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Unit-1 SUCCESSIVE DIFFERENTIATION:  

Introduction (Review of basic concepts) – The 𝑛𝑡ℎ derivative – Standard results – 

Trigonometrical transformation – Formation of equations involving derivatives – 

Leibnitz formula for the 𝑛𝑡ℎ derivative of a product. 

SUCCESSIVE DIFFERENTIATION 

1.1 Introduction: 

We have seen that the derivative of a function of X is also a function of x. The new 

function may be differentiable, in which case, the derivative of the first derivative 

is called the second derivative of the original function. Similarly the derivative of 

the second derivative is called the third derivative, and so on up to the 𝑛𝑡ℎ 

derivative. 

Thus if 𝑦 = 4𝑥5 

           
𝑑𝑦

𝑑𝑥
= 20𝑥4 

   
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) = 80𝑥3 

   
𝑑

𝑑𝑥
{

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
)} = 240𝑥2 , etc. 

The symbols of the successive derivate are usually abbreviated as follows: 

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) =

𝑑2𝑦

𝑑𝑥2
= 𝐷2𝑦 

𝑑

𝑑𝑥
{

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
)} =

𝑑

𝑑𝑥
(

𝑑2𝑦

𝑑𝑥2
) =

𝑑3𝑦

𝑑𝑥3
= 𝐷3𝑦 

𝑑

𝑑𝑥
(

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
) =

𝑑 𝑛𝑦

𝑑𝑥𝑛
= 𝐷𝑛𝑦 

If 𝑦 = 𝑓(𝑥), the successive derivatives are also denoted by 

𝑓′(𝑥), 𝑓′′(𝑥), … … . 𝑓𝑛(𝑥),  
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𝑦′, 𝑦′′, … … … . 𝑦(𝑛),  

 𝑦1, 𝑦2 … … 𝑦𝑛 

1.2.The 𝒏𝒕𝒉 derivative:  

For certain functions a general expression involving n may be found for the 𝑛𝑡ℎ derivative. The 

usual plan is to find number of successive derivatives, as many as be necessary to discover 

their law of formation and then by induction write down the 𝑛𝑡ℎ derivative. 

For example, 𝑦 = 𝑒𝑎𝑥 

               
𝑑𝑦

𝑑𝑥
= 𝑎𝑒𝑎𝑥 

              
𝑑2𝑦

𝑑𝑥2 = 𝑎2𝑒𝑎𝑥 

       Then 
𝑑𝑛𝑦

𝑑𝑥𝑛 = 𝑎𝑛𝑒𝑎𝑥    

 Standard Results 

1. If 𝑦 = (𝑎𝑥 + 𝑏)𝑚 , then 

    𝑦1 = 𝑚𝑎(𝑎𝑥 + 𝑏)𝑚−1 

    𝑦2 = 𝑚(𝑚 − 1)𝑎2(𝑎𝑥 = 𝑏)𝑚−2 

                    ….. 

    𝑦𝑛 = 𝑚(𝑚 − 1) … … (𝑚 − 𝑛 + 1)𝑎𝑛(𝑎𝑥 + 𝑏)𝑚−𝑛 

In particular, 𝐷𝑛(𝑎𝑥 + 𝑏)−1 = (−1)𝑛𝑛! 𝑎𝑛(𝑎𝑥 + 𝑏)𝑛−1 

2. If 𝑦 = log(𝑎𝑥 + 𝑏) 

    𝑦1 = 𝑎(𝑎𝑥 + 𝑏)−1 

         …….. 

    𝑦𝑛 = 𝑎
𝑑𝑛−1

𝑑𝑥𝑛−1
(𝑎𝑥 + 𝑏)−1 

         = 𝑎(−1)𝑛−1(𝑛 − 1)! 𝑎𝑛−1(𝑎𝑥 + 𝑏)−𝑛 

         = (−1)𝑛−1(𝑛 − 1)! 𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛 
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3. If 𝑛𝑡ℎ derivative of sin(𝑎𝑥 + 𝑏) 

          Let 𝑦 = sin(𝑎𝑥 + 𝑏) 

           𝑦1 = acos(𝑎𝑥 + 𝑏) 

Thus the effect of a differentiation is to multiply by a and increase the 

 angle by 
𝜋

2
 

          𝑦1 = asin (
𝜋

2
+ 𝑎𝑥 + 𝑏) 

           𝑦2 = acos (
𝜋

2
+ 𝑎𝑥 + 𝑏) = a2sin (

2𝜋

2
+ 𝑎𝑥 + 𝑏) 

            𝑦3 = a3sin (
3𝜋

2
+ 𝑎𝑥 + 𝑏) 

In general, 𝐷𝑛 sin(𝑎𝑥 + 𝑏) = ansin (
𝑛𝜋

2
+ 𝑎𝑥 + 𝑏) 

Similarly 𝐷𝑛 sin(𝑎𝑥 + 𝑏) = ancos (
𝑛𝜋

2
+ 𝑎𝑥 + 𝑏) 

4. Find the 𝑛𝑡ℎ derivative of 𝑒𝑎𝑥sin (𝑏𝑥 + 𝑐) 

     Let 𝑦 = 𝑒𝑎𝑥sin (𝑏𝑥 + 𝑐) 

 𝑦1 = 𝑒𝑎𝑥𝑏𝑐𝑜𝑠(𝑏𝑥 + 𝑐) + 𝑎𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐) 

Putting 𝑎 = 𝑟𝑐𝑜𝑠∅ and 𝑏 = 𝑟𝑠𝑖𝑛𝜑 

We have, 𝑦1 = 𝑟𝑒𝑎𝑥sin (𝑏𝑥 + 𝑐 + 𝜑) 

Thus the effect of a differentiation is to multiply by r and increase the angle by 𝜑 

Similarly, 𝑦2 = 𝑟2𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐 + 2𝜑) 

In general, 𝐷𝑛{𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐)} = 𝑟𝑛𝑒𝑎𝑥sin (𝑏𝑥 + 𝑐 + 𝑛𝜑) 

Where 𝑟 = (𝑎2 + 𝑏2)
1

2 ⁄  and 𝜑 = tan−1 𝑏
𝑎⁄  

Similarly, 𝐷𝑛{𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐)} = 𝑟𝑛𝑒𝑎𝑥cos (𝑏𝑥 + 𝑐 + 𝑛𝜑) 

Fractional expressions of the form 
𝑓(𝑥)

𝜑(𝑥)
 , both functions being algebraic and rational, can be 

differentiated n times by splitting them into partial fractions.  
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Example 1: Find 𝑦𝑛 , where 𝑦 =
3

(𝑥+1)(2𝑥−1)
 in partial fraction 

Solution: 

Let 
3

(𝑥+1)(2𝑥−1)
=

𝐴

2𝑥−1
+

𝐵

𝑥+1
… … . . (1) 

 
3

(𝑥+1)(2𝑥−1)
=

𝐴(𝑥+1)+𝐵(2𝑥−1)

(2𝑥−1)(𝑥+1)
 

       3 =  𝐴(𝑥 + 1) + 𝐵(2𝑥 − 1) 

Put 𝑥 = −1 ⟹ 3 = 𝐴(−1 + 1) + 𝐵(−3) 

                           3 = −3𝐵 

                           𝐵 = −1 

Put 𝑥 = 2 ⟹ 3 = 𝐴(2 + 1) + 𝐵(4 − 1) 

                           3 = 3𝐴 − 3   ⟹   𝐴 = 2 

Sub in equation (1) 

 𝑦 =
2

2𝑥−1
−

1

𝑥+1
 

𝐷𝑛(𝑎𝑥 − 𝑏)−1 = (−1)𝑛𝑛! 𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛−1 

 
2

2𝑥−1
=

2(−1)𝑛𝑛!2𝑛

(2𝑥−1)𝑛+1  

 
1

𝑥+1
=

(−1)𝑛𝑛!

(𝑥+1)𝑛+1 

𝑦 =
2(−1)𝑛𝑛! 2𝑛

(2𝑥 − 1)𝑛+1
−

(−1)𝑛𝑛!

(𝑥 + 1)𝑛+1
 

𝑦 = (−1)𝑛𝑛! {
2𝑛+1

(2𝑥 − 1)𝑛+1
−

1

(𝑥 + 1)𝑛+1
} 

Example 2: Find 𝑦𝑛 , where 𝑦 =
𝑥2

(𝑥−1)2(𝑥+2)
 

Solution: 

Let 
𝑥2

(𝑥−1)2(𝑥+2)
  =

𝐴

𝑥−1 
 +

𝐵

(𝑥−1)2  +
𝐶

𝑥+2
      …….. (1) 
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multiply both sides by (𝑥 − 1)2(𝑥 + 2), we get 

𝑥2  =  𝐴(𝑥 − 1)(𝑥 + 2) +  𝐵 (𝑥 + 2) +  𝐶(𝑥 − 1)2       …….. (2) 

Put 𝑥 =  −2 ⟹ (−2)2   =  𝐴(−2 − 1)(−2 + 2) +  𝐵(−2 + 2) +  𝐶(−2 − 1)2 

                            𝐶 =
4

9
 

Put 𝑥 = −1 

 (−1)2 = 𝐴(−1 − 1)(−1 + 2) + 𝐵(−1 + 2) + 𝐶(−1 − 1)2 

 1 = −2𝐴 + 𝐵 + 4 (
4

9
) 

 2𝐴 =
1

3
+

16

9
− 1 

 𝐴 =
5

9
 

Sub in equation (1), 𝑦 =
5

9(𝑥−1) 
 +

1

3(𝑥−1)2  +
4

9(𝑥+2)
 

 
5

9(𝑥−1)
=

5

9

(−1)𝑛𝑛!

(𝑥−1)𝑛+1 

         
1

3(𝑥−1)2 =
1

3

(𝑛+1)!(−1)𝑛

(𝑥−1)𝑛+2  

 
4

9(𝑥+2)
=

4

9

(−1)𝑛𝑛!

(𝑥+2)𝑛+1 
 

 𝑦 =
5

9

(−1)𝑛𝑛!

(𝑥−1)𝑛+1 +
1

3

(𝑛+1)!(−1)𝑛

(𝑥−1)𝑛+2 +
4

9

(−1)𝑛𝑛!

(𝑥+2)𝑛+1 
 

𝑦 = (−1)𝑛𝑛! [
5

9

1

(𝑥 − 1)𝑛+1
+

1

3

(𝑛 + 1)

(𝑥 − 1)𝑛+2
+

4

9

1

(𝑥 + 2)𝑛+1 
] 

Example 3: Find 𝑦𝑛 , where 𝑦 =
1

𝑥2+𝑎2 

Solution: 

𝑦 =
1

𝑥2 + 𝑎2
=

1

2𝑎𝑖
[

1

𝑥 − 𝑎𝑖
−

1

𝑥 + 𝑎𝑖
] 

𝑦𝑛 =
(−1)𝑛𝑛!

2𝑎𝑖
[

1

(𝑥 − 𝑎𝑖)𝑛+1
−

1

(𝑥 + 𝑎𝑖)𝑛+1
] 
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Exercise 1: 

1.Find 𝑦𝑛  when, 

(a) 𝑦 = 𝑡𝑎𝑛−1 𝑥

𝑎
 

(b) 𝑦 =
1

(𝑥+𝑎)2+𝑏2 

(c) 𝑦 =
1

(𝑥2+𝑎2)(𝑥2+𝑏2)
 

(d) 𝑦 =
𝑥

(𝑥−1)2(𝑥+2)
 

1.3. Trigonometrical Transformation 

It is possible to break up products of powers of sines and cosines into a sum by trigonometrical 

methods. 

Example 1:Find the 𝑛𝑡ℎ differential coefficient of 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠2𝑥 𝑐𝑜𝑠3𝑥 

Solution: 

𝑦 = 𝑐𝑜𝑠𝑥 ⋅ 𝑐𝑜𝑠2𝑥 ⋅ 𝑐𝑜𝑠3𝑥 

𝑦 = 𝑐𝑜𝑠𝑥𝑐𝑜𝑠2𝑥𝑐𝑜𝑠3𝑥 =
1

2
𝑐𝑜𝑠𝑥[𝑐𝑜𝑠5𝑥 + 𝑐𝑜𝑠𝑥] 

𝑦 =
1

2
(𝑐𝑜𝑠𝑥 ⋅ 𝑐𝑜𝑠5𝑥 + 𝑐𝑜𝑠𝑥 ⋅ 𝑐𝑜𝑠𝑥) 

∴ 𝑦 =
1

4
[𝑐𝑜𝑠6𝑥 + 𝑐𝑜𝑠4𝑥 + 1 + 𝑐𝑜𝑠2𝑥] 

Usign formula, 

𝑦 = 𝑐𝑜𝑠(𝑎𝑥 + 𝑏)𝑡ℎ𝑒𝑛 𝐷𝑛 cos(𝑎𝑥 + 𝑏) = 𝑎𝑛𝑐𝑜𝑠(𝑎𝑥 + 𝑏 +
𝑛𝜋

2
) 

∴ 𝐷𝑛(𝑐𝑜𝑠𝑥 ⋅ 𝑐𝑜𝑠2𝑥 ⋅ 𝑐𝑜𝑠3𝑥) =
1

4
[6𝑛𝑐𝑜𝑠(6𝑥 +

𝑛𝜋

2
) + 4𝑛𝑐𝑜𝑠(4𝑥 +

𝑛𝜋

2
) + 2𝑛𝑐𝑜𝑠(2𝑥 +

𝑛𝜋

2
)] 
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Example 2: Find the 𝑛𝑡ℎdifferential coefficient of cos5 𝜃 sin7 𝜃 

Solution: 

Let x = cos θ + i sin θ  

1

𝑥
= cos 𝜃 − 𝑖𝑠𝑖𝑛 𝜃  

then 𝑥 +
1

𝑥
= 2cos 𝜃  

Now ⇒ cos 𝜃 =
1

2
(𝑥 +

1

𝑥
 )        …………(1) 

Similarly 𝑥 −
1

𝑥
= 2i sin 𝜃  

Now ⇒ sin 𝜃 =
1

2𝑖
(𝑥 −

1

𝑥
 )        …………(2) 

By De Moivre’s theorem, xn = cos nθ + i sin n θ 

then 
1

𝑥𝑛 = cos 𝑛 𝜃 − 𝑖 sin 𝑛 𝜃 

Now, 𝑥𝑛 +
1

𝑥𝑛 = 2 cos 𝑛 𝜃 

Similarly, 𝑥𝑛 −
1

𝑥𝑛 = 2𝑖 sin 𝑛 𝜃        

From equation (1), cos5 𝜃 

From equation (2), sin7 𝜃 

……… (3) 
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Using Binomial theorem: (𝑥 + 𝑎)𝑛 = ∑ (𝑛
𝑘

)𝑥𝑘𝑎𝑛−𝑘
𝑛

𝑘=0
 we write, 

 

We know that 

 (5
1
) = 5 

 (5
2
) =

5∗4

2∗1
= 10 

           (5
3
) =

5∗4∗3

3∗2∗1
= 10 

           (5
4
) = 10 

           (5
5
) = 1 

Substituting these values in the above equation, we get 
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From (3), we have 

 

We know that i6 = i4 · i2 = −1, hence 

 

Now, we find the nth derivative: 

 

Using the formula𝐷𝑛 sin(𝑎𝑥 + 𝑏) = ansin (
𝑛𝜋

2
+ 𝑎𝑥 + 𝑏), we have 

 

Exercise 2: 

1.Find the 𝑛𝑡ℎdifferential coefficient of 

(a)  sin3 𝑥 cos5 𝑥 

(b)  𝑠𝑖𝑛𝑥 𝑠𝑖𝑛 2𝑥 𝑠𝑖𝑛3𝑥 

(c) 𝑒𝑥𝑠𝑖𝑛𝑥 

(d) 
𝑥2

(𝑥+1)2(𝑥+2)
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1.4. Formation of equations involving derivatives 

When a relation between x and y is given, we can in many cases deduce from it a relation 

between the variables x, y and the derivatives of y with respect to x  

Example 1: If xy = aex + be-x, prove that x
𝑑²𝑦

𝑑𝑥²
 + 2

dy

dx
 – xy =0 

Solution: Given xy = aex + be-x 

Differentiate with respect to x, we get 

  x
𝑑²𝑦

𝑑𝑥²
 + 

𝑑𝑦

𝑑𝑥
 + 

dy

dx
 = aex + be-x 

        x
𝑑²𝑦

𝑑𝑥²
 +2 

𝑑𝑦

𝑑𝑥
 = aex + be-x 

        x
𝑑²𝑦

𝑑𝑥²
 +2 

𝑑𝑦

𝑑𝑥
 =xy 

 x
𝑑²𝑦

𝑑𝑥²
 +2 

𝑑𝑦

𝑑𝑥
 –xy =0 

Example 2: Prove that if y = sin(msin-1x) 

