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III\IIT. I

Parfial Molar propertiw

As fte thermodSr.amic properties E,EIrS,Aaad G change with the change in the mass of
systeq &cy att extensiveproperties. When the various equations involving these thermody-

namic properties were derivd, il important assunrption was made that the rystem under con-

sideration was a closed syrtem (ie) a slnstem in which mass and coryosition.do not vary. In
order to extend results so obtained to orpen systffns GN.Lewis inMuced thermodpamic
propsrty, say X, which was called Partiat molar property. This prope(y must be a fuaction not

oriiy of temperature and pressue but also of the numbsr of mole of various components

present in &e system.

Let us consider an extensive propcrty such as volume, free enerry, etrtopy, €nergy

content etc be represented by )t Sup'pme th€rc ilr '[' constituents in the ryste,m ha"ing

trr, S ... q ... moles ofindividual componeir8. Theo ftc propcrty X is a firnction ofternpera-

ture, preearc as well as of the amounts of diffcrratcsnstituelle. Thrls

X=([,8o,&,4....) .....(t)

If there is a small changc in the ! P and the amouats ofconstituents, tLen change in property

Xisgivcnby

dn2+....(2)

Thofirstt€rm onRH.S, gtves the change inthevalue ofXwithternperature whenpressure and

compositioa ue kept constant. The second term on RH.S. gives ghs sfoenge in the value ofX
wi0r pressure when T and composition are kept constant The remaining quantities give the

I

change in ffri value of X with a change in the amount of a constituen! when ! p and the

amonts of othet constituents are kept constanl If T and P ofttre systun are kcpt constan!

* = (#)pn.!2 
13 - 

ur - 
[#),,*,,,*_ 

* . 
[ff )r.prrr, -_ 

*.. .[#),,**,,--
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then dT = 0, dP: O. So the . eq (2) becomcs.

, {ax) rax) .d*''u = 
I aijr,p,n2,n3 

dn' + l.* ,,i, p,n1,R3 
z+ ""'

First quantity on right hand side is pa*ial:nolar quantig'ofcontpc,nent 1- the secon<i quatrtiry

for the componcnt 2 and so orl-

Thme arc representec oypufing a bar over *re Symb+l of that particuiar progrrly {ie}

[,, Ir, forthe 1"}od eomponcot etc., respectively Thus,

in general, for aoy coryonei* i

f'a4) -x,fg)
Iarr, Jr,rr2,or-.. ^' Iarr, )r,0,o,r,....

=x,
rprl!11G2-..

ehemlcal Potentlel (or) pedtal Molrr,free encrsr

Consider the exteasive pro'perg, &ee energy. Let it be represented by 'G'. Sup'pose

that the systan"consieb of 'nl.constihren8"the amounts of which presect in the syatem are

nr&,% .... moles. TfEr &e propeAy lG' is a function not only of Gmperature and pressure but

ofthe amounts sf the different constifirents,as welln so that we cen write.

G=(I,BqJL,rL...) ...:"(3)

Now, if there is a small chmge in the tenrpcature, pressure and rne amounts of the ponstitu-

'enE, then the change in the pro,perty G is given by

*.=(#)p1i11r1.r1_ ur. 
[#),,,,,..,*".(#Jr,p41.,2r3 _ 

*,.[#),,,",,,* da,+....(+)

On &erigbthandside, fte firstquantityglves&c chaage in the value ofC with temperature

when P and co,npositior are kept conshnf, fu srcond quantity grl es the changc in,&s rralue of
G with P whe,n tanpcrature and c.orrposition re ke, t

conshnq the rcrnaining quantities give firs chmgp in thc value of G with a chmge in tlre amount

=Er{'gj
1to, Ju



of a constihtent, when ! P and tlre amounts ofother constituents are kept constant.

If the temparatuie andpressure of the systeEtept constent, then

dT=0aad'dP=0

So, the equation (4) becomes

(dG),,, = 
[#)r,p,n,,n3 

u-, -(#J,,,,",,o, dn,*....(s)

Each derivative on the riglrt hand 'side is catrcc partial molar property and is repre-
sentedbyputtingabaroverthesyrnbolofth*partiorlarproperlyi.e.,(,,[, forthels!2nd
component etc., respectively. Thus

=G,

In geireral, for any componeff I

[#),, Dz n, 
= G,,(#),p1,,1183

(ac)
'll = Gi
( ar, /T,9,.-1,..2.n1

This quantity is called partial molar free encrg5r or chemical pot,e,ntial and is uzually repre-
seatedbythe symbol pi . Thus

( ac)Fr=l=-l = Gi
\dt )r,e,o,,or,n,

Gibb's - Duhem Equation

Frec energr'{C), being an extensive property, d€pends'uot only upon the tempe,rature and
prBssure ofthe system but also upon the corryosition ofthe systern. If the system consists of
anurnberofoonstituents, the amounts ofwhichare n,, g,g....molesrespectively, then we can
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writc.

G = f (T, R a, n2A....) ..... (3)

For small changes in T, P and the quantityOfdiffcrent constituerts, tho small change in free

energy can be obtaind by the partial diffcrffitiation of eEratil." (3). This gives

*=[#]A,D''n 
_dr. [#)*.'* .*.[#J'_',* 

*,.[#J',',4,r__ *r,+ (o)

If temperaftue and pressure are kept constanttheq dT = 0, dP = 0

Eq,ation (6) becomes (dG)r,* = (#Jr,p,tr1,!, 
. 
dn, + 

[#)r,rptr1,!1. - 

dnr+''"

(dG )r,, = p,dD, + prdnr + ...... tl )
For a system of defmite compositioq rcprcsaltcd by thc nuurber of moles &, n2, n3 etc.,

equation (7)on ftrterntim giv*

G r,r,N = nrPz * tr z*t *.....o

Differentiating this eguation rin&r conditions of constant T and P but varying , conipositioq

weget

(dG)r,, = (r,dlu, + p,dn, )+ (ordp, + ltzfoz )+.....

=(!r1dn, + F:&z +.....)* (n,Jrr, + nrdpr+.....)..,........(s)

Conparing eguation (a) and (5), we gct

nrdpr * tr dttz+,......= 0 ."........r.(g)

Equation (g) is known as Gibbs - Duheo eguation and is valid at constaat temperature and

Dressutt for any homogc,neotrs syst€m.



concept nr r**"ffif &e fieo En€(Bv firnction e l*wis inhoduced the
concept of ftrgacity for representing the actual behaviour of real gases which is distinctly
different ftom the behaviourofideal gases.

____..varixion 
of free enelBy with presmre at constant'T'is grven by the follovdng

eguffistr

raq) -r,( oP ), ................(to)

This equati<m is applicable to all gree wbettsr ideal or non i&al.

Ifone mole ofapure gas is mderconsideratioq, {renVreftrs to molarvolme.
For an i&algas, the above equationmaybprtas

(dc)r: RT. dPl?

and for'n'mls

(dc)r:nKL dPlP

(dc)r=RI d(lnP) (r t)
Integration of equation ( I 1) yields

G: G* + nRf lap ,....(I2)

u/hcfcG*'fuiniegationconctsn! is the freccncrgrof 'n'molcoftleidcalgasattsrcsra-
hr€ T u,t;odrc pressure .p, 

is unity.

Equation (12), evidently gives &e free snergy of an ideal gas at temp .T, and
p*rr.,t".P.

Iutcgration of equation ( I r ) between \I and p, at constant .T, yields

aG = 'f n* T g= nRT tn I:-
i, P ---Pr.

thq conqoding equation for I mole of the gas would be

(1 3)
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AG = RT ln ?'lq, ........ (t4)

The equations (1?) and (1a) are uot valid for real Eoss, Sinc* \'r-is notexactly

qudtoAflP

In order.to meke these simple erluations apptricable to real gase$, Lewis i!to'o:

duced I new function 'f called fugaeity function" It tak*s thr pi -: * of 'F'in equation il1)
which forral gases,'maybe expressed as

(dG)"=nRf(tn f)

and eguation (12) intcgratins nnaybe re,presenied as

{ts}

G = G* + nKId(!n f) .."".,...{16)

where C* is the free effirry of u moles of a reai gas when its firgaeity happe*s to be l.

Thus fugacity is a ssrtcf."fietitious pressur*" whieh is used in *rder to retaia

forrml gases-sirryle fffims of quatio*s whie&are aplicabie to ideal gases *ni3'.

The rylation (tr5), evidently gives the free fft:W of a real gas at temperature

'T' and pressure P at which its firgaeit-v can be taken as f.

The equatiou (15) on integation between fugacities f, *d f, at constant tern-

p€rature, yields.

AG=nRTlnfrff, {17)

Tho @im fr me mole ofttre gas world bc

AG = RT ln frff, ...........(1s)

As dimssed above, dre qratianrs (t7i and (18) are applicable in the case of

real gases.
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Fugrclty at low pres$ure$

The ratio fP rvhere P is the actual pressure, approaghes unity urtren p apprcaches
zero since in that case a real gas approximates to idml behaviour. The fugacity function,
therefore, msy be define<l as

Limit

f lP=t

P-+ 0

Evidellttry at low pressures; firgacity is equal to prwsure. The two terms differ materially only
at high pressues.

Determination of Fugacity of a Gas

The well known equation, for one mole of a gas may be put as

G = G* + RI ln f .........(19)

Differentiation of equation (19) with respect to pressuie at constant
tempratlrc and oonstant number of moles offu rruiotrs mnstituen* (ie) in r cloecd 

'J,ten,,grues.

[#),=Rr(#),
Itfolloqrthat

[*.), =* . ... ..(zo)[,' ".[#), = v)

Thus at a &finitetqnperaure, equation (2d) may be written as

RI(ln$ =VdP .... .......(21)

'Sire one mole is uuder considcratioo, v is the actual molar vohmc of ttre
g8s.



Knowirythat foran ideal gas,V=RI/Ptheqrantitya, defincdas departure &omideal

bc#wjour at a given {ryeraune is given by

.."...t22)

multiplying by dP thtghot& wo set

RT I.o = __ v
P

odP= RT

combining quations (21, & (231

* vdp......(23)

RT d(tn f )= Rr * cr dPo .."...(24)

d(rn P)= d(ru P)-# ......(2s)

integmting"equations (2$ bctweempressurss 0 andp, we have

ln f =lnp #i",un, .."...(26)

Now n, as given" by equation d22\, eabdeter:nined experimentally, at di presstxes' TLese

values of a are thsn plottal aminstcorrdsponding pressurc, as shown in tlre above Figurc.

Plot of r (=R[IP-V) Yersu$ P for the determinatior of a gas

>
I

El.
t

10

,%
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Now s as gtvcll 'b! quation (?2), can be dctcrnrined experimentally, at different pressures.
Theses values of g are thcn plottd againstcorrcponding pressure, as shown in the aboveFigurc. The area und* trc c,tr*e bctrveen prerrurr I = o ff *,;;;ii,]ffi,, dil;

F

value of the intcgBl 
,[" 

o' as illushatcd,by the shaded portion in the above Figure.

Iucopgqating this vrtua in equation (26L ttro fug.crry f .se be evaluated at any given prssurc
'P'ofthegas.

Conccpt ofActfvtty:

Itmaybepointe'd qrtthat siucethe absolutc value of fueatergyorcheinical potential
is not hox& it rs not Po$$rble to evaluate lr r of a arbstance. This difliculty has been
oYercome by rcferring all free ener8y or cheruical pote,ntial measuremetrts for any given
zubsenc b a setrdard referencc point l,at p I u" tr. ckmical potential of asubstance i in
purc sEtced lef f, bc irs fugacity.

So,tlrcwcllknoqmequatim Fr 
= 

Bi+ RT ln i bccornec

pi=pi.+RTlnfi ,...,...4n

Irt p , be the clrmical poteotial of the saure nrtrstancc rn some other state.

pi=tri +RTln{ ......:. (28)

The etifference between chemicalpotmtial of ir substance in any state and that
in thepuru.eatc is givenby

lrr - lli * RT lo fi / f.e
lri = tri' +.R]'ln I I'fi ..,..;.. (29)

ffe may iuuoduc* herc I ncw term; activity, a aBd dsune it as

a=f/ fi

forasubstrnce r, os :

-,*... (30)

l1
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a.i=f/ f ....."..(31)

Activity of a sirbstane* in arv qvm sftite isthu* A"efiaed a.s the ratio of the fu*acity of the

substance in that shte to the fugacity ol the same substance in ttre pure $ate"

So,thc equatiom {29i bccomes

tri =Fi + RT ln a, .......t32)

Activity coefficient: For an ideal gas, activity is numericaily equaE to is pressure

(i.e.J I = p, For r*el gas€s, however, activity is orly p'ro,portional to its pressune

ii.e:)

aaP(or) a=?F

lVheire ? is known as the activiry coeffisieur

Tbermodynamlc.Eqnadop s sfuEte"

Estqpy being a state fimeticm. for a prm rrrbstancc, ig valus sili dryend sE al]y

tws ofthe ttntr variablm, ! R md V. Y*riatim of S witU 'T' and 'V'

a-
" = f (T,v)

d, =fgg) dr + fe) dv ..,."...(33)\arlo \avl,
For a reversible Frocess :', which orly Pdv work and heat are interch,anged with the
zunomdings

AE = q-W
doo =dE + Pdv

TdS = dE+PdV(or)cu=TdS -Pdv
{g=yTdE+Prrdv
l.ctu assume

12
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E{tating 
t **cients of dr and d\r in cquations (32) and (33) .

f,: f (T,v)
dE,:rgg'l dr+(a*.) u,tar )u- - toY ),
Eliminating dE between equations (3d) md (36)

[#)"dr *[#),0, = rds - pdv

ds:l fgE) dT.''tt 
z \ -r

T \aTl" r L\ ov ,/r J

r€) _ I raE) :c,\arr" T t aT )u T

[#)":+[(#J.-*]
From Equation (38)

(#),=,[#)"
Ditrer€,ntiating qrith respect to 'V' at castant T

( u'' )=r[ ," )
\av.il/ (av.dr )
Similarly Equation (39) becomes

(#),-r[(#).-Pl
Differentiating with respect to 'T' at cmstant V

td#) :'t*) .[#)'-(#)"

--:---'--(36)

(37)

......... (38)

(37)

13
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E being a state function, the a,rder of diffigrrcatiation is immaterial and so equating the two

second di fferential Co.effi ci en*.

(as\ t.ap\l*J,=L*J" """"'{o)

Equrition (a0) is one fo,rmofMaxwelt's Relation.

Substitrting eqrutim (38) md (&) ia cqr@33)

dr=cv+.(#),* 
".......(4r)

For conskilt voltrme proccss, dlly' = 0 md ociuatioa (41 ) r€duc#'to

da =c"f- ........(42)

Fcr n mols ofan ideal gas PV =. nRf

fap\ nRtarj=lr
So, quation{at) bocmcc

ds=trcv *."R.tY- ..,.. .(43)

f as\
Su'+stituting *r [.*J, from (39) in equatim (a0]

fap\ r(aE\ p

LarJ, = TLerJ,*T
(or)

f gg) 
= lrt'gt - ol """"(44)

(avJ,-L'tarj"-"J

Equation (al) is known as thc thsrmdJmtflric equation of state ard is aplicable to all sp-
tems, ideal or real

t4
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variation of 's'wi& Tbrnperat*re and pressure

S : f (T,p)

ds : r!g) dr-r-fgglir> _ ( aT J, t ap J, 
o' (45)

H=E+Pv
Complete differential gives

dff - dE + pdv + Vdp _ TdS + Vdp: (. Td.S .= dE+pdV)

TdS:dFf - VdP

H: f(Tf)

(4e)

(50)

dH: [#)"dr + (#),." (47)

From (46) and (47)

rds: (#), dr + (3F), dp-vdp

ds=i+(#), u' - +[[#), -v]er ...-....(4s)

Cryring cquati<rn a (45) and (ag)

fgg') :!fgE) :c.P\aTl" T (ar )"- T

[#),:+[(#).-.,]
From equdion(s0)

(#),:,(#).
Ditrerentiarfing with respoct to 'p' at cmstmt T

15
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f@) =rf 6Ps''1

\.F-arJ, ('tr.{r )
Fromeguation (50)

(#)'='[#),*' (A)

Ditrercntiatiag with respect to "T' at cotshrnt'P

f_dH-) ,-( ds I (as\ fal)
[.**J= ' LmaJ 

*[aJ-*[mJ"

H being a state firnctiorq tk'smoud ditrerutdal coeffieients can be equated.

st

/as\ /av\[.atJ'=-[*i" """"(sr)

ftuation (51) is ano&er fanu ofMaxwell's ralations

Inserting equations (49) d (51) iirto cquation (45)

ds=ce#-(#)* ...."..(sz)

Fsrmtcr of midcal glg

v= nRr/P md(#),=+

So,Gqudim(52)k

dc=ncr f-.,"*.S ........(i3)

Subetiarting equatim (51) in to (A)

[#),=v-'(#),
Equatim (54) is aaottrcr thcrnred;pannic equatio'n ofstate

t6
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Marwcll Rslrtiars

MaxN'*llusrxl the two larvs of thermodynamics and deduce six funda-

rnental di{ferential r*}ations ernong th* basic &ermodynamie ooorditlates. These relatioas

irrr known *s Maxwell' : t::rxrndyrfiamic*l relations and are applicable to all thmmodynamical

cpterns"

The state functio* E, H, P, Y I A, c and s are related by means of four
fundarnsrtnl equatiors I to tV.

dE = Tds - PdV ..... 0)

dH = TdS + VdP ..... (tr)

dA=-PdV=MT .....(trD

dG:VdP - SdT .....0V)

These *qrations $) to O\r) is in tlE fbrm of dx : Mdy + NdZ, wtcre .X'
is a single vaiud fixrction ofthe variables Y a*dZ(ic) a tkrmodynamic property of a closed
systsrn and dx is an exact differential. M and N are also firnctions ofY and Z s*ch that

(#),=M[#)"=*
a2x Iau) .........(s5)

aYaz =\ az ),

azx /aN\
aYaz=[.*J" """"(5o

It followl Eulcr'r criterion that

{ at,r^ \ (aN \
l*),=t.aY),

17
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The same above proccdurc were applied and considering thc Euler'scritcrior

for the above .four equations, we get the furr different forms of Maxwell's Relafions.

Exarrylo

dE=rdS - PdV ......".(57)

Equadon (57) differentiated wie rwpect to 'S' at constant V

Equation (57) differentiated with rcspcct to 'V' at constant S

rgg) :.r(as/u

fE) =-p
\0v1,

........(5E)

..,...(59)

Equatico (58'l ditrcratrtiated with respect to 'V' at constant S

(de ) fP)
t*"j,1.aol """"(60)

Equation (59) ditrercntiated with rcspcct to 'S' at constant V

azg faP)
av.rs =-[.asJv """"(6r)

Comparing equation (60) to (61) with Euler's criierion thcu rlgp[

18
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similarlywhcn samc procedurc werc applid to equations (II), (n! and (t\r), we getthe rc-maining forms of Maxrvell,s relations

far) (ap\
l-l_-l-l\.avl, IasJ,

[#),=(#),

M8rrwen's Relation - I

Maxwell's Relation - II

I\da;orell's Reladon - Itr

lv{axwell's Relation - tV

M{TROPT PRODUCTION

The branch ot science dealing wi&r tre shrdy of &emrod:mamic p,ro,perties of
the syrstcmr which are not in equilibrium and involve traasport proc,esses which are
irreversible is termed'as Non-equilibrium or Irreversible thermodynamics or
mcnuoOynamics for Irreversible proccsec.

Tlrc entrryy ofan isolated systcm iu equilib'rigm is maxin3uir Hcncc ifnrch a
syst@ is u in cquilibrium, &e entupy will insreasc but maynot dccreasc i.e., equilibrigm
liee in thc dirrction of increasing enhpy. This is tcrrned as 

..entropy produc,tim..

Thc ooncept of ertiopy production in aa irreversible proccss may be
resnood in a simpre nuu,oeras folrows. It is known &at

T

oruftichc€nbc rearrangcd in the fonrr

rg) =ras)tar )"- tav J,

fas) lav\-(-*J,=[t*J,

t9
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ds -S=n
T

The quantity on the left is greater ttran or equal to zero.So we may write

dS -S=Ct
T

where 66 rvill be eitherzero orpositive.

ds = -4QT

so &at tk F4. (62}can be serittcr ss

Ifit is assured that&e syttcm re'in contact with a reservoir at T, and a quantity

*f heai dQ flows into the slstenr, thes a quastity, dQ, flows in the reserl.eir. If the quantity,

dQ, is be$M reversibly to the reservoir, then the enhopy claanqe of the reseryoir is

/F8\.-......i01J

.."."...{63}

dS + dS-- do ".......{64)

The quantity do refers to the enropy incr€ase of the sy;tem plus that:of the

surroundins (fu reservoi$. The 4q is called the arEopyproduction of the precess. For an

irrevcrBible lrocffi, the entro'py pro&rction is p,oaiti:re while for a reversible proaess, the

arffipy productioo is zerro.

Ouseger Reciprocal Reletions

Th€$€ are also relations in which&erreodynamics of ireversible pracesses is
:based. Onsager gave &e following fundameatal th€or€m pertaining tc zuch irrevcrsible

processcs:



lf one makes a 'proper choicc' of the flux.:e J, and X,, the matrix of phenom-

enological coefficients L.* would.be syrnme&ic, i.e.,

L* =Lo (i, k=1,2,...n) ...".(6s)

These identitiesaretermedas.Ocagerreciprocal relationrs. Thenotion ofpra'per

choiceof flrxes and forces mavbe explaincdac foltows,

Ifthe state ofthe system (local tarrpcraturc,pressurietc.) maybedescribdby
anumberofparametersA,, 4,"A" with theirequitbriumvalues A,, A, Ao ,thendeviation
ofstate parameters from their equilibnum valucs is terrned as state variable cr . Hsnce.

0i=Ai- A,(i=1,2,...n)

Now we will define the propcr choice of fluxes and forces as the

derivative ofthe state variable o, :

time

Jr = 0i (i=t,....u)

and ths following combination'of the sate vadablcs q :

.....(66)

x, 
frtas)(i=12,.."n) .....(67)

where AS represents the deviation of the eneropy from the equilibrium value.

As entropy gets increased in irreversiblc p!oc6s, this change in emopy 65
from the cquilibritrm value can be put as a firnctim ofthe state variables, i.e .,

^s= *(aS)',. H"2+.....

a(as)
6o,

= To,
2t
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= E J,X,
I

....(68)

In .Edcr to i11ustralc &c aborr3 i!.rivcd quaod66 c.g, fluxes rnd f-orcts" we will

consider a systcm q,tich is coryod ef two Ftrts, bdtr csrlffi€d ttithia &e same rigid

adiabetic cocl6llt. Suppoec &c tws?6ts'8fg at uiforu tsrysrstureg T, end T2' if dQ

reprcscnts. &c tofltot ofheat flow from gt rttcarycrafins T, to {:at at Tt fu ilcreasc is

€ntropy ot tr s!/stom wouldbe Svcn u foilonr:

ds=.o[+-*J=da ffi
=ua.$

..,..(6e)

WtrereTr -T, = aT mdT = ffi].
IImc r& of mtnogy paoAr*oo wsrld be ae foltowe :

S=QS

As ht flow, as3l€d &ffi' dgmt€d by Q oesurs &lc to temPc'fafirl€ ganiient'

caltql force, fuo(edbY 6 T, we cm Pntt

1T
Q = J, and ft= x , ..'..(?c)

so tlrEt q. (69) wurldbecmes asfollo* :

g=e,x,

This isdurs acq.(68)

On hnring rclrtfoms (?0) itr fu foltorwing'€quatioo

I

J, =f, ,L, X. (i=1"4....4)
l.l
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weget

Q= L+I
T,

TEREE COMPOI\ENT SYSTEIVI.S C=3

(a) General. Phase Rule; F: 3 - p + 2:j -p

If F = 0, P is maximum, thuS for inv*i*t systeln five phases must be prcsent

toge&er. Thc invariant system wili exist at a quintuple point. Out of five phases for three
coltP@€nt E)4stcm, the maximum number ofliqrrid phase would !e oaly three, vapourphase

only onc (since vapours are miscible comptebly) and solid phase only l.

Thus at quintrple point 3 liqui{ @c vrygur md me solid phase may 66 present

or3 solid, I liquid and I vapourphase oraayofircrcombinatior

As the number of phase diminisks the variance of the systcm increases.

Maxirum number of degree of frerdorr (variance) is 5 - I d. Thgs for the complete

dcscripio of the phase diagram of a tccnary sys&m lixf rqriabtcs via . the tcmpcraturc,
pressurc and the mole fractions ofany two ryoclrts must bc kuown. Ilc phas diggram
neodcd will bc four dimensional, which in not easy to draw. This problem can be solved by
keeping thc tcrnperaurre and the pressure constaut. In considering a tbree-conponent system,
the vaporphase is considered to be abse,lrt md such I s),Etem is cailed a cmdcnsed s)lstem.

(b) Graphical Representation: Fsr a thrc€ - component system having a single
homogeneoru phase, the degree of freedom is civen by.

F: C +2-P:3+2_l :4

The four variables are prcssurc, tanperature and comccntratiors of any two of
&c &rcc components. The graphical r€eres€otation of a system having four coordinates is not
poesttle. However, ifpressure and temperame are kept constant fieal the degree of freedom

re&tces to two and the slat,em can be repr€scntcd on a two.dimensional plane. Several schqnes
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have been, in use for representing the eguilibria in threo component systems, but the

equilateral tiangle method suggmtcdby Gibbs and Roozeboom ls extensively used.

TheTFiangnlerDlagram

The coilpcition of a three-coryonent system is shown in a tiangula di.ge

using the Gibbs-Roozcbo,cm tiangle (Fig. 3.a3).

The variotrspnrycrtie of cquildcral hiangle are then used to discuss the phase

digram of a'tbree con{poncnt syst€fiL

(ilThc vrticcs A, B, C of thcoqtiilatral tiangle represemt the three pure

componeirts.

(ii) Thc eid€e of thc tsiangle lryrcscnt the eempcsitioas of different binary

systems. Sidp AB repncscnts the corryositien of the bieary system (A +B). *n'line rtB. the

concrentation ofthe coa-'poncnt C is z€Fc. LincAC rcpreseuts the composition of &e bicary

system (A +{) and tlrc obmpasitim of ca4onent B will be zcre, Simitarly side tsC

corresponds to the cryositian of &e biury system S +Ci, the conpon€at A kinE absett

on this Xiae and cr my l6n* drawn pallel toAB tbe cca,:cntraGas ef C is corsiant; an,litl*s

parallel tu Ae, the ooocca*tim ofryomryt B is co*shnq aad on lines pratlel fio'BC, ttre

eoncentsatiom ofA ie cmstanl

(iii) Any point wiftin ee equitatral triangle wilt represeut &o co,rymition of

a mixtur€ of tnee coqmcnb. Thc compositioa of earrh ccmBcoat can be determined as

foliows;

Calculation of the cerccntredou of ee& omponent

In a mixune, thc coryositiocofcach contporrmt is givea byttre distance ofthe

point (wi&in tk Eisngl4 from tbe Bid€* of&* e'imgle *p,po*itc to the respective vecGces A,

B, C. This disee is xreanued along tro linc psrallel to &e sides of rrapgle. fhe mofe

fraction of coryoocnt C iaftc mixtrqe (P) is fu distance of P from linc AB mqsured oaral-

lel to AC or BC i.e",
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&-PX, =P4=X,4

Sffilady X^=BXrand\=.4X,

ng-Z Grapblcal reprcsentaflon of &e compositlon of a teraery

system atcongtrnt'I! end 6Pt

Location of the point within &e triaagle when the compositioa of each

cmpoffi ir known separately. L,st XA :q Xr+ and X. = c, be tlre mole fractions oftlrc &ree

ooryocd A Bntd C rcsprctively. The point represeating the gross compositim of the

t€msy Eirffic can be located within thc eimgle as shose zn Fig.2.

Tho sides of &e uiangle are eqrally dividcd into I 00 or I Q or 5 prs. A portion

BE = a ig ffisured offm the AB which will give flre cmcmtration ofA ; a portion AX, : b

Incasttcd offm the line AB will be concentation of corryonent B. Tke remainder length

XrX. =ss4trbceryul tothsconcentation ofthe-&irdcanponent C. Th€linmparallel tothe

sidcs ofdp trimgle are drawn from'points X,, and 4.Thr point of intcrsection of th€ hro

parallcl liscs wil reprnent the gross composition of the ternary mixture as shown in Fig.3.

