
CLIENT SERVER COMPUTING \TITH ORACLE

SYLLABUS

I.INIT I

Basic Concepts, Introduction to Oracle Server - Data Dictionary - Tablespaces and Datafiles - Data
Blocks, Extents and Segments - Schema Objects.

UNIT II
SQL SQL'TPLUS: Basic SQL

LTNIT III
Schema Objects, Data lntegrity - Creating and Maintaining Tables - Indexes Sequences Views - IJsers,

Privileges and Roles - Synonyms

IINIT IV

PLISQL, PLISQL - Triggers - Stored Procedures and Functions - Packages - Cursors - Transaction.

LINIT V

Distributed Processing, Distributed Processing - Replication.

UNITI

LESSON

1,

BASIC CONCEPTS

CONTENTS
1.0 Aims and Objectives

L.l Introduction

t.2 Basic Concepts of Oracle

1.2.t Modules of Oracle

1.3 Invoking SQLxPlus

L.4 Data Types

L.4.1 CharacterDatatypes

L.5 Menus

1.5.1 File Menu

1.5.2 Edit Menu

1.5.3 Find Menu

t.5.4 Option Menu

t.6 Oracle Tools

1.6.1 Standalone Tools

t.6.2 AdministrationTools

1,.7 Oracle Utilities

t.7.1 ExportingDatabaselnformation

L.7.2 ImportingDatabaselnformation

1.7.3 Loading Data from Foreign Files

1.8 Backup and Recover

1.9 Let us Sum up

1.10 Keywords

Ltl Questions for Discussion

t.I2 SuggestedReadings

1.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

. Explain the concepts of oracle

o Discuss how to identify the developmenr needs

8 Client Server Computing with Oracle

. Describe the significance of invoking SQL'iPLUS

. Identify and explain the data types

. Discuss the various menus

. Explain the oracle tools and utilities

. Explain the back up and recover in oracle

M.S. University - D.D.C.E.

1.1 INTRODUCTION
An Oracle database is a collection of data treated as a unit. The purpose of a database is to store and

retrieve related information. A database server is the key to solving the problems of information

management. In general, a server reliably manages alarge amount of data in a multi-user environment

so rh;r ,rr*rry .rr"r, can concurrently access the same data. All this is accomplished while delivering

high performance. A database server also prevents unauthorized access and provides efficient solutions

fol frilrrr. recovery. The database has logical structures and physical structures. Because the physical

and logical srructures are separate, the physical storage of data can be managed without affecting the

access to logical storage stntctures.

1.2 BASIC CONCEPTS OF ORACLE

Every business enterprise maintains large volumes of data for its oPerations. '\Uflith more and more

p.opi" accessing this data for their work the need to maintain its integrity.and.relevance increases.

i.Ioir.rrlly, with the traditional methods of storing data and information in files, the chances that data

loses its integrity and validity are very high.

Oracle is an Object Relational Database Management System (ORDBMS). It offers capabilities of both

relational and object-oriented database system. In general, objects can be defined as reusable software

codes, which are location independent and perform a specific task on any application environment

with little or no change to the code.

1.2.1 Modules of Oracle

The tools/modules provided by Oracle are so user-friendly that a person with minimum skills in the

field of computers can access them with ease. The tools are:

. SQL * Plus

o PLl SQL

. Oracle Forms

. Oracle Report \Triter

. Oracle Graphics

SpLxPlus

SQL"Plus is a srructured Query Language supported by Oracle. Through SQL'tPlus we can store,

re;ieve, edit, enrer and run SQL commands and PLISQL blocks. Using SQL* Plus we can perform

calculations, list column definition for any table and can also format query results in the form of a

rePort.

M.S. University - D.D.C.E. Basic Concepts 9

PL/SgL

PLISQL is an exrension of SQL. PLISQL block can contain any number of SQL statements

integrated with flow of control statements. Thus PL/SQL combines the data manipulating power of
SQL with data processing power of procedural languages.

SpLas. SpLx Plus

SQL is a standard language common to all relational databases. SQL is a database language used for
storing and retrieving data from the database. Most Relational Database Management Systems provide

extensions to SQL to make it easier for application developers.

SQL'$Plus is an Oracle specific program which accepts SQL commands and PLISQL blocks and

execures them. SQL'tPlus enables manipulation of SQL commands and PLISQL blocks. It also

performs many additional tasks as well.

Oracle Forrns

This tool allows you to create a data entry screen along with suitable menu objects. Thus it is the

Oracle Forms tool, which handles data gathering and data validation in a commercial application.

Oraclc ReportWiter

Report 'Writer allows programmers to prepare innovative repons using data from the Oracle

Srrucrures like tables, views etc. Thus, it is the Report 'W'riter Tool that handles the reporting section

of a commercial application.

Oracle Graphics

Some of the data can be better represented in the form of graphs. The Oracle Graphics Tool allows

programmers to prepare graphs using data from Oracle Structures like tables, views etc. Oracle

Graphics can also be considered as a part of the reporting section of a commercial application.

1.3 INVOKING SQL'iPLUS

This portion of the lesson shows you SQL 'r Plus, a tool that allows the handling of a database through
individual and interactive execution of the SQL commands. In addition to the direct execution

SQL commands, SQL 'r Plus allows the configuration of the PLISQL commands. SQL * Plus shows

results in the character mode. SQL o Plus is simple to operate and represents the fastest way to query
and create quick reports.

To configure SQL 'e Plus, click on the start bufton, then on Programs I Oracle Home lApplication
Development ISQL

* Plus. If the user is not connected to the database, the user name, password, and

host string are required. For the local database, it is not necessary to give host string. The database is

then configured.

10 Client Server Computing with Oracle

M.S. University - D.D.C.E.

ffit is where you enrer rheSQL commands. The SeL o pf", ;ir.rf,ce on^*,. ^ c,risel commands. rhe sel . ilJ ffir.IlilTT:Tai':H;.*'#"ffi l*,r,il.::i:'#,;execute the command onlv *h." th...*i.oro, cl .1 wi.a?Jffi;il;i, *"rr.o. To execurethe last command typed i,'tt . u.rn r, r"ri. ,.rr., typ., ,rrrh ti
^rapress

Enrer r."y. ^

H

l+lus: f,.I...€ a,t.t"a.a - productlo
) copyrlent ieez .r.cre corpor.tron.

"":l:;::t::l:::]" '''

'-:;::::"1.::l:l:t 1.);;;;";,r.r.r.r - Pfoductl.n

1.4 DATA TYPES

Before continue our. discussion of commands, Iet,s turn our attention to
:T-::l t". tlor;O..in-an or..f."^a*U^.. In order to creatp c t^Lr^ *-^

, the daa rypes
need to specify

a table you musr
for each column.

a datatvpe for individu"r .or,,-,,r'i"lii?;;r.'iroll"il*'i,ill'lirrX"'.l5r,],J
provide cenain information, r".t, ,r ,i. ,rr: of the ,.r].,-rr-.s and datatypesoracle supporrs the following dr,d;;;o achieve r;;ril;;;,;qurements.
1.4. 1 Character Datatypes

The following are the character datatypes supponed by Oracle:
char Datarype: The char datatype is used wh"en a,fixed. length characrer string is required. 1 can srore
1?#;:T,1:,"iH; ;l';*miTtl,tt*::ffiil; can varybe,#".. 1.. 2ooouy,., ri"

,'i"lir:*t
enters a value shorter than the specified length then the database blank-pads to rhe fixed

M.S. University - D.D.C.E. Basic Concepts 11

In case, if the user enters a value larger than the specified length then the database would return an

error.

Varchar2 Datagpe: The varchar2 Q datatype supports a variable length character string. It also stores

alphanumeric values. The size of this datatype ranges from 1 - 4000 bytes. Using varchar2 saves disk

space when compared to char. The varchar2type must be used for the fields of variable size, with a

maximum size of 2000 characters, such as the fields of the memo type. \(hile it has variable size, the

maximum size it can occupy mu$ be specified.

Long Data Tgpe: This datatype is used to store variable character length. Maximum size is 2 GB. Long

datatype has several characters similar to varch*2 datatype. Its length would be restricted based on the

memory space available in the computer. The following restriction needs to be fulfilled when a long

datatype attribute is cast on a column in a table.

Only one column in a table can have long datatype. This should not contain unique or primary key

constraints. The column cannot be indexed. The procedures or store procedures cannot accePt long

datatype as argument. It also cannot be used in the \7here, Order By, and Group By clauses.

Numbcr Dau Type: The number datatype can store positive numbers, negative, zeros, fixed point
numbers, and floating point numbers with a precision of 38.

column_name number

column_name number (p)

column_name number (s)

{p:38, s=o}

{fixed point}

{floating point}

ttrThere p is the precision, which refers to the total number of digits, it varies between 1 to 38; s is the

scale width, which refers to number of digits to the right of the decimal point, which varies between -

84 to 127.

Date Datatype: Date datatype is used to store date and time in a table. Oracle store dates in a fixed

length of 7 bytes each for the century t lear, month, day, hour, minute, and seconds. All of this data is

stored for each field of darc datatype. Default date datatype is "dd-mon-W".If only date is given, the

hour is written as 12:00 A.M. If only the time is given, the date is stored as the first day of the current
monrh. To view the system's date and time we can use the SQL function called sysdate Q. Valid date is

fromJan 1,4712 BC to Dec 31, 4712 AD.

Raw Datatjtpa Raw datatype is used to store byte-oriented data like binary data or byte strings and the

maximum size of this datatype is 2000 bytes. \flhile using this datatype the size should be mentioned

because by default it does not specify eny size. Only storage and retrieval of data are possible,

manipulation of data cannot be done. Raw datatype can be indexed.

Long Raw DataUDe: Long raw datatype is used to store binary data of variable length, which can have a

maximum size of 2 GB. This datatype cannot be indexed. Further all limitation faced by long
datatypes also holds good for long raw datatype.

In addition to the above mentioned Oracle supports:

LOB Datatype: LOB is otherwise known as Large Object datatypes. This can store unstructured

information such as sound clips, video files etc., up to 4 GB in size. They allow efficient, random,

piece-wise access to the data. The LOB types store values, which are known as locators. These locators

12 Client Server Computing with Oracle M.S. University _ D.D.C.E.

store the location of large objects. LOBs can be either internal or exrernal depending on their location
with regards to the database. Data stored in a LOB column is known as LOB rralue.

The different internal LOBs are menrioned below:

CLOB: A column with its data type as CLOB stores character objects with single byte characters. It
cannot contain character secs of varyingwidths. A cable can have mulriple

"ol,rrim
wirh CLOB as its

datatype.

BLOB: A column with its datatype as BLOB can store largebinary objects such as graphics, video clips
and sound files. A table can have multiple columns with BLoB as its datatype.

BFIIE: A BFILE column stores file pointer to LOBs managed by file sysrem external ro the database.
A BFILE column may conrain filenames for photos stored on a cD-RoM.

1.5 MENUS

1.5.1 File Menu

The file menu contains the following options:

Open: Opens a file of SQL commands that was previously written with the exrension of .sqI.

Saue: Allows the writing to the buffer of a txt file that receives the extension .sql as default. The
Replace sub-option changes the contents of an existing file with conrents of the b.rif.r. The Append
sub-option adds the conrenrs of the buffer ro the specified file.

SaaeAS: \Trites the contents of the buffer or the file that was configured with anorher name.

Spool: Stores the result of a query in a file. As the default, the file created has the extension .lst. To
disable Spool for queries, you musr acrivate the Spool Off Option.

Ran:Lists and executes the SQL command or a PLISQL block that is stored in the buffer.

Cancel: Interrupts the operation that is being executed.

Err* Makes a commir of all the changes made to the database.

1.5.2 Edit Menu

The edit menu includes the following operations:

Cogr.'Sends the selected rexr ro the \Tindows clipboard.

Paste: Pastes the contents of the clipboard to the command line of SQL o Plus, with maximum size of
3,625 characters.

Clear: Clears the contents of the screen and the buffer.

Edilor: Opens an editor in which the files of PLlSQt commands and their settings can be edited. As the
default, IITindows Notepad is selected. The name of the file defaults to afiedt.buf. Ylh"rrer., the editor is
called by the Invoke Editor option, the contents of the buffer are automarically transferred to it.

M.S. University - D.D.C.E. Basic Concepts 13

1.5.3 Find Menu

The find menu contains the Find and Find Next options. Find opens a dialog box in which the user
can tyPe text to search for. After clicking on the OK button in this dialog box, the occurrence of the
text is highlighted; Find Next finds the next occurrence. The search is always initiated from the
current screen.

1.5.4 Option Menu

The option menu allows you to change SQL * Plus elements. Environment oprion opens a Dialog box
that has two parts. The define part option list allows you ro change the environmenielemerrtr, ,rrl.h ,,
variables and characteristics of SQL * Plus, the printing of column headers, and the formatting of
numeric fields.

The screen buffer area controls the number of characters and lines that are maintained and displayed
by SQL 'r Plus. As the default, the buffer is adjusted to display up to 1,000 lines, with 100 characters.
The parameters can also be changed through the SET command directly from the edit line.

1.6 ORACLE TOOLS

1.6.1 Standalone Tools

Various tools are available to address specific environments or specific market requirements.

Development of applications commonly takes place in Java (using Oracle JDeveloper) or through
PLISQL (using, for example, oracle Forms and Oracle Repons).b.r.le Clrporatitn'has rta.t.ja
drive toward'wizard'-driven environments with a view to enabling ,rorr-p.oirr*mers ro produce
simple data-driven applications.

Oracle SQL Developer, a free graphical tool for database development, allows developers ro browse
database objects, run SQL statements and SQL scriprs, and edii and debug PLlSeL statemenrs. Ir
incorporates standard and cusromized reporting.

A list of some of the binaties.and scripts supplied by Oracle Corporation ro operare with/alongside
Oracle databases and associated software appears on the Oracle executables *eb-page.

1.6.2 Administration Tools

The database administrator has several choices for tools to use when managing an Oracle distributed
database sysrem:

o Enterprise Manager '
. Third-pany Administration Tools

. SNMP Suppon

Enterpise Manager

Fnterprise Manager is Oracle's database administration tool that provides a graphical user interface
(GUI)' Enterprise Manager provides administrative functionality for distriburJ jatab"se, through an
easy-to-use interface. You can use Enterprise Manager to:

14 Client Server Computing with Oracle M.S. University - D.D.C.E.

. Administer multiple databases. You can use Enterprise Manager to administer a single database or
to simultaneously administer multiple databases.

. Centralize database administration tasks. You can administer both local and remote databases
running on any Oracle platform in any location worldwide. [n addition, these Oracle platforms
can be connected by any network protocols supported by Oracle Net.

o Dynamically execute SQL, PL/SQL, and Enterprise Manager commands. You can use Enterprise
Manager to enter, edit, and execute statements. Enterprise Manager also maintains a history of
itatements executed.

Thus, you can reexecute statements without retyping them, a particulady useful feature if you
need to execute lengthy statements repeatedly in a distributed database system.

. Manage security features such as global users, global roles, and the enterprise directory seryice.

T hird-p artg A dmi nis tra ti o n T o o k
Currently more than 60 companies produce more than 150 producrs rhar help manage Oracle
databases and networks, providing a truly open environment.

SNMP Support

Besides its network administration capabilities, Oracle Simple Network Management Protocol
(SNMP) support allows an Oracle database server to be located and queried by any SNMP-based
network management system. SNMP is the accepted standard underlying many popular network
management systems such as:

. HP's OpenView

. Digital's POLYCENTER Manager on NetView

. IBM's NetView/5000

. Novell's Net\flare Management System

. SunSoft's SunNet Manager

1.7 ORACLE UTILITIES

Oracle offers the industry's most complete and integrated set of tools for application development,
database development, or business intelligence to support any development approach, technology
platform, or operating system.

Oracle also provides a variety of free tools to help database and application developers streamline ltr(eb

application and database development, and make it easy for .NET developers to deploy Oracle-based
applications and \$fleb services on the \Tindows platform.

There are three utilities supplied along with Oracle Server are:

. Export

. Import

. SQL* Loader

M.S. University - D.D.C.E. Basic Concepts 15

They are supplied as part of the oracle Software. It need nor have to be purchased or downloaded
separately. They are available as .exe files in the BIN directory and can be executed by ryping their
name before command prompt. In this lesson, we will be discussing about synraxes ,"i ,ir. ,rJrg. of
these utilities.

1.7 .7 Exporting Database Information

This utility can be used to transfer data objects between oracle databases. The objects and the data in
Oracle database can be moved to other Oracle database running even on a different hardware and
software configurations.

The export utility copies database definitions and actual data into an operaring sysrem file (expon file).
The export file is an Oracle binary-format dump file (with .dmp extension), which is normally created
on disk or taPe. Before exponing we must ensure that there is enough space available on th. disk or
tape used.

Exported dump files can be read only by using the Import utility of Oracle. W'e cannor use earlier
versions of impon utility for importing the data exported using currenr version (Versions of Oracle
utilities also change along with the Oracle Versions).

EXP command can be used to invoke export utility interactively without any parameters. @equests
the user to enter the value). Otherwise parameters can be specified in a file .At.a p".r-.r., file. \fze
can use more than one parameter file at a time with exp command.

Slntax:

exp PARFILE : filename

Parameter file is a simple text file creating using any text editor.

The exports are rhree types: Full, Owner, and Table.

. Full export exPorts all the objects, stnrctures and data within the database for all schemas.

. ouner expor, exports only the objects owned by specific user accounr.

o Tabh eqort exporrs only tables owned by a specific user accounr.

To export a table we can run EXP utility either interactively or by purting all the paramerers for the
exPort on the command line. In"interactive mode just ,yp" fXf before ih. .o-rrrrnd prompt and
arlswer the questions when prompted, otherwise the prr"r*t.r, can be typed on the command jine as
shown below.

EXP scott/tiger file:emp.dmp tables: (EMP) log: .rror.1o*

In the above example SCOTT/TIGER is the username and password respectively.

emp.dat is the file into which exporting is done. This file is created in the currenr folder, to create it in
a different folder we need to menrion the complete parh. Ex. c:\sample\dept.dmp.

Tables Parameter takes table names as it value, to export more than one table their names need to be
separated by a comma. Example tables = (EMP, DEPT, SALGRADE) to export tables EMp, DEpT
and SALGRADE.

15 Client Server Computing with Oracle

Log parameter is optional; we give a file name as its value. This file is used

while exporting a table.

M.S. University - D.D.C.E.

to write errors if any occur

Figure 1.1: Explains how to use EXP Utility in Interactive Mode

Figure 1.2 illustrates exporting data from multiple tables non-interactively (by giving the parameters

the command).

ln

Figure 1.2: Illustrates Exporting Data from Multiple Tables Non'interactively

ltii\!ilPqry!!rs!!!rl1i!T{::t::!ll " ""."" " ."_" . " . ", _."" "" " .!

i"..it;l

l.;,,1".'l.l.i.,:.,.,, :i.:"i]....;! -'11!.0cr!.rjn:i rn i.r:. 1}},r ll i''::'ir*'j :*;!:

ri*p;r'i3l:r. lL]. 'lt*;, iii84. r)rar}. *.li riglr: rrr:*i'uril "

il F ii irr: lii l: ! |

Jj;i:::tI; t'il:

{rrrrecli:i r;o: tl;ri:1r }rta!;r:q llJii i;r':-eliif i:;* I,l:iilt]{rlia:r i8"1,0..i.0 - i

..:'l ti.r i*':irjr,riir. .,iitl"r'.t 1,.;.r l{i,,ii ;;., ,r,

l:111.t I i1r: hllll:ill.l,tll .' l:.ri;r:"rlr:1:

..'i;. :r. .:ij'.; i,.,,,'. . ,.,,1,]

i',,r1; r.ll';l;ir i1r, i:{..1 q1;'.:;

',1:,jti.r, ':i,,r!
,,!e.i.'friri ilr ,'lr

irrii*r't *i,rc in 1lt$t'il;lliHlt"li t;}*rti:trv ::rr rrrd ili.1{iJTfllfr HlilliI t}trrrtl*r' :r*i

irr.it t rrpnrt sp*iit'ied trhlei ,:ia ljln,,:eirti*rra1 ?+tli . ".
Tri:.1.r:ili *r. Fartiti*riil:l) rl i:,: ,',..ri"';l: {IlrUSt{ li r.1Lr.i.r} i llll

" tr-pr:'t!nt iai;it Iflf r"'{ ri:i.^ r\!i"i.tn-
Jri:lril.1 r;r, Fl.iiti*riT:ll,r i; lre r/i,ri ir{}' {fiEliiIil r,: qLiit} ..

;'.! l::3P iiil*'llr'lllrl'l i:ril,I= *;rt?l{"i}}Xl T*}il,lit-i}ilpT. [*],{lIi*l!},} l*C"err'.1rq

lilrt; llcl{itr{ 1*.l.lJ":.* - li'r:&r*iic* *:r ii*t fi1*" :i :2:'{t:In :'1fifi5

i*p1;i.igl:l i,.) ,1.182, 3tJE4. ,ti".r,:1,." i; lI r:..!h,.r r"r;er.v*,1.

i1:,il l0 : 01,.:r: J.* !)rt aha:;* 1.illg Sirrt*r"pri.re liitrit i*r, fi*.,1.e;:e I ti,1 " ti " ri " {, -

i'', "i, f .,'i rl.i.,,,ir,g, t'i fiN ,ltil i;Jrr.r l{iri;rit ,,i:1.il,tl'
,r1;r;r't **ire :i* fiH*ltlllli{1.ijtr: 1:}ii1l'a{!:Bt' .el e.!il *i,iiill}rti N{}ll*!i tl:ar*r:ter" :r*r

tl*Lrt li: t:,:p*rl :1r*ti{i*ti. ta}rliis +i.t t**v*nlir:*.r1 Fath -; "

" *r:iri:,rl. i*9 ir);1e ll:*T : 4 r"*tr:: e<"porie{
" elipipti*5 tali.le !{11.,tff*i}i: 5:'**i ex}el'ied

:il*l''l t+rni.rril*tl ,:uc+ei:lttlI.* irii !'irut lrrlt'ftir!{s "

M.S. University - D.D.C.E.

Exporting data from a table conditionally:

Basic Concepts 17

Figure 1.3: Gives the Screen Shot to Export Employees of Deptno = 10

Suppose if you want to export data of employees with salary less than 2000 then the following query
can be used.

EXP SCOTT/TIGER FILE: abc.dmp TABLES:emp QUERY:\" \7HERE SAL < 2000 \"

1.7.2 Importing Database Information

This utility is used to extract objects (tables etc) from the export file (.dmp file) created using EXP
utility.

IMP command can be used to invoke import utility interactively without any parameters. (\7hich
Requests the user to enter the value). Otherwise parameters can be specified in a file called parameter
file. Ve can use more than one parameter file at a time with exp command.

Syntax:

imp username/password PARFILE : filename

(o')

imp PARFILE : filename

Parameter file is a simple text file creating using any text editor.

Figure 1.4(a) and 1.4(b) explains the usage of IMP utility with parameters (non-interactively) in the
commandJine.

Figure 1.4(a): Explains the Usage of IMP Utility with Parameters

j.r,,..nfi: ili.,!,!ir, lUrr'.. id, l;-2- r?jarl
il) {r,I{,i ittl:r 1'r!ir ::,lllil ll:ra:r,rnl r i};r.!,

I \tr,r'irriri!. :: ilrri iif l . in.r.r',*.ir!ir il, I rd i ar/,",1\.

:\r.iir:.1,rr r:i:i,rr i.iii,r,r,!i,r ltir{r':,..."1r1.).. ilr}}ri,.,-iir\!;

p.r1: il,ri,.1,iu 1ii"i^ij-ll,i; Ir,.,,lrir1-:rr),i,,:1,,,, frr,r rli ijLi:.tli::.::::t]t1rl

|?r,l,i])r ! ,: ! r]| i

r*nu,-t,,,i .:r: lrr...i, l,,rji,i..\.,r. i1! l.:!i,,.r,,.i.1. :,r;r it:rr jilj4.,., iil.l-li-'r-1i :..,,1...

ll,'ttr i. ./!tr,ri .i,,r,ril'i.n J.,Jllir,, ,.,j.i ir+',,/rrjr;.rr,nl i.r:ii ..-
^.rf,.li:rg t.i1,i.. LSl i r'.r,. .:\i.r....]

IF *leli?i: i,.rrrrl ih,1 ririr.,,r :,:*.*1,1,: .:i ,r ir I ii ::.
rtr';.t t.fr1ir.t1-i,! ii'rr!rfrlr.:ri,jiq Ni1:,,r.rrlin,l:..

li.r : :.,; iiL;: .:.t :;,:'liel.,iri,, it;1;i;.'lil:j.

!rfti lliiec:r 1iJ.1.il.t^ii freirci i.rn rr: ilei illr 27 21:I.i:1ir :lilill;

:{i1i .- ji\+, -rr:;, t:.';;. *:r r:r':i.' :r:Ftr.'1,

r. . fr",. 1- r., ..r,.... .t!.. r,.", r. ", r I_r;i; :.,r, ilrll r i ii.l .;i.. ,*

th lbr l.:ti:ititriir,L tlnl a!j hi;;r t!irirl rlrirr:
pari dr*e in fllfltlli!llt{ilII c|:i]iste]::;et,rrrri.6!..l.llLl?I1.i liillill cl:rr+cter r;*r

i tr: er:r0ft:prcilied rr.ll*:; vir (nrru*n;ien:i. l+ri:...
*xt)tpiiar$ tlJrle 1111 I rcl; rrlur.teil
,,, ,*r.r,jn,,,", r r,rp,,:i,rllr ,risi.r,r,r ,-,l,pi1,

18 Client Server Computing with Oracle M.S. University - D.D.C.E.

Figure l.a(b): Explains the Usage of IMP Utility with Parameters

It is possible to import dump created using an earlier version can be imported using the later version
utility. 'We should not use later version utilities to export data from earlier database versions. But an
earlier utility can be used to export later versions of database.

1.7.3 Loading Data from Foreign Files

It is an Oracle utility used for moving bulk data from external files into the Oracle database. Data
from any text file can be loaded into database. SQl'tloader reads data from an external file and loads

data into an existing table while the Oracle database is open.

S pL* Lo ader D atatyp e s : S QL
*Lo ader uses the followin g dat atypes.

I. CHAR

2. DECIMAL

3. INTEGER

SQL"Loader require two input files a control file and another data file. The control file is a text file
details the task to be carried out by the SQl'rloader. It tells the SQl'sloader where data is available
how to parse and interpret it also where to insert it. The data file contains the data to be loaded.

A control file may be vaguely divided into three sections:

1. First section contain INFILE clause in this we specify where input data is located.

2. The second section have INTO TABLE block that details the table and column names into which
data is stored.

3. Third section is optional, If present it contain input data.

SQL* Loader assumes that data in data file is organized as records. Based on the record type data files
could be categorized into:

Fixed recordfiles: All the records are of same(fixed) length

Variable recordfiles: Records are of varyinglength and Streamed record files.

Note: Tf the data is specified in the control file, then we write INFILE * and the data is treated as

streamed record format and the records separated by default record terminator.

lal"':'t -'.:. | '{ ':- .'.' ;,.. :':;.1 :' ,'-'';

iir,l1rlr: i,riqr:i; iii.l,i1.ll-,1 'rrrrrr:r.ttr:r i,:t 1:.,: itat' :l'i ,l::iil l:li it:trf,

i:::l,L l,.r 1:lil:l. ililqj,i. i,1.:1;;lr. iijl r.r.,il,r:,r r'rt:jt.iriti"

;r, :.,.,,., :,' i.'.1,,,i :,.. _., ::.,, I,, : r' I :..

M.S. University - D.D.C.E.

Examples

The following example explains how to load data from file with fixed record format.

Creating Control FiIc

Using DOS editor or notepad editor you can create data file as shown below:

LOAD DATA

INFILE' mydaral.dat' "fix 18"

fields terminated by','

(sno ,sname , course)

Save this file under the name myctrll.ctl into the current directory.

Creating Data File

In the DOS editor or Notepad you can create data file as shown below:

1oo1,RAJAN, ASP,

1002,KISHAN, J2EE,

1oo3,PRABHU, JSP,

IOO4,PRANAY, ORACLE,

1005JOHN, APPS,

1OO6,MARTIN, ORACLE

Save the above content as file with the name "mydata1.dat"

The following figure explains how data can be loaded into a table. The data loaded

length records

Figure 1.5: Explains how Data can be Loaded into a Table

Basic Concepts 19

here is of fixed-

r t:\UlIND0VJ5\ systenr32 6nrd,exe

20 Client Server Computing with Oracle M.S. University - D.D.C.E.

To cross check whether loading was proper we execute simple SELECT statement as given below.

Figure 1.6: The Screen to Check lVhether Loading was Proper

1.8 BACKUP AND RECOVER

A backup is a copy of data. This copy can include important parts of the database such as the control
file and datafiles. A backup is a safeguard against unexpected data loss and application errors. If you
lose the original data, then you can reconstruct it by using a backup.

Backups are divided into physical backups and logical backups. Physical backups, which are the
primary concern in a backup and recovery strategy, are copies of physical database files. You can make
physical backups with either the Recovery Manager (RMAN) utility or operating system utilities.

In contrast, logical backups contain logical data (for example, tables and stored procedures) extracted
with the Oracle Export utility and stored in a binary file. You can use logical backups to supplement
physical backups.

To restore a physical backup of a datafile or control file is to reconstruct it and make it available to the
Oracle database server. To recover a restored datafile is to update it by applying archived redo logs and
online redo logs, that is, records of changes made to the database after the backup was taken. If you use

RMAN, then you can also recover restored datafiles with incremental backups, which are backups of a

datafile that contain only blocks that changed after a previous incremental backup.

After the necessary files are restored, media recovery must be initiated by the user. Media recovery can

use both archived redo logs and online redo logs to recover the datafiles. If you use SQL'sPlus, then
you can run the RECOVER command to perform recovery. If you use RMAN, then you run the
RMAN RECOVER command to perform recovery.

Unlike media recovery, Oracle performs crash recovery and instance recovery automatically after an
instance failure. Crash and instance recovery recover a database to its transaction-consistent state just
before instance failure.

By definition, crash recovery is the recov ery o{ a database in a single-instance configuration or an

Oracle Real Application Clusters configuration in which all instances have crashed. In contrast,

* oracle SQL'+Plus ffiffix

> SELEGT * FB0H STUD;

SHO SHfiHE COUESE

1 BB1 RfiJHH RSP

1602 HISHfiH JzEE
1 EB3 PBfiEHU JSP
1 OO4 PBAHEY ORACLE
1 OB5 JOHH fiPPS
1 EB6 I'IfiBT I H OHHGLE

rouls selected.

M.S. University - D.D.C.E. Basic Concepts 21

instance recovery is the recovery o{. one failed instance by a live instance in an Oracle Real Application
Clusters configuration.

Crash and instance recovery involve two distinct operations: rolling forward the current, online
datafiles by applying both committed and uncommitted transactions contained in online redo records,
and then rolling back changes made in uncommitted transactions to their original state. Because crash
and instance recovery are automatic, this manual will not discuss these operations.

Figure 1.7 illustrates the basic principle of backing up, restoring, and performing media r€cov€r/ t,rL x

database.

h6wI l,Edo chrngs)

Figure 1.7: Restoring and Recovering a Database

Fill in the blanks:

1. Oracle products are based on a concept known as the

2. SQL'$Plus is a structured Query Language supported by

3. The char datatype is used when a length character string is required.

4. The option menu allows you to SQL o Plus elements.

5. Enterprise Manager is Oracle's database administration tool that provides a

6. Oracle provides avariety of free tools to help and application developers
streamline.

1.9 LET US SUM UP

Oracle is an Object Relational Database Management System (ORDBMS). It offers capabilities of both
relational and object-oriented database system. In general, objects can be defined as reusable software
codes, which are location independent and perform a specific task on any application environment

22 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

with little or no change to the code. In addition to the direct execution SQL commands, SQL 'r Plus

allows the configuration of the PL/SQL commands. SQL * Plus shows results in the character mode.

Before continue our discussion of commands, let's turn our attention to the data types that can be

stored in an Oracle database.Oracle offers the industry's most complete and integrated set of tools for
application development, database development, or business intelligence to suppo rt any development
approach, technology platform, or operating system. The export utility can be used to transfer data

objects between oracle databases running even on a different hardware and software configurations.
Exported dump files can be read only by using the Import utility of Oracle. Impon utility is used to
extract objects (tables etc) from the export file (.dmp file) created using EXP utility. SQL'$Loader is an

Oracle utility used for moving bulk data from external files into the Oracle database. SQL*Loader
require two input files a control file and another data file. The control file is a text file details the task

to be carried out by the SQL*Loader. It tells the SQL*Loader where data is available how to parse and

interpret it also where to insen it. The data file contains the data to be loaded. A backup is a safeguard

against unexpected data loss and application errors. Backups are divided into physical backups and

logical backups. Physical backups, which are the primary concern in a backup and recovery strategy,

are copies of physical database files. logical backups contain logical data (for example, tables and stored
procedures) extracted with the Oracle Export utiliry and stored in a binary file. To restore a physical
backup of a datafile or control file is to reconstruct it and make it available to the Oracle database

server. To recover a restored datafile is to update it by applying archived redo logs and online redo

logs, that is, records of changes made to the database after the backup was taken. There are media,

crash and instance recovery.

1.10 KEY\T/ORDS

Export lJtility: It is a utiliry which can be used to transfer data objects between oracle databases

running even on a different hardware and software configurations.

Irnport Uillity: It is a utility which is used to extract objects (tables etc) from the export file (.dmp file)
created using EXP utility.

SpLxloadzr: It is an Oracle utiliry used for moving bulk data from external files into the Oracle
database.

Contrcl File: It is a text file details the task to be carried out by the SQL*Loader.

Data File: It is a file which contains the data to be loaded.

Backup: It is a safeguard against unexpected data loss and application errors.

Logical Backup: It contains logical data (for example, tables and stored procedures) extracted with the
Oracle Export utility and stored in a binary file.

PhjsicalBackup:ltis the process in which the primary concern is to copy the physical database files.

1.11 QUESTTONS FOR DTSCUSSTON

L.

)

3.

Vhat are the basic modules in oracle?

Explain the processor to invoke SQL'FPLUS.

'What
are basic data types in oracle?

M.S. University - D.D.C.E.

4. Discuss the file menu and edit menu in SQL'iPLUS.

5. \fhat is import/export and why does one need it?

6. How does one use the imporr/exporr utilities?

7. Can one import/export between different versions of Oracle?

Basic Concepts 23

Check Your Progress: Model

1.'Client/ServerTechnology'

2. Oracle

3. Fixed

4. Change

5. graphical user interface

6. database

Answers

1.12 SUGGESTED READINGS

Dave Moore, Oracle Utilities, Rampant TechPress

Kent Crotty and Donald K. Burleson, Oracle Best Praaices: Practical Standards for Success, Rampant Techpress

Fred D. Rolland , Relational Database Managernent uitb Oracle, Addison-\Tesley

Roben G. Freeman and Steve Karam, Easy Oracle Jumpstart: Oracle Database Management Concepts and
Administratioz, Rampant Techpress

Bill Pribyl, LearningOracle PL/SQL, O'Reilly Media

Steven Feuerstein , Oracle PL/SQL Programmlzg O'Reilly Media

LESSON

2

INTRODUCTION TO ORACLE SERVER

CONTENTS

2.0 Aims and Objectives

2.1 Introduction

2.2 Data Dictionary

2.3

2.2.t Structure of the Data Dictionary

2.2.2 How the Data Dictionary is used

2.2.3 How Oracle uses the Data Dictionary

2.2.4 How to use the Data Dictionary

Organization of Data in Oracle

2.3.1 Tablespaces and Data Files

2.3.2 Schema Objects

2.3.3 Data Blocks, Extents and Segments

2.3.4 Physical Database Structure

Let us Sum Up

Key'words

Questions for Discussion

Suggested Readings

2.4

2.5

2.6

)7

2.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

. Explain the concept o{ data dictionary

. Discuss how to identify the tablespaces and data files

. Describe the data blocks, exrents and segments

. Identify and explain the schema objects

M.S. University - D.D.C.E Introduction to Oracle Server 25

2.1 INTRODUCTION
Oracle Products are based on a concept known as the 'Client/Server Technology'. This concept
involves segregating the processing of an application between rwo sysrems. One performs all activities
related to the database (server) and the other performs acriviries rhar help user ro interacr with the
application (client).

A client or front-end database application also interacts with the database by requesting and receiving
information from the 'database severs'. It acts as an interface between the user and the database. The
commonly used front tool of ORACLE is SQL'r- Plus.

The database server or back end is used to manage the database tables optimally among multiple clients
who concurrently request the server for the same data. It also enforces data integrity across all the
clients' applications and controls databases access and other security requirements.

Oracle uses the Internet File System, which is Java based applicarion, which enables database ro
become an Internet development platform. Oracle also provides complete supporr for building Java
applications by offering new versions of the Jdeveloper. The data srore in database can be used tobuild
HTML web pages. Multimedia data store in a network-accessible database can be manipulated or
modified using the Oracle inter Media Audio, Image and Video Java Client developed Applications.

2.2DATA DICTIONARY
One of the most iryrportant parts of an Oracle database is its data dictionary, which is a read-only set
of tables that provides information about the database. A data dictionary conrains:

o The definitions of all schema objects in the database (tables, views, indexes, clusrers, synonyms,
sequences, procedures, functions, packages, triggers, and so on)

o How much space has been allocated for, and is currently used by, the schema objects

. Default values for columns

o Integrityconstraintinformation

o The names of Oracle users

o Privileges and roles each user has been granted

o Auditing information, such as who has accessed or updated various schema objects

o Other general database information

The data dictionary is structured in tables and views, just like other database dara. All the data
dictionary tables and views for a given database are stored in that database's sysrEM tablespace.

Not only is the data dictionary central to every Oracle database, it is an important tool for all users,
from end users to application designers and database administrators. lJse SQL statemenrs ro access the
data dictionary. Because the data dictionary is read-only, you can issue only queries (snr,ncr
statements) against it's tables and views.

26 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

2.2.1 Structure of the Data Dictionary

The data dictionary consists of the following:

Base Tabl.es

The underlying tables that store information about the associated database. Only Oracle should write
to and read these tables. Users rarely access them directly because they are normalized, and most of the
data is stored in a cryptic format.

User-Accessible Views

The views that zummarize and display the information stored in the base tables of the data dictionary. These

views decode the base table data into useful information, such as user or table names, using joins and \7HERE
clauses to simplify the information. Most users are given access to the views rather than the base tables.

2.2.2How the Data Dictionary is used

The data dictionary has three primary uses:

o Oracle accesses the data dictionary to find information about users, schema objects, and storage

structures.

. Oracle modifies the data dictionary every time that a data definition language (DDL) statement is
issued.

. Any Oracle user can use the data diaionary as a read-only reference for information about the database.

2.2.3 F{ow Oracle uses the Data Dictionary

Data in the base tables of the data dictionary is necessary for Oracle to function. Therefore, only Oracle
should write or change data dictionary information. Oracle provides scripts to modify the data

dictionary tables when a database is upgraded or downgraded.

During database operation, Oracle reads the data dictionary to ascertain that schema objects exist and

that users have proper access to them. Oracle also updates the data dictionary continuously to reflect
changes in database structures, auditing, grants, and data.

For example, if user Kathy creates a table named parts, then new rows are added to the data

dictionary that reflect the new table, columns, segment, extents, and the privileges that Kathy has on

the table. This new information is then visible the next time the dictionary views are queried.

Public Sgnonyms for Data Diaionary Views

Oracle creates public synonyms for many data dictionary views so users can access them conveniently.
The security administrator can also create additional public synonyms for schema objects that are used

systemwide. tlsers should avoid naming their own schema objects with the same names as those used

for public synonyms.

Caehe the Data Diaionarltfor Fast Access

Much of the data dictionary information is kept in the SGA in the dictionary cache, because Oracle

consranrly accesses the data dictionary during database operation to validate user access and to verify the

state of schema objects. All information is stored in memory using the least recently used (tRt, algorithm.

M.S. University - D.D.C.E. Introduction to Oracle Server 27

Parsing information is typically kept in the caches. The comrnNrs columns describing the tables and
their columns are not cached unless they are accessed frequently.

Other Programs and the Data Diaionary

Other Oracle products can reference existing views and creare additional data dictionary tables or
views of their own. Application developers who write programs that refer ro the data dictionary
should refer to the public synonyms rather than the underlying tables: the synonyms are less likely to
change between software releases.

2.2.4 How to use the Data Dictionary

The views of the data dictionary serve as a reference for all database users. Access the data dictionary
views with SQL statements. Some views are accessible to all Oracle users, and others are intended for
database administrators only.

The data dictionary is always available when the database is open. It resides in the sysrEM tablespace,
which is always online.

The data dictionary consists of sets of views. In many cases, a ser consisrs of three views containing
similar information and distinguished from each other by their prefixes:

The set of columns is identical across views, with these exceptions:

o Views with the prefix USER usually exclude the column O\XAIER. This column is implied in the
USER views to be the user issuing the query.

Some DBA views have additional columns containing information useful ro rhe administrator.

Table 2,lz Data Dictionary View Prefixes

Prefix Scope

USER IJser's view (what is in the user's schema)

ALL Expanded user's view (what the user can access)

DBA Database administrator's view (what is in ali users' schemas)

2.3 ORGANIZATION OF DATA IN ORACLE
The relational model has three major aspecrs:

Structures

Structures are well-defined objects that store the data of a database. Structures and the data contained
within them can be manipulated by operarions.

