

மனனோன்மணியம் சுந்தரனோர் பல்கலலக்கழகம்

MANONMANIAM SUNDARANAR UNIVERSITY

TIRUNELVELI- 627 012

 ததோலலநிலல ததோடர் கல்வி இயக்ககம்

DIRECTORATE OF DISTANCE AND

CONTINUING EDUCATION

B.Sc. Chemistry

GENERIC ELECTIVE - III

Programming Language C

Course Code: JECS31

Prepared By

Dr. S. Immaculate Shyla

Assistant Professor & Head,

Department of Artificial Intelligence and Data Science,

Holy Cross College (Autonomous),

Nagercoil-629 002.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 1

B. Sc Chemistry

Programming Language C

Unit- I

Introduction – Character set – C Tokens –Keywords and Identifiers – Constants – Variables

– Data types. (Chapter 2: Sections - 2.1 to 2.7)

Unit- II

Operators: Arithmetic – Relational –Logical – Assignment– Increment and Decrement –

Conditional – Bitwise – Special – Precedence of Arithmetic operators – Managing input and

output operation: Reading and writing a character – Formatted input and output. (Chapters 3

and 4: Sections - 3.1 to 3.9, 3.12, 4.2 to 4.5)

Unit- III

Decision making and branching: Statements: IF, IF … ELSE, Nesting of IF … ELSE, ELSE

IF Ladder and Switch statements – The ?:operator – The GOTO statement – Decision making

and looping: The WHILE, DO and FOR statements –Jumps in loops. (Chapters 5 & 6: Sections

- 5.3 to 5.9, 6.2 to 6.5)

Unit- IV

Array: One dimensional and two-dimensional arrays– Declaration, Initialization of arrays –

Multidimensional arrays Character arrays and strings: Declaring and initializing string

variables – Reading and writing of strings – String handling functions.(Chapters 7 & 8:

Sections 7.1 to 7.7, 8.1 to 8.8)

Unit- V

User defined functions: Definition of function –Return values and their types – Function calls

– Function declaration – Category of functions – Nesting of functions – Recursion. (Chapter

9: Sections 9.5 to 9.9, 9.15, 9.16)

Recommended Text

E. Balaguruswamy- Programming in ANSIC–Tata McGraw Hill Publishing company

limited III Edition, 2017.

References:

1. Yashavant Kanetkar, 2016. Let Us C, 15th Edition, BPB Publications.

2. Herbert Schildt, 2017. The Complete Reference C, 4th Edition, McGraw Hill

Education.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 2

 UNIT-I

Introduction to C Programming

• C is a general purpose, procedural, case sensitive high level programming

language.

• It is developed at AT & T’s Bell Laboratories of USA in 1972.

• It is developed by Dennis Ritchie.

• It is an upgraded version of two earlier languages, called BCPL and B.

• It can be used to write the program for all possible application.

• All statements in ‘C’ program should be written in lower case letters only.

Uppercase letters are only used for symbolic constants and variables.

Features / Advantages of C Language:

• C is a general purpose, structured programming language.

• C programs are fast and efficient.

• C is powerful and flexible.

• C is highly portable.

• C is well suited for writing system software as well as

 application software.

A Simple C Program:

#include<stdio.h>

void main ()

{

printf(“Hello”);

}

 Every C program must contain a function called main. All C programs start its

execution from the main function. Every program may have zero or more user defined

function.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 3

Character Set

Character set are the set of alphabets, letters and some special characters that are valid

in C language. The characters in C are grouped into the following categories.

✓ Alphabets:

o Uppercase: A B C X Y Z

o Lowercase: a b c x y z

✓ Digits:

o 0 1 2 3 4 5 6 7 8 9

✓ Special Characters

o < > . _ () ; $: % [] # ? ‘ & {} “ ^ ! * / | - \ ~

✓ White Spaces

o blank space, new line, horizontal tab, carriage return and form feed.

C TOKENS

 The smallest individual units of a C program are known as tokens. The following

figure shows the different types of C tokens.

 C Tokens

 Keywords Identifiers Constants String Special Symbols Operators

KEYWORDS

 Keywords are reserved words whose meanings are fixed by the Compiler. They

must be written in lower case letter. There are 32 keywords available in C. The

following table shows the keywords in C.

auto default extern int signed void

break do float long static union

case double for register struct unsigned

const else goto return switch volatile

continue enum if short typedef while

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 4

IDENTIFIER

 Identifiers are name of an object such as variables, functions and arrays. These

are defined by the user.

 Rules for an identifier:

1. It must begin with an alphabet.

2. Remaining characters must be an alphabet, number & underscore symbol.

3. No special characters allowed.

4. Both small & capital letters are permitted.

5. Small & capital letters are treated differently.

6. Maximum length of an identifier is 8.

7. Keywords cannot be used as an identifier.

CONSTANTS

 The values that cannot be changed during the execution of a program are called

constants.

 Types of C constants:

 C constants can be divided into three major categories

) Numeric Constant

a) Integer Constant

b) Floating Point Constant

) Character Constant

) String Constant

1) Numeric Constant

a) Integer Constant

An integer constant formed with the sequence of digits. There are three types of

integer constants.

 Decimal constant: It is formed with decimal numbers.

 Octal constant: It is formed with octal numbers.

 Hexadecimal constant: It is formed with hexadecimal numbers.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 5

Rules for Integer Constant:

✓ An integer constant must have at least one digit

✓ It must not have a decimal point

✓ It is either positive or negative

✓ Commas or blank spaces are not allowed

Example:

 Decimal Constant

 42

 -782

 Octal Constant (Starts with a leading 0 and remaining may be in between 0

to 7)

 056

 03

 Hexadecimal Constants (Starts with a leading 0x and remaining may be in

between 0 to 9 or A to F)

 0x7D

 0X5B3

b) Floating Point Constant

 A floating point constant is made up of a sequence of numeric digits with a

presence of a decimal point.

 Example:

 distance = 126.0;

 height = 5.6;

Rules for floating point Constants:

• A floating point constant must have at least one digit.

• It must have a decimal point

• It is either positive or negative

• Default sign is positive.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 6

• Commas or blank spaces are not allowed

2) Character Constant

 The character constant contains a single character enclosed within a pair of

single quote symbol.

 Example: ‘s’ , ‘M’ , ‘3’ , ‘-‘

3) String Constant

 A string constant is a sequence of characters enclosed within double quote. The

characters may be letters, number, special characters and blank spaces, etc. At the end

of string ‘\0’ is automatically placed.