00uu

{:*:1 
".,.,.}t

I t
a

xl
r,^ 0 toit,
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r{p*

f ;i3::...-s----i

Co'mPosmon of S -+
FlgS.Lo*stlonofrpoiutwithlnthefi:trngulardiagr*m

We have alrsady in&cate,ilthat unless the equitibrium system o"f a &ree-co:vt-

pomnt systern is considcrably simplified 5y imp'osing a number of restrictions* it is not

pcsible io study tlre equilibrium by consmiciing phase di*grc::s' Thc vapour phflse is *onsid-

ered to be absent aod novr it is ales assrmed that rro sr:lid pbase is ilvolved in tlae equilibnum,

i.e., the slrcteur consists of ttuw iiquidpbasee only"

TIIRHE - COt?trOI{EH? ttQEJm trsYETvtS

S1*ems canslstiag of three tiquids can k divided into three maip categories

deperrding c,n the oafirre ofthe substance, and the experimental temreratufe'

1.1\roliqlridsA.c,alldB.carecompletetymisciblc,andA.Bodlypgtiallv

miscible. Example: (i) water -chloroform-Acetic Acid, (ii) Aoetone - water-Phmol' "

2. one pair B-c is co4,letely miscible. The pain A - C, and A-B arc only partially

miscible. Exampte. Water-Pherol-Aniline'

3. Allare@tYpartiallYmiscible'

4. Atlere comoletelymiscible into erch othgr'

one Fslr of Parttal$ Miscible Liqutds, of the tlrce componenE Ap and c, one is

cmrpletely miscible with the other two s€parat€ly and the othm two are only partially
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misciblc bctrveen themselves, €.g., A is conpletely miscible with either B or C, but B is olrly
gtiallynMble wittr C, Exanrples of such s]lstems are cH3cooH + CHCL+ Hr0,

ROH + CF5 + rlo and czHsoH + cHrcooclt, * 40.

Suppose a mixture of Band C is taken at a coustant tempcra&re. As the two

liquidsrcmuhratlypartiallymiscible, themixfire witl formtwo conjugate solutions glvenby

the poinb b ard c (Fig. 4). As some A is added to the s1atern, A win distribute itselfberween

the two laprs (A is completely miscible with Baod C) and the layers become coqiugate ter-

nary solutions. The compositious of these two solutions are giverr by the points b' md c'. The

tie line b'c'will not be parallel to tsC because the distribution ofA among the two layers is

unequal.

Fig.4. Properdes of a three comllonent tiquid
system of one pair of pardally mtsclble liquids

At any point x on this tie-line, the relative amounts of the cmjugate solutious b'
and c'are given by c'x / b' x. As the amormt ofA is increased the miscibility of Band C

incrcaseo wtil at ttre point R the liquids become cormpletely miscible. This is caltd &c
critical point or plait point. The cune obtaind by joining diffcrcn poine iadicating
comeositims of the trro lay'ers i.e. b P c, is . called a binodal qurye. Tk bimdal crrrve pssses

through a mrximum at M. M generally does not coinci& with the plait poiat p.

Anypoint ouside the curve bPMc represents a one phase s)4steNn, all the' three liquids

being corryletely miscible among themselves. As presnre, and temperatre are fixed, the

dcg,ec of treodom ofthis'rcgion must be 2. Insidc dre binodal curye the system is a two-phase

/!
a
a
a

a
a,T

i\t
aI
a
t
arl
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and cooquently F : 1. An exampl€ *f the ssystein dscribed iu B: CIICL,'C = Q$ aod

A = CHTCOOH. If the iaitiai esltwwiticn ef tb rnixture of Bend C is r, thw*s iaqrs+Sing

a;rsunts of A are added, th* co*rposition of the wla*le $)Gts$ir elmrrges aloag rA. It may be

sesn &onn the p+ints of interseetioa of'rA cd ths n* I*t"*: t&et as A is i**re*aed, the

purprtioaofihe ie&foaadh3erdecreer:e6i etth*p**:tS,-:f tvolay*x e,oic*id*t+fu'rc

a singfeptus*. Tlz*s betsm S *rd&k s>,rstfm is k:ticgmmrs *::da*e"pb*s*' Xt€ssrxsi&

observd fGr aaylherA*xcryi.x,k&e.tlwEcssre eI8$8bee p}*it p*intF, e.g,fFfuaicng

tP.A., in$tes,fl of aae layer disspp€qrisg WSy, ="w*'* tapm Ese4i& brrt fkixs*rryq*iti,*a

aprproaeh each othq and becmtdee*iqal at?"

lyhen.the ryogionr ofAis kqpt consta:tt *nd EandC ale v*ri*6- &e qmtora

clung*a dmg &* tirc YE" Ekrs etx.&e sJEffi is m-phaq ,ae{isc * ,ia s$d,ed m*re *ed rwrt

a**Lhsrp&sp€ app€esasfu'binodalsurve ,ie racbed- Witki* *ebiaodai euff* the s"1retem-

remsins gq,11-ph&se rn,3t&*nagaintrcornes oae-ph*se whm tn* propcrdoa of C incre*s*s

beyend &e binodal curye" This chmge, bwenra, is efus"*n $ii eli:y v".:th e3:st*ms coarai*iag

iesser araouat ofA drnn *at -..r-T*& b thc maximtrc poirat M. 'rl&e!i the origiEsl ccry&

siticn lise b#"sea P md h{, tM fu €ffiiG of ere liquii laytr t* tsro Akm p!ac* for * ,

qistem whieh elwap ccm&ins mqsecf'&a A &sil f$at at the plait Fint P. SEeb

soluiions are saidto show retre,gradc sotubitiry"

Fig 5 Bingry and tcraary soluffon temperatnrqr.for,thrcc-comPo1etrt

liquid *ystems conclsdng of one pardalty mlscible liquid pair

Nr\t
?
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The infiue,nce of tqeratne m &c msrsl solubilitirs may be strdied by &aSying

a nUmber of isothennal binodal curves in a tfangutar diagnur. Tlvo tylpes ot.behaviour arc

fotmd- Solubility generally increases with tcmpe,rature and he,nce t6g sea erclosed by &e

binodal flwcs becomes suraller and smalleruntil tle survc coincides with the line BC (Fig.

$a). At Sk tcmperafitre, Band C becomes coryletely miscible and hence the temperature is

the critic*l eolution temperatne ofBand C. Thnpl"it ppioe lic m pp' md p: gives the critical

solutioa igmperature. This t1c of behaviotr is sbvm by the system water -anilineghenol at

500c.

For systencs likc water-ac€tm@ol, the inftuence ofieryc,ratne is given

by Figs(b). Here, tk plait poiats lie on PKP' and Krcpresene tLe ternacrqiticst solution

t@Ptrdrc sbove which 6€ tkec liqulds uc tccly mirrtle. T66 binodat curv€s are of closed

t,"c rad }aoo zuch a system has trro plait poi& for wh binodal cluive.

Tivo Pdrs,of Pardalty Mlcclble Liquldc.

Out of thrce liqutds A Bad C, xrtco ts.o li$rids A d B 6 Ecll as Bsnd C arc

partiallyrniccible, tlere msy be two binodal Errcs, as iu Fig. 6(a) , wi& ech tio,lines md
plait poir8. One exauple of zuch a rystein is wdcr-c{hmol-zuccinic dtile bctwoen l3n aad

3l o C. At,lower te'lryerahres, the partial mieceility zme inqeascs and thc two curvcs uray

coalesoeto{orm a bmd a: in Fig.6(b). The baod diagran may also be obtaircd &om a s}nstem

foraning,ody one partialiy miscible liquid pair. Thus it is not possible to say urhetter a band

diEgram gi[ split up into a diagram containing 'Eo binodal crrres oo incr€ssing the tvnrycm-

turc. Biag&l bands are SIYsn by systems like cttyl ac€tate warer-butanol or 2- medtyl-pro-

paaol qr?'wthyl-propaF2-ol etc., at 0 ad 20"C. Points insi& thc band dmotE two-phase

and,ou&trcbad one phase sptems

29



Flg 6, tr'lgures rhowlug (r) tro bl*sd*!' eeffief am6 {b} blnodal band

Three Falm of partially Mlsctblc Ltqutds. Three sepaf,ate bin#al eur+es are possible ior

rhree pairs of partially miscibte liqrids. Foirc$ insi{ie the binodal cu:Yes represent a pair of

corjuga€e rsrnary liryids iE eqdlibrium tfig"6)]. If*ra u,riscibility is very poar and ths t*rn-

peraftye is iow thm &e ersc bkodel #!ir1i6 t:iay eoslere t* prduee a diagmm ar d*pict*"d i*

Fig.6 Co). ?tre cterir arcas except DEF rryreeeat horn*g*neaus *ne-pir*se si$en:, t&e are*

shadefby the &e 1iags repreeat tsic pirase syst€ms aad the area DEF reprcse*t*tf:tee liqrtiri

phasee.Atconstanttryra.ere andprssure fertbrce-phas€, throe-cprmporel}tsl8ttlr r**
and so the composition of the ttrtx liguid layers at equitibxr:cr must be definite at a definite

temperature. Thc exrnrpEe ofspte.rrs bctnving likc $is :s sv&tder-suecinio nitrile'
*

Flg. ? (a) Thre btnodrl crrye! and (b) Coalescence of three binodal curres

Tivo salts and water:

T}pe I: No ChemtcdComblmdon,

The isotherrna! cquittrlum of dris t,?€ rs strown in the Fig 8 & 9. In this dia-

gram, poitrb D anit Eppreeeat eotubilities ofBand C respectively at the given tcrrpcrature.

When C is added to the solution saturatcd witb ts the co'ncentratiou of the latter changes and

N
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followe thc line DF. Similarly whss a&ed to 6e sature 'ed solutim of C, &e mpositisn of
thg solution changes aloag . EF. At the point R fu solution becomes saturated with both B and

C. At poinq ffre compositiou must be constrnt Thatis why the point F is called the isothermal

invuiantpdnt

Fig. 8 Fig.9

The area above the lines DF and FE contaias only unsaturated solution. In the

areaDFB,&e,re exiss an egrrilib,riumwith s8trratdsolution ofcompositionlyingalongDF.

The pginb ofconvergence ofvariotrs seb ofthe tines witrin this area determine the nature of
ttrc solidphases, with which various solutiqn oe sahrded

Corrgsponding to area DFB is area EFC in which thc satrating pbase is C.

The area a BFC is a tbre+.ptrascreglon.Atanypointwi6inhis area&ere wiltbe

found solid B and solid C in equilibrium with saturatcd solution of co'nrposition F.

E:rample* (i)Ammonium chloride-amorium nitrate-water.

(ii) Sodium chloride-sodiuuiriEate-water.

(iii) Amrnonium chloride - armium srlphate-water.

llp

ElCrlirtd F l
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?ypcllrDoce srft frrd

: 
[et Es cffiEidffi thc ffi ree nfu ,two salts B and e comblne tc' farm a double

sslt t ct Sc gcn€rat foq{s ofthis salt be B. C. When thie d*.hie salr. is forrrod the corye-

silAcn cf&is wifi fall m &e ii*€ BC tSe FiS. 9I

fn{hie frh{rmr, p*G D idicdes er @witifii sft c double salt and tisre

FG the coryoeitims cf solutioas satuirEted w{th the ctime*En& F aad &e two

iful ifieuistt poin6.Tlc frst of &csc soEuti+rr is cetftmfed'wi& B *d D, aad the

soomdwithDtndC.

Snqinths aersagEFk sidB md solutions. trn m ffiD tfle€e €xisb Dmd

solutim F. tt& *sDFC thcrrrc D asd soluticd. In the ffia DGC th€rsare D, C aad

sotutimG Is&dar€aGI{C k? ffiC'bdco[tl66td in sea.abcve ltra cruv6 6qtnthere is

only unsatratd ilofutioo.

Example: fqO - A${CIr - I{II1N0!

This is ao qafiplc ia which &c &rble saltofAgN0, !s furnoed

-rypa-'I3Er Sre s*# fenm a ffiitrta

&ryorc w of&e eb my Su fmms a h5$ra€c ie Se pwn* of all mroun* of

S2.lBeoryeitioairgivenbypointti md*iti:rer#S, Sothat$f,In rWr€siEB ilie Emoestcf

a$hdrys @ dHSr grvce fu @mt er@llisatim in fu bytirese. Eks €quihbrium die*

gramis a8 sharytriuHg. 10.

32
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In this'diagram, point 'a' I€f,rcs€rts the solubility of hydrate H in watar at a
fixed tgrrycnture. As it is the actual solid phase fur contact rry-ith the solution, it represens frc
coltlPsitim sf the solution in eqiriiibriurn wi& the solid hydrate. Along the saturation curve
blof $r, acsdrate is furmed.

The pint -f is said to be non vr-funt bocauso both the hydrate and solid S, are
in equilikip with solution and vapur.Thi! cag be easi1, tollowed &om the phase rule.

F{-P+2=2-3+2 = 1

fhus, at the fixed temperature the sptem is non_varianl

Any point within the area H S, S2 will yield the composition of the system of
cornplcto8qxture of H, S, and Sz, This is because the systern does not contain sufficient
water'or csvcrt all the solid S, into its hydrates.

Example:

Systern ofllr0-NarS0n-NaCl in which ttrc hydrote Narso4- lorl6 is formd.

Type f* Derble ralt formr r.hydrate :

Tbvo.orsesmayafise:

(i) Hlrhated dqrble salt is not decoryoeed by wae.

(iiXtdratd double salt is decorryoocd by water.

Irt rycosider thessbases one by one.

C.asc(r).

The equilibrium diagram forthis eptem is as showu Fig; 11. In sraste,q the salt
S r fenns a Sdrate H having a saturation cuwe ac whercas the salt S, is anhy&ous at the give,n

,Ilowever, these two salts can fonn hydrated &uble salt. D having the formul4

xS,y{zt#



,

Wh@ x, y arrd z are tntql€r$, Tb€.valusq a,y.uad= fix thc positiou of tbePqint D within tbe

tiapgte. rdr

As 6c hydratpd'double dt esl erist es a separate solid'phase, itm ns &et it

equsthavet6 or#a s*Aratia&rsrrc. As&e $ff Irecle fu ss*:ration ct$YE odoftkshfft"td

double salg itr::mts that&c double salt dm nct gei d*trmpcs*d byw$€r'

Widdn fuare CdD, cmpmsd E--a cc in €quiiieuim witi: soluti*n ato'ng cs ar:d

may.k neccverd fu &ee mix&rp. FsiBE e andti ae rs &snnsl inveria*t p*ints. F*kt e is

safimedsn&tteemtxtunca ofHandftu&me*spol*td issa&E atedwithleixffiw ofsei;d'sX)

and s" AII mixfi:rffi ere **ryletely solidbelew tie iincs FID and DSr.

Within tk eiaagle HDS, ttn sotid phas* rc H, D and Sr'

Exanrple.

Alurnshaving c$ryGsiGoa srph as XrS0nJr(S0J324f1O arc exalptes oftbis

typc because these are not decomposedby water'

Cass iii).

. Nowconsiderthccasowhcneshy&atCIddoublesaltis deconposedbywatcr.

Thc eqqilibriu4diagrsm f,sr6is qEtceis showEt in the fig* 12.
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In Fig. t2 &e straigbt line D\M is not meeting &e sanrrated.curye cd of the

&uble salt, idicating that double salt is not decomposcd by water. Thgs, undcr ce6train cffidi-
tions the prcpration of&c double satt is not pcsible

Examplea

An cxample of this is MgcL. cqCt . 6Hr0 Ano&sr examprc or ftis t}"e is
MgS0..Narg).q0.

Category ItrI. Formadon of soltd soludone

Whea two solid compooents 8, and 8, are completelymiscibte in Gach o&crin
tbc solid phrc, a series ofsolid soMions ranging in concenhation fr,om pue Sr b hrr6 Srtatr
bc rccovercd &onn a sotution of these in water. As under tiese coaditions oaly two phases

appear in tho rystem no invariant point is obserned The equilibrium diagrm for such a qrem
is shown in Fig.l3.

Affi
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In this diagranr" tbc line DE givee the composition of sanrated solutim in eq.ti-

librium with solid solutions of S, aod S, of *oryoeitions given by the do$ed line' In the atea

above DE, o,ntyunsaturated sclutions cscbeo&tained. Below this line DE, twopbases occBr

i.e., ttre saturated,soludoss alongDEass&*dru;cl*tioes ir equllibrium with eachother'

Perttstr nalsctbittty af solid phesdt

Fig. 1 4 shows the ptigic dagroir fd a qrutsm in which the sotid @sc Sr ad S,

are partialy miscible in eacb other. Uod€r thdsc cmditions twa sets of solid soiutisos would

be fqmed.

(i) OncofSricsrrtyitrgb€tw€cnpointss, andD'md

(ii) Anotherof S, in S, iyingbaweenpoints S, and E"

The line FG gives the compositions of saturated solution In equilibrium witb

the first series of tbsc solutioas wlrite curve HG with the second seriee of s$l{deeilutiom.

Betweelr polax p and E mixtures of S, and S, wilE yieid two sofidrfq&i€h' w

hae the cornpsition D and tho other E. G is an isothcrrnai in'rariant point because at this pcint

ti:e solid solutiess D en<i E will b€ i$ equilibrium *'it!r the solution and vapourpbase' If a'se

coasidcrs any point within the triangie GDE, it gives eonryosition of solutions tn quilib'rium

wifh two solid plutiocs D and E. W

Fig. 14
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T,INIT. II
Ttc Poctuhtl of qurntum Mc.hanics:

The formulation of Quantum mcchanics for ttre wave mechanical heatsnent of
the shrctrira of atom rests upqn a few poshtahs.

Portnletc I I

The state of a system is described by a wave function v (r" y z, t) which
contrins alt fu information about the swtern.

Postulete 2 :

A phpically observable quantityA of a system can be cbaracterized in qrrantgm

rnecharics by a linear operator f This operator corresponding b the classical expression

forA is found by replacing each cartesian coordinate and each momenfirm component 0, in
thatexprwsionbyx and

hllni +Ox respectively.

Poctulate 3 :

The allowed values of an observable A are the eigen values a, in the oprator
,\

equation. A vi = 3i Vi

Postulah 4:

Tlrc average value ofthe prcperly, associated with the opcrator N is giveo by

(e )=
*'ivdt
ry'Ydt

where V is thc syttern state function
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Pctulate 5 :

The wave.function ttrrt rryresenE the state of the systern ehanges with tirne

according to the time dependent Schrodingacquation

*. a{(x,Y, a t) =iv(*, y,,a t)Zre' At

where , is ttrc Harniltoniar operator of a q6tem

0perators

Atr operator is a slmbol for a nrle of rursforming a given rnathematical

function into another fturction.

E* A denotes an W€f,ator which transforms &e funotion (x; into the function g(x), then we

write ft (x)= s(x)

L"t A be d/dx andf(x) : axz {rc'n

A f(") : d/dx (ax') = 2a x, i"e', g(x) : Za:c

Linear operator

An eperator is said to be linear if its applicaticn on the sum of two ftnctiqas

givss the result'shich is equal to the surri of the operations on the wo functions separably if

A ttt*; + s(x)I = fi (x) +,{ A (x)

t Ct(*) = C. A f(x), where C is a eonstant'

Example

1. d/dx.is a lirear operatc becausc ildx (ax' + bx)

a("*') *a u*"dx\ / dx

2. Square root is not alinear operatorbccallse

f(f,;mi*,6GI* JiGI
38
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nennroti pttperty of op€rators

The quantum rnectlanical operator satisfies the following condition known as

Hcrrnitian omdition.

l. Ifarcpcrstor A tr*rwo eigen fuaction V and 0 andif

a^A
Ivteg)dt = Jtev)$a'

when V and $ are real.

Jv'tiota, = Jtivl*oa,
when V and $ ate compler; V r is the corylex conjugatc of V and at is &e volume

olcnrent of rpace in which the function is define{ the.lr the operator f, is called Hcrmitian

operator. Exarrple: Examine ff * is aHermitisn op€ratordx"

If ry =e"and $ :sinx

I* 
-fi0)dr = J"o *(rt,)dx= - I"' sin xdx

Iori*1.u, = I*,.[*"",.]* J,io*1F.')a=- J,io,"*a,

The two intograls are the same * ls Hermitiot

Elgen velwand Eigen funetion

If an operator ff operates on a well behaved (i.e., finite, continuors and single

valued) firnction Vi to give the same fuactiou Vi butmultipliedbyaconstaatftctor.a, tr,,l
consffi frffir is 'a' called the eigen value of the operator and the function Vi is called the

ciBcofunc&n A V, =dVi

This is known as an eigen valueequatim
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Exanrplc: If Vi :e.' A = d I dx

th€n $t.--)=-"{.--)

e-o is an eigen frmction of d/dx and thc corcsponding fimctia' oigen value is -a.

Method of setdng up qeantrm mechanical operator

l. Fkst writ€ the expression for the S)rsrcal quaatity in classicel terms i"e-, in terms of

Cartesian cmrdinates of position (x,yf) a:rd rnome'lrta (P.,Pr,P,)'

2. Re,place themc coordinatcs and rnommtaby their correspondiqg operators

3. Operator for a coordinab of position (say x) is rnultiplication by that veriable x itself.

4. Operator for a ooomdinate ofmomeafrm tray d) * *
Ex- thekinesc energyof a singteparthte moving in one direction sayx.

i,=l*v-2=m;Yr'?=Pi'*-z u' rr 2m 2a

Therefo're, the IC E. opc,rator

: h2 a'
! =-a - Bs:m oxz

: r ir h al'
'"=ffi[2,'t a-J

Degeneracyr

F'or evely eigen functior (weil behaved wavc funetion) there must be a

ccrresponding cigea value (e,l:ergy value). trt meacs that eeeh Energy stete of the syst€m tmtst

have awave functionwhi&wifibc&c*araeteristie ofthe$)Etem.tn stherworrds amcng&e

various s6tianry states it may h4e€m that some of thsrn correspond to the same eEsrgy

eigen values, but diffcr in the values of some athe.r physical quantities. Such energy eigen

valuesorenergy levels ofthe sptan are saidtobe degenerate.It means that degenerate states

of the s)6tem would be energetically idcntical-
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If Er Erq 'm"""" rcpsarmt guantsed eocc5f lcvcls,'trcn corresponding ro csch of &61€
rnalu, drc !batleastoaceigpo function ry..

HYn=EoVo

Vr r€prcscrrtasetofeigeir fimstioa y, V, vr.............

fffor each enagl state, if there is only one wave function, their the set of eigen
functios and the elrergr statec arc notr dcgenerate

on the other hand if there are mor€ than one wavo ftnction for an caers/ state
suchthat

H V, =Ey, ,H Vz = E ryr,If Vr =E Vr then it is dcgenerate.

Deplrcraf States are energetically identical.

Norurllzcd end O(hogonal function

If ,y'dx or V V r dx represeu8thep,mbabilityoffindingtheparticleatanypoint

x' then thc intcgration are the entire range ofpossible locatiou, i.e., the total prcbability must
be unitybecase &eparticle hasto be somewherp within that

range i..., JV' dx =. I .ir Jvv 
s dx = I

In thrco dircctions Jv' a, = t (dr = dx, dy, or) e wavc function rvhich satisfie tho ( above
egu*iur ir known as normalizrd wave frmction and this conditioa is called aormalisatio

coditio. Thffi mayk uuuryacceptabre sorutions to schrodingercquation ri * = E v
for a ptiarh E/rstcm. Each wave function ry has a corcsponding cnergy value E. For any
waYc finaknryi aod vJ c6rcspottding to the enerE1r values E *d Ej reseccdycty, tlrc

foilwingoilditim rnrsrbc ftlfiltcd. JV, V, dr = 0

Such a ditim fu called oodition of orrhogonality ofthc wave ftnctiffis, &e
trro fr*tiu vi ed rtrl art saidto bc qrrbogonsr to cach otbcr.

4l
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Connrtltfue end Non-ommutstlvc prryerty

Wklr a s€ries of cp,raticas arc performd on a function suocs$ively &'e

rwult @rn& on tlre s€qucncc in which tha o'perati(ms arc performed in other words, in

opcrator algebra it is notneccssarytbat

iu r(r;=ri t1-1*rexamplcle,i u*o*fB starrdrfor3xr,and&efimction(x)be sinx,

eal

i t rl*;=f[r.' .(sir x)] =*(r*' sinx)=61sin x+3x2 cos x

ud

,ir1r1=r*'.ftrio*) = 3x'cosx =3x2 cosx

If two operators are such tbat the r6ult of their succqssive applicaeion is the

same irrespective of the order of operations then the two operators arti said to be commuta-

tive. tn the above example, the two operator are non-commutative.

E&

i u*A for 3+

i t*a for 4+

(x)= ax

ABf (*)= 3 +4+(o)=l+(++o)=7+a:t

aif 1"1= 4 +3+(ax)=++(3+ax)=?+ax

Thea i aU i are corrmuative.

The Ileisenberg uncertainty prlnclple

According to classical mechanics one can determine, simultaneously and precisely bcth th*

position and the momenhrm of a bodyat any point in space'. However, with nticropartieles,

owing to the presence of both wave and particle characterization, their properties are differ-

ent from thme ofmacroscopic particles. As a rezulf it is not possible tc determine accurately

the position and momentum of a microparticlc simultaneouilly. This gives rise to aD uncer-



or

tainty in either the position or the momentum which is however not a matter of imprfection
of the exp€rimental technique but a result of ttls interartion of the system with the measwing
techigues

According to Heisenberg that thc product of the uncertainty in position (a* )
and &e urrccrtainty in rromenttmr ( a px) along the x direction of a body, in equal to or greater
*hmPlaac*'s cmgtanth

Ax.Apx ) h

'4n

Non - commuting operators and uncertanity principte:-

If the operators for two obssrvables commute, then the m/o observables can
have precise value simultaneously.

Ifthe two operators do not commutc, then it is notpossible forthe correspnd-
ing obsavablc to have precise values simultaneously.

Consider the operators for position along the x a>ris X and the x corrpqrent of
A

momenhrm p ,

AAAA

xp, v -& x * = -no( -* -*(xv))

= -ith [-vJ=it,y

These opcrators do not commute. consequently x and p- cant have precise values
simrltanoouly.

This is tlrc basis for the unccrtainityprincipre of Heisenberg.
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Applicrfio! of wave mcchanlcs to rtgld tt&tor

Rigid rotator - two or nrirre particlcs slstenl, in which the distance betrvesn the

particles is assumed to remain fixd during ro&ticn and cannot vary with tim*. The tireory cf

such a rigid rotator is useful in dating wi& the rotatioaal spectra of diatornic molecutr*s.

Let us masider a two paticte rigid rotator like a diatomic rrurlmrlc with n:asses

nrt md m2 urd se,parated by fixd distance 'r'. Ttrc rigid rotato'r is a Wabody problem ard cart

be reduced io two separate me'body prcblerrs.

l. The trauslational nptim ofttre sptem canbe heated byusing the t*tal nrass of

thetwoprticles and

2. Thc rotatioaal motim of ttc particle can be obained by corsidering a rduced

mass [r

mrrrcr:nL
Ixt us consider the cem&e cf mxs C, of this turo body probletas, ioeated et the

origin of t&e cartesian eoordinates, and let the dise$ce of m, from 6re ceirtre ofrnass be r, and

thc distancc ofnq bc r,

m,rr:grz ......(l)

rr* rz= r ......(2)

fronn equatim (l) md (2) we get

q(t-q) =rq12

(m, +mr)q =rqr

mr
L=-.-!--' tq +In2

......(3)

Similarty
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m"r+ezrl a 

-

mr +m2

Thc moment of inertia (I) of 0rs rurating bgdy, about the cense of mass is

I = *, r1r+ m, rr2 ......(s)

","'(4)

..-..-(ea)

ffitifitrg llrc values ofr, ald r, in thi$ qirition rre get

- fn. m-
J = 

r-*}.i.:r r, = p rz .......(6)mr + m2 '

gr = Bl.Ixr is the reducsd massmr+m2

Since the distance between ttc two particles is fixed, the potential energy is
&eatcdcc?rlo. Thercfore, t}lerigidrotatorhacoirtyJcbetic enqgy. The kinetic cnergy(t) of
thc Ddatio*ig&m giveu by

l,l,, = t*, vi + -m, vi .......(Z)

Whsre V, and \ are the .lincar velooities of masses m, and m, rspectively.
Thenin termsgfangularvclocity, we can witb

t = i*, (o, r,, * i-, a, tl ......(8)

V=(t),f

T= I 't
f ,o'(m,rf + m,rr')= ! ", I ......(9)

t#here ol is the angular velocity. Sincc, angulai mornentum L is related to the
nprneht of iffia" I thro{rgh ttrc relatisn

L=orl

'F Lz Lz-=-=
21 2pr'
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Now Ia us conside the two particle rigid mtator horn the quantum - mechanical standp'oint.

The Hanriltonian opemtor * *lU contain oaly&e kingic eneryy operator. Hence

.1 C h? al, =#=- Bfr,r*:v' ....(ril,)

Wtt€re tb opsrator currsponding to strgultr mwntum is

L'=- 4 rrv2
4[I'lr ..,.. (l l)

To solve this poblem it is ffit to use the expreerio'n of i' it spherical polar

*ry**.Thcrefqa, Sckodingerkc4tirtioa *V = Ery malbe wriscoas

#*[si"o#] - ## .Y'* =o (rzi

Tirisequationeontainstwsangularvariabies V &*d * .Itiss+trvedanc*agair:byihe mer&'eJ

*f separatiou of variables we took for a eolution of fon:l.

v=0(0)$($) ....."( 13)

Substitute *ris in the above cquetieatre get

ry+i*,o**l " 
qf'l*!n20 =-l++ ......(14)0 asl--- aOJ h' s6$'

Setting both sides of equation (14) equal to a constant mr, we get &e pair cf diffirentiai

equations, each in one vari$le, as

#**=o
t a[sioe4l* [u-4] o=o

Sin0 00 L a0J L' Sin'0J

wherc U=St

.......(1')

......(16)

......(17)
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Equatioa (15) has dle soludfir

S{9)',cury(*t'r+}

$tm({} 
;fr1"-o(*n6)

(m =0,llr3 ....)