Operations

Operations are clearly defined actions that allow users ro manipulate the data
database. The operations on a database must adhere to a pre-defined ser of integrity

IntegriE Rule

Integrity rules are the laws that govern which operations are allowed on the data
database. Integrity rules protect the data and the srrucrures of a database.

and structures of a

rules.

and structures of a

28 Ciient Server Computing with Oracle M.S. University - D.D.C.E

An ORACLE database has both a physical and a logical structure. By separating physical and logical
database structure, the physical storage of data can be managed without affecting the access to logical
storage structures.

Logical D ata b as e S tru ct ure

An ORACLE database's logical structure is determined by:

. One or more tablespaces.

. The database's schema objects (e.g., tables, views, indexes, clusters, sequences, stored procedures).

The logical storage structures, including tablespaces, segments, and extents, dictate how the physical

space of a database is used. The schema objects and the relationships among them form the relational
design of a database.

Figure 2.1: Oracle Database Storage Structures

2.3.1Tablespaces and Data Files

Tablespaces are the primary logical storage structures of any ORACLE database. The usable data of an

ORACLE database is logically stored in the tablespaces and physically stored in the data files

associated with the corresponding tablespace. Figure 2.2 iTlustrates this relationship.

Although databases, tablespaces, data files, and segments are closely related, they have important differences:

Databases and Tablespaees

An ORACLE database is comprised of one or more logical storage units called tablespaces. The

database's data is collectively stored in the database's tablespaces.

Dahbse

t=l N--,{
EI IO,%*lQ

l*_J
etuftfttog!

sY$il $YSux llr00 wns 16lP
T$a.rp.cs ISep*. I0bl6p0$ T*lGtsco IffkW

ffiffiffi1ffiffi]

TTTTTt:l r=1 t:l t=] r=l

E] EJ E] EI EJ
Dhft hbfih kbib 0.tr1e lempm

tdcd
Sfut 6s

Ptrr*d
Shdres

l=1 l=lt-tt-tt:] i=l
CodAm Sevs

F{arES
fib

Fbsl
f,&ovgrt
AM

AS{YedRedot gs

M.S. University - D.D.C.E. Introduction to Oracle Server 29

A database

Tablespaces and Data Files

Each tablesPace in an ORACLE database is comprised of one or more operating system files called
data files. A tablespace's data files physically store ihe associated database d.i" o, di"rk.

Databases and Data Files

A database's data is collectively stored in the data files that constiture eacli tablespace of the database.
For example, the simple$ ORACLE database would have one tablespace, *ith one data file. A more
complicated database might have three tablespaces, each comprised oi rwo data files (for a rotal of six
data files).

2.3.2 Schema Obiects

Y!." a schema object such as a table or index is created, its segment is created within a designated
tablespace in the database.

For example, suPPose a table is created in a specific tablespace using the CREATE TABLE command
with the TABLESPACE option. The space for this table's data r.g-"rrt is allocated in one or more of
the data files that constitute the specified tablespace. An object',

-r.g*.rr,
allocates space in only one

tablespace of a database.

A database is divided into one or more logical srorage units called tablespaces.
administrator can use tablespaces to do the following:

. Control disk space allocation for database data.

o Assign specific space quoras for database users.

o Control availability of data by taking individual tablespaces online or offline.
o Perform partialdatabase backup or recovery operations.

o Allocate data storage across devices to improve performance.

Figure 2.2:Data Files and Tablespaces

t)bjerts

i.'io ? i '" ,'rt..'t;.irt.' -

tir.,tr:ril jile i1.' t...i-.]?..

30 Client Server Computing with Oracle M.S. University - D.D.C.E.

Every ORACLE database contains a tablespace named SYSTEM, which is automatically created when

the database is created. The SYSTEM tablespace always contains the data dictionary tables for the entire

database. You can query these data dictionary tables to obtain pertinent information about the database;

for example, rhe names of the tables that are owned by you or ones to which you have access.

Data files associated with a tablespace store all the database data in that tablespace. One or more

datafiles form a logical unit of database storage called a tablespace. A data file can be associated with
only one tablespace, and only one database.

After a data file is initially created, the allocated disk space does not contain any data; however, the

space is reserved to hold only the data for fumre segments of the associated tablespace - it cannot store

any orher program's data. As a segment (such as the data segment for a table) is created and grows in a

tablespace, ORACLE uses rhe free space in the associated data files to allocate extents for the segment.

The data in the segmenrs of objects (data segments, index segments, rollback segments, and so on) in a

tablespace are physically stored in one or more of the data files that constitute the tablespace.

Note that a schema object does not correspond to a specific data file; rather, a data file is a repository

for the data of any object within a specific tablespace. The extents of a single segment can be allocated

in one or more data files of a tablespace (see Figure 2.3); therefore, an object can "span" one or more

data files. The database administrator and end-users cannot control which data file stores an object.

2.3,3 DataBlocks, Extents and Segments

ORACLE allocates database space for all data in a database. The units of logical database allocations

are data blocks, exrenrs, and segments. Figure 2.4 illustrates the relationships between these data

stnrctures.

Data Blocks

At the finest level of granularity,
^n

ORACLE database's data is stored in data blocks (also called

logical blocks, ORACLE blocks, or pages). An ORACLE database uses and allocates free database

space in ORACLE dara blocks. Figure 2.4 illustrates a typical ORACLE data block.

Extents

The next level of logical database space is called an extent. An extent is a specific number of contiguous

data blocks that are allocated for storing a specific type of information.

Segments

The level of logical database storage above an extent is called a segment. A segment is a set of extents

which have been allocated for a specific type of data structure, and all are stored in the same tablespace.

For example, each table's data is stored in its own data segment, while each index's data is stored in its

own index segmenr. ORACLE allocates space for segments in extents. Therefore, when the existing

extents of a segment are full, ORACLE allocates another extent for that segment. Because extents are

allocated as needed, the extents of a segment may or may not be contiguous on disk, and may or may

not span files. An extent cannot span filds, though.

M.S. University - D.D.C.E. Introduction to Oracle Server 31

Figure 2.3: The Relationship among Segments, Extents and Data Blocks

oRACLE manages the storage space in the data files of a database in units called data blocks. A data block
is the smallest unit of I/o used b1' a database. A data block corresponds to a block of physical bp., o1
disk, equal to the ORACLE data block size (specifically set *hen the database is created -'20i8).This block
size can differ from the standard VO block size of the operating sysrem rhar execures ORACLE.
The oRACLE block format is similar regardless of whether the data block contains table, index, or
clustered data. Figure 2.4 shows the formaio { a daablock.

Figure 2.4:Data Block Format

Conunon and Variahle Heatler.

Tahl€ Dil"clory

Rox Direttot'y

Free Space

Ros data

ftU

t
U

!
n

Database Block

32 Client Server Computing with Oracle

Headcr (Common and Variable)

The header contains general block information, such as block address,

index, or rollback. Vhile some block overhead is fixed in size (about

overhead size is variable.

M.S. University - D.D.C.E.

segment type, such as data,

107 bytes), the total block

Table Direaory

The table directory porrion of the block contains information about the tables having rows in this block.

Row Directoty

This portion of the block contains row information about the actual rows in the block (including

addreises for each row piece in the row data are2). Once the space has been allocated in the row

directory of a block's header, this space is not reclaimed when the row is deleted.

Row Data

This portion of the block contains table or index data. Rows can sPan blocks.

Free Spaee

Free space is used to insert new rows and for updates to rows that require additional space (e.g., when

a trailing null is updated to a non-null value). \Thether issued insertions actually occur in a given data

block is a function of the value for the space management parameter PCTFREE and the amount of

current free space in that data block.

Space usedfor Transaction Enties

Data blocks allocated for the data segment of a table, cluster, or the index segment of an index can also

use free space for transaction entries.

Two space management parameters, PCTFREE and PCTUSED, allow a developer to control the use

of free space for inserts of and updates to the rows in data blocks. Both of these parameters can only be

specified vzhen crearing or altering tables and clusters (data segments). In addition, the storage

p*rr*"t". PCTFREE can also be specified when creating or altering indices (index segments)'

The PCTFREE parameter is used to set the percentage of a block to be reserved (rept free) for possible

updates to ,o*s thrt already are contained in that block. For example, assume that you specify the

following parameter within a CREATE TABLE statement:

o Pctfree 20

This states that 20\o/o of each data block used for this table's data segment will be kept free and

available for possible updates to the existing rows already within each block.

After a data block becomes full, as determined by PCTFREE, the block is not considered for the

insertion of new rows until the percentage of the block being used falls belot' the parameter

PCTUSED. Before this value is achieved, the free space of the data block can only be used for

updates ro rows already contained in the data block. For example, assume that you specify the

following parameter within a CREATE TABLE statement:

o Pctused 40

in this case, a data block used for this table's data segment is not considered for the insertion of

any new rows until the amount of used space in the blocks falls to 39\o/o or less (assuming that the

block's used space has previously reached PCTFREE).

M.S. University - D.D.C.E Introduction to Oracle Server 33

No matter what type, each segment in a database is created with at leasr one exrent to hold its
data. This extent is called the segmenr's initial exrenr.

If the data blocks of a segment's initial extent become full and more space is required to hold new data,
ORACLE automatically allocates an incremental extent for that segmenr. An incrementd exrent is a
subsequent extent of the same or incremented size of the previous extent in that segment.

Every non-clustered table in an ORACLE database has a single data segment to hold all of its data.
The data segment for a table is indirectly created via the CREATE TABLE/SNAPSHOT command.

Storage parameters for a table, snapshot, or cluster control the way that a data segment's extents
are allocated. Setting these storage parameters directly via the CREATE TABLE/SNAPSHOT/
CLUSTER or ALTER TABLE/SNAPSHOT/CLUSTER commands affects the efficiency of data
retrieval and storage for that data segment.

2.3.4 Physical Database Structure

An ORACLE database's physical stnrcture is determined by the operating sysrem files that consrirure
the database. Each ORACLE database is comprised of these types of files: one or more data files, two
or more redo log files, and one or more control files. The files of a database provide the actual physical
storage for database information.

Figure 2.5: Maintaining the Free Space of Data Blocks with
PCTFREE and PCTUSED

34 Client Server Computing with Oracle M.S. University - D.D.C.E.

Fill in the blanks:

1. Oracle uses the Internet File System, which is Java based application, which enables

database to become an Internet development platform.

2. The data dictionary is structured in tables and views, just like other database data.

3. The views that summarize and display the information stored in the base tables of the data

dictionary.

4. An ORACLE database is comprised of one or more logical $orage units called tablespaces.

2.4 LET US SUM UP

An Oracle database is a collection of data treated as a unit. A database server is the key to solve the
problems of information management. A database server also prevents unauthorized access and

provides efficient solutions for failure recovery. The database has logical stnrctures and physical
stnrctures. Oracle stores records relating to each other in a table. A table consists of a number of
records. Each field occupies one column and each record occupies one row. Related tables are grouped
rogether to form a database. Every table in Oracle has a field or a combination of fields that uniquely
identifies each record in the table. This unique identifier is called the primary key, or simply the key.
A foreign key is a field or a group of fields in one table whose values match those of the primary key
of another table. The process of normalizingdata breaks the data down into smaller and smaller tables

to reduce redundancy and make retrieving and managing that data more efficient.

2.5 KEY\$TORDS

Data Diaionary:The data dictionary is structured in tables and views, just like other database data.

Tablespaees: An ORACLE database is comprised of one or more logical storage units called tablespaces

Data Files: Each tablespace in an ORACLE database is comprised of one or more operating system

files called data files.

2.6 QUESTTONS FOR DTSCUSSTON

1.

2.

3.

\flhat is the importance of data dic:tionary inoracle?

Explain the relationship among Database, Tablespace and Data file.

Explain the terms:

(") Data blocks

&) Extents

(.) Segments

Discuss the use of schema object.4.

heck Your

M.S. University - D.D.C.E. Introduction to Oracle Server 35

2.7 SUGGESTED READINGS

David Kreines and Brian Laskey, Oracle Database Administration: Tbe Essential Refermce, O'Reilly Media

Kent Crotty and Donald K. Burleson, Oracle Best Practices: Practical Stand^ards for Succes, Rampant Techpress

Fred D. Rolland., Relational Daabase Management aitb Oracle, Addison-\$(esley

Roben G. Freeman and Steve Karam, Easy Oracle lumpsurt: Oracle Database Management Concepts and
Administratioz, Rampant Techpress

Steven Feuerstein, Bill Pribyl and Chip Dawes, Oracle PL/SQL Language, O'Reilly Media',

Bill Pribyl, Leazzzing Oracle PL./SQI, O'Reiily Media

Steven Feuerstein , Oracle PL/SQL Programrnlzg O'Reilly Media

UNITII

LESSON

3

SQL

CONTENTS
3.0 Aims and Objectives

3.1 Introduction

3.2 Basic SQL

' 3.2.1 Oracle and SQL

3.3 SQL Language

3.3.L Benefits of SQL

3.3.2 Database Objects

3.3.3 Object Naming Conventions

3.3.4 Data Types

3.4 DDL and DML Commands

3.4.1 Data Definition Language Commands

3.4.2 Data Manipuladon Language Commands

3.4.3 TransactionControl Commands

3.5 Retrieving Data

3.6 Data Definition Language

. 3.6.I Creating a Table

3.7 Let us Sum up

3,8 Keywords

3.9 Questions for Discussion

3.10 SuggestedReadings

3.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

. Explain the concept of basic SQL

. Discuss the SQL language

o Describe the DDL and DML commands

. Identify and explain the retrieving of data

. Discuss the data definition language

40 Client Server Computing with Oracle M.S. University - D.D.C.E.

3.1 INTRODUCTION
A database would be of a very lifile use if users could not interact with it. Therefore, every DBMS
must provide some mechanism, perhaps a language and a set of software roois to allow users to submit
a request; an engine to process the request; and a mechanism to present the result back to the users.

In early days of DBMS technology, different vendors developed their own customized mechanisms
and tools for this purpose. However, over the years, the interaction languages have been standardized.
This chapter introduces perhaps the most popular database interaction language called - Structured

Q.rery Language - or SQL.

3.2 BASrC SQL

SQL - Structured Qrr"ry Language - is the basic tool for accessingdata in a database. Mastering SQL is
the first and most important step you have to take to become a database expert. In recent years, the
SQL has left the mainframe and been extended to the desktop. Internet has also popularized this
language. Because of its appropriate structure for the client/server architecture, more and more
applications and pages that access relational databases are being created with the SQL language.

3.2.1OrucIe and SQL

SpL l-anguage Basies

You will be able to perform most activities related to querying and manipulating a database by
learning just a few commands and functions.

The main commands and functions that will be discussed in this part are lisred below:

Commands I Functions

SELECT I SUM O

TNSERT I avc a

DELETE I MAX 0

UPDATE I rrarN g

coMMrT I couNr 6

ROLLBACK I SYSDATE O

Typ e s of S QL D e claration

The SQL declarations, or commands, are divided into two major caregories, according to their
functionality. There are the Data Definition Language (DDL) commands and Data Manipulation
Language (DML) commands.

Data Definition Language (DDL)

The DDL, or Data Definition Language, is a part of the SQL language used to define dara and objects
in a database. \7hen these commands are used, the Oracle data dictionary receives some enrries. The
Data Definition Language is used to create an object (e.g., table), alter the srructure of an object and
also to drop the object created. The concepts relating to Data Definirion Language are explained in the
following paragraphs.

M.S. University - D.D.C.E. sQL 41

Table Definition

A table is a unit of storage that holds data in the form of rows and columns. The Data Definition
Language used for table definition can be classified into the following four:
. Create table command

. Alter table command

. Truncate table command

. Drop table command

3.3 sQL LANGUAGE

Often pronounced as ''sequel", SQL is by far the most popular relational database query language.
Almost all the standard relational database management systems supporr SQL or some of its variants.

SQL is the set of commands that programs and users may use ro access data within the database that
suPPorts it. Application programs and database tools often allow users ro access the database without
directly using SQL, however, these applications also translate the actions into SeL under the hood.

SQL has its root in the paper, "A Relational Model of Data for Large Shared Data Banks," published
by Dr E. F. Codd in June t97O in the Association of Computer Machinery (ACMf journal,
Communications of the ACM. Incidentally, the paper also contains Codd's model, which'is now
accepted as rhe definitive model for relational Database Management Systems.

ln 1979, Relational Software, Inc., reincarnated as present day oracle Corporation, introduced the first
commercially available implementation of SQL. Today, SQL i, ac.ept"d as the standard RDBMS
language. The latest SQL standard by ANSI and ISO is often called SQL-92 andsomerimes SeL2.

3.3.1 Benefits of SQL

SQL has now become de-facto query language in the relational database world. It has found
widespread accePtance by vendors as well as end users. The strengths of SeL benefit th.

"rtir" ,"rrg.
of t" ers including application programmers, database administratoir, -rrr*g.rs and end users. Some of
the benefits of SQL worth noring are described below.

In order that the SQL commands get executed to produce the desired resuh an SeL interprerer or
user-interface Program is required. Almost every DBMS provides at least one such user-interface. For
example, ORACLE provides TSQL utility program thai accepts your SQL commands and gets the
same executed on your behalf.

Non-procedural

SQL is a non-Procedural language in that the users do nor have to specify how the SeL commands are
to be executed' SQL commands work like macros that have already'been wrirren for the users.

To illustrate the point, consider an example of listing all the records from a rable - Student - in which
Marks column has value more than 50. A procedural language would works as follows:
L. Start

2. Open the table - Student

42 Client Server Computing with Oracle M.S. University - D.D.C.E.

3. \7hile End-of-file has not been reached

n If marks) 60 then print record

* Move to next record

4. Close table

5. t ncl

A non-procedural language is free from writing algorithms like one shown above. A single command

can do the job. Here is the SQL equivalent of the above listed algorithm.

SELECT 'I FROM STUDENT \THERE MARKS > 60;

Evidently, SQL processes sets of records in one go rather than just one at a time. Moreover, it provides

automatic navigation to the data set.

SQL provides easy-to-learn commands that are both consistent and applicable to all users. The basic

SQL commands can be learned in a few hours and even the most advanced commands can be mastered

in a few days.

UnfudLanguages

SQL provides commands for a variety of tasks including:

. Creating relational database objects like tables, views and indexes

. Modifying and deleting relational database objects

. Querying database

. Inserting, updating and deleting rows in a table

. Creating, replacing, altering and dropping objects

. Controlling access to the database and its object

. Guaranteeing database consistency and language.

SQL unifies all the above tasks in one consistent language.

Common Languagefor All Rclational Databases

Because all major relational database management systems support SQL, you can transfer all skills you

have gained with SQL from one database to another. In addition, since all programs written in SQL

are portable, they can often be moved from one database to another with very little modification.

Enbedded SpL

Embedded SQL refers to the use of standard SQL commands embedded within a procedural

programming language. Embedded SQL is a collection of these commands.

The RDBMSs also provide pre-compilers that support embedded SQL. The SQL pre-compilers

interpret embedded SQL statements and translate them into statements that can be understood by
procedural language compilers. Some of the SQL pre-compilers (for example available with Oracle)

that translate embedded SQL programs into a different procedural language are:

. Pro'sAda precompiler

. Pro*C/C**precompiler

M.S. University - D.D.C.E. sQL 43

r Pro*COBOLprecompiler

. Pro*FORTANprecompiler

. Pro'rPascalprecompiler

o ProtPL/l precompiler

3.3.2Database Obiects

RDBMS supports two types of data objects.

Schema Objeas: A schema is a collection of logical structures of data, of schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a single schema. Schema
objects can be created and manipulated with SQL and include the following rypes of objects.

Cluster database links database triggers

Indexes Packaged sequences

Snapshots snapshot logs stored functions

stored procedures synonyms tables

Views

Non-schema Objects: Other types of objects are also stored in the database and can be created and
manipulated with SQL, but are nor conrained in a schema.

Profiles roles

rollback segments table spaces

[Jsers

3.3.3 Obiect Naming Conventions

The following rules apply when naming objects:

. Names must be from 1 to 30 characters long with the following exceprions:

* Names of databases are limited to 8 characters. Names of database links can be as long as 128
characters.

.:. Names cannot contain quotation marks.

a Names are not case-sensitive.

. A name must begin with an alphabetic character from your database character ser unless
surrounded by double quotation marks.

. Names can only contain alphanumeric characters form your database character set and the
characters_, $ and#. You are strongly discouraged from using $ and #.

. If your database character set contains multi-byte characters, it is recommended that each name
for a user or a role contain ar least one single-byte character.

. Names of databases links can also contain periods (.) and ampersand (Ec).

o Columns in the same table or view cannot have the same name. However, column in different
tables or views can have the same name.

44 Client Server Computing with Oracle M.S. University - D.D.C.E.

. Procedures or functions contained in the same package can have the same name, provided that
their arguments are not of the same number and data types. Creating multiple procedures of
functions with the same name in the same package with different arguments is called overloading
the procedure or function.

O bj e ct N aming Guidc linc s

There are several helpful guidelines for naming objects and their pans:

. Use full, descriptive, pronounceable names (or well-known abbreviations).

. Use consistent naming rules.

. Use the same name to describe the same entity or attributes across tables.

. 'When naming objects, balance the objective of keeping names short and easy to use with the
objective of making names as long and descriptive as possible. '\tr7hen in doubt, choose the more
descriptive name because many people may use the objects in the database over a period of time.
Your counterpart ten years from now may have difficulty in understanding a database with names
like PMDD instead of PAYMENT_DUE_DATE.

. Using consistent naming rules helps users to understand the part that each table plays in your
application. One such rule might be to begin the names of all tables belonging to the FINANCE
application with FIN_.

. Use the same names to describe the same things across tables. For example, the department
number columns of the EMP and DEPT tables should both be named DEPTNO.

3.3.4Data Types

The data types available with SQL are given in Tables 3.1.

Table 3.1: Data Types Summary

Internal Data type Description

VARCHAR2 (size) Variable length character string having maximum length size by'tes. Maximum size is 2000
and minimum is 1. You must specify size for a VARCHAR2.

NUMBERh,s) Number having precision p and scale s. The precision p can range from 1 to 38. The scale s

can range f.rom 84 to L27 .

LONG Character data of variable length up to 2 gigabyres, or 231-1 b1tes.

DATE Valid data range from January 1,4712 BC to December 31,4712 AD.

RA\[(size) Raw binary data of length size b1'tes. Maximum size is 255 bytes. You must specify size of a

RAl|fl value.

LONG RA\T Raw binary data of variable lengh up to 2 gigabytes.

RO\trflID(see note below) Hexadecimal string representing the unique address of a row in its table. This data type is
primarily for values returned by the ROr0[ID pseudocolumn.

CHAR(size) Fixed length character data of length size byte. Maximum size is 255. Default and minimum
size is 1 byte.

MLSLABEL Binary format of an operating system lable. This data type is used with Tru*ed OracleT.

M.S. University - D.D.C.E. sQL 4s

CharacterData Types

Character data types are used to manipulate words and free-form text. These data types are used to
store character- (alphanumeric) data in the database characrer set. They are less restrictive than other
data types and consequently have fewer properties. For exampl., .Lr...t.r columns can store all
alphanumeric values, but NUMBER columns can only srore numeric values. These data types are used
for character data CHAR, VARCHAR2.

CHARDataTjtpe

The CHAR data type specifies a fixed length characrer string. \fhen you creare a table with a CHAR
column, you can supply the column length in bytes. nOgNrIS subsequently ensures that all values
stored in that column have this length. If you insert a value that is shtner ihm th. column length,
RDBMS blank-pads the value to column lgnqth, If you try ro insert a value that is too long for"the
column, RDBMS returns an error. The defauit for a CHA1I column is 1 character and the niaximum
allowed is 255 characters. A zero-length string can be inserted into CHAR column, but the column is
blank-padded to 1 character when used in comparisons.

. VARCHAR2DataType

The VARCHAY data type specifies a variable length character string. \rhen you creare a
VARCHAR2 column, you can supply the maximum number of bpes oI drt. thai it can hold.
RDBMS subsequently $ores each value in the column exactly as you specify it, provided it does
not exceed the column's maximum length.

. VARCHAR Data Type

The VARCHAR data type is currently synonymous with the VARCHAR2 data type. It is
recommended that you use VARCHAR2 rather that VARCHAR. In a future version ofnOgIyIS,
VARCHAR might be a separate data type used for variable length character strings .o-p"r.j
with different comparison semanrics.

NUMBERData Type

The NUMBER data type is used to store zero, positive and negative fixed and floating point numbers
with magnitudes between 1.ox1o'130 and9.9xlot2i1ra rr followeJby 8g 0s) with 3g digi; of precision.

DATEDataType

The DATE data type is used to store data and time information. Although data and time information
can be represented in both CHAR and NUMBER data rypes, th" Setg data type has special
associated propefties.

For each DATE value the following information is stored:

Century, year, month, day, hour, minute and second

To specify date value, you must convert a character or numeric value to data value with the
TO-DATE function. RDBMS automatically converts characrer values that are in the default date
format into date values when they are used in date expressions. The default date formar is specified by
the initialization parameter NLS-DATE-FORMAT and is a srring such as ,DD-MON yy,. This
example date format includes a two-digit number for the day of th"e month, ."

"UirI"ir;i"; ;irh"
month name and the last two digits of the year.

46 Client Server Computing with Oracle M.S. University - D.D.C.E.

If you specify a datevalue without a time component, the default time is 12:00 a.m. (midnight). If you

specify
^

d^te value without a date, the default date is the first day of. the current month. The date

function SYSDATE returns the current data and time.

BAW andLONG RAW DataTyPes

The RA\7 and LONG RA\fl data types are used for data that is not to be interpreted (not converted

when moving data between different-systems) by RDBMS. These data types are intended for binary

data or byte strings. For example, LONG RA\f can be used to store graphics, sound, documents or

areas of binary data; the interpretation is dependent on the use.

ROWID DataType

Each row in rhe database has an address. You can examine a row's address by querying the

pseudocolumn RO\7ID. Values of this pseudocolumn are hexadecimal strings rePresenting the address

lf .".h row. These strings have the dita type RO\[D. You can also create tables and clusters that

contain acrual columns having the RO\7ID data type. RDBMS does not guarantee that the values of

such columns are valid RO\7IDs.

MLSL,ABELDataType

The MLSLABEL data type is used to store the binary format a label used on a secure oPerating system.

Labels are used by SeL io mediate access to information. You can also define columns with this data

type if you are using the standard SQL server.

Nulls

If a column or in a row has ng value, then column is said to be null, or to contain a null. Nulls can

appear in columns of any data type that are not restricted by NOT NULL or PRIMARY KEY

i"t.grity consrraints. lJse a null when the actual value is not known or when a value would not be

r".*irrgf"l. Do not use null to represent a value of zero, because they are not equivalent. Any

arithmelic expression containing
"

rr.rll ,l*.ys eyaluates to null. For example, null added to 10 is null.

In fact, all operators (except concatenation) return null when given a null operand.

Tables

All data in a relational database is stored in tables. Every table has a table name and a set of columns and

rows in which the data is stored. Each column is given a column name, a data type (defining

characteristics of the data to be entered in the column). Usually in a relational database, some of the

columns in different tables contain the same information. In this way, the tables can refer to one another.

For example, you might wanr ro create a database containing information about the products your

company manufactur.r. k , relational database, you can create several tables to store different pieces

of information about your products, such as an inventory table, a manufacturing table and a shipping

table. Each table would inil.rd" columns to store data appropriate to the table (for example, the

inventory table would include a column showing how much stock is on hand) and a column for the

product's part number.

Views

A view is customized presentation of the data from one or more tables. Views derive their data from

the tables on which they are based, which are known as base tables. AII operations performed on a

view actually affect the base tables of the view. You can use views for several PurPoses:

M.S. University - D.D.C.E sQL 47

To give you an additional level of table security by restricring access to a predetermined set of table
rows and columns. For example, you can create a view of a table that does not include sensitive data
(i.e., salary information).

To hide data complexity, relational databases usually include many tables and by creating a view
combining information from two or more tables, you make it easier for other users to access
information from your database. For example, you might have a view that is a combination of your
Employee table and Depanment table. A user looking at this view, which you have called emp_jept,
only has to go to one place to get information, instead of having ro access the two tables that ;rk.;p
this view.

To present the data in a different perspective from that of the base table: View provides a means ro
rename columns without affecting the base table. For example, to srore .o-ple* queries, a query
might perform extensive calculations with table information. By saving this query as a view, the
calculations are performed only when the view is queried.

Infuxes

An index is used to quickly retrieve information from a database project. Just as indexes help you
retrieve specific information faster, a database index provides fasterr, to table data. Injexing
creates an index file consisting of a list of records in a logical record order, along with theii
corresponding physical position in the table. You can use indexes ro rapidly locate and diqplay records,
which is especially important with large tables, or with database co-por"d-of many tables.

Indexes are created on one or more columns of a table. Once created, an index is automatically
maintained and used by the relational database. Changes to table data (such as adding ,r"* ,o*., o,
deleting rows) are automatically incorporated into all relevant indexes.

To understand how an index works, suppose you have created an employee table containing the first
name, last name an employee ID number of hundreds of employ".r, ,rd ihrt you entered the name of
each employee into the table as they were hired. Now, supptse you wanr ro locare a particular record
in the table. Because you entered information about each employee in no particular order, the DBMS
must do a great deal of database searching to find the record.

If you create an index using the LAST-NAME column of your employee table, the DBMS has to do
much less searching and can rerurn the results of a query very quickly.

3.4 DDL AND DML COMMANDS
SQL provides a large number of commands for user-interaction. For convenience all these commands
are put under three categories:

. Date Definition Language commands

o Data Manipulation Language commands

o Transaction Control commands

3.4.1 Data Definition Language Commands

Data Definition Language @DL) commands allow users ro creare and,/or modify various database
objects that make a database. In parricular they perform the following tasks:

48 Client Server Computing with Oracle M.S. University - D.D.C.E.

. Create objects

. Alter or modify objects

. Drop or delete objects

. Grant and revoke privileges and roles

. .Nnalyze information on a table or index

. Establish auditing options

The CREATE, ALTER and DROP commands require exclusive access to the object being acted uPon.

For example, an ALTER TABLE command fails if another user has an open transaction on the

specified table.

The GRANT, REVOKE, ANALYSE, AUDIT and COMMENT commands do not require exclusive

access to the object being acted upon. For example, you can analyze a table while other users are

updating the table.

The following Table 3.2 shows the Data Definition Language Conrmands arranged alphabetically.

Table 3.2: Data Definition Language Commands

Command Purpose

Alter Function To recompile a stored function.

Alter Index To redefine an index's future storage allocation.

Alter Package To recompile a stored procedure.

Alter Procedure To recompile a stored procedure.

Alter Profile To add or remove a resource limit to or from a profile.

Alter Resource Cost To specify a formula to calculate the total cost of resources used by a session.

A1ter Role To change the authorization needed to access a role.

Alter Rollback Segment To change a rollback segment's storage characteristics, automatic refresh time, or automatic

refresh mode.

Alter Snapshot Log To change a snapshot log's storage characteristics.

Alter Table To add a column/integrity constraint to a table. To redefine a column, to change a table's

srorage characreristics. To enable/disable/drop an integrity constraint. To enable/disable

table locks on a table. To enable/disable all triggers on a table. To allocate an extent for the

table. To allow/disallow writing to a table. To modify the degree of parallelism for a table.

Alter Tablespace To add/rename data files. To change storage characteristics. fu take a tabiespace on-

line/offJine. To begin/end a back up. To allow/disallow writing to a tablespace.

Alter Trigser To enable/disable a database trigger.

Alter User To change a user's password, default tablespace, temPorary tablespace, tablespace quotas'

profile, or default roles.

Alter View To recompile a view.

Analvze To collect performance sratistics, validate structure, or identify chained rows for a table,

cluster, or index.

Audit To choose auditing for specified SQL commands or operation on schema objects.

Comment To add a comment about a table, view, snapshot, or colupnn to the data dictionary.

Create Control File To recreate a control file.

Create Database To create a database

Contd....

M.S. University - D.D.C.E. sQL 4e

Create Database Link To create a link to a remote database.

Create Function To create a stored function.

Create Index To create an index for a table or cluster.

Create Package To create the specification of a stored package.

Create Package Body To create the body of a stored package.

Create Procedure To create a stored procedure.

Create Profile To create a profile and specify its resource limits.
Create Role To create a role.

Create Rollback Segment To create a rollback segmenr.

Create Schema To issue multiple CREATE TABLE, CREATE vIE!7 and GRANT statements in a single
transaction.

Create Sequence To create a sequence for generating sequential values.

Create Snapshot To create a snapshot of data from one or more remote master tables.

Create Snapshot Log To create a snapshot log containing changes made to the master table of a snapshot.

Create Synonym To create a synonym for a schema object.

Create Table To create a table, defining its columns, integrity consrrainrs and storage allocation.

Create Tablespace To create a place in the database for storage of schema objects, rollback segments and
temporary segments, naming the &ta files to comprise the tablespace.

Create Trigqer To create a database trigger.

Create User To create a database user.

Create View To define a view of one or more tables or views.

Drop Cluster To remove a cluster from the database,

Drop Database Link To remove a database link.
Drop Function To remove a stored function from the database.

Drop Index To remove an index from the database.

Drop Package To remove a stored package from the &tabase.

Drop Procedure To remove a stored procedure from the database.

Drop Profile To remove a profile from the database.

Drop Role To remove a role from the database.

Drop Sequence To remove a seq-uence from the database.

Drop Snapshot To remove a snapshot from the database

Drop Snapshot Log &19-oy. a snapshot log from the database.

Drop Synonym To remove a synonym from the database.

Drop Table To remove a table from the database.

Drop Tablespace To remove a tablespace from the database.

Drop Trigger To remove a trigger from the database

Drop User To remove a user and the objects in rhe user's schema from the database.

Drop View To remove a view from the database.

Grant To grant system privileges, roles and object privileges ro users and roles.
Noaudit To disable auditing by revelsing, partially or completely, the effect of a prior ALIDIT srarement.

Rename To change the name of a schema object.

Revoke To revoke system privileges, roles and object privileges from users and roles.

Truncate To remove all rows from a table or cluster and free the space that the rows used.

50 Client Server Computing with Oracle M.S. University - D.D.C.E.

3.4.2 Data Manipulation Language Commands

Data Manipulation Language (DML) commands allow users to query and manipulate data in existing
schema objects. These commands implicitly commit the current transaction. These commands are
listed in the following table.

Table 3.3: Data Manipulation Language Commands

Command Purpose

DELETE To remove rows from a table.

EXPLAINPLAN To return the execution plan for a SQL statement.

INSERT To add new rov/s to a table.

LOCK TABLE To lock a table or view, limiting access to it by other users.

SELECT To select data in rows and columns from one or more tables.

UPDATE To change data in a table.

3.4.3 T ransaction Control Commands

Transaction Control Commands manage changes made by Data Manipulation Language commands.
These commands are listed in the following table.

Table 3.4: Transaction Control Commands

\fhen writing SQL commands, it is important to remember a few simple rules and guidelines in order
to construct valid statements that are easy to read and edit:

. SQL commands may be spread on one or many lines

. Clauses are usually placed on separate lines for enhancing readability though it is not necessary

. Tabulation can be used

. Command words cannot be split across lines

. SQL commands are not case sensitive

. An SQL command is entered at the SQL prompt. The SQL prompt acts as command line buffer.
Execution takes place only when the statement is delimitedby a semi-colon (;).

o Only one statement can be current at afly time within the buffer and it can be run in a number of ways:

t Place a semi-colon 0 at the end of last clause

.t Place a semi-colon/{orward slash on the last line in the buffer

* Place a forward slash at the SQL prompt

r'. Issue a RUN command at the SQL prompt

Command Purpose

COMMIT To make permanent the changed made by statements issued at the beginning of a transaction.

ROLLBACK To undo all changes since the beginning of a transaction or since a savepoint.

SAVEPOINT To establish a point back to which you may roll.

SET TRANSACTION To establish properties for the current transaction.

M.S. University - D.D.C.E.

Any one of the following sratemenrs is valid:

. Select * From EMP;

. Select

*

From

EMP

t

. Select *

FROM EMP;

SQL 5I

3.5 RETRIEVING DATA
SQL can run through the stored tables and fetch the desired data stored therein. The command that
makes this happen for the user is SELECT command. SELECT command is very powerful. In the
simplest form SELECT command retrieves the data from one or more tables stored in the database.
There are a number of different options that can be attached to SELECT command to retrieve dara
from the underlying tables. Let us juggle with some of the forms of the SELECT command.

I$(/e will assume that our database contains the following table named EMP.

Retrieuing the entire Tablc

SELECT * FROM tablmame;

This form of SELCT command outputs the all the columns of all the records (or rows or tuples) of the
specified table (tablmame).

Let us fire (SELECT) SQL comman& on EMP table.

SELECT * FROM emp;

This command will list the entire conrenr of the table - EMP, as shown below.

SQL> select * from en$;

ENPH ENR}IE JOB T,IGI DOJ SEL GO}T'I DEPT

7369 UIBHOB
7499 eHIL
7521 Rfl(ESH
7566 I(IRRH
7654 RRJRN
7698 PBNSHNNT
7782 l'IINU
7788 SUHIL
784Ir BRI'IESH
7876 fil'tfit{
7908 SUDH0

7982 NILU
793q UIHoD

13 rorrs selected.

sQr> I

CLERII
sfiLESlnH
SALES}MN
MRNAGEff
SRLESI'IRN
l,IRHRCEB

l,IRNRGEB

E}tRLYST
SELESHEH
sLEBT
CTESH

ANELYST
CTEBT

7566 13-JUt{-83
7782 15-RUG-83
7698 26-Nf,R-8r
7566 31-0CT-83
7566 1s-tlEc-88
7698 11-JUH-8I
77S2 14-r'tRY-84
7566 05-HSB-8{
7782 B4-JUH-84
7698 04-JUN-84
7566 23-JUL-8{
7698 05-DEC-83
7566 21-it0u-83

g2g
30c 30
500 3E

029
800 et

630
0 lE
020

1206 S0
62t
038
826
0 10

8EO
1600
1250
x500
1125
5800
5500
3300
2600
1575
1600

348t
1800

52 Client Server Computing with Oracle M.S. University - D.D.C.E.

Note that the columns appear in the order in which they are srored in the original table. Besides rhe
number of rows affected by the command are also displayed in the end (tS rous selected).

Retrieving Specified Columns

SELECT Col1, Co12,...... FROM tablename;

This form of SELECT command retrieves all the rows of only the specified columns in the order of
their appearance in the command. Thus, the following command,

'

SELECT ename, mgr, empno FPiOM emp;

This form of SELECT command outputs the three columns of all the rows in the order given in rhe
command, as shown below.

SqL> SELEET pnane, rgF, empno FB0H emp;

EHBl,lE HEB EIIPH

U I EHBR
RHIL
BAHESH
HIHOH
BRJAH
PBfiSHfiHT
HIHU
SUHI L
BHI,IESH
AHfiH
SUDHfi

EHfiHE

7566
7782
769S
7566
7566
7698
7782
7566
7782
7698
7566

HGB

7369
7499
7521
7566
7654
7698
7782
7788
7844
7076
79 00

EI'IPH

HILU
UIHOD

13 rous selected.

7698 7902
7566 7931r

sqL>

Retieaing Rous Satisfiing a giaen Condition

SELECT command can be used to display only those rows thar sarisfy a given condition. A condition
is a logical expression that results into one of the two possible values - TRUE or FALSE.

The condition is included in the SELECT command in the \7HERE clause. The syntax of this form of
the SELECT command is,

SELECT ['r] [columns] FROM tablcname \U(HERE condition;

For example to list all the columns of all the rows wherein SAL is more than 2000.00, the following
SELECT command will be applied.

SELECT " FROM emp \ilHERE sal > 2000.00;

Operators Category Operator Meaning Remarks

Comparison Operators Is less than

Is equal to

Is greater than

Is not equal to

Is less than or equal to

Is greater than or equal to

NULL Comparison IS NULL \flhether or nor rhe argument is NULL

IS NOT NULL \(hether or not the argument is NULL

Similarity Comparison LIKE rtrThether or not matches with the given pattern

Range Comparison BET\TEEN I0(hether or nor lies between given values

Set Inclusion IN \Thether the value exists in the given set

M.S. University - D.D.C.E.

The result is shown below.

sQL 53

The rows selected satisfy the condition rhat SAL is more rhan 2ooo.o0.

A conditional expression is formed using one or more logical operarors. Various valid conditional
(or Boolean) oPerators applicable in SQL are listed below. Tf,e det"ils are discussed later.

These oPerators are aPPlicable on all the built-in data types provided the values being compared are
both of same data type.

Two conditional expressions can be combined to form a compound conditional expression with the
help.of relational operators. There are three relarional op.rrrori - NoT, oR and AND. A compound
condition evalues to TRUE or FALSE depending on th; truth value of ih. of.rrrri, of the relational
operators. Assume that A and B are two conditional expression, rhen,

Conditional Operators

Truth Table of Relational Operators

AND A B AAND B

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

OR A B AORB
TRUE TRUE TRUE

Contd....

54 Client Server Computing with Oracle M.S. University - D.D.C.E.

TRUE FALSE TRUE

FALSE TRUE FALSE

FALSE FALSE FALSE

NOT A NOT A

TRUE FALSE

FALSE TRUE

Following examples will explain this concept clearly.