 Example: “Hi”

 “Give Number of data” , ”39.77” , ”50”

Backslash Character Constants

C supports special backslash character constants that are used in output functions.

These character combinations are known as escape sequences.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 7

VARIABLE

 A variable is an identifier which is used to hold data in a program. That data

value may change during the execution of a program.

 Example: name, Reg_No, n

Variable Declaration:

 After choosing suitable variable names, we must declare them in the program.

Initializing variables:

✓ Initialization of variables can be done using the assignment operator (=).

✓ The variables can be initialized while we declare it.

In the above example, we initialize the value 0 to variable total and initialize the value

'M' to variable Gender.

Scope of Variables:

 Variables have two types of scopes Local & Global.

Syntax : datatype v1, v2……vn;

Description : datatype → is the type of data

 v1, v2……vn→ list of variables

Example : int code;

 char gender;

 float price;

 char name [10];

Syntax : variable_name = constant;

 Or

 Datatype variable_name = constant;

Example : int total;

total = 0;

 (or)

 char Gender = ‘M’;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 8

i) Local Variables:

 The variables which are defined inside a function are called local variables.

These variables are visible only within the function only.

In the above example the variable Reg_No is defined inside the function sample. So it

can be used within function sample only. ie., Reg_No is a local variable of function

sample.

ii) Global / External Variables:

 The variables that are declared outside any function are called the global /

external variables. These variables are accessed from any function within the program.

The integer variable A is a global variable, since it is declared outside the function

main().

DATA TYPES

The data type defines the possible values that an identifier can have and the valid

operations that can be applied on it.

 In C language data types are broadly classified into

 1. Basic Data type (Primitive Data Type)

 2. User defined Data type

 3. Derived Data type

Example : int A = 2; // global variable

 main ()

 {

 }

Example : void sample ()

{

int Reg_No;

/* body of function */

}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 9

Fig: Classification of Data Types

Basic Data Types:

a) Integer Data Type:

 Integer type has the following sub categories. They are short int, int and long.

Each of these may be signed or unsigned.

Data Type
Size in

Bytes
Range of valid values

short int 1 -128 to 127

int 2 -32768 to 32767

Long 4 -231 to 231

 Example:

 short int k;

 int mark;

 long qty;

b) Character Data Type:

 To store a single character declare the variables in char data type. Its size is 1

byte.

 Example:

 char choice;

 choice = 'Y';

Data types

Basic data type

 char

 short int

 int

 long

 float

 double

 void

Derived data type

 array

 Structure

 function

 pointer

User defined data type

 typedef

 enumeration

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 10

c) Floating Point type:

 The ‘float’ data type represents single precision floating point number. Its size

is 4 bytes. It uses 6 digits of precision.

The ‘double’ data type represents double precision floating point number. Its size is 8

bytes. It uses 14 digits of precision.

 Example :

 float avg;

 double k;

User defined Data types:

(a) typedef:

It allows the users to define an alternate (or) alias name for an existing data type, and

this can be used to declare variables.

 typedef int Marks;

 Marks M1, M2;

 Here Marks is another name for the 'int' data type. Therefore M1 and M2 are

integer variables.

(b) Enumerated data type:

 The C language provides another user defined data type called enumerated data

type.

The identifier follows with the keyword enum is used to declare the variable that can

have only one value from the enumeration constants.

Derived Data Types

a) Array

Syntax : enum identifier{value1, value 2….value);

Example : enum Day { Mon, Tue, Wed, Thu, Fri, Sat, Sun};

 enum Day D1, D2;

 D1 = Wed;

 D2 = Sun;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 11

An array is a collection of similar data items that are stored under a common name.

Example : int Marks [5] ;

b) Function

A function is a self contained block of program statements that performs a particular

task.

c) Pointers

The pointer variable holds the memory address of another variable. It provides a way

of accessing a variable.

Example:

 int x;

 int *ptr = &x;

d) Structure

A structure is a collection of related data elements of different data type under a single

name. In other programming languages it is called as record.

Example:

 struct student

 {

 int reg_no;

 char name[20];

};

 e) Union

It is similar to structure. But the main difference between union and structure is in

terms of storage. In structure each member has its own storage location, whereas in

union all the members use the same location.

Example:

 union student

 {

 int reg_no;

 char name[20];

};

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 12

 UNIT-II

OPERATORS

✓ An operator is a symbol that is used to write a mathematical, logical or relational

expression.

✓ An expression is a sequence of operators and operands that specifies the

computation.

✓ An operand can be a variable, constant or a function call.

 Syntax

 variable = expression

Example: Sum = 2 + 3

The above expression involves three operands namely Sum, 2 and 3. It have two

operators = and +.

Types of Operators

 Arithmetic operators

 Relational operators

 Logical operators

 Assignment operators

 Increment and Decrement operators

 Conditional operators

 Bitwise operators

 Special operators

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 13

Arithmetic Operators:

 Arithmetic operations like addition, subtraction, multiplication, division etc can

be performed by using arithmetic operators.

Operator Name Example

+

-

*

/

%

Addition

Subtraction

Multiplication

Division

Remainder

(Modulo

Division)

12 + 4

a – b

2 * 9

a / 3

13 % 3

Sample Expressions

sum = b + c; sub = b - c;

 mul = b * c; div = b / c;

 rem = b % d;

 exp = b / c * d;

 Relational Operators:

✓ Relational operators are used to compare two or more operands.

✓ In if, for and while statements we use relational expression.

✓ Operands may be variables, constants or expression.

✓ Relational expressions return either True or False.

✓ For example, we may compare the age of two persons, or the price of two

items etc.

 Syntax: expression relational_ operator expression

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 14

Operator Meaning

< is lesser than

<= is lesser than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

Example:

✓ if (A != B)

✓ while(i < n)

 Logical Operators:

Logical operators are used to combine the results of two or more relational expressions

(conditions).

Operator Meaning Example

! Logical NOT !(A < B)

&& Logical AND (A < B) && (A < C)

|| Logical OR (A < B) || (A < C)

✓ Logical NOT is a unary operator that negates the logical value of its single

operand.

✓ Logical NOT convert a non zero to 0, and 0 to 1.

✓ Logical AND produces 1 if both operands are 1, otherwise produce 0.

✓ Logical OR produces 0 if both operands are 0, otherwise it produces 1.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 15

Assignment Operator:

Assignment operator ‘=’ is used to assign a constant or a value of an expression or a

value of a variable to other variable.