Equatioa (16) has its solutions the associate Lrngendre polynomials piH (cose)urhw I is

Either zero or a positive intcgerand fur&er z >Irl. The normalizetl solutions are given by

......(22)

...,..(18)

This is an sry@le wave fi@ioo ptovided m b an integer. This condition
ariees bocsure + is rquid to be single.vrhrcd'Ibrs

${+1=S (2n +0}

exp(iaq)le*p [t* S +2x]

This reql*ir€s exp ( 26*ri)] to,bc uity, in otk words

Ce2sm+isin2rm-I
This is true if m = 0, *1., *),*3,... etc.,

The normalizatioa eonditioa d"es &e valua {2r)''n. The normalizccl solutions of equation

{15) are

.......(le)

-..... (lea)

0{e) =e,"'(e) = pfl(oos 0)
......(20)

The rcstictioo on / leads to quantisation of ttc kiqctic coergy of robtion, whoce valux are
gvenby

. _t(r+r)r,Lr--7--
8n'I ......(21)

Equation.(2I)isobtainedfromEquation(l7)bysubstituting t(t+f)forp.Thetotalwave
function of a rigid rotator is thgn given

rp = (0,6)=0,,- (0){.. ($}- v,*, 1e,61

The functiotr Y,,*, are called spherical harmonics. The following are a few spherical
harmonics.

[zr+r (t-lml)t
2 (r+lml)r
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",.. 
= tk ; Y, * I = r***rxp (til)

",.. 
-*cocs ; Y,.o -*,r"ou'e- r)

Y2 r I = #ttn 2o oxp (*if );

Y z *" z= Sttn' e exp (tzi1)
....._1zi)

From equation (21), tlrc cncrgr of a rotstor dm not depend oa the quantum aumber rn. The

lowct stab has zfrrct &ffEy aod &is.is permi5ible accondiag to the ucertainty principle

Yo,o

because therE is no variation in wave fuactim' Yo'o os the surface of the sphere'

Application of wave mechanlcs to hrrmonlc cscillator

A diatomic moleculc having nrasses q and m, executes peiodic motiot with

respect to cenfi.e af graviS. Such a moticn is knowa as sircple harn:onio motion. In this

probleru a diatornic molecmle is ryoximated b sirnple hsnnonic oscillatnr. Using Schrcdirrger

equ*tro* for sinnple harmonk oscillator, E & Y eea be e=raiuated. The E vaiues gtve the

p+ssible vibratisnal energi*s ofthe diatonr*e molecule, which wili b* useful in undersending

of vibraticnal spectnrnr. Usiag the Eigen function; tlre ailowcd'vibrational t-ansitions can bs

predicted. The simple harmonic ocitlator o!c)l3 classical Hooke's law'

l) Conetruction of Hamlltonlnc operatcr for slmple hrrmonic osclllator

firro = -h2 L+!kx,ax' 28n't,

lr : reduccdmass

The eimple hanrpnic osciltam obqts ctassrcal Hooke's law:

fax
f=-kx
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f = restoring force

k = force coostent

xdsplacerurent
Ths vibdi@al frcquency ofsinnple ?,"rmtr& offii$itor is

vrl* tr2* Yr
,t--! !' 1l-, lt
t-4rrvtlr
p.E - la r,
Subcitrb tb k value wc get

nr=|*ri t' l.*,
P&-bil*f
Substifirtc&igvalue in &e equation (l) we get

rtr*=# *.2te2 vz 1t.x2

scbrodingcr Equation for a simple harmonic oscillator

fiv="v
Substituto tlrc value of equ (3) in equ (4) we gct

=rffi *.*t2 vz*x2v- ErY

Multiply througbout by #

#-*le-zn'r'r,"']v=o
remriting cqu (5) we get

.*.,(2)

......(3)

#{#-rozr'r1p'd] *=,

r,t{$-u
......(5)
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4n2 pv 
-O

h

Substiurting this in the above eqo, we gst

ff.[.-u, x,]v4

Let q=.,[.a

9'=bx'
Once ris replaecd by q

# -*uerc,placoao, #.0
Rcplacing # = 

t.# in equation(O wc sct

r# +[a-b, x,]v = o

Dividing 6roughout by b wc gd

o'v . [a 'l

# +1f;-ux' j* =o

Whcr€bx2-q2

The above equation becmcs

atw [a -l
af .L;-r'Jv = o

Casc: I Limit is Aysmtotic oquatim by b we gd
Wb€o x + large

q -+ large

q2 -+ large

i.e., C becomes d>> a/b

Equatiori (7) becomes

#.- [ -0,]v =o
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02w ,

ar -9'v =o

(or)

O'w r

ffi= q'v

Ttorohdsr for the ahve oquation

lY = gtttlr

Therc are two limiring solutioos

$ =g+{t/2 and $ =g-12/z

As the acceptable eigen functions orrvell behavcd functions are considered in

qua*am wlunics. It shou{d be single valuod" contiauous and finite.

v -e-q'r: .,....(g)

This is callod asymptotic solution of equatioa (7)

The equaliqB 7 is tansformed into a differential equation in equation in (q) and thst diff.
quatior is

alf ^ af [l_,lf=o;;r -'{Eo*Lo J ......(e)

This isknown as llernnitte equation.

Ths recrrrasion formula forthe eguatim (9) is

2K-[r-']
Ax.r - \b I
Ar (r+2)(r+r)

Rrt AK*, =Oand K:n iu equa(I0)

,.,, 
^-(i-,)=o

(Za + I)=;

......(r0)
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n'here a = 8n2pE

. 4n2vpo: 

-
Z

substitute these values in the equatio& (2n + l)= 1

Zn +l_ SnrirE 
?

h2 4x2yv

2n +l =Ehv

,-(2n+t)lv
2

E=hvl.'*t)u-LL'[-'z/

Wheno:0, 112, ... n
Iti = vibrrational quantrmr number
Elger function for slmple llarmonlc occfilator
Considerequation (9)

* -zo{*[g-rlr= ooq' 'oq Lb J

as the value of K are kmited be n. f{q) beeomes EIn(q)

r{ }rare x n (q} - A J * **U'+ ...And Henrnittepolyromial

es 
fi-t=zn 

from reoursion forarula eqtratioa (9) bcconres

qg 
-1aaH- zn H = ooq,' ' oq

Solvicg i*s e$raticn. We get Hcrmittc polpomiel

6'("-'.|
.{"(q)=(-l)n.se'._$'4"
Vsro -AHo (e).e-t"'

whcre A is norrnalization cmstat$.



^=[#6r]
qlHiartisg this in the abow qqatim we gpt

rvu rorsHo=ffi 
[-,," 

-*Jf][*'' 
]

CassIn-0 Eo= ll2bv

Thc oorrespmding eigcn fongtion is v,

vo = 

d6n[,-,,' # (." )]['""]

vo = -=lfl cq' - e-r']e-r'2
Lr'

I
vo = 

";[t.eo]e-rrrzLn.',-J' ',

Vo = +6-t'rzfi

1- o-q'oVo = Titz Y
71"

q'= bx

rl
V2o = #..-*' Ifx=o

rl
Vro = fr_=x,

As &e potartial encrgJr of siryIe barmonic ccill*c = y,W,which in ofthe formY = a:c2,

lilhich reprceents a parabola, ee P.E should vry wilh displace,uc,rt in a prabolic rrlann€r
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The fret pardcle
One of the simplest applications of&e Schrodinger equation is found in the treatment

of a fue particle. In the free particle systan, a particle of mass m and the potential energy of

such a particle is takea to be zero for conv€aience and the to:,,i energy is entirely krnetic

snefgy.

The Schrodinger equation for such a slstem in one dimentsira is given by

......(l)

This is second order linear differential equation and general solution is

(./8n'o,E\v' ) [ .(sn'*r )u' Iv=A'.e[il.]r- ) . 
)+uexn[-'[--, 

,..] (2)

where A and B are two arbikary constsnts. For the probability at'finrling a partiele to

*rmain finite as x gocs rer irrfirrii-; ih: :rqes"nrv condition is that the cnergy, E must be

positive.

lf E < 0, then the f;rst term in equation (2) will Loe i*finite as x approaches rninus

i*finiryi aad th* e*e.end term becomes infinirc ss x approaccus pius infinity. Thus the restric-

tion cn the orergy of a &ee perticle less in E > 0. te this conditicn th" arbitrary constant A and

B can ncrp have anyvalum" Therefore, fcrihe *ee particle. energyin not quantised and it can

have any vaiue greater than zcro, and energyspectrurn will'be cca€nuous. This conclusion is

ia agreen:ent with the observed speetra of an atcm. The dissociatiCIn of an electron from the

atom a:d the radioactve sr:ission of alpha m,ys anC beta rays atc sorxe *f the examples of free

partiele.

WAVE MECIIAMCALTREATIVIENT OFA PARTICI,E TN ONE DIMENSIC}NAL BOX

Poiential bor

A potelrtial box is a s)€tem in which potential energy is zero within a closd region antl

infinite (v = oo ) erreryudrere else.

{+ *8T',t Ev-o0x' h'
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Pardcb la r *n+dxner*bml potenfial bor

The sirnpleet problern related ta tlrat of a particle in a rnicroscopic systern (say, elec-
kon in thc *onn) involvs sp calculation of the wave functioa and energy of ttre particle
{elecen}$estr&itdtonovc within a certain distance in given direction, back and forth. To
tackle this poblcq let ue con*ider a particle (electroa) in a one dinnensional box as shown in
rig.(l).

V=o
v=0

\l=
v*0

xc0 X'a:dt x*0

ngl (If| weve llrechrald t'eatment of r partlde h r one - dlmenslonal potendal box
The two walls of tlc hx rre I and IL

The particle is reshictd to tr}ove along x-axis, hck and forth The wi&tr ofthe box is ,a, and
heiSht is 6 

' Suppose that particle does not loc€ energy when it collides against the walls of
the box, soits eoergyremains cmstant (Fig. I ) . Considerthe wave mechanical teatneot of
a particle in one dir*ensional potential box. Th two walls ofthe box arel and ll.are constanl
Then this box is represanbd by a potential box of width 'a' with potential walls of infinity
(6 ) height 8t x = 0 and x = a- Hence potcntial energy (v) of particle becomes iafinity
(v = 0o 

) on the sides I (x = 0) and II (x = a) of 6e box and is constant inside the bor For sakc
of convanimce it can be t&k€n a8 zero (V = 0) insido the box so that there is norestriction on

a
tII

..--Lt t tt tr ! roooorlrrobt

the movernat of the particle in the box. &rtside &e box &e potential energ-y is @,

s
It
a
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i.c., V r= ao d x < 0 (is., rcgatirrc *idc sf 5-s*k) d at x > a Tkefoq, 15g wave fuoclioo V

. and probability of fiading fte particte (i.e., V ' I nnxt bc zerCI wtlen x ( 0, x = 0 alld x J a' In

*trerwqds,&e particleiscmfinedinthcbox andca*notry9afe thebox' i'e" particle &s

mtexist Grbilc tbe box

fh Sckodingcr'r wave crydian wr.L ryew is

#. ##.ut+tE-v)v=o
Fa thc particb mtring mly in xfuirn, eis oquatiolt beomes

#.!str-vlry=o
Now, wi&in th€ box V = 0, Therefse we get

r.., q"1* 
E ,i; = *Ax' h'

#=-["F). -..."..(t)

or solution of Equation (l). Sincc 1ft! F andh are cons$n! equaticxr (1) carrbc,fvntteq 8s

6't
.---L rl,
a*?= - 

k'v """Q)

-, 8r2mE
*_ = __f,r_

Whcre, the gcr€ral eolution ofequatim (2) is

V=qek *Cr.-* ......(3)

wtrcreC, dcr-Cmstan6

An eqrinalcnt md mm couvenieat fofih 6f cqustion (3) is

v = A sin (kx)+ r coe (tx) ......(4)
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WbcrcAudB*-&tituyc@s

Equldoilil (*) rWcsentb all the solutions of equation (2) urhich are mathcrnati-
cally 8atiifuCIry. Hon'wcr, ttlxc solutions (wave frmctioas) do not nccessarily satis$ our
Uorndry ditioaq End we rcw must examino equation (4) in view ofthese requircments.

Difcrcsd$ngryafifr{4) wihrespectto x we set

......(5)

tsy applying boundsf ceditimr that at x= 0, V = 0, &c equation (S) bocm
o--kl(a*nu+Bcctx)

As rin0-0rndcoE0= l,wcget

0=*(0 +B)

Lc., B-0

Puting B - 0 in quatim (4), we get

Y=ASinlx

......(6)

$l-.-f lesinloc+Bmhr)

.nt'f =-t

Apptlmg ec e Uqmry mndition that at x =q V = 0 tki equatim (Z) b€corncs

0 :A sin ta

......(7)

......i8)

SieA a 0 (otkwicc wsve eguation (7) vanishes ifA- 0 then cquation (Z) yields

V = 0 wffi mcms 6d pmobability of finding 6e porticle in th box wifi b zcro( V, = 0)

tuorydie(8)givct

s:lr./ra-A .......(e)

bn i,qtfr, (...sin ,c= stanr. *A)

_ (10)
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whgre n =an integer, i.e., u = 13,3, ....

Substitutingvdue ofk fromquation{10}in (}, we get

v=A'*(T) ...... (l l)

The eqtratioa (11) grvc a fsrnily of acce,ptrblewave functions corrmpotding ton =l '

n =2, n=3 .... otc. These singlcvalued and finitc funetions are calldcigcn frrnctioas'

Expression (or Eaergy of ttrc Particle according to equation (10) .

k=9 .'.k2=4
Aa'

Arso .'.k2=#

8 nlmE n'fi2--t'-=-f
F n'h'En=gE7

Whercn= 1,213...

Hsnce

Equation (11) givc atlowed (permissibte) values of earergy corresponding to D = l,n - 2'

n =3, ... ctc.

8,, stands for the energy of particte in ne level hencc symbol En is used in place of E'

Since n, called the quantum nurnber, can assume *r:ly integral vAluee, it is clear that fie par-

ticle may have only oertein discrcte vaiucs for E' These are the eigen vaiues for E'
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E ccnnot be rro because in that case, Y = A sin 0 =0, ^verymhere in the box. Clearly this is

impossibh. Hcace, n * O ir mt pennissiblc.

Frqn thc above disctrssion it becomes clear that *re concept of energy quantization is

iutrrlnt in ftc weve rnehanics.

NpFr*llx*thn of Equatlon (11) The mathcrnatical process or operation for calculating the

vahp of 'A'in quation (l I ) is called normalization, whicb can be done as follows :

Tk pr*bability that the particle is within the space x and (x + dx) for a onedimen-
sional box gven by v'dx. As a cq$equcnc€ oftbqa assunrption

iv'a*=t

Imporing the condition that probability of finding the particlc within the box,
i.e., betwoen x = 0 and x = q is unity ftecausc our problem rquires that the particle must be
iotnffi,tscinside thcbox), thc aboveeguation ehangcs to

t

Jv'd* = t
0

Frunosdim(9)

Y=Asinkx
a

Hws fl' sin' kx dx = I
o

or e'Jrio, kx dx =t
0

Silrc *n'k=/2ll-corzoJ

A1 !Hence, ? I, -cos2kxldx =l
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*[i"-i"o'ztxax ]=r

.e.2[ r , 'l

?1" - i(sin 2kx - sia o)J =t

f['-u**]=' (';eiao,'o)

From eqntioa 0l)

k = 33

r'[ 1 1

Hance ?1" -f sin 2nrJ=l

But sio2a* :0
Hence, quation (13) bcconm

Hence, general solution of Schrodinger's wavc qratien fc a partclc (say, clccfm) in a ono'

dimmS.ional box is pve,n bY

sincc a= 123... an intcgcr

Hencc oquation (ll) i8 unittcn as

A2a t

2

o=f

,y,=r!$.-,"(T)

As wckniwthat

- n7tk = 
- 

andk='8

nn IffiE
; andK={1r

.......(15)

'8tt'mE-hr-

ion (15) is wriucn as

D.D.C.E
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The rnathematical prCIcess described'above is called normalization and value of
constantA is called normalization factor. In ogu*ion (16)

Ncrnalization factor : J17{
The wave function ry' is now saidtobenormalized. In sthsrwords, equation (15) and

(16) are the expressions for the normalized-wave function or normalized solution of
Schrodingcr's wave equation for a particle in a me dimcnsional box.

WAVE MECTIAMCAL TREAMEI\TTN OFA PARIICLE IN A
THREE. DIMTfiSIONAL PCITENTIAI, BOX

Coasider a microscopic particle (e.g., electron) of mass m moving in a thrredimcn-
sional cubic potcntial box ha"ing sides g b ad c; in lenglh along x, y and z axcs rcqpoctivcty.
Thc potontiat cnergy of the particle is zero wi&h box (v d) but infinite evcrywhere outside
the box (V = o) Gig .2)

wi& ke aszumptions, the Schrodiriger's wavc equation for the particle inside the
boxwill hc

0'V . 0'v O, v gzr2mE

7F'777' r,.-v=o ......(r)

6t
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Dividing&roughoutby y

L( ry..4g.4S)*t",'fE =o ...(z\
[[. a-' ' oy' ar' )' h2

The wavc function \t depends upcn 6ire coordinates x, y and z. Hense can be *ritten

as the pr,oduct of threc wave functions, onc each for x, y and z

Hencc V = V,.Vr.V, ......(3)

The total elrcrgy (E) of&e particle rraybe takea to bc the surn ofthree components E ,

E, *d E" along three sxcs & y and z rcspectively' Hence

E= 4+ Er+ E,

Substituting cquQ) in equ(4),we gst

.......ta)

Otrsimplifudion

[**.i#.*#J.*(e.*E'+")=o ,"

That is equatiotr (6) cmsists of drrec indcpendent terms (differential equations), each

term is thc function of one variable mfy, ic'icc

t.aly,*81'.TF.=o 
......(a

V. 
' 0x' -' 'hr

, .aly,*tn.lTE, =o ......(e)
lY,' O" ht
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Each of the above tfure equations (4, (8) and (9) is similar to Schrodinger,s wave
equation for the particle moving in a one - dimcnsional box only, hence their solutions for
ensrgyarc,

E -n] 
h2!r - 8a"'

F. =ni h'
-Y 8mb2

E -o: h'"'-rF ......(10)

and thc'shfioos for ivave function are

......(lr)

yr,=Jg "r($.)
v,=Jg ',"[T)
y.=Jg,r(5F)

EbcuslolofEquations (10) and (11)

I'Tkrumbcnn,nrandn,arethequantumnmbersalonglyamdzdirectionsrespectively.

Thcsc are cryable of taking up all integral vahrcs , i.e., I ),3,4, .. &at is, trosc values arp quan-
H" Hcncc tbcse numbers, n , n, and n are Fvcn the namc qumtm nrmrbers . .,

2. The totelcnelgy, Eis given by

.....(12)

Sieic q, nr and n can assumc only intcgrel values, ii is clearthat the pyticlernay have
only eertaio discrete values for E. That is the eaergy ofthoparticte is quantized.

=*[$.$.$)E=8. +E, + E,
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3. Tk total wavc ftrnction v is givaby

V=Y."Vy'V,

v=Jm'*[T),*[ry),",(of) (,3)

tlrcnormalized fu'tor.

Numslizatim fsctor= $tr
ll'h€re V =Volumc of thc ttneodime,nsioaal box.

In eqgation (13), &e quaatm nunrber n., n, 8nd n! ean have only intesal values, this

e4ration gives a fmily of rcecptable wave functions.

Hydrogen atonn

The hydrogen like atom isatweparticlc system consistiagof an elatonwi{rchange

-e and an atomic nucleus wift charge +". Since the electron is very much faster thaa the

nuclans particls, it is assum€d that the nuelenrs is s8tionery es compared to elwtron. The

Sctrmdinger oquatim for the hydrogeo likc atqm will then be the eqtratioo for a single

elecuom moving round the nucleus.

..... (l )

Ivtcre V(rV,z) is a fiMioo of thc &rtedan cnordinates r"yp of t$e electnon" In

or&rto solve 6is equa*ion,trocrr ,sil{ 
wdindes arc converted to spherical cos*natm

r, 0 atd O sttich arc dcfiired as Sllo{a

Here eqgatim (13) gives thc value ofnormtizca wave function. The factor lffi is called

[' e*"' *u] v(x'Y'z]=EY(x'Y'z]

v=ff*,[T) ,'(lf) *(ry)
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x-rdtl0 CrO

y:srbo dDO

z-t c.80

xt+t' +z'-{ rdtherangcsof tbecmrdinace ue 0 S r r Soo;0 S0S n and 0 S2rr

Thc traasformation of coordinates in equation (l) in terms of sphcrical polar

coorUlnrtcs, gives rise O th following cquation.

i*[" #].rk *[""#].#,, #. ui#u['.#]Y = o

Since potential emergy is a function of only r the wave function V in cquatioo (2) may
be wriua r fte produa of thrce functions each one dependent an one qph€,rical polar
coordinatog

v (r,0, 0) = n (r)e (e)t (+) ....(3)

Thb is substitutcd in equation (2) and muttiplicd by r' sin2 0 / R00 md wc obtri&

Y*(n.*).Y*t'*#)
.h# . $s,'sio'e[r.#)=o .....(4)

This leads to a sihration that is analogous to that whlch rrisc forthe particte in
tttr€c dimcosional box.

d26 .

;0t*ffi'0 =o .....(5)

md

+3 +l',,* gL)*ag grshoe)_
R dr\ &) 0 ae(---ae]

= '.r + +ts r2sin ,e( n* Zt' l= o ,z\' h2 
I vrg "L-' +*i )-" ......(6)
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dividing oqu" (O by gin,g md macregkg b obtain

!.91,r,. .rry ]* **1qr, [r *a'lRdr\ dr) h' t 4*er)

B' I .dfginrgdo'1=.EilE,'ori"'de(o* ";E'J ""(7)

In this oquation tbs lcft si& is a sitlstion of r oaty, cfrilc 6c right sidc is @ty on 0.

T*.o seprm eourira *sebeoonc.

#*[* $).t*"*,r*]=o

Thc rohnicn offrc radiEl o$rdim (9) fu 6c oqaatim ofmmic ftr r

2dZzrc'
E---u- 

ntr(*co)'

G -Zze2
- - 4rtr,o 80tr2

h2
whcn ao= Im;F
ao is oallcd tbc Bohr radiuc.
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TJNIT III
Approxtmadon method

Affi&m mechanics gives an exact solution for ttre hydrogen atom. But wtren we

consifu &e helium atfiB, the quantu*i nwehanica! soiuticn is nat possibie. Fletrcc,.it is

ryrwa tlm cve rsi"i.st rm** t* approximation rueths{s "rrhee &"eatieg a many elec8oa s:ritffirt-

Thcte.srctwaccillrltor metfuods ofebtaining appraximate solutioastothewaveequationtlry

l.Tlf wriationrnetM

2. Tk p€rtu6ation matrod-

Tbe vrrldlon method:

Ld us consider V in a many elrcton wave firnction of a system, then tk Schroding,er

cquation in opcrator form is

rtv - Eqr .....(1)

wfi€rc fg is tre complete Hamiltonian opcrator and E is the total electronic energy of thc

systcm"

Tbc avcragc energyis wri&en as

s=lv fivdy

u/tere V ie my rormalizd well behaved wave functim. In *ris equation wave fimction V is

rot trcnoitro rccurately evstr for a two-electron rystcnr" So the wave frrnctiou V is chosen

ubitarily. If t!l.c chcsm wave fimction is the conect wave function, then it is pesibtre to

cala&f tb emrate ceergy Eo of the lcwest statc of thc Eystern orith equ" (2). On the other

hmd if we &ose an inferior wavc function, we could exp€ct to get s poor sgresefilt of the

calcul*tdwrgr val,ue with &c expsrlrrental one.

Acmdirg to the variatioa principle, if Vo is the eorrcot w&vc fuactiaa fir a sSnstenrq

i.c w &c wiH giva &e conrct erer$/ Eo of the system. &en any otlrcr ctloseo wavc function

Vr will gho m cargl f, grater then % i.".,
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Jvifiv, & ) Eo .....(3)

The advantage of this method is that if we chor:se a trial function coulaifling

several prameters and then minimize the energy given by Equation 3 with respect to *ese

paraml€rs, the conesponding wave function and energy avsitable will be veu close to the

actual state of Sre sl6tEm.

Example. Let us considdr the case of helium atom in the ground state . Our trial function for

two electrons is the hydrogm like one electron wave function.

.,(,)=(*)"'"_,,

whereZis effective nuclear charge. The complete wave function for the helium atom is then

gvcaby

(zr\% t'
Vo,r)=l ;-l "-z'(q+q)t''Ij

2. The Perturbation method

Perhgbation method is anothcr techniryre of amiving at euerry and wave func-

tion for a slatem for which schrordinger equation cannot be solved. The perturfoation theory

therefore, involves determination of the eigen functions (v,) and eigea values (8,,) of the

pertgrbedHamiltonian fi intermoftlrose (vl tna El )oftt.unperturbcdHamiltonian fo
It is imagined that the perturbation is being applied continuously in small steps

this amounts to

,l,tA

ti = Ho+ iuHt

where ],, is a parameter which can vary from 0 to 1 w'hen A = 0, the systero is unperarbed and

when L = 1 thepertutation is complete.

The Schrodinger equation for the unper&rbed and perturbed systern can be written as

......(1)
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Hovl = El+ v:

HVn = Eo+ V"
( n ^\

In.* i,H'Jv" =EoVo

where the subscript n denotes the state of a systern. If fi depends otr x., both v"and E" will
depend on L. So as a first stcp, we expand these functions as Taylor scries *ro-iog thut

^l A

l,H << H

vo=El*rvlt)+t.2vl
E"=El+lEf)+12el

.....(2)

..... (3)

.....(4)

.....(5)

.....(6)

.....(7)

.....(8)

\y:

=Q .....(9)

.....(10)

...... (t I )

wherc ,y:t' ut d El' 
"tc 

lf order correction tcrm to trc vl and Ei rcspectively and given us

,l,:')=rraY.)ri I al' Jr_o

El*,=+r{5)
r[ [ ar* ),-,

substituting (5) and (6) in (4) and rearrangag (T) Esd (g)
( A- \ A ,\

I so *l - nlvl l+ I Ho vf)+ Iio v. - E: r1r$, - E:\)"
f n A

* l' 
Iri' 

,yl') + ri' vl', - El vl') - - El', ]r1') - Ef,v: 
)

the equation (9) may bc written

*' =(ri' e: l* l' = - ff v: + El')vl = o\)
First order correction

0
m0

m
0
n

0
m

E

JvII
m*n\

H'v la,
l.v"l' , =

Thc above. equation says that the first order correction ,y|, to the wave function can
be determined &om thc eigen fuuction and eigen values ofthe unrsrturbcd svlstem.
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App$c.don of ryrvc mcchrulcs to Hdnm rtorr

Ttre hclum atsur has two elcctr,ms rnoving in a field of a nucieus of charge +2e. l-et us

cosidsr tlrc nucleus to be at r6t atrd wilt dee the origin of the co. ordinate oystern at the

nuclcns (Frg. I ). Th Hfxniltmian.e.*t"r ofthe heliurn atom in terms of atomic units are

wriucoas, i(ll

It0)
fi=-!vl-lv'.-2-?-*Lr'- 

z't z'2 fr f2 frz .....(tt

(oR)

n =[]or i) -[i" 1-IJ "* {2)

The expression wift ir two brackcb 68y be idfntificd at the Hamittonian fi (l) and

fi(2) rro s@aratc He * icas {z=2} i.e.,

*=fi{r}+*iz)*} ,....(3)fr:

I"et us ecns-,dcr tlre two eleetnsr Hmriltcaian * * , sum of trvo cne electron Harnil-

toniucs ii (U uod ft (2) which may, therefore, be cansidered as the unperturbed Hamilto-

niam fo of fte He * atom

li'=fitr)+fi(z) '....(4)

tffhere ii {1)*d ft (2}have bydrogenlikeeigeofu$ctions(orbital)0(t)and $(2}respec-
tively.

fi (t)0 (r) = E (l) $ (1)

ff (2)$ (2) = E (2) $ (2)

E (t) ind E (?), dreeiga values, r€pres€fit &€ oftitat enetgies

vo=$(t)and 0(2i .....(5)

B=E(I)+E(2)

/\

6/ \.
\-/-
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Hovo = L0,,,.fi(2)]+(rh(2)

= fitri[ o(r)$(2)] +fi121[ rtl)+(2)]

Hovo = 
[a rrr61r1]612y.[*rzr r(2)]r0)

= [E (r)+(r)_']+(2)* [ r rzt 112)]+(r)

Hovo = [uol rs(z)];o1r)+tz)J .....(6)

frgy operrte * t(r) md H{2) on g(z) mlymd

{(t) r(2) : 0(2) +0)

Th i*pcndent elcclrm aproximarim says 64 &c fgnctio vo - * (t) t(2) xrfuich
A

is true 
"ig"a 

fuactiou of rnaybe # maybe usad as m ryroximate cigpo frnction of fi in
other wordq &e atomic ortitat + (1 ) *d | (2)fu ac ei$n fuacir*n ofore ebctu Hg1il-

tonim ff Al uod fiqz1 rcspectively may scrvc a a basie of fu fucriFim offu two dwtrm
atom' Therefore th€ two.electron pmblem is thrs rc&rood to two me-cloctr,m hy&,ogen Ukc
problems. In &e grrud state of He ator& fc cxryh bo& &e el*trm hr &c sare osbitd
fuoction I Sgiveuas

Is (l )= ,,OEnr, (- zr, )

Is (2 )= Fr., (- zr, )

lJndcr this ryproximation

v (1,2)orv =rs(r )ls(z)= F"ru(-z(r, + r,)) .....(,,)

where atomic uniE areused

The presence of one electon effectively rp&rces the nuclear charge for thc othcr
elec'tron. The value of Z in&e equation (9) should be less than Z; Z may bc uscd as a rariable
pararncter{re value ofwhich can be determinedbyminimizing &ce,lrcrgyi.e.; bysetting

.....(7)

.....(&)

7t
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dEIrl *0
dz

Wkre as

Eo2- Jv fi vav

subditrtc fi d ry and writing IS ftr I ,rc Eet

E,.'= 
J fis(r)rs(zr[O Or. fi 121* t]rs(r)ts (2)dt,dt,

= I frt (r)rs (2)fi (r)rs (r)rs (z)at,dt,+

J Jrs (r)rs (2 )ff (z )rs (l)rs (2)dr,dt,+

I Jrs (r)rs(r)[*),s (r]rs (2)dt,dt,+

fftt) .rA fi{r} &eHaqiltmianofthlle"whichoperate anelectron (1) a$d(2)rqmtively

j. Eo' = J lrt (r)* (2 )EIf.$ 2 f)Is(2) dt,dr,

+ 
J fslr;rs(2)E[;' $ 2 (l)6(2)dt,dt, + J

Efs'* (l)= E[" (2)= Brs (t"Y)
Ery*ioar (9) ca bc wriuen as Il J 2

Eo 2=2Bo JJI"OI 1s(2]I &,dr2.,

E,r 2=2Es +J

(Because I S function are norrnalized

E,, the alergy of a Hel in lS state, is known to be given by

r,, = Jrs[ -lv'-:) ou, ....(r)

ln the present case, however, 1S is the eige.n function of

-!v'-1 *ios 2, and the eigen value i, -1
Equation (l 1) can be wriuan as

q,= Io(-i"-i-T)""
= I"Fio{)*,-trs(T}*

72



M.S. Unive

= -+Jmza, - (2 - z) Jrs 
lrsa.

