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Unit |

Reciprocal Equations-Standard form—Increasing or decreasing the roots of a given equation-

Approximate solutions of roots of polynomials by Horner’s method — related problems.

Reciprocal Equation:

Definition:

If an equation remains unaltered, when x is changed into its reciprocal, it is called a
reciprocal equation.
Letx™ + P, x" 1+ Px™ 24+ 4+ P,_1x+B,=0......... (1)

be a reciprocal equation. When x is changed into its reciprocal 1/x, we get the transformed
equation P,x™ + P,_1x™ 1 + Pp_,x™ 2 + - +Pix+1 =0

(le)xn 4 tyn-t g Przpn2 G BXL L ()
P P Pn | Py

Since (1) is a reciprocal equation, it must be same as equation (2)

Pn—l Pn—Z Pl
= P,; =P,.-;—=P
P, bop, 2 'p

P2=1= PR, = +1.

1
_1,P_n: Pn

Case() P, =1
Then, PTL—l = Pl’PTL—Z = PZIPTL—3 = P3
In this case, the coefficients of the terms equidistant from the beginning and the end are equal

in magnitude and have the same sign

Case (ii)) B, = —1
Then PTL—l = _Pl' PTL—Z = _P2 e

In this case, the terms equidistant from the beginning and the end are equal in magnitude but

different in sign.
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Standard form of reciprocal equation:
If a be a root of a reciprocal equation, 1/« also be a root, for it is a root of the transformed
equation and the transformed equation is identical with the first equation. Hence, the roots of

a reciprocal equation occur in pairs a, 1/, 5,1/

When the degree is odd, one of its roots must be its own reciprocal
(le)r=1/r

>ri=1=2r=4i

Definition:

Even degree reciprocal equation with like sign is a S.R.E Result :-
(1) If f(x) = 0isa R.E and odd degree with like sign then x + 1 is a factor of f(x)

Then, ACD) isastandard R - E
x+1

(2) If f(x) = 0isaR -E and odd degree with Unlike sign then x 1 is a factor of f(x).

Then, ¥ jsa S.RE
x—1
(3) If f(x) = 0 is a S.R.E with even degree with like sign then f(x) isaS-R-E
(@) If f(x) =01isas R - E with even degree with unlike sign, dividing by x? — 1, this

reduces to a R - E of like sigh of even degree.
Then@isaS-R-E.

x“—1
Example 1:

Find the roots of the equation x5 + 4x* + 3x3 + 3x%2 + 4x + 1 = 0.

Solution:
Let f(x) = x°+4x* +3x3 +3x2 + 4x + 1
Here, f(x) is the reciprocal eqn with odd degree and like sign.

= (x + 1) is a factor of f(x),

x = —1isarootof f(x)
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f(x) = (x+ D(x*+3x3+3x+ 1)

To find the remaining roots of f(x). It is enough to solve theeqn (x* + 3x3 +3x+ 1) =0

Divide equation (1) by x?2, we get

=>x2+3x+3/x+1/x2=0
x2+1/x?24+3(x+1/x)=0

Lety =x+ 1/x.

(x +1/x)%? = y?
x2+1/x2+2=1y?

x?2+1/x2=y?-2.
then equation (2) becomes,

B —b +Vb?% — 4ac
- 2a

y
y2—2+3y=0.

_ —3+V9+8 -—-3+V17
B 2 B 2

y
—3++17 -3 —-v17
—g rtlx=—p—

x2+1_—3+\/17x2+1_—3—\/17
x 2 T ox 2

x+1/x =

6

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



2x2+3x—V17x+2=0,2x>+3x +V17x+2 =0

These two equation yields the required outs of the given eqn.
Example 2:

Solve the equation 6x° — x* — 43x3 + 43x%2 + x — 6 = 0.

Solution:

Let f(x) = 6x° —x*—43x3+43x>+x—-6=0
Here, f(x) is a reciprocal eq n of odd degree with unlike sign
= (x — 1) is a factor of f(x)

x = H isaroot of f(x)

6 -1 48 43 1 -6
1 0 6 5 -38 5 6
6 5 -38 5 6 0

f(x) = (x—1)(6x* + 5x3 — 38x% + 5x + 6)

To find the remaining root of f(x).

Such that is enough to solve the equation
6x% +5x2—38x2+5x+6=0 .......... )
Divide equation (1) by x?

6x%>+5x—38+5/x+6/x%=
6(x>+1/x*)+5(x+1/x)—38=0

Put(x+1/x)=ye (x> +1/x?)=y2-2

Therefore, equation (1) becomes,
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6(y2—2)+5y—38=0
6y?2—12+5y—-38=0

6y? + 5y — 50 = 0.

6y%+ 20y — 15y —50=0
2y(3y +10) —5(3y + 10) = 0
By+10)(2y—=5)=0

y =-10/3,5/2.
1 10
x+;=—3—, x+1/x=5/2
x2+1 -10 x2+1 5
x 3’ x 2

3x% +3 = —10x, 2x%2+2—-5x=0.
3x24+10x+3=0

2x*>+4x—x+2=0, 3x24+10x+3=0
2x (x—2)-1(x-2) =0, 3x2+9x+x+3=0
(2x—-1) (x-2) =0, X(x+3)+1(x+3)=0

(Bx+1) (x+3)=0
X=%2 x=-1/3,-3
The roots of f(x) are 1, 2, %, - 1/3, -3
To increase or decrease the roots of a given equation by given quantity:
Let a;, @, ... a,, etc are be the roots of n degree equationf (x) = 0.

To form an equation whose roots are decreased by h..
Thatisa; —h,a, — h,..a, — h

Let f(x) = apx™ + a;x™ 1 + - + a,,.

Lety =a; —h,a, —h..a,_y

Now,y =a; —h =y =x—h(~ x = a, isaroot)
=>x=y+h.

Similarly proceeding like this, we get.
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a(y+ )"+ (a)(y+)" .. +a, =
Expanding and collecting the coefficients of the powers of y, we get

Ayt + Ay 4+ A, =0

0

where, Ay, A4, A, ... A, are the functions of ay, a; ... a,.

Now,y =x—nh

SA(x—n)"+ A4, (x—h)"1+-4,=0

Equating (1) & (3) as they are identical.

we can easily find the co-efficient Ay, 4, ... A, By dividing it by (x — h)™

Remainder = 4,

Quotient = Ag(x —hA)" 1+ A;(x — )" 2 + -+

Result :-

To form an equation whose roots are decreased by h, we have to divide by h.

To form an equation whose roots are increased by h, we have to divide by —h.

Example 1:

Find the Quotient and the Remainder when 3x3 + 8x2 + 8x + 12 is divided by x — 4.

Solution:

Given the equation is 3x3 + 8x2 + 8x + 2

To divide the equation by x — 4, it is enough to do

x—4=0, x=4.

3 8 8 12
4 0 12 80 352
3 20 88 | 364
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R = 364
Q=3x%+20x + 88
Find the Quotient and remainder when 2x® + 3x° — 15x2 + 2x — 4 is by x +5
Solution:
The Given equation is 2x° + 3x°> — 15x2+2x —4 =0
To divide the equation by x+5 it it enough to do
X+5=0,x=-5
2 3 0 0 -15 2 -4

-5 |0 -10 35 75 875 -4300 21490

2 -7 35 -175 860 -4298 | 21486

Q=2x°>—7x*+ 35x3 — 175x? — 860x — 4298
R =21486
Example 3:
To diminish the roots of the equation x* — 5x3 + 7x? — 4x — 5 by 2
Solution:

Given equation is x* — 5x3 + 7x? —4x — 5

10
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1 1 1
2 0 2
1 3

The transformed equation is x* + 3x3 +x2 —4x+1=0
Example 4:
To diminish by 3 the roots of the equation x> — 4x* + 3x3 —4x —6=0
Solution:

Given equation is x* — 5x3 + 7x2 —4x — 5

11
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1 5
210 3
1 8 [45
o 3
1 11

The transformed equation is x5 + 11x* + 45x3 + 81x2 + 50x + 6 = 0.
Example 5:

Find the equation whose roots are the roots of x* — 5x3 + 7x? — 17x + 11 each diminished
by 2.

Solution:
Given equation is x* — 5x3 4+ 7x2 — 17x — 11 =0
1 -5 7 -17 11

2 0 2 -6 2 -30

1 1 1
2 0 2
1 3
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Example 6:

Increase by 7 the roots of the equation 3x* + 7x3 — 15x2 +x —2 =0

Solution:

Increasing the roots by 7 is equivalent to diminishing the roots by -7.

The given equation is 3x* + 7x3 — 15x2+x -2 =10

3 7 15 1 -2
7|0 21 98 581 4060

3 14 83 580 | 4058
7 1o 21 245  -2296

3 35 328 [ -2876
7 |0 21 392

3 56 | 720
7 |0 21

3 [-77

The transformed equation is 3x* — 77x3 + 720x% — 2876x + 4058 = 0

Example 7:

Show that the x* — 3x3 + 4x2 — 2x + 1 = 0eqn can be transformed into a reciprocal eqn by

diminishing its roots by unity. Hence solve the egn

Solution:

First to diminish the given equation by 1.
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1 -2 2 0 1
1 0 1 -1 1
1 -1 1 1

1 0 1
1 0 1
1 1

The transformed equation is x* + x3 + x2 + x + 1. which is a R.E of even degree and like

sign.
x*+x3+x2+x+1=0  =>divide by2

x2+x+1+1/x+1/x%=
(x2+1/x3)+(x+1/x)+1=0

Puty =(x+1/x) &y*—2=(x?>+1/x?%)
y:2—=2+4y+1=0

y:4+y—-1=0

-1+ /T-2)(-D)
- 2(1)

_—1+VI+4 1445
B 2 2

—14+5/2,-1—-+5/2

14
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x+1/x=-1+vV5/2 x+1/x=-1-+5/2.
2(x24+1) = —x+V5x 2x2+42=—x—+/5x.
2x24+2=—x+V5x. 2x2+2—x(—1-+5)

2x2+x—V5x+2=0
2x2 —x(-1+V5)+2=0

1+\/§i\[(—1+\/§)2—16

_—(V5+1)+V-10+2V5
- 4

X =

4
_V5-1+v-10-2V5
B 4

and x

X

The Roots of the original equation are the above roots increased by 1,

VE—1+ —10—2\/§+1 ~(5+1)++-10+2V5
X = X =
4 ’ 4

V5—1++/-10-2V5 + 4 —(WV5+1)+V-10+2V5 + 4
x:

X =
4 ’ 4
_V543+4/-10-25 _ —V/5+3++v-10+2V5
X = 2 , X = 7
Exercises 1:

1. Find the equation whose roots are the roots of x* — 5x3 + 7x2 — 17x + 11 = 0 each
diminished by 2.

2. Find the equation whose roots are the roots of 4x> — 2x3 + 7x — 3 = 0 each
increased by 2.

3. Find the equation each of whose roots exceeds by 2 a root of the equation

x3—4x*+3x—-1=0

Horner's Method:
Procedure :-
Horner's method is used to determine a real root of a numerical polynomial equation f(x) =

0, correct to given place of decimal (ie) The root is a - a;d,d; ....

15
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Step 1:-
We are going to find the integral part a by trial find 2 consecutive integers where a real
positive roots of the given equation lies.

Let a and a + 1 be & consecutive integers, such that f(a) and f(a + 1) are opposite sign,

therefore a root lies between a and a + 1.
Therefore the integral part of root is a. Let the root be a.d,, d,, d5 ...

Step 2:-
To find d,

To diminish the roots of the equation by a. Now, equation is

will have roots between zero and one. multiply the roots of (1) by 10 .
(i.e.) The coefficients of ¢, (x) are multiplied by 1,10,100,1000, ... respectively. by trial find
the integer between which the roots of (1) lies which is d; Now equation will be ¢, (x) = 0.

Example 1:

The equation x3 — 3x + 1 = 0. has a root between 1 and 2. Calculate it to three places of

decimal.

Solution:
Given equationis x3 —3x+1=0
Let f(x) =x3—3x+1

fA)=1-3+1=-1 (—ve)
f2)=8-6+1=3 (tie)

Therootis 1.d,d,d5.
step 1:- To find d1

16
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1 1
1 0 1 1 -2
1 1 -2 -1
1 0 1 2 -
0 2 0
1 0 1 -
0 3

The transformed equation is x3 + 3x2 — 1 = 0. Let f;(x) = x3 + 3x2 — 10
Multiply the roots of the transformed equation f; (x) by 10

That is (i.e.) Multiply by 1,10,100,1000 . ... etc to the coefficients of x3, x2, x and constant
term respectively.
Therefore the transformed equation is f,(x) = x3 + 3042 — 1000 = 0

Now,

£,(1)=1+30-1000<0
£,(2) = 8+ 120 — 1000 < 0
£,(3) = 27 + 100 — 1000 < 0
f£,(4) = 64 + 480 — 1000 < 0
£,(5) = 125+ 750 — 1000 < 0
£,(6) = 216 + 1080 — 1000 > 0

=~ The roots of £, (x) lies between 5 and 6
step 2:-
Let the root be 1.5d,d5.

To find d,, diminish the transformed equation by 5

17
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1 30 0 -1000

5 0 5 175 875

1 35 175 -125

5 0 5 200

1 40 375

The transformed equation is x3 + 45x2 + 375x —125 = 0.

Let f3(x) = x3 + 45x% + 375x — 125 = 0.
Multiply the roots of the transformed equation f;(x) by 10
That is (i.e.) Multiply by 1,10,100,1000 etc to the coefficients of x3, x2, x and constant term
respectively.
The transformed equation is f + (x) = x3 + 450x2 + 37500x — 125000.
£,(0) = —125000 < 0

f4(1) = —vpe.
fa(2) = —ve.
fa(3) = —ve
fa(4) = the

The root lies between 3& 4 .

let the root be 1.53 dj

Step 3:

To find d5, diminish the root by 3 .

18
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450 37500 -125000

1
3 0 3 1359 116577
1 453 38859 | -8423
3 0 3 1368
1 456 | 40227
3 0 3
1 459

The transformed equation is x3 + 459x2 + 40227 x — 8423 = 0

Let fs(x) = x3 + 459x2 + 40227x — 8423

Multiply the roots of the transformed equation f (x) by 10

That is (i.e.) Multiply by 1,10,100, 1000 etc to the coefficience of x3, x? and x & constant
term respectively.

the transformed equation is fs(x) =

x3 4 4590x2 + 4022700 x — 8423000
£,(0) = —8423000 < 0

fe(1) =<0

fe(2) =<0

fe(3) =>0
The root lies between 2 and 3 .

The root is 1.532 .
Example 2:

Find the positive root of the equation x3 — 2x? — 3x —4 = 0 correct to 3 places of decimals.
Solution:

Given equation is x3 — 2x2 —3x—4 =0

Let f(x) =x3—2x2—-3x—4

f1)=1-2-3-4=-8<0.
f(2)=8-8-6-4=-10<0

f(3)=27-18-9—-4=-4<0
F(4) =64—32—12—4 => 0.

The root lies between 3 & 4 .
Let the roots be 3 - d,d,d5.
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Step 1:
To find d,, diminish by 3.

1 -2 -3 -4
3 o 3 3 0
1 1 0 -4
3 |0 3 12
1 4 |12
3 |o 3
1 |7

The transformed equation is,

X3 47x%2+12x—4=0

Let fi(x) =x3+7x?+12x— 4= 0.
Multiply the roots of the transformed equation f; (x) by 10
That is (i.e) Multiply by 1,10,100,1000 ... etc to the coefficience of x3, x2, x and constant
term respectively.
Therefore the transformed equation is
£ (x) = x3 4 70x2 + 1200x — 4000 = 0.

f212] =<0
Now, f,2(2)=<0
f2(3)=>0

The root lies between 2 and 3 .

The root is 3.2d, d;
To find d,.

20
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1 -4000
2 0 2688

1 -1312
2 0

1
2 0 2

1 76

f3(x) = x3 + 76x?% + 1492x — 1312

Multiply the roots of the transformed equation f5;(x) by 10
That is (i.e.) Multiply by 10,100,1000 .... etc for x3, x2, x and constant term respectively

Let f,(x) = x3 + 760x2 + 149200x — 1312000
£,(0) = —1312000 < 0

£i(1) =1+ 760 + 149200 — 1312000 < 0
£,(2) = 8 4+ 3040 + 298400 — 1312000 < 0
£.(3) = 27 + 684 + 447600 — 1312000 < 0
fo(4) = 64 + 12,160 + 596800 — 1312090 < 0
£,(5) = 125 + 19000 + 746000 — 1312000 < 0

f(6) =<0
£,(7) =< 10
f4(8) =< 20
f:(9)=>0

The root lies between 8 and 9 .

