M.S. University - D.D.C.E. Variables, Arrays and Data Types 27

2.5.3 Vectors

Vector implements a dynamic array. It is similar to ArrayList but with two differences; vector is
synchronized and it contains many legacy methods. The methods are as follows:

® Vector ()
® Vector (int Size)

® Vector (int size, int incr)

The form creates a default vector which has an initial size of 10. The second form creates a vector
whose initial capacity is specified by size. The third form creates a vector whose initial capacity is
specified by size and whose increment is specified by incr.

Vector defines these protected data members:
int capacityIncrement;
int elementCount;
object elementDatal J]k;
Some important methods are:
® public void addElement (object Element)
e final int capacity()
e final Object elementAt(int index)
® final int indexOf(object element)
e final object firstElement()
® final void InsertElementAt(object element, int index)
® final void removeElementAt(int index)
® final void setSiz(int Size)

® String toString()

2.5.4 Array Declaration Syntax

There is a second form that may be used to declare an array:
type [] varname;
int al[] = new int [3];

int [] a2 = new int [3]

28 Advanced Java Programming M.S. University - D.D.C.E.

Check Your Progressil

State whether the following statements are true or false:

1. Variables are not the identifiers that are used to store a data value.

The simplest method of giving value to a variable is through the assignment statement.

2
3. Vector does not implement a dynamic array.
4

A one dimensional array is essentially a list of like typed variables.

2.6 LET US SUM UP

Variables are the identifiers that are used to store a data value. A variable may take different values at
different times during the execution of the program. Identifiers are the names of variables. They must
be composed of letters, numbers, the underscore and the dollar sign (§). They cannot contain white
spaces, identifiers may only begin with a letter, the underscore or a dollar sign. There are three kinds
of variables in Java - instance variables, class variables, local variables. Java does not have global
variables (which can be used in all parts of a program). Datatypes which are built with the help of
primitive data types but are not actually primitive are known as non primitive datatypes. An int
divided by an int is still an int and a double divided by a double is still a double. But what about an int
divided by double or a double divided by an int? When doing arithmetic on unlike types, Java tends to
widen the types involved so as to avoid loosing information.

2.7 KEYWORDS

Variables: The identifiers that are used to store a data value.

Lazterals: Pieces of Java source code that indicates explicit values.
String literal: Always enclosed in double quotes.

Characters: A special set. They can be treated as either a 16 bit unsigned integer with a value from
0-65535 or as a unicode character.

Array: An array is a group of like typed variables that are referred to by a common name.

2.8 QUESTIONS FOR DISCUSSION

1. Explain how variables can be declared in Java and the scope of variables.
2. Differentiate between primitive and non-primitive datatypes.

3. What is type conversion and casting?
4

Explain multi-dimensional arrays.

Check Your Progress: Model Answers
1. False
2. True
3. False
4. True

M.S. University - D.D.C.E.

Variables, Afrays and Data Types 29

2.9 SUGGESTED READINGS

E. Balaguruswami, Programming with Java, Tata McGraw-Hill.
Davis, Stephen R., Learn Java Now, Microsoft Press.
Naughton, Patrick, The Java Hand Book, OSborne McGraw-Hill.

Sams.net, Java unleased.

Herbert Schildt, The Complete Reference Java 2, Tata McGraw-Hill.

LESSON
3

OPERATORS

CONTENTS
3.0 Aimsand Objectives

3.1 Introduction

3.2 Bit-wise Operators

3.3 Relational Operators

3.4 Boolean Logical Operators
3.5 Ternary Operators

3.6 Arithmetic Operators

3.7 LetusSumup

3.8 Keywords

3.9 Questions for Discussion

3.10 Suggested Readings

3.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

© Understand various operators and their uses

® Explain bitwise, relation, Boolean logic, ternary operations

3.1 INTRODUCTION

Java provides a rich operator environment. Most of its operators can be divided into the following
four groups: arithmetic, bitwise, relational and logical. Java also defines some additional operators that
handle certain special situations. Java also uses control statements to cause the flow of execution to
advance and branch based on changes in the state of a program.

3.2 BIT-WISE OPERATORS

To manipulate the data at values of bit level, java supports bit-wise operators. Java defines several bit
wise operators which can be applied to the integer types, long, int, short, char and byte. They are
summarized in Table 3.1. *

M.S. University - D.D.C.E.

Table 3.1: Bit-wise Operators

Operators 31

Operator Result
~ Bit wise unary NOT
& Bit wise AND
Bitwise OR

e Bitwise exclusive OR
>> Shift right
>>> Shift right zero fill/ Unsigned Right Shift
<< shift left
&=

Bitwise AND assignment

Bitwise OR assignment

3.3 RELATIONAL OPERATORS

Relational operators are binary operators that require two operands to work with. The operands can
be either constants or variables or expressions. The operators are as follows:

Table 3.2: Relational Operators

greater than

greater than or equal to

less than

1 less than or equal to

Boolean not

not equal to

3.4 BOOLEAN LOGICAL OPERATORS

The Boolean logical operators shown here operate only on Boolean operands. All of the binary logical
operators combine two Boolean values to form a resultant Boolean value.

Table 3.3: Boolean Logical Operators

Operator

Result

Logical AND

Logical OR

Logical XOR (exclusive OR)

Short Circuit OR

Short Circuit AND

Logical Unary Not

AND ASSIGNMENT

OR ASSIGNMENT

Contd....

32 Advanced Java Programming M.S. University - D.D.C.E.

~o= XOR Assignment
= = Equal To

I = Not Equal To

? ot Ternary if then else

3.5 TERNARY OPERATORS

Java includes a special ternary (three-way) operator that can replace certain types of, if then else,
statements. This operator works in Java much like it does in C and C+ +. It has this general form

expressionl ? expressionZ ? : expression3
class Ternary {
public static void main (String args[])
{
TTE 4.0l
1= 10
k=1<07?-1i:1i; // get absolute value of i
System.out.println (“Absolute value of”);
System.out.println (i + “is” + u);
i = -10;
k=i« 02 =i 3 1;
System.out.print (“Absolute value of”);

System.out.println (i + “is” + u);

class Boollogic {
public static void main (String s[])
{
boolean a = true;
boolean b = false;

boolean ¢ = a | b;

3.6 ARITHMETIC OPERATORS

Arithmetic operators are used in mathematical expressions in the same way as they are used in
Algebra. The Table 3.4 lists the Arithmetic operators.

