M.S. University - D.D.C.E. Software Life Cycle Models 27

This prototype is further enhanced by the developer with better understanding of the requirements
and preparation of a final specification document. This working prototype is evaluated by the
customer and the feedback received helps the developers to get rid of the uncertainties in the
requirements and to start a re-iteration of requirements for further clarification. The prototype can be
a usable program with limited functionality but cannot be used as a final product. This prototype is
thrown away after preparing the final SRS; however the understanding obtained from developing the
prototype helps in developing the actual system.

The development of prototype is an additional cost overhead but still the total cost is lower than that
of the software developed using a waterfall model. The earlier the prototype is developed the speedier
would be the software development process. This model involves a lot of customer interaction which
is not always possible.

2.2.4 Tterative Enhancement Model

This model is similar to the waterfall model in the sense that individual phases of software
development will be carried using the waterfall model but the entire product is available after many
cycles. At the end of each cycle a product is released with additional functionality in later releases.

The SRS prepared by the customer and the developer after the requirement analysis phase contains as
many requirements as possible. These requirements are prioritized by the developer and implemented
in multiple cycles of design, build and testing as mentioned in Figure 2.4.

Requirements [,/ Design »| Implementation » Integration & » Installation & =
& unit testing system testing maintenance

Design P Implementation = Integration & »{ Installation & |—»
& unit testing system testing maintenance

Design $ Implementation |— Integration & —p Installation & —»
& unit testing system testing - | maintenance

Figure 2.4: Iterative Enhancement Model

2.2.5 Evolutionary Development Model

This model is similar to the iterative enhancement model. It involves the same phases as those in
waterfall model but in a cyclical fashion. It differs from the iterative enhancement model as it does not
require a usable product at the end of each cycle. Here requirements are implemented through
category and not priority. It is useful when it is not required to deliver a minimal version of the system
quickly, when the technology is relatively new, project is complex and the entire functionality must be
delivered at once although the requirements are unstable and unclear at the beginning.

2.2.6 Spiral Model

The classical models do not deal with the uncertainty with the software projects. A lot risk assessment
and analysis form a part of the software development. This was first realized by Barry Boehm, who

28 Software Engineering M.S. University - D.D.C.E.

introduced the factor of “project risk” into the life cycle model which resulted in the spiral model in
1986 as shown in Figure 2.5.

The radial dimension represents the cumulative cost and each path around the spiral indicates the
incremented cost. The angular dimensions depict the progress made in each cycle completion. Each
loop of the spiral, clockwise from the X-axis, through 360 degrees represents one phase. Each phase is
split into four sectors namely:

e Planning: Determining aims, alternatives and constraints.

¢ Risk Analysis: Analyzing alternatives and identify and resolution of risks.
o Deelopment: Product development and testing,

o Assessment: Customer review.

The essential concept of the Spiral Model is “to minimize risks by the repeated use of prototypes
[emphasis added] and other means. Unlike other models, at every stage risk analysis is performed. The
Spiral Model works by building progressively more complete versions of the software by starting at
the center of the spiral and working outwards. With each loop of the spiral, the customer evaluates the
work and suggestions are made for its modification. Additionally, with each loop of the spiral, a risk
analysis is performed which results in a ‘go/no-go’ decision. If the risks are determined to be too great
then the project is terminated” [Frankovich 1998]. Thus, the Spiral Model addresses the problem of
requirements engineering through development of prototypes, and it addresses the need for risk
management by performing risk analysis at each step of the life cycle.

DETERMINE GOALS, ingglgLiALTERNAT'VES
ALTERNATIVES, . :
CONSTRAINTS (;onst\‘a\n‘LSA Risk analysis,
@69"‘ Gonst:ai\““:’ﬁ Risk analysis,
2
N
& @ s
= F & GﬂV(‘,of\s“?‘““ "Risk analysis;
& @
> ‘0':5\\\! G .
N At sy, Riskanalysisy proto\ Proto-\ Proto-

o0
Budgety Bydget, Budge Budget: nafl'ye;).{s\ Prototype)type, | type; | type,
: - 7 a o e s 2 b =aeed [

* Requirements, Concept of

i ! @ & @/ Detailed
O@v life-cycle plan operation S&‘{iﬂ & ‘&‘{0 design
Qg S 3
5 & & o
h Pls,, " —@aeC & 3
o Wpei® N2 '\(e‘“e“ Code
3, 3 W
R : NPy
Y j N2 e it test
System
Implementation Acceptance test
lan test
PLAN E ; DEVELOP AND TEST °

Figure 2.5: Spiral Model

M.S. University - D.D.C.E. Software Life Cycle Models 29

2.3 CAPABILITY MATURITY MODEL

The Capability Maturity Model (CMM) is a software process improvement strategy. It does not
depend upon the actual life cycle model used for software development. It was developed by Software
Engineering Institute (SEI) of Carnegie-Mellon University in 1986.CMM is used to judge the order to
enhance these maturity levels maturity levels of the processes of an organization and identify the key
practices that must be followed in the various maturity levels are as shown in Figure 2.6.

