152 Operating System M.S. University - D.D.C.E.

Another approach to deletion is to preserve the file until all references to it are deleted. To implement
this approach, we must have some mechanism for determining that the last reference to the file has
been deleted. We could keep a list of all references to a file (directory entries or symbolic links). When
a link or a copy of the directory entry is established, a new entry is added to the file-reference list.
When a link or directory entry is deleted, we remove its entry on the list. The file is deleted when its
file-reference list is empty.

The trouble with this approach is the variable and potentially large size of the file-reference list.
However, we really do not need to keep the entire list - we need to keep only a count of the number of
references. A new link or directory entry increments the reference counts; deleting a link or entry
decrements the count. When the count is 0, the file can be deleted; there are no remaining references to
it. The UNIX operating system uses this approach for non-symbolic links, or hard links, keeping a
reference count in the file information block or inode). By effectively prohibiting multiple references
to directories, we maintain an acyclic-graph structure.

To avoid these problems, some systems do not allow shared directories link. For example, in MS-DOS,
the directory structure is a tree structure, rather than an acyclic graph, thereby avoiding the problems
associated with file deletion in an acyclic-graph directory structure.

7.7.5 General Graph Directory

One serious problem with using an acyclic graph structure is ensuring that there are no cycles. If we
start with a two-level directory and allow users to create subdirectories, a tree-structured directory
results. It should be fairly easy to see that simply adding new files and subdirectories to an existing tree-
structured preserves the tree-structured nature. However, when we add links to an existing tree-
structured directory, the tree structure is destroyed, resulting in a simple graph structure.

Tt
AT TR

=5

Figure 7.6: General Graph Directory

The primary advantage of an acyclic graph is the relative simplicity of the algorithms to traverse the
graph and to determine when there are no more references to a file. We want to avoid traversing
shared sections of an acyclic graph twice, mainly for performance reasons. If we have just searched a
major shared subdirectory for a particular file, without finding that file, we want to avoid searching
" that subdirectory again; the second search would be wastage of time.

M.S. University - D.D.CE. - File Management 153

If cycles are allowed to exist in the directory, we likewise want to avoid searching any component
twice, for reasons of correctness as well as performance. A poorly designed algorithm might result in
an infinite loop continually searching through the cycle and never terminating. One solution is to
arbitrarily limit the number of directories, which will be accessed during a search.

A similar problem exists when we are trying to determine when a file can be deleted. As with acyclic-
graph directory structures, a value zero in the reference count means that there are no more references
to the file or directory, and theé file can be deleted. However, 1t is also possible, when cycles exist, that
the reference count may be non-zero, even when it is no longer possible to refer to a directory or file.
This anomaly results from the possibility of self-referencing (a cycle) in the directory structure. In this
case, it is generally necessary to use a garbage collection scheme to determine when the last reference
has been deleted and the disk space can be reallocated.

Garbage collection involves traversing the entire file system, marking everything that can be accessed.
Then, a second pass collects everything that is not marked onto a list of free space. (A similar marking
procedure can be used to ensure that a traversal or search will cover everything in the file system once
and only once.) Garbage collection for a disk based file system, however, is extremely time-consuming
and is thus seldom attempted. Garbage collection is necessary only because of possible cycles in the
graph. Thus, an acyclic-graph structure is much easier to work with. The difficulty is to avoid cycles,
as new links are added to the structure. How do we know when a new link will complete a cycle?
There are algorithms to detect cycles in graphs however, they are computationally xpensive, especially
when the graph is on disk storage. Generally, tree directory structures are more common than aie
acyclic-graph structures.

7.8 FILE ALLOCATIONS

The direct-access nature of disks allows flexibility in the implementation of files. In almost every case,
many files will be stored on the same disk. The main problem is how to allocare space to these files so
that disk space is utilized effectively and files can be accessed quickly. Three major methods of
allocating disk space are in wide use: contiguous, linked, and indexed. Each method has its advantages
and disadvantages. Accordingly, some systems (such as Data General's RDOS for its Nova line of
computers) support all three. More common, a system will use one particular method for all files.

7.8.1 Contiguous space Allocation

The contiguous allocation method requires each file to occupy a set of contiguous blocks on the disk.
Disk addresses define a linear ordering on the disk. With this ordering, assuming that only one job is
accessing the disk, accessing block /#+ 7 after block b normally requires no head movement. When head
movement is needed (from the last sector of one cylinder to the first sector of the next cylinder), it is
only one track movement. Thus, the number of disk seeks required for accessing contiguously
allocated files is minimal.

Contiguous allocation of the file is defined by the disk address and length (in block units) of the first
block. If the file is n blocks long, and starts at location b, then it occupies block b, b+ 1,b + 2,..., b +
n-1. The directory entry for each file indicates the address of the starting block and the length of the
area allocated for this file,

Accessing a file that has been allocated contiguously is easy. For sequential access, the file system
remembers the disk address of the last block referenced and, when necessary, reads the next block. For

154 Operating System M.S. University - D.D.C.E.

direct access to block 1 of a file that starts at block b, we can immediately access block & + 7. Thus,
both sequential and direct access can be supported by contiguous allocation.

One difficulty with contiguous allocation is finding space for a new file. The contiguous disk-space-
allocation problem can be seen to be particular application of the general dynamic storage-allocation
problem, which is how to satisfy a request of size n from a list of free holes. First-fit and best-fit are the
most common strategies used to select a free hole from the set of available holes. Simulations have
shown that both first-fit and best-fit are more efficient than worstfit in terms of both time and storage
utilization. Neither first-fit nor best-fit is clearly best in terms of storage utilization, but firstfit is
generally faster.