Syntax : Variable = expression (or) value

 Example: x = 10; //Assign a constant

 c = a + b; // Assign a value of an expression

 x = y; // Assign a value of a variable

i) Short hand Assignment Operator

C provides compound assignment operators to assign a value to a variable in

order to assign a new value to a variable after performing a specified

operation.

Operator Example Meaning

+= x += y x = x + y

-= x - = y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

 ii) Nested (or) Multiple Assignments

Using this feature, we can assign a single value or an expression to multiple

variables.

 Syntax : var1 = var2 …varn = Value or expression;

 Example : i = j = 1;

 x = y = a * b + c;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 16

 Increment and Decrement Operators (unary):

➢ C has increment (++) and decrement (--) operators.

➢ The ‘++’ adds one to the variables and ‘--‘ subtract one from the variable.

➢ These operators are called unary operators, since they act upon only one

variable.

➢ If we use pre increment or pre decrement in an expression, the variable

value is increased or decreased by one first then it takes the value of the

variable for calculation.

Operator Meaning

++ x Pre increment

-- x Pre decrement

x ++ Post increment

x -- Post decrement

➢ If we use post increment or post decrement in an expression, it takes the

current value for calculation then only it increases or decreases the

variable value by one.

Conditional Operator (or) Ternary Operator:

 It is equivalent to simple if then else statement. It checks the condition and

executes the exp1 if condition is true otherwise it executes exp2.

 Syntax : condition ? exp1 : exp 2;

 Example Program:

 main ()

 {

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 17

 int a = 5, b = 3, max;

 max = a > b ? a : b ;

 printf(“Maximum is %d”, max);

 }

Output: Maximum is 5

In this example, it checks the condition ‘a > b’, if it is true, then the value of ‘a’ is

assigned to ‘max’, otherwise the value of ‘b’ is assigned to ‘max’.

 Bitwise Operators:

✓ Bitwise operators are used to calculate the data at bit level.

✓ It operates on integers only.

✓ It can’t be applied to floating point data.

Special Operators:

 C language supports some of the special operators.

Operators Meaning

, Comma operator

size of Size of operator

& and * Pointer operators

. and → Member selection operators

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

<< Shift left

>> Shift right

~
Bitwise NOT (or) One’s

complement

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 18

Comma Operator

 Used to separate elements.

 Example :

 int X, Y;

sizeof Operator

 Used to return the size of the data type or variable.

 Example:

 #include<stdio.h>

 void main()

 {

 int x;

 printf(“Size of variable x = %d” , sizeof(x);

 printf(“Size of float data type is = %d” , sizeof(float);

 }

 Output:

 Size of variable x = 2

 Size of float data type is = 4

Operator Precedence & Associativity:

• Usually, the Arithmetic operators are evaluated from the left to right using the

precedence of operators when the expression is written without the parameters.

Operators Associativity

(), []

++, - -, ! , &,

*, /, %

+, -

Left to Right

Right to Left

Left to Right

Left to Right

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 19

<<, >>

< , <=, >, >=

==, !=

&

^

|

Left to Right

Left to Right

Left to Right

Left to Right

Left to Right

Left to Right

Example:

 Exp = x – y / 3 + z * 3 – 1

Assume x = 3, y = 9, z = 10

Then Exp = 3 – 9 / 3 + 10 * 3 - 1

This is solved in step by step as follows:

 Exp = 3 – 3 + 10 * 3 -1

 Exp = 3 - 3 + 30 -1

 Exp = 0 + 30 - 1

 Exp = 30 – 1

 Exp = 29

• During evaluation of expression, the order of evaluation can be changed by

putting parentheses.

• The sub expressions given within parentheses are evaluated first.

Example:

 Exp = (x – y) / 3

 Assume x = 8, y = 2

This is solved in step by step as follows:

Then Exp = (8 – 2) / 3

 = (6) / 3

 = 2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 20

Rules for Evaluation of Expression:

• The highest precedence is given to the expressions within parenthesis.

• Evaluate the inner most sub expression if the parenthesis is nested.

• Evaluate the sub expressions from left to right if parenthesized.

• Apply the associativity rule, if more operators of the same precedence occur.

MANAGING INPUT AND OUTPUT IN C

Input, process and output are the three essential features of a computer program.

✓ The program takes some input data then process it and gives the output.

✓ In ‘C’ language, two types of input and output statements. They are:

• Unformatted i/o statements

• Formatted i/o statements

Reading and Writing a Character

Unformatted Input / Output Statements

 In an unformatted i/o statements no need to specify the type & size of the data to

be read or write.

(a) getchar()

 The getchar() is an input function that reads a single character from the standard

Input and Output Functions

getc ()

getchar ()

gets ()

putc ()

putchar ()

puts ()

Unformatted Unformatted

 Input Output

scanf ()

fscanf ()

printf ()

fprintf ()

Formatted Formatted

Input Output

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 21

input device (keyboard).

Syntax:

 char _ variable = getchar ();

 Where char_variable is the name of a variable that is of char type.

 Example:

 char ch;

 ch = getchar ();

 Example Program :

 # include<stdio.h>

 void main ()

 {

 char ch;

 printf (“Enter any one character : ”);

 ch = getchar ();

 printf (“The character you typed is %c”, ch);

 }

 Output :

 Enter any one character : M

 The character you typed is M

(b) putchar()

 The putchar() is an output function that writes a single character on the standard

output device (monitor).

 Syntax : putchar (char_variable);

 Example Program :

 # include<stdio.h>

 void main ()

 {

 char ch;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 22

 printf (“Enter any one character : ”);

 ch = getchar ();

 printf (“The character you typed is ”);

 putchar(ch);

 }

 Output :

 Enter any one character : S

 The character you typed is S

Formatted I/O Statements

 The scanf () & printf () functions are the formatted i/o statements. These

functions are used to read & write different types of data.

(a) scanf ()

 Input data can be read from standard input device (keyboard) using scanf ()

function.

 Syntax : scanf (“Control String”, &var1, &var2, . . .);

 Example : scanf (“%d %d”, &a, &b);

 Control String:

 Control string specifies the type of data to be read and its size. The

following list represents the possible control strings.

 %c - To read single character

 %s - To read a string

 %ws - To read a string with size w.

 %d - To read an integer

 %wd - To read an integer with w digits.