Optimizing

Managed

Defined

Repeatable

Initial

Figure 2.6: Maturity Levels of CMM

e Initial (Maturity Level 1): At the initial level, processes are disorganized, even chaotic and are done
on an ad-hoc basis. Success is likely to depend on individual efforts, and is not considered to be
repeatable, because processes would not be sufficiently defined and documented to allow them to
be replicated. Software processes are unpredictable and activities carried out are a result of crisis
and are not pre-planned.

* Repeatable (Maturity Lewel 2): At the repeatable level, basic project management techniques are
established, and successes could be repeated, because the requisite processes would have been made
established, defined, and documented. The management practices are based on the results of the
past projects and current requests. It employs sound engineering and management practices.

Defined (Maturity Level 3): At the defined level, an organization has developed its own standard
software process through greater attention to documentation, standardization, and integration.
Future projects are designed as per these standards and hence, the cost, schedule and functionality
are under control.

* Managed (Maturity Level 4): At the managed level, an organization monitors and controls its own
processes through data collection and analysis. The organizations set quantitative goals for the
software processes and the processes are instrumented accordingly. As such the processes are
predictable and the resultant product is of high quality.

» Optimizing (Maturity Leel 5): At the optimizing level, processes are constantly being improved
through monitoring feedback from current processes and introducing innovative processes to
better serve the organization's particular needs. The focus lies on identifying strengths and
weaknesses to prevent defects in the long run.

A complete maturity level takes 18 months to 3 years to advance, but moving from level 1 to level 2
sometimes takes 3 or even 5 years.

30 Software Engineering M.S. University - D.D.C.E.

Key Process Areas

Each maturity level, except level 1, can be further divided into several key process areas (KPAs) which
an organization must conform to for software process improvement. These are tabulated in Table 2.1
below: Key process areas are grouped in the stages/levels from 2 to 5.

Table 2.1: CMM KPAs

Level 2 Level 3 Level 4 Level 5 Common Features
Requirements Organization Quantitative Defect Prevention | Commitment to
Management Process Focus Process Perform

Management
Software Project | Organization Software Quality | Technology Ability to Perform
Planning Process Definition | Management Change
Management

Software Project | Training Program Process Change Activities Performed
Tracing and Management
Oversight
Software Integrated Measurement &
Subcontract Software Analysis
Management Management
Software Quality | Software Product Verifying
Assurance Engineering Implementation
Software Inter group
Configuration Coordination
Management

Peer Reviews

It has been stipulated by a lot of software organizations that wish to work as a subcontractor must
conform to CMM level 3 or higher. This has lead to the growth in the importance of CMM.

2.4 I1SO

"International Organization of Standardization" Instead of using an acronym (IOS) they used the
Greek word for equal, which is ISO.

2.4.1 ISO 9000

The SEI CMM is an attempt to improve software quality by improving the underlying software
processes. Another attempt based on International Standards Organization (ISO) 9000 series is based
on software quality improvement. This standard although being used in over 130 countries is not
industry specific and can be applied to a wide range of products e.g. automobiles, televisions,
refrigerators, etc. Thus, we can conclude that ISO 9000 series is a set of documents dealing with quality
systems that can be used for software quality assurance purposes. Within the ISO 9000 series, standard
ISO 9001 is most applicable to software development.

Contrasting ISO 9001 and CMM

Although ISO 9001 and CMM are related in a lot of ways there are some issues that are covered in one
but not in the other. These differences are listed in Table 2.2.

M.S. University - D.D.C.E. Software Life Cycle Models 31

Table 2.2: Differences between ISO 9001 and CMM

1SO 9001 CMM
It determines the minimum criteria for an It emphasize on continuous process
acceptable quality system. improvement.
ISO has a wider scope including software, ISO focuses strictly on software.
hardware, materials and services.

2.4.2 ISO 9001

ISO 9001 1s a standard for quality management systems and CMMI is a model for process
improvement. If an ISO-certified organization wishes to improve its processes continuously,
implementing CMMI would be a good choice, as it provides more detailed practices for process
improvement than the ISO standards. However, there are two issues that need to be resolved when an
ISO-certified organization implements CMML. First, it is not easy to identify any reusable parts of the
ISO standards, and it would be advantageous to be able to reuse selected portions of the ISO standards
during CMMI adoption in order to use existing resources to their best advantage. Second, it is difficult
for an ISO-certified organization to implement CMMI in a straightforward, easy manner because of
the differences in the language, structure, and details of the two sets of documents. In this paper, we
present our unified model for ISO 9001:2000 and CMMI that resolves these two issues. Qur model
would be an extremely useful tool for ISO-certified organizations that plan to implement CMML

According to the Carnegie Mellon University Software Engineering Institute, CMM is a
common-sense application of software or business process management and quality improvement
concepts to software development and maintenance. It’s a community-developed guide for evolving
towards a culture of engineering excellence, model for organizational improvement. The underlying
structure for reliable and consistent software process assessments and software capability evaluations.

