M.S. University - D.D.C.E. Structures Unions and Bit Fields 103

5.2.1 Giving Values to Members

As the members are not themselves variables they should be linked to the structure variables. The
Link between a member and a variable is established using member operator '." which is also known as

dot operator.

This can be explained using following example:

e.g.: / * Programme to define a structure and assign value to members * /

struct book

main (

}

char * name;
int pages;

char *author;

struct book bl;

printf ("\n Enter Values:");

scanf ("%s %d %s", bl.name, &bl.page, bl.author):;
printf ("%s, %d, %s, bl.name, bl.page, bl.author):

5.2.2 Creating Structure Variables

The structure declaration does not actually create variables. Instead, it defines data type only. For
actual use a structure variable needs to be created. This can be done in two ways:

1. Declaration using tagname anywhere in the programme.

e.g.:

struct book

{
char name [30];
char author [25];
float price;

}

struct book bookl, book2;

It 1s also allowed to combine structure declaration and variable declaration in one statement.

This declaration is give.n below:

struct person

{

char * name;

int age;

char *address;

104 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

}
pl, pz, p3;
While declaring structure variables along with their definition, the use of tag_name is optional.
struct
{
char *name;
int age;
char *address;
}
pl, p2, p3;

5.2.3 Structure Initialization

A structure variable can be initialized as any other data type.

main{)
static struct

int weight;
float height;

student = {60, 180.75};

This assigns the value 60 to student.weight and 180.75 student.height. There is a one-to-one
correspondence between the members and their initializing values.

A structure must be declared as static if it is to be initialized inside a function (similar to arrays). The
following statements initialize two structure variables. Here, it is essential to use a tag name.

main()

struct st_record
{
int weight;
float height;
}

static struct st_record studentl

{60, 180.75};
{53, 170.60};

static struct st_record student?2

M.S. University - D.D.C.E.

Structures Unions and Bit Fields 105

Another method is to initialize a structure variable outside the function as shown below:

struct st_record / * No static word */

{
int weight;

int height;

studentl = {60, 180.75};

5.3 NESTED STRUCTURES

Structures within a structure means nesting of structures. Let us consider the following structure

defined to store information about the salary of employees.

struct salary

{

}

char name
char department
int basic_pay;
int dearness_allowance;
int house_rent_ allowance;

int city_allowance;

employee;

This structure defines name, department, basic pay and three kinds of allowances. All the items related
to allowance can be grouped together and declared under a sub-structure as shown below:

struct salary

{

}

char name [2];

char department [10];

struct

{
int dearness;
int house_rent;
ifE elty;

!

allowance;

employee;

106 Object Oriented Programming using C + + M.S. University - D.D.C.E.

The salary structure contains a member named allowance which itself is a structure with three
members. The members contained in the inner structure, namely, dearness, house_rent and city can be
referred to as:

employee.allowance.dearness
employee.allowance.house_rent

employee.allowance,city

Then inner most member in a nested structure can be accessed by chaining all the concerned structure
variables (from outermost to inner most) with the member using dot operator.

The following statements are invalid:
employee.allowance (actual member is missing)
employee.house rent (inner structure variable is missing)
An inner structure can have more than one variable. The following form of declaration is legal:

struct salary

{

struct

{

int dearness;

}

allowance, arrears;
}
employee [100];
The inner structure has two variables, allowance and arrears. This implies that both of them have the
same structure template.
A base member can be accessed as follows:
employee[l].allowance.dearness

employee[l].arrears.dearness

Tag names can also be used to define inner structures.

e.g.: struct pay

int dearness;
int house_rent;
int city;

}r

sfruct salary

{
char name [207];

M.S. University - D.D.C.E. Structures Unions and Bit Fields 107

char department [10];
struct pay allowance;
struct pay arrears;
}
struct salary employee [100];
The pay template is defined outside the salary template and is used to define the structure of allowance
and arrears inside the salary structure.
It is also permissible to nest more than one type of structures:
struct personal_record
{
struct name_part name;

struct date date_of birth;

i
struct personal record personl;

The first member of the structure is name which is of the type struct name_part. Similarly, other
members have their structure types.

5.4 UNION - DEFINITION AND DECLARATION

Unions follow the same syntax as structures but differ in terms of storage. In structures, each member
has its own storage location, whereas all the members of a union use the same location. This implies
that, although a union may contain many members of different types, it can handle only one member
at a time.

Like structures, a union can be declared using the keyword union as follows:
union item
{
int m;
float x;
char c;
} code;
This declaration declares a variable code of type union item. The union contains three members, each

with a different data type. However, only one can be used at a time. This is due to the fact that only
one location is allocated for a union variable, irrespective of its size.

108 Object Oriented Programming using C+ + M.S. University - D.D.CE.

L 1000 1001 1002 1003

Storage of 4 Bytes c

m

X

The compiler allocates a piece of storage that is large enough to hold the largest variable type in the
union. As shown in the example declaration, the member x requires 4 bytes which is the largest among
the members. It is assumed that a float variable requires 4 bytes of storage and the figure above shows
how all the three variables share the same address.

5.4.1 Accessing a Union Member
To access a union member, you can use the same syntax that you use for structure members.

e.g: code.m, code.x, code.c are all valid member variables.

During accessing, you should make sure that you are accessing the member whose value is currently
stored.
For example, the statements such as

code.m = 150;

code.x = 785;

printf ("%d", code.m);

would produce erroneous output (which is machine dependent). The user must keep track of what
type of information is stored at any given time.

Thus, a union creates a storage location that can be used by any one of its members at a time. When a
different member is assigned a new value, the new value supersedes the previous member's value.

Unions may be used in all places where a structure is allowed. The notation for accessing a union
member which is nested inside a structure remains the same as for the nested structures,
5.4.2 Union of Structures

Just as one structure can be nested within another, a union too can be nested in another union. Not
only that, there can be a union in a structure, or a structure in a union. Here is an example of
structures nested in a union.

main()
{
struct a
{
NG 17
char c[2];

bi
struct b

M.S. University - D.D.C.E. Structures Unions and Bit Fields 109

int j;
char d{2];
Y
union z
{
struct a key;
struct b data;
}strange;

strange.key.i = 512;

0;
323
printf ("%d\n", strange.key.i);

strange.data.d[0]

strange.data.d[1]

printf ("%d\n", strange.data.j):
printf ("%d\n", strange.key.c[0];
printf ("$d\n", strange.data.d{0];
printf ("$d\n", strange.key.c[1]);
printf ("$d\n", strange.data.d[l];

Output:
512
512
0
0
32
32

Structures and unions may be freely mixed with arrays.

e.qg.

union id

char color([l2];
int size;

bi

struct clothes

{

char manufacturer[20];

110 Object Oriented Programming using C + + M.S. University - D.D.C.E.

float cost;
union id description;
} shirt, trouser;
Now shirt and trouser are structure variable of type clothes. Each variable will contain the following
members: a string (manufacturer), a floating-point quantity (cost), and a union (description). The

union may represent either a string (color), or an integer quantity (size). Another way to declare the
structure variable shirt and trouser is to combine the above two declarations. This is shown as follows:

struct clothes
{
char manufacturer[20];
float cost;
union {
char color([12];
int size;
} description:

} .shirt, trouser;
This declaration is more concise, though perhaps less straightforward than the original declarations.

