M.S. University - D.D.C.E. Introduction to ASP 27

Response.Write "You chose 1"
Case M2v.

Response.Write "You chose 2"
Case "3":

Response.Write "You chose 3"
Case "4":

Response.Write "You chose 4"
End Select

oe

]

Check Your Progress

1. Define Script.

2. What is Binary Write method and Expires Property?

1.8 LET US SUM UP

ASP was "born" in November 1996 when Microsoft announced its design of an Active Platform. The
Active Platform reflects Microsoft's ideas about how a desktop computer and a server computer
should communicate. It consists of two parts: the Active Desktop and the Active Server. The Active
Desktop refers to the client side, or the user's side, where HTML files are displayed on a web browser.
The Active Server refers to the server-side component. In a client-server model, two computers work
together to perform a task. A client computer requests some needed information from a server
computer. The server returns this information and the client acts on it. To execute ASP pages on the
computer, we need to be running a Web server. If we don’t have a Web server installed that can handle

ASP pages, when we request an ASP page through a browser, a dialog is received whether we want to
save ASP file to disk.

Script means a small relatively limited interpreted language. When the server invokes the ASP scripting
engine, it parses the file and inserts any include files. ASP process helps us perform several operations
that are difficult or impossible with straight HTML. If the variable is declared outside a procedure it
can be changed by any script in the ASP file.

1.9 KEYWORDS

Adite Server Pages: ASP was "born" in November 1996 when Microsoft announced its design of an
Active Platform.

Client-Server Model: In a client-server model, two computers work together to perform a task.

Script: It means a small relatively limited interpreted language.

1.10 QUESTIONS FOR DISCUSSION

1. What are Active Server Pages?
2. What is a Client Server Model?

3. What is client-side scripting technologies?

28 Web Design using ASP M.S. University - D.D.C.E.

e R e o LR

10.

11

How do you run ASP pages?

How do you set up a personal web server?

What does Response/Write do?

What is that your ASP Script is returning to the Browser?
What are the ASP processes?

Write a VBScript statement using either VarType or TypeName that is equivalent to the IsDate
function.

Write the statement that calculates the length of the hypotenuse of a right triangle. Assume the
lengths of the other two sides are stored in sngSidel and sngSide2.

Write the explicit declaration for variables that will store a user’s name, age, e-mail, and birth date.
Choose names (variables) according to the guidelines discussed.

Check Your Progress: Modal Answers

1. Script means a small relatively limited interpreted language. We need to know what
interpreted code is. Computers don’t understand code as we write it. Instead, other programs
translate the code we write into machine instructions.

2. Binary Write method is used to write non-textual data to the browser. We can use this
method to send image, audio, or other binary to the browser.

Expires Property sets the time interval, in minutes, before the Page expires. Until the
specified period elapses the browser may redisplay the Page from cache after the specified
period. The browser must return to the server to.

1.11 SUGGESTED READINGS

Jeffrey C. Jackson, Web Technologies, Prentice Hall, 2007
Godbole, Web Technologies, Tata McGraw-Hill, 2003

Ramesh Bangia, Internet and Web Design, firewall media

Gopalan, Gopalan/akilandeswari, Web Technology: A Developer S Perspective, PHI Learning Pvt. Ltd.

Ramesh Bangia, Web Technologies, firewall media

LESSON

2

UNDERSTANDING OBJECTS

CONTENTS
2.0 Aims and Objectives
2.1 Introduction
2.2 Whatis an Object?
2.3 Building Blocks of Objects (Properties, Methods, Instances of Objects)
2.3.1 Instances and Classes
232 Properties
2.3.3 Methods
234 Events
2.3.5 Synchronous vs. Asynchronous
2.3.6 Encapsulation
2.4 Built-in ASP Objects
2.4.1 Application Object
242 ASP Request Object
243 ASP Response Object
2.44 ASP Session Object
2.45 ASP Server Object
246 ASP Error Object (ASP 3.0)
2.5 The Global.asa File
25.1 Firing Sequence of The Global.asa File
2,52 Changing the Global.asa Contents
2.5.3 Events in Global.asa
2.54 <object> Declarations
255 TypeLibrary Declarations
2.5.6 Restrictions
2.5.7 How to use the Subroutines
2.6 LetusSumup
2.7 Keywords
2.8 Questions for Discussion
2.9 Suggestion Readings

30 Web Design using ASP M.S. University - D.D.C.E.

2.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Understand what is an object

® An introduction to properties, methods, and events
® How can we change the characteristics of an object?
® Discuss ASP application object

® Discuss request object

® Discuss response object

® Discuss session object

® Discuss ASP server object

® Discuss ASP error object

® Understand global.asa file

2.1 INTRODUCTION

In our study of objects, we will find that an object is a software representation of a real-world item, or
object. Software objects feature properties (that describe the object), methods (that allow the object to
do things for you), and events (code that is executed automatically when a certain situation - an event -
occurs).

Once we have looked at what an object is, we'll then be able to look at how objects are useful to us in
developing ASP applications. Developing web applications requires us to deal with both the client-side
and server-side programming, and therefore we'll take a look at how objects can be used on both sides
of the wire.

2.2 WHAT IS AN OBJECT?

In the real world, we already know what objects are. They're the things we look at, pick up, and use
every day - things like our chairs, our telephones, and our computers. All these are solid, tangible
entities.

However, if we want to describe a telephone to somebody in abstract terms, we can do this by talking
about it in terms of its essential characteristics - what properties it has, what it can do, and how we can
interact with it. All telephones have these characteristics, and we can use them to establish exactly how
one telephone differs from the next.

So, for our telephone's physical properties, we could say that it has a microphone, a speaker, and a
dialing pad. We could also say that it lets us do things, such as call someone and talk to them. Our
telephone will also tell us when certain events are happening: for example, if a friend is trying to call
you, your telephone will ring to let you know. This ringing will prompt you to take some action, like
picking up the handset and talking to your friend. As an abstract object, our telephone has:

® Certain properties that define and describe it

M.S. University - D.D.C.E.) Understanding Objects 31

® A set of things or methods that it lets us do
® The ability to prompt action when events occur

We can use these three attributes to describe physical objects and abstract concepts. In a few minutes
we will describe how these real-world ideas are replicated in software objects, but for now let’s go a
lictle deeper into our real-world telephone. By learning about what objects.are, we can then look at
how to use them in a way known as object-based programming. In the object-based way of
programming, the application is broken down into a set of objects. In doing this, you can build the
application in a two stage process. Firstly, you create the objects you will need in your application and
then you set up the relationships and interactions between objects. Later in this chapter, we will see
how the objects of Active Server Pages relate and interact with each other and allow us to build our
applications.