The Capability Maturity Model for Software (CMM) is a framework that describes the key elements of
an effective software process. There are CMM’s for non software processes as well, such as Business
Process Management (BPM). The CMM describes an evolutionary improvement path from an ad hoc,
immature process to a mature, disciplined process. The CMM covers practices for planning,
engineering, and managing software development and maintenance. When followed, these key
practices improve the ability of organizations to meet goals for cost, schedule, functionality, and
product quality. The CMM establishes a yardstick against which it is possible to judge, ina repeatable
way, the maturity of an organization's software process and compare it to the state of the practice of
the industry. The CMM can also be used by an organization to plan improvements to its software
process. It also reflects the needs of individuals performing software process, improvement, software
process assessments, or software capability evaluations; is documented; and is publicly available.

2.4.3 ISO 9002

ISO 9002 is no longer in use. It was the standard that applied to organizations that did not do design or
development. It was made obsolete with the 2000 year revisions. Now companies that do not do design
are registered to ISO 9001; they include a "Permissible Exclusion" in the Quality Manual stating that
design and development do not apply and are not included in the Quality System. ISO 9000 is often
used to refer to the set of ISO Quality Management System documents. ISO 9001 is the document that
contains the requirements for the Quality Management System. You will register to ISO 9001. ISO

32 Software Engineering M.S. University - D.D.C.E.

9000 is a guidance document on the fundamentals and vocabulary for quality management systems.
ISO 9002 and ISO 9003 are no longer in use. All companies register to ISO 9001.

Check Your Progress|

State whether the following statements are true or false:

1. At the managed level, an organization has developed its own standard software process.

2. With each loop of the spiral, the customer evaluates the work and suggestions are made for
its modification.

3. The iterative enhancement model releases software at the end of each cycle.

2.5 LET US SUM UP

Software engineering integrates process, methods and tools for software development. A number of
various process models have been proposed each with its own advantages and disadvantages with the
underlying generic phases being common.

Attempts like CMM and ISO ensure continuous improvement of the software processes.

2.6 KEYWORDS

CMM: Capability Maturity Model
KPA: Key Process Area

ISO: International Standards Organization
SEI: Software Engineering Institute
SRS: Software Requirement Specification

SDD: Software Design Document

2.7 QUESTIONS FOR DISCUSSION

1. Which of the software development models is the most effective according to you and why?

2. Is Build and Fix Model is an appropriate model for generating a bigger project? Give reasons.

3. While moving outwards in a spiral model, what can be said about the software that is being
engineered?

4. Which is more important process or product?

Check Your Progress: Model Answers
1. False
2. True
3. True

M.S. University - D.D.C.E. Software Life Cycle Models 33

2.8 SUGGESTED READINGS

R.S. Pressman, Software Engineering-A Practitioner's Approach, 5th Edition, Tata McGraw Hill Higher education.
Rajib Mall, Fundamentals of Software Engineering, PHI, 2nd Edition.

Sommerville, Software Engineering, Pearson Education, 6th Edition.

Richard Fairpy, Software Engineering Concepts, Tata McGraw Hill, 1997.

UNIT II

LESSON
3

SOFTWARE PROJECT PLANNING

CONTENTS

3.0 Aims and Objectives

3.1 Introduction‘

3.2 Software Project Planning
3.2.1 Milestones in the Re-process

3.3 Cost Estimation
3.3.1 Estimation Methodologies

3.4 The Constructive Cost Model (COCOMO)
3.4.1 Brief Characteristics of the Model

342 Levels
343 Appraisal of the Model
3.4.4 Modes

3.5 The Putnam Resource Allocation Model
3.6 Software Risk Management
3.6.1 Description of Risk Analysis
3.6.2 Purpose of Risk Management
363 Software Risk Management Steps and Techniques
3.7 LetusSumup
3.8 Keywords

3.9 Questions for Discussion

3.10 Suggested Readings

3.0 AIMS AND OBJECTIVES

After studying this lesson, you should be able to:
e Define the software project planning concepts
e Explain estimation of cost, constructive cost model, putnam resource allocation model

e Discuss software risk management

38 Software Engineering M.S. University - D.D.C.E.

3.1 INTRODUCTION

The project plan documents the planning work necessary to conduct, track and report on the progress
of a project. It contains a full description of how the work will be performed.

The project plan includes the:

Scope and objectives of the project

Deliverables the project will produce

Process which shall be employed to produce those deliverables
Time frame and milestones for the production of the deliverables
Organization and staffing which will be established
Responsibilities of those involved

Work steps to be undertaken

Budget.

Software Project Planning is to provide a framework that enables the manager to make reasonable
estimates of resources, cost and schedule. Software Project Planning

Understand the scope of the problem
Make use of past historical data (metrics)
Perform functional decomposition
Estimate effort and/or function and/or size
Perform risk analysis

Develop a work breakdown structure.

3.2 SOFTWARE PROJECT PLANNING

Probably the most time-consuming project management activity (or at least it should be).

Continuous activity from initial concept to system delivery. Plans must be regularly revised as
new information becomes available.

Different types of sub-plans may be developed to support a main software project plan concerned
with overall schedule and budger.

R Table 3.1: Types of Project Sub-plans

Plan Description

Quality plan Describes the quality procedures and standards that will be used in a project

Validation plan Describes the approach, resources and schedule used for system validation.

Configuration management plan | Describes the configuration management procedures and structures to be used.