The root is 3 - 28d5

To find d5.

To find d5, diminish the roots by 8 .

21
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=7

o
KKKKKKKK

760 149200  -13.12,000

1
8 0 8 6144 12,42,752
1 768 155344 -69248
8 0 8 6208
1 776 | 161552
8 0 8
1 784

x3 + 784x?% + 161552x — 69248.

let fs(x) = x3 + 784x% + 161552x — 69248

Multiply the roots of the transformed equation f (x) by 10

That is (i.e.) Multiply by 10,100,1000. for x3 — x2, x and constant term respectively.
let f5(x) = x3 4 7840x2 4+ 16155200x — 69248000.

fe(0) = —ve
fe(1) = —ve
fe(2) = —ve
fe(3) = —ve
fe(4) = —ve
fe(5) = tve

The root lies between 4 and 5
The root is 3.284 .2617
Example 3:

Find the root between 0 and 1 correct to 3 places of decimal x3 + 18x — 6 = 0.
Solution:

Given: x3 + 18x — 6 = 0.

Let f(x) =x3+18x—-6=0

f0)=(=ve)

fQQ)=(+ve)

The rot lies between 0 & 1
Therootis 0 - d,d,d5.

step 1:- To find d,, diminish by O .

22
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1 0 -6
0 0 0 0 0

1 0 18 -6
0 0 0 0

1 0 18
0 0 0

1 0

The transformed equation is x3 + 18x — 6 — 0.
Let fi(x) = x3+ 18x — 6 = 0.

Multiply the roots of the transformed equation by 10.
That is (i.e.) Multiply by 1,10,100, 1000 ... etc to the coefficience of x3, x2, x and constant

term respectively.

Therefore the transformed egn

£,(x) = x3 + 1800 X —6000

f2(0) = (—ve)
f(1) = (—ve)
f2(2) = (-ve)
f2(3) = (-ve)

f2(4) = (tve)
The root is 0.3d,d;
diminish the eqn £, (x) by 3.

1 0 1800 -6000
3 0 3 9 5427

1 3 1809 -573
3 0 3 18

1 6 1827
3 0 3

1 9
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transformed equation is
fs (x) = x3 +9x% 4+ 1827x — 573

Multiply the roots of the transformed equation by 10.

Multiply by 1, 10, 100 and 1000 ... for x3, x2, x and constant term respectively The

transformed equation is

fo(x) = x3 4+ 90x2 + 182700x — 573000.

f2(0) = (=)
fa(D) = (=7,)
fa(2) = (=)
f2(3) = (=)
fa(8) = (v,)

The Root lies between 3 and 4
The Root is 0.33 d;.
To find d5, diminish the root by 3.

1 90 182700 -573000
3 0 3 279 548937

1 93 182979 | -24063
3 0 3 288

1 96 | 183267
3 0 3

1 99

fs(x) = x3 +99x2 + 183267x — 24063.

Multiply the roots of the equation fs(x) by 10

Multiply by 1,10,100,1000 ... etc for x3, x2, x and constant term respectively.
The eq f¢(x) = x3 + 990x2 + 18326700 -24063000 .

24
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£,(0) = (ve)
fo(1) = (~ve)
£o(2) = (+ve)

The Root lies between 1 and 2
The Root is 0.331.

Exercises:

1. Find the root between 2 and 3 correct to two places of decimal x3 — 5x — 11 = 0.
2. Find the real root x3 + 6x = 2 to three places of decimals.

3. Find the real root x3 — 3 = 0 to three places of decimals.
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UNIT I1: SUMMATION OF SERIES
Summation of series using Binomial, Exponential and Logarithmic series.
BINOMIAL SERIES

When n is a positive integer (x + a)" can be expanded as (x + a)" = x™ + ,C;. x" ta +
nCo. x"72a% +.. + ,C,.x" . a"+...+ a,.. This is known as the binomial theorem for the positive

integer n. When n is a rational number (1 + x)" can be expanded as an infinite series when — 1 <x <1

(i.e) |x| < 1 and it is given by
n = (n-1)..(n—r+1
(I+xP=1+5 4200,z | 4 2000 D yry (1)
This is known as binomial series for (1+ x)" where n is a rational number.

General term

The (r + 1) ™ term in the expansion is often denoted by
Urp1 0 Tryg . Upgg =06 "7 a”

We may obtain any particular term by giving r particular values. Thus the first term is
obtained by writing 7 = 0, the second by writing r = 1 and so on . So the (r +1) ™ term is

called the general term.
Thus we get (x +a)* = Yy ,C,x""a"
Note:-

(1) The expansion contains (n + 1) terms.

(2) The numbers ,Cy, nC; ... nCr -.... 1Cy are called the Binomial Coefficients. They are

sometimes written as Cy , C; , C,.These binomial coefficients are all integers since ,C, is

the number of combinations of » things taken 7 at a time.
(B)Since Cyg = C;,,Cy = Ciqgy connns C, = C,_, , the coefficients of terms equidistant

from the beginning and the end of the expansion are equal.
Summation of various series involving Binomial Coefficients
It is convenient to write the Binomial theorem in the form
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(1 + x)" =Cy+Cyx + Cox?+... +C.x"+....C x™.

We can seen in the expansion that the coefficients of terms which are equidistant from

the beginning and the end are equal.

Co=C,=1,C= C,_1=n.... and in general.

n!
C= Coy=

ri(n—r)l
Some important particular cases of the Binomial expansion.
Q-x)"t=1+x+x%+x3+.....

(1 =2)"2 =1+2x+ 3x% +4x3+...

1
(1—-x)3= 5{1_2 +23%+3 46+ 4.5x°+..}
1
(1-x)"* = 3{1.2.3 +2.3.4x +3.4.5x%+4.5.6x3+...}

(1-x)™=1+nx

n(n+1 n(n+1)(n+2
PO g BGHED

1 1.3 1.3.5
(1—x)"2=1+=x+—x*+——x3+
2 2.4 2.4.6

1 1.4 1.4.7
A—x)"BP=1+=x+—x*+—x>+ ... ..
3 3.6 3.6.9

Application of the Binomial theorem to the summation of series.

We have proved when |x| <1, for all values of n

+ n(n—1) o 4 n(n—1)(n-2) B

(14+x)"=1+nx T o X T

(1-x)"=1—nx+ n(r;!_l) x? + n(n—13)!(n—2) X+

n(n+1)

1 2
1+x)™=1 —nx+Tx2—wx3+

T

n(n+1) 2 4 n(n+1)(n+2) -

(1~ 2} ™=14nx-+ = 3 X T
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Solved problems

3,3
Example 1. Find the sum to infinity of the series 1 + . + 20

@ |uv

Solution.

The factors in the numerators form an A.P with common difference 2: we therefore

divide each of these by 2.

Each of the factors in the denominator has 4 for a factor; removing 4 from each will leave a
factorial . Hence we have

Then the series becomes

o n(n-1) o & n(n—-1)(n-2) P

i o YRR
=[@1—-x)"

_ 1L -3

- (1 2)

=2v/2.

3 ; ; 1.4 1.4.7 1.4.7.10
Example 2. Sum the series to infinity = an - Ean 15 "8 T 0E g0 B

Solution.

The numerators form an A.P . with 3 as common difference and the denominators are

factorials, each of whose factors has been multiplied by 5.
= The series can be written as
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_ n(nz-'l-l) 53 e n(n+13)'(n+2) s n(n+1)(r;-'|-2)(n+3) x4‘ o

n(n+1) ,  nm+1)(n+2) 3
2! x+ 3! %

=1+nx+
=1 —@) —1—hX

_ 3y-1/3 _ 1
=1+ 1+ 3.

u|lw

=1 ez _4
6] B

. o3, Sum the series to infinitv. 154 1521 4 15:21.27
amplie o. m € series 10 Inrin A i) Sl e r—— T
sy e My 16 " 1624 | 16.24.32

Solution.

The factors in the numerator form an A.P. with common difference 6 and those of the

denominator an A.P with common difference 8.

Let S be the sum of the series.

15 15 21 1521 27
= (6 el SN LS
__6 6 6 66 6
e | +_ -} + padth (R 18
TheniS 2 '(8) 2.3° (8) 2.3.4 ‘(8)

The factors of the denominators do not begin with 1. Hence one additional factor ,

namely unity, has to be introduced into the denominator of each coefficient. The number of

factors in the numerator is to be the same as that of the factors in the denominator. So we

. .. . . . 9
have to introduce an additional factor in the numerator also, which factor is clearly e

2 Fael g 2252137 3
. 25 =L(é)+m (é) L6666 (9) +
6 1.2 \8/ 123 \8 1234 \8
Since the index of x in every term must be the same as the number of factors in the

numerator or denominator of the coefficient, we have

15 915 21

s (9)2 L5676 (9)34__
2! \8 3! 8
29
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O

6
Put =—=n and x=§.

(o))

: 2 G e n(n+1) xz 4 n(n+1)(n+2) x3 4

2! 3!
1 L n(n+1) - n(n+1)(n+2) o -
1! 2! 3!
= (-0 = (1+m)
— 1 _ 65\-9/6 _ +2 s
1-3 a 68
_ im0
@3-+
47
8
47
o S—?.
Example 4. Find th f to infinity of the series — — o + —
xamplie 4. rm € Sum o1 10 1n 1n1ty0 € Series o4 24.32 24.32 40

Solution.

Proceeding as in the previous example, we get

1 2 1:3 2 3 3
.32 22 2) 27 (2)
=== 22 (2) 4=2== (Z2) +

5 3 '(8) T 3.4° (8 3.4.5 \8

In order to express this in the standard binomial form, the factor 1 . 2 must be inserted in

N | =
628

each denominator, and two additional factors must be then inserted in each numerator to
secure that the number of factors in the numerator is the same as that in the denominator. In

order that the factors of the numerator may remain in A.P. the additional factors(which

; 3 1
should be the same in each term) mustbe —= , —.

2°2

3 11 3 113 5 _3 1135 3

_3 _1gq T a7 (E) _ Tz (Z) 2 7227 (Z)
27 277712 1.23 '\8 1.2.34 " \8 1.2.3.4.5 " \8

The index of x should be the same as the number of factors in the numerator.
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3S _ n(n+1)(n+2) o n(n+1)(n+2)(n+3) 2t

ie.,
128 31 41
3 2
Ifn=—=-,x=-
2 8
3S n(n+1) -
O — ny —nx+—= x%!
5B (1+x)” { 1—nx o X
3 1 2 2
_ 2v3/2 32 ﬂ(_) \
(1+8) +{1+2.8+ - 5)
—54/5 3 3
2V e Bt
8 128
_ 179 —5v5
128 8 °
1
= B ={199— 80V5).
Exercises
Find the sum to infinity of the following series:
35 1 3.5.7
) 7 L . PR
1.2°3  48.12
3.18 3.18.33
(2) +
50 50.100 50.100.150
5.7 5.7.9
(3) p— + et s
3.6.9 3.6.9.12
3 3.7 3711
4) =+ +
18 18.24 18.24.30
1 58 1 5.8.11 1
G — =+ — =+ — =
3.6 42 369 43 3.69.12 44
1.3 1.3.5
(6)

23(3') T 2%@ny  25GH T
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Approximate values.

The Binomial series can be used to obtain approximate values and limits of
expressions as follows.

. g . 1
Example 1. Find correct to six places of decimals the values of 9B

Solution.

) o
(9998) (10000-2)1/4

1
(1042t

1

— _2
10(1—m)1/4
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1 1
e ol —
10 2

1 .5 4
"10° 87 10°

1 5
= D1+ 3 (0.00001) + = (0.000000001)

=0.1+0.000005 + 0.0000000005

=0.1000050005

u (9998)1/4 = 0.100005 correct to six places of decimals.

Example 2. Calculate correct to six places of decimals (1.01)1/2 — (0.99)/2.
Solution.
Write x =0.01.

(1.01)/2 = (1 + x)1/2

IO (o S ) ) I
2 21 Y

(0.99)/2 = (1-x)'/?

1 3
(3 2 (—5)(—§)x3+“”
2! 3!

= {4 2
12x+

(1_01)1/2 (0 99)1/2 - 2{ x4+ %(_1)'( %) x3 + %(_%)(_%3)'(_%)(_%) x5 + }

{ X+ — x3+ﬁx5+ }

7
_..xs + oo

_ 1.3
—x+8x +128

3
=01+ L 0.01) %(001) + -

1
=001+ 5(0.000001) + terms not affecting the 8" decimal place

=0.01 +0.000000125
33
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~ (1.01)Y2 — (0.99)1/2 = 0.010000 correct to six places of decimals.

Exercises

1
1. Find the value of RYSLE correct to five places of decimals.

1
2. Find the expansion of (1 + a)l/ 3 and find the cube root of 65 correct to three
places of decimals.
3. Prove that (2)/3 =1 %(1 + 0.024)'/2 and hence find the cube root of two to four

places of decimals.

0.998
4. Evaluate (
1.002

1/3
) correct to four places of decimals, without using logarithms.

1 1
5. Find to five places of decimals the value of (1003)3 — (997)3.
Answers: 1. 0.19842,2.4.021, 4. 1.0027, 5. 0.02000.

(1-3x)"2/3+(1-4x)73/% _
(1-3x)"1/3+(1-4x)"1/4

5 3
Example 1. When x is small, prove that 1+ X+ Ax?
approximately.

Solution.

The expression is equal to

B

3
(Bx)3++1+ %.4x+%(4x)2+---
1 5

Bx)3 4+ 1+ pAx+EE(4x) 2+

w| 0

2 1
_ 1+§.3X Y

[ R |l

7
i . “g

W lw

Since x> and higher powers of x may be neglected the expression

2+5x+15%x2

- 2+2x+4%x2
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| (245x+153x%)

2(1+x+%x2)

1.2
2+5x+15=x

I S 9 2n—1
- . €1 tx+x )

= +2x+ 221+ x(1+ 22}

(14300 B -n (14 30) 4 307
= (1430 +322) (1 - x - 37 + 22)

(x3 and higher powers of x neglected)

=(1+§x+%x2) (1—x—%x2)

= E ﬂ 2% _E Z_E 2
1+2x+4x X—oX 2
=1+4=x+ 4x2

7 .
Example 2. Show that Vx% + 16 — Vx2 + 9 = 5o nearly for sufficiently large values of x.
Solution.
The expression = (x? + 16)/% — (x? + 9)1/2

16 9
=x(1 +x—2)1/2 == 2001 +x_2)1/2

= 210 A 12 .
=x(l+5.5— ) —x(1+5.5—)

% | 4 5 4
(Since ~is small, the expansion is valid)

8 9
T e gt
x 2x
7
=— nearly.

2%
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Exercises
1. Ifx be so small that its square and higher powers may be neglected, find the value of
(1-7x)13 = (1 +2x)73/*

(1-x)"5/24(16+8x)1/2 23 5 ,
= |+ —
A0Vt (2n) 40x approximately.

2. When x is small , show that

3. If x be so small that its squares and higher powers may be neglected. Prove that

(9+2x)1/2+(3+4x) _ 74
13 = O =X nearly.

3

4. If x be so small that powers of x above X~ may be neglected, show that

(1+x+x2)+(1+x)?

g taxt 7x? + 6x3.

! z 3e?
5. If ¢ is small in comparison with /, show that (l+_c)1/ 2+(:)1/ o= 2+4CT

approximately.

7
6. Show that Vx% +4 —Vx2 + 1is 1—%362+6—4 x* nearly when x is small and
—3-(1 i i) nearly when x is large
2x 4x2 * 8x* y ge.

23
Answer: 1.1 — Zx.
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:—S+ (1 —%+75—2)=(l —x)‘p"qwherep=5;q=4and§= %andhencex=§

5
55 , 17 2\"/4
Thereforeﬁ + == (1 — 5)
5S4 17
C72T (3) 72
L= 2 37 /a()-17] _ 72 [3 "1 3)28-17
YT s 72 ~ 5 72

_72[3% 8)-17] _ 72 [8(27)"/4-17
"5 72 5 72

S =§(8(27)1/4— 17).