Solution: Given y = sin (msin-1x) 

 Sin-1y=msin-1x 

Differentiate with respect to x, we get 
1

√1−y²

dy

dx
 = m 

1

√1−x²
 

Squaring on both sides, we get 

  
1

1−y²
(

dy

dx
)² = m² 

1

1−x²
  

(1-x²)(
dy

dx
)² = m² (1-y²) 

Differentiate again with respect to x, we get 

(1-x²)2
dy

dx

d²y

dx²
 + (-2x) (

dy

dx
)² = m² (-2y) 

dy

dx
 

2
dy

dx
[(1-x²)

d²y

dx²
 −x

dy

dx
] = -2m²y

dy

dx
 

(1-x²)
d²y

dx²
 −x

dy

dx
 = -m²y 
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(1-x²)
d²y

dx²
 −x

dy

dx
 + m²y =0 

(1-x²) y₂ −xy₁ + m²y =0 

Example 3: 

If x = sin𝜃 , y = cosp𝜃, prove that (1-x²)y₂−xy₁ + p²y =0 

Solution: 

Given x = sin𝜃 , y = cosp𝜃 

Differentiate both x and y with respect to 𝜃, 

dx

dθ
 = cos𝜃, 

dy

dθ
 = −psinpθ 

dy

dx
 = 

dy

dθ
dx

dθ
 
 = 

−psinpθ

cos𝜃
 -----(1) 

We know that, sin²pθ+cos²pθ = 1 

sin²pθ = 1−cos²pθ  

sin²pθ = 1−y² 

sin pθ = √1 − y² ----(2) 

Similarly, we have 

sin²θ+cos²θ = 1 

           cos²θ = 1−sin²θ 

           cos²θ = 1−x² 

            cos θ = √1 − x²       ……(3) 

Sub (2) & (3) in (1) 

We get, 
dy

dx
 = −p

√1−y²

√1−x²
 

Squaring on both sides, we get 
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             (
dy

dx
)

2

= p²
1−y²

1−x²
 

(1-x²)(
dy

dx
)

2

=p²(1-y²) 

Differentiate with respect to x, 

(1-x²)2
dy

dx

d²y

dx²
 + (-2x) (

dy

dx
)

2

= p²(-2y) 
dy

dx
 

          2
dy

dx
 ((1-x²) 

d²y

dx²
 − x

dy

dx
) =−2p²y 

dy

dx
 

            (1-x²) 
d²y

dx²
 − x 

dy

dx
 = −p²y  

(1-x²) 
d²y

dx²
 − x 

dy

dx
 + p²y = 0  

      (1-x²)y₂−xy₁+ p²y = 0 

Exercise 3: 

1. If 𝑦 = 𝑎𝑥 𝑐𝑜𝑠𝑚𝑥,  prove that 𝑥2 (
d²y

dx²
+  𝑚2𝑦) = 2 (x 

dy

dx
− 𝑦) 

2. If x = sin𝑡 , y = sin p𝑡, prove that (1-x²)y₂−xy₁ + p²y =0 

3. If 𝑦 = 𝑒−𝑥 cos 𝑥 prove that 
𝑑4𝑦

d𝑥4 +  4𝑦 = 0 

4. If 𝑦 = 𝐴𝑒−𝑘𝑡 cos(𝑝𝑡 + 𝑒), show that 
d²y

dx²
+ 2𝑘 

dy

dx
+ 𝑛2𝑦 = 0, where 𝑛2 = 𝑝2 + 𝑘2 

1.5. Leibnitz formula for the 𝒏𝒕𝒉 derivative of a product: 

If 𝑢 and 𝑣 are functions of 𝑥, we have 
𝑑

𝑑𝑥
(𝑢𝑣) = 𝑣

𝑑𝑢

𝑑𝑥
+ 𝑢

𝑑𝑣

𝑑𝑥
 

This formula express the 𝑛𝑡ℎ derivative of the product of two variables in terms of the variables 

themselves and the successive derivatives. 

If 𝑢 and 𝑣 are functions of 𝑥, we have 
𝑑

𝑑𝑥
(𝑢𝑣) = 𝑣

𝑑𝑢

𝑑𝑥
+ 𝑢

𝑑𝑣

𝑑𝑥
 

𝐷(𝑢𝑣) = 𝑢𝐷𝑢 + 𝑢𝐷𝑣 

Differentiating again with respect to 𝑥 
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𝐷2(𝑢𝑣) = 𝐷(𝑣𝐷𝑢) + 𝐷(𝑢𝐷𝑣) 

    = 𝑣𝐷2𝑢 + 𝑢𝐷2𝑣 

Similarly, 𝐷3(𝑢𝑣) = 𝑣𝐷3𝑢 + 3𝐷2𝑢𝐷𝑣 + 3. 𝐷𝑢𝐷2𝑣 + 𝑢𝐷3𝑣 

However, this process will may be continued it will be seen the numeral coefficient follow the 

same law as that of the binomial theorem and indices of the derivative correspond to the 

exponents of the binomial theorem. 

Hence 𝑛𝑡ℎ derivative; 

𝑑𝑛

𝑑𝑥𝑛
(𝑢𝑣) =

𝑑𝑛𝑢

𝑑𝑥𝑛
𝑣 + 𝑛𝑐1

𝑑𝑛−1𝑢

𝑑𝑥𝑛−1

𝑑𝑣

𝑑𝑥
+ 𝑛𝑐2

𝑑𝑛−2𝑢

𝑑𝑥𝑛−2

𝑑2𝑣

𝑑𝑥2
+ ⋯ + 𝑛𝑐𝑟

𝑑𝑛−𝑟𝑢

𝑑𝑥𝑛−𝑟

𝑑𝑟𝑣

𝑑𝑥𝑟
+ ⋯

+ 𝑛𝑐1

𝑑𝑢

𝑑𝑥

𝑑𝑛−1𝑢

𝑑𝑥𝑛−1
+ 𝑢

𝑑𝑛𝑣

𝑑𝑥𝑛
 

Example 1: 

Find the 𝑛𝑡ℎ differential coefficient of 𝑥2𝑙𝑜𝑔𝑥 

Solution: 

Taking 𝑣 = 𝑥2   and  𝑢 = 𝑙𝑜𝑔𝑥 

𝑑𝑛

𝑑𝑥𝑛
(𝑥2𝑙𝑜𝑔𝑥) =  

𝑑𝑛

𝑑𝑥𝑛
(𝑙𝑜𝑔𝑥)𝑥2 + 𝑛𝑐1

𝑑𝑛−1

𝑑𝑥𝑛−1
(𝑙𝑜𝑔𝑥)

𝑑

𝑑𝑥
𝑥2 + 𝑛𝑐2

𝑑𝑛−2

𝑑𝑥𝑛−2
(𝑙𝑜𝑔𝑥)

𝑑2

𝑑𝑥2
𝑥2 

All the other terms will be zero since the successive derivatives of 𝑥2 after the second 

derivatives vanish. 

∴ 𝐷𝑛(𝑥2𝑙𝑜𝑔𝑥) =
(−1)𝑛−1(𝑛−1)!

𝑥𝑛 𝑥2 +
𝑛(−1)𝑛−2(𝑛−2)!

𝑥𝑛−1 2𝑥 +
𝑛(𝑛−1)(−1)𝑛−3(𝑛−3)!

2𝑥𝑛−2   

= (−1)𝑛−1(𝑛 − 1)! 𝑥−𝑛𝑥2 + 𝑛(−1)𝑛−2(𝑛 − 2)! 𝑥1−𝑛2𝑥

+
𝑛(𝑛 − 1)(−1)𝑛−3(𝑛 − 3)!

2
𝑥2−𝑛2 

 = (𝑛 − 1)(𝑛 − 2) − 2𝑛(𝑛 − 2) + 𝑛(𝑛 − 1)[ (−1)𝑛−3(𝑛 − 3)! 𝑥2−𝑛] 

 = 𝑛2 − 2𝑛 − 𝑛 + 2 − 2𝑛2 + 4𝑛 + 𝑛2 − 𝑛[(−1)𝑛−3(𝑛 − 3)! 𝑥2−𝑛] 

 = 2(−1)𝑛−3(𝑛 − 3)! 𝑥2−𝑛 
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 =
2(−1)𝑛−3(𝑛−3)! 

𝑥𝑛−2  

Example 2: 

If 𝑦 = sin (𝑚 sin−1 𝑥) Prove that (1 − 𝑥2)𝑦2 − 𝑥𝑦1 + 𝑚2𝑦 = 0 and (1 − 𝑥2)𝑦𝑛+2 −

(2𝑛 + 1)𝑥𝑦𝑛+1 + (𝑚2 − 𝑛2)𝑦𝑛 = 0 

Solution: 

Given y = sin (msin-1x) 

 Sin-1y=msin-1x  

Differentiate with respect to x, we get 

1

√1−y²

dy

dx
 = m 

1

√1−x²
 

Squaring on both sides, we get 

  
1

1−y²
(

dy

dx
)² = m² 

1

1−x²
  

(1-x²)(
dy

dx
)² = m² (1-y²) 

Differentiate again with respect to x, we get 

(1-x²)2
dy

dx

d²y

dx²
 + (-2x) (

dy

dx
)² = m² (-2y) 

dy

dx
 

2
dy

dx
[(1-x²)

d²y

dx²
 −x

dy

dx
] = -2m²y

dy

dx
 

(1-x²)
d²y

dx²
 −x

dy

dx
 = -m²y 

(1-x²)
d²y

dx²
 −x

dy

dx
 + m²y =0 

(1-x²) y₂ −xy₁ + m²y =0           …….. (1) 

Using Leibnitz theorem of differentiating each term of (1) n times 

𝐷𝑛(1 − 𝑥2)𝑦2 = 𝑦𝑛+2(1 − 𝑥2) + 𝑛𝑦𝑛+1(−2𝑥) +
𝑛(𝑛−1)

1∙2
𝑦𝑛(−2)               ..……(A) 

𝐷𝑛(−𝑥𝑦1) = −𝑦𝑛+1(𝑥) − 𝑛𝑦1(1)       ………(B) 
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𝐷𝑛(𝑚2𝑦) = 𝑚2𝑦𝑛                   ………(C) 

Adding RHS terms of (A), (B), and (C) 

𝑦𝑛+2(1 − 𝑥2) + 𝑦𝑛+1[−2𝑛𝑥 − 𝑥] + 𝑦𝑛[−𝑛2 + 𝑛 − 𝑛 + 𝑚2] = 0  

⇒ (1 − 𝑥2)𝑦𝑛+2 − (2𝑛 + 1)𝑥𝑦𝑛+1 + (𝑚2 − 𝑛2)𝑦𝑛 = 0 

Exercise 4: 

1. Find the 𝑛𝑡ℎ differential coefficient of  

(a)   𝑥2𝑒3𝑥 

(b)  𝑥 𝑠𝑖𝑛𝑥  

(c) 𝑥2 𝑐𝑜𝑠𝑥  

2. If 𝑦 = sin−1 𝑥 Prove that (1 − 𝑥2)𝑦2 − 𝑥𝑦1 = 0 and (1 − 𝑥2)𝑦𝑛+2 − (2𝑛 +

1)𝑥𝑦𝑛+1 − 𝑛2𝑦𝑛 = 0 

3. If 𝑦 =
log 𝑥

𝑥2  show that𝑥3 
𝑑3y

d𝑥3 + 8𝑥2 d²y

dx²
+ 14

dy

dx
+ 4𝑦 = 0 
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Unit-2 PARTIAL DIFFERENTIATION:  

Partial derivatives – Successive partial derivatives – Function of a function rule 

– Total differential coefficient. 

PARTIAL DIFFERENTIATION 

2.1. Partial derivatives: 

We have considered till now only functions of one variable but we come 

across function involving more than one variable. For example, the area of a 

rectangle is a function of two variables, the length and breadth of the rectangle. 

If u be a function of two independent variables x and y, let us assume the 

functional relation as 𝑢 = 𝑓(𝑥, 𝑦). Here x alone or y alone or both x and y are 

independent, x may be supposed to vary when y remains constant or the reverse. 

The derivative of u with respect to x when x varies and y remains constant is 

called the partial derivative of u with respect to x and is denoted by the symbol 

∂u

∂x
.  We may then write 

∂u

∂x
= Lt

∆𝑥→0

𝑓(𝑥 + ∆𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

∆𝑥
 

Similarly, when x remains constant and y varies, the partial derivative of u with 

respect to y is 

∂u

∂y
= Lt

∆𝑦→0

𝑓(𝑥, 𝑦 + ∆𝑦) − 𝑓(𝑥, 𝑦)

∆𝑦
 

∂u

∂x
 is also written as 

∂

∂x
 𝑓(𝑥, 𝑦) or 

∂f

∂x
 

Similarly, 
∂u

∂y
 is also written as 

∂

∂y
 𝑓(𝑥, 𝑦) or 

∂f

∂y
 

2.2. Successive partial derivatives: 

Consider the function 𝑢 = 𝑓(𝑥, 𝑦). Then in general 
∂u

∂x
 and 

∂u

∂y
 are functions both 

x and y and may be differentiated again with respect to either of the independent 

variables giving rise to successive partiable derivatives. Regarding x alone as 
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varying we denote the result by 
∂²u

∂x²
 , 

∂3𝑢

∂x3  ,…….. , 
∂𝑛𝑢

∂x𝑛  or when y alone varies , 

∂²u

∂y²
 , 

∂3𝑢

∂y3 ,…….. , 
∂𝑛𝑢

∂y𝑛 

If we differentiate u with respect to x regarding y constant and then this result 

is differentiated with respect to y regarding x as constant, we obtain 
∂

∂y
(

∂u

∂x
) 

which we denoted by 
∂2𝑢

∂y ∂x
. 

Similarly, if we differentiate u twice with respect to x and then once with 

respect to y, the result is denoted by the symbol 
∂3𝑢

∂y ∂2𝑥
 . The partial differential 

coefficient of 
∂u

∂y 
  with respect to x considering y as a constant is denoted by 

∂2𝑢

∂x ∂y
. 

Generally, in the ordinary functions which we come across 

∂2𝑢

∂y ∂x
=

∂2𝑢

∂x ∂y
 

2.3. Function of function rule: 

This rule is very useful in partial differentiation. 

Let z be a function of u where u is a function of two independent variables x 

and y. 

Then 
∂z

∂x 
=

dz

du 
 

∂u

∂x 
   and 

∂z

∂y 
=

dz

du 
 

∂u

∂y 
  

Let x and y receive arbitrary increments ∆𝑥 and ∆𝑦 and let the corresponding 

increments in u and z be ∆𝑢 and ∆𝑧 respectively. 

Then 
∆z

∆x 
=

∆z

∆u 
 

∆u

∆x 
 

Proceeding to the limit when ∆𝑥 → 0, 
∂z

∂x 
=

dz

du 
 

∂u

∂x 
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Note: 

The straight limit d is used in 
dz

dx 
 as z is a function of only one variable u while 

the curved ∂ is used in 
∂u

∂x 
 as u is a function of two independent variables. 

