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1.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

. Identify errors in numerical computation

. Describe iteration method

. Discuss bisection method

o Explain Regula Falsi method

. Discuss Newton Raphson method

. Describe Horner's method

1.1 INTRODUCTION
In Engineering Mathematics we often encounter problems of obtaining solutions of equations of the
form f(x) : o. In order words we have to find a number xo such that f(ld : o. If (") [ a polynomial
then the equarion f(x) is called an algebraic equation.
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Equations which involve transcendental functions like sin x, cos x, tan x, logx, e" etc. are called

transcendental equations.

x2 +5x+6=0; 2x3 -x+4=0; r,5-*3+3x+3=0

are some examples of algebraic equations.

2e* +l :O;2x+ cosx- 1 : O; logrox -2x : !2;a + b sin x + c cos x + dlogx : 0; >f + lopx - 12 :
0 are some examples of transcendental equations.

-n
-b+{b'-4actormula x = --:- to trnd

2a

expression involving transcendental

If (x):0isaquadraticequationax2 + bx * c:0wehavesimple

its roots. However if f(x) is a polynomial of higher degree or an

functions we have no simple formula to find the roots.

1.2 ERRORS IN NUMERICAL COMPUTATION

A computer has a finite word length and so only a fixed number of digits are stored and used during
computation. This would mean that even in storing an exact decimal number in its converted form in
the computer memory, an error is introduced. This error is machine dependent and is called machine

epsilon. After the computation is over, the result in the machine form (with base p) is again converted
to decimal form understandable to the users and some more errors may be introduced at this stage.

'We now discuss the effect of the errors on he results. The quantity,

True value - Approximate Value

is called the error. In order to determine the accuracy in an approximate solution to a problem, either
we find the bound of the

RelativeError: lErrorl

lTrue valuel

or of the

Absolute Error : lErrorl

Neglecting a blunder or mistake, the errors may be classified into the following types:

. The inherent error is that quantity which is already present in the statement of the problem before

its solution.

The inherent error arises either due to the simplified assumptions in the mathematical formulation
of the problem or due to the errors in the physical measurement of the parameters of the problem.

o The round-off error is the quantity R which must be added to the finite representation of a

computed number in order to make it the true representation of that number.

Thus, if x is the computed number

x = 'd, d, ...d, d,*, ...XF'
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then the relative error for t-digit mantissa standard form representarion of x becomes

l" - nk)l . l?'-' forchoPPing

l{- = llB'-' forrounding.
l2'

Thus, the bound on the relative error of a floating-point number is reduced by half when rounding
is used than chopping. It is for this reason that on most computers rounding is used. rJ7e write

fl(x)=x(t+a)

\7here 6 : 6 (x), some number depending on x, is called the relative round-off error in fl(x). The
number 6 is called the machine epsilon and is donated by EPS.

lB'-' forchopping

la(*)l= EPS = 
[u'-' forrounding.
l2

. The truncation error is the quality T which must be added to the rnre representation of the quality
in order that the result is exactly equal to the qualicy we are seeking ro generate.

This error is a result of the approximation formulas used which is generally based on truncared
series. The Taylor series with a reminder is an invaluable tool in the study of the truncation error.

Example 1:

Obtain a second degree polynomial approximation to

f (x) = (t+*)t/2,xe[o,o.t]

Using the Taylor series expansion about x : 0. Use the expansion to approximate f(0.05) and find a
bound of truncation error.

\7e have

f (") = (t+*)t/2, f(o)= r

f'(x)= )0*4-'/', f '(o)=;

f" (x) = f {r**)-"' , f,, (q= -+

f,,'(*)=f{r* x)-s/z

Thus, the Taylor series expansion with remainder rerm may be written as

(L+*)"' =,*;-+.*t(*-fu,o < E < o.1.

The truncation term is given by

r=(1 -*)'/'-[r.; +]
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t 3x

'u [{r* \)"')'

\fle have f(o.os) = 1*9'os - 
(o'gsf 

=0.10246875x 1d.28
The bound of the truncation error, for x e [0, 0.1] is

lT1< max (o'0'
' 
-r - o-<--<o.r 

f e[(f + *)rr]'

( 0.1)3
< \"'" =0.6.25x10+.

t6

1.3 ITERATION METHOD
These methods are based on the idea of successive approximations i.e. staring with one or more initial
approximations to the root, we obtain a sequence of approximarions or irerates (x1), which in the limit
converges to the root. The methods give only one root at a time. For example, to solve the quadratic
equation we may choose any one of the following iteration methods:

.2
(")rt*, - -42 

+aoxk, 
k = 0,1,2,...

a1

(b)*r.*, -- 
r2--, 

k = 0,1,2,...

(.)*o*, = - "'r]i:*,k= o,!,2,...

The convergence of the sequence {xr} to the number (, rhe root of the equation depends on rhe
rearrangement and the choice of the starting approximation xo.

A sequence of iterates {xr} is said to converge to the root (, if

,lim lx; - El = 0or.lim xk = E.K-+oo k-)co

If xt, x.-r, "'I Xk-m+r are m approximations to the root, then a multipoint iteration method is defined as

xk+l = 0(*p, *g_r, ..., xk_*+t ).

The function $ is called the multipoint iteration function.

For m : 1, we get the point iteration method

Xx+1 = 0(*r. ).



Thus, given one or more initial approximations to the root, we require a suitable iteration function $for a given function f(x), such that the sequence of iterates obtained from converges ro the root (. In
Practice, excePt in rare-cases, it is not possible to find ( which satisfies the given .q:rrrtion exacrly. rilFe,

therefore, attemprs to find an approximate roor f,r such that either

lr(E,,)l . u

lxp*1 -xpl< e

srhere xt and xk-1 are two consecutive iterates and e is the prescribed error tolerance.
Initial Approximation

Initial approximations to the root are often known
from the physical considerations of the problem.
Otherwise, graphical methods are generally used to
obtain initial approximations to the root. Since the
value of x, at which the graph of. y=f (x) intersects rhe
x-axis, gives the root of (l<) : 0, any value in the
neighbourhood of this point may be taken as an initial
approximation to the root (see Figure 1.1 and 1.2).II
the equation f(x) : 0 can be conveniently written in
the form f,(x) =fr(x), then the point of intersection of
the graphs o{ y=f,(x) and y=fr(x) gives the roor of
(x) : 0 and therefore any value in the neighbourhood
of this point can be taken as initial ,ppro*i*rtion to
the root (see Figure 1.3)

M.S. University - D.D.C.E.
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Figure 1.2: Graph of y = cos x - xe,.

Another commonly used method to obtain the
Intermediate Value Theorem.
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Figure 1.1: Graph of y = x2 + 2x-1.

l'x

o..
qrs 

.\+

Figure 1.3:y = xandy = e-*cosx.

initial approximation to the root is based upon the

-X
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Example 2:

The equation

8x3 -12x' -2xl-3=0
has three real roors. Find the intervals each of unit length containing each one of these roots. We

prepare a table of the value of the function f(x) for various value of x.

Values of f(x)

From the table, we find that the equation (") : O has root in the intervals (-1, 0), (0, t) and (1, 2). The

exact roots are - 0.5, 0.5 and 1.5.

Example 3:

Obtain an interval which contains a root of the equation

f(x) = cos x-x e* = 0.

lVe prepare a table of the value of the function f(x) for various values of x.

Values of f(x)

x 0 0.5 1 1.5 2

f(x) 1 0.0532 -2.U84 -6.55 18 -15.t942

From the table we find thar the equation (*) : O has at least one root in the interval (0.5, 1). The exact

root correct to ten decimal places ts 0.5177573637.

1.4 BISECTION METHOD

This method is based on the repeated application of the intermediate value theorem. If we know that a

root of (r) :O lies in the interval lo:(ao, bo), we bisect Io at the point m1 :(ao,+ bo)/2.Denoted byL
the interval (ao,: mr) if f(ad f(-') < O or the interval (m,,bd if f(mr)fftd,O. Therefore the interval L also

conrains the root. E bisects the interval L and gets a subinterval L at whose end points f(x) takes the

value of opposite signs and therefore contains the root. Continuing this procedure, we obtain a

sequence of nested sets of sub-intervals Io : L : Iz ... such that each subinterval contains the roots.

Afier repeating the bisection process q times, we either find the root or find the interval Io of length (bo

- a)/2q which conrains the root. This root has error not greater than one-half of the length of the

interval of which it is the midpoint. Thus, we have

frrp*1 = 
"o 

+ j(bu - ,n), k= 0,L,2,..'

'Wenoticethatthismethodusesonlytheendpointsof theinterval[au,bo]forwhich F(ao)F(bn)<0

and not the values of f(x) at these end points, to obtain the next approximation to the root. The

, l(ro,*o*1), if f (a1)f (*r*r).0
(at*r.bk*r) = l,. hrr'-rir/ 

l(-t*r,bt),if f (m1.*1)f (bt). o

x 1
1 0 1 2 3

(,.) -105 -15 3 -3 15 105



M.S. Universitv - D.D.C.E Algebraic and Transcendental Equations 13

method is simple to use and rhe sequence of approximations always converges to the root for any f(x)
which is continuous in the interval that contains the root. If the permissible error is e, then the
approximation number of iterations required may be determined from the relation

bo-,0 
=. or rr, 

log(bo-'o)-loge
2" log2

Since n is an integer, we take n as the next nearest integer.

The minimum number of iterations required for converging to a root in the interval (0, 1) for a given e

are listed in Table 1.1

Table 1.1: Number of Iterations

Thus the bisection method requires a large number of iterations to achieve a reasonable degree of
accuracy for the root. It reqrrires one function evaluation for each iteration.

1.4. 1 Numerical Computation
Example 4:

Perform five iterations of the bisection method to obtain the smallest positive root of the equation

f(*)=*3-5r+1=0.
Since f(0) ) 0 and (0 < 0, the smallest positive root line in the interval (0, 1). Taking ao : 0, bo, : 1,

we get

l. 1

^t = rbo+ 
bo) = 

7(O 
* 1) = 0.5

f ("',) =-t'375andf (ao)f (m,)< o'

Thus, the root lies in the interval (0, 0.5). Taking ar : 0, br : 0.5. Ve get

l. 1

^z = )br+ bl ) =, (O+ O.S) = 0.25

f (-r)= f (0.2s) = -0.234375 and f (a1)f (m2)< o.

Thus, the root lies in the interval (0, 0.25). The sequence of intervals is given in table below.

Sequence of Intervals for the Bisection Method

L0-2 10r 10+ 10r 10-6 10-7

n 7 10 L4 17 20 24*

k ak-1 br.-r mk f(mr) f(ar-r)

1 0 1 0.5 <0

2 0 0.5 0.25 <0

3 0 0.25 0.1875 >0

4 0.125 4.25 0.1875 >0

5 0.187s 0.25 0.21875 <0
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Hence, the root lies in (0.1875, 0.21875). The approximate roor is taken as rhe midpoint of this
interval, that is 0.203125.

Example 5:

Perform five iterations of the bisection method to obtain a root of the eguation

f(x)=cos x-xe* =0
Since f(0)=1>0 and f(1)=-2.1780<0, the root lies in the interval (0, 1). Taking rhe initial
approximations as ao = O,bo = 1, we get

m1 : 1(r, *u,)=1(o+1)=6.5lz
f(rn,) f (o.s;= 0.0s32 and f (ao)f (m,)> o.

Therefore, the root lies in the interval (0.5, 1.0).

Taking o1 : 0.5,b, = L.0, we get

m2 : 
)G,*u,;=110.s+1.0)=9.75

f(*) 0.8s51 and f (a, )f (m, )< 0.

Therefore, the root in the interval (0.5, 0.75). The sequence of intervals is given in table below.

Sequence of Intervals for the Bisection Method

k xt -t bu_, mk f(mu)f(au ,)

1 0 I 0.5 >0
2 0.5 1 c.75 <0
J 0.5 0.75 0.625 <0
4 0.5 0.625 0.5625 <0
5 0.5 0.5625 0.53125 <0

Hence, the root lies in the interval (0.5,0.53125). The approximate roor is taken as rhe midpoint of
this interval, that is, 0.515625.

1.5 REGULA.FALSI METHODS

If xr.-r and xk are two approximations to the root, then we determine ao and ar by using the conditions

fk-t = aO xk-1 + al

fk =aOxp+a1

fk-1 = f (*r-r) and fp = f("r.).

ao = (fr. - fo-,)/(xo - xr._,)

a, = (xofo*, -xu-,fo)/(xu -*o-,).

\flhere

On solving, we obtain



M.S. University - D.D.C.E.

The next approximarion xr*r to the root is given by
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which may also be written as

",.=x*-'fr-xlfl-'K+r 
fo - fo-,

x, -x,Xk*l = *u -a;?fu,k = 1,2,...
rk - rk-r

This is called the secant or chord method.

Geometrically, in this method we replace the function f(x) by a straight line or a chord passing
through the points (*o,fl and (xt-r, fi-r) and take the poirrt oiintersection of the straight line with thJ
x-axis as the next approximation to the root (Figure r.+;. If the approximarions 

"r" 
,rJh that fr. fr.-r ( 0,

then the method is known asRegula-Falsi method. The meth#ir rho*r, grrphi.ally inFigure 1.5.
Since (xr.-i, fr., I < 0) are known before the stan of the iteration, rhe secant 

""ain. 
i.g,rir-r.ki tethods

require one function evaluation per iteration.

v
I
I

I

I

I

I
j

Figure 1.4: Secant Method

v
I
I

I

I

(xr, {xr))

Figure 1.5: The Regula-Falsi Method

o
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Example 6:

A real root of the equation

f(")="3-5*+1=0

Lies on the interval (0, 1) Perform four iterations of the secant method and the Regula-Falsi method to

obtain this root.

xg = o,x1 = 1, fo = f (x9)= 1, fr = f 1*r)= -:
Secant method

x2 =xl-t++l fr =0.25,f2 =f (xz)= -0.234375.
L rt -ro I

[r. I
x3 =X2 -l ,'-l'lf2 =0.186441,f3=f (*r)= -0'074276'

L tz -tr .l 
-

[*, I
x4 = x3 -l ? 

-l' 
lft =o'zott36,f 4 =f (xo )= - o'ooo47o'

L t3 -t2 I "

t"n--r-lr, 
=0.201640.x5=x4-l;'r " Lfo-fr-1"

Regula-Falsi method

l"'-"'lv -v -r--r---ilfl =0.25,f2=f (*r)=-0.234315.^2_^r lf,_rol

Since f (xr)f (",). o,(e (xo,xr.) Therefore,

X3 = X2 -l++lu :0.202532,fi = f (*: )= -0.004352.
I la -I^ IILVI

Since f(xe)f(x3).0,E = (*0, x3).Therfore,

1", I

X4 = X3 -f;--Plf, =O'201'654,f+ = f (x+)= -o'000070'
I 12-ro 

I

Since, f(x6)f(xa).0,6 e (xe, xa). Therefore,

[*r-*nl-
x5 =x4 -l 'i :' lf+ =0.2016+0.

L I+ -ro I

1.6 NE\T/TON.RAPHSON METHOD
'We determine ao and ar using the conditions

fk="0x1 +a1

f'k= ro
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\flhere a prime denores differentiates wirh respecr ro x.

on substituting ao and ar and represenring the approximate value of x
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by xt*r, we obtain

Figure 1.6: The Newton-Raphson Method

This method is called the Newton-Raphson method. The method may also be obtained directly by
taking the limit xk-1-+ xt. In the limit when xk-I-+ xk, the chord passing through the points (xr, fr.j and
(xr-r, fr-r) becomes the tangent at the point (xr, fr). Thus, in this iase the problem of iining tLe root of
the equation is equivalent to finding the point of intersection of the trrrg"rrt to the ."*. y:f1r) ar the
point (xr., ft) with the x-axis. The method is shown graphically in Figure 1.5. The Newron-Raaphson
method requires two evaluations fr, f'r.for each iteration.

Abernatiqz

Let xt be an approximation to rhe root of the equation (") - 0. Let Ax be an increment in x such that
xk + Ax is an exact root. Therefore,

f(xp+Ax)=0.

Expanding in Taylor series about the point xk, we ger

f(xi. )+-Ax f'(xp 1-|1artt f" trr)+... = 0.

Neglecting the second and higher powers of Ax, we obtain

f ("r. )+ Ax f'(xp ) = 0

or *=-j("0)-.
f'(*r )

Hence, we obtain the iteration method

Xk*1 = ** -f ,o = o, 1,...

Xk*l =xk +ax -xk 
ffi,k=0, 

1,...
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1.7 HORNER'S METHOD
Horner's method is the most convenient way of finding approximation values of the irrational roots
of the equation f(x) :0, where f(x) is any polynomial. The root is calculated in decimal form and the
figures of the decimal are obtained in succession.'We describe below the steps to be followed

Step I. Consider the equation ("):0. Suppose this has a single root cr in the interval (a, a+ 1) where a is a
positive integer. Then a can be located by using the condition that f(a) and f(a+ 1) are of opposite signs.

Step II. Suppose the exact value of the root is a. ar az ... Diminish the roots of ("):0 by a. Then we

get the transformed equation fr (x) : 0 having 0.1 ar u "' as a root.

Step III. Multiply the roots of fr (x) by 10 and we obtain the transformed equatio" fr(r) : 0 having

a1.a2... as a root.

Step IV. By inspection we locate the root by finding two consecutive integer b and b + 1 such that fzft)
andf.z 0 + 1) are of opposite signs. Then b: a, is the first decimal in the root making a.a1 as the grist
approximation of the root.

Repeat this process (Step I to IV) as many times as needed to get the roots of f(x):O to any desired
number of decimal places.

Perform four iterations of the Newton-Raphson method to find the smallest positive root of the
equarion

f(x)=;i3-5x*L=0.

1.8 LET US SUM UP

A computer has a finite word length and so only a fixed number of digits are stored and used during
computation. This would mean that even in storing an exact decimal number in its converted form in
the computer memory, an error is introduced Iteration methods are based on the idea of successive

approximations i.e. staring with one or more initial approximations to the root. Bisection method is
based on the repeated application of the intermediate value theorem. The problem of fining the root of
the equation is equivalent to finding the point of intersection of the tangent to the curve y:f(x).
Horner's method (or synthetic division) is a technique for evaluating polynomials.

1.9 KEY\TORDS
-Itqation Mahod: These methods are based on the idea of successive approximations i.e. staring with
one or more initial approximations to the root.

BiseoionMethodThis method is based on the repeated application of the intermediate value theorem.

Regula Falsi Mabod It requires one function evaluation per iteration.

Napton Rapbson Mabod:It reqr,ires two evaluations for each iteration.

Hornq's Mabod: The most convenient way of finding approximation values.

heck Your
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1.10 QUESTTONS FOR DTSCUSSTON

1. Obtain an interval which contains a roor of the equation

f(x)=cosx-xex =0.

2. Perform five iterations of the bisection method to obtain a root of the equation

f(x)=cosx-xe* =0

3. use the Regula-Falsi methods to determine rhe root of the equation

cos x-xe* = 0

1.11 SUGGESTED READINGS
S.S. Sastri., Introduoory Metbods of Numerical Analysls, Second Edition, prentice Hall.

S' Mohan Naidu., A Text Book of Matbematical Metbodsfor Scientific Engineers, Students Helpline Series, Hyd -
2005.

Jain, M.K., Iyengar, S'R.K., Jain, R.K., Numerical Methods for Scientific and Engineering Computation, 3rd
Edition, New Age International (P) Ltd., 1993.

Check Your Progress: Model Answers

The smallest positive root lies in the interv"l (0, 0. Take the initial approximation 3s )o : 0.5. \7e have

f(x)=13 -5r+1,f'(x) =3x2 -5.
Using the Newton-Raphson method.

f (x'- )
Xk+t =x; ---J--aZ-r ^ f'(*r, )

we get

xk*r = Xk - "la i*r* 
, =4+,k = o, 1, ..." 3x[ -5 3xf -5'

Staning with xe : 0.5, we obtain.

xr : 0.t7647 7, xz -0.201568.

xt : 0.20L640, x+ : 0.201640.

The exact value correcr to six decimal places is 0.201640.
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2.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
. Discuss simultaneous equations

. Explain back substitution

. Describe Gauss elimination method

. Identify Gauss Jordan elimination method

. Understand calculation of matrix

. Explain Crout's method

2.1 INTRODUCTION
Simultaneous linear algebraic equations occur in several engineering and statistical problems. In this
lesson we deal with several numerical methods for solving such system of equations.
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2.2 STMULTANEOUS EQUATTONS

Matrix Operations

MathCAD is designed to be a tool for quick and easy manipulation of matrix forms of data. 'We've

seen the matrix before as a 2-D array. That is, many pieces of information are stored under a single

name. Different pieces of information are then retrieved by pointing to different parts of the matrix by
row and column indexes. Here we will learn some basic matrix operations: Adding and Subtracting,
Transpose, Multiplication.

