M.S. University - D.D.C.E. Classes and Objects 153

The following programme demonstrates how a class one has granted its friendship to the class two. The
class two is declared friendly in the class one.

tinclude<iostream.h>
#include<conio.h>.
class one
{
friend class two;
private:
int x;
public:
void getdatal();
bi
class two
{
public:

void disp{cne);
inline void one::getdata{)

cout <<"Enter a number" ;

cin>>x;

inline void two::disp(one obj)
{
int x;
cout <<"Entered number is ";
cout << obj.x;
}
void main ()
{
one objl;
two obj2;
objl.getdata();
obj2.disp(objl);
getche () ;
}
You should see the output as shown below:

Enter a number 25

154 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

Entered number is 25

Though the class first has granted its friendship to the class second, it cannot access the private data of
the class second through its public member function display() of the class first.

A non-member function can be friendly with one or more classes. When a function has declared to
have friendship with more than one class, the friend classes should have forward declaration as it needs
to access the private members of both classes.
The general syntax of declaring the same friend function with more than one class is :
class second;
class first
{
private:
//data members;
//member functions;
public:
//data members;
//member functions;
friend<return_type><fname>(class first, class second. . ..);
}:
class second
{
private:
//data members;
//member functions;
public:
//data members;
//member functions;
friend <return_type> <fname>(class first, class second. . <)
b
The following programme demonstrates the use of the friend function which is friendly to two classes.
The function seem to calculate the sum of two objects is declared friendly in both the classes.
#include<iostream.h>
#include<conio.h>
class two;
class one
{
intx;
public:
void getdata ()

M.S. University - D.D.C.E.

{
cout <<"Enter the wvalue for x ";
cin >>x;
}
void disp{()
{

cout<< "The value of x entered is "<< x <<"\n".

}
friend int sum(one, two);
Yi
class two
{
inty;
public:
void getdatal()
{
cout <<"Enter the value for y ";
cin>>y;
}
void disp(}
{

cout<< "The value of y entered is"<< y<< "\n";}

friend int sum(one, two);
)i

rint sum(one objl,two cbj2)
(.
return{objl.x + obj2.y}:
}

void main()

{

one objll;

two obj22;
objll.getdatal();
objll.disp():
obj2Z.getdata();
cbj22.disp();

cout< < "the sum of two private data variables x and y is";

Classes and Objects 155

156 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

int tot = sum(obj 11,0bj22);
cout<<tot;

getche () ;

}

You should see the output as shown below.
Enter the value for x 20

The value of x entered is 20

Enter the value for y 11

The value of y entered is 11

The sum of two private data variables x & y1s 31

Note the forward declaration of class second. The non-member function sum() is declared friendly to
class first and class second.

6.14 DYNAMIC MEMORY ALLOCATION

Dynamic memory is allocated by the new keyword. Memory for one variable is allocated as below:

Ptr = new DataType (initializer);
Here,
® ptrisavalid pointer of type DataType.
® DataType is any valid c+ + data type.
® Initializer (optional) if given, the newly allocated variable is initialized to that value.
Example

//Example Pfogramme in C++

#include<iostream.h>

void main(void)

{

int *ptr;

ptr=new int {(10);
cout<<*ptr;

delete ptr;
1
This is will allocate memory for an int{eger) having initial value 10, pointed by the ptr pointer.
Memory space for arrays is allocated as shown below:

ptr=new DataType [x];

M.S. University - D.D.C.E. Classes and Objects 157

Here,

® ptr and DataType have the same meaning as above.
® xis the number of elements and C is a constant.
Example

//Example Programme in C++

¥include<iostream.h>

void main (void)
{

int *ptr, size;

cin>>size;

ptr=new int[size];

//arrays are freed-up like this

delete []ptr;

Check Your Progress

Fill in the blanks:

1. A classisa way to bind the and 1its associated functions together.
2, Objectsare the basic cawnsm entities in an object-oriented system.

3. Static data members arecoeeneiees that are common to all objects of a class.
4. The private data values can be neither read nor written by

6.15 LET US SUM UP

A class represents a group of similar objects. A class in C+ + binds data and associated functions
together. It makes a data type using which objects of this type can be created. Classes can represent the
real-world object which have characteristics and associated behaviour.

While declaring a class, four attributes are declared: data members, member functions, programme
access levels (private, public, and protected) and class tag name. While defining a class its member
functions can be either defined within the class definition or outside the class definition. The public
member of a class can be accessed outside the class directly by using object of this class type. Private
and protected members can be accessed with in the class by the member function only. The member
function of a class is also called a method. The qualified name of a class member is a class name: : class
member name.

The functions defined inside the class definition are automatically inline. Inline functions are not
called, their code replaces their function calls in the programme. The class members are referenced

158 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

using objects of the class and the dot operator. For instance, to access member X of an object A of class
ABC we will give A.x. If the class definition occurs outside the bodies of all functions, the class is a
global class and its objects can be created from any of the functions in a programme. If the class
definition occurs within a function, the class is a local class of the function. The objects of the class:
type can be created only within the function.

A global object can be declared only from a global class whereas a local object can be declared from a
global as well as a local class.

The object are created separately to store their data members. They can be passed to as well as
returned from functions. The ordinary members functions can access both static as well as ordinary
member of a class.

6.16 KEYWORDS

Class: Represents the real-world objects which have characteristics and associated behaviour.

Public Members: Class members (data members and member functions) that can be used by any
function.

Private Members: Class members that are hidden from the outside world.

Global Class: A class whose definition occurs outside the bodies of all functions in a programme.
Objects of this class type can be declared from anywhere in the programme.

Local Class: A class whose definition occurs inside a function body. Objects of this class type can be
declared only within the function that defines this class type.

Friend Function: A function which is not a member of a class but which is given special permission to
access private and protected members of the class.

Static Member Functions: Functions that can access only the static members.

Inline Function: A function definition such that each call to the function is, in effect, replaced by the
statements that define the function.

Constructor: A member function having the same name as its class and that initializes class objects
with legal initial values.

Copy Constructor: A constructor that initializes an object with the data values of another object.
Default Constructor: A constructor that takes no arguments.