An individual union member can be accessed in the same manner as an individual structure member,
using the operators " . " and " -> ". Thus, if variable is a union variable, then variable.member refers
to a member of the union. Similarly, if ptvar is a pointer variable that points to a union, then ptvar-
> member refers to a member of that union.

e.g.
¥include <stdio.h>
main ()
{
union id
{
char color;
int size;
bi
struct
{
char manufacturer{20];
float cost;
union id description;
} shirt, trouser;
printf ("%d\n", sizeof (union id));

shirt.description.color = ' w ' ; /* assigns a value to color */
P g

M.S. University - D.D.C.E. Structures Unions and Bit Fields 111

printf("%c %d\n", shirt.description.color, shirt. description. size);
shirt.description.size = 12; /* assigns a value to size */

printf ("%c %d\n", shirt.description.color, shirt.description. size);

}

5.4.3 Initialization of a Union Variable

A union variable can be initialized, provided its storage class is either external or static. Only one
member of a union can be assigned a value at any one time. The initialization value is assigned to the
first member within the union.

e.g.: /* Programme to demonstrate initialization of union variables. */
#include <stdio.h>
main()
{
union id
{
char color[l2];
int size;
}i
struct clothes
{
char manufacturer[20];
float cost;
union id description;
bi
static struct clothes shirt = {"American”, "25.00", "White"};
printf ("%d\n", sizeof (union id));
printf("%s %5.2f", shirt.manufacturer, shirt.cost);
printf("%s %d\n", shirt.description.color, shirt.descripticn.size);
shirt.description.size = 12;
printf("%s %5.2f", shirt.manufacturer, shirt.cost);
printf ("%s %d\n", shirt.description.color, shirt.description.size);
}
Output: 12
American 25.00 White 26743

American 2500 ~ 12

112 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

5.5 BITFIELDS

While we're on the subject of structures, we might as well look at bitfields. They can only be declared
inside a structure or a union, and allow you to specify some very small objects of a given number of
bits in length. Their usefulness is limited and they aren't seen in many programmes, but we'll deal
with them anyway. This example should help to make things clear:

struct {
/* field 4 bits wide */
unsigned fieldl :4;
J*
* unnamed 3 bit field
* unnamed fields allow for padding
%)
unsigned :3;
/ *
* one-bit field
* can only be 0 or -1 in twe's complement!
B
signed field2 :1;
/* align next field on a storage unit */
unsigned 105
unsigned field3 :6;
}full of fields;
Each field is accessed and manipulated as if it were an ordinary member of a structure. The keywords
signed and unsigned mean what you would expect, except that it is interesting to note that a 1-bit

signed field on a two's complement machine can only take the values 0 or -1. The declarations are
permitted to include the const and volatile qualifiers.

The main use of bitfields is either to allow tight packing of data or to be able to specify the fields
within some externally produced data files. C gives no guarantee of the ordering of fields within
machine words, so if you do use them for the latter reason, you programme will not only be non-
portable, it will be compiler-dependent too. The Standard says that fields are packed into ‘storage
units’, which are typically machine words. The packing order, and whether or not a bitfield may cross
a storage unit boundary, are implementation defined. To force alignment to a storage unit boundary, a
zero width field is used before the one that you want to have aligned.

Be careful using them. It can require a surprising amount of run-time ccde to manipulate these things
and you can end up using more space than they save.

Bit fields do not have addresses—you can't have pointers to them or arrays of them.

M.S. University - D.D.C.E. Structures Unions and Bit Fields 113

5.6 ENUMERATION

It is defined as enum identifier {value, value;, ... value:};

The identifier is a user defined enumerated data type which can be used to declare variables that can
have one of the values enclosed within the braces (known as enumeration constants).

After this definition, we can declare variable to be of this 'new’' type as below:
enum identifier vi, v2,...Vx;
The enumerated variables vi, v2, —— va can only have one of the values valuei, valuez, —valuen.

The assignmehts vi = values; vs = valuey; are valid.
e.qg.: enum day{Monday, Tuesday------ Sunday};
enum day week st, week end;
week st = Monday;
week _end = Friday;
if (week st == Tuesday) week end = Saturday;

Note: The values that are in original declaration, can only be used.

The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants.
That is, the enumeration constant values, is assigned 0, value: is assigned 1, and so on.

The automatic assignments can be overridden by assigning values explicitly to the enumeration
constants. :

e.g.: enum day {Monday =1, Tuesday, ---Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values that
increase successively by 1.

The definition and declaration of enumerated variables can be combined in one statement.
€.g.: enum day{Monday, --- Sunday}week st, week end;
Like structures this declaration has two parts:

(@ The first part declares the data type and specifies its possible values. These values are called
‘enumerators’.

(b) The second part declares variables of this data type.

Check Your Progress
Fill in the blanks:

1. A structure is a collection ofcovevvveviircninnens

2. A structure variable can bec.ccviiiien i

3. Unions follow the same syntax asccooveevevereuenneas

114 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

5.7 LET US SUM UP

Structure is a derived data type used to store the instances of variables of different data types. Structure
definition creates a format that may be used to declare structure variables in the programme later on.
The structure operators like dot operator "." are used to assign values to structure members. Structure
variable can be initialized as any other data type. An array of structure can be declared as any other
array. In such an array, each element is a structure. Structures may contain arrays as well as structures.
Union is a memory location that is shared by two or more variables. When union variable is declared,
compiler automatically allocates enough storage to hold to largest member of union. Only the unions
with storage class external or static can be initialized. Unions are useful for applications involving
multiple members. They are also used in many DOS based application softwares.typedef and enum are
two user defined data types.

5.8 KEYWORDS

Structure: A structure is a collection of variables referenced under one name providing a convenient
means of keeping related information together.

Union: Unions follow the same syntax as structures but differ in terms of storage.

Bitfields: The main use of bitfields is either to allow tight packing of data or to be able to specify the
fields within some externally produced data files.

5.9 QUESTIONS FOR DISCUSSION
What will be the output:

1. main()

{

strluct
{
int i;
}
XYZ;
{&xyz) -> i = 10;
printt (Ted", xyz.i)s

2. main()

struct
{
int i;

}

*RYZ;
(&*xyz)->1 = 10;
printf ("%d", xyz ->1i);

M.S. University - D.D.C.E.

