low then the three binodal curves may coalesce to produce a diagram as depicted in
Fig.6 (‘a}. The clear areas except DEF represent homogeneous one-phase system, the ares
shaded by the tie lines represent two phase systems and the area DEF represents thitee liquid
phases. At constant temperature and pressure for three-phase, three-cpmponentsystem F=0
and so the composition of the three liquid layers at equilibrium must be definite at a definite

temperature. The example of systems behaving like this is water-ether-succinio itrile.
A A

s = '
Fig. 7 (a) Three binodal curves and (b) Cozlescence of three binodal curves

Two salts and water:
Type I: No Chemical Combination.

The isothermal equilibrium of this type is shown in the Fig. 8 & 9. In this dia-
gram, points D and E represent solubilities of Band C respectively at the given {emperature.
When C is added to the solution saturated with B the concentration of the lattef changes and
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follows the line DF. Similarly when added to the saturs ‘ed solution of C, the composition of
the solution changes along . EF. At the point F, the solution becomes saturated with both B and
C. Atpoint, the composition must be constant. That is why the point F is called the isothermal
invariant point.

1,0

Fig. 8 Fig.9

The area above the lines DF and FE contains only unsaturated solution. In the
area DFB, there exists an equilibrium with saturated solution of composition lying along DF.
The points of convergence of various sets of the lines within this area determine the nature of
the solid phases, with which various solution are saturated

Corresponding to area DFB is area EFC in which the saturating phase is C.

The area a BFC is a three-phase region. At any point within his-area there will be
found solid B and solid C in equilibrium with saturated solution of composition F.

Examples: (1) Ammonium chloride-ammonium nitrate-water.
(ii) Sodium chloride-sodiunt hitrate-water.

(1it) Ammonium chloride - ammonium sulphate-water.

31



D.D.C.E M.S. University DCH 13

TypeTi: Double salt formed

Let us consider the fitst case when two salts B and C combine to fornra double
salt. Let the general formyla of this salt be B, C, When thiz dowbie salt is formed, the compo-
sition of this will fal! on the line BC [See Fig. 9.

‘ mthisdisgxmpoinEDmdicatcsthecompesiﬁoﬁoftedeublcsaltandﬁne
FGthecomposmons ofsoluboqssamtawdmththecompwnd.FandGarethetwo

isothermal’ iivariant points. The first of these solution is satiirated with B and D, and the
second with D and C.

Withisi the area BEP there exist B and solutions. In area BFD these exists D-and
solution F. It the area DFG, there are D and solution. In the area DGC there are D, C and
solution G In the area GHC there are Cund solutionrand in area above the curve ERGH there is
only unsaturated solution.

Example: H,0 - AgNO, - NH NO,
This is an example in which the double salt of AgNO, is formed.
Type IIi: One salt forms a hydirate.

Suppose one of the saits say S, forms a hydrate in the presence of all amounts of
SIts composifioh is given by point H on thé line WS, So that WH represents ilie amount of
anhydmnssalﬁmdﬂsl gives the amount crvstallisation in the bydrate. The equilibrium dia-
gram is as shown in Fig. 10.
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In this diagram, point ‘a’ represents the solubility of hydrate H in water at a
fixed temperature. As it is the actual solid phase in contact with the solution, it represents the

composition of the solution in equilibrium w;th the solid hydrate. Along the saturation curve
bf of S,, no hydmate is formed.

The point “f” is said to be non-variant because both the hydrate and solid S, are

in equilibrium with solution and Vapour. Thxs can be easily followed from the phase rule.
F=C-P+2=2-3+2 = |

Thus, at the fixed tefnperature the system is non-variant.

Any point within the area H S, S, will yield the composition of the system of

completely mixture of H, S and S,, This is because the system does not contain sufficient
water or convert all the solid S, into its hydrates.

Example:
System of H,0-Na,S0,-NaCl in which the hydrate Na,S0,- 10H,0 is formed.
Type IV:;DonHe salt forms a hydrate :
Two cases may arise:
(1) Hydrated doubi? salt is not decomposed by water.
 (ii) Hydrated double salt is decomposed by water.
Let us consider these-cases one by one.

Case (i).

The equilibrium diagram for this system is as shown Fig. 11. In system, the salt
S, ferms a hydrate H having a saturation curve ac whereas the salt S, is anhydrous at the given
temperature, However, these two salts can form hydrated double salt. D having the formula,

XS,y8,zW
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Where x, y and 2 are integers. The values x,y.a0d z fix the position of the point D within the
triapgle.

As the hycrated double salt can exist as a separate solid phase, it means that it
must have its own saturation curve. As tne DW Ime cuts the satvration curve cd of the hydrated

double salt, it means that the double salt does not get decomposed by water.

Within the'area CdD, compound D is in equilibrivm with solution along ca and
may be recovered from these mixture. Points ¢ anddare is thermal invariant points. Pointc is
saturated with the mixtures of H and D wheress point d is saturated with mixtures ot solids I
and S,. All mixtures arc completely solid below tie lines HD and DS,.

Within the triangle HDS, the solid phases are H, D and 5,
Example.

Alums having composition. such as X,S0,,Y,(S0,),24H,0 are examples of this
type because these are not decomposed by water.

Case (i1).

Now consider the case when the hydrated double salt is decomposed by water.
The equilibrium diagram for this system is shown in the fig. 12.

34



- D.D.C.E MLS. University DCH 13

In Fig. 12 the straight line DW is not meeting the saturated-curve cd of the
double salt, indicating that double salt is not decomposed by water. Thus, under certain condi-
tions the preparation of the double salt is not Possible

Examples,

An example of this is MgCl,. CaCl, . 6H,0 Another exampie ot this type is
MgS0,-Na,S0, H.0.

Category III. Formation of solid solutions.

When two solid components 8, and 8, are completely miscible in each other in
the solid phase, a series of solid solutions ranging in concentration from pure S, to Pure S,tan
be recovered from a solution of these in water. As under these conditions only two phases
appear in the system no invariant point is observed. The equilibrium diagram for such a system
is shown in Fig.13. ‘
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In this diagram, tho line DE gives the composition of saturated solution in equi-
librium with solid solutions of S, and S, of compositions given by the dotted lines. In the atea
above DE, only unsaturated solutions can beobtained. Below this line DE, two phases occur
i.¢., the saturated solutions along DE andthe soliu Jolutions in cquilibrium with each other.

Partial miscibility of solid phases

Fig. 14 shows the pliise diagram for a systemin which the solid phases 5, and S,
are partially miscible in each other. Under thése conditions two sets of solid solutions would
be formed.

(i) OneofS,inS lying between points S, and D'and
(i)  Anotherof 8, in S, lying between points S,andE..

The line FG gives the compositions of saturated solution In-equilibrium with

the first series of these solutions while curve HG with the second series of solid solutions.

Between poiats D and E mixtures of S, and S, will yield two solid:of which one
has the composition D and the other E. G is an isothcrmal invariant point because at this point
the splid solutions D and E willbe in equihbrium with the solution and vapour phase. if one
considers any point within the triangle GDE, it gives composition of solutionsin equilibrium
with two solid solutions D and E. w
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UNIT-1I
The Postulates of Quantum Mechanics:

The formulation of Quantum mechanics for the wave mechanical treatment of
the structufe of atom rests upon a few postulates.

Postulate 1 :

The state of a system is described by a wave function ¥ (x, Y, z, t) which
contains all the information about the system.

Postulate 2 ;

A physically observable quantity A of a system can be characterized in quantum
mechanics by a linear operator 4 This operator corresponding to the classical expression
for A is found by replacing each cartesian coordinate and each momentum component ¢, in
that expressionpy x and

h/2ni . o
ox respectively.

Postulate 3 :

The allowed values of an observable A are the eigen values a, in the operator
equation. x Vi=a;y;
Postulate 4 :

The average value of the property, associated with the operator /4 is given by

IW";&WdT
Jw ¥ dr

(a)=

where v is the system state function
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Paostulate 5 :

The wave function that represents the state of the system changes with time
according to the time dependent Schrodinger equation

"ih a{{(xs Y,
2n ot

z’t)-=Hw(x,y,‘z;t)-

where [ is the Hamiltonian operator of a system
Operators

An operator is a symbol for a rule of transforming a given mathematical
function into another function.

Ex. g denbtes;n operator which transforms the function f{x) into the function g(x), then we
write } f(x)=g(x)
Lei A be d/dx and f{x) = ax* then
A f(x) = d/dx (ax?) = 2a X, i.., g(x) = 2ax
Linear operator

An eperator is said to be linear if its applicaticn on the sum of two functions

gives the result which is equal to the sum of the operations on the two functions separately if
A [fx)+g]= 3} ) +4 3 ()
A Cf(x)=C. i f(x), where Cis a constant.
Example
1. d/dx is a linear operator because d/dx (ax™ + bx")
-&q;(ax“‘ ) + asl; bx"
2. Square root is not a linear operator because

JEX)+g(x) 2 JE(x) + Jg(x)
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Hermiman property of operators
The quantum mechanical operator satisfies the following condition known as-
Hermitian condition.

1. If an operator /4 has two eigen function and ¢ and if

fw(icwdr = j(fw)cbdr

when ¥ and ¢ arereal.

o Aoy = fawy pee

when ¥ and ¢ are complex, W * is the complex conjugate of ¥ and dr is the volume
element of space in which the function is defined, then the operator 4 is called Hermitian

2

d
operator. Example: Examine if ) is a Hermitian operator

Ify =e*and ¢ =sinx
A ‘ ) dz . L
fu*Ad)dr= Je 57 (sin)dx= - Je sin x dx

I&(Aw)‘dt= jsinx[-di—zze“)*]dm [sinx(i%e* ) dx=— [sinxe*dx

2

d .
The two integrals are the same ) is Hermitian.

Eigen values and Eigen function

If an operator } operates on a well behaved (i.c., finite, continuous and single
valued) function \; to give the same function y, but multiplied by a constant factor ‘a’ then
constant factor is “a’ called the eigen value of the operator and the function Y, is calle.:d the
eigen function } v, =avy,

This is known as an eigen value equation

39



D.D.C.E M.S. University DCH 13

Example: If y, =e* i =d/dx

then  {e™)=-a(e)

-+ is an eigen function of d/dx and the corresponding functio- cigen value is -a.

Method of setting up quantum mechanical operator

1. First write the expression for the physical quantity in classical terms i.e., in terms of
Cartesian coordinates of positioﬁ (x,y,z) and momenta (P, P P ).

2. Replace there coordinates and momenta by their corresponding operators

3. Operator for a coordinate of position (say x) is multiplication by that variable x itself.

x. h O
4. Opcratorforacoordinateofmomennnn(sayp)m«g

Ex;- the kinetic energy of a single particle moving in one direction say X.

A 2 2 2

1 m°Vx P
xz'—mV:= = —=
2 2m 2m

Therefore, the K.E. operator

: h? 9?
8r’m Ox?
A {‘ 2
Tt |2 9
2m | 2 i Ox
Degeneracy:

For every eigen function (well behaved wave function) there must be a
corresponding eigen value (energy value). It means that each energy state of the system must
have a wave function which will be the characteristic of the system. In other words among the
various stationary states it may happen that some of them correspond to the same energy
eigen values, but differ in the values of some other physical quantities. Such energy eigen
values or energy levels of the system are said to be degenerate. It means that degenerate states

of the system would be energetically identical.
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IfE, E,E, ... represent quantised energy levels, ‘hen corresponding to each of there
values, there is atleast one eigen function v, -
Hy,=E,y,
V. represent a set of eigen function v, y,, y, .............

If for each energy state, if there is only one wave function, then the set of cigen
functions and the energy states are non degenerate.

On the other hand if there are more than one wave function for an energy state
such that

Hy, =Py, ,Hy, =Ey,,Hy,=Ey, thenitisdegenerate.
Degenerate States are energetically identical.

Normalized and Orthogonal function

'If yidxoryy *dx represents the probability of finding the particle at any point
X, then the integration are the entire range of possible location, i.e., the total probability must
be unity because the particle has to be somewhere within that

rangei.c., I\Vz dx =1 or J'\;l\y*dx=l

In three directions Iwz dr=1(dr=dx,dy,dz) A wave function which satisfies the ( above
equation is known as normalized wave function and this condition is called normalisation
condition. There may be many acceptable solutions to Schrodinger equation ﬁ v =Ey
for a particular system. Each wave function v has a corresponding energy value E. For any
wave functionsy, and v ; corresponding to the energy values E;and E; respectively, the
following condition must be fulfilled. [,y dt=0

Such a condition is called condition of orthogonality of the wave functions, the
two functions y; and v ; are said to be orthogonal to each other.
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Commutative and Non-commutative property

When a series of operations are performed on a function successively the
result depends on the sequence in which the operations are performed; in other words, in
operator algebra it is not necessary that

AB f(x)=BA f(x)forexamplelet A dcnotc-f;ﬁ stands for 3x?, and the function f{x) be sin x,
then

AB f(x)=§x—‘[3x2 (sin x)] =-d-i—-(3x2 sinx)=6xsinx+3x2 COs X
and
BAf(x)=3x’ de-(smx) = 3x” cosx =3x*cosx

If two operators are such that the result of their successive application is the
same irrespective of the order of operations then the two operators arti said to be commuta-
tive. In the above example, the two operator are non-commutative.

Eg,
A stand for 3+

B stand for 4+

f{x) = ax

ABf(x)=3 +4+(ax)=3+(4+ax)=7+ax

BAf(x)=4 +3+(ax)=4+(3+ax)=7+ax

Then A and é are commutative.

The Heisenberg uncertainty principle

According to classical mechanics one can determine, simultaneously and precisely both the
position and the momentum of a body at any point in space. However, with microparticles,
owing to the presence of both wave and particle characterization, their properties are differ-

ent from those of macroscopic particles. As a result, it is not possible tc determine accurately
the position and momentum of a microparticle simultaneously. This gives rise to an uncer-

42



D.D.C.E M.S. University DCH 13

tainty in either the position or the momentum which is hewever not a matter of imperfection

of the experimental technique but a result of the intera=tion of the system with the measuring
techniques.

According to Heisenberg that the product of the uncertainty in position (Ax )
and the uncertainty in momentum ( 5 px) along the x direction ofa body, in equal to or greater
than Planck’s constant h

Ax.Apx 2 h

or

Ax.Apx 2 —ll—

4rn

Non - commuting operators and uncertanity principle:-

If the operators for two observables commute, then the two observables can
have precise value simultaneously.

If the two operators do not commute, then it is not possible for the correspond-
ing observables to have precise values simultaneously.

Consider the operators for position along the x axis X and the x component of

A

momentum p
X

A A

- : dy 0@ )
XP w-~P = ~ith| x&L .2
Y-P Xy =~it (x (Xv)

= —ith [~y ]=ity

These operators do not commute. Consequently x and P cant have precise values
simultaneously. -

This is the basis for the uncertainity principle of Heisenberg.
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Application of wave mechanics to rigid rotator

~ Rigid rotator - two or more particles system, in which the distance between the
particles is assumed to remain fixed during rotation and cannot vary with time. The theory of
such a rigid rotator is useful in dealing with the rotational spectra of diatomic molecules.

Letus consider a two particle rigid rotator like a diatomic molecule with masses
'mt and m2 and separated by fixed distance ‘r’. The rigid rotator is a twobody problem and can
be reduced to two separate one-body problems. '

1. The translational motion of the system can be treated by using the total mass of

the two particles and
2. The rotational motion of the particle can be obtained by considering a reduced
mass K
r
0 ®
m T c I m,

Let us consider the centre of mass C, of this two body problems, located at the

origin of the cartesian coordinates, and let the distance of m, from the centre of mass ber, and
the distance of m, be s,

mr=mr, e 1)
r+tr,=r e (2)

from equation (1) and (2) we get

m (r-5,) =m,x,
(m, +m,)r, =myr

mr
m, +m,

L= en3)

Similarly
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m,r
mrm, e (4)
The moment of inertia (I) of the rotating body, about the centre of mass is
I=m, f’+m,r} SN )
Subetitirting the values of r, andr, in this equation we get
1= Bells r,=pr: (6)
m,; +m,

m,m, . . |
p= —1% j5 the reduced mass
m, + m, |

Since the distance between the two particles is fixed, the potential energy is

treated as zero. Therefore, the rigid rotator has only kinetic energy. The kinetic energy (T) of
the rotation is then given by

1 1
T= Emlvlz-}- ~2~m2 vl (7

-------

Where V, and V, are the .linear velocities of masses m, and m, respectively.
Then in terms of angular velocity, we can write

T= %-mlco’t,’+ -;—m,(o’r: (8)

V=0r
T=-1-(02(mr2+mr2)='-1-.-'cozl
2 *1 | ] 2 ;
Where o is the angular velocity. Since, angular momentum L is related to the
moment of inertia, I through the relation
L=ol
L?  L?
21 = zurz ...... (98)
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Now let us conside the two particle rigid rotator from the quantum - mechanical standpoint.

The Hamiltonian operator ;I will contain only the kinetic energy operator. Hence
gL ¥ o .{10)
2ur’ 8Mp <
Where the operator corresponding to angular momentum is

a2 h2 102
a2 wee (11)
To solve this problem it is most convenient to use the expression of I"f in spherical polar

coordinates. Therefore, Schrodinger’s equation Hy = By may be written as

e —| SinfG— e > 5
Sind 08 o8 Sin“6 o h

This equation contains two angular variables ¥ and ¢ .Itis solved once again by the method

2 2
1 5[ awil“‘* LA LIS W S

of separation of variables we look for & solution of form.

w=0(0)6(¢) .. (13)
Substitute this in the ebove equation'we get
Sin@ @ [, ,00] S8II’I_. , 18%¢
—1 Sinb — Sin‘8 =
9 ae[ m aGJ + hz n ¢a¢2 ...... (14)

Setting both sides of equation (14) equal to a constant m?, we get the pair of differential

equations, each in one variable, as

k)
e e (1%)
1 o[, 361 [. m? |
e e [ Yt LI
Sin6 ae[s"’ ae] * [B Sinlg]e o . (16)
where , 821 .. a7
=_TE
h
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Equation (15) has the solution
#(¢)=Cexp(2im4)
This is an aceeptable wave funetion provided m is an integer. This condition
arises because ¢ is required 1o be single valued. Thus
¢(9)=¢ (27 +9¢)

exp(im¢)=exp im¢+22] (19)
This requires exp ( 2xmi)] to be unity, in other words

Cos 2xm+isinogme=1
This is true if m = 0, +1, £2 3, ... etc.,

The normalization eondition gives the value (27)"? The normalized solutions of equation
(15) are

2

¢tm(¢ exp(timé
( )s/(27‘) (ximd) e (192)
(m=0,123..)

Equation (16) has its solutions the associate Lengendre polynomials pi™ (Cos8)where /is
either zero.or a positive integer and further £2|m|. The normalized solutions are givenby

6(6) =65 (0) = ‘jzz+1(t-|m})! (oo 6)

2 (¢+fm]) >

The restriction on / leads to quantisation of the kinetic energy of rotation, whose values are
givenby

£(2+1)h?
E-‘.-‘*""g;;i—- ...... (21)

Equation. (21) is obtained from Equation (17) by substituting £ ( £+1) forP . The total wave
function of a rigid rotator is then given
v=(0.4)=8,..(8)0.. ($)=Y,.n(88) (22)

The function Y .4m 8re called spherical harmonics. The following are a few spherical
harmonics . ‘
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—5— Y il-—{-xSmBexp(ilé)

Y., —JJ—-Cose Y,, -7.(3Cos'e -1}

Y, +1 =z7m8in 20 exp (i¢);

v,222 05 sint oexp (2210 @)

From equation (21), the energy of a rotator does not depend on the quantum number m. The
lowest state has zero energy and this is permissible according to the uncertainty principle
Y 0,0

PRI A

because there is no variation in wave function, Y., on the surface of the sphere.

Application of wave mechanics to harmonic oscillator

A diatomic molecule having masses m, and m, executes periodic motion with
respect to centre of gravity. Such a motion is known as sirple harmonic motion. In this
problera a diatomic molecule is approximated to simple haninonic oscillator. Using Schrodinger
equation for simple harmonic oscillator, E & v can be evaluated. The E values give the
oossible vibrational energies of the diatomic molecule, which will be. usefulin understanding
of vibrational spectrum. Using the Eigen function, the allowed vibrational transitions canbe
predicted. The simple harmonic oscillator obeys classical Hooke’s law.

