M.S. University - D.D.C.E. Operating System: An Introduction 27

computers entire processes are in memory (albeit virtual memory) and the computer switches between
executing code in each of them. In other types of systems, such as airline reservation systems, a single
application may actually do much of the timesharing between terminals. This way there does not need
to be a different running program associated with each terminal.

Many universities and businesses have large numbers of workstations tied together with local-area
networks. As PCs gain more sophisticated hardware and software, the line dividing the two categories
1s blurring.

y, CHH Partition 4

Multiple Iy
Job Queues : Partition 3 m
:] Partition 2
D‘D‘E}‘ Partition 1

oS

Figure 1.6: Time Sharing System

Check Your Progress

1. What are three two of problems caused by errors in operating system?

Name four services of provided by operating system.

Explain the categories of system software.

R)

True or False:
() Users programme cannot control I/O service.

(i) A process needs to communicate only with OS,

(i) OS provides service to manage the primary memory only.

1.11 LET US SUM UP

An operating system is a layer of software which takes care of technical aspects of a computer's
operation. It shields the user of the machine from the low-level details of the machine's operation and
provides frequently needed facilities. There is no universal definition of what an operating system
consists of. Modern personal computer systems usually feature a Graphical user interface (GUI) which
uses a pointing device such as a mouse or stylus for input in addition to the keyboard. A distributed
system is a computer system iri which the resources resides in separate units connected by a network,
but which presents to the user a uniform computing environment. A realtime operating system
(RTOS) is a multitasking operating system intended for realtime applications. Such applications
include embedded systems (programmable thermostats, household appliance controllers, and mobile
telephones), industrial robots, spacecraft, industrial control and scientific research equipment. A batch
system is one in which jobs are bundled together with the instructions necessary to allow them to be
processed without intervention. The monitor is system software that is responsible for interpreting

28 Operating System M.S. University - D.D.C.E.

and carrying out the instructions in the batch jobs. In multiprogramming batch system several jobs are
kept in main memory at the same time, and the CPU is multiplexed among them.

1.12 KEYWORDS

Operating System: An operating system is a layer of software which takes care of technical aspects of a
computer's operation. ‘

Batch system: It is one in which jobs are bundled together with the instructions necessary to allow
them to be processed without intervention.

Monitor: It is system software that is responsible for interpreting and carrying out the instructions in

the batch jobs.

Multiprogramming Batch System: It is one in which several jobs are kept in main memory at the same
time, and the CPU 15 muiltiplexed among them.

Job scheduling: It is the process of sequencing jobs so that they can be executed on the processor.
System calls: They provide the interface between a process and the operating system.

Program Execution: Program execution is a method in which user given commands call up a processes
and pass data to them

I/0 Operations: It refers to the communication between an information processing system and the
outside world - possibly a human, or another information processing system.

File System Manipulation: Creation, deletion, modification or updation of files is known as File System
Manipulation.

- Process Communication: A processes need to communicate with other process or with the user to
exchange the information, this is known as Process Communication.

Error Detedtion: This is a process where the operating system constantly monitors the system for
detecting the malfunctioning of it.

1.13 QUESTIONS FOR DISCUSSION

What is an operating system? Is it a hardware or software?

Mention the primary functions of an operating system.

What is batch system? What are the shortcomings of early batch systems? Explain it.
Briefly explain the evolution of the operating system.

‘What are the key elements of an operating system?

Write the differences between the time sharing system and distributed system.

What do you understand by the term Computer Generations?

What is the difference between system software and application software?

B Dgois Bl DEgae i b T |

Operating system acts as resource manager. What resources does it manage?

M.S. University - D.D.C.E. Operating System: An Introduction 29

2
3.
4

Check Your Progress: Model Answers
1.

System crashes and instabilities and security flaws
I/0O Operations, error detection, communication, program execution

Operation system and language translator

(i True
(i) False
(i) False

1.14 SUGGESTED READINGS

Andrew S. Tanenbaum, Modern Operating System, Published By Prentice Hall

‘Silberschatz Galvin, Operating System Concepts, Published By Addison Wesley
Andrew M. Lister, Fundamentals of Operating Systems, Published By Wiley
Colin Ritchie, Operating Systems, Published By BPB Publications

La dhotre, Operating System, Technical Publications.