Example 1: 

Find the partial differential coefficient of u=sin(ax+by+cz) 

Solution: 

Let u=sin(ax+by+cz) 

∂u

∂x
 = a cos (ax+by+cz) 

∂u

∂y
 = b cos (ax+by+c) 

∂u

∂z
 = c cos (ax+by+c) 

Example 2: 

If u = 
xy

x+y
 .  Show that x

∂u

∂x
 + y

∂u

∂y
 = u 

Solution: 

∂u

∂x
 = 

(x+y)y−xy

(x+y)²
  

    =
y²

(x+y)²
 

Similarly, 
∂u

∂y
 = 

x²

(x+y)²
 

 ⸫ x
∂u

∂x
 + y

∂u

∂y
 = 

x²y+xy²

(x+y)²
 

                     =
xy

x+y
 

    x
∂u

∂x
 + y

∂u

∂y
 = u 
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Example 3: 

If u = tan⁻¹
x³+y³

x−y
, prove that x

∂u

∂x
 + y

∂u

∂y
 = sin 2u 

Solution: 

u = tan⁻¹ 
x³+y³

x−y
 

tan u = 
x³+y³

x−y
 

Differentiate with respect to x, 

sec²
∂u

∂x
 = 

(x−y)3x²−(x3+y3)

(x−y)²
 

          = 
3x³−3x²y−x3−y3

(x−y)²
 

          = 
2x³−3x²y−y3

(x−y)²
 

Differentiate with respect to y, 

sec²
∂u

∂y
 = 

(x−y)3y²−(x3+y3)−1

(x−y)²
 

           = 
3xy²−3y³+x³+y³

(x−y)²
 

           = 
3xy²−2y³+x³

(x−y)²
 

sec²u(x
∂u

∂x
 + y

∂u

∂y
) = 

x(2x3−3x2y−y3)

(x−y)²
 +  

y(3xy2−2y3+x3)

(x−y)²
 

                           = 
x(2x3−3x2y−y3)+y(3xy2−2y3+x3)

(x−y)²
 

                           = 
2x4−3x³y−xy³+3xy³−2y⁴+x³y

(x−y)²
 

                           = 
2x4−2x³y+2xy³−2y⁴

(x−y)²
 

                           =
2(x4−x³y+xy³−y⁴)

(x−y)²
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                           = 
2(x−y)(x3+y3)

(x−y)²
 

                           = 
2(x3+y3)

x−y
 

We know that 
x³+y3

x−y
 = tan u 

= 2tan u 

= 
1

sec²
 2tan u 

= 2 cos²u.tan u 

= 2 cos²u.
sin u

cos u
 

= 2cosu.sinu = sin2u 

Example 4: 

If v = (x²+y²+z²)⁻1/2, show that 
∂²v

∂x²
 + 

∂²v

∂y²
 +

∂²v

∂z²
 = 0 

Solution: 

Differentiate with respect to x, 

∂v

∂x
 = −

1

2
 (x²+y²+z²)⁻3/2.2x 

    =−x (x²+y²+z²)⁻3/2 

Again differentiate with respect to x, 

∂²v

∂x²
 = 

3

2
 (x²+y²+z²)⁻5/2.− (x²+y²+z²)⁻3/2 

     =
2x²−y²−z²

(x²+y²+z²)
⁵

²

 

Similarly, 
∂²v

∂y²
 =

2y²−z²−x²

(x²+y²+z²)
⁵

²

 

∂²v

∂z²
 =

2z²−x²−y²

(x²+y²+z²)
⁵

²
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∂²v

∂x²
 + 

∂²v

∂y²
 + 

∂²v

∂z²
 = 0 

Example 5: 

Illustrate the theorem that 
∂²u

∂x ∂y
 = 

∂²u

∂y ∂x
 when u is equal to log 

x²+y²

xy
 

Solution: 

u = log 
x²+y²

xy
 = log (x²+y²) – log x−log y 

∂u

∂x
 = 

𝟐𝐱

𝐱²+𝐲²
 − 

𝟏

𝐱
 

∂²u

∂y ∂x
 = 

∂

∂y
 (

𝟐𝐱

𝐱²+𝐲²
 − 

𝟏

𝐱
) 

        =
−𝟒𝐱𝐲

(𝐱²+𝐲²)²
 

∂u

∂y
 = 

𝟐𝐲

𝐱𝟐+𝐲𝟐 – 
𝟏

𝐲
 

∂²u

∂x ∂y
 = 

∂

∂x
 (

𝟐𝐲

𝐱²+𝐲²
 − 

𝟏

𝐲
) 

        =
−𝟒𝐱𝐲

(𝐱²+𝐲²)²
 

∂²u

∂y ∂x
 = 

∂²u

∂x ∂y
 

Exercise 1: 

1. If 𝑢 = log (tan 𝑥 + tan 𝑦 + tan 𝑧) , show that sin 2𝑥
∂u

∂x
 + sin 2𝑦

∂u

∂y
 + sin 2𝑧

∂u

∂z
 = 2 

2. If 𝑢 = (𝑦 − 𝑧)(𝑧 − 𝑥)(𝑥 − 𝑦) , show that 
∂u

∂x
+

∂u

∂y
+

∂u

∂z
= 0 

3. Verify that 
∂²u

∂x ∂y
 = 

∂²u

∂y ∂x
 in the following cases: 

(a) 𝑢 = 𝑠𝑖𝑛−1 𝑦

𝑥
 

(b) 𝑢 = 𝑥 𝑠𝑖𝑛𝑦 + 𝑦 𝑠𝑖𝑛𝑥 

(c) 𝑢 = 𝑥𝑦 

(d) 𝑢 = log{𝑥 𝑡𝑎𝑛−1(x2 + y𝟐)} 
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2.4. Total differential coefficient  

Then 
𝑑𝑢

𝑑𝑥
= 𝑓′

𝑥
(𝑥, 𝑦)

𝑑𝑥

𝑑𝑡
+ 𝑓′

𝑦
(𝑥, 𝑦)

𝑑𝑦

𝑑𝑡
 

𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

In the differential form, this can be written as  

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 

𝑑𝑢 is called the total differential of u. 

In the same way, if 𝑢 = 𝑓(𝑥, 𝑦, 𝑧) and 𝑥, 𝑦, 𝑧 are all functions of t, we get  

𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
 

And similarly if 𝑢 = 𝑓(𝑥1, 𝑥2, … . . 𝑥𝑛) where 𝑥1, 𝑥2, … . . 𝑥𝑛 are known functions of a variable 

t , we have the relation. 

𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑥1

𝑑𝑥1

𝑑𝑡
+

𝜕𝑢

𝜕𝑥2

𝑑𝑥2

𝑑𝑡
+ ⋯ … . +

𝜕𝑢

𝜕𝑥𝑛

𝑑𝑥𝑛

𝑑𝑡
 

(or)  

𝑑𝑢 =
𝜕𝑢

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑢

𝜕𝑥2
𝑑𝑥2 + ⋯ … . +

𝜕𝑢

𝜕𝑥𝑛
𝑑𝑥𝑛 

Example 1: 

Find 
𝑑𝑢

𝑑𝑡
 where 𝑢 = 𝑥2 + 𝑦2 + 𝑧2, 𝑥 = 𝑒𝑡, 𝑦 = 𝑒𝑡 sin 𝑡 and 𝑧 = 𝑒𝑡 cos 𝑡. 

𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
 

Solution:  

𝑢 = 𝑥2 + 𝑦2 + 𝑧2 

𝑥 = 𝑒𝑡 

𝑦 = 𝑒𝑡 sin 𝑡 
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𝑧 = 𝑒𝑡 cos 𝑡 

𝜕𝑢

𝜕𝑥
= 2𝑥 

𝑑𝑥

𝑑𝑡
= 𝑒𝑡 

𝜕𝑢

𝜕𝑦
= 2𝑦 

𝑑𝑦

𝑑𝑡
= 𝑒𝑡 cos 𝑡 + 𝑒𝑡 sin 𝑡 

𝜕𝑢

𝜕𝑧
= 2𝑧 ,

𝑑𝑧

𝑑𝑡
= −𝑒𝑡 sin 𝑡 + 𝑒𝑡 cos 𝑡 

𝑑𝑢

𝑑𝑡
= 2𝑥𝑒𝑡 + 2𝑦(𝑒𝑡 cos 𝑡 + 𝑒𝑡 sin 𝑡) + 2𝑧(−𝑒𝑡 sin 𝑡 + 𝑒𝑡 cos 𝑡) 

𝑑𝑢

𝑑𝑡
= 2𝑒𝑡[𝑥 + 𝑦 sin 𝑡 + 𝑦 cos 𝑡 + 𝑧 cos 𝑡 − 𝑧 sin 𝑡] 

𝑑𝑢

𝑑𝑡
= 2𝑒𝑡[𝑒𝑡 + 𝑒𝑡 sin2 𝑡 + 𝑒𝑡 sin 𝑡 cos 𝑡 + 𝑒𝑡 cos2 𝑡 − 𝑒𝑡 cos 𝑡 sin 𝑡] 

𝑑𝑢

𝑑𝑡
= 2𝑒𝑡[𝑒𝑡 + 𝑒𝑡 (sin2 𝑡 + cos2 𝑡)] 

𝑑𝑢

𝑑𝑡
= 2𝑒𝑡. 2𝑒𝑡 

𝑑𝑢

𝑑𝑡
= 4𝑒𝑡 

Example 2: 

Find 
𝑑𝑢

𝑑𝑡
 , 𝑢 = 𝑥3𝑦4𝑧2   where 𝑥 = 𝑡2, 𝑦 = 𝑡3, 𝑧 = 𝑡4 

Solution: 

𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
 

𝑑𝑢

𝑑𝑡
= 3𝑥2𝑦4𝑧2(2𝑡) + 4𝑦3𝑥3𝑧2(3𝑡2) + 2𝑧𝑥3𝑦4(4𝑡3) 

𝑑𝑢

𝑑𝑡
= 6(𝑡4𝑡12𝑡8𝑡) + 12(𝑡9𝑡6𝑡8𝑡2) + 8(𝑡3𝑡4𝑡6𝑡12) 
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𝑑𝑢

𝑑𝑡
= 6𝑡25 + 12𝑡25 + 8𝑡25 

𝑑𝑢

𝑑𝑡
= 26𝑡25 

Example 3: 

Find 
𝑑𝑢

𝑑𝑡
, 𝑢 = 𝑥𝑦𝑧 where 𝑥 = 𝑒−𝑡, 𝑦 = 𝑒−𝑡 sin2 𝑡, 𝑧 = sin 𝑡 

Solution: 

𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝑢

𝜕𝑧

𝑑𝑧

𝑑𝑡
 

𝑑𝑢

𝑑𝑡
= 𝑦𝑧(−𝑒−𝑡) + 𝑥𝑧(𝑒−𝑡2 sin 𝑡 cos 𝑡 − 𝑒−𝑡 sin2 𝑡) + 𝑥𝑦 cos 𝑡 

𝑑𝑢

𝑑𝑡
= 𝑒−𝑡 sin3 𝑡 (−𝑒−𝑡) + 𝑒−𝑡 sin 𝑡 (𝑒−𝑡2 sin 𝑡 cos 𝑡 − 𝑒−𝑡 sin2 𝑡) + 𝑒−2𝑡 sin2 𝑡 cos 𝑡 

𝑑𝑢

𝑑𝑡
= 𝑒−2𝑡 sin3 𝑡 [−1 +

2 cos 𝑡

sin 𝑡 
− 1 +

cos 𝑡

sin 𝑡
] 

𝑑𝑢

𝑑𝑡
= 𝑒−2𝑡 sin3 𝑡 [3 cos 𝑡 − 2] 

Example 4: 

If 𝑢 = sin(𝑥𝑦2), where 𝑥 = log 𝑡, 𝑦 = 𝑒𝑡 then prove that  
𝑑𝑢

𝑑𝑡
 . 

Solution: 

𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
 

𝑑𝑢

𝑑𝑡
= cos(𝑥𝑦2) (𝑦2) (

1

𝑡
) + cos (𝑥𝑦2)(2𝑥𝑦)(𝑒𝑡) 

𝑑𝑢

𝑑𝑡
= cos(𝑥𝑦2) [𝑦2 (

1

𝑡
) + 2𝑥𝑦(𝑒𝑡)] 

𝑑𝑢

𝑑𝑡
= y2cos(𝑥𝑦2) [

1

𝑡
+ 2𝑥(𝑒𝑡)] 

Exercise 2: 

1.Find 
𝑑𝑢

𝑑𝑡
 ,   𝑢 = log (𝑥 + 𝑦 + 𝑧) where 𝑥 = cos 𝑡, 𝑦 = sin2 𝑡 and 𝑧 = cos2𝑡 



 

     28 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

UNIT- 3   PARTIAL DIFFERENTIATION (Continued):  

Homogeneous functions – Partial derivatives of a function of two variables - Lagrange’s 

method of undetermined multipliers. 

PARTIAL DIFFERENTIATION 

3.1. HOMOGENOUS FUNCTIONS 

Let us consider the function  

𝑓(𝑥, 𝑦) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1𝑦 + 𝑎2𝑥𝑛−2𝑦2 + ⋯ + 𝑎𝑛−1𝑥𝑦𝑛−1 + 𝑎𝑛𝑦𝑛 

In this expression the sum of the indices of the variables x and y in each term is n. Such an 

expression is called a homogeneous function of degree n. This expression can be written as 

follows,  

𝑓(𝑥, 𝑦) = 𝑥𝑛(𝑎0 + 𝑎1

𝑦

𝑥
+ 𝑎2

𝑦2

𝑥2
+ ⋯ 𝑎𝑛

𝑦𝑛

𝑥𝑛
) 

              = 𝑥𝑛( 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 
𝑦

𝑥
 ) 

              = 𝑥𝑛 𝐹 (
𝑦

𝑥
) 

Similarly, a homogenous function of degree n consisting of m variables 𝑥1, 𝑥2 … … . 𝑥𝑚 can 

be written as   𝑥𝑟
𝑛  𝐹 (

𝑥1

𝑥𝑟
,

𝑥2

𝑥𝑟
… . .

𝑥𝑚

𝑥𝑟
) 

Theorem 1: 

Euler’s Theorem: If 𝑓(𝑥, 𝑦) is a homogeneous function of degree n, then 𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦

𝜕𝑓

𝜕𝑦
= 𝑛𝑓. 

This is known as Euler’s Theorem on homogenous functions. 

Proof:  

𝑓(𝑥, 𝑦) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1𝑦 + 𝑎2𝑥𝑛−2𝑦2 + ⋯ + 𝑎𝑛−1𝑥𝑦𝑛−1 + 𝑎𝑛𝑦𝑛 

              = 𝑥𝑛 𝐹 (
𝑦

𝑥
) 

∴ 
𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
[𝑥𝑛 𝐹 (

𝑦

𝑥
)] 
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        = 𝑛𝑥𝑛−1 𝐹 (
𝑦

𝑥
)-𝑥𝑛 𝐹 (

𝑦

𝑥
) .

𝑦

𝑥2 

  
𝜕𝑓

𝜕𝑥
  = 𝑛𝑥𝑛−1 𝐹 (

𝑦

𝑥
)-𝑥𝑛−2 𝑦𝐹 (

𝑦

𝑥
) ……….(1) 

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
[𝑥𝑛 𝐹 (

𝑦

𝑥
)] 

       = 𝑥𝑛 𝐹 (
𝑦

𝑥
) .

1

𝑥
 

   
𝜕𝑓

𝜕𝑥
  = 𝑥𝑛−1 𝐹 (

𝑦

𝑥
)     …… (2) 

From the equation (1) and (2)  

∴ 𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦

𝜕𝑓

𝜕𝑦
= 𝑥[𝑛𝑥𝑛−1 𝐹 (

𝑦

𝑥
)-𝑥𝑛−2 𝑦𝐹 (

𝑦

𝑥
)]+𝑦 [ 𝑥𝑛−1 𝐹 (

𝑦

𝑥
)] 

                          = 𝑛𝑥𝑛 𝐹 (
𝑦

𝑥
) - 𝑥𝑛−1 𝑦 𝐹 (

𝑦

𝑥
) + 𝑥𝑛−1 𝑦 𝐹 (

𝑦

𝑥
)   

                          = 𝑛𝑥𝑛 𝐹 (
𝑦

𝑥
) 

     𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦

𝜕𝑓

𝜕𝑦
  = 𝑛𝑓 

In general if 𝑓(𝑥1, 𝑥2 … … . 𝑥𝑚 ) is a homogeneous function of degree n, then      

𝑥1
𝜕𝑓

𝜕𝑥1
+ 𝑥2

𝜕𝑓

𝜕𝑥2
+ ⋯ … + 𝑥𝑚

𝜕𝑓

𝜕𝑥𝑚
  = 𝑛𝑓 

Example 1: 

Verify Euler’s theorem when 𝑢 = 𝑥3 + 𝑦3 + 𝑧3 + 3𝑥𝑦𝑧. 