Maintenance plan Predicts the maintenance requirements of the system, maintenance costs and effort
required.
Staff development plan Describes how the skills and experience of the project team members will be

developed.

M.S. University - D.D.C.E. Software Project Planning 39

Establish the project constraints
Make initial assessments of the project parameters
Define project milestones and deliverables
While project has not been completed or cancelled
loop
Draw up project schedule
Initial activities according to schedule
Wait (for a while)
Review project progress
Revise estimates of project parameters
Update the project schedule
Re-negotiate project constraints and deliverables
If (problems arised)
then
Initiate technical review and possible revision
end if

end loop

Figure 3.1: Project Planning Process

Project Plan Document Structure

e Introduction (goals, constraints, etc.)

e Project organization

e Risk analysis

e Hardware and software resource requirements

e Work breakdown

e Project schedule

e Monitoring and reporting mechanisms

Actiuty Organization

e Actvities in a project should be associated with tangible outputs for management to judge
progress (i.e., to provide process visibility).

e Milestones are the unequivocal end-points of process activities.

o Deliverables are project results delivered to customers. (There are also internal deliverables.)

o The waterfall model allows for the straightforward definition of milestones (“a deliverable
oriented model”).

o Deliverables are always milestones, but milestones are not necessarily deliverables.

40 Software Engineering M.S. University - D.D.C.E.

3.2.1 Milestones in the Re-process
Project Scheduling
e Split project into tasks and estimate time and resources required to complete each.

e Tasks should not be too small or too large they should last on the order of weeks for projects
lasting months. :

* Organize as concurrent activities to make optimal use of workforce.

* Minimize task dependencies to avoid potential delays.

o Dependent on project managers’ intuition and experience.

Process of Scheduling Process

Scheduling Problems

* Estimating the difficulty of problems, and hence the cost of developing solutions, is hard.
Progress is generally not proportional to the number of people working on a task.

* Adding people to a late project can make it later. (due to coordination overhead)

The unexpected always happens. Always allow for different contingencies in planning.
Bar Charts and Adiuty Netuorks

o Graphical notations are often used to illustrate project schedules.

* Activity charts (a.k.a. PERT* charts) show task dependencies, durations, and the critical path.

o Bar charts (ak.a. GANTT charts) generally show resource (e.g., people) assignments and calendar
time.

*Program Evaluation and Review Technique.

Table 3.2: Task Durations and Dependencies

Task Duration (days) Dependencies
T1 8
T2 15
T3 13 T1 (M1)
T4 10
13 10 T2, T4 (M2)
T6 5 T1, T2 (M3)
17 20 TIM1) |
T8 23 T4 (M5)
T9 15 T3, T6 (M4)
T10 15 TS, T#OMD
T1] 7 T9 (M6)
T2 10 T11 (M8)

M.S. University - D.D.C.E. Software Project Planning 41

14/7/99 15 days
M1 e

L 25/8/99

7 days

10 days 11/8/99 5/9/99

R 15 days @ia

s i s e
s : Tio
18/7/99 - ity s

25 days

19/0/00 R

Figure 3.2: Activity Timeline

47 17 187 25 18 88 158 28 28 50 129 190f
=
Fed |T4
T8 Tl
T12
Jane |T1
T3
19 |
Anne "[2 I |
T6 [T10 |
Jim 7 |
Mary T5

Figure 3.3: Staff Allocation

3.3 COST ESTIMATION

The overall process of raising a cost estimate for software is not different from the process for
estimating any other element of cost. There are, however, features of the process that are peculiar to
software estimating. Some of the unique aspects of software estimating are determined by the nature of
software as a product. Other problems are created by the nature of the estimating methodologies.

Why is it so difficult to estimate the cost of software development? Many of the troubles that plague
the development effort itself are responsible for the difficulty come across in estimating that effort.
One of the first steps in any estimate is to appreciate and define the system to be estimated. Software,
however, is intangible, invisible, and intractable. It is inherently more difficult to recognize and
estimate a product or process that cannot be seen and touched. Software produces and changes as it is
written. When hardware design has been insufficient, or when hardware fails to perform as expected,

42 Software Engineering M.S. University - D.D.C.E.

the “solution” is often attempted through changes to the software. This change may happen late in the
development process, and sometimes results in surprising software growth. In this case it is most
develop prising g

Lmportant to create a picture, since the product can be highly uncertain at this time.

The software WBS is an outstanding tool for visualizing the software product. The WBS need not be
complex, nor does it need to be highly thorough. A simple product tree line drawing is often adequate
for initial software estimates. The hardware WBS can be a useful tool in developing the first WBS for
software. There is typically a software Computer Software Configuration Item (CSCI) or similar
module linked with each hardware Line Replaceable Unit (LRU). As the program evolves, the initial
or draft WBS should comprise all software associated with the program regardless of whether it is
developed, furnished, or purchased. If furnished or purchased software were omitted, it would not be

possible to detain the cost of integrating preexisting or purchased software with the development
software.

The WBS should depict only main software functions, and major subdivisions. It should not attempt
to describe the software to the hardware it controls. Each of the major software functional units can be
modeled as a Computer Software Configuration Item (CSCI). Lower level WBS essentials can be
modeled as a component. Once the WBS is established the next step is to conclude which estimating
technique should be used for deriving the estimate.