3. main()

{

struct xyz
{
int i;
}
struct xyz *p;
struct xyz a;
P = &&;
p -> 1i = 10;
printf ("%d", xyz.i);

4. main()

struct xyz
{
int xyz;
}i
struct xyz xyz;
xyz.xyz = 10;
printf ("%d", xyz.xyz);

5. Is there any error Yes/No
main()

struct xyz
{)
int i;
}
*pgr;

6. main()

struct xxx
{
int i;
char j;
}i
struct xxx zzz = {I, 'a'l;
abc (zzz);

abc (struct xxx aaa)

{

printf ("%d. . . %d", aaa.i, aaa.

5. main()

union a
{
int i;
char ch[2];

j):

Structures Unions and Bit Fields 115

116 Object Oriented Programming using C+ +

}:
union a zl
union a z2

{512};
{0, 2}:

o

6. main()
union

int 1i;
char j;
}
xyzi
Xyz. 1 = 300;
printf ("%d", xyz.j):;

7. main{)

union
{
union
{
char a;
char b;
char c¢;
char d;
}
car;
union
{
char i;
char j;
}
in;
char z;
}
pqr; printf ("%d", sizeof (par)) :}

M.S. University - D.D.C.E.

Check Your Progress: Model Answer
1. Variables
2. initialized as any other data type

3. structures but differ in terms of storage

5.10 SUGGESTED READINGS

Robert Lafore, Object-oriented Programming in Turbo C+ +, Galgotia Publications.
E Balagurusamy, Object-Oriented Programming with C+ +, Tata Mc Graw-Hill
Herbert Schildc, The Complete Reference C+ +, Tata Mc Graw Hill

LESSON

6

CLASSES AND OBJECTS

CONTENTS

6.0 Aims and Objectives

6.1 Introduction

6.2 Declaration of a Class

6.3 Member Functions

6.4 Defining the Object of a Class
6.4.1 Objects as Function Arguments
6.4.2 Returning Objects

6.5 Accessing a Member of Class

6.6 Arrays of Class Objects

6.7 Pointer and Classes

6.8 Unions and Classes

6.9 Constructors
6.9.1 Parameterized Constructors
6.9.2 Constructors with Default Arguments
6.9.3 Copy Constructors
6.9.4 Dynamic Constructors

6.10 Destructors

6.11 Inline Functions

6.12 Static Class Members

6.13 Friend Functions

6.14 Dynamic Memory Allocation

6.15 Let us Sum up

6; 16 Keywords

6.17 Questions for Discussion

6.18 Suggested Readings

118 Object Oriented Programming using C + + M.S. University - D.D.C.E.

6.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Explain the concept of declaration of class
e Discuss member functions

® Describe the object of a class

® Access a member of a class

o Identify and explain the arrays of class objects
® Discuss the pointers and classes

® Explain the concept of union and classes
® Discuss the constructors and destructors
e Explain the inline member functions

® Identify the static class members

® Define friend functions

o Discuss the dynamic memory allocations

6.1 INTRODUCTION

As has been explained earlier at various places, classes and objects are at the core of object-oriented
programming in general and programming C++ in particular. Writing programmes in C+ +
essentially means writing classes and creating objects from them. In this lesson, we will learn to work
with the same.

It is important to note the subtle differences between a class and an object, here. A class is a template
that specifies different aspects of the object it models. It has no physical existence. It occupies no
memory. It only defines various members (data and/or methods) that constitute the class.

An object, on the other hand, is an instance of a class. It has physical existence and hence occupies
memory. You can create as many objects from a class once you have defined a class.

You can think of a class as a data type; and it behaves like one. Just as a data type like int, for example,
does not have a physical existence and does not occupy any memory until a variable of that type is
declared or created; a class also does not exist physically and occupies no memory until an object of
that class is created.

M.S. University - D.D.C.E.

To understand the difference clearly, consider a

class of vehicle and a few objects of this type as

Classes and Objects 119

depicted below:
car
reg_no = DL2C2245
~ no_wheels = 4
L fuel_type = PETROL
R make = MARUTI
P color = WHITE
vehicle o scooter
reg_no; " reg_no = DL2A1056
no_wheels; fZ--enonnamonaoaooo > no_wheels = 2
fuel_type; s, fuel type = PETROL
make; Y make = BAJA]J
color; s color = CREAM
Class , “\
S truck
reg_no = DL3D2259
e no_wheels = 6
.{ fuel type = DIESEL
make = TATA
color = DARK ORANGE
Objects

In this example, vehicle is a class while car, scooter and truck are instances of the class vehicle and
hence are objects of vehicle class. Each instance of the class vehicle - car, scooter and truck - are
allocated individual memory spaces for the variables - reg_no, no_wheels, fuel_type, make and, color -
so that they all have their own copies of these variables.

When an object is created all the members of the object are allocated memory spaces. Each object has
its individual copy of member variables. However, the data members are not initialized automatically.
If left uninitialized these members contain garbage values. Therefore, it is important that the data
members are initialized to meaningful values at the time of object creation. Conventional methods of
initializing data members have lot of limitations. In this lesson, we will learn alternative and more
elegant ways initializing data members to initial values.

When a C++ programme runs it invariably creates certain objects in the memory and when the
programme exits the objects must be destroyed so that the memory could be reclaimed for further use.

C+ + provides mechanisms to cater to the above two necessary activities through constructors and
destructors methods.

120 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

6.2 DECLARATION OF A CLASS

Like structures a class is just another derived data-type. While structure is a group of elements of
different data-type, class is a group of elements of different data-types and functions that operate on
them. C+ + structure can also have functions defined in it.

There is very little syntactical difference between structures and classes in C+ + and, therefore, they
can be used interchangeably with minor modifications. Since class is a specially introduced data-type in
C+ +, most of the C+ + programmers tend to use the structures for holding only data, and classes to
hold both the data and functions.

A class is a way to bind the data and its associated functions together. It allows the data (and functions)
to be hidden, if necessary, from external use. When defining a class, we are creating a new abstract
data-type that can be treated like any other built-in data-type. Generally, a class specification has two
parts:

1. Class declaration
2. Class function definitions
The class declaration describes the type and scope of its members. The class function definitions
describe how the class functions are implemented. The general form of a class declaration is:
class<class name>
{
private:
variables declaration;
function declarations;
public:
variable declaration;
function declarations;
bi
The class declaration is similar to a struct declaration. The keyword class specifies that what follows is
an abstract data of type class_name. The body of a class is enclosed within braces and terminated by a
semicolon. The class body contains the declaration of variables and functions. These functions and
variables are collectively called members. They are usually grouped under two sections, namely,

private and public to denote which of the members are private and which of them are public. The
keywords private and public are known as visibility labels.