M.S. University - D.D.C.E. Operators 33

Table 3.4: Arithmetic Operators

Operator Function

+ Addition

Subtraction

Multiplication

T Division

% Modulus

+ = Addition Assignment
4

= Subtraction Assignment

-= Multiplication Assignment

= Division Assignment

% = Modulus Assignment

-- Decrement

Basic Assignment Operators are listed in the table below:

Table 3.5: Basic Assignment Operators

= Assignment

~ o= bitwise XOR and assign

& = bitwise AND and assign

% = take remainder and assign

- = Subtract and assign

* o= ’ Multiply and assign

/ = bitwise OR and assign
>> = * | Shift bits right with sign extension and assign
<< = Shift bits left and assign
>>> = unsigned bit shift right and assign

Fill in the blanks:

1. To manipulate the data at values of bit level, java supports

L . e operators shown here operate only on Boolean operands.

3. Java includes a special ternary operator that can replace certain types of,
statements.

3.7 LET US SUM UP

In this lesson we have discussed all the basic data types and operators available in Java and understand
their use in expressions. Type conversion and order of precedence of operators during the evaluation

34 Advanced Java Programming M.S. University - D.D.C.E.

of expressions have been highlighted. Various mathematical functions are also discussed which are
available in the Math class of Java. Note that the Java types have fixed sizes. There is no ambiguity and
all Java types are machine-independent.

3.8 KEYWORDS

Argument: A value that is sent to a method when the method is called.

Assignment Expression: Assigns a value to a variable.

Expression: A line of program code that can be reduced to a value or that assigns a value.

Logical Expression: An expression that results in a value of true or false.

Logical Operators: Operators like && (AND) and ||(OR) that enables you to create logical
expressions that yield true or false results.

Operator Precedence: Determines the order in which mathematical operations are performed.

3.9 QUESTIONS FOR DISCUSSION

ik

Which of the following are valid arithmetic expressions?

() 28/3%2 (b) +9/5+4
© 9.3%3 (d) (5/3)*3+5%3
() 14%8+7%2 (f) 28% (int) 3.5

Werite Java assignment statements to evaluate the following equations:
(a) Area = nr’+2nrh

(b) Energy = mass (acceleration*height + velocity/2)

(c) Torque = (2mimz/mi+ma)g

Determine the value of each of the following logical expressions if a=5,b=10andc = - 6
@ a>b&&a<c <

(b) a= =c//b >a

(© (/2.0 = = 0.0 && b/2.01=0.0) // c<0.0

The total distance travelled by a vehicle in t seconds is given by:
Distance = ut +1/2 at’

Where u = initial velocity (metres per second)

a = acceleration (metres per second’)

Write a program to evaluate the distance travelled at regular intervals of time, given the value of u
and a. The program should provide the flexibility to the user to select his own time mtervals and
repeat the calculations for different values of u and a.

M.S. University - D.D.C.E.

Operators 35

Check Your Progress: Model Answers
1. Bit-wise operators

2. Boolean logical
3. Ifthenelse

3.10 SUGGESTED READINGS

E. Balaguruswamy, Programming with Java, Tata McGraw-Hill.
Davis, Stephen R., Learn Java Now, Microsoft Press.
Naught on, Patrick, The Java Hand Book, OSborne McGraw-Hill.

Sams.net, Java unleased.

Herbert Schildt, The Complete Reference Java 2, Tata McGraw-Hill.

UNIT II

5 .._ S [k
b o
.- II - -llu-l

W B

i s
2

B o S O T R e S R B B e

LESSON
4

BRANCHING AND LOOPING STATEMENTS

CONTENTS

40 Aims and Objectives

4.1 Introduction

4.2 if Statement
4.2.1 Simple if Statement
422 Theif..else Statement
4.2.3 Nesting of if....else Statement
4.2.4 The else-if Statement

4.3 The Switch Case

4.4 The While Statement
4.41 The do-while Statement

45 The for Statement

4.6 Break Statement

4.7 Continue Statement

4.8 Return Statement

49 LetusSumup

4.10 Keywords

4.11 Questions for Discussion

4.12 Suggested Readings

4.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Describe various decision-making statements

® Understand the usage of if and if else statements
® Understand the usage of nested if else statements
® Describe switch statement

® Describe looping statements

40 Advanced Java Programming M.S. University - D.D.C.E.

® Understand the usage of the while statement
® Understand the usage of the do-while statement

® Understand the usage of for loop

4.1 INTRODUCTION

Generally a program executes its statement from beginning to end. But not many programs execute all
their statements in strict order from beginning to end. Most programs decide what to do in response to
changing circumstances. :

In a program, statements may be executed sequentially, selectively or iteratively. Every programming
language provides constructs to support sequence, selection or iteration.

When a program breaks the sequential flow and jumps to another part of the code, it is called selection
or branching. When the branching is based on a particular condition, it is known as conditional
branching. If branching takes place without any condition, it is known as unconditional branching.

Java language supports two types of selections statements: if and switch. In addition, in certain
circumstances ?’ operator can be used as an alternative to if statements.

The iteration statements allow a set of instructions to be performed repeatedly until a certain condition is
fulfilled. The iteration statements are also called loops or looping statements. Java provides three kinds of
loops: while loop, do-while loop, and for loop.

All three constructs of Java repeat a set of statements as long as a specified condition remains true. This
specified condition is generally referred to as a loop control. For all three loop statements, a true
condition is any nonzero value. A zero value indicates a false condition.

4.2 IF STATEMENT

An if statement tests a particular condition; if the condition evaluates to true, a course-of-action is
followed i.e. a statement or set-of-statements is executed. Otherwise (if the condition evaluates to false),
the couse-of-action is ignored.

The if statement may be implemented in different forms depending on the complexity of conditions to
be tested.