Example:

Here is our telephone. To look at this as an object, let's put down some information about it. We will
be classifying the information into three categories:

® Things that describe the telephone
® Things that we can do with the phone
® Things that the telephone tells us and that we can react to

Let's look at each of these aspects in turn:

Describe the The telephone is gray

telephone The telephone is made of plastic

The handset weighs 6.5 ounces

The telephone has 12 keys

The telephone number is (714) 555-1523
The telephone is connected to the exchange

What can we do with We can place an outgoing call

it? We can answer an incoming call

We can hang up the current call

We can enfter our calling card number
We can discormectit from the exchange

What canittell us Someone is trying to call us
that we can react to? The person we are callingis busy
Another person is calling while we are talking

HowlIt Works

The three categories that we have created in the lefr-hand column can be applied to any object. In fact,
the best way to describe an object is to break down its characteristics into these three categories, and

32 Web Design using ASP) M.S. University - D.D.C.E.

put information about your object into these categories. Any information that you have about a
particular object can be included in one of these categories.

If you have another telephone that features all these characteristics, except that its color is blue, then
we can describe your telephone by changing that one part of the description above. Moreover, this
technique works for any type of object, both real world and software.

2.3 BUILDING BLOCKS OF OBJECTS (PROPERTIES, METHODS,
INSTANCES OF OBJECTS)

Object Terms .

So far, we have used verbose English terms to describe our three categories. In the world of objects, we
need terms that concisely describe each of these three categories. These terms are properties, methods
and events. In addition to these terms, we need to look at the term instance as it relates to objects. In
this section, we'll look more carefully at what each of these means in abstract terms.

2.3.1 Instances and Classes

When we are talking about a unique object, we can use the term instance to say that we are talking
about a particular telephone object - your telephone for example - that has a specific set of properties
and values. When we want to talk about another telephone, we use a different instance of the
telephone object. In this way, both you and I can have instances of the telephone object. For example,
my telephone (my instance of a telephone object) is gray and comes with special answer-phone
facilities, your telephone (your instance of a telephone object) may be red, blue, green etc. These
instances represent completely different physical objects. However, since they are both instances of the
same object description or template, they share the same types of characteristics such as methods,
properties (although the values can be different), and events. When a specific instance of an object is
created from the template for the object, the object is said to have been instantiated. What actually
happens is that a copy is made of all of the properties and events from the object description, but the
methods (frequently a big chunk of code) remain in the original place and this section of code is used
by all of the different instantiations of that one object. :

So we've mentioned object descriptions or templates, but it's time to give them their proper name in
ASP; classes. We mentioned that each object can have different instances. For instance, my telephone is
small and white and has 12 buttons. Your telephone will probably be different to that, but they're
both recognizable as telephones and they both provide the same function. They both conform to a set
of rules for what a telephone does - they connect to the local telephone line, they both have a numeric
keypad and somewhere to speak into. A class in ASP is like a set of design rules that an object must
conform to. It would be no good if my telephone didn't have a handset, or a numeric keypad, even if it
did plug into the telephone socket on the wall. In a class there should be a minimum set of functions
that your object must be able to perform.

2.3.2 Properties

When talking about those characteristics that describe an object, we are talking about the properties of
the object. Each property of the object describes a particular aspect of the object. The property is
actually described as a name/value pair. This means that for every named property, there is a single

M.S. University - D.D.C.E. Understanding Objects 33

unique value that describes that property for this instance of the object. If we go back to our telephone
example, we can create a table that lists each of the property names and the value of each property.

Property Name Property Value
Color Grey

IMateri al Plastic

Weight 6.5 ounces
NumberOfKeys y{ s]
TelephoneNutnber (714)555-1523
Connected Yes

We now have a set of properties that describe this instance. The properties of an object are used to
represent a set of values associated with the object. A new instance of the object may have different
property values, but it has the same property names,

Even with different property values, these two telephones are instances of the same object template.
Since we know that all telephone objects have a 'Color' property, we can determine the color of each
of the phones by examining its 'Color’ property value. We can use properties in two ways. We can
read from them or we can also write to them. So if we wanted, we could have changed the cover of our
telephone to a different color, if we required. ‘

Now that we have a way of describing the telephone object, let's take a look at what we can do with it.

2.3.3 Methods

Another characteristic of objects is that they can perform functions for us. For example the Place Call
method would perform several functions for you. It will connect you to the local exchange, the
exchange will route your call, and then when it reaches the destination, and it will make the
destination phone ring. These built-in actions occur whenever you pick up the handset and dial a
number. This is a capability that has been built in to the machine.

However not all objects have functions like this. A chair object allows you to sit in it, so you could say
that it is functioning to support your body. Objects that perform tasks that are more "functional' are
said to have methods. The tasks that an object can perform are called methods.

A method is defined as an action that an object can take. The code in a method is executed when the
method is called. This calling is done by a command you write in the script of your ASP page. Once

34 Web Design using ASP M.S. University - D.D.C.E.

we have created an instance of an object, we can tell it to perform a certain task calling one of its
methods.

Let's illustrate this using the telephone example. Our telephone object can carry out five methods.
Each of these methods will cause the telephone object to perform an action. Here is a list of functions
that the methods of the telephone object can perform:

Method Name Description

PlaceCall Place an outgoing call

Answer Answer anincoming call

Hangllp Hang up the current call
SendCardNunber Enter or send our calling card number
Disconnect Disconnect the phone from the exchange

These methods are used when we want our telephone object to perform a certain function; all we need
to do is tell it to execute the corresponding method.

Methods are actually blocks of code that are written by the designer of the object (Microsoft, for
example). The reason methods exist is because lots of programmers want to do the same job, so it is
worth it for the gurus at Microsoft to write the code to do that job, test it, optimize it, and get it in
great shape, and then bundle it up in the object. We, as programmers, can then use that code pre-made.
Instead of re-inventing the wheel we spend our time on the unique parts of our project.

Parameters of Methods

You may have noticed that some of the methods can be executed directly, while others look like they
will need additional information. To contrast these two ideas, consider the following examples:

® Suppose that our telephone receives an incoming call (in the next section, we'll see how we can

tell that this is happening). All we need to do to answer the call is to use the 'Answer' method of
our telephone object.

® Suppose that we want to place a call. Simply calling the Place Call method isn't enough in this

case: we need to supply more information (for example, the telephone number!) in order to
complete the action.

Let's look more closely at the second of these examples. The telephone object has a Telephone
Number property, and this is used to identify our telephone's own telephone number (i.e. the number
that other people use to call us). So, the Telephone Number property of our phone isn't going to help
us to make outgoing telephone calls.

So, how do we tell the phone which number we want to call? It's possible, I guess, for the telephone
object to have another property, called Outgoing Telephone Number, that would identify the desired
number; but that would be too cumbersome, because every time we wanted to make a call we would
have to:

® Set the Outgoing Telephone Number property value to the desired phone number

® Execute the 'Call' method of the telephone object to place the call

M.S. University - D.D.C.E. Understanding Objects 35

As you know, telephones just don't work that way. It would be much more elegant (and intuitive) to
have some way of passing the outgoing phone number to the 'Call' method, so that we can place an
outgoing call in a single step. This is done by passing a parameter to the 'Call' method. With this in
place, we can place an outgoing call by simply executing the 'Call' method and telling it which number
we want to call, like this:

Execute the 'Call' method of the telephone object, passing the outgoing telephone number as a
parameter. Parameters here are just the same as the arguments (parameters) we passed to functions and
subroutines.