Destructor: A member function having the same name as its class but preceded by ~ sign and that
deinitializes an object before it goes out of scope.

Temporary Object: An anonymous short lived object.

6.17 QUESTIONS FOR DISCUSSION

Define class. What are the differences between structures and classes in C+ + 2

2. Write short notes on:
t. Member functions,

i1. Inline functions

M.S. University - D.D.C.E. Classes and Objects 159

S0 N (g% I Ry

What is an array? How will you create arrays of objects?
Write a note on constructors.

What is parameterized constructors?

What are the various characteristics of destructor method?
Why cannot we pass an object by value to a copy constructor?

Write a programme to print the score board of a cricket match in real time. The display should
contain the batsman’s name, runs scored, indication if out, mode by which out, bowler’s score

(overs played, maiden overs, runs given, wickets taken). As and when a ball is thrown, the score
should be updated.

(Print: Use separate arrays to store batsmen’s and bowler’s information)

Check Your Progress: Model Answer
1. Data

2. run-time

3. data objects

4

. non-member functions

6.18 SUGGESTED READINGS

Robert Lafore, Object-oriented Programming in Turbo C+ +, Galgotia Publications.

E Balagurusamy, Object-Oriented Programming with C+ +, Tata Mc Graw-Hill
Herbert Schildt, The Complete Reference C++, Tata Mc Graw Hill

UNIT IV

LESSON

7

INHERITANCE

CONTENTS

70 Aims and Objectives

7.1 Introduction

72 Single Inheritance

7.3 Types of Base Classes

7.4 Types of Derivations
7.4.1 Public Inheritance
7.4.2 Private Inheritance
7.4.3 Protect Inheritance

7.5 Ambiguity in Single Inheritance
7.5.1 Member Access Control
7.5.2 Accessing the Private Data
7.5.3 Accessing the Protected Data
7.54 Accessing Private Member by Friend Class

7.6 Multiple Inheritance

7.7 Container Classes

7.8 LetusSumup

7.9 Keywords

7.10 Questions for Discussion

7.11 Suggested Readings

7.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:
Explain the concept of inheritance

Discuss the single inheritance

Describe the types of base classes

Identify and explain the types of derivations
Discuss the ambiguity in single inheritance

Explain the concept of multiple inheritance

Identify container classes

164 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

7.1 INTRODUCTION

Reaccessability is yet another feature of OOP’s. C+ + strongly supports the concept of reusability.
The C+ + classes can be used again in several ways. Once a class has been written and tested, it can be
adopted by another programmers. This is basically created by defining the new classes, reusing the
properties of existing ones. The mechanism of deriving a new class from an old one is called
‘INHERITENCE'. This is often referred to as IS-A’ relationship because very object of the class being
defined “is” also an object of inherited class. The old class is called “BASE’ class and the new one is
called “DERIEVED” class.

7.2 SINGLE INHERITANCE

C++ strongly supports the concept of reusability. The C+ + classes can be revised in several ways.
Once a class has been written and tested, it can be adapted by other programmers to suit their
requirements. This is basically clone by creating new classes, revising the properties of the existing
ones. The mechanism of deriving a new class from an old one is called inheritance (or derivation). The
old class is referred to as the base class and new one is called the derived class. The derived class inherits
some or all of the traits from the base class. A class can also inherits properties from more than one
class or from more than one level. A derived class with only one base class is called single inheritance.

7.3 TYPES OF BASE CLASSES

We have just discussed a situation which would require the use of both multiple and multi level
inheritence. Consider a situation, where all the three kinds of inheritence, namely multi-level, multiple
and hierarchical are involved.

Let us say the ‘child’ has two direct base classes ‘parentl’ and ‘parent?’ which themselves has a
common base class ‘grandparent’. The child inherits the traits of ‘grandparent’ via two separate paths.
It can also be inherit directly as shown by the broken line. The grandparent is sometimes referred to as
‘INDIRECT BASE CLASS’. Now, the inheritence by the child might cause some problems. All the
public and protected members of ‘grandparent’ are inherited into ‘child’ twice, first via ‘parentl’ and
again via ‘parent2’. So, there occurs a duplicacy which should be avoided.

The duplication of the inherited members can be avoided by making common base class as the virtual
base class: for e.g.

class ¢ parent
//Body

class parentl: virtual public g _parent

class parent2: public virtual g parent

M.S. University - D.D.C.E.

// Body

bi
class child
{

// Body

L.
Ir

Inheritance 167

public parentl, public parent2

When a class is virtual base class, C+ + takes necessary care to see that only one copy of that class is
inherited, regardless of how many inheritence paths exists between virtual base class and derived class.
Note that keywords ‘virtual” and ‘public’ can be used in either order.

//Program to show the virtual base class

tinclude<iostream.h>

#include<conio.h>

class student

{

protected:

}i

class test

{

int r_no;

public:

void get n (int a)
{ rno = a;t}

void put_n (void)

{ cout << “Roll No.:

protected:

int paral:;

int paraz;

// Base class declaration

"<< r no<<”In”;}

virtual public student //Virtually declared commcn

//base class 1

public:
void get_m (int x, int y)
{ partl= x; part2=y;}

volid put.m (void)

cout <<“marks obtained: “<< “In”;

cout << “partl

cout << “part2

= “ << partl <<”In”";

= “<< part?2 << “In”;

166 Object Oriented Programing using C+ + M.S. University - D.D.CE.

class sports: public virtual student //virtually declared common
{ . //base class 2
protected:
int score;
public:
void get_s (int a) {
score = a;
} :
void put_s (void)
{ cout << “sports wt.: “<<score<< “\n”;}
}i
class result: public test, public sports //derived class
{ .
private : int total;
public:
void show (void);
}i
void result : : show {(void)
{ total = partl + part2 + score;
put_n (};
put_m (};
put_s (): cout <<”\n total score= “<<total<<”\n”;
}
main ()
{
clrscr ();:
result S1;
Sl.get _n (345)
Sl.get m (30, 35);
Sl.get-S (7):
Sl.show ():
//Program to show hybrid inheritence using virtual base classes
#include<iostream.h>
#include<conio.h>
Class A
{