Exponential Series

We will learn some series which can be summed up by exponential series. We have

proved that for all real values of x.
%= AT £
st bd by ® 0 e (1)
In particular when x = 1 , we have
B i .4 1
€~1+E+Z+“'+E+..t0 © (2)
and when x = —1 , we have
1 1,1 1 1
e —1—ﬁ+z—§+---(—1)n.;+..to 00 ... 3)
Changing x into - x in series (1) , we get
— X % X"
e x—l—i'l'?—""i'(—l)n.ﬁ'i'“' .............. 4)
Adding (1) and (4) , we get
eX_g—X x2

: *1+?+T+'“t000 ............... %)

Subtracting (4) from (1) , we get

_x_x x3 x5
_1'+?+?+---t000 ............. (6)

X

er—e

2
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When x =1, series (5) and (6) become

-1

etel 1 1
it fut-1 L ke T —— 7
e—e_1=1+1—+1—+°"t o ’
2 1! 31 5! Qe  Gesmesessken ()

Note. It can be verified that ¢ is an irrational number whose value lics between 2 and 3. Further the
value of e correct to four places of decimals is given by e = 2.7183. We shall use these series to

find the sums of certain series. The different methods are illustrated by the following worked

examples..
3 Bisi o3
: 1+3 1+3+ 3 1+3+3°+ 3
Example. Sum the series 1 + ——+ ———+ T + -+ to oo
Solution.

Let u,, be the N term of the series and S be the sum to infinity of the series.

143432+ ... +3n1

n!

Un
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102 'l
=1 g gy _Te.

2(e 1) 2(e 1)

=1Ee(ez—1).

Exercises

1 1 il 1
1. Show that (1+—|+—'+-~-)2= (1+;+;+...)2

LT S0

e+1

2. Show that —11' L
e—1 —+ L

(log,n)%®  (log, n)* 1
3. Show that2 { 1+ —2o= + =8 +..3=(n+2).

won—1

4. Show that 21 T = 1

n
If the given series is Yp—p f (n). % where f (n) is a polynomial in n of degree r , we can find

constants ag, g, .. . a, so that
f(n)=agtain+an(n—1) ...+a,n(n—1) ...(n—r + 1) and then
- e o . X" - %
n=0f(n).—=ao Xn—o—+a1 Xn-= O(n 1)| e Ay Zn=0 G
= ag.e+ajx. e*+.....ta,.. X". e*
=(ap +ayx +a,x% + ....a,x7) e*

(n+1) n

7 s

Example 1. Sum the series Y,

Solution.

Put (m+1)°*=A+Bn+Cnn-1)+Dnn-1)n-2).

39

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Puttingn = 0, 1, 2 and equating the coefficients of n3, we get
A=1,B=7,C=6,D=1.
Let the sum of the series be S.

g = 280 1+7n+6n(n—1)4+n(n-1)(n—-2) 7

n!

— yoo X" w _ X" w_X' | oo _ X"
X0 n! X (n—l)!+620 (n—2)! o (n—3)!

2
w X' _ B bi® A s B
Now On!_1+1!+2!+ =g
w B x2+x . o
Yoo =X+t =xe
@ X% o i X x4 w2 X
20 =2 x“+5t+5r xX°.e
0 x™ _ 3 x4 i _ 3 X
20 3 - b +F+2! e = X0 €

S=(1+7x+ 6x% + x3) e*.

.12 12422 12422432 12422 4...4n?
Example 2. Sum the series T + 57 + YRR + T+' -

Solution.

Let the nt" term of the series be u, and the sum to infinity be S.

1242244n? _ n@+1)(2n+1) 1
n! 6 n!

Then u, =

Letn(n+1)(2n+1)=A+Bn+Cn(n-1)+Dn(n-1)(n-2).
A=0,B=6,C=9,D=-2.

o 6n+In(n—-)+2n(n-1)(n-2) 1
o~ S=2n=1 6 St

n!

3 1 1

== [0 (o] 1

—_— 0 1— S e EEEE—
Zn=1(n—1)!+2 =1 (n—2)!+3 "=l (m-3)!

40

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



—e+3etie
27 3

Exercises

1. Show that the sum to infinity of the series
2 i ﬁ 2 i 3 i X 2
28+ xtxttx o =et(x" +5x + 4).
2. Find the sum to infinity of the series

5.7
3!

35 46
(1) =x+—x?+=x3+ . .00
1 2!

2 3
(2) 1.2 4+ 2.3x + 3.4. "2—!+4.5. "3—,

3. Sum to infinity the following series:-

1+2 1+2+3 1+2+3+4
(1 T4+ =
14 4 34
(2);74-;74-§T+'“.

3 5 7
(3)].+'5"+§?+'Z'+.“"

3.4

1.2 23
@) 5t Ty

o il
4!
4. Show that
2.6 3.7 4.8
(1) 54 = -t = -t o 005= 18

12,22 22 32 32 42
(2) & o+ + ....to o0 =27e.
1! 2! 3!

5
@) T = Se L.

Answers : 2.(1).(x* +7x + 8) €*, (2). (x* + 4x + 2)e, 3_(1).37",(2).15e, (3).e +

1,(4). 3e.

nZ43 xm

n+2 " n!’

Example 1. Sum the series Y,p—1

Solution.
Let the sum of the series be S.

(n%243)(n+1) -

ThenS =) —1 T
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Let M*+3)(n+1)=A+Bn+2)+Cn+2)(n+1)+D(n+2)(n+ n.

We can easily find that A = =7, B=7,C=—-2and D= 1.

=7+7(n+2)-2(n+2)(n+1)+(n+2)(n+1)n X"
(n+2)! ’ ’

ThenS=Y—1

=_7yo X o X oy X L weo A
7 Lot (n+2)!+7'2n=1 (n+1)! 2 X1 * L= (n—1)!

xn b x2 22 x"
Now Ytz st ar T or ey
. 1 X xz
—x—z(e -1 —xX =)
2 3 n
o Xt X X X X
Lt 2 T3 T T Gy
1
:;(ex —-1-x).
w xm _x  x? +x" + —e* —1
Zn=1T_ﬂ+?+““ = =e* —
Zoo sz_f_i.}.ﬁ-{- -|-L+ =xe”*
n=11n—1)! o2t =1 T
-7 x xz 7 X x X
. S=—e —l—x—?)+;(€ —1-x)-2(e" —1)t+xe
. !

=i—:(x3 —2x% +7x — 7)+21—2(3x2 + 2).

. 5 7 .9
Example 2. Sum the series F+§+§+”'”

Solution.

_ (2n+3)

th
The n*" term u, 2n—D)!

Put2n+3=A(2n—-1) +B.

Then A=1 and B =4.
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- _ 2n-1+4
n (2n-1)!

_ 2n-1 4
2n-1)! (@2n-1)!

_ 1 4
(2n-2)!  (2n-1)!

4
-u1—1+;
1 4
27773
1 4
ug—Z—F;

; : 1 1 1 1
Sumtomﬁmty=(l+§+z+....)+4(ﬁ+§+....)

SCDSENES

2L 3L 4l s s
e ; 7 3 s 5 e
Example 3. Prove that the infinite series 1_2| — 2—? + -3—"1 — —‘? B e = -

Solution.

Let u,, be the n'”* term of the series and S be the sum of the series to infinity.

1
1 (n+1) n+1

n!

Then u, =(—1)"*

v (n+1)24+1
( 1) (n+1)!

Putn?+2n+2=A+B (n+l)+C (n+l) n.
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+1)+(n+1)n
(n+1)!

B =

— (_1\n+1 ; l 1
( 1) ’ {(n+1)! + n! + (n—l)!}'

o 1 o 1 -
=y, (-1)" T2 (DM TR (-

T (m+D)!

P 1. 1 1,1
anl(—l)n+ . (n_l)!—l—;'l‘z...—e :

L S=1+e}
_e+l
e
Exercises
1. Show that

[o'0) _1 xn — 1 1
(1) Ty 5 = {(x? - 32 - 3) e¥45x% - 3},

n! x

w (2n-1) _1
(2) Zn:1 (n+3)n! - 5(43 - 156)

2. Sum to infinity the series

3 4 5 6
(1)E+§+a+;+.....

1 .8 . 3
3 ;5 % , 19
($E+E+a+5+m“
o Sn+l e 2
3. Show that X§ o=55= -1

g2 g% 98 et
4. Prove that 5 + y + i

e
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1
5. Show that log, 2 —3; (log, 2)%+= (log, 2)%..... =

Answer : 2(1)=,(2). (3¢ — 2¢™1),(3)5-.

By equating the coefficients of like powers of x in the expansions of function of x in two
different ways, we can derive some identities. The following examples will illustrated the

method:
Example 1. By expanding (e* — 1)" in two ways or otherwise prove that
n" —.Cn—1)"+,Cn-2)Y—...... =0 wherer <n.
What is the sum of the above series when r =n?
Solution.
(e* —Dn=e™ — e Dx 4

2 %
{(n_]-)x} + S {(n_:l')x} +

2! r!

_ 0?0’
= 14+nx+ s +...—aC |1+ (n—Dx+

1! r!

2 r
{n=2)x" | {(n=2)x} +]

2! r!

e [1+(n—2)x+

Coefficient of x” in the expansion of (e* — 1)"

n” (n—1)"
= — nl1- ¥l +HC2. ......

r!

1
::{nr - IlCI(n - 1)r+ncz(n e Z)T}

. x xZ XN
Again (ex—l)"=(1+ﬁ+?+...i+... — 1"
x  x? xn n
=l )

All terms in the expansion contain x" and the higher power of x.
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~ If r <n, there will be no term C(;ntaining x" in the expansion.
. %{nr — Ci(n—1)+,C(n—2)"...3 =0
ie, N —,Ci(n— 1)+ nCo(n—2) ...=0

If r=n, then

— " — G = DM G — 2"

n
= Coefficient of x™ in the expansion of x" (l + e )
2

n" — nCl(n = 1)n+nC2(n = z)n =n!

Example 2. Show that if a” be the coefficient of x" in the expansion of e®” | then

101"  2r 3
ar=—{—+—+—}.
rrl1 2! 3!

Hence show that

28 33
(L)?'i'— ?"‘...256
4 34
(u)—+ - + k)

Solution.

21 3!
—1+eX+—+—|+—+. .

1 2252 27X
) A 2 e L)

2! r!

xT

=1+@+x+T+ =S+

2.9 ror
3°x oy 3x )+
r!

it = (it B 4
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; 1 (1" 2" 37
Hence the coefficient of x" =— {— — —}.
21 3

Again

) 2
6%y LT X+t

e’ =e
x2 %3 1 %2 8
:e-{l+(X+;+?+"')+z(x+7+?+...)2
1 x2 3
L] G vl D MY
: Bl 1 1 1 1
Coefficient of x° = e(5+z.2.5+§)

—3!(1+3+1) oy

We have shown that the coefficient of x3

:_(_+2_+ ...)
3\ 1! 2!

1 13 23 3 5
_(_+_+33_I+...):_e

31\ 1! 2! 3!
3 3 3

1 2 3 Se
Trate s

Similarly equating the coefficient of % , we get the second result.

Example 3. Prove that if n is a positive integer

n n(n-1) - (n-1)(n—-2) 3
L =g+ ga ¥ ~Tgag ¥ T
. n+1 (n+1)(n+2) 5 n+1)(n+2)(n+3) 3
=e*{1- Xt X - 2 2. 37 ;W
Solution.
2 3

— Yy Yy Yy

e’ —1+;+?+;+.....
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_Xyu_q_p X ) Xy n-D)@®-2) xy3,
(1 y) l-n>+ = .(y) - (y)

LI TG VI Y VG I

12 12.22 12,22 32 L

= the term independent of y in the product of e (1 — %)n

n —\
ey(l — X_) = ex ey_x M
= . . o

- )2 2\
Cer (140 O o)

1 2 p

_n+l1 —\n+2
. (y_x)n+(y x1)! +(y x2)1 o
_e yn

The term containing y™ in the expression

(y—X)n+l (y_x)n+2
A T T
; n+1C1 n+207 2
is y" —Ty”.x+Ty" A

n
Term independent of y in e (1 — %) is

1C1 G .xz 3
el = g )
_ (n+1) m+2)(n+1)
=e*{1 - an At e . &

Hence the required result.
Exercises

1. Show that , if n is a positive integer

poant S 20D o MEEDOD gntt = (-1ynn S
e™ —1

1—e—x "’

2. Find the coefficient of x" in the expansion of n being a positive integer and

find the values of
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(1) 12 +22+3%2+....+n?
Q)13 +23+33+....+nd
B)1*+2%+....+n*

2,1 12
3. By means of the identity e” 72 = 6 )7 show that

2 1 1 1 _ 2! 4! 6!
A1 % ot by = L et e s
1
[ Left side = term independent of x in €2. e*’ e

1 1 1
e(x+%)2 =1+ ()" 4 ar 5 (e +)°
1! 2! 4!

Term independent of x in the above expansion

_ 201 40> 6C3
=1+ = - T + = C IO

[r—— 2(1).n(n+1)6(2n+1)’(2).n2(n4+1)2’(3).n(n+1)(6n2(-)|-9n2+n—1).
Logarithmic series
log(1+x)=x —% + %x3 — %x‘*
=X —%+§—%+.....

Modification of the logarithmic series.

If —1<x<1, we have

2 3 n
log(l +2) =t R T . s (1)
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It is convenient to remember the form of the series in the case in which x is negative.

Thus
e g o i D o D
log(1 —x) X 2x 3x ......
=— X+ P+ )
2 3
ie. —log(l—x)=x+15x2+1§x3+~-- ........... )

Adding the series (1) and (2),

log(1+%) —log(1 —x) = 2x+ 2.15963 + 2.%x5+

1 3 5
I CE TRy

ie, log

1—x

2 4 6
log(1+x) +log(1 -x) = =2 (L +Z+ 4 ..

e Sl e i
log2=1 =ty T

Using the different forms of the logarithmic series we can find the sums of the certain series.

The following examples will illustrate the methods of such summation.

x—1+1 x%-1 1 x3-1
x+1 2 T(x+1)2 3 7 (x+1)3

Example 1. Show thatif x>0. log x =

Solution.

2 3
x 1 X 1 % 1 1 1 1 1
RuS =274 ) 6 et et s Tl
X pe
——log(l—m)-l—log(l—m)

1 x
Z—longrlogH—l

~tog {(557) + 5}

=logx .
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The expansion is valid when

X 5
x+—1| is always less than 1.

X 1
] < vand [ 5] <1 |
1 5
When |x+—1|<1,|x+1|>1,1.e., |x| >0

When x > 0, the expansion is valid .

Example 2. Show that log\/ﬁ=1+(%+%)%+(%+%)%+(1€+17)%+
Solution.
Right side expression can be written as
1_1_+1_1_+1_1_++]+1_l+1_1_+ll_+
2 4 4 742 6 43 3 4 5742 7 "43

1
2

RN OR O R R N O R MO R N O
1

1 1 1 1 1 1
2 4 6 2 4 6 2y
==, + = N S + ...+ 1+= — — + ... W =
> X 4x 6X 1 3x +5x +7x hen x >

1, 5,1 4.1 ¢ 1 L., B0 .1 5
== —.xt+= b= x+ =3+ =+ =x"+ ..
2{x +5 Xt Xt } x{ SX ot ox }

1+x
1-x

— — Byt
= 2log(l x)+2xlog

1
. 1 1 1+ 1
* The series = — — log (1— Z) + log 1—21- , since x ==
2

=log V12.
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Example 3. Ifa, b, ¢ denote three consecutive integers, show that

1 1

it
2ac+1 3 (2ac+1)

log, b = loge a o loge

Solution.

1

14—
Right side = — loge g+ ~log, ¢ B > log, —z‘wii
2ac +1

2ac+1

1
logea+ logec+21 8e

2ac

ac+1

1
= log (ac) + log

ac+1

ac

2
=~ logac.

1
~ log (ac + 1).

Ifa, b, ¢ denote three consecutive integersthend —a + 1 andd — ¢ — 1

a=b-1 ;

>

c=b+1,

ac=b%>-1 ,ie, act1=>h2.

log, (ac+1) == log (b?) =log b.