AddingMatrices

Add two matrices together is just the addition of each of their respective elements. If A and B are both
matrices of the same dimensions (size), then

C::A+B
produces C, where the i'h row and j'h column are just the addition of the elements (numbers) in the i'h

row and j'h column of A and B

Given: e=l3 r-l . *a a = [r + o-l

Lr o ,r_] [s ro r:_]

sothattheadditionis: c : = e*r = [r 71tl
Ll: 1q 23_l

The Mathcad commands to perform these matrix assignments and the addition are:

A :: Ctrl-M (choose 2 x3) | 3 5 7 9 ll
B :: Ctrl-M (choose 2x3) 2 4 6I l0 Lz

C::A+B C:
Rule: A, B, and C must all have the same dimensions.

Transpose

Transposing a matrix means swapping rows and columns of a matrix. No matrix dimension
restrictions.

Some examples:

tn
l-D a : ft: +]. ut: l,l 1xi becomes::> 3xI

L'l

r -r [s, *il
r-D I = lB 

r --+"5 -,ol . ,, = l_;. ;;l 2xr becomes:) jx2
L.r: r1 iq_l l_;^_;l

In general

B (i, j) : 8'6,i)
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In Mathcad, The transpose is can be keystroked by Ctrl - 1 (the number one) or you can view the
matrix pallet (view -+ toolbars -+ matrix) and click the Mr symbol

r 1 t'-l
r = l:: o:l B ctsrr-1 = .,ns = l, tl[os+r.] I.rl

Lr 7-l

Muhiplication

Multiplication of matrices is not as simple as addition or subtraction. It is nor an element by element
multiplication as you might suspect it would be. Rather, matrix multiplication is the result of the dot
products of rows in one matrix with columns of another. Consider:

C::A*B
matrix multiplication gives the i'h row and kth column spot in C as the scalar results of the dot product
of the i'h row in A with the k" column in B. In equation form this looks like:

# of colunns in A
ci,r= I A;.1u8;.1,

j=1

Let's break this down in a step-by-step example:

Stq 1: Dot Product (a 1-row matrix times a l-column matrix)

The Dot product is the scalar result of multiplying one row by one column

kl
[r r r]'*l*l = 2*6+5*8+3x7 = 73rr, DOTPRODTICToFROWANDCOLUMI$
lx3 ltlt'3xl

Rule:

1. # of elements in the row and column must be the same

2. must be a row times a column, not a column times a row.

Step 2: General matrix multiplication is taking a series of dot products.

Each row in pre-matrix by each column in post-matrix.

T_ -1

[, * r.l-l: ,11 = [1os*4*B*2*1e l*r+.1*12+2*r,'l = [r, 76]

,Llr"l L; ;rlr,., le*s*-r*3*7*10 e+o+?*rl+7*ll-] L,,r,olr*,

c(i,k) is the result of the dot product of row i in A with column k in B

M atix Mubiplication Rales :

1. The # of columns in the pre-matrix must equal # of rows in post-matrix inner matrix dimensions
must agree.
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2. The result of the multiplication will have the outer dimensions # rows in pre-matrix by # columns
in post-matrix.

For this example, apply rules

C::A*B
A is nra x nca (# rows in a by # columns in a)

B is nrb x ncb

Rule 1 says:

nca : nrb or else we can't multiply (can't take dot products with different number of
terms in row and column)

Rule 2 says:

C will be of size nra x ncb

result C has outer dimensions

inner dimensions must agree

How to perform matrix multiplication in Mathcad??? Easy

1+ s\ {g l \A:=l I B:=l I C':=A.B\2 t) \6 t2)

(s n r\
-A:=l I

\o + s)

I oe o+\C=l I

\?4 t4)

/: s s\B:=l I C:=A.B\9 4 5l

Note: If inner matrix dimensions don't match, Mathcad can'r perform the operation since it violates
the rules of matrix multiplication, and you'll ger an error rhar says:

"the number of rows and or columns in these arrays do not match"

Exarnplel: Let's try to multiply a2 x 3 by another 2 x 3 (rules say we can't do this)

Mathcad will tell you:

"the number of rows and or columns in these arrays do not match"

Since the # of columns in A was not equal to # of rows in B, we can't multiply A '" B

IMPORTANT: Another example: Say we creete a 1-D vector x with the following:

x::(3895)
Now say we want to square each number in x. It would seem natural to do this:

x^2:

nraxnca*nrbxncb
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But Mathcad tells us:

"This Matrix must be square. It should have the same number of rows as columns'

Note that x ^ 2 : is the same as saying x,tx :
Mathcad by default will always interpret any multiplication as a srandard dot produd type marrix
muldplication, thus we can't take a dot product of two row vectors, since rules 

-of 
matrix

multiplication are violated in this case.

The exception to this default assumption in Mathcad is if the vector is a column instead of a row. In
that case, Mathcad will assume you want to square each element in the vector rather that applies
standard matrix multiplication.

If we just want to square the numbers in x, we can do this:

Or we can first convert a row into a column vector using transpose, and then square

Try this out

s;:{2 5 4) (-')'

Soldng Sirnuhaneous Linear Equations usingMatix Mahods

Now we'll use matrices to represent sets of algebraic equations. The solution to these sets of equations
can be solved using matrix methods. The simultaneous solution of multiple equations finds its way in
to many common engineering problems. In fact, modern structural engineering analysis techniquei are
ALL ABOUT solving systems of equations simultaneously. You'll see the fofiowing material in CES
4141 (structures II) for sure.

. Matrices - an organized way of presenting a ser of coupled equations.

. \7e seek a single unique solution that satisfies all the equations at the same rime.

Consider the three coupled linear eqtations below:

-lXr+5X.+2X-1 = S

2X,+_iXr-lX: = t
lxl_2Xr_3X3 - _l

a Coupled because each equation has one or more terms in common with the others, Xr, Xz Xr, so
that a change in one of these variables will affect more rhan one equation.

. Linear because each equation contains only first order rerms of Xr, Xz Xr. There are no terms

, l;] ,' l-]{',J l,,'

[*]

. liL" Xi, or./X, or log (Xr), or 1/(X,Xr), etc.



. Using the rules of matrix multiplication, we can represent the above equations in matrix form:

l-3 s 2l [xJ tsl
lr:-tl lx,l =ltl
Lr -: -rl lx,l l-,1

ar- 
'L'-'11 L r 

-."-
Coefficient matrix A unknown vector X solution vector B

Try multiplying the matrices A and X together, make sure you can get the original equations above.

There are several ways to solve for unknown vector. Each method involves some manipulations to the
coefficient matrix using algebraic rules, creating a nev/ and equivalent problem in a more easily

solvable form. These manipulations involve the addition of multiples of one row to another.

Adding one row to another result in an equivalent equation, since both sides are equal.

For example, starting with the two equations:

X, *5X, = J

-2Xr- 3X, = 5

28 Numerical Methods M.S. Universitv - D.D.C.E.

their addition gives:

-1X, + 2)(2--8

This addition does not add any new information, but it does present a new form of the old information.

2.3 BACK SUBSTITUTION

Consider a system of simultaneous liner equations given by AX: B where A is an n x n coefficient
matrix.

Suppose the matrix A is upper triangular.

A_

Then the given system takes the from

2u Ltz zn x1.

0 
^r, 

?zt r2n

00a.,d3n

o "' am

Let

b1

b,

b3

;.

x1

x2

x3

xn

2rt atz d1n

0 ^r, 
a2n

00zxt3o

0 0... atr
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(i..) a11x1 * a12x2 * ...* 21rrX'

a22x2 *...1 a2nxn

b1

b2

xn-1n-1Xn-1 *2rr-1xo = brr-l

arrrrxr, = br'

From the last equation we ger *r, = !o.
2nn

Substituting the value of x" in the previous equarion we ger

Xn-r= t [on-l-xn-lf!-]lxn-1 n-11 \a""))
Proceeding like we can fine all x's. This procedure is known as back substitution

Similarly considering lower triangular marrix

the given system takes the from

(^,, 0 O 0')
lr., a.. o ... o I

A=l*:l 
*22 v v 

It......1

[.", an2 
^*)

a11x1 = b1

a21x1 * a22x2 =b2

4rr1x1 * "'+ annxn = bn

From the first equation we get *, = 
!1-. 

Substituting the value xr in the nexr equarion we geral

1 [ (t, )l
"r=;l^r-rr,[ilj]

Proceeding like this we can find all x's. This procedure is known as forward substitution.

2.4 GAUSS ELIMINATION METHOD
Here, the unknowns are eliminated by combining equations such that the n equations in n unknowns
are reduced to an equivalent upper triangular system which is then solved by back substitution
method. Consider the 3 x 3 system

a11x1+a?x2+aBXr=b,

a2rxr + a22x2 + arrx, =b,
a31 x1 + a32x2 + a, x, = br.
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In the first stage of elimination, multiply the first row in by azt/ar and ay./at respectively and subtract
from the second and third rows. IVe get

^9) ", 
* 

^fJ 4 =bf)

^?) ", * ^f) 4 =af)

's7here 
^?) 

= ^r, -% 
^,.r, ^(?.) 

= 
^r, -%^rr.LL 

al 23 al 
tJ'

^?) 
= ^r, -? ^rr, ^l) = ^r, -?^r,a1.l all

btr) =b2-121b,, bl') = br -A"ralf-afi

In the second stage of elimination, multiply the first row by (a$) / afi)) and subtract from the second

row.'We get

,l3l 
"3 

= b!3)

Q\ (2\'where 
^?) 

=^\') -+rt2r), 6trt = bl') - #o?)422 422

Collecting the first equation from each stage, we obtain the system

a!])x, + 
^\!*r+aff 

x, = [l1r

^f)"r+^f)4=bf)

^f)4 =bf)
'where 

^t) =^rj,b{') = bi,ij=!,2,3.

The system is an upper triangular system and can be solved using the back substitution method.
Therefore, the Gauss elimination method gives

[du]a#;-[q.]
'Where 

tA lbl is the augmented matrix. The elements 
^\\) 

, 
^9r) 

,"d ,l3r) which have been assumed to
be non-zero are called pivot elements. The elimination procedure described above to determine the
elimination method. 'We may also make the pivot as 1 before elimination, at each step. At the end of
the elimination procedure, we produce L at each of the positions of the diagonal elements.
'W'e now solve the system in n unknowns by performing the Gauss elimination on the augmented
matrix tA lbl. Denote

b[o) ="[]l-,, i,k=1(1)n.
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The elements a[jk) with i, j >

'l'n*" 
= tI-#'Ij'

dkk

i = k+ I,k+ 2,...,n j = k+1,...,n, n + 1

^(,| 
= 

^,,

The elimination is performed in (n- 1) steps, k : l, 2, . . . , n- 1. In the elimination process, if. any one of
the pivot elements 

^\'1, ^9 
,"' a$ vanishes or becomes very small compared to other elemenrs in that

column, then we attempt_to rearrange the remaining rows so as to obtain a non-vanishing pivot or to
av_oid the multiplication by a large number. This strategy is called pivoting. The pivotlng is of the
following rwo rypes.

Partial Piwting

In the first stage of elimination, the first column is searched for the largest element in magnitude and
brought as the first.pivot by interchanging the first equation with tlre equation havinithe largest
element in magnitude. In the second elimination rtrg", ih. second col.r*rrls searched fol the lrr[.rt
element in magnitude among the n - L elements leaving the first elemenr, and this elemenr is brot[ht
as the second pivot by an interchange of the second equation with equation having the largest elerrrlnt
in_magnitude. This procedure is continued until we arrive at the equations. Ve are th,.ri l.d to the
following algorithm to find the pivot.

Choose j, the smallest integer for which

l,f,l=*l"f,l, k<i<n

And interchange rov/s k and j.

Qmplae Piuting
'We 

search the matrix A f9r the largest element in magnitude and bring it as the first pivot. This
requires not only an interchange of equations but also an interchange of tle position of the variables.
This leads us to the following algorithm to find the pivot.

Choose I and m as the smallest inregers for which

l,Pl = -,* l,!k)1, k < i, j< n

And the interchange rows k and I and columns k and m.

If the matrix A is diagonally dominant or real, symmetric and positive definite, then no pivoting is
necessary.
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k are given

'Where
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Example 2:

Solve the equations

x1 -lx2+x3 -6
3x1+3x2+4x3=)Q
2x1+x2+3x3 =lJ

using the Gauss elimination method.

In the first step we eliminate xr form the last two equations and obtain

x1*x2*x3=(
v^ =)"J

-x2* x3 =1

Here, the pivot in the second equation is zero and so we cannot proceed as usual. 
'We interchange the

equations 2 and 3 before the second step. 
'We obtain the upper triangular system

which has the solution

X1*xr*x3=(
-x2+x3=1

-- _1
^3-z

xl=3rx2=tandx3=2.

M.S. Universitv - D.D.C.E.

2.s GAUSS-JORDAN ELTMTNATTON METHOD

F{ere, the coefficient matrix is reduced to a diagonal matrix rather than a triangular matdx. At all steps

of the Gauss elimination method, the elimination is done not only in the equations below but also the
equations above the pivots, producing the solution without using the back substitution method. On
the completion of the Gauss-Jordan method the equation become

[1 o o ol[.,] 
[0,.]to 1 o oll*rl larll..lll=lll:'.:ll:ll:l

[o o o '] L,.l Lr,l
The solution is given by

x; = dir= 1,2,..,n,

Hence, the Gauss-Jordan method gives

[Alb-l =''l* 'trta-1.LrJJordenLr-l

Generally, this method is not used for the solution of a system of equations as it is more expensive

from the computation view-point than the Gauss-elimination method. However, it gives a simple
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Ir
l+
Ir
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method to find the inverse of a given matrix A. Ve start with the augmented matrix of A with the
identity matrix I of the same order. 'When the Gauss-Jordan procedure is"completed we obtain

talrl-ffi[,lo-,]
Exampk3:

Find the inverse of the coefficient matrix of the sysrem

[r 1 1l[x1l tr'l
l4 , -, ll 

., 1=lrl
L3 s 3lL*31 L*l

By the Gauss-Jordan method with partial pivoting and hence solve the sysrem. Using the augmented
matrix [A lI] we obtain

10
01
00

3/ 4 -t/ 4

11
53

3/4 -1/4
rt/ 4 rs/ 4
t/4 5/4

3/4 -r/4
t/4 s/4
11/4 L5/4

3/4 -r/4
1, t5/ tl.

t/4 L5/4

0 L/4 0l
| -t/4 ol
o -3/4 1]

l+ 3 -r
lr 1 1

[:53
t/4 ol
o ol-
o 1l

:l
1l

lo
1

o

11.
3-L
53

Ir
-ln

Io

Ir
-lo

Io

Ir
-lo

L0

01
10
UU

0l
ol
1.1

ol
4/trl
o"l

Ir

L:

jt
Io

o 5/Lt -3 I
o -3/rL Ot'I
| -2/tL -.rtrr)
o s/tt -ttttl
0 -3/1,t +/ttl

n/to -r/s -rtrc)

j;;fl1l;,)
Therefore, the solution of the system is

[:<,-l I zrs

[;;J= l:J:,

Ir

Lr

.ti 0 1/4

0 -3/11.
L -1/4

o t/4 ol
L -3/4 'lr -L/4 ol

0

I
U

0 -r4 / 11,

1 1,5/tt
0 t0/tL

-14 / rr
fi/tt

I

00
10
01

7/5 t/s
-3/s 0

tt/r0 -1/s

-2/ s1

r/21
-rt rojl

L/s

0

-1./ 5
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2.6 CALCULATION OF A MATRIX

ultaneous equations

Let A be an n x n nonsingular matrix

(*r, xrz *,')

Let X=|":, *:, . *:"1
l::::l

[*,, Xn2 **J

be the inverse of A.

.'. AX:i where I is the unit matrix of order n.

.'.AX:I gives

( ^,, arz 
'," )(*,, Xr: t," ) ( I o "' o)

| ,r, azt 
"r" ll 

*r, xzt *r" I I o 1 ... o 
Il':::ll::::l=l':::l

[r,, xn2 ,-.,l[",, Xn2 *) [o o o. 1J

rhis equation is equivar ";:,: 
l' 

tltTil,.::i"i;t 
""'

lri, ^:., , ,,, 11 ',, llol

[," ^i,n, ,-,J[,..,.J= lrj

(^r, at2 aln )f x12 ) t'?l
| ^r, a.tt 

^r-,ll 
*rr l I I I

["", ^in'n, 
: ,;. ][.:, ]= [:]

and

can be solved by Gauss elimination method or

(^" atz ,," )f *," ) f 0 )

l'i' ^:'' 'i"ll t"l=l'l
[,*:, ^in, 

: ,- ][,.- ] [;]
Each of the system of the above n systems of equations
Gauss Jordan method.
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2.7 CROUT'S METHOD
This method is also known as the decomposition method or rhe f.actorization merhod. In this merhod
the coefficient matrix A of the system of equations is decomposed or f.actorized, into the product of a
lower triangular matrix L and an upper triangular matrix U. 'i(e write the marrix A as

A:LU
rUThere

lrroo0
lzt lzz o ... o

ull 1Jt2 u13 uln

0 uZZ :u23 u2,,

L_ lrr ly l3 O l, and U =l O O u33 u3n

l,t lnz lrrl ... lr,, 0 0 0 ... unn

Using the matrix multiplication rule to multiply the matrices L and U and comparing rhe elements of
the resulting matrix with those of A we obtain

l;1u11 + li2rt 2i +... +l;rrurrl = a;;, j = 1(1)n

l;.i =0,j>iandu;; =O,i> j.

The system of equations involves n2 + n unknowns. Thus, there are n parameters family of solutions.
To produce a unique solution it is convenient to choose either ,,, : i or h : t, i: t(i)n. Vhen we
choose

(r) I;i = 1, the method is called the Doolittle's method.

(b) ur : 1, the method is called rhe Crout's Methods.

\7hen we take uii :1, i:1(1)n, the solution of the equarion may be wrimen as

j-r
lit =ai- Il,; rt j,i > j

k=1

u, = (a1 - if- uo)/lr,i < j
k=1

uii = 1.

'We 
note that the first column of the matrix L is identical with the firsr column of the marrix A. That

is

l;1=a11, i=1(1)n.
'We 

also note thar

ur,=ar,/lr'j=2(L)n.

The first column of L and the first row of U have been determined. \7e can now proceed to determine
. the second column of L, and the second row of U

\7here
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l;, = tiz- l;1u12, i = 2(1)n

urj =(^zj-lzqtj)/rrr,j = 3(1)n.

Next, we find the third column of L followed by the third row of U. Thus, for the relevant indices i
and j, the elements are computed in the order

1rr, urj i lrrrrt2i;1,r, ur; ;...i li,,_r, u,_r,; i 1...

Having determined the matrices L and U, the system of equations becomes

LUx: b

rVe write equation as the following two systems of the equations

. Ux:z
Lz:b

The unknowns zl,22t...>2, in the equations are determined by forward substitution and the

unknowns x 1; x2t. .. , Xn in equation are obtained by back substitution. Alternatively we find L-1 and

U-'to get

z =]^_lb and x=IJ-lz.

The inverse of A can also be determined from

A-1 _ U-1L-1.

This method fails if any of the diagonal elements I or q is zero. The LU decomposition is guaranteed

when the matrix A is positive definite. However, it is only a sufficient condition

Solve the system of equations

12 t t -rl[",-l [-,ol
14 0 2 1ll *zl I 8 |
I Il l:l I

l: 2 2 o ll ., 1 | 7 
|

[r 3 2 -,.]1.*.] L-rl
using the Gauss elimination method with partial pivoting

2.8 LET US SUM UP

The unknowns are eliminated by combining equations such that the n equations in n unknowns are

reduced to an equivalent upper triangular system which is then solved by back substitution method. In
the first stage of elimination, the first column is searched for the largest element in magnitude and
brought as the first pivot by interchanging the first equation with the equation having the largest
element in magnitude. The coefficient matrix is reduced to a diagonal matrix rather than a triangular
matrix. The elimination procedure described above to determine the elimination method.

heck Your
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2.9 KEY\TORDS

Gauss EktninationMabod: The unknowns are eliminated by combining equarions.

Gauss'lordan Elimination Mahod: The coefficient matrix is reduced to a diagonal matrix rather than a

triangular matrix.

2.10 QUESTIONS FOR DISCUSSION

1. Consider the equations

x1*x2 *x3 = 1

4x1+3x2-x3 =6
3x1 + 5x2 *3x1, :4

Use the decomposition method ro solrrerhe system.

2. Find the inverse of the matrix

lt211
r=lz 3 2ltt

L1 22)
using LU decomposition method. Take urr = uzz = u:r = 1.

3. Solve the system of equations Ax:b, where

lz 1 1 -2f l--rol
lo o 2 1 I I r Io=1, 2 2 ol'b=|, Itttt
L1 3 2 -11 L-sl

using the LU decomposition method. Take all the diagonal elements of L as 1. Also find A-1.