M.S. University - D.D.C.E. Inheritance 167

protected:
int x;
public:
void get (int);
void show (void);
}i
void A :: get (int a)
{ x=a; }
void A :: show (void)
{ cout << X;}
Class Al : Virtual Public A
{
protected:
int y»
public:
void get (int);
void show (void);
}i ‘
void Al :: get (int a)

{y=a;l
void Al :: show (void)
{
cout <<y;

{
class A2 ; Virtual public A
{
protected:
int z;
public:
void get (int a)
{z=a;}
void show (void)
{ cout << z;]
bi
class Al2 : public Al, public A2
{

168 Object QOriented Programming using C+ + M.S. University - D.D.C.E.

int r, t;
public:
void get (int a)
{ r=a;}
void show (void)
{ t=x+vyv + 2z + r;

cout << “result ="<< t;

}

}i

main {)

{

clrscr ():
Al2 r;
r.A : : get (3);
r.Al: : get (4);
r.A2 : : get (5);
r.get (6);
r.show ();

}

7.4 TYPES OF DERIVATIONS

When a class inherits another, the members of the base class become members of the derived class.

Class inheritance uses this general form
Class derived-class-name: access base-class-name
{
// body of class
b
The access status of the base-class members inside the derived class is determined by access. The base-

class access specifier must be either public, private or protected. If no access specifier is present, the
access specifier is private by default if the derived class is class.

7.4.1 Public Inheritance

When the access specifier for a base class is public, all public members of the base become public
members of the derived class.
Following program shows the single inheritance using public derivation.

#include<iostream.h>

#include<conio,.h>

class worker

M.S. University - D.D.C.E.

{

int age;

char name [10];

public:

void get();

}:

void worker :: get()

{
cout << “your name please”;
cin >> name;
cout << “your age please”;

cin >> age;

}
void worker :: show()
{
cout << “In My name is :” <<name<< “In My age is :” <<age;
}
class manager : public worker //derived class (publicly)
g .
int now;
public:
void get();
void show();
bi
void manager : : get(
{
worker : : get (); //the calling of base class input fn.
cout << “number of workers under you”; (could also write:
cin >> now; cin>>name>>age)
} {(if they were public)
void manager :: show()
(
worker :: show(); //calling of base class o/p fn.

cout >> “in No. of workers under me are: “<< now;

} (could also write: cout<<name<<age)
main()

{

clrscr();

Inheritance 169

170 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

worker W;;

manager M,;

M, .get();

M;.show({);
}

If you input the following to this program:
Your name please
Ravinder
Your age please
27
number of workers under you
30
Then the output will be as follows:
My name is : Ravinder
My age is: 27

No. of workers under me are : 30

7.4.2 Private Inheritance

When the base class is inherited by using the private access specifier, all public and protected members
of base class become private members of the derived class.
The following program shows the single inheritance by private derivation.
#include<iostream.h>
#include<conio.h>
class worker //Base class declaration
t
int age;
char name [10];
public:
void get();

void show();

void worker :: get{)

{
cout << “your name please”;
cin >> name;

cout << “your age please”;

M.S. University - D.D.C.E. Inheritance 171

cin >> age;
}

void worker : show()

{

cout<<“in my name is:“<<name<<“in”<<“my age is :%“<<age;

}

class manager : worker //Derived class (privately by default)

{

int now;
public:
void get()~
void show();
b
void manager : : get()
{
worker: :get(); //calling the get function of base

cout<<“number of worker under you”; class which is

cin>>now; inputting its data
} members i.e. name
void manager :: show() and age

{

worker :: show();

cout << “in no. of worker under me are : “<<now;

}

main{)

{

clrscr()

worker wi;

manager my;

ml.get ();

ml.show ();
}

7.4.3 Protect Inheritance

When the base class is inherited by using the protected access specifier, all public and protected
members of base class become protected members of the derived class.
The following program shows the single inheritance using protected derivation

#include<conio.h>

#include<icstream.h>

172 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

class worker //Base class declaration
{ protected:
int age; char name [20]:
public:
void get();
void show();
}:
void worker :: get(
{
cout >> “your name please”;
cin >> name;

cout << “your age please”;

[\1]

cin >> age;
void worker :: show()
{
cout << “in my name is: “<< name << “in my age is “<<age
}
class manager : protected worker // protected inheritance
{
int now;
public:
voild get();
vold show():
}i
void manager : : get()
{
cout<<“please enter the name In”:
cin>>name;
cout<<"please enter the age In”; //Directly inputting the data
cin>>age; members of base class

cout<<” please enter the no. of workers under you:”;

cin>>now;

}

void manager :: show({)

{

cout << “your name is : “<<name<<” and age is : “<<age;

cout <<”In no. of workers under your are : “<<now;

M.S. University - D.D.C.E. Inheritance 173

main()
clrscr()3
manager ml;
mp.get();
cout<< “\n \n”;
m;.show();

}

7.5 AMBIGUITY IN SINGLE INHERITANCE

7.5.1 Member Access Control
Members of base class can be accessed using the visibility modes.

Data that are private, protected or public, their accessibility is depend upon, how the class is inherited
to the other class.

When the access specifier of the base class is public all public members of the base become public
member of the derived class, and all protected members of the base class become protected member of
the dertved class.

In all cases, the base’s private elements remain private to the base and are not accessible by members of
the derived class.

7.5.2 Accessing the Private Data

Basically we have visibility modes to specify that in which mode you are deriving the another class
from the already existing base class. They are:

a. Private: When a base class is privately inherited by a derived class, ‘public members’ of the base
class become private members of the derived class and therefore the public members of the base
class can be accessed by its own objects using the dot operator. The result is that we have no
member of base class that is accessible to the objects of the derived class.

b. Public: On the other hand, when the base class is publicly inherited, ‘public members’ of the base
class become ‘public members’ of derived class and therefore they are accessible to the objects of
the derived class.

c. Protected: C+ + provides a third visibility modifier, protected, which serve a little purpose in the
inheritance. A member declared as protected is accessible by the member functions within its class
and any class immediately derived from it. It cannot be accessed by functions outside these two
classes.