These algorithms suffer from the problem of external fragmentation. As files are allocated and deleted,
the free disk space is broken into little pieces. External fragmentation exists whenever free space is
broken into chunks. It becomes a problem when the largest contiguous chunk is insufficient for a
request; storage is fragmented into a number of holes, no one of which is large enough to store the
data. Depending on the total amount of disk storage and the average file size, external fragmentation
may be either a minor or a major problem.

Some older microcomputer systems used contiguous allocation on floppy disks. To prevent loss of
significant amounts of disk space to external fragmentation, the user had to run a re-packing routine
that copied the entire file system onto another floppy disk or onto a tape. The original floppy disk was
then freed completely, creating one large contiguous free space. The routine then copied the files back
onto the floppy disk by allocating contiguous space from this one large hole. The scheme effectively
compacts all free space into one contiguous space, solving the fragmentation problem. The cost of this
compaction is time. The time cost is particularly severe for large hard disks that use contiguous
allocation, where compacting all the space may take hours and may be necessary on a weekly bass.
During this down time, normal system operation generally cannot be permitted, so such compaction is
avoided at all costs on production machines.

This is not all, there are other problems with contiguous allocation. A major problem is determining
how much space is needed for a file. When the file is created, the total amount of space it will need
must be found and allocated. How does the creator (program or person) know the size of the file to be
created? In some cases, this determination may be fairly simple (copying an existing file, for example);
in general, however, the size of an output file may be difficult to estimate,

If too little space is allocated to a file, it may be found that file cannot be extended. Especially with a
best-fit allocation strategy, the space on both sides of the file may be in use. Hence, we cannot make
the file larger in place. Two possibilities then exist. First, the user program can be terminated, with an
appropriate error message. The user must then allocate more space and run the program again. These
repeated runs may be costly. To prevent them, the user will normally over-estimate the amount of
space needed, resulting in considerable wasted space.

The other possibility is to find a larger hole, to copy the contents of the file to the new space, and to
release the previous space. This series of actions may be repeated as long as space exists, although it can
also be time-consuming. Notice, however, that in this case the user never needs to be informed
explicitly about what is happening; the system continues despite the problem, although more and
more slowly.

Even if the total amount of space needed for a file is known in advance, pre-allocation may be
inefficient. A file that grows slowly over a long period (months or years) must be allocated enough

M.S. University - D.D.C.E. File Management 155

space for its final size, even though much. of that space may be unused for a long time. The file,
therefore, has a large amount of internal fragmentation.

To avoid several of these drawbacks, some operating systems use a modified contiguous allocation
scheme, in which a contiguous chunk of space is allocated initially, and then, when that amount is not
large enough, another chunk of contiguous space, called an extent, is added to the initial allocation.
The location of a file's blocks is then recorded as a location and a block count, plus a link to the first
block of the next extent. On some systems, the owner of the file can set the extent size, but this setting
results in inefficiencies if the owner is incorrect. Internal fragmentation can still be a problem if the
extents are too large, and external fragmentation can be a problem as extents of varying sizes are
allocated and deallocated in turn.

7.8.2 Linked Allocation

_ Linked allocation solves all problems of contiguous allocation. With linked allocation, each file is a
linked list of disk blocks; the disk blocks may be scattered anywhere on the disk. The directory
contains a pointer to the first and last blocks of the time. For example, a file of five blocks might start
at block 9, continue at block 16, then block 1, block 10, and finally block 25. Each block conrains a
pointer to the next block. These pointers are not made available to the user. Thus, if each-block is 512
bytes, and a disk address (the pointer) requires 4 bytes, then the user sees blocks of 508 bytes.

To create a new file, we simply create a new entry in the directory. With linked allocation, each
directory entry has a pointer to the first disk block of the file. This pointer is initialized to nil (the end-
of-list pointer value) to signify an empty file. The size field is also set to 0. A write to the file causes a
free block to be found via the free-space management system, and this new block is then written to,

and 1s linked to the end of the file. To read a file, we simply read blocks b} following the pointers
from block to block.

There is no external fragmentation with linked allocation, and any free block on the free-space list can
be used to satisfy a request. Notice also that there is no need to declare the size of a file when that file is
created. A file can continue to grow as long as there are free blocks. Consequently, it is never necessary
to compact disk space.

Linked allocation suffers from some disadvantages, however. The major problem is that it can be used
effectively for only sequential-access files. To find the ith block of a file, we must start at the beginning
of that file, and follow the pointers until we get to the ith block. Each access to a pointer requires a
disk read, and sometimes a disk seek. Consequently, it is inefficient to support a direct-access capability
for linked allocation files.

Space required for the pointers is another disadvantage to linked allocation. If a pointer requires 4
bytes out of a 512-byte block, then ((4 / 512) * 100 = 0.78)% of the disk is being used for pointers,
rather than for information. Each file requires slightly more space than it otherwise would.

The usual solution to this problem is to collect blocks into multiples, called clusters, and to allocate the
clusters rather than blocks. For instance, the file system may define a cluster as 4 blocks, and operate
on the disk in only cluster units. Pointers then use 2 much smaller percentage of the file's disk space.
This method allows the logical-to-physical block mapping to remain simple, but improves disk
throughput (fewer disk head-seeks) and decreases the space needed for block allocation and freelist
management. The cost of this approach is an increase in internal fragmentation, because more space is

156 Operating System M.S. University - D.D.C.E.

wasted if a cluster is partially full than when a block is partially full. Clusters can be used to improve
the disk access time for many other algorithms, so they are used in most operating systems.

Yet another problem is reliability. Since the files are linked together by pointers scattered all over the
disk, consider what would happen if a pointer were lost or damaged. A bug in the operating-system
software or a disk hardware failure might result in picking up the wrong pointer. This error could
result in linking into the free-space list or into another file. Partial solutions are to use doubly linked
lists or, to store the file name and relative block number in each block; however, these schemes require
even more overhead for each file.