1) Construction of Hamiltonina operator for simple harmonic oscillator
-h? 2* 1

3 ,"-"-i"'l'-"kxz
8n‘p oX* 2

Hsuo =

u : reduced mass
The simple harmonic oscillator obeys classical Hooke's law:

fax
f =-kx
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f = restoring force
k = force constant
x =displacennent
The vibrational frequency of sinnple harmonic oscillator is

2} k
v --———1-—
4x° n
k=4x2viy
-yt
P.E 2 k x
Substitute the k value we get
w%w vV px?
PE=2x*v? px? cereee (2)
Substitute this value in the equation (1) we get
A ~hd aZ 2 2 2
Hsno=gt—2; 5}—(74"2“ vopxe oo 3)
Schrodinger Equation for a simple harmonic oscillator

ﬁ Y =ey .
Substitute the value of equ (3) in equ (4) we get
-h? &
:8_7{2; 5)—(;4—21!2 v? uX2W= Ey
_ 2
Multiply throughout by %’;—E
) )

rewriting equ (5) we get

&y |8x*uE 16n*vipx?

ax: + h he y=0 (5)
Let SR;:LE -a
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An’pv
h
Substituting this in the above eqn. we get

=b

-a—z—“i+[a--b2 x’]w:ﬁ

Let q:ﬁ,x
qz =bx2
Once x.is replaced by q

o 'y
ax\f must be replaced by = aq,

& 3y . , '
ax‘," = b. aq? in equation (6) we get

2
%a?- +[-§-—bx’]\v =0

Where bx? = g¢?
The above equation becomes
R
Case: I Limit is Aysmtotic equation by b we get,
When x — large
q —» large
q* — large
i.e., ¢¢ becomes g¢*>> a/b
Equatiorn (7) becomes
’y
aq*

+-[-aJe =0
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The solution for the above equation

'
y=e*
There are two limiting solutions
+qz /2 -q%/2

y=e end \y =¢

As the acceptable eigen functions or well behaved functions are considered in
quantum mechanics. It should be single valued, continuous and finite.

-q*72

y=ed4tc L. (8)
This is called asymptotic solution of equation (7)
The equation 7 is transformed into a differential equation in equation in f{q) and that diff.

equation is

't _ of [a
— —2q=+|2_1|f=0
24 qaq [b ] ...... %)
This is known as Hermitte equation.

The recurasion formula for the equation (9) is

2K—-(%~l)
=(K+2)(K+l)

Agny
A,

Put A, , =0and K =nin equa(10)

8
(o 20| &-1]=0
e, (b )
a
(2n+1)-2
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where a = 8n’pE

_ 4n’vu
z

b

a
substitute these values in the equation (2n+1)= 5

E:&‘.%l_)}l‘i

E=hv(n+—1-)
2

Whenn=0,1,2,...n

N = vibrational quantum number

Eigen function for simple Harmonic oscllator
Consider equation (9)

as the value of K are limited be n. f{q) becomes Hn(q)

: Ay
W hereHn(q)=A -+ ’;‘% +A‘2q2+ ...Anq Hermitte polynomial
t

As %-l=20 from recursion formula equation (9) becomes

2
2 Ij ~-2q -?E* 2nH=0
Solving i*< equation. We get Hermitte polynomial
@)=y et 2L
d,(q)=(-1) . .———
oq
—a?
Vsuo =AH, (Q)-e v
where A is normalization constant.
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1

substituting this in the aboye equation we get |

v, forSHO=; e

1 n—q'/2
(5.2 []" ] =5 []

CaseIn-0 E =1/2hv
The corresponding eigen function is v,

“= T3] [O]W][(—l)°%i—?'i(e*" [+

1

o it
Ve =r——]1tl‘/‘ [l.e"]e"'”2
1 g

Yo = - ©
2 A

q2=bx2

y? =L e ix=0
* Jn

2 1 2
=—=A

Vo 7

As the potential energy of simple harmonic oscillate = }'g kx?, which in of the form Y = ax?
Which represents a parabola, the P.E should vary with displacement in a parabolic manner
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The free particle
One of the simplest applications of the Schrodinger equation is found in the treatment

of a free particle. In the free particle system, a particle of mass m and the potential energy of

such a particle is taken to be zero for convenience and the to'.i energy is entirely kinetic

energy.

The Schrodinger equation for such a system in one dimentsion is given by

o'y  8n’m
+ Ey=0
axz h2 W (1)

This is second order linear differential equation and general solution is

(8n'mE " (8x'mE )"
y=Aexp|i h2 x |+Bexp|-i o x| ()

where A and B are two arbitrary constants. For the probability of finding a particle to

~rmain finite as X goes 10 iufiuity, the nececearv condition is that the energy, E must be
L4

positive.

If E < 0, then the first term in equation (2) will be infinite as x approaches minus
infinity, and the second term becomes infinite as x approacnus plus infinity. Thus the restric-
tion on the energy of 2 free particle less in E > 0. In this condition thc arbitrary constant A and
B can now have any values. Therefore, for the free particle, energy in not quantised and it can
have any value greater than zero, and energy spectrum will be continuous. This conclusion is
in agreement with the observed spectra of an atom. The dissociation of an electron from the

atom and the radioactive emission of alpha rays and beta rays are some of the examples of free

particle.

WAVE MECHANICALTREATMENT OF A PARTICLE IN ONE DIMENSIONAL BOX
Peotential box

A potential box is a system in which potential energy is zero within a closed region and
infinite (v =) everywhere else.
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Particle in a one-dimensional potential box

The simplest problem related to that of a particle in a microscopic system (say, elec-
tron in the atom) involves the calculation of the wave function and energy of the particle
(electron) constrained to move within a certain distance in given dlrectlon back and forth. To
tackle this problem, let us consider a particle (electron) in a one dimensional box as shown in
Fig.(1).

?
\ | i i
V= ®
: V= ® v=0
v= |
v G s
r.oct’-.-.ooc. ...~....-..b.j
x=0 x-axis x=0

Fig.L (if). Wave Meéchanical treatment of a particle in & one - dimensional potential box.
The two walls of the box are I and I

The particle is restricted to move along x-axis, back and forth. The width of the box is ‘a’ and
heightis © . Suppose that particle does not lose energy when it collides against the walls of
the box, so its energy remains constant (Fig. 1) . Consider the wave mechanical treatment of
a particle in one -dimensional potential box. The two walls of the box are ] and II are constant.
Then this box is represented by a potential box of width ‘a’ with potential walls of infinity
(%) height at x = 0 and x = a. Hence potential energy (v) of particle becomes infinity
(v= " )onthesides1 (x=0)and I (x = a) of the box and is constant inside the box. For sake
of convenience it can be taken as zero (V = 0) inside the box so that there is no restriction on
the movement of the particle in the box. Outside the box the potential energy is %,
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jie, V=% atx<0(i.e.,ncgaﬁvesideofx—axis)andatx>a.,“lhﬁefom;:mewave function Y
and probability of finding the- particle (i.e., ¥~ ) mustbe zero when x < 0,x =0 andx >2.In
odlcrwoxﬂs,ﬂteparﬁcleisconﬁnedinttwbo;andcannotesg:@emebox,i.e.,paniciedoes
not cxist outside the box. N

The Schrodinger’s wave equation w.r.t. space is

a? w a’vaw Sum
E- V 0
ax? +Oy az? ( )W

Ford:epmﬁclemovingonlyh:x—ditecﬁon,dﬁsequaﬁonbeoomes
Zx\g +83: m .
Now, within the box V¥ = 0, Therefore we get

(E-V)y=0

a2, 8ﬂ2m - o
- ox* h? oo
o'y _ (8x’mE
axl - hi vy T eesacws (1)
or solution of Equation (1). Since = ,mv,E‘and h are constant, equation (I) can be written as
a? ¥ 2
=-k
ox? v e )
e 8n’mE
==

Where, the general solution of equation (2) is
y=Ce*+C,™ ... 3)

where C, and C, = Constants

An equivalent and more convenient fors of equation (3) is
y=ASin(kx)+Bcos(kx) ... 0
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Where A and B = Arbitrary constants
Equation (4) represents all the solutions of equation (2) which are mathemati-

cally satisfactory. However, these solutions (wave functions) do not necessarily satisfy our
boundary conditions, and we now must examine equation (4) in view of these requirements.
Differentiating equation (4) with respect to x we get.

ZY e (Asinix+Boosix)

ax?
By applying boundary conditions that at x=0, y =0, the equation (5) becomes

0=-k’(Asinkx +Bcoskx)
As sino-;dmdcos0=l,wcget

0=k (0+B)
je, B=0 (6)
PﬁtﬁngB =0 in equation (4), we get

y=ASinx ™

Applying the other boundary condition that at x =a, y =0 the equation (7) becomes
O0=Asinka .. 8)

SinocA # O (otherwise wave equation (7) vanishes if A == 0 then equation (7) yields
v =OWhichmmsthatpmbabilityofﬁndingthcpam'clcintbcboxwiﬂbczcm(w’ =0)
which j# not acceptable because the particle has been considered to be present inside the box
the equation (8) gives
sinka=0 ©)
ka=gornm (" sin n=sinnyx =0)
oz

a ~— (10)
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where n=an integer, i.e,n=1.23, ...

Substituting value of k from equation (10) in (7), we get

y=Asin (-’-’{1‘-) ...... an

The equation (11) gives a family of acceptable wave functions corresponding ton =1,
n =2, n=1.... etc. These single valued and finite functions are called eigen functions.

Expression for Energy of the Particle according to equation (10) .

k:fit. " nin?
a o a’
. kz _ 8 ﬂsz
Also S -—--—-i;;'"—'
8§n’mE _a’x’
- h2 al
_n’h’?
" 8ma?
Wheren=1,2,3 ...
Hence

Equation (11) gives allowed (permissible) values of energy corresponding ton=1Ln=2,
n=3, ... etc.
E_stands for the energy of particle in n™ level hence symbol E, is used in place of E.

Since n, called the quantum number, can assume only integral values, it is clear that the par-
ticle may have only certain discrete values for E. These are the eigen values for E.
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E cannot be zero because in that case, ¥ = A sin 0 =0, ~verywhere in the box. Clearly this is
impossible. Hence, n = O is not permissible.

From the above discussion it becomes clear that the concept of energy quantization is
inherent in the wave mechanics.

Normalization of Equation (11) The mathematical process or operation for calculating the
value of ‘A’ in equation (11) is called normalization, which can be done as follows :

The probability that the particle is within the space x and (x + dx) for a one-dimen-
sional box given by y 2 dx. As a consequence of these assumption

?w’dxﬂ

Imposing the condition that probability of finding the particle within the box,
i.c., between x = 0 and x = a, is unity (because our problem requires that the particle must be
somcwhere inside the box), the above equation changes to

I\;/ *dx =1
o
From equation (9)
¥ = A sin kx
Hence fA?sin? kx dx =1
0
or A? Jsin’ kxdx =1
¢
Since sin’ kx= 1/ [1-Cos 2x]

s
Hence, -’;‘2— [(1-cos 2kx ) dx =1
0
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[

%z—[]dx - ]cos 2kx‘dx }=1
Lo

\ ‘
%—-[a—%{(sin 2kx —sin 0)]:-1

2 . '
%—[u-—-}isin ka]-——-l (+sin0=0)

From equation (11)

nx
k=~
a

H éj—[a—l-sin 2!11!]=1

ence 7 2k

But sin2arx =0

Hence, equation (13) becomes
A’a

fulaliad |

A=

2
a

Hence, general solution of Schrodinger’s wave equation for a particle (say, electron) in & one-
dimensional box is given by

sincen=1,2,3 ... an integer

Hence equation (11) is written as

v, =22 -sin(ﬂ) e (15)

Aswekngwthat ,

Therefore equation (15) is written as
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.
v, = \/-ET.sin HS“;;“B )%.xJ,

The mathematical process described -above is called normalization and value of
constant A is called normalization factor. In equation (16)

NMiuﬁon factor= ,/2/a
The wave function v, is now said to be normalized. In other words, equation (15) and

(16) are the expressions for the normalized- wave function or normalized solution of

Schrodinger’s wave equation for a particle in a one dimensional box.
WAVE MECHANICALTREATMEN'IN OFAPARTICLEINA
THREE - DIMENSIONAL POTENTIAL BOX
Consider a microscopic particle (e. g, electron) of mass m moving in a three-dimen-
sional cubic potential box having sides a, b and c; in length along x, y and z axes respectively.
The potential energy of the particle is zero within box (V =0) but infinite everywhere outside
the box (V = on) (Fig.2)

/

[

Y

With these assumptions, the Schrodiriger’s wave equation for the particle inside the
box will be

oty 6 y 8%y 8n’mE
+ =0
R s e A a)
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Dividing through outby W 7

1(8%y o'y dly L mE _0 |
— ax2 + ayl 622 h2 ..... (2)

The wave functiony depends upon three coordinates x, y and z. Hence can be written
as the product of three wave functions, one each forx,yandz

Hence vy vy, e (3)

The total energy (E) of fhe particle may be taken to be the sum of three components E,
E, and E, along three axes X, y and z respectively. Hence

B=E+E+E, e @)

Substituting equ (2) in equ (4), we get

0

1 .,{az(“’x\‘:y“’z)+az("{”‘\‘:Y\Vl) 52(“’“‘:'“")} M (£ 4, +E,):
v, | Ox Oy oz"

On simplification

. 62 A
! .azwz"+ LA .a“;']-t-gnm(E +E, +,)=0
&'y, ¥ v, & b’

That is equation (6) consists of three mdcpendent terms (differential equations), each
term is the function of one variable only, hcncc

1 a’wL 8= mBJL —0

v, axll h2 ...... (7)
1 8’\|l]_.‘_8'u2ml3y o
v y b ayl _ hl . e (8)

1 6’\;1 8n’mE,
v, azll hZ =0 (9)
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Each of the above three equations (7), (8) and (9) is similar to Schrodinger’s wave
equation for the particle moving in a one — dimensional box only, hence their solutions for
energy are,

_n, b’
* " 8ma?

n; h?
y—8t_nb2
_nlh?

- 8mcz- )

E

E

z

and the solutions for wave function are

| ) =m_sin(n":x)
v, =\/2_/?.sin(n’bny)
v, =\/2—/:.sin(-l-l-§£)

—

Discussion of Equations (10) and (11)

L. The numbersn , n_andn, are the quantum numbers along x, y and z directions respectively.
These are capable of taking up all integral values, i.c., 1,2,3,4, .. that is, these values are quan-
tized. Hence these numbers, n,,n and n, are given the name quantum numbers . .’

2. The total energy, Eis given by

2 2 x'lz‘ 2
E=Ex+E,+E,=~}3——(E‘~+ ’+-n-’-] ..... (12)

8m| a2 b ¢?

Siacen , n_and n, can assume only integral values, i is clear that the particle may have
only certain discrete values for E. That is the energy of the particle is quantized.

63



D.D.C.E M.S. University DCH 13

3. The total wave fanction v is givenby

W‘W:*‘Vy-‘l’z

x“"],sin(n’“y);sin(i’-ﬁj ..... (13)
b c
\
=8/V sm(n nxJ sin[————n"“y).sin(nznz)
.a b c

Hemc equation (13) gives the value of normalized wave function. The factor | /8/ V iscalled
the normalized factor.

or y=4/8/abc sin(n

Normalization factor = \[8/V
Where V =Volume of the three-dimensional box.

In equation (13), the quantum numbern , n, and n_ can have only integral values, this
equation gives a family of acceptable wave functions.

Hydrogen atom

The hydrogen like atom is a two-pa.rtié!c system consisting of an electron with change
-¢ and an atomic nucleus with charge +". Since the electron is very much faster than the
nucleus particles, it is assumed that the nucleus is stationery as compared to electron. The
Schrodinger equation for the hydrogen like atom will then be the equation for a single
electron moving around the nucleus.

{ x,meV’W] ¥(x,y,2)=E¥(x,5,2) = ... (1)

Where ¥(x,y,z) is a function of the Cartesian coordinates x,y,z of the electron. In
order to solve this equat:on,the Cammn coordinates are converted to spherical coordinates
r, 0 and & which are defined as follows

64



D.D.C.E M.S. University DCH 13

x=rsing Cos

y=rsing sin®

z2=rCoso

x* +y* + 2! =¢* and the ranges of the coordinatesare 0 <r r <0;0<0< 7 and 0<2x

The transformation of coordinates in equation (1) in terms of spherical polar
coordinates, gives rise to thé following equation.

2
,aw 1 3 smea\y] 1 6q1+81t :ne E+-2 lw_o
r’ 6r or r sin 09 20 | t'sin’@ oy’ h 4me,r ‘

Since potential energy is a functlon of only r the wave function  in equation (2) may

be writtett as the product of three functions each one dependent an one spherical polar
ordi

V(0.9 =R()O O)6 (4) .. ®
This is substituted in equation (2) and multiplied by r? sin? 6/ R8¢ and we obtain,

Sin’@ d{, dR) Sin6 d de
—.—| " 4 — |+ —— —] Sin0 —
R dr dr 6 do de

2
1(”2’4-81”’"8 9| E+-28 =0
¢d¢ h’ 4ner

This leads to 4 situation that is analogous to that which srise for the particle in
three dimensional box.

. 2 .
5‘2-9.1(:%95 Sinf d (Sineﬂ)
R al @) 0 el 3

Y 8,.7,."2,‘.9
=m* + 3

2
r’Sin’G(E+ Ze ]=o
4ner
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dividing equ. (6) by Sin?e and rearranging to obtain

1 d(z dR) 87’m , Ze?
— —|+=———1"| E +——
R d dr ‘h . 4mer

o 1 d 40’
- in?0
~.Sin%8 Osin da(s- daJ e {7)

In this eqimﬁontheleﬁsideisa situation of r only, while the right side is onlyon ¢.

: g.:-éi{sme ) (’““”sm*o

l.i(e,;‘l‘.);ﬁfﬂ PR G ) M
2l &) B dxer {}.v

Thcsoiuﬁonoftheradialequaﬁoﬂ@)iﬂﬁlee@uﬁon‘ofmuﬁcfcu

_ 22°Zme*
n'h’ (4ne, )

E=——
4ne,a,n

hl

a,= ——s
where %0 41tzmeez

a, is called the Bohr radius.
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UNIT III

Approximation method

Quantum mechanics gives an exact solution for the hydrogen atom. But when we
consider the helium ztom, the quantum mechanical solution is not possible. Hence, it is
apparent that we must resort to approximation methods when treating a many electron syStem.
There are two common methods of obtaining approximate solutions to the wave equation they
are

1. The variation method

2. The perturbation method.
The variation method:

Letus consider V in a many electron wave function of a system, then the Schrodinger
equation in operator form is

Hy =Ey e 1)
where  is the complete Hamiltonian operator and E is the total electronic energy of the

system.
The average energy is written as

E= Iw’ Hydy
where V¥ is any normalized well behaved wave function. In this equation wave function V is
pot known accurately even for a two-electron system. So the wave function V is chosen
arbitrarily. If the chosen wave function is the correct wave function, then it is possible to
calculate the accurate energy E; of the lowest state of the system with equ. (2). On the other

hand if we choose an inferior wave function, we could expect to get a poor agreement of the
calculated energy value with the experimental one.

According to the variation principle, if W, is the correct wave function for & system,
i.c one that will give the correct energy E, of the system. then any other chosen wave function
V¥, will give an energy E, greaterthenE i.c.,
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j\u; Hy, dr2 E,
The advantage of this method is that if we choose a trial function containing
several parameters and then minimize the energy given by Equation 3 with respect to these
parameters, the corresponding wave function and energy avzilable will be very close to the
'ac'tual étate of the system.
Example. Let us consider the case of helium atom in the ground state. Our trial function for

two electrons is the hydrogen like one electron wave function.

w(l)=[%) e

w(ﬂ-‘-(%}% e

where Z is effective nuclear charge. The complete wave function for the helium atom is then

givenby

yAS <
\V :(____J e’zl(ﬁ+fz)
(.2) I1

hA

2. The Perturbation method
Perturbation method is another technique of arriving at energy and wave func-
tion for a system for which schrordinger equation cannot be solved. The perturbation theory,

therefore, involves determination of the eigen functions () and eigen values (E,) of the

perturbed Hamiltonian {; interm of those (¥ 214 E; ) of the unperturbed Hamiltonian 1o
It is imagined that the perturbation is being applied continuously in small steps

this amounts to
H=H,+»4" . (1)
where 3, is a parameter which can vary from 0 to 1 when A =0, the systern is unperturbed and

when 3, =1 the perturbation is complete.
The Schrodinger equation for the unperturbed and perturbed system can be written as
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(4]

H'w. =El+y

s ()
Hy,=E,+y, (3)
(}i\0+ kﬁl)w:":Ean ceee (4)

where the subscript n denotes the state of a system. If H depends on ), both y_and E_ will
depend on 2. So as a first step, we expand these functions as Taylor series assuming that
A‘ A
‘AH <<H
v, =E) +AyW+atyl (5)

BT Wg treesssertees e

E,=E)+AEQP+A%EX........... (6)

ooooo

where y{“ and E® are k* order correction term to the w, and E respectively and given us

(k)=_!_(akw N

lpn
klarr )., L. )
- 1 fakE‘\
B = o 8
sloars L. ®)

substituting (5) and (6) in (4) and rearranging (7) and 8)

(H"wﬁ —Eﬁwﬁ}+kH°\yf‘”+H°\y-_—Eg Yy -Ely?