The members that have been dectared as private can be accessed only from within the class. On the
other hand, public members can be accessed from outside the class also. The data hiding (using private
declaration) is the key feature of object-oriented programming. The use of the keyword private is
optional. By default, the members of a class are private. If both the labels are mussing, then, by default,
all the members are private. Such a class is completely hidden from the outside world and does not
serve any purpose.

M.S. University - D.D.C.E. Classes and Objects 121

CLASS

Private Members

No entry to

Private area Data

F 3

\ 4

| Functions LF

Public Members I |

Data

Access to

Public members

_»| Functions

Figure 6.1: Data Access in Class

The variables declared inside a class are known as data members and the functions are known as
member functions. Only the member functions can have access to the private data members and
private functions. However, the public members (both functions and data) can be accessed from
outside the class. The binding of data and functions together into a single class-type variable is referred
to as encapsulation. The access to private and public members of a class is well explained
diagrammatically in the figure.
Let us consider the following declaration of a class for student:
class student
{
private:
int rollno;
char name [20];
public:
void getdata(void);
void disp (void) ;
}i
The name of the class is student. With the help of this new type identifier, we can declare instances of

class student. The data members of this class are int rollno and char name [20]. The two function
members are getdata() and disp(). Only these functions can access the data members. Therefore, they

122 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

provide the only access to the data members from outside the class. The data members are usually de-
clared as private and member functions as public. The member functions are only declared in the class.

They shall be defined later.
A class declaration for a machine may be as follows:
class machine
{
int totparts, partno;
char partname [20];
public:
void getparts (void);
void disp(part no);
bi
Having defined the class, we need to create object of this class. In general, a class is a user defined data
type, while an object is an instance of a class. A class provides a template, which defines the member
functions and variable that are required for objects of a class type. A class must be defined prior to the
class declaration.
The general syntax for defining the object of a class is :
class<class_name>
{
private:
//data
// functions
public:
//functions
bi
<class_name> objectl, object2,.. objectN;
where object1, object2 and objectN are the instances of the class < class_name>.

A class definition is very similar to a structure definition except the class definition defines the
variables and functions.
Consider the following programme segment which declares and creates a class of objects.
class student
{
private:
int rollno;
int age;
float height;
float weight;
public:

M.S. University - D.D.C.E. Classes and Objects 123

void getinfo():
void disinfo();
void process();
void personal(};
bi
student std; //std is the object of the class student
In another example, the employee details such as name. code, designation, address, salary age can be
grouped as follows.
class employee
{
private:
char name[20];
int code;
char designation[20];
char address[30];
float salary;
int age;
public:
void salary!()i
void get_info();
void display_info():
i
employee x,y; //creates x.and y - two objects of the class employee

By now it should be clear to you that you can use a class just as you use a data type. In fact you can
also create an array of objects of a particular class.

6.3 MEMBER FUNCTIONS

We have learnt to declare member functions. Let us see how member functions of a class can be
defined within a class or outside a class.

A member function is defined outside the class using the :: (double colon symbol) scope resolution
operator. The general syntax of the member function of a class outside its scope is:

<return_type> < class_name>: <member_function> (argl, arg2....argN)

The type of member function arguments must exactly match with the types declared in the class
definition of the <class_name>. The Scope resolution operator (::) is used along with the class name
in the header of the function definition. It identifies the function as a member of a particular class.
Without this scope operator the function definition would create an ordinary function, subject to the
usual function rules of access and scope.

124 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

The following programme segment shows how a member function is declared outside the class
declaration.

class sample

{
private:
int x;
int y;
public:
int sum (); // member function declaration
bi
int sample:: sum{) //member function definition
{
return (x+vy);
}
Please note the use of the scope operator double colon () is important for defining the member
functions outside the class declaration. Let us consider the following programme snippet:
class first
{
private:
int x:
inty;
public:
int sum();
}i
class second
{
private:
intx;
int y;
public:
int sum();
i
first one;
second two;
int sum()
//error, scope of the member function is not defined
{

return (x+y);

M.S. University - D.D.C.E. Classes and Objects 125

Both classes in the above case are defined with the same member function names. While accessing these
member function, it gives an error. The scope of the member function sum() is not defined. When
accessing the member function sum(), control will be transferred to both classes one and two. So the
scope resolution operator (i) is absolutely necessary for defining the member functions outside the
class declaration.

int one:: sum() // correct

{
return (x+y);

}

6.4 DEFINING THE OBJECT OF A CLASS

Objects are the basic run-time entities in an object-oriented system. They may represent a person, a
place, a bank account, a table of data; they may also represent user-defined data such as vectors, time
and lists.

They occupy space in memory that keeps its state and is operated on by the defined operations on the
object. Each object contains data and code to manipulate the data. Objects can interact without having
to know details of each other data or code.

Object: STUDENT STUDENTS

DATA
Name
Date-of-birth
Marks

Total

Avg

FUNCTIONS
Total
Avg.

Display

Display

(a)

(b)

Figure 6.2: Example of an Object

6.4.1 Objects as Function Arguments

Like any other data type argument, objects can also be passed to a function. As you know arguments
are passed to a function in two ways:

® by value

® by reference

126 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

Objects can also be passed as arguments to the function in these two ways. In the first method, a copy
of the object is passed to the function. Any modification made to the object in the function does not
affect the object used to call the function. The following programme illustrates the calling of functions
by value. The programme declares a class integer representing a integer variable x. Only the values of
the objects are passed to the function written to swap them.

#include<iostream.h>
#include<conio.h>
class integer
{

int x;
public:

void getdatal()

cout << "Enter a value for x";

cin >> x;
void disp()
cout << x;
void swap(integer al , integer a2)

int temp;
temp = a2.x;
a2.x = al.x;

al.x = temp;

integer intl, int2;

intl.getdata();

int2.getdata():

cout <<"\nthe value of x belonging to object intl is ";
intl.disp();

cout <<"\nthe value of x belonging to object int2 is ";
int2.disp();

integer int3;

int3.swap(intl, int2); //int3 is just used to invoke the function

M.S. University - D.D.C.E. Classes and Objects 127

cout <<" \nafter swapping *;
cout <<"\nthe value ofxbelonging to object intI is ";
intl.disp{();
cout <<"\nthe value of x belonging to object int2 is ";
int2.disp() ;
coutdd "\n'y
getche();
}
You should get the following output.
Enter a value for x 15
Enter a value for x 50
the value of x belonging to object int is 15
the value of x belonging to object int2 is 50
after swapping
the value of x belonging to object int is 15
the value of x belonging to object int2 is 50

In the second method, the address of the object is passed to the function instead of a copy of the
object. The called function directly makes changes on the actual object used in the call. As against the
first method any manipulations made on the object inside the function will occur in the actual object.
The second method is more efficient as only the address of the object is passed and not the entire
object.

The following programme illustrates calling of a function by reference. The programme declares a
class integer to represent the variable x and defines functions to input and display the value. The
function written to swap the integer values of the object takes the addresses of the objects.