An important variation on the linked allocation method is the use of a file-allocation table (FAT). This
simple but efficient method of disk-space allocation is used by the MSDOS and OS/2 operating
systems. A section of disk at the beginning of each partition is set aside to contain the table. The table
has one entry for each disk block, and is indexed by block number. The FAT is used much as is a
~ linked list. The directory entry contains the block number of the first block of the file. The table entry
indexed by that block number then contains the block number of the next block in the file. This chain
continues until the last block, which has a special end-of-file value as the table entry. Unused blocks are
indicated by a 0 table value. Allocating a new block to a file is a simple matter of finding the first ¢-
valued table entry, and replacing the previous end-offile value.

Note that the FAT allocation scheme can result in a significant number of disk head seeks, unless the
FAT is cached. The disk head must move to the start of the partition to read the FAT and find the
location of the block in question, then move to the location of the block itself. In the worst case, both
moves occur for each of the blocks. A benefit is that random access time is improved, because the disk
head can find the location of any block by reading the information in the FAT.

7.8.3 Indexed Allocation

Linked allocation solves the external-fragmentation and size-declaration problems of contiguous
allocation. However, in the absence of a FAT, linked allocation cannot support efficient direct access,
since the pointers to the blocks are scattered with the blocks themselves all over the disk and need to
be retrieved in order. Indexed allocation solves this problem by bringing all the pointers together into
one location: the index block. :

Each file has its own index block, which is an array of disk-block addresses. The ith entry in the index
block points to the ith block of the file. The directory contains the address of the index block
(Figure 7.7). To read the ith block, we use the pointer in the ith index-block entry to find and read the
desired block.

When the file is created, all pointers in the index block are set to nil. When the ith block is first
written, a block is obtained from the free-space manager, and its address is put in the ith index-block

entry.

Indexed allocation supports direct access, without suffering from external fragmentation, because any
free block on the disk may satisfy a request for more space.

Indexed allocation does suffer from wasted space. The pointer overhead of the index block is generaly
greater than the pointer overhead of linked allocation. Consider a common case in which we have a
file of only one or two blocks. With linked allocation, we lose the space of only one pointer per block
(one or two pointers).

M.S. University - D.D.C.E. File Management 157

directory
file index block
jeep 19
I

od1E 20 30

24[J25026[12700

28[J2913003100
b T

Figure 7.7: Indexed Allocation of Disk Space

With indexed allocation, an entire index block must be allocated, even if only one or two pointers will
be non-nil.

This point raises the question of how large the index block should be. Every file must have an index
block, so we want the index block to be as small as possible. If the index block is too small, however, it
will not be able to hold enough pointers for a large file, and a mechanism will have to be available to
deal with this issue.

7.9 SECURITY POLICIES AND MECHANISMS

Security policies specify what is desired in terms of protection and security. Security mechanisms
specify how to affect the security policies and enforce them in a given system.

The primary objective of operating systems and of the systems software is to provide a flexible and
functionally complete set of security mechanisms in order to enable users and owners of information
to enforce security policies as they see it.

7.9.1 Security Policies

Security policies have probably been around since the accumulation of the first valuables that needed
guarding. They usually encompass procedures and processes that specify:

1. How can information enter and exit the system?
2. Who is authorized to access what information and under what conditions?
3. What are the permissible flows of information within the system?

Additional limitations, such as restricting database queries about too large or too small sets, can be
imposed to reduce the danger of deducing data by statistical inference, Security policies are often
guided by the age-old principles of:

158 Operating System M.S. University - D.D.C.E.

® Least privilege. Fach subject should be allowed access only to the information essential for
completing the tasks that the subject is authorized to, for example, hospital accountants need not
have access to the patient's medical records, and doctors do not have to be allowed access to the
accounting data.

® Separation of duties. If there is a set ol operations that can put an organization at risk, then two or
more people with conflicting interests should be required to be involved in carrying it out. Put
simply, it should take two people with two different keys to open the vault.

® Rotation in roles. Sensitive operations should not be permanently entrusted to the same personnel;
some amount of rotation is more likely to uncover wrong doings.

The choice of an adequate security policy for a given installation and for specific data therein is usually
a trade-off between the perceived risk of exposure, the potential loss due to the loss or exposure of
information and the cost of providing a specific level of security. The process consists of risk
assessment and cost assessment, which includes the increased cost of equipment, personnel and reduced
performance due to security measures.

Once the analysis is completed, the appropriate security policies are defined. Most computer-related
security policies belong to one of the two basic categories;

® Discretionary Access Control (DAC). Policies are usually defined by the owner of data, who may

* pass access rights to other users. Usually, the creator of a file can specify the access rights of other

users. This form of access control is common in file systems. It is vulnerable to the Trojan-horse
attack, where intruders pass themselves off as legitimate users.

® Mandatory Access Control (MAC). Mandatory access restrictions are not subject to user discretion
and thus limit the damage that the trojan horse can cause. In this scheme, users are classified
according to level of authority or clearance. Data are classified into security classes according to
level of conf1dent1ahty, and strict rules are defined regarding which level of user clearance is
required for accessing the data of a specific security class. For example, military documents are
categorized as unclassified, confidential, secret, and top secret. The user is required to have
clearance equal to or above that of the document in order to access it. MAC also appears in other
systems in perhaps less obvious forms. For example, university administrators cannot pass the
right to access grade records to students. Securisy policies that address both external and internal
threats are very important in environments that handle sensitive data, because most misuses are
originated by insiders.

7.9.2 Security Mechanisms and Design Principles

In general security measures include control and monitoring of physical access to the computer
premises as well as the internal computer-system security. External or physical secunty includes the
standard techniques of fencing, surveillance, authentication and attendance monitoring. Additional
access restrictions may be imposed in special areas, such as the computer center and storage areas for
backup volumes. Physical security may also include measures for disaster recovery, which often
amount to replication of critical data and/or equipment at geographically dispersed locations to
minimize exposure to the consequences of disasters such as fire or flood.