Exercises
1. Show that
3 5
a+x 2ax 1 2ax 1 2ax
() )
log a—x a?+x? 3 " \a?4x? 5 " \a2+x2
: 1 1 1 1
2. Sum the series +—.—3+—.—5
2x-1 3 (2x-1) 5 5(2x-1)

1
3. Show that when —1 <x < =

dx+ By y= 2L ()L ()T

1—x 1—x 1—x
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4. Show that

h? h* h6
log (x + 2h) = 2log (x + h) — log (x) — {(x+h)3 bt }
5. Show that
1\2 1 1 1
log. (1 +5) 1T D T Zagen?  samens o ®
11 1

6. Show that log, 3 = 552 "Bk Vigw

. 1 1 1\1 1 1)1 ; ;
7. Sum the series (1 +E) i (3 + 4) 5 + (5 + 6)92 + ..... to infinity.

8. Sum to infinity the series ), (#—H + %) gL w22 T

9. Prove that ). an_l ( s 921_1) = 1—10ge 10.

gn—1

Answer : 2. —log( ) 7.9log 3 —12log 2, 8. = [loglﬁ+x(e +e‘x)].

Series which can be summed up by the logarithmic series.

We can split the general term into partial fractions and using the result

1 1 1
log2=1— 5 + — + — + .... We can sum certain series. The following examples will

illustrate the method.

. i |
Example 1. Sum the series ), Gn-Dzn@niD)

Solution.

Let S be the sum of the series and u,, be the n™ term.

1 1 1 1
Then i, == i o
2 2n—1 2n 2 2n+1
1 1 1 . 1 1
u :—-——— _'_
1 21 2+2 3
1T ¥ 1.9 4
Uy == . ———F— .-
2 723 4 ' 25
11 1 .1 1
u = — __.—_+_ iy
8 "% §TE"7
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1 1.1 1 1

S=77ztsTits sty

B 1.1 1 .1 1 1

- +1 >3 2 ts5 83

1

=—=+log2.
Example 2. Show that L+ 2 o=310e2-1
xample 2. Show tha 123 345 56.7 0g ’

Solution.

Let S be the sum of the series and u,, be the n™ term of the series.

2n+3
Then U, = @n-D@niD

Splitting u,, into partial fractions, we get

i) 1 1
Uy, =2 B . =kl
2n—1 2n 2n+1
Giving values 1,2,3,....in u, , we have

-2 &g L d
U =2.7 -3 412

U, =2.1;—3.11+1.-15-
u3 =2.5-3.5+1.2
1 1 1 1
S=2-3 —+3.;—3.:+3 T
1| 1 1 1
=2+3(—5+§—Z+ E)
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1 1
=2+3(1—>+3

=2+3(log2-1)
=—1+3log?2.

Exercises

Show that the sum of the series to infinity

1,1 1
= s o e 108D
12 34 36 s
1,1 ,1
2. —+—+—+....=2—log 2.
I8 285 3 08
1 5 9 13 5
B + T + F pii= = —3 log 2
123 345 567 789 2
1 5 9 3
4. 3 + s = = = log 2
234 456 678 4

If kis a positive integer and |x| <1, then

2 3 4
P X X X X X

£ = F =+ + &2
Ln=1 n+k 1+k 2+k 3+k 4+k

:xl_k{—log(l—x)—(x+%+....+i)}

_ 1 x? xk
=—g{log(-x)+x+—+...+——}

Similarly %5, 2==—— { log (1 -x) +x}

o XE 1 2?

Zn=1m——x—z{log(1—X)+X+7}

R 1 e @
B s s Cloplll —aid o a2

n=1,- %3 {10&,(1 X)+Xx 2 3 }
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Using these result we can sum certain series. The following examples will illustrate the

method.
802
n’+n“+1

E le 1. the series ),;—1 ———— X" when |x| <1 .

xample 1. Sum the series Y.y —q n112) when |x|

Solution.

3,122
. mA4n : : :
Split (D) into partial fractions.

- 1 1 3 4
Wehave S=X2 {(n—1)+ E'Z+ E'E}xn

Sy {(n—l)x”+1—2°° ﬁ+3_2°° X
=l 2 em=1p "y am=lpia-

Yo {(n—Dx"=x2+2x3+3x*+ ... 00
=x2(1+2x+3x%+....2)

x2

=x2(1—-x)%=
% (L—x) A

e}

le
n=1" =~ log (1 —x).

Zoo T 1 Il 1 +x+x2}
S s i ¥ _ A
el 2z vlog( x) -

x2

T 12

1 3 x2
— —1loo — — { loo + x + —
> log> (1-x) ") llog,(l x)+.X > }

- (_1)n+1 e

Example 2. Find the sum of the series Y, N D(2)

Solution.

1 1 1 1

1
2

‘n o n+l 2 ‘n+2

1
n(n+1)(n+2)

Let S be the sum of the series

= °°1_1__1_ 1_1_ —_1\n+l ,.n
S Zl (Z'n n+1+2'n+2)( 1) %
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:1_ ZOO( 1)n+1xn
2 &1 n
We have
1 2 3
oo(—l)"Jr x x X x
—_—— 4 — = +
b3 = T + 3 log (1 +x)
o ( 1)n+1xn_x__£+ﬁ _l(x__ﬁ+£ )
I n41 2 3 4 T x\2 3
1
2;{ log (1+x) + x}
yo (D™ _x 2 o =2 2.2 ]
1 42 3 4 5 oo x2l3 4 5

—15_-{log(1+x)—x+—}
 Bimilog () =l = g (T4 Seap (g +
.+ S=log (1) = 1{ — log (149} + 215 { log (14) -x + -}

Zlog (140 (1+2+ 5) -3+ 1),

Exercises
1. Prove that the sum of the infinite series whose n'” term is : 1—n is 1— log 2.
n(n+1) 2
2. Sum the series
o NP+1 X
(L )Z n(n+2)
- (n+1)
2 )Zl n(n+3)
3 zw"—zxn
®) 21 e
3. Show that
3 4 5 3
(D122 2322 T 325 -~ 4logy —L
4. Show that
=] 1 4
(D) L 1m 5z~ log3 ——log2.
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10r+1 3
(2) Zr 1 m 22r =2— log 2 Z log 3.

~ i (x4+(5x 1) )7 —%(2x3 + 3x% + 6x) — 3logifil —
X) (3) 9124‘"2 log(l - X) + M

8x(1—x)
Calculation of logarithms by means of the logarithmic series.

The direct calculation of logarithms by means of the series

1 1 1
Log (1+x) =x — 5 x? |§x3—zx4 I o0

is somewhat tedious , since the series is slowly convergent, i.e., very many terms of the

series have to be calculated before a given degree of approximation is attained.

The calculation is usually carried out in practice as follows.

We have proved that
1+x x3 x>
log. =—=2{x—5+ = + ...}
When — 1 < x<1.
_ 14x i y—1
Let Y=, 1€ X —y

3 5
y—1 1 y—1 1 y—1
* logey = 2{ at3-Gr) v G }
Where y lies between 0 and + co.

Put y= % in this series where p and ¢ are positive integers.

3 5
. 1 (p—q ) 1 (p —q )
; - ) +=.—]) *.....
log, p —log. 4 =2 { (p+q) * 3 (p+q 5 "\p+q
Now if p and ¢ be fairly large and differ little in value, i.e., (p — ¢) is small, the above series

converges rapidly to the limits, since the terms become small quickly.
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Example. Evaluate log 2 to 5 places of decimals.

Solution.

Put p=2, ¢g=1.

. = e el e i el e

R log32—10g91—2.(3+3.33+5 53+ )

log, 1=0.
1 1 1 1 1
==20.338,3333 == 0.037.03] —.==0.012345.7 —=0.004.115.2
3 33 g "38 3%

1 1
35 37

1
‘3 = 0.000,055,3 e 0.000,050,8

1
5

w

~ 0.000,832.0 ;—7 ~ 0.000,4572 17 .
1

L 1 =0.000,0056 — =0.000,0056 — .— = 0.000,000,5
9 311 11 "311

w

Sum of the first 6 terms is 2 ( 0.346,573,4) approximately

ie., 0.693,1468

~ log 2 =0.69315 to 5 places of decimals.
We can calculate the error involved in taking only the first six terms.

The difference between log 2 and the sum of the first six terms.

1 1 1

= {E PTERUSTRT }

2 (1 1

— ..m

13{313+315+ }

1 1 1

<= . — (14+=4+—= oo

13 "3l ( Tttt )
<2 1 1

T2 "313 "7 L

13 '3 1—27
<2 1 9

13 3137 g

111

13 "311 "4
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1
<= - (0.0000056)

<0.0000011.
Hence if we take log 2 = 0.69315, there is no error until the 6™ place of decimals.
By means of this series by putting p =5, ¢=4,log, 3 can be calculated.
By putting p=5, ¢g=4,log,. 3 can be calculated.
Similarly we can calculated logarithms of numbers.
The application of the exponential and logarithmic series to limits and approximations.

The application is shown in the following examples:

X —X

e —e

Example 1. Evaluate Lt,_ m .

Solution.

eX—e X

t —
x-0 log (1+x)

x2 x2 X3
(1+x +7....) —(1-x +?+?....)

=Lty 0 2 23
x—~57+7ﬁn"
2x3  2x
L in-—gr“Fj;—+
x—0 .
~ 2t
2% 2%
Lt 4‘“§rﬁ"j§r"+
- Hbx—0 % %2
FTREETH
=2.

3 5 2
Example 2. Evaluate Lt,,_,,, (1 +n_2 + n_3)n +7n

Solution.
Let the value of the limit be A.
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o 3 5 \n2+7
. A=Lt, 0 (1+n—2+n_3)n n
Taking logarithms on both sides, we have

_ 2 5 \n2+7
logA=Lt, o, (1 +n—2 iy n—3)n e

= Lty (12 + 70)(1 +25 + =)
e e (s 3) (2 2
= Lty (R + ) { (5 + 3) -5 (3+ 5—)2+1—(3+ 5—)3.....}

= Lt {3+5_+2_+i_52_1—(3+ S;)Z — 27—(3+ 5—)2-1-}>

1
n—oo n n 2712
; o & : 1
Except the first, all the other term will contain or higher powers of o
< log A= 3.

A=g%

3 3 1 n+l _ 8
Example 3. Prove that, if » is large (n = E) log e 2. e ¥

it (Y s 8 (1 4

+ )

8
45n%

Solution.

g logA:(n— 1)logn+1

3n n—1

1

(- 2) s

=(n— =) {log(1+2) —log (1 - 7) }
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45n4
8
=2
45n4
po I
A=  45n

8
=@ {1+ o Fueaf

Example 4. Show that if e* =1 +xe?* , where x> and higher powers of x can be

neglected,
=t T
Y= .
Solution.
2 3 4
x _ LR AN W
Now e* =1+x 1 o + " + a Foroms

x2 i x4
e —1=x{1+T + S+ +-]

2 3 4
R e

2 3 4

yx _ X X x
e 1+—2! +—3!+—4!+....
Taking logarithms on both sides, we have

2 3 4
yx=log<1+ T+l + )

x2 x4

_(x Lfe 22 . &8
—(5+§+—.+....)—2(_+ g +)
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Exercises

e*—log (e+ex)

1. Evaluate lim,_, >

¥
e*—log.(1+x)(1+2x)

5x° '
xe*—log (1+x)

x2

2. Evaluate lim,_,

3. Find limx_,o

log x
x2-3x+2
(2+x) log (14+x)+(2—x)logifil —x)
2 2
X

4. Find the limitas x > 1 of

5. Evaluate lim,_,

. R e
6. Evaluate lim,,_,, (1 + =+ n—g)” ,

7. Find the value, when x tends to the limit 1 of the expression
log(x®/% — 1) —log(x3/% — 1).

8. Show that when x is small , log {(1 + x) 1/3 4 (1=x%) 1/3 i approximately equal

2
X
to log2 — =

x log i1 +-)

9. By using the fact that (1 + x;)n =e prove that

x By, — i fx? . x?
(1+;)n+(1_;) n=2e* {1+n—2(?+g)}

143

Answer : 1.2, 2. T

4-1,5..-3.6.¢%7log (3).
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Unit 111

Characteristic equation — Eigen values and Eigen Vectors - Similar matrices - Cayley -

Hamilton Theorem (Statement only) - Finding powers of square matrix, Inverse of a square

matrix up to order 3, - related problems.

Inverse matrix:

Let A be any matrix. If a matrix B exists such that AB = BA = |, then B is called the inverse

matrix of A.

Since AB and BA exist and equal to a square matrix, A and B must be square matrices of the

same order.

If an inverse matrix to A exists, then it is unique. Let B and C be the inverse matrices to A.

Then AB=BA=land AC=CA=1

Pre-multiplying AB by C we got (AB = ClI)

ie., IB=ClI

ie, B=C

The inverse of A is defined by A~ is denoted by A=1.

Hence AA 1 =A4714 =1.

Adjoint matrix:

a1 Adiz
.| Q21 Q22

Let A be the square matrix .
An1  Qn2

Then |A| is the determined of the matrix A.

a;; Qg2 A1n

a1 Ay Ao
Then |A| = . . ;

An1 QApz .- Ann

Let the cofactors of the elements a4, a5,

.... In the determinant be A4, 415, ....
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Then the transpose of the matrix

Ap; Ag A

A21 A22 A2n

Api Apz - Ann
i.e., the matrix

Ay A A

A21 A22 AZn

Apn1 Apz - Ann

Relationship between adjoint and inverse matrices:

We get
1A o 0 0]
|0 4] © 0|
A(ade)=iO 0 4] 0|
l 0 0 o 1Al
Since,

A11411 + a12415 + -+ a1 A1, = |A|
Az1421 + AppAz; + -+ aypAy, = |A|
An1Any + appApy + o+ applpy = |A|
11421 + 1245, + -+ a1plzn =0
A114n1 + Q12An; + o+ A1 dpn, =0

Az1A11 + AgA15 + -+ ApAny =0
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oo 0
01 0 -~ o
~AladjH) =1All0 0 1 0|= 14l

Hence A (aﬁlA) =]

adj A
A

Similarly, we can show that (

dj A . . .
al ; = is the inverse matrix of A.

adj A
|A]

is also called the reciprocal of the matrix and is denoted by A1,

The inverse of A exists only when |A| # 0.
i.e., when A is non-singular.

The necessary and sufficient condition for a square matrix A to process the inverse that |A| is

not zero. i.e., A is non-singular.

Let A~1 be the inverse of A

S AATL =1

Hence |A||A7 Y =|I] =1

~ |A] #0and |[A7!| # 0.

=~ the condition |A| # 0 is necessary.

Let |[A| # 0
AA7L A{l d'A}
=A)—a
a4
AA™1 1A(d'A)
=—A(a
lay e
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[IAI 0 0
110 14 0
AA‘1=W|O 0 4]
L 0 0 o0
lm oo 01
0 1 0 0|
AA‘1=|0 0 1 0|=I
lo 0 o 1

Similarly, A=A = I.

Hence the condition is sufficient.

Example 1:

(AT)—l — (A—l)T

a;;  dp
a a
Let A be the matrix | 2% . 22
an1 25
a;; A anq
Then AT = A1z dp2 An2
Ain A2 Ann
_ Ay Agq
Al = adj A _ L Az Ay
Al |A] :
Ain Az
/ Ay Ag
A A
o (AT = — |F21 A2z
T
Apr Apg
adj AT
AT -1
(4") TAT|

- O O O
|

14|
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A11 A12 Aln

1|4 4 4
(AT)—l - 21 . 22 ) ?n
|A| : . :
Api Apz - Ann
Since |AT| = |A]

Hence (A7) 1 = (4~ 1T

Inverse of ABisB~1A1:

Let A and B be non-singular square matrices and their inverses be respectively A= and B~1.
Since A and B are non-singular matrices

|A| # 0;|B| # 0

~ |AB| # 0

We have AB(B~1A™1) = A(BB~1)A™! (By associative law)
AB(B71A™1) = AIA™?