LESSON
2

PROCESS DESCRIPTION AND CONTROL

CONTENTS
2.0 Aims and Objectives
2.1 Introduction
2.2 Process Description
221 Process Hierarchies and Implementation
2.3 Process Control
2.3.1 Process States
23.2 CPU Scheduling Criteria
2.4 Processes and Threads
24.1 Comparison of Multiple Thread and Multi-process
242 Memory Layout for Threading
243 Thread Structure
2.5 Interprocess Communication
2.6 LetusSumup
2.7 Keywords

2.8 Questions for Discussion

29 Suggested Readings

2.0 AIMS AND OBJECTIVE

After studying this lesson, you should be able to:

® The role of a process the operating systems

® Explain process status, description and control

¢ Explanation and utilization of the power of threads

e Concept of interprocess communication

M.S. University - D.D.C.E. Process Description and Control 31

2.1 INTRODUCTION

Computers, in the past, allowed only one program to be executed at a time, i.e. they were strictly
single tasking systems. The executing program used to have all the resources available to it. This
practice caused wastage of valuable CPU cycles. Most of the time, the CPU sat idle without doing
anything useful. To harness the CPU capabilities by preventing the wastage of its cycles, multi-tasking
systems were developed. Thus, the concept of process management evolved. One definition of a
process is that it has an address space and a single thread of execution. Sometimes it would be beneficial
if two (or more) processes could share the same address space and run parts of the process in parallel.
This is what threads do. Firstly, let us consider why we might need to use threads. Assume we have a
server application running. Its purpose is to accept messages and then act upon those messages.
Consider the situation where the server receives a message and, in processing that message, it has to
issue an I/O request. Whilst waiting for the I/O request to be satisfied it goes to a blocked state. If new
messages are received, whilst the process is blocked, they cannot be processed until the process has
“finished processing the last request. One way we could achieve our objective is to have two processes
running. One process deals with incoming messages and another process deals with the requests that
are raised. However, this approach gives us two problems

1. We stll have the problem, in that either of the processes could still become blocked (although
there are way around this by issuing child processes)

2. The two processes will have to up date shared variables. This is far easier if they share the same
address space.

2.2 PROCESS DESCRIPTION

An operating system provides an environment, which presents each hardware computing resource in
abstract form. This representation hides the unwanted details from the programmers and allows them
to view the resources in the form, which is convenient to them. A process is an abstract model of a
sequential program in execution. It forms a schedulable unit of work. It is identifiable object in the
system having following components:

® The object program (or code) to be executed.

® The data on which the program will execute (obtained from a file or interactively from the user of
the process).

® The status of the process execution.
A process may be represented schematically as in Figure 2.1.

In contrast, a program is a passive entity sitting on some secondary storage device. Whereas a process
includes, besides instructions to be executed, the temporary data such as subroutine parameters, return
addresses and variables (stored on the stack), data section having global variables (if any), program
counter value, register values and other associated resources. Although two processes may be associated
with the same program, yet they are treated as two separate processes having their respective set of
resources.

32 Operating System M.S. University - D.D.C.E.

| Resources [

 Abstract Machine EnViron:ment 8.

Figure 2.1: Abstract Machine Environment (OS)

2.2.1 Process Hierarchies and Implementation

A process may be created through the create system call. The processes so created are said to be
children process of the original process, which in turn is known as parent process. This gives rise to a

hierarchical structure of the processes existing in a system. The first process created in the system is the
operating system itself.

At any moment the processes for a tree structure of hierarchy, as shown in Figure 2.2.

I root
el Do]
| pagedaemon | [swapper | [it]
| —
| et | |l | L User3 |
| -
1 Proc 1 l L Proc 2] L Proc 3 1

Figure 2.2: Process Hierarchy

In the figure, root is the parent process to page-daemon, swapper and init processes. init process has
three children processes while user! process has three children processes procl, proc2 and proc3.

2.3 PROCESS CONTROL

Each process is represented in the operating system by a complex data structure called process control
block (PCB) - also called a task control block. A typical PCB is shown in Figure 2.3. '

M.S. University - D.D.C.E.

Process Description and Control 33

Pointer -+ - - Process state

Processnumber .

_ Program counter

R_egist?rg .

Memory limits

List of open files

Figure 2.3: Process Control Block

PCB contains much information associated with a specific process, including:

® Process state: The state may be new, ready, running, waiting, halted and so on.

® CPU registers: The registers vary in number and type, depending on the computer architecture.
They include accumulators, index registers, stack pointers, and general-purpose pointers and flags.

e CPUscheduling

® Information: This information includes a process priority, pointers to scheduling queues, and any
other scheduling parameters.