E,s = -+- (z - z) Jrs 
lrsa, .....(12)

TtE evahatim ofsecondterm inths above equation

s =4"xp-Zrandd r=r'&sinodp dQ
,T

Jrslrsaq, = +ii*t- 2zr)* dt
' 
=Lorr]r.*p(- zzr)&r,t0

=41 L 
==z(zz)'

o7t-
E,o = _a_ _e_ Z)ZID2

Errr = ,{ -+-p - zyz)+ r
\

E,s, =- z' -zz(z-21+f,2
By thc Principle of mirrirni-ntioa .

t*= zz-**o
z -27

16

ers, =[z 
)' 

-+-#= - 2.&{e a.u

=-77.28eY or

=*l24xl0-t?,

......(13)

.....(14)

thc ratuc of Z = # r€Prcscnts tt€ effoctivc nucler cbargc, ie., fu chcge oftrc mrclars &d
oaecloctanfoelsdue tothcpartial scremingbytheotherelec&oqthedifferc,lrce

D.D.C.E
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^27 5
2 - i =;- represents the screening effect.

The Pauli Anti symmetry Principle

tet us consider the case of the two-elwtron slstem. If y (1,2) re resents the wave

functiou correspond.ing to the elecfipas (tl) VU (1) and yb (2) be the wave functions

representing the states of individual eleetons &en

y(12)=tya{l)vb(2) .....(1)

where each wave function on the right hand side is cornpietety independcnt ofthe other. Siace

the electrons are indistinguishable particles we cannot s,p€sify the positions of tho elstroas

exactly. Therefore an exactlygoodwave function willbe

y(2,I)= ya(2) v b(1) .....(?)

As thc particles are identical there should uot be auy diffsrence in the probabiiity iV [' of the

system wherlelectrons are interchanged, i.e.,

l* (,, z)l' = !w (z,r;l'

Y(1,2)=tV{Z,t}

When V (1,2): y (2,1), &c wave fi:ncticn rs a syfilms€ie. Awave Fdscticn !s said to be

syrnmekic if the iater*hangai of-a pair of particles les'res tL* sign af the wave fun*tioa un-

ehangd.

$hen y (13): -y (2,1) tfue srave function is antisyrnmetic. The funetisa is anti-

symmetricatr if the interchange of apair ofparticles chenges the sign of y .lkking into ac-

couat the indistirgxrishable of the e!.ectons, &e best represe*tation for two electrons cas be

attainedby taking the linearconobination ofequation 1 and equation 2.

...."t3)

.....(4)

.....(s)

.....(6)

v = v, (t) v, (z)t,y. (z) v, (t)

The symmetic wavo firnction.( v, ) will bc grven by

v = v. (1) vb (2)*v. (z) v, (t)

and the anti symmetic wave fimction

v.^ = v. 0) v, (z)-v, (z) v, (l)

If the electron I and 2 arc interchang€d in these functioq it is obvious that Y, is

unalteredbut \ changes its sign as shownbelow.
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*^'=,;.tl;,8,*i.ltir

Ver = -v^(z)

When the two electrons have the same set oforbial guantum numbers n, l, m.

Exarnplc: The ground state helium atom (lsr) then '.y. = vr so that v (r,2) =

qrls(l)vts(2). If the electrons are interchanged, the functions v (1,2) will be
pynmeUtc and will reprosent the same state sftke qrlem i.e.,

v,, (l)v,, (2)= v,, (2)v,, (r) .....(7)

Forthe two-electron system, there are fourpossible walr in which the spin function ca,rbe
writen

" 
(t )* (2 ),p (r)p (2), o (r)F (2) and o (2)p (r) .....(8)

Out of these fotu spin functions, the last ttro are not acceptable beause thcy distin-
guish betrreeir the electons. Electtns are idelrtical to one another aod the,re is no way of
experfuneolally determining which elechon has spin + lt} andwhich has fu -/r.He,nce, the

third and four,th spin functions replaced by their tincar combination which will oysrcorno ths
problern of distingpi$ ability of electons are givcn by

I r- /r.'
JrL*t')F(z)t o(z)P(t)], ....(e)

Thus, the proper qpin function forthe two-clectroa sptcm becomes

a(r)cr(2),p 0)p(2) #t" (r)p (z)+ o(2)p (r)1,

#fa(r)r(2)-o(2)p(1)l .....(ro)

Thc first erec qpin fimctions are syrnmetic and the last one is anti qmmetie wiftr
fespect to intcrcbangp of elechons.

The coonplete wave function for the ground shte heliun atom will be a product ofthe
oqtihl wEvG fimctions given by Equation (7) and the spin firoctions esuation (10) i.e--
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= o (l)" (z) v,, (t)v,, (2)

= 0 (l)p (2) v,. (t)v,, (2)

v =tr["(r)p(z) + a(2]F(1)]v,, (r)v,, (2)

* =*["(1)p(2) - "(z)p(r)].u,. 
(r)v,, (2)

the quwtion now arises as to whetlrer alt trese combinations are allowed answer lies with the

pzuli's exclusion principle. According to tbis principle "A wave function representing the

state of a systeiu containing more than one electon must be aati-symnleEic in the exchange

ofpairs of elec,troa coordinates, including spiri coordinates. Realizing that syrnmetic (+) x

synun-etric (+) or anti sytnmetic (-) x anti symmetric {-) is syrnmeric (+l but symrnetic (+)

x anti iymmetic is anti-symmetnc (-)'

Now, in eqratioa (11), the first three relations ar* syr:rmefis a d the la-st sne is auti

synmetric with respoct to tire interchange of a pair of elecffone Hetee, . by the Pauli's exclu-

sion grinciple, the only state which ir aeorytable is

v =fi["(1)${2) - o(2}P(r[v,,0)v,, (z) .....(12)

qpectoscopic and chemical experimeirts indicate that in the case of he ground state heIum

atom, only one state is available. Thus the rezults eonfirm he validity of the Pauii's exclusion

pnnstple.

Slater determinants

The anti symmetric wave functions for a many electron atoms are constnrctrd by

following the general procedures. But wi& increase in the number of elecsons, the numbsr ef

terms increases in such large proportions ( or example 5! i.e., 120 terms for an atom with 5

electron oniy) that we must find an abbreviated fonn to represent a waYe function. A short

hand form is determinant in which the spin orbitat the elanents; each rcw in this determinant,

is labetdwith an electron andeach column with a spin - orbital. The normalired wave func-

tion for athree-electron atom epgrple
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The Born - oppnhelner rpproximation

Tbc exact solution of the Scbrodinga: quation is not possiblc cven for liglrt atom'

Therefore, the Schrodinger equatiolr f1 V = EV in extrnrely complicated and its exact

solutioa is not possible.

The Hamiltonian opsralor for a moleeulgis

.A A   ,1

=Tx*T"*V""*Vcx .....(l)

Where f * - kinetic encrgyoperators for thc nuclei

i" - Kinetic cncrgy orperators for thc electrons

t *- drt electroo - eloctron rcprlsion term

ir* - &t electron-nuclei reprlsion tcm

t* - the mrclear - nuclear rcpulslon t€rrn

Siace the electrryrs are much lightsf dhan the nuclei, they rnove much faster in a

molecule. The electron carry or,rt rnany qrclcs of motisn in &+ tirne it takcs the nucleus to

move a short di*ance. Th,e calculations shcws that the nuclei move cnly about 1 m while i* the

sarne time, electon spee/s thmugh distance of about tr:rr" Therefore, we can eoasider the

nuclei to be fixcd whiie the eleetron *ry*, &reugh tfue whcle volume of the molecule. We

cau now separate the Schrodingrr eg:ation for ir moteculo into two stparate equatious which

are dcpeuding for the electnonic motim and the other or thE static oucleus pwition. This

approximation in known as the Bom4ppcoheiner approxirnatio*. In the above equation the

i* operator is not affected by the electronic rnotion. Sirce potential encrgy V* due to the

nuclei-nuclear repulsion is 8 constant quantity for a fixed 'inter nuclear distaacc- The

electronic Hamiltonian can be writt@ as

fi"=t" t.x+f.. .....(2)

The Shrodinger equation for only elec,tronic motion is grven by

+VxxH

(d,. r-,, )-.:j;:* r** )v.

78
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where=l-J=E"*V*

Since V* ie a constant quan*fy

fio v. = EoVo

where E; is the electronic etlergy, y. is the 6rtesponding wave function and U is the total
energr ofthe nuclei and elecbons.

HARIRNT *FI)CK SELF COI{SISTENT HELD THNORY

Harkee's functions ere only orbital fii,nctions. Fock included corresponding spin
firnction alao

'r =[s, a(r)], [s,, " 
(?)].............. go, c,

Wherecl{l), a.(2),o(3)......er(n)arespinfimctions.Thisisthebestmetlrodof findirgout
&e eigen function fm mary e*etrorr slrteln In Harfrce SCF me&od the orbibl product is uot
anti-symrnetrie, wherc as Fockused anti-s1ma.dc wavc firnctistr and followed sameproce-
dure as desc'ribe by Hartee.

Fock introduced a ncw operator f tho Fock orpcratcr to include the electron

exchange and obtained psetrdo sckodingerequations in wtrich each orbital is an eigen fune-

tion of f

...,.(1)

.....(2)F$i=8,0i
Tlre eigen value Eu is the orbital eocrg5r of {, Tlrc Fock equation are difficutt to derive

buteasytointerpret. Forao atrylwithclosodsbo[ configuration treFockoperator(in atomic
uds) for clecton is

.....(3)

Tbs first two terms eonstinrte the hy&rogen likc (core) Hamiltonim for tbe electon
( I ). Thc sprbols i *d t wi*t singte subscrip are coulomb operator and orchange o,perator

respectively. These are definod as

ii s{r} = 
| In, (z)*+,(z;a,,lo, (r} .....(4)

i = - t/2y | - *.{,(rr, - *,)
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*,+, (r) = lln,(r)*+,(zlat,]r,U) .....tsr

hthcabmrcaqudi@ l, (l)bnotancigrafirnction og *.,; the effect of fr, is to

cbagc i,(l) to tr(l). Thccc opanbrs are to Emed as 6cy yield ttru averege coulomb and

crcrryecncrgiesr

It, (r)i, (r)dr = I I+,(r)0, (2)#t,(2)$i (l)dr,drz = rij ......(6)

I+,(r)fr,(r)al = IIt,(l)+,(2i*t,(2p,(t)ot,dt, = Kij ....":!r)

Thctr,ctngf emrkvcrycard&tottc Etri-s,rmetry of the wave frmction.

fockopcr*orisdifEsatftmtlamiltmian operatoroftbe electron I wtricb"isgiven
88

fi (,) = -!vi -*.+I il {8)

The fdopcramthcnrmaadm"r.I[zi' -ft,) ireludes !, d ff,wtiichmust

b€ lmourr b€frye we uritc dorm &c crpressim fs i explicity,

B& !, d f;, iuvolvc in &€ above qratieo and $, ile eigen function of Fu. Thr:s te

k f, *eamd i dtc hie' fr we d {, So we have to taks to interactive procedure" We

*an sith a ncasoaable sct of orbital rod uppty the Hanket's method rqrcatcd interaction as

dccribcd of fnatly ob'taia HFTCF alom.

E,= Io,il,at

= In,[-!or-f)++,".

= ,0,(Izi, -ri,)6, a,

Ei = Ei +f,2r.-r,

MO trertment of the hydrogen moleculc I" (H; )
This simplest molrcule consis of two protons and one elechons. Adoptiug the

Bornqpenheimer approximatio4 the elecmnic Sctuodinger eguation for the hv&oger



molecule ion is considerablyseparately. The electronic r{amiltonian operator for Hi
-c

where r, and r, are the distanccs from the electrou to uuclei a and b respectively arrd R is ihe
internuclear distance.

ff = - hl v' -e2 -{*{8fI "m rA rB R

ln atomii units m = e= hlZfi = |

fi = - I v2 - I - I * I

2 ,^ rB R

.....(4)

.....(l)

.....(2)

H^^ = I*^ fi V^dr Columbicintegral

Her = J*^ ff vrdt o<changedo,rbital

H^^ = JV^V, dt Overlapintcractions

Her = Jv,.^ [-;", i l*f)v,.^a,

H^e = Jv,,^ [-i", - * )*,,^or- Jv,,^ 
!*,,^ dt+ Jvrs,r f *,,^ u,

He = Jv,r^ [-i"' * )v,s^dr- Jv',^ 
!*,r^ dt+ Jv,,^ ]*,,^ dt....(3)

the operator Within the brackets in the first integral of equation (3) can be identified as the
Hsrniltoni& of an H atom.

, fv,,^ (-i",-* )**^0,

= J,r^8, lS^ dt Es = E"
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becausa.Is^ is normsliad Eo is trc 6gy of a @tc H atom which is known to bc ' 0-5 au In

the second iotegral, U r, is the caeryy (ia au).of attraction between thc eleetron and the

nucleus B at a distancc of rr; so ttre intqfal gfvathe total energy ofcolumbic attraCtion {l}
behrear tlrc cleetnm md thai uuclcus.

;.
l"= ftsl-i- tsact.rri

Thc3ditrtcgal

[rs,t! rsAdt = I hse.rsAdt=f tt*"fixedvalueof R)J;_R- RJ ,..

is tlrc arergyofrepulsionbitwwn the two nuclii at a distancc R from each other thus

substitute the vatuc of cquation (4), (5) 8nd (O in equation (3)

H^ =r"-l*| ......(7)
2

H r.r = Jv,r^ fi rp ,r, dt

(snlnlrsn)

sincc

Hra = Jv,,^ [-;",-*.*-*).u,,, 
d.

= Jrse [-i"'- *.)vrlr 
dr - Ioo I rse at + Jv,,, f ,s, a' .....(B)

Jrse (-;", - * ),', u,

[-i"'-*]"'=E" 
r&

Multidyboilh si&by ISA we get

I,to[j"' -*]tr= r* Jrse rv$u dt

Jrse[-i"' -r)rsr=Exs .....(e]
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.....i10)

This enqr K arises due to exchange of eleton's position bctween thc trpo nuclci A and B
andtmcc ie callcdthe exchange eneryy.

=s_
R

Substit$e thc value of (9), (10), (li) iu equ (8) vc get ,

H^s = Er.S- r ** .....(12)
R

The rynunetic and anti ryrnmetric etrer5t states are

jrse -l- rsu dt = K

jrse I rsn d, = ! Jvr^v,,, dr .....(u)

u.=t
F -H^ +H^,

l-s

.....(13)

.....(14)

(7) and(12)valuc
subctituE tk value of H^^and H^" h equ. (13) and (la) we gel

En -l+|+E*.S-r**fr=# .....(4)

BHrlE".sks
=--- l 

-Jl---l+s t+s n(r+s) l+s l+s R(r+s)

EHttE".sks
=+--+-+ " _
l+S l+S R +SR 1+S l+S R +SR

.tr
E, -J+-+ErS-**E-

t.=F

I J+KEr=tsx+R - t-S .....(li)

t t-r
E^ =E., + ^ -' -"^ r R l-s .....(16)
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Thc evaluation of E, therefore, waluatioa ofthe three integrals J, K and S. The resultsof

evaluation are expressed as function ofR as follows

r= *[r-(r+n)e-*l

r = (l+ R)e-R

s = lr * n * ().-"( 3i
substibrc$evalue of{l?),{18),115) in oryr{19) snd(16)weget symmemc cnergy state aad

anti synrreric eaergy *ate. The rcs..{e of srrchcslculdion for scveral valuos of & rdative to

&e wryy of H atom (i.c Q) afrnas &st

. Tt$valusofE, orE* pioBedagainst

Thesc calcdations andplotting brirgs .out catair very interastiog feaf.res.

l. For eny value of & E, is less than E^-'Beyond a certain vatue of R" E, becomes

negative (i.a, <Ef, but E^ is alwaye grealer than Er i.e., it is always posihve.

Z. The curve for E, shown a Bdnirmm orresponding to R =2.5 a.u were Es^ = {.01 65au

but that for E^ decreases continuously with increase in R always remaining above

the E^ side.

This means that in the grourd state the energy of H ] is 0.065a.u iess than that Ho - H'

separate infinity, this value (0.065 a.u = 1.77 e.v) thcrefore, represents the dissociation

energy. Similarly, the position of minimurn i.e., R = 2.5 a.u = 132A o represents the

equilibrium and anough E) in H ; .

MO treetment of the Hydrogen molecule

Thc treatrnent of a H, molecule, within the framework of&e MO theory and the Born-

Oppentreimer approximation.is essentially the same a3 that of H I , exerts that therc is an

.....(17)

.....(18)

.....(le)

Energrof HI forvarious v44:{8
E^{au)E.{a.u)R(a"u)

0.5 l;079 2.35

- 1.CI *.71? r*tf
1.5 {;&5 *.577

l3 -0,054 *338
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extra l/q, terrn. The h$rogrn mlecute cossis8 oftwo rrotons (a and b) md two clectrons ( I
and 2), thc elec$snic Heiltonisr is given by

fi = -l (vl *olt-ll-!*l- I *-L I
2 \ ' " Lo, ra2 rb, r,, ' rabJ

The conesponding Molwular orbitals are

Vr = C,lS. (t) + CrtS. (t)
V r = C,15 ,(Z\ 1 Cr lSb (2)

Ttre normalized solution oftbcsc eguations

*' = 
1, * rr$frsa (r) - $b (1]]

*'=ffi[na1z;-rsb(2)]

WkE ry, isthebonding MO and V, b antiMiagM0, andcorcspoditrgquations ue

Haa + Hab
!-'- (r+sab)vl

Haa + Hab
"'- (t-s"b)E

WhereHaa, tlbbarcthecoulomb integrals, Hab theexchmgeintegralandsab ir&e ovcrlap
integral. Hsnce the molecular warre fuirction ttat would dmribc the electonr distibution of a
hy&ogeir molccule can be cdten as

vxo =v, (l)v, (2)
where two cte&nrs are placcd iu the bonding MO

I
!,*" =r*bb [x. (t)+tq (t)][ts. (z)+ts, (z)]

= ,-*ob[is. (r)+rs. (2)+tso {l)+lq (2)+ts. (r)+rS (z)+rs. (z}+r{ (r}]

The first two fonns in this expression correspmd to situation in which both electnons I and 2
rc associated with thc Bsup proton. Thcrefore, the first term con€sponds to *re ionic stnrc-

.....(t)

.....(2)
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trrc H I H ; snd ec s@Bd &rm eotr€cpods to &c ionic strtrcture fl * H i .On tbe other

Iraad trc third and the forrrth urrs co{rcryond to sit}ation in which elecfons shared equally
by both the'protons and &ercfore, thcy corrcspond to thc covalsnt stnrcture of &e hydrogar
molecule.

Vdcncc'Bord TLcory fot H, moler:;rle

Hy&og€n moleculc cmtdm 2 elestws md '1 nucleus

There are two possible Etstrctnes of H, molccules

l. Wheir elcctron I is associaredwith molccules a and elecEon 2 with aucleus b

H. (l)Hi (2) .....(D

Hcoce dre orbital {rave frnstiotr for Ha ( 1) md I{b (2) wiil bs v . (l) and v , {2). Hcnce wavc

funstim'for structure I ig

vr=v.(t).v.(z) .....(li

2" When electnon 2 is associatcswith nuclems a aad elxt'oa I is as"eociated with nrieleus b

H.(2) H*0)

I

V n = v. (2).v. (t; .-.-.(l)

Tk two eloc{rm re dirtingui*hable.As &c atom ryroacb, mdauotkr&e atorric odtit*g
overlap and it is iryossibto $o distinguiS 6c two clectnons (l) and (2). Whca two clqctrons

arc indistinguishablc in tbe tlroh*Ic, fte wavefrmction y, must bde+dl to Wa.

Vr=Vu
(or)

v. (t).v, (2)= v r = v.(2).v, (r) ....tsl

Tnre wave function is likcly to be sme contibutim of the two -wave funaiops V , md V u

...- (4)V=,CrVs* CrVo
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v= crv. (t)v. (z)+ C,rp, (z)v, (r) .....(5)

Since tl molecule is symmetricsl, the two waye fuaction v , *d ryo contribute equalty,

therefore C, =tC, The co-efficient C, and C, are relative quantitieg we can put C,: I and

C , = t t - Putting these values oS, and C, ia quations (5). We gst two possible wave.func-

tions.

vs = v. (i)v, (z)* v. (z)v. (t)

vr = v. (t).v, (z)- v. (z)v. (r) .....(7)

Y's - q/rnmetric wave function and does aot change if initials (l) and (2) are intcr-
dleged.

ry^-Anti ry'mmetic wave function. The wave functioa ry^ changes b -y^ itthe initials
(i.e.; electrm) are interchanged.

' Since { molecule contains two electnans there should be two Laplacian,s ope.rator
viard vi.

$brodinger's wave equafion for the two electron s),lstem.

(oi*vi),y.*(E-v)ry=o

fffor H, molecule

n=#[v;+v1]-n[#.#.6.#].o,[**] 
(e)

&e integral H,, may bc defined as

H,r = II*, fi.*,.drrd..

.....(6)

.....(8)

Suktitutekvaluessuchas fi *d ry, weget

H, = IIv. (r) v, rz) ffi tvr . ot 
1] -- [#. #.*. # ]., F*]]v. rr) v, (2) d,d.,

.....(10)

..... (1 I )

l#"t fr;] *' (r)= E"v. (r)
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#"1# vb(2)=E"vb(2)

Hu = II*.(r)\,b121[ze" =*.*.S. $ ] v'(r)vo (2)dt,dt, ""'(12)

If nryo atom .a' and'b' arefaraparg their mutr,ral poten'ial energy is nil i.e-, V = 0. Thus the^

system tt molecule under consideratioo is equivalent to two sep;rrate hydrogen atorls' and if
these atoms are in &eirsor;d state, &e approximate wave ftn*tr':^r (including spin) will be

sirnilarto two hy&ogsn wave fimctions. Ifit is assumed that is wave functions are nonnalize4

thenequation (12).

Hrr= 2Eo++- !,--212
feb

rr =e2 It (v"(r)vo(2))'lr,u,,

andbccause of&e equivalents of two electrons

!t=e2llm (v. (r)vo (z))? dr"dr,

sama goneral treatnnentfor H',

Htz = 2EoSr2 * ** kt - 2k2
rrb

kr = e2 I I; (v. (r),y, (2)v , (2)v o (2))at, dt,

kz =e II;(l) (v.(r)v, (z)v. (z)v, (r))dr,dt,,....(16.

kz =e2 Il;ir.(v, (r)vo.(2)v. (2)v; (z))a,,d?,.

If these results are now substituted the equation for the ,ener&v states of the H, moiecule.

For symmeric srate E, -2Eo = *[ry]

Anti symmetric srate - EA -zEo= *[ry]

.....(13)

.....(14)

.....(15)



E - H,,+H,,
"' - -l;Tr-
E - H,,-Y,,
- 1- Sr

E=2g..*!*J+K' R i+S2

E =2e..*l*J*!" R l+S2

Hybridization
Thc linear combination of the orbitals of the same atom is aclled hyeridization. The

combination ofu atomic orbitals generaEs 'n' hybrid orbitals of an atom" It can be shown that
the hytrid orbitals have better directional andproperties and fonrr shngerbends.

Example: sp, sl and sd hlnidization
S - p Hybridization

The combination of g s and b orbital, Srving ruro hybrid orbitals v, ud ryrmay be

expressed as

vr=irvr+brvp

vz=&zvr*bzvp
Thevalues ofthelinearcombination co'efficientr,,b,, a, andbrmaybe deterrnin*dby

the following consideration.

1. ry, and Vz ffenormalized

i."., I,y 3 dY = |

I* i dY,.= I

2. ltt and ry, areorlhogolal

i.c., Jvs v, dYr= I

3. Vr and Vl are eqrrivalent

Squarc tbe cquation (l) md integrated with dv

Ivlav = Irl ,{,idy * Iui ,yidy * Izvrs vrp dy =l

d+{=t .....(3)

.....(1)

..... ( I )
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from eguation (2)

4+4=t .....(4)

(u,V, +b,yr)(arVs *bzVr)=v, v,

",u, fvuv, dY+b, ", Ivrv* dY+a, b, fv*v, dY+b, b, fvrv, dY=tv,.ryr{f =0

a,ar+b,b, =0

Sincc &c s atomic orrbital is sphcrimlly synmetrical and the two hybrid oftitsls V r snd Y r

are eguivaleng the share ofS firnstims iscqrat rn botn Vr md Vz i'c',

"i = "l;
or

I8r= rrlf
substihsc &ir in oqu (3) wc gr*

I * bl = I2'
ul=l,2

tr-*
.....(7)

srbstiut€ &E vduc of oqu (5) and (q h (l) I
Ivr=#(*'+vr)

substifrrtc viluc of oqu (O d (A in oqu (5)

lt.l
i +;6'uz =o b,=-i .....(8)

zubstinrte tb valuc of eqtr (5) md 8 in cqrr (2) we'got

vz=#t*,+v,)
Substitute the value of equadon (O and (7) in eq& (5)

1lI
; =ibz =0 b, =- F

Substitute thevalue eqnation(s) md(8) inoqtl (2)

.....(e)
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vr=*r*,+0,)
ForExample;- 

"

ve=*t*,+t.)

$, $, 0, 0.
{,lx I 0 Ol

+,h x , ol
o,lo r x,l =o

+.lo o , *l

At carton atom l,thc electrron &nsity ,i = %,
At eafton atom 2, the electrm dmsity al =-'fi"sincc ws lfive two lt electm in' {, , thc
total elec{r,on dsnsity at C, and C, cicn ir S= 2.

