CLIENT SERVER COMPUTING WITH ORACLE

SYLLABUS

UNIT I

Basic Concepts, Introduction to Oracle Server - Data Dictionary - Tablespaces and Datafiles - Data
Blocks, Extents and Segments — Schema Objects.

UNIT II
SQL SQL*PLUS: Basic SQL
UNIT III

-Schema Objects, Data Integrity - Creating and Maintaining Tables - Indexes Sequences Views - Users,
Privileges and Roles - Synonyms.

UNIT IV
PL/SQL, PL/SQL - Triggers - Stored Procedures and Functions - Packages - Cursors - Transaction.
UNIT V

Distributed Processing, Distributed Processing - Replication.



UNIT I






LESSON
1

BASIC CONCEPTS

_

CONTENTS
1.0 Aims and Objectives
1.1 Introduction
1.2 Basic Concepts of Oracle
1.2.1  Modules of Oracle
1.3 Invoking SQL*Plus
1.4 Data Types
141  Character Datatypes
1.5 Menus
1.5.1  File Menu
1.5.2  Edit Menu
1.5.3  Find Menu
1.5.4  Option Menu
1.6 Oracle Tools
1.6.1  Standalone Tools
1.6.2  Administration Tools
1.7 Oracle Utilities
1.7.1  Exporting Database Information
1.7.2 Importing Database Information
17.3  Loading Data from Foreign Files
1.8 Backup and Recover
1.9 Letus Sumup
1.10 Keywords
111 Questions for Discussion

1.12 Suggested Readings

1.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
®  Explain the concepts of oracle

® Discuss how to identify the development needs



8 Client Server Computing with Oracle M.S. University - D.D.C.E.

Describe the significance of invoking SQL*PLUS
Identify and explain the data types
Discuss the various menus

Explain the oracle tools and utilities

Explain the back up and recover in oracle

1.1 INTRODUCTION

An Oracle database is a collection of data treated as a unit. The purpose of a database is to store and
retrieve related information. A database server is the key to solving the problems of information
management. In general, a server reliably manages a large amount of data in a multi-user environment
so that many users can concurrently access the same data. All this is accomplished while delivering
high performance. A database server also prevents unauthorized access and provides efficient solutions
for failure recovery. The database has logical structures and physical structures. Because the physical
and logical structures are separate, the physical storage of data can be managed without affecting the
access to logical storage structures.

1.2 BASIC CONCEPTS OF ORACLE

Every business enterprise maintains large volumes of data for its operations. With more and more
people accessing this data for their work the need to maintain its integrity and relevance increases.
Normally, with the traditional methods of storing data and information in files, the chances that data
loses its integrity and validity are very high.

Oracle is an Object Relational Database Management System (ORDBMS). It offers capabilities of both
relational and object-oriented database system. In general, objects can be defined as reusable software
codes, which are location independent and perform a specific task on any application environment
with little or no change to the code.

1.2.1 Modules of Oracle

The tools/modules provided by Oracle are so user-friendly that a person with minimum skills in the
field of computers can access them with ease. The tools are:

e SQL *Plus

e PL/SQL

e Oracle Forms

® Oracle Report Writer
e  Oracle Graphics
SQL*Plus

SQL*Plus is a structured Query Language supported by Oracle. Through SQL*Plus we can store,
retrieve, edit, enter and run SQL commands and PL/SQL blocks. Using SQL* Plus we can perform
calculations, list column definition for any table and can also format query results in the form of a
report. :



M.S. University - D.D.C.E. Basic Concepts 9

PL/SQL

PL/SQL is an extension of SQL. PL/SQL block can contain any number of SQL statements
integrated with flow of control statements. Thus PL/SQL combines the data manipulating power of
SQL with data processing power of procedural languages.

SQOL vs. SOL * Plus

SQL is a standard language common to all relational databases. SQL is a database language used for
storing and retrieving data from the database. Most Relational Database Management Systems provide
extensions to SQL to make it easier for application developers.

SQL*Plus is an Oracle specific program which accepts SQL commands and PL/SQL blocks and
executes them. SQL*Plus enables manipulation of SQL commands and PL/SQL blocks. It also
performs many additional tasks as well.

Oracle Forms

This tool allows you to create a data entry screen along with suitable menu objects. Thus it is the
Oracle Forms tool, which handles data gathering and data validation in a commercial application.

Oracle Report Writer

Report Writer allows programmers to prepare innovative reports using data from the Oracle
Structures like tables, views etc. Thus, it is the Report Writer Tool that handles the reporting section
of a commercial application.

Oracle Graphies

Some of the data can be better represented in the form of graphs. The Oracle Graphics Tool allows
programmers to prepare graphs using data from Oracle Structures like tables, views etc. Oracle
Graphics can also be considered as a part of the reporting section of a commercial application.

1.3 INVOKING SQL*PLUS

This portion of the lesson shows you SQL * Plus, a tool that allows the handling of a database through
individual and interactive execution of the SQL commands. In addition to the direct execution
SQL commands, SQL * Plus allows the configuration of the PL/SQL commands. SQL * Plus shows
results in the character mode. SQL * Plus is simple to operate and represents the fastest way to query
and create quick reports.

To configure SQL * Plus, click on the start button, then on Programs | Oracle Home | Application
Development |SQL * Plus. If the user is not connected to the database, the user name, password, and
host string are required. For the local database, it is not necessary to give host string. The database is
then configured.



10 Client Server Computing with Oracle M.S. University ~ D.D.C.E.

Then the SQL * Plus screen is displayed with the SQL> prompt. The prompt is where you enter the
SQL commands. The SQL * Plus interface allows 2 SQL command to occupy several lines. It will
execute the command only when the semicolon () is typed and the Enter key is pressed. To execute
the last command typed in the buffer, the user types slash (/) and press Enter key.

SQLePlus: Release a.8.5.0.8 - Production on Tue Rug 2B 17:7:58 2001

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Connected to:
racle® Personal Edition Release 8.8.5.0.9 - Production
PL/SQL Release 8.8 %.8.8 - Production

ISQL>

1.4 DATA TYPES

Before continue our discussion of commands, let's turn our attention to the data types
that can be stored in an Oracle database. In order to Create a table we need to specify

1.4.1 Character Datatypes

The following are the character datatypes supported by Oracle:

standard size is 1 byte and maximum size is 255 byrtes.

If the user enters a value shorter than the specified length then the database blank-pads to the fixed
lengths.



M.S. University - D.D.C.E. Basic Concepts 11

In case, if the user enters a value larger than the specified length then the database would return an
error.

Varchar2 Datatype: The varchar2 () datatype supports a variable length character string. It also stores
alphanumeric values. The size of this datatype ranges from 1 - 4000 bytes. Using varchar2 saves disk
space when compared to char. The varchar? type must be used for the fields of variable size, with a
maximum size of 2000 characters, such as the fields of the memo type. While it has variable size, the
maximum size it can occupy must be specified.

Long Data Type: This datatype is used to store variable character length. Maximum size is 2 GB. Long
datatype has several characters similar to varchar2 datatype. Its length would be restricted based on the
memory space available in the computer. The following restriction needs to be fulfilled when a long
datatype attribute is cast on a column in a table.

Only one column in a table can have long datatype. This should not contain unique or primary key
constraints. The column cannot be indexed. The procedures or store procedures cannot accept long
datatype as argument. It also cannot be used in the Where, Order By, and Group By clauses.

Number Data Type: The number datatype can store positive numbers, negative, zeros, fixed point
numbers, and floating point numbers with a precision of 38.

column_name number {p=38,s=0}
column_name number (p) {fixed point}
column_name number (s) {floating point}

Where p is the precision, which refers to the total number of digits, it varies between 1 to 38; s is the
scale width, which refers to number of digits to the right of the decimal point, which varies between -
84 to0 127.

Date Datatype: Date datatype is used to store date and time in a table. Oracle store dates in a fixed
length of 7 bytes each for the century, year, month, day, hour, minute, and seconds. All of this data is
stored for each field of date datatype. Default date datatype is "dd-mon-yy". If only date is given, the
hour is written as 12:00 A.M. If only the time is given, the date is stored as the first day of the current
month. To view the system's date and time we can use the SQL function called sysdate (). Valid date is
from Jan 1, 4712 BC to Dec 31, 4712 AD.

Raw Datatype: Raw datatype is used to store byte-oriented data like binary data or byte strings and the
maximum size of this datatype is 2000 bytes. While using this datatype the size should be mentioned
because by default it does not specify any size. Only storage and retrieval of data are possible,
manipulation of data cannot be done. Raw datatype can be indexed.

Long Raw Datatype: Long raw datatype is used to store binary data of variable length, which can have a
maximum size of 2 GB. This datatype cannot be indexed. Further all limitation faced by long
datatypes also holds good for long raw datatype.

In addition to the above mentioned Oracle supports:

LOB Datatype: LOB is otherwise known as Large Object datatypes. This can store unstructured
information such as sound clips, video files etc., up to 4 GB in size. They allow efficient, random,
piece-wise access to the data. The LOB types store values, which are known as locators. These locators



12 Client Server Computing with Oracle M.S. University - D.D.C.E.

store the location of large objects. LOBs can be either internal or external depending on their location
with regards to the database. Data stored in a LOB column is known as LOB value.

The different internal LOBs are mentioned below:

CLOB: A column with its data type as CLOB stores character objects with single byte characters. It
cannot contain character sets of varying widths. A table can have multiple columns with CLOB as its
datatype.

BLOB: A column with its datatype as BLOB can store large binary objects such as graphics, video clips
and sound files. A table can have multiple columns with BLOB as its datatype.

BFILE: A BFILE column stores file pointer to LOBs managed by file system external to the database.
A BFILE column may contain filenames for photos stored on a CD-ROM.

1.5 MENUS

1.5.1 File Menu
The file menu contains the following options:
Open: Opens a file of SQL commands that was previously written with the extension of .sql.

Save: Allows the writing to the buffer of a txt file that receives the extension .sql as default. The
Replace sub-option changes the contents of an existing file with contents of the buffer. The Append
sub-option adds the contents of the buffer to the specified file.

SaveAS: Writes the contents of the buffer or the file that was configured with another name.

Spool: Stores the result of a query in a file. As the default, the file created has the extension .Ist. To
disable Spool for queries, you must activate the Spool Off Option.

Run: Lists and executes the SQL command or a PL/SQL block that is stored in the buffer.
Cancel: Interrupts the operation that is being executed.

Exst: Makes a commit of all the changes made to the database.

1.5.2 Edit Menu
The edit menu includes the following operations:
Copy: Sends the selected text to the Windows clipboard’.

Paste: Pastes the contents of the clipboard to the command line of SQL * Plus, with maximum size of
3,625 characters.

Clear: Clears the contents of the screen and the buffer.

Editor: Opens an editor in which the files of PL/SQL commands and their settings can be edited. As the
default, Windows Notepad is selected. The name of the file defaults to afiedt.buf. Whenever the editor is
called by the Invoke Editor option, the contents of the buffer are automatically transferred to it.



M.S. University - D.D.C.E. Basic Concepts 13

1.5.3 Find Menu

The find menu contains the Find and Find Next options. Find opens a dialog box in which the user
can type text to search for. After clicking on the OK button in this dialog box, the occurrence of the
text is highlighted; Find Next finds the next occurrence. The search is always initiated from the
current screen.

1.5.4 Option Menu

The option menu allows you to change SQL * Plus elements. Environment option opens a Dialog box
that has two parts. The define part option list allows you to change the environment elements, such as
variables and characteristics of SQL * Plus, the printing of column headers, and the formatting of
numeric fields.

The screen buffer area controls the number of characters and lines that are maintained and displayed
by SQL * Plus. As the default, the buffer is adjusted to display up to 1,000 lines, with 100 characters.
The parameters can also be changed through the SET command directly from the edit line.

1.6 ORACLE TOOLS

1.6.1 Standalone Tools

Various tools are available to address specific environments or specific market requirements.

Development of applications commonly takes place in Java (using Oracle JDeveloper) or through
PL/SQL (using, for example, Oracle Forms and Oracle Reports). Oracle Corporation has started a
drive toward ‘wizard’-driven environments with a view to enabling non-programmers to produce
simple data-driven applications.

Oracle SQL Developer, a free graphical tool for database development, allows developers to browse
database objects, run SQL statements and SQL scripts, and edit and debug PL/SQL statements. It
incorporates standard and customized reporting.

A list of some of the binaries and scripts supplied by Oracle Corporation to operate with/alongside
Oracle databases and associated software appears on the Oracle executables web-page.
1.6.2 Administration Tools

The database administrator has several choices for tools to use when managing an Oracle distributed
database system:

®  Enterprise Manager ’

®  Third-party Administration Tools
® SNMP Support

Enterprise Manager

Enterprise Manager is Oracle’s database administration tool that provides a graphical user interface
(GUI). Enterprise Manager provides administrative functionality for distributed databases through an
easy-to-use interface. You can use Enterprise Manager to:



14 Client Server Computing with Oracle M.S. University - D.D.C.E.

Administer multiple databases. You can use Enterprise Manager to administer a single database or
to simultaneously administer multiple databases.

Centralize database administration tasks. You can administer both local and remote databases
running on any Oracle platform in any location worldwide. In addition, these Oracle platforms
can be connected by any network protocols supported by Oracle Net.

Dynamically execute SQL, PL/SQL, and Enterprise Manager commands. You can use Enterprise
Manager to enter, edit, and execute statements. Enterprise Manager also maintains a history of
statements executed.

Thus, you can reexecute statements without retyping them, a particularly useful feature if you
need to execute lengthy statements repeatedly in a distributed database system.

Manage security features such as global users, global roles, and the enterprise directory service.

Third-party Administration Tools

Currently more than 60 companies produce more than 150 products that help manage Oracle
databases and networks, providing a truly open environment.

SNMP Support

Besides its network administration capabilities, Oracle Simple Network Management Protocol
(SNMP) support allows an Oracle database server to be located and queried by any SNMP-based
network management system. SNMP is the accepted standard underlying many popular network
management systems such as: '

e HP’s OpenView

e Digital’s POLYCENTER Manager on NetView
e  IBM’s NetView/6000 '

® Novell’s NetWare Management System

®  SunSoft’s SunNet Manager

1.7 ORACLE UTILITIES

Oracle offers the industry’s most complete and integrated set of tools for application development,
database development, or business intelligence to support any development approach, technology
platform, or operating system.

Oracle also provides a variety of free tools to help database and application developers streamline Web
application and database development, and make it easy for NET developers to deploy Oracle-based
applications and Web services on the Windows platform.

There are three utilities supplied along with Oracle Server are:

Export
Import
SQL* Loader



M.S. University - D.D.C.E. Basic Concepts 15

They are supplied as part of the Oracle Software. It need not have to be purchased or downloaded
separately. They are available as .exe files in the BIN directory and can be executed by typing their
name before command prompt. In this lesson, we will be discussing about syntaxes and the usage of
these utilities.

1.7.1 Exporting Database Information

This utility can be used to transfer data objects between oracle databases. The objects and the data in
Oracle database can be moved to other Oracle database running even on a different hardware and
software configurations.

The export utility copies database definitions and actual data into an operating system file (export file).
The export file is an Oracle binary-format dump file (with .dmp extension), which is normally created
on disk or tape. Before exporting we must ensure that there is enough space available on the disk or
tape used.

Exported dump files can be read only by using the Import utility of Oracle. We cannot use earlier
versions of import utility for importing the data exported using current version (Versions of Oracle
utilities also change along with the Oracle Versions).

EXP command can be used to invoke export utility interactively without any parameters. (Requests
the user to enter the value). Otherwise parameters can be specified in a file called parameter file. We
can use more than one parameter file at a time with exp command.

Syntax:

exp PARFILE = filename

Parameter file is a simple text file creating using any text editor.

The exports are three types: Full, Owner, and Table.

®  Full export exports all the objects, structures and data within the database for all schemas.
®  Owner export exports only the objects owned by specific user account.

®  Table export exports only tables owned by a specific user account.

To export a table we can run EXP utility either interactively or by putting all the parameters for the
export on the command line. In-interactive mode just type EXP before the command prompt and
answer the questions when prompted, otherwise the parameters can be typed on the command line as
shown below.

EXP scott/tiger file=emp.dmp tables=(EMP) log= error.log
In the above example SCOTT/TIGER is the username and password respectively.

emp.dat is the file into which exporting is done. This file is created in the current folder, to create it in
a different folder we need to mention the complete path. Ex. C:\sample\dept.dmp.

Tables parameter takes table names as it value, to export more than one table their names need to be
separated by a comma. Example tables = (EMP, DEPT, SALGRADE) to export tables EMP, DEPT
and SALGRADE.



16 Client Server Computing with Oracle M.S. University - D.D.C.E.

Log parameter is optional; we give a file name as its value. This file is used to write errors if any occur
while exporting a table.

stem32' cmd.exe - EXP

Figure 1.1: Explains how to use EXP Utility in Interactive Mode

Figure 1.2 illustrates exporting data from multiple tables non-interactively (by giving the parameters in
the command).

Figure 1.2: Illustrates Exporting Data from Multiple Tables Non-interactively



M.S. Unijversity - D.D.C.E. Basic Concepts 17

Exporting data from a table conditionally:

Figure 1.3: Gives the Screen Shot to Export Employees of Deptno = 10
Suppose if you want to export data of employees with salary less than 2000 then the following query

can be used.

EXP SCOTT/TIGER FILE= abc.dmp TABLES=emp QUERY =\" WHERE SAL < 2000 \”

1.7.2 Importing Database Information

This utility is used to extract objects (tables etc) from the export file (.dmp file) created using EXP
utility.

IMP command can be used to invoke import utility interactively without any parameters. (Which
Requests the user to enter the value). Otherwise parameters can be specified in a file called parameter
file. We can use more than one parameter file at a time with exp command.

Syntax:

imp username/password PARFILE = filename

(©Or)

imp PARFILE = filename

Parameter file is a simple text file creating using any text editor.

Figure 1.4(a) and 1.4(b) explains the usage of IMP utility with parameters (non-interactively) in the
command-line.

ot £ WINDOWS: system32'(MD.exe

Figure 1.4(a): Explains the Usage of IMP Utility with Parameters



18 Client Server Computing with Oracle M.S. University - D.D.C.E.

e (1 WINDOWS' system32',(MD.exe

Figure 1.4(b): Explains the Usage of IMP Utility with Parameters

It is possible to import dump created using an earlier version can be imported using the later version
utility. We should not use later version utilities to export data from earlier database versions. But an
earlier utility can be used to export later versions of database.

1.7.3 Loading Data from Foreign Files

It is an Oracle utility used for moving bulk data from external files into the Oracle database. Data
from any text file can be loaded into database. SQL*Loader reads data from an external file and loads
data into an existing table while the Oracle database is open.

SOL*Loader Datatypes: SQL*Loader uses the following datatypes.

1. CHAR
2. DECIMAL
3. INTEGER

SQL*Loader require two input files a control file and another data file. The control file is a text file
details the task to be carried out by the SQL*Loader. It tells the SQL*Loader where data is available
how to parse and interpret it also where to insert it. The data file contains the data to be loaded.

A control file may be vaguely divided into three sections:
1. First section contain INFILE clause in this we specify where input data is located.

2. The second section have INTO TABLE block that details the table and column names into which
data is stored.

3. Third section is optional, If present it contain input data.

SQL* Loader assumes that data in data file is organized as records. Based on the record type data files
could be categorized into:

Fixed record files: All the records are of same(fixed) length
Variable record files: Records are of varying length and Streamed record files.

Note: If the data is specified in the control file, then we write INFILE * and the data is treated as
streamed record format and the records separated by default record terminator.



M.S. University - D.D.C.E. Basic Concepts 19

Examples

The following example explains how to load data from file with fixed record format.
Creating Control File

Using DOS editor or notepad editor you can create data file as shown below:
LOAD DATA

INFILE ‘mydatal.dat * “fix 18”

fields terminated by °,’

(sno ,sname , course )

Save this file under the name myctril.ctl into the current directory.

Creating Data File

In the DOS editor or Notepad you can create data file as shown below:
1001,RAJAN, ASP,

1002,KISHAN, J2EE,

1003,PRABHU, JSP,

1004,PRANAY, ORACLE,

1005,JOHN, APPS,

1006, MARTIN, ORACLE

Save the above content as file with the name “mydatal.dat”

The following figure explains how data can be loaded into a table. The data loaded here is of fixed-
length records

INDDWS' system32'.cmd.exe

Figure 1.5: Explains how Data can be Loaded into a Table



20 Client Server Computing with Oracle M.S. University - D.D.C.E.

To cross check whether loading was proper we execute simple SELECT statement as given below.

SN0 SNAME COURSE
1881 RAJAN AsP
1682 KISHAN J2EE
168683 PRABHU JSP
1004 PRANAY DRACLE
18085 JOHN APPS
10886 MARTIN ORACLE
6 rows selected.

REEEE S |

Figure 1.6: The Screen to Check Whether Loading was Proper

1.8 BACKUP AND RECOVER

A backup is a copy of data. This copy can include important parts of the database such as the control
file and datafiles. A backup is a safeguard against unexpected data loss and application errors. If you
lose the original data, then you can reconstruct it by using a backup.

Backups are divided into physical backups and logical backups. Physical backups, which are the
primary concern in a backup and recovery strategy, are copies of physical database files. You can make
physical backups with either the Recovery Manager (RMAN) utility or operating system utilities.

In contrast, logical backups contain logical data (for example, tables and stored procedures) extracted
with the Oracle Export utility and stored in a binary file. You can use logical backups to supplement
physical backups.

To restore a physical backup of a datafile or control file is to reconstruct it and make it available to the
Oracle database server. To recover a restored datafile is to update it by applying archived redo logs and
online redo logs, that is, records of changes made to the database after the backup was taken. If you use
RMAN, then you can also recover restored datafiles with incremental backups, which are backups of a
datafile that contain only blocks that changed after a previous incremental backup.

After the necessary files are restored, media recovery must be initiated by the user. Media recovery can
use both archived redo logs and online redo logs to recover the datafiles. If you use SQL*Plus, then
you can run the RECOVER command to perform recovery. If you use RMAN, then you run the
RMAN RECOVER command to perform recovery.

Unlike media recovery, Oracle performs crash recovery and instance recovery automatically after an
instance failure. Crash and instance recovery recover a database to its transaction-consistent state just
before instance failure.

By definition, crash recovery is the recovery of a database in a single-instance configuration or an
Oracle Real Application Clusters configuration in which all instances have crashed. In contrast,



M.S. University - D.D.C.E. . Basic Concepts 21

instance recovery is the recovery of one failed instance by a live instance in an Oracle Real Application
Clusters configuration.

Crash and instance recovery involve two distinct operations: rolling forward the current, online
datafiles by applying both committed and uncommitted transactions contained in online redo records,
and then rolling back changes made in uncommitted transactions to their original state. Because crash
and instance recovery are automatic, this manual will not discuss these operations.

Figure 1.7 illustrates the basic principle of backing up, restoring, and performing media recovery ua a

database.
-
0
Backup Media
database failur
100 200 00 400 800
SCH
Archived
recc logs
Restorad ‘ Fancov;nd
database Recover {redo changes) database
Figure 1.7: Restoring and Recovering a Database
Check Your Progress
Fill in the blanks:
1. Oracle products are based on a concept known as the .......c..cccc.....
2. SQL*Plus is a structured Query Language supported by ....................
3. The char datatype is used when a ................ length character string is required.
4. The option menu allows you to ......cccuu.... SQL * Plus elements.
5.  Enterprise Manager is Oracle’s database administration tool that provides a .........ccccco.....
6. Oracle provides a variety of free tools to help ......cococ........ and application developers
streamline.

1.9 LET US SUM UP

Oracle is an Object Relational Database Management System (ORDBMS). It offers capabilities of both
relational and object-oriented database system. In general, objects can be defined as reusable software
codes, which are location independent and perform a specific task on any application environment




22 Client Server Computing with Oracle M.S. University - D.D.C.E.

with little or no change to the code. In addition to the direct execution SQL commands, SQL * Plus
allows the configuration of the PL/SQL commands. SQL * Plus shows results in the character mode.
Before continue our discussion of commands, let's turn our attention to the data types that can be
stored in an Oracle database.Oracle offers the industry’s most complete and integrated set of tools for
application development, database development, or business intelligence to support any development
approach, technology platform, or operating system. The export utility can be used to transfer data
objects between oracle databases running even on a different hardware and software configurations.
Exported dump files can be read only by using the Import utility of Oracle. Import utility is used to
extract objects (tables etc) from the export file (dmp file) created using EXP utility. SQL*Loader is an
Oracle utility used for moving bulk data from external files into the Oracle database. SQL*Loader
require two input files a control file and another data file. The control file is a text file details the task
to be carried out by the SQL*Loader. It tells the SQL*Loader where data is available how to parse and
interpret it also where to insert it. The data file contains the data to be loaded. A backup is a safeguard
against unexpected data loss and application errors. Backups are divided into physical backups and
logical backups. Physical backups, which are the primary concern in a backup and recovery strategy,
are copies of physical database files. logical backups contain logical data (for example, tables and stored
procedures) extracted with the Oracle Export utility and stored in a binary file. To restore a physical
backup of a datafile or control file is to reconstruct it and make it available to the Oracle database
server. To recover a restored datafile is to update it by applying archived redo logs and online redo
logs, that is, records of changes made to the database after the backup was taken. There are media,
crash and instance recovery.

1.10 KEYWORDS

Export Utility: Tt is a utility which can be used to transfer data objects between oracle databases
running even on a different hardware and software configurations.

Import Utdlity: It is a utility which is used to extract objects (tables etc) from the export file (.dmp file)
created using EXP utility.

SQL*Loader: It is an Oracle utility used for moving bulk data from external files into the Oracle
database.

Control File: It is a text file details the task to be carried out by the SQL*Loader.
Data File: It is a file which contains the data to be loaded.
Backup: It is a safeguard against unexpected data loss and application errors.

Logical Backup: It contains logical data (for example, tables and stored procedures) extracted with the
Oracle Export utility and stored in a binary file.

Physical Backup: It is the process in which the primary concern is to copy the physical database files.

1.11 QUESTIONS FOR DISCUSSION

1.  What are the basic modules in oracle?

2. Explain the processor to invoke SQL*PLUS.

3. What are basic data types in oracle?



M.S. University - D.D.C.E. Basic Concepts 23

4. Discuss the file menu and edit menu in SQL*PLUS.
5. What is import/export and why does one need it?

6. How does one use the import/export utilities?
7

Can one import/export between different versions of Oracle?

Check Your Progress: Model Answers
1. ‘Client/Server Technology’
2. Oracle

3. Fixed

4. Change

5. graphical user interface

6

database

1.12 SUGGESTED READINGS

Dave Moore, Oracle Utilities, Rampant TechPress

Kent Crotty and Donald K. Burleson, Oracle Best Practices: Practical Standards for Success, Rampant Techpress
Fred D. Rolland , Relational Database Management with Oracle, Addison-Wesley

Robert G. Freeman and Steve Karam, Easy Oracle Jumpstart: Oracle Database Management Concepts and
Administration, Rampant Techpress

Bill Pribyl, Learning Oracle PL/SQL, O’Reilly Media
Steven Feuerstein , Oracle PL/SQL Programming, O’Reilly Media



LESSON
2

INTRODUCTION TO ORACLE SERVER

CONTENTS

2.0  Aims and Objectives

2.1  Introduction

2.2 Data Dictionary
2.21  Structure of the Data Dictionary
2.22  How the Data Dictionary is used
2.23  How Oracle uses the Data Dictionary
2.2.4  How to use the Data Dictionary

2.3 Organization of Data in Oracle
2.3.1  Tablespaces and Data Files
2.3.2  Schema Objects
2.3.3  Data Blocks, Extents and Segments
234  Physical Database Structure

24  LetusSum Up

2.5  Keywords

2.6 Questions for Discussion

2.7  Suggested Readings

2.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

e  Explain the concept of data dictionary

e Discuss how to identify the tablespaces and data files
® Describe the data blocks, extents and segments

® Identify and explain the schema objects



M.S. University - D.D.C.E. ’ Introduction to Oracle Server 25

2.1 INTRODUCTION

Oracle products are based on a concept known as the 'Client/Server Technology'. This concept
involves segregating the processing of an application between two systems. One performs all activities
related to the database (server) and the other performs activities that help user to interact with the
application (client).

A client or front-end database application also interacts with the database by requesting and receiving
information from the 'database severs'. It acts as an interface between the user and the database. The
commonly used front tool of ORACLE is SQL * Plus.

The database server or back end is used to manage the database tables optimally among multiple clients
who concurrently request the server for the same data. It also enforces data integrity across all the
clients' applications and controls databases access and other security requirements.

Oracle uses the Internet File System, which is Java based application, which enables database to
become an Internet development platform. Oracle also provides complete support for building Java
applications by offering new versions of the Jdeveloper. The data store in database can be used to build
HTML web pages. Multimedia data store in a network-accessible database can be manipulated or
modified using the Oracle inter Media Audio, Image and Video Java Client developed Applications.

2.2 DATA DICTIONARY

One of the most important parts of an Oracle database is its data dictionary, which is a read-only set
of tables that provides information about the database. A data dictionary contains:

® The definitions of all schema objects in the database (tables, views, indexes, clusters, synonyms,
sequences, procedures, functions, packages, triggers, and so on)

® How much space has been allocated for, and is currently used by, the schema objects
®  Default values for columns

® Integrity constraint information

®  The names of Oracle users

®  Privileges and roles each user has been granted

®  Auditing information, such as who has accessed or updated various schema objects

®  Other general database information

The data dictionary is structured in tables and views, just like other database data. All the data
dictionary tables and views for a given database are stored in that database's sYSTEM tablespace.

Not only is the data dictionary central to every Oracle database, it is an important tool for all users,
from end users to application designers and database administrators. Use SQL statements to access the
data dictionary. Because the data dictionary is read-only, you can issue only queries (SELECT
statements) against it's tables and views.



26 Client Server Computing with Oracle M.S. University - D.D.C.E.

2.2.1 Structure of the Data Dictionary
The data dictionary consists of the following:
Base Tables

The underlying tables that store information about the associated database. Only Oracle should write
to and read these tables. Users rarely access them directly because they are normalized, and most of the
data is stored in a cryptic format.

User-Accessible Views

The views that summarize and display the information stored in the base tables of the data dictionary. These
views decode the base table data into useful information, such as user or table names, using joins and WHERE
clauses to simplify the information. Most users are given access to the views rather than the base tables.

2.2.2 How the Data Dictionary is used

The data dictionary has three primary uses:

® Oracle accesses the data dictionary to find information about users, schema objects, and storage
structures.

® Oracle modifies the data dictionary every time that a data definition language (DDL) statement is
issued.

®  Any Oracle user can use the data dictionary as a read-only reference for information about the database.

2.2.3 How Oracle uses the Data Dictionary

Data in the base tables of the data dictionary is necessary for Oracle to function. Therefore, only Oracle
should write or change data dictionary information. Oracle provides scripts to modify the data
dictionary tables when a database is upgraded or downgraded.

During database operation, Oracle reads the data dictionary to ascertain that schema objects exist and
that users have proper access to them. Oracle also updates the data dictionary continuously to reflect
changes in database structures, auditing, grants, and data.

For example, if user Kathy creates a table named parts, then new rows are added to the data
dictionary that reflect the new table, columns, segment, extents, and the privileges that Kathy has on
the table. This new information is then visible the next time the dictionary views are queried.

Public Synonyms for Data Dictionary Views

Oracle creates public synonyms for many data dictionary views so users can access them conveniently.
The security administrator can also create additional public synonyms for schema objects that are used
systemwide. Users should avoid naming their own schema objects with the same names as those used
for public synonyms.

Cache the Data Dictionary for Fast Access

Much of the data dictionary information is kept in the SGA in the dictionary cache, because Oracle
constantly accesses the data dictionary during database operation to validate user access and to verify the
state of schema objects. All information is stored in memory using the least recently used (LRU) algorithm.



M.S. University - D.D.C.E. Introduction to Oracle Server 27

Parsing information is typically kept in the caches. The COMMENTS columns describing the tables and
their columns are not cached unless they are accessed frequently.

Other Programs and the Data Dictionary

Other Oracle products can reference existing views and create additional data dictionary tables or
views of their own. Application developers who write programs that refer to the data dictionary
should refer to the public synonyms rather than the underlying tables: the synonyms are less likely to
change between software releases.

2.2.4 How to use the Data Dictionary

The views of the data dictionary serve as a reference for all database users. Access the data dictionary
views with SQL statements. Some views are accessible to all Oracle users, and others are intended for
database administrators only.

The data dictionary is always available when the database is open. It resides in the SYSTEM tablespace,
which is always online.

The data dictionary consists of sets of views. In many cases, a set consists of three views containing
similar information and distinguished from each other by their prefixes:

Table 2.1: Data Dictionary View Prefixes

Prefix Scope

USER User's view (what is in the user's schema)

ALL Expanded user's view (what the user can access)

DBA Database administrator's view (what is in all users' schemas)

The set of columns is identical across views, with these exceptions:

® Views with the prefix USER usually exclude the column OWNER. This column is implied in the
USER views to be the user issuing the query.

® Some DBA views have additional columns containing information useful to the administrator.

2.3 ORGANIZATION OF DATA IN ORACLE

The relational model has three major aspects:

Structures

Structures are well-defined objects that store the data of a database. Structures and the data contained
within them can be manipulated by operations.

Operations

Operations are clearly defined actions that allow users to manipulate the data and structures of a
database. The operations on a database must adhere to a pre-defined set of integrity rules.

Integrity Rule

Integrity rules are the laws that govern which operations are allowed on the data and structures of a
database. Integrity rules protect the data and the structures of a database.



28 Client Server Computing with Oracle M.S. University - D.D.C.E.

An ORACLE database has both a physical and a logical structure. By separating physical and logical
database structure, the physical storage of data can be managed without affecting the access to logical

storage structures.

Logical Database Structure

An ORACLE database’s logical structure is determined by:

®  One or more tablespaces.

e The database’s schema objects (e.g., tables, views, indexes, clusters, sequences, stored procedures).

The logical storage structures, including tablespaces, segments, and extents, dictate how the physical
space of a database is used. The schema objects and the relationships among them form the relational

design of a database.

Qracle Database
SYSTEM  SYSAUX  UNDO  USERS  TEMP
Tablespace Tablaspacs TYablespace Tablespass Yablespace
) -
Sicars
Physicat
Struchres
\ Y 2

EEREREREREREEE

Controt fie Pas:m Datafle  Datafie  Datafle  Deiafle  Tempfe Vas;:ord

meler
fie
Online Redo Logs
Fagh
Recovery *
| %
Archived Redo Logs

Figure 2.1: Oracle Database Storage Structures

2.3.1 Tablespaces and Data Files

Tablespaces are the primary logical storage structures of any ORACLE database. The usable data of an
ORACLE database is logically stored in the tablespaces and physically stored in the data files
associated with the corresponding tablespace. Figure 2.2 illustrates this relationship.

Although databases, tablespaces, data files, and segments are closely related, they have important differences:

Databases and Tablespaces

An ORACLE database is comprised of one or more logical storage units called tablespaces. The
database’s data is collectively stored in the database’s tablespaces.



M.S. University ~ D.D.C.E. Introduction to Oracle Server 29

Tablespaces and Data Files

Each tablespace in an ORACLE database is comprised of one or more operating system files called
data files. A tablespace’s data files physically store the associated database data on disk.

Databases and Data Files

A database’s data is collectively stored in the data files that constitute each tablespace of the database.
For example, the simplest ORACLE database would have one tablespace, with one data file. A more
complicated database might have three tablespaces, each comprised of two data files (for a total of six

- data files).

2.3.2 Schema Objects

When a schema object such as a table or index is created, its segment 1s created within a designated
tablespace in the database.

For example, suppose a table is created in a specific tablespace using the CREATE TABLE command
with the TABLESPACE option. The space for this table’s data segment is allocated in one or more of
the data files that constitute the specified tablespace. An object’s segment allocates space in only one
tablespace of a database.

o=

Figure 2.2: Data Files and Tablespaces

A database is divided into one or more logical storage units called tablespaces. A database
administrator can use tablespaces to do the following:

®  Control disk space allocation for database data.

®  Assign specific space quotas for database users.

®  Control availability of data by taking individual tablespaces online or offline.
® Perform p‘artial database backup or recovery operations.

®  Allocate data storage across devices to improve performance.



30 Client Server Computing with Oracle M.S. University - D.D.C.E.

Every ORACLE database contains a tablespace named SYSTEM, which is automatically created when
the database is created. The SYSTEM tablespace always contains the data dictionary tables for the entire
database. You can query these data dictionary tables to obtain pertinent information about the database;
for example, the names of the tables that are owned by you or ones to which you have access.

Data files associated with a tablespace store all the database data in that tablespace. One or more
datafiles form a logical unit of database storage called a tablespace. A data file can be associated with
only one tablespace, and only one database.

After a data file is initially created, the allocated disk space does not contain any data; however, the
space is reserved to hold only the data for future segments of the associated tablespace - it cannot store ‘
any other program’s data. As a segment (such as the data segment for a table) is created and grows in a
tablespace, ORACLE uses the free space in the associated data files to allocate extents for the segment.

The data in the segments of objects (data segments, index segments, rollback segments, and so on) in a
tablespace are physically stored in one or more of the data files that constitute the tablespace.

Note that a schema object does not correspond to a specific data file; rather, a data file is a repository
for the data of any object within a specific tablespace. The extents of a single segment can be allocated
in one or more data files of a tablespace (see Figure 2.3); therefore, an object can “span” one or more
data files. The database administrator and end-users cannot control which data file stores an object.

2.3.3 Data Blocks, Extents and Segments

ORACLE allocates database space for all data in a database. The units of logical database allocations
are data blocks, extents, and segments. Figure 2.4 illustrates the relationships between these data
structures.

Data Blocks

At the finest level of granularity, an ORACLE database’s data is stored in data blocks (also called
Jogical blocks, ORACLE blocks, or pages). An ORACLE database uses and allocates free database
space in ORACLE data blocks. Figure 2.4 illustrates a typical ORACLE data block.

Extents

The next level of logical database space is called an extent. An extent is a specific number of contiguous
data blocks that are allocated for storing a specific type of information.

Segments

The level of logical database storage above an extent is called a segment. A segment is a set of extents
which have been allocated for a specific type of data structure, and all are stored in the same tablespace.
For example, each table’s data is stored in its own data segment, while each index’s data is stored in its
own index segment. ORACLE allocates space for segments in extents. Therefore, when the existing
extents of a segment are full, ORACLE allocates another extent for that segment. Because extents are
allocated as needed, the extents of a segment may or may not be contiguous on disk, and may or may
not span files. An extent cannot span filés, though.