In this chapter, we concentrate on the issues of primary concern to operating system designers, that is,
on the internal security mechanisms that provide the foundation for implementation of security

M.S. University - D.D.C.E. File Management 159

policies. Saltzer and Schroeder (1975) have identified the following general design principles for
protection mechanisms: :

® Least priulege: Every subject should use the least set of privileges necessary to complete its task.
This principle limits the damage from Trojan-horse attacks. It effectively advocates support for
small protection domains and switching of domains when the access needs change.

® Separation of prizilege: When possible, access to objects should depend on satisfying more than one
condition (.e., two keys to open the vault). :

® Least common mechanism: This approach advocates minimizing the amount of mechanism
common to and depended upon by multiple users. Design implications include the incorporation
of techniques for separating users, such as logical separation via virtual machines and physical
separation on different machines in distributed systems.

® Economy of mechanism: Keeping the design as simple as possible facilitates verification and correct
implementations.

o Complete mediation: Every access request for every object should be checked for authorization.
The checking mechanism should be efficient because it has a profound influence on system
performance. :

® Failsafe default: Access rights should be acquired by explicit permission only, and the default
should be lack of access.

® Open design: The design of the security mechanism should not be secret, and it should not depend
on the ignorance of attackers. This implies the use of cryptographic systems where the algorithms
are known but the keys are secret.

o User acceptability: The mechanism should provide ease of use so that it is applied correctly and not
circumvented by users. Computer-system security mechanisms include authentication, access
control, flow control, auditing and cryptography. They are presented in the remainder of this
chapter.

7.10 PROTECTION AND ACCESS CONTROL

The original motivation for protection mechanisms came with the advent of multiprogramming. The
intent was to confine each user's program to its assigned area of memory and thus, prevent programs
from trespassing and harming each other. With the increased desire for sharing of objects in primary
and secondary memory, more complex mechanisms for access control were devised.

7.10.1 Protection in Computer System

Protection in primary storage is usually adjunct to address translation. Its objective is to allow
concurrent and potentially mutually suspicious resident process to share the common physical address
space, primary memory. In systems with contiguous allocation of memory, protection is usually
accomplished with the aid of some sort of limit registers. When the program is loaded, the limit or the
bound registers are set to delineate the extent of its legitimate address space. At run time, each memory
reference is prechecked to verify that it is within the bounds. Otherwise, access to memory is denied,
and an exception is raised to activate the protection mechanism. Protection is ensured by making
modification of the limit registers, a privileged operation that can be executed only when the machine

160 Operating System M.S. University - D.D.C.E.

is running in the privileged, supervisor state. The supervisor state is usually reserved for the operating
system and for trusted system programs. User programs, by default, run in the less privileged user
mode. In paging systems, a page-map table lists all pages that the related program can access. In
addition, the table stores access rights - such as read, write, or execute- for each individual page. Each
process has a separate page-map table. At run-time, the hardware address translation mechanism
translates virtual addresses to physical addresses. Before allowing access to memory, the hardware
verifies that (1) the target page exists in the program's address space and (2) that the intended mode of
access is permitted. Any discrepancy causes an exception that invokes the protection mechanism.
Loading and modification of page-map tables are privileged operations. The page-map tables themselves
are usually kept in the operating system's private address space. Virtualmemory systems based on
paging operate in much the same way, with the additional provision of handling legitimate references
to pages that are not resident in main memory.

Systems based on segmentation use the segment descriptor tables for address translation and
protection. There is one segment-map table per process. Each entry of the table defines the base
address, the length (size), and the access rights to the related segment. For each memory reference, the
run-time address translation mechanism verifies that (1) the segment is within the program's address
space, (2) the offset is valid, and (3) the intended mode of access is permitted.

As discussed earlier, protection in secondary storage is usually effected by means of user-defined access
rights that are associated with files and managed by the file system. Typically, the file owner- which is
usually its creator- has the discretion to designate the access rights for all users of the file. The owner
may subsequently modify the access rights in lists consisting of user IDs and their specific rights. The
access list is usually stored in association with the file. For efficiency, some systems use abbreviated
access lists. '

7.10.2 Access-Matrix Model of Protection

The use of seemingly quite different protection mechanisms for primary and secondary memory can
sometimes obscure the basic underlying issues and principles. This section introduces the accessmatrix
model of protection, which serves as a useful abstraction for reasoning about protection mechanisms in
computer systems.

A computer system may be viewed as consisting of a set of subjects, such as processes, that operate on
and manipulate a set of objects. Objects include both hardware, such as peripheral devices and memory
segments, and software objects, such as files and arrays.

From the software point of view, each object is an abstract data type. Operations on an object amount
to applications of functions that may transform the state of the object. In principle, the specific subset
of functions that can be meaningfully applied to an individual object is object-specific. The protection
mechanism should ensure that (1) no process is allowed to apply a function inappropriate to a given
object type and (2) each process is permitted to apply only those functions that it is explicitly
authorized for a specific object. For any given object, the latter set is a subset of the objectspecific
legitimate operations. The authority to execute an operation on an object is often called the access
right.

Some of these relationships may be expressed by means of an abstraction called protection domain,
which specifies a set of objects and the types of operations that may be performed on each object. A
protection domain is a collection of access rights, each of which is a pair <object identifier, rights

M.S. University - D.D.C.E. File Management 161

set>. In general, domains need not be static; their elements can change as objects are deleted or created
and the access rights are modified. Domains may overlap; a single object can participate in multiple
domains, possibly with different access rights defined therein.

