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1.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

Identify errors in numerical computation
Describe iteration method

Discuss bisection method

Explain Regula Falsi method

Discuss Newton Raphson method

Describe Horner’s method

1.1 INTRODUCTION

In Engineering Mathematics we often encounter problems of obtaining solutions of equations of the
form {(x) = 0. In order words we have to find a number xosuch that f(xo) = 0. If f(x) is a polynomial
then the equation f(x) is called an algebraic equation.
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Equations which involve transcendental functions like sin x, cos x, tan x, logx, € etc. are called
transcendental equations.
2 N 3 _ 5 .3 _
X" +5x+6=0; 2x°-x+4=0; x -x +3x+3=0
are some examples of algebraic equations.
2¢* +1 =0;2x+ cosx-1=0;logox-2x = 12;a + bsinx + ccosx + dlogx = 0;5* + logex - 12 =
0 are some examples of transcendental equations.
~b++/b? - 4ac

2a
its roots. However if f(x) is a polynomial of higher degree or an expression involving transcendental
functions we have no simple formula to find the roots.

If f(x) =0 is a quadratic equation ax’ + bx + ¢ = 0 we have simple formula x = to find

1.2 ERRORS IN NUMERICAL COMPUTATION

A computer has a finite word length and so only a fixed number of digits are stored and used during
computation. This would mean that even in storing an exact decimal number in its converted form in
the computer memory, an error is introduced. This error is machine dependent and is called machine
epsilon. After the computation is over, the result in the machine form (with base B) is again converted
to decimal form understandable to the users and some more errors may be introduced at this stage.

We now discuss the effect of the errors on he results. The quantity,
True value - Approximate Value

is called the error. In order to determine the accuracy in an approximate solution to a problem, either

we find the bound of the

. Error
Relative Error= I |

]True Valuei

or of the

Absolute Error = |Error1

Neglecting a blunder or mistake, the errors may be classified into the following types:

® The inherent error is that quantity which is already present in the statement of the problem before
its solution.

The inherent error arises either due to the simplified assumptions in the mathematical formulation
of the problem or due to the errors in the physical measurement of the parameters of the problem.

® The round-off error is the quantity R which must be added to the finite representation of a
computed number in order to make it the true representation of that number.

Thus, if x is the computed number

x=-dd,-d.dy %P
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then the relative error for t-digit mantissa standard form representation of x becomes

1-t :
Jx — fl(x) < [i forchopping

|X| —Z—Bl_t for rounding.

Thus, the bound on the relative error of a floating-point number is reduced by half when rounding
is used than chopping. It is for this reason that on most computers rounding is used. We write

fl(x)=x(1+3)

Where 8 = 3 (x), some number depending on x, is called the relative round-off error in fl(x). The
number § is called the machine epsilon and is donated by EPS.

pIt  for chopping
‘S(X)’ =EPS=|4 1ot )
EB for rounding.

® The truncation error is the quality T which must be added to the true representation of the quality
in order that the result is exactly equal to the quality we are seeking to generate.

This error is a result of the approximation formulas used which is generally based on truncated
series. The Taylor series with a reminder is an invaluable tool in the study of the truncation error.
Example 1:

Obtain a second degree polynomial approximation to

f(x)= (1+x)1/2 ,xe[0,0.l]

Using the Taylor series expansion about x = 0. Use the expansion to épproximate £(0.05) and find a
bound of truncation error.

We have
f(x)=(1+x)"2, £(0) =1
f(x) = (1), F(0)-2
1 -3/2 1
f// - 1 f// -
()= (t+x)"", 0=

f/// (X) — %(1+X)—5/2

Thus, the Taylor series expansion with remainder term may be written as

3
1/2 X X 1 X

=+ -+ —— T 0<E<O.L

(1+x) 73 16[(“&)1/2]

The truncation term is given by
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1 X

g e]

2
.\ 9% _ %) _ 4 10246875 10

We have {(0.05) = 1

The bound of the truncation error, for x € [0, 0.1] is

< O
|T1 ~ oexs0 l6|:(1+ X)1/2]5

3
1
S(o ) =0.6.25x107*,
16

1.3 ITERATION METHOD

These methods are based on the idea of successive approximations i.e. staring with one or more initial
approximations to the root, we obtain a sequence of approximations or iterates (x,), which in the limit

converges to the root. The methods give only one root at a time. For example, to solve the quadratic
equation we may choose any one of the following iteration methods:

2
_az +30Xk k:O 12....

(a)xk+1 =

ap
b =——a2—,k=o,1,2,...
( )Xk+1 ApX| +a1

a, +ax,
(€)%, =—2—2% k=0,1,2,---
AX)

The convergence of the sequence {xi} to the number &, the root of the equation depends on the
rearrangement and the choice of the starting approximation xo.

A sequence of iterates {xx} is said to converge to the root &, if
lim %) —&|=0or lim x) =&
k—w k—w
If Xk, Xk-1, -++, Xkem+1 are m approximations to the root, then a multipoint iteration method is defined as
Xiet = O(X i, Xp_mag ).

The function ¢ is called the multipoint iteration function.

For m = 1, we get the point iteration method

Xx+1 = ¢(Xk )
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Thus, given one or more initial approximations to the root, we require a suitable iteration function ¢
for a given function f(x), such that the sequence of iterates obtained from converges to the root & In
practice, except in rare cases, it is not possible to find & which satisfies the given equation exactly. We,
therefore, attempts to find an approximate root £* such that either

[£(&%)

<Eg

K1 — x| <&

Where xx and xk-1 are two consecutive iterates and ¢ is the prescribed error tolerance.

Initial Approximation

Initial approximations to the root are often known
from the physical considerations of the problem.
Otherwise, graphical methods are generally used to
obtain initial approximations to the root. Since the
value of x, at which the graph of y=f(x) intersects the
x-axis, gives the root of f(x) = 0, any value in the
neighbourhood of this point may be taken as an initial
approximation to the root (see Figure 1.1 and 1.2). If
the equation f(x) = O can be conveniently written in
the form f,(x) =1,(x), then the point of intersection of
the graphs of y=f,(x) and y=1,(x) gives the root of
f(x) = 0 and therefore any value in the neighbourhood

of this point can be taken as initial approximation to
the root (see Figure 1.3)
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Figure 1.2: Graph of y = cos x - xe*.
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Figure 1.1: Graph of y = x* + 2x -1.
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Figure 1.3:y = x and y = ™ cos x.

Another commonly used method to obtain the initial approximation to the root is based upon the

Intermediate Value Theorem.
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Example 2:
The equation
8x’ —12x° —2x+3=0

has three real roots. Find the intervals each of unit length containing each one of these roots. We
prepare a table of the value of the function f(x) for various value of x.

Values of f(x)

x ) 1o 1|2 3
fe) | -105 | -15 | 3 | -3 | 15 | 105

From the table, we find that the equation f(x) = 0 has root in the intervals (-1, 0), (0, 1) and (1, 2). The
exact roots are — 0.5, 0.5 and 1.5.

Example 3:

Obtain an interval which contains a root of the equation
f(x)=cos x—xe* =0.
We prepare a table of the value of the function f(x) for various values of x.

Values of f(x)

X 0 0.5 1 15 2
{(x) 1 0.0532 | -2.1780 -6.6518 | -15.1942

From the table we find that the equation f(x) = 0 has at least one root in the interval (0.5, 1). The exact
root correct to ten decimal places is 0.5177573637.

1.4 BISECTION METHOD

This method is based on the repeated application of the intermediate value theorem. If we know that a
root of f(x) =0 lies in the interval To=(as, bo), we bisect Lo at the point m1 =(ac,+ bo)/2. Denoted by Ii
the interval (as,=mu) if f(ac) f(m1) < O or the interval (mu,bo) if f(m1)f(bo),0. Therefore the interval I also
contains the root. E bisects the interval Ii and gets a subinterval I1 at whose end points f(x) takes the
value of opposite signs and therefore contains the root. Continuing this procedure, we obtain a
sequence of nested sets of sub-intervals o > It > L --- such that each subinterval contains the roots.
After repeating the bisection process q times, we either find the root or find the interval I, of length (b,

— a)/2% which contains the root. This root has error not greater than one-half of the length of the
interval of which it is the midpoint. Thus, we have

mk+1=ak+%(bk—ak), k=0,1,2,---

(it ) (3 ) i) <0
(mk+lsbk)’iff(mk+1)f(bk) <0

We notice that this method uses only the end points of the interval [a,,b, ] for which F(a,)F(b,)<0

(ak+1,bk+1) =

and not the values of f(x) at these end points, to obtain the next approximation to the root. The
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method is simple to use and the sequence of approximations always converges to the root for any {(x)
which is continuous in the interval that contains the root. If the permissible error is g, then the
approximation number of iterations required may be determined from the relation

b, —a, <¢ o nzlog(bo—ao)—logs
2" log2

Since n is an integer, we take n as the next nearest integer.

The minimum number of iterations required for converging to a root in the interval (0, 1) for a given ¢
are listed in Table 1.1

Table 1.1: Number of Iterations

€ 1072 107 10+ 10° 10 107

n 7 10 14 17 20 24*

L

Thus the bisection method requires a large number of iterations to achieve a reasonable degree of
accuracy for the root. It requires one function evaluation for each iteration.

1.4.1 Numerical Computation

Example 4:

Perform five iterations of the bisection method to obtain the smallest positive root of the equation
f(x) —x° ~5x+1=0.

Since f(0) > 0 and {(1) < O, the smallest positive root line in the interval (0, 1). Taking a0 = 0, be, = 1,
we get

my = (ao +bo):';—(o+1)=0.5

N | =

f(m,)=-1375andf(a,)f(m,)<0.
Thus, the root lies in the interval (0, 0.5). Taking a1 = 0, b1 = 0.5. We get
m, = %(al +by ) = %(O +0.5)=0.25
f(m,)=1(0.25)=-0.234375and f (a; ){(m, ) <0.

Thus, the root lies in the interval (0, 0.25). The sequence of intervals is given in table below.

Sequence of Intervals for the Bisection Method

k Ak bk-1 mk f(my) f(ak-1)
1 0 1 0.5 <0
0 0.5 0.25 <0
3 0 0.25 0.1875 >0
4 0.125 0.25 0.1875 >0
5 0.1875 0.25 0.21875 <0
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Hence, the root lies in (0.1875, 0.21875). The approximate root is taken as the midpoint of this
interval, that is 0.203125.

Example 5:
Perform five iterations of the bisection method to obtain a root of the equation
f(x)=cos x—xe* =0
Since {(0)=1>0 and f(1)=-2.1780<0, the root lies in the interval (0, 1). Taking the initial

approximations as a, =0,b; =1, we get

1 1 ‘
mi E(ac +bo)=§(0+1)=0.5

f(m1) = £(0.5)=0.0532 and f(a, )f(m,)> 0.
Therefore, the root lies in the interval (0.5, 1.0).
Taking ar = 0.5,b, =1.0, we get
m - —21—(a1 +by)= %(o.5+ 1.0)=075

f(m>) 0.8561and f(a,)f(m,)<0.

Therefore, the root in the interval (0.5, 0.75). The sequence of intervals is given in table below.

Sequence of Intervals for the Bisection Method

k Ay b, 0, f(m)f (2, ,)
1 0 1 0.5 >0
2 0.5 1 0.75 <0
3 0.5 0.75 0.625 <0
4 0.5 0.625 0.5625 <0
5 0.5 0.5625 | 0.53125 <0

Hence, the root lies in the interval (0.5, 0.53125). The approximate root is taken as the midpoint of
this interval, that is, 0.515625.

1.5 REGULA-FALSI METHODS

If xk-1 and xk are two approximations to the root, then we determine a0 and a1 by using the conditions

fi1 =ag %+
fi =agxy +24
Where fie_1 = f(xk ) and fi =f(xy).
On solving, we obtain
ay =t —f,.)/(x,—x_,)

4 = (kak~1 - Xk—lfk)/(xk - Xk‘1)'
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The next approximation xk+1 to the root is given by

_ X fk - kak—l

Xy =
fk - fk—l
which may also be written as
X Xy
Xpyg =Xy — T fk’k=1:23"'
k k-1

This is called the secant or chord method.

Geometrically, in this method we replace the function f(x) by a straight line or a chord passing
through the points (xx, fs) and (xk-1, fi-1) and take the point of intersection of the straight line with the
x-axis as the next approximation to the root (Figure 1.4). If the approximations are such that fx fi.1 <0,
then the method is known as Regula-Falsi method. The method is shown graphically in Figure 1.5.
Since (xi-1, fie1 < 0) are known before the start of the iteration, the secant and the Regula-Falsi methods
require one function evaluation per iteration.

y
¥
X
o
Y
(X0, f(x0))
\
X3 X2 X4
0 > X
(Xz, RXZ» e
(%1, Rx))

Figure 1.5: The Regula-Falsi Method
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Example 6:

A real root of the equation
f(x)=x> -5x+1=0

Lies on the interval (0, 1) Perform four iterations of the secant method and the Regula-Falsi method to
obtain this root.

Xo =O,X1 =1, fo If(XO)=1, fl =f(x1)=—3

Secant method

X, =X; — %‘2 f, =0.25,f) =f(x,) = —0.234375.

L i~
—x, —| 227X g 2 0.186441,f; =f(x;) = - 0.074276

X3 =X) 2 =\ 513 = (X})— . .
Lf-f ]
M o ]

X4 =X3— % f, =0.201736,f, =f(x, ) = — 0.000470.
L 312 |

Xs = X4 — Xf“—"’f‘l f, =0.201640.
L fa—f5

Regula-Falsi method

X, =X, - ’;1 :;‘0 f,=025,f, =f(x,) = —-0.234375.

1 0

Since  f(x,)f(x,)<0,&e(x,,%,.) Therefore,

X2 —Xp

f, -1
Since  f(xg)f(x3)<0,& e(xq, x3). Therfore,

X3 =X2—-

f, =0.202532, f5 = f (x5 ) = —0.004352.

X3 —Xp

f, —fo
Since, f(xg)f(x4)<0, &€ (xg, x4 ). Therefore,

X4 =X3— f, =0.201654,f, =f(x,) = —0.000070.

Xs =X, —h‘* "f;" }f4 = 0.201640.
=

1.6 NEWTON-RAPHSON METHOD

We determine a0 and ai using the conditions

fk =ag Xy +t4

Fr=aq
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Where a prime denotes differentiates with respect to x.

On substituting a0 and a1 and representing the approximate value of x by x«+1, we obtain

f
Xy =X, —fi,,k =0,1,...
k

y=1{x)

(x(}' f (X0}

Figure 1.6: The Newton-Raphson Method

This method is called the Newton-Raphson method. The method may also be obtained directly by
taking the limit xic1 — xx. In the limit when xi1 — xi, the chord passing through the points (x«, fi) and
(xi-1, fi-1) becomes the tangent at the point (xx, f). Thus, in this case the problem of fining the root of

the equation is equivalent to finding the point of intersection of the tangent to the curve y=f(x) at the
point (xi, fi) with the x-axis. The method is shown graphically in Figure 1.6. The Newton-Raaphson
method requires two evaluations fi, fx for each iteration.

Alternative

Let xx be an approximation to the root of the equation f(x) = 0. Let Ax be an increment in x such that
Xk + Ax is an exact root. Therefore,

f(Xk + AX) =0.
Expanding in Taylor series about the point xx, we get

f(xy ) ++Ax f'(ixk)+%(Ax)2 £ (x )+~ =0.

Neglecting the second and higher powers of Ax, we obtain

fxg )+ Ax (%) =0
Or AxX = — f,(xk) .
F(xy )
Hence, we obtain the iteration method
f
X, =X +AX =%, —ﬂ, k=01,

f,(xk )
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1.7 HORNER’S METHOD

Horner’s method is the most convenient way of finding approximation values of the irrational roots
of the equation f(x) =0, where f(x) is any polynomial. The root is calculated in decimal form and the
figures of the decimal are obtained in succession. We describe below the steps to be followed

Step I. Consider the equation f(x)=0. Suppose this has a single roota in the interval (a,a+1) whereaisa
positive integer. Then a can be located by using the condition that f(a) and f(a+ 1) are of opposite signs.

Step II. Suppose the exact value of the root is a. a1 a2 -+~ Diminish the roots of {(x)=0 by a. Then we
get the transformed equation f1 (x) = 0 having 0.1 a1 a2 -+ as a root.

Step III. Multiply the roots of fi (x) by 10 and we obtain the transformed equation f,(x) = 0 having
aiaz--- as a root.

Step IV. By inspection we locate the root by finding two consecutive integer b and b+1 such that f2(b)

and f2 (b + 1) are of opposite signs. Then b= ai is the first decimal in the root making a.a: as the grist
approximation of the root.

Repeat this process (Step I to IV) as many times as needed to get the roots of f(x)=0 to any desired
number of decimal places.

Check Your Progress

Perform four iterations of the Newton-Raphson method to find the smallest positive root of the
equation

f(x)=x"-5x+1=0.

1.8 LET US SUM UP

A computer has a finite word length and so only a fixed number of digits are stored and used during
computation. This would mean that even in storing an exact decimal number in its converted form in
the computer memory, an error is introduced. Iteration methods are based on the idea of successive
approximations i.e. staring with one or more initial approximations to the root. Bisection method is
based on the repeated application of the intermediate value theorem. The problem of fining the root of
the equation is equivalent to finding the point of intersection of the tangent to the curve y={(x).
Horner's method (or synthetic division) is a technique for evaluating polynomials.

1.9 KEYWORDS

Iteration Method: These methods are based on the idea of successive approximations i.e. staring with
one or more initial approximations to the root.

Bisection Method: This method is based on the repeated application of the intermediate value theorem.
Regula Falsi Method: It requires one function evaluation per iteration.
Newton Raphson Method: It requires two evaluations for each iteration.

Horner’s Method: The most convenient way of finding approximation values.
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1.10 QUESTIONS FOR DISCUSSION

1. Obtain an interval which contains a root of the equation

f(x)=cosx-xe* =0.

2. Perform five iterations of the bisection method to obtain a root of the equation
f(x)=cosx—xe* =0

3. Use the Regula-Falsi methods to determine the root of the equation

cosx—xe =0

Check Your Progress: Model Answers

The smallest positive root lies in the interval (0, 1). Take the initial approximation as @ = 0.5. We have
f(x) =x* —5x+1,f(x) = 3x% - 5.

Using the Newton-Raphson method.

f(x
Xk+1 = Xk - f/((xlli))

we get

xi—Sxk+1=2xi—-1
3%, -5 3x -5

Xk+1=Xk— k:o,l’...

Starting with x, = 0.5, we obtain.

x1 = 0.176471, x2 =0.201568.
x3 = 0.201640, x+ = 0.201640.

The exact value correct to six decimal places is 0.201640.

1.11 SUGGESTED READINGS

S.S. Sastri., Introductory Methods of Numerical Analysis, Second Edition, Prentice Hall.

S. Mohan Naidu., 4 Text Book of Mathematical Methods for Scientific Engineers, Students Helpline Series, Hyd -
2005.

Jain, MK,, Iyengar, SRXK., Jain, R.K,, Numerical Methods for Scientific and Engineering Computation, 3rd
Edition, New Age International (P) Ltd., 1993.
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2.0 AIMS AND OBJECTIVES
After studying this lesson, you will be able to:

Discuss simultaneous equations

Explain back substitution

Describe Gauss elimination method
Identify Gauss Jordan elimination method

Understand calculation of matrix

Explain Crout’s method

2.1 INTRODUCTION

Simultaneous linear algebraic equations occur in several engineering and statistical problems. In this
lesson we deal with several numerical methods for solving such system of equations.
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2.2 SIMULTANEOUS EQUATIONS
Matrix Operations

MathCAD is designed to be a tool for quick and easy manipulation of matrix forms of data. We've
seen the matrix before as a 2-D array. That is, many pieces of information are stored under a single
name. Different pieces of information are then retrieved by pointing to different parts of the matrix by
row and column indexes. Here we will learn some basic matrix operations: Adding and Subtracting,
Transpose, Multiplication.

Adding Matrices

Add two matrices together is just the addition of each of their respective elements. If A and B are both
matrices of the same dimensions (size), then

C:=A+B

produces C, where the i row and j* column are just the addition of the elements (numbers) in the i*
row and j* column of A and B

Given: A= '3 3| andB=|2+ ©
7911 8 10 12

so that the addition is: C: = A+ B = L‘Z ;{) ;j

The Mathcad commands to perform these matrix assignments and the addition are:
A := Ctrl-M (choose 2x3) 13579 11

B:= Ctrl-M (choose 2x3)24 681012

C:=A+B C-

Rule: A, B, and C must all have the same dimensions.