M.S. University - D.D.C.E. Introduction to Oracle Server 31

Tablespace

Database Blocks

i
- Hle

Database

Figure 2.3: The Relationship among Segments, Extents and Data Blocks

ORACLE manages the storage space in the data files of a database in units called data blocks. A data block
is the smallest unit of I/O used by a database. A data block corresponds to a block of physical bytes on
disk, equal to the ORACLE data block size (specifically set when the database is created - 2048). This block
size can differ from the standard /O block size of the operating system that executes ORACLE.

The ORACLE block format is similar regardless of whether the data block contains table, index, or
clustered data. Figure 2.4 shows the format of a data block.

Database Block

Common and Variable Header
Tahle Directory
Row Directory

Free Space

Row data

Figure 2.4: Data Block Format



32 Client Server Computing with Oracle M.S. University - D.D.C.E.

Header (Common and Variable)

The header contains general block information, such as block address, segment type, such as data,
index, or rollback. While some block overhead is fixed in size (about 107 bytes), the total block
overhead size is variable.

Table Directory
The table directory portion of the block contains information about the tables having rows in this block.

Row Directory

This portion of the block contains row information about the actual rows in the block {including
addresses for each row piece in the row data area). Once the space has been allocated in the row
directory of a block’s header, this space is not reclaimed when the row is deleted.

Row Data

This portion of the block contains table or index data. Rows can span blocks.

Free Space

Free space is used to insert new rows and for updates to rows that require additional space (e.g., when
a trailing null is updated to a non-null value). Whether issued insertions actually occur in a given data
block is a function of the value for the space management parameter PCTFREE and the amount of
current free space in that data block.

Space used for Transaction Entries

Data blocks allocated for the data segment of a table, cluster, or the index segment of an index can also
use free space for transaction entries.

Two space management parameters, PCTFREE and PCTUSED, allow a developer to control the use
of free space for inserts of and updates to the rows in data blocks. Both of these parameters can only be
specified when creating or altering tables and clusters (data segments). In addition, the storage
parameter PCTFREE can also be specified when creating or altering indices (index segments).

The PCTFREE parameter is used to set the percentage of a block to be reserved (kept free) for possible
updates to rows that already are contained in that block. For example, assume that you specify the
following parameter within a CREATE TABLE statement:

o DPctfree 20

This states that 20\% of each data block used for this table’s data segment will be kept free and
available for possible updates to the existing rows already within each block.

After a data block becomes full, as determined by PCTFREE, the block is not considered for the
insertion of new rows until the percentage of the block being used falls below the parameter
PCTUSED. Before this value is achieved, the free space of the data block can only be used for

updates to rows already contained in the data block. For example, assume that you specify the
following parameter within a CREATE TABLE statement:

o DPctused 40

In this case, a data block used for this table’s data segment is not considered for the insertion of
any new rows until the amount of used space in the blocks falls to 39\% or less (assuming that the
block’s used space has previously reached PCTFREE).



M.S. University - D.D.C.E. Introduction to Oracle Server 33

No matter what type, each segment in a database is created with at least one extent to hold its
data. This extent is called the segment’s initial extent.

If the data blocks of a segment’s initial extent become full and more space is required to hold new data,
ORACLE automatically allocates an incremental extent for that segment. An incremental extent is a
subsequent extent of the same or incremented size of the previous extent in that segment.

Every non-clustered table in an ORACLE database has a single data segment to hold all of its data.
The data segment for a table is indirectly created via the CREATE TABLE/SNAPSHOT command.

Storage parameters for a table, snapshot, or cluster control the way that a data segment’s extents
are allocated. Setting these storage parameters directly via the CREATE TABLE/SNAPSHOT/
CLUSTER or ALTER TABLE/SNAPSHOT/CLUSTER commands affects the efficiency of data

retrieval and storage for that data segment.

2.3.4 Physical Database Structure

An ORACLE database’s physical structure is determined by the operating system files that constitute
the database. Each ORACLE database is comprised of these types of files: one or more data files, two
or more redo log files, and one or more control files. The files of a database provide the actual physical
storage for database information.

Database Block
PCTFREE =20, PCTUSED =40

- |1, Rows areinserted up to
8% only, since PCTFREE
says that 20% of the hlock
must remain open for
wpdates of existing ruws.

. Updates to existing rows
may use the free space
reserved in the hlock. No
newrows can he mserted
into the block wntil the amount
of used space is 39% or less.

. After the amount of used
‘space falls helow 40%%, new |
rows can again be inserted |
into this block.

. Rows are inserted to
80% only, since PCTFREE
says that 20% of the hlock
must yentain open for
updates of existingrows.
This cycle continues ...

=R

Figure 2.5: Maintaining the Free Space of Data Blocks with
PCTFREE and PCTUSED



34 Client Server Computing with Oracle M.S. University - D.D.C.E.

Check Your Progress

Fill in the blanks:

1. Oracle uses the Internet File System, which is Java based application, which enables
database to become an Internet development platform.

2. The data dictionary is structured in tables and views, just like other database data.

3. The views that summarize and display the information stored in the base tables of the data
dictionary.

4. An ORACLE database is comprised of one or more logical storage units called tablespaces.

2.4 LET US SUM UP

An Oracle database is a collection of data treated as a unit. A database server is the key to solve the
problems of information management. A database server also prevents unauthorized access and
provides efficient solutions for failure recovery. The database has logical structures and physical
structures. Oracle stores records relating to each other in a table. A table consists of a number of
records. Each field occupies one column and each record occupies one row. Related tables are grouped
together to form a database. Every table in Oracle has a field or a combination of fields that uniquely
identifies each record in the table. This unique identifier is called the primary key, or simply the key.
A foreign key is a field or a group of fields in one table whose values match those of the primary key
of another table. The process of normalizing data breaks the data down into smaller and smaller tables
to reduce redundancy and make retrieving and managing that data more efficient.

2.5 KEYWORDS

Data Dictionary: The data dictionary is structured in tables and views, just like other database data.

Tablespaces: An ORACLE database is comprised of one or more logical storage units called tablespaces

Data Files: Each tablespace in an ORACLE database is comprised of one or more operating system

files called data files.

2.6 QUESTIONS FOR DISCUSSION

1. What is the importance of data dictionary in oracle?

2. Explain the relationship among Database, Tablespace and Data file.
3. Explain the terms:

(a) Data blocks

(b) Extents

(c) Segments

4. Discuss the use of schema object.



M.S. University - D.D.C.E. Introduction to Oracle Server 35

2.7 SUGGESTED READINGS
David Kreines and Brian Laskey, Oracle Database Administration: The Essential Reference, O’Reilly Media

Kent Crotty and Donald K. Burleson, Oracle Best Practices: Practical Standards for Success, Rampant Techpress
Fred D. Rolland , Relational Database Management with Oracle, Addison-Wesley

Robert G. Freeman and Steve Karam, Easy Oracle Jumpstart: Oracle Database Management Concepts and
Administration, Rampant Techpress

Steven Feuerstein, Bill Pribyl and Chip Dawes, Oracle PL/SQL Language, O’Reilly Media .
Bill Pribyl, Learning Oracle PL/SQL, O’Reilly Media
Steven Feuerstein , Oracle PL/SQL Programming, O’Reilly Media







UNIT II






LESSON

3

SQL

CONTENTS
3.0  Aims and Objectives
3.1 Introduction
32  BasicSQL
* 321 Oracle and SQL
3.3 SQL Language
3.3.1  Benefits of SQL
3.3.2  Database Objects
3.33  Object Naming Conventions
3.34  Data Types
34  DDL and DML Commands
3.4.1  Data Definition Language Commands
3.42  Data Manipulation Language Commands
3.43  Transaction Control Commands
3.5  Retrieving Data
3.6  Data Definition Language
3.6.1  Creating a Table
3.7  LetusSumup
3.8  Keywords
3.9  Questions for Discussion

3.10 Suggested Readings

3.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
e  Explain the concept of basic SQL
Discuss the SQL language

Describe the DDL and DML commands

Identify and explain the retrieving of data

Discuss the data definition language



40 Client Server Computing with Oracle M.S. University - D.D.C.E.

3.1 INTRODUCTION

A database would be of a very little use if users could not interact with it. Therefore, every DBMS
must provide some mechanism, perhaps a language and a set of software tools to allow users to submit
a request; an engine to process the request; and a mechanism to present the result back to the users.

In early days of DBMS technology, different vendors developed their own customized mechanisms
and tools for this purpose. However, over the years, the interaction languages have been standardized.
This chapter introduces perhaps the most popular database interaction language called - Structured
Query Language - or SQL.

3.2 BASIC SQL

SQL - Structured Query Language - is the basic tool for accessing data in a database. Mastering SQL is
the first and most important step you have to take to become a database expert. In recent years, the
SQL has left the mainframe and been extended to the desktop. Internet has also popularized this
language. Because of its appropriate structure for the client/server architecture, more and more
applications and pages that access relational databases are being created with the SQL language.

3.2.1 Oracle and SQL
SOL Language Basics

You will be able to perform most activities related to querying and manipulating a database by
learning just a few commands and functions.

The main commands and functions that will be discussed in this part are listed below:

Commands Functions
SELECT SUM ()
INSERT AVG )
DELETE MAX ()
UPDATE MIN ()
COMMIT COUNT ()
ROLLBACK SYSDATE )

Types of SQL Declaration

The SQL declarations, or commands, are divided into two major categories, according to their
functionality. There are the Data Definition Language (DDL) commands and Data Manipulation
Language (DML) commands.

Data Definition Language (DDL)

The DDL, or Data Definition Language, is a part of the SQL language used to define data and objects
in a database. When these commands are used, the Oracle data dictionary receives some entries. The
Data Definition Language is used to create an object (e.g., table), alter the structure of an object and
also to drop the object created. The concepts relating to Data Definition Language are explained in the
following paragraphs.



M.S. University - D.D.C.E. SQL 41

Table Definition

A table is a unit of storage that holds data in the form of rows and columns. The Data Definition
Language used for table definition can be classified into the following four:

® Create table command
o  Alter table command
® Truncate table command

® Drop table command

3.3 SQL LANGUAGE

Often pronounced as “sequel”, SQL is by far the most popular relational database query language.
Almost all the standard relational database management systems support SQL or some of its variants.

SQL is the set of commands that programs and users may use to access data within the database that
supports it. Application programs and database tools often allow users to access the database without
directly using SQL, however, these applications also translate the actions into SQL under the hood.

SQL has its root in the paper, “A Relational Model of Data for Large Shared Data Banks,” published
by Dr E. F. Codd in June 1970 in the Association of Computer Machinery (ACM) journal,
Communications of the ACM. Incidentally, the paper also contains Codd’s model, which is now
accepted as the definitive model for relational Database Management Systems.

In 1979, Relational Software, Inc., reincarnated as present day Oracle Corporation, introduced the first
commercially available implementation of SQL. Today, SQL is accepted as the standard RDBMS
language. The latest SQL standard by ANSI and ISO is often called SQL-92 and sometimes SQL2.

3.3.1 Benefits of SQL

SQL has now become de-facto query language in the relational database world. It has found
widespread acceptance by vendors as well as end users. The strengths of SQL benefit the entire range
of users including application programmers, database administrators, managers and end users. Some of
the benefits of SQL worth noting are described below.

In order that the SQL commands get executed to produce the desired result an SQL interpreter or
user-interface program is required. Almost every DBMS provides at least one such user-interface. For
example, ORACLE provides TSQL utility program that accepts your SQL commands and gets the
same executed on your behalf. :

Non-procedural

SQL is a non-procedural language in that the users do not have to specify how the SQL commands are
to be executed. SQL commands work like macros that have already been written for the users.

To illustrate the point, consider an example of listing all the records from a table - Student - in which
Marks column has value more than 60. A procedural language would works as follows:

1. Start
2. Open the table - Student



42 Client Server Computing with Oracle M.S. University - D.D.C.E.

3. While End-of-file has not been reached
% If marks > 60 then print record
% Move to next record

4. Close table

5. End

A non-procedural language is free from writing algorithms like one shown above. A single command
can do the job. Here is the SQL equivalent of the above listed algorithm.

SELECT * FROM STUDENT WHERE MARKS > 60;

Evidently, SQL processes sets of records in one go rather than just one at a time. Moreover, it provides
automatic navigation to the data set.

SQL provides easy-to-learn commands that are both consistent and applicable to all users. The basic
SQL commands can be learned in a few hours and even the most advanced commands can be mastered
in a few days.

Untfied Languages

SQL provides commands for a variety of tasks including:

Creating relational database objects like tables, views and indexes
Modifying and deleting relational database objécts

Querying database

Inserting, updating and deleting rows in a table

Creating, replacing, altering and dropping objects

Controlling access to the database and its object

Guaranteeing database consistency and language.
SQL unifies all the above tasks in one consistent language.
Common Language for All Relational Databases

Because all major relational database management systems support SQL, you can transfer all skills you
have gained with SQL from one database to another. In addition, since all programs written in SQL
are portable, they can often be moved from one database to another with very little modification.

Embedded SQL

Embedded SQL refers to the use of standard SQL commands embedded within a procedural
programming language. Embedded SQL is a collection of these commands.

The RDBMSs also provide pre-compilers that support embedded SQL. The SQL pre-compilers
interpret embedded SQL statements and translate them into statements that can be understood by
procedural language compilers. Some of the SQL pre-compilers (for example available with Oracle)
that translate embedded SQL programs into a different procedural language are:

® Pro*Ada precompiler

® Pro*C/C+* precompiler



M.S. University - D.D.C.E. SQL 43

Pro*COBOL precompiler
Pro*FORTAN precompiler

® Pro*Pascal precompiler

Pro*PL/I precompiler

3.3.2 Database Objects
RDBMS supports two types of data objects.

Schema Objects: A schema is a collection of logical structures of data, of schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a single schema. Schema
objects can be created and manipulated with SQL and include the following types of objects.

Cluster database links database triggers
Indexes Packaged sequences
Snapshots snapshot logs stored functions
stored procedures synonyms tables

Views

Non-schema Objects: Other types of objects are also stored in the database and can be created and
manipulated with SQL, but are not contained in a schema.

Profiles roles
rollback segments table spaces
Users

3.3.3 Object Naming Conventions
The following rules apply when naming objects:
e Names must be from 1 to 30 characters long with the following exceptions:

% Names of databases are limited to 8 characters. Names of database links can be as long as 128
characters.

+ Names cannot contain quotation marks.
e Names are not case-sensitive.

® A name must begin with an alphabetic character from your database character set unless
surrounded by double quotation marks.

® Names can only contain alphanumeric characters form your database character set and the
characters_, $ and#. You are strongly discouraged from using $ and #.

® If your database character set contains multi-byte characters, it is recommended that each name
for a user or a role contain at least one single-byte character.

®  Names of databases links can also contain periods (.) and ampersand (&).

¢ Columns in the same table or view cannot have the same name. However, column in different
tables or views can have the same name.



44 Client Server Computing with Oracle M.S. University - D.D.C.E.

® Procedures or functions contained in the same package can have the same name, provided that
their arguments are not of the same number and data types. Creating multiple procedures of
functions with the same name in the same package with different arguments is called overloading
the procedure or function.

Object Naming Guidelines

There are several helpful guidelines for naming objects and their parts:

®  Use full, descriptive, pronounceable names (or well-known abbreviations).
®  Use consistent naming rules.

®  Use the same name to describe the same entity or attributes across tables.

e When naming objects, balance the objective of keeping names short and easy to use with the
objective of making names as long and descriptive as possible. When in doubt, choose the more
descriptive name because many people may use the objects in the database over a period of time.

Your counterpart ten years from now may have difficulty in understanding a database with names
like PMDD instead of PAYMENT DUE DATE.

e Using consistent naming rules helps users to understand the part that each table plays in your
application. One such rule might be to begin the names of all tables belonging to the FINANCE
application with FIN .

® Use the same names to describe the same things across tables. For example, the department
number columns of the EMP and DEPT tables should both be named DEPTNO.
3.3.4 Data Types
The data types available with SQL are given in Tables 3.1.
Table 3.1: Data Types Summary

Internal Data type Description

VARCHAR? (size) Variable length character string having maximum length size bytes. Maximum size is 2000
and minimum is 1. You must specify size for a VARCHAR2.

NUMBER (p,s) Number having precision p and scale s. The precision p can range from 1 to 38. The scale s
can range from 84 to 127.

LONG Character data of variable length up to 2 gigabytes, or 231-1 bytes.

DATE Valid data range from January 1,4712 BC to December 31, 4712 AD.

RAW(size) Raw binary data of length size bytes. Maximum size is 255 bytes. You must specify size of a
RAW value. ]

LONG RAW Raw binary data of variable length up to 2 gigabytes.

ROWID(see note below) | Hexadecimal string representing the unique address of a row in its table. This data type is
primarily for values returned by the ROWID pseudocolumn.

CHAR (size) Fixed length character data of length size byte. Maximum size is 255. Default and minimum
size is 1 byte.

MLSLABEL Binary format of an operating system lable. This data type is used with Trusted Oracle7.




M.S. University - D.D.C.E. SQL 45

Character Data Types

Character data types are used to manipulate words and free-form text. These data types are used to
store character (alphanumeric) data in the database character set. They are less restrictive than other
data types and consequently have fewer properties. For example, character columns can store all

alphanumeric values, but NUMBER columns can only store numeric values. These data types are used
for character data CHAR, VARCHAR?2.

CHAR Data Type

The CHAR data type specifies a fixed length character string. When you create a table with a CHAR
column, you can supply the column length in bytes. RDBMS subsequently ensures that all values
stored in that column have this length. If you insert a value that is shorter than the column length,
RDBMS blank-pads the value to column length. If you try to insert a value that is too long for the
column, RDBMS returns an error. The default for a CHAR column is 1 character and the maximum
allowed is 255 characters. A zero-length string can be inserted into CHAR column, but the column is
blank-padded to 1 character when used in comparisons.

e VARCHAR?2 Data Type

The VARCHAR?2 data type specifies a variable length character string. When you create a
VARCHAR2? column, you can supply the maximum number of bytes of data that it can hold.
RDBMS subsequently stores each value in the column exactly as you specify it, provided it does
not exceed the column’s maximum length.

® VARCHAR Data Type

The VARCHAR data type is currently synonymous with the VARCHAR?2 data type. It is
recommended that you use VARCHAR2 rather that VARCHAR. In a future version of RDBMS,
VARCHAR might be a separate data type used for variable length character strings compared
with different comparison semantics.

NUMBER Data Type

The NUMBER data type is used to store zero, positive and negative fixed and floating point numbers
with magnitudes between 1.0x10® and 9.9x10' (38 9s followed by 88 Os) with 38 digits of precision.

DATE Data Type

The DATE data type is used to store data and time information. Although data and time information
can be represented in both CHAR and NUMBER data types, the DATE data type has special
associated properties.

For each DATE value the following information is stored:
Century, year, month, day, hour, minute and second

To specify date value, you must convert a character or numeric value to data value with the
TO_DATE function. RDBMS automatically converts character values that are in the default date
format into date values when they are used in date expressions. The default date format is specified by
the initialization parameter NLS DATE_FORMAT and is a string such as ‘DD-MON_YY’. This
example date format includes a two-digit number for the day of the month, an abbreviation of the
month name and the last two digits of the year.



46 Client Server Computing with Oracle M.S. University - D.D.C.E.

If you specify a date value without a time component, the default time is 12:00 a.m. (midnight). If you
specify a date value without a date, the default date is the first day of the current month. The date
function SYSDATE returns the current data and time.

RAW and LONG RAW Data Types

The RAW and LONG RAW data types are used for data that is not to be interpreted (not converted
when moving data between different systems) by RDBMS. These data types are intended for binary
data or byte strings. For example, LONG RAW can be used to store graphics, sound, documents or
areas of binary data; the interpretation is dependent on the use.

ROWID Data Type

Each row in the database has an address. You can examine a row’s address by querying the
pseudocolumn ROWID. Values of this pseudocolumn are hexadecimal strings representing the address
of each row. These strings have the data type ROWID. You can also create tables and clusters that
contain actual columns having the ROWID data type. RDBMS does not guarantee that the values of
such columns are valid ROWIDs.

MLSLABEL Data Type

The MLSLABEL data type is used to store the binary format a label used on a secure operating system.
Labels are used by SQL to mediate access to information. You can also define columns with this data
type if you are using the standard SQL server.

Nulls

If a column or in a row has no value, then column is said to be null, or to contain a null. Nulls can
appear in columns of any data type that are not restricted by NOT NULL or PRIMARY KEY
integrity constraints. Use a null when the actual value is not known or when a value would not be
meaningful. Do not use null to represent a value of zero, because they are not equivalent. Any
arithmetic expression containing a null always evaluates to null. For example, null added to 10 is null.
In fact, all operators (except concatenation) return null when given a null operand.

Tables

All data in a relational database is stored in tables. Every table has a table name and a set of columns and
rows in which the data is stored. Each column is given a column name, a data type (defining
characteristics of the data to be entered in the column). Usually in a relational database, some of the
columns in different tables contain the same information. In this way, the tables can refer to one another.

For example, you might want to create a database containing information about the products your
company manufactures. In a relational database, you can create several tables to store different pieces
of information about your products, such as an inventory table, a manufacturing table and a shipping
table. Each table would include columns to store data appropriate to the table (for example, the
inventory table would include a column showing how much stock is on hand) and a column for the
product’s part number.

Views

A view is customized presentation of the data from one or more tables. Views derive their data from
the tables on which they are based, which are known as base tables. All operations performed on a
view actually affect the base tables of the view. You can use views for several purposes:



M.S. University - D.D.C.E. SQL 47

To give you an additional level of table security by restricting access to a predetermined set of table
rows and columns. For example, you can create a view of a table that does not include sensitive data
(.e., salary information).

To hide data complexity, relational databases usually include many tables and by creating a view
combining information from two or more tables, you make it easier for other users to access
information from your database. For example, you might have a view that is a combination of your
Employee table and Department table. A user looking at this view, which you have called emp_dept,
only has to go to one place to get information, instead of having to access the two tables that make up
this view.

To present the data in a different perspective from that of the base table: View provides a means to
rename columns without affecting the base table. For example, to store complex queries, a query
might perform extensive calculations with table information. By saving this query as a view, the
calculations are performed only when the view is queried.

Indexes

An index is used to quickly retrieve information from a database project. Just as indexes help you
retrieve specific information faster, a database index provides faster access to table data. Indexing
creates an index file consisting of a list of records in a logical record order, along with their
corresponding physical position in the table. You can use indexes to rapidly locate and display records,
which is especially important with large tables, or with database composed of many tables.

Indexes are created on one or more columns of a table. Once created, an index is automatically
maintained and used by the relational database. Changes to table data (such as adding new rows, or
deleting rows) are automatically incorporated into all relevant indexes.

To understand how an index works, suppose you have created an employee table containing the first
name, last name an employee ID number of hundreds of employees, and that you entered the name of
each employee into the table as they were hired. Now, suppose you want to locate a particular record
in the table. Because you entered information about each employee in no particular order, the DBMS
must do a great deal of database searching to find the record.

If you create an index using the LAST-NAME column of your employee table, the DBMS has to do
much less searching and can return the results of a query very quickly.

3.4 DDL AND DML COMMANDS

SQL provides a large number of commands for user-interaction. For convenience all these commands
are put under three categories:

® Date Definition Language commands
®  Data Manipulation Language commands

® Transaction Control commands

3.4.1 Data Definition Language Commands

Data Definition Language (DDL) commands allow users to create and/or modify various database
objects that make a database. In particular they perform the following tasks:



48 Client Server Computing with Oracle

e Create objects

M.S. University - D.D.C.E.

®  Alter or modify objects

® Drop or delete objects

®  Grant and revoke privileges and roles

e  Analyze information on a table or index

e  Establish auditing options

The CREATE, ALTER and DROP commands require exclusive access to the object being acted upon.
For example, an ALTER TABLE command fails if another user has an open transaction on the

specified table.

The GRANT, REVOKE, ANALYSE, AUDIT and COMMENT commands do not require exclusive
access to the object being acted upon. For example, you can analyze a table while other users are

updating the table.

The following Table 3.2 shows the Data Definition Language Commands arranged alphabetically.

Table 3.2: Data Definition Language Commands

Command Purpose

Alter Function To recompile a stored function.

Alter Index To redefine an index’s future storage allocation.

Alter Package To recompile a stored procedure.

Alter Procedure To recompile a stored procedure.

Alter Profile To add or remove a resource limit to or from a profile.

Alter Resource Cost To specify a formula to calculate the total cost of resources used by a session.

Alter Role To change the authorization needed to access a role.

Alter Rollback Segment To change a rollback segment’s storage characteristics, automatic refresh time, or automatic
refresh mode.

Alter Snapshot Log To change a snapshot log’s storage characteristics.

Alter Table To add a column/integrity constraint to a table. To redefine a column, to change a table’s
storage characteristics. To enable/disable/drop an integrity constraint. To enable/disable
table locks on a table. To enable/disable all triggers on a table. To allocate an extent for the
table. To allow/disallow writing to a table. To modify the degree of parallelism for a table.

Alter Tablespace To add/rename data files. To change storage characteristics. To take a tablespace on-
line/off-line. To begin/end a back up. To allow/disallow writing to a tablespace.

Alver Trigger To enable/disable a database trigger.

Alter User To change a user’s password, default tablespace, temporary tablespace, tablespace quotas,
profile, or default roles.

Alrer View To recompile a view.

Analyze To collect performance statistics, validate structure, or identify chained rows for a table,
cluster, or index.

Audit To choose auditing for specified SQL commands or operation on schema objects.

Comment To add a comment about a table, view, snapshot, or column to the data dictionary.

Create Control File To recreate a control file.

Create Database To create a database

Contd....



M.S. University - D.D.C.E.

SQL 49

Create Database Link To create a link to a remote database.

Create Function To create a stored function.

Create Index To create an index for a table or cluster.
Create Package To create the specification of a stored package.
Create Package Body To create the body of a stored package.

Create Procedure

To create a stored procedure.

Create Profile

To create a profile and specify its resource limits.

Create Role

To create a role.

Create Rollback Segment

To create a rollback segment.

Create Schema

To issue multiple CREATE TABLE, CREATE VIEW and GRANT statements in a single

transaction.

Create Sequence

To create a sequence for generating sequential values.

Create Snapshot

To create a snapshot of data from one or more remote master tables.

Create Snapshot Log

To create a snapshot log containing changes made to the master table of a snapshot.

Create Synonym

To create a synonym for a schema object.

Create Table

To create a table, defining its columns, integrity constraints and storage allocation.

Create Tablespace

To create a place in the database for storage of schema objects, rollback segments and
temporary segments, naming the data files to comprise the tablespace.

Create Trigger

To create a database trigger.

Create User

To create a database user.

Create View

To define a view of one or more tables or views.

Drop Cluster

To remove a cluster from the database.

Drop Database Link

To remove a database link.

Drop Function

To remove a stored function from the database.

Drop Index

To remove an index from the database.

Drop Package

To remove a stored package from the database.

Drop Procedure

To remove a stored procedure from the database.

Drop Profile

To remove a profile from the database.

Drop Role

To remove a role from the database.

Drop Sequence

To remove a sequence from the database,

Drop Snapshot To remove a snapshot from the database

Drop Snapshot Log To remove a snapshot log from the database.

Drop Synonym To remove a synonym from the database.

Drop Table To remove a table from the database.

Drop Tablespace To remove a tablespace from the database.

Drop Trigger To remove a trigger from the database

Drop User To remove a user and the objects in the user’s schema from the database.

Drop View To remove a view from the database.

Grant To grant system privileges, roles and object privileges to users and roles.
Noaudit To disable auditing by reversing, partially or completely, the effect of a prior AUDIT statement.
Rename To change the name of a schema object.

Revoke To revoke system privileges, roles and object privileges from users and roles.
Truncate To remove all rows from a table or cluster and free the space that the rows used.




50 Client Server Computing with Oracle M.S. University - D.D.C.E.

3.4.2 Data Manipulation Language Commands

Data Manipulation Language (DML) commands allow users to query and manipulate data in existing
schema objects. These commands implicitly commit the current transaction. These commands are
listed in the following table.

Table 3.3: Data Manipulation Language Commands

Command Purpose
DELETE To remove rows from a table.
EXPLAIN PLAN To return the execution plan for a SQL statement.
INSERT To add new rows to a table.
LOCK TABLE To lock a table or view, limiting access to it by other users.
SELECT To select data in rows and columns from one or more tables.
UPDATE To change data in a table.
3.4.3 Transaction Control Commands

Transaction Control Commands manage changes made by Data Manipulation Language commands.
These commands are listed in the following table.

Table 3.4: Transaction Control Commands

Command Purpose

COMMIT To make permanent the changed made by statements issued at the beginning of a transaction.
ROLLBACK To undo all changes since the beginning of a transaction or since a savepoint.

SAVEPOINT To establish a point back to which you may roll.

SET TRANSACTION To establish properties for the current transaction.

When writing SQL commands, it is important to remember a few simple rules and guidelines in order
to construct valid statements that are easy to read and edit:

SQL commands may be spread on one or many lines

Clauses are usually placed on separate lines for enhancing readability though it is not necessary
Tabulation can be used

Command words cannot be split across lines

SQL commands are not case sensitive

An SQL command is entered at the SQL prompt. The SQL prompt acts as command line buffer.
Execution takes place only when the statement is delimited by a semi-colon (;).

Only one statement can be current at any time within the buffer and it can be run in a number of ways:
% Place a semi-colon (;) at the end of last clause

%  Place a semi-colon/forward slash on the last line in the buffer

%  Place a forward slash at the SQL prompt

% Issue a RUN command at the SQL prompt



M.S. University - D.D.C.E.

Any one of the following statements is valid:

® Select * From EMP;

o Select

*

From

EMP

.
b

® Select *

FROM EMP;

SQL 51

3.5 RETRIEVING DATA

SQL can run through the stored tables and fetch the desired data stored therein. The command that
makes this happen for the user is SELECT command. SELECT command is very powerful. In the
simplest form SELECT command retrieves the data from one or more tables stored in the database.
There are a number of different options that can be attached to SELECT command to retrieve data
from the underlying tables. Let us juggle with some of the forms of the SELECT command.

We will assume that our database contains the following table named EMP.

Retrieving the entirve Table

SELECT * FROM tablename;

This form of SELCT command outputs the all the columns of all the records (or rows or tuples) of the

specified table (tablename).

Let us fire (SELECT *) SQL commands on EMP table.
SELECT * FROM emp;

This command will list the entire content of the table - EMP, as shown below.

sqQL>

7902

select = from emp;

UIBHOR
ANIL
RAKESH
KIRAN
RAJAN
PRASHANT
MINU
SUNIL
RAMESH
AMAN
SUDHA

NILU

7934 VINOD

13 rows selected.

SQL>

MANAGER
SALESHAN
MANAGER
MANAGER
ANALVST
SALESMAN
CLERK
CLERK

ANALYST
CLERK

13-JUN-83
15-AUG-83
26-MAR-84
31-0CT-83
15-DEC-08
11-JUN-84
14-MAY-84
85-MAR-84
84-JUN-84
84-JUN-84
23-JUL-84

05-DEC-83
21-NOU-83

SAL COMM DEPY
880 0 28
1600 300 30
1256 500 30
4500 8 20
1125 800 39
5aa0 8 30
5568 8 18
3300 8 20
2660 1200 38
1575 0 28
16008 0 38
3400 8 28
1860 e 1o



52 Client Server Computing with Oracle M.S. University - D.D.C.E.

Note that the columns appear in the order in which they are stored in the original table. Besides the
number of rows affected by the command are also displayed in the end (13 rows selected).

Retrieving Specified Columns
SELECT Coli, Col2,...... FROM tablename;

This form of SELECT command retrieves all the rows of only the specified columns in the order of
their appearance in the command. Thus, the following command,

SELECT ename, mgr, empno FROM emp;

This form of SELECT command outputs the three columns of all the rows in the order given in the
command, as shown below.

3QL> SELECT ename, mgr, empno FROM emp;

ENAME MGR EMPN
UIBHOR 7566 7369
ANIL 7782 7499
RAKESH 7698 7521
KIRAN 7566 7566
RAJAN 7566 7654
PRASHANT 7698 7698
MINU 7782 7782
SUNIL 7566 7788
RAMESH 7782 784y
AMAN 7698 7876
SUDHA 7566 7900
ENAME MGR EHMPN
NILU 7698 7982
UINDD 7566 7934

13 rouws selected.
sqL>
Retrieving Rows Satisfying a given Condition

SELECT command can be used to display only those rows that satisfy a given condition. A condition
is a logical expression that results into one of the two possible values - TRUE or FALSE.

The condition is included in the SELECT command in the WHERE clause. The syntax of this form of
the SELECT command is,

SELECT [*] [columns] FROM tablename WHERE condition;

For example to list all the columns of all the rows wherein SAL is more than 2000.00, the following
SELECT command will be applied.

SELECT * FROM emp WHERE sal > 2000.00;



M.S. University - D.D.C.E. SQL 53
The result is shown below.
Conditional Operators
Operators Category Operator Meaning Remarks
Comparison Operators < Is less than
= Is equal to
> Is greater than
<> Is not equal to
<= Is less than or equal to
>= Is greater than or equal to
NULL Comparison ISNULL Whether or not the argument is NULL
ISNOTNULL | Whether or not the argument is NULL
Similarity Comparison LIKE Whether or not matches with the given pattern
Range Comparison BETWEEN Whether or not lies between given values
Set Inclusion IN Whether the value exists in the given set

The rows selected satisfy the condition that SAL is more than 2000.00.

A conditional expression is formed using one or more logical operators. Various valid conditional

(or Boolean) operators applicable in SQL are listed below. The details are discussed later.

These operators are applicable on all the built-in data t
both of same data type.

ypes provided the values being compared are

Two conditional expressions can be combined to form a compound conditional expression with the

help of relational operators. There are three relational operators -
condition evalues to TRUE or FALSE depending on the truth va

operators. Assume that A and B are two conditional expression, then,

Truth Table of Relational Operators

AND A B A AND B
TRUE | TRUE TRUE
TRUE | FALSE FALSE
FALSE | TRUE FALSE
FALSE | FALSE FALSE

OR A B A OR B
TRUE | TRUE TRUE

Contd....

NOT, OR and AND. A compound
lue of the operands of the relational




54 Client Server Computing with Oracle

M.S. University - D.D.C.E.

TRUE | FALSE TRUE

FALSE | TRUE FALSE

FALSE | FALSE FALSE

NOT A NOT A

TRUE | FALSE

FALSE | TRUE

Following examples will explain this concept clearly.

Comparison Operators

1.

Obtain all the rows (and all the columns) in which SAL is more than 2000 but less than 5000.

SQL> SELECT = FROM emp WHERE sal > 2080 AND sal < 5008;

EMPN ENAME Jos MGR DOJ SAL COMM DEPT
7566 KIRAN MANAGER 7566 31-0CT-83 4500 8 2@
7788 SUNIL ANALYST 7566 05-MAR-84 3300 8 290
7844 RAMESH SALESMAN 7782 04-JUN-84 2608 126806 30
7962 NILU ANALYST 7698 05-DEC-83 3400 0 290
sQuL>

Obtain all the rows (and all the columns) in which SAL is either less than 5000 or equal to 5000.
SQL> select » from emp where sal <= 5000;

EMPN ENAME

7369 UVIBHOR
7499 ANIL
7521 RAKESH
7566 KIRAN
7655 RAJAN
7698 PRASHANT
7788 SUNIL
7844 RAMESH
7876 AMAN
7980 SUDHA
7982 NILU

JOB MGR DOJ saL COMM DEPT
CLERK 7566 13-JUN-83 (1 1] 0 20
SALESHAN 7782 15-AUG-83 1600 300 36
SALESHAN 7698 26-MAR-84 12589 5088 30
MANAGER 7566 31-0CT-83 4500 820
SALESMAN 7566 15-DEC-08 1125 800 30
MANAGER 7698 11-JUN-84 50800 0 30
ANALYST 7566 05-MAR-84 3308 0 26
SALESHAN 7782 04-JUN-84 2600 1288 30
CLERK 7698 O4-JUN-84 1575 0 20
CLERK 7566 23-JUL-84 1600 8 30
ANALYST 7698 05-DEC-83 3400 8 20

The same can also be written in the following manner.

sqL>

select * from emp where sal < 5000 or sal = 5000;

ENAKME JoB MGR DOJ SAL COHM DEPT
UIBHOR CLERK 7566 13-JUN-83 860 8 29
ANIL SALESHAN 7782 15-AUG-83 1600 300 30
RAKESH SALESHAN 7698 26-MAR-8u4 1258 588 30
KIRAN MANAGER 7566 31-0CT-83 4500 8 20
RAJAN SALESHAN 7566 15-DEC-08 1125 800 38
PRASHANT MANAGER 7698 11-JUN-84 5600 @ 3@
SUNIL ANALYST 7566 05-MAR-84 3300 0 298
RAMESH SALESHAN 7782 04-JUN-8h 2600 12060 306
AMAN CLERK 7698 B4-JUN-84 1575 8 20
SUDHA CLERK 7566 23-JUL-84 1600 8 30
NILU ANALYST 7698 65-DEC-83 . 3400 8 20



M.S. University - D.D.C.E.

SQL 55

In this form we have used compound conditional rather than simple conditional expression. In all

the rows selected the condition is satisfied.

3. Obtain all the employees who have earned some commission.

SQL> select * from emp where comm <> a;

MGR DOJ

co

MM DEPT

7844 RAMESH

sqQL>

SALESHAN
SALESHAN
SALESMAN
SALESHAN

7782 15-AUG-83
7698 26-MAR-84
7566 15-DEC-068
7782 B4-JUN-84

4. Obtain all the employees working in the department (30).

30L> select = from emp where deptno = '39'

EMPN ENAME

12

06 38

7698 PRASHANT
7844 RAMESH
7988 SUDHA

6 rows selected.

SALESHAN
SALESHAN
SALESHMAN
MANAGER
SALESMAN
CLERK

7782 15-AUG-83
7698 26-MAR-84
7566 15-DEC-08
7698 11-JUN-84
7782 94-JUN-84
7566 23-JUL-84

Note, since DEPTNO is char data type the comparison value should also be char type. Enclosing
characters within single quotes ( and ) makes the character string char type. However, some
implementations of SQL carry out limited data type conversion automatically. Thus, in
ORACLE implementation of the SQL the following will yield same result.

5. Obrtain all the employees who are SALESMAN and work in department No. 30.

sqQL> select » from emp where deptno = 30;

EMPN ENAME

MGR DOJ

7698 PRASHANT
7844 RAMESH
7980 SUDHA

6 rows selected.

sqL>

SALESMAN
SALESHAN
SALESHAN
MANAGER
SALESHAM
CLERK

7782 15-AUG-83
7698 26-MAR-84
7566 15-DEC-08
7698 11-JUN-84
7782 04-JUN-84
7566 23-JUL-84

SQL> select = from emp where job='SALESHAN' and deptno='38";

EMPN ENAME

MGR DOJ

Obtain all the employees who are not SALESMAN and who work in department No. 30.