Solution: 

𝜕𝑢

𝜕𝑥
= 3𝑥2 + 3𝑦𝑧 

𝜕𝑢

𝜕𝑦
= 3𝑦2 + 3𝑧𝑥 

𝜕𝑢

𝜕𝑧
= 3𝑧2 + 3𝑥𝑦 
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∴ 𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
+ 𝑧

𝜕𝑢

𝜕𝑧
= 𝑥(3𝑥2 + 3𝑦𝑧) + 𝑦(3𝑦2 + 3𝑧𝑥) + 𝑧(3𝑧2 + 3𝑥𝑦) 

𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
+ 𝑧

𝜕𝑢

𝜕𝑧
= 3(𝑥3 + 𝑦3 + 𝑧3 + 3𝑥𝑦𝑧) 

𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
+ 𝑧

𝜕𝑢

𝜕𝑧
= 3𝑢 

Example 2:  

If 𝑢 = tan−1 𝑥3+𝑦3

𝑥−𝑦
, prove that 𝑥

𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑥
= sin 2𝑢. 

Solution: 

tan 𝑢 =
𝑥3+𝑦3

𝑥−𝑦
= 𝑥2

1+(
𝑦

𝑥
)

3

1−(
𝑦

𝑥
)

= 𝑥2𝑓 (
𝑦

𝑥
), which is a homogenous function of degree 2. 

Let v = tan u. 

Then v is a homogenous function of x and y of degree 2. 

∴ 𝑥
𝜕𝑣

𝜕𝑥
+ 𝑦

𝜕𝑣

𝜕𝑦
= 2𝑣 

𝑥
𝜕

𝜕𝑥
(tan 𝑢) + 𝑦

𝜕

𝜕𝑥
(tan 𝑢) = 2 tan 𝑢 

𝑥 sec2 𝑢 
𝜕𝑢

𝜕𝑥
+ 𝑦 sec2 𝑢 

𝜕𝑢

𝜕𝑦
= 2 tan 𝑢 

𝑥
𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
=

2 tan 𝑢

sec2 𝑢
= sin 2𝑢  

Exercise 1: 

1.Verify Euler’s theorem  

(a) 𝑢 = 𝑥3 − 3𝑥2𝑦 + 3𝑥𝑦2 + 𝑦3. 

(b)  𝑢 = sin (
𝑥−𝑦

𝑥+𝑦
)

1/2

 

2. If 𝑢 = 𝑥𝑦2 𝑓 (
𝑦

𝑥
) show that 𝑥

𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑦
= 3𝑢 
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3. If 𝑢 = tan−1 𝑥2+𝑦2

𝑥+𝑦
, prove that 𝑥

𝜕𝑢

𝜕𝑥
+ 𝑦

𝜕𝑢

𝜕𝑥
=

1

2
sin 2𝑢. 

3.2. PARTIAL DERIVATIVES OF A FUNCTION OF TWO FUNCTIONS 

Let 𝑉 = 𝐹(𝑢, 𝑣) where 𝑢 = 𝑓(𝑥, 𝑦), 𝑣 = 𝑓1(𝑥, 𝑦) and 𝑥, 𝑦 are independent variables. 

If we write V in the form 𝐹{ 𝑓(𝑥, 𝑦), 𝑓1(𝑥, 𝑦)} we can obtain 
𝜕𝑉

𝜕𝑥
 , 

𝜕𝑉

𝜕𝑦
 by the ordinary-rules of 

partial differentiation but is usually done without substitution. 

By definition since 𝑥, 𝑦 are independent  

𝑑𝑉 =
𝜕𝑉

𝜕𝑥
𝑑𝑥 +

𝜕𝑉

𝜕𝑦
𝑑𝑦                 ……… (1) 

u is a function of 𝑥 𝑎𝑛𝑑 𝑦 

∴ 𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦            ……….. (2) 

v is a function of 𝑥 𝑎𝑛𝑑 𝑦 

∴ 𝑑𝑣 =
𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦            ……….. (3) 

V is a function of 𝑢 𝑎𝑛𝑑 𝑣 

∴ 𝑑𝑉 =
𝜕𝑉

𝜕𝑢
𝑑𝑢 +

𝜕𝑉

𝜕𝑣
𝑑𝑣           ……….. (4) 

Substituting the values of du and dv from (2) and (3) in (4)  

We get,  

𝑑𝑉 =
𝜕𝑉

𝜕𝑢
(

𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦) +

𝜕𝑉

𝜕𝑣
(

𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦)  

      = (
𝜕𝑉

𝜕𝑢

𝜕𝑢

𝜕𝑥
+

𝜕𝑉

𝜕𝑣

𝜕𝑣

𝜕𝑥
) 𝑑𝑥 + (

𝜕𝑉

𝜕𝑢

𝜕𝑢

𝜕𝑦
+

𝜕𝑉

𝜕𝑣

𝜕𝑣

𝜕𝑦
) 𝑑𝑦  ……. (5) 

Comparing (1) and (5) , we get  

𝜕𝑉

𝜕𝑥
=

𝜕𝑉

𝜕𝑢
 
𝜕𝑢

𝜕𝑥
+

𝜕𝑉

𝜕𝑣
 
𝜕𝑣

𝜕𝑥
 

𝜕𝑉

𝜕𝑦
=

𝜕𝑉

𝜕𝑢
 
𝜕𝑢

𝜕𝑦
+

𝜕𝑉

𝜕𝑣
 
𝜕𝑣

𝜕𝑦
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These results may be expressed by saying that the operators 

𝜕

𝜕𝑥
 and (

𝜕𝑢

𝜕𝑥

𝜕

𝜕𝑢
+

𝜕𝑣

𝜕𝑥

𝜕

𝜕𝑣
) are equivalent. 

Similarly 
𝜕

𝜕𝑦
=

𝜕𝑢

𝜕𝑦
 

𝜕

𝜕𝑢
+

𝜕𝑣

𝜕𝑦
 

𝜕

𝜕𝑣
 

𝜕2𝑉

𝜕𝑥2
=

𝜕

𝜕𝑥
(

𝜕𝑉

𝜕𝑥
) = (

𝜕𝑢

𝜕𝑥

𝜕

𝜕𝑢
+

𝜕𝑣

𝜕𝑥

𝜕

𝜕𝑣
) (

𝜕𝑉

𝜕𝑥
) 

𝜕2𝑉

𝜕𝑦2 =
𝜕

𝜕𝑦
(

𝜕𝑉

𝜕𝑦
)  = (

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑢
+

𝜕𝑣

𝜕𝑦

𝜕

𝜕𝑣
) (

𝜕𝑉

𝜕𝑦
) 

In this way, it is possible to express higher partial derivatives. 

Example 1: 

If 𝑧 = 𝑓(𝑥, 𝑦) and 𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃, prove that (
𝜕𝑧

𝜕𝑥
)

2

+ (
𝜕𝑧

𝜕𝑦
)

2

= (
𝜕𝑧

𝜕𝑟
)

2

+
1

𝑟2 (
𝜕𝑧

𝜕𝜃
)

2

 

Solution: 

Given that  𝑥 = 𝑟 cos 𝜃 

∴
𝜕𝑥

𝜕𝑟
= cos 𝜃 ; 

𝜕𝑥

𝜕𝜃
= −𝑟 sin 𝜃 

𝑦 = 𝑟 sin 𝜃 

∴
𝜕𝑥

𝜕𝑟
= sin 𝜃 ;  

𝜕𝑥

𝜕𝜃
= 𝑟 cos 𝜃 

Hence 
𝜕𝑧

𝜕𝑟
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑟
 

𝜕𝑧

𝜕𝑟
= cos 𝜃

𝜕𝑧

𝜕𝑥
+ sin 𝜃

𝜕𝑧

𝜕𝑦
 

And  
𝜕𝑧

𝜕𝜃
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝜃
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝜃
 

𝜕𝑧

𝜕𝜃
= −𝑟 sin 𝜃

𝜕𝑧

𝜕𝑥
+ 𝑟 cos 𝜃

𝜕𝑧

𝜕𝑦
 

Now, RHS= (
𝜕𝑧

𝜕𝑟
)

2

+
1

𝑟2 (
𝜕𝑧

𝜕𝜃
)

2
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= [(cos 𝜃 
𝜕𝑧

𝜕𝑥
+ 𝑠𝑖𝑛 𝜃 

𝜕𝑧

𝜕𝑦
 ]

2

+
1

𝑟2
[−𝑟 sin 𝜃

𝜕𝑧

𝜕𝑥
+ 𝑟 cos 𝜃

𝜕𝑧

𝜕𝑦
]

2

 

= 𝑐𝑜𝑠2𝜃 (
𝜕𝑧

𝜕𝑥
)

2

+ 𝑠𝑖𝑛2𝜃 (
𝜕𝑧

𝜕𝑦
)

2

+ 2 cos 𝜃 
𝜕𝑧

𝜕𝑥
 𝑠𝑖𝑛 𝜃 

𝜕𝑧

𝜕𝑦
+

1

𝑟2
[𝑟2𝑐𝑜𝑠2𝜃 (

𝜕𝑧

𝜕𝑦
)

2

+ 𝑟2𝑠𝑖𝑛2𝜃 (
𝜕𝑧

𝜕𝑥
)

2

− 2 rcos 𝜃 
𝜕𝑧

𝜕𝑥
 𝑠𝑖𝑛 𝜃 

𝜕𝑧

𝜕𝑦
] 

= (
𝜕𝑧

𝜕𝑥
)

2

[𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃]+ (
𝜕𝑧

𝜕𝑦
)

2
[𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃] + 2 cos 𝜃 

𝜕𝑧

𝜕𝑥
 𝑠𝑖𝑛 𝜃 

𝜕𝑧

𝜕𝑦
−

                                                                                                    2 cos 𝜃 
𝜕𝑧

𝜕𝑥
 𝑠𝑖𝑛 𝜃 

𝜕𝑧

𝜕𝑦
 

= (
𝜕𝑧

𝜕𝑥
)

2

+ (
𝜕𝑧

𝜕𝑦
)

2

 

=LHS 

⇒ RHS=LHS 

∴ (
𝜕𝑧

𝜕𝑥
)

2

+ (
𝜕𝑧

𝜕𝑦
)

2

= (
𝜕𝑧

𝜕𝑟
)

2

+
1

𝑟2
(

𝜕𝑧

𝜕𝜃
)

2

 

Example 2: 

Transform 
𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2 into polar coordinates 

Solution: 

𝑥 = 𝑟 cos 𝜃 

𝑦 = 𝑟 sin 𝜃 

𝑟2 = 𝑥2 + 𝑦2,  tan 𝜃 =
𝑦

𝑥
 

Differentiating with respect to ‘x’ we get 

2𝑟
𝜕𝑟

𝜕𝑥
= 2𝑥 

𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
= cos 𝜃 
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sec2 𝜃
𝜕𝜃

𝜕𝑥
= −

𝑦

𝑥2
 

∴
𝜕𝜃

𝜕𝑥
= −

𝑦

𝑟2
= −

sin 𝜃

𝑟
 

𝜕𝑉

𝜕𝑥
=

𝜕𝑉

𝜕𝑟

𝜕𝑟

𝜕𝑥
+

𝜕𝑉

𝜕𝜃

𝜕𝜃

𝜕𝑥
= cos 𝜃

𝜕𝑉

𝜕𝑟
−

sin 𝜃

𝑟
(

𝜕𝑉

𝜕𝜃
) 

  Thus 
𝜕

𝜕𝑥
= cos 𝜃

𝜕

𝜕𝑟
−

sin 𝜃

𝑟

𝜕

𝜕𝜃
 

∴
𝜕2𝑉

𝜕𝑥2
=

𝜕

𝜕𝑥
(

𝜕𝑉

𝜕𝑥
) 

𝜕2𝑉

𝜕𝑥2
= cos 𝜃

𝜕

𝜕𝑟
−

sin 𝜃

𝑟

𝜕

𝜕𝜃
(cos 𝜃

𝜕𝑉

𝜕𝑟
−

sin 𝜃

𝑟

𝜕𝑉

𝜕𝜃
) 

𝜕2𝑉

𝜕𝑥2
= cos 𝜃

𝜕

𝜕𝑟
(cos 𝜃

𝜕𝑉

𝜕𝑟
−

sin 𝜃

𝑟

𝜕𝑉

𝜕𝜃
) −

sin 𝜃

𝑟

𝜕

𝜕𝜃
(cos 𝜃

𝜕𝑉

𝜕𝑟
−

sin 𝜃

𝑟

𝜕𝑉

𝜕𝜃
) 

𝜕2𝑉

𝜕𝑥2
= cos 𝜃 [cos 𝜃

𝜕2𝑉

𝜕𝑟2
−

sin 𝜃

𝑟

𝜕2𝑉

𝜕𝑟𝜕𝜃
+

sin 𝜃

𝑟2

𝜕𝑉

𝜕𝜃
] −

sin 𝜃

𝑟
[− sin 𝜃

𝜕𝑉

𝜕𝑟
+ cos 𝜃

𝜕2𝑉

𝜕𝜃𝜕𝑟

−
cos 𝜃

𝑟

𝜕𝑉

𝜕𝜃
−

sin 𝜃

𝑟

𝜕2𝑉

𝜕𝜃2
 

𝜕2𝑉

𝜕𝑥2
= cos2 𝜃

𝜕2𝑉

𝜕𝑟2
−

2 sin 𝜃 cos 𝜃

𝑟

𝜕2𝑉

𝜕𝑟𝜕𝜃
+

sin2 𝜃

𝑟2

𝜕2𝑉

𝜕𝜃2
+

sin2 𝜃

𝑟

𝜕𝑉

𝜕𝑟
                        

+
2 sin 𝜃 cos 𝜃

𝑟2

𝜕𝑉

𝜕𝜃
 

Assuming that 
𝜕2𝑉

𝜕𝑟𝜕𝜃
=

𝜕2𝑉

𝜕𝜃𝜕𝑟
 

To get 
𝜕

𝜕𝑦
, we note that we change 𝜃 in 

𝜋

2
− 𝜃 

Hence 
𝜕

𝜕𝑦
= sin 𝜃

𝜕

𝜕𝑟
+

cos 𝜃

𝑟

𝜕

𝜕𝜃
 

Similarly, 
𝜕2𝑉

𝜕𝑦2 can be found from 
𝜕2𝑉

𝜕𝑥2 by replacing 𝜃 by 
𝜋

2
− 𝜃 

This gives 

𝜕2𝑉

𝜕𝑦2
= sin2 𝜃

𝜕2𝑉

𝜕𝑟2
−

2 sin 𝜃 cos 𝜃

𝑟

𝜕2𝑉

𝜕𝑟𝜕𝜃
+

𝑐𝑜𝑠2 𝜃

𝑟2

𝜕2𝑉

𝜕𝜃2
+

cos2 𝜃

𝑟

𝜕𝑉

𝜕𝑟
+

2 sin 𝜃 cos 𝜃

𝑟2

𝜕𝑉

𝜕𝜃
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𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= [cos2 𝜃

𝜕2𝑉

𝜕𝑟2
−

2 sin 𝜃 cos 𝜃

𝑟

𝜕2𝑉

𝜕𝑟𝜕𝜃
+

sin2 𝜃

𝑟2

𝜕2𝑉

𝜕𝜃2
+

sin2 𝜃

𝑟

𝜕𝑉

𝜕𝑟
 

+
2 sin 𝜃 cos 𝜃

𝑟2

𝜕𝑉

𝜕𝜃
] +  sin2 𝜃

𝜕2𝑉

𝜕𝑟2
−

2 sin 𝜃 cos 𝜃

𝑟

𝜕2𝑉

𝜕𝑟𝜕𝜃
+

𝑐𝑜𝑠2 𝜃

𝑟2

𝜕2𝑉

𝜕𝜃2

+
cos2 𝜃

𝑟

𝜕𝑉

𝜕𝑟
+

2 sin 𝜃 cos 𝜃

𝑟2

𝜕𝑉

𝜕𝜃
 

∴
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
=

𝜕2𝑉

𝜕𝑟2
+

1

𝑟2

𝜕2𝑉

𝜕𝜃2
+

1

𝑟

𝜕𝑉

𝜕𝑟
 

3.3. Lagrange’s method of undetermined multipliers: 

The function 𝑢 = 𝑓(𝑥, 𝑦, 𝑧) + 𝜆 𝜑(𝑥, 𝑦, 𝑧) where 𝜆 is an undetermined constant. Consider 

𝑥, 𝑦, 𝑧 as independent variables and write down the conditions 
𝜕𝑢

𝜕𝑥
= 0 , 

𝜕𝑢

𝜕𝑦
= 0 ,

𝜕𝑢

𝜕𝑧
= 0. Solve these three equations along the equation 𝜑(𝑥, 𝑦, 𝑧) = 0 to find the 

values of the four quantities 𝑥, 𝑦, 𝑧 and 𝜆. 