If we look again at the methods of the telephone object, we can identify those methods that require
parameters, and what the values of those parameters mean to the object:

Method Name Parameters

PlaceCall Cutgoing telephone number
Answer No Parameters

HangUp WNo Parameters
sendCardNumber Calling card number, PIN
Dizconnect No Parameters

You can see that a method can have none, one, or more than one parameter, The Send Card Number
method actually requires two parameters. You are required to pass in both the calling card number and
the Personal Identification Number (PIN) in order for the method to execute properly. Information
passed as parameters of the method for execution by the method, will only be executed if all
parameters have been supplied.

Return Values

In addition to passing parameters to a method, the method can also return information to us. The
value returned by a method is (rather conveniently) called a return value. If a method has a return
value, then it will pass information back to us. This information could have a number of purposes. For
example, the return value might be an indication of whether or not the method completed
successfully. Alternatively, the method could also pass back the results of some processing that it did
for us. It can even return another object as a result.

As the user of an object, we can decide whether we want to do anything with the return value. If the
information is pertinent to what we are doing, then we can capture the return value and do something
with it later. If we do not care what the return value 1s, we can just ignore it and continue with our
work.

Just as the methods of the telephone object can have parameters, we can identify those methods that
pass return values (and these can be passed as parameters to other methods), and what those values
mean.

36 Web Design using ASP M.S. University - D.D.C.E.

Method Name Return Value

PlaceCall True (if call completed successfully)
False (if call failed)
Answer No Return Value
HangUp True (if telephone was hung up successfully)

Falge (if not)

SendCardNumber True (if card was accepted)
False (if card was not accepted)

Disconnect Mo Return Value

2.3.4 Events

We have now looked at two of the three characteristics of an object. The properties and methods of an
object are ways that the user of the object can communicate with the object. Now, what if the object
needs to communicate with the program that created it?

As an example, consider what happens when our telephone receives an incoming call. The fact is that
it needs some way of telling us to answer the call. How will the telephone communicate this
information to us?

Again, it's possible for the telephone object to have a property (called Incoming Call, perhaps) that was
set to 'True' whenever an incoming call was present. However, there are two disadvantages to this.
First, it would require the user of the telephone object to check this property on a regular basis.
Second, the user would require a great deal of knowledge of the inner workings of the object, which
isn't ideal.

What is needed is a way for the object to tell the user that something has happened. The mechanism

for this is called an event. An object generates an event whenever something of interest happens. In our

telephone example, when the telephone receives an incoming call it tells us so in the form of an event -
: . : . 3

we'll call it the Incoming Call event. (On most telephones, this particular event takes the form of the

telephone ringing.)

The telephone object would generate an Incoming Call event every time an incoming call is received.
In a physical phone, the ringing sound is the phone notifying you of the Incoming Call event. When
the user receives this event, it can execute the 'Answer' method (pick up the handset), and begin the
call. This frees the user from having to check regularly for incoming calls: the event is designed to
notify the user just at the appropriate moment.

Just like methods, events can have parameters. These parameters can hold specific information about
the event. For example, if our telephone supports CallerID - a feature that reveals the identity of the
incoming caller - then the Incoming Call event could include a parameter that contains the telephone
number of the incoming caller.

Here is a list of the events that our telephone object will generate, along with their associated
parameters:

M.S. University - D.D.C.E. Understanding Objects 37

Event Name Parameters
IncomingCall Incoming CallerID information
LineBusy No Parameters

There are a couple of useful pieces of terminology that are often used in this context. When an object
generates an event, the object can be said to fire the event. When the object has fired the event, we say
that the user must handle the event.

2.3.5 Synchronous vs. Asynchronous

One of the advantages of working with objects and events is that it awakens us to the concept of
asynchronous programming. First off, let's look at the definitions of synchronous and asynchronous.

These terms refer to how two separate actions are related to each other. If the first action must be
completed before the second one begins, then these two actions are said to be synchronous. If the
second action can begin at any time, no matter what the status of the first action, then these two
actions are said to be asynchronous.

We've already discussed what it would be like if we our objects didn't support events. For example, to
detect an incoming call, you would need to constantly check the value of some property to see
whether an incoming call was waiting. While you're performing these frequent, regular checks, you
would be unable to perform other tasks dependent on the outcome of that task. This is an example of
synchronous activity. For example in the real world you might be waiting for a telephone call from a
friend to let you know what time you should meet them. You can't go out until you've arranged a
specific time. It's the same in programming. Your program could be waiting on a Wait For an
Incoming Call method in a While ... Wend loop, and it could be stuck there until the call was detected,
refusing to return control to the main body of your program.

With events, we can have asynchronous activity. By having an event handler that is called when the
object fires the 'Incoming Call’ event, we can perform other tasks (for example, making an outgoing
phone call) without having to devote any effort to monitoring the incoming call status. Our event
handler code will be dormant until such a time as it detects the 'Incoming Call' event, and then sets
about dealing with the incoming call.

This is not to say that all synchronous is bad and all asynchronous is good. You will see many
instances in the real world where it makes sense to use a synchronous activity to perform a certain
type of processing. Likewise, we will also see instances where an asynchronous activity is not an
optimal way of dealing with an event,

2.3.6 Encapsulation

One great thing about objects is that you don't have to understand what's going on underneath the
shell, to know how to operate them. With our telephone we don't need to know how our voice is
projected from the phone, down the wires to the nearest exchange, and how from there it gets to our
intended destination. This is all hidden from us. It's the same in ASP - you don't need to know how
the object was programmed, for example, in C+ + or VB (objects can be created in many languages), to .
be able to interact with it. The concept of a user of an object not being concerned with the inner
workings of the object is known as encapsulation. For example, when you use a telephone to answer

38 Web Design using ASP M.S. University - D.D.C.E.

an incoming call, all you need to do is pick up the handset. You don’t need to know how the
transistors are connected to each other inside the telephone. This is the equivalent of executing the
Answer method. You do not need to know what's going on underneath - that's all encapsulated within
the Answer method. This is an example of encapsulation.

Telsphons Object

. *Turn OF Ringer
~ *Tumn On Microphone
. *Turn On Handset Speaker
. # Turn On Active Call Light
| ® Start Call Timer

One advantage of encapsulating the workings of an object within a method is that the implementation
of the method can be changed without having to adjust the client. For example, suppose the phone
company decides to change the way that an incoming call is answered. Without encapsulation, all of
the users of the telephone object would have to be adjusted to support this new way of answering the
phone. Instead, by encapsulating these new steps within the Answer method, the actions of the client
never need to be changed: with either system, all the client needs to do is execute the 'Answer'
method. Not only does encapsulation make the telephone user's life easier; it allows the developer of
the telephone object to change the implementation at any time.