Memory Management

® Information: This information may include such information as the base and limit registers, the
page tables, or the segment tables depending on the memory system used by the operating system.

® Accounting

® Information: This information includes the amount of CPU and real tlme used, time limuts,
account numbers,]ob or process numbers, and so on. »

® I/Ostatus

®

Information: The information includes the list of I/O devices (such as tape drives) allocated to this
process, a list of open files, and so on.

2.3.1 Process States

The current activity of a process is known as its state. As a process executes, its state changes. A
process can exist in one of the following states:

34 Operating System M.S. University - D.D.C.E.

® Newr The process is being created.
® Running: Instructions are being executed.

® Waiting: The process is waiting for some event to occur (such as an I/O completion or reception
of a signal).

® Ready: The process has acquired the required resources and is waiting to be assigned to a
processor.

® Terminated: The process has finished execution.

These names are arbitrary and vary between operating systems. However, the states represented by
them are found in all operating systems. Some operating systems may have more finely delineated
process states. It is important to note that only one process can be running on any processor at any
instant. Many processes may be waiting or ready, however.

Whenever a new process is created in the system, it enters the new state. Soon, it is assigned its
required resources, whence it is admitted to ready state. It is queued up in the ready state queue, its
priority depending on the scheduling scheme of the system. At its turn, the dispatcher switches the
process to running state. Again, it funs as far as the scheduling scheme allows it to run. If it finishes
execution, it is sent into terminated state. If, for some scheduling or interrupt reasons, it has to release
the resources to other candidate processes, it goes into waiting state. It waits or sleeps until the time it
procures the resource it was waiting for. At this moment it is again queued up in the ready queue. The
state diagram (Figure 2.4) depicts this scenario.

terminated

Interrupt exit

ready

Scheduler-
dispatch/

I/0 event cofnpletion I/O or epent wait

waiting

Figure 2.4: Process State Transition Diagram

M.S. University - D.D.C.E. ~ Process Description and Control 35

2.3.2 CPU Scheduling Criteria

On most multitasking systems, only one process can truly be active at a time - the system must
therefore share its time between the executions of many processes. This.sharing is called scheduling.
(Scheduling time management)

Many objectives must be considered in the design of a scheduling discipline. In particular, a scheduler
should consider fairness, efficiency, response time, turnaround time, throughput, etc., Some of these
goals depends on the system one is using for example batch system, interactive system or realtime
system, etc. but there are also some criteria that are desirable in all systems.

® Fairness: Fairness is important under all circumstances. A scheduler makes sure that each process
gets its fair share of the CPU and no process can suffer indefinite postponement. Note that giving
equivalent or equal time is not fair. Think of safety control and payroll at a nuclear plant.

e Policy Enforcement: The scheduler has to make sure that system’s policy is enforced. For example,
if the local policy is safety then the safety control processes must be able to run whenever they
want to, even if it means delay in payroll processes.

® Effidency: Scheduler should keep the system (or in particular CPU) busy cent percent of the time
when possible. If the CPU and all the Input/Output devices can be kept running all the time,
more work gets done per second than if some components are idle.

® Response Time: A scheduler should minimize the response time for interactive user.
® Turnaround: A scheduler should minimize the time batch users must wait for an output.

e Throughput: A scheduler should maximize the number of jobs processed per unit time. A Tittle
thought will show that some of these goals are contradictory. It can be shown that any scheduling
algorithm that favors some class of jobs hurts another class of jobs. The amount of CPU time
available 1s finite, after all.

CPU Scheduling Algorithms

Different methods of scheduling are appropriate for different kinds of execution. A queue is one form
of scheduling in which each program waits its turn and is executed serially. This is not very useful for
handling multitasking, but it is necessary for scheduling devices which cannot be shared by nature.

An example of the latter is the printer. Each print job has to be completed before the next one can
begin; otherwise all the print jobs would be mixed up and interleaved resulting in nonsense.

We shall make a broad distinction between two types of scheduling, one is nonpreemptive scheduling
and another is preemptive scheduling.

2.4 PROCESSES AND THREADS

A thread can be loosely defined as a separate stream of execution that takes place simultaneously with
and independently of everything else that might be happening

Threads are typically given a certain priority, meaning some threads take precedence over others.
Once the CPU is finished processing one thread, it can run the next thread waiting in line. Threads
seldom have to wait more than a few milliseconds before they run.