 %f - To read a floating point number

 %w.pf - To read floating point data. w represents integer part size and p

represents decimal part size.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 23

Rules for scanf()

• Each variable name must be preceded by an address of variable

symbol (&).

• The control string and variables data type should match each other.

(b) printf ()

Output data can be displayed in the standard output device (monitor) using printf ()

function.

 Syntax : printf (“Control String”, var1, var2, . . .);

 Example :

 printf (“%d %d”, a, b);

 printf (“Factorial = %d”, fact);

 Rules for printf()

• The control string and variables data type should match each other.

• The variable must be separated by commas and need not be preceded with

‘&’ symbol.

 Example Program:

 # include<stdio.h>

 void main ()

 {

 int A, B, C;

 printf (“Enter values for A and B : ”);

 scanf (“%d %d”, &A, &B);

 C = A + B;

 printf(“Sum is %d”, C)

 }

Output:

 Enter values of A and B : 4 3

 Sum is 7

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 24

 Unit- III

DECISION MAKING AND BRANCHING

The order in which the program statements are executed is known as flow of control.

By default, statements in a C program are executed in a sequential order. Many practical

situations like decision making, repetitive execution of certain task etc require alteration

of the default flow of control. It is achieved by flow control statements. There are 2

types of flow control statements. They are,

✓ Branching Statements

✓ Iterative Statements

Branching Statements

✓ Branching statements are used to transfer the execution sequence from one

point to another.

✓ They are categorized as:

1. Conditional branching

2. Unconditional branching

Conditional Branching Statements

 In conditional branching, program control is transferred from one point to

another based upon the outcome of the condition. The conditional branching

statements are:

 i) if Statement

 ii) if-else Statement

 iii) switch Statement

Simple IF Statement

It checks the given condition in if statement and if it is true then it will execute

the body of if statement (then part) otherwise it skipped the body of if statement.

 Syntax:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 25

 if (test expression)

 {

 Statement block

 }

 The statement block may be a single statement or a group of statements.

Example Program :

 # include<stdio.h>

 void main ()

 {

 int a;

 printf (“\n Enter a number : ”);

 scanf (“%d”, &a);

 if (a > 0)

 printf (“The given number is positive number”);

 }

If - Else Statement

✓ It is a two way branching statement.

if

condition

stmt

T

F

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 26

✓ If the test expression is true then the True part statement block will be

executed.

✓ If the test expression is false then the False part statement block will be

executed.

 Syntax:

 if (test expression)

 {

 True part Statement block

 }

 else

 {

 False part Statement block

 }

 Example Program: Program to check whether the number is odd or even

 # include<stdio.h>

 void main ()

 {

 int n, r;

 printf (“\n Enter a Number:”);

 scanf (“%d”, &n);

 r = n % 2;

 if (r == 0)

 printf (“Given Number is Even”);

 else

 printf (“Given Number is Odd”);

 }

 Output:

 Enter a Number: 6

 Given Number is Even

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 27

Nesting of IF..ELSE Statement

 If we give if statement within another if statement it is called nested if

statement.

 Syntax:

 if (test expression1)

 {

 if (test expression2)

 {

 Inner if True part Statement

 }

 else

 {

 Inner if False part Statement

 }

 }

 else

 {

 Outer if False part Statement

 }

test

expression

Stmt 1

True

False

 Stmt 2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 28

 It checks the test expression1 and if it is true it check the inner if test

expression2. This type of nested if is useful when a series of decisions are involved.

Example Program :

 # include<stdio.h>

 void main ()

 {

 int Mark;

 printf (“Give your Mark”);

 scanf (“%d”, &Mark);

 if (Mark < 50)

 printf(“Failed”);

 else

 {

 if (Mark < 60)

 printf(“Second Class”);

 else

 printf (“First Class”);

 }

 }

ELSE..IF Ladder

 If the else part of if statement contain another if statement, then the else

and the if statement can be combined. It is called else if ladder.

 Syntax :

 if (test expression1)

 Statement block 1

 else if (test expression2)

 Statement block 2

 else if (test expression3)

 Statement block 3

 else

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 29

 Statement block 4

If the test expression1 evaluated is true, the statement block1 is executed.

If the test expression2 is true, then statement block2 is executed and so on.

If none of the test expressions are true, then the statement block4 is executed,

ie., the last statement.

Example Program : To find largest among three numbers

 # include<stdio.h>

 void main ()

 {

 int a, b, c;

 printf (“Enter three numbers : ”);

 scanf (“%d %d %d”, &a, &b, &c);

 if (a > b) && (a > c)

 printf(“Biggest Number is %d”, a);

 else if (b > c)

 printf(“Biggest Number is %d”, b);

 else

 printf (“Biggest Number is %d”, c);

 }

 Output :

 Enter three numbers : 40 -50 35

 Biggest Number is 40

Switch Statement

✓ It is a multi way branching statement.

✓ It first evaluates the expression in switch statement. That result is compared

with each case value one by one.

✓ Whenever a match found execute the statements given in the corresponding

case statement.

✓ If none of the case value matches with the result it executes the default

section.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 30

✓ In switch, selection expression must be integer or character type only.

✓ Only equality condition can be applied. Other relational operators cannot be

used.

✓ It allows the more complicated decision statements in a simple manner.

 Syntax:

 switch (Expression)

 {

case value 1:

 Statement block 1

 break;

case value 2:

 Statement block 2

 break;

 . . .

case value n:

 Statement block n

 break;

 default:

 Default Statement block

}

Rules for Writing ‘switch’ Statement

✓ The expression used in switch statement must be an integer or a

character data.

✓ The case labels must be character or integer constant.

✓ Each case block must be terminated by break statement. Otherwise, all

statements that are followed by matched cases are executed.

✓ The default clause is optional & usually placed at the end.

✓ The case keyword must terminate with colon (:)

✓ No two case constants are identical.

Example Program:

#include<stdio.h>

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 31

#include<conio.h>

int main()

{

char ch;

clrscr();

printf("\t\tVowel or Consonant\n");

printf("\t\t================\n\n");

printf("Enter any Character: ");

scanf("%c",& ch);

switch(ch)

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u':

 case 'A':

 case 'E':

 case 'I':

 case 'O':

 case 'U':

 printf("The given letter is a Vowel");

 break;

 default:

 printf("The given letter is a Consonant");

 }

getch();

return 0;

}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 32

Conditional Operator (? :)

The conditional operator is also known as a ternary operator. The conditional

statements are the decision-making statements which depends upon the output of the

expression. It is represented by two symbols, such as, '?' and ':'.