AB(B71A™1) = AA71

AB(B71A™ 1) =1

Similarly, (B~*A™1)AB =1

“AB(BA™Y) = (B 1A H)AB =1

~ (AB)™' =B 1471

Corollary:

()  (ABC)l=cC-1B-14-1
(i) A *T=@A)?
(iiy @) *t=@"MH"
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Example 2:

1 2 -1
Find the inverseof [3 8 2

4 9 -1
Solution:
1 2 -1
LetA=1|3 8 2
4 9 -1

=1y 2=z ZD-2(5 )

|A] = 1(—8 — 18) — 2(-3 — 8) — 1(27 — 32)

|A] = 1(-26) — 2(—11) — 1(-=5)
|Al = —-26+22+5

|[Al=1+0

= A1 exists

All AlZ A13
Letadj A=Az Ay A

A31 A32 A33
L8 2| _|3 2
|+|9 -1 4 -1
o2 -1 1 -1
ad]A—| 9 _1 +4 _1
2 7 1 -1
l+|8 20 T3 2
(-8-18) —(=3-8) (27-132)
adjA=|—(-2+9) (-1+4)
(4 +8) —(2+3)
—26 11 =5\
adjA=| -7 3 -1
12 -5 2

+

W RS P W

O NO NO ®

N ——

-(9-9)
(8—-06)
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—-26 =7 12
Al=( 11 3 -5

-5 -1 2
Example 3:
1 2 -1
Find the inverse of the matrices [0 1 3
0O 0 1
Solution:
1 2 -1
Let A=|0 1 3
0 0 1
A1 1 djA
=—a
a1 Y
_ .11 3 0 3 0 1
II‘4|_1|() 1|_2|o 1|_1|0 o|

=1(1-0)—-2(0)—-1(0) =10

Therefore A~1 exists.

[+l 3l 1o 3+l ol
S (I I
R Ry B R B |
1 0 o0
adjA=|-2 1 0
7 -3 1l
1 -2 7
adjA=10 1 -3
0 0 1

Hence A~! = [O 1 =3

Uy
I

N

~

—
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Example 4:

1 2 1
Find the inverse of the matricesA =12 3 -1
0 -1 3
Solution:
1 2 1
Let A=12 3 -1
0 -1 3
A= - adja
=—a
a1 Y
Al =1(9—-1) — (6) + 1(—=2)
=1(8)—-12-2=-6%0
Therefore A~1 exists.
L3 -1 _|2 -1 2 3
|+|—1 3| |0 3| +|0 —1|
a2 1 11 1 2
ad]A_i |—1 3 +|o 3| |0 —1|
2 1 1 1 1 2
[+|3 —1| _|2 —1| +|2 3l |
'8 -6 21T
adjA=|-7 3 1
-5 3 -1l
[ 8 —7 =5]
adjA=]1-6 3 3
| —2 1 —11
L -8 7 5
HenceA‘lzg 6 -3 =3I
2 -1 1
Example 5:
4 2 1
Find the inverse of the matrices|—-3 0 5
-1 1 6
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Solution:

4 2 1
Let A=|-3 0 5
-1 1 6
A7l ! djA
=—a
TR

|A| = 4(~=5) — 2(—18 + 5) + 1(-3)
=-20426-3=3%0

Therefore A~1 exists.

[L]0 5] _|=3 5 =3 03
|+1 6 1 6 Tlo1 1|
ooz 4 1 |4 2
ad]A_i 1 6 tTlo1 6 -1 1|
2 1 4 1 4 2
1o sl —l=3 sl *l=3 oll
5 13 -31"
adjA=|-11 25 -6
10 -23 6|
5 —11 10 ]
adjA=|13 25 =23
-3 -6 6 |
5 -1t 10
HenceA‘1=5 13 25 =23
-3 -6 6
5/3 —-11/3 10/3
A'=113/3 25/3 -23/3
-1 -2 2

Example 6:
Find A satisfying the matrix equation

R e R

3 2
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Solution:

Given: [g ; A[_53 _23] = [_32 _41]

-3 2]

LetB=[§ ;]andc=[5 3

BB A)(cc ) =B[22 ]
A=Blc|
a=15 SIE 4G 3

[—4—3 8+1 1[3 2
L 6+6 —12-2115 3

5

[—4—3 8+1 1[3 2
L6+6 —12-—-2115 3

A2127 —24”; g

[—21+45 —14+ 27

A=136-70 24-42
124 13

A=134 _13

Example 7:
1 2 2

Showthat A= (2 1 2] satisfies the equation A> — 44 — 51 = 0. Hence determine its
2 21

inverse.

Solution:

A>—4A—-51=0

1 2 21 2 2
2 1 2012 1 2

2 2 112 2 1

A2 =
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(1+4+4 2+4+2+4 2+4+2]
A2=124+24+4 44+14+4 44242
(2 4+4+4+2 44242 4+4+1]

AZ

8 9 8
8 8 9

4 8 8
8 4 8
8 8 4

5 00
5/1=10 5 0

0 0 5

'988]

4A =

0 0 O
A2 —4A-5I=(0 0 0f[=0
0 0 O

Multiply the equation by A~1
A71A%2 —4AA T —5IA 1 =0

A—4-54"1=0

A—4=54"1
A—4
A—l_
5
[1—-4 2—-4 2-—-4
A—4=12—-4 1-4 2-—-4
2—-4 2—-4 1-4
[—3 -2 =2
A-4=|-2 -3 =2
-2 -2 =3

I
I

vl N v N Ul w
I

vl N Ul w Ul N
I

vl w Ul N U N
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3
AN
Il
|

vl Nl D U w
|

vl N Ul w ol N
|

vl wull DU N

Example 8:
_[5 3¢ -1
HA—L AﬁMA+A

Solution:

5 3
7 4

Let A = [
|A] =20—-21= -1 =0.
Therefore, A~1 exists.

adja=["% 7

~7 5
e e

Hence A+ A™! = [3 Z + [_74 _35] - [114 —61]

Example 9:

wAzﬂléleﬁ ﬂczg ﬂ}%wmmmmgﬂzcﬂWMﬂ

Solution:
e KA [ R A
ABC = [18 [ ] 54-r77 zi;-?g 112 iii
(ABO) ™ = IA ol ——adj(ABC)

|ABC| = —2227 + 2223
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=—4

adj(ABC):[_1137 —113711]
s == 2

wpey =217 U] M
¢! =12 adj(C)

|C|=27—28=—1¢0

= C~1 exists

adj(€) = [—97 _34]

7 )

-1 _ 1 3
B~ = IBlad](B)

~ BT exists

dj®) =2 5]

-1 _ 1 5.
AT = radj(A)

~ A~1 exists
, 0 —4
adj(C) = [1 ; ]
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S A | |

-7 SRl ]
o 2ol 5]

c-1p-ipt =20+ 17 52+119]

0-13 —-40-91

=

17 171 ]
-13 -131

c'BtA =1

4

From (1)&(2) equation,
(ABC)™! = c~1B~14"!

Hence Proved.

Example 10:
1 -1 O
Show that if A = —1 —1|,A%3 =342+ 34— 21 = 0. Determine A71.
1 0 1
Solution:
1 -1 0171 -1 O
A>=10 1 -1llo 1 -1
1 O 1111 O 1
1-0+0 -1-140 04+1+40
=10+40-1 04+1-0 O0-1-1
1+40+1 —-14+404+40 0-0+1
1 -2 171 -1 O
AB3=4%2A=|-1 1 =2llo0 1 -1
2 -1 1111 O 1
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(1-04+1 —-1-240
AB=|-140-2 1+1-0
[1-04+42 —-2-140

(2 -3 3
A3=|[-3 2 -3
13 -3 2

1 -2 1 3 -6 3
34=3|-1 1 -=2|=|-3 3 -6

2 -1 1 6 -3 3
1 -1 O 3 -3 0
3A=3|10 1 -1|=|0 3 -3
1 0 1 3 0 3
2 0 0
2I=10 2 O
0 0 2

A3 —3A2+3A-21=0

2 -3 31 [3 -6 3] [3 -3 0] [2 0 0
-3 2 -3|-|-3 3 -6|+[0 3 -=3]-]0 2 o|=0
13 -3 21 le -3 31 I3 0o 31 lo o 2
-1 3 0] [1 -3 0
0 -1 3|+|0 1 =-3|=
-3 0 -1l I3 0o 1
000
0 0 0[=0
000
0=0
A3 —3A42+34-21=0....cc....... (1)

= (1) XA 1242 —34+31-24"1=0

2471 =A% -3A+3I

1 -2 1 3 -3 0 3 00
27 '=]-1 1 =2{-lo0 3 -=3|/+|0 3 0O
2 -1 1 3 0 3 0 0 3
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-2 1 1 3
27 1=1-1 -2 11|+]|0
-1 -1 -2 0
1 1 1
27 1=1-1 1 1
-1 -1 1
. 1 1 1
A1t =3 -1 1 1
-1 -1 1
Example 11:
1 1 0
Showthatif A=| 0 1 -1/, A satisfies the equation A3 — 34%2 + 34 — 21 = 0.
-1 0 1
1 1 0 1 2 3
Calculate A~* Solve theequation| 0 1 —-1|X=1]4 5 6|
-1 0 1 7 8 9
Solution:
A3 =A% A
1 1 0 1 1 O
A2=0 1 -1|f0 1 -1
-1 0 11L-1 0 1

[1+0-0 1+1+0 0-—-1+0
=10+0+1 0+1-0 0-1-1
-1+0-1 -1+0+0 0-0+1

1 1 0
0 1 -1

-1 0 1

1 2 -1
A2 A=1]1 1 -2
-2 -1 1

[1+0+1 1+2-0 0-2-1
AA=[1+0+2 1+41-0 0-1-2
-2+0-1 -2-14+0 0+1+1

A3 =13 2 -3

[ 2 3 —3]

-3 -3 2
3 6 -3
342 = 3 3 -6
-6 -3 3
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A3 —3A*+3A-21=0

2 3 -3 3 6 -3 3 3 0 2 0 0
3 2 =-3]1—-13 3 —-6/+]0 3 =-3[—-10 2 0]|=0
-3 -3 2 -6 -3 3 -3 0 3 0 0 2
-1 -3 0 1 3 0
0 -1 3|+|0 1 -3(=0
| 3 0o -1 -3 0 1
0 0 O
0 0 0|=0
0 0 O
0=0
Hence Proved.
A3 —3A24+34—-21=0............. (1)
= (D)XA1=242-34+31-24"1=0
2471 = A2 —3A4+ 31
[ 1 2 -1 3 3 0 3 0 O
247 '=11 1 =2{-l0 3 =3]+f0 3 0
-2 -1 1 -3 0 3 0 0 3

1 -1 -1
27t =11 1 1

1 -1 1
11 -1 -1
A"1=51 1 1
1 -1 1
1 1 0 1 2 3
0 1 —-1|1X=1]4 5 6
-1 0 1 7 8 9
AX =B
AT'AX =A"'B
X=A"'B
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Exercises 1:

1. Showthat 4 =

determine its inverse.

3
2
0

2IfA =

) 1 —1
> 1 1
1 -1

1'—10
-1 12
2

L 4

0

1

-1
1
1

-11
15
5

=7

_wno! 2 3
4 5 6
7 8 9

—-12
18
6

] , show that A=1 = 43

3.0fa=[> 7] showthat 4% — 54+ 71 =0.

EIGEN VALUES AND EIGEN VECTORS:

Given a matrix A of order n, determine the scalar A and the non-zero vectors X which

simultaneously satisfies the equation

AX =X,

Let A be

ajq
azy
asy

and X be

X1
X21.
X3

Hence the equation AX = AX becomes

a;;  dp
a1 Ay
asz; dQasp

a11%1
i.e., |A21%1

asz1Xy

a13X3] [ Ax;
Ax3X3| - | Ax,

a33X3

X1
X2 1.
X3

|

[1-4—-7 2-5-8 3-6-9
1+4+7 2+5+8 3+6+9
1-4+7 2-5+8 3-6+9

—1] satisfies the equation 43 — 342 + 34 — 21 = 0. Hence
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(a;1 — Dxy + appx, + a;3x3 = 0.
a21x1 + (azz - A)XZ + a23X3 = 0
Az X1 + asyx; + (azz — Dxz =0.

These equations have non-trivial solutions are when

a;; —A aqz ag3
a21 a22 - }\ a23 = O
asz; asz azz — A

The expansion of the determinant gives a polynomial of degree 3 in A which is denoted by ¢

).
The equation ¢ (L) = 0 is called the characteristic equation of the matrix A.

The root of this equation are called the characteristic value or latent values or eigen values of

the matrix A.
Let P be the matrix formed by the eigen vectors x,, x,, x5.
ie., P = [xq1,x,, %3]
AP = A[xq,x4, %3]
= [Axq, Ax,, Axs]
Since x4, x5, x4 satisfy the equation AX = AX when A = A1, A2, A3 we have
AX, = Mx,AXy = Ayxy ,AXs = Azxs.

Therefore AP = [Alxl Azxz ) /‘13x3]

A, 0 O
= [x1, X2, X3] [O Ay 0]

0 0 A5
=PD

ie., PLAP =D

Here D is diagonal matrix.
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Note:

1. The characteristic equation of the matrix A is [A —AI] = 0.

2. If the roots of the characteristic equation are not distinct. It may not be possible to
Diagonalise the matrix A.

Corollary (i):

AP =D, A=PDP!

Corollary (ii):
A, 0 0
0 0 A
M—A 0 0
Its characteristic equation is [ 0 A=A 0 [=0.
0 0 A3 —A

ie., Ay —A) (A, —A)(A; —A) =0.

Hence the eigen values of D are A1, A2, As.

Hence A and D have the same characteristic equation and the same eigen values.
Corollary (iii):

The eigen vectors of the matrix are linearly dependent.

We have to show that if c;x; + c;x, + c3x3 = Othenc; = ¢, = ¢ = 0.
Let us assume c;, c,, c3 exist such that

C1X1 + Xy + Cc3x3 = 0 .......... 1)

Multiplying this equation (1) by A we get

612.114 xl + Czﬂ.zA xz + 631314 x3 = O
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i.e.,ciAy x1 + Ay x5 + c3A3x3 =0
Multiplying this equation (2) by A we get
CiAAxy + A X, + c3A3Ax3 = 0

i.e.,CiA13 X1 + Aoy x5 + 33,3 = 0. e o .. (3)
These three equations (1), (2), (3) may be written in the form

1 A A2
[c1X1 Coxp c3x3] |1 A, A2[=0. oo, (4)
1 A AP

1 A A
If M1, A2, ha are all unequal then |1 A, A,%| # 0 and hence the matrix
1 A A3l

2
1 4 N
B=[1 A, A,%|isnon-singular and hence an inverse of the matrix exists.
1 A A3’

If we multiply equation (4) on the right by the inverse of the matrix B, we have

[c1x1 C2x2 c3x3] = 0.
Since no X is zero, it impliesthat c;, = 0,c, = 0,c; = 0.
Hence x4, x,, x5 are linearly independent.

Corollary (iv):

The determinant of the matrix A is equal to the product of its eigen values and is numerically

equal to the absolute term of the characteristic equation.

Let A, A,, A5, be the eigen values of the matrix then

a;; — A 2Y) a3
azy Ay — A as =—=(A=2)A=A) (A —213)
as; as; azz — A

Putting A = 0 on both sides, we get |A| = A A5
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Corollary (v):

The sum of the elements on the diagonal A is the sum of the eigenvalues of the Matrix

a;; — A ag» a3
The characteristic equation is | a4 Ay, — A a,; |=0.
as; as; azs — A

Sum of the eigenvalues = Sum of the roots of the characteristic equation

__ Coefficient of 22
Coefficient of 23

A% and A2 occurs only in the term (a;; — A)(az, — 1) (ass — A). When the determinant is
expended.

Coefficient of A* = —1
Coefficient of A = a,; + ay, + a3

Hence a,; + a,, + a33 = Sum of the eigen values of the matrix A.

Example 1:
2 -2 3
Diagonalise the matrix |1 1 1
1 3 -1
Solution:

The characteristic equation is,
2-2) -2 3

1 (1—2) 1 |=0
1 3 (-1—2)

(=23 + 24, +51—6) = 0

A-=1DA+2)(A—3)=0

s A=-213.

When A = 1, the equation becomes,
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X1 — 2%, +3x3=0
x1+x3=0
X1 +3x,—2x3=0
Hence 2 =2 =2
-5 5 5
Therefore, x; = —1,x, =1,x3 =1
X, =(-1,1,1)
Similarly for the value of A = —2, the eigen vector is

XZ = (11)1) _4)

And for 1 = 3, the eigenvectors X; = (1,1,1)

-1 11 1
Hence P =] 1 1 1
1 =14 1
) -15 25 -10
WecaneasilyseethatP*:% 0 2 =2
15 3 12
Hence

2 =2 3 1 [-15 25 -—-10]j1 O O][—-15 25 -10
1 1 1|=551 0 2 =21/10 =2 0f] O 2 =2
15 3 12110 0 3/fL15 3 12

Example 2

Show that if 4 is an eigenvalue of the matrix A, then A™ is an eigenvalue of A™, where n is a

positive integer.
Solution:

Let P be the matrix with is such that P~*AP = D where

A0 O
D=]0 1, 0 ] where 44, 4,, A5 are the eigenvalues of A.
0 0 A3
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Hence (P~*AP)(P~'AP) = D.D

P 1A(PP~Y)AP = D?

