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= (AUBlUCc AUBUCQ) 5
By using equations (1) and (2) we get,
AUBUQ =(AUBUC
(i11) Distributive laws: For three given sets A, B and C to prove that,
@ An(BuUCQ) = (ANB)U(ANC)
) AU(BNC) = AUB N(AUCQ)
ProgfiLetae A n (B u C),
Here 2eAn@BuCQ)
= a€AandaeBuC
= a€Aand(ze Borae Q)
= (@€ Aandxe B)or(ze A)orae )
= a€AnBorae ANnC
= 2€ (AN BUANQ
Hence,
AUBUC C(ANB)UANC) (1)
Converselylet b€ (AnB)U(ANC)
Here, b€ (AnB)U(ANC)=be AnBorbe AnC
= (P eAandbe B)or(be Aandbe C)
= (b eAandbe B)or(be Q)
= (b eAandbe BUCQ)
= (beAnBuUCQ
ANB)UANC) c ANBUCQ) vl
By using equations (1) and (2) we get,
Hence, AnBUC) = AnB)U(ANC)
Number of Elements in the Union of two Or more Sets

Let A, B and C be three finite sets and let n(A), n(B), n(C) respectively denote the number of elements
in these sets . Then we see that,

n (A UB) =n(A) +n(B)-n(ANB) sald)
In case A and B are disjoint sets then,AnB = ¢and 7 (A N B)=n(®)=0
Le., for disjoint sets A and B

n(A UB) =n(A) + n(B)
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Similarly we can show that,
n(A UBuU C) =n(A) + n(B) + n(C) -n(ANnB)-nBNQ)
-n(AnC)+n(AnBNCQ) 3 A bl
Solved Example

Example 10: In a group of 1000 people, there are 750 who can speak Hindi and 400 who can speak
~ Bengali. How many people can speak Hindi only? How many people can speak Bengali only? How
many people can speak both Hindi and Bengali?

Solution: Let H and B denote the sets of those people. Who can speak Hindi and Bengali respectively.

Given:
n(H U B) =1000, n(H) = 750, n(B) = 400
Now
n(H N B) =n(H) + n(B) - n(H U B)
=750 + 400 - 1000
- n(H A B) =150

Hence 150 people can speak both Hindi and Bengali. Now we have to find those people who can speak
Hindi only, that is, #(H N B)

But n(H A B) =n(H) - n(H A B) = 750 - 150 = 600
So, 600 people can speak Hindi only.
Similarly:

#(B A H') =n(B) - n(B A H) = 400 - 150 = 250
So, 250 people can speak Bengali only.

Example 11: In a survey of 200 students of a higher secondary school, it was found that 120 studied
mathematics; 90 studied physics; and 70 studied chemistry; 40 studied mathematics and physics; 30
studied physics and chemistry; 50 studied chemistry and mathematics, and 20 studied none of these
subjects. Find the number of students who studied all the three subjects.

Solution: Given,
n (U) =200, 7 (M) = 120, 7 (P) = 90,7 (C) = 70
n(MAP) =40,2 (PN C) = 30,7 (CNM) =50,n MUPUC) =20

Now

nMuPuUC) =n(U)-nMuUPuUC)
=5 20 =200-nMuUPUCQ)
= n (MuPuC)=200-20 = 180
and;

=M +n@) +nC)-nMnP)-nPNC)
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nMUPUC)-n(CAM)+2MNPNC)
180 =120+ 90 + 7040-30-50 + n M NP N C)
= n(MAPAC) =180 + 120 - 280 = 20
Hence 20 students studied all the three subjects.

Example 12: In a survey of population of 450 people, It is found that 205 can speak English, 210 people
can speak Hindi and 120 people can speak Tamil. If 100 people can speak both English and Hindi, 80
can speak both English and Tamil, 35 people can speak Hindi and Tamil, and 20 people all the three
languages. Find the numbers of people who can speak. English but not Hindi or Tamil. Find also the
number of people who can speak neither English nor Hindi nor Tamil.

Solution: Let F, H and T denote the sets of those people who can speak English, Hindi and Tamil
respectively.

Given,
n (U) =450, n (E) = 205, 7 (H) = 210, and 7 (T) = 120
n(HAT)35 7 HAE) =100, 7 (ENT) = 80,
nHNTNE) = 20
Now, we have to find the human of people who can English but not Hindi or Tamil.
nHANE' nT)=nH-nHNE)-HHNT) +2(HNENT)
=210-100-35 + 20
= 95
Now,
nHUEUT) =nH) +nE) +n(T-nHNE)-nENT)
-n(HNT) +nHNENT
=250 + 210 + 120 - 35 - 100 - 80
=320
Now we have to find the number of people who can speak neither English nor Hindi nor Tamil.
nHU EUT)Y =n(U-HUEUT)
=450 - 320
=130
So, 130 people cannot speak Hindi, English or Tamil.

Example 13: At a certain conference of 100 people there are 29 Indian women and 23 Indian men of
these Indian people 4 are doctors and 24 are either men or doctors. There are no foreign doctors. How
many foreigners are attending the conference? How many women doctors are attending the
conference?
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Solution: Let E denote the set of all Indian people attending the conference. Then E’ will denote the set
of all foreigners attending the conference. Also let W, M and D denote the set of Indian women, Indian
men and Indian doctors respectively.

Given:

7 (EUE) =100, 7 (W) = 29, n (M) = 23, n (B) = 4, (M U D) = 243
Clearly

WNnH=¢pand WUM=E

So, nE)=n(W)+nM) =29 +23 =52
Alson (EUE) 100, or # (E) + n (E") = 100

52 + n (E') = 100
or 7 (E') =100 - 52 = 48

So, 48 foreigners are attending the conference since there are no foreign doctors there can be no
foreign women doctors. Hence in order to find out women doctors, we simply find Indian women
doctors,

Le., n (W N D)
Now we have,
nMuUD)=nM)+n([D)-nMnD)
or 24 =23+ 4-nMn D)
ey n(MnD)= 13
Thus the number of male Indian doctors is 3 since there are all 4 Indian doctors.
The number of Indian women doctors = 4 -3 = 1
Hence
n(WnD)=1
Example 14: An analysis of 100 personnel injury claims made upon a motor insurance company
revealed that loss or injury in respect of an eye, an arm or a leg occurred in 30, 50 and 70 cases
respectively, claims involved this loss or injury to two of these member numbered 44. How many

claims involved loss or injury to all the three, »c must assume that one or another of the three
members was mentioned in each of the 100 claims.

Solution: Let E, A and L denote the sets of people having injuries in eyes arms or legs respectively.
Given, |

n(EUAUL) =100, 7 (E) = 30, n (A) = 50, 2 (L) = 70
Also,

nENANLY)YUANLNE)ULNENAY)] =44 sa(1)
Now,
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n(EVAUL) =z (E) + 7 (A) + nL)-nENA)-n(ANL)

-nLNE)+n(ENANL)

100 =30+50+70~n(EﬁA)—n(AﬁL)—n(Lr\E)

+nEnAnL)

:>n(Er\A)+n(AmL)+n(LmE)-n(EmAmL)

=30 + 50 + 70 - 100 = 50 -2

Since: ENANL),(ANLANE), (L N E N A’) are disjoints

So by equation (1), we get

n(Er\AmL’)+n(AmLmE)+n(LmEmA’)=44
or(EmA)—n(EmAmL)+n(AmL)—n(AﬂLmE)+n(LmE)—n(LmEmA)=44
Orn(Er‘\A)+n(AﬁL)+n(LﬂE)h3n(Ef\AﬁL)=44 w3

= (2) - (3) We get,

2nENANL) = 6
or n(EnAnl)= 3

Example 15: De Morgan’s Laws: To prove that

@ (AUB=A'AB
® (ANBY=AUB’

© A-BuQ =(A-Bn(A-0)
@ A-BNnQ)=(A-B)U(A-0)

Solution: (a) Let x € (A U B
Butxe (AUB)Y = xe AUB

= x€ Aandxe B
= x€ A'andxg B’
= xe Aln B
Le., (AUBYcA' 81
Conversely, let
yeA B’
=> y EA’ande B’
= y €A’andye B
= y 2AUB
= y €(AUBy
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ie, A'NB’c(AUB)
By using equations (1) and (2) we get,
(AUB)Y =A'NP
(b)) Leta€ (A UB)
Butae (ANB)=a¢ (ANnB)

= agA orag B
= acA’orae B’
= aeA’UPB
b, ANnBycA’UPB

Conversely, letbe A’ UB’
Butbe ’UB = be A’orbe B’

= begAorbe B
2 beAnB

—1 be(AnB)
Le., A’UB' Cc(ANnB)

By using equations (1) and (2) we get,
(ANB) =A’UB’
(© Letxe A-(BuUCQ)

Butxe A-(BuC) =>x€ Aandxe¢ BUC
=x€ Aand[x¢ Bandx g C]

M.S. University - D.D.C.E.