COMM DEPT

7499 ANIL

7521 RAKESH
7654 RAJAN
7844 RAMESH

SALESHAN
SALESHAN
SALESHAN
SALESMAN

7782 15-AUG-83
7698 26-MAR-84
7566 15-DEC-08
7782 B4-JUN-84



56 Client Server Computing with Oracle

7.

8.

M.S. University ~ D.D.C.E.

Obtain all the employees whose total income (sal + comm.) is more than 1700.

SQL> select = From.emp where sal+comm > 17080;

EMPN ENAME Jos

7599 ANIL SALESHAN
7521 RAKESH SALESHAN
7566 KIRAN MANAGER
7654 RAJAN SALESHAN
7698 PRASHANT MANAGER
7782 MINU MANAGER
7788 SUNIL ANALYST
7844 RAMESH SALESHAN
7962 NILU ANALYST
7934 VINOD CLERK

18 rows selected.

COMM DEPT

15-AUG-83
26-HAR-84
31-0CT-83
15-DEC-968
11-JUN-84
14-MAY-84
05-MAR-84
84-JUN-84
05-BEC-83
21-NOU-83

Obtain all the employees’ name and total salary (sal + comm.).

SQL> select ename,sal+conm from emp;

UIBHOR
ANIL
RAKESH
KIRAN
RAJAN
PRASHANT
MINU
SUNIL

SAL+COMM

1600

Notice, that the column name is displayed as SAL+COMM. If you wish to display a more
meaningful column name you can specify that as in the following.

It is possible to include the following items in the SELECT Clause.

SQL> select ename,sal+comm as Total from enp;

UIBHOR
ANIL
RAKESH
KIRAN
RAJAN
PRASHANT
MINU
SUNIL
RAMESH
AMAN
SUDHA

Arithmetic expressions

Column aliases

Concatenated columns

Literals



M.S. University - D.D.C.E. ' SQL 57
All these options allow the user to query data, manipulate it for query purposes; for example,
performing calculations, joining columns together, or displaying literal text strings.

Arithmetic Expressions

An expression is a combination of one or more values, operators and functions, which evaluate to a value.

Arithmetic expressions may contains column names, constant numeric values and the arithmetic operators:

OPERATORS DESCRIPTION
+ Add

- Subtract

* Multiply

/ Divide

If your arithmetic expression contains more than one operator, the priority is given to *, /first, the +,
- second (left to right if there are several operators with the same priority).

For example, the following command
SELECT ename, sal + 250 * 12 FROM emp;
will yield the following result.

SQL> SELECT ename, sal + 250 * 12 FROM emp;

ENAME SAL+250%12
UIBHOR 3800
ANIL 4600
RAKESH 4258
KIRAN 7500
RAJAN 4125
PRASHANT 8geo
MINY . 8500
SUNIL 6360
RAMESH 5608
AMAN 4575
SUDHA 4600
ENAME SAL+250=12
NILU 6400
UINOD 4800

13 rows selected.
Column Aliases

When displaying the result of a query, SQL normally uses the selected column’s name as the heading.
In many cases it may be cryptic or meaningless, you can change a column’s heading by using an Alias.

A column alias gives a column an alternative heading on output. Specify the alias after the column in
the select list. By default, alias headings will be forced to uppercase and cannot contain blank spaces,
unless the alias in enclosed in double quotes (“ ©).

To display the column heading ANNSAL for annual salary instead of SAL*12, use a column alias:
SELECT ename, sal * 12 ANNSAL From emp;

The result is shown below. Note this time ANNSAL is the column name instead of
Sal * 12. Once defined, an alias can be used with other SQL commands.



58 Client Server Computing with Oracle

SOL> SELECT ename, sal = 12 ANNSAL From emp;

ENAME ANNSAL
UIBHOR 9600
ANIL 19200
RAKESH 15000
KIRAN 54008
RAJAN 13500
PRASHANT 60000
MINU 660800
SUNIL 39600
RAMESH 31200
AMAN 18900
SUDHA 192488
ENAME ANNSAL
NILU L0800
UINGD 21600

13 rows selected.

M.S. University - D.D.C.E.

However, within an SQL statement, a column alias can only be used with the SELECT clause.

Literals

A literal is any character, expression, number included on the SELECT list which is not a column

name or a column alias.

A literal in the SELECT list is output for each row returned. Literal strings of free formal text can be

included in the query result and are treated like a column in the select list.

The following statement contains literal selected with concatenation and a column alias:

SELECT EMPLOYEE ENAME, “’, ‘Works in department-’, DEPTNO FROM EMP;

The result is shown below.

EMPLOYEE

VIBHOR-Works in department-20

ANIL-Works in department-30

RAKESH-Works in department-30

KIRAN-Works in department-20

RAJAN-Works in department-30

PRASHANT-Works in department-30

MINU-Works in department-10

SUNIL-Works in department-20

RAMESH-Works in department-30

AMAN- Works in department-20

SUDHA-Works in department-30

NILU-Works in department-20

VINOD-Works in department-10




M.S. University - D.D.C.E. SQL 59

Handling Null Values

If a row lacks a data value for a particular column, that value is said to be NULL. A null value is a
value, which is either unavailable, unassigned, unknown or inapplicable. A null value is not the same

as zero. Zero is a number. Null values take up one byte of internal ‘storage’ overhead. Null Values are
Handled Correctly by SQL. :

If any column value in an expression is null, the result is null. In the following statement, only
Salesmen have a remuneration result:

SELECT ENAME, SAL * 12 + COMM ANNUAL SAL FROM EMP;

ENAME -
VIBHOR
ANIL
RAKESH
KIRAN
RAJAN
PRASHANT
MINU
SUNIL
KING
RAMESH
AMAN
SUDHA
NILU
VINOD

ANNUAL SAL

19500
15500

16400

18000

In order to achieve a result for all employees, it is necessary to convert the null value to a number. We
use the NVL function to convert a null value to a non-null value.

Use the NVL function to convert null values from the previous statement to zero.
SELECT ENAME, SAL*12 + NVL(COMM, 0) ANNUAL_SAL FROM EMP;

The result is shown below.

ENAME ANNUAL SAL
VIBHOR 9600

ANIL 19500

RAKESH 155500

KIRAN 35700

RAJAN 16400
PRASHANT 34200

MINU 29400

SUNIL 36000

KING 60000

Contd.....




60 Client Server Computing with Oracle M.S. University - D.D.C.E.

RAMESH 18000
AMAN 13200
SUDHA 11400
NILU 36000
MILLER 15600

NVL expects two arguments - an expression and a non-null value. Note that you can use the NVL
function to convert a null number, date or even character string to another number, date or character
string, as long as the data types match.

NVL (Date column, *01-jan-88’)

NVL (Number column, 9)

NVL (char column, ‘string’)
Preventing the Selection of Duplicate Rows

Unless you indicate otherwise, SQL displays the result of query without eliminating duplicate entries.
For instance, the following query,

SELECT DEPTNO FROM EMP;

produces the following result.

DEPTNO
20
30
30
20
30
30
10
20
10
30
20
30
20
10

To eliminate duplicate values in the result, include the DISTINCT qualifier in the SELECTcommand
as follows. :

SELECT DISTINCT DEPTNO FROM EMP;

This time the result will not contain duplicate values.

DEPTNO
20
30
10




M.S. University ~ D.D.C.E.

Multiple columns may be specified after the DISTINCT qualifier and the DISTINCT affects all

selected columns.

To display distinct values of DEPTNO and JOB, enter:
SELECT DISTINCT DEPTNO, JOB FROM EMP;

The result is given below.

Ordered by Clause

This displays a list of all different combinations of jobs and department numbers. The order of rows
returned in a query result is undefined. The ORDER BY clause may be used to sort the rows. If used,

DEPTNO JOB
10 CLERK

10 MANAGER
10 PRESIDENT
20 ANALYST
20 CLERK

20 MANAGER
30 CLERK

30 MANAGER
30 SALESMAN

ORDER BY must always be the last clause in the SELECT statement.
To sort by ENAME, enter:

SELECT -ENAME, JOB, SAL, DEPTNO FROM EMP ORDER BY ENAME;

The result is shown below.

ENAME JOB SAL DEPTNO
AMAN CLERK 1,100.00 20
ANIL SALESMAN 1,600.00 30
KIRAN MANAGER 2,975.00 20
MINU MANAGER 2,450.00 10
NILU ANALYST 3,000.00 20
PRASHANT MANAGER 2,850.00 30
RAJAN SALESMAN 1,25.00 30
RAKESH SALESMAN 1,250.00 30
RAMESH SALESMAN 1,500.00 30
SUDHA CLERK 950 30
SUNIL ANALYST 3,000.00 20
VIBHOR CLERK 800 20
VINOD CLERK 1,300.00 10

The default sort order is ASCENDING which defines the following sort order.

® Numeric values lowest first

® Date values earliest first

®  Character values alphabetically (a to z)




62 Client Server Computing with Oracle

M.S. University - D.D.C.E.

To reverse the order, the command word DESC is specified after the column name in the ORDER BY

clause.

To reverse the order of the DOJ column, so that the latest dates are displayed first, enter:

SELECT ENAME, JOB, DOJ FROM EMP ORDER BY DO]J DESC;

ENAME JOB DOJ
SUDHA CLERK 23-Jul-84
PRASHANT MANAGER 11-Jun-84
RAMESH SALESMAN 4-Jun-84
AMAN CLERK 4Jun-84
MINU MANAGER 14-May-84
RAKESH SALESMAN 26-Mar-84
SUNIL ANALYST 5-Mar-84
RAJAN SALESMAN 5-Dec-83
NILU ANALYST 5-Dec-83
VINOD CLERK 21-Nov-83
KIRAN MANAGER 31-Oct-83
ANIL SALESMAN 15-Aug-83
VIBHOR CLERK 13-Jun-83

It is possible to ORDER BY more than one column. The limit is the number of columns on the table.
In the ORDER BY clause, specify the columns to order by separated commas. If any or all are to be
reversed, specify DESC after any or each column.

To order by two columns and display in reverse order of salary, enter:
SELECT DEPTNO, ENAME, JOB, SAL FROM EMP ORDER BY DEPTNO, SAL DESC;

The result is shown below.

DEPTNO ENAME JOB SAL

10 MINU MANAGER 2,450.00
10 VINOD CLERK 1,300.00
20 SUNIL ANALYST 3,000.00
20 NILU ANALYST 3,000.00
20 KIRAN MANAGER 2,975.00
20 AMAN CLERK 1,100.00
20 VIBHOR CLERK 800

30 RAJAN SALESMAN 1,25.00
30 PRASHANT MANAGER 2,850.00
30 ANIL SALESMAN 1,600.00
30 RAMESH SALESMAN 1,500.00
30 RAKESH SALESMAN 1,250.00
30 SUDHA CLERK 950

Aggregate Function and Group By Clause

An aggregate function is a that computes values based on more than one row. In these cases
GROUPBY clause can be used to display the value of aggregate function of a group of some specified
column. SQL has following aggregate functions. They are:



M.S. University - D.D.C.E, SQL 63

AVG: Returns average of the group

COUNT: Returns the number of rows in a group

MAX: Returns maximum value of a column in a group

MIN: Returns minimum value of a column in a group

SUM: Returns the sum of a numeric column of a group
The common syntax of these functions is:

SELECT function_name(column_name);

Here, function_name is one of the functions listed above and the column_name is a numeric (or non-
numeric) column name, whichever is applicable.

For example, to compute the total salary of all the clerks in our database, the following SQL query
will be used.

GROUP BY clause can be used to obtain aggregate values in a group of rows. Or instance, to find the
salaries of all the job types, use the following SQL query:

SELECT JOB, SUM(SAL) FROM EMP GROUP BY JOB;
Multi-table Queries

SQL can retrieve rows and columns from more than one table. However, it makes sense only when
the tables are related to each other with a key or more keys. We will take the following tables to
illustrate multi-table queries.

Table 3.5: Employee
Empld | EmpName EmpAddr EmpSal | EmpDOJ]
010 Vibhor A-56, Naraina, New Delhi 6000 12/11/2005
099 Prashant D-11/C, Uttam Nagar, Mumbai 7000 01/01/2005
011 Minu Prasad 11, Janak Puri, Chennai 6600 02/11/2005
100 Rajan Wadhwa 1, Safadar Jung, New Delhi 10000 01/05/2003
111 Pankaj Sharma 23, Lado Sarai, Sitamarhi, Bihar 8000 23/04/2004
Table 3.6: Projects

Projld | Empld | Perks
1 010 3000
112 111 6000
117 099 16000
114 011 1000
101 100 4000
111 099 3000
112 100 6000
117 010 16000
114 010 1000
111 100 4000




64 Client Server Computing with Oracle M.S. University - D.D.C.E.

Table 3.7: ProjectLocation

Projld | Location
m New Delhi

112 London
117 Vienna
114 Kolkata
101 Bihar

A simple SELECT statement is the most basic way to query multiple tables. You can call more than one
table in the FROM clause to combine results from multiple tables. Here's an example of how this works:

SELECT tablel.column1, table2.column2 FROM tablel, table2 WHERE
tablel.column1 = table2.columni;

Suppose we wish to list all the employees who worked on the project with PROJID="111". The desired
information is stored in the two tables - Employee and Projects. The required SELECT query is,

SELECT Employee. EmpName, Projects.Projld FROM Employee, Projects
WHERE Employee.EmpId =Projects.Empld;

The output is shown below.

Yibhor 101
Yibhor 114
Minu Prasad 111
Prashant 111
Prashant 112

Rajan Wadhwa 112
Rajan Wadhwa 114
Rajan Wadhwa 117
Panka Sharma 111

JOIN Statements

JOIN operation virtually combines two tables on specified columns and treats the resulting view as a
single table. There are three varieties of JOIN.

INNER JOIN: Combines the rows from the two mentioned tables where the specified fields are equal.

LEFT JOIN: Takes all the rows from the Tablel and only those rows from Table2 where the column
values are equal.

'RIGHT JOIN: Takes all the rows from the Table2 and only those rows from Tablel where the column
values are equal.

For example, the following SQL will return the given rows.

SELECT Employee.Empld, Employee. EmpName, Employee. EmpAddr,
Employee. EmpSal, Projects.Projld, Projects.Perks



M.S. University - D.D.C.E. SQL 65

FROM Projects INNER JOIN Employee ON Projects.Empld =
Employee.Empld;

110 Yibhor A-66, Naraina, New Delhi 6000 1

o Vibhor A-56, Naraina, New Dethi 6000 101 4000
010 Vibhor A-56, Naraina, New Delhi 6000 114 1000
o1 Minu Prasad 11, Janak Puri, Chennai bB00 111 4000
099 Prashant D-11/C, Uttam Nagar, Mumbai 7000111 3000
0949 Prashant D-11/C, Uttam Nagar, Mumbai 7000 112 65000
100 Rajan Wadhwa 1, Safadar Jung, New Delhi 10000, 112 6000
100 Rajan Wadhwa ' 1, Safadar Jung, New Delhi 10000: 114 1000
100 Rajan Wadhwa 1, Safadar Jung, New Delhi 10000; 117 16000
11 Panka Sharma 23, Lado Sarai, Sitamarhi, Bihar 8000 111 3000

SELECT Employee. Empld, Employee EmpName, Employee. EmpAddr,
Employee.EmpSal, Projects.Projld, Projects.Perks

FROM Projects LEFT JOIN Employee ON Projects.Empld = Employee.Empld;

Yibhor A-5B, Naraina, New Delhi 6000 117 00

010 Yibhor A-56, Naraina, New Delhi 6000 101 4000

010 Vibhor A-56, Naraina, New Delhi 6000114 1000

011 MinuPrasad 11, Janak Puri, Chennai B6600 111 4000

089 Prashant D-11/C, Uttam Nagar, Mumbai 7000 111 3000

1099 Prashant D-11/C, Uttam Nagar, Mumbai 7000112 6000
100 Rajan ‘Wadhwa | 1, Safadar Jung, New Delhi 10000: 112 6000

100 Rajan Wadhwa 1, Safadar Jung, New Delhi 10000 114 1000

100 Rajan Wadhwa 1, Safadar Jung, New Delhi 10000 117 16000

111 Panka Sharma 23, Lado Sarai, Sitamarhi, Bihar 8000 111 3000

SELECT Employee.Empld, Employee.EmpName, Employee. EmpAddr,
Employee.EmpSal, Projects.Projld, Projects.Perks

FROM Projects RIGHT JOIN Employee ON Projects.Empld =
Employee.Empld;

Vibhar _ A-56, Naraina, New Delhi

11101 B000; 117 16000
010 Vibhor A58, Naraina, New Delhi 6000 101 4000
010 Yibhor A-56, Naraina, New Delhi 6000 114 1000
o011 Minu Prasad 11, Janak Puri, Chennai 6600 111 4000
099  Prashant D-11/C, Uttam MNagar, Mumbai 7000 111 3000
029 Prashant D-11/C, Uttam Nagar, Mumbai 7000:112 6000
100 Rajan Wadhwa 1, Safadar Jung, New Delhi 10000 112 5000
100 Rajan Wadhwa 1, Safadar Jung, New Delhi 10000 114 1000
100 Rajan Wadhwa 1, Safadar Jung, New Delhi 10000: 117 16000
111 Panka Sharma 123, Lado Sarai, Sitamarhi, Bihar 8000 111 3000




66 Client Server Computing with Oracle M.S. University - D.D.C.E.

Drop Constraint

Sometimes it is required to remove a constraint defined on a table or on its columns. For this purpose
DROP CONSTRAINT clause is used in the ALTER TABLE SQL statement. The syntax is,

ALTER TABLE table_name DROP CONSTRAINT constraint_name

DROP CONSTRAINT is used to drop a named constraint from a table. For example, create a table
named -student - as described below.

student | RN | Name | Class | Section
100 | Sachin | VII B
200 | Rahul | VI | D

Suppose we put a constraint on the table as - "No roll number (RN) must be repeated. The constraint
on the RN column is UNIUE constraint. The corresponding SQL command to create this table is,

CREATE TABLE student (rn char(3),name varchar(25), class varchar(4), section
char(1));

Now, let us add a constraint (we will call it CRN) that does not allow any duplicate entry into the RN
column. The required SQL statement is,

ALTER TABLE student ADD CONSTRAINT crn UNIQUE (RN);
Now, let us insert some rows into this table.

SQL> insert into student values('001','Vibhor','IX','A");

1 row created.

SQL > insert into student values('001','Mahesh','VII','C");

insert into student values('001','Mahesh','VII','C")

ERROR at line 1:

ORA-00001: unique constraint (MANOJ.CRN) violated

Since we tried to insert '001' in the RN column in which '001' is already stored, the error was
generated because UNIQUE constraint (crn) defined on this column.

The DROP CONSTRAINT clause can be used to modify the table so that RN column may allow
duplicate entries. The command is,

ALTER TABLE student DROP CONSTRAINT crn;
SQL> alter table student drop constraint crn;
Table altered.
Now if you insert the duplicate value in this column no error will result.
SQL > insert into student values('001','Mahesh','VII','C");

1 row created.



M.S. University - D.D.C.E. SQL 67

SQL > select * from student;

RN NAME CLASS
001 Vibhor IX A
001 Mahesh VI C

Commit, Rollback and Savepoint

These three SQL commands are used in transaction processing. COMMIT command makes all the
changes made to the database since the last COMMIT. ROLLBACK command undoes all the changes
made to the database to a specified point and SAVEPOINT allows the users to define a label in the
transaction sequence where commit and rollback can be effected.

For example, consider the following transaction.
SQL> insert into student values ('002','Ganesh','X",'D");
1 row created.
SQL > Insert into student values ('003','Dinesh’,'XI','E");
1 row created.
SQL> insert into student values ('005','Ramesh’,'XII",'A");
1 row created.

Here, establish a savepoint named FirstSavePoint. The command s,
SQL > savepoint FirstSavePoint;
Savepoint created

Insert three more rows: |
SQL > insert into student values ('010','Suresh’,'IX','D");
1 row created.
SQL > insert into student values ('011','Sarvesh',"VI','A");
1 row created.
SQL> insert into student values ('012','Rakesh','XII','D");
1 row created.

Establish a second savepoint named SecondSavePoint.
SQL > savepoint SecondSavePoint;
Savepoint created

Again insert some rows.
SQL > insert into student values ('021','Anil','IX",'D");

1 row created.



68 Client Server Computing with Oracle

SQL> insert into student values ('022','Sunil','IX','A");

1 row created.

Let's check what we have entered.

SQL > select * from student;

RN NAME
001 Vibhor
001 Mahesh
002  Ganesh
003  Dinesh
005 Ramesh
010  Suresh
011 Sarvesh
012  Rakesh
021  Anil
022  Sunil

10 rows selected.

Now, rolling back to savepoint SecondSavePoint.

SQL > rollback to SecondSavePoint;

Rollback complete.

Checking once more the table's content:

CLAS S

SQL > select * from student;

RN NAME CLASS
001 Vibhor IX A
001 Mahesh  VII C
002Ganesh X D
003 Dinesh XI E
005 Ramesh  XII A
010 Suresh IX D

M.S. University - D.D.C.E.



M.S. University - D.D.C.E.

011 Sarvesh VI A
012 Rakesh  XII D

8 rows selected.

SQL 69

All DMLS (data manipulated) after savepoint SecondSavePoint have been rolled back. The changes are
thus not committed unless either the database is closed or an explicit commit is executed.

SQL> COMMIT;
The BETWEEN Operator

It tests for values between and inclusive of low and high range. Suppose we want to see those
employees whose salary is between 1000 and 2000. Enter the following SQL query.

SELECT ENAME, SAL FROM EMP WHERE SAL BETWEEN 1000 AND 2000;

The result is shown below.

ENAME SAL
ANIL 1,600.00
RAKESH 1,250.00
RAMESH 1,500.00
AMAN 1,100.00
VINOD 1,300.00

Note that values specified are inclusive and the lower limit must be specified first.
The IN Operator

It tests for values in a specified list. To find all employees who have one of the three MGR numbers -
7902, 7566 and 7788 -, enter the following query.

SELECT ENAME, SAL, MGR FROM EMP WHERE MGR IN (7902, 7566, 7788);

The result is shown below.

ENAME MGR SAL
VIBHOR 7902 800.00
SUNIL 7566 3,000.00
AMAN . 7788 1,100.00
NILU 7566 3,000.00

If character or dates are used in the list they must be enclosed in single quotes (* ).
The Like Operator

Sometimes you may not know the exact value to search for. Using the LIKE operator, it is possible to
select rows that match a character pattern. The character pattern matching operation may be referred
to as ‘wild-card’ search. Two symbols can be used to construct the search string.

Symbol Represents

% Any sequence of zero or more characters

Any single character



70 Client Server Computing with Oracle M.S. University - D.D.C.E.

For example, to list all employees whose name starts with an S, enter:

SELECT * FROM EMP WHERE ENAME LIKE ’S%’;

EMPNO ENAME JOB MGR DOJ SAL COMM DEPTNO
778 SUNIL ANALYST | 7566 5-Mar-84 3,000.00 20
7900 SUDHA CLERK 7698 23-Jul-84 950.00 30

This can be used to search for a specific number of characters. For example, to list all employees who
have a name exactly 4 characters in length, enter:

SELECT * FROM EMP WHERE ENAME LIKE’ s

The result is shown below.

EMPNO ENAME JOB MGR DOJ SAL COMM DEPTNO
7499 ANIL SALESMAN | 7698 15-Aug-83 1,600.00 300 30
7782 MINU MANAGER | 7839 14-May-84 2,450.00 0 . -
7876 AMAN CLERK 7788 4-Jun-84 1,100.00 20
7902 NILU ANALYST | 7566 5-Dec-83 3,000.00 20

The % and _ may be used in any combination with literal characters.
IS NULL Operator

The IS NULL operator specifically tests for values that are NULL. To find all employees who have no
commission, you are testing for a NULL.

~ SELECT * FROM EMP WHERE COMM IS NULL;

EMPNO ENAME JOB MGR DOJ SAL COMM DEPTNO
7369 VIBHOR CLERK 7902 13-Jun-83 800 20
7566 KIRAN MANAGER | 7839 31-Oct-83 2,975.00 20
7698 PRASHANT | MANAGER | 7839 11-Jun-84 2,850.00 30
7782 MINU MANAGER | 7839 14-May-84 2,450.00 ) 10
7788 SUNIL ANALYST | 7566 5-Mar-84 3,000.00 20
7876 AMAN CLERK 7788 4-Jun-84 1,100.00 20
7900 SUDHA CLERK 7698 23-Jul-84 950 30
7902 NILU ANALYST | 7566 5-Dec-83 3,000.00 20
7934 VINOD CLERK 7782 21-Nov-83 1,300.00 10
Negating Expressions
The following operators negate the test condition:
OPERATOR DESCRIPTION
= not equal to (VAX, UNIX, PC)
S not equal to (IBM)
<> ) not equal to (all O/S)
NOT COLNAME = not equal to

Contd....



M.S. University - D.D.C.E.

NOT COLNAME > not greater than

NOT BETWEEN not between two given values
NOT LIKE not in given list of values
ISNOT NULL Is not null value

To find all the employees whose salary is not between 1000 and 2000, enter the following query.

SELECT * FROM EMP WHERE SAL NOT BETWEEN 1000 AND 2000;

The result is given below.

EMPNO  |[ENAME JOB MGR |DOJ SAL COMM |DEPTNO
7369 VIBHOR CLERK (7902 (13-Jun-83 800 20
7566 KIRAN MANAGER|7839 |31-Oct-83 [2,975.00 20
7698 PRASHANT [MANAGER(|7839 [11-Jun-84 (2,850.00 30
7782 MINU MANAGER|7839 |14-May-84 (2,450.00 10
7788 SUNIL ANALYST (7566 (5-Mar-84 [3,000.00 20
7902 NILU ANALYST 7566 |5-Dec-83 |3,000.00 20

To find those employees whose job does not start with A, enter the following query. SELECT

FROM EMP WHERE JOB NOT LIKE ‘A%’;

The result is shown below.

EMPNO  |[ENAME JOB MGR DOJ SAL COMM  [DEPTNO
7369 VIBHOR CLERK 7902 13-Jun-83 |800 20
7521 RAKESH [SALESMAN7698 26-Mar-84 (1,250.00 (500 30
7566 KIRAN MANAGER (7839 31-Oct-83 |2,975.00 20
7654 RAJAN SALESMAN|7698 5-Dec-83 |1,25.00 (1,400.00 |30
7698 PRASHANT |MANAGER (7839 11-Jun-84 |2,850.00 30
7782 MINU MANAGER (7839 14-May-84 (2,450.00 10
7788 'SUNIL ANALYST 7566 5-Mar-84 13,000.00 20
7844 RAMESH |SALESMAN|7698 4-Jun-84 11,500.00 [0 30
7900 SUDHA CLERK 7698 23-Jul-84 1950 30
7902 NILU ANALYST [7566 5-Dec-83 13,000.00 20
7934 VINOD CLERK 7782 21-Nov-83 (1,300.00 10

To find all employees who'have earned a commission, enter the following query.

SELECT * FROM EMP WHERE COMM IS NOT NULL;

SQL 71

3%



72 Client Server Computing with Oracle

The result is shown below.

M.S. University - D.Ij.C.E.

EMPNO |ENAME [JOB MGR |DOJ SAL COMM [DEPTNO
7499 ANIL SALESMAN (7698 [15-Aug-83 {1,600.00 {300 30
7521 RAKESH (SALESMAN (7698 (26-Mar-84 |1,250.00 [500 30
7654 RAJAN (SALESMAN (7698 (5-Dec-83 [1,25.00 [1,400.00 |30
7844 RAMESH |SALESMAN (7698 |4-Jun-84 [1,500.00 [0 30
Please note the following:
® IfaNULL value is used in a comparison, then the comparison operator should be either IS or IS
NOT NULL. If these operators are not used and NULL values are compared, the result is always
FALSE.
® For example, COMM != NULL is always FALSE. The result is false because a NULL value can

neither be either equal or unequal to any other value, even another NULL. Note that an error is
not raised; the result is simply always false.

Querying Data with Multiple Conditions

The AND an OR operators may be used to make compound logical expressions. The AND predicate
will expect both conditions to be ‘true’; whereas the OR predicate will expect either condition to be

3

true.

In the following two examples the conditions are the same, the predicate is different. See how the
result is dramatically changed.

To find all clerks who earn between 1000 and 2000, enter:
SELECT * FROM EMP WHERE SAL BETWEEN 1000 AND 2000 AND JOB="CLERK’;

EMPNO |ENAME JOB MGR {DOJ SAL COMM [DEPTNO
7876 AMAN CLERK 7788 |4-Jun-84 (1,100.00 20
7934 VINOD CLERK 7782 121-Nov-83 {1,300.00 10

To find all employees who are either clerks or all employees who earn between 1000 and 2000, enter:
SELECT * FROM EMP WHERE SAL BETWEEN 1000 AND 2000 OR JOB="CLERK’;



M.S. University - D.D.C.E. SQL 73
EMPNO |[ENAME (JOB MGR DOJ SAL COMM [DEPTNO
7369 VIBHOR |CLERK 7902 13-Jun-83 |800 20
7499 ANIL. SALESMAN (7698 15-Aug-83 [1,600.00 (300 30
7521 ° [RAKESH |SALESMAN (7698 26-Mar-84 {1,250.00 |500 30
7844 RAMESH SALESMAN {7698 4-Jun-84  |1,500.00 10 30
7876  |[AMAN. |CLERK 7788 4-Jun-84  [1,100.00 20
7900 SUDHA |CLERK 7698 23-Jul-84 (950 30
7934  [VINOD |CLERK 7782 21-Nov-83 [1,300.00 10

You may combine AND and OR in the same logical expression. When AND and OR appear in the
same WHERE clause, all the ANDs are performed first, then all the ORs are performed. We say that
AND has a higher precedence than OR.

Since AND has a higher precedence than OR, the following SQL statement returns all managers with
salaries over 1500 and all salesmen.

SELECT * FROM EMP

WHERE SAL> 2500 AND JOB="MANAGER’ OR JOB= ‘SALESMAN’;
EMPNO  ENAME  JOB MGR DO SAL COMM  |DEPTNO
7499 ANIL SALESMAN (7698 15-Aug-83 (1,600.00 [300 30
7521 RAKESH |SALESMAN (7698 26-Mar-84 1,250.00 (500 30
7566 KIRAN  IMANAGER (7839 31-Oct-83 [2,975.00 20
7654 RAJAN  [SALESMAN [7698 5-Dec-83 [1,25.00  [1,400.00 [30
7698 PRASHANTIMANAGER 7839 11-Jun-84 [2,850.00 30
7844 RAMESH |SALESMAN (7698 4-Jun-84 [1,500.00 [0 30

If you wanted to select all managers and salesman with salaries over 1500, you would enter:

SELECT * FROM EMP
WHERE SAL > 2500 AND (JOB="MANAGER’ OR JOB="SALESMAN");

The parentheses specify the order in which the operators should be evaluated. In the second example,
the OR operator is evaluated before the AND operator.

Inserting Records

To insert a record into a table, INSERT command can be used. The syntax of this command is:

INSERT INTO <tablename >
VALUES (valuel, value 2,............ Y

For example, the following query inserts a record into the table EMP.



74 Client Server Computing with Oracle M.S. University - D.D.C.E.

INSERT INTO emp
VALUES (‘107’, ‘Nand{’, ‘President’, ‘17-NOV-88’, 5000, null, ‘10%);
To insert values into only EMPNO, DEPTNO and ENAME fields, enter the following query.
INSERT INTO emp (empno, deptno, ename)
VALUES (101, 29’, ‘Sujit’);
Updating a Table
To change the values of the field in specified table, UPDATE command can be used. The syntax is:
UPDATE <tablename >
SET columnl= expression, column2= expression
WHERE condition;
For example, to change the salary of ‘VIBHOR’ to 5000, enter the following query.
UPDATE emp
SET salary = 5000
WHERE ename = "VIBHOR’;
Be careful with this query. If where clause is omitted all rows are updated.
Delete
To remove one or more row from a table DELETE query is used. The syntax is:
Delete From <tablename >
Where < condition >
For example, to delete all the rows whose salary is more than 1000, enter the following query.
DELETE FROM emp
WHERE sal > 1000;

If the WHERE clause is omitted all the rows of the specified table will be deleted. A part of the row
cannot be deleted.

3.6 DATA DEFINITION LANGUAGE

Data definition language is used to create, alter or remove a data structure, table or Database Structure.

In an RDBMS data is stored-in data structures known as tables, comprising of rows and columns. A
table is created in a logical unit of the database called table space. A database may have one or more
table space.

The table space is divided into segments, which is a set of database blocks allocated for storage of
database structures, namely tables, indexes etc.



M.S. University - D.D.C.E. SQL 75

Segments are defined using storage parameters, which in turn are expressed in terms of extents of data.
An extent is an allocation of database space which itself contains many blocks - the basic unit of
storage.
3.6.1 Creating a Table
To create a TABLE Structure use CREATE TABLE query whose syntax is given below.
CREATE TABLE <tablename >
Column1 data type(size) [null/not null]
column? data type (size),................ )
For example, to create the table EMP enter the following query.
Create table emp
( empo number (4) not null
ename varchar 2 (10),
job varchar2 (9),
DOJ date,
sal number (7,2),
comm number (7,2),

deptno number (2 not null)

Alter Table
ALTER is used to change the structure of an existing table. The syntax is:
ALTER TABEL TABLENAME
[ADD column_element......... , MODIFY]
For example, to insert a column called NET_SAL as a number type into EMP table, use the following query.
ALTER TABLE EMP
ADD (NET_SAL NUMBER (10));

It is not possible to change the name of an existing column or delete an existing column. The data type
of an existing column can be changed, if the field is blank for all existing View.

A view is a logical (Virtual) table derived from one or more base tables or views. It is basically a
subschema defined as a subset of the Schema. Views are like windows through which one can view
information stored in tables. View does not contain data of its own. It is stored as a query. The
contents are taken from other tables through the execution of the query. As the contents of the table
change, the view would also change dynamically. The syntax to create a view is given below.

CREATE VIEW < view name >
AS <query>;



76 Client Server Computing with Oracle M.S. University - D.D.C.E.

One may UPDATE and DELETE rows in a view, based on a single table and its query does not
contain GROUP BY clause the DISTINCT clause.

One may INSERT rows if the views observe the same restrictions and its query contains on columns
defined by expressions.

For example, in order to create a view of EMP table named DEPT20, to show the employees in
department 20 and their annual salary use the following command. '

CREATE VIEW dept20
AS SELECT ename, sal *12 FROM emp WHERE departno= 20;

Once the VIEW is created, it can be treated like any other table. Thus the following is a valid
command.

SELECT * from dept20;
Create Sequence

A seqﬁence is a database object that generates unique integer values each time it is referred to.
CREATE SEQUENCE command creates a sequence. The syntax is given below.

CREATE SEQUENCE seq name
[INCREMENTED BY n]
[START WITH n]
[MAXVALUE n]
[MINIVALUE n};

START WITH clause specifies the initial value of the sequence; INCREMENTED BY clause specifies
the values that must be added to the previous value to get the new value; and MAXVALUE and
MINVALUE' specify the maximum and the minimum values respectively that the sequence can
generate.

For example,
CREATE SEQUENCE my seq
INCREMENTED BY 10
START WITH 1
MAXVALUE 100;

will create a sequence named my_seq whose first value will be 1, next 11, next 21, and so on. The
maximum value generated by this sequence will be less than or equal to 100.

Create Index

To create an index on one or more column of a table or a cluster, CREATE command is used. The
syntax is given below.

CREATE [UNIQUE] INDEX index_name
ON table_name



M.S. University - D.D.C.E. SQL 77

(column_name [, column_name...]J)
TABLESPACE tablespace;
For example,

CREATE INDEX emplndex ON employee(ename) TABLESPACE company;

will create an index an index named empIndex on the ename column of table employee of company
tablespace. More than one column can be used for indexing by specifying the comma-separated list of

the columns in that order.
Fill in the blanks:
L. Data Definition Language, is a part of the SQL language used to define data and ..............
in a database.

2. Embedded SQL refers to the use of standard .............. commands embedded within a
procedural programming language.

3. Character data types are used to manipulate words and ...

4. Ifarowlacksa............. for a particular column, that value is said to be NULL.

3.7 LET US SUM UP

SQL is the set of commands that programs and users may use to access data within the database that
supports it. SQL is a non-procedural language in that the users do not have to specify how the SQL
commands are to be executed. Embedded SQL refers to the use of standard SQL commands embedded
within a procedural programming language. A schema is a collection of logical structures of data, of
schema objects. A schema is owned by a database user and has the same name as that user. Character
data types are used to manipulate words and free-form text. These data types are used to store
character (alphanumeric) data in the database character set. The VARCHAR? data type specifies a
variable length character string. The NUMBER data type is used to store zero, positive and negative
fixed and floating point numbers with magnitudes between 1.0x10™ and 9.9x10' (38 9s followed by
88 Os) with 38 digits of precision. The DATE data type is used to store data and time information. The
RAW and LONG RAW data types are used for data that is not to be interpreted by RDBMS. Data
Definition Language (DDL) commands allow users to create and/or modify various database objects
that make a database. Data Manipulation Language (DML) commands allow users to query and
manipulate data in existing schema objects.

3.8 KEYWORDS

SOL (Structured Query Language): The set of commands that programs and users may use to access data
within the database that supports it.

Non-procedural Language: A language which is free from writing algorithms.

Schema Objects: A collection of logical structures of data.



78 Client Server Computing with Oracle M.S. University - D.D.C.E.

View: A customized presentation of the data from one or more tables.

DDL (Data Definition Language): Commands that allow users to create and/or modify various
database objects that make a database.

DML (Data Manipulation Language): Commands allow users to query and manipulate data in existing
schema objects.

Sequence: A database object that generates unique integer values each time it is referred to.

3.9 QUESTIONS FOR DISCUSSION

1. Suppose we have a table having structure like employee

(emp_id number (3), emp_name varchar2 (15), dep_no number (2), emp_desig varchar2 (5), salary
number (8.2))

@
(b)
©
d
(&)

®
®
(b)
@
()

NI

Create a table named employee as given above.

Insert <1, ‘Mohan’, ‘01,’manager’, 25000.00> into employee.
Insert <2, ‘Ram’, ‘02, clerk’, 5000.00> into employee.

Insert <3, ‘ Ramesh,’” 03’, ‘Accountant’, 7000.00> into employee.
Insert <4, ¢ Rajesh,’ 05, ‘clerk’, 500000.00> into employee.
Now make the following queries-

Find the employee whose designation is manager. -

Find the employee’s details whose salary is second longest.

Find the name of all employees who are clerks.

Find the employees who belong to the same department.

Update Ramesh department no to 04.

What do you understand by SQL?