#include<iostream.h>
#include<conio.h>
class integer
{
int x;
public:
void getdata (}
{
cout << "Enter a value for x";
cin >> x;
}
void disp{()
{

128 Object Oriented Programming using C+ +

cout << x;

void swap(integer *al)

int temp;
temp = x;
x = al->x;
al->x = temp;
}
}i
main ()
{
integer intl, int2;
intl.getdata():;
int2.getdata();

cout <<"\nthe value of x belonging to

intl. disp().;

cout <<"\nthe value of x belonging to

int2.disp();
intl.swap(&int2);

cout << "\nafter swapping ";

cout <<"\nthe value of x belonging to

intl.disp():

cout <<"\nthe value of x belonging to

int2.disp{();
cout << "\n";
getche () ;

}

You should see the following output.
Enter a value for x 15

Enter a value for x 50

the value of x belonging to object int1 is 15
the value of x belonging to object int2 is 50
after swapping ,

the value of x belonging to object int1 is 50

the value of x belonging to object int2 is 15

object

object

object

object

intl

int?2

intl

int2

is

is

is

is

M.S. University - D.D.C.E.

M.S. University - D.D.C.E. Classes and Objects 129

6.4.2 Returning Objects

Just as a function takes an object as its argument, it can also return an object. The following program
illustrates how objects are returned. The program declares a class integer representing an integer
variable x and defines a function to calculate the sum of two integer values. This function finally
returns an object which stores the sum in its data member x.

#include<iostream.h>
#include<conio.h>
class integer

{

int x;

public:

void getdata (int x1)
{

x = x1;

void disp()
{
cout << x;
}
integer sum(integer int2)
{
integer int3;
int3.x = x + int2.x;
return(int3);
}
}:
main()
{
integer intl, int2, int3;
intl.getdata(15);
int2.getdata (25);
cout<<"\nthe value of x for object intl ";
intl.disp{():
cout<<"\nthe value of x for object int2 ";
int2.disp():

cout<<"\n the sum of private data values of x belonging to objects intl and
int2 is ";

int3 = intl.sum(int2);

130 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

int3.disp.();
getche();
)
You should see the following output from the program.
The value of x for object int1 15
The value of x for object int2 25

The sum of private data values of x belonging to objects int1 and int2 is 40

6.5 ACCESSING A MEMBER OF CLASS

Member data items of a class can be static. Static data members are data objects that are common to all
objects of a class. They exist only once in all objects of this class. The static members are used when
the information is to be shared. They can be public or private data. The main advantage of using a
static member is to declare the global data which should be updated while the program lives in
memory.

When a static member is declared private, the non-member functions cannot access these members.
But a public static member can be accessed by any member of the class. The static data member should
be created and initialized before the main function control block begins.
For example, consider the class account as follows:
class account
{
private:
int acc _no;
static int balance; //static data declaration
public:
vold disp({int acc _no);
void getinfo();
}i
The static variable balance is initialized outside main() as follows:
int account::balance = 0; //static data definition
Consider the following programme which demonstrates the use of static data member count. The
variable count is declared static in the class but initialized to 0 outside the class.
ftinclude <iostream.h>
#include <conio,h>
class counter
{
private:
static int count;

public:

MS. Univewsitg - DD CE. ' Classesand Qhigsts, AL

void disp();
}i
int counter::count = 0;
void counter::disp()
{
count++
cout << "The present value of count is "™ << count << "\n";
}

main{()

{

counter cntl ;
for(int i=0; i<5; i++)
cntl.disp();
getche () ;
}

You should get the following output from this programme.
The present value of count is 1
The present value of count is 2
The present value of count is 3
The present value of count is 4

The present value of count is 5

6.6 ARRAYS OF CLASS OBJECTS

An array is a user defined data type whose members are of the same type and stored in continuous
memory locations. Just as one can create an array of any basic data type, one can also create arrays of
objects.

The general syntax of the array of objects of a class is:

class class_name
{
private:

// data

// functions
public:

//data

// functions
}i

class_name object [MAX]

132 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

where, MAX is a user defined size of the array of class objects e.g. 20 as shown in example given
below. ’

class employee
{
private:
char name[20];
int code;
char designation([Z20];
char address[30];
float salary;
int age;
public:
void salary();
void gecinfo();
void display_info()i
bi
employee obj[200]
The following programme illustrates the use of array of objects to store information of students. The
programme declares a class student having data members - rollno, age, height and weight, and two

functions to get and display this information. Since information of more than one student is stored, an
array of objects that is std[max] is created.

//array of class objects
#include<iocstream.h>
#include<conio.h>
#define max 30
class student
{
private:
int rollno;
int age;
float height, weight;
public:
void getinfo()
{
cout << "roll no: ";
cin »> rollno;
cout << "age: ";

cin >> age;

M.S. University - D.D.C.E, Classes and Objects 133

cout << "Height: ";
cin >> height;
cout << "Weight: ";

cin >> weight;
void disinfo()

cout<<endl;
cout<<"Roll no ="<< rollno<< endl;
cout<<"Age ="<< age << endl;
cout<<"Height =" << height << endl;
cout<<"Weight = " << weight << endl;.
}
}i
void main()
{
student stdimax]; // arrary of objects having max = 30
int i, n;
cout << "How many students? \n" << endl;
cin >> n;
cout << "enter the student details \n" << endl;

for(i=0; i < n; ++i)

cout << endl;
std[i].getinfo();

cout <<" The list of student's is as follows \n";
for (i = 0; 1 < n; ++1i)
stdli].disinfo();
getche();
}
You should see the following when you run the programme.
How many students?

3

roll no: 1
age: 18
Height: 134
Weight: 45

134 Object Oriented Programming using C+ +

Roll no : 4
age: 20
Height: 143
Weight: 46

Roll no: 27

age: 20

Height: 147

Weight: 50

The list of student's is as follows:
Roll no= 1

Age = 18

Height = 134

Weight = 45

Rollno = 4
Age = 20
Height = 143
Weight = 46

Roll no = 27
Age =20

Height = 147
Weight = 50

M.S. University - D.D.CE.

6.7 POINTER AND CLASSES

There are two cases in which a pointer to a class can be converted to a pointer to a base class.

The first case is when the specified base class is accessible and the conversion is unambiguous. Whether
a base class is accessible depends on the kind of inheritance used in derivation. Consider the

inheritance illustrated in the following figure.

Inheritance Graph for Hllustration of Base-Class Accessibility

M.S. University - D.D.C.E.

Classes and Objects 135

Figure 6.3

The following table shows the base-class accessibility for the situation illustrated in the figure.

Base-Class Accessibility

Type of Function Derivation Conversion from B* to A* Legal?