The table 7.1 summarizes how the visibility of members undergo modifications when they are
inherited

174 Object Oriented Programming using C + + M.S. University - D.D.C.E.

Table 7.1
Base Class Visibility Derived Class Visibility
v Public Private Protected
Private X X X
Public Public Private Protected
Protected Protected Private Protected

7.5.3 Accessing the Protected Data

When a member of a class is declared as protected, that member is not accessible by other, nonmember
elements of the program. With one important exception, access to a protected member is the same as
access to a private member-it can be accessed only by other members of its class. The sole exception to
this is when a protected member is inherited. In this case, a protected member differs substantially
from a private one. '

If the base class is inherited as public, then the base class protected members become protected
members of the derived class. By using protected, you can create class members that are private to
their class but that can still be inherited and accessed by a derived class.

When a derived class is used as a base class for another derived class, any protected member of the
initial base class that is inherited (as public) by the first derived class may also be inherited as protected
again by a second derived class.

The private and protected members of a class can be accessed by:
a. A function i.e. friend of a class.
b. A member function of a class that is the friend of the class.

¢. A member function of a derived class.

7.5.4 Accessing Private Member by Friend Class

It is possible for one class to be a friend of another class. When this is the case, the friend class and all
of its member functions have access to the private members defined within the other class.

Let us consider an example:

// Using a friend class
include <liostream>
using namespace std;
class TwoValue {

intx;

inty;

public

Twovalue (int a, int b)

M.S. University - D.D.C.E. Inheritance 175

y = b; } i
friend class Min;
bi
class min
{
public:
int min (Twovalue p):
}:
int Min: min (Twovalue p)
{
return p.x < p.yY? pP.X ! P.Y;
1
int main {)
{
Twovalue obj (10, 20});
Min m; '
cout << m.min (obj):
return 0O;

}

In this example, class Min has access to the private variables x and y declared within the Twovalue
class. It is critical to understand that when one class is a friend of another, it only has access to names
defined within the other class. It does not inherit the other class. Specifically, the members of the first
class do not become member of the friend class.

Friend classes are seldom used. They are supported to allow certain special case situations to be
handled.

7.6 MULTIPLE INHERITANCE

When the inheritance is such that, the class A serves as a base class for a derived class B which in turn
serves as a base class for the derived class C. This type of inheritance is called ‘MULTILEVEL
INHERITENCE’. The class B is known as the INTERMEDIATE BASE CLASS’ since it provides a
link for the inheritance between A and C. The chain ABC is called INHERITENCE*PATH for e.g.

Base class

Inheritance Intermediate

Derived class

176 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

The declaration for the same would be:
Class A
{
/ /body
}
Class B: public A
{
/ /body
}
Class C: public B
{
/ /body
}

This declaration will form the different levels of inheritance.

Following program exhibits the multilevel inheritance.
#include<iostream.h>
#include<conio.h>
class worker //Base class declaration
{
., int age;
char name [20];
public;
vold get ();
void show(});
}
void worker::get ()
{
cout<<“your name please”:
cin>>name;
cout<<“your age please”;
}
void worker: :show()
{
cout<<™In my name is :“<<name<<”In my age is :"“<<age;
}

class manager : public worker //Intermediate base class derived
{ //publicly from the base class
int now;

public:

void get ()
void show():;
}i

M.S. University - D.D.C.E.

void manager::get ()

{

worker::get (); //calling get () fn. of base class
cout << “no. of workers under you:”;

cin >> now;

}

void manager : : show ()

{

worker : : show (); //calling show() fn. of base class
cout << “In no. of workers under me are: “<< now;

}

class ceo: public manager //declaration of derived class

{ //publicly inherited from the
int nom; //intermediate base class
public:

void get();

void show();

}

vold ceo : : get()

{

manager : : get(};

cout << “no. of managers under you are:”; cin >> nom;

}
manager : : show ();
cout << “In the no. of managers under me are: In”";
cout << “nom;

}

main {)

{

cleser: 4).

ceo cl;

cl.get (); cout << “\n\n”;

cl.show ();

Inheritance 177

178 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

Worker

Private:
int age;
char name[20];

Protected:

Private:
int age;
char name[20];

Manager: Worker

Private:
int now;

Protected:

Public:
void get()
void show()
worker::get()
worker::get()

'

CEO : Manager
Public:

Protected:

Public:
All the inherited
members

A class can inherit the attributes of two or more classes. This mechanism is known as ‘MULTIPLE
INHERITENCE’. Multiple inheritance allows us to combine the features of several existing classes as
a starting point for defining new classes. It is like the child inheriting the physical feature of one parent
and the and the intelligence of another. The syntax of the derived class is as follows:

M.S. University - D.D.C.E. Inheritance 179

Class base1 Class base2
{ {
//body1 //body2
} }
v
Class derived : visibility basel, visibility base2
{
//body3
}

Where the visibility refers to the access specifiers i.e. public, private or protected. Following program
shows the multiple inheritance.

#tinclude<iostream.h>
#include<conio.h>
class father //Declaration of base classl
{
int age;
char name [20];
public:
void get ();
veoid show ()
}r)
void father : : get ()
{
cout << “your father name please”;
cin >> name;
cout << “Enter the age”;
cin >> age;
}
void father : : show ()
{
cout<<“In my father’s name is:“<<name<<“In my father’s age is:<<age;
}
class mother //Declaration of base class 2
{

180 Object Oriented Programming using C+ +

char name [20];
int age;
public:

void get()

{

cout << “mother’s name please” << “In”";

cin >> name;

cout << “mother’'s age please” << “in”

cin >> age;
}

void show()

{

cout << “In my mother’s name is: “<<name;

cout << “In my mother’s age is: “<<age;

class daughter public father,

public mother //derived class:

//the features of both the base class

{ //publicly
char name [20];
int std;
public:
void get ():

void show ();

}r

void daughter get {)
{
father :: get ();
mother get ();

w

cout << “child’s name: “:

cin >> name;

cout << “child’s standard”;