Comparison Opcratorc

1. Obmin all the rows (and all the columns) in which SAL is more than 2000 but less than 5000.

SQL> SELEGT r Fnotl erp ttHEBE sal > 2080 fiHD sal < 5000;

EI'PN EilN}lE 1,IGR DOJ SRL CO]'I!'I DEPI

7566 I(IBRN
7788 SUHIL
70{4 BA}ESli
7902 NILU

SQL>

EI'IPN ENEHE

HEHRGER
fiNELYST
SELESI,IRT{
RNELVST

7566 31-oCT-83
7566 05-1'tfiB-8q
7782 04-JUH-84
7698 85-DEC-83

I,IGR DOJ

4500 0 20
9300 0 20
26EB 1200 30
3400 0 20

2. Obtain all the rows (and all the columns) in which SAL is either less than 5000 or equal to 5000.

SQL> select * fron emp rrhere sal (= 5000;

CO],IN DEPT

7360 UIBHOR
7T9O RI{IL
752I RNTESH
?566 I(IRfiN
765T BEJAN
7698 PReSHAilT
7788 SUNIL
7814 Rtt'ESH
7876 nmN
79tO SUDHA

7002 t{ILu

CLEBI(
SALESHEH
SfiLESI'lRtt
NRNRGER
SALESl{RN
iIATIRGER
R}MtYST
SRLESilEH
CLEBI(
GLERI(
etsLvsT

7566 'tS-JUt{-83
7782 15-eUG-83
7698 26-HeB-84
7566 31-0CT-83
7566 ts-DEC-08
7608 11-JUN-8lr
7566 05-HR8-8tt
7782 0q-JUH-84
7698 04-JUH-84
7566 23-JUL-84
7698 65-DEC-83

020
300 3B
508 30

020
800 30

030
920

1200 30
920
030
820

8S6
1600
125s
45 00
1125
5000
SSgB
26 00
1575
1600
3r00

The same can also be written in the following manner.

SQL> select * fron emp crhere sal < 5050 or sal = 5000;

EI,IP}I ENR}IE J08 }IGB DOJ SRL GO1,I1'I DEPT

7869 UIBHOR
7499 Rt{IL
7521 BRI(ESH
7566 I(IBRN
765[RfiJAN
7690 PR0SHRIIT
778S SUNIL
78[t Rfit'IESH
7876 fimfi
790t suDHfi
7962 ilItU

CLEBI(
SRLESilEN
SRLESilEH
}'IRHRGEB
SRLESl4RH
HRHEGEB
fiNELVST
SRtESTtAN
GLEBI(
CLEBI(
fiHNLYST

7566 13-JUN-83
7782 15-RUG-83
7698 26-l'lfiB-Bll
7566 31-0CT-83
7566 15-DEC-08
7698 11-JUH-84
7566 B5-1,|RR-84
7782 04-JUN-8tr
7698 04-Jull-8lt
7566 23-JUL-84
7698 B5-DEC-83

860
't680
1258
1r500
1125
5800
3300
26 00
1 575
16 00
3400

020
300 30
560 30

020
880 S0

030
020

1200 30
620
BS0
020

sfiLJOB

M.S. University - D.D.C.E.

SQL> select * from emp urhere comm <> 6;

:11 :I15 JoB r,rGR DoJ

sQL 5s

In this form we have used_compound conditional rather than simple conditional expression. In all
the rows selected the condition is satisfied.

3. Obtain all the employees who have earned some commission.

SRL COI'II,I DEPT

7499 RHIL
7521 RAKESH
7654 BRJRN
7844 RfiIIESH

EI,IPH ENfi]'IE

SBB 3O
5BB SO
860 36

1280 3E

SALESI{AH
sRtEst{H}t
SRLESt.IfiH
SRLESI,IHH

7782 15-AUG-83
7698 26-l,lAR-84
7566 1s-DEC-08
7782 04-JUH-8lr

HER DOJ

16 60
125 B
1125
26 6B

4.

SQL>

Obtain all the employees working in the department (30).

SQL) select * from enp uhere deptno = ,80,;

JOB SAL COI'II'I DEPT

16 0E
1258
1125
5 000
26 00
16 00

6 rows sElected-

Note, since DEPTNO is char data type the comparison value should also be char type. Enclosing
characters within single quotes (' and ') makes the character string char type. Fio*.r"r, ,o*I
implementations of SQL c_arry out limited data type conversion auromarically. Thus, in
ORACLE implementation of the SeL the following will yield same resuh.

5. obtain all the employees who are SALESMAN and work in department No. 30.

7499 RHIL
7521 RfiHESH
7654 BfiJRl{
7608 PRfiSHRHT
7844 ERHESH
79OB SUDHfi

368 gE
500 30
8BB SO

038
1200 30

B38

Se LESI,IRH
SOLESI,IHH
SfiLESl,lfiN
HEHRGER
SRLES].IRH
ELEBH

7782'15-ftUG-83
7698 26-t'tfiR-84
7566 1s-DEC-88
7698 11-JUH-8lr
7782 04-JUH-84
7566 23-JUt-84

SQL> select * fron enp $here deptno = g0;

EI{PH EHR]'IE JOB],IGB DOJ SftL GOI,II'I DEPT

7499 RNIL
7521 BAHESH
7654 BEJfiH
7698 PRESHftHT
7844 REHESH
79OO SUDHA

6 rous selected.

sqL>

SRLESl.IR}I
SRLESHEN
SfiLESI'IRH
I4fiHACEB
S'NLES]4RH
CLERI{

7782 15-HUC-83
7698 26-l'tRR-84
7566 1s-DEC-68
7698 11-JUN-84
7782 04-JUN-84
7566 23-JUL-84

16 00
1256
1125
5BBO
2688
16 B0

308 30
s00 30
8OE 3B

030
'1206 3B

0 30,

6. Obtain all the employees who are not SALESMAN and who work in department No. 30.

SqL> select * from emp there job=,SRLESHHH. and deptno=.g8,;

EI,IPI{ EHRI'IE JOB }{GB DOJ COHH DEPT

7499
7521
7654
78q4

fiHIL
RfiI{ESH
RRJfiH
RRI,IESH

SRTESNAN
SALESI,IfiH
SfiLESl.IRH
sBLESflfin

16 00
1259
112s
26 0B

368 3E
500 30
800 sE

12EB 30

7782 15-AUG-83
7698 26-l,lftB-84
7566 15-DEC-08
7782 04-JUN-84

56 Client Server Computing with Oracle

7. Obtain all the employees whose total income (sal + comm.) is more than 1700.

SqL> select * from emp r,rhere sal+comm > 1700;

EIfH ENRI'IE JOB I'IGR DOJ SRL CONI,I DEPT

M.S. University - D.D.C.E.

7t09 fiHIt
7521 BfiXESH
7566 !(IReN
765tr BRJRN
7698 PBeS}lfiNT
7782],|IHU
7788 SUNIL
7844 B0UESH
7962 HrtU
7934 UIt{00

lg ross selected.

SELESNRN 7782 15-EUG-83 1688 3BB 38
SALESI'|RN 7698 26-l'tRR-84 12sB 568 30
MaNRGEB 7566 31-0GT-83 4580 g 2E
sfitEsl'tRN 7566 15-DEC-08 1125 808 38
I'IR}IRGER 7698 11-JUH-8[SBBB B 3E
I'IANAGER 7782 'tlr-t'lfiY-8lr 5508 B 1B
f,NBLYST 7566 05-l,lRR-84 3308 B 28
seLEs]tRN 7782 04-JUH-84 2688 1208 30
fiNetYsT 7698 05-DEC-83 34BB B 20
0LEBI(7566 21-H0U-83 1860 0 10

8. Obtain all the employees'name and total salary (sal+comm.).

SQL> select ename,sal+comn from emp;

EHRl'IE SRL+C0l'lH

UIEHOR
RHIL
RRI(ESH
I(I8RH
RRJRH
PRRSHRHT
I'lI ilu
SUHIL
BRl'IESH
AI'IAH
SUDHR

806
19 00
1759
trs 00
192s
5600
55 00
33 00
38 00
1575
16 00

Notice, that the column name is displayed as SAL+COMM. If you wish to display a more
meaningful column name you can specify that as in the following.

SQL) select ename,sal+comm ai fotai fron emp;

EHRI,IE TOIRL

UIEHOB
EHI L
BRI(ESH
KIBfiN
BAJRH
PBRSHRHT
}IINU
SUHI L
BRNESH
RI'IRH

SUDHR

800
19 0B
175 B
4500
't925
5 006
55 0E
33 60
it8 0E
15t5
16 0E

It is possible to include the following items in the SELECT Clause.

o Arithmeticexpressions

. Column aliases

. Concatenated columns

. Literals

M.S. Universitv - D.D.C.E. sQL s7

All these options allow the user to query data, manipulate it for query purposes; for example,
performing calculations, joining columns together, or displaying literal text strings.

Aithmetic Expressions

An expression is a combination of one or more values, operators and funaions, which evaluate to a value.

Arithmetic expressions may contains column names, constant numeric values and the arithmetic operators:

OPERATORS DESCRIPTION

+ Add

Subtract

Multiply

Divide

If your arithmetic expression contains more than one operator, the priority is given to *, /first, the +,
- second (left to right if there are several operators with the same priority).

For example, the following command

SELECT ename, sal + 250 * 12 FROM emp;

will yield the following result.

SQL> SELECT ename, sal

EHRI'IE

+ 250 * 12 FRol'l emp;

SfiL+25 0*1 2

UIBHOB
NHIL
BRI(ESH
HIRfiN
BRJRN
PBfiSHfiNI
1,IINU

SUNI L
RNHESH

RI,IRN

SUDHR

ENEilE

38 B8
4600
ll250
7500
gl 25
8000
85 00
63 00
56 00
457s
46 06

SRL+25 0*1 2

NILU
UIHOD

13 rous selected.

ColumnAlia.ses

6{00
4800

'When displaying the result of a query, SQL normally uses the selected column's name as the heading.
In many cases it may be cryptic or meaningless, you can change a column's heading by using an Alias.

A column alias gives a column an alternative heading on output. Specify the alias after the column in
the select list. By default, alias headings will be forced to uppercase and cannot contain blank spaces,
unless the alias in enclosed in double quotes (" ").

To display the column heading ANNSAL for annual salary instead of SAL'r12, use a column alias:

SELECT ename, sal'r 12 ANNSAL From emp;

The result is shown below. Note this time ANNSAL is the column name instead of
Sal * 12. Once defined, an alias can be used with other SQL commands.

58 Client Server Computing with Oracle M.S. University - D.D.C.E.

SQL> SELEGT enare,

EHRI'IE

sal * 12 RNIISRL Fron emp;

RHNSAL

U I BHOR

f,HIL
BRI(ESH
I(IRRH
BRJRN
PBASHRHT
l,ll HU

SUHIL
RRl'IESH
EHRH
SUDHR

EHRl'IE

96 00
19200
15000
54000
13560
6 0000
66 800
396 00
31200
1S900
19200

ANNSRT

HILU
UINOD

q0800
21600

13 rous selected.

However, within an SQL statement, a column alias can only be used with the SELECT clause.

Literak

A literal is any character, expression, number included on rhe SELECT list which is not a column
name or a column alias.

A literal in the SELECT list is output for each row returned. Literal strings of free formal rexr can be
included in the query result and are treared like a column in the select list.

The following statement contains literal selected with concatenarion and a column alias:

SELECT EMPLOYEE ENAME, '-', ''Works in deparrment-', DEPTNO FROM EMp;

The result is shown below.
EMPLOYEE

VIBHOR-rtr7orks in depanment-20

AML-\7orks in deparcment-30

RAKESH-Vorks in department-3O

KIRAN-rUilorks in depanment-2O

RAJAN-\fl orks in department-30

PRASHANT-\tr(orks in depanment-3O

MINU-!(orks in department- 1 O

SUNIL-rtrfl orks in department-20

RAMESH-rtr(orks in department-3 0

AMAN- \(orks in depanment-2O

SUDHA-\$(orks in depanment-30

MLU-I[orks in depanment-2O

VINOD-ri(orks in depanment-lO

M.S. University - D.D.C.E. sQL se

Handling Nall Values

If a row lacks a data value for a particular column, that value is said to be NULL. A null value is a

value, which is either unavailable, unassigned, unknown or inapplicable. A null value is not the same

as zero. Zero is a number. Null values take up one bpe of internal 'storage' overhead. Null Values are

Handled Correctly by SQL.

If any column value in an expression is null, the result is null. In the following statement, only

Salesmen have a remuneration result:

SELECT ENAME, SAL * 12 + COMM ANNUAL_SAL FROM EMP;

ENAME 41g1ggtrr_SAL

VIBHOR

AML 19s00

RAKESH 15500

KIRAN

RAJAN 16400

PRASHANT

MINU

SI.INIL
.KING

RAMESH 18000

AMAN

SUDHA

NILU

VINOD

In order to achieve a result for all employees, it is necessary to convert the null value to a number. tVe

use the NVL function to convert a null value to a non-null value.

Use the NVL function to convert null values from the previous statement to zero.

SELECT ENAME, SAL*12 + NVL(COMM, 0) ANNUAL-SAL FROM EMP;

The result is shown below.
ENAME ANNUAL-SAL

VIBHOR 9600

ANIL 19500

RAKESH 155500

KIRAN 35700

RAJAN 16400

PRASHANT 34200

MINU 29400

SUNIL 36000

KING 60000

Contd.....

50 Client Server Computing with Oracle M.S. University - D.D.C.E.

RAMESH 18000

AMAN t3200

SUDHA 1 1400

NILU 36000

MILLER 15600

NVL expects tv/o arguments - an expression and a non-null value. Note that you can use rhe I{VL
function to convert a null number, date or even character string to another rrr-b.r, date or character
string, as long as the data types match.

NVL (Date column, '01-jan-88')

NVL (Number column, 9)

NVL (char column, 'string')

Preventing the Selection of Duplicate Rows

Unless you indicate otherwise, SQL displays the result of query without eliminating duplicate entries.
For instance, the following query,

SELECT DEPTNO FROM EMP.

produces the following result.

To-eliminate duplicate values in the result, include the DISTINCT qualifier in the SELECTcommand
as follows.

SELECT DISTINCT DEPTNO FROM EMP;

This time the result will not contain duplicate values.

DEPTNO
20

30

10

DEPTNO
20

30

30

20

30

30

10

20

10

30

20

30

20

10

M.S. Universiry - D.D.C.E. SeL 61

Muldple columns may be specified after the DISTINCT qualifier and rhe DISTINCT affects all
selected columns.

To display distinct values of DEPTNO and JOB, enrer:

SELECT DISTINCT DEPTNO, JOB FROM EMP;

The result is given below.
DEPTNO JOB
10 CLERK
10 MANAGER
10 PRESIDENT

20 ANALYST
20 CLERK
20 MANAGER
30 CLERK
30 MANAGER
30 SALESMAN

Ordcred by Clausc

This displays a list of all different combinations of jobs and deparrmenr numbers. The order of rows
returned in a query result is undefined. The ORDER BY clause may be used to sort rhe rows. If used,
ORDER BY must always be the last clause in the SELECT statement.

To sort by ENAME, enrer:

SELECT ENAME, JOB, SAL, DEPTNO FROM EMP ORDER BY ENAME;
The result is shown below.

ENAME JOB SAL DEPTNO
AMAN CLERK 1,100.00 20

ANIL SALESMAN 1,600.00 30

KIRAN MANAGER 2,975.00 20

MINU MANAGER 2,450.00 10

NILU ANALYST 3,000.00 20

PRASHANT MANAGER 2,850.00 30

RAJAN SALESMAN 1,25.00 30

RAKESH SALESMAN 1,250.00 30

RAMESH SALESMAN 1,500.00 30

SUDHA CLERK 950 30

SI-INIL ANALYST 3,000.00 20

VIBHOR CLERK 800 20

VINOD CLERK 1,300.00 10

The default sorr order is ASCENDNG which defines the following son order.
. Numeric values lowest first
. Date values earliest first
. Character values alphabetically (aro z)

62 Client Server Computing with Oracle M.S. University - D.D.C'E'

To reverse the order, the command word DESC is specified after the column name in the ORDER BY
clause.

To reverse the order of the DOJ column, so that the latest dates are displayed first, enter:

SELECT ENAME, JOB, DOJ FROM EMP ORDER BY DOJ DESC;

ENAME JOB DOJ

SUDHA CLERK 23-!d-84

PRASHANT MANAGER 11-Jun-84

RAMESH SALESMAN 4-Jun-84

AMAN CLERK 4-Jun-84

MINU MANAGER 14-Mav-84

RAKESH SALESMAN 2GMx-84

SUNIL ANALYST 5-Mar-84

RATAN SALESMAN 5-Dec-83

NILU ANALYST 5-Dec-83

VINOD CLERK 21-Nov-83

KIRAN MANAGER 31-Oct-83

AML SALESMAN 15-Auq-83

VIBHOR CLERK 13-Tun-83

It is possible ro ORDER BY more than one column. The limit is the number of columns on the table.

In the ORDER BY clause, specify the columns to order by separated commas. If any or all are to be

reversed, specify DESC aker any or each column.

To order by two columns and display in reverse order of salary, enter:

SELECT DEPTNO, ENAME, JOB, SAL FROM EMP ORDER BY DEPTNO, SAL DESC;

The result is shown below.

DEPTNO ENAME JOB SAL

10 MINU MANAGER 2,450.00

10 VINOD CLERK 1,300.00

20 SUNIL ANALYST 3,000.00

20 NILU ANALYST 3,000.00

20 KIRAN MANAGER 2,975.00

20 AMAN CLERK 1,100.00

,n VIBHOR CLERK 800

30 RATAN SALESMAN 1,25.00

30 PRASHANT MANAGER 2,850.00

30 ANIL SALESMAN 1,600.00

30 RAMESH SALESMAN 1,500.00

30 RAKESH SALESMAN 1,250.00

30 SUDHA CLERK 950

Aggregate Fundion and Grcup B9 Clause

An aggregate function is a that computes values based on more than one row. In these cases

GROUPBY clause can be used to display the value of aggregate function of a group of some specified

column. SQL has following ag1regate functions. They are:

M.S. University - D.D.C.E. SeL 63

AVG: Rerurns average of the group

COUNT: Rerurns the number of rows in a group

MA)C Returns maximum value of a column in a group

MIN: Returns minimum value of a column in a group

JUM.. Returns rhe sum of a numeric column of a group

The common synrax of these functions is:

SELECT function_name(column_name) ;

Here, function-name is one of the functions listed above and the column name is a numeric (or non-
numeric) column name, whichever is applicable.

For example, to compute the total salary of all the clerks in our database, the following SeL query
will be used.

GROUP BY clause can be used to obtain aggregate values in a group of rows. Or insrance, to find the
salaries of all the job types, use rhe following SeL query:

SELECT JOB, SUM(SAL) FROM EMP GROUP BYJOB;

Multi-ubk puerics

SQL can retrieve rows and columns from more than onetable. However, it makes sense only when
the tables are related to each other with a key or more keys. \$7e will take the following tables to
illustrate multi-table queries.

Table 3.5: Employee

EmpId EmpName EmpAddr EmpSal EmpDOJ
010 Vibhor A-56, Naraina, New Delhi 6000 L2/tl/2005
099 Prashant D-ll/ C, lJttam Nagar, Mumbai 7000 01/0t/2005
011 Minu Prasad 11, Janak Puri, Chennai 6600 02/tr/2005
100 Rajan !fladhwa 1, SafadarJung, New Delhi 10000 0t/05/2003
111 Pankaj Sharma 23,Lado Sarai, Sitamarhi, Bihar 8000 23/04/2004

Table 3.5: Proiects

ProjId EmpId Perks

LLI 010 3000

t12 ILL 6000

t17 099 16000

1t4 011 1000

101 100 4000

ltl 099 3000

lL2 100 6000

tt7 010 16000

tL4 010 1000

111 100 4000

54 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

Table 3.7: Proiectlocation

ProiId Location

111 New Delhi

tt2 London

LL7 Vienna

Ll4 Kolkata

101 Bihar

A simple SELECT statement is the most basic way to query multiple tables. You can call more than one

table in the FROM clause to combine results from multiple tables. Here's an example of how this works:

SELECT tablel.columnl, table2.column2 FROM tablel, table2 \7HERE
tablel.colum nl = table2.column 1 ;

Suppose we wish to list all the employees who worked on the project with PROJID='111". The desired

information is stored in the two tables - Employee and Projects. The required SELECT query is,

SELECT Employee.EmpName, Projects.Projld FROM Employee, Projects
\7HERE Employee.Empld= Projects.Empld;

The output is shown below.

JOIN Statenents

JOIN operation virtually combines two tables on specified columns and treats the resulting view as a

single table. There are three varieties of JOIN.

INNER,[OIN; Combines the rows from the two mentioned tables where the specified fields are equal.

LEFT JOIN: Takes all the rows from the Tablel and only those rows from Table2 where the column
values are equal.

RIGHTTOIN: Takes all the rows from the Table2 and only those rows from Tablel where the column
values are equal.

For example,'the following SQL will return the given rows.

SELECT Employee.Empld, Employee.EmpName, Employee.EmpAddr,
Employee.EmpSal, Projects.Projld, Projects.Perks

M.S. University - D.D.C.E. sQL 6s

FROM Projects INNERJOIN Employee ON Projects.Empld =
Employee.Empld;

SELECT Employee.Empld, Employee.EmpName, Employee.EmpAddr,
Employee.EmpSal, Projects.ProjId, Proj ects.Perks

FROM Projects LEFTJOIN Employee ON Projects.Empld - Employee.Empld;

SELECT Employee.Empld, Employee.EmpName, Employee.EmpAddr,
Employee.EmpSal, Projects.Projld, Proj ects.Perks

FROM Projects RIGHTJOIN Employee ON Projects.Empld :
Employee.Empld;

Vibhor 4-56, Naraina, New Delhi 600[117 1 600t
010 Vibhor 4-56, Naraina, New Delhi 6008 101 400t
810 Vibhor 4-56, Naraina, New Delhi 6000 114 1 oCIt

011 Minu Prasad 1 1 , Janak Furi. Chennai 6600 111 400t
099 Prashant .D-"1"JlC, Uttam Nagar, Mumbai 7008 111 3000
099 Prashant D-11/C, Uttam Nagar, Mumbai 700r1 112 6000
180 ftgjgl Wadhwa 1, Safadar Jung, New Delhi 1000E 112 6000
100 Raian Wadhwa 1 . Safadar Junu. New Delhi 1 B00t 114 1000
100 Rajan Wadhwa 1 , Safadar Jung, New Delhi 1000t 117 1600u
111 Panka Sharma 23, Lado Sarai, Sitamarhi. Bihar 800r 111 30fln

:' '-"'_-.'
011 : Minu Prasad

Vibhsr r4-56, Naraina, New Delhi

011 !Minu Prasad,11, Janak Furi, Chennai

D,ijjf, Uiiil _ryruer ffitnu;i
099,P,1gs_han't- . . :D:1:1"/C, U!!a_m-.Nag,a1'!umba|
100 ,[a;an Wadhwa ,.1.,.Safadaflpng., New Delhi
100 Rajan Wadhwa 1 , Safadar Jung, trtew Oettrl

100 ,Rgjan Wgdhwa l1 , Safadgl Jung itlew D;ih!
111 Panka Sharma ;23, Lado Sarai, Sitamarhi, Eihar

65 Client Server Computing wirh Oracle M.S. University - D.D.C.E.

Drup Constraint

Sometimes it is required to remove a constraint defined on a table or on its columns. For this purpose
DROP CONSTRAINT clause is used in the ALTER TABLE SQL statement. The syntax is,

ALTER TABLE table_name DROP CONSTRAINT constrainr_name

DROP CONSTRAINT is used to drop a named constraint from a table. For example, create a table
named -student - as described below.

student RN Name Class Section

100 Sachin vtr B

200 Rahul vm D

Suppose we put a constraint on the table as - "No roll number (RN) must be repeated. The constraint
on the RN column is UNIUE constraint. The corresponding SQL command to create this table is,

CREATE TABLE student (rn char(3),name varchar(25), class varchar(4), section
char(1));

Now, let us add a constraint (we will call it CRIri) that does not allow any duplicate entry into the RN
column. The required SQL statement is,

ALTER TABLE student ADD CONSTRAINT crn UNIQUE (RN);

Now, let us insert some rows into this table.

SQL > insert into student values('OO 1','Vibhor','IX','A');

1 row created.

SQL > insert into student values('0O1','Mahesh','VII','C');

insert into student values('001','Mahesh','VII','C')

ERROR at line 1:

ORA-0000 1 : unique constraint (MANOJ.CRN) violated

Since we tried to insert '00f in the RN column in which 'OOf is already srored, the error was
generated because UNIQUE constraint (crn) defined on this column.

The DROP CONSTRAINT clause can be used to modify the table so that RN column may allow
duplicate entries. The command is,

ALTER TABLE student DROP CONSTRAINT crn;

SQL > alter table student drop constraint crn;

Table altered.

Now if you insert the duplicate value in this column no error will result.

SQL > insert into student values('001','Mahesh','V[','C');

1 row created.

M.S. University - D.D.C.E. sQL 67

SQL> select * from student;

RN NAME CLAS S

O0l Vibhor IX A
OOlMahesh Vtr C

Commit, Rollbaak and Sauepoint

These three SQL commands are used in transaction processing. COMMIT command makes all the
changes made to the database since the last COMMIT. ROLLBACK command undoes all the changes

made to the database to a specified point and SAVEPOINT allows the users to define a label in the
transaction sequence where commit and rollback can be effected.

For example, consider the following transaction.

SQL > insen into student values ('002','Ganesh','X','D')1

1 row created.

SQL > Insert into student values (' 003','Dinesh','XI','E')1

1 row created.

SQL > insert into student values ('005','Ramesh','Xl[','A')1

1 row created.

Here, establish a savepoint named FirstSavePoint. The command is,

SQL > savepoint FirstSavePoint;

Savepoint created

Insert three more rows:

SQL > insen into student values ('010','Suresh','IX','D')1

1 row created.

SQL > insert into student values ('01 1','Sarvesh','VI','A');

1 row created.

SQL > insert into student values ('012','Rakesh','X[','D');

1 row created.

Establish a second savepoint named SecondSavePoint.

SQL > savepoint SecondSavePoint;

Savepoint created

Again insert some rows.

SQL > inserr into student values ('021','Anil','IX','D');

1 row created.

68 Client Server Compuring with Oracle

SQL > insert into student values (' 022','Sunil','IX','A')1

1 row created.

Let's check what we have entered.

SQL > select * from student;

RN NAME CLAS S

M.S. University - D.D.C.E.

001 Vibhor

001 Mahesh

002 Ganesh

003 Dinesh

005 Ramesh

010 Suresh

011 Sarvesh

012 Rakesh

021 Anil

022 Sunil

10 rows selected.

IXA
vuc
XD
XIE
XII A

IxD
VIA
XII D

IxD
IxA

Now, rolling back ro savepoint SecondSavePoint.

SQL> rollback to SecondSavePoinr;

Rollback complete.

Checking once more the table's contenr:

SQL > select * from student;

RN NAME CLAS S

001 Vibhor IX A
001Mahesh VII C

002 Ganesh X D

003 Dinesh XI E

005 Ramesh XII A

010 Suresh IX D

sQL 6e
M.S. University - D.D.C.E.

011Sarvesh VI A
012 Rakesh XII D

8 rows selected.

All DMLS (data manipulated) after savepoint SecondSavePoint have been rolled back. The changes are
thus not committed unless either the database is closed or an explicit commit is executed.

SQL> COMMIT;

Thc BETWEEN Operator

It tests for values between and inclusive of low and high range. Suppose we wanr ro see those
employees whose salary is between 1000 and 2000. Enter the following sel- query.

SELECT ENAME, SAL FROM EMP \THERE SAL BET\TEEN 1OOO AND 2OOO;

The result is shown below.

ENAME SAL

ANIL 1,600.00

RAKESH 1,250.00

RAMESH 1,500.00

AMAN 1,100.00

VINOD 1,300.00

Note that values specified are inclusive and the lower limit must be specified first.

The IN Operator

It tests for values in a specified list. To find all employees who have one of the three MGR numbers -
7902,7566 and7788 - , enter the following query.

SELECT ENAME, SAL, MGR FROM EMP \THERE MGR IN (7902, 7566,7788);

The result is shown below.

ENAME MGR SAL
VIBHOR 7902 800.00

SUNIL 7566 3,000.00

AMAN 7788 1,100.00

MLU 7566 3,000.00

If character or dates are used in the list they musr be enclosed in single quotes (' ').

The Iike Operator

Sometimes you may not know the exact value to search for. Using the LIKE operaror, it is possible to
select rows that match a character pattern. The character pattern matching operation -ry L" referred
to as 'wild-card'search. Two symbols can be used to constnrcr the search rtri"g.

Symbol Represents

o/o Any sequence of. zero or more characters

Any single character

70 Clielt Server Computing with Oracle

For example, to list all employees whose name starts with an S, enter:

SELECT * FROM EMP IUIHERE ENAME LIKE 'So/o';

M.S. Universitv - D.D.C.E.

EMPNO ENAME JOB MGR DOJ SAL COMM DEPTNO

778 SUNIL ANALYST 7566 5-Mar-84 3,000.00 20

7900 SUDHA CLERK 7698 23-Jul-84 950.00 30

This can be used to search for a specific number of characters. For example, to list all employees who
have a name exactly 4 characters in length, enter:

SELECT'S FROM EMP \THERE ENAME LIKE '-';
The result is shown below.

The o/o and _ may be used in any combination with literal characters.

IJNULL Operator

The IS NULL operator specifically tests for values that are NULL. To find all employees who have no
commission, /ou are testing for a NULL

SELECT * FROM EMP ITTHERE COMM IS NULL;

Negating Expressions

The following operators negate the test condition:

EI\,IPNO ENAME JOB MGR DOJ SAL COMM DEPTNO

7499 ANIL SALESMAN 7698 15-Aug-83 1,600.00 300 30

7782 MINU MANAGER 7839 l4May-84 2,450.00 10

7876 AMAN CLERK 7788 *Jun-84 1,100.00 20

7902 MLU ANALYST 7566 5-Dec-83 3,000.00 20

EMPNO ENAME JOB MGR DOJ SAL COMM DEPTNO

7369 VIBHOR CLERK 7902 13-Jun-83 800 20

7566 KIRAN MANAGER 7839 31-Oa-83 2,975.00 20

7698 PRASHANT MANAGER 7839 11-Jun-84 2,850.00 30

7782 MINU MANAGER 7839 14-May-84 2,450.00 10

7788 SI,INIL ANALYST 7566 5-Mar-84 3,000.00 20

7876 AMAN CLERK 7788 #Jun-84 1,100.00 20

7900 SUDHA CLERK 7698 23-Jul-84 950 30

7902 NILU ANALYST 7566 5-Dec-83 3,000.00 20

7934 VINOD CLERK 7782 21-Nov-83 1,300.00 10

OPERATOR DESCRIPTION

!= not equal to (VAX, UNIX, PC)

not equal to @M)
not equal to (all O/S)

NOTCOLNAME= not equal to

Contd....

M.S. University - D.D.C.E. sQL 71

NOTCOLNAME> not greater than

NOT BET\TEEN not between two given values

NOT LIKE not in given list of values

IS NOT NULL Is not null value

To find all the employees whose salary is not between 1000 and 2000, enter the following query.

SELECT ,I FROM EMP \fHERE SAL NOT BETIUTEEN 1OOO AND 2OOO;

The result is given below.

:MPNO ET.IAA,iE toB MGR DOJ SAL co nA DEPINO

2369 YIBHOR OLERK 7902 13-Jun-83 800 20

2566 (RAN MIANAGER 7839 31-Oct-83 2,975.00 20

2698 2HASHANT IiIANAGER 7839 11Jun-84 2,8s0.00 30

n82 \4INU IiIANAGEH 7839 14-tMay-84 2,450.00 10

n8 SUNIL ANALYST 7566 ltilar-84 3,000.00 20

7W2 \ILU ANALYST 7566
'Dec-83

3,000.00 20

To find those employees whose job does not start with A, enter the following query. SELECT)F

FROM EMP 'STHERE JOB NOT LIKE 'Aolo',;

The result is shown below.

EMPNO ENAAAE toB MGR)oJ SAL 3OMM DEPTNO

u369 YIBHOR]LERK 7902 1 3-Jun-83 800 20

7521 RAKESH SALESMAT\ 7698 26-Mar-84 1,250.00 t00 30

2566 KIRAN VIANAGER 7839 31-Oct-83 2,975.00 20

7654 RA"JAN lal trQlral\ 7698 5-Dec-83 1,25.00 ,400.00 30

/698 PPASHANT VIANAGER 7839 1 1-Jun-84 2,850.00 30

n82 MINU VIANAGER 7839 14-May-84 2,450.00 t0

7788 SUNIL \NALYST 7566 5-Mar-84 3,000.00 20

7844 RAMESH lal trat\raN 7698 4-Jun-84 1,500.00 0 30

/900 SUDHA]LEBK 7698 23-Jul-84 950 30

7902 \ILU ANALYST 7566 5-Dec-83 3,000.00 20

7934 YINOD CLERK 7782 21-Nov-83 1,300.00 10

To find all employees who'have earned a commission, enter the following query.

SELECT ,T FROM EMP \THERE COMM IS NOT NULL;

72 Client Server Computing with Oracle

The result is shown below.

M.S. University - D.D.C.E.

EAAPI{O El.lA
^E

toB t\4GR DOJ iAL colwu DEPTNO

74W ANIL SALES[/lAN 7698 1$Aug-83 1,600.00 300 30

7521 RAKESH SALES[/lAN 7698 2Gtttlar-84 1,250.m s00 30

765/ RA'AN MLESI\JIAN 7698)-Dee83 1,25.00 1,400.m 30

7W RAMESH SALESTv!AN 2698 {Jun-84 1,500.00 l t0

P leasc note the follonting:

. If a NULL value is used in a comparison, then the comparison operator should be either IS or IS
NOT NULL. If these operators are not used and NULL values are compared, the result is always
FALSE.

. For example, COMM !: NULL is always FALSE. The result is false because a NULL value can
neither be either equal or unequal to eny other value, even another NULL. Note that an error is
not raised; the result is simply always false.

Bucrying Data wilh Multiph C ond.itions

The AND T 9R operators may be used to make compound logical expressions. The AND predicate
will expect both conditions to be 'true'; whereas the OR predicate will expect either condition to bettrue.

In the following two examples the conditions are rhe same, rhe predicate is different. See how the
result is dramatically changed.

To find all clerks who earn berween 10OO and 2000, enter:

SELECT * FROM EMP rurHERE SAL BET\7EEN looo AND 2ooo ANDJOB='CLERK';

EMPNO ENAA,IE toB \AGR)oi SAL COMM DEPTNO

7876 qMAN CLERK n88 l-Jun-84 ,1@.00 20

79.34 /INOD CLERK n82 2'l-Nov-83 1,300.00 10

To find all employees who are either clerks or all employees who earn berween 1000 and 2000, enter:

SELECT,F FROM EMP \THERE SAL BETWEEN 1OOO AND 2OOO ORJOB:'CLERK';

M.S. University - D.D.C.E. sQL 73

EMPNO E|.IAA E JOB UGR DOJ t{L co 4A4 DEPTNO

7369 /IBHOR CLERK 79n/2 1&Jun-83 800 20

7499 ANIL. SALESTUAN 7698 15-Aug-83 1,600.00 100 30

752',t' RAKESH SALESIUAN 7698 2Glvhr-84 1,250.00 r00 30

7W RAMESH SALESMAN 7698 4-Jun-84 1,500.m 0 30

7876 AIVIAN CLERK n8 4-Jun84 1,100.00 20

7900 SUDHA CLERK 2698 23-Jul-&4 950 l0

793/' /INOD CLERK n82 21-l.lov-83 1,300.00 10

You may combine AND and OR in the same logical expression. \7hen AND and OR appear in the
same]$(/HERE clause, all the ANDs are performed first, then all the ORs are performed. Ve say rhar
AND has a higher precedence than OR.

Since AND has a higher precedence than OR, the following SQL srarement rerurns all managers with
salaries over 1500 and all salesmen.

SELECT * FROM EMP

\THERE SAL> 2500 AND JOB-'MANAGER' ORJOB: ,SALESMAN';

EAAPNO EtlA lE toB MGR DOJ SAL 30A A DEPTNO

7499 ANIL SALESMAN 2698 15-Aug-83 1,600.00 300 30

7521 RAKESH SALESMAN 2698 26-Mar-84 1,250.00 500 30

7566 (RAN MANAGER 2839 31-Oct-83 2,975.00 20

76il RA'AN SALESMAN 2698 t-Dec-83 1,25.00 1,400.00 t0

2698 THAUNAN VIANAGER 7839 1-Jun-84 2,850.00)0

7844 RAMESH SALESMAN 7698 l-Jun-84 1,500.00 0 30

If you wanted to select all managers and salesman with salaries over 1500, you would enter:

SELECT,$ FROM EMP

\7HERE SAL > 2s00 AND 0OB: 'MANAGER' OR JOB:'SALESMAN');
The parentheses specify the order in which the operators should be evaluated. In the second example,
the OR operaror is evaluated before the AND operaror.

Inserting Rccords

To insert a record into a table, INSERT command can be used. The syntax of this command is:

INSERT INTO (tablename)

VALUES (valuel, value 2,............);

For example, the following query inserts a record into the table EMp.

74 Client Server Computing with Oracle M.S. University - D.D.C.E.

INSERT INTO emp

VALUES (101', 'Nandi', 'President', '17-NOV-88', 5000, null, '10');

To insert values into only EMPNO, DEPTNO and ENAME fields, enter the following query.

INSERT INTO emp (empno, deptno, ename)

VALUES (101" '29" 'Sujit',);

UpdatingaTablc

To change the values of the field in specified table, UPDATE command can be used. The syntax is:

UPDATE (tablename)

SET columnl = expression, column2= expression

\7HERE condition;

For example, to change the salary of 'VIBHOR'to 5000, enter the following query.

UPDATE emp

SET salary = 5000

\7HERE ename = 'VIBHOR';

Be careful with this query. lf uthere clause is omitted all rows are updated.

Delcte

To remove one or more row from a table DELETE query is used. The syntax is:

Delete From (tablename)
\7here (condition)

For example, to delete all the rows whose salary is more than 1000, enter the following query.

DELETE FROM emp

IUIHERE sal > t000;

If the IUTHERE clause is omitted all the rows of the specified table will be deleted. A part of the row
cannot be deleted.

3.6 DATA DEFINITION LANGUAGE

Data definition language is used to create, alter or remove a data stnrcture, table or Database Structure.

In an RDBMS data is stored'in data structures known as tables, comprising of rows and columns. A
table is created in a logical unit of the database called table space. A database may have one or more
table space.

The table space is divided into segments, which is a set of database blocks allocated for storage of
database structures, namely tables, indexes etc.

M.S. University - D.D,C.E. sQL 7s

Segments are defined using storage parameters, which in turn are expressed in terms of extents of data.
An extent is an allocation of database space which itself contains many blocks - the basic unit of
storage.

3.5.1 Creating a Table

To create a TABLE Structure use CREATE TABLE query whose syntil(is given below.

CREATE TABLE (tablename)

Columnl data type(size) [null/not null]

column2 data type (size),...............)

For example, to creare the table EMP enter the following query.

Create table emp

(.-po number (4) not null

ename varchar 2 0A),

job varchar2 (9),

DOJ date,

sal number (7,2),

comm number (7,2),

deptno number (2 not null)

);

AlterTablc

ALTER is used to change the strucrure of an existing table. The syntax is:

ALTER TABEL TABLENAME

IADD column_elemenr........., MODIFY]

For example, to insert a column called NET_SAL as a number rype into EMP table, use the following query.

ALTER TABLE EMP

ADD (NET_SAL NUMBER (10));

It is not possible to change the name of an existing column or delete an existing column. The data type
of an existing column can be changed, if the field is blank for all existing View.

A view is a logical (Vinual) table derived from one or more base tables or views. It is basically a
subschema defined as a subset of the Schema. Views are like windows through which orr. .* .ri.*
information stored in tables. View does not contain data of irs own. It is itored as a query. The
contents are taken from other tables through the execution of the query. As the contenrs of the table
change, the view would also change dynamically. The syntax to creare a view is given below.

CREATE VIE\7 (view name)

AS (query);

76 Client Server Computing with Oracle M.S. University - D.D.C.E.

One may UPDATE and DELETE rows in a view, based on a single table and its query does not
contain GROUP BY clause the DISTINCT clause.

One may INSERT rows if the views observe the same restrictions and its query contains on columns
defined by expressions.

For example, in order to create a view of EMP table named DEPT2O, to show the employees in
department 20 andtheir annual salary use rhe following command.

CREATE VIEIU7 dept2}

AS SELECT ename, sal *12 FROM emp VHERE deparrno- 20;

Once the VIE\7 is created, it .an be treated like any other table. Thus the following is a valid
command.

SELECT * from dept2l;

Create Sequence

A sequence is a database object that generates unique integer values each time it is referred to.
CREATE SEQUENCE command creares a sequence. The syntax is given below.