..... )]
the equation (9) may be written
xl=(H°E3)‘P§”=-ﬁw2+5£"w2=0 ..... (10)
First order correction
" j-\y?nH‘\;lgdt 0
Wn-mz;“ TR Vi (11)

n m

The above. equation says that the first order correction {"" to the wave function can
be determined from the eigen function and eigen values of the unperturbed system.
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Application of wave mechanics to Helium atom
The helium atom has two electrons moving in a field of a nucleus of charge +2e. l.etus

consider the nucleus to be at rest and will place the origin of the co. ordinate system at the
nucleus (Fig. 1 ). The Hamiltonian operator of the helium atom in terms of atomic units are
written as, éll)

12
Fe®
ﬁ=-.1_v'2_.l.v2_£__2_.+_.1__
2 2 A A (v
(OR)
1 2 1 2 1
H=| -ViI-Z|-|=-Vi- + —
(2 : 1’:] (2 : rz) n, e (2)

The expression with in two brackets may be identified at the Hamiltonian (1) and

f (2) two separate He * ions (z=2) p.e.,

Let us consider the two electron Hamiltonian \;{ as a sum of two one electron Hamil-

tonians 3 (1) and f1 (2) which may, therefore, be considered as the unperturbed Hamilto-

nians I—f" of the He * atom

H'=H (1)+H (2) eree (4)

Where ¢; (1) and {} (2) have hydrogen like eigen functions (orbital) ¢ (1) and ¢ (2) respec-
tively.

FMéM=EQ) ¢()

i Q92=EQ) ¢

E (1) and E (2), the eigen values, represent the orbital energies

w=¢(Handp ()
E'=E(1)+E(2)
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'H°w° = 'L (1)+H(2)]¢(1)¢(2)

- O[] @[ $(1)6(2)]
Hoy® = [ﬁ(m‘;'(t)]‘p(zy[ H(2) 9(2)]4»(1)‘
= [B0s0)]0(2)+[E@ 4()J4()
By = [Em+e@)[e)()] .. (6)
H) ‘opemtgc on ¢(1) and H(2) on $(2) only and
h)42) = 0(2) ()
Themdcpcndent electron approxnnanon says that the fanction y° = ¢ (1) ¢(2) wlnch

is true eigen function of may be H may be used as an approximate e:genfunctxonof g
other words, the atomic orbital ¢ (1) and ¢(2)that are eigen function of one electron Hamil-

tonian (1) and ﬁ(z) respectively may serve as a basis of the description of the two electron
atom. Therefore the two-electron problem is thus reduced to two one-electron hydrogen like

problems. InthegroundstatcofHe atom, for example both the electron has the same orbital
functtonngleas

IS(1)= J?;:cxp (-zr,) .. )]
I8(2)= \/—Z}—_Texp (-zv,) .. ®
Under this approximation

y(1,2)ory =IS(1.)IS(2)= —Z—r—-cxp(-Z(r,+ ) ...(79)

where atomic units are used

The presence of one electron cffectiyely reduces the nuclear charge for the other
electron. The value of Z in the equation (9) should be less than Z; Z may be used as a variable
parameter the value of which can be determined by minimizing the energyi.e.; by setting
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dE1s? .
dz

Where as
Eis2=[vHydy

substitute fy and v and writing IS for §,we get

: Egl= ”;s(:)xs(z)[ﬁ 1)+ ﬁ.(2)+--;'-_]1s (1)i8(2)dx,dx,

= [{1s()1s (2)H ()15 (1)18 (2)dr,dx,+
ffisans (2)ﬁ (2)1s (IS (2)dr,dr,+
[fisays (2)[;}—)18 ()18 (2)dr,dr,+

#i(1) and f1(2) the Hamiltonian of thé He* which operate an electron (1) and (2) respectively
“Eg'= [ [1S(1)18(2) Bl 152(1)18(2)dv,dr,
+ [ [1I5(1)18(2)EG182(1)15(2)dv,dr, +J
Eirt (1)=E* (2)=E 5 (say)
Equation (9) can be written as 11,12

E,2=2E, [[[1501)15(2)] drdr, ]
E,2=2E +]

(Because 1S function are normalized
E,, the energy of a He+ in 1S state, is known to be given by

_ 1., z
Eg= IIS(—EV -;—] Isdt ()
In the present case, however, 18 is the eigen function of

1 z ?
——2-V2 7 with < 2, and the eigen value is —%

Equation (11) can be written as
jxs( Syt 22 Z) St

e 2
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Z? 1
=--—[1szdx -(2-12) j’ls~13dr

E, _——--(z z) J‘xs-lsdt
The evaluation of second term in the above equanon

3

IS=—Z—exp-Zranddt=r’dr'sin6dcp dé
T
i 3 x
IISLIS dy = z jlexp(- 2Zr)r* dur
r nJr - .

. v Z3 ‘a,A ‘ .
=44 ~27r)d
—4n !erXp( 2Zr)dur

=47 —'}—2--"-2
(22)
2
E1s""'z_"'(2 Z)Z

E.s -2 (- £ - (2 z)z)

E,,=- 2 -22(2-z)+'-s-z

By the Principle of mmnmzatlon :
dEz 27
=27 - — 0
az g
27
z=2L
T

EIS = (?Z) -%Zx%g---z 849 au

=-77.28¢V or
=-124x10"]

2
Thevalueof Z = — rqx@sentsmeeﬁ’ecuvcnuclwchargc,l.e thechatgeofﬂlcmlclcmﬂm

one electron feels due to the parhal screening by the other electron, the difference
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~
7

i 5 1
2- Te = T¢ Tepresents the screening effect.

The Pauli Anti symmetry Principle

Let us consider the case of the two-electron system. If w (1,2) re resents the wave
function corresponding to the electrons (1,2) wb (1) and Wb (2) be the wave functions
representing the states of individual electrons then

y(1,2)=wa(l)y b2 .. (1
where each wave function on the right hand side is completely independent of the other. Since

the electrons are indistinguishable particles we cannot specify the positions of the electrons
exactly. Therefore an exactly good wave function will be

| yD)=wa)y b)) - .. 2)
As the particles are identical there should not be any difference in the probability |¥ iz of the

system when electrons are interchanged, i.¢.,
# (12)] =¥ (2.0)f
‘P(i,2)=i‘§’(2,1) :

When w (1,2) = ¢ (2,1), the wave function is a symmetric. A wave function is said to be

symmetric if the interchanged of-a pair of particles leaves the sign of the wave function un-
changed.

When y (1,2) = - (2,1) the wave function is antisymmetric. The function is anti-
symmetrical if the interchange of a pair of particles changes the sign of \ . Taking into ac-
count the indistinguishable of the electrons, the best representation for two electrons can be
attained by taking the linear combination of equation 1 and equaticn 2.

vy, v, (2)2v.Q)w, (1) @
The symmetric wave function.('¥, ) will be given by

v=y, v, @Q)+v.(2) v, (1) .. (5)
and the anti symmetric wave function

Vo=, (v )-v, @ w,() . (6)

If the electron 1 and 2 arc interchanged in these function, it is obvious that ¥ is

unaltered but ¥, changes its sign as shown below.
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Var =¥, (2) v, (1)-v, (27 warey
=[v. () v (2)-v.(2) v (1)]

Wa = -y, (2)
When the two electrons have the same set of orbital quantum numbersn, 1, m. _

Example: The ground state helium atom (18?) then Y, =y, SO that v (1,2) =

w1S(1)w1S(2). If the electrons are interchanged, the functions v (1 2) will be
symmetric and will represent the same state of the system i.e.,

Vis (I)Wxs'(2)=-wxs (2)vis M L e 7
For the two-electron system, there are four possible ways in which the spin function can be
written-
a(a(2),8(1)B(2), a(1)B(2) anda (2)B(1) ... (8)

Out of these four spin functions, the last two are not acceptable because they distin-
guish between the electrons. Electrons are identical to one another and there is no way of

experimentaily determining which electron has spin + 1/2 and which has spin -¥,. Hence, the

third and fourth spin functions replaced by their linear combination which will overcome the
problem of distinguish ability of electrons are given by

t};,[m (1B (2)x « (2)B(1)]. )

Thus, the proper spin function for the two-electron system becomes

@ ()a(2).80)B () (2 MB@)+ a2 ()],

I .
Zle@p@)-a@pw] 0
The first three spin functions are symmetric and the last one is anti symmetric with
tespect to interchange of electrons.

The complete wave function for the ground state helium atom will be a product of the
‘orbital wave functions given by Equation (7) and the spin functions equation (10) i.e..
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a(l)a(2) v, (v, (2)
B(1)B(2) vi(Dv. (2)

v

i

v

v =—\}—§7[a(1)a(z)‘+ a(2)B (). v, (2)

v = (08(2) - a0 ()2

the question now arises as to whether all these combinations are allowed answer lies with the

Pauli’s exclusion principle. According to this principle “A wave function representing the
state of a system containing more than one electron must be anti-symmetric in the exchange
of pairs of electron coordinates, including spin coordinates. Realizing that symmeétric (Hx
symmetric (+) or anti symmetric (-) x anti symmetric (-) is symmetric (+) but symmetﬁé (?k)’ _
x anti symmetric is anti-symmetric (-).

Now, in equation (11), the first three relations are symmetric a d the last one is anti
symmetric with respect to the interchange of a pair of electrons. Hence, . by the Pauli’s exclu-
sion prineiple, the only state which i acceptable is

=.j_§[a(x);s(z) - a(z)ﬁ(_zmk Ov.(2) .. (12)

spectroscopic and chemical experiments indicate that in the case of he ground state helium
atom, only one state is available. Thus the results confirm he validity of the Pauli’s exclusion
principle.

Slater determinants

The anti symmetric wave functions for a many electron atoms are constructed by
following the general procedures. But with increase in the number of electrons, the number of
terms increases in such large proportions ( or example 5! i.e., 120 terms for an atom with 5
electron only) that we must find an abbreviated form to represent a wave function. A short
hand form is determinant in which the spin orbital the elements; each row in this determinant,
is labeled with an electron and each column with a spin - orbital. The normalized wave func-
tion for a three-electron atom example
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The Born - oppenheiner approximation

The exact solution of the Schrodinge: equation is not possible even for light atom.
Therefore, the Schrodinger equation {; ¥ =Ew extremely complicated and its exact

solution is not possible.

The Hamiltonian operator for a molecule’is

ﬁ=‘i‘N+f‘e+0ec+0eN+ONN ----- (1)

Where T, - kinetic energy operators for the nuclei
4. - Kinetic energy operators for the electrons
v, - the electron - electron repulsion term
Vi the electron-nuclei repulsion term
Vo - the nuclear - nuclear repulsion term

Since the electrgns are much lighter than the nuclei, they move much faster in a
molecule. The electron carry out many cycles of motion in the time it takes the nucleus to
move a short distance. The calculations shows that the nuclei move only about 1 m while in the
same time, electron speeds through distance of about 1in. Therefore, we can consider the
nuclei to be fixed while the electron moves, through the whele volume of the molecule. We
can now separate the Schrodinger cquaﬁbn for a molecule into two separate equations which
are depending for the electronic motion and the other on the static nucleus position. This
approximation in known as the Bom-Oppenheiner approximation. In the above equation the
T, operator is not affected by the electronic motion. Since potential energy V., due to the

nuclei-nuclear repulsion is a constant quantity for a fixed ‘inter nuclear distance. The
electronic Hamiltonian can be written as

ﬁe='i:e \A,eN'*'O" ----- (2)

The Shrodinger equation for only electronic motion is given by
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where=U= Ee + VNN

Since V., is a constant quantity

A

H oy . =E,y,
where E, is the electronic energy, v, is the corresponding wave function and U is the total
energy of the nuclei and electrons.
HARTREE -FOCK SELF CONSISTENT FIELD THEORY

Hartree’s functions are only orbital finctions. Fock included corresponding spin
function also ‘

v=[¢.2(1)], [¢,,0(2)] iy, t, (1)
Whete (1), a.(2), &(3) ... a(n) are spin functions. This is the best method of finding out
the eigen function for many electron system. In Hartree SCF method the orbital product is not
anti-symmetric, where as Fock used anti-symmetric wave function and followed same proce-
dure as describe by Hartree.

Fock introduced a new operator § the Fock operator to include the electron
exchange and obtained pseudo schrodinger equations in which each orbital is an eigen finc-
tionof ¢

Foi=E, ¢i ()

The eigen value E_ is the orbital energy of ¢, The Fock equation are difficult to derive
but easy to interpret. For an atom with closed shell configuration the Fock operator (in atomic
units) for electron is

A 2/2 A A
F=-1/2Vf-—g—+ﬁ(2h-—K,) ..... 3)
d i=1
The first two terms constitute the hydrogen like (core) Hamiltonian for the electron
(1). The symbols } and g Wwith single subscript are coulomb operator and exchange operator
respectively. These are defined as

3:‘ ¢(i) = I' Id’, (2);‘%%(2)&2]% (l) ..... 4
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£ 0)=] j¢,(2)7‘:¢i(2)dt,]¢,(1) 6)

In the above equation ¢, (1) is not an cigen function of f(j; the effect of g, is to

charge ¢,(1) to ¢;(1). These operators are to named as they yield the average coulomb and
exchange energies as

[0, @3z = [[o,(1)9, (2)—¢ @)6.()drdr, =3 )

JoKi@yar = [fa ()4, (2)—0 @) ()ardn=Kij ()
machmgcmhaveappwed@emﬁnmﬁ—symetryofﬂmwaveﬁmcuon

Fock operator is different from Hamiltonian operator of the electron 1 which is'given

. 1 z |
H(1)=-2V ?*;— “Z"" ..... ®)

The Fock operator the summation term Z(z?;-f:,) includes § and § whichmust
bckngwnbcfm'cwewﬁtedowntheéxpwssion for ¢ explicity,
| But §, and g involve in the above equation and #; arc eigen function of f,. Thus to.

know ¢, weneed ¢ and to know  weneed ¢; So we have to take 1o interactive procedure. We

start with a reasonable set of orbital and apply the Hantree’s method repeated interaction as
described of finally obtain HFSCF atom.

E;= I‘i ﬁ’. de
= j¢‘ (—-;—Vlz —%)“i dt+

- j¢i(223i-k}i)¢, de
=E+ 2J,-K,

MO treatment of the hydrogen molecule in (H; )

This simplest molecule consists of two protons and one electrons. Adopting the
Born-oppenheimer approximation, the electronic Schrodinger equation for the hvdrogen
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molecule ion is considerably separately. The electronic Hamiltonian operator for H;

.c
Ia 9
+ +
a R b.

wherer, and 1, are the distances from the electron to nuclei a and b respectively and R is "the
internuclear distance. '

H;A = _"w,\ H y ,dt Columbic integral
H,, = IWA H y pdt exchanged orbital
H,, = IWA\VB dr Overlap interactions

1 1 1 1
RSN ES T W

I, Iy

H, = ,{Wls*\ (_Evz _;—me\dt- IW'SA ;‘W;s;\ du+ IWISA EWISA dz
. A B

1 1 1 1
H, = J‘Wnsa [—EVZ T )WISAdT"' j‘VmA 7 Visa dt+ IWISA R Visa dt....(3).
A B

the operator Within the brackets in the first integral of equation (3) can be identified as the
Hamiltonian of an H atom.

-1 1
j‘Wl'SA (-—2—Vz - )‘VlSAdT
rA

= [aExIS,dtE,=E, (4)
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because ]S, is normalized E, is the energy of a single H atom which is known tobe-0.5au.In
the second integral, U t, is the energy (in 'a.u) of attraction between the electron and the
nucleus B at a distance of r; so the integral gives the total energy of columbic attragtion (1)
between the electron and that nucleus.

)= psA-'— ISA dr

Ty
The 3% integral
fisa -13{- 1SA dt = % jlsA.l'gA de =¥’{ (fora fixed vﬂu,e.b’f R)
is the energy of repulsion between the two nucléi at a distance R from each other thus
substitute the value of equation (4), (5) and (6) in equation (3)

1
H,=E, ~-J+—
AA H 2

H, = IWISA Hy g dt

<1SA ﬁl:ss)

_ 1g: 1 ‘ 1 1
= IISA(--{V "}:‘*‘)Wlsa dr- IISA TISB dr+ j“’xsn EISB dv 8)

A
1., 1
IISA(——V ——)133 dt
2
since
g 1lsB=g s,
2 I, "

Multiply both sides by 1SA we get

1., 1
IISA(-EV --r;)iss-_-eﬂ 1sA yis, ot

1, 1 _
| leA(--z-v -—)1513-3,,5 ..... (9)

Iy

82



D.D.C.E M.S. University

DCH 13
jzsA 1 isB dr=kK

r

..... (10)
A

This energy K arises due to exchange of electron’s position between the two nuclei A and B
and hence is called the exchange energy.

1 1o
jlsA-R- ISB d1 = - [Waw e dt

..... (11)
-5
R
Substitute the value of (9), (10), (11) in equ. (8) we get.,
S
H“=EH.S—K+E ..... (12)
The symmetric and anti symmetric energy states are
_H,+H, |
- (13)
H,+H
v, (14)
(7) and (12) value

substitute the value of H, ,and H, ; in equ. (13) and (14) we get.

1 S
Ey -J+—+E . S-K+
H R | B

Eg=1—— . . 4
s 1+S - )
EH ) 1 E;.S k S

= - + + -

148 1+8 R(1+8) 1+S 1+SR(1+S)

EH J 1 B.S k S

+ —

= - +
1+8S I+S'R+SR 1+S 1+SR+SR

L

E
= 1+S
I J+K
Es =Byt 1o .. (15)
1 J-K
E, BEH+§-—T:§' ..... (16)
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The evaluation of E_ therefore, evaluation of the three integrals J, K and S. The results'of
evaluation are expressed as function of R as follows

1 R
J=={1-(1+R)e | I (17
K= (1+R)C_R ..... (18)
S = (1+R+%—)c'" ..... (19)

substitute the value of (17), (18), (15) in equ{19) and (16) we get symmernic energy state and
anti symmetric energy state. The results of suchicalculation for several values of R, relative to
the energy of H atom (i.e E, ) taken as zero.

Energy of H for various value of K

R{au) E (au) E, (av)
0.5 4079 | 235

1.0 0212 T rovw
1.5 0005 { 0572
28 0054 | 0338

. The value of E_or E, plotted against
These calculations and plotting brings out certain very interesting features.
1. For any value of R, E_is less than E . Beyond a certain value of R, E, becomes
negative (i.e., <E,), but E, isalways greaterthan E i.e., it is always posttive.
The curve for E, shown a minimum corresponding to R=2.5auwereE,, = -0.0165a.u

By
.

but that for E, decreases continuously with increase in R always remaining above
the E, side.
This means that in the ground state the energy of H} is 0.065a.u less than that H® - H’
separate infinity, this value (0.065 a.u = 1.77 e.v) therefore, represents the dissociation
energy. Similarly, the position of minimum i.e., R = 2.5 au = 1.32A ° represents the
equilibrium and enough (R)in H; .
MO treatment of the Hydrogen molecule
The treatment of a H, molecule, within the framework of the MO theory and the Born-

Oppenheimer approximation is essentially the same a8 that of H , exerts that there is an
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extra I/, term. The hydrogen molecule consists of two nrotons (a and b) and two electrons (1
- and 2), the electronic Hamiltonian is given by

H ; ('V,’+V§)A—-[—-l-—'—-l—-+-l—-—i+-—!-'-]

ll

The corresponding Molecular orbitals are
v,=C,1S,(1)+C, 18, (1) D e (1)
y,=C,18, (2)fczls,,(2) ..... 2
The normalized solution of these equations

————[1Sa(1)-1Sb(1)]

(2+2Sab)"‘

| 1Sa(2)~1Sb(2
Where vy, isthe bonding MO and v, isant'ibonding’MO, and corresponding equations are

_ Haa + Hab
' (1+8ab)”

_ Haa + Hab
' (1-8ab)”

Where Haa, Hbb are the coulomb integrals, Hab the exchange integral and Sab in the overlap
integral. Hence the molecular wave function that would describe the electron distribution of a
hydrogen molecule can be written as

Vo =¥, (1)w,(2)
where two electrons are placed in the bonding MO

Wie =a—%§£[xs, (i)+ISb (][, (2)+18,(2)]

e l15. 00415, (2) 15, ()15, (2)+15, ()15, (2415, 2)+15, (1]

The first two forms in this expression correspond to situation in which both electrons 1 and 2
are associated with the same proton. Therefore, the first term corresponds to the ionic struc-
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ture 4! H and the second term corresponds to the ionic structure H: H; .Onthe other
hand the third and the fourth terms correspond to situation in which electrons shared equally

by both the protons and therefore, they correspond to the covalent structure of the hydrogen
molecule.