¢in >> std;

}

void daughter show ()
{
father show ():
nfather show ();

cout << “In child’s name is

cout << “In child’s standard:

“<<name;

“<<std;

M.S. University - D.D.C.E.

inheriting

M.S. University - D.D.C.E. Inheritance 181

main()

{

clrscr(});
daughter dl;
dl.get ():
dl.show ():

}

Diagramatic Representation of Multiple Inheritance is as follows:

Father Mother
Private: Private:
int age; int age;
char name[201; char name[201:
Protected: Protected:
Public: Public:
void get() void get()
void show() void show()
v
Class daughter: public Father, public Mother
Private: char name[20]; int age;
Protected:
Public:
Iself
void get(); void show();
//from Father
void get(); void show();
//from Mother
void get(); void show();

7.7 CONTAINER CLASSES

Inheritance is the mechanism of deriving certain properties of one class into another. We have seen in
detail how this is implemented using the concept of derived classes. C+ + supports get another way of
inheriting properties of one class into another. This approach takes a view that an object can be a .
collection of many other objects. That is, a class can contain objects of other classes as its member as
shown below:

class A { };

class B { };

182 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

class C
{
A al; // creation of object of class A
B bl; // creation of object of class B
bi
All objects of C class will contain the objects al and bil. This kind of relationship is called
containership or nesting. Creation of an object that contains another object is very different than the
creation of an independent object. An independent object is created by its constructor when it is
declared with arguments. On the other hand, a nested object is created in two stages. First, the
member objects are created using their respective constructors and then the other “ordinary” members
are created. This means, constructors of all the member objects should be called before its own

constructor body is executed. This is accomplished using an initialization list in the constructor of the
nested class.

Example:

class C

{
A al; // creation of object of class A
B bl; // creation of object of class B public:
C (arglist): al (arglist 1), bl(arglist 2)
{

// constructor bedy

}:

arglist is the list of arguments that is to be supplied when a C object is defined. These parameters are
used for initializing the members of C. arglist 1 is the argument list for the constructor of a and arglist
2 is the argument list for the constructor of b1. Remember al (arglist 1) and b1 (arglist 2) are function
calls and therefore the arguments do not contain the data types. They are simply variables or
constants.
for example,

((int x, int y, float z) : a(x), (bx, z)

{

//Assignment section

}

We can use as many member objects as are required in a class.

M.S. University - D.D.C.E. © Inheritance 183

Check Your Progress
Fill in the blanks:

1. The mechanism of deriving a new class from an old one is calledccococuveee.
2. Members of base class can be accessed using thecoeeeriencs

3. When a class inherits another, the members of the base class become members of the

................... class
4. Aclass can inherit theocovvieecinnne of two or more classes.
7.8 LET US SUM UP

Inheritance is the capability of one class to inherit properties from another class. It supports reusability
of code and is able to simulate the transitive nature of real life objects. Inheritance has many forms:
Single inheritance, multiple inheritance, hierarchical inheritance, multilevel inheritance and hybrid
inheritance.

A subclass can derive itself publicity, privately or protectedly. The derived class constructor is
responsible for invoking the base class constructor, the derived class can directly access only the public
and protected members of the base class. '

When a class inherits from more than one base class, this is called multiple inheritance. A class may
contain objects of another class inside it. This situation is called nesting of objects and in such a
situation, the contained objects are constructed first before constructing the objects of the enclosing
class.

7.9 KEYWORDS

Abstract Class: A class serving only a base class for other classes and no objects of which are created.

Base Class: A class from which another class inherits (also called super class).

Containership: The relationship of two classes such that the objects of a class are enclosed within the
other class.

Derived Class: A class inheriting properties from another class (also called sub-class).
Inkeritance: Capability of one class to inherit properties from another class.
Inkeritance Graph: The chain depicting relationship between a base class and derived class.

Visibility Mode: The public, private or protected specifier that controls the visibility and availability
of a member in a class.

7.10 QUESTIONS FOR DISCUSSION

1. Define derived classes.
2. What is multi level inheritance?

3. Write a note on hierarchical inheritance.

184 Object Oriented Programming using C-+ + M.S. University - D.D.C.E.

4. Consider a situation where three kinds of inheritance are involved.
5. What is the difference between protected and private members?

6. What is the major use of multilevel inheritance?
7

Discuss a situation in which the private derivation will be more appropriate as compared to
public derivation.

8. Write a C++ program to read and display information about employees and managers.
Employee is a class that contains employee number, name, address and department. Manager class
and a list of employees working under a manager.

Check Your Progress: Model Answer
1. inheritance.

2. visibility modes.

3. Derived

4. attributes

7.11 SUGGESTED READINGS

Robert Lafore, Object-oriented Programming in Turbo C+ +, Galgotia Publications.

E Balagurusamy, Object-Oriented Programming with C+ +, Tata Mc Graw-Hill
Herbert Schildt, 7he Complete Reference C+ +, Tata Mc Graw Hill

LESSON

8

OVERLOADING

CONTENTS

8.0 Aims and Objectives

8.1 Introduction

8.2 Function Overloading

83 Operator Overloading

8.4 Overloading of Binary Operators

8.5 Overloading of Unary Operators

8.6 LetusSumup

8.7 Keyword

8.8 Questions for Discussion

8.9 Suggested Readings

S

8.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

e Explain the concept of function overloading

® Define operator overloading

® Describe the overloading of binary operators

e Identify and explain the overloading of unary operators
8.1 INTRODUCTION

C++ provides a rich collection of various operators. We have already seen the meaning and uses of
many such operators in previous lesson. One special feature offered by C+ + is operator overloading.
This feature is necessary in a programming language supporting objects oriented features.

8.2 FUNCTION OVERLOADING

C++ allows you to define several different functions with the same name, provided their parameter
list differs. Here’s a small example of doing so.