CREATE SEQUENCE seq_name

UNCREMENTED BY n]

ISTART II7ITH n]

IMAXVALUE n]

IMINTVALUE nl;

START \UilTH clause specifies the initial value of the sequence; INCREMENTED BY clause specifies
the values that must be added to the previous value to ger rhe new value; and MAXVALUE and
MINVALUE specify the maximum and the minimum values respecrively that the sequence can
generate.

For example,

CREATE SEQUENCE my_seq

INCREMENTED BY 10

START \TITH 1

MAXVALUE 1OO;

will create a sequence named my-seq whose first value will be 1, next 11, next 2!, and so on. The
maximum value generated by this sequence will be less than or equal to 100.

Create Indcx

To create an index on one or more column of a table or a cluster, CREATE command is used. The
syntax is given below.

CREATE IUNIQUEI INDEX index name

ON table name

M.S. University - D.D.C.E.
sQL 77

(column_name [, column_name...])

TABLESPACE tablespace;

For example,

CREATE INDEX emplndex oN employee(ename) TABLESPACE company;

will create an index an index-named emplndex on the ename column of table employee of company
tablespace. More than one column .an be used for indexing by specifying the comma-separated list of
the columns in that order.

Fill in the blanks:

l. Data Definition Language, is a pan of the SeL language used to define data and
in a database.

2. Embedded SQL refers ro the use of standard . commands embedded within a
procedural programming language.

3. Character data types are used to manipulate words and

4' If a row lacks a for a panicular column, that value is said to be NULL.

3.7 LET US SUM UP

sQL is the set of commands that programs and users may use ro access data within the database that
suPPorts it. SQL is a non-procedural language in that the users do not have ro specify how the Sei
commands are to be executed' Embedded SQL refers to rhe use of standard SeL commands embedded
within a procedural programming language.- A schema is a collection of logic'al ,i*.rrrr., of data, of
schema objects. A schema is owned by a database user and has rhe same name as that user. Character
data types are used to.manipulate words and free-form texr. These data types

"r.1r.a i.-;;;cha11c1e1 (alphanumeric) data in the database character set. The vARCHAIii d^r^type specifies a
variable length character string. The NUMBER_ data type is used to ,ror. ,.ro, positir..

"rrd
negarive

fixed and.floating point numbers with magnitudes b.tw.en 1.Ox1Or3o and,9.9x1'0i25 (3g 9s follo*ld Ly
!8 9:l with 38 digits of precision' The DATE data type is used to srore data and time information. TheRA\r and LoNG RArx/ data types are used for daia that is nor ro be interpret.J uy RDBMS. Data
Definition Language (DDL) commands allow users to create and,/or modify various database obje.ts
that make a database.

-Data_Manipulation Language (DML) commands ,llo* ,rr.r, to query and
manipulate data in existing schema objects.

3.8 KEY\TORDS

sQ! Qtruayred pucry Language): The set of commands that programs and users may use ro access darawithin the database that supports it.

Non-prccedural Language: A language which is free from writing algorithms.

Scherua Objeas: A collection of logical srrucrures of data.

heck Your

78 Client Server Computing with Oracle M'S. University - D'D.C.E.

Vicy: A customized presentation of the data from one or more tables.

DDL (Data De.finition Languagc): Commands that allow users to create and/or modify various

database objects that make a database.

DML (Data Manipulation Language).'Commands allow users to query and manipulate data in existing

schema objects.

Sequencc: A database object that generates unique integer values each time it is referred to.

3.9 QUESTIONS FOR DISCUSSION

1. Suppose we have a table having stnrcture like employee

(emp_id number (3), emp_name varchar2 (15), dep_no number (2), emp-desig varchar2 (5), salary

number (8.2))

(^) Create a table named employee as given above.

(b) Insert (1,'Mohan','01,'manager', 25000.00) into employee.

(.) Insert (2,'Ram','O2,'clerk', 5000.00) intoemployee.

(d) Insert (3,' Ramesh,' 03','Accountant', 7000.00> into employee.

G) Insert (4,' Rajesh,' 05','clerk', 500000.00) into employee.

Now make the following queries-

(0 Find the employee whose designation is manager.

(g) Find the employee's details whose salary is second longest.

(h) Find the name of all employees who are clerks.

(r) Find the employees who belong to the same depanment.

0) Update Ramesh department no to 04.

2. \(hat do you understand by SQL?

3. \7hat we view in DBMS?

4. \flhy do we use indexes?

5. 'Sflhat do you understand by DDL?

6. Make a list of commands used in DDL.

7. \[hat do you understand by DML?

8. r$(hat are the uses of Insert, Delete and Update commandsl

9. rUflhy do we use select statement?

10. \7hat is the function of Create, Alter commands?

M.S. University - D.D.C.E. sQL 7e

Check Your Progress: Model Answers

1. Objects

2. SQL

3. free-form text

4. data value

3.10 SUGGESTED READINGS
Peter Rob, Carlos Coronel, Daubase Systems: Design, Implementation and Managemmt, Seventh edition,
Thomson Learning,2OOT

Silberschatz, Korth, Sudarshan, Database Systern Concepts,Fifth edition, McGraw-Hill, 2OO5

Elmasari Navathe, Fundammuls of Database Systems,Third edition, Pearson Education Asia, 2001

E' J. Yannakoudakis, Tlte Arcbitectural Logic of Database Systerus, Springer-Verl ag,Digitized2OOT

Fred R. McFadden, Jeffrey A. Hoffer, Database ManzgeTnent,Benjamin/Cummings, Digitized2OOT

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third edition, McGraw-Hill Higher
Education,2003

LESSON

4

sQL'TPLUS

CONTENTS

4.0 Aims and Objectives

4.1

4.2

Introduction

Entering and Executing Commands

4.2.t The SQL Buffer

4.2.2 ExecutingCommands

4.2.3 Running SQL Commands

Understanding SQL Command Syntax

4.3.1 Dividing an SQL Command into Separate Lines

4.3.2 Ending an SQL Command

4.3.3 Creating Stored Procedures

4.3.4 Running PLISQL Blocks

Running SQL*Plus Commands

4.4.1 Understanding SQL*Plus Command Syntax

4.4.2 Ending a SQL*Plus Command

4.4.3 System Variables that affect How Commands Run

4.4.4 Saving Changes to the Database Automatically

4.4.5 Stopping a Command while it is Running

4.4.6 Running Host Operating System Commands

4.4.7 Getting Help

4.4.8 Listing a Table Definition

SQL*Plus Functions

4.5.1 Group By Clause

Let us Sum up

Keywords

Questions for Discussion

Suggested Readings

4.3

4.4

4.5

4.6

4.7

4.8

4.9

M.S. University - D.D.C.E. SQL*Plus 81

4.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

. Explain the concept of entering and execuring commands

. Discuss SQL command syntax

. Describe the running of SQL*PLUS commands

. Identify and explain the SQL'TPLUS functions

4.1 INTRODUCTION
Unless stated otherwise, descriptions of command use are generally applicable to both command-line
and iSQL'tPlus user interfaces. In command-line SQL*Plus, you type commands at the SQL*Plus
PromPt. Usually, you separate the words in a command from each other by a space or tab. You can
use additional spaces or tabs between words to make your commands more readable.

4.2 ENTERING AND EXECUTING COMMANDS
Case sensitivity is operating system specific. For the sake of clarity, all table names, column names,
and commands in this guide appear in capital letters. You can enrer rhree kinds of commands in either
the commandJine or the iSQL*Plus user interfaces:

o SQL commands, for working with information in the database

. PLISQL blocks, also for working with information in the database

. SQLo"Plus commands, for formatting query results, serring oprions, and editing and storing SQL
commands and PLISQL blocks

The manner in which you continue a command on additional lines, end a command, or execute a
command differs depending on the type of command you wish to enrer and run. Examples of how to
run and execute these types of commands are found on rhe following pages.

You can use the Backspace and the Delete keys in both commandline SQL*Plus and iSQL*Plus. In
iSQL'rPlus, you can cut and paste using your web browser's edit keys to edit the statemlnts in the
Input area. You can also cut or copy scripts or statements from other applications such as text editors,
and paste them directly into the Input area.

In iSQL'sPlus, the Save Script button enables you to save scriprs ro a rext file. You can also load scripts
with the Load Script button. Saving and loading scripts may be useful when editing and testing.

4.2.lThe SQL Buffer

The area where SQL{'Plus stores your most recently entered SQL command or PLISQL block (but
not SQL'sPlus commands) is called the SQL buffer. The command or block remains there until you
enter another. If you urant to edit or re-run the current SQL command or PL/SQL block, you mry do
sc n ithoJrt re-entering it.

SQL*Plus does not store SQL'FPlus commands, or the semicolon or slash characrers you type ro
execute a command in the SQL buffer.

82 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

4.2.2 Executing Commands

In commandJine SQLxPlus, you type a command and direct SQL*Plus to execute it by pressing the
Return key. SQL'$Plus processes the command and re-displays the command prompt when ready for
another command. In iSQL'tPlus, you type a command or a script into the Input area and click the
Execute button to execute the contents of the Input area. The results of your script are displayed
below the Input area by default. Use the History screen to access and rerun commands previously
executed in the current session. iSQL'tPlus executes a SQL or PL/SQL statement at the end of the
Input area, even if it is incomplete or does not have a final " I " or " / " . If you intend to run iSQL*Plus
scripts in the SQL'iPlus command-line, you should make sure you use a "1" or "/" to terminate your
statements.

iSQL*Plus retains the state of your current system variables and other options from one execution ro
the next. If you use the History screen to re-execute a script, you may get different results from those
previously obtained, depending on the current system variable values. Some SQL*Plus commands
have no logical sense or are not applicable in iSQL*Plus.

4.2.3 Running SQL Commands

The SQL command language enables you to manipulate data in the database.

Examph: Entering a SQL Command

In this example, you will enter and execute a SQL command to display the employee number, narne,
job, and salary of each employee in the EMP_DETAILS_VIEV view.

At the command prompt, enter the first line of the command:

SELECT EMPLOYEE_ID, LAST_NAME, JOB-ID, SALARY

If you make a mistake, use Backspace to erase it and re-enter. \7hen you are done, press Return to
move to the next line. SQL'sPlus will display a "2" , the prompt for the second line. Enter the second
line of the command:

FROM EMP_DETAILS_VIE\T \THERE SALARY > 12OOO;

The semicolon 0 means that this is the end of the command. Press Return. SQL{'Plus processes rhe
command and displays the results on the screen:

EMPLOYEE-]D LAST-NAME JOB ID SALARY

100 King
101 Kochhar
102 De Haan

145 Russell
146 Partners
201 Hartstein

6 rows selected-

AD_PRES

AD_VP

AD_VP

SA_MAN

SA-MAN

MK_MAN

$24,000
$17, 000

$17, 000

$14, 000

$13,500
$13,000

After displaying the results and the number of rows retrieved, SQL'hPlus displays the command
prompt again. If you made a mistake and therefore did not get the results shown above, simply re-
enter the command. The headings may be repeated in your output, depending on the setting of a

system variable called PAGESIZE. Sometimes, the result from a query will not fit the available page

M.S. University - D.D.C.E. SQL'tPlus 83

width. You will need to adjust a system variable called LINESIZE, which sers rhe width of the outpur
in characters. Typically, in the examples in this guide this is set to 70 characters. You may need to SbT
LINESIZE to 70 so the query output appears the same as in this guide. \Thether you see the message
concerning the number of records retrieved depends on rhe setting of a system variable called
FEEDBACK. You will learn more about system variables in "system Variables that Affect How
Commands Run". To save space, the number of records selected will not be shown in the rest of the
examples in this guide.

4.3 UNDERSTANDING SQL COMMAND SYNTAX

Just as spoken language has syntax rules that govern the way we assemble words inro sentences,
SQL*Plus has syntax rules that govern how you assemble words into commands. You must follow
these rules if you want SQL*Plus to accept and execure your commands.

4.3.1 Dividing an SQL Command into Separate Lines

You can divide your SQL command into separate lines at any points you wish, as long as individual
words are not split between lines. Thus, you can enter the query.

Examplc: "Entering a SQL Command" on three lines:

SELECT EMPLOYEE_D, LAST_NAME, JOB-ID
FROM EMP_DETAILS_VIEIUT

\THERE SALARY> 12OOO;

In this guide, you will find most SQL commands divided into clauses, one clause on each line. In
Examplc: "Entering a SQL Command", for instance, the SELECT and FROM clauses were placed on
seParate lines. Many people find this clearly visible structure helpful, but you may choose whatever
line division makes commands most readable to you.

4.3.2Ending an SQL Command

You can end an SQL command in one of three ways:

o with a semicolon 0
. with a slash (/) on a line by itself

. with a blank line

A semicolon $ tells SQL'sPlus that you want to run the command. Type the semicolon ar rhe end of
the last line of the command, as shown in Example : "Entering a SQL Command", and press Return.
SQL'rPlus will process the command and store it in the SQL buffer. If you mistakenly press Rerurn
before typl"g the_ semicolon, SQL*Plus prompts you with a line number for the ,.*r lirr. of your
cbmmand. Type the semicolon and press Return again to run rhe command.

NorE: You cannot enter a comment on the same line aker asemicolon.

A slash A on a line by itself also tells SQL*Plus that you wish ro nrn the command. Press Return ar
the end of the last line of the command. SQL{'Plus prompts you with anorher line number. Type a
slash and press Return again. SQL*Plus executes the command and stores it in the buffer.

84 Client Server Computing with Oracle M.S. University - D.D.C.E.

A blank line in a SQL statement or script tells SQL'rPlus that you have finished enrering the
command, but do not want to run it yet. Press Return at the end of the last line of the command.
SQL'tPlus prompts you with anorher line number.

NOTE: You can change the way blank lines appear and behave in SQL statemenrs using the SET
SQLBLANKLINES command. For more information about changing blank line behavior.

Press Return again; SQLu"Plus now prompts you with the SQL'$Plus command prompt. SQL'hPlus
does not execute the command, but stores it in the SQL buffer. If you subsequently enrer another SQL
command, SQL'FPlus overwrites the previous command in the buffer.

4.3.3 Creating Stored Procedures

Stored procedures are PL/SQL functions, packages, or procedures. To create stored procedures, you use
SQL CREATE commands. The following SQL CREATE commands are used to creare stored procedures:

CREATE FUNCTION

CREATE LIBRARY

CREATE PACKAGE

CREATE PACKAGE BODY

CREATE PROCEDURE

CREATE TRIGGER

CREATE TYPE

Entering any of. these commands places you in PL/SQL mode, where you can enter your PL/SQL
subprogram. \flhen you are done typing your PLISQL subprogram, enter a period (.) on a line by
itself to termindte PL/SQL mode. To run the SQL command and create the stored procedure, you
must enter RUN or slash (/). A semicolon 0 will not execute these CREATE commands.

\7hen you use CREATE to create a stored procedure, a message appears if there are compilation
errors. To view these errors: /ou use SHO\7 ERRORS. For example:

SHO\T ERRORS PROCEDURE ASSIGNVL

To execute a PL/SQL statement that references a stored procedure, you can use the EXECUTE
command. EXECUTE runs the PL/SQL statement that you enrer immediately after the command.
For example:

EXECUTE :ID : : EMPLOYEE-MANAGEMENT.GET-ID(BLAKE')

Executing the Current SQL Command or PL/SQL Block from the Command Prompt. You can run
(or re-run) the current SQL command or PLISQL block by entering the RLIN command or the slash
(/) command at the command prompt. The RUN command lists the SQL command or PLISQL
block in the buffer before executing the command or block; the slash (/) command simply runs rle
SQL command or PLISQL block.

4.3.4 Running PLISQL Blocks

You can also use PLISQL subprograms (called blocks) to manipulate data in the database. To enrer a
PLISQL subprogram in SQL'rPlus, you need to be in PL/SQL mode. You are placed in PL/SQL

M.S. University - D.D.C.E. SQL'fPlus 85

mode when you tyPe DECLARE or BEGIN at the SQL*Plus command prompt. After you enter
PLlsQL mode in this way, rype rhe remainder of your PLlseL subprogram.

You type a SQL command (such as CREATE FUNCTION) that creares a stored procedure. After
you enter PLISQL mode in this way, type the stored procedure you v/anr ro creare. SQL"Plus treats
PLISQL subprograms in the same manner as SQL commands, excepr that a semicolon l;; oru blank
line does not terminate and execute a block. Terminate PLISQL subprograms by enterinj a period (.)
by itself on a new line. You can also terminate and execure a PL/SQL rrrtprogr*- by entering , rlrsh
(0 by itself on a new line.

SQL*Plus stores the subprograms you enter at the SQL'tPlus command prompt in the SQL
Execute the current subprogram by issuing a RUN or slash (/) command. Likewise, ro execute
CREATE command that creates a stored procedure, you must also enrer RUN or slash

buffer.
a SQL

a.^
semicolon 0 will not execute these SQL commands as it does other SQL commands.

SQL'ePlus sends the complete PLISQL subprogram to Oracle for processing (as it
commands). You might enrer and execute a PL/sQL subprogram as follows:

DECLARE

x NUMBER :: 100;

BEGIN

FOR i IN 1..10 LOOP

IF MOD (i,2) :0 THEN -i is even

INSERT INTO temp VALUES (i, x, 'i is even');

ELSE

INSERT INTO temp VALUES (i, x,'i is odd');

END IF;

x:: x + 100;

END LOOP;

END;

does SQL

\7hen you run a subprogram, the SQL commands within the subprogram may behave somewhar
differently than they would outside the subprogram.

4.4 RLTNNING SQL'SPLUS COMMANDS
You can use SQL'rPlus commands to manipulate SQL commands and PL/SQL blocks and to format
and print query resul6. SQL"Plus treats SQL'rPlus commands differently than SQL commands or
PL/SQL blocks. To speed up command entry, you can abbreviate many SQL"Plus commands ro one
or a few letters.

86 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

Examplc: Entering a SQL*PIus Command

This example shows how you might enter a SQL*Plus command to change the format used ro display
the column SALARY of the sample view, EMP_DETAILS_VIE\U7. On the commandJine, enter this
SQL*Plus command:

COLUMN SALARY FORMAT $99,999 HEADING 'MONTHLY SALARY'

If you make a mistake, use Backspace to erase it and re-enter. \7hen you have entered the line, press
Return. SQL*Plus notes the new format and displays the SQL*Plus command prompt again, rcady {.or
a new command.

Enter the RUN command to re-nrn the most recent query

RLIN

EMPLOYEE_ID LAST_NAME JOB-ID MONTHLY SALARY

100 King
101 Kochhar
102 De Haan
l-45 Russell
145 Partners
201 Hartstein

5 rows seLected.

AD-PRES

AD-VP

AD-VP

SA-MAN

SA-MAN

MK_MAN

$24, 000

$17, 000

$17. 000

$r-4, 000

$13, 500

$13,000

The COLUMN command formatted the column SALARY with a dollar sign ($) and a comma 0 and
gave it a new heading. The RUN command then re-ran the query of Example : "Enrering a SQL
Command", which was stored in the buffer. SQL*Plus does not store SQL*Plus commands in the
SQL buffer.

4.4.1 Understanding SQL*Plus Command Syntax

SQL*Plus commands have a different syntax from SQL commands or PLISQL blocks. Continuing a

Long SQL*Plus Command on Additional Lines you can continue a long SQL*Plus command by
typing a hyphen at the end of the line and pressing Return. If you wish, you can type a space before
typing the hyphen. SQL"Plus displays a right angle-bracket (>) as a prompt for each additional line.

For example:

COLUMN SALARY FORMAT $99,999 -

HEADING'MONTHLY SALARY'

Since SQL*Plus identifies the hyphen as a continuation character, enrering a hyphen within a SQL
statement is ignored by SQL*PIus. SQL*Plus does not identify the srarement as a SQL statemenr until
after the input processing has joined the lines together and removed the hyphen. For example, entering
the following:

SELECT 2OO -

1OO FROM DUAL;

M.S. University - D.D.C.E.

returns the error:

SELECT 2OO 1OO FROM DUAL
>s

ERROR at line 1:

ORA-00923: FROM keyword not found where expected

SQL'tPlus 87

To ensure that the statement is interpreted correctly, reposition the hyphen from the end of the first
line to the beginning of the second line.

4.4.2Bnding a SQL'!'Plus Command

You do not need to end a SQL'tPlus command with a semicolon. 'When you finish entering the
command, you can just press Return. If you wish, however, you can enter a semicolon at the end of a
SQL*Plus command.

4.4.3 System Variables that affect How Commands Run

The SQL'?lus command SET controls many variables-called SET variables or system variables-the settings
of which affea the way SQL'rPlus runs your commands. System variables control a variety of conditions
within SQL'?lus, including default column widths for your output, whether SQL'?lus displays the number
of records selected by a command, and your page size. System variables are also called SET variables.

The examples in this guide are based on running SQL'rPlus with the system variables at their default
settings. Depending on the settings of your system variables, your output m y appe^r slightly different
than the output shown in the examples. (Your settings might differ from the default settings if you
have a SQL'tPlus LOGIN file on your computer.)

To list the current setting of a SET command variable, enter SHO\7 followed by the variable name ar the
command prompt. See the SHO\7 command for information on other items you can list with SHO\7.

4.4.4 Saving Changes to the Database Automatically

Through the SQL DML commands UPDATE, INSERT, and DELETE-which can be used
independently or within a PL/SQL block-specify changes you wish to make ro rhe information stored
in the database. These changes arc nlt made permanent until you enter a SQL COMMIT command or
a SQL DCL or DDL command (such as CREATE TABLE), or use the autocommit feature. The
SQL*Plus autocommit feature causes pending changes to be committed after a specified number of
successful SQL DML transactions. (A SQL DML transaction is either an UPDATE, INSERT, or
DELETE command, or a PLISQL block.). You control the autocommit feature with the SQL"Plus
SET command's AUTOCOMMIT variable.

Example: Turning Autocommit On

To turn the autocommit feature on, enter

SET AUTOCOMMIT ON

Alternatively, you can enter the following to turn the aurocommit feature on:

SET AUTOCOMMIT IMMEDIATE

88 Client Server Computing with Oracle M.S. University - D.D.C.E.

Until you change the setting of AUTOCOMMIT, SQL*Plus auromarically commits changes from
each SQL DML command that specifies changes to the database. After each aurocommir, SQL*Plus
displays the following message:

COMMIT COMPLETE
'$7hen the autocommit feature is turned on, you cannor roll back changes to the database. To commit
changes to the database a{ter a number of SQL DML commands, for example, 10, enter

SET AUTOCOMMIT 10

SQL*Plus counts SQL DML commands as they are execured and commits the changes afrer each 10th
SQL DML command.

NOTE: For this feature, a PL/SQL block is regarded as one transacrion, regardless of the actual
number of SQL commands contained within it.

To turn the autocommit feature off again, enter the following command:

SET AUTOCOMMIT OFF

To confirm that AUTOCOMMIT is now set to OFF, enter the following SHO\[command:

SHO\T AUTOCOMMIT

AUTOCOMMIT OFF

4.4.5 Stopping a Command while it is Running

Suppose you have displayed the first page of a 50 page reporr and decide you do not
rest of it. Press Cancel, the system's interrupt character, which is usually CTRL+C.

need to see the
SQL*Plus stops

the display and returns ro rhe command prompr.

In iSQL*Plus, click the Cancel button.

NOTE: Pressing Cancel does not stop the printing of a file that you have senr to
OUT clause of the SQL*Plus SPOOL command.

a printer with the

4.4.6 Running Host Operating System Commands

You can execute a host operating system command from the SQL'tPlus command prompt. This is
useful when you want to perform a task such as listing existing host operating system files. To run a
host operating system command, enter the SQL*Plus command HOST followed by the host operating
system command. For example, this SQL*Plus command runs a host command, DIRECTORT
,I.SQL:

HOST DIRECTORY *.SQL

'When the host command finishes running, the SQL*Plus command prompt appears again.

NOTE: Operating system commands entered from a SQL'rPlus session using the HOST command do
not effect the current SQL*Plus session. For example, setting *r, op"r"ii.rg sysrem environment
variable does not effect the current SQL*Plus session, but may effect SQi*Plus sessions started
subsequently.

You can suppress access to rhe HOST command.

M.S. University - D.D.C.E. SQL*Plus 89

4.4.7 Getting Help

\7hile you use SQL*Plus, you may find that you need to list column definitions for a table, or starr
and stop the display that scrolls by. You may also need to interpret error messages you receive when
you enter a command incorrectly or when there is a problem with Oracle or SQL*Plus. The following
sections describe how to get help for those situations.

4.4.8 Listing a Table Definition

To see the definitions of each column in a given table or view, use the SQL*Plus DESCRIBE
command.

Examplc: Using the DESCRIBE Command

To list the column definitions of the columns in the sample view EMP_DETAILS_VIEW, enter
DESCRIBE EMP_DETAII,S-VIEW;

NuI1 ? Type

EMPLOYEE_ID

JOB_]D

MANAGER_ID

DEPARTMENT_TD

LOCAT]ON_ID

COUNTRY-ID

FIRST_NAME

LAST-NAME

SALARY
COMMISSION_PCT

DEPARTMENT_NAME

JOB_T]TLE

CITY
STATE_PROVINCE

COI]NTRY_NAME

REGTON_NAME

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NULL

NOT NUI,L

NTJMBER (6)

VARCHAR2 (1_0)

NUMBER (6)

NUMBER (4)

NIJMBER (4)

CHAR(2)

VARCHAR2 (20)

VARC}AR2 (25)

NUMBER(8,2)
NUMBER(2,2)

VARCHAR2 (30)

VARCHAR2 (35)

VARCHAR2 (30)

VARCHAR2 (25)

VARCIIAR2 (40)

VARCHAR2 (25)

NOTE: DESCREE accesses information in the Oracle data dictionary. You can also use SQL
SELECT commands to access this and other information in the database.

4.s SQL'iPLUS FLTNCTIONS

SQL'rPlus provides specialized functions to perform operations using the Data Manipulation
Commands. A SQL function is a routine that performs a specific operation and returns the result. It is
similar to a procedure, except rhat a procedure does not return a value. A function can take one or
more arguments. One can broadly classify functions into single row functions and group functions.

90 Client Server Computing with Oracle M.S. University _ D.D.C.E.

Singlc Rou Faaetions

A single row function or a scalar function returns only one value for every row required in the table.
Single row function can aPPear in a select command and also be included in a 'where' clause. The
single row function can be broadly classified as:

. Date functions

a Numeric functions

a Character functions

. Conversion functions

. Miscellaneousfunctions

Date Functions: They operate on date values producing ourput, which also belongs to date datatype,
excePt for months-between date functions, which rerurns a number. \7e shall Jir.rrs so..re ol ihe
most important date funcdons with examples.

o Add_months

The add-month date function returns a date after adding a specified date with rhe specified number of
months. The format is add-months (d, n), where d is tLe date and ,, ..pr.r.rrts the number of
months.

Consider the following example to undersrand the above concepr:

Examltlc: SQL > select del date, add_months (del date, 2) fromoreder-master;

The result will be

DEL_DATE ADD MONTH

05-jan-88
25-may-88
05-feb-88
30-jun-88
27-aug-88

. Last_day

The format is last-day (d), which returns the date corresponding ro rhe last day of the monrh.
Examplc: SQL > select sysdate, last_day (de1_date_) from order_master where odate>, 01_
dec-88;

The output for the above query will be

SYSDATE LAST DAY

27-jan-88 31-jan-88
27-feb-88 28-feb-88

The above command will display the system date and the last day of. the month to which del date
belongs.

NorE: The sysdate variable will display sysrem date (in words, currenr dare).

06-mar-88
2 5-j uly- 8 8

05-apr-88
30-aug-88
27 -oct:-88

M.S. University - D.D.C.E. SQL*Plus 91

. Months_between

To find out the number of months between two dates, we use the months between function. Its
format is

Months_between (dL, d2)

'\U7here dt, dZ are dates. The output will be a number. If dt is later than d2, result is positive; if earlier,
negative. If dl and d2 are either the same days of the month or both last days of the months, the result
is always an integer; otherwise Oracle calculates the fractional portion of the result based on a 31-day
month and considers the difference in time components of d1 and d2.

To find out the time between the odates and del_dates so that a schedule can be prepared to complete
the orders before the delivery dates, the query in example below is used.

Examph: SQL > select months-between (de1-date, odate) frorn order-master,.

The above example displays the number of months between the two dates

. Round

This function returns the date, which is rounded to the unit specified by the format model. Its format
is

Round (d, [fmt)
\7here d is date and fmt is the format model. Fmt is only an option; by default date will be rounded to
the nearest day.

Examplc: SQL > select del_date, round (de1_date, 'year') from order_master
where vencode='v001;

This request results in
DEL-DATE ROUND (DEL

25-may-88 01-jan-88

Since format specified is ' year ' the argument, del_dates' value, is rounded to the nearest year. If the
del_date was Breater than 01-jun-88 then it would be rounded to the following year i.e. 89.

o Next_day

The format for the function is

next_day (d, dr,
'\trflhere d represents date and day implies any weekday. This function can be illustrated with the
following example

Exanple: SQL > select next-day (sysdate,' Tuesday)) from dual;

The Tuesday that immediately follows the sysdate will be displayed.

NOTE: dual is a system table. It is a table, which is automatically created by Oracle with the data

dictionary. Dual table has one column defined to be of varchar2 daatype and contains only one row
with value'x'.

92 Cliem Server Computing with Oracle M.S. University _ D.D.C.E.

a Truncate

Truncate function returns the date with the time portion of the day truncated to the unit specified by
the format model. The syntax is

truncate (d, [fmt])

if fmt is neglected, then date is converted ro rhe nearesr day.

EXamlllo: SQL >'select truncate (sysdate. .year.) from dual;

If sysdate is'27-1an-88' rhe rruncated result will be . Ol-jan-gg ,.

ExAmple: SQL > select truncate (sysdate, ' month .) from dual;
'01-Feb-88' will result from this query for the sysdate which is' 27 -Jan -gg,

Example: SQL > select truncate (sysdate, . day,) from dual;
'24-jan-99' will be rhe result because it rounds '27-jan-99, to the nearest Sunday.

Exarnplc: SQL > select truncate (sysdate) from dual;

The above statement does not include fmt, and therefore it is rounded ro nearest day i.e. the sysdate.

. Greatest

The function is greatest (dl, d2. . .), where d1, and d2 are dates. This function rerurns the latest date
present in the argument.

consider the following example, which will display the later date in the list.

The query in example below can be used to verify if the delivery dates for orderno 'o001' have been
surpassed.

E\aruplc: SQL > select del_date, sysdate, greatest (de1_date, sysdate) from order masterwhere orderno=,o001, i
DEL_DATE SYSDATE GREATEST

06-jan-99 27-)an-99 27-jan-99
05-feb-99 27 -jan-99 05_feb_99

. New_time

The new-time function displays the time and date of dare column or literal date in other time zones.

The format is displayed below

new_time (date,'this','other');

This is replaced by a three-letter abbreviation of the currenr time zone while 'orher' is replaced by a
three-letter abbreviation of the time zone in which date is wanred.

Examph: SQL > select new_time (,13-feb-99,, .est.,, ,yst,) from dual;
It returns l2-feb-99, which is the date in the rime zone ,ysr'.

M.S. University - D.D.C.E.

Time Zones are as followst

AST/ADT
BST/BDT
CST/CDT
EST/EDT

GMT
HST/HDT
MST/MDT
NST

PST/PDT

YST/YDT

SQL*Plus 93

Atlanric standard/day light time
Ber ing standard/day tight time
Central standard/day light time
Eastern standard/day light time
Greenwich mean rime

Alaska-Hawaii standard,/day light time
Mountains standard/day light time
Newfoundland standard time
Pacific standard/day light time
Yukon standard,/day light time

Character Functions

Character functions accePt character input and return either character or number values. The
character functions supporred by Oracle are listed below.

NOTE: soundex is also a character function compares words that are spelled differently, but sound
alike. Consider the following example

Example: sgt > select venname
('sumesh') ,'

from vendor_master where soundex (venname) = soundex

It returns 'somesh', Present in the vendor-master table unless it has already been update or deleted.

Character functions accePt character input and returns either character or number values. The first
among the character functions is'chr'. This returns the characrer value for the number given within
braces.

Example: SQL > select chr (67) from dual;

The above statement returns the value 'C' which is the character equivalent of the number 67. The chr
function returns the character equivalent to the number in the braces.

The next function isthe'lpax. This takes three argumenrs. The first argumenr is the characrer srring,
which has to be displayed with the left padding. The second is the ,r.rrib.r, which indicates the totli
length of the return value. The third is the string, with which the left padding has to be done when
required. An example gives a better understanding of the concepr.

Function Input Output
Initcap (char) Select initcap ('hello') from dual; Hello
Lower (char) Select lower (F[IN) from dual; fun
Upper (char) Select upper ('sun') from dual; SLIN

Ltrim (char, set) Select ltrim (xyzadams','ry2' from dual; adams

Rtrim (char, set) Select rtrim (xyzadams', 'ry2') from dual; ryzad
Translate (char, from, to) Select translate (jack', 'j', b') from dual; back

Replace (chat, searchstring, [rep, string]) Select replace (jack and jue', 'j', 'bl) from dual; blue

Substr (char, m, n) Select substr ('abcdefg', 3, 2) from dual; cd

94 Client Server Computing with Oracle

Example: SQL > select lpad ('function', 15, '-') from dual;

The output gives the sign ':' before the word function

LPAD (FUNCTION'

M.S. University - D.D.C.E.

====-==function
The entire string is 15 in length after the padding is done.

The rpad function does the exact opposite of the lpad function. The number of arguments it takes is

the same as the lpad function.

Example: SQL > select rpad ('function', 15, '=');
The rpad function pads the value to the right of the given string and is displayed as given below.

RPAD (FUNCTION'

function-

. Trim Function

This combines the functionality of the Ltrim and Rtrim. \(hen specified leading, the function is

similar to the Ltrim function and Oracle removes any leading characters equal to trim_character.

Examplc: sQL > select trim (leading 9 from 99998769789999) from dual ,.

The output trims off the all the 9's from beginning of the string. As soon as it encounters a character
other than 9, it stops its action.

TRIM (LEAD

8769789999

\7hen specified trailing, the function is similar to the Rtrim function and Oracle removes any trailing
characters equal trim_character.

Example: SQL > select trim (trailing 9 from 99998769789999) from dual;

TRIM (TRAI

9999876978

. Length

I$7hen the length function is used in a query it returns the length of the string.

Example: SQL > select length ('rohit') from dual;

The output is 5.

M.S. University - D.D.C.E. SQL"Plus 95

. DECODE

Unlike the translate function which performs a character by character replacemenr the DECODE
function does a value by value replacemenr

Select decode (<value, ifl, thenl if2,then2,. . . .>) from (table_name);

Exaruple: SQL > select vencode, decode (venname, .rohit,, .rahuI,) name, tel_no from
vendor_master where vencode=,v001_, ;

The output is:

VENCO NAME TEL NO

v001 rahul L234567

. Concatenarion (l l) Operator

The concatenation operator is used to merge two or more strings, or a string and a data value together.

Exaruple: sgt > select (. rhe address of .l I vennamel l, is .l I venadd I l, .l
ltel-no1 address from vendor_master where vencode=,v001, i

The output of this selecr sraremenr is :

ADDRESS

The address of rohit is home 1234567

Numeric Functions

Numeric functions accept numeric input and return numeric value as the output.
The values that the numeric functions return are accurate up ro 38 decimal digits. The following
tabular column will give you brief idea of the numeric functions supported by Oracle.

In addition to the functions that are already presenr a few new functions have been introduced. one
among them is the In, this function returns the logarithmic value of the given number.

FUNCTION INPUT OUTPUT
Abs Select abs (15) from dual; t5
Ceil (n) Select ceil (44.77s) from dual; 45

Cos (n) Select cos (180) from dual; -.5984501

Cosh (n) Select cosh (0) from dual; I
Exp (n) Select exp (4) from dual; 54.59815

Floor (n) Select floor (100.2) from dual; 100

Power (-, rr) Select power (4,2) from dual; L6

Mod (m, n) Select mod (10, 3) from dual; 1

Round (*, r) Select round (L00.256,2) from dual 100.26

Trunc (-, r) Select trunc (100.256, 2) from dual; 100.2s

Squn (n) Select squrt (4) from dual; 2

a

96 Client Server Computing with Oracle

Example: SQL > select In (2) from dual ,.

The output of the select statement is
LN (2)

M.S. University - D.D.C.E.

. 6931,471,8

Conoersion Functions

Conversion function converts a value from one datatype to another. The conversion functions are
broadly classified into the following:

To_char Q transform DATE and NUMBER into characrer srring

To_date Q transform NUMBER, CHAR or VARCHAR2 into a DATE

To_number $ transform CHAR or VARCHAR2 into a NUMBER

\7hy is this information important? To_Date is obviously necessary to accomplish date arithmetic.
To_Char allows you to manipulate number as if it were a string, using string functions. To_Number
allows you to use a string happens to contain only numbers as if it were a number; by using it you van
add divide, subtract and so on.

. o_char 0
The function is to char (d, [fmt]), where d is date; fmt is the format model, which specifies rhe format
of &te. To-char *rrrr..rion furrction concerts date to a value of varchar2 type in

"
for- specified by

the format fmt. If fmt is neglected then it converts date to varchar2 in the default date format.
Consider the following example.

Example: SQL > select to_char (sysdat.e, 'ddth "of " fmmonth :yyry,l from dual ,.

The above statement displays the date according to the format specified in the format model.

TO_CHAR (SYSDATE,'DDTH"

18th of august 2001

. To_date 0
The format is to_date (char, [fmt]). This converts char or varchar datatype to date datatype. Format
model, fmt specifies the frmt of character. Consider the following example, which returns date for the
string 'lanrary 27 1999'.

Examplc: SQL > select to-date ('January 27 1,999', 'month-dd-yLLy,) from dual;

The statement displays the following result.

TO_DATE (

2Z-JAN-ee

NOTE: The definition for fmt, explained in the to_char conversion function also holds good for
to_date conversion function. The square braces indicate that the arguments are optional. The to_date

M.S. University - D.D.C.E, Sel*plus 97

function can also be used in association with date functions. One instance where this is useful is
explained below.

Exampte:SQl > select round (to-date (,27-Jan- Lggg,), .year,) from dual;

The following resuh is displayed after execution of the above command

ROUND (TO_

0L-,JAN-99

. To_number 0
The to-number function allows the conversion of string concarenating numbers into the number
datatype on which arithmetic operations can be performed. His is largely unnecessary as Oracle does
an implicit conversion of numbers contained in a string.

Example: SQL > select t.o-number (.100) from dual;

The output is:

TO_Nt,I4BER (.100'
)

100

M is ce llane o us F unctions

The following are some of the miscellaneous functions supponed by Oracle.

. Uid

. User

. Nvl

o Vsize

Let us consider the functions menrioned above by one in dual.

. Uid

This function returns the integer vdue corresponding to the user currently logged in. the following
example is illustrative.

Examplc: SQL > select uid f rom dual;

The result could be a number.

O USER

This function returns the login's user name, which is in varchar} drtatype. Consider the following
example.

Examplc: SQL > select user from dual ,.

The result will be name of the currenr user.
USER

98 Client Server Computing with Oracle M.S. University - D.D.C.E.

. Null Value (nvl)

The Null value function is used in case where we want to consider Null values as zeros. The syntax is
given as nvl (expressionl, expression2).

If expressionl is Null, nvl will return expression2.

If expressionl is Not Null, nvl will return expressionl.

If expressionl and expression2 are of different datatypes, then Oracle convefts expression 2 to the
datatype of expressionl and then compares it.

At Tom Dick and Harry Spares Inc a check is being made on whether the itemrate has been lefr out
for items specified in the'where' condition.

Examptc:SQL > select itemrate, nv1 (itemrate,0) from itemfile where itemcode =,i20L,
or itemdesc='boIts';

The query will return the following ourpur.
ITEMDESC NUL (]TEMRATE, O)

nuts
bolts

0

15. s

NOTE: Null values and zeros are not equivalent. Null values are represented by blank and zeros are
represented by (O).

. Vsize

The function is vsize (expr). It returns the number of bytes in the expression. If expression is Null, it
returns Null.

Example: SQL > select vsize (.he11o,) from dual;

The output is as follows
vsrzE ('HELLO')

5

Gtoup Functions

A group function processes a group of rows in the table, and rerurn the result. Most of them act on all
the rows of the default table. They accept the following paramerers:

. DISTINCT

Makes the function act only on rhe rows thar have differenr values.

. ALL

Makes the function consider all the values (rows), including duplicates. This is the default. \(ith the
exception of the COUNT function, all other functions ignore null values.

The group functions supported by Oracle are summarized below:

NOTE: In the following examples used to explain GROUP FLINCTIONS a in built table of Oracle
emp will be used.

M.S. Universitv - D.D.C.E. SQL*Plus 99

. AVG

The avg function will return the values of the column specified in the argument of the column.

Example:sQl > select avg (sal) from emp;

The query resul$ in the average salary in the emp table under sal column.

. Min Function

This function will give the least of all the values present in the column.

Examplc: sQL > select min (sa1) from emp;

The query results in the minimum salary present in the emp table.

. Max Function

This function returns the maximum value present in the column.

Exarnplc: sQL > select max (saI) from emp,'

The output of this query depends on the EMP table generated by Oracle as default
r4AX (SAL)

5000

a Count

Returns thenumber of count of rows of the query.

Exaruple: sQL > select count (sa1) from emp;

The output is shown below:
COUNT (SAL)

15

Sum Funetion

The sum function can be used to obtain the sum of a range of values of a record set.