Valence Bond Theery fot H, mole« ale

Hydrogen molecule contains 2 electronsand -2 nucleus

g f1a ~£2
, ¢ ) m
tat n{l) i ‘
+a 4 Sl

There are two possible structures of H, molecules
1. When electron 1 is associated with ulolécxﬂes a and electron 2 with nucleus b
HOH,2) e )]

Hence the orbital wave function for Ha (l) and Hb (2) will be v. (1) and v, (2). Hence wave
function for structure Fis

TPETTIN (3 E2N ¢ J— )
2. When electron 2 is associates with nucleus a and electron 1 is associated with nucleus b
H@2)H,®0
I
ve=v,(2)wv, (1) . (1)

The two clectrons are distinguishable. As the atom approach, one another the atontic orbitals
overlap and it is impossible to distinguish the two electrons (1) and (2). When two electrons
are indistinguishable in the H, molecule, the wave function y , must béequalto y,.

ViTVyy
(or)

v, (l)'wb (2)= V= W.’(Z)-‘V b'(l) e (3)
True wave function is likely to be some contribution of the two -wave functions y, and gy

y=Cy,;+ Cryy e (4)
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v=Cuy, ()y,(2)+ Cy, (2)v, o e &)
Since H, molecule is symmetrical, the two wave function y | and vy, contribute equally,
therefore C, =+ C, The co-efficient C, and C, are relative quantities, we can putC,=1and
C, =11 . Putting these values ofC, and C, in equations (5). We get two possible wave func-
tions.
vesw, v, )+ v, v, ) (6)
Vasv (v 2)- v, Qv e (7)
Wy = symmetric wave fuﬁction and does not change if initials (1) and (2) are inter-
changed.

w,=Anti symmetric wave function. The wave function y, changes to -y, it the initials
(.e.; ‘ ; electron) are interchanged.

* Since H, molecule contains two electrons there should be two Laplacian’s operator
Viand V2,

Schrodinger’s wave equation for the two electron system.

(V,’+V§)w 811 * m

(E-V)y=0 . (8)

Afor y , molecule

H= _h [Vz‘“vz] fz[ ‘21)+rbzl)+§(léj+g(l2) ]yw\hz'[;j?;.l:] """ ®)

the integral H,| may be defined as

H, = JJW: H Yidrd., (10)

Substitute k values such as 1 and v, we get

o= [l O ] ety ] o

O A

8n‘m
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2 2
bt -
VZ

2)= 2)
8n2m 21_"(2 Wb() %owb()

. : el ¢! gl o2
Hy = [{v.()v, (z)[m;, R 0] ] v. (1), (2)dr,dr,(12)
Ly T2 T, IO

If two atom ‘a’ and ‘b’ are far apart, their mutua! poten‘ial energy is nil i.e., V.= 0. Thus the
system H, molecule under c(_msideration is equivalent to two separate hydrogen atoms, and if
these atoms are in their normal state, the approximate wave functioa (including spin) will be
similar to two hydrogen wave functions. If it is assumed that is wave functions are normalized,
then equation (12). ’ '

cZ

H,=2E,+—+J,-2J,

tnb

2 1L )
J=e H;; (v.()w,(2)) depde, (14)

and because of the equivalents of two electrons

J; =¢’ H.;bl('l‘i (Wa'(l)‘i’b (2))2 dt,de, . (15)

same general treatment for H o
1
2

H,,=2ES,, + —+k, - 2k,

ab

k,=e’ ”-I-L— (v. v, (2)v. (2)v, (2))dr,d1,

kz =?'2 “‘I 1(1) (W.. (1)Wh(2)wl (2)Wb (l‘))d‘t’dt(i

rl

e (16°

ko=t [y (v (D @)v. @)v: (D)dedn,

If these results are now substituted the equation for the ,energy states of the H, molecule.

E,-2E, = 32_{(.11—212)+(k‘-2k2)]

. 1485,

For symmetric state

Anti symmetric state = E,-2E, =

& [(J, ~21,)~(k, —21(2)}

1-S,,

L Y
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E = H,+H,
* 1+8?
_Eu:__liu_
1-8*
E =2E, +— + X
R i+8§
B2, ol 12K
R 1+8
Hybridization

The linear combination of the orbitals of the same atom is aclled hybridization. The
combination of n atomic orbitals generatés ‘n” hybrid orbitals of an atom. It can be shown that
the hybrid orbitals have better directional and properties and form stronger bends.

Example:  sp, Sp? and Sp* hybridization
S - p Hybridization

The combination of a, s and b orbital, giving two hybrid orbitals y, and y,may be
expressed as

vi=ay,+by, (1)
szazw“s'*'bzwp ----- (D

The values of the linear combination co-efficient a,, b, a, and b, may be determined by
the following consideration.

1. y, and y, are normalized
ie., f\vé dA‘I’ =1
Iw 24Y =1
2. y, and y, are orthogohal
i.c., I\Vs Wpd\/ylzl
3. y, and vy, are equivalent
Square the equation (1) and integrated with d
Juidy=falvla¥+ [o]wia¥ + f2y, v, d¥ =1

aj+bl=1 L. 3)
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from equation (2)
al+bi=1 R @

(2,ws +bwp ) (2,Ws +bowe )=w v,
4,3, IWSWP d¥ +b,a, IWS‘VP d¥+a, b, I\Ps‘l’r d¥ +b, b, f\*’r‘l’? d¥ =y, y,d¥ =0
aa,+bb,=0
Since the s atomic orbital is spherically symmetrical and the two hybnd orbitals y, and ¥,
are equivalent, the share of S ﬁmctxonsnsequa.lmboth y, and \yz i. e

1

2 _ .21
a8, = a, 2
or
a,=a !
=
substitute this in equ (3) we get
LI bi=1
2
1
bi==—
Y2
1
b, =
1 e ()
substitute the value of equ (5) and (6) in (1) 1
1
Vl’?i'(wfs""l’r)‘
substitute value of equ (6) and (7) in equ (5)
1 1 1
— +—=b, =0 by=——= .. 8
N =75 8
substitute the value of equ (5) and 8 in equ (2) we get
1
Wz=’:/"5—"(‘vs+‘4’r) ..... 9)
Substitute the value of equation (6) and (7) in equ. (5)
1 1 1
—=—=b,=0 b,=-—
2 2° Pos?

Substitute the value equation (5) and (8) in equ. (2)
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W1=715(¢1+¢2)

For Example:- .
I
= +
Va2 75"(‘*’1 ¢z)
At carbon atom 1, the electron density a’ = %

At carbon atom 2, the electron density a’ =‘”%“sinoe we lavé two 7t electronin’¢, , the
total electron density at C, and C, each is qr=2.

'xyz=l

¢ charge
. =1-1=0
density

at carbon 1

charge density

at carbon 2 = 1-1 =0

Butadiene:-

C,=C,-C,=C, There are four 2 Pz atomic orbitals to be combine and four 7 -electronsin
the molecule. The HMQ’s are of the form

W=Ci4, +Cy, +Ciyb, +C0, (1)

and the secular determinant is

¢l ¢2 ¢3 ¢4
¢1 x 1 00
‘2 1 x 10
¢ [0

1
%0 O

x 1
1 x
where, X = a-‘;E

This determinant upon expansion gives the polynomial equation
x-3x4+1=0

(or)

(x*-x-1)(x2-x-1)=0

Hence
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The three Sp? hybrid orbitals formed by combination of a S orbital with two p-orbitals are

expressed as

y,=asS+bP +CP, e (n
y,=a,8+b,P +C,P, e 2)
w,=a,S+b,P,+C,P, e (3)

The co-efficient can be determined as follows :
Since the three hybnds are equivalent, the single S orbital is considered to divide itself
equally among themi.e.,

an=az=az=73-’ ..... 4

One of the three hybrids, say y, may be assigned any direction; let it be the X-axis.
Then, there will be no contribution from p, ie., C; = O. The noralization condition
requires that .

2 2 2 cal 2
a’+ bl + Cl=1a;+b; =1

1
§-+ b’ =1or b,=,f%
=—~—S +\/—Px ..... (5)

By orthogonality of y, and y,
[2,2,+b,b,+C,C,=0]
where C,=0G=0
[2,a, +b,b, =0]

Thus

L + é-bz =0
3 2
1
b,=~
N3
and by normalization of v,
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a;+ bl+ Cl=

L~
—+—=+C;=1

6 2

1
C=7
Y, = ; S Px+-—1—Py ‘
CESETEY ©

similarly Orthogonality of , énd v,
aa;+bb;+C,C,=0
8183 +'b1b3 =0

12 1
§+\[3—jb3t=0 or b3=~7€.-

and by orthogomility of y, and v,
a,a, +b,b,+C,C =0

——+ +Tf 0

i
B=-7

Thus V3 = jgs -‘\/l—p, - j—p, kD)

The directional properties of these hybrid orbitals and their bondmg powcr can be
determined by making the following substitution in equ (5), (6)and (7) we get

s=1

P = J3sin6cos o

P = V3 sin6cos ¢

The three functions defining the directional properties of the hybrid orbitals are
accordingly

q;,.-_—j_;-r\/——;tSinOCosds' ..... (8)
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-J—_-—T\/—SmBCOS¢+J-2-J§SiHQSin¢

1 1 . 3> ) .
Wz%j -5 3 SmBCos¢+,/5 ¢Sin6Sin¢ .. )
y ‘g 11 Sin8Cosé - + iSinOSin¢ 10
= "7 SineCos- g SinoSing a0

If tw 0 of the hybridization functions £, and indicate directions in the xy- plane, for
which g = 90° orsin g = 1 the above equ (8), (9) became

f .—.-71—3.- +/2 Cosd | | e (11)
=L L Cosd + - Sind (12)
ﬁ E Jg .....

The maximum value of f will be

£ = +42 =1.992

N
Huckel Molecular orbital Theory(HMO)
Ethylene:

The ethylene molecule contains twelve valence electrons. Among the twelve valence
clectron ten form ¢ bonds and the remaining two T - electrons which forms a single 7t bond
between the two carbon atom of ethylene.

According to HMO, the © elecﬁ'on should be ignored while calculating the energies.
C=C

The wave function for the 7t electron in the LCAO- MO approximation
y=C¢,+C, ¢, e 1)
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Where ¢, and ¢, represent the 2p, atomic orbitals of carbon atom C, and carbon

atoms Cz.

Using the rules for setting up the Huckel secular determinant

x I
= M

I x

Where x = (o~ E)/B
The determinant, upon expansion such gives
x*-1=0
x=%x1
’fhus,theenergylevclsate
E=a - xB;'

Forx=-1 “===-1 E,=a+§ (Bonding)

a—E

x=+1=5—=+1 E,=a-f (Antibonding)
The two HMO energies are

E=a+f

E,=a-B

Thus we get two energy levels E, and E, corresponding to the two molecular orbitals
v,and v,

The resonance integral, B 15 a ndgative quantity, being approximately the energy of the
probability density of the electron in the field of the nuclei screened by the sigma electrons.
ThusE <E,. y, hasenergy less'than an isolated cabon atom and is therefore, a bonding MO.
W, has greater energy than an isolaed carbon atom and is therefore, an antibonding
molecule,
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a-B Yy,

o+ . s

" Etotal =2E =2 (a+f)
In the absence of bonding , the total energy of the two electrons lying in the two »,
atomic orbital wouldbe 2 .

The 1t bond energyis -
E,=2(a+B)-2a=28
Determination of the MOS
The two linear equations corresponding to the secular equation (2) are
C,x+C=0
C,+C,x=0
Forx=-1C,-C,=00rC,=C,
Since the MOs are exrmalised

j\y' ydr=1

C} [¢1 dv+C} [92 dr.+2C,C, [4,9, dr=1

2C? =1
Ci+ C =1 where C,= C,
1 _
C‘_Q-:];

He.n'cc V= 71‘2’(4’1 “”¢z)

E =a+pB
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Forx=+1
1
szf('bx "¢2)

E,=a-f
Bond Order:
The partial bond order p,, associated with the molecular orbital

1
v, =:/-'-i-(¢; +6,) is given by

pro L 11
P22 2
The partial bond order associated with the antibonding orbital is given by

S T A B
el

it follows that a positive value of partial bond order strengthens the 7 -bond while ¢
negtive value weakens it

In the ground state of ethylene two 7 - electron bond to ¢ , 1thetotal 1t -bond order
Py=2P;=2x 1/ =1
Charge density:-

The total electron density q, atan atomr is the sum of electron densities contributed to
¢ . rent electrons in each HMO

9 =208
where 8; s the coefficient of the atom r in the j* HMO, and nj is the number of

electrons in that HMO,

Ine ; system, a neutrai carbon is associated with an electron density of 1.00 and the
net charge density is defmed as

g =l-qr
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1
Wx‘j{(¢l*¢z)

For Example:- .
1
¥, =7{(¢1 + ¢z)

At carbon atom 1, the electron density a; = %

At carbon atom 2, the electron density aj =% ‘sinice we hiavé two 1 electronin’ ¢, , the
total eléctron density at C, and C, each is gr =2.

x%‘-—-l

¢ charge
. =1-1=0
density

at carbon 1

charge density

at carbon 2 = 1-1 =0
Butadiene:-

C,=C,-C,=C, Thereare four2p, atomicorbitalstobe combine and four 7 -€lectrons in
‘the molecule. The HMO?’s are of the form

y=C, + C,$,+C R +C.0, (1)
and the secular determinant is
¢ b, & b,
¢1X 1 0 0
¢21 X 1 0 =0
& 10 1 x 1
¢40 0 1 x
o—E

where, X = B
This determinant upon expansion gives the polynomial equation
x -3+ 1=0

(or)
(x2-x-1)(2-x-1)=0

Hence
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xX*+x-1=0
x?-x-1=0
The roots of these quadratic equations are
=t Y5 o6
2
x=:-l-.-:l/-£=-—l.618
2
e eis
2
x=1-"—£= -0.618
2 |
Hence the energy levels are E= o - xf
E=a-x8

X=-1618; E,=a+1.618p(BMO)
X=-0618; E,=a+0618p (BMO)
X=+0618; E,=o-1.618 (ABMD)
X=+1618; E,=a-1.6188 (ABMD)

Since the resonancc integral B is a negative quantity, we can construct the molecular
diagram for the butadiene molecule is

. 4
u-2ﬁ \
a-f | Va
wp 1 Vs
e 4 v,
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in accordance with the Paulis exclusion principle the four 7t -electrons of butadiene are
iccommodated in the BMO’s y, and v,
Giving the total 7t electron energy as E, =2(c.+1.6188)+2 (a+0.618p)
En =4a +4.472p
7t bond energy =4a+4.472B - 4a
=4.4728 '

The total 7t -electron energy of the four 1t -electrons in butadiene is 4o + 4.472p°
The energy of two T - electron in ethylene is 2a + 2B

The Delocalisation energy is defined as the difference in energy of the = - electrons

in a molecule and sum of the energies of the isolated double bonds present in the classical
structure of the same molecule.

Classical structure Delocalised structure
H,C=CH-CH=CH, C-C-C-C
2(a+B) 2(a+B) 40 +4.472B
g:l:ihsamm} = (400+4.472B)~2 (20 +2B)
DE = 0.472p

The DE is a measure o‘f the stability of the molecule. The higher the energy, the more
stable is the molecule. Thus butadiene is more stable than two ethylene molecular by an
energy of 0.472p.

The HMO Coefficient:-

In term of x, the secular equation are

alx4~a2=0 (1)
a, +a,x+a,=0 .. 2)
a,+a,x+a, =0 .. (3)
a,+a,x=0 .. 4)

Using x = -1.618 corresponding to the contest enerty HMO y; we get

100



D.D.C.E M.S. University DCH 13

a,=-3,x=1.618a
a,=-a,-a,Xx=-a-(1.61891)-1.618)
a,=1.6182a
Hencea,=a,
a,=-a,x=1.618a,
Hencea =1,
From the condition of normalisation a; + a2 +al+al =1
al +(1.618a,) +(1.618a,)+a? =1
1
J7.24

8,=1.618x0.372=0.602 =g,

a, = =0.372=a,

v, =0.372p, +0.602p, +0.602p, +0.372p,

Simularly, the confiners for y,, y; and y, and can be found by using the values

x:-0.618, +0.618 and 1.618 receptively. The four HMO’s of butadiene one that found to be as
follows

v, =0.372p, +0.602p, +0.602p, +0.372p,
v, =0.602p, +0.372p, ~0.372p, ~0.602p,
v;=0.602p,-0.372p,~0.372p, - 0.602p,

v,=0.372 p, —0.602 p, +0.602 p,—0.372 P.
Butadiene:-
Bond order:

The four 7 - etectrons involved in butadiene occupy the two bonding orbitals.
y,=0.372p, +0.602p, +0.602 p, +0.372 P,
v, =0.602p, +0.372p, - 0.372p, - 0.602 P.

Accordingly we get the foliowing values for the partial bond orders between different
carbon atoms .

P}, =0.372x0.602=0.224
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2, =0.602x0.602=0.367
P}, =0.602x0.372=0.224

P!, >Pl, ="', >0, This shows that the contribution of the electron belonging to ¢ , strength-
ens the central bond.

Similarly, the partxal bond order for y,

P! =0.372x0.602=0.224

0.894 0.447 0.894
HC - CH- CH- CH,
The sum of 1t bond orders is given by

j =Pt P2t Py
= 0.894 +0.447 +0.894

=2.236

Thus, the total 7t bond order is greater than two by 0.236.
electron density: (Butadiene)

q,=2x{0.372)" +2x(0.602)' =1.0
4, =2x(0.602)" +2x(0.372)"=1.0
q,=2x(0.602)" +2x(~0.372)’ =1.0
q,=2x(0.372)" +2x(-0.602) =1.0

Charge density & =11=0

Total electron density = 4.0 in agreement with the fact that these are 4 1t electrons in
the molecule.
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UNIT-IV
INTRODUCTION

1. It deals with the application of statistical mechanics to thermodynamics.

2. It has been used successfully to relate the microscopic properties of the individual
molecules (moment of inertia, dipole moment, etc.,) with macruscopic properties
(molar heat entropy, polarization etc.,) of a system which is having a large number of
molecules.

3. It should be possible to calculate macroscopic pmperties of a system from a suitable
summation of the properties of microscopic constituents. This is precisely the aim of
statistical mechanics. ‘

4. Even in the absence of any information about specific individual particles in a large
assembly of particles, the properties can be predicted by using the laws of probability.

5. In a system containing a collection of particles or molecules each can be in any of the
various available energy levels and spatial distributions. The macroscopic properties
of the systern depend on how many molecules are occupying the different states. It has
now been possible to develop statistical methods to obtain information of the distribu-
tion of molecules among the possible states. This enables one to evaluate the varicus
properties of the bulk system. In fact, there are now three different equations for the
thermodynamic probability (W) which are requu'ed to meet different physical system.
The three statistics as they are called. are those of

Maxwell-Boltzmann, Bose Einstein and Fermi-Dirac statistics
System, assembly and ensemble

If there is a collection of particles, a single particle is referred to as a s stem and
collection of particles as a whole as an assembly.

An ensemble may be defined as a collection of a very large number of assemblies
which are independent of each other but which have been made macroscopically as identical
as possible.
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Different types of ensembles

Uniform ensemble: In an uniform ensemble, the density in phase space is a constant.

N
Lt é— =cons tant

N ->a

where AN denotes the number of systems in an element of volume AV and N total number
of systems in the ensemble. '
Micra canonical ensemble

When the units are separated by impermeable adiabatic walls, the ener of every system
is the same and the ensemble is said to be microcanonical. For example, the number of mol-

ecules N, the volume V and the energy of the units E will be the same in all the units.

EVN |EVN | EVN
EVN |EVN | EVN
EVN |EVN | EVN

Canonical ensemble

On the other hand, if the units are separated by a diathermic wall letting the energy
fluctuate about some average value E, while the temperature T remains the same the
ensembile is called a canonical ensemble.

TVN |TVN | TN
TVN | TVN | TVN
VN |TVN | TVN

Grand - canonical ensemble

The third type of ensemble is based on open systems where the number of
molecules in a unit is not kept constant while V and T and the chemical potential | are the
same in all the units. These ensembles are called grand canonical ensembles.
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TV [TV,h | Tvu
TV,h [T,k | Ty
VU [TVih | Tvp

Maxwell-Boltzmann Distribution Law

I. Maxwell-Boltzmann statistics assumed that the particles ate independent but
distinguishable.

2. This statistics was therefore quite suitable in dealing with solid systems where
particles have distinct positions in the crystal lattice.

3. But for gases where identical indistinguishable particles are concerned, this statistics
would be unsatisfactory. It has to be appropriately modified in its application to gases.

Let us consider N molecules being grouped into i levels such that the first level
confains n, molecules, second level n, molecules and so on.

The number of non-equivaient arrangements (thermodynamic probability)

N!
n,!n,'n;!.n!