What we view in DBMS?

Why do we use indexes?

What do you understand by DDL?

Make a list of commands used in DDL.

What do you understand by DML?

What are the uses of Insert, Delete and Update commands?

Why do we use select statement?

10. What is the function of Create, Alter commands?



M.S. University - D.D.C.E. SQL 79

Check Your Progress: Model Answers
1. Objects

2. SQL

3. free-form text

4. data value

3.10 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Database Systems: Design, Implementation and Management, Seventh edition,
Thomson Learning, 2007

Silberschatz, Korth, Sudarshan, Database System Concepts, Fifth edition, McGraw-Hill, 2005
Elmasari Navathe, Fundamentals of Database Systems, Third edition, Pearson Education Asia, 2001
E. J. Yannakoudakis, The Architectural Logic of Database Systems, Springer-Verlag, Digitized 2007
Fred R. McFadden, Jeffrey A. Hoffer, Database Management, Benjamin/Cummings, Digitized 2007

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third edition, McGraw-Hill Higher
Education, 2003



LESSON

4

SQL*PLUS

CONTENTS

4.0  Aims and Objectives

4.1  Introduction

4.2  Entering and Executing Commands
42.1  The SQL Buffer
4.2.2  Executing Commands
423  Running SQL Commands

4.3 Understanding SQL Command Syntax
43.1 Dividing an SQL Command into Separate Lines
4.3.2  Ending an SQL Command
4.3.3  Creating Stored Procedures
434  Running PL/SQL Blocks

4.4  Running SQL*Plus Commands
4.4.1  Understanding SQL*Plus Command Syntax
442  Ending a SQL*Plus Command
443  System Variables that affect How Commands Run
444  Saving Changes to the Database Automatically
44.5  Stopping a Command while it is Running
4.4.6  Running Host Operating System Commands
447  Getting Help
448  Listing a Table Definition

45  SQL*Plus Functions
45.1  Group By Clause

4.6  Letus Sum up

47  Keywords

4.8 Questions for Discussion

4.9  Suggested Readings




M.S. University - D.D.C.E. ’ SQL*Plus 81

4.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

e  Explain the concept of entering and executing commands
® Discuss SQL command syntax

® Describe the running of SQL*PLUS commands

® Identify and explain the SQL*PLUS functions

4.1 INTRODUCTION

Unless stated otherwise, descriptions of command use are generally applicable to both command-line
and iSQL*Plus user interfaces. In command-line SQL*Plus, you type commands at the SQL*Plus
prompt. Usually, you separate the words in a command from each other by a space or tab. You can
use additional spaces or tabs between words to make your commands more readable.

4.2 ENTERING AND EXECUTING COMMANDS

Case sensitivity is operating system specific. For the sake of clarity, all table names, column names,
and commands in this guide appear in capital letters. You can enter three kinds of commands in either
the command-line or the iSQL*Plus user interfaces:

® SQL commands, for working with information in the database
® PL/SQL blocks, also for working with information in the database

® SQL*Plus commands, for formatting query results, setting options, and editing and storing SQL
commands and PL/SQL blocks

The manner in which you continue a command on additional lines, end a command, or execute a
- command differs depending on the type of command you wish to enter and run. Examples of how to
run and execute these types of commands are found on the following pages.

You can use the Backspace and the Delete keys in both command-line SQL*Plus and iSQL*Plus. In
1SQL*Plus, you can cut and paste using your web browser's edit keys to edit the statements in the
Input area. You can also cut or copy scripts or statements from other applications such as text editors,
and paste them directly into the Input area.

In iSQL*Plus, the Save Script button enables you to save scripts to a text file. You can also load scripts
with the Load Script button. Saving and loading scripts may be useful when editing and testing.

4.2.1 The SQL Buffer

The area where SQL*Plus stores your most recently entered SQL command or PL/ SQL block (but
not SQL*Plus commands) is called the SQL buffer. The command or block remains there until you
enter another. If you want to edit or re-run the current SQL command or PL/SQL block, you may do
so withopt re-entering it.

SQL*Plus does not store SQL*Plus commands, or the semicolon or slash characters you type to
execute a command in the SQL buffer.



82 Client Server Computing with Oracle M.S. University - D.D.C.E.

4.2.2 Executing Commands

In command-line SQL*Plus, you type a command and direct SQL*Plus to execute it by pressing the
Return key. SQL*Plus processes the command and re-displays the command prompt when ready for
another command. In iSQL*Plus, you type a command or a script into the Input area and click the
Execute button to execute the contents of the Input area. The results of your script are displayed
below the Input area by default. Use the History screen to access and rerun commands previously
executed in the current session. iISQL*Plus executes a SQL or PL/SQL statement at the end of the
Input area, even if it is incomplete or does not have a final ";" or "/". If you intend to run iSQL*Plus
scripts in the SQL*Plus command-line, you should make sure you use a ";" or "/" to terminate your
statements.

iSQL*Plus retains the state of your current system variables and other options from one execution to
the next. If you use the History screen to re-execute a script, you may get different results from those
previously obtained, depending on the current system variable values. Some SQL*Plus commands
have no logical sense or are not applicable in iSQL*Plus.

4.2.3 Running SQL Commands

The SQL command language enables you to manipulate data in the database.

Example: Entering a SQL Command

In this example, you will enter and execute a SQL command to display the employee number, name,
job, and salary of each employee in the EMP_DETAILS VIEW view.

At the command prompt, enter the first line of the command:
SELECT EMPLOYEE _ID, LAST NAME, JOB ID, SALARY

If you make a mistake, use Backspace to erase it and re-enter. When you are done, press Return to
move to the next line. SQL*Plus will display a "2", the prompt for the second line. Enter the second
line of the command:

FROM EMP DETAILS VIEW WHERE SALARY > 12000;

The semicolon (;) means that this is the end of the command. Press Return. SQL*Plus processes the
command and displays the results on the screen:

EMPLOYEE_ID LAST_NAME JOB_ID SALARY
100 King AD_PRES $24,000
101 Kochhar AD_VP $17,000
102 De Haan AD_VP $17,000
145 Russell SA_MAN $14,000
146 Partners SA_MAN $13,500
201 Hartstein MK_MAN $13,000

6 rows selected.

After displaying the results and the number of rows retrieved, SQL*Plus displays the command
prompt again. If you made a mistake and therefore did not get the results shown above, simply re-
enter the command. The headings may be repeated in your output, depending on the setting of a
system variable called PAGESIZE. Sometimes, the result from a query will not fit the available page



M.S. University - D.D.C.E. - SQL*Plus 83

width. You will need to adjust a system variable called LINESIZE, which sets the width of the output
in characters. Typically, in the examples in this guide this is set to 70 characters. You may need to SET
LINESIZE to 70 so the query output appears the same as in this guide. Whether you see the message
concerning the number of records retrieved depends on the setting of a system variable called
FEEDBACK. You will learn more about system variables in "System Variables that Affect How
Commands Run". To save space, the number of records selected will not be shown in the rest of the
examples in this guide. '

4.3 UNDERSTANDING SQL COMMAND SYNTAX

Just as spoken language has syntax rules that govern the way we assemble words into sentences,
SQL*Plus has syntax rules that govern how you assemble words into commands. You must follow
these rules if you want SQL*Plus to accept and execute your commands.

4.3.1 Dividing an SQL Command into Separate Lines

You can divide your SQL command into separate lines at any points you wish, as long as individual
words are not split between lines. Thus, you can enter the query.

Example: "Entering a SQL Command" on three lines:
SELECT EMPLOYEE_ID, LAST NAME, JOB ID
FROM EMP_DETAILS VIEW

WHERE SALARY > 12000;

In this guide, you will find most SQL commands divided into clauses, one clause on each line. In
Example: "Entering a2 SQL Command", for instance, the SELECT and FROM clauses were placed on
separate lines. Many people find this clearly visible structure helpful, but you may choose whatever
line division makes commands most readable to you.

4.3.2 Ending an SQL Command

You can end an SQL command in one of three ways:
® with a semicolon (;)

® with aslash (/) on a line by itself

e with a blank line

A semicolon (;) tells SQL*Plus that you want to run the command. Type the semicolon at the end of
the last line of the command, as shown in Example : "Entering 2 SQL Command", and press Return.
SQL*Plus will process the command and store it in the SQL buffer. If you mistakenly press Return
before typing the semicolon, SQL*Plus prompts you with a line number for the next line of your
command. Type the semicolon and press Return again to run the command.

NOTE: You cannot enter a comment on the same line after a semicolon.

A slash (/) on a line by itself also tells SQL*Plus that you wish to run the command. Press Return at
the end of the last line of the command. SQL*Plus prompts you with another line number. Type a
slash and press Return again. SQL*Plus executes the command and stores it in the buffer.



84 Client Server Computing with Oracle M.S. University - D.D.C.E.

A blank line in a SQL statement or script tells SQL*Plus that you have finished entering the
command, but do not want to run it yet. Press Return at the end of the last line of the command.
SQL*Plus prompts you with another line number.

NOTE: You can change the way blank lines appear and behave in SQL statements using the SET
SQLBLANKLINES command. For more information about changing blank line behavior.

Press Return again; SQL*Plus now prompts you with the SQL*Plus command prompt. SQL*Plus
does not execute the command, but stores it in the SQL buffer. If you subsequently enter another SQL
command, SQL*Plus overwrites the previous command in the buffer.

4.3.3 Creating Stored Procedures

Stored procedures are PL/SQL functions, packages, or procedures. To create stored procedures, you use
SQL CREATE commands. The following SQL CREATE commands are used to create stored procedures:

CREATE FUNCTION
CREATE LIBRARY
CREATE PACKAGE
CREATE PACKAGE BODY
CREATE PROCEDURE
CREATE TRIGGER
CREATE TYPE

Entering any of these commands places you in PL/SQL mode, where you can enter your PL/SQL
subprogram. When you are done typing your PL/SQL subprogram, enter a period () on a line by
itself to terminate PL/SQL mode. To run the SQL command and create the stored procedure, you
must enter RUN or slash (/). A semicolon (;) will not execute these CREATE commands.

When you use CREATE to create a stored procedure, a message appears if there are compilation
errors. To view these errors, you use SHOW ERRORS. For example:

SHOW ERRORS PROCEDURE ASSIGNVL

To execute a PL/SQL statement that references a stored procedure, you can use the EXECUTE
command. EXECUTE runs the PL/SQL statement that you enter immediately after the command.
For example:

EXECUTE :ID := EMPLOYEE_MANAGEMENT.GET ID('BLAKE')

Executing the Current SQL Command or PL/SQL Block from the Command Prompt. You can run
(or re-run) the current SQL command or PL/SQL block by entering the RUN command or the slash
(/) command at the command prompt. The RUN command lists the SQL command or PL/SQL
block in the buffer before executing the command or block; the slash (/) command simply runs the
SQL command or PL/SQL block.

4.3.4 Running PL/SQL Blocks

You can also use PL/SQL subprograms (called blocks) to manipulate data in the database. To enter a
PL/SQL subprogram in SQL*Plus, you need to be in PL/SQL mode. You are placed in PL/SQL



M.S. University - D.D.C.E. SQL*Plus 85

mode when you type DECLARE or BEGIN at the SQL*Plus command prompt. After you enter
PL/SQL mode in this way, type the remainder of your PL/SQL subprogram.

You type a SQL command (such as CREATE FUNCTION) that creates a stored procedure. After
you enter PL/SQL mode in this way, type the stored procedure you want to create. SQL*Plus treats
PL/SQL subprograms in the same manner as SQL commands, except that a semicolon (;) or a blank
line does not terminate and execute a block. Terminate PL/SQL subprograms by entering a period ()
by itself on a new line. You can also terminate and execute a PL/SQL subprogram by entering a slash
(/) by itself on a new line.

SQL*Plus stores the subprograms you enter at the SQL*Plus command prompt in the SQL buffer.
Execute the current subprogram by issuing a RUN or slash (/) command. Likewise, to execute a SQL
CREATE command that creates a stored procedure, you must also enter RUN or slash (/). A
semicolon () will not execute these SQL commands as it does other SQL commands.

SQL*Plus sends the complete PL/SQL subprogram to Oracle for processing (as it does SQL
commands). You might enter and execute a PL/SQL subprogram as follows:

DECLARE
x NUMBER := 100;
BEGIN
FOR 1IN 1..10 LOOP
IFMOD (1, 2) = 0OTHEN -iiseven
INSERT INTO temp VALUES (i, x, 'i is even');
ELSE
INSERT INTO temp VALUES (i, %, 'i is odd');
END IF;
x:=x + 100;
END LOOP;
END;

/

When you run a subprogram, the SQL commands within the subprogram may behave somewhat
differently than they would outside the subprogram.

4.4 RUNNING SQL*PLUS COMMANDS

You can use SQL*Plus commands to manipulate SQL commands and PL/SQL blocks and to format
and print query results. SQL*Plus treats SQL*Plus commands differently than SQL commands or
PL/SQL blocks. To speed up command entry, you can abbreviate many SQL*Plus commands to one
or a few letters.




86 Client Server Computing with Oracle M.S. University - D.D.C.E.

Example: Entering a SQL*Plus Command

This example shows how you might enter a SQL*Plus command to change the format used to display
the column SALARY of the sample view, EMP_DETAILS VIEW. On the command-line, enter this
SQL*Plus command:

COLUMN SALARY FORMAT $99,999 HEADING 'MONTHLY SALARY"

If you make a mistake, use Backspace to erase it and re-enter. When you have entered the line, press
Return. SQL*Plus notes the new format and displays the SQL*Plus command prompt again, ready for
a new command.

Enter the RUN command to re-run the most recent query

RUN
EMPLOYEE_ID LAST_NAME JOB_ID MONTHLY SALARY
100 King AD_PRES $24,000
101 Kochhar AD_VP $17,000
102 De Haan AD_VP $17,000
145 Russell SA_MAN $14,000
146 Partners SA_MAN $13,500
201 Hartstein MK_MAN $13,000

6 rows selected.

The COLUMN command formatted the column SALARY with a dollar sign ($) and a comma (,) and
gave it a new heading. The RUN command then re-ran the query of Example : "Entering a SQL
Command", which was stored in the buffer. SQL*Plus does not store SQL*Plus commands in the

SQL buffer.

4.4.1 Understanding SQL*Plus Command Syntax

SQL*Plus commands have a different syntax from SQL commands or PL/SQL blocks. Continuing a
Long SQL*Plus Command on Additional Lines you can continue a long SQL*Plus command by
typing a hyphen at the end of the line and pressing Return. If you wish, you can type a space before
typing the hyphen. SQL*Plus displays a right angle-bracket (>) as a prompt for each additional line.

For example:
COLUMN SALARY FORMAT $99,999 -
HEADING 'MONTHLY SALARY'

Since SQL*Plus identifies the hyphen as a continuation character, entering a hyphen within a SQL
statement is ignored by SQL*Plus. SQL*Plus does not identify the statement as a SQL statement until
after the input processing has joined the lines together and removed the hyphen. For example, entering
the following:

SELECT 200 -
100 FROM DUAL;



M.S. University - D.D.C.E. SQL*Plus 87

. returns the error:

SELECT 200 100 FROM DUAL

s

ERROR at line 1:
ORA-00923: FROM keyword not found where expected

To ensure that the statement is interpreted correctly, reposition the hyphen from the end of the first
line to the beginning of the second line.

4.4.2 Ending a SQL*Plus Command

You do not need to end a SQL*Plus command with a semicolon. When you finish entering the

command, you can just press Return. If you wish, however, you can enter a semicolon at the end of a
SQL*Plus command.

4.4.3 System Variables that affect How Commands Run

The SQL*Plus command SET controls many variables—called SET variables or system variablesthe settings
of which affect the way SQL*Plus runs your commands. System variables control a variety of conditions
within SQL*Plus, including default column widths for your output, whether SQL*Plus displays the number
of records selected by a command, and your page size. System variables are also called SET variables.

The examples in this guide are based on running SQL*Plus with the system variables at their default
settings. Depending on the settings of your system variables, your output may appear slightly different

than the output shown in the examples. (Your settings might differ from the default settings if you
have a SQL*Plus LOGIN file on your computer.)

To list the current setting of a SET command variable, enter SHOW followed by the variable name at the
command prompt. See the SHOW command for information on other items you can list with SHOW.,

4.4.4 Saving Changes to the Database Automatically

Through the SQL DML commands UPDATE, INSERT, and DELETE-which can be used
independently or within a PL/SQL block--specify changes you wish to make to the information stored
in the database. These changes are npt made permanent until you enter a SQL COMMIT command or
a SQL DCL or DDL command (such as CREATE TABLE), or use the autocommit feature. The
SQL*Plus autocommit feature causes pending changes to be committed after a specified number of
successful SQL DML transactions. (A SQL DML transaction is either an UPDATE, INSERT, or
DELETE command, or a PL/SQL block.). You control the autocommit feature with the SQL*Plus
SET command's AUTOCOMMIT variable.

Example: Turning Autocommit On
To turn the autocommit feature on, enter
SET AUTOCOMMIT ON

Alternatively, you can enter the following to turn the autocommit feature on:

SET AUTOCOMMIT IMMEDIATE



88 Client Server Computing with Oracle M.S. Universify -D.D.CE.

Until you change the setting of AUTOCOMMIT, SQL*Plus automatically commits changes from
each SQL DML command that specifies changes to the database. After each autocommit, SQL*Plus
displays the following message: '

COMMIT COMPLETE

When the autocommit feature is turned on, you cannot roll back changes to the database. To commit
changes to the database after a number of SQL DML commands, for example, 10, enter

SET AUTOCOMMIT 10

SQL*Plus counts SQL DML commands as they are executed and commits the changes after each 10th
SQL DML command.

NOTE: For this feature, a PL/SQL block is regarded as one transaction, regardless of the actual
number of SQL commands contained within it.

To turn the autocommit feature off again, enter the following command:

SET AUTOCOMMIT OFF

To confirm that AUTOCOMMIT is now set to OFF, enter the following SHOW command:
SHOW AUTOCOMMIT

AUTOCOMMIT OFF

4.4.5 Stopping a Command while it is Running

Suppose you have displayed the first page of a 50 page report and decide you do not need to see the
rest of it. Press Cancel, the system's interrupt character, which is usually CTRL+C. SQL*Plus stops
the display and returns to the command prompt.

In iSQL*Plus, click the Cancel button.

NOTE: Pressing Cancel does not stop the printing of a file that you have sent to a printer with the
OUT clause of the SQL*Plus SPOOL command.

4.4.6 Running Host Operating System Commands

You can execute a host operating system command from the SQL*Plus command prompt. This is
useful when you want to perform a task such as listing existing host operating system files. To run a
host operating system command, enter the SQL*Plus command HOST followed by the host operating

system command. For example, this SQL*Plus command runs a host command, DIRECTORY
% SQL:

HOST DIRECTORY *.SQL
When the host command finishes running, the SQL*Plus command prompt appears again.

NOTE: Operating system commands entered from a SQL*Plus session using the HOST command do
- not effect the current SQL*Plus session. For example, setting an operating system environment
variable does not effect the current SQL*Plus session, but may effect SQL*Plus sessions started
subsequently.

You can suppress access to the HOST command.



M.S. University - D.D.C.E. SQL*Plus 89

4.4.7 Getting Help

While you use SQL*Plus, you may find that you need to list column definitions for a table, or start
and stop the display that scrolls by. You may also need to interpret error messages you receive when
you enter a command incorrectly or when there is a problem with Oracle or SQL*Plus. The following
sections describe how to get help for those situations.

4.4.8 Listing a Table Definition

To see the definitions of each column in a given table or view, use the SQL*Plus DESCRIBE
command.

Example: Using the DESCRIBE Command

To list the column definitions of the columns in the sample view EMP_DETAILS VIEW, enter
DESCRIBE EMP_DETAILS_VIEW;

Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER (6)
JOB_ID NOT NULL VARCHAR2 (10)
MANAGER_ID NUMBER (6)
DEPARTMENT_ID NUMBER (4)
LOCATION_ID NUMBER (4)
COUNTRY_ID CHAR (2)
FIRST_NAME VARCHAR2 (20)
LAST _NAME NOT NULL VARCHAR2 (25)
SALARY NUMBER (8, 2)
COMMISSION_PCT NUMBER (2, 2)
DEPARTMENT_NAME NOT NULL VARCHAR2 (30)
JOB_TITLE NOT NULL VARCHAR2 (35)
CITY NOT NULL VARCHAR2 (30)
STATE_PROVINCE VARCHAR2 (25)
COUNTRY_NAME VARCHAR?2 (40)
REGION_NAME VARCHAR?2 (25)

NOTE: DESCRIBE accesses information in the Oracle data dictionary. You can also use SQL
SELECT commands to access this and other information in the database.

4.5 SQL*PLUS FUNCTIONS

SQL*Plus provides specialized functions to perform operations using the Data Manipulation
Commands. A SQL function is a routine that performs a specific operation and returns the result. It is
similar to a procedure, except that a procedure does not return a value. A function can take one or
more arguments. One can broadly classify functions into single row functions and group functions.




90 Client Server Computing with Oracle M.S. University - D.D.C.E.

Single Row Functions

A single row function or a scalar function returns only one value for every row required in the table.
Single row function can appear in a select command and also be included in a ‘where’ clause. The
single row function can be broadly classified as:

e Date functions

® Numeric functions

® Character functions

e Conversion functions

®  Miscellaneous functions

Date Functions: They operate on date values producing output, which also belongs to date datatype,
except for months_between date functions, which returns a number. We shall discuss some of the
most important date functions with examples.

® Add_months

The add_month date function returns a date after adding a specified date with the specified number of
months. The format is add_months (d, n), where d is the date and n represents the number of
months.

Consider the following example to understand the above concept:

Example: SQL > select del_date, add_months (del_date, 2) from oreder_master;

The result will be
DEL_DATE ADD_MONTH
06~-jan-88 06-mar-88
25-may-88 25-july-88
05-feb-88 05-apr-88
30-jun-88 30-aug-88
27-aug-88 27-0ct-88

® Last day

The format is last_day (d), which returns the date corresponding to the last day of the month.

Example: sQL. > select sysdate, last_day (del_date_) from order_master where odate>’' 01-
dec-88;

The output for the above query will be

SYSDATE LAST_DAY
27-jan-88 31-jan-88
27-feb-88 " 28-feb-88

The above command will display the system date and the last day of the month to which del date
belongs.

NOTE: The sysdate variable will display system date (in words, current date).



M.S. University - D.D.C.E. SQL*Plus 91

e Months_between

To find out the number of months between two dates, we use the months between function. Its
format is

Months_between (d1, d2)

Where d1, d2 are dates. The output will be a number. If d1 is later than d2, result is positive; if earlier,
negative. If d1 and d2 are either the same days of the month or both last days of the months, the result
is always an integer; otherwise Oracle calculates the fractional portion of the result based on a 31-day
month and considers the difference in time components of d1 and d2.

To find out the time between the odates and del_dates so that a schedule can be prepared to complete
the orders before the delivery dates, the query in example below is used.

Example: sSQL. > select months_between (del_date, odate) from order_master;
The above example displays the number of months between the two dates
e Round

This function returns the date, which is rounded to the unit specified by the format model. Its format
is

Round (d, [fmt])

Where d is date and fmt is the format model. Fmt is only an option; by default date will be rounded to
the nearest day.

Example: SQL. > select del_date, round (del_date, 'year’) from order_master
where vencode='v001;

This request results in
DEL_DATE ROUND (DEL

25-may-88 01-jan-88

Since format specified is  year ‘ the argument, del dates’ value, is rounded to the nearest year. If the
del_date was greater than 01-jun-88 then it would be rounded to the following year i.e. 89.

® Next day
The format for the function is
next_day (d, day)

Where d represents date and day implies any weekday. This function can be illustrated with the
following example

Example: SQL > select next_day (sysdate,’ Tuesday ) from dual;
The Tuesday that immediately follows the sysdate will be displayed.

NOTE: dual is a system table. It is a table, which is automatically created by Oracle with the data
dictionary. Dual table has one column defined to be of varchar2 datatype and contains only one row
with value ‘x’.



92 Client Server Computing with Oracle M.S. University - D.D.C.E,

® Truncate

Truncate function returns the date with the time portion of the day truncated to the unit specified by
the format model. The syntax is

truncate (d, [fmt])

if fmt is neglected, then date is converted to the nearest day.

Iivanqbkx SQL > select truncate (sysdate, ‘year‘') from dual;

If sysdate is °27-jan-88” the truncated result will be ¢ 01-jan-88 *.

EbannpkySQL > select truncate (sysdate, * month ‘) from dual;
‘01-Feb-88’ will result from this query for the sysdate which is ¢ 27 ~Jan -88’
Example: SQL. > select truncate (sysdate, ° day’) from dual;
'24-jan-99 will be the result because it rounds *27-jan-99’ to the nearest Sunday.
Example: SQL > select truncate (sysdate) from dual;

The above statement does not include fmt, and therefore it is rounded to nearest day i.e. the sysdate.
®  Greatest

The function is greatest (d1, d2 .. .), where d1, and d2 are dates. This function returns the latest date
present in the argument.

Consider the following example, which will display the later date in the list.

The query in example below can be used to verify if the delivery dates for orderno ‘0001’ have been
surpassed.

EbwunthSQL > select del_date, sysdate, greatest (del_date, sysdate) from order_master
where orderno='0001";

DEL_DATE SYSDATE GREATEST
06-jan-99 27-jan-99 27-jan-99
05-feb-99 27-jan-99 05-feb-99

® New_time

The new_time function displays the time and date of date column or literal date in other time zones.
The format is displayed below

new_time (date, ‘this’, ‘other’);

This is replaced by a three-letter abbreviation of the current time zone while ‘other” is replaced by a
three-letter abbreviation of the time zone in which date is wanted.

Example: SQL. > select new_time (*13-feb-99, ‘est.’, ‘yst’) from dual;

It returns 12-feb-99, which is the date in the time zone ‘yst’.



M.S. University - D.D.C.E. SQL*Plus 93

Time Zones are as follows:

AST/ADT Atlantic standard/day light time
BST/BDT . Bering standard/day light time
CST/CDT Central standard/day light time
EST/EDT Eastern standard/day light time
GMT Greenwich mean time
HST/HDT Alaska-Hawaii standard/day light time
MST/MDT Mountains standard/day light time
NST Newfoundland standard time
PST/PDT Pacific standard/day light time
YST/YDT Yukon standard/day light time
Character Functions

Character functions accept character input and return either character or number values. The
character functions supported by Oracle are listed below.

Function Input Output

Initcap (char) Select initcap (‘hello’) from dual; Hello
Lower (char) Select lower (‘FUN’) from dual; fun

Upper (char) Select upper (‘sun’) from dual; SUN

Ltrim (char, set) Select Itrim (‘xyzadams’,’xyz’ from dual; adams

Rerim (char, set) Select rtrim (‘xyzadams’, ‘xyz’) from dual; xyzad

Translate (char, from, to) Select translate (‘jack’, )’, b’) from dual; back
Replace (chat, searchstring, [rep, string]) Select replace (‘jack and jue’, ‘, ‘bl’) from dual; blue

Substr (char, m, n) Select substr (‘abcdefg’, 3, 2) from dual; od

NOTE: soundex is also a character function compares words that are spelled differently, but sound
alike. Consider the following example

Example: SQL > select venname from vendor_master where soundex (venname) = soundex
(‘sumesh’) ;

It returns ‘somesh’, present in the vendor_master table unless it has already been update or deleted.

Character functions accept character input and returns either character or number values. The first

among the character functions is ‘chs’. This returns the character value for the number given within
braces.

Example: SQL > select chr (67) from dual;

The above statement returns the value ‘C* which is the character equivalent of the number 67. The chr
function returns the character equivalent to the number in the braces.

The next function is the ‘lpad’. This takes three arguments. The first argument is the character string,
which has to be displayed with the left padding. The second is the number, which indicates the total
length of the return value. The third is the string, with which the left padding has to be done when
required. An example gives a better understanding of the concept.



94 Client Server Computing with Oracle M.S. University - D.D.C.E.

Example: SQL. > select lpad ('function’, 15, ‘=') from dual;
The output gives the sign ‘=" before the word function

LPAD (‘FUNCTION’

=== = = = =function
The entire string is 15 in length after the padding is done.

The rpad function does the exact opposite of the lpad function. The number of arguments it takes is
the same as the lpad function.

Example: SQL > select rpad (‘function’, 15, ‘=');
The rpad function pads the value to the right of the given string and is displayed as given below.
RPAD (‘FUNCTION’

function=======
e Trim Function

This combines the functionality of the Ltrim and Rtrim. When specified leading, the function is
similar to the Ltrim function and Oracle removes any leading characters equal to trim_character.

Example: sQL > select trim (leading 9 from 99998769789999) from dual;

The output trims off the all the 9’s from beginning of the string. As soon as it encounters a character
other than 9, it stops its action.

TRIM (LEAD

8769789999

When specified trailing, the function is similar to the Rtrim function and Oracle removes any trailing
characters equal trim_character.

Example: SQL. > select trim (trailing 9 from 99998769789999) from dual:;

TRIM (TRAI

9999876978

® Length

When the length function is used in a query it returns the length of the string.
Example: SQL > select length (‘rohit’) from dual;

The output is 5.



M.S. University ~ D.D.C.E. SQL*Plus 95

e DECODE

Unlike the translate function which performs a character by character replacement the DECODE
function does a value by value replacement

Select decode (<value, if1, thenl if2, then2, . . ..>) from <table name>;

Example: SQL > select vencode, decode (venname, ‘rohit’, ‘rahul’) name, tel_no from
vendor_master where vencode='v001’;

The output is:
VENCO  NAME TEL_NO

v001 rahul 1234567
® Concatenation (| |) Operator

The concatenation operator is used to merge two or more strings, or a string and a data value together.

Example: SQL > select (* The address of ‘| | venname| |’ is ‘| | venadd | |‘ |
|tel_no) address from vendor_master where vencode=’v001’;

The output of this select statement is :
ADDRESS

The address of rohit is home 1234567

Numeric Functions

Numeric functions accept numeric input and return numeric value as the output.
The values that the numeric functions return are accurate up to 38 decimal digits. The following
tabular column will give you brief idea of the numeric functions supported by Oracle.

In addition to the functions that are already present a few new functions have been introduced. One
among them is the In. this function returns the logarithmic value of the given number.

FUNCTION INPUT OUTPUT
Abs Select abs (-15) from dual; 15

Ceil (n) Select ceil (44.778) from dual; 45

Cos (n) - Select cos (180) from dual; -.5984601
Cosh (n) Select cosh (0) from dual; 1

Exp (n) Select exp (4) from dual; 54.59815
Floor (n) Select floor (100.2) from dual; 100
Power (m, n) Select power (4,2) from dual; ' 16

Mod (m, n) Select mod (10, 3) from dual; 1

Round (m, n) Select round (100.256, 2) from dual 100.26
Trunc (m, n) Select trunc (100.256, 2) from dual; 100.25
Squrt (n) Select squrt (4) from dual; 2




96 Client Server Computing with Oracle M.S. University ~ D.D.C.E.

Example: SQL > select In (2) from dual;

The output of the select statement is
LN (2)

.69314718

Conversion Functions

Conversion function converts a value from one datatype to another. The conversion functions are
broadly classified into the following:

To_char () transform DATE and NUMBER into character string
To_date () transform NUMBER, CHAR or VARCHAR?2 into a DATE
To_number () transform CHAR or VARCHAR?2 into a NUMBER

Why is this information important? To_Date is obviously necessary to accomplish date arithmetic.
To_Char allows you to manipulate number as if it were a string, using string functions. To Number
allows you to use a string happens to contain only numbers as if it were a number; by using it you van
add divide, subtract and so on.

® o char()

The function is to_char (d, [fmt]), where d is date; fmt is the format model, which specifies the format
of date. To_char conversion function concerts date to a value of varchar2 type in a form specified by
the format fmt. If fmt is neglected then it converts date to varchar2 in the default date format.
Consider the following example.

Example.- SQL > select to_char (sysdate, ‘'ddth “of” fmmonth yyyy’) from dual;
The above statement displays the date according to the format specified in the format model.
TO_CHAR (SYSDATE,"DDTH”

18th of august 2001

e To date()

The format is to_date (char, [fmt] ). This converts char or varchar datatype to date datatype. Format
model, fmt specifies the frmt of character. Consider the following example, which returns date for the
string ‘January 27 1999°.

Example: sQ1. > select to_date (‘January 27 1999', ‘month-dd-yyyy’) from dual;
The statement displays the following result.

TO_DATE (*

27-JAN-99

NOTE: The definition for fmt, explained in the to_char conversion function also holds good for
to_date conversion function. The square braces indicate that the arguments are optional. The to_date



M.S. University - D.D.C.E. SQL*Plus 97

function can also be used in association with date functions. One instance where this is useful is
explained below.

Example: SQL > select round (to_date (’27-Jan- 1999'), ‘year’) from dual;

The following result is displayed after execution of the above command
ROUND (TO_

01-JAN-99
e To number ()

The to_number function allows the conversion of string concatenating numbers into the number
datatype on which arithmetic operations can be performed. His is largely unnecessary as Oracle does
an implicit conversion of numbers contained in a string.

Example: SQL > select to_number ('100) from dual;

The output is:
TO_NUMBER ('100‘)

Miscellaneous Functions

The following are some of the miscellaneous functions supported by Oracle.

e Uid
® User
e Nvl
® Vsize

Let us consider the functions mentioned above by one in dual.

o Uid

This function returns the integer value corresponding to the user currently logged in. the following
example is illustrative.

Example: SQL > select uid from dual;

The result could be a number.

e USER

This function returns the login’s user name, which is in varchar2 datatype. Consider the following
example.

Example: SQL. > select user from dual;

The result will be name of the current user.
USER



98 Client Server Computing with Oracle M.S. University - D.D.C.E.

e Null Value (nvl)

The Null value function is used in case where we want to consider Null values as zeros. The syntax s
given as nvl (expressionl, expression2).

If expression1 is Null, nvl will return expression2.
If expression1 is Not Null, nvl will return expression]1.

If expression] and expression2 are of different datatypes, then Oracle converts expression 2 to the
datatype of expression1 and then compares it.

At Tom Dick and Harry Spares Inc a check is being made on whether the itemrate has been left out
for items specified in the ‘where’ condition.

Example: SQL. > select itemrate, nvl (itemrate,0) from itemfile where itemcode =’1i201°
or itemdesc='bolts’;

The query will return the following output.

ITEMDESC NUL (ITEMRATE, 0)
nuts 0
bolts 16.5

NOTE: Null values and zeros are not equivalent. Null values are represented by blank and zeros are
represented by (0).

® Vsize

The function is vsize (expr). It returns the number of bytes in the expression. If expression is Null, it
returns Null.

Example: SQL. > select vsize (‘hello’) from dual;

The output s as follows
VSIZE (‘HELLO')

Group Functions

A group function processes a group of rows in the table, and return the result. Most of them act on all
the rows of the default table. They accept the following parameters:

e DISTINCT
Makes the function act only on the rows that have different values.

e AlL

Makes the function consider all the values (rows), including duplicates. This is the default. With the
exception of the COUNT function, all other functions ignore null values.

The group functions supported by Oracle are summarized below:

NOTE: In the following examples used to explain GROUP FUNCTIONS a in built table of Oracle
emp will be used.



M.S. University - D.D.C.E. SQL*Plus 99

e AVG

The avg function will return the values of the column specified in the argument of the column.
Example: SQL. > select avg (sal) from emp;

The query results in the average salary in the emp table under sal column.
e  Min Function

This function will give the least of all the values present in the column.
Example: sQL > select min (sal) from emp;

The query results in the minimum salary present in the emp table.

e Max Function

This function returns the maximum value present in the column.
Example: SQL > select max (sal) from emp;

The output of this query depends on the EMP table generated by Oracle as default
MAX (SAL)

e Count
Returns the number of count of rows of the query.
Example: SQL > select count (sal) from emp;

The output is shown below:
COUNT (SAL)

Sum Function
The sum function can be used to obtain the sum of a range of values of a record set.
Example: SQL > select sum (sal) from emp;

The result obtained is
SUM (SAL)

Up to this point you have seen that SQL can select rows of information from database tables, how the
where clause can limit number of rows only those that meet certain rules that you define and how the
rows returned can be sorted in ascending or descending sequence using order by clause.

You have also seen how the values in column can be modified by CHARACTER, NUMBER and
DATE functions, and how groups can tell you about whole set of rows. Beyond the group functions
v have seen there are also two group clauses, having and group by. These are parallel to where and
order by clauses except that they act on groups and not on individual rows. These clauses can provide
very powerful insights to your data.



100 Client Server Computing with Oracle

4.5.1 Group By Clause

M.S. University - D.D.C.E.

The following example lists the max commission based on unique salary in emp table.

Ibwunphﬂ SQL> select sal, max (comm) from emp group by sal;

SAL MAX (commM)

1250 1400

1600 300

5000 2345

12 rows selected.

The records in emp table of Oracle are as follows.

SQL > select * from emp;

EMPNO ENAME JOB MGR
7369 SMITH CLERK 7902
7499 ALLEN SALESMAN 7698
7521 WARD SALESMAN 7698
7566 JONES MANAGER 7839
7654 MARTIN SALESMAN 7698
7698 BLAKE MANAGER 7839
7782 CLARK MANAGER 7839
7788 SCOTT ANALYST 7566
7839 KING PRESIDENT

7844 TURNER SALESMAN 7698
7876 ADAMS CLERK 7788
7900 JAMES CLERK 7698
7902 FORD ANALYST 7566
7934 MILLER CLERK 7782

14 rows selected.

Having Clause

The following example gives the clear view of having clause

SQL> select sal, max (comm) from emp group by sal having 5000 not in sal;

HIREDATE

17-DEC-80
20-FEB-81

22-FEB-81
02-APR-81
28-SEP-81
01-MAY-81
09-JUN-81
19-APR-87
17-NOV-81
08-SEP-81
23-MAY-87
03-DEC-81
03-DEC-81
23-JAN-82

SAL

800
1600

1250
2975
1250
2850
2450
3000
5000
1500
1100
950

3000
1300

20
300

500

1400

COMM  DEPTNO

30
30
20
30
30
10
20
10
30
20
30
20
10



M.S. University - D.D.C.E. SQL*Plus 101

The

output will be the following
SAL MAX (comv)

1100
1250 1400
1300
1500 0
1600 300
2450
2850
2975
3000
11 rows selected.

In the above example those unique salaries are selected based on the max commission received where
salary does not include Rs. 5000.

Order of Execution of Various Clauses

1.
2
3
4.
5

The

Choose those rows based on where clause.

Group those rows together based on group by clause.
Calculate the results functions for each group.
Choose and eliminate group based on having clause.

Order the groups based on results of the group function in the order by clause, the order by
clause must use either a group function or a column specified in a group by clause.

order of execution is important because it has direct impact on the performance of your queries.