External (not class-scoped) function Private No
Protected No

Public Yes

B member function (in B scope) Private Yes
i Protected Yes

Public Yes

C member function (in C scope) Private No
Protected Yes

Public Yes

The second case in which a pointer to a class can be converted to a pointer to a base class is when you
use an explicit type conversion. (See Expressions with Explicit Type Conversions for more

information about explicit type conversions.)

The result of such a conversion is a pointer to the "subobject," the portion of the object that is

completely described by the base class.

The following code defines two classes, A and B, where B is derived from 2. (For more information on
inheritance, see Derived Classes.) It then defines bcbject, an object of type B; and two pointers (p2

and pB) that point to the object.
class A‘
{
public:
int AComponent;
int AMemberFunc () ;

Yo

class B : public A
{

136 Object Oriented Programming using C+ . M.S. University - D.D.C.E.

public:
int BComponent;
int BMemberFunc () ;
}i
int main ()
{
B bObject;
A *pA = &bObject;
B *pB = &bCbject;
PA->AMemberFunc () ; // OK in class A
pB->AMemberFunc () ; // OK: inherited from class A
pA->BMemberFunc () ; // Error: not in class A
}
The pointer pa is of type A *, which can be interpreted as meaning "pointer to an object of type A."
Members of bObject (such as BComponent and BMemberFunc) are unique to type B and are

therefore inaccessible through pa. The pa pointer allows access only to those characteristics (member
functions and data) of the object that are defined in class a.

6.8 UNIONS AND CLASSES

The separating factor between a struct and a union is that a struct can also have member functions just
like a class. The difference between a struct and a class is that all member functions and variables in a
struct are by default public, but in a class, they default to private as previously discussed.

It is often a good idea to use constructors to initialize the member variables of a struct. Other than
that, though, it is against current standards, and usually looked down upon, to use functions in a
struct, and is usually considered just being lazy.

6.9 CONSTRUCTORS

Constructor is public method that is called automatically when the object of a particular class is
created. C+ + provides a default constructor method to all the classes. This constructor method takes
no parameters. Actually the default constructor method has been defined in system. object class. Since
every class that you create is an extension of system. object class, this method is inherited by all the
classes.

The default constructor method is called automatically at the time of creation of an object and does
nothing more than initializing the data variables of the object to valid initial values.

A Programmer can also define constructor methods for a class if she so desires. While writing a
constructor function the following points must be kept in mind:

1. The name of constructor method must be the same as the class name in which it is defined.
2. A constructor method must be a public method.

3. Constructor method does not return any value.
4

A constructor method may or may not have parameters.

M.S. University - D.D.C.E. Classes and Objects 137

Let us examine a few classes for illustration purpose. The class abc as defined below does not have user
defined constructor method.

class abc

{

int Xx,y:

main ()
{
abc myabc;

}

The main function above an object named myabc has been created which belongs to abc class defined
above. Since class abc does not have any constructor method, the default constructor method of C+ +
will be called which will initialize the member variables as:

myabc.x=0
and
myabc.y=0.
Let us now redefine myabc class and incorporate an explicit constructor method as shown below:
class abc
{
int x,y;
public:
abc(int, int);
}
abc::abc(int a, int b)
{
x=a;
y=b;
}

Observed that myabc class has now a constructor defined to except two parameters of integer type.
We can now create an object of myabc class passing two integer values for its construction, as listed
below:

main ()

{
abc myabc (100,200);

.
ey

138 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

In the main function myabc object is created value 100 is stored in data variable x and 200 is stored in
data variable y. There is another way of creating an object as shown below.

main ()
{
myabc=abc (100, 200) ;

oo f

}
Both the syntaxes for creating the class are identical in effect. The choice is left to the programmer.

There are other possibilities as well. Consider the following class differentials:
class abc
{

int x,y;

public:

abe{);

}
abc: rabc ()
{

x=100;

y=200;
}
In this class constructor has been defined to have no parameter. When an object of this class is created
the programmer does not have to pass any parameter and yet the data variables x,y are initialized to
100 and 200 respectively.
Finally, look at the class differentials as given below:
class abc
{

int x,y:

public:

abe () ;

abc (int) ;
abc (int, int);
}
abc::abc ()
{

x=100;

y=200;
}

abc: :abc(int a)

M.S. University - D.D.C.E. Classes and Objects 139

x=a;
y=200;
}

abc::abc(int a)

Class myabc has three constructors having no parameter, one parameter and two parameters
respectively. When an object to this class is created depending on number of parameters one of these
constructors is selected and is automatically executed.

Note that C+ + selects one constructor by matching the signature of the method being called. Also,
once you define a constructor method, the default constructor is overridden and is not available to the
class. Therefore you must also define a constructor method resembling the default constructor method
having no parameters.

6.9.1 Parameterized Constructors

If it is necessary to initialize the various data elements of different objects with different values when
they are created. C+ + permits us to achieve this objective by passing arguments to the constructor
function when the objects are created. The constructors that can take arguments are called
‘Parameterized constructors.” The definition and declaration are as follows:

class dist
{
int m, cm;
public:
dist(int x, int y);
bi
dist::dist(int x, int y)

main ()

{

dist d(4,2});
d. show ();
}

140 Object Oriented Programming using C+ + M.S. University ~ D.D.C.E.

6.9.2 Constructors with Default Arguments
This method is used to initialize object with user defined parameters at the time of creation.

Consider the following Programme that calculates simple interest. It declares a class interest
representing principal, rate and year. The constructor function intializes the objects with principal and
number of years. If rate of interest is not passed as an argument to it the Simple Interest is calculated
taking the default value of rate of interest.

#include<iostream.h>
#include<conio.h>
class interest
{ int principal, rate, year;
float amount;
public
interest (int p, int n, int r = 10);
void cal (void);
bi
interest::interest (int p, int n, int r = 10)
{ principal = p; year = n; rate = r;
i

void interest::cal (wvoid)

{
cout<< "Principal"” <<principal;
cout << "\ Rate" <<rate;
cout<< "\ Year" <<year;
amount = (float) (p*n*r)/100;
cout<< "\Amount" <<amount;

bi

main {)

{
interest 11(1000,2);
interest 12(1000, 2,15);
clrscr()i
il.cal();
i2.cal();
}
Note the two objects created and initialized in the main() function.
interest i1(1000,2);
interest 1i2(1000,2, 15);

M.S. University - D.D.C.E. Classes and Objects 141

The data members principal and year of object i1 are initialized to 1000 and 2 respectively at the time
when object i1 is created. The data member rate takes the default value 10 whereas when the object 12
is created, principal, year and rate are initialized to 1000, 2 and 15 respectively.