 Example 1: 

If 𝑢 = 𝑎3𝑥2 + 𝑏3𝑦2 + 𝑐3𝑧2 where 
1

𝑥
+

1

𝑦
+

1

𝑧
= 1, find the minimum value of u. 

Solution: 

𝑢 = 𝑎3𝑥2 + 𝑏3𝑦2 + 𝑐3𝑧2 − 𝜆 (
1

𝑥
+

1

𝑦
+

1

𝑧
− 1) 

∴
𝜕𝑢

𝜕𝑥
= 2𝑎3𝑥 +

𝜆

𝑥2
 

𝜕𝑢

𝜕𝑦
= 2𝑏3𝑦 +

𝜆

𝑦2
 

𝜕𝑢

𝜕𝑧
= 2𝑐3𝑧 +

𝜆

𝑧2
 

Equating the expressions 

2𝑎3𝑥 +
𝜆

𝑥2
= 0   … … … . (1) 
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2𝑏3𝑦 +
𝜆

𝑦2
= 0   … … … . . (2) 

2𝑐3𝑧 +
𝜆

𝑧2
= 0    … … … . . (3) 

We have 
1

𝑥
+

1

𝑦
+

1

𝑧
= 1   … … … (4) 

Multiplying equation (1) by x, (2) by y and (3) by z and adding we get 

2(𝑎3𝑥2 + 𝑏3𝑦2 + 𝑐3𝑧2) + 𝜆 (
1

𝑥
+

1

𝑦
+

1

𝑧
) = 0 

(i.e.) 2𝑢 + 𝜆 = 0 

(i.e.) 𝜆 = −2𝑢 

Substituting this value of λ in (1), (2) and (3), we get 

2𝑎3𝑥 − 2
𝑢

𝑥2
= 0 

2𝑏3𝑦 − 2
𝑢

𝑦2
= 0 

2𝑐3𝑧 − 2
𝑢

𝑧2
= 0 

𝑎3𝑥3 = 𝑏3𝑦3 = 𝑐3𝑧3 = 𝑢 

∴ 𝑎𝑥 = 𝑏𝑦 = 𝑐𝑧 = 𝐾(𝑠𝑎𝑦) 

∴ 𝑥 =
𝐾

𝑎
, 𝑦 =

𝐾

𝑏
, 𝑧 =

𝐾

𝑐
 

Substituting these values of x, y, z in (4), we have  

𝑎

𝐾
+

𝑏

𝐾
+

𝑐

𝐾
= 1 

(i.e.) 𝐾 = 𝑎 + 𝑏 + 𝑐 

Hence 𝑥 =
𝑎+𝑏+𝑐

𝑎
, 𝑦 =

𝑎+𝑏+𝑐

𝑏
, 𝑧 =

𝑎+𝑏+𝑐

𝑐
 

Obviously these values will give only the minimum value for the maximum value of u can be 

obtained by putting x = 1, y = ∞, z = ∞. 
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The minimum value of u is  

=
𝑎3(𝑎 + 𝑏 + 𝑐)2

𝑎2
+

𝑏3(𝑎 + 𝑏 + 𝑐)2

𝑏2
+

𝑐3(𝑎 + 𝑏 + 𝑐)2

𝑐2
 

= (𝑎 + 𝑏 + 𝑐)2(𝑎 + 𝑏 + 𝑐) 

 ⇒ (𝑎 + 𝑏 + 𝑐)3 

Example 2: 

A tent having the form of a cylinder surmounted by a cone is to contain a given volume. If 

the canvass required is minimum, show that the altitude of the cone is twice that of the 

cylinder. 

Solution:  

Let the radius of the cylinder be x, the height of the cylinder be y and the height of the cone 

be z. 

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑛𝑡 = 𝜋𝑥2𝑦 +
1

3
𝜋𝑥2𝑧 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑛𝑡 = 2𝜋𝑥𝑦 + 𝜋𝑥√𝑥2 + 𝑦2 

The volume of the tent is given as constant and let that be 𝜋𝐾3. 

∴ 𝜋𝑥2𝑦 +
1

3
𝜋𝑥2𝑧 = 𝜋𝐾3 

𝑖. 𝑒. , 3𝑥2𝑦 + 𝑥2𝑧 = 3𝐾3 … … … . (1) 

𝑆 = 𝜋(2𝑥𝑦 + 𝑥√𝑥2 + 𝑦2) 

S is at a minimum if f (x, y, z) is at a minimum where  

𝑓(𝑥, 𝑦) = 2𝑥𝑦 + 𝑥√𝑥2 + 𝑧2 

So we have to find when 𝑓(𝑥, 𝑦) = 2𝑥𝑦 + 𝑥√𝑥2 + 𝑧2 is at a minimum subject to the 

condition  

3𝑥2𝑦 + 𝑥2𝑧 = 3𝐾3. 

Let 𝑢 = 2𝑥𝑦 + 𝑥√𝑥2 + 𝑧2 + 𝜆(3𝑥2𝑦 + 𝑥2𝑧 − 3𝐾3) 
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∴
𝜕𝑢

𝜕𝑥
= 2𝑦 + √𝑥2 + 𝑦2 +

𝑥2

√𝑥2 + 𝑦2
+ 6𝜆𝑥𝑦 + 2𝜆𝑥𝑧 

𝜕𝑢

𝜕𝑦
= 2𝑥 + 3𝜆𝑥2 

𝜕𝑢

𝜕𝑧
=

𝑥𝑧

√𝑥2 + 𝑦2
+ 𝜆𝑥2 

∴ 2𝑦 + √𝑥2 + 𝑦2 +
𝑥2

√𝑥2 + 𝑦2
+ 2𝜆(3𝑥𝑦 + 𝑥𝑧) = 0  … … … . (2) 

2𝑥 + 3𝜆𝑥2 = 0     … … … . . (3) 

𝑥𝑧

√𝑥2 + 𝑦2
+ 𝜆𝑥2 = 0    … … … … (4) 

From (3), x = 0 or 2 + 3𝜆𝑥 = 0, 𝑖. 𝑒. , 𝜆𝑥 = −
2

3
    … … … … (5) 

x cannot be equal to zero. Hence that value is discarded. 

From (4), x = 0 or 
𝑧

√𝑥2+𝑦2
+ 𝜆𝑥 = 0 

From equation (5), substituting the value of λx in this equation, we get  

𝑧

√𝑥2 + 𝑦2
−

2

3
= 0  

 9𝑧2 = 4(𝑥2 + 𝑧2) 

∴ 𝑧2 =
4

5
𝑥2 

 𝑧 = ±
2

√5
𝑥 

Discarding the negative value, we get 𝑧 =
2

√5
𝑥   … … … … (6) 

𝑥2 + 𝑧2 = 𝑥2 +
4

5
𝑥2 =

9

5
𝑥2 

Substituting the values of 𝑥2 + 𝑧2, λx and z in equation (2), 
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We get 2𝑦 +
3

√5
𝑥 +

√5𝑥2

3𝑥
+ 6 (−

2

3
) 𝑦 + 2 (−

2

3
) (

2𝑥

√5
) = 0  

 2𝑦 +
3

√5
𝑥 +

√5

3
𝑥 − 4𝑦 −

8𝑥

3√5
= 0 

 2𝑦 = (
3

√5
+

√5

3
−

8

3√5
) 𝑥 

2𝑦 =
6

3√5
𝑥   ⇒  𝑦 =

𝑥

√5
 

Exercise 2: 

1. Find the minimum value of 𝑥3 + 𝑦2 + 𝑧2 when 

(i) 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 3𝑎2 

(ii) 𝑥𝑦𝑧 = 𝑎3 

2. If 𝑥, 𝑦, 𝑧 are the length of the perpendiculars dropped from any point P to the three 

sides of a triangle of constant area K, show that the minimum value of 𝑥2 + 𝑦2 + 𝑧2 

is 
4𝐾2

𝑎2+𝑏2+𝑐2. 
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Unit -4 ENVELOPES: 

Method of finding the envelope – Another definition of envelope – Envelope of family of 

curves which are quadratic in the parameter. 

 

ENVELOPES 

The equation 𝑓(𝑥, 𝑦, 𝑡) = 0 determines a curve corresponding to each particular of t. The 

totality of all such curves by gaining different values of t, is said to be a family of curves and 

the variable t which is different for different curves is said to be the parameter for the family. 

Examples: 

 The equation 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃 = 𝑎, where a is constant represents a family of straight 

lines for different values of 𝜃 touching the circle 𝑥2 + 𝑦2 = 𝑎2. Here 𝜃 is the parameter 

of the family of straight lines. 

 The equation 𝑦 = 𝑚𝑥 +
𝑎

𝑚
 represents a family of straight lines with the parameter m 

touching the parabola 𝑦2 = 4𝑎𝑥 

 The equation (𝑥 − 𝑎)2 + 𝑦2 = 𝑟2 where r is a constant is a family of circles with 

parameter a touching the lines 𝑦 = ±𝑟. 

 The curve E which is touched by a family of curves C is called the envelope of the 

family of curves C. 

4.1. Method of finding the envelope: 

Let the family of curves C be 𝑓(𝑥, 𝑦, 𝑡) = 0 and let us assume that a curve E, the envelope of 

the family exists and that its equation is 𝐹(𝑥, 𝑦) = 0. 

Let us also assume that for a particular value of t, say 𝛼 it touches E at (𝜉, 𝜂)  

∴ 𝑓(𝜉, 𝜂, 𝛼) = 0                  ………. (i) 

and 𝐹(𝜉, 𝜂) = 0                   ………..(ii) 

Considering 𝜉, 𝜂, 𝛼 independent variable and taking total differential in (i) ,  

we have  
𝜕𝑓

𝜕𝜉
 𝑑𝜉 +

𝜕𝑓

𝜕𝜂
 𝑑𝜂 +

𝜕𝑓

𝜕𝛼
 𝑑𝛼 = 0 
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𝜕𝑓

𝜕𝜉
 

𝑑𝜉

𝑑𝛼
+

𝜕𝑓

𝜕 𝜂
 

𝑑 𝜂

𝑑𝛼
+

𝜕𝑓

𝜕𝛼
= 0       ……….. (iii) 

Taking total differentials in (ii) 

𝜕𝐹

𝜕𝜉
 𝑑𝜉 +

𝜕𝐹

𝜕𝜂
 𝑑𝜂 = 0 

𝜕𝐹

𝜕𝜉
 

𝑑𝜉

𝑑𝛼
+

𝜕𝐹

𝜕𝜂
 
𝑑 𝜂

𝑑𝛼
= 0        ………. (iv) 

Since the curves 𝑓(𝑥, 𝑦, 𝛼) = 0 and 𝐹(𝑥, 𝑦) = 0 touch one another at (𝜉, 𝜂) , their gradients at 

(𝜉, 𝜂) are equal. 

For 𝑓(𝑥, 𝑦, 𝛼) = 0 , 
𝑑𝑦

𝑑𝑥
 at (𝜉, 𝜂) = −

𝜕𝑓

𝜕𝜉
𝜕𝑓

𝜕 𝜂

 

For 𝐹(𝑥, 𝑦) = 0 
𝑑𝑦

𝑑𝑥
 at (𝜉, 𝜂) = −

𝜕𝐹

𝜕𝜉
𝜕𝐹

𝜕𝜂

 

Hence 

𝜕𝑓

𝜕𝜉
𝜕𝑓

𝜕 𝜂

=

𝜕𝐹

𝜕𝜉
𝜕𝐹

𝜕𝜂

 

But from (iv) 

𝜕𝐹

𝜕𝜉
𝜕𝐹

𝜕𝜂

= −
𝜕𝜂

𝜕𝛼
𝜕𝜉

𝜕𝛼

 

∴ 

𝜕𝑓

𝜕𝜉
𝜕𝑓

𝜕𝜂

= −
𝜕𝜂

𝜕𝛼
𝜕𝜉

𝜕𝛼

 

∴ 
𝜕𝑓

𝜕𝜉
 

𝜕𝜉

𝜕𝛼
+

𝜕𝑓

𝜕 𝜂
 

𝜕𝜂

𝜕𝛼
= 0 

Comparing (iii) and (v) we get 
𝜕𝑓

𝜕𝛼
= 0 and this equation is satisfied by (𝜉, 𝜂). 

Hence (𝜉, 𝜂) satisfies both the equations 𝑓(𝑥, 𝑦, 𝛼) = 0 and 
𝜕𝑓

𝜕𝛼
= 0. 

Therefore the envelope of the family of curves 𝑓(𝑥, 𝑦, 𝑡) = 0 is got by eliminating t between 

the equations 𝑓(𝑥, 𝑦, 𝑡) = 0 and 
𝜕

𝜕𝑡
𝑓(𝑥, 𝑦, 𝑡) = 0. 
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4.2. Another definition of envelope 

The envelope of a family of curves is the locus of the limiting position of the intersecting points 

of any two curves of the family when one of them tends to coincide with the other which is 

fixed. 

Let a curve of the family of curves 𝑓(𝑥, 𝑦, 𝑡) = 0 be 𝑓(𝑥, 𝑦, 𝛼) = 0  …….(i) 

Let the curve of the family in the neighbourhood of (i) be  

𝑓(𝑥, 𝑦, 𝛼 + ∆𝛼) = 0       ……. (ii) 

Let these two curves (i) and (ii) intersect at 𝑃1 .Then the coordinates of 𝑃1 will satisfy the 

equation. 

𝑓(𝑥, 𝑦, 𝛼 + ∆𝛼) −  𝑓(𝑥, 𝑦, 𝛼) = 0 

And therefore, also the equation  

𝑓(𝑥,𝑦,𝛼+∆𝛼)− 𝑓(𝑥,𝑦,𝛼)

∆𝛼
= 0        

Taking limit as ∆𝛼 → 0, we see that the point 𝑃1 → 𝑃 and the coordinates of 𝑃 to which 𝑃1 

tends as∆𝛼 → 0 satisfy the equation. 

lim
∆𝛼→0

𝑓(𝑥,𝑦,𝛼+∆𝛼)− 𝑓(𝑥,𝑦,𝛼)

∆𝛼
= 0        

𝜕

𝜕𝛼
𝑓(𝑥, 𝑦, 𝛼) = 0 

Hence P is a point which satisfies both the equations  

𝑓(𝑥, 𝑦, 𝛼) = 0  𝑎𝑛𝑑 
𝜕

𝜕𝛼
𝑓(𝑥, 𝑦, 𝛼) = 0 

Therefore by eliminating 𝛼 from the above two equations, we get the locus of P, which is the 

same as the rule obtained in 4.1. 

4.3. Envelope of family of curves which are quadratic in the parameter 

When 𝑓(𝑥, 𝑦, 𝑡) = 0 is merely a quadratic in t, say 𝐴𝑡2 + 𝐵𝑡 + 𝐶 = 0, where A,B,C are 

functions of x, y and t is the parameter, the envelope is obtained by eliminating t between the 

equations, 
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𝐴𝑡2 + 𝐵𝑡 + 𝐶 = 0         ……. (i) 

Differentiating with respect to t, 

2𝐴𝑡 + 𝐵 = 0                   ……… (ii) 

From (ii), 𝑡 =
−𝐵

2𝐴
 and Substituting this value of t in (i), the equation of the envelope is 𝐵2 =

4𝐴𝐶. 

Example 1: 

Find the envelope of the family of a straight lines 𝑦 + 𝑡𝑥 = 2𝑎𝑡 + 𝑎𝑡3, the parameter being t. 

Solution:  

Given that 𝑦 + 𝑡𝑥 = 2𝑎𝑡 + 𝑎𝑡3 where t is the parameter 

Differentiating partially with respect to t, we have 

𝑥 = 2𝑎 + 3𝑎𝑡2     … … … (𝑖) 

To get the envelope we have to eliminate t from (i) and the equation 

 𝑦 + 𝑡𝑥 = 2𝑎𝑡 + 𝑎𝑡3 

From (ii),  

𝑦 = 𝑡(−𝑥 + 2𝑎 + 𝑎𝑡2) 

Substituting the value of 𝑡2 from (i) in this equation, we have  

𝑦 = 𝑡 (−𝑥 + 2𝑎 +
𝑥 − 2𝑎

3
) 

𝑦 = −
2𝑡

3
(𝑥 − 2𝑎) 

Hence 𝑦2 =
4𝑡2

9
(𝑥 − 2𝑎)2 

𝑦2 =
4

9
(

𝑥 − 2𝑎

3𝑎
) (𝑥 − 2𝑎)2 

27𝑎𝑦2 = 4(𝑥 − 2𝑎)3 which is the equation of the required envelope. 