In general, the more records that can be eliminated via where clause, the faster the query will execute.
This performance benefits due to the reduction in numbers of rows that must be processed during the
group by operation.

Check Your Progress|

Fill in the blanks:

1. SQL*Plus processes the command and re-displays the .................. when ready for another
command.

2. A tells SQL*Plus that you want to run the command.

3. SQL*Plus ............. the subprograms you enter at the SQL*Plus command prompt in the
SQL buffer.

4. Conversion function converts a ................ from one datatype to another.




102 Client Server Computing with Oracle M.S. University - D.D.C.E.

4.6 LET US SUM UP

The area where SQL*Plus stores your most recently entered SQL command or PL/SQL block (but
not SQL*Plus commands) is called the SQL buffer. The command or block remains there until you
enter another. If you want to edit or re-run the current SQL command or PL/SQL block, you may do
so without re-entering it. Just as spoken language has syntax rules that govern the way we assemble
words into sentences, SQL*Plus has syntax rules that govern how you assemble words into
commands. You must follow these rules if you want SQL*Plus to accept and execute your commands.
You can also use PL/SQL subprograms (called blocks) to manipulate data in the database. To enter a
- PL/SQL subprogram in SQL*Plus, you need to be in PL/SQL mode. You are placed in PL/SQL
mode when you type DECLARE or BEGIN at the SQL*Plus command prompt. After you enter
PL/SQL mode in this way, type the remainder of your PL/SQL subprogram. SQL*Plus provides
specialized functions to perform operations using the Data Manipulation Commands. A SQL function
is a routine that performs a specific operation and returns the result. It is similar to a procedure, except
that a procedure does not return a value.

4.7 KEYWORDS

Date Functions: They operate on date values producing output, which also belongs to date datatype,
except for months_between date functions, which returns a number.

Sum Function: The sum function can be used to obtain the sum of a range of values of a record set.
Conversion Functions: Conversion function converts a value from one datatype to another.

To_number ( ): The to_number function allows the conversion of string concatenating numbers into
the number datatype on which arithmetic operations can be performed.

4.8 QUESTIONS FOR DISCUSSION

Give an example to run a SQL command.

What is the processor to create a stored procedure?
Explain the SQL*Plus Command Syntax.
How the changes can be saved to the Database Automatically?

Discuss the four forms of Date functions.

A A

What is the difference between the numeric functions and conversion functions?

Check Your Progress: Model Answers
1. command prompt |

2. semicolon (3
3. stores
4

value




M.S. University - D.D.C.E. SQL*Plus 103

4.9 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Database Systems: Design, Implementation and Management, Seventh edition,
Thomson Learning, 2007

Silberschatz, Korth, Sudarshan, Database System Concepts, Fifth edition, McGraw-Hill, 2005
Elmasari Navathe, Fundamentals of Database Systems, Third edition, Pearson Education Asia, 2001
E. ]. Yannakoudakis, The Architectural Logic of Database Systems, Springer-Verlag, Digitized 2007
Fred R. McFadden, Jeffrey A. Hoffer, Database Management, Benjamin/Cummings, Digitized 2007

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third edition, McGraw-Hill Higher
Education, 2003 ‘






UNIT III






LESSON

5

SCHEMA OBJECTS

CONTENTS
5.0  Aims and Objectives
5.1  Introduction
5.2 Schema Objects
5.3 Data Integrity
5.3.1  Types of Data Integrity
5.4  Creating and Maintaining Tables
5.4.1 How Table Data is Stored
5.4.2  Table Compression
5.4.3  Types of Tables
5.5  Indexes Sequences Views
5.5.1  Indexes
5.5.2  Types of Index
5.6 User Privileges and Roles
5.6.1  System Privileges
5.6.2  Object Privileges
5.6.3  User Roles
5.7  Synonyms
5.7.1  Removing Synonym
5.8 LetusSumup
59  Keywords
5.10 Questions for Discussion
5.11 Suggested Readings
T—
5.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

®  Explain the concept of schema objects

® Discuss data integrity




108 Client Server Computing with Oracle M.S. University - D.D.C.E.

Create and maintain tables
Identify and explain the indexes sequences views

Discuss the various user privileges and roles

Explain the concept of synonyms

5.1 INTRODUCTION

Schema objects are logical structures created by users to contain, or reference, their data. Schema
objects contain structures like tables, views, and indexes. You can create and manipulate schema
objects using Oracle Enterprise Manager.

52 SCHEMA OBJECTS

A schema is a collection of logical structures of data, or schema objects. A schema is possessed by a
database user and has the same name as that user. Each user owns a single schema. Schema objects can
be created and manipulated with SQL and include the following types of objects:

e Clusters

® Database links

®  Database triggers

® Dimensions

e  External procedure libraries

® Indexes and index types

® Java classes, Java resources, and Java sources
® Materialized views and materialized view logs
®  Object tables, object types, and object views
® Operators

® Sequences

® Stored functions, procedures, and packages
® Synonyms

® Tables and index-organized tables

® Views

Further types of objects are also stored in the database and can be created and manipulated with SQL
but are not contained in a schema:

o Contexts
® Directories'.

® DProfiles



M.S. University - D.D.C.E. Schema Objects 109

® Roles
® Tablespaces
® Users

Schema objects are logical data storage structures. Schema objects do not have a one-to-one
correspondence to physical files on disk that store their information. Though, Oracle stores a schema
object logically within a tablespace of the database. The data of each object is physically contained in
one or more of the tablespace's datafiles. For some objects, such as tables, indexes, and clusters, you
can identify how much disk space Oracle allocates for the object within the tablespace's datafiles.

There is no association between schemas and tablespaces: a tablespace can contain objects from
different schemas, and the objects for a schema can be contained in different tablespaces.

Database
f o e o
!

Data Tablespace

i
l
I
i
|
t
|
I
{
I
i
!

Figure 5.1: Schema Objects, Tablespaces, and Datafiles

5.3 DATA INTEGRITY

It is important that data remain to a predefined set of rules, as determined by the database
administrator or application developer. As an example of data integrity, consider the tables EMP and
DEPT and the business rules for the information in each of the tables, as illustrated in Figure 5.2.




110 Client Server Computing with Oracle M.S. University - D.D.C.E.

Each value in the DNAME
Table DEPT coluimn must be unique
DEPNO | DNAME | toc
20 RESEARCH DALLAS
30 SALES CHICAGO
< .
- Each value in the
S DEPTNO column
el mustmath a value in
Each row musthave a value T the DEPTND colimn
for the ENAME column T otthe DEPT table
Table EMP l ‘
EMPNO | ENAME I ... Other Columns . .. | SAL COMM ‘ DEPTNO
6666 MULDER 5500.00 20
7329 SMITH 9000.00 20
7499 ALLEN 7500.00 100,00 30
7521 W ARD 5000.00 200.00 30
7566 JONES 2975.00 400.00 30
| |
Each ow musthave a value Each value in the SAL column
for the EMPO column, and mustbe less than 10,000
the value must be unique

Figure 5.2: Examples of Data Integrity

Note that certain columns of each table have specific rules that constrain the data contained within them.

5.3.1 Types of Data Integrity

The following types of rules are applied to tables and enable you to enforce diverse types of data integrity.
Nulls

A rule defined on a single column that allows or disallows inserts or updates of rows containing a null
for the column.

Unique Column Values

A rule defined on a column (or set of columns) that allows only the insert or update of a row
containing a unique value for the column (or set of columns).

Primary Key Values

A rule defined on a column (or set of columns) so that each row in the table can be exclusively
identified by the values in the column (or set of columns).

Referential Integrity

A rule defined on a column (or set of columns) in one table that permit the insert or update of a row
only if the value for the column or set of columns (the dependent value) matches a value in a column
of a related table (the referenced value).

Referential integrity also contain the rules that dictate what types of data manipulation are allowed on
referenced values and how these actions affect dependent values. The rules associated with referential
integrity include:

®  Restrict: A referential integrity rule that disallows the update or deletion of referenced data.

®  Setto Null: When referenced data is updated or deleted, all associated dependent data is set to NULL.



M.S. University - D.D.C.E. Schema Objects 111

®  Set to Default: When referenced data is updated or deleted, all associated dependent data is set to a
default value.

®  Cascade: When referenced data is updated, all associated dependent data is equally updated; when
a referenced row is deleted, all associated dependent rows are deleted.

Complex Integrity Checking

_ A user-defined rule for a column (or set of columns) that allows or disallows inserts, updates, or deletes
of a row based on the value it include for the column (or set of columns).

5.4 CREATING AND MAINTAINING TABLES

Tables are the essential unit of data storage in an Oracle database. Data is stored in rows and columns.
You define a table with a table name (such as employees) and set of columns. You provide each
column a column name (such as employee id, last_name, and job_id), a datatype (such as
VARCHAR2, DATE, or NUMBER), and a width. The width can be prearranged by the datatype, as
in DATE. If columns are of the NUMBER datatype, define precision and scale instead of width. A
row is a collection of column information corresponding to a single record.

You can state rules for each column of a table. These rules are called integrity constraints. One example is
a NOT NULL integrity constraint. This constraint forces the column to contain a value in every row.

After you‘create a table, insert rows of data using SQL statements. Table data can then be queried,
deleted, or updated using SQL.

Rows Columns Column names
i i
| ENAME | JoB | MGR | HIREDATE | SAL § COMM | DEPTNO
~ 7329 SMITH CLERK 7902 17-DEC—88 800.00 300.00 20
- 7499 ALLEN SALESMAN | 7698 20~FEB-88 | 1600.00 300.00 30
7521 WARD SALESMAN 7698 22-FEB-88 1250.00 500.00 30
7566 | JONES | MANAGER | 7839 | 02-APR-88 | 207500 20 ‘
, l
L— Column not L Column
aliowing nulls allowing
nulls

Figure 5.3: The EMP Table
5.4.1 How Table Data is Stored

When you create a table, Oracle repeatedly allocates a data segment in a tablespace to hold the table's future
data. You can control the allocation and use of space for a table's data segment in the following ways:

® You can control the quantity of space allocated to the data segment by setting the storage
parameters for the data segment.

® You can control the use of the free space in the data blocks that constitute the data segment's
extents by setting the PCTFREE and PCTUSED parameters for the data segment.

Oracle stores data for a clustered table in the data segment formed for the cluster instead of in a data
segment in a tablespace. Storage parameters cannot be specified when a clustered table is created or
altered. The storage parameters set for the cluster always control the storage of all tables in the cluster.



112 Client Server Computing with Oracle M.S. University - D.D.C.E.

A table's data segment (or cluster data segment, when dealing with a clustered table) is created in also the
table owner's default tablespace or in a tablespace specifically named in the CREATE TABLE statement.

Row Format and Sige

Oracle stores each row of a database table including data for less than 256 columns as one or more row
pieces. If a whole row can be inserted into a single data block, then Oracle stores the row as one row
piece. However, if all of a row's data cannot be inserted into a single data block or if an update to an
existing row causes the row to outgrow its data block, then Oracle stores the row using multiple row
pieces. A data block generally contains only one row piece for each row. When Oracle must store a
row in more than one row piece, it is chained across multiple blocks.

When a table has more than 255 columns, rows that have data after the 255th column are possible to
be chained within the same block. This is called intra-block chaining. A chained row's pieces are
chained together using the rowids of the pieces. With intra-block chaining, users obtain all the data in
the same block. If the row fits in the block, users do not see an effect in I/O performance, because no
extra I/O operation is required to retrieve the rest of the row.

Each row piece, chained or unchained, includes a row header and data for all or some of the row's
columns. Individual columns can also span row pieces and, consequently, data blocks. Figure 5.4
shows the format of a row piece:

Row Header Column Data

| > | ¢ >

- Row Overhead

Number of Columns

D Cluster Key ID ({if clustered)

BB ROWID of Chained Row Pieces {if any)
L] coturnn Length - Database
. Column Value Block

Figure 5.4: The Format of a Row Piece
The row header precedes the data and contains information about:
® Row pieces

e  Chaining (for chained row pieces only)



M.S. University - D.D.C.E. . Schema Objects 113

e Columns in the row piece
e Cluster keys (for clustered data only)

A row fully controlled in one block has at least 3 bytes of row header. After the row header information,
each row contains column length and data. The column length necessitates 1 byte for columns that store
250 bytes or less, or 3 bytes for columns that store more than 250 bytes, and precedes the column data.
Space required for column data depends on the datatype. If the datatype of a column is variable length,
then the space required to hold a value can grow and shrink with updates to the data.

To preserve space, a null in a column only stores the column length (zero). Oracle does not store data
for the null column. Also, for trailing null columns, Oracle does not even store the column length.
Clustered rows contain the same information as nonclustered rows. In addition, they contain
information that references the cluster key to which they belong.

Rowids of Row Pieces

The rowid recognize each row piece by its location or address. After they are assigned, a given row
piece retains its rowid until the corresponding row is deleted or exported and imported using Oracle
utilities. For clustered tables, if the cluster key values of a row change, then the row keeps the same
rowid but also gets an additional pointer rowid for the new values.

Because rowids are constant for the lifetime of a row piece, it is useful to orientation rowids in SQL
statements such as SELECT, UPDATE, and DELETE.

Column Order

The column order is the same for all rows in a given table. Columns are generally stored in the order
in which they were listed in the CREATE TABLE statement, but this is not guaranteed. For example,
if a table has a column of datatype LONG, then Oracle constantly stores this column last. Also, if a
table is altered so that a new column is added, then the new column becomes the last column stored.

In common, try to place columns that frequently contain nulls last so that rows take less space. Note,
though, that if the table you are creating includes a LONG column as well, then the benefits of placing
frequently null columns last are lost.

5.4.2 Table Compression

Oracle's table compression feature compresses data by abolishing duplicate values in a database block.
Compressed data stored in a database block (also known as disk page) is self-contained. That is, all the
information needed to restructure the uncompressed data in a block is available within that block.
Duplicate values in all the rows and columns in a block are stored once at the beginning of the block,
in what is called a symbol table for that block. All occurrences of such values are replaced with a short
reference to the symbol table.

With the exception of a symbol table at the beginning, compressed database blocks look very much
like regular database blocks. All database features and functions that work on regular database blocks
also work on compressed database blocks.

Database objects that can be compressed contain tables and materialized views. For partitioned tables,
you can choose to compress some or all partitions. Compression attributes can be declared for a
tablespace, a table, or a partition of a table. If declared at the tablespace level, then all tables formed in
that tablespace are compressed by default. You can alter the compression attribute for a table



114 Client Server Computing with Oracle M.S. University - D.D.C.E.

(or a partition or tablespace), and the change only applies to new data going into that table. As a result,
a single table or partition may include some compressed blocks and some regular blocks. This
guarantees that data size will not increase as a result of compression; in cases where compression could
increase the size of a block, it is not applied to that block.

Using Table Compression

Compression occurs while data is being bulk inserted or bulk loaded. These operations include:
® Direct path SQL*Loader

o CREATE TABLE and AS SELECT statements

® Parallel INSERT (or serial INSERT with an APPEND hint) statements

Accessible data in the database can also be compressed by moving it into compressed form through
ALTER TABLE and MOVE statements. This operation takes a restricted lock on the table, and
therefore prevents any updates and loads until it completes. If this is not acceptable, then Oracle's
online redefinition utility (DBMS_REDEFINITION PL/SQL package) can be used.

Data compression works for all data types apart from for all variants of LOBs and data types derived
from LOBs, such as VARRAYs stored out of line or the XML data type stored in a CLOB.

Table compression is done as part of bulk loading data into the database. The transparency associated
with compression is most visible at that time. This is the primary trade-off that needs to be taken into
account when considering compression.

Compressed tables or partitions can be customized the same as other Oracle tables or partitions. For
example, data can be modified using INSERT, UPATE, and DELETE statements. Though, data
modified without using bulk insertion or bulk loading techniques is not compressed. Deleting
compressed data is as fast as deleting uncompressed data. Inserting new data is also as fast, since data is
not compressed in the case of conventional INSERT; it is compressed only doing bulk load. Updating
compressed data can be slower in some cases. For these reasons, compression is more suitable for data
warehousing applications than OLTP applications. Data should be organized such that read only or
infrequently changing portions of the data (for example, historical data) is kept compressed.

Nulls Indicate Absence of Value

A null is the absence of a value in a column of a row. Nulls designate missing, unknown, or
inapplicable data. A null should not be used to imply any other value, such as zero. A column permit
nulls unless a NOT NULL or PRIMARY KEY integrity constraint has been defined for the column,

in which case no row can be inserted without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In these cases they entail
1 byte to store the length of the column (zero). ’

Trailing nulls in a row require no storage as a new row header signals that the remaining columns in
the previous row are null. For instance, if the last three columns of a table are null, no information is
stored for those columns. In tables with many columns, the columns more likely to contain nulls
should be defined last to conserve disk space.

Most evaluation between nulls and other values are by definition neither true nor false, but unknown.
To identify nulls in SQL, use the IS NULL predicate. Use the SQL function NVL to convert nulls to
non-null values.



M.S. University - D.D.C.E. Schema Objects 115

Nulls are not indexed, apart from when the cluster key column value is null or the index is a bitmap
index.

Default Values for Columns

You can give a default value to a column of a table so that when a new row is inserted and a value for
the column is omitted or keyword DEFAULT is supplied, a default value is supplied routinely.
Default column values work as though an INSERT statement actually specifies the default value.

The datatype of the default literal or expression must match or be adaptable to the column datatype.

If a default value is not explicitly defined for a column, then the default for the column is implicitly set
to NULL.

quadlt Value Insertion and Integrity Constraint Checking

Integrity constraint checking occurs after the row with a default value is introduced. For example, in
Figure 5.5 a row is inserted into the emp table that does not include a value for the employee's
department number. Because no value is supplied for the department number, Oracle inserts the
deptno column's default value of 20. After inserting the default value, Oracle checks the FOREIGN
KEY integrity constraint defined on the deptno column.

Parent Key

{- Table DEPT
DEPTNO | DNAME  |LOC
20 RESEARCH | DALLAS
30 I SALES {CHICAGO

Foreign Key
Table EMP
EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO -
7328 SMITH CEQ 17-DEC-85 | 8000.00 20

7499 ALLEN VP _SALES 7329 20~-FEB-90 | 7500.00 100.00 30
75214 WARD MANAGER 7499 22-FEB-80 | 5000.00 200.00 30
7566 JONES SALESMAN | 7521 2-APR-90 | 2975.00 400.00 30
7691 QOSTER | SALESMAN | 7521 06-APR-80 | 2975.00 400.00 20

— ---*..—--

Default Vatue
{if no value is given for

this column, the default
New row to be inserted, without value INSERT ’
NS of 20 is used)

for DEPTNO column, }
b

7691 OSTER SALESMAN 7521 06—-APR-90  29075.00 400.00

Figure 5.5: Default Column Values



116 Client Server Computing with Oracle M.S. University - D.D.C.E.

5.4.3 Types of Tables
Partitioned Tables

Partitioned tables allow your data to be broken down into smaller, more controllable pieces called
partitions, or even subpartitions. Indexes can be partitioned in similar fashion. Each partition can be
managed independently, and can operate independently of the other partitions, thus providing a
structure that can be better tuned for availability and performance.

Nested Tables

You can make a table with a column whose datatype is another table. That is, tables can be nested
within other tables as values in a column. The Oracle database server stores nested table data out of
line from the rows of the parent table, using a store table that is associated with the nested table
column. The parent row contains a unique set identifier value associated with a nested table instance.

Temporary Tables

In addition to permanent tables, Oracle can make temporary tables to hold session-private data that
subsist only for the duration of a transaction or session.

The CREATE GLOBAL TEMPORARY TABLE statement makes a temporary table that can be
transaction-specific or session-specific. For transaction-specific temporary tables, data exists for the
duration of the transaction. For session-specific temporary tables, data exists for the duration of the
session. Data in a temporary table is private to the session. Each session can only see and modify its
own data. DML locks are not acquired on the data of the temporary tables. The LOCK statement has
no effect on a temporary table, because each session has its own private data.

A TRUNCATE statement subjected on a session-specific temporary table truncates data in its own
session. It does not truncate the data of other sessions that are using the same table.

DML statements on temporary tables do not produce redo logs for the data changes. However, undo
logs for the data and redo logs for the undo logs are generated. Data from the temporary table is
routinely dropped in the case of session termination, either when the user logs off or when the session
terminates abnormally such as during a session or instance failure.

You can generate indexes for temporary tables using the CREATE INDEX statement. Indexes created
on temporary tables are also temporary, and the data in the index has the same session or transaction
scope as the data in the temporary table.

You can create views that access together temporary and permanent tables. You can also create triggers
on temporary tables.

Oracle utilities can export and import the meaning of a temporary table. However, no data rows are
exported even if you use the ROWS clause. Similarly, you can replicate the definition of a temporary
table, but you cannot replicate its data.

External Tables

External tables access data in external sources as if it were in a table in the database. You can connect
to the database and generate metadata for the external table using DDL. The DDL for an external table
consists of two parts: one part that describes the Oracle column types, and another part (the access
parameters) that describes the mapping of the external data to the Oracle data columns.



M.S. University - D.D.C.E. Schema Objects 117

An external table does not explain any data that is stored in the database. Nor does it describe how
data 1s stored in the external source. Instead, it describes how the external table layer needs to present
the data to the server. It is the responsibility of the access driver and the external table layer to do the
necessary transformations required on the data in the datafile so that it matches the external table
definition.

External tables are read only; consequently, no DML operations are possible, and no index can be
created on them.

® The Access Driver

When you generate an external table, you specify its type. Each type of external table has its own
access driver that provides access parameters unique to that type of external table. The access driver
makes sure that data from the data source is processed so that it matches the definition of the external

table.

In the framework of external tables, loading data refers to the act of reading data from an external table
and loading it into a table in the database. Unloading data refers to the act of reading data from a table
in the database and inserting it into an external table.

The default type for external tables is ORACLE _LOADER, which allow you read table data from an
external table and load it into a database. Oracle also gives the ORACLE_DATAPUMP type, which
lets you unload data (that is, read data from a table in the database and insert it into an external table)
and then reload it into an Oracle database.

The definition of an external table is kept discretely from the description of the data in the data source.
This means that: '

RS

% The source file can have more or fewer fields than there are columns in the external table

0

% The datatypes for fields in the data source can be dissimilar from the columns in the external table
e Data Loading with External Tables

The major use for external tables is to use them as a row source for loading data into an actual table in
the database. After you create an external table, you know how to use a CREATE TABLE AS
SELECT or INSERT INTO ... AS SELECT statement, using the external table as the source of the
SELECT clause.

When you access the external table during a SQL statement, the fields of the external table can be used
just like any other field in a regular table. In exacting, you can use the fields as arguments for any SQL
built-in function, PL/SQL function, or Java function. This allows you manipulate data from the
external source. For data warehousing, you can do more sophisticated transformations in this way
than you can with simple datatype conversions. You can also use this mechanism in data warehousing
to do data cleansing.

While external tables cannot contain a column object, constructor functions can be used to build a
column object from attributes in the external table

e  Parallel Access to External Tables

After the metadata for an external table is created, you can query the external data openly and in
parallel, using SQL. As a result, the external table acts as a view, which lets you run any SQL query
against external data without loading the external data into the database.



118 Client Server Computing with Oracle M.S. University - D.D.C.E.

The degree of parallel access to an external table is particular using standard parallel hints and with the
PARALLEL clause. Using parallelism on an external table allows for concurrent access to the datafiles
that comprise an external table. Whether a single file is accessed concurrently is dependent upon the
access driver implementation, and attributes of the datafile(s) being accessed (for example, record
formats).

5.5 INDEXES SEQUENCES VIEWS

A sequence is a database object, which can generate unique, sequential integer values. Sequences help to
ease the process of creating unique identifiers for a record in a database. A sequence is a simply an
automatic counter, which is enabled whenever it is accessed. It can be used to automatically generate
primary key or unique key values. A sequence can either be in ascending or descending order. '

When a sequence is created, it adopts some default values that are adequate for most situations. A
default sequence has the following characteristics:

®  Always starts from number 1

® Inascending order

® Increases by 1

The syntax for creating a sequence is as follows:
CREATE SEQUENCE < name of sequence >
START WITH integer

INCREMENT BY integer

MINVALUE integer

NOMINVALUE

MAXVALUE integer

NOMAXVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE sequence

ORDER

NOORDER

Here START WITH indicates the initial value of the sequence. When used for the first time, it returns
the value specified by this clause. INCREMENT BY indicates the value by which the sequence will be
incremented each time it is accessed. MAXVALUE indicates the maximum value that the sequence may
have. When omitted, the maximum value of the sequence can be 1.00e + 27 or 10 7

NOMAXVALUE indicates that the sequence doesn’t have a predefined maximum value. CACHE
indicates the number of sequences that should be created directly in the cache memory. In a situation



M.S. University - D.D.C.E. Schema Objects 119

where there is a lot of access to the sequences, the higher the value specified, the less access to the disk
will occur.

CYCLE/NOCYCLE:

Cycle indicates that the sequence should return to the initial value when the maximum value is
reached. NOCYCLE, in turn prevents it from returning to the beginning.

After creating a sequence we can access the values with the help of pseudo columns like curval and
nextval. Oracle has several pseudo - columns that behave as an extra column when a table is created.

curval and nextval

nextval returns initial value of the sequence, when referred to, for the first time. Later references to
nextval will increment the sequence using the INCREMENT BY clause and return the new value.

curval returns the current value to the sequence which is the value returned by the last reference to
the nextval.

Altering of Sequence

With the ALTER SEQUENCE command the user can change some of the sequence’s parameters. The
sequence can be altered when we want to perform the following:

® Set or eliminate minvalue or maxvalue

e Change the increment value

®  Change the number of chaced sequence numbers

However there are some restrictions. You are not allowed, for example to change its initial value. The
minimum value for the table cannot be greater than the current value.

5.5.1 Indexes

Indexes are optional structures associated with tables. We can create indexes explicitly to speed up SQL
statement execution on a table. Similar to indexes in books that help us to locate information faster, an
Oracle index provides a faster access to path to table data. The index points directly to the location of the
rows containing the value. Indexes are the primary means of reducing disk I/O when properly used.

When to Create an Index

An index can be created during the design process of the table structure using the PRIMARY KEY
constraint. However it is better to create it later, particularly when the has existing data that will be
loaded with the utilities. In this case whenever a row is inserted, the index is updated, requiring more
processing time.

Columns of type lobs, long and long row cannot be indexed.

We create an index on a column or combinations of columns using CREATE INDEX command as
follows:

CREATE [UNIQUE] INDEX < name of index> ON <table name > (column name) ;
Example

Now we will create a index on DEPARTMENT table in login scott/tiger (username / password).



120 Client Server Computing with Oracle M.S. University - D.D.C.E.

SQL > create index depname on department (name) ;
The output will be
Index created.

When we create an index, Oracle fetches and sort’s columns to be indexed, and stores the ROWID along
with the index value for each row. Then Oracle loads the index from the bottom up. Indexes are physically
independent of the data in the associated table. We can create and drop an index at any time without
effecting the base tables or other indexes. Indexes as independent structures require storage space.

5.5.2 Types of Index
Unique Indexes

Indexes can be unique or non-unique. Unique indexes guarantee that no two rows of a table have
duplicate values in the columns that define the index. Non-unique indexes do not impose this
restriction on the column values. Oracle enforces unique integrity constraints by automatically
defining a unique index on the unique key. Using the CREATE UNIQUE INDEX command as
follows creates a unique index, but this statement will fail if any duplicates already exist. If you use
primary key constraint you will never have duplicates.

Syntax
SQL > CREATE UNIQUE INDEX <index name> on <table name (column name)> ;

If create unique index statement succeeds, then any future attempt to insert a row that would create a
duplicate key will fail and result in this error message:

ERROR at line 1: ORA-00001 : unique constraint
(table name . column name) violated

NOTE: A unique index is automatically created when we create unique or primary key constraint.
Alternatively a constraint is imposed on the column when we create a unique index. We cannot create
index for a column which is already indexed.

Compostte Index

A composite index (also called a concatenated index) is an index created on multiple columns of a table.
Columns in a composite index can appear in any order and need not be adjacent columns of the table.

Composite index can enhance the speed of retrieving data for the select statement in which the ‘where’
clause references all or the leading portion of the columns in the composite index.

Reverse Key Index

Creating a reverse key index, when compared to a standard index, reverses each byte of the column
being indexed while keeping the column order. Such an arrangement can help avoid performance
degradation in indexes where modifications to the index are concentrated on a small set of blocks. By
reversing the keys of the index, the insertions become distributed all over the index.

Creating a Bitmap Index

The advantages of using a bitmap indexes are greatest on the tables in which the data is infrequently
updated, because they add to the cost of all data manipulation transactions against the tables they index.



M.S. University - D.D.C.E. Schema Objects 121

Bitmap indexes are appropriate when nonselective columns are used as limiting conditions in a query.
If you choose bitmap indexes, you will need to weight the performance benefit during queries against
the performance cost during data manipulation commands. The more the bitmap indexes on the table,
grater the cost will be on each transaction. You should bitmap index on those columns that frequently
has new values added to it. -

Advantages of using Bitmap Indexes
® Reduced response time for large classes of ad hoc queries.
® A substantial reduction of space usage as compared to other indexing techniques.

®  Dramatic performance gains even on very low end hardware.

5.6 USER PRIVILEGES AND ROLES

A user privilege is a right to perform a particular type of SQL statement, or a right to access another
user's object. The types of privileges are defined by Oracle.

Roles, on the other hand, are created by users (generally administrators) and are used to group
together privileges or other roles. They are a means of facilitating the granting of numerous privileges
or roles to users.

This section describes Oracle user privileges, and includes the following topics:
® System Privileges
®  Object Privileges

e User Roles

5.6.1 System Privileges

There are over 100 separate system privileges. Each system privilege allows a user to perform a
particular database operation or class of database operations.

Restricting System Privileges

Because system privileges are so influential, Oracle recommends that you configure your database to
prevent regular (non-DBA) users exercising ANY system privileges (such as UPDATE ANY TABLE)
on the data dictionary. In order to protect the data dictionary, ensure that the
O7_DICTIONARY_ACCESSIBILITY initialization parameter is set to FALSE. This feature is called
the dictionary protection mechanism.

If you allow dictionary protection (O7_DICTIONARY_ ACCESSIBILITY is FALSE), access to
objects in the SYS schema (dictionary objects) is limited to users with the SYS schema. These users are
SYS and those who connect as SYSDBA. System privileges providing access to objects in other
schemas do nor give other users access to objects in the SYS schema. For example, the SELECT ANY
TABLE privilege let users to access views and tables in other schemas, but does not allow them to
select dictionary objects (base tables of dynamic performance views, views, packages, and synonyms).
These users can, however, be granted explicit object privileges to access objects in the SYS schema.



122 Client Server Computing with Oracle M.S. University - D.D.C.E.

Accessing Objects in the SYS Schema

Users with explicit object privileges or those who connect with managerial privileges (SYSDBA) can
access objects in the SYS schema. A different means of allowing access to objects in the SYS schema is
by granting users any of the following roles:

® SELECT_CATALOG_ROLE: This role can be granted to users to allow SELECT privileges on all
data dictionary views.

® EXECUTE_CATALOG_ROLE: This role can be granted to users to allow EXECUTE privileges
for packages and procedures in the data dictionary.

® DELETE CATALOG_ROLE: This role can be granted to users to allow them to delete records
from the system audit table (AUDS).

As well, the following system privilege can be granted to users who require access to tables created in
the SYS schema:

e SELECT ANY DICTIONARY

This system privilege permits query access to any object in the SYS schema, including tables created in
that schema. It must be granted independently to each user requiring the privilege. It is not included in

GRANT ALL PRIVILEGES, nor can it be granted through a role.
5.6.2 Object Privileges
Each type of object has different privileges associated with it.

You can specify ALL [PRIVILEGES] to grant or revoke all accessible object privileges for an object.
ALL is not a privilege; rather, it is a shortcut, or a way of granting or revoking all object privileges
with one word in GRANT and REVOKE statements. Note that if all object privileges are granted
using the ALL shortcut, individual privileges can still be revoked.

Similarly, all individually granted privileges can be revoked by specifying ALL. Though, if you
REVOKE ALL, and revoking causes integrity constraints to be deleted (because they depend on a
REFERENCES privilege that you are revoking), you have to include the CASCADE
CONSTRAINTS option in the REVOKE statement.

5.6.3 User Roles

A role groups more than a few privileges and roles, so that they can be granted to and revoked from
users simultaneously. A role must be enabled for a user before it can be used by the user.

Oracle offer some predefined roles to help in database administration. You can grant privileges and
roles to, and revoke privileges and roles from, these predefined roles in the same way as you do with
any role you define.

Managing User Roles

This section describes aspects of managing roles, and contains the following topics:
® Creatinga Role

e Specifying the Type of Role Authorization

® Dropping Roles



M. University - D.D.C.E. Schema Objects 123

Creating a Role

You can create a role using the CREATE ROLE statement, but you must have the CREATE ROLE system
privilege to do so. Usually, only security administrators have this system privilege.

You must give each role you create a unique name amongst existing usernames and role names of the
database. Roles are not enclosed in the schema of any user. In a database that uses a multibyte
character set, Oracle proposes that each role name contain at least one single-byte character. If a role
name contains only multibyte characters, the encrypted role name/password combination is
considerably less secure.

The following statement creates the clerk role, which is certified by the database using the password
bicentennial:

CREATE ROLE clerk IDENTIFIED BY bicentennial;

The IDENTIFIED BY clause state how the user must be authorized before the role can be enabled for
use by a specific user to which it has been granted. If this clause is not specified, or NOT
IDENTIFIED is specified, then no authorization is required when the role is enabled. Roles can be
specified to be authorized by:

®  The database using a password

®  An application using a specified package

®  Externally by the operating system, network, or other external source
®  Globally by an enterprise directory service

These authorizations are discussed in following sections.

Afterward, you can set or change the authorization method for a role using the ALTER ROLE
statement. The following statement alters the clerk role to specify that the user must have been
authorized by an external source before enabling the role:

ALTER ROLE clerk IDENTIFIED EXTERNALLY;

To alter the authorization method for a role, you must have the ALTER ANY ROLE system
privilege or have been granted the role with the ADMIN OPTION.

Specifying the Type of Role Authorization
The methods of authorizing roles are obtainable in this section. A role must be enabled for you to use it.
® Role Authorization by the Database

The use of a role authorized by the database can be protected by an associated password. If you are
arranged a role protected by a password, you can enable or disable the role by supplying the proper
password for the role in a SET ROLE statement. Though, if the role is made a default role and enabled
at connect time, the user is not required to enter a password.

The next statement creates a role manager. When it is enabled, the password morework must be
supplied.

CREATE ROLE manager IDENTIFIED BY morework;



124 Client Server Computing with Oracle M.S. University - D.D.C.E.

® Role Authorization by an Application

The INDENTIFIED USING package name clause lets you make an application role, which is a role
that can be allow only by applications using an authorized package. Application developers do not
need to secure a role by embedding passwords inside applications. Instead, they can create an
application role and identify which PL/SQL package is authorized to enable the role.

The following example designate that the role admin_role is an application role and the role can only
be enabled by any module defined inside the PL/SQL package hr.admin.

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

When enabling the user's default roles at login as specified in the user's profile, no checking is
performed for application roles.

® Role Authorization by an External Source

The following statement creates a role named accts_rec and need that the user be authorized by an
external source before it can be enabled:

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;
® Role Authorization by the Operating System

Role authentication through the operating system is functional only when the operating system is able
to dynamically link operating system privileges with applications. When a user starts an application,
the operating system grants an operating system privilege to the user. The granted operating system
privilege communicates to the role associated with the application. At this point, the application can
enable the application role. When the application is terminated, the formerly granted operating system
privilege is revoked from the user's operating system account.

If a role is authorized by the operating system, you have to configure information for each user at the
operating system level. This operation is operating system dependent.

If roles are granted by the operating system, you do not require to have the operating system authorize
them also; this is redundant.

® Role Authorization and Network Clients

If users connect to the database over Oracle Net, by default their roles cannot be authenticated by the
operating system. This contains connections during a shared server configuration, as this connection
requires Oracle Net. This restriction is the default because a remote user could impersonate another
operating system user over a network connection.

If you are not worried with this security risk and want to use operating system role authentication for
network clients, set the initialization parameter REMOTE_OS_ROLES in the database's initialization
parameter file to TRUE. The change will take consequence the next time you start the instance and
mount the database. The parameter is FALSE by default.

® Role Authorization by an Enterprise Directory Service

A role can be defined as a global role, whereby a (global) user can only be certified to use the role by
an enterprise directory service. You define the global role nearby in the database by granting privileges
and roles to it, but you cannot grant the global role itself to any user or other role in the database.
When a global user attempts to connect to the database, the enterprise directory is queried to obtain
any global roles associated with the user.



M.S. University - D.D.C.E. Schema Objects 125

The following statement creates a global role:
CREATE ROLE supervisor IDENTIFIED GLOBALLY:

- Global roles are one component of enterprise user organization. A global role only relates to one
database, but it can be granted to an enterprise role defined in the enterprise directory. An enterprise
role is a directory structure which have global roles on multiple databases, and which can be granted to
enterprise users.

A common discussion of global authentication and authorization of users, and its role in enterprise
user management, was presented earlier in "Global Authentication and Authorization".
Dropping Roles

In some cases, it may be appropriate to drop a role from the database. The security domains of all users
and roles granted a dropped role are immediately changed to reflect the absence of the dropped role's
privileges. All indirectly granted roles of the dropped role are also removed from affected security
domains. Dropping a role automatically removes the role from all users' default role lists.

Because the creation of objects is not dependent on the privileges received through a role, tables and
other objects are not dropped when a role is dropped.

You can drop a role using the SQL statement DROP ROLE. To drop a role, you must have the
DROP ANY ROLE system privilege or have been granted the role with the ADMIN OPTION.

The following statement drops the role CLERK:
DROP ROLE clerk;

5.7 SYNONYMS

Synonyms are a simple way to access tables and other database objects using alternate name or a
shortcut. A synonym is a database object, which is used as an alias (alternative name) for a table view
or sequence. A reference is made to the original object when the synonym is created. For example, if a
synonym is created for a table, Oracle associates the address of the table to the synonym, and does not
create a duplicate of the table.

There are many advantages of using a synonym. They are discussed below :
e  Simplify SQL statement
®  Hide the name and owner of an object that is being specified

® Provide location transparency for remote objects of a distributed database. Provide public access
to an object

If the object is changed or moved, all you have to do is to update the synonym, rather than change the
numerous references to the object. Synonym helps the user in securing his objects and helps in
simplifying execution of the commands.