A simple illustration of the protection domain concept is provided by the dual, user/supervisor mode
of operation found in many computer systems. A more elaborate example, provided by the IBM/360
type of hardware, uses 4-bit memory protection keys and thus, supports up to 15 user domains. In
multiuser systems, each user typically has a protected set of programs and files, which amounts to as
many protection domains as there are users.

A process executes in a protection domain at a given point in time. This binding is not static, and a
process may switch between different protection domains in the course of its execution. In a flexible
protection system, not all parts and phases of a program need be given equal and unrestricted access to
all objects that the program has access rights to. For example, a procedure may have private data that it
wants to have exclusive access rights to. The need to control access rights is especially pronounced in
situations, where some common utilities, such as editors and compilers, are shared. In order for a
process to use a shared utility, some of the user's access rights must be conveyed to it. For example, the
compiler must be granted at least read access to the user's source file and, optionally, may have create
and write-file access to the user program's home directory for object and listing files. However, it is
unwise and dangerous to effect this transfer of rights by allowing the shared utility to assume all of the
invoking user's access rights. Such promiscuous behavior, not unusual in real systems, provides a fertile
ground for planning of Trojan horses and for spreading of computer viruses.

These relationships may be represented by means of an access matrix, which is a representation of all
access rights of all subjects to all objects in a computer system. It is usually depicted as a two-
dimensional matrix, with protection domains as rows and system objects as columns. Both hardware
and software objects are included in the access matrix. Figure 7.8 illustrates a small access matrix. Blank
entries indicate no access rights. Thus, for example, a process executing in domain D2 can access only
one object-File 2, in read-only mode. File 3 is presumably, a shared utility that is maintained by
domain D3 and is also executable in domain D1.

Object
. File 1 File 2 File 3 Printer
Domain
Read
E t
D1 Write xecute Output
D2 Read
Read
D3 Write Output
Execute
Copy

Figure 7.8: Access Matrix

162 Operating System M.S. University - D.D.C.E.

Although a useful model, access matrices are inefficient for storage of access rights in a computer
system because they tend to be large and sparse. The actual forms of representation of access rights,
captured and expressed by the access matrix, differ in practice in accordance with the access-control
mechanism in use. The common access-control mechanisms are:

® Access hierarchies, such as levels of execution privilege and block-structured programming
languages.

® Access lists of all subjects having access rights to a particular object.
® Capabilities or tickets for objects that specify all access rights of a particular subject.

These are discussed in greater detail:
Access Hierarchies

A simple form of access hierarchy is provided by the dual, user/supervisor, mode of operation found
in many computer systems. In that model, a restricted range of operations is available in the user
mode, which is a default for program execution. The supervisor mode is a superset that, in addition to
user-mode instructions, allows execution of instructions that can adversely affect the system's integrity.
These include certain I/O functions, halting of the machine, and updating of the address translation
tables. The supervisor mode is reserved for the operating system and for trusted programs, usually
various system utilities. Thus, user programs execute in the user domain, and the operating system
executes in the supervisor domain. Instruction-level domain switching is allowed only in the privileged
mode.

When a user program needs to perform an operation outside its protection domain, it calls the
operating system. At the control-transfer-point, such as the supervisor-call instruction, the operating
system can check the user's authority and grant or deny execution accordingly.

Figure 7.9: Protection Rings in Multics

M.S. University - D.D.C.E. File Management 163

Some systems extend this mode of operation to multiple levels of protection. For example, some DEC
minicomputers have three modes: kernel (most privileged), supervisor and user. The kernel mode is
used in some designs to run the security kernel, supervisor for the rest of the operating system, and
user mode is for application programs.

The protection rings, introduced in Multics, are a generalization of the concept of a supervisor state.
Each protection ring defines a domain of access. At any given time, each process runs in a specific
protection ring, whose number is specified in the processor-status word as an integer in the range [0, r-
1]. The access privileges of ring j are a subset of those for ring i, for all 0 el

Protection rings are illustrated in Figure 7.9. Inner rings (lower numbers) have higher access rights.
Protection barriers, in the form of call gates, are invoked by hardware when a lesser-privileged outer
ring needs to call on a service running in an inner, more privileged, ring. Intel's 80286 and higher-
numberd processors in that family, implement a reduced, four-ring version of the multics ring-
protection scheme.

- The concept of access hierarchy is not unique to hardware. It can also be used in software. For
instance, the scope rules of block-structured programming languages, such as Pascal and C, represent a
hierarchy of access domains. In that approach, the scope of an identifier encompasses the block x in
which it is declared, and all blocks defined in x. As illustrated in Figure 7.10, identifiers declared in
block A (outermost, level 0) are accessible in all of A's nested blocks. A statement contained in inner
block D (level 2) may legally reference all identifiers declared in D's outer blocks - blocks A and B in
the example - but not the identifiers declared in the disjoint block C. However, outer blocks cannot
reference identifiers declared in their enclosed, inner-level blocks. For example, statements in block A
do not have access to variables declared in blocks B and D, and variables declared in block D cannot be
accessed from block B.

A

Figure 7.10: Scope in a Block-structured Language

In general, access hierarchies violate the design principle of least privilege. They usually grant too
many access rights to privileged programs. For example, a process running at ring O has full access to
the whole system. A bug or a Trojan horse in such a program can easily corrupt the entire systém.
Moreover, the linearity of the ring-based protection mechanism imposes too strict ordering of objects

164 Operating System M.S. University - D.D.C.E.

and access-right classes. This makes it difficult or impossible to represent arbitrary constraints, such as
a cyclic graph.

Access Lists

Access lists are one way of recording access rights in a computer system. They are frequently used in
file systems. In principle, an access list is an exhaustive enumeration of the specific access rights of all
entities (domains or subjects) that are authorized access to a given object. In effect, an access list for a
specific object is a list that contains all nonempty cells of a column of the access matrix associated with
a given object.