2.4 BUILT-IN ASP OBJECTS

Now that we have a basic understanding of what an object is, we can move on to looking at how
programming concepts have changed from traditional methods by using objects. When working with
objects in software development, we will create objects that have properties, events and methods. We
can use these three attributes to describe physical objects and abstract concepts. Either way, the
programmatic object will allow us to interact with it through its properties, events and methods.

2.4.1 Application Object

A group of ASP files that work together to perform some purpose is called an application. The
Application object in ASP is used to tie these files together.

An application on the Web may be a group of ASP files. The ASP files work together to perform some
purpose. The Application object in ASP is used to tie these files together.

The Application object is used to store and access variables from any page, just like the Session object.

The difference is that ALL users share one Application object, while with Sessions there is one Session
object for EACH user.

The Application object should hold information that will be used by many pages in the application
(like database connection information). This means that you can access the information from any page.
It also means that you can change the information in one place and the changes will automatically be
reflected on all pages. :

M.S. University - D.D.C.E. Understanding Objects 39

The Application object's collections, methods, and events are described below:

Collections
Collection Description
Contents Contains all the items appended to the application through a script command
Static Objects Contains all the objects appended to the application with the HTML < object > tag

Methods

Method Description
Contents. Remove Deletes an item from the Contents collection
Contents.RemoveAll() Deletes all items from the Contents collection
Lock Prevents other users from modifying the variables in the Application object
Unlock Enables other users to modify the variables in the Application object (after it
has been locked using the Lock method)

Ezents

Event Description

Application_OnEnd | Occurs when all user sessions are over, and the application ends

Application_OnStart | Occurs before the first new session is created (when the Application object is first
referenced)

Store and Retrieve Application Variables

Application variables can be accessed and changed by any page in the application.

You can create Application variables in "Global.asa" like this:

<script language="vbscript" runat="server">

Sub Application OnStart

application ("vartime")=""

application ("users")=1

End Sub

<fseripts>

In the example above we have created two Application variables: "vartime" and "users",

You can access the value of an Application variable like this:
There are

<%

Response.Write (Application ("users"))

&>

active connections.

40 Web Design using ASP M.S. University - D.D.C.E.

Loop Through the Contents Collection

The Contents collection contains all application variables. You can loop through the Contents
collection, to see what's stored in it:
<%
dim i
For Each i in Application.Contents
Response.Write(i & "
")
Next

o\°

>

If you do not know the number of items in the Contents collection, you can use the Count property:
<%
dim i
dim j
j=Application.Contents.Count
For i=1 to j
Response.Write (Application.Contents (i) & "
")
Next

of

>

Loop Through the StaticObjects Collection

You can loop through the StaticObjects collection, to see the values of all objects stored in the
Application object:

<

o°

dim i

For Each i in Application.StaticObjects
Response.Write (i & "
")

Next

%>
Lock and Unlock

You can lock an application with the "Lock" method. When an application is locked, the users cannot
change the Application variables (other than the one currently accessing it). You can unlock an
application with the "Unlock" method. This method removes the lock from the Application variable:
<%
Application.Lock

'do some application object operations
Application.Unlock

%>
Pitfalls of Application Variables

Because only one instance of the Application object exists for the entire Web application, application
variables can be used more liberally than session variables. However, the Application object does take

M.S. University - D.D.C.E. Understanding Objects 41

up memory on the Web server, so only items that need to be stored in application scope should be
entered into the Application object. Two common pitfalls should be avoided when working with
application variables:

e Pitfall 1: Do not put objects into the Application object unless vitally needed.

® Pitfall 2: Only create application variables that are necessary. Why create unneeded application
variables when they'll only waste your Web server's memory?

A common pitfall among developers is wanting to place objects in the Application. One object that is
particularly alluring to put into the Application is the ADO Connection object, which is used to
connect to a database. We'll discuss this object in detail during Week 3. It may seem like a good idea to
create a single database connection object and have all users communicate to a database through that
object. However, as with most other objects, it is always best to wait to create the object until you
need it. In fact, the ADO Connection object will degrade your server's performance if put into the
Application object.

Like the Session object, the Application object is easy to use, and the temptation to create a plethora of
application variables is high indeed. Many developers use the Application object to store many Web
site-wide constants - for example, a navigational footer common to all Web pages, or perhaps the
Webmaster's email address. Although it's better to place these items in the Application object than in
the Session object, they belong best in a static text file on the Web server. This text file can then be
included into any ASP page that needs to display the navigation footer or the Webmaster's email
address. We will discuss how to include files on Day 13.

Sometimes, however, the use of application variables is preferred to include files. If the data you need
to store changes often, such as the last post to a message board, then the information should be stored
in the Application object. Include files should only be used if the data is static and not susceptible to
frequent change.

Although you can afford to be less prudent when creating application variables than you can be when
creating session variables, you should still strive to use the minimum needed amount of such variables.
Because the Application object persists in the Web server's memory, the fewer the application
variables stored within it, the less drain on the Web server's performance. Therefore, the Application
should remain free of objects and contain only needed application variables.

2.4.2 ASP Request Object

When a browser asks for a page from a server, it is called a request. The ASP Request object is used to
get information from the user. Its collections, properties, and methods are discussed below:

Collections
Collection Description
ClientCertificate Contains all the field values stored in the client certificate
Cookies Contains all the cookie values sent in a HT'TP request
Form Contains all the form (input) values from a form that uses the post method
QueryString Contains all the variable values in a HTTP query string
ServerVariables Contains all the server variable values

42 Web Design using ASP M.S. University - D.D.C.E.

Properties
Property Description
TotalBytes Returns the total number of bytes the client sent in the body of the request
Methods
Method Description
BinaryRead Retrieves the dara sent to the server from the client as part of a post request and stores it in a
safe array

Send query information when a user clicks on a link using QueryString

<html>

<body>

Example

<%

Response.Write(Request.QueryString)

5>

</body>

</html>

O/P:

Example: color=green

How to use information from forms

<html>

<body>

<form action="demo_ simpleform.asp" method="post">

Your name: <input type="text" name="fname" size="20" Pt

<input type="submit" value="Submit" />

</form>

<%

dim fname

fname=Request.Form("fname")

If fname<>"" Then
Response.Write ("Hello " & fname & "!
")
Response.Write ("How are you today?")

End I£

oe

>
</body>
</html>

M.S. University - D.D.C.E. Understanding Objects 43

O/P:

Your Name:
Results:
Hello Vicki!

How are you today?

Accessing the HTTP Headers (Useful HTTP Headers, Reading the HTTP Headers with Request, Server
Variables)

In a client-server model, when client is a web browser communicating with the server, requesting a
web page.

The server returns the web page to the client.

<
<

Client Server

[
>

The client request a web page from the server

When the client requests a web page from the server it not only sends the URL of the web page
requested but also some additional information. This extra information consists of useful facts about
the client for Eg: what browser is being used, what operating system the client is running, what URL
the user just came from. Each piece of additional information is referred as a request header.

A request header is a single line of text that browser sends to the web server when requesting to view
any web page.