As conditional operator works on three operands, so it is also known as the

ternary operator.

The behavior of the conditional operator is similar to the 'if-else' statement as 'if-

else' statement is also a decision-making statement.

Syntax : Expression1? expression2: expression3;

Explanation:

o In the above syntax, the expression1 is a Boolean condition that can be either

true or false value.

o If the expression1 results into a true value, then the expression2 will execute.

o The expression2 is said to be true only when it returns a non-zero value.

o If the expression1 returns false value then the expression3 will execute.

o The expression3 is said to be false only when it returns zero value.

Example:

#include <stdio.h>

int main()

{

 int age; // variable declaration

 printf("Enter your age");

 scanf("%d",&age); // taking user input for age variable

 (age>=18)? (printf("eligible for voting")) : (printf("not eligible for voting")); //

conditional operator

 return 0;

}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 33

Unconditional Branching Statement Or Jumps in Loops

 In an unconditional branching, program control is transfer from one

point to another without checking the condition. Following are the unconditional

branching statements.

 i) goto

 ii) break

 iii) continue

 iv) return

goto Statement

✓ ‘C’ provides the goto statement to transfer control unconditionally from one

place to another place in the program.

✓ The goto statement can move the program control almost anywhere in the

program.

✓ The goto statement requires a label.

✓ The label is a valid variable name and must end with colon (:)

 Syntax:

 goto label; label:

 ………. ……..

 ………. ……..

 label: goto label;

Example Program : Check the given number is Prime or Not using goto & return.

 # include<stdio.h>

 # include<conio.h>

 void main ()

 {

 int No, i;

 printf (“Give the number : ”);

 scanf (“%d” , &No);

 for (i = 2 ; i <= No / 2; i++)

 {

 if (No / i == 0)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 34

 goto stop;

 }

 printf (“ Given Number is a Prime Number”);

 return;

 stop : printf (“ Given Number is not a Prime Number”);

 }

Output:

 Give the number : 17

 Given Number is a Prime Number

break Statement

✓ It is used within a looping statement or switch statement.

✓ The break statement is used to terminate the loop.

✓ When the break statement is used inside any looping statement, control is

automatically transferred to the first statement after the loop.

✓ In switch statement each case block must be terminated with break

statement to exit from switch.

 Syntax:

 break;

 Example:

Refer switch example program.

Example Program:

#include<stdio.h>

#include<conio.h>

int main()

{

char ch;

clrscr();

printf("\t\tVowel or Consonant\n");

printf("\t\t================\n\n");

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 35

printf("Enter any Character: ");

scanf("%c",& ch);

switch(ch)

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u':

 case 'A':

 case 'E':

 case 'I':

 case 'O':

 case 'U':

 printf("The given letter is a Vowel");

 break;

 default:

 printf("The given letter is a Consonant");

 }

getch();

return 0;

}

continue Statement

✓ It is used within looping statements.

✓ When the continue statement is used inside the loop, it skip the statements

which are available after this statement in the loop and go for the next

iteration.

 Syntax:

 continue;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 36

 Example Program : To display 1 to 10 except 5

 # include<stdio.h>

 void main ()

 {

 int i;

 for (i =1; i <= 10; i++)

 {

 if (i == 5)

 continue;

 printf (“ %d ”, i);

 }

 Output:

 1 2 3 4 6 7 8 9 10

S. No Break Continue

1

Break statement takes the

control to the outside of

the loop

Continue statement takes the

control to the beginning of the

loop.

2
It is used both in loop and

switch statements

This can be used only in loop

statements

return Statement

 The general form of a return statement is

 return;

 OR

 return expression;

 OR

 return(expression);

• A return statement without an expression can appear only in a function

whose return type is void.

• A return statement with an expression should not appear in a function

whose return type is void.

• A return statement terminates the execution of a function and returns

the control to the calling function.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 37

 Decision Making and Looping

✓ The loop is defined as the block of statements which are repeatedly executed

for a specified number of times or until a particular condition is satisfied.

✓ If there is a single statement in the loop, the blocking braces is not necessary. If

more than one statement in the loop then the loop statements must be placed

within braces.

The following are the loop structures in ‘C’.

1. for

2. while

3. do – while

 for Loop

 If we know exactly how many times the loop statements are repeated then the

best choice is for loop.

 Syntax:

 for (initialization; test expression; increment / decrement)

 {

 Statements

 }

Syntax Explanation:

 Initialization:

 It has the initial value for the counter variable. It may be skipped. In a

for loop initialization is executed first. It is executed only once i.e., for the first

iteration only.

 Condition:

 The condition represents a test expression. Here we test the counter

variable value and if the condition is true then repeat the loop otherwise exit from

loop.

 Incrementing / updating:

 After completing every iteration, the counter variable must be increased

or decreased. Otherwise, it may lead to an infinite loop.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 38

 Example Program: To print the sum of the series 1 + 2 + 3 + 4 . . . up to N

terms

 #include<stdio.h>

 void main ()

 {

 int i, sum = 0, n;

 printf (“Enter the number of terms”);

 scanf (“%d”, &n);

 for (i = 1; i <= n; i++)

 sum += i;

 printf (“\n Sum = %d”, sum);

 }

while Loop

✓ It is a pre testing loop.

✓ The conditional expression is tested before the body is executed.

✓ If the condition is true the loop will be repeated otherwise stop the iteration.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 39

✓ If the very first time itself the condition failed, the loop will not be executed at

least one time.

 Syntax:

 while (test expression)

 {

 Body of the loop

 }

 Example Program: To read 5 subject marks and find the total

 #include<stdio.h>

 void main ()

 {

 int i, mark, total = 0;

 i = 1;

 printf(“Give 5 Subjects Mark : \n”);

 while (i <= 5)

 {

 scanf(“%d”, &mark);

 total = total + mark;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 40

 i++;

 }

 printf (“\Total Mark = %d”, total);

 }

do…while Loop

✓ It is an exit checking loop.

✓ In do...while loop the test condition is given at the end of the loop. Therefore

the body of the loop will be executed at least once.

✓ If the test condition is true, then repeat the body of the loop otherwise exit from

loop.