Transpose

Transposing a matrix means swapping rows and columns of a matrix. No matrix dimension
restrictions.

Some examples:

5
1-D A= [5 2 9:}, al = o] 1x3 becomes==> 3xl
]
‘5 r 81 32
2D B = 314576 BT _ | 453 2x3 becomes==> 3x2
32 31 30

-7630

In general

B (i9 J) = BT(j9 1)
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In Mathcad, The transpose is can be keystroked by Ctrl - 1 (the number one) or you can view the
matrix pallet (view — toolbars — matrix) and click the M symbol

5¢
B=|2362 B Ctrl-1 = ans = |33
9847 64
27
Multiplication

Multiplication of matrices is not as simple as addition or subtraction. It is not an element by element
multiplication as you might suspect it would be. Rather, matrix multiplication is the result of the dot
products of rows in one matrix with columns of another. Consider:

C:=A*B

matrix multiplication gives the i* row and kth column spot in C as the scalar results of the dot product
of the i* row in A with the k* column in B. In equation form this looks like:

# of columns in A
Cir = Y A "By
j=1
Let’s break this down in a step-by-step example:
Step 1: Dot Product (a 1-row matrix times a 1-column matrix)

The Dot product is the scalar result of multiplying one row by one column

6
[253]*|s| = 2*6+5*8+3%7 =73 DOT PRODUCT OF ROW AND COLUMN

Ix3 |y ‘

3xl
Rule:
1. # of elements in the row and column must be the same
2. must be a row times a column, not a column times a row.
Step 2: General matrix multiplication is taking a series of dot products.
Each row in pre-matrix by each column in post-matrix.
142 2 6 = |IF5+4%B+2%10  1%644%1242%11| _ | 57 176
937 10 11 9F5+3%8+7*10  9*6+3%1247%11 139 167
2x3 3x2 2x2

C(,k) is the result of the dot product of row i in A with column k in B
Matrix Multiplication Rules:

1. The # of columns in the pre-matrix must equal # of rows in post-matrix inner matrix dimensions
must agree.
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2. The result of the multiplication will have the outer dimensions # rows in pre-matrix by # columns
in post-matrix.

For this example, apply rules

C:=A*B

A is nra X nca (# rows in a by # columns in a)
B is nrb x ncb

Rule 1 says:

nca = nrb or else we can’t multiply (can’t take dot products with different number of
terms in row and column)

Rule 2 says:

C will be of size nra x ncb
result C has outer dimensions
| |
nra X nea * nrb X neb

I_]_l

inner dimensions must agree

How to perform matrix multiplication in Mathcad??? Easy

45 9 1 66 64
A= B:= C:=AB C=
21 6 12 24 14

Note: If inner matrix dimensions don’t match, Mathcad can’t perform the operation since it violates
the rules of matrix multiplication, and you’ll get an error that says:

“the number of rows and or columns in these arrays do not match”

Examplel: Let’s try to multiply a 2 x 3 by another 2 x 3 (rules say we can’t do this)
(3 41 ] (2 9 5)
A= B:= C:=A-B
049 9 45

“the number of rows and or columns in these arrays do not match”

Mathcad will tell you:

Since the # of columns in A was not equal to # of rows in B, we can’t multiply A * B

IMPORTANT: Another example: Say we create a 1-D vector x with the following;
x:=(389)5)

Now say we want to square each number in x. It would seem natural to do this:

X*2=
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But Mathcad tells us:
“This Matrix must be square. It should have the same number of rows as columns”
Note that x * 2 = is the same as saying x*x =

Mathcad by default will always interpret any multiplication as a standard dot product type matrix
multiplication, thus we can’t take a dot product of two row vectors, since rules of matrix
multiplication are violated in this case.

The exception to this default assumption in Mathcad is if the vector is a column instead of a row. In
that case, Mathcad will assume you want to square each element in the vector rather that applies
standard matrix multiplication.

If we just want to square the numbers in x, we can do this:

)
O

th A\ 0
o0
—

Or we can first convert a row into a column vector using transpose, and then square

Try this out

=| 25
16
Solving Simultaneous Linear Equations using Matrix Methods

Now we’ll use matrices to represent sets of algebraic equations. The solution to these sets of equations
can be solved using matrix methods. The simultaneous solution of multiple equations finds its way in
to many common engineering problems. In fact, modern structural engineering analysis techniques are
ALL ABOUT solving systems of equations simultaneously. You'll see the following material in CES
4141 (structures II) for sure.

® Matrices - an organized way of presenting a set of coupled equations.
® We seek a single unique solution that satisfies all the equations at the same time.

Consider the three coupled linear equations below:

3X,+5X,+2X, = 8
2X, +3X,-1X; = 1
1X, - 2X, - 3X, = -1

1}

® Coupled because each equation has one or more terms in common with the others, Xi, X X3, so
that a change in one of these variables will affect more than one equation.

® Linear because each equation contains only first order terms of Xi, X2 Xs. There are no terms

o like X}, or \X,, or log (X,), or 1/(X,X,), etc.
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® Using the rules of matrix multiplication, we can represent the above equations in matrix form:

35 20X 8
23 -11{X, T |1
1-2-3]\X, —1
7 1 S~
Coefficient matrix A unknown vector X solution vector B
Try multiplying the matrices A and X together, make sure you can get the original equations above.

There are several ways to solve for unknown vector. Each method involves some manipulations to the
coefficient matrix using algebraic rules, creating a new and equivalent problem in a more easily
solvable form. These manipulations involve the addition of multiples of one row to another.

Adding one row to another result in an equivalent equation, since both sides are equal.

For example, starting with the two equations:

X, +5X,=3

2%, -3X, =5
their addition gives:

~1X,+2X, =8

This addition does not add any new information, but it does present a new form of the old information.

2.3 BACK SUBSTITUTION

Consider a system of simultaneous liner equations given by AX= B where A is an n x n coefficient
matrix.

Suppose the matrix A is upper triangular.

A g 4,
0 a, a, 24
Let A= 0 0 a4 a;,
0 ¢ 0 a,

;. Ay A, [ Xy b,
0 a, L0 || X2 b,
0 0 a, a, b,
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(1e) axg + apXy t+--+ A pXp = bl
AypXy +rrtaryx, = b2

A in1¥n-1 tap Xy = bn—l

ApnXp = bn'

From the last equation we get x, = —2,
a
nn

Substituting the value of x. in the previous equation we get

1 b
Xnl = bn—l | (_n} .
Ap-1 n-1 Ann

Proceeding like we can fine all x’s. This procedure is known as back substitution

Similarly considering lower triangular matrix

a, 0 0 0
Ac a, ay O 0
anl anZ amn
the given system takes the from
arrx; =by

ay1%1 +axnx; =b,

anXy +-+ag X, =by

. : b . : :
From the first equation we get x; = —L. Substituting the value x: in the next equation we get
a1

1 b

— 1

X9 =— 3.2 —A1| — | |-
422 a

Proceeding like this we can find all x’s. This procedure is known as forward substitution.

2.4 GAUSS ELIMINATION METHOD

Here, the unknowns are eliminated by combining equations such that the n equations in n unknowns
are reduced to an equivalent upper triangular system which is then solved by back substitution
method. Consider the 3 x 3 system

;% +3,%, +a;,x,=b,
X +apX, ta,X; = bz

a; X, +a, X, +a,X, =b,.
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In the first stage of elimination, multiply the first row in by a21/ai and a31/au respectively and subtract
from the second and third rows. We get

3(22) Xy + a(223) X3 = b(22)

NN B

a3; Xptazy X3="D03
2 421 2 1
Where a(zz) =ay —— 292, a(zs) =ajs ——3.13,
ayq a11
(2) _. a31 (2) _ 431
a3y Ta3p ——31p,a " =aA3 213
ajy 3 agy

b =b, -22L b, b{D) = b, - 2Ly
an a11

In the second stage of elimination, multiply the first row by (a32)/ a(z?) and subtract from the second

row. We get
a%) X3 = bg3)
D032 () 0 _p0) 22 )
Where ag3) =ag3) 32 ayy’, by’ =b; 32 )
3(275) 3(22)

Collecting the first equation from each stage, we obtain the system

) (1 (1)
(11 X+ alz) X, + 313 X, = b

a(zzz)xz + 3(273) X3 = b(22)

oy =)

Where (1)—a b() b, 1j=1,2,3.

e

The system is an upper triangular system and can be solved using the back substitution method.
Therefore, the Gauss elimination method gives

Gauss
I:a|b:| Elim ination [U|C]
Where [A|b] is the augmented matrix. The elements agll) , a(zzz) and ag:;) which have been assumed to

be non-zero are called pivot elements. The elimination procedure described above to determine the
elimination method. We may also make the pivot as 1 before elimination, at each step. At the end of
the elimination procedure, we produce 1 at each of the positions of the diagonal elements.

We now solve the system in n unknowns by performing the Gauss elimination on the augmented
matrix [A | b]. Denote

bl =) i, k=1(1)n.
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The elements agjk) with i,j > k are given

() _ kB (k)
A =3y a® A

i=k+L,k+2,-n j=k+1,-. nn+1

Where ag.‘) =3,

The elimination is performed in (n-1) steps, k = 1, 2, ---, n-1. In the elimination process, if any one of

the pivot elements a{},al?,--a’®) vanishes or becomes very small compared to other elements in that

column, then we attempt to rearrange the remaining rows so as to obtain a non-vanishing pivot or to
avoid the multiplication by a large number. This strategy is called pivoting. The pivoting is of the
following two types.

Partial Pizoting

In the first stage of elimination, the first column is searched for the largest element in magnitude and
brought as the first pivot by interchanging the first equation with the equation having the largest
element in magnitude. In the second elimination stage, the second column is searched for the largest
element in magnitude among the n - 1 elements leaving the first element, and this element is brought
as the second pivot by an interchange of the second equation with equation having the largest element
in magnitude. This procedure is continued until we arrive at the equations. We are thus led to the
following algorithm to find the pivot.

Choose j, the smallest integer for which
’aﬁ?' = nnx'agfj)l, k<i<n

And interchange rows k and j.
Complete Pizoting

We search the matrix A for the largest element in magnitude and bring it as the first pivot. This
requires not only an interchange of equations but also an interchange of the position of the variables.
This leads us to the following algorithm to find the pivot.

Choose | and m as the smallest integers for which

a&)‘ = max iagjk)', k<ij<n

And the interchange rows k and | and columns k and m.

If the matrix A is diagonally dominant or real, symmetric and positive definite, then no pivoting is
necessary.
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Example 2:
Solve the equations
X1 +x,+x3=6
3%y +3x,+ 4%, =20
2xy +x5 +3x3 =13
using the Gauss elimination method.
In the first step we eliminate x1 form the last two equations and obtain
X] +X)+x3=6
X3 =2
Xy +x3=1
Here, the pivot in the second equation is zero and so we cannot proceed as usual. We interchange the
equations 2 and 3 before the second step. We obtain the upper triangular system
Xy +Xy+X3=6
~X;+x3=1
X3 =2
which has the solution

x;=3,x) =land x5 = 2.

2.5 GAUSS-JORDAN ELIMINATION METHOD

Here, the coefficient matrix is reduced to a diagonal matrix rather than a triangular matrix. At all steps
of the Gauss elimination method, the elimination is done not only in the equations below but also the
equations above the pivots, producing the solution without using the back substitution method. On
the completion of the Gauss-Jordan method the equation become

1 0 0] e 0 Xl d1
01 0 - 0 X2 _ d2
00 0 - 1||x,] |d,

The solution is given by

Hence, the Gauss-Jordan method gives
G .

Generally, this method is not used for the solution of a system of equations as it is more expensive
from the computation view-point than the Gauss-elimination method. However, it gives a simple
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method to find the inverse of a given matrix A. We start with the augmented matrix of A with the
identity matrix I of the same order. When the Gauss-Jordan procedure is completed we obtain

Gaus -1
[A]I] ]orde: [I‘A :I
Example 3:

Find the inverse of the coefficient matrix of the system

11 177 [t
4 3 -1 Xy |= 6
35 3 ||x;| |4

By the Gauss-Jordan method with partial pivoting and hence solve the system. Using the augmented
matrix [A |I] we obtain

11 1)1 00 4 3 -1]0 1 0
43 -1/010|~11 1100
35 3001 35 3]001
1 3/4 -1/4 1/4 0 1 3/4 -1/4|0 1/4 0

0
~11 1 1 1 0 0|~(0 1/4 5/4 |1 -1/4 0
0 0 1 0 11/4 15/4 |0 -3/4 1

1 3/4 -1/4]0 1/4 0
-3/4 1
0 1/4 5/4 |1 -1/4 0

-1/4 |0 1/4 0
15/11|0 -3/11 4/11
0 1/4 15/4 |1 -1/4 0

l
(@]
—_
—_
™~
-
—_
w
~
-+
[y

| I |
QO =
()
—_
A

0 -14/11|0 5/11 -3
~10 1 15/11 |0 -3/11 4/11
0 10/11 |1t -=2/11 -1/11

—
—_
o

-14/11 0 5/11  =3/11
~|0 1 15/11 0 -3/11 4/11
0 0 1 11/10 -1/5 -1/10

(1 0 0| 7/5 1/5 =2/5
~[0 1 0|-3/5 0 1/2
0 1(11/10 -1/5 —-1/10

Therefore, the solution of the system is

x| [7/5 1/5 -2/571 1
x|={-3/2 0 1/2 ||e|=| 1/2
x,| [1/10 -1/5 -1/10|[4| |-1/2
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2.6 CALCULATION OF A MATRIX

Let A be an n x n nonsingular matrix

Xy Xpo o Xy
x X 'R X
1 Xp 2a
Let X=| . .
an XnZ o Xnn

be the inverse of A.
. AX =1 where I is the unit matrix of order n.

. AX=Igives

A Ay A, | Xn X Xin
a4 Ay A || X Xp Xon | _
a'nl anZ e a'un an XnZ xnn O O o

Ay Ay 7 A [ Xy

Ay Ayp vt A | Xy |
anl anz o a‘rm xnl

a1 A2 an || X12
421 A A || X22
dn1 A2 Ann /\Xn2

and

A Ay A, | X1

A Ay Ao || X2a | _
a1'11 anZ T ann Xnn

i

O = O

Each of the system of the above n systems of equations can be solved by Gauss elimination method or

Gauss Jordan method.
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2.7 CROUT’S METHOD

This method is also known as the decomposition method or the factorization method. In this method
the coefficient matrix A of the system of equations is decomposed or factorized into the product of a
lower triangular matrix L and an upper triangular matrix U. We write the matrix A as

A=LU

Where
1, 0 0 - 0] [ugy up uy e ouyg ]
121 122 o -~ 0 0 Uz Upy et upy
L= 131 132 133 0 s and U = 0 0 uj3 v Ugy
_lnl 1112 1n3 'lnn_‘ L 0] 0 0 t Upg |

Using the matrix multiplication rule to multiply the matrices L and U and comparing the elements of
the resulting matrix with those of A we obtain

lilulj +1i2u2j + e +1inunj = aij,j = 1(1)1’1
Where 11} =O,j>iand uij =O,i>j.

The system of equations involves n’ + n unknowns. Thus, there are n parameters family of solutions.
To produce a unique solution it is convenient to choose either ui =1 or li =1, i= 1(1)n. When we
choose

(@ Ii = 1, the method is called the Doolittle’s method.
(b) wui = 1, the method is called the Crout’s Methods.

When we take ui =1, i=1(1)n, the solution of the equation may be written as
-1
lij =aj— ZIIJ Ui, 1 Zj
k=1
i-1
u; = (ay —kz;lik u)/1,i<j
u; = 1.

We note that the first column of the matrix L is identical with the first column of the matrix A. That
is

lil HE) 1= 1(1)n.
We also note that
u; = ali/lu,j =2(1)n.

The first column of L and the first row of U have been determined. We can now proceed to determine
the second column of L, and the second row of U



36 Numerical Methods M.S. University - D.D.C.E.

1, = A, — 1i1u12» i=2()n

qu = (azj —121ulj)/122, ] = 3(1)1’1.

Next, we find the third column of L followed by the third row of U. Thus, for the relevant indices i
and j, the elements are computed in the order

lu, Uy;3 1i2’ Uy 113: U505 li,n—l’ Uy, Lin-

Having determined the matrices L and U, the system of equations becomes
LUx=b

We write equation as the following two systems of the equations

Ux=1z

Lz=b
The unknowns z;,z,,---,z, in the equations are determined by forward substitution and the
unknownsxy, x,,+, X, in equation are obtained by back substitution. Alternatively we find L™ and
U™ to get

z=L"b and x=Ulz
The inverse of A can also be determined from
| At=uTLh

This method fails if any of the diagonal elements |; or u; is zero. The LU decomposition is guaranteed
when the matrix A is positive definite. However, it is only a sufficient condition.

Check Your Progres

Solve the system of equations

211 =2\x] [-10
402 1|x,| | 8
322 0llxs| |7
1 3 2 —1||x4] | -5

using the Gauss elimination method with partial pivoting

2.8 LET US SUM UP

The unknowns are eliminated by combining equations such that the n equations in n unknowns are
reduced to an equivalent upper triangular system which is then solved by back substitution method. In
the first stage of elimination, the first column is searched for the largest element in magnitude and
brought as the first pivot by interchanging the first equation with the equation having the largest
element in magnitude. The coefficient matrix is reduced to a diagonal matrix rather than a triangular
matrix. The elimination procedure described above to determine the elimination method.
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2.9 KEYWORDS

Gauss Elimination Method: The unknowns are eliminated by combining equations.

Gauss-Jordan Elimination Method: The coefficient matrix is reduced to a diagonal matrix rather than a
triangular matrix.

2.10 QUESTIONS FOR DISCUSSION

1. Consider the equations

X1 +Xy+X3 = 1
4X1 +3X2 —X3 = 6
3X1 +5X2 +3X3 =4
Use the decomposition method to solve the system.

2. Find the inverse of the matrix

3 21
A=/2 3 2

1 2 2
using LU decomposition method. Take v, =u,, =u,, =1.

3. Solve the system of equations Ax=b, where

211 2 -10
4 0 2 1 8
A= ,b=
322 0 7
1 3 2 41 -5

using the LU decomposition method. Take all the diagonal elements of L as 1. Also find A™.

4. Solve the following matrix operation:

2 27l 4 6
(a)[9125]* 8 |= (b)| 36 [8 0 12}:
3 71
¢ 4 3.8 7
©9[*[2 1 8]= (d)[2 1]{9 6}
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)[4 9 8]'*[2 7 1]=

4 7
(g) ([8 9

i

5321027_
0 1 6 3 5|

M.S. University - D.D.C.E.

[Ab]-

W N = O

W N = O

_= N W O

O O W O

Check Your Progress: Model Answers

From the augmented matrix [A |b], we obtain

2 1 1 =2/-10
402 18

Rz v
322 0|7
1 3 2 -1-5

1
2 1|8 Re—3R
1 —2—10R e
2 0|7 |7 4
2 -1/-5 1

- R4—ZR1

2 1|8
0 —5/2—14R N
1/2 -3/4/1 |4 2
3/2 -5/4|—7
2 118 )
3/2 -s5/4)—7 B3R
1/2 -3/4| 1 R4_1R2
0 -5/2-14 3
2 1 8
3/2  -5/4| -7 R _R
-1/2 /12 |17/3 % °?
~1/2 -25/12|-35/3

Contd...
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0o 2 1 8

3 3/2 -5/4| -7
0 -1/2 1/12]17/3
0 0 -13/6]-52/3

O O O &

Using back substitution, we get the solution as

x4 =8,x3 =-10,x; =6,%x; =5.

2.11 SUGGESTED READINGS

S.S. Sastri., Introductory Methods of Numerical Analysis, Second Edition, Prentice Hall.

S. Mohan Naidu., 4 Text Book of Mathematical Methods for Scientific Engineers, Students Helpline Series, Hyd -
2005.

Jain, MK., Tyengar, S.R.K., Jain, R.K., Numerical Methods for Scientific and Engineering Computation, 3rd Edition,
New Age International (P) Ltd., 1993.
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3.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Explain Gauss elimination method
® Describe Gauss Seidal methods and their properties

e Discuss relaxation method

3.1 INTRODUCTION

In computational mathematics, an iterative method attempts to solve a problem (for example an
equation or system of equations) by finding successive approximations to the solution starting from an
initial guess. This approach is in contrast to direct methods, which attempt to solve the problem by a
finite sequence of operations, and, in the absence of rounding errors, would deliver an exact solution
(like solving a linear system of equations Ax = b by Gaussian elimination). Iterative methods are
usually the only choice for nonlinear equations. However, iterative methods are often useful even for
linear problems involving a large number of variables (sometimes of the order of millions), where
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direct methods would be prohibitively expensive and in some cases impossible even with the best
available computing power.