In systems that employ access lists, a separate list is maintained for each object. Usually, the owner has
the exclusive right to define and modify the related access list. The owner of the object can revoke the
access rights granted to a particular subject or a domain by simply modifying or deleting the related
entry in the access list.

Many variations of the access-list scheme are used to store access information in file systems. Typically,
the access list or a pointer to it is stored in the file directory. Access lists may be combined with other
schemes to strengthen protection. In multics, for example, access lists are combined with a ring-based
protection scheme to control access to segments that reside on secondary storage.

The primary drawback of access lists is the search overhead, imposed by the need to verify the
authority of a subject to access a requested object. According to the principle of complete mediation,
every request to access a file should be checked. In order to improve efficiency, some systems check the
requestor’s authority only when the file is opened. This weakens protection by opening the door for
penetration after the file is opened and by making revocations of privilege ineffective as long as the
user has the file open-which may be indefinitely in some systems.

In order to avoid storage and searching of potentially lengthy lists of authorized users, especially for
public files, some systems divide users into classes (groups) and store only the aggregate group access
rights. This scheme saves storage and expedites processing at the expense of reducing flexibility and
limiting the number of distinct file-protection domains to a small number of available distinct user
classes. In Unix, for example, access lists are reduced to three entries per file, one each for the owner,
group, and all other users (world).

Check Your Progress
An acyclic graph directory allows files and sub-directories to be shared. (True/False)
Files with attribute set, cannot be deleted.

UNIX treats every I/O device as

-P-.L»N!—-

........ v have probably been around since the accumulation of the first valuables that
needed guarding,

7.11 LET US SUM UP

A file is a collection of letters, numbers and special characters: it may be a program, a database, a
dissertation, a reading list, a simple letter etc. Sometimes you may import a file from elsewhere, for
example from another computer. If you want to enter your own text or data, you will start by creating
a file. A file system is a method for storing and organizing computer files and the data they contain to

M.S. University - D.D.C.E. File Management 165

make it easy to find and access them. Disks provide the bulk of secondary storage on which a file
system is maintained. To improve I/O efficiency, I/O transfer between memory and disk are
performed in units of blocks. Each block is one or more sectors. Depending on the disk drive, sectors
vary from 32 bytes to 4096 bytes; usually, they are 512 bytes. The file system provides the mechanism
for online storage and access to both data and programs. The file system resides permanently on
secondary storage, which has the main requirement that it must be able to hold a large amount of data,
permanently. In a multi-user environment, a file is required to be shared among more than one users.
There are several techniques and approaches to affect this operation. The file systems of computers can
be extensive. Some systems store thousands of files on hundreds of gigabytes of disk. The direct-access
nature of disks allows flexibility in the implementation of files. In almost every case, many files will be
stored on the same disk. Security policies specify what is desired in terms of protection and security.
Security mechanisms specify how to affect the security policies and enforce them in a given system.

7.12 KEYWORDS

Complete Mediation: Every access request for every object should be checked for authorization. The
checking mechanism should be efficient because it has a profound influence on system performance.

Fail-safe Default: Access rights should be acquired by explicit permission only, and the default should
be lack of access.

Disk File Systems: A disk file system is a file system designed for the storage of files on a data storage
device, most commonly a disk drive, which might be directly or indirectly connected to the computer.

Flash File Systems: A flash file system is a file system designed for storing files on flash memory
devices.

Access Hierarchy: A simple form of access hierarchy is provided by the dual, user/supervisor, mode of
operation found in many computer systems.

Access Lists: Access lists are one way of recording access rights in a computer system.

7.13 QUESTIONS FOR DISCUSSION

1. Explain the file system architecture and functions.

2. What is file sharing and file allocation?

3. Briefly explain the access matrix model of protection.
4

What does the general graph directory contains?

Check Your Progress: Model Answers
1. True

2. Read Only

3. File

4. Security Policies

166 Operating System M.S. University - D.D.CE.

7.14 SUGGESTED READINGS

Andrew S. Tanenbaum, Modern Operating System, Published By Prentice Hall
Silberschatz Galvin, Operating System Concepts, Published By Addison Wesley
Andrew M. Lister, Fundamentals of Operating Systems, Published By Wiley
Colin Ritchie, Operating Systems, Published By BPB Publications

UNIT V

LESSON
8

THE UNIX OPERATING SYSTEM

CONTENTS
8.0 Aims and Objectives .
8.1 Introduction
8.2 Case Study: The UNIX Operating System
8.3 Command Language of UNIX
8.3.1 UNIX Command Structure
8.3.2 Some Commonly Used UNIX Commands
8.4 System Calls of UNIX
8.4.1 = Process Management Functions
8.4.2 Memory Management Functions
8.5 Implemematioﬁ of UNIX ‘
8.5.1 UNIX Device Drivers
8.5.2 UNIX Kernel
8.5.3 Assumptions about Hardware
8.5.4 Interrupts and Exceptions
8.5.5 File System and Internal Structure of Files
8.6 Letus Sumup
8.7 Keywords

8.8 Questions for Discussion

8.9 Suggested Readings

8.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Study the case of UNIX operating system
® Describe the command language of UNIX
e Explain the system call of UNIX

170 Operating System M.S. University - D.D.C.E.

8.1 INTRODUCTION

Simply stated, UNIX is an operating system. It is by and large the most popular operating system
existing today. The features and flexibility of UNIX is so immense that it has become a standard for
great many operating systems. It is multi-user system, which means that more than one user can work
at the same computer system at the same time. UNIX also supports multi-tasking. Multitasking means
that more than one program can be made to run at the same time. For example, you can initiate a
program and leave it by itself to go on and in the meantime you can work on some other program.
Multi-tasking and multi-user are the two most important characteristics of UNIX, which have helped
it gain widespread acceptance among a large variety of users.