Syntax:

 do

 {

 Body of loop statements

 } while(test expression);

Example Program: Addition of numbers upto 5 by using do…while loop

 #include<stdio.h>

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 41

 void main ()

 {

 int i = 1, sum = 0;

 do

 {

 sum = sum + i;

 i ++;

 } while (i <= 5)

 printf (“Sum of numbers up to 5 is …%d”, sum);

 }

 Output:

 Sum of numbers up to 5 is 15

Unit- IV

ARRAYS

Introduction

✓ An array is a collection of homogeneous (similar) data items that are stored

under one common name.

✓ Individual data item (array elements) in an array is identified by index or

subscript enclosed in square brackets with array name.

✓ The elements in an array are stored in continuous memory location.

DECLARATION OF AN ARRAY

✓ Like other variable an array must be declared before they are used so that the

compiler can allocate space for them in memory.

✓ The syntax for array declaration is:

data type array_name [size];

✓ The data type specifies the array elements data type.

✓ Size indicates the maximum number of elements that can be stored in the

array.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 42

✓ For example

float height [10];

 The above array declaration represents the array name is height, we can store a

maximum of 10 elements and the array elements are floating point data type.

ARRAY INITIALIZATION

 The array elements can be initialized when they are declared like ordinary

variables otherwise they will take garbage values.

Syntax: data type array_name [size] = {value 0, value 1, . . . , value n-1)

The initialized values are specified within curly braces separated by commas.

Example: int Marks [3] = {70, 80, 90};

 This statement declares the variable Marks as an array of 3 elements and will be

assigned the values specified in list as below.

70

80

90

 Like ordinary variables, the values to the array can be initialized as follows.

 int Marks[3];

 Marks [0] = 70;

 Marks [1] = 80;

 Marks [2] = 90;

 Character array can be initialized as follows:

char gender[2] = {'M','F'};

Classification of Array

✓ One Dimensional Array

✓ Two Dimensional Array

One dimensional array:

Marks [0]

Marks [1]

Marks [2]

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 43

 If the array has only one subscript then it is called one dimensional or single

dimensional array.

 Syntax:

 data type array_name [size];

 Declaration Example:

 int height[10], weight[10];

 char name[20];

 Initialization Example:

 int marks[3] = {20,60,67};

 Characteristics of One Dimensional Array

✓ Array size must be positive number.

✓ Array elements are counted from 0 to size-1.

✓ String arrays are terminated with null character ('\0').

 Example Program 1:

 // Program to print total marks of a student

 # include <stdio.h>

 void main()

 {

 int marks[10], i, n, Total = 0;

 printf (“Enter 5 subjects marks”);

 for(i = 0 ; i < 5 ; i++)

 {

 scanf(“%d”, &marks[i]);

 }

 for(i = 0 ; i < 5 ; i++)

 {

 Total = Total + marks[i];

 }

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 44

 printf (“Total mark = %d”, Total);

 }

Two Dimensional Arrays

 If the array has two subscripts then it is called two dimensional array or matrix.

Two dimensional arrays are used in situation where a table of values needs to be stored.

 Syntax:

 data type array_name [row size] [col size];

 Declaration Example:

 int matrix[5] [5];

 char name[10] [20]; // 10 rows 20 columns

 Initialization Example:

 int matrix[2][3] = { {2, 6, 7} , {10, -50, 3} };

 Example Program:

 // Program to find the addition of two matrix

 #include <stdio.h>

 void main()

{

 int i, j, row, col;

 int A[5][5], B[5][5], C[5][5];

 printf(“Give the number of Rows & Columns ”);

 scanf(“%d %d”, &row, &col);

 printf(“Give A matrix elements row by row\n”);

 for (i = 0 ; i < row ; i++)

 for (j = 0 ; j < col ; j++)

 scanf(“%d”, &A[i][j]);

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 45

 printf(“Give B matrix elements row by row\n”);

 for (i = 0 ; i < row ; i++)

 for (j = 0 ; j < col ; j++)

 scanf(“%d”, &B[i][j]);

 for (i = 0 ; i < row ; i++)

 for (j = 0 ; j < col ; j++)

 C[i][j] = A[i][j] + B[i][j];

 printf(“\n Result Matrix A + B: \n”);

 for (i = 0 ; i < row ; i++)

 {

 for (j = 0 ; j < col ; j++)

 printf(“%d\t”, C[i][j]);

 printf(“\n”);

 }

}

STRING (ARRAY OF CHARACTERS)

 String is a collection of characters. In C language, array of characters are

called string. It is enclosed within double quotes. Example: “Give the number of rows”

Declaration of a String

 Strings can be declared like a one dimensional array.

 Syntax:

 char string_name[size];

 For example,

 char name[30];

 char dept[20];

String Initialization

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 46

 The string can be initialized as follows:

 char dept [] = {‘C’, ‘S’, ‘E’,’\0’};

In the above example, ‘\0’ is a null character and specifies end of the string. Here

string is assigned character by character.

 OR

 char dept[] = “CSE”;

 In the above example, the size of the string variable is not mentioned. It

will be automatically allocated based on the initialized string size.

Functions for Reading a String

 The following functions are used to read a single character or a string from the

keyboard.

✓ scanf()

✓ getchar()

✓ gets()

i) scanf()

The scanf() function is a formatted input function to read a single

character or a word from the keyboard. It uses the %s control string. The

scanf() automatically terminate the input when it encounter a blank space,

tab, new line or carriage return. There is no & operator in scanf ()

statement to read a string.

 Example:

 char name[10];

 scanf(“%s”, name);

To read a specified number of characters we can use the length of the

string in the control string.

 scanf(“%10s”, name);

ii) getchar()

It is an unformatted single character read function. This function returns

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 47

the given input value. So, the returned value must be assigned to a

variable.

 Syntax:

 Variable name = getchar();

 Example:

 char choice;

 choice = getchar();

iii) gets()

It is an unformatted string input function. It reads a group of characters

from keyboard until an enter key is pressed.

 Syntax:

 gets(string _variable);

 Example:

 char line[80];

 gets(line);

Functions for Printing a String

 The following functions are used to print a single character or a string to the

output device (monitor).

✓ printf()

✓ putchar()

✓ puts()

i) printf()

The printf() function is a formatted output function to write a single

character or a word to the output device. It uses the %s control string.

 Example:

 char dept[] = “CSE”;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 48

 printf(“%s”, dept);

 printf(“%10s”,dept); // print the dept string within 10 length

space.

ii) putchar()

 It is an unformatted single character output function.

 Syntax:

 char variable_name;

 putchar(variable_name);

 Example:

 char choice = 'Y';

 putchar(choice); // it display the character Y

iii) puts()

 It is an unformatted string output function.