Probably the first iterative method for solving a linear system appeared in a letter of Gauss to by one
of his students. He proposed solving a 4-by-4 system of equations by repeatedly solving the component
in which the residual was the largest.

The theory of stationary iterative methods was solidly established with the work of D.M. Young
starting in the 1950s. The Conjugate Gradient method was also invented in the 1950s, with
independent developments by Cornelius Lanczos, Magnus Hestenes and Eduard Stiefel, but its nature
and applicability were misunderstood at the time. Only in the 1970s was it realized that conjugacy
based methods work very well for partial differential equations, especially the elliptic type.

3.2 ITERATIVE METHODS

In the case of a system of linear equations, the two main classes of iterative methods are the stationary
iterative methods, and the more general Krylov subspace methods.

3.2.1 Stationary Iterative Methods

Stationary iterative methods solve a linear system with an operator approximating the original one;
and based on a measurement of the error (the residual), form a correction equation for which this
process is repeated. While these methods are simple to derive, implement, and analyse, convergence is
only guaranteed for a limited class of matrices. Examples of stationary iterative methods are the Jacobi
method and the Gauss-Seidel method.

3.2.2 Krylov Subspace Methods

Krylov subspace methods form an orthogonal basis of the sequence of successive matrix powers times
the initial residual (the Krylov sequence). The approximations to the solution are then formed by
minimizing the residual over the subspace formed. The prototypical method in this class is the
Conjugate Gradient Method (CG). Other methods are the Generalized Minimal Residual Method
((GMRES) and the Biconjugate Gradient Method (BiCG).

Conzergence

Since these methods form a basis, it is evident that the method converges in N iterations, where N is
the system size. However, in the presence of rounding errors this statement does not hold; moreover,
in practice N can be very large, and the iterative process reaches sufficient accuracy already far earlier.
The analysis of these methods is hard, depending on a complicated function of the spectrum of the
operator.

Preconditioners

The approximating operator that appears in stationary iterative methods can also be incorporated in
Krylov subspace methods such as GMRES (alternatively, preconditioned Krylov methods can be
considered as accelerations of stationary iterative methods), where they become transformations of the
original operator to a presumably better conditioned one. The construction of preconditioners is a
large research area.
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3.3 GAUSS JACOBI ITERATION METHOD

All the previous methods seen in solving the system of simultaneous algebraic linear equations are
direct methods. Now we will see some indirect methods or iterative methods.

This iterative method is not always successful to all systems of equations. If this method is to succeed,
each equation of the system must possess one large coefficient and the large coefficient must be
attached to a different unknown in that equation. This condition will be satisfied if the large
coefficients are along the leading diagonal of the coefficient matrix. When this condition is satisfied,
the system will be solvable by the iterative method.

The system,
a Xt apXxyta;x;=b,
ayX;tanX;tagx;=b,
a31X1+azXyt+azx;=b;
will be solvable by this method if
[11] > lasa| + 1]
[222] > [221] + |2 23]
233 > |aas | + |z

In other words, the solution will exist (iteration will converge) if the absolute values of the leading
diagonal elements of the coefficient matrix A of the system AX=B are greater than the sum of the
absolute values of the other coefficients of that row. The condition is sufficient but not necessary.

Let us explain this method in the case of three equations in three unknowns.
Consider the system of equations
a;x+b;y+cz=d,
as,x+byy+cyz=d,
azx+bgzy+czz=d; )

Let us assume
| > [by |+
[ba > las| + ey
lca| > |as| +[bs|

Then, iterative method can be used for the system (1). Solve for x, y, z (whose coefficients are the
larger values) in terms of the other variables. That is,

X = _(dl _b1Y’Clz)
a)
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1
y=b_(d2_a2x_czz) ...... (2)

2
1
Z= ~‘(ds —aszXx ‘bs}’)

Cs

If x93 79 are the initial values of X, ¥, z respectively, then

<0 = _1_(d1 b,y ©® — ¢ z0)
a;

y) = _1_(d2 —a,x@ _c,20)

...... )
20 = L(ds —a,;x0 _p y©)
Cs3
Again using these values in (2), we get
1 .
x@ _(dl ~b,y® - Clz(l))
a,
Pl adoby)-by “
2
2@ =1 (q, a0 bay®)
Cs
Proceeding in the same way, if rth iterates are, the iteration scheme reduces to
|
x®=—(dybyy V- ¢2M)
a
1
yP=—(dy-2,xD-b,yM)
. (5)

1
20=— (d3-a5x V- byy V)
C

The procedure is continued till the convergence is assured (correct to required decimals).
Note:
1. To get the (r+1) the iterates, we use the value of the rth iterates in the scheme )

2. In the absence of the initial values of x, y, z we take, usually, (0,0,0) as the initial estimate.

3.4 GAUSS-SEIDEL ITERATION METHOD

This is only a refinement of Gauss-Jacobi method. As before,

1
X= *(dl -byy —012)
a,

1

= b_Q‘(dz —ayx - ¢yz)

y
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1
= *(ds —agx —b3Y)
Cs

z
We start with the initial values for y and z and get from the first equation. That is,

x0 = L {4, ~p,y© - c,2®)
a,
While using the second equation, we use for z and for x instead of as in the Jacobi’s method, we get
v = L(d2 —a,xW —¢,z0)
b,
Now having known x® and y® use x® for x and y® for y in the third equation, we get

1
Z0 = Z_(ds ~ayx® —bsy(l))
3

In finding the values of the unknowns, we use the latest available values on the right hand side. If x©,
y¥, 29 are the r'™ iterates, then the iteration scheme will be

xY = i(dl —b,y"? - clz('))
4,

1
r+1) -
¥ b,

_z(r+1) = Ci(d3 _ a3x(r+1) _ bjy(ﬁ-l))

3

(d2 —a,x" — czz('))

This process of iteration is continued until the convergence is assured. As the current values of the
unknowns at each stage of iteration are used in getting the values of unknowns, the convergence in
Gauss-Seidel method is very fast when compared to Gauss -Jacobi method. The rate of convergence in
Gauss-Seidel method is roughly two times than that of Gauss-Jacobi method. As we saw the sufficient
conditions already, the sufficient condition for the convergence of this method is also the same as we
stated earlier. That is, the method of iteration will converge if in each equation of the given system, the
absolute value of the largest coefficient is greater than the sum of the absolute values of all the
remaining coefficients.

Remarks: The largest coefficients must be the coefficients for different unknowns.

Note:

1. For all system of equations, this method will not work (since convergence is not assured). It
converges only for special systems of equations.

2. Tteration method is self correcting method. That is, any error made in computation, is corrected
in the subsequent iterations.

3. The iteration is stopped when the values of x, y, z start repeating with the required degree of
accuracy.
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Examples

1. Solve the following system by Gauss-Jacobi and Gauss-Siedel methods
10x -5y-2z = 3
4x - 10y 43z =-3
X+6y+10z=-3

Solution:

Here, we see that the diagonal elements are dominant. Hence, the iteration process can be applied.

10 -5 -2
That is, the coefficient matrix 4 -10 3 is  diagonally dominant, since
1 6 10
10> |5|+|- 2}, |~10]>|4|+|3] and o] > 1)+ 6|
Gauss Jacobi Method
Solving for x, y, z we have
1
Xx=—I(3+5y+2z
10 ( e (1)
y=%(3+4x+32) ..... 2
Z=%(—3~x—6y) ..... (3)

First iteration: Let the initial values be (0,0,0).

Using these initial values in (1), (2), (3) we get

xW = -11—0[3 +5(0)+2(0)]= 0.3

1
yW = 1513+ 40)+30)]=03
® =L 3-(0)-6(0)-

zW = 10[ 3-(0)-6(0)]-0.3

Second iteration: Using these values in (1), (2), (3), we get
x®) = T16[3 +5(0.3)+2(- 0.3)]=0.39

y@ - %[3 +4(0.3)+3(-0.3)]=0.33

z? = %[— 3-(0.3)-6(0.3)]= -0.51
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Third iteration: Using the values of **»v*2%in (1), (2), (3) we, get
x® = %[3 +5(0.33)+2(-0.51)] = 0.363
y® = T16[3 +4(0.39)+3(-0.51)] = 0.303
2@ = %[- 3-(0.39)-6(0.33)] = —0.537
Fourth iteration:
x® = Tl(—)[s +5(0.303)+ 2(- 0.537)] = 0.3441

y® = 1—16[3 +4(0.363)+ 3(- 0.537)] = 0.2841

2% = %[— 3-0.363-6(0.3030)]= -0.5181
Fifth iteration:
x®) = %[3 +5(0.2841)+2(- 0.5181)] = 0.33843

y©) = %[3 +4(0.3441)+ 3(-0.5181)] = 0.2822

z® = T16[_ 3-0.3441- 6(0.2841)] = -0.50487
Sixth iteration:

x®) = %[3 +5(0.2822) + 2(- 0.50487)] = 0.340126

1
y(6)=ﬁ[3 +40 (0.33843) + 3 (-0.50487)] = 0.283911

2 = %[- 3-(0.33843)-6(0.2822)] = -0.503163
Seventb iteration:

x7).= %[3 +5(0.283911)+ 2(- 0.503163)] = 0.3413229
vy = %[3 +4(0.340126)+ 3(- 0.503163)] = 0.2851015

27 = —1-16[— 3-(0.340126)- 6(0.283911)| = -0.5043592

Eighth iteration:

x® = %[3 +5(0.2851015)+ 2(~ 0.5043592)] = 0.34167891

M.S. University - D.D.C.E.
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y® = %[3 +4(0.3413229)+ 3(- 0.5043592)] = 0.2852214

z® = %[— 3-(0.3413229)- 6(0.2851015)] = -0.50519319

Ninth iteration:

O %[3 +5(0.2852214)+ 2(- 0.50519319)] = 0.341572062
y© = T16[3 +4(0.34167891)+ 3(- 0.50519311)] = 0.285113607

20 = 1—16[— 3-(0.34167891)- 6(0.285221)] = -0.505300731

Hence, correct to 3 decimal places, the values are
x = 0342,y = 0.285, z = -0.505
Gauss Seidel Method

Initial values; y = 0,z = 0

First iteration:
x0 = L [315(0)+2(0)]=0.3
10
v - %[3 +4(0.3)+ 3(- 0)] = 0.42

2 = %[- 3-(0.3)- 6(0.42)] = -0.582
Second iteration:

x®?) = %[3 +5(0.42)+ 2(- 0.582)] = 0.3936
y® = 1—10-[3 +4(0.3936)+ 3(- 0.582)] = 0.28284

z® = IIE[_ 3-(0.3936)- 6(1.28284)] = -0.509064

Third iteration:

x(3)=%[3 +5 (0.28284) + 2 (-0.509064)] = 0.3396072

y® = %[3 +4(0.3396072)+ 3(- 0.509064)] = 0.28312368

2@ = L [13-(0.3396072)- 6(0.2812368)] = -0.503834928

10

Tterative Methods 47
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Fourth iteration:

x4 = %[3 +5(0.28312368) + 2(- 0.503834928)| = 0.34079485

y® = %[3 +4(0.34079485)+ 3(- 0.50383492)] = 0.28516464

OB S
10

Fifth iteration:

[-3-(0.34079485)-6(0.28516746)| = -0.50517996

x6) = %[3 +5(0.28516746)+ 2(- 0.50517996)| = 0.34155477
y®) = %[3 +4(0.34155477)+ 3(- 0.50517966)| = 0.28506792

z0) = %[— 3-(0.34155477)-6(0.28506792)| = ~0.505196229
Sixth iteration:

x6) = T16[3 +5(0.28506792)+ 2(- 0.505196229)] = 0.341494714

(6) _ 1

y'® = E[s, +4(0.341494714)+ 3(- 0.505196229)] = 0.285039017

26 = %[— 3-{0.341494714)-6(0.285039017)| = -0.5051728

Seventh iteration:

x7) = T16[3 +5(0.285039017)+ 2(- 0.5051728)] = 0.3414849
y7) = i[3 +4(0.3414849)+ 3(- 0.5051728)| = 0.28504212
10

7 = TIE[_ 3-(0.3414849)- 6(0.28504212)] = —0.5051737

The values at each iteration by both methods are tabulated below:

) Gauss Jacobi method Gauss - Seidel method
Iteration
X y z X y z
1 0.3 0.3 0.3 0.3 0.42 -0.582
2 0.39 0.33 -0.51 0.3936 0.28284 -0.509064
3 0.363 0.303 -0.537 0.3396072 0.28312364 -0.503834928
4 0.3441 0.2841 -0.5181 0.34079485 0.28516746 -0.50517966
5 0.33843 0.2822 -0.50487 0.34515547 0.28506792 -0.505196229
6 0.340126 0.283911 -0.503163 0.3414947 0.2850390 -0.5051728
7 0.3413229 0.2851015 -0.5043592 0.3414849 0.28504212 -0.5051737
8 0.34167891 0.2852214 -0.50519319
9 0.341572062 0.285113607 -0.505300731
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The values correct to three decimal places are
x = 0.342,y = 0.285, z = -0.505

Note: After getting the values of the unknowns, substitute these values in the given equations, and
check the correctness of the results.

2. Solve the following system of equations by Gauss Jacobi and Gauss Seidel method correct to three
decimal places:

X +y + 54z = 110

27x+6y-z = 85

6x+15y+2z =72
Solution:

As the coefficient matrix is not diagonally dominant as it is we rewrite the equation as noted below, so
that the coefficient matrix becomes diagonally dominant.

27x+6y-2=85
6x+15y+2z=72
x+y+54z=110

Solving for x, y, z we get

x=£;(85-—6y+z) ()
1

y:E[72—-6X—ZZ] (2)

z:i[llo—x—y] ~0)

54

Starting with the initial value x = 0, y = 0, z = 0 and using (1), (2) , (3) and repeating the process we
get the values of x, y, z as the tabulated by both methods. (Gauss-Jacobi and Gauss-Seidel)

Iteration Gauss Jacobi method Gauss-Seidel method
x y z b y z

1 3.14815 4.8 2.03704 3.14815 3.54074 1.91317
2 2.15693 3.26913 1.88985 2.43218 3.57204 1.92585
3 249167 3.68525 1.93655 2.42569 3.57294 1.92595
4 2.40093 3.54513 1.92265 2.42549 3.57301 1.92595
5 2.43155 3.58327 1.92692 2.42548 3.57301 1.92595
6 2.42323 3.57046 1.92565 2.42548 3.57301 1.92595
7 2.42603 3.57395 1.92604

8 2.42527 3.57278 1.92593

Hence x = 2425,y = 3.573 and z = 1.926 (Correct to 3 decimal places)



50 Numerical Methods M.S. University - D.D.C.E.

3.5 RELAXATION METHOD

This method is a generalization of the Gauss-Seidel Method. This method is often used when the
coefficient matrix of the system is symmetric and has ‘property A’. We define an auxiliary vector X as

% (1) - _pipx() _pty <) L plp,
The final solution is now written as

) 8 3 (1) 409

k+1) k+1)

x( =(1—w)x(k)+w§((

By substituting and simplifying we obtain
<) - (D+ WL)-I [(1 -w)D- WU:I <) 4 w(D+ WL)—l b

~Hx® ¢, k=0,1,2,..

Where H=D+wL’[(1-w)D-wU]
And c=w([D+wL)"b.
Alternatively

) 56 (D 4+ wLy (D + wL)—(1-w)D+wU] x®)
+w(D+wL) b
x4 w(D+ WL)_l AK)
Where r® = b -Ax¥ is the residual
We may write
v® = w(D + wl)" ¥
Or (D + wL) v¥ = wr®

This equation describes the relaxation method in its error format. For computational purpose, it is
convenient to use this equation.

When w=1, equation reduces to the Gauss-Seidel method. The quantity w is called the relaxation

parameter and x**? is a weighted mean of 201 and x®. From the equation, we find that the weights

are non-negative for 0 < w < 1.If w> 1, then the method is called an over relaxation method and if w
< 1, then it is called an under relaxation method.
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|

Check Your Progress

If the system of equations are 8x -y + z = 18,2x + 5y -2z = 3,x + y - 3z = - 6. The first
iteration values by Gauss seidal method is

(@  2.25,-3,2.65 b  2.5,-3,265

(© 265, .4,25 d  25,-320

The values of xy and z of first iteration by Gauss seidel method are 4x + 2y + z = 14, x +
5y-z =10, x +y + 8z = 20.

@  3,13,19 ®) 35,1319

© 4,152 d 3522

If the equations are 4x + 2y + z = 14,x + 5y -z = 10, x + y + 8z = 20 and the first
tteration values are 3.5, 1.3 and 1.9 then the second iteration of x is

@ 312 () 2375 (© 299 (@) 35

If the system of equations are 5x - y + z = 10, 2x + 4y = 12 and x + y + )
5z - 1, then the first iteration values by Gauss seidel method are

@ 2L1 ) 321 (© 22-1(d)220

3.6 LET US SUM UP

Iterative methods provide an alternative to the direct methods for solving linear equations. These
methods are particularly suitable for solving ill-conditioned systems. We considered the following
three iterative methods:

® Jacobi method

® Gauss-Seidel method

We have shown that a sufficient condition for convergence is that, for each row, the absolute value of
the diagonal element should be greater than the sum of absolute values of the other elements in the

equation.

3.7 KEYWORDS

System of Equations:
ax+byy +ciz=d;
a,x+byy +cyz=d,
asx+bsy+cy3z=d;

Jacobi Method of Iteration:

£(+1) = L(d1 ~by® —c,z0)
a,

1 r r
g b_(d2 —ayx® —cyz)
2

200 = L (g, —a x® —byy®)
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Gauss- Jacobi Method: (1) = —1—(d1 - bly(r) - clz(r))

a1

) = bL(dz _ azx(r+1) _sz(r))
2

Z(r+1) — i(d3 _ 3.3X(r+1) _ b}y(rﬂ))

C;

3.8 QUESTIONS FOR DISCUSSION

Solve the following system of equations using (1) Jacobin’s and (i) Gauss-seidal’s methods:
1. 8x-y+z-18=0
2x+5y-2z2-3=0
x+y-3z+6=0
Ox, +2x, +4x, =20
x, +10x, +4x, =6
2x, —-4x, +10x, =15
3. 1.02x%,-0.05x,-0.10x, =0.795
-0.11x, +1.03x, - 0.05x, =0.849
-0.11x, -0.12x, +1.04x, =1.398
4. 8x+y+z=8
2x+4y+z=4
x+3y+5z=35
5. 3x+4y+15z=54.8
x+12y + 3z =39.66
10x+y-22=7.74

Check Your Progress: Model Answers
L () 2. (b) 3. (b) 4 ©

3.9 SUGGESTED READINGS

S.S. Sastri., Introductory Methods of Numerical Analysis, Second Edition, Prentice Hall.
S. Mohan Naidu., A Text Book of Mathematical Methods for Scientific Engineers, Students Helpline Series, Hyd -2005.

Jain, M.K., Iyengar, S.R.K., Jain, R.K., Numerical Methods for Scientific and Engineering Computation, 3rd Edition,
New Age International (P) Ltd., 1993.
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4.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Understand Eigen values and Eigen vectors of a matrix
e Explain finite differences
e Discuss difference operators

® Describe other difference operator

4.1 INTRODUCTION

In this lesson we introduce the idea of finite differences and associated concepts, which have important
applications in numerical analysis.

For example Interpolation formulae are based in finite differences. Through finite differences we study
the relation that exists between the values change by finite jumps.

In this lesson we study the variations when the independent variables change by equal intervals.
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4.2 EIGEN VALUES AND EIGEN VECTORS OF MATRIX

The eigenvalue problem is a problem of considerable theoretical interest and wide-ranging application.
For example, this problem is crucial in solving systems of differential equations, analyzing population
growth models, and calculating powers of matrices (in order to define the exponential matrix). Other
areas such as physics, sociology, biology, economics and statistics have focused considerable attention
on "eigenvalues" and "eigenvectors” their applications and their computations. Before we give the
formal definition, let us introduce these concepts on an example.

Example 1:
Consider the matrix
1 2 1
A= 6 -1 0
-1 2 -1

Consider the three column matrices

1 -1 2
C1 = 6 s C2 = 2 3 C3 = 3
-13 1 -2
We have
0 4
ACl =|0 ’ AC2 =|-8 y AC3 = 9
0 -4 -6

In other words, we have
ACl = OCl, AC2 = —4C2, and AC3 = 3C3

Next consider the matrix P for which the columns are Ci, C;, and G, i.e.,

1 -1 2
P=| 6 2 3
-13 1 -2

We have det(P) = 84. So this matrix is invertible. Easy calculations give

-7 0 -7
plotl 27 24 9
32 12 8

Next we evaluate the matrix P'AP. We leave the details to the reader to check that we have

) -7 0 -7 1 2 1 1 -1 2 0 00
—|-27 24 9| 6 -1 © 6 2 3|=10 -4 0]
32 12 8){-1 -2 -1/{-13 1 =2 0 0 3,
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In other words, we have

0 00
PlIAP=|0 -4 0|
0 0 3

Using the matrix multiplication, we obtain

0 00
A=P|0 -4 0|P!
0 0 3

which implies that A is similar to a diagonal matrix. In particular, we have

0 0 ©
A" =P|0 (-4 o} p!
o o)
forn=1,2, ...
Note that it is almost impossible to find A” directly from the original form of A4.

This example is so rich of conclusions that many questions impose themselves in a natural way. For
example, given a square matrix 4, how do we find column matrices which have similar behaviors as
the above ones? In other words, how do we find these column matrices which will help find the
invertible matrix P such that P'AP is a diagonal matrix?

From now on, we will call column matrices vectors. So the above column matrices Ci, Cz, and C; are
now vectors. We have the following definition.

Definition
Let A be a square matrix. A non-zero vector C is called an eigenvector of A if and only if there exists a
number (real or complex) A such that

AC = AC.
If such a number A exists, it is called an eigenvalue of A. The vector C is called eigenvector associated
to the eigenvalue A.
Remark
The eigenvector C must be non-zero since we have
A0=0=A0
for any number A.
Example 2:
Consider the matrix
1 2 1

A=} 6 -1 0O

-1 -2 -1
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We have seen that
ACl = Ocl, ACZ = —4C2 ) and AC3 = 3C3

where
1 -1
c=| 6|, C=| 2|, Ci=| 3|
-13 1 -2

So Ci1 is an eigenvector of A associated to the eigenvalue 0. C: is an eigenvector of A associated to the
eigenvalue -4 while G is an eigenvector of A associated to the eigenvalue 3.

It may be interesting to know whether we found all the eigenvalues of 4 in the above example. In the
next page, we will discuss this question as well as how to find the eigenvalues of a square matrix.

4.3 FINITE DIFFERENCES

Let y=1f(x) be a discrete function. If x,,x, +h, x, +2h,......,x, + nhare the successive values of x,

where two consecutive values differ by a quantity h, then the corresponding values of y are
VorYisVaseeereeees ¥.. The values of the independent variable x is usually called the argument and the

corresponding functional value is known as the entry. The arguments and entries can be shown in a
tabular form as follows:

Argument X0 X1 X2 %.=xo0+ nh
Xx=X,+h =x +2h
Entry o vi va  y.=f(x,+nh)
y=1(x) =f(x,) =f(x, +h) =f(x, +2h)
To determine the value of or etc., for some intermediate arguments, the following three types of
differences are found useful:
(a) Forward differences
(b) Backward differences and
(c) Central differences
(a) Foruurd differences: If we subtract from each value of y (except yo) the preceding value of y, we get
V1= Yo» Y2 = Yi» = Ya — Yau Fespectively, known as the first differences of y. These results which
may be denoted Ay, Ayy, ..., Ay,.
e, AYy =1~ YorAY1 = Y2 = ViseAYns = Vo = Vot

Where A is a symbol representing an operation of forward difference, are called first forward
differences. Thus, the first forward differences are given by

Ay, =y, -v; 1=0,1,2.....
Now, the second forward differences are defined as the differences of the first differences, that is,
Ay, = A(Ay,)=A(y, ~¥,) =4y, - Ay,

(Y2_YI)_(YI_YO)=Y2_QYI +¥,
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A’y = A(Ay,)=Ay, - Ay, =y, -2y, +y,

Ay, =AY, ~ AV, =Y0s— 2V, + .

Here, A* is called second forward difference operator.

Similarly, the third forward differences are:

Ay, = A(A%,) =A%y, - A%y, = A(Ay,) - A(dy,)
= A(y,-¥,)-A(y, -¥,) = Ay, - 24y, + 4y,
=(¥:-5.)-2(5,-y.)+y. - ¥,
=y, -3y, +3y,-Y,

Ny, = Ay, -A%y, =y, -3y, +3y, -y,

Ny, = ANy, —Ay, =y,.,-3y.,+3y.., - V.

In general, the nth differences are defined as

AnYk = An_lqu - An_lYk

in function notation, the forward differences are as written below:

Af(x)=f(x +h)-f(x)
A*f(x) = f(x+2h)-2f(x + h) + f(x)
A*f(x) = f(x +3h) - 3f(x + 2h) + 3f (x + h) - f(x)

and so on, where h is the interval of differencing.

Finite Differences 59

The forward differences are usually arranged in a tabular form in the following manner:

x y = {x) 1st 2nd 3rd 4th 5th
argument entry diff. differences diff. diff. differences
X, Yo =f(x,)
Ay,
X, =X,+h y, =f(x,) A%y,
Ay, A%y,
X, =X, +2h v, =f(x,) A%y, A'y,
Ay, Ay, A%y,
X, =x, +3h v, =1(x,) Ay, A'y,
Ay, Ay,
X, =X, +4h v, =f(x,) Ay,
Ay,

X, =X, +5h
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()

The first term in the table y, is called the leading term and the differencesAy,,A%y,,A’y,, ..........
are called leading differences. It can be seen that the differences A*y, with a subscript 'i' lie along

the diagonal sloping downwards; that is, forward with respect to the direction of x. The above
difference table is known as Forward difference table or Diagonal difference table.

Properties of A

The operator A satisfies the following properties:

@) A[f(x)xg(x)]=Af(x)+Ag(x),ie., Ais linear

(i) A[af(x)]=o0Af(x), o being a constant

(i) A™A™(x)=A™" f(x)=A"A"f(x), where m and n are positive integers.
(iv) A[f(x).g(x)]=f(x).08(x)

Observation 1: We can express any higher order forward difference of yo in terms of the entries
Yor Yir¥as oeee Y

From AYO =¥, ¥
AzYO:yz-QYI+YO
ABYO =Y3_SYQ+SY1—YO

and so on, we can see that the coefficients of the entries on the RHS are binomial coefficients.
Therefore, in general

Ao =Y, = CYoy +" Co¥ oy (1) 3,
Observation 2: We can express any value of y in terms of leading entry yo.
We know that -y, = Ay,
V=Y, +Ay, =(1+A)y,
Now, y, =y, +Ay, =(1+A)y, =(1+A) y,
Similarly, y, =(1+A)’y, and so on. In general,
V. =(1+A)y, =y, " CAy, +" C,A’y, +...... + A"y,

Backward differences: 'The differences y,-y,,y,-¥,.-...¥,~Y., Wwhen denoted by
Vy, Vy, ....,Vy, respectively, are called the first backward differences, where is the backward
difference operator called nabla operator.

VY =Y Y VY, =Y, Y o VY = Y. Yaa

Now the second backward differences are defined as the differences of the first backward
differences, 1.e.,
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V'Y, =V(Vy,)=V(y,-y,)=Vy, - Vy,
= (5%:-v)- (v -¥.)=y. -2y, +¥,
V?y, = Vy,-Vy, =y, -2y, +y, and so on.
In general,
VY, =V, - VUYL
In function notation, these are written as
Vi(x)=f(x)-f(x—h)
Vf(x+h)=f(x+h)-f(x)
Vi (x+2h)=f(x+2h)-2f(x + h) - f(x)
Vf(x +3h)=f(x +3h)-3f(x+2h)-3f(x +h)-f(x)
and so on, where h is the interval of differencing.

These backward differences are arranged in a tabular form in the following manner. In this table,
the difference V*y, with a fixed subscript 'i' lies along the diagonal sloping upwards; that is, back
wards with respect to the direction of increasing argument x.

X y = {(x) 1st 2nd 3rd 4th 5th
argument entry diff. differences diff. diff. Differences
X, yo

vy,
X, =%X,+h y1 Viy,
vy, vy,
X,=X,+2h y2 Viy, v'y,
vy, vy, vy,
X,=%X,+3h y3 Viy, Viy,
vy, v'ys
X,=X,+4h  ys Viy,
Vys

X, =X,+5h s
Properties of V
@ V[f(x)+ g(x)]=Vf(x)tVg(x), ie. is linear

(b) V[ af(x)]=0aVf(x), being a constant

(c) V"V f(x)=V™" f(x), where m and n are positive integers.
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@ V[f(x)-8(x)]=[VE(x)]&(x)

Observation we can express any value of y in terms of y» and the backward differences Vy, ,V’y_,
etc.

By def" Yn - Yn—l = VYn

or ynflzyn_vyn=(1_v)yn

NOW, Yoo =¥Vua — Vyn‘l = (1 - V)Yn—l = (1 - V)2 y.

Similarly, y, , =(1-V)’y, and so on.
In general, Yo =(1-V)'y,
Yor =¥a = CVy, +* C,V2y, —....+(=1) V¥y,

Central differences: Sometimes, it is more convenient to employ another system of differences
known as central differences. In this system the symbol is used instead of A and is known as
central difference operator. The subscript of for any difference is the average of the subscripts of
the two members of the difference.

Yi=Yo =120 Y2 Y1 =850, Y5 — Y2 =8 g5

For higher order differences, we have

8Y5/2:=8Y1), =8°Y1 81,0, —0°Y,, =8y, =8V, s 3y, =8y, =8%y,,,,
and so on.

The central differences are tabulated below:

X y = {(x) 1st 2nd 3rd 4th 5th
argument entry diff. differences diff. diff. differences
X, yo
dy,,
X, =X,+h yi &y,
8y, Y5/
X, =X, +2h y2 3%y, 8%y,
‘ 3y, 8Ys,2 8y,
X, =X, +3h y3 8y, d'y,
3y, 8V
X, =X, +4h y4 3%y,
sy,

X, =X, +5h ys

We can see from the table that central differences on the same horizontal line have the same
suffix. Also, all odd differences have a fractional suffix, and the even differences have integer
suffix. '
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Note:

1. From all the three tables, we can see that only the notation changes, not the differences. For
examples,

Y1 =¥, =4y, =4y, =9y,
2. If wewrite y=f(x)as y=f, or y=y, then the entries corresponding to x, x+h, x + 2h, .....
AL Y., Voons Yon oeeeee respectively, and
AV, =Y = Yer A’Y, =4y, Ay, soon.
similarly, Vy, =y, -y, .,

8}’x = YX+%}1 - yx%h and SO Oon.

4.4 DIFFERENCE OPERATORS

In this section we introduce three difference operators namely forward, backward and central
difference operations. Consider the function y = f(x). Suppose we are given table of values of the
function at the points

Xg, X1 = Xp +h, Xy =Xq +2h""’xn =X, +nh.
Let f(XO) = yO, f(x1) = Y1 ey f(X.n) = yn'
We define

l A[f(x):|=f(x+h)—f(x). |

Thus Ayq = f(xo +h)—f(Xo) = f(Xl)—f(Xo) =¥1"Yo-
Similarly Ay, = y,-y,

AYn—l = Yn _Yn—l

A is called the forward difference operator and Ayg,Ayy,---Ay,_jare called the first forward
difference of the functions y = f(x).

The second order differences of the function are defined by
2
A%yo = Ay1-Ayp
2
Ay = Ay; -4y,
2
A%Yn1=Ays ~Ayna

In the similar manner higher order difference can be defined. In general the nth order differences are
defined by the equations
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-1 -1
Ay = A"y —A Ty

These differences of the function y = {(x) can be systematically represented in the form of the table
called forward difference table. We can construct the difference table for any number of arguments and
a sample difference table is given for six consecutive arguments.

Forward Differences Table

X y = {(x) Ay A2y A3y A4y Asy
X0 yo
Ayg
x1 = xo0 +h vt AZYo
Ayq Ay,
=x0 + 2h 2 4
X2=Xo y2 A%y, Aty
A2 Ay, Ay,
=xo + 3h 2 4
X3=X0 3 Aly, A%y,
Ay Ay,
x4=%0 + 4h v A2y3
Ay,
x5 = xo +5h ys

Note: In this table yo is known as the first entry and Ay,,A2y,,--,A%y, are called leading differences.
¥ ry Y0,8 Yo Yo 8

Remark. Since each higher older difference is defined in the terms of the previous lower differences by
continuous substitution each higher order difference can be expressed in terms of the values of the
function. '

Thus, Ay, = Ay, - Ay,
=(r2-v1)~(31-v0)=y2-2y1+Y0
Ay, =A%y, - A%y,
=(y3-2y2+y1)~(v2-2y1 +v0) =¥3 =3y2 +3y1 - Yo
atys =8’y -4y
=(v4-3y3+3y2-v1)~ (73 -3v2+3y1 - v0)

=y4—4y3+6yy —4y1 +Yo.

We observe that the coefficients occurring in the RHS are simply the binomial coefficients in (1 - x)"
Hence in the general we have
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AnYO =¥Yn " 0c1¥n-1 T 0c2Yp 2+t (_1)11 Yo

Properties of the Operator A
1. A islinear. ie. A[af(x)+bg (x)]= aA[f(x) ]+ bA[g(x)] where a, b are constants.

Proof.  Afaf(x)+bg(x)]=[af (x+h)+bg (x+h)]—[af(x) + bg(x)]
=a[f(x+h)-f(x)]+b[g(x+h)-g(x)]
_aA[f(x)]+bA[g (x)]
2. ATAMf(x)]= A" [f(x)]
Proof.-  A™A"[f(x)]=(AA--m times) (AA--- ntimes)f(x)
=[AA--(m +n) times] £(x)

= AT f(x)].
3. A[f(x)g(x)]=f(x+h)A[g(x):|+g(x)A [f(x)]
Proof. A[f(x)g(x)]=f(x+h) (x+h)-f(x)g(x)

=f(x+h) (x+h)- (x+h )g(x) [f x+h)g(x)-f(x)g(x )]
=f(x+h)[g(x+h) - g(x)]+ g(x)[f (x+ h) - {(x)]
={(x+h)Alg(x)]+ g(x)Alf ()]
. A[f(x)]zg(x)A[f(xn—f(x)Atg(x)]
g(x) g(x+h)g(x)
f(x) f(x+h) f(x)
roof. -
’ A{goo} sxh) g
f(x+h)g(x)-f(x)g(x+h)
g(x+h)g(x)
f(x+h)g(x) - f(x)g(x) +f(x)g(x) — f(x)g(x+ h)
g(x+h)g(x)
g(x)[f(x+h)—f(x)]-f(x)[g(x+h) - g(x)]
g(x+h)g(x)
g(x)A[f(x)]-f(x)A[g(x)]
g(x+h)g(x)

Backward Differences

Consider the function y = f(x). Suppose we are given a table of values of the function at the points.

X,,X, =X, +h,x, =x, +2h,...x, =x, +nh
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Let f(XO) =Y >(X1) =Y
We define

Thus, Vy,

V is called the backward difference operator and Vy,,Vy,,

i (X,

)= Yo

V[f()]

f(x)—f(x—h)

Yi= %o
Y™V

y{l - Yn—l'

differences of the function y = {(x).

The second order difference of the function are defined by

VzYz
sz}

vy,

Vy, = Vy,
Vy; = Vy,
VYn - V.Yn—l'

M.S. University - D.D.C.E.

. Vy, are called the first order backward

In a similar manner higher order difference can be defined. In general the nth order difference are

defined by

vy, =V ly, — Vil |

These difference of the function y = f(x) can be systematically represented in the form of a table called
backward difference table.

Backward Difference Table (for 6 arguments)

X y = ) Vy Viy Viy Viy Viy
X0 yo
Vy,
x,=x%,+h v, Viy,
vy, V3Y3
x, =X, +2h Y, Viy, Viy,
vy v’y v’y
x,=x,+3h v, Viy, vy,
vy, vy,
x, =X, +4h Y, Viy,
Vy,
X; =X, +5h Vs
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Remark 1. The relation between the two difference operations is given by V[f(x+h)]= Af(x).
For, V[£(x+h)]=f(x+h)—f(x) = Af(x)

Similarly V2[E(x+2h)] = V[f(x+2h)—f(x+h)]
~ Vi(x+2h)— VE(x+h)

= Af(x+h)-Af(x)

= A[f(x+h)-f(x)]

- AY(x)

In general |V[f(x+nh)]= A" (x).

Hence from the forward difference table of the function f(x) we can obtain backward difference of all
orders.

Central Difference Operator

Sometimes it is convenient to employ another system of differences known as central differences. We
define central difference operator § as

Thus if f(x;) = yi then we have

8}’1 = "%
2

8y, = ¥~
2

8at = Ya=You

2

Here the subject of dy is the average of the subscripts of the two members of the difference. The higher
order differences can be defined similar to forward and backward differences.

&y, = 8}’;_8}’1
2

2

82)’2

dys — dy;
2

2

&%y, - &%y, etc.

fizyZ

2
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These differences of the function y = f(x) can be systematically represented in the form of a table
called central difference table.

Central Difference Table

X y=1(x) Sy &y 8y 'y
X0 Yo
3y,
2
x,=%,+h v, 8%y,
8y, 8’ ¥s
2 2
X; =% +2h Y2 52}’2 84}’2
dys 83yE
2 2
X, =X, +3h Y, 8y,
dy,
2
x, =x,+4h Y,

Example 3: Form the forward difference table for the following data.

X: 0 1 2 3 4
y: 8 11 9 15 6
Solution:
X y Ay Ay A’y A'y
0 8
3
1 11 -5
-2 13
2 9 8 -36
6 -23
3 15 -15
-9
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Example 4. Find the first and second order differences for f(x) = ab™
Solution:

Af(x) f(x+h)-f(x)
ab“) _ g

ab™b® — ab™
ab™(b™ - 1)
(b® — 1)ab™

Af(x) = (b®-1)A(ab™)

(b™ —1)[(b* ~1)ab™]
= (b -1 ab™.

Example 5: Find the second difference of the polynomial. '
f(x)=x" —12x’ +42x* —30x+9 with h= 2.
Solution: First we shall express the given polynomial {(x) in terms of factorial polynomial by synthetic
division with h = 2.
o1 -12 42 -30 9

0 0 0 O
211 -12 42 -30(9

2 20 44
41 10 22 | 44
4 24
6|1 -6 | -2
-
1]0

nf(x) = x®-2x +14xP 49,
LA(x) = 8x) —8x™ +28 (+h=2)
Af(x) = 48x7-16
= 48x(x-2)-16

= 48%* —96x-16.
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Example 6: Find the function whose first difference is x* +3x* +5x +12.
Solution: Given Ay=x’ +3x’ +5x+12.

We express this in terms of factorial polynomial.

13 5 12
00 0
11 3 5]12
1 4
214|9
2.
e

sAy = xV+6x® +9xV 412
ny o= AV +6x? 495 +12]

@ @
X 9x
- ot 25 =t 12xY +¢

= %[x(x— D(x-2)(x—3)]+2[x(x— 1) (x- 2)]+%x(x— D+12x+c¢
. _ 1
Example 7: If y= et DOxs ) 0nt7) show that
Ay 108
Y= Bx+ ) (3x+ 4) (3x+ 7) (3x + 10) (3x+ 13)

Solution:

_ 1

YT Bxe)(x+4)(3x47)
1
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P Ay = i(—s)(x—g)H)

G R R e iR

12x3°
27(3x+ 1) (3x+ 4)(3x+7) (3x+ 10) (3x+ 13)

108
(3x+1D)(3x+4)(3x+7)(3x+ 10)(3x+ 13)

4.5 OTHER DIFFERENCE OPERATORS

In this section we introduce the shift operator E and averaging operator p.

Definition. The shift operator E is defined by
[Ef(x) =f(x+h)|

Hence E*(x)=Ef(x+h)=f(x+2h)

In general for any positive integer n

E"f(x) =f (x+ nh)|

In particular we have Ey, = vy,
Ey, = v,
EHYO = Yn 3

This inverse operator E™ is define as

[E"f(x)=f(x~h)|

For any real number n we have

|E"f(x) = f(x~nh)|

Note. E™E"(x) = E™"f(x).
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Definition. The averaging operator p is defined by

- f(x+gj+f(x—%)

2

There are several relations connecting the operators A, V, 8, E, p and the differentiation operator D.

4.6 ERROR PROPAGATION IN DIFFERENCE TABLE

Formation of difference table for a set of given data involves entry of data followed by successive
subtractions of these data to find the difference of various orders. Hence if there is an error in the value
of {(x) for a given x when higher order differences are calculated the errors spreads out and magnified.
The following table shows how an error in € in ys is propagated, ’

X y Ay Ay A’y Aty
0 Yo
Ay,
1 b4 Ay,
Ay, A’y,
2 Y2 Ay, A'y, -
Ay, A3y1 - -7
3 Y Ay, A —7 Aly+e
Ay, //////// Ay, +e
4 VA T -7 A2y3+e A4y2—4e
////"// Ay,+¢€ Ay, -3e
S ys+e€ Aly,-2e Ay, +6e
\\"‘\\\\ Ay,—e Ay, +3€
6 Ve \\\\\\\\ A2y5+e A4y4—4e
Ay, \\\\\\\ I Ay,—€
7 Y, A%y, TTTeel | A'yire
Ay, Ay, \\\\\\~
8 Ys A%y,
Ayy
? Yo
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From the above difference table the following facts are immediate.
1. The error increases with the order of differences.

2. The error spreads out fanwise and the error propagation is confined to a triangular region with
vertex at the point where the error is committed.

3. The errors in ™ column are given by the binomial coefficients of the expansion (1 - €)". Thus
in the fourth difference Column V*y the errors are €, -4¢, 6, -4 €, €.

4. The algebraic sum of the errors in any column of the difference table is zero.
5. The maximum error, in each column, appears opposite to us.
The above facts enable us to detect errors in the difference table.

Example 8: The following is a table of values of a polynomial of degree 5. It is known that there is
an error in y3. Correct the error.

X 0 1 2 3 4 5 6
y 1 4 43 264 1093 3256 | 7999

Solution: Given ys = 264 is not correct. Let € be the error in 264. Let the actual value of
y, =264+€.

The difference table is formed as follows.

X y Ay A’y A’y Ay A’y
0 1
3
1 4 36
39 146 + €
2 43 182 + € 280 - 4¢
221 + € 426 - 3e 20 + 10e
3 | 264+¢€ 608 -2¢ 300 + 6¢
829 -¢€ 726 + 3e 220 - 10e
4 1093 1344 + € 520 - 4¢
2163 1246 - ¢
5 3256 2580
4743
6 7999

Since y = f(x) is a polynomial of degree 5, by fundamental theorem of finite differences A’y is

constant for all x.
= In particular A’y, = A’y, = constant

20+10e = 220-10e
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20e
bE

200. Hence €=10.
264 + €=264+10=274.

M.S. University - D.D.C.E.

Example 9: In the following table one value of y is incorrect and y is a cubic polynomial in x.

Construct a difference table for y and use it to locate and correct the wrong value.

X 0 1 2 3 4 5 6 7
y| 25| 21 18 18| 27| 45} 76 | 123
Solution: We form the difference table as follows.
X y Ay A’y A’y Error in A’y
0 25
4
1] 2 1 |
-3 2
2 18| _— 3 3+ (- 1)
1 o 6
3 18 9 3+(+3)
\ 9 0
Y 9 3+ (43)
18 4
5 | 45 13 3+ (1)
31 3
6 76 16
47
7 123

Since y is a polynomial of degree 3 the third difference A’y must be constant.

. . . . 15
The sum, of the entries in A’y column is 15. Hence each entry in this column must be <= 3.

There is one entry 3. Hence there are errors in the first four entries in A’y column.

Writing these 4 incorrect entries as in error propagation table, we have

2=3+(-1); 6+3-3(-1); 0=3+3(~1); 4=3—(-1)

We find the error €=—1 and it is against the entry 18 corresponding to x = 3.

- Correct value of y(3)=18-(~1)=19.



M.S. University - D.D.C.E. Finite Differences 75

4.7 SUMMATION OF SERIES

The concept of finite differences can be applied to find the sum to n terms of a given series.

n
Lets, =v, +v,+-+v_ :z’vi
i=1

Let v, = Au; so that u; = A,

SV, =Ay; =y, ~u, (Takingh=1)
Thus v, = u-u
vV, = 0w
Vn = un+1 - un *

= DY = -—_— = _1 —_— _1
Hence s, =v,+v,+-+v =u  —u=A"v_ —A v1.|

Montmorts Theorem
u, XAy, XAy,
+ ~+ 4+
I-x (1-x)° (1-%)

2
U tux+u,x +-0 =

Proof.

2 2
Uy +ux+ X+ U, +xu, +xu,

u, +uEu, +x°E’u, +---

[1+xE+XE? + - u,

(I_XE)_luo
1
(1-xE)

1
1—x(1+4)

Uy
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Example 10: Sum the series to n terms of

M.S. University - D.D.C.E.

1 [1+
1-x

Yy

xA + x*A’ +oly
1-x (1-x)° °

xAu, x Ay, +

+
1-x (1-x)

Tiwy

123 + 234 +345. + ...

Solution: The n™ term of the series is given by

Vn

Example 11: Sum of n terms of the series 1.3.5

Solution: The n™ term of the series is

n(n+1){n+2)=(n+2)(n+1)n
(n+2) (with h=1)

I
A a1
Zvi—A Vo —ATV,

1=1

A'(n+3) —A,,

(n+3)®

-0

%(n+3)(n+2)(n+1)n

%n(n+1)(n+2)(n+3)

+ 246 + ...

n(n+2)(n+4)

n’ +6n’ +8n

We express n’ +6n’ +8n as factorial polynomial with h = 1.

0|16 8 O
0 0
111 6 8 |0
1 7
211 7 |15
2
1|9
v. = n®+9n? +150"
Now s =

1

oAl -1
ZVi-—A Vo —ATv,
i1

A [(n+1)? +9(n+1)? +15(n +1)" ]
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(n+1?  9n+1)” L 15+ 1)
(n+Dn(n~1)(n-2)

= 7 +3(n+ 1)n(n—1)+1—25(n+1)n

- @[nz—3n+2+12n—12+30:|

n(n+1)(n’ +9n+20)
4

n(n+1)(n+4)(n+5)
p .

Check Your Progress

1. AV=..

(@ AV by A+V © A-V d EAV
2. Which of the following result is true?

@)  Ax® = pxi* b)  Ax® = px®

() Ate*=e" () Acosx=sinx

3. The relation between E (shifting operator) and D (operator of differentiation) is

(2 E=e® (b) E=¢™ (0 D=IlogE (d D=e*
4. If the interval of differencing being unity, then A’[(1-x)(1-3x)(1-5%)]=
(@ -6 (d -90 © -15 (d) none
5. If A denotes the forward difference operator, f(x,)=f, and g(x,)=g, then A(f,g,) is
equal to
@  fAg, +g, Af, (b)  fi Mg + g Afy
©  fAgu + 8 Afy, (d) £ A + 8 Af,

4.8 LET US SUM UP

The eigenvalue problem is a problem of considerable theoretical interest and wide-ranging application.
For example, this problem is crucial in solving systems of differential equations, analyzing population
growth models, and calculating powers of matrices (in order to define the exponential matrix). The
values of the independent variable x are usually called the argument and the corresponding functional
value is known as the entry. In engineering and science one often has a number of data points, as
obtained by sampling or experimentation, and tries to construct a function which closely fits those
data points. This is called curve fitting or regression analysis. Interpolation is a specific case of curve
fitting, in which the function must go exactly through the data points.
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4.9 KEYWORD
Stirling's formula:

Ay, + Ay 2 plp’-1) (A +A%.,) p(p*-1
yp:yo-}-p(l)__zLj_{_%Azy_l_’_ ( 3' )X YI2 YZ + (4' )A4y_2+....

4,10 QUESTIONS FOR DISCUSSION
1. Show that

@) §=V(1-V)yV? (i) p= [1+ﬂ

2. Construct the diiference table for the sequence values
fx) = (0,0,0,¢,0,0,0)

where * is an error. Also show that (i) the error spreads and increases in magnitude as the order of
differences is increased, (ii) the errors in each column have binomial coefficient.

3. For the matrix

12 =2 322
@ A=[1 1 1 @) A=|2 5 2
13 -1 2 23

(2) Find all the eigen values and the corresponding eigenvectors.

(b) Verify that * is a diagonal matrix, where S is the matrix of eigenvectors

Check Your Progress: Model Answers
(@)
(b)
(@)
(b)
d)

4.11 SUGGESTED READINGS
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5.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
®  Explain Newton’s Interpolation Formulae
® Discuss Central Difference Interpolation Formulae

®  Understand Lagrange’s Interpolation Formula

5.1 INTRODUCTION

In our daily life we are sometimes confronted with the problem of finding the value of a function for
some value in the given interval with the help of a given set of observations. For example if we are to
find out the population of India in 1954 when we know that the census in India is done in 1941, 1951,
1961, 1971, and so on i.e. the figures of population are available for 1941, 1951, 1961, 1971 etc., then
the process of finding this figure is known as interpolation.

5.2 NEWTON’S INTERPOLATION FORMULAE

We now derive two important interpolation formulae by means of the forward and backward
differences of a function. These formulae are often employed in engineering and scientific problems.

Let the function y=f(x) take the wvalues Vor Vis Vareeee corresponding to the values
Xo> Xg +h, %, +2h,..... of x. Suppose it is required to evaluate f (x)=x=x,+ph, where p is any real
number.
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For any real number p, we have defined E such that

Eff(x) = f(x+ph)
vo = f(x,+ph)=Ef(x,)=(1+A)"y,
_ {1+pA+ p(p—1) ., p(p-1)(p=-2) +-"}Yo
2! 3!
[using Binomial theorem]
. -1 ~1)(p-2
Le. Yo = ¥,+PpAy, +————p(2' )Azyo +____P(p ) )A3y + e (1)

3! ?
It is called Newton’s forward interpolation formula as (1) Contains yo and the forward difference of yo.

Obs. This formula is used for interpolating the values of y near the end of a set of tabulated values and
also for extrapolating values of y a little ahead (to the right) of yo.

5.3 CENTRAL DIFFERENCE INTERPOLATION FORMULAE

Gauss's forward interpolation formula is

p(p+2) o, (p2p(p-1) s (+Dp(p=D(p=2) .
2! B 3! B 4!

Yo = YotpAY,+ Vot (D)

Gauss's backward interpolation formula is

+1 +1 -1 +2)(P+1 -1
v = yotbpay,+8 2')pAzy_1+(p );(P ) py, 4 22 4')P(P ) o

Votee (2

Taking the mean of (1) and (2), we obtain

{ Ay. + Ay 2 p(p’-1) (A’y. +A%,) P (p'-1
yp = y°+PL YOZ YI]"‘%"AZY_H' (3' )X Y12 Ya |4 ( )

i Ay, +. ..(3)

which is called Stirling's formula.

Cor. In the central differences notation, (3) takes the form

p(p2+12)
3!

\
pz(Pz _12)

2l &'y, + o

2
Yo = Yo+pudy, +%82}’0 + ud’y, +

for

1
(AYO + AY—1) 5(8}’1/2 + 8}’—1/2) = U 8y,

N | =

1
E(ABY—l + A3Y—2) ';"(63371/2 + 63y71/2) =H 63Yoetc'

Obs. This formula involves means of the odd differences just above and below the central line and even
differences on this line as shown below:

Ay. A? A .
yo( Y 1)....A2y_1....( 3y'2J Ay ( sy_3j...A6y_3....Central line
Ay, Ay, Ay

-2
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5.4 LAGRANGE'’S INTERPOLATION

Let f(x,),f(x,)...f(x,) be the values of the unction y=f(x) corresponding to the arguments

X, Xy, ...X,, Not necessarily equally spaced.
Let f(x) be a polynomial in x of degree n. Then we can represent f(x) as
fx) = a,(x—x)(x—x,)..(x~x,)+3, (x—x%,)(x—%,)(x—%, )+ ta, (x—x)(x=x%)(x=%,_,) (1)
where a,a,,..a, are constants.
Now we have to determine the (n + 1) constant a;, a;, ...a,
Putting x =x, in (1), we get

f(x) = a(x—%)(x =%, )(x,— x,)

f(x,)

e BT 2
(XO - X1)(Xo _XZ)“'(XO - Xn) ( )

Putting x=x, in (1), we get,
f(x,)
a = fx,) .09

a (X1 - xo)(x1 - xz).g..(x1 - xn)

1.e. (X1 — X, )(Xl - X, )....(X1 - Xn)
im f (Xz)
imilarl n =
S Y (Xz X, )(Xz Xl)....(x2 -X, ) (4)

@ = ..(5)

Substituting (2), (3), (4), (5) in (1), we get,
(x—x)(x-x, ) (x~x,) (x— %, )(x— %, )(x—%,)
fx = f(x, f(x,
e g gy L e g )

(X_Xo)(X—Xl)....(x—xn_l)
(%, =% )(x, =, )(x, _Xn—l)f(xn)

+

If we denote f(x,),f(x,), -f(X,) BY Vo5 Vipeerrrrons y, we get,
) (x—x,)(x—x;)-e(x—%,) . (x:xo)(x-—xz)....(x—xn)

(xO - X1)(Xo —xz)...(x0 - xn)

which is Lagrange's interpolation formula.
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Notes:
1. When the arguments x;, Xj,.cccnn x, are not equally spaced then we can use this formula to find y
for any x.

2. The above formula can also be written as

_ov )
fx) = g(x_xr)‘b,(xr) h .(6)

]
E::

Proof:  Given ¢(x)

(x-x,)
= (x—xo)(x—xl)(x—xz) e (x—X%,)

Since ¢(x) is the product of (n+1) factors, the usual process of differentiation produces ¢’(x) as the sum
of (n+1) terms, in each of which one factors has been differentiated as given below:

0'(x) = (x—x)(x—%,)m(x-x%,)+(x—x)(x—%,)...(x—X,)
+H{x—%, ) (x =%, ) (x— %, )
Now, q)'(xo) = (XO -x,)(x, - xz) ..... (x0 -x,)
o'(x) = (Xl Xo)(x1 X, ) (%) _Xn)
(b'(xn) = (x “Xo)(xn xl) ..... (xn —-%,1)

0(f(x) | o(f(x) |, | o()f(x)

core

(x=x)0'(x)  (x=x)0'(x) " (x-%,)0'(x,)
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4 (x—xo)(x—xl) (x Xn—l) e —
(Xn—xo)(xn—-xl) ...... (Xn“Xn_l)f( n) f(x)

Check Your Progress
te]

1. For the factorial function x" =x(x~h) (x~2h)...(x~rh+h). The value of A’x®” and
A™ x are:
@ r(r-1)hx"?; ®) [0
© r(r-Dh*x"? 0 d =0

2. Ifthe 5* and higher order differences of a function vanish, then the function represents a
polynomial of degree

@ 4 b) 2

© 5 d 3
3. Which of the following is not correct
(@ A=E-1 (b) V=1-E!
€ 8=EV’-E? (d) none
4. Newton's forward interpolation formula is used for interpolating the values of the
function.

() near of beginning of a set of tabulated values
(b) near the end of a set of tabulated values
(c) near the middle of a set of tabulated values
(d) none

5. Lagrange interpolation formula is used
(a) near the beginning of the tabulated values
(b) near the end of the tabulated values

(©) near the middle of the tabulated values
(d) all of these

5.5 LET US SUM UP

In the mathematical subfield of numerical analysis, interpolation is a method of constructing new data
points within the range of a discrete set of known data points.

A different problem which is closely related to interpolation is the approximation of a complicated
function by a simple function. Suppose we know the function but it is too complex to evaluate
efficiently. Then we could pick a few known data points from the complicated function, creating a
lookup table, and try to interpolate those data points to construct a simpler function. Of course, when
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using the simple function to calculate new data points we usually do not receive the same result as
when using the original function, but depending on the problem domain and the interpolation method
used the gain in simplicity might offset the error.

5.6 KEYWORDS
Neuton's foruard interpolation:
p(p-1 plp—-1)ip-2
yp = YV, t+pAy, + (2' )A2y0+ ( 3)'( )A3yo+....
Newton's back ward interpolation:
plp+1 plp+l(p+2
ye = v, +pVy, + (2' )szn+ ( 3)'( )szn+ .....
Stirling's formula:
Ay, +Ay ) | P’ p(p’-1) (Aly, +Ay,) P'(p'-1
Vo = YQ+P( YO2 YI)+P—'A2y_1+ (3' )>< Y12 Y2 |, (4' )A4y_2+

Gauss's foruard interpolation formula:

p+2) . (p*1pp-1) s
21 3!
Gauss's backward interpolation formula :

(p+p ., (p+Dp(p=1) s
2!

Yo = Yo +PAY,+

Yo = Yo+pAy,+
Lagrange's interpolation:
- (x-x)(x—%,)(x-%,) s (x— % )(x—%,)e(x—%,)
T )bl n) " Tl x)
(x—x )(x =%, ) (x - %)

(%= %) (% %) (3, ~ %) O

5.7 QUESTIONS FOR DISCUSSION

2
1.  Provethat 1+ 8’ =(1+%82)

2. Provethat f(4)=f(3)+Af (2)+ A (1)+ A% (1)
3. The following data give I, the indicated HP and V, the speed in knots developed by a ship.

\% 8 10 12 14 16
I | 1000 | 1900 | 3250 | 5400 | 8950

Find I when V = 9, using Newton's forward interpolation formula.
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4. The amount A of substance remaining in a reacting system after an internal of time t in a certain

chemical experiment is tabulated below.

t{min) 2

5

8

11

A(gm) | 948 | 87.9

81.3

75.1

obtain the value of A where t = 9 using Newton's backward interpolation formula.

5.  Find a polynomial which take the following values

x |1 |3 5 7 9 11
y. |3 |14 |19 |21 |23 |28
and hence compute yxat x = 2, 12
6. The following are data from the steam table:
temp i(t) 140 | 150 |160 |170 | 180
Pressure kgf/cm?(p) | 3.685 | 4.854 |6.302 |8.076 | 10.225

using Newton's formula, find the pressure of the steam for temperatures 142° and 175,

7. Give the following table, find y(35) by using stirling's formula and Bessel's formula

x: |20 30 40 50
y: | 512 | 439 |346 | 243
8.  Use Lagrange and the divided difference formula to calculate (3) from the following table :
X 0 1 2 415 6
fx) | 1] 14| 15]5]6]| 14

Check Your Progress: Model Answers
L. (o

2. (@
3.
4. (2
5. (d)

5.8 SUGGESTED READINGS

S.S. Sastri., Introductory Methods of Numerical Analysis, Second Edition, Prentice Hall.

S. Mohan Naidu., A Text Book of Mathematical Methods for Scientific Engineers, Students Helpline Series, Hyd -

2005.

Jain, M.K., Iyengar, S.R.K., Jain, R.K., Numerical Methods for Scientific and Engineering Computation, 3rd Edition,

New Age International (P) Ltd., 1993.
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6.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

Explain Newton’s Divided Difference Formula

Discuss Inverse Interpolation

6.1 INTRODUCTION

A polynomial P(x) is called the interpolating polynomial if the values of P(x) and/or its certain
derivatives coincide with those of f(x) and/or its same order derivatives at one or more tabular points.

6.2 NEWTON’S DIVIDED DIFFERENCE FORMULA

The linear Newton divided difference interpolation is easy to generalize. We define the higher order

divided differences as

f[xl,xz]—f[xo,xl] _

f(x,)—f(x,) _ fx,) —f(x,)

f[xo,xl,xz]
X, — X,

f(x,)

(x, —%,)(x, = %;)

+ +
I —% x-x

(%, — % )(x, — %)
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f(x,)

f(x,)

f(x,)

(% —x)(% —%,) (x, -%)(x,—%,) (%, — X )(%, — %)

f[xl,xz,n-xk]—f[xo,xl,--'xk_l]

f[xo,xl,xz,---,xk_l,xk]

k = 3,4,..,n

In terms of function values, the nth divided difference can be written as

Xy — X

flgxpxynr,] = 3100
i=o]._I(Xi—Xj)
=0

1#]

The divided differences may be calculated with the help of Table 6.1

Table 6.1: Divided Difference (d.d) Table

first d.d. second d.d. third d.d.
X, fix,]
X, f[x,] fx,,%,]
X, f[x,] f[x,,x,] fx,,x,,%,]
% | ]| ] | sl | fixx.x.x]
Note that
flx,,x,] = f[x,x,]
fx,,x,x,] = f[x,,x,%,]etc.

Divided Differences 89

The interpolating polynomial P,(x), interpolating at the n+1 distinct points x,,x,, --,x, can also be

written as

P(x) = a +(x—x)a +H(x-%,)(x—x)a, +o b (X% ) (X -, )a,

Substituting successively x=x,,x=x,,---,x=x_, we obtain

P(x,) = ‘f[x0]=ao.

Pn(xl) = f[xl]zao+(xl—xo)a1=f[xo]+(xl_x0)a1
Or a1 = sz[xo3x1]a
X — X%
P(x,) = f[Xz]=ao+(xz'“Xo)al‘i'(xz_xo)(xz_’(1)512
- 1 T T (s — . )d A% ]
Or a2 = e — f[xz] f[xo] (x, xo){ —

j
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fl] ,  flx]  fix)]
(% —%)(% —%,) (% —-%)(x,-%,) (x,-%)(x,—%,)
={[x,,x.,%, ]
Using induction, we can prove that
an = I[x,,%x, %, ]
The divided difference interpolating polynomial becomes
P(x) = fx]+(x—x)f[xp,x ]+ +(x=x ) (x—x,_ [0, %0 ,%, |-

Note that, since the interpolating polynomial is unique, Lagrange and divided difference polynomials
are two different forms of the same polynomial.

6.3 INVERSE INTERPOLATION

So far given a table of values of x and y, using one of the interpolation formulae we find the value of y
corresponding to some value of x for some value of y which is not in the table. On the other hand the
process of estimating the value of x for some value of y which is not in the table is called inverse
interpolation. There are two methods for inverse interpolation. There are two methods for inverse
interpolation, one when the values are unequally spaced and another when the values are equally
spaced.

Lagrange’s Method

This method is used when the values of x are unequally spaced. Lagrange’s interpolation formula can
be simple viewed as a relation between two variables and any one of the variable can be taken as an
independent variable. Therefore interchanging the variables x and y in Lagrange’s Formula we get

G-)G=y)-6=%) , =y)-5%)--v)
%= y)Fe 7)o =%) ° =) (i—¥2) (v - ¥a)
(Y—YO)(Y_Yl)"'(Y_Yn—l) <
(% = %) 5 =v1)(¥a = ¥arr) "

X= 1

+--4

which is used for inverse interpolation
Iterative Method

Newton’s forward difference formula is

P(Pz_l)Azyo+_“+P(P_1)"'(P_n_1)Any

Yp = Yo tPAy, + | ol o
1 _plp=1) .. plp=D(p-2),;
p = AYO[YP—YO Y Ay, - 31 Ay = |.

Neglecting the second and higher order differences we obtain the first approximation to p given by
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1
pt = Ayo(yp Yo)-

To find the second approximation to p we retain the term with second difference and replace p by p

_ ___1”_ _ p(pi—D .2
v R T A
To find the third approximation we retain the terms upto third order difference and replace p by p2.
_ __L— _ Pp. 1) .2 PP, —D(p,=2) 5
= Yoo AV 30 AYs |-

Continue this process till the successive values of p are approximately equal.
Example
Problem 1: Find the value of x correct to one decimal place for which y = 7 given

x |1 [3 |4
vy |4 |12 |19

Solution: We have to find x wheny = 7.

We need to use Lagrange’s inverse interpolation formula.

Here
=L x=3 x,=4
Yo=4 v,=12 y,=19

-y)y-v) (=) r-y2) (y=yo)(y—y1)
T (Yo = 7)(¥o = 72) S (i = ¥) (1 = 72) T (v, = ¥o)(v2 = 1) %
7-12(7-19) ,, (-90=19) ., (-4)07-12)
(4-12)(4—19)" (12-4)(12-19) ~ (19— 4)(19- 12)
0.5 + 1.9286 - 0.5714
1.8572.

Problem 2: Tabulate y=x’ for x = 2, 3, 4, 5 and calculate the cube root of 10 correct of three decimal

places.
Solution: For x = 2, 3, 4, 5 the values of y are 8, 27, 64, 125 respectively.

Here h = 1. We form the forward difference table.

y Ay Ay Ay
2 8
19
3 27 18
37 6
4 64 24
61
5 125
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The first approximation is given by

1
pt = A—y;(}’p‘}’o)
1
= —(10-8
5(10-9)
= 0.1.

- L P1(P1_1) 2
pz = Ayo[yp—yo——z!—Ayo
- i{m—s (01)(01 1)(18)}
10
= 0.15.

The third approximation is

M.S. University - D.D.C.E.

o2, ]

3!

_ 015015~ 1)(0.15-2) 6]

3!

x 18—

3( 3_1)( 3—2) 3
p:(p 3’!p AVO}

0.1532(0.1532— 1)(0.1532- 2)

— 1 _ P (Pz -1 .,
P [Yp Yo o A
_ i[10—8—o'15(o'15_1)x18
19 2!
= 0.1532.
The fourth approximation is
_ 1 ps(ps—1) .-
. [Yp Yom A%~
_ il:lO— g 0.1532(0.1532- 1)
19 2!
= 0.1541.
The fifth approximation is
_ 1 p.(p. -1
ps = AYO[YP Yom T TAYS

3!

4 4—1(4_2) 3
_pi(p 3)!9 Ayo]

_ 0.1541(0.1541- 1)(0.1541~ 2)

19

_ —1—[10—8— 0.1541(0.1541— 1)>< 18

2!

0.1542.

Hence p, ~ p, =0.154 (Correct to 3 places of decimals)

3!

2

8
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We have to find /10 Since 10 lies between the values of y corresponding to x = 2 and x = 3, the
required value of 3/10 is2 + hps = 2 + 0.154 = 2.154.

Check Your Progress|

Using Newton’s divided difference formula evaluate (8) given that

x | 4 5 7 10 11 13
f) | 48 | 100 | 294 | 900 | 1210 | 2028

6.4 LET US SUM UP

Lagrange’s interpolation formula has the disadvantage that if another interpolation value were inserted
then we have to recomputed the interpolation coefficients. Hence it is desirable to have an
interpolation formula which has the property that a polynomial of higher degree may be derived from
it by simply adding new terms. Newton’s divided difference formula is one such formula and this
formula employs the concept of divided differenced, which had introduced.

6.5 KEYWORDS

Neuton’s divided difference formula: This formula employs the concept of divided differences.

Inverse Interpolation: The process of estimating the value of x for some value of y which is not in the
table.

6.6 QUESTION FOR DISCUSSION

1. Find out the equation of the cubic curve which passes through points (4:43) (7,327) and (12,
1053). Hence find £(10).

Check Your Progress: Model Answer
Newton’s divided difference formula is
£(x) =1(x;) + (x = % )[ %5, %, 1+ (x — %) (x = %, )[%,, X, X, ]+ .
At x = 8 we have
f8) = 48+ (8—4)[4,5]+ (8- 4)(8-5)[4,5,7]
+(8—4)(8-5)(8~-7)[4,5,7,10]
+(8-4)(8-5)(8-7)(8 - 10)[4,5,7,10]
+8-4)(8—5)(8~7)(8—10)(8~11)[4,5,7,10,11]
+(8-4)(8-5)(8-7)(8 - 10)(8 - 11)(8 - 13)[4,5,7,10,11,13]

Contd...
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The divided difference table is given below

X f(x) | Firstdiv.diff | Second div. diff | Third div. diff | Fourth div. diff | Fifth div. diff
48
52
5 100 15
97 1
7 294 21 0
202 1 0
10 900 27 0
310 1
11 1210 33
409
13 | 2028

Substituting the values of all divided differences from the divided difference table we have

f8) = 48+(4%x52)+(4x3x15)+(4x3x1x1)
= 48+208+180+12
= 448
6.7 SUGGESTED READINGS

S.S. Sastri., Introductory Methods of Numerical Analysis, Second Edition, Prentice Hall.

S. Mohan Naidu., A Text Book of Mathematical Methods for Scientific Engineers, Students Helpline Series, Hyd -
2005.

Jain, MK, Iyengar, S.R K., Jain, R.K., Numerical Methods for Scientific and Engineering Computation, 3rd Edition,
New Age International (P) Ltd., 1993.
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7.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

®  Describe derivatives using Newton’s forward difference formula
®  Discuss derivatives using Newton’s backward difference formula
® Explain Newton’s Central Difference formula

® Understand Maxima and Minima of the interpolating polynomial

®  Identify Numerical Integration

7.1 INTRODUCTION

The Numerical Differentiation methods are very sensitive to round-off errors in addition to truncation
errors introduced by the methods themselves. The accuracy attainable by these methods would depend
on the given function and the order of the polynomial used. If the polynomial fitted is exact then the
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error would be theoretically zero. In practice, however, rounding errors will introduce errors in the
calculated values. The error introduced in obtaining derivatives is in general much worse than that
introduced in determining integrals. The reason for this is that any errors in approximating a function
are amplified while taking the derivative whereas they are smoothed out in integration. Thus,
Numerical Differentiation should be avoided as far as possible if an alternative method is available.

Numerical Differentiation is carried out below for continuous functions and also for tabulated
functions or discrete functions.

Here, we discuss the numerical process of approximating the derivatives f(x) of a function f(x) when
the function itself is available. We discuss the following methods.

1. Forward Difference
2. Backward Difference
3.  Central Difference

The methods 1 and 2 are also known as Two-Point Formulae and use First Order Forward/Backward
Difference Formula. The method 3 is also known as Three -Point Formula and uses Second Order
Central Difference Quotient.

The Numerical Differentiation is very sensitive to round off errors. If the distance ‘h’ between any
two successive points where the function values are known is small, the round-off error has an
overriding influence on the total error. Therefore, while reducing the step size, we should exercise
proper judgement in choosing the size.

Whenever a function cannot be integrated in finite terms or the evaluation of its integral is too
cumbersome, Integration may be conveniently performed by Numerical Methods. Like Numerical
Differentiation, we need to seek the help of Numerical Integration Techniques in the following
situations:

1. Function does not possess closed form solution.
2. Closed form solutions exist but these solutions are complex and difficult to use for calculations.

3. Data for variables are available in the form of table, but no mathematical relationship between
them is known, as is often the case with experimental data.

We know that a definite integral of the form,
. I=fix)
can be treated as the area under the curve y = { x ), enclosed between the limits x = a and x = b. The

problem of Integration is then simply reduced to the problem of finding the shaded areas for the
respective limits.

7.2 NUMERICAL DIFFERENTIATION

Consider a set of values (x,,v,) of a function. The process of computing the derivative or derivatives of

that function at some values of x from the given set of values is called Numerical differentiation. This
may be done by first approximating the function by a suitable interpolation formula and then
differentiating it as many times as desired.

If the values of x are equi-spaced and the derivative is required near the beginning of the table, we
employ Gregory - Newton forward interpolation formula. If it is required near the end of the table,
we use Gregory - Newton backward interpolation formula. For the values near the middle of the table,
the derivative is calculated by means of central difference interpolation formulae.
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If the values of x are not equi-spaced, we use, Newton's divided difference interpolation formula or
Lagrange's interpolation formula to get the derivative value.

7.2.1 Derivative Using Newton's Forward Difference Formula

Newton's forward interpolation formula's:

, p(p=1) . e N (D)

Yo T PAY, +T Yo

X~ X,

h

where p =

Differentiating both sides of Eqn (1) with respect to p, we have

—_— 2_
dy Ay0+2p 1A2y0+3p 6P+2A3y0+... 2
dp 2! 3!
Now dy = ﬂ@:ﬂl
dp dx dp h
d 1 2p-1 3p’ —6p+2 4p’ —18p” +22p-6
i = E[Ayo+ p' Ay, +2P 3'p Ay, +-P p4' P A4yo+....J ..(3)
Atx = x, p = 0. Hence, putting p= 0 in Eqn (3), we get
dx 1 1., 1., 1, J
= = 2| Ay, —cAYy, + A%y, ——Aty 4 . (4
dnyzx hi: Yo ) Yo 3 Yo 4 Yo )

Differentiating Eqn (3) again w.r.t. x, we get

& wlsEali)

& ~ dpldx)dx b dpldx
= h—lz[Azyo +(p-1)A’y, +£%)+—11A4y0 F o } .. (5)
Putting p = 0in Eqn (5), we get
%h : = hiz[AzyO - Ay, +%A4yo —] .. (6)
Similarly,
%_ = h—la{AJyo - Ay, +%A4yo +J o @)
Jieny

and so on.
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Aliter: We known that 1+ A=E =¢'°. where

hD = log(1+A)=A—%A2+§A3—%A4+....
D = ll:A—lAz+1A3——1‘A4 ..... }
h 2 3 4
r 2
D = B%— A—%AM%A’——}AH ..... ]
=ﬁgN—N—%N—%N+ ..... }
and D = i} A3—2A4+—7—A5— ..... }
b’ 2 4
Now applying these identities to y,
dy} 1[ 1, 1., 1.,
D = — =—| Ay, -—Ay,+=A'y, ——A'y, +....
Yo dxx_xthoz}’o3Yo4Yo
d’y | 1 11 5
DzyO = ﬁ =FI:A2yO—A3yO+—2-A4yO+gA5y0....
Jyex,
and
d’y | 1 3 7
D3y0 = 'd% =EIZA3YO—-2~ A4yo +ZA5}’0—....
i -

which are same as Eqns (4) - (7), respectively

|

|

7.2.2 Derivative Using Newton's Backward Difference Formula

Newton's backward interpolation formula is

p(p+)(p+2)

plp+1
Y = YatPVy.+ (y Rﬂn+ 3

I

ﬁi_éx@:ﬂlﬁk_q

dx dp'dx dp'h{ dx n
1 2p+1 3p? +6p+2
= —|Vy +=—Vly += 5 "V’y +..
h_ y{l 2! y{l 3! YH
Atx = x,p = 0 Hence, putting p = 0in Eqn (10)

dy} 17 1 1 }

- = —|Vy, +=V’y, +=V’y, +...

dx | h| Yn ) Yn 3 Ya

n

Vo F o

M.S. University - D.D.C.E.

(8
.9

...(10)

(1)
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Again, differentiating Eqn (10) w.r.t. x, we get
dy d (dy) dp_1d (dy)

dx? dpldx)dx h’ dp\ dx
2
= iz Viy + 6P+6V3 6p +18p+11V"yn+.... ...(12)
h 12

Putting p = 0, we get
d*x | 1 11
- = |V +Vy +—=V*y +.. (13
dszx=x hzlr Yn Yn 12 Yn :l ( )
d’x ] 1 3
- = | Vy +ZV'y +... (14
®). h’[ Yat5V'Ys ] (14)
and so on.

Aliter: We know that 1-V=E ' =¢ P

-hD

log(1-V)= —[V+-1—V2 Lyl +]
2 3 4

D = l[V+1V2 Ly Ly +}
h 2 3 4

2
D = —12—[V+1V2+1V3+1V4+...}
h 2 3 4

11
= Vi4Vi+ =
hZI: 12

Vi+= V5 }
Similarly,
D = h’[V3+ V4l V5 }

Applying these identities to ya, we get

dy} 1[ 1, 1o, 1, :|
D = = =—|Vy +—V’y +=V’y +=-V*y +...
YH dxX:X h YI‘I 2 YD. 3 YD 4 YII

) .
DYy, = % =0 I:szn +Vy, + 5 V“yn +%VSyIl + ] and
IX=x
d’y] 3 7
Dy, = —=% Vy, +=Viy +=Vy +..
Yn dX} s, h3 [ y 2 Yn 4 Yn :I

which are same as Eqn (11) - (14), respectively.
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7.2.3 Derivatives Using Stirling’s Formula

Stirling's formula is

2 42 3 3 2(.2 12
_ play+ay,]. o o PP -T)[ Ay +4y, P (P -1)
y = Yo+ 1![ 5 }- 5 Ay, + 3 5 7 Ay, F .. (15)
where p = X_hxo ... (16)
NOW d_}f = &Eig — ﬂ'l [i...éE — 1:]
dx dp dx dp h dx
dy 1| [ Ay, +Ay_1} o, - [ay, +ay, ] (20°-p)
— = =— B e A + -1 2 + A4 + e es 17
dx hH 2 PRV 2 2 7
At x=x,, p = 0. Hence, putting p = 0, we get
) ffean) e o ], L
dJ_. h 2 6 2 30 2
Differentiating Eqn (17) w.r.t. x, we get
d’y 1 ., ANy + ANy 6p° —1
- = ZA + -1 2+ Ay, +..
dx’ h{ YT 2 T
d’ 1 1 1
ng} = F[AZY—l _EA4Y_2 +%A6y_3 = veees :| (19)
d’ 111
&;j| = F{E{Asy;l + A3y_2}+ ..... :] (20)
and so on.

In the same manner, we can use any other interpolation formula for computing the derivatives.

Note: Numerical differentiation should be performed only if it is clear from the tabulated values that
differences of some order are constant. Otherwise, the method will involve errors of considerable
magnitude and they go on increasing significantly as the derivatives of higher orders are computer.
This is due to the fact that the original {(x) function and the approximating function ¢(x) may not
differ much at the data points but {’(x) {’(x)—¢"(x) may be large.

7.2.4 Maxima and Minima of Tabulated Function

Differentiating Newton's forward interpolation formula (Eq (1) with respect to x, we get

dy 1 2p—1,,  3p°-6p+2
& = H{AYO + > A Yo +—3'—A Vo T eeee (21)

We know that the maximum and minimum values of a function y = f(x) can be found by equating %

to zero and solving for x.
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From Eqn (21) % =0

- Ay, + 2p2_1A2y0 +

2_
3p 6p+2A3y

+...=0

Hence, by keeping only up to the third difference, we have

3p° —6p+2

2p-—1
Ay, + p2 Ay, +

A’yC:O
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Solving this p, by substituting Ay,,A’y,,A’y, (which we get from the difference table), we get x as xo

+ ph, at which y is a maximum or minimum.

Examples

1. Find the first, second and third derivatives of f(x) at x = 1.5 if

X

1.5

2.0

25

3.0

3.5

4.0

(x)

3.375

7.000

3.625

24.000

38.875

59.000

Solution:

We have find the derivative at the point x = 1.5 which is at the beginning of the given data. Therefore,
we use here the derivatives of Newton's forward interpolation formula. The forward difference table is

as follows:

x y = {(x) Ay A%y Ay Aly

1.5 3.375
3.625

2.0 7.000 3.000
6.625 0.750

2.5 3.625 3.750 0
10.375 0.750

3.0 24.000 4.500 0
14.875 0.750

35 38.875 5.250 ’
20.125

4.0 59.000

Here, x, = 1.5, y, = 3375, Ay, =3.625, A’y,=3, A’y, =075, andh = 0.5

Now, from Eqn above, we are

)
dX X=Xy

£1(1.5)

o

0.5

1
Ay, = A%y, -

2

1 1

i[3,6250—5(3)+-5(0.75)

}: 4.75
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From Eqn. above, we have

dzyi|
— = f"(x,)= |:A2yO — Ny, +—= Ay, —..... }
& b’
['(15) = —[3-075]=9
' 05y

Again from Eqn above, we have

d3 "y 1 3

g};jl = f (Xo)zﬁf[A3YO _5A4YO +:|

£(15) = —_(075)=6

(0.5)
2. The population of a certain town (as obtained from census data) is shown in the following
table.
Year 1951 1961 1971 1981 1991
Population | 19.96 | 36.65 | 58.81 | 77.21 | 94.61 (in thousands)
Find the rate of growth of the population in the year 1981.

Solution:

Here, we have to find the derivative at 1981 which is near the end of the table. Hence, we use the
derivative of Newton's backward difference formula. The table of differences is as follows:

X
(year) (popu}llation) vy Viy vy vy
1951 19.96
16.69
1961 36.65 5.47
22.16 9.23
1971 58.81 -3.76 11.99
18.40 2.76
1981 77.21 -1
17.40
1991 94.61

Hence, h = 10, x, =1991,Vy, =17.4,V’y, =-1V’y, = 276and V'y, =11.99

we know from above Eqn that

dyj' 1 2p+1_, 3p’+6p+2_, 2p’+9p° +11p+3
il = ~|Vy +Z—Viy + X T “Vy 4 Vi, + e (1
] - hl: Va 2 Ya 6 Ya 12 Yo ( )



M.S. University - D.D.C.E. - Numerical Differentiation and Integration 105

Now, we have to find out the rate of growth of the population in the year 1981, i.e., _d_y]
x=1981

. 1981-1991
.p:—:

Le., x, +ph=1981 -1
10
- Putting p = - 1, h = 10 and the values Vy, V’yu, V’ya of and V'ys in Eqn (1), we get
2 3 2
- - - _1) +9(<1) +11(-
y'(1981) = Il6 17.4+i;)—+l(—1)+ 3D +:( D*+2 5 7604 20+ 1)2 +11( 1)+3(11.99)}

= % [17.4 + 0.5-0.46 - 0.9991666] = 1.6440833

= The rate of growth of the population in the year 1981 is 1.6440833.

3. Obtain the value of f* (90) using Stirling's formula to the following data.

X 60 75 90 105 120
f(x) 28.2 382 | 432 | 409 | 377

Also find the maximum value of the function from the data.
Solution:

Since x = 90 is in the middle of the table, we use central difference formula and in particular, stirling's
formula:

The central difference table is as given below.

X y = {{x) Ay Ay Ay Aty
60 28.2
10
75 38.2 -5
5 2.3
90 43.2 -7.3 8.7
2.3 6.4
105 40.9 -0.9
3.2
120 37.7

Here, x, =90,y, =43.2,Ay, =-2.3,Ay_, =5,A’y, =-23,A’y, = 6.4 and
Now, from Eqn

dy] 1 {Ay0 +Ay_1} 1 A3y_1+A3y_2
= = S|l —go s m ot
dx |, h 2 6 2

£(90) %H—z? 5}_%{—2.3; 6.4}}
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= 1—15[1.35 - 0.3416666] = 0.0672222.

To find the maximum value of the tabular function:

By Stiriling's formula,

p’ P(PZ - 12)1:A3y-1 +A’y, il + P(P2 _ 12) Ay, +..

y=y(%+ph)=yo > (Ay, + Ay )+ 2 A%y + 5 > 7
Substituting the values from the table, we get, after simplification,
y = 432+ 1.35p-3.65 p + 0.3417 (p-p)
or y = 0.3417 p*-3.65p? + 1.0083 p + 43.2

If y is maximum, Sdz =0,

dx
Le., 1.0251 p?-7.3p + 1.0083 = 0

7.3+(1.3)° - 4(1.0251)(1.0083
p = ‘/( ) —4( A )=6.9803 or 0.1409
2(1.0251)

p 6.9803 is out of range .. p = 0.1409
Hence, x=x, + ph =90+15(0.1409) = 92.1135

and maximum of y

0.3417 (0.1409) - 3.65 (0.1409) + 1.0083 (0.1409) + 43.2
43.27

4. Using Bessel's formula, find the derivative of {(x) at x = 3.5 from the following table.

X 3.47 3.48 3.49 3.50 3.51 3.52 3.53
f(x) 0.193 0.195 | 0.198 | 0.201 | 0.203 0.206 0.208

Solution:

Bessel's formula is

1
-= _1)
_1)[ A2y + A2 (p )P(P
yr = Y0+PAY0+P(p )I: Yo YO:}'*' 2 Ay,

2! 2

N’ Yo

+(p+1)p(p_1)(p_2)[Azy2+A4y1]+(p—;)<p+1>p(p—1)(p—z>
4! 2 51

(p+2)(P+1)p(p- 1)(9—2)(p—3)[A"Y-3 +A6Y—2}+.... 0
6! 2
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The central difference table is as follows:
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X y = {(x) Ay A%y Aly Aty Ay Ay
3.47 0.193
0.002
3.48 0.195 0.001
0.003 -0.000
3.49 0.198 0.000 0.000
0.003 -0.001 0.003
3.50 0.201 -0.001 0.003 -0.010
0.002 . 0.002 -0.007
3.51 0.203 0,0QI - 0.004
0.003 -0.002
3.52 0.206 -0.001
0.002
3.53 0.208
Where p= =%, Differentiating Eqn (i) with respect to x, we get
§ o b le ]
dx dp'dx h'dp "dx h
ol - ila]
Now, — = —.|==
dx |, hildx]
1
= E[:AYO - (AZY-l +A YO)+_A3Y—1j|
+i(A“y +A'y )—LASy ——1—(A6y + A% )}
2477 1200 77 2400 77 -

Substituting values from the table in above, we get

5.

L

£'(3.5)= 501

)
dX x=3.5

1
120

0.22249

]

Given the following data, find the maximum value of y

1

[o.oz - %(—o.oon 0.001)+-—(0002)

4L (~0.004 -+ 0.003) + —— (~0.00) — —— (~0.010+ o)}
24 240

[ 0.02-0 + 0.01666 - 0.04166 + 0.00583 + 0.04166 ]

X -1 1 2

vy |21 |15 |12
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Solution:

Since the arguments are not equi-spaced, we will form the divided difference table as follows:

X y Ay Ay Ay
-1 21
18
1 15 7
-3 1
2 12 3
-9
3 3

Using Newton's divided difference formula, we get

y = yo+(x—-xo)Ay'o+(x—xo)(x—x1)A2+(x—x0)(x—x1)(x—x2)A3yo

= —21+(x+1)(18)+(x+1)(x—1)(—7)+(x+1)(x—1)(x—2)(1)

= X 9%’ +17x+6

Now for maximum ﬂ=0=> 3% —18x+17=0
dx
18+/(-18)* —4(3)(17
X = \/( ) () )=4.8257 or 1.1743
20)

x = 4.8257 is out of rand

1.1743 is the value giving maximum of y.
Max of y (at x = 1.1743)
= (1.1743)3 - 9(1.1743)2 +17(1.1743)+ 6 = 15.171612

6. Use Stirling's formula to find yss given that y,, =600,y,, =512,y,, = 439,y,, = 346,y;, = 243.
Solution:

x-30
" 10
Now the central difference table is

Takexo=30,h =10 . p

x p Yo Ay, Ay, Ay, Ay
10 2 600
88
20 1 512 15
73 .35
30 0 439 20 145
93 10
0 1 346 110
-103
50 2 243
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Thus, at x = 35, p=3il_o—3—O = 0.5,

Yo = 439,Ay, =-93,Ay., =-73,A’y, =-20,A’y , =—10,A’y, =35 and A'y, =145
Substituting the above values in Stirling's formula, we get

yos = 435+ (o.s)[(_93 )‘; (73 )} + (Oj! I (-20)

(145)

L3035y - ][1%(_35)} 5[0 -1]
3! 2 4!

435-41.5-2.5 + 0.78125 - 1.1328125

390.64844

¥, = 390.648

7.3 NUMERICAL INTEGRATION

b
We know that If (x) dx represents the area between y = f(x), x-axis and the ordinates x = a and x =

b. This integration is possible only if the f(x) is explicitly given and if it is integrable. The problem of
numerical integration can be stated as follows: Given a set of (n+1) paired values(x,,y,) = 0,1,2, .. n

of the function y = f(x), where f(x) is not known explicitly, it is required to compute Iydx.
Xy

As we did in the case of interpolation or numerical differentiation, we replace f(x), by an interpolating

polynomial Pa(x) and obtain j P, (x)dx which is approximately taken as the value for ff (x)dx.
x %

A general quadrature formula for equidistant ordinates (or) (Newton'cote's formula)

For equally spaced intervals, we have Newton's forward difference formula as

-1 —1)(u-2
y® = Y(Xo + uh) =Y, +uAy, ilf;_'_)AZYQ +—%ASYO + e - (1)

Now, instead of f(x), we will replace it by this interpolating formula of Newton.

X

x .. . :
Here, u= where h is interval of differencing.

-x X—X
- ° we have 0

. X
Since x, =x, +nh, and u=

T f (x)dx = j:*“hf(x)dx
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Xo+nh

J P, (x)dx where Pu(x) is interpolating polynomial of degree n.

Xo

it

n

= J [yo +uAy, + u(\;— ) Ay, +WA3YO + ....)hdu
d ! !

Since dx = hdu, and when x = x, u = Oand wherex = x, + nh,u = n

—'quyo+u —3;1‘+2u jdu

hj(yo +uAy, +
0

o’ '
u’ (3_?] 2 1( v’ 3 2 |3
h yo(u)E—Ayo+——A Vo +— T—u +u” |A'y, + ...
o

X, 2 3 2 4
J.f (x)dx= hlinyO +n?AyO +-;—(n——n—JA2yo +l(n7— n’ +n2)ASyO +} -(2)

32 6
Xy

The equation (2), called Newton-Cote's quadrature formula is a general quadrature formula. G1v1ng
various values for n, we get a number of special formula.

7.4 TRAPEZOIDAL RULE

By putting n = 1, in the quadrature formula (i.e., there are only two paired values and interpolating
polynomial is linear.)

xy+h

J. f(x)dx = h[l.yo-%%Ayc] since other differences do not exist if n = 1
1
= h[yﬁg(yl—yo)}
= 2(YO+Y1)
X, x¢+nh
[fdx = [ f(x)dx
Xg Xo
Xy +nh xo+2h Xo+nh
=jfdx+jfdx++jfdx

x5+h %o +(n—-1)h

h h h
= E(YO +y1)+5(>’1 +Yz)+----+5(y},_1 +y,)
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h h h
= E(Yo +Y1)+'2—(Y1 +Yz)+""+z(yn-1 +Yn)

- g (Sum of the first and the last ordinates) + 2 (Sum of the remaining

ordinates )]

This is know as Trapezoidal rule.

7.4.1 Truncation Error in Trapezoidal Rule

In the neighbourhood of x=x,, we can expand y={(x) by Taylor series in powers of x - xo That is

(X—XO) , (X—Xo)2

TRRCREY

vy = y,+ Vo 't et o - (1)

where Yo = [Y'(X)]mﬁ

X X _ _ 2 7
e st

5 X 1 2!
2 3 ™
x) (o)
- i:yox+( 2!° vt 3!°) Yok e
2 3
X, — X X, — X
= yo(xl—xo)+( - 2'0) Vo +( - 3 O) Vo 't oo
X B
= hy, +?+yO +?yoﬂ + . . (2)
if h is the equal interval length.
t h : .
Also J. ydxzz(yO +y,) = area of the first trapezium = A, - (3
Xy
Putting x=x, in (1),
2
X —%) , (x,-x .
Y(Xl) = Y1=YO+( 11' O)Yo +( 12’0) Yo Tt
. h 1 hz "
Le., yi o= yo+§y0 +;y0 +oe .. (4)
h h , h : .
Ao = E[YO +Y, v 5o +} using (4) in (3)
2 3

=~ hy, +7y0 +?X—2!y0 +.
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Subtracting Ao value from (2),

t 1 1 1
dx—A, = hy." ———)+... Ry
x[y A, Yo (3! 2% 2! e

Therefore the error in the first’s interval (x;,x,) is —i%h3 ¥," (neglecting other terms).

Similarly the error in the i** interval = —éh3y"i_1
Therefore, the total cumulative error (approx.),

1 " n " n
E = —Eh3(y0 +y,"+y, .ty n—l)

3
|E|< nlh_z M where M is the maximum value of

yo n yl n yz "

- (b-a)h?
12

3 bl

. M if the interval is (a, b) and h=b-a/n

Hence, the error in the Trapezoidal rule is of order h*

7.5 SIMPSON'S ONE-THIRD RULE

Setting n = 2 in Newton-cote's quadrature formula, we have

J.f (x)dx =~ h|2y,+ %Ayo + %(% - %)Azyo] (since other terms vanish)
Xy L

1
= h|2y,+2(y, —Yo)+3(1“3—1)2 Yo:|

i 1
= h 2y, +2(Y1"Yo)+g(E_1)2 YO:|

14 1
= h_Yz+_Y1+EYO

3773
h
= —(n+4n+y)
3
. t h
Similarly, J f(x)dx = 3()’2*‘4}’3"'}’4)

h
[fx)ydx = S0+ 4+ yes)
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In n is even integer, last integral will be
h
j f(X)dX = :—;(YH—Z +4Yx1—1 +Yn)

Adding all these integrals, if 1 is an even positive integer, that is, the number of ordinates y,,y,, ...y,
1s odd, we have

[fx)de = Tu@@+Tu@@+m+Tu@@

X 2

h
= 3[(}’0 +4y, +4y, ) + (YZ +4y, +4y, ) Fot (Yn-z +4y, Y, ):I

- %[(yo+yn)+2(y2+y4+ ....... )+ 4(y 5, + )]

= % [Sum of the first and last ordinates + 2 (sum of remaining odd

ordinates) + 4(sum of even ordinates)]

Note: Though has suffix even, it is the third ordinate (odd).

7.6 SIMPSON'S THREE-EIGHTHS RULE

Putting n = 3 in Newton-cotes formula

t ' 9 1(9)., 1(81 ,
;[f(X)dX = h_3y0 +EAYO +E(*2'jA YO+E[T_27+9JA yo:l
[ 9 9 3
= h{3y, +E(Y1 _Yo)"'Z(E - 1)2 Yo +§(E _1)3 YO:I
[ 9 9 9 8
= h 3YO+_Y1__YO+_(Y2_ZY1+Y0)+—(Y3_3YZ+3Y1_Yo)jl
L 2 4 4 3
3h
= ?[}’3 +3y, +3y, +Yo] - (1)
If n is a2 multiple of 3,
Xg+nh xy+3h Xo+6h xo+nh
Jf@dx= [ f@dx+ [ f@)dx+.+| [ f(x)dx
Xg X xo+3h Xo+(n-3)h

3h ,
= ?I:(YO +3y, +3y, + Y3)+ (Ys +3y, +3y, + Ye)"'-- + (Yn-s +3Y02 430 Y0 )]

3h
= —8-[(yo +y,)+3(y, + 7, + Y, + Y5+ +Yo ) F2(7s Ve + Vo ot yn)] )



114 Numerical Methods M.S. University - D.D.C.E.

Equation (2) is called Simpson's three - eights rule which is applicable only when n is a multiple of 3.

Examples
3
1. Evaluate J'x‘*dx by using (1) Trapezoidal rule (2) Simpson's rule. Verify your results by actual
-3
integration.

Solution:

Here y(x)=x"*. Interval length (b-a) = 6. So, we divide 6 equal intervals with h= 6 =1.
y gt q 5

We form below the table

X: -3 2 -1 0 1 2 3
y:| 81 16 1 0 1 16 81

(i) By Trapezoidal rule, j ydng [(sum of the first and last ordinates + 2(sum of the remaining
ordinates)] N
~ %[(81+8l)+ 2(16+1+0+1+16) | = 115
(i) By Simpson's one-third rule (since number of ordinates is odd)
jydx = %[(81+ 81)+2(1+1)+4(16+0+16)|~ 98
5
(i) Since n = 6, (multiple of three), we can also use Simpson's three-eighths rule. By this rule,

3
[ydx= g[(81+81)+ 3(16+1+ 1+ 16)+2(0)] = 99.
-3

(iv) By actual integration

3 5\3
[xtdx=2x| X _2X2B o)
5) 5

-3

From the results obtained by various methods, we see that Simpson's rule gives better result than
Trapezoidal rule.

n

2. By dividing the range into ten equal parts, evaluate jsinxdx by Trapezoidal and Sampson's rule.
0

Verify your answer with integration.
Solution:

Range = n-0=n Hence h=%

we tabulated below the values of y at different x's.
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x . o & m m a s
10 10 10 10 10
y=sinx : 0.0 0.3090 0.5878 0.8090 0.9511 1.0
) onm B oom
10 10 10 10
y=snx : 0.9511 0.8090 0.5878 0.3090

(Note that the values are symmetrical about x = g)
() By Trapezoidal rule,
I= %[(o +0)+2(03090+ 05878+ 0.8090+ 09511+ 1.0+0.9511+ 0.090+0.5878+ 0.3090)]

= 1.9843 nearly.
() By Simpson's one-third rule (since three are 11 ordinates)

I= %(%) [(0+0)+2(0.5878+ 0.9511+ 0.9511+ 0.5878)+ 4( 0.3090+ 0.80% + 1+0.8090+ 0.3090)]

= 2.00091

Note: We cannot use Simpson's three-eighth's rule or Weddle's rule here.
(iii) By actual integration, I=(-cosx); =2

Hence, Simpson's rule more accurate than the Trapezoidal rule.
1
3. Evaluate J.ex dx by Simpson's one third rule correct to five decimal places, by proper choice of h.
0

Solution:

Here, interval length = b-a = 1

y= ex;yﬁv) =e*
Error = [E|< (bT—oa)h“. M, where M = Max () in the range.
< ——1—h4 €
180

We require (E)< 10

4 ¢ \1/4
%;< 107¢; h<[M—j ~0.148
€

Hence we take h = 0.1 to have the accuracy required.
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1
_[ efdx= 93—1[(1 +e)+ 2(e°‘2 +e™ +e +e* ) + 4 (eo'1 +e™ e +e¥ +e% )]
0
= 1.718283
1
By actual integration, jexdx = (ex ): =e—-1=171828183
0

Correct to five decimal places, the answer 1s 1.71828.

4. The accelerations of a vertical at nine timing instances from t = 0 to 40 with an interval of 58 are
40.0, 45.25, 48.50, 51.25, 54.35, 59.48, 61.5, 64.3, 68.7. Find the velocity at t = 40 using
trapezoidal rule.

Solution:

Trapezoidal rule can be given by
X, h
Iydx=5[yo RS e AN LA
X

According to the given problem
40 h
Iydx=5[yo + 2[5, 47+ =+ Ve | V0 ]
]

Whereh = 5
y, = 40.0,y, = 45.25,y, = 485, y, = 51.25,y, = 5435, y, = 59.48,

vy, = 61.5,y, = 64.3,y, = 68.7

40 5 :

fydx= 5[40.0 + 2[45.25+ 48.5+ 51.25+ 54.35+ 59.48+ 61.5+ 64.7+68.7 ]
0

= 2194.9 m/sec.
Therefore at t = 40, the velocity will be 2194.9 m/sec.

5. The accelerations of a vehicle at nine timing instances from t = 0 to 40 with an interval of 5 are
40.0, 45.25, 48.5, 51.25, 54.35, 59.48, 61.5, 64.3, 68.7. Find the velocity at t=40 using Simpson’s
rule.

Solution:

th

Simpson’s 3 rule *h =5 (odd)

k 3h
Jydxz?[(% +Yn)+ 3(}’1"'}’2 Y. tTYs +__)+2(YS +Y6+Y9+_—+yﬂ-3)]
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Here h=5,y,=40.0,y,=45.25,y,=48.5,y,=51.25,y,=54.35, . =59.48, y,=61.5, y,=64.3, y,= 68.7

T 4o 3X5 (40.0+ 68.7) + 3(45.25+ 48.5+ 54.35+ 59.48+ 64.3
YT TR 4 2(51.25+615)

0

}=2155.14

At t = 40, the velocity is 2155.14 m/sec.

1/2
6. Evaluate J. (—X—]dx , taking the step size as 1_16 using Simpson's rule.

> \sinx
Solution:
1/2 % 1 1
Let y= j —— dx and given that the step size — = h = - =0.0625
5 Sinx 16 6

x 0 0.625 0.125 0.1875 0.25
y O 57.2957  57.2958  57.2958  57.2959
0.3125 0.375 0.4375 0.5
57.2960  27.2962  57.2963  57.2965

By taking Simpson’s 1/3rd rule

X, 1

[yde= gh(yo A Y Y A ) F 2 Y Yt =4 Y)Y
X

1]2 x_ o _ 1 1[0+4(57.2957+57.2958+ 57.2960+ 57,2969 +
Jsinx 3716 2(57.2958+ 57.2959+ 57.2962+ 57.2969)

= :}8-[0 +916.7352+ 343.7758+ 57.2965] = 31% = 27.4543
n/2 1
7. Compute J. ———dx with an error < 107 using Simpson's rule.
0 (SlnX
Solution:
/2 1
Let y= J. dx and given that error < 107

. 1/4
3 (smx)
2
By Simpson’s rule the error expression 1s = — < error
y p : p 90

2
gé <107 = h* <90 x 10° = h < 0.24595

Let step length h =

139
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T 2r 3n 4T 5n 6T /n

4 14 14 14 14 14 14
y 3.649 146 124 113 106 103 101 1.00

X 0

By Simpson's 1/3rd rule is

Xy 1
J.dnghl:YO+4[Y1+YS+Y5+——_]+2[YZ+Y4 +YG+—_—]+Yn]
%

n/2
! —rdx = % X 0.224285[ 3.68+ 4[1.46+ 1.13+ 1.03]+ 2[1.24+ 1.06+ 1.01+1.00]

'!. (sinx)
=0.07476 x 25.79= 192810

n/2
Hence J. (sinx)_l/4 dx =1.92810

0

7.7 ROMBERG’S METHOD

Romberg integration is basically Richard son’s extrapolation procedure. Romberg’s name is attached
to the method because he was the first one to describe the algorithm in recursive form. Consider the
integral

To desire Romberg method, we shall return to Trapezoidal rule.