Taking 1n on both sides
InW=1InN!-(In n!+inn!+. . +1n n!)

an:InN!—z n,lnn, -Z n,

1 |

when ‘N’ is large, Striling’s approximation can be used to evaluate the factorials

InN!=NInN-N
iln‘nik -—i n;In n,—}i:ni
1 | !
=—_2i: n;Inn. - N
1
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In W=NInN-Yn,lnn,
i

N and E are constants, any small variation in these must be zero.
2 4nm;=0 L. )
1

consider, total energy of the system is also constant

2 ¢dén;=0 3)
1

‘Mathematical probability ‘P* is proportional to W

Pa W

P= C‘W(C’ cons tant)

InP=InC!'+1nW
InP= InC“FNlnN"‘Zﬂihln,i
-

N and C! are constants and the condition for a maximum probabilityis
5(Inp)=0

8(-lnp)= s(il:nslnni) =0

5i(5ni)lnni+28ni=o ..... @)
1 1

So, eqn. (4) becomes

z;}n n,én, =0(': 2: Eni=0) e (5)

Equ 2 multiplied by a'
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Za' dn, =0 e (6)

Equ 3 multiplied by B

Zﬁeiﬁn,:(}

..... )
1
combine equ 6, 7 and 5
t (ln n, +a' +Bei)8ni =0
1
Inn;=—a' —Be,
n=ete™ ®

Inn, =—a'-Be (g, = Degeneracy number) .....(9)

n =-—2i__

i e@l*’ﬁsi [ (10)

Equ 8, 9 and 10 are the various forms of Maxwell Boitzmann distribution law.
Bose-Einstein statistics (Quantum statistics)

1.

Bose-Einstein statistics applicable to systems consisting of identical and
indistinguishable particles, there being no limit to the number of particles in any level.

Light quanta (photons), alpha particles, deuteron and all atoms and molecules
composed of an even number of elementary particles like 12C, N, '0 fall in this
category. The spin of the nucleus is either zero or an integral number. Such particles
are called Bosons.

For this statistics, the total number of different and distinguishable ways of
arranging N particles among all energy level. (the thermodynamic probability).

W=,‘t(“s+ga“1)! ..... )
' oo !(g - 1)
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Taking natural logarithms of equation (1) and applying Stirling’s approximation and on
simplification, we get

dinW= z [In(n, +g~1)dn, ~Inn, dn, ]=0
1

i

Z [-1nn +g,-1)+Inn, ], =0 Q)
We know

Zidni =0....(A) and 5;:-8511)i =0.....(B)

Multiplying equation (A) by o' and equation (B) by B and adding to equation (2) and |
simpiiﬁed, we get -

&i
n, =——a‘——"—
e(a )y

Equation (3) is Bose-Einstein distribution Law.
Fermi - Dirac statistics
1. It is also deals with indistinguishable particles of integral half spin

2. In the Boltmann or in the Bose -Einstein statistics, there was no restriction to number
of particles present in any energy state.

3. When fermi-Dirac statistics is applied to particles like electrons the pauli-Exclusion
principle is also taken into consideration (i.e.,) two electrons (particles) in an atom
cannot have the same energy state. In simple words it means that not more than one

particle could be assigned to a particular energy state. Here this particle is known
Fermions.

In this statistics, the total number of different and distinguishable ways of arranging
n,,n,.n, .... etc., particles among the energy levels €, , €, , €; is given
W= 11— & ~

1 ni!(gi—ni)! ... (1)
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Taking natura! logarithms of both sides of equation (1), applying Stirling’s approximations

- and consider the condition for the maximum probability and simplified, we get

Y inn,-ln(g-n)da,=0 @)
l .

Multiplying equation (A) by o', equation (B) by B and adding with equation{2)

> [inn-in(g,-n)+a' +e)dn ]=0 @)
1
Equ (3) is simplified
p=—p>__ 4)
ea +Be; +1

The equation (4) is known as Fermi-Dirac distribution Law.
PARTTTION FUNCTION

Statistical thermodynamics analysis has been facilitated by usirtg the partition func-
tion. The partition function may be defined as follows

f=Ygew™ (1)

For general purposes, it is essential to measure energy levels relative to the ground
state. It, therefore, follows that equation.

£=3 g e
Secwr o

The term partition function is given by Fowler. It is a dimensionless quantity. Jts value
has been found to depend on the molecular weight, molecular volume, tempérammetc, Thus
the partition function may be defined as thd sum of the probability factors for different energy
states or more conveniently i’ can be stated as the way in which the energy of a system is
partitioned among the molecules which are constituting the system.
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=

1
bl B (3)
N N
Thus the partition function may be defmed as the reciprocal of the mole fraction of

e molecules occupying the ground state. It is also the ratiJ of the total number af molecules
the number of molecules in the ground state.

wrtition function and thermodynamics function
Internal energy
The internal energy ‘U’ of a system of N molecules is given by

(or) f

1
3

T e (D)
Since f =2gi~e""‘“
{
Lol o U a1 Y S
& ﬁ;g‘(k)" T
af ¢
kT2, —=) g™ 2
a4 - (2)

quatidn (2) and (i)
U=Ner2. L. & (or) U=nkT® [ﬁl‘l.f.]
£ T ar

. Entropy in terms of partition function

Consider a system of N indentical molecules distributed among the quantum levels in
ccordance with the Maxwell - Boltzmann distribution law

The Thermodynamic probability of distribution of N particles a such thatn ,n,n, ........ '

re in the energy levels €, ,€, , €, isgivenby
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N!

Taking 1n and applying Stirling’s approximation

1nW=NInN——§:n{ Inn,
1

- We know D, ="1;?I“gi &N (g, =1)

_ N |
InW=NInN-S"n.1n| —_ e %/
S tn( T )

InW=NInf +——[—J-
kT
According to Boltzmann Planck equation
S=kiInW
S=kN Inf+U/XkT)=Nk In f+ U/T
3. Heat capacity at constant volume ()

U
C, =| =
~(5F)

o Jinf
=Nk. T2.
<, a'r( oT )

4. Enthalpy
H=U+PV

dinf
Substitution of U Value and P Value: P=NkT ( = )
T
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A\
H:NkTZLdlan+NkT(amf) Y
oT ovV g

H = NkT T.(dmf)w(ah‘f)
aT N ).

5.Free Energy ,
G=H-TS=U+PV-TS=A+PV

A=-NkT Inf

G=—NkT1nf+NkT(9-1-‘l-f-) \
oV )y

6. Work function (A)
A=U-TS§
A=U-T [Nk Inf+ U]
A=-NKT Inf
Translational Partition functien
The partition function f, for a translation motion it one direction is given as follows |

f (x):Z g, e . (1)

Where €, —-)_translational energy of a molecule in ‘x” direction
k = Boltzmann constant
g, — Statistical weight of each traslational level

The statistical weight of each level is unity (g, = 1). Therefore, partition function £

becomes as follows

(=% .. )

The translational energy is also quatified and for a particle ina one dimensional box,
the translational energy levels are givenby
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n’h?
Tml’ ©8 molecule? 3)

combining equation (2) and (3)

f(x)=2 ¢

As the energy levels are so closely spaced, the variation of energy may.be taken to be
continuous and summation will be replaced by integration.

8ml2 kT

a 2112

£ (x)= Iesmz T 40

i
2 kT )2
f, ()= Z2mET )

Similarly, the translational partition function for a molecule in three directions x, y
and z at right angles to each other is obtained is as follows

f=1(x)£(y)(2)

3/2 32
£ = 2nemkT 111 = 27mkT v
h? Y h?

Where V represents the volume accessible to a molecule
Rotational partition function

The partition function for rotational energy of a diatomic molecules is given as fol-

f »=Z g.e = %))

From quantum mechanical principles it follows that the rotational energy (¢, ) for a
diatomic molecule in the j* state is given as follows

lows

112
e, =J(J+1)——
f ( )81:2[ . (2)

J = rotational quantum number J =0,1,2,3, .....

113



D.D.C.E M.S. University DCH 13

I = moment of inertia

As the rotational energy at the Jth level is degenerate in (2J+ 1) ways, the value of
statistical weight is given as follows

g =(2J+1) e (3)
combining equ (1), (2) and (3)
£ =Y (2r+1)e T @)

As the levels are closely spaced, it means that the summation can be replaced by inte-
gration. Thus, we obtain

fy = 6[(2J+1)e"(’+.‘)‘* A )
= [(3+1)e g5 )
0
hz
Where B S TR )

Again put Z = J(J+ 1 )which on differentiation becomes as follows
dZ=J+1).d) v (8)

on combining equation (6) and (7), we have

£ Sn;IZkT
f = af(e””z )-dz = ‘13— o (9)
0 J
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on combining equation (7) and (9), we obtain

The result has been found to be only true for heteronuclear molecules such as NO, HCI
etc., But in the case of homonuclear molecules such as O, N,, etc., only half of the rotational
terms will be present. '

In order to‘ avoid complications a symmetry number ¢ is introduced. Thus equation
(10) becomes

_8n’IkT

f
" oh?

Heteronuclear molecule HCI, NO ¢ =1

For homonuclear diatomic molecule ¢ =2.

Vibrational partition function

The partition function for vibrational energy of a diatomic molecule is given as

follows:

f,=)8.e""

The statistical weight of each vibrational level is unity. Hence the equation (1)
becomes as follows

f=2e™™ @)
The vibrational energy levels are given by the equaﬁoﬂ'

g, =(V+1/2)hv
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V — vibrational quantum number can be 0, 1,2, ete.,
vV —>  Frequency of vibration

h —» Planck’s constant

For the lowest energy level V =0, the vibrational energyi.e.,) the zero point energy
is equal to hv /2. The vibrational energy of any level referred t the zero point energy is
givenby

e, =(V+1/2)hv-hv/2=vhv
£,=F e = (1-e™TY (3

Theories or Heat Capacities or Solids

The quantum theory explains the variation of heat capacity with temperature. Specific
heat is the heat capacity referring to 1 gm of material . The variation of heat capacity with

temperature for several solid elements is shown in Fig. 1.

= des " A somnedhnemem
100 200 0 400
Tempersbure (X

Fig 1. Variation of heat capacity with temperature
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The heat capacities for elements like aluminium, ¢ ypper and zinc increase very rapidly
with temperature, approaching a value of 3R = 5.97 cal mole™) at or near room temperature.
carbon and silicoﬁ, on the other hand, show a much gradual increase in heat capacity with
temperature and do not attain the 3R value until very much higher temperatures. In fact, the
heat capacity of carbon does not become 3R until above 1300°C.

Einstein Theory
Albert Einstein applied quantum theory to determiné the allowable energy

levelsE =(V+ ¥)hv

He has assumed only one quantum state per energy level. He has postulated that all
atoms do oscillate same frequency of vibration, v . According to Einstein absorption of
energy by the oscillators do not take place continuously, but discontinuously in line with
Plank’s quantum theory. With these above assumptions, the capacity per mole at constant
volume C_ atany temp. is given by the expression,

c,=3R(

ﬁv 2 e M/kT
,k.’f)

.(éy,/g:r = l)—z vesns (l)
Q_the characteristic Einstein temperature is defined as

_.hv

Qo= | e (2)

Equation (1) indicates that C_is the same function of Q,/T for all mono atomic solids’..Further
thisequation predicts that C, will approach zero at T=0, an that at high temperatures C, will
approach asymptotically the value of 3R. In both these respects the equation is in general
agreement with the facts.
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Experimental curve

Einsteln carve

C, (cal mole’

¢E
Fig2
The shape of the curves predicts a low value for C at low temperatures.
Debye Theory
A more successful theory of heat capacity of solids was proposed by Peter Debye in
1912. He has assumed a continuous distribution of frequencies i.e.,) a solid may vibrate with
a n y

frequency ranging from zero up to limiting frequency, v .

Debye has derived an expression for C_ as a function of temperature based on the
principles of theory of elasticity and by employing quantum thesr. Debye has treated the

atomic structure of solid as a homogeneous elastic medium and vibrations can be considered

to be equivalent to elastic waves.
~ 1(6,Y 1 (86,)
Cv=3R{l-—| 2| +—| R} 4.
Y [ 20(T)+560(‘T)‘+ ] ()

Q, the characteristic Debye temperature is defined as

— hvm
Tk

The Debye curve is in excellent accord with experiment for a large group of crystalline
solids. The theory predicts that C,, will be zero at T = 0, an will approach the limit of 3R at
higher temperatures.

Q
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Fig3.
Another valuable contribution of the Debye theory is that it predicts at very low
temperatures a linear relation between C, and T3, namely

3
Cv=464.4[-g—) caldeg "'gatom™ o 4)
D
oCya T’
Note T<8,/10

Ean. (4) is known as the Debve Third Power Law

Limitation ot the Debye theory is that it accounts only for heat capacities up to 3R. Yet
certain elements, particularly the alkali metals reach values of C, considerably above this
limit at higher temperatures. The excess absorption of energy is usually ascribed to electrons,
of whose displacement by the thermal means the Debye theory takes no account.
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UNIT-V
THEORY OF STRONG ELECTROLYTES

Debye and Huckel derived a quantitative relationship bet  een the attractive forces of
the ions in an electrolyte and the electrolytic conductance. Later Onsager developed the

relationship.

Accounting to Debye Hucke!l theory every ion in solution is surrounded by an ionic
atmosphere of opposite sign. This atmosphere arises in the-following manner. Imagine a
positive ion A and consider a small volume element dv at the end of radius vector Y
(Figure-).

A
Fig.L. lonic atmosphere

As a result of thermal movements of the ions, there will be sometimes an excess of -
positive and sometimes on excess of negative ions in the volume element dv. If a time average
is taken dv will be found to have, as a consequence of electrostatic attraction by the positive
charge at A, a negative charge density, i.e., the probability of finding ions of opposite sfgn in
the space surrounding a given ion is greater than the probability of finding ions of the same
sign.

Every ion may thus be regarded as being associated with ionic atmosphere of opposite
sign. The net charge of the atmosphere is equal in magnitude but opposite sign to that of the
central ion. The charge density will be greater in the immediate vicinity of the latter and wiil
fall off with increasing distance.
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Suppose the time - average of the electrical pc ential in the centre of the volume
elementdvis Y The work required to bring a positive ion from infinity up to this positive is
' Z+ €W and to bring up a negative ion is -Z - €Y, where Z+ and Z- are the numerical values
of the valencies of the pwsitive and negative ions respectively and e is the unit charge, ie., the
clectronic charge . Applying the Boltzmann law of distribution of particles in a field of
varying potential energy, the time-average number of positive ions (dn ) and of negative ions
(dn.) present in the volume element dv are given by

dn* =n e~(2«re\p/kT)dv
dn =n g-(—‘l-evlk'{')dv

Where lg and n_are the total, numbers of positive and negative ions; respectively, in unit
volume of the, solution; k is the Boltzmann constant and T is the absolute température. The
electrical density i.e., the net charge per unit volume, in the giverf volume element is therefore
givenby |

_€ (Z,,dn, -Z_4 )
p= 4v

- ~{z+ey/kT) (Z-evixT)
p-—(n,,z‘e -n-z,

+ey/kT

with the assumption that ( Z ) is much less than unity, the expression for the

electrical density (equation 1) becomes:

”EZ\V 2
= n.zZ:
P kT Z b

where n; and z, represent the number (per unit volume) and valence of the ions of the i® kind.
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Applying poissons’s equation and converting rectangular coordinates to polar
coordinates, since the distribution of potential about any Point in the electrolyte must be

spherically symmetrical, a relationship between P and Y can be recognized as

_L_?__(rz'a‘t')___‘“fp

2 orl oT > (3)
Inserting the value of p given by equation (2)

10,09 (4ny 2] _y2
== |=| — Zf =k
r’ar(r arr) ( oiT Snzil=ky (4)
where the quantity k (not to be confused with specific conductance) is defined by
" 1/2
4n €’
k=[ T Zn‘Zf] ..... €))

The differential equation (4) can be solved, and the solution has the general form

Ae™ A'e™ ;
Y= - + e (6)

Where Aand A’ are constants which can be evaluated in the following manner, Since must
approach zero as r increases, because the potential at an infinite distance from a given point in
the solution must be zero, it follows that the constant A’ must be zero.

_Ae™™
Hence, V=" (1)

For a very dilute solution ZniZi2 is almost zero. and hence is k {from equation), the value of
the potential at the point under consideration will be A/r (according to equation (7). Insuch a
dilute solution the potential in the neigﬁbourhood of any ion will be due to that ion alone,
since other ions are too far away to have any influence. If the ion is regarded as point charge
the potential at small distances will be Zi e /Dr. Therefore

ALe
Dr

T
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a=4c
D

Insertion of this result in equation (7) yeilds

e-Kr

VAN
‘I!:—.—mw‘«—. ..... 8
D r ®)

This equation may be written in the form

B85

For dilute solutions k is small and 1-e™™ is equal tokr. Hence

_Z,e Z €k

Dr D e 9)

The first term on the right of equation (9) is the potential at a distance r due to a given point
ion when there are no surrounding ions. The second term must therefore, represent the
potential arising from the ionic atmosphere. Therefore, the potential due to the ionic
atmosphere is given by

_Zek
D

... (10)

If the whole of the charge of the ionic atmosphere which is - Z, €, since it is equal in
magnitude and opposite in sign to that of the central jon itself, were placed at a distance 1/k
{rom the ion the potential produced at it would be - Z, e k/D Which is identical with the value
given by equation (10). So, the effect or ion atmosphere is equivalent to that of a single charge,
of the same magnitude, placed at a distance yk from the ion; this quantity }{{: is regarded as

a measure of the thickness of the ion atmosphere in a given solution.

According to the definition of k, i.e., equation (5), the thickness of the ionic
atmosphere depends on the number of ions of each kind present in unit volume and on their
valence. If C, is the concentration (of the ions of ith kind) in gram-ions per litre, then
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N
1000 Where

n, =c;

i

N is the Avogadro number. Hence from equation (5)

172
1 [DT 10001(]

k |3 cz? 4ne’N

Substituting the values of the constants (k=1.38 x 10'¢ erg per degree)
£ =4.802 X 10 e.s. unit., and N= 6.023 x 10*

- - DT
1/k=2.81x10 [Zqﬁrm ..... (12)

The thickness of the ionic atmosphere decreases with increasing concentration and
increasing valence of the ions; it increases with increasing dielectric constant of the solvent
and with increasing temperature.

TIME OF RELAXATION

Q<

Figure - 2: Asymmetry effect (a) Field off, (b) Field on

As long as the ionic atmosphere is stationary it has spherical symmetry. When the ion
is made to move under the influence of an applied electric field, the symmetry is disturbed. If
a particular kind of ion; moves to the right each ion has to constantly buildup its ionic
atmosphere to the right; while the charge density to the left gradually decays (figure 2). The
rate at which the atmosphere to the right forms and that to the left dies away is expressed in
terms of a quantity called the time of relaxation of the ionic atmosphere. The decay of the
ionic atmosphere occurs exponentially, and so return to random distribution is asymptotic
and theoretically only at infinite time it will fall to zero. The jonic atmosphere will fall
virtually to zero in the time 4 q @, where @ is the relaxation time and q is defined by
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_ Z,Z. ALA
VT .7 vz

Z is the valence (numerical) and A is the ion conductance of the respective ions. For a binary
electrolyte z+ and z. are equal and q is 0.5 and the relaxation time is 20

Suppose an ion of valence z is moving with a steady velocity under the influence of an
electrical force &2V, where V is the applied potential gradient. But this force is opposite to
the force due to resistance represented by Ku, where K:is the coefficient of frictional resis-
tance and u is the steady velocity of the ion. To maintain uniform velocity, both the forces
must be equal. |

szV=Ku

gzV
u

Relaxation effect (Asymmetry effect) and electrophoretic effect

Due to the finite time of relaxation, the charge density behind the moving ion is greater
than in front. Thus there will be an excess charge of opposite sign behind the moving ion. This
will retard the moving ion and this retarding effect is called relaxation effect or asymmetry
effect.

Another factor which retards the moving ion is the tendency of the applied field to
move the ionic atmosphere, with its associated solvent molecules, in a direction opposite to
that of the central ion. This will exert an additional resistance on the central movin gion. This

is similar to the effect in colloids and is called as electrophoretic effect’.

Debye and Huckel applying Stokes’ law gave an expression for the electrophoretic
force of an ion of the ith kind.
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_ k
Electrophoretic force = %’zﬁLﬁ—,K;V ..... (15)

where €, Z, and K have their usual significance, n is the viscosity of the medium, K, is the
coefficient of frictional resistance of the solventand V is the applied potential.

Onsagar deduced an equation for the relaxation force

: g’z .k
Rclmoﬂ fome 'gi-)-ijr—m /2 (16)

where D is the dielectric constant of the medium and o is defined by

2

q
1+ \/(—l- ..... Qa7

o=27Z 272
the value of q is given by equation (13). Equating the forces acting on anion of i* kind moving
with a steady velocity.