1. Simple if statement
if else statement

2
3. Nested if else statement
4. Else if ladder

4.2.1 Simple if Statement
The syntax of the if statement is as shown below:
if (expression)

statement;

M.S. University - D.D.C.E. Branching and Looping Statements 41

where a statement may consist of a single statement, a compound statement, or nothing (in case of
emply statement). The expression must be enclosed in parentheses. If the expression evaluates to true,
the statement is executed, otherwise ignored.

Following Figure illustrates the if construct of Java.

False

Test
Expression

v

l True

Body of if Y

Figure 4.1: Flow Chart of if Control
For instance, the following code fragment,
if (ch = = * V)
spaces ++;

Checks whether the character variable ch stores a space or not; if it does, the number of spaces are
incremented by 1. The given example also makes use of an if statement.

A7E d, By Gy

il
if (2> 10 && b < 15}
{
c=(a-b)* (a+b);
}
This would have been equivalently done using two if statements as follows:
if (a=10)
if (b<15]

c= (a-b) * (a+b);

42 Advanced Java Programming M.S. University - D.D.C.E.

If the value of a is greater then 10, then the following statement is executed which in turn is another if
statement. This if statement tests b and if b is less than 15, then ¢ is calculated.

4.2.2 The if... else Statement

This form of if allows either-or condition by providing an else clause. The syntax of the if-else
statement is the following:

if (expression)
statement-1;
else

statement-2;

If the expression evaluates to true i.e., a non-zero value, the statement-1 is executed, otherwise
statement-2 is executed. The statement-1 and statement-2 can be a single statement, or a compound
statement, or a null statement.

Following figure illustrates the if-else construct of Java.

False

Test

Expression Body of else

Body of if A4

Il ¥

Figure 4.2: Flow Chart of if-else Control
Example

Int a; b:
If (a<b)

else

M.S. University - D.D.C.E. Branching and Looping Statements 43

The program given below counts the even and odd numbers in a list of numbers using the if...else

statement. Number [] is an array variable containing all the numbers and number. length gives the
number of elements in the array.

//to illustrate if .. else statement
Class IfElsetest
{
public static void main(String args[])
{
int number[] = {50, 65, 56, 71, 80};
int even = 0, odd =0;
for (int i=0; i <number.length;i++)
{
if ((number [1]%2)= = 0)
{
even +=i;
}
else
{
add +=1;
}
}
System.out.println (“Even numbers: “+even +
“odd Numbers : “+odd);
}
}

Output: Even numbers : 3 odd numbers:2

4.2.3 Nesting of if... else Statements

A nested if is an if that has another if in its ‘if’s body or in its else’s body. The nested if can have one of
the following three forms:

1. if (expressionl)
{
if (expression 2)
statement = 1;
[else

statement = 2;]

44 Advanced Java Programming M.S. University - D.D.C.E.

}
else
body of else;
2. if (expression 1)
body=0f-if;
else
{
if (expression 2)
statement-1;
[else
statement-2;]
}
3. if (expression 1)
[
if (expression 2)
statement-1;
[else

statement-2;]

}

else

{

if (expression 3)
statement-3;
[else
statement-4;]

}

In an if statement, either there can be if statement (s) in its body-of-if or in its body-of-else or in both.

The part in [] means, it is optional. The inner ifs can them selves be nested ifs, but the inner if must
terminate before an outer if.

Here is an example:

LE (& = = 10)
{
if {<20)
a=b;
if (k>100)

e—tlr

M.S. University - D.D.C.E. Branching and Looping Statements 45

else a=c;
}
else a=d;
The final else is not associated with if (j <20), because it is not in the same block(even though it is the

nearest if without an else). Rather, the final else is associated with if (i = =10). The inner else refers to
if (k> 100), because it is the closest if within the same block.

4.2.4 The else-if Statement

A common programming construct in Java is the if-else-if ladder, which is often also called the if-else-if
staircase because of its appearance.

It takes the following general form:

if (expression 1) statement 1;

else
if (expression 2) statement 2;
else

if (expression 3) statement 3;

else statement n;

The expressions are evaluated from the top downward. As soon as an expression evaluates to true, the
statement associated with it is executed and the rest of the ladder is bypassed. If none of the expressions
are true, the final else gets executed. If the final else is missing, no action takes place if all other
conditions are false.

Although it is technically correct to have indentation in the if-else-if ladder as shown above, however,
it generally leads to overly deep indentation. For this reason, the if-else-if ladder is generally indented

like this:

if (expression 2)
statement 1;

elseif (expression 2)
statement 2;

elseif (expression 3)

statement 3;

else
Statement n;
Here is an example for if-else-if ladder;

int score = 65;

char grade;

46 Advanced Java Programming

if (score >=90)
grade = ‘A’;
elseif (score > = 70)
grade = ‘C';

elseif (score > = 60)

M.S. University - D.D.C.E.

grade = ‘D’;
else
grade = ‘F’;
4.3 THE SWITCH CASE

Java provides a multiple-branch selection statement known as switch. This selection statement
successively tests the value of an expression against a list of integer or character constants. When a

match is found, the statements associated with that constant are executed.

The general form of a switch is

switch (expression)

{

case valuel :
Codesegmentl

case value2 :
Codesegment?2

case valuen:
Codesegment n

default

defaultCodeSegment

}

A switch statement is used for multiple ways selection that will branch to different code segments
based on the value of a variable or an expression. The optional default label is used to specify the code
segment to be executed when the value of the variable or expression does not match with any of the
case values. If there is no break statement as the last statement in the code segment for a certain case,
the execution will continue on into the code segment for the next case clause without checking the

case value.

An example of a switch statement
class switchTest

{

public static void main(String args[1)

{

M.S. University - D.D.C.E. Branching and Looping Statements 47

int month = 4;
String season;
switch (month)
{
case 12
case 1
case 2:
season = "Writer";
break;
case 3
case 4
case 5
season = "Spring";
break;
case 6
case 7
case 8

season "Summer" ;

break;

case 9 :

case 10

case 11

season = "Autumn

break;

default :

season = "Bogus Month";
}

System.out.println("April is in the" + season + "."):

r

}
Nested Switch

You can use a switch as part of the statement sequence of an outer switch. This is called a nested
switch. Since a switch statement defines it own block, no conflicts arise between the case constants in
the inner switch and those in the outer switch.

switch (count)

{

48 Advanced Java Programming M.S. University - D.D.C.E.

case 1

switch (target)

{
case 0
System.out.println("target is zero");
break;
case 1
System.out.println("target is one");:
break;

}

break;

dage 2 ¢ 4i .