36 Operating System M.S. University - D.D.C.E.
Computer programs that implement “multi-threading” can execute multiple threads at once. Most
modern operating systems support multi-threading at the system level, meaning when one program
tries to take up all your CPU resources, you can still switch to other programs and force the CPU-
hogging program to share the processor a little bit.

i e

Figuré 2.5: Typical Uses of Threads

. ; __ oo

Thread - Y
switching ¥ Task 2 complete
overhead Task 1 complete ‘I

Figure 2.6: Task Switching

M.S. University - D.D.C.E. Process Desctiption and Control 37

Threads are like mini-processes that operaté within a single process. Each thread has its own program
counter and stack so that it knows where it is. Apart from this they can be considered the same as
processes, with the exception that they share the same address space. This means that all threads from
the same process have access to the same global variables and the same files. '

These tables show you the various items that a process has, compared to the items that each thread has.

Per Thread Items Per Process Items

e Program Counter ® Address Space
e Stack ® Global Variables
® Register Set ® Open Files r
e Child Threads ® Child Processes
® State e Timers
® Signals
e Semaphores
e Accounting Information

If you have a multi-processor machine, then different threads from the same process can run in

parallel.

Multithreaded programming is an essential resource to modern programming. Its use permeates
through all types of programming, from embedded systems to the desktop all the way to
supercomputing applications. Unfortunately, it’s also got a reputation for being hard, which really
isn’t the case. All that it requires is some careful forethought and a good understanding of what’s going
on.

A thread is essentially another place where your code is running in the same program. Every program
has at least one thread, and some programs have more. They come up all the time and are honestly
pretty common practice for most nontrivial programming tasks.

There are many reasons to have multiple threads in the application:
® Support multiple processors

® Long running background computational tasks

e SlowI/O

® Many I/O tasks

® Separate tasks that need to run simultaneously

All of these reasons boil down to the same one of three:

® To use more than one CPU,

¢ To make the codes much more independent tasks

® To fasten the operation speed

Many of the reasons listed above fall into the last category. Much of a program’s time is spent waiting
for something to happen. Most user applications sit there and wait for the user to do something, like a
mouse moving, or a click. Until then, they block. Blocking is sitting idle while other programs get to
use the CPU and you don’t until whatever you're blocked waiting for happens.

38 Operating System

M.S. University - D.D.C.E.

Example: Here are some examples of popular operating system and their thread support is given

UNIX — supports multiple user processes but only supports one thread per process

below:

® MS-DOS — support a single user process and a single thread
. , :

® Solaris — supports multiple threads

2.4.1 Comparison of Multiple-thread and Multiple-process

Comparison of multiple-thread and multiple-process control is given below:

Multiple Process

Multiple Threads

has states new, ready, running blocked, terminated

like a process, a thread has states new, ready, runmng
blocked, terminated

processes can create child processes

threads can create child threads

each process operates independently of the others, has its
own PC, stack pointer and aldress space

threads are not independent of each other, threads can read

or write over any other’s stack

f

one process
one thread

multiple processes
one thread per process

- e e

O*ﬂ‘ﬂ&WIR-"Q-‘ﬂlﬂ@‘-ﬂs”“‘--G-R'ﬂﬂﬂﬂﬂh*--'*HQ

i

i
i
i
i
i
i
i
i
i

one process
multiple threads

multiple processes
multiple threads per process

Figure 2.7: Variety of Models for Threads and Processes

2.4.2 Memory Layout for Threading

For a single-threaded program, the memory layout looks like this: An address space and one thread

with all its memory mapped to it.

M.S. University ~ D.D.C.E. Process Description-and Control 39

P p———

Heap | |

4
e T T —

Figure 2.8: Memory Layout for a Single-threaded Process

For a multithreaded program, the memory layout looks like this: An address space and multiple
threads sharing it.

Process
Address Space
frmamassy = Gloha! Data
oo
| Code (g Q
L ey e
—— rorvens
: oy Thead! T imj?fﬂﬂs
| Stckfor
Theead 2

Figure 2.9: Memory Layout for a Multithreaded Process

40 Operating System M.S. University - D.D.C.E.

The process (the running program that the threads belong 10) contains all the memory shared between
all the threads. The threads share all of the process’s memory at the same addresses except for their
stacks. Within this shared memory lies both the power and the difficulty with multithreaded
programming. Data can be accessed easily & share it between threads, and complete screw up of data
structures are also possible.