#include <iostream.h>

186 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

void print {(const char* string)
cout << “print(\ % ™ << string << ™ \”)" << endl;
void print(int 1)
cout << “print (“<< i <<”)” << endl;
int main (void)
print (“string printing”): // calls print (const char¥)
print (5) // calls print(int)
return 0;
Compiling and Running Yields
Print (“string printing”)
Print (5)
Handled right, this can severely reduce the member of names you have to remember. To do something
similar in C, you'd have to give the function different names, like “print_int” and “print_string” of
course, handled wrong, it can cause mess. Only overloaded functions when they actually do the same
things- in this case, printing their parameters, had the functions been doing different things you would

soon forget which of them did what. Function overloading is powerful, and it will be used throughout
this course, but everything with power is dangerous, so be careful.

To differentiate between overloaded function, the parameter list is often included when mentioning
their names. In the example above, we have the two functions “print (int)” and “print (const char*)”,
and not just two functions called “print”.

Function over loading is a general concept in C+ +. To understand what is meant by it, consider an
example first to illustrate the point.

veid print (char *p)

cout << “Print a string” << p << “\n”.

void print (int:)

cout << “Print an integer “<<p<< “\n”;

void Dosomething ()

char *p [1 = “My code \0”;

int mynumber = 33;

print (p); // call character Print

print (i); // call

It makes sense to use one function name for the same functionality to have a good readability of a
program, even though different types have to be printed. Above, we have defined two functions print
for different arguments and the compiler will decide which one is the right one to take in accordance
with the arguments provided. On this level of our C+ + knowledge this has only the meaning of good

readable programs, but concept becomes essential when we introduce templates in section <mode 40.
html>.

When we write function templates we do not know what type a variable will have. That will be
specified at compile time. As long as we associate a name with a functionality, which is declared else

M.S. University - D.D.C.E. Overloading 187

where, we can write fully general programs on a high abstraction level. Here is an example of how we
can use function overloading already is our Point class

Class Point

Private:

double x; // x coordinate

double y; // y coordinate;

Public: ‘

Point () {x = vy =0;}; // constructor.

void set (double vx =0) {x = v x:};

Void set (point p} {

x = P.x; // the methods of Point have access to private data
y = P.y; }:

We use the function name set twice. If we provide an argument of type double, we set the x value,
otherwise, we copy the storage of the provided Point into the data section.

In the line set (double vx = 0) { x = vx; }; we used another interesting feature of C+ +, the default
argument: If we use a point p as p.set (7), the x value is set to 7, while the line p.set () would set x to
zero.

Scope Rules for Function Overloading

The ability to redefine the building blocks of the language can be a blessing in that it can make your
listing more intuitive and readable. It can also have the opposite effect, making it more obscure and
hard to understand. Here are few guidelines.

Using Similar Meanings

Use overloaded operators to perform operations that are as similar as possible to those performed on
basic data types.

Use Similar Syntax

Use overloaded operators in the same way they are used for basic types. For example, if alpha and
beta are basic types, the assignment operator in the statement,

counter alpha + = beta;

set alpha to the sum of alpha and beta. Any overloaded version of this operator should do something
analogous. It should probably do the same thing as

counter alpha = alpha + beta;
where the + is overloaded.
Show Restraint

If you have overloaded the + operator, anyone unfamiliar with your listing will need to do
considerable research to find out what a statement like

countera = b + ¢;

188 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

really means. If the number of overloaded operators grows too large, and if they are used in
nonintuitive ways, then the whole point of using them is lost, and the listing becomes less readable
instead of more.

Avoid Ambiguity

If you use both a one-argument constructor and a conversion function to perform the same
conversion, how will the compiler know which conversion to use? The answer is that it won’t. The
compiler does not like to be placed in a situation where it doesn’t know what to do, and it will signal
an error. Avoid doing the same conversion in more than one way.

Not all Operators can be Overloaded

The following operators cannot be overloaded, the member access or dot operator (), the scope
resolution operator (: :), and the conditional operator { ? :). And, the pointer-to-member operator
(-*), which we have not yet encountered, cannot be overloaded.

8.3 OPERATOR OVERLOADING

Overloading an operator simply means attaching additional meaning and semantics to an operator. It
enables an operator to exhibit more than one operations polymorphically, as illustrated below:

You know that additional operator (+) is essentially a numeric operator and therefore, requires two
number operands and evaluates to a numeric value equal to the sum of the two operands. Evidently
this cannot be used in adding two strings. We can extend the operation of addition operator to include
string concatenation. It implies that the additional operator would work as follows:

"COM" + "PUTER"
should produce a single string

"COMPUTER"

This redefining the effect of an operator is called operator overloading. The original meaning and
action of the operator however remains as it is.

An operator is overloaded

We will consider overloading a unary operator - minus (-) to enable it to be applicable on a set of
numbers instead of a single number.

Function overloading allows different functions with different argument list having the same name.
Similarly an operator can be redefined to perform additional tasks. Operator overloading is
accomplished using a special function which can be a2 member function or friend function. The general
syntax of operator overloading is:

<return_type > operator < operator_being_overloaded > (< argument list >);
operator is the keyword and is preceded by the return_type of the function.

To overload the addition operator (+) to concatenate two characters, the following declaration, which
could be either member or friend function, would be needed:

char * operator + (char *s2);

M.S. University -~ D.D.C.E. : Overloading 189

Rules for Overloading Operators

To overload any operator, we need to understand the rules applicable Let us revise some of them
which have already been explored...

Following are the operators that cannot be overloaded.

Operator Purpose

Class member access operator

i Class member access operator

Scope Resolution Operator

2 Conditional Operator
Size of Size in bytes operator
Preprocessor Directive

Table 8.1: Operators that cannot be overloaded

Operator Purpose

= Assignment operator

0 Function call operator

Subscripting operator

-> Class member access operator

e Operators already predefined in the C++ compiler can be only overloaded. Operator cannot
change operator templates that is for example the increment operator ++ is used only as unary
operator. It cannot be used as binary operator.

e Overloading an operator does not change its basic meaning. For example assume the + operator
can be overloaded to subtract two objects. But the code becomes unreachable.
class integer
{intx, y:
public:

int operator + ();
int integer: : operator + ()

return (x-y);
}
® Unary operators, overloaded by means of a member function, take no explicit argument and

return no explicit values. But, those overloaded by means of a friend function take one reference
argument {the object of the relevant class).