Here, the case 1 : statement in the inner switch does not conflict with the case 1 : statement in the
outer switch. The count variable is only compared with the list of cases at the outer level. If count is 1
then target is compared with the inner list cases.

To summarize, there are three important features of the switch statement to note: the switch differs
from the if, in that switch can only test for equality, whereas if can evaluate any type of boolean
expression. That is, the switch looks only for a match between the value of the expression and one of
1ts case constants.

No two case constants in the same switch can have identical values. A switch statement enclosed by an
outer switch can have case constants in common.

A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler works.
When it compiles a switch statement, the Java compiler will inspect case of the case constants and
create a "jump table” that it will use for selecting the parts of execution depending on the vaiue of the
expression. Therefore, if you need to select among a large group of values, a switch statement will run
much faster than the equivalent logic coded using a sequence of if-else’s. The compiler can do this
because it knows that the case constants are all of the same type and simply must be compared for
equality with the switch expression.

4.4 THE WHILE STATEMENT

The most simple and general looping structure available in java is the while statement. The syntax of a
while loop is

while (condition)
{
// loop-body

M.S. University - D.D.C.E. Branching and Looping Statements 49

where the loop body may contain a single statement, a compound statement or an empty statement.
The loop iterates while the condition evaluates to true. When the expression becomes false, the
program control passes to the line after the loop-body code.

In a while loop, a loop control variable should be initialized before the loop begins as an uniinitialized
variable can be used in an expression. The loop variable should be updated inside the body-of-the-
while. Following example program illustrates the working for a while loop.

Y7, program for while loop

class whiletest

{
public static void main(String args(])
{
int n=10;
while (n>0)
{
system.out.println(“tick” +n)
He =g
}
}
}

The body of the loop is executed 10 times for 10,9,8—| i.e. as long as n is nonzero, the loop-body
iterates i.e. “tick” is printed on the screen along with the value of n followed by the decrement of n.
Again the test-expression (n>0) is evaluated: If it is true, the loop is repeated, otherwise terminated.

Example:
// program using a while loop
Class WhileCheck
{
public static void main(String args[])
{
stringBuffer string = newstringBuffer ();
char c;
system.out.println (“Enter a string”);
try
{
while ((c=char) system.in.read())!='10"
{

string.append(c) ;

50 Advanced Java Programming M.S. University - D.D.C.E.

}
catch (Exceptione)
{
System.out.println(“Error in Input”);
}
System.out.println(“You have entered..”);
System.out.println(string) ;
}
}
The output of the above program is

Enter a String

Java is a true object-oriented Language

You have entered...

Java is a true object-oriented Language

4.4.1 The do-while Statement

Unlike the while loop, the do-while is an exit-controlled loop i.e. it evaluates its text-expression at the
bottom of the loop after executing its loop-body statements. This means that a do-while loop always
executes at least once. The syntax of the do-while loop is:

do
{
loop-body;
}
while (condition);
The braces are not necessary when the loop-body contains a single statement.
Example:
Class doWhileCheck
{
public static void main (String args [])
{
int #n = 10;
do
{
System.out.println(“tick” + n):

Hmmg

M.S. University - D.D.C.E.

while (n>0);

}

Branching and Looping Statements 51

The most common use of the do-while loop is in menu selection routine, where the menu is flashed
atleast once. Then depending upon the user’s response it is either repeated or terminated. The

following example program is a menu selection program.
// Program to display a menu regarding rectangle operations
// and perform according to user'’s response
Class DowhileMenu
{
public static void main (String args [1)
throws IO Exception
{
char ch, chl;
float 1, b, peri, area, diag;

BufferedReader
(System.in)) ;

br=new Buf feredReader (new

System.out.prinln (“Rectangle Menu”) ;

System.out.println (“1.Area”);

System.out.println (“2. Perimeter”);
System.out.println (“3. Diagonal”);
System.out.println (“4. Exit”);

System.out.println (“Enter the choice

:”);

Do
{
c¢h = (char) br.read();
if (ch=="1"| | ch=="12'] | ¢ch == *3")
{
System.out.println(“Enter length and breadth:”);
1l = (float) br.read();
b = (float) br.read();
}
Switch (ch)
{
case ‘1’ area = 1*b

system.out.println (“Area =" +area);

break;

InputStreamReader

52 Advanced Java Programming

case ‘'2' : peri = 2*(1l+b);
System.out.println(“Perimeter =* +peri);
Break;

mager3i nediag =rggBt (151 s tbAb)) 4

System.out.prinln (“Diagonal = “ +diag);
Break;
case ‘4' : System.out.println(“Breaking”);

exit (0);
default : System.out.println(“Wrong choice !!!");
System.out.println(“Enter a valid one”);
Break;
} //end of switch.
System.out.println(“Want to enter more(Y/N)?");

chl= (char)br.read();

M.S. University - D.D.C.E.

if (chl == 'y’ | | ¢hl = = *y’)
System.out.println (“Again enter choice (1-4):");
} while [ehl == ¢ | |-chl = = *¥); //end of do-loop
}
}
4.5 THE FOR STATEMENT

The for loop is the easiest to understand of the Java loops. All its loop-control elements are gathered in
one place (on the top of the loop), while in the other loop construction of C+ +, they (top-control

elements) are scattered about the program. The syntax of the for loop statement is

for (initialization expression(s); test condition; update expression)

{
loop-body
}

Figure 4.3 outlines the working of a for loop.

M.S. University - D.D.C.E.

Branching and Looping Statements 53

Initialization
Expression(s)

False
Test

Condition —_—

True

Body of the loop

A

Update Expression(s)

l

Figure 4.3: The Execution of a For Loop
The following example program illustrates the use of for statement.
//program to print numbers from 1 to 10
class ForTest
{

public static void main(String args|[])

int i;

for (i=1l, 1<=10; i++)

System.out.prinln (i);
}
}

The following lines explain the working of the above given for loop.