4. Solve the following matrix operation:

,,[ji]t; i, tl [ ]

(a)te r2,,,,[i]= 

[ ]

4[ii].[;;]=[],l;].,,18r=[]
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:;1.[;;]1]=

(d[[; l].[: i])'.[T : :)=

(.) [+ r s]'*[z 7
l-r

tr) 
[s
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Check Your Progress:

From the augmented mat

Model Answers

rix [A lb], we obtain

i -zl-rol, tlr II lR. -R.2 017 I z t

, -,1-r]

| , lR,-jn,
l-ro I 1

l, l*'-;*'
l_11
| -5 JR, -f n,

-],,1-',^1
-tt ol r lRo - R'

-rr ol-, )

t lsl "
-Y ol-, lR'-un'

-:":l-;r)". -]n,

r lsl
-trol -7 I

,t' lrrl, l*'-*'
-rtt rrl-trr t)

lz1
I

totbt=11 :
[, 3

l+ o 2 1

l, t | -2
=llr 2 2 o

[, 3 2 -1

l+ o 2

lo 1 o
=llo 2 t/2
[o 3 3/2

l+ o 2

lo 3 3/2
=l
lo 2 t/2
L0 10
l+ o 2

lo 3 3/2
=llo o -L/2

fo o -t/2

Contd...
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l+o 2 t
I

_lo 3 3/2 -s/4-lo o -t/2 t/12

L0 0 0 -t3/6

l:
117/:

l-trr

'3 
1

/3)

getUsing back substitution, we the solution as

x4 =8, x3 = -10, X2 =6rx1 = 5.

2.11 SUGGESTED READINGS
S.S. Sastri., Introduaory Metbods of Numerical Analyszs, Second Edition, Prentice Hall.

S. Mohan Naidu., A Text Book of Mathematical Methods for Scientific Engineers, Students Helpline Series, Hyd -

200s.

Jain, M.K., Iyengar, S.R.K., lain, R.K., Numerical Methods for Scientific and Engineering Computdtion, 3rdEdition,
New Age International (P) Ltd., 1993.
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3.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

. Explain Gauss elimination method

. Describe Gauss Seidal methods and their properries

. Discuss relaxation method

3.1 INTRODUCTION
In computational mathematics, an iterative method aftempts to solve a problem (for example an
equation or system of equations) by finding successive approximations to the solution srarting from an
initial guess. This approach is in contrast to direct methods, which artempt to solve the problem by a
finite sequence of operations, and, in the absence of rounding errors, would deliver ,r, "*..t solution
(like solving a linear system of equations Ax : b by Gaussian elimination). Iterative methods are
usually the only choice for nonlinear equations. However, iterative methods are often useful even for
linear problems involving a large number of variables (sometimes of the order of millions), where
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direct methods would be prohibitively expensive and in some cases impossible even with the best
available computing power.

Probably the first iterative method for solving a linear system appeared in a lemer of Gauss to by one
of his students. He proposed solving a 4by-4 system of equationi ty ,.p"rt.dly solving the component
in which the residual was rhe largest.

The theory of stationary iterative methods was solidly established with the work of D.M. young
starting in the 1950s. The Conjugate Gradient method was also invented in the 1950s, witl
independent developments by Cornelius Lanczos, Magnus Hestenes and Eduard Stiefel, but its narure
and applicability were misunderstood at the time. Only in the 1970s was it realized, that conjugacy
based methods work very well for partial differential equarions, especially the elliptic rype.

3.2 ITERATIVE METHODS

In the case of a system of linear equations, the two main classes of iterative methods are rhe starionary
iterative methods, and the more general Krylov subspace methods.

3J.1 Stationary Iterative Methods

Stationary iterative methods solve a linear system with an operaror approximating the original one;
and based on a measurement of the error (the residual), form a correition equattn for *hi.h thi,
Process is repeated. \7hile these methods are simple to derive, implement, and analyse, convergence is
only guaranteed for a limited class of matrices. Examples of stationary irerative metLods are thJJacobi
method and the Gauss-Seidel method.

3.2.2 Krylov Subspace Methods

Krylov subspace methods form an orthogonal basis of the sequence of successive matrix powers times
the initial residual (the Krylov sequence). The approximations to the solution are then formed by
minimizing the residual over the subspace formed. The prototypical method in this class is tlre
Conjugate Gradient Method (CG). other methods are the Geneialized Minimal Residual Method
(GMRES) and the Biconjugate Gradient Method (BiCG).

C-onrergene

Since these methods form a basis, it is evident that the method converges in N iterations, where N is
the system size. However, in the presence of rounding errors this statemenr does not hold; moreover,
in practice N can be very large, and the iterative process reaches sufficient acarracy already far earlier.
The analysis of these methods is hard, depending on a complicated function of th" ,p".r*- of the
operator.

Preunditionqs

The_ approximating operator that appears in station ary iterative methods can also be incorporated in
Krylov subspace methods such as GMRES (alternatively, preconditioned Krylov methods can be
considered as accelerations of stationary iterative methods), where they become transformations of the
original oPerator to a Presumably better conditioned one. The consiruction of preconditioners is a
large research area.
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3.3 GAUSS JACOBT TTERATTON METHOD
All the previous methods seen in solving the system of simultaneous algebraic linear equations are
direct methods. Now we will see some indirect methods or iterative methods.

This iterative method is not always successful to all systems of equations. If this method is to succeed,
each equation of the system must possess one large coefficient and the large coefficient must be
attached to a different unknown in that equation. This condition will be satisfied if the large
coefficients are along the leading diagonal of the coefficient matrix. \7hen this condition is satisfied,
the system will be solvable by the iterative method.

The system,

a11x1* a12x2* a13x3: b1

a2txtt a22x2* a23x3:b2

a31x1* a32x2t a33x3: b3

will be solvable by this method if

1",'l , la,rl+ la,.l

l^rrl ,l"r,l*l"rrl
1"..1 , la3,l+ la.rl

In other words, the solution will exist (iteration will converge) if the absolute values of the leading
diagonal elements of the coefficient matrix A of the system AX:B are greater than the sum of the
absolute values of the other coefficients of that row. The condition is sufficient but not necessary.

Let us explain this method in the case of three equations in three unknowns.

Consider the system of equations

alx+bry+c1z=d1
a2x+bzY+c2z=d2
a3x + bsY + csz = d3 .......(0

Let us assume

la,l > lb,l+ lc,l

lurl , larl+ lcrl

l".l , la.l+ lt.l
Then, iterative method can be used for the system (1). Solve for x, y, z (whose coefficients are the
larger values) in terms of the other variables. That is,

* = !(0, -bry -crz)
a1
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r: f ta, -a2x-crz) ......e)

z:+(d. -a3x-b3y)ca

11 ,@ ,fo) ,z(o) are rhe initial values of x, y, z respecrively, then

*(') =*(., -b,y(o) -c,z(o))

y(,) = j;h, -arx(o) -crz@)
......(3)

zc) = I (d3-a3x(o)-b3y(o))

Again using these values in (2), vie ger

*(') =+(r, -blv(l) -crr$))

f" =dtar-a2x!)-b,f'r;-b,rlo .....(4)

,t'l = -l (a3 -a3x(11-b.y(,))cg'"
Proceeding in the same way, if rth iterates are, the iteration scheme reduces to

*rzl :{tdr -bry(l) - 
",1rQ) 

1

vQ) : ) @r-a2x( I ) - bz y(l ) 
)

......6)

,o : ! rara3x(r) - b3 y(r) )

The procedure is continued till the convergence is assured (correct to required decimals).
Note:

l. 7o get the (r+ 1) the iterates, we use the value of the rth iterates in the scheme (5)

2. In the absence of the initial values of. x, y, z we rake, usually, (O,o,o) as the initial estimate.

3.4 GAUSS.SEIDEL ITERATION METHOD
This is only a refinement of Gauss-Jacobi method. As before,

*=f{a,-b,y-c,z)

v = f 
(a' -a2x-c2z) 

.....(6)
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z:*@r-a3x-b3Y)
'3

'W'e start with the initial values for y and z and get from the first equation. That is,

x(1) = t (d1 -b1y(o)-c1z(o))

\7hile using the second equation, we use f.or z and for x instead of as in the Jacobi's method, we get

,o' = 
+(o z -arxo) -crz@))

Now having known x(') and l') *. x(1) for x and y(t) for y in the third equation, we get

,(r) =' (0. -a3x(r) -b3y(1))
ca

In finding the values of the unknowns, we use the latest available values on the right hand side. If x('),

yk), z@ are the rth iterates, then the iteration scheme will be

*(r+1) - 
*(r, - 

b,fa - c,z(a)

l'*" = l(0, - arx(+l') -.rr''))brt - /

-zG*\ =]tO, - arx(,+r) - b,l*r)

This process of iteration is continued until the convergence is assured. As the current values of the
unknowns at erch stage of iteration are used in getting the values of unknowns, the convergence in
Gauss-Seidel method is very fast when compared to Gauss -Jacobi method. The rate of convergence in
Gauss-Seidel method is roughly two times than that of Gauss-Jacobi method. As we saw the sufficient
conditions already, the suffieient condition for the convergence of this method is also the same as we
stated earlier. That is, the method of iteration will converge if in each equation of the given system, the
absolute value o{ the largest coefficient is greater than the sum of the absolute values of all the
remaining coefficients.

Remarks: The largest coefficients must be the coefficients for different unknowns.

Note:

1. For all system of equations, this method will not work (since convergence is not assured). It
converges only for special systems of equations.

2. Iteration method is self correcting method. That is, any error made in computation, is corrected
in the subsequent iterations.

3. The iteration is stopped when the values of x, y, z start repeating with the required degree of
eccotacy.
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Exatnpla

L. solve the following system by Gauss-Jacobi and Gauss-siedel methods

10x-5y-22:3

4x-l}y+32:-3
x+6y+l0z:-3

Solution:

Here, we see that the diagonal elements are dominant. Hence, rhe iteration process can be applied.

(ro -s -2)
That it, the coefficient matrix 

| 
+ -10 3 | is diagonally dominanr, since

[1 6 r0)
Itol , lsl * l- 21, l- iol > l+l + lel ana lrol > irl + lol

CausslaabiMabod

Solving for x, y, z we have

* = l(e +sv +2zl10' 
.....(o

1

I:.(s +4x+32) .....Q)

z: 
-11-s-"-ov) .....(3)

Fint itqmion:Let the initial values be (0,0,0).

Using these initial values in (1), (Z), @ we ger

*r') = *[s + s(o)+ 2(o)]= 0.310'

y(,) = +[3 + +(o)+ s(o)]= o.s- 10'

,u = Il_3 _ (o)_ o(o)l _ o.a10'

Seondituation: Using these values in (1), Q), Q),we ger

*e) =,|t3 + s(o.s)+ z(- o.s)l= o.3e

y(') = 
r 01 

F + +(o.s)+ s(- o.s)l = 0.33

,r,t = Ll_s 
_ (o.s)_ o(o.s)l= _0.51
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Tbirdi.tqati.oz: Using the values of xt2\'v't2t'z\2)'n (1), (2), (3) we, get

*(r) = l[s + s(o.ss)+ z(- o.s t)] = 0.363
10'

y(') = ].[3 + +(o.ss)+ s(- o.s r)] = 0.303" 10'

,(.) = _[- 3 - (0.3e)- o(o.ss)] = -0.s3710'

Fourtb itqation:

*(o) = .1= [3 + s(o.sos)+ z(- o.ssz)] = o.344r
10'

y(o) = +[3 + +(o.sos)+ s(- o.ssz)] = o.284t" 10'

,rot = ]^1-3 - 0.363 - o(o.aoso)l= -0.518110'

Fi.ftb i.tqati.on:

"(u) 
= l[s + s(o.zs+r)+ z(- o.srar)] = 0.33843

10'

y(') = + [3 + +(o.s++t)+ s(- o.s ts r))= o.zazz" 10'

,tst = l^1-3 - 0.3441- o(o.zs+r)]= -0.5048710'

Sixtb ituation:

*(u) = I [3 + s(o.zszz)+ z(- o.so+a 7)7= o saotzo
10'

y,u,:l[: + 40 (0.33843) + 3 (-0.50 487)):0.283911' l0'

,Gt = .f-^l-3 - (0.33s43)- o(o.zazz)] = -o.so3 r oe
10'

Sewntb itqation:

*(') = l[s + s(o.zsser r)+z(-o.sosros)] =o.34r322e10'

y(' ) = + [3 + +(o.s+o rzo) + s(- o. so3 1 63)] = 0.28s 1 o 1 s" 10'

,t't = Il_s - (o.s+o t26)-6(0.283e r r)]= -o.so 43ss2
10'

Eigbth iteration:

*tt) = ]-[s + s(0.28s101s)+ 2(- o.so43se2)] = o.e+tozaet
10'
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y(s) = lla.4(0.34 t322e)+3(- o.so43s s2))= o.2ss22r4" 10 - ----l -\

,@t = l[- s - (o.a+r 322s)-o(o.zss101s)]= -o.sos1e3le10'

Nintb itqation:

"(s) = *1.. s(o.zaszzt+)+2(-o.sos1e31e)]= 0.34 tsr2o6210'

y(e) = *ta. 4(os4167891)+ 3(- o.sosrssr r)]= 0.285 rt36ol- 10.

-P)-ll.2. . = -t-J - (0.34167se0- a(o.zaszzr)] = -o.sos3ooz3110'

Hence, correct to 3 decimal places, the values are

x: 0.342,Y : 0.285,2 : -0.505

Gauss SeidclMabod

Initial values; y : 0, z : O

Fint itqation:

*t') = *[s + s(o)+ z(o)] = o.s10'

y(') = +[3 + +(o.s)+ s(- o)] = o.42- 10'

,t') = *[- e - (o.a)- o(o.+z)]= -0.s8210'

Seonditqation:

x('?) = +[3 + s(0.+z)+ z(- o.saz))= 0.3e3610. \ -/ -\ -'---,)

yt2) =*t .+(o.ssso)+e(-o.saz)] = o.28284- 10'

,Q\ = +13 - (0.3e36)- o(o.zaza+)l= -o.soooo+10'

Tbirditqation:

*(3 ) : A[: + s (0.28284) + 2 (-0.5090 64)) : 0.339607 2l0'

y(t) = +[3 + 4(0.33e60 zz)+ s(-o.sosoo+)]= 0.283 r2s6l- to'

,t.t = l[- s - (o.sesoo zz)- o(o.zatzsos)]= -0.s03834e2810'



48 Numerical Methods

Fowrtb iteration:

'(o) = ,1= [s + s(o.zas 12368)+ 2(- o.so38s 4s28)]= o.3407s48s
10'

,t-t = fr[e 
+ +(o.z+ozoaas)+ 3(- 0.s0383 4s2)]=0.28s t6464

-14) 1 l- o
1o . -(o.z+ozo+8s)- 6(0.28 sr6z46)1= -o.sos17ee6

Fiftb iteration:

*(') = *t3 + s(o.zasio ra6)+2(- 0.s0s17ee6)] = o.34tss4rl

y(') = #t3 + +(o.s+rss ar7)+3(- o.sos rrs66)l= o.28so67e2

,(') = *t- 3 - (0.341s s4r7)-6(0.28s067e2)]= -6.5s sts622s

Sixtb ituation:

"t'l = ,f,ts 
+ s(o.zasoo re2)+2(- o.sos roozzo)l=

,t't = fr[s + +(o.s+r+oarA)+3(- 0.s0s1e 622s)]=

, lul = 
-l 

[- s - (0. s+ r + o +z t +) -o(0. z a s o a o o r z)] =

Seentb iteration:

* (' r = * [s + s(0. z a sos o o rz) +2(- 0. sos 1 7 za)) = o.s + rua+o
10'

v(') = ]-[s + +(o.s< r+s+s)+ s(- 0.sos rzza)]= o.2lso42t2" 10'

,t't = .L^[- s - (o.a+ rt84s)- 6(o.28so4212)]= -0.s0 stz3z
10'

The values at each iteration by both methods are tabulated below:

o.341494714

0.285039017

-0.5051728

M.S. Universitv - D.D.C.E.

Iteration
Gauss facobi method Gauss - Seidel method

x v z x v z

1 0.3 0.3 -0.3 0.3 0.42 -0.582

2 0.39 c.33 -0.51 0.3936 0.28284 -0.509064

-) 0.363 0.303 -0.537 0.3396072 0.28372364 -0.503834928

4 ).3441 0.2841 -0.5181 0.34079485 0.285t6746 -0.50517966

5 .33843 4.2822 -0.50487 0.34515547 0.28506792 -0.50s196229

6 ).340t26 0.2839tr -0.503 163 0.34t4947 1.2850390 .0.5051728

7 ).34t3229 0.2851015 .0.5043592 0.34t4849 ).285042t2 .0.5057737

8 ).34167891 0.2852274 -0.50519319

).34t572062 0.2851t3607 -0.50530073 1)
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The values correct to rhree decimal places are

x : 0.342,y : 0.285, z : -0.505

Note: After getting the values of the unknowns, substitute these values in the given equations, and
check the correctness of the results.

2. Soi','e the following system of equations by Gauss Jacobi and Gauss Seidel method correcr ro rhree
decimal places:

x+y+542:110
27x+6y-z : 85

6x+15y+22 :72

Solution:

As the coefficient matrix is not diagonally dominant as ir is we rewrite the equation as nored below, so
that the coefficient matrix becomes diagonally dominant.

27x+6y-z:85

6x+l5y+22:72

x+y+ 542:ll0
Solving for x, y, zwe Bet

*=11as- 6y+z) ...(027'

v=7ltz-6x-2zl'lslr...e)

,=!]no-*-y) .(3)54'

Starting with the initial value x : 0, y : O, z: 0 and using (1), Q) , O and repeating the process we
get the values of x, y, z as the tabulated by both methods. (Gauss-Jacobi and Gauss-Seidel)

Iteration
Gauss Jacobi method Gauss-Seidel method

x v z x v z

I 3.148 15 4.8 2.03704 3.148 1s 3.54074 t.9t3r7
2 2.75693 3.26913 1.88985 2.43218 3.s7204 t.9258s

3 2.49167 3.68525 1.93655 2.42569 3.57294 t.92595

4 2.40093 3.54513 t.9226s 2.42549 3.57301 1.92595

5 2.43155 3.58327 1.92692 2.42548 3.5730t 1.92595

6 2.42323 3.57046 1.92565 2.42548 3.57301 1.92595

7 2.42603 3.57395 1.92604

8 2.42527 3.57278 1.92593

Hence x : 2.425,y : 3.573 and z : L.926 (Correct to 3 decimal places)
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3.5 RELAXATION METHOD

This method is a ger.er^lization of the Gauss-Seidel Method. This method is often used when the

coefficient matrix of the system is symmetric and has 'property A'. 'We define an auxiliary vector i as

1 (k+t) 
= _p-11*(k+t) _ r-tg *(k) * D-1b.

The final solution is now written as

By substituting and simplifying we obtain

*(k+1) = (D + *L)-1 [(r - w)o - *u] 
"(o) 

* w(D + wt)-l b

=Hx(k)*c,k= 0,7,2,...

\flhere H: (D+wL)-'[(1-*)D-wU]

And c:w(D+wl)-1b.

Alternatively

,.(k+1) = *(k) -(D * *L)-1 [(o * wr) -(r-*)D + wu] x(k)

+w(D+wL)-1b

= ,.(k) + w(D + wl)-l r(k)

'Where 
r(k) : b -Ax@ is the residual

'We may write

v@:w(D+wL)-1r(k)

Or (D + wL)vG) : wrG)

This equation describes the relaxation method in its error format. For computational purpose, it is

convenient to use this equation.

\7hen w:1, equation reduces to the Gauss-Seidel method. The quantity w is called the relaxation

parameter and x6*') is a weighted mean o1 1(k+t) and xG). From the equation, we finil that the weights
are non-negative for 0 ( w < 1.If w ) 1, then the method is called an over relaxation method and if w
( 1, then it is called an under relaxation method.

*(k+r) = *(k) **( t (k+1) 
-x(k))

,(k+1) = (t -*) *(k) * * 1(k+t)
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l. If the system of equations are 8x -y + z: L8,2x + 5y -22: 3,x + y -32 : - 5. The first
iteration values by Gauss seidal method is

(.) 2.25, -.3,2.65 (b) 2.5, -.3,2.65

G) 2.6s, .4,2.5 (d) 2.5, _.3,2.0

2. Thevaluesof xyandzof firstiterationbyGaussseidelmethodare 4x + 2y * z: 14,x +
5y-z:10,x+y+82:20.
(r) 3,1.3,1.9 (b) 3.s, t.3,1.s

o 4, 1.s,2 (d) 3.s,2,2
3. If the equations are 4x + 2y * z : 14, x + 5y - . : 10, x + y + gz : 20 and the first

iteration values are 3.5,1.3 and 1.9 then the second iteration of x is
(") 3.r2 (b) 2.37s G) z.ee (d) 3.s

4. If the system of equations are 5x - y + z : lO,2x + 4y - 12 and x + y +
5z - l, then the firsr iteration values by Gauss seidel method are

(^) 2,7,7 (b) 3,2, 7 k) 2,2, _7 (d) 2,2, O

3.6LET US SUM UP

Iterative methods provide an alternative to the direct methods for solving linear equations. These
methods are particularly suitable for solving ill-conditioned systems. W'e considered the following
three iterative methods:

. Jacobi method

. Gauss-Seidel method
'We 

have shown that a sufficient condition for convergence is that, for each row, the absolute value of
the diagonal element should be greater than the sum of absolute values of the other elements in the
equation.