Applied electrical force = Frictional force of the solvent
+ Electrophoretic force + Relaxation force

ie, €Z;V=Ku; + . K,V+
’ 611

on dividing the equation by K.V and rearranging

u, £z, gz,K e'zk o

- — —

V K, 6IIn 6DkT K,
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If the field strength is | volt cm-, i.e., v is 1/300, then

£z, ek l: zZ ., £'z, coj]

.= —
" 300K; 300|6INn 6DKT K.| = (19
An infinite dilution k is zero and hence
u%i= —oi a0
300k, e

Since Fy% = 29

£Z. A%

1

300K, F

Further u,= 2,/ @F where Qis the degree of dissociation. If this result and equation
(20) are introduced into equation (19) we get

A 2% ek [ z, £ ez,a)]

= - + .
«F F 300 6In 6DKT K,

with the assumption that the electrolyte is completely dissociated (@ = 1) and making use
of equation (20), equation (21) modifies to

v o=t ok [ 2F 300810
300 6I1n  6DKT

Introducing the expression for k and the values of ¢, k and n equation 22)
becomes
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.1 2915z, 990 x10°A°iw > 3
)'i= kol— e C+Z+ +C__Z__
_ {(DT)IIZ " (DT )3/2 } \/ ..... (23)

ince C=C,z, =Cz. (C in equivalents per liter and C, and C_in gram ions per liter)

ao_|_29:152, 9.90 x 10°A°ia a(z +7)
(D,[,)llz‘r| (DT)3/2 L (24)

The equivalent conductance of an electrolyte is equal to the sum of the conductances
f the constitutent ions and hence.

A, A% [29.15(z,+z.) 9.90 x10°A%w |
')f'z 20 ’[ .(D'I(‘)”zn )+ 12 j\/C(z++z_) e (25)

s (oT)

For uni-univalent electrolytes Z+ = Z-=1 and © = 2 —/2 and, equation (25)
educes to

82.4 8.20 x 10°
= A, - + A, |~C
[(DT)UZ T‘ (DT)SIZ ] . eenas (26)

This equation is known as Debye-Huckel - Onsager conductance equation

The Debye:-Huckcl Onsager conductance equation explains the decrease of the
quivalent conductance with increase in concentration as due to decrease of ionic velocity-
ssulting from interionic forces. . The first term in the brackets gives the effect of

lectrophoretic force and the second term represents the influence of the relaxation or
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asymmetry force. The magnitude of the interionic: fc ces increases with increase of the
valence of the ions (Z, and Z_) and concentration of the electrolyte.

VERIFICATION OF DEBYE-HUCKFL- ONSAGER EQUATION

For a uni-univalent electrolyte, assuming complete dissociation, the Debye-Huckel-
Onsager equatxon may be written as

A=2,-(A+BA,)JC e (27)

where A and B are constants characteristic of the solvent and the temperature and are given by
equation (28) and (29)

A L 82.4
- (D T )l/zrl core (28)
g 82x10°
- (D T )3/2 ceve (29)
AQUEGUS SOLUTIONS

Venfication of equation is to show that the equivalent conductance is & linear ‘imcizou
of the square root of the concentration and the slope of the line is numerically equal toA +
B Ay; the values of A and B mav be calculated from equations (28) and (29).

Figure-3
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In figure - 3 the expenimentally determined equivalent conductances of
aqueous solutions of a few uni-univalent electrolytes are plotted against the square roots of
the corresponding concentrations. The slope of the line is found to be numerically equal to
A+BA,, and the intercept to the estimated equivalent conductance at infinite dilution (A,).
The DHO equation is strictly obeyed at concentrations upto about 2 x 10-* equivalent
per liter.

For electrolytes of unsymmetrical valence type, i.e., Z+ and Z_ are different,
the verification of the DHO equation is difficult since the evaluation of the factor ini equation
(25) requires the mobilities of the ions at infinite dilution; for this transfe_rencé ntxhbe'ts‘of
the ions are needed. The higher the valence type of the electrolyte the lower is the limit of
concentration at which the DHO equation is applicable.

Further bi-valent electrolytes such as copper sulphate the plot of the equivalent
conductance against the square root of the concentration is nct a straight line, but is concave
to the |JC axis (Figure - 4). The slopes at appreciable concentrations are much greater than
those calculated theoretically. This may be due to the incomplete dissociation at the experi-
mental concentration. The shapes of the curves indicated that in very dilute solutions the
slopes approach the theoretical values.

144 ¢

Figure - 4 Deviation from DHO equation
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Electrolytes like chlorides and thiocyanates »f alkali metals of methanol obey |
DHO equation. Salts of higher valence types exhibit appreciable deviations. These
discrepancies become more marked the lo§ver the dielectric constant of the medium.
Especially if the latter is non-hydroxylic solvent. Substances, which are strong e?ect;olytes »
and almost completely dissociate in water behave as weak, incomﬁlete!y dissociated

electrolytes in solvents of low dielectric constant. Hence deviation from DHO equation is
observed.

DISPERSION OF CONDUCTANCE AT HIGH FREQUENCIES: DEBYE-
FALKENHAGEN EFFECT

An important consequence of the existence of the ionic atmosphere, with a
finite time of relaxation is the variation of conductance with frequency at high. frequencies,
referred to as the dispersion of conductance or the Deb)"e Falkenhagen effect. If an
alternating potential of high frequency s applied to an ion with the relaxatips time of the ionic
atmosphere, the unsymmetrical charge distribution formed around an ion in motion will not
have time to form completely. If the oscillation frequency is high enough, the ion will be
virtually stationary and its ionic atmosphere will be symmetrical. Therefore the Mg
force due to the relaxation or asymimetry effect will disappear partially or entirely as the
frequency'of the oscillations, of the current is increased. Hence at sufficiently high frequen-
cies the conductance of a solution. should be greater than that observed with low frequency
alternating current or with direct current. The frequency at which the increase of conductance

is expected is approximately 1/ , where @ is the relaxation time. The relaxation time for a
binary electrolyte.

_ 713 x107° ]
Cza

6 ec.

And the limiting frequency v above which abnormal conductance s expected is
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v —%Z—g- x 10" oscillations per sec ond

The oorrespmiding wave length

A= (2:21: meters

- For most electrolytes other than acids and bases, in aqueous solutibns, A is
about 120 at 25°C and hence

2 x107
Cz

A

meters

For uni-univalent electrolvte of 0.001 molar concentration the Debye-

Falkenhagen effect should be observed with high frequency oscillations of wave length of
about 20 meters or less.

. 2x107
o~ —

— = 2().meters
0.001xt

The higher the valence of the ions and the more concentrated the solution the
shorter the wave length (higher the frequency) of the oscillations required for the effect to
become evident.

- The calculated ratio of the decrease of conductance due to relaxation effect at
a,short wavelength 3 ,i.c., A, (] ), tothatatlong wavelength A, , i.e., atlow frequency,

i1s plotted as ordinate against the wave length as abscissa (Figures 5 and 6).
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if'omlmm

Figure 5 : High Fiequency conductance dispersion of potassium chicride

1.0

oo

AgB)os ‘
h .

Wave length |
10 100 1000 meters

_Figure 6 : High Frequency conductance dispersion of salts at 10 mole per litre.

It is seen that the decrease of conductance due to reduction or asymmetry
effect decreases with decreasing wavelength or increasing frequency.

CONDUCTANCE WITH HIGH POTENTIAL GRADIENTS: WIEN EFFECT

When the applied potential is of the order of 20,000 volts per cm., anion will
move at a speed of about | meter pér sec., and it will travel several times the thickness of the
ionic atmosphere in the time of relaxation. As a result there is no time for the ion to build up
the ionic atmosphere and hence the moving’ion is virtually free from an oppositely charged
ion atmosphere. In these circumstances both asymmetry and electrophoretic effects will
diminish and at sufﬁcier}tly high voltage will disappear. The equivalent conductance at any

appreciable concentration will be greater than the value at low voltage. This is known as wien
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effect. The wien effect is most marked where there is large interionic atfraétion, 1., in con-
centrated solutions of high valence ions. The Wien effect for potassium ferricyanide is de-
picted in figure 7. The qﬁantity A/ is the increasé of equiva'ent conductance due to the
application of a. potential gradient represen'tcd,in X- axis. At very high potential the relaxation
and electrophoretic effects are wﬁxplctcly eliminated and hence and AM values tend towards

a limit,

Figure 7. Wien effect for potassium ferricyzaide

For an incompletely dissociated electrolyte the measured equivalent conductance should
be aA, where o is the degree of dissociation. The Wien effect for weak acids and bases is
several times greater than expected. This is more so as the voltage is raised. The powerful

electric fields produce a temporary dissociation of the weak electrolyte into ions. This
phenomenon is called as dissociation field effect.

To conclude, the conductance with very high frequency currents and at high potential

gradients provide clear evidence for the theory. of electrolytic conductance based on the
existence of ionic atmosphere.
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ACTIVITYANDACTIVITY COEFFICIENT

When a pure liquid or a mixture is in equilibrium with its vapour the chemical
potential of any constituent in the liquid must be equal to that in the vapour.

vi=p; + RT In p,

Since the partial vapour pressure of any constituent of an ideal solution is

proportional to its mole fraction (X)) in the solution the above equation is modified.
p=un, + RT In X,

The above equation is true for ideal solutions. If the solution is not, ideal the
equation is further modified

u;=u; + RT In xf,

The correction factor f is called as the activity coefficient of the constitutent i
in the given solution. Activity coerficient is a measure of the deviation from ideal behaviour.

For an ideal solution the activity coefficient ‘f* is unity.
B, =, + RT In x/f;
The product of activity coefficient and mole fraction is called the activity.
X f,=a,
p;=py + RT In a,

The mole fraction of the solute is proportional to its concentration. The

concentration méy be expressed in terms of molarity (c) or molality (m)

p=p; + RT In xfx
p=p’ + RT In x Cf,
p=u; + RT In x mf_

f_,is normally written as fand f_is given the symbol y
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ACTIVITYAND MEANACTIVITY

Ifa, and a_are the activities of the ions produced by the electrolyte and v, and v.
are the number of positive and negative ions respectively, the mean activity 3, is calculated
by the following equation.

v
a,=(a” a.."") )
Where v is the total number of ions
Activity a, of the electrolyte is given below

v+ v
+ a4 T,

a
Mean activity = (activity)"*

Similarly mean activity coefficient is explained

liv
ve=(r.77.7)
ACTIVITY COEFFICIENT

The activity coefficients of dilute solutions of uni-univalent electrolytes are almost
equal to 1. The deviation is very less. Irrespective of the electrolyte the activity coefficients
of uni-univalent electrolytes at dilute solutions are almost equal. For the same concentration
when we move from uni-unibalent to uni-bivalent the deviation increases. The activity coeffi-
cient depends upon the ionic strength of the solution are almost eq.al. For the same concen-
tration when we move from uni-univalent to uni-bivalent the deviation increases. The activity
coefficient depends upon the strength of the solutions.

THE DEBYE-HUCKEL LIMITINGLAW
The thickness of the ionic zinhosphcre is given by equation

e[ _DT_ 1000R .
Yezt 2meN) (30)
since ionic strength, p=1/2 ) ¢z,
‘ 8neiN? i
k= L 31)
1000DRT
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‘Activity coefficient of an electrolyte is re!ated to the thickness of the ionic
atmosphere by the expression.

~-Z}e’N

1, f,=
2DkT

el32)

Introducing equation (31) into equation (32) and dividing the right - hand side
by 2.303 to convert natural to common logérithms

N2g? 2 /2 72 .
logf =— i
8% 2.303R”’{1000] (DT)u,JF wl33)

Substitution of numerical values of universal constants we get

ZZ
logf =-1.823x10° —i—fu 34)

( DT) .....

ForagivdxsolvcntandtcmpcratmeD and T are constants and hence
logf,=—AZ> b .. (35)

where A is & constant for the solvent at the specified temperature. This equation is known as

the chye-l-luckcl limiting law. It expresses the variation of the activity coefficient of an jon
with the ionic strength of the medium. It i is called the limiting law because the approxzmatxon
made in the detivation of the potential at an ion due to its ionic atmosphere is applicable only
at infinite dilution. This law holds cood for electrolytes in very dilute solution. The general
mclusion‘ drawn from the limiting law equation (35) is that the activity coefficient of an ion
should decrease with increasing ionic strength of the solution. The decrease is greater the
higbcr the valence of the ion and the lower the dielectric constant of the solvent. The mean
activity coefficient of an electrolyte may be written as

logf,=—AZ+Z_Ju .. (36)

where Z, and Z_are the valences of the ions.
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ELECTRODE KINETICS
A reaction-taking place on the surface of an electrode involves the following steps;

1. Diffusion of the reactants to the surface of the electrode

2. Absorption of reactants on the surface of the elcctrode

3. Transfer of electrons or to the adsorbed reactant species

4. Description of products from the surface

5. Diffusion of products away from the surﬁee of the electrode.

The necessary activation energy fér the i ions ‘and 8lectrons involved in a
reaction is produced by the electric field. Since the reactions are investigated at temperatures
‘more than zero degree centigrade, thermial énergy in addition to electrical ‘energy also
contribute to activation energy.

For each ionic species at equilibrium, the rate of electron transfer in the
cathodic direction is exactly balanced; by the electron transfer in the anodic direction so that

the current density (current per uxit area)
jc=ja=jo d
It is this condition, whxch determines the eqmlﬂmum dlﬁ'erence in electnc

potential, Aédeq . The currrent denmty jo at equllﬂmum is called the exchange eument
density. The rate r of the chemical reaction at the surface of an elect_rode is given by

r=j/zF
where z is the charge on the ionic species and F is the faraday. We see that in an
electrochemical reaction r0Lj, it may be mentioned that while the rate of the chemical reac-
tion at the electrode is expressed in units of mol mdS", the rate of the chngegfmnsi v sfer at the
electrode is expressed in units of Am”

For a given electrochemical reactxon, the electrodes are said to be

nonpolansable if they have high exchange current density. Application of potential
'ghffetence across a non polarisable eléctrode results in an increased flow of charge between
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the electrode and the solution, though the potential difterence across the electrical double
layer does not change. Thus the charge moves rapidly to and from the electrode with the result
that no ,charge.dcnsity is built up in the surface layers. Calomel electrode furnishes an ex-
ample if non pqiarisable electrode.

If the applied potential difference across a polarisable electrode is increased,
there is a litfle flow of charge into the solution. The charges remain in the electrical double
layer and increase the potential difference across it. Mercury electrode in K solution is an
example of a pdlarisable electrode.

When an electrochemical cell operates un&cr non-equilibrium éonditions,
je# ja. In such case the potcixtjal difference between the cell terminals departs from the
equilibrium value A¢ = E, the cell EMF. If the cell is converting chemical free energy into
electrical energy, A4 < EIf, on the other hand, the cell is using an external source of energy to
cause chemical reaction, A¢ < The actualvalue of Aédcpendsuponthecimentdensityj at
the electrodes. It is customary to define the’quantity over potential of the cells as

Ad-Adeq =7

The value of nid determinedin partby the potential difference (iR) required to
.overcome the resistance R in the electrolyte and the leads. The corresponding electrical
energy id dissipated as heat; it is analogous to the frictional losses in irreversible mechanical
process. The remaining part of n, which is of a particular theoretical interest, arises from the
rate limiting process at the electrodes. The corresponding electrical energy is being used for
providing part of the activation energy in one or more steps of the electrode reaction.
TBEORMICALWVESHGK[IGN OFKINETICS OFAN ELECTRODE REACTION
Butler - Volmer Equation

Consider the electrode reaction

M*(ag)+ze — M(s)
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1
T'\.
s /[e\dy [T
M/ J 1\
U ' | ¥

X
Fig. 8. Gibbrfun'ctio& curve for the electrode reaction

Which will occur when the reaction ion M?* is in the vicinity of an electrode surface so that
the electrons are transferred from the electrode to the ion.

Now according to the Eyring activated complex theory (ACT), the rate constant
k, of the chemical reaction is given by '

k,=Bexp(-AG*' /RT) (37

Where G*® is the standard Gibbs free energy of activation and B is some constant. Figure (12)
shows the reaction paths along the free energy surfaces between he reactants and the prod—
ucts. The “reaction coordinate” is normal to the electrode surface. The electrochemical reac-
tion involving electron transfer occurs in a region near the electrode that comncides with the
region of the electrical double layer. It may be mentioned that the double layer has very high
electric field or the order of 10 G G° Vm G, assuming that a potential differenge of one volt
exists across a typical double layer of thickness 1 nm. . Such fantastically high electric field |
can literally tear the ions from the solid metal surface, dragging them into the solution. As-
suming the Helmholtz model of the double layer, we may assume that the potential varies
linearly with X (figure). The position of the outer Helmholtz plane is at X_where the reactant
molecule can be located. M2*(aq) + ze —*M(s) in the vicinity of the electrode surface show-
ing the lowering of AG* by the electric potential.
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We shall consider a reaction at the electrode in which particular species is reduced by
the transfer of a single electron in a rate-determining step. Let (Ox) and (Red) be the concen-
trations of the oxidized and reduced forms of the species, respectively, outside the double
layer. Clearly, the net current at the electrode is the difference of the currents resulting from

‘the reduction [Ox] and oxidation of (Red) . The rates of these processes are k [Ox] ank [Red],

respectively. In a reduction process, the magnitude of charge transferred per mole of reactin
events is F = eN, where F is the Faraday constant. Hence, the cathodic current density ;
arising from the reduction is given by

i=Fkox] . (38)

sssss

An opposing anodic current density 1, arising from oxidation i,
. j. =Fk, [Red]

Where the k s are the corresponding rate constants. Hence, the net current density at
the electrode is given by

J=j, ~j, = Fk, [Red]-Fk [0x]
= FB, [Red]exp(~AGa® / RT)~FB, [Ox]exp(-4G* / RT

where we have made use of Eq (37) and assumed that C.uos free energy of activation is
different for the cathodic and anodic processes. When j, > j_so that j > 0, the currént is
anodic and when j_ > j_so that j =0, the current is cathodic.

Let us consider a reduction reaction. As an electron is transferred from one
elec. ode to another, the electrical work done is ¢A¢ | where ¢ is the electronic charge and
A¢ is the potential difference between the electrodes. Hence, the Gibbs free energy of acti-
vation is changed from AG*to +FA4, if the transition state corresponds to .Ox being very
close to the electrode. Thus, if A¢ > 0, more work has to be. done to bring Ox to its transition
state, with the result hat Gibh- .cee energy of a activation is increased. On the other hand, if -
the transition state corresponds to Ox being far from the electrode (i.e., close to the outer
pane of the double layer), then. AG* is independent of A4 . In practice, however, the situation
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is midway between the two extremes. Hence, we can write the Gibos free energy of activation
for reduction as AG”+ 0FM where o , cailed the transfer coefficient or symmetry facter, lies
between0Oand 1,1e.,0< a <1. ‘

Let us next consider the oxidation of Red. Here ked discards an electron to the
electrode with the result that the extra work needed for reaching the transition state is zero if
this state lies close to the electrode and if that state lies away from the electrode ti;é, close to
the outer plane of the double layer), the work needed is —FA , sothat AG® - (1_; o)FA$
Suﬁsﬁmﬁng'for the two Gibbs, free energies of activation in eq. 41, we obtain the following
expression for the current density:

j={FB, [Red]exp(-AG, /RT)} ™™ _FB, [Ox]exp(-AG] 7RT)e ™
=5l
Atequilibrium 49—~ A9 and the net current is zero and the equlibrium elifiept densi-

ties are equal. Thus, if the potential difference differs from its equilibrium value by; the
overpotential, so that

N =A¢—'A¢eq weeie (43)
the two current densities are,
j={FB, [Red]exp(-AG] /RT)} ™ eq™™ "I =, ™ (agy
j.={FB, [Ox]exp(-AG! /RT)} ¢ eq/RT€;\RT =}, 7F/RT (45

Since the two equilibtium current densities, j,  and __ are equal, we carrdrop the sub-
scripts and designate each of them as'J , the exchange current density, and write.

j= i, ={e"In"™ - "F/RT} - (46)
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Eq.46isthe well known Butler - Volmer equation, Let us #xamine the exponentials in Eq.46.
When the overpotential Tl is very small so that 1 .F/RT <<1 | we can use the series

10 obtair
j=1, {{1+(1-a)nF/RT+...]-{onF/RT)+...]}

j=JnF/RT (48)
From Eq. 48 we see that the current density is proportional to the overpotenﬁai_.
From Eq. 48, we see that,

n=(RT/F)(i/],)
When n is small and positive, the current is anodic { > 0, when n < 0) and when 7 is small
and negative, the current is cathodic (j < 0, when n <0).

When the overpotential is large and positive (which is the case of an electrode being an

anode in electrolysis), the second exponential in Eq.46 is much smaller than the first and may
be neglected, giving.

j= joe(i—t)nFI'xT ."(49) v
Hence, taking logs of both sides
Inj = Injo + (- ) nF/RT .. (50)

When the overpotential is large but negative (corresponding to the cathode in elec-
trolysis), the first exponential in Eq. 46 is much smaller than the second and may be neglected
and we have.