P~1AIAP = D?

p~1A?p = D?

Multiplying this equation by P~*AP on both sides we get
(P~1A2P)(P~1AP) = D2(P1AP)

P~1A2(PP~V)AP = D2D

P~1A%]AP = D3

p~1A3p = Dp3

Continuing this process, we get P~1A"P = D"

Hence A™ and D™ have the same eigenvalues.

A0 0
pr=|0 A% 0
0 0 A7

.~ The eigenvalues of D™ are A}, A%, 1%.
Hence the eigenvalues of A™ are A%, 1%, A%.
Similar matrices:

Two matrices A and are said to be similar of there exists a non-singular matrix P such that
P~'AP=B

If D is the diagonal matrix whose diagonal elements are the eigenvalues of the matrix A, then

A and D are similar matrices.
Example 1:

If A and B are similar matrices, they have the same characteristic equation.
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gk

Since A and B are similar, a matrix P exists such that
B =P AP
B =2 =P7AP — Al
=P 1AP — P71AIP
=P~ 14— ADP
Hence |B — Al = |P~1(4— ADP|
= [P~1{]4 = A1[P|
= [P7HIPllA - A1]
= |P71P||A — Al
= |I]|A = Al
=|A— Al
The characteristic equations of A and B are respectively |[A — AI| = 0and |B — AI| = 0.
Hence they are equal.
Corollary:
Two similar matrices have the same eigenvalues.
Cayley — Hamilton theorem:
Every matrix satisfies its characteristic equation.
Proof:

Let A be a matrix of order n.

a;; —4 12 A1n
. - a21 a22 - /‘1 aZTL
The matrix [A — AI] is . . .
an1  Apz o Qpp — A
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Let |[A — Al| be ag + a; A + az A% + -+ + an/l .

Since {adj A}A = |A|l,

We have {adj [A — AI}[A— AI] = |A—Al|I

Hence adj [A — Al] is of the form

By + ByA + ByA? + -+ + B, A"1

Where By, B4, B,, ..., B, are matrices of order n.

o (By+ BiAd+ BoA%2 + -+ By AV DA = A = (ag + ;A + aA% + -+ + a,AM)I

Equating the different powers of A on both sides we get,

BoA = 0(01
BlA - BO = all
BzA - Bl = azl

_Bn—l = anl
Multiplying these equations successively by 1, 4, 42, ...., A"~ 1, A" and adding we get
A A" + AV e+ A+ agl =0

Hence A satisfies its characteristic equation.

An important application of the Cayley-Hamilton theorem is to express the inverse of a matrix

in terms of powers of A.
we have shown that

aol + A+ -+ ay AV +a, A" =0
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Where o, # 0 and |A| # 0.
o aol == —(llA - a2A2 — = anAn

Per-multiplying by A~1, we get

apA™ = —a;A7TA — a,ATTA2 — o — @, ATIAT
aoA_l = —a11 - azA — e anAn_l
~ A7 = _ﬂ]_@A_..._ﬁAn—l

24 24 24

Higher powers of the matrices
Another important use is to calculate the higher powers of the matrices.

This is illustrated in examples 2 and 3 given below.

Example 1:

2 2 0
Find the characteristic equation of the matrix A= 2 1 1 | and hence determine

-7 2 -3
its inverse.
Solution:

2—21 2 0
The characteristic equation is | 2 1-2 1 =0
-7 2 -3-1

Simplifying we get 2> — 131+ 12 = 0.
Hence the matrix A satisfies the equation
A3 —13A+121=0

Per-multiplying by A1, we have

A2 — 131+ 12471 =

s 12471 = 131 — A?
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2 2 0112 2 O
A2=(2 1 1 2 1 1|=
-7 2 =311-7 2 =3
1 0 0 8 6 2
12A7*=13{0 1 o|—-|-1 7 =2
0 0 1 31 -18 11
13 0 O 8 6 2
12A7*=|0 13 0Of—-|-1 7 =2
0O 0 13 31 —-18 11

12471 =] 1 6 2

-31 18 2
1[5 -6 -2
At = ol 1 6 2
—-31 18 2
Example 2:

If4A = [43} g] determine A™ in terms of A.

Solution:
The characteristic equation is given by

4-) =21_
3 3—/’1_0

A—-71+6=0

Hence A satisfies the equation

A2 —T7A+61=0

Let A" = f(A)(A2—71+6) +pAl+qgwhereA=10r6,12—-71+6=0

~1"=p+q,6"=6p+q
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6" — 1A+ (6 — 6™
An=f(/1)(/12—7/1+6)+( ) : ( )

(6"-1)A+(6—6™)I
5

Hence A™ = f(A4)(4%2 — 74+ 6) +

A" =2[(6" — 1A+ (6 — 6")I] since 42— 74 + 6 = 0

An =

6" — 1 6 — 6"
=I5 sl+——o 1

Example 3:

4 [ 3
Calculate A* when A = [2 4]
Solution:

The characteristic equation of the matrix A is

1-4 3
2 4—-2

=0

A2 —51-2=0
~A>—54-21=0

Hence A% = 54 + 21

@ A* = (5A+ 2D)(5A + 2D)
A* = 25a?% + 204 + 41

A* = 25(54 + 21) + 204 + 41

A* = 145A + 541

A4=14SB i]+54[(1) (1)

A4 = 145 435 +[54 O]

~ 1290 580 0 54

s _[199 435
4 [290 634
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Exercises 2:

1. Find the eigen vales of the following matrices:

~[8 —4
O 7]

-2 2 -3
(ii)[z 1 —6]
-1 -2 0
3 1 4
(1ii) [O 2 6]

0 0 5

2. Find the eigen vales and the eigen vectors of the following matrices:

1 -1 0
() [ 1 2 1 ]
-1 2 -1

(ijr 3 1

1 2 2

221]

3. Diagonalise the following matrices

7 =2 =2
Mml-2 1 4
-2 4 1

15 4 3
(ii)[lo ~12 6]

20 —4 2
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Unit IV

Expansions of sin n 6, cos n 6 in powers of sin 6, cos 6 - Expansion of tan n 0 in terms of tan
0, Expansions of cos" 6, sin" 0, cos™ 6 sin" 6 —Expansions of tan(01+602+ ,...,+0n )- related

problems.

EXPANSIONS

Expansion of cos@ and sin@
we have (cosn@ +isinnf) = (cos 8 +ising)"

If n is a positive integer, the expression on the right hand side can be expanded by Binomial
Theorem. Hence,
nn-1)

(cosnf +isinné@)= cosn 6+ ncos" ! @ (isin 8) = cosn 0 (isin 6)?

PO n-3 ..
+W cos @ (isin@)+......

i2 =10 =00 =10 =,

. n - n-2 .. —1)(n—=2)(n- n-4
(cosn@ +isinnd )= cos 0+$ cos © @ (isin 9)% +2" 1)(’1' D03 ons " g

n(n-1)(n-2)
3!

(isin 6 )*....... +i(ncos"t O sin 6 + Cos"2 )

Equating the real and imaginary parts we have

n - n-2 . —1)(n-2)(n—-
COSI’]H = COS 6 — % cos 9 s|n2 9+n(n 1)(7;' 2)(n-3)

sinnd = ncos™ 10 sin 6 + 2072 54403 gein3 g + ...
3!

Note:

1. The terms are alternately positive and negative

2. Each series continues till one of the factors in the numerator is zero and then ceases.
3.The sum of the powers of cosB and sinb in every term of the expansions equals n.

Both the series are in descending powers of cos6 and in ascending powers of sinf
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Corollary 1:

sin n@ ntn—1)mn-2
: =ncos™ 10 + ( X )cos"‘395in2 6+ -
sinf 3!

=ncos™ 16 + Wcos”*@(l —cos?0) + n(n_l)(n_2;|(n_3)(n_4) cos™ 50

(1 — cos?60?) + -
Similarly in the expansions of cos né, by putting
sin?0 =1 —cos? 0

Cos n 0 can be expressed in a series containing powers of cos 0.

Corollary 2:

Coefficient of cos™ 8 in the expansion of
sinné 1
sing e +n., +n, +--=2

Corollary 3:

Coefficient of cos" 8 in the expansion of

cosng =ng, +n,, +n, +-=2""1

0

Expansion of tan n 0 in powers of tan 0

sinné@
tannf =

cosné

cos™ 6 +n., cos"*0sin*6 + n,, cos™ *Gsin*6 + -
tannf =

ncos™ 1 0sinf + n., cos"30sin36 + -

On dividing both the numerator and denominator by cos™ 6

Expansion oftan (A+B +C + ..))
CosA+isin A=cos A (1 +itan A)
cosB +isin B =cosB (1 + i tan B)
cos C+isinC=cos C(1 +itanC)
~(cosA+isinA)(cosB +isinB)(cosC+isinC)...
=cosAcosBcosC..(L+itanA)(1+itanB)(1 +itan C)...
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¢

oooooooo

=cosAcosBcosC..[1+i YtanA4 +i2Y tan taﬁ B+i®Y tanA tan B]
=cosAcosBcosC...[L+iS1 - S - 1S3+ ...]

Where Sy is the sum of products taken r at a time of tan A, tan B, tan C,...
Equating the real and imaginary parts on both sides, we have
cos(A+B+C+..)=cosAcosBcosC..(L-S, +S4 +...)
sin(A+B+C+..)=cosAcosBcosC..(S1-Ss+Ss+...)

san(A+B+C+. )= 325 L~

1-52+S54 +..

Corollary:

Putting A=B=C=...=6 taking nangles

Where Sy is the sum of the products taken r at a time of tan A, tan A, ..., tan A n terms
Hence S1=tan 6S,=n,, tan® 0, Sz =n,, tan® 6 .....

ne, tanb —n., tan®0 + -
1—-n., tan? 6 + n,, tan*6 + -

tannf =

Example 1:

Express cos 86 in terms of sin0

Solution:

cos 86+i sin 86=( cos 86+isin 86)%

=co0s®6 + 8., cos” 8 (isinb) + 8.,cos°f(isind)* + -

=cos®0 — 8.,c0s°0sin?6 + 8., cos*Osin*0 — 8. cos*Osin®0 + 8, i(8.,cos’Bsinb +

8.,c05°0sin0 + 8. cos*Osin°0 — 8., cosfsin’

Equating the real parts, we have

cos 860 =cos®0 — 8.,c0s°0sin®6 + 8., cos*Osin*0 — 8., cos*Hsin®0 + 8, sin®é.

cos86 = (1 — sin?0)* — 28(1 — sin?0)3sin?6 + 70(1 — sin?0)?sin*0 — 28(1 —

sin?@)sin®0+.sin%0

c0s80 = (1 — 4sin?0+6sin*0—4sin®0+sin®9) — 28(1 —
3sin?0+3sin*0—sin®0)sin?6) + 70(1 — 2sin?0+sin*6)sin*0 — 28(1 —
sin%0)sin®0+sin®0

cos80 = (1 + 28+ 70 + 28 + 1)sin®0 + (—4 — 84 — 140 — 28)sin®0 + (6 + 84 +
70)sin*0 + (—4 — 28)sin?6 + 1

96

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Example 2:

in6o .
% in terms of cos 6
sin@

Solution:

Express

cos 66+i sin 68=( cos O+i sin 9)°

=cos%0 + 6, cos®0(ising) + 6.,cos*6(ising)? + 6.,cos0(isind)* + 6.,cos?6(isinf)* +

6.,c0s0(ising)® + (isind)®

=cos®0 + 6.,cos*Osin?6 + 6., cos*Osin*0 — sin®0 + i(6,,cos*Osind — 6.,cos>sin30 +

6., c0sOsin>0
Equating the imaginary parts on both sides,
Sin60 = 6., cos°0sind — 6.,cos>0sin30 + 6. cosb sin>6

sin68 = 6¢cos°0sind — 20cos30sin36 + 6 cosO sin°0

Ssi::’: = 6c0s°0 — 20c0s30sin?6 + 6 cosO sin*0
=6c0s°0 — 20c0s30(1 — cos?0) + 6(1 — cos?0)?
=32c0s°0 — 32c0s30+ 6 cosf

Example 3:

If a,B and y be the roots of the equcation x3+px? + gx + P = 0. Prove that tan™'a +

tan™! B + tan! y = nm radius except when g=1.
Solution:
x3+px? +qx + P = 0.

atp+y=-p

af + By + ay =q,

afy = —p

tan"la = x;,tan" ! B = x,,tan"ty = x5

a = tanxy, f = tanx,,y = tanx,

tanx, + tanx, + tanx; = —p ,S1=p
tanx;tanx, + tanx,tanx; + tanx tanx; = +q ,S2-(
tanx tanx,tanx; = —p ,S3= — D
$375 _ 7P +p

tan(x; + x, + x3) = T 1-¢
2

tan(x; +x, +x3) = 0
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oooooooo

(xy + x, + x3) =nm

tan"la+tan g +tan"ly = nn

Example 4:

ab bc
cos6 sinf

Prove that the equation = a? — b? has four roots and that the sum of the 4 values

of Bwhich satisfy it is equal to an odd multiple of radius

Solution:
. 2 tan- 1—tan2§
We know that sin 8 = g, COsO = 9
1+tan?> 1+tan?>

1-t2

. 2t
sinf = —, cosf =
1+t2 1+t2

Where t=tan 6
ah(1 +t?) B bk(1 + t?)
1—t? 2t
2tah+(1+t2)-bk(1+t2)(1-t?)=a? — b2 (2t) (1 — t?)
2tah+2t3ah — bk(1 — t*) = 2t(a® — b?) — 2t3(a? — b?)
2tah+2t3ah — bk + bkt* — 2ta? + 2tb? + 2t3a? — 2t3b? = 0
Bkt* + 2t3(ah + a? — b?) + 2t(ah — a?+b?) — bk =0

Lett; t, t3 andt, bethe

=a2_b2

Sl:_TZZ_Z 53:%2:—2
0 —-11
SZZI:O S4:—:_11
tan(ﬁ+&+%+%):ﬂ

2 2 2 2 1—52+S4_

denominator, 1-0-1=0

tan(Z+2+2+2%) =0
2 2 2 2

6, 6, 6; 6,

2 27272

91+62+63+64:(2n+1)ﬂ:

T
2n+1)=
2n+ )2
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Example 5:
Find the equation whose roots are 2cos 27” 200347”, 2cos 67”

Solution:
By previous sum,
Sin70 = 7sinf — 56sin30 + 112sin°0 — 64sin’0
sin76
sinf
=7 — 28(1 — co0s20) + 28(1 — c0s20)? — 8(1 — cos20)3
We know that

c0s28 = 1 — 2sin?6

=7 — 56sin%60 + 112sin*0 — 64sin®6

_ 1 — cos26

sin2 = ———
2
sin70
s 7 — 28 + 28c0s260 + 28 + 28c0s5%20 — 56c0520 — 8 4+ 8cos326 — 24cos?26
+ 24co0s260

sin76

— = 8053260 + 4c0s?%20 — 4cos26 — 1
sin@

put x = cos20

sin76
—— =8x34+4x%—-4x -1
sin@
Where 6 = +%,+ 2, + 3%
7 7 7

sin76 = 0
8c0s320 + 4c0s%20 — 4cos260 —1 =0
Has the roots, +Z,+ 2%, + 32
7 7 7
Put cos26 = x we get,
8x3 + 4x%2 — 4x — 1 = 0 has the roots Cos+ 2711, cos+ 47”, cos + 67”
Let y=2X

y3 —y2 -2y —1 = 0 has the roots 2cos 27”, 2cos47”, 2c0567”

Example 6:

2 4 1
Show that cos =, cos=—, cos — = =
9 9 9 8
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Solution:
We know that
c0s98 = 256¢0s°0 — 576co0s’0 + 432cos>0 — 120cos36+ 9cosh

h _ 2w 4w 6m 8m 10m 12m 14m 16m
W eree—o)_)_l_l_l_ﬁ_ﬁ_'_
9 9 99 9 9 9 9

therefore, 1=256c0s°0 — 576co0s’6 + 432cos°6 — 120cos36+ 9cosh
put x= cos@
256x° — 576x7 + 432x° — 120x3+ 9x has the roots,

2T a1 6T 81T 101 121 141 161
cos0 =1,cos ~ » €08 =, €0S—=,€08~=,C0S —=,C0S—=,C0S—=,C0S — =

since 1 is a root
(x -1) is the factor
256x8 + 256x7 + 320x°® — 320x5+ 112x* + 112x3 — 8x2 — 8x+1=0

2T Y 6T 81 107 121 141 161
has the roots, cos =5 1 C0S —,C0S—~,C0S~—~,C0S ==, C0S ==, C0S—~,C0S —~,

181 207
coS —,C08S —
9 9

The equation cos(2m — 6) = cosO
256x8 4+ 256x7 + 320x° — 320x5+ 112x* + 112x3 — 8x2 — 8x+1=0

Has the roots

2T 4 é6m 8w
2 2 2 2
cos (9)'COS ( 9>'COS <9>'COS (9)

Taking square root on both
16x* + 8x3 — 12x2 —4x+1=0

2T 1 6m 8m
c0OS—, COS—,COS —, COS —

9 9 9 9
bmr 2r 3 17‘[
cos = cos( 3)—cos( )3

3T T
=C0S —— (oS —
3 3

= — N o
=cos(m >) cos 3

. 2 4 8 -1
The equation has the roots cos?n, cos?”, cos?” >

X:_71 ,2x + 1 is a factor of the egn

2T 4 8m
COS—, CO0S —

08797, €057 9
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21 41 81
COS—COS—COS— ——
9 9 9 2

8t T T
cos 9 = cos(m 9) = cos9

T 2T 471_1
cosgcos 9 cos 9 =38

Example 7:
. . 2 3 4
Find the equation whose roots are tan%, tan?”, tan ?”and tan?n

Solution:
We know that
tan50 =tanf — 5cytan®6 + 5cstan®0
1 — 5c,tan? + 5c,tan*d

T 2w 3m 4m
where 9 = O,E,?,?,?
tan50 = 0
5tand — 5cytan®d + 5cstan®0 = 0

2 3 4
Has the roots when 8 = Og?”?”?”