® Firstly, initialization expression is executed i.e. i=1 which gives the first value 1 to variable i.

® Then, the test condition is evaluated i.e. 1< =10 which results into true i.e. 1.

54 Advanced Java Programming M.S. University - D.D.C.E.
® Since, the test-condition is true, the body-of-the loop i.e. System.out.prinln (i); is executed which
prints the current value of i on the next line.

® After executing the loop-body, the update expression i.e.+ +1i is executed which increments the
value of i.

® After the update expression is executed, the test-condition is again evaluated. If it is true, the
sequence is repeated from step number 3, otherwise the loop terminates.

4.6 BREAK STATEMENT

A Break statement exits a loop before an entry condition fails. In the example shown below an error
message is printed and you break out of the for loop if j becomes negative.

Class uptec
{
public static void main (String args([])
{
ing i, 3. %

for (i = 1; 1 < = 64; 1 ++)

1f {9 < =10)

System.out.println (“Error
overflow”) ;

break;
}
k + = 3;
System.out.print (k + “It”);
if (0 == 0)
System.out.println ();
}
System.out.println (“All done!”);

x

The most common use of break is in switch statement. Another general form of break statement is
break label; where the label is optional. Without a label, the break statement will transfer the program
control to the statement just after the innermost enclosing loop or switch statement. With a label, it

M.S. University - D.D.C.E, Branching and Looping Statements 55

will transfer the program control to the statement just after the enclosing statement or block of
statements carrying the same label.
Example:

PrintWriter out = new PrintWriter (System.out):

Outerloop

ToE " (1hE 2

0, count = 0; i < dailyhigh.length; i++)

for tint i

0; J < dailyhigh [i]l.length; j++)
if ((dailyhigh [i] [j] > 70) & (++ count = = 3))
{

out.println (“The data is : month : * + (i *
1) + , day =" + (j + 1));

break Outerloop;

4.7 CONTINUE STATEMENT

The general form of a continue statement is:

continue Label;

where the label is optional. Without a label, it behaves exactly the same as in C and C++. The
program control is transferred to the point right after the last statement in the enclosing loop body. In
while and do statement, the condition at expression1 will not be retested.

In for loop, the increment statements will be executed next. With a label the program, control will be
transferred to the end of the enclosing loop body with the same label, instead of the innermost one.

For example, the following code segment defines a method to return the offset position of the first
occurrence of one string str2 in the other string strl.

int indexof }String Strl, String str2)
{
intrlent = ‘SErt i length ™ (')
int len2 = str2.length();
char str2.firstChar = str2. CharAt(0);
advanceOneCharAtStrl:
for {fint i = 0; i 4+ lepar=tlsnifaies)
if (strl. CharAt (i) = = str2 FirstChar)
{
for #ainthdg .= 1, 5 < Jende 4
ifos(gerl . Charfit: (d+7 Pal - Srstel ~ichardts ()
continue advanceOneCharAtStrl;

return i;

56 Advanced Java Programming M.S. University - D.D.C.E.

return - 1;

}

It is sometimes necessary to exit from the middle of a loop. Sometimes you will want to start over at
the top of the loop. Sometimes you will want to leave the loop completely. For these purposes Java
provides the break and continues statements. A continue statement returns to the beginning of the
innermost enclosing loop without completing the rest of the statements in the body of the loop. If you
are in a for loop, the counter is incremented.

for (int i = 0; i < m.length; i++)
{
if (m (i)%2 = = 0) continue;
// process
}
The continue statement is rarely used in practice because most of the instances where it is useful have
simpler implementations. For instance, the above fragment could equally well have been written as:

for (int i = 0; i < m.length : i++)

{
if (m[i] 8 2 1 = 0)
{
}
}
4.8 RETURN STATEMENT

The general form of return statement is
return Expression;
A return statement is used to return control to the caller from within a method or constructor. If the

method is defined to return a value, the expression must be evaluated to the return type of that
method. Otherwise only an unlabeled return statement can be used.

Check Your Progress

Explain the four forms of If statements with examples.

4.9 LET US SUM UP

The flow of control in a program can be in three ways: sequentially, selectively, and iteratively. The
sequence construct means statements get executed sequentially. The selection construct means the
execution of statements depending upon a condition-test. The iteration constructs mean repetition of a
set-of-statements depending upon a condition-test. Java supports two types of selection statements: If
and Switch. If if-else statement tests an expression and depending upon its truth value one of the two

M.S. University - D.D.C.E. Branching and Looping Statements 57

sets-of-action is executed. In a nested if-else statement, an else goes with immediately preceding
unmatched if.

Switch statement tests a value against a set of integer constants (that includes characters also). A switch
statement can be nested also. An if-else statement is more flexible and versatile compared to switch but
switch is more efficient in a situation when the same variable is compared against a set of values for
equality.

The statements that allow a set of instructions to be performed repeatedly are iteration statements.
They are also called loops or looping statements. Java provides three loops: for, while and do-while.
Four elements control a loop: initialization expression(s), test expression, update expression and loop

body.

A for loop can have multiple initialization and update expression separated by commas. The loop-
control elements in a loop are optional. An infinite for loop has missing test-expression. An item
declared in or while loop can be accessed after the loop is over. The loops can be nested also, if a loop
contains another loop inside the body.

The statements that facilitate the unconditional transfer of program control are called jump
statements. In nested structure, a break terminates the very statement it appears in. The continue
statement abandons the current iteration of the loop by skipping over the rest of the statements in the
loop-body. It immediately transfers control to the evaluation of the test-expression of the loop for the
next iteration of the loop.

4.10 KEYWORDS

Conditional Branching: When a program jumps to a different part of a program based on a certain
condition being met.

Nesting: When one program block is placed within another program block.

Infinite Loop: A loop that never ends.

Iteration Statement: Statement that allows a set of instructions to be performed repeatedly.
Jump Statement: Statement that unconditionally transfers program control within a function.

Nested Loop: A loop that contains another loop inside its body.

