Leg o

—— pm— 3~ W m wm

AP S P L o - ' ) ‘
P ,‘w&rﬁﬂ:ﬁin&kﬁumadTWmmmfm mm:gma{‘m:uz;mm‘

L menpgssd) wnima(l el gy wall
. i arhr w’l’wﬂbkq (m ) ni'e 'ﬁlMM

St ymiky engleeT %Wﬁw- I g wtie Do dmdhﬂqqulmﬁmhmmnnd:
' TGS rrn&mb wignss Baliso i 93 g tepinh ot ey womes Ygeciiféenc seu
. m# amsimes oedioph dmanh Lafics v MBI wa i sidiesblinarsanolr s 1l ngizsQl
- ety gubmll o) smauiems eivgng o asyrisd ST salstiel i Sanwriin moftymn oy

_ ’mr!m a :‘h&m -ma”wﬂu rmm-n 4t it nelubom To, ey wos heswisd oy notsaolnd .
: ‘d!ﬂfumsl,mmnhabamulm
sl 5% SO siadly ‘sgnertors. or bae

- . eOHAOWYSA X
-',' o rmmafn szl nsinn’) .MF’}

dsol Huovi 3 bk U
' st mﬂ“ AW

, slio? sgeaf sV s anstv
¥ ol dneinngeed) wallSsl Y smea bue

.

. el hoed A2SV AT
A 504 B0 rio‘.a.s.
mﬂnﬁsbkﬁmsmlgﬂ
..mgmmﬁméh@mwﬁumﬂ Sa
,,ammwm £
it EBMWHEEW
b it i i | ot g

") 11 '_ lmnnﬁ [ﬁrﬂwﬁm‘f haﬁf}
. , - ., '-'- "E‘_JU' _ | - mn‘&]ﬂﬂ ..f.
. N sorgs-aio L
":»é. - ' i mlqg(q £ §
S - - wie . ”\
N ox - _ $ . l h:
l - f . ROVIGASH QHTeTODUR 8.2
niaiwds!a"ﬁ}!!' wqj;m&m« T vt ‘mnieal) vid2 D sl
‘!W",’f mnﬁknmm@ il [ SasgtloW ﬁ’ﬂnﬁmﬁ gz
,, mt‘ii)ﬁﬁm&k@mﬂ ﬂmﬁ ¥ dopocf ‘
i III'H ml:xD Mﬂtﬂ"{muhu@i’nww ‘hsfuﬂmﬁ"
ﬁ..
., h‘ - * -
R , -*.‘a%::: ' N
‘ . RS o4 T TR
[, — T
§ 3

; wuwm%.lm'mm ;

. W

-



UNIT II






A e O T e T T eS|
LESSON

4

PROGRAMMING LANGUAGES
—

CONTENTS
4.0 Aims and Objectives

4.1  Introduction

42 Assembly Language
42.1  Comparison of Assembly and High Level Languages
4.2.2  Kinds of Processors

43 Assembler

4.4  Subroutine

45  Input/Output Programming
4.5.1  Interrupt Initiated Input/Output
4.5.2  Interrupt driven I/O Mechanism
453  Polling

46  LetusSum up

47  Keywords

4.8 Questions for Discussion

4.9  Suggested Readings

4.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

®  Explain assembler
® Identify assembly language
®  Define subroutines

®  Discuss input/output programming

4.1 INTRODUCTION

Unlike the other programming languages catalogued here, assembly language is not a single language,
but rather a group of languages. Each processor family (and sometimes individual processors within a




56 Introduction to Computer Architecture M.S. University - D.D.C.E.

processor family) has its own assembly language. Nevertheless, assembly language is the most powerful
computer programming language available, and it gives programmers the insight required to write
effective code in high-level languages.

In contrast to high level languages, data structures and program structures in assembly language are
created by directly implementing them on the underlying hardware. So, instead of cataloguing the data
structures and program structures that can be built (in assembly language you can build any structures
you so desire, including new structures nobody else has ever created), we will compare and contrast
the hardware capabilities of various processor families.

4.2 ASSEMBLY LANGUAGE

A programming language that is once detached from a computer's machine language. Machine
languages consist completely of numbers and are almost impossible for humans to read and write.
Assembly languages have the same structure and set of commands as machine languages, but they
enable a programmer to use names instead of numbers.

Every type of CPU has its own machine language and assembly language, so an assembly language
program written for one type of CPU won't run on another. In the early days of programming, all
programs were written in assembly language. Currently, most programs are written in a high-level
language such as FORTRAN or C. Programmers still use assembly language when speed is essential or
when they need to execute an operation that isn't possible in a high-level language.

SR R

R e
High-Level Language

i : st
——
T i T i
Hardware

The oldest non-machine language, permit for a more human readable method of writing programs
than writing in binary bit patterns (or even hexadecimal patterns). Assembly language is the most basic
programming language available for any processor. With assembly language, a programmer works
only with operations implemented directly on the physical CPU. Assembly language lacks high-level
amenities such as variables and functions, and it is not portable between various families of processors.
Although the numbers of the above program make perfect sense to a computer, they are about as clear
as mud to a human. Who would have guessed that they put a dollar sign on the screen? Clearly,
entering numbers by hand is a lousy way to write a program.

Assembler languages engage a unique place in the computing world. Since most assembler-language
statements are symbolic of individual machine-language instructions, the assembler-language
programmer has the full power of the computer at his disposal in a way that users of other languages



M.S. University - D.D.C.E. Programming Languages 57

do not. Because of the direct relationship between assembler language and machine language, assembler
language is used when high competence of programs is needed, and especially in areas of application
that are so new and amorphous that existing program-oriented languages are ill-suited for describing
the procedures to be followed.

Availability

Assemblers are obtainable for just about every processor ever made. Native assemblers produce object
code on the same hardware that the object code will run on. Cross assemblers produce object code on
different hardware that the object code will run on.

Structure
Format: free form or column (depends on the assembly language)

Nature: procedural language with one to one correspondence among language mnemonics and
executable machine instructions.

4.2.1 Comparison of Assembly and High Level Languages

Assembly languages are close to a one to one correspondence between symbolic instructions and
executable machine codes. Assembly languages also comprise directives to the assembler, directives to
the linker, directives for organizing data space, and macros. Macros can be used to unite several
assembly language instructions into a high level language-like construct (as well as other purposes).
There are cases where a symbolic instruction is translated into more than one machine instruction. But
in general, symbolic assembly language instructions correspond to individual executable machine
instructions.

High level languages are abstract. Typically a single high level instruction is interpreted into several
(sometimes dozens or in rare cases even hundreds) executable machine language instructions. Some
early high level languages had a close correspondence between high level instructions and machine
language instructions. For example, most of the early COBOL instructions translated into a very
obvious and small set of machine instructions. The trend over time has been for high level languages to
increase in abstraction. Modern object oriented programming languages are highly abstract (although,
interestingly, some key object oriented programming constructs do translate into a very compact set of
machine instructions).

Assembly language is much harder to program than high level languages. The programmer must pay
consideration to far more detail and must have an intimate knowledge of the processor in use. But
high quality hand crafted assembly language programs can run much faster and use much less memory
and other resources than a similar program written in a high level language. Speed increases of two to
20 times faster are fairly common, and increases of hundreds of times faster are rarely possible.
Assembly language programming also gives direct access to key machine features essential for
implementing certain kinds of low level routines, such as an operating system kernel or microkernel,
device drivers, and machine control.

High level programming languages are much easier for less skilled programmers to work in and for
semi-technical managers to manage. And high level languages allow faster development times than
work in assembly language, even with highly skilled programmers. Development time boost of 10 to
100 times faster are fairly common. Programs written in high level languages (especially object
oriented programming languages) are much easier and less expensive to maintain than similar



58 Introduction to Computer Architecture M.S. University - D.D.C.E.

programs written in assembly language (and for a successful software project, the vast majority of the
work and expense is in maintenance, not initial development).