The UNIX OS files consume 40 MB of the 80 MB disk space. Another 10-20 MB of disk space is eaten
up as swap space. This swap space is used at that point of time when UNIX falls short of memory. So,
the contents that are not immediately required are stored in the swap space. Any time when the
program needs these contents, they are read from the swap space.

8.2 CASE STUDY: THE UNIX OPERATING SYSTEM

Case Study: Multinational Financial Services Corporation.

A multinational financial services organization comprised of seven separate operating companies has
primary headquarters located in North America, Europe, Asia Minor, and Southeast Asia. Over 50
major regional offices provide a complete range of financial services (investment and personal banking,
asset management and insurance). Each operating company is an autonomous business unit; however,
at the local level, each company might share offices with one or more operating companies.

This company operates under the strict regulatory scrutiny of many countries and regions and under
their respective statutes regarding financial privacy, trading, and IT functionality and security. As a
result, maintaining secure and stable systems at both the network operating system level and the
desktop operating system level is required.

Existing IT Environment

There is no central IT group for all operating companies, so there are no comprehensive I'T standards
for the entire organization. Each operating company has created its own standards; therefore, each
company has its own IT infrastructure. In some locations, operating companies share one common
network. In other locations, the number of networks matches the number of operating companies
sharing that office location. Local offices, especially the consumer and retail locations, maintain their
own file and print servers, although regional offices usually have domain controller’s Regional offices
are otherwise limited in their I'T functions.

Some financial services applications require the UNIX operating system. Currently, all infrastructure
services such as Dynamic Host Configuration Protocol (DHCP) and DNS are managed in a UNIX
environment. Windows 2000 DNS dynamic update protocol will be used while the company

researches the possibility of migrating the custom applications running on UNIX servers to
Windows 2000.

Their current network operating system environment runs 95 percent on Windows N'T Server 4.0 and
five percent on Novell NetWare Bindery. The current client operating systems in use at each operating
company include 80 percent Windows NT Workstation 4.0, approximately 15 percent Windows NT

M.S. University - D.D.C.E. The Unix Operating System 171

Workstation 3.51, and about 5 percent Windows 95. Some financial services professionals use both
UNIX and Windows NT 4.0 clients.

Sonrce: http://technet.microsoft.com/en-us/library/cc960330.aspx

8.3 COMMAND LANGUAGE OF UNIX

8.3.1 UNIX Command Structure

There are a few of UNIX commands, that you can type them stand alone. For example, is, date, pwd,
logout and so on. But UNIX commands generally require some additional options and/or arguments

to be supplied in order to extract more information. Let us find out the basic UNIX command
structure.

The UNIX commands follow the following format:

Command [Options] [Arguments]

The options/arguments are specified within square brackets if they are optional. The options are
normally specified by a “* (hyphen) followed by letter, one letter per option.

8.3.2 Some Commonly Used UNIX Commands

There are many commands you will use regularly. Let us discuss some of these commands, but please
make a note that the options that are specified for the commands may not necessarily work on all
look-alike UNIX. There might be some variations, (which can be ignored) here and there. The
commands covered in this unit are:

® banner - To display information.

e cal - To display calendar on the screen.

e date - Todisplay and set the current system date and time.

® passwd - To install or change the password on the system.

® who - To determine the currently logged users on the system.
e finger - Gives specific information about a user.

The Banner Command

This command displays information. It displays its argument exploded to a bigger size, onto the
standard output. The banner command splits up the long arguments on individual word boundaries. It
displays the argument up to 10 characters in large letters.

Options: None
Example: $ banner VICKY
Output:

172 Operating System M.S. University - D.D.C.E.

The CAL Command

The cal command creates a calendar of the specified month for the specified year. If you do not specify
the month, it creates a calendar for the entire year. By default, this command shows the calendar for
the current month based on the system date. The cal writes its output to the standard output.

Syntax: cal [[mm]yy]

where mm is the month, an integer between 1 and 12 and yy is the year, an integer between 1 and
9999. For current years, a 4-digit number must be used, ‘98’ will not produce a calendar of 1998.

Options: None

Examples:
o $cal
Output:
May 1999
SOURD S R HRP vy
1

2 3 4 5 6 7 8
g FEN 1] 5512 4314 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

.

+ § cal 1998: The above command displays the calendar for entire year, 1998. The entire year
will whip month by month.

+ $cal 1998/lpr : The above command prints the calendar for the entire year onto the printer.

The Date Command

It shows or sets the system date and time. If no argument is specified, it displays the current date and
the current time.

Syntax: date[+options]

Options:
e %d - displays date as mm/dd/yy
® %a - displaysabbreviated weekday (Sun to Sat)
® %t - displays time as HH:MM:SS
® %r - displays time as HH:MM:SS(A.M/P.M.)
e %d

displays only dd

® %m

displays only mm

M.S. University - D.D.C.E, The Unix Operating System 173

Ekamples:

% $date: It will display date as - Mon June 9 04: 50:24 EDT 1998.
> $ date +%d: It will display date as - 11/12/98
$date +%r: It will display time as - 07: 20:50 PM

L

J

b

>

If you are working in the superuser mode, you can set the date as shown below:

$ date MMddhhmm [yy]
where MM = Month (1-12)
dd = day (1-31)
hh = hour (1-23)
mm = minutes (1-59)
Yy = Year

% It sets the system date and time to the value specified by the argument.

The Passuwd Command

The passwd command allows the user to set or change the password. Passwords are set to prevent
unauthorized users from accessing your account.

Syntax : passwd [user-name]

Options

e -d: Deletes your password

® -xdays: This sets the maximum number of days that the password will be active. After the
specified number of days you will be required to give a new password.

® -ndays: This sets the minimum number of days the password has to be active, before it can be
changed.