® Binary operators overloaded through a member function take one explicit argument and those
which are overloaded through a friend function take two explicit arguments.

190 Object Oriented Programming using C+ + - : M.S. University - D.D.C.E.

Operator to Overload | Arguments passed to the Member Function Argument passed to the Friend Function

Unary Operator No 1

Binary Operator 1 2

8.4 OVERLOADING OF BINARY OPERATORS

Binary operators are operators which require two operands to perform the operation. When they are
overloaded by means of member function, the function takes one argument, whereas it takes two
arguments in case of friend function. This will be better understood by means of the following
program.

The following program creates two objects of class integer and overloads the + operator to add two
object values.

#include<iostream.h>
#include<como.h>
class integer
{
private
int val;
public:
integer {);
integer (int one);
integer operator+ (integer obijb);
void disp ()
bi
integer :: integer ()
{
val = 0;
}
integer:: integer (int one)
{
val = one;
}
integer integer:: operator+ (integer objb)
{
integer objsum;
cbjsum.val = val+obijb. val;

return (cbjsum);

M.S. University - D.D.C.E. : Overloading 191

void integer:: disp ()

{
cout<< "wvalue ="<< val<< endl;

}

void main ()

{
integer objl (11);
integer obj2 (22);
integer objsum;
objsum = objl +obj2;
objl.disp ():
obj2.disp ()/
objsum.disp ();
getch ()

}

You should see the following output.

value = 11
value = 22
value = 33

Note that the operator overloading function is invoked by S3=51+52. We have passed only one
argument to the function. The left hand object S1 invokes the function and 2 is actually the argument
passed to the function.

The following program is the same as previous one. The only difference is that we use a friend
function to find the sum of two objects. Note that an argument is passed to this friend function.
#include<iostream.h>

#include<conio.h>

class integer

{

private:

int val;

public:

integer ();

integer (in tone);

friend integer operator+ (integer obja,integer objb);

veid disp ()

}i

integer:: integer ()

192 Object Oriented Programming using C + + M.S. University - D.D.C.E.

{
val = 0;
}
integer:: integer (int one)
{
val = one;
}
integer. operator+ (integer cbja,integer obijb)
{
integer objsum;
cbjsum.val = obja.val+objb.val;
return (objsum);
}
Void integer :: disp {)
{
cout<< "value ="<< val <<endl;
}
void main ()
{
integer obj 1 (11);:
integer obj2 (22):;
integer objsum;
cbjsum = obj 1 +obj2;
objl.disp ();
cbj2.disp ();
objsum.disp ();
getch (};
1

You should see the following output.
value = 11
value = 22
value = 33

friend function being a non-member function does not belong to any class. This function is invoked
like a normal function. Hence the two objects that are to be added have to be passed as arguments
exclusively.

M.S. University - D.D.C.E. Ovetloading 193

8.5 OVERLOADING OF UNARY OPERATORS

In case of unary operator overloaded using a member function no argument is passed to the function
whereas in case of a friend function a single argument must be passed.

Following program overloads the unary operator to negate an object. The operator function defined
outside the class negates the individual data members of the class integer.

#include<iostream.h>
#include<conio.h>
class integer
{
int x,y,z;
public:
void getdata(int a, int b, int c);
void disp(void);
void operator- (); // overload unary operator minus
bi
void integer:: getdata (int a, int b, int c)
{
X=a;
y=b;
z=c;
}
void integer::disp (void)
{
COUE €4 X < ™ uy
cout<< y<<" ";
cout<< z<< "\n";

}

void integer:: operator- () // Defining operator- ()
{
= -x;
y =-y;
Z = —Zj
}
main 0

integer S;
S.getdata (11,-21,-31);

194 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

Coutg=s "5: ";

S.ddsp: ¢)7

-3;
cout<< "sg : ";
S.disp (}:
getch();

1

You should see the following output.

S:11 21 -31

S-11 21 31

Note the function written to overload the operator is a member function. Hence no argument is

passed to the function. In the main() function, the statement -S invokes the operator function which
negates individual data elements of the object S.

The same program can be rewritten using friend function. This is demonstrated in the following
Program. In this program, we define operator function to perform unary subtraction using a friend
function.

#incluae <iostream.h>
#include <conio.h>
class integer

{
t

intx;

int yrs

intz;

public:

void getdata(int a, int b, int <);

void disp(void);

friend void operator- (integer &s); // overload unary minus
i
void integer::getdata (int a, int b, int ¢)

{

X = a;
; v = b;
Z = Cy

}
void integer::disp (void)
{

COUE <5 ¥ << " Y3

COUt <5 ¥ < g

M.S. University - D.D.C.E.

cout << z << "\n";
}

void operator- (integer &s) // Defining operator-

SwX = =8 00
S.Y = -S.V;
s.z = =-§5.z;
1
main 0

{

. integer S;
S.getdata (11
Coutgs Nsi w
S.disp ();

=55
cout<< "§ : ";
S.dis ();

)&

//activates operator-()

getch (
}
You should see the following output.
S$:11-21-31
S:-112131

Overloading 195

Note how only one argument is passed to the friend function. The operator function declared as friend
is not the property of the class. Hence when we define this friend function, we should pass the obJect

of the class on which it operates.

Check Your Progress|

Fill in the blanks:

an operator.
2. There are no operators for manipulating the

3. Binary operators are operators which require
operation.

In case of unary operator overloaded using a member function no
to the function.

1. Overloading an operator simply means attaching additional meaning and

operands to perform the

is passed

196 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

8.6 LET US SUM UP

In this lesson, we have seen how the normal C+ + operators can be given new meanings when applied
to user-defined data types. The keyword operator is used to overload an operator, and the resulting
operator will adopt the meaning supplied by the programmer.

Closely related to operator overloading is the issue of type conversion. Some conversions take place
between user defined types and basic types. Two approaches are used in such conversion: a one
argument constructor changes a basic type to a user defined type, and a conversion operator converts a
user-defined type to a basic type. When one user-defined type is converted to another, either approach
can be used.