3.7 KEY\TORDS
System of Equations:

alx+bty +ctz=dl

^2x+b2y*c2z=d2
a3x+b3y *caz=d3

t aabi M ab o d of ltuatio n :

*(r+r) - +(., 
_ b,y(.) _ crzi,))

,(r+r) - +(a, -a2;(.) -crzi))

,(r+t) -* (a, - arx(.) - b3y('))

heck Your
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Gauss-laobiMabod: *(r+1) - ri(d, -b,y(') -crz('))

y{r-r) - :(0, - arx(r*r) - "rril)' b,"

,(r+L) -f {0, - arx('*t) - b,l*'))

M.S. University - D.D.C.E.

3.8 QUESTIONS FOR DISCUSSION

Solve the following system of equations using (i) Jacobin's and (ii) Gauss-seidal's methods:

1. 8x-y+z-18=O
2x+5y -22-3=O
x+y -32+ 6=0

2. 9x, + 2xr+4xr=29

x, +10x, *4xr=$
2xr-4xr+10x. =15

3. l.O2xr-O.OSx, -0.10x. =0.795

-0.1lx, +1.03x, -0.05x. =0.849

-0. 1 lx, - O.l2xr+ 1.04x. = 1.398

4. 8x+y-tz=8
2x+4y *z=4
x+3y +52=5

5. 3x + 4y +l5z = 54-8

x+l2y+32=39.66
10x+y-22=7.74

Check Your Progress: Model Answers

L. (r) 2. (b) 3. (b) 4. (.)

3.9 SUGGESTED READINGS
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4.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

. Understand Eigen values and Eigen vectors of a matrix

o Explain finite differences

. Discuss difference operators

. Describe other difference operator

4.1 INTRODUCTION
In this lesson we introduce the idea of finite differences and associated concepts, which have important
applications in numerical analysis.

For example Interpolation formulae are based in finite differences. Through finite differences we study
the relation that exists between the values change by finite jumps.

In this lesson we study the variations when the independent variables change by equal intervals.
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4.2 EIGEN VALUES AND EIGEN VECTORS OF MATRIX
The eigenvalue problem is a problem of considerable theoretical interest and wide-ranging application.
For example, this problem is crucial in solving systems of differential equations, analyzing population
growth models, and calculating powers of matrices (in order to define the exponential matrix). Other
areas such as physics, socioiogy, biology, economics and statistics have focused considerable attention
on "eigenvalues" and "eigenvectors" their applications and their computations. Before we give the
formal definition, let us introduce these concepts on an example.

Example 1:

Consider the matrix

(r 2 1)

A=l 6 4 ol

[-r -2 -1 )

Consider the three column matrices

( t) /-r\ ( z\
c,=l 61, cr=l 2,,, cr=l 3l

[-,,J [ 'J [rJ
'We have

-We have det(P) : 84. So this matrix is invertible. Easy calculations gi

(-t o -z)
p-' =Ll -zz 24 e I841 I(32 t2 8)

Next we evaluate the matrix P1AP. 'We leave the details ro rhe reader

( -z o -z\r I 2 t\( t -1, 2) (o o o')
Ll-r, 24 ,ll 6 rl

84r , -1 oll 6 2 ,l=lo 4 ol.

\ 32 12 8i(-1 -2 -1r(-13 t -2) [0 0 3.,

/o) /+\ (6\
nc, =lo l, ac, =l-s l, nc., =l s 

I

[oJ [-oJ [*]
In other words, we have

AC1 = 0C1, AC2 = -4C2, and AC3 = 3Cl.

Next consider the matrix P for which the columns are G, G, and G, i.e.,

( r-r 2)
P=l 6 2 ,l

[-,, 1 -2)

to check that we have



In other words, we have

(o oo)
P-,AP=Io -4 ol.

[o o3)
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Using the matrix multiplication, we obtain

(o o o')

a=plo -+ olp-1tt(0 0 3)

which implies thatA is similar to a diagonal matrix. In particular, we have

(o o o)tlA'=Plo (-4)" oln-trl
[o o 3"t

forn:1,2,...
Note that it is almost impossible to frnd A7s directly from the original form of. A.

This example is so rich of conclusions that many questions impose themselves in a natural way. For
example, given a square matrix A, how do we find column matrices which have similar behaviors as

the above ones? In other words, how do we find these column marrices which will help find the
invertible matrix P such that P|AP is a diagonal matrix?

From now on, we will call column matrices vectors. So the above column matrices Cy A, and G are
now vectors. \We have the following definition.

Dfinition
Let A be a square matrix. A non-zero vector C is called an eigenvector o{ A if and only if there exisrs a

number (real or complex) L such that

AC : }"C.

If such a number I exists, it is called an eigenvalte of A. The vector C is called eigenvecror associated
to the eigenvalue )..

Remark

The eigenvector C must be non-zero since we have

A0:0:)"0
for any number 1,.

Example 2:

Consider the matrix
(t 2 1\

A=l 6 -t olIIt_1 _) _11. ,,/
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'$7e have seen that

AC1 = 0C1, AC2 =-4C2, and AC3 = 3C3

where

r 1) (-'') ( 2\
cr=l e l,cr=l zl,cr=l 31.

[-',J [ ,.] lrj
So G is an eigenvector ofr{ associated to the eigenvalue 0. Cz is an eigenvector ofr{ associated to the
eigenvalue -4 while G is an eigenvector of -,4 associated to the eigenvalue 3.

It may be interesting to know whether we found all the eigenvalues of A in the above example. In the
next page, we will discuss this question as well as how to find the eigenvalues of a square matrix.

4.3 FINITE DIFFERENCES

Let y:f(x) be a discrete function. If xo,xo +h, xo +21n,......,x0 +nhare the successive values of x,
where two consecutive values differ by a quantity h, then the corresponding values of y are
yo,yt,y2,..........%. The values of the independent variable x is usually called the argument and the

corresponding functional value is known as the entry. The arguments and entries can be shown in a

tabular form as follows:

Argument xo x1 x2 xi!: xo + nh

X=Xo+h:xo+2h

Entry yo yt yz y.:f(x, +nh)

y=f(x) =f(*o) =f(*.+h) =f(x.+2h)
To determine the value of or etc., for some intermediate arguments, the following three types of
differences are found useful:

(.) Forwarddifferences

(b) Backward differences and

(c) Centraldifferences

(r) Fonurd diffuenres:If. we subtract from each value of y (except yd the preceding value of y, we ger

yt-yo,yz-yv...,yn-yn-lrespectively, known as the first differences of y. These results which
may be denoted Ayg, Ay1,..., Ay.,.

i.e., Lyo=yr-yorLyr-yz-yr,,,.Lyn-t=yn-yn-t
'Where A is a symbol representing an operation of forward difference, are called first forward
differences. Thus, the first forward differences are given by

Ly,:yur- yi; i :0,7,2.....

Now, the second forward differences are defined as the differences of the first differences, that is,

A'yo : A(ly.) = A(y, -y.) = Ay, -Ayo

: (Y, -Y,)-(y, -yo)= Y.,-2Y,+Yo
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L'y,: A(Ay,)=Ayz -Ay, =y. -2y,+y,
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Atyo

L'y, : Ay"*, - Ay" = yn*, -2yn*, * V^

Ffere, A' is called second forward difference operaror.

Similarly, the third forward differences are:

A'yo : A(l'y.)=A'y, -A'yo =A(Ay,)-a(AV.)

A(y, - y,) - A(y, - yo) = Ly, - 2Ly, + ayo

- (v, - y,) - 2(y,- y,) + y, - yo

: ys -3y, +3y, -yo
Aty, : L'y, - L'yr=yo -3y. +3y, -y,

Aty^ : A'y.*, -A'y" =y"_. -3y"_, *3y"-, -y"
In general, the nth differences are defined as

A"Yu =A"-'Yur, -A"-tYo

in function notation, the forward differences are as writren below:

Af(x)= f (x + h)- r(")

A'?f(x) = f (x + 2}:,) - 2t (x+ h) + f (x)

A'f(x) = f (x + sh)- sr(x + 2h)+ 3f (x + tr)- r(x)

and so on, where h is the interval of differencing.

The forward differences are usually arranged in a tabular form in the following manner:

yo = f (xo)

Ayo

X,=Xo*h y,=f(x,) l'yo
Ay,

x, = x, * 2h Y, = f (xr) A'y,

AY,

X.=xo*3h Y.=f(x.) L'y,

Ay.

X+ = Xo * 4h yo = f (xo) A'y.

Lyo

xu =xo *5h yu =f(xu)

xo

Atyo

A'y,

L"y,

Aoyo

A,Y,

x v - r(x) 1st 2nd 3rd 4th 5rh
argument entry diff. differences diff. diff. differences
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The first term in the table ye is called the leading term and the differences Ayo, A2yo, A'yo,

are called leading differences. It can be seen that the differences Auy, with a subscript 'i' lie along

the diagonal sloping downwards; that is, forward with respect to the direction of x. The above
difference table is known as Forward difference table or Diagonal difference table.

Proprtia ofA

The operator A satisfies the following properties:

(, 
^[f 

(x)t e(")] = m(x)t ag(x), i.e., A is linear

(i,) l[or(x)] = craf (x), cx being a constant

(iir) A*A"f (x)= A*." f (x)= A"A"f (x),where m and n are positive integers.

(i") r[r(x).g(x)] + t(x).rg(x)

Obseroation /; 'We can express any higher order forward difference of yo in terms of the entries

Yo, YpYz,..'..Y.

From Ayo = y, - yo

A'yo = yr-2yr+yo

A'yo =y. -3y, +3y, -yo

and so on, we can see that the coefficients of the entries on the RHS are binomial coefficients.
Therefore, in general

A"y, = y, -" C,y._, *" Cry, 2 ......_(-t)" y.

Obseraation 2:Vle can express any value of y in terms of leading efltry yo.

'W'e know that -yo = Ayo

yr =yo +Ayo =(t+A)V.

Now, yz=yt+Ay, =(t+A)V, =1t+l)'yo

Similarly, y. = (1+ A)' yo and so on. In general,

y" = (1 + A)" yo = yo -' C,Ayo +" crL'yo + ...... + A"yo

(b) Ba&unrd differenes: The differences y, - yo, y, _ y,,.....y" - y"_, when denoted by
vy,, vyr, ....,vy,, respectively, are called the first backward differences, where is the backward

difference operator called nabla operator.

.'. vy,, =.'.yr - yo,Yy, =yz -y,, ....,vy, = y.-y.-r

Now the second backward differences are defined as the differences of the first backward
differences, i.e.,



M.S. University - D.D.C.E. Finite Differences 61

Y'y, =V(Vy,) = V(y, - y,) = Vy, - Vy,

: (v,-v,)-(v, -v.)= Y,-2Y,+Yo

V'y. :. Vy. - Vy, = ys - 2y, + y, and so on.

In general,

v"Yu = v"-'Yu - v" 'Y* ,

In function notation, these are written as

vf(x)=f(*)-f(x-h)

vf (x + h)= r(x + h)- r(x)

v'f (x +2tr)= f (x + 2h) -2f (x+ h)- f (x)

v'f (x + 3h) = f (x + sh)- 3f (x + 2h)- 3f (x + n)- r(x)

and so on, where h is the interval of differencing.

These backward differences are arranged in a tabular form in the following manner. In this table,
the difference Vky, with a fixed subscript 'i' lies along the diagonal sloping upwards; that is, back
wards with respect to the direction of increasing argumenr x.

x v : f(,) 1st 2nd 3rd 4th 5th

argument entrv diff. differences diff. diff. Differences

xo Yo

X, =xo *h y1

xz=xo+2h y2

xs=xo+3h y3

X+=Xo*4h y4

Vy'

YY,

VY.

VYo

Vv-

Y,Y,

Y"y,

Y"y o

Y,Y,

vty.

vtyo

V'y,

Y'y 
^

v'y,
voy,

Xs=Xo*5h ys

Propetties of v

(a) v[r(x)t e(")] = vr(x)t vg(x), i.e., is linear

(b) v[crf (x)] = oVf (x), being a constant

(c) v*v"t(x) = v**" f (x), where m and n are positive integers.
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(d) v[f (x).g(")] * [vr(x)].s(x)
Observation we can express any value of y in terms of y" and the backward differences Vy,,V'y",
etc.

By def., y, - y,_, = Vy.

or y,r=y,-vy"=(t-v)v"

Now, y^_z = y"_, - vy,,, = (t - v)y"_, = (1- v)' y"

Similarly, y.-s = (t - v)'y" and so on.

In general, y,-r = (t - v)o y,

y,_r = y" -. C,Vy* +n CrV'y, -..... + (-t)u vuy"

G) Central diffuenes: Sometimes, it is more convenient to employ another system of differences
known as central differences. In this system the symbol is used instead of A and is known as

central difference operator. The subscript of for any difference is the average of the subscripts of
the two members of the difference.

y, -yo =6yr/r, yr-y, =5yrr2y. -yz= 6 yrlr,....

For higher order differences, we have

6yr,r,-6y11, =5'y,, 6yr,r,-6'yr7r=6'y,.,, =6'yr,......6'yr-6'yr=6'yr,r,

and so on.

The central differences are tabulated below:

x v : f(*) 1st 2nd 3rd 4th 5rh

argument entry diff. differences diff. diff. differences

6Y 
v"

X,=Xo*h y1 5'y,

6yy, 6.yr,

x, =xo *2h y2 6'y, 6oy,

5y., 6tyur, 6sy.,

Xs = Xo * 3h y3 6'y. 6'y.

6yz 6"Y.,,,

X* = Xo * 4h y4 6'yo
_ 

6yy,

xs=xo+5h ys

'We can see from the table that central differences on the same horizontal line have the same

suffix. Also, all odd differences have a fractional suffix, and the even differences have integer
suffix.

yoxo
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Note:

1. From all the three tables, we can see that only the notation changes, nor the differences. For
examples,

Y, -Yo =AYo = LYr=6Yy,

2. If wewrite y=f(x)as y={ or y=y. thentheentriescorrespondingtox,x+h,x + 2h,.....
af € ! *t Y**l , Y"*2r,, .. . .. . . resPectively, and

Ay* = y**n - y*, A'y* = Ay*rn - Ay, so on.

similarly, Vy* = y* - y*_r,,

6y* = y**%n - y*_yn and so on.

4.4 DIFFERENCE OPERATORS

In this section we introduce three difference operators namely forward, backward and central
difference operations. Consider the function y : f(x). Suppose we are given table of values of the
function at the points

Xg:X1 =xg*h, x2 =xO +2hr...,Xn =xg+nh.

Letf(xd : yo, f(*,) : yl ...,f(*) : y".

\7e define

^Lf 
(")l =f (x+h)-f (x).

Thus Aye = f ("0 +h)-f (xe)= f (*r)-f ("0)= y, -yo.

A%-, = yn-yn-t

A is called the forward difference operator and Ay9,Ay1,...Ayr,-rare called the first forward
difference of the functions y : f(*).

The second order differences of the function are defined by

L'yo = Ayr -Ayo
L'Y, = LYz-LYt

L2yn-t = AIn -Ayr,-r
In the similar manner higher order difference can be defined. In general the nth order differences are
defined by the equations
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Atyi = A'-lyi*t -At-lyi.

These differences of the function y : f(*) can be systematically represented in the form of the table

called forward difference table. \7e can constnrct the difference table for any number of arguments and
a sample difference table is given for six consecutive arguments.

Forward Differences Table

x y: f(x) Ay L2y L3y Aoy t5y

x0 ya

Ayo

xr : xo *h yt L2yO

xz:xo + 2h y2 

AYt a3,o

Lzyt Layo

x::xo + 3h y) 

LYz L3Y' as,o

L2yz Layt

x+:xo + 4h y4 

LYI L3Y..

L2yt

xs: xo +5h y5

Ly+

Note:Inthis table yo is known as the first entry and Lys,L2ys,...,L5ys are called leading differences.

Remark, Since each higher older difference is defined in the terms of the previous lower differences by
continuous substitution each higher order difference can be expressed in terms of the values of the
function.

)lhus, A-yO = Ayr -AyO

= (tr'rr ) -(r, -ro) = Y z - ZYt + Yo

AsYo = t'Yr-n'Yo

= (r, - 2vz +vr)-(t, -2vr +vo) = yl -3yz +3yr -yo.

aaYo=a'Yr-a'Yo

= (ro - 3y3 + 3y2-yr) -(yl -3yz +3y1 -yo)

=y4-4y3+6y2-4yt+yO.
'W'e observe that the coefficients occurring in the RHS are simply the binomial coefficients in (1 - x)".

Hence in the general we have
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A'yO = In -- nclIn-t * nc2yn-2+ '..+ (-1)n yg

Propmics of tbe Apuator A,

1. A is linear. i.e. A[af (x) + bg(x)] = al[f (x)] + bl[g(x)] where a,b are consranrs.

Proof. a[af (x)+ bs(x)] = [af (x + h)+ bg (x + t )] - ["r(r)+ bg(x)]

=a[f (x+h)-f (x)]+b[g(x+t )-g(")]
= a^[f (x)] + b^[s(x)]

2. a-a'[f ()()] - am+n [f (-)]

Proof. - A'A'[f (")] = (AA...m times) (a1... ntimes)f (x)

= [44...(- * n) times] f (x)

: am+n [f (-)].

3. 
^[f 

(x)s(x)] = r (" + t )l[g(")] + g(x)a[r(x)]

Proof. 
^[f 

(x)s(x)] : t(" + h)g(x + h)- f (x)g(x)

= f (x + h)e(" * h) - f (x + h)g(x) + [r(" + h)g(x) - f (x)s(x)]

= f (x+ h)[g(x+ h) - g(x)]+ g(x)[f (x+ h)- f (,.)]

= f (x+ h)atg(x)l+ g(x)Aif (x)l

,t al r f "l 
'l 

_ g(x)l [f (x)] - f (x)at g(x)lr' ^Ls(.).]- d.+h)s(l<)

Proor. ^[{ql 
f(x+h) 

- 
f(x)

Le(.)l g(x+h) g(*)

f (x+ h)g(x)-f (x)g(x+ h)

g(x+ h)g(x)

f (x+ h)g(x) -f (x)g(x)+f (x)g(x)- f (x)g(x+ h)

g(x+ h)g(x)

e(x) [f (x + h) - f (x)] - f (x)[e(x + h) - g(x)]

g(x+ h)g(x)

s(x)^ [f (x)] - f (x)^ [s(x)]
g(x+ h)g(x)

Ba&,unrdDiffuenres

Consider the function y : f("). Suppose v/e are given a table of values of the function at the points.

Xs 1X1 = xo + hrx, = Xo * 2hr...rxn = xo + nh
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Let f (xo)= %,(x1)= 1,...,f (x,) = y .

\7e define

v[f (")]= f (x)-f (x- h)

Thus, Vn yr-yo

Yy, Yz-Yt

Vv v-v..Jn tn /t-l

V is called the backward difference operator and Vy,,Vn,...,Vyn are called the first order backward

differences of the function y : f(").

The second order difference of the function are defined by

Y'y, Yyr-Yyt

Y'y, Yyr-Yy,

Y'yn V% -Vy"-,.

In a similar manner higher order difference can be defined. In general the nth order difference are

defined by

v"N = v"-'yr -v"-'y,-,

These difference of the function y : f(") can be systematically represented in the form of a table called

backward difference table.

Backward Difference Table (for 6 arguments)

x y : f(x) Vy Y'y Y'y Yoy Y'y

xo ya

Yy,

xr =xo *h yt

x:=xo*2h yz

x, = xo +3h yt

x+ =xo*4h yt

x, = xo *5h ys

Yy,

Yy,

Yyo

Yy,

Y,Y,

Y,Y,

Y,Y,

Y,Y,

V,Y,

Ytyo

V3v-J7

Yoyo

V5v.
JJ

Yty,

M.S. Universitv - D.D.C.E.
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Remark 1. The relation berween the two difference operarions is given by

For, V[f(x+ h)] = f(*+t )-f(*) = lf(x)

Yt-Yo

Yz-Yt

v -vJ D / n-l
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v[f (x+h)]= l6(x).