A synonym can be public and visible to all users, or private and available only to user who created it.
The private synonym is created by normal user, which is available to that person whereas the public
synonym is created by the DBA, which can be availed by any database user. Synonyms can be used to
replace objects in the following SQL commands.

e SELECT



126 Client Server Computing with Oracle M.S. University - D.D.C.E.

INSERT
DELETE
GRANT
UPDATE
REVOKE

The syntax for creating a synonym is analyzed as follows:
CREATE [PUBLIC] SYNONYM < name of synonym > for <table name > ;

Here PUBLIC creates a public synonym. If the PUBLIC clause is omitted, the synonym created will
be private synonym belonging to the table (schema) or the user who created it.

The user must have the CREATE SYNONYM privilege to create a synonym. The vendor_master
table has been created by marketing division and the user wants to grant all access on that table to
accounts but he does not want him to alter the structure of the table or drop it all together. Consider
the following example, which creates private synonym on the table vendor_master with a different
name say, vmast.

Example

SQL > create synonym vmast for vendor master ;

SQL > grant all on vmast to accounts ;

Now accounts can do all the DML manipulations such as insert, update, delete on the particular
synonym.

5.7.1 Removing Synonym

To remove a synonym, the user must issue the DROP SYNONYM command.

Syntax

DROP [PUBLIC] SYNONYM < name of synonym > ;

All references made to a synonym that has been deleted generate an error. A synonym that is
associated to a table is not automatically deleted with the table.

Check Your Progress

Fill in the blanks:

1. A schemais a collection of logical structures of ................ , or schema objects.

2. When you create a table, Oracle automatically allocates a ................... in a tablespace to
hold the table's future data.

3. Partitioned tables allow your data to be broken down into ................ , more manageable

pieces called partitions,

4. Synonyms are a simple way to ................ tables and other database objects using alternate
name or a shortcut.




M.S. University - D.D.C.E. Schema Objects 127

5.8 LET US SUM UP

A schema is a collection of logical structures of data, or schema objects. A schema is owned by a
database user and has the same name as that user. It is important that data adhere to a predefined set of
rules, as determined by the database administrator or application developer. Tables are the basic unit
of data storage in an Oracle database. Data is stored in rows and columns. You define a table with a
table name (such as employees) and set of columns. A sequence is a database object, which can
generate unique, sequential integer values. Sequences help to ease the process of creating unique
identifiers for a record in a database. A user privilege is a right to execute a particular type of SQL
statement, or a right to access another user's object. The types of privileges are defined by Oracle.
Synonyms are a simple way to access tables and other database objects using alternate name or a
shortcut. A synonym is a database object, which is used as an alias (alternative name) for a table view
or sequence.

5.9 KEYWORDS

Schema: A schema is a collection of logical structures of data, or schema objects.

Tables: Tables are the basic unit of data storage in an Oracle database.
Sequence: A sequence is a database object, which can generate unique, sequential integer values.

Synonym: A synonym is a database object, which is used as an alias (alternative name) for a table view
or sequence.

5.10 QUESTIONS FOR DISCUSSION

1. How the Schema objects can be created and manipulated? With SQL what type of objects are
included in it?

Define data integrity and explain the different types of data integrity.
What is the processor to store the table data?
What are sequences? Explain the different types of indexes.

Discuss the various types of privileges given to user in SQL.

S A o

Explain Synonyms.

Check Your Progress: Model Answers
1. Data

2. data segment
3. smaller
4

access




128 Client Server Computing with Oracle M.S. University - D.D.C.E.

5.11 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Database Systems: Design, Implementation and Management, Seventh edition,
Thomson Learning, 2007

Silberschatz, Korth, Sudarshan, Database System Concepts, Fifth edition, McGraw-Hill, 2005

Elmasari Navathe, Fundamentals of Database Systems, Third edition, Pearson Education Asia, 2001
E. ]. Yannakoudakis, The Architectural Logic of Database Systems, Springer-Verlag, Digitized 2007
Fred R. McFadden, Jeffrey A. Hoffer, Database Management, Benjamin/Cummings, Digitized 2007

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third edition, McGraw-Hill Higher
Education, 2003



UNIT IV






LESSON

6

PL/SQL

CONTENTS
6.0  Aims and Objectives
6.1  Introduction
6.2  Understanding the Main Features of PL/SQL
6.3  Variables and Constants
6.3.1  Declaring Variables
6.3.2  Declaring Constants
6.4  Cursors
6.4.1  Cursor FOR Loops
6.4.2  Cursor Variables
6.4.3  Auributes
6.44  Declare
6.5  Control Structures
6.5.1  Conditional Control
6.5.2  Iterative Control
6.5.3  Sequential Control
6.6  Modularity
6.6.1  Subprograms
6.6.2  Packages
6.7  Information Hiding
6.8  Error Handling
6.9 PL/SQL Architecture
6.9.1  The Oracle Database Server
6.9.2  Stored Subprograms
6.10  Advantages of PL/SQL
6.11 What’s New in PL/SQL?
6.12  Transaction
6.13 Let us Sumup
6.14 Keywords
6.15 Questions for Discussion
6.16 Suggested Readings




132 Client Server Computing with Oracle M.S. University - D.D.C.E.

6.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
Explain the concept of PL/SQL

Discuss how to identify the variables and constants

Describe the significance of cursors
Identify and explain the control structures
Discuss the concept of modularity
Explain the concept of information hiding
Discuss the error handling

Explain the architecture of PL/SQL
Describe the advantages of PL/SQL
Explain what’s new in PL/SQL

e  Explain transactions

6.1 INTRODUCTION

This lesson surveys the main features of PL/SQL and points out the advantages they offer. It also
acquaints you with the basic concepts behind PL/SQL and the general appearance of PL/SQL
programs. You see how PL/SQL bridges the gap between database technology and procedural
programming languages.

6.2 UNDERSTANDING THE MAIN FEATURES OF PL/SQL

A good way to get acquainted with PL/SQL is to look at a sample program. The program below
processes an order for a tennis racket. First, it declares a variable of type NUMBER to store the
quantity of tennis rackets on hand. Then, it retrieves the quantity on hand from a database table
named inventory. If the quantity is greater than zero, the program updates the table and inserts a
purchase record into another table named purchase record. Otherwise, the program inserts an out-of-
stock record into the purchase_record table.

- available online in file ‘examp?’
DECLARE
qty_on_hand NUMBER(5);
BEGIN
SELECT quantity INTO qty_on_hand FROM inventory
WHERE product = “TENNIS RACKET’
FOR UPDATE OF quantity;
IF qty_on_hand > 0 THEN - check quantity



M.S. University - D.D.C.E. PL/SQL 133

UPDATE inventory SET quantity = quantity - 1
WHERE product = “TENNIS RACKET’;
INSERT INTO purchase_record
VALUES ('Tennis racket purchased’, SYSDATE);
ELSE
INSERT INTO purchase_record
VALUES ('Out of tennis rackets', SYSDATE);
END IF;
COMMIT;
END;

With PL/SQL, you can use SQL statements to manipulate Oracle data and flow-of-control statements
to process the data. You can also declare constants and variables, define procedures and functions, and
trap runtime errors. Thus, PL/SQL combines the data manipulating power of SQL with the data
processing power of procedural languages.

Block Structure

PL/SQL is a block-structured language. That is, the basic units (procedures, functions, and anonymous
blocks) that make up a PL/SQL program are logical blocks, which can contain any number of nested
sub-blocks. Typically, each logical block corresponds to a problem or subproblem to be solved. Thus,
PL/SQL supports the divide-and-conquer approach to problem solving called stepwise refinement.

That way, you can place declarations close to where they are used. The declarations are local to the
block and cease to exist when the block completes.

A PL/SQL block has three parts: a declarative part, an executable part, and an exception-handling part.
(In PL/SQL, a warning or error condition is called an exception.) Only the executable part is required.

The order of the parts is logical. First comes the declarative part, in which items can be declared. Once
declared, items can be manipulated in the executable part. Exceptions raised during execution can be
dealt with in the exception-handling part:

You can nest sub-blocks in the executable and exception-handling parts of a PL/SQL block or subprogram
but not in the declarative part. Also, you can define local subprograms in the declarative part of any block.
However, you can call local subprograms only from the block in which they are defined.

6.3 VARTABLES AND CONSTANTS

PL/SQL lets you declare constants and variables, then use them in SQL and procedural statements
anywhere an expression can be used. However, forward references are not allowed. So, you must declare
a constant or variable before referencing it in other statements, including other declarative statements.

6.3.1 Declaring Variables

Variables can have any SQL datatype, such as CHAR, DATE, or NUMBER, or any PL/SQL
datatype, such as BOOLEAN or BINARY_INTEGER. For example, assume that you want to declare



134 Client Server Computing with Oracle M.S. University - D.D.C.E.

a variable named part_no to hold 4-digit numbers and a variable named in_stock to hold the Boolean
value TRUE or FALSE. You declare these variables as follows:

part_no NUMBER(4);
in_stock BOOLEAN;

You can also declare nested tables, variable-size arrays (varrays for short), and records using the
TABLE, VARRAY, and RECORD composite datatypes.

Assigning Values to a Variable

You can assign values to a variable in three ways. The first way uses the assignment operator (:=), a
colon followed by an equal sign. You place the variable to the left of the operator and an expression
(which can include function calls) to the right. A few examples follow:

tax := price * tax_rate;

valid_id := FALSE;

bonus := current_salary * 0.10;

wages := gross_pay(emp_id, st_hrs, ot_hrs) - deductions;

The second way to assign values to a variable is by selecting (or fetching) database values into it. In the
example below, you have Oracle compute a 10% bonus when you select the salary of an employee.
Now, you can use the variable bonus in another computation or insert its value into a database table.

SELECT sal * 0.10 INTO bonus FROM emp WHERE empno = emp_id;

The third way to assign values to a variable is by passing it as an OUT or IN OUT parameter to a
subprogram. As the following example shows, an IN OUT parameter lets you pass initial values to the
subprogram being called and return updated values to the caller:

DECLARE

my_sal REAL(7,2);

PROCEDURE adjust_salary (emp_id INT, salary IN OUT REAL) IS ...
BEGIN

SELECT AVG(sal) INTO my_sal FROM emp;

adjust_salary(7788, my _sal); - assigns a new value to my _sal

6.3.2 Declaring Constants

Declaring a constant is like declaring a variable except that you must add the keyword CONSTANT
and immediately assign a value to the constant. Thereafter, no more assignments to the constant are
allowed. In the following example, you declare a constant named credit_limit:

credit_limit CONSTANT REAL := 5000.00;



M.S. University - D.D.C.E. PL/SQL 135

6.4 CURSORS

Oracle uses work areas to execute SQL statements and store processing information. A PL/SQL
construct called a cursor lets you name a work area and access its stored information. There are two
kinds of cursors: implicit and explicit. PL/SQL implicitly declares a cursor for all SQL data
manipulation statements, including queries that return only one row. For queries that return more than
one row, you can explicitly declare a cursor to process the rows individually. An example follows:

- DECLARE
CURSOR c1 1S
SELECT empno, ename, job FROM emp WHERE deptno = 20;

The set of rows returned by a multi-row query is called the result set. Its size is the number of rows
that meet your search criteria. An explicit cursor "points" to the current row in the result set. This
allows your program to process the rows one at a time.

Multi-row query processing is somewhat like file processing. For example, a COBOL program opens a
file, processes records, then closes the file. Likewise, a PL/SQL program opens a cursor, processes
rows returned by a query, then closes the cursor. Just as a file pointer marks the current position in an
open file, a cursor marks the current position in a result set.

You use the OPEN, FETCH, and CLOSE statements to control a cursor. The OPEN statement
executes the query associated with the cursor, identifies the result set, and positions the cursor before
the first row. The FETCH statement retrieves the current row and advances the cursor to the next
row. When the last row has been processed, the CLOSE statement disables the cursor.

6.4.1 Cursor FOR Loops

In most situations that require an explicit cursor, you can simplify coding by using a cursor FOR loop
instead of the OPEN, FETCH, and CLOSE statements. A cursor FOR loop implicitly declares its
loop index as a record that represents a row fetched from the database. Next, it opens a cursor,
repeatedly fetches rows of values from the result set into fields in the record, then closes the cursor
when all rows have been processed. In the following example, the cursor FOR loop implicitly declares
emp_rec as a record:

DECLARE
CURSOR c1 IS
SELECT ename, sal, hiredate, deptno FROM emp;

BEGIN
FOR emp_rec IN c1 LOOP

salary total := salary total + emp_rec.sal;
END LOOP;



136 Client Server Computing with Oracle M.S. University - D.D.C.E.

To reference individual fields in the record, you use dot notation, in which a dot () serves as the
component selector.
6.4.2 Cursor Variables

Like a cursor, a cursor variable points to the current row in the result set of a multi-row query. But,
unlike a cursor, a cursor variable can be opened for any type-compatible query. It is not tied to a
specific query. Cursor variables are true PL/SQL variables, to which you can assign new values and
which you can pass to subprograms stored in an Oracle database. This gives you more flexibility and a
convenient way to centralize data retrieval.

Typically, you open a cursor variable by passing it to a stored procedure that declares a cursor variable
as one of its formal parameters. The following procedure opens the cursor variable generic_cv for the
chosen query:

PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp,choice NUMBER) IS
BEGIN
IF choice = 1 THEN
OPEN generic_cv FOR SELECT * FROM emp;
ELSIF choice = 2 THEN
OPEN generic_cv FOR SELECT * FROM dept;
ELSIF choice = 3 THEN
OPEN generic_cv FOR SELECT * FROM salgrade;
END IF;

END;

6.4.3 Attributes

PL/SQL variables and cursors have attributes, which are properties that let you reference the datatype
and structure of an item without repeating its definition. Database columns and tables have similar
attributes, which you can use to ease maintenance. A percent sign (%) serves as the attribute indicator.

%TYPE

The %TYPE attribute provides the datatype of a variable or database column. This is particularly
useful when declaring variables that will hold database values. For example, assume there is a column
named title in a table named books. To declare a variable named my _title that has the same datatype as
column title, use dot notation and the % TYPE attribute, as follows:

my_title books.title% TYPE;

Declaring my_title with %TYPE has two advantages. First, you need not know the exact datatype of
title. Second, if you change the database definition of title (make it a longer character string for
example), the datatype of my_title changes accordingly at run time.



M.S. University - D.D.C.E. PL/SQL 137

%ROWTYPE

In PL/SQL, records are used to group data. A record consists of a number of related fields in which
data values can be stored. The %ROWTYPE attribute provides a record type that represents a row in
a table. The record can store an entire row of data selected from the table or fetched from a cursor or
cursor variable.

Columns in a row and corresponding fields in a record have the same names and datatypes. In the
example below, you declare a record named dept_rec. Its fields have the same names and datatypes as
the columns in the dept table.

6.4.4 Declare

dept_rec dept%ROWTYPE; -- declare record variable

You use dot notation to reference fields, as the following example shows:

my_deptno := dept_rec.deptno;

If you declare a cursor that retrieves the last name, salary, hire date, and job title of an employee, you
can use %ROWTYPE to declare a record that stores the same information, as follows:

DECLARE
CURSOR c11S
SELECT ename, sal, hiredate, job FROM emp;
emp_rec c1%ROWTYPE; -- declare record variable that represents
- a row fetched from the emp table
When you execute the statement
FETCH c1 INTO emp_rec;

the value in the ename column of the emp table is assigned to the ename field of emp rec, the value in
the sal column is assigned to the sal field, and so on.

6.5 CONTROL STRUCTURES

Control structures are the most important PL/SQL extension to SQL. Not only does PL/SQL let you
manipulate Oracle data, it lets you process the data using conditional, iterative, and sequential flow-of-
control statements such as IF-THEN-ELSE, CASE, FOR-LOOP, WHILE-LOOP, EXIT-WHEN, and
GOTO. Collectively, these statements can handle any situation.

6.5.1 Conditional Control

Often, it is necessary to take alternative actions depending on circumstances. The IF-THEN-ELSE
statement lets you execute a sequence of statements conditionally. The IF clause checks a condition;
the THEN clause defines what to do if the condition is true; the ELSE clause defines what to do if the
condition is false or null.

Consider the program below, which processes a bank transaction. Before allowing you to withdraw
$500 from account 3, it makes sure the account has sufficient funds to cover the withdrawal. If the



138 Client Server Computing with Oracle M.S. University - D.D.C.E.

funds are available, the program debits the account. Otherwise, the program inserts a record into an
audit table.

~ available online in file 'examp?2"’
DECLARE
acct_balance NUMBER(11,2);
acct CONSTANT NUMBER4) : = 3;
debit_amt CONSTANT NUMBER(5,2) := 500.00;
BEGIN

SELECT bal INTO acct_balance FROM accounts
WHERE account_id = acct
FOR UPDATE OF bal;
IF acct_balance > = debit_amt THEN
UPDATE accounts SET bal = bal - debit_amt
WHERE account_id = acct;
ELSE
INSERT INTO temp VALUES
(acct, acct_balance, 'Insufficient funds');
~ insert account, current balance, and message
END IF;
COMMIT;
END;

To choose among several values or courses of action, you can use CASE constructs. The CASE
expression evaluates a condition and returns a value for each case. The case statement evaluates a
condition and performs an action (which might be an entire PL/SQL block) for each case.

—~ This CASE statement performs different actions based
- on a set of conditional tests.
CASE
WHEN shape = 'square’ THEN area : = side * side;
WHEN shape = 'circle’' THEN
BEGIN
area := pi * (radius * radius);

DBMS_OUTPUT.PUT_LINE('Value is not exact because pi is irrational.");



M.S. University - D.D.C.E. PL/SQL 139

END;
WHEN shape = 'rectangle' THEN area : = length * width;
ELSE
BEGIN
DBMS_OUTPUT.PUT_LINE('No formula to calculate area of a' | | shape);
RAISE PROGRAM_ERROR;
END;
END CASE;

A sequence of statements that uses query results to select alternative actions is common in database
applications. Another common sequence inserts or deletes a row only if an associated entry is found in
another table. You can bundle these common sequences into a PL/SQL block using conditional logic.

6.5.2 Iterative Control

LOOP statements let you execute a sequence of statements multiple times. You place the keyword
LOOP before the first statement in the sequence and the keywords END LOOP

after the last statement in the sequence. The following example shows the simplest kind of loop, which
repeats a sequence of statements continually:

LOOP
- sequence of statements

END LOOP;

The FOR-LOOP statement lets you specify a range of integers, then execute a sequence of statements
once for each integer in the range. For example, the following loop inserts 500 numbers and their
square roots into a database table:

FOR num IN 1..500 LOOP
INSERT INTO roots VALUES (num, SQRT(num));
END LOOP;

The WHILE-LOOP statement associates a condition with a sequence of statements. Before each
iteration of the loop, the condition is evaluated. If the condition is true, the sequence of statements is
executed, then control resumes at the top of the loop. If the condition is false or null, the loop is
bypassed and control passes to the next statement.

In the following example, you find the first employee who has a salary over $2500 and is higher in the
chain of command than employee 7499:

- available online in file 'examp3'
DECLARE
salary emp.sal%TYPE := 0;
mgr_num emp.mgr% [ YPE;



140 Client Server Computing with Oracle M.S. University - D.D.C.E.

last name  emp.ename%TYPE;
starting_empno emp.empno%TYPE : = 7499;
BEGIN
SELECT mgr INTO mgr_num FROM emp
WHERE empno = starting_empno;
WHILE salary < = 2500 LOOP
SELECT sal, mgr, ename INTO salary, mgr num, last_name
FROM emp WHERE empno = mgr_num;
END LOOP;
INSERT INTO temp VALUES (NULL, salary, last_name);
COMMIT;
EXCEPTION
WHEN NO_DATA_FOUND THEN
INSERT INTO temp VALUES (NULL, NULL, 'Not found);
COMMIT;
END;

The EXIT-WHEN statement lets you complete a loop if further processing is impossible or
undesirable. When the EXIT statement is encountered, the condition in the WHEN clause is .
evaluated. If the condition is true, the loop completes and control passes to the next statement. In the
following example, the loop completes when the value of total exceeds 25,000.

LOOP

total : = total + salary;
EXIT WHEN total > 25000; - exit loop if condition is true
END LOOP;

-- control resumes here

6.5.3 Sequential Control

The GOTO statement lets you branch to a label unconditionally. The label, an undeclared identifier
enclosed by double angle brackets, must precede an executable statement or a PL/ SQL block. When
executed, the GOTO statement transfers control to the labeled statement or block, as the following
example shows:

IF rating > 90 THEN
GOTO calc_raise; - branch to label



M.S. University - D.D.C.E. , PL/SQL 141

END IF;

< <calc_raise> >
IF job_title = 'SALESMAN' THEN - control resumes here

amount := commission * 0.25;

ELSE

amount : = salary * 0.10;
END IF;
6.6 MODULARITY

Modularity lets you break an application down into manageable, well-defined modules. Through
successive refinement, you can reduce a complex problem to a set of simple problems that have easy-
to-implement solutions. PL/SQL meets this need with program units, which include blocks,
subprograms, and packages.

6.6.1 Subprograms

PL/SQL has two types of subprograms called procedures and functions, which can take parameters
and be invoked (called). As the following example shows, a subprogram is like a miniature program,
beginning with a header followed by an optional declarative part, an executable part, and an optional
exception-handling part:

PROCEDURE award_bonus (emp_id NUMBER) IS
bonus REAL;
comm_missing EXCEPTION;
BEGIN -- executable part starts here
SELECT comm * 0.15 INTO bonus FROM emp WHERE empno = emp_id;
IF bonus IS NULL THEN
RAISE comm_missing;
ELSE
UPDATE payroll SET pay = pay + bonus WHERE empno = emp_id;
END IF; |
EXCEPTION - exception-handling part starts here
WHEN comm_missing THEN

END award_bonus;



142 Client Server Computing with Oracle M.S. University ~ D.D.C.E.

When called, this procedure accepts an employee number. It uses the number to select the employee's
commission from a database table and, at the same time, compute a 15% bonus. Then, it checks the bonus
amount. If the bonus is null, an exception is raised; otherwise, the employee's payroll record is updated.

6.6.2 Packages

PL/SQL lets you bundle logically related types, variables, cursors, and subprograms into a package.
Each package is easy to understand and the interfaces between packages are simple, clear, and well
defined. This aids application development.

Packages usually have two parts: a specification and a body. The specification is the interface to your
applications; it declares the types, constants, variables, exceptions, cursors, and subprograms available
for use. The body defines cursors and subprograms and so implements the specification.

In the following example, you package two employment procedures:

CREATE PACKAGE emp _actions AS - package specification
PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

CREATE PACKAGE BODY emp_actions AS - package body
PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
BEGIN

INSERT INTO emp VALUES (empno, ename, ...);
END hire_employee; | |
PROCEDURE fire_employee (emp_id NUMBER) IS
BEGIN

DELETE FROM emp WHERE empno = emp_id;
END fire_employee;

END emp_actions;

Only the declarations in the package specification are visible and accessible to applications.
Implementation details in the package body are hidden and inaccessible.

Packages can be compiled and stored in an Oracle database, where their contents can be shared by
many applications. When you call a packaged subprogram for the first time, the whole package is
loaded into memory. So, subsequent calls to related subprograms in the package require no disk I/O.
Thus, packages can enhance productivity and improve performance.

6.7 INFORMATION HIDING

With information hiding, you see only the details that are relevant at a given level of algorithm and
data structure design. Information hiding keeps high-level design decisions separate from low-level
design details, which are more likely to change.




M.S. University - D.D.C.E. PL/SQL 143

Algorithms

You implement information hiding for algorithms through top-down design. Once you define the
purpose and interface specifications of a low-level procedure, you can ignore the implementation details.
They are hidden at higher levels. For example, the implementation of a procedure named raise_salary is
hidden. All you need to know is that the procedure will increase a specific employee's salary by a given
amount. Any changes to the definition of raise_salary are transparent to calling applications.

Data Structures

You implement information hiding for data structures though data encapsulation. By developing a set
of utility subprograms for a data structure, you insulate it from users and other developers. That way,
other developers know how to use the subprograms that operate on the data structure but not how the
structure is represented.

With PL/SQL packages, you can specify whether subprograms are public or private. Thus, packages
enforce data encapsulation by letting you put subprogram definitions in a black box. A private
definition is hidden and inaccessible. Only the package, not your application, is affected if the
definition changes. This simplifies maintenance and enhancement.

6.8 ERROR HANDLING

PL/SQL makes it easy to detect and process predefined and user-defined error conditions called
exceptions. When an error occurs, an exception is raised. That is, normal execution stops and control
transfers to the exception-handling part of your PL/SQL block or subprogram. To handle raised
exceptions, you write separate routines called exception handlers.

Predefined exceptions are raised implicitly by the runtime system. For example, if you try to divide a
number by zero, PL/SQL raises the predefined exception ZERO_DIVIDE automatically. You must
raise user-defined exceptions explicitly with the RAISE statement.

You can define exceptions of your own in the declarative part of any PL/SQL block or subprogram.
In the executable part, you check for the condition that needs special attention. If you find that the
condition exists, you execute a RAISE statement. In the example below, you compute the bonus
earned by a salesperson. The bonus is based on salary and commission. So, if the commission is null,
you raise the exception comm_missing.

DECLARE

comm_missing EXCEPTION; - declare exception
BEGIN

IF commission IS NULL THEN
RAISE comm_missing; - raise exception
END IF;

bonus := (sélary *0.10) + (commission * 0.15);



144 Client Server Computing with Oracle ' M.S. University - D.D.C.E.

EXCEPTION
WHEN comm_missing THEN ... - process the exception

6.9 PL/SQL ARCHITECTURE

The PL/SQL compilation and run-time system is a technology, not an independent product. Think of
this technology as an engine that compiles and executes PL/SQL blocks and subprograms. The engine
can be installed in an Oracle server or in an application development tool such as Oracle Forms or
Oracle Reports. So, PL/SQL can reside in two environments:

6.9.1 The Oracle Database Server
Oracle Tools

These two environments are independent. PL/SQL is bundled with the Oracle server but might be
unavailable in some tools. In either environment, the PL/SQL engine accepts as input any valid
PL/SQL block or subprogram. The engine executes procedural statements but sends SQL statements
to the SQL Statement Executor in the Oracle server.

In the Oracle Database Server

Application development tools that lack a local PL/SQL engine must rely on Oracle to process
PL/SQL blocks and subprograms. When it contains the PL/SQL engine, an Oracle server can process
PL/SQL blocks and subprograms as well as single SQL statements. The Oracle server passes the blocks
and subprograms to its local PL/SQL engine.

Anonymous Blocks

Anonymous PL/SQL blocks can be embedded in an Oracle Precompiler or OCI program. At run
time, the program, lacking a local PL/SQL engine, sends these blocks to the Oracle server, where they
are compiled and executed. Likewise, interactive tools such as SQL*Plus and Enterprise Manager,
lacking a local PL/SQL engine, must send anonymous blocks to Oracle.

6.9.2 Stored Subprograms

Subprograms can be compiled separately and stored permanently in an Oracle database, ready to be.
executed. A subprogram explicitly CREATEd using an Oracle tool is called a stored subprogram.
Once compiled and stored in the data dictionary, it is a schema object, which can be referenced by any
number of applications connected to that database.

Stored subprograms defined within a package are called packaged subprograms. Those defined
independently are called standalone subprograms. Those defined within another subprogram or within
a PL/SQL block are called local subprograms, which cannot be referenced by other applications and
exist only for the convenience of the enclosing block.

Stored subprograms offer higher productivity, better performance, memory savings, application
integrity, and tighter security. For example, by designing applications around a library of stored
procedures and functions, you can avoid redundant coding and increase your productivity.



M.S. University - D.D.C.E. PL/SQL 145

You can call stored subprograms from a database trigger, another stored subprogram, an Oracle
Precompiler application, an OCI application, or interactively from SQL*Plus or Enterprise Manager.
For example, you might call the standalone procedure create_dept from SQL*Plus as follows:

SQL> CALL create_dept('FINANCE', 'NEW YORK");

Subprograms are stored in parsed, compiled form. So, when called, they are loaded and passed to the
PL/SQL engine immediately. Also, they take advantage of shared memory. So, only one copy of a
subprogram need be loaded into memory for execution by multiple users.

Database Triggers

A database trigger is a stored subprogram associated with a database table, view, or event. For instance,
you can have Oracle fire a trigger automatically before or after an INSERT, UPDATE, or DELETE
statement affects a table. One of the many uses for database triggers is to audit data modifications. For
example, the following table-level trigger fires whenever salaries in the emp table are updated:

CREATE TRIGGER audit_sal
AFTER UPDATE OF sal ON emp
FOR EACH ROW
BEGIN
INSERT INTO emp_audit VALUES ...
END;

The executable part of a trigger can contain procedural statements as well as SQL data manipulation
statements. Besides table-level triggers, there are instead-of triggers for views and system-event triggers
for schemas.

In Oracle Tools

When it contains the PL/SQL engine, an application development tool can process PL/SQL blocks
and subprograms. The tool passes the blocks to its local PL/SQL engine. The engine executes all
procedural statements at the application site and sends only SQL statements to Oracle. Thus, most of
the work is done at the application site, not at the server site.

Furthermore, if the block contains no SQL statements, the engine executes the entire block at the
application site. This is useful if your application can benefit from conditional and iterative control.

Frequently, Oracle Forms applications use SQL statements merely to test the value of field entries or
to do simple computations. By using PL/SQL instead, you can avoid calls to the Oracle server.
Moreover, you can use PL/SQL functions to manipulate field entries.

6.10 ADVANTAGES OF PL/SQL

PL/SQL is a completely portable, high-performance transaction processing language that offers the
following advantages:

® Support for SQL

e Support for object-oriented programming



146 Client Server Computing with Oracle M.S. University - D.D.C.E.

®  Better performance

® Higher productivity

e  Full portability

® Tight integration with Oracle

® Tight security

Support for SOQL
SQL has become the standard database language because it is flexible, powerful, and easy to learn. A

few English-like commands such as SELECT, INSERT, UPDATE, and DELETE make it easy to
manipulate the data stored in a relational database.

SQL is non-procedural, meaning that you can state what you want done without stating how to do it.
Oracle determines the best way to carry out your request. There is no necessary connection between
consecutive statements because Oracle executes SQL statements one at a time.

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction control
commands, as well as all the SQL functions, operators, and pseudocolumns. So, you can manipulate

Oracle data flexibly and safely. Also, PL/SQL fully supports SQL datatypes. That reduces the need to
convert data passed between your applications and the database.

PL/SQL also supports dynamic SQL, an advanced programming technique that makes your
applications more flexible and versatile. Your programs can build and process SQL data definition,
data control, and session control statements "on the fly" at run time.

Support for Object-Orz'ented Programming

Object types are an ideal object-oriented modeling tool, which you can use to reduce the cost and time
required to build complex applications. Besides allowing you to create software components that are
modular, maintainable, and reusable, object types allow different teams of programmers to develop
software components concurrently.

By encapsulating operations with data, object types let you move data-maintenance code out of SQL
scripts and PL/SQL blocks into methods. Also, object types hide implementation details, so that you
can change the details without affecting client programs.

In addition, object types allow for realistic data modeling. Complex real-world entities and
relationships map directly into object types. That helps your programs better reflect the world they
are trying to simulate.

Better Performance

Without PL/SQL, Oracle must process SQL s=ments one at a time. Fach SQL statement results in
another call to Oracle and higher performance o serhead. In a networked environment, the overhead
can become significant. Every time a SQL statement is issued, it must be sent over the network,
creating more traffic.

However, with PL/SQL, an entire block of statements can be sent to Oracle at one time. This can
drastically reduce communication between your application and Oracle. If your application is database

intensive, you can use PL/SQL blocks and subprograms to group SQL statements before sending them
to Oracle for execution.



M.S. University - D.D.C.E. PL/SQL 147

PL/SQL stored procedures are compiled once and stored in executable form, so procedure calls are
quick and efficient. Also, stored procedures, which execute in the server, can be invoked over slow
network connections with a single call. That reduces network traffic and improves round-trip response
times. Executable code is automatically cached and shared among users. That lowers memory
requirements and invocation overhead.

PL/SQL also improves performance by adding procedural processing power to Oracle tools. Using
PL/SQL, a tool can do any computation quickly and efficiently without calling on the Oracle server.
This saves time and reduces network traffic.

Higher Productivity

PL/SQL adds functionality to non-procedural tools such as Oracle Forms and Oracle Reports. With
PL/SQL in these tools, you can use familiar procedural constructs to build applications. For example,
you can use an entire PL/SQL block in an Oracle Forms trigger. You need not use multiple trigger steps,
macros, or user exits. Thus, PL/SQL increases productivity by putting better tools in your hands.

Also, PL/SQL is the same in all environments. As soon as you master PL/SQL with one Oracle tool,
you can transfer your knowledge to other tools, and so multiply the productivity gains. For example,
scripts written with one tool can be used by other tools.

Full Portability

Applications written in PL/SQL are portable to any operating system and platform on which Oracle
runs. In other words, PL/SQL programs can run anywhere Oracle can run; you need not tailor them
to each new environment. That means you can write portable program libraries, which can be reused
in different environments. ' 4

Tight Integration with SQL

The PL/SQL and SQL languages are tightly integrated. PL/SQL supports all the SQL datatypes and
the non-value NULL. That allows you manipulate Oracle data easily and efficiently. It also helps you
to write high-performance code.

The %TYPE and %ROWTYPE attributes further integrate PL/SQL with SQL. For example, you can
use the %TYPE attribute to declare variables, basing the declarations on the definitions of database
columns. If a definition changes, the variable declaration changes accordingly the next time you
compile or run your program. The new definition takes effect without any effort on your part. This
provides data independence, reduces maintenance costs, and allows programs to adapt as the database
changes to meet new business needs.

Tight Security

PL/SQL stored procedures enable you to partition application logic between the client and server.
That way, you can prevent client applications from manipulating sensitive Oracle data. Database
triggers written in PL/SQL can disable application updates selectively and do content-based auditing of
user inserts.

Furthermore, you can restrict access to Oracle data by allowing users to manipulate it only through
stored procedures that execute with their definer's privileges. For example; you can grant users access
to a procedure that updates a table, but not grant them access to the table itself.



148 Client Server Computing with Oracle M.S. University - D.D.C.E.

6.11 WHAT’S NEW IN PL/SQL?

This section describes new features of PL/SQL release 9.0.1 and provides pointers to additional information.

You can now insert into or update a SQL table by specifying a PL/SQL record variable, rather than
specifying each record attribute separately. You can also select entire rows into a PL/SQL table of
records, rather than using a separate PL/SQL table for each SQL column.

Associative Arrays

You can create collections that are indexed by VARCHAR? values, providing features similar to hash
tables in Perl and other languages.

User-defined constructors
You can now override the system default constructor for an object type with your own function.
Enhancements to UTL_FILE package

UTL_FILE contains several new functions that let you perform general file-management operations
from PL/SQL.

TREAT Function for Object Types

You can dynamically choose the level of type inheritance to use when calling object methods. That is,
you can reference an object type that inherits from several levels of parent types, and call a method
from a specific parent type. This function is similar to the SQL function of the same name.

Integration of SQL and PL/SQL Parsers

PL/SQL now supports the complete range of syntax for SQL statements, such as INSERT, UPDATE,
DELETE, and so on. If you received errors for valid SQL syntax in PL/SQL programs before, those
statements should now work.

Because of more consistent error-checking, you might find that some invalid code is now found at -
compile time instead of producing an error at runtime, or vice versa. You might need to change the
source code as part of the migration procedure.

CASE Statements and Expressions

CASE statements and expressions are a shorthand way of representing IF/THEN choices with
multiple alternatives.

Inheritance and Dynamic Method Dispatch

Types can be declared in a supertype/subtype hierarchy, with subtypes inheriting attributes and
methods from their supertypes. The subtypes can also add new attributes and methods, and override
existing methods. A call to an object method executes the appropriate version of the method, based on
the type of the object.

Type Evolution

Attributes and methods can be added to and dropped from object types, without the need to re-create
the types and corresponding data. This feature lets the type hierarchy adapt to changes in the
application, rather than being planned out entirely in advance.



M.S. University - D.D.C.E. PL/SQL 149

New Date/ Time Types

The new datatype TIMESTAMP records time values including fractional seconds. New datatypes
TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE allow you to
adjust date and time values to account for time zone differences. You can specify whether the time
zone observes daylight savings time, to account for anomalies when clocks shift forward or backward.
New datatypes INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH represent
differences between two date and time values, simplifying date arithmetic.

Native Compilation of PL/SQL Code

Improve performance by compiling Oracle-supplied and user-written stored procedures into native
executables, using typical C development tools. This setting is saved so that the procedure is compiled
the same way if it is later invalidated.

Improved Globalization and National Language Support

Data can be stored in Unicode format using fixed-width or variable-width character sets. String
handling and storage declarations can be specified using byte lengths, or character lengths where the
number of bytes is computed for you. You can set up the entire database to use the same length
semantics for strings, or specify the settings for individual procedures; this setting is remembered if a
procedure is invalidated.

Table Functions and Cursor Expressions

You can query a set of returned rows like a table. Result sets can be passed from one function to
another, letting you set up a sequence of transformations with no table to hold intermediate results.
Rows of the result set can be returned a few at a time, reducing the memory overhead for producing
large result sets within a function.

Mudltilevel Collections

You can nest the collection types, for example to create a VARRAY of PL/SQL tables, a VARRAY of
VARRAYsS, or a PL/SQL table of PL/SQL tables. You can model complex data structures such as
multidimensional arrays in a natural way.

Better Integration for LOB Datatypes

You can operate on LOB types much like other similar types. You can use character functions on
CLOB and NCLOB types. You can treat BLOB types as RAWs. Conversions between LOBs and
other types are much simpler, particularly when converting from LONG to LOB types.

Enhancements to Bulke Operations

You can now perform bulk SQL operations, such as bulk fetches, using native dynamic SQL (the
EXECUTE IMMEDIATE statement). You can perform bulk insert or update operations that
continue despite errors on some rows, then examine the problems after the operation is complete.

MERGE Statement

This specialized statement combines insert and update into a single operation. It is intended for data
warehousing applications that perform particular patterns of inserts and updates.



150 "Client Server Computing with Oracle M.S. University - D.D.C.E.

6.12 TRANSACTION

Transaction is a logical unit of data manipulation related tasks wherein either the all the component
tasks must be completed or none of them is executed in order to keep the database consistent. When
many transactions proceed in the database environment it is imperative that a strict control is applied
on them failing which the consistency of the database cannot be ensured.

Transactions can very easily cause undesirable inconsistencies in a database especially when many of
them are executing concurrently. The problem has been studied in detail by designers and experts and
it has been concluded that if a database enforces certain conditions on transaction management the
problem of inconsistency can be avoided.

The term ACID is abbreviation for those properties that must be associated with transactions so that
the integrity of the database is ensured. The term when extended reads:

A: Atomicity
C: Consistency
I:  Isolation

D: Durability
Atomicity

A transaction typically contains a number of database operations. The Atomicity property of a
transaction ensures that either all the operations are carried out successfully or none of the operations
is carried out at all. In the former case the transaction is said to have completed successfully and in the
later it is said to have failed. A failed transaction does not have any effect on the state of the database.
To monitor and control atomicity property of transactions database systems provide a components
called transaction management system.