(2)

(1)

e)

..(b)

- =>[xe Aandx¢ Bland[xe Aandx ¢ C]

=x€ (A-B)andxe (A-C)
=>xe(A-B)n(A-C)
L=, A-BuC c(A-R (A-Q)

Conversely let

be (A-B)n(A-C) = be (A-B)andbe (A-C)

(1)

= be Abutbe Bandbe Abutbe C

= be Abutbg Bandbe C
=>be Abutbhe BUC
=be A-(BuCQ)

ie, (A-B)(A-C) c A-(BuUCQ)

e)
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By using equations (1) and (2) we get,
A-BuC =(A-B)n(A-C) .(0)
(c) Here, A-BNnQC)=AnBnNCy ;
=An B uC) by equation (b)
=AnB)UANC) by distributive law
~(A-B)U(A-C)
Hence, A-BnC) =A-B)n(A-C)
Example 25: Prove that,
& AnB-C)=AnNB)-(AnQC
) (A-B)uB=AiffBcCA
Solution:
@ AnB-CO=AnB-ANC
Letae ANC(B-C)
But ae AN(B-C)=>ac Aandae B-C)
=a€ Aandae Bbutag C
= (@€ Aandae B)butag AnC
=ae (AnB)butag AnC
=ace (ANnB)-(AnC)
ke AnB-C) c (AnB)-(AnC) el
Nowletbe (ANB) -(AnC)
be AnB)-(AnC)=>be AnB,bg AnC
=be Aandbe Bandbe Abutbe C
=be Aandbe Bburbe C
=be A,be B-C
= be An(B-C) (2
By using equations (1) and (2) we get,
ANnB-C)=(AnB)-(AnQ
() (A-B)UBAIffBCA
(AB)uUB=A & (AnB)UB=A
& (A uB) N (B'UB)=A (by distributive law)
= < (AUB)NS=A (..B'UB =S universal law)

= = AUBA(LANS=A)
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= all elements of B are in A

= BcA
Hence A-B)UB=BcA
Example 17: Prove that,
@ (A-B)u(B-A)= (AUB)-ANB)
b (A-B)=¢ iff ACB
Solution: (a) We have to prove that (A-B) U (B- A) = (A UB) - (AN B)
(a) Hence, A-B)UB-A)=(AnB)uUBNA)

A-B=ANnPK®

[(ANB)UBIN[(ANB)UA’] ..by distributive law
[(AUB)IN (B UB)IN[(AUA)N (B UAY)]

...by distributive law
=[AUB)NSIN[SAB UA)].. . BUB=S
=AUBNB UA) .. ANS=8§
=(AUB) N (BN Ay ... by De Morgan’s law
=(AUB)-(BUA).. . AnB =A-B

Hence,
(A-B)UB-A) =(ANnB)UBUA)
() Here, A~B=¢=ANB =¢.. (A-B) = ANP
= A and B’ are disjoint
= all elements of A belongs to B
=AcB
Conversely,
A C B there is no elements in A which does not belongs to B
= A-B=29¢
Hence A-B=0=AcB

Example 18: 1 A = [1,2,3},B = {2,4,6},C = {4,6,8,10} and U = {1, 2, 3,4, 5, 6, 7, 8, 9, 10} find
A’ B’ and C’ prove that,

M (AUB) = A’ NP’
(i) (AN B)’ = A’ U B’ where U is taken as universal set.
Solution: A = {1,2,3} B = {2,4,6} and C = {4, 6, 8, 10}
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LU 9 T T N L
A ={4,5,6,7,8,9, 10}
B = {1,357, %9 O}
(7 =41, 2.3,5.7. 93
Now (1) AuB={1,2,3,46}
(AUB)Y ={7, 8,9, 10}
A'AB ={5,7,8,9, 10}
Hence,
(AUB) =A’NB’
(i) ANB = {2)
(AnB) ={1,3,4,5,6,7,8,9, 10}
AUB ={1,3,4,5,6,7,8,9, 10}
Hence, (ANnB) =A’UPB’

Example 19: Of the members of there athletic teams a certain schools, 21 are on the basketball team, 26
on hockey team and 29 on the football team 14 play hockey and basketball, 15 play hockey and
football, 12 play football and basketball and 8 play all the three games. How many members are there
in all.

Solution: We can solve this problem by using formula and venn diagram.

By Formula: Let B, H, and F denote the sets of members who are on the basket-ball team, hockey team
and football team respectively.

So, we are given
n (B) =21, n (H) 26, n (F) = 29,
nHAF) =157 FNB) = 12

and n(BNHNF) = 8

nBUHNF) = ?
We know thar,
nBUHF) =n@B)+nH) +nF-nBnH)-HNF)-nFNB)+nBAHANF)

=21+26+29-14-15-12+8 =43

Hence, there are 43 members in all.

By venn diagrams: 8 play all the three games.
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[N

Since 14 play hockey and basketball of which 8 are already written in B n H N F, we write 6 in the
remaining part of H N B. Similarly we write 7 and 4 in the remaining parts of H N F and F N B.
Finally there are 21 members on the basketball of which 6 + 8 + 4 = 18 have already been written, So
we write 3 in the remaining part of B. Similarly we write 5 and 10 in the remaining parts of H and F
respectively.

So,
Total Number =3 + 6 + 5+ 4 + 8 + 7 + 10 = 43,

Check Your Progress

1. What is Infinite set? Give example.

2. What is empty set? Give example.

2.7 LET US SUM UP

A set is a collection of definite distinguishable objects such that, given a set and an Object, we can
ascertain whether or not the specified object is included in the set. A set is a well-defined collection of
distinct objects. By a ‘well defined’ collection of objects, we mean that there is a rule (s) by means of
which it is possible to say that without ambiguity, whether a particular object belongs to the collection
or not. Each object belonging to a set is called an element (or a member) of the set.

The most common method of describing the sets are Roster method or listing method or Tabular
method and Set Builder method or property method or Rule method.

2.8 KEYWORDS

Sets: A set is a well-defined collection of distinct objects.

Singleton Set: If a set consists of only one element, it is called a singleton set.
Finite Set: A set consisting of a natural number of objects.

Disjoint Sets: Two sets are said to be disjoint.
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2.9 QUESTIONS FOR DISCUSSION
1. Find the smallest set A suchas, A U {1,2,3} = {1,2,3,4,5,6,7, 8}

2. LetA =1{ab,c,d},B={bcdef},C={ef ghi}?FindAUBBNC A-B,B-AAN
(BUC),AU@®BNC)andA UB U C.

3. Tfx=1{2,4,68 10}y = {6,810, 12, 14} z = {10,12, 14,15, 16} and U = {1,2,3,4,6,8,, 10,
12, 14, 16} then find x', (x U y)’, (x N y)’ and (x - y)’

4, Hx={abocdefl,y={efghlandz={gh ij},Findx Uy)N(xUzandxnNy)
Uie (i)

5. Ifx = {1,2, 3} then find all subsets of x.

Check Your Progress: Modal Answers

1. If number of elements in a set is infinite, the set is called infinite set.
For Example: Set of natural numbers.
N = {1,2, 3,4, ...} is an infinite set.

2. Tf a set consists of no elements, it is called the empty sector null set or void set and is
represented by ¢.

2.10 SUGGESTED READINGS
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Mike Piff, Discrete Mathematics: An Introduction for Software Engineers, Cambridge University Press, 1991
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3.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
® Understand the concept of relations
® Discuss operations on relations

e  Discuss types of relations and equivalence relations
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3.1 INTRODUCTION: RELATION

A relation between two sets A and B is a subset of A x B. Symbolically, we can write:

Risarelation from Ato Biff Rc AxB.

If A = B, then we say that R is a relation on A. We can write aRb iff (z, ) € R and say that « is
R-related to & or that 4 is a R-relation of .

We can write a(~ R)b. If a is not R-related to . We can say that A relation, binds together two-objects
of a partition class according to some rule.

' When we say that, an ordered pair (x, y) satisfies or belongs to a relation R, we can write:
(x,7) € R. .
Example: Let X = {2, 3, 6,9, 18, 27} and R stand for “is thrice of”.
Here 6R2, 9R3, 18R6, 27R9. Hence obtained ordered pairs are (6, 2), (9, 3), (18, 6), (27, 9).
Hence, R is defined as the set of ordered pairs:

= {(6! 2)5 (9’ 3)! (189 6)s (27: 9)}

3.2 RANGE AND IMAGE

As usual, the pair (g, b) of the relation R has two element. First element a and second element b and 4,
b € R. If collect first elements from each pairs. 1.e. all first element (a) together to form a set and also
collect all second elements (b) to form another set, we get two sets each being « subset of A.

The set of all first elements 4 for which there is 2. Corresponding b given by (#, ) € R and 4, b€ Ais
called the Domain of R.

The set of all #’s to which there is some corresponding # such that (4, ) € R and ¢, b € A is called the
range or image of R.

Example: Consider the relation R = {(x,y) : y = 4x’, xe N}

Here, N = §1.2. 3.4 .1

y = 4x%, gives the domain of R = and the range of R = {4, 16, 36, ...}.
So, R = {(1, 4), (2, 16), (3, 36)....}.

Binary Relation

A relation R between pairs of elements of a given set is called a binary relation.

3.3 OPERATIONS ON RELATIONS

3.3.1 Inverse of a Relation

The inverse of a relation R is the set of all reversed pairs of R and is denoted by R- 1.

So ifR = {(x,y) : xRy and x yeR}



64 Mathematics-I (Discrete Mathematics) M.S. University - D.D.C.E.

thenR-1 = {(y,x) : x,yeR}

ze. xRy & yR-1x

Example: () If A = {a,b,c},B = {1, 2, 3}
Let a relation R such that

R = {(‘19 1)a (b9 2)’ (C’ 3)}

So here domain of R = (b0
and Range of R =(1,2,3)
and Rt wd(t a); (2;5),3, 9}
Domain of R = (1,2, 3)
and Range of R = (z, b,0).

Exampile: (11) The inverse of relation “is greater than” is the relation “is less than” ie. x > y & y < x.

3.3.2 Identity Relation
A relation R in a set A is said to be identity relation denoted by I, if
[, ={@b:(@be A anda =5}
This relation is also called Equality relation.
Example: Let A = {a, b, c}

I ={(a, a), (b, b), (c, ¢) is an identity or equality relation in A.

3.3.3 Void Relation

A relation R in a set A is said to be a void relation. If R = ¢.

Example: Let A=(1,2,3) and R is a relation defined by aR&. Iff 4 divides b then R = ¢ c[Ax A] is a void
relation.

3.3.4 Universal Relation

A relation R in a set A is said to be universal relation, if R coincide with A x A.

i.e. R is universal relation. iff R = A x A.

Example: A = {1, 2, 3} then

R=AxA={11),(12),(1,3),21),2,2,(2,3),(3,1),(3,2), (3, 3)} is a universal relation.

3.4 COMPOSITE RELATION

Let Ry and Ry be the relations from the sets A to B and B to C respectively then the composne of Ry

and Rj is a relation from A to C denoted by Ry o Ry

R0 Ry =[(4,¢)3be B such that (a,b)e R; and (b, c)e R, ]
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= (a,b)eRy, (b,0)eR,

= (a,c)eRy 0Ry

Example: If two relations R, and R; are such that:
R = [ 9, (b a), (c, d)]

and Ry = (& b), (b, ), (c, d)]

then calculate Ry o Rq

Domain (Ry o Ry) = dom (Ry)

(a,c)e Ry and(c, d)e R, = (2,d)€ R, o Ry

(b, a)e Ry and (2, b)e Ry = (b, b)e R, o Ry

(c,d)e Ry and (d,c)e R, = (c,c)e Ry 0Ry

Hence, RyoRy =[(a,d), (b, b), (, 0]

3.5 PROPERTIES OF BINARY RELATION

3.5.1 Reflexive

A relation R on a set A is said to be reflexive, if each member a€ A is R-related to itself.

t.e.aRa ¥V ae A

or a relation R in a set A is said to be reflexive if every element of A is related to itself i.e. 2Rz is true
forall ae A

or

R is reflexive if (a,a)eR V ac A.
Example 1: Let A be the set of all triangles (coplanar) and R stand for “equal in area to”. Now any

triangle 2€ A is equal in area to itself, z.e. 4Rz V a € R. Hence R is reflexive.

Example 2: Let A be the set of all lines and R stand for “is parallel to”. Now any line a€ A is parallel
to itself i.e. 4Rz V 2 € R. Hence, R is reflexive.

Example 3: Let A be the set of all members of a family. Let R be defined by “is wife of”. Clearly any
wife is not “the wife of” itself i.e. 4 is not R-related to 4, ¥ 2 € R. Hence, R is not reflexive.

Example 4: (3) If R, = {(a, a), (2, b), (a, 0), (b, b), (b, O} be a relation on A = {a, b, ¢}, then R, is

reflexive relation since for every ac A, (a,a)e R;.

() If R, = {(, 4), (@ b), (a, ©), (b, ©)} be a relation on A = {a, b, c} then R, is not a reflexive relation
since for be A, (b, b)g R,.
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3.5.2 Symmetric

A relation R is called symmetric if the second element is also related with first element in the same
manner as the first element is relation with second element of each pair.

R is symmetric if (a,b)e R=> (b,a)eR, a,be A
~ or A relation R on a set A is defined as symmetric if aRb = bRa, whenever a,be A

Example J: Consider a set A of all students studying in a given college. Let R stand for “is a class-mate
of” on the set A.

Clearly, if 4,be A and a “is a class-mate of” b, i.e. if aRb, then definitely b “is a class-mate of” 4 i.e. bRa.
So, aRb = bRa. ‘

Hence, Relation R on set A is symmetric.

Example 6: Consider a set A of integers. Let R stand for “is equal to” on set A.

Definitely if (2,b)e Rand a=b=b=a.

So, aRb = bRa.

So, Relation R on set A is symmetric.

Example 7: Let Ry = {(4, a), (@, b), (a,¢), (b, b), (b, 2), (c, @)} on A = {a, b, c} is a2 symmetric relation,
Example 8: Let A be the set of lines in a plane. Then the relation “is parallel to” is a symmetric relation.

Leta, be Rbecauseifa ||b= b ||aon aRb= bRa.

Example 9: Let A be the set of lines in a plane. Then the relation “is perpendicular to” is a symmetric
relation. Let a,be A

and of 2 L b definitely & L a.
aRb = bRa.

So, Relation R on set A is symmetric.

3.5.3 Asymmetric Relation

A relation R on a set A is asymmetric if whenever (a,b)e R then (b,a)¢ Rfor a#b ie If aRb= bRa.
It means that the presence of (4, b) in R excludes the possibility of presence of (b, 2) in R. For example:
The Relation

R, = {{#, ), (@ b), (b, ), (c, &)} on A = {a, b, c} is an asymmetric relation.

3.5.4 Antisymmetric Relation
A relation R on a set A is antisymmetric. If for all. 4,be A (4Rb and bRa) = 2 = b.

Example 10: Let R standing for “>” be defined on the set N of all natural numbers.

Clearly, if ny,ny € N and of 7n,Rn,, then 7, not related to n,.
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e.n1 > npthen ny, $ny.

So Relation R on set N is antisymmetric.

Example 11: Let Rq = {(x, y)eR? I x Sy} is an antisymmetric relation on R since x <y and y<xis
only possible. When x = y, then (x, y)e R and (y, x)e R implies x = .

Example 12: Let R = {(x, y)e Nl xis a division of y} is an antisymmetric relation. Since x divides y and
y divides x implies x = .

Example 13: Let Ry = {(a, b), (b, b), (b, )} on A = {1, 2, 3} is an antisymmetric relation.

3.5.5 Transitive Relation

A relation R on a set A is called transitive if whenever aR% and bRc then zRe¢ for a,b,ce A.
t.e.aRband bRc = aRc for a, b, cc A.

Example 14: The relation ‘is parallel to” on the set of lines in a plane is transitive, because if a line x is
parallel to the line y and if y is parallel to the line z then x is parallel to z.

Example 15: The relation ‘is perpendicular to’ on the set of lines in a plane is not transitive, because if a line
x perpendicular to y and if y is perpendicular to the line z. :

3.6 EQUIVALENCE RELATION

A relation R on a set A is called an equivalence relation on A, if it is reflexive, symmetric and transitive.

Existence of equivalence relation is denoted by the symbol =.
te.If a,b,ce A andif R be an equivalence relation on A then R is an equivalence relation. If
(®) aRa,Vaec A (Reflexive)
(1) aRb= bRa, wherea,be A (Symmetry)
(#7) aRb, bRe = aRe (Transitivity)
Since a relation R is also regarded as a subset of A x A, alternative conditions in that order are as follows:
() "(a,4)eR, VacA
(i) (a,b),(b,a)eR or (a,b)e R= (b, a)e R
(#i1) (a,b),(b,c),(¢c,a)eR or (a,b),(h,c)eR = (a,c)eR
Smallest Equivalence Relation

An equivalence relation R on a set A is called the smallest equivalence relation. If R is smallest subset
of A x A. '

Clearly A x A contains 72 elements, 7 elements are provided by reflexivity property in R. If no
elements are provided in the set R by symmetric and transitive properties, then this is the smallest set.

Now ‘is equal to’ is an equivalence relation. For this R, reflexivity, symmetry and transitivity produce
the same ordered pairs (, 4) Va€ A . Hence, it yields the minimum number of ordered pairs.
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Largest Equivalence Relation

Since R on A is a subset of A x A, the largest subset of A x A is A x A itself. Hence A x A is the
largest equivalence relation on A.

Theorem: Prove that ‘congruence modulo 72’ is an equivalence relation on the set of ;411 integers.
Proof: Let I be the set of all integers and let R defined on I stand for “congruence modulo 7”.
Thus 4Rb stands for
: a=b(modm), a,bel ie.m| (a-5)
(1) Reflexivity: Let ael
a-a = 0and 0 is divisible by m,
a= a(mod m), ¥ael
Hence, R is reflexive.
(#) Symmetric: Let a,bel
aRb = a=b(modm)
= m|(a-5b
= m| (b-a)becausea-b = - (b-a)
= b= a(modm)
= bRa
Hence, R is symmetric.
(t2i) Transitivity: Let a,b,ce 1. Also let 4Rb and bRc¢
aRb= m | (@-bandbRe=m | (b-¢)
aRb,bRc=> m | (a-b),m | (-0
s e B ]
= m| (-9
—
i.e., a=b(modm) b=c(modm) = a=c(modm)
Hence, R is transitive.
Example 16: Show that “is similar 10” on the set T of all coplanar triangles is an equivalence relation.
Solution: Let R stands for “is similar t0”.
(?) Reflexivity: Let te T.Hence, tRt, Vte T

Every triangle t is similar to itself.

Thus R is reflexive.
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(i) Symmetry: Let t|,t, € T, then t,Rzt, = t,Rt, for
If triangle ¢, is similar to £, then triangle ¢, is also similar to ¢,.
Hence, R is symmetric.

(i1i) Tramsitivity: Let t,t,,t3€ T, now if ¢, ‘is similar to’ to ¢, and ¢, ‘is similar to’ ¢, then we have ¢, ‘is
similar to’ ;.

Hence, R is transitive.

Since R is reflexive, symmetric and transitive, hence R is an equivalence relation.

Example 17: If Rand R’ be equivalence relations on a set A, prove that RNR’ is an equivalence
relation on A.

Solution: Let R and R” are defined on A.
RcA Aand R'cA A
Hence, RNnR'c A A
Now let a,b,ce A
() Reflexivity: Since R and R” are equivalence relations,
aRa,aR'a ¥ ac A
(a,a)e Rand (a,a)e R,V ac A
Hence, (a,a)e RNR’, Vaec A
2. RNR isreflexive on A.
(1) Symmetry: Let (a,b)e RNR whena, be A
(a,)e RNR’ = (4,b)e Rand (4, b)e R’
= (b,a)e Rand (b, 2)e R’, ("~ Rand R’ are symmetric)
= (b,a)e RNR’
RNR’ is symmetric.
(¢17) Transitivity: Let (a, b), (b, c)e RNR’
(a, b), (b, )eRAR" = (a, b),(b, ¢)eR and (g, b), (b, c)e R’
= (a, c)eRand (4, c)e R’
R, R’ are transitive.

= (a, c)eRNR’
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() Symmetry: Let t;,t, € T, then tRt, = £,R¢, for
If triangle ¢, is similar to ¢, then triangle #, is also similar to ,.
Hence, R is symmetric.

(i) Transitivity: Let i, t,,t3 € T, now if ¢, ‘is similar to’ to ¢, and ¢, ‘is similar to’ , then we have ¢, “is
similar to’ ¢,.

Hence, R is transitive.
Since R is reflexive, symmetric and transitive, hence R is an equivalence relation.

Example 17: If Rand R’ be equivalence relations on a set A, prove that RNR’ is an equivalence
relation on A.

Solution: Let Rand R’ are defined on A.
RcA AandR'cA A
Hence, RNR'c A A
Now let a,b,ce A
() Reflexivity: Since R and R’ are equivalence relations,
aRa,aR’'aV ae A
(a,a)e Rand (a,a)e R, Vae A
Hence, (a,a)e RNR, Vac A
RNR’ is reflexive on A.
(i) Symmetry: Let (a,b)e RNR"whena, be A
(a,b)e RNR" = (a,b)e Rand (4, b)e R’
= (b,a)e Rand (b,a)e R’, (** Rand R’ are symmetric)
= (b,a)e RNR’
RNR’ is symmetric.
(ti) Transitivity: Let (a, b), (b, c)e RNR’
(a, b), (b, )e RNAR’ = (a, b), (b, c)e R and (4, b), (b, c)e R’
=> (a, c)e Rand (g, c)e R’
R, R’ are transitive.

= (4, c)e RNR’
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xeln] = xRa, Vaxea]

Also bela] = bRa
= aRb, for R is symmetric
= aelb]

but xRa and aRb = aRb by transitivity of R

= xelb], Vxela]
~ el [B]
Hence, [4] = [4]
(ii1) Since [a]lN[bl#z ¢, let [al~[b] =[], m, n]
Clearly /e [a] and e [b]. Since 1€ [a], we have [[] = [4] we have [[] = [4] by (ii) property.
Similarly [/] = [£]

Hence from transitivity of relation “=" we have [4] = [5].

Fill in the blanks:

1. The inverse of a relation R is the set of all reversed pairs of R and is denoted o "

2. Avrelation Riscalled ...ooooovvooo. if the second element is also related with first element in
the same manner as the first element is relation with second element of each pair.

3.8 LET US SUM UP

A relation between two sets A and B is a subset of A x B.If A = B, then we say that R is a relation on
A.We can write aRb iff (4, £) € R and say that  is R-related to & or that b is a R-relation of 4.

The set of all first elements  for which there is a. Corresponding b giveﬁ by (4,6) € Randa, be Ais
called the Domain of R.

The set of all &’s to which there is some corresponding a such that (4, b)e Rand 4, b e A is called the
range or image of R.

The inverse of a relation R is the set of all reversed pairs of R and is denoted bRt
A relation R in a set A is said to be a void relation. If R = ¢.

A relation R in a set A is said to be universal relation, if R coincide with A x A.

3.9 KEYWORDS

Identity Relation: A relation R in a set A is said to be identity relation denoted by Ip ifIp = {(a b):
and 2 = b}

Void Relation: A relation R in a set A is said to be a void relation. If R = ¢.

Universal Relation: A relation R in a set A is said to be universal relation, if R coincide with A x A.
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Symmetric: A relation R is called symmetric if the second element is also related with first element in
the same manner as the first element is relation with second element of each pair.

3.10 QUESTIONS FOR DISCUSSION

18
2.

10.

115

3

Prove that the relation “=" on the set of all real numbers is an equivalence relation.

Let L be the set of all straight lines of the Eulerian plane, verify whether parallelism between two
straight lines is an equivalence relation on L.

Let 7 be a fixed positive integer. Define a relation R on the set of all integers I as follows:
aRb iff n/(a - b) that is (« - b) is divisible by ». Show that R is an equivalence relation on I.

m 1s said to be related to # if m and 7 are integers and m - n is divisible by 13. Does this defines an
equivalence relation?

A relation R on I (the set of integers) is defined as
@ R=
(b) Show that R is ar equivalence relation on L

Let I be the set of integers. Let a relation aRb be defined if @ - & is an even integer. Show that R is
an equivalence relation.

N is the set of natural numbers. The relation R is defined on N x N as follows:
@ @hHR@da+td=b+c

(b) Prove that R is an equivalence relation.

N is the set of positive integers and ~ be a relation on N x N defined by

@ @b ~(c,a)iffad = k¢

(b) Check the relation for being an equivalence relation.

A relation R on the set of complex numbers is defined by z Rz, if and only if (z, - z,)/(z, + z,) is
real. Show that R is an equivalence relation.

Which of the following are equivalence relations?

(@) “Is the square of” for the set of natural numbers?

(b) “Has the same radius as” for the set of all circles in a plane?

() “” for the set of sets {A, B, C, ....}.

(d) The set of real numbers : xRy, if x = + ¥.

(e) The set of straight lines in the plane in which xRy if x is perpendicular to y.

() The set of straight line in the plane in which xRy if x is parallel to y.

(g “ for the set of real numbers.

(h) onwhich (4,5 R (c,d) b-d =a-c.

(i) ‘aisless than or equal to & if there exist a non-negative ¢ such that @ + ¢ = #’ on the set R.

If R stands for “is at the same distance from the origin as” and is a relation on the set of all
coplanar points, prove that R is an equivalence relation.
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12. Show that the relation «R& defined by || = | b/, in the set of all real numbers, is an equivalence
relation. Further show that the relation aRb defined by || 2 || is an equivalence relation.

13. IfR is a relation in the natural numbers N, defined by the open set “x - y is divisible by 57 that is
@ R=
(b) Prove that R is an equivalence relation.
14. Discuss the R-relation “2x + 3y = 12” defined on the set N of natural numbers, such that .
15. I are relations on a set A, test the truth of the following:
(@) IfRisan equivalence relation then:
xRy, xRz yRz,
(b) IfR is reflexive
(c) If are transitive, then is transitive.
16. Construct examples on the following R-relations.
(@) R neither symmetric non-transitive but reflexive.
(b) R neither reflexive non-transitive but symmetric.
(© R reflexive and symmetric but not transitive.
(d) R neither reflexive non-symmetric but transitive.
() R reflexive and transitive but not symmetric.
(f) R symmetric and transitive but not reﬂexivé.
17. Test the reflexivity, symmetry, transitivity of the following R-relations :
(@) When R stands for “is twice the are of” and is defined on all coplanar triangles.
(b) When R on the set N is defined by xRy, if , .
(© WhenR = {(1,3),3,5), (5,3), (5,7)} onthe set A = {1, 3, 5, 7}.

Check Your Progress: Modal Answers
IR

2. Symmetric
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4.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

Understand concept of functions
Discuss types of functions and classification of functions

Discuss examplrs on functions
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4.1 INTRODUCTION

Let X and Y be two given sets. If y be any given rule or operation there corresponds to each element x
€ X, a unique element y € Y, then this correspondence denoted by {, is called mapping of X into Y
or f is called function of X to Y., - |

4.2 CORRESPONDENCE

Let us consider the set A = 2y B by e 4,3} of all authors who have written the books which from
theset B = {b, b, b, ..... b,}. Let us concern ourselves here, with the natural association of each book
of the set B with authors of Set A.

This process of associating an element of B with an element of A may result in associating b, with ,, b,
with a;, by with a,, b, with s vy by with a,. This association of the elementary one set B with the
elements of another set A, is called correspondence.

4.3 TYPES OF CORRESPONDENCE

4.3.1 One to One Correspondence

If each element of A corresponds to one and only one element of another set B, and each element of B
corresponds to one and only one element of A, we say there is one to one correspondence between the
elements of A and the elements of B,

Let, A = {ﬂ—p Ay, dyy dy, “5}
B e {bp bz: b}’ b4’ bE}
Let,

4= bya,— by, a,— b, a,— by, a;— b, or graphically we can show:

So there is a one to one correspondence between elements of set A and elements of set B. .

4.3.2 Many to One Correspondence

If at least two elements of set A correspond to. only one element of set, then there 1s many to one
correspond between set A and set B,

We can see it graphically as:
Let, A ={a,,a,, 4,2, .} and B = 16, b, 5,5, b}
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4.3.3 One to Many Correspondence

If some elements of A correspond to more than one element of another set B, then this type of
correspondence is called one to many correspondence.

Let, A = {4, a,, a5, a4, a5} B = {b, b,, by, b, bs}

Figure below shows one to many correspondence:

4.3.4 Many to Many Correspondence

If one or more elements of A corresponds to one or more elements of B, then this type of
correspondence is called many to many correspondence.

Figure below show many to many correspondence:

4.4 FUNCTIONS MAPPING

Let X and Y be two given sets. If y be any given rule or operation there corresponds to each element
x € X, a unique element y € Y, then this correspondence denoted by {, is called mapping of X into Y
or f is called function of X to Y.

fimage: The element y € Y, which due to mapping f, corresponds to an element x € X is denoted by
the symbol {(x), i.e. y = f(x).

f(x) is called the f-image of x or the value of the function for x.
fset: The set of all f-images of the element of X, is called image set and is denoted by f (X) or {f(x)}.
The statement “the mapping f of X to Y is denoted by f : X — Y.



M.S. University - D.D.C.E. ; Functions 77

4.4.1 Types of Mapping (Functions)
There are two types of mapping:

Onto or Surjective Mapping: In this mapping, every element of Y is an f-image of some of x € X, i.e.,
there is no element in Y which has no correspondence with any element of X such a correspondence is
called the mapping of X onto Y.

Hence, the mapping f: X — Y is said to be onto mapping if,
fset ffx)} =Y, VxEx
Let X = {x1, x2, x3, x4} ;Y = {y1, y2, y3, y4}

Then figure shows onto mapping

it ¥y
25 ¥o
%3 Frab £o)
%4 > Y4

Into or Injective Mapping: In this mapping at least one element Y is not anf-Image of any x € X. Such a
correspondence is called mapping of X into Y.

Hence, the mapping f* X — Y is called mapping of X into Y if {f{x)} cy,V xe X.
Let, X = {x1, X2, X3, X4, X5} Y = {y1, y2, 3, ¥4, ¥5, ¥5, ¥7}

Equivalent sets: Two sets whose element can be placed in one to one correspondence are called
equivalent set or cardinally equivalent sets.

Countable or denumerable sets: If one to one correspondence exists between a set A and the set N of all -
natural numbers the set A is called countable or denumerable set.

Domain and Co-domain: In any mapping f: X — Y, the set X is called the domain and Y is called the
co-domain of mapping {.

Range of mapping: The f-set is called the range of f.

4.4.2 Classification of Function

Constant mapping or constant function: The function f or mapping f defined on a set x, such that f(x) = a
V x €X is called a constant function on X.

Le. every element of X is mapped onto the same single element ‘a’ of another given set.

Identity mapping: If every element of a set X is mapped onto itself then the mapping is called identity
mapping i.e. x: X — X is defined by f(x) = x, V x € X.

Tmmfannatzon A mapping f: x — x, i.e. mapping of a set into is called a transformation, i.e. mappmg f
is called transformation if domain of f - co-domain of f.

Inclusion mapping: A mapping f : X — Y; defined by { (x) = x; if X S Y is called Inclusion map of X
toY.
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4.5 SOLVED FUNCTIONS

Example 1: For a mapping f : X — Y; defined by f(x) = x -2, V x € X, find f-image of x = 0, 3, 5, -1,
-2 & X.

Solution: By puttingx = 0, 3,5, -1, 2 in f(x) = x - 2 we get

EEr=iBes et Budioon d = 13 i) Sl S fllhimie L2 =
S g ey gt 2

Hence, Images are - 2, 1, 3, - 3 =il respectively.

Example 2: For each mapping defined by the following set of ordered pairs, find out domain and the
range. ,

@ {110,249 4,9 @, 16) L. andiiit. }

(i) f= {(x,y):x1is the positive integer, y = -x'}.

Solution: Domain is found out by forming the set of first components of ordered pairé.
Hence domain = {1, 2, 3, 4 ... and inf}.

Range is find out by forming the set of 2" component of ordered pairs.

. Range = {1, 4,9, 16 ..}.

(i) Hence x is first component of ordered pairs and each x is positive integer. Hence domain is the set
of all positive integers.

. Domain = {1, 2, 3,4, .... and inf.}

By puttingx = 1,2,3...iny = X wegety = - 1, -4, -9, ...

These are second component of orders pairs.

Hence, range = {- 1, -4, -9, .... an inf}.

Example 3: Given A = {2, 3,4}, B = {2, 5, 6, 7} construct an ekample of each of the following,.

() An injective mapping from A to B.

(i) A mapping from A to B which is not injective

(i11) A mapping from B to A.

Solution: (1) An ihjectivé (i.e. one-one) mapping A to B may be defined as:
f={@25), 3,7), 4,6)}.

(i) A mapping from A to B which is not injective may be defined as:
g=1{@22),0,5), 2}

(ii) A mapping from B to A may be defined as:
h={2,2,6,3), 64,7 4}

Example : X = {1,2,3,4,5}and Y = {1,3,5,7,9} Find XN Y and (X - Y) U (Y - X). Determine
which of the following sets are (i) mappings (i1) relations (iii) neither; of X to Y.
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O F={{my}:y=x+2,x€X,yey)
@) F={L0}21,0,3 36 5)
i) F = {(1, D} (1,9, (5.5 (,7) 5, 7)}
) F={(13)} 25,7690, 1)}
Solution: X NY = { 1,3,5}
K-V)U(¥-X)={24UF9-=1{247,9
()  We rewrite F as follows:
1 Exandy=x+2=1+2=3€Y
{hite o
2eXbuty=2+2-= 4¢Y, wehave (2,4) ¢ F
3eXandy=3+2=5¢€ Y, we have (3,5) € F
4=Xandy=4+2= 6 € we have (4, 5) ¢ F.
Finally since5 € Xandy =5+2=7 X, we have (5,7) € F.
Hence, F = {1, 3}, (3,5), (5, 7)}.

Hence, F is a relation from X to X, since F © X * Y but it is not a mapping since the elements 2
and 4 of the domain X have no image in Y under F.

(if) Hence, F is a mapping from X to Y since each element of X has a unique image in Y under F. So
F is a relation from X to Y.

Hence, F is 2 many one into mapping.

(ii) Here, F is a relation from X to Y. Since F C X. Y but F is not a mapping since the element
1 € X has two images 1 and 3 in X so that the image is not unique.

Example J: Suppose f is the collection of the ordered pairs of real numbers and x = 6 is the first
element of some ordered pair in f. Suppose the vertical line through x = 6 intersects the graph of f
twice. Is f a function? Why or why not?

Solution: f is not a function. The graph of the function f consists of points represented by the ordered
pairs of the form (x, f(x)).

If the vertical line through x = 6 is cut by the graph of f twice, then it means that the element 6 of the
domain of f has two images. Hence f is not a function as for t to be a function each element of the
domain must have unique image.

Example 6: Given A = {x: /6 <x < T3} and flx = cosx -x (1 + x); find f{A)

Solution: We know that as x increases from 0 to 71/ 2, cos x decreases from 1 to 0. Therefore,
/6 < x < n/3 = cos (n/6) > cosx > cos (n/3)

= 1/2<cosx< f3/2 sl L]
Again since /6 < x < 1/3 1:42)
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l+n/6<1+x<1+mn/3 =)
Multiplying (2) and (3) we get ...

n/6* (1 +m/6) <x(1+x) <n/3(1+mn/3)

or -n/6 (1+71/6) 2 - x (1 +x) 2 — /3 (1+7/3)

or -n/3 (1 + w/3) < -x (1+x) <-n/6 (1+7/6) . (4)
By Adding (1) and (4), we get

1/2-n/3 (1+n/3) <cosx - (1 + ) < \3/2— /6 (1 + 1/6)

ie 1/2-n/3 1+n/3) <flx) < 3/2 -n/6 (1 + 1/6)

Hence,

fA) ={y:1/2-n/3(1 + n/3) <y < 3/2 - /6 (1+7/6)}

Example 7: Let A and B be two sets each with a finite number of elements. Assume that there is
injective mapping form A to B and that there is an injective mapping from B to A. Prove that there is a
bijective mapping from A to B.

Solution: Let { be an injective mapping from A to B. Since f is one-one; number of elements in A is less
than or equal to the number of elements in B, that is n(A) < n(B). Similarly sine there exists in injective
mapping.
g:B — A, we have n (B) < n(A)
Hence, n(A) = n(B)
Since the number of elements in A and B is the same, we can define a bijective mapping from A to B.
For if A = {a,a... a}
and , B = {by, ba...ba}
Then one such bijective mapping is-

h = {(as, b1), (a2, b2)....(an, b))}

In fact, we can define many such bijective mapping from A to B.

Check Your Progress

L. Let f be a one-one function with domain (x, y, z) and range {1, 2, 3). It is given that exactly
one of the following statement is true and the remaining two are false. f(x) = 1, f(g) # 1,
f(z) # 2. Determine f'(1).

2. Isg={(1,1) (2 3), (3,5 (4, 7) a function? If this is described by the formula 2(x) = o x +
B, then what should be assigned to ot and B?

4.6 LET US SUM UP

If each element of A corresponds to one and only one element of another set B, and each element of B
corresponds to one and only one element of A, we say there is one to one correspondence.
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If at least two elements of set A correspond to only one element of set, then there js many to one
correspond between set A and set B.

If some elements of A correspond to more than one element of another set B, then this type of
correspondence is called one to many correspondence.

If one or more elements of A corresponds to one or more elements of B, then this type of
correspondence is called many to many correspondence,

The function f or mapping f defined on a set x, such that f(x) = a V x €X is called a constant function
on X,

If every element of a set X is mapped onto itself then the mapping is called identity mapping.

A mapping f: x — x, i.e. mapping of a set into is called a transformation.

4.7 KEYWORDS

Correspondence: This association of the elementary one set B with the elements of another set A, is
called correspondence,

Mapping: Let X and Y be two given sets. If y be any given rule or operation there corresponds to each

element x € X, a unique element y € Y, then this correspondence denoted by 1, is called mapping of
XintoY

Surjective Mapping: In this mapping, every element of Y is an f-image of some of x € X
Injective Mapping: In this mapping at least one element Y is not anf-Image of any x € X.

Egquivalent Sets: Two sets whose element can be placed in one to one correspondence are called
equivalent set

Denumerable Sets: If one to one correspondence exists between a set A and the set N of all natural
numbers the set A is called countable or denumerable set.

Domain and Co-domain: In any mapping f: X — Y, the set X is called the domain and Y is called the
co-domain of mapping f.

4.8 QUESTIONS FOR DISCUSSION

1. What is correspondence? What are different types of correspondence?

2. What is function mapping? Discuss different types of mapping.

3. Discuss classification of functions.

Check Your Progress: Modal Answers
1. There are three possibilities:
(@)  The statement £(a) = 1 is true the statement f(y) # 1, f(2) # 2 are both false.

(b)  The statement f(y) # 1 is true and the statement f(x) = 1, f(z) # 2 are false.

Contd...
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()  The statement f(z) # 1, {(y) # 1 are false.
In case (a), the true statement are:
fx) = 1,f(y) = 1,f(z) = 2.
If then, f is not a one-one mapping which is a contradiction so this possibility is true out.
In case (b) the true statement must be:
f(x) = 20r 3,f(y) = 2 or3,f(z) = 2.

So, in the case also f cannot be a one-one mapping since in this case two elements x,y,z must
have the same image.

In case (c), the true statement are:
f(x) 20r3,{(y) = 1,f(z) = 1or3
Hence, ) =1y

2. Here g is a function since the image of every element of the domain {1, 2, 3, 4} is unique. If
x is any element of the domain, then clearly its image is, given by g(x) = 2x - 1.

Hence, 0. = 2 andp = -1
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5.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

e Understand the concept of groups and subgroups with examples
e Discuss semigroups and monoids

e Understand the concept of homomorphisms

e Discuss permutation groups and normal subgroups

e Discuss cosets and lagrange’s theorm

e Understand the algebraic manipulation

e Discuss ring and its types

5.1 INTRODUCTION

A non-empty set together with one or more binary operations defined on the set is called a Algebraic
Structure or Mathematical Structure. Arithmetic operations combine two elements of the set of real
numbers to give another element of the same set. Such operations are called ‘binary operations.

5.2 BINARY OPERATION

We are aware with arithmetic operations like addition, subtraction, multiplication and division.
Wherein these operations on any two real numbers yield another real number.

Arithmetic operations combine two elements of the set of real numbers to give another element of the
same set. Such operations are called ‘binary operations or binary compositions’.

Let x,yeR then x+yeR, x-yeR, x*yeR, and X & R. So a binary operation is a rule, defined on
y

a given set S, which assigns to any elements a unique third element in S. It is denoted by the symbol

4
o

'>' assigns to any two elements a,be S, a unique third element acbeS.

An operation =" on a non-empty set S which is a mapping that associates with each ordered pair (2, b).
When 4, be S, auniquely defined element a=b of S, is called a binary operation.

In other words, a binary operation '=' on a set S, is a mapping of S x SintoS.

Example 1: Let the operation ‘o' be ordinary addition *+° defined on the set N. Let a,be N. Hence
gob =a+ b= + ve (integer)

ie. (a+b)e N. Hence ‘+’ is a binary operation.

Example 2: Consider a set S of all odd integers, on which the operation. ‘+’ is defined. Clearly if
a,beS, thena + b is an even number. Thus (a +b)e S. Hence "+’ on S is not a binary operation.

Example 3: Let =" stand for ordinary division ‘+’ defined on the set S of all non-zero integers. Let
a,besS.
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Clearly acb = a + b. Buta + b may not be an integer. Hence # + b may not belong to S. Hence ‘+’
on S is not a binary operation.

5.3 TYPES OF BINARY OPERATIONS

Commautative

If binary operation '>' on a set S is such that acb=boa, Ya beS, then operation 'o' is called
Commutative.

Example 4: Let R be the set of all real numbers and "' stand for ordinary ‘+°.If 2,be R then
a+b= b+a YabeR

Hence “+’ on R is commutative.

But if o stands for = than gaob=a+b and boa=b=a definitely a/b#b/a except whena = + b.

Hence ‘<’ on R is not a commutative operation.

Associative
An operation '=' on a set § is said to be associative if, ¥ a,b,c€S, ao(boc) = (acb)sc.

Example 5: Ordinary ‘+’ and *’ defined on the set of all real numbers or complex numbers or all
integers on all rational numbers are associative, i.e.

a+b+co=@+b+c Vab,ceS
a(b-c) = (a-b)-c Yab,ceS
But ‘subtraction’ and ‘division’ are not associative on the sets mentioned above, e.g.
a-(b-c)=a-b+c,while@-b)-c=a-b-c
a-b-c # (@a-b-c
Example 6: Let binary operation '=' on the set R of all real numbers be taken bya<b =4 + 3b, Va,beR.
Now let a,b,ce R
ac(boc) = ao(b+3c) =a+3(b+3c)=a+3b+ 9.
and (@eb)oc = (a+3b)oc =(a+3b) +3c=a+3b+ 3¢
Hence, ao(boc) # (aoh)ec
Hence, =’ on R is not associative.
Distributive
Let o' and @ be two binary operations defined on a given set S. Let 4, b, ce S.
facb®c) = (ach)®(aoc)
Operation ‘=" is said to be left distribution with respect to @ .
If (b@c)oa = (boa)®(coa), then ' is said to be right distributive with respect to '@,

If an operation is left as well as right distributive we simply say it is distributive.
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Example 7: Let T be the set of all integers. If x,,ze1 thenlet xoy+x+2y and x@y=2xy.
-Clearly xo(y®z) = xo(2yz) = x + 2(yz) = x + 2yz;
Xoy =x+2y; =x+ 2z
(xoy)®(xoz) = (x+2y) @ (x+22)
=2(x + 2y) (x + 22)
xo(y@z) # (xoy)®(x02)
Hence "' is not left distributive with respect to
Again (y®z)ox = 2yzox = 2yz + 2x
Now  (yex)®(zox) = 2(y + 2x) (z + 2x)
Clearly (yox)®(zox) # (yox)®(zox)
Hence o' is not right distributive with respect to @.

But x®(yez)

)

x®(y+2z) = 2x(y + 22) = 2xy + 4xz
= (x®@y)e(x@2).

Hence @ is left distributive with respect to o.

Also (yoz)®x = (y+22)@x =2(y + 22)x
=2yx + 4zx = (YD x)o(zDx).

Hence @ is also right distributive over o .

Identity of the operation: Let '=' be the operation defined. On a set A. If there exists the element ¢c A,
such that

eoa=a, Vae A
then e is called left identity with respect to operation 'o".
Butif eca=a, Vac A
then e is called right identity w.r.t operation '='.

Increase with respect to the operation: Let 's' be the operation defined on the set A. If there exists an
clement be A corresponding to ae A. Such that

boa=e
then b is left inverse of 2 in A with respect to operation 'o'.
Similarly, if aob=e¢, then b is called right inverse of 2 with respect to operation "' in A.

Inverse of 4 is denoted by the symbol 2~ 1.
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5.4 ALGEBRAIC STRUCTURE

A non-empty set together with one or more binary operations defined on the set is called a Algebraic
Structure or Mathematical Structure.

Or we can say an algebraic structure is a set together with closed operation defined over the set.

It G is a non-empty set and ‘o' is a binary operation on it then Algebraic structure formed by them is
denoted by (G, o).

Isomorphic

A homomorphic which is injective (one-to-one) is called a monomorphism, a homomorphism which is
surjective (on to) is called an epimorphism and when the homomorphism is a bijection then it is called
an isomorphism. If there exists an isomorphism between two structures then they are said to be
isomorphic.

The word isomorphic means ‘same shape’ and so it seems reasonable to expect that isomorphisms
should be able to partition the set of all algebraic structure into equivalence classes.

Example 8: The two structures ({(b, Sh m,u) and ({O, 1}, /\,v) (as defined in the below given table)

are Isomorphic.

v 0 I z ‘ 3 4 A 0 1 213 4
0 [FeRF 172 g 4 e R s e e
7] R B e e 7| L ) [
2 212121314 2 Gl122 (2
3 A8 B [ 3 [HI] S = 8
4 4 | 4|4 | 4|4 4 0 1.2 1.8 {4

avb = the maximum of # and 4.

anb = the minimum of 4 and .

Solution: Let ¢(¢)=0and ¢(S)=1. Clearly ¢ is a bijection. Also ®(d6n0o) = ¢o)=0 = 0A0 =
0(0) A 0(9).
Group

Consider a mathematical system consisting of a non-empty set S and an operation * defined on set S.
The system is a group under the following group axioms:

(G,) Closure axiom: G is closed under the binary operation *.
Thus if a,be G, we have
axbe G, Ya,beG;
ie., axb is an element of G. This means '#' is a binary operation.
(G,) Associative axiom: The operation *' on G is associative.
Thus if a, b, ce G we have
ax(bxc) = (a*xb)xc Va,b,ceG
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(G,) Identity axiom: These exists the element ee G such that:
a*e = exa=qa VaeG

e is called the identity element of G, for the operation *'.

(G,) Inverse axiom: Every element belonging to G has its inverse.

Thus Vae G, there exists a- !, such that

5.5 SOME DEFINITIONS

()  Finite Group: If a group consists of a finite number of elements, it is called a finite group.

() Infinite Group: If a group contains an infinite number of elements, it is called an infinite group.
(#52) Order of a Group: The number of elements in a finite group is called the order of the group.
Let a group consists of 7 elements, it is called a group of mth order.

(i) Abelian Group or Commutative Group: It is addition to group axioms, operation is also
commutative, it is called Abelian Group or Commutative Group.

Thus for an abelian group with composition +' defined in it, we must have
a*h = b*g Ya,b eG.
or wWe can say

A mathematical system consisting of a set S and a binary operation * forms a commurtative group. If it
exhibits the following properties:

e  Closure Property

e  Associative Property

e Identity Property

e Inverse Property

e Commutative Property

Example 9: Prove that the set of cube roots of unity is abelian finite group with respect to
multiplication.

Solution: Let 1, w, ®? be cube roots of unity so that ®* = 1. Let us form the composition table for the
set G = {1, 0, w?} with respect to multiplication.

* |1 o?

leei

e | e

e
S
SN
s

(S
ra
—_

Here w?® = 1 and o* = 0.0 = .
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1. Since all elements in the composition table belong to G, hence G is closed under binary operation
L7

2. Since multiplication of complex number is associative therefore muitiplication is associative in G.

3. Itis clear from first row of the table that 1 is the identity element in G.

4. Inverse of 1, m, ®? are 1, ?, ® respectively and they all belong to G.

Hence G is a multiplication group and it contains. Finite number of elements = hence it is a finite
group.
Example 10: The table given below defines a certain binary operation @ on the Set A = {a, b, c, d, e}.

Show that the set A forms a group with respect to the binary operation @ and find the inverse of each
element.

@‘a B aealod | e
d] algie e
ol b|e e |a
clie | dlel alth
dildiizena = e
g e teibeli e i

Solution:

1. Since all elements in the composition table belong to A. Hence A is closed under binary operation
@ .

Since (@@ b)@c=bDc=d
a®@(b®c)=a®d =d
2. So @ isassociative in A.
3. Since
a®a =a, b®a=a® b=, cPa=aD c=c,
d®a=a@d=d, eDa=aBe=c.
So, ‘@’ is the identity element in A.

4. Inverse:

Here d ® c=a (left identity) and ¢ @ d =a (Right identity)
=> ¢ is the inverse of d.
Similarly d is the inverse of ¢
and since e@®b=a and b® e =a so e is the inverse of b and b is the inverse of e. Inverse of  is a.
Since (A, ®) has all four properties of group. Hence the system (A, @) forms a group.
Example 11: Does {1, - 1} forms a group under multiplication.

Solution: First we make the composition table
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Let A ={1,-1}

#| 1(-1

T 11-1

-1/-1]"1
1. Since all element of the composition table belong to A. So A is closed under the binary operation
* “

2. Since multiplication of integers is associative, so A is associative under the operation *.
3. The identity element for multiplication is 1 which is in the Group A.
4. Since 1*#1 = 1soinverse of 1is 1
5. -1*-1 =1 inverseof-1is-1

Hence, (A, #) has all four properties of a Group.

Hence the system (A, ) forms a Group.

Example 12: Prove that the set of all integers (including zero) with additive, binary operation is an
infinite abelian group.

Solution: Let | be the set of all integers and x,y,ze 1.

@

Closure: x,yel = x,y are integers.
=> x + 7y Is an integer.
= (x+yel

Hence the group I is closed under the operation +.

(#)) Associative Property: We know that the addition of integers x, , z is associative.

(¢é

ie,if x,y,zel thenx + (y +2) = (x +y) + z
Hence, addition in I is associative.

Existence of Intensity: Let xe1, also 0O L
Here O+x=x+0, Vxel

Hence, 0 is additive identity in L

(¢v) Existence of Inverse: Here xel = —xel.

But (-x) +x=0 Vxel
Hence, - x is inverse of x, ¥V xe 1.

Hence inverse of each element in I belongs to I.
It is clear that number of elements in I is infinite.

= I is a infinite group.
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(v) Commutative Property: Since addition of integers is commutative.
Le.; x+y= y+x Vx,yel
Since I contains all five properties of an abelian group under the operation +.
So 1 is an infinite abelian group.

Example 13: Prove that the set of all non-singular square matrices of order n with real elements is a
group with respect to matrix multiplication. Is it an abelian group?

Solution: Set G be the set of all n x 7 non-singular matrices over the set of real numbers. Let matrices
A B CedG.

()  Closure: Since produce of two square matrices of the same order is a square matrices of the same
order.

ABeG, YA BeG
Hence G is closed under the operation multiplication.

(i)  Associative Property: We know that product of three matrices A, B, C € G is associative, ie.
A(BC) = (AB)C by the theory of matrices.

Hence G is associative under this operation.

(é) Identity Element: Let I denote the unit matrix of order n. Hence Ie G.
AlsoTA = A VAeG.
Hence, I is multiplicative identity.

(?v) Inverse Elements: By theory of matrices every non-singular square matrix A possesses a non
singular square matrix A-! as its inverse. Such that

A-1A = [ VAeG.
Hence, G is a group with this composition.
(v) Commutative Property: Since the product of two matrices is not commutative.
Le, AB#BA
Hence G is a non-abelian group.
Example 14: Determine whether the following sets form a group for the operation defined in the set.

@ K={.,-4,-2,0,24,..} with the operation of addition.

(t2) Z = set of integers including zero with the operation * defined as:

a*bh =a-b; a,beZ.
' : a b : ; e
Example 15: A set of 2 x 2 real matrices with binary multiplication is a group. When
2x2

ad -bc#0.
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Solution: Let G be the group of 2 x 2 real matrices.
(z) Closure: Let A,Be G

and A = ab},B={p q:|

lc d ¥

e[
e 2. #qus

_[ab+br ag+rs

by Lcp+dr cq+ds

= (ab + b7) (cq + ds) - (cp + dr) (ag + 7s)

= abcq + apds + preg + brds - cpaq - cpbs - draq - drbs.

= ps{ad - be) + rq(ch - ad)

= (ad - bo) (ps - rq)
#0
So A*Be G

Hence, Group G is closed under the operation multiplication.
(2) Associative Property: We know that in matrix operation
(AB)C = A(BC)
Hence multiplication is associative in G.

(¢ii) Identity: Let e be the identity.
a b a b
= -
ot
e =
g 1

Hence, identity exists in G.

() Inverse: {‘; ﬂ {: Z}l = L], ﬂ

Example 16: Show that the set of all odd integers with addition is not a group.
Solution: Let Set A = {1,3,5,7,9, ...}

Closure: Here 1,3 A

But 1 +3= 4¢A

So Set A is not closed under the operation ‘+°.

Hence, it is not a group.

M.S. University - D.D.C.E.
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Example 17: Prove that set of zero and even integers with addition is an abelian group.

Solution: Let the Set A = {0,2,4,6,8, -

Let x,y,ze A and A be the set of zero and even integers.

()

(é) Associative Property: We know that the addition of integers is associative.

(i)

(2)

Example 18: Show that the set {0+n,+2n,...£kn...} is an additive group, 7 being a fixed integer.

Solution: Set A = {0+ n,£2n,..+kn...} andalsolet x,y,ze A.

()

Closure: x,y€ A, since x, y are even integers.

= x + yisan even integer.

= x+yeA

Hence closure property Holds.

If x,y,z€ A then

X+ +2)=(x+y) +z
Hence, addition in A is associative.
Existence of Identity: Let xe A, also 0e A
Hence,0 + x =x+ 0 Yxc A

Hence, 0 is additive identity in A.

Existence of Inverse: Here xe A = —xe A
But -x)+x=0VvVxeA
So-xisinverseof x Vxe A.

Hence inverse of each element in A belongs to A.
Existence of Abelian: Here x, ye A

and Xoy = yox Vux,y

Also addition of integers is commutative.

Le, X+y= y+x
Vx,yeA

Hence, it is an infinite abelian group.

Closure: x,y x,y€ A are integers.
= x +yisan integer. (because 0 + 7 = +kne A)
= (x+y)eA

Hence closure property holds.

Algebraic Structures 95
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(é4) Associative Property: We know that addition of integers x, y, z is associative i.e. if x,y,ze A then
x++2)=(x+y) +z
(¢4i) Existence of Identity: Let xe A . Also Oc A
Hence 04+ x=x+0VaxcA
Hence 0 is additive identity in A.
(iv) Existence of Inverse: Here xe A, — xe A. But
(-x)+ (x) = OvVxeA.
Hence, - x isinverse of x ¥ xe A .
Thus, A forms an additive group in which number of element is infinite. Hence it is an additive group.
Example 19: Prove that the set {1,-1,i, - i} is an abelian multiplication finite group of order 4.
Solution:

(2} Closure: 1,-1€ A and also x, Y, z€ A

-1*-1 = -1e A

IXi=#2=-1eA
txi=1leA
-ixXi1=-1e A

Hence closure property holds.
(é) Associative Property: Let x,v,z€ A .
Now xx (yxz)=zx (xxy)
Since I1x(-1xi§=-i
iX(1x-9)=-g
Hence associative property holds.
(¢#2) Existence of Identity: Let 1€ A . Also -1 A,
But 1x-1=-1vzxeA.
Hence, - 1 is the multiplication identity.
() Existence of Inverse: Here xe A = —xe A,
But 1 x-1=-1vxeA.
Hence, - 1 is inverse of 1 ¥ 1€ A.
Hence, inverse of each element in A belongs to A.

Thus A forms an multiplication group in which numbers is 4. Hence it is finite group of order 4.
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(v) Existence of Abelian: Also multiplication of integers is commutative.
Le. xXy= yXxVxyeA.
Hence it is an finite abelian group of order 4.
Example 20: Show that the set {1} forms a group with respect to multiplication.
Solution: Let Set A = {1} and x,y,z€ A
wherex = 1,y =1,z = 1.
(i) Closure: 1,1 A
= 1 x 1isan integer.

=> 1€ A . Hence closure property holds.

(é)) Associative Property: We know that multiplication of integers 1, 1, 1 is associative i.e. if 1,1,1€ A
then

ex lyxa) =B ryl x5
Hence multiplication in A is associative.
(¢5) Existence of Identity: Let xe A and 1e1.
Hence, 1xxm xx1¥Vzxel,

Hence, 1 is additive identity in A.

; . 1
(2v) Existence of Inverse: Here xe A = ~
o

But x><l =1 VxeA
‘ X

{
Hence — isinverse of x ¥V xe A
x

Hence, inverse of each element in A belongs to A.
Thus, A forms an multiplication group.
Example 21: Show that the set of integers with respect to multiplication is not a group.
Solution: Let A = Set of integers and x, v, z€ A.
Where x, y, z are integers.
(?) Closure: Let x,ye A
=> X X vy is an integer.
XXyeA

Hence, closure property holds.
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(#) Associative Property: We know that multiplication of integers x, y, z is associative ie., if x,v,z€ A
then

xX(yxz)=(xx9y) xz
Hence, addition in A is associative.
(¢2z) Existence of Identity: Let xe A also 1€ A
Hence 1xx= zxxlsx YxeA
Hence 1 is the multiplication identity.

(¢v) Existence of Inverse: Here xe A

1= ;
But — 1s not a integer
%

So Lea For example Let x = 2
%

L
Hence, inverse does not exist.
Hence, A is not a group with respect to multiplication.
Example 22: Show that the set of vectors with vector multiplication as composition is not a group.
Solution: Let V be the set of all vectors and let '*' denote vector multiplication. Also let vy, vy, v; € V.
() Closure Property: vy, v, €V, then v, X v, is a vector,
M X0 eV, Vu, eV
Hence, closure property holds.
(¢£) Associative Property: Now a x (b x ¢) = (a-c)b—(a-b)-c
(a-c)b—(b-c)a
ek bl

Hence * is not associative.

and R b 8¢

Clearly (@ xb) x ¢

Hence V is not a group for the operation '+
Example 23; Prove that n, nth roots of unity from a multiplicative abelian group.

Solution: Let x” = 1 = cos(2rm)+ i sin (2rm)

2rW- . . .. 2T
X=cos—+isin—, r=0,1,2,...n-1
n n

- 2/ = 0,1,2, -1
Hence the set of 7, nth root of unity is given by

A {ez”‘”” r=0,1,2,..1 —1}
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() Closure Property: Let a,be A and a=e2™i/1 = 2mi/n
whereD < r, %, € n=1.
ab = PTEIM 2niln _ 2t n)/ne A if (r 4 p) < -1
Butifr, + 7, > n-1,letr, + r, = n + P where 0SP<n-2.
ab = W +P)/n _ 2w JwPifn . 2nPiln g a
For 0sP<n-2.
Hence a,be A = abe A, Va,be A.

Hence closure property holds.

(%) Associative Properties: Since n, nth roots of unity are complex numbers, and multiplication of
complex numbers is associative, hence product of roots is associative.

or eZn:ni/n (Eanzi/n ‘621:1'31'/11) . ean‘(rl +rp+n)/n
- (E2nrlz'/n ‘621|:r21'/n) e2m3i/n

Hence Associative property holds.

(é42) Existence of Identity: Putting » = 0 in 2™ /"
Weget 2™/ = 0=
& le A, Also 1.2Mi/n o p2miln y 2mifn g p
Hence, 1 is identity and 1€ A.

(fv) Existence of Inverse: Let a = ¢*™ /" and b = ¢*™n-1)i/n
Hence, ab = ¢¥™i/n 20n=r)i/n_20 _1 vyaeA

2n(n-r)i/n 2nri/n

Hence, e is inverse of e

Also, 2MH-THR ¢ &

Hence, inverses of elements of A belong to A.

Also a-b=b-a.

Hence, A is abelian group with respect to multiplication.

Example 24: Verify that the totality of all positive rationals form as group under the composition
defined by

axb=ab/2
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Solution: Let Q* be the set of all positive rationals and let a,b,ce Q*.

(2) Closure Property: Here axb = % a rational.

abe QF, Va,beQ™.

Hence, closure property holds.
(#) Associative Property: Now a*(bc) = a* (b—;]

by definition
_ abc _ab

4 2"

Mo

(a*b)*%z(a*b)*c

Hence associative property holds.
(¢4d) Existence of Identity: Let e be the left identity.

ea
exg =a:>? =da

= e= 2. Also2eQ?

Hence 2 is identity and 2e Q*.

(iv) Existence of Inverse: Let b be left inverse of a.

= b¥a = a=2
oy
2
LT - +
= = —eQ s aeQ
a

Hence inverse of ¥ ae Q",e Q*.
Thus (QF, *) is a group.

() Commutative Law: Clearly (axb) = a_zb = b_za =b*g

Hence * is commutative and (Q*, #) is an abelian group.
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5.6 SEMIGROUPS

Let us consider, an algebraic system (A,*) where * is a binary operation on A. Then the system (A,*) is

said to be a semi-group if it satisfies the following properties:
1. The operation * is a closed operation on set A.

2. The operation * is an associative operation.
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Example 23: Consider an algebraic system (A,*), where A={13,57,.....}, the set of all positive odd
integers and * is a binary operation means multiplication. Determine whether (A,*) is a semi-group.

Solution:

Closure Property: The operation * is a closed operation because multiplication of two odd integers is a
+ve odd integer.

Associative Property: The operation * is an associative operation on set A. Since for every (a,b,c)
belongs to A, we have

@*b)*c=a*{b*c)

Hence the algebraic system (A,¥) is a semi-group.

5.7 MONOIDS

Let us consider, an algebraic system (A,*) where * is a binary operation on A. Then the system (A,0) is
said to be a monoid if it satisfies the following properties.

() The operation o is a closed operation on set A,
(i) The operation o is an associative operation.
(iti) There exists an identity element w.r.t the operation o.

Example 26: Consider an algebraic system (N, +), where the set N= {0,1,2,3,4,......}the set of natural
numbers and + is an addition operation. Determine whether (N, +) is a monoid.

Solution:

Closure Property: The operation + is closed since sum of two numbers is a natural number.

Associative Property: The operation + is an associative property since we have
(a+b)+c=a+(b+c) foe all a,b,c belong to N

- Identity: The element 0 is an identity element w.r.t the operation +.

Hence the algebraic system(N, +) is 2 monoid.

5.8 ALTERNATIVE DEFINITION OF A GROUP

Theorem: A set G with a binary composition denoted multiplicatively is a group iff

(1) the composition is associative and (37) Va,be G, the equations ax = b and ya = b have unique
solution in G.

Proof:
Necessary Conditions: Let (G, *) be the group.

Hence from group axioms, composition is binary as well as associative. Also let a- ! be the inverse of a,
where ae G.

Thenax =b = a'(ax) = a-1b

= (¢ 'a)x = a b (By Associative Property)