One of the most difficult tasks in project management is accurately estimating needed resources and
necessary schedules for software development projects. The software estimation process includes
estimating the size of the software product to be formed, determining which functions the software
product must perform, estimating the effort required, developing preliminary project schedules, and
finally, estimating generally the cost of the project.

Size and number of functions performed are considered main productivity (“complexity”) factors
during the software development process. Effort is separated into labor categories and multiplied by
labor rates to determine overall costs. Therefore, software estimation is sometimes referred to as
software cost estimation.

Software life cycle models recognize various phases and associated activities required to develop and
maintain software, and offer excellent input into the software estimation process. Some of the more
frequent and accepted life cycle models include: (1) Waterfall Model; (2) Rapid Prototyping;
(3) Incremental Development Model; (4) Spiral Development Model; (5) Reusable Software Model.
These models form a baseline from which to start the software estimation process and should be
reviewed and tailored to the planned project.

Moreover, structured approaches to sub-task identification are extremely beneficial in determining
tasks and the necessary effort for each task. The WBS is a technique which strongly supports this
process.

The software estimation activity should be approached as a chief task and therefore should be well
planned, reviewed and continually efficient. The essential steps required to accomplish software
estimation are described in the following paragraphs.

Plan the Adtivities

As before mentioned, the software estimation activity should be planned as a major task. The plan
should feature the purpose, products, schedules, responsibilities, procedures, required resources, and

M.S. University - D.D.C.E. Software Project Planning 43

assumptions made. The plan should include estimation methodologies, techniques, and tools will be
used.

The project should be planned into a hierarchical set of tasks to the lowest level of detail that available

information will permit. Additionally, a breakdown of documentation requirements and associated
tasks should be defined (the detailed WBS).

The WBS helps to set up a hierarchical view and organization of the project. The top level is the
software system or final software product, and subsequent levels help recognize tasks and associated
sub-tasks and are used to define and summarize system functions. Each of these tasks is divided into
software development phases such as design, code and test, and integration. The entire activities
associated with each level must be defined together with: project planning and control, configuration
management, product assurance and documentation.

In addition to early growth of detailed knowledge about the project, the WBS provides an excellent
methodology for project data collection, tracking, and reporting. During expansion of the project,
each of the WBS tasks can be given a project budget, and a job number which is used for reporting
time spent on each project phase or activity. This provides an outstanding project tracking and history
data collection method. Most government agreements require that such a Cost/Schedule Control
System Criteria (C/SCSC) be established. When the data are collected to an established WBS, the
information can be placed in a database to be used in refining, tailoring, and modifying the software
estimation process. This information becomes a valuable input to the software estimation process for
future projects.

Software project tasks/subtasks should be defined to the negligible component potential. All technical
aspects of the project should be understood as fully as likely since the more details known about the
project the more precise the estimates will be.

3.3.1 Estimation Methodologies

Software cost estimation field has focused on algorithmic cost modeling. In this procedure costs are
analyzed using mathematical formulae linking costs or inputs with metrics to create an estimated
output. The formulae used in a formal model occur from the analysis of historical data. The accuracy
of the model can be improved by calibrating the model to ones detailed development environment,
which essentially involves adjusting the weightings of the metrics. There are a variety of different
models available, the best known are Boehm’s COCOMO, Putman’s SLIM, and Albrecht’s’ function
points.

In terms of the estimation process, almost all algorithmic models deviate from the classical view of the
cost estimation process.

Requirements

Ny

Effort
Software cost /

estimation [—— Duration

process
\ Loading

Other cost
drivers

Figure 3.4: Classical Viewof the Algorithmic Cost Estimation Process

44 Software Engineering M.S. University - D.D.C.E.

A number of methods (if possible) should be used during the software estimation process. No one
methodology is essentially better than the other, in fact, their strengths and weaknesses are often
complimentary to each other. It is recommended that more than one software estimation
methodology be used for comparison and verification purposes. One method may fail to notice system
level activities such as integration, while another method may have included this, but overlooked some
key post-processing components. Five of the methods discussed in this lesson are: analogy, bottom-up,
top-down, expert judgment, and algorithms (parametric). These methods are frequently used in
conjunction with each other and have been used for many years by managers of software projects
without the use of any formal software estimation tools. Software estimation tools have only lately
been developed which incorporate these methods, and many incorporate multiple methodologies.

Analogy Method

Estimating by analogy means comparing the planned project to previously completed similar projects
where project development information is known. Actual data from the completed projects are
extrapolated to estimate the planned project. Estimating by analogy can be done either at the system
level or the component level. '

The main strength of this method is that the estimates are based on definite project data and past
experience. Differences between completed projects and the proposed project can be identified and
impacts estimated. One difficulty with this method is in identifying those differences. This method is
also limited because similar projects may not exist, or the accuracy of available historical data is
suspect. The analogy or comparative technique uses parametric approaches including the use of CER’s.

Bottom-up Method

Bottom-up estimation entails recognizing and estimating each individual component separately, then
combining the results to produce an estimate of the entire project.