4.2.2 Kinds of Processors
Processors can broadly be divided into the categories of: CISC, RISC, hybrid, and special purpose.

Complex Instruction Set Computers (CISC) has a large instruction set, with hardware support for a wide
selection of operations. In scientific, engineering, and mathematical operations with hand coded
assembly language (and some business applications with hand coded assembly language), CISC
processors typically perform the most work in the shortest time.

Reduced Instruction Set Computers (RISC) has a small, dense instruction set. In most business
applications and in programs created by compilers from high level language source, RISC processors
usually perform the most work in the shortest time.

Hybrid processors are some mixture of CISC and RISC approaches, attempting to balance the
advantages of each approach.

Special purpose processors are optimized to execute specific functions. Digital signal processors,
graphics chips, and various kinds of co-processors are the most common kinds of special purpose
processors.

4.3 ASSEMBLER

An assembler is a program that obtains basic computer instructions and converts them into a pattern
of bits that the computer's processor can use to perform its basic operations. A number of people call
these instructions assembler language and others use the term assembly language.

Here's How it Works

® Most computers come with a particular set of very basic instructions that correspond to the basic
machine operations that the computer can perform.

® The programmer can write a program using a sequence of these assembler instructions.

®  This sequence of assembler instructions, recognized as the source code or source program, is then
specified to the assembler program when that program is started.

® The assembler program takes each program statement in the source program and creates a
corresponding bit stream or pattern (a series of 0's and 1's of a given length).

® The output of the assembler program is called the object code or object program relative to the
input source program. The sequence of 0's and 1's that comprise the object program is sometimes
called machine code.

®  The object program can then be run (or executed) every time desired.

In the earliest computers, programmers actually wrote programs in machine code, but assembler
languages or instruction sets were soon developed to speed up programming. Nowadays, assembler
programming is used only where very efficient control over processor operations is needed. It entails
knowledge of a particular computer's instruction set, however. Historically, most programs have been
written in "higher-level" languages such as COBOL, FORTRAN, PL/I, and C. These languages are



M.S. University - D.D.C.E. i Programming Languages 59

easier to learn and quicker to write programs with than assembler language. The program that
processes the source code written in these languages is called a compiler. Like the assembler, a compiler
takes higher-level language statements and reduces them to machine code.

A newer idea in program training and portability is the concept of a virtual machine. For example,
using the Java programming language, language statements are compiled into a generic form of
machine language known as bytecode that can be run by a virtual machine, a kind of theoretical
machine that approximates most computer operations. The bytecode can then be sent to any
computer platform that has previously downloaded or built in the Java virtual machine. The virtual
machine is aware of the specific instruction lengths and other particularities of the platform and
ensures that the Java bytecode can run.

4.4 SUBROUTINE

A subroutine is a self-contained sequence of instructions that does away the computational tasks. A
subroutine is employed a number of times during the execution of a program. Wherever a subroutine
is called to perform its function, a branch is executed to the beginning of the subroutine to start
executing its set of instructions. After the subroutine has been executed, a branch is reverted to the
main program. Various names are assigned to the instruction that transfers program control to a
subroutine. For example, call subroutine, jump to subroutine, branch to subroutine do. A call
subroutine instruction comprises of an operation code with an address that specifies the beginning of
the subroutine. As such two operations are included for execution of instruction (1) storage of the
address of next instruction available in the program counter (the return address) in a temporary
location so that the subroutine knows where to return, and (2) transfer of control to the beginning of
the subroutine. The last instruction of every subroutine, referred as return from subroutine, causes
transfer of returns address from the temporary location into the program counter. Consequently,
program control is transferred to the instruction whose address was originally stored in the temporary
location.

The temporary location for storing the return address differs from one computer to another. Some
store it in a fixed location in memory, some store it in the first memory location of the subroutine,
some store it in a processor rights and some store it in a memory stack. However, the best way is to
store the return address in a memory stack. This is advantageous when successive subroutines are
called because the sequential return addresses can be pushed into the stack. The return from subroutine
instruction causes the stack to pop and the contents of the top of the stack are transferred to the
program counter.

When a subroutine stack is employed, all return addresses are automatically stored by the hardware in
one unit. This does away the problem of recalling where the return address was stored.

4.5 INPUT/OUTPUT PROGRAMMING

Programmed Input/Output are useful I/O method for computers where hardware costs need to be
minimized. The Input or Output operation in such cases may involve:

® Transfer of data from I/O device to the CPU registers.

®  Transfer of data from CPU registers to memory.



60 Introduction to Computer Architecture M.S. University - D.D.C.E.

®  In addition, in a programmed I/O method the responsibility of CPU is to constantly check the status
of the I/O device to check whether it has become free (in case output is desired) or it has finished
inputting the current series of data (in case input is going on). Thus, Programmed I/O is a very time
consuming method where CPU wastes lot of time for checking and verifying the status of an I/O
device. Let us now try to focus how this Inuit-Output is performed. Figure 4.1 gives the block diagram
of transferring a Block of data word by word using programmed I/O technique.

CPU issues a read or write iy
command to I/O module

L

CPU issues a read or write command to I/O module l

1/O Module informs about its

—1 status to CPU ==

/O Module informs about its status to CPU ‘

e b

l CPU reads words from I/O module

and writes it to memory or CPU
reads words from memory and
writes it to I/O Module (for write
CPU reads words from I/O module and writes it to operations
memory or CPU reads words from memory and writes
it to I/o Module (for write operations

y

Is block
transfer
complete?

Yes
Yes ' l

CPU issues a command to DMA for reading block

'

Is block
transfer
complete?

CPU reads the status of DMA module s
Execute next Execute next
Instruction Instruction

Figure 4.1: CPU Performs the Next Instruction

I/0 Instruction: To carry out Input/Output CPU issues I/O related instructions. These instructions
consist of two components:

®  The address of the Input/Output device specifying the I/O device and I/O module; and
e  An Input/Output command.



M.S. University - D.D.C.E. Programming Languages 61

There are four types of I/O commands which can be classified as:
(2) Control (b) Test (c) Read (d) Write

Control commands are device specific and are used to control the specific instructions to the device.
E.g. a magnetic tape requires rewinding or moving forward by a block. Test commands checks the
status such as if a device is ready or not or is in error condition. The read command is used for input of
data from input device and write command is used for output of data to output device.

The other part of I/O instruction is the address of the I/O device, In systems with programmed 1I/O
the I/O module, the main memory and the CPU normally share the system bus. Thus each I/O
module should interpret the address lines to determine if the command is for itself. Or in other
wordsHow does CPU specifies which device to access? There are two methods of doing so. These are
called memory mapped I/0O and I/O- mapped 1/0.

If we use the single address space for memory locations and I/O devices, i.e. the CPU treats the status
and data registers of I/O module as memory locations. Then memory and I/O devices can be accessed
using the same instructions. This is referred to as memory mapped I/O. For a memory mapped I/0
only a sinlge READ and a single WRITE line are needed for memory or I/O module read or write
operations. These lines are activated by CPU for either memory access or I/O device access. Figure 4.2
shows the memory mapped 1/O system structure. This scheme is used in Motorola 68000,

Data

READ Address bus
WRITE

I Main Memory o M(_)dulel

o

I/O Device

1/0 Device

Figure 4.2: Structure of Memory Mapped 1/0

In I/O-mapped I/O the I/O devices and memory are addressed separately (Refer Figure 4.3). There are
separate control lines for memory and I/O device read or write operations, thus, a memory reference
instruction do not affect an I/O device. Here separate Input/Output Instructions are needed which
cause data transfer between addressed I/O module and CPU. This structure is used in Intel 8085 and
8086 series.



62 Introduction to Computer Architecture M.S. University - D.D.C.E.

2 - ——I

2 G —
e Address bus
T ° o ress bu
Memc.)ry read /O Read
line
e Y
Memory Write /O Write
Line
Main memory CPU /O /O Module2
/ l \ ®

Figure 4.3: Structure of I/O Mapped I/O or Isolated I/O Scheme

Please note the different of requirements as in the case of memory mapped I/O the READ instructions
may bring data to or from memory or I/O module, while in I/O-mapped I/O we need to have
separate instruction for Input/Qutput.

4.5.1 Interrupt Initiated Input/Output

What are the basic drawback of programmed I/O? The speed of I/O devices is much slower in
comparison to that of CPU, and because the CPU has to repeatedly check whether a device is free; or
wait till the completion of I/O, therefore, the performance of CPU in programmed I/O goes down
tremendously. What is the solution? What about CPU going back to do other useful work without
waiting for the I/O device is ready for I/O? A well designed mechanism was conceived for this which
is referred to as Interrupt driven I/O. In this mechanism, Provisions of interruption of CPU work,
once I/O device has finished the I/O or when it is ready for the I/O, has been provided.

4.5.2 Interrupt driven I/O Mechanism

After issuing a READ command (for input the CPU goes off to do other use ful work (it may be
execution of a different program) while I/O module proceeds for reading of data from associated
device. At the completion of an instruction cycle the CPU checks for interrupts (which will occur
when data is in data register of I/O module and it now needs CPU’s attention).

Now CPU saves the important register and processor status of the executing program in a stack and request
I/O device to provide its data which is placed on data bus by I/O device, After taking t he required action
with the data, the CPU can go back to the program it was executing before the interrupt.

Interrupt: The term interrupt loosely is used for any execeptional event that causes temporary transfer
of control of CPU from one program to the other which is causing the interrupt. Interrupts are
primarily issued on:

e Initiation of Input/Output operation
® Completion of an Input/Output operation

® Occurrence of hardware of software errors.



M.S. University - D.D.C.E. Programming Languages 63

Interrupts can be generated by various sources internal or ext external to the CPU. An interrupt
generated internally by CPU is sometimes termed as Traps. The traps are normally result of
programming errors such as division by zero while execution of a program.

The two key issues in Interrupt driven Input/Output are:
® To determine the device which has issued an interrupt
® In case of occurrence of multiple interrupts which one to be processed first.

There are several solution to these problems. The simplest of them is to provide multiple interrupt
lines which will result in immediate recognition of the interrupting device. The priorities can be
assigned to various interrupts and the interrupt with highest priority should be selected for service in
case multiple interrupt occurs. But providing multiple interrupt lines is an impractical approach
because only a few lines of the system bus can be devoted for the interrupt. Other methods for this are
software poll, daisy chaining and bus arbitration.

4.5.3 Polling

In this scheme on occurrence of an interrupt, CPU starts executing a software routine termed as
interrupt service program or routine which poll to each /0 module to determine which I/O module
has caused the interrupt. This may be achieved by reading the status register of the I/O modules. The
priority here can be implemented easily by defining the spooling sequence, since the device polled first
will have higher priority. Please note that after identifying the device the next set of instructions to be
executed will be the device service routines of the device, resulting in the desired input or output.

As far as daisy chaining is concerned, we have one Interrupt Acknowledge line, which is chained
through various interrupt devices. There is just one Interrupt Request line. On receiving an Interrupt
Request the Interrupt Acknowledge line is activated which in turn passes this signal device by device.
The first device which has made the interrupt request thus graphs thus graphs the signal and responds
by putting a word which is normally an address of interrupt servicing program of a unique identifier
on the data lines. This word is also referred to as interrupt vector. This address or identifier in turn is
used for selecting an appropriate interrupt-servicing program. The daisy chaining has an in-built
priority scheme which is determined by the sequence of devices on interrupt acknowledge line.

In bus arbitration technique, the I/O module first first need to control the bus and only after that can
request for an interrupt. In this scheme, since only one of the modules can control the bus therefore,
only one request can be made at a time. The interrupt request is acknowledged by the CPU on
response of which I/O module places the interrupt vector on the data lines.

Check Your Progress

State whether the following statements are true or false:

1. Assembly languages have the same structure and set of commands as machine languages,
but they enable a programmer to use names instead of numbers.

2. Assemblers are not available for just about every processor ever made.

3. Macros can be used to combine several assembly language instructions into a high level
language-like construct.

4. High level programming languages are not easier for less skilled programmers to work in
and for semi-technical managers to supervise.

5. Asubroutine is a self-contained sequence of instructions that does away the computational tasks.




64 Introduction to Computer Architecture M.S. University - D.D.C.E.

4.6 LET US SUM UP

Assembler languages occupy a unique place in the computing world. Since most assembler-language
statements are symbolic of individual machine-language instructions, the assembler-language
programmer has the full power of the computer at his disposal in a way that users of other languages
do not. High level languages are abstract. Typically a single high level instruction is translated into
several (sometimes dozens or in rare cases even hundreds) executable machine language instructions.
Some early high level languages had a close correspondence between high level instructions and
machine language instructions. An assembler is a program that takes basic computer instructions and
converts them into a pattern of bits that the computer's processor can use to perform its basic
operations. Some people call these instructions assembler language and others use the term assembly
language. A subroutine is a self-contained sequence of instructions that does away the computational
tasks. A subroutine is employed a number of times during the execution of a program. Wherever a
subroutine is called to perform its function, a branch is executed to the beginning of the subroutine to
start executing its set of instructions. After the subroutine has been executed, a branch is reverted to
the main program. Programmed Input/output are useful I/O method for computers where hardware
costs need to be minimized.

4.7 KEYWORDS

Complex Instruction Set Computers (CISC): It has a large instruction set, with hardware support for a
wide variety of operations.

Reduced Instruction Set Computers (RISC): It has a small, compact instruction set.

Hybrid: These processors are some combination of CISC and RISC approaches, attempting to balance
the advantages of each approach.

Special Purpose: These processors are optimized to perform specific functions.

4.8 QUESTIONS FOR DISCUSSION

1. What is Assembly language?

2. What is the difference between Assembly Language and High Level Language?
3. Explain subroutines.
4

Explain interrupt initiated input/output.

Check Your Progress: Model Answers

1. True
2. False
3. True
4. False
6. True




M.S. University - D.D.C.E. Programming Languages 65

4.9 SUGGESTED READINGS

Sajjan G. Shiva; Computer Design and Architecture; Marcel Dekker

Silvia Melitta Mueller, Wolfgang J. Paul; Computer Architecture; Springer
Joseph D. Dumas II; Computer Architecture; CRC Press

Nicholas P. Carter; Schaum’s Outline of Computer Architecture; Mc. Graw-Hill Professional



LESSON
S

REGISTER TRANSFER LANGUAGE

CONTENTS
5.0 Aims and Objectives

5.1  Introduction

5.2 Types of Register

5.3  Register Transfer

5.4  Data Transfer and Manipulation
54.1  Data Transfer Instructions
5.4.2  Data Manipulation Instructions
54.3  Program Control

5.5  Conditional Branch Instructions

56  Program Interrupt

5.7 Microprocessor Organisation of 8086

5.8 Letus Sum up

59  Keywords

5.10  Questions for Discussion

5.11  Suggested Readings

5.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Describe register transfer
®  Explain data transfer and manipulation
® Discuss program control

® Explain microprocessor organization of 8086

5.1 INTRODUCTION

A register is a group of Flip Flops, i.e., a register is also a storing device but its capability of storing
data is more than that of a single Flip Flop.- A register can store as any bits as the number of Flip Flops



M.S. University - D.D.C.E. Register Transfer Language 67

it contains. So an 'n' bit register must be capable of storing 'n' number of bits, i.e., it has 'n' number of
Flip Flops. It can have logic too so it has processing capability too.

A digital system is an interconnection of digital hardware modules that accomplish a specific
information-processing task. Digital system design invariably uses a modular approach. The modules
are constructed from such digital components such as registers, decoders, arithmetic elements and
control logic. The various modules are interconnected with common data and control paths to form a
digital computer system.

Digital modules are best defined by registers they contain and the operations that are performed on the data
stored in them. The operations executed on data stored in registers are called Microoperations. A
microoperation is an elementary operation performed on the information stored in one or more registers.

The internal hardware organization of a digital computer is best defined by specifying:

1. The set of registers it contains and their function.

2. The sequence of microoperations performed on the binary information stored in the registers.
3. The control that initiates the sequence of microoperations.

The term "register transfer" implies the availability and hardware logic circuits that can perform a
stated microoperation and transfer the result of the operation to the same or another register. A
register transfer language is a system for expressing in symbolic form the microoperation tool for
describing the internal organization and digital module. It is a convenient tool for describing the
internal organization of digital computers in concise and precise manner. It can also be used to
facilitate the design process of digital systems.

5.2 TYPES OF REGISTER

®  Shift Registers: A register capable of shifting its binary information either to the right or to the left
is called a shift register,

®  Serial Shift Register: A serial register is one that shifts the information stored in it, one by one, i.e.,
one bit after another. The shift register in simplest form can be shown as follows (i.e., containing
only Flip Flops, in cascade and number of logic gates.)

_él"_D Q D Q D Q SO

(Serial Input) : (Serial Output)

CP

Figure 5.1: Serial Shift Register
The bubble before the CP input shows that triggering of Flip Flops occurs at falling edge of CP.

The above type of Shift Register provides serial transfer.



68 Introduction to Computer Architecture M.S. University - D.D.C.E.

®  Parallel Shift Register: A parallel shift register shifts the bits in a parallel mode. In parallel mode,
information present at the input can be transferred to the output, simultaneously, during clock
period.

Simplest example of 4-bit Shift Register is:

I D QA
clock O >
I D (@) oo
P
I, D s | g o 9
P>
I D A—4A
>
Clear T

Figure 5.2: 4-bit Parallel Shift Register

So it is clear that in serial transfer the information passes one bit at a time and in parallel transfer,
all the bits present at the input appear at the output on the application of clock pulses.

®  Bidirectional Shift Register: A shift register that can shift the information in both ways, i.e., from
right to left and from left to right, by providing a control signal. The circuit diagram and working
of the circuit is shown below:



M.S. University - D.D.C.E. Register Transfer Language 69

Parallel Outputs
R

A2
Q
D
S, —p  4x1 4x1 4x1 P 4x1
MUX MUX MUX MUX
S, g 2-1-9 M 3210 > 3210 » 3210

4 A
J‘TLl__TH‘ - trt R
o— L0
Shift right Shift left
signal signal

Figure 5.3: Bidirectional Parallel Shift Register
Table 5.1: Truth Table of the Adjoining Figure

‘Control Register
Signals Operation
S, 5

0 0 | No Change
0 1 | Shift left

1 0 | Shift right

1 1 Parallel load

CP: Clock Pulse Signal

Clear: This signal clears all the Flip Flops when it is '0' (Note the "bubble indication")
The diagram shows Bidirectional Shift Register with parallel load. The descriptions are as follows:
1. A clear control to clear the register to 0.
2. A CP input for clock pulses to synchronize all operations.
- 3. A shift right control to enable the shift right operation.
4

A shift left control to enable shift left operation.



70 Introduction to Computer Architecture M.S. University - D.D.C.E.

5. A parallel load control to enable parallel transfer and the n - input lines associated with the
parallel transfer.

6. Control state that renders the information of register left unchanged even though clock pulses are
continuously applied.

$1Sg = 00: Makes register to maintain its value as it was earlier.
S1Sq = 10: Enables shift left operation.

$1Sp = 00: Information at input lines is transferred to the output.
$1Sg = 00: Means selection of input at pin number 0 of MUX.
S1Sg = 10: Means selection of input at pin number 1 of MUX.

$1Sp = 00: Means selection of input at pin number 2 of MUX.

5.3 REGISTER TRANSFER

Computer registers are designated by capital letters to denote the function of the register. For example,
the register that holds an address for the memory unit is usually called 2 memory address register and
is designated by the name MAR. Other designations for registers are PC (for program counter), IR (for
instruction register) and RI (for processor register). The individual flip-flops in an n-bit register are
numbered in sequence from 0 through n - 1, starting from 0 in the rightmost position and increasing
the numbers toward the left.

A 16-bit register is partitioned into two parts. Bits O through 7 are assigned the symbol L (for low
byte) and bits 8 through 15 are assigned the symbol H (for high byte). The name of the 16-bit register
is PC. The symbol PC(L) refers to the low order byte and PC(H) to the high order byte. The
statement Ry «— Rq denotes a transfer of the content of register Ry into register Ry. The content of the

source register Ry does not change after the transfer. Normally, we want the transfer to occur only

under a predetermined control condition. This can be shown by means of an "if then" statement.

If P=1 then RZ & Rl

where P is a control signal generated in the control section. It is sometimes convenient to separate the
control variables from the register transfer operation by specifying a control function. A control
function is a Boolean variable that is equal to 1 or 0. The control function is included in the statement
as follows: '

PB; R2 e R]
Bus System

A typical digital computer has many registers and paths must be provided to transfer information
from one register to another. The number of wires will be excessive if separate lines are used between
each register and all other registers in the system. A more efficient scheme for transferring information
between registers in a multiple-register configuration is a common bus system. A bus structure consists
of a set of common lines, one for each bit of a register, through which binary information is



M.S. University - D.D.C.E. Register Transfer Language 71

transferred one at a time. Control signals determine which register is selected by the bus during each
particular register transfer.

One way of constructing a common bus system is with multiplexers. The multiplexers select the source
register whose binary information is then placed on the bus. In general, a bus system will multiplex
registers of a bit each to produce an n-line common bus. The number of multiplexers needed to construct
the bus is equal to n, the number of bits in each register. The size of each multiplexer must be K x 1 since it
multiplexes k data lines. A bus system can be constructed with 'three-state gates' instead of multiplexers. A
three-state gate is a digital circuit that exhibits three states. Two of the states are signals equivalent to logic 1
and 0 as in a conventional gate. The third state is a high impedance state. The high-impedance state behaves
like an open circuit, which means that the output is disconnected and does not have a logic significance.
The one most commonly used in the design of a bus system is the buffer gate.

The graphic symbol of a three state buffer gate is shown in Figure 5.4. The control input determines
the output. When the control input is equal to 1, the output is enabled and the gate behaves like any
conventional buffer, with the output equal to the normal input. When the control input is O, the
output is disabled and it goes to high-impedance state, regardless of the value in the normal input.

Normal input A Output Y = AifC=1

High impedance if C=0

Control input C

Figure 5.4: Graphic Symbols for Three-state Buffer

5.4 DATA TRANSFER AND MANIPULATION

Computers are a boon to mankind when its come to carrying out various computational tasks, for
they provide an extensive set of instructions to give the user the flexibility to perform these tasks. The
basic difference between the instruction set of various computers is the way the operands are
determined from the address and mode fields. But there are certain basic operations that are included
in the instructions set every computer. Such a basic set of operation available in a typical computer can
be classified in the three categories:

1. Data transfer instructions.
2. Data manipulation instructions.

3. Program control instructions.

5.4.1 Data Transfer Instructions

As the name suggests data transfer instructions are meant for transfer for data from one location to
another, keeping the binary information intact. The useful transfer are between memory and
processing registers, between processor registers and input or output, and between the processor
registers themselves. Each instruction is accompanied with the mnemonic symbol which is different in
different computers for the same instruction name. Table 5.2 gives a list of eight data transfer
instructions used in many computers. :



72 Introduction to Computer Architecture M.S. University - D.D.C.E.

The “load” instruction represents a transfer from memory to a processor register, usually an
“accumulator” where as the store instruction designates a transfer from a processor register into
memory. The move instruction is employed in computers with multiple CPU registers to designate a
transfer from one register to another. It has also been used for data transfers between CPU registers
and memory or between two memory words. Swapping of information between to registers of a
register and memory word its accomplished by using the exchange instruction. The input and output
instructions cause transfer of data among processor registers and input or output terminals. The push
and pop instructions take care of transfer of data between processor registers and a memory stack.

To distinguish with between the various address modes, the mnemonic symbol are modified by
assembly language conventions. For instance, the mnemonic for load immediate becomes LDIL. Other
assembly language conventions use a special character to designate the addressing mode. For example,
the immediate mode is recognized from a pound sign # placed before the operand. What ever may be
the case, the important thing is to realize that each instruction can occur with a variety of addressing
modes.

Table 5.2: Typical Data Transfer Instructions

Name Mnemonic
Load LD

Store ST

Move MOV
Exchange XCH
Input IN

Output AUT

Push PUSH
POP POP

It is imperative to be familiar with the addressing mode used, as well as the type of instructions
available in the computer so as to writer assembly language programs for the computer.
5.4.2 Data Manipulation Instructions

Data manipulation instructions are those that perform operations on data and are a help in
computation done on computers provide the computational capabilities for the computer.

1. Arithmetic instructions.

2. Logical and bit manipulation instructions.
3. Shift instructions.

Avrithmetic Instructions

The four basic arithmetic operations are addition, subtraction, multiplication, and division. Most of
the computers carry instructions for all four operations. For computers which have only addition and
possibly subtraction instructions, the other two operations i.e. multiplication and division must be
generated by means of software subroutines. These four basic arithmetic operations are adequate for
providing solutions to scientific problems when expressed in terms of numerical analysis methods.



M.S. University - D.D.C.E. Register Transfer Language 73

Table 5.3 shows a list of typical arithmetic instructions. The increment instruction adds 1 to the value
stored in a register or memory word. A unique feature of increment operation when executed in processor
register is that a binary number all I’s on incrementing produces a result of all O’s. Similarly in case of
decrement instruction a number of all 0’s, when decremented produces a number with all 1’s.

The four kind of instruction may be available for different types of data. The data type assumed to be
in processor registers during the execution of these arithmetic operations is included in The definition
of the operation code include the data type that is in processor registers during the execution these
arithmetic operations. An arithmetic instruction may specify fixed-point or floating-point data, binary
or decimal data, single-precision or double-precision data.

Table 5.3: Typical Arithmetic Instructions

Name Mnemonic
Increment INC
Decrement DEC

Add ADD
Subtract SUB
Multiply MUL
Divide DIV

Add with carry ADDC
Subtract with borrow SUBB
Negate (2’s complement) NEG

The instruction “add with carry” performs the addition on two operands plus the value of the carry
from the previous computation. Similarly, the “subtract with borrow” instruction subtracts two words
and a borrow which may have resulted from a previous subtract operation. The negate instruction
forms the 2’s complement of a number, effectively reversing the sign of an integer when represented in
the signed-2’s complement form.

Logical and Bit Manipulation Instructions

Logical instructions are useful for performing binary operations on strings of bits stored in registers.
These instructions consider each bit of the operand individually and treat it as a Boolean variable.
Their proper application facilitates changing in bit values, clearing or inserting new bit values into
operands stored in registers or memory words.

Some typical logical and bit manipulation instructions are listed in Table 5.4. The clear instruction
causes the specified operand to be replaced by 0’s. The complement instruction produces the I’s
complement by inverting all the bits of the operand. The AND, OR, and XOR instructions produce
the corresponding logical operations on each bit of the operands separately. Although they perform
Boolean operations, when used in computer instructions, the logical instructions should be considered
as performing bit manipulation operations. There are three bit manipulation operations possible: a
selected bit can be cleared to 0, or can be set to 1, or can be complemented. The three logical
instructions are usually applied to do just that. \



74 Introducrion to Computer Architecture

M.S. University - D.D.C.E.

Table 5.4: Typical Logical and Bit Manipulation Instructions

Name Mnemonic
Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt ElL
Disable interrupt DI

Individual bits such as a carry can be cleared, set, or complemented- with appropriate instructions.
Another example that can be cited is of a flip-flop that controls the interrupt facility and is either
enabled or disabled by means of bit manipulation instructions.

Shift Instructions

Shift instructions are used to shift the content of an operand from left to right our vice-a-versa. The bit
shifted in at the end of the word determines the type of shift used. Any of the logical shifts, arithmetic
shifts, or rotate-type operations can be specified by shift instruction. In any case the shift may be to
the right or to the left.

Four types of shift instructions are listed below in Table 5.5. The logical shift inserts O to the end bit
position. The end position is the leftmost bit for shift right and the rightmost bit position for the shift
left. Arithmetic shifts are used in conformity with the rules for signed-2’s complement numbers. As a
rule the arithmetic shift-right instruction must preserve the sign bit in the leftmost position. The sign
bit is shifted to the right together with the rest of the number, but the sign bit itself remains unaltered.
This is a shiftright operation wherein the end bit remains unchanged the same. The arithmetic
shift-left instruction inserts O to the end position and is identical to the logical shift-left instruction.
For this reason many computers do not provide a distinct arithmetic shift-left instruction when the
logical shift-left instruction is already available.

A circular shift is produced by the rotate instructions. Unlike as a logical shift where bit shifted out at one
end of the word are lost, here bits are circulated back into the other end. The rotate through carry
instruction treats a carry bit as an extension of the register whose word is being rotated. Thus a rotate-left
through carry instruction transfers the carry bit into the rightmost bit position of the register, transfers the
leftmost bit position into the carry, and at the same time, shifts the entire register to the left.

Table 5.5: Typical Shift Instructions

Name Mnemonic
Logical shift right SHR
Logical shift left SHL

Contd...




M.S. University - D.D.C.E. Register Transfer Language 75

Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL
Rotate right through carry RORC
Rotaﬁe left through carry ROLC

5.4.3 Program Control

Memory locations are storage house for instructions. When processed in the CPU, the instructions are
fetched from consecutive memory locations and implemented. Each time an instruction is fetched
from memory, the program counter is simultaneously incremented with the address of the next
instruction in sequence. Once a data transfer or data manipulation instruction is executed, control
returns to the fetch cycle with he program counter containing the address of the instruction next in
sequence. In case of a program control type of instruction execution of instruction may change the
address value in the program counter and cause the flow of control to be altered.

The conditions for altering the content of the program counter, are specified by program control
instruction, and the conditions for data-processing operations are specify by data transfer and
manipulation instructions. As a result of execution of a program control instruction, a change in value
of program counter occurs this causes a break in the sequence of instruction execution. This is an
important feature in digital computers, as it provides control over the flow of program execution and a
capability for branching to different program segments. Some typical program control instructions are
listed in Table 5.6. The branch and jump instructions are identical in their use but sometimes they are
used to denote different addressing modes. The branch is usually a one-address instruction.

Branch and jump instructions may be conditional or unconditional. An unconditional branch
instruction, as a name denotes, causes a branch to the specified address without any conditions. On the
contrary the conditional branch instruction specifies a condition such as branch if positive or branch if
zero. If the condition is met, the program counter is loaded with the branch address and the next
instruction is taken from this address. If the condition is not met, the program counter remains
unaltered and the next instruction is taken from the next location in sequence.

Table 5.6: Typical Program Control Instructions

Name Mnemonic
Branch BR

Jump JMP

Skip SKP

Call CALL
Return ' RETE
Compare (by subtraction) CMP

Test (by ANDing) TST




76 Introduction to Computer Architecture ML.S. University - D.D.C.E.

The skip instruction does not require an address field and is, therefore, a zero-address instruction. A
conditional skip instruction will skip the next instruction if the condition is met. This is achieved by
incrementing the program counter during the execute phase in addition to its being incremented
during the fetch phase. If the condition is not met, control proceeds with the next instruction in
sequence where the programmer inserts an unconditional branch instruction. Thus, a skip-branch pair
of instructions auses a branch if the condition is not met, while a single conditional branch instruction
causes a branch if the condition is met. '

The call and return instructions are used in conjunction with subroutines. The compare instruction
performs a subtraction between two operands, but the result of the operation is not retained.
However, certain status bit conditions are set as a result of the operation. In a similar fashion the test
instruction performs the logical AND of two operands and updates certain status bits without
retaining the result or changing the operands. The status bits of interest are the carry bit, the sign bit, a
zero indication, and an overflow condition.

The four status bits are symbolized by C, S, Z, and V. The bits are set or cleared as a result of an
operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry C8 is 1 .It is cleared to 0 if the carry is 0.
2. Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if the bit is 0.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0’s. It is cleared to 0 otherwise. In
other words, Z = 1 if the output is zero and Z = 0 if the output is not zero.

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is equal to 1, and cleared to 0
otherwise. This is the condition for an overflow when negative numbers are in 2’s complement.
For the 8-bit ALU, V = 1 if the output is greater than +127 or less than -128.

A B
s
i Cy
hG(\ 8-bit ALU
f

Fy-F,

Check for zero output -+

Qutput F

Figure 5.5: Status Register Bits

The status bits can be checked after an ALU operation to determine certain relationships that exist
between the values of A and B. If bit V is set after the addition of two signed numbers, it indicates'an
overflow condition. If Z is set after an exclusive-OR operation, it indicates that A = B. This is so
because x x = 0, and the exclusive-OR of two equal operands gives an all-0’s result which sets the Z bit.



M.S. University - D.D.C.E. Register Transfer Language 77

A single bit in A can be checked to determine if it is 0 or 1 by masking all bits except the bit in
question and then checking the Z status bit. For example, let A = 101x1100, where x is the bit to be

checked. The AND operation of A with B = 00010000 produces a result 000x0000. If x = 0, the Z
status bit is set, but if x = I, the Z bit is cleared since the result is not zero.

5.5 CONDITIONAL BRANCH INSTRUCTIONS

The commonly used branch instructions are listed below in Table 5.7. Each mnemonic is constructed
with the letter B (for branch) and an abbreviation of the condition name. When the opposite condition
state is used, the letter N (for no) is inserted to define the O state. Thus BC is Branch on Carry, and
BNC is Branch on No Carry. If the stated condition is met, the address specified by the instruction
receives program control. If not, control continues with the instruction that follows. The conditional
instructions can be associated also with the jump, skip, call, or return type of program control
instructions. The zero status bit is employed for testing if the result of an ALU operation is equal to
zero or not. The carry bit is employed to check if there is a carry out of the most significant bit
position of the ALU. It is also used in conjunction with the rotate instructions to check the bit shifted
from the end position of a register into the carry position. The sign bit reflects the state of the most
significant bit of the output from the ALU. S = 0 denotes a positive sign and S = 1, a negative sign.
Therefore, a branch on plus checks for a sign bit of 0 and a branch on minus checks for a sign bit of 1.
It is worth noticeable that these two conditional branch instructions can be used to check the value of
the most significant bit whether it represents a sign or not. The overflow bit is used in conjunction
with arithmetic operations done on signed numbers in 2’s complement representation.

Table 5.7: Conditional Branch Instructions

Mnemonic Branch condition Tested condition
BZ Branch if zero Z=1.
BNZ Branch if not zero Z=0
BC Branch if carry C=1
BNC Branch if no carry v Qe
BP Branch if plus S=0
BM Branch if minus S=1
BV Branch if overflow ¥i=1
BNV Branch if no overflow V=0

linsigned compare conditions (4 — B)
BHI Branch if higher il
BHE Branch if higher or equal A>B
BLO Branch if lower A<B
BLOE Branch if Jower or equal A<LB
BE Branch if equal A=
BNE Branch if not equal A#B

Signed compare conditions (4 - B)
BGT Branch if greater than A>B
BGE Branch if greater or equal A>B
BLT Branch if less than A<B
BLE Branch if less or equai A<B
BE Branch if equal A=B
BNE Branch if not equal AN

It has been discussed earlier that the compare instruction performs a subtraction of two operands, say
A - B. The result of the operation is not transferred into a destination register, but the status bits dre
affected. The status register provides Information about the relative magnitude of A and B. Some
computers provide conditional branch instructions that can be applied right after the execution of a



78 Introduction to Computer Architecture M.S. University - D.D.C.E.

compare instruction. The specific conditions to be tested depend on whether the two numbers A and
B are considered to be unsigned or signed numbers.

The largest unsigned number that can be accommodated in 8 bits is 255. The range of signed numbers
is between +127 and -128. The subtraction of two numbers is the same whether they are unsigned or
in signed-2’s complement representation. Let A = 11110000 and B = 00010100. To perform A -B, the
ALU takes the 2’s complement of B and adds it to A.

The compare instruction updates the status bits as shown. C = 1 because there is a carry out of the last
stage. S = I because the leftmost bit is 1. V = 0 because the last two carries are both equal to 1, and Z
= 0 because the result is not equal to 0.

If we assume unsigned numbers, the decimal equivalent of A is 240 and that of B is 20. The subtraction in
decimal is 240-20 = 220. The binary result 11011100 is indeed the equivalent of decimal 220. Since 240 >
20, we have that A > B and A f B. These two relations can also be derived from the fact that status bit C is
equal to I and bit Z is equal to 0. The instructions that will cause a branch after this comparison are BHI
(branch if higher), BHE (branch if higher or equal), and BNE (branch if not equal).

If we assume signed numbers, the decimal equivalent of A is-16. This is because the sign of A is negative and
11110000 is the 2’s complement of 00010000, which is the decimal equivalent of +16. The decimal
equivalent of B is +20. The subtraction in decimal is (-16) - (+20) = -36. The binary result 11011100 (the 2’s
complement of 00100100) is indeed the equivalent of decimal -36. Since (-16) < (+20) we have that A< B
and A ! B. These two relations can also be derived from the fact that status bits S = 1 (negative), V = 0 (no
overflow), and Z = 0 (not zero). The instructions that will cause a branch after this comparison are BLT
(branch if less than), BLE (branch if less or equal), and BNE (branch if not equal).

It should be noted that the instruction BNE and BNZ (branch if not zero) are identical. Similarly, the
two instructions BE (branch if equal) and BZ (branch if zero) are also identical.

5.6 PROGRAM INTERRUPT

Program interrupt can be described as a transfer of program control from a currently running program
to another service program on a request generated externally or internally. After the service program
is executed, the control returns to the original program. '

The interrupt procedure is identical to a subroutine call except for three variations: (1) The interrupt is
usually generated by an internal or external signal rather than from the execution of an instruction (except
for software interrupt); (2) the address of the interrupt service program is determined by the hardware
rather than from the address field of an instruction; and (3) an interrupt procedure usually stores all the
information necessary to define the state of the CPU rather than storing only the program counter.

It is imperative for the CPU to return to the same state that it was when interrupt occurred after the
program interrupted and the service routine has been executed. The state of the CPU at the end of the
execute cycle (when the interrupt is recognized) is determined from:

1. The content of the program counter.
2. The content of all processor registers.
3. The content of certain status conditions.

The collection of all status bit conditions in the CPU is referred as a program status word or PSW.
The PSW is stored in a separate hardware register and contains the status information that



M.S. University - D.D.C.E. - Register Transfer Language 79

characterizes the state of the CPU. It is inclusive of the status bits from the last ALU operation and
specifies the interrupts that are allowed to occur and whether the CPU is operating in a supervisor or
user mode. Most of the computers have a resident operating system that controls and supervises all
other programs in the computer. When the CPU is executives a program that is part of the operating
system, it is referred to be in the supervisor or system mode. Certain instructions are executed in this
mode only. The CPU is normally in the user mode when user programs are executed. Special status
bits in the PSW determine the mode advantage the CPU is operating at any given time.

In certain computers only the program counter is stored when responding to an interrupt. The service
program must then include instructions to store status and register content before these resources are
used. Very few computers store both program counter and all status and register content in response
to an interrupt. Most computers store the program counter and the PSW only. Some computers may
have two sets of processor registers within the computer, one for each CPU mode. In this way, when
the program switches from the user to the supervisor mode (or vice versa) in response to an interrupt,
storing the contents of processor registers is not required as each mode uses its own set of registers.

The hardware procedure for processing an interrupt is very similar to the execution of a subroutine
call instruction.

Types of Interrupts

Interrupts can be classified into the major types as given below:
1. External interrupts

2. Internal interrupts

3. Software interrupts

External interrupts come from input-output (I/O) devices, from a timing device, from a circuit
monitoring the power supply, or from any other external source. Various examples that cause external
interrupts are I/O device requesting transfer of data, I/O device finished transfer of data, elapsed time
of an event, or power failure. Time-out interrupt may result from a program that is in an endless loop
and thus consumes more time its time allocation. Power failure interrupt may have as its service
routine a program that transfers the complete state of the CPU into a nondestructive memory in the
few milliseconds before power ceases. Internal interrupts arise when an instruction or data is used
illegally or erroneously. These interrupts are also known as traps. Examples of interrupts caused by
internal error conditions are register overflow, attempt to divide by zero, an invalid operation code,
stack overflow, and protection violation. Occurrence of internal errors is usually a resultant of a
premature termination of the instruction execution. Remedial majors to be taken are again determine
by service program that processors the internal interrupts.

To distinguish between internal and external interrupts, the internal interrupt is generated by some
exceptional condition caused by the program itself rather than by an external event. Internal interrupts are
synchronous with the program while external interrupts are asynchronous. On rerunning of the program,
the internal interrupts will occur in exactly same place each time. On the contrary external interrupts being
dependent on external conditions, are independent of the program being executed at the time.

External and internal interrupts are generated from signals that occur in the hardware of the CPU. On the
contrary, a software interrupt is initiated during execution of an instruction. In precise terms, software
interrupt is a special call instruction that behaves like an interrupt rather than a subroutine call. It can be
called to function by the programmer to initiate an interrupt procedure at any desired point in the
program. Usages of software interrupt is mostly associated with a supervisor call instruction. This



80 Introduction to Computer Architecture M.S. University - D.D.C.E.

instruction is meant for switching from a CPU user mode to the supervisor mode. Certain operations in
the computer are privileged to be assigned to the supervisor mode only, as for example, a complex input or
output transfer procedure. A program written by a user must run in the user mode. When an input or
output transfer is required, the request for the supervisor mode is sent by means of a supervisor call
instruction. This instruction causes a software interrupt that stores the old CPU state and brings in a new
PSW that belongs to the supervisor mode. This information must be passed to the operating system from
the calling program so as to specify the particular task requested.

5.7 MICROPROCESSOR ORGANISATION OF 8086

Figure 5.6: Intel Corporation’s 8086 Microprocessor
® The 8086 proclaim in 1978, was the first 16-bit microprocessor introduced by Intel Corporation.

e The 8086 is internally a 16-bit MPU and externally it has a 16-bit data bus. It has the aptitude to
address up to 1 Mbyte of memory via its 20-bit address bus.

o In calculation, it can address up to 64K of byte-wide input/output ports.

e Itis manufactured by high-performance metal-oxide semiconductor (HMOS) technology, and the
circuitry on its chip is equivalent to approximately 29,000 transistors.

® The 8086 is housed in a 40-pin dual in-line package.

Figure 5.7: Pin layout of the 8086 Microprocessor



M.S. University - D.D.C.E.

Minimum-Mode and Maximum-Mode

Register Transfer Language 81

The 8086 can be configured to work in either of two modes:

The minimum mode is chosen by applying logic 1 to the MN/MX input lead. It is typically used
for smaller single microprocessor systems.

The maximum mode is elected by applying logic 0 to the MN/MX input lead. It is typically used
for larger multiple microprocessor systems.

Depending on the mode of operation preferred, the assignments for a number of the pins on the
microprocessor package are changed. The pin functions specified in parentheses pertain to the
maximum-mode.,

We will only converse minimum-mode operation of the 8086. In minimum mode, the 8086 itself
provides all the control signals needed to implement the memory and I/O interfaces (see Fig. 8-3).
In maximum-mode, a separate chip (the 8288 Bus Controller) is used to help in sending control
signals over the shared bus).

INTA; ~ipmean—cr
Interrupt
interface TEST =
NM| ————
RESET ———>
DMA HOLD =——————————
interface

HLDA -

Veo

Mode - !
select MN/MX

Address/data bus

8086
MPU

ADg-AD 4

:::> Avg/Sy-A19/Sg

o ALE
————— BHE/S,

e MO

58333
B .
o

1

CLK
Clock

Figure 5.8: Block Diagram of Minimum Mode 8086 MPU

Memory/10
controls




82 Introduction to Computer Architecture M.S. University - D.D.C.E.

Check Your Progress

Fill in the blanks:

L bk Bemenge. (0f, o il i performed on the binary information stored in the
registers. :

2. A serial register is one that shifts the ........... il e stored in it, one by one, i.e., one bit

after another.

3. A parallel load control to enable parallel ....................... and the n - input lines associated
with the parallel transfer.

4. The register that holds an address for the memory unit is usually called a .........ooo.oo.......
address register.

5. The move instruction is employed in computers with multiple ....................... registers to
designate a transfer from one register to another.

5.8 LET US SUM UP

The term "register transfer" implies the availability and hardware logic circuits that can perform a
stated microoperation and transfer the result of the operation to the same or another register. A serial
register is one that shifts the information stored in it, one by one, i.e., one bit after another. Computer
registers are designated by capital letters to denote the function ‘of the register. For example, the
register that holds an address for the memory unit is usually called a memory address register and is
designated by the name MAR. Computers are a boon to mankind when its come to carrying out
various computational tasks, for they provide an extensive set of instructions to give the user the
flexibility to perform these tasks.

5.9 KEYWORDS

Register: It is capable of shifting its binary information either to the right or to the left is called a shift register.

Serzal Register: It shifts the information stored in it, one by one, i.e., ore bit after another.
Parallel Shift Register: It shifts the bits in a parallel mode.

Data Transfer Instructions: Transferring data from one location to another, keeping the binary
information intact.

Load Instruction: Represents a transfer from memory to a processor register.

5.10 QUESTIONS FOR DISCUSSION

. What is the difference between Register Transfer and Data Transfer Instruction?

1
2. Explain the four types of Shift Registers.

3. Explain in how many ways data manipulation instructions can be classified.
4

. Discuss the organization of Microprocessor 8086.



M.S. University - D.D.C.E. Register Transfer Language 83

Check Your Progress: Model Answers

1. Microoperations

2. Information
3. Transfer

4. Memory

5. CPU

5.11 SUGGESTED READINGS

Sajjan G. Shiva; Computer Design and Architecture; Marcel Dekker

Silvia Melitta Mueller, Wolfgang J. Paul; Computer Architecture; Springer
Joseph D. Dumas II; Computer Architecture; CRC Press

Nicholas P. Carter; Schaum’s Outline of Computer Architecture; Mc. Graw-Hill Professional







UNIT III






fe G S R e i s s e ]

LESSON
6

MICRO PROGRAMMING

CONTENTS
6.0  Aims and Objectives

6.1  Introduction

6.2  How Microprogramming Works?
6.2.1  Computer Configuration

6.3  Microoperations

6.4 Arithmetic Microoperations

6.5  Logic Microoperations

6.6 Shift Microoperations

6.7  Let us Sum up

6.8  Keywords

6.9  Questions for Discussion

6.10  Suggested Readings

6.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Explain the concept of micro programming
®  Discuss arithmetic micro-operations
® Discuss logic micro-operations

® Define shift micro-operations

6.1 INTRODUCTION

The control parts of computers prior to the mid 60s were constructed, essentially, of electronic
components structured into logic gates. It was quickly discovered that building computers, especially the
control logic, was complex and error-prone — hence techniques were developed to further structure
systems and reduce errors. Nevertheless, it was still difficult and complex, and errors were hard to fix.

In 1957 Maurice Wilkes proposed an alternative called ‘microprogramming’. At the time, it was highly
impractical, but in 1964 IBM launched its 360 range, most of which used this microprogramming
concept. Only the top of the range machine was not microprogrammed, because microprogramming
could not deliver the required performance (traditional methods, for all their faults, were fast).



88 Introduction to Computer Architecture M.S. University - D.D.C.E.

The 360 series were highly significant machines in the 60s, and their influence on machine architecture
design is still visible today, particularly in Intel 80x86 and Motorola 680x0 processors, whose
instruction sets are essentially evolutions of the 360 original. In fact, IBM still produces mainframes
today that use the same architecture.

Wilkes' idea was that each machine instruction was divided into a number of sub-instructions, or
microinstructions. While a real instruction (we might say macroinstruction) might be something like
‘add the contents of registers A and B’, a microinstruction might be something like ‘write out register

A to bus Z’, or ‘read data bus into register X’ — very basic actions that could be assembled to
implement the actual instruction set of the machine. The set of microinstructions that made up a full
instruction set was called the microprogram, or microcode.

6.2 HOW MICROPROGRAMMING WORKS?

The precise details of Wilkes' design are not important to us, but we note the following:

® It was based on a2 memory consisting of a network of diodes.
® It was far too expensive at the time it was suggested, because of the size of the diode array required.

®  The arrival of cheap ferrite core memory, and then semi-conductor memory, changed this and
made the idea viable.

e Even so, unfortunately, the scheme as proposed by Wilkes would not work for technical reasons,
and had to be modified slightly.

The idea is that each microinstruction will be divided up into two parts — the control part, which
controls the operation of the data path (or data unit), and the address part, which is the address of the
next microinstruction to be executed under certain conditions.

l Address Decoder ]L_
Micropragram
Memory
Microinstruction i
Register
Control i Address +1 Microprogram
Counter
Branch Multiplexar
Logic
instruction Register ‘}
¥ To Data Unit

Figure 6.1: A Microgrammed Controller



M.S. University - D.D.C.E. Micro Programming 89

Consider Figure 6.1. After executing a particular microinstruction, the next microinstruction to be
executed is either that specified by the address field of the current microinstruction, or the next
sequential microinstruction (as in a conventional machine language) depending on the value of the
conditional inputs. In addition, when one sequence of microinstructions has finished, the next is
determined by the contents of the machine instruction register.

In fact, the situation is usually slightly more complex than this — there is usually a sequencing part to
the microinstruction in addition to the control and address parts. The sequencing information is used,
for example, to decide which of several conditional inputs is to be used to control branching. Usually
we require unconditional branching as well, and also many microinstructions do not require
branching at all.

6.2.1 Computer Configuration

The processor registers are program counter PC, address register AR, data register DR and
accumulator register AC. The function of these registers is similar to the basic computer introduced
earlier. The control unit has a control address register CAR and a subroutine register SBR.

The transfer of information among the registers in the processor is done through multiplexers rather
than a common bus. DR can receive information from AC, PC, or memory. AR can receive
information from PC or DR. PC can receive information only from AR. The arithmetic, logic, and
shift unit perform microoperations with data from AC and DR and places the result in AC. Note that

memory receives its address from AR. Input data written to memory or read from memory only
through DR.

The computer instruction format is depicted in Figure 6.2(a). It consists of three fields- a 1-bit field for
indirect address field. Figure 6.2(b) lists four of the 16 possible memory-reference instructions. The
ADD instruction adds the content of the operand found in the effective address to the content of AC.
The BRANCH instruction causes a branch to the effective address if the operand in AC is negative.
The program proceeds with the next consecutive instruction if AC is not negative. The AC is negative
if its sign bit (the bit in the leftmost position of the register) is a 1. The STORE instruction transfers
the content of AC into the memory word specified by the effective address. The EXCHANGE
instruction swaps the data between AC and the memory word specified by the effective address.

15 14 1mn 10 0
l i I Opcode l Address ’

(a) Instruction format

Symbol Opcode Description
ADD 0000 AC « AC + M [EA]
BRANCH 0001 If (AC < 0) then (PC « EA)
STORE 0010 M [EA] « AC
EXCHANGE 0011 AC <« M[EA], M[EA] <— AC

EA is the effective address

{b) Four computer instructions

Figure 6.2: Computer Instructinons



90 Introduction to Computer Architecture M.S. University - D.D.C.E.

6.3 MICROOPERATIONS

A microoperation is an elementary operation performed with the data stored in registers. The
microoperations most often encountered in digital computers are classified into four categories:

Register transfer microoperations which transfer binary information from one register to another.
Arithmetic microoperations which perform arithmetic operations on numeric data stored in registers.

Logic microoperations which perform bit manipulation operation on non-numeric data stored in registers.

SR S

Shift microoperations which perform shift operations on data stored in registers.

These microoperations, as the name suggest, transfer information from one register to another. The
information does not change during this microoperation. A register transferred microoperation may
be designed as:

Rl(——Rz

which implies that transfer the content of register R; to register Rq. The destination register should

have a parallel load capability as we expect the register transfer to occur in a predetermined control
condition. A common path for connecting various registers is through a common internal data bus of
the processor. In general, the size of this data bus should be equal to the number of bits in a general
register. There are some transfers which do not take place through the internal data bus, but through
the system bus. These transfers are related to memory and input/output modules. Also the
input/output operation is treated as a separate activity where normally a program and therefore
instructions are executed. Memory transfer is the most important transfer for instruction execution as
it has to take place at least once for every instructions.

Memory Transfer

Memory transfer is achieved via a system bus. Since the main memory is a random access memory,
therefore, address of the location which is to be used is to be supplied. This address is supplied by the
CPU on the address bus. There are two memory transfer operations: Read and Write. Let us consider
the CPU structure then the two memory operations will be performed as:

Memory Read
1. Put memory address in the Memory Address Register (MAR).

2. Read the data of the location. This operation is achieved by putting the MAR in the data on
address bus along with a memory read control signal on the control bus. The resultant of memory
read is put into the data bus which in turn stores the read data in the data register (DR). This
whole operation can be shown as:

DR« M(MAR)
Memory Write

1. Put the desired memory address in MAR and the data to be written in the DR.

2. Write the data into the location: MAR puts the address on address bus and DR puts the data on
data bus to be written into the memory location addressed by MAR.



M.S. University - D.D.C.E. Micro Programming 91

M (MAR) « DR

Normally, a memory read or write operation requires more clock cycles than a typical register transfer
operation.

6.4 ARITHMETIC MICROOPERATIONS

These microoperations perform some basic arithmetic operations on the numeric data stored in the
registers. These basic operations may be addition, subtraction, incrementing a number, decrementing a
number and arithmetic shift operation. An 'add' microoperation can be specified as:

R3 — RI =+ Rz
1t implies: add the contents of registers Ry and R, and store them in register Rj.

The add operation mentioned above requires three registers along with the addition circuit at the
ALU. Subtraction in many machines is implemented through complement and addition operations
such as:

R3 — Rl = R2
= R3 <Ry + (2's complement of R5)
= R3 <Ry + (1's complement of Ry + 1)
= R3 &= Rl + Rz +1
An increment operation can be symbolized as:
Ri«<Ry+1
while a decrement operation can be symbolized as:
Ri«<Ry-1
These increment and decrement operations can be implemented by using a combinational circuit or
binary up/down counters. In most of the computers multiplication and division are implemented
using add/subtract and shift microoperations. If a digital system has implemented division and
multiplication by means of combinational circuits then we can call these as the microoperations for
that system. An arithmetic circuit is normally implemented using parallel adder circuits. Each of the
Multiplexer (MUX) of the given circuit has two select inputs. This four bit circuit takes input of two

4-bit data values and a carry in bit and outputs the four resultant data bits and a carry out bit. With the
different input values we can obtain various microoperations.

Equivalent Microoperation ~ Microoperation Name

R«Ry+ Ry +1 Add with carry

Re<Ri+Ry Subtract with borrow