Exaruph: sQL > select sum (sal) from emp;

The result obtained is

SUM (SAL)

34025

Up to this point you have seen that SQL can select rows of information from database tables, how the
where clause can limit number of rows only those that meet certain rules that you define and how the
rows returned can be soned in ascending or descending sequence using order by clause.

You have also seen how the values in column can be modified by CHARACTER, NUMBER and
IIATE functions, and how groups can tell you about whole set of rows. Beyond the group functions
l'*u have seen there are also two group clauses, having and group by. These are parallel to where and
order by clauses except that they act on groups and not on individual rows. These clauses can provide
very powerful insights to your data.

-

100 Client Server Computing with Oracle M.S. University _ D.D.C.E.

4.5.1 Group By Clause

The following example lists the max commission based on unique salary in emp table.

Examplc: SQL> select sa1, max (comm) from emp group by sal;
SAL MAX (COMM)

800

950

110 0

1250 1400
13 00

1500 0

1600 300

2450

2850

297 5

3000

5000 2345

12 rows selected.

The records in emp table of Oracle are as follows.

SQL > select'$ from emp;
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7369 sMrTH CLERK 7902 17_DEC_80 800 20
7499 ALLEN SALESMAN 7698 2O-FEB-81].600 3OO 30
7521, WARD SALESMAN 7698 22_FEB_81, 1_250 500 30
7566 JONES MANAGER 7839 o2_ApR_81 2975 20
7654 MARTTN SALESMAN 7698 28_sEp_81 L25o 1400 30
7698 BLAKE MANAGER 7839 O1-MAY-81 2850 30
7782 CLARK MANAGER 7839 O9-JUN-81 2450 10
7788 scorr ANALYST 7566 19_ApR_87 3000 20
7839 KING PRESIDENT 17-NOV-8]- 5OOO 10
7844 TURNER SALESMAN 7698 o8_sEp_81 1500 o 30
7876 ADAMS CLERK 7788 23_MAy_87 11oO 20
7900 ,JAMES CLERK 7698 o3_DEC_81 950 30
7902 FORD ANALYST 7566 o3_DEC_81 3000 20
7934 MILLER CLERK 7782 23-,JAN-82 13OO 1-O

14 rows selected.

Hauong Clause

The following example gives the clear view of having clause

sQL> select sal, max (comm) from emp group by sal having 5000 not in sal;

M.S. University - D.D.C.E.

The output will be the following
SAL MAX (COMM)

SQL'rPlus 101

800

950

110 0

1250

l_300

1500

150 0

2450

2850

297 5

3000

l_400

0

300

11 rows selected.

In the above example those unique salaries are selected based on the max commission received where
salary does not include Rs. 5000.

Order of Execution ofVarioas Clauses

l. Choose those rows based on where clause.

2. Group those rows togerher based on group by clause.

3. Calculate the results functions for each group.

4. Choose and eliminate group based on having clause.

5. Order the groups based on results of the group function in the order by clause,'the order by
clause must use either a group function or a column specified in a group by clause.

The order of execution is important because it has direct impact cn rhe performance of your queries.
In general, the more records that can be eliminated via where clause, the faster the query will execute.
This performance benefits due to the reduction in numbers of rows thar must be processed during the
group by operation.

Fill in the blanks:

1. SQL'FPlus processes the command and re-displays the.................. when ready f.or anorher
command.

2. A tells SQL*Plus that you wanr ro run rhe command.

3. SQL*Plus the subprograms you enter at the SQL'sPlus command prompt in the
SQL buffer.

4. Conversion function converrs a from one datatype to anorher.

102 Client Server Computing with Oracle M.S. University - D.D.C.E.

4.6LET US SUM UP

The area where SQL*Plus stores your most recently entered SQL command or PLISQL block (but
not SQL*Plus commands) is called the SQL buffer. The command or block remains there until you
enter another. If you want to edit or re-run the current SQL command or PL/SQL block, you may do
so without re-entering it. Just as spoken language has syntax rules that govern the way we assemble
words into sentences, SQL*Plus has syntax rules that govern how you assemble words into
commands. You must follow these rules if you want SQL*Plus to accept and execure your commands.
You can also use PLISQL subprograms (called blocks) to manipulate data in the database. To enrer a
PLISQL subprogram in SQLtPlus, you need to be in PLISQL mode. You are placed in PLISQL
mode when you type DECLARE or BEGIN at the SQL*Plus command prompt. After you enter
PLISQL mode in this way, type the remainder of your PLISQL subprogram. SQL*Plus provides
specialized functions to perform operations using the Data Manipulation Commands. A SQL function
is a routine that performs a specific operation and rerurns the result. It is similar to a procedure, except
that a procedure does not return a value.

4.7 KEY\TORDS

Datc Functions:They operate on date values producing ourpur, which also belongs to date datatype,
except for months_between date functions, which returns a number.

Sum Function:The sum function can be used to obtain the sum of a range of values of a record set.

Conacrcion Functions: Conversion function converts a value from one datatype to another.

To-number ():The to-number function allows the conversion of string concatenaring numbers into
the number datatype on which arithmetic operations can be performed.

4.8 QUESTIONS FOR DISCUSSION

t.

2.

3.

Give an example ro run a SQL command.

tU(hat is the processor to create a stored procedure?

Explain the SQL*Plus Command Syntax.

How the changes can be saved ro the Database Automatically?

Discuss the four forms of Date functions.

\Uflhat is the difference between the numeric functions and conversion functions]

Check Your Progress: Model Answers

1. command prompr

2. semicolon Q

3. stores

4. value

4.

5.

6.

M.S. University - D.D.C.E. SQL+Plus 103

4.9 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Daubase Systems: Design, Implementation and Management, Seventh edition,
Thomson Learning, 2007

Silberschatz, Korth, Sudarshan, Database System Concepts, Fifth edition, McGraw-Hill, 2005

Elmasari Navathe, Fundamsntals of Database Systems, Third edition, Pearson Education Asia, 2001

E. J. Yannakoudakis, Tlte Arcbitectural Logic of Database Systems, Springer-Verlag,Digitized200T

Fred R. McFadden, leflrey A. Hoffer, Database Managernent,Benjamin/Cummings, Digitized2}l7

Raghu Ramakrishnan, Johannes Gehrke, Database Managemmt Systems, Third edition, McGraw-Hill Higher
Education,2003

UNITIII

LESSON

5

SCHEMA OBJECTS

CONTENTS
5.0 Aims and Objectives

5.1 Introduction

5.2 Schema Objects

5.3 Data Integrity

5,3.1 Types of Data Integrity

5.4 Creating and Maintaining Tables

5.4.t How Table Data is Stored

5.4.2 TableCompression

5.4.3 Types of Tables

5.5 Indexes Sequences Views

5.5.1 Indexes

5.5.2 Types of Index

5.6 User Privileges and Roles

5.6.1 SystemPrivileges

5.6.2 ObjectPrivileges

5.6.3 User Roles

5.7 Synonyms

5.7.t Removing Synonym

5.8 Let us Sum up

5.9 Keywords

5.10 Questions for Discussion

5.11 SuggestedReadings

5.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

. Explain the concept of schema objects

. Discuss data integrity

108 Client Server Computing with Oracle M.S. University - D.D.C.E.

. Create and maintain tables

. Identify and explain the indexes sequences views

. Discuss the various user privileges and roles

. Explain the concept of synonyms

5.1 INTRODUCTION
Schema objects are logical structures created by users to conrain, or reference, their data. Schema
objects contain structures like tables, views, and indexes. You can create and manipulate schema
objects using Oracle Enterprise Manager.

s.2 SCHEMA OBJECTS

A schema is a collection of logical structures of data, or schema objects. A schema is possessed by a
database user and has the same name as that user. Each user owns a single schema. Schema objects can
be created and manipulated with SQL and include the following rypes of objects:

. Clusters

. Database links

. Database triggers

. Dimensions

. External procedure libraries

. Indexes and index types

a Java classes, Java resources, andJava sources

. Materialized views and materialized view logs

. Object tables, object rypes, and object views

. Operators

a Sequences

. Stored functions, procedures, and packages

. Synonyms

. Tablesandindex-organizedtables

. Views

Further types of objects are also stored in the database and can be created and manipulated with SQL
but are not contained in a schema:

a Contexts

. Directories'.

. Profiles

M.S. University - D.D.C.E.

. Roles

Schema Objects 109

. Tablespaces

. Llsers

schema objects are logical
-data storage stnrctures. Schema objects do nor have a one-to-one

correspondence to physical files on disk that store their information. Though, oracle srores a schema
object logically within_ a tablespace of the database. The data of each

"b;..iir'plyri.rtty contained in
one or more of the tablespace's datafiles. For some objects, such

",
trbi.r, irrj.*Lr, arrd .lrsters, yog

can identify how much disk space oracle allocates for the object within the tablespace,s datafiles.
There is no association between schemas and tablespaces: a tablespace can contain objects from
different schemas, and the objects for a schema can be contained in different ,"Ut.rpr..r.

Database

: System Tabtespace I r Data Tablespace I

I

J

lc**l
r-fia;r-l
frn-aei-l
ITnd:f-l

Figure 5.1: Schema Obiects, Tablespaces, and Datafiles

5.3 DATA INTEGRITY
It is important that data remain to a predefined set of rules, as determined by the databaseadministrator or application developer. As an example of data integrity, consider the tables EMp andDEPT and the business rules for the information in each of the tablJs,

"r'illrrr,r"r.d
in Figure 5.2.

110 Client Server Computing with Oracle M.S. University - D.D.C.E.

Trbh IEPT
Each value in Ue oNAME
cohrmn musl be unique

Each ml'l musthare a 'Jalue
lbrtle EIIAME cotumn

Each value in fie
DEPTNo column
mustmath a value in

te DEPTM cohmn
of be DEPT hble

Each mu musthale eralue
furte EMPo column, and
te 'ralue must he unique

Each 'ralue in fie SAL column
mustbe less tlan 10,00u

6666
7323
7499
75n
7566

20
2B

30
30

Figure 5.2: Examples of Data Integrity

Note that cerrain columns of each table have specific rules that constrain the data contained within them.

5.3.1 Types of Data Integrity

The following types of rules are applied to tables and enable you to enforce diverse rypes of data integrity.

Nulls

A rule defined on a single column that allows or disallows insens or updates of rows containing a null
for the column.

Untque Column Values

A rule defined on a column (or set of columns) that allows only the insert or update of a row
containing a unique value for the column (or set of columns).

Pimary Kel Values

A rule defined on a column (or set of columns) so that each row in the table can be exclusively

identified by the values in the column (or set of columns).

Relerential lntegitjt

A rule defined on a column (or set of columns) in one table that permit the insert or update of a row
only if the value for the column or set of columns (the dependent value) matches a value in a column
of a related table (the referenced value).

Referential integrity also contain the rules that dictate what types of data manipulation are allowed on

referenced values and how these actions affect dependent values. The rules associated with referential

integrity include:

o Restia: A referential integrity rule that disallows the update or deletion of referenced data.

. Set to NutkWhen referenced data is updated or deleted, all associated dependent data is set to NULL"

5500.00
s000.00
7500.m
5{m,m
2s75,m

MULDER
SMITH
ALLEN
WARD
JUt\ES

M.S. Universiry - D.D.C.E.
Schema Objects 111

' Sa n Default: I$7hen referenced data is updated or deleted, all associated dependent data is set to a
default value.

' Cascadc: \When referenied data is updated, all associated dependent data is equally updated; when
a referenced row is deleted, all associated dependenr rows

"re
deleted.

Complcx Integritjt C hecking

A user-defined rule for a_column (or set of columns) that allows or disallows insens, updates, or deletes
of a row based on the value it include for the column (or set of columns)

5.4 CREATING AND MAINTAINING TABLES
Tables are the essential unit of data storage in an Oracle database. Data is stored in rows and columns.
You define a table with a table name (such as employees) and set of columns. you provide each
column a column name (such as employee_-id,

-last-name,
and job_id),

" datatype (such as
VARCHAR2, DATE, or NUMBER), and a width. the width can be pr.*r.rg.d Uy rt. a"trtype, as
in DATE. If columns are of the NUMBER datatype, define precision and scale instead of width. A
row is a collection of column informarion .orr.tporrding to a single record.

You can state rules for each column of a table. These rules are called integrity constraints. One example is
a NOT NULL integriry constraint. This constraint forces the column to .orri.ir, a value i, .rr.ry ro*.'
After you c teate a table, insert rows of data using SQL statements. Table data can then be queried,
deleted, or updated using SQL.

Cdunn namao

SMITH
ALLEN
WARD
JOHES

300.00
300.00
s00.00

Figure 5.3: The EMP Table

5.4.1 How Table Data is Stored

\rhen you create a tabl:,
Qlacle repeatedly allocates a data segmenr in a tablespace to hold the table,s future

data. You can control the allocation and use of space for a tabie's data segmenr^in the following ways:

' You can control the quantity of space allocated to the data segment by setting the storage
parameters for the data segment.

' You can control the use of the free space in the data blocks that constitute the dara segment,s
extents by setting the PCTFREE and PCTUSED paramerers for the data segment.

Oracle stores data for a clustered table in the data segmenr formed for the clusrer instead of in a data
segment in a tablespace. Storage parameters cannot 6e specified when a clustered table is created or
altered. The storage Parameters set for the cluster always *rrtrol the storage of all tables in the clusrer.

112 Client Server Computing with Oracle M.S, University - D.D.C.E.

A table's data segment (or cluster data segment, when deding with a clustered table) is created in dso the
table owner's default tablespace or in a tablespace specificdly named in the cReatE TABLE statement.

Rop Format and Siqe

Oracle stores each row of a database table including data for less than 256 columns as one or more row
pieces. If a whole row can be inserted into a single data block, then Oracle $ores the row as one row
piece. However, if all of a row's data cannot be inserted into a single data block or if an update to an

existing row causes the row to outgrow its data block, then Oracle stores the row using multiple row
pieces. A data block generally contains only one row piece for each row. \7hen Oracle must store a

row in more than one row piece, it is chained across multiple blocks.

\flhen a table has more than 255 columns, rows that have data after the 255th column are possible to
be chained within the same block. This is called intra-block chaining. A chained row's pieces are

chained together using the rowids of the pieces. rtrflith intra-block chaining, users obtain all the data in
the same block. If the row fits in the block, users do not see an effect inUO performance, because no
extral/O operation is required to retrieve the rest of the row.

Each row piece, chained or unchained, includes a row header and data for all or some of the row's
columns. Individual columns can also span row pieces and, consequently, data blocks. Figure 5.4

shows the format of a row piece:

, fiolr Header Cdumn Data

Bow Piect in e Dalalarg Block

How Ovarftead

Nun*er ot Column*

Clusisr &y iD (if dusterodl

ROtltlD sf Chained Rsw Piec$ {if any)

Column Length

Column Valu*

;
ffiil
ilI
ilI Oatabase

Sbclt

Figure 5.4: The Format of a Row Piece

The row header precedes the data and contains information about:

. Row pieces

o Chaining (for chained row pieces only)

M.S. University - D.D.C.E. Schema Objects 113

. Columns in the row piece

. Cluster keys (for clustered data only)

A row fully controlled in one block has at least 3 bytes of row header. After the row header information,
each row contains column length and data. The column length necessitates 1 byte for columns that store

250 bytes or less, or 3 bytes for columns that store more than 250 bytes, and precedes the column data.

Space required for column data depends on the datatype. If the datatype of a column is variable length,

then the space required to hold a value can grow and shrink with updates to the dam.

To preserve space, a null in a column only stores the column length (zero). Oracle does not store data

for the null column. Also, for trailing null columns, Oracle does not even store the column length.

Clustered rows contain the same information as nonclustered rows. In addition, they contain

information that references the cluster key to which they belong.

Rowids ofRow Pieees

The rowid recognize each row piece by its location or address. After they are assigned, a given row
piece retains its rowid until the corresponding row is deleted or exported and imported using Oracle

utilities. For clustered tables, if the cluster key values of a row change, then the row keeps the same

rowid but also gets an additional pointer rowid for the new values.

Because rowids are constant for the lifetime of a row piece, it is useful to orientation rowids in SQL

statements such as SELECT, UPDATE, and DELETE.

Colurnn Orfur

The column order is the same for all rows in a given table. Columns are generally stored in the order
in which th6y were listed in the CREATE TABLE statement, but this is not guaranteed. For example,

if a table has a column of datatype LONG, then Oracle constantly stores this column last. Also, if a

table is altered so that a new column is added, then the new column becomes the last column stored.

In common, rry to place columns that frequently contain nulls last so that rows take less space. Note,
though, that if the table you are creating includes a LoNG column as well, then the benefits of placing

frequently null columns last are lost.

5.4.2 T able Compression

Oracle's table compression feature compresses data by abolishing duplicate values in a database block.
Compressed data stored in a database block (also known as disk page) is self-contained. That is, all the

information needed to restructure the uncompressed data in a block is available within that block.
Duplicate values in all the rows and columns in a block are stored once at the beginning of the block,
in what is called a symbol table for that block. All occurrences of such values are replaced with a short
reference to the symbol table.

\X/ith rhe exception of a symbol table at the beginning, compressed database blocks look very much
like regular database blocks. All database features and functions that work on regular database blocks
also work on compressed database blocks.

Database objects that can be compressed contain tables and materialized views. For panitioned tables,

you can choose to compress some or all partitions. Compression attributes can be declared for a

tablespace, a table, or a partition of a table. If declared at the tablespace level, then all tables formed in
that tablespace are compressed by default. You can alter the compression attribute for a table

114 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

(or a partition or tablespace), and the change only applies ro new data going into that table. As a resulr,
a single table or partition may include some compressed blocks and some regular blocks. This
guarantees that data size will not increase as a result of compression; in cases where compression could
increase the size of a block, it is not applied ro thar block.

Using Tablc Compression

Compression occurs while data is being bulk insened or bulk loaded. These operarions include:

o Direct path SQl.'tl-oader

. CREATE TABLE and AS SELECT sraremenrs

. .Parallel INSERT (or serial INSERT with an APPEND hint) statements

Accessible data in the database can also be compressed by moving it into compressed form through
ALTER TABLE and MOVE statements. This operation takes a restricted lo.k on the table, aid
therefore prevents any updates and loads until it completes. If this is not acceptable, then Oracle's
online redefinition utility (DBMS_REDEFINITION PLISQL package) can be used.

Data compression works for all data types apaft from for all varianrs of LOBs and data types derived
from LOBs, such as VARRAYs stored out of line or the XML daratype stored in a CLOB.

Table compression is done as part of bulk loading data into the database. The transp arcncy associated
with compression is most visible at that time. This is the primary trade-off that needs to be taken into
account when considering compression.

Compressed tables or partitions can be customized the same as other Oracle tables or partitions. For
example, data can be modified using INSERT, UPATE, and DELETE sraremenrs. Though, data
modified without using bulk insenion or bulk loading techniques is not compressed. Deleting
compressed data is as fast as deleting uncompressed data. Inserting new data is also as fasr, since data is
not comPressed in the case of conventional INSERT; it is compressed only doing bulk load. Updating
compressed data can be slower in some cases. For these reasonr, .o-pr.rrion is irore suitable for dati
warehousing applications than OLTP applications . Data should be organized such that read only or
infrequently changing portions of the data (for example, historical data) is kept compressed.

Nulls Indicate Absence ofValue

A null is the absence of a value in a column of a row. Nulls designate missing, unknown, or
inapplicable data. A null should not be used to imply any other value, such as zero. A column permit
nulls unless a NOT NULL or PRIMARY KEY integrity constrainr has been defined for the .ol.r-rr,
in which case no row can be inserted without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In these cases they entail
1 byte to store the length of the column (zero).

Trailing nulls in a row require no storage as a new row header signals that the remaining columns in
the previous row are null. For instance, if the last three columns of a table are null, no information is
stored for those columns. In tables with many columns, the columns more likely to contain nulls
should be defined last to conserve disk space.

Most evaluation between nulls and other values are by definition neither rrue nor false, but unknown.
To identify nulls in SQL, use the IS NULL predicate. Use the SQL function NVL ro converr nulls to
non-null values.

M.S. University - D.D.C.E. Schema Objects 115

Nulls are not indexed, apart from when the cluster key column value is null or the index is a bitmap
index.

D efault Value s for C o lumns

You can give a default value to a column of a table so that when a new row is insened and a value for
the column is omitted or keyword DEFAULT is supplied, a default value is supplied routinely.
Default column values work as though an INSERT statement actually specifies the default value.

The datatype of the default literal or expression must match or be adaptable to the column datatype.

If a default value is not explicitly defined for a column, then the default for the column is implicitly set

to NULL.

Defauh Value Insertion and.lntegigt Constraint Checking

Integrity constraint checking occurs after the row with a default value is introduced. For example, in
Figure 5.5 a row is inserted into the emp table that does not include a value for the employee's
department number. Because no value is supplied for the depanment number, Oracle insens the
deptno column's default value of 20. After inserting the default value, Oracle checks the FOREIGN
KEY integrity constraint defined on the deptno column.

Par€nt l(By

Table DEFT

rue9
74gfl
TSen
7568
7Gt*

l'tew rotr to be tnsailcd, r*lthort valua
tor PEF?NO column.

DclasltVdur
{if no value i* g{vsn lor
lhls ao{umn, fts dsfeuft
ol 2O l* used)

76Sr OSTEB SALHST\|AN 75er 06-*PF-SO 2S75.00 400,00

Figure 5.5: Default Column Values

DEPTI'IOIDNAME ILOC

N IHE$EAFCHIDALLAS*a-1 tottt
lcHEAGo

Foreigr Ksy

Teble EMP

EMPNO I"IIHfiOATE

17-O€ffi
20-FEB-S0
?2-FEB-90
m-.APF-00
06.AFHO

\
COMM I OEFTNO

7&9
749S
7521
7521

9000.00
7$00.00
5000.00
2975.00
2875.00

100.00
200.00
400.00
,rcO.00

a0
30
30
g0
20

cHo
VP_SAI-ES
MANAGEN
SALESMAN
SALE$MAN

slaTH
ALLfT{
\I'AFD
JOf'IES
O$TEN

116 Client Server Computing with Oracle M.S. University - D.D.C.E.

5.4.3 Types of Tables

Partitioned Tables

Partitioned tables allow your data to be broken down into smaller, more conrrollable pieces called
partitions, or even subpartitions. Indexes can be partitioned in similar fashion. Each partition can be
managed independently, and can operate independently of the other parririons, thus providing a

structure that can be better tuned for availability and performance.

NestedTables

You can make a table with a column whose datatype is another table. That is, tables can be nested
within other tables as values in a column. The Oracle database server stores nested table data out of
line from the rows of the parent table, using a store table that is associated with the nested table
column. The parent row contains a unique set identifier value associated with a nested table instance.

Temporary Tables

In addition to permanent tables, Oracle can make temporary tables to hold session-private data rhat
subsist only for the duration of a rransaction or session.

The CREATE GLOBAL TEMPORARY TABLE statement makes a temporary table that can be
transaction-specific or session-specific. For transaction-specific temporary tables, data exists for the
duration of the transaction. For session-specific temporary tables, data exists for the duration of the
session. Data in a temporary table is private to the session. Each session can only see and modify its
own data. DML locks are not acquired on the data of the temporary tables. The LOCK sraremenr has
no effect on a temporary table, because each session has its own private data.

A TRUNCATE statement subjected on a session-specific temporary table truncates data in its own
session. It does not tnrncate the data of other sessions that are using the same table.

DML statements on temporary tables do not produce redo logs for the data changes. However, undo
logs for the data and redo logs for the undo logs are generated. Data from the temporary table is
routinely dropped in the case of session termination, either when the user logs off or when the session
terminates abnormally such as during a session or insrance failure.

You can generate indexes for temporary tables using the CREATE INDEX sratemenr. Indexes creared
on temPorary tables are also temporary, and the data in the index has the same session or transaction
scope as the data in the temporary table.

You can create views that access together temporary and permanent tables. You can also create triggers
on temporary tables.

Oracle utilities can export, and import the meaning of a temporary table. However, no dara rows are
exported even if you use the RO\WS clause. Similarly, you can replicate the definition of a remporary
table, but you cannot replicate its data.

ExtemalTables

External tables access data in external sources as if it were in a table in the database. You can connect
to the database and generate metadata for the external table using DDL. The DDL for an external table
consists of two parts: one part that describes the Oracle column types, and another part (the access

parameters) that describes the mapping of the external data to the Oracle data columns.

M.S. University - D.D.C.E. Schema Objects 117

An external table does not explain any data that is stored in the database. Nor does it describe how
data is stored in the external source. Instead, it describes how the external table layer needs to present
the data to the server. It is the responsibility of the access driver and the external table layer to do the
necessary transformations required on the data in the datafile so that it matches the external table
definition.

External tables are read only; consequently, no DML operations are possible, and no index can be

created on them.

. The Access Driver

\7hen you generate an external table, you specify its type. Each type of external table has its own
access driver that provides access parameters unique to that type of external table. The access driver
makes sure that data from the data source is processed so that it matches the definition of the external
table.

In the framework of external tables, loading data refers to the act of readin g data from an external table
and loading it into a table in the database. Unloading data refers to the act of readingdata from a table
in the database and inserting it into an external table.

The default type for external tables is ORACLE_LOADER, which allow you read table data from an

external table and load it into a database. Oracle also gives the ORACLE_DATAPUMP type, which
lets you unload data (that is, read data from a table in the database and insert it into an external table)
and then reload it into an Oracle database.

The definition of an external table is kept discretely from the description of the data in the data source.
This means that:

t The source file can have more or fewer fields than there are columns in the external table

n The datarypes for fields in the data source can be dissimilar from the columns in the external table

. Data Loading with External Tables

The major use for external tables is to use them as a row source for loading data into an actual table in
the database. After you create an external table, you know how to use a CREATE TABLE AS
SELECT or INSERT INTO ... AS SELECT statement, using the external table as the source of the
SELECT clause.

\flhen you access the external table during a SQL statement, the fields of the external table can be used
just like any other field in a regular table. In exacting, you can use the fields as arguments for any SQL
built-in function, PLISQL function, or Java function. This allows you manipulate data from the
external source. For data warehousing, you can do more sophisticated transformations in this way
than you can with simple datatype conversions. You can also use this mechanism in data warehousing
to do data cleansing.

\flhile external tables cannot contain a column object, constnrctor functions can be used to build a

column object from attributes in the external table

. Parallel Access to External Tables

After the metadata for an external table is created, you can query the external data openly and in
parallel, using SQL. As a result, the external table acts as a view, which lets you run any SQL query
against external data without loading the external data into the database.

118 Client Server Computing with Oracle M.S. University - D.D.C.E.

The degree of parallel access to an external table is particular using standard parallel hints and with the
PARALLEL clause. Using parallelism on an external table allows for concurrenr access ro the datafiles
that comprise an external table. 'Whether

a single file is accessed concurrently is dependent upon the
access driver implementation, and attributes of the datafile(s) being accessed (for example, record
formats).

s.s INDEXES SEQUENCES VIE\r/S

A sequence is a database object, which can generate unique, sequenrial integer values. Sequences help to
ease the process of creating unique identifiers for a record in a database. A sequmce is a simply an
automatic counter, which is enabled whenever it is accessed. It can be used to automatically generate
primary hey or unique key values. A sequence can either be in ascending or descending order.
Itrflhen a sequence is created, it adopts some default values that are adequate for most situations. A
default sequence has the following characteristics:

a Always starts from number 1

. In ascending order

. Increases by 1

The syntax for creating a sequence is as follows:

CREATE SEQUENCE (name of sequence)
START \nTH integer

INCREMENT BY integer

MINVALUE integer

NOMINVALUE

MAXVALUE integer

NOMAXVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE sequence

ORDER

NOORDER

Here START WTH indicates the initial value of the sequence. \7hen used for the first time, it returns
the value specified by this clause. INCREMENT BY indicates the value by which the sequence will be
incremented each time it is accessed. IIAXVALUE indicates the maximum value thar the i.qr.r.. -ry
have. \[hen omitted, the maximum value of the sequence can be 1.00e + 27 or 10 27.

NOMAXVALUE indicates that the sequence doesn't have a predefined maximum value. CACHE
indicates the number of sequences that should be created directly in the cache memory. In a situation

M.S. Universitv - D.D.C.E. Schema Objects 119

where there is a lot of access to the sequences, the higher the value specified, the less access to the disk
will occur.

CYCLE/NOCYCLE:

Cycle indicates that the sequence should return to the initial value when the maximum value is

reached. NOCYCLE, in turn prevents it from returning to the beginning.

After creating a sequence we can access the values with the help of pseudo columns llke curual and
nextaal. Oracle has several pseudo - columns that behave as an extra column when a table is created.

curual and nextaal

nextval returns initial value of the sequence, when referred to, for the first time. Later references to
nextval will increment the sequence using the INCREMENT BY clause and return the new value.

curval returns the current value to the sequence which is the value returned by the last reference to
the nextval.

Aheing of Sequence

\7ith the ALTER SEQUENCE command the user can change some of the sequence's parameters. The
sequence can be altered when we want to perform the following:

. Set or eliminate minvalue or maxvalue

. Change the increment value

. Change the number of chaced sequence numbers

However there are some restrictions. You are not allowed, for example to change its initial value. The
minimum value for the table cannot be greater than the current value.

5.5.1 Indexes

Indexes are optional structures associated with tables. We can create indexes explicitly to speed up SQL
statement execution on a table. Similar to indexes in books that help us to locate information faster, an

Oracle index provides a faster access to path to table data. The index points directly to the location of the
rows containing the value. Indexes are the primary means of reducing disk I/O when properly used.

When to Create an lndex

An index can be created during the design process of the table structure using the PRIMARY KEY
consrraint. However it is better to create it later, particularly when the has existing data that will be

loaded with the utilities. In this case whenever a row is inserted, the index is updated, requiring more
processing time.

Columns of type lobs, longand longroa) car,not be indexed.

'We
create an index on a column or combinations of columns using CREATE INDEX command as

follows:

CREATE IUNIQUEI INDEX (name of index > ON (table name) (column name) ;

Example

Now we will create a index on DEPARTMENT table in login scott/tiger (username / password).

120 Client Server Computing with Oracle M.S. Universitv - D.D-C.E.

SQL > create index depname on department (name) ;

The output will be

Index created.

\7hen we create an index, Oracle fetches and sort's columns to be indexed, and stores rhe ROWD along
with the index value for each row. Then Oracle loads the index from the bottom up. lndexes are physically
independent of the data in the associated table. 'We can create and drop an index at any time without
effeaing the base tables or other indexes. Indexes as independent structures require storage space.

5.5.2 Types of Index

Unique Indexes

Indexes can be unique or non-unique. Unique indexes guarantee that no two rows of a table have
duplicate values in the columns that define the index. Non-unique indexes do not impose this
restriction on the column values. Oracle enforces unique integrity constraints by automatically
defining a unique index on the unique key. Using the CREATE I-INIQUE INDEX command as

follows creates a unique index, but this statement will fail if any duplicates already exist. If you use
primary key constraint you will never have duplicates.

Syntax

SQL > CREATE UNIQUE INDEX (index name) on (table name (column name) > ;

If create unique index statement succeeds, then any future attempr to insert a row that would create a
duplicate key will fail and result in this error message:

ERROR at line 1: ORA-00001 : unique consrrainr

(table name . column name) violated

NOTE: A unique index is automatically created when we create unique or primary key constraint.
Alternatively a constraint is imposed on the column when we create a unique index. 'We cannot create
index for a column which is already indexed.

Cornposite Indcx

A composite index (also called a concatenated index) is an index preated on multiple columns of a table.
Columns in a composite index can appear in any order and need not be adjacent columns of the table.

Composite index can enhance the speed of retrievin g data for the selecr sratemenr in which rhe 'where'
clause references all or the leading portion of the columns in the composite index.

Rcuerse Kej lndex

Creating a reverse key index, when compared to a standard index, reverses each byte of the column
being indexed while keeping the column order. Such an arrangement can help avoid performance
degradation in indexes where modifications to the index are concenrrared on a small set of blocks. By
reversing the keys of the index, the insertions become distributed all over the index.

Creating a Bitmap Indcx

The advantages of using a bitmap indexes are greatest on the tables in which the data is infrequently
updated, because they add to the cost of all data manipulation transactions against the tables they index.

M.S. University - D.D.C.E. Schema Objects 121

Bitmap indexes are appropriate when nonselective columns are used as limiting conditions in a query.
If you choose bitmap indexes, you will need to weight the performance benefit during queries against
the performance cost during data manipulation commands. The more the bitmap indexes on the table,
grater the cost will be on each transaction. You should bitmap index on those columns that frequently
has new values added to it. .

Adaantages of using Bitmap Indexes

. Reduced response time for large classes of ad hoc queries.

o A substantial reduction of space usage as compared to other indexing techniques.

. Dramatic performance gains even on very low end hardware.

5.6 USER PRIVILEGES AND ROLES

A user privilege is a right to perform a particular type of SQL statement, or a right to access another
user's object. The types of privileges are defined by Oracle.

Roles, on the other hand, are created by users (generally administrators) and are used to group
together privileges or other roles. They are a means of facilitating the granting of numerous privileges
or roles to users.

This section describes Oracle user privileges, and includes the following topics:

. System Privileges

o Object Privileges

. User Roles

5.6.1 System Privileges

There are over 100 separate system privileges. Each system privilege allows a user to perform a

particular database operation or class of database operations.

Restriding Sy stem Piaihge s

Because system privileges are so influential, Oracle recommends that you configure your database to
prevent regular (non-DBA) users exercising ANY system privileges (such as LIPDATE ANY TABLE)
on the data dictionary. In order to protect the data dictionary, ensure that the
OZ_DICTIONARY_ACCESSIBILITY initialization parameter is set to FALSE. This feature is called
the dictionary protection mechanism

If you allow dictionary protection (OZ_DICTIONARY_ACCESSIBILITY is FALSE), access to
objects in the SYS schema (dictionary objects) is limited to users with the SYS schema. These users are
SYS and those who connect as SYSDBA. System privileges providing access to objects in other
schemas do not give other users access to objects in the SYS schema. For example, the SELECT ANIY
TABLE privilege let users to access views and tables in other schemas, but does not allow them to
select dictionary objects (base tables of dynamic performance views, views, packages, and synonyms).
These users can, however, be granted explicit object privileges to access objects in the SYS schema.

122 Client Server Computing with Oracle M.S. University - D.D.C.E.

Accessing Objects in the SYS Schema

Users with explicit object privileges or those who connect with managerial privileges (SYSDBA) can
access objects in the SYS schema. A different means of allowing access to objects in the SYS schema is
by granting users any of the following roles:

. SELECT-CATALOG-ROLE; This role can be granted to users to allow SELECT privileges on all
data dictionary views.

. EXECUTE-CATALOG-ROLE'This role can be granted to users to allow EXECUTE privileges
for packages and procedures in the data dictionary.

o DELETE-CATALOG-ROLE: This role can be granted to users to allow them to delete records
from the system audit table (AUD$).

As well, the following system privilege can be granted to users who require access to tables created in
the SYS schema:

. SELECT ANY DICTIONARY

This system privilege permits query access to any object in the SYS schema, including tables created in
that schema. It must be granted independently to each user requiring the privilege. It is not included in
GRANT ALL PRTVILEGES, nor can it be granted through a role.

5.6.2 Obiect Privileges

Each type of object has different privileges associated with it.

You can specify ALL IPR[VILEGES] to grant or revoke all accessible object privileges for an object.
ALL is not a privilege; rather, it is a shortcut, or a way of granting or revoking all object privileges
with one word in GRANT and REVOKE statements. Note that if all object privileges are granted
using the ALL shortcut, individual privileges can still be revoked.

Similarly, all individually granted privileges can be revoked by specifying ALL. Though, if you
REVOKE ALL, and revoking causes integrity constraints to be deleted @ecause they depend on a

REFERENCES privilege that you are revoking), you have to include the CASCADE
CONSTRAINTS option in the REVOKE sratemenr.

5.6.3 User Roles

A role groups more than a few privileges and roles, so that they can be granted to and revoked from
users simultaneously. A role must be enabled for a user before it can be used by the user.

Oracle offer some predefined roles to help in database administration. You can grant privileges and
roles to, and revoke privileges and roles from, these predefined roles in the same way as you do with
any role you define.

Managing User Roles

This section describes aspects of managing roles, and contains the following topics:

o Creating a Role

. Specifying the Type of Role Authorization

. Dropping Roles

M.S. University - D.D.C.E. Schema Objects 123

Creating a Rolc

You can create a role using the cRretr RoLE statement, but you must have the CREATE RoLE sysrem
privilege to do so. Usually, only security administrators have this system privilege.

You must give each role you create a unique name amongst existing usernames and role names of the
database. Roles are not enclosed in the schema of any user. In a database that uses a multibyte
character set, Oracle proposes that each role name contain at least one single-byte character. If a role
name contains only multibyte characters, the encrypted role name/password combination is
considerably less secure.

The following statement creates the clerk role, which is cerrified by the database using the password
bicentennial:

CREATE ROLE clerk IDENTIFIED BY bicentennial;

The IDENTIFIED BY clause state how the user must be authorized before the role can be enabled for
use by a specific user to which it has been granted. If this clause is not specified, or NOT
IDENTIFIED is specified, then no authorization is required when the role is enabled. Roles can be
specified to be authorizedbyz

. The database using a password

. An application using a specified package

a Externally by the operating sysrem, nerwork, or orher exrernal source

. Globally by an enterprise directory service

These authorizations are discussed in following secrions.

Afterward, you can set or change the authorization method for a role using the ALTER RoLE
statement. The following statement alters the clerk role to specify that the user must have been
authorized by an external source before enabling the role:

ALTER ROLE cIeTK IDENTIFIED EXTERNALLY;

To alter the authorization method for a role, you musr have the ALTER ANY ROLE system
privilege or have been granted the role with the ADMIN OPTION.

Specifiiing the Tjtpe ofRole Authoriqation

The methods of authorizing roles are obtainable in this secrion. A role mu$ be enabled for you to use it.

. Role Authorization by the Database

The use of a role authorized by the database can be protected by an associated password. If you are
arranged a role protected by a password, you can enable or disable the role by supplying the proper
password for the role in a SET ROLE statement. Though, if the role is made a default role and enabled
at connect time, the user is not required to enter a password.

The next statement creates a role manager. 'When it is enabled, the password morework must be
supplied.

CREATE ROLE manager IDENTIFIED BY morework;

124 Client Server Computing with Oracle M.S. University - D.D.C.E.

. Role Authorization by an Application

The INDENTIFIED USING package_name clause lets you make an application role, which is a role
that can be allow only by applications using an authorized package. Application developers do not
need to secure a role by embedding passwords inside applications. Instead, they can create an

application role and identify which PLISQL package is authorized to enable the role.

The following example designate that the role admin_role.is an application role and the role can only
be enabled by any module defined inside the PLISQL package hr.admin.

CREATE ROLE admin_role IDENTIFIED USING hr.admin;
'When enabling the user's default roles at login as specified in the user's profile, no checking is

performed for application roles.

. Role Authorization by an External Source

The following statement creates a role named accts-rec and need that the user be authorized by an

external source before it can be enabled:

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

. Role Authorization by the Operating System

Role authentication through the operating system is functional only when the operating system is able

to dynamically link operating system privileges with applications. \7hen a user starts an application,
the operating system grants an operating system privilege to the user. The granted operating system

privilege communicates to the role associated with the application. At this point, the application can

enable the application role. \7hen the application is terminated, the formerly granted operating system

privilege is revoked from the user's operating system account.

If a role is authorized by the operating system, you have to configure information for each user at the
operating system level. This operation is operating system dependent.

If roles are granted by the operating system, you do not require to have the operating system authorize
them also; this is redundant.

. Role Authorization and Network Clients

If users connect to the database over Oracle Net, by default their roles cannot be authenticated by the
operating system. This contains connections during a shared server configuration, as this connection
requires Oracle Net. This restriction is the default because a remote user could impersonate another
operating system user over a network connection.

If you are not worried with this security risk and want to use operating system role authentication for
network clients, set the initialization parameter REMOTE_OS_ROLES in the database's initialization
parameter file to TRUE. The change will take consequence the next time you start the instance and

mount the database. The parameter is FALSE by default.

. Role Authorization by an Enterprise Directory Service

A role can be defined as a global role, whereby a (global) user can only be certified to use the role by
an enterprise directory service. You define the global role nearby in the database by granting privileges
and roles to it, but you cannot grant the global role itself to any user or other role in the database.
'When a global user attempts to connect to the database, the enterprise directory is queried to obtain

any global roles associated with the user.

M.S. University - D.D.C.E. Schema Objects 125

The following statemenr creares a global role:

CREATE ROLE supewisor IDENTIEIED GLOBA,,LLY;

Global roles are one component of enterprise user organi zation. A global role only relares ro one
database, but it can be granted to an enterprise role defined in the enterprise directory. An enterprise
role is a directory structure which have global roles on multiple databases, and which can be granr;d ro
enterprise users.

A common discussion of global authentication and authorization of users, and its role in enterprise
user management, was Presented earlier in "Global Authentication and Authorization".

Dropping Roles

In some cases, it may be appropriate to drop a role from the database. The security domains of all users
and roles granted a dropped role are immediately changed to reflect the absence of the dropped role's
privileges. All indirectly granted roles of the dropped role are also removed from affect.j ,..rrity
domains. Dropping a role automatically removes the role from all users' default role lists.