Consistency

This property of a transaction requires that the integrity rules of a database must not be violated. For
example, if an amount is being transferred from one relation to another relation then the consistency
rule must ensure that the transaction does not create or destroy an additional amount during its
operation. That is the total amount in both the relations must remain the same. This property ensures
that the database remains consistent before and after the execution of a transaction. The onus to
enforce consistency property lies with the application programmers.

Isolation

In a multi-transaction environment many transactions may be executing concurrently on a single
database. This property makes sure that every transaction executes independent of each other. To
monitor and control atomicity property of transactions database systems provide a component called
concurrency control system.

Durability

This property ensures that the changes made to the database are recorded in the physical database on
successful completion of a transaction. The recovery management component of the database
management system takes care of durability of the transactions.



M.S. University - D.D.CE. PL/SQL 151

To elucidate ACID properties consider a transaction (T1) in a banking database system with following
characteristics:

®  The database is maintained on a secondary storage device like a hard disk.
®  The system has a number of accounts.

® Transactions can read a data from the database to a variable in the memory by a READ operation -
READ(A,B) meaning the value of A (a database field) is copied into the variable B in the memory.

® Transactions can write a data stored in a variable A into the database by a WRITE operation -
WRITE(A,B) meaning the current value stored in variable A is copied into B in the database
immediately.

® The transaction T1 transfers Rs. 200 from an account named FirstAc to another account named
SecondAg, 1.e.,

T1: READ(FirstAc.Balance,X)
X « X-200
WRITE (X,FirstAc.Balance
X« X+200
READ(SecondAc.Balance,X)
WRITE (X,SecondAc.Balance)

In execution of this transaction the system must ensure that the sum FirstAc.Balance +
SecondAc.Balance must not change failing which would mean that some amount of money has either
created or destroyed spuriously. This is the consistency property of this transaction. The application
programmer writing this transaction must enforce this consistency condition.

Now, consider that the transaction fails in between due to power failure or any other reason after the
FirstAc.Balance was decreased by 200 but before SecondAc.Balance was updated. The consistency rule
is violated. This leaves that database in consistent state. The transaction management component of
the database management system applies mechanism to ensure that the transaction follows atomicity
property so that either both the values are updated or neither.

We were assuming here that this is the only transaction being executed at this time. However, in a real
life situation many transactions execute simultaneously. Now, suppose after the FirstAc.Balance has
been updated and before SecondAc.Balance is updated another transaction T2 accesses
SecondAc.Balance and adds 400 into it; then again the SecondAc.Balance is updated. At this point the
database again will enter into an inconsistent state. To avoid this concurrency control component of
the database management system employs mechanisms to ensure isolation of the transaction through
various concurrency control techniques.

Another assumption made here is that the WRITE operation updates the database immediately.
However, in practice due to many reasons updation is not done right away. The operations are
performed on a copy of the database and the actual recording in the database is done much later. The
recovery management component of the database management system applies the property of
durability on the transaction to make sure that the changes created by transactions are eventually
recorded in the database.



152 Client Server Computing with Oracle M.S. University - D.D.C.E.

Check Your Progress

Fill in the blanks:

1. A block (or sub-block) lets you group logically related declarations and ................ .

2. A PL/SQL construct called a cursor lets you name a work area and .............. its stored
information.

3. PL/SQL now supports the complete range of syntax for ................ statements

4. A database trigger is a stored subprogram associated with a ................... , View, or event.

5. Predefined exceptions are raised ................ by the runtime system.

6.13 LET US SUM UP

A good way to get acquainted with PL/SQL is to look at a sample program. The program below
processes an order for a tennis racket. First, it declares a variable of type NUMBER to store the
quantity of tennis rackets on hand. PL/SQL lets you declare constants and variables, then use them in
SQL and procedural statements anywhere an expression can be used. However, forward references are
not allowed. Oracle uses work areas to execute SQL statements and store processing information. A
PL/SQL construct called a cursor lets you name a work area and access its stored information.
Control structures are the most important PL/SQL extension to SQL. Modularity lets you break an
application down into manageable, well-defined modules. With information hiding, you see only the
details that are relevant at a given level of algorithm and data structure design. PL/SQL makes it easy
to detect and process predefined and user-defined error conditions called exceptions. When an error
occurs, an exception is raised. The PL/SQL compilation and run-time system is a technology, not an
independent product. Think of this technology as an engine that compiles and executes PL/SQL
blocks and subprograms. Transaction is a logical unit of data manipulation related tasks wherein either
the all the component tasks must be completed or none of them is executed in order to keep the
database consistent.

6.14 KEYWORDS
PL/SQL: PL/SQL is a block-structured language.

Cursors: A PL/SQL construct called a cursor lets you name a work area and access its stored information.
Data Triggers: A database trigger is a stored subprogram associated with a database table, view, or event.
Modularity: Modularity lets you break an application down into manageable, well-defined modules.

Transaction: Transactions can very easily cause undesirable inconsistencies in a database especially
when many of them are executing concurrently.

6.15 QUESTIONS FOR DISCUSSION

1. Explain the declaration of variables and constants in PL/SQL.

2. What is difference between cursors and cursors variables?



M.S. University - D.D.C.E. PL/SQL 153

Discuss the three types of control structures.
What is information hiding in PL/SQL?

Explain the PL/ SQL architecture. Give its five advantages.

A

Discuss the term transaction? Explain ACID.

Check Your Progress: Model Answers
1. Statements

Access

SQL

database table

A

implicitly

6.16 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Database Systems: Design, Implementation and Management, Seventh edition,
Thomson Learning, 2007

Silberschatz, Korth, Sudarshan, Database System Concepts, Fifth edition, McGraw-Hill, 2005
Elmasari Navathe, Fundamentals of Database Systems, Third edition, Pearson Education Asia, 2001
E.]. Yannakoudakis, The Architectural Logic of Database Systems, Springer-Verlag, Digitized 2007
Fred R. McFadden, Jeffrey A. Hoffer, Database Management, Benjamin/Cummings, Digitized 2007

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third edition, McGraw-Hill Higher
Education, 2003



LESSON

7

TRIGGERS

CONTENTS
7.0 Aims and Objectives

7.1  Introduction
7.2 Database Triggers
7.2.1  Components/Parts of a Trigger
7.2.2  Types of Triggers
7.2.3  Creating Triggers
7.24  Modifying a Trigger
7.3 LetusSumup
7.4 Keywords
7.5 Questions for Discussion

7.6 Suggested Readings

7.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

®  Explain the concept of database triggers
® Discuss different types of triggers

® Describe how to create triggers

7.1 INTRODUCTION

A database trigger is a stored procedure that is fired when an insert, update, or delete statements is
issued against the associate table. The name trigger is appropriate, as these are triggered (fired)
whenever the above-mentioned commands are executed. A trigger defines an action the database
should take when some database-related event occurs. Triggers may used to supplement declarative
referential integrity, to enforce complex business rules, or to audit changes to data. The code within a
trigger, called the trigger body is made up of PL/SQL blocks. Using triggers is one of the most
practical ways to implement routines, thus granting integrity of data or operations.




M.S. University - D.D.C.E. Triggers 155

7.2 DATABASE TRIGGERS

A trigger is automatically executed without any action required by the user. A stored procedure on
other hand needs to be explicitly invoked. This is the main difference between a trigger and a stored
procedure.

Database triggers can be used for the following purposes :
® To generate data automatically.

® To enforce complex integrity constraints. (e.g. checking with sysdate, checking with data in
another table).

® To customize complex security authorizations.
® To maintain replicate tables.

® To audit data modifications.

Required System Privileges

To create a trigger on a table you must be able to alter that table. Therefore, you must either be the
owner of that table, have the ALTER TABLE privilege from the owner of the table or you should
have the ALTER ANY TABLE system privilege. In addition you must have CREATE TRIGGER
system privilege.

Application Dartabase

UPDATE t /

SET.. ——P
INSERT INTOt ——p Tablpt |—p tU'pdate
| rigger
DELETE — >
FROM t In§en
———P Trigger
\ J/ BEGIN
‘ Delete
| trigger
BEGIN

Restrictions

A trigger cannot execute the COMMIT, ROLLBACK, or SAVEPOINT commands. It also cannot call
procedures or functions that execute those tasks. The SELECT command can be used only with the
INTO clause.



156 Client Server Computing with Oracle M.S. University - D.D.C.E.

A row level (will be dealt in types of trigger) cannot read or change the contents of a table that is being
modified. This type of table is one in which the contents are being changed by an INSERT, UPDATE,
and DELETE commands, and the command has not been completed.

7.2.1 Components/Parts of a Trigger

A trigger has three parts:

® A trigger statement

® A trigger body

® A trigger restriction

A trigger statement: (SQL command that activates the trigger (triggering event) The trigger can be
activated by a SQL command or by a user event. In a table, it can be triggered b the INSERT,
UPDATE, or DELETE commands. The INSERT, UPDATE, or DELETE commands enable a
trigger. The same trigger can be invoked in more than one situation. The trigger statement fires the
trigger body. It also specifies the table to which the trigger is associated.

Trigger Body/ Trigger Action: Trigger body is a PL/SQL block or Java or C routine that is executed
when a triggering statement is issued.

Trigger Restriction: Restrictions on a trigger can be achieved using the WHEN clause. They can be
included in the definition of a trigger, wherein it specifies what condition must be true for the trigger
to be triggered.

Syntax for creating a Trigger: Create or replace Trigger <trigger name >

[ before | after ] [ Insert | Update | Delete] on < table name > [ for each statement / for each row ]
[ when < condition > ];

7.2.2 Types of Triggers

A trigger's type is defined by the type of triggering transaction and by the level at which the trigger is
executed. Oracle 9i has the following types of triggers depending on the different applications.

e Before (INSERT, UPDATE, DELETE) Trigger
e  After (INSERT, UPDATE, DELETE) Trigger
® Row level Trigger

® Statement level Trigger

e Instead of Trigger

® Schema Trigger

® Database level Trigger

Row Level Trigger

Row level triggers execute once for each row in a transaction. The commands of row level triggers are
executed on all rows that are affected by the command that enables the trigger. Row level triggers are
the most common type of trigger used, often-used in data auditing applications.



M.S. University - D.D.C.E. Triggers 157

Row level triggers are created using the for each row clause in the create trigger command.
Statement Level Trigger

Statement level triggers are triggered only once for each transaction. For example when an UPDATE
command update 15 rows, the commands contained in the trigger are executed only once, and not
with every processed row.

Statement level trigger are the default types of trigger created via the create trigger command.
Before and After Trigger

Since triggers are executed by events, they may be set to occur immediately before of after those
events. When a trigger is defined, you can specify whether the trigger must occur before or after the
triggering event L.e. insert, update, or delete commands.

The BEFORE trigger is used in situations where the trigger action could determine if the trigger itself
should be executed, or when you need some preprocessing before executing the command. The
AFTER trigger is triggered only after the execution of the associated triggering command.

A table can contain up to 12 triggers associated with the activation commands and triggering event.
There are six row-level and six statement-level triggers.

e BEFORE INSERT row / statement
e AFTER INSERT row / statement
e BEFORE UPDATE row / statement
e AFTER UPDATE row / statement
e BEFORE DELETE row / statement
e AFTER DELETE row / statement
Instead of Trigger

Instead of trigger was first featured in Oracle 8. This was something new in the world of triggers.
These are triggers that are defined on a view rather than on a table. Such triggers can be used to
overcome the restrictions placed by Oracle on any view, which is deemed to be non-updateable. You
can use INSTEAD OF trigger to tell Oracle what to do instead of performing the actions that invoked
the trigger. For example you can use an INSTAED OF trigger on view to redirect insert into a table or
to update multiple tables that re part of a view. You can use INSTEAD OF trigger on either object
view or relational view.

In Oracle 8, INSTEAD OF triggers are defined on the same events as their table counterparts:
INSERT, UPDATE, or DELETE. Since there is no provision for a trigger, which is run at a lock
time, then either locking must be implicit or the application must know what objects to lock. Despite
this minor constraint new trigger have removed major constraints on design.

There are a few restrictions on INSTEAD OF trigger. They are available only at the row level and not
at the statement level. They can be applied only to views and not to tables.



158 Client Server Computing with Oracle M.S. University - D.D.C.E.

Database ~ Level Trigger

You can create triggers to be fired on database events, including errors, logons, logoffs, shutdowns, and
startups. You can use this type of trigger to automate database maintenance or auditing actions.

Tom Dick and Harry sales Inc finds that inserting simultaneously into two tables is a very useful job. It
achieves what could be done as a series of commands in a single command. They decide to use instead of
triggers and create a view on the tables order_master and order_detail to achieve the job of inserting into
two tables simultaneously. The coding and creation of the view and trigger is given below

Example

Create view ord_view as select order_master. orderno, order_master . ostatus,
order_detail . qty_deld, order_detail . qty_ord from order master, order_detail
where order_master . orderno = order_detail . orderno

/

When the above query is successfully compiled the output appears as shown below,
View created

Code to create a trigger on the above created view ord_view.

create or replace trigger order_mast_insert

INSTEAD OF insert on ord_view

referencing new as n each row

declare

cursor ecur is select * form order master

where order_master . orderno = :n . orderno ;

cursor dcur is select * from order detail

where order_detail . orderno = :n . orderno ;

a ecur%rowtype ;

b dcur%rowtype ;

begin

open ecur ;

open dcur ;

fetch ecur into a ;

fetch dcur into'b ;

"~

if dcur%notfound then
insert into order_master (orderno, o_status)
values (:n . orderno, :n . o_status) ;

else



M.S. University - D.D.C.E.

update order_master set order_master . o_status = :n

where order_master . orderno = :n . orderno ;
end if ;
if ecur%notfound then
insert into order_detail (qty_ord, qty deld, ordern)
values (:n . qty_ord, :n . qty)deld, :n . orderno) ;
else
update order_detail set order_detail . qty ord = :n
order_detail . qty_deld = :n. qty_deld
where order_detail . orderno = :n . orderno ;
end if ;
close ecur ;
close dcur ;
end ;
/
The output of the above code will be

Trigger created.

7.2.3 Creating Triggers
Creating DDL Event Trigger

Triggers 159

As of Oracle 8i, you can create triggers that are executed when a DDL event occurs. If you are
planning to use this feature solely for security purposes, you should investigate using the audit

command instead. You can use a DDL event tr

gger to execute, function, index, package, procedure,

role, sequence, synonym, table, type, or view. If you can use the on schema clause, the trigger will

execute for any new data dictionary objects in your schema.
Example

create trigger CREATE_DB_OBJECT AUDIT

after create on schema

begin

call INSERT_AUDIT RECORDS (sys.dictionary_obj_name) ;

end ;

/



160 Client Server Computing with Oracle M.S. University - D.D.C.E.

Creating Database Event Triggers

Like DML events, database events can execute triggers. When a database event occurs (a shutdown,
startup, or error), you can execute a trigger that references the attributes of the event. You could a use
database event to perform system maintenance functions immediately after each database startup.
Pinning package is an effective way of keeping large PL/SQL objects in the shared pool of memory,
improving performance and enhancing database stability. This trigger, PIN_ON_STARTUP, will run
each time the database is started.

create or replace trigger PIN_ON_STARTUP

after startup on database

begin

DBMS SHARED POOL.KEEP (
'SYS.STANDARD', 'P") ;

end;

/

This example shows that trigger will be executed immediately after the database startup.

7.2.4 Modifying a Trigger

A trigger cannot be directly modified. To change the definition of a trigger you must recreate the
trigger with the CREATE command. If a trigger had its privileges granted to other users, they remain
valid as long as the trigger exists.

Enabling and Disabling Triggers

When a trigger is created it is automatically enabled and is triggered whenever the triggering command
and the execution command is true. An enabled trigger executes the trigger body if the triggering
statement is issued. To disable the execution of the use the ALTER TRIGGER command with the
DISABLE clause. A disable trigger does not execute the trigger body even if the triggering statement is
issued. We can disable / enable the trigger by the following syntax:

ALTER TRIGGER <trigger name > DISABLE / ENAMBLE
Calling Procedures Within Trigger

We can call procedures within a trigger to avoid writing large block of code in the trigger body. You
can save the code of the stored procedure and call the procedure within the trigger, by using call
command, as shown in the following syntax

Create or replace Trigger <trigger name >

[ before | after ] [ Insert | Update | Delete] on < table name > [ for each statement / for each row ]
[ when < condition> J;

begin
call <procedure name >

(statements)



M.S. University - D.D.C.E. ‘ Triggers 161

end ;

/

Deleting a Trigger

To delete a trigger use the DROP TRIGGER command
Syntax

DROP TRIGGER <trigger name > ;

This removes the trigger structure from the database and withdraws the privileges that were granted to
other users.

Obtaining Information about a Trigger

Oracle has a view in data dictionary, accessible only by those with the privilege of DBA, that contains
data from all the triggers created for the DATABASE in use. This table is called DBA_TRIGGERS.
Following is a description of its contents (using System as login and manager as password to access this

table).
Desc command is used in the following example.

SQL > desc DBA_TRIGGERS;

Name Null? Type

OWNER NOT NULL VARCHAR2 (30)
TRIGGER_NAME NOT NULL . VARCHAR?2 (30)
TRIGGER_TYPE VARCHAR2 (16)
TRIGGERING_EVENT VARCHARZ2 (26)
TABLE_OWNER NOT NULL VARCHAR2 (30)
TABLE_NAME NOT NULL VARCHAR2 (30)
REFERENCING_NAMES VARCHAR?2 (87)
WHEN_CLAUSE VARCHAR2 (4000)
STATUS VARCHAR?2 (8)
DESCRIPTION VARCHAR2 (4000)
TRIGGER_BODY LONG

To view the user's triggers, you use the view USER_TRIGGERS:
SQL > desc user_triggers

Name Null? Type
TRIGGER_NAME NOT NULL VARCHAR2 (30)
TRIGGER_TYPE VARCHAR2 (16)

TRIGGERING_EVENT VARCHAR2 (26)



162 Client Server Computing with Oracle M.S. University - D.D.C.E.

Name Null? Type
TABLE_OWNER NOT NULL VARCHAR2 (30)
TABLE_NAME NOT NULL VARCHAR2 (30)
REFERENCING_NAMES VARCHAR2 (87)
WHEN_CLAUSE VARCHAR2 (4000)
STATUS VARCHAR2 (8)
DESCRIPTION VARCHAR2 (4000)
TRIGGER_BODY LONG
Check Your Progress
Fill in the blanks:
1. Triggers may used to supplement declarative referential ................... , to enforce complex
business rules, or to audit changes to data.
2. A trigger cannot execute the ................... , ROLLBACK, or SAVEPOINT commands.
3. A rigger's type is defined by the type of triggering ............... and by the level at which the
trigger is executed.

7.3 LET US SUM UP

A trigger is automatically executed without any action required by the user. A stored procedure on
other hand needs to be explicitly invoked. A trigger cannot execute the COMMIT, ROLLBACK, or
SAVEPOINT commands. It also cannot call procedures or functions that execute those tasks. The
SELECT command can be used only with the INTO clause. The trigger can be activated by a SQL
command or by a user event. In a table, it can be triggered by the INSERT, UPDATE, or DELETE
commands. A trigger cannot be directly modified. To change the definition of a trigger you must
recreate the trigger with the CREATE command. If a trigger had its privileges granted to other users,
they remain valid as long as the trigger exists.

7.4 KEYWORDS

Trigger Restriction: Restrictions on a trigger can be achieved using the WHEN clause.

Row Level Trigger: Row level triggers execute once for each row in a transaction.
Statement Level Trigger: Statement level triggers are triggered only once for each transaction.

Before and After Trigger: Since triggers are executed by events, they may be set to occur immediately
before of after those events.

Instead of Trigger: These are triggers that are defined on a view rather than on a table.

Database-Level Trigger: You can create triggers to be fired on database events, including errors, logons,
logoffs, shutdowns, and startups.



M.S. University - D.D.C.E.

Triggers 163

7.5 QUESTIONS FOR DISCUSSION

1
2
3.
4

What is database triggers? In how many ways database triggers can be used?

Explain the difference between row level trigger and statement level trigger.

Discuss the creation of DDL event trigger and database event trigger.

How can we enable and disable the trigger?

Check Your Progress: Model Answers

Integrity
COMMIT

transaction

7.6 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Database Systems: Design, Implementation and Management, Seventh edition,
Thomson Learning, 2007

Silberschatz, Korth, Sudarshan, Database System Concepts, Fifth edition, McGraw-Hill, 2005
Elmasari Navathe, Fundamentals of Database Systems, Third edition, Pearson Education Asia, 2001
E. ]. Yannakoudakis, The Architectural Logic of Database Systems, Springer-Verlag, Digitized 2007
Fred R. McFadden, Jeffrey A. Hoffer, Database Management, Benjamin/Cummings, Digitized 2007

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third edition, McGraw-Hill Higher
Education, 2003



LESSON

8

STORED PROCEDURES, FUNCTIONS AND PACKAGES

CONTENTS
8.0  Aims and Objectives
8.1  Introduction
8.2  Stored Procedures
8.2.1  Where to Store Procedures?
8.2.2  How to Create and Execute Procedures?
8.3  Stored Functions
"~ 83.1  Where to Store Functions ?
8.3.2  Create and Execute Functions
8.3.3  Advantages of Functions
8.4  Packages
8.4.1  Advantages of PL/SQL Packages
8.4.2  Understanding the Package Spec
8.4.3  Referencing Package Contents
8.4.4  The Package Body
8.4.5  Overview of Product-Specific Packages
8.4.6  Guidelines for Writing Packages
8.5 LetusSumup
8.6  Keywords
8.7  Questions for Discussion

8.8  Suggested Readings

8.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
®  Explain the concept of stored procedures
e Discuss stored functions

® Describe the packages



M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 165

8.1 INTRODUCTION

Procedures, also known as stored procedures, are stored in the database and are invoked or called by
any anonymous block (The PL/SQL block that appears within an application).

In this lesson we will discuss the stored procedures and function. We will also discuss packages.

8.2 STORED PROCEDURES

Procedures are named PL/SQL blocks that can take parameters, perform an action and can be
invoked. A procedure is generally used to perform an action and to pass values.

Procedures are made up of the following parts:
® A declarative part,

® An executable part,

®  An optional exception-handling part.

Declarative Part: The declarative part may contain declarations of cursors, constants, variables,
exceptions, and subprograms. These objects are local to the procedure. The objects become invalid
once you exit from it.

Executable Part: The executable part contains a PL/SQL block consisting of statements that assign
values, control execution and manipulate ORACLE data. The action to be performed is coded here
and data that is to be returned back to the calling environment is also returned from here.

Exception Handling Part: This part contains code that performs an action to deal with exceptions
raised during the execution of the Executable part. This block can be used to handle Oracle’s own
exceptions or the exceptions that are declared in the Declarative part. One cannot transfer the flow of
execution from the Exception Handling part to the Executable part or vice-versa.

8.2.1 Where to Store Procedures?

Before the procedure is created, ORACLE parses the procedure. Then this parsed procedure is stored
in the database.

Syntax for creating stored procedure:
CREATE OR REPLACE
PROCEDURE [schema.] procedurename
(argument { IN, OUT, IN OUT} datatype, ...) {IS, AS}
variable declarations;

constant declarations;

BEGIN

PL/SQL subprogram body;
EXCEPTION

exception PL/SQL block;

END;



166 Client Server Computing with Oracle M.S. University - D.D.C.E.

8.2.2 How to Create and Execute Procedures?

When a procedure is created, ORACLE automatically performs the following steps:
1. Compiles the procedure.

2. Stores the compiled code.

3.  Stores the procedure in the database.

The PL/SQL compiler compiles the code. If an error occurs, then the procedure is created but it is an
invalid procedure. ORACLE displays a message during the time of creation that the procedure was
created with compilation errors.

It does not display the errors. These errors can be viewed using the select statement.
SELECT * FROM user_errors;

ORACLE loads the compiled procedure in the memory area called the System Global Area (SGA).
This allows the code to be executed quickly. The same procedure residing in the SGA is executed by
the other users also.

Execution of Procedures

ORACLE performs the following steps to execute a procedure:
1. Verifies user access.

2. Verifies procedure validity.

3. Executes the procedure.

ORACLE checks if the user who called the procedure has the execute privilege for the procedure. If the
user is invalid, then access is denied otherwise Oracle proceeds to check whether the called procedure
is valid or not. The user can view the validity of the procedure by using the select statement as:

SELECT object_name, object_type, status FROM user ___ objects;
WHERE object_type = ‘PROCEDURE’;

Only if the status is valid, then the procedure can be executed. Once the procedure is found valid,
ORACLE then loads the procedure into memory. (i.e. if it is not present in memory) and executes the

PL/SQL code.

8.3 STORED FUNCTIONS

Functions are named PL/SQL blocks that can take parameters, perform an action and returns a value
to the host environment. A function can only return one value.

Functions are made up of:
1. A declarative part,
2. An executable part,

3. An optional exception-handling part.



M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 167

Declarative Part: The declarative part may contain declarations of type, cursors, constant, variables,
exceptions, and subprograms. These objects are local to the function. The objects become invalid
once you exit from the function. Here the datatype of the return value is also declared.

Executable Part: The executable part contains a PL/SQL block consisting of statements that assign
values, control execution, and manipulate Oracle data. The action to be performed is coded here and
data that is to be returned back to the calling environment is also returned from here. Variable
declared is put to use in this block. The return value is also passed back in this part.

Exception Handling Part: This part contains code that performs an action to deal with exceptions
raised during execution of the Executable Part. This block can be used to handle Oracle’s own
exceptions or the exceptions that are declared in the Declarative Part. One cannot transfer the flow of
execution from the Exception Handling Part to the Executable Part and vice-versa. The return value
can also be passed back in this part.

8.3.1 Where to Store Functions ?

Functions in Oracle are called stored functions. Functions are stored in the database and are invoked
or called by any anonymous block (a PL/SQL block that appears within an application) Before the
function is created, Oracle parses the function. Then this parsed function is stored in the database.
8.3.2 Create and Execute Functions

When a function is created, Oracle automatically performs the following steps:

1. Compiles the function.

2. Stores the compiled code.

3. Stores the function in the database.

The PL/SQL compiler compiles the code. If an error occurs then the function is created but it’s an
invalid function. Oracle displays a message during the time of creation that the function was created
with compilation errors. It does not display the errors. These errors can be viewed by using the select
statement:

SELECT * FROM user_errors;

Oracle loads the compiled function in the memory area called the System Global Area (SGA). This
allows the code to be executed quickly. The same function residing in the SGA is executed by the
other users also.

Syntax for creating a stored function:
CREATE OR REPLACE
FUNCTION [schema.] functionname (argument IN datatype, ...)
RETURN datatype {IS, AS}
variable declarations;

constant declarations;

BEGIN



168 Client Server Computing with Oracle M.S. University - D.D.C.E.

PL/SQL squrogram body;
EXCEPTION
exception PL/SQL block;
END;
Executing a Function
Oracle performs the following steps to execute a function:
1. Verifies user access.
2. Verifies function validity.
3.  Executes the function.

Oracle checks if the user who called the function has the execute privilege for the function. If the user is
invalid, then access is denied else if the user is valid, then it proceeds to check whether the called function
is valid or not. The user can view the validity of the function by using the select statement as:

SELECT object_name, object_type, status

FROM user_objects,

WHERE object_type = ‘FUNCTION’;
Only if the status is valid, the function can be executed. Once the function is found valid, Oracle loads
the function into memory (i.e. if it is not currently present in memory) and executes the PL/SQL code.
8.3.3 Advantages of Functions

1. Security: Stored functions can help enforce data security. For example you can grant users
access to function that can query a table, but not grant them access to the table itself.

2. Performance: It improves database performance in the following ways:

¢ Amount of information sent over a network is less. No compilation step is required to
execute the code.

%  As function is present in the shared pool of SGA, retrieval from disk is not required.

3. Memory Allocation: Reduction in memory as stored functions have shared memory capabilities so
only one copy of function needs to be loaded for execution by multiple users.

4. Productivity: Increased development productivity, by writing a single function we can avoid
redundant coding and increase productivity.

5. Integrity: Improves integrity, a function needs to be tested only once to guarantee that it returns
an accurate result. So committing coding errors can be reduced.

8.4 PACKAGES

A package is a schema object that groups logically related PL/SQL types, items, and subprograms.
Packages usually have two parts, a specification and a body, although sometimes the body is
unnecessary. The specification (spec for short) is the interface to your applications; it declares the




M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 169

types, variables, constants, exceptions, cursors, and subprograms available for use. The body fully
defines cursors and subprograms, and so implements the spec.

As the following figure shows, you can think of the spec as an operational interface and of the body as
a “black box.” You can debug, enhance, or replace a package body without changing the interface
(package spec) to the package.

Application Package Database

P Y

[

oty
)

To create packages, use the CREATE PACKAGE statement, which you can execute interactively
from SQL*Plus. Here is the syntax:

CREATE [OR REPLACE] PACKAGE package_name
[AUTHID {CURRENT USER | DEFINER}]
{IS | AS}
[PRAGMA SERIALLY REUSABLE;]

[collection_type_definition ...]
[record type definition ...]
[subtype_definition ...]
[collection_declaration ...]
[constant_declaration ...]
[exception_declaration ...]
[object_declaration ...}
[record declaration ...]
[variable_declaration ...]
[cursor_spec ...]
‘[function_spec ...]
[procedure_spec ...]
[call_spec ...]
[PRAGMA RESTRICT REFERENCES(assertions) ...]
END [package_name];



170 Client Server Computing with Oracle M.S. University - D.D.C.E,

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}
[PRAGMA SERIALLY REUSABLE;]
[collection_type_definition ...]
[record_type definition ...]
[subtype_definition )
[collection_declaration ...]
[constant_declaration ...]
[exception_declaration ...]
[object_declaration ...]
[fecord_declaration ]
[variable declaration ...]
[cursor_body ...]
[function_spec ...]
[procedure_spec ...]
[call_spec ...]
BEGIN
sequence_of_statements]
END [package name];]

The spec holds public declarations, which are visible to your application. You must declare
subprograms at the end of the spec after all other items.

The body holds implementation details and private declarations, which are hidden from your
application. Following the declarative part of the package body is the optional initialization part,
which typically holds statements that initialize package variables.

The AUTHID clause determines whether all the packaged subprograms execute with the privileges of
their definer (the default) or invoker, and whether their unqualified references to schema objects are
resolved in the schema of the definer or invoker.

A call spec lets you publish a Java method or external C function in the Oracle data dictionary. The call spec
publishes the routine by mapping its name, parameter types, and return type to their SQL counterparts.

In the example below, you package a record type, a cursor, and two employment procedures. Notice
that the procedure hire_employee uses the database sequence empno_seq and the function SYSDATE
to insert a new employee number and hire date, respectively.

CREATE OR REPLACE PACKAGE emp_actions AS — spec
TYPE EmpRecTyp IS RECORD (emp_id INT, salary REAL);
CURSOR desc_salary RETURN EmpRecTyp;



M.S. University - D.D.C.E. ) Stored Procedures, Functions and Packages 171

PROCEDURE hire_employee (
ename VARCHAR?2,
job  VARCHAR2,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER);
PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;
CREATE OR REPLACE PACKAGE BODY emp_actions AS — body
CURSOR desc_salary RETURN EmpRecTyp IS
SELECT empno, sal FROM emp ORDER BY sal DESC;
PROCEDURE hire_employee (
ename VARCHAR2,
job  VARCHAR?,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER) IS
BEGIN
INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,
mgr, SYSDATE, sal, comm, deptno);
END hire_employee;
PROCEDURE fire employee (emp_id NUMBER) IS
BEGIN
DELETE FROM emp WHERE empno = emp_id;
END fire_employee;
END emp_actions;

Only the declarations in the package spec are visible and accessible to applications. Implementation
details in the package body are hidden and inaccessible. So, you can change the body (implementation)
without having to recompile calling programs.

8.4.1 Advantages of PL/SQL Packages

Packages Offer Several Advantages: modularity, easier application design, information hiding, added
functionality, and better performance.



172 Client Server Computing with Oracle M.S. University - D.D.C.E.

Modularity: Packages let you encapsulate logically related types, items, and subprograms in a named
PL/SQL module. Each package is easy to understand, and the interfaces between packages are simple,
clear, and well defined. This aids application development.

Easier Application Design: When designing an application, all you need initially is the interface
information in the package specs. You can code and compile a spec without its body. Then, stored
subprograms that reference the package can be compiled as well. You need not define the package
bodies fully until you are ready to complete the application.

Information Hiding: With packages, you can specify which types, items, and subprograms are public
(visible and accessible) or private (hidden and inaccessible). For example, if a package contains four
subprograms, three might be public and one private. The package hides the implementation of the
private subprogram so that only the package (not your application) is affected if the implementation
changes. This simplifies maintenance and enhancement. Also, by hiding implementation details from
users, you protect the integrity of the package.

Added Functionality: Packaged public variables and cursors persist for the duration of a session. So,
they can be shared by all subprograms that execute in the environment. Also, they allow you to
maintain data across transactions without having to store it in the database.

Better Performance: When you call a packaged subprogram for the first time, the whole package is
loaded into memory. So, later calls to related subprograms in the package require no disk 1/O. Also,
packages stop cascading dependencies and thereby avoid unnecessary recompiling. For example, if you
change the implementation of a packaged function, Oracle need not recompile the calling subprograms
because they do not depend on the package body.

8.4.2 Understanding the Package Spec

The package spec contains public declarations. The scope of these declarations is local to your database
schema and global to the package. So, the declared items are accessible from your application and from
anywhere in the package as shown below:

procedum

package spac  package body £ function
procedume

schema

function

package spec ¢ package body { function
procedum

otherobjects




M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 173

The spec lists the package resources available to applications. All the information your application
needs to use the resources is in the spec. For example, the following declaration shows that the
function named fac takes one argument of type INTEGER and returns a value of type INTEGER:

FUNCTION fac (n INTEGER) RETURN INTEGER; — returns n!

That is all the information you need to call the function. You need not consider its underlying
implementation (whether it is iterative or recursive for example). Only subprograms and cursors have
an underlying implementation. So, if a spec declares only types, constants, variables, exceptions, and
call specs, the package body is unnecessary. Consider the following bodiless package:

CREATE PACKAGE trans_data AS — bodiless package
TYPE TimeRec IS RECORD (
minutes SMALLINT,
hours SMALLINT);
TYPE TransRec IS RECORD (
category VARCHAR?2,
account INT,
amount REAL,
time_of TimeRec);
minimum_balance  CONSTANT REAL := 10.00;
number_processed INT;
insufficient_funds EXCEPTION;
END trans data; |

The package trans_data needs no body because types, constants, variables, and exceptions do not have
an underlying implementation. Such packages let you define global variables—usable by subprograms
and database triggers—that persist throughout a session.

8.4.3 Referencing Package Contents

To reference the types, items, subprograms, and call specs declared within a package spec, use dot
notation, as follows:

package name.type name
package name.item name
package_name.subprogram_name
package name.call spec name

You can reference package contents from database triggers, stored subprograms, 3GL application
programs, and various Oracle tools. For example, you might call the packaged procedure
hire_employee from SQL*Plus, as follows:

SQL> CALL emp_actions.hire_employee(‘TATE’, ‘CLERK' ;o)



174 Client Server Computing with Oracle M.S. University - D.D.C.E.

In the example below, you call the same procedure from an anonymous PL/SQL block embedded in a
Pro*C program. The actual parameters emp_name and job_title are host variables (that is, variables
declared in a host environment).

EXEC SQL EXECUTE
BEGIN
emp_actions.hire_employee(:emp_name, :job_title, ...);

You cannot reference remote packaged variables directly or indirectly. For example, you cannot call
the following procedure remotely because it references a packaged variable in a parameter initialization
clause:

CREATE PACKAGE random AS
seed NUMBER;
PROCEDURE initialize (starter IN NUMBER := seed, ...):

Also, inside a package, you cannot reference host variables.

8.4.4 The Package Body

The package body implements the package spec. That is, the package body contains the
implementation of every cursor and subprogram declared in the package spec. Keep in mind that
subprograms defined in a package body are accessible outside the package only if their specs also
appear in the package spec.

To match subprogram specs and bodies, PL/SQL does a token-by-token comparison of their headers.
So, except for white space, the headers must match word for word. Otherwise, PL/SQL raises an
exception, as the following example shows:

CREATE PACKAGE emp_actions AS

PROCEDURE calc_bonus (date_hired emp.hiredate%TYPE, ...);
END emp_actions;
CREATE PACKAGE BODY emp_actions AS

PROCEDURE calc_bonus (date_hired DATE, ...)) IS
— parameter declaration raises an exception because ‘DATE’
— does not match ‘emp.hiredate%TYPE’ word for word
BEGIN ... END;
END emp_actions;

The package body can also contain private declarations, which define types and items necessary for the
internal workings of the package. The scope of these declarations is local to the package body.
Therefore, the declared types and items are inaccessible except from within the package body. Unlike a
package spec, the declarative part of a package body can contain subprogram bodies.



M.S. University - D.D.C.E. : Stored Procedures, Functions and Packages 175

Following the declarative part of a package body is the optional initialization part, which typically
holds statements that initialize some of the variables previously declared in the package.

The initialization part of a package plays a minor role because, unlike subprograms, a package cannot
be called or passed parameters. As a result, the initialization part of a package is run only once, the first
time you reference the package.

Remember, if a package spec declares only types, constants, variables, exceptions, and call specs, the
package body is unnecessary. However, the body can still be used to initialize items declared in the
package spec.