When the server sends back the requested web page to the client, it also sends a set of headers, known
as response headers. Response headers are additional bits of information about the web page being sent

to the client. Both the request headers and the response headers are referred to, more generally, as
HTTP headers.

A HTTP header is a single piece of information, sent either from the client to the server, when
requesting a page, request.

Standard HTTP Headers
HTTP Header name Description

HITP_ACCEPT A list of MIME type the client will Accept

HTTP_ACCEPT_LANGAGUE what type of language the browser expects

HTTP_CONNECTION the type of connection established between the client and web server

HTTP_HOST the host name of the computer

HTTP_USER_AGENT the browser type and version and operating system, information system of the
client

HTTP REFERER the full URL of the web page containing the hyperlink use to reach the
currently executing ASP page :

HTTP_COOKIE the cookies sent from the browser

44 Web Design using ASP M.S. University - D.D.C.E.

Reading HTTP Headers with Request.ServerVariables

Using ASP, one can read the headers that the browser sends to the web server using the request object.
Specifically, the use of the server variables is collections of the request objects. To display HTTP
headers simply issue the following statement:-

< %=Request.ServerVariables(“all_raw”)% >

This displays the exact list of header sent be the browser to the web server to display a formulated list
of headers, use the following commands:

< %=request.server variable (“HTTP_headername”) % >
Note:
1. Must prefix the name of the header with HT'TP

2. How Request.ServerVariables (“ALL_HTTP) formats the list of HT'TP headers. All header names
are capitalized and prefixed by HTTP _also, all dashes in the header names are replaced with
underscores, and the space between the colons at the value of the header is removed.
Request.ServerVariables (“ALL,_RAW?) performs no formatting to the request headers.

3. Reference header is present if the page has reached through a hyperlink on a different web page.
Accessing Entivonmental Variables

It involves Useful Environment Variables, Reading the Environment Variables, Using Request,
ServerVariables.

The HTTP headers are useful for obtaining information about the current visitor but tell nothing
about the web server or the asp page that is being requested by the client.

Environmental variables are bits of information that the web server makes available to any program
that requests them. Environmental variables contain information such as the name of the web server,
the URL of the currently processing ASP page, or the name of the name of the web server software
being used.

Commonly used Environment Variables

Environment variables Description

URL the URL of the ASP page from after http\\www.your.webserver.com/up to the query string.
Path_info the same as the URL environment variable

Path_translated the full, physical path of the currently executing ASP page.

Appl_physical path the physical address of the web’s root directory

Query_string the query string (equivalent to request every string)

Server_name the web server’s computer name

Server_software the name of the web software

Reading Environmental Variables using Request.ServerVariables

The environmental variables are accessed much like the HTTP headers. The Request.ServerVariables
collection is used in the following format:

M.S. University - D.D.C.E. Understanding Objects 45

Request.ServerVariables (Environment Variable Name)

List all server variables. ASP contains ASP code that lists all the items in the Request.ServerVariables
collection. The server variable collection contains both environment variables and HTTP headers <
both will be displayed when listing the contents of the collection.

Many environment variables do not contain a value. For Eg, the environment variables prefixed with
CERT all contain empty strings as their values. This is because these variables are used only when the
client and server use certificates. When a browser and web server communicate over a secure channel,
certificates are used to ensure the identity of the client to the server.

All environment variables do not have values all the times. When a web server is not using SSL, the
certificate environment variables are empty strings, much like the referrer HTTP header contains an
empty string when the page is not visited via a hyperlink. There are some that are never empty such as
URL, PATH_INFO, and PATH TRANSLATED.

If you want to display the URL of the currently running ASP page, you would use the URL
environment variable. The URL environment variable does not show the http: web server name,
simply the full virtual path and filename. Another environment variable, Server Name, contains the
actual host name of the web server. The SERVER NAME environment variable

2.4.3 ASP Response Object

The ASP Response object is used to send output to the user from the server.

ASP CODE OUTPUT

<html> Hello World!
<body>

<%

response, write ("Hello World!")
%>

</body>

</html>

Its collections, properties, and methods are described below:

Collections
Collection Description

Cookies Sets a cookie value. If the cookie does not exist, it will be created, and take the value that is specified

Properties
Property Description

Buffer Specifies whether to buffer the page output or not

Cache Control Sets whether a proxy server can cache the output generated by ASP or not

Charset Appends the name of a character-set to the content-type header in the Response object

Content Type Sets the HTTP content type for the Response object

Expires Sets how long (in minutes) a page will be cached on a browser before it expires

Expires Absolute Sets a date and time when a page cached on a browser will expire

Is Client Connected | Indicates if the client has disconnected from the server

Pics Appends a value to the PICS label response header

Status Specifies the value of the status line returned by the server

46 Web Design using ASP M.S. University - D.D.C.E.
Methods
Method Description
Add Header Adds a new HTTP header and a value to the HTTP response
AppendToLog Adds a string to the end of the server log entry
Binary Write Writes data directly to the output without any character conversion
Clear Clears any buffered HTML ocutput
End Stops processing a script, and returns the current result
Flush Sends buffered HTML output immediately
Redirect Redirects the user to a different URL
Write Werites a specified string to the output
Examples:

Format text with HTML tags in ASP

This example demonstrates how to combine text and HTML tags with ASP.

<%

%>
</body>
</html>

response.write ("<p
styled with the style attribute!</p>")

style='color:#0000£f£f'>This text is

ASP CODE OUTPUT

<html> You can use HTML tags to
<body> format the text!

bs This text is styled with
response.write ("<h2>You can use HTML tags to format the the style attribute!
Eeict L /fhosery

>

Redirect the user to a different URL

This example demonstrates how to redirect the user to a different URL.

ASP CODE OUTPUT

<%

end if
$>

<html>
<body>

if Request.Form("select")<>"" then

Response.Redirect (Request.Form("select"))

<form action="demo redirect.asp" method="post">
<input type="radio" name="select"
value="demo_server.asp">

Server Example

Top of Form
Server Example

Text Example

Bottom of Form
Top of Form
Bottom of Form

Contd...

M.S. University - D.D.C.E.

<input type="radio" name="select"
value="demo text.asp">

Text Example

<input type="submit" value="Go!">
</form>

</body>
</html>

Understanding Objects 47

Showa Random Link

This example demonstrates a link, each time you load the page, it will display one of two links:
ICFALcom! OR Refsnesdata.no! There is a 50% chance for each of them.

if r>0.5 then

response.write ("ICFAI.com!")
else

response.write ("Refsnesdata.no!“)

ASP CODE OUTPUT

<html> Refsnesdata.no!

<body> This example demonstrates
a link, each time you load

<% . the page, it will display

randemize () one of two links:

r=rnd() ICFAI.com! OR

There is a
each of

Refsnesdata.no!
50% chance for
them,

Bottom of Form
Top of Form
Bottom of Form

end if

%>

<p>

This example demonstrates a link, each time you load

the page, it will display one of two links: ICFAI.com!

OR Refsnesdata.no! There is a 50% chance for each of

them.