® -s: This gives you the status of the user’s password.

The above options can be used only by the super user.

Example:

< § passwd x 40 bobby The above command will set the password of the user as ‘bobby’
which will be active for a maximum of 40 days.

Also note, that passswd program will prompt you twice to enter your new password. If you don’t
type the same thing both the times, it will give you one more chance to set your password.

< $passwd: bobby
Old password:

New password:

Re-enter new password:

The Who Command

The who command lists the users that are currently logged into the system.

174 Operating System M.S. University - D.D.C.E.

Syntax: who [options]

Options:
® -u : lists the currently logged-in users.
® -t : givesthe status of all logged-in users.
® ami: thislists login-id and terminal of the user invoking this command.
Examples:
% S$who -t
Output:
Shefali + ttyol Jan 12 9:50
Bobby - ttyo2 Jan 12 10:10
The second column here shows whether the user has write permission or not.
% S$who-u
Output:
Shefali ttyol Jan 12 9:50 1235
Bobby ttyo2 Jan 12 10:10 2401

The last column here denotes the process-id.

%+ $whoam1

Output:

Shefali ttypb Jan 12 14:34

¢ This command shows the account name, where and when I logged in. It also shows the
computer terminal being used.

The Finger Command

In larger system, you may get a big list of users shown on the screen. The finger command with an
argument gives you more information about the user. The finger command followed by an argument
can give a complete information for a user who is not logged onto the system.

Syntax: finger [user-name]

Options: none

Examples:

$ finger shefali

This command will give more information about Shefali’s identity as shown below:
Login name: shefali

(512) 222-4444

Directory: /home/shefali

Last login Fri May 16 12: 14: 40 on ttyol

M.S. University - D.D.C.E. The Unix Operating System 175

Project: X window programming
Shefali tryol May 18 20:05

If you want to know about everyone currently logged onto the system, give the following command:

$finger

8.4 SYSTEM CALLS OF UNIX

Now that you have learnt sufficiently about operating systems in general, let us try to learn and
appreciate how UNIX operating system performs its designated functions:

® Process management functions: Creating, destroying and manipulating processes.

® Memory management functions: Allocating, de-allocating and manipulating memory.
-® Input/ Output functions: Communicating and controlling I/O device and file system.

® Miscellaneous functions: Network functions etc.

The UNIX System offers somewhere around 64 system calls. However, only 32 system calls are
frequently used. These system calls carry very simple options with them. So, it becomes easy to make
use of these system calls. The body of the Kernel is formed by the set of system calls and the internal
algorithms that implement them. Thus, the Kernel provides all the services to the application
programs in the UNIX system. In the UNIX system, the programs don’t have any knowledge of the
internal format in which the Kernel stores file data.

8.4.1 Process Management Functions

The behavior of a UNIX process is defined by its text segment, data segment and stack segment as
shown in Figure 8.1.

Resources

S UNIX kernel . : s -

Figure 8.1: A Process in UNIX

The text segment contains the compiled object instructions, the data segment contains static variables,
and the stack segment holds the runtime stack used to store temporary variables. A set of source file

176 Operating System M.S. University - D.D.C.E.

that is compiled and linked into an executable form is stored in a file with the default name of a. out
(of course, the file can be explicitly given any name by the programmer). If the program references
statically define data, such as C static variables, a template for the data segment is maintained in the
executable file. The data segment will be created and initialized to contain values and space for
variables when the executable file is loaded and executed. The stack segment is used to allocate storage
for dynamic elements of the program, such as automatic C variables that are created when they come
into scope and are destroyed when pass out of scope.

The executable file is created by the compiler and linker. These utilities do not define a process; they
define only the program text and a template for the data component that the process will use when it
executes the program. When the loader loads a program into the computer’s memory, the system
creates appropriate data and stack segments, called a process.

A process has a unique process identifier, a PID that is essentially a pointer-an integer into a table of
process descriptors used by the UNIX OS kernel to reference the process’s descriptor. Whenever one
process references another process in a system call, it provides the PID of the target process. The
UNIX pa command lists each process associated with the user executing the command. The PID of
each process appears as a field in the descriptor of each process. The next time you are using UNIX,
try the ps-aux command to observe the PID value identifying each process in the system.

The UNIX command for creating a new process is the fork system call. Whenever a (parent) process
calls fork, a child process is created with its descriptor, including its own copies of the parent’s program
text, data, and segments, and access to all open file descriptors (in the kernel). The child and percent
processes execute in their own separate address spaces. This means that even though they have access to
the same information, both the child and its parent each reference their own copy of the data. No part
of the address space of either process is shared. Hence, the parent and child cannot communicate by
referencing variables stored at the same address in their respective address space. In UNIX, the only
thing the two processes can reference in common is a file.

UNIX systems also provide several forms of the execve system call to enable a process to reload its
address space with a different program:

execve (char *path, char *avgv[], char *envp[]); V

This system call causes the load module stored in the file at path to replace the program currently
being executed by the process. After execve has completed executing, the program that called it, is no
longer loaded. Hence, there is no notion of returning from an execve call, since the calling program is
no longer loaded in memory. When the new program is started, it is passed the argument list, angv,
and the process uses a new set of environment variables, envp.

UNIX also provides a system call, wait (and a frequently used variant, waitpid), to enable a parent
process to detect when one of its child processes terminates. Details of the terminating child’s status
may be either returned to the parent via a value parameter passed to wait or ignored by the parent.
The waitpid variant allows the parent to wait for a particular child process (based on its PID) to
terminate, while the wait command does not discriminate among child processes. When a process
exits, its resources, including the kernel process descriptor, are released. The operating system signals
the parent that the child has died, but it will not release the process descriptor until the parent has
received the signal. The parent executes the wait call to acknowledge the termination of a child
process.