Consider the package below named emp_actions. The package spec declares the following types, items,
and subprograms:

® Types EmpRecTyp and DeptRecTyp

® Cursor desc_salary

® Exception invalid_salary

® Functions hire_employee and nth_highest_salary
® Procedures fire_employee and raise_salary

After writing the package, you can develop applications that reference its types, call its subprograms,
use its cursor, and raise its exception. When you create the package, it is stored in an Oracle database
for general use. '

CREATE PACKAGE emp_actions AS
TYPE EmpRecTyp IS RECORD (emp_id INT, salary REAL);
TYPE DeptRecTyp IS RECORD (dept_id INT, location VARCHAR2) ;
CURSOR desc_salary RETURN EmpRecTyp;
invalid_salary EXCEPTION;
FUNCTION hire_employee (ename VARCHAR2, job VARCHAR2, mgr REAL,
sal REAL, comm REAL, deptno REAL) RETURN INT;
PROCEDURE fire_employee (emp_id INT);
PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL);
FUNCTION nth_highest_salary (n INT) RETURN EmpRecTyp;
END emp_actions;
CREATE PACKAGE BODY emp_actions AS number_hired INT; — visible only in this package
CURSOR desc_salary RETURN EmpRecTyp IS
SELECT empno, sal FROM emp ORDER BY sal DESC;
FUNCTION hire_employee (ename VARCHAR2, job VARCHAR2, mgr REAL,
sal REAL, comm REAL, deptno REAL) RETURN INT IS new_empno INT;
BEGIN
SELECT empno_seq.NEXTVAL INTO new_empno FROM dual;
INSERT INTO emp VALUES (new_empno, ename, job, mgr, SYSDATE, sal, comm, deptno);
number_hired := number_hired + 1;



176 Client Server Computing with Oracle M.S. University - D.D.C.E.

RETURN new_empno;
END hire_employee;
PROCEDURE fire_employee (emp_id INT) IS
BEGIN
DELETE FROM emp WHERE empno = emp_id;
END fire_employee;
FUNCTION sal_ok (rank INT, salary REAL) RETURN BOOLEAN IS min_sal REAL;
max_sal REAL;
BEGIN
SELECT losal, hisal INTO min_sal, max_sal FROM salgrade WHERE grade = rank;
RETURN (salary >= min_sal) AND (salary <= max_sal);
END sal_ok;
PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL) IS salary REAL;
BEGIN
v SELECT sal INTO salary FROM emp WHERE empno = emp_id;
IF sal_ok(grade, salary + amount) THEN
UPDATE emp SET sal = sal + amount WHERE empno = emp_id;
ELSE
RAISE invalid_salary;
END IF;
END raise_salary;
FUNCTION nth_highest;salary (n INT) RETURN EmpRecTyp IS emp_rec EmpRecTyp;
BEGIN
OPEN desc_salary;
FOR i IN 1..n LOOP
FETCH desc_salary INTO emp_rec;
END LOOP;
CLOSE desc_salary;
RETURN emp_rec;
END nth_highest_salary;
BEGIN
INSERT INTO emp_audit VALUES (SYSDATE, USER, ‘EMP_ACTIONS') ;
number_hired := 0;
END emp_actions;
Remember, the initialization part of a package is run just once, the first time you reference the
package. So, in the last example, only one row is inserted into the database table emp_audit.

Likewise, the variable number hired is initialized only once. Every time the procedure
hire_employee is called, the variable number_hired is updated. However, the count kept by



M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 177

number_hired is session specific. That is, the count reflects the number of new employees
processed by one user, not the number processed by all users.

8.4.5 Overview of Product-Specific Packages

Oracle and various Oracle tools are supplied with product-specific packages that help you build
PL/SQL-based applications. For example, Oracle is supplied with many uuhty packages, a few of
which are highlighted below.

DBMS_ALERT Package: Package DBMS_ALERT lets you use database triggers to alert an application
when specific database values change. The alerts are transaction based and asynchronous (that is, they
operate independently of any timing mechanism). For example, a company might use this package to
update the value of its investment portfolio as new stock and bond quotes arrive.

DBMS_OUTPUT Package: Package DBMS_OUTPUT enables you to display output from PL/SQL
blocks and subprograms, which makes it easier to test and debug them. The procedure put_line
outputs information to a buffer in the SGA. You display the information by calling the procedure
get_line or by setting SERVEROUTPUT ON in SQL*Plus. For example, suppose you create the

following stored procedure:
CREATE PROCEDURE calc_payroll (payroll OUT NUMBER) AS
CURSOR ¢l IS SELECT sal, comm FROM emp;
BEGIN
payroll := 0;

FOR clrec IN ¢l LOOP

clrec.comm := NVL{clrec.comm, 0);
payroll := payroll + clrec.sal + clrec.comm;
END LOOP;
dbms_output.put_line('Value of payroll: ' || TO_CHAR (payroll));

END;
When you issue the following commands, SQL*Plus displays the value assigned by the procedure to
parameter payroll:

SQL> SET SERVEROUTPUT ON

SQL> VARIABLE num NUMBER

SQL> CALL calc_payroll (:num);

Value of payroll: 31225

DBMS_PIPE Package: Package DBMS_PIPE allows different sessions to communicate over named
pipes. (A pipe is an area of memory used by one process to pass information to another.) You can use
the procedures pack_message and send_message to pack a message into a pipe then send it to another
session in the same instance. :



178 Client Server Computing with Oracle : M.S. University ~ D.D.C.E.

At the other end of the pipe, you can use the procedures receive_message and unpack message to
receive and unpack (read) the message. Named pipes are useful in many ways. For example, you can
write routines in C that allow external programs to collect information, then send it through pipes to
procedures stored in an Oracle database.

UTL_FILE Package: Package UTL_FILE allows your PL/SQL programs to read and write operating
system (OS) text files. It provides a restricted version of standard OS stream file I/O, including open,
put, get, and close operations.

When you want to read or write a text file, you call the function fopen, which returns a file handle for
use in subsequent procedure calls. For example, the procedure put_line writes a text string and line
terminator to an open file, and the procedure get_line reads a line of text from an open file into an
output buffer.

UTL_HTTP Package: Package UTL_HTTP allows your PL/SQL programs to make HyperText
Transfer Protocol (HTTP) callouts. It can retrieve data from the Internet or call Oracle Web Server
cartridges. The package has two entry points, each.of which accepts a URL (uniform resource locator)

string, contacts the specified site, and returns the requested data, which is usually in HyperText
Markup Language (HTML) format.

8.4.6 Guidelines for Writing Packages

When writing packages, keep them as general as possible so they can be reused in future applications.
Avoid writing packages that duplicate some feature already provided by Oracle. Package specs reflect
the design of your application. So, define them before the package bodies. Place in a spec only the
types, items, and subprograms that must be visible to users of the package. That way, other developers
cannot misuse the package by basing their code on irrelevant implementation details.

To reduce the need for recompiling when code is changed, place as few items as possible in a package spec.
Changes to a package body do not require Oracle to recompile dependent procedures. However, changes
to a package spec require Oracle to recompile every stored subprogram that references the package.

Check Your Progress

Fill in the blanks:

1. The vveeeeenennn, part may contain declarations of cursors, constants, variables, exceptions,
and subprograms.

2. Functions are stored in the database and are invoked or called by any ............c.cov..e

3. Packages usually have two parts, a ...coevvneeeee. and a body, although sometimes the body
1s unnecessary.

4. Package ....ccoceeurirrennnn lets you use database triggers to alert an application when specific
database values change.




M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 179

8.5 LET US SUM UP

Procedures are named PL/SQL blocks that can take parameters, perform an action and can be
invoked. A procedure is generally used to perform an action and to pass values. Functions are
named PL/SQL blocks that can take parameters, perform an action and returns a value to the
host environment. A function can only return one value. A package is a schema object that
groups logically related PL/SQL types, items, and subprograms. Packages usually have two
parts, a specification and a body, although sometimes the body is unnecessary. Oracle and
various Oracle tools are supplied with product-specific packages that help you build PL/SQL-
based applications.

8.6 KEYWORDS

Procedure: Procedures, also known as stored procedures, are stored in the database and are invoked or
called by any anonymous block.

Stored Functions: Functions are named PL/SQL blocks that can take parameters, perform an action
and returns a value to the host environment.

Package: A package is a schema object that groups logically related PL/SQL types, items, and
subprograms.

DBMS_PIPE Package: Package DBMS PIPE allows different sessions to communicate over named
pipes.

8.7 QUESTIONS FOR DISCUSSION

1. Explain the stored procedures. Write the syntax to store the procedures.

Discuss the various parts of stored functions and stored procedures.
How to create and execute the function?
What are the advantages of stored functions?

Discuss the packages in PL/SQL. Explain with its advantages.

AN S o

Explain the term “The Package Spec”.

Check Your Progress: Model Answers
1. Declarative

2. anonymous block

3. specification
4

DBMS_ALERT




180 Client Server Computing with Oracle - M.S. University - D.D.C.E.

8.8 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Database Systems: Design, Implementation and Management, Seventh edition,
Thomson Learning, 2007

Silberschatz, Korth, Sudarsh?.n, Database System Concepts, Fifth edition, McGraw-Hill, 2005

Elmasari Navathe, Fundamentals of Database Systems, Third edition, Pearson Education Asia, 2001
E. J. Yannakoudakis, The Architectural Logic of Database Systems, Springer-Verlag, Digitized 2007
Fred R. McFadden, Jeffrey A. Hoffer, Database Management, Benjamin/Cummings, Digitized 2007

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third edition, McGraw-Hill Higher
Education, 2003



UNIT V



e R
LESSON

9

DISTRIBUTED PROCESSING
~

CONTENTS
9.0  Aims and Objectives
9.1  Introduction
9.2 Diustributed Database
9.2.1  Data Distribution Advantages
9.2.2  Data Distribution Disadvantages
.23  Functions of Distributed Database Management System
9.24  Components of Distributed Database Management System
9.2.5  Levels of Data and Process Distribution
9.2.6  Types of Distributed Database Systems
9.3 Data Fragmentation
9.3.1  Horizontal Fragmentation
9.3.2  Vertical Fragmentation
9.3.3  Mixed Fragmentation
9.4  Data Replication
9.4.1  Advantages and Disadvantages of Replication
9.5  Data Allocation
9.6 Query Processing in Distributed Databases
9.6.1  Semijoin
9.7  LetusSumup
9.8  Keywords
9.9 Questions for Discussion

9.10  Suggested Readings

9.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

®  Explain the concept of distributed database
Discuss data fragmentation

Describe the significance of data replication

Identify and explain the data allocation

Discuss the query processing in distributed database



184 Client Server Computing with Oracle M.S. University - D.D.C.E.

9.1 INTRODUCTION

The databases described in the last lessons were essentially general purpose databases which could be
tailored and customized to suit a given data management and processing situation. However, there are
a number of other applications where special features other than general database functions are
required. This lesson deals with a special database management system where the components of the
system are physically located at different places.

9.2 DISTRIBUTED DATABASE

A database that physically resides entirely on one machine under a single DBMS is known as local
database management system. The database management system that resides entirely on a machine
different from that of the user connected through a network is known as remote database. In either
case the entire database is controlled by a single site and hence is knows as Centralized Database
System. In contrast to this a database may be fragmented and each of its fragments is stored on
different machines connected through network(s) or is controlled by different DBMSs or operates
under different operating systems. Such a multiple-source and multiple-location database is called
distributed database.

More formally, a Distributed database (or a DDB) is a collection of multiple logically interrelated
databases distributed over a computer network. A distributed database management system (DDBMS)
is a software system that manages a distributed database while making the distribution transparent to
the user. The user is unaware that the database is fragmented. The Distributed Database Management
System ensures that the users access the distributed database as if it were a local database. A collection
of files stored at different nodes of network and maintaining of Inter relationship among them via
hyperlinks has become a common organization on the Internet, with file of web pages.

Typically, a distributed database system consists of a collection of sites, each of which maintains a local
database system (Figure 9.1). Each site is able to process local transactions, those transactions that
access data only in that single site. In addition, a site may participate in the execution of global
transactions, those transactions that access data is several sites. The execution of global transactions
requires communication among the sites usually through a network.

P SITE 1 b'“{ /3

SITE 2

Figure 9.1: Distributed Database Architecture



M.S. University - D.D.C.E. Distributed Processing 185

The sites in the system can be connected physically in a variety of ways. The various topologies are
represented as graphs whose nodes correspond to sites. An edge from node A to node B corresponds to
a direct connection between the two sites.

Exactly how a database is distributed is known as its configuration and they differ from each other in
the following aspects:

®  Installation Cost: The cost of physically linking the sites in the system.

®  Communication Cost: The cost in time and money to send a message from site A to site B.

®  Reliability: The frequency with which a link or site fails.

®  Availability: The degree to which data can be accessed despite the failure of some links or sites.

These differences play an important role in choosing the appropriate mechanism for handling the
distribution of data.

The participating or collaborating sites of a distributed database system may be distributed physically
either over a large geographical area such as the all-Indian state capitals or over a small geographical
area such as a single building or a number of adjacent building. The former type of network is referred
to as a long-haul network or wide area network, while the latter is referred to as a local-area network.

Since the sites in long-haul network are distributed physically over a large geographical area, the
communication links are likely to be relatively slow and less reliable as compared with local area
networks. Typical long-haul links are telephone lines, microwave links, and satellite channels.

In contrast, since all the sites in local-area networks are close to each other communication links are of
higher speed and lower error rate than their counterparts in long-haul networks. The most common
channels are twisted pair, base band coaxial, broadband coaxial, and fiber optics.

The links of a network between its nodes may be of different patterns knows as its topology. Some of
the network topologies are depicted in Figure 9.2.

Ring Network

Figure 9.2: Network Topologies



186 Client Server Computing with Oracle M.S. University - D.D.C.E.

9.2.1 Data Distribution Advantages

Distributed database systems have a number of advantages over their centralized counterparts. The
primary goal of distributed database systems is to achieve the ability to share and access data stored in
databases spread across different machines, operating systems and DBMSs, in a reliable, fast and
efficient manner. The benefits of distributed database are explained below.

®  Space independence: If a number of different sites are connected to each other, then a user at one
site may be able to access data that is available at another site. The user does not have to be
present physically at the database sit. Therefore, the database becomes space independent. Thus,
through distributed database system, a user can access the database physically stored at University
of Delhi in Delhi without being at the site.

®  Availability of data where it is needed: The data in a distributed database system are so dispersed as
to match the data requirements of the users.

®  Faster data access: The end-users only with a subset of the entire database. If this portion of the
database is locally stored and accessed, it will be many times faster than when remotely located.

®  Faster Data Processing: For same reason as above the data processing the users’ end will be
considerably faster.

®  Distributed control: The primary benefit to accomplishing data sharing by means of data
distribution is that each site is able to retain a degree of control over data stored locally. In a
centralized system, the database administrator of the central site controls the database. In a
distributed system, there is a global database administrator responsible for the entire system.

®  Userfriendly interface: The end users are free to have interfaces of their own choice at their sites.

®  Increased Reliability: In case of a centralized database system, a failure renders the entire system
useless. Such is not the case with the distributed database systems. Even in case of a failure the end
users still can access their own database stored locally.

®  Query speedup: It a query involves data at several sites, it may be possible to split the query into
sub-queries that can be excited in parallel by several sites. Such parallel computation allows faster
processing of a user’s query. In those cases in which data is replicated, queries may be directed by
the system to the least heavily loaded sites.

9.2.2 Data Distribution Disadvantages

Distributed database systems are not entirely free from limitations. The primary drawback of
distributed database systems is the added complexity required to ensure proper coordination among
the sites. This increased complexity takes the form of:

®  Complexity of management and control: All the related management activities and control of the
same becomes very complex with degree of distribution.

®  Software development cost: It is more difficult to implement a distributed database system and, thus,
1s more costly as compared to centralized local database.

®  Higher possibility of bugs: Since the sites that comprise the distributed system operate in parallel, it
is harder to ensure the correctness of algorithms. This mode of operation makes them extremely
vulnerable to bugs. The art of constructing distributed algorithms remains an active and
important area or research.



M.S. University - D.D.C.E. Distributed Processing 187

®  Increased processing overhead: The exchange of data, messages and the additional computation
required to achieve inter-site coordination is a form of overhead that does not arise in centralized
systems. For a single transaction the overhead is more than ten times in general.

®  Lack of standards: Every user of a distributed database system is free to have her own standard and
no common protocol may exist.

®  Security: Because of its and extent, distributed database systems are vulnerable to security lapses.
Network communication being an integral part of such systems, security comncerns are more
frequent than centralized database systems.

As is evident from above discussion that distributed database systems have both specific advantages and
disadvantages. An optimal trade-off between the distribution and centralization may be employed to
arrive at the right kind of design. Therefore, in choosing the design for a database system, the designer
must balance the advantages against the disadvantages of distribution of data design ranging from fully
distributed designs to designs which include large degree of centralization.

9.2.3 Functions of Distributed Database Management System

Distribution leads to increased complexity in system design and implementation. To achieve the
potential advantages of DDBMS as listed earlier; the DDBMS software must be able to provide the
following functions in addition to those of a centralized DBMS.

1. Keeping track of data: The ability to keep track of the data distribution, fragmentation, and
replication by expanding the DDBMS catalog,

2. Distributed query processing: The ability to access remote sites and transmit queries and data
among the various sites via a communication network.

3. Distributed transaction management: The ability to devise execution strategies for queries and
transactions that access data from more than one site and to synchronize the access to distributed
data and maintain integrity of the overall database.

4. Replicated data management: The ability to decide which copy of a replicated data item to access
and to maintain the consistency of copies of replicated data items.

5. Distributed database recovery: The ability to recover from individual crashes and from new types
of failures such as the failure of a communication links.

6. Security: Distributed transactions must be executed with the proper management of the security of
the data and the authorization/access privileges of users.

7. Distributed directoyy (catalog) management: A directory contains information (meta data) about
data in the database. The directory may be global for the entire DDB or local for each site.
9.2.4 Components of Distributed Database Management System

A DDBMS has many compohents connected together. Some of the components that a DDBMS must
have are:

®  Sites or Nodes (Workstations): The end users machines (mostly PCs) that form the network. The
distributed database system is independent of the hardware of the workstations.



188 Client Server Computing with Oracle M.S. University - D.D.C.E.

®  Network hardware and software: Each workstation must have necessary hardware and software
that enable them to establish a network with other components on the distributed database
system. The DDBase system should be independent of the network type of each workstation.

®  Transaction processor (TP): Each of the data-requesting workstation must have this software
component that receives and processes the request for data (local or remote). It makes the data
access transparent to the user. TP is also sometimes called application processor (AP) or
transaction manager TM.

®  Data processor (DP): It is a software component on each participating computer in the distributed
database system. This component stores and retrieves data located at that particular site. It is also
known as data manager (DM). A centralized DBMS may also act as a DM on a site.

9.2.5 Levels of Data and Process Distribution

In a multiple site configuration, the responsibilities of each site may be different from each other. In a
Distributed processing system the data comes from a centralized database systems but the processing is
performed on more than one sites. For instance a computer system does all the data entry at Hisar, a
computer located at Chandigarh does the validation checks on data whereas the statistical analysis is
performed by a computer situated at Delhi. The data is actually stored in a DBMS located at Mumbai.
This is an instance of distributed processing as depicted in Figure 9.3.

Site at Hisar Site at Chandigarh Site at Delhi
Data Statistical
Data entry validation analysis
process process process

\1; /

| Communication Network l

A
Y

Site at Mumbai

DBMS

Figure 9.3: Distributed Processing Environment

In contrast to the above distributed processing environment, a distributed database system has the
database split into fragments which may be physically located at different sites. Thus, the database may
be stored at sites at Hisar, Chandigarh and Delhi while a process at Mumbai access these database
fragments from Mumbai as shown in the Figure 9.4.



M.S. University - D.D.C.E. Distributed Processing 189

Site at Hisar Site at Chandigarh Site at Delhi
I Computer l lCompuLer |
Database Database Database
Fragment Fragment Fragment
€) @ &)

~ 1

| Communication Network I

!

Site at Mumbai

Process

Figure 9.4: Distributed Database Environment

From the above discussion it is clear that:

Distributed processing does not require a distributed database system, but a distributed database
system does require a distributed processing system.

A network support is required in both distributed database and processing systems.

9.2.6 Types of Distributed Database Systems

According to the way of database system and processing system are distributed as described above, a number
of distributed configuration is possible. Some of the well known configurations are discussed below.

Single-site processing single-site data (SPSD): In this configuration all processing is done on a single
CPU or host computer usually a mainframe or mini-computer and all the data are stored on the
local disks of this computer. The DBMS is located at a particular computer and is accesses by
dumb terminals attached to it through network.

Multiple-site processing single-site data (MPSD): In this configuration processes run on different
sites accessing and sharing common database. A client-server configuration is one such example.
The server is the computer providing the requested data by clients.

Client-server configuration: Sharing the computing abilities of different machines motivated the
development of Client-Server architecture. A client is a component (hardware or software) that
initiates a request for a service provided by another component called server. The server, in turn,
processes the request, generates the requested result and passes the result back to the client.

Multiple-site processing multiple-site data (MPMD): In this configuration, both the processes and
database system are located at different sites. This is a scenario of fully-distributed system. MPMD
may be further classified into:

e

% Homogeneous distributed database systems, in which all the constituting databases are of
same type.

+  Heterogeneous distributed database systems, in which the constituting databases are of
different types. They may be thus relational, hierarchical, network or combination of these.



190 Client Server Computing with Oracle M.S. University - D.D.C.E.

9.3 DATA FRAGMENTATION

The principles outlined in earlier unit in designing a centralized database are applicable even in the case
of distributed database. However, there are few additional issues that arise in case of distributed
database designing. They are:

® Data fragmentation
® Data replication
® Data allocation

The information concerning data fragmentation, replication and allocation is stored in a global
directory that is accessed by the DDBS applications as needed.

It is clear that in a distributed database system the database is broken into smaller pieces. Here we will
discuss the techniques that are used to break up the database into logical units, called fragments, which
may be assigned for storage at the various sites.

If a relation R is fragmented, R is divided into a number of fragment relations R, R,....., R.. These

fragments contain sufficient information to reconstruct the original relation R. This reconstruction can
take place through the application of either the union operation or a special type of join operation on the
various fragments depending on how they were obtained from the original relation. Of many methods of
fragmentation, two of them shall be discussed here: horizontal fragmentation and vertical fragmentation.

Horizontal fragmentation splits the relation by assigning each tuple of R to one or more fragments.
Vertical fragmentation splits the relation by decomposing the scheme R of relation R in a special way
that we shall discuss. These two schemes can be applied successively to the same relation, resulting in a
number of different fragments. Note that some information may appear in several fragments.

For illustration purposes, let us consider the customer relation CUSTOMER of some company:
CUSTOMER (CUS_ID,  CUS_NAME, CUS STATE, CUS_ DEPOSIT,
CUS_BALANCE, CUS_RATING, CUS_DUE)

A sample instance of the CUSTOMER relation is shown below:

CUSTOMER | CUS_ | CUS_ CUS_ CUS_ CUS_ CUS_ CUS_

ID NAME SATE DEPOSIT BALANCE | RATING DUE
10 . | Puranchand | Haryana 3000 2000 3 1000
1 Rohit Punjab 4000 3000 2 1500
21 Ramlal Haryana 2000 190 3 280

23 Pankaj Bihar 2300 230 3 320

33 Rahul Punjab 3300 450 2 400

43 Satbir Haryana 4500 1000 1 900

9.3.1 Horizontal Fragmentation

Under this fragmentation scheme, a able (or relation) r is partitioned into a number of subsets, r,

Each subset r,(i=1,2...) consists of a number of tuples of relation r. Each tuple of relation r must
belong to one of the fragments, so that the original relation can be reconstructed whenever needed.



M.S. University - D.D.C.E. Distributed Processing 191

A fragment may be defined as a selection on the global relation r. That is, the union of all the
fragments should be able to generate the original relation. '

In our sample relation CUSTOMER, assume that each state headquarters requires data belonging to
that state only. Therefore, the relation can be horizontally fragmented as given:

Fragment Location of Selection condition Node name Customer_IDs Number of
Name fragment rows
CUS BHR | Patna CUS_SATE="Bihar" BHS 23 1
CUS_HAR Hisar CUS_SATE="Haryana" HRS 10, 21, 43 3
CUS PUN | Amritsar CUS_SATE="Punjab" PNS 11, 33 2
The three resulting fragment relations are:
Fragment Name : Location: Patna Node:BHS
CUS_BHR
CUS_ID | CUS NAME CUS_SATE | CUS_DEPOSIT CUS BALANCE CUS_RATING | CUS DUE
23 Pankaj Bihar 2300 230 3 320
Fragment Name : Location: Hisar Node:HRS
CUS HAR
CUS_ID | CUS_NAME | CUS SATE | CUS DEPOSIT CUS_BALANCE | CUS_RATING | CUS DUE
10 Puranchand Haryana 3000 2000 3 1000
21 Ramlal Haryana 2000 190 3 280
43 Satbir Haryana 4500 1000 1 900
Fragment Name : Location: Amritsar Node:PNS
CUS_PUN
CUS_ID | CUS_NAME | CUS SATE | CUS DEPOSIT CUS_BALANCE | CUS_RATING | CUS DUE
11 Rohit Punjab 4000 3000 2 1500
33 Rahul Punjab 3300 450 2 400

9.3.2 Vertical Fragmentation

Vertical fragmentation is the same as decomposition. Vertical fragmentation of a relation or a table can
be obtained by dividing the table into a number of sub-tables having disjoint columns.

Relation r can be reconstructed from the fragments by taking the natural join operation. Suppose, now
that the company is divided into two departments — customer department and collection department.
The two departments are concerned with their respective data only. Therefore, the relation
CUSTOMER can be vertically fragmented into two fragments as given below:

Fragment name Location Node name Attributes
CUS_DEPT Customer Office CUs CUS_ID, CUS_NAME,
CUS_SATATE
COL_DEPT Collection Office COL CUS_ID,

CUS_DEPOSIT,
CUS_BALANCE,
CUS_RATING,
CUS_DUE




192 Client Server Computing with Oracle

The resulting two fragment relations are:

M.S. University - D.D.C.E.

Fragment name: CUS_DEPT

Location: Customer Office

Node:CUS

CUS_iD CUS_NAME CUS_SATE
10 Puranchand Haryana

11 Rohit Punjab

21 Ramlal Haryana

23 Pankaj Bihar

33 Rahul Punjab

43 Satbir Haryana

Fragment name: COL DEPT Location: Collection Office Node: COL

CUS_ID CUS_DEPOSIT CUS_BALANCE CUS_RATING CUS_DUE

10 3000 2000 3 1000

11 4000 3000 2 1500

21 2000 190 3 280

23 2300 230 3 320

33 3300 450 2 400

43 4500 1000 1 900

Generally, vertical fragmentation is accomplished by adding a special attribute called a tuple-id to the
scheme R (CUS_ID in our case). A tuple-id is a physical or logical address for a tuple. Since each tuple
in r must have a unique address, the tuple-id attribute is a key for the augmented scheme.

To reconstruct the original deposit relation from the fragments, we compute
CUSTOMER = (CUS_DEPT « COL DEPT)

Note that the expression (CUS_DEPT e COL_DEPT) is special form of natural join. The join
attribute is CUS_ID. Since the tupled-value represents an address, it is possible to pair a tuple of
CUS_DEPT with corresponding tuple of COL_DEPT by using the address given by the CUS_ID
value. This address allows direct retrieval of the tuple without the need for an index. Thus, this natural
join may be computed much more efficiently that typical natural joins.



M.S. University - D.D.C.E. Distributed Processing 193

Although the tuple-id attribute is important in the implementation of vertical portioning, it is
important that this attribute not be visible to users. If users are given access to tuple-ids, it becomes
impossible for the system to change tuple addresses. Furthermore, the accessibility of internal
addresses violates the notion of data independence, one of the main virtues of the relational model.

9.3.3 Mixed Fragmentation

A relation can also be fragmented both horizontally as well as vertically depending on the application.
In such cases both horizontal and vertical fragmentation criteria are specified. Suppose in our example
of the CUSTOMER relation, we require each department data separately in the two separate offices at
the state headquarters. The required fragments will be:

Fragment name Location Horizontal criterion Node name Attributes
CUS_BHR_CUS Patna CUS SATE="Bihar" BHRCUS CUS_ID,
CUS_NAME,
CUS_STATE
CUS_BHR _COL Gaya CUS_SATE="Bihar" BHRCOL CUS_ID,

CUS_DEPOSIT,
CUS_BALANCE,

CUS_DUE
CUS_HAR CUS | Hisar CUS_SATE="Haryana" HARCUS CUS_ID,
CUS_NAME,
. CUS_STATE
CUS_HAR COL | Karnal CUS_SATE="Haryana" HARCOL CUS_ID,

CUS_DEPOSIT,
CUS _BALANCE,

CUS_DUE
CUS_PUN_CUS Amritsar CUS_SATE ="Punjab" PUNCUS CUS_ID,
CUS_NAME,
CUS_STATE
CUS_ PUN_COL | Bhatinda CUS_SATE="Punjab" PUNCOL CUS_ID,

CUS_DEPOSIT,
CUS_BALANCE,
CUS_DUE

The resulting fragments are:

Fragment name: CUS_BHR_CUS
Location: Patna

Node:BHRCUS

CUS_ID CUS_NAME CUS SATE

23 Pankaj Bihar




194 Client Server Computing with Oracle

M.S. University - D.D.CE.

Fragment name: CUS BHR COL

Location: Gaya

Node: BHRCOL

CUS ID CUS_DEPOSIT | CUS_BALANCE | CUS_RATING | CUS DUE
23 2300 230 3 320

Fragment name: CUS_HAR_CUS

Location: Hisar

Node:HARCUS

CUS_ID CUS_NAME CUS SATE

10 Puranchand Haryana

21 Ramlal Haryana

43 Satbir Haryana
Fragment name: CUS_HAR_COL | Location: Karnal Node: HARCOL
CUS ID CUS_DEPOSIT CUS_BALANCE | CUS_RATING | CUS DUE
10 3000 2000 3 1000
21 2000 190 3 280
43 4500 100G 1 900

Fragment name: CUS PUN_CUS

Location: Amitsar

Node:PUNCUS

CUSs_ID CUS NAME CUS _SATE

1 Rohit Punjab

33 Rahul Punjab
Fragment name: CUS_PUN_COL | Location: Bhatinda Node: PUNCOL
CUS ID CUS_DEPOSIT CUS_BALANCE | CUS_RATING | CUS DUE
11 4000 3000 2 1500
33 3300 450 2 400




M.S. University - D.D.C.E. Distributed Processing 195

9.4 DATA REPLICATION

In simple words, Replication is making a copy of the relation. When a relation r is modified or
replicated, a copy of relation r is stored in other sites. The copies may be kept at only a few selected
sites or each site may keep a copy. In case each site of the system has a copy of the relation it is known
as full replication.

Replication is useful in improving the availability of data. The most extreme case is Replication of the
whole database at every site in the distributed system, thus creating a fully replicated distributed
database. This can improve availability remarkably because the system can continue to operate as long
as at least one site is up. It also improves performance of retrieval for global queries, because the result
of such a query can be obtained locally from any one site; hence, a retrieval query can be processed at
the local site where it is submitted, if that site includes a server module.

The disadvantage of full replication is that it can slow down update operations drastically, since a
single logical update must be performed on every copy of the database to keep the copies consistent.
This is especially true if many copies of the database exist.

Full Replication makes the concurrency control and recovery techniques more expensive than they
would be if there were no replication. At the other extreme of full replication is to have no replication
- that is, each fragment is stored at exactly one site. In this case all fragments must be disjoint, except
for the repetition of primary keys among vertical (or mixed) fragments. This is sometimes called
unreplicated database.

Between these two extremes, a wide spectrum of partial replication of the data exists—that is, some
fragments of the database may be replicated whereas others may not. The number of copies of each
fragment can range from one up to the total number of sites in the distributed system. A special case of
partial replication is occurring heavily in applications where mobile workers—such as the sales force,
financial planners, and claims adjustors—carry partially replicated databases with them on laptops and
personal digital assistants and synchronize them periodically with the server database. A description of
the replication of fragments is sometimes called a replication schema.

9.4.1 Advantéges and Disadvantages of Replication

®  Increased Parallelism: In the case where the majority of access to the relation r results in only the
reading of the relation, the several sites can process queries involving r in parallel. The more
replicas of r there are, the greater the chance that the needed data is found in the site where the
transaction is executing, Hence, data replication minimized movement of data between sites.

®  Avaidlability: If one of the sites containing relation r fails, then the relation r may be found in
another site. Thus the system may continue to process queries involving r despite the failure of
one site.

®  Increase overhead on Update: The system must ensure that all replicas of a relation r are consistent
since otherwise erroneous computations may result. This implies that whenever r is updated, this
update must be propagated to all sites containing replicas, resulting in increased overhead. For
example, in a banking system, where account information is replicated in various sites, it is
necessary that transactions assure that the balance in a particular account agrees in all sites.



196 Client Server Computing with Oracle M.S. University - D.D.C.E.

9.5 DATA ALLOCATION

Every fragment or each copy of a fragment must be reflected to a particular site in the distributed
system. This process is called Data Distribution (or Data Allocation). The choice of sites and the
degree of replication depend on the performance and availability goals of the system and on the types
and frequencies of transactions submitted at each site and if most transactions are retrieval only, a fully
replicated database is a good choice. However, if certain transactions that access particular parts of the
database are mostly submitted at a particular site, the corresponding set of fragments can be allocated
at that site only. Data that is accessed at multiple sites can be replicated at those sites. If many updates
are performed, it may be useful to limit replication. Finding an optimal or even a good solution to
distributed data allocation is a complex optimization problem.

There are primarily three data allocation strategies:
®  Centralized: In this strategy the entire database is stored at one site.
®  Partitioned: The database if fragmented into disjoint parts and stored on one or more sites.

®  Replicated: Multiple copies of each fragment are stored at several sites.

9.6 QUERY PROCESSING IN DISTRIBUTED DATABASES

The way queries are processed in a DDBMS is different from the way it is processed in local database
systems. The main issue here is the communication costs of processing a distributed query. The query
processing system in DDBMS attempts to minimize the amount of network transmission while
maximizing the paralle]l execution of queries on various data sites.

Generally in a distributed system, some additional factors can complicate further query processing.
The first is the cost of transferring data over the network. This data includes intermediate files that are
transferred to other sites for further processing, as well as the final result files that may have to be
transferred to the site where the query result is needed. Although these costs may not be very high if
the sites are connected via a high-performance local area network, they become quite significant in
other types of networks. Hence, DDBMS query optimization algorithms consider the goal of reducing
the amount of data transfer as an optimization criterion in choosing a distributed query execution
strategy.

9.6.1 Semijoin

One way of carrying out query processing in a distributed database system is to use semijoin. The
main logic behind distributed query processing using the semijoin operations is to reduce the number
of tuples in a relation before transferring it to another site. Infact, the idea is to send the joining
column of one relation R to the site where the other relation S is located; this column is then joined
with S. Following that, the join attributes, along with the attributes required in the result, are
projected out and shipped back to the original site and joined with R. Hence, only the joining column
of R is transferred in one direction, and a subset of § with no extraneous tuples or attributes is
transferred in the other direction. If only a small fraction of the tuples in S participate in the join, this
can be quite an efficient solution to minimizing data transfer.

Consider a high level query submitted to the query processor. The query is de-fragmented into simpler
low level query commands as shown below.



M.S. University - D.D.C.E. ’ Distributed Processing 197

High Level Query

Query Processor

1. Query execution plan
2. Query optimization

y
Low Level Commands

The high level query can be executed in a variety of different ways called query execution plans. Some
of these plans achieve greater cost benefit as far as network movement is concerned.

Assume that following is the high level query submitted to the query processor.
SELECT SNAME FROM STUDENT, COURSE

WHERE STUDENT.ROLLNO = COURSE.ROLLNO AND CREDIT > 3

Two different strategies can be devised for the execution of this query as listed below.

Plan-1: SELECT SNAME FROM

(SELECT * FROM STUDENT JOIN COURSE
WHERE student.rollno=course.rollno and credit > 3)

Plan-2: SELECT SNAME FROM

(SELECT * FROM STUDENT WHERE
rollno = (SELECT rollno WHERE credit > 3))

To select one from the above execution plans we see that since the second plan does not involve
Cartesian product of the relations, it should be preferred.

Fill in the blanks:

1. A distributed database management system (DDBMS) is a software system that manages a
distributed database while making the distribution ................... to the user.

2. In a Distributed processing system the data comes from a ................... database systems but
the processing is performed on more than one sites.

3. Vertical fragmentation of a relation or a table can be obtained by dividing the table into a
number of sub-tables having .................... columns.

4. The disadvantage of full replication is that it can slow down .....................

Check Your Progress




198 Client Server Computing with Oracle M.S. University ~ D.D.C.E.

9.7 LET US SUM UP

A distributed database is a database which is under the control of a central database management
system (DBMS) in which storage devices are not all attached to a common CPU. It may be stored in
multiple computers located in the same physical location, or may be dispersed over a network of
interconnected computers. Distributed system can be taught of as a partnership among independent
but cooperating. Location transparency means that users should not need to know at which site any
given piece of data is stored, but should be able to behave as if the entire database were stored at their
own site. A system supports data fragmentation if data or file can be divided into pieces (fragments) for
physical storage purpose. Replication transparency means that basic idea is that a given logical object,
say a given account record, may be represented at physical level by many distinct copies.
ANSI/APARC Architecture It is a 3-level architecture based on data organization When processing a
query, distributed DBMS and parallel DBMS analyze the potential parallelism of the request and make
query plans using Extended Dataflow Graph (EDG) along with the Engineering Model that the
database use.

9.8 KEYWORDS

Distributed Database: A database which is under the control of a central database management system
(DBMS) in which storage devices are not all attached to a common CPU. It may be stored in multiple
computers located in the same physical location, or may be dispersed over a network of
interconnected computers.

Location Transparency: A mechanism through which users do not need to know at which site any
given piece of data is stored, but should be able to behave as if the entire database were stored at their
own site.

Data Fragmentation: A system supports data fragmentation if data or file can be divided into pieces
(fragments) for physical storage purpose.

Data Replication Transparency: It means that basic idea is that a given logical object, say a given
account record, may be represented at physical level by many distinct copies.

ANSI/APARC Architecture: It is a 3-level architecture based on data organization.

EDG: An EDG is a self-scheduling structure such that once the START signal is sent, the execution of
the EDG will run to completion by itself without any external control. The control of the execution
of the EDG is completely data driven.

9.9 QUESTIONS FOR DISCUSSION
1. What are the two forms of parallelism that can be applied to DBMSs?

2. Explain parallel query processing. How does the parallel query feature help to improve
performance?

3. Explain query optimization and cost based query optimizers.

4. Explain Parallel query optimization.



M.S. University - D.D.C.E. Distributed Processing 199

5.

Explain the need for distributed DBMS. Enumerate the advantages offered by a distributed
DBMS.

Explain the following terms in relation with distributed database

(@ Transparency

(b) Data fragmentation

(9 Data replication

Discuss what are the major issues concerning distributed DBMS.

Draw the diagram of a basic architecture of a distributed DBMS and explain its components.

Explain query processing in distributed database.

Check Your Progress: Model Answers
1.

2
3.
4

Transparent
Centralized
Disjoint

update operations

9.10 SUGGESTED READINGS

Elisa Bertino, Distributed and Parallel Database Object Management, 2001, Springer-Verlag New York
Ceri & Pelagatti, Distributed Databases - Principles and Systems, 1985, McGraw-Hill

Clement Yu, Weiyi Meng, Principles of Database Query Processing for Advanced Applications

M. Tamer Ozsu, Patrick Valduriez, Principles of Distributed Database Systems, Second Edition, Prentice Hall,
1999

David Bell, Jane Grimson, Distributed Database Systems, Addison Wesley, 1992