2.4.3 Thread Structure

A thread, sometimes called a lightweight process (LWP), is a basic unit of resource utilization, and
consists of a program counter, a register set, and a stack. It shares with peer threads its code section,
data section, and operating-system resources such as open files and signals, collectively known as a task.

A traditional or heavyweight process is equal to a task with one thread. A task does nothing if no
threads are in it, and a thread must be in exactly one task. The extensive sharing makes CPU switching
among peer threads and the creation of threads inexpensive, compared with context switches among
heavyweight processés. Although a thread context switch still requires a register set switch, no
memory-management-related work need be done. Like any parallel processing environment,
multithreading a process may introduce concurrency control problems that require the use of critical
sections or locks.

Also, some systems implement user-level threads in user-level libraries, rather than via system calls, so
thread switching does not need to call the operating system, and to cause an interrupt to the kernel.
Switching berween user-level threads can be done independently of the operating system and,
therefore, very quickly. Thus, blocking a thread and switching to another thread is a reasonable
solution to the problem of how a server can handle many requests efficiently. User-level threads do
have disadvantages, however. For instance, if the kernel is single-threaded, then any user-level thread
executing a system call will cause the entire task to wait until the system call returns. We can grasp the
functionality of threads by comparing multiplethread control with multiple-process control. With
multiple processes, each process operates independently of the others; each process has its own
program counter, stack register, and address space. This type of organization is useful when the jobs
performed by the processes are unrelated. Multiple processes can perform the same task as well. For
instance, multiple processes can provide data to remote machines in a network file system
implementation. '

However, it is more efficient to have one process containing multiple threads serve the same purpose.
In the multiple process implementations, each process executes the same code but has its own memory
and file resources. One multi-threaded process uses fewer resources than multiple redundant processes,
including memory, open files and CPU scheduling, for example, as Solaris evolves, network daemons
are being rewritten as kernel threads to increase greatly the performance of those network server
functions.

Threads operate, in many respects, in the same manner as processes. Threads can be in one of several
states: ready, blocked, running, or terminated

A thread within a process executes sequentially, and each thread has its own stack and program
counter. Threads can create child threads, and can block waiting for system calls to complete; if one
thread is blocked, another can run. However, unlike processes, threads are not independent of one

another. Because all threads can access every address in the task, a thread can read or write over any
other thread’s stacks.

M.S. University - D.D.C.E. Process Description and Control 41

Process Process? Process 3 Process 4 Precess 5

EEIRIESI HS%

/| NN

User

Kernel

Hardware

SEwwamxs @Krmdkwllhmsd (L) Light weight Process P 1 Processer

Figure 2.10: Thread Structure

This structure does not provide protection between threads. Such protection, however, should not be
necessary. Whereas processes may originate from different users, and may be hostile to one another,
only a single user can own an individual task with multiple threads. The threads, in this case, probably
would be designed to assist one another, and therefore would not require mutual protection.

Let us return to our example of the blocked file-server process in the single-process model. In this
scenario, no other server process can execute until the first process is unblocked. By contrast, in the
case of a task that contains multiple threads, while one server thread is blocked and waiting, a second
thread in the same task could run. In this application, the cooperation of multiple threads that are part
of the same job confers the advantages of higher throughput and improved performance. Other
applications, such as the producer-consumer problem, require sharing a common ‘buffer and so also
benefit from this feature of thread utilization: The producer and consumer could be threads in a task.
Little overhead is needed to switch between them, and, on a multiprocessor system, they could execute
in parallel on two processors for maximum efficiency.

2.5 INTER PROCESS COMMUNICATION

In a multiprogramming environment multiple numbers of processes co-exist. A single program may be
broken into a number of processes. Those processes that communicate with each other are referred to
as cooperating processes.

Cooperating processes can communicate in a sharedmemory environment. The scheme requires that
these processes share a common buffer pool, and that the code for implementing the buffer be
explicitly written by the application programmer. Another way to achieve the same effect is for the
operating system to provide the means for cooperating processes to communicate with each other via

42 Operating System M.S. University - D.D.C.E.

an interprocess communication (IPC) facility. IPC provides a mechanism to allow processes to
communicate and to synchronize their actions. Interprocess communication is best provided by a
message system. Message systems can be defined in many different ways. Message passing systenis also
have other advantages.