Tt is necessary to distinguish between the default
constructor::construct();

and default argument constructor

construct : : construct (int = 0)

The default argument constructor can be called with one or no arguments. When it is invoked with no
arguments it becomes a default constructor. But when both these forms are used in a class, it causes
ambiguity for a declaration like construct C1;

The ambiguity is whether to invoke construct: : construct () or construct: : construct (int = 0)

6.9.3 Copy Constructors

A copy constructor method allows an object to be initialized with another object of the same class. It
implies that the values stored in data members of an existing object can be copied into the data
variables of the object being constructed, provided the objects belong to the same class. A copy
constructor has a single parameter of reference type that refers to the class itself as shown below:

abc::abc (abc & a)
{
X=a.X;
y=a.yrs
}
Suppose we create an object myabcl with two integer parameters as shown below:
abc myabcl (1,2);
Having created myabc1, we can create another object of abc type, say myabc2 from myabcl, as shown
below:
myabc2=abc (& myabcl);
The data values of myabcl will be copied into the corresponding data variables of object myabc2.

Another way of activating copy constructor is through assignment operator. Copy constructors come
into play when an object is assigned another object of the same type, as shown below:

abc myabcl(1l,2);
abc myabce2;
myabc2=myabcl;

Actually assignment operator(=) has been overloaded in C++ so that copy constructor is invoked
whenever an object is assigned another object of the same type.

142 Object Oriented Programming using C+ + M.S. University - D.D.C.E,

6.9.4 Dynamic Constructors
Allocation of Memory during the creation of objects can be done by the constructors too.

The memory is saved as it allocates the right amount of memory for each object (Objects are not of
the same size). Allocation of memory to objects at the time of their construction is known as dynamic
construction of objects. new operator is used to allocate memory.

The following programme concatenates two strings. The constructor function initializes the strings
using constructor function which allocates memory during its creation.
#include <iostream.h>
#include <string.h>
class string
t
char * name;
intlength;
public:
string 0O

length = 0;
name = new char [length = 1];
}:
string (char*s)
{ B
length = strlen (s);
name = new char [length + 1];
strcpy(name,s);
bi
void display {(void)

{

cout<<"\n Name :- "<<name;
Vi
void join (string & a, string & b)
{
length = a.length + b.length;
delete name;
name = new char {length + 1];
strcpy (name,a.name);
strcat (name," ");

strcat (name,b.name);

M.S. University - D.D.C.E. Classes and Objects 143

Yi
main()
{
char * FirstName= "Mohan";
string Fname (First name);
string Mname ("Kumar");
string Sname ("Singh");
string Halfname, Fullname;
//Joining FirstName with Surname
Halfname.join (Fname, Sname);
//Joining Firstname with Middlename & Surname
Fullname.join (Halfname, Mname);
Fname.display ():
Mname.display ()
Sname.display ()
Halfname.display():
Fullname.displayO();
}

You should see the following output.

ll*

Name :- Ram

Name :- Rumar

Name :- Singh

Name:- Mohan .Singh Name :- Mohan.Singh .Kumar
*

The above programme uses new operator to allocate memory. The first constructor is an empty
constructor that allows us to declare an array of string. The second constructor initializes length of the
string, allocates necessary space for the string to be stored and creates the string itself. The member
function join () concatenates 2 strings

It actually adds the length of 2 strings and then allocates the memory for the combined string. After
that the join function uses inbuilt string functions strepy & streat to fulfill the action.

The output of the programme will be in Full Name and Half name
That is Mohan Singh Kumar and Ram Singh respectively.

Another example of the dynamic constructor is the matrix programme. In two Dimensional matrix
we need to allocate the memory for the values to be stored in. Using constructor we can allocate the
memory for the matrix.

144 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

This programme declares a class matrix to represent the number of rows and columns of matrix as well
as two dimensional array to store the contents of matrix. the constructor function used to initialize the
objects allocates the required amount of memory for the matrix.

#include<iostream.h>
#include<conic.h>
//Class Definition
class matrix
{
int *+p; //declaring two dimensional array
int dl,d2;
public:
matrix (intx,inty);
void get_value(void);
void dis value(void);
void square (void);
void cube (void);
}:
matrix: : matrix(int x,int y)
{
dl=x;
d2=y;
p= new int *[dl];
for (int i =0;i<dl ;i++)
plil=new int[d2};
bos
void matrix:: get value(void)
{
for(int i = 0;i<dl;i++)

for(int j=0;3<d2;j++)

cout<<"Please Enter A No At"<<i<<j<< "Position :-":
cin>>pli][j1;

}

b

voidmatrix:: dis_value(void)

{
cout< <"The Matrix Entered";

for (int i = 0;i<dl ;i++)

M.S. University - D.D.C.E. Classes and Objects 145

cout< <"\n";
for(int j=0;3<d2;j++)
cout<<"\t"<<p[i] [3]:
}
bi
void matrix:: square(void)
{
cout < <"\n The Squared Matrix";

for (int i = 0;i<dl ;i++)

cout<<™\n";. for({intj=0;j<d2;j++)
cout<<"\t" <<p[i](j1*p[i] []]:
}
}i
void matrix:: cube(vcoid) {
cout < <"\nThe Cubed Matrix";

for (int i = 0;i<dl;i++)

cout<<"\n";
for (int j=0;3<d2;j++)
cout<<"\t"<<p[i] [] * plim] * p[i][j];
}
bi
//Start Of Main Programme
main ()
{
intm, n;
elrser();
cout<<"Enter Size Of Matrix :- “;
cin> >rn>>n;
matrix mat(m,n);
mat.get value();
mat.dis_value();
getch () ;
mat.square() ;
mat.cube () ;

getch () ;

146 Object Oriented Programming using C+ +

Let us assume we run this programme with the following input.

/*.

Enter Size Of matrix :- 2 2

Please Enter A No At Position 00 :- 1
Please Enter A No At Position 01 : - 1
Please Enter A No At Position 10:-2
Please Enter A No At Position 11 :- 2

*1

You should see the following output.
/*

The Matrix Entered
1 1

2 2

The Squared Matrix
1 1

4 4

The Cubed Matrix
1 1

§ 8

*

M.S. University - D.D.C.E,

The Constructor first creates a vector pointer to an int of size dl. Then it allocates, iteratively, an int

type vector of size d2 pointed at each element p[i]. Thus space for the element of a d1x d2 matrix is
allocated from free store as shown below.

d 2 columns

Pointerp [0]

d1 rows >

Pointer p [1]

1.2

32

13

6.10 DESTRUCTORS

Constructors create an object, allocate memory space to the data members and initialize the data
members to appropriate values; at the time of object creation. Another member method called

M.S. University - D.D.C.E. Classes and Objects 147

destructor does just the opposite when the programme creating an object exits, thereby freeing the
memory.

A destructive method has the following characteristics:

1. Name of the destructor method is the same as the name of the class preceded by a tilde(~).
2. The destructor method does not take any argument.