^ %,=,

e ch ars el
l = l-l=0denstty )

atcarbon I
charge deirsrty
at carbon 2 = l-l ={
Butediene:-

C, * Cr' Cr = C* Thre are four2p, atryqiq ortials tobe combine and four n .detre,rs in
&e motreeule. The HMO's are oftba form

V =C,*, + Cr{-,+Cr$, +C.6o ..,..(t).
and the seculr determinant is

a-E
where,

This determinant upoa orparcion gives tbe polynoniat quation
x'- 3x2+ I ={
(or)

(*'- x - l) (x'- x -1) =0

Hencc

9t
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The three st' hybrid orbitals formed by combination of a s orbitar with tr*'o p-oibitals arc

expressed as

Vr=a,S+b,P**C,P,
Vz=arS+brP*+CrP,

V:=arS+b3P,+CrP,
The co'efficieat canbe detgrminad as follows :

Since ttre three hybrids are eguivarenf &s singrs s orbital is corsideredto dividc ibclf

equally ammg them i.e.,

a?= al= al=

I
8t = 8z= ar=75: .....(4)

One bf ttre threc hytrids, saY Vr may be assigned any aircction; let it be the X-8xi8'

Thea, there will be no contributioa ftom P, i.e., c, = o. The uormalization cmdition

requiresthat .

af+bi +Cl =l;al+bf=1

l* Ui =1or br=E
3'

Thls

I
I

-or3

..... ( 1)

.-...(2)

.....(3)

.....(s)Yr=#t. Px

By orthogonalitYof V, and V,

[",., +b,b, +C,C, =0]

where C, = 0 Q= 0

[",.r+b,b, =0]

i.F
Or=-*

and by numalization of rY,
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al+bl +Cl=i

l*!+ ci=t3 6 "'

r--lU.-:,J2

*,=*t #rx+;[nv
similarlt &ho$onality of V, dnd V,

ara3+b,br+C1Cr=e
a,ai *'b1b: = 0

|*f,u,=o or .l
b, =-?F

andbyortfiogomilityof Vz 8od Vr

qq +brb,+qCr:0

i.*.#s=o
'',6=-t

JZ

nnn v,=f s -fr. -$r, .....(A

The directional properties of these hytrid orbitals and their bonding power ean be
detgrmined by making the fsllowing substitution in equ (j), (6) and (z) we get

s- I

P. =Ssin0cos$
P, =6sinocos$

The three functions defining the dircctional pro,perties'of tre hybrid o,rbitals are
accordingly

,r, =;b * fir,, BCosg

,....(6)
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,y, =* * ..6 sinecoso+f.Esinesio 6

,y, =* #.6 siogcosg+

*,=# # sinocoaQ- +

r Ed o of the hybritizaEba trnr:rbne {, and { indicate dirrctions in the.ry- plane, for

which 0 = 90o orsin 0 = 1 the above equ (8), (9) became

-lf,=# *Ji Cosg ....,(tl)

q=*-**t*f si"t .....(12)

The rna:cimum value of { will be

f,=* *6 =t.eeu

Huckel Moleculrr orbital Theory(IIMO)

Ethylene:

The ethylencmolecule contains twclve valence electons. Among the twelve valeoce

electnon teir form o bonds and the rcmaining two rr - electrons which forms a single n bond

betrrec,nthe two carbon atom of ethylene.

According to HMO, the o elmhon should be ignored while calculating the energias-

\/
C=C

Ttre wave firnction for the n electno,n in th€ LCAP- MO approximation

V = Cr 0, + C, 0, ""'(1)

,f n*osin{ .....(e)

,E tt" o sin { ..... (10)

/\
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Where $, *d $, represcnt the 2p. atomic ortitals of carbon atom C, and carbon
atoms Cr.

using the rules for setting up rt* Huckel sq{ar deternrinant

l* IlI l=n
II xI

Wherex=(a_E)/p

Thedeterminau! upon expsioa zuch gives

x2- I =0

x=*l
Thus, the energr levclr are

E=c: xF

Fqx -, f=-t q=a+g gmding)

cr-E
x=+ I ;_=+I Err-a-p (An6.sodin!)

Tfrc trro HMO eneqgies are

4=a+F

Ez=a-0

Thus we get two m€r$t lcnels E, aoa E, conesponding to the two molecular ortitals
Vr qrd V:

The rcsonence integral , p ,u a ndgativc quantity, bring appnoximately tlre energr ofthe
probability density cf the elecuCIn in tbe ficld of the nuclei screened by the sigma etectcns.
Thrs E, < E ' V , h* energy less'6an e isolabd cabon atom and is therefore, abonding MO.

V , 
'k greater energy than an isolrcd carbon atom and is therefore, an antibonding

molocule.
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a-p

enc{s/

E total = ZEr:2 (c+p)

In the abseoce of bonding, tbe tohl ener5r of the two electrons tyrng in the two p,

atomic orbital wouldbe 2o.

The n bondencrgyis

E,=2(cr+9\-?rl=2$

Determlnafion of tte MOS

The two liner equations corrgspmding to &c scctilar eryution (2) are

C,x+Cr=O

C'+Czx:o

Forx=-l C, - Cr=0 orC, = C,

Since the MOs are exrmalised

Jv'T d'=1

ci I$i dt+cllOi a' .+zc,c,J+,6, dr=l

ZCl =1

cl-+ Cl =t wkrc a_r- 
",

Vr

Q=Q =*

I
llaiceVr=15'(0r+0r)

E, = a+P
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Forx=* I

t,vz=ir(0,-0,)
\lZ

E, = 0-B
Bond Order:

The partial bond order p,, associaed with the molecurar orbital

1

Vr =;E(0, +0u ) isgi"snuy

nr I I I
rrt--. ,lz Jz z

The partial bond ordryassociated with the antibonding orbital is given by

6r_ 1 ( t) I

",-$ L-;E )=- ,
It fbllows that a pitive value of partial bond order sfengtheas r!:e r -boud while enegtive ldue rvcakens it
In &e gSound state ofcthylme two r - electon bcnd to 4 . 1 the tota! r _ bord arder

&r=2P,'z=2x fi=t
Charge denrliq,;-

The total electron dennity q at an atom r is the sum of eiectron densities contibuted to
d.fftremt elerbons in each I{MO

q, =I ni a1n

s/h€r'c ar is &e coefficient of the atorn r in the jth HMO, ard nj is the number of
electroas inthat HMO,

In a n systen\ a neutnal ca6on is associated with an eleckon density of 1.ffi aad the
ned charge density is defrned as

tr=l-qr



M.S. UniversitY DCH 13
D.D.C.E

vr=#,*,+0,)
ForExamPle:-.

vz=#t*,+0.)

0, 0, 0, t.
0,lx 1 0 Ol

o,|r x , ol 
=o{,lo 1 x tl

o.lo o r *l

At ca6on atom l,thc elcctnon &nsity 'l = %

At carbon atom 2, the electnm dcnsity ,,, = 
"%" siice wE lfive two tr elect'on in'$, , the

total electon dcosig at C, and C, eictr it S= 2'

* /r=t
e charse] 

= l-l=o
densitY )

atcarbon I
charge densitY

at cqrbon 2: 1'1 {
Butediene:-

C,=Cr-Cr=C.TherearefogrZp, atomiqorlhitalstobecoanbine andfour r -rlectronsin

the molecule. TheHMO's are of&e form

V = C,$, + Cr0, + Cr0, +Co$n "."(1)

and ttrc secular detcrmfutart is

o-E
where, * = -I-
This determinant upoo expaluion gives the plynomial cquation

*r_3ir+14
(or)

(x,-x- l)(x'-x-1)=O

Hence
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x2+x- I =0
x2- x- I =0

Thc roob ofthese guadratic equations arc

-t +.6*=l- = +o'6lir

-r-J5*=f =-l.6lg

t+J3X=- ='+1.618

= -0.618

Heoccthe cnergrlevelsare E= u,-xp

Er= cr+ l.6l8F {BIrm)

4= a+ 0.618p (BI,0)

X=+0.618: E=cr-l.6tSp(enUf)

X=+1.618; E = a- l.6l8p (ABh,fO)

Sincc the resonan;'c integral p is anegative quaatty, wc canconstmstthe molccular
diagam fm tbe butadiene molecule is

,2

l-.6
2

E= s-xs

X=-I.618;

X=-0.618;

s-4

a#

&crg "

a+0

.?20

Vr

Yr

99
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in accondance wi& the Paulis exclusion principle the fourn -electrons of butadiene are

rccommodated in the BMO,'s Vr and V z

Siving tbc lotal ?t electron energyas E =2(o+1'618p)+2 (cr+0'6r8p)

En=4rr+4.472F

fi botd€nerg/ = 4cr + 4.472$- 4q.

:4.472F

The'tohl n -electron eoeryy of the four n -electnone in butadiene is 4 cr + 4 .47 2B

The energy of nro n - electnon in cthylene is 2c:. + 2B

The Dclocalisation energy is defincd as tbe differeocc in energr of the t - eloctrons

in a molecule and sum of the energies of th isolated double bonds pr€sent in tbe classical

strrcure of the same molwule.

Ctasiicat stnrcture Delocalised structure

HrC=CH-CH=CH, C-C-C-C

2(o+g) z(o+p) 4a.+4.4129

Delocalisationl
,r;;;^ss*vu] = {0" + 4'47?P}*z(zu+ 2F)

DE: 0.4729

The DE is a measure of the stability of the molecrrle. The higher the eneqgy, the more

stable is &e molecule. Thus butadisne is more stable than two ethylene molecrrlar by an

energ'y of 0.4729.

The EMO Coefficlent:-

In term ofx, the secular equation ue

arx+&z=0 .....(1)

ar +a2x *&, =Q .....(2)

a2+a3x*ao =$ .....(3)

&r*&ox=0 .....(4)

Using x = -1.618 corresponding to the contest snerly HMO \y r we get
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dz = -fl,x =1.618 a

&3: - a, =q x: -3, - (l.6l89lX-1.618)

E,: 1.618 q

Hence q= E

t=-&ox=1.618a.
Henco Br= Br

From the condition ofnormalisation al + al+ ai + ai =L

af +(t.otaa, )' +(t.or8a, )+af =l

u, =-6!- =0.372= ?q' Jtza
q = 1.618 x0.372= 0.602 = %

Vr = 0.372p, +0.502 p2 + 0.602p, +0.372p,
Similady, the confincrs for ryr, v, ed V. md can bc folmd by using thc values

x: -0.6 I 8, +0.61 8 and I .6 t I rcceptively. The four HMO's of butadiene one that fourd to be as

follows

Vr = 0.372 pr + 0.602 p2 +0.602 p, +0.372p0

Vz = 0.602 pt +A 372p, - 0.372p, - 0.602 po

Vr = 0.60 2p, - 0.37 2p z - A 372p, - 0.602 p.

Vr = 0.37Zpr -0.602p, + 0.602p, - A372p o
Butadlene:-

Boud order:

The four fi ' elecrons involved in brutadiene occupy ttre two bonding o$itals.

Vr =0.372p, +0.602p2 +0.602 pr+0.372p0

Vz = 0.602p, + 0.372p, - A 372p, - 0.602 po

Accordingly we get the following values for the partial bond orders between different
carbon atons

P,', = A372x 0.602 =0.224
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Pl, = A.602x 0.602 = 0.367

Pjo = 0.602 xA372=A.724

pjrrP,'r=l; >0,Thisshouns&atfucmtibrutionof&celectronbelongingto 0 ,sEengtr-

ens &e c€,tilralhond"

Similarty, &c prtial bond order fm Vr

.

P,', = 0.372x 0.602 =A.224

0.894 0.447 0.894

qc cH- cII- clq

Tlp sum of r bond ordcrs is givcnbY

I= PrzfPer*Pr*

= 0.894 $.447 {.894

=2.236

Thus, the total r bnd order is geakrftantwo by 0.236,

elechon density @utadiene)

er=Zx {03?2f + 2x (0.602)2 =1.s

i,z = 2x (o.ooz)' + 2x (o.ltz\' = 1 .o

jt =2x (o.ooz)2 + 2x (4.372\'z = 1 .o

gq=Zx (o.lzz)' +Zx(-o.ooz)' =1.0

Chargedensity( =1-l=0

Tot8l electm dcnsity = 4.0 in agrccmmt with &e fact that tlrese are 4 n elxlrmr in

tlre molecule.
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UNIT-TV

INTRODUCTION

l. It deals with the application ofstatistical nrechanics to tLerrrodpamics.

2. tt has been used successfirlly to relate the microscopic ptoperties of &e indiyidu&l

rnolecules (moment of inertia, dipole momen{ etr.,) with macn scopic properties

(molar heat entropy polarization etc.,) of a qntan which is having a large number of
molecules

3. It should be possible to calculab maqoscopic properties of a systern from a zuiable

surrnation of the properties ofmicroacopic consti&rents. This is precisely the aim of
statistical mechanics.

4. Even in the absence of any informatiou about specific individual particles in a targe

assernbly ofparticles, the prcperties can ire predicted by using tk laws ofprobability.

5. In a systern containing a collection ofparticles ormolocules each caabe ir alry ofdrc

various avaiiabie energy levels and spahal disEibutions. The macrescspic propertie*

efthe system depend on how rnany molecules are oecupying the different stetes, tt has

now been possibtre tc develop statistical metltoris to obtaie iaf,onnation of the disffibil-

tion of molecules annong the possible states. This enables one to evaluate the varicus

properties of the bulk system. In fact, &cre are rro\ry fuee diffsrent equatioas for.*&e

thermodynamic prob,ability$Iry whicharerequired tomeet differentpfurical s;ret€m.

The three statistics as they are called ue those of

lvfaxweil-Botrtzrna*n, Bose Ein"stein and Fermi-Dirac statistics

System, assembly and ensemble

If there is a collection of particles, a single particle is referred to as a s stmr and

collection ofparticles as a whole as an assembly.

An ensemble may be defined as a collection of rr very large number of assemblies

whiqh are independent of each other but which have bce,n made pacroscopically as identical

as possible.
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Different types of ensembles

Uniform etrsemble: In an uniform ernernble, the density in phase space is a constant.

_ANLt = cons tan t
N-+o N

where AIJ denotes the numbsr of systerns in an elernent of volume AV and N total number

of systeurs in thc erserrble.

Micro crnonlcal ensemble

When the units are separated by impernreable adiabatic walls, the ener of every systern

is the same and the e,nsemble is said to be microcanonical. For example, the number of mol-

ecules N, the volumeV and the energy of the units E will be the same in all the units.

qVN EVN E,VJ.l

B\8.1, BVN EVN

E Vl.l BVN EVN

Canonlcrl ensemble

On the other hand, if the units are separated by a diathermic wall letting the enerry

fluctuate about some average value E, while the temperature T remains the sarne the

ensemble is oalled a canonical ensemble.

TVN T,\B.I I\e{

T,VN TVN T\TN

T,VN T,V}T T,VJ.I

Grand - canonical ensemble

The third typc of ensemble is based on open systems where the number of

molecules in a unit is not kept constrmt while V and T and the chemical potential p are the

same in all the units. These ensembles are called grand canonical ensembles.
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IYP TYP r,Y p

TY TI IVP IYP

r,Y p T,Y tr T,Y TT

It{axrrel}-Bol&mann Distribution Law

[' Maxwell-Boltzmanri statistics assumed that the particles ate independent but
distiaguishable.

2' This statistic's was therefore quite suitable in dealing rith solid systems wheir
particles have distinct positions in the crystal lattice.

3' But for gases where identical indistinguishable particles are concerned this statistics
would be unsatisfactory. It has to be appmpriately modified iu its application to gases.

Let us consider N neclecules being grouped into i levels serch that the first level
coatains n, molecules, second level q rnolecules and so on.

?he number ofnoa-eguivaient ilrrangements (thermodpamic probab ilrty)

w=-hlt 
-n, !n, !n, !...n, ! ..'...(1)

Taking lnoabo&sides

ln \tr= lnN! - (ln n,! + ln n:! + ... + ln n,!)

lnW=InN!-f n,tn r, -i n,
l1

whea 'N'is large, striling's approximation can be used to evaluate the factorials
luNt=NlnN-N

-if tor,,!= -tn,lnn,-tn,r1T
i

=-In,lnn,-N
I
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In W =Nln N-tn,lnn,
I

N and E are constants, any small variation in thcse 111r5t b€ v1ra.

i

f stri = o .....(2)
I

coosi&r, total arcrgr of the sJrtcm i8 slso oonsant

t ",u 
Di = o .....(3)

I

Matbsuratical p,robability 'P' irpropgrytiooal b Uf

Pct W

P = Cw(Co*rmt)
lnP-lnCt+lnW

ln P : ln Cr +N tnN-t n, tnn,
I

N and Cr are constants and the condition for a manimum probability is

o(lnp):o

6(-rn p) = 6 [f ",t*) : o

5 t (6r,)tn n, * t 6n, =s .....(4)
ll

So, eqn. (4)bccomes

T l" 
n,6n, =o['.' t u", =o) ....(5)

Equ 2 muttiPliedby o'
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-L
)Fu,6n,-o

I

t(rrn,+ctr'+Fai)6o,=s
t

t
I

c'6n,=g

F4u 3 multiplied by p

csrnbine qu 6, 7 and 5

lnr\ =--cr'-&,

[i="-ct"-Fei

ln n, = --g.' -Fei

n.- f-it 
ear +$e;

\u-;(n,+g,*1)!
' n, !(g, - l)t

..... ( /)

.....(8)

(g =Degeneracynumbcr) ..... (g)

-.."(6)

.....(t0)

(r)

Equ 8,9 and l0 are the various forms ofMCIrwefi Bolftnann disu.ibution law.

Boso.Elnsteln strtlstics (eoantum statisticr)

t' Bose-Einstcin statistics applicabic to systerns consisting sf identical and
indistinguishabtepa*icles, &cre beingno limitto the numberofpar€elgs in*nytrere}.

2' LiSht qr.lanta (photons), alphe particies, dcuteron and all atoms and mr:Iecul*s
corryosea cf an eyer rru.rnber of elemectary particles iike r2c, ,fr, ,t fa?! in this
category. The spin of the nucleus is either zsro cr an integral nurnber. Such partieie,s
arc called Bosons.

For this stetistics, the total number of diffsrent and distinguishablc wa3-r of
arrangingNparticles emongatl energylevel" {thethennodynamie prebabillry}.
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Taking natural logarithrns of equation (l) and appllng Stirling's approximation and on

simplification, we get

dlnW= i;ro1r, +& -l)dn, -lnn,&q]=0
I

i

I [-ton, +g, -1)+1nn, ]&1 =0 .....A)
I

Weknow

ii
I oo, =0.....('A) d f e,dn, =0""'(B)
rl

Multiptying equation (A) by or and equation (B) bV P and adding to equation (2) and

simplifid we get

-_ &
'^i - 

"(a'*eq)_l .....(3)

Equation (3) is Bose-Einstein distrihution l"aw.

Ferml - Dirac statistics

t. It is also deals with indistinguisbable particles of integral half spin

2. In the Bolrnann or in the Bose -Einstein statisti"r, tho" was no restriction to number

of particles present in any eaergy state.

3. When fermi-Dirac statistics is applied to particles like electrons the pauli-Exclusion

principie is also taken into consideration (i.e.,) two electrons (particles) in an atom

cannot have the same energy state. [n simple words it means that not more ttran one

particle could be assigned to a particular energy state. Here this particle is known

Fermions.

In this statistics, the total number of different and distinguishable wayt of arranging

D,L,n3 .... etc., particles among theenergylevels t l, t z, 63 is given

.... (1)
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Taking natura! logarithms of both sides of equation (l), rpplying Stirling's approximations

and consider the condition for the maximum probability and simplified, we get

i

E tn n, - ln (e, - n, )dn, = 0 .....(2)
I

i

gut I dn, = 0.....(a) and f e,ao, =0.....(B)

Multiplying equation (A) by st , equation (B) by I md addine with equation{2)

I[,"q -h(e -q)*o'+Bq)q] =g
I

Equ(3) is simplified

n= 8'' -t 
eo'*F., + I

.....(3)

.....(4)

The equation (4) is known as Fermi-Dirac disEihrtior Law.

PARXTUONFT]NCNON

Statistical amics analysis has been facilitated by usirte the partition func-

tion. The partition function may be defined as follows

f =Ig.e-em .....(1)

For general purposes, it is essential to measure energy levels relative to the ground

state.It, therefore, follows that equafiou.

f =Ig,."_*,., .....(zt
0

The term panition function is given by Fowler. It is a dirnensiouless guautity. h value

has been found to depend on the molecular weigtrt, molecular volume, teulpsrafifi?etc. Thus

the partition function may be defined as thd sum of drcprebability factors for different energy

states or rnone conveniently i' can be stated as the way in which the energy of a qrutem is

partitioned among the molecules which are comtitutisg tbe sFtem.
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1

Ig=l (orl f =ls ".-"..{3)
N f T' N

Thus the partition friaction may be de&nd as the reciprecal of the mol* fractio:r of
e molecules oocupying the ground stgte. ft is al$$ the ratiJ *f,ih* t*tal r-,rusrb*r *fmo?*cule*

ttrc number of molesulm in the grorcd state"

rrtlfou funetion aud thermodynamics furction

luternal eueqgy

The iutenral co€rry 't-P ofa q6*an ofN molecules is given by

i

U= f n,e,
I

N
weknow o, :?8,."-ar/rr

u=t4r,u,..-',"'

since f =f g,.e*,,*t
I

.....( l)

$=fn[*).'"*-#

ur' *=ft,e,.e-q*' .....(2)

quation (2) and (1)

u=NkTn 1. q (s) u=urpiqglf drt-' L cr I
, Enkopy ln terms of partidon fucfion

Considerasystem ofl,{ indsntical molecules distributed among the quantum leveis ia

ccodance with the Maxwell - Boltznrann distributisn law

Tlre Thennodyuamic prrobability ofdistribution ofN prtieles a such that n,,r1,q ......."

rein&reenergylevels tr ,t2, tr fugrvcaby
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w: ,N!
T o' l

Thking In and applyiug Stirling's approxirnation

ln W - NIn N-t n, lnn,
I

-wcrrcw oi :f 
",.u-*rm 

(gi -l)

il, : II-. 
"-erltr'f

rn w: N rn N-I., hrflI..*r* J, ' \f )

lnW-Nlnf+ U
KT

Aocording to Boltzrnann Planck eguation
S-klnW
S : k (N ln f + U/kT): Nk la f+ U/T

3. Ileat caprclty at constant volume (C,)

c -rs)' L AT ),

c,=Nk.*(r,.*F).
a. Enthalpy

H_tJ+pV

Substitution oflJ Value and P Vatue; p: NkT (+f),
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H=Nkr2f 
gU) rNkrfEg'\ v( ar ) [av ),

r
H=Nkrr r.[dl"f )*rrqg) I-- 

L \ ar ) \. oY )rl
5. Free Energr

G:H-TS:U+PV-19=f,+PV

A= -NkT lnf

G--Nkrrnf+Nkrf+fl v---\ av ),
6.Workfunetton (A)

A=U-TS

A=U-TtNklnf+U/Tl
A= - NkT lnf

Tfanslational Partition function

The partition function t for 
" 

translation motion iit one direction is given as follows

r, (*)=Ig,.t-""t' .....(1)

Where tt -) translational energyofamolecule itr 'x' direction

k -+ Boltzmannconstant

s -+ Satistical weight ofeachtaslational level

*r ;car weight 
"r*"n 

rr"a -;;;r,: t). Therefore, partition frrnction f{*)

becomec as follows

The tanslationat 61rergy is also quatifid and for a particle in a one dimensional box,

the translatimal e,nergy lwels are givelr by
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,, = # erg moiecule'r .....(3)

cornbiniag equatian {2'l and {3)

f,(o)=I *
n'h'

8m l1 tr
As the eaergy levels arc so closely spaced, the variation of energymay,be taken to be

eon$nuous and summation r+'ill be rephbedbyintegratioa.

d. n'h'f, (* )= J 
e --:.::_ .dn

o 8*l; kT

I

f, (, )= (:"+!r)u ,.

Simitarty, the translatio*al partition function for a rnoleculo in ttgee directime r y
and z * riglrt angles to each other is obtained is as follows

& = f, (*).q (v).{' (r}

r=(ry)"',,,,,.=(ry)"',
Whers V rcprceents the volume accessible to a molecule
Rotadoual partitiou iunction

The partition function for rotational cnergy of,a diatornie moleculw is given as fol-
lows

f, =E gr.**"."' -....(r)

Frcrn+Iantum mechanical principles it follows ftat &c rotational cnry (e,)fu a

distoaric molactrle in thc j* state is given ss follows

E, =f 1l*rt$I *q .....(2)

J - rutatimal quanturn nunrba J = 0, I ,2,3, .,...
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I = moment of inertia

As the rotational snergy at the Jth level is degeaerate in (2J+ l) ways, the value of

statistical weight is given as follows

& = (2J+ l) ....(3)

combiqing cqu (l), (2) and (3)

ft.l = I (2J + l)e-'o+r) b'/tnr rr .....(4) 
,

As the lwels are closcly spaoc4 it means that tbe summltioa caa be replaccd by ints-

gratim" Thrrs, wcobtain

cl

f(,) = 70t+ l)e-'('*t1t2ran2nr.6' .....(i)
0

wk,"P=, !''8r2IkT ""(7)

Again [,ut Z = {J+ I )which on differ€otiaiioa bocomes as follows

dZ= (Zt + l).dJ ....(8)

on combining equation (Q and (7), we have

C

=\Qt + l)e-'(i*11r.di .....(6)
0

r,=1(r-u').d, = i .....(e)
0

^ 8n2Ikr,t
'r - h2

tt4
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I oa aor*khg cquation (7) md (9), wc o&tritr

.....(r0)

Thc tcrlrlt has b€*$ found to k only Etrs for hetmnuclear rmlecules strch as NO, HCI

etc.. But rattrc mse ofhtxnmuclesr nolecules such as Q, N, etc., onlyhalf of&e rotational

tfimrrill bcpre*enr

Ir orderto avoid corylicetions a symmctry aumkr o is induced. Thus qquation

(10) bccmcr

^ 8n'Ikrt =--r 
oh2

Hdero*uelearmoleculcHCI,NO o = I

Fcbormnuclear diatomic molecule a = 2.

Vlbrs8:*prl partition funcfion

Thc partition fuactioa for vibrational energy of a diatomic molecule is given as

follows'

f,=f g,e-*'' .....(l)

The satistical weight of each vibntional level is unity. Hence the equation (l)
bccamc as follows

I =f r-1rtr .....(z)

Ilrc vibrational ensrgy tevels are givcn by dre equation

e,=(v+U2)hv
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V -+ vibrational qumtumiltmbercanbe0, lJ. ete.,

v -+ Frequencyofvibration

h -+ Planc-k's constant

For*re lowest energy level V = 0, the vibrational energy{i.e.,) the zero point euerry

is equal to h v 12.The vibrational energy of any level referred t the zero point eaergy is

givenby

e" =(V+1/ 2)hv -hv I Z=vbv

I = I,-vtv/rr = (l-r-rrrtt1r ....(3)

Thorles or Heat Capacitles or Sollds

The qrranarm theory explains the variation ofheat capacitywift tenperotuIt. Specific

heat is the heat capacity referring to I gm of material . The variation of heat capacity with

tempcraturc for sevcral solid elemetrts is showu in Fig. l.

Fig 1. Variatiou of heat crpacity with temperuturc

Trftrnfil
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The heat capacities for elanents like aluminiurL c.ypiler and zinc increase very rapidly

with tenperaturc, approaching a value of 3R = 5.97 cal mole'') at or near room temperature.

carboa aad silicon, on the other hand. show a much gredusl increase in heat capacity with

bnpcrature and do not attain tre 3R value until verymuch hilher ternperatures. In fact, &e

heat capaeityof carbon does not become 3Runtil above 130trC.

Elnstcin Theory

Alb€rt Einstein applied quantum theuy to dete,rmiub &e allowable energy

levels E, - (Y + /r)hv
V=0, 1r2r.....

He has assumed only one quaotum sEte per eosr5/ IweL He has &at all

atoms do qcqi[at€ sartr€ frequency of vibntisc, v , Accoqdiag fro Einst€in abeorSiom of

eo€r$y by the oscillaiors do not takg place mtinuousty, but discontinuously ia tine wi&

Plank's quantum theory. With these above essumptiotrs, the capacity per mole at caaEtant

volumeC, atanytemp. is g,re,nbythe expffisio!,

t\ _ ,o ( h, )' rrt/trL,=3R(#),e_i

Q- tbs cbaractEristic Einstein temperature is &fined as
E

hv
Q"=?

.....(1)

....Q)

Equation(llindicatesthatC,is the same function ofQ/T forallmono atomicsoli&. Fur&sr

thisequation predicts that C, will approach rero at T=O, an that at high tenrperatures C, will

approach,asymptotically thc value of 3R. In both tlrcse respects the equation is i* geNeral

agrEement wi& the facts.
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fretrlaortrl Grrr.

Ellrteln clrvc

T
tr
ry2

Tbc shaf€ ofltre $lrvcc prodicts a lorr value for C, at low tcnperatrres.

DebyeTheory

A morc successful &ecry of heat capeiry of sclirls w&s proposcd by Peter Dcbye in

1912. He has assumd a coatinuous distibutioei of &q1.ren*ies i.e.,) a solid nrayvibrate rvith

frequencynnging fi,om zero up b limitirg fteq1r€rlcy, v !t

Debye has derived an expressiol for C" f a functi*r: of tempratare bas*d on the

principles of theory of elasticity and by cmploying quartum lh*ryc".:. Debye has reated the

atomic stnrcture ofsolidas a homogeneous elacticmdiumandvibratioas canbe ccrsidercd

to be equivalent to elastic w8ves.

c.=,nlr-*(+),.*(?)'. ] (3)

Qrthe charactsristic Debyc teryefisturc is dcfined as

n -hro,-r--f
fiie Dcbp curvc is in exccllent sccomdwith aryeriment for a large grorry ofcqmtallicr

solids. The thctry predios &st Cv wilt bc zcro at T = 0, an will ryproach ths limit of 3R at

higherternperahirrL.

t!