This curve is called a semi – cubical parabola. 
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Example 2: 

Find the envelope of the family of circles (𝑥 − 𝑎)2 + 𝑦2 = 2𝑎, where a is the parameter. 

Solution: 

The family of circles is (𝑥 − 𝑎)2 + 𝑦2 = 2𝑎 … … … (𝑖) 

Differentiating partially with respect to a, we get 

−2(𝑥 − 𝑎) = 2                      … … … . (𝑖𝑖) 

Eliminate a between (i) and (ii). 

Substituting the value of a form (ii) in (i), we have  

(−1)2 + 𝑦2 = 2(𝑥 + 1) 

 𝑦2 = 2𝑥 + 1 

Example 3:  

Find the envelope of the family of curves 
𝑥2

𝑎2 +
𝑦2

𝐾2−𝑎2 = 1, where a is the parameter. 

Solution: 

Given that  
𝑥2

𝑎2 +
𝑦2

𝐾2−𝑎2 = 1 , where a is the parameter 

𝑥2(𝐾2 − 𝑎2) + 𝑦2𝑎2 = 𝑎2(𝐾2 − 𝑎2) 

 𝑎4 − 𝑎2(𝑥2 − 𝑦2 + 𝐾2) + 𝑥2𝐾2 = 0 

Since this is a equation in 𝑎2, its eliminant is  

(𝑥2 − 𝑦2 + 𝐾2)2 = 4𝑥2𝐾2 

 (𝑥2 − 𝑦2 + 𝐾2) = ±2𝑥𝐾 

 𝑥2 ± 2𝑥𝐾 + 𝐾2 = 𝑦2 

 (𝑥 ± 𝐾)2 = 𝑦2 

 (𝑥 ± 𝐾) = ±𝑦 

 𝑥 ± 𝑦 = ±𝐾 
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Example 4: 

Find the envelope of the circles drawn on the radius vectors of the ellipse 

 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 as parameter. 

Solution: 

The coordinates of any point P on the ellipse are (acos 𝜃 , 𝑏 sin 𝜃). 

To find the envelope of this circles midpoint =(
𝑥1+𝑥2

2
) , (

𝑦1+𝑦2

2
) 

                                                                        =(
acos 𝜃

2
) , (

𝑏 sin 𝜃

2
) 

Diameter= √(𝑎 𝑐𝑜𝑠𝜃 − 0)2 +(𝑏 𝑠𝑖𝑛𝜃 − 0)2 

               = √𝑎2𝑐𝑜𝑠2𝜃 + 𝑏2𝑠𝑖𝑛2𝜃 

Radius    =
√𝑎2𝑐𝑜𝑠2𝜃+𝑏2𝑠𝑖𝑛2𝜃

2
 

Equation of the circle  ⇒ (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑟2 

 ⇒ (𝑥 −
acos 𝜃

2
)

2

+ (𝑦 −
𝑏𝑠𝑖𝑛 𝜃

2
)

2

= (
√𝑎2𝑐𝑜𝑠2𝜃+𝑏2𝑠𝑖𝑛2𝜃

2
)

2

 

⇒ 4𝑥2 + 𝑎2𝑐𝑜𝑠2𝜃 − 4𝑥𝑎 𝑐𝑜𝑠𝜃 + 4𝑦2 + 𝑏2𝑠𝑖𝑛2𝜃 − −4𝑦𝑏 𝑠𝑖𝑛𝜃 = 𝑎2𝑐𝑜𝑠2𝜃 +

                                                                                                                            𝑏2𝑠𝑖𝑛2𝜃 

⇒ 4𝑥2 + 4𝑦2 − 4𝑎𝑥 cos 𝜃 − 4𝑏𝑦 sin 𝜃 = 0 

𝑥2 + 𝑦2 − 𝑎𝑥 cos 𝜃 − 𝑏𝑦 sin 𝜃 = 0      … … … (𝑖) 

We have to find the envelope of the family of circle (i) for different values of 𝜃, we have  

𝑎𝑥 cos 𝜃 − 𝑏𝑦 sin 𝜃 = 0       … … … (𝑖𝑖) 

We have to eliminate 𝜃 from the equations (i) and (ii). 

From (ii),
cos 𝜃

𝑎𝑥
=

sin 𝜃

𝑏𝑦
 which is equal to 

1

√𝑎2𝑥2+𝑏2𝑦2
,    

∴ cos 𝜃 =
𝑎𝑥

√𝑎2𝑥2+𝑏2𝑦2
, sin 𝜃 =

𝑏𝑦

√𝑎2𝑥2+𝑏2𝑦2
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Substituting the values of sin 𝜃 and cos 𝜃 in (i), we get  

𝑥2 + 𝑦2 −
𝑎2𝑥2

√𝑎2𝑥2 + 𝑏2𝑦2
−

𝑏2𝑦2

√𝑎2𝑥2 + 𝑏2𝑦2
= 0 

 𝑥2 + 𝑦2 = √𝑎2𝑥2 + 𝑏2𝑦2 

( 𝑥2 + 𝑦2)2  = 𝑎2𝑥2 + 𝑏2𝑦2 which is the equation of the required envelope. 

Example 5: 

Find the envelope of the family of curves. 

𝑥2 + 𝑦2 − 2𝑎𝑥 cos 𝜃 − 2𝑎𝑦 sin 𝜃 = 𝑐2 

Solution:  

𝑥2 + 𝑦2 − 𝑐2 = 2𝑎𝑥 cos 𝜃 + 2𝑎𝑦 sin 𝜃 … … … . (1) 

Differentiating, 

0 = −2𝑎𝑥 sin 𝜃 + 2𝑎𝑦 cos 𝜃       … … … . . (2) 

(1)2 + (2)2, 

(𝑥2 + 𝑦2 − 𝑐2)2 = (2𝑎𝑥 cos 𝜃 + 2𝑎𝑦 sin 𝜃)2 + (−2𝑎𝑥 sin 𝜃 + 2𝑎𝑦 cos 𝜃)2 

(𝑥2 + 𝑦2 − 𝑐2)2

= 4𝑎2𝑥2 cos2 𝜃 + 4𝑎2𝑦2 sin2 𝜃 + 8𝑎2𝑥𝑦 cos 𝜃 sin 𝜃 + 4𝑎2𝑥2 sin2 𝜃

+ 4𝑎2𝑦2 cos2 𝜃 − 8𝑎2𝑥𝑦 cos 𝜃 sin 𝜃 

(𝑥2 + 𝑦2 − 𝑐2)2 = 4𝑎2𝑥2(cos2 𝜃 + sin2 𝜃) + 4𝑎2𝑦2(cos2 𝜃 + sin2 𝜃) 

(𝑥2 + 𝑦2 − 𝑐2)2 = 4𝑎2𝑥2 + 4𝑎2𝑦2 

(𝑥2 + 𝑦2 − 𝑐2)2 = 4𝑎2(𝑥2 + 𝑦2) 

It is the required envelope. 

Example 6: 

Find the envelope of the family of curves. 

  (𝑥 − 𝑎)2 + (𝑦 − 𝑎)2 = 4𝑎  
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Solution: 

(𝑥 − 𝑎)2 + (𝑦 − 𝑎)2 = 4𝑎    … … … … (1) 

Differentiating,  

2(𝑥 − 𝑎)(−1) + 2(𝑦 − 𝑎)(−1) = 4 

−2𝑥 + 2𝑎 − 2𝑦 + 2𝑎 = 4 

−2(𝑥 − 𝑎 + 𝑦 − 𝑏) = 4 

𝑥 + 𝑦 − 2𝑎 = −2 

−2𝑎 = −2 − 𝑥 − 𝑦 

2𝑎 = 2 + 𝑥 + 𝑦 

𝑎 =
2 + 𝑥 + 𝑦

2
 

(1), (𝑥 −
2 + 𝑥 + 𝑦

2
)

2

+ (𝑦 −
2 + 𝑥 + 𝑦

2
)

2

= 4 (
2 + 𝑥 + 𝑦

2
) 

(2𝑥 − (2 + 𝑥 + 𝑦))2 + (2𝑦 − (2 + 𝑥 + 𝑦))
2

= 8(𝑥 + 𝑦 + 𝑧) 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑏𝑦 2, 

(4𝑥2 + (𝑥 + 𝑦 + 2)2 − 4𝑥(𝑥 + 𝑦 + 𝑧)) + (4𝑦2 + (𝑥 + 𝑦 + 2)2 − 4𝑦(𝑥 + 𝑦 + 𝑧))

= 8(𝑥 + 𝑦 + 𝑧) 

4(𝑥2+𝑦2) + 2(𝑥 + 𝑦 + 2)2 − 4(𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧) − 8(𝑥 + 𝑦 + 𝑧) = 0 

4(𝑥2+𝑦2) − 2(𝑥 + 𝑦 + 𝑧)2 = 0 ⇒ 2(𝑥2+𝑦2) = (𝑥 + 𝑦 + 𝑧)2 

Example 7: 

Find the envelope of the family of curves 

𝑥2 cos 𝜃 + 𝑦2 sin 𝜃 = 𝑎2  

𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧: 

 𝑥2 cos 𝜃 + 𝑦2 sin 𝜃 = 𝑎2    … … … … . . (1) 

Differentiating, 
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−𝑥2 sin 𝜃 + 𝑦2 cos 𝜃 = 0 

𝑦2 cos 𝜃 = 𝑥2 sin 𝜃 

𝑥2

𝑦2
=

sin 𝜃

cos 𝜃
 

sin 𝜃 =
𝑦2

√𝑥4 + 𝑦4
 𝑎𝑛𝑑 cos 𝜃 =

𝑥2

√𝑥4 + 𝑦4
 

Equation (1) implies  

𝑥2 (
𝑥2

√𝑥4 + 𝑦4
) + 𝑦2 (

𝑦2

√𝑥4 + 𝑦4
) = 𝑎2 

(
𝑥4 + 𝑦4

√𝑥4 + 𝑦4
) = 𝑎2 

√𝑥4 + 𝑦4 = 𝑎2 

𝑥4 + 𝑦4 = 𝑎4 

Example 8: 

Find the envelope of the family of curves (
𝑎2

𝑥
) cos 𝜃 − (

𝑏2

𝑦
) sin 𝜃 = 𝑐  

Solution: 

(
𝑎2

𝑥
) cos 𝜃 − (

𝑏2

𝑦
) sin 𝜃 = 𝑐 … … … … (1) 

(
𝑎2

𝑥
) (−sin 𝜃) − (

𝑏2

𝑦
) cos 𝜃 = 0 

−
𝑎2 sin 𝜃

𝑥
=

𝑏2 cos 𝜃

𝑦
 

sin 𝜃

cos 𝜃
= −

𝑏2𝑥

𝑎2𝑦
 

sin 𝜃 = −
𝑏2𝑥

√𝑎4𝑦2 + 𝑏4𝑥2
 𝑎𝑛𝑑 cos 𝜃 =

𝑎2𝑦

√𝑎4𝑦2 + 𝑏4𝑥2
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(
𝑎2

𝑥
) (

𝑎2𝑦

√𝑎4𝑦2 + 𝑏4𝑥2
) − (

𝑏2

𝑦
) (−

𝑏2𝑥

√𝑎4𝑦2 + 𝑏4𝑥2
) = 𝑐 

(
𝑎4𝑦

𝑥√𝑎4𝑦2 + 𝑏4𝑥2
) + (

𝑏4𝑥

𝑦√𝑎4𝑦2 + 𝑏4𝑥2
) = 𝑐 

𝑎4𝑦2 + 𝑏4𝑥2

𝑥𝑦√𝑎4𝑦2 + 𝑏4𝑥2
= 𝑐 

𝑎4𝑦2 + 𝑏4𝑥2

√𝑎4𝑦2 + 𝑏4𝑥2
= 𝑐𝑥𝑦 

√𝑎4𝑦2 + 𝑏4𝑥2 = 𝑐𝑥𝑦 

𝑎4𝑦2 + 𝑏4𝑥2 = 𝑐2𝑥2𝑦2 

Exercise 1: 

1. Find the envelope of the family of a straight lines 

(a) 𝑦 = 𝑡2𝑥 − 𝑡3 , where t is parameter. 

(b) 
𝑎𝑥

cos 𝜃
−

𝑏𝑦

sin 𝜃
 = 𝑎2−𝑏2 , where 𝜃 is parameter. 

     (c) 𝑥 𝑡𝑎𝑛𝜃 + 𝑦 sec 𝜃 = 1 , where 𝜃 is parameter. 

4.4. Envelope of family of curves in two parameters 

Sometimes the family of curves will contain two parameters and the two parameters are 

connected by a relation. In that case we can express the equation of the family of curves 

containing only one parameter but the process may be tedious. 

Example 1: 

Find the envelopes of the straight lines 
𝑥

𝑎
+

𝑦

𝑏
= 1 where the parameters are related by the 

equation  𝑎2 + 𝑏2 = 𝑐2 where c is a constant. 

Solution:  

Let us regard a and b as functions of t. 

𝑎2 + 𝑏2 = 𝑐2                 … … … . (𝑖) 



 

     50 

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.  

𝑥

𝑎
+

𝑦

𝑏
= 1                   … … … … (𝑖𝑖) 

From equation (ii) Differentiating with respect to t, we have  

−
𝑥

𝑎2

𝑑𝑎

𝑑𝑡
−

𝑦

𝑏2

𝑑𝑏

𝑑𝑡
= 0 … … … … (𝑖𝑖𝑖) 

Differentiating 𝑎2 + 𝑏2 = 𝑐2 with respect to t, we have  

2𝑎
𝑑𝑎

𝑑𝑡
+ 2𝑏

𝑑𝑏

𝑑𝑡
= 0   … … … . . (𝑖𝑣) 

Comparing (iii) and (iv), we have  
𝑥

𝑎3 =
𝑦

𝑏3        … … … . (𝑣)  

We have to eliminate a and b from (i), (ii) and (v). 

From (v),  

𝑥
𝑎
𝑎2

=

𝑦
𝑏
𝑏2

=

𝑥
𝑎 +

𝑦
𝑏

𝑎2 + 𝑏2
=

1

𝑐2
 

∴ 𝑎3 = 𝑐2𝑥, 𝑏3 = 𝑐2𝑦 

Substituting the values of a and b in (iii), we get, 

(𝑐2𝑥) 
2
3 + (𝑐2𝑦)

2
3 = 𝑐2 

𝑥
2

3 + 𝑦
2

3 = 𝑐
2

3 which is the equation of the required envelope (Four cusped hypocyloid). 
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UNIT-5 CURVATURE OF PLANE CURVES 

Definition of Curvature – Circle, Radius and Centre of Curvature – Evolutes and 

Involutes – Radius of Curvature in Polar Co-ordinates. 

 

CURVATURE OF PLANE CURVES 

5.1 Definition of Curvature 

Consider a curve given by the equation 𝑦 = 𝑓(𝑥) suppose the curve has a definite tangent at 

each point. 

 Let A be a fixed point on the curve and P be an arbitrary point on the curve  

 Let S denote the arc length AP  

 Let Y be the angle made by the tangent with the x-axis 

 The (
𝑑𝜓

𝑑𝑠
) is called the curvature of the curve at P  

Thus, the curvature is the rate of turning or bending of the tangent w.r.to the arc length                                                                                                                             

5.2 Curvature of a Circle 

Theorem:1 

Prove that the curvature of a circle of radius r at any point is 
1

𝑟
 

Proof:  

Let A be a fixed on the circle and 𝜙 be any point on the circle. 

Let arc AP=S and the tangent at P make an angle 𝜓 with tangent at A. 

Then, ∠AOP= 𝜓  

𝑠 = 𝑟𝜓 

⇒  
𝑑𝑠

𝑑𝜓
= 𝑟 

⇒  
𝑑𝜓

𝑑𝑠
=

1

𝑟
 

Hence the curvature of a circle of radius 𝑟 is 
1

𝑟
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5.3 Radius of Curvature  

The reciprocal of curvature of a curve at a point is called the radius of curvature of the curve 

at the point. So it is 
𝑑𝑠

𝑑𝜓
. 