Similarly V'[f(x+2h)] v[f(x+zh)-f(x+h)]

Vf (x+2h) - Vf (x+h)

Af (x+h)-Af (x)

A[f (x+h)-f (x)]

A'zf (x)

In general V[f (x+nh)]= a"f (x).

Flence from the {orward difference table of the funcrion f(x) we can obtain backward difference of all
orders.

C*ntral Diffrena Apator

Sometimes it is convenient to employ another system of differences known as central differences. \[e
define central difference operator 6 as

Thus if (:<) : y, then we have

6y,
,

6y,
2

6y.,
2

Here thesubject of 6y is {e average of the subscripts of the rwo members of the difference. The higher
order differences can be defined similar to forward and backward differences.

6'y, 6y, -6y,
zz

6'y, 6yr -6yt))
5'[ 6'yr-6'n etc.

2

6r(x) = r(,.:) -,(" - i)
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These differences of the function y : f(*) can be systematically represented in the form of a table

called central difference table.

Central Difference Table

x y= f (x) 6y 6'y 6'y 6oy

x0%

xr =xo *h yr

xr=xo*2h yz

x, =xo +3h yt

x, =xo +4h Yt

6y,
2

ur;

ur:

6yz
2

d'y,

b'y,
,

6,Y:
2

6'y,

6'y,

6'y,

Example 3: Form the forward difference table for the following data.

Solution:

x y Ly L'y A'y L'y

08
3

tll-5
-2 13

298
6 -23

3 L5 -15

-9

46

-36

x: 1 2 3 4

v: 8 tt 9 15 6
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Example 4.Findthe first and second order differences for f(x) : ab""

Solution:

Af (x) f (x+h)-f (x)

: 
"f,c(x+h) 

- r6cx

= ab"*b"h - ab"

ab".(b'h - 1)

(b'h - 1)ab*

A'zf (x) (bd - r)a(ab*1

= (b.h - 1x(b.h - l)ab.'l

(b'h - l)'ab*.

Example 5r Find the second difference of the polynomial.

f(x)= xo -12x3 +42* -30x+9 with h= 2.

Solution: First we shall express the given polynomial f(x) in terms of factorial polynomial by synthetic
division withh: 2.
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.'. f (")

.'. Af (x)

A'?f (x)

*U) -2*Q) + 14x(1) + 9.

8x(r)-8x(,)+28

48xQt -L6

48x(x- 2)-16

48x2 -96x-16.

t..h = 2)

1 -t2 42 -30
000

| -t2 42 -30
2 -20 44

1 -10 22

4 -24
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Example 5; Find the function whose first difference is x3 + 3x2 + 5x+t2.

Solation: Given Ay= *' + 3x3 + 5x+12.

\We express this in terms of factorial polynomial.

M.S. University - D.D.C.E.

1

2

.'. Ay

:.y

*(r) a5r(z) +9x0 +12

A-1 [x(3) + 6x(2) + gx(') + 12]

x(o) *r*tr) * 9*t" * r2x(r) + c42

i tO" - 1) (x - 2) (x - 3)l + 2 [x(x - r) (x - z)]+2x(x - 1) + tlx* c

Examole 7:lf v=t r (3x+ 1)(3x+ a)Qx+7)
show that

L'y= 108

(3x+ 1)(3x+ 4)(3x+ 7)(3x+ 10)(3x+ 13)

(3x+ 1)(3x+ a)Qx+7)

I

Solwtion:

zr(*+1)(".i)(".i)

I

I ( 2 )(-')

-l x-- |27\ 3)

v
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*,-r[-1)''
- ,/ c\

1:* o(*-?\'"'27 \ 3i

.'. Ly

L,Y

(. - ;).,1[("- 3).,][("- 3).,][(,.- 3). 
-][("- 

3).'
12x3s

27(3x+ 1)(3x+ a)(3x+ 7)(3x+ 10)(3x+ 13)

108

(3x+ 1)(3x+ a)(3x+ 7)(3x+ 10)(3x+ 13)

4.5 OTHER DIFFERENCE OPERATORS

In this section we introduce the shift operator E and averaging operator p.

Definition. The shift operator E is defined by

Ef (x) =f (x+h)

Hence E'?f (x) = Ef (x+ h) = f (x+ 2h)

In general f.or any positive integer n

E'f (x) = f (x+ nh)

In particular we have

This inverse operator E-1 is define as

For any real number n we have

Note. E'E"f (x)= E-*'f (x).

Yrt

Yz,

Y,,

E-1f (x) = f (x- h

E"f (x) = f ("- ntr)

Eyo

E'yo

E"%
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2

+f{ **\t,
pf(x) =
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Definition. The averaging operator p is defined by
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There are several relations connecting the operators A, V, 6, E, p and the differentiation operator D.

4.6 ERROR PROPAGATION IN DIFFERENCE TABLE

Formation of difference table for a set of given data involves entry of data followed by successive

subtractions of these data to find the difference of various orders. Hence if there is an error in the value

of f(x) for a given x when higher order differences are calculated the errors spreads out and magnified.
The following table shows how an error in e in ys is propagated,

x v Ly L,Y L,Y Loy

0 Yo

Ayo

7 Yr L'yo

Ly, A,yo

2 Yz L,Y, Loyo ---/
Ly, Lty,

3 Yt L2Yz Layr* e

Lyt L3yr+ e

4 v. L2yr+ e Layr-4e

An+ e A3yr-3e

5 Y5+ € L2yo-2e Layr+6e

A%- e Liy. +3 e

6 Yo A2yr+ e Layo-4e

Ly. A'yr-.
7 Yz L,Y, Aoyr+ e

Ly, L,Y,

8 Ya L,Y,

Ay,

9 Ys
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From the above difference table the following facm are immediate.

l. The error increases with the order of differences.

2. The error spreads out fanwise and the error propagation is confined to a triangular region wirh
vertex at the point where the error is committed.

3. The errors in r'h column are given by the binomial coefficients of the expansion (1 - e )'. Thus
in the fourth difference Column Vay the errors are e, -4e,6e, -4 e, e .

4. The algebraic sum of the errors in any column of the difference table is zero.

5. The maximum error, in each column, appears opposite to us.

The above facts enable us to detect errors in the di{{erencetable.

Example8; The following is a table of values of a polynomial of degree 5. It is known that there is

an error in yl. Correct the error.

x 0 I 2 3 4 5 6

v 1 4 43 264 1093 3256 7999

Solution: Given yt : 264 is not correct. Let e be the error in 264. Let the actual value of

Yt=264+e'

The difference table is formed as follows.

x v Ly L,Y Lty Loy Lty

1

3

1 4 36

39 146+e
2 43 182+e 280 - 4e

221+e 426 - 3e 20 + 10e

3 264+e 608-2e 300 + 6e

829-e 726 + 3e 220 - l}e
4 r093 1344 + e 520 - 4e

2163 7246 - e

5 3256 2580

4743

6 7999

Since y : (>r) is a polynomial of degree 5, by fundamental theorem of finite differences A5y is
constant for all x.

.'. In particular A5yo = Aty, = constant

20+l0e 220-l0e
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20e 200.Hence e=10.

yt 264 + e=264+10=274.

Example 9: In the following table one value of y is incorrect and y is a cubic polynomial in x.
Construct a difference table for y and use it to locate and correct the wrong value.

Solution: 'We form the difference table as follows.

Since y is a polynomial of degree 3 the third difference Ary must be consranr.

The sum, of the entries in A3y column is 15. Hence each entry in this column mu$ be !=1.
5

There is one entry 3. Hence there are errors in the first four entries in A3y column.

\Triting these 4 incorrect entries as in error propaBation table, we have

2=3+(-1); 6+3-3(-1); 0= 3+ 3(-l); a= 3-(-1)

\7e find the error e= -1 and it is against the entry 18 corresponding to x : 3.

.'. Correct value of y(f)= tS - (-t)= tg.

x 0 1 2 ) 4 5 6 7

v 25 21 18 18 27 45 76 t23

x v Ly L,Y Lty Error in A3y

0 25

-4
1 2l I

-3 2

2 18 J C3+ 0
0 6

3 18 9 3+(+3)
9 0

4 27 9 3 + (-3)

18 4

5 45 13 (1)3 +

31 )
6 76 t6

47

7 t23
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4.2 SUMMATION OF SERIES

The concept of finite differences can be applied to find the sum to n rerms of a given series.

Let s" = vr * yz*...+v" = iv,
i=1

Let v, = Aui so that u, - A-'r,

.'. vi = Au, = u,*, - u, (Taking h = t)

Thus vi uz -ur
Y2 u: -uz

""' ,"-, - ,".

Hence I vr * Yz*,,.*vn = ur+1 -u1 = A-lvn*, -A-'tr.

Montmorts Theorem

uc+urx+u.x2+... +!-+-)(4"' *IiA'tl *.1-x (1-*)' (t-*)'
Proof.

1

1-x-xA u

1l xAl-'_l 1__ | u,1-*L^ 1-*l
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Exarnple.lO: Sum the series to n terms of

t.2.3

Solution: The n'h term of the series is given

vn

M.S. University - D.D.C.E.

+

o:
2.3.4+3.4.5.+...

n(n+ 1)(n+ 2)=(n+ 2)(n+ 1)n

(n+2;{rr(withh=9
n

)t,=A-'v'*r-A-'',
i=1

A-1(n+3)3 -A-1v,,

(n+ 3;t'r n

4

sn

1

i("+ 3)(n+ 2)(n+ 1)n
+

1'(r,*1)(n+2)(n+3)
4

Example.l.l: Sum of n terms of the series 1.3.5 + 2.4.6 + ...

Solution: The n'h term of the series is

vn 
: :li:3.:;i',

as factorial polynomial with h : 1.'We express n3 + 6n' + 8n

Now

vt

sn

,(:) 19rr(z) + 15n(,)

It, = A-'vn*r -A-'t,
i=1

l-' [(" + 1)(]) + 9(n + t)t'z) + 15(n + 1)(1)]

011 6 8 0



(n+1;t+t, 9(n+1)(r) . 15(n+1;t2r
T-

n(n+1)-' 'I n'
4L

n(n+1)(n'z+9n+20)
4

n(n+ 1)(n+ a)(n+ s)

1. AV =...

(") ^v (b) A+v G) ^-v (d) E^v

2. \flhich of the following result is true?

(r) A*(") - ro{"-t) 0) A*(") -,.,*{"-t)

G) Aoe" = e' G) Acosx = sin x

3. The relation between E (shifting operator) and D (operator of differentiation) is

(r) E=em (b) E=e-D G) D:logE (d) D=eE

4. If the interval of differencing being unity, then 43 [(1 - xX1 - 3x) (1 - 5x)] =

(") -6 (d) -e0 G) -1s (d) none

5. If A denotes the forward difference operator, f(xo)=fu and g(xr.)=gn then A(fogn) is

equal to

(") fkAgk + gk Afk 0) fo*, Ago + go*, Afu

G) fn Ag*, + go Afo*, (d) fn Ago*, + go*, Af,

4.8 LET US SUM UP

The eigenvalue problem is a problem of considerable theoretical interest and wideranging application.
For example, this problem is crucial in solving systems of differential equacions, analyzing population
growth models, and calculating powers of matrices (in order to define the exponential matrix). The
values of the independent variable x are usually called the argument and the corresponding functional
value is known as the entry. In engineering and science one often has a number of data poinrs, as

obtained by sampling or experimentation, and tries to constnrct a function which closely fits those
data points. This is called curve fitting or regression analysis. Interpolation is a specific case of curve
fitting, in which the function musr go exactly through the data points.

Finite Differences 77M.S. University - D.D.C.E.

-3n+ 2+l2n-12+30)

heck Your



78 Numericai Methods M.S. University - D.D.C.E.

4.9 KEY\TORD

Stirling's formula:

yp = ya.,(e#r )** o,,-,.q+, (^a#L.) .e,-(# Loy-,,

4.10 QUESTTONS FOR DTSCUSSION

1,. Show that

(i) 6= v(t-v)-,/, (ii) p=[r*{l"'L 4.1

2. Construct the diiference table for the sequence values

(r) : (0,0, 0, €, o, o, o)

where 'r- is an error. Also show that (i) the error spreads and increases in magnitude as the order of
differences is increased, (ii) the errors in each column have binomial coefficient.

3. For the matrix

[r2-2f [1221(i) A=11 1 1l Gi) A=12 s 2l

[r3-1] lz23)
(a) Find all the eigen values and the corresponding eigenvectors.

(b) verify thar 't- is a diagonal matrix, where S is the matrix of eigenvectors

Check Your Progress: Model Answers

1. (r)

2. (b)

3. (r)

4. (b)

5.

4.1 1 SUGGESTED READINGS
S.S. Sastri., Introductory Methods of Numerical Analysls, Second Edition, Prentice Hall.

S. Mohan Naidu., A Text Book of Mathematical Methodsfor Scientific Engineers, Students Helpline Series, Hyd -
2005.

Jain, M.K', Iyengar, S.R'K., lain, R.K., Numerical Methods for Scientific and Engineering Computation, 3rd Edition,
New Age International (P) Ltd., 1993.
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s.o ArMS AND OBJECTryES
After studying this lesson, you will be able to:
. Explain Newton's Interpolation Formulae
. Discuss Central Difference Interpolation Formulae
. UnderstandLagrange's InterpolationFormula

5.1 INTRODUCTION
In our daily life we are sometimes confronted with the problem of finding the value of a function for
some value in the given interval with the help of a given set of observatiois. For example if we are to
find out the population of India in 1954 when we know that the census in India is done in 1941, 1951,
l96t,l9Tl,andsooni.e.thefiguresof populationareavailablefor !94I, lgsL,196l,L97lerc.,rhen
the process of finding this figure is known ai interpolation.

5.2 NE\T/TON'S INTERPOLATION FORMULAE
ril/e now derive two important interpolation formulae by means of the forward and backward
differences of a function. These formulae are often employed in engineering and scientific problems.

Let the function y= f (x) take the values yo, yt, y2..... corresponding to the values
xo,xo+h, xo+2h,.....of x. Suppose it is required ro evaluare f (x)=x=xo+ph, where p is any real
number.
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For any real number p, we have defined E such that

EPf (x) f (x+ ph)

Yp f (xo + Ph) = Eof (xo)= (t+ A)-o R

M.S. University - D.D.C.E.

[using Binomial theorem]

{,* 
ro,-{Po' * Pb- 0k- z) 

o' *....}*

1.e. (0

It is called Newton's forward interpolation formula as (1) Contains yo and the forward difference of yo.

C[x. This formula is used for interpolating the values of y near the end of a set of tabulated values and

also for extrapolating values of y a little ahead (to the right) of yo.

5.3 CENTRAL DIFFERENCE INTERPOLATION FORMULAE

Gauss's forward interpolation formula is

yp % +payo.9o,r-, *Qi+(p:-0A,y-, +(p1!t1;!L2 Loy-,+.... ...(0

Gauss's backward interpolation formula is

yp % +pAr-r.$Po,r-, *Qi+Jo,r-, *hi3)lTP(eJ Loy-,+.... ...e)

Taking the mean of (1) and (2), we obtain

yp )1 +p(4&+4L)**o,r-,.qP "(u+-).ryJAoy-, + (3)

which is called Stirling's formula.

C-or.Inthe central differences notation, (3) takes the form \

yp : % +pp6% **u'r;4P*s'* *f+46',, +....

for )tor,+ ^y-1) )tur,,,+ 
6y-,2,)= F 6yo

)lo'r-,+ 
l'v-,) |tu'r,,,* 6'v ,,,) - p D3voetc.

C[r. This formula involves means of the odd differences just above and below the central line and even

differences on this line as shown below:

..r"...(1'-' j....o,r- , (o'.t'l ...o'r-, Ii]"'l .A6v-,....central rine-",,""( 
Lyo ) 

/-L 
[A,y_, ) 

,-. 
(A,y_, ) 

,



M.S. University - D.D.C.E. Interpolation 83

5.4 LAGRANGE'S INTERPOLATION
Let f(*o),f(x,)....,f(x") be the values of the uncrion y=f (x) corresponding to rhe arguments

Xe I X1r ....xtr, not necessarily equally spaced.

Let f(x) be a polynomial in x of degree n. Then we can represenr f(x) as

(") : ao(*-",)(*-"r)...(*-x")+a,(x-xo)(x-"r)...("-x,)+...+r,(*-"0)("-",)...("-*"_,) ...(1)

where as1a1s...an are constants.

Now we have to determine the (n + 1) constant aa) ar, ....a1

Putting x = xo in (1), we get

f(",) ro('o-*,)(ro-x,)....(xo-x.)

i.e., ^ 
f(*')o:ffi "Q)

Putting x = x, in (1), we get,

f (*, ) ,, (", - *o X*, - x, )....(x, - x" )

i.e. al , ,, f('') , ,

(x, -xo)(x, -;,I]ilt "(3)

Similarly u , ', 
t("1 , ,(x,-xo)(x,=J:G,_>iJ "(4)

f (*,)
...(s)

(r" -*o)(r, -r,)....(*. -*"-,)



84 Numerical Methods M.S. Universitv - D.D.C.E.

Notes:

l. 'S7hen the arguments xo, X1:...........X, are not equally spaced then we can use this formula to find y
for any x.

2. The above formula can also be written as

(*) i o(,.){(,.;) 
r where (6)' A (x-x.)Q'(x,)

0(*) g (,.- x,) and f '(x,)= [*Of"l-lLCtx lx=,.

Proof: Given Q(x) 11 ("-".)

(x - xo )(x - r,)(* - x, ) .... (x- x, )

Since Q(x) is the product of (n + 1) factors, the usual process of differentiation produces Q'(x) as the sum
of (n+ 1) terms, in each of which one factors has been differentiated as given below:

Q'(r) (x-x,)(x-*,)....(r-x.)+(x-"0)(*-x,)....(x-x")

+............... ....... +

+(x- xo)(x- x,)....(x- x"-,)

Now, Q'("0) (xo -x,)(xo -",).....(xo -x")

O'(*,) (x, - xo)(x, - x,).'..'(x, - *,)

(x- ro)(,- x,)...(x- x,) f(",)
- ro)(ro - *,)(ro - *, )......(*o - *, )

(* - 
"o )(" - x, )...(x - x, )

(,

+

+

+

f (",)
(x- x,)(x, - roX*, - x, )......(x, - x")

(* - "o )(* - *, )...(" - 
"" ) f("")

(" - *")("" - r.)("" - ",)......(*. - 
X,-,) '\""
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(x- x,)(x - x, )...(x- x") x - "o)(x- xr)...(x - x,)("-"rX
(xo -x,)(xo -xr)......(xo -x")

-. (r-*o)(r-*,)...(r-*,-,i r/ \ rz+ffif(x')=f1*;

f (",)

l. For the factorial function x(') =x(x-h)("-2h)....(x-rh+h). The value of A'x(') and

A'*'.x(') are:

(.) r(r- 1)h2.>,(h-z) ' O) k,0;

(.) r(r- 1)h'? *{'-2),0 (d) o('-1),0

2. If the 5'h and higher order differences of a function vanish, then the function represenrs a
polynomial of degree

(.) 4 b)2
G)s (d) 3

3. rU7hich of the following is not correcr

(") A=E-1 (b) V=1-E-1

G) 6=E'/'-E-t/2 (d) none

4. Newton's forward interpolation formula is used for interpolating the values of the
function.

(.) near of beginning of a set of tabulated values

(b) near the end of a set oftabulated values

G) near the middle of a set of tabulated values

(d) none

5. Lagrange interpolation formula is used

(r) near the beginning of the tabulated values

&) near the end of the tabulated values

G) near the middle of the tabulated values

(d) all of these

5.5 LET US SUM UP

In the mathematical subfield of numerical analysis, interpolation is a method of constructing new data
points within the range of a discrete set of known datapoints.

A different problem which is closely related to interpolation is the approximation of a complicated
function by a simple function. Suppose we know the function but-ii is too complex to "rrlrrt"efficiently. Then we could pick a few known data points from the complicated funition, crearing a
lookup table, and try b interpolate those data points to consrruct a simpler function. Of course, whlen

heck Your
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using the simple function to calculate new data points v/e usually do not receive the same result as

when using the original function, but depending on the problem domain and the interpolation method

used the gain in simplicity might offset the error.

5.6 KEY\T/ORDS

N utt o n' s foruxr d intupol atio n :

yp % +p^%.{Po', * 
p(p-t)(p-z)A'% 

+....

N atton' s ba&. unrd interpolatio n:

yp y, +pv),".{Po'* *PQ+914V'y" +.....

Stirling's formula:

yp * . r(Te )**,o,r-,. 
qP "(*+-).dl# L.y-, +

Gauss's fortwrd intupolation formula:

Gdus{s ba&.unrd intupolation formula :

yp % +pAr-r.9Po'r-, *Q11#l L'y-,+At'rybeJ Loy-,+....