-anF/RT

j=—j,e e (51
so that |
In(-j)=1n j, -annF /RT (52)
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Eq.50 afhd 51 are called the Tafel Equations

Figure (9) shows the plot of the current density j versus the over potential n is in .
accordance with the Butler - Volmer equation. We consider two Cases, labeled n as Aand B.
In case A there are high exchange current densities j_at bot!: electrodes. The individual
electrode curves are labeled A’ and A”. In this case even a small over potential will produce
appreciable flow through the cell. The other case, B, ‘corresponds to very low exchange
current density J_(We have not shown the individual electrode curves.) In this case, a large
value over potential is required to cause appreciable current flow through the cell. Thus, we
see that it is the exchange current density J_ which, according to the Butler Volmer equation,
determines the activation over-potential. The Shape of the current density versus over
potential curves is evidently determined by the value of the transfer coefficient o , which can
be determined by fitting the experimental curve to the Butler - Volmer equation.

Figure. 9.

Fig (9) Variation of current density with over potential in accordance with the Butler - Volmer
equation.

The transfer coefficient can also be determined from the Tafel plot, which is
the plot of the logarithm of the current density against the over potential (fig.). The linear
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portions of the curves in Fig. (lO)agrccwxﬂzﬂxeTafcleq "ation. From the slope and the inter-
oeptofdn'l‘afelplot,aandx canbe&ctemnner

log i (Aem-) __,
Figure .10.

Fig (10) Variation of over potential for the discharge of H' ion on the various metals with
current density .
Electrokinetic Phenomena

Electrokinetic phenomena are a relative movement with respect to one another,
of a solid and a liquid is accompanied by certain electrical phenomena.

When a liquid is in contact with solid the interface is electrified. When the
liquid flows w;th respect to ssnd, as the interface is electrified it is accompanied by electri-
caiphm Etanscsducto&czetapotenualpmscntonthedzﬁhscdlam This will lieon
the solution side - such a phenomenon of movement of one phase with respect to another
when the interface is electrified is known as electrokinetic effect. As ions in diffused layer
can change and not the ions in the fixed layer. The observed @lécimkincﬁc effect is only due
to the ions In diffused layer and zeta potential lies on the diffused layer.

The theoretical treatment of electrokinetic phenomena is based on the concept of the
existence of an electrical double layer at the solid liquid boundary.

145



D.D.C.E M.S. University DCH 13

The Electrical Doable Layer

According to Helmholtz, the double layer consists of two oppositely charged
layers at a fixedsdlmance apart, so that it could be regarded equivalent to an electrical con-
denser of constant capacity, with paralle] plates separated by a distance of the order of a
molecular diameters. If the electrical double layer at the interface of motion between a solid
and a liquid is regarded as a condenser with parallel plates d cm apart each gonoepts acharge
o per sq. cm.Then according to electrostatistics:

- 4nod
D

g

Where £ is the difference in potential between the plates of zetapotential and
D in the dielectric constant of the medium.

The conception of Helmholtz of the double layer involving a sharp potential
gradient, was modified by Guoy and Chapman, they used diffuse double layers. According to
this view the solution side of the double layer is not merely one molecule or so in thickness
but extends for some distance in the liquid phase. In this region thermal agitation permits the
free movement of the ions present in the solution, but the distribution of positive and negative
charges is not uniform since the electrostatic field arising from the change on the solid will
result in a preferential attraction of '[;)ér.ti.cls of opposite sign. The picture of the diffuse
electrical double layer at the surface between a.solid and a-liquid is thus analogous to the
Debyc-Huckelconceptofméopposiﬁclychargedim- atmosphere surrounding a given ion.

Stern Theory

According to Stern, the double layer consists of two parts: one which is
apmoxhpatelyofamohmhrdimn&diﬁmicknes&ismppowmmmainﬁxedmmesm,
while the other is a diffuse layer exteriding some distance into the solution. The fall of poten-
tial in the fixed layer is short while that in the diffuse layer is gradual, the decrease being
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exponential is{ nature; The potential gradient at the solid-liquid boundary may be represented y
Fig. (11). The left hand axis represents the solid phase and the vertical dotted line indicates the
extent of the fixed partofthe double layer; the relative thickness fthis layer, probably, some-
what exaggerated in the diagram. If the potential of the solid is indicated byA and that of the
bulk of the liquid by B, the fall of potential in between may oocurin two general ways depend-
ing, to a large extent, § the nature of the ions and molecules present in the solution 1 & I1. In
each case sharp fall of potential in the fixed portion and CB is the gradual approximately
exponential change in the figure portion of the double layer. The total fall of potential, AB
between the solid and the solution is equal to the reversible potential in the case of a system
that can behave reversibly; this is represented by the symbol E. The electrokinetics of Zeta
potential however, which is involved in electro osmosis, electrophoresis and allied
phm is that between the fixed and freely mobile parts of the double layer, this is the
potential change from C to B, indicated by & is each case (Fig. 11}
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Types of Electrokinetic effects
1. Electro- osmosis
2.  Streaming potential
3. Electrophoresis

Electro Osmosis

Solid phase is fixed e.g., in the form of a diaphragm, while the liquid is free to
move, the liquid will tend to flow through the pores of the diaphragm as a consequence of the
applied field. The direction in which the liquid flows should depend on the sign of the charge
it carried with respect to that of the solid. This movement of a liquid through the pores of a
diaphmgmnmderthchﬂumccofanEM.Fﬁébnsﬁﬁﬁns.Thisphcnomenonisknownasclectm—

osmosis.
Streaming potential

In electrosmosis the difference in potential is responsible for the flow of an
electrolyte through a capillary, which is generally expected out of pressure difference ( Ap),
Hence, reverse of this process should also be possible i.c., When a liquid (electrolyte) is
allowed to flow througha caplflary under pressure, it develops m@ﬁd difference which is
known as streaming potential and hence develops a current, known as streaming current.

ELECTROPHORESIS

Electrophoresis involves the movement of charged liquid phase against immobile solid
phase. The solid particle with (-)ve charge and size ‘a’ is surrounded by a diffused layer of
thickness K. To have the diffuse layer, the particle must be of considerable size. The particle
is like a colloidal particle. This arrangement of negatively charged particles surrounded by
positively diffused layer is similar to ion sun'oundod by ionic atmosphem When the external
potential is applied, the negatively chmged sohd particle (mobile phase) moves in a static
liquid phase of positively charge. This phenomena is known as electrophoresis.
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VOLTAMMETRY

Voltammetry comptises a group of electro analytical methods that one based
upon the potential current behaviour of a polarisable electrode in the solution being analysed.
In voitammetry, a measured small potential is impressed across & pair of electrodes, one of
which is noa polarisable reference electrode and other a polarisable inert electrode. The cur-
rent which flows depends upon the composition of the solution. In other words, voltammetry
and voita:mnetric analysis are coricerned with the study of current voltage, relation at a micro
€lectrode, called working electrode. This electrode may be i inert metal, such as Pt or gold. A
three electrode cell is however, prcfe’rcd in deneral voltammetry. The third anxillary elec-
trode can be a simpie wire of P. Themfmsiecﬁodcmaybeofany form.

A variable voltage source is connected in series with a microammeter and the
current carrying electrode. Potential at the working electrode, relative to the reference elec-
trode is then measured by a, electrical voltameter. The choice of working electrode in
voltammetry depends lengthy on the range of potentials it is desired to interface. Inert Pt
clectrode is Suitable for potentials more possible them reference electrode calomel elec-
trode (SCE).

POLAROGRAPHY

Polarography involves the study of current - voltage relationships at a dropping
mercury electrode under certain controlled conditions, Heyrovsky and Shikata developed an
apparatus which increased the applied voltage at a steady rate and simultaneously recorded the
current-voltage curve. The apparatus. was called a polarograph and the records obtained are
polarograms. | '
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Figure 1. Manual Polarograph

‘The basic apparatus for polarograpnic analysis is .shown in the figure 1. The dropping
mercury electrode here acts as cathode; it is sometimes referred to as‘indicator or micro-
electrode. The anode is a pool of mercury which acts as a reference electrode. Inlet and Outlet
tubes, are provided in the cell for expelling the dissolved oxygen from the sohition by the
passage of an inert gas. P is a potentiometer by which em.f. up to 3 volts may be gradually
applied to the cell. G is the Galvzmometér which measures the current and V" is the voltmeter
to measure the applied potential. |

CURRENT-VOLTAGE CURVE

The cell s filled with an electroactive material eg. CdCl, solution. A potential
is applied between the electrodes and increased in a stepwise manner. From A to B practically
no current will pass through the cell. At B, where the potential of the micro-electrode is equal
to the decopmposition potential of the cadmium fons, the current suddenly begins to increase
and the following reaction takes place at DME. |

Cd** +2¢” —»Cd
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On further increasing the applied potential, the current continuously increases
- and reaches a limiting value. After the point ‘c’ the current no longer increases. (Fig. 2)

™

CormpeuT C201 B0 AN AES)

Fig. 2 CURRENT - VOLTAGE CURVE AT DME
Figure . 2

The small current flowing through the solution initially (AB)is called “resicuai
current”. At the point ‘c’ where the current has reached limiting value is called “limiting

current”. The difference between limiting current and residual current is called “diffusion
current”

Diffusion current = Limiting current - Residual current.

THEORY

Electro-aciive material reaches the surface of the electrode by two processes
(T) migration of the charged particies in the electric field caused by the potential difference’
existing between the electrode surface and the solution; (2) diffusion of ions under the influ-
ence of concentration gradient.

Heyrevsky showed that the migration current can be practically eliminated by
adding a supporting electrolyte. The supporting electrolyte must be composed of ions . which
are discharged at higher potentials and which will not interfere or react chemically with ions
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under investigation. If the concentration of supporting electrolyte is very large (at least 100

" fold excess), the ions of the added salt practically carry all the current, under these condi-

' tions, the limiting current is almost solely a diffusion current. DLILKOVIC examined the
various factors which govern the diffusion current and deduced the following equation:’

i,=6070D% Cm®*t® e (1)

i, = diffusion current in microamperes
D = diffusion coefficient of electroactive species(cm?S™)
C = its concentration in milimoles per litre
, m=rate6fﬂowofmuwryﬁmndmppi@elec&odeinmg.persecond
t = drop time in seconds
n = numbser of electrons involved in the reduction process.

The ILKOVIC equation is important because it accounts quantitatively for the
many factors which influence the diffusion current. Thus, with all the other factors remaining
constant, the diffusion current is directly proportional to the concentration of electro-active
material. This is of great importance in quantitative polarographic analysis.

ADVANTAGES OF DROPPINGMERCURY CATHODE

(1) Its surface area is reproducible with any given capillary (2 The constant
renewal of the electrode surface eliminates passivity or poisoning effect (3) The high over
potential of hydrogen on mercury renders the electrode useful for electro-active species
whose-reduction potential is considerably more negative than the reversible potential of

hydrogen discharge (4) Mercury forms amalgams with many metals thereby lowers their

reduction potential (5) The diffusion current assumes a steady value immediately gnd 15
reproducible.
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 SALIENT FEATURES OF CURRENT -APPLIED VO TAGE CURVE

Figure 3. Pa!arogap&ié waves (Heyrovsky)
The height of the curve is the diffusion current, and is a function of the
concentration of the electroactive material, The potential at the peint on the polarographic

me%hmfrsequaltamc—hﬂfofﬂzcd:ﬁ'mmmﬁstamedasﬁwﬂalf-wave
potentta’ and is designated as E, . Half-wave potential is

E=E,, + 0.0591 log 1,~-1

n 1

Equation (2) gives the relationship between the current at any point i, the
diffusion current i , the applied voltageEandhalﬁwave;iotenﬁalE‘

The half- ~wave potential is also independent of the electrode characteristics ard
~an: be used for the qua}:taave identification of unknown substance present in- the solition.

" . i, =i
Phie Half wave potentiat can be evaiuatqdbyplonng Eversus log :

YUANTTIATIVEANALYSIS
Three methods which are used in practice are :
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1. Wave helght - concentration plots

Solutions of severs! différent concentranons OI (1€ 1015 UKGCT IMVESUZBUOL
are prepared. The composition of supporting electrolyte is kept same both for unknown and
the standard. The heights of the waves are measured and plotted as a function of concentration.
The polarogram of the unknown is produced exactly as the standard. By interpolation the |
concentration of unknown can be found out.

2. Method of Standard Addition

TbcpolamgmmoftheunknownsolmionisﬁrstmordedAknownvohmcof
standard solution is added to it and a second polarogram is taken . From the height of the two
waves, the concentration of unknown can be calculated using Eqn. (3)

ive

C. = :

- (Vev)HyYy )

C, = Concn. of unknown
V = Volume of unknown
il=Diﬁ'usimanremofmknown(wavcbdgm)
C, =Conca. of standard
v =Volume of standard added
i2=difﬁxsioncurwntaﬁettheadditionofvmlofstd.
3. Internal Standard or Pilot Ion Method
A reference ion whose half-wave potential differ atleast by 0.2V is sciected.
Pmparesamcconoentmﬁonofthquﬂmwn’mdpilotionmdmdthc
polarogram separately

(L),

Determine the ratio (1 )
dJx

(I,), = Wave height of pilot ion
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(L), = Wave height of unknown

Then the relative wave heights with unknown ion and the known amount of the
pilot ion in the unknown solution is measured and compared with the ratio of previously de-
termined Wave-hetghts The conen. of unknown can be evaluated from eqn. @

(L),
@),

C, =Concn. of unknown

X

=...x_
i

C, = Concn of pilot ion

i, =Wave height before addition of pilot ion

i, = Wave height after the addition of pﬂt;t ion
APPLICATION TO ORGANIC COMPOUNDS

A large number of organic materials which are polarographically active, such as
aromatic hydrocarbons, aromatic and unsaturated aliphatic carboxylic acids, thiols, carbonyl
compounds, amines, proteins and amino acids have been investigated since the sensitivity is
proportional to no. of electrons, , transferred during reduction or oxidation, organic com-
pounds where six or more electrons are involved in reduction can be determined at very low
concentration. Since the half-wave potential varies with structure and substitution, pH,
complexing agent etc. the conditions may be suitably selected for determination of a particu-
lar compound eg., reduction potential of the disulphide group linked to alkyl group is -1.25V
and to a phenyl group is -0.SV.

Some of the functional groups that can be reduced at DME are

~CHO.C=0, -C=N, -N0,, S-S, -C=C-, et.
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STABILITY CONSTANTS OF METALCOMPLEXES

- The half-wave potential of a sitiple metal ion is shifted, almost invariably, in
- the more negative direction ofapphe&po@mua!anéthc diffusion current usually becomes
smnawbeuumdugoawmpkxmwﬁm

Formecmcxfm

M™+L, = ML

the overall stability constant B = (HL.;)
(M= )Ly

Where * i the coordination number of the ligand. The shift in half-wave
potential due to the presence of complexing agent L is given by equation
0.0591, o .0.0591
(Elll) (EUZ) =

ogP+j
Where (E,,), isthchalf-wavepotcnﬁdinabmofﬁgmdand(ﬂn) isthe
half-wavcpotentmlmpxuenoeofhgnnd.'!‘hcplot of (E,,), - (B,,,) versus log (L) is linear
0.0591 B ' 00591
—— and intercept

log(L) wed5)

with slope j= ~log B

Thus the coordination nimber and stability constants of the complexes can be
cvaluated.
COULOMETRICANALYSIS

When electric current is passed through an electrolyte solution, #' chemical
mcnon takes place andthecxteutot‘chenncalrmhonatanclectodexs directly propor-

tional to the quantity of electricity pmsmg thmugh the electrode. The electrolysis is gov-
erned by Faraday’s two laws of electrolysis.

1.  Theamounts of substanécs liberated at the electrode are directly pro'pdrﬁonal '
to the quantity of electricity which passes through the solution.

2. The amounts of different substances which are deposited or liberated by the
same quantity of electricity are proportional to their chemical equivalent.
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Coulometric analysis is an application of Firaday s Laws of electrolysis. The
quantity of electricity is measured in coulombs. If a current of one ampere flows for one
second, the quantity of electricity is 1 coulomb in general.

Q =1It coulomb
I=c11rrentinaxnm
If the electrode reaction proceeds with 100 percent efficiency then the

quantity of substance reacted may be found by measuring th] quantity of clectricity and
employing. eqn. (7)

w .
W=Se0n 1)

W = weight of substance produced or consumeq in electrolysis

Q = quantity of electricity in coulomb

W_ = gram atomic weight/gram molecular weight of substance being clectrolysed
n = no. of electrons involved in the reaction.

Example; If 2650 coulombs of electricity is passed through copper sulphate solution, cafce-
late the amount of copper deposited.

Atomic mass of copper = 63,54

Electrode reaction = Cu’* +2¢— Cu(s)...n=2

_63.54 x2650
96500 x 2

=0.8724 g

Analytical methods based upon the measurement of quantity of electricity and the
application of eqr: (7) are termed as coulometric methods. If the substance being determined
undergoes reaction at one of the electrodes, it is called primary coulometric analysis. If the
substance reacts in solution with another substance generated by an electrode reaction, it is
called secondary coulometric analysis
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Two distinctly different coulometric techniques are available

1) coulometric analysis wifh controlled potential of the working electrode

i) wuloﬁcﬁc analysis with constant current.
COULOMETRICANALYSISAT CONTROLLED POTENTIAL

i) the substance being determined reacts with 100 pexcent efficiency at the working
electrode

it) the potential of the working electrode is controlled.

iii)ﬂ the completion of reaction is indicated by the current decreasing to zero

iv) the quantity of substance reacted is computed by the reading of coulometer or by

means by a current - time integrating device.
HVSI'RUMEP}I‘ATION |
The three instrumental units in controlled potential coulometric analysis are (i)

coulometer or other means of measuring the quantity of electricity (ii) D.C. current supply
with means for controlling potential (iii) Electrolytic cell.

In controlled potential coulometric analysis, the current decreases
exponentially with time according to the equation.
i -kt
¢ =1, €
where i_is the initial current, it is the current at time t and k is a,constant A typical time-

current curve is shown in fig.4.

—

Tmy

Fig.4 Current versus Time plot for controlled potential coulometric analysis
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The current decreases more or less exponentially to zero. The area beneath the
curveis a measure of the total quantity of electricity which has passed . A mechanical current-

time integrator is available commercially .

A simple circuit to control the klectrode potential manually is shown in Fig.3.

Figure. 5. Circuit to control Electrode Potential

The Ammeter ‘A’ indicates the electrolysis current. The voltmeter ‘v’ records
the total applied voltage. The potential of the cathode with respect to reference electrode SCE
(Saturated calomel electrode) is directly indicated by the high resistance voltmeter ‘G’

The resistance is adjusted manually until the potential difference between cath-
ode and SCE.attains the desired value as shown by Galvanometer G

As electrolysis proceeds, the catliode tends to become more negative wrt SCE
and the rheostat isl continuously adjusted to maintain the cathode potential constant at the
desired value. The ammeter reading decreases during electrolysis and attains a low current
value signalling the completion of reaction. Nowadays ‘potentiostats’ which automatically
maintain the potential of an electrode constant are available.
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'Figare, 6 Electrolysis Vessel

A 250 ml pyrex beaker serves as electrolysis vessel, mercury at we ovuoin s
the beaker acts as cathode. The anode is stout platinum wire coiled into a flat spiral. The
reference electrode just touches the surface of the mercury cathode.

EXPERIMENTAL PROCEDURE

Supporting electrolyte (50-60ml) is first placed in the cell and the air is
removed by passing a rapid stream of nitrogen for 5 minutes. The stirrer is started; the
reference electrode is adjusted so that it touches the stirred mercury cathode. The potentiostat
is adjusted to maintain desired control po&cntsa! and the solution is eloctrolysed until the
current drops to a small value. (backgmund current). This preliminary electrolysxs removes
reducible impurities. Then add 20 mi of sample solution and continue the electrolysis until
the current drops to the background current. The quantity of electricity is known from the
coulometer or mechanical current-time integrator. The amount of substance is calculated
from equation (7).

APPLICATIONS

1. If memlry cathode is used, the optinmum control potential for a given separation can be
easily determined from polarograms recorded with dropping mercury electrode.
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DEPOSITION OF METALS AT CONTROLLED } OTENTIAL OF THE MERCURY
CATHODE

Elements Cu Bi Pb Cd Zn Ni Co

E cathode (Volts Vs SCE)-0.16 -0.40 056 -085 -045 095 -1.20

By means of controlled cathode potential techniance it is possible to effect
such difficult separations as Cu-and Bi, Cd and Zn, Ni and Co. If a solution contains Co?* and
Ni* ions,‘by performing the electrolysis by keeping the potential at -1.20V, Co** can be esti-

. mated; by the keeping the cathode potential at -0.95V Ni** can be estimated.

2. Sometimes it is possible to reduce a metal to a lower valency state and by
controlling a more positive potential, the metal can be oxidised quantitatively to higher
valency state. Eg. at-O.ISV witha mercury electrode, reduction of U(IV) to U(II) and Cr(IIT)
to Cr(II) occur simultaneously. If electrolysis is carried out at -0.55V, only U (TI1) is oxidised.
When all U (IIT) has been removed from solution, chromium is determined by oxidation of
Cr(I) to Cr (TI) at -0.15V,

3. Consider a mixture of antimony (V) and antimony (III) (in supporting elec-
trolyte 6M HCl + O.4M tartaric acid). At -0.2IV, the reduction Sb* —» Sh* occurs and at
-0.35V the reduction Sh* — Sb° occurs. Thus it is possible to determine both Sb(III) and
Sb(V) in a mixture.