4.11 QUESTIONS FOR DISCUSSION

1. Write a program in Java to find out whether a year centered in 4-digit number representing it) is a
leap year.

2. Given three numbers A, B and C, write a program to write their values in descending order. For
example, if A=7, B=4, and C=10, your program should print out:

10,7, 4.
3. What is the effect of absence of break in a switch statement?
4. What is the significance of default clause in a switch statement?

5. Write the syntax and purpose of a switch statement.

58 Advanced Java Programming

6.
7

9.

M.S. University - D.D.C.E.

Write a short program to check whether square root of a number is prime or not.

Write a program to find the number of and sum of all integers greater than 100 and less than 200
that are divisible by 7.

Given a list of marks ranging from 0 to 100, write a program to compute and print the number of
students who have obtained marks

(a) in the range 81 to 100,

(b) in the range 61 to 80,

(c) inthe range 41 to 60, and

(d) in the range 0to 40.

The program should use a minimum number of if statements.

(@) Write a program to print the Floyd’s triangle given below:

Hm 1

@ 2 3

(i) 4 5 6

@ 7 8 9 10

1 M 15

i

(vii)

it D R 91
(b) Modify the program to produce the following form of Floyd’s triangle:

1

1

1 0 1

0 1 0 1

1 0 1 0 1

Check Your Progress: Model Answers

(@ I

(b) If-else

(c) Nested-if-else
(d) Else-if

M.S. University - D.D.C.E.

Branching and Looping Statements 59

4.12 SUGGESTED READINGS

E. Balaguruswamy, Programming with Java, Tata McGraw-Hill.
Davis, Stephen R., Learn Java Now, Microsoft Press.
Naughton, Patrick, The Java Hand Book, OSborne McGraw- Hill.

Sams.net, Java unleased.

Herbert Schildt, The Complete Reference Java 2, Tata McGraw-Hill.

LESSON
5

CLASSES, METHODS AND OBJECTS

CONTENTS
50 Aims and Objectives
51 Introduction
52 Whatisa Class?
5.2.1 - Class Structure
522 Class as Datatype
5.2.3 = Simple Class
5.2.4 Defining a Class
5.2.5 Adding Variables
5.3 What are Methods?
53.1 Adding Methods to Classes
53.2 Return Value
53.3 Method Accepting Parameters
5.4 This Keyword
5.5 Creating Objects
55.1 Accessing Class Members
5.5.2 Declaring Objects
5.6 Constructors
5.7 Letus Sum up
5.8 Keywords
5.9 Questions for Discussion

5.10 Suggested Readings

5.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
® Define class, methods and objects
® Understand how to declare objects

® Describe various methods in classes

M.S. University - D.D.C.E. Classes, Methods and Objects 61

e Explain constructors
® Discuss This keyword

e Identify class structure

5.1 INTRODUCTION

Java gives you the capability to do object-oriented programming. Object-oriented programming
enables the programmer to group together data and the code that uses data into discrete units. Objects
in Java are defined using Java classes. Anything we wish to represent in a java program must be
encapsulated in a class that defines the state and behavior of the basic program components known as
object. Classes create objects and objects use methods to communicate between them.

In java, the data-items are called fields and the functions are called methods. Calling a specific method
in an object is described as sending a message to the object. A class provides a sort of template for an
object and behaves like a basic data type such as int.

5.2 WHAT IS A CLASS?

A class is a user defined data type with a template that serves to define its properties and operations.
Once the class has been defined, we can create ‘Variables’ of that type. These variables are termed as
instances of classes, which are the actual objects.

5.2.1 Class Structure

The general form of a class definition is
class classname
i
[variable declarations;]
[methods declarations;]

}
Foreg.;

® The data, or variables, defined within a class are called instance variables. The code is contained
within methods. These are also called members of the class.

® In order to describe the characteristics of all pens, you might define a pen class and specify
operations such as write and refill and attributes such as ink colour and ink remaining. When you
create individual pen objects to represent my blue pen, teacher’s red pen, you may initialize ink
colour and ink amount.

5.2.2 Class as Datatype

Java has four kinds of named data types and two categories of variables. The data types are primitives,
classes, interfaces and arrays. Variables can either contain primitive values or refer to objects.

62 Advanced Java Programming M.S. University - D.D.C.E.
A class creates a new data type that can be used to create objects. A class creates a logical framework
that defines the relationship between its members.

When you declare an object of a class, you are creating an instance of that class. Thus, a class is a
logical construct. An object has physical reality.

5.2.3 Simple Class

class Movie

{
String title;
int length;
int cost;
char type;
void getdata (int x, int y, int z)
{
length = x;
cost = y;
type = z;
}
Movie (String s)
{
title = s;
}
}

Class declaration only creates a template. It does not create an actual object, and hence does not
occupy memory. To actually create movie object you will use a statement:

Movie movl = new Movie (“Mr. India”);

Movie mov2 = new Movie();

5.2.4 Defining a Class

A class is a user defined data type used to implement an abstract object, giving you the capability to
use object-oriented programming with java.

Once the class-type has been defined, we can create ‘variables’ of that type. These variables are termed
as instances of classes, which are the actual objects.
The general form of a class definition is
Class name [extends superclassname]
{
[Variable declarations;]

[methods declarations;]

M.S. University - D.D.C.E. Classes, Methods and Objects 63

}
Everything written inside the square brackets is optional. Thus, the following would be a valid class
definition.

Class Empty

{

}

Classname and Superclass name are any valid java identifiers. The keywords extends indicates that the

properties of the superclassname class are extended to the class classname. This concept is known as
inheritance.

5.2.5 Adding Variables

Data is encapsulated in a class by placing data fields inside the body of the class definition. These
variables are called instance variables because they are created whenever an object of the class is
instantiated. Instance variables can be declared exactly the same way as we declare local variables.

Example:

Class Movie

{
string title;
int length;
int cost;
char type;

}

The class movie contains four instance variables, out of which one is of type string, two are of type int
and one is of type char. The two int variables can be declared in one line as

int length, cost;

Remember these variables are only declared and therefore no storage space has been created in the
memory. Instance variables are also known as member variables.

5.3 WHAT ARE METHODS?

A Java method is equivalent to a function, procedure, or subroutine in other languages except that it
must be defined inside a class definition. Instance methods form the foundation of encapsulation and
are a key to providing a consistent interface to the class.