3. It does not return any value.

The following codes snippet shows the class abc with the destructor method;
class abc
{
;int X, V:
public:
abe ()¢ ‘
abc (int) ;
abc (int, .int);
~abc ()
{
cout << “Object being destroyed!!”;
}
}
Whenever an object goes out of the scope of the method that created it, its destructor method is

invoked automatically. However if the object was created using new operator, the destructor must be
called explicitly using delete operator. The syntax of delete operator is as follows:

delete (object);

Note that whenever you create an object using new keyword, you must explicitly destroy it using
delete keyword, failing which the object would remain homed in the memory and in the course of
programme execution there may come a time when sufficient memory is not available for creation of
the more objects. This phenomenon is referred to as memory leak. Programmers must consider
memory leak seriously while writing programmes for the obvious reasons.

6.11 INLINE FUNCTIONS

An inline function is just a function whose declaration is accompanied with its definition. C+ +
supports the Inline functions to let you have a reduced execution time in your code.

With the normal functions, the compiler puts a jump instruction to your code when you call the
function. This means that arguments and automatic variables have to be set up on the stack and the
programme execution has to be transferred to the function itself, and so on.

On the other hand, when we use inline functions, the compiler actually puts the entire code for the
function directly into the code that is inline. That means, no jump is needed and you need save a little

148 Object Oriented Programming using C+ + M.S. University - D.D.C.E.

time. However, the programme size increases as the same code is copied many times wherever the
inline function is called. We usually use small codes for inline functions.

To create an inline function, inline keyword is required at the beginning of function prototype as
shown below:

inline int sum{int, int);

6.12 STATIC CLASS MEMBERS

Member data items of a class can be static. Static data members are data objects that are common to all
objects of a class. They exist only once in all objects of this class. The static members are used when
the information is to be shared. They can be public or private data. The main advantage of using a
static member is to declare the global data which should be updated while the programme lives in .
memory,

When a static member is declared private, the non-member functions cannot access these members,
But a public static member can be accessed by any member of the class. The static data member should
be created and initialized before the main function control block begins.
For example, consider the class account as follows:
class account
{
private:
int acc _no;
static int balance; //static data declaration
public:
void disp(int acc no);
void getinfo();:
}i
The static variable balance s initialized outside main() as follows:
int account::balance = 0; //static data definition
Consider the following Programme, which demonstrates the use of static data member count. The
variable count is declared static in the class but initialized to 0 outside the class.
#include<iostream.h>
#include<conio.h>
class counter
{
private:
static int count;
public:
void disp(});

J’f

M.S. University - D.D.C.E. Classes and Objects 149

int counter::count = 0;
void counter::disp()

{

count++

cout << "The present value of count is " << count << "\n";
; :
main ()
{

counter cntl;

for(int i=0; i<5; i++)

cntl.disp();

getche () ;
}
You should get the following output from this programme.
The present value of count is 1
The present value of count is 2
The present value of count is 3

The present value of count is 4

The present value of count is 5

6.13 FRIEND FUNCTIONS

Object oriented programming paradigm secures data because of the data hiding and data encapsulation
features. Data members declared as private in a class are restricted from access by non-member func-
tions. The private data values can be neither read nor written by non-member functions. Any attempt
made directly to access these members, will result in an error message as "inaccessible data-type"
during compilation.

The best way to access a private data member by a non-member function is to change a private data
member to a public group. But this goes against the concept of data hiding and data encapsulation. A
special mechanism available known as friend function allows non-member functions to access private
data. A friend function may be either declared or defined within the scope of a class definition. The
keyword friend informs the compiler that it is not a member function nor the property of the class.
The general syntax of the friend function is:

friend <return_type> <function name>(argument list);
friend is a keyword. A friend declaration is valid only within or outside the class definition. The
following code snippet shows how a friend function is defined.
class. sample
{

private:

150 Object Oriented Programming using C+ + . M.S. University - D.D.C.E.

int x;
public:
void getdata():
friend void disp(sample abc); //friend function
4 ;
void disp(sample abc) // non-member function without scope:: bperator
{
cout<<"value of x ="<< abc.x;
cout<<endl;
}
Note that the function is declared as friend in the class and is defined outside the class. The keyword
friend should not be in both the function declaration and definition. The friend declaration is

unaffected by its location in the class. It can be declared either in a public or a private section, which
does not affect its access right.

For example, the following declarations of a friend function are valid:

1. The friend function disp() is declared in the public group
class sample
{
private
int x;
‘public:
void getdata();
friend void disp():
}i
2. The friend function disp(} is declared in the private group
class sample
{
private:
int x;
friend void disp():
public:
void getdata();
}i
Since private data members are available only to the particular class and not to any other part of the
programme, a non-member function cannot access these private data. Therefore, the friend function is
a special type of function which is used to access the private data of any class. In other words, they are

defined as non-member functions with the ability to modify data directly or to call function members
that are not part of the public interface. The friend class has the right to access as many members of its

M.S. University - D.D.C.E. Classes and Objects 151

class. As a result the level of privacy of the data encapsulation gets reduced. Only if it is necessary to
access the private data by non-member functions, then a class may have a friend function, otherwise it
is not necessary.

Let us look at a sample programme given below to access the private data of a class by non-member
functions through friend function. The programme declares a private class example representing
variable x and function to input the value for the same. The friend function to display the value of x
takes an object as argument with the help of which private variable x can be accessed.

#include<iostream.h>
#include<conio.h>

class example

{

private:

int x;

public:

void getdatal()

{

cout << "Enter the value ofx"<< "\n";
cin >> X;

}

friend void disp(example);
}:

void disp(example e.qg,)

{

cout << "Display the entered number"<< e.g.<< AR
main ()

example egl;
egl.getdata () s
disp (egl);
gefche();
}
You should see the following output.
Enter the value of x
4
Display the entered number 4

There are also other areas of application for friend function. The friend function can also be defined
within the scope of a class definition itself. Friend function may also have inline member functions. If

152 Object Oriented Programming using C+ + ' M.S. University - D.D.C.E,

the friend function is defined in the class, then the inline code substitution is done automatically. But if
defined outside the class, then it is necessary to precede the return type with the keyword inline to
make the inline code substitution.

The following programme accesses the private data of a class through 2 friend function where the
friend function is defined with inline code substitution.
#include<conio.h>
class example
{
private:
int x;
public:
inline void getdata();
friend void disp(example);
}i
inline void example::getdata ()
{
cout<<"Enter the value of x " << "\n";
cin>>x;
}
inline void disp (example e.g.) //Note the use of the keyword inline
{
cout << "Display the entered number" << e.g. << "\n";
}
main ()
{
example egl;
egl.getdata();
disp (egl);
getche () ;
}
You should see the output as shown below:
Enter the value of x
20
Display the entered number 20

One class can be friendly with another class. Consider two classes, first and second. If the class first is
friendly with the other class second, then the private data members of the class first are permitted to be
accessed by the public members of the class second. But on the other hand, the public member
functions of the class first cannot access the private members of the class second.