Lagrange' s intupolatio n :

t, \ ('-",)(x-x,)....(x-x,) (x-xo)(x-xr)....(x-x,)I(x, ffi)o*6r,
r - 

(*- *o)(*- *,)""(*- *"-,)*6n

s.7 QUESTTONS FOR DISCUSSION

L Provethat 1+1126'=(r* )U')'

2. Prove that f (4) = f (:)+ lf (z)+ t'?f (t)+ l3f (t)

3. The following data give I, the indicated HP and V, the speed in knots developed by a ship.

V 8 10 12 14 t6

I 1000 1900 3250 5400 8950

Find I when V : 9, using Newton's forward interpolation formula.
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4. The amount A of substance remaining in a reacting system after an internal of time t in a certain
chemical experiment is tabulated below.

t(min) 2 5 8 t1

A(g*) 94.8 87.9 81.3 75.1

obtain the value of A where t : 9 using Newton's backward interpolation formula.

5. Find a polynomial which take the following values

and hence compute fx at x : 2, 12

6. The following are data from the steam table:

temp i(t) 740 150 150 t70 180

Pressure kg/crn:(p) 3.685 4.854 6.302 8.076 10.225

using Newton's formula, find the pressure of the steam for temperatures t42a and U5o.

7. Give the following table, find y(3S) by using stirling's formula and Bessel's formula

8. Use Lagrange and the divided difference formula to calculate f(:) from the following table :

x I 3 5 7 9 tt
v
JX

3 t4 19 2t 23 28

x: 20 JU 40 50

yi 512 439 346 243

x 0 I 2 4 5 6

(") 1 14 15 5 6 14

Check Your Progress: Model Answers

1. G)

2. (r)

3. (d)

4. (r)

5.

5.8 SUGGESTED READINGS

S.S. Sastri., Introductory Metbods of Numerical Analysls, Second Edition, Prentice Hall.

S. Mohan Naidu., A Text Book of Matbematical Metbods for Scientifi.c Engineers, Students Helpline Series, Hyd -

2005.

Jain, M.K., Iyengar, S.R.K., Jain, R.K., Numerical Metbodsfor Scientifi.c and Engineering Computation, 3rdEdition,
New Age International (P) Ltd., 1993.
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6.0 AIMS AND OBIECTryES

After studying this lesson, you will be able to:

o Explain Newron's Divided Difference Formula

o Discuss Inverse Interpolation

6.1 INTRODUCTION
A polynomial P(x) is called the interpolating polynomial if the values of P(x) and,/or its cerrain
derivatives coincide with those of f(x) and/ or its same order derivatives at one or more tabular points.

6.2 NE\TTON'S DIVIDED DIFFERENCE FORMULA
The linear Newton divided difference interpolation is easy to generalize. 'Sre define the higher order
divided differences as

[ [xilx,,x. ] 
f [x1,x' ]- f [xo'x,] 

= --+[f 
(x,)-f (x,) 

- 
f (x,)-f (x,)-l

X2-Xc (x:-xc)L xr_x, Xr_Xo l

f(',)_f(",)[t*1-l*f(*o)
(x, -xo)(x, -x,) (*, -*o)L*, -*, Xr -Xo_l 

' (*, -xo)(x,-xo)
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f(*o) , f(*,) f(*,)
(xo -x,)(xo -xr) (x, -xo)(x, -xr) (x, -xo)(x, -x,)

f[xo,x,,xr,"',*o-,,*u] f[x"x""'xu]-flxo'x""'xn-']
Xk -Xo

k 3,4, ..., fl.

In terms of function values, the nth divided difference can be wrirren as

ff*rrrr,*rr...r*^f : i, 
t(",)

'=o fl(*' - *,)
E?

The divided differences may be calculated with the help of Table 6.1

Table 5.1: Divided Difference (d.d) Table

first d.d. second d.d. third d.d.

xo f [xo]

x1 f[*,] f[xo,x,]

x2 f[x, ] f[x,,x, ] f[xo , x,, xr ]

xl f[x, ] f [x1x,] f[x,x,x,] f [xo,x,,x1x, J

Note that

f[xo,x,] f[x,,xo]

f[xo,x,,xr] - f[x,x,,xo]etc.

The interpolating polynomial P"(*), interpolating at the n+l distinct points X6,x1,...,xtr can also be
written as

P,(") ao *(x-xo)a, +(x-xo)(x-x,)a, +...+(*-xo)...(*-xn_r)an.

Substituting successively x = xo,x = X1,. .,x = X.r we obtain

P"(*o) : f[xo]=xo.

P"(",) f[x,]= ao *(x, -xo)a, =flxo]+(x, -xo)a,

or al f[x,]-f[xo]=f[xo,x,],
Xr-Xo

P"(*r) = f[xr]=ao *(x, -xo)a,+(", -*o)(*, -x,)a,

or a2 6#. -,[rt.,,-,["0]-(*,-.,,{lti=P}]
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f[*,] f[*,] f[*,]
(", -xJ(xo -, - (*,-*.X", -*J - 1t -*;1*, -",

: f[xo,x,,x, ].

Using induction, we can prove that

at f[xo,xr,...,xn ].

The divided difference interpolating polynomial becomes

P"(") f [xo] + (x - xo)f [*0,*,] +... + (* - 
"o )'..(*- x._,)f [x0,x,,.'.,*n ].

Note that, since the interpolating polynomial is unique, Lagrange and divided difference polynomials
are two different forms of the same polynomial.

6.3 INVERSE INTERPOTATION

So far given a table of values of x and /, using one of the interpolation formulae we find the value of y
corresponding to some value of x for some value of y which is not in the table. On the other hand the
process of estimating the value of x for some value of y which is not in the table is called inverse
interpolation. There are tv/o methods for inverse interpolation. There are two methods for inverse
interpolation, one when the values are unequally spaced and another when the values are equally
spaced.

I-agrange\ Mabod

This method is used when the values of x are unequally spaced. Lagrange's interpolation formula can
be simple viewed as a relation between two variables and any one of the variable can be taken as an
independent variable. Therefore interchanging the variables x and y in Lagrange's Formula we get

which is used for inverse interpolation

Ituatiw Mabod

Newton's forward difference formula is

Neglecting the second and higher order differences we obtain the first approximation to p given by
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Ip, 
O 

(r. -n).

To find the second approximation to p we retain the term with second difference and replace p byp,

D: -l-[" - v^ - P,(P, - 1) 
o,.,r^'l

A% L'o 10 21. - 'o_l

To find the third approximation we retain the terms upto third order difference and replace p by pr.

D3 -l-[" -v^ - 
pr(p, -1)A rr^-pr(pr-l)(pr-2)l,rr^-l.

' AyoL" 'v 2l rv 3! "l

Continue this process till the successive values of p are approximately equal.

Exarnple

Problem /; Find the value of x correct to one decimal place for which y : 7 given

Solution: 
'We have to find x when y : 7.

\fle need to use Lagrange's inverse interpolation formula.

Here

xo=1; xr=3; xz=4
yo=4) yr=12; yr=19

x : $-y,)(y-y,) ,"^ * (y-n)(y-n) ,". * (y-yo)(y-y,) ,*.
(n -y,Xn -n) " (y, -y)(y,-y,) ' (y,-y)(y,-y,) -z

(7-12)(7-te) xr+ (7-4)(7-re) x3+ ?-4)(7-t2) x4(4-12)(4-Le) (r2- 4)(12-te) (te- 4)(te- 12)

0.5 + 1.9286-0.57t4

1.8572.

Probbm2:Tabulate y=x3 forx:2,3,4,5 andcalculatethecuberootof l0correctof threedecimal
places.

Solution: For x : 2,3, 4,5 the values of y are 8,27, 64,125 respectively.

Here h : 1. \7e form the forward difference table.

x L 3 4

v 4 t2 L9

x v Ay
^)

Lry

2 8

t9

J 27 18

37 6

4 64 24

61

5 125
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The first approximarion is given by

p, lfn -y,l
LYo

1

;(10-8)
0.1.

The second approximation is

P2 #[--%-*/o'"]

*[" - a - 
(o'')(91 -')rrsl]

0.15.

The third approximation is

P3 #[r. -Yo-*t!^'v - b' -r)-(P' -2)^'y 
]

*[ro _ 8 _ o.1s(o_.1s- 1) 
x 18 _ o.1s(0.1s- 1xo.1s- 2)x 

5lLel 21. 3! " ".J

a.$32.

The fourth approximation is

P4 #[r. -Yo-*+^', - P'(P' -1)b' -2)o', 
]

* lro _ 8 _ 0. 1 532(q 1s32 - 0 x fi _ o.ts32(o.rs32- r)(o.ts32- 2) 
x 611eL 2! 3! " "j

0.154t.

The fifth approximation is

*[rr-8- 
0'1s4(oj1s41- 1), rs- o.1sa1(o.1satr l)(o.rs+r_ar5]

0.1542.

Hence p+ = ps = 0.154 (Correct to 3 places of decimals)

M.S. University - D.D.C.E.
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\7e have to find VlO . Sin." 10 lies between

required value of VtO i. 2 + hps : 2 + 0.154

Divided Differences 93

the values of y corresponding ro x : 2 and x : 3, the

- 2.154.

using Newton's divided difference formula evaluare f(g) given that

x 4 5 7 10 tt t3

(") 48 100 294 900 1210 2428

6.4 LET US SUM UP
I,agrange's. interpolation formula has the disadvantage that if another interpolation value were inserted
then we have to recomputed the interpolation coefficients. Hence it is desirable to have an
interpolation formula which has the property that a polynomial of higher degree may be derived from
it by simply adding new terms. Newton's divided difi"r.r,.. fo.-rl, is orie such formula and this
formula employs the concept of divided differenced, which had introduced.

6.5 KEY\T/ORDS

Nerfion's dhided diffuene formula: This formula employs the concept of divided differences.

Inrwse Intupolation:The process of estimating the value of x for some value of y which is not in the
table.

6.6 QUESTTON FOR DTSCUSSTON

l. Find.out the equation of the cubic curve which passes through points (4143) (7,327) and, (12,
10s3). Hence find f(10).

Check Your Progress: Model Answer

Newton's divided difference formula is

f (x) = f (xo)+ (x- xo)[xo,x,]+ (x- *o)(*- x,)[xo,x,,x, ]+...
Atx:8wehave

(8) 48 + (s - 4)[4,5]+ (8 - 4)(8 - 5)14,s,71

+(8 - a) (8 - s) (8 - 7)14 ,s,7 ,t}l
+(8 - a)(8 - sX8 - 7)(8 - 1O)t4, s,7,t}f

+(8 - +)(s - sxs - ZX8 - 10X8 - tt)l4,s,7,Lo,ltl

+(8 - a)(8 - sX8 - 7)(8 - 1OX8 - 11X8 _ 1.3)14,s,7,10,11,131

Contd...
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The divided difference table is given below

x (") First div. diff Second div. diff Third div. diff Founh div. diff Fifth div. diff

4 48

52

5 100 15

97 1

7 294 2l 0

202 I U

10 900 27 0

310 I

lt 12L0 33

409

13 2028

Substituting the values of all divided differences from the divided difference table we have

(8) 48 + (4 x52)+ (+ x I x ls)+ (4 x 3x 1x 1)

48 + 208+ 180+ 12

448

6.2 SUGGESTED READINGS

S.S. Sastri., Introductory Methods of Numerical Analysis, Second Edition, Prentice Hall.

S. Mohan Naidu., A Text Book of Matbematical Methods for Scientific Engineers, Students Helpline Series, Hyd -

2005.

Jain, M.K., Iyengar, S.R.K., Jain, R.K., Numerical Methodsfor Scientifi.c and EngineeringCompuution,3rdEdition,
New Age International (P)Ltd., 1993.
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NUMERICAL DIFFERENTIATION AND INTEGRATION
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2.0 AIMS AND OBJECTTyES

After studying this lesson, you will be able to:

o Describe derivatives using Newton's forward difference formula

. Discuss derivatives using Newton's backward difference formula

. Explain Newton's Central Difference formula

. Understand Maxima and Minima of the interpolating polynomial

. Identify Numerical Integration

7.1 INTRODUCTION
The Numerical Differentiation methods are very sensitive to round-off errors in addition ro rruncarion
errors introduced by the methods themselves. The accuracy attainable by rhese methods would depend
on the given function and the order of the polynomial used. If the polynomial fitted is exact then the
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error would be theoretically zero.In practice, however, rounding errors will introduce errors in the

calculated values. The error introduced in obtaining derivatives is in general much worse than that

introduced in determining integrals. The reason for this is that any errors in approximating a function

are amplified while taking the derivative whereas they are smoothed out in integration. Thus,

Numerical f)ifferentiation should be avoided as far as possible if an alternative method is available.

Numerical Differentiation is carried out below for continuous functions and also for tabulated

functions or discrete functions.

Here, we discuss the numerical process of approximating the derivatives f(x) of a function f(x) when

the function itself is available. \We discuss the following methods.

1. Forward Difference

2. Backward Difference

3. Central Difference

The methods 1 and 2 are also known as TwoPoint Formulae and use First Order Forward/Backward
Difference Formula. The method 3 is also known as Three -Point Formula and uses Second Order

Central Difference Quotient.
The Numerical Differentiation is very sensitive to round off errors. If the distance 'h' between any

two successive points where the function values are known is small, the round-off error has an

overriding influence on the total error. Therefore, while reducing the step size, we should exercise

proper judgement in choosing the size.
'Whenever a function cannot be integrated in finite terms or the evaluation of its integral is too

cumbersome, Integratio rL m y be conveniently performed by Numerical Methods. Like Numerical

Differentiation, we need to seek the help of Numerical Integration Techniques in the following
situations:

t. Function does not possess closed form solution.

2. Closed form solutions exist but these solutions are complex and difficult to use for calculations.

3. Data for variables are available in the form of table, but no mathematical relationship between

them is known, as is often the case with experimental data.
'We know that a definite integral of the form,

I:fl")
canbetreatedasrheareaunderthecurvey:f(x),enclosedbetweenthelimitsx:aandx:b.The
problem of Integration is then simply reduced to the problem of finding the shaded areas for the

respective limits.

7.2 NUMERICAL DIFFERENTIATION
Consider a set of values (r, , y, ) of a function. The process of computing the derivative or derivatives of

that function at some values of x from the given set of values is called Numerical differentiation. This
may be done by first approximating the function by a suitable interpolation formula and then

differentiating it as many times as desired.

If the values of x are equi-spaced and the derivative is required near the beginning of the table, we

employ Gregory - Newton forward interpolation formula. If it is required near the end of the table,

we use Gregory - Newton backward interpolation formula. For the values near the middle of the table,

the derivative is calculated by means of central difference interpolation formulae.
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If the values of x are not equi*paced, we use, Newton's divided difference interpolation formula'or
Lagrange's interpolation formula ro ger rhe derivative value.

7,2.1' Derivative using Newton's Forward Difference Formula
Newton's forward interpolation formula's:

y % + pA% * P(P-- 1) 
o,% * P(PJ(P - 2) 

^ 
,-

2l :i-l'Y' + "' "'(1)

where p 

="Differentiating both sides of Eqn (1) with respecr to p, we have

* ry,*4#L'yo+3P2 -6P+2A,% +... ...(2)dp 2l rv 
3!

No*-dI dydp=dy1
dx dp d* dp'h

At x : Xo,p : 0. Hence, putting p: 0 in Eqn (3), we ger

d*l 1l- 1 - 1 r I
ff].=., *L^" -*o'r,*1o'o -1o-o. ']

Differentiating Eqn (3) again w.r.r. x, we ger

d'y dfdy)dp=1..d(dy)
dx' dpl, dx / dx tr 

" 
ap{, dx/

1[o,o + (p - l)a,yo *6P' -18p + 11 . , I
It' L" 

o +(P-U^ % *--i-^'% +""._]

Putting p : 0 in Eqn (5), we get

#].=* #[o'o -A'vo.#o.* - ]
Similarly,

d'-rl t I
#]. . #Lo'o -A'% *Jo'r, *"']

and so on.

...(4)

...(5)

.. (5)

...(7)
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Alitq: We known that 1+ A = E = em. where

hD = log(1+A)=a -)o'*1o' -io'*....

D 1[o-la,*1a,-1a-.....-lhL 2 3 4 )

D2 : #[^ - i^ ' *Io' -lt'. .....]'

t l- '-1, -lla, -ll'*.....1FLo'D6)
and D3 1[o, -1no *Lt -.....1h'L 2 4 -l

Now applying these identities to n,

Dv^ = ql t[ 1 ' llrr^-1a.-r^*....-llv dxl,=* = 
hLoO - ZL'yo 

*J^ ,o - 4^ to- "")

D'yo *l =3[o'o -A'% **r'n *+^'%....-l- tu d*'l _ h'L 2 '" 6 '" l
- x_:0

and

D3v^ gll 
= 1[a,r.^ -1 a*r,^ *Za,r^ -....-l/v dx'I h'L Je 2 '" 4 Jv lJ x=xo

which are same as Eqns (4) - (7), respectively

7.2.2 Derivative Using Newton's Backward Difference Formula

Newton's backward interpolation formula is

y - n +pVn.{Po'* +B(811)G12v'% +... ...(8)

where ?=n ...(e)

dy dy !p _ ay t[.. ap 
= 1ldx dp'd* - dp'hl' a" - "i

1[o, *2P*!vru*iP](,o+2-. I
hL ,n- 2t ' tnr--trv'%+"'l "'(10)

At x : Xn, p : 0 Hence, puttingp : 0 inEqn (10)

#].=.. *[r" *ir'r^*Jv'n *....] ...(10
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Again, differentiating Eqn (10) w.r.t. x, we ger

d'y d[ay)dp=1d(ay')
dx' dp(d*/'a" h'dp(a"/

: #[o'" *#o'* .q#_lt*% *....]

Putting p : 0, we get

#]. .. = #[o'* +v'v' *]v'* *""]

#]. "" #[o'* *Jv'* *' 
]

and so on.

Alitq: \7e know that 1- V = E-1 = e-D

-hD = tog(1-ol=-[o *!rr,*1o,,.1o, *....]

D *[o.]o,*1o,.io,....1

D2 = #[" *)r,*1o, *irr*....]'

#[o, +v,+!v,*io' .]

Similarly,

D3 #[o, *]o, .1r' *. 
f

Applying these identities to yn, we get
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...(12)

...(13)

...(14)

D,% = #| =#[o,* *lr,r^*fv'**....]
Jx=xn

which are same as Eqn (10 - (14), respectively.
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7.2.3 Derivatives Using Stirling's Formula

Stirling's formula is

M.S. Universitv - D.D.C.E.

. .(16)

...(18)

...(1e)

...(20)

where p :

No* 4
dx

X- Xo

h

dy dp 
=dy 

7

dp d* dp'h

Differentiating Eqn (17) w.r.t. x, we get

d'y
t)

CIx

r r -l

. d-yl
dx'I

Jx=xo

[..4=rlLdx -l

).1
v.
J -)

and so on.

In the same manner, we can use any other interpolation formula for computing the derivatives.

No/e: Numerical differentiation should be performed only if it is clear from the tabulated values that
differences of some order are constant. Otherwise, the method will involve errors of considerable
magnitude and they go on increasing significantly as the derivatives of higher orders are compurer.
This is due to the fact that the original f(x) function and the approximating function Q(x) may not
differ much at the data points but f '(x) f '(r) - Q'(x) may be large.

7.2.4 Maxima and Minima of Tabulated Function

Differentiating Newton's forward interpolation formula (fq (t) with respect to x, we ger

...Ql)

'We know that the maximum and minimum values of a function y : f(x) can be found by equating

to zero and solving for x.

dy

dx



= ry,*! 9ro+N--rr!2A3yo +....=o2 '," 6

Hence, by keeping only up to the third difference, we have

nyo *T Lryo +3P') - 9P + 2A,yo 
= o2 'u 6

Solving this p, by substituting Ayo,A2yo,A'% (which we get from the difference table), we get x as xo

+ ph, at which y is a maximum or minimum.

Examples

1. Find the first, second and third derivatives of f(x) at x : 1.5 if

x 1.5 2.0 2.5 3.0 3.5 4.0

(*) 3.375 7.000 3.625 24.000 38.875 59.000

Solution:
'We 

have find the derivative at the point x : 1.5 which is at the beginning of the given data. Therefore,
we use here the derivatives of Newton's forward interpolation formula. The forward difference table is
as follows:

x y: f(x) Ay L'y L'y Loy

1.5 3.375

3.625

2.0 7.000 3.000

6.625 0.750

2.s 3.625 3.750 0

t0.375 0.750

3.0 24.000 4.500 0

t4.875 A.750

3.5 38.875 5.250

20.t25

4.0 s9.000

M.S. University - D.D.C.E.