Because the creation of objects is not dependent on the privileges received through a role, tables and
other objects are nor dropped when a role is dropped.

You can drop a role using the SQL statement DROP ROLE. To drop a role, you musr have the
DROP ANY ROLE system privilege or have been granted the role with the ADMIN OPTION.
The following srarement drops the role CLERK:

DROP ROLE clerk;

5.7 SYNONYMS

Synonyms are a simple way to access tables and other database objects using alternate name or a
shortcut. A synonym is a database object, which is used as an alias (alternative ir-e) for a table view
or sequence. A reference is made to the original object when the synonym is created. For example, if a
synonym is created for a table, Oracle associates the address of the table to the synonym, and dt"r .rot
create a duplicate of the table.

There are many advantages of using a synonym. They are discussed below :

o Simplify SQL statement

. Hide the name and owner of an object that is being specified

' Provide location transparency for remote objects of a distributed database. Provide public access
to an object

If the object is changed or moved, all you have to do is to update the synonym, rarher than change the
numerous references to the object. Synonym helps the user in recrr.irg his objects and hel"ps in
simplifying execution of the commands.

A. synonym can be public and visible to all users, or private and available only to user who created it.
The private synonym is. created by normal user, whiih is available ro rhar p.rrol whereas the public
synonym is created by the DBA, which can be availed by any database ,.rr.r. Syrorryms can be used to
replace objects in the following SQL commands.

o SELECT

126 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

. INSERT

. DELETE

. GRANT

O UPDATE

. REVOKE

The syntax for creating a synonym is analyzed as follows:

CREATE IPUBLIC] SYNONffivI (name of synonym) for (table name) ;

Here PUBLIC creates a public synonym. If the PUBLIC clause is omitted, the synonym created will
be private synonym belonging to the table (schema) or the user who created it.

The user mu$ have the CREATE SYNONYM privilege to create a synonym. The vendor_master
table has been created by marketing division and the user wants to grant all access on that table to
accounts but he does not want him to alter the structure of the table or drop it all together. Consider
the following example, which creates private synonym on the table vendor_master with a different
name say, vmast.

Examplc

SQL > create synonym vmast for vendor_master ;

SQL > grant all on vmast to accounts ;

Now accounts can do all the DML manipulations such as insert, update, delete on the particular
synonym.

5.7.1 Removing Synonym

To remove a synonym, the user must issue the DROP SYNONYM command.

Syntax

DROP IPUBLIC] SYNONYM < name of synonym) ;

All references made to a synonym that has been deleted generate an error. A synonym that is
associated to a table is not automatically deleted with the table.

Fill in the blanks:

L. A schema is a collection of logical structures of, or schema objects.

2. '\tr7hen you create a table, Oracle automatically allocates a in a tablespace to
hold the table's future data.

3. Partitioned tables allow your data to be broken down into , more manageable

pieces called partitions,

4. Synonyms are a simple way to tables and other database objects using alternate

name or a shoncut.

heck Your Pr

M.S. University - D.D.C.E. Schema Objects 127

5.8 LET US SUM UP

A schema is a collection of logical structures of data, or schema objects. A schema is owned by a
database user and has the same name as that user. It is important that data adhere to a predefirred s"i of
rules, as determined by the database administrato. oruppli.ation developer. Tables aie the basic unit
of data storage in an Oracle database. Data is stored in rows and columns. You define a table with a
table name (such as employees) and set of columns. A sequence is a database object, which can
qgnerTe unique, sequential integer values. Sequences help to ease rhe process of creating unique
identifiers for a record in a database. A user privilege is a right to .*...rt. a parricular type" of SeL
statement, or a right to access another user's object. The types of privileges are defined By Or".L.
Synonyms are a simple way to access tables and other database obj..ts using alternare name or a
shortcut. A synonym is a database object, which is used as an alias (aliernative irme) for a table view
or sequence.

5.9 KEY\TORDS

Scherua: A schema is a collection of logical structures of data, or schema objects.

Tables: Tables are rhe basic unit of data srorage in an oracle database.

Sequenee: A sequence is a database object, which can generate unique, sequential integer values.

Sitnonim: A synonym is a database object, which is used as an alias (alternative name) for a table view
or sequence.

s.1o QUESTTONS FOR DTSCUSSTON

1. How the Schema obiects can be created and manipulated? \[ith SQL what type of objects are
included in it?

Define data integrity and explain the differenr types of data integrity.

\7hat is the processor ro store the table data?

\(hat are sequences? Explain the differenr rypes of indexes.

Discuss the various types of privileges given to user in SeL.

Explain Synonyms.

2.

3.

4.

5.

6.

Check Your Progress:

t. Data

2. data segment

3. smaller

4. access

Model Answers

128 Client Server Computing with Oracle M.S. University - D.D.C.E.

5.1 1 SUGGESTED READINGS

Peter Rob, Cados Coronel, Database Systems: Design, Implementation and Management, Seventh edition,
Thomson Learning,2})7

Silberschatz, Korth, Sudarshan, Database Syttn Concepts, Fifth edition, McGraw-Hill, 2005

Elmasari Navathe, Fundamentals of Database Systems, Third edition, Pearson Education Asia, 2001

E. J. Yannakoudakis, The Architectural Logic of Database Systems, Springer-Verlag,Digitized 2007

Fred R. McFadden, Jeffrey A. Hoffer, Database Managemmt,Benjamin/Cummings, Digitized2OOT

Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, Third edition, McGraw-Hill Higher

Education, 2003

UNITIV

LESSON

6

PLlSQL

CONTENTS
6.0 Aims and Objectives

6.1 Introduction

6.2 Understanding the Main Features of PLISQL

6.3 Variables and Constants

6.3.t DeclaringVariables

6.3.2 DeclaringConstants

6.4 Cursors

6.4.1 Cursor FOR Loops

6.4.2 Cursor Variables

6.4.3 Attributes

6.4.4 Declare

6.5 Control Structures

6.5.1 ConditionalControl

6.5.2 IterativeControl

6.5.3 SequentialControl

6.6 Modularity

6.6.t Subprograms

6.6.2 Packages

6.7 Information Hiding

5.8 Error Handling

6.9 PLISQLArchitecture

6.9.I The Oracle Database Server

6.9.2 StoredSubprograms

6.10 Advantages of PLISQL

6.ll rtr7hat's New in PLISQL?

6.12 Transaction

6.13 Let us Sum up

6.14 Keywords

6.t5 Questions for Discussion

6.16 SuggestedReadings

132 Client Server Computing with Oracle M.S. University - D.D.C.E.

6.0 ArMS AND OBJECTTVES

After studying this lesson, you will be able to:

. Explain the concept of PLISQL

. Discuss how to identify the variables and consranrs

. Describe the significance of cursors

. Identify and explain the control srnrcrures

o Discuss the concept of modularity

. Explain the concept of information hiding

. Discuss rhe error handling

. Explain the architecture of PLISQL

. Describe the advantages of PLISQL

o Explain whar's new in PLISQL

. Explain transactions

6.1 INTRODUCTION
This lesson surveys the main fearures of PLISQL and points
acquaints you with the basic conceprs behind PLlSeL and
programs. You see how PL/SQL bridges the gap between
programming languages.

out the advantages they offer. It also
the general appearance of PLISQL
database technology and procedural

6.2 LINDERSTANDING THE MAIN FEATURES OF PLISQL
A good way to get acquainted with PLISQL is to look at a sample program. The program below
Processes an order for a tennis racket. First, it declares a variable of rype NUMBER to srore rhe
quantity of tennis rackets on hand. Then, it retrieves the quantity on hand from a database table
named inventory. If the quantity is greater than zero, the program updates the table and insens a
purchase record into another table named purchase_record. Otherwise, ihe program inserrs an out-of-
stock record into the purchase_record table.

- available online in file'exampl'

DECLARE

qty_on_hand NUMBER(5);

BEGIN

SELECT qu4ntity INTO qty_on_hand FROM inventory

\7HERE product : 'TENNIS RACKET'

FOR UPDATE OF quanriry;

IF qty_on_hand > 0 THEN - check quanriry

M.S. University - D.D.C.E.

UPDATE inventory SET quantiry : quanriry - 1

\7HERE product : 'TENNIS RACKET';

INSERT INTO purchase_record

VALUES ('Tennis racket purchased', SYSDATE);

ELSE

INSERT INTO purchase_record

VALUES ('Out of tennis rackers', SYSDATE);

END IF;

COMMIT;

END;

\rith PL/SQL, you can use SQL statements to manipulate oracle data andflow-of-conrrol sraremenrs
to Process the data. You can also declare constants and variables, define procedures and functions, and
traP nrntime errors. Thus, PLISQL combines the data manipulating power of SQL with the data
processing power of procedural languages.

Block Struciure

PL/SQL is a block-structured language. That is, the basic units (procedures, funcrions, and anonymous
bl:..kp that make up a PL/SQL program are logical blocks, *hich can conrain any number of nested
sub-blocks. Typically, each logical block corresponds to a problem or subproblem to be solved. Thus,
PLISQL suPPorts the divide-and-conquer approach to probl.- solving calLd step*ise refinement.

That way, you can place declarations close to where rhey are used. The declarations are local ro rhe
block and cease ro exist when the block completes.

A PL/SQL block has three parts: a declarative part, an executable pan, and an exception-handling pan.
(In PLISQL, a warning or error condition is called an exception.) o;ly the execumbi. prrt is ,eq.rilJ.
The order of the parts is logical. First comes the declarative parr, in which items can be declared. Once
declared, items can be manipulated in the executable part. Lxceptions raised during execurion can be
dealt with in the exception-handling part,

You can nest sub-blocks in the executable and exception-handling parcs of a PLISQL block or subprogram
but not in the declarative pan. Also, you can define local subprograms in the declaiative part of. any biock.
However, you can call local subprograms only from the block in which they are defined.

6.3 VARIABLES AND CONSTANTS
PLISQL lets you declare constants and variables, rhen use them in SQL and procedural starements
anywhere an expression can be used. However, forward references .r. ,rot ,llo*ed. So, you must declare
a constant or variable before referencing it in other statements, including other declarative sraremenrs.

6.3. 1 Declaring Variables

Variables can have any SQL datatype, such as CHAR, DATE, or NUMBER, or any pLlSeL
daatype, such as BOOLEAN or BNARY-INTEGER. For example, assume that you *rrri to declare

PLISQL 133

134 Client Server Computing with Oracle .S. University - D.D.C.E.

a variable named part-no to hold 4-digit numbers and a variable named in-stock to hold the Boolean

value TRUE or FALSE. You declare these variables as follows:

part_no NUMBER(a);

in_stoch BOOLEAN;

You can also declare nested tables, variable-size arrays (varrays for short), and records using the
TABLE, VARRAY, and RECORD composite datatypes.

Assigning Values to a Variablc

You can assign values to a variable in three ways. The first way uses the assignment operator (,=), a
colon followed by an equal sign. You place the variable to the left of the operator and an expression
(which can include function calls) to the right. A few examples follow:

tax :- price * tax_rate;

valid_id:: FALSE;

bonus:- current_salary * 0.10;

wages : = grossjay(emp_id, st_hrs, ot_hrs) - deductions;

The second way to assign values to a variable is by selecting (or fetching) database values into it. In the
example below, you have Oracle compute a l0o/o bonus when you select the salary of an employee.

Now, you can use the variable bonus in another computation or insert its value into a database table.

SELECT sal * 0.10INTO bonus FROM emp ttr[HERE emPno = emP-id;

The third way to assign values to a variable is by passing it as an OUT or IN OUT parameter to a

subprogram. As the following example shows, an IN OUT parameter lets you pass initial values to the
subprogram being called and return updated values to the caller:

DECLARE

my*sal REAL(7,2);

PROCEDURE adjust_salary (emp id INT, salary IN OUT REAL) IS ...

BEGIN

SELECT AVG(sal) INTO my_sal FROM emp;

adjust_salaryV788, my_sal); -. assigns a new value to my_sal

6.3.2 D eclarin g Constants

Declaring a constant is like declaring a variable except that you must add the keyword CONSTANT
and immediately assign a value to the constant. Thereafter, no more assignments to the constant are

allowed. In the following example, you declare a constant named credit_limit:

credit limit CONSTANT REAL:: 5000.00;

M.S. University - D.D.C.E. PLISQL 13s

6.4 CURSORS

Oracle uses work areas to execute SQL statements and $ore processing information. A PL/SQL
construct called a cursor lets you name a work area and access its stored information. There are two
kinds of cursors: implicit and explicit. PLISQL implicitly declares a cursor for all SQL data
manipulation statements, including queries that return only one row. For queries that return more than
one row, you can explicitly declare a cursor to process the rows individually. An example follows:

DECLARE

CURSOR cl IS

SELECT empno, ename, job FROM emp]$(HERE deptno : 20;

The set of rows returned by a multi-row query is called the result set. Its size is the number of rows
that meet your search criteria. An explicit cursor "points" to the current row in the result set. This
allows your program to process the rows one at a time.

Multi-row query processing is somewhat like file processing. For example, a COBOL program opens a

file, processes records, then closes the file. Likewise, a PLISQL proBram opens a cursor, processes

rows returned by a quer/r then closes the cursor. Just as a file pointer marks the current position in an

open file, a cursor marhs the current position in a result set.

You use the OPEN, FETCH, and CLOSE statements to control a cursor. The OPEN statement
executes the query associated with the cursor, identifies the result set, and positions the cursor before
the first row. The FETCH statement retrieves the current row and advances the cursor to the next
row. \7hen the last row has been processed, the CLOSE statement disables the cursor.

6.4.1 Cursor FOR Loops

In most situations that require an explicit cursor, you can simplify coding by using a cursor FOR loop
instead of the OPEN, FETCH, and CLOSE statements. A cursor FOR loop implicitly declares its
loop index as a record that represents a row fetched from the database. Next, it opens a cursor,
repeatedly fetches rows of values from the result set into fields in the record, then closes the cursor
when all rows have been processed. In the following example, the cursor FOR loop implicitly declares

emp_rec as a record:

DECLARE

CURSOR c1 IS

SELECT ename, sal, hiredate, deptno FROM emp;

BEGIN

FOR emp_rec IN cl LOOP

salary_total :: salary_total + emp_rec.sal;

END LOOP;

M.S. University - D.D.C.E.136 Client Server Computing with Oracle

To reference individual fields in the record, you use dot notation, in which a dot (.) serves as the
comPonent seledor.

6.4.2 Cursor Variables

Like a cursor, a cursor variable points to the current row in the result set of a multi-row query. But,
unlike a cursor, a cursor variable can be opened for any type-compatible query. It is not tied to a

specific query. Cursor variables are tnre PL/SQL variables, to which you can assign new values and
which you can pass to subprograms stored in an Oracle database. This gives you more flexibility and a

convenient way to centralize data retrieval.

Typically, you open a cursor variable by passing it to a stored procedure that declares a cursor variable
as one of its formal parameters. The following procedure opens the cursor variable generic_cv for the
chosen query:

PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp,choice NUMBER) IS

BEGIN

IFchoice:1THEN

OPEN generic_cv FOR SELECT 't FROM emp;

ELSIFchoice:2THEN

OPEN generic_cv FOR SELECT * FROM dept;

ELSIFchoice:3THEN

OPEN generic_cv FOR SELECT * FROM salgrade;

END IF;

END;

6.4.3 Attributes

PL/SQL variables and cursors have attributes, which are properties that let you reference the datatype
and structure of an item without repeating its definition. Database columns and tables have similar
attributes, which you can use to ease maintenance. A percent sign (7d serves as the attribute indicator.

%TYPE

The o/oTYPE attribute provides the datatype of a variable or database column. This is particularly
useful when declaring variables that will hold database values. For example, assume there is a column
named title in a table named books. To declare a variable named my_title that has the same datatype as

column title, use dot notation and the o/oTYPE attribute, as follows:

my_title books.titleo/oTYPE;

Declaring my_title with o/oTYPE has two advantages. First, you need not know the exact datatype of
title. Second, if you change the database definition of title (make it a longer character string for
example), the datatype of my_title changes accordingly at run time.

M.S. University - D.D.C.E. PLISQL 137

%ROWTTPE

In PLISQL, records are used to group data. A record consists of a number of related fields in which
data values can be stored. The ./oRO\7TYPE attribute provides a record type that represents a row in
a table. The record can store an entire row of data selected from the table or fetched from a cursor or
cursor variable.

Columns in a row and corresponding fields in a record have the same names and datatypes. In the
example below, you declare a record named dept_rec. Its fields have the same names and datatypes as

the columns in the dept table.

6.4.4 Declare

dept_rec depto/oRO\7TYPE; - declare record variable

You use dot notation to reference fields, as the following example shows:

my_deptno : : dept_rec.deptno;

If you declare a cursor that retrieves the last name, salary, hire date, and job title of an employee, you
can use '/oRO'$7TYPE to declare a record that stores the same information, as follows:

DECLARE

CURSOR cl IS

SELECT ename, sal, hiredate, job FROM emp;

emp_rec cloloRO'WTYPE; - declare record variable that represents

-- a row fetched from the emp table

'When you execute the statement

FETCH cI INTO emp_rec;

the value in the ename column of the emp table is assigned to the ename field of emp_rec, the value in
the sal column is assigned to the sal field, and so on.

6.5 CONTROL STRUCTURES

Control structures are the most important PLISQL extension to SQL. Not only does PLISQL let you
manipulate Oracle data, it lets you process the data using conditional, iterative, and sequential flow-of-
control statements such as IF-THEN-ELSE, CASE, FOR-LOOP, \flHILE-LOOP, EXIT-\7HEN, and
GOTO. Collectively, these statements can handle any situation.

6.5.1 Conditional Control

Often, it is necessary to take alternative actions depending on circumstances. The IF-THEN-ELSE
statement lets you execute a sequence of statements conditionally. The IF clause checks a condition;
the THEN clause defines what to do if the condition is true; the ELSE clause defines what to do if the
condition is false or null.

Consider the program below, which processes a bank transaction. Before allowing you to withdraw
$500 from account 3, it makes sure the account has sufficient funds to cover the withdrawal. If the

138 Client Server Computing with Oracle M.S. University - D.D.C.E.

funds are available, the program debits the account. Otherwise, the program inserrs a record into an
audit table.

- available online in file 'examp2'

DECLARE

acct_balance NUMBER (11,2) ;

acct CONSTANT NUMBER(4) :- 3;

debit_amt CONSTANT NUMBER(5,2) := 5OO.0O;

BEGIN

SELECT bal INTO acct_balance FROM accounrs

\7HERE account_id : acct

FOR UPDATE OF bal;

IF acct_balance): debit_amt THEN

UPDATE accounts SET bal = bal - debit amt

II7HERE accounr id = accti

ELSE

INSERT INTO temp VALUES

(acct, acct_balance,'Insufficient funds');

- insert account, current balance, and message

END IF;

COMMIT;

END;

To choose among several values or courses of action, you can use CASE constructs. The CASE
expression evaluates a condition and returns a value for each case. The case statement evaluates a

condition and performs an action (which might be an entire PLISQL block) for each case.

- This CASE statement performs different actions based

- on a set of conditional tests.

CASE

TU(HEN shape : 'square' THEN area i: side * side;

\flHEN shape - 'circle' THEN

BEGIN

^rea::
pi * (radius * radius);

DBMS_OUTPUT.PUT_LINE('VaIue is not exad because pi is irrational.');

M.S. University - D.D.C.E. PLISQL 13e

END;

\7HEN shape - 'rectangle' THEN
^rea':=

length * width;

ELSE

BEGIN

DBMS_OUTPUT.PUT-LINE('No formula to calculate area of. a' | | shape);

RAISE PROGRAM ERROR;

END;

END CASE;

A sequence of statements that uses query results to select alternative actions is common in database

applications. Another common sequence inserts or deletes a row only if an associated entry is found in
another table. You can bundle these common sequences into a PLISQL block using conditional logic.

6.5.2 lter ative Control

LOOP statements let you execute a seguence of statements multiple times. You place the keyword
LOOP before the first statement in the sequence and the keywords END LOOP

after the last srarement in the sequence. The following example shows the simplest kind of loop, which
repeats a sequence of statements continually:

LOOP

- sequence of statements

END LOOP;

The FOR-LOOP statement lets you specify
^

runge of integers, then execute a sequence of statements

once for each integer in the range. For example, the following loop inserts 500 numbers and their
square roots into a database table:

FOR num IN 1..500 LOOP

INSERT INTO roots VALUES (num, SQRT(num));

END LOOP;

The IUTHILE-LOOP statement associates a condition with a sequence of statements. Before each

iteration of the loop, the condition is evaluated. If the condition is true, the sequence of statements is

executed, then control resumes at the top of the loop. If the condition is false or null, the loop is

bypassed and control passes to the next statement.

In the following example, you find the first employee who has a salary over $2500 and is higher in the

chain of command than employee7499:

- available online in file 'examp3'

DECLARE

salary emp.salo/oTYPE:= 0;

mgr_num emp.mgro/oTYPE;

140 Client Server Computing with Oracle

last_name emp.enameo/oTYPE;

starting_empno emp.empnoo/oTYPE : = 7 499 ;

BEGIN

SELECT mgr INTO mgr_num FROM emp

I7HERE empno = starring_empno;

\7HILE salary (= 2500 LOOP

SELECT sal, mgr, ename INTO salary, mgr_num,last_name

FROM emp \trHERE empno - mgr_num;

END LOOP;

INSERT INTO temp VALUES (NULL, salary,last_name);

COMMIT;

EXCEPTION

\UTHEN NO-DATA-FOUND THEN

INSERT INTO temp VALUES Q{ULL, NULL,'Not found');

COMMIT;

END;

The EXIT-\rHEN :tat:ment lets you complete a loop if furrher processing is impossible or
undesirable. \(hen the EXIT $atement is encounrered, the condition in the I7HEN clause is
evaluated. If the condition is true, the loop completes and control passes to rhe next srarement. In the
following example, the loop completes when the ,alue of totd e*...ds 25,000.

LOOP

total :: toral + salary;

EXIT \[HEN total > 25000; - exit loop if condition is true

END LOOP;

- control resumes here

6.5.3 Sequential Control

The GOTO shtement lets you branch to a label unconditionally. The label, an undeclared identifier
enclosed by doutle angle brackets, must precede an executable sratemenr or a pLlSeL block. \rhen
executed, the GOTO statement transfers control to rhe labeled srarement or block, i, th. following
example shows:

IF rating > 90 THEN

GOTO calc_raise; - branch to label

M,S. University - D.D.C.E.

M.S. Universiry - D.D.C.E.

END IF;

((calc raise))
ff lob-Utl. = 'SALESMAN' THEN - conrrol resumes here

amount := commission * 0.25;

ELSE

amount :- salay * 0.10;

END IF;

PLISQL 141

6.6 MODULARITY
Modularity lets you break an application down into manageable, well-defined modules. Through
successive refinement, you can reduce a complex problem to

"
,"t of simple problems rhat have easiy-

to-implement solutions. PLISQL meets this need with program .rrii r,- which include blo.lrs,
subprograms, and packages.

5.6.1 Subprograms

PL/SQL has two types of subprograms called procedures and functions, which can take paramerers
and be invoked (called). As.the following .""-pl. shows, a subprogram is like a miniaturi program,
beginning with a header followed by an option;l declarative p"*, .i executable part, and ", opio.rri
exception-handling parr:

PROCEDURE award_bonus (emp_id NUMBER) IS

bonus REAL;

comm_missing EXCEPTION;

BEGIN - executable parr stans here

SELECT comm * 0.15INTO bonus FROM emp TUTHERE empno = emp_id;

IF bonus IS NULL THEN

RAISE comm_missing;

ELSE

UPDATE payroll SET pay = pay + bonus \ilHERE empno = emp_id;

END IF;

EXCEPTION - exception-handling parr srarts here

\7HEN comm_missing THEN

END award_bonus;

142 Client Server Computing with Oracle M.S. University - D.D.C.E.

'When called, this procedure accepts an employee number. It uses the number to seled the employee's

commission from a database table and, at the same time, compute a 15o/o bonus. Then, it checks the bonus

amount. If the bonus is null, an exception is raised; otherwise, the employee's payroll record is updated.

6.6.2 Packages

PLISQL lets you bundle logically related types, variables, cursors, and subprograms into a package.

Each package is easy to understand and the interfaces between packages are simple, clear, and well
defined. This aids application development.

Packages usually have two parts: a specification and a body. The specification is the interface to your
applications; it declares the types, constants, variables, exceptions, cursors, and subprograms available

for use. The body defines cursors and subprograms and so implements the specification.

In the following example, you package two employment procedures:

CREATE PACKAGE emp_actions AS - package specification

PROCEDUM hire_employee (empno NUMBER, ename CHAR, ...);

PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

CREATE PACKAGE BODY emp_actions AS - package body

PROCEDURE hire-employl,e (empno NUMBER, ename CHAR, ...) IS

BEGIN

INSERT INTO emp VALUES (empno, ename, ...);

END hire_employee;

PROCEDURE fire_employee (emp_id NUMBER) IS

BEGIN

DELETE FROM emp I$7HERE empno : emp_id;

END fire_employee;

END emp_actions;

Only the declarations in the package specification are visible and accessible to applications.
Implementation details in the package body are hidden and inaccessible.

Packages can be compiled and stored in an Oracle database, where their contents can be shared by
many applications. 1$7hen you call a packaged subprogram for the first time, the whole package is

loaded into memory. So, subsequent calls to related subprograms in the package require no disk I/O.
Thus, packages can enhance productivity and improve performance.

6.7 INFORMATION HIDING
'With information hiding, Iou see only the details that are relevant at a given level of algorithm and

data structure design. Information hiding keeps high-level design decisions separate from lowJevel
design details, which are more likely to change.

M.S. University - D.D.C.E. PLISQL 143

Algoithns

You implement information hiding for algorithms through top-down design. Once you define the
Pu{Pose and interface specifications of a lowJevel procedure, youi* ignore the implementation details.
They are hidden at higher levels. For example, the implementarion of a procedure named raise_salary is
hidden. All you need to \"oy is that the procedure will increase a speciiic employee's salary by a given
amount. Any changes to the definition of raise_salary are ffansparenr ro caling applications.

Data Sttuctures

You implement information hiding for data structures though data encapsulation. By developing a set
of_utility subprograms for a data structure, you insulate it from .rr.r, ,rrd other devejop.rr. 'ihrf *"y,
other developers know how to use the subprograms thar operate on the data structure but not how the
structure is represented.

I$fith PLISQL packages, you can specify whether subprograms are public or private. Thus, packages

:"{:t:: data encapsulation by letting you put subpiogram definiiions in a black bo*. A pri#.
definition is hidden and. inaccessible. Only the package, nor your application, is affected if the
definition changes. This simplifies maintenance andinhancement.

6.8 ERROR HANDLING
PLISQL makes it easy to detect and process predefined and user-defined error conditions called
excePtions. Itrflhen an error occurs, an exception is raised. That is, normal execution stops and control
transfers to the exception-handling pan of your PLISQL block or subprogram. To handle raised
exceptions, you write separare routines called exceprion handlers.

Predefined exceptions.are raised implicitly by the runrime sysrem. For example, if you try to divide a
number by zero, PLISQL raises the predefined exceprion ZERO_DryIDE automatically. you must
raise user-defined exceptions explicitly with the RAISE starement.

You can define exceptions of your own in the declarative part oI aay PLISQL block or subprogram.
In the executable Part, you check for the condition that needs sp"cial attent]on. If you find that the
condition exists, you execute a RAISE statement. In the .*r-pl. below, you compute the bonus
earned by a salesperson. The bonus is based on salary and commission. So, ii the commission is null,
you raise the exception comm_missing.

DECLARE

comm_missing EXCEPTION; - declare exception

BEGIN

IF commission IS NULL THEN

RAISE comm_missirg, -- raise exceprion

END IF;

bonus ;: (salary * 0.10) + (commission * 0.15);

144 Client Server Computing with Oracle

EXCEPTION

\7HEN comm_missing THEN... - process the exception

M.S. University - D.D.C.E.

6.9 PL/ SQL ARCHITECTURE

The PLISQL compilation and run-time system is a technology, not an independent produd. Think of
this technology as an engine that compiles and executes PLISQL blocks and subprograms. The engine
can be installed in an Oracle server or in an application development tool such as Oracle Forms or
Oracle Reports. So, PLISQL can reside in two environments:

6.9.1 The Oracle Database Server

Oraclc Tools

These two environments are independent. PLISQL is bundled with the Oracle server but might be

unavailable in some tools. In either environment, the PL/SQL engine accepts as input any valid
PL/SQL block or subprogram. The engine executes procedural statements but sends SQL statements
to the SQL Statement Executor in the Oracle server.

In the Oracle Database Senter

Application development tools that lack a local PLISQL engine must rely on Oracle to process

PLISQL blocks and subprograms. When it contains the PLISQL engine, an Oracle server can process

PLISQL blocks and subprograms as well as single SQL statements. The Oracle server passes the blocks
and subprograms to its local PLISQL engine.

Anonyrnous Blocks

Anonymous PLISQL blocks can be embedded in an Oracle Precompiler or OCI program. At run
time, the program, lacking a local PL/SQL engine, sends these blocks to the Oracle server, where they
are compiled and executed. Likewise, interactive tools such as SQL'rPlus and Enterprise Manager,
lacking a local PLISQL engine, must send anonymous blocks to Oracle.

6.9.2 Stored Subprograms

Subprograms can be compiled separately and stored permanently in an Oracle database, ready to be

executed. A subprogram explicitly CREATEd using an Oracle tool is called a stored subprogram.
Once compiled and stored in the data dictionary, rt is a schema object, which can be referenced by any

number of applications connected to that database.

Stored subprograms defined within a package are called packaged subprograms. Those defined
independently are called standalone subprograms. Those defined within another subprogram or within
a PLISQL block are called local subprograms, which cannot be referenced by other applications and
exist only for the convenience of the enclosing block.

Stored subprograms offer higher productivity, better performance, memory savings, application
integrity, and tighter security. For example, by designing applications around a library of stored

procedures and functions, you can avoid redundant coding and increase your productivity.

M.S. University - D.D.C.E. PLISQL 14s

You can call stored subprograms from a database trigger, another stored subprogram, an Oracle

Precompiler application, an OCI application, or interactively from SQL*Plus or Enterprise Manager.

For example, you might call the standalone procedure create_dept from SQL*Plus as follows:

SQL > CALL create_dept(FINANCE','NE'\U(YORK');

Subprograms are stored in parsed, compiled form. So, when called, they are loaded and passed to the

PLISQL engine immediately. Also, they take advantage of shared memory. So, only one copy of a

subprogram need be loaded into memory for execution by multiple users.

Database Triggers

A database trigger is a stored subprogram associated with a database table, view, or event. For instance,

you can have Oracle fire a trigger automatically before or after an INSERT, UPDATE, or DELETE
sratemenr affects a table. One of the many uses for database triggers is to audit data modifications. For
example, the following tableJevel trigger fires whenever salaries in the emp table are updated:

CREATE TRIGGER audit_sal

AFTER UPDATE OF sal ON emp

FOR EACH RO\r

BEGIN

INSERT INTO emp_audit VALUES ...

END;

' The executable part of a trigger can contain procedural statements as well as SQL data manipulation

statemenrs. Besides table-level triggers, there are instead-of triggers for views and system-event triggers

for schemas.

In Orade Tools

'$[hen it contains the PLISQL engine, an application development tool can process PLISQL blocks

and subprograms. The tool passes the blocks to its local PLISQL engine. The engine executes all

procedural sratements at the application site and sends only SQL statements to Oracle. Thus, most of
the work is done at the application site, not at the server site.

Furthermore, if the block contains no SQL statements, the engine executes the entire block at the

application site. This is useful if your application can benefit from conditional and iterative control.

Frequently, Oracle Forms applications use SQL statements merely to test the value of field entries or
to do simple computations. By using PLISQL instead, you can avoid calls to the Oracle server.

Moreover, you can use PL/SQL functions to manipulate field entries.

6.10 ADVANTAGES OF PLISQL

PL/SQL is a completely portable, high-performance transaction processing language that offers the

Iollowing advantages:

. Support for SQL

. Support for object-oriented programming

146 Client Server Computing with Oracle

. Better performance

. Higher productivity

. Full portability

. Tight integration with Oracle

. Tight security

Suppotrfor SpL

SQL has become the standard database language because
few EnglishJike commands such as SELELT, fNSfRt,
manipulate the dara srored in a relational database.

M.S. University - D.D.C.E.

it is flexible, powerful, and easy to learn. A
UPDATE, and DELETE make it easy to

SQL-" non-procedural, meaning that you can state what you want done without staring how to do it.
oracle determines the best way to carry out your reques,. Th.r. is no necessary connection between
consecutive statements because oracle executes sQL statements one at a time.
PL/SQL

-
lets you use all the SQL data manipulation, cursor conrrol, and rransaction control

commands, as well as a-ll the SQL functio^, op.irtors, and pseudocolumns. So, you can manipulate
oracle data flexibly and safely. Also, PLlSQr {uily supporrs 3qt drrr,ypes. That'reduces the need to
convert data passed between your applications and the drtrbrr".
PLISQL also suppons- dynamic SQL,_-an advanced programming technique rhar makes your
applications more flexible and versatile. Your progrr-r^.rrr"brild an"d pro..r, SeL data definiiion,
data control, and session control statements "on the*fly" at run time.

S upport for O bj ect-Oriented Programming

object tyPes are an ideal object-oriented modeling tool, which you can use to reduce the cost and time
required to build complex applications. Besides allowing you ro creare sofrware componenrs thar are
modular, maintainable, and reusable, object types alloJ different reams of programmers ro develop
software components concurrently.

By.encapsulating operations with data, object types let you move data-maintenance code out of SeL
scripts and PLISQL blocks into methods. Also, ob;".t types hide implementation details, ,o th.t yi,,
can change the details without affecting client programs.

In- addition, object types allow for realistic data modeling. Complex real-world entities and
relationships maP directly into object types. That helps yo.r. p"rogrrrrs b.rr.. ,.fl"., the world they
are trying to simulate.

Better Perforrnance

\Tithout PL/SQL, oracle must process SQL r:,'"'ments one ar a time. Each SeL staremenr results in
another call to oracle and higher performance a.,erhead. In a nerworked enviionmenr, the overhead
can become significant. Every time a SQL statement is issued, it must be sent over rhe nerwork,
creating more traffic.

Frowever, with PLISQL, an entire block of statemenrs can be senr ro oracle ar one time. This can
drastically reduce communication between your application and oracle. If you*ipli."rio, is database
intensive, you can use PL/SQL blocks and s,rbprogir-, ,o group SeL statem.rrt, b"for" ,"rdirrg th.-
to Oracle for execution.

M.S. University - D.D.C.E. PLISQL 147

PL/SQL stor€d procedures are compiled once and stored in executable form, so procedure calls are
quick and efficient. Also, stored procedures, which execute in the server, can be invoked over slow
nets/ork connections with a single call. That reduces network traffic and improves round-trip response
times. Executable code is automatically cached and shared among users. That loweri memory
requirements and invocation overhead.

PLISQL also improves performance by adding procedural processing power to Oracle tools. Using
PLISQL, a tool can do any computation quickly and efficiently without calling on rhe Oracle ,.*.r.
This saves time and reduces network traffic.

Higher Productiaitjt

PLISQL adds functionality to non-procedural tools such as Oracle Forms and Oracle Reports. Vith
PL/SQL in these tools, you can use familiar procedural consrructs to build applications. For example,
you can use an entire PI /SQL block in an Oracle Forms trigger. You need nor use multiple trigger stips,
macros, or user exits. Thus, PL/SQL increases productivity by putting better tools in your hands.

Also, PL/SQL is the same in all environments. As soon as you masrer PL/SQL with one Oracle tool,
you can transfer your knowledge to other tools, and so multiply the productivity gains. For example,
scripts written with one rool can be used by other tools.

Full Portabilitg

Applications written in PLISQL are portable to any operaring sysrem and platform on which Oracle
runs. In other words, PLISQL programs can run anywhere Oracle can run; you need not tailor them
to each new environment. That means you can write portable program libraries, which can be reused
in different environmenrs.

Tight Integration with SQL

The PL/SQL and SQL languages are tightly integrated. PLISQL supporrs all the SQL datatypes and
the non-value NULL. That allows you manipulate Oracle data easily and efficiently. It also helps you
to write high-performance code.

The o/oTYPE and ./.RO'$7TYPE attributes further integrate PLISQL with SQL. For example, you can
use the o/oTYPE attribute to declare variables, basing the declarations on the definitions of database
columns. If a definition changes, the variable declaration changes accordingly the next time you
compile or run your program. The new definition takes effect withour any effort on yorrr p"rt. ihit
provides data independence, reduces maintenance costs, and allows programs to adapt as the database
changes to meet new business needs.

Tight Secuity

PLISQL stored procedures enable you to partition application logic between rhe client and server.
That way, you can prevent client applications from manipulating sensitive O.racle data. Database
triggers written in PLISQL can disable application updates selectively and do conrenr-based auditing of
user inserts.

Funhermore, you can restrict access to Oracle data by allowing users ro manipulate it only through
str)red procedures that execute with their definer's privileges. For example; you can granr users access
tc a procedure that updates a table, but not grant them access to the table itself.

148 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

6.11 \T/HAT'S NE\$T/ IN PLISQL?

This section describes new feartures of PLISQL release 9.0.1 and provides pointers to additional information.

You can now insert into or update a SQL table by specifying a PLISQL record variable, rather than
specifying each record attribute separately. You can also select entire rows into a PL/SQL table of
records, rather than using a separate PL/SQL table for each SQL column.

Associatiae Arrajts

You can create collections that are indexed by VARCHAR2 values, providing features similar to hash
tables in Perl and other languages.

U s er- dcfi ne d co nstructors

You can now override the system default constnrctor for an object type with your own function.

Enhancements to UTL_FILE package

UTL_FILE contains several new functions that let you perform general file-management operations
from PLISQL.

TREAT Functionfor Objea Types

You can dynamically choose the level of type inheritance to use when calling object methods. That is,
you can reference an object type that inherits from several levels of parent types, and call a method
from a specific parent type. This function is similar to the SQL function of the same name.

Integration of SpL and. PL/SpL Parsers

PLISQL now supports the complete range of syntax for SQL statements, such as INSERT, UPDATE,
DELETE, and so on. If you received errors for valid SQL syntax in PLISQL programs before, those
statements should now work.

Because of more consistent error-checking, you might find that some invalid code is now found at
compile time instead of producing an error at runtime, or vice versa. You might need to change the
source code as part of the migration procedure.

CASE Statements and Expressions

CASE statements and expressions are a shorthand way of representing IF/THEN choices with
multiple alternatives.

Inheitance and Dgnamic Method Dispateh

Types can be declared in a supertype/subtype hierarchy, with subtypes inheriting attributes and
methods from their supertypes. The subtypes can also add new attributes and methods, and override
existing methods. A call to an object method executes the appropriate version of the method, based on
the type of the object.

Type Euolution

Attributes and methods can be added to and dropped from object types, without the need to re-create
the types and corresponding data. This feature lets the type hierarchy adapt to changes in the
application, rather than being planned out entirely in advance.

M.S. University - D.D.C.E. PLISQL 14e

New Date/Time Tlpes

The new datatype TIMESTAMP records dme values including fractional seconds. New datatypes

TIMESTAMP \7ITH TIME ZONE and TIMESTAMP \nTH LOCAL TIME ZONE allow you to
adjust date and time values to account for time zone differences. You can specify whether the time
zone observes daylight savings time, to account for anomalies when clocks shift forward or backward.

New datatypes INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH represent

differences between two date and time values, simplifying date arithmetic.

N atiae C ompilation of PL / S pL C ode

Improve performance by compiling Oracle-supplied and user-written stored procedures into native

executables, using typical C development tools. This setting is saved so that the procedure is compiled

the same way if it is later invalidated.

Irnproued Globaliqation and National Language Support

Data can be stored in Unicode format using fixed-width or variable-width character sets. String

handling and storage declarations can be specified using b1'te lengths, or character lengths where the

number of bytes is computed for you. You can set up the entire database to use the same length

semanrics for strings, or specify the settings for individual procedures; this setting is remembered if a

procedure is invalidated.

Table Functions and Cursor Expressions

You can query a set of returned rows like a table. Result sets can be passed from one function to
another, letting you set up a sequence of transformations with no table to hold intermediate results.

Rows of the result set can be returned a few at a time, reducing the memory overhead for producing
large result sets within a function.

Multile ue I C o lle ctions

You can ne$ the collection types, for example to create a VARRAY of PLISQL tables, a VARRAY of
VARRAYs, or a PLISQL table of PLISQL tables. You can model complex data structures such as

multidimensional arrays in a natural way.

Better Integration for LOB D atatype s

You can operare on LOB types much like other similar types. You can use character functions on

CLOB and NCLOB types. You can treat BLOB types as RANfs. Conversions between LOBs and

orher types are much simpler, particularly when converting from LONG to LOB types.

Enhancements to Bulk Operations

You can now perform bulk SQL operations, such as bulk fetches, using native dynamic SQL (the

EXECUTE IMMEDIATE statement). You can perform bulk insert or update operations that
continue despite errors on some rows, then examine the problems after the operation is complete.

MERGE Statement

This specialized statement combines insert and update into a single operation. It is intended for data

warehousing applications that perform particular patterns of inserts and updates.