 Syntax:

 puts(string _variable);

 Example:

 char line[80];

 puts(line);

Note:

 If we use scanf(), printf(), getchar(), putchar(), gets() or puts() function in

a program, then we must include the header file stdio.h in our program.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 49

String Handling / Manipulation Function:

Function Purpose

strlen ()

strcpy ()

strcat ()

strcmp ()

strlwr ()

strupr ()

strrev ()

Used to find length of a string

Used to copy one string to another

Used to concatenate two strings

Used to compare characters of two strings

Convert strings into lower case

Convert strings into upper case

Used to reverse a string

(i) strlen()

It is used to count and return the number of characters present in a string

i.e., to find the length of the string. It will not count the end of string (null)

value.

 Syntax:

variable = strlen(string);

(ii) strcpy ()

It is used to copy the contents of one string to another string variable.

Syntax:

strcpy (string1, string2);

Here string2 content is copied into string1.

 Example Program 5:

#include<stdio.h>

#include<string.h>

void main ()

{

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 50

 char source[] = “COMPUTER”;

 char target [10];

 strcpy (target, source);

 printf(“\n Source string is %s”, source);

 printf(“Target string is %s, target);

}

 Output:

 Source string is COMPUTER

 Target string is COMPUTER

(iii) strcat():

 It is used to concatenate or combine two strings together.

 Syntax:

strcat (string1, string2);

 String2 is concatenated at the end of string1 and the result is stored in

string1.

 Example Program 6:

#include <stdio.h>

#include <string.h>

void main ()

{

 char target[] = “ Computer”;

 char source [15] = “ Programming”;

 strcat(target, source);

 printf(“After concatenation target string is : %s”, target);

}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 51

Output:

 After concatenation target string is: Computer Programming

(iv) strcmp():

This function compares two strings to check whether they are same or

different.

The two strings are compared character by character until end of one

string is reached or a mismatch character found.

 If two strings are identical, strcmp() returns a value zero

If they are not equal it returns the numeric difference between the first

non-matching characters. Therefore, if the strcmp() returns positive then

string1 is greater and negative means string2 is greater.

Syntax:

 strcmp(string1, string2)

Example Program 7:

 #include<stdio.h>

 #include<string.h>

 void main ()

 {

 char name1[] = “computer”;

 char name2[] = “computer”;

 int diff;

 diff = strcmp (name1, name2);

 if (diff == 0)

 printf(“Both strings are identical”);

 else

 printf(“Both strings are not identical”);

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 52

 }

 Output:

 Both strings are identical

(v) strrev ()

 The strrev() function takes one string argument and return its reverse

string.

 Syntax:

 strrev(string);

 Example Program 8:

 #include<stdio.h>

 #include<string.h>

 main ()

 {

 char str[20] = “Computer”;

 printf(“Given string = %s\n”, str);

 printf (“The reverse string = %s”, strrev(str));

 }

 Output:

 Given string = Computer

 The reverse string = retupmoC

(vi) strncpy (s1, s2, n)

This function copies the first 'n' number of characters from string s2 into

the target string s1.

(vii) strncmp (s1, s2, n)

It compares the leftmost 'n' characters of s1 with s2 and returns zero if

both are equal or return negative if s1 < s2 or return positive number if s1

> s2.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 53

(viii) strncat (s1,s2,n)

 It appends first 'n' characters of s2 at the end of s1.

(ix) strlwr (s1)

 Convert string s1 into lower case alphabet.

(x) strupr (s1)

 Convert the string s1 into uppercase alphabet.

Program To check a given string is palindrome or not

include<stdio.h>

#include<string.h>

void main ()

{

 int diff;

 char input[20], copy[20];

 printf (“Enter input string :”);

 scanf (“%s”, input);

 strupr(input); // convert into upper case letter

 strcpy(copy, input); // take a copy of the input string

 strrev(copy); // reverse the input string

 diff = strcmp(input, copy); //compare input & reverse copy

 if(diff == 0)

 printf (“Given string is a palindrome”);

 else

 printf(“Given string is not a palindrome”);

}

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 54

 Output:

 ` Enter input string: malayalam

 Given string is a palindrome

Unit-V

FUNCTION

A function is a self-contained block of program statements that performs a specific task.

Functions are also called sub programs.

Advantages of Using Function

 1. Function code can be reused

 2. Redundant code is avoided

 3. Better Readability

 4. Easy to test & correct errors

 5. Easy to maintain

Types of Function:

✓ Library Function or Built in Function

✓ User defined function

Built in or Library Function

 Library functions are also called predefined functions or built in functions. They have

been already written by the person who developed the compiler. If we want to use that function

include the appropriate library header file and use it.

 Example:

 pow(x,y); // used to find x power y

 sqrt (x); // used to find square root of x

 Related functions are grouped together and stored within a header file. For example,

string handling functions such as strcmp(), strlen(), strcat() etc are stored in string.h header file.

So, if we want to use any string handling function, include string.h in the program.

User Defined Function

 The user defined functions are created by the user according to their requirements. For

example the user can create a function 'read_mat' to read a matrix.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 55

Component of a Function

 There are three components in a user-defined function

✓ Function Declaration or function prototype

✓ Function Definition

✓ Function call (or) function invocation

FUNCTION DECLARATION

 The function declaration statement is used to declare a function before define & call the

function. It identifies a function with its name, list of arguments and the type of data returned.

Semicolon is used at the end of a function prototype.

Syntax:

 return_type function_name(Parameter list);

Return type may be any one of the data type such as int, float etc or void. Void means

the function will not return any data.

Function name is the identifier used to identify the function. Parameter list represent

zero or more parameters separated by commas.

The parameter names do not need to be the same in the prototype declaration and the

function definition. The data types & order of parameter in the function definition & prototype

must match each other. Use of parameter name in declaration is optional.

Example:

 int MAX(int A, int B, int C);

FUNCTION DEFINITION

✓ The collection of program statements that describe the specific task done by the

function is called a function definition.

✓ It consists of a function header and a function body.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 56

Syntax:

 return_datatype functionname (datatype var1, datatype var2…..) // header

 {

 Local Variable declarations;

 Set of statements;

 return(returndata);

 }

The Function Header:

 The function header consists of three parts.

✓ The data type of the returned value

✓ The name of the function

✓ The formal parameters of the function enclosed between parentheses.