It is often complicated to perform a bottom-up estimate early in the life cycle process because the
essential information may not be available. This method also tends to be more time consuming and
may not be possible when either time or personnel are limited.

Top-doun Method

The top-down method of estimation is based on overall characteristics of the software project. The
project is partitioned into lower-level components and life cycle phases starts at the highest level. This
method is more applicable to early cost estimates when only global properties are known.

Advantages include consideration of system-level activities (integration, documentation, project
control, configuration management, etc.), many of which may be unnoticed in other estimating
methods. The top-down method is usually faster, easier to implement and requires minimal project
detail. However, disadvantages are that it can be less accurate and tends to overlook lower-level
components and possible technical problems. It also provides very little detail for justifying decisions
Or estimates.

Expert Judgment Method

Expert judgment entails consulting with human experts to use their experience and understanding of a
proposed project to provide an estimate for the cost of the project.

M.S. University - D.D.C.E. Software Project Planning 45

The obvious advantage of this method is the expert can feature in differences between past project
experiences and requirements of the proposed project. The expert can also factor in project impacts
caused by new technologies, applications, and languages. Expert judgment forever compliments other
estimation methodologies. One disadvantage is that the estimates can be no better than the expertise
and judgment of the expert. It is also hard to document the factors used by the expert who adds to the
estimate.

Parametric or Algorithmic Method

The algorithmic method engages the use of equations to perform software estimates. The equations are
based on research and historical data and use such inputs as Source Lines of Code (SLOC), number of
roles to perform, and other cost drivers such as language, design methodology, skill-levels, risk
assessments, etc.

Advantages of this method comprise being able to create repeatable results, easily modifying input
data, easily refining and customizing formulas, and better understanding of the overall estimating
methods since the formulas can be analyzed. However, the results are doubtful when estimating future
projects which use new technologies, end equations are generally unable to deal with exceptional
conditions such as exceptional workers in any software cost estimating exercises, exceptional
teamwork, and an exceptional match between skill-levels and tasks. Nevertheless, any estimating
approach can be impacted by these drawbacks, and care should be exercised when accounting for such
concerns. Additionally, sometimes algorithms are developed within companies for internal use and
many are proprietary as well as more reflective of a specific company’s performance characteristics.

An input obligation of an algorithmic model is to provide a metric to measure the size of the finished
system. Typically lines of source code are used, this is obviously not known at the start of the project.
SLOC is also very dependant on the programming language and programming environment, this is
difficult to conclude at an early stage in the problem especially as requirements are likely to be
sketchy. Despite this SLOC has been the most widely used size metric in the past, but current trends
indicate that it is fast becoming less stable. This is almost certainly due to the changes in software
development process in recent years highlighted with a tendency to use prototyping, case tools and so
forth. An alternative is to use function points proposed which are related to the functionality of the
software rather than its size. A more recent approach is to use object points. This is in contrast a new
methodology and has not been publicized in the same depth as function points and SLOC. In essence
the method is very similar to function points but counts objects instead of functions. Its recent rise has
been encouraged by the interest in the object orientation revolution.

Algorithmic models generally offer direct estimates of effort or duration. Effort prediction models take
the general form:

effort = p x S (1/productivity rate)
where p is a productivity constant and S is the size of the system.

Once the value for p is known. E.g. productivity = 450 source lines of code per month, making
p = 0.0022 and the size of the system has been estimated at 8500 KLOC.

effort = 0.0022 x 8500

effort

18.7 person months

46 Software Engineering M.S. University - D.D.C.E.

These conclusions indicate that there is greater productivity when building large software systems as
opposed to small systems. However, the results can be acceptable as it is expected that larger teams can
specialize and the overheads are of a relatively fixed size.

3.4 THE CONSTRUCTIVE COST MODEL (COCOMO)

Constructive Cost Model (COCOMO) is a method for assessing the cost of a software package.
COCOMO, Constructive Cost Model is static single-variable model. Barry Boehm introduced
COCOMO models. There are three levels of COCOMO model basic, immediate and detailéd.

3.4.1 Brief Characteristics of the Model

CoCoMo (Constructive Cost Model) is a combination of parametric estimation equation and
weighting method. Based on the estimated instructions (Delivered Source Instructions DSI), the
effort is calculated by taking into consideration both the attempted quality and the productivity
factors.

CoCoMo is based on the conventional top-down programming and concentrates on the number of
instructions.

3.4.2 Levels

®

Basic CoCoMo: Basic COCOMO model is static single-valued model that computes software
development effort (and cost) as a function of program size expressed in estimated lines of code.By
means of parametric estimation equations (differentiated according to the different system types)
the development effort and the development duration are calculated on the basis of the estimated
DSIL. The breakdown to phases is realized in percentages. In this connection it is differentiated
according to system types (organic-batch, semidetached-on-line, embedded-real-time) and project
sizes (small, intermediate, medium, large, very large).