From Eqn (21) ff = o
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Here, xo =1.5, ya=3.375, Lyo=3.625, L'yo=3, A'% =0.75, andh:0.5

Now, from Eqn above, we are

*].=.. r'("0)=*[o* -)o'"-1o'o -ior"* ]

r'(1.s) fr[r.rro- )ttl-.jro.rrl] =475



104 Numerical Methods M.S. University - D.D.C.E.

From Eqn. above, we have

#l r"(*o)=#[o'o -A'% *#o'"- ')
rx=&

f '(1.s) ffif, -o.7sf=s

Again from Eqn above, we have

#1,=* r"'(*o)=#[o''' -1o^"*"")

f ''(1.s) ^!1o.rr;= ,' (0.s)'

2. The population of a certain town (as obtained from census data) is shown in the following
table.

Year 7957 7961 t97t 198 1 l99t
Population 19.96 36.65 58.81 77.21 94.61 (in thousands)

Find the rate of growth of the population in the year 1981.

Solution:

Here, we have to find the derivative at l98l which is near the end of the table. Hence, we use the
derivative of Newton's backward difference formula. The table of differences is as follows:

xy
$rear) (population) YY Y'Y YtY YnY

L95t 79.96

16.69

t96t 36.65 5.47

22.16 -9.23

l97t 58.81 -3.76 t7.99

18.40 2.76

1981 77.2t -L

v.4a

1991 94.6t

Hence, h : 10, x" = 1991,Vy^=!7.4,V2y,=-7,Y3yn=2.76and Yoy^=11.99

we know from above Eqn that
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Now, we have to find out the rate ofgrowth of the popularion in the year 1g81,t..., 
*].=,r,,

i.e., x, +ph=1981 .'.0= "t'rt"'=-,
.'. Putting p : - 1, h : 10 and the values Yy,Y2yo, V3y" of and Vry" in Eqn (1), we get

y'(1e81) *1" 
-.9rr-q*3(-t)' * !(-r)* z 

eto12(-r)' 
+gelt + n(-r) +t 

(11.ee)]

I ur.o + 0.5 - 0.46 - o.ssst666) : 1.644083310'
.'. The rate of growth of thepopulation in the year lg}l is 1.6440833

3. obtain the value of f ' (90) using Srirling's formula to the following data.

Also find the maximum value of the function from the data.

Solution:

Since x : 90 is in the middle of the table, we use central difference formula and in particular, stirling's
formula:

The central difference table is as given below.

x y: f(x) Ly L'y L,y Loy

60 28.2

10

75 38.2 -5

5 -2.3

90 43.2 - 7.3 8.7

-2.3 6.4

105 40.9 - 0.9

-3-2

120 37.7

x 60 75 90 105 120

(*) 28.2 38.2 43.2 40.9 37.7



106 Numerical Methods M.S. University - D.D.C.E.

1 tr:s - 0.34166661 : 0.0672222.
15'

To find the maximum value of the tabular function:

By Stiriling's formula,

y = y(xc+ ph) = v, l(N,* A),-, ) * * o,, -,* qP l**] . e# Lo y -, + ....

Substituting the values from the table, we get, after simplification,

y : 43.2 + 1.35 p - 3.65 p, + 0.3417 (pf-p)

or y : 0.3417 p3 -3.65 p'z + 1.0083 p + 43.2

dv
It y is maximum. .a = 0,

i.e.,1.0251p'-7.3 p + 1.0083:0

73t@
= 6.9803 or 0.1409

2(t.o2sr)

p : 6.9803 is out of range .'. p : 0.1409

Hence, x= xo *ph=90+ 15(0.1409) : 92.Lt35

and maximum of y

0.3417 (0.1409)3 - 3.6s (0.1409), + 1.0083 (0.1409) + 43.2

43.27

4. Using Bessel's formula, find the derivative of f(x) xt x : 3.5 from the following table.

x 3.47 3.48 3.49 3.50 3.51 3.52 3.53

(*) 0.793 0.195 0.198 0.2a1 0.243 0.206 0.208

Solution:

Bessel's formula is

(t\
yp % +p^yc *p(p:l)[a'v-,1a'v, 1*!:-zl(o1o,r_,L-

/ r\,
, (p*r)p(p-1Xp -2)l t'y-,*Loy-,1 [o -ilG-t)p(p-t)(p-z)

+tLrJs!

)[p-0(p-z)(p-:
6l

(p+z)(n+t)p(
...(,
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The central difference table is as follows:
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x y: f(x) Ay L'y L'y L'y A'y Luy

3.47 0.193

0.002

3.48 0.195 0.001

0.003 -0.000

3.49 0.198 0.000 0.000

0.003 -0.001 0.003

3.50 0.201 -0.001 0.003 -0.010

0.002 0.002 -0.007

3.st 0.203 0.001 - 0.004

0.003 .0.002

3.52 0.206 -0.001

0.002

3.53 0.208

'Where 
o = ? . Differentiating Eqn (i) with respecr ro x, v/e ger

dy dydp=ldy [..dp=]-ldx dp'd" h'dp L 
' dx h.l

Now. dyl l lqld"J-=* h'L&.1,=,

*[o - !{o'r-,* r'n) * ;o'r-,]

*){o^, ,+ Loy-,)-#o'r, -fito'r-,* o"r-,)]

Substituting values from the table in above, we ger

*].=,, r'(3.s)= frfo or-]t-o.oo,* o oog*f,to.oo2)

* 
){-o.ooo+ 

o.oo3) * fr t-o.oo) - fr t-o.o,o. o)l

: 
tr:;T;+ 0.01566 -0.04166 + 0.00583 + 0.04156l

5. Given the followingdata, find the maximum value of y

x -1 L 2 3

v -2t 15 t2 3
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Solution:

Since the arguments are not equi-spaced, we will form the divided difference table as follows:

x y Ly L\/ L'y

-L -2r

18

t5

-J

t2 -3

Using Newton's divided difference formula, we get

y = % +(x-*o)An +(x-xo)(x-",)o' +(x-xo)(x-*,X"-*r)A'%

-21+ (x+ 1)(t8)+(x+ 1)(x- 0(-z)*(x+ 1)(x- 0(.- 2)(0

xt -gx'+!7x+6

Now for maximum I = O =+ 3x2 - 18x+ 17= 0
dx

x: = 4.8257 or 1.1743

x : 4.8257 is out of rand

1.1743 is the value giving maximum of y.

Maxof y(atx:1.1743)

(t.ff +t)' - s(1.r7 $)'? + fi0.r7 43) + 6 : t5.17 r6t2

6. Use Stirling's formula to find yrs given that no = 600,yro = 5L2,yro = 439,yro = 346,yro = 243.

Solution:

Take xo : 30, h : 10 x-30
"' P= 

10

Now the central difference table is

x p yp Ayo L'y, A'yn Ny,

10 -2 600

-88

20 -t 512 15

-73 -35

30 0 439 -20 145

-93 10

40 1 346 -10

-103

50 2 243

(-rs)' - 4(3)(17)

-9
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Thus,atx:35,p=ry =0.5,
10

yo = 439,Lyo - -93,Ly-, = -73,L'y-, = -2O,Lt y-, - -lO,L3 y-, = -35 and L'y-, = 145

Substituting the above values in Stirling's formula, we get

yo5 +ts+10.s1[te3)+-(-z:)l* 
to't'"

'l- 2 ) 7\-20)
(o.s)[(o.s)' - 1] 

[ro 
+ (-rs)'l * 

(o.s)' [(.0:r' - 1] 
(14s)----:Ja-l 2 ) 4!

: 435- 41.5 - 2.5 + 0.78t25 - 1.1328125

: 390.64844

Y* =390'648

7.3 NUMERICAL INTEGRATION
b

I7e know that Jf (") d* represents the area between y : f("), x-axis and the ordinates x : a and x :

b. This integration is possible only if the f(x) is explicitly given and if it is integrable. The problem of
numerical integration can be stated as follows: Given a set of (n+ 1) paired values(x,,y,) : O, !,2, ... n

of the function y = f(x), where f(x) is not known explicitly, it is required to compu* jfa..
x0

As we did in the case of interpolation or numerical differentiation, we replace f(x), by an interpolating

polynomial P"(x) and obtain jn" t.)* which is approximately taken as the value a, it (*)d*.
xo xo

A general quadrature formula for equidistant ordinates (or) Q\ewton'core's formula)

For equally spaced intervals, we have Newron's forward difference formula as

y(*) y(*o + il) = yo + uA% "(:; t) 
o'ro * u(u - 1)(u - 2)A'yo +... ... (0,e re 2! lu 31'. - /

Now, instead of f(x), we will replace it by this interpolating formula of Newton.

Here, u = 
*; *o 

where h is interval of differencing.,h

Since xn=Xo*nh, and "==In wehave 
+=n=u.

x-

j , (.)* = J*.*f 1*;&
&

_l
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xo +nh

= J n" t")d" where P,(x) is interpolating polynomial of degree n.
xo

=T ( ,^* uav * u(u - 1)o,o 
+ ](":_1)-G2A,% + 

)*"'o['" 
/u 

2!..

Sincedx : hdu, andwhenx : Xo, u : 0 andwherex : xo+

7.4 TRAPEZOIDAL RULE

By putting n : 1, in the quadrature formula (i.e., there are only two paired values and interpolating
polynomial is linear.)

M.S. Universitv - D.D.C.E.

xn ,l- n' l( nt n') . t( n^ \ I
Jf 1*1a"=hl nv"+ j-Ay^+:l a- j:- ll'v^+:l a-n'+"' ll'yo+...1 ...(2)
_ L" 2 " 2l.3 2) lv 5[.4 ) " 

.]

The equation (2), called Newton-Cote's quadrature formula is a general quadrature formula. Giving
various values for n, we get a number of special formula.

nh,u:n

. 
Jo"

xp +h

J r1.;a"
xo

frlr.o * loo I ,irr.. other differences do nor exisr if n : 1

L " 2'")

r,[n.]tx -",1

\$,*r,)

*o +n]t

f(x)dx+....+ I t(l<)*
xo +(n-1)h

. h.+y,)+....+7(l;_, + n)

x! *a +nh

Ir(")a, = J r1"ya"
xo&

"o+o], x9+2h

J r1,;a*+ J
xo xo+h

f;{r" 
* r,1*f;$,
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It " 
* r,1*\0,+ v, ) +.... * |(n-, * n)

| 1S".r, of the first and the last ordinates) + 2 (Sum of the remaining2'
ordinates )l

This is know as Trapezoidal rule.

7.4.l Truncation Error in Trapezoidal Rule

In the neighbourhood of x = X6: we can expand y= f (x) by Taylor series in powers of x - xo That is

y(") * *G:,.-,)R,* (* -*o)'y,,,+...+.... ... (1)' /' 1! ra 2l rc

where y'o [y'(")],=_

...Q)

...(3)

...(4)

using (a) in (3)
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Subtracting Ao value from Q),

ir*-+ h'o'(i -*). =-Lh'yo"+...
XO

Therefore the error in the first's interval (xo,x,) t -1n'n " (neglecting other terms).

Similarly the error in the i'h interval : -1r'r",-,
L2 

l L-l

Therefore, the total cumulative error (approx.),

E -]fr'(% "* y, "+ y, "+...* y"n-,)
12 \/u

lEl< 4-. M where M is the maximum value ofrr12

ln "l,lx "1, ly, "1,.....

. (b-,1)h'. 
M ifthe interval is (a, b) and h:b-aln

L2

Hence, the error in the Trapezoidal rule is of order h3'

7.5 SIMPSON'S ONE-THIRD RULE
Setting n: 2inNewton-cote's quadrature formula, we have

itt"l* = rlzv,*!+,.:(:-:)o'o](since other terms vanish)
xo

= r,[zn * 2(y,-ny*]tr - 1f r,l

r,[zr, * 2(y, -y, I * ]fr - 1)' %l

.l-r 4 t Inlro *JY'*Jh.l

h,
1$r*4v,+vo)

xtt

Similarly, Jt(:<)a" ]to * 4y,+yo)
x2

Trt,l* |tr,* 4yu,+yu,)
xi
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In n is even integer, last integral will be

xnj rt"l* l(*, +4y._,+y,)
Xa-2

Adding all these integrals, if r is an even positive integer, that is, the number of ordinates yo,yr,.....yn
is odd, we have

Xq Xz Xl Xn

Jrt"la. Jr1";a"+Jr1,;a"+...* j r1";a"
xo xo x2 xn_2

h.,
i L(n + 4y, + 4y,) + (y, + 4y, + 4yn) + .-. + (y^-, * 4yn-r+ % )]

h-,
iL(y, 

* y,)+ 2(y, * yo +.......)+ 4 (y, *r, +.........)]

I Jtrr- of the first and last ordinates + 2 (sum of remaining odd3'
ordinates) + 4(sum of even ordinates)]

Nore: Though has suffix even, it is the third ordinate (odd).

7.6 SIMPSON'S THREE.EIGHTHS RULE

Putting n : 3 in Newton-cotes formula

it,,.,* rlty, *l+,.)(1)o,r,.:(i - 27 +,)o,o]

l[r-r^*2rrr. ' 9'- 1 I
L,u 2\!t Yo)+ o(E-l)'Yo+;(e -1)'%]

.T e 9 9, B, I
hflro + 1r - oyo+ oU,-2y,+o;+;(r, -3y,+:y, -n)_]

*to. 3y,+3y,+yo) ...(1)

If n is a multiple of 3,

*01il xe+3h xo+6h xe+nh

J rt"la.: J r1*;a"+ J r1";ax+....+1 J rt"l*
3hr,
# L(r, + 3y, + 3y, + y,) + (y, + 3yo+ 3y, + % ) +.. + (n-, + 3y,-2 t 3y,-,+ y" )]
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Equation (2) is called Simpson's three - eights rule which is applicable only when n is a multiple of 3.

Examples

3

1. Evaluate I**& by using (l)Trapezoidal rule (2) Simpson's rule. Verify your results by actual
-3

integration.

Solution:

Here y(x)= x' . Interval length (b") : 6. So, we divide 6 equal intervals with h =9 = t .
6

rVe form below the table

(, By Trapezoidal rule, i ,* = | ,{rr- of the first and last ordinates + 2(sum of the remaining

ordinates)l

= j[{tr*81)+ z(10+ 1+ o+ 1+ to)] = 115

(ir) By Simpson's one-third rule (since number of ordinates is odd)

ir* = ][ttr* 81)+ 2(1+ 1)+ 4(15+ o+ te)] = eg

(ii} Since n : 6, (multiple of three), we can also use Simpson's threeeighths rule. By this rule,
3.

{r* =, [tat* tt) + r(to+ 1+ 1+ 16)+ z(o))= ee.

(i") By actual integration

'[*, a*=, *[{]' -2x243 =e7.2:r \5/o 5

From the results obtained by various methods, we see that Simpson's rule gives better result than
Trapezoidal rule.

2. By dividing the range into ten equal parts, evaluate irt*a* by Trapezoidal and Sampson's rule.

Verify your answer with integration.

Solutinn:

Range : n-O=It Hence h=#

we tabulated below the values of y at different x's.

x: -3 1 1 0 1 2 3

Y: 81 76 1 0 I L6 81
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^n2n3n4n5n10 10 10 10 10

0.0 0.3090 0.5878 0.8090 0.9511 1.0

6n 7n 8n 9n
10 10 10 10 r'

I : sin x : 0.951,1 0.8090 0.5828 O.3O9O

(Note that the values are symmerrical about " - + )2'
(, ByTrapezoidal rule,

I=*[(o+o)+2(o.3oe0+0.5828+ 0.80e0+ 0.e511+ 1.or0.e511+ 0.&e0+0.5828+ o.3oeo)]

: 1.9843 nearly.

(ir) By Simpson's one-third rule (since three are 11 ordinates)

,=i(#)rro+0)+ 2(0.s878+0.e511+0.e511+0.s878)++(o.3oeo+ 0.80o+1+0.80e0+o.3oeo)]

: 2.00091

Nofe;lve cannot use simpson's three-eighth's rule or r7eddle's rule here.

(iir) By actual integrarion, I = (-cosx)l = 2

Hence, simpson's rule more accurate than the Trapezoidar rule.
I

3' Evaluate J.. & by Simpson's one third rule correct to five decimal places, by proper choice of h.
0

Solution:

Here, interval length : b-a : 1

y= e';/tu) = e'

Error : lEl. %Ch'. M, where M : Max (e) in the range.

t
< _h4.e

180

\7e require (E) < 10*

h'. 
. 10*; h. I tto, to* ') 

= 0.1a8180' \ e )
Hence we take h : 0.1 to have the accuracy required.

x

I: sinx

x
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i ". 
a*= T[(r* e)+2(eo'+eo'a +eo6 + eo'8)+ a(e"t +eo'3 +eo'5 +eo'7 +.o')]

J JL0-

: t.718283

1

By actual integration, J".&= (".), = e- L =1.71828183
0

Correct to five decimal places, the answer is 1'71828.

4. The accelerations of a vertical at nine timing insrances from t : 0 to 40 with an interval of 58 are

40.0, 45.25, 48.50, 57.25, 54.35, 59.48, 61.5, 64.3, 68.7. Find the velocity 
^t 

t : 40 using

trapezoidal rule.

Solution:

Trapezoidal rule can be given by

Xr'i h- r r -l

ir& =Ilt, + Zlv,*v, *---+n-,]*n]
xo

According to the given problem

40r

I y d* = l[y. + 2ly, * yz t -- - + n-,]+ n]J / )L'o-
'Where h : 5

yo - 40.0, yr: 45.25,Yr: 48.5,Yt: 51.25,Yr: 54'35,Ys: 59'48'

Yr- 61.5,Yr: 64.3,Yt: 68.7

4a

Iy d" = ];+o.o + zl+s.zs+ 48.5+ 51.25+ 54.35+ 59.48+ 6r.s+ 64.f+ 68.7)

o'

: 2194.9 m/sec.

Therefore at t : 40, the velocity will be 2194.9 m/sec.

5. The accelerations of a vehicle at nine timing instances from t : 0 to 40 with an interval of 5 are

40.0, 45.25, 48.5, 5L.25, 54.35, 59.48, 61..5, 64.3,68.7. Find the velocity ar t:40 using Simpson's

rule.

Solution:

j'h
Simpson'si rule'.'h=5 (odd)

Tra" = *[(* +y") + 3(y, * yz +yo+y, +--)+ 2(y, * yoty,+--+Y.-r)]
Jt g
xo
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Here h:5, yo:40.0, y--45.25, f ,:48.5, ys:51.25, yo:54.35, yr:59.48, yf 61.5, yr:64.3, yf 68.7

'P 3 x s [(40.0+ 68.2) + 3(4s.2s+ 48.5+ 54.35+ 59.48+ 543)llvdx=- -l l=2755.14
l' 8 L* 2(st.2s+ 6t.5) .l

At t : 40, the velocity is 2155.14 m/sec.

ln'( . \ 16. Evaluate 
{ [*.J*, 

taking the step size as a using Simpson's rule.

Solution:

1/2

Let y- 
"[-:- 

& and given that the step rrr, )= h = | = o.o6zs' dsinx 16 6

x 0 0.625 0.125 0.1875 0.25

y 0 57.2957 57.2958 57.2958 57.2959

0.3125 0.375 0.4375 0.5

57.2960 27.2962 57.2963 57.2965

By taking Simpson's l/3rd rule

*r1
Jy& = ln(r. *4(yr+y3 + ys*---+r"-,) * 2(yr*y. +ye +---*yo-r)*n)

1/r2 x i 1 1[o+4(57.2957+57.2958+57.2960+57.2963)+ I| _cb( - _._l 
I

fosinx--- 3 161 2(57.2958+57.2959+57.2962+ 57.2965))

= 1[o +916.7352+343.7758+ s7.2965]-1317'8075 = 27.45434g' ' 4g

x/2

7. Compute 
" 

i :-"dx with an error < 1O-5 using Simpson's rule.
"o (smx';

Solution:

r/-2 
1

Let y : ) --^ 
& and given that error ( 10-5

"o (smx';

By Simpson's rule the error expression i, = 5 S error
90

E< to- = h' < 9ox 1o-5 = h< 0.24595
90

Let step length h : ;
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xOrc2n44n5n6n7nt4t4tinMGt4
y 3.69 1.46 1.24 l.l3 1.06 1.03 1.01 1.00

By Simpson's 1/3rd rule is

*!1-

J 
dx = inln +41y,*yt-rys*---]+ 2ly,*yo*yo*---]*n]

XO

n/r2 I l
I tr_r-* 

= 1x 0.22428s[3.58+ 41t.46+ 1.13+ 1.03] + {t.z++ 1.05+ 1.0{+ 1.oo]

=0.07 47 6 x 25.79 = 7.92870

n/2

Hence J Gi"";-"' dx =1.92810
0

7.2 ROMBERG'S METHOD
Romberg integration is basically Richard son's extrapolation procedure. Romberg's name is attached
to the method because he was the first one to describe the algorithm in recursive form. Consider the
integral

b

.......(1)r = If (x)dx

To desire Romberg method, we shall rerurn toTrapezoidal rule.