Puttanf = x

5x — 10x3 + x> = 0 has the roots tan0, tan %, tanz?n, tans?”, tan%ﬂ
Since 0 is the roots of the equation we have

x*—10x%+5 = 0 has the roots, tan%,tanz?n, tans?nand tan%ﬂ

Example 8:
Prove that tan = tan 2= tan == tan == tan 5—”:\/ 11
11 11 11 11 11

Solution:
We know that

nc, tanf — ncgtan0 + nestan®0 — ne,tan’ O+ncgtan®d — ney tantlo

tan116 =
an 1— 11c,tan?6 + 11c,tan®d — 11cgtan®d + 11cgtan®d — 11c;otantod

m 2w 3w 4m 5m 6m 7m 8m 9m 10w

where 8 =0,—,—,—,—,—,—,—,—,—,—
117117117117 117 117117117117 11

If we put tan116 = 0,we get the eqn
11tanf — 11cstan30 + --- tan'l = 0 - (1)
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, See

m 2m 3m 4m 5m 6m 7m 8m 9m 10w

has roots tanf,where 0 is 0, —,—,—,—,—,—,—,—,—,
11°11°11°11°11 " 11"°11° 11 11" 11
Put tand = x then the egn (1) reduces to

11x — 165x3 + 462x° — 330x7 + 55x° —x11 =0

Hence equation (2) has roots 0,

T 21 3T 41 51 61 7T 8 o
tan—,tan —,tan—,tan—,tan —,tan—,tan—, tan —,tan—, tan
11 11 11 11 11 11 11 11 11

since
107 T Ot 2T 8r 3
tan ETEE tanﬁ, tanﬁ = —tanﬁ, tanﬁ = —tanﬁ,
4m 61 5n
= —tanﬁ, tanﬁ = —tanﬁ

x10 — 55x8 + 330x% — 462x* + 165x* —11x =0

51

Has roots itanl, +tan 2—”, itang—n, itan4—n, +tan
11 11 11 11 11
put x2 = y then the eqn (3) reduce to
y® —55y* + 330y% — 462y% + 165y — 11 =0

This equation has roots,

T 2T 3T AT T 2T 3T 41T
tan®? —  tan? =, tan® =, tan®— : tan®*—tan?® =tan?=—tan?*—
11 11 11 11 11 11 11 11
T 21 3w 41 5w
tan—tan—tan—tan—tan—=+/11
11 11 11 11 11

The negative sign is discarded

- (2)

107

11

7

t -
anll

- (3)

- (4)

11

Since all the terms of the expression on the left side are positive, each angle involved being a

side.

Example 9:

Expand tan48 in terms of tan 8 and show that tanl’T—G,tani—Z, tani—z,tan—: are roots of the

equation.
Solution:
x*+4x3 —6x2—4x+1=0

51—53 4cq tanf—4cztan36
1-5,4s,  1—4cytan?@+4c,tano

tandf =

_ 4x—4c3x®
1—4cyx2+x*

m 57 9w 13w
16’16’16’ 16’

13
1

102

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



tan(46) = tan(%) tan( =) tan(%) tan (=)

xt—6x%2+1—4x+4x3 =
Powers of sines and cosines of 8 in terms of function of multiples of 6.

LetcosO +isinf = x
then cos@ — isin 8 =§
Adding , 2cos 0 = x +~ ... (1)

Subtracting, , 2isin @ = x =~ ................ )

x"=(cosf + isinf)™ = cosnb + isinnf

1
— = (cos6 + isinf)™™ = cosnb — isinnd

xm
x"+xin = 2cosnf  ............... 3)
x"-xin = 2isinn6 ceererreennen(4)

We make use of three relation (1)(2)(3) and (4) to expand cos™6 andsin™8 in series of cosines

and sines of multiples of 6.

Expansion of cos™@ when is a positive integer

2cos 6 =x+%

(2cosO)=(x + %)”

-1 n—ll n—zi 2 1 _1 i
A T A e e R IR [0S v L[S IRE o
= X 4 ng (X2 4——) + 1oy (X H——) + -

- X7 1 x—2 2 x—4

Since
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1
x”+x—n = 2cosnf ,we have

2"cos™0 = 2cosn 8 + nc; 2cos(n — 2) 8 +nc, 2cos(n—4)60 + ...

2" 1cos™0 = cosn @ + ne; 2cos(n — 2) O +nc, 2cos(n—4)0 + ...

Note:

1)

2)

n
If n is odd there will be (n+1) terms in the expansion of (x + 1;) and hence these can

be grouped in pairs. Hence the last term contains cos6.We can easily see that the

coefficient of cosé in the expression of

2" 1cos™0 is independent of 0 and is equal to %TlC(n—Q
2

n
When n is even, the number of terms in the expansion of (x + 1;) is (n +1) and the

middle term is independent of x and is left over when all the other terms are grouped in

pairs hence the last term in the expansion of

2" 1cos™0 is independent of 6 and is equal to %ncz
2

Example 1:

Expand cos®d and cos®@ in series of cosines of multiples of 6

Solution:

Let Xx=cos 8 + isin @

Then (2c0s8)® = (x +2)°

=x6 + 6¢,x° i + 6,1t xiz + 60523 x% + 6422 x% + 6c5xxi5
=(x6+=) + 6c1(x4+$) + 6c2(x2+$) + 6c3 + -

x6

=2c0s60 + 6¢,(2c0s48) + 6¢,(2c0s20) + 6¢y

2° c0s%0 =cos60 + 6(cos40) + 15(cos26) + 10

c0s*0=— (cos60 + 6(cos40) + 15(cos26) + 10)
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again (2cos8)® = (x + i)S
_ 1 1 1 11
=x° + 5¢;x* -+ 5cyx8 St 5cyx? SSaxS+ =
1 1 1
=(x%+=5) + 56 (x*+5) + 56, (x+))

=2c0s50 + 5¢,(2c0s30) + 5¢,(2cos0)
2* c0s°0 =cos50 + 5(cos30) + 10(cosh)

Expansion of sin™@ when is a positive integer

1
2isinf = x ——
X

(2isin®)"=(x — i)”

— 1 n-11 n-21 _ n-3 1, ..
=XT - et + neyx R L% +
Case (1) niseven

The number of turn in the expansion is odd. The sings of the term are alternatively positive and negative and

the last term is positive.

. . 1 o1 1
(ZlSlTlg)n = (xn+x_n) — TlCl(Xn 2+;) + ncz(xn 4+F)

(i.e.)(Z”)(—l)gsin”H = (2cosnf) — nc;2cos(n — 2)6+nc, cos(n — 4) 0 ...

Hence,
n
((—1)?(2”‘1)) sin"@ = (cosnf) — nc, cos(n — 2) 6 + nc, cos(n — 4) 9 ...

case (2) nisodd

1
(2isin@)™ = 2™ —nex™ 4 nex™t L - —
xn

1
xn—2

1
)

1
=(x"=) — ne (x4 —=) + ne, (x4
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=(2isinn®) — nc, 2isin(n — 2)6+ nc, 2isin(n — 4)

(ie) 2" 1(i)* Lsin™ = (sinnd) — ncysin(n — 2)0+ nc, sin(n — 4) 0 ...

(ie) 2"‘1(i)n7_1$in"9 = (sinnf) — neysin(n — 2)0+ ne, sin(n — 4) 6 ...
Example 1:

Expand sin’ 8 in a series of sines of multiples of 6
Solution:

we have,

— N7 = 7 7S 3 _ ss_2,1_ 1
(x =) =x"=7x>+21x° =35x+ ———+ 5 — =

=(x7- ) = 7(x5=) + 21(x*+=3) — 35(x — 2)
putting Xx=cos 8 + i sinf
so that , x”-xin = 2isin n#@ for all integral values of n, we have
(2isin 8)7 = 2isin 76 — 7( 2isin 50) + 21(2isin 30) — 35(2isin #)
(i.e.) 25(-1)sin’f = sin 76 — 7(sin 50) + 21(sin 38) — 35(sinA)
sin’f = ;—i(sirﬂ@ — 7sin 560 + 21sin 36 — 355sin 6)

Example 2:
Expand sin®8 in a series of sines of multiples of &
Solution:

we have,
(x—%)f’=x6—6x4+15x2—20+i—2—:—4+$

1 1 1
:(x6- F) - 6(x4-F) + 15(x2+;) — 20
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putting x=cos 6 + isinf x — % = 2isinf and x”+xin = 2cosn@ for all integer value of

n
(2isin 8)® = 2cos6 6 — 6( 2cos40) + 15(2cos26) — 20
(i.e.) 2°(-1)*sin®d = 2cos 60 — 6( 2cos4 ) + 15(cos 26) — 20
sin = ;—;(cosw —6c0s46 +15cos 26 — 10

Example 3:
Expand sin®cos® 8 in a series of of sines of multiples of §

Solution:
(2isin6)3(2cos0)>=(x — §)3(x + i)s
=(? ~ ) (x + )"
=(x® — 3x? +%—%)(x2 +2 +$)
=(x8- ) + 2(x52) — 2(x*+) — 6(x*- )
=2isin 80 + 2( 2isin 60) — 2(2isin46) — 6(2isin 20)

(i.e.) 23 (-i) sin®625cos®0 = 2i(sin 86 + 2 sin 60 — 2 sin 46 — 6 sin 26)

sin30cos®f = ;(sin89 + 2sin 60 — 2sin46 — 6 sin 20)

Example 4:
Expand sin*8cos?6 in a series of sines of multiples of §

Solution:

(2isin@)*(2cosB)*=(x — %)4(35 + %)2
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»'fsﬂ?"
1 1
:(X4—2 +F)(X2 -2 +;)

1 1 1
=(x%- =) —2(x*—) —2(x*45) + 4

=2c0s60 — 2(2cos460) —2(2cos20) + 4

(i.e.) 2% sin*022cos’9 =2cos 68 — 2(2cos40) — 2(cos20) + 4

1
sin*fcos?f = % (cos60 — 2 cos4 6 — 2 cos 20 + 4)
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UNIT V

Hyperbolic functions — Relation between circular and hyperbolic functions Inverse
hyperbolic functions, Logarithm of complex quantities, - related problems.

Hyperbolic Function

Introduction:

If 6 is expressed in Radians, cos 6 and sin 8 can be expanded is powers of 8, the Result

Begins
92 6* 0°
COSH:l_E-I_I_E-I_WOO_)(l)
93 95 97
Sin6=1—§+a—ﬁ+...oo_,(2)

(These expansions are valid for all values of. @, real or Imaginary.)

The student is familiar with the exponential series, for all values of x.

. x x? x"
e —1+ﬁ+§+'“+m"'
where

B 1 1 1
e—1+ﬂ—§+---+a+

Put x = i@ in (3) then,

. 0 (i0)2 (i6)?

0 _ -

e =1+t TR
B i 6% ie3
TR TR TR

~ 92 g* (6 83 @°
= 1—E+Z+‘"00 +1 5—54‘500

= cos6 +isin @ from (1) and (2)

(this, formula is known as Euler's Formulas)
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Put x = —i6@ in (3) Then

. (=i8) (- 1)2 ( i9)3
—ig _
e’ =1+ 1 + ol 30 +
3 i 0% i3> o0+
SRR TR TR T T

_ 62 6*\ [0 63
o CARFTRPTY B TR TR

= cosf —isinf

Hence we get the Relation

e = cosf + isin 0
e”® = cos @ — isin 6.

Adding 2cos = e + ¢~

-6 ,+i6
ie, cos O = % ........... 4

Subtracting we get the relation

2isin@ = e~

..(5)

ie)sinf =
Hyperbolic Function:

The expression %(e" + e~*) and ; (e* — e™™) are defined as hyperbolic cosines and

hyperbolic sine Respectively of the angle x and symbolically.

eX*+e™* eX —e™*

hx = ————,sinhx = ————
cosnx ) sinn x >
The hyperbolic tangent, secant cosecant and cotangent are obtained from the hyperbolic sine
and cosine. Just as the ordinary tangent, secant, cosecant and cotangent are obtained from the

ordinary sine and cosine.

Thus,
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cosec hx = ,cothx =

sin hx tan hx

Relation Between Hyperbolic Functions:

(1) cosh?x —sinh?x = i{(ex +e*)?—(e*—e™)?}=1

(2) 2sinh xcoshx = 2 (ex_ze—x) . (ex+e_x)

2

(er _ e—Zx)

2
= sinh 2x.
(3) cosh?x +sinh?x  ={1/4(e* +e*)? +(e* — e ¥)?}

=1/4(e** + 2+ e ) +(e* -2 + e )}

er +e—2x
= — = cosh 2x.

(4) From the relation. (3), we get the Relations

cosh 2x = 2cosh?x — 1
cosh2x = 1+ 2Iln h%x
cosh?x = 1/2(cosh2x + 1)

sinh h?x = 1/2(cosh2x — 1)
(5) The series for sinh x and cosh x derived Below.

e*=1+x+x2/214+x3/31 4+ -
e *=1—-x+x%/2—x3/314 -

Subtracting e* — e ™ = 2(x + x3/3! -+ )
~sinhx = x + x3/31+ x%/5! -
Adding, e* + e =2(1+Z 145 14.)

~coshx =1+x2/21+x*/4!1 + ---

(6) we have seen that
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& c0sf = —— ,sinf =

Put 8 = ix in these relations We have

e—x X
cos(ix) = —— = ¢os hx.
in(ix) e X —e* (i) sin hx
sin(ix) = ———= (i -
2 [
= isin hx.

~ tan(ix) = itan hx.
The following Relation also hold good :-

i0 -10

e’ —e

sinh(i0) = — = 1sin 6
o0 4 =10

cosh(if) = ——  =cos 0

tan h(if) = itan 0

Using these relation, we can derive relation between hyper functions corresponding to

rotation Between circular functions.

For example,

(i) sin? @ + cos?0 =1, put 6 = ix

~ sin?(ix) + cos?(ix) = 1

i.e., (isin hx)? + (coshx)? =1 i.e., cosh? x — sinh?x = 1
(ii)

cos 260 = cos?H — sin? 0
cos(2ix) = cos?(ix) — sin?(ix)

= (coshx) — (isin hx)?