First find the numerically integrated value dividing only one step in the interval x, - x,

f(x)
A

fo f f2

Using Trapezoidal Rule, we get
h
In =E[fo +f2] O (2)

Hence True value of I is

Ipe=Ly+ch®> ©)]
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Dividing the interval into two steps and applying trapezoidal rule.

[ @)
b7y
2
It =1y +ch? ..(5) (% ...ernor) ........ )
2
Dividing (3) by (5) we get
I -1, _ch®
Lot &
True 2 T
[uh _1,,]
I, = ;3— ........ 6)
Substituting for I w and for I, we get
2
h
hlf, +2f +1,] - [f, +1,] .
Iy, = - [using (2)+ (4)]
h
=§[2fo +4f, +2f, —f, -1, ]
h
Lie = §[f° +4f+£] @)

If we assume T as the numerically evaluated integral value for i trapezoids and T, as the numerically
evaluated integral value for 2i trapezoids, combining them, we get

410 - T

1

3 [ 8

It is same as the one obtained from Simpson’s rule.

T21i =

In a similar manner, let us assume T as the numerically integrated value for i interval in Simpson’s

and T} evaluated integral value for 2i steps.

ITrue = Ti(l) + Ch4 (9)

4

& h
6 (10) (Ch4'cl—6 error in simpson's rule]

—T®
ITrue _T2(i +
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From (9) & (10) we get

ITrue Ti(O) Ch4
I, 1O Tpr 10 oy
e ~ L2 © (Dividing (9) by (10))
I 16T;11) — Ti(l) 16T§3) _ ’I;(l) (11)
True — 15 - 42 e

In general, We get the extrapolation procedure for trapezoidal rule

4T T
VBT (12)

AT T e

41
The extrapolation procedure, for Simpson’s rule becomes

AL 2 e o0
g 4_12_1; ........ (13)

24 4j+1_1

The table for Romberg integration is shown in Table 7.1:
Table 7.1: Romberg Table

Tr;j)(e)l;z::ifdal Tr;g;izis al g:is; é::;g;: 39order | 4™ order | 5% order

1 T10

2 v | o

4 T? T, T?

S I I

o T Tys Ty Ty Ty

2 Ty, T;, Ts, Ts, Ts T3,
Example:

R
Compute I, = J. NPT

o]
for p=1 using trapezoidal and Simpson’s rule with the number of points 3,5, and 9. Improve the
results using Romberg integration. ‘
Solution:

. 1-0 . X
Given that x, =0,x, =L, h="—"x. =x, + ih;f(x) =
0 XN N X, =% (x) S +12

Using the composite trapezoidal rule.

X

X, = 0,x = 1’}1:1_1_\19’?(; =x, +ihf(x) = for N = 8, we get

x +12



M.S. University - D.D.C.E. Numerical Differentiation and Integration 121

1 2 3 4 5 6
x, =0,x, =§,x2 =—,X; = —,X, =—,X

g T Ty TN Ty
and the function value are

f(x,)=f(0)=f,=0

f(xJ:f(%]:fl - 001041
2

f(x2)=f(§) ~f, =0.02081
3

f(x3)=f(§)=f3 =0.03111
4

f(x4):f(§)=f4=oo4124
5

f(x5)=f(§] ~f, 005104

fxg)= f(gj =f, =0.06038

f(x,)=f (gj =f, =0.06906

f(x,)=1(1)=f, =0.07692
Using the composite trapezoidal rule, N = 2, h = 1/2

= %[fo +2f, +£,]= %[o +2(0.4124+0.07692)]
=0.03985

=§[f0 +2(f, +£, +£,)+1, ]

N=4,h==; T}
= %[o +2(0.02081+ 0.04124+ 0.6038) + 0.07692]

T? = 0.0402225

1 h 4
N:S,hzgg’l-;o =5 f0+22fi+f8
i=1

T =%[0+2(o,01041+ 0.02081+0.0311+0.04124+0.05104+0.06038+ 0.069606)+ 0.07692]

T =0.04031375
Using Romberg integration we get

o AT - T _ 4(0402225) - (0.03985)
) -
3

=0.0403467
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y_ 4T -T) _ 4(04031375) - (0.0402225)

T T 3 =0.0403442 I1I
0 4? T;:> ~ T _ 16(0.403442) - (0.0403467) _0.040344
4° -1 15
Table 7.2: Trapezoidal Rule with Romberg Integration
h Fourth order method Sixth order method Eight order method
1/2 0.03985
0.0403467
1/4 0.0402225 0.40344
0.0403442
1/8 0.04031375

Similarly, using the composite Simpson’s Rule.

1 % h N N-1
[= £X3 5 dx = g{fo + 4§f2i_1 +23 £, +f2NJ

i-1

where x,=0,x,, =Lh= E = ﬂ
2N 2N
when N=1h= % T = —é[fo +4f, +1,]= %[o +4(0.04124) + 0.07692]
T’ =0.040313

when N:2,h=% o =I1§[fo +[4f, 46,1426, +£,]
T = é[o+ 4(0.02081+ 0.06038) + 2(0.04124) + 0.07693]
T =0.040313

N=4;h=%;”{4‘° =%(f0 H4(E +E+E +6) 4 2(E, +6, +1,)+£,)

=

= 512[0 +4(0.01401+ 0.03111+ 0.05104+ 0.06906+ X 0.0208H Q04124 + 0.06038) + 0.07692]

T? = 0.040344166
Using Romberg Integration
o 4T T _ 16(0.0403467)~(0.040313)
2

2 = 0.4034895
421 15
2T T0  16(0.040344166)— (0.
o4 Tzf T, _ 16(0.040344166)— (0.0403467) _ o0y
42 -1 15
3 1) _ .
o _ FT - _ 64(0.040343997) - (0.04034895) _ 4034392

' 4 -1 63
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Table 7.3: Simpson’s Rule with Romberg Integration

h Fourth order method Sixth order method Eight order method
172 0.040313
0.04034895
1/4 0.040.3467 0.4034392
0.040343997
1/8 0.040344166

Check Your Progress
2

1 . .
1. Ifh= EJ(XJ + 1)dx by trapezoidal rule is

1

(@) 4.525 b) 5523 (© 6.523 (d) 4.938
2. x 1 15 2 25 3
fx) 2 24 27 28 3

3
If (x)dx = using Simpson’s 1/3 rule.
1

(@) 4.03 (b) 3.82 (© 503 d) 4.52
1
3. If h=1.|‘ de Simon’s 1/3 rd rule
2-x"+1
@ 217 (b) .231 (© .252 d) 242

4. T = 0,£(25) = 5,£(5) = 7,£(75) = 8and () = .9 by Simpson’s —31~rd rule if(x)dp
(@) 600 b) 625 © 331 @ 65

5. Hy(0) = 3,£(5) = 3.5, §) = 4, £(1.5) = 475, £(2) = 4.25, 'Eydxz by sampan’s %m:
(@) 24.25 (b) 24.125 () 24.000 (d) 23.925

6. £(0), £2) = 10, £(4) = 18, (6) = 25, £(8) = 29 and h = 2 then by sampan’s %rdjf(x)dx=
@ 135 (b) 13425 © 136 d) 136.66

2
7. Hy,=1,y =.66,y2 = .5,y3 = A, y4 = .33 by sampan’s %rd_[f(x)dx
0

@ 1.00 b) 120 © 131 @ 111
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7.8 LET US SUM UP

In this lesson, we discussed the integration of definite integrals using numerical integration techniques.
The following Newton-Cotes methods were considered in detail:

e  Trapezoidal rule
® Simpson’s 1/3 rule
e Simpson’s 3/8 rule

We also presented a method known as Romberg integration to improve the accuracy of the results of
the trapezoidal method.

We finally discussed another approach known as Gauss integration which is based on the concept that
the accuracy can be improved by choosing the sampling points wisely, rather than equally.

7.9 KEYWORDS
Newton's foruard interpolation formula's:

p(p-1)
21

Y=Y, T PAY, + Ay, +
Trapezoidal rule:
= % [(Sum of the first and the last ordinates) + 2 (Sum of the remaining ordinates)]
Simpson’s 1/3 rule:
h
= g[(yo V) 2(F2 Yot ) F A Y+ )]

Simpson's 3/8 rule:

7.10 QUESTIONS FOR DISCUSSION

1
1.  Evaluate Je"xzdx by dividing the range of integration into 4 equal using (i) Trapezoidal rule,
0

(i1) simpson's rule

2
2. Using Trapezoidal rule evaluate J y dx from the following table.
06

X: 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
y: | 123 1.58 2.03 4.32 6.25 8.36 10.23 12.45
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2
X
X

1
3.  Find the value of log2” from I ”
0

- dx using Simpson’s 1 rule with h = 0.25
3
14 1
4.  Evaluate j(sinx— L x+ ex) dx by Simpson’s 3 rule.

0.2

5. Use Romberg integration to find I = |secxdx

O i [ A

6.  Derive Numerical Integration method for the solution of a differential equations.

Check Your Progress: Model Answers
(d)
(©
@
(b)
(b)
(d)
(d)

7.11 SUGGESTED READINGS

S.S. Sastri, Introductory Methods of Numerical Analysis , Second Edition, Prentice Hall.
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Jain, MK,, Iyengar, S.R.K,, Jain, R K., Numerical Methods for Scientific and Engineering Computation,
3rd Edition, New Age International (P) Ltd., 1993.
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LESSON

8

DIFFERENCE EQUATIONS

CONTENTS
8.0 Aims and Objectives

8.1  Introduction

8.2 Basic Definitions

8.3 Formation of Difference Equations
8.4  Linear Difference Equations

8.5 LetusSumup

8.6  Keywords

8.7 Questions for Discussions

8.8 Suggested Readings

8.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

®  Explain basic definitions of difference equations
®  Understand the formation of Difference Equations

® Discuss Linear Difference Equation

8.1 INTRODUCTION

In this lesson we develop the theory of difference equation and discuss methods of solving them. Any
situation in which there exists a sequential relation at discrete values of the independent variable leads
to difference equations. Difference equation may be thought of as a discrete counterpart of differential
equation and there is a striking similarity between the methods of solving difference equations and
differential equations.

8.2 BASIC DEFINITIONS

1. An equation involving the difference of an unknown function y = y(x) at one or more general
values of the argument n is called a difference equation.
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The following are some examples of difference equations.

Ay, +2y, =n (1)
0 (2
3 (3

Throughout this lesson we assume that the consecutive values of the independent variable differ by
unity. With this assumption a difference equation can be written in an alternate form as illustrated
below.

Ay, +5Ay, +3y,

A'u, —4Au, +4u,

Consider Ay, +2y, = n

Since Ay, =(E -1)y, =y,,,~¥., the above equation can be written as

Yari = Yat2y, = n

(ie.) Yar +¥a = D
Consider (3) given by A’u_~4Au +4u_ = 3*
Au, = (E-1’u,=(E’-2E+lu,=u,,- 2u,, +u,
and Au, = (E-Du,=u,, —u,.
Hence the above equation can be rewritten as
(Uoz =20 +u) - 4(u,, —u ) +4u, = 3
ie. u,,-6u,,+% = 3,

Difference equation written in the above form is also called recurrence relation.

2. The order of a difference equation is the difference between the largest and smallest subscribes
occurring in it, when the equation is expressed in a form free of A. The degree of a difference
equation, expressed in a form free of A, is the highest power of y.

Examples

(2) The difference equation Ay, + 2y, = n, when expressed in a form free of A is

Yn+1 + Yn =1
The order and degree of the difference equation are both 1.

(b) The difference equation A’u, —4Au, +4u, =3*, when expressed in a form free of A is

u,,-6u, +%, = 3%

x+1

Its order is 2 and degree is 1. .
(c) The difference equation 4y?,, — 2Y, Y1 + VoY =0 is of order 3 and degree 4.

3. A solution of a difference equation is an expression for y. which satisfies the given difference
equation. A solution in which the number of arbitrary constants is equal to the order of the
difference equation is called the general solution. Any solution which is obtained from the general
solution by giving particular values to the arbitrary constants is called a particular solution.
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Solved Problem

Problem 1: Write the difference equation A’y_ + A%y, + Ay, +y, = 0in the subscript notation.
Solution: The given difference equation can be written as
(E-0y +E-10y +E-Dy, +E-Dy,+y, =
ie.  (E’-3E*+3E-1y, +(E*~2E+ 1y, +(E-Dy, +y, =
ie. (E’-2E*+2E)y, =

© o o o

Yx+3 - 2YX+2 + 2YX+1 =
Problem 2: Find the order of the difference equation

A’y —3A%y +2Ay,+y, = cosmx

Solution: The given difference equation can be written as
(E-1)’y,-3E-1)’y, +2E~1y, +y, = cosnx
ie. (E°-3E’+3E-1)y,~3(E*-2E+1)y, +2(E-1)y, +y, = cosnx
Le. (E’-6E*+11E~5)y, = cosmx
Yars = 6YVuir t11y, =5y, = cosmx

». The order of the given difference equation is 3.

Problem 3: Show that y_ =1- 2 is a solution of the difference equation (n+1)y,,, +ny, =2n-3.

n
Solution.
(n+ly ., +ny, = (n+1)(1-ﬁ)+n(1—%)
= (n+1)-2+n-2
= 2n-3.

2. . . . .
¥, =1—= is a solution of the given difference equation.
n

8.3 FORMATION OF DIFFERENCE EQUATIONS

Let x,,X,,;,.., X, be a set of k+1 equispaced tabular points with spacing h and u_,u_,,...,u

. be the
)1=0,1,...k,

for some integer k. A relationship between un and the difference Au_, A’u_,..,A*u_ is called a

n
The order of a
difference equation is the number is the number of intervals separating the largest and the smallest
argument of the dependent variable.

corresponding values of a function u(x) at these points, that is, x_,, =x_+ih,u_. =u(x_,;

difference equation and hence it can be regarded as a relation among u_,u,,, ;..

A difference equation of order k, in its most general form can be written as

Flu,,u 5 emtyy) =0 (1)
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If the function F is linear in u,,u,,,, .. u,,, then the difference equation is called linear. A linear
difference equation of order k can be written as

aOun+k + aIurH—l(—l +oet akun = gn ’ aO * O' "'(2)

8.4 LINEAR DIFFERENCE EQUATIONS

If the coefficients a,,a,, ++,a, in above equation are constant, then the equation defines (See equation

(1) and (2) in the previous heading) a linear difference equation of order k with constant coefficients.
For example, the difference equation
A’u +3Au +5u, = 0

+u,)+3(u,,,—u,)+5u, =0

n

or (un+2 - 2u‘n+1 n+l

or un+2 + u‘n+1

+3u, =0
is a linear difference equation of order 2, with constant coefficients.

If g,=0, then the difference equation is said to be homogeneous, otherwise, it is said to be
inhomogeneous. We shall consider only the linear difference equations with constant coefficient. The
solution of the difference equation consists of a solution u™ called the complementary solution of the
homogeneous part

3'0u'n+k + a'1un+k—-1 +-t akun = O
and a particular solution u’® of the inhomogeneous part. The general solution is written as
u = ule) + uflp ).

For solving, we assume a solution of the form u, = A&*, where A # 0 is a constant. We get

Afa & +2, 8+ +a, )E"

or a & +a b+ v,

0

0

Which is a polynomial of degree k. The equation is called the characteristic equation of the difference
equation. Let &,,&,,--+,§, be the roots of last above equation. We have the following cases:

Real and Distinat Roots
If &,E,, --E, areall real and distinct, then we have
H n n n
uf, )= & +c,85 + by
Where ¢, ¢,, -+,c, are arbitrary constants
Real and Repeated Roots

Let &,(=E,) be a double root and all other roots &€, ,---,&, be distinct. It can be verified that &} and

ng] are two linearly independent solutions. Then, we have
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(H) _ n n n
o = (e +nc))El +c& +- -+

Similarly, when &, is a root of multiplicity p and the other roots & ,;,€.,,+*,&, are distinct, we have

u

u® = (c,+nc, +onf e )BT e 8l ot o &)

Complex Roots

For a polynomial with real coefficients, the complex roots occur as conjugate pairs. Let
£, =a+iB=re® and £, =a—iB=re"®, where r=,/0’ +p* and O =tan"' (/) be the complex roots
and the other roots §,,§,,:-+,&, be real and distinct. Then, we have

W = [ cos(nd)+c,sin(mO) &, +c £+ -+ &L

n

The constants c,,c,,+,c, can be determined from the given conditions.

The particular integral u’”’ depends on the form of go. When g, =g is a constant, we assume the

solution as uff’s =q, a constant. By Substituting, we get

(a,+2,++a)q

&

or - u? = q=——g
a,+a, ++a,

When g_ is the form g, =B+nGC, then we write the particular integral as u’® = q+nr. Substituting
and comparing the coefficient of n and the constant term on both sides, we determine q and r.
Consider the homogeneous difference equation with constant coefficients.

If £,8,, &, areall real and distinct, then

u, = o] +ebi otk

n

Suppose now, we require that u, —0 as n-—>e. Then a necessary and sufficient condition is

€;| < Li=1(1)k. If ua is to be bounded, then some of & may satisfy €] < 1 and others may satisfy
&.’i‘ =1
Assume that |§ | =1=|&,| and [§;

< 1,i=3(1)k. Then

u,| = e} +|e;[asn— 00
If & =&, is adouble root, then

un = (¢ +nc,) +¢,8; ++c. &
Now, let

&

However, if |§11 = |&2| <1,,then u, >0 as n— oo,

<1i=3(D)kIf |&|<1, then u, o as n—>co and the solution is unbounded.
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If & and &, form a complex pair and [§;|<1,i=3(1)k,, then u, -0 as n— ooif [€ | < 1.

Hence, u, =0 as n— oo, if the roots satisfy [§|<1,i=1(1)k.. If the roots are of magnitude 1 and
simple, then ua is bounded. In order cases, ux is unbounded.

In many applications, the coefficients involve some parameters and we need to determine the ranges
for these parameters so that the roots satisfy |€|<1 for all i. It is not always possible to find the roots
for all values of the parameters to check whether |&, |<1. In such cases, the values of parameters for -

which |€;|<1 can be determined be using the conformal mapping. Consider the mapping

Na))
]

which maps the interior of the unit circle |&| =1 onto the left half plane Re(z) <0, and the unit circle

|€|=1 onto the imaginary axis.

Check Your Progress

+6u_ =4.

Solve the difference equation u_,, —2u

n+1

8.5 LET US SUM UP

Difference equation may be thought of as a discrete counterpart of differential equation and there is a
striking similarity between the methods of solving difference equations and differential equations. An
equation involving the difference of an unknown function y =y(x) at one or more general values of the
argument n is called a difference equation. Any solution which is obtained from the general solution
by giving particular values to the arbitrary constants is called a particular solution.

8.6 KEYWORDS

Difference Equation: An equation involving the difference of an unknown function y=y(x) at one or
more general values of the argument n is called a difference equation.

Particular Solutions: Any solution which is obtained from the general solution by giving particular
values to the arbitrary constants is called a particular solution.

8.7 QUESTIONS FOR DISCUSSIONS

1. Solve y,,,—3y,.,+2y, =0
2. Solve y,., —4Y,.;+6Y,., —4y,., +4y, =0.

3. Solve u,, +2u_,, +u =0.

x+1

4. Solvey, = \/;rn.
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Check Your Progress: Model Answers
The given difference equation can be written as

(E*-2E +6)u, =4.

The auxiliary equation is E> ~2E+6=0

+v-20

The roots are 2—“2———— =1+iJ5 = o £ iBsay.

- C.F. = r"(Acosn6 + BsinnB) where

r=4J0? +B? =+/1+5=/6;and6 = tan™ (Ej =tan~" (\/g)

o

CE.= 6% [Acosn®+ BsinnG]Where 0=rtan™’ (\/g) .

PL = (m)@)

(—2 1 )4)(1“
E--2E+6

4+
?P-2x1+6

]

|
w |

n

<. The complete solution is u, = CF.+PI = 62(Acosn® + Bsinn)+ —;t
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