First find the numerically integrated value dividing only one step in the interval Xo - Xz

xo xl xz

k-h

Using Trapezoidal Rule, we ger

1_ =!1r, *r,] ........e)-n 
2l

Hence True value of I is

Ir* = I, +ch2 ........(3)
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Dividing the interval into two steps and applying trapezoidal rule.

r _h,i=t[f. +21,+frf= ........(4)

I,* =I, +ch2 ..0, (+....-",) ........(s)

Dividing (:) by (5) we get

........(6)

Substituting for I, and for Iq we ger
2

rr* = 
tr[t, +zE +r,]-][r. +r,] 

[using @+(ij
3

=)lrr, + 4f , + 2f, - fa - f,f3'

Ir* =|[r. +4f,+f,f ........@

If we assume f as the numerically evaluated integral value for i trapezoids and !, as the numerically
evaluated integral value for 2ttrapezoids, combining them, we ger

-, _+rjf)-rfo)
"'- 3 ........(g)

It is same as the one obtained from Simpson's rule.

In a similar manner, let us assum. !t) "r 
the numerically integrated value for i interval in Simpson's

and tf) evaluated integral value for 2i steps.

Ir.u" = T,(t) + cho 
........(9)

I"'" =rjl)+$ 
........(10) (rn,.*error in ri-pror,,, ,,il.1"\ t6 ' )

Ir* - I, ch'

*-=+="

r - [o', 
-'']

rT*- 
3
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From (9) 6. (10)we ger

Iaru"-T,to'_aho _,^
I'*'-Tj't 

T-'---ru
(Dividing (r)by(to))

- le!1r - 10 15!11 - lttrI.*:--:H ........(11)

In general, \7e get the extrapolation procedure {or trapezoidal rule

1):o'1l;,','-rr"4-7

The extrapolation procedure, for Simpson's rule becomes

riTt-t)_T(t) 
.!):L 

4,., _1 , ........(1 3)

The table for Romberg integration is shown in Table 7.1:

Table 7.lz Romberg Table

No. of
Trapezoidal

h

Trapezoidal
Approx

First
Order

2"d order
Simpson

3'd order 4th order 5th order

I T,,

2
Tro T

4
T4o T; T:

8 q t q q
16 T,i rl Tr'u T136 T,1

32 T,,, T; T?, rl., rl, ri,
Example:

1-. -,r
Compute I, = l+ - dxrox'+12

for p:1 using trapezoidal and Simpson's rule with the number of points 3,5, and 9. Improve the
results using Romberg integration.
Solution:

Given that xo = O,XN = 1,h = T,*, = Xo * ih;f (x) =;n
Using the composite trapezoidal rule.

xo =0,x* =1,h=T,*, =Xo *ih;f(x)=o+, forN : 8, we get
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^123xo =urxl = 
r 

r*, =tr*, =tr*o =

and the function value are

f(*o)=f(o)=fo =9

Numerical Differentiation and Integration 121

4567
g r*t = g'*, = gr*, = grr, =,

r (*,) = r(*) = ri = o.o1o41

r (x, )=, (;) = rz = o.o2o81

r (*,) = t (*) = r: = 0.03111

r (,0) =r(*) = r+ = o.o4t24

r (*,) = t (;) = rs = o.o51o4

t(., )= t(f) : re = o.o6o38

r (*,) = r (;) = rz = o.o6eo6

f (*, ) = f (t) = 1, = 0.07692

Using the composite trapezoidal rule, N : 2, h : t/2

q = 
XIr, 

+ 2ro + f ,J = f to + 2(0.4124 + o.o76s2)l

= 0.03985

x1=+,h=f ; T =11r, +2(f,+f o+f,)+f,]

= *to 
+ 2(0.02081 + o.o4t24+0.6038)+ o.o76s4

\ =0'0402225

N= 8,h = *,T = :[t * zir, * r, 
]

{=f,to*z(o.oto+t+0.02081+0.031l+ 0.04t24+0.05r04+0.06038+o.oooooo)+ o.oteszl

T = 0'04031375

Using Romberg integration we ger

,r,r _ 4T - T _ 4(0.40222s)- (o.o3e8s)lo'=------r-= 3 =a'4443467
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1'r - 
aT_ T _4(0.403137s)-(0.040222s) 

=o.o4o3442rfiiy"33
q,, = {* I' _ 16(0.40344?-) - (o.o4o3 464 

= o.o4o3 44' 4'-l 15

Table7.2; Trapezoidal Rule with Romberg Integration

h Fourth order method Sixth order method Eight order method

112 0.03985

0.0403467

114 0.0402225 0.40344

4.0403442

U8 4.04031375

Similarly, using the composire Simpson's Rule.

, = i;+, * = l[r, + +f r,,-, + z!r,, *,,*]

where x, =0,x2* =1rh=k=#

when N= 1,h =|t= f[t, +4f, +f,] =*[o + 4(0.04124)+ o.o76e2)

T = 0.O4O3t 3

when N=2,h=f U =ilt,+[+f, +f,]+ zfo +f,)

f = f [o+4(0.02081+ 0.05038)+ 2(0.04124)+ o.o76s2)

T = 0'040311

N=4;h=*,T =|{r, +4(f, +f, +f, +f,)+ 2(f,+f,+f,)+f,)

t =)lo+4(0.01401+ 0.03111+ 0.05104+ o.o6eoQ+ { o.ozos+ @4124+0.06038)+ o.o76e2f

\ =0-040344166

Using Romberg Integration

,1,r 
= {T{ _ 16(0.0403462)- (0.040313) 

=0.40348e5
42 -l 15

1,r - 4'T -T _ L6(0.040344166)-(o.o+oveA'4 4, -L =ff =0-40343997 III'Y

*,, _ 4' f1') - T _ 64 (o.o4o343ee4 -(0.0403489s)I,- ---:-_= =i.4C34392' 4'-l 63
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Table7.3: Simpson's Rule with Romberg Integration

h Fourth order method Sixth order method Eight order method

t/2 0.040313

0.04034895

t/4 0.040.3467 0.4034392

0.040343997

t/8 0.040344166

-2
t. If h = jlfO * ,d, by trapezoidal rule is

'1

(r) 4.s2s 0) s.s23 G) 6.s23 (d) 4.e38

2. x 1 1.5 2 2.5 3

(") 2 2.4 2.7 2.8 3

3

Jf f>rX" - using Simpson's t/3 rule.
1

(") 4.03 (b) 3.82 k) 5.03 (d) 4.s2

3. If h=:ih,simon's t/3rd,r.ule

(") .217 (b) .23r G) .2s2 (d) .242

4. If (O): o,f(.2s):.s,f(.s) :.7,f(.7s):8andf0) -.9bySimpson,, ]rd -t. iflr;a"=J.o

(.) .600 (b) .62s G) .331 (d) 6s

5. If y(O):3,f(.s):3.s,f0) = +,(1.s): 4.75,fQ):4.2s,ir0,.= bysampan,, 
]ra=0-

(r) 24.2s (b) 24.12s G) 24.ooo (d) 23.e2s

6. f(O), f(2) : 10, f(4) : 18, f(5) : 25,f(B) : 29 and.h = 2 then by sampan,, lraif l*yar=J;

(r) 13s (b) t34.2s O 136 (d) t36.66

7. If yo : l,yr: .66,y2 = .5,y3 : A,y4: .33bysampan,s 1raift.f"J"o

(,) 1.oo (b) 1.20 G) 1.31 (d) Ln

heck Your
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7.8LET US SUM UP

In this lesson, we discussed the integration of definite integrals using numerical integration techniques.
The following Newton-Cotes methods were considered in detail:

. Trapezoidal rule

o Simpson's t/3 r,,ie

. Simpson's 3/8 rule
'We also presented a method known as Romberg integration to improve the accuracy of the results of
the trapezoidal method.

\7e finally discussed another approach known as Gauss integration which is based on the concept that
the accuracy can be improved by choosing the sampling points wisely, rather than equally.

7.9 KEY\trORDS

Neuton's fotruxrd interpolation formula's :

y=)i +p^y, *++A')', *ejP2A'.', +....

Trapuoidalrule:

: I t(t.r- of the first and the last ordinates) + 2 (Sum of the remaining ordinates)l2"
Simpson's 1/3 rule:

h..: 
;[to +v")+ 2(vr*v, +.......) +4(v,+v] + ... )]

Simpson's 3/8 rule:

3h.,: #t(" + r")+ 3(y, * yz ty++ r, + .....+ y^-r)+2(y, * yr-r y, -t....+ r')]

7.10 QUESTTONS FOR DTSCUSSTON

7. Evaluate f .-/& by dividing the range of integration into 4 equal using (i) Trapezoidal rule,
0

(ii) simpson's rule

2. Using Trapezoidal rule evalua r" j dx from the following table.
0.6

x: 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

yl 7.23 1.58 2.03 4.32 6.25 8.36 70.23 12.45
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3. Find the value of log2% fr"* i-{ dx using Simpson's I ,rrl" with h : 0.25" Joi+x, 3

1.4

4. Evaluate 
J(tt"-1"x+e') 

d, by Simpson's 1 ,r1..

;
5. Use Romberg integration to find I = Jsecxdx

0

6. Derive Numerical Integration method for the solution of a differential equations.

Check Your Progress: Model Answers

1. (d)

2. G)

3. (.)

4. (b)

s. (b)

6. (d)

7. (d)

7.11 SUGGESTED READINGS

S.S. Sastri , Introductory Methods of Numerical Analysis, Second Edition, Prentice Hall.

S. Mohan Naidu., A Text Book of Mathematical Methods for Scientific Engineers, Students Helpline
Series, Hyd -2005.

Jain, M.K., Iyengar, S.R.K., Jain, R.K., Numerical Methods for Scientific and Engineering Computation,
3rd Edition, New Age International (P) Ltd., t993.
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DIFFERENCE EQUATIONS

CONTENTS

8.0 Aims and Objectives

8.1 Introduction

8.2 Basic Definitions

8.3 Formation of Difference Equations

8.4 Linear Difference Equations

8.5 Let us Sum up

8.6 Keywords

8.7 Questions for Discussions

8.8 Suggested Readings

8.0 ArMS AND OBJECTTVES

After studying this lesson, you will be able to:

. Explain basic definitions of difference equarions

. Understand the formation of Difference Equarions

. Discuss Linear Difference Equation

8.1 INTRODUCTION
In this lesson we develop the theory of difference equation and discuss methods of solving them. Any
situation in which there exists a sequential relation at discrete values of the independent variable leads
to difference equations. Difference equation may be thought of as a discrete counrerparr of differential
equation and there is a striking similarity between the methods of solving difference equarions and
differential equations.

8.2 BASIC DEFINITIONS
1. An equation involving the difference of an unknown function y : y(x) at one or more general

values of the argumenr n is called a difference equarion.
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The following are some examples of difference equarions.

Ly,+2y^ : n

L'yn+5Ly^+3y, : O

A'r, - 4Au* + 4u. 3*

Throughout this lesson we assume that the consecutive values of the independent variable differ by
unity. Itr7ith this assumPtion a difference equation can be written in an aliernate form as illustratei
below.

Consider Ly^+2y^ : n

Since Aa = (E - l)n = y*r-ynt the above equarion can be wrirren as

and

Difference Equations 127

... (1)

.,,Q)

..(3)

(i..)
Yn*r-Yn*2Y^ : n

Yn*t*Yn : n.

Consider (3) given by A'r, - 4Au* * 4u, 3*

Hence the above equation can be rewritten as

(***, - 2:u**, + u*) - 4(u**, - u.) + 4u* 3*

i'e' ux+2 - 6u**, * 9u, 3* .

1. Difference equation written in the above form is also called recurrence relation.
2. The order of a difference equation is the difference between the largest and smallest subscribes

occurring in it, when the equation is expressed in a form free of l. The degree of a difference
equation, expressed in a form free of A, is the highest power of y.

Examples

(a) The difference equarion Ly^ + 2y, = 11, when expressed in a form free of A is

Yn+r*Yo : n

The order and degree ofthe difference equarion are both 1.

(b) The difference equarion A'r* - 4Au* * 4u* = 3', when expressed in a form free of A is

ux+2 - 6u*., + 9u* 3*.

Its order is 2 and degree is 1.

(c) The difference equation at' u - 2ynyr*, + t'^y|.= 0 is of order 3 and degree 4.

3. A solution of a difference equation is an expression for y, which satisfies the given difference
equation. A solution in which the number of arbitrary consranrs is equal to tte order of the
difference equation is called the general solution. Any soiution which is ottained from the general
solution by giving particular values to the arbitrary consranrs is called a particular solution.



128 Numerical Methods M.S. Universitv - D.D.C.E.

Solved Problem

Problem-l:'Write the difference equation A'y. + L'y*+Ay, + y. = 0 in the subscript norarion.

Solution: The given difference equation can be wrimen as

(E-1)'x +(E- 7)'y*+(E-t)n +(E -1)n +R : o.

i.e. (E3*3E'z+3E-1)1+(E'? -28+1)1+(E-1)n+R : o

i.e. (83 -282 +28)y* : O

y**t-2y,*z*2y**t : 0.

Problem2: Find the order of the difference equation

A'% - 3L2y,+2Ly,*y, cosfix

Solwtion: The given difference equation can be written as

(E - 1)'n - 3(E - l)'y, + 2(E - 7)y^ + y^ cos Tr x

i.e. (E3 -3E2 + 3E- 1)y, -3(E'? - 2E + l)y,+ 2(E -1)y^+ y^ : . cosTrx

i.e. (Er - 58': + 1ffi - 5)y, cosnx

yn*t - 6yn*z + 11y"*, - 5y" cos7lx

.'. The order of the given difference equation is 3.

Problem3:Showthat y,=l-? ir^solutionof thedifferenceequation (n+1)y.*,*nyn= 2a-3.
n

Solwtion,

( t t ,[r-z)(n+1)y,-, +ny, (n+1)l 1--i, l+r\ n+r/ \ n,/

(n+1) -2+n-2
:2n-3.

)
yn = l-: is a solution of the given difference equation.

n

8.3 FORMATTON OF DIFFERENCE EQUATTONS

Let X,;X,*1:...rXn+k be a set of k+ 1 equispaced tabular points with spacing h and uo;una1,...ru"*o be the

corresponding values of a function u(x) at these points, that is, Xn*i =X, +ih,un*, =u(x"*,),i=0, 1,...,k,

for some integer k. A relationship between un and the difference Aun,A'u,,...,Aku, is called a

difference equation and hence it can be regarded as a relation among u.111,a1:...run*0. The order of a

difference equation is the number is the number of intervals separating the largest and the smallest
argument of the dependent variable.

A difference equation of order k, in its most general form can be written as

F(u,,uo*1,...,un*L) : 0 ...(1)
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If the function F is linear in u,,u,*1,...run+k, then the difference equation is called linear. A linear
difference equation of order k can be wrirten as

xou,*k + alun+k_1 + ... + akun goraa *0. ...Q)

8.4 LINEAR DIFFERENCE EQUATIONS

If the coefficients xsy21,"',ao in above equation are constant, then rhe equation defines (See equation
(1) and (2) in the previous heading) a linear difference equarion of order k with consranr coefficients.

For example, the difference equarion

A2un+3Au"+5un : O

or (rn*, - 2:un*r+ u,) + 3(u"*, - un)+ 5un : O

of ur+z * ur+1 + 3u. : 0

is a linear difference equarion of order 2, with constanr coefficients.

If g, - 0 , then the difference equation is said to be homogeneous, otherwise, it is said to be
inhomogeneous. \(e shall consider only the linear difference equarions with constant coefficient. The
solution of the difference equation consists of a solution ulD called the complem entary solution of the
homogeneous part

xour+k + a1u.+k_1 + ...+ akutr : 0

and a particular solution ufo) of the inhomogeneous part. The general solution is wrirten as

un ulH) + uln) .

For solving, we assume a solution of rhe form u, = A€", where A + 0 is a consrant. \7e get

A(ro e. + a, Ek-' + ...+ ro)(' : o

oruo(o +",Eo-' +...*ar : o

\7hich is a polynomial of degree k. The equation is called the characteristic equation of the difference
equation. Let \r,\r,"',(n b. the roots of last above equation. lVe have the following cases:

Real and Distino Roots

If \r,\r,...(o are all real and distinct, then we have

"f) c,6i + cr\i +...+ cr.([

\7here c1t c2;-. . 
, ck are arbitrary constants

Real and Repeated Roots

Let (,(= €r) b. a double root and all other roots E:,(+,...,80 be distinct. It can be verified that (i and

n(i are two linearly independent solutions. Then, we have
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"f) (c, + ncr)(i + c,(l +.'.+ ckql.

Similarly,when (, isarootof multiplicitypandtheotherroots (o*1,8p+2,"'rBr are distinct, we have

,rl) (c, + nc, +...+ rro-'.,)Ei * co*rBi*, +...+ co(i.

Amplex Roots

For a polynomial with real coefficients, the complex roots occur as conjugate pairs. Let

E,=s+iB=rcio and\r=s-i0=re-'t,where ,=G-'*tr and 0 =tan-t(p/u) bethecomplexroots

and the other roots \r,\^,.",€u b. real and distinct. Then, we have

,p [c,cos(nO)+c,sin(n0)]l(,l'*.,61+...+cr.Eil.

The constants c1rc2:...,ctr can be determined from the given conditions.

The particular integral ,rlo) depends on the form of g,. 'S7hen 
B. = I is a constant, we assume the

solution ., ,lo) = g, 2 constant. By Substituting, we get

(ao +a, +..'+an)q : g

or ,lo' q=- --9-- 2o*a1+...+ak

'When g" is the form g" = B + nG then we write the particular integral 
"s 

.r!o) = Q * nr. Substituting

and comparing the coefficient of n and the constant term on both sides, we determine q and r.

Consider the homogeneous difference equation with constant coefficients.

If \r,1r,"',Eo are all real and distinct, then

u. c,6l + cr\\+...+cr.€[.

Suppose now, we require that u, -+ 0 as n J - . Then a necessary and sufficient condition is

lE,l.t,l=1(0k. If u" is to be bounded, then some of \; may satisfy lq,l < 1 and others may satisfy

lB'l= t

Assume thrt l€,1 = t=lE,l r"d lE,l 
( 1,i= 3(1)k. Then

1", I - lc, | 
+ 1., | 

,' ,, -+ -
If E1 = (, is a double root, then

un (c, +ncr)(i +cr(l +"'+co(i.

Now, let l(,1 
( 1,i = 3(0k.If l(,l . t, then u. -) € as n -+ @ and the solution is unbounded.

However,if lE,l=l(rl.t,,then un-+0 as n-+€.

M.S. Universitv - D.D.C.E.
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If (, and t, formacomplexpairand lq,l.t,i=3(1)k,,rhen u, -rO as n-)-if l€,1<1.

Hence, un -+o as n-+-, if the roors satisfy l€,l.t,i=1(1)k.. If the roots are of magnitude 1 and

simple, then un is bounded. In order cas€S, un is unbounded.

In many applications, the coefficients involve some parameters and we need to determine the ranges

for these parameters so that the roots satisfy l€,1. t for all i. It is not always possible to find the roots

for all values of the parameters to check whether lq, l< 1. In such cases, rhe values of parameters for
which lE'1. t can be determined be using the conformal mapping. Consider the mapping

1+z
l-z

which maps the interior of the unit circle lEl = 1 orrro the left half plane R.(r)< 0, and the unit circle

16l= t o"ro the imaginary axis.

Solve the difference equation rn+2 - 2rtn*, + 6u^ - 4.

8.5 LET US SUM UP

Difference equation may be thought of as a discrete counterpart of differential equation and there is a
striking similarity between the methods of solving difference equations and differential equations. An
equation involving the difference of an unknown function y:y(x) at one or more general values of the
argument n is called a difference equation. Any solution which is obtained from the general solution
by giving particular values to the arbitrary constants is called a particular solution.

8.6 KEY\T/ORDS

Diffoene Equation: An equation involving the difference of an unknown function y:y(x) at one or
more general values of the argumenr n is called a difference equation.

Partiailar Solutions: Any solution which is obtained from the general solution by giving parricular
values to the arbitrary constants is called a parricular solution.

8.7 QUESTTONS FOR DTSCUSSTONS

L.

2.

3.

4.

Solve y"*, -3y"*, I2y^=Q

Solve 11*, - 4yn*, * 6y,*, - 4yn*t+ 4y. = Q.

Solve u,*, + 2u**r* u* = Q.

Solve y,*, =Jy,.
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Check Your Progress: Model Answers

The given difference equation can be written as

(E'? -2E* 6)u, = {.

The auxiliary equarion is E2 - 2E + 6 = O

't + -[-'ta
The roots are 7.);aa = 1+ iJ5 = cr * ipsa),.

2

.'. C.F. : r'(Acosn0+Bsinn0)where

, = 6, * Bt = il + s = .,[; and 0 = ran-, (*) =,r.,-, (.,6).

.'. The complete solution is u"

CF. = 6l [Acosn0 + psinn0]where 0 = ,*-'(",6).
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