Note that the shared-memory and message-system communication schemes are not mutually exclusive,
and could be used simultaneously within a single operating system or even a single process.

The function of a message system is to allow processes to communicate with each other without the
need to resort to shared-variables. An IPC facility provides at least two operations: send (message) and
receive (message).

Messages sent by a process can be of either fixed or variable size. If only fixed-sized messages can be
sent, the physical implementation is straightforward. This restriction, however, makes the task of
programming more difficult.

On the other hand, variable-sized messages require a more complex physical implementation, but the
programming task becomes proportionally simpler. If, for example, processes P and Q want to
communicate, they must send messages to and receive messages from each other; a communication
link must exist between them. This link can be implemented in a variety of ways.

We are concerned here not with the link’s physical implementation (such as shared memory, hardware
bus, or network), but rather with the issues of its logical implementation, such as its logical properties.
Some basic implementation questions are these: '

1. How are links established?

2. Can alink be associated with more than two processes?

3. How many links can there be between every pair of processes?
4

What is the capacity of a link? That is, does the link have some buffer space? If it does, how
much?

5. What is the size of messages? Can the link accommodate variablesized or only fixed-sized
messages?

6. Is a link unidirectional or bidirectional? That is, if a link exists between P and Q, can messages
flow in only one direction (such as only from P to Q) or in both directions?

Since a link may be associated with more than two processes. Therefore, links should be defined
carefully. Thus, we say that a link is unidirectional only if each process connected to the link can
either send or receive, but not both, and each link has at least one receiver process connected to it.

In addition, there are several methods for logically implementing a link and the send/receive operations:

1. Direct or indirect communication

Symmetric or asymmetric communication
Automatic or explicit buffering

Send by copy or send by reference

. Fixed-sized or variable-sized messages

M.S. University - D.D.C.E. Process Description and Control 43

Inter-process communication (IPC) allows the running of programs concurrently in an operating
system.

There are quite a number of methods used in inter-process communications. They are:

® Pipes: This allows the flow of data in one direction only. Data from the output is usually buffered
until the input process receives it which must have a common origin.

® Named Pipes: This is a pipe with a specific name. It can be used in processes that do not have a

shared common process origin. Example is FIFO where the data is written to a pipe is first
named.

® Message Quening: This allows messages to be passed between messages using either a single queue
or several message queues. This is managed by the system kernel. These messages are co-ordinated
using an application program interface (API)

. ® Semaphores: This is used in solving problems associated with synchronization and avoiding race
conditions. They are integers values which are greater than or equal to zero

® Shared Memory: This allows the interchange of data through a defined area of memory.
Semaphore value has to be obtained before data can get access to shared memory.

@ Sockets: This method is mostly used to communicate over a network, between a client and a
server. It allows for a standard connection which I computer and operating system independent.

Send a message
Reply a message

Figure 2.11: Diagram of Interprocess Communication

Check Your Progress
1. Explain five states of process.
2. Name three methods used in interprocess communication.

3. Explain thread structure.

44 Operating System ¢ M.S. University - D.D.C.E.

2.6 LET US SUM UP

Process is a unit of program execution that enables the systems to implement multi-tasking behavior.
An operating system provides an environment, which presents each hardware resource in its abstract
form. A process includes, besides instructions to be executed, the temporary data such as subroutine
parameters, return addresses and variables (stored on the stack), data section having global variables (if
any), program counter value, register values and other associated resources. A process is represented in
the operating system by a complex data structure called process control block. Cooperating processes
can communicate in a shared-memory environment.

In the direct-communication discipline, each process that wants to communicate must explicitly name
the recipient or sender of the communication. Multitasking and multiprogramming, the two
techniques that intend to use the computing resources optimally. A thread is a basic unit of resource
utilization, and consists of a program counter, a register set, and a stack. ‘

2.7 KEYWORDS

Process: A unit of program execution inside the operating system’s environment.

Interprocess communication: The act of two or more processes sharing information.
CPU Scheduling: The act of assigning a process to the CPU.
Scheduler: An operating system sub unit that controls the CPU scheduling.

Context switch: Loading and/or unloading of a process into the executable state thereby allocating its
required resources.

Shortest job first: A queue discipline wherein the process requiring the least amount of time on CPU is
executed first.

2.8 QUESTIONS FOR DISCUSSION

1. Describe how processes help achieve multiprogramming,

2. Using a suitable example elucidate the difference between direct and indirect modes of interprocess
communication.

Compare between non-preemptive scheduling and preemptive scheduling,
Obtain a SJF schedule for the above process queue. Compare the results.
Differentiate between a process and a thread.