3
at
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cI
R

c =+e+.+[a)'' too I

trt
ns

Attotk valuable coatt"bution of trc kbyr theory is that it predicts at vcry low

trfipcranrcs a lincar reiatisr bctrveen C, and Tc, nanely

cal deg -'g u**-t ....(4)

or C, o Tt

Not€ T<0D /10

Eqtl. (4) is hlown as ths Debve Third Power t^aw

Limitauo* ot ttre Debye thuory is that it accounts only for heat capacities up to 3R yet

certai* sltrdafit*o particui*rly the alkali metals reach values of C" considsmbly abcv* tSis

timit 8t highs ter:tperatures. The cxcess absotption of enerry is usually ascribsd t* eiectons,

of wtmee dirylaeement by the thermal meaas the Debye theorytakes no aceourt.
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TINST-V

TTIEGRY GF STTTONG ELECTRO},Y"8$

Debye ard Huckel derived a qua*titative relatimship bet een the at*.active for*cs of

the ions ir an elecsollte acd the ete*rolltie ecncie*ta*ce. Later Gns*g*r devel*p*d th*

relatiorrhip.

Accortrtirg to Dcbp Huckel theory every ioa ia solutio:r is su*ounded by an ioxi*

of oppoeite sigr. This stmospbem erises.ia the"followiag mer$er. Imagi*e a

positive ion A ad cffisidcr a snnall volurr elwr* dv rt &e end of radius vwtor Y

Gr$ue-0.

FQ.L bnlc atuupbere

As a result of tlrcrrnat movemenk of thc ions, tlrere will be sometimm aa ercess qf

pooitive urd somitiffi orl exc6 of'regative icnr in the voltum elernent dv. lfa timc average

is takm dv w.ill bc fouod to have, as I con3€rplcnce of el*msAtic at&ctioil hy &e ptsitive

charge atA, a nesive charga dcasify, i.e., thc probabitity of finding ions of opposite sign in

fu 
. rycc nuroundiag s gver ion is greatar ttran &e probability of firding ioms of the $anre

sig!"

Evgryion mayeus be &gnrdod m berng *socistcd s'i& ieio atnsftffi ofoppo*itr

rign Thc Mchrp of tlp @tcre is qxl in magritn& but cpposite sign to tlst of &*

ccnral im" Itc chrgc dardty will k $caer fu dre imurdiate vicinity of the larermd wiil

fall offwi& incrasing dis&ms.
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Srypooe flre time - ayerege of the clestrical pc :ntial in the cenffc of the volurne

elanmt dv is Y The work rquired to bring a positive ion &om infinity up to this positive is

Z+ €V dto brisg up a negative ion is -Z - €V, wherc Z+ andZ-are the numerical values

sftlp velemcie* afthe gx*itive and negative iom respectively asd e is the unit cbarge, ie., the

elc*u{*e ch*rge . Applyrng &e Boltzmaan law *f diskibutian af particles in a field of

varying pdcntid ener1y) thc time-average numbcr ofpositive ions (dn-) and ofaegetiveions

(dh") prcscrttin thevolumc elemcnt dv are givaby

dn* =n*e*(z+cv/kr)6o

d,n- = n*e-(-z-evltcr)6,

lIfhers nn M gt. are the tobl, numbers of positive and negative ions, rcspectively, in unit

volumc ofttrc, solution; k is the Bolarnann constant andT is the absolute tsmperaturc. The

clectieal &osity i.e., the aet ch*rgc perunit volume, rn the givedvolune element is thacfore

sittary

?=
e (Z*dn. - z-u.)

with &c acermption thst (2, **vttt" 
) i, much less than unity,

elcctrical dcasity (equation l) bccomes:

.....(l)

the cxpreesion for:the

- e'vp= Zn,z?KT

where n, end zr represent ihe nuinber (per unit volume) aad valence of the iosrs of &e im kind.

'dv

p =(o* z *e4"ev 
ttr) 

- n - z(z-€Yltr) )

tzl
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Applying poissons's equation and converting rectangular coordinates to polar

coordinates, since &e distribution of p*teutial about any Point in the electrolyte Inust be

sphcrically synmerical, a relationship betwcen p aed V csn k recognized as

t a( r6v) 4xp
TarL' ar)=- D

Inscrting th valuc of p givcnbv cquation (2)

i*(.#)=(tffi'rqzr)=t'v

.....(3)

....{6}

....{7)

.....(4)

wlrere thc quantity k (not to bo confiucd s,i& spocific condtrctancc) ir defrncd by

,....(5)

The difilercntial equ*ion (4) can be solvod and the solution has the gencral form

Hence,

Ae-bt[ =- r

For a very dilute solution 2",4 is almost zsro. atld heace is k (frorn equation), the value of

the potential at the point under consideration will be A/r (according to equafion fi.ktsuch a

dilute solution &e potential in the neighbourhood of any ion will be due to that ioa alone,

since other ions are too far away to have any infiuence. If the ion is regarded as poiut charge

the potential at small distances will be Zi elDr.Therefore

h -1erDr

-=[#r*4]*

Ae-b A'et'l.|]r=-+-

Where A and .{ are constants which can be evaluated in tlie following m8trner, Siace must

approach zefi) as r increases, because the potential at an infi:ritr distance from a given point in

the solution mustbe zero, it follows that the constant .{ mustbe zero.
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. Ze
{=-J--

D

Insertion ofthis result in equation (7) yeitds

e -K,

This quatim msybe written in the form

Z, C
ly = -]-*-.D

Le Z,e
ll/= ' --J--'DrDr

Z, ekil/= -,D

(,-r-")

.....(8)

.....(e)

Fudilue solutions k is small and I - c-rr is equal to kr. Hetrce

Z.e Z,ek
r! =-L--'DrD

The first tcrm on &e right of equation (9) is ttre potential at a distance r due to a given point

ion wheir tlrcre are Bo surrounding ions. The second term must thcref,ore, represe,nt the

potential ericing from the ionic atrnosphere. Therefore, the potential due to the ionic

ahosphereis grvenby

....(10)

If the whole of the charge of the ionic atnosphere which is -4e , since itis equal in

magnittrde and eppasite in sign to that of the cental iffi i*eld, x'ere placed at a distanee tr/k

frorntho im the potertiat produced at it would & - z,e k,'l) Which is identical $rith the value

grvea byequation (10). Sc, the effect or ion almmphere is equivalent to ftat of a singre charge,

oftk sercmagnituds, piacedat a distance fr*omt*ion; this quantiry- )d i*egarded as

a mea$re of the thr*kqess ofthe ion atnosphcre in a givm solution.

According io tha definiticn of k, i.e., equation (5), the thickness sf the ionic
atnepkrc depcads on tbc number of ions of each kind presantin uait volume and om their

valencc. If'C, is tlre conenration (of the ions sf i$r kind) in grarn-ioas palitre, thea
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n,=c. N
, '! 1000

N is theAvogadro numbcr, Heqce fumequation (5)

t=lit roook l"'k-LEm4,#NJ "'(1u

Substituting the values of &e constmts 0r1.38 x 10-16 erg per degree)

a =4.802 X 1Or0 e.s. uait., ardN= 6.023 x 1#3

{k=z8rxr""[rft|.-

W}rere

.....(12)

The thickness of the ionic atnosphere dccreases with iacreashg coacentration md

increasing valence of the ions; it insreases wi& increasing dieleetric constant oftbe solvcnt

and widr increasing tarpemture.

TIME OF REL.UffiNON

Figure - 2: Asymmetry.elTect (a) tield ofT, &) Field on

As long as the ionic atmosphere is stationary it has spherical syrnmetry. Wheo &e ion

is made to move under the influence of an applied electric {ield, &o symmery is dishrted- If
a particular kind of ion; moves to the right each ion has to constantly buil&rp its ionic

atnosphere to the riehq while the charge dcnsity to the left gradualiy dccap(figurc 2).Tb
rate at which the atnosphsre to the right fonns and that to the left dies eway is expressed ia

terms of a quantity called &e time of rslaxation of the ionic atrnosphere. The decay of &e

ionic a&nosph€re occurs exponentially, and so reiurn to random distribution is asprpto'tic

and theorctically only at iafinitc tirc it wiU fall to zero. The ioaic afinospkre wiII hlt

virtuallyto z*roitthe time 4 q 0, wherc g is the relaxation time and q is definedby
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Z.+Z_ Z,?'_+Z_L*

Z is th€ valence (numerical) urdAis the ionmdrrc&nce of the respective ions. For a binary

electnolyc r}'and z. att.qual and q is 0.5 aad fu rclmation tisre is 2 e

Suppme an ion ofvalence z is movingwithasteadyvetocityurderthe influence ofan

electical force e zV where V is the applied potcntial gradient But this forc€ is opposite to

&c forcc &re to resistance represented by Kq where K'is the coefficie,lrt of &ictional resis-

tase ad u is the steady velocity of the ion. To maintain unifm vetocity boft the forces

mustbc equal.

e zV=Kn

.....(14)

Relanfu clfect (.{rymmetry efrect) and dcctrophorefic eilect

Due to ths finite tirne ofrelaxatioq tb chrgc d€osity behind tlre nnving ion is grcder

thmis &oot Thusdrerewiilksnexcess chs{gcofoppmitcsignbehindthemoviagion. This

will retmd tk moving ion and this retarding effect is called relaxatiou efu or asymmetry

effet.

Another factor which retards the moving ion is fis t€ndcncy of the applied field to

move &e ioaic afrnosptrere, n"ith its associated eolvent moleorles, in a direction opposite to

that oftire cental ion" This will exert ar additional resistauce on the centrat moving ion. This

is similar to the effect in colloids aad is called as elechofrhoretic effect,.

Dcbp and Huckel ap,plyrng Stokes' law gave 0n expression for the electophoretic

force ofar icn of the ith kind"

125

DCH 13D.D.C.E M.S. University



D.D.C.E M.S. University DCH 13

e?,k -Elcctophacic fqce * ffiK ,V ..... (15)

ry e , Z, md K have thcir tmd qigdficep!1'4 is &c viscosiry of the meditm, K, is ihe

cocfficicat of frictimal resisboe of fte Eohrd ad V is the applied potential.

OagEF ffirc€d an cqr*im fc &e relgxstim force

nchx{oo**f ffirv
q/tere D is fu diclec'trie constmt offu dium ad o is defined by

.....(to)

a=Z*Z_ 2q
_...':==,i

t*Jq .....(17)

tre value ofq is given byequation (13). ftuating ttrc fcc6 acting on anioa ofi6 kind moving

witha steadyvelocrty.

fuplied elecuical force = Friotional forcc of the solvat

+ Eloctr,o,phorctic force + Relaxation force

i.e.,Ez,v =Kiui.ffiK,v +ffi rov .....(r8)

on dividing the cquatim by IlV and reanapging

ui = EZr gziK e3z,k o
V Ki 6tlq 6DkT Kl
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If the field stength is I volt cm-r, i.e., v is 1/300, their

u,=5- ek I', + t'2, col
300Ki 300 16rlrl'-6DlifKrj ""'(le)

An hfinitc ditution k is zero and lrence

o. - 
tZiu-l-

300K i

SineFuoi = 1oi

EL= Ioi
300K, - T

Furds u, = l.,l oF where ois the@reeofdissociation. Ifthisresultandcquation

(20) arc info&rced into equation (19) we get

Ir,= l"oi _ ek I ,, * r ,r,. IaF F 300 L6rrn 6DkT' Kr I .....(2t)

with the assumption that the elecholyte is coryletely dissociated { a = l) and makirg use

ofquation (20), equation (21) modifies to

r=roi #[#.1H#"] Q2)

Insoducing the expression for k urd the values of e, k and n equation (22)

bocomes

.....(20)
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9.90

(pr)"' .....(23)

ince C : C.Z* = C-2.. (C in eqpivalqrB pcr liter and C. and C. in gram ions per liter)

ri=r.i-[*q. x l0t I" ior

.....(u)

The equlalcat cc&rcencc of an clmolyte is equal to tb r*, srthe conductances

,f ttrc constitu&nt ions md hcncc.

r=r'[p.ffi] ;;aa

lr _ ,\.oi [ze.r s(2.+z-) . e.so x los Ll rl
r,-T-L tDr,f - (Dny'-l ....(25)

For uni-univalent electrolytes Z* = 7- = | and o = 2 -'E *4 equation (25)
educ6 to

A = Ao
82.4 .?'i#n.] o

(p r )"' ,r .....(26)

This eqration is knowr as &bp-Huckcl - Onsager conductance equation

The Debye:-Huckel Onsager conductabce equation explains &e decrease of &e

quivalent conductanc,e with increase in concentration &s due to decrease of ionic velocit5,.

lsulting from interionic forces. . The first term in the brackets gives the effect of
lecrophbretic force and the second term represents the influence of the relaxation or

t

'C(zt + z
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esFtfilctry force. Ttr rnagnitude of ttrc inerimic fc-rs inereases with increase of the
valence of&e ions fZ. and zJ and concentratior ofthe erechoryte.

l8ruFrcAnoN oF DBYF-HUCKEL - ONSAGER EeuAmoN

Fsauni-uivalenteletrolyte, assuming cornplete dissociatioa, the Deb5rc-Huckel-
Onsagcrcqtution maybe vnitten as

l. = Io - (A + Bl,o ).8 .... (27)

u/.k? A ad B arc custante characaristic of tte sotve,nt and the terycranue aud arc givcn by
equatio (28) and (29)

^ 82.4

(or )"' n .".. (28)

8.2 x l0'B=
(n r )"' ....(2s)

Aq$BGUS $OLUTTONS

Verification ofegratioc is to sbsw thatttrc equivalent conduetance is s liaearfunctisn
of tbc sqFsr€ rost of the concerrtation and the slolxi of the line is numerically equat tsA +
B rU &e ralues ofA and B mav be calculatd fr,om equations (2g) and (29).

Flgurc - l
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ln figure - 3 the exp€nil€nally deermned equivalent conductances of

aqueous solutions of a few uni-univalant elrcEolytes are plotted against the square roots of

the corresponding coucentrations. The slope of the lire is found to be numerically equal to

A + B &,.Td the intercept to the estimated equivalent conductance at in{inite dilution ( \}.
fie DHO eguation is strictly obeyed at concentrations upto about 2 x I0-3 equivalent

psf lit€r.

For electolytes of unsymmetrical valetrce type, Le., Z+ andZ_are different,

tre verificati'on ofthe DHO equation is difficult since the evaluation of the factor in equation

(25) requires the mobititics of the ions at infirirc dilutiou; for this transference numbers of

the ions are needed. The highsr the valence tlpe of the electolyte the lower is the limit of

canceirhation at which the DHO equation is ap,plicable.

Funherbi-valent electrolytes such as copper sulphate the plot of the quivalent

conductance against the sqrare root of the conceutration is nct a srraight line, but is concave

to the & oit (Figure - 4). The slopes at appreciable co*cei:frations are much greater than

those calculated theoretically. This may be due to the iacamplete dissociation at the experi-

mental concentation. The shapes of the curves indicated that ia very dilute solutions the

slo'pes approach tbe theoretical values.

A.

trERrc-{ Dcrtrttor from DAO equttlotr

I

Tg cr r.C
-.rC

\
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Electrolytes like chloddss md &iocpaates rf alkali metals ofmethanol obey

DHO equation. Salts of higher valence tlpes exhibit appreciable deviations. These

discrcpancies become more marked the lower the dielectric comtant of the medium.

Especiatly rf the latter is non-hydroxytic solvent. Substances, which are stong electrolytes

and almost completely dissociate in water behave as weak, incompletely dissociated

elctrrolytes in solvents of low dielechic constant Hence deviatioa from DHO equation is

obscrred.

DISPERSION OF CONDUCTANCE AT HIGE TREQ{,ENCIES: DEBYE-

EATKENEAGENETFECT

An important consequsnce of the exiitcnce of the ionio atnosphcre, wi& a

finite tiree of relaxatior ir the variation of conductance with fteguency at high- freqirencim,

referred to as tJre dispersion of conductance sr the Debye Falkenhagen effect. If an'

alteinating potential of higtr fre+mcy is ryplied to an ion wi$ the relaxatipn time oftlr i*ri,ie

a$ixxphere, the uns),rumetrical charge distibutiea foraaed around an ion in motiou witrl net

have tigne to fonn completely. If &e edcillation freqrrency ir high eaoug&, the ise will be

virnratly stationary and its ionic annosphere will be symmatrical. Therefore the retrrding

farce due to the relaxation or asymmef,ry effect will disappear partially or entirely u &e

frequarcyoftlre oscilladons, of the curreat is incrqseC- Hence atzufficientlyhigh frequec*

cies {re cm&rctance of a solution. should be greaH ean that observed with low frequsncy

alternatiag wrent or ruith direct current. Thc frqucncy at xrhich &e increase ofconrductmee

is etrycctcd is approximatcly l/ 0 , where $ is thc relaxation time. The relaxation timc for a

binry oletrolyte.

o = 1l'3-xj0:10 ,.r.
CzL

Ad thc limiting frequency V above whic& abnormal conductance is expectedis
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n*g* xl0roosailhtiuns per sscond
71.3

The curcspording werrc hag&

r - .2'll mctcrr
czA

For mt cl9g'tlotytcs othcr tbe acids md bosos, in agueoru solutitfos, A is
about tiO at'ZSt edhrac

^ 2 xl0-'
rt rE 

- 

liiGEfD
cz

For uui-univaleut clecholvtc of 0.001 molar conceatratioa thc Deby+-

falkcnhageo effect sh$ld bc obscrvcd witt high fr,eqrreogy oscillsioas of.wave lcng& of

about 20 mmrs or lcss.

^ 
2xlo{ 

=2octcrs0.00lxt

The highcr the valencc ofthc ions and thc rnore couccntrated thc solutim tlic

shortcr the wavc lcnsh (hrghcr ee frcqucncy) of the ccillations requircd for thc cffect to

becomeevi&nt.

The calculatcdratio ofthe decrease of conductancc due to relaxation effect at

a , short wave length )'' , i.e ., A, ( )t ), to drat at long wave tength A" , i.e., at low frequency,

is plottcdas ordinatc againstthew&ve lcngth as abscissa(Figures 5 and 6).
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Ftgure 5 : High Frequency conductancc dispersion of potasslum chloride

$rhlo.r

- $gure 6 : High Frequency conductance dlspersion of salts at X0{ mole per lifre.

It is seen that the decrease of corductance due to red.uction or asyrrynetry
effect decreases with decreasing wavelength or insreasing frequency.

CONDUCIANCE 
'trITII HIGH P0TENTIALGRADIENTS: WIEN ETT.ECT

When the applied potential is of the order of 20,000 volts per cm., anion will
move at a spced sf about I rreter per sec., and it will travel several times &e thickness of the
ionic atrnosphcre in the time of relaxation. As a result there is no time for the ion to build up
the ionic atmosphere and hence the moving ion is virtually free from an oppositely charged
ion atrlosphere' In these circunlstances both asymmetry and electrophoretic effects rvil!
diminish and at sufficiently high voltage will disappear. The equivalent conductance at any
appreciablc concentration will be greater than the value at low voltage. This is knour: as wien

r.0

6r

133



D.D.C.E M.S. University DCH 13

effect. The wien effect is most markcd where &ere is large interionic atkaction, i.e., in con-

centrated solutions of high valence.ions. Thc Wien effect for potassium ferricyanide is de-

picted in figure 7. The quantity d/1, is the increase of equivrrent conductance due to the

application of a" potential gradient rep,resented in X- oris. At very high pctential the relaxation

and electophoretic effwts are completely eliminated and hurce and AL values tend towards

a limit

V*pr sn

Figure 7. Wien effect for potassium fcrricyalide

For an incourpletely dissociated electrolyte the measured eguivalart conductance should

bt oA" where cr isthedegreeofdissociation.TheWeneffectforweakacidsandbasesis

several times greater than expected. This is more so as the voltage is raised, The powerfrrl

elechic fields pro&rce a temporary dissociation of the weak elecrolyte into ions. This

phenomenon is called as dissociation field effect.

To conclude, *rc condus'tance with very high frequency currents and at high potential

gradiens providc clear widencc for the theory of electolytic conductance based on the

existencc of imic ahosphere.
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ACTIWryAI{D ACTNTTY COETTICIENT

When a purc liquid or a mixture is in equilibrium with its vapour the chemical

potential of any constituent in the liqiid must be equal to tlrat in the vapour.

pi=pi + RT In pi

Since the partial vapour prcs$ue of any constituent of an ideal solution is

prcportional to its mole fraction (X) in the solution the above equation is modified-

p =p: + RT In X,

The above equation is tnsfor ideal solutions. If the solutioa is no! ideal the

equation is ftrther modified

Fr=Fi + RT In x,{

The ccrrection factor { is called as the activity coefficisat ofthe constitutent i

in the given eolution. Acdvity coerlicient is a mea.sure of &e dcviation ftom i&al behaviour.

Foran ideal aolution the activity coefficielt'f is uaity.

lrr = Fl + RT In x,t

The product of activity coefficicnt and mole fractrm is called the activity.

X,4 = a,

Fi=Fl, + RT In a,

The mole fraction of the solute is proportioral to its concenhation. The

conccnfation may be expressed in terms of molarity (c) or molality (m)

p=p: + RT In xfx

p=p: + RT In x C{

p = F: + RT In x mf,,,,

{ ,is normally written as f and { is given the symbol y
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ACTTVTTYAND MEAI{ ACTTVITT

If a* and a- are thc activities of $c ims produ"ed by &e clectrolytc and v; hnd v.

are tlre number ofpositive aod negative ims rcryectivcly, the mean activity 8* is calcnrlated

by 0e following equation.

a* = (a** ,-*)'"

Wh€rE v is ttre totat number of ioos

Activity a, of tk clccnolytc is given below

rl* a-t- * ?2

Mean activity = (activity) r&

Similady raean.activity coefficient is explaind

,r =(T*"* T_,_ )r,"

ACTNTTTCOEFFICIU\IT

The activity coefficients of dilutc rclutions of uni-univalent electolpes are almost

equal to l. The deviation is very [ess. Irrespective of the eleetolyte &e activity coefficisnts

of uai-univalent electrotytes at dilute solutions are airnost ergu,*I. For the same concentation

when we rnovc liom uni-unibalentro uni-bivalsnt the deviatioa inereases. The activity coeffi-

cient depends upon the ionic stength of the solution are almost eq'*al. For the same co&cflr-

Eatioo when we move frorn uni-uuivalent to uni-bivalent the deviation incrcases. The activity

coefficient depends upon the strenglh of the solutions.

TIIE DEBYEIIUCKEL LIN{IIING LAIV

The thickness of the ionic a0nosphcrc is givenby equation

'/k=[ik#*)*

8ne2N 2

IOOODRT

p= ll2It,r,

-]

.....(30)

.....(31)

since imic shength,

k=[
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Activity coeffiEieirt of an elecuolytc is rei:rted to the trickness of dre imic

a@by&€empmseloa

-zie2NI-t.=G I zDKT
.....(32)

Intnoducing e,qrration (31) into oquation (32) and dividing the right - hand side

by2.303 toconvertnstural to commorn logri&ms

Subdifirtio ofnunoerical values ofunive,rsal mnstanb we got

losi=-r.823x106 fua
Fora givcn :olvmt and tcmpcrsture D md T me constpts asd ti€Ntc€

Iog f, = - AZi 1[' .....(35)

wkeAie acmstantforthesolvent atthcspccifiodtcrycranue. This cqutioaie knovra as

tiie lhbye-Huckcl limiting law. [t expresses the variation of the activity coefficieat ofsn ion

wittlhc ioic suemgth of Sre nrcdium. It is called 6c limiting law bocatae thc approximation

rrrde in &c dctivation ofthe potentlal at ao ion due to its ionic aftreosphere is applicable saly

at inf:nitc dilution. This law holds good for elecsoltres in uery dilute soiution. The ge*eratr

mclueiondmrvn furati:e lir::irins law equation(35) is thatthe activitycoefficieatofauion

should dactas$ wi& increasing ioaic strength of the solution. The decrease is greater the

highcr tk vsleac€ of fte ion and the lower dre dielcctic constant of the sotrve*t..The rnean

activity eocfHeient af aEr electrolyte may be writtcn as

lcgf* =-AZ+Z-Ji

wkre Z. *d Z-arethe valences ofthe ions.

.....(34)

.....(36)
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ELECTRODEKII\IETICS

A reaction-talong place oil the surfacc of an electrodc involvm the followingst€p5';

l. Diffirsion of the reacffi to th surface ofthe elestrode

2. Absorptiou of rcactants on the surfaceof tho ele.*ro&

3. Transth of electnons o,r to tbe adsorH r.cactant species

4. Description of iro&rcts from the surfrcc

5. Diffirsiouof pro&rcts away &orm thesurfae ofthe electode.

The aecessary activatim eoergy fd'r the ions and 
$ectrons 

involved in a

reaction is produced by the elecuic field Since the reactions are investigated at ternperahres

more tban zero degree centigrade, th€roild energ), in addition to electriCil'eosryy ;iso

cqrtribute to activation energrv.

For each ionic species at equilibriuq the rate of electron traosfer ia the

cathodic direction is exactly balanoe{ by e" electron transfer in the anodic dirwtim so Sat

the curreot density (current per tu:it area)

jc:ja=jo '
It is this condition, which determines the equilibdpe ditr€, qg.in.efectric

pohtisl" A$eq . The crment dclqity jo at eglllibriwr is called the 9x,9.|ggg9 crsrrqs!

&osity. The ratc r of the cherdcal reaction at tk surfacc of an clectrode is gyeir by

t--yfi

where z is the charge on the ionic species and F is the faraday. We eccrthat in an

electrochsmical reaction ro j, it maybe me,ntioned that while the rate of the chcinical reac-

tim at the electrode is oryrwed b rmits of *otm-'S', the rat€ of thc cfrurgitry*fer at'Sc

electnodc is expressed in units ofAm''

For a given electrochemical reaction, the electrodes are said to be

nonpolarisable if thcy bavc high cxchange - curreqt densiqy. Applicatioq-gf pote,ntial

diffeclncc acnoss anoapotuisableelectrodc results in an incrcased flow ofclrrgcbstwc€o
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the electodc and the solutioq &ough the po&ential ditlbrcnce across the elec{ncal double

lapr doee not change. Thus the charge mrxes rqifutoand&o{n &e eleenode with fie result

that oo charge density is built up in.the surfacc laps-,€alonnel eiectode furnishes ar ex-

ample ifm polarisable electode.

If the applied potantial differ€occ acrcss a polarisable elechde is insres€d,'

&erc i8 a litle flow of charge into the solution The.chrrges remain in the electrical double

layer and increase &e potential di{ference acrfis iI Mercury electrode in Kl solution is m
cxryle of a polarisable elechode.

Whm an dechcheuical cell operaEs trndcr ngn-equilib,rium cooditioos,

jc* ja Ia such case the pohtial differenoe betwee,n thc ccll terninals dspub frm d,re

equilibrirm value A4 = E, the cell EMF. If tb celt is converting che,mical frec cnergy into

elecficl aqy, a+ < E If, oh the n1trs hra4 ths cdl is ruing an cxt€xral suncc ofaergr to

caulic cllcqmiel reaction, a{ < The actual value of a6 fuemds upon ec crured ako$ityj at

the eleotnodcs. It is customary to define the'qumtiry over potential of the cells as

A0-a$eq =4

The value of q id dctpmid in pct by fu pc{mtiat diffceeoco (iR) requirod tG

-oYerErc &e resistanc€ R in &€ eleceotyte sd fu lffids. The conpspo'nding elccEicaE

erryriddi*sipted ashea! it is aoalogors to tLe frictisaat loescs iairreve,miblcm&mieat

trocs. Tk remsining part of 11 , which is of a particuk theonetical inter,esg arises &,m &€

.rdc limithgproces at dre etreetrdes. The correspemding *lrytid eneqgy is being usd for

providing pst a,f the activatim encr$r in one orryr stry of the eloCfodc ractiou'

TflEoRgrlcALW sl6{Exrcs OF'AN ELE{CTRGDB REACTION

Bnthr - Vohner [qurfron

Coneidcr fu electrode reaction

!#'(aq)+ze + M(s)
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&; 8. Glbbc fuc&*'currc for ttre clecbode reacdou

Which will oocrn whca 6c reactim isa A,P is iu thc vicinity of an oko&krfe eo that

thc clecfrsrs s€ fraos{bncd from trG elecrodc to tbs ioa

Now according.tb &c Eyting rctivated co,rylex tkry (ACT), EE rale constant

k, of thc chemical reactioo is given by

k,=Bexp(-aG"&r) ...(37)

WI1g1E Gs is the standard Gibb's frce energy of activation aad B is some c{,nst8nl Figure ( I 2}

strows tk reaction paths almg the freo en€rgy sr.nfaccs Hween he reactanb and the pro&

ucts. The -rraction comdinate" isnortrnl to the eier:trode surface. The elochctrernical reac'

tion involving electron transfer occurs in a region near the clwtrode that coincifu with &e

rcgroo ofths elctical double layer. Itmaybe mentimdthatthe double laprhas veryhigh

electic field or the ordsr of 10 G Ct' Ym G-r, assuming that a potential ditrerenq€ of one volt

exists acroes atlpical double layerofthickness 1 nm. . Such fantasticallyhigh eleckic field

can literally teq the ions from the solid metal surface., &agging them into the solutioa. As-

zuming the Helmholtz model of the double layer, we Inay assume that &e potential varies

linearly with X ({igure). The position of the outer HelmholE plane is at X" where the reactant

molecule can be tocated.lvf.( q) + ze -+il(s) in the vicinity of the electrode mrface show-

ing the lowering of dd bythe electicpotential.
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1['e etall consider a reactiar at the elffiode in which particular species is reduced by

the Eansfer of a single.elecfton in a rate-daerrriaing step. Let (Ox) and (Red) be &e concen-

trations of dr oxidized and redued forms of the sprcies, rspectiveiy, auaide the double

IaFr. Clerly the net cumErt at the electode rs tfue difference of the cunents resulting from

Se rdrctio [Oxj aad exidatim ofGed] " Tte nrtcs oftke Frc]c€sses are k"t0xl an \ [Red],

rcspoetively. Ia a reductiom pff)Qcss, the rragnifrr& of eharge hansferced per mole of reactin

evcns is F = eN^ wlrerc F is tlre Faraday corstairt He,ncc, the cathodic current density jo,

arisingfro,mthe reductim is givco by

.1" = Fk. [Ox] .....(38)

An opposing *o&r cunent d€nsity [., uking fr,om oxldation is,

i =Fk*[nca] .....(3e]

Wttdsthe k"s arethecorrespondingrecostanB. He,nce, thenetcurrrntdcnsityat

thc clecftodc is giveaby

J=j. -i = Fk [nca]-rt [orJ '-..'(40)

.".."(4!)

where we heve made urc of Eq. (37i and asswrd that C,Los &,ee enrergy of aetivation is

diffmt for the caihodie and anodic process€s" Wh€o j, , j. so that j t 0, the cur:*nt is

arodic and rvhen jo t j* s thati = 0, the currentis cathodic.