4. Organic compounds such as trichloroacetic acid, and picric acid are quantjta-
tively reduced at mercury cathode whose potential has been controlled.

Coulometry at Constant Current Coulometric Titrations

Constant-current coulometry maintains a constant current during electrolysis.
A reagent is generated which reacts stoichiometrically with the substance to be &etcrmined.
For ego for estimation of CI- ion, Ag* ion is generated employing silver electrodes. The gen-
erated Ag* ion reacts with CI" to give AgCl.
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In coulometric titrations the reagent is generated electrically and its amount is evaluated from
the knowledge of current and generating time. Since a small quantity of electricity can be
readily measured with high degree of accuracy, the method has high sensitivity.

Advantages of Coulometric Titrations

1.

Standard solutions are not required. The coulomb becomes the primary standard.

2. Unstable reagents such as bromine, chlorine can be generated and consumed
immediately.

3. Small amount of titrants are prepared.

4,  The sample solution is not diluted ,

5. This method is readily adopted to remote control. Therefore radioactive and other
dangerous materials can be titrated.

6. This method is particularly useful and accurate in the range from milligram quantities
down to microgram quantities and can be used in trace analysis.

Detection of End Point

Various methods are used for detection of the end point. It can be found by

means of normal coloured indicators, or by instrumental methods such as potentiometry,

amperometry and photometry. Potentiometric and photometric indication find use- in
acid-base and redox titrations, while amperometric procedures are applicable to redox and
precipitation. reactions.

Instrumentation

Figure 7. Coulometery at constant current
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The schematic diagram for constant current coulometric methods is shown in
Fig.7. The power supply provide a D.C. voltage of about 300V. The current passes, through a
series - regulating tube (R ) and a precision resistor (R,) to the electrolytic cell. G, and G, are
the generator electrodes and E, and E, are electrodes for the end-point detector system.

The voltage drop across the resistor R, can be measured very precisely with a
manual or recording potentiometer and hence ‘i’ can be calculated, time measurements are
normally made with a precision electric stop clock. A single switch control actuates both the

timer and clectrolysis current.
PRIMARY COULOMETRIC TITRATJONS

In primary coulometric titrations at constant current, the substance to be
determined reacts directly at the electrode. One major area of application involves the
clectrode material itself participating in an anodic process. eg., During electrolysis, Ag jons
are generated at the anode and diffuses in solution. The Ag*. ion readily reacts Cl (to be
determined) to form AgCl. The end point may be detected amperometrically. By this method
mercaptans, sulfhydryl groups can be titrated. Since the potential of working electrode is not
controlied, this class of titrations is limited to reactants which are non-diffusible.

SECONDARY COLOMETRIC TITRATION

In secondary coulometric titrations an active intermediate is first generated
quantitatively by the electrode process, and this then reacts directly with the substance to be
determined.

For example for the coulometric determination of Fe?*, excess of Ce** is added
to the solution. Anodically Ce** is oxidised to Ce* and the liberated . Ce* instaneously reacts
with Fe** ion in solution.

Ce* + Fe** — Ce** +Fe*

As long as Fe** ion is present in the solution, Ce** will be consumed. When all
Fe* has been exhausted, the end point is signalled by the first peristance of excess of Ce** in
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the solution and may be detected photometrically at a wavelength at which Ce** absorbs strongly.
AMPEROMETRIC TITRATIONS

Let us consider the electrolysis of an electro-active substance between
dropping mercury electrode (DME) functioning as cathode and some reference electrode
acting as anode.

A potential is applied between these electrodes and increased in a stepwise
manner (Fig. 2). At first only small current follows - the so called residual current and this
continues upto decomposition potential. At this point, the following reaction takes place.

M* +ne —>» M()

and hence a steep rise in current is observed (Fig. 2). The current will continue to rise with
increaéing potential and then reaches a iixhiting‘valuc. If sufficient supporting electrolyte is
present in the solution, the diffusion current (limiting current - residual current) is propor-
tional to the concentration of electroactive material in the solution. If some of the electroactive
material is removed by interaction with another reagent, the diffusion current will decrease.
This is the fundamental principle of amperometric titrations. The diffusion current at a suit-
able applied voltage is measured as a function of the volume of the titrating solution. The end
point is the point of intcrs:’:ction of two lines giving the charge of current before and after the
equivalence point.

ADVANTAGES OFAMPEROMETRIC TITRATIONS

1) Titration can be carried out rapidly: a few current measurements before and after the

end point is sufficient to detect the end point.

ii)  Titrations can be carried out, when potentiometric or visual - indicator methods arc

unsatisfactory
iii)  Titration can be carried out at dilute-conditions (10 N)

iv)  ‘Foreign’ salts may be present without interference.
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TYPES OF TITRATION CURVES

The most common types of curves encountered in amperometric titrations are

given below.

Fig. (83) AMPEROMETRIC TITRATION CURVES

a. When the electroactive metal from solution is removed by the addition of electro-
inactive reagent, the shape of curve is as shown in Fig. A.

Eg. removal of Pb?** by addition of C,0,* or S0,* Here . diffusion currem decreases 10 ue
residual cuirent when all Pb?* jon has reacted with X(C, 0,%/-/ 80,%). Since x is inactive,
further addition of x wil] not affect the diffusion current.

b. When the subsance in solution is electro-inactive, (80,%) the residual current will
flow initially. When electroactive reagent (Pb?*/ Ba®) is added it will increase the diffusion
current after the end point and the shape of the curve is shown in B.

¢. When both the solute and titrating agent are electroactive, they contribute toward
the diffusion current and a sharp ‘v’ shaped curve is obtained.
eg: Pb*" ion titrated with Cr2 0.*

Ni** ion titrated with dimethylglyoxime

d. The solute is oxidised at the DME and gives the anodic diffusion current at the same
potential as the titrating reagent gives a cathodic diffusion current. Here the current changes
from anodic to cathodic or vise versa and the end point of he titration is indicated by zero
current. '
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eg: titration of I with Hg™*
titration of CI" withAg"
SUCCESSIVE DETERMINATION OF Ct, BR and I

The three halide ions CI, BR', I in a mixture can be determined by amperometric
titration with Ag* ion. A known volume of the mixture is placed in cell containing 0.1to 0.3 N
solution of ammonia. Under this condition only Agl is precipitated by the addition of Ag* .
When all the T" ions are precipitated the current increases. The cell is then acidified with 0.8N
HNO, and the titration continued. Under this condition only AgBr is precipitated. After the
deduction of end point gelatin is added and Cl-is estimated. The amperometric titration curve
is shown in Fig.8(b)

Volume of AgNO, Added

Figure 8b. Amperometric Titration curve for a mixture of Cl,, BR, I~

AMPEROMETRICTITRATION WITH TWO INDICATOR ELECTRODES DEAD-
STOP END POINT

AMPEROMETRIC TITRATION WITH TWO INDICATOR ELECTRODES DEAD-STOP
END POINT

When two small but similar platinum electrodes are immersed in A uniformly stirred
solution containing a reversible oxidation - reduction system, a small amount ot electrolysis
takes place and an appreciable amount of current flows through the cell. The amount of sub-
stance reduced at cathode is equal to the amount of substance oxidised at anode. Both elec-
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trodes are depolarised. When one of the components, either oxidised forn or reduced form is
completely consumed by the titrant, only oune electrode remains depolariséd. So at the end
point the system becomes one electrode system connected to reference electrode and the
currént virtually drops to zero.

In the titration of iodine by thiosulphate initially both Iodine and Iodide ions are
present in the system

L+2e 22r

Therefore current flows even at the low applied potchtial (15mV). As the titra-
tion proceeds iodine is consumed. At the end point no free iodine remains and therefore a
rapid decrease in current was observed in the neighbourhood of end point, This gave rise to the
name DEAD STQP END POINT.

CYCLIC VOLTAMMETRY

Cyclic voltammetry (CV) is perhaps the most versatile electroanalytical tech-
uique for the study of electroactive species. The system contains two electrrodes. At the
working electrode oxidation/reduction of electroactive species occurs. The potential of this
working electrode is controlled versus a reference electrode such as saturated calomel elec-
trode (SCE) or a silver/silver chloride electrode (Ag/ AgCl). The measurement of current-
voltage curves are done under diffusion controlled, mass transfer conditions at stationary
electrode . The voltage applied to the “working” electrode is scanned linearly from an initial
value E; to a predetermined limit E_ and then the direction of scan is reversed back to E,

CYCLIC VOLTAMMOGRAM

The controlling potential applied across these two electrodes can be consid-
ered as excitation signal. The excmnon signal for CV is a linear potential scan with a triangu-

lar waveform as shown in Figure. 9.
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Fig.9. Linear Potential Scan
The excitation signal in Figure 9 causes the potential first to scan negatively

from +0.80 to -0.20V versus SCE at which the scan direction is reversed; causing a positive
scan back to the original potential of +0.80V .

"

doaboshadoad. 2 2.2 2 2 2 2’

RINTAL 18 &1 CvrT)
Fig.10. Cyclic Voltammogram

A cyclic voltammogram is obtained by measuring the current at the working
slectrode during the potential scan. The current can be considered the response signal to ‘the
»otential excitation signal. The voltammogram is a display of current (in the vertical axis)

sersus potential (horizontal axis)
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A typical cyclic voltammogram for platium working electrode in a solution
containing 6.0mM of K Fe(CN), as the electro-active spectes in 1.0M KNO, as supporting
electrolyte. The initial potential E, of 0.80V is chosen to avoid any electrolysis of Fe(CN),*
When the electrode is switched on, the potential is then scanned negatively (forward scan).

When the potential is sufficiently negative, the following reaction takes place at the
electrode.

Fe™ (CN), +e—>Fe"(CN)!"
and cathodic current begins to flow at the point b. The cathodic current increases rapidly
(b—d) until the concentration of Fe™ (CN )z- at the electrode surface is substantially dimin-
ished, causing the current to peak (d). The current then decays (d-g) as the solution surround-

ing the electrode is depleted of Fe® (CN):' due to its electrolytic conversion to
Fe"(CN ): -The scan direction is switched to positive at -0.15 v (f) for the reverse scan. The

potential is still sufficiently negative to reduce Fel (CN): so cathodic current continues

even though the potential is now scanning in positive direction. When the electrode becomes
a sufficiently strong oxidant, the following reaction takes place.

Fe"(CN);” —Fe™ (CN):' +e
This causes the anodic current (i-j - k). The anodic current rapidly increases
until the surface concn. of Fe" ( CN)." is diminished, causing the current to peak (j). The
current then decays (j - k) as the solution surrounding the electrode is depleted of Fe® (CN ):’ :
The first cycle is completed when the potential reached + 0.80V.
In the forward scan Fe" (CN )Z_ is electrochemically generated .from Fe' (CN):' as

indicated by cathodic current. In the reverse scan Fe® (CN }:' is oxidised back to Fe™ (CN )

asindicated by anodic current, Thus cyclic voltammetry is capable of rapidly generating a new
species during the forward scan and then monitoring its fate on the reverse scan.
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The important parameters of a cyclic voltammogram are the magnitudes of the anodic peak
current (i ), the cathodic peak current (i_), the anodic peak potential (E,)) and the cathodic
peak potential (E ).

A redox cauple in which both species are stable and rapidly exchanige electrons
with the working electrode is termed an electrochemically reversible couple: Thé formal
reduction potential (E) for reversible couple is centered between E_and E__

_ E,.+E,
2
The numver of electrons transferred in the electrode reaction (n) for a reversible couple can

be determined from the separation between the peak potentials

0.058
n

EO

AE =E_-E_ =

pe

Thus a one-electron process should ideally exhibit AE of 0.058V

The peak current for a reversible system is described by Randles-Seveik equation for
the forward sweep of the first cycle.

i,=2.69X10°n*2AD" V22 C

i ==Peak current, amperes

n = number of electrons involved in electrode process

A = clectrode area, cm?®

C = concentration, mol/cm®

V = Scan rate volts/second

According to the eqn (11) ‘i’ increases with square root of scan rate and is directly
proportional to concentration. For a reversible couple (i,, /i, ) =1.
APPLICATION

This technique yields information about reaction reversibilities and also offers a very
rapid means of analysis for suitable systems. The method is particularly valuable for the
investigation of stepwise reactions, and in many cases direct investigation-of reactive

intermediates is possible. By varying the scan rate, systems exhibiting a wide range of rate
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constants can be studied and transient species with halfli*-=s of the order or milli-seconds are
readily detected.

CV is also used to determine E' values by means of eqn - 9) and ‘n’ values by eqn (10).
Reversibility can be determined by plotiing (Ep_ -E ) Vs JV which should be a straight line
if the process is reversible.

FUEL CELLS

A fuel cell is a galvanic cell in which the reactants are continuously fed to each
electrode from outside the cell. Thermal energy is converted into electrical energy. Hz, lower
alcohols, hydrazine, NH, efc, are generally used as fuels. These fuels are generally used as
anodically reacting materials in combination with an oxygen electrode.

Fuel cells are classified according to the temperature or operation.

1. Low temperature fuel cells operate below 150°C

2. High temperature fuel cells that operate above 150°C

The principle problem in low temperture cell is electrocatalysis i.e., low to rise the
exchange current density for the oxidation of cheap fuels. The problem in high temperature
cells is the stability of materials that are confined to the electrodes, under corrosive action of

electrodes.

4G _ E
AH ~ E-T(8E/8T),

where

E = EMF of the fuel cell

AG = Free energy change of the reaction

AH = Enthalpy change of the reaction
There are 3 types of fuel cells:

1.H, -0, fuel cell

2. Hydrocarbon - air fuel cell

3. CH,0H - O, Fuel cell |

171



D.D.C.E M.S. University DCH 13

This is the best known of electrochemical generator having power levels (SKW). A

schematic representation of genini hydrogen oxygen fuel cell is as shown in figure (11).

A unique feature of this cell is the use of a thin cation exchange membrane as electro-
Iyte. (Polystyrene sulphonic acid inﬁmatély mixed with a Ke* F* spine) each side of this rect-
angular membrane is covered by a Ti screen coated with a Pt screen. The thickness of the

entire cell is about 1/2 mm. The reactions taking place in the cell are

. Figure. 11. The Ionic atmosphere
Atanode 2H, —> 4H" + 4~
At cathode 0, + 4H" + 4e- —> 2H,0
Since the conductivity of the membrane is strongly dependant as the water content, the
water balanced is maintained by wicks draining or supplying water by capillary action.

The performance of a cell is shown in the fig.(11) An important overpotential loss is,
in these cells due to the membrane resistance and also as usual to the oxygen electrode.

A storage stream built in these cells having an average power of about 900w and a max
power of 2kw was used previously. A noteworthy feature of this storage system is the self
contained provision for collecting water (a by polt of the cell m for drinking purpose in space
(1 ptkwh). At present, some H_-0, fuel cells have attained a power level of 1 w cm?
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REFORMER SUPPLIED HYDROGEN AIRCELLS

Unsaturated hydrocarbons can be oxidized at relatively low temperatures fore. g.
CH; + 6H,0 — 3C0,+20 + 20¢

The supporting electroyle is con. H,PQ,.

The pure hydrogen is expensive. Conversely hydrogen is an excellent fuel
because of its large value are the resulting possibility of catalyzing its dissolution well (i.e
with small over potential) on cheap materials such as nickel. To meet this situation a series of
fuel cells utilize a system in which a cheap hydrocarbon fuel is the origin of the hydrogen, this
being produced in the adjoining apparatus, separated from other gases and fed into the cell.

"The system hydrocarbon process is

C.H,,., + nH,0 - (20+1)H, +nCO

CO+H,0 — CO,+H,

CO, May be removed by absorption in ethylamine or hydrogen separated by diffusion
through Pd (or) Ag-Pd membranes

Hydrocarbon - Air cells

Many hydrocarbons including the main constitutents of the disel one, have been
oxidized electrochemically at levels of more than 99% completion. Pt is the only suitable
catalyst material at the present time.

The electrodes are constructed by depositing finely divided, Pt in a porous reflex
substrate attached to a base of tantalum (which after oxidation, resists further corrosion in
strong acid)

Power density of such cell is about 0.1 w cm
CH, OH - O, Fuel Cell:

It can work in the temperature range of 70 - 80°C NaOH (or) KOH can be used as
electrolyte, with Pt as cathode as well as anode,

6N KOH is used when Pt is made anode and carbon as cathode
The cell reaction is CH,0H + 350, » 2H,0+CO, E =12V
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M.Sc. DEGREE EXAMINATION, APRIL 2004.
First Year - Non - Semester Chemistry
PAPER: Il - PHYSICAL CHEMISTRY - I
(For those who joined in July 2003 and a‘ erwards)
Time : Three hours Maximum : 100 marks
PART A - (10 x 2 = 20 marks)
Answer All questions.

1. What is an open system? How does it differ thermodynamically from a closed system?

(98]

NS s

What is the necessity of non- equilibrium thermodynamics? Illustrate with an example.

What is the significance of wave function? Comment on its importance in quantum
mechanics. ,

Explain the meating of commuting and non-commuting operators with suitable examples.
What are secular determinants? [lustrate with an example.
State and explain Bomn-Oppenheimer approximation.

What is partition function? Why is the value of translational partition function of a
molecule is very high? '

8. Isthe negative Kelvin temperature attainable? Comment on it.
9. Derive Tafel equation from Butler - Volmer equation and comment on the significance of

Tafel plot.

10. What are the advantages of dropping mercury electrode? What ¢o you mean by half - wave

potential?
PART B - (5 x 6 =30 marks)
Answer All questions.

11. ) Explain the phase diagram of a three component system involving two solid and water

forming a congruently saturating type double compound.
(OR)
b) Derive the two thermodynamic equations of state .

12. a) Show that the wave functions sin x and sin 2x are eigen functions of the operator d?/dx?

with eigen values -1 and -4 respectively. Verify that the two wave functions are mutually
orthogonal.

(OR)

b) Calculate the average value of the distance of an electron from the nucleus in the
hydrogen atom in its state of lowest energy.
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13.

14.

15.

16.

17)

a) Apply variation method to helium atom and obtain the eigen functions and eigen val-
ues.

(OR)
b) What are the basic ideas of the perturbation theory? Explain with an example

a) The equilibrium inter nuclear distance of 1,'7is 2.67x10"°m. Calculate the moment
of inertia and rotational partition function at 300 and 1000k.

(OR)

b) Show that the limiting nature of heat capacity of solids at constant volume and at high
temperature, calculated by Debye’s formula is 3R.

a) Explain the following:
i) Tafel curves ii) Electrical double layer  iii) Zeta potential.
| (OR)
b) Discuss briefly the principle and application of polarography.
' PART B - (5 x 10 = 50 marks)

a) i) Define fugacity of gas. How is fugacity determined with the ajd of an cquaﬁon of
state?

if) Derive any two Maxwell’s thermodynamic relations. (6+4)
(OR)
b) 1) Explain the concept of entropy production and apply it to chemical reactions.

i) Show from the principle of microscopic reversibility that cross coefficients in the

appropriate phenomenological equations are equal.

2) i) Setup the Schrodinger wave equation for a particle in a three-dimensional box and
obtain the expression for the energy.

if) Explain commuting and noi- commuting operators with examples. (6+4)
(OR)
b) i) Set up and solve the Schrodinger wave equation for a rigid rotor with a fixed axis.

ii) For a particle in a one dimensional box the quantum number n = 0 is trivial and not
allowed. Justify this statement. (8+2)
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18. a)i) Get the normalized MOs for H, species in the ground state.

ii) Taking ground state Li atom show how slater determinant is consistent with Pauli’s
antisymmetry principle. (5+5)
(OR)

b) i) Bring out the differences between MO and VB treatments of normal hydrogen
molecule.

ii) Discuss the application of Hartree Fock self-consistent field method to helium atom.
(4+6)

19. a)i) Derive Debye’s equation for the specific heat of solids and give its validity at high
and very low temperatures.

ii) Indicate how Debye theory of heat capacity of solids may be regarded as an improve-

ment over Einstein’s approach. (6+4)
(OR)

b) i) Obtain the expression for the internal energy of a system in terms of its partition

function.

ii) Calculate the total entropy ot Xe (g) at 298K and 1 atm pressure. At this temperature

Xe is in its lowest electronic state.

iii) Show that in a system of three particles in which six units of energy is to be divided,

+he rumber of Bose-Einstein states is three and the number of Fermi-Dirac state is one.
(4+3+3)

20. a) Derive Debye-Huckel limiting law and explain its importance. What is the concentra-
tion limit of the applicability of Debye - Huckel limiting law? How is it modified at
higher concentration?

(OR)

b) Discuss briefly the principle, experimental details and important applications of the
following electro analytical techniques:

i) Coulometry ii) Chronopotentiometry  iii) Cyclic voltammetry  (3+3+4)
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