</p>

</body>

</html>

Controlling the Buffer
This example demonstrates how you can control the buffer.

ASP CODE OUTPUT

<% This text will be sent to your browser
Response.Buffer=true when my response buffer is flushed.
%> Bottom of Form

<html> Top of Form

<body> Bottom of Form

<p>

This text will be sent to your browser when
my response buffer is flushed.

</p>

<%

Response.Flush

5>

| </body>

</html>

48 Web Design using ASP

Clear the Buffer

M.S. University - D.D.C.E,

This example demonstrates how you can clear the buffer.

ASP CODE

OUTPUT

<%

Response.Buffer=true

%>

<html>

<body>

<p>This is some text I want to send
<p>No, I changed my mind.
<%
Response
>
</body>
</html>

.Clear

I want to clear the text.</p>

Bottom of Form
Top of Form
Bottom of Form

to the user.</p>

End a Script in the Middle of Processing and Return the Result

This example demonstrates how to end a script in the middle of processing.

ASP CODE

]

OUTPUT

<html>
<body>

<p>I am writing. some text. This text will

never be

<%
Response.End
>
finished!
</body>
</html>

It's too late to write more!</p>

T am writing s=oéme. text, ~This: text

will never be
Bottom of Form
Top of Form

Bottom of Form

Set bowmany minutes a Page will be cached in a Brouser before it expires

This example demonstrates how to specify how many minutes a page will be cached in a browser

before it expires.

OUTPUT

ASP CODE
<%Response. Expires=-1%>
<html>
<body>

<p>This page will be refreshed with each
access!</p>

</body>
</html>

This page will be refreshed with each
access!

Set a Date/time when a Page cached in a Brouser will expire

This example demonstrates how to specify a date/time a page cached in a browser will expire.

M.S. University - D.D.C.E.

Understanding Objects 49

ASP CODE

OUTPUT

<%

Response.ExpiresAbsolute=#May 05,2001 05:30:30%
%>

<html>

<body>

<p>This page will expire on May 05, 2001
053053012/ p>

</body>
</html>

This page will expire on May 05,
2001 05:30:30!

Check if the user is still connected to the Server

This example demonstrates how to check if a user is disconnected from the server.

ASP CODE

OUTPUT

<html>
<body>
<%

If Response.IsClientConnected=true then

else

Response. Write ("The user is not connected!™)
end if

%>

</body>

</html>

Response. Write ("The user is still connected!")

The user is still connected!

Set the Type of Content

This example demonstrates how to specify the type of content.

ASP CODE

OUTPUT

<3
Response.ContentType="text/html"
%>

<html>

<body>

<p>This is some text</p>
</body>

</html>

This is some text

50 Web Design using ASP . M.S. University - D.D.C.E.

Set the Name of the Character Set

This example demonstrates how to specify the name of the character set.

ASP CODE OUTPUT

<% This is some text

Response.Charset="I508858%8-1"
%>

<html>
<body>
<p>This is some text</p>
</body>
</html>

2.4.4 ASP Session Object

The Session object is used to store information about, or change settings for a user session. Variables
stored in the Session object hold information about one single user, and are available to all pages in one
application.

When you are working with an application, you open it, do some changes and then you close it. This
is much like a Session. The computer knows who you are. It knows when you start the application
and when you end. But on the internet there is one problem: the web server does not know who you
are and what you do because the HTTP address doesn't maintain state.

ASP solves this problem by creating a unique cookie for each user. The cookie is sent to the client and
it contains information that identifies the user. This interface is called the Session object.

The Session object is used to store information about, or change settings for a user session. Variables
stored in the Session object hold information about one single user, and are available to all pages in one
application. Common information stored in session variables are name, id, and preferences. The server
creates a new Session object for each new user, and destroys the Session object when the session
expires.

When does a Session Start?

A session starts when: -

® A new user requests an ASP file, and the Global.asa file includes a Session_OnStart procedure
® A value is stored in a Session variable

® A user requests an ASP file, and the Global.asa file uses the <object> tag to instantiate an object
with session scope.

When does a Session End?

A session ends if a user has not requested or refreshed a page in the application for a specified period.
By default, this is 20 minutes.

M.S. University - D.D.C.E. Understanding Objects 51

If you want to set a timeout interval that is shorter or longer than the default, you can set the Timeout
property.

The example below sets a timeout interval of 5 minutes:

<

e

Session.Timeout=5

>

To end a session immediately, you may use the Abandon method:

<%

Session.Abandon

%>

Note: The main problem with sessions is WHEN they should end. We do not know if the user's last
request was the final one or not. So we do not know how long we should keep the session "alive",
Waiting too long for an idle session uses up resources on the server, but if the session is deleted too

soon the user has to start all over again because the server has deleted all the information. Finding the
right timeout interval can be difficult!

Tip: If you are using session variables, store SMALL amounts of data in them.
Store and Retrieve Session Variables
The most important thing about the Session object is that you can store variables in it.

The example below will set the Session variable username to "Donald Duck" and the Session variable
ageto "50";

<%

Session ("username")="Donald Duck"

Session ("age")=50

>

o

When the value is stored in a session variable it can be reached from ANY page in the ASP application:
Welcome <%Response.Write (Session ("username"))s>
The line above returns: "Welcome Donald Duck".

You can also store user preferences in the Session object, and then access that preference to choose
what page to return to the user.
The example below specifies a text-only version of the page if the user has a low screen resolution:

<%If Session("screenres")="low" ThenS%>

This is the text version of the page
<%Else%>

This is the multimedia version of the page

<%End If%>
Remoe Session Variables

The Contents collection contains all session variables.

52 Web Design using ASP M.S. University - D.D.C.E.

It is possible to remove a session variable with the Remove method.

The example below removes the session variable "sale" if the value of the session variable "age" is lower
than 18:
<%
If Session.Contents("age")<18 then
Session.Contents.Remove ("sale")
End If

=

>

To remove all variables in a session, use the RemoveAll method:
<%

Session.Contents.RemoveAll ()

oe

=

Loop Through the Contents Collection

The Contents collection contains all session variables. You can loop through the Contents collection,
to see what's stored in it:
<% ‘
Session ("username")="Donald Duck"
Session("age")=50
dim: i
For Each i in Session.Contents
Response.Write(i & "
")
Next

o\®

>
Result:
Username
Age
If you do not know the number of items in the Contents collection, you can use the Count property:
<%
dim i
dim j
j=Session.Contents.Count
Response.Write ("Session variables: " & j)
For i=1 to j
Response.Write (Session.Contents (i) & "
")
Next

%>

M.S. University - D.D.C.E. Understanding Objects 53

Result:

Session variables: 2
Donald Duck

50

Loop Through the StaticObjects Collection

You can loop through the StaticObjects collection, to see the values of all objects stored in the Session
object:

<%
di
Fo

Ne

5>

m i

r Each i in Session.StaticObjects
Response.Write(i & "
")

xLE

Pitfalls of Session Variables

Session variables and cookies are synonymous. So if a user has set his browser not to accept any
cookies, your Session variables won't work for that particular web surfer.