8.7 KEYWORD

Operator overloading: Attaching additional meaning and semantics to an operator. It enables to
exhibit more than one operations polymorphically.

8.8 QUESTIONS FOR DISCUSSION

1. What is operator overloading?

2. How many arguments are required in the definition of an overloaded unary operator?

3. When used in prefix form, what does the overloaded + + operator do differently from what it
does in postfix form?

4. Write the complete definition of an overloaded + + operator that works with the string class
from the STRPLUS example and has the effect of changing its operand to uppercase. You can use
the library function toupper (), which takes as its only argument the character to be changed, and
returns the changed character.

5. Write a note on unary operators.

6. What are the various rules for overloading operators?

Check Your Progress: Model Answer
1. Semantics
. Strings

2
3. Two
4

. argument

8.9 SUGGESTED READINGS

Robert Lafore, Object-oriented Programming in Turbo C+ +, Galgotia Publications.

E Balagurusamy, Object-Oriented Programming with C+ +, Tata Mc Graw-Hill
Herbert Schildt, The Complete Reference C+ +, Tata Mc Graw Hill

UNIT V

LESSON

9

POLYMORPHISM

CONTENTS

9.0 Aims and Objectives

9.1 Introduction

9.2 Polymorphism

9.3 Polymorphism with Pointers
9.4 Virtual Functions

9.5 Late Binding Abstract Classes
9.6 Constructors under Inheritance
9.7 Destructors under Inheritance
9.8 Virtual Destructors

9.9 Virtual Base Classes

9.10 Let us Sum up

9.11 Keywords

9.12 Questions for Discussion

9.13 Suggested Readings

9.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Explain the concept of polymorphism

® Discuss polymorphism with pointers

® Describe the siénificance of virtual functions

e Identify and explain the late binding abstract classes

e Discuss the constructors and destructors under inheritance
e Explain the concept of virtual destructors

e Discuss the virtual base classes

200 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

9.1 INTRODUCTION

Polymorphism is an Anglicization of two Greek words - ‘poly’ means many, and ‘moop’ meaning
shape. Polymorphism allows the program to use the exactly same function name with the exactly same
argument in both a base class and its subclasses. This allows having a function that behaves in a
different way depending upon the object class. '

Polymorphism may be the most powerful aspect of object-oriented programming because the program
can be written to call member functions without regard for what class the object belongs to. This can
be done by defining the sub-class.

9.2 POLYMORPHISM

Polymorphism refers to the implicit ability of a function to have different meanings in different
contexts. Consider the class hierarchy that contains Number and ComplexNumber. If a number is
defined as a pointer to Number then a Number can be instantiated as either a Number or a
ComplexNumber.

Eg: Number *aNumber;

aNumber = new Number (1);

aNumber — output ();
delete aNumber;

aNumber — output ();
Delete aNumber;

In the first case, the output function in Number would be called and in the second case, it would be
called again. This happens because a Number is a pointer to a Number and not a ComplexNumber.
To solve this problem, both output functions must be declared as virtual. Then the compiler keeps
track of which the actual functions associated with each object and calls the appropriate ones when
needed.

9.3 POLYMORPHISM WITH POINTERS

One of the key features of derived classes is that a pointer to a derived class is type-compatible with a
pointer to its base class. Polymorphism is the art of taking advantage of this simple but powerful and
versatile feature, that brings Object Oriented Methodologies to its full potential.

We are going to start by rewriting our program about the rectangle and the triangle of the previous
section taking into consideration this pointer compatibility property:

pointers to base class
#include <iostream>
using namespace std;
class CPolygon {
protected:
int width, height;
public:

M.S. University - D.D.C.E. Polymorphism 201

void set_values (int a, int D)
{ width=a; height=b; }
b
class CRectangle: public CPolygon {
public:
int area ()
{ return (width * height); }
bi

class CTriangle: public CPolygon {
public:
int area ()
{ return (width * height / 2); }
}i

int main () {
CRectangle rect;

CTriangle trgl;

CPolygon * ppolyl ▭

f

CPolygon * ppoly?2 &trgl;
ppolyl->set _values (4,5);
ppoly2->set values (4,5);
cout << rect.area() << endl;
cout << trgl.area() << endl;
return 0;

}

In function main, we create two pointers that point to objects of class CPolygon (ppolyl and
ppoly2). Then we assign references to rect and trgl to these pointers, and because both are objects
of classes derived from CPolygon, both are valid assignment operations.

The only limitation in using *ppolyl and *ppoly2 instead of rect and trgl is that both *ppolyl
and *ppoly?2 are of type CPolygon* and therefore we can only use these pointers to refer to the
members that CRectangle and CTriangle inherit from CPolygon. For that reason when we call the
area() members at the end of the program we have had to use directly the objects rect and trgl
instead of the pointers *ppolyl and *ppoly2.

In order to use area () with the pointers to class CPolygon, this member should also have been
declared in the class CPolygon, and not only in its derived classes, but the problem is that
CRectangle and CTriangle implement different versions of area, therefore we cannot implement it
in the base class.

202 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

9.4 VIRTUAL FUNCTIONS

Virtual functions, one of advanced features of OOP is one that does not really exist but it appears real
in some parts of a program. This section deals with the polymorphic features which are incorporated
using the virtual functions.

The general syntax of the virtual function declaration is:
class use_defined name{
private:
pubdide:
virtual return_type function namel (arguments);
virtual return type function name2{arguments) ;

virtual return type functiocn namel (arguments) ;

To make a member function virtual, the keyword virtual is used in the methods while it is declared in
the class definition but not in the member function definition. The keyword virtual precedes the
return type of the function name. The compiler gets information from the keyword virtual that it is a
virtual function and not a conventional function declaration.
For example, the following declaration of the virtual function is valid.

class point {

intx;

inty;

public:

virtual int length (};

virtual void display ();

}i
Remember that the keyword virtual should not be repeated in the definition if the definition occurs
outside the class declaration. The use of a function specifier virtual in the function definition is invalid.

For example

class point {

virtual void display ();
b
virtual void point: : display () //error

{