Let us eonsider a redrction reaeim. As an elwtnon is tansferred from one

clect.odc to another, the eie*trical work done is eA* , wheie e is the eleetonic eharge end

A$ is tlrc Sglxtial differerce between the eldodcs. Hence, the Gibbs &ee energy of ecd-

vatioa is chaaged frorn AG'to +Fa$, if the Eaasition state corresponds to .Ox beiag ve,ry

cloce ta the altrtde. Thuq if A$ > $, more wo,rt has to be. done to briclg Ox to ib uansieiop

sat€, wi& fu rcsult hat GiS''. iee euergy of a aetivatim is incfeased. On ttre ocher hgfid, if .

the traneition st-nte corrwprnds to Ox being fsr from the electode (i.e., close to the out€r

pane ofttre double layer), &€n. ACI is independent of A{ . In practice, however, the siunation

= FB, [rea] eryi*acx' / Rr) - FB. foxlq(-aci l nr

t4t
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is midwaybefireeo thetwo extr@; [Iffirrtcawritc 6cClrbos fr€c energt ofoctivation

for re&rction as Ad + cFA{ where a , #.ths qaogftr cocfficient or qnnmffiyfactoq lies

betwea0md l, i.e., 0 < a < l.

Let us ncxt considcr fu oxiddion of Red" [Iere ked discards an electon to the

elecfodewithttre resulttbatthextraworkneeded for'reaching the transition state"rs zero if
i.

this state lies close to &e electrode and if6at gtatc lies away from the elecqode (i.f, close to

ttre outer plane of the double layer), the wort nseded is -Fdd , so that AG' - (r - o ) ral

Subetitrting'forthe two Gibbs, frec e,rergies ofactivation in eq. 41, we obtainthe following

expression for thc cun€ot dcositlt:

.i = {o. I 
nr aJ 

"e 
(-AG: / nr)] es'r*r -rB" to-l"p(.aq 7 RT) cron* ..... (42)

=j.-j"

At equilibrilm A0 - A0" and thc net crrr€ot is zero and the equlibrium obrrcp Censi-

ties are equal..Thru, if th pote,ntial. diffeffince differs &om its equilibrium value by the

overpoteatial, so that

r = A0 -.A0,*

tlretwo currelrt densitice are,

-." (43)

j=tm. [neaJoe(-Ac: /RT)]J*)r4 oq/Rn t(")q'T' =i,o c('*)tf* ..... (44)

i =tB. [oxJexp(-aci /nr] cda eq/RTei \RI =L eiF/Rr .....(45)

Sincese tcro equilibrium cufieilt &nsities, j* di* arc equal, we cirrdiqfic$$-

scripG md fuipab each ofth ar.l, tbexchngccunqtt d€nrity, and wrif .

j= jo = {e(t*)rrnr - e-orF / RT} * ('t6)
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Eq.46istlrwell known Butler-Volmerquatioo, Letus Flraminetlreexponentials in 84.46.

When th oveqlotential 4 is very surall so &at q F / RT << 1 , we can use the series

ocpaosim"

x=l+x+X'' +.....
2l

too&b

j=r" {[r*(l-cr)riF/Rr+.-.]-[orrr/Rr]*....]] .....t47)

From F4. 4s i: *",*r"rnt densityis proportional to the overpo*n;.' 
tot'

FromEq.48, we seetha!

E={Rr I rfiil j"}
When E is $DaU an<i positive, the cuuent is anodia (! > 0, when q < 0) a:rd when n is smatl

end negative, the qrsrentiscarhodic (i < 0" c&€n q < 0).

lVim {:e ovorpotentia! is large and pdtive (widch ls S* case of an e}estod€ behg ex

aaode in electoiysis), ** second exponential b 84.45 is r*ueh sr:aller tbaa the fimt a*d may

lrcsegleebd,glving.

j= j"€(t-rlaF/R ."(49)

Hcoce, taking logs ofbotbsi&

tnj * lnjo + (1-o ) I1F/RT .." (jS)

Wtm the overpotentiel is large but rcgativc (cmrryn*ing to the c&&* is elec-

rolyuis), & first exponential in Eq. 45 is uruch smaltcr than &e second and maybe ncgl€ct€d

udweharc.

j=- joe-cnr/nt .....(sl)

so&at

ln(-;)= ln jo - a4nF / RT .....(52)
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F4.50 aha S t are called &c fiafel Equdims

Figurc (9) shws thc plot'cf the carsent densrty ! versus t}re over potertial q is in

accordance wilh the Buttcr- Volnrer ogntion; Wc eonsidcr two Cases, tabeied q as Aand B"

h ease A thffe are high excbange eurrent dcmsities j. at tra,tl: el*ctr*des. The individual

electnode curvs are lebeledA"'mdA". In &is sase evsn a small ov'er potential will produce

apprcciable flow fuou& the cell. Tf,e o&er cas€, B, 'co'rresponris to very law exchange

currerat d€nsity Jo (We have not shown the individuat electrode curves.) In this case, a large

value over potelrtial is reqprired to cauee apgbiable current fiow through the cell. Thus, we

see that it is the exchange currcnt d€nsity J" which, according to thc Butler Volmer eqrration,

daermines tbe actirratioo over-potcotial. Tk Strape of the current density versus ovef,

potential curves is wifutly det€rmincd by tre value ofthe tansfer coefficient er , which can

b€ deterrniad by fiuing &c expcrimenbl curvs to the Butler - Volmer equation.

Figure. 9.

Fig (9) Variation ofcurrent densrty with overpotential in accordance with the Butler - Volmer

equation.

' 
The hansfer coefficient can also be determined from the Tafel plot which is

the plot of the logarithm of the currert density against the over potential (fig.). The linear

rP(lq}rtr*{t,

L44
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portioor of6c curves in Fig.(10) sgrec \rie &c Tafel ee:.ation. From the slope ud &c intcr-

oryt of &c Tifct ploL a qd L cea Ue d"tr.rd* ..

Iog I (Acn4 _+
flgurrc.I0.

Fig (IO) rtluiation of ovcr potcnuat for tfu e.cbafge of tf im m fu rnriqrs r663s widr
crrr€otda3ity.

Ehc'tnoltredc Phenomeaa

Electnokinctic pkrorcoa are a rchtivc movem€nt wie rxpoct to ca:e anotkr,
of a solid d a tiquid i s accoryanied by ccrtain electricel phenomcoa

WheD a tiquid is in contact with solid &c furterface is clectifid. lYhce ehe

liqtnid flcvrs with rcspect to solid as the iat€rfaac is electified it is acclrgpeied by eteeti-
eat pearma !t ariset due to the zcta pdcotis! prcsat on ee &ftscd la1nr. This wilg* on

the solution side - srch a pbenomenoo of movcmemt of one ptrasc wie rc*pect & a:ro&er
s&ei: *c inerfaee is alenified is known as elmckinetic effect As isns in diffiud tarcr
can chaage ard ust the ions in the fixcd layer. The obscrved eler-:tnokiuetic effect is ouiy due

6 s* iw Ia diffiiscd layer erd zeta potartial ties on the di&sed lalcr.

Tho $coretical beat*rent of electnokinetic phenomena is basod oa the coucept of the

cxisilcne ofcn eletrical double layer'at the solid liguid boundary.
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Tbe Electrlcd Dosblc Lrycr

Accordingto Hehntroha the &rhle hpr consise ofnro oppositetyctrargod

laprs at a fixed$Eailc€ apart, s.&St it cdrldbcregrrdod oqrivalent to an electical con-

dens€r of consa$ caprcity, wie prallcl p@ seOarafd by a distanee of the order of a

rnol*ttar diamctcrs. If thc elefiieal dqrblc lapr at &e inerfacc of motion bctween a soltel

andaliquidisrcgrdcdas acond€ascrwiftpcrallelplatcs d cmryrt each conccpts acharge

o pcr sg. cm.Th EccorfiDg to cloctostrtistics:

- 4rod.D

Whffe E is trc Aftren* in pdcotiat bctrroeo thc platcs of zctryorcntial and

. Thc coception of Helntoltz of &c doublc lapr involving a sharp potential

gxadia& was modificd by Guoy and Ctrymaa, esy us€d ditruss double laytrs. Accordine tg

&is view &e eolution sido of &e &r$lc layer is sot mcrely one moloculc <r so.in thickneso

but exten& for some distance in tb li$id phase" Io dd8 regim tbcrmal agrtation pqrnits the

froemoverreoto{thimepr€s€nfiinecsolUion,butfudiskibutionofpositiveadnegatrve

chargee is not unifcm Eincc tbc ctcfiostdic ficld arising &,sm thc changc on tlre solid will

resutt in a prefcrcntial attractio of pctictes of opoeitc sign Tho picnue of the diffitsc

eloctrical doublc laytr at lhc srrfiaGbctcrccn asolid and a-liquid is &ru malogous to fu
Dcbp - Hwtcl coo@ ofrhc ryocifly chuged ion - amfur nnmunding a givco im.

$anThcory

According to Stcrq 6o.doublc lapr consisB of trro parb: onc which is

ryoximaely of a mlocular dimic in &ickness, is suppcc b rtmdn fixod to 6c nr.k,
while thc otrer is a dlffirse lala cxlaiding som dimnce into tbc solution Tbc hll ofpm-
tial in tttb 6xod lafr isslpc whiletbat in 6c diftsc ts1rr is grBdEL 6e docreasc bcing
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€xpmdid innaare; Ttrcpotential gradie,ntatthe *116-l;quidboundarymaybereprcsentedy

Fig. (I l). Thc left hard Exis represents the solid @se aud tbe vertical dotted line indicates the

cxtcot ofttc fixed part of the double l"y.c the relative thiclness f this layer, probably, some-

what cxaggerated ir &e diagram. If the poteatial of the solid is ind.icated byA and that of the

bulk of & liryicf by B, &e fall ofpctentiai in b€tween may oCIeur ir two geirerai *,ayr depend-

ing to a largu exteat, 0 the nature of the iaas ard molecules present in the solution I &, II. in
each mse shary fatl of potential in the fixed portiou and CB is the graduat approxfunatelv

exponwiia! charge ia the 6gure portioa of the double layer. fA" totrt f*ll of pcte,r:rial, AB
bstws* tte solid end the solution is cqua! tc the reversiblc potential in the case of a systsm

that eab*arre reversibly thie is represeatodby&t ryanbol E. The *latrokiaetios cf Z*ta
poteutial hcwevar, rp'hieh is involved ia electro osmosis, electroph*resis enC allied
phemma is &attw'eea ths fixed and freelym,rbile perts of the dauble iayer, dtis is i}.e

pat€otisl chmgc frm c t+ B, indicatai by { is each case {Fig. I i}

IIg.11

IStf,enE Fqlrrtrtr +
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Typ$ of Electroldnefic elfcctr

l. Electro'milo*is

2. Suemingpoetial

3. Electrophoresis

Electro Oommlc

Solid phasc is fixed e.g., in tbo fcur of a diaphagm, while ttre liquid is &,ce to

movc, Ore liquid *ill tctrd to flow thurgh &c pm of&c diryhragm as a consqueucc oftne

apptied ficld" The dirwtioninc&ichthcliquid flows shoulddcpqxd onthesignofthccharge

it carried wi$ respcct to 6at of fu solid" This novemart of a liquid 6rougb tftc pores of a

diaphragm under tbe influcncc of m EM-F. constitrtec. This *€oorcn@ is hwn as eloctr

osmosis.

Streaming potential

ln etechosmosis drc difrerence iE potq$ial ie respmsiblc for 6e flow of an

electolyte through a capillary, s,hich is g crpcctcd out ofprcsnne diffe,rcnce ( A f).

Hencr, reverse sf this ploc€ss should 8160 b€ possrtle i.e, iY-ka a liquid (elcctrolytc) is

allowed to flow thmugfo a c"piiary *Osrprcssurc, it dcrrctorps potential difftrencc which is

known as sheamingpotential andheapcdarelops acrrrent,tnownas sE?aming curr€ot

ELECTROPTIORESIS

Elechophoresis involves thc mvemerf ofchqgd liquid phas€ against immobile solid

phase. The solid particle with (-)ve charge and sizc 'a' is surrounded by a diffirsed layer of

thickness K-'. To have ttre diffuse layer, &e particle raust be ofconsiderable size. The particle

is like a colloidal particle. This arrangemcnt of negatively cbarged particles surrounded by

positively diffused layer is similar to ron ryr,rqpqdd by ionic atnoqphere. When the externai

potential is ap,plied" the negatively ct {gedsolid particle (mobile phase) moves in a static

liquid phase ofpmitivety charge. This ptrcomcna is known as electophoresis.
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VOLXAMME:TRY

voltammetry eorllpriss a 8rury of electu aaaJyticial rnethods that one based

upan 8e poeatial cr:rmt behaviour of a polaisabie elrch& in.*c solutlcn belog caalped.

Ifr vsiMt4i a measured small p+tential k w- rrecc ssrffi e peir of ele*tpodes, oae ef
tphich is noa potarisable referemce el*kode d #fuer a plarisable ine,g eiechade. ?he *ur-
rmt whtch ficvvs dee€nds won the coryosidm ofthe gtusor. [e &words,..roitareuxetry
and voltarrmtric ana!5'sis are concem€d ltrith fu shrdy of c*ncat volkgo, relatian at a iniero
clrcsode, cslled workixg eleeffi. Thrs electode rnay be inest mctil, sucb as ft cr gaxd. .{
three cl#e ceti is howenrer, p'referred in gwral volt*r*meay" The tfoird anxillery etw-
trode ese be a simpis wire of p,. Tk rsfa@ €lcc@ ffiy b* of my f,om.

A variab,lovoltage source is @b ssieg wi& amiermmr:ek mdthe
curnnt carrying elesE'ods. Poemdd at fu wo*ing deetCI&, rel4tive t* fu neftrea:cs elee-

hode is &m me,s:red by q olectieal votmtcr. Tk choicc of working eieefo4* in
voltrmmeey dcp€Ilds lengthy m the rangc of poteatialr it is dcsircd to intgrfuoe. hst pt

electnode is Suitable for potcntials more,porsrtle thm refe,lreoce clectnode calomel elec-
hodo (SCE).

POLAROGRAPEY

Polarographyinvolvesfire shrdyofcurrent - voltagerelationships at adropping
mumry electrode under csTtain confolled conditions. Heyrovsky and sldkata developed an

apperatus 'rlhich hcreas€d &e aptried voltage at a steady rate and simultaneously recorded fte
curcnhvolbge curve' The apparatus. was called a polarograph and the records obaired are

polarogrffi, .
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Ilgsre'l. ffirnual Polarograph

The basic apparatrs for polarograpnic malysis is .strown in &e figure I . The dtopping

mercury electrode here acts as ca&ode; it is sometimes rsfeccd to as indicator or micro-

electode. The anode is a pool of rnernny*lith 
""s 

as a refersnce elestrode. lnlet axrd Outlet

tub6s, are provided in the ccll for expening fu dissolved Grygen fipm the sohtfion by the

passage of an inert gas. P is a potentiomaer by which 
".L.f. 

up td 3 volts malbe grsdually

applied to the cell. G is 6rc Galvmsrneter which rneasures tiit current and 'V' ii the volmasr

to measure the rypliedpotentiat.

MCTIRSTE

Thc cell is fillod wi& an ctcctr,oactive matcrial eg. CdC! solutioo. Apotential

is rypliedbctrreen6e elcctnofumdincreasedinastepwisernnnlrsr. FrsnAtoBprastiaa[y

no currat wi[ pass ftough fu ell. At B, \rk€ thc potcntial of the micro-elecfiiode b equal

to ttp dmompmition potential of &e cadmium ions. the Tn€nt zuddmly bcgim to increase

and the following reaction tgkcs place &t DME.

Cdzi + 2c- -+ Cd
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On furtherincrcasing the ap,plicdpotcntial, the currentcootinuouslyincreases

and reachcs a limiting value. A-fter ihe poiut 'c'the cunrnt no longer increases. (FrS. 2)

tIG''

I
&

II
F
a

g

t
a

a
I
I
a
a

I
IrosIf 1...

effi.at P.rrffT& fB?.'
Fig. 2 CUH.RET{T - VOLTAGE CURVEAT DME

Flgare.2

The small crrrent fiowing dufirghttrc solution initially(AB) is ealld'.lrsi&a;
ctrrcnf. At &e point 'c'where the currEnt has reached limiting value is calld *limituig

cureat". Thcdiffercace between limiting surrent andresi&ral crrrent is called "diffusisn
curreaf

Diffusion current : Lrmiting c,rreat - Resi&ral crrrrent.

TEEOW

Eleto-active materiai reach &c zurface ofthe electode bytwo processes

(0 ,nigrstim of &e ohargd particles in the electric field carxod by the potential differsnce,

cxieting beeei€tr the eleckode surface and fte solutioq (2) diffirsion ofions under the influ-
cace of mtration gr"adietrt"

Hcyrcvsky showed that the naigration current can be practically eliminaled by
addiag a srryorting el*trolyte. The suppocing electrotytc rnust be eompcsed of icms . which
are discharged at higher potentials and which wili not interfere or react chemically with ions
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un&r investiptisr. If dre cmtrati;f g etectrolyte is very large (at teast 100

fotd excess), drc ions of thc & salt pr*ically carry all the currsnt, md& t*e condi-

tioru, tlre limiting qrrreot b dM eo{cly a diffirsim curreoL D.ILKOVIC examincd tk

vriq6 frctfis which gsncrn thc diffirsio curtnt ud dc&rccd the following equation:

.....(l)it=607aDl{C,ul tu'

ra - diffirsim crtrrcd inmicroorycrtc

D = diffirsion coefEcient of elecbocctive 3Pcci6(crdsr)

C = iu oomffiim inmitimdcsPcr titr€

m = tatc of flow ofwurry ft,m drofing etectro& in mg. per seeond

t = drap tfum in scmds

n = number of electrons involvcd in tk reduction proaess.

Ttrc ILKOVIC qqation is iryorta$tbecauso it accouats quantiatively for the

nany factm which irlluem ttre diffirsim crrr€nt Thrs, wi& all the other factors remaining

constan!theditfusioncurrer*isdirecdyp'roportionaltottlecgrcentrationofeletro.active

rnaterial. This is of great iryortance in quantitative polaroglaphic arralysis.

ADVAFTTAGES OFDROPPING MERCI,IRY CAMIODE

(1) Its surfacc area is reproducibte with any given capillary (2 The consant

renewal of the electrode nrface ethrinates passivity or poisoning effect (3) The high over

potential of hy&ogen oo m€rcury renders thc electrode useful' for eiectro-active species

whose-reduction potential is considerably more negative than &e reversible potential ef

hydrogen discharge ( ) Mercury forms amalgarns with many metals thereby lowers dreir

reduction potmtial (5) The diffision cunent assumes a steady value immediately and is

reproducible.
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&tL[ryT TilTL:RES OF CU:RRB{T.ASPIIED VIBI,TAGE CT]RVE

lbtcld.l

Figure 3. Polarngrr$d uryrr (Egrovrl")

fh€ height of the curvc is the diffimion cunent, and is a fim*im of t&e
coffitrdm of tlre eiectroacfrve matcrial. The potcaeet at &e pcint m &c po!ryrryhie
wat'ewleBtbacunmt is equal to o'ne-balf,effu diffukn arreatis Eesdas ftcl{a!6reve
eotdbl ud isdesig[ated s E,o. Half-wave potcntial is

..-..(2)

Equatioa (2) grves the retl*iomhip bttnce &c enrrot at dy pefot !, &c
diffirsim mrat i., &e apptied voltage E md harf-we'e inbtrial E*.

Xhehdf-n'avepotentialiselpftl Amtoftkclocfiodecharastsrisgsagd
E, k usd for rhe qualiiaiive,identifiixim ofunknoqm stbstance preseirt in &e #ion.
ftlehalfwave pererrEiai can be evaiuadbyptoting E vcrsus tog -!- 1

I

{&rffi
ThrEc methods wtuch are used inpractice are :

E=8,,, + 
0'0591 

bg :cl
nl
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1. Wave hetg[t - conceutrr66 P*otr

SotutiOns of sgvcfdf dfttlent crcafrauons or urc roNrs uEasr ulYc'5ug6ut u

arc preparpd. fire oompocition of nryportiag clectr,olyc is kcpt sarnc bo& fqurknowu and

the standard. Thchcigbs ofthc wawsacffiIrldaadplomd as a frm-tim ofmtration'

Thc polarogram of the unhrwn is pro&cd eractly as thc sandard" By iatcrpdation tk
conceotatio ofrmknoq,n cmbe fmdqil

2, Method of $uderdAddlthr

Thc polarogrmr ofthe unhomm eohiirn ig fir* rwrdcd A known vohre of

standard eolutim is addcd to it and a scood polsogr&n ie tskc,tr . Frm &c bcight of fu two

waveg tbc coaccntruim ofrmhwn canbccalmdedusmg Eqn' (3)

c-- ivc.
.....(3)"-(ir-i,Xv+v)+i,v

C.=Cmco ofunlnmm

V =Volumeofirnknoum

i, = Diffirsio crrrd of &ma (wavu bcigh)

C, =Cosa.ofdrd
v=Vohreofebodsdlddd

i, - ditfirsioucurat8ftcr&e additim ofvml ofstd'

3. lntcrurt $rdrrd or Pllot loi tffi
A refcrrncc kn x,to6c half-savc pdcrftt diffcr *tcast by 02V ir sdccfed-

Prrpare sarc wnfratim of tbo urllrnorl sd pilot im d Fcofd ec

polsogrmsspdetY

(lu ),
Hcrminctbr*io m

(I.). = Slave bci$t of pilot im

ts4
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(lo ), = Wav6 heigfu ofunknown

:[hen ttre relativc wwe hfrghts wi6 rmknocrn ion aad the known amount of the

pilot im in &e uirknown solution is measuredard coryU wi& &e ratio ofprcvior:slyde-

tcrmidliltrve-height. The concn. ofuaknwrn cm be erraluated fiom eqn ( )

co =L* (tu )' 
".- i" ^51;"'

C.=C**. ofitnknowu

C.- Concn ofpilot ion

i, - Wave height bcftrc addition ofpitd im

i. - Wave height after the addition ofpilot im

APruCAIION TO ORGAIUC COMPOT'NI}S

A large number of organic rnatsrials which re polarographimlly active, such as

arouatic fudracarbcns, aromatic aad unsannated aliphatic carboxylic acids, tliols, cartcayt

cornpum&' rrnines, proteins and amino acids havebccn investigatedsincc &e sensitiviryis

pnogortimal to no. of elcctrons, , tansfetrrod during reduction or oxidation, orrganig corffi-

poun& wke six or more electrns are involved in rcduction can be determined 51 ver,v law

carHatrrtim" Since &e tralf-wave potcntial varies wi& sfucture and zubstitution, pH,

corylltft8 rgpnt €tc. the conditions may be suitably selected for determinatiou of a particu-

lacorycmd eg., rcdudicn potcutial ofthc din{phi& goup liuked to a[yt grury is -l.2SV

adtoafuytgrCIupis-O.sV.

Some of the functional groups that can be reduced at DME are

{HO.C*O, {=N, -N02, -S-S, -C{-, €b.
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STABILITY CONSIANTS OFMEIALCI}}IPT.EXESI

The half-wave potcotid ofa siiryle E€tal ioa ir shifrgd, alffit inva.riably, itr

ths uc ocg3ivc dirostio of applicd.-rytf{ edtbc difrrim surcnt urually bemes
u[cr rt o it mdcrgpc. aomptcrdu !fi qgoi.

Fctccmplcrfuuib

M*iL, 
= 

lfii

tboovuttl rtrbilitycom F -

Whcrc 'j' ir 6c coordinlim ouobcr of lbc lignd. Tb rhift ia bdf-wave

pmirt 6rc b &c pcrcocc ofcoqking 4cA-f I givco by o#io

(8,,,).-(E,,)" =13togp+iY"s(L) -.-(t

Whcrc (E- ), is &e balf-wavc potcotid in aheo of tigd ud (%[ b tu
helf-wrvcpoicntialinpresmofligmd.Tbptrol of (Em), - (B*). vmulog(L)isliactr

. 0.0591 0.0591- -wiedtrc J=: ruiinUccp :lo8-P-a'n
Thus ttrc coordirdio nunbcrdstibffitycmsEa offu rylcxcc crt bc

svahnaf

clxluxtErnlcANAursa

Whca clcctric crmd irpa$€d fr*rg[ an ctoctnolyE cofution,'r chcmicirl

rcactign takcs placc and thc .ffi+ of chcmical. retim d an olocto& ir dirocdypropc-'

timd to thc quantity of ctecticity pass.ing though &o eletnodc. Thc elcctrot,'si8 i5 gw-

emod by Faraday's two laws ofctcctr,olysis.

1. Thc arnounts ofnrbstanccs tibcratcdat6c el*hode are dircctlyp,nfortimal

to 6c quantity of electricity whicb psss6 erough thc solution.

2. The anootmb of diffcrqrt subrtsDccs whicb are depositcd or liberafd by tk
samc quantityof elcctricity -" p'roportioml to their checrical equivalent.

EL'i
(M " Xl)'
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' Coulornekic analysis is an application of F;raday s Laws of electrolysis. The
qu*ntity of electncity is measured in coulombs. If a surrent of one ampere flows for one
second, the quantiry of electicity is I coulomb in gc,ncral.

Q = It ooulornb

I =qmzatinuryau

If the clectrodc rcactioh prooca& ri& t00 paccor efficirnc,y 63a &c'
qpaotity of erbstamce rwtd may h fond ty martrg el quntity of cbr{ricity md

Gp(7)

w=-W.Q-
96S00a

til = wri&t of eub,shnce poduced or oorsoC in *cct,ofydl

Q * q$Endty of elmicity ii oudomb

W. - grm rtomic wcighttgram m<ilmlr wigh oferksabeins d3ggp{yg!(d

nam. ofclmons involvodir furrytiq"
Exanplq If2650 coulmbs of cleicity b Fari.d tkoil$ coppcr srrp&3a solutiort ea!*-
late &c mont of copper dcpeitcd.

Atomic nraes of coppcr - 63 .ll
Elcctrlodc rcaction = Cur* + 2e -+ Cu (o)..,n - 2

'$y' 
=

63.54 x265A
*6500 x 2

= 4,8724 g

Anslytieal rnethsls based upon thc msasursmcot of quaatity ofelec*icity and the
applicatioe ofery: {D sre termed as coulorasbic msdrods. If the substancc being detcrmincd
und*rgoes rcactisn at ein* of the elec.trodes, it is called prircary coulomeuic anaipis. if t\*
substancs rcscts in scllution with another substaoc€ gcaerated by ao electnde reactiou, it is
called seooadary coulcmetie analysis

--d7t
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Tlvo distinctly different cotrlomctric tcchnigues are available

i) coulometric analysis with ffifrolldpoteatial of the working.electrode

ii) coulometric analpis witi cmshfit eurrent-

COTJII}METRIC AT{ALY$S AT CONTROLLED FOTENI'I,AL

i) &e nrbsunce being determined mc8 with 1S0 percent efficiency at &e working
elccuodc

i0 ttr€ poteotial of the wortiag clcctodc is conhllcd.

iii) the completion of reaction is indicatid by the current decreasing to zero

iv) the quantity of zubstaucc rcactcd is computed by the rmding of coulometer or by
nrsans by a currcat - tire intcgr*ing dcnice.

I
INSTRT,]MENIfiNON

Thc thr€c instnnnontal rmi* in controtled potential coulommic aaalpis are (i)
coulometer or other meaIui of measuriag thc quantity of electrieity 0i) D.C. cumnt sup,ply

with means for cootnolling potential (iii) Eletrolytic cell.