150 Client Server Computing with Oracle M.S. University - D.D.C.E.

6.12 TRANSACTION

Transaction is a logical unit of data manipulation related tasks wherein either the all rhe component
tasks must be completed or none of them is executed in order to keep the database consisrenr. '$7hen

man]r transactions proceed in the database environment it is imperative that a stricr control is applied
on them failing which the consistency of the database cannor be ensured.

Transactions can very easily cause undesirable inconsistencies in a database especially when many of
them are executing coacurrendy. The problem has been studied in detail by designers and experts'and
it has been concluded that if a database enforces certain conditions on transaciior, -.rrrg.Lenr rhe
problem of inconsistency can be avoided.

The term ACID is abbreviation for those properties that must be associated with transacrions so rhar
the integrity of the database is ensured. The term when exrended reads:

A: Atomicity

C: Consistency

I: Isolation

D: Durability

Atomicitlt

A transaction typically contains a number of database operations. The Atomicity propert y of a
transaction ensures that either all the operations are carried tut successfully or none of ih. op.irtior*
is carried out at all. In the former case the transacrion is said to have compieted successfully ,rd i' th.
later it is said to have failed. A failed transaction does nor have any effe.ion the state of the database.
To monitor and control atomicity property of transactiorrs databrse systems provide a componenrs
called transaction managemenr sysrem.

Consistenclt

This property of. a transaction requires that the integrity rules of a database musr nor be violated. For
example, if an amount is being transferred from one reiation to another relation then the consistency
rule must ensure that the transaction does not creare or destroy an additional amount during iis
oPeration. That is the total amount in both the relations musr remain rhe same. This properry.rrlrr.,
that the database remains consistent before and after the execution of a transaction. The onus ro
enforce consisrency properry lies with the application programmers.

Isolation

In a multi-transaction environment many transactions may be executing concurrently on a single
database. This property makes sure that every transaction execures indeiendent of each other. To
monitor and control atomicity Property of transactions database sysrems irovide a component called
concurrency control system.

Durabilitjt

This property ensures that the changes made to the database are recorded in the physical database on
successful completion of a transaction. The recovery managemenr component of the database
management system takes care of durability of the transactions.

M.S. University - D.D.C.E. pLlSeL 151

To elucidate ACID properties consider a transaction (T1) in a banking database sysrem with following
characteristics:

. The database is maintained on a secondary srorage device like a hard disk.

. The system has a number of accounts.

. Transactions can read a data from the database to a variable in the memory by a READ operation -
READ(A,B) meaning the value of A (a database field) is copied into the variable B in the memory.

. Transactions can write a data stored in a variable A into the databaseby a \7RITE operation -
\fRITE(A,B) meaning the current value stored in variable A is copied into B in the database
immediately.

. The transaction T1 transfers Rs. 200 from an account named FirsrAc to another accounr named
SecondAc, i.e.,

T1: READ (FirstAc.Balance,X)

X <- X-200

\7RITE (X,FirstAc.Balance

X <- X+200

READ (SecondAc.Balance,X)

\7RITE (X,SecondAc.Balance)

In execution of this transaction the system musr ensure that the sum FirstAc.Balance +
SecondAc.Balance must not change failing which would mean rhar some amount of money has either
created or destroyed spuriously. This is the consistency properry of this rransacrion. The application
Programmer writing this transaction must enforce this consistency condition.

Now, consider that the transaction fails in between due to power failure or any other reason after the
FirstAc.Balance was decreased by 2OO but before SecondAc.Balance was updared. The consistency rule
is violated. This leaves that database in consistent srate. The transaction managemenr component of
the database management system applies mechanism ro ensure that the trrrrrr.tion follows atomicity
property so that either both the values are updated or neither.
'We were assuming here that this is the only transaction being executed at this time. However, in a real
life situation many transactions execute simultaneously. Now, suppose after the FirstAc.Balance has
been updated and before SecondAc.Balance is updated another rransacrion T2 accesses
SecondAc.Balance and adds 400 into it; then again the SecondAc.Balance is updated. At this point the
database again will enter into an inconsistent state. To avoid this concurrency conrrol component of
the database management system employs mechanisms ro ensure isolation of the transaction through
various concurrency control techniques.

Another assumption made here is that the VRITE operarion updates the database immediately.
However, in practice due to many reasons updation is not done right away. The operarions are
performed on a copy of the database and the actual recording in the database is done much later. The
recovery management component of the database management sysrem applies the property of
durability on the transaction to make sure that the changes created by transactions are eventually
recorded in the database.

152 Client Server Computing with Oracle M.S. University - D.D.C.E.

Fill in the blanks:

1. A block (or sub-block) lets you group logically related declarations and ;............... .

2. A PL/SQL construct called a cursor lets you name a work area and its stored
information.

3. PL/SQL now supports the'complete ranBe of syntax for statements

4. A database trigger is a stored subprogram associated with a ., view, or event.

5. Predefined exceptions are raised by the runtime system.

6.13 LET US SUM UP

A good way to get acquainted with PLISQL is to look at a sample program. The program below
processes an order for a tennis racket. First, it declares a variable of type NUMBER to store the
quantity of tennis rackets on hand. PLISQL lets you declare constants and variables, then use them in
SQL and procedural statements anywhere an expression can be used. However, forward references are

not allowed. Oracle uses work areas to execute SQL statements and store processing information. A
PL/SQL constnrct called a cursor lets you name a work area and access its stored information.
Control structures are the most important PL/SQL extension to SQL. Modularity lets you break an
application down into manageable, well-defined modules. \fith information hiding, /ou S€€ only the
details that are relevant at a given level of algorithm and data srnrcture design. PLISQL makes it easy
to detect and process predefined and user-defined error conditions called exceptions. \7hen an error
occurs, an exception is raised. The PL/SQL compilation and run-time system is a technology, not an
independent product. Think of this technology as an engine that compiles and execures PLISQL
blocks and subprograms. Transaction is a logical unit of data manipulation related tasks wherein either
the all the component tasks must be completed or none of them is executed in order to keep the
database consistent.

6.14 KEYSTORDS

PL/SgI; PLISQL is a block-structured language.

Canorc: A PL/SQL construct called a cursor lets you name a work area and access its stored information.

DauTiggers; A database trigger is a stored subprogram associated with a database table, view, or event.

Modulaitjt: Modularity lets you break an application down into manageable, well-defined modules.

Transaction' Transactions can very easily cause undesirable inconsistencies in a database especially
when many of them are execuring concurrently.

6.1s QUESTIONS FOR DISCUSSION

t.
)

Explain the declaration of variables and consrants in PLISQL.

\7hat is difference between cursors and cursors variables?

heck Your Pro

M.S. University - D.D.C.E. pLlSeL 153

3. Discuss the three types of control srructures.

4. \7hat is information hiding in PLISQL?

5. Explain the PLISQL architecture. Give its five advantages.

6. Discuss the term transacrion? Explain ACID.

Check Your Progress: Model Answers

L. Statements

2. Access

3, SQL

4. database table

5. rmphcrtly

5.16 SUGGESTED READINGS
Peter Rob, Carlos Coronel, Database Systems: Design, Implemmtation and Managemmt, Seventh edition,
Thomson Learning,2OOT

Silberschatz, Korth, Sudarshan, Database Systern Concepts,Fifth edition, McGraw-HilI, 2oo5

Elmasari Navathe, Fundamenals of Database Systems,Third edition, Pearson Education Asia, 2001

E. J. Yannakoudakis, Tlte Arcbitectural Logic of Database Systems, Springer-Verlag,Digitized2OOT

Fred R. McFadden, Jeffrey A. Hoffer, Daabase Mandgernent,Benjamin/Cummings, Digitized2OOT

Raghu Ramakrishnan, Johannes Gehrke, Database Managemrnt Systems, Third edition, McGraw-Hill Higher
Education,2003

LESSON

7

TRTGGERS

CONTENTS

7.0 Aims and Objectives

7.L Introduction

7.2 Database Triggers

7.2.1 Components /Parts of. a Trigger

7.2.2 Types of Triggers

7.2.3 CreatingTriggers

7.2.4 Modifying a Trigger

7.3 Let us Sum up

7.4 Keywords

7.5 Questions for Discussion

7.6 Suggested Readings

-

7.0 ArMS AND OBJECTTVES

After studying this lesson, you will be able to:

. Explain the concept of database triggers

o Discuss different types of rriggers

. Describe how to creare triggers

7.1 INTRODUCTION
A database trigger is a stored procedure that is fired when an inserr, update, or delete staremenrs is
issued against the associate table. The name trigger is appropri"t., ,, these are triggered (fired)
whenever the above-mentioned commands are execured. A trigger defines an acrion ;he database
should take when some database-related event occurs. Triggers iiay ,rr.d to supplement declarative
referential integrity, to enforce complex business rules, or to audit changes to dat*. The code within a
trigger, called the trigger body is made up of PLISQL blocks. Using triggers is one of the most
Practical ways to implement routines, thus granting integrity of data or operarions.

M.S. University - D.D.C.E. Triggers 155

T.2DATABASE TRIGGERS

A trigger is automatically executed without any action required by the user. A stored procedure on
other hand needs to be explicitly invoked. This is the main difference berween a triggei and a stored
procedure.

Database triggers can be used for the following purposes :

. To generare dara automatically.

' To enforce complex integrity constraints. (e.g. checking with sysdate, checking with data in
anorher table).

. To customize complex security authorizations.

. To maintain replicate tables.

o To audit data modifications.

Rc q uire d Sy ste m Piuilege s

To create a trigger on a table you must be able to alter that table. Therefore, you musr either be the
owner of that table, have the ALTER TABL_E privilege from the owner of th. table or yo,, ,ho.riJ
have the ALTER ANY TABLE system privilege. tn addirion you must have CREATE TRIGGER
system privilege.

Rcstictions

A trigger cannot execute the coMMIT, ROLLBACK, or SAVEpoINT commands. It also cannot call
procedures or functions that execute those tasks. The SELECT command can be used only with the
INTO clause.

Application Database

UPDATE t
SET,.

INSERT INTO t

DELETE
FROM t

156 Client Server Computing with Oracle M.S. University - D.D.C.E.

A row level (will be dealt in types of trigger) cannot read or change the contents of a table that is being

modified. This type of table is one in which the contents are being changed by an INSERT, UPDATE,
and DELETE commands, and the command has not been completed.

7.2.1 Components/Parts of a Trigger

A trigger has three parts:

. A trigger statement

. A trigger body

. A trigger restriction

A tiger statement: (SQL command that activates the trigger (triggering event) The trigger can be

acrivated by a SQL command or by a user event. In a table, it can be triggered b the INSERT,
UPDATE, or DELETE commands. The INSERT, UPDATE, or DELETE commands enable a
trigger. The same trigger can be invoked in more than one situation. The trigger statement fires the

trigger body. It also specifies the table to which the trigger is associated.

Tigger Bo4,/ Tigger Aaion: Trigger body is a PLISQL block or Java or C routine that is executed

when a triggering statement is issued.

Tigger Restrittion: Restrictions on a trigger can be achieved using the \7HEN clause. They can be

included in the definition of a trigger, wherein it specifies what condition must be true for the trigger
to be triggered.

Syntaxfor cteating a Tigger: Create or replace Trigger (trigger name)
Ibefore lafter] [Insert lUpdate lDelete]on (tablename) [foreachstatement/foreachrow]
[when (condition] l;

7.2.2Types of Triggers

A trigger's type is defined by the type of triggering transaction and by the level at which the trigger is
executed. Oracle 9i has the following types of triggers depending on the different applications.

. Before (INSERT, UPDATE, DELETE)Trigger

o After (INSERT, UPDATE, DELETE) Trigger

. Row level Trigger

. Statement level Trigger

. Instead of Trigger

. Schema Trigger

. Database level Trigger

Row ltaelTigger

Row level triggers execute once for each row in a transaction. The commands of row level triggers are

execured on all rows rhat are affected by the command that enables the trigger. Row level triggers are

the most common type of trigger used, often-used in data auditing applications.

M.S. University - D.D.C.E. Triggers 157

Row level triggers are created using the for each row clause in the create rrigger command.

Stateruent l*ael Tigger

Statement level triggers are triggered only once for each rransaction. For example when an UPDATE
command update 15 rows, the commands contained in the trigger .r. .*...rt.d only once, and not
with every processed row.

Statement level trigger are the default types of trigger created via the creare trigger command.

Before andAfierTigger

Since triggers are executed by events, they may be set ro occur immediately before of after those
events. \7hen a trigger is defined, you can specify whether the trigger 1nrrr, o..ry before or after the
triggering event i.e. inserr, update, or delete commands.

The BEFORE trigger is used in situations where the trigger acrion could determine if the trigger itself
should be executed, or when you need some preprocissing before execuring the comma"a. fU.
AFTER trigger is triggered only after the execution of the assoiiated triggering com-and.

A table can contain u-p to 12 triggers associated with the activation commands and triggering event.
There are six row-level and six staremenr-level triggers.

. BEFORE INSERT

o AFTER INSERT

. BEFORE UPDATE

. AFTER UPDATE

o BEFOREDELETE

o AFTER DELETE

row / statement

row / statement

row / statement

row / statement

row / statement

row / statement

Instead. ofTigger

Instead of trigger was first featured in Oracle 8. This was somerhing new in the world of triggers.
These are triggers that are defined on a view rather than on a tabll. Such triggers can be .rr[to
overcome the restrictions placed by Oracle on any view, which is deemed to b. ir-orr-rrpdateable. you
can use INSTEAD OF trigger to tell Oracle what to do instead of performing rhe actions that invoked
the trigger. For example you can use an INSTAED OF trigger or,'rri.* to ,.d]ir..t inserr into a table or
to update multiple tables that re part of a view. You can use INSTEAD OF trigger on either object
view or relational view.

In oracle 8, INSTEAD OF triggers are defined on the same evenrs as their table counterparts:
INSERT, UPDATE, or DELETE. Since there is no provision for a rrigger, which is run at a lock
time, then either locking must be implicit or the appliiation musr know i-h"i obj..ts to lock. Despite
this minor consrraint new rrigger have removed major consrrainrs on design.

There are a few restrictions on INSTEAD OF trigger. They are available only at the row level and not
at the statemenr level. They can be applied only to views and not to tables.

158 Client Server Computing with Oracle M.S. University - D.D.C.E.

Database - Leael Trigger

You can create triggers to be fired on database events, including errors, logons, logoffs, shutdowns, and
startups. You can use this rype of trigger to automate database maintenance or auditing actions.

Tom Dick and Harry sales Inc finds that insening simultaneously into two tables is a very useful job. It
achieves what could be done as a series of commands in a single command. They decide to use instead of
triggers and create a view on the tables order_master and order_detail to achieve the job of inserting into
two tables simultaneously. The coding and creation of the view and trigger is given below

Example

Create view ord_view as select order_master. orderno, order_master . ostatus,

order_detail . qty_deld, order_detail . qty_ord from order_masrer, order_detail

where order_master. orderno = order_detail . orderno

\7hen the above query is successfully compiled the output appears as shown below,

View created

Code to create a trigger on the above created view ord_view.

create or replace trigger order_mast_insert

INSTEAD OF insert on ord_view

referencing new as n each row

declare

cursor ecur is select 's form order_master

where order_master. orderno : :n . orderno ;

cursor dcur is select 'r- from order_detail

where order_detail . orderno : :n . orderno ;

a ecuro/orowtyPe ;

b dcuro/orowtype ;

begin

oPen ecur;

open dcur ;

fetch ecur into a ;

fetch dcur into b ;

if dcuro/onotfound then

insert into order_master (orderno, o_status)

values (:n . orderno, :n . o_status) ;

else

M.S. University - D.D.C.E.

update order_master set order_master . o_status : ;n

where order_master. orderno : :n. orderno;

end if ;

if ecuro/onotfound rhen

insert into order_detail (qty_ord, qty_deld, ordern)

values (:n . qty_ord, :n . qty)deld, :n . orderno) ;

else

update order_detail set order_detail. qty_ord = :n
order_detail . qty_deld : :n . qty_deld

where order_detail . orderno = :n . orderno ;

end if ;

close ecur ;

close dcur ;

end;

The output of the above code will be

Trigger created.

7.2.3 Creating Triggers

Creating DDL Eaent Trigger

A,s of. Oracle 8i, you can create triggers that are executed when a DDL event occurs. If you areplanning to use this feature solely for securiry purposes, you should irr.,r.r,igrr" using the auditcommand instead' You can use a DDL .r.o, ,rrgg.r a .*..rrr., function, i"a..lp*r.age, procedure,role, sequence, synonym,.table, type, or rriew. Ii"you can use the on schema.irrr", the trigger will
execure f.or any new dara dictionary objects in youi schema.

Examph

create trigger CREATE_DB_OBJECT_AUDIT

after create on schema

begin

call INSERT_AUDIT_RECORDS (sys.dictionary_obj_name)
;

end;

Triggers 159

end;

160 Client Server Computing with Oracle M.S. University - D.D.C.E.

Creating Database Eaent Tiggers

Like DML events, database events can execute triggers. 'When a database event occurs (a shutdown,

startup, or error), you can execute a trigger that references the attributes of the event. You could a use

database event to perform system maintenance functions immediately after each database startuP.

Pinning package is an effective way of keeping large PLISQL objects in the shared pool of nl€rnor/,

in prorrlrrg p.rfor-rrr.e and enhancing database stability. This trigger, PIN-ON-STARTUP, will run

each time the database is started.

create or replace trigger PIN-ON-STARTUP

after stanup on database

begin

DBMS_SHARED_POOL.KEEP (

'SYS.STANDARD"'P') ;

This example shows that trigger will be executed immediately after the database startuP.

7.2.4 Modifying a Trigger

A trigger cannor be directly modified. To change the definition of a trigger you must recreate the

trigg.l-*ith the CREATE command. If a trigger had its privileges granted to other users, they remain

valid as long as the trigger exists.

Enabling and Disabling Tiggers

\7hen a trigger is created it is automatically enabled and is triggered whenever the triggering command

and the .*ecrrtiol command is true. An enabled trigger executes the trigger body if the triggering

sratement is issued. To disable the execution of the use the ALTER TRIGGER command with the

DISABLE clause. A disable trigger does not execute the trigger body even if the triggering statement is

issued.
'We

can disable / enable the trigger by the following syntax:

ALTER TRIGGER (trigger name) DISABLE / ENAMBLE

Calling Prcced.ures Within Trigger

'We can call procedures within a trigger to avoid writing large bloclr of code in the trigger body. You

can save the code of the stored pro.edrr.e and call the procedure within the trigger, by using call

command, as shown in the following syntax

Create or replace Trigger (trigger name)
[before lafter] [Insert lUpdate lDelete]on (tablename) [foreachstatement/foreachrow]
[when (condition)];
begin

call < procedure name)
(statements)

end;

M.S, University - D.D.C.E. Triggers 161

Dcleting aTigger

To delete a trigger use the DROP TRIGGER command

Syntax

DROP TRIGGER (trigger name) ;

This removes the trigger structure from the database and withdraws the privileges that were granted to
other users.

Obtaining Irfonnation about a Tiggcr

Oracle has a view in data dictionary, accessible only by those with the privilege of DBA, that contains

data from all the triggers created for the DATABASE in use. This table is called DBA-TRIGGERS.
Following is a description of its contents (using System as login and manager as password to access this

table).

Desc command is used in the following example.

SQL> desc DBA_TRIGGERS;
Name Nu11 ? Type

OWNER

TRIGGER-NAME

TRIGGER_TYPE

TRTGGERING_EVENT

TABLE-OWNER

TABLE_NAME

REFERENCING_NAMES

WHEN-CI,AUSE

STATUS

DESCRIPTION

TRIGGER_BODY

NOT NULL

NOT NULL

NOT NULL

NOT NULL

vARCraR2 (30)

VARCHAR2 (30)

VARCHAR2 (16)

VARCHAR2 (26)

VARCHAR2 (30)

VARCHAR2 (30)

VARC}IAR2 (87)

VARCHAR2 (4OOO)

VARCIIAR2 (8)

vARCrrAR2 (4000)

LONG

To view the user's triggers, you use the view USER-TRIGGERS:

SQL > desc user_triggers
Name Nu11?

TRIGGER_NAI.,IE

TRIGGER_TYPE

TRIGGERING_EVENT

NOT NULL VARCHAR2 (30)

VARCHAR2 (15)

VARCHAR2 (26\

162 Client Server Computing with Oracle

Name

M.S. University - D.D.C.E

NuI1?

TABLE_OWNER

TABLE_NAME

REFERENCING_NAMES

WHEN_CLAUSE

STATUS

DESCRIPTION

TRfGGER_BODY

NOT NULL

NOT NULL

VARCHAR2 (30)

VARCHAR2 (30)

VARCIAR2 (87)

vARClaR2 (4000)

VARCHAR2 (8)

VARCHAR2 (4000)

LONG

Fill in the blanks:

1,. Triggers may used to supplement declarative referential , to enforce complex
business rules, or to audit changes to data.

2. A trigger cannot execute the , ROLLBACK, or SAVEPONT commands.

3. A trigger's type is defined by the rype of triggering and by the level at which the
trigger is executed.

7.3 LET US SUM UP

A trigger is automatically executed without any action required by the user. A stored procedure on
other hand needs to be explicitly invoked. A trigger cannot execute the COMMIT, ROLLBACK, or
SAVEPOINT commands. It also cannot call procedures or functions that execute those tasks. The
SELECT command can be used only with the INTO clause. The trigger can be acrivared by a SQL
command or by a user event. In a table, it can be triggered by the INSERT, UPDATE, or DELETE
commands. A trigger cannot be directly modified. To change the definition of a trigger you musr
recreate the trigger with the CREATE command. If a trigger had its privileges granted ro other users,
they remain valid as long as the trigger exists.

7.4 KEY\T/ORDS

Tigger Rcstriaioz.' Restrictions on a trigger can be achieved using the \7HEN clause.

Row l*uel Tigger: Row level triggers execute once for each row in a transaction.

Stateruent Leuel Tigger: Statement level triggers are triggered only once for each transacrion.

Before and Arter Triger: Since triggers are executed by events, they may be set to occur immediately
before of after those events.

lnstead ofTrigger.' These are triggers that are defined on a view rather than on a table.

Database-Leuel Trigger: You can create triggers to be fired on database events, including errors, logons,
logoffs, shutdowns, and startups.

M.S. University - D.D.C.E. Triggers 163

7.s QUESTTONS FOR DTSCUSSTON

1. r$(/hat is database triggers? In how many vrays database triggers can be used?

2. Explain the difference between row level trigger and statement level trigger.

3. Discuss the creation of DDL event trigger and database evenr trigger.

4. How can we enable and disable the trigger?

Check Your Progress: Model Answers

t. Integrity

2, COMMIT

3. transaction

7.6 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Database Systems: Design, Irnplementation and Managemmt, Seventh edition,
Thomson Learning,2})7

Silberschatz, Korth, Sudarshan, Database System ConcEts, Fifth edition, McGraw-Hill, 2005

Elmasari Navathe, Fundamentals of Daubase Systems, Third edition, Pearson Education Asia, 2001

E. J. Yannakoudakis, The Arcbiteaural Logic of Database Systems, Springer-Verlag,Digitized200T

Fred R. McFadden, Jeffrey A. Hoffer, Daabase Managernent, Benjamin/Cummings, Digitized2007

Raghu Ramakrishnan, Johannes Gehrke, Database Managemmt Systems, Third edition, McGraw-Hill Higher
Education, 2003

LESSON

8

STORED PROCEDURES, FUNCTIONS AND PACKAGES

CONTENTS

8.0

8.1

8.2

Aims and Objectives

Introduction

Stored Procedures

8.2.1 \flhere to Store Procedures?

8.2.2 How to Create and Execute Procedures?

Stored Functions

8.3.1 \7here to Store Functions ?

8.3.2 Create and Execute Functions

8.3.3 Advantages of Functions

Packages

8.4.1 Advantages of PL/SQL Packages

8.4.2 Understanding the Package Spec

8.4.3 ReferencingPackageContents

8.4.4 The Package Body

8.4.5 Overview of Product-Specific Packages

8.4.5 Guidelines for \Triting Packages

Let us Sum up

Keywords

Questions for Discussion

Suggested Readings

8.3

8.4

8.5

8.6

8.7

8.8

8.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

o Explain the concept of stored procedures

. Discuss stored functions

. Describe the packages

M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 155

8.1 INTRODUCTION
Procedures, also known as stored procedures, are srored in the database and are invoked or called by
any anonymous block (Ihe PLISQL block that appears within an application).

In this lesson we will discuss the stored procedures and function. We will also discuss packages.

8.2 STORED PROCEDURES

Procedures are named PL/SQL blocks that can take paramerers, perform an acrion and can be
invoked. A procedure is generally used to perform an action and to pass values.

Procedures are made up of the following parts:

. A declarative part,

. An execurable part,

. An optional exception-handling part.

Declaratiue Part: The declarative part may contain declarations of cursors, constants, variables,
excePtions, and subprograms. These objects are local to the procedure. The objects become invalid
once you exit from it.

Executablc Pan: The executable part contains a PLISQL block consisting of sratemenrs that assign
values, control execution and manipulate ORACLE data. The action to be performed is coded heie
and data that is to be returned back to the calling environment is also returned from here.

Exception Handling Part: this part contains code that performs an acrion to deal with exceptions
raised during the execution of the Executable part. This block can be used to handle Oracle's own
excePtions or the exceptions that are declared in the Declarative part. One cannot transfer the flow of
execution from the Exception Handling part to the Executable part or vice-versa.

8.2.1 Vhere to Store Procedures?

Before the procedure is created, ORACLE parses the procedure. Then this parsed procedure is stored
in the database.

Syntax for creating stored procedure:

CREATE OR REPLACE

PROCEDURE [schema.] procedurename.

(argument { IN, OUT,IN OUT} datatype, ...) {IS, AS}

variable declarations;

constant declarations.

BEGIN

PLISQL subprogram body;

EXCEPTION

exception PLISQL block;

END;

166 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

8.2.2 How to Create and Execute Procedures?

\fhen a procedure is created, ORACLE automatically performs the following steps:

1. Compiles the procedure.

2. Stores the compiled code.

3. Stores the procedure in the database.

The PLISQL compiler compiles the code. If an error occurs, then the procedure is created but it is an
invalid procedure. ORACLE displays a message during the time of creation that the procedure was
created with compilation errors.

It does not display the errors. These errors can be viewed using the select statement.

SELECT " FROM user_elrors;

ORACLE loads the compiled procedure in the memory area called the System Global Area (SGA).
This allows the code to be executed quickly. The same procedure residing in the SGA is executed by
the other users also.

Exccution af Prccedures

ORACLE performs the following steps to execute a procedure:

1. Verifies user access.

2. Verifies procedure validity.

3. Executes the procedure.

ORACLE checks if the user who called the procedure has the execute privilege for the procedure. If the
user is invalid, then access is denied otherwise Oracle proceeds to check whether the called procedure
is valid or not. The user can view the validity of the procedure by using the select statement as:

SELECT object_name, object_type, starus FROM user_objects;

\7HERE object_type - 'PROCEDURE';

Only if the status is aali.d, then the procedure can be executed. Once the procedure is found valid,
ORACLE then loads the procedure into memory. (.e. if it is not present in memory) and executes the
PLISQL code.

8.3 STORED FLINCTIONS

Functions are named PL/SQL blocks that can take parameters, perform an acrion and returns a value
to the host environment. A function can only return one value.

Functions are made up of:

1. A declarative part,

2. An executable part,

3. An optional exception-handling part.

M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 167

Declaratiue Pa*: The declarative part may contain declarations of type, cursors, constant, variables,
exceptions, and subprograms. These objects are local to the function. The objects become invalid
once you exit from the function. Here the datatype of the return value is also declared.

Exeeutable Part: The executable part contains a PL/SQL block consisting of sraremenrs rhar assign
values, control execution, and manipulate Oracle data. The acrion to be performed is coded here and
data that is to be returned back to the calling environment is also relurned from here. Variable
declared is put to use in this block. The return value is also passed back in this parr.

Exception Handling Part: This part contains code that performs an action to deal with exceptions
raised during execution of the Executable Part. This block can be used to handle Oracle's own
exceptions or the exceptions that are declared in the Declarative Part. One cannot transfer the flow of
execution from the Exception Handling Part to the Executable Part and vice-versa. The rerurn value
can also be passed back in this parr.

8.3.1 Vhere to Store Functions ?

Functions in Oracle are called stored functions. Functions are stored in the database and are invoked
or called by any anonymous block (a PLISQL block that appears within an application) Before the
function is created, Oracle parses the function. Then this parsed function is stored in the database.

8.3,2 Create and Execute Functions

\flhen a function is created, Oracle automatically performs the following sreps:

1. Compiles the function.

2. Stores the compiled code.

3. Stores the function in the database.

The PL/SQL compiler compiles the code. If an error occurs then the function is created bur it's an
invalid function. Oracle displays a message during the time of creation that the function was creared
with compilation errors. It does not display the errors. These errors can be viewed by using the select
statement:

SELECT'r FROM user_eTTors;

Oracle loads the compiled function in the memory area called the System Global Area (SGA). This
allows the code to be executed quickly. The same function residing in the SGA is execured by the
other users also.

Syntax for creating a stored function:

CREATE OR REPLACE

FUNCTION [schema.] functionname (argument IN datatype, ...)

RETURN datatype {IS, AS}

variable declarations;

constant declarations;

BEGIN

168 Client Server Compudng with Oracle M.S' University - D'D.C.E.

PLISQL subprogram body;

EXCEPTION

exception PLISQL block;

END;

Exccuting a Function

Oracle performs the following steps to execute a function:

1. Verifies user access.

2. Verifies function validity.

3. Executes the function.

Oracle checks if the user who called the function has the execute privilege for the function. If the user is

invalid, then access is denied else if the user is vdid, then it proceeds to check whether the called function
is valid or not. The user can view the validiry of the function by using the select statement as:

SELECT object_name, object-type, status

FROM user_objects,

\urHERE object type = 'FIJNCTIoN';

Only if the status is valid, the function can be executed. Once the function is found valid, Oracle loa&
the function into memory (i.e. if it is not currently present in memory) and executes the PLISQL code.

8.3.3 Advantages of Functions

1. SccariEt Stored functions can help enforce data security. For example you can grant users

access to function that can query a table, but not grant them access to the table itself.

2. Performancc: It improves database performance in the following ways:

* Amount of information sent over a network is less. No compilation step is required to
execute the code.

* As function is present in the shared pool of SGA, retrieval from disk is not required.

3. Mcmory Allocaabz.. Reduction in memory as stored functions have shared memory capabilities so

only one copy of function needs to be loaded for execution by multiple users.

4. Ptoduaiuigt: lncreased development productivity, by writing a single function we can avoid
redundant coding and increase productivity.

5. Integriry: Improves integrity, a function needs to be tested only once to guarantee that it returns
an accurate result. So committing coding errors can be reduced.

8.4 PACKAGES

A package is a schema object that groups logically related PLISQL types, items, and subprograms.

Packages usually have two parts, a specification and a body, although sometimes the body is

unnecessary. The specification (spec for short) is the interface to your applications; it declares the

M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 169

types, variables, constants, exceptions, cursors, and subprograms available for use. The body fully
defines cursors and subprograms, and so implements the sPec.

As the following figure shows, you can think of the spec as an operational interface and of the body as

a "black box." You can debug, enhance, or replace a package body without changing the interface

(package spec) to the package.

Applhrtbn Prdtge lhtuer-) @
E!

To create packageb, use rhe CREATE PACKAGE statement, which you can execute interactively

from SQL*Plus. Here is the syntax:

CREATE [OR REPLACE] PACKAGE package-name

TAUTHID {CURRENT_USER I DEFINER}]

{IS I AS}

IPRAGMA SERIALLY-REUSABLE;]

[collection-type-definition ...]

[record-type-definition ...]

[subtype definition ...]

[collection_declaration ...]

[constant-declaration ...]

[exception-declaration ...]

[object-declaration ...]

[record-declaration ...]

[variable_declaration ...]

[cursor_spec ...]

[function_spec ...]

[procedure_spec ...]

[call_spec ...]

IPRAGMA RESTRICT-REFERENCES(assenions) ...1

END [package_name];

170 Client Server Computing with Oracle M.S. University - D.D.C.E.

ICREATE IOR REPLACE] PACKAGE BODY package_name {IS I AS}

IPRAGMA SERIALLY-REUSABLE;]

[collection_type definition ...]

[record-type definition ...]

[subtype_definition ...]

[collection_declaration ...]

[constant_declaration ...]

[exception_declaration ...]

[object_declaration ...]

[record_declaration ...]

[variable_declaration ...]

[cursor_body ...]

[function_spec ...]

[procedure_spec ...]

[call_spec ...]

BEGIN

sequence_of_statements]

END [package_name];l

The spec holds public declarations, which are visible to your application. You musr declare
subprograms at the end of the spec after all other items.

The body holds implementation details and private declarations, which are hidden from your
application. Following the declarative part of the package body is the optional initialization parr,
which typically holds sratements rhar initialize package variables.

The AUTHID clause determines whether all the packaged subprograms execute with the privileges of
their definer (the default) or invoker, and whether their unqualified references ro schema objecis are
resolved in the schema of the definer or invoker.

A."[qp.! lets you publish aJava method or external C funoion in the Oracle &ta diaionary. The call spec
publishes the routine by mapping its name, parameter types, and return r1,?e ro their SQL counre{parrs.

In the example below, you package a record type, a cursor, and two employment procedures. Notice
that the procedure hire-employee uses the database sequence empno_seq and the function SYSDATE
to insert a new employee number and hire date, respectively.

CREATE OR REPLACE PACKAGE emp_actions AS - spec

TYPE EmpRecTyp IS RECORD (emp_id NT, salary REAL);

CURSOR desc_salary RETURN EmpRecTyp;

M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 171

PROCEDURE hire_employee (

ENAME VARCHAR2,

job VARCHAR2,

mgr NUMBER,

sal NUMBER,

COMIn NUMBER,

deptno NUMBER);

PROCEDURE fire-employee (emp-id NUMBER);

END emp_actions;

CREATE OR REPLACE PACKAGE BODY emp_actions AS - body

CURSOR desc_salary RETURN EmpRecTyp IS

SELECT empno, sal FROM emp ORDER BY sal DESC;

PROCEDURE hire_employee (

ename VARCHAR2,

job VARCHAR2,

mgr NUMBER,

sal NUMBER,

comm NUMBER,

deptno NUMBER) IS

BEGIN

INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,

mgr, SYSDATE, sal, comm, deptno);

END hire_employee;

PROCEDURE fire_employee (emp_id NUMBER) IS

BEGIN

DELETE FROM emp \7HERE empno : emp_id;

END fire_employee;

END emp_actions;

Only the declarations in the package spec are visible and accessible to applications. Implementation
details in the package body are hidden and inaccessible. So, you can change the body (implementation)
without having to recompile calling programs.

8.4.1 Advantages of PLISQL Packages

Packages Offer Scueral Adaantages: modularity, easier application design, information hiding, added

functionality, and better performance.

172 Client Server Computing with Oracle M.S. University - D.D.C.E.

Modulaity: Packages let you encapsulate logically relared types, items, and subprograms in a named
PLISQL module. Each package is easy to understand, and thi interfac", betw..r, p".krg.r are simple,
clear, and well defined. This aids application development.

Easier Application Design: rtrfhen designing an application, all you need initially is the interface
information in the package specs. You can code and compile a spec without its body. Then, stored
subprograms that reference the package can be compiled as well. You need not define the package
bodies fully until you are ready to complete the application.

Information Hiding: r$(ith packages, you can specify which rypes, irems, and subprograms are public
(visible and accessible) or private (hidden and inaccessible). For example, if a pr.krg. corrtains forr
subprograms, three might be public and one private. The package hides the implemenration of the
private subprogram so that only the package (not your application) is affected if ihe implemenrarion
changes. This simplifies maintenance and enhancement. Also, by hiding implementation details from
users, you protect the integrity of the package.

Added Functionality: Packaged public variables and cursors persist for the duration of a session. So,
they can be shared by all subprograms that execute in the environment. Also, they allow you to
maintain data across transactions without having to store it in the database.

Better Petformance: \ilhen you call a packaged subprogram for the first time, the whole package is
loaded into memory. So, later calls to related subprograms in the package require no disk I7O. Also,
packages stop cascading dependencies and thereby avoid unnecessary recompiling. For example, if you
change the implementation of a packaged function, Oracle need nor r..o-pil. the calling ,rrbprogr.*,
because they do not depend on the package body.

8.4.2 Understanding the Package Spec

The package sPec contains public declarations. The scope of these declarations is local to your database
schema and global to the package. So, the declared items are accessible from your applicaiion and from
anywhere in the package as shown below:

{-.-{n*ll:

{---{,ilffi'.

Eerke{s $rc

peclBgs sru

shslna

otherobjm'e

M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 123

The. spec lists the Package resources available to applications. All the information your application
needs to use the resources is in the spec. For example, the following declaration shows that the
function named fac takes one argument of type INTEGER and returns ,"rr"l.r. of type INTEGER:

FtTNCTION fac (n INTEGER) RETURN INTEGER; - rerurns n!

That is all the information you need to call the function. You need nor consider its underlying
implementation (whether it is iterative or recursive for example). Only subprograms and curso^ ir"rrl
an__underlying implementation. So, if a spec declares only typ.., .onrt.rrtrj r"ri"bl.r, exceptions, and
call specs, the package body is .rnrr...rrrry. consider th. foloiirrg bodiless package:

CREATE PACKAGE rrans_data AS - bodiless package

TYPE TimeRec IS RECORD (

minutes SMALLINT,

hours SMALLINT);

TYPE TransRec IS RECORD (

cetegory VARCHAR2,

accounr INT,

AMOUNT REAL,

time_of TimeRec);

minimum_balance CONSTANTREAL :: 10.00;

numberjrocessed INT;

insufficient_funds EXCEPTION;

END rrans_data;

The package trans-data needs no body because types, constants, variables, and exceptions do not have
an underlying implementation. Such packages let you define global',rrrirlles-rrsabie by subprograms
and database triggers-that persist throughout a session.

8.4.3 Referencing Package Contents

To reference- the tyPes, items, subprograms, and call specs declared within a package spec, use dot
notation, as follows:

package_name.type_name

package_name. item_name

package_name. subprogram_name

package_name. call_spec_name

You can reference package contents from database .triggers, stored subprograms, 3GL application
Programs, and various Oracle tools. For example,

-you
might caf th"e p".krg.d pio..a,rr.

hire_employee from SQL'rPlus, as follows:

SQL> CALL emp_actions.hire_employee(.TATE,, .CLERK,, . ..) ;

174 Client Server Computing with Oracle M.S. University - D.D.C.E.

In the example below, you call the same procedure from an anonymous PLISQL block embedded in a
Pro*C program. The actual parameters emp_name and job_title are ho$ variables (that is, variables

declared in a host environment).

EXEC SQL EXECUTE

BEGfN

emp-actions.hire-employee(:emp-name, : job-tit1e, . . .) ;

You cannot reference remote packaged variables directly or indirectly. For example, you cannot call

the following procedure remotely because it references a packaged variable in a parameter initialization
clause:

CREATE PACKAGE TANdOM AS

SEEd NUMBER;

PROCEDURE initialize (starter IN NUMBER := seed, ...);

Also, inside a package, you cannot reference host variables.

8.4.4 The Package Body

The package body implements the package spec. That is, the package body contains the

implementation of every cursor and subprogram declared in the package spec. Keep in mind that
subprograms defined in a package body are accessible outside the package only if their specs also

appear in the package spec.

To match subprogram specs and bodies, PL/SQL does a token-by-token comparison of their headers.

So, except for white space, the headers must match word for word. Otherwise, PL/SQL raises an

exception, as the following example shows:

CREATE PACKAGE emp_actions AS

PROCEDURE calc_bonus (date-hired emp.hiredateo/oTYnt, ...)t

END emp_actions;

CREATE PACKAGE BODY emp_actions AS

PROCEDURE calc_bonus (date-hired DATE, ...) IS

- parameter declaration raises an exception because 'DATE'

- does not match'emp.hiredateo/oTYPE'word for word

BEGIN... END;

END emp_actions;

The package body can also contain private declarations, which define types and items necessary for the

internal workings of the package. The scope of these declarations is local to the package body.

Therefore, the declared typ.r ,rrJitems are inaccessible except from within the package body. Unlike a

package spec, the declarative part of a package body can contain subprogram bodies.

M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 125

Following the declarative part of a package body is the optio nal initialization pa6, which typically
holds statements that initialize some of the variables previously declared in the p".k.g..
The initialization.Part of a package plays a minor role because, unlike subprograms, a package cannor
be called or Passed Parameters. As a result, the initializarion parr of a packaie is"run orrly orr..] the first
time you reference the package.

Remember, if a package spec declares only types, consranrs, variables, exceptions, and call specs, the
package body is unnecessary. However, the body can still be used to initiajize items declar.d in the
package spec.

Consider the package below named emp-actions. The package spec declares the following types, irems,
and subprograms:

o Types EmpRecTyp and DeptRecTyp

. Cursor desc_salary

o Exceptioninvalid_salary

. Functionshire_employeeandnth_highest_salary

. Procedures fire_employee and raise_salary

After writing the package, you can develop applications that reference its types, call im subprograms,
use its cursor, and raise its exception. \7hen you creare the package, it is stoied in an Oracle database
for general use.