The radius of Curvature of a circle is its radius. 

Notation  

Radius of Curvature is denoted by . 

Remark :1  

In the case of a straight line the change of Ψ is zero and hence 
𝑑𝜓

𝑑𝑠
= 0,   

ρ =
𝑑𝑠

𝑑𝜓
= ∞ 

Remark: 2  

If the curve is such that, as ‘s’ increases, Ψ increases, then 
𝑑𝜓

𝑑𝑠
 is positive and, so  is positive. 

(i.e.) if the curve is concave,  is positive otherwise is negative.             

 In general,  is given as its absolute value, namely || . 

5.4. Radius of curvature of Cartesian curve: 𝒚 = 𝒇(𝒙) 

We know that 
𝑑𝑦

𝑑𝑥
= 𝑡𝑎𝑛Ψ 

𝑑2 𝑦

𝑑𝑥2 = 𝑠𝑒𝑐2Ψ 
𝑑Ψ

𝑑𝑥
= 𝑠𝑒𝑐2Ψ 

𝑑Ψ

𝑑𝑠
 

𝑑𝑠

𝑑𝑥
. 

𝑑𝑠

𝑑𝜓
=

𝑠𝑒𝑐3Ψ

𝑑2 𝑦

𝑑𝑥2

   (∵
𝑑𝑥

𝑑𝑠
= cos Ψ) 

      =
[1 + 𝑡𝑎𝑛2Ψ]3/2

𝑑2 𝑦
𝑑𝑥2

=

[1 + (
𝑑𝑦
𝑑𝑥)

2

]

3/2

𝑑2 𝑦
𝑑𝑥2

 

 𝝆 =
[𝟏+(

𝒅𝒚

𝒅𝒙
)

𝟐
]

𝟑/𝟐

𝑑2 𝑦

𝒅𝒙𝟐

 = 
(𝟏+𝒚𝟏

𝟐)
𝟑/𝟐

𝒚𝟐
  , When tangent is parallel to x-axis 
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Where  𝑦1 =
𝑑𝑦

𝑑𝑥
 ,  𝑦2 =

𝑑2 𝑦

𝒅𝒙𝟐  

Example 1: 

What is the radius of curvature of the curve 𝑥4 + 𝑦4 = 2  at the point (1,1) 

Solution: 

Given the curve  𝑥4 + 𝑦4 = 2    

Differentiating with respect to x the above equation, we get 

4𝑥3 + 4𝑦3
𝑑𝑦

𝑑𝑥
= 0 

𝑑𝑦

𝑑𝑥
= −

4𝑥3

4𝑦3
 

⇒
𝑑𝑦

𝑑𝑥
= −

𝑥3

𝑦3
 

Differentiating this once again with respect to x , we get 

𝑑

𝑑𝑥
(

𝑢

𝑣
) =

𝑣𝑢′ − 𝑢𝑣′

𝑣2
 

𝑑2 𝑦

𝑑𝑥2
=

𝑦3(−3𝑥2) − (−𝑥3)3𝑦2 𝑑𝑦
𝑑𝑥

(𝑦3)2
 

         =
−3𝑥2𝑦3+3𝑥3𝑦2(−

𝑥3

𝑦3)

(𝑦3)2  

𝑑2 𝑦

𝑑𝑥2
=

−[3𝑥2𝑦3 + 3𝑥3𝑦2 (
𝑥3

𝑦3)]

(𝑦3)2
 

At (1,1) ⇒  
𝑑𝑦

𝑑𝑥
= −1 , 

𝑑2 𝑦

𝑑𝑥2 = − [
3+3

1
] = −6  

Hence the radius of curvature is  

𝜌 =

[1 + (
𝑑𝑦
𝑑𝑥)

2

]

3/2

𝑑2 𝑦
𝑑𝑥2
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   =
[1+(−1)2]

3/2

−6
 =

(2)3/2

−6
=

−2√2

6
    

⇒ 𝜌 =
−√2

3
 

Example 2: 

Show that the radius of curvature at any point of the catenary 𝑦 = 𝑐 cosh (
𝑥

𝑐
) is equal to the 

length of the portion of the normal intercepted between the curve and the axis of x. 

Solution: 

Given that 𝑦 = 𝑐 cosh (
𝑥

𝑐
) 

⇒ cosh (
𝑥

𝑐
) =

𝑦

𝑐
                 --------(1) 

Differentiating with respect to x 

 
𝑑𝑦

𝑑𝑥
= −𝑐 sinh (

𝑥

𝑐
) .

1

𝑐
= sinh (

𝑥

𝑐
) 

Again differentiating with respect to x  

𝑑2 𝑦

𝑑𝑥2
= − cosh (

𝑥

𝑐
) .

1

𝑐
 

Hence the radius of curvature is  

𝜌 =

[1 + (
𝑑𝑦
𝑑𝑥)

2

]

3/2

𝑑2 𝑦
𝑑𝑥2

 

    =
[1+𝑠𝑖𝑛ℎ2(

𝑥

𝑐
)]

3/2

cosh(
𝑥

𝑐
).

1

𝑐

 

    =
𝑐[𝑐𝑜𝑠ℎ2(

𝑥

𝑐
)]

3/2

𝑐𝑜𝑠ℎ(
𝑥

𝑐
)

 

    =
𝑐[𝑐𝑜𝑠ℎ3(

𝑥

𝑐
)]

𝑐𝑜𝑠ℎ(
𝑥

𝑐
)
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     = 𝑐 [𝑐𝑜𝑠ℎ2 (
𝑥

𝑐
)] 

By equation (1) ⇒  𝜌 = 𝑐
𝑦2

𝑐2 

 

⇒  𝜌 =
𝑦2

𝑐
 

At any point (x,y) length of the normal  

⇒ 𝑦 [1 + (
𝑑𝑦

𝑑𝑥
)

2

]

1/2

= 𝑦 [1 + 𝑠𝑖𝑛ℎ2 (
𝑥

𝑐
)]

1/2

 

                                  = 𝑦 [𝑐𝑜𝑠ℎ2 (
𝑥

𝑐
)]

1/2

 

                                   = 𝑦 [𝑐𝑜𝑠ℎ (
𝑥

𝑐
)] 

                                   = 𝑦 (
𝑦

𝑐
)     (∴ from equation (1) ) 

                                   =
𝑦2

𝑐
 

Radius of curvature= Length of the normal 

Exercise 1: 

1. Find the radius of curvature for the curves  

(a) y = ex at the point where it crosses the y – axis 

(b)√𝑥 + √𝑦 = 1 at (
1

4
 ,

1

4
) 

(c) y2 = x 3 + 8 at the point (-2, 0). 

(d) xy = 30 at the point (3,10) 

(e) (x2 + y2) 2 = a 2 (y2 – x 2) at the point (0, a) 
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5.5. Radius of curvature of parametric curve:  𝒙 = 𝒇(𝜽) 𝒚, = 𝒈(𝜽) 

𝜌 =
[𝑥′2

+𝑦′2
]

3/2

𝑥′𝑦′′−𝑦′𝑥′′   , where 𝑥′ =
𝑑𝑥

𝑑𝜽
  and 𝑦′ =

𝑑𝑦

𝑑𝜽
   

Example 1:  

If a curve is defined by the parametric equation x=f () and y=(), prove that the curvature is 

1

𝜌
=

𝑥′𝑦′′−𝑦′𝑥′′

[𝑥′2
+𝑦′2

]
3/2 

Solution: 

where dashes denote differentiation with respect to . 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝜃
 ÷

𝑑𝜃

𝑑𝑥
=  

𝑦′

 𝑥′
 

𝑑2 𝑦

𝑑𝑥2
=

𝑑

𝑑𝑥
 (

𝑦′

 𝑥′
) =

𝑑

𝑑𝜃
(

𝑦′

 𝑥′
)

𝑑𝜃

𝑑𝑥
 

         =
𝑦′′𝑥′−𝑦′𝑥′′

𝑥′2 . 
1

 𝑥′ 

         =
𝑦′′𝑥′−𝑦′𝑥′′

𝑥′3  

∴ 
1

𝜌
=

𝑑2 𝑦

𝑑𝑥2

[1+(
𝑑𝑦

𝑑𝑥
)

2
]

3/2  =
𝑦′′𝑥′−𝑦′𝑥′′

𝑥′3
[1+(

𝑦′

 𝑥′)
2

]

3/2 

  ⇒  
1

𝜌
=

𝑥′𝑦′′−𝑦′𝑥′′

[𝑥′2
+𝑦′2

]
3/2 

Example 2:  

Prove that the radius of curvature at any point of the cycloid 𝑥 = 𝑎(𝜃 + 𝑠𝑖𝑛 𝜃) and 𝑦 =

𝑎(1 − 𝑐𝑜𝑠 𝜃) is 4𝑎 cos
𝜃

2
. 

Solution: 

From the given equations,  

𝑥 = 𝑎(𝜃 + 𝑠𝑖𝑛 𝜃) 
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Differentiating with respect to 𝜃 

𝑥′ =
𝑑𝑥

𝑑𝜽
  =𝑎(1 + 𝑐𝑜𝑠𝜃) 

𝑥′′ =
𝑑2 𝑥

𝑑𝜃2
= −𝑎 𝑠𝑖𝑛𝜃 

  𝑦 = 𝑎(1 − cos 𝜃) 

Differentiating with respect to 𝜃 

𝑦′ =
𝑑𝑦

𝑑𝜃
=  𝑎𝑠𝑖𝑛 𝜃 

𝑦′′ =
𝑑2 𝑦

𝑑𝜃2
= 𝑎 𝑐𝑜𝑠𝜃 

 ⇒ 
1

𝜌
=

𝑥′𝑦′′−𝑦′𝑥′′

[𝑥′2
+𝑦′2

]
3/2 

1

𝜌
=

𝑎(1 + 𝑐𝑜𝑠𝜃)𝑎 𝑐𝑜𝑠𝜃 − 𝑎𝑠𝑖𝑛 𝜃(−𝑎 𝑠𝑖𝑛𝜃)

[(𝑎(1 + 𝑐𝑜𝑠𝜃))2 + (𝑎 𝑠𝑖𝑛𝜃)2]3/2
 

     =
𝑎2 (1 +  𝑐𝑜𝑠𝜃)

𝑎3 [2(1 +  𝑐𝑜𝑠𝜃)]3/2
 

     =
2 𝑐𝑜𝑠2 𝜃/2

𝑎 [4 𝑐𝑜𝑠2 𝜃/2)]3/2
 

    =
1

4𝑎 𝑐𝑜𝑠𝜃/2  
 

∴ 𝜌 = 4𝑎 cos
𝜃

2
 

Exercise 2: 

1.Prove that the radius of curvature at the point 𝜃 on the curve 

𝑥 = 3𝑎 𝑐𝑜𝑠𝜃 − acos 3𝜃 ,  𝑦 = 3𝑎 𝑠𝑖𝑛𝜃 − 𝑎 𝑠𝑖𝑛3𝜃 is 3𝑎 𝑠𝑖𝑛𝜃. 

2. Find the radius of curvature at the point 𝜃 on the curve  

𝑥 = 𝑎 log 𝑠𝑒𝑐𝜃 , 𝑦 = 𝑎 (𝑡𝑎𝑛 𝜃 − 𝜃) 
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5.6. The centre of curvature: 

𝑋 = 𝑥 −
𝑦1(1+𝑦1

2)

𝑦2
  

𝑌 = 𝑦 +
(1 + 𝑦1

2)

𝑦2
 

The locus of the centre of curvature for a curve is called the evolute of the curve. 

Example 1: 

Find the co- ordinates of the centre of curvature of the curve xy = 2 at the point (2,1). 

Solution: 

Given that 𝑥𝑦 = 2 

⇒ 𝑦 =
2

𝑥
  

Differentiating with respect to 𝑥 

⇒
𝑑𝑦

𝑑𝑥
= −

2

𝑥2
 

Again differentiating with respect to 𝑥 

⇒
𝑑2 𝑦

𝑑𝑥2
=

4

𝑥3
 

At (2,1) the values of 
𝑑𝑦

𝑑𝑥
 and 

𝑑2 𝑦

𝑑𝑥2  are respectively (−
1

2
,

1

2
) 

𝑋 = 𝑥 −
𝑦1(1 + 𝑦1

2)

𝑦2
 

  = 2 +
1

2
(1+(−

1

2
)2)

1

2

 

  = 2 +
1

2
(1+

1

4
)

1

2

= 
13

4
  

⇒  𝑋 = 3
1

4
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𝑌 = 𝑦 +
(1 + 𝑦1

2)

𝑦2
 

= 1 +
(1 + (−

1
2)2)

1
2

 

= 1 +
(1 +

1
4)

1
2

=
7

2
 

⇒  𝑌 = 3
1

2
 

The centre of curvature (3
1

4
, 3

1

2
). 

Example 2: 

Show that in the parabola 𝑦2 = 4𝑎𝑥 at the point t, 𝜌 = −2𝑎 (1 + 𝑡2)3/2 , 𝑋 = 2𝑎 + 3𝑎𝑡3 , 

𝑌 = −2𝑎𝑡3.Deduce the equation of the evolute. 

Solution: 

Let 𝑥 = 𝑎𝑡2 , 𝑌 = 2𝑎𝑡 

Differentiating with respect to 𝑡 

𝑑𝑥

𝑑𝑡
= 2𝑎𝑡 ,  

𝑑𝑦

𝑑𝑡
= 2𝑎 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
 ÷

𝑑𝑥

𝑑𝑡
=

2𝑎

2𝑎𝑡
=

1

𝑡
 

  
𝑑2 𝑦

𝑑𝑥2
=

𝑑

𝑑𝑥
 (

𝑑𝑦

𝑑𝑥
) =

𝑑

𝑑𝑥
 
1 

𝑡
 ÷

𝑑𝑥

𝑑𝑡
  

⇒  
𝑑2 𝑦

𝑑𝑥2
=

−1/𝑡2 

2𝑎𝑡
=

−1 

2𝑎𝑡3 
 

⇒ 𝜌 =

[1 + (
𝑑𝑦
𝑑𝑥)

2

]

3/2

𝑑2 𝑦
𝑑𝑥2
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=
[1 + (

1
𝑡)

2

]

3/2

−1 
2𝑎𝑡3 

 

=[1 + (
1

𝑡
)

2

]
3/2

.−2𝑎𝑡3  

𝜌 = −2𝑎 (1 + 𝑡2 )3/2  

⇒ 𝑋 = 𝑥 −
𝑦1(1 + 𝑦1

2)

𝑦2
 

    = 𝑎𝑡2 −
1

𝑡
(1+(1/𝑡)2)

−1 

2𝑎𝑡3 

 

    = 𝑎𝑡2 −
(1+𝑡2)

𝑡2  (
1

𝑡
) . − 2𝑎𝑡3  

𝑋 = 𝑎𝑡2 +  2𝑎𝑡2 + 2𝑎 

⇒ 𝑌 = 𝑦 +
(1 + 𝑦1

2)

𝑦2
 

        = 2𝑎𝑡 +
(1+1/𝑡2)

−1 

2𝑎𝑡2 

= −2𝑎𝑡3  

⇒    𝑌 = −2𝑎𝑡3  

Eliminating t from X and Y, 

𝑌 = −2𝑎 
(𝑥 − 2𝑎)3/2

3𝑎
 

Squaring both sides and simplifying, we get 

27 𝑎𝑌2 = 4(𝑥 − 2𝑎)3 

The locus of (X,Y) is 27 𝑎𝑌2 = 4(𝑥 − 2𝑎)3. 

The curve is called a semi-cubical parabola. 

Example 3: 

Find the evolute of the ellipse 
𝑥2

𝑎2+
𝑦2

𝑏2 = 1. 
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Solution: 

Any Point on the ellipse is (𝑎 𝑐𝑜𝑠𝜃 , 𝑏 𝑠𝑖𝑛𝜃) . 