5.3.1 Adding Methods to Classes
Methods are declared inside the body of the class but immediately after the declaration of instance
variables. The general form of a method declaration is

Returntype methodName (parameter list)

1

64 Advanced Java Programming M.S. University - D.D.C.E.

Method-body;
}

A Returntype can be a primitive type such as int, a class type such as string or void.

A MethodName begins with a lowercase letter and compound words in the method name should
begin with uppercase letter according to Java convention.

An optional parameter list/argument list must be inside parentheses, separated by commas.

The method-body must be enclesed in braces.

5.3.2 Return Value

The return type specifies the type of value the method would return. This could be a simple data type
such as int as well as any class type or it could even be void type if the method does not return any
value.

e.g.: class Box
{
double width;
double height;
double depth;
double volume()

{
return width * height * depth;

}
class ABC
{
public static void main (String args[1)
{ ;
Box myboxl = new Box();
double wvol;
myboxl.width = 10;
myboxl.height = 20;
myboxl.depth = 15;
vol = myboxl.volume();
System.out.println (“Volume is” + vol):
}

}

The type of the data returned by a method must be compatible with the return type specified by the
method.

The variable receiving the value returned by a method must also be compatible =ith the return type
specified for the method.

M.S. University - D.D.C.E. Classes, Methods and Objects 65

5.3.3 Method Accepting Parameters

The parameter list is always enclosed in parentheses. This list contains variable names and types of all
the values we want to give to the method as input. If the method does not take any argument, simply
leave the parentheses empty.

class Rectangle
{
int length; int width;
void getdata (int x, int y)
{
length = x;
width = y;
}
int rectArea()
{
int area = length * width;
return (area);

}
In the above example, length and width are instance variables.
® xandy are parameters.
® void indicates method, does not return a value.

When a primitive is passed to a method, a copy of the value is generated. If the method changes the
value of the argument in any way, only local argument will be affected. When the method terminates,
this local argument is discarded and the original variable in the calling method is unchanged.

class Rectangle

{
int length;
int width;
void change (int 1, int w)
{
1=1 + 10;
w=w + 10;
System.out.println (*1 =" + 1 + “wo= Y 4w)
}

public static void main (String args[])
{ N

int len = 20;

int thick. = 20;

Rectangle rect = new Rectangle():

rect.change (len, thick);

66 Advanced Java Programming

}

M.S. University - D.D.C.E.

System.out.println (“len” + len + “thickness” + thick);

Accessing Class members

}

Use the dot operator with instance variable and to call instance m

class Rectangle

{
int length, width;
void getData (int X, Znt vy)
{
length = x;
width = v;
}
int rectarea()
{
int area = length =* width;
return (area);
}
}
class RectArea
{

public static void main (String args[i)

{

int areal, area?l;

Rectangle rectl = new Rectangle ();

Rectangle rect2 = new Rectangle();

rectl.length

rectl. width 10

15 Accessing variables

areal = rectl.length * rectl.width

rect2.getData (20, 12});
areal2 = rect2.rectArea ()os
System.out.println (“Areal

System.out.println (“Area?2

Objref.instance variable;

Objref.MethodName (arguments) ;

= "+ areal);

= “+ area2);

ethods. The general syntax is

M.S. University - D.D.C.E. Classes, Methods and Objects 67

5.4 THIS KEYWORD

All instance methods receive an implicit argument called “this”, which may be used inside any method
to refer to the current object i.e., the object on which method was called. Inside an instance method,
any unqualified reference is implicitly associated with the this reference.

public void setRating (String st)
{
rating = st;

this.rating = st;

Usage of this keyword:
® When you need to pass a reference to the current object as an argument to another method.

® When the name of the instance variable and parameter is the same, parameter hides the instance

variable.
class Rectangle
{
int length, width;
Rectangle (int length, int w);
{
length = length; // incorrect
width = w; // correct
this.length = length;: // incorrect
}
}
5.5 CREATING OBJECTS

In java, objects are essentially a block of memory that contains space to store all the instance variables.
The other name of creating an object is instantiating an object.

To create an object a new keyword is used as an operator. This operator creates an object of the
specified class and returns a reference to that objects.

The syntax of creating an object is as follows:

Class-name object-name: //declare
Object-name = new class-name () » //instantiate
For example:

Movie movl;

Movl = new Movie();

The first statement declares a variable to hold the object reference and the second one actually assigns
the object reference to the variable. Both statements can be combined into one as shown below:

FANS b s s v s

68 Advanced Java Programming M.S. University - D.D.C.E.

Movie movl = new Movie();

where Movie is the class name, mov1 is an object created by the default empty constructor of the class.
We can create any number of objects of a class. Each object has its own copy of instance variables of its
class. Thus, any changes to the variables of one object have no effect on the variables of another. Two
or more references can be created to the same object just by assigning one object reference variable to
another.

Example:

Movie mov2 = new Movie();

Movie mov3 = mov2;

Here, both mov3 and mov?2 refer to the same object

mov2

L

Object

movl

v

Figure 5.1: Two References of Same Object

5.5.1 Accessing Class Members

After creating objects, we are discussing about the accessing class members using objects. Each objects
containing its own set of variables, we should assign values to these variables in order to use them in
our program. Since we are outside the class, we cannot access the instance variables and the methods
directly. Thus, to access them, we use the concerned object with the dot operator. The syntax is as
follows:

Object_name.Variable_name;

Object_name.Method_name (parameter_list);

Here object_name is the name of the object of the class and variable-name is the name of the instance
variable inside the object.

Similarly, method name is the method inside the object and parameter _list is the comma-separated list
of the actual values that must match in type and number with the parameter list of the methodname
declared in the class.

The instance variable and method of Movie class may be accessed and assigned values as follows:
movl.length = 15;

movl.cost=150;

mov2.length=25;

mova .cost=250y

M.S. University - D.D.C.E. Classes, Methods and Objects 69

Both objects store different values, and any changes in one have no effect on other.

This is way of assigning values to the variables in the object directly calling by their object using dot
operator.

The other and more convenient way of assigning values to the instance variables is to use a method
that is declared inside the class.