What are the advantages and disadvantages of threads?

N

State the problems encountered in interprocess communication. What are the ways of overcoming
these limitations?

[=e]

List the services provided by a typical operating system to control process.

9. Why response time is an important criteria in CPU scheduling?

M.S. University - D.D.C.E. Process Description and Control 45

Check Your Progress: Model Answers
1. New, running, waiting, ready, terminated
2. Piped, named pipe, semaphores

3. A thread, sometimes called a lightweight process (LWP), is a basic unit of resource
utilization, and consists of a program counter, a register set, and a stack.

2.9 SUGGESTED READINGS

Andrew S. Tanenbaum, Modern Operating System,: Prentice Hall
Silberschatz Galvin, Operating System Concepts,: Addison Wesley
Andrew M. Lister, Fundamentals of Operating Systems,: Wiley
Colin Ritchie, Operating Systems,: BPB Publications

YWY

Y

R

e ® p— e ey -

&

m@aaamm”{wnmmm@é x filis oot Savatlt & . € - :

' hm&aqﬂ L

-

._ - Husgnboe. ﬂﬂawimwwuhmmhmm#ﬂm R S ‘
& : . ' o B o - o ,-,, N
N L o uzes
o i ‘ Mwﬁm‘l MWWM mmﬂmr.-m.rﬂsaﬁ
. ‘ o
y - M nﬁ&w mnmm W MireD sudrndile |
. - Y mw v ;’gmj R Wﬁk-‘ A i
i w h,;._* . .
i - N [dowingd ,.\wqq ,ini’m.ﬂ' mdal) .
o 1
B & - 1. - E N R a .
B . 4) - o -
- . o : . <
. e - B . - ' S
", N a B o - - I
B N " & - o - . 4 B B 1
-, .
5 - . -
5 __""' i :F- = # ‘
s ki 4 o o ‘
£l) N & & - % -
- B “ * i .
B .
- - 71
B ! F '-: . B . B
& .3_'_ Y ;
- : - - @ : -
. , ‘ l
- . . " " B - " -
. !
. - s - - S)
. * o { .
i ' I . - 4 ek
B - o N . N i - i
. B ., S . ‘ } ,
s _ ES - A - . -) 2 = ‘ s
: P’ . T N - - il i
2 - _) I . ¥ B - - B .l -
' - B . Ain _ F - = ' B %
R . - . - e
- *'!\‘.. & i . - ES) M
= .'L'- - - ¥ »
ki - N 2 ’s .
. W b . ' - e - .
. " - . u" .
- B - : .
. o . . - - -
& - = N . - »
o T et - " Tl =
B o *;. B - & e " - N t
” « % 3 - . : . %
A 8) " o i3 2 . o= 4 . - -
- & - 5 K -’.— “ - o .
R S ‘ i _ .
‘. S p— J
.
i -
.

UNIT II

LESSON
3

MEMORY MANAGEMENT

CONTENTS
3.0 Aims and Objectives
3.1 Introduction
32 Memory Management Requirements
3.2.1 Requirements
3.3 Contiguous Memory Management
3.3.1 Single Partition Memory Allocation
3.3.2 Multiple Partitions Memory Allocation
3.4 Non-contiguous Allocation
3.4.1 Paging
3.4.2 Segmentation
3.5 Virtual Memory Management Systems
3.5.1 Demand Paging
3.5.2 Page Replacement
3.6 LetusSumup
3.7 Keywords
3.8 Questions for Discussion

3.9 Suggested Readings

3

.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

Explain Memory Management Requirements
Differentiate Contiguous and Non Contiguous Allocation
Elaborate Fixed and variable partitions

The concept of Paging and Segmentation

Explain Virtual Memory Management System

50 Operating System M.S. University - D.D.C.E.

3.1 INTRODUCTION

Memory is the electronic holding place for instructions and data that the computer's microprocessor
can reach quickly. When the computer is in normal operation, its memory usually contains the main
parts of the operating system and some or all of the application programs and related data that are
being used. Memory is often used as a shorter synonym for random access memory (RAM). This kind
of memory is located on one or more microchips that are physically close to the microprocessor in the
computer. Most desktop and notebook computers sold today include at least 16 megabytes of RAM,
and are upgradeable to include more. The more RAM you have, the less frequently the computer has
to access instructions and data from the more slowly accessed hard disk form of storage.