𝑥 = 𝑎 𝑐𝑜𝑠𝜃 , 𝑦 = 𝑏 𝑠𝑖𝑛𝜃  

Differentiating with respect to 𝜃 

 
𝑑𝑥

𝑑𝜃
= −𝑎 𝑠𝑖𝑛𝜃 , 

𝑑𝑦

𝑑𝜃
= 𝑏 𝑐𝑜𝑠𝜃 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝜃
÷

𝑑𝜃

𝑑𝑥
=

𝑏 𝑐𝑜𝑠𝜃

−𝑎 𝑠𝑖𝑛𝜃
= −

𝑏 

𝑎
cot 𝜃 

𝑑2 𝑦

𝑑𝑥2 =
𝑑

𝑑𝜃
 (

𝑑𝑦

𝑑𝑥
)

𝑑𝜃

𝑑𝑥
=

𝑑

𝑑𝜃
(−

𝑏 

𝑎
cot 𝜃) 

−1

𝑎 𝑠𝑖𝑛𝜃
 

       = (−
𝑏 

𝑎2 (−cosec2 𝜃)) 
−1

 𝑠𝑖𝑛𝜃
 

       = (−
𝑏 

𝑎2  
1

𝑠𝑖𝑛2 𝜃
) 

−1

 𝑠𝑖𝑛𝜃
 

   
𝑑2 𝑦

𝑑𝑥2 = (− 
𝑏

𝑎2𝑠𝑖𝑛3𝜃
)  

𝑦1 = −
𝑏 

𝑎
cot 𝜃  , 𝑦2 = − 

𝑏

𝑎2𝑠𝑖𝑛3𝜃
 

Let (𝑥, 𝑦) be the centre of curvature  

⇒ 𝑋 = 𝑥 −
𝑦1(1 + 𝑦1

2)

𝑦2
 

          = 𝑎 𝑐𝑜𝑠𝜃 −
−

𝑏 
𝑎 cot 𝜃 (1 +

𝑏2 
𝑎2 𝑐𝑜𝑡2 𝜃)

𝑏
𝑎2  𝑐𝑜𝑠𝑒𝑐3𝜃

 

        𝑋 =
(𝑎2 − 𝑏2) 𝑐𝑜𝑠3 𝜃

𝑎
 

⇒ 𝑌 = 𝑦 +
(1 + 𝑦1

2)

𝑦2
 

          = 𝑏 𝑠𝑖𝑛𝜃 −
(1 +

𝑏2 
𝑎2 𝑐𝑜𝑡2 𝜃)

𝑏
𝑎2  𝑐𝑜𝑠𝑒𝑐3𝜃
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   𝑌 = −
(𝑎2 − 𝑏2)

𝑏
 𝑠𝑖𝑛3 𝜃 

        =
(𝑎2 − 𝑏2) 𝑐𝑜𝑠3 𝜃

𝑎
 

𝑐𝑜𝑠𝜃 = (
𝑎𝑥

𝑎2−𝑏2)
1/3

  , 𝑠𝑖𝑛𝜃 = (
−𝑏𝑦

𝑎2−𝑏2)
1/3

 

To eliminate 𝜃 squaring and adding , we get 

(
𝑎𝑥

𝑎2 − 𝑏2
)

2
3

+ (
−𝑏𝑦

𝑎2 − 𝑏2
)

2/3

= 1 

(
𝑎𝑥

𝑎2 − 𝑏2
)

2
3

+ (
𝑏𝑦

𝑎2 − 𝑏2
)

2/3

= 1 

The locus of (𝑥 , 𝑦) is the four cusped hypocyloid. 

(𝑎𝑥)2/3 + (𝑏𝑦)2/3 = (𝑎2 − 𝑏2)2/3 

Example 4: 

Show that the evolute of the cycloid 𝑥 = 𝑎(𝜃 − sin 𝜃) , 𝑦 = 𝑎(1 − 𝑐𝑜𝑠𝜃) is another cycloid. 

Solution: 

Given that 𝑥 = 𝑎(𝜃 − sin 𝜃) , 𝑦 = 𝑎(1 − 𝑐𝑜𝑠𝜃) 

Differentiating with respect to 𝑥 

𝑑𝑥

𝑑𝜃
= 𝑎(1 − 𝑐𝑜𝑠𝜃)

𝑑𝑦

𝑑𝜃
= 𝑎(0 + 𝑠𝑖𝑛𝜃) 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝜃
÷

𝑑𝜃

𝑑𝑥
=

𝑎 𝑠𝑖𝑛𝜃

𝑎(1 − 𝑐𝑜𝑠𝜃)
 

       =
 𝑠𝑖𝑛𝜃

(1 − 𝑐𝑜𝑠𝜃)
 

      =
 2𝑠𝑖𝑛

𝜃
2  𝑐𝑜𝑠

𝜃
2

2 𝑠𝑖𝑛2 𝜃
 

     =
 𝑐𝑜𝑠

𝜃

2

𝑠𝑖𝑛
𝜃

2
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𝑑𝑦

𝑑𝑥
=  𝑐𝑜𝑡

𝜃

2
 

Again differentiating with respect to 𝑥 

𝑑2 𝑦

𝑑𝑥2
=

𝑑

𝑑𝜃
 (

𝑑𝑦

𝑑𝑥
)

𝑑𝜃

𝑑𝑥
 

         =
𝑑

𝑑𝜃
(𝑐𝑜𝑡

𝜃

2 
)

𝑑𝜃

𝑑𝑥
 

        = −𝑐𝑜𝑠𝑒𝑐2 𝜃

2 
 ×

1

2 
 ×

1

(1−𝑐𝑜𝑠𝜃) 
 

       = −
1

4𝑎 𝑠𝑖𝑛4 𝜃

2 
 
 

⇒ 𝑋 = 𝑥 −
𝑦1(1 + 𝑦1

2)

𝑦2
 

         = 𝑎(𝜃 − sin 𝜃) +
𝑐𝑜𝑡

𝜃
2 (1 + 𝑐𝑜𝑡2 𝜃

2)

1

4𝑎 𝑠𝑖𝑛4 𝜃
2  

 

         = 𝑎(𝜃 − sin 𝜃) + 2𝑎 𝑠𝑖𝑛𝜃 

 ⇒ 𝑋 = 𝑎(𝜃 + sin 𝜃) 

⇒ 𝑌 = 𝑦 +
(1 + 𝑦1

2)

𝑦2
 

         = 𝑎(1 − 𝑐𝑜𝑠𝜃) +
(1 + 𝑐𝑜𝑡2 𝜃

2)

−
1

4𝑎 𝑠𝑖𝑛4 𝜃
2  

 

         = 𝑎(1 − cos 𝜃) − 2𝑎 (1 − cos 𝜃) 

  ⇒ 𝑌 = −𝑎(1 − 𝑐𝑜𝑠 𝜃) 

The locus of (𝑥, 𝑦) is, 

𝑋 = 𝑎(𝜃 + sin 𝜃) ,  𝑌 = −𝑎(1 − 𝑐𝑜𝑠 𝜃) 

This is also a cycloid. 
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Exercise 3: 

1. Find the coordinates of the centre of curvature at given points on the curves: 

(a) 𝑦 = 𝑥2 ;   (
1

2
 ,

1

4
 ) 

(b) 𝑥𝑦 = 𝑐2; (c,c) 

(c) 𝑦 = log sec 𝑥 ; (
𝜋

3
 , 𝑙𝑜𝑔2) 

 2.Show that the evolute of the hyperbola  
𝑥2

𝑎2 −
𝑦2

𝑏2 = 1 is  

(𝑎𝑥)2/3 − (𝑏𝑦)2/3 = (𝑎2 + 𝑏2)2/3 

3.Show that for the curve 𝑥2/3 + 𝑦2/3 = 𝑎2/3 , 

 𝑋 = 𝑎 𝑐𝑜𝑠3𝑡 + 3𝑎 𝑐𝑜𝑠𝑡 𝑠𝑖𝑛2𝑡 , 𝑌 = 𝑎 𝑠𝑖𝑛3𝑡 + 3𝑎 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠2𝑡. 

5.7. Evolute and Involute 

We have already defined evolute of a curve as the locus of the centre of curvature and deduced 

the equations of the evolute of the parabola and ellipse  

If the evolute itself be regarded as the original curve, a curve of which it is the evolute is called 

an involute  

If may be noted that there is but one evolute but an infinite number of involutes. 

5.8. Radius of curvature of Polar curve 𝒓 = 𝒇(𝜽)  

𝜌 =

{𝑟2 + (
𝑑𝑟
𝑑𝜃)

2

}

3/2

𝑟2 + 2 (
𝑑𝑟
𝑑𝜃

)
2

− 𝑟
𝑑2 𝑟
𝑑𝜃2

=
{𝑟2 + 𝑟1

2}3/2

𝑟2 + 2𝑟1
2 − 𝑟𝑟2

 

Where 𝑟1 =
𝑑𝑟

𝑑𝜃
  , 𝑟2 =

𝑑2 𝑟

𝑑𝜃2  

Example 1: 

Find the radius of curvature of the cardioid 𝑟 = 𝑎(1 − 𝑐𝑜𝑠 𝜃). 

Solution: 

Given that 𝑟 = 𝑎(1 − 𝑐𝑜𝑠 𝜃) 
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Differentiating with respect to 𝜃 

𝑑𝑟

𝑑𝜃
= 𝑎 𝑠𝑖𝑛𝜃 

Again differentiating with respect to 𝜃 

𝑑2 𝑟

𝑑𝜃2
= 𝑎 𝑐𝑜𝑠𝜃 

𝜌 =

{𝑟2 + (
𝑑𝑟
𝑑𝜃)

2

}

3/2

𝑟2 + 2 (
𝑑𝑟
𝑑𝜃

)
2

− 𝑟
𝑑2 𝑟
𝑑𝜃2

 

    =
{𝑟2 + 𝑎2𝑠𝑖𝑛2𝜃}3/2

𝑟2 + 2𝑎2𝑠𝑖𝑛2𝜃 − 𝑟𝑎 𝑐𝑜𝑠𝜃
 

    =
{𝑎2(1 − cos 𝜃)2 + 𝑎2𝑠𝑖𝑛2𝜃}3/2

𝑎2(1 − cos 𝜃)2 + 2𝑎2𝑠𝑖𝑛2𝜃 − 𝑎(1 − 𝑐𝑜𝑠 𝜃)𝑎 𝑐𝑜𝑠𝜃
 

Numerator ⇒ {𝑟2 + (
𝑑𝑟

𝑑𝜃
)

2

}
3/2

= [𝑎2(1 − cos 𝜃)2 + 𝑎2𝑠𝑖𝑛2𝜃]3/2 

= [𝑎2(1 + 𝑐𝑜𝑠2𝜃 − 2 𝑐𝑜𝑠𝜃) + 𝑎2𝑠𝑖𝑛2𝜃]3/2 

= [𝑎2 + 𝑎2𝑐𝑜𝑠2𝜃 − 2 𝑎2𝑐𝑜𝑠𝜃) + 𝑎2𝑠𝑖𝑛2𝜃]3/2 

= [𝑎2 − 2 𝑎2𝑐𝑜𝑠𝜃) + 𝑎2(𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃)]3/2 

= [𝑎2 − 2 𝑎2𝑐𝑜𝑠𝜃) + 𝑎2]3/2 

= [2𝑎2 − 2 𝑎2𝑐𝑜𝑠𝜃)]3/2 

= [2𝑎2(1 − 𝑐𝑜𝑠𝜃)]3/2 

= [2𝑎(𝑎(1 − 𝑐𝑜𝑠𝜃))]3/2 

= [2𝑎𝑟]
3
2 
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Denamurator⇒ 𝑟2 + 2 (
𝑑𝑟

𝑑𝜃
)

2

− 𝑟
𝑑2 𝑟

𝑑𝜃2 = 𝑎2(1 − cos 𝜃)2 + 2𝑎2𝑠𝑖𝑛2𝜃 − 𝑎2𝑐𝑜𝑠𝜃 (1 − 𝑐𝑜𝑠𝜃) 

= 𝑎2(1 + 𝑐𝑜𝑠2𝜃 − 2 𝑐𝑜𝑠𝜃) + 2𝑎2𝑠𝑖𝑛2𝜃 − 𝑎2𝑐𝑜𝑠𝜃 (1 − 𝑐𝑜𝑠𝜃) 

= 𝑎2 + 𝑎2𝑐𝑜𝑠2𝜃 − 2 𝑎2𝑐𝑜𝑠𝜃) + 2𝑎2(1 − 𝑐𝑜𝑠2𝜃) − 𝑎2(𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠2𝜃) 

= 𝑎2 + 𝑎2𝑐𝑜𝑠2𝜃 − 2 𝑎2𝑐𝑜𝑠𝜃 + 2𝑎2(1 − 𝑐𝑜𝑠2𝜃) − 𝑎2𝑐𝑜𝑠𝜃 − 𝑎2𝑐𝑜𝑠2𝜃 

= 3𝑎2 − 3𝑎2𝑐𝑜𝑠𝜃 

= 3𝑎2(1 − 𝑐𝑜𝑠𝜃) 

= 3𝑎 [𝑎(1 − 𝑐𝑜𝑠𝜃)] 

= 3𝑎𝑟 

⇒ 𝜌 =
(2𝑎𝑟)3/2

3𝑎𝑟
 

⇒ 𝜌 =
2

3
√2𝑎𝑟 

Example 2: 

Show that the radius of curvature of the curve 𝑟𝑛 = 𝑎𝑛 cos 𝑛𝜃 is 
𝑎𝑛𝑟−𝑛+1

𝑛+1
 

Solution: 

Let 𝑟𝑛 = 𝑎𝑛 cos 𝑛𝜃 

Taking logarithms on both sides  

𝑛 𝑙𝑜𝑔𝑟 = 𝑛 𝑙𝑜𝑔𝑎 + log (𝑐𝑜𝑠𝑛𝜃)  

Differentiating with respect to 𝜃, we get 

𝑛

𝑟
 
𝑑𝑟

𝑑𝜃
= −

𝑛 sin 𝑛𝜃

cos 𝑛𝜃
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𝑑𝑟

𝑑𝜃
= −𝑟 tan 𝑛 𝜃 

Differentiating once again with respect to 𝜃, we get 

𝑑2 𝑟

𝑑𝜃2
=

𝑑

𝑑𝜃
 (

𝑑𝑟

𝑑𝜃
) 

       =
𝑑

𝑑𝜃
(−𝑟 tan 𝑛 𝜃) 

     = −
𝑑𝑟

𝑑𝜃
tan 𝑛 𝜃 − 𝑛𝑟𝑠𝑒𝑐2nθ   

     = −(−𝑟 tan 𝑛 𝜃) tan 𝑛 𝜃 − 𝑛𝑟𝑠𝑒𝑐2nθ 

 
𝑑2 𝑟

𝑑𝜃2
= 𝑟 𝑡𝑎𝑛2 𝑛 𝜃 − 𝑛𝑟𝑠𝑒𝑐2nθ 

𝜌 =

{𝑟2 + (
𝑑𝑟
𝑑𝜃)

2

}

3/2

𝑟2 + 2 (
𝑑𝑟
𝑑𝜃

)
2

− 𝑟
𝑑2 𝑟
𝑑𝜃2

 

𝜌 =
{𝑟2 + (−𝑟 tan 𝑛 𝜃)2}3/2

𝑟2 + 2(−𝑟 tan 𝑛 𝜃)2 − 𝑟(𝑟 𝑡𝑎𝑛2 𝑛 𝜃 − 𝑛𝑟𝑠𝑒𝑐2nθ)
 

𝜌 =
{𝑟2 +  𝑟2 𝑡𝑎𝑛2 𝑛 𝜃}3/2

𝑟2 + 2𝑟2 𝑡𝑎𝑛2 𝑛 𝜃 − 𝑟2 𝑡𝑎𝑛2 𝑛 𝜃 + 𝑛𝑟2𝑠𝑒𝑐2nθ
 

  =
𝑟3 𝑠𝑒𝑐3nθ

(𝑛 + 1)𝑟2𝑠𝑒𝑐2nθ
   

  =
𝑟

(𝑛 + 1)𝑐𝑜𝑠𝑛θ
   

=
𝑟 𝑎𝑛

(𝑛 + 1)𝑟𝑛
   

⇒ 𝜌 =
𝑎𝑛𝑟−𝑛+1

𝑛 + 1
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Exercise 4: 

1. Show that radius of curvature of the curve  𝑟2 = 𝑎2 cos 2 𝜃 is 
𝑎2

3𝑟
 

2.Find the radius of curvature at (𝑟, 𝜃) on the curve 𝑟𝑛 = 𝑎𝑛 sin 𝑛 𝜃. 

3.Show that in the cardioid 𝑟 = 𝑎(1 + 𝑐𝑜𝑠 𝜃) ,
𝜌2

𝑟
 is constant. 
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