. cosh 2x = cosh? x + sinh? x

(iii) sin 20 = 2sin 0 - cos O
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sin(2ix) = 2sin(ix)cos(ix)
(i.e.)sin h2x = 2isinh hcosh x

(i.e.) sin h2x = 2sin hxcosh x
(iv)

1+tand = sec? 6

1 + tan?(ix) + cec?(1x)

1
1+ (itan h)? =
+ (itan h) (cosh)?
(i.e) 1 — tan h?x + sech? x

(v) sin(@ + @) = sin Ocosp + cos Osin? 4

Put @ = ix, p = iy then.

sin(ix + iy) = sin(ix)cos(iy) + cos(ix)sin(iy)

(i.e.) sinh(x + y) = isinh xcosh y + (cosh (isis by)
=~ sinh(x + y) = sinh xcoshy + cosh x sin hy
Similarly

sin h(x — y) = sin hxcos hy — cosh xsin x

cos(6 + ¢) = cosfcos ¢ — sin fsin @

Put @ = ix, ¢ = iy, then

cos(ix + iy) = cosixcosiy - sin ixsin iy
cos h(x +y) = cos hxcos hy — (isin hx)(isinhy)

= cos hxcosh y + sinhxsin hy.

Similarly
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, ~pt e

onomt owEr

cos h(x —y) = cos hxcos hy — sin hxsinh y

tan 20 = 2tan 0
A

Rut @ = ix

2tan(ix)
1 — tan?(ix")
2itan hx
1 — (itan hx)?

~ tan(2ix) =

itan h2x =

2tan hx

tan h2x = —————
an frex 1 + tanh h?x

Inverse hyperbolic Functions:
We can express sin h™1x, cos h~1x, tan h~1x inters of logarithmic functions
(i) Let y = sinh™1x; Then x = sin hy
2 1/2(e¥ —e™¥) =x
(i.e) e?” —1 = 2xeY

(i.e)e? —2xe¥ —1=0

2x + Vi4x2 + 4
= =x+tx?2+1

s ey
2

Since e is always positive

e¥ =x++x2+1

Taking logarithms to the Base e on both sides, we get",

y = log, (x +x?%+ 1)
 sinh h™x = log, (x +x?2+ 1)

(ii) y = cosh™ x then x = cos hy.
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1
- E(ey + e_y) =X
ey —2xe?+1=0

~e¥=x+t+x%2-1

=x++x?2—1 (or)
1

xVxZ —1
~y =log, (x +Vx?% — 1) or
—log, (x +/x?% — 1)
= tlog, (x +/x?% — 1)

The positive sign is usually taken
cosh™'x = log, (x +\x? — 1)

Lety = tan~!x Then

X = tan hy
ey —_ e_y

eYy+e™V

ue¥—e? =(x)(e¥+e?)

ie,e? +er(1—x)

ezy_1+x
T 1-—x
oy =1 (1+x>
Yy = 108, 1—x

(ie)y =1/2loge(1 +x/1 —x)

~tanh 1 x = 1/2loge(1 + x/1 — x).
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Example 1:

0

If coshu = sec 6, show that u = logtan (% + E)

Solution:
Let coshu = sec @
u = cos h™1(sec 9)

= log,.(secO + +/sec? — 1

= log.(secO + tan 6)

_1 (1 + sin 0)
~ %8\ 050
2 tan% 1-— tanzg
=log,{1+ — ()Y %
1+tan27 1+tan27
1— tanzg
= log, 0
1 + tan? >
T 0
= log, tan (Z + E)
Example 2:

If tan A = tan « tan hf8 tan B cos a tan h3, Prove that
tan (A + B) = sinh2 fcosec 2a.

Solution:

tan(A + B = tanA + tan B
an( )= 1 —tan Atan B
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_ tanatanf + cotatan hf8
"~ 1 —tan atan hf - cotatan hf8
tan hf(tan a + cota)
- 1 —tanh? g
_ sinhficoshpf sina cosa
"~ cosh?f —sinhh?2f “cosa sina
sin hfcos hf3
sin acos asin
1/2sin2p
~ 1/2sin h2a
= sin h2fBcosec 2a.

Example 3:
Express cos h® 6 in terms of hyperbolic cosines of multiples of 6.

Solution:

e? +e?
cosh® @ = —

= 21—6 [0 + 6c1e*? + 6¢,e29 + 605 + 60,6720 + 6056740 + 6c5e 7

(by binomial theorem)

1
=% [(e%0 +e7%9) + 6¢,(e* + e7*9) + 6¢,(e2? + e729) + 6¢5]

1
= %6 [cosh 66 + 6.cosh4 6 + 15 cosh 26 + 10]

Example 4:
If cos acosh 8 = cos ¢, sin asinh f = sin ¢,

Prove that sin ¢ = +sin? ¢ = +sinh?
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Solution:

cos sin
P inhpg = 0o

cosa sina

coshp =
we know that cosh? p —sinh? g = 1
<cos ¢>2 (sin (;b)2 _,
cosa sina)

cos? ¢sin? a = sin? ¢pcos? a = sin? acos? a
(1 — sin? ¢)sin? a — sin? ¢(1 — sin? a) = sin? a(1 — sin? a)

sin? a — sin? ¢sin? a — sin? ¢ + sin? ¢sin?

= sin? a — sin* a
—sin? ¢ = —sin* «
sin? ¢ = sin* «

sin ¢ = +sin? a.
We have, sin ¢ = +sin? a
sin asinh = +sin? a
sinhf = +sina
Taking square on both sides
sinh? f = +sin? a = sin¢
Example 5:
If cos(x + iy) = cos @ + isin 8, prove thatcos 2x + cos h2y = 2
Solution:
cos 8 + isin 8 = cos(x + iy)

= C0S XCOS [y — sin xsin iy

= cos xcosh y — isin xsinh y

Equating real & Imaginary parts
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cos 8 = cos xcoshy
sin@ = —sinxsinh y
cos?@ +sin?6 =1
cos? xcosh? y + sin? x sin h2y = 1

cos? xcoshy + (1 — cos? x)(sin? hy) = 1
cos? x coshy + sin? y — cos? xsinh? y = 1
cos? x (cosh? y — sinh? y) + sinh h?y = 1
cos2x+1 cosh2y -1

2 * 2 B
cos 2x + cosh 2y = 2.

Example 6:

If sin(A + iB) = x + iy prove that

2 2

) S———5-=
sin2A  cos?4A

2 2

X Y

=1
cosh? B + sinh? B

i)
Solution:
x + iy =sin(4 + iB)

= sin AcosiB + cos Asin 1B

= sin Acosh B + cos 4isinh B

Equating real & Imaginary part

x = sin Acosh B
y = cos Asinh B

, x? y? _ sin? Acos’hB  cos® Asin® hB
) sin? A cos?A sinZ A sinZ A
= cos?hB —sin? hB =1
x? N y: - sin? Acos? hB N cos? Asin? hB
i) cosh2B ' sinh2B~ = cos?hB sin? hB

= sin®? A + cos? A = 1.
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Example 7:

sin 2x

If tan(x + iy) = u + iv, prove that u/v = Sahzy,

Solution:

sin(x + iy)
cos(x + iy)

2cos(x — iy)sin(x + iy)
- 2cos(x — iy)cos(x + iy)
__sin(2x) + sin(2iy)

tan(x + iy) =

cos 2x + cos 2iy
sin 2x + isinh 2y

cos 2x + cosh 2y
This expression is given as u+iv

sin 2x

u= cos 2x + cosh 2y

sinh 2y

u= cos 2x + cosh 2y
sin 2x

V'~ sinh 2y’

Example 8:

If cosh(a + ib) cos(c + id) = 1, prove that

1) cos bcos ccos hacos hd + sin b sin csin ha sin hd = 1
2.) tan hatan b = tan, hd tan ¢

Solution:

1 = cosh(a + ib)cos(c + id)
= {cosh a cosh(ib) + sin hasinhb}
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{cos ccos(id) — sin csin(id)

cosh(iy) = cosy

and sin h(iy) = isiny

=~ cos h(ib) = cos band sin h(ib)

= 1sinb
substitute these values in equation (1), we have.
1 = (cos hacos b + isinh asin b)(cos c cos hd — isin csinh d )

= (coshacosbcosc + sinhasinb sinhd)
+i(sin ha sin b cos ¢ cos hd — cos ha cos b sinc sinh d )

Equating the real parts, we get the result (1)
Equating the imaginary parts, we have

sin hasinb cosc cos hd — cos ha cos b sinc sinhd =0

sin h asinb sin ¢ sin hd

cos ha cosb cos c coshd

tanhatanb —tanctanhd =0

Example 9:

Separate into real and imaginary parts tan h (1 + i)
Solution:

tan (ix) = i tanhx

) sin(i — 1)
s ltan h(l + 1) = m
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_ 2cos(i+ 1)sin(i — 1)

~ 2cos(i + 1)cos(i — 1)
sin(2i) — sin(2)

=cos(2i) + cos(2)
isinh 2 — sin 2

~cosh 2 + cos(2)

sin h(2) + isin 2
cos h(2) + cos(2)

~tanh(i+1) =

Example 10:

Separate into real and imaginary parts tan~(x + iy))
Solution:

Lettan™1(x + iy) = a + if

Thentan(a +if) = x + iy

we easily see' that tan(a + if) = x + iy

tan 2a = tan(a + if + a — i)

_ tan(a +ip) + tan(a — if)
1 —tan(a + if)tan(a — iB)

_atiytx—iy
11— (x +iy)(x —iy)

2x
tan 2a = TZ‘")’Z)
a=1/2tan! (2—x>
1—x2—y?

tan(2pi) = tan[(a + if) — (a — if)]

tan(a+ip)—tan(a—ip)
1+tan(a+if)tan(a—iB)

is itanh 28 =
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_ (x+iy)—(x—iy)
14 (x +iy)(x — iy)

_ 21y
1+ x2+y2
tanh 2 = —=
anh2f =1y y?
1 2y
— -1
B Ztanh (1+x2+y2)'
Exercises:
2
1. Prove that cosh 2x = M
1-tanh“x

2. Prove that sin h 3x = 3 sinhx + 4 sin h3

tanh3x+3 tanhx
1+3tan h2x

4. Prove that coth™lx = %log (x+1)

x—1

3. Provethat tan h 3x =

- 241
5. Prove that tanh™! (%) = logx (x > 0)
Logarithms of Complex quantities:
Definition:

If u and z be any two complex quantities such that z = e*, then u is called the logarithm of z

and we write u = log, z or simply log z
To find the logarithm of x + iy
Letlog.(x +iy) =a +if

Then by definition

X + iy = e®*ip

=e%-e%(cosf + isinf)
x=e%ospf,y =e%inpf

Hence e?* = x? + y? a = %log(x2 +y2)

and tan B = % + Btan‘1%
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~—
;]
i3

1 y

— _ 2 2 P -1 (7

loge(x+(y)—2(x + y4) + itan (x
= logy +i6

Where r = \/x2 + yandtang = Z

X

This the real part of the logarithm of a complex quantity is the logarithm of its modulus and
the imaginary part is its amplitude.

General value of logarithm of x + iy
letlog.(x +iy) = a+if
Then x + iy = e®*i#

=e%.¢lB

— ea(cos B+isin )

— ea{cos(Znn+ﬁ)+isin(2nn+ﬁ)
= e . p{@nm+p)

= pa@t2nmi+ip

It follows from the definition that a + if + 2nmi is the value of log,.(x + iy) This is called

the general value and is written with a capital letter

log.(x +iy) =a +if
log.(x + iy) = log.(x + iy) + 2bmi

It is thus clear that the logarithm of a complex quantity has more than one value. It is easy to
note that the several values of log(x + iy) differ. from one another by an integral multiple of

2mi
1
log.(x +iy) = Elog(x2 + y2) + itan"1(x) + 2nmi

Corollary 1: Puty =0

Then logx = %log(xz) + 2nmi = log x + 2nmi
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Hence the logarithm of a real positive quantity is many valued and that the principal value of
the logarithm in its ordinary logarithm which is real.

Corollary 2:

Let y = 0 and x be negative (say, —x, )
if log(x + iy) — a + iB, then

x —e%cosf,y = e%sinf

In this case, eacos f = —x, and

e%inf =0

x2 — eZa ea = x
cosf=—-1andsinf =0
p=m
log(—x,) = logx; + im
log(—x;) =logx; +i(2n+ Dm
Hence the principal value of the logarithm of a negative quantity is imaginary corollary 3.
Putx =0
1
log, (iy) = Elog(yz) + itan~1(o0) + 2nmi

m
= logy + i§+ 2nmi

1
=logy+i(2n+§>n

Hence the logarithm of a purely imagining quantity consists of two Parts one real part and other

imaginary.
Example 1:

Find log(1 — i)

125

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Solution:

log(1—1i)=1log(1l—1i)+ 2nmi
1 -1
= Elog{l2 + (—1)?%} + itan™?! (T) - 2ni
1
= ElogZ + itan~1(—1) + 2nmi

—11 2+'37T+2 [
=7 log i nmi

_4 2+'(2 +3”)
= 5log2 +i(2nm +

Example 2:
If logsin(6 + i¢p) = L + iB, prove that 2e?L = cos h2¢ — cos 20

Solution:

L+ iB =logsin(0 + i¢)
= log(sin fcosi¢p + cos Osin i)
= log(sin Bcosh ¢ + icos Osinh ¢)
(cos Bsinh d))

1
_ = - 2
= log{(sm Ocosh ¢)* + sin Bcosh ¢

2
1
L= Elog[(sin Ocosh ¢)? + (cos Osinh ¢)?}

e?l = (sin Gcosh ¢)? + (cos Osinh ¢)?
= sin? Ocosh? ¢ + cos? fsinh? ¢
1 —cos 26 1+cos20 |
=———coshh?¢p T sinh? @
1
1= E{(cosh2 ¢ + sinh h?¢) — (cosh? ¢ — sinh? ¢)}

2e%L = cos? ¢p? + sinh? ¢ — cos 20(cosh? ¢ — sinh? ¢}
= cosh 2¢ — cos 26

Example 3:

Deduce the expansion of tan~! x in powers of x from the expansion of log(a + i°b)

Solution:

1 b
log(a + ib) = Elog(a2 + b?) + itan™?! (E)
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Puta=1,b=x

log(1+ ix) = %log(l + x2) + tan"1(x)

tan x = imaginery part of log(1 + ix)

= imagine ry Part (ix) — > (ix)? + 3 (ix)® — 5 (ix)* + = (ix)° + -~

- . 1 1. 1 1.
= imagery Part (ix) + -x* — Zix® — - x* + 515

1 1
= — 3 Z 45
X =X 3x +5x

tan~1!

Example 4:
Reduce (a + if)**¥ to the term A + iB

Solution:

(a+ iﬂ)(x‘*'iy) = g (x+iy)log(a+ip)
= e (x+iy){log(a+ip)+2nmi}
= e {logy +i'0 + 2mmi}

Where y = \/a? + B2 and § = tan™?! (g)

(a + iB)*+Y = eXlogy=y(0+2nm) . oify|ogy + x(0 + 2nm)}
= e*lo8y-y(6+2nm) [cos{ylogy + x(8 + 2nm)} + isin{ycogy + x(8 + 2n(mw)}]

A = e*lo8y-y(0+2nm) [cos{ylogy + x(0 + 2nm)}] and B = e¥lo8y—y(6+2nm)}

Example 5:

4in+
4m+

Show the log; L =

1 .
o where m and n are integers.
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Solution:

Letlog;i =x + iy

Theni = i**w

Taking the general value of the logarithm on both sides, we have

(x +iy)logi = logi

When n and m are integers.
Example 6:
Find the general value of log_3y(—2)
Solution:
Letlog_3(—=2)=x+y
. _ loge(=2)
G+ 1) = o, =3)
(x + iy)loge(—3) = log.(=2)
(x+iy)log'3+i(2m+ Dny =log2+i(2n+ )m
equating the real and imaginary Parts on both sides we get.
xlog3 —y(2m + 1)m = log,

ylog3 +x(Zm+Dn=02n+ )r

Solving the equations (1) and (2) we get
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_ Cm+1D)@2n+ Dr? + (log2)(log3)

B (log3)? + (2m + 1)2m2

log3(2n+ 1) — (2m + 1)mlog 2
(log3)? + 2m + 1)?n?

and y =
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