CREATE PACKAGE emp_actions AS

TYPE EmpRecT]@ Is RECoRD (emp_id fNT, salary REAL);

TypE DeptRecTl@ IS RECORD (dept_id INT, location VARCIIAR2);

CURSOR desc_sa1ary RETURN EmpRecTlp;

invalid_salary EXCEpTION ;

FUNCTION hire_employee (ename VARCHAR2. job VARCHAR2, mgr REAL,
sa1 REAL, comm REAL, deptno REAL) RETURN INT;
PROCEDURE fire_empJ_oyee (emp_id INT) ;

PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL);
FIINCTION nth_highest_salary (n INT) RETURN BnpRecTtt);
END emp_actions;

CREATE PACKAGE BODY emp_actj_ons AS nunber_hired fNT; _ visible only in this package
CURSOR desc_salary RETURN FmpRecTlp IS
SELECT empno, sal FROM emp ORDER By sa1 DESC;

FIINCTION hire_employee (ename VARCHAR2, job VARCHAR2, mgr REAL,
sa1 REAL. cornm REAIJ, depLno REAL) RETURN rNT fs new-empno INT,.
BEGTN

SELECT empno_seq.NEXTVAL INTO new_empno FROM dual;
fNSERT INTO emp VALUES (new_empno, ename, job, mgr, SYSDATE, sa1, comm, deptno);

number_hired := number_hired + 1;

176 Client Server Computing with Oracle

RETURN new-empno;

END hire-emPloYee;

PROCEDURE fire-employee (emp-id INT) IS

BEGIN

DELETE FROM emp WHERE empno = emp-id;

END fire-emPloYee;

FIINCTION sal-ok (rank INT, salary REAL) RETURN BOOLEAN

M.S. University - D.D.C.E.

IS min-sal REAL;

max-sal REAL;

BEGIN

SELECT Iosal, hisat INTO min-sal, max-sal FROM salgrade WHERE grade = rank;

RETURN (salary >= min-sal) AND (salary <- max-sal);

END saI-ok;

PROCEDURE raise-salary (emp-id INT. grade INT, amount REAL) Is salary REAL;

BEGIN

. SELECT sa1 INTO salary FROM emp WHERE empno = emp-id;

IF sal-ok(grade, salary + amount) THEN

UPDATE emp SET sa1 = sal + amount WHERE empno = emp-id;

ELSE

RAISE invalid-salarY;
END IF;

END raise-salarY;
FUNCTION nth-highest salary (n INT) RETURN EmpRecT\p 1S emp-rec BmpRec1\rp;

BEGIN

OPEN desc-sa1arY;

FOR i IN 1..N LOOP

FETCH desc-salarY INTO emp-rec;

END LOOP;

CLOSE desc-salarY;

RETURN emp-rec;

END nth-highest-salarY ;

BEGIN

INSERT INTo emp_audit VALUES (SYSDATE, USER, .EMP_ACTIoNS,);

number-hired := 0;

END emp-actions;

Remember, the initialization part of a package is run just once, the first time you reference t-he

package. So, in the last exam^ple, onll one iow is inserted into the database table emp-audit.

Lik.*"ir., the variable number hired is initialized only once. Every time the Procedure

hire_employee is called, the variable number-hired is updated. However, the count kept by

M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 177

number_hired is session specific. That is, the courtt re{lects the number of new employees
processed by one vser, not the number processed by all users.

8.4.5 Overview of Product-Specific Packages

Oracle and various Oracle tools are supplied with product-specific packages that help you build
PLlSQL-based applications. For example, Oracle is supplied with many utility packages, a few of
which are highlighted below.

DBMS-ALERT Package: Package DBMS_ALERT lets you use database triggers to alert an application
when specific database values change. The alerts are transaction based and asynchronous (that is, they
operate independently of any timing mechanism). For example, a company might use this package to
update the value of its investment portfolio as new stock and bond quotes arrive.

DBMS-OUTPUT Packagez Package DBMS_OUTPUT enables you to display output from PLISQL
blocks and subprograms, which makes it easier to test and debug them. The procedure pur_line
outputs information to a buffer in the SGA. You display the information by calling the procedure
get_line or by setting SERVEROUTPUT ON in SQL*Plus. For example, suppose you create the
following stored procedure:

CREATE PROCEDURE calcaayroll (payroll OUT NUMBER) AS

CURSOR cl- IS SELECT sa1, comm FROM emp,

PaYroll := 0;

FOR clrec IN c1 LOOP

clrec.comm := NVL(c1rec.cornm, 0) ;

payroll :- payroll + c1rec.sal + c1rec.comm,.

END LOOP;

dbms_output.put_1ine('Va1ue of payroll:' | | fO_CUan(payroll)) ;

END;

'Sflhen you issue the following commands, SQL'"Plus displays the value assigned by the procedure.to
parameter payroll:

SQL> SET SERVEROUTPUT ON

SQL> VARIABLE num NUMBER

SQL> CALL calcaayroll (:num) ;

Value of payroll: 3L225

DBMS-PIPE Paekagez Package DBMS_PPE allows different sessions to communicate over named
pipes. (A pipe is an area of memory used by one process to pass information to another.) You can use

the procedures pack_message and send_message to pack a message into a pipe then send it to another
session in the same instance.

178 Client Server Computing with Oracle M.S. University - D.D.C.E.

At the other end of the pipe, you can use the procedures receive_message and unpack_message to
receive and unpack (read) the message. Named pipes are useful in many ways. For example, you can
write routines in C that allow external programs to collect information, then send ir through pipes to
procedures stored in an Oracle database.

UTL-FILE Packagez Package UTL_FILE allows your PLISQL programs to read and write operaring
system (OS) text files. It provides a restricted version of standard OS stream fileUO, including open,
put, get, and close operations.

\7hen you want to read or write a text file, you call the function fopen, which rerurns a file handle for
use in subsequent procedure calls. For example, the procedure put_line writes a text string and line
terminator to an open file, and the procedure get_line reads a line of text from an open file into an
output buffer.

UTL-HTTP Packagez Package UTL_HTTP allows your PLISQL programs to make HyperTexr
Transfer Protocol (I{TTP) callouts. It can retrieve data from the Internet or call Oracle \7eb Server
cartridges. The package has two entry points, each.of which accepts a URL (uniform resource locator)
string, contacts the specified site, and returns the requested data, which is usually in HyperText
Markup Language (HTML) format.

8.4.6 Guidelines for \flriting Packages
'When writing packages, keep them as general as possible so they can be reused in future applications.
Avoid writing packages that duplicate some feature already provided by Oracle. Package specs reflect
the design of your application. So, define them before the package bodies. Place in a spec only rhe
types, items, and subprograms that mu$ be visible to users of the package. That way, other developers
cannot misuse the package by basing their code on irrelevant implemenrarion details.

To reduce the need for recompiling when code is changed, place as few items as possible in a package spec.

Changes to a package body do not require Oracle to recompile dependent procedures. However, changes
to a package spec require Oracle to recompile every stored subprogram that references the package.

Fill in the blanks:

l. The prtt may contain declarations of cursors, constants, variables, exceptions,
and subprograms.

2. Functions are srored in the database and are invoked or called by any

3. Packages usually have two parts, a ... and a body, although somerimes the body
rs unnecessary.

4. Package lets you use database triggers to alert an application when specific
database values change.

M.S. University - D.D.C.E. Stored Procedures, Functions and Packages 179

8.5 LET US SUM UP

Procedures are named PL/SQL blocks that can take paramerers, perform an action and can be
invoked. A procedure is generally used to perform an action.rriro pass values. Functions are
named PL/SQL blocks that can take parameters, perform an action and ,.trrrrrs a value ro the
host environment. A function can only return one value. A package is a schema object that
groups logically related PLISQL ,yp.r, items, and subprogrr-r. p"ackages usually (rrr. ,*o
parts, a specification and a body, although sometimes the body is unnecessary. Oracle and
various Oracle tools are supplied with product-specific packages that help you build PLISQL-
based applications.

8.6 KEY\$T/ORDS

Ptocedare: Procedures, also known as stored procedures, are stored in the database and are invoked or
calledby any anonymous block.

Stored Functions: Functions are named PL/SQL blocks that can take parameters, perform an action
and returns a value to the host environment.

Package: A package is a schema object that groups logically related PLISQL rypes, items, and
subprograms.

DBMS-PIPE Package: Package DBMS_PIPE allows different sessions to communicate over named
pipes.

8.7 QUESTTONS FOR DTSCUSSTON

7.

2.

3.

4.

5.

6.

Explain the stored procedures. \flrite the syntax to store the procedures.

Discuss the various parts of stored functions and stored procedures.

How to ci'eate and execute the function?

rVhat are the advantages of stored functions?

Discuss the packages in PLISQL. Explain with its advanrages.

Explain the term "The Package Spec".

Check Your Progress: Model

1. Declarative

2. anonymous block

3. specification

4, DBMS_ALERT

Answers

180 Client Server Computing with Oracle M.S. University - D.D.C.E.

8.8 SUGGESTED READINGS

Peter Rob, Carlos Coronel, Database Systerns: Duign, Implementation and Managemmt, Seventh edition,
Thomson Learning,2}l7

Silberschatz, Korth, Sudarshan, Database System ConcEts,Fifth edition, McGraw-Hill, 2OO5

Elmasari Navathe, Fundamentals of Daabase Systems, Third edition, Pearson Education Asia, 2001

E. J. Yannakoudakis, Tlte Arcbitectural Logic of Database Systems, Springer-Verlag,Digitized200T

Fred R. McFadden, Jeffrey A. Hoffer, Database Mandgeft?.ent, Benjamin/Cummings, Digitized2007

Raghu Ramakrishnan, Johannes Gehrke, Database Managemmt Systems, Third edition, McGraw-Hill Higher
Education, 2003

UNITV

LESSON

9

DISTRIBUTED PROCESSING

CONTENTS
9.0 Aims and Objectives

9.I Introduction

9.2 DistributedDatabase

9.2.1 DataDistributionAdvantages

9.2.2 DataDistributionDisadvantages

9,2.3 Functions of Distributed Database Management System

9.2.4 Components of Distributed Database Management System

9.2.5 Levels of Data and process Distribution
9.2.6 Types of Distributed Database Systems

9.3 Data Fragmentation

9.3.1 HorizontalFragmentarion

9.3.2 VerticalFragmentation

9.3.3 MixedFragmentation

9.4 Data Replication

9.4.1 Advantages and Disadvantages of Replication
9.5 Data Allocation

9,6 Q,rery Processing in Distributed Databases

9.6.t Semijoin

9.7 Let us Sum up

9.8 Keywords

9.9 Questions for Discussion

9.10 SuggestedReadings

9.0 AIMS AND OBIECTIVES
After studying this lesson, you will be able to:
. Explain the concept of distributed database

o Discuss data fragmenration

. Describe the significance of data replication

. Identify and explain the data allocation

. Discuss the query processing in distributed database

184 Client Server Computing with Oracle M.S. University - D.D.C.E.

9.1 INTRODUCTION
The databases described in the last lessons were essentially general purpose databases which could be

tailored and customized to.suit a given data management and processing situation. However, there are

a number of other applications where special features other than general database functions are

required. This lesson deals with a special database manaBement system where the components of the
system are physically located at different places.

9.2 DISTRIBUTED DATABASE

A database that physically resides entirely on one machine under a single DBMS is known as local
database management system. The database management system that resides entirely on a machine
different from that of the user connected through a network is known as remote database. In either
case the entire database is controlled by a single site and hence is knows as Centralized Database
System. In contrast to this a database may be fragmented and each of its fragments is stored on
different machines connected through network(s) or is controlled by different DBMSs or operates
under different operating systems. Such a multiple-source and multipleJocation database is called
distributed database.

More formally, a Distributed database (or a DDB) is a collection of multiple logically interrelated
databases distributed over a computer network. A distributed database management system (DDBMS)
is a software system that manages a distributed database while making the distribution transparent to
the user. The user is unaware that the database is fragmented. The Distributed Database Management
System ensures that the users access the distributed database as if it were a local database. A collection
of files stored at different nodes of network and maintaining of Inter relationship among them via
hyperlinks has become a common organization on the Internet, with file of web pages.

Typically, a distributed database system consists of a collection of sites, each of which maintains a local
database system (Figure 9.1). Each site is able to process local transactions, those transactions that
access data only in that single site. In addition, a site may participate in the execution of global
transactions, those transactions that access data is several sites. The execution of global transactions
requires communication among the sites usually through a network.

;&

'M
". I I *:.1d;ili:Ii srrEz L__ffitffi

I I t; ;r r":"""t
\q**;

Figure 9.1: Distributed Database Architecture

M.S. University - D.D.C.E. Distributed Processing 185

The sites in the system can be conneded physically in a variety of ways. The various topologies are

represented as graphs whose nodes correspond to sites. An edge from node A to node B corresponds to
a direct connection between the two sites.

Exactly how a database is distributed is known as its configuration and they differ from each other in
the following aspects:

. lnstallation Cos*,The cost of physically linking the sites in the system.

. Communhation Costz The cost in time and money to send a message from site A to site B.

. Reliabilitjt: The frequency with which a link or site fails.

. Aaaitability: The degree to which data can be accessed despite the failure of some links or sites.

These differences play an important role in choosing the appropriate mechanism for handling the
distribution of data.

The participating or collaborating sites of a distributed database system may be distributed physically
either over a large geographical area such as the all-Indian state capitals or over a small geographical

area such as a single building or a number of adjacent building. The former type of network is referred
to as a long-haul network or wide area network, while the latter is referred to as a local-area network.

Since the sites in long-haul network are distributed physically over a large geographical area, the
communication links are likely to be relatively slow and less reliable as compared with local area

networks. Typical long-haul links are telephone lines, microwave links, and satellite channels.

In contrast, since all the sites in local-area networks are close to each other communication links are of
higher speed and lower error rate than their counterparts in long-haul networks. The most common
channels are twisted pair, base band coaxial, broadband coaxial, and fiber optics.

The links of a network between its nodes may be of different patterns knows as its topology. Some of
the network topologies are depicted in Figure 9.2.

Rtag ilst{rork

Figure 9.2: Network Topologies

ap
starncturcd(H

/\-r\(, rr

Hssh lffi

Tr€,e l{etrsd(

186 Client Server Computing with Oracle
M.S. University - D.D.C.E.

9 .2.1 Data Distribution Advantages

Distributed database systems have a number of advantages over their centralized counterparts. Theprimary goal of distributed-database systems is to achievJthe ability to ,h.r. ,.rdr, data stored in
databases spread across different *r.hirr.r, operaring sysrems and DBMSs, in a reliable, fast and
efficient manner. The benefits of distributed daiabase ,i.

"*plrirr.d
below.

' space indtpendcnce: If a number of different sites are connected to each orher, then a user at one
site may be able to access data that is available ar anorher site. The user does not have to bepresent physically at the database sit. Therefore, the database becomes space independent. Thus,
through distributed.database system, a user can access the database phyri."ttf ,,or.d at University
of Delhi in Delhi without being at the site.

' Auailabitity of data where it is neefud.' The data in a distributed database system are so dispersed as
to match the data requirements of the users.

t Faster data access: The end-users only with a subset of the entire database. If this portion of the
database is locally stored and accessed, it will be many times faster than when remotely located.

o Faster Data Prccessing: For same reason as above the data processing the users, end will be
considerably faster.

' Distibuted control: The primary benefit to accomplishing data sharing by means of data
distribution is that each site is atle to retain . d.gr.. of co"ntrol o'oe, d"i, stored locally. In a
centralized system, the database administrator of the central site controls the databrr.. k

"distributed system, there is a global database administrator responsible for the entire sysrem.

' userfiendlg interface: The end users are free to have interfaces of their own choice at their sites.

' Incteased Rcliabilitg: In case of a centralized database system, a failure renders the entire system
useless' Such is not the case with the distributed database sysrems. Even in case of a failure the end
users still can access their own database stored locally.

' 9ue'! speedup: If a query involves data at several sites, it may be possible to split the query into
sub-queries that can- be excited in parallel by several siier. s.r.h prr.tt.i.o-p,r1.rio1 allows faster
processing of a user's query. In those cases in which data is ,epllated, qr.ri., may be dir..t.J bf
the system to the least heavily loaded sites.

9,2.2 Data Distribution Disadvantages

Distributed database systems are not entirely free from limitations. The primary drawback of
distributed database systems is the added complexity required ro ensure proper .ooriir"tion among
the sites. This increased complexity takes rhe form of,

' complexitl o1f managernent and control: All the related management activities and control of the
same becomes very complex with degree of distribution.

' sofiware dcuelopment cost:It is more difficult to implement a distribured database sysrem and, thus,
is more costly as compared to centralized local d"trbare.

o Higherpossibilitlt of bugs: Since the sites that comprise the distributed system operate in parallel, it
is harder to ensure the correctness of algorithms. This mode of op"rrtior, -i., ,h.- .*rr.rrr.ly
vulnerable to bugs. The art of consiructing distrib,rted algorith-, ,.-rins an active and
important eree or research.

M.S. University - D.D.C.E. Distributed Processing 187

' rncreased ptocessing oaerhea* The exchange of dara, messages and the additional computation
required to achieve inter-site coordination is a form of overhead that does nor arise in centralized
systems. For a single transaction the overhead is more than ten times in general.

o l-ack of standards: Every user of a distributed database system is free to have her own standard and
no common protocol may exist.

' Securigt: Because of its and extent, distributed database systems are vulnerable to security lapses.
Network communication being an integral part of such systems, security concerns are more
frequent rhan centralized daabase sysrems.

As is evident from above discussion that distributed database sysrems have both specific advantages and
disadvantages. An optimal trade-off between the distribution and centralization may be emplJyed to
arrive. at the right kind of design. Therefore,.in choosing the design for a databar. .yrr.*, the d.rigne,
must balance the advantages against the disadvantages of distribution of data design ranging from firlly
distributed designs to designs which include large degree of centralization.

9.2.3 Functions of Distributed Database Management system
Distribution leads to increased complexity in system design and implemenrarion. To achieve the
Potential advantages of DDBMS as listed earlier; the DDBMS software must be able to provide the
following functions in addition to rhose of a centralized DBMS.

l. K""Ping track of data: The ability to keep track of the data distribution, fragmenration, and
replication by expanding the DDBMS catalog.

2. Distributed quer! processing: The ability to access remore sites and transmit queries and data
amonB the various sites via a communication network.

3. Distributed transaction ,nanagen ent: The ability to devise execution strategies for queries and
transactions that access data from more than one site and to synchronize the access to iistributed
data and maintain integrity of the overall database.

4. Replicated data management:The ability to decide which copy of a replicared data item ro access
and to mainrain rhe consistency of copies of replicated data items.

5. Distributed database recoaerJ,: The ability to recover from individual crashes and from new rypes
of failures such as the failure of a communicarion links.

6. Security: Distributed transactions mu$ be executed with the proper management of the security of
the data and the authorization/access privileges of users.

7. Distributed d;ireetory ftltatog) ,nanagernent.' A directory contains information (meta data) about
data in the database. The direct ory may be global for the enrire DDB or local for each site.

9.2.4 components of Distributed Database Management System

A DDBMS has many components connected together. Some of the components rhat a DDBMS must
have are:

' Sites orNodcs (Workstations):The end users machines (mostly PCs) that form the network. The
distributed database system is independent of the hardwar" of ihe workstations.

188 Client Server Computing u,ith Oracle M.S. University - D.D.C.E.

a Network hardware and sofiware: Each work$ation mu$ have necessary hardware and software
that enable them to establish a network with other components on the distributed database

system. The DDBase system should be independent of the network type of each workstation.

. Transaction processor (TP): Each of the data-requesting workstation must have this software
component that receives and processes the request for data (local or remote). It makes the data

access transparent to the user. TP is also sometimes called application processor (AP) or
transaction manager TM.

. Data processor (DP): It is a software component on each participating computer in the distributed
database system. This component stores and retrieves data located at that particular site. It is also

known as data manager (DM).A centralized DBMS may also act as a DM on a site.

9.2.5 Levels of Data and Process Distribution

In a multiple site configuration, the responsibilities of each site may be different from each other. In a

Distributed processing system the data comes from a centralized database systems but the processing is

performed on more than one sites. For instance a computer system does all the data entry at Hisar, a

computer located at Chandigarh does the validation checks on data whereas the statistical analysis is

performed by a computer situated at Delhi. The data is actually stored in a DBMS located at Mumbai.
This is an instance of distributed processing as depicted in Figure 9.3.

Figure 9.3: Distributed Processing Environment

In contrast to the above distributed processing environment, a distributed database system has the
database split into fragments which may be physically located at different sites. Thus, the database may
be stored at sites at Hisar, Chandigarh and Delhi while a process at Mumbai access these database

fragments from Mumbai as shown in the Figure 9.4.

Site at Chandigarh

Ic"-p",.' I

l-"--,-.",^'l
I p'ot""

I

Statistical
analysis
process

Site at Mumbai

M.S. Universitv - D.D.C.E. Distributed Processing 189

lc"-p"rE
IGE;;I
m:J

Database

Fragment
(3)

Figure 9.4: Distributed Database Environment

Frcm the aboue discussion it is clear that:

. Distributed processing does not require a distributed database sysrem, but a distributed database
system does require a distributed processing sysrem.

. A network support is required in both distributed database and processing systems.

9.2.6Types of Distributed Database Systems

According to the way of database system and processing system are distributed as described above, a number
of distributed configuration is possible. Some of the well known configurations are discussed below.

o Single-site proccssing singlc-site data (SPSD): In this configuration all processing is done on a single
CPU or host computer usually a mainframe or mini-compurer and all the data are stored on th"
local disks of this computer. The DBMS is located at a parricular computer and is accesses by
dumb terminals attached to it through network.

. Muhiple'site processing single-site data (MPSD): In this configuration processes run on different
sites accessing and sharing common database. A clienr-server configuration is one such example.
The server is the computer providing the requested data by clients.

. Client'seruer configuratioz: Sharing the computing abilities of different machines motivated the
development of Client-server architecture. A clienr is a component (hardware or software) that
initiates a request for a service provided by another componenr called server. The server, in rurn,
Processes the request, generates the requested result and passes the result back to the client.

. Multiple-site processing multiple-site data (MPMD): In rhis configuration, both the processes and
database system are located at different sites. This is a scenario of fully-distributed ,yr,"-. MPMD
may be further classified into:

* Homogeneous distributed database systems, in which all the consrituting databases are of
same tyPe.

* Heterogeneous distributed database systems, in which the constituting databases are of
different types. They may be thus relational, hierarchical, nerwork or combination of these.

190 Client Server Computing with Oracle M.S. University - D.D.C.E.

9.3 DATA FRAGMENTATION
The principles outlined in earlier unit in designing a centralized database are applicable even in the case
of distributed database. However, there are few additional issues that arise in case of distributed
database designing. They are:

. Data fragmentation

. Data replication

. Data allocation

The information concerning data fragmentation, replication and allocation is stored in a global
directory that is accessed by the DDBS applications as needed.

It is clear that in a distributed database system the database is broken into smaller pieces. Here we will
discLrss the techniques that are used to break up the database into logical .rnits, calei fragmenrs, which
may be assigned for storage at the various sites.

If a relation R is fragmented, R is divided into a number of fragment relations R,, \....., R. These
fragments contain sufficient information to reconstrud the original relation R. This reconsrrucrion can
take place through the application of either the union operarion or a special type of join operation on rhe
various fragments depending o1 how they were obtained from the original r.irtiorr. Of many methods of
fragmentation, two of them shall be discussed here: horizontal fragmentation and venical fragmentation.

Horizontal fragmentation splits the relation by assigning each tuple of R to one or more fragments.
Vertical fragmentation splits the relation by decomposing the sch"me R of relation R in a ,pecId *ay
that we shall discuss. These two schemes can be

"ppii.d
successively to the same relatior, ,.*ltirrg ir*

number of different fragments. Note that some information may appear in several fragments.

For illustration purposes, let us consider the customer relation CUSTOMER of some company:

CUSTOMER (CUS_ID, CUS_NAME, CUS_STATE, CUS_ DEPOSIT,

CUS_BALANCE, CUS_RATING, CUS_DUE)

A sample insrance of the CUSTOMER relation is shown below:

CUSTOMER CUS-
ID

CUS-
NAME

CUS
SATE

CUS-
DEPOSIT

CUS-
BALANCE

CUS-
RATING

CUS-
DTIE

10 Puranchand Haryana 3000 2000 3 1000

11 Rohit Punjab 4000 3000 2 1500

2L Ramlal Haryana 2000 190 3 280

23 Pankaj Bihar 2300 na 3 324

33 Rahul Punjab 3300 450 2 400

43 Satbir Haryana 4500 1000 1 900

9.3. 1 Hori zont^l Fragmentation

Under this fragmentation scheme, a able (or relation) r is parritioned into a number of subsers, r,,
rr,...... Each subset r $:I,2...) consists of a number of tuples of relation r. Each tuple of relation r must
belong to one of the fragments, so that the original relation can be reconsrrucred whenever needed.

M.S' University - D.D.C.E. Distributed processing 191

A fragment may be defined as a selection on the global relation r. That is, the union of all the
fragments should be able ro Benerate the original relation.

In our sample relation CUSTOMER, assume that each state headquarrers requires data belonging to
that state only. Therefore, the relation can be horizontally fr*gm"nted

",
gir.r,

9.3.2 Y ertical Fragmentation

Vertical fragmentation is the same as decomposition. Vertical fragmentation of a relation or a table can
be obtained by dividing the table into a number of sub-table, hrrlrrg disjoint columns.

Relation r can be reconstructed from the fragments by taking the natural join operation. Suppose, now
that the comPany is divided into two departments - custome. d.p.n*.rrt and collection jepartment.
The two departments are concerned with their respective data only. Therefore, the relationcusroMER can be vertically fragmented into two fragments as given below,

Fragment name Location Node name Attributes
CUS-DEPT Customer Office CUS CUS_ID, CUS-NAME,

CUS_SATATE
COL-DEPT Collection Office COL CUS-ID,

CUS-DEPOSIT,
CUS-BALANCE,
CUS_RATING,
CUS-DUE

Fragment
Name

Location of
fragment

Selection condition Node name Customer_IDs Number of
rows

CUS BHR Patna CUS_SATE- "Bihar" BHS 23 1

CUS_HAR Hisar CUS_SATE- "Haryana" HRS t0,21,43 3

CUS-PUN Amritsar CUS_SATE - "Punjab" PNS 11,33 2

The three resulting fragment relarions are:

Fragment Name:
CUS-BHR

Location: Patna Node:BHS

CUS_ID CUS-NAME CUS-SATE CUS-DEPOSIT CUS-BALANCE CUS-RATING CUS-DUE
23 Pankaj Bihar 2300 230 J 320

Fragment Name:
CUS-HAR

Location: Hisar Node:HRS

CUS_ID CUS-NAME CUS-SATE CUS_DEPOSIT CUS-BALANCE CUS_RATING CUS-DUE
10 Puranchand Haryana 3000 2000 3 1000

2t Ramlal Haryana 2000 190 3 280
43 Satbir Harvana 4500 1000 1 900

Fragment Name:
CUS-PUN

Location: Amritsar Node:PNS

CUS-ID CUS-NAME CUS-SATE CUS-DEPOSIT CUS-BALANCE CUS-RATING CUS-DUE
11 Rohit Punjab 4000 3000 2 1500
33 Rahul Punjab 3300 450 2 400

The resulting two fragment relarions are:

Fragment name: CUS_DEPT

Location: Customer Office

Node:CUS

CUS-ID CUS-NAME CUS-SATE

10 Puranchand Haryana

tt Rohit Punjab

2l Ramlal Haryana

23 Pankaj Bihar

33 Rahul Punjab

43 Satbir Haryana

192 Client Server Computing with Oracle M.S. University - D.D.C.E.

Generally, vertical fragmentation is accomplished by adding a special attribute called a tuple-id to the
scheme R (CUS-ID in our case). A tuple-id is a physical or logical address for a tuple. Since each tuple
in r must have a unique address, the tuple-id attribute is a key for the augmented scheme.

To reconstruct the original deposit relation from the fragmenrs, we compute

CUSTOMER : (CUS_DEPT - COL_DEPT)

Note that the expression (CUS_DEPT - COL_DEPT) is special form of natural join. The join
attribute is CUS_ID. Since the tupled-value represents an address, it is possible to pair a tuple of
CUS_DEPT with corresponding tuple of COL_DEPT by using the address given by the CUS_ID
value. This address allows direct retrieval of the tuple without the need for an index. Thus, this natural
join may be computed much more efficiently that {pical narural ioins.

Fragment name: COL_DEPT Location: Collection Office Nodq COL

CUS_ID CUS-DEPOSIT CUS-BALANCE CUS RATING CUS-DUE

10 3000 2000) 1000

ll 4000 3000 2 1s00

2L 2000 190 3 280

23 2300 230 3 320

J5 3300 450 2 400

43 4500 1000 1 900

M.S. Universitv - D.D.C.E. Distributed Processing 193

Although the tuple-id attribute is important in the implementation of vertical portioning, it is

important that this attribute not be visible to users. If users are given access to tuple-ids, it becomes

impossible for the system to change tuple addresses. Furthermore, the accessibility of internal
addresses violates the notion of data independence, one of the main virtues of the relational model.

9.3.3 Mixed Fragmentation

A relation can also be fragmented both horizontally as well as vertically depending on the application.
In such cases both horizontal and vertical fragmentation criteria are specified. Suppose in our example
of the CUSTOMER relation, we require each depanment data separately in the two separate offices at

the state headquarters. The required fragments will be:

The resulting fragments are:

Fragment name Location Horizontal criterion Node name Attributes

CUS BHR-CUS Patna CUS_SATE: "Bihar" BHRCUS CUS-ID,
CUS_NAME,
CUS-STATE

CUS-BHR_COL Gaya CUS_SATE: "Bihar BHRCOL CUS ID,
CUS-DEPOSIT,
CUS BALANCE,
CUS-DUE

CUS-HAR_CUS Hisar CUS SATE:"Harvana" HARCUS CUS ID,
CUS.NAME,
CUS-STATE

CUS-HAR_COL Karnal CUS SATE-"Harvana" HARCOL CUS ID,
CUS_DEPOSIT,
CUS BALANCE,
CUS-DUE

CUS PLIN CUS Amritsar CUS_SATE- "Punjab" PUNCUS CUS-ID,
CUS-NAME,
CUS_STATE

CUS PLIN COL Bhatinda CUS_SATE= "Punjab" PUNCOL CUS-ID,
CUS-DEPOSIT,
CUS-BALANCE,
CUS DUE

Fragment name: CUS_BHR_CUS

Location: Patna

Node:BHRCUS

CUS ID CUS-NAME CUS-SATE

23 Pankaj Bihar

194 Client Server Computing with Oracle

Fragment name: CUS BHR COL Location: Gava Node: BHRCOL
CUS_ID CUS DEPOSIT CUS-BALANCE CI.]S RATING CUS_DUE
23 2300 230 J 320

Fragment name: CUS_HAR_CUS

Location: Hisar

Node:HARCUS

CUS-ID CUS-NAME CUS_SATE

10 Puranchand Harvana

21 Ramlal Haryana

+J Satbir Haryana

Fragment name: CUS HAR COL Location: Karnal Node: HARCOL

CUS-ID CUS-DEPOSIT CUS_BALANCE CUS-RATING CUS_DUE

10 3000 2000 J 1000

2l 2000 190 3 280

43 4500 100c 1 onn

Fragment name: CUS_PUN CUS

Location: Amitsar

Node:PUNCUS

CUS_ID a* -^*a rc"r r^tt-
1l Rohit Punjab

33 Rahul Punjab

Fragment name: CUS PUN COL Location: Bhatinda Node: PIINCOL

CUS-ID CUS_DEPOSIT CUS-BALANCE CUS-RATING CUS_DUE

11 4000 3000 2 1500

33 _1300 450 2 400

M.S. University - D.D.C.E.

M.S. University - D.D.C.E. DistributedProcessing 195

9.4 DATA REPLICATION
In simple words, Replication is making a copy of the relation. \7hen a relation r is modified or
replicated,

_a
coPy of relation r is stored in other sites. The copies may be kept at only a few selected

sites or each site may keep a copy. In case each site of the system has a copy of the ,.laiion it is known
as full replication.

---- -i ---

Replication is useful in improving the availabiliry of data. The mosr exrreme case is Replication of the
whole database at every site in the distributed system, thus creating a fully replicated distribured
database. This can improve avatlabllity remarkably because the system can conrinue ro operate as long
as at least one site is_up. It also improves performance of retrierrai for global queries, be.*re the resuli
of such a query can be obtained locally from any one site; hence, , ,eiri.rr"l qr.ry can be processed at
the local site where it is submitted, if that site includes a server module.

The_ disadvantage of full replication is that it can slow down update operations drastically, since a
single logical update must be performed on every copy of the database tl keep the copies consisrenr.
This is especially rrue if many copies of the drtabas. e*irt.

Full Replication makes the concurrency control and recovery techniques more expensive than they
would be if there were no replication. At the other extreme olfull replication is to have no replication
- that is, each fragment is stored at exactl,v one site. In this case all fiagments must be disjoint, excepr
for the rePetition of primary keys among vertical (or mixed) fragm"ents. This is somerimes called
unreplicated database.

Between these two extremes, a wide spectrum of partiai replication of the data exists-that is, some
fragments of the database may be replicated *hereas otheri may not. The number of copies of each
fragment can range from one up to the total number of sites in the distributed sysrem. A special case of
panial replication is occurring heavily in applications where mobile workers-such as the sales force,
financial planners, and claims adjustors-c ariy partially replicated databases with them o., l"ptop, ,rrj
personal digital assistants and synchronize them periodicaliy with the server database. A desciiption of
the replication of fragments is sometimes called a replication schema.

9.4.1 Advantages and Disadvantages of Replication

' Increased Parallelism: In the case where the majority of access to the relation r results in only the
reading of the relation, the several sites can process queries involving r in parallel. The more
replicas of r there are, the greater the chance that the needed data is fo""d in the site where the
transaction is executing, Hence, data replication minimized movement of data between sites.

' Aaailabilitjt' If one of the sites containing relation r fails, then the relation r may be found in
another site. Thus the system may continue to process queries involving r despite the failure of
one site.

o Increase oaerhead on Update: The system must ensure that all replicas of a relation r are consistent
since otherwise erroneous computations may result. This implies that whenever r is updated, this
update must be propagated to all sites containing replicas, iesulting in increased overhead- For
example, in a banking system, where account infoimation is replicated in various sites, it is
necessary that transactions assure that the balairce in a particular account agrees in all sites.

196 Client Server Computing with Oracle M.S. Universitv - D.D.C.E.

9.5 DATA ALLOCATION
Every fragment or each copy of a fragment must be reflected to a particular site in the distributed
system. This process is called Data Distribution (or Data Allocation). The choice of sites and the
degree of replication depend on the performance and availability goals of the system and on the types
and frequencies of transactions submitted at each site and if most transactions are retrieval only, a fully
replicated database is a good choice. However, if certain transactions that access particular parts of the
database are mostly submitted at a particular site, the corresponding set of fragments can be allocated

at that site only. Data that is accessed at multiple sites can be replicated at those sites. If many updates
are performed, it may be useful to limit replication. Finding an optimal or even a good solution to
distributed data allocation is a complex optimization problem.

There are primarily three data allocation strategies:

. Centraliqed In this strategy the entire database is stored at one site.

. Partitioned; The database if fragmented into disjoint parts and stored on one or more sites.

. Replicated; Multiple copies of each fragment are stored at several sites.

9.6 QUERY PROCESSING IN DISTRIBUTED DATABASES

The way queries are processed in a DDBMS is different from the way it is processed in local database

systems. The main issue here is the communication costs of processing a distributed query. The query
processing system in DDBMS attempts to minimize the amount of network transmission while
maximizing the parallel execution of queries on various data sites.

Generally in a distributed system, some additional factors can complicate further query processing.
The first is the cost of transferring data over the network. This data includes intermediate files that ire
transferred to other sites for further processing, as well as the final result files that may have to be

transferred to the site where the query result is needed. Although these costs may not be very high if
the sites are connected via a high-performance local area network, they become quite significant in
other types of networks. Hence, DDBMS query optimization algorithms consider the goal of reducing
the amount of data transfer as an optimization criterion in choosing a distributed query execution
strategy.

9.5.1 Semiioin

One way of carrying out query processing in a distributed database system is to use semijoin. The
main logic behind distributed query processing using the semijoin operations is to reduce the number
of tuples in a relation before transferring it to another site. Infact, the idea is to send the joining
column of one relation R to the site where the other relation S is located; this column is then joined
with S. Following that, the join attributes, along with the attributes required in the result, are

projected out and shipped back to the original site and joined with R. Hence, only the joining column
of R is transferred in one direction, and a subset of S with no extraneous tuples or attributes is

transferred in the other direction. If only a small fraction of the tuples in S panicipate in the join, this
can be quite an efficient solution to minimizing data transfer.

Consider a lrigh level query submitted to the query processor. The query is de-fragmented into simpler
low level query commands as shown below.

M.S. University - D.D.C.E. Distributed Processing 197

Query Processor
1. Query execution plan
2. Query optimization

The high level query can be executed in a variety of different ways caled query execurion plans. Some
of these plans achieve greater cost benefit as far as network movement is concerned.

Assume that following is the high level query submitted to rhe query processor.

SELECT SNAME FROM STUDENT, COURSE

\THERE STUDENT.ROLLNO - COURSE.ROLLNO AND CREDIT > 3

Two different strategies can be devised for the execution of this query as listed below.

Plan-1: SELECT SNAME FROM

(SELECT * FROM STUDENT JOIN COURSE

TUIHERE student.rollno=course.rollno and credit > 3)

Plan-2: SELECT SNAME FROM

(SELECT * FROM STIIDENT \THERE

rollno : (SELECT rollno \7HERE credit > 3))

To select one from the above execution plans we see that since the second plan does not involve
Cartesian product of the relations, it should be preferred.

Fill in the blanks:

1. A distributed database management system @DBMS) is a software sysrem rhat manages a
distributed database while making the distriburion ro rhe user.

2. In a Distributed processing system the data comes from a . database systems but
the processing is performed on more than one sites.

3. Vertical fragmentation of a relation or a table can be obtained by dividing the table into a

number of sub-tables having .. columns.

4. The disadvantage of full replication is that it can slow down

heck Yotrr I

198 Client Server Computing with Oracle M.S. University - D.D.C.E.

9.7 LW US SUM UP

A distributed database is a database which is under the control of a central database management

system (DBMS) in which storage devices are not all amached to a common CPU. It may be stored in
multiple computers located in the same physical location, or may be dispersed over a network of
interconnected computers. Distributed system can be taught of as a partnership among independent
but cooperating. Location transparency means that users should not need to know at which site any

given piece of data is stored, but should be able to behave as if the entire database were stored at their
own site. A system suppofts data fragmentation if data or file can be divided into pieces (fragments) for
physical $orage purpose. Replication transparency means that basic idea is that a given logical object,
say a given account record, mey be represented at physical level by many distinct copies.

ANSI/APARC Architecture It is a 3-level architecture based on data organiz tion \flhen processing a

query, distributed DBMS and parallel DBMS analyze the potential parallelism of the request and make

query plans using Extended Dataflow Graph (EDG) along with the Engineering Model that the
database use.

9.8 KEY\$T/ORDS

Distriburcd Database: A database which is under the control of a central database management system

(DBMS) in which storage devices are not all attached to a common CPU. It may be stored in multiple
computers located in the same physical location, or may be dispersed over a network of
interconnected computers.

Location TransparenEt' A mechanism through which users do not need to know at which site any
given piece of data is stored, but should be able to behave as if the entire database were stored at their
own site.

Data Fragmentation: A system supports data fragmentation if data or file can be divided into pieces

(fragments) for physical storage purpose.

Data Reptication TransparencJt: It means that basic idea is that a given logical object, say a given
account record, may be represented at physical level by many distinct copies.

ANSI/APARC Architecture:lt is a 3Jevel architecture based on data organization.

EDG: An EDG is a self-scheduling structure such that once the START signal is sent, the execution of
the EDG will run to completion by itself without any external control. The control of the execution
of the EDG is completely data driven.

e.e QUESTTONS FOR DTSCUSSTON

l. \7hat are the two forms of parallelism that can be applied to DBMSs?

2. Explain parallel query processing. How does the parallel query feature help to improve
performance?

Explain query optimization and cost based query optimizers.

Explain Parallel query optimization.

3.

4.

M.S. University _ D.D.C.E. Distributed processing l99

5' Explain the need for distributed DBMS. Enumerate the advantages offered by a distributed
DBMS.

6. Explain the following rerms in relation with distributed database

(r) Transparency

(b) Da:afragmenrarion

G) Data replication

7. Discuss what are the major issues concerning distributed DBMS.

8' Draw the diagram of a basic
"r.hit".trr.. of a distributed DBMS and explain irs components.

9. Explain query processing in distributed database.

Check Your Progress: Model Answers

1. Transparent

2. Centralized

3. Disjoint

4. update operations

9.10 SUGGESTED READINGS
Elisa Bertino , Distributed and Parallel Database Object Management,2oo!,Springer-Verlag New york
ceri & Pelagatti, Distributed Databases - principles and systems,19g5, McGraw-Hill
Clement Yu, \7eiyi Meng, Principles of Database Query Processingfor Afuianced Applications

M' Tamer 6zsu, Patrick Valduriez, Principles of Distributed Database Systems, Second Edition, prentice Hall,
1999

David Bell, Jane Grimson, Distributed Daabase systems,Addison \7esley, 1992