 List of parameters specified in the function header of definition is referred as formal

parameters. Parameter specified in the function call is called as actual parameter. Parameters

are also called as arguments.

If the function does not return a value then return type is specified by the keyword void.

The keyword void is also used to indicate the absence of parameters. But it is optional.

A function that has no parameters and does not return a value would have the following

header.

void function_name (void)

 (or)

 void function_name()

Function Body

✓ The body of the function consists of a set of statements enclosed within braces.

✓ The body of function can have both executable and non-executable statements.

✓ A function can optionally have special executable statements known as return

statements.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 57

Return Statement

 The return statement is used to return (send) back the result to the calling function.

 The general form of the return statement is as follows.

 return (expression);

 Where ‘expression’ data type must match with the return type specified in the function

header.

 If the return type is void, then return statement can be omitted or use empty return

statement as follows.

 return;

FUNCTION CALL

 The functions are called from the main () function or from another function.

The function call statement invokes or calls the function, which means the program

control passes to that function.

 Once the function completes its task, the program control is passes back to the calling

function.

 The general syntax is

 function name (parameter list)

Example: maximum = MAX(a, b, c);

PARAMETERS

 Parameter provides the data communication between the calling function and called

function.

i) Actual parameter:

These are the parameters used in the function call from the calling function to

transfer the data to the called function.

ii) Formal parameter:

These are the parameters used in the called function header (function

definition).

Example:

 main () // Calling function

 {

 fun1(p,q); // Function call. Here p & q are actual parameters

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 58

 }

 void fun1 (int x, int y) // Called function. Here x & y are formal parameters

 {

 }

PARAMETER PASSING METHODS

There are 2 ways of parameter passing. They are,

✓ Call by Value or Pass by Value

✓ Call by Reference or Pass by Reference

Call by Value (Pass by Value)

 While calling a function, the values of actual parameters are passed to the formal

parameters. Therefore the called function works on the copy and not on original values of actual

parameters.

 When arguments are passed by value, C allocates separate memory for formal

arguments and copy the actual argument value in that location. Therefore the changes made on

formal parameters will not affect the actual parameter.

 Syntax for call by value method of calling a function:

 functionname(arguments separated by comma);

 Example:

 #include<stdio.h>

 int calsum (int x, int y, int z)

 void main ()

 {

 int a, b, c, sum;

 printf (“\n Enter any three numbers”);

 scanf (“%d%d%d”, &a, &b, &c);

 sum = calsum (a, b, c);

 printf(“\n Sum = %d”,sum);

 }

 int calsum (int x, int y, int z)

 {

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 59

 int d;

 d = x + y + z;

 return (d);

 }

Sample output:

 Enter any three numbers: 10 20 40

 Sum = 70

 The variables a, b and c are called actual arguments whereas the variables x, y and z

are called formal arguments.

Call by Reference (Pass by Reference)

 In this method, the address of the actual argument in the calling function are copied into

the formal arguments of the called function. That is the actual & formal arguments refer same

memory location. Therefore the changes made on formal parameters will affect the actual

parameter of the calling function.

 Example:

 // Swapping of numbers:

 #include<stdio.h>

 void swap(int *, int *)

 void main()

 {

 int A = 10, B = 20;

 printf(“Before swap A = %d, B = %d \n”, A,B);

 swap (&A, &B);

 printf(“After swap A = %d, B = %d”, A, B);

 }

 void swap (int *x, int *y)

 {

 int temp;

 temp = *x;

 *x = *y;

 *y = temp;

 }

 Sample output:

 Before swap A = 10, B = 20

 After swap A = 20, B = 10

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 60

Difference between Call by Value & Call by Reference

Call by Value Call by Reference

Actual & formal parameters refer

different memory location

Actual & formal parameters refer same

memory location

Changes made in formal parameters not

reflected back to the calling function

Changes made in formal parameters

reflected back to the calling function

CATEGORY OF FUNCTIONS

Depending on whether arguments are present or not and whether a value is returned or

not, functions are categorized into −

• Functions with no arguments and no return values

• Functions with arguments and no return values

• Functions with arguments and one return value

• Functions with no arguments but return a value

• Functions that return multiple values

NESTING OF FUNCTIONS
A nested function is a term used to describe the use of one or more functions inside

another function. In C language, defining a function inside another one is not possible.

In short, nested functions are not supported in C. A function may only

be declared (not defined) within another function.

When a function is declared inside another function, it is called lexical scoping. Lexical

scoping is not valid in C because the compiler cannot reach the correct memory location

of inner function.

Example

#include <stdio.h>

#include <math.h>

double myfunction (double a, double b);

int main()

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 61

{

 double x = 4, y = 5;

 printf("Addition of squares of %f and %f = %f", x, y, myfunction(x, y));

 return 0;

}

double myfunction (double a, double b){

 auto double square (double c) { return pow(c,2); }

 return square (a) + square (b);

}

In this program, a function square() is nested inside another function myfunction(). The

nested function is declared with the auto keyword.

Output

Addition of squares of 4.000000 and 5.000000 = 41.000000

RECURSION

• A function calls the same function is called recursion.

Advantages of Recursion

✓ It helps to write simple version of a program.

✓ Recursion will reduce the program size.

Program Using Recursion

Example Program 1 : Find factorial using recursion

 #include<stdio.h>

 int fact(int);

 void main()

 {

 int n, Result;

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 62

 printf(“\n Enter any number:”);

 scanf(“%d”, &n);

 Result = fact(n);

 printf (“Factorial value = %d”, Result);

 }

 int fact (int n)

 {

 int f;

 if (n == 1)

 return (1);

 else

 f = n * fact (n – 1);

 return (f);

 }

Output:

Enter any number: 4

Factorial value = 24

Example Program 2 : Write a program using recursive function to generate the Fibonacci

series

 #include<stdio.h>

 int fib(int val);

 void main ()

 {

 int i, n;

 printf(“Enter the number of terms:”);

 scanf (“%d”, &n);

 printf(“\n Fibonacci sequence for %d terms are :”, n);

 for (i = 0 , i < n, i++)

 printf(“%d ”, fib(i));

 }

 int fib (int j)

 {

 if (j == 0)

 {

 return(0);

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli. 63

 }

 If (j == 1)

 {

 return(1);

 }

 return (fib(j – 1) + fib (j – 2));

 }

Output

 Enter the number of terms: 6

 Fibonacci sequence for 6 terms are: 0 1 1 2 3 5