As discussed in Adding Method topic, the getData method is basically added to provide values to the
instance variables. For example:

Movie movl=new Movie();
Movl.getData(“DON”, 180, 250, ‘s’);
This code creates mov1 object and then passes in the values to the temporary variables s,x,y & z and
the assigns these values to title, length, cost and type respectively. :
Let us consider a complete example
Class Rectangle
{
int length, width;
void getData(int a, int b)
{
length = a;
width = b;
}
int area()
{
int area = length * width;

return (area);

}
class AreaofRect
{
public static void main(String args[])
{
int areal, area 2;
Rectangle Rl = new Rectangle();
Rectangle R2 = new Rectangle();
R1l.length=15;
R1l.width=20;
area 1 =Rl.length*R1.width;

70 Advanced Java Programming M.S. University - D.D.C.E.

R2.getData (30, 15);
area 2 = R2.areal ();
System.out println (“AREAl=" +areal);
System.out.println (“AREA2="+area 2);
3
}
The output of above stated example is as follows:
AREA 1 =300
AREA 2 =450

5.5.2 Declaring Objects

Class is a static definition that enables us to understand all the objects of that class. Objects exist at run
time. They hold attributes and they send messages to each other Classes, however, do not exist at run
time.

Each instance of the class (that is, each object of the class) contains its own copy of the variables.

In case of the movie class, each individual movie is an instance of movie. “Gone with the wind” is one
distinct instance of movie while “Last action her” is another. Each has its own set of variables. For e.g.
movl and mov2 objects have four instance variables each - movl.title, movl.length, mov2.title,
mov2.length.

5.6 CONSTRUCTORS

When an object is created, Java performs default initialization, char variables are set to "\u0000', byte,
short, int, long to zero, boolean to false, float to 0.0

All objects that are created must be given initial values. We can do it,

1. By assigning the value to instance variable using dot operator.

2. Through instance method for e.g. get data()

3. By using constructor method to initialize an object when it is first created.
(a) Constructors have the same name as class itself.
(b) Constructors do not specify a return type.
() Constructor is called automatically by the run time system.

For example
class Rectangle
1
int length, width;
Rectangle(int x, int y) // constructor

{

M.S. University - D.D.C.E. Classes, Methods and Objects 71

length = x;
width = v:
}
int rectArea()
{

return (length * width);

}
class ABC
{
public static void main (String args[1)
{ Rectangle rect = new Rectangle()
Rectang lerectl= new Rectangle(15,10)// calling constructor

int areal = rectl.rectArea();

System.out.println("Areal = "+ areal);
X
}
Object
Length=null
M i
width=null
rect
Object
Length=15
P :
width=10
rectl

If you do not provide any constructors, a default no-arg constructor is provided for you. This
constructor takes no arguments and does nothing. If you want a specific no argument constructor as
well as constructors that take arguments, you must explicitly provide your own no argument
constructor.

Default Constructor

If no constructors are declared in a class, the compiler will create a default constructor that takes no
parameter.

When you create new Movie object, the compiler decides which constructor to call, based on the
argument specified in parentheses in the new statement. Constructor can call another constructor of

72 Advanced Java Programming M.S. University - D.D.C.E.

the same class by using this() syntax. By using this(), you avoid duplicate code in multiple
constructors. This technique is used when Initialization routine is complex.

public class Movie
{
private String title;
private String rating;

public Movie()

{
this{"G")
}
public Movie (String newRating)
{
rating = newRating;
i

}

Rules: The call to this() must be the first statement in the constructor. The argument to this() must
match those of the target constructor.

Check Your Progress
State whether the following statements are true or false:

A derived class inherits all the members of its base class.

A derived class can have only one class as its direct base class.

A derived class can access all the data members of its base class.

An abstract class is permitted to contain only abstract members.

It is an error to have a method with the same signature in both super class and its subclass.

Constructor must always invoke its super class constructor in its first statement.

Sk OhlL L gty it RIS

It is perfectly legal to assign a sub class object to a super class reference.

5.7 LET US SUM UP

Classes, objects ad Methods are the basic components used in java programming. As java is fully object
oriented language, every method even main () is also defined in a class, therefore the concept of classes
is at the root of java’s design. We have discussed the following in this lesson: How to define a class;
How to add variables and Methods in a class; How to create objects of the class by using new
keyword; How to access the class members by using dot operator; Usability of constructor; How to
extend or reuse a class.

M.S. University - D.D.C.E. Classes, Methods and Objects 73

We have also discussed various features that could be used to restrict the access to certain variables and
methods from outside the class.

5.8 KEYWORDS

Classes: A collection of variables and methods that an object can have, or a template for building objects.

Objects: An instantiation of a class.

Methods: A routine that belongs to a class.

Fields: A data object encapsulated in a class.

Instance: A concrete representation of a class or object. A class can have many instances.

Inheritance: A property of object-oriented languages where a class inherits the methods and variables of
more general classes.

Subclass: A class that inherits methods and variables from another class. The statement class subclass
extends super class means that sub class is a sub class of super class.

Super Class: A generalization of another class. X is a super class of Y if y inherits variables and
Methods from X.

Constructor: A method that is used to create an instantiation of a class.

Package: A Java keyword used to assign the contents of a file to a package. Packages are java’s
mechanism for grouping classes. Packages simplify reuse and they are very useful for large projects.

5.9 QUESTIONS FOR DISCUSSION

What is a constructor? What are its special properties and how do we invoke it?

Write a short note on classes and objects.

When do we declare method or class final?

When do we declare code in constructor of class A (intx)?
When do we declare a method or class abstract?

Describe the different form of inheritance with example.

Pl s R G il et

Discuss the different levels of access protection available in java.

Check Your Progress: Model Answers
False
True
False
True
False

True

R A

True

74 Advanced Java Programming

M.S. University - D.D.C.E.

5.10 SUGGESTED READINGS

E. Balaguruswami, Programming with Java, Tata McGraw-Hill.
Davis, Stephen R., Learn Java Now, Microsoft Press.
Naughton, Patrick, The Java Hand Book, OSborne McGraw- Hill.

Sams.net, Java unleased.

Herbert Schildt, The Complete Reference Java 2, Tata McGraw-Hill.

UNIT III