In controlled potential coulometric analysis, the current decreaees

expnertially with time according to the equation

it =io e-t'

where i" is thc initial curren! it is the cument at time t anci k is a.constant A typical time-
currsnt curve is shown in fig.4.

tra.
Fie.4 Current yemus Tlme plot for controlled potential coulometric an*Iysls
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The current decreases more o( less cxpanentiatly to zero. The area bsneath &e

curveis a measure of the total quantityof elocficitywhich has passed . Amechanical curent-

time integrator is available cornmercially .

A sirnple circuit !o conftoltbobtlctrodiporential manrially is shown in Fig.3.

rrH

Figure. 5. Circuit to contnol Etectrode potential

The Ammeter'A' indicatq the clecuolpis cune'nt The voltnetrr'v' rccords

etc ffiafaPdied volage. The potential oftlrc cdrode wie resircct to reference elest& SCE

(Saaratsd calomel electrode) is dircptly indicatcd by the high resisbnce volrneter .G,

The resisgance is adjusted manually uotil the potential difftercnce bstcreeo cath-

odc and scEasains the desired varue as shown by Galranometcr G

As elec&olysis proceedsldie ca$odc tends to beome marc negative rvrt SCE

and the rhffiat is continuously adjusted to maintain the cathode potential constant at the

fuircd vatuc. The ammeter reading decreases during elcctolysis and attaius a low current

value signafiing the completion of reaction. Nowadays 'potcntiostats' which autouratically

rminhin thc potential ofan electrode constant are available.
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&m

ft *.0 Eh*o{nt Vc$d

A?fiat pyrcx beakcr ccrycs rs eloctndysis vescl, rrwrcury ar ule (xrtn ur ur

*tc beakcr rc6 rs cal& Thc anodc is sturt platinum wire coitcd into a flat spiral. Thc

rcferencc cko& jurt touckg thc $3tfrcc of tlr rwrcury csthode.

NIrEruME{TATPROCET}T.JRE

Sryprting elcctnolytc (50{0ml} is first placed in the cell and the air is

cgmovod by poseing a rryid Etram of nitogpn for 5 minuts. The stirrer is starte* the

refercnce cleceodc is djtstd so that it touch the stined rnercuy cathode . The poentios8t

is adjustod to maintrin ffi cmtrol po&nttal and tbc solution is electr,otysed until Erc

currcnt drop6 to a small valuc. (background orren$. This preliminary electrolpis rennoves

reducible irryritics. Thcn a& 20 d of sarylc solution and continue the elwEolysis uutit

&e curnert &ops to & bsckgonnd curre,nt" Tte quantity of el*tricity is known from thc

coulsmc{cr or mechmical current-tim intcgrator. The amount of zubstancc is calculatd

fi,om oquation (7).

irrucmoxs

l. Ifmerarycaftode is uscq fte opinrrn conbol potential for a given separation can be

easily determind from polarogams recorded with dropping mercury electrode-

teit
{}as
taa

a.I]t
.fl!aa a

!#.5tt r.r,. ta(E,aa



DEPOSITION OF METATS AT CONTROLLED I OTENTIAL OF TIIE MERCTIRY
(:A]MODE

Bi(}rElements
C,M7^CdPb

E cathode (Volts Vs SCL)-0. t6 -0.40 -0.56 4.85 -0.4s -0.95 -1.20

By means of conholled cathode potential techniance it is possible to effcct
such difficult separations as chrand Bi, cd and zn, Ni and co. If a solution tbntains co2* and
Ni2* ions, by performing the electolysis by keeping the potential at - l .20v, co& can be esti-

' mate4 by the keeping the cathode potential at {.95v Niz* can be estirbated

2' sometirres it is possible to reduce e metal to a lower valency state and by
con&clling a more positive potential, the metal can bc oxidised quantitatively to hi&eu
valeccy state' Eg' at -o.Isv with a mercury elecsode, roduction ofuflvj tCI uGIr) md cdtrg
to c(I! occur simultaneQusly. If e tecfrolysis is carried qrt at -o.55y only u (trI) is oxidised
when all u $r$ his been rernoved from solution, chromium is deter-mined byorjdation of
CrG} tc Cr(IID at 4.1jV.

3. cousider a mixtrre ofantimmy(v) and a'timony GI0 (in supporting erec_
trolyte 6M HCI + O.4M tartarie acid). At -0.2ry the reduction Sbl* _+ SU. occqrs and at-c'35v &e rduction $h*-+sb" occurs. Thrrs it is possibre to detsrmine both sb(I$ aad
SbCninamixture.

4' organic compounds such as tichloroacetic acid, andpicric acid arc qrantita-
tivelyreducd at mercury cathodc whosc potential hss been conFolled.

conlometry rt constant current courometric Tihatione

constant-current coulomehymaintains a constaut current during ctrectrolysrs.
A rr'agent is generated whicli rea*8 stoichiomerically with the substance to ue cete,rminca.
For ego far estimation of cl-ion, Ag* ion is generated cnrploying silver electodes. The geir-
erated Ag. ion reacls with Cl. to giveAgCl.
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In corlorreric tirations the reagent is $nerrbd clectrically and its amount is evaluated &om

the knowledgc of current and gsnerating timc. Sincc a small quantity of elctjcity cao be

readilymeasured withhigh degroe ofncerracy, themethodhas high sensitivity.

Advantrges of Coulomctrtc Tltrrdonr

I. Standard solutions are not requirod" The coulomb becomes the primary standd-

2. Unstable reagents such as

imiarcty.
bromine, chlorine can bc generated and consumed

3. Small mot&toftitrus arcprqrrcd-

4. The sample solutiou is not dilutod ,

5. This method is readily adopted to rsrnote conhol. Thsrefore radioactivs aud other

daogerous materials can be titrated"

6. This method is particutarlyuseful and awurate in the rsnge from milligrun quantities

down to micrognim qusntities and can be used in tracc analpis.

Detecdon of End Polnt

Various methods are used for detection of the snd point. [t can be fomd by

npass of normal cnloured indicators, or by ins*nrmeotal msthds such as potentiometry'

arrpcrcnnetry and photomcg. Poteotiomshic and photometric indication find use' in

acid-base and rcdox titrations, v&ile prcaedures are ap,pticabte to re&x and

prcsipitatioo. reactions.

Inrtmmcrte$ol

tl|.glrra ltt r

Flgure ?. Coulometery et eonstant current

.e .--r1

"l-t !
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The schematic diagram fsr aomtart curent coulunetric methods is shourn in
Fig.7. Thc power supply provide a D.C. voltage ofabout 3mV. The current passes, through a

scrics - regulating tube (Rr) and aprecision resistor (\) to the electrolytic celtr. G, and G, are

the gen*ator elechodes and E, and E, are ele&des for the end-point detector system.

The voltage drep across the resistor \ can be moasured very precisely with a
mrnual qrccording potentiometer and hence 'i' ce,B be oalculated time measuremetrts are

noruulty rradc widr a precision electric stop clock A single sq.irch cotrhol actuates both &e
timer id chcmlysis cument.

PRIMnSrcour,oMETRrC TTTRATIONS

In primary coulomenic titratims it constant current, the zubstance to be
dctermind rc8cts diroctly at the electrode. One major area of applicatioa involves tbe
clefrdc material itselfparticipating in an auodic proccss. eg., Duriag clrctolyxis, Ag* io*
are gemaH at the anode aad diffuses in solution The ag-. ion readily reacts Cl'(to be
dctcrmid) to form AgCl. The and point may be detocted anrperuneeically. By ttie E*M
macap{aaa, 8rrlftrydrYl group$ can be titatd. Since th potential ofworking clechodc is not
conholled, ftis class of titations is limitd to reactanb which ane noa-diffusible.

SEOONDAR'T CCII'ME|TRIC TITRATION

In secondary coulome&ic titrations aa active intermediatc is first generad
quantitativelyby the electnode process, asd this then rects directlv witb the nrbstancc to be
dctcrmincd"

Fcexmplc for the coulometric dctermiuation ofFC*, exc€ss ofCe$ is addd
to fu soluic.Anodicalty Ce* is oxidised to Cel'and the tibqared . Ce# insunco*elyr'acts
wiefcf imiasolution.

Ccs + fC. -+ Ce3* + FC'

As tong es Feln ion is prescnt in the solution, Cea* will be csnsumod. Wha alt
FcI his bcca ahausted" thc cnd point is eigullcd by es fint peristance of exccss ofCf in
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ttre solution and rnay be detectod photorretically at a wavelengtr at which Cee absorbs stongly.

AMPEROMETRIC TTTRAIIOilTS

Let us considcr thc electrolysis of an electro-active substaoce between

dropping mercury electodc (DlvfE) firnctioning as eathode and some reference electrode

acting as an&.

A potcntial is apptid betwo€a thesc electnodes and increasd in a stepwise

rnann€,r (Fig. 2). At first onty small current follows - the so callcd residual currcntand this

continues upto decoryosition potelrtial. At this poinq the following reaction takes place.

Md+or 4 M,,,

andhcncc a step"rise in current is oUcrvca Gig. 2). The current will continue to rise with

increasing potential and then reachee a iimiting value. If sufficient supporting elecholyte is

present in the solution, the diffusion current (limiting surrent - residual current) is oropor-

tional to thc concertation of electrooctivc nuterial in the solution. If some of &e elwtroactive

rnatcrial is removed by interaction with another reagen! the difhrsion curreut will decrease.

This is the fundamental principle of aoperometic tieations. The diffirsion current at a suit'

able ap'plied voltage is measured as a function oftk volume ofthe tirating solution. The end

point is the point of intcrs;tion oftwo lines giving the charge of current before and after the

equivaleocepoint

AT}VAT{IAGES OFAIIIPtr.ROMETRIC TTTRANONS

i) Titation can be carrid out rapidly a few current me&sulements before and after the

end point is sufficie,lrt to detest thc end poinr

ii) Titations can be carried ouf when poteutiomehic or visual - indicator rnethods arc

unsatisfactory

iii) Tihation can be calri€d out at dilute-conditions ( 10" I'0

iv) 'Freign' sale may be preecnt wifutrt intcrfercnce.
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TYPES OF T TRA.TION CURYES

The unost common $pcs of curves encouutered in amprometric titrations are

grven below.

Rg. (&) AMPERO*IETRIC TITRAHON CuRtrEs

a. whea &tre electroactive meta! &om solution is rcmovrrt b3r the additi+* of elec,tro-

inactirre reagen[ ttre s]rape of curve is as shorm iu Fig. A.

Eg. rcnroval of FS* by addition of Cr0.t'tr S.'Here . diffusion Er11cnr dgcreases ru urE

residue! clrr{nt wh*n a}l FS- i*n has rcacted with X{Ct *42'/- /Sort). $ince x is inaetive,
further &ddition of x will not affst the diffirsicn cunml

b- Whcn thc subsance ia solution is electo-inactive, (S0.1 the rmidual curre*t wiil
flow initially- Whcn elwtroactive reagent (PlPlBa*) is added it wiu increase the drffusion
currerit aser the eod point and the shape of thc.curyc is sbown in B.

c. Wk both the solute and tihating agpot are electroactive, they congibute toward
dre diffision curreut and a shaip 'v' shapd cury€ is obtsircd-

eg: Pb?" ion tifated with Cr2 0zr-

Nir* ion ti&.ated with dimethylglyoxime

d" Ths solute is oxidised at the DME and gives the anodic diffusion currcnt at the €arne

poteatial as the tirating reagent gives a cathodic diffusion current. Here the currcnt changes
from anodic to euthodic or vise versa and the end point of he tiuation is indicated by zero
guuEdlL
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eg: titsrtioo of I' wittHgl

titration of Cl' withAg-

SLTCCESSwE m Otr Cf, Bk md I'

ftctecbalide ions Cl', BR',I-in amixure cau be &termircdbyarycrometic

tihatimwithAglioa.Aknoumvoluurcoftremi:rtre isplacedin cell containing0.l to0.3 N

solution of ammsria Undcr this conditim onlyAgl is prccipiatd by the addition ofAg. .

When all thc T. ims are precipitud thc curmt increases. The cell is then acidified witr 0.8N

HN0, and the ti&ation continued- Under this cmdition only fuBr is prccipitated- After thc

de&rctimofendpointgetatinis addcdandO'is estimated. Ttrc aurperomefictitration curve

isshowninfig.S$)

ffi '{q) ,tirt}rtr
Fri . l,ltaitr

Iri.rr l-hrlrr
a

Yolume ofAgNOrAdded

Flgure 8b. Amperometrlc fitration curve for a mhture of C[, BR', I'.

AI}TPEROMEIRIC TTTRANON WITII TWO INOICATOR ELECTRODES DEADT

SIOPENDFOII\rt

MTITRATIONWITHTWO IF{DICAIICRELECTROI}ES DEAI}-YTOP

ENDPOINT

Whco two small but similar platinum el*trodes are immersed in A uniformly stirred

solution curtaining a rwcrsiblc oxidation - reduction aptonr, a small amount ot electrolysrs

takes placi and an appreciabtc anount ofcurrcnt 0ows throrgh the cetl. The amount of sub

stance reduccd at cathode i8 equsl to ttc Eroonnt of substancc oxidised at anodc. Both etcc-
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trodes are depolarired. When oue of the compoosnb, eithcr oxidised fora or reduced fonn is

completely consumed by thc titrant, only one electode remains depolarised. So at the end

point the system becomes one electrode qrstem connected to referencc electrode and the

currint uirftrally drops to zero..

h ft€ tiuation of iodine by ttrioqfpfuto initially both lodine and Iodidr ims are

prescrxt in the systcm.

V2" 32r
Therefore curent flows ct en at &e low applied potential ( I 5mV). As &c titra-

tion proceeds iodine is consumd- At the end poiat no free iodine rernains and thergfor€ a

rapiddecrase in currcntwas obsernd in theaeighbour*rood ofendpoint, This gaverise tathe

aameDEADSTQPENDPOINT.

CYCUCVOUIAMMETRY

Cplic voltammetry (CV) is gxrhape the rnost versatile electroanalyticai teeh-

rrique for the study of elecsoaotive specia. The rptem contains two elec&rodee. At the

"rrorking 
electrodc oxidation/reduction of elcctroactive species occurs. Thcpo(eotial ofthis

working el*trode is contolled versus a referencc etectrodc zuch as safinatcd catml elec-

n'ode (SCE) or a silver/silver chloride elect* (AyAgCI). Tho mssurffit of crrnnt-
voltage curves are done un&- diffirsion confirolld rn4ss harrsfcr conditims at stationary

electrode . The voltage applied to ths'\rortiqg'closrodo is scanned lincgly 6m an initiat
value E, to a predetermined limit E and then the dirwtion of scan is rcvcrscdback to E,

CYCLICVOUIAMMOGRAI}T

Thc conbolling potential apptiod acrcgll thcse two electrodes cm be consid-

ered as excitation siSnEt. The Exciatim signd fc CV is a linearpotential scan wi& a triangu-

lar wavefqrn as shown in Figrne. 9.
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.a*

I,v
T*
Ior
8re

.e l| r "a.' ratlrl crt i {,
Flg.9. Linear Potenfial Scan

The excitation signal in Figurc 9 causes the potential first to scan negatively

from +0.80 to -0.20V vErsus SCE at which the scan direction is reversed; causing apcitive

scan back to the original potential of +0.80V .

Frxnf ll rt (B?.,

Flg.10. Cyclic Voltammogram

A cyclic voltammogram is obtained by measuing the current at the working

dechode during tlrc potcntial scan. The eurrent can be considered the respoose signal to 'the

rctential excitation signal. The voltammogrsm is a display of current (in the vertical axis)

/ersus potential (horizontal axis)
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A t)?ical cyclic voltsrnmogram fcplacrum working elecmode in a solution
containing 6'0mM of KrF{CN)u ff the electo-active species in l.0M KN0, as supporting
elecrrolytc' The initial poteotial E, of0.80v is chosen to avoid anyelectolpis ofF{cN)63.
whrn the eleuode is switohedon, thepotg,ntial is then scanned negativetry (forward scan).
whea the potential is sufficiently negative, the following rcaction kkes place at the
electnode.

reE (cx)l+e-+Feu (CN):

and cathodic cturBEt begns to flow at the point b. Tbe cathodic currcnt incrcases rapidly
(H) uatil the concenhaiion of ret (cni)i at the electudc surface is zubsantiallydrurin-
ishc4 causing the ctlrrsnt to peak (d). The current th decays (d-g) as the solution srurouud-
ing thc elsctrcde is depleted of re, (cNli due to its eiecholytic conversion ro
retr {eN}i 'The scan directisn is switehed to positive ar -0" I5 v (Q for the rwerse sc-ea. The

pot'ential ic stil! nrfficiently negative to re&rce retr (cr.rf so cathodic surrent catinus
area thogh the potential is nor*' scaming in positive dirmtion. when the electrod* becrres
a sufficicatry strong oxidant, the foflowing reaction takes place.

retr (cl)i -iFeE (cr.fi + e-

This ceuses &e anodic current (i - j - k). The enodic cuffept rapidly iacrpases
until the sur&ce concn' of Fer (cN)l- is diminisho4 causing tbe cunent to peak (i). The
cunent &cn decap (i - k) as 6ro solutioa zurrormding the clechode is depleted of Fer (cN): .

The first cycle is compieted when the poteotial reached + 0.g0V.

In tlrc forwaril scan FerI(cN); is electrochemicallygenerated frorn Feu (cN)i as

indicatadbycathodic curent. In the reverse scan Fen (cNli is oxidised back to re* (ci rli
asirdic$od by anodic cunent. Thus cyclic voltammetry is capable ofrapidly generating I lew
spcies iirrring the fonvard scan and thea raoaitoring its fate on the reverss scan.
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The important parameters of a cyclic volhnmogram are the magnitudes ofthe anodic peak

cunpnt (iJ, the cathodic peak cunrnt (rJ, th* anodic peak potential (EJ and thc catliodic
pcak poeotial (EJ.

A redox couple in which bodi ryecies are stable and rapidly exchango cMons
wi& the wotking electrode is termd an cleetrochernically reversible *ouple. The formal

reductica potential (X1 f* rcvemiblc eouple is ceritsred between E* anrJ E 
"

The numoer of electrons traodtrrodin Ore electpde reactioa (n) for a reversible couple can

be &rcrmined fr,om t\e separation betrreen ftc pcsk potegtials

AEn =8, -E* =
0.058

Thus a one-clectun process shouldideally exhibit AErof 0.058V

The peak cuneat f,or a revemible systcm is &cribd by Randlm-ssvcikq$fior for
tlrc fcward swec,p of&c first cyclc.

io=2.69 X lgF dtrADr: 1lta C

ir =peak cnrrent ampeffi

n = number ofclefous involved in clecd poc€ss

A = cletrodc ara, cnf

C=mffiion,mUcd
V=SanrrEvoltdd
Acco,rding to th €S (ll)'i'iryreasce wi& square rmt of scan ratc and is dirctly

popmtional to conceirtration. For a rarrersible cotrylc (i, li* ) =1.

APPT.,ICAIION

This technique yields inforrnation about reectioa rcversibilities and also offers I very
rapid means of anal),sis for suibble systems. The medrod is pa*icularly vahrable for thc

investigation of ste,pwise neactims, snd in many cases dircct investigation"of reactive

intermcdiates is poasible. By varying thc scan ratc, systcms exhibiting a wi& rmgc of ratc
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constan8 can be studid and haluient specics with h.lfli'"?s of the order or milli-seconds are
readilydaected.

CVis alsoused todetermine E" valuesbymeans ofeqn - 9) and'tr'values byeqn (10).
Reversibili$ can be determined by plol iing (Eo - E* ) Vr JV which should be a sraight line
ifthe procoss is reversihle.

FT'ELCEII,S

A fuel cell is a galvanic cell in which thc rcactants are continuously fed to each
elcctnodc fr'om outside the cell. Thermal energy is converted into electrical energy. II , lower
alcohols, hydrazine, NH, etc, arc generally uscd as fuels. These fuels are generalyLed as
anodicallyreacting materials in cimrbination with an oxygen electrode.

Fuol cclls are classified according to the tsnpcraturi or opention.

l. I.ow tqnperature fuel cells operate below l50oC

2. High tcmpcrature fuel cells th8t opcratc above l50oC

Tk prlncryle problern in low tclnperurc cell is elecbocatalysis i.c., low to risc tk
cxchange cnrrrent d"nsity for the oridation of cheap fuels. The problem h high t€mpcrafirc
cclls is tbeeubilityofmaterials that are oonfined to the elcctnodes, undercorrosiveactisn of
elecmodcs.

E-T(SE/6r)P

Y/tr.G

E * E[,lF ofthe fircl cctl

rc - Frw cnqy change of the reaction

AH - Endu$ychmgeofthe reaction

Thrrc rc 3 gpes of fuel cells:

l. 4'O, fuel cell

2- Hydrocarbon - air fuel ccll

3. CIIT0H - O, Fuel cell

AGn=-=
AH

t7t



This is ttre best knoryn of electoctrernical Bcnerator having power levela (5K!10. A

schernatic representation of genini hydrogen oxygen fuel cell is as shown in figure ( I I ).

A, uni,qre feature of this cell is the use of a thin cation exchange manbrane as elecEo-

lyte. (Polystyrene sulphonic acid intimatelymixed wrth a Ke'tr spine) each side ofthis rect-

angular membrane is covered by a Ti screen coated with a Ft screen. The thickness of the

entirp ccll is about ll2 rnrn.The reactions taking place in the cell are

At anode ztl, + 4H* + 4*

At ca&odc 02 + 4H* + 4e- + 2H20

Since the conductivity of the menrbrane is stnorgly @dant as thc water contant the

waterbalanc€d is maintainedbywicls draining orzup,plyingn;aterby capillaryaction. .

The pcrformance of a ccll is shourn in ffre fig.(ll) An important oveqpotantid loss is,

in ttrcse cclls due to the meinbrane resistanoc md also as unral:o tt. oxygon elffidc.

Astorage steambuilt inthese cetls havingan averagepowerof about9O0til andamor

powcr of 2kw was usd previously. Anoteworthy feature of this storage s)4stem is the self

conained provision for collecting water (a by polt of the ccll m for drinking purpose in space

( I pt kwh{). At presen! somc Hr4, firel cclls have attaind a powcr lcvel of I w cr#

t72
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REFORMER SU PPLTE D HYDROGEN AIR CELTS

unsaturated hydrocarbons can be oxidized at rclatively low temperatures lor e.g.

c,H, + 6110 -) 3co, + 2o + 20 e-

The supporting electroyle is con. HrF0o.

The pure hydrogen is expeasive. Conversc!,v hydrogen is an exceltent fuel
because of its large value are the resulting poesibility of caallzing its dissolution well (i.e
with small over potential) on cheap materials srrch as nickcl. To mect ttris situation a s€ries of
fue! cellsutilizc a system in which achearphy&,ocarbon firel isfte origrn ofthchydrroge4 this
bcingproducedin thc adjoining apparatus, sepradftomothergas€sandHintothece!l.
'The sy$ern hydrocarbon process is

CoH:n*r + nHrO -+ (Zn+l)H, +nCO

CO+HrO -+ CO, +FI,

CQ May be reraoved by absorption in cdhylamirc or hy&ogea scparatd by diffixim
through Pd (or) Ag-pd mcmbranes

Hy&ocarbon - Aireelts

Mtny hydrocarbons including the mein constitutcaB of the disc! oae, fuave beep
oxidized elcerochernically at levels of morr &angf/ocompletion. pt is the only sdtabic
catatpt mstaial at the prescnt tirne.

. Thc electrodes arc constmcted by dcpciting fiucly divido4 Ft in a porous rcflex
substatc afiached to a base of tantalum (whic& after oxidation, resists further conmion iu
strong acid)

Power density of such cell is about 0.1 w crni

CH, OH - O, Fuel Cell:

It can work in the tempcrature rangc of 70 - 80oc Naoll (or) KOH can be used as
elecrolyte, with pt as cathode as well as anode.

6N KoH is used when pt is made anodc and carbon as cathode

Thccellreactionis CHrOH * %A, -+ 2HrO+ CO, E = l.2V
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MSc. DEGREE EI(AMII{-AIION' APRIL 20&4.

FirstYear - Noa - Semeter Chemistry

PAPENX Itr . PEYSICAL CTIEN{ISTRY. I
(For those who Joined in July 2003 and al erwards)

Time : Thrce hours Maximum : 100 mark

PARTA-(10x 2=20 marks)

AnswerAII questions.

l. What is an open systern? How dos it differ thermodynamically from a closed systan?

2. What is the nccessity of non- equilibrium thermodynamics? Illustrate with an example.

3. What is the significance of wave function? Comment on its importance in quantum

mechanics.,

4. Explain ttr m€aning of commuting and non<ommuting opcrators with suitable examples.

5. What are secrilardaenninans? Illustrarc with an example.

6. State nd explain Bun0ppenheimer ryproximation.

7. What is partition frrnctioa? \{hy is the value of fanslational partition function of a

molectle is veryhigL?

8. Is the negative Kelvin temperatue atrainable? Comment or it.

9. Dsrive Thfel eguation from Butler - Volmer equation and comment on the significance of
liafelplot.

t0.Whataretrc advaotages ofdrorp,pingmercuryelechode? Whatdo you meanbyhalf - wavc

potcntial?

PARTB-(5r6=30marks)
AlrrerAll quesdons.

ll. a)F;plain6cpharcdiaramofafrreecorymentsystcrninvotvingtrrosolidandwater
fcnring a cmgruchdy satmting t,,pe dotrble

(on1

b) Derive thc two 6crmofimamic equations of state .

12. a) Slrow 0rat thc wave firnctions sin x and sin 2x are sigen functions ofthe o,p€rator f/dx2
witr eigpo rnlues -1 md 4 respectively. Veriff ttrat the two wave functions are mutually

odhogmal.

(oR)

b) Calculate thc avcrage value of the distance of an electron fum the nucleus in the

hydrogen atom in its state of lowest energy.
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13. a) Apply variation method to helium atom srd obtain the eigen functions and eigen val-
ues.

(oR)

b) What are the basic ideas ofthe perarrbation theory? Explain with an exarnple

14. a) The equilibrium inter nuelear distance of I2r2? is 2.57x10-r0m. Caieulate the mernent
of,inertia and rotational partition function at 300 and 1000k.

(oR)

b) Show that the limiting natnre of heet cryacityofsolids at coustart volume and at hig}
temperature, calcuiated by Debye,s fo{mula is 3R.

15. a) F"xplainthe followiug:

0 Tafel curvff ii) El*eical &rble layer iii) zee poffitisl"

(oR)

b) Drec*ss briefly rhe principle a;rd ap'plicxim ofpolamgrryhy.

PARTB-i5r10-fl)mark)
16. a) i) Define fugacity of gas. How is frrgacity&mined with the rud ofaa cqrmion of

sffi6?

ii) Derive anytwo Maxwell's mmoA:roub&latims. (et-4)

(oR)

b) i) E Plsin the conce,pt of c,ntopy proauim ad ryly it to ckmical rwtims.
ii) Show from the principle of micrwcopic H€oibitity &at re cocffici€o6 in &e
8pproprhtc phenomenotogical equationf ue oqual.

17, a) 0 Sct rry the Schrodinger wave equatim for I puthle in a threedimcnsimal box and
obtain tlrc cxprcssion forthe ener5t

ii) Explain commuting and non- comnrutingopcrabrs wi& cxamplcs. (6ra)

. (oR)

b) i) Sa rrp and solve tlie Sctuodinger wave equation for a rigid rotor witb a fixed axis.

ii) For a particle in a one dimensional box &e quannrm number n = 0 is tivial and not
allowed. Justify this statement. (8+2)
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18. a) i) Get ttre normalized MOs for 4 sp*ies in the ground state.

ii) Taking grcund statc Li atom show how slatcr determinant is consistent'with Pauli's

antisymmerypinciplc. (5+5)

(oR)

b) i) Bring out the diff[crtsccs bctwen MO and VB treatments of normal hydrogen

nolectrle.

ii) Discuss the applicationofHartneeFocrself-consistent fieldmethod to helium atom.

(4+6)

19. a) i) Derive Debla's equation for the specific treat of solids and give its validityat high

and very low tcmpcraturcs.

i0 lndicatc how Debp &ory ofheat capacityofsolids maybe regaided as an improve-

ment over Einstein's 4,proach.

(oR)

(6+4)

b) 0 Obtain thc elry,rusion for the inteiual snergy of a systcm in terms of its partition

function.

ii) Calculate the totil cntropy ot xe G) at 298K urd I atn prtssure. At this temperature

Xe is in its lowcst decEonic statc.

iii) Show that in a rystein oftlrec pa*icles in which six units of energy is to be divided
.he number of Bose-Einstein states is three and thc nurnber of Fcnni-Dirac state is one.

(4+3+3\

20. a) Derive Debp-Huckel limiting law and erplain its importance. What is the conconm-

tion limit of the ap'plicabitity of Debp - Huckel limiting law? How is it modified ai

higherconccntation?

(oR)

b) Discuss briefly the principlc, experimental details and important applications of the

following electo analytical twhnigres:

i) Coulometry ii) Chronopotcntiometry iii) Cyclic voltammetry (3+3+4)
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