Intermediate CoCoMo: Intermediate COCOMO model computes software development effort as a
function of program size and a set of "cost drivers" that include subjective assessments of product,
hardware, personnel, and project attributes. The estimation equations are now taking into
consideration (apart from DSI) 15 influence factors; these are product attributes (like software
reliability, size of the database, complexity), computer attributes (like computing time restriction,
main memory restriction), personnel attributes (like programming and application experience,
knowledge of the programming language), and project attributes (like software development
environment, pressure of development time). The degree of influence can be classified as very low,
low, normal, high, very high, extra high; the multipliers can be read from the available tables.

Detailed CoCoMo: Advanced COCOMO model incorporates all characteristics of the intermediate
version with an assessment of the cost driver's impact on each step, like analysis, design, etc.In this
case the breakdown to phases is not realized in percentages but by means of influence factors
allocated to the phases. At the same time, it is differentiated according to the three levels of the
product hierarchy (module, subsystem, system); product-related influence factors are now taken
into consideration in the corresponding estimation equations.

M.S. University - D.D.C.E. Software Project Planning 47

3.4.3 Appraisal of the Model
Applications of CoCoMo

Medium and Large Projeds: For small projects, the attempt for an estimation according to
intermediate and detailed CoCoMo is too high; but the results from basic CoCoMo alone are not
sufficiently exact.

Technical Application: For software projects developing commercial applications, CoCoMo
usually comes up with overstated effort estimation values therefore CoCoMo is only applied for
the development of technical software. This circumstance is due to the fact that the ratio DSI and
man months implemented in the CoCoMo estimation equation fits the efficiency rate in a
technical development; with regard to commercial software development a higher productivity
rate DSI/man-month can be assumed.

Strong and Weak Points of the Model and possible Remedial Measures

Estimation Base " Delivered Source Instructions": By means of estimation base instructions (DSI) it
was attempted to diminish the great uncertainties and problems in connection with the traditional
estimation base LOC. However, some problems remain: the ambiguity of a DSI estimation and
for the development effort the DSI are-based on modern software engineering methods-no longer
of great importance since the effort increasingly occurs during the early activities and DSI will
only be effective towards the end of the development process; DSI as well as LOC depends on the
selected programming language (an Ada adoption to CoCoMo is already available, however). A
remedy can be achieved by the weighting of instructions according to their various types
compiler, data description, transformation, control, and I/O instruction, data description
instructions (differentiated according to integration degree, message/data object, modification
degree) and processing instructions (differentiated according to batch/on-line, modification
degree, complexity, language)).

Macro and Micro Estimation: By means of the different levels of the model, CoCoMo makes it
possible to realize both a macro estimation by means of Basic CoCoMo and a micro estimation by
means of Intermediate CoCoMo and Detailed CoCoMo. The micro estimation allows the effort
allocation to activities and functional units. However, method CoCoMo is not only based on a
software life cycle deviating from the V-Model but also on another system structure. Therefore, in
order to list individual efforts for sub models, (sub-) activities, and (sub-) products, it is necessary
to adjust these items of method CoCoMo to the V-Model concept.

Influence Factors/Objectitity: In the effort estimation, CoCoMo takes into consideration the
characteristics of the project, the product, and the personnel as well as of the technology. In order
to achieve an objective evaluation of these influence factors, CoCoMo offers exact definitions.
The quantification of influence factors represents a certain problem, though which has a strong
impact on the quality of the estimation method and on the required DSI information.

Range of Application: By differentiating the estimation equations according to project sizes and
system types, the range of application for method CoCoMo is a wide one. It is also one of the few
estimation methods offering-apart from the support for development projects-support for the
effort estimation of SWMM tasks as well (also by parametric estimation equations) as for the
estimation of the project duration. :

48 Software Engineering M.S. University - D.D.C.E.

e Tool Support: Computer-based support is required for Intermediate and Detailed CoCoMo, based
on the quantity problem (differentiation of influence factors on phases and sub products.

3.4.4 Modes
COCOMO can be applied to the following software project's categories.

e Organic mode: These projects are very easy and have small team size. The team has a good
application experience work to a set of less than inflexible/rigid requirements. A thermal analysis
program developed for a heat transfer group is an example of this. ‘

o Semi-detached mode: These are intermediate in size and complexity. Here the team has mixed
experience to meet up a mix of rigid and less than rigid requirements. A transaction processing
system with fixed requirements for terminal hardware and database software is an example of this.

s Embedded mode: Software projects that must be developed within a set of tight hardware,
software, and operational constraints. For example, flight control software for aircraft.

3.5 THE PUTNAM RESOURCE ALLOCATION MODEL

Staffing Level Estimation

Once the attempt to develop software has been determined, it is necessary to establish the staffing
requirement for the project. Putnam first studied the problem of what should be a proper staffing
pattern for software projects. He extended the work of Norden who had earlier investigated the
staffing pattern of research and development (R&D) type of projects. In order to understand the
staffing pattern of software projects, Norden’s and Putnam’s results must be understood.

Norden’s Work

Norden deliberate the staffing patterns of several R & D projects. He found that the staffing pattern
can be approximated by the Rayleigh distribution curve (as shown in fig. 3.5). Norden represented the
Rayleigh curve by the following equation:

/21

E = K/tzd*t *e

d

Effort per unit time

v

T T T
Time

Figure 3.5: Reyleigh Curve

M.S. University - D.D.C.E. Software Project Planning 49

Where E is the effort necessary at time t. E is an indication of the number of engineers (or the staffing
level) at any particular time during the duration of the project, K is the area under the curve, and t 18

the time at which the curve attains its maximum value. It must be remembered that the results of

Norden are applicable to general R & D projects and were not meant to model the staffing pattern of
software development projects.

Putnam’s Work

Putnam deliberate the problem of staffing of software projects and found that the software
development has characteristics very similar to other R & D projects studied by Norden and that the
Rayleigh-Norden curve can be used to relate the number of delivered lines of code to the effort and the
time required to develop the project. By analyzing a large number of army projects, Putnam derived
the following expression:

173 4/3

L=CK t

K d
The various terms of this expression are as follows:

» K is the total effort expended (in PM) in the product development and L is the product size in
KLOC.

e t corresponds to the time of system and integration testing. Therefore, t can be approximately
considered as the time required to develop the software.

o C,_is the state of technology constant and reflects constraints that impede the progress of the
programmer. Typical values of C_= 2 for poor development environment (no methodology,
poor documentation, and review, etc.), C_ = 8 for good software development environment
(software engineering principles are adhered to), C, = 11 for an excellent environment (in

addition to following software engineering principles, automated tools and techniques are used).
The exact value of C_for a specific project can be computed from the historical data of the

organization developing it.

Putnam recommended that optimal staff build-up on a project should follow the Rayleigh curve. Only
a small number of engineers are needed at the beginning of a project to carry out planning and
specification tasks. As the project progresses and more detailed work is required, the number of
engineers reaches a peak. After implementation and unit testing, the number of project staff falls.

However, the staff build-up should not be carried out in large installments. The team size should either
be increased or decreased slowly when required to match the RayleighNorden curve. Experience
shows that a very quick build up of project staff any time during the project development correlates
with schedule slippage. It should be clear that a constant level of manpower through out the project
duration would lead to wastage of effort and increase the time and effort required to develop the
product. If a constant number of engineers are used over all the phases of a project, some phases would
be overstaffed and the other phases would be understaffed causing inefficient use of manpower, leading
to schedule slippage and increase in cost.

50 Software Engineering M.S. University - D.D.C.E.

3.6 SOFTWARE RISK MANAGEMENT
What is Risk?

Risk is defined as “The possibility of suffering harm or loss; danger.” Even if we’re not recognizable
with the formal definition, most of us have an innate sense of risk. We are aware of the potential
dangers that permeate even simple daily activities, from getting injured when crossing the street to
having a heart attack because our cholesterol level is too high. Although we prefer not to dwell on the
mytiad of hazards that surround us, these risks shape many of our behaviors. Experience (or a parent)
has taught us to look both ways before stepping off the curb and most of us at least think twice before
ordering a steak. Indeed, we manage personal risks every day.

Technology
Hardwar.éj —==—; Software

SYSTEM

[People F—— ﬁ/ﬁ/—ﬂ@l
Cost

Figure 3.6: Source of Software Risk (System Context)

3.6.1 Description of Risk Analysis

Risk analysis is essentially a “what if” analysis where various scenarios are visualized. It’s a systematic
use of known information and data to determine how and when incidents can or may occur and the
size of their consequences. The management of these risks are a very important part of the
management process. This process includes wide aspects of managing and is easiest solved in teams,
divided by their skill and knowledge in particular areas. The process of risk analysis and management
is a process of continual improvement, which means that there is never only one solution of a
problem, there are always improvements that can be done to upgrade. (improve) the quality of the
treatment of the risks. .

3.6.2 Purpose of Risk Management

The risk management process includes seven steps that has to be followed:

Figure 3.7 shows what the concept continues improvements mean. When the risk has been treated it is
not put a side, but instead the risk management process starts all over again to come up with better
solutions. The seven steps can be explained as the following:

1. Establish the context sets the boundaries for which within the risk are managed and helps to set
guidelines for how to get started with the process. The context includes five sublevels:

(@) The strategic context
(b) The organizational context

() The risk management context

M.S. University - D.D.C.E. Software Project Planning 51

(d) Develop criteria

(e) Decide the structure

v

” = Establish the context i
% ,__4 Identify risks e
2 k]
= g

=

g Evaluate risks

= T = .

& = reat risks & " \1 ——

Figure 3.7
Identifying risks is the same as identifying how, what or why incidents may occur.

The risk analysis includes the magnitude of consequences and the chance that these consequences
may come to life.

In the evaluation of risks the consequences are leveled (ranked) after their magnitude, so if needed
the right treatment will be applied.

If the risk is low or has a low-priority it can be taken care of (by routine knowledge) or be
accepted at this stage. But if it is a high-priority risk, a plan for managing is instantly laid out.
According to AS/NZS 4360 the following plan should be used:

2

% Idenufy treatment options

2,
'

% Evaluate treatment options
% Select treatment options

« Prepare treatment plan

.
g

Implement plans

Monitoring and reviewing are used to overlook the risk management cycle and track changes
within it so new contexts (continues improvements) can be made and the final treatment of the
risks improves.

Communication and consultation at every new step in the process is very important to people on
the inside of the company as for people on the outside (stakeholders, investors).