An instance of each session variable is created when a user visits the page, and these variables
persist for 20 minutes AFTER the user leaves the page! (Actually, these variables persist until they
“timeout". This timeout length is set by the web server administrator. I bave seen sites that the variables
will collapse in as little as 3 minutes, and others that persist for 10, and still others that persist for the
default 20 minutes.) So, if you put any large objects in the Session (such as ADO recordsets,
connections, etc.), you are asking for serious trouble! As the number of visitors increase, your
server will experience dramatic performance woes by placing large objects in the Session.

Since Session variables can be created on the fly, used whenever, and do not require the developer
to dispose of them explicitly, the overuse of Session variables can lead to very unreadable and
unmaintainable code.

Session variables take you one step closer to VB programming in the sense that you can grab one
without initializing the variable, use it whenever you want to, and not have to worry about
releasing it when you've finished using it. And WHO wants to go there? Not me.

The Session object's collections, properties, methods, and events are described below:

Collections
Collection Description
Contents Contains all the items appended to the session through a script command
Static Objects Contains all the objects appended to the session with the HTML < object> tag

54 Web Design using ASP

M.S. University - D.D.C.E.

Properties
Property Description
Codepage Specifies the character set that will be used when displaying dynamic content
LCID Sets or returns an integer that specifies a location or region. Contents like date, time, and
currency will be displayed according to that location or region

SessionID Returns a unique id for each user. The unique id is generated by the server

Timeout Sets or returns the timeout period (in minutes) for the Session object in this application
Methods

. Method Description

Abandon Destroys a user session

Contents. Remove Deletes an item from the Contents collection

Contents.RemoveAll() Deletes all items from the Contents collection
Events

Event Description

Session_OnEnd Occurs when a session ends

Occurs when a session starts

Session_OnStart

Examples:

Set and return the LCID

This example demonstrates the "LCID" property. This property sets or returns an integer that
specifies a location or region. Contents like date, time, and currency will be displayed according to that

location or region.

ASP CODE

OUTPUT

<html>

<body >

<%

response.write(" <p>")

response.write("The default LCID for this page is: " & Session.LCID & "<br
")

response.write(" The Date format for the above LCID is: " & date() & "
")
response.write("The Currency format for the above LCID is: " & Format
Currency(350))

response.write(" </p>")

Session.LCID=1036

response.write(" <p>")

response.write("The LCID is now changed to: " & Session.LCID & "
")
response.write(" The Date format for the above LCID is: " & date() & "
")

The default LCID for this page is:
2048

The Date format for the above LCID
is: 8/3/2004
The Currency format for the above
LCID is: $350.00

The LCID is now changed to: 1036
The Date format for the above LCID
is: 03/08/2004
The Currency format for the above
LCID is: 350,00 F

The LCID is now changed to: 3079
The Date format for the above LCID
is: 03.08.2004

Contd...

M.S. University - D.D.C.E.

response.write("The Currency format for the above LCID is: " & Format
Currency(350))

response.write(" < /p>")

Session.LCID = 3079

response.write(" <p>")

response.write("The LCID is now changed to: " & Session.LCID & "
")
response.write("The Date format for the above LCID is: " & date() & "
 ")
response.write("The Currency format for the above LCID is: " &
FormatCurrency(350))

response, write(" </p>")

Session.LCID = 2057

response.write(" <p>")

response.write("The LCID is now changed to: " & Session.LCID & "
 7y
response.write("The Date format for the above LCID is: " & date() & "
")
fesponse.write("The Currency format for the above LCID is: " & Format
Currency(350))

response.write(" </p>")

% >

</body >

</html>

Understanding Objects 55

The Currency format for the above
LCID is: 85 350,00

The LCID is now changed to: 2057
The Date format for the above LCID
is: 03/08/2004
The Currency format for the above
LCID is: £350.00

Return the SessionID

This example demonstrates the "SessionID" property. This property returns a unique id for each user.

The id is generated by the server.

Response.Write(Session.SessionID)
%>

</body>

</html>

ASP CODE OUTPUT
<html> 944414367
<body>
<%

A Session's Timeout

This example demonstrates the "Timeout" property. This example sets and returns the timeout (in

minutes) for the session.

&"minutes.")
response.write ("</p>")
%>

</body>

</html>

ASP CODE OUTPUT
<html> Default Timeout is: 20
<body> minutes.
<% Timeout is now: 30
response.write ("<p>") minutes.
response.write ("Default Timeout is: " & Session. Timeout
& “minutes.")
response.write ("</p>")
Session. Timeout=30
response.write ("<p>")
response.write("Timeout is now: ™ & Session. Timeout

56 Web Design using ASP M.S. University - D.D.C.E.

2.4.5 ASP Server Object

The ASP Server object is used to access properties and methods on the server. Its properties and
methods are described below:

Properties
Property Description
Script Timeout Sets or returns the maximum number of seconds a script can run before it is terminated
Methods
Method Description
Create Object Creates an instance of an object
Execute Executes an ASP file from inside another ASP file
GetLastError() Returns an ASPError object that describes the error condition that occurred
HTMLEncode Applies HTML encoding to a specified string
Map Path Maps a specified path to a physical path
Transfer Sends (transfers) all the information created in one ASP file to a second ASP file
URLEncode Applies URL encoding rules to a specified string
Examples:
When a file was last modified?
Checks when this file was last modified.
ASP CODE OUTPUT —I
<html> This Ladlie was last modified on:
<body> 18/05/2003 14:48:10

<3
Set fs = Server.CreateObject

("Scripting.FileSystemObject")
Set rs = s.GetFile

(Server .MapPath ("demo lastmcdified.asp"))
modified = rs.DatelastModified

&>
This file was last modified on:

<%response.write (modified)
Set rs = Nothing
Set fs = Nothing

%>
</body>
</html>

Open a text file for reading

This example opens the file "Textfile.txt" for reading.

M.S. University - D.D.C.E.

Understanding Objects 57

Server.CreateObject ("Scripting.FileSystemObject")
Set RS = FS.OpenTextFile(Server.MapPath("text") &
"\TextFile.txt",1)
While not rs.AtEndOfStream

Response. Write RS.ReadLine

Response. Write("
")
Wend

%>

<p>

-<img border="0"
src="/images/btn_view_text.gif">

</p>

</body>

</html>

ASP CODE OUTPUT
<html> Hello World line i
<body> Hello World line 2
<% Hello World line 3
Set FS = - TextF

Homemade bit counter

This example reads a number from a file, adds 1 to the number, and writes the number back to the file.

ASP CODE

OUTPUT

<%

Set FS=Server.CreateObject ("Scripting.FileSystemObject")
Set RS=FS.OpenTextFile(Server.MapPath ("counter.txt"), 1,
False)

fcount=RS.ReadLine

RS.Close

fcount=fcount+1

'This code is disabled due to the write access security on
our server:

'Set RS=FS.0OpenTextFile({Server.MapPath("counter.txt"), 2,
False)

'RS.Write fcount

'RS.Close

Set RS=Nothing

Set FS=Nothing

%>

<html>

<body>

<p>

This page has been visited <%=fcount%> times.
</p> i

</body>

</html>

This page has been
visited 12345 times.