Memory is sometimes distinguished from storage, or the physical medium that holds the much larger
amounts of data that won't fit into RAM and may not be immediately needed there. Storage devices
include hard disks, floppy disks, CD-ROM, and tape backup systems. The terms auxiliary storage,
auxiliary memory, and secondary memory have also been used for this kind of data repository.

Additional kinds of integrated and quickly accessible memory are readonly memory (ROM),
programmable ROM (PROMO), erasable programmable ROM (EPROM). These are used to keep
special programs and data, such as the basic input/ output system, that need to be in the computer all
the time.

The memory is a resource that needs to be managed carefully. Most computers have a memory
hierarchy, with a small amount of very fast, expensive, volatile cache memory, some number of
megabytes of medium-speed, medium-price, volatile main memory (RAM), and hundreds of thousands
of megabytes of slow, cheap, non-volatile disk storage. It is the job of the operating system to
coordinate how these memories are used. ‘

3.2 MEMORY MANAGEMENT REQUIREMENTS

In addition to the responsibility of managing processes, the operating system must efficiently manage
the primary memory of the computer. The part of the operating system which handles this
responsibility is called the memory manager. Since every process must have some amount of primary
memory in order to execute, the performance of the memory manager is crucial to the performance of
the entire system. The memory manager is responsible for allocating primary memory to processes
and for assisting the programmer in loading and storing the contents of the primary memory.
Managing the sharing of primary memory and minimizing memory access time are the basic goals of
the memory manager.

When an operating system manages the computer's memory, there are two broad tasks to be
accomplished: :

1.~ Each process must have enough memory in which to execute, and it can neither run into the
memory space of another process nor be run into by another process.

2. The different types of memory in the system must be used properly so that each process can run
most effectively.

The first task requires the operating system to set up memory boundaries for types of software and for
individual applications. : '

M.S. University - D.D.C.E. Memory Management 51

As an example, let's look at an imaginary small system with 1 megabyte (1,000 kilobytes) of RAM.
. During the boot process, the operating system of our imaginary computer is designed to go to the top
of available memory and then "back up" far enough to meet the needs of the operating system itself.
Let's say that the operating system needs 300 kilobytes to run. Now, the operating system goes to the
bottom of the pool of RAM and starts building up with the various driver software required to control
the hardware subsystems of the computer. In our imaginary computer, the drivers take up 200
kilobytes. So after getting the operating system completely loaded, there are 500 kilobytes remaining
for application processes. When applications begin to be loaded into memory, they are loaded in block
sizes determined by the operating system. If the block size is 2 kilobytes, then every process that is
loaded will be given a chunk of memory that is a multiple of 2 kilobytes in size. Applications will be
loaded in these fixed block sizes, with the blocks starting and ending on boundaries established by
words of 4 or 8 bytes. These blocks and boundaries help to ensure that applications won't be loaded on
top of one another's space by a poorly calculated bit or two. With that ensured, the larger question is
what to do when the 500-kilobyte application space is filled.

In most computers, it's possible to add memory beyond the original capacity. For example, you might
expand RAM from 1 to 2 megabytes. This works fine, but tends to be relatively expensive. It also
ignores a fundamental fact of computing - most of the information that an application stores in
memory is not being used at any given moment. A processor can only access memory one location at a
time, so the vast majority of RAM is unused at any moment. Since disk space is cheap compared to
RAM, then moving information in RAM to hard disk can greatly expand RAM space at no cost. This
technique is called virtual memory management.

Disk storage is only one of the memory types that must be managed by the operating system, and is
the slowest. Ranked in order of speed, the types of memory in a computer system are:

1. High-speed cache: This is fast, relatively small amounts of memory that are available to the CPU
through the fastest connections. Cache controllers predict which pieces of data the CPU will need
next and pull it from main memory into high-speed cache to speed up system performance.

2. Main memory: This is the RAM that you see measured in megabytes when you buy a computer.

3. Secondary memory: This is most often some sort of rotating magnetic storage that keeps
applications and data available to be used, and serves as virtual RAM under the control of the
operating system.

The CPU sends virtual
CPU addresses o the ML
card /
CPU // 1
] hMemaory . —~F Disk
| management | MEMOTY | contraller
unit
'y Bus
.
The MU sends physical
addresses to the memory

Figure 3.1: Diagram of Memory Management