58 Web Design using ASP M.S. University - D.D.C.E.

2.4.6 ASP Error Object (ASP 3.0)

The ASP Error object is used to display detailed information of any error that occurs in scripts in an
ASP page. The ASP Error object is implemented in ASP 3.0 and it is only available in TIS5.

The ASP Error object is created when Server.GetLastError is called, so the error information can only
be accessed by using the Server.GetLastError method. '

The ASP Error object's properties are described below (all properties are read-only):

Note: The properties below can only be accessed through the Server.GetLastError () method.

Properties

Pioperty Description
ASP Code Returns an error code generated by IIS
ASP Description Returns a detailed description of the error (if the error is ASP-related)
Category Returns the source of the error (was the error generated by ASP? By a scripting
language? By an object?)
Column Returns the column position within the file that generated the error
Description Returns a short description of the error
File Returns the name of the ASP file that generated the error
Line Returns the line number where the error was detected
Number Returns the standard COM error code for the error
Source Returns the actual source code of the line where the error occurred
2.5 THE GLOBAL.ASA FILE

The Global.asa file is an optional file that can contain declarations of objects, variables, and methods
that can be accessed by every page in an ASP application. All valid browser scripts (JavaScript,
VBScript, JScript, PerlScript, etc.) can be used within Global.asa.

The Global.asa file can contain only the following:
® Application events

® Session events

® <object> declarations

e TypeLibrary declarations

e the #include directive

Note: The Global.asa file must be stored in the root directory of the ASP application, and each
application can only have one Global.asa file.

A global.asa file is the file that is related directly to the application and session objects. It serves the
following purposes:

M.S. University - D.D.C.E. Understanding Objects 59

® It defines how the objects events are handled.
® It allows you to create component object instances with application or session scope.

The global.asa file must appear in the root directory of an ASP application. The global.asa file includes
two containers:

e The object container < OBJECT >
® Script container < SCRIPT >

Code is included between <SCRIPT> </SCRIPT> tags, and object declaration is done within
<OBJECT> </OBJECT > tags.

We have shown below the attributes for <OBJECT> tag and <SCRIPT > tag respectively:
® Artributes for <OBJECT > tag:
' <OBJECT RUNNAT=Server Scope ID=Identifier
{PROGID="progID” | CLASSID="classID”}>
® Auributes for <SCRIPT > tag:
<SCRIPT LANGUAGE=scriptlanguage RUNNAT=server>
The application and session object includes two events:
® OnStart
® OnEnd

When using VBScript, both the events are considered as a SUB and has a form where Object_Event is
Application_OnStart, Application_OnEnd, Session_OnStart, or Session_OnEnd.

<SCRIPT LANGUAGE=ScriptLanguage RUNNAT=server>
SUB Object Event
‘here is your event code’
END SUB
‘Events SUBs in VBScript
</SCRIPT>

2.5.1 Firing Sequence of The global.asa file

On the creation of an application object, the server searches for he global.asa file. If the file is found,
the script for the Application OnStart event is processed.

After this event, the sub-routine included in the Session_OnStart is executed and finally the .asp file
including html page is executed.

On the calling of Session.Abandon method, Session_OnEnd event is triggered.
Code for this event is processed before the session object is destroyed.

The Application OnEnd event is triggered, when the system shuts down. Code for the
Application_OnEnd event is then executed before the Application object is destroyed.

60 Web Design using ASP M.S. University - D.D.C.E.

2.5.2 Changing the Global.asa Contents

The recompilation of the server is done, if the global.asa file is changed. The server must destroy the
current Application and session objects and restart, to recompile the file.

First, all the active requests are processed by the server. No more requests are processed by the server,
until the Application_OnEnd event has been processed.

When the active requests are processed, the following happens:

® The active sessions are abondened. This triggers the Session OnEnd event for each session.

® The application is abandoned. This triggers the Application OnEnd event.

® Another requests restart the application object and create new session objects. On this,

Application_OnStart and Session_OnStart events are triggered.

2.5.3 Events in Global.asa

In Global.asa you can tell the application and session objects what to do when the application/session
starts and what to do when the application/session ends. The code for this is placed in event handlers.
The Global.asa file can contain four types of events:

1. Application_OnStart: This event occurs when the FIRST user calls the first page from an ASP
application. This event occurs after the Web server is restarted or after the Global.asa file is edited.
The "Session_OnStart" event occurs immediately after this event.

2. Session_OmStart: This event occurs EVERY time a NEW user requests his or her first page in the
ASP application,

3. Session_OnEnd: This event occurs EVERY time a user ends a session. A user ends a session after a
page has not been requested by the user for a specified time (by default this is 20 minutes).

4. Application_OnEnd: This event occurs after the LAST user has ended the session. Typically, this
event occurs when a Web server stops. This procedure is used to clean up settings after the
Application stops, like delete records or write information to text files.

A Global.asa file could look something like this:

<script language="vbscript" runat="server">
sub Applicaticn_OnStart

''""'"some code

end sub

sub Applicaticn OnEnd
''""'some code

end sub

sub Session_OnStart
'''"'some code

end sub

sub Session_ OnEnd
''"'some code

end sub

</script>

M.S. University - D.D.C.E. Understanding Objects 61

Note: We cannot use the ASP script delimiters (<% and % >) to insert scripts in the Global.asa file, we
will have to put the subroutines inside the HTML <script> tag,

2.5.4 <object> Declarations

It is possible to create objects with session or application scope in Global.asa by using the <object >
tag.

Note: The <object > tag should be outside the <script> tag!
Syntax

<object runat="server" scope="scope" id="id"
{progid="progID"|classid="classID"}>

" </object>
Parameter Description

scope Sets the scope of the object (either Session or Application)

Id Specifies a unique id for the object

ProgID An id associated with a class id. The format for ProglD is [Vendor.]Component[.Version]
Either ProgID or ClassID must be specified.

ClassID Specifies a unique id for a COM class object.
Either ProgID or ClassID must be specified.

Examples:

The first example creates an object of session scope named "MyAd" by using the ProgID parameter:

<object runat="server" scope="session" id="MyAd"
progid="MSWC.AdRotator">

</object>

The second example creates an object of application scope named "MyConnection" by using the
ClassID parameter: '

<object runat="server" scope="application" id="MyConnection"
classid="Clsid:8AD3067A-B3FC-11CF-A560-00A0C9081C21">

</object>

The objects declared in the Global.asa file can be used by any script in the application:
GLOBAL.ASA:

<object runat="server" scope="session" id="MyAd"

progid="MSWC.AdRotator">

</object>

You could reference the object "MyAd" from any page in the ASP application:
SOME .ASP FILE:

<%=MyAd.GetAdvertisement (" /banners/adrot.